

Main beam representation in non-regular arrays

Christophe Craeye¹, David Gonzalez-Ovejero¹, Eloy de Lera Acedo², Nima Razavi Ghods², Paul Alexander²

¹Université catholique de Louvain, ICTEAM Institute
 ²University of Cambridge, Cavendish Laboratory
 CALIM 2011 Workshop, Manchester, July 25-29, 2011
 2d calibration Workshop, Algarve, Sep 26, 2011

2 parts

Preliminary: Patterns of apertures – a review

Next: analysis of aperture arrays with mutual coupling

$$A_{mnx} = 2\pi \int_0^b J_n(\lambda_n^m r/b) a_{nx}(r) r dr$$
$$= \int_S I_x(r, \alpha) J_n(\lambda_n^m r/b) e^{-j n \alpha} dS$$

Zernike series

$$a_{nx}(r) \simeq \sum_{m=0}^{M} z_{mnx} F_m^{|n|}(r/b)$$

$$z_{mnx} = \frac{(|n| + 2m + 1)}{\pi b^2} B_{mnx}$$

$$B_{mnx} = 2\pi \int_0^b F_m^{|n|}(r/b) a_{nx}(r) r dr$$

$$= \int_S I_x(r, \alpha) F_m^{|n|}(r/b) e^{-j n \alpha} dS$$

NB: the Zernike function is a special case of the Jacobi Function

Zernike functions

Picture from Wikipedia

Radiation pattern

$$f_x(\theta, \phi) = \int_S I_x(r, \alpha) e^{j k (u_{x'} x' + u_{y'} y')} dS$$

$$=\sum_{n=-N}^{N}\int_{0}^{b}a_{nx}(r)\,2\pi\,j^{n}\,e^{j\,n\,\phi}\,J_{n}(k\,r\,\sin\theta)\,rdr$$

Hankel transform

F.T. of Bessel

$$f_x(\theta, \phi) \simeq \sum_{n=-N}^{N} \sum_{m=1}^{M} 2j^n \frac{\lambda_n^m}{J_{n+1}(\lambda_n^m)} A_{mnx} e^{\mathbf{j} \mathbf{n} \phi} \left[\frac{\mathbf{J}_n(\mathbf{k} \mathbf{b} \sin \theta)}{(\lambda_n^m)^2 - (\mathbf{k} \mathbf{b} \sin \theta)^2} \right]$$

FT of Zernike

$$f_x(\theta,\phi) \simeq 2 \sum_{n=-N}^{N} \sum_{m=0}^{M} (|n| + 2m + 1) B_{mnx} j^n \mathbf{e}^{\mathbf{j} \mathbf{n} \phi}$$
$$(-1)^s \frac{\mathbf{J}_{|\mathbf{n}|+2\mathbf{m}+1}(\mathbf{k} \mathbf{b} \sin \theta)}{\mathbf{k} \mathbf{b} \sin \theta}$$

Sparse polynomial

$$f_x \simeq \sum_{n=-N}^{N} \sum_{m=0}^{M} C_{mnx} \left(\frac{\mathbf{b}}{\lambda} \sin \theta \right)^{\mathbf{2m} + |\mathbf{n}|} \mathbf{e}^{\mathbf{j} \mathbf{n} \phi}$$

$$C_{mnx} = D_{mn} \int_{S} I_x \left(\frac{2\pi r}{b}\right)^{2m+|n|} e^{-j\,n\,\alpha} \, dS$$

$$D_{mn} = (-1)^{m+s} \frac{(1/2)^{2m+|n|}}{m! (m+|n|)!} j^n$$

Context: SKA AA-lo

Type of element

Bowtie

Spiral

Log-periodic

Non-regular: max effective area with min nb. elts w/o grating lobes.

Parameter	Specification
Low frequency	70 MHz
High frequency	450 MHz
Nyquist sampling frequency	100 MHz
Number of stations	50 => 250
Antennas per station	10.000

Problem statement

- **Goal:** pattern representation for all modes of operation at station level.
- Too many antennas vs. number of calibration sources
 - Calibrate the main beam and first few sidelobes Suppress far unwanted sources using interferometric methods (open).
 - Compact representations of patterns, inspired from radiation from apertures, including effects of mutual coupling

Specific to SKA AAlo

- Fairly circular stations (hexagonal would be OK)
- Relatively dense
- Weak amplitude tapering some space tapering
- Irregular => all EEP's very different
- Even positions are not 100 % reliable (within a few cm)
- Correlation matrix not available
- Nb. of beam coefficients << nb. Antennas
- Restrict to main beam and first few sidelobes

Even assuming identical EEP's and find 1 amplitude coefficient per antenna is way too many coefficients

Outline

- 1. Limits of traditional coupling correction
- 2. Array factorization
- **3. Array factors: series representations**
- 4. Reduction through projection
- 5. Scanning

Embedded element pattern

To get voltages in uncoupled case: multiply voltage vector to the left by matrix

After correction, we are back to original problem, with (zoomable, shiftable) array factor

Gupta, I., and A. Ksienski (1983), Effect of mutual coupling on the performance of adaptive arrays, IEEE Trans. Antennas Propag., 31(5), 785–791.

Mutual coupling correction

Half-wave dipole

Mutual coupling correction

Bowtie antenna

l=1.2 m, λ=3.5 m

Mutual coupling correction

Bowtie antenna

l=1.2 m, λ=1.5 m

Example array

- Distance to ground plane = $\lambda_0/4$.
- No dielectric.

- Array radius = $30\lambda_0$. - Number of elements = 1000.

Random arrangement

Random configuration

Quasi-random arrangement

25

ICEAA 2011

Radius of Influence $e_{(\theta,\phi)}$ =

1000 elements

H-plane

Aperture sampling (1)

CALIM 2011

Aperture sampling (2)

Define a local density (several definitions possible)

Aperture scanning (1)

Aperture scanning (2)

Patterns versus size of array

Coherent & incoherent regimes

Number of sidelobes in "coherent" regime

Aperture field representation

Pattern representation

$$F(\theta, \phi) = \int_{S} f(r, \alpha) e^{j k (u_{x} x + u_{y} y)} dS$$
$$= \sum_{n=-N}^{N} 2\pi j^{n} e^{j n \phi} \int_{0}^{b} a_{n}(r) J_{n}(k r \sin \theta) r dr$$
Angle from

broadside

Polynomial decomposition

$$F \simeq \sum_{n=-N}^{N} \sum_{p=0}^{P} C_{n,p} \left(\frac{b}{\lambda} \sin \theta\right)^{p} e^{j n \phi}$$

$$C_{n,p} = D_{n,p} \sum_{i=1}^{M} A_i (2\pi r_i/b)^p e^{-j n \alpha_i}$$

$$D_{n,p} = (-1)^s \frac{(-1/2)^p}{m! (m+|n|)!} j^n$$

CALIM 2011

Fourier-Bessel decomposition

$$F(\theta,\phi) = \sum_{n=-N}^{N} \sum_{m=1}^{M} 2j^n \frac{\lambda_n^m}{J_{n+1}(\lambda_n^m)} A_{mn} e^{jn\phi}$$
$$\frac{J_n(k \, b \, \sin \theta)}{(\lambda_n^m)^2 - (k \, b \, \sin \theta)^2}$$
$$A_{mn} = \sum A_i \ J_n(\lambda_n^m \, r_i/b) \ e^{-jn\,\alpha_i}$$

Fourier-Bessel decomposition

$$F(\theta,\phi) = \sum_{n=-N}^{N} \sum_{m=1}^{M} 2j^n \frac{\lambda_n^m}{J_{n+1}(\lambda_n^m)} A_{mn} e^{jn\phi}$$
$$\frac{J_n(k \, b \, \sin \theta)}{(\lambda_n^m)^2 - (k \, b \, \sin \theta)^2}$$
$$A_{mn} = \sum_i A_i \ J_n(\lambda_n^m \, r_i/b) \ e^{-jn\,\alpha_i}$$

A. Aghasi, H. Amindavar, E.L. Miller and J. Rashed-Mohassel, "Flat-top footprint pattern synthesis through the design of arbitrarily planar-shaped apertures," IEEE Trans. Antennas Propagat., Vol. 58, no.8, pp. 2539-2551, Aug. 2010. CALIM 2011

Zernike-Bessel decomposition

$$F(\theta,\phi) = 2 \sum_{n=-N}^{N} \sum_{m=0}^{M} (|n| + 2m + 1) B_{mn} j^n e^{jn\phi}$$
$$(-1)^s \frac{J_{|n|+2m+1}(k b \sin \theta)}{k b \sin \theta}$$

$$B_{mn} = \sum_{i} A_i F_m^{|n|}(r/b) e^{-j n \alpha_i}$$

Y. Rahmat-Samii and V. Galindo-Israel, "Shaped reflector antenna analysis using the Jacobi-Bessel series," IEEE Trans. Antennas Propagat., Vol. 28, no.4, pp. 425-435, Jul. 1980.

Polynomial	Fourier- Bessel	Zernike- Bessel
Fast functions	Good 1 st order	Good 1 st order
weaker at low orders	weak direct convergence	fast direct convergence

Array factor

with apodization

Array factor

Apodization function w(r) extracted

Approximate array factor extracted

20 % error on amplitudes $\lambda/4$ error on positions (at 300 MHz)

8.62

6.64

UNIVERSITY OF

CAMBRIDGE

Density function

The number of terms tells the "resolution" with which density is observed CALIM 2011

Array of wideband dipoles

AF convergence

Over just main beam

AF convergence

Main beam + 1st sidelobe

AF convergence

Project on 1, 2, 3 MBF patterns at most Algarve meeting, 2011

Pattern projections

$$\vec{F}_{p}^{\circ} = \alpha \ \vec{F}_{0}^{\circ} + \vec{F}_{p,res.}^{\circ}$$

$$\alpha = \frac{\left\langle \vec{F}_{p}^{\circ}, \vec{F}_{0}^{\circ} \right\rangle}{\left\langle \vec{F}_{0}^{\circ}, \vec{F}_{0}^{\circ} \right\rangle} \longrightarrow \begin{array}{c} \text{Power radiated by} \\ \text{MBF pattern 0} \end{array}$$

$$C_{0} \ \vec{F}_{0}^{\circ} + C_{p} \ \vec{F}_{p}^{\circ} \longrightarrow \simeq (C_{0} + \alpha C_{p}) \ \vec{F}_{0}^{\circ}$$

NB: can be projected on more than 1 (orthogonal) MBFs

Full pattern

Error w/o MC

Only 1 pattern used here (pattern of "primary")

Variation of maximum

Imaginary

Conclusion

- Representation based on array factorization
- Projection of patterns of MBF on 1 or 2 of them
- Representation of array factors with functions use for apertures (done here with 1 array factor)
- Array factor slowly varying when shifted upon scanning

(to be confirmed with more elements and other elt types)