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• Some background – who am I?

• What is this Creative Commons not about?

• What are (some of) the challenges facing SKA?What are (some of) the challenges facing SKA?

H ill hi k h h h ld?• How will this workshop change the world?



Multiple viewpoints:
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• What is this Creative Commons not about?

• What are (some of) the challenges facing SKA?What are (some of) the challenges facing SKA?

H ill hi k h h h ld?• How will this workshop change the world?



SKADS
Set of Standard

Challenges:g

Other challenges ...



CALIM08: Software Development Survey

• Was there a formal software process?
• Were architectural definition documents used?
• How did the change control board function?
• What was the review process?
• What were the team dynamics?
• How best to communicate across the team?
• Time and cost against estimated budget?
• What could have been done better?
• Suggestions for SKA software development?

Gerald Harp: “Software Development Survey” and “SurveyResponseData_NoNames.xls”: CALIM08, 2008 Apr 9



Sound familiar?

• Over-commitment
– Frequent difficulty in making commitments that staff can meet with an orderly 

engineering process

• Often resulting in a series of crisesOften resulting in a series of crises
– During crises projects typically abandon planned procedures and revert to 

coding and testing

I it f d h h ti d l d t• In spite of ad hoc or chaotic processes, can develop products 
that work
– However typically cost and time budgets are not met

• Success depends on individual competencies and/or “death 
march” heroics

C ’t b t d l th i di id l k th t j t– Can’t be repeated unless the same individuals work on the next project

• Capability is a characteristic of individuals, not the 
organisationg

Mark Paulk et alia: The Capability Maturity Model for Software; in “Software Engineering” M. Dorfman and R. H. Thayer, 1997



What are the SEI CMMI process “Maturity Levels”?

Level Process Characteristics
1 Process is informal and ad hoc

Project management and project oversight practices are2 Project management and project oversight practices are 
institutionalised

3
Organisational processes, including technical and 
project management, are clearly defined and 
repeatablerepeatable

4 Processes are stabilised and aligned to goals, and 4 product and process are quantitatively controlled

Process improvement is consistently and rigorously5 Process improvement is consistently and rigorously 
practised at organisation and project levels



A “Leap of Faith”: Reliable processes deliver reliable 
software: O ti i i (5)software:

    Process change management 
  Technology change management 
Defect prevention

Optimizing (5)

Managed (4)

    Software quality management 
Quantitative process management

CMMI levels of maturity:

Defined (3)

Quantitative process management 
 

            Peer reviews 
         Intergroup coordination 
        Software product engineering 
      Integrated software management 
    Training program 

Repeatable (2)

  Organization process definition 
Organization process focus

          Software configuration management 
        Software quality assurance 
      Software subcontract management 
    Software project tracking and oversight 
  Software project planning 
R i t t

Initial (1)

Requirements management



Why work to build process reliability?

• All those practising as software engineers should desire to evolve 
out of the chaotic activities and heroic efforts of a Level 1 
organisation

• Because no one likes a ‘painful’ work environment• Because no one likes a painful  work environment

• Good software can be developed by a Level 1 organisation, but 
often at the expense of the developers

• People get tired of being the hero

• At the repeatable level, Level 2, software engineering processes 
are under basic management control and there is a management 
discipline

• Even the most die-hard techie needs time away from work



“Straight forward” environmentArt
Craft
Individuals
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IKIWISI

O kill
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tacit explicittacit explicit

SWE
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“Death
h

Contracts
Documents
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Compliance

March”

“Complex” environment
Liabilities
Multiple vendors



Where are we (the SPDO) at?



Current development

– PrepSKA 2008-2011 p

– The Preparatory Phase for the SKA is being funded p y g
by the European Commission’s 7th Framework 
Program

– €5.5M EC funding for 3 years + €17M contributed 
funding from partners (still growing)funding from partners (still growing)

– €150M SKA-related R&D around the world

– Coordinated by the Science and Technology 
Facilities Council (UK)Facilities Council (UK)



WP2: Design + Cost

Coordinated by the SKA Program Development Office 
in Manchesterin Manchester

• System DefinitionSystem Definition
• Dishes, feeds, receivers
• Aperture arrays• Aperture arrays
• Signal transport 

Si l i• Signal processing
• Software
• High performance computers
• Data storage
• Power requirements



A structure for SKA software and computing:
RoW ResearchersSchedulingReal-Time M&CReal-Time PipelineResearcherData Archive

Create Proposal

1 234

Create Proposal
Stored Proposal

Schedule observation

Initiate observation

Meta Data
Receptors initialised4

Correlator initialised

Buffered Raw Data 5

Buffered Calibrated Data

Calibration

Imaging

Science Results 6: Non imagingScience Results

Terminate observation
Analyse & Visualise Results

Results released to RoW

Data & Results Available

Reset schedule

6:  Non-imaging

7

8:  HPC H/W



Estimating the sizess a g e s es
of the

computing challengescomputing challenges



Φ2 real-time data from dishes
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SKA Baseline system correlator output:

J. Cordes “The Square Kilometre Array – Astro2010 RFI #2 Ground Response” 27 July 2009; Table 1, pp 9 - 10



SKA Baseline system correlator output:
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Current algorithm performance:

T. Cornwell “EVLA Memo 24: Computing for EVLA Calibration and Imaging”, 2001 January12



Required computation performance:
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How much data will we need to store?



Assume disk buffer for 8 hours:

T. Cornwell “EVLA Memo 24: Computing for EVLA Calibration and Imaging”, 2001 January12



Disk buffer required:

44 x 1012 x 8 x 60 x 600 8 60 60

≈1 x 1018 ≈1 x 10

i 1 E B ti.e. 1 ExaByte



Disk storage: annual 50% cost reduction

1 EB = $1~$10 million

P. Kogge et alia “ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems”; TR-2008-13, DARPA  ExaScale Computing Study, 2008 Sep 28, page 125
Note: neither RAID, controllers, nor interconnect cables are included in these estimates



Computing and buffer requirements:
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Pushing the Flops envelope:

Performance [TFlops] = 0.055e0.622(year-1993)

SKAΦ2

~1 EFlop

SKAΦ1

~10 PFlop

~100 TFlop

SKAΦ2

20
22

ASKAP

100 TFlop

Cornwell and van Diepen “Scaling Mount Exaflop: from the pathfinders to the Square Kilometre Array” http://www.atnf.csiro.au/people/Tim.Cornwell/MountExaflop.pdf



Estimating the cost ofs a g e cos o
power consumed

in data centresin data centres



HP Labs cost model:

Costtotal = Costspace + CostIT hardware  power + Costcooling + Costoperation

“Cost Model for Planning, Development and Operation of a Data Center”; C. D. Patel, A. J. Shah; Hewlett Packard Laboratories
Technical Report HPL-2005-107(R.1); 9 June 2005



Direct costs of power consumed:

Costtotal = Costspace + CostIT hardware  power + Costcooling + Costoperation

CostIT hardware  power = U$,grid PIT hardware + K1U$,grid PIT hardware 

Where:
K1 = J1U$,A&M power / (U$,grid) [K1 ≡ Utility burdening factor, sometimes taken as ≈ 2]
J = Installed maximum capacity [Watts] / (Utilised capacity [Watts])J1 = Installed maximum capacity [Watts] / (Utilised capacity [Watts])

= Prated / PIT hardware [J1 ≡  Utilisation factor; typically ≈ 1.33  - 1.6 for growth]

CostIT hardware  power = U$,grid PIT hardware + U$,A&M power Prated

Typically:Typically:
U$,A&M power ≈ U$,grid

C U P (1 J )Costpower = U$,grid PIT hardware (1 + J1)

“Cost Model for Planning, Development and Operation of a Data Center”; C. D. Patel, A. J. Shah; Hewlett Packard Laboratories
Technical Report HPL-2005-107(R.1); 9 June 2005



Direct costs of power for cooling:

Costtotal = Costspace + CostIT hardware  power + Costcooling + Costoperation

Costcooling = U$,grid Pcooling + K2U$,grid Pcooling

Where:
K2 = J1U$,A&M cooling / (U$,grid) [K2 ≡ Cooling burdening factor]
L = P / (P ) [L L d f t 0 8 d t th d i ]L1 = Pcooling / (PIT hardware ) [L1 ≡ Load factor; ≈ 0.8 due to thermodynamics]

Costcooling = U$,grid L1 PIT hardware + U$,A&M cooling J1 L1 PIT hardware 

Typically:
U$ A&M li ≈ 0.5 (U $ A&M )U$,A&M cooling  0.5 (U $,A&M power)

Costcooling = U$,grid L1 PIT hardware (1 + 0.5 J1)

“Cost Model for Planning, Development and Operation of a Data Center”; C. D. Patel, A. J. Shah; Hewlett Packard Laboratories
Technical Report HPL-2005-107(R.1); 9 June 2005



“Not quite total” power cost model:

Cost“NQT” = Costspace + CostIT hardware  power + Costcooling + Costoperation

Cost“NQT” = 0 +

U$,grid PIT hardware (1 + J1) +

U L P (1 + 0 5 J )U$,grid L1 PIT hardware (1 + 0.5 J1)

+ 0

= U$,grid PIT hardware (1.8 + 1.4 J1 )

Cost“NQT” ≈ ( 3.7 to 4.0 multiplied by ) U$,grid PIT hardware



Model and reality of power costs:

Model: Using assumptions similar to prices typically encountered in New Zealand, the 
HP Labs model calculates that the monthly cost (including software licencesHP Labs model calculates that the monthly cost (including software, licences, 
operations personnel and hardware depreciation – but not including real estate 
costs) of the servers, power and air conditioning for a continuous server 
consumption of 10 kW is of the order of NZ$28 000; or about $340 000 [i econsumption of 10 kW is of the order of NZ$28,000; or about $340,000 [i.e. 
about €150,000] per year.

R li F N Z l d h l j d li d b ildiReality: For New Zealand, the annual cost just to deliver power to data centre buildings 
and building services infrastructure is estimated to be $150,000 per 10 kW 
consumed. [i.e. €70,000].  This New Zealand power infrastructure cost includes 

i it hb d U i t tibl P S li (UPS) i diti iengines, switchboards, Uninterruptible Power Supplies (UPS), air conditioning, 
seismic structures, lighting etc."

So annualised total cost of ownership for power consumed by data processing equipment in 
well designed data centres in central business district settings are of the order of 
€7 to €15 per Watt consumed



Power efficiency challenges:

1,000,000,000

Gigaflops

World's Most Powerful and Efficient Computers
(Exaflop)

100,000,000

Gigaflops

100,000 Mflops/Watt

100 ~ 1 000 times

200 ~ 2,000 times greater Gigaflops / kWatt required

10,000,000

100 ~ 1,000 times
more Gigaflops
required for SKA

500 Mflops/Watt

1,000,000
2008 & 2009 World's most powerful computer

(Petaflop)

100,000
2009Jun

2008Nov

2008Jun

2008Feb

10 Mflops/Watt

10,000
2007Nov

Source: http://www.green500.org/
accessed 2009Jul10

http://www.green500.org accessed July 2009

1,000
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Required: HPRC architectures – and software

Martin C. Herbordt, et alia, Computing in Science & Engineering, Nov-Dec 2008
Duncan Buell et alia, IEEE Computer, March 2007



Power for EB-size disk looks reasonable

P. Kogge et alia “ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems”; TR-2008-13, DARPA  ExaScale Computing Study, 2008 Sep 28, page 124
Note: power numbers here are for the drives only; any electronics associated with drive controllers [e.g. ECC, RAID] needs to be counted separately



Archive: 10 PetaByte tape robot at CERN

500-GB tapes switched to 1-TB 
models – an upgrade that took a 

ear of contin o syear of continuous 
load/read/load/write/discard 
operations, running in theoperations, running in the 

interstices between the data 
centre’s higher-priority tasks

http://www.flickr.com/photos/doctorow/2711081044/sizes/o/in/set-72157606675048531/
C. Doctorow “Welcome to the Petacentre”; Nature, Vol. 455, $ September 2008, pp. 17-21



Estimating the sizess a g e s es
of the

software challengessoftware challenges



An ill-conditioned non-linear problem:

€      

where

 
, 1

     –  

Change requests

–
–

Requirements

   
?

  –
  –

 

?



1,000+ research studies, experience reports and books ...



... demonstrate that we still really don’t know for sure
h l i f d l

• “ we still don’t know what we are doing unless

how to accurately estimate software development:

•  ... we still don t know what we are doing, unless 
it is very similar to something we have done before

• The challenge is to make software engineering as 
predictable a discipline as civil or electrical 
engineeringg g

• I still do not expect any radical breakthrough, any 
il b ll l hi blsilver bullet, to solve this problem

• But the accretion of many contributions hasBut the accretion of many contributions has 
already made much progress, and I believe 
continued careful research, ever validated by real 
practice will bring us to that goal”practice, will bring us to that goal

Magne Jørgensen and Barry Boehm “Software Development Effort Estimation” IEEE Software, March/April 2009
Fred Brooks Jnr.: “Three Great Challenges for Half-Century-Old Computer Science”; Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 25–26



Parametric model example:a a e c ode e a p e:
COnstructive COst MOdel

COCOMO IICOCOMO II



COCOMO II: Effort Equations



PM : Person Months of Effort

n

∏××= i
E EMSizeAPM ∏

=i
i

1



EMi : Effort Multipliers



E : the scaling exponent

n

∏××= i
E EMSizeAPM ∏

=i
i

1



E : the scaling exponent

5

∑×+= 01.0 jSFBE ∑
=1

0.0
j

jS
1j



SFj : the five Scale Factors



RESL: Architecture / Risk Resolution



Further COCOMO II formulations: Size



Further COCOMO II formulations: Schedule



Further COCOMO II parameters



Formal models – or Expert judgement?o a ode s o pe judge e ?



Formal models or Expert judgement? 1of3

In spite of massive effort and promotion, available empirical 
evidence shows that formal estimation models aren’t in muchevidence shows that formal estimation models aren’t in much 
use ...

projects officially applying a formal estimation model... projects officially applying a formal estimation model 
actually use the model as a disguise for expert estimation
All meaningful estimation models require judgment toAll meaningful estimation models require judgment to 
produce the input to the models
... the relation between effort and size in software  
development contexts isn’t stable
In situations involving high cost and schedule uncertainty, 
it’s a good idea to draw upon as many sources of insight as 
possible

Magne Jørgensen and Barry Boehm “Software Development Effort Estimation” IEEE Software, March/April 2009



Formal models or Expert judgement? 2of3

... software development situations frequently contain highly 
specific highly important informationspecific, highly important information ...
... expert judgment can have great advantages in situations 
with highly specific information that’s not mechanicallywith highly specific information that s not mechanically 
integrated, or integrated at all, in a model

[BB]: “I used to think that closed-loop feedback and 
recalibration would enable organizations and models to g
become  increasingly perfect estimators.
But I don’t any more
The software field continues to reinvent and re-baseline itself 
too rapidly to enable this to happen”

Magne Jørgensen and Barry Boehm “Software Development Effort Estimation” IEEE Software, March/April 2009



Formal models or Expert judgement? 3of3

A major advantage of a parametric model is that it doesn’t
modify its estimates when customers managers ormodify its estimates when customers, managers, or 
marketers apply pressure
Using a calibrated parametric model enables negotiationUsing a calibrated parametric model enables negotiation ... 
rather than a contest of wills between self-described experts
... the usual practice is to discard [cost models] as having... the usual practice is to discard [cost models] as having 
served their purpose and to avoid future embarrassment 
when the estimates are overrun
So, use incremental development and timeboxing – also 
known as cost and schedule as an independent variable
Simple models typically perform just as well as more 
advanced models ...

Magne Jørgensen and Barry Boehm “Software Development Effort Estimation” IEEE Software, March/April 2009



The importance of requirementse po a ce o equ e e s



“You cannot estimate jobs for which
you have not scoped the work”y p

Donald Reifer, “The Poor Person’s Guide to Estimating Software Development Costs”, IEEE



“You cannot estimate jobs for which
you have not scoped the work”y p

Donald Reifer, “The Poor Person’s Guide to Estimating Software Development Costs”, IEEE



From the Aug 2008 IEEE Software editorial:



Getting requirements sorted is important ...

Glass’s Law:
Requirements deficiencies are the prime source of 

j t f ilproject failures

B h ’ Fi LBoehm’s First Law:
Errors are most frequent during the requirements and 
design acti ities and are more e pensi e the later thedesign activities and are more expensive the later they 
are removed

Sources:
Glass, R. L. (1998) Software Runaways
Boehm, B. W. et alia (1975) Some experience ... IEEE Trans. Software Engineering; 1/1, 125ff
Boehm, B. W. et alia (1984) Prototyping ... IEEE Trans. Software Engineering; 10/3, 290ff



... but hard to get right

“The hardest single part of building a software system is 
deciding precisely what to build.
N th t f th t l k i diffi ltNo other part of the conceptual work is as difficult as 
establishing the requirements.
...
No other part of the work so cripples the resulting system 
if done wrongif done wrong.
No other part is as difficult to rectify later.”

Source: Fred Brooks (1987) No Silver Bullet



Eliciting requirements requires dialogue, analysis and 
i iiteration:

Understand the 
t h l

Produce an 

technology 
context/drivers

Document the 
requirements 

Start
Here

assessment 

Understand the 
problem 

context/drivers

Prioritise the 
requirements

Check that it 
makes sensecontext/drivers

Collect the Resolve anyCollect the 
requirements

Classify the 

Resolve any 
conflicts

y
requirements



Estimation uncertaintiess a o u ce a es



Estimation uncertaintiess a o u ce a es



The Boehm-McConnell “cone of uncertainty”

1981



The Boehm-McConnell “cone of uncertainty”

2008



Can large software really beCa a ge so wa e ea y be
that hard?



Yes!

• First-order model for estimating effort

• Diseconomies of scale

• Confirmation from the literature• Confirmation from the literature



Two drivers dominate the COCOMO II cost formulation:
(1) Personnel / Team Capability and (2) Product Complexity(1) Personnel / Team Capability and (2) Product Complexity

(1)
(2)



First-order model for estimating effort



McConnell’s data on log-log axes
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“Small” projects study c.f. McConnell data
1,000

Staff Years

Estimated Effort for Scientific Systems & Engineering Research Projects
Source: "Software Estimation"; S. McConnell: 2006
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http://www.skatelescope.org/pages/WP2_Meeting_10Nov08/Day2-3_Hall.pdf



Collaboration is just like correlation:

Except it’s at least twice as complexExcept it s at least twice as complex

• [Without modularisation] Must establish, coordinate and regularly use and maintain ~n2 links
• So worst-case diseconomy of scale likely to have slope >2 on log-log effort-size charts



How big are the “legacy” codes?

MSLOC:
Debian 4.0 283

Mac OS X 10.4             86
Vista                             50
Linux kernel 2 6 29 11

Kemball, R. M. Crutcher, R. Hasan: “A component-based framework for radio-astronomical imaging software systems” Software Practice and Experience: 2008; 38: pp 493–507
http://en.wikipedia.org/wiki/Source_lines_of_code

Linux kernel 2.6.29       11
OpenSolaris 10



Legacy: ~50 to ~700+ staff years effort?
1,000
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Staff Years= 4.5(‐11) x SLOC^2.4

+1 Standard Deviation

Avg. Staff Years (=12 months)

Staff Years   4.5( 11) x SLOC 2.4

1

10,000 100,000 1,000,000

Source Lines of Code (SLOC)

http://www.skatelescope.org/pages/WP2_Meeting_10Nov08/Day2-3_Hall.pdf;



Human frailty:

• We must work together to complete large projects in reasonable 
time, and have other people try to catch our mistakestime, and have other people try to catch our mistakes

• Once we start working together, we face other problems
• The natural language we use to communicate is wonderfullyThe natural language we use to communicate is wonderfully 

expressive, but frequently ambiguous
• Our human memory is good, but not quite deep and precise enough y g , q p p g

to remember a project’s myriad details
• We are unable to track what everyone is doing in a large group, and y g g g p

so risk duplicating or clobbering the work of others
• Large systems can often be realised in multiple ways, hence 

engineers must converge on a single architecture and design

Jim Whitehead; “Collaboration in Software Engineering: A Roadmap”:  International Conference on Software Engineering - 2007 Future of Software Engineering, IEEE CS, 2007 May 23-25



SDSS: Gray and Szalay

Where the Rubber Meets the Sky:
Bridging the Gap between Databases andBridging the Gap between Databases and 
Science
MSR-TR-2004-110: 2004 October

• One problem the large science experiments 
face is that software is an out of controlface is that software is an out-of-control 
expense

• They budget 25% or so for software and• They budget 25% or so for software and 
end up paying a lot more

• The extra software costs are often hiddenThe extra software costs are often hidden 
in other parts of the project – the 
instrument control system software may be 
hidden in the instrument budget



A software intensive production system is
much more than the initial algorithm:much more than the initial algorithm:

Algorithm

Softwarex3

g

PoC
program

Software
intensive
system

x3

Product:
•Generalisation
T ti

Software
intensive

•Testing
•Documentation
•Maintenance
•etc.

system
product

Fred Brooks; “The Mythical Man-Month – Essays on Software Engineering Anniversary Edition”: 1995

x~10



We can’t “wish” the hardness awayy



And why not?    Three answers:

• It’s been around a long time

• There are no silver bullets

• Bad things happen if we rely solely on wishes and• Bad things happen if we rely solely on wishes and 
prayers ...

B f i b f h l• But of course, any assistance may be of help



Myth busting – number 1:

The myth
• The old guys used “waterfall” - also expressed as “traditional software engineering”
• We are a lot better now

The reality?
• They were giants in the old days: Parnas, Jackson, Brooks ...y g y , ,
• As documented in 1970 by Royce, aspects of the mis-named “waterfall” are very similar to 

today’s “agile”

IEEE WESCON, Aug 1970, pp 1-9



Myth busting – number 2:

The myth
• Modern approach ‘X’ will slay the• Modern approach X  will slay the 

Werewolf of intractable software 
development

The reality?
• There is no silver bullet: Brooks’ 

“ i l” h d i“essential” hardness is ever-present
• Various brass and lead bullets do 

reasonable jobs to address j
“accidental” hardness – but each 
has its own risks and required 
overheadoverhead



Myth busting – number 3:

The myth
• Just get good coders – and let them have at it

The reality?
• Yes, it is “not impossible” that locking coders in a room with a gap 

under the door will eventually result in on-time in-budget delivery 
that meets all expectations

• However:
• The attendant risks are high
• Software has become central to large science projects
• Software projects in the public domain can be subject to 

embarrassing scrutiny

Public domain – four pathological enthusiasms:
1. Idolisation – technological infatuation
2 Technophilia the “myth of the technological fix”2. Technophilia – the myth of the technological fix
3. Lomanism – enthusiasm induced by overzealous sales tactics, as epitomised 

by Willie Loman in Arthur Miller’s Death of a Salesman
4 F ddi th t d t li k ft d l t t th l t t f d h4. Faddism – the tendency to link software development to the latest fad, such 

as “XP” or “XML” or management theory X, or Y, or Z



SKADS
Set of Standard

Challenges:g

Other challenges ...



A structure for SKA software and computing:
RoW ResearchersSchedulingReal-Time M&CReal-Time PipelineResearcherData Archive

Create Proposal

1 234

Create Proposal
Stored Proposal

Schedule observation

Initiate observation

Meta Data
Receptors initialised4

Correlator initialised

Buffered Raw Data 5

Buffered Calibrated Data

Calibration

Imaging

Science Results 6: Non imagingScience Results

Terminate observation
Analyse & Visualise Results

Results released to RoW

Data & Results Available

Reset schedule

6:  Non-imaging

7

8:  HPC H/W



Summary

Current SKA plans are “challenging”:
Data rates will push computing requirements into the ExaScale (1018) regime, with 
hardware costs order €100+ Million for each generation of box
Computation is likely to consume Megawatts, costing €10s Millions annually
The data pipeline is likely to require novel HPRC architectures and software
Data store and archive management will require significant effort
Software estimation benefits from formal models and expert judgementSoftware estimation benefits from formal models and expert judgement
Software estimation is contingent on defining requirements
“Designing to cost” requires prioritisation of requirements
Significant uncertainties are inherent in estimating large scale software
Reliable production software requires order of10x more effort than software developed for 
proofs of concept
It is likely that the software will require large scale internationally collaborative 
development: order ~1,000+ staff years, even with reuse of extant codes and OTS



What is the future direction for SKA?



Phased construction

• Phase 1:
2013 – 2018 construction
10-20% of the collecting area

• Phase 2:ase :
2018 – 2022 construction
Full array at low and mid frequenciesy q

• Phase 3:
2023+ construction2023+ construction
High frequencies



Schedule to 2018

J. Cordes “The Square Kilometre Array – Astro2010 RFI #2 Ground Response” 27 July 2009; Table 1, page 51



• Some background – who am I?

• What is this Creative Commons not about?

• What are (some of) the challenges facing SKA?What are (some of) the challenges facing SKA?

H ill hi k h h h ld?• How will this workshop change the world?



“Creative Commons” are good for developing “Proofs of 
Concept” for core algorithmsConcept  for core algorithms

• Focus on areas of uncertainty:
– We want to learn something

on

• Focus on what we want to learn 
about: em

en
ta

tio

about:
– Scope, objectives, issues, assumptions, 

risks and deliverables

ul
l I

m
pl

e

• Size the effort between “learning” 
and “doing” to minimise risks to the R

is
ks

 o
f F

and doing  to minimise risks to the 
entire community 

R
PoC SizeoC S e



A couple of measurable objectives:
D b h h i f hDo better than the giants of the past

T. Cornwell “EVLA Memo 24: Computing for EVLA Calibration and Imaging”, 2001 January12



More objectives: achieve 107 dynamic range, with:

• Automatic flagging
• Automatic termination at 107 dynamic rangey g
• “Reasonable” use of core memory and disk storage
• On real data• On real data
• With real noise
• In real time
• To meet end users’ requirements



Another – not so measurable – objective:
d h ico-operate, compete and share using a common 

framework – e.g. Tree Definition Language, TDL



SKA’s core algorithms most likely will be based on 
these kinds of Creative Commons’ developmentsthese kinds of Creative Commons  developments ...

Algorithm

Softwarex3

g

PoC
program

Software
intensive
system

x3

Product:
•Generalisation
T ti

Software
intensive

•Testing
•Documentation
•Maintenance
•etc.

system
product

Fred Brooks; “The Mythical Man-Month – Essays on Software Engineering Anniversary Edition”: 1995

x~10



SummarySummary

http://en.wikipedia.org/wiki/File:Pogo_-_Earth_Day_1971_poster.jpg 


