
Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

Developing GSM Concepts in PSS4

O.M. Smirnov

Verified:

Name Signature Date Rev.nr.

K. van der Schaaf o.p.v. 2003-Jul-10 0.1

Accepted:

Work Package Manager System Engineering Manager Program Manager

J. Noordam C.M. de Vos J. Reitsma

..

date: date: date:

c©ASTRON 2005

All rights are reserved. Reproduction in whole or in part is

prohibited without the written consent of the copyright owner.

c©ASTRON 2005

LOFAR Project -1-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

Distribution list:

Group: For Information:

ASTRON: M. Brentjens (MAB)

G. van Diepen (GVD)

J. Noordam (JEN)

R. Overeem (RO)

K. van der Schaaf (KvdS)

ASTRON: C.M. de Vos

J. Reitsma

M. Loose

ORDINA: K-J. Wierenga

Snow B.V.: D. Hoogland

Document revision:

Revision Date Section Page(s) Modification

0.1

0.1.1

2003-Jul-10

2003-Aug-4

-

2.1

-

3

First public version

Source representation depends on frequency

Abstract

The LOFAR Global Sky Model (GSM) will be an all-sky database of some 100 million objects,

with flux & polarization measurements in the 20–200 MHz range. The primary function of the GSM

is to support LOFAR calibration and data reduction. The GSM is expected to provide a model of

all sufficiently bright sources in any given field, having enough detail and precision to calibrate and

subtract these sources and yield residual images of the faint background. The GSM is expected to be

continuously updated and refined during LOFAR operation in a “closed loop” system. The GSM is

also a valuable stand-alone data product that can be integrated into the VO.

An prototype version of the GSM will be developed as part of the Prototype Selfcal System 4

(PSS4, [1]). This document examines requirements, proposes some preliminary design ideas, and

works towards a plan for developing the GSM within PSS4 and beyond.

c©ASTRON 2005

LOFAR Project -2-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

1 Preliminary thoughts and requirements

According to JEN’s PSS4 document [1]:

1. Stand-alone product

2. Subsets extracted into MEP database, and linked to MeqParms

3. Cat II prediction (Haystack simulator?)

4. Outline the development path to final size and functionality

5. Relation to NVO (interfaces!): Use the VOtable?

6. Put in all the 3C and 4C sources

7. Put in all the 3C84 sources for MAB

8. Continue adding to it with everything we do

9. Think about source representations (parameters, shapelets, pixons, images, etc.)

10. How to find subsets

2 Use cases

In order to limit scope for PSS4, yet stay on the development path towards a full-blown GSM, it is

necessary to define a layered interface carefully. To do this, we first need to consider the basic use cases:

2.1 A source maps to a set of MeqNodes?

For use with a MeqTree, a GSM source has to map to a collection of MeqNodes. In the simplest case

(i.e. vanilla point source), these are basic MeqParms: RA, Dec, I, Q, U, V fluxes. Any of the parameters

may be variable in frequency and/or time for some sources.

The parameters of more complex sources will end up being represented by little sub-trees of their own

(i.e., by a MeqExpr node with MeqParm children). For example:

• Specific representations of time or frequency dependence, more “physical” than a polynomial. Rep-

resentation via spectral index – i.e. flux as an exponential of frequency – is a canonical example.

The spectral index would then be the actual MeqParm [solvable if so requested], and it needs to be

attached to a MeqExpr (the exponent) to compute flux.

c©ASTRON 2005

LOFAR Project -3-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

• Complex sources and Cat II sources bring in a whole zoo of concepts: images, shapelets, etc. These

will definitely require specialized MeqNodes and/or MeqExprs.

The complexity of this representation may also vary depending on domain. For example, a point source

at higher frequencies may have spatially extended emission at lower frequencies. Thus, we may need to

switch between different sub-tree representations depending on frequency.

Note also that the GSM↔MeqNodes representation has to be bidirectional. Once a source has been

solved for, we may want to store the new parameter values back into the GSM. But see below.

2.2 Automated source finding

We need to implement automated source finding, at least in some primitive way. In terms of use cases,

this implies being able to update the GSM with new sources, from both the scripting layer, and perhaps

C++.

2.3 Inserting and updating sources

Note that there should be a way to treat sources as temporary and local to a specific solution or session.

I.e., while the automatic source detection algorithm may generate sources, we don’t know if they’re really

there or not until we have successfully solved for them. Similar considerations apply to updated values of

pre-existing GSM sources – we may want to reuse the updated values in another solution, discard them

entirely, or really commit them to the GSM.

The commit step needs to be explicit. It’s OK if this step is done manually in PSS4, but we should

keep an eye on the possibility of some sort of automated strategy. Should it be possible to assign several

sets of parameter values to one GSM object? In that case we could also consider assigning some sort of

“confidence level” to each set.

It seems we need to introduce the term Local Sky Model (LSM), that is, the model being employed for

a specific solution. This would be created as a subset of the GSM (by doing a region search), but could

then be updated with auto-located sources (or sources explicitly added by the user), refined, etc., before

[possibly though not necessarily] being merged back into the GSM. Rather than a separate entity, the

LSM could simply be a logical subset of the MEP database, (MEPdb) but see below for a discussion.

c©ASTRON 2005

LOFAR Project -4-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

2.4 Region search

Extract the subset of the GSM (i.e. the LSM) for a given region of the sky, within a given brightness range,

etc. The query can and will incorporate other criteria, but selection by coordinate is the biggest challenge.

This operation could be initiated from the scripting layer, or perhaps even from C++. Whether the subset

is extracted directly into data objects in the scripting language, or first into the MEPdb (whatever that

is) remains to be determined. See discussion below.

2.5 Populating from existing catalogues

The GSM will be pre-populated from existing data sets. This is generally a “unique”, one-time – or at

least one-time-per-catalogue operation – never done on-the-fly.

2.6 NVO, VOTable and friends

The NVO effort has produced the VOTable definition (Proposed XML Format for Astronomical Tables,

[2]). This is directly relevant to the GSM in several ways. Despite being out of PSS4’s current scope, we

should consider:

• If we want to play with NVO as a “data provider”, then at some point we need to be able to export

subsets of the GSM in VOTable format.

• With a GSM→VOTable converter, we could profit from outside software packages, such as VOTable

visualizers. There’s definitely a trend in developing this stuff around the world.

• More and more catalogues are being made available online in VOTable form, so a VOTable→GSM

importer could become important.

As a third possibility, I could imagine using the VOTable internally at some point – see discussion later

on.

3 Design considerations

3.1 Layered interfaces

Common sense & design principles call for a layered interface, with one or more layers between the

database implementation and the application. At the bottom, we have the database engine itself (which,

c©ASTRON 2005

LOFAR Project -5-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

in the case of PSS4, is simply an AIPS++ table). An [optional] intermediate layer could provide query-

lookup-read-update-insert functions, mapping primitive structures in the database into compound objects

such as “a source” or “a collection of sources for a region”.

What is clear, is that at the application level, the interface has to eventually present each source as a

collection of MeqNode objects (or their defrecs). If one needs to insert, e.g., the flux of a source into a

tree, one don’t usually want to know if it is a single MeqParm, or a complicated MeqExpr – hence the

MeqNode treatment. Similar considerations apply to, e.g., visualization.

My thinking at the moment that as far as PSS4 is concerned, we only need to elaborate the Glish (i.e.

scripting layer) interface – the topmost layer – and that no knowledge of the GSM is required on the

C++ side. The underlying functionality may be rapidly implemented in Glish alone, using AIPS++

Tables for storage. This is probably sufficient for PSS4 purposes, represents very little investment, and

leaves us free to rip the guts out and replace them with a real database later.

3.2 Do we have an LSM?

The LSM does not necessarily need to exist as a separate entity. It could be seen as simply a logical

subset of the MEPdb that deals with sources. We should, however, consider:

Lifecycle: how long does an LSM exist, before being discarded and/or merged back into the GSM?

Certainly as long as the same observation is being processed. However, I can see a user wanting to

keep his LSM around longer, perhaps to apply to a future observation of the same region.

Portability: will user John want to pass a copy of his LSM to user Jane? How?

Structure: is it sufficient to consider the LSM as simple ”flat” set of parameters? If we allow complicated

sources to be represented by sub-trees, then I could imagine trying to solve for one of these sources

and discovering it is better modelled by a somewhat different tree. How do I represent this new

tree in the LSM? Clearly, the LSM needs to contain not only parameters, but some structural

relationships between them (actually, this applies to the GSM as well).

These considerations seem to imply that the LSM is something more than a simple subset of the MEPdb,

so perhaps it should exist on its own at some level of the implementation. Unless, that is, we decide that

similar considerations apply to the other MEPs, in which case the LSM concept can be merged into the

more general concept of a “local” MEPdb.

c©ASTRON 2005

LOFAR Project -6-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

3.3 VOTable

There is nothing particularly “magic” about the VOTable format, apart from the fact that it’s becoming

the international data exchange standard. Being based on XML, it solves half of the I/O problem (that

of reading/writing structured data), since XML parsers are available for almost all conceivable languages

and platforms. The other half (making sense of the structure read, and, conversely, writing sensible

structure) has to be addressed separately.

VOTable allows for a very rich semantic structure, so it’s certain that whatever specific representation we

choose for the GSM, any subset can be easily mapped onto the format. Rich semantics are a double-edged

sword though: mapping the other way (VOTable→GSM) can be a lot trickier, since the semantics of a

VOTable from a different source may not be directly compatible, so we can only hope to support some

sensible subset (and write custom conversion scripts otherwise). I propose we leave the issue at that for

PSS4.

What could be considered in more detail at this point are unified content descriptors (developed at

CDS Strasbourg, [3], [4], [5]). UCDs are a set of standard strings (labels) used in VOTable to specify,

essentially, what a datum means in astronomical or physical terms. What UCDs provide is a concise,

unified vocabulary for describing astronomical data. Here’s a sample (see full list at http://vizier.u-

strasbg.fr/viz-bin/UCDs):

POL Polarization Related Quantities

...

POL_STOKES Polarization Stokes Parameters

POL_STOKES_I Stokes parameter I (total power)

POL_STOKES_Q Stokes Parameter Q (absolute, or relative Q/I)

POL_STOKES_U Stokes Parameter U (absolute, or relative U/I)

POL_STOKES_V Stokes Parameter V (absolute, or relative V/I)

POS Position Related Quantities

POS_ANG Angular Position

POS_ANG_DIST Angular Distance and related quantities

POS_ANG_DIST_GENERAL Angular Distance Or Separation

POS_ANG_DIST_REL Relative or Normalized Angular Distance

POS_ANG_DIST_SQ Quadratic Angular Distance

POS_ANG_VEL Rate Of Position Change (drift motion, angular velocity)

...

POS_EQ Equatorial Coordinates and related quantities

...

POS_EQ_DEC Declination related quantities

POS_EQ_DEC_3T Third Term in Declination

POS_EQ_DEC_MAIN Declination

POS_EQ_DEC_OFF Declination or North-South Offset Difference

POS_EQ_DEC_OTHER Declination in Non-Standard Units or partial values

POS_EQ_DEC_PRECESS Precession Variation in Declination

POS_EQ_DEC_REL Relative Declination in a Special Scale

c©ASTRON 2005

LOFAR Project -7-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

...

POS_EQ_PREC Annual Precession Quantities

POS_EQ_PREC_DEC Annual Precession In Declination

POS_EQ_PREC_RA Precession Variation In RA

...

POS_EQ_RA Right Ascension related quantities

POS_EQ_RA_2T Second Component in right Ascension

POS_EQ_RA_3T Third Term In Right Ascension

POS_EQ_RA_CORR Correction in Right Ascension

POS_EQ_RA_MAIN Right Ascension

POS_EQ_RA_OFF RA Offset or Residual In Right Ascension or along East-West

POS_EQ_RA_OTHER Right Ascension in Non-Standard Units or partial values

POS_EQ_RA_REL Relative Right Ascension in a Special Scale

Adopting the official UCD list as a source of [software] vocabulary (internally in the GSM, and perhaps

elsewhere in the system?) would generally simplify interaction with the VOTable format. Besides, it

would reduces confusion arising from different developers inventing their own identifiers for the same

things.

3.3.1 Added value within the project?

Does VOTable have some added value that can be exploited internally in the project? One application to

keep in mind is the GSM↔LSM interface. Having a VOTable representation of the LSM would address

some of the concerns raised in the previous section. This is out of scope for PSS4 though.

3.4 The Glish interface: sources and nodes

NB: the following code examples are meant as just that – examples, a departure point for thinking about

how things would work, so they shouldn’t be taken too literally. The interface we eventually implement

may or may not be dissimilar. Note also that the concepts used here are in no way unique to Glish; one

could easily imagine the same things done in Python.

3.4.1 Extracting an LSM

To begin, we need to extract a subset of the GSM into the LSM. This is done “once”, before commencing

calibration of a data set.

include ’GSM.g’

c©ASTRON 2005

LOFAR Project -8-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

Attaches to global GSM table. Optional tablename argument

allows for testing with different versions of the GSM

GSM := attach_gsm([table_name]);

Extract an LSM from the GSM.

This record specifies the query parameters. Using a record

allows for maximum flexibility in the interface:

query := [ra=ra,dec=dec,radius=radius,other optional fields];

If the LSM exists as part of the MEPdb, then this will copy

a subset of the GSM into the MEPdb. The MEPdb will perhaps be

specified here in the call. Alternatively, the LSM could be

extracted into a separate table of its own. In that case, the

table name should be specified here.

lsm := GSM.extract_region(query,???);

Once an LSM is extracted, we need to be able to reuse it in future sessions without going back to the

GSM:

if the LSM exists in its own table

lsm := attach_lsm(tablename)

... or if the LSM lives inside the MEPdb

lsm := attach_lsm([mepdb]);

... the mepdb argument specifies the MEPdb somehow.

3.4.2 Source lists

Now that we have an LSM, we need to insert sources into MeqTrees. But first we need a list of the

sources in the LSM. It is useful to have this list already pre-sorted in some order (e.g. by brightness – if

you want to peel in order of brightness1). Also, perhaps we want only a subset of the sources?

Extracts source list. Both arguments are optional:

if no sort_by is given, returns unsorted list;

if no subset is given, returns all the LSM sources.

The subset argument could be defined in the same way as the

query argument in the GSM examples above. Note also the

sneaky use of a UCD for sort_by:

1There’s a separate issue here, that a source does not necessarily have a single value for brightness – in many cases it

would be a function of time and/or frequency. How would we sort on that? One answer is to store a separate “representative”

brightness – an average or approximate value. You could then sort on this approximate value, and use the full functional

representation in calibration. This means that MeqNodes would have to be responsible for calculating “representative”

values.

c©ASTRON 2005

LOFAR Project -9-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

sources := lsm.select_sources(sort_by=’pol_stokes_i’,subset=query);

What is sources? Maybe just a list (i.e. vector, in Glish terms) of names, or IDs, or in any case “thingies”

we can later refer to a source by. But I think it would be even more liberating (think “Freedom layer”)

if this was actually a list of records (record of records, in Glish terms) with additional information. E.g.

each source record would be something like:

[id=source_id,name=descriptive_name,

ra=ra,dec=dec,pol_stokes_i=...]

The id field is what we use to refer to a source later (i.e. index). From a purely functional standpoint,

this is sufficient, since you should also be able to access the full source data via the id. However, the other

fields contain information about the source that could be very useful in making calibration decisions later

on (not to mention visualization etc.), so it’s handy to have it around from the start. How much or how

little information do we want to provide here? I suggest we make it all optional, that is, determined by

an optional argument to the select sources() method:

sources := lsm.select_sources(sort_by=’pol_stokes_i’,

subset=query,fields="name ra dec pol_stokes_i");

fields argument is optional; the default value would be

something like the one shown here

Note that in this form the method mirrors the SELECT statement in SQL (as in SELECT columns FROM

table WHERE subset criteria ORDER BY what). So we’re really dealing with an ubiquitous concept

here – which probably shows that we’re on the right track.

3.4.3 Hanging sources off trees

At some point we get to constructing MeqTrees, where we’ll probably loop over sources (see [1]).

for(i in 1:len(sources))

{

defrec := lsm.source_node(sources[i].id,’pol_stokes_i’);

node_index := MeqNode.define(name,defrec);

...

The source node() call here returns the node definition record for the Stokes I parameter of the given

source. This is, of course, just the defrec in JEN’s terms [1], with sufficient information to create the

c©ASTRON 2005

LOFAR Project -10-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

node, so it can be passed directly to MeqNode.define(). For example, if I is a single MeqParm with

polynomial t, f dependence, the defrec returned would look something like:

[class = ’meqparm’,

id = parm_id,

name = ’pol_stokes_i’,

domain = ...,

polc = [array of polcs],

...]

What if we want the MeqParm to be solvable? JEN [1] proposes a MeqParm.set solvable() method.

Which is good, but we could also provide the additional ability to mark a parm as solvable at creation

time, by saying

defrec.solvable := T

before passing the defrec to MeqParm.define(). This is in keeping with the concept of the defrec

containing all the necessary information to create a node.

Let’s take it once step further. Suppose I was represented in exponential form, with a spectral index.

What would its defrec look like? Without meaning to go into detail about MeqExpr semantics – what’s

shown here is just a conceptual defrec – how about:

[class = ’meqexpr’,

...

func = ’exp’,

children = [

*1 = [class = ’meqparm’,

...

name = ’spect_sp-index’, # another UCD

polc = [...],

solvable = T

...],

*2 = [class = ’meqparm’,

name = ’freq’,

polc = [0,1],

solvable = F

...]

]

];

c©ASTRON 2005

LOFAR Project -11-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

The top-level defrec corresponds to a MeqExpr node implementing the exp(x1...xn) function. The

children field contains a list of child defrecs – in this case, x1 is a MeqParm representing the [solv-

able] spectral index, and x2 is frequency term (the polc array given corresponds to f).2 Essentially,

we’re representing a tiny tree here. The MeqParm.define() method can then recursively define the child

nodes (to any level of nesting!), followed by the top-level node.

A note on terminology.To avoid confusion, we need to clearly distinguish source parameters from

atomic MeqParms. In the example here, Stokes I is a source parameter, which could be represented by

a single MeqParm, or by a compound expression – subtree – involving one or more atomic MeqParms

(themselves polynomials of t, f). In this document, I use source parameter to refer to things like RA,

Dec, Stokes I, ..., and MeqParm to refer to their constituent MeqParm nodes.

Note three emerging powerful concepts here:

• At the script level, when constructing a tree, one does not care how a source parameter is

represented. It could be a single MeqParm, it could be a subtree – the code to insert this parameter

at a given point in the MeqTree remains exactly the same.

• GSM sources can be represented to any level of complexity, by using subtrees to represent their

parameters.

• You don’t even need a GSM source! Suppose you want to add an extra source to see if that improves

calibration. No need to insert it into the LSM – just construct the appropriate defrecs in Glish,

and insert them into your trees. The C++ side of things (and trees in general) don’t know or care

whether the sources come from the GSM, or have been added by the user on-the-fly. Once you’ve

determined that the source fits the data, then you can commit it to the LSM.

The same goes for modifying a source parameter. A source not being fitted properly, because I

seems to have a more complex t, f dependence than that stored in the LSM? Modify it’s defrec

(perhaps setting up a more complex subtree) before passing it to MeqParm.define(), and if that

works out, you can commit the new representation back to the LSM.

3.4.4 Viewing and committing the results

Once we’ve solved for source parameters, we want to (a) look at them, and more importantly (b) commit

them back to the LSM if the solution is good. At this point, the information resides in MeqNodes on the

C++ side. Using JEN’s mechanism [1], you would do something like:

state_record := MeqNode.get_state(node_index,[recurse=-1,...]);

2The conventional spectral index representation (νn

, n < 0) differs only by a renormalization term.

c©ASTRON 2005

LOFAR Project -12-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

...to obtain the state of a node together with all of its children (recurse=-1), down to the MeqParm

leaves. (Of course we need to know the node index first – more on that below.) At this point, the state

record contains everything you need to know (provided the sufficient level of detail is specified in the

"..." part of the call, somehow) about the source parameter3, which is sufficient for visualization, etc.

When and how should this information be written back to the LSM? Someone, somewhere has to say

“commit”. This is a control decision, and belongs on the policy side of the policy barrier [1], so it should

be initiated in Glish. A general solution would be a call like...

MeqNode.commit node(node index or indices), with a recursion argument, to commit all MeqParms in

the subtree rooted at this node4. Note that this applies to all MEPs, not just source parameters.

Where would we get the node index argument? A source has parameters, and these become associated

with MeqNodes (either single MeqParms or entire subtrees). The mapping between a source parameter

and its node is transient – established only at run-time, when the tree is constructed. In the code fragment

above:

defrec := lsm.source_node(sources[i].id,’pol_stokes_i’);

node_index := MeqNode.define(name,defrec);

...something has to happen to associate node index with the I parameter of this source. Perhaps the lsm

object should be allowed to call .define() by itself, and put the resulting node index into the defrec?

An alternative suggestion is proposed below. This requires further discussion.

Another thing to consider is that the nodes associated with a source belong together and should usually

be committed as a unit. In database parlance, they should be committed in a single transaction. If

your program happens to crash (for whatever reason) while the MeqParms are being stored, this leaves

the database in an unknown, possibly corrupt state (which values have been written? which haven’t?)

It’s even more dangerous if you’re storing the subtree representation (i.e. structural relationships) of a

source. All modern DBMSs provide a transaction mechanism to avoid this problem. A program signals

the start of a transaction, stores new values, then commits the transaction – and only at the commit

point do all the new values appear in the database, as a unit. If anything fails at any point before or

during the commit, then the database is automatically rolled back to the previous “known good” state,

that before the start of the transaction. While we can’t easily implement transactions with AIPS++

tables alone, we should certainly take it into account while designing the interface. Therefore, something

like

lsm.commit_source(source(s));

lsm.commit_all_sources();

3During discussions with JEN, the concepts of a state record and a defrec have been stealthily converging. A defrec is

basically the complete initial state record of a node.
4Here’s a good question: should this recursion be always implicit?

c©ASTRON 2005

LOFAR Project -13-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

seems entirely appropriate. Future implementations can then employ transactions inside these methods.

3.4.5 The source as a compound object

Up till now, I’ve treated the source parameters as completely independent entities (except for the trans-

action discussion above), with each parameter represented by its own MeqParm or subtree. But are they

always? One could imagine an extended source where the brightness is a function of position. Depending

on how that is modelled, the nodes representing position may be shared with the subtree representing

brightness. For that matter, the Stokes parameters may all depend on the same MeqParm (spectral in-

dex?). This means that you can’t quite treat the parameter nodes (subtrees) separately from each other,

since they may share child nodes (and not just the leaf MeqParms – maybe whole subtrees as well). On

the other hand, you don’t want the application layer to bother with this complexity when defining trees.

Fortunately, this doesn’t break the paradigm at all. Glish (and Python, and most mature languages)

allows objects to be multiply referenced. Consider:

i_rec := lsm.source_node(sources[i].id,’pol_stokes_i’);

q_rec := lsm.source_node(sources[i].id,’pol_stokes_q’);

The i rec and q rec defrecs (more specifically, their children field) can refer to the same child defrec,

representing a single MeqParm (e.g. spectral index). This multiple reference can be set up inside the

lsm object (via the Glish ref statement). If a user wants to construct a source on-the-fly, he can use the

same technique.

On the MeqParm.define() side of things, when you say:

i_index := MeqParm.define(name_i,i_rec);

q_index := MeqParm.define(name_q,q_rec);

someone has to figure out that a node is shared. This can be elegantly handled in define() by inserting

the node index into the defrec once a node is created. So, the first define() call above would create

the shared MeqParm (perhaps somewhere far down the subtree), and insert a node index field into its

defrec. The second define() call, while recursively creating its own subtree, would eventually come

across a defrec with an already defined node index field. It would then know that this node has already

been created, and just use its index directly when creating the parent node.

To conveniently address this data together, the source record (the one returned by lsm.select sources())

could actually include refs to the defrecs of its parameters. This would allow the application layer to

manipulate each source as a single entity – and easily address questions like, if this is the source, what

are its parameters’ nodes, and what are their values?

c©ASTRON 2005

LOFAR Project -14-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

3.4.6 Where is the code?

Note that in all of the examples above, no explicit GSM support is implied on the C++ side, since

everything is done in terms of generic MeqNode functionality. Stuff specific to GSM/LSM can stay entirely

on the scripting side. This plays very well with the “policy barrier”, and prevents extra complexity from

entering the C++ domain (as if it needed any extra complexity!)

Initial GSM/LSM support can thus be done entirely in Glish, with use of the table.g module and/or

MEPdb functions (however those are implemented). When Glish performance becomes an issue – whether

in the scope of PSS4, or further down the road – critical parts can be reimplemented in C++. (Besides,

once the D-team adds support for a real DBMS, a lot of scripting code is going to be phased out, so

the performance issue may not come up at all.) The really good thing about this is that Glish code

represents relatively little investment, compared to C++, from a man-hours/functionality point of view.

This will allow us to move forward rapidly, and go back for a more in-depth implementation only when

performance becomes a limiting factor.

3.4.7 Some preliminary conclusions

1. While the GSM as a data product (together with its support tools) is a stand-alone beast, its design

should be considered together with the MEPdb, as it shares much of the underlying model.

2. Trees and GSM sources go hand-in-hand, since source parameters need to be represented by sub-

trees.

3. Initial development (and perhaps all PSS4-scope development) can be done rapidly in Glish.

3.5 Automatic source finding

From an algorithmic standpoint, this is an entirely separate problem. The AIPS++ image tool provides

a function for finding point sources [6]. It remains to be determined how useful or functional this is.

The problem has also been widely studied in the literature, so, should the power of AIPS++ prove not

up to the task, there’s a wealth of experience to draw upon. In particular, the CLEAN algorithm [7] [8]

has been widely used by radio astronomers to “decompose” an image into a set of point sources. Looking

across disciplines, optical astronomers have worked on similar problems for ages, for applications such as

crowded-field photometry (see, e.g., the DAOPHOT II package [9]).

From a data management point of view, any source finder, be it based on CLEAN or something else,

can be viewed as a “black box” that produces a collection of point sources, given a set of images. This

collection can be in the form of a conventional list (positions/brightnesses), or perhaps an image (with

each non-zero pixel representing a point source). These lists or images may be organized into data cubes,

c©ASTRON 2005

LOFAR Project -15-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

if frequency and polarization are taken into account. However, as far as GSM design is concerned, these

algorithmic issues are completely orthogonal. Therefore, we can assume that we’ll eventually have a

“magic tool” that can find sources in an image, and produce them in the form of a source list. What are

the implications for GSM?

• The process can be handled entirely from the scripting side. Imaging will be done from Glish

anyway; the tool can be applied to the initial dirty image and/or to residual images produced by

successive calibration steps.

• Once the tool has produced a list of sources (as a minimum, position & brightness guesstimates),

these can be turned into defrecs compliant with the overall scheme, and appropriate MeqParms can

be created and solved for.

• Sources for which a solution is unsuccessful can be discarded (their nodes trimmed from relevant

trees).

• Sources solved for successfully can then be committed to the LSM.

Note that this is effectively no different than having a user add sources on-the-fly himself, which has

already been touched upon in the discussion above. The source of the sources, so to speak, is different,

but further mechanics would be the same. By handling the sources entirely in Glish, we can rapidly

“glue” an automated source finder into the overall scheme of things.

3.6 Database considerations

The complex nature of GSM sources does not play well with the traditional relational database at all,

and thus presents a challenge for the database designer. The fact that sources and parameters need

to be represented in a non-uniform way (images, shapelets, the whole zoo), and that there is complex

metastructure linking the parameters (e.g. subtrees), complicates matters considerably. The full scope

of this problem will have to be addressed by the D-team. In the meantime, we need to outline a path

within PSS4 and beyond.

3.6.1 Prior art

Astronomical catalogues of the first electronic generation were firmly rooted in FORTRAN legacy. They

were flat ASCII tables, with a uniform format for every single source.5 The shift to FITS Tables and/or

relational DBMSs did little to introduce any new paradigms, as a uniform table format continued to be

5In fact, the VizieR service at CDS Strasbourg [10] – the biggest consolidation of astronomical catalogues to date,

including the latest monsters such as USNO-B (over 1 billion objects!) still specifies source catalog format in FORTRAN77

terms.

c©ASTRON 2005

LOFAR Project -16-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

employed throughout6. Any variability (in our case, t, f dependence) in the source was represented in the

same some sort of fixed and uniform format (via optionally-filled columns for proper motions, spectral

indices, a fixed set of bandpass fluxes, or perhaps spectra).

In the past several years, people have been looking towards object-oriented databases (OODBs – OODBMSs)

to address the question of representing complex and non-uniform data. A few examples:

• Baruffolo & Benacchio 1998 [13] have evaluated an “object-relational” approach, with a look to-

wards implemeting complex queries (i.e. region serach) and multidimensional indices. The engine

employed was PostgresSQL 6.0.

• The Science Survey Centre for the XMM-Newton mission has deployed an object-oriented data

depository for the mission’s science products [11]. This uses the now-discontinued O2 OODBMS.

Their object model includes more than 300 distinct classes.

• CDS Strasbourg has been evaluating OODB technology for their SIMBAD7 system [12]. The results

(as expected) did not match up too well, performance-wise, with SIMBAD’s dedicated C software

(speed was 20% to 75% slower, and disk space consuption went up by a factor of 3.) On the

other hand, an OODBMS clearly offers far more powerful capabilities where heterogenous data is

concerned, and allows new features to be added much more rapidly, while Moore’s law mitigates

the poorer performance, making it even irrelevant in some cases.

• The AMASE project (Astrophysics Multi-spectral Archive Search Engine, [14], [15]) consolidates

heterogenous observational data from several space missions. The project seems to be hibernating

at the moment (the last publication I could locate was from 1999, and their website hasn’t been

modified since 2001). It uses (or used) the Informix-Illustra DBMS engine. The last reported DB

size was less than staggering – on the order of 105 entries, for a total size of 250Mb.

Finally, the NVO effort is clearly taking the right approach by basing VOTable on XML. XML excels

at representing non-uniform structure of arbitrary complexity. This makes VOTable a powerful data

interchange format, but does not address operational data management at all. Current NVO efforts are

mostly aimed towards converting the output of existing systems to VOTable form.

My conclusion is that while some current systems do deal with complex and non-uniform data, they’re

geared towards archiving, research, and data mining. The approach seems to be, make sure we store

structure and throw all related data at the user, and let him make sense of it. Catalogues employed in

6Though (as a curious sidenote) Rots et al. 2001 [16] have proposed an embedded function format for FITS binary tables.

This represents multi-dimensional data in terms of mathematical expressions of various parameters. While hardly relevant

to our purposes, this demonstrates that you can get a long way with a crusty old format, given enough will and imagination!
7SIMBAD “brings together basic data, cross-identifications, observational measurements, and bibliography, for celestial

objects outside the solar system: stars, galaxies, and nonstellar objects within our galaxy, or in external galaxies.

The acronym SIMBAD stands for Set of Identifications, Measurements, and Bibliography for Astronomical Data.

SIMBAD contains information for about 1 million objects, for which 3.3 million identifiers, more than 1.5 million obser-

vational measurements and 1.4 million bibliographical references are available.” (http://cdsweb.u-strasbg.fr/Simbad.html)

c©ASTRON 2005

LOFAR Project -17-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

operational use still use a fixed, uniform data format, with very minimal representation of variability.

And I could not find any parallels to the GSM → LSM → calibration → LSM → GSM cycle that we are

contemplating here. Clearly, we’re treading in unexplored territory.8

3.6.2 Defining the scope for PSS4

Given this complex problem, what can we hope to accomplish in PSS4? AIPS++ tables are not intended

to represent complex non-uniform objects. As a reasonable first-stage compromise, we can implement

a uniform flat-table structure such as that used by NEWSTAR, with a fixed set of MeqParms per each

source:

• RA/Dec;

• I0, Q0, U0, V0 fluxes;

• Spectral index;

• Rotation measure;

• Spatial extent/orientation/ellipticity (for modelling extended sources with a 2D Gaussian).

Note that this collection of MeqParms already implies construction of sub-trees. For example, the Stokes I

of a source would be represented by a subtree involving the I0 MeqParm and the spectral index MeqParm.

The knowledge required to construct such a subtree would be hardwired into the GSM code – i.e. not

yet reside in the database. (Implementation-wise, the nested defrecs (see above) defining the sub-trees

would be hard-wired in the lsm Glish code.)

This should allow us to play with complex source parameter representation inside MeqTrees, while main-

taining a simple AIPS++ table layout. We should review the interface and the underlying data model,

and answer the question, does this satisfatorily provide for complex sources? Can we add them to the

GSM at a later date without breaking application-level scripts [too much]? For the examples above, the

answer seems to be “yes”. These examples are, however, just a departure point – we will surely evolve

the interface as the design is elaborated. This is the question we should return to, to make sure it’s

evolving in the right direction.

8At least in the astronomy domain. It could be worthwhile to cast an eye across other disciplines. Do gene-sequencing

people perhaps deal with similar problems?

c©ASTRON 2005

LOFAR Project -18-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

3.7 Region search

One of the most critical – performance-wise – functions of the GSM is that of the region search (a.k.a.

conesearch), as in, give me all the sources within this field of view.9 As the dataset grows larger and

larger, implementing this function efficiently becomes more important, since existing databases do not

provide intrinsic multidimensional indexing capabilities of this kind.

This has been studied by various astronomical data people at great length, yielding various clever sky

indexing schemes (see [17], [18], [19] for a sampling).

Fortunately, the details of this can be completely hidden within the implementation layer. The application

layer need only expose a generic query function. As far as PSS4 is concerned, we can probably get away

with a simple linear search of the entire database – this is not an operation that happens frequently, and

the GSM is still small enough. In the future, we will certainly have to implement true sky indexing. This

may lie in the D-team domain.

As a final note, NVO defines a “Simple Cone Search” interface for data providers [20]. This specifies a

syntax for a web service that takes RA, Dec & search radius as arguments, and returns a VOTable of all

sources within the specified cone. It also imposes [very few] simple specifications on the VOTable layout.

Given a GSM→VOTable conversion tool, and the region search function, producing an NVO-compliant

cone search service is a trivial exercise. A list of currently available Cone Search services can be found

at [21]. (Radio appears to be pathetically under-represented.)

4 Stepwise implementation plan

A proposed plan for implementing a GSM prototype and evolving it towards a “production” version:

1. Elaborate the design proposed here. Produce a few trial Glish scripts to get a feel for the interface.

2. Finalize interface design. Develop an AIPS++ table structure along the lines suggested in section

3.6.2.

3. Produce pilot GSM (GSM-1). This should be sufficient to support PSS4 targets.

• Associated software fully implemented in Glish;

• Populated with 3C/4C sources;

• Contains a detailed source model for 3C84;

9Additional search criteria – such as brightness cut-offs – are certainly possible and should be supported. However, they

are mostly trivial algorithmically. The problem of selecting by coordinate is by far the toughest nut, given a large enough

database.

c©ASTRON 2005

LOFAR Project -19-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

• Resulting size: ≈5000 sources;

• All queries done via linear search.

GSM-1 would already be a stand-alone data product, with a documented AIPS++ table format. As

such, it could potentially be forked and extended by our end-users.

It is difficult to plan specific steps beyond this stage, since there are several parallel directions of devel-

opment, and a large part of the work is expected to move into the D-team domain. The following general

directions and/or milestones may be projected:

1. (D-team) Work towards a “production” implementation of the GSM (GSM-2) using a commercial

database engine. Besides the main body of database design & implementation work, this should

also include:

(a) Re-implementing the application interface layer in Python.

(b) Implementing a backwards-compatible Glish interface to GSM-2 (if Glish support is still re-

quired, which it probably will be). It should be possible to replace GSM-1 with GSM-2 (this

will probably imply an upgrade in MEPdb as well) without disrupting the rest of the PSS

system.

2. (R-team) Experiment with Cat II sources and tree representations of complex extended sources.

Add primitive support for storage of subtrees to GSM-1. Full support should be provided by

GSM-2.

3. Work on populating GSM-2 from larger and larger catalogues. The VizieR service at CDS Stras-

bourg [10] will be extremely useful here.

4. When the performance of linear search becomes unacceptable due to growing size, implement a

multidimensional indexing scheme for region search in GSM-2.

5. Develop a VOTable interface to GSM-2.

References

[1] Noordam, J.E. 2003, Prototype Selfcal System 4 (PSS4), LOFAR-ASTRON-DOC-?????

[2] Williams, R. et al. 2002, VOTable: A Proposed XML Format for Astronomical Tables,

http://cdsweb.u-strasbg.fr/doc/VOTable/

[3] CDS 2002, Unified Content Descriptors,

http://vizier.u-strasbg.fr/doc/UCD.htx

c©ASTRON 2005

LOFAR Project -20-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

[4] CDS 2002, UCD Tools,

http://vizier.u-strasbg.fr/UCD/

[5] Derriere, S. et al. 2003, Metadata for the VO: The Case of UCDs, in ASP Conf. Ser., Vol. 295

(ADASS XII), 69, http://adass.org/adass/proceedings/adass02/P1-1/

[6] AIPS++ Documentation, User Reference Manual, tool image, function image.findsources

http://www.astron.nl/aips++/docs/user/General/

node54.html#images:image.findsources.function

[7] Cornwell, T. & Braun, R. 1989, Deconvolution, in Synthesis Imaging in Radio Astronomy: Third

NRAO Summer School 1988, ASP, 178

[8] CLEAN Algorithm,

http://scienceworld.wolfram.com/physics/CLEANAlgorithm.html

[9] Stetson, P. 1992, Initial Experiments With DAOPHOT II and WFC Images, in Third ESO/ST-ECF

Data Analysis Workshop, eds. P.J. Grosbol & R.H. Warmels (Garching: ESO), 187

[10] The VizieR Catalogue Service,

http://vizier.u-strasbg.fr/cgi-bin/VizieR

[11] Michel, L. et al. 2003, The XMM-Newton SSC Database: Taking Advantage of

a Full Object Data Model, in ASP Conf. Ser., Vol. 295 (ADASS XII), 291,

http://adass.org/adass/proceedings/adass02/P5-7/

[12] Wenger, M. et al. 2000, SIMBAD as a Test Bed for two Object Oriented Database Man-

agement Systems: Objectivity/DB and O2, in ASP Conf. Ser., Vol. 216 (ADASS IX), 247,

http://adass.org/adass/proceedings/adass99/O9-06/

[13] Baruffolo, A. & Benacchio, L. 1998, Object-Relational DBMSs for Large Astro-

nomical Catalogue Management, in ASP Conf. Ser., Vol. 145 (ADASS VII), 382,

http://adass.org/adass/proceedings/adass97/baruffoloa1.html

[14] Cheung, C. Y. et al. 1999, A Search and Discovery Tool – AMASE, in ASP Conf. Ser., Vol. 172

(ADASS VIII), 213, http://adass.org/adass/proceedings/adass98/cheungcy/

[15] AMASE Project Website,

http://amase.gsfc.nasa.gov/amase/WelcomeToAMASE.html

[16] Rots, A.H. et al. 2001, The FITS Embedded Function Format, in ASP Conf. Ser., Vol. 238 (ADASS

X), 479, http://adass.org/adass/proceedings/adass00/P1-33/

[17] Ortiz, P.F. 2003, Why Indexing the Sky is Desirable, in ASP Conf. Ser., Vol. 295 (ADASS XII), 35,

http://adass.org/adass/proceedings/adass02/O10-2/

[18] Page, C. G. 2003, A New Way of Joining Source Catalogs using a Relational

Database Management System, in ASP Conf. Ser., Vol. 295 (ADASS XII), 39,

http://adass.org/adass/proceedings/adass02/O10-4/

c©ASTRON 2005

LOFAR Project -21-

Author: O.M. Smirnov Date of issue: 2003-Jul-10 Scope: CEP
Kind of issue: Public Doc.nr.: LOFAR-ASTRON-MEM-099

Status: Draft File: cvs:LOFAR/doc/GSM/gsm-prototype.tex
Revision nr.: 0.1

[19] Wicenec, A.J. & Albrecht, M. 1998, Methods for Structuring and Search-

ing Very Large Catalogs, in ASP Conf. Ser., Vol. 145 (ADASS VII), 512,

http://adass.org/adass/proceedings/adass97/wiceneca.html

[20] NVO, NVO Compliance: Conesearch,

http://www.us-vo.org/metadata/conesearch/index.html

[21] NVO, VO Conesearch Profile Services,

http://voservices.org/cone/register/showlist.asp

c©ASTRON 2005

LOFAR Project -22-

