I Intro2: Working With MSs

AIPS++...

2. AIPS++...
[5] heard of it
[2] tried to run it once
[9] succeeded in running it once
[5] have used it in anger
[0] invented it

» AIPS++ is making great progress: at the
previous workshop we had “tried” =
“succeeded”

- (and one inventor that owned up to it all)

I Intro2: Working With MSs

On a Related Note...

2a. Reduction package of choice:
[7] Classic AIPS
[3] AIPS++
[2] Miriad
[1] MeqTrees!!!
[1] NEWSTAR
[1] MabCal



I Intro2: Working With MSs

Working With
Visibility Data

» MeqTrees interface with AIPS++
I Measurement Sets
- other formats can be supported as necessary
e An “empty” MS has to be pre-fabricated
using external tools:
- you can use the AIPS++ “simulator”, see
Workshop2007/demo_sim.g (and ask Tony)
- there's also a “makems” tool floating around
(ask Ronald/Marcel/joris)

I Intro2: Working With MSs

VLA In Space
(About demo.MS)

* This contains 27 antennas in VLA-C
I configuration...
- ...but blown up by a factor of 10
 So the max baseline is ~30km
« 8 hours observation, 5 minute sampling, 96
timeslots
32 frequency channels of 16MHz each, from
800MHz to 1.31GHz
 Four polarizations: XX XY YX YY
¢ One pointing

Intro2: Working With MSs

Meet Our Guinea Pig Skeleton

* | have prepared Workshop2007/demo.MS;
this will serve most of our whims this week.

 There is a pristine backup copy available, so if
you screw up, restore it with:

$ cd ~/Workshop2007

$ rm -fr demo.MS

$ cp -a (/net/birch)/data/oms/Workshop2007/demo.MS .
(/apps/Timba/data/oms/Workshop2007, if on jop0l1)

Intro2: Working With MSs

A Simple MS Tree

* Load Intro2/demol-sink.py

» Under “TDL Exec”, select Tile size: 10

* Load up the “MS Grids” bookmark

* Run “test forest”

* ...note the “history” slider in the visualizer



Intro2: Working With MSs. 9

Why “Skeleton”?

An MS provides a time/frequency grid (e.g., for

use in simulations)

- thus, “skeleton”: we ignore the data in the MS
(and write our own)

Sink nodes turn this grid into a request and send

it up the tree.

- one Sink per interferometer

When a result comes back, this can be written out

to a visibility column in the MS.

MSs are processed in chunks of time called “tiles”.

I Intro2: Working With MSs. 1

We Can Read, Too!

Load Intro2/demo2-spigot. py

Under “TDL Exec”, select Tile size: 10
Load up the “Spigots” bookmark, and the
“Inspector” bookmark

Run “test forest”

...note the “history” slider in the visualizer

Intro2: Working With MSs

The VisDataMux

» A VisDataMux node was created for us
automatically.

» The VDM is responsible for interfacing with
the MS, reading data, and activating its
child Sinks as appropriate.

* To start the process, we give a specially-
formed request to the VDM, containing
input and output records telling it what
and how to read (or write).

Intro2: Working With MSs

Sinks And Spigots

« A Spigot node reads the visibility data from
an MS, and returns it as a visibility matrix
 Check visibilities using the history slider.
- You're looking at XX data, use the “Change
selected Vells” option to look at the other
correlations

* You can probably guess what kind of
observation demo.MS contains...



Intro2: Working With MSs. 13

I Inspector (Collections) Plot

« The last script introduced a “Collections” plotter (the
ns.inspector node)

» A Meqg.Composer node collects results from all its
children into a single huge Result, which is plotted as
a function of time.

« This plotter expects one data point per timeslot, so we
use a Meg.Mean() node to take the mean in
frequency.

» The inspector is attached as a special child to the
VisDataMux node, labelled “post”. This makes it
execute after (i.e., post) all the Sinks have fired. The
result is published to the viewer (if active), then
discarded.

I Intro2: Working With MSs. 15

I On MS Columns

visibility data: DATA, MODEL _DATA, CORRECTED_DATA.

» MeqTrees can “attach” to any column, or even
create new columns.

» Tools like the AIPS++ imager assign specific
meanings to these columns though, and do not
support other names...

» Speaking of the imager, run this script:

I * An AIPS++ MS has three standard “columns” for

$ glish -1 make_image.g DATA ms=demo.MS

I Intro2: Working With MSs. 14

Matrices And Tensors

« Visibility data comes out as a (XX XY)
2x2 matrix v Wy

 In MeqTrees, this is represented by a Result with 4
VellSets, and a dims=[2,2] field: V, V,
- no dims implies a 4-vector (Vz Va)

- and remember that each element can be
its own function of frequency/time/etc.
 This can be generalized to tensors of arbitrary rank
- e.g., the “inspector” node collects its children into
a 351x2x2 tensor

Intro2: Working With MSs. 16

Let's Modify Some Data

 Load Intro3/demo3-mod-vis.py
» Here we apply a gain term:

9,o=(1+.1p)e?m?

» Under “TDL Exec”, select Tile size: 30 (the “go faster”
option)

» Load up the “Inspector” bookmark

» Run “test forest”

» Switch inspectors to display complex phases (via
right-click)

* Make an image:

-

glish -1 make_image.g MODEL_DATA ms=demo.MS



I Intro2: Working With MSs

More Inspectors

» Here we have created two inspector nodes

* A Meqg.RegMux() node is used to feed a request to
multiple children, we need it since we can only
have one “post” child on a VisDataMux.

17

I Intro2: Working With MSs

Exercise 1:
I Freq-Dependent Gains

* Start with Intro2/demo3-mod-vis.py
I « Apply a frequency-dependent gain to the
data:

(v=v,)

v v,=810% Av=5-10°

(v—vo) eri%

e

tip: use Megq.Polar(x,y) to compose xe”

9pe=(1+.1p

» Make a per-channel image using:

$ glish -1 make_image.g MODEL_DATA ms=demo.MS
mode=channel



