Analysis of the Peeling Algorithm

Brian D. Jeffs¹ and Sebastiaan van der Tol²

- 1: Brigham Young University, Electrical and Computer Engineering bjeffs@ee.byu.edu
- 2: TU Delft, Circuits and Systems, svdt@cas.et.tudelft.nl

Delft University of Technology

LOFAR is uncalibratable ...

with conventional algorithms.

Next Generation Widefield Instrument Calibration Challenges

- Larger apertures.
- Many more array elements.
- Wider range of frequencies.

- Ionospheric interaction.
- Calibration may be source direction dependent.
- Calibrated UV data may not be possible.

LOFAR is a Widefield Instrument

- Each station antenna sees the entire sky.
- 7200 dual-pol antennas.
- Multiple simultaneous beams are formed in different directions.
- ~6° beam mainlobe

© ASTRON

LOFAR Geometry

- 72 stations.
- 100 km aperture.
- Significant ionospheric variation across the array complicates calibration.
- Nonisoplanatic ionosphere across calibration sources and stations.
- Very low frequencies: 30 - 240 MHz.

© ASTRON

The LOFAR Calibration Problem

- At low frequencies the ionosphere perturbs phase and gain.
- Calibration terms must be estimated for each bright source & station.
- Calibration for other objects is interpolated.
- Physical constraints must be applied.

Calibration is Direction Dependent

Matrix Form Data Model

- V: visibility matrix, computed over a series of time-frequency intervals. Observed.
- G: calibration complex gain matrix. One column per calibrator source. Unknown.
- K: Fourier kernel, geometric array response. \mathbf{s}_q is source direction vector. \mathbf{r}_m is station location. Known.
- B: Calibrator source intensity. Known.
- D: Noise covariance. Unknown.

 $\mathbf{V} = E\{\mathbf{x}[n]\mathbf{x}^{\mathrm{H}}[n]\}$ $= (\mathbf{G} \circ \mathbf{K}) \mathbf{B} (\mathbf{G} \circ \mathbf{K})^{\mathrm{H}} + \mathbf{D}$ $\mathbf{G} = \begin{bmatrix} g_{1,1} & \cdots & g_{1,Q} \\ \vdots & & \vdots \\ g_{M,1} & \cdots & g_{M,Q} \end{bmatrix}$ $\mathbf{K} = \begin{bmatrix} k_{1,1} & \cdots & k_{1,Q} \\ \vdots & & \vdots \\ k_{M,1} & \cdots & k_{M,Q} \end{bmatrix}, \ k_{m,q} = \exp\{i\frac{2\pi f}{c}\mathbf{s}_q \cdot \mathbf{r}_m\}$ $\mathbf{B} = \begin{bmatrix} b_1 & & \\ & \ddots & \\ & & b_2 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} d_1 & & \\ & \ddots & \\ & & d_M \end{bmatrix}$

The Single Snapshot Calibration Ambiguity

- For conventional arrays without direction dependent ionospheric phase perturbation calibration is possible with a single V_{kn} observation.
- Not so for LOFAR, there is an essential ambiguity.

$$\widetilde{\mathbf{G}}(\mathbf{U}) = ((\mathbf{G} \circ \mathbf{K}) \mathbf{B}^{\frac{1}{2}} \mathbf{U}^{H} \mathbf{B}^{-\frac{1}{2}}) \circ \mathbf{K}^{\bullet-1} \quad \longleftarrow \quad \text{different calibration}$$

• Calibration is Impossible with a single visibility snapshot!

Solutions to Calibration Ambiguity

- Time-frequency diversity
 - Fringe rotation over time and frequency changes visibilities while calibration gains are nearly constant.
 - Low order polynomial fitting over time-frequency.
 - Peeling.
- Single snapshot calibration
 - Compact core.
 - Deterministic Frequency dependence.
 - Known gain magnitudes, |G|.

The Direct Least Squares Solution

$$\Theta = \begin{bmatrix} \boldsymbol{\theta}_{1,1}^T, \cdots, \boldsymbol{\theta}_{K,N}^T \end{bmatrix}^T$$
$$\hat{\Theta} = \underset{\boldsymbol{\theta}_{1,1}, \cdots, \boldsymbol{\theta}_{K,N}}{\operatorname{arg\,min}} \sum_k \sum_n \left\| \mathbf{V}_{k,n} - (\mathbf{G}\{\boldsymbol{\theta}_{k,n}\} \odot \mathbf{K}_{k,n}) \mathbf{B} (\mathbf{G}\{\boldsymbol{\theta}_{k,n}\} \odot \mathbf{K}_{k,n})^H \right\|^2$$

- Problems:
 - Direct optimization is computationally intractable.
 - Too many parameters.
 - Requires good initialization. Where do you get it?
 - Does not exploit known smoothness structure over k,n.
 - Due to ambiguity, solution is not unique if $\theta_{k,n}$ has same degrees of freedom as $\mathbf{G}_{k,n}$.

The Peeling Approach

- Current proposed LOFAR calibration method.
- Replace joint estimation of **G** for *Q* sources with a series of single source calibration problems.
- Exploit relative fringe rotation rates among calibrator sources.
- Assume calibration gains are constant over a t-f cell.
- Computationally efficient.
- References:

1. J.E. Noordam, "LOFAR calibration challenges," *Proceedings of the SPIE, vol. 5489*, Oct. 2004.

2. J.E. Noordam, "Peeling the Visibility Onion, the optimum way of self-calibration," ASTRON tech. report MEM-078 June 2003.

 Over a time-frequency cell of nearly constant gains, rotate all visibilities to phase center the brightest remaining source.

$$\widetilde{\mathbf{V}}_{k,n} = \operatorname{diag}\{\overline{\mathbf{k}}_{q,k,n}\}\mathbf{V}_{k,n}\operatorname{diag}\{\mathbf{k}_{q,k,n}\}$$

"Image plane" equivalent

- Over a time-frequency cell of nearly constant gains, rotate all visibilities to phase center the brightest remaining source.
- Average centered visibilities to suppress non-centered sources.

$$\hat{\mathbf{V}}_q = \frac{1}{KN} \sum_k \sum_n \widetilde{\mathbf{V}}_{k,n}$$

- Over a time-frequency cell of nearly constant gains, rotate all visibilities to phase center the brightest remaining source.
- Average centered visibilities to suppress non-centered sources.
- Solve as a conventional single source calibration.

$$\hat{\mathbf{g}}_{q} = \min_{\mathbf{g}} \left\| \hat{\mathbf{V}}_{q} - b_{q} \mathbf{g} \mathbf{g}^{H} \right\|$$

- Over a time-frequency cell of nearly constant gains, rotate all visibilities to phase center the brightest remaining source.
- Average centered visibilities to suppress non-centered sources.
- Solve as a conventional single source calibration.
- Subtract the calibrated source from visibilities.

$$\mathbf{V}_{k,n} = \mathbf{V}_{k,n} - b_q \operatorname{diag}\{\mathbf{k}_{q,k,n}\} \hat{\mathbf{g}}_q \, \hat{\mathbf{g}}_q^H \operatorname{diag}\{\overline{\mathbf{k}}_{q,k,n}\}$$

- Over a time-frequency cell of nearly constant gains, rotate all visibilities to phase center the brightest remaining source.
- Average centered visibilities to suppress non-centered sources.
- Solve as a conventional single source calibration.
- Subtract the calibrated source from visibilities.
- Repeat for next brightest source.

2-D Polynomial Model over timefrequency for Ionospheric Variation

• Variations in G are smooth over time and frequency

$$G\{\theta_{k,n}\} = (\Gamma_{00} + \Gamma_{10}f_k + \Gamma_{20}f_k^2 + \Gamma_{01}t_n + \Gamma_{02}t_n^2 + \Gamma_{11}f_kt_n)$$

$$\odot \exp\{i(\Phi_{00} + \Phi_{10}f_k + \Phi_{20}f_k^2 + \Phi_{01}t_n + \Phi_{02}t_n^2 + \Phi_{11}f_kt_n)\}$$

 $\mathbf{p} = \left[\operatorname{vec} \{ \boldsymbol{\Gamma}_{00} \}^{\mathrm{T}}, \cdots, \operatorname{vec} \{ \boldsymbol{\Gamma}_{11} \}^{\mathrm{T}}, \operatorname{vec} \{ \boldsymbol{\Phi}_{00} \}^{\mathrm{T}}, \cdots, \operatorname{vec} \{ \boldsymbol{\Phi}_{11} \}^{\mathrm{T}}, \operatorname{diag} \{ \mathbf{D} \} \right]^{\mathrm{T}}$

- Estimating the smaller parameter set, **p**, improves performance.
- Over a large window **p** does <u>not</u> depend on *k*,*n*.

Challenges

- Phase centered averaging does not completely remove non-centered sources.
- "Contamination" from non-centered sources biases estimate of $\hat{\mathbf{g}}_q$.
- Solution: Multiple passes of peeling.
- Computational burden eliminates some candidate approaches.
- Many local minima in polynomial optimization makes a good initial solution critical.

Why Study the Cramer-Rao Bound?

- Array calibration is a statistical parameter estimation problem.
- The CRB reveals the theoretical limit on estimation error variance.
- Absolute frame of reference: <u>no algorithm can beat</u> the CRB.
- Answers the questions:
 - Is the existing algorithm adequate?
 - Is there hope for finding a better solution, "How close are we?"
 - Permits trading off performance and computational burden.
 - Can be computed even if no algorithm exists yet.
 - The BIG question: Can LOFAR be reliably calibrated?

CRB Definition

- Notation
 - **x**: a vector of random samples with joint probability density $p(\mathbf{x} | \boldsymbol{\theta})$.
 - $\hat{\theta}$: any unbiased estimator for θ .
 - $\mathbf{C}_{\hat{\theta}}$: covariance matrix for $\hat{\theta}$.
 - M: Fisher information matrix.
- The Cramer-Rao theorem:

$$\mathbf{C}_{\hat{\theta}} \geq \mathbf{M}^{-1} = -\left(E\left\{\frac{\partial^2 \ln p(\mathbf{x} \mid \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\mathrm{T}}}\right\}\right)^{-1}$$

• Error variance is lower bounded by $\operatorname{diag}\{\mathbf{C}_{\hat{\theta}}\}_{!}$

A Simple Example

• Estimate a constant in additive white Gaussian noise:

This is the well known variance for the sample mean!

A Second Simple Example

• Line fitting in additive white Gaussian noise:

$$x[n] = \theta_1 + \theta_2 n + w[n]$$

We now have no intuition on estimation error for θ_1 and θ_2 !

A Second Simple Example: Insights

$$\mathbf{M} = \frac{1}{\sigma^2} \begin{bmatrix} N & \frac{N(N-1)}{2} \\ \frac{N(N-1)}{2} & \frac{N(N-1)(2N-1)}{6} \end{bmatrix},$$

$$\operatorname{var}(\theta_1) = \begin{bmatrix} \mathbf{M}^{-1} \end{bmatrix}_{1,1} = \frac{2(2N-1)\sigma^2}{N(N+1)}, \quad \operatorname{var}(\theta_2) = \begin{bmatrix} \mathbf{M}^{-1} \end{bmatrix}_{2,2} = \frac{12\sigma^2}{N(N^2-1)}$$

$$\lim_{N \to \infty} \operatorname{var}(\theta_1) \ge \frac{4\sigma^2}{N} \qquad \lim_{N \to \infty} \operatorname{var}(\theta_2) \ge \frac{12\sigma^2}{N^3}$$

- Variance on constant term θ_1 is now higher. \rightarrow estimating more parameters increases error.
- Variance of slope term, θ₂, drops more rapidly with N.
 → θ₂ is easier to estimate.
 → x[n] is more sensitive to θ₂ due to multiplication by n.

Now it Gets a Little Messy

$$\mathbf{M}_{k,n} = \begin{bmatrix} \mathbf{M}_{\gamma_1\gamma_1}\cdots\mathbf{M}_{\gamma_1\gamma_2} & \mathbf{M}_{\gamma_1\varphi_1}\cdots\mathbf{M}_{\gamma_1\varphi_2} & \mathbf{M}_{\gamma_1d} \\ \ddots & \ddots & \vdots \\ \mathbf{M}_{\gamma_Q\gamma_1}\cdots\mathbf{M}_{\gamma_Q\gamma_Q} & \mathbf{M}_{\gamma_Q\varphi_1}\cdots\mathbf{M}_{\gamma_Q\varphi_Q} & \mathbf{M}_{\gamma_Qd} \\ \mathbf{M}_{\varphi_1\gamma_1}\cdots\mathbf{M}_{\varphi_1\gamma_Q} & \mathbf{M}_{\varphi_1\varphi_1}\cdots\mathbf{M}_{\varphi_1\varphi_Q} & \mathbf{M}_{\varphi_1d} \\ \ddots & \ddots & \vdots \\ \mathbf{M}_{\varphi_Q\gamma_1}\cdots\mathbf{M}_{\varphi_Q\gamma_Q} & \mathbf{M}_{\varphi_Q\varphi_1}\cdots\mathbf{M}_{\varphi_Q\varphi_Q} & \mathbf{M}_{\varphi_Qd} \\ \mathbf{M}_{d\gamma_1}\cdots\mathbf{M}_{d\gamma_Q} & \mathbf{M}_{d\varphi_1}\cdots\mathbf{M}_{d\varphi_Q} & \mathbf{M}_{dd} \end{bmatrix}$$
Block Fisher information

Constraint Jacobian for packed central core

$$\mathbf{J}_{k,n} = \begin{bmatrix} \mathbf{I}_Q \otimes \begin{bmatrix} \mathbf{I}_{M_c} \\ \mathbf{0}_{M_r,M_c} \end{bmatrix} & \mathbf{I}_Q \otimes \begin{bmatrix} \mathbf{0}_{M_c,M_r} \\ \mathbf{I}_{M_r} \end{bmatrix} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}_Q \otimes \begin{bmatrix} \mathbf{I}_{M_c} \\ \mathbf{0}_{M_r,M_c} \end{bmatrix} & \mathbf{I}_Q \otimes \begin{bmatrix} \mathbf{0}_{M_r,M_r} \\ \mathbf{0}_{M_r,M_r} \end{bmatrix} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$\begin{split} \mathbf{M}_{\boldsymbol{\gamma}_{p}\boldsymbol{\gamma}_{q}} &= 2\sigma_{p}^{2}\sigma_{q}^{2}\mathbf{Re}\left(\left(\tilde{\boldsymbol{\Phi}}_{p}^{\mathrm{T}}\overline{\mathbf{R}}^{-1}\bar{\tilde{\boldsymbol{\Phi}}}_{q}\right)\left(\mathbf{a}_{p}^{\mathrm{H}}\mathbf{R}^{-1}\mathbf{a}_{q}\right) \\ &+ \left(\tilde{\boldsymbol{\Phi}}_{p}^{\mathrm{T}}\overline{\mathbf{R}}^{-1}\bar{\mathbf{a}}_{q}\right)\left(\mathbf{a}_{p}^{\mathrm{H}}\mathbf{R}^{-1}\tilde{\boldsymbol{\Phi}}_{q}\right)\right) \\ \mathbf{M}_{\boldsymbol{\varphi}_{p}\boldsymbol{\varphi}_{q}} &= 2\sigma_{p}^{2}\sigma_{q}^{2}\mathbf{Re}\left(\left(\tilde{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\bar{\boldsymbol{\Gamma}}_{q}\right)\left(\mathbf{a}_{p}^{\mathrm{H}}\mathbf{R}^{-1}\mathbf{a}_{q}\right) \\ &- \left(\tilde{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\bar{\mathbf{a}}_{q}\right)\left(\mathbf{a}_{p}^{\mathrm{H}}\overline{\mathbf{R}}^{-1}\tilde{\boldsymbol{\Gamma}}_{q}\right)\right) \\ \mathbf{M}_{dd} &= \overline{\mathbf{R}}^{-1}\odot\mathbf{R}^{-1} \\ \mathbf{M}_{\boldsymbol{\gamma}_{p}}\boldsymbol{\varphi}_{q} &= 2\sigma_{p}^{2}\sigma_{q}^{2}\mathbf{Im}\left(\left(\tilde{\boldsymbol{\Phi}}_{p}^{\mathrm{T}}\overline{\mathbf{R}}^{-1}\bar{\boldsymbol{\Gamma}}_{q}\right)\right) \\ &+ \left(\tilde{\boldsymbol{\Phi}}_{p}^{\mathrm{T}}\overline{\mathbf{R}}^{-1}\circ\mathbf{a}_{p}\right)\left(\mathbf{a}_{p}^{\mathrm{H}}\mathbf{R}^{-1}\mathbf{a}_{q}\right) \\ &+ \left(\tilde{\boldsymbol{\Phi}}_{p}^{\mathrm{T}}\overline{\mathbf{R}}^{-1}\circ\mathbf{a}_{p}^{\mathrm{H}}\mathbf{R}^{-1}\right) \\ \mathbf{M}_{\boldsymbol{\gamma}_{p}}\mathbf{d} &= 2\sigma_{p}^{2}\mathcal{Re}\left(\tilde{\boldsymbol{\Phi}}_{p}\overline{\mathbf{R}}^{-1}\circ\mathbf{a}_{p}^{\mathrm{H}}\mathbf{R}^{-1}\right) \\ &\mathbf{M}_{\boldsymbol{\varphi}_{p}\mathbf{d}} &= -2\sigma_{p}^{2}\mathbf{Im}\left(\tilde{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\circ\mathbf{a}_{p}^{\mathrm{H}}\mathbf{R}^{-1}\right) \\ &= \frac{(\mathbf{a}^{\mathrm{T}}\overline{\mathbf{R}}^{-1}\hat{\mathbf{a}}_{q})(\mathbf{a}_{p}^{\mathrm{H}}\overline{\mathbf{R}}^{-1}) \\ &\mathbf{M}_{\boldsymbol{\varphi}_{p}\mathbf{d}} &= -2\sigma_{p}^{2}\mathbf{Im}\left(\tilde{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\circ\mathbf{a}_{p}^{\mathrm{H}}\mathbf{R}^{-1}\right) \\ &= 2\sigma_{p}^{2}\sigma_{q}^{2}\mathbf{Re}\left((\bar{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q})+\frac{(\mathbf{a}^{\mathrm{T}}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q})(\mathbf{a}_{p}^{\mathrm{H}}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q}) \\ &- (\bar{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\bar{\mathbf{a}}_{q})(\mathbf{a}_{p}^{\mathrm{H}}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q}) \\ &= 2\sigma_{p}^{2}\sigma_{q}^{2}\mathbf{Re}\left((\bar{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q})-\frac{(\bar{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\bar{\mathbf{L}}_{q})(\mathbf{a}_{p}^{\mathrm{H}}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q}) \\ &- (\bar{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\bar{\mathbf{a}}_{q})(\mathbf{a}_{p}^{\mathrm{H}}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q}) \\ &= 2\sigma_{p}^{2}\sigma_{q}^{2}\mathbf{Re}\left((\bar{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\bar{\mathbf{L}}_{q})(\mathbf{a}_{p}^{\mathrm{H}}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q}) \\ &- (\bar{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\bar{\mathbf{a}}_{q})(\mathbf{a}_{p}^{\mathrm{H}}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q}) \\ &- (\bar{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\bar{\mathbf{a}}_{q})(\mathbf{a}_{p}^{\mathrm{H}}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q}) \\ &- (\bar{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\bar{\mathbf{L}}_{q})(\mathbf{a}_{p}^{\mathrm{H}}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q}) \\ &- (\bar{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\bar{\mathbf{L}}_{q})(\mathbf{a}_{p}^{\mathrm{H}}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q}) \\ &- (\bar{\boldsymbol{\Gamma}}_{p}\overline{\mathbf{R}}^{-1}\bar{\mathbf{L}}_{q})(\mathbf{a}_{p}^{\mathrm{H}}\overline{\mathbf{R}}^{-1}\mathbf{a}_{q}) \\ &- (\bar{\boldsymbol$$

Now it Gets a Little Messy

The important points:

- Closed form CRB expressions have been derived for most important LOFAR calibration models.
- Though expressions are complex, computer codes have been developed to evaluate them.
- These solutions exist now and could be made available for astronomers to predict calibration performance for a given observations.

Peeling Simulation Results

- Polynomial fit over a 10 s by 100 kHz "snippet" window.
- Two sources.
- Plot is for zero order coefficient, 16th station, 1st source.
- 30 station array with 100 km aperture.
- Performance is typical of all other parameters.
- Three peeling passes.

CRB Analysis for a realistic Scenario

- Point LOFAR beam in arbitrary direction.
- Model station beam pattern and noise level accurately.
- Calibrate on 5 brightest sources in beam mainlobe and 5 brightest in sidelobes.
- Use 2-D 1st order polynomial fitting over a "snippet" of 10 seconds and 500 kHz.
- Calculate CRB for polynomial coefficients.
- Project coefficient CRB to corresponding complex gain error variance.

Full Sky Map

Full Sky Map

EWI Circuits and Systems

Field of View

EWI Circuits and Systems

Station Beam Pattern

Station Beam Pattern

0

TUDelft

EWI Circuits and Systems

Multiple Source CRB for 2-D Polynomial Coefficients

- Coefficient error variance relative to conventional single source calibration.
- Note that calibration fails without at least two seconds and 150 kHz of diversity.

Multiple Source Complex Gain Error CRB

- Use estimated polynomial coefficients to calculate complex gains.
- Calculate error variance CRB over full time frequency range.
- Largest error is near domain edges.

Conclusions

- The BIG answer: Yes, LOFAR can be calibrated.
- Given a range of time-frequency observations and compact core geometry: there are no theoretical roadblocks to achieving useful calibration estimates.
- Does peeling work for direction dependent calibration?
 - Yes, so far so good.
 - Ongoing progress in reducing cross-source contamination: multiple pass peeling & demixing.
 - Low SNR performance improvements being studied.

Optional Slides

• Use these only if (by some miracle) there is extra time.

LOFAR Calibration with Compact Central Core

- The full array can be calibrated given a compact central core.
- The wisdom of the LOFAR design is confirmed by CRB analysis

LOFAR Calibration with Compact Central Core

• Calibration succeeds for $Q \le M_c+1$. *Q* calibrator sources and an M_c element core.

