
What’s all this
“Creative Commons” about?

Duncan Hall
SPDO Software and Computing

2009 Oct 6

• Some background – who am I?

• What is this Creative Commons not about?

• What are (some of) the challenges facing SKA?What are (some of) the challenges facing SKA?

H ill hi k h h h ld?• How will this workshop change the world?

Multiple viewpoints:

Software engineering
Software engineering
principles are specific

cases of general

Software engineering
principles organise,
explain and validate
software engineering

Deployed “best” practices
based on software

engineering standards and
engineering principles standards and frameworks frameworks

Principles of
Engineering

d th

Principles of
Software

Software
Engineering

S d d d

“Best
Practices” inand other

Disciplines

Software
Engineering Standards and

Frameworks

Practices in
practice

Some software
engineering principles

Software engineering
principles should be

Standards and frameworks
should be recordings ofengineering principles

may be generalised for
engineering complex

systems

principles should be
“abstractions” of standards

and frameworks

should be recordings of
observed “best” practices

Source: Jabir and Moore 1998, “A search for fundamental principles of software engineering”

• Some background – who am I?

• What is this Creative Commons not about?

• What are (some of) the challenges facing SKA?What are (some of) the challenges facing SKA?

H ill hi k h h h ld?• How will this workshop change the world?

SKADS
Set of Standard

Challenges:g

Other challenges ...

CALIM08: Software Development Survey

• Was there a formal software process?
• Were architectural definition documents used?
• How did the change control board function?
• What was the review process?
• What were the team dynamics?
• How best to communicate across the team?
• Time and cost against estimated budget?
• What could have been done better?
• Suggestions for SKA software development?

Gerald Harp: “Software Development Survey” and “SurveyResponseData_NoNames.xls”: CALIM08, 2008 Apr 9

Sound familiar?

• Over-commitment
– Frequent difficulty in making commitments that staff can meet with an orderly

engineering process

• Often resulting in a series of crisesOften resulting in a series of crises
– During crises projects typically abandon planned procedures and revert to

coding and testing

I it f d h h ti d l d t• In spite of ad hoc or chaotic processes, can develop products
that work
– However typically cost and time budgets are not met

• Success depends on individual competencies and/or “death
march” heroics

C ’t b t d l th i di id l k th t j t– Can’t be repeated unless the same individuals work on the next project

• Capability is a characteristic of individuals, not the
organisationg

Mark Paulk et alia: The Capability Maturity Model for Software; in “Software Engineering” M. Dorfman and R. H. Thayer, 1997

What are the SEI CMMI process “Maturity Levels”?

Level Process Characteristics
1 Process is informal and ad hoc

Project management and project oversight practices are2 Project management and project oversight practices are
institutionalised

3
Organisational processes, including technical and
project management, are clearly defined and
repeatablerepeatable

4 Processes are stabilised and aligned to goals, and 4 product and process are quantitatively controlled

Process improvement is consistently and rigorously5 Process improvement is consistently and rigorously
practised at organisation and project levels

A “Leap of Faith”: Reliable processes deliver reliable
software: O ti i i (5)software:

 Process change management
 Technology change management
Defect prevention

Optimizing (5)

Managed (4)

 Software quality management
Quantitative process management

CMMI levels of maturity:

Defined (3)

Quantitative process management

 Peer reviews
 Intergroup coordination
 Software product engineering
 Integrated software management
 Training program

Repeatable (2)

 Organization process definition
Organization process focus

 Software configuration management
 Software quality assurance
 Software subcontract management
 Software project tracking and oversight
 Software project planning
R i t t

Initial (1)

Requirements management

Why work to build process reliability?

• All those practising as software engineers should desire to evolve
out of the chaotic activities and heroic efforts of a Level 1
organisation

• Because no one likes a ‘painful’ work environment• Because no one likes a painful work environment

• Good software can be developed by a Level 1 organisation, but
often at the expense of the developers

• People get tired of being the hero

• At the repeatable level, Level 2, software engineering processes
are under basic management control and there is a management
discipline

• Even the most die-hard techie needs time away from work

“Straight forward” environmentArt
Craft
Individuals
JITJIT
IKIWISI

O kill

Agile

Over-kill

tacit explicittacit explicit

SWE
process

“Death
h

Contracts
Documents
Traceability
Compliance

March”

“Complex” environment
Liabilities
Multiple vendors

Where are we (the SPDO) at?

Current development

– PrepSKA 2008-2011 p

– The Preparatory Phase for the SKA is being funded p y g
by the European Commission’s 7th Framework
Program

– €5.5M EC funding for 3 years + €17M contributed
funding from partners (still growing)funding from partners (still growing)

– €150M SKA-related R&D around the world

– Coordinated by the Science and Technology
Facilities Council (UK)Facilities Council (UK)

WP2: Design + Cost

Coordinated by the SKA Program Development Office
in Manchesterin Manchester

• System DefinitionSystem Definition
• Dishes, feeds, receivers
• Aperture arrays• Aperture arrays
• Signal transport

Si l i• Signal processing
• Software
• High performance computers
• Data storage
• Power requirements

A structure for SKA software and computing:
RoW ResearchersSchedulingReal-Time M&CReal-Time PipelineResearcherData Archive

Create Proposal

1 234

Create Proposal
Stored Proposal

Schedule observation

Initiate observation

Meta Data
Receptors initialised4

Correlator initialised

Buffered Raw Data 5

Buffered Calibrated Data

Calibration

Imaging

Science Results 6: Non imagingScience Results

Terminate observation
Analyse & Visualise Results

Results released to RoW

Data & Results Available

Reset schedule

6: Non-imaging

7

8: HPC H/W

Estimating the sizess a g e s es
of the

computing challengescomputing challenges

Φ2 real-time data from dishes

SKA Conceptual

Block Diagram

Outlying
Station

Outlying
Station

SKA Conceptual
High Level

Bl k Di
80 Gbs-1

80 Gbs-1

Block Diagram Station

Outlying
Station

Block Diagram

80 Gbs-1

~40

Outlying
Station On Site

Outlying stations
on spiral arm

(only one arm is
shown)

Outlying
Station

Operations
and

Maintenance
Centre

SKA HQ
(Off Site)

Global80 Gbs-1 per dish

~2,280

Regional
Science

Centre(s)
Science

Computing
Dense

A t

Centre

Signal
Processing

Wide band
single pixel

feeds (WBSPF)

Phased array
feeds
(PAF)

Dish Array

Regional
Engineering

Centre(s)

Computing
Facility

Aperture
Array

Processing
Facility

High Performance Computing
Data Storage

Digital Signal Processing
Beamforming
CorrelationHighLow

Sparse Aperture Array

Drawing number : TBD
Date : 2009-02-13

Revision : E
P. Dewdney et al. “The Square Kilometre Array”; Proceedings of the IEEE; Vol. 97, No. 8; pp 1482 – 1496; August 2009
J. Cordes “The Square Kilometre Array – Astro2010 RFI #2 Ground Response” 27 July 2009; Table 1, pp 9 - 10

186 Tbs-1

SKA Baseline system correlator output:

J. Cordes “The Square Kilometre Array – Astro2010 RFI #2 Ground Response” 27 July 2009; Table 1, pp 9 - 10

SKA Baseline system correlator output:

SKA Conceptual

Block Diagram

Outlying
Station

Outlying
Station

SKA Conceptual
High Level

Bl k Di
80 Gbs-1

80 Gbs-1

Block Diagram Station

Outlying
Station

Block Diagram

80 Gbs-1

~40

Outlying
Station On Site

Outlying stations
on spiral arm

(only one arm is
shown)

Outlying
Station

Operations
and

Maintenance
Centre

SKA HQ
(Off Site)

Global80 Gbs-1 per dish

~2,280

Regional
Science

Centre(s)
Science

Computing
Dense

A t

Centre

Signal
Processing

Wide band
single pixel

feeds (WBSPF)

Phased array
feeds
(PAF)

Dish Array

Regional
Engineering

Centre(s)

Computing
Facility

Aperture
Array

Processing
Facility

High Performance Computing
Data Storage

Digital Signal Processing
Beamforming
CorrelationHighLow

Sparse Aperture Array

Drawing number : TBD
Date : 2009-02-13

Revision : E
P. Dewdney et al. “The Square Kilometre Array”; Proceedings of the IEEE; Vol. 97, No. 8; pp 1482 – 1496; August 2009
J. Cordes “The Square Kilometre Array – Astro2010 RFI #2 Ground Response” 27 July 2009; Table 1, pp 9 - 10

186 Tbs-1
44 TBs-1

Current algorithm performance:

T. Cornwell “EVLA Memo 24: Computing for EVLA Calibration and Imaging”, 2001 January12

Required computation performance:

SKA Conceptual

Block Diagram

Outlying
Station

Outlying
Station

SKA Conceptual
High Level

Bl k Di
80 Gbs-1

80 Gbs-1

Block Diagram Station

Outlying
Station

Block Diagram

80 Gbs-1

~40

Outlying
Station On Site

Outlying stations
on spiral arm

(only one arm is
shown)

0.1 ~ 1 ExaFlops: €100+ M

Outlying
Station

Operations
and

Maintenance
Centre

SKA HQ
(Off Site)

Global80 Gbs-1 per dish

~2,280

Regional
Science

Centre(s)
Science

Computing
Dense

A t

Centre

Signal
Processing

Wide band
single pixel

feeds (WBSPF)

Phased array
feeds
(PAF)

Dish Array

Regional
Engineering

Centre(s)

Computing
Facility

Aperture
Array

Processing
Facility

High Performance Computing
Data Storage

Digital Signal Processing
Beamforming
CorrelationHighLow

Sparse Aperture Array

Drawing number : TBD
Date : 2009-02-13

Revision : E
P. Dewdney et al. “The Square Kilometre Array”; Proceedings of the IEEE; Vol. 97, No. 8; pp 1482 – 1496; August 2009
J. Cordes “The Square Kilometre Array – Astro2010 RFI #2 Ground Response” 27 July 2009; Table 1, pp 9 - 10

186 Tbs-1
44 TBs-1

How much data will we need to store?

Assume disk buffer for 8 hours:

T. Cornwell “EVLA Memo 24: Computing for EVLA Calibration and Imaging”, 2001 January12

Disk buffer required:

44 x 1012 x 8 x 60 x 600 8 60 60

≈1 x 1018 ≈1 x 10

i 1 E B ti.e. 1 ExaByte

Disk storage: annual 50% cost reduction

1 EB = $1~$10 million

P. Kogge et alia “ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems”; TR-2008-13, DARPA ExaScale Computing Study, 2008 Sep 28, page 125
Note: neither RAID, controllers, nor interconnect cables are included in these estimates

Computing and buffer requirements:

SKA Conceptual

Block Diagram

Outlying
Station

Outlying
Station

SKA Conceptual
High Level

Bl k Di
80 Gbs-1

80 Gbs-1

Block Diagram Station

Outlying
Station

Block Diagram

80 Gbs-1

~40

Outlying
Station On Site

Outlying stations
on spiral arm

(only one arm is
shown)

0.1 ~ 1 ExaFlops;
0.1 ~ 1 ExaByte storage

Outlying
Station

Operations
and

Maintenance
Centre

SKA HQ
(Off Site)

Global80 Gbs-1 per dish

~2,280

Regional
Science

Centre(s)
Science

Computing
Dense

A t

Centre

Signal
Processing

Wide band
single pixel

feeds (WBSPF)

Phased array
feeds
(PAF)

Dish Array

Regional
Engineering

Centre(s)

Computing
Facility

Aperture
Array

Processing
Facility

High Performance Computing
Data Storage

Digital Signal Processing
Beamforming
CorrelationHighLow

Sparse Aperture Array

Drawing number : TBD
Date : 2009-02-13

Revision : E
P. Dewdney et al. “The Square Kilometre Array”; Proceedings of the IEEE; Vol. 97, No. 8; pp 1482 – 1496; August 2009
J. Cordes “The Square Kilometre Array – Astro2010 RFI #2 Ground Response” 27 July 2009; Table 1, pp 9 - 10

186 Tbs-1
44 TBs-1

Pushing the Flops envelope:

Performance [TFlops] = 0.055e0.622(year-1993)

SKAΦ2

~1 EFlop

SKAΦ1

~10 PFlop

~100 TFlop

SKAΦ2

20
22

ASKAP

100 TFlop

Cornwell and van Diepen “Scaling Mount Exaflop: from the pathfinders to the Square Kilometre Array” http://www.atnf.csiro.au/people/Tim.Cornwell/MountExaflop.pdf

Estimating the cost ofs a g e cos o
power consumed

in data centresin data centres

HP Labs cost model:

Costtotal = Costspace + CostIT hardware power + Costcooling + Costoperation

“Cost Model for Planning, Development and Operation of a Data Center”; C. D. Patel, A. J. Shah; Hewlett Packard Laboratories
Technical Report HPL-2005-107(R.1); 9 June 2005

Direct costs of power consumed:

Costtotal = Costspace + CostIT hardware power + Costcooling + Costoperation

CostIT hardware power = U$,grid PIT hardware + K1U$,grid PIT hardware

Where:
K1 = J1U$,A&M power / (U$,grid) [K1 ≡ Utility burdening factor, sometimes taken as ≈ 2]
J = Installed maximum capacity [Watts] / (Utilised capacity [Watts])J1 = Installed maximum capacity [Watts] / (Utilised capacity [Watts])

= Prated / PIT hardware [J1 ≡ Utilisation factor; typically ≈ 1.33 - 1.6 for growth]

CostIT hardware power = U$,grid PIT hardware + U$,A&M power Prated

Typically:Typically:
U$,A&M power ≈ U$,grid

C U P (1 J)Costpower = U$,grid PIT hardware (1 + J1)

“Cost Model for Planning, Development and Operation of a Data Center”; C. D. Patel, A. J. Shah; Hewlett Packard Laboratories
Technical Report HPL-2005-107(R.1); 9 June 2005

Direct costs of power for cooling:

Costtotal = Costspace + CostIT hardware power + Costcooling + Costoperation

Costcooling = U$,grid Pcooling + K2U$,grid Pcooling

Where:
K2 = J1U$,A&M cooling / (U$,grid) [K2 ≡ Cooling burdening factor]
L = P / (P) [L L d f t 0 8 d t th d i]L1 = Pcooling / (PIT hardware) [L1 ≡ Load factor; ≈ 0.8 due to thermodynamics]

Costcooling = U$,grid L1 PIT hardware + U$,A&M cooling J1 L1 PIT hardware

Typically:
U$ A&M li ≈ 0.5 (U $ A&M)U$,A&M cooling 0.5 (U $,A&M power)

Costcooling = U$,grid L1 PIT hardware (1 + 0.5 J1)

“Cost Model for Planning, Development and Operation of a Data Center”; C. D. Patel, A. J. Shah; Hewlett Packard Laboratories
Technical Report HPL-2005-107(R.1); 9 June 2005

“Not quite total” power cost model:

Cost“NQT” = Costspace + CostIT hardware power + Costcooling + Costoperation

Cost“NQT” = 0 +

U$,grid PIT hardware (1 + J1) +

U L P (1 + 0 5 J)U$,grid L1 PIT hardware (1 + 0.5 J1)

+ 0

= U$,grid PIT hardware (1.8 + 1.4 J1)

Cost“NQT” ≈ (3.7 to 4.0 multiplied by) U$,grid PIT hardware

Model and reality of power costs:

Model: Using assumptions similar to prices typically encountered in New Zealand, the
HP Labs model calculates that the monthly cost (including software licencesHP Labs model calculates that the monthly cost (including software, licences,
operations personnel and hardware depreciation – but not including real estate
costs) of the servers, power and air conditioning for a continuous server
consumption of 10 kW is of the order of NZ$28 000; or about $340 000 [i econsumption of 10 kW is of the order of NZ$28,000; or about $340,000 [i.e.
about €150,000] per year.

R li F N Z l d h l j d li d b ildiReality: For New Zealand, the annual cost just to deliver power to data centre buildings
and building services infrastructure is estimated to be $150,000 per 10 kW
consumed. [i.e. €70,000]. This New Zealand power infrastructure cost includes

i it hb d U i t tibl P S li (UPS) i diti iengines, switchboards, Uninterruptible Power Supplies (UPS), air conditioning,
seismic structures, lighting etc."

So annualised total cost of ownership for power consumed by data processing equipment in
well designed data centres in central business district settings are of the order of
€7 to €15 per Watt consumed

Power efficiency challenges:

1,000,000,000

Gigaflops

World's Most Powerful and Efficient Computers
(Exaflop)

100,000,000

Gigaflops

100,000 Mflops/Watt

100 ~ 1 000 times

200 ~ 2,000 times greater Gigaflops / kWatt required

10,000,000

100 ~ 1,000 times
more Gigaflops
required for SKA

500 Mflops/Watt

1,000,000
2008 & 2009 World's most powerful computer

(Petaflop)

100,000
2009Jun

2008Nov

2008Jun

2008Feb

10 Mflops/Watt

10,000
2007Nov

Source: http://www.green500.org/
accessed 2009Jul10

http://www.green500.org accessed July 2009

1,000

10 100 1,000 10,000 100,000

kWatts

(Teraflop)

Required: HPRC architectures – and software

Martin C. Herbordt, et alia, Computing in Science & Engineering, Nov-Dec 2008
Duncan Buell et alia, IEEE Computer, March 2007

Power for EB-size disk looks reasonable

P. Kogge et alia “ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems”; TR-2008-13, DARPA ExaScale Computing Study, 2008 Sep 28, page 124
Note: power numbers here are for the drives only; any electronics associated with drive controllers [e.g. ECC, RAID] needs to be counted separately

Archive: 10 PetaByte tape robot at CERN

500-GB tapes switched to 1-TB
models – an upgrade that took a

ear of contin o syear of continuous
load/read/load/write/discard
operations, running in theoperations, running in the

interstices between the data
centre’s higher-priority tasks

http://www.flickr.com/photos/doctorow/2711081044/sizes/o/in/set-72157606675048531/
C. Doctorow “Welcome to the Petacentre”; Nature, Vol. 455, $ September 2008, pp. 17-21

Estimating the sizess a g e s es
of the

software challengessoftware challenges

An ill-conditioned non-linear problem:

€

where

, 1

 –

Change requests

–
–

Requirements

?

 –
 –

?

1,000+ research studies, experience reports and books ...

... demonstrate that we still really don’t know for sure
h l i f d l

• “ we still don’t know what we are doing unless

how to accurately estimate software development:

• ... we still don t know what we are doing, unless
it is very similar to something we have done before

• The challenge is to make software engineering as
predictable a discipline as civil or electrical
engineeringg g

• I still do not expect any radical breakthrough, any
il b ll l hi blsilver bullet, to solve this problem

• But the accretion of many contributions hasBut the accretion of many contributions has
already made much progress, and I believe
continued careful research, ever validated by real
practice will bring us to that goal”practice, will bring us to that goal

Magne Jørgensen and Barry Boehm “Software Development Effort Estimation” IEEE Software, March/April 2009
Fred Brooks Jnr.: “Three Great Challenges for Half-Century-Old Computer Science”; Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 25–26

Parametric model example:a a e c ode e a p e:
COnstructive COst MOdel

COCOMO IICOCOMO II

COCOMO II: Effort Equations

PM : Person Months of Effort

n

∏××= i
E EMSizeAPM ∏

=i
i

1

EMi : Effort Multipliers

E : the scaling exponent

n

∏××= i
E EMSizeAPM ∏

=i
i

1

E : the scaling exponent

5

∑×+= 01.0 jSFBE ∑
=1

0.0
j

jS
1j

SFj : the five Scale Factors

RESL: Architecture / Risk Resolution

Further COCOMO II formulations: Size

Further COCOMO II formulations: Schedule

Further COCOMO II parameters

Formal models – or Expert judgement?o a ode s o pe judge e ?

Formal models or Expert judgement? 1of3

In spite of massive effort and promotion, available empirical
evidence shows that formal estimation models aren’t in muchevidence shows that formal estimation models aren’t in much
use ...

projects officially applying a formal estimation model... projects officially applying a formal estimation model
actually use the model as a disguise for expert estimation
All meaningful estimation models require judgment toAll meaningful estimation models require judgment to
produce the input to the models
... the relation between effort and size in software
development contexts isn’t stable
In situations involving high cost and schedule uncertainty,
it’s a good idea to draw upon as many sources of insight as
possible

Magne Jørgensen and Barry Boehm “Software Development Effort Estimation” IEEE Software, March/April 2009

Formal models or Expert judgement? 2of3

... software development situations frequently contain highly
specific highly important informationspecific, highly important information ...
... expert judgment can have great advantages in situations
with highly specific information that’s not mechanicallywith highly specific information that s not mechanically
integrated, or integrated at all, in a model

[BB]: “I used to think that closed-loop feedback and
recalibration would enable organizations and models to g
become increasingly perfect estimators.
But I don’t any more
The software field continues to reinvent and re-baseline itself
too rapidly to enable this to happen”

Magne Jørgensen and Barry Boehm “Software Development Effort Estimation” IEEE Software, March/April 2009

Formal models or Expert judgement? 3of3

A major advantage of a parametric model is that it doesn’t
modify its estimates when customers managers ormodify its estimates when customers, managers, or
marketers apply pressure
Using a calibrated parametric model enables negotiationUsing a calibrated parametric model enables negotiation ...
rather than a contest of wills between self-described experts
... the usual practice is to discard [cost models] as having... the usual practice is to discard [cost models] as having
served their purpose and to avoid future embarrassment
when the estimates are overrun
So, use incremental development and timeboxing – also
known as cost and schedule as an independent variable
Simple models typically perform just as well as more
advanced models ...

Magne Jørgensen and Barry Boehm “Software Development Effort Estimation” IEEE Software, March/April 2009

The importance of requirementse po a ce o equ e e s

“You cannot estimate jobs for which
you have not scoped the work”y p

Donald Reifer, “The Poor Person’s Guide to Estimating Software Development Costs”, IEEE

“You cannot estimate jobs for which
you have not scoped the work”y p

Donald Reifer, “The Poor Person’s Guide to Estimating Software Development Costs”, IEEE

From the Aug 2008 IEEE Software editorial:

Getting requirements sorted is important ...

Glass’s Law:
Requirements deficiencies are the prime source of

j t f ilproject failures

B h ’ Fi LBoehm’s First Law:
Errors are most frequent during the requirements and
design acti ities and are more e pensi e the later thedesign activities and are more expensive the later they
are removed

Sources:
Glass, R. L. (1998) Software Runaways
Boehm, B. W. et alia (1975) Some experience ... IEEE Trans. Software Engineering; 1/1, 125ff
Boehm, B. W. et alia (1984) Prototyping ... IEEE Trans. Software Engineering; 10/3, 290ff

... but hard to get right

“The hardest single part of building a software system is
deciding precisely what to build.
N th t f th t l k i diffi ltNo other part of the conceptual work is as difficult as
establishing the requirements.
...
No other part of the work so cripples the resulting system
if done wrongif done wrong.
No other part is as difficult to rectify later.”

Source: Fred Brooks (1987) No Silver Bullet

Eliciting requirements requires dialogue, analysis and
i iiteration:

Understand the
t h l

Produce an

technology
context/drivers

Document the
requirements

Start
Here

assessment

Understand the
problem

context/drivers

Prioritise the
requirements

Check that it
makes sensecontext/drivers

Collect the Resolve anyCollect the
requirements

Classify the

Resolve any
conflicts

y
requirements

Estimation uncertaintiess a o u ce a es

Estimation uncertaintiess a o u ce a es

The Boehm-McConnell “cone of uncertainty”

1981

The Boehm-McConnell “cone of uncertainty”

2008

Can large software really beCa a ge so wa e ea y be
that hard?

Yes!

• First-order model for estimating effort

• Diseconomies of scale

• Confirmation from the literature• Confirmation from the literature

Two drivers dominate the COCOMO II cost formulation:
(1) Personnel / Team Capability and (2) Product Complexity(1) Personnel / Team Capability and (2) Product Complexity

(1)
(2)

First-order model for estimating effort

McConnell’s data on log-log axes
1,000

Staff Years

Estimated Effort for Scientific Systems & Engineering Research Projects
Source: "Software Estimation"; S. McConnell: 2006

Staff Years

100

Staff Years = 4.7(‐6) x (SLOC)^1.36

Staff Years = 2.0(‐5) x (SLOC)^1.33

McConnell diseconomy

10

+1 Standard Deviation

Avg. Staff Years (=12 months)

1

10,000 100,000 1,000,000

Source Lines of Code (SLOC)

“Small” projects study c.f. McConnell data
1,000

Staff Years

Estimated Effort for Scientific Systems & Engineering Research Projects
Source: "Software Estimation"; S. McConnell: 2006

Staff Years

100

Staff Years = 4.7(‐6) x (SLOC)^1.36

Staff Years = 2.0(‐5) x (SLOC)^1.33

McConnell diseconomy

10

Staff Years= 4.5(‐11) x SLOC^2.4

+1 Standard Deviation

Avg. Staff Years (=12 months)

Staff Years 4.5(11) x SLOC 2.4

Small projects (Σ = 500 kSLOC) diseconomy

1

10,000 100,000 1,000,000

Source Lines of Code (SLOC)

p j () y

http://www.skatelescope.org/pages/WP2_Meeting_10Nov08/Day2-3_Hall.pdf

Collaboration is just like correlation:

Except it’s at least twice as complexExcept it s at least twice as complex

• [Without modularisation] Must establish, coordinate and regularly use and maintain ~n2 links
• So worst-case diseconomy of scale likely to have slope >2 on log-log effort-size charts

How big are the “legacy” codes?

MSLOC:
Debian 4.0 283

Mac OS X 10.4 86
Vista 50
Linux kernel 2 6 29 11

Kemball, R. M. Crutcher, R. Hasan: “A component-based framework for radio-astronomical imaging software systems” Software Practice and Experience: 2008; 38: pp 493–507
http://en.wikipedia.org/wiki/Source_lines_of_code

Linux kernel 2.6.29 11
OpenSolaris 10

Legacy: ~50 to ~700+ staff years effort?
1,000

Staff Years

Estimated Effort for Scientific Systems & Engineering Research Projects
Source: "Software Estimation"; S. McConnell: 2006

Staff Years

100

Staff Years = 4.7(‐6) x (SLOC)^1.36

Staff Years = 2.0(‐5) x (SLOC)^1.33

10

Staff Years= 4.5(‐11) x SLOC^2.4

+1 Standard Deviation

Avg. Staff Years (=12 months)

Staff Years 4.5(11) x SLOC 2.4

1

10,000 100,000 1,000,000

Source Lines of Code (SLOC)

http://www.skatelescope.org/pages/WP2_Meeting_10Nov08/Day2-3_Hall.pdf;

Human frailty:

• We must work together to complete large projects in reasonable
time, and have other people try to catch our mistakestime, and have other people try to catch our mistakes

• Once we start working together, we face other problems
• The natural language we use to communicate is wonderfullyThe natural language we use to communicate is wonderfully

expressive, but frequently ambiguous
• Our human memory is good, but not quite deep and precise enough y g , q p p g

to remember a project’s myriad details
• We are unable to track what everyone is doing in a large group, and y g g g p

so risk duplicating or clobbering the work of others
• Large systems can often be realised in multiple ways, hence

engineers must converge on a single architecture and design

Jim Whitehead; “Collaboration in Software Engineering: A Roadmap”: International Conference on Software Engineering - 2007 Future of Software Engineering, IEEE CS, 2007 May 23-25

SDSS: Gray and Szalay

Where the Rubber Meets the Sky:
Bridging the Gap between Databases andBridging the Gap between Databases and
Science
MSR-TR-2004-110: 2004 October

• One problem the large science experiments
face is that software is an out of controlface is that software is an out-of-control
expense

• They budget 25% or so for software and• They budget 25% or so for software and
end up paying a lot more

• The extra software costs are often hiddenThe extra software costs are often hidden
in other parts of the project – the
instrument control system software may be
hidden in the instrument budget

A software intensive production system is
much more than the initial algorithm:much more than the initial algorithm:

Algorithm

Softwarex3

g

PoC
program

Software
intensive
system

x3

Product:
•Generalisation
T ti

Software
intensive

•Testing
•Documentation
•Maintenance
•etc.

system
product

Fred Brooks; “The Mythical Man-Month – Essays on Software Engineering Anniversary Edition”: 1995

x~10

We can’t “wish” the hardness awayy

And why not? Three answers:

• It’s been around a long time

• There are no silver bullets

• Bad things happen if we rely solely on wishes and• Bad things happen if we rely solely on wishes and
prayers ...

B f i b f h l• But of course, any assistance may be of help

Myth busting – number 1:

The myth
• The old guys used “waterfall” - also expressed as “traditional software engineering”
• We are a lot better now

The reality?
• They were giants in the old days: Parnas, Jackson, Brooks ...y g y , ,
• As documented in 1970 by Royce, aspects of the mis-named “waterfall” are very similar to

today’s “agile”

IEEE WESCON, Aug 1970, pp 1-9

Myth busting – number 2:

The myth
• Modern approach ‘X’ will slay the• Modern approach X will slay the

Werewolf of intractable software
development

The reality?
• There is no silver bullet: Brooks’

“ i l” h d i“essential” hardness is ever-present
• Various brass and lead bullets do

reasonable jobs to address j
“accidental” hardness – but each
has its own risks and required
overheadoverhead

Myth busting – number 3:

The myth
• Just get good coders – and let them have at it

The reality?
• Yes, it is “not impossible” that locking coders in a room with a gap

under the door will eventually result in on-time in-budget delivery
that meets all expectations

• However:
• The attendant risks are high
• Software has become central to large science projects
• Software projects in the public domain can be subject to

embarrassing scrutiny

Public domain – four pathological enthusiasms:
1. Idolisation – technological infatuation
2 Technophilia the “myth of the technological fix”2. Technophilia – the myth of the technological fix
3. Lomanism – enthusiasm induced by overzealous sales tactics, as epitomised

by Willie Loman in Arthur Miller’s Death of a Salesman
4 F ddi th t d t li k ft d l t t th l t t f d h4. Faddism – the tendency to link software development to the latest fad, such

as “XP” or “XML” or management theory X, or Y, or Z

SKADS
Set of Standard

Challenges:g

Other challenges ...

A structure for SKA software and computing:
RoW ResearchersSchedulingReal-Time M&CReal-Time PipelineResearcherData Archive

Create Proposal

1 234

Create Proposal
Stored Proposal

Schedule observation

Initiate observation

Meta Data
Receptors initialised4

Correlator initialised

Buffered Raw Data 5

Buffered Calibrated Data

Calibration

Imaging

Science Results 6: Non imagingScience Results

Terminate observation
Analyse & Visualise Results

Results released to RoW

Data & Results Available

Reset schedule

6: Non-imaging

7

8: HPC H/W

Summary

Current SKA plans are “challenging”:
Data rates will push computing requirements into the ExaScale (1018) regime, with
hardware costs order €100+ Million for each generation of box
Computation is likely to consume Megawatts, costing €10s Millions annually
The data pipeline is likely to require novel HPRC architectures and software
Data store and archive management will require significant effort
Software estimation benefits from formal models and expert judgementSoftware estimation benefits from formal models and expert judgement
Software estimation is contingent on defining requirements
“Designing to cost” requires prioritisation of requirements
Significant uncertainties are inherent in estimating large scale software
Reliable production software requires order of10x more effort than software developed for
proofs of concept
It is likely that the software will require large scale internationally collaborative
development: order ~1,000+ staff years, even with reuse of extant codes and OTS

What is the future direction for SKA?

Phased construction

• Phase 1:
2013 – 2018 construction
10-20% of the collecting area

• Phase 2:ase :
2018 – 2022 construction
Full array at low and mid frequenciesy q

• Phase 3:
2023+ construction2023+ construction
High frequencies

Schedule to 2018

J. Cordes “The Square Kilometre Array – Astro2010 RFI #2 Ground Response” 27 July 2009; Table 1, page 51

• Some background – who am I?

• What is this Creative Commons not about?

• What are (some of) the challenges facing SKA?What are (some of) the challenges facing SKA?

H ill hi k h h h ld?• How will this workshop change the world?

“Creative Commons” are good for developing “Proofs of
Concept” for core algorithmsConcept for core algorithms

• Focus on areas of uncertainty:
– We want to learn something

on

• Focus on what we want to learn
about: em

en
ta

tio

about:
– Scope, objectives, issues, assumptions,

risks and deliverables

ul
l I

m
pl

e

• Size the effort between “learning”
and “doing” to minimise risks to the R

is
ks

 o
f F

and doing to minimise risks to the
entire community

R
PoC SizeoC S e

A couple of measurable objectives:
D b h h i f hDo better than the giants of the past

T. Cornwell “EVLA Memo 24: Computing for EVLA Calibration and Imaging”, 2001 January12

More objectives: achieve 107 dynamic range, with:

• Automatic flagging
• Automatic termination at 107 dynamic rangey g
• “Reasonable” use of core memory and disk storage
• On real data• On real data
• With real noise
• In real time
• To meet end users’ requirements

Another – not so measurable – objective:
d h ico-operate, compete and share using a common

framework – e.g. Tree Definition Language, TDL

SKA’s core algorithms most likely will be based on
these kinds of Creative Commons’ developmentsthese kinds of Creative Commons developments ...

Algorithm

Softwarex3

g

PoC
program

Software
intensive
system

x3

Product:
•Generalisation
T ti

Software
intensive

•Testing
•Documentation
•Maintenance
•etc.

system
product

Fred Brooks; “The Mythical Man-Month – Essays on Software Engineering Anniversary Edition”: 1995

x~10

SummarySummary

http://en.wikipedia.org/wiki/File:Pogo_-_Earth_Day_1971_poster.jpg

