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Let’s start with the Z–Jones...

Z–Jones

Z =

[
eiφiono 0

0 eiφiono

]

φiono = −25λTEC

TEC = ....
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TEC

1 TECU = 1016 m−2

TEC =

∫ ∞

0
ned` + const
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It seems that we should be able to predict the behaviour of
the ionosphere...
...but, in fact we are limited to interpolation of scattered
measurements.
Counter-intuitively, simulating the ionosphere is in fact an
inverse problem.
Fortunately there are lots of ways of approaching inverse
problems.
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Interpolation

Let’s look at interpolating between measurements...

DEFINITION: Approximating measurements at intermediate
scales/positions from scattered measurements.

We have sparse measurements
i.e. We have under-sampled data
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Interpolation schemes

1 Kriging
2 Triangulation based
3 Natural neighbour
4 Splining
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Kriging

Semivariance

γ(h) =
1
2

(f (x)− f (x + h))2

A typical model:

γ =

[
s(3

2(h
a )− 1

2(h
a )3), 0 ≤ h ≤ a

s, h > a
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Triangulation

Given three measured points we can interpolate to any point
within the triangle using:

Delaunay triangulation

f (x , y) =
3∑

i=1

φi(x , y)fi

φi(x) is our basis function
In a simple case we can use linear equations:

f (x , y) = c1x + c2y + c3

We can just solve Ac = f, where f = (f1, f2, f3)T and
A = {(xi , yi , 1)}1≤i≤3.
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Natural neighbour

Voronoi tesselation

Voronoi tesselation divides the data into cells defined by the positions of
the measurements.

We use the interpolation point to define a new Voronoi cell.

The value of this cell can be evaluated as the weighted sum of the
contributions from its overlapping cells.
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Splining
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Bayes Theorem

p(D|M,Θ) =
L(M,Θ|D)π(Θ)

E

posterior =
likelihood × prior

Evidence
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Maximum likelihood

We maximise the likelihood of the DATA w.r.t the MODEL.
When we perform a χ2 test we are in fact calculating a
Gaussian ML.

N(Di, σ) ∝ exp
−(Di −Mi)

2

2σ2
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Maximum A Posteriori

If we know something about our parameters then we can utilise
that prior information.

Example

Say we are fitting a spectral index... S = Aν−α

ln L = −0.5
(di −mi)

2

σ2
i

+ ln π
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Model comparison

What if we have more than one model...?
The Evidence:

E =

∫
L(Θ)π(Θ)dDΘ

The model selection ratio:

R =
Pr(H1|D)

Pr(H2|D)
=

Pr(D|H1)Pr(H1)

Pr(D|H1)Pr(H1)
=

Z1

Z2

Pr(H1)

Pr(H2)
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Worked Example

Let’s look at Kriging again...

Kriging variance

γ(h) =
1
2

(f (x)− f (x + h))2

TEC(x0) =
n∑

i=1

λiTEC(xi)

∆ = 2
n∑

i=1

λiγ(xi, x0)−
n∑

i=1

n∑
j=1

λiλjγ(xi, x0)

Γijλ = Γi0
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We need a model for γ

We can calculate γ directly from the data:

γ(xi − xj) =
1
2
(TEC(xi)− TEC(xj))

2

But we need an analytic form for γ

So we have to pick a model...
Typical models would be:

γ1 = a + b ∗ h
γ2 = a + b ∗ hα
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