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Plans

● MeqTrees

● Measurement Equations

● Live Demos
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MeqTrees, What And Why 

● A software system for building
numerical models – simulation

● ...and solving for their
parameters – calibration

● Models are usually derived via
a measurement equation

– (we are, after all, in the measurement
business)

● ...and specified as trees
– because this is a very flexible way to specify low-level 

mathematical expressions
– the high-level user may be (blissfully) oblivious to this
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The Measurement Equation
(of a generic radio interferometer)

● First formulated by Hamaker, Bregman & Sault 
(and further developed by Hamaker.)

● A mathematically complete and elegant 
description of what you actually measure with 
an interferometer

– all we had before were hints and approximations
● Absolutely crucial for simulating and calibrating 

the next generation of radio telescopes; 
everything literally revolves around it.

● Like most great things, is utterly obvious in 
hindsight.
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A Wafer-Thin Slice of Physics:
EM Field Propagation

Pick an xyz  frame with z  along the direction of propagation.

The EM field can be described by the complex vector e=ex

ey


The fundamental assumption is LINEARITY :

1. Propagation through a medium is linear

⇒  can be fully described by a 2x2 complex matrix:

e'= J e i.e. e'x

e'y
= 

 ex

ey


2. Receptor voltages v=v x

v y
 are also linear w.r.t. e

⇒ v= J e
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Single Dish

e

v=J e

measured voltages are a complex 2-
vector (v

x
,v

y
) because we have two 

polarized feeds
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Interferometry

e

v p=J pe

vq=Jqe

v xx=〈vpx vqx
*
〉

v yy=〈vpy vqy
*
〉

v xy=〈vpx vqy
*
〉

v yx=〈vpy vqx
*
〉
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A Wafer-Thin Slice of Physics:
Correlations & Visibilities

An interferometer measures correlations  btw voltages vp ,vq:

vxx=〈vpxvqx
*
〉 ,v xy=〈vpxvqy

*
〉 ,vyx=〈vpyvqx

*
〉 ,vyy=〈vpyvqy

*
〉

It is convenient to represent these as a matrix product:

V pq=〈vp vq
†
〉=〈vpx

vpy
vqx

* vqy
*
〉=vxx vxy

vyx vyy


(〈 〉 : time/freq averaging;  † : conjugate-and-transpose)

V pq  is also called the visibility matrix.

Now let's assume that all radiation arrives from a single point,

and designate the "source" E.M. vector by e.
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A Wafer-Thin Slice of Physics:
The M.E. Emerges

Antennas p ,q  then measure: vp= Jp
e, vq= Jq

e

where Jp , Jq  are Jones matrices describing the signal paths

from the source to the antennas.

Then V pq=〈 Jpe Jqe
†
〉=〈 Jp ee†

 Jq
†
〉= Jp〈ee†

〉 Jq
†

(making use of AB
†
=B† A† , and assuming Jp  is constant over 〈 〉)

The inner quantity is known as the source coherency :

B=〈ee†
〉≡

1
2  IQ U±iV

U∓iV I−Q  ↔  I ,Q ,U ,V 

which we can also call the source brightness.  Thus:

V pq= JpB Jq
†
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And That's The Measurement 
Equation!

XX XY
YX YY 

measured

= jxx p jxy p

jyx p jyy p



Jp

1
2  IQ UiV

U− iV I− Q 
source

 jxx q
* jyx q

*

jxy q
* jyy q

* 


Jq

†

V pq= JpB Jq
†

● Or in more pragmatic terms:

● NB: it is also possible to write the ME with a circular 
polarization basis (RR, LL, etc.) We'll use linear 
polarization throughout.
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Jones Matrices

v= Jn Jn−1... J1e=∏
i=n

1

Jie= J e

   where J1 ... Jn  describes the full signal path.

● J is called a Jones matrix
● Total J is a product of individual Jones terms:

● Order of Js corresponds to the physical order of 
effects in your signal path.

● Matrices (usually) don't commute!
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Accumulating Jones Terms

If Jp , Jq  are products of Jones matrices: 

Jp= Jpn... Jp1 , Jq= Jqm... Jq1

Since AB
†
=B† A† , the M.E. becomes:

V pq= Jpn... Jp2 Jp1B Jq1
† Jq2

† ... Jqm
†

or in the "onion form":

V pq= Jpn... Jp2 Jp1B Jq1
†
 Jq2

†
... Jqm

†
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Why Is This Great?

● A complete and mathematically elegant framework 
for describing all kinds of signal propagation 
effects.

● ...including those at the antenna, e.g.:
– beam & receiver gain
– dipole rotation
– receptor cross-leakage

● Effortlessly incorporates polarization:
– think in terms of a B matrix and never worry 

about polarization again.
● Applies with equal ease to heterogeneous arrays, 

by using different Jones chains.



MeqTrees -- 3rd MCCT SKADS Training School, Paris

Why Is This Even Greater?

● Most effects have a very simple Jones 
representation:

gain: G= gx 0
0 gy




diagonal matrix

phase delay: e
−i 0
0 e−i


scalar matrix

≡e−i

rotation: cos −sin

sin cos ≡ Rot   (rotation matrix)

e.g. Faraday rotation: F=Rot 
RM


2

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Three Layers Of Intuition

● Physical
– Beam pattern of X and Y dipoles different, causes 

instrumental polarization of off-center sources
– Parallactic angle rotates angle of polarization

● Geometrical
– A Jones matrix is also a coordinate tranform
– gain is stretching => instrumental polarization 
– P.A. is a rotation
– The two do not commute

● Mathematical: matrix properties

G=gx 0
0 gy

 P=cos −sin

sin cos 
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ME ME ME

● The general formulation above is “The 
Measurement Equation” (of a generic radio 
interferometer...)

● When we want to simulate a specific 
instrument, we put specific Jones terms into 
the ME, and derive a measurement equation 
for that instrument.

● We then implement that specific m.e. in 
software (e.g. with MeqTrees)

● Existing packages implicitly use specific 
m.e.'s of their own.
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Observing a point source
with a perfect instrument

Even w/o instrumental effects, we still have empty space, so: 

V pq=K pBKq
†

K p is the phase shift  term, a scalar  Jones matrix:

K p=e
−ip 0

0 e−ip≡e−ip

● K accounts for the pathlength difference
– (and is what makes interferometry possible in the 

first place...)
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The (familiar?) Scalar Case

'Classic' (scalar) visibility of a source:

vpq=I e−ipq

where pq  is the interferometer phase difference:

pq=2upq lvpq mwpq n−1

This can be decomposed into per-antenna phases

by decomposing upq ,vpq ,wpq=upq=up−uq.

vpq=Ie−ip−q=e−ip I e−iq
*
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Implicit m.e.'s
(“What Would AIPS Do?”)

● Pre-ME packages use some implicit, specific, 
form of the ME

● For example, a perfect point source:

vxx ,pq=
1
2
IQe−ipq=e−ipIQe−iq*

vyy ,pq=
1
2
I−Qe−ipq=e−ipI−Qe−iq*

etc...

compare this to:

Vpq=KpBKq
† ,

with B=
1
2IQ 0

0 I−Q
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MeqTree Components

● meqbrowser
– GUI front-end, provides controls & visualization, 

● meqserver
– Computational back-end to do the heavy work

● TDL (Tree Definition Language)
– Python-based scripting language to define trees
– Runs on the browser side

● Frameworks
– High-level TDL frameworks for implementing 

M.E.s, simulation, calibration, etc.
● Ancillary tools (PURR, etc.)
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Group 1: Developers

Developers:
● overworked
● underpaid
● grouchy
● ...but covered in 

reflected glory

NB: this is not 
a picture of Oleg 
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Group 2: Power Users

Power Users:
● have more fun
● steal glory from 

developers

NB: this is also not 
a picture of Oleg 
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Group 3: Button-Pushing 
Astronomers

GO

GO FASTER

DO WHAT
I MEAN!

The ideal 
astronomer GUI 

(Tony Willis):
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The Two Cardinal Rules 
Of Doing Live Demos

1. Don't do live demos

2. Don't use unstable code
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Simulation Demo 1

● Run the browser (meqbrower.py)
● Start a meqserver from the browser
● Load a TDL script (sim.py)
● Setup options
– MS: WSRT
– sky model: single point source at center of field
– no Jones terms

● Compile script, run the tree to fill MS with 
simulated visibilities

● Run the imager to make a dirty image of the 
simulation
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PURR

● “PURR is Useful for Remembering 
Reductions”

● Disciplined people keep notes
● Undisciplined people write software
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Using PURR 

● The object of PURR is to make note-keeping 
as effortless as possible

● PURR watches your working directory for 
new or modified files (“data products”)

– configuration files, images, screenshots
● Offers to save them to a log
– ...along with descriptive comments
– And useful rendering of things like images

● Purrlogs are natively saved in HTML and 
may be immediately published or shared
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Example PURR Logs

Calibrating 3C147:
http://www.astron.nl/meqwiki-data/users/oms/

3C147-Calibration-Tutorial/purrlog/

Enthroned chicken:
http://www-astro.physics.ox.ac.uk/~ianh/

PURRLOGS/enthroned/

http://www.astron.nl/meqwiki-data/users/oms/
http://www-astro.physics.ox.ac.uk/~ianh/
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Introducing Complex Gains

● The “classic” view: each receiver has a 
complex amplitude and phase term 
(troposphere/electronics/etc.)

vxx ,pq=
1
2
IQe−ipq gx ,pgx,q

*

vyy ,pq=
1
2
I−Qe−ipq gy ,pgy,q

*

vxy ,pq=
1
2
UiV e−ipq gx ,pgy ,q

*

vyx ,pq=
1
2
U−iV e−ipq gy ,pgx ,q

*
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Gains: The ME View

V pq=GpK pBK q
† Gq

†

Gp=gx ,p 0
0 gy ,p


and with multiple sources:

V pq=Gp∑
s

K p
sBsKq

s†
Gq

†
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Simulation Demo 2

● We'll throw a G Jones into the mix
● The G Jones module provided here implements 

a simple error model: sine wave
● More realistic error models may be plugged in
– Implementation is just a bit of Python code

● Rerun sim.py 
– Grid model, 5x5 mJy sources at 5', 1 Jy at center
– enable G Jones phase error
– 120 degrees, 2-4 hours
– Add some noise

● Open bookmarks
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Visualization Everywhere

● One of the guiding principles of MeqTrees: 
everything can be visualized

– any intermediate calculation or result may be 
published into the browser and plotted

● But some visualizations are more interesting 
than others

– the script (i.e. its author) knows which these are
● Scripts can define “bookmarks” for 

interesting visualizations
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Calibration (Can Be Fun)
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Classic (Scalar) Selfcal

● Start with a sky model (point source at 
center, etc.)

● Solve for complex gains by fitting observed 
data:

● Iteratively refine sky model, rinse, repeat

v xx ,pq=
1
2
IQe−ipq gx ,pgx ,q

*
dxx ,pq

v yy ,pq=
1
2
I−Qe−ipq gy ,pgy ,q

*
dyy ,pq
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M.E.-based (Matrix) Selfcal

V pq=GpK pBKq
† Gq

†
Dpq

● Start with a sky model (point source at 
center, etc.)

● Solve for G Jones elements by fitting 
observed data:

● Iteratively refine sky model, rinse, repeat

● Arbitrary Jones terms may be added (and 
solved for!)
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Calibration Demo 1

● Load cal.py
– Use 2x2 data, diagonal terms only
– Enable calibrate & correct
– Use sky model with 1 source at center
– Enable G Jones (FullRealImag)

● Open bookmarks for G and for corrected 
residuals

● Solve for G diagonal terms
– Subtiling of 1 in time
– Tile size 20

● Make an image of the corrected data
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M.E. Calibration Terminology

Dpq : observed visibilities ('data')

K pBKq
† : sky model  (or ∑K p

sBs Kq
s† )

V pq=GpK pBKq
† Gq

† : corrupted model ('predict')

Dpq−V pqmin : calibration

Dpq−V pq : corrupted residuals

Gp
−1DpqGq

−1† : corrected data

Gp
−1Dpq−V pqGq

−1† : corrected residuals
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Dpq(data) Gp
−1DpqGq

−1 †

(corrected data)

Dpq−V pq

(corrupted residuals)

Gp
−1
Dpq−V pqGq

−1†

(corrected residuals)

Jy
level

mJy
level
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Major Loop Of Calibration

● Make initial sky model
● Calibrate, subtract sky model, and generate 

corrected residuals
● Use corrected residuals (deconvolution, etc.) 

to improve sky model
● Repeat until satisfied

● What is satisfaction?
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Calibration (Noordam Definition)
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Real-Life Residuals

● Real-life residuals are always contaminated 
by imperfect subtraction of sources (due to 
calibration error)

● Causes of error:
– Contamination from sources

not included in sky model
– Imperfect instrument models
– RFI, insufficient flagging

● Error level here ~0.01 mJy
(dynamic range: 1:100,000)
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The Classical Approach 
To Polarization
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Classical Equation For
Polarization Selfcal

(With thanks to Huib Jan van Langevelde)
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The Measurement Equation
For Polarization Selfcal

Vpq=GpKpBKq
†Gq

†

Gp=g11,p g ,12 p

g21,p g22, p


● The only difference w.r.t. the previous m.e. is 
that the G matrix has off-diagonal terms.

● Polarization not so scary after all!



MeqTrees -- 3rd MCCT SKADS Training School, Paris

A Case Study: Dipole Projection

● Aperture array with fixed NS 
and EW dipoles

● Projection of dipoles onto 
tangential plane determines 
sensitivity to polarization

● Equivalent to conventional 
dipole pair only at zenith

N

S

W E

=90˚

=45˚ =45˚

=45˚ =15˚

=90˚
=15˚
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Dipole Projection Jones Matrix

● Projection can be described by a Jones 
matrix:

● Function of azimuth/elevation, so:
– Varies with time 
– Varies with source position, given a wide field
– Varies with station position, given a large array

L ,=cos −sinsin

sin cossin 
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Simulation Demo 3

● We'll simulate dipole projection
● Run sim2.py
● Sky model: 5x5 cross at 30'
● Enable L Jones
– Per-source but not per-station

● Open bookmarks to check az/el and L Jones
● Make an IQUV image
– Note distortions in I map due to time-varying 

sensitivity of the dipoles
– Note instrumental QU polarization – direction-

dependent! 
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Stokes I map.

Note distortions in source 
shape. These are caused by 
time-varying sensitivity of the 
dipoles to total flux.

Peak flux is ~.6 Jy (would be 
1 Jy without this effect!) 

Q and U maps. 
Note instrumental 

polarization

(direction-
dependent!)

Peak flux is 
±0.1 Jy
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Calibrating  For Dipole 
Projection?

V pq=Gp∑
s

Lp
sK p

sBsKq
s†Lq

s†
Gq

†

● The ME we are using is:

● For calibration, we can use the same ME and 
solve for G Jones again

● No need to solve for L Jones since we know 
it analytically

– we simply incorporate it into the ME at the predict 
stage

● But can we really correct for it?
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Problem 1: 
Inverting Jones Terms

● The ME allows us to write out 
corrected visibilities or 
residuals:

● What happens if we can't 
invert L?

N

S

W E

=90˚

=45˚ =45˚

=45˚ =15˚

=90˚
=15˚

Lp
−1DpqLq

−1†

Lp
−1 Dpq−V pqLq

−1†
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Problem 2: Correcting For 
Direction-Dependent Effects

ideal sky is Spq=∑
s

K p
sBsK q

s†

observed data is: 

Dpq=Gp ∑
s

K p
sBs K q

s †
Gq

†

plus noise

calibration yields Gp≈Gp ,

corrected data is:
Gp
−1Dpq

Gq
†−1

≈Spq

observed data is: 

Dpq=Gp∑
s

Lp
s K p

s Bs Kq
s †Lq

s †
Gq

†

plus noise

calibration yields Gp≈Gp ,

corrected data is:
Gp
−1Dpq

Gq
†−1

≠Spq

at best we can pick a directions0:

Lp
s0−1 Gp

−1Dpq
Gq

†−1Lq
s0†−1

w/o DD effects with DD effects
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Demo: Correcting 
For a Single Direction

● In general, visibility data can only be “corrected” for 
a single direction on the sky.

● Hence, e.g., facet imaging.
● Bhatnagar (EVLA Memo 100) suggests an 

approximate method to apply on-the-fly corrections 
during imaging)

● Correction Demo: 
– Run cal2.py
– Enable correct, disable calibrate and subtract
– Apply L Jones correction (for center of field) and 

make an image
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Stokes I map. 

Distortions in source shape no longer 
visible (though from the math we 
know they must remain, on a low 
level.) Peak flux is 1 Jy.

Q and U maps. 

Note how instrumental polarization 
corrects perfectly at center, but 
increases towards edge of field.

Peak flux is ±50 mJy.
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Dealing With D-D Effects

● The same issue arises with other D-D 
effects:

– Ionosphere
– Beam shapes & pointing errors

● Becoming critical for today's SKA 
pathfinders, and will be even more so for the 
SKA itself

● Solution: subtract sources bright enough to 
cause trouble

– Since we can predict them “perfectly” (within the 
limits of calibration error)
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Example: 
WSRT Off-Axis Effects

● Single band (56 channels)
● 298 sources subtracted
● σ ~ 30uJy
● dominated by residuals 

from imperfectly-subtracted 
fainter sources

● ...which are caused by:
(a) imperfect sky model (more 

deconvolving would help)
(b) image plane effects: 

pointing errors, tropospheric 
refraction, ...
– no direct cure in 

NEWSTAR

3C147, 22 Jy
polarized, 40 mJy

35 mJy20 mJy
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Differential Gains

● We can write an m.e. with differential gains:

Vpq= Gp
gain & bandpass ∑

s

Ep
s

differential
    gain

Ep
s

beam

Xpq

   source
coherency

Eq
s†Eq

s†


sum over sources

Gq
†

Ep
s  is frequency-independent, slowly varying in time.

Solvable for a handful of "troublesome" sources,

and set to unity for the rest.
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Flyswatter I

3C147, 22 Jy
polarized, 40 mJy

35 mJy20 mJy

● The “before” image.
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Flyswatter II

3C147, 22 Jy
polarized, 40 mJy

35 mJy20 mJy

● Solved for ΔE for
5 sources.
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Flyswatter III

3C147, 22 Jy
polarized, 40 mJy

35 mJy20 mJy

● Solved for ΔE for
10 sources.
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Nancay Workshop, SSSC

● MCCT SKADS Workshop
“Towards 3rd Generation Calibration In Radio 
Astronomy”
Nancay, Sep 27 – Oct 10, 2009
http://mcct.skads-eu.org/nancay/nancay-mcct.php

● Qualification via the SKADS Set Of Standard 
Challenges:
http://www-astro.physics.ox.ac.uk/~ianh/SSSC/index.html
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The End!
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