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ABSTRACT

In radio astronomy, cosmic sources are observed which are
many orders of magnitude weaker than the telescope sys-
tem noise level. The necessary sensitivity is achieved by
large telescope collecting areas, long integration times, and
large bandwidths. In the coming two decades, telescopes
are planned which are even one to two orders of magnitude
more sensitive than the current generation. Examples are
the Low Frequency Array (LOFAR), currently under con-
struction in the Netherlands, and the Square Kilometer Ar-
ray, for which the envisaged start of construction is in 2012.
For this next generation of telescopes a dynamic range in
the sky maps of over 106 is required. In order to reach
these numbers, accurate calibration is needed. As these tele-
scopes will observe with relatively large bandwidths, and
because of the changing spectrum environment, interference
mitigation techniques become increasingly important. In
this paper, approaches for calibration and interference mit-
igation are presented, and results from the LOFAR initial
phased array test station (ITS) are given.

1. INTRODUCTION

The expected sensitivity increase of the next generation of
telescopes, the new telescope design concepts [1], and the
changing spectrum environment impose new challenges with
respect to calibration and interference mitigation. Consider
for example traditional techniques for calibration and imag-
ing, such as Selfcal [2] and CLEAN [3]. These techniques
usually assume that the complex telescope gains are direc-
tion independent, whereas in wide field imaging with instru-
ments such as LOFAR, the complex gains must be modeled
as being direction dependent [4]. An aim in imaging is that
instrument calibration errors and interference do not lead to
a significant increase of the noise in the astronomical sky
maps. In order to study this requirement, a mathematical
framework was adopted, as described in [5, 6]. This paper
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aims at describing the calibration and interference mitiga-
tion problems in terms of this framework, and to present a
few initial results obtained at the LOFAR Initial Test Station
(ITS).

Notation: The transpose operator is denoted by t, the
complex conjugate (Hermitian) transpose by H, an estimated
value is denoted by ·̂, and an expected value by E{.}, �
is the element-wise matrix multiplication (Hadamard prod-
uct), � is the element-wise matrix division, 1 is a vector
containing ones, and diag(.) converts a vector into a diago-
nal matrix with the vector placed on the main diagonal.

2. DATA MODEL

Following [6], consider a telescope or antenna array with
p elements. Let the output signal of the ith antenna be
denoted by xi(t), and define the array output vector x(t)
by x(t) = [x1(t), · · · , xp(t)]t. Assume that the narrow
band condition holds, which implies that geometrical de-
lay differences within the array can be represented by a
phase shift of the signal. Consider further q astronomical
source signals sk(t) with k = 1 · · · q. Denote the spatial
signature vector of each of the sources k by ak, and con-
sider telescope noise signals ni(t) stacked in a p × 1 vec-
tor n(t). Further let the telescope dependent gain g i be de-
fined by g = [g1, · · · , gp]t, and in diagonal matrix form
by Γ = diag(g). Using these definitions, the array output
vector can be expressed as

x(t) = Γ

(
q∑

k=1

aksk(t)

)
+ n(t) (1)

Consider an observation in which the signal is sampled with
sample period T , and define the data sample matrix X =
[x(T ),x(2T ), · · · ,x(NT )]. The (short term) covariance
estimate R̂ takes the form R̂ = N−1XXH . Define the
source power by σ2

sk
= E{|sk(t)|2}, and stack the source

signals sk(t) in a q×1 vector s(t). Assuming the sources are
mutually independent, the source signal covariance Σ s =
E{s(t)s(t)H} is diagonal: Σs = diag(σs), where σs =
[σ2

s1
, · · · , σ2

sq
]t. Assuming the noise n(t) is Gaussian and



independent also results in a diagonal covariance matrix:
Σn = diag(σn), where σn = [σ2

n1
, · · · , σ2

np
]t, and σ2

ni
=

E{|ni(t)|2}. Assuming the spatial signature vectors are de-
terministic, and are stacked in a p×q matrix A, the expected
value R = E{R̂} has model

R = ΓAΣsAHΓH + Σn (2)

3. CALIBRATION APPROACHES

One of the possible large scale telescopes configurations,
such as used in LOFAR, consists of many antenna elements
grouped in stations. These antenna elements operate as a
phased array, and (multiple) station beams can be formed.
The beams from the stations are correlated, integrated and
stored. From these covariance matrices, the astronomical
sky images can be deduced. In the following two sections,
the calibration problem is stated first from a station perspec-
tive and then from a full array calibration perspective.

The antenna gains of the individual antenna elements of
a station are direction dependent but assumed known. In
the station calibration problem, this direction dependency
can be absorbed in the known sky source fluxes matrix Σ s,
and the data model described above can be used. For the full
telescope calibration problem, the data model above can be
used as well, with xi being the beamformed station output.
In this case, the data model will be extended with a direction
dependent gain matrix G.

3.1. Station calibration

If the geometrical phase factors A of the sources and their
powers σ2

sk
are known from the telescope geometry and as-

tronomical catalogues, the calibration problem can be for-
mulated in terms of a least squares cost function:

{ĝ, σ̂n} = arg min
g,σn

‖ ΓAΣsAHΓH + Σn − R̂ ‖2 . (3)

This cost function is similar to the cost function to be mini-
mised in Selfcal and CLEAN.

A first approach is assuming Σn = 0, and a solution of
the calibration problem would be

ĝgH = R̂ � (AΣsAH
)

(4)

from which ĝ can be extracted by eigenvalue decomposi-

tion of ĝgH . Note that this is not the Least Squares solu-
tion, and that in the (rare) case an entry of AΣAH is zero,
the estimation accuracy is reduced. Calibrations using ce-
lestial sources have been successfully completed on ITS [7]
due to the fact that it is a sky noise limited system so the
approximation Σn = 0 holds.

In [8] it was shown that it is possible to derive a ma-
trix M with entries mij = gi/gj based on the off-diagonal

elements of R̂ and AΣsAH which are not affected by the
diagonal matrix Σn. Once the gains are estimated, they can
be inserted in (3) which can then be used to solve for the
system noises of the individual receivers.
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Fig. 1. Full sky image, based on observed correlation matri-
ces for a 9.77 kHz wide frequency channel at 18.916 MHz,
from a 6.7 s duration LOFAR-ITS observation. The image
is completely dominated by the transmitter source on the
south-eastern horizon. The image coordinates are direction
cosines (l,m).

A third approach to station calibration is based on using
a strong transmitter source. In [7] it is demonstrated that
the system noise of the elements of LOFAR-ITS is just a
fraction of the sky noise. Since the sky noise is already
negligible compared to the power of the transmitter source,
the receiver noise can be neglected as well. Assuming the
transmitter and interfering sources can be modeled in the
same way as astronomical sources, the model becomes

R = Γarσ
2
rar

HΓH , (5)

where ar and σ2
r denote the phase factors and the power

of the transmitter. Since the system noise of the elements is
negligible small, it does not need to be estimated. Therefore
the calibration problem reduces to

{ĝ} = arg min
g

‖ Γarσ
2
rar

HΓH − R̂ ‖2 (6)

As in (4), a solution is ĝgH = R̂ � (arσ
2
ra

H
r

)
. The gain

vector estimate ĝ is now the eigenvector corresponding to

the largest eigenvalue of ĝgH .
This method was used to calibrate the data imaged in

figure 1 by estimating the position of the source from the
data to set a and taking a source power of 1, since the in-
trinsic power of the source is not known. After applying
the corrections found in the calibration, a second calibra-
tion was done to estimate the gains after calibration. The
phase of the complex gains before and after calibration are
shown in figure 2. The standard deviation of the phases was
26.5◦ before calibration and 0.0011◦ after calibration. The
errors after calibration are the combined result from the fi-
nite sample effect and ignoring the sky and system noise
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Fig. 2. Phase errors of the individual signal paths before (+)
and after (o) calibration on the transmitter source.

contributions. The fact that ar is estimated based on the un-
calibrated data may introduce a systematic pointing offset in
(l, m) coordinates, but the relative positions of the celestial
sources remain the same.

3.2. LOFAR Full Array Calibration

The new generation of large array instruments such as SKA
and LOFAR present calibration problems significantly more
challenging than previously encountered. Existing algorithms
exploit an assumption that the unknown array response terms
can be modeled with a single complex gain for each array
element, plus possibly an unknown phase gradient across
the field of view. Using known array element locations and
exact power levels and directions to bright point source ob-
jects (from a star catalog) provides the required external in-
formation to make calibration unambiguous.

However, at the lower frequencies observed by LOFAR,
signals interact strongly with the ionosphere so calibration
parameters are source direction dependent and a calibra-
tion solution must be found for every observed object. The
single-complex-gain-term-per-elementassumption no longer
holds. Once a LOFAR station is calibrated for each antenna
(as discussed above) we consider the steered station beam
as a single element in the larger full array and must esti-
mate a complex gain for each object in each station beam.
Figure 3 illustrates how space objects are seen through a
random refractive layer that varies in thickness on the same
scale as distances between sources of interest in the image
field. Over the large (200 km) aperture, most stations see
completely independent ionospheric patches. The expected
value of R̂ given in (2) now becomes

R = (G � A)Σs(G� A)H + Σn, (7)

where G is a p× q matrix containing a complex gain factor
per antenna and per source. A depends on the known po-
sitions for the q calibrator sources in the field of view, Σs

depends on the known source brightness, and G and Σn

must be estimated.

If the number of sources is greater than one there are
multiple solutions to (7) so additional physical models must
be imposed to enforce a unique solution. Using these con-
straints will require developing new and innovative cali-
bration algorithm strategies. We have identified four ap-
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Fig. 3. The problem of LOFAR calibration through iono-
spheric refraction. Unknown complex gains through the
ionosphere are different for each source at each station. (af-
ter C. Lonsdale)

proaches to resolving this calibration ambiguity.
First, the geometry of LOFAR is designed such that the

central core consists of tightly packed stations which see a
common ionosphere as shown in figure 4. It can be shown
that if the number of stations in this core subarray exceeds
the number of bright calibrator sources then the full array,
including distant stations as illustrated in figure 3, can be
uniquely calibrated.
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Fig. 4. Calibration scenario for closely spaced LOFAR cen-
tral core stations. Due to beam overlap at ionospheric alti-
tude, each station sees the same direction dependence which
is cancelled out in the cross correlation computation. (after
C. Lonsdale)

Second, in most observing conditions the predominant
ionospheric effect is a phase rotation with little attenuation.



The unknown gain term is mostly due to antenna (direction
dependent) and electronics (direction independent) which
are relatively stable. Assuming the amplitude gain matrix,
Γ, has been estimated separately, the remaining problem is
to find the phases. This problem can be formulated as fol-
lows.

R = (Φ � Γ � A)Σs(Φ� Γ � A)H + Σn, (8)

where G = Φ�Γ and the entries of Φ are all unit-magnitude
with phases to be estimated. It can been shown that in some
cases multiple solutions exist, but that this is of little practi-
cal concern since these cases are rare.

The third approach dubbed “peeling” exploits the fact
that due to Earth rotation the relative positions of the array
and the sources change with time [4]. Over a limited time
and frequency span the ionospheric gains can be treated as
constant while the variation in A adds enough diversity to
find a unique solution. A straightforward way to exploit
this diversity is to take the average over a time-frequency
domain, while compensating for the phase changes of the
kth single source (the brightest). The resulting matrix is:

Rk =
1

NfNt

Nf∑
l=1

Nt∑
m=1

diag(ak)−1R(fl, tm)diag(aH
k )−1

≈ Γk1σ2
k1

tΓH
k + Σn (9)

This compares to the unambiguous single source calibra-
tion problem. Gains can be computed for this source, then
its contribution to the R(fl, tm) is subtracted out, and the
process is repeated for the next brightest source.

A fourth approach exploits the fact that the complex
ionospheric gain terms depend in a known deterministic way
with frequency (phase perturbation is proportional to wave-
length). It can be shown that jointly estimating calibration
gains for more frequency bins than the number of calibrator
sources leads to an unambiguous solution.

4. INTERFERENCE MITIGATION

In the station calibration section it was shown that the phase
errors after calibration on a transmitter source are very small.
This demonstrates that the transmitter is calibrated very ac-
curately to the estimated position. The interfering source
therefore can be subtracted from covariance matrix data yield-
ing the filtered matrix R̃

R̃ = R̂ − σ̂r
2ârâr

H (10)

A sky map based on the filtered matrix R̃ is shown in figure
5 [7]. Several other spatial filtering techniques were applied
as well, such as described in [6]. For example, a projection
matrix P can be defined: P = I−ar(aH

r a)−1aH
r . It has the

property Par = 0, yielding the filtered matrix R̃ = PR̂P.

Applying this technique yielded similar results. Interfer-
ence attenuation numbers up to 30 dB were achieved, and
are limited by finite estimation accuracies.
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Fig. 5. Observed sky map after removing the horizon trans-
mitter by source subtraction. The upper right source is the
astronomical source Cas.A.
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