

Intro1: MeqTree Basics 1

Revised Schedule

 9:00 ~ 10:30 session 1
10:30 ~ 11:00 coffee
11:00 ~ 12:30 session 2
12:30 ~ 13:30 lunch
13:30 ~ 15:00 session 3
15:00 ~ 15:30 coffee
15:30 ~ 17:30 session 4
17:30 ~ 9:30 beer & homework

ME1: ME Of A Point Source 2

ME1: Measurement Equation
Of a (Polarized) Point Source

Objectives:
� Aligning our terminology!
� Mapping your existing intuition about

interferometry onto ME concepts
� Implementing some MEs using MeqTrees.

ME1: ME Of A Point Source 3

The Measurement Equation:
Putting the �Meq� into MeqTrees!

� The Measurement Equation tells you what
you can expect to observe with an
interferometer, given a sky and the
properties of your instrument.

� Absolutely crucial for simulating and
calibrating the next generation of radio
telescopes; everything literally revolves
around it.

Therefore: no-one gets any beer tonight
until we achieve full harmony and
understanding!

ME1: ME Of A Point Source 4

Survey Results...

1. Radio interferometry...
[1] heard of it
[11] basic knowledge
[6] do it all the time
[3] I was doing it when Oleg was in diapers

Therefore...
...you know practically everything about the
Measurement Equation!

ME1: ME Of A Point Source 5

On The Other Hand...

3. The Measurement Equation...
[1] never heard of it
[2] heard of it
[10] know what it looks like, never actually used it
[6] know it pretty well
[2] I use Jones matrices to do my taxes

� Conclusion:
The ME is no longer one of these unknown
knowns -- the things we don't know we
know -- that Donald Rumsfeld didn't know
he knew.

ME1: ME Of A Point Source 6

A Wafer-Thin Slice of Physics:

EM Field Propagation

Pick an xyz frame with z along the direction of propagation.

The EM field can be described by the complex vector �e=�e x

e y
�

The fundamental assumption is LINEARITY :

1. Propagation through a medium is linear

� can be fully described by a 2x2 complex matrix:

�e '= J �e i.e. �e 'x

e 'y
�=�� �

� ���e x

e y
�

2. Receptor voltages �v=�v x

v y
� are also linear w.r.t. �e

� �v= J �e

ME1: ME Of A Point Source 7

A Wafer-Thin Slice of Physics:
Jones Matrices

* J is called a Jones matrix.

* J is obviously cumulative:

�v= Jn � Jn�1 �... J1
�e ��=��

i=n

1

J i��e= J �e

 where J1 ... Jn describes the full signal path.

* Do remember that matrices, in general, do not commute.

NB: What if something is non-linear?..

...we can also write down an equation: �v=J ��e �

...but this is to be avoided if at all possible.

ME1: ME Of A Point Source 8

A Wafer-Thin Slice of Physics:

Correlations & Visibilities

An interferometer measures correlations btw voltages �v
p
, �v

q
:

v xx=	v px v qx

*
 , v xy=	v px v qy

*
 , v yx=	v py v qx

*
 , v yy=	v py v qy

*

It is convenient to represent these as a matrix product:

V pq=	�v p
�vq

�
=	�v px

v py
��v qx

*
v qy

* �
=�v xx v xy

v yx v yy
�

(
 : time/freq averaging; � : conjugate-and-transpose)

V
pq

 is also called the visibility matrix.

Now let's assume that all radiation arrives from a single point,

and designate the "source" E.M. vector by �e.

ME1: ME Of A Point Source 9

A Wafer-Thin Slice of Physics:

The M.E. Emerges

Antennas p ,q then measure: �v
p
= J

p
�e , �v

q
= J

q
�e

where J p , Jq are Jones matrices describing the signal paths

from the source to the antennas.

Then V pq=	� Jp
�e �� Jq

�e ��
=	 Jp ��e �e� � Jq

�
= Jp 	�e �e�
 Jq

�

(making use of �AB��=B � A � , and assuming J p is constant over 	
)

The inner quantity is known as the source coherency :

B=	�e �e�
=
1

2 � I�Q U±iV

U�iV I�Q � �I ,Q , U ,V �

which we can also call the source brightness. Thus:

V pq= Jp B Jq

�

ME1: ME Of A Point Source 10

And That's The Measurement
Equation!

�XX XY

YX YY ��
measured

=� j xx �p � j xy �p �

j yx �p � j yy �p �
��

J p

1

2 � I�Q U�iV

U� iV I� Q ��
source

� j xx �q �
*

j yx �q �
*

j xy �q �
*

j yy �q �
* ��

J q

�

V pq= Jp B Jq

�

� Or in more pragmatic terms:

� NB: it is also possible to write the ME with a circular
polarization basis (RR, LL, etc.) We'll use linear
polarization throughout.

ME1: ME Of A Point Source 11

Accumulating Jones Terms

If J
p
, J

q
 are products of Jones matrices:

Jp= Jpn ... J p1 , Jq= Jq m... Jq1

Since � AB��
=B

�
A

�
, the M.E. becomes:

V p q= Jp n ... Jp 2 Jp 1B Jq 1

�
Jq 2

�
... Jq m

�

or in the "onion form":

V p q= Jp n�... � Jp 2� Jp 1 B Jq 1

� � Jq 2

� �...� Jq m

�

ME1: ME Of A Point Source 12

Jones' Anatomy

� J
p
 is �cumulative�: more effects correspond to

additional multiplicative Jones terms.
� Therefore, the �total� J

p
is a matrix product of

a �Jones chain� of individual effects:
 J

p
= J

pn
J
pn-1

 ...

J
p1

� The order of the J terms corresponds to the
physical order of the effects. In general, the
matrices don't commute!

ME1: ME Of A Point Source 13

Why is this great?

� A complete and mathematically elegant
framework for describing all kinds of signal
propagation effects.

� ...including those at the antenna, e.g.:
� beam & receiver gain
� dipole rotation
� receptor cross-leakage

� Effortlessly incorporates polarization:
� think in terms of a B matrix and never worry

about polarization again.
� Applies with equal ease to heterogeneous arrays,

by using different Jones chains.

ME1: ME Of A Point Source 14

Why is this even greater?

� Most effects have a very simple Jones
representation:

gain: G= �g x 0

0 g y
��

diagonal matrix

phase delay : �e�i� 0

0 e
�i���

scalar matrix

�e
�i�

rotation: �cos� �sin�
sin� cos� �� Rot��� (rotation matrix)

[e.g. Faraday rotation: F=Rot �
R M

�2
�]

receptor cross-leakage: D=� 1 d

�d 1 � (or Rot�d �?)

ME1: ME Of A Point Source 15

Three Layers Of Intuition

� Physical: e.g. beam gain, parallactic angle
� beam pattern of X and Y dipoles different,

causes polarization of off-center sources
� P.A. rotates polarization angle

� Geometrical: stretching, rotation
� do not commute...

� Mathematical: matrix properties

G=�g x 0

0 gy
� and P=�cos� �sin�

sin� cos� � do not commute;

m.e. is: V pq=Gp P p B Pq

�
Gq

�

ME1: ME Of A Point Source 16

ME ME ME

� The general formulation above is �The
Measurement Equation� (of a generic radio

interferometer...)
� When we want to simulate a specific

instrument, we put specific Jones terms into
the ME, and derive a measurement
equation for that instrument.

� We then implement that specific m.e. in
software (e.g. with MeqTrees)

� Existing packages implicitly use specific
m.e.'s of their own.

ME1: ME Of A Point Source 17

Observing a point source
with a perfect instrument

Even w/o instrumental effects, we still have geometry, so:

V p q=K p B K q

�

K p is the phase shift term, a scalar Jones matrix:

K p=�e
�i�p 0

0 e
�i�p��e

�i�p

Antenna phase �p accounts for the pathlength difference:

�p=2��up l�v pm�w p�n�1��

where up ,v p ,w p are antenna coordinates (in wavelengths),

and l ,m ,n are the direction cosines for the source.

�n=�1�l2�m 2 , for "small" fields n�1.�

ME1: ME Of A Point Source 18

The (familiar?)
Scalar Case

'Classic' (scalar) visibility of a source:

v pq=I e
�i�pq

where �pq is the interferometer phase difference:

�pq=2��upq l�v pqm�w pq �n�1��

Baseline coordinates �u pq=�upq , v pq ,w pq�

have a very simple relationship to antenna coordinates.

ME1: ME Of A Point Source 19

Antenna UVWs
and Antenna Phase

P Q
�up

�uq

�upq

Pick an arbitrary reference point O.

�up� �OP , �uq� �OQ , �upq� �QP

Then regardless of which O we picked,

�upq=�up� �uq , i.e.

upq=u p� uq , v pq=v p� v q , w pq=w p� w q

and for phases: �
pq
=�

p
� �

q.

� e
� i�p q=e

� i ��p� �q�=e
� i�p e

i�q=e
� i�p �e� i�q�*

O
(And if you're used to thinking in terms of closure phases:

�pq��qr��rp=�p� �q��q� �r��r� �p=0)

ME1: ME Of A Point Source 20

The (familiar?)
Scalar Case

We can decompose each interferometer phase term

into a pair of antenna phases:

v pq=e
�i�p I �e�i�q�*

compare this to:

V pq=K p B K q

�
,

with B=
1

2 � I 0

0 I �

ME1: ME Of A Point Source 21

K: Breaking The
Coherency Barrier

� The interferometer phase term is traditionally
considered separately; however, it fits the Jones
formalism like a glove.

� K combines two physical effects:
� pathlength difference
� time delays (i.e. fringe stopping)

� Scalar matrices commute with everything, so we're
allowed to �merge� these two effects and shift the
resulting K's around.

� K is scalar only for co-located receivers:
� moral: keep your dipoles together!

� Forget about the Fourier Transform for now...

ME1: ME Of A Point Source 22

Building a Tree:
Matrix Multiplication

� See ME1/demo1-predict-ps.py
� The Meq.MatrixMultiply node implements

matrix multiplication.
� We repeat this for all interferometers (all p-q

pairs), in a for loop.

V pq=K p B K q

�

ME1: ME Of A Point Source 23

Building a Tree:
Creating a B Matrix

� The Meq.Matrix22 shortcut creates a
matrix from four children (using a
Meq.Composer node).

� IQUV's will be hardwired constants (for now)

B=
1

2 � I�Q U�iV

U� iV I� Q �

ME1: ME Of A Point Source 24

Building a Tree:
VisPhaseShift

� The Meq.VisPhaseShift node computes the a
phase term as follows:

� Takes two �vector� children for uvw's (in meters)
and lmn's.

� The Meq.ConjTranspose shortcut implements
the ��� operation.

� We can explicitly form up an (l,m,n-1) vector using
a Meq.Composer node.

� But where do we get the uvw's?

��u ,v ,w , l ,m ,n ;��=exp��
2� i�

c
�u l�vm�w n ��

ME1: ME Of A Point Source 25

Building a Tree:
Where to get meta-data?

Where do uvw's come from?
� uvw's can be computed by a Meq.UVW node.
� This requires antenna positions, time, and the phase

centre RA/Dec:
� time: comes from the MS grid (via the request)
� phase centre RA/Dec: from MS sub-tables
� antenna positions: from MS sub-tables

� Don't want to hard-code this stuff, else our script will
be tied to a particular MS.

� Need a way to get observational parameters from
the MS and put them into the tree.

ME1: ME Of A Point Source 26

Building a Tree:
Attaching an init-script

� An init-script is a Python script that is executed on the kernel
side by the VisDataMux node. The script name is specified as
part of the I/O request.

� It can provide a MS header handler (among other things).
� The MS header contains all observational parameters.
� The header handler can put the required values into

�placeholder� nodes (finding them by name).
� The same script can be used for all trees, as long as our

placeholder nodes follow the same naming convention.
� i.e. �ra�, �dec� for phase center
� �x0�, �y0�, �z0� for array center
� �x:p�, �y:p�, �z:p� for position of antenna #p.

� Placeholders are created as constants, e.g. �ns.ra<<0�.

ME1: ME Of A Point Source 28

Building a Tree:
Ready!

� Load up the �K Jones� and �Inspector�
bookmarks.

� Run the tree by selecting �test forest�
� Now we want to make an image.

ME1: ME Of A Point Source 29

We'll use the
AIPS++ imager...

2. AIPS++...
[5] heard of it
[2] tried to run it once
[9] succeeded in running it once
[5] have used it in anger
[0] invented it

� We have enough expertise in this room...
� ...no-one to blame this time though.

ME1: ME Of A Point Source 30

TDL Jobs:
Doing other useful stuff

� _test_forest() is a �TDL job�.
� More jobs can be added by defining functions

called _tdl_job_foo(), all these will be
automatically placed into the �Exec� menu.

� Jobs can contain arbitrary Python code...
� ...including calling the shell...
� ...e.g. to run Glish and call the AIPS++ imager.

� See ME1/demo2-predict-ps-image.py

ME1: ME Of A Point Source 31

Introducing (Complex)
Gain Errors

V pq=G p K p B K q

�
Gq

�

Gp=�g x , p 0

0 g y , p
� (g x ,g y may be complex)

or in scalar form:

v xx , pq=g x , p g x , q

*
e

� i�p q� I�Q �/2

v yy , pq=g y , p g y , q

*
e

� i�p q�I� Q �/2

v xy , pq=g x , p g y , q

*
e

� i�p q�U�iV �/2

v yx , pq=g y , p g x , q

*
e

� i�p q�U� iV �/2

ME1: ME Of A Point Source 32

Building a Tree With Gains

� See ME1/demo3-predict-ps-gain.py
� It's trivial to add extra Jones terms to

Meq.MatrixMultiply.
� The biggest effort is actually figuring out

what numbers to plug in.
� depends on your simulation objectives
� we'll set up subtrees to compute these
� could also come from a parameter DB, or from

FITS images/tables.
� For now, let's assign a random, time-

variable gain-phase to each antenna.

ME1: ME Of A Point Source 33

Time Variability
On the Cheap

� Remember that we get a �time grid� with each request.
� The Meq.Time node returns f(t) = t, combine it with a

Meq.Sin node to compute A*sin(Bt+C)
� Generate random A,B,C's per dipole (using Python's

random module)
� Meq.Polar builds x*exp(iy)
� Run the tree (load up the bookmarks).
� Make a map.

� note that we can now select a column to image, the
new simulation is in DATA, the old one is in
MODEL_DATA.

Something like: g=e
iAsin�Bt�C �

ME1: ME Of A Point Source 34

Some Performance
Considerations

� This does N
time

xN
freq

x4 individual matrix

multiplications.
� B is constant, G's are variable in time, and K's are

variable in time-freq.
� If we reorder the terms as follows (K commutes):

V pq=G p K p B K q

�
Gq

�

V pq=K p �G p B Gq

� �K q

�

we end up with N
time

x2 + N
time

xN
freq

x2 ops.

� Is this a good idea?

ME1: ME Of A Point Source 35

To Quote Ancient Wisdom...

�Premature optimization is the root of all evil.�
-- Donald Knuth

�More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single
reason � including blind stupidity.�

-- W.A. Wulf

� Don't worry about optimizing for calculations until you
establish that performance is a problem...

� ...and where the problem lies.
� Jones terms don't always commute, so think carefully before

moving them around.
� But if you can reshuffle them, significant CPU savings may

in fact result.

ME1: ME Of A Point Source 36

Exercise 1:
Instrumental Polarization

� Use ME1/demo3-predict-ps-gain.py as a
starting point.

� Make the source unpolarized, with I=1Jy.
� Make the gain amplitudes frequency-dependent

(and reset the gain phases to 0):

Gp=�1�a p ����0� 0

0 1�ap ����0��
� pick random a

p
's in the range [1e-10,1e-9]

� For ν
0
, create placeholder (ns.freq0<<0)

� Produce a per-channel map, look at Q fluxes.

ME1: ME Of A Point Source 37

Exercise 2:
Alt-Az Mounts

� A �perfect� instrument has an equatorial
mount, i.e. stationary sky.

� With an alt-az mount, the sky rotates
relative to each antenna, so we must add a
rotation term to our M.E.

V pq=G p P p K p B K q

�
Pq

�
Gq

�

P p=�cos�p � sin�p

sin�p cos�p
��Rot�p

�p : parallactic angle for antenna p

ME1: ME Of A Point Source 38

Exercise 2:
Alt-Az Mounts

� Use ME1/demo3-predict-ps-gain.py as a
starting point.

� Use I=1 Jy, Q=.2 Jy
� Insert the gain terms from Exercise 1.
� Add a P term to model sky rotation.
� Produce MFS and per-channel maps of IQUV flux.
� Hint: Meq.ParAngle computes the P.A. as a function

of time. It expects a radec child (phase center), and
an xyz child (station position).

V pq=G p P p K p B K q

�
P q

�
Gq

�

P p=�cos�p � sin�p

sin�p cos�p
�

ME1: ME Of A Point Source 39

Exercise 3:
UFO

� Use ME1/demo2-predict-ps-image.py as a
starting point.

� Make the source move:

� lm �=� l0m 0
��� �l

�m � ���0

�1��0

�t�t 0 �

l 0=m 0=0, �l= �m=.5 ' /hour

� For t
0
 �

0
 �

1
 use placeholder constants:

(ns.time0<<0); (ns.freq0<<0); (ns.freq1<<0);

the header script will initialize them for you.
� Produce a per-channel map.

ME1: ME Of A Point Source 40

Exercise 4:
Amoebas

� Use ME1/demo2-predict-ps-image.py as a
starting point, put source at l=m=0.

� Insert ionospheric phase (Z jones) that we produced in
Intro1/example5 and exercise 3.
� use one TID (ampl=.1, 50km, 200km/h)
� for the x,y ionospheric �positions�, use the station

x,y (use a Meq.Composer to form up the xy
vector...)

� Bonus points: make inspectors for TECs and Z.
� Run script and make a per-channel map.
� Make a time-slice movie:
glish -l ~/Workshop2007/make_movie.g

MODEL_DATA ms=demo.MS

ME1: ME Of A Point Source 41

Bonus Exercise 5:
Simulating a Transient

� Simulate a transient source, make an MFS and a
per-channel map.

� For bonus points, make the source narrow-band.

