Beam fitting and other stuff...

Laurent Chemin Julien Girard

NATIONAL **GEOGRAPHIC**TM

This morning @ 2 A.M. NB: this is not a wild boar

This morning @ 2 A.M. + E NB: this is still not a wild boar

For frustrated people who haven't seen a real Nançay's wild boar ... yet

Sanglier

Marcassin (young wild boar)

We could finally PURR in our niche

Let's (try to) do some science

LBA Dipole Sarod's Model

From LOFAR beamshapes and their use in calibration and imaging – Sarod Yatawatta – Sep. 10, 2009

- Total (far) E-field :
 - 4 terms along \mathcal{U}_{Θ}
 - 4 terms along $~\mathcal{U}_{arphi}$

Figure 5: LBA dipole on infinite ground plane

$$\begin{split} E_{\theta 1} &= -\frac{\mu I_0 \omega k}{4\pi} (-\cos \alpha_1 \sin \theta - \sin \alpha_1 \cos \theta \cos \phi) \\ &\int_0^L \exp \left(jk (l\sin \theta \cos \phi + (h - l/\tan \alpha_1) \cos \theta) \sin \left(\frac{k}{\sin \alpha_1} (L - l) \right) dl \right. \\ &= -\frac{\mu I_0 \omega k}{4\pi} (-\cos \alpha_1 \sin \theta - \sin \alpha_1 \cos \theta \cos \phi) \\ &\Gamma_+ (\sin \theta \cos \phi - \cos \theta / \tan \alpha_1, h\cos \theta, k, L, \alpha_1) \end{split}$$

$$E_{qq} = \frac{\mu L_{qq} k}{4\pi} [\sin \alpha_1 \sin \phi]$$

$$= \int_{0}^{1} \exp(jk(l\sin \theta \cos \phi + (\lambda - l/\tan \alpha_1)\cos \theta) \sin \left(\frac{k}{\sin \alpha_1}(L - l)\right) dl$$

$$= \frac{\mu L_{qq} k}{4\pi} [\sin \alpha_1 \sin \phi]$$

$$T_{1} [\sin \theta \cos \phi - \cos \theta/\tan \alpha_1, h \cos \theta, h, L, \alpha_1]$$

$$\begin{split} E_{Rq} &= -\frac{\mu L_{R}\omega \theta}{4\pi} (\cos \omega_1 \sin \theta - \sin \omega_1 \cos \theta \cos \phi) \\ &= \int_{-L}^{T} \exp\left[j \partial (-l\sin \theta \cos \phi + (h+l/\tan \omega_1)\cos \theta) \sin \left(\frac{k}{\sin \omega_1}(L+l)\right) dl \right] \\ &= -\frac{\mu L_{R}\omega \theta}{4\sigma} (\cos \omega_1 \sin \theta - \sin \omega_1 \cos \theta \cos \phi) \\ &= \frac{\Gamma_{-L} - \sin \theta \cos \phi + \cos \theta}{4\sigma} + \cos \theta / \tan \omega_1 A \cos \theta, k, L, in;) \end{split}$$

$$\begin{split} E_{0}x &= \frac{\mu L_{0} \cdot R}{4\pi} (\min \alpha_{1} \sin \theta) \\ &= \int_{-1}^{0} \exp \left(j \Re (-l \sin \theta \cos \theta + (h + l/\tan \alpha_{1}) \cos \theta) \sin \left(\frac{A}{\min \alpha_{1}} (L + l)\right) dL \\ &= \frac{\mu L_{0} \cdot R}{4\pi} (\sin \alpha_{1} \sin \theta) \\ \Gamma_{-} (-\sin \theta \cos \theta + \cos \theta) \tan \alpha_{-} h \cos \theta, h, L, m_{1} \end{split}$$

$$\begin{split} h_{0,\infty} &= \frac{\mu L_{0,\infty} \theta}{4\pi} \left\{ \cos n_{0} \sin \theta + \sin \alpha_{1} \cos \theta \cos \phi \right\} \\ &= \int_{-L}^{0} \exp \left(j k (-l \sin \theta \cos \phi - (h+l/\tan \alpha_{1}) \cos \theta) \sin \left(\frac{k}{\sin \alpha_{1}} (L+l) \right) dl \\ &= \frac{\mu L_{0,\infty} \theta}{4\pi} \left\{ \cos n_{1} \sin \theta + \sin \alpha_{1} \cos \theta \cos \phi \right\} \\ &= \int_{0}^{0} L_{0,\infty} \theta \left[\cos n_{1} \sin \theta + \sin \alpha_{1} \cos \theta \cos \phi \right] \\ &= \int_{0}^{0} L_{0,\infty} \theta \left[\cos n_{1} \sin \theta + \sin \alpha_{1} \cos \theta - (h \cos \theta + h \sin \theta) \sin \theta \right] \\ &= \int_{0}^{0} L_{0,\infty} \theta \left[\cos n_{1} \sin \theta + \sin \alpha_{1} \cos \theta + h \sin \theta \right] \\ &= \int_{0}^{0} L_{0,\infty} \theta \left[\cos n_{1} \sin \theta + \sin \theta + \sin \theta + h \sin \theta +$$

$$E_{eff} = -\frac{\mu L_{eff}}{k\pi} (-\sin \alpha_{1} \sin \phi)$$

$$\int_{-L}^{L} \exp \left(jk(-l\sin \theta \cos \phi - (h+l/\tan \alpha_{1}) \cos \theta) \sin \left(\frac{k}{\sin \alpha_{1}}(L+l)\right) dl$$

$$= -\frac{\mu L_{eff}}{k\pi} (-\sin \alpha_{1} \sin \phi)$$

$$\Gamma_{-}(-\sin \theta \cos \phi - \cos \theta/\tan \alpha_{1}, -h\cos \theta, k, L, \alpha_{1})$$

$$E_{Fi} = -\frac{\mu A_{Fi} k}{4\pi} \{-\cos \omega, \sin \theta + \sin \alpha; \cos \theta \cos \phi\}$$

-
$$\int_{0}^{1} \exp\{jk(l\sin \theta \cos \phi - (h - l/\tan \alpha_{1})\cos \theta) \sin\left(\frac{\theta}{\theta \ln \alpha_{1}}(L - l)\right) dl$$

=
$$\frac{\mu A_{Fi} k}{4\pi} \{-\cos \omega; \sin \theta + \sin \alpha; \cos \theta \cos \phi\}$$

-
$$E_{+}[\sin \theta \cos \phi + \cos \theta/\tan \alpha_{1}, -h\cos \theta, E, E, \alpha_{1}]$$

$$E_{\phi 4} = \frac{\mu I_0 \omega k}{4\pi} (-\sin \alpha_1 \sin \phi)$$

$$\int_0^L \exp \left(jk(l\sin \theta \cos \phi - (h - l/\tan \alpha_1) \cos \theta) \sin \left(\frac{k}{\sin \alpha_1}(L - l)\right) dl$$

$$= \frac{\mu I_0 \omega k}{4\pi} (-\sin \alpha_1 \sin \phi)$$

$$\Gamma_+(\sin \theta \cos \phi + \cos \theta/\tan \alpha_1, -h\cos \theta, k, L, \alpha_1)$$

Re-implementation in IDL for fitting

LBA Beam model @ 80 Mhz

Fitting for E_{theta} and E_{phi}

$$|E_{\varphi}(\theta,\phi)| = P_1(\theta) * \left|\cos(\varphi - \varphi_{01} - \frac{\pi}{2})\right|$$

 $P_1(\theta) = 1,53216 - 0,01\theta + 0,001\theta^2 - 2.10^{-5}\theta^3 + 6,9.10^{-8}\theta^4$

$$|E_{\theta}(\theta,\phi)| = P_2(\theta) * |\cos(\varphi - \varphi_{02})|$$

 $P_1(\theta) = 1,52228 - 0,01\theta + 0,001\theta^2 - 2,8.10^{-5}\theta^3 + 1,8.10^{-7}\theta^4$

$$\phi_{01}, \phi_{02} \approx 0$$

Now, we have simplified expressions of the LBA beam

What we have to do now (and what we are doing):

• Take into account the frequency dependency

 Do a similar work as Shannon & Fred's according to Sarod's paper. (currently working on it) (vla-beams.py understanding & cannibalization & french criticizing)

- Do the same thing for HBA
- Play with station beams
- Help you getting reimbursed

Beam measurements with the Embrace tile PI Embrace testing: Steve Torchinsky & al.

High-Tech wooden blockers for Elevation

High-Tech plastic wheels for Azimuth

First results (few hours ago!) 1 hour observation of the sun Raw data

F = [1.15 GHz, 1.25 GHz]

Now it's time for football !!

Oleg 1 – Julien 0

French Football coherent failure

