
Project 343

M.A. Brentjens

November 11, 2005

1 Goal

The goal of this project is to boost the MeqTree functionality to a point where
it can actually be used for regular datareduction.

2 Necessary steps

• Preprocess datasets with Aips++ : Flagging, Tsys, bandpass

• Repeat bandpass calibration with MeqTree system and compare

• Do full phase and amplitude calibration on main dataset

3 Tsys correction

There is no Tsys correction functionality present in Aips++. Therefore I have
written my own Glish tool to apply system temperature corrections. This is
a pure necessity in the case of the WSRT. All visibilities are multiplied with
√

T1iT2j , where i and j are the respective polarizations, e.g. x and y. If a
specific system temperature is not available, we take the one from the previous
time slot. If that one is also invalid or not avaulable, we take the average value
over all valid system temperature readings of the same time slot. A system
temperature reading is invalid if it is ±inf, 0, or NaN.

The class can only handle full-polarization data. It is assumed that the
output column exists.

xx and yy amplitude of an unpolarized source should be I/2. Instead in
Aips++, it is assumed to be I. I counter this by multiplying the MODEL DATA
column by 0.5 after having called imgr.setjy(). A consequence is that before
imaging using the Aips++ imager, we should multiply the CORRECTED DATA
column by 2 in order to get a proper fluxscale in the image plane.

4 Expected image noise per channel

12h run, 156250 Hz bandwidth per channel. WSRT calculator Stokes I image
noise: 0.3 mJy/beam per channel

1



5 Flagging

The autoflagger happily flags correct data on steep fringe flanks. Partial “solu-
tion”: flag only on XY and YX with high threshold (“20”).

6 Sources

The dominant sources are:
Name RA Dec Flux1175 MHz
3C 343.1 16 38 28.2 +63 34 44 5.0
3C 343 16 34 33.8 +62 45 36 5.2

Channels:
1 10 20 30 33 40 50 60 64

1180.00 1178.59 1177.03 1175.47 1175.00 1173.91 1172.19 1170.63 1170.16
Channel width: 156250 Hz

7 Solver

Made solver aware of flags: doesn’t add flagged equations to the solver anymore
Use another makeNorm() method, that copes with sparse equations

8 UVW

MeqUVW UVWs do not correspond to MS UVWs...
The solution is simple: when retrieving ANY dataset from the WSRT archive,

one should first run j2convert. It computes J2000 UVWs from the station XYZ
coordinates and the UTC date:

j2convert msin=¡MSDIRNAME¿

9 Spigot/Sink

Freq/time exchanged

10 343

Phase centre: 16:38:28.205 +62:34:44.314 4.3566476092072053 1.0922091756657659
Solve fails on first timeslot. Solve succeeds for subsequent timeslots, but

result is dubious at the moment.
It turned out the positions in solve343.g were wrong: The correct ones are:
J2000.0: 3C343.1: 16h38m28.180s +62d34m44.16s 4.356645791155902 1.092208429052697

lm: (-8.3726023633066311e-07, -7.4661239335416241e-07) n-1: (-6.2927441035753873e-
13)

J2000.0: 3C343: 16h34m33.789s +62d45m35.81s 4.3396003966265599 1.0953677174056471
lm: (-0.0078024647942417169, 0.0032175709681556697) n-1: (-3.5616244158709343e-
05)

Positions: Kühr et al 1981. No VLBI positions known...

2



src ra := ([4.356645791155902,4.3396003966265599]); src dec := ([1.092208429052697,1.0953677174056471]);
src sti := [1,1];

The computed visibilities of MeqStatPointSourceDFT vary WAY too rapidly...
It’s the “Wwwwwww” term !?!?!... Figure this out over the weekend...
W term issue solved. Correct visibility for a point source is

Vxx =
1

2n
Ie2πi(ul+vm+w(n−1))ν/c (1)

The “-1” in (n − 1) is due to the fringe stopping in the array.
The divisioon by n comes from the integral over a solid angle.
The source fluxes found after 10 iterations on a dataset that is not yet phase-

calibrated are are:
3C343.1: 5.38604422187 Jy 3C343 : 1.63316710711 Jy
These are found on a dataset that DID NOT HAVE Tsys corrections ap-

plied...
The solution converged to 7 significant numbers in 2 iterations. After 1

iteration, the solution was:
3C343.1: 5.38166154461 Jy 3C343: 1.63252761647 Jy
3C 343 flux corresponds to a true flux of 6 Jy after primary beam correction

11 Needs:

WSRTPrimaryBeam Node.

P = cos6(k(ν)νr), (2)

where k(ν) ≈ 0.0651934 + 2.68503 × 10−6ν − 6.25456 × 10−10ν2, where ν is in
MHz and r is the angular distance between the pointingcentre and the source.

The inputs of the node should be: ra pointing, dec pointing, ra, dec in
radians.

The output is P computed for every value in the domain.
The angular distance between (ra pointing, dec pointing) and (ra,dec) may

be computed via (pseudocode):

a = abs(ra - ra_pointing)

B = abs(0.5*pi - dec_pointing)

C = abs(0.5*pi - dec)

arg = cos(B)*cos(C) +sin(B)*sin(C)*cos(a)

if arg >= 1.0 then arg = 1.0

if arg <= -1.0 the arg = -1.0

angular_distance = arccos(arg)

Spectral dependence of source flux
Saving parameters.

12 A scale factor

Tue Apr 5 17:25:51 CEST 2005

3



There appears to be a scale factor of 40 between the Newstar phases for
telescope B.:

Gnuplot: plot ’RTB.txt’ using :((2+0.021)∗39)withlines,′ 343newstarxphases′using((1+90)*((23+56/60.0)/6.0)):(2−13)
with lines 3

The scale factor appears to arise from an optimization that is spread over
PointSourceDFT and StatPointSourceDFT.

Fri Apr 8 17:06:14 CEST 2005: implemented new ”VisPhaseShift” class that
computes

e−2πiu·lν/c (3)

updated the solve343.g script to reflect the changes necessary to incorporate
the VisPhaseShift node. For example: the VisPhaseShift node is fed (u,v,w)
and (l,m,(n-1)).

13 Matrix measurement Equation

Tue Apr 19 15:35:13 CEST 2005

Vij =

N
∑

k=1

GiJikKikSkK∗
jkJ†

jkG†
j (4)

When solving for stokes I, meqserver runs out of memory.
Wed May 18 09:07:41 CEST 2005
Memory leak solved by Oleg. There still remains a small memory leak in

ParmtTable. Memory consumption is about 150 MB after 370 timeslots, 16
channels, and slowly increasing. I’ve switched off writing to an MS and now it
takes 4.4 seconds per timeslot. Oleg says that converting the MS to BOIO in
advance, could speed up meqserver to do about one timeslot per second. I have
not yet verified that, bu will do this in the course of the day.

Wed May 18 13:32:34 CEST 2005
Memory usage for source flux fit: 2 / 4 parameters, 16 channels, 1437 times-

lots: 560 MB at start of iteration, 1430 at end. Every time, memory is destroyed
at end of iteration and re-allocated during the iteration. This may be a large
fraction of the overhead.

458 MB stable after computations are completed.
Thu May 26 09:51:55 CEST 2005
created maps. Channels 25,26,27,28 and 37,38,39,40 have increased noise.

ALSO IN PREPROCESSED DATA COLUMN!

14 Processing in MeqTree

• preprocess data (crosscal, preliminary flagging

• source flux fit (I+Q)

• common phase solution (30s)

• source flux fit (I+Q)

• common phase solution (30s)

4



• independent gain solution (15 min)

make cleaned images of central 8 channels (29,30,31,32,33,34,35,36) counting
from 1. Make MFS image of those 8 channels.

Clark CLEAN downto 1 mJy in max 5000 iterations (padding 1.5)
2048 squared pixels of 4 arcsec diameter. Only inner quarter is cleaned and

most of the disturbing sources reside outside inner 512 pixels.

15 full automation

find footer:
mqs.relay gives access to agent wait on data set footer event.
After phase selfcal: flag column abs(’3C343.MS’, ’CORRECTED DATA’,

0.57)

16 Moving to TDL

16.1 Source model

A pointsource is a python class with the following fields:

Field Contents
name Name of source
ra Right ascension in J2000.0 radians
dec Declination in J2000 radians
I, Q, U, V Stokes fluxes in Jy. If value is None the default value should be

read from the source MEP table
table string: MEP table name for the source
Iorder etc. Order of I polc. Similar for Q, U, and V

16.2 Solver settings/tiling/solvables

16.3 Node naming conventions

If a node is specific to an antenna, it ends with the (0-based) antenna num-
ber. If a node is specific for a baseline ANT1-ANT2, it ends with <ANT1-
number>.<ANT2-number>.

16.4 The tree

The main branch is the predict branch, which contains the measurement equa-
tion:

Vij =

N
∑

k=1

GiJikKikSkK∗
jkJ†

jkG†
j (5)

Sk =

(

xx xy
yx yy

)

/n (6)

xx = fracI + Q2 (7)

5



xy = fracU − iV 2 (8)

yx = fracU + iV 2 (9)

yy = fracI − Q2 (10)

(11)

16.5 Global Nodes

Name Function
ra0 RA of field centre in J2000 radians
dec0 DEC of field centre in J2000 radians
one 1.0: MeqConstant
half 0.5: MeqConstant

16.6 Source Nodes

• RA.<sourcename>

• DEC.<sourcename>

• LMN.<sourcename>

• L.<sourcename>

• M.<sourcename>

• N.<sourcename>

• I.<sourcename>

• Q.<sourcename>

• U.<sourcename>

• V.<sourcename>

• IQUV.<sourcename>

• Coherency.<sourcename>

• Coherency.<sourcename>

6


