MeqTrees, Measurement Equations, And All That

O. Smirnov (ASTRON)

Plans

- MeqTrees
- Measurement Equations
- Live Demos

MeqTrees, What And Why

- A software system for building numerical models - simulation
- ...and solving for their
parameters - calibration
- Models are usually derived via a measurement equation
- (we are, after all, in the measurement business)
- ...and specified as trees
- because this is a very flexible way to specify low-level mathematical expressions
- the high-level user may be (blissfully) oblivious to this

The Measurement Equation (of a generic radio interferometer)

- First formulated by Hamaker, Bregman \& Sault (and further developed by Hamaker.)
- A mathematically complete and elegant description of what you actually measure with an interferometer
- all we had before were hints and approximations
- Absolutely crucial for simulating and calibrating the next generation of radio telescopes; everything literally revolves around it.
- Like most great things, is utterly obvious in hindsight.

A Wafer-Thin Slice of Physics: EM Field Propagation

Pick an $x y z$ frame with z along the direction of propagation.
The EM field can be described by the complex vector $\vec{e}=\binom{e_{x}}{e_{y}}$
The fundamental assumption is LINEARITY:

1. Propagation through a medium is linear
\Rightarrow can be fully described by a 2×2 complex matrix:

$$
\vec{e}^{\prime}=\boldsymbol{J} \quad \text { i.e. } \quad\left(\begin{array}{l}
e^{\prime}{ }_{x} \\
e^{\prime} \\
y
\end{array}\right)=\left(\begin{array}{ll}
\square & \square \\
\square & \square
\end{array}\right)\binom{e_{x}}{e_{y}}
$$

2. Receptor voltages $\vec{v}=\binom{v_{x}}{v_{y}}$ are also linear w.r.t. \vec{e}

$$
\Rightarrow \vec{v}=J \vec{e}
$$

Single Dish

Interferometry

A Wafer-Thin Slice of Physics: Correlations \& Visibilities

An interferometer measures correlations btw voltages \vec{v}_{p}, \vec{v}_{q} :

$$
v_{x x}=\left\langle v_{p x} v_{q x}^{*}\right\rangle, v_{x y}=\left\langle v_{p x} v_{q y}^{*}\right\rangle, v_{y x}=\left\langle v_{p y} v_{q x}^{*}\right\rangle, v_{y y}=\left\langle v_{p y} v_{q y}^{*}\right\rangle
$$

It is convenient to represent these as a matrix product:

$$
\boldsymbol{V}_{p q}=\left\langle\vec{v}_{p} \vec{v}_{q}^{+}\right\rangle=\left\langle\binom{ v_{p x}}{v_{p y}}\left(v_{q x}^{*} v_{q y}^{*}\right)\right\rangle=\left(\begin{array}{ll}
v_{x x} & v_{x y} \\
v_{y x} & v_{y y}
\end{array}\right)
$$

(〈〉: time/freq averaging; \dagger : conjugate-and-transpose) $\boldsymbol{V}_{p q}$ is also called the visibility matrix.

Now let's assume that all radiation arrives from a single point, and designate the "source" E.M. vector by \vec{e}.

A Wafer-Thin Slice of Physics: The M.E. Emerges

Antennas p, q then measure: $\vec{v}_{p}=J_{p} \vec{e}, \quad \vec{v}_{q}=J_{q} \vec{e}$
where $\boldsymbol{J}_{p}, \boldsymbol{J}_{q}$ are Jones matrices describing the signal paths from the source to the antennas.

$$
\text { Then } \boldsymbol{V}_{p q}=\left\langle\left(\boldsymbol{J}_{p} \vec{e}\right)\left(\boldsymbol{J}_{q} \vec{e}\right)^{\dagger}\right\rangle=\left\langle\boldsymbol{J}_{p}\left(\vec{e} \vec{e}^{+}\right) \boldsymbol{J}_{q}^{\dagger}\right\rangle=\boldsymbol{J}_{p}\left\langle\vec{e} \vec{e}^{\dagger}\right\rangle \boldsymbol{J}_{q}^{\dagger}
$$ (making use of $(\boldsymbol{A B})^{\dagger}=\boldsymbol{B}^{\dagger} \boldsymbol{A}^{\dagger}$, and assuming \boldsymbol{J}_{ρ} is constant over \rangle)

The inner quantity is known as the source coherency:

$$
\boldsymbol{B}=\left\langle\vec{e} \vec{e}^{+}\right\rangle \equiv \frac{1}{2}\left(\begin{array}{cc}
1+Q & U \pm i V \\
U \mp i V & I-Q
\end{array}\right) \leftrightarrow(I, Q, U, V)
$$

which we can also call the source brightness. Thus:

$$
\boldsymbol{V}_{p q}=J_{p} \boldsymbol{B} \boldsymbol{J}_{q}^{\dagger}
$$

And That's The Measurement Equation!

$$
\boldsymbol{V}_{p q}=\boldsymbol{J}_{p} \boldsymbol{B} \boldsymbol{J}_{q}^{\dagger}
$$

- Or in more pragmatic terms:

- NB: it is also possible to write the ME with a circular polarization basis (RR, LL, etc.) We'll use linear polarization throughout.

Jones Matrices

- J is called a Jones matrix
- Total \boldsymbol{J} is a product of individual Jones terms:

$$
\vec{v}=\boldsymbol{J}_{n}\left(\boldsymbol{J}_{n-1}\left(\ldots \boldsymbol{J}_{1} \vec{e}\right)\right)=\left(\prod_{i=n}^{1} \boldsymbol{J}_{i}\right) \vec{e}=\boldsymbol{J} \overrightarrow{\boldsymbol{e}}
$$

where $\boldsymbol{J}_{1} \ldots \boldsymbol{J}_{n}$ describes the full signal path.

- Order of Js corresponds to the physical order of effects in your signal path.
- Matrices (usually) don't commute!

Accumulating Jones Terms

If $\boldsymbol{J}_{p}, \boldsymbol{J}_{q}$ are products of Jones matrices:

$$
\boldsymbol{J}_{p}=\boldsymbol{J}_{p n} \ldots \boldsymbol{J}_{p 1}, \quad \boldsymbol{J}_{q}=\boldsymbol{J}_{q m} \ldots \boldsymbol{J}_{q 1}
$$

Since $(\boldsymbol{A B})^{\dagger}=\boldsymbol{B}^{\dagger} \boldsymbol{A}^{\dagger}$, the M.E. becomes:

$$
\boldsymbol{V}_{p q}=\boldsymbol{J}_{p n} \ldots \boldsymbol{J}_{p 2} \boldsymbol{J}_{p 1} \boldsymbol{B} \boldsymbol{J}_{q 1}^{\dagger} \boldsymbol{J}_{q 2}^{\dagger} \ldots \boldsymbol{J}_{q m}^{\dagger}
$$

or in the "onion form":

$$
\boldsymbol{V}_{p q}=\boldsymbol{J}_{p n}\left(\ldots\left(\boldsymbol{J}_{p 2}\left(\boldsymbol{J}_{p 1} \boldsymbol{B} \boldsymbol{J}_{q 1}^{\dagger}\right) \boldsymbol{J}_{q 2}^{\dagger}\right) \ldots\right) \boldsymbol{J}_{q m}^{\dagger}
$$

Why Is This Great?

- A complete and mathematically elegant framework for describing all kinds of signal propagation effects.
- ...including those at the antenna, e.g.:
- beam \& receiver gain
- dipole rotation
- receptor cross-leakage
- Effortlessly incorporates polarization:
- think in terms of a B matrix and never worry about polarization again.
- Applies with equal ease to heterogeneous arrays, by using different Jones chains.

Why Is This Even Greater?

- Most effects have a very simple Jones representation:
gain: $\boldsymbol{G}=\overbrace{\left(\begin{array}{cc}g_{x} & 0 \\ 0 & g_{y}\end{array}\right)}^{\text {diagonal matrix }}$ phase delay: $\overbrace{\left(\begin{array}{cc}e^{-i \phi} & 0 \\ 0 & e^{-i \phi}\end{array}\right)}^{\text {scalar matrix }}=e^{-i \phi}$
rotation: $\left(\begin{array}{cc}\cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma\end{array}\right) \equiv \operatorname{Rot}(\gamma)$ (rotation matrix)
e.g. Faraday rotation: $\boldsymbol{F}=\operatorname{Rot}\left(\frac{\mathrm{RM}}{v^{2}}\right)$

Three Layers Of Intuition

- Physical
- Beam pattern of X and Y dipoles different, causes instrumental polarization of off-center sources
- Parallactic angle rotates angle of polarization
- Geometrical
- A Jones matrix is also a coordinate tranform
- gain is stretching => instrumental polarization
- P.A. is a rotation
- The two do not commute
- Mathematical: matrix properties

$$
\boldsymbol{G}=\left(\begin{array}{cc}
g_{x} & 0 \\
0 & g_{y}
\end{array}\right) \quad \boldsymbol{P}=\left(\begin{array}{cc}
\cos \gamma & -\sin \gamma \\
\sin \gamma & \cos \gamma
\end{array}\right)
$$

ME ME ME

- The general formulation above is "The Measurement Equation" (of a generic radio interferometer...)
- When we want to simulate a specific instrument, we put specific Jones terms into the ME, and derive a measurement equation for that instrument.
- We then implement that specific m.e. in software (e.g. with MeqTrees)
- Existing packages implicitly use specific m.e.'s of their own.

Observing a point source with a perfect instrument

Even w/o instrumental effects, we still have empty space, so:

$$
\boldsymbol{V}_{p q}=\boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{+}
$$

\boldsymbol{K}_{p} is the phase shift term, a scalar Jones matrix:

$$
\boldsymbol{K}_{p}=\left(\begin{array}{cc}
e^{-i \phi_{p}} & 0 \\
0 & e^{-i \phi_{p}}
\end{array}\right) \equiv e^{-i \phi_{p}}
$$

- K accounts for the pathlength difference
- (and is what makes interferometry possible in the first place...)

The (familiar?) Scalar Case

'Classic' (scalar) visibility of a source:

$$
v_{p q}=l e^{-i \phi_{p q}}
$$

where $\phi_{p q}$ is the interferometer phase difference:

$$
\phi_{p q}=2 \pi\left(u_{p q} l+v_{p q} m+w_{p q}(n-1)\right)
$$

This can be decomposed into per-antenna phases by decomposing $\left(u_{p q}, v_{p q}, w_{p q}\right)=\vec{u}_{p q}=\vec{u}_{p}-\vec{u}_{q}$.

$$
v_{p q}=\| e^{-i\left(\phi_{p}-\phi_{q}\right)}=e^{-i \phi_{p}} /\left(e^{-i \phi_{q}}\right)^{*}
$$

Implicit m.e.'s ("What Would AIPS Do?")

- Pre-ME packages use some implicit, specific, form of the ME
- For example, a perfect point source:

$$
\begin{gathered}
v_{x x, p q}=\frac{1}{2}(I+Q) e^{-i \phi_{p q}}=e^{-i \phi_{p}}(I+Q)\left(e^{-i \phi_{q}}\right)^{*} \\
v_{y y, p q}=\frac{1}{2}(I-Q) e^{-i \phi_{p q}}=e^{-i \phi_{p}}(I-Q)\left(e^{-i \phi_{q}}\right)^{*} \\
\text { etc... }
\end{gathered}
$$

compare this to:

$$
\boldsymbol{V}_{p q}=\boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{\dagger},
$$

$$
\text { with } B=\frac{1}{2}\left(\begin{array}{cc}
I+Q & 0 \\
0 & I-Q
\end{array}\right)
$$

MeqTree Components

- meqbrowser
- GUI front-end, provides controls \& visualization,
- meqserver
- Computational back-end to do the heavy work
- TDL (Tree Definition Language)
- Python-based scripting language to define trees
- Runs on the browser side
- Frameworks
- High-level TDL frameworks for implementing M.E.s, simulation, calibration, etc.
- Ancillary tools (PURR, etc.)

Group 1: Developers

Group 2: Power Users

Power Users:

- have more fun
- steal glory from developers

NB: this is also not a picture of Oleg

Group 3: Button-Pushing Astronomers

The ideal astronomer GUI (Tony Willis):

GO

GO FASTER

DO WHAT I MEAN!

The Two Cardinal Rules Of Doing Live Demos

1. Don't do live demos
2. Don't use unstable code

Simulation Demo 1

- Run the browser (meqbrower.py)
- Start a meqserver from the browser
- Load a TDL script (sim.py)
- Setup options
- MS: WSRT
- sky model: single point source at center of field
- no Jones terms
- Compile script, run the tree to fill MS with simulated visibilities
- Run the imager to make a dirty image of the simulation

PURR

- "PURR is Useful for Remembering Reductions"
- Disciplined people keep notes
- Undisciplined people write software

Using PURR

- The object of PURR is to make note-keeping as effortless as possible
- PURR watches your working directory for new or modified files ("data products")
- configuration files, images, screenshots
- Offers to save them to a log
- ...along with descriptive comments
- And useful rendering of things like images
- Purrlogs are natively saved in HTML and may be immediately published or shared

Example PURR Logs

Calibrating 3C147:

http://www.astron.nl/meqwiki-data/users/oms/ 3C147-Calibration-Tutorial/purrlog/

Enthroned chicken:
http://www-astro.physics.ox.ac.uk/~ianh/
PURRLOGS/enthroned/

Introducing Complex Gains

- The "classic" view: each receiver has a complex amplitude and phase term (troposphere/electronics/etc.)

$$
\begin{gathered}
v_{x x, p q}=\frac{1}{2}(I+Q) e^{-i \phi_{p q}} g_{x, p} g_{x, q}^{*} \\
v_{y y, p q}=\frac{1}{2}(I-Q) e^{-i \phi_{p q}} g_{y, p} g_{y, q}^{*} \\
v_{x y, p q}=\frac{1}{2}(U+i V) e^{-i \phi_{p q}} g_{x, p} g_{y, q}^{*} \\
v_{y x, p q}=\frac{1}{2}(U-i V) e^{-i \phi_{p p}} g_{y, p} g_{x, q}^{*}
\end{gathered}
$$

Gains: The ME View

$$
\begin{gathered}
\boldsymbol{V}_{p q}=\boldsymbol{G}_{p} \boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{+} \boldsymbol{G}_{q}^{+} \\
\boldsymbol{G}_{p}=\left(\begin{array}{cc}
g_{x, p} & 0 \\
0 & g_{y, p}
\end{array}\right)
\end{gathered}
$$

and with multiple sources:

$$
\boldsymbol{V}_{p q}=\boldsymbol{G}_{p}\left(\sum_{s} \boldsymbol{K}_{p}^{(s)} \boldsymbol{B}^{(s)} \boldsymbol{K}_{q}^{(s) \dagger}\right) \boldsymbol{G}_{q}^{\dagger}
$$

Simulation Demo 2

- We'll throw a G Jones into the mix
- The G Jones module provided here implements a simple error model: sine wave
- More realistic error models may be plugged in
- Implementation is just a bit of Python code
- Rerun sim.py
- Grid model, $5 x 5$ mJy sources at 5', 1 Jy at center
- enable G Jones phase error
- 120 degrees, 2-4 hours
- Add some noise
- Open bookmarks

Visualization Everywhere

- One of the guiding principles of MeqTrees: everything can be visualized
- any intermediate calculation or result may be published into the browser and plotted
- But some visualizations are more interesting than others
- the script (i.e. its author) knows which these are
- Scripts can define "bookmarks" for interesting visualizations

Calibration (Can Be Fun)

Personnel stack 4,000 boxes of TNT, at 50 pounds a box, to make a stack of 100 tons of TNT for the May 7, 1945, calibration test.

Classic (Scalar) Selfcal

- Start with a sky model (point source at center, etc.)
- Solve for complex gains by fitting observed data:

$$
\begin{aligned}
& v_{x x, p q}=\frac{1}{2}(I+Q) e^{-i \phi_{p q}} g_{x, p} g_{x, q}^{*} \rightarrow d_{x x, p q} \\
& v_{y y, p q}=\frac{1}{2}(I-Q) e^{-i \phi_{p q}} g_{y, p} g_{y, q}^{*} \rightarrow d_{y y, p q}
\end{aligned}
$$

- Iteratively refine sky model, rinse, repeat

M.E.-based (Matrix) Selfcal

- Start with a sky model (point source at center, etc.)
- Solve for \mathbf{G} Jones elements by fitting observed data:

$$
\boldsymbol{V}_{p q}=\boldsymbol{G}_{p} \boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{\dagger} \mathbf{G}_{q}^{\dagger} \rightarrow \boldsymbol{D}_{p q}
$$

- Iteratively refine sky model, rinse, repeat
- Arbitrary Jones terms may be added (and solved for!)

Calibration Demo 1

- Load cal.py
- Use 2x2 data, diagonal terms only
- Enable calibrate \& correct
- Use sky model with 1 source at center
- Enable G Jones (FullReallmag)
- Open bookmarks for G and for corrected residuals
- Solve for G diagonal terms
- Subtiling of 1 in time
- Tile size 20
- Make an image of the corrected data

M.E. Calibration Terminology

$\boldsymbol{D}_{p q}$
$\boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{\dagger}$
$\boldsymbol{V}_{p q}=\boldsymbol{G}_{p} \boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{\dagger} \boldsymbol{G}_{q}^{\dagger}$
$\boldsymbol{D}_{p q}-\boldsymbol{V}_{p q} \rightarrow$ min
$\boldsymbol{D}_{p q}-\boldsymbol{V}_{p q}$
$\boldsymbol{G}_{p}^{-1} \boldsymbol{D}_{p q} \boldsymbol{G}_{q}^{-1+}$
$\boldsymbol{G}_{p}^{-1}\left(\boldsymbol{D}_{p q}-\boldsymbol{V}_{p q}\right) \boldsymbol{G}_{q}^{-1 \dagger}$
: corrupted residuals
: calibration
: corrected data
: corrected residuals
$\boldsymbol{D}_{p q}$ (data)

$\boldsymbol{G}_{\rho}^{-1} \boldsymbol{D}_{p q} \boldsymbol{G}_{q}^{-1+}$
(corrected data)

$\boldsymbol{D}_{p q}-\boldsymbol{V}_{p q}$ (corrupted residuals)

Jy
level
mJy
level

$$
\boldsymbol{G}_{p}^{-1}\left(\boldsymbol{D}_{p q}-\boldsymbol{V}_{p q}\right) \boldsymbol{G}_{q}^{-1+}
$$ (corrected residuals)

Major Loop Of Calibration

- Make initial sky model
- Calibrate, subtract sky model, and generate corrected residuals
- Use corrected residuals (deconvolution, etc.) to improve sky model
- Repeat until satisfied
-What is satisfaction?

Calibration (Noordam Definition)

Real-Life Residuals

- Real-life residuals are always contaminated by imperfect subtraction of sources (due to calibration error)
- Causes of error:
- Contamination from sources not included in sky model
- Imperfect instrument models
- RFI, insufficient flagging
- Error level here ~0.01 mJy (dynamic range: 1:100,000)

The Classical Approach To Polarization

Classical Equation For Polarization Selfcal

$$
\begin{gathered}
R_{j} R_{k}^{*}=G_{R j} G_{R k}^{*}\left[E_{R j} E_{R k}^{*} e^{-i\left(\phi_{j}-\phi_{k}\right)}+D_{R k}^{*} E_{R j} E_{L k}^{*} e^{-i\left(\phi_{j}+\phi_{k}\right)}+\right. \\
\left.D_{R j} E_{L j} E_{R k}^{*} e^{i\left(\phi_{j}+\phi_{k}\right)}+D_{R j} D_{R k}^{*} E_{L j} E_{L k}^{*} e^{i\left(\phi_{j}-\phi_{k}\right)}\right] \\
R_{j} L_{k}^{*}=G_{R j} G_{L k}^{*}\left[E_{R j} E_{L k}^{*} e^{-i\left(\phi_{j}+\phi_{k}\right)}+D_{L k}^{*} E_{R j} E_{R k}^{*} e^{-i\left(\phi_{j}-\phi_{k}\right)}+\right. \\
\left.D_{R j} E_{L j} E_{L k}^{*} e^{i\left(\phi_{j}-\phi_{k}\right)}+D_{R j} D_{L k}^{*} E_{L j} E_{R k}^{*} e^{i\left(\phi_{j}+\phi_{k}\right)}\right] .
\end{gathered}
$$

(With thanks to Huib Jan van Langevelde)

The Measurement Equation For Polarization Selfcal

$$
\begin{aligned}
\boldsymbol{V}_{p q} & =\boldsymbol{G}_{p} \boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{+} \boldsymbol{G}_{q}^{+} \\
\boldsymbol{G}_{p} & =\left(\begin{array}{ll}
g_{11, p} & g_{1 r, p} \\
g_{21, p} & g_{22, p}
\end{array}\right)
\end{aligned}
$$

- The only difference w.r.t. the previous m.e. is that the \mathbf{G} matrix has off-diagonal terms.
- Polarization not so scary after all!

A Case Study: Dipole Projection

- Aperture array with fixed NS and EW dipoles
- Projection of dipoles onto
 tangential plane determines sensitivity to polarization
- Equivalent to conventional dipole pair only at zenith

Dipole Projection Jones Matrix

- Projection can be described by a Jones matrix:

$$
\boldsymbol{L}(\varphi, \lambda)=\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \sin \lambda \\
\sin \varphi & \cos \varphi \sin \lambda
\end{array}\right)
$$

- Function of azimuth/elevation, so:
- Varies with time
- Varies with source position, given a wide field
- Varies with station position, given a large array

Simulation Demo 3

- We'll simulate dipole projection
- Run sim2.py
- Sky model: 5x5 cross at 30'
- Enable L Jones
- Per-source but not per-station
- Open bookmarks to check az/el and L Jones
- Make an IQUV image
- Note distortions in I map due to time-varying sensitivity of the dipoles
- Note instrumental QU polarization - directiondependent!

Stokes I map.
Note distortions in source shape. These are caused by time-varying sensitivity of the dipoles to total flux.

Peak flux is ~. 6 Jy (would be 1 Jy without this effect!)

Q and U maps.
Note instrumental polarization (directiondependent!)
Peak flux is $\pm 0.1 \mathrm{Jy}$

Calibrating For Dipole Projection?

- The ME we are using is:

$$
\boldsymbol{V}_{p q}=\boldsymbol{G}_{p}\left(\sum_{s} \boldsymbol{L}_{p}^{(s)} \boldsymbol{K}_{p}^{(s)} \boldsymbol{B}^{(s)} \boldsymbol{K}_{q}^{(s) t} \boldsymbol{L}_{q}^{(s) t}\right) \boldsymbol{G}_{q}^{\dagger}
$$

- For calibration, we can use the same ME and solve for G Jones again
- No need to solve for L Jones since we know it analytically
- we simply incorporate it into the ME at the predict stage
- But can we really correct for it?

Problem 1: Inverting Jones Terms

- The ME allows us to write out corrected visibilities or residuals:

$$
\}^{\lambda=90^{\circ}}
$$

$$
\begin{gathered}
\mathbf{L}_{p}^{-1} \boldsymbol{D}_{p q} \boldsymbol{L}_{q}^{-1+} \\
\boldsymbol{L}_{p}^{-1}\left(\boldsymbol{D}_{p q}-\boldsymbol{V}_{p q} \boldsymbol{L}_{q}^{-1+}\right.
\end{gathered}
$$

- What happens if wé can't invert L ?

Problem 2: Correcting For Direction-Dependent Effects

ideal sky is $\boldsymbol{S}_{p q}=\sum_{s} \boldsymbol{K}_{p}^{(s)} \boldsymbol{B}^{(s)} \boldsymbol{K}_{q}^{(s) t}$
w/o DD effects with DD effects

observed data is:
$\boldsymbol{D}_{p q}=\boldsymbol{G}_{p}\left(\sum_{s} \boldsymbol{K}_{p}^{(s)} \boldsymbol{B}^{(s)} \boldsymbol{K}_{q}^{(s) t}\right) \boldsymbol{G}_{q}^{\dagger}$
(plus noise)
calibration yields $\tilde{\boldsymbol{G}}_{p} \approx \boldsymbol{G}_{p}$, corrected data is:

$$
\tilde{\boldsymbol{G}}_{p}^{-1} \boldsymbol{D}_{p q} \tilde{\boldsymbol{G}}_{q}^{t-1} \approx \boldsymbol{S}_{p q}
$$

observed data is:

$$
\boldsymbol{D}_{p q}=\boldsymbol{G}_{p}\left(\sum_{s} \boldsymbol{L}_{p}^{(s)} \boldsymbol{K}_{p}^{(s)} \boldsymbol{B}^{(s)} \boldsymbol{K}_{q}^{(s) t} \boldsymbol{L}_{q}^{(s) t}\right) \mathbf{G}_{q}^{\dagger}
$$

(plus noise)
calibration yields $\tilde{\boldsymbol{G}}_{p} \approx \boldsymbol{G}$, corrected data is:

$$
\tilde{\boldsymbol{G}}_{p}^{-1} \boldsymbol{D}_{p q} \tilde{\boldsymbol{G}}_{q}^{t-1} \neq \boldsymbol{S}_{p q}
$$

at best we can pick a direction s_{0} :

$$
\boldsymbol{L}_{p}^{\left(s_{0}\right)-1} \tilde{\boldsymbol{G}}_{p}^{-1} \boldsymbol{D}_{p q} \tilde{\boldsymbol{G}}_{q}^{t-1} \boldsymbol{L}_{q}^{\left(s_{0}\right) t-1}
$$

Demo: Correcting For a Single Direction

- In general, visibility data can only be "corrected" for a single direction on the sky.
- Hence, e.g., facet imaging.
- Bhatnagar (EVLA Memo 100) suggests an approximate method to apply on-the-fly corrections during imaging)
- Correction Demo:
- Run cal2.py
- Enable correct, disable calibrate and subtract
- Apply L Jones correction (for center of field) and make an image

Stokes I map.
Distortions in source shape no longer visible (though from the math we know they must remain, on a low level.) Peak flux is 1 Jy .

Q and U maps.
Note how instrumental polarization corrects perfectly at center, but increases towards edge of field.

Peak flux is $\pm 50 \mathrm{mJy}$.

Dealing With D-D Effects

- The same issue arises with other D-D effects:
- Ionosphere
- Beam shapes \& pointing errors
- Becoming critical for today's SKA pathfinders, and will be even more so for the SKA itself
- Solution: subtract sources bright enough to cause trouble
- Since we can predict them "perfectly" (within the limits of calibration error)

Example: WSRT Off-Axis Effects

Differential Gains

- We can write an m.e. with differential gains:

sum over sources
$\Delta \boldsymbol{E}_{p}^{(s)}$ is frequency-independent, slowly varying in time.
Solvable for a handful of "troublesome" sources, and set to unity for the rest.

Flyswatter I

- The "before" image.

Flyswatter II

- Solved for ΔE for 5 sources.

Flyswatter III

- Solved for ΔE for 10 sources.

Nancay Workshop, SSSC

- MCCT SKADS Workshop "Towards $3^{\text {rd }}$ Generation Calibration In Radio Astronomy" Nancay, Sep 27 - Oct 10, 2009 http://mcct.skads-eu.org/nancay/nancay-mcct.php
- Qualification via the SKADS Set Of Standard Challenges: http://www-astro.physics.ox.ac.uk/~ianh/SSSC/index.html

The End!

