
Operation count of a Measurement Equation

M.A. Brentjens

November 11, 2005

1

Contents

1 Introduction 3

2 Notation 3

3 Measurement Equation 4

4 Solving a timeslot 4
4.1 Model patch visibilities . 4
4.2 At the start of a solver iteration 5
4.3 Derivative evaluation . 5

5 Computational costs 5
5.1 Elementary operations . 5
5.2 Partial Fourier kernel kipsrt . 6
5.3 UVW coordinates . 6
5.4 Computing a patch visibility . 6
5.5 Corrupting a patch . 7
5.6 Adding all patches . 7

6 High level cost equation 7

7 Software 8
7.1 Coding convention . 8
7.2 Hardware class . 8
7.3 InstructionStats class . 8
7.4 Helper functions . 8

8 Examples 9
8.1 WSRT observation 3C 343 . 10
8.2 Full LOFAR, 10 kHz channels . 11
8.3 Full LOFAR, 200 channels . 12
8.4 Full LOFAR, 10 patches . 13
8.5 LOFAR core, 32 stations, 10 seconds, 200 subbands 14
8.6 LOFAR core, 32 stations, 100 patches 15

9 Comparison with MeqTree system 16

10 A bit more realistic 18

11 How to reduce cost 19

12 Conclusions 19

2

Table 1: List of symbols
Symbol Explanation
x Scalar
z∗ Complex conjugate of z
x Vector
X 2× 2 matrix
a · b Vector inner product between a and b
Vijprt Uncorrupted patch visibility
Jipt Station / sky patch Jones matrix
lps ”lmn” coordinate vector of source s of patch p
uit ”uvw” coordinate of station i at timeslot t
c Speed of light in vacuum
Epsr Normalized coherency matrix of source s of patch p at fre-

quency channel r

Ṽijtr Fully corrupted model visibility on baseline between sta-
tions i and j

t timeslot index (0-based)
r frequency channel index (0-based)
R number of frequency channels
N number of stations
B number of baselines
P number of patches
F number of beams with R channels each
Sp number of sources in patch p
S total number of sources
νr central frequency of channel r
δν channel frequency increment

1 Introduction

This memo is very much work in progress and has not yet been veri-
fied by anyone besides the author.

ASTRON has been working on implementing a self calibration system for
LOFAR since 2001/2002. To my knowledge, no one has ever estimated the
minimum amount of operations needed to evaluate a Measurement Equation in a
more-or-less realistic scenario. In this memo I analyze the number of operations
needed for the evaluation of a particular ME (predict) for the purpose of solving
for instrumental or ionospheric corrections.

2 Notation

The notation adhered to in this memo is summarized in Tab. 1.

3

3 Measurement Equation

At a given timeslot t and frequency channel r, the visibility on a baseline between
station i and station j of a collection of patches p and point sources ps is given
by

Ṽijrt =
P∑

p=1

JiptVijprtJ
†
jpt. (1)

Equation (1) is a very minimal direction dependent measurement equation.
The frequency independent Jones matrix J defaults to the unit matrix. The
model patch visibility matrix

Vijprt =
Sp∑

s=1

kipsrtEpsrk
∗
jpsrt, (2)

where the normalized source coherency matrix

Epsr =
1

nps

(
< xx >psr < xy >psr

< yx >psr < yy >psr

)
. (3)

The partial Fourier kernel kipsrt is a complex scalar given by

kipsrt = e−2πi(uitlps+vitmps+wit(nps−1))νr/c. (4)

4 Solving a timeslot

In this memo we assume that only two coefficients per Jipt are solvable. For
example the diagonal phases, diagonal amplitudes, off-diagonal amplitudes, or
off-diagonal phases.

When solving for instrumental calibration coefficients, there are three ways
of evaluating the measurement equation. First, one needs to compute the model
patch visibilities. Then, at the start of each iteration, one should multiply all
patch visibilities with the updated sets of Jones matrices. The last phase in
every iteration is the computation of the derivatives of all visibilities to the
solvable coefficients of the Jones matrices. The costs of adding equations to the
solver and computing the matrix solution are not modelled in this memo.

The following sub sections treat these ”modes” in more detail.

4.1 Model patch visibilities

If one attempts to solve for phases or amplitudes of J, the model patch visibility,
is invariant. It must therefore be computed only once at the beginning of the
solution of a timeslot.

If the channels r are equidistant, the partial Fourier kernels kipsrt can be
computed very efficiently:

kipsrt = e−2πi(uitlps+vitmps+wit(nps−1))(ν0+rδν)/c (5)

kipsrt = kν0
ipst ×

(
kδν

ipst

)r
, (6)

where
kν0

ipst = e−2πi(uitlps+vitmps+wit(nps−1))ν0/c (7)

4

and
kδν

ipst = e−2πi(uitlps+vitmps+wit(nps−1))δν/c. (8)

After this, one needs one complex scalar-scalar multiplication and one com-
plex scalar-matrix multiplication in order to compute the model visibiity of one
source. Then one requires P (Sp−1) matrix additions in order to compute Vijprt

for all patches. This must be repeated for all B baselines and R channels. It is
assumed that all baselines are used, so

B =
N(N − 1)

2
. (9)

That is nevertheless seldom the case in reality. Usually, the shorter baselines are
not used in the calibration because of difficulties in modelling extended sources.

4.2 At the start of a solver iteration

The first step of a solver iteration is a full prediction, given the current set of
Jones matrices. Given the invariant Vijprt, one needs to multiply all patches
with their current Jones matrices and add them to form a visibility point. This
involves two complex matrix-matrix multiplications per patch, and P − 1 com-
plex matrix additions. This must be repeated for all B baselines and R channels.

4.3 Derivative evaluation

For all visibility points, one needs to evaluate the derivative of the measurement
equation with respect to all solvable parameters. We approximate derivatives by
forward differencing. That means that for each derivative, one needs a partial
evaluation of the measurement equation. Because each coefficient is specific to
one patch only, one must multiply this particular patch with the affected Jones
matrices and add all patches to obtain the perturbed visibility. The matrix
multiplication must be done for all channels and all N − 1 baselines involving
the perturbed Jones matrix.

5 Computational costs

5.1 Elementary operations

All basic math involves complex numbers. The operations needed for basic
algebra are listed in the following table:

Operation multiply add
compl. scalar-scalar mul 4 2
compl. scalar-matrix mul 16 8
compl. matrix-matrix mul 32 24
compl. matrix-matrix add 0 8
real matrix-3-vector mul 9 6

5

5.2 Partial Fourier kernel kipsrt

Computing l, m, and n− 1 is done per source and is done once per calibration.
Those costs are therefore negligible compared to all other operations. I consider
them non existent.

The cost of evaluating kipsrt for all R channels is:

mul: 7 + 4(R− 1) + 1

add: 3 + 2(R− 1)

sin: 2

cos: 2

The ”+1” in the mul is the multiplication by 1/c.
The partial Fourier kernel must be computed for all station-source combi-

nations. That is, that is, NPSp times for each timeslot.

5.3 UVW coordinates

A very rough estimate, assuming 6 3 × 3 rotation matrices (three ”nominal”
rotations, three correction rotations). One needs to compute, for each matrix,
a sine and cosine. Some time calculations (Taylor series?) are also required.
Let’s estimate that one needs 20 terms, yielding 20 more multiplications and 20
more additions for the date/time computations.

The total cost for one UVW coordinate computation would then be esti-
mated as

mul: 74

add: 56

sin: 6

cos: 6

Because the uvw coordinates are computed only once for all stations (N
times per timeslot, independent of baseline and frequency) their computing
cost is almost irrelevant.

5.4 Computing a patch visibility

Given that Epsr, kipsrt, and kjpsrt, are already available, one needs Sp complex
scalar-scalar multiplications and Sp complex scalar-matrix multiplications to
predict all source visibilities. Combining these source visibilities into a patch
visibility costs an additional Sp − 1 complex matrix additions. The cost for one
patch visibility is then

mul: 20Sp

add: 18Sp − 8

This needs to be done PRB times per timeslot. It is not necessary to repeat
this step for each iteration as the sky model is held constant.

6

5.5 Corrupting a patch

Corrupting a patch visibility for one baseline, one channel costs two complex
matrix-matrix multiplications.

mul: 64

add: 48

This needs to be done PRB times at the start of each solver iteration.
For each Jipt parameter derivative one has to re-corrupt all patch visibilities

that involve this parameter. That means at most (N−1)R times per parameter
per timeslot.

If there are two solvable parameters per patch per station in one solution:
2(N−1)P×BR times per timeslot per solver iteration for phases and 2NP×BR
for amplitudes.

5.6 Adding all patches

Adding all patches costs P − 1 complex matrix-matrix additions.

mul: 0

add: 8P − 8

This must be repeated for all baselines and channels at the start of every
iteration. That is, BR times. In the derivative calculations, the patches must be
added once for each derivative. That means (2(N−1)P+1)BR times in total per
timeslot for phase solutions and (2NP + 1)BR for amplitudes. Therefore, this
component to the total computation time scales with the square of the number
of patches! Fortunately, it is a relatively cheap operation. It nevertheless is the
limiting factor when the number of patches is larger than approximately 20.

6 High level cost equation

The total cost for computing the patch visibilities is equal to the cost of the uvw,
kipsrt, source visibilities Vijpsrt, and the combination of all source visibilities into
patch visibilities Vijprt.

At the start of each iteration, one must corrupt P patches and combine them
all into the unperturbed visibility Vijrt. Then one must corrupt N − 1 patches
and combine them for all ≈ 2NP solvables.

A few relevant lines from the Python script are

insSkyModel = insUVW + insStatSourceDFT + insSourcePatchVis +\

insAddSources

insFullEveryIteration = insCorruptPatch*cPatches + insAddPatches

insDerivatives = insCorruptPatch*((cStations-1.0)/cBaselines)\

+ insAddPatches

ins = (insSkyModel + (insFullEveryIteration +\

(insDerivatives*cSolvablesPerTimeslot)\

)*cIterations)*cBeams

7

Currently, the MeqTree solver typically converges in 4 iterations. Because
only 2 out of 8 coefficients are solved for in one iteration, one needs to do this 4
times. That is, in the end one needs of order 16 iterations. If there are multiple
beams with R channels, but in independent directions, then the entire cost must
be multiplied by the number of beams.

7 Software

I have written a small utility in Python that does the actual operations counting.
I first introduce the coding convention. Then I proceed to explain which classes
exist and how they interact.

7.1 Coding convention

I use apps Hungarian (Charles Simonyi, Microsoft). Prefixes used in the script:

c Count of something

s String

ins InstructionStats instance

hw Hardware instance

cst Cost of an operation in CPU clock cycles

rf Frequency in Hz

7.2 Hardware class

The Hardware class holds a description of a CPU. It is used to help converting
instruction counts to clock cycles and execution times in seconds. The actual
conversion is done in InstructionStats.SFromHw()

7.3 InstructionStats class

The InstructionStats class helps with instruction arithmetic. It holds counts
for the multiply, add, sine and cosine instructions. One can add two InstructionStats
instances, or multiply an InstructionStat instance with a real number.

The InstructionStats.SFromHw(hw) method converts instruction counts
to clock cycles, given a Hardware instance hw.

7.4 Helper functions

There are several ”constructor” functions that construct InstructionStats in-
stances for useful cases, such as a scalar-scalar product, a matrix-matrix prod-
uct, a smart, and a stupid implementation of kipsrt.

8

8 Examples

This section contains a number of example outputs of the predict runtime.py
script. The first table always gives the configuration that was used in the com-
putations. The second table gives the operation in the first column, the number
of times the operation is called in the second column, and the number of clock
cycles in the third column. For the clock cycle computation, the following CPU
model was used.:

name: AMD 1900+

clock: 1.6 GHz

mul: 1 cycle

add: 1 cycle

sin: 20 cycles

cos: 20 cycles

The results that are quoted are the following:

SkyModel: the model patch visibilities Vijprt

CorruptPatches: JiptVijprtJ
†
jpt

AddPatches: adding all patches to form Vijrt

The amount of CPU seconds needed to compute all predict costs for one
timeslot is given below the count table. Finallyi, the minimum amount of TFlops
needed to do all ME evaluations and derivative computations in real time is
quoted. This number assumes 100% CPU efficiency adn does not include adding
equations to the solver and performing the solver step itself.

9

8.1 WSRT observation 3C 343

Settings:
Parameter Value
Stations 14.0
Channels per beam 16.0
Patches 2.0
Sources per patch 1.0
Sources in total 2.0
Solvables per timeslot 52.0
Solver Iterations 4
Beams 1
Integration time 30.0

Results:
Component Instructions Cycles
SkyModel
Multiply 61180 61180
Add 30828 30828
Cosine 140 2800
Sine 140 2800
CorruptPatch
Multiply 3514367 3514367
Add 2635775 2635775
Cosine 0 0
Sine 0 0
AddPatches
Multiply 0 0
Add 2469376 2469376
Cosine 0 0
Sine 0 0 +
Multiply 3575548 3575548
Add 5135980 5135980
Cosine 140 2800
Sine 140 2800

Time@AMD 1900+: 0.00545 seconds

10

8.2 Full LOFAR, 10 kHz channels

Settings:
Parameter Value
Stations 77.0
Channels per beam 3200.0
Patches 20.0
Sources per patch 500.0
Sources in total 10000.0
Solvables per timeslot 3040.0
Solver Iterations 16
Beams 1
Integration time 1.0

Results:
Component Instructions Cycles
SkyModel
Multiply 1882499085698 1882499085698
Add 1688806662312 1688806662312
Cosine 1540462 30809240
Sine 1540462 30809240
CorruptPatch
Multiply 948830208000 948830208000
Add 711622656000 711622656000
Cosine 0 0
Sine 0 0
AddPatches
Multiply 0 0
Add 69247530598400 69247530598400
Cosine 0 0
Sine 0 0

+
Multiply 2831329293698 2831329293698
Add 71647959916712 71647959916712
Cosine 1540462 30809240
Sine 1540462 30809240

Time@AMD 1900+: 46549.5942681 seconds
Real-time calibration requires at least 74.5 TFlops.

11

8.3 Full LOFAR, 200 channels

Settings:
Parameter Value
Stations 77.0
Channels per beam 200.0
Patches 20.0
Sources per patch 500.0
Sources in total 10000.0
Solvables per timeslot 3040.0
Solver Iterations 16
Beams 1
Integration time 1.0

Results:
Component Instructions Cycles
SkyModel
Multiply 117659085698 117659085698
Add 105551142312 105551142312
Cosine 1540462 30809240
Sine 1540462 30809240
CorruptPatch
Multiply 59301888000 59301888000
Add 44476416000 44476416000
Cosine 0 0
Sine 0 0
AddPatches
Multiply 0 0
Add 4327970662400 4327970662400
Cosine 0 0
Sine 0 0

+
Multiply 176960973698 176960973698
Add 4477998220712 4477998220712
Cosine 1540462 30809240
Sine 1540462 30809240

Time@AMD 1900+: 2909 seconds
Real-time calibration requires at least 4.7 TFlops.

12

8.4 Full LOFAR, 10 patches

Settings:
Parameter Value
Stations 77.0
Channels per beam 200.0
Patches 10.0
Sources per patch 1000.0
Sources in total 10000.0
Solvables per timeslot 1520.0
Solver Iterations 16
Beams 1
Integration time 1.0

Results:
Component Instructions Cycles
SkyModel
Multiply 117659085698 117659085698
Add 105597958312 105597958312
Cosine 1540462 30809240
Sine 1540462 30809240
CorruptPatch
Multiply 29650944000 29650944000
Add 22238208000 22238208000
Cosine 0 0
Sine 0 0
AddPatches
Multiply 0 0
Add 1025382758400 1025382758400
Cosine 0 0
Sine 0 0

+
Multiply 147310029698 147310029698
Add 1153218924712 1153218924712
Cosine 1540462 30809240
Sine 1540462 30809240

Time@AMD 1900+: 813 seconds
Real-time calibration requires at least 1.3 TFlops.

13

8.5 LOFAR core, 32 stations, 10 seconds, 200 subbands

Settings:
Parameter Value
Stations 32.0
Channels per beam 200.0
Patches 20.0
Sources per patch 500.0
Sources in total 10000.0
Solvables per timeslot 1240.0
Solver Iterations 16
Beams 24
Integration time 10.0

Results:
Component Instructions Cycles
SkyModel
Multiply 482334776832 482334776832
Add 431242795008 431242795008
Cosine 15364608 307292160
Sine 15364608 307292160
CorruptPatch
Multiply 237699072000 237699072000
Add 178274304000 178274304000
Cosine 0 0
Sine 0 0
AddPatches
Multiply 0 0
Add 7185521049600 7185521049600
Cosine 0 0
Sine 0 0

+
Multiply 720033848832 720033848832
Add 7795038148608 7795038148608
Cosine 15364608 307292160
Sine 15364608 307292160

Time@AMD 1900+: 5322 seconds
Real-time calibration requires at least 0.9 TFlops.

14

8.6 LOFAR core, 32 stations, 100 patches

Settings:
Parameter Value
Stations 32.0
Channels per beam 200.0
Patches 100.0
Sources per patch 100.0
Sources in total 10000.0
Solvables per timeslot 6200.0
Solver Iterations 16
Beams 24
Integration time 10.0

Results:
Component Instructions Cycles
SkyModel
Multiply 482334776832 482334776832
Add 429719083008 429719083008
Cosine 15364608 307292160
Sine 15364608 307292160
CorruptPatch
Multiply 1188495360000 1188495360000
Add 891371520000 891371520000
Cosine 0 0
Sine 0 0
AddPatches
Multiply 0 0
Add 187081054617600 187081054617600
Cosine 0 0
Sine 0 0

+
Multiply 1670830136832 1670830136832
Add 188402145220608 188402145220608
Cosine 15364608 307292160
Sine 15364608 307292160

Time@AMD 1900+: 118796 seconds
Real-time calibration requires at least 19.0 TFlops.

15

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

Se
co

nd
s

pe
r t

im
es

lo
t (

4
ite

ra
tio

ns
)

Timeslots per tile

data
best fit

Figure 1: Measured execution time per timeslot of MeqTree system.

9 Comparison with MeqTree system

In order to compare the runtime prediction to the actual execution time of the
MeqTree system, I did a timing experiment. The execution time per timeslot
solution was measured as a function of the number of timeslots that were solved
simultaneously in the same solver instance.

This approach enabled a decomposition in several distinct execution time
contributions. First there is a fixed overhead involved with , e.g., function calls.
This overhead is constant per solve domain. Its contribution per timeslot is
proportional to 1/(number of timeslots). Then there is the inversion of the
covariance matrix in the solver. Its cost is proportional to the third power
of the number of solvable parameters. As the number of solvables is linearly
proportional to the number of timeslots in a solution domain, the contribution
of the matrix inverse is proportional to the number of timeslots cubed. Last
but not least there is the fixed amount of work that needs to be done for every
single timeslot. It consists of

• The actual predict, including any inefficiencies

• Adding normal equations to the solver

• I/O and data handling

• Something else?

In this experiment we can not discriminate between these contributions.

16

The measurements are plotted in Fig. 1. The dashed line is the best least
squares fit of Eqn. (10) to the data.

t = (
a

x
+ bx3 + c)niter (10)

The best fit coefficients are a = 0.60 ± 0.03, b = 2.13 ± 0.05 × 10−5, c =
0.059±0.004. For our comparison, coefficient c is the most interesting. Referring
back to Sec. 8.1, one sees that at least 0.00545 s are required for the predict
on an AMD1900+, which coincidentally is precisely the machine on which this
experiment was run.

For four iterations, we see that the constant amount of time spent per times-
lot is 0.059×4 = 0.24 s. This is 43 times slower than the minimum computed in
Sec. 8.1. At the moment we do not know what the contribution of adding the
equations is.

We are able to estimate the amount of time spent in disk I/O. The dataset
is 1.3 GB in size. If we assume that the effective disk I/O rate is of the order of
20 MB per second, and we consider that the data are also corrected and written
back to disk, then a grossly pessimistic estimate of the disk I/O contribution
is: 0.09 seconds per timeslot. (read AND write full 1.3 GB, 1440 timeslots in
total).

Subtracting this disk-I/O leaves 0.15 seconds for computing. If we further-
more assume that one can attain effectively 50% of the peak performance of the
CPU, then we are down to 0.07 seconds. Still almost a factor of 13 more than
the estimate in Sec. 8.1.

When analyzing the tree profiling data we consistently see that the solver
consumes most of the CPU cycles. We snevertheless still need to investigate
whether that is caused by adding the normal equations or by other, constant-
per-timeslot overhead in the solver.

Using coefficient b of Eqn. (10), we can estimate the actual cost of the matrix
inversion inside the Aips++ Levenberg-Marquardt solver. For n solvable pa-
rameters, the matrix inversion costs: 1.14×10−9n3 s on an AMD 1900+ CPU.
That corresponds to about 1.82×n3 CPU cycles.

If there are 77 stations and only 2 coefficients are solved for per matrix
inversion, then one matrix inversion would cost about 6.6 million CPU cycles.
On average, four iterations are needed to converge. Assuming 20 patches, and
considering that we need to to this four times per matrix in order to determine
the other coefficients, and multiplying the result by 200 channels/subbands, we
find that in this case 420 Gcycles are needed to do all the matrix inversions
for one timeslot. If one cycle corresponds to one Flop, 420 GFlops should be
reserved for matrix inversions in the solver. This does not include adding the
normal equations, which could possibly be far more expensive than the relatively
small matrix inversions.

The makeNorm equation we use:

template <class U, class V, class W>
void LSQFit::makeNorm(uInt nIndex, const W &cEqIndex,

const V &cEq, const U &weight,
const U &obs,
Bool doNorm, Bool doKnown) {

if (doNorm) {

17

for (uInt i=0; i<nIndex; ++i) {
if (cEq[i] != 0) {
Double *i2 = norm_p->row(cEqIndex[i]); //row pointer
Double eq(cEq[i]);
eq *= weight;
for (uInt i1=0; i1<nIndex; ++i1) {
if (cEqIndex[i]<=cEqIndex[i1] && cEq[i1] != 0) {
i2[cEqIndex[i1]] += eq*Double(cEq[i1]); //equations

};
};

};
};
state_p &= ~TRIANGLE;

};
if (doKnown) {
Double obswt = obs*weight;
for (uInt i1=0; i1<nIndex; ++i1) {
if (cEq[i1] != 0) {
known_p[cEqIndex[i1]] += Double(cEq[i1])*obswt; //data vector

};
};
error_p[NC] += 1; //cnt equations
error_p[SUMWEIGHT] += weight; //sum weight
error_p[SUMLL] += obs*obswt; //sum rms

};
}

10 A bit more realistic

Evidently, the amount of computing power needed for the self calibration is as-
tonishing. In order to obtain a more realistic number for the required amount of
TFlops, one should take into account the cost of the makeNorm() function call,
approximately 50% CPU efficiency, and the duty cycle for the given experiment.

An estimate for the cost of one makeNorm call is of the order of 50 cycles
for the call itself, and 7 times the number of derivatives for a given datapoint
squared. There are typically 4P derivatives per data point, so we would have a
cost of the order of 112P 2 cycles per data point. In total this needs to be done
BR times per iteration per beam. Therefore the contribution of makeNorm to
a full lofar with 20 patches and 200 channels that would amount to 420 GFlops
at 100% efficiency.

Therefore an estimate for the selfcal cost of LOFAR could be: (4.7 TFlops +
0.4 TFlops(makeNorm) + 0.4 TFlops(solver matrix invert))×2(efficiency)×2(anything
we forgot business) = 11 TFlops.

For the EOR a similar estimate would be: 19 +

18

11 How to reduce cost

Polynomials help in reducing the cost of evaluating the measurement equation.
In fact, they make matters worse. Instead of ”one” derivative per datapoint, one
must compute ”Ncoeff derivatives, effectively multiplying the required processing
power by the degree of the polynomial plus one.

A coarser data grid is the easiest structural thing that helps considerably. It
is already evident that it would be rediculous to calibrate on a 1 second, 10 kHz
grid. Instead I propose to calibrate per subband in 1 s time intervals for the full
LOFAR. PErhaps we even need to go to 10 s timeslots. In any case we must
properly account for time- and bandwidth smearing in the presence of missing
data points at a finer grid than the calibration grid.

Correction should nevertheless be performed on a finer grid. Here it might
help to use some form of polynomial interpolation for accuracy. The correction
step is probably much cheaper because it needs only be done once per beam per
timeslot and not for all derivatives and iterations.

One can also reduce the number of baselines in the solution:

• no short baselines: get rid of Milkyway / large scale, hard to model stuff

• no long baselines: Little signal anyway because sources are resolved.

12 Conclusions

In terms of sheer FLOPS, calibrating the full LOFAR in real time is going to be
extremely challenging. Chances are much better for the EOR experiment that
only uses 32 stations and 10 seconds integration time in combination with a low
dutycycle. All in all I think that ways can be found to do the calibration in
almost real time for reasonable processing cost. We may however need to make
the calibration cluster a bit more powerful than initially intended.

19

