ME4: Extended Sources,

 Images, Image-Plane Effects
Objectives:

- Learning to predict extended sources
- Getting to grips with wide fields and n
- Thinking about image-plane effects
- Planting the seeds of some advanced topics and techniques

svn up Workshop2007 please

And The Answer Is....

- In general, NO!
- uv-plane effects (the Gs) can be taken out.
- Image-plane effects correspond to convolution in the uv-plane:
$\boldsymbol{v}_{p q}=\mathcal{F}\left(N_{p} \boldsymbol{E}_{p} \boldsymbol{B} \boldsymbol{E}_{q}^{t} N_{q}^{t}\right)=\mathcal{F}\left(\boldsymbol{E}_{p}\right) \circ \mathcal{F}\left(N_{p} \boldsymbol{B} N_{q}^{+}\right) \circ \mathcal{F}\left(\mathbf{E}_{q}^{t}\right)$
- ... with time-variable kernels
- ...and with each baseline's uv-plane sampled along just a single track
(Note: Bhatnagar et al. (EVLA Memo 100) suggest a method for approximate correction during the imaging step. We'll return to this later.)

So, Is There Always Such A Beast As "Corrected" uv-Data?

Say we now have some image-plane effects:

$$
\boldsymbol{V}_{p q}=\boldsymbol{G}_{p} \mathcal{F}\left(N_{p} \boldsymbol{E}_{p} \boldsymbol{B} \boldsymbol{E}_{q}^{\dagger} N_{q}^{\dagger}\right) \boldsymbol{G}_{q}^{+}
$$

\ldots and we know all of the $\boldsymbol{G}_{p}, \boldsymbol{E}_{p}$, and (of course) \boldsymbol{N}_{p} 's; then is there a way to obtain "corrected" visibilities V^{\prime}

$$
\text { such that } \boldsymbol{V}^{\prime}{ }_{p q}=\mathcal{F}(\boldsymbol{B}) \text { ??? }
$$

(or at the very least $\boldsymbol{V}^{\prime}{ }_{p q}=\mathcal{F}\left(N_{p} \boldsymbol{B} N_{q}^{\dagger}\right)$) ???

Correcting At A Single Point

But we can correct for a single point l_{0}, m_{0} :

$$
\boldsymbol{V}^{\prime}=\boldsymbol{E}_{p}\left(l_{0}, m_{0}\right)^{-1} \boldsymbol{V} \boldsymbol{E}_{q}^{-1}\left(l_{0}, m_{0}\right)^{t}=
$$

$$
=\mathcal{F}\left(\left(\boldsymbol{E}_{p}\left(l_{0}, m_{0}\right)\right)^{-1} \boldsymbol{E}_{p} N_{p} \boldsymbol{B} N_{q}^{\dagger} \boldsymbol{E}_{q}^{\dagger}\left(\boldsymbol{E}_{q}^{\dagger}\left(l_{0}, m_{0}\right)\right)^{-1}\right)
$$

$$
=\mathcal{F}\left(N_{p} \boldsymbol{B}^{\prime} N_{q}^{\dagger}\right)
$$

where $\boldsymbol{B}^{\prime}\left(l_{0}, m_{0}\right)=\boldsymbol{B}\left(l_{0}, m_{0}\right)$, but diverges further away.

- In general, uv-data can only be "corrected" for a single point on the sky.
- This is the motivation for facet imaging.

Divide And Conquer

Let's forget about the $\boldsymbol{G} s$, as they're trivial to put in/remove.
(M.E.) $\quad \boldsymbol{V}_{p q}=\iint_{l m} \boldsymbol{K}_{p} \boldsymbol{E}_{p} \frac{\boldsymbol{B}}{n} \boldsymbol{E}_{q}^{\dagger} \boldsymbol{K}_{q}^{\dagger} d l d m=\int_{\text {sky }} \boldsymbol{K}_{p} \boldsymbol{E}_{p} \boldsymbol{B} \boldsymbol{E}_{q}^{\dagger} \boldsymbol{K}_{q}^{\dagger} d \Omega$

This is linear over \boldsymbol{B}, so if the sky is a sum of sources: $\boldsymbol{B}(l, m)=\sum_{s} \boldsymbol{B}_{s}(l, m), \quad\left(\right.$ or $\left.\boldsymbol{B}(\vec{\sigma})=\sum_{s} \boldsymbol{B}_{s}(\vec{\sigma})\right)$

$$
\boldsymbol{V}_{p q}=\sum_{s} \boldsymbol{V}_{p q}^{(s)}=\sum_{s} \iint_{l m} \boldsymbol{K}_{p} \boldsymbol{E}_{p} \frac{\boldsymbol{B}_{s}}{n} \boldsymbol{E}_{q}^{\dagger} \boldsymbol{K}_{q}^{\dagger} d l d m
$$

And we can examine the integral for each source separately.

Case 1. Point Sources

- Point sources we have already done, their \boldsymbol{B} is a delta function.

$$
\begin{gathered}
\boldsymbol{V}_{p q}=\iint_{l m} \boldsymbol{K}_{p} \boldsymbol{E}_{p} \boldsymbol{B}_{0} \delta\left(l-l_{0}, m-m_{0}\right) \boldsymbol{E}_{q}^{\dagger} \boldsymbol{K}_{q}^{\dagger} d l d m= \\
=\boldsymbol{K}_{p}\left(l_{0}, m_{0}\right) \boldsymbol{E}_{p}\left(l_{0,} m_{0}\right) \boldsymbol{B}_{0} \boldsymbol{E}_{q}^{\dagger}\left(l_{0}, m_{0}\right) \boldsymbol{K}_{q}^{\dagger}\left(l_{0}, m_{0}\right)= \\
=\boldsymbol{K}_{p 0} \boldsymbol{E}_{p 0} \boldsymbol{B}_{0} \boldsymbol{E}_{q 0}^{\dagger} \boldsymbol{K}_{q 0}^{\dagger}
\end{gathered}
$$

- Product of five 2×2 matrices.
- We can predict point sources perfectly.
- Computationally practical for a limited number of sources.

Case 2. Extended Sources

 And Patches- Any \boldsymbol{B} that is not a delta-function gets interesting, especially if \boldsymbol{E} is not trivial, and especially for wider fields (the "not quite an F.T." problem.)
- ...but we need to solve this for two reasons.
- Reason 1: spatially extended sources...
- Reason 2: it is impractical to directly predict large numbers of fainter sources individually, so we need to organize them into "patches", and find a faster way to predict a patch en masse.

First, Reduce To Center...

Consider a source centered on direction $\vec{\sigma}_{0} \quad\left(l_{0}, m_{0}\right)$, with the phase center at $\vec{\sigma}=0$.

$$
\begin{aligned}
& \text { prase center at } \sigma=0 \text {. } \\
& \boldsymbol{V}_{p q}=\int_{\text {sky }} \boldsymbol{K}_{p}(\vec{\sigma}) \boldsymbol{E}_{p}(\vec{\sigma}) \boldsymbol{B}(\vec{\sigma}) \boldsymbol{E}_{q}^{\dagger}(\vec{\sigma}) \boldsymbol{K}_{q}^{\dagger}(\vec{\sigma}) d \Omega= \\
& \text {. }
\end{aligned}
$$

Let's integrate in the coordinate system $\vec{\sigma}^{\prime}=\vec{\sigma}+\overrightarrow{\sigma_{0}}$,

$$
\text { and define } \tilde{\boldsymbol{B}}(\vec{\sigma}) \equiv \boldsymbol{B}\left(\vec{\sigma}+\vec{\sigma}_{0}\right), \quad \tilde{\boldsymbol{E}}_{p}(\vec{\sigma}) \equiv \boldsymbol{B}\left(\vec{\sigma}+\vec{\sigma}_{0}\right) \text { : }
$$

$\boldsymbol{V}_{p q}=\int_{\text {sky }} \boldsymbol{K}_{p}\left(\vec{\sigma}+\vec{\sigma}_{0}\right) \boldsymbol{E}_{\rho}\left(\vec{\sigma}+\vec{\sigma}_{0}\right) \boldsymbol{B}\left(\vec{\sigma}+\vec{\sigma}_{0}\right) \boldsymbol{E}_{q}^{\dagger}\left(\vec{\sigma}+\vec{\sigma}_{0}\right) \boldsymbol{K}_{q}^{\dagger}\left(\vec{\sigma}+\vec{\sigma}_{0}\right) d \Omega^{\prime}=$
$=\boldsymbol{K}_{p}\left(\vec{\sigma}_{0}\right)\left(\int_{\text {sky }} \boldsymbol{K}_{p}(\vec{\sigma}) \tilde{\boldsymbol{E}}_{p}(\vec{\sigma}) \tilde{\boldsymbol{B}}(\vec{\sigma}) \tilde{\boldsymbol{E}}_{q}^{\dagger}(\vec{\sigma}) \boldsymbol{K}_{q}^{\dagger}(\vec{\sigma}) d \Omega\right) \boldsymbol{K}_{q}^{\dagger}\left(\vec{\sigma}_{0}\right)=$

$$
=\boldsymbol{K}_{p}\left(l_{0}, m_{0}\right)\left(\iint_{l m} \boldsymbol{K}_{p} \tilde{\boldsymbol{E}}_{p} \frac{\tilde{\boldsymbol{B}}}{n} \tilde{\boldsymbol{E}}_{q}^{\dagger} \boldsymbol{K}_{q}^{\dagger} d l d m\right) \boldsymbol{K}_{q}^{\dagger}\left(l_{0}, m_{0}\right)
$$

...Where Life Gets Easier

$$
\boldsymbol{V}_{p q}=\boldsymbol{K}_{p 0}\left(\iint_{l m} \boldsymbol{K}_{p} \tilde{\boldsymbol{E}}_{p} \frac{\tilde{\boldsymbol{B}}}{n} \tilde{\boldsymbol{E}}_{q}^{\dagger} \boldsymbol{K}_{q}^{\dagger} d l d m\right) \boldsymbol{K}_{q 0}^{\dagger}
$$

- In other words, to predict a source at $I_{0^{\prime}} m_{0^{\prime}}$, it is sufficient to predict it at the phase center (shifting \boldsymbol{E} accordingly...), then apply the phase terms $\boldsymbol{K}_{\mathrm{po}}{ }^{\prime}$ $\boldsymbol{K}_{\mathrm{q} 0}$ to "move" the source to its true position.
- This is beautifully symmetric w.r.t. the ME for a point source:

$$
\boldsymbol{K}_{p 0} \boldsymbol{E}_{p 0} \boldsymbol{B}_{0} \boldsymbol{E}_{q 0}^{\dagger} \boldsymbol{K}_{q 0}^{\dagger}
$$

- This is very good from a practical point of view, since: - F.T.'s are easier than strange integrals
- phase shifts and (in the optimistic case) image-plane effects are applied in the same way to all kinds of sources
- we only need to worry about predicting the source (or patch) at the phase center

Or Even More Optimistically...

$$
\begin{aligned}
& \text { If we also make the "Strong Assumption" that } \\
& \boldsymbol{E}_{p} \approx \boldsymbol{E}_{p}(0,0) \text { over the source, then } \\
& \qquad \boldsymbol{V}_{p q}=\boldsymbol{K}_{p 0} \boldsymbol{E}_{p 0} \mathcal{F}\left(\boldsymbol{B}_{0}\right) \boldsymbol{E}_{q 0}^{\dagger} \boldsymbol{K}_{q 0}^{\dagger}
\end{aligned}
$$

So All We Need
 To Figure Out Now...

- ...is how to predict extended sources at the phase center. We've simplified the problem considerably. If we now expand the \boldsymbol{K} terms:

$$
\boldsymbol{V}_{p q}=\iint_{l m}\left(\boldsymbol{E}_{p} \frac{\boldsymbol{B}}{n} \boldsymbol{E}_{q}^{\dagger}\right) e^{-2 \pi i\left(u_{p l} t+v_{\rho q} m+W_{\rho q}(n-1)\right.} d l d m
$$

When $n \rightarrow 1$, this becomes a Fourier Transform:

$$
\boldsymbol{V}_{p q}=\iint_{l m}(\underbrace{\boldsymbol{E}_{p} \boldsymbol{B} \boldsymbol{E}_{q}^{\dagger}}_{\text {apparent sky" }}) \underbrace{e^{-2 \pi i\left(\psi_{p q} l+v_{p q} m\right)}}_{\text {F.T. Kernel }} d l d m
$$

- ...and we only require the "Weak Assumption" that $n \rightarrow 1$ over the extent of the source.

The Bad News

- This is only an approximation.
- Error levels will depend on:
- source flux (in a linear way, so we can talk about relative error);
- patch/source size (because of the n term);
- the variation in \boldsymbol{E} over the extent of the patch.
- We need to develop some feeling for how small the patches/sources need to be to make the error suitably small.
- We can build some trees to simulate these errors (well this is actually good news, isn't it?)

Case 2:
 "Analytic" Extended Sources

- For some kinds of sources (e.g., a 2D Gaussian), we can write out the F.T. analytically.
i.e. given a set of source parameters that determine its \boldsymbol{B}
(for a Gaussian, this is its major/minor axis extent $\sigma_{1} \sigma_{2}$ position angle θ, and integrated I, Q, U, V fluxes),
we can immediately write out an expression for its $\mathcal{F}(\boldsymbol{B})$.
(The F.T. of a Gaussian is a Gaussian.)
- Meow.GaussianSource implements the trees for this.
- Only correct under the "Strong Assumption", obviously.

Shapelets: The Ultimate In Analytic Sources

- The shapelet transform decomposes an image (in I, m) into a sum of shapelet basis functions:

$$
b(l, m)=\sum_{n} c_{n} \cdot s_{n}(l, m)
$$

- Complex source structure can (potentially) be represented with relatively few low-order $\left\{c_{n}\right\}$ coefficients.
- The basis functions s_{n} have an analytic F.T.
- Therefore, we can quickly compute the F.T. of a shapelet source, given a set of coefficients.
- "Strong Assumption" not necessarily required...
- Just making its way into MeqTrees, so no demo..

Case 3: "Image" Sources

- Finally, we can have an image - B (or perhaps just plain I) sampled on a RA/Dec (or other) grid.
- An FFT gives us the F.T. on a regular uv grid:

$$
\left\{\boldsymbol{B}_{i j}=\boldsymbol{B}\left(l_{i}, m_{j}\right)\right\} \xrightarrow{\mathrm{FFT}}\left\{\boldsymbol{X}_{i j}=\mathcal{F}(\boldsymbol{B})\left(u_{i}, v_{j}\right)\right\}
$$

- This is done by the Meq. FFTBrick node.
- The Meq.UVInterpol node then takes...
$\ldots u(t), v(t)$ from one child, and interpolates
$\boldsymbol{X}(t, v)=\boldsymbol{X}\left(\frac{v u(t)}{c}, \frac{v v(t)}{c}\right)$ within the $\left\{\boldsymbol{X}_{i j}\right\}$ "brick"
(which it gets from the other child.)

Implementing An Image Source

- Meow.FITSImageComponent implements the right combination of Meq.FFTBrick, Meq.UVInterpol, and Meq.FITSImage.
- Images can also have a frequency axis, this is seamlessly propagated through the tree.
- No demo - something is currently broken :(

Image Sources \& Image-Plane Effects

Given an image, $\left\{\boldsymbol{B}_{i j}\right\}$, we can easily apply \boldsymbol{E} :

$$
\boldsymbol{B}_{p q}=\boldsymbol{E}_{p} \boldsymbol{B} \boldsymbol{E}_{q}^{\dagger}
$$

- This can be done in a simple tree:
- the FFTBrick node expects a "brick" child
- this doesn't have to be an actual FITSImage node, but can also be any subtree, i.e. one that does some operations on the image.
- If the \boldsymbol{E} 's are different per antenna, this is INSANELY expensive (an FFT per baseline!)

The Bhatnagar Approach:

Coming Soon To a Tree Near You?

$$
\mathcal{F}\left(\boldsymbol{E}_{p} \boldsymbol{B} \boldsymbol{E}_{q}^{t}\right)=\mathcal{F}\left(\boldsymbol{E}_{p}\right) \circ \boldsymbol{X} \circ \mathcal{F}\left(\boldsymbol{E}_{q}^{t}\right)
$$

If \boldsymbol{E}_{p} is sufficiently smooth, then $\mathcal{F}\left(\boldsymbol{E}_{p}\right)$ can be approximated with just a few low-order Fourier coefficients.

- Convolution with a "small" kernel can be computed directly, fairly cheaply.
- ...and in fact the interpolation function used inside UVInterpol to interpolate \boldsymbol{X} to the uv track is a form of convolution
- So we can apply E's with a suitable modification to the convolution function.

n: Naughty, Nasty, Notorious, Nefarious, Nebulous, Noxious, or Just Negligible?

- The "Weak Assumption" is that $n=1$ over the extent of the source.
- Let's make a differential tree to estimate the error that this assumption introduces.
- General idea: make a test grid of point sources, then:
- predict them perfectly in one branch.
- predict them with $(1, m, 1)$ in the other branch.
- The former are Meow.PointSources, how do we implement the latter?
- ...through OOP, of course!

A Naughty Direction

- Imn's ultimately come from Meow.LMDirection.
- We're going to derive a subclass from

Meow.LMDirection

- This subclass reimplements the $\mathbf{n}()$ function, which LMDirection uses to create its n node (which is subsequently used to make a \boldsymbol{K} term).
- The end result: a direction that "ignores" the normal n term, and uses 1 instead.
- See ME4/NaughtyDirection. py.

Demo 1: So How Weak

Is The "Weak Assumption"?

- Load up ME4/demol-naughty.py.
- This makes two sets of sources arranged in a "cross":
- Regular PointSources in one branch
- PointSources with a NaughtyDirection in the other branch
- You can select the grid stepping size - compare results for 1^{\prime} and 60 '.
- Compare MFS and per-channel maps.

