

 1

Intro2: Working With MSs 1

Visibility Data & Visibility Data &
AIPS++ Measurement SetsAIPS++ Measurement Sets

Intro2: Working With MSs 2

Intro2: Working With MSs 3

AIPS++...

2. AIPS++...
[5] heard of it
[2] tried to run it once
[9] succeeded in running it once
[5] have used it in anger
[0] invented it

� AIPS++ is making great progress: at the
previous workshop we had �tried� �
�succeeded�
� (and one inventor that owned up to it all)

Intro2: Working With MSs 4

On a Related Note...

2a. Reduction package of choice:
[7] Classic AIPS
[3] AIPS++
[2] Miriad
[1] MeqTrees!!!
[1] NEWSTAR
[1] MabCal

 2

Intro2: Working With MSs 5

Working With
Visibility Data

� MeqTrees interface with AIPS++
Measurement Sets
� other formats can be supported as necessary

� An �empty� MS has to be pre-fabricated
using external tools:
� you can use the AIPS++ �simulator�, see
Workshop2007/demo_sim.g (and ask Tony)

� there's also a �makems� tool floating around
(ask Ronald/Marcel/Joris)

Intro2: Working With MSs 6

Meet Our Guinea Pig Skeleton

� I have prepared Workshop2007/demo.MS;
this will serve most of our whims this week.

� There is a pristine backup copy available, so if
you screw up, restore it with:

$ cd ~/Workshop2007
$ rm -fr demo.MS
$ cp -a (/net/birch)/data/oms/Workshop2007/demo.MS .
(/apps/Timba/data/oms/Workshop2007, if on jop01)

Intro2: Working With MSs 7

VLA In Space
(About demo.MS)

� This contains 27 antennas in VLA-C
configuration...
� ...but blown up by a factor of 10

� So the max baseline is ~30km
� 8 hours observation, 5 minute sampling, 96

timeslots
� 32 frequency channels of 16MHz each, from

800MHz to 1.31GHz
� Four polarizations: XX XY YX YY
� One pointing

7 Intro2: Working With MSs 8

A Simple MS Tree

� Load Intro2/demo1-sink.py
� Under �TDL Exec�, select Tile size: 10
� Load up the �MS Grids� bookmark
� Run �test forest�
� ...note the �history� slider in the visualizer

 3

Intro2: Working With MSs 9

Why �Skeleton�?

� An MS provides a time/frequency grid (e.g., for
use in simulations)
� thus, �skeleton�: we ignore the data in the MS

(and write our own)
� Sink nodes turn this grid into a request and send

it up the tree.
� one Sink per interferometer

� When a result comes back, this can be written out
to a visibility column in the MS.

� MSs are processed in chunks of time called �tiles�.

Intro2: Working With MSs 10

The VisDataMux

� A VisDataMux node was created for us
automatically.

� The VDM is responsible for interfacing with
the MS, reading data, and activating its
child Sinks as appropriate.

� To start the process, we give a specially-
formed request to the VDM, containing
input and output records telling it what
and how to read (or write).

Intro2: Working With MSs 11

We Can Read, Too!

� Load Intro2/demo2-spigot.py
� Under �TDL Exec�, select Tile size: 10
� Load up the �Spigots� bookmark, and the

�Inspector� bookmark
� Run �test forest�
� ...note the �history� slider in the visualizer

Intro2: Working With MSs 12

Sinks And Spigots

� A Spigot node reads the visibility data from
an MS, and returns it as a visibility matrix

� Check visibilities using the history slider.
� You're looking at XX data, use the �Change

selected Vells� option to look at the other
correlations

� You can probably guess what kind of
observation demo.MS contains...

 4

Intro2: Working With MSs 13

Inspector (Collections) Plot

� The last script introduced a �Collections� plotter (the
ns.inspector node)

� A Meq.Composer node collects results from all its
children into a single huge Result, which is plotted as
a function of time.

� This plotter expects one data point per timeslot, so we
use a Meq.Mean() node to take the mean in
frequency.

� The inspector is attached as a special child to the
VisDataMux node, labelled �post�. This makes it
execute after (i.e., post) all the Sinks have fired. The
result is published to the viewer (if active), then
discarded.

Intro2: Working With MSs 14

Matrices And Tensors

� Visibility data comes out as a
2x2 matrix

� In MeqTrees, this is represented by a Result with 4
VellSets, and a dims=[2,2] field:
� no dims implies a 4-vector
� and remember that each element can be

its own function of frequency/time/etc.
� This can be generalized to tensors of arbitrary rank

� e.g., the �inspector� node collects its children into
a 351x2x2 tensor

�XX XY

YX YY �

�V 0 V 1

V 2 V 3
�

Intro2: Working With MSs 15

On MS Columns

� An AIPS++ MS has three standard �columns� for
visibility data: DATA, MODEL_DATA, CORRECTED_DATA.

� MeqTrees can �attach� to any column, or even
create new columns.

� Tools like the AIPS++ imager assign specific
meanings to these columns though, and do not
support other names...

� Speaking of the imager, run this script:

$ glish -l make_image.g DATA ms=demo.MS

Intro2: Working With MSs 16

Let's Modify Some Data

� Load Intro3/demo3-mod-vis.py
� Here we apply a gain term:

� Under �TDL Exec�, select Tile size: 30 (the �go faster�
option)

� Load up the �Inspector� bookmark
� Run �test forest�
� Switch inspectors to display complex phases (via

right-click)
� Make an image:

$ glish -l make_image.g MODEL_DATA ms=demo.MS

g
pq
=�1�.1p �e2� iq /3

 5

Intro2: Working With MSs 17

More Inspectors

� Here we have created two inspector nodes
� A Meq.ReqMux() node is used to feed a request to

multiple children, we need it since we can only
have one �post� child on a VisDataMux.

Intro2: Working With MSs 18

Exercise 1:
Freq-Dependent Gains

� Start with Intro2/demo3-mod-vis.py
� Apply a frequency-dependent gain to the

data:

� Make a per-channel image using:

$ glish -l make_image.g MODEL_DATA ms=demo.MS
mode=channel

gpq=�1�.1p
����0�

��
�e

2�i
q

3

����0�

�� , �0=8	108
,��=5	108

tip: use Meq.Polar(x,y) to compose xeiy

