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Introduction:  

 

• Early RA with reflector antennas: 

The progress was driven by improvements in 

the hardware with relatively straightforward 

signal processing and detection techniques    

(J. D. Kraus, 1986); 

 

 

• RA with large synthesis arrays: 

- more complex signal processing algorithms 

(Thompson, Moran, and Swenson, 2001); 

 

 

• Future RA with beamforming PAFs: 

- opens a new frontier for both antenna design 

and signal processing developments. 
 



PAF hardware developments 

 

First PAF-equipped telescopes: 
 already in a few years from now:  APERTIF, ASKAP; 

 

More far future: 
MeerKAT (?), SKA-Phase2 might/will be upgraded to a PAF implementation.  

 

 

First R&D activities 

(since 2000): 
 

• NRAO/BYU: a 19-element array 

of sinuous antennas 

(Fisher/Bradley, 2000), dipole 

antennas (Warnick/Jeffs, 2004);  

 

• ASTRON: wideband Vivaldi 

arrays (Ivashina, Bregman 2002); 

• DRAO: a wideband Vivaldi array 

(Veidt/Dewdney, 2006); 

 

• CSIRO: a wideband connected 

checkerboard array 

(Hay/O‟Sullivan, 2007).  



Development of the PAF 
BeamFormers (BFs):  

 

• 2004-2008        1st G BFs – a signal* model (including the array element 

                              mutual coupling), excitation-dependent noise coupling 

                              effects were ignored; 

 

 

• 2008-2010        2nd G BFs - the signal and noise models* (including the  

                              effect of element mutual coupling on both signal and noise  

                              response of the system), one polarization; 

 

 

• Since 2010      3d G BFs – extend to polarimetric BFs (for perfectly  

      polarized and unpolarized reference calibration sources) 

 

 

• Future              4G BFs – interferometers,…. 

      
 
* a signal model describes the system response to a (point) source of interest on the sky; a noise model describes the 

system response to external (ground, sky) and internal (LNAs, ohmic loss) noise sources  
 



1stG PAF beamforming methods  
 

• 2004-2008   

     - the understanding of the PAF noise performance was limited; 

 - accurate system models/tools were in process of development. 
  

- Optimization of the total PAF-reflector pattern (W. Brisken/Craeye/Veidt et, 2004); 

-     Modified CFM approach with constraints on spillover (M. V. Ivashina et., 2004); 

- Normalized CFM in combination with the black box approach (D.Hayman, 2008). 

 

First methods optimized the shape of the antenna pattern  by 

maximizing G/T for an assumed constant TrecTlna  

( The excitation-dependent noise coupling effects were ignored) 

 

 

 

 
  

Conjugate Field Matching (CFM) approach  



First experimental demonstration of 1st G BFs 
(CFM method with spillover control) 

Improved illumination efficiency w.r.t conventional horn feed,  

      (but high receiver noise temperature) 

Ivashina/van der Marel, 2005 



2nd G BFs: development of a theoretical 
framework and tools 

 

Requires a new interdisciplinary theoretical framework involving the 

advanced models of the PAF antenna systems, multi-channel receivers (in 

the presence of coupling), and signal processing techniques.  
 

Since 2007 - on-going activities at BYU, ASTRON/CHALMERS, DRAO, CSIRO. 

 

Enabling EM/MW modeling framework: 
 

• Accurate signal-noise models of the total PAF antenna-

receiver systems and practical FOMs for the purpose of 

optimization 
       (BYU/ASTRON/CHALMERS, 2008 AWPL, 2010 IEEE TAP); 

 

• Dedicated simulation software tools  

     (CHALMERS-ASTRON, BYU, IEEE TAP, 2011). 

 
 

The developed mathematical methods have been implemented in the 

CAESAR software (Computationally Advanced and Efficient Simulator for 

ARrays), - a combined EM-MW simulator for the analysis of electrically 

large antenna array systems (Main developer is Rob Maaskant, PhD 

project at ASTRON, now within PostDoc at Chalmers; PAF simulator and 

BF optimizer – a new tool box for CAESAR developed by 

Ivashina/Iupikov). 



2nd G BFs: development of a theoretical 
framework and tools 

 

Requires a new coherent interdisciplinary theoretical framework involving 

the advanced models of the PAF antenna systems, multi-channel receivers 

(in the presence of coupling), and signal processing techniques.  
 

Since 2007 - on-going activities at BYU, ASTRON/CHALMERS, DRAO, CSIRO. 

Development of dedicated algorithms: 
 

• Using advance signal processing algorithms (van Trees) and extending these to take 

into account special conditions in RA signal processing (low noise, beam 

smoothness and stability, interference.)  several trade-off solutions 

 

Enabling EM/MW modeling framework: 
 

• Accurate signal-noise models of the total PAF antenna-

receiver systems and practical FOMs for the purpose of 

optimization 
       (BYU/ASTRON/CHALMERS, 2008 AWPL, 2010 IEEE TAP); 

 

• Dedicated simulation software tools  

     (CHALMERS-ASTRON, BYU, IEEE TAP, 2011). 



Examples of the 2nd G BFs 

                                        Trade-off between maxSNR and „ideal‟ 

                                      beam shape (Gaussian beam): 
 

 

 

 

 

 

 

 

 

 

 

 
• Improved Gaussian beam fit:  

     Error is <2% vs. <11% for maxSNR 
 

• 1st side-lobe level was reduced  

     from -17dB (maxSNR) to -23dB. 
 

 

 

 
O. Iupikov et., EuCAP2011 

M. Ivashina et., IEEE TAP, 2011 

 
Simulated on-axis beam of APERTIF 

 
Error of the fit to the Gaussian beam 



Examples of the 2nd G BFs 

                                        Trade-off between maxSNR and „ideal‟ 

                                      beam shape (Gaussian beam): 
 

 

 

 

 

 

 

 

 

 

 

 
• Improved Gaussian beam fit:  

     Error is <2% vs. <11% for maxSNR 
 

• 1st side-lobe level was reduced  

     from -17dB (maxSNR) to -23dB. 

 
 

•  5-20% sensitivity reduction. 
 

 

 
Iupikov/Ivashina.Snirnov et., EuCAP2011 

M. Ivashina et., IEEE TAP, 2011 

 
Simulated on-axis beam of APERTIF 

 
Relative sensitivity reduction 



Examples of the 2nd G BFs 
 

Trade-off between maxSNR and side-lobe level: 
 

 

 

  

 
M. Elmer. B Jeffs, K.Warnick., International Workshop on Phased 

Array Antenna Systems for Radio Astronomy, May  4, 2010 

 

maxSNR 

 

 

Equiripple beamformer 
 

Hybrid equiripple-maxSNR  

The BYU/NRAO feed on the NRAO 

 20 meter dish. 



Examples of the 2nd G BFs 
 

Trade-off between maxSNR and side-lobe levels: 
 

 

 

  

 

M. Elmer et., 2010 

 

         Sensitivity reduction 
 

 

38% 

4% 

14% 

 

What are the effects of varying the parameter   of constraint? 



3d G BFs: Polarimetric BFs 
• 1st and 2nd G BFs are scalar beamformers.  

• 3d G BFs can provide high sensitivity and orthogonality 

of a polarimetric beam pair of array-based telescopes.  

    K.F. Warnick, M.V. Ivashina, S.J. Wijnholds, and R. Maaskant, „Polarimetry with Phased 

Array Antennas: Theoretical Framework and Definitions‟, accepted for publication in IEEE 

Trans. on Antennas and Propagat., 2011. 

   S.J. Wijnholds, M.V. Ivashina, R. Maaskant, T. Webb, K.F. Warnick, „Polarimetry with 

Phased Array Antennas: Practical Calibration Methods‟,  for submission to IEEE Trans. on 

Antennas and Propagat., 2011. 

If we correlate output signals v1 and v2, we get the beamformer 

output covariance matrix Ro, which is used to reconstruct 

source covariance matrix Rs.  

 

For an ideal system that does not introduced so-called 

instrumental polarization J=I. 

Rs – the covariance of the source signal in two 
polarizations.  

J – describes how the input voltages 

      in two polarizations are transformed 

      into two polarimetric output signals. 

 



Polarimetric beamformers 

|J11| for 37 beams 

 (optimal method) 

|J12| for 37 beams  

 (optimal method) 

|J12| for 37 beams  

 (bi-scalar method) 

Ivashina et., URSI GASS 2011 

Polarimetric homogeneity of the PAF 

beams is not constant over the FoV 



Conclusions 
 

 

PAF BFs have been developed gradually as accurate numerical models and 

software tools of PAF systems have become available.  

 

The developed PAF BFs so far can be arranged in three groups. 

 

Polarimetric BFs have been recently proposed and tested using the models of 

practical PAF systems.  

 

The on-going/future work includes: 
 

Improvement of the accuracy of the developed practical polarimetric beamformers 

and their experimental demonstration with on-reflector PAFs. 

 

Development of methods for reducing the number of required telescope pointings 

required to calibrate all formed beams to avoid time-consuming observations of 

multiple sources or long observations of a single polarized source for each beam. 

 

The temporal stability of formed beam polarization responses (Smirnov et., 

EuCAP2011; Cappellen et, EuCAP2011, Wijnholds et, URSI GASS 2011). 
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Part II: Antenna Beam Modeling 

References:  
„Prediction of Antenna Array Beams by Employing Only Few Physics-

Based Basis-Functions and Far-Field Measurements R. Maaskant, M. V. 

Ivashina, S. J. Wijnholds, and K. F. Warnick. 

 

„Modeling the Phased Array Feed Beams Using Physics-Based Basis 

Functions‟, M. V. Ivashina, O. A. Iupikov, R. Maaskant, S. J. Wijnholds, 

and K. F. Warnick. 

Part II has been prepared by R. Maaskant and M. Ivashina (AAs) and 

      M.Ivashina, O. Iupikov and R.Maaskant (PAFs). 



Part II: Antenna Beam Modeling 

Analytical Basis Functions 
 

Examples 
- Jacobi-Bessel, Spherical Harmonics, 

Plane Wave Spectrum, Gaussian 

Beams, etc. 
 

Advantages 
- Set is orthogonal 

- Continuous Functions for 

Interpolation 

 

Disadvantages 
- Contain limited physics-based  

information on element type, element 

positions, array excitations. 

Numerical Basis Functions 

     
Examples 
- Characteristic Basis Function 

Patterns (CBFPs, next slides) 

   

Advantages 
- Physics-based basis  functions 

(account for element type, element 

positioning, excitation scheme) 

 

Disadvantages 
- Not necessarily orthogonal 

- Discretely  sampled, thus 

interpolation functions needed 

Hybrid Beam Modeling Approach 

Using the advantages of both methods 



Hybrid and Multilevel Beam 
Modeling Approach 

Reference Beam Pattern 

to be modeled 

Unknown Expansion Coefficients 

Numerical Basis Function Patterns 

(CBFPs) 

𝑓 𝜃, 𝜙 =  𝛼𝑛𝑔𝑛(𝜃, 𝜙)

𝑁

𝑛=1

 

Fixed Expansion Coefficients 

Analytical Basis Function Patterns 

𝑔𝑛 𝜃, 𝜙 =  𝛽𝑚𝑛𝑕𝑚𝑛(𝜃, 𝜙)

𝑀

𝑚=1

 

The unknown expansion coefficients  𝛼𝑛 are  determined through fitting the 

modeled output covariance matrix (visibilities within a station) to the measured 

one for at least 𝑁 distinct sky reference sources 



Aperture Phased Arrays (AAs) 
For array antennas, the overall antenna array beam 𝑓 is a weighted 

sum of embedded element patterns 𝑒𝑛 (EEPs), i.e., 

𝑓 𝜃, 𝜙 =  𝑤𝑛𝑒𝑛(𝜃, 𝜙)

𝑁

𝑛=1

 

𝑓 𝜃, 𝜙 = 𝑒1 𝜃, 𝜙 ×  𝑤𝑛𝑒
−j𝑘 𝜃,𝜙 ·[𝑟1−𝑟𝑛]

𝑁

𝑛=1

 

Ref. Beam Pattern Embedded Element Pattern 

(unknown) 
Array Factor (known) 

where [𝑟𝑛 − 𝑟1] is the offset position vector between element 1 and 𝑛, 

and 𝑘 𝜃, 𝜙 = −
2𝜋

𝜆
[sin 𝜃) cos (𝜙 𝑥 + sin 𝜃) sin (𝜙 𝑦 + cos (𝜃) 𝑧 ]. 

𝑒𝑛 𝜃, 𝜙 = 𝑒1 𝜃, 𝜙 exp (−j𝑘 𝜃, 𝜙 · [𝑟𝑛 − 𝑟1]) 

For phased arrays with negligible edge-truncation effects, one can 

assume that all EEPs are identical (apart from a phase 

transformation): 



The key question therefore is: how to generate a suitable set of Basis 

Function Patterns (CBFPs) for the smoothly varying EEP 𝑒1? 

The simulated (sampled) pattern 𝑔1 can be 

interpolated through analytical basis 

functions with fixed coefficients (dashed 

line) 

𝑓 𝜃, 𝜙 = 𝑒1 𝜃, 𝜙 ×  𝑤𝑛𝑒
−j𝑘 𝜃,𝜙 · 𝑟1−𝑟𝑛

𝑁

𝑛=1

= 𝑒1 𝜃, 𝜙 × 𝐴𝐹 𝑤, 𝜃, 𝜙  

··· ··· 

𝑔1(𝜃, 𝜙) 

 

 

 

 

1 

 STEP 1: extract an embedded element pattern from an EM simulator 

(this simulated pattern will already be very close to the actual EEP as 

it includes array mutual coupling and the element geometry) 

𝑒1(𝜃, 𝜙) ≈ 𝛼1𝑔1(𝜃, 𝜙) 



The key question therefore is: how to generate a suitable set of Basis 

Function Patterns (CBFPs) for the smoothly varying EEP 𝑒1? 

𝑔1(𝜃, 𝜙) 

 

 

 

 

1 

 STEP 2: more than one basis function is needed for accurate modeling 

of the EEP. To this end, another basis function pattern is added which 

is derived from 𝑔1 by a geometric shift to the adjacent element 

𝑓 𝜃, 𝜙 = 𝑒1 𝜃, 𝜙 ×  𝑤𝑛𝑒
−j𝑘 𝜃,𝜙 · 𝑟1−𝑟𝑛

𝑁

𝑛=1

= 𝑒1 𝜃, 𝜙 × 𝐴𝐹 𝑤, 𝜃, 𝜙  

𝑔1𝑒
j𝑘 𝜃,𝜙 ·𝑑2  

𝑑2 

··· ··· 

𝑒1(𝜃, 𝜙) ≈ 𝛼1𝑔1(𝜃, 𝜙)+𝛼2𝑔1 𝜃, 𝜙 𝑒j𝑘 𝜃,𝜙 ·𝑑2  



The key question therefore is: how to generate a suitable set of Basis 

Function Patterns (CBFPs) for the relatively smooth EEP 𝑒1? 

𝑔1(𝜃, 𝜙) 

 

 

 

 

1 

 STEP 3: this procedure of “pattern shifting” is repeated until the set of 

basis functions is large enough for modeling the EEP sufficiently 

accurate 

𝑓 𝜃, 𝜙 = 𝑒1 𝜃, 𝜙 ×  𝑤𝑛𝑒
−j𝑘 𝜃,𝜙 · 𝑟1−𝑟𝑛

𝑁

𝑛=1

= 𝑒1 𝜃, 𝜙 × 𝐴𝐹 𝑤, 𝜃, 𝜙  

𝑔1𝑒
j𝑘 𝜃,𝜙 ·𝑑2  

𝑑3 

𝑔1𝑒
j𝑘 𝜃,𝜙 ·𝑑3  

··· ··· 

𝑑2 

𝑒1(𝜃, 𝜙) ≈ 𝛼1𝑔1(𝜃, 𝜙)+𝛼2𝑔1 𝜃, 𝜙 𝑒j𝑘 𝜃,𝜙 ·𝑑2 + 𝛼3𝑔1 𝜃, 𝜙 𝑒j𝑘 𝜃,𝜙 ·𝑑3  



𝑒𝑛 𝜃, 𝜙 = 𝑔1(𝜃, 𝜙)  𝛼𝑞

3

𝑞=1

𝑒j𝑘 𝜃,𝜙 ·𝑑𝑛  

𝑒1 𝜃,𝜙 = 𝛼1𝑔1(𝜃, 𝜙)+𝛼2𝑔1 𝜃, 𝜙 𝑒j𝑘 𝜃,𝜙 ·𝑑2 + 𝛼3𝑔1 𝜃, 𝜙 𝑒j𝑘 𝜃,𝜙 ·𝑑3 

Accordingly, the embedded EEP for the 𝑛th element is modeled as 

The final question is: how to determine the 3 pattern expansion 

coefficients 𝛼1,  𝛼2 ,and 𝛼3 in practice? 

 STEP 4: compute the output covariance matrix using the modeled 

EEPs for a given sky source field and least-squares fit it to the 

measured one (matrix of visibilities within an AA station) 

𝑛 = 1,… ,𝑁 



𝑣𝑛 = 𝐶  𝑒𝑛 𝜃𝑝, 𝜙𝑝 · 𝐸𝑖 (𝜃𝑝, 𝜙𝑝)

𝑃

𝑝=1

 

The element 𝑉𝑚𝑛 of the output covariance matrix is the correlation 

between the 𝑚th and 𝑛th receiver output voltage, i.e., 

Computing the Output Voltage 
Covariance Matrix 

where 𝐶 is a constant, and 

 

𝑉𝑚𝑛=𝑣𝑚(𝑣𝑛)
∗ 

where the receive voltage 𝑣𝑛 for the 𝑛th antenna element, and for the 

source fields 𝐸𝑖 incident from the 𝑃 distinct directions 𝜃𝑝, 𝜙𝑝 , is given 

as 

𝑒𝑛 𝜃, 𝜙 = 𝑔1(𝜃, 𝜙)  𝛼𝑞

3

𝑞=1

𝑒j𝑘 𝜃,𝜙 ·𝑑𝑞 

Simulated Embedded Element Pattern, expanded in analytical basis functions 

(perfectly polarized incident field, no estimation error) 



Finally, we solve for 𝛼𝑛 by fitting the modeled output covariance 

matrix (𝑉𝑚𝑛) to the measured one (𝑉 𝑚𝑛): 

Solving for 𝛼𝑛 

𝜖 = argmin
𝛼

 𝑉 𝑚𝑛 −𝑉𝑚𝑛 (𝛼)
2

𝑚,𝑛

 

A more generalized description in matrix-vector form, and for 

unpolarized distributed sources is given in the submitted IEEE TAP 

paper: R. Maaskant, M. V. Ivashina, S. J. Wijnholds, and K. F. 

Warnick, „Prediction of Antenna Array Beams by Employing Only Few 

Physics-Based Basis-Functions and Far-Field Measurements. 

 



Example I: 

An AA of x-oriented half wavelength dipoles 

- inter-element distance is 0.5λ; 

- distance to the ground plane is 0.25λ 

 

Example II:  

An AA of strongly coupled array of 

interconnected tapered-slot antennas (TSAs) 

whose geometrical dimensions are similar to 

APERTIF and EMBRACE (an inter-element 

distance of 0.38λ). 

. 

Numerical examples 

 

A BF scenario is a set of five x-polarized reference plane wave fields incident from θ 

= {10o, 20o, 30o, 40o, 50o}, which give rise to a rank-five voltage covariance matrix. 

 
In the absence of measurement data of the array patterns, we have perturbed the 

simulated total array beam to get our „reference‟ beam. The perturbation is 

accomplished by taking the short-circuited EEPs (large perturbation on the antenna 

loading) in place of the ideal open-circuited ones.  



The Matlab “fminsearch” optimization routine was used for least-squared 

fitting. A size of the Nact x Nact covariance matrix block is varied to show the 

effect of including edge elements in the error minimization.  

 

Error of the modeled covariance matrix 

 

Observations: 

 

Only 3 CBFPs are needed to predict the antenna covariance matrix down to 

an error of about 2-3%.  

 

However, if NactN (edge-element are included in the fitting), the basic 

assumption that all EEPs are identical ceases to hold. 



The actual and modeled array beams 

𝑓 𝜃, 𝜙 = 𝑒1 𝜃, 𝜙 × 𝐴𝐹 𝑤, 𝜃, 𝜙 , 

𝑒1(𝜃, 𝜙) ≈ 𝛼1𝑔1(𝜃, 𝜙) 

The array beam is computed from the modeled EEP as: 

where the EEP is modeled with 1, 3 and 5 CBFPs:  

𝑒1(𝜃, 𝜙) ≈ 𝛼1𝑔1(𝜃, 𝜙)+𝛼2𝑔1 𝜃, 𝜙 𝑒j𝑘 𝜃,𝜙 ·𝑑2 + 𝛼3𝑔1 𝜃, 𝜙 𝑒j𝑘 𝜃,𝜙 ·𝑑3 

(1 CBFP) 

(3 CBFP) 



The actual and modeled array beams 

The gain pattern difference, computed relative to the maximum pattern gain 

By employing only 3 CBFPs, the RLGD is smaller than -40dB for the dipole array, and 

-30dB for the TSA array, over the entire range of observation angles. Increasing the 

number of CBFPs does not improve the accuracy, because we have reached the point 

beyond which the EEPs cannot be regarded identical anymore. 



Extension of the beam modeling 
concept to PAFs 

 

 

The considered methods are based on the same beam modeling 

concept as that for AAs. 
 

 - Method I (approximate method):  

             approximate modeling of the EEPs of the PAF   

   after reflection from the dish. 

 

 - Method II (proposed method):  

   modeling of the EEPs of the PAF feed (without reflector) 

     and then calculating the corresponding 

   EEPs on the sky with a reflector EM simulator. 
 

Numerical example: 
 

Reflector antenna (F/D=0.35, D=25m) 

with a linear array of 11 dipole 

antennas (inter-element separation is 

0.5l, 1GHz). 



Method 1 (approximate method): 

Assumption: All EEPs, defined after 

scattering from the reflector, are the 

same, apart from the beam deflection 

angle Θb,p. (This does not hold for edge 

elements, but these have a negligible 

contribution to the beamforming for 

most formed beams.) 

 

Each EEP can be expanded into the 

same set of CBFPs:  

 
- The primary CBFP is the simulated (or a 

priori measured) EEP of the  element 

located closest to the focal point of the 

reflector; 

 

- The secondary CBFPs are derived from 

the primary CBFP by applying angular 

shifts to this basis function. 

Each shift follows from the beam 

deviation factor, where we can use 

the locations of the nearest 

neighboring antennas as lateral 

displacements in the focal plane. 



Approximate method: generation of CBFPs 

An illustration of two sets of CBFPs for modeling the 

scattered-field EEPs of a Phased Array Feed (PAF) in two 

directions.  

 
 are the angular shifts between CBFPs  within the same set, 

 

 are the angular shifts between sets of CBFPs. 



Some results for Method I 
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Summary: For 1-3 CBFPS, the relative error of the modeled covariance matrix 

is 10% , and the resulting modeled array beams match the reference ones 

within the main lobe and first side lobes only.  

 

An improvement is possible, but at the cost of a significant increase of the 

CBFPs. Main reason is a dominant effect of reflector (phase aberrations) on 

the shapes of EEPs for feed elements, which are laterally displaced from the 

focal point.  

Reference beam is the non-perturbed 

simulated on-axis PAF beam; modeled beam is 

computed employing 1 CBF  

Reference is the perturbed simulated off-axis 

beam (gain drifts ±0.5dB and ±5o); modeled 

beam is computed employing 1 CBF  

 



Method II: 
Step 1: Model the EEPs of the PAF (before 

scattering from the dish) in the same way 

as for the AA: 
 

 

 

where 𝑔1 𝜃, 𝜙  has been extracted from 

an EM simulator.  

𝑒𝑛 𝜃, 𝜙 = 𝑔1(𝜃, 𝜙)  𝛼𝑞

𝑄
𝐶𝐵𝐹𝑃𝑠

𝑞=1

𝑒j𝑘 𝜃,𝜙 ·𝑑𝑛 



Method II: 
Step 1: Model the EEPs of the PAF (before 

scattering from the dish) in the same way 

as for the AA: 
 

 

 

where 𝑔1 𝜃, 𝜙  has been extracted from 

an EM simulator. 

𝑒𝑛 𝜃, 𝜙 = 𝑔1(𝜃, 𝜙)  𝛼𝑞

𝑄
𝐶𝐵𝐹𝑃𝑠

𝑞=1

𝑒j𝑘 𝜃,𝜙 ·𝑑𝑛 

Step 2: Compute from array EEPs en 𝜃, 𝜙  (n=1,2,…,N) the 

corresponding EEP after scattering from the dish En 𝜃, 𝜙  with an EM 

reflector simulator. Using these patterns, we can determine the   

coefficients  𝛼1,  𝛼2 , … , 𝛼𝑄
𝐶𝐵𝐹𝑃𝑠

   by fitting the moddeled covariance matrix to the 

measured one.  
 

𝐸𝑛 𝜃, 𝜙  



Method II: 
Step 1: Model the EEPs of the PAF (before 

scattering from the dish) in the same way 

as for the AA: 
 

 

 

where 𝑔1 𝜃, 𝜙  has been extracted from 

an EM simulator.  

𝑒𝑛 𝜃, 𝜙 = 𝑔1(𝜃, 𝜙)  𝛼𝑞

𝑄
𝐶𝐵𝐹𝑃𝑠

𝑞=1

𝑒j𝑘 𝜃,𝜙 ·𝑑𝑞 

Step 2: Compute from array EEPs en 𝜃, 𝜙  (n=1,2,…,N) the 

corresponding EEP after scattering from the dish 𝐸𝑛 𝜃, 𝜙  with an EM 

reflector simulator. 
 

𝐸𝑛 𝜃, 𝜙  

𝐹𝑛 𝜃, 𝜙 =  𝐸𝑛 𝜃, 𝜙 𝑤𝑛

𝑁

𝑛=1

 

 

Step 3: Calculate the total PAF-reflector antenna beam, using the 

known beamformer weight vector w and modeled EEPs 𝐸𝑛 𝜃, 𝜙 . 



Method II: Initial numerical results 

 

The reference pattern, which is obtained using the simulated EEPs, is perturbed 

by introducing electronic gain variations (±0.5dB and ±5o); The modeled pattern 

is computed by employing 3 CBFPs. 
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Only 3 CBFPs are needed to predict the antenna covariance matrix down to an 

error of about 4-5%.  

 

The gain difference has been 

found to be small for all lobes and  

beam scan angles. 

 



More results  

 

The reference pattern, which is obtained using the simulated EEPs, is perturbed by 

setting the gain of element #5 or #7 to set to zero (broken channel); The modeled 

pattern is computed by employing 3 CBFPs. 
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The reference output 

covariance matrices 



Simulated and Measured PAF beams: 
 

The existing PAF simulation tools deliver the PAF beams which 

are well matched to the measured beams obtained with actual 

PAF systems (Examples include BYU PAF system and APERTIF).  

 

 

 

 

 

 
M. Elmer. B Jeffs, K.Warnick., Int.Workshop on Phased Array Antenna Systems for RA, May , 2010 

 
Measurement data for APERTIF system was provided by W. van Cappellen.  

More comparison results are available (see Ivashina et. ICEAA2010 and IEEE TAP 2011) 



Conclusions (I): 

 
1. A multi-level hybrid beam modeling approach has been proposed and 

demonstrated for AA and PAF numerical examples. It shows that only 

3 CBFPs are sufficient to model the array beam well: the accuracy is 

good both for main beam and side lobes. The expansion coefficients 

can be determined in practice from the measured receiver output 

covariance matrix (block).  

 

2. Our findings for AAs are in line with observations of C.Craeye et, 

(CALIM, Aug. 2011) that a small number of basis functions is sufficient. 

 

3. Future studies: to apply the proposed method in resolving the unitary 

matrix ambiguities for unpolarized sources. 

 

 
 

 



Conclusions (II): 
  

 

1. The proposed multi-level hybrid approach fits well into the MeqTrees 

paradigm, which is general enough to accommodate both analytic and 

empirical basis functions, or any combination of these. This means 

that rather than employing analytical basis function patterns alone, 

MeqTrees could invoke the EM solver first to find a relatively small 

deterministic set of numerically-generated physics-based basis 

function patterns. After that, MeqTrees could model each of these 

basis function patterns by analytical basis functions (as usually done 

for interpolation purposes). 
 

2. We are happy to contribute to the development of MeqTrees through a 

collaborative effort for including this new functionality! 
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CAESAR software (Computationally Advanced and Efficient 

Simulator for ARrays), and the PAF simulator toolbox are 

dedicated software tools for  phased-array radio telescopes. 


