

ME1: Measurement Equation Of a (Polarized) Point Source

Objectives:

- Aligning our terminology!
- Mapping your existing intuition about interferometry onto ME concepts
- Implementing some MEs using MeqTrees.

The Measurement Equation: Putting the "Meq" into MeqTrees!

- The Measurement Equation tells you what you can expect to observe with an interferometer, given a sky and the properties of your instrument.
- Absolutely crucial for simulating and calibrating the next generation of radio telescopes; everything literally revolves around it.
Therefore: no-one gets any beer tonight until we achieve full harmony and understanding!

Survey Results...

1. Radio interferometry...
[1] heard of it
[11] basic knowledge
[6] do it all the time
[3] I was doing it when Oleg was in diapers

Therefore..
...you know practically everything about the Measurement Equation!

On The Other Hand...

3. The Measurement Equation...
[1] never heard of it
[2] heard of it
[10] know what it looks like, never actually used it
[6] know it pretty well
[2]। use Jones matrices to do my taxes

- Conclusion:

The ME is no longer one of these unknown knowns -- the things we don't know we know -- that Donald Rumsfeld didn't know he knew.

A Wafer-Thin Slice of Physics: EM Field Propagation

Pick an $x y z$ frame with z along the direction of propagation. The EM field can be described by the complex vector $\vec{e}=\binom{e_{x}}{e_{y}}$

The fundamental assumption is LINEARITY:

1. Propagation through a medium is linear
\Rightarrow can be fully described by a 2×2 complex matrix:

$$
\vec{e}^{\prime}=\boldsymbol{J} \vec{e} \quad \text { i.e. } \quad\left(\begin{array}{l}
e^{\prime} x_{x} \\
e^{\prime} \\
y
\end{array}\right)=\left(\begin{array}{ll}
\square & \square \\
\square & \square
\end{array}\right)\binom{e_{x}}{e_{y}}
$$

2. Receptor voltages $\vec{v}=\binom{v_{x}}{v_{y}}$ are also linear w.r.t. \vec{e}

$$
\Rightarrow \vec{v}=J \vec{e}
$$

A Wafer-Thin Slice of Physics: Correlations \& Visibilities

An interferometer measures correlations btw voltages \vec{v}_{p}, \vec{v}_{q} : $v_{x x}=\left\langle v_{p x} \dot{\dot{v}_{q x}}\right\rangle, v_{x y}=\left\langle v_{p x} \dot{v_{q y}}\right\rangle, v_{y x}=\left\langle v_{p y} \dot{v}_{q x}\right\rangle, v_{y y}=\left\langle v_{p y} \dot{v_{q y}}\right\rangle$ It is convenient to represent these as a matrix product:

$$
\left.\boldsymbol{v}_{p q}=\left\langle\vec{v}_{p} \vec{v}_{q}^{+}\right\rangle=\binom{v_{p x}}{v_{p y}}\left(\begin{array}{ll}
v_{q x}^{*} & v_{q y}^{*}
\end{array}\right)\right\rangle=\left(\begin{array}{ll}
v_{x x} & v_{x y} \\
v_{y x} & v_{y y}
\end{array}\right)
$$

$(\rangle$: time/freq averaging; t : conjugate-and-transpose)
$\boldsymbol{V}_{p q}$ is also called the visibility matrix.

Now let's assume that all radiation arrives from a single point, and designate the "source" E.M. vector by \vec{e}.

A Wafer-Thin Slice of Physics: The M.E. Emerges

Antennas p, q then measure: $\vec{v}_{p}=J_{p} \vec{e}, \quad \vec{v}_{q}=\boldsymbol{J}_{q} \vec{e}$
where $\boldsymbol{J}_{p}, \boldsymbol{J}_{q}$ are Jones matrices describing the signal paths from the source to the antennas.

Then $\boldsymbol{V}_{p q}=\left\langle\left(\boldsymbol{J}_{p} \vec{e}\right)\left(\boldsymbol{J}_{q} \vec{e}\right)^{\dagger}\right\rangle=\left\langle\boldsymbol{J}_{p}\left(\vec{e} \vec{e}^{+}\right) \boldsymbol{J}_{q}^{\dagger}\right\rangle=\boldsymbol{J}_{p}\left\langle\vec{e} \vec{e}^{\dagger}\right\rangle \boldsymbol{J}_{q}^{\dagger}$
(making use of $(\boldsymbol{A} \boldsymbol{B})^{\dagger}=\boldsymbol{B}^{\dagger} \boldsymbol{A}^{\dagger}$, and assuming \boldsymbol{J}_{ρ} is constant over \rangle)
The inner quantity is known as the source coherency:

$$
\boldsymbol{B}=\left\langle\vec{e} \vec{e}^{\dagger}\right\rangle=\frac{1}{2}\left(\begin{array}{cc}
I+Q & U \pm i V \\
U \mp i V & I-Q
\end{array}\right) \leftrightarrow(I, Q, U, V)
$$

which we can also call the source brightness. Thus:

$$
\boldsymbol{v}_{p q}=\boldsymbol{J}_{p} \boldsymbol{B} \mathbf{J}_{q}^{\dagger}
$$

And That's The Measurement Equation!

$$
\boldsymbol{V}_{p q}=\boldsymbol{J}_{p} \boldsymbol{B} \boldsymbol{J}_{q}^{\dagger}
$$

- Or in more pragmatic terms:

$$
\overbrace{\left(\begin{array}{ll}
X X & X Y \\
Y X & Y Y
\end{array}\right)}^{\text {measured }}=\overbrace{\left(\begin{array}{ll}
j_{x x(p)} & j_{x y(p)} \\
j_{y x(p)} & j_{y y(p)}
\end{array}\right)}^{\boldsymbol{J}_{0}} \frac{1}{2}\left(\begin{array}{cc}
1+Q & U+i V \\
U-i V & I-Q
\end{array}\right) \overbrace{\left(\begin{array}{l}
j_{x x(q)}^{*} \\
j_{x y(q)}^{*}
\end{array}\right.}^{\text {jource }} \begin{array}{l}
j_{y x(q)}^{*} \\
j_{y y}^{*}
\end{array})
$$

- NB: it is also possible to write the ME with a circular polarization basis (RR, LL, etc.) We'll use linear polarization throughout.

Accumulating Jones Terms

$$
\text { If } \boldsymbol{J}_{p}, \boldsymbol{J}_{q} \text { are products of Jones matrices: }
$$

$\boldsymbol{J}_{p}=\boldsymbol{J}_{p n} \ldots \boldsymbol{J}_{p 1}, \quad \boldsymbol{J}_{q}=\boldsymbol{J}_{q m} \ldots \boldsymbol{J}_{q 1}$
Since $(\boldsymbol{A B})^{\dagger}=\boldsymbol{B}^{\dagger} \boldsymbol{A}^{\dagger}$, the M.E. becomes:
$\boldsymbol{V}_{p q}=\boldsymbol{J}_{p n} \ldots \boldsymbol{J}_{p 2} \boldsymbol{J}_{p 1} \boldsymbol{B} \boldsymbol{J}_{q 1}^{\dagger} \boldsymbol{J}_{q 2}^{\dagger} \ldots \boldsymbol{J}_{q m}^{\dagger}$
or in the "onion form":

$$
\boldsymbol{V}_{p q}=\boldsymbol{J}_{p n}\left(\ldots\left(\boldsymbol{J}_{p 2}\left(\boldsymbol{J}_{p 1} \boldsymbol{B} \boldsymbol{J}_{q 1}^{\dagger}\right) \boldsymbol{J}_{q 2}^{\dagger}\right) \ldots\right) \boldsymbol{J}_{q m}^{\dagger}
$$

Jones' Anatomy

- J_{p} is "cumulative": more effects correspond to additional multiplicative Jones terms.
- Therefore, the "total" J_{p} is a matrix product of a "Jones chain" of individual effects:

$$
J_{p}=J_{p n} J_{p n-1} \ldots J_{p 1}
$$

- The order of the \boldsymbol{J} terms corresponds to the physical order of the effects. In general, the matrices don't commute!

Why is this great?

- A complete and mathematically elegant framework for describing all kinds of signal propagation effects.
- ...including those at the antenna, e.g.:
- beam \& receiver gain
- dipole rotation
- receptor cross-leakage
- Effortlessly incorporates polarization:
- think in terms of a \boldsymbol{B} matrix and never worry about polarization again.
- Applies with equal ease to heterogeneous arrays, by using different Jones chains.

Why is this even greater?

- Most effects have a very simple Jones representation:
gain: $\boldsymbol{G}=\overbrace{\left(\begin{array}{cc}g_{x} & 0 \\ 0 & g_{y}\end{array}\right)}^{\text {diagonal matrix }} \quad$ phase delay: $\overbrace{\left(\begin{array}{cc}e^{-i \phi} & 0 \\ 0 & e^{-i \phi}\end{array}\right)}^{\text {scalar matrix }} \equiv e^{-i \phi}$
rotation: $\left(\begin{array}{cc}\cos y & -\sin \gamma \\ \sin \gamma & \cos \gamma\end{array}\right) \equiv \operatorname{Rot}(\gamma)($ rotation matrix)
[e.g. Faraday rotation: $\left.\boldsymbol{F}=\operatorname{Rot}\left(\frac{\operatorname{RM}}{v^{2}}\right)\right]$
receptor cross-leakage: $\boldsymbol{D}=\left(\begin{array}{cc}1 & d \\ -d & 1\end{array}\right) \quad(\operatorname{or} \operatorname{Rot}(d) ?)$
receptor cross-leakage: $\boldsymbol{D}=\left(\begin{array}{cc}1 & d \\ -d & 1\end{array}\right) \quad$ (or $\operatorname{Rot}(d)$?)

Three Layers Of Intuition

- Physical: e.g. beam gain, parallactic angle - beam pattern of X and Y dipoles different,
causes polarization of off-center sources
P.A. rotates polarization angle
- Geometrical: stretching, rotation
- do not commute...
- Mathematical: matrix properties

$$
\begin{gathered}
\boldsymbol{G}=\left(\begin{array}{cc}
g_{x} & 0 \\
0 & g_{y}
\end{array}\right) \text { and } \boldsymbol{P}=\left(\begin{array}{cc}
\cos y & -\sin y \\
\sin \gamma & \cos y
\end{array}\right) \text { do not commute; } \\
\text { m.e. is: } \boldsymbol{V}_{p q}=\boldsymbol{G}_{p} \boldsymbol{P}_{p} \boldsymbol{B} \boldsymbol{P}_{q}^{\dagger} \boldsymbol{G}_{q}^{\dagger}
\end{gathered}
$$

ME ME ME

- The general formulation above is "The Measurement Equation" (of a generic radio interferometer...)
- When we want to simulate a specific instrument, we put specific Jones terms into the ME, and derive \underline{a} measurement equation for that instrument.
- We then implement that specific m.e. in software (e.g. with MeqTrees)
- Existing packages implicitly use specific m.e.'s of their own.

Observing a point source with a perfect instrument

Even w/o instrumental effects, we still have geometry, so:

$$
\boldsymbol{V}_{p q}=\boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{\dagger}
$$

\boldsymbol{K}_{p} is the phase shift term, a scalar Jones matrix:

$$
\boldsymbol{K}_{p}=\left(\begin{array}{cc}
e^{-i \phi_{p}} & 0 \\
0 & e^{-i \phi_{p}}
\end{array}\right) \equiv e^{-i \phi_{p}}
$$

Antenna phase ϕ_{p} accounts for the pathlength difference:

$$
\phi_{\rho}=2 \pi\left(u_{\rho} l+v_{p} m+w_{p}(n-1)\right)
$$

where u_{p}, v_{p}, w_{p} are antenna coordinates (in wavelengths), and l, m, n are the direction cosines for the source.

$$
\text { (} n=\sqrt{1-l^{2}-m^{2}} \text {, for "small" fields } n \rightarrow 1 . \text {) }
$$

The (familiar?) Scalar Case

'Classic' (scalar) visibility of a source:

$$
v_{p q}=l e^{-i \phi_{p q}}
$$

where $\phi_{p q}$ is the interferometer phase difference:

$$
\phi_{p q}=2 \pi\left(u_{p q} l+v_{p q} m+w_{p q}(n-1)\right)
$$

Baseline coordinates $\vec{u}_{p q}=\left(u_{p q}, v_{p q}, w_{p q}\right)$
have a very simple relationship to antenna coordinates.

Antenna UVWs

 and Antenna PhasePick an arbitrary reference point O.

$$
\vec{u}_{p} \equiv \overrightarrow{O P}, \quad \vec{u}_{q} \equiv \overrightarrow{O Q}, \vec{u}_{p q} \equiv \overrightarrow{Q P}
$$

Then regardless of which O we picked,

$$
\vec{u}_{p q}=\vec{u}_{p}-\vec{u}_{q} \text {, i.e. }
$$

$$
u_{p q}=u_{p}-u_{q}, \quad v_{p q}=v_{p}-v_{q}, w_{p q}=w_{p}-w_{q}
$$

and for phases: $\phi_{p q}=\phi_{p}-\phi_{q}$. $\Rightarrow e^{-i \phi_{p q}}=e^{-i\left(\phi_{p}-\phi_{q}\right)}=e^{-i \phi_{p}} e^{i \phi_{q}}=e^{-i \phi_{p}}\left(e^{-i \phi_{q}}\right)$
(And if you're used to thinking in terms of closure phases: $\left.\phi_{p q}+\phi_{q r}+\phi_{r p}=\phi_{p}-\phi_{q}+\phi_{q}-\phi_{r}+\phi_{r}-\phi_{p}=0\right)$

The (familiar?) Scalar Case

We can decompose each interferometer phase term

$$
\begin{aligned}
& \text { into a pair of antenna phases: } \\
& \qquad \begin{array}{c}
V_{p q}=e^{-i \phi_{p}} /\left(e^{-i \phi_{q}}\right)^{*} \\
\text { compare this to: } \\
\boldsymbol{V}_{p q}=\boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{\dagger}, \\
\text { with } \boldsymbol{B}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array}
\end{aligned}
$$

ME1: ME Of A Point Source
 K: Breaking The Coherency Barrier

- The interferometer phase term is traditionally considered separately; however, it fits the Jones formalism like a glove.
- K combines two physical effects - pathlength difference
- time delays (i.e. fringe stopping)
- Scalar matrices commute with everything, so we're allowed to "merge" these two effects and shift the resulting \boldsymbol{K} 's around
- \boldsymbol{K} is scalar only for co-located receivers: - moral: keep your dipoles together!
- Forget about the Fourier Transform for now...

Building a Tree:

 Matrix Multiplication$$
\boldsymbol{V}_{p q}=\boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{\dagger}
$$

- See ME1/demol-predict-ps.py
- The Meq.MatrixMultiply node implements matrix multiplication.
- We repeat this for all interferometers (all $p-q$ pairs), in a for loop.

Building a Tree:

 Creating a B Matrix$$
\boldsymbol{B}=\frac{1}{2}\left(\begin{array}{cc}
I+Q & U+i V \\
U-i V & I-Q
\end{array}\right)
$$

- The Meq.Matrix22 shortcut creates a matrix from four children (using a
Meq.Composer node).
- IQUV's will be hardwired constants (for now)

Building a Tree: VisPhaseShift

- The Meq.VisPhaseShift node computes the a phase term as follows:

$$
\Phi(u, v, w, l, m, n ; v)=\exp \left(-\frac{2 \pi i v}{c}(u l+v m+w n)\right)
$$

- Takes two "vector" children for uvw's (in meters) and $I m n$'s.
- The Meq.ConjTranspose shortcut implements the "t" operation.
- We can explicitly form up an ($1, m, n-1$) vector using a Meq.Composer node.
- But where do we get the uvw's?

Building a Tree:

 Where to get meta-data?Where do uvw's come from?

- uvw's can be computed by a Meq.UVW node
- This requires antenna positions, time, and the phase centre RA/Dec:
- time: comes from the MS grid (via the request)
- phase centre RA/Dec: from MS sub-tables
- antenna positions: from MS sub-tables
- Don't want to hard-code this stuff, else our script will be tied to a particular MS.
- Need a way to get observational parameters from the MS and put them into the tree.

Building a Tree: Attaching an init-script

- An init-script is a Python script that is executed on the kernel side by the VisDataMux node. The script name is specified as part of the I/O request.
- It can provide a MS header handler (among other things).
- The MS header contains all observational parameters.
- The header handler can put the required values into
" "placeholder" nodes (finding them by name).
- The same script can be used for all trees, as long as our placeholder nodes follow the same naming convention.
- i.e. "ra", "dec" for phase center
- ".e. "ra", "y0", " $z 0$ " for array center
_ "x:p", "y:p", " $z: p^{\prime \prime}$ for position of antenna \#p.
- Placeholders are created as constants, e.g. "ns. ra<<0".

Building a Tree:

 Writing the data- VisTile is an intermediate $u v$ data layer (don't want to be locked into MSs forever...)
- The I/O record maps MS columns to VisTile
- Sinks \& Spigots map tile columns to trees

Building a Tree: Ready!

- Load up the "K Jones" and "Inspector" bookmarks.
- Run the tree by selecting "test forest"
- Now we want to make an image.

ME: MESA A Ponis Source
 We'll use the AIPS++ imager...

2. AIPS++..
[5] heard of it
[2] tried to run it once
[9] succeeded in running it once
[5] have used it in anger
[0] invented it

- We have enough expertise in this room...
- ...no-one to blame this time though.

TDL Jobs:

Doing other useful stuff

- _test_forest() is a "TDL job".
- More jobs can be added by defining functions called _tdl_job_foo(), all these will be automātically placed into the "Exec" menu.
- Jobs can contain arbitrary Python code.
- ...including calling the shell.
- ...e.g. to run Glish and call the AIPS++ imager.
- See ME1/demo2-predict-ps-image.py

$$
\begin{aligned}
& \text { Introducing (Complex) } \\
& \text { Gain Errors } \\
& \qquad \boldsymbol{V}_{p q}=\boldsymbol{G}_{p} \boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{\dagger} \boldsymbol{G}_{q}^{+} \\
& \boldsymbol{G}_{p}=\left(\begin{array}{cc}
g_{x, p} & 0 \\
0 & g_{y, p}
\end{array}\right) \quad\left(g_{x}, g_{y}\right. \text { may be complex) } \\
& \text { or in scalar form: } \\
& \begin{array}{l}
v_{x x, p q}=g_{x, p} g_{x, q}^{*} e^{-i \phi_{p q}}(I+Q) / 2 \\
v_{y y, p q}=g_{y, p} g_{y, q} e^{-i \phi_{p q}}(I-Q) / 2 \\
v_{x y, p q}=g_{x, p}^{*} g_{y, q}^{+} e^{-i \phi_{p q}}(U+i V) / 2 \\
v_{y x, p q}=g_{y, p} g_{x, q}^{*} e^{-i \phi_{p q}}(U-i V) / 2
\end{array}
\end{aligned}
$$

Building a Tree With Gains

- See ME1/demo3-predict-ps-gain.py
- It's trivial to add extra Jones terms to Meq.MatrixMultiply.
- The biggest effort is actually figuring out what numbers to plug in.
- depends on your simulation objectives
- we'll set up subtrees to compute these
- could also come from a parameter DB, or from FITS images/tables.
- For now, let's assign a random, timevariable gain-phase to each antenna.

ME1: ME Of A Point Source
 Time Variability
 On the Cheap

Something like: $g=e^{i A \sin (B t+C}$

- Remember that we get a "time grid" with each request.
- The Meq.Time node returns $f(t)=t$, combine it with a

Meq.Sin node to compute $A^{*} \sin (B t+C)$

- Generate random A, B, C^{\prime} s per dipole (using Python's random module)
Meq.Polar builds x*exp(iy)
- Run the tree (load up the bookmarks).
- Make a map.
- note that we can now select a column to image, the new simulation is in DATA, the old one is in
MODEL_DATA.

To Quote Ancient Wisdom...

"Premature optimization is the root of all evil."
-- Donald Knuth
"More computing sins are committed in the name of efficiency (without necessarily achieving it) than for any other single reason - including blind stupidity."
-- W.A. Wulf

- Don't worry about optimizing for calculations until you establish that performance is a problem...
and where the problem lies
- Jones terms don't always commute, so think carefully before moving them around
- But if you can reshuffle them, significant CPU savings may in fact result.

Some Performance

 Considerations$$
\boldsymbol{V}_{p q}=\boldsymbol{G}_{p} \boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{\dagger} \boldsymbol{G}_{q}^{+}
$$

- This does $N_{\text {time }} \times N_{\text {freq }} \mathrm{x} 4$ individual matrix multiplications.
- \boldsymbol{B} is constant, \boldsymbol{G}^{\prime} s are variable in time, and \boldsymbol{K} 's are variable in time-freq.
- If we reorder the terms as follows (\boldsymbol{K} commutes):

$$
\boldsymbol{V}_{p q}=\boldsymbol{K}_{p}\left(\boldsymbol{G}_{p} \boldsymbol{B} \boldsymbol{G}_{q}^{\dagger}\right) \boldsymbol{K}_{q}^{\dagger}
$$

we end up with $N_{\text {time }} \times 2+N_{\text {time }} \times N_{\text {freq }} \times 2$ ops.
Is this a good idea?

Exercise 1:

Instrumental Polarization

- Use ME1/demo3-predict-ps-gain.py as a starting point.
- Make the source unpolarized, with I=1Jy
- Make the gain amplitudes frequency-dependent (and reset the gain phases to 0):

$$
\boldsymbol{G}_{p}=\left(\begin{array}{cc}
1+a_{p}\left(v-v_{0}\right) & 0 \\
0 & 1-a_{p}\left(v-v_{0}\right)
\end{array}\right)
$$

- pick random a_{p} 's in the range [1e-10,1e-9]
- For v_{0}, create placeholder ($n s . f r e q 0 \ll 0$)
- Produce a per-channel map, look at Q fluxes

Exercise 2:

Alt-Az Mounts

- A "perfect" instrument has an equatorial mount, i.e. stationary sky.
- With an alt-az mount, the sky rotates relative to each antenna, so we must add a rotation term to our M.E.

$$
\begin{gathered}
\boldsymbol{V}_{p q}=\boldsymbol{G}_{p} \boldsymbol{P}_{p} \boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{\dagger} \boldsymbol{P}_{q}^{+} \boldsymbol{G}_{q}^{\dagger} \\
\boldsymbol{P}_{p}=\left(\begin{array}{cc}
\cos \gamma_{p} & -\sin \gamma_{p} \\
\sin \gamma_{p} & \cos \gamma_{p}
\end{array}\right) \equiv \operatorname{Rot} \gamma_{p} \\
\boldsymbol{\gamma}_{p}: \text { parallactic angle for antenna } p
\end{gathered}
$$

Exercise 2:

Alt-Az Mounts

- Use ME1/demo3-predict-ps-gain.py as a starting point.
- Use I=1 Jy, Q=. 2 Jy
- Insert the gain terms from Exercise 1.
- Add a \boldsymbol{P} term to model sky rotation.
- Produce MFS and per-channel maps of IQUV flux.
- Hint: Meq. ParAngle computes the P.A. as a function of time. It expects a radec child (phase center), and an $\mathbf{x y z}$ child (station position)

$$
\begin{gathered}
\boldsymbol{V}_{p q}=\boldsymbol{G}_{p} \boldsymbol{P}_{p} \boldsymbol{K}_{p} \boldsymbol{B} \boldsymbol{K}_{q}^{\dagger} \boldsymbol{P}_{q}^{\dagger} \boldsymbol{G}_{q}^{+} \\
\boldsymbol{P}_{p}=\left(\begin{array}{cc}
\cos \gamma_{p} & -\sin \gamma_{p} \\
\sin \gamma_{p} & \cos \gamma_{p}
\end{array}\right)
\end{gathered}
$$

Exercise 4: Amoebas

- Use ME1/demo2-predict-ps-image.py as a starting point, put source at $I=m=0$
- Insert ionospheric phase (\mathbf{Z} jones) that we produced in Introl/example5 and exercise 3.
- use one TID (ampl=.1, 50km, 200km/h)
- for the x, y ionospheric "positions", use the station
x, y (use a Meq.Composer to form up the xy vector...)
- Bonus points: make inspectors for TECs and \boldsymbol{Z}.
- Run script and make a per-channel map.
- Make a time-slice movie:
glish -l ~/Workshop2007/make_movie.g MODEL DATA ms=demo.MS

