

ME2: Full Sky 1

ME2: The Full-Sky
Measurement Equation

Objectives:

� Extending the M.E. to a full sky
� Mapping this onto conventional implicit

assumptions, and understanding their
limitations

� Simulating multiple point sources with
image-plane effects (e.g. primary beam)

svn up Workshop2007 please!

ME2: Full Sky 2

The Full-Sky ME

ME of a single point:

V pq= JpB Jq

�

The sky has a brightness density: B � ���
(where �� is a unit direction vector)

So the total visibility is obtained by integrating over a sphere:

V pq=�
sky

Jp � ���B � �� � Jq

� � ���d �

This is not very useful, so we project B onto

the l m plane, tangential at the phase centre...

ME2: Full Sky 3

The Full-Sky ME

...and since d �=
d l dm

�1	 l 2	m 2
=

d l dm

n
,

in the l m plane we get:

V pq=

l m

Jp �l ,m �
B �l ,m �

n �l ,m �
Jq

� �l ,m �d l dm

ME2: Full Sky 4

Image-plane vs. uv-plane

Jp is composed of multiple effects: Jp= Jpn Jpn	 1 ... J p1

� Jpn is "in the receiver", Jp1 is "in the sky".�

Some J 's do not vary with l ,m -- call them uv-plane effects.

e.g. receiver gain, leakage.

Some J 's do vary with l ,m -- call them image-plane effects.

e.g. K , beam gain, ionosphere

Let's rewrite the Jp product as:

Jp= Jpn ... Jpk�1�
uv-plane only

Gp

K p Jpk 	 1 ... Jp1�
uv- & image-plane

E p �l ,m �

Or in other words, Jp �l ,m �=GpK p �l ,m �Ep �l ,m �

�and depending on our particular M.E., G or E may be �1 �

ME2: Full Sky 5

And Back To The ME....

V pq=

l m

J p �l ,m �
B �l ,m �

n �l ,m �
Jq

� �l ,m �d l dm

then becomes:

V pq=G p �

l m

K pE p

B

n
Eq

�
K q

�
d l dm �Gq

�

(with everything under the
 being a function of l ,m)

ME2: Full Sky 6

The Fourier Transform

and now expanding the K terms:

V pq=G p �

l m

�E p

B

n
E q

� �e
	2� i�upq l�v pqm�w pq�n	1��

d l dm �Gq

�

for narrow fields n�1 (and for coplanar arrays w=0), so:

V pq=G p �
l m � E pB Eq

�

"apparent sky"

�e
	2� i�u pq l�v pqm �

F.T. kernel

d l dm �Gq

�

� The integral then becomes a 2D Fourier transform
of the �apparent sky�.

ME2: Full Sky 7

The Fly In The Ointment

V pq=G p �

l m

�E p

B

n
E q

� �e	2� i �upq l�v pqm�w pq�n	1 ��
d l dm �Gq

�

Bpq=N p E pBE q

�
N q

�
=N pqE pBEq

�

 where N p=
1

�n
e

	2� iw p �n	1 �
, N pq=N pN q

�

(for narrow fields and/or coplanar arrays, N p �1)

� In the general case, the exponent is not quite an
F.T. kernel.

� Let's collect the n-terms into an �N-Jones�, and
define an �apparent projected sky�:

ME2: Full Sky 8

Apparent Skies & Apparent
Cohaerencies

We now have:

V pq=G p �

l m

Bpqe
	2� i�upq l�v pqm �

d l dm �Gq

�
=G p X pqGq

�
,

where X pq=F �Bpq�=F �N pE pB E q

�
N q

� �

� In other words, each antenna pair p-q measures
an apparent cohaerency distribution X

pq
(u,v) that

corresponds to a 2D Fourier Transform of its own
apparent projected sky B

pq
.

� ...at a single point in time!

ME2: Full Sky 9

Time Is Not On Our Side

V pq�t �=G p �t �X pq�t ,u �t � , v �t ��Gq

� �t �

� Cohaerencies are sampled along a �uv track� over
some period of time:

� The true sky B is probably constant(?) in time
� Image-plane effects (beam shapes, ionosphere)

may vary in time.
� For wide fields, the N term is non-negligible. It

varies with w which varies with time.
� All this is especially relevant with new telescope

designs.

ME2: Full Sky 10

The �Classic� Assumptions

� Only under these assumptions is a single F.T. of
the sky sufficient to simulate the entire
observation!

The full-sky ME: V pq=G p X pqGq

� ,

where X pq=F �Bpq� , Bpq=N pE pBEq

�
N p

�

If we assume that B �t ��B , and E p �t ��E p�E , and N p �1,

then all baselines will see the same, constant apparent sky:

B pq �t �=E B E �� �B

and the array will sample one apparent cohaerency plane:

X pq �t ,u ,v ��X �u ,v �

ME2: Full Sky 11

Conclusions

� Under the �classic� assumptions, the visibilities
measured by an array correspond to ONE
cohaerency distribution X that is in an F.T.
relationship with ONE apparent sky.

� In the presence of non-trivial image plane effects,
or with wide fields and non-coplanar arrays, each
interferometer p-q measures its �own� cohaerency
X

pq
(t) corresponding to its �own� apparent sky

B
pq

(t) -- variable in time!

� The K term becomes an F.T. kernel with narrow
FOVs/coplanar arrays, but is �not quite� an F.T.
otherwise.

ME2: Full Sky 12

Divide And Conquer

V pq=G p�

l m

K pE p

B

n
Eq

�
K q

�
d l dm �Gq

�

This is linear over B , so if the sky is a sum of sources:

B �l ,m �=�s
Bs �l ,m � ,

then

V pq=Gp ��s

l m

K pE p

Bs

n
Eq

�
K q

�
d l dm �Gq

�

And for some sources we can work out the integral exactly.

ME2: Full Sky 13

A Sky Of Point Sources

For a point source s of flux B0s=
1

2 � Is�Q s U s�iV s

U s	iV s Is	Q s
�

the B distribution is a delta-function:

B s � ���=B0s����	 ��s� , or

B s �l ,m �=B0sn s��l	l s ,m	m s � (do note the n)

So for a sky of point sources:

V pq=G p ��s

K psE psB0sEqs

�
K qs

� �Gq

�
,

where K ps=K p �l s ,m s� , and E ps=E p �l s ,m s �.

ME2: Full Sky 14

Let's Build a Tree

Assuming a perfect instrument again:

V pq=�
s

K psB0sK qs

�

� See ME2/demo1-predict-nps.py
� We can already do one point source, adding

more is just some for loops...
� ...and a Meq.Add node to sum the

visibilities.
� We'll put the sources on a grid.
� Run the tree and make an MFS map.

ME2: Full Sky 15

Exercise 1: Complex Gains

Let's add some gain terms:

V pq=G p ��s

K psB0sK qs

� �Gq

�

� Use ME2/demo1-predict-nps.py as a
starting point.

� Add the gain terms from ME1/demo3-
predict-ps-gain.py.

� Make an MFS map.

ME2: Full Sky 16

Exercise 2: Adding Beams

Let's add a primary beam:

V pq=G p ��s

E psK psB0sK qs

�
Eqs

� �Gq

�

use E �l ,m �=cos
3 �2�10

	6 �� l 2�m 2�
(i.e. same for all antennas)

� Use the previous script as a starting point.
� reset Gs to 1

� Make a per-channel map.

ME2: Full Sky 17

Code Reuse?

� By now our scripts are getting rather complex.
� On the other hand, we're reusing the same

building blocks, e.g.:
� point sources
� Jones matrices

� Good programming strives for maximum code
reuse; good languages simplify this via modules,
libraries, objects, etc.

� TDL is Python, and Python is an excellent
programming language.

ME2: Full Sky 18

Frameworks!

� A tree is like assembly language � the nuts'n'bolts view of
what's going on.

� Pure TDL is like C � a higher level language, but still very
close to what the �tree machine� is doing.

� An OO framework provides abstraction, so you talk in
terms of your �domain language�:
� I have an interferometer array of N antennas
� make me a point source here
� make me the nodes to compute visibilities at each

baseline
� apply this Jones matrix and give me the corrupted

visibilities

ME2: Full Sky 19

OOP

6. Object-Oriented Programming:
[0] wasn't that in FORTRAN77?
[8] heard of it
[10] have used OOP concepts in my programs
[2] can't imagine writing a non-trivial program without it
[1] I use multiple inheritance to design my breakfast

ME2: Full Sky 20

Meow

� (Measurement Equation Object Framework)
� See ME2/example2-nps-meow.py.
� This is the equivalent of demo1.
� Highlights:

� we deal in �sky components�, �arrays�,
�observations�

� details of sources are hidden, it just gives us
the visibilities

� also provides convenient utilities for
� GUI options
� I/O records
� imaging, bookmarks, etc.

ME2: Full Sky 21

Meow With Jones

� Now let's add E and G terms
� See ME2/example3-nps-corrupt-meow.py.
� We make CorruptComponents from components

by adding a Jones corruption term.
� Corrupt Components are also sky components, so

they can be treated the same way.
� Modularity:

� sky models defined in one place...
� Jones terms defined in another place...
� main sim script just puts them together

ME2: Full Sky 22

...Meoooooooow

� Extended sources?
� See ME2/example4-nps-ext-meow.py.
� Run & make per-channel map, observe

frequency behaviour.
� Small change here: we use GaussianSource

in place of some PointSources.
� Don't need to know the details of a

Gaussian implementation, since we can just
get the visibility nodes from the source.

ME2: Full Sky 23

Meow Inheritance...

visibility(nodes): None

SkyComponent

PointSource GaussianSource Patch

1..n

RA, Dec
lmn()

Direction

FITSImageComponent

ME2: Full Sky 24

�Well I'm liberal, but to a degree...�
-- Bob Dylan

� Meow is just �a� framework, we can have others
� We believe in creative pragmatic anarchy...
� ...so don't take any framework as gospel.

� especially as it's a work in progress
� your feedback will drive that progress!

� Use them, or make your own, but be pragmatic:
� if you feel if something is missing, think of how to

improve it, and talk to the author
� ideally, we want to fold your improvements back

into the mainstream, for the benefit of others.

ME2: Full Sky 25

A �Real�-Life Example:
The CLAR

ME2: Full Sky 26

A Simple CLAR Sim

� The CLAR primary beam is elevation-
dependent
� symmetric at zenith
� broadened vertically as we track towards the

horizon
� Let's simulate 10 point sources:

V pq=�
s

K psE p �l s ,m s �B0sEq

� �l s ,m s�K qs

�

E p�l ,m �=ECLAR�l ,m ; El � �El=elevation�

ME2: Full Sky 27

A Simple CLAR Sim

� See ME2/example5-clar.py
� This defines a per-station, per-source E

Jones term.
� E Jones details are in clar_model.py.
� We use pre-computed beam gains:

� The vgain parameter is a Meq.Parm node
� There's a ParmTable (*.mep) supplying vgain

values (as a function of time)
� These are precomputed by another script

(clar_fit_dq.py)
� ...but in principle could have come from

anywhere.

ME2: Full Sky 28

A Simple CLAR Sim,
continued

� Note also the �source model� option in the GUI.
� This selects a function, which the script then calls

to obtain a source model.
� This a �compile-time� option

� determines the kind of tree that is built
� ...as opposed to run-time options, which

determine what kind of request to give the tree.
� Python makes this sort of thing easy, and it gives

us a further degree of abstraction.

ME2: Full Sky 29

An Ionospheric Sim

� See ME2/example6-iono.py
� This is adaptation of our previous ionospheres:

� multiple sources laid out in a grid (size and grid step
configurable)

� we compute proper piercing points per source and per
station

� code to compute Z-Jones resides in iono_model.py and
iono_geometry.py

� this returns the Z nodes as a series, individual matrices
are Z(src.name,p)

V pq=�
s

ZpsK psBsKqs

�
Zqs

�

ME3: Calibration & Correction 30

First, A Different MS...

� We'll use a different MS:
� 30-190 MHz in steps of 5 MHz
� more LOFAResque

� Make demo-30-190.MS by running:
glish -l demo_sim_30-190.g

ME2: Full Sky 31

An Ionospheric Sim,
continued

� Set compile-time options as follows:
� Rotate ionosphere with sky: True
� TID X amplitudes: 0.01 at t=0 and t=1hr
� Size 50km, speed 200 km/h
� TID Y amplitudes: 0
� Grid size 3, grid step 5'
� Noise: 0 Jy

� Run tree and make a per-channel map
� Make a time-slice movie:

glish -l make_movie.g DATA ms=demo.MS
channel=32 npix=300 cell=3arcsec

(or whatever output column you used)

ME2: Full Sky 32

And Now For Something Completely Different:

Time & Bandwidth Smearing

Way back, we assumed: � Jp ��e �e� � Jq

� �= Jp ��e �e� � Jq

�

In effect, we've been computing V pq�t 0,�0 � , and assuming

that this close enough to the vector average over �t ,�� .

This is OK as long as Jp s are sufficiently constant over � t , �� .

But as a minumum, Jp contains K p ,and :

K p K q

�
=exp�

2� i�

c
�u l�vm�w �n	1���

�uvw 's change with t , faster for longer baselines�

So even in the absense of any additional effects,

�K pBK q

� �� t ,�� � K p �t0, �0�BK q

� �t 0, �0 �

This is usually known as time and bandwidth smearing.

The effect goes up with �t ,�� , l ,m , and baseline length.

ME2: Full Sky 33

Simulating Smearing

� The same effect occurs with other Jones terms, such
as ionospheric or tropospheric phase, etc. (hence,
decohaerency time).

� How to simulate?
� The brute force approach:

- Divide each �t ,�� into N×M sub-intervals, and use

�V pq��t ,���
1

N M
�
i , j

V pq �t i ,� j �

� See ME2/example7-smear.py (and compare to
example2...)
� Meq.ModRes changes resolution
� Meq.Resampler averages back

ME2: Full Sky 34

So What's The Difference?

� Run the tree and make an per-channel map
� 5x5=25 times more visibilities to compute, so it

takes longer...
� Hard to see all that much in the map

(although you could make another map without
smearing, and subtract it...)

� So let's build a differential tree instead, to compute

�V p q=V p q�t 0,�0 �	 �V p q��t ,��

...and write the delta-visibilities to the MS.

ME2: Full Sky 35

Differential Trees
(Or Simulations About Simulations)

� Given infinite CPUs, we can implement m.e.'s
of arbitrary precision.

� In real life, we have to take shortcuts
(e.g. choosing time/freq intervals here).

� The main question: how much error does a
particular shortcut introduce?
� given infinite mathematical skill, we could work it

out analytically...
� ...but given MeqTrees, we don't have to.

ME2: Full Sky 36

Interlude:
How To Make Your Tree Run Very Slow

� There's a naïve way to compute the deltas:
� subtract �predict� from �resampled�, and connect

that to the sink.
� Why is this so slow??

� each �predict:p:q� subtree is called twice, once at
low res, once at high res.

� ...so we're not using the node caches.
� The right way to do it: parallel trees
� See ME2/example8-smear-diff.py (run the tree

and make a per-channel map)
� Moral: reuse values, not nodes.

� normally, this only occurs with resampling

ME2: Full Sky 37

The Lowly Point Source
as a probe of the simulations universe

� For single point sources, we can implement a
very precise form of the ME.

� For large-scale simulations, we're forced to
implement an approximate m.e.

� We can cheaply predict a grid of point
sources:
� with a precise m.e.
� with an approximate m.e.

� The difference tells you the error you make
when using the a.m.e.

ME2: Full Sky 38

A CLAR Shortcut?

� Do we need per-station beams?
� the beam depends on elevation
� all antennas track the same point on the sky
� ...so will have slightly different elevations
� ...very slightly (max separation is ~30km)

� Can't we just use an average beam?

i.e. E BE
�
 instead of E pBE q

�
, where E=

1

N
�

p

E p

� Let's make a tree to compute the delta-visibilities
between the �precise� CLAR sim with per-station
beams, and an �approximate� sim with an averaged
beam.

ME2: Full Sky 39

A CLAR Shortcut,
implementation

� See example9-clar-shortcut.py.
� Here we put sources in a �star8� pattern.
� Since we don't have pre-computed beams for the test pattern,

we use another function to compute beams:
Ej = clar_model.EJones(ns,array,observation,source_list);

� We then use a Meq.Mean to compute the average beam
(Eavg) per source, across all stations.

� We make a separate patch containing sources corrupted by
the average beam Eavg, and write out the differences.

� Run the script and make a per-channel map.

ME2: Full Sky 40

Exercise 3:
Ionospheric Phase Diffs

� The iono demo was all good, but it would be
nice to see if there's any differential
movement.

� Start with ME2/example6-iono.py
� Make a tree to compute the following

modified m.e., and make images and time-
slice movies:

�V pq=�
s

�Z psK ps BsK qs

� �Zqs

�

�Z ps=Z ps /Zp0

(i.e difference w.r.t Z of central source)

ME2: Full Sky 41

Tracking Errors

� Let's make a tree to simulate tracking
errors:

Assume each antenna has the same beam pattern E �l ,m � ,

but a different pointing error of � l p ,�m p .

For source s at position l s ,m s , the beam gain Eps is then:

Eps=E �l s�� l p ,m s��m p�

� Let's make a tree to simulate tracking
errors:

� See ME2/example10-tracking.py

ME2: Full Sky 42

Tracking Errors,
continued

� We generate a random set of tracking
offsets per each antenna
� slowly variable in time

� This gives us �apparent� l',m' coordinates
per source, per antenna:

ns.lm1(src.name,p))
� We then use l',m' to compute the beam

gain per source, per antenna.

ME2: Full Sky 43

Exercise 4:
Differential Tracking Errors

� It's hard to see anything meaningful in the
previous images.

� ...so let's make a differential tree to
examine the errors closely.

� Start with ME2/example10-tracking.py
� Make a differential tree and examine the

difference between a sim with tracking
errors, and a sim with perfect tracking.

ME2: Full Sky 44

Exercise 5:

Patches & Beams
� Use the pseudo-WSRT beam model of Exercise 2.
� Create three patches

� at l
0
,m

0
 = 0,0; 2',2' and 4',4'

� each patch to contain 9 sources of 1Jy each arranged
in a cross, at 0,0; ±.5' and ±1' in each direction,
relative to the center of the patch.

� Apply E
p
(l

0
,m

0
) to each patch as a whole.

� Make a differential tree to compute the delta-Vs
between this approximation, and a �precise� model
where each source has its own E

p
.

� Make MFS and per-channel maps.
� You should be able to do it within 35000 nodes.

