

PyNode Visualisation

 A way of visualising sets of nodes, unlike the
result plotter which can only visualise single
nodes

 Possible by using:
 A new plotter plugin in the meqbrowser
 A base PyNode which attaches plotting information

to the result object to be used by the plotter

 You create new visualisations by creating new
PyNodes which define the data to plot, and how
to plot it

What can be Plotted? (for now)

 Set of nodes (with multiple vellsets) against the
node number

 Set of nodes (ideally one vellset) against each
other

 Set of nodes with multiple vellsets within an
argand plot (useful for cohaerency matrices for
example)

 Set of nodes against a set of user-defined
values

 A few nodes with vellsets within an history plot

Installing Things

 Make sure you have your Waterhole working
 Update Waterhole
 Open meqbrowser.py with a text editor so that

we can use the new plotter:
 ../Timba/install/symlinked-release/bin/meqbrowser.py

 Add the following import statement in import
plugin section of the script:

 import Timba.Contrib.AxM.pyvis.pynode_plotter

Plotting Examples

 Let's make sure that everything is working fine
 Start the meqbrowser and load the script:

 Waterhole/contrib/AxM/pyvis/PyPlottableExamples.py

 Choose the first plotter in the compile options
 Load the only bookmark for this script
 Execute the script
 You should be able to see a curve

Plotting Examples

 There are five plotters in total available in the
examples script

 These plotters (which can be cannabilised at
will) provide an excellent demonstration of how
to go about plotting whatever you require

 Some simple example trees are also provided
 After everyone is convinced that these things

do actually look pretty cool, we can start
creating our first PyPlotter

Creating Your First PyPlotter [1/5]

 A more detailed document can be found in
Waterhole/contrib/AxM/pyvis

 The first steps:
 Create a new class which inherits from

PyBasePlottable
 Constructor not required
 Override the get_result method

 When you override any method, the first
statement must be the parent classes' method
call

Creating You First PyPlotter [2/5]

from Timba.Contrib.AxM.pyvis.PyBasePlottable import *

class PyMyPlotter(PyPlottableBase):

 def get_result(self, request, *children):

 super(PyMyPlotter, self).get_result(request, children)

 Now we need to create a ResultVector object,
which is a helper class that encapsulates the
list of pynode child results.

 rv = ResultVector(children, labels = [str(i) for i in

 range(len(children))])

Creating Your First PyPlotter [3/5]

 Next we create the MeqResult object
 vells = meq.vells(meq.shape(request.cells))

 result = meq.result(meq.vellset(vells), request.cells)

 Now we define what to plot, on which axis
 In this plotter we will plot the children's vellset

means agains the child's index.
 We need to define axis dictionaries which

tells the plotter what results to use
 y_axis = define_axis(expr = ‘means’)

 x_axis = None

Creating Your First PyPlotter [4/5]

 Next up we can define the styles which will be
applied to the curve (lines style, symbols styles,
colours etc..). Here we will just to a scatter plot

 curve = CurveProperties(curve_style = CurveStyle['none'],

 symbol = create_symbol(symbol = Symbols['xCross']))

 The penultimate step involves defining plot
properties, such as plot/axis titles

 plot = PlotProperties(axis = [create_axis(

 axis_id = AxisId['xBottom'], title = 'Child number'),

 create_axis(axis_id = AxisId['yLeft'], title = 'Means')],

 title = ‘Scatter Means Plot')

Creating Your First PyPlotter [5/5]

 And finally, we call
the attach_result
method which will
append the
required
information to the
result object

return self.attach_pyresult(result, rv, y_axis, plot = plot, curve = curve)

Using the PyPlotter [1/2]

 Now that we can create infinitely complex
plotters, we need to actually use them

 All nodes that need to be plotted must be
attached to the plotter as its children.

 As a demonstration of how this can be done,
we will edit the example_sim.py script in
Siamese within the Cattery

 The plotter will take the form of an inspector,
which checks the status of its children for each
request

Using the PyPlotter [2/2]

 To attach the plotter to the script, we need to:
 Get hold of the nodes will become the plotter's

children. This can be done with the nodesearch
facility

 nodes = ns.Search(name='\(uvw.%d*\)', class_name='MeqSpigot')

 Add PyPlotter as a new root node, providing it with
the nodes and specifying which plotter class to use

 ns.pynode << Meq.PyNode(children = nodes,
class_name="Timba.Contrib.AxM.pyvis.PyPlottableExamples.PyScatter
Plotter")

 It is a good idea to add a bookmark for the plotter

You Are Now Plotting Experts

 You can now apply these new skills to plot
various combination of nodes which wasn't
possible before

 The best plots by the end of the day will be
generously awarded

 Ready, Steady...

 GO
(faster)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13

