

PyNode Visualisation

 A way of visualising sets of nodes, unlike the
result plotter which can only visualise single
nodes

 Possible by using:
 A new plotter plugin in the meqbrowser
 A base PyNode which attaches plotting information

to the result object to be used by the plotter

 You create new visualisations by creating new
PyNodes which define the data to plot, and how
to plot it

What can be Plotted? (for now)

 Set of nodes (with multiple vellsets) against the
node number

 Set of nodes (ideally one vellset) against each
other

 Set of nodes with multiple vellsets within an
argand plot (useful for cohaerency matrices for
example)

 Set of nodes against a set of user-defined
values

 A few nodes with vellsets within an history plot

Installing Things

 Make sure you have your Waterhole working
 Update Waterhole
 Open meqbrowser.py with a text editor so that

we can use the new plotter:
 ../Timba/install/symlinked-release/bin/meqbrowser.py

 Add the following import statement in import
plugin section of the script:

 import Timba.Contrib.AxM.pyvis.pynode_plotter

Plotting Examples

 Let's make sure that everything is working fine
 Start the meqbrowser and load the script:

 Waterhole/contrib/AxM/pyvis/PyPlottableExamples.py

 Choose the first plotter in the compile options
 Load the only bookmark for this script
 Execute the script
 You should be able to see a curve

Plotting Examples

 There are five plotters in total available in the
examples script

 These plotters (which can be cannabilised at
will) provide an excellent demonstration of how
to go about plotting whatever you require

 Some simple example trees are also provided
 After everyone is convinced that these things

do actually look pretty cool, we can start
creating our first PyPlotter

Creating Your First PyPlotter [1/5]

 A more detailed document can be found in
Waterhole/contrib/AxM/pyvis

 The first steps:
 Create a new class which inherits from

PyBasePlottable
 Constructor not required
 Override the get_result method

 When you override any method, the first
statement must be the parent classes' method
call

Creating You First PyPlotter [2/5]

from Timba.Contrib.AxM.pyvis.PyBasePlottable import *

class PyMyPlotter(PyPlottableBase):

 def get_result(self, request, *children):

 super(PyMyPlotter, self).get_result(request, children)

 Now we need to create a ResultVector object,
which is a helper class that encapsulates the
list of pynode child results.

 rv = ResultVector(children, labels = [str(i) for i in

 range(len(children))])

Creating Your First PyPlotter [3/5]

 Next we create the MeqResult object
 vells = meq.vells(meq.shape(request.cells))

 result = meq.result(meq.vellset(vells), request.cells)

 Now we define what to plot, on which axis
 In this plotter we will plot the children's vellset

means agains the child's index.
 We need to define axis dictionaries which

tells the plotter what results to use
 y_axis = define_axis(expr = ‘means’)

 x_axis = None

Creating Your First PyPlotter [4/5]

 Next up we can define the styles which will be
applied to the curve (lines style, symbols styles,
colours etc..). Here we will just to a scatter plot

 curve = CurveProperties(curve_style = CurveStyle['none'],

 symbol = create_symbol(symbol = Symbols['xCross']))

 The penultimate step involves defining plot
properties, such as plot/axis titles

 plot = PlotProperties(axis = [create_axis(

 axis_id = AxisId['xBottom'], title = 'Child number'),

 create_axis(axis_id = AxisId['yLeft'], title = 'Means')],

 title = ‘Scatter Means Plot')

Creating Your First PyPlotter [5/5]

 And finally, we call
the attach_result
method which will
append the
required
information to the
result object

return self.attach_pyresult(result, rv, y_axis, plot = plot, curve = curve)

Using the PyPlotter [1/2]

 Now that we can create infinitely complex
plotters, we need to actually use them

 All nodes that need to be plotted must be
attached to the plotter as its children.

 As a demonstration of how this can be done,
we will edit the example_sim.py script in
Siamese within the Cattery

 The plotter will take the form of an inspector,
which checks the status of its children for each
request

Using the PyPlotter [2/2]

 To attach the plotter to the script, we need to:
 Get hold of the nodes will become the plotter's

children. This can be done with the nodesearch
facility

 nodes = ns.Search(name='\(uvw.%d*\)', class_name='MeqSpigot')

 Add PyPlotter as a new root node, providing it with
the nodes and specifying which plotter class to use

 ns.pynode << Meq.PyNode(children = nodes,
class_name="Timba.Contrib.AxM.pyvis.PyPlottableExamples.PyScatter
Plotter")

 It is a good idea to add a bookmark for the plotter

You Are Now Plotting Experts

 You can now apply these new skills to plot
various combination of nodes which wasn't
possible before

 The best plots by the end of the day will be
generously awarded

 Ready, Steady...

 GO
(faster)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13

