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The Bad News:

LOFAR is uncalibratable ...



The Good News:

with conventional 
algorithms.



Next Generation Widefield
Instrument Calibration Challenges

• Larger apertures.
• Many more array elements.
• Wider range of frequencies.

• Ionospheric interaction. 
• Calibration may be source 

direction dependent.
• Calibrated UV data may not 

be possible.

Each station antenna sees the 
entire sky.  

7200 dual-pol antennas.

Multiple simultaneous beams are 
formed in different directions.

~6˚ beam mainlobe

© ASTRON

LOFAR is a Widefield Instrument



LOFAR Geometry

• 72 stations.

• 100 km aperture.

• Significant ionospheric 
variation across the array 
complicates calibration.

• Nonisoplanatic iono-
sphere across calibration 
sources and stations.

• Very low frequencies: 
30 - 240 MHz.

© ASTRON



The LOFAR Calibration Problem

• At low frequencies the 
ionosphere perturbs 
phase and gain.

• Calibration terms must 
be estimated for each 
bright source & station.

• Calibration for other 
objects is interpolated.

• Physical constraints 
must be applied.

Full array aperture

Station beam
field of view

Ionosphere

LOFAR stationLOFAR station

Objects in field of view
see different ionospheric
phase and gain



Calibration is Direction Dependent

• Each station sees a different
direction-dependent blur.

• Calibration on several bright
point sources in the field of 
view is required.
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Matrix Form Data Model

V: visibility matrix, computed over 
a series of time-frequency 
intervals.  Observed.

G: calibration complex gain matrix.  
One column per calibrator 
source.  Unknown.

K: Fourier kernel, geometric array 
response.  sq is source direction 
vector.  rm is station location. 
Known.

B: Calibrator source intensity.  
Known.

D: Noise covariance.  Unknown.
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The Single Snapshot Calibration 
Ambiguity

• For conventional arrays without direction dependent 
ionospheric phase perturbation calibration is possible 
with a single Vk,n observation.

• Not so for LOFAR, there is an essential ambiguity.

• Calibration is Impossible with a single visibility snapshot!
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Solutions to Calibration Ambiguity

• Time-frequency diversity
• Fringe rotation over time and frequency changes 

visibilities while calibration gains are nearly constant.
• Low order polynomial fitting over time-frequency.
• Peeling.

• Single snapshot calibration
• Compact core.
• Deterministic Frequency dependence.
• Known gain magnitudes, |G|.



The Direct Least Squares Solution

• Problems:
Direct optimization is computationally intractable.
Too many parameters.
Requires good initialization.  Where do you get it?
Does not exploit known smoothness structure over k,n.
Due to ambiguity, solution is not unique if θk,n has 
same degrees of freedom as Gk,n.
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The Peeling Approach

• Current proposed LOFAR calibration method.
• Replace joint estimation of G for Q sources with a series 

of single source calibration problems.
• Exploit relative fringe rotation rates among calibrator 

sources.
• Assume calibration gains are constant over a t-f cell. 
• Computationally efficient.
• References: 

1. J.E. Noordam, “LOFAR calibration challenges,” Proceedings of the 
SPIE, vol. 5489, Oct. 2004.
2. J.E. Noordam, “Peeling the Visibility Onion, the optimum way of 
self-calibration,” ASTRON tech. report MEM-078 June 2003.



Basic Peeling Algorithm Steps

• Over a time-frequency cell of 
nearly constant gains, rotate all 
visibilities to phase center the 
brightest remaining source.

}{diag}{diag~
,,,,,, nkqnknkqnk kVkV =
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Basic Peeling Algorithm Steps

• Over a time-frequency cell of 
nearly constant gains, rotate all 
visibilities to phase center the 
brightest remaining source.

• Average centered visibilities to 
suppress non-centered sources.
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Basic Peeling Algorithm Steps

• Over a time-frequency cell of 
nearly constant gains, rotate all 
visibilities to phase center the 
brightest remaining source.

• Average centered visibilities to 
suppress non-centered sources.

• Solve as a conventional single 
source calibration.
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Basic Peeling Algorithm Steps

• Over a time-frequency cell of 
nearly constant gains, rotate all 
visibilities to phase center the 
brightest remaining source.

• Average centered visibilities to 
suppress non-centered sources.

• Solve as a conventional single 
source calibration.

• Subtract the calibrated source 
from visibilities.
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Basic Peeling Algorithm Steps

• Over a time-frequency cell of 
nearly constant gains, rotate all 
visibilities to phase center the 
brightest remaining source.

• Average centered visibilities to 
suppress non-centered sources.

• Solve as a conventional single 
source calibration.

• Subtract the calibrated source 
from visibilities.

• Repeat for next brightest 
source.

“Image plane” equivalent



2-D Polynomial Model over time-
frequency for Ionospheric Variation

• Variations in G are smooth over time and frequency

• Estimating the smaller parameter set, p, improves 
performance.

• Over a large window p does not depend on k,n.
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Challenges

• Phase centered averaging does not completely remove 
non-centered sources.

• “Contamination” from non-centered sources biases 
estimate of    .

• Solution:  Multiple passes of peeling.

• Computational burden eliminates some candidate 
approaches.

• Many local minima in polynomial optimization makes a 
good initial solution critical.

qĝ



Why Study the Cramer-Rao Bound?

• Array calibration is a statistical parameter estimation problem.

• The CRB reveals the theoretical limit on estimation error variance.  

• Absolute frame of reference: no algorithm can beat the CRB.

• Answers the questions:

• Is the existing algorithm adequate?

• Is there hope for finding a better solution, “How close are we?”

• Permits trading off performance and computational burden.  

• Can be computed even if no algorithm exists yet.

• The BIG question: Can LOFAR be reliably calibrated?



CRB Definition

• Notation
x: a vector of random samples with joint probability 

density  p(x |θ ).
any unbiased estimator for θ. 
covariance matrix for    .

M: Fisher information matrix.

• The Cramer-Rao theorem:

• Error variance is lower bounded by                  !
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A Simple Example

• Estimate a constant in additive white Gaussian noise:

+
w[n] x[n]

θ
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A Second Simple Example

• Line fitting in additive white Gaussian noise:

][][ 21 nwnnx ++= θθ

+
w[n] x[n]

θ1+θ2n
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We now have 
no intuition on 
estimation error 
for θ1 and θ2!



• Variance on constant term θ1 is now higher.  
→ estimating more parameters increases error.

• Variance of slope term, θ2, drops more rapidly with N.
→ θ2 is easier to estimate. 
→ x[n] is more sensitive to θ2 due to multiplication by n.

A Second Simple Example: Insights
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Now it Gets a Little Messy

O

Constraint Jacobian 
for packed central core

Block Fisher information

Block
closed
forms



Now it Gets a Little Messy

The important points:
• Closed form CRB expressions have been derived for 

most important LOFAR calibration models.
• Though expressions are complex, computer codes 

have been developed to evaluate them.
• These solutions exist now and could be made available 

for astronomers to predict calibration performance for 
a given observations.



Peeling Simulation Results

• Polynomial fit over a 10 s 
by 100 kHz “snippet”
window.

• Two sources.
• Plot is for zero order 

coefficient, 16th station, 1st

source.
• 30 station array with 100 

km aperture.
• Performance is typical of 

all other parameters.
• Three peeling passes. -40 -35 -30 -25 -20 -15 -10 -5 0

-60

-50

-40

-30

-20

-10

0

10

20

SNR in dB for brightest calibrator

P
ar

am
et

er
 e

rro
r v

ar
ia

nc
e 

in
 d

B

Sample error and CRB for parameter no. 76

sample err var
cheat err var
CRB



CRB Analysis for a realistic Scenario

• Point LOFAR beam in arbitrary direction.
• Model station beam pattern and noise level accurately.
• Calibrate on 5 brightest sources in beam mainlobe and 

5 brightest in sidelobes.
• Use 2-D 1st order polynomial fitting over a “snippet” of 

10 seconds and 500 kHz.
• Calculate CRB for polynomial coefficients.
• Project coefficient CRB to corresponding complex gain 

error variance.



EWI Circuits and Systems

Full Sky Map
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Full Sky Map



EWI Circuits and Systems

Field of View
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EWI Circuits and Systems

Station Beam Pattern

Station Beam Pattern
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Multiple Source CRB for 2-D 
Polynomial Coefficients

Time (s)

F
re

qu
en

cy
 (

kH
z)

Relative gain error − Antenna m=2 / Source q=3 (4C+55.08)
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• Coefficient error 
variance relative to 
conventional single 
source calibration.

• Note that calibra-
tion fails without at 
least two seconds 
and 150 kHz of 
diversity.



Multiple Source Complex Gain Error 
CRB

Relative gain error − Antenna m=2 / Source q=3 (4C+55.08)
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• Use estimated 
polynomial 
coefficients to 
calculate complex 
gains.

• Calculate error 
variance CRB over 
full time frequency 
range.

• Largest error is 
near domain 
edges.



Conclusions

• The BIG answer: Yes, LOFAR can be calibrated.

• Given a range of time-frequency observations and 
compact core geometry: there are no theoretical 
roadblocks to achieving useful calibration estimates.

• Does peeling work for direction dependent calibration?

• Yes, so far so good.

• Ongoing progress in reducing cross-source 
contamination: multiple pass peeling & demixing.

• Low SNR performance improvements being studied.



Optional Slides

• Use these only if (by some miracle) there is extra time.



LOFAR Calibration with Compact 
Central Core

• The full array can be calibrated given a compact central core.
• The wisdom of the LOFAR design is confirmed by CRB analysis
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LOFAR Calibration with Compact 
Central Core

• Calibration succeeds for Q ≤ Mc+1.  
Q calibrator sources and an Mc element core.
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