PyNode Visualisation

A way of visualising sets of nodes, unlike the

result plotter which can only visualise single
nodes

Possible by using:

A new plotter plugin in the meqgbrowser

A base PyNode which attaches plotting information
to the result object to be used by the plotter

You create new visualisations by creating new

PyNodes which define the data to plot, and how
to plot it

What can be Plotted? (for now)

Set of nodes (with multiple vellsets) against the
node number

Set of nodes (ideally one vellset) against each
other

Set of nodes with multiple vellsets within an
argand plot (useful for cohaerency matrices for
example)

Set of nodes against a set of user-defined
values

A few nodes with vellsets within an history plot

Installing Things

Make sure you have your Waterhole working

Update Waterhole

Open megbrowser.py with a text editor so that
we can use the new plotter:

../Timba/install/symlinked-release/bin/megbrowser.py

Add the following import statement in import
plugin section of the script:

import Timba.Contrib.AxM.pyvis.pynode_plotter

Plotting Examples

Let's make sure that everything is working fine

Start the meqgbrowser and load the script:
Waterhole/contrib/AxM/pyvis/PyPlottableExamples.py

Choose the first plotter in the compile options
Load the only bookmark for this script
Execute the script

You should be able to see a curve

Plotting Examples

There are five plotters in total available in the
examples script

These plotters (which can be cannabilised at
will) provide an excellent demonstration of how
to go about plotting whatever you require

Some simple example trees are also provided

After everyone is convinced that these things
do actually look pretty cool, we can start
creating our first PyPlotter

Creating Your First PyPlotter [1/5]

A more detailed document can be found In
Waterhole/contrib/AxM/pyvis

The first steps:

Create a new class which inherits from
PyBasePlottable

Constructor not required
Override the get result method

When you override any method, the first
statement must be the parent classes' method
call

Creating You First PyPlotter [2/5]

from Timba.Contrib.AxM.pyvis.PyBasePlottable import *
class PyMyPlotter(PyPlottableBase):
def get_result(self, request, *children):

super(PyMyPlotter, self).get_result(request, children)

Now we need to create a ResultVector object,
which is a helper class that encapsulates the
list of pynode child results.

rv = ResultVector(children, labels = [str(i) for i in

range(len(children))])

Creating Your First PyPlotter [3/5]

Next we create the MegResult object

vells = meq.vells(meqg.shape(request.cells))

result = meq.result(meq.vellset(vells), request.cells)

Now we define what to plot, on which axis

In this plotter we will plot the children's vellset
means agains the child's index.

We need to define axis dictionaries which
tells the plotter what results to use
y_axis = define_axis(expr = ‘means’)

X_axis = None

Creating Your First PyPlotter [4/5]

Next up we can define the styles which will be
applied to the curve (lines style, symbols styles,
colours eftc..). Here we will just to a scatter plot

curve = CurveProperties(curve_style = CurveStyle['none'],

symbol = create_symbol(symbol = Symbols['’xCross']))

The penultimate step involves defining plot
properties, such as plot/axis titles

plot = PlotProperties(axis = [create_axis(
axis_id = Axisld['xBottom'], title = 'Child number'),
create_axis(axis_id = Axisld['yLeft'], title = 'Means') |,

title = ‘Scatter Means Plot')

Creating Your First PyPlotter [5/5]

Means Plot

= x X X % x

|) N “ | And finally, we call
L . * the attach_result
SV L B " method which will
: « L oxX " append the
Sl X X required

] x 7 " information to the
o] " « ** x| result object

| X

b4 >

Child number

return self.attach_pyresult(result, rv, y_axis, plot = plot, curve = cur

Using the PyPlotter [1/2]

Now that we can create infinitely complex
plotters, we need to actually use them

All nodes that need to be plotted must be
attached to the plotter as its children.

As a demonstration of how this can be done,
we will edit the example sim.py script in
Siamese within the Cattery

The plotter will take the form of an inspector,
which checks the status of its children for each
request

Using the PyPlotter [2/2]

To attach the plotter to the script, we need to:

Get hold of the nodes will become the plotter's
children. This can be done with the nodesearch
facility

nodes = ns.Search(name="\(uvw.%d*\)', class_name='"MeqSpigot')

Add PyPlotter as a new root node, providing it with
the nodes and specifying which plotter class to use

ns.pynode << Meq.PyNode(children = nodes,
class_name="Timba.Contrib.AxM.pyvis.PyPlottableExamples.PyScatter
Plotter")

It is a good idea to add a bookmark for the plotter

You Are Now Plotting Experts

You can now apply these new skills to plot
various combination of nodes which wasn't
possible before

The best plots by the end of the day will be
generously awarded

GO

(faster)

Ready, Steadly...

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13

