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Chapter 1

The Fundamentals

The purpose of this document is to provide an in-depth description of the MeqTree kernel and related interfaces.
The following subjects will be covered:

• Basic terms and concepts.

• System components.

• Data structures employed in the MeqTree kernel.

• Standard node state & functionality.

• Interaction between nodes, and how it is affected by state.

• Interaction with Glish (and in the future, other scripting languages).

• Examples of some standard and application-specific nodes.

The intended audience for this document is:

The Tree Designer, since a thorough understanding of how nodes interact is critical in construction of com-
plex and efficient trees.

The Node Developer needing to implement specialized node classes.

1.1 Trees

The MeqTree kernel provides a C++ implementation of the MeqTree concept. A MeqTree (or simply “tree”) is
a collection of interconnected MeqNodes (or simply “nodes”). Nodes have a directed parent–child relationship;
a parent may have any number of children, and a child can have multiple parents. Cycles are forbidden.
Technically, this makes the MeqTree a directed acyclic graph, but the term “tree” is retained for historical and
aesthetical reasons.

We will often use directional terms when discussing trees, up is from parent to child, and down is from
child to parent.

In broad terms, the life of a node generally consists of receiving requests from its parent(s), passing them
up to its children, receiving results in response, performing some calculation on the child results, and returning
the result down to its parent(s). Thus, requests generally originate somewhere down the tree and propagate up,
while results germinate at the top and percolate down.

1.2 The math

Trees are mostly concerned with evaluating functions (e.g., predicted visibilities), optionally comparing these
functions to other functions (e.g., measured visibilities), and solving for adjustable parameters to obtain the
best fit. Before we discuss this in detail, it helps to define some basic mathematical terms.
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The result of a node usually represents some function defined over R2 space – f : R2 → RN or f : R2 → CN .
The R2 domain is interpreted as frequency–time space in our application context, but in fact there’s very few
places in the kernel where this has any specific meaning. The codomain, RN or CN , could represent any number
of things, e.g., a single correlation XX ∈ C, the Stokes parameters (IQUV ) ∈ R4, four complex correlations in
C4, etc.

The actual function domain [X1,X2] × [Y1, Y2] is a rectangular subset of R2. This domain is fully or
partially covered by a set of N × M cells. Each cell cij is a ∆xi × ∆yj rectangle, centered on point (xi, yj).
The function itself is represented by an object called the vells, which is essentially a set of N × M samplings
f̄ = {fij}:

fij = f(xi, yj),

or N × M integrations f̄ = {f̃ij}:
f̃ij =

∫∫

cij

f(x, y) dx dy.

A vells f̄ = {fij} can also represent a set of measured data, such as observed complex visibilities.
A function may also depend on K real parameters. If we designate the parameter space P := RK , then

our function essentially becomes f : R2 × P → RN or f : R2 × P → CN . This can also be represented as
f(x, y; p1...pK), or f(x, y; ~p). The model fitting problem is essentially a minimization problem: finding the value
~p0 that minimizes the function χ2(x, y; ~p) over a fixed set of cells in (x, y) space. The χ2 function ties together

predict function f(x, y; ~p), measured data {f̂ij}, and an optional set of weights {wij}:

χ2(~p) =
∑
ij

(f(xi, yj ; ~p) − f̂ij)
2wij ,

Solving the minimization problem hinges on estimating the gradients of f in P space.1 Given a tree that
computes fij = f(xi, yj ; ~p), we can numerically estimate each partial derivative ∂f/∂pk(x, y; ~p) by taking a

small perturbation δk, and using the same tree to compute a perturbed value for parameter k: f
(k)
ij =

f(xi, yj ; p1, ..., pk−1, pk + δk, pk+1, ..., pK). In fact, the kernel is designed to automatically compute perturbed
values when needed. More precise estimates may be obtained by using two sets of perturbed values (“double-

differencing”), with different perturbations δ
(1)
k and δ

(2)
k (generally, δ

(2)
k = −δ

(1)
k ). The different sets of perturbed

values are designated as f
(sk)
ij (s = 1, 2). These are passed around as a vellset, which is composed of the value

vells {fij}, K × S(S = 1, 2) perturbed value vells {f (sk)
ij }, and S vectors of the perturbation themselves δ

(s)
k .

1.3 Nodes

Nodes are implemented as C++ objects, subclassed from the abstract Meq::Node class2. All interaction with
nodes is done via the Node class interface. Consequently, a node has no direct knowledge of the type of
its children. Nodes may be connected together in a practically arbitrary manner. Given a rich toolbox of
elementary node classes, trees representing arbitrary mathematical expressions may thus be constructed.

All nodes have a state record that determines their behaviour. The state record is fully accessible from
the outside. The initial state record is also called the defrec (from definition record), and is usually supplied
from the scripting layer when the node is created.

Nodes also have a result cache that may retain the most recently computed result. The cache is intended
to save processing time for repeated (or similar enough) requests.

1.4 Design Philosophy

These principles are key to understanding the design philosophy behind the kernel:

Locality: all functionality is defined in terms of local parent–child request–result interactions. There is no
centralized “control” as such.

1The exact mathematical expressions are slightly different when dealing with integrations (as we do in the case of visibilities),
but most operations remain essentially the same.

2All the MeqTree kernel classes reside in the Meq namespace; we will omit Meq:: from names from now on.
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KISS and rely on emergent behaviour: complex behaviour of the tree as a whole emerges from primitive
request–result interactions at the local level. Most node classes are designed to be simple (K.I.S.S.!),
with a single well-defined purpose. If some sort of specific functionality is required, it is almost always
preferrable to implement it by building the right tree, rather than developing specialized nodes.

Policy-free: kernel node classes are largely policy-free. By policy we mean any sort of application-specific
behaviour or concepts. Policy may only emerge at the tree level (by connecting the nodes in a specific
way), and/or at the scripting level.

Prohibition is for policy-makers: this is a corollary to the previous principle. Apart from minimal and
obvious sanity checks, the kernel imposes very few restrictions on its interface calls. This, of course, is
a double-edged sword – it provides great power, but also great opportunities to do something wrong. It
is left to the higher-level (i.e. application-level) scripting code to shackle the user and protect him from
mistakes.

There is more than one way to do it: (with a nod to Larry Wall and Perl) in a lot of cases, the kernel
provides several ways of accomplishing the same result. There is not necessarily a single “right” way, it
all depends on the particular application context. This redundancy is by design, as it increases the overall
adapatability of the system.

1.5 Software components

An interface to the kernel is provided via a MeqServer object. The MeqServer maintains a Forest (a collection
of nodes and trees), and provides operations such as:

• Create, connect and delete node objects.

• Inspect and modify node state records.

• Issue requests and return results.

• Connect trees to data sources (e.g. Measurement Sets).

MeqServer plugs into the OCTOPUSSY publish/subscribe framework, and through it can can transparently
support any number of local or remote clients, such as Glish sessions. The MeqServer object is instantiated
inside a meqserver process.

All application-dependent logic (“policy”) is meant to reside in the scripting layer (Glish, and in the future
Python).
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Chapter 2

Data Structures

2.1 Basic concepts

The main priciple driving data structure design in MeqTrees is congruity: all C++ objects used to pass
information within a tree must be mappable without any loss of information to and from data structures on
the scripting side. Fully private structures (e.g., private nested classes) can exist on the C++ side only.

Congruity facilitates transparency: most of the inner workings of a tree are readily accessible from the
scripting side. This allows for very elaborate monitoring schemes, and is a great debugging aid when something
goes wrong.

2.1.1 Data types

The choice of atomic data types is limited by the requirement of congruity. Currently, the only supported
scripting language is Glish, but Python support is expected in the near future. In any case, the kernel restricts
itself to common primitives that are supported by all mature scripting languages. Thus, kernel data structures
are defined in terms of a restricted set of “legal data objects”, specifically:

• scalars – bool, integer, float, double, float or double complex;

• strings;

• multidimensional arrays of scalars;

• lists of legal objects (in Glish this is represented either via a vector of scalars or strings, or via a record
with fields indexed by number);

• records of legal objects (a.k.a. dictionaries/maps/hashes with a string key and a legal object value).

On the C++ side, data objects are based on the DMI DataRecord, DataField and DataArray classes.
Most data classes are in fact derived from DataRecord, and are at core a record with some (sometimes loosely)
predefined structure.

2.1.2 HIIDs

The HIID (hierarchical indentifier) class of the DMI package is used for all data-related indentifiers in the kernel,
such as record fields, node groups, request IDs, etc.

A HIID is essentially a vector of integers called atomic IDs. Atomic IDs have a string representation: for
IDs >=0 this is simply the integer itself in string form, while for IDs <0, a global dictionary (i.e. map from
strings to numbers) is maintained in the development tree. Another way to look at this is that negative IDs
represent atomic concepts, or words. Thus, any HIID can be viewed as a mix of words (from a fixed though
rather large vocabulary!) and numbers.

The string form of a HIID consists of atomic IDs, separated by periods. For example, "Request.ID.1"
is the string form of (−1210,−1087, 1). Note that the string form is not case-sensitive, so "request.id.1"

corresponds to the same HIID. An alternative string representation, employing underscore (" ") as the separator,
is used for Glish record fields, e.g., rec.request id 1.

9
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The reason we use HIIDs instead of plain strings is efficiency on the C++ side – many data storage classes
engage in parsing or building up HIIDs, and vectors of integers are much easier to manipulate than strings.
Note that the symbol-to-ID mapping is also available as C++ header files containing const declarations for
atomic IDs. These may be used as, e.g.:

const HIID MyFieldName = AidRequest | AidId | 1;

which is a convenient and visually obvious way to define a constant HIID corresponding to "Request.ID.1".
The compiler turns this declaration into a const HIID object – essentially, a constant vector of integers.

HIIDs are covered in more detail in the documentation for DMI. Here we’ll only dwell on their Glish form.
There’s two forms in which HIIDs appear in Glish:

• As record field names, e.g., rec.request id. The implication of this is that in order to be recognized by
the kernel, all record field names must be built up from a fixed vocabulary (which may be extended by
the C++ developer as new classes are added).

• As values. In Glish, a HIID value is just a string containing the HIID’s symbolic form, tagged by the
::is dmi hiid attribute. The hiid() function (in dmitypes.g) is a convenient way to create HIID values.
For example:

my_id := hiid(’Request.ID.1’);

my_id := hiid(’request’,’id’,1);

will both create the same HIID.

Note the crucial difference between strings and HIID values. Compare the two Glish records:

rec1 := [ a = ’a.b.c.1’ ];

rec2 := [ a = hiid(’a.b.c’,1) ];

While they may appear to be practically identical on the Glish side of things – both records contain the
string field a, except rec2.a has an extra attribute tag – when passed to the C++ kernel, rec1.a is
converted to an std::string object, while rec2.a is converted to a HIID object.

In this document, we will use both forms interchangably depending on context, with the understanding that,
e.g., request id 1 and "Request.ID.1" both refer to the thing as far as the kernel is concerend.

2.1.3 Naming conventions

• In C++, standard data structures & nodes reside in namespace Meq. In Glish, corresponding object
constructor functions are placed into the meq “namespace” (actually just a record), and names are all-
lowercase. The DMI dynamic type system uses a Meq prefix for the namespace. Thus, the Meq::Request

class in C++ is registered as a “MeqRequest” in the DMI type system, and has a meq.request() coun-
terpart in Glish.

• Even though the languages we use are case-sensitive, HIIDs aren’t. A good reason to avoid relying on
character case to distinguish identifiers is that different languages and contexts have different capitalization
conventions – compare, e.g., Meq::Request in C++, as opposed to meq.request in Glish. Thus we should
always avoid assigning case-sensitive names to different entities.
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2.1.4 Glish meq objects: meqtypes.g

With a couple of exceptions, Meq objects are represented by Glish records of a [mostly] predefined layout. The
Glish/C++ conversion layer uses a few “magic” attributes to distinguish these objects from ordinary records,
so it is able to map them to specialized Meq C++ classes rather than generic DataRecords.

Specifically, the ::dmi actual type attribute is set to a string which gives the DMI object type. Thus, it is
possible to construct a record in Glish, tag it with ::dmi actual type, pass it thorugh the Glish/C++ layer,
and have it auto-magically converted to an C++ object of the appropriate class. The only requirement is that
the record contain the correct set of fields, which are mapped to class attributes (data members) in C++. In
practice, it’s a lot more convenient to use the “constructor” functions defined in meq/meqtypes.g, which create
properly formed and tagged records1:

meq.domain() creates a Domain object (record).

meq.cells() creates a Cells object (record).

meq.requestid() creates a request ID from individual components (e.g., domain ID, config ID, iteration ID).
A request ID is really just a HIID.

meq.request() creates a Request object (record).

meq.polc() creates a Polc object (record).

In general, all data objects on the C++ side have counterparts on the Glish side. Within this document,
we will usually describe data objects in terms of their Glish equivalents – records and record fields – with the
implied understanding that there is a 1:1 mapping from that to C++ classes and data members.

2.1.5 Glish lists

Glish does not have a native “list” (a.k.a. “sequence”) type. Instead, lists are emulated in one of two ways:

• If all list elements are all of the same scalar type, then the list is emulated by a vector.

• If the list elements are of a non-scalar type, or the type is not homogenous, then the list is emulated by a
record.2

Since Glish records support numeric subscripts, both types of lists can be accessed via the same syntax –
len(list) returns the number of elements, list[n] accesses element n. Note though that if a list contains
only one element, it should still be accessed as list[1] rather than list (the latter syntax will actually do the
right thing given a vector, but not a record, hence it should be avoided for consistency’s sake.)

We will use the term list from now on to refer to both types of Glish structures, as it should usually be clear
from context which type is actually employed.

2.1.6 1-based and 0-based indexing

Glish array indices are 1-based, while C++ indices are 0-based. This, unfortunately, has always led to all sorts
of confusion, since indices pop up on both sides of the Glish/C++ barrier, and sometimes even need to be
passed back and forth. As our experience with AIPS++ has shown, keeping track of index conversion on an
individual basis is completely impractical.

The Glish/C++ conversion layer attempts to address this issue by providing automatic conversion of indices.
If a record field’s name ends in index (on the C++ side this corresponds to a field HIID ending in the atomic
ID "Index"), and the field contains a single integer or a list of integers, then the field is assumed to contain
indices, and conversion between 0- and 1-base is automatically performed.

Thus, the Glish record [foo=1,foo index=1,bar index=[2,3]] will be converted to
[Foo=1,Foo.Index=0,Bar.Index=[1,2]] on the C++ side (and vice versa), while [foo index=1.0] or

1Note that some Meq classes may have Glish counterparts but no Glish constructors. At time of writing, these include Vells,
VellSets, and Results. The reason for this is simply lack of necessity, since objects of these classes always originate on the C++
side rather than Glish. In the future, constructors for these classes may be added to Glish as required.

2When mapping lists created in the kernel to Glish records, the conversion layer assigns field names of the form "#1", "#2", etc.
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[foo index=[a=1,b=2]] will not undergo any conversion (since the index field contains a double value in
one case, and a subrecord in the other case).

Automatic conversion, of course, introduces its own potential for confusion if forgotten about. This is why
you simply shouldn’t forget about it.

2.2 MeqRequest and related data objects

A Request is a job description containing a number of commands that a node executes in order to produce a
Result. A Request is implemented as a record with a semi-fixed structure; commands correspond to specific
field names, while the value of each field usually carries the command arguments.

Operationally, the critically important command is cells: this tells the node to evaluate itself over a
given grid in the frequency–time domain. In fact, most other commands are mere housekeeping, while cells

represents the brunt of the workload. For this reason, the cells command gets special treatment: it is placed
at the top level of the request record (along with a few related flags), and all nodes are obliged to process it.
All other commands are kept inside a rider sub-record, and are subject to a node selection mechanism that
allows commands to be directed to all nodes, individual nodes, or groups of nodes (this is described in further
detail in section 5.3).

Each Request is assigned a unique request ID (rqid, pronounced “arr-cue-d”). This is a HIID describing
various properties of the request. Request generators are expected to follow a certain contract, and assign rqids
in a consistent way. This is covered in detail in section 4.1.1.

On the C++ side, a Request is derived from DataRecord. It can contain the following fields (of which only
request id is obligatory).

field name type description

request id HIID the request ID
cells Cells [optional] a Cells object (see below)
calc deriv int [optional] compute perturbed values (0, 1 or 2). Default is 0.
next request — [optional] a hint of what the next request is going to be. This influences

caching decisions and speculative execution (section 4.1.2). Placeholder only,
not currently implemented.

rider record [optional] rider subrecord containing additional commands.

2.2.1 Constructing Requests

In Glish, a Request record can be created by calling the following function:

meq.request := function (cells=F,request_id=F,calc_deriv=0)

You can subsequently add commands to the record using meq.add command() and meq.add state(). This
is also described in section 5.3.

2.2.2 Domains and Cells

The Domain class represents a rectangular domain in frequency–time space. The Cells class represents a
gridding of that domain. This is illustrated by Figure 2.1.

On the C++ side, both classes are derived from DataRecord. A Domain record corresponding to [fst, fend]×
[tst, tend] has the following structure:

[ freq = [ fst, fend ], time = [ tst, tend ] ]

where fst, fend, tst, tend are double values giving the domain boundaries.
Note that the specific concepts of frequency and time are meaningful to only a handful of nodes. The majority

of nodes simply deal in functions defined over abstract two-dimensional domains (in R2), without associating
any semantics with the dimensions. For this reason, the bulk of kernel code is careful to abstract itself from the
freq and time names whereever possible, treating domain components only as “first axis” and “second axis”.
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Figure 2.1: Layout of a Cells object and the envelope Domain

The Glish syntax of selecting record fields by number is handy here: if dom is a domain record, then dom[1]

and dom[2] refer to the axis subrecords in a name-independent way.
The Cells record is structured in the same spirit:

[ domain = [ envelope domain record ],

grid = [ freq = [f1, ..., fN], time = [t1, ..., tM] ],

cell size = [ freq = [∆f1, ...,∆fN], time = [∆t1, ...,∆tM] ],

segments = [ freq = [start index=[i′1, ..., i
′

n],end index=[i′′1 , ..., i′′n]],
time = [start index=[j′1, ..., j

′

m],end index=[j′′1 , ..., j′′m]] ] ]

This represents an N × M gridding of the given domain. The {fi} and {tj} vectors give the cell centers,
while {∆fi} and {∆tj} give the cell sizes.

The segments sub-record contains information on the regular segments of the grid.3 A regular segment
is a part of the grid over which the stepping between cell centers, as well as the cell size, remains constant.
The start index and end index vectors contain the starting (i′, j′) and ending (i′′, j′′) indices4 of each regular
segment. By definition, given n segments and N grid points, i′k = i′′k−1 + 1, i′1 = 1, i′′n = N.

In the simplest case, the entire N ×M grid is regular, in which case the segments subrecord looks like this:

[ freq=[start index=[1],end index=[N]],

time=[start index=[1],end index=[M]] ]

The other extreme, of course, is the completely irregular grid. This is represented by segments of the form:

[ freq=[start index=[1,2,...N],end index=[1,2,...N]],

time=[start index=[1,2,...M],end index=[1,2,...M]] ]

Figure 2.1 shows an 8 × 7 grid with three regular segments along each axis. This would correspond to the
following segments sub-record:

[ freq=[start index=[1,5,6],end index=[4,6,8]],

time=[start index=[1,4,5],end index=[3,5,7]] ]

3Some calculations, such as the DFT, can be significantly optimized over regular grids.
41-based in Glish, 0-based in C++, see section 2.1.6.
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Note that segments information is merely an optimization facility, and can be safely ignored most of the
time. The user need not know anything about it, since Cells constructors compute segments automatically;
most application code doesn’t care either, instead working directly with the grid vectors.

On a related note, the Cells record is full of redundant information. For example, domain and segments

can be completely derived from grid and cell size. This has two important implications:

• To construct a Cells, you need to provide only the minimum sufficient information, while the constructor
figures out everything else automatically.

• Cells records should be treated as read-only. Directly manipulating any of the values inside can break
consistency between the grid/domain/segments fields, and lead to all sorts of confusion down the line.

Empty Cells

An empty record corresponds to an uninitialized Cells object in C++. Empty Cells may appear in situations
where the cell information is not defined, so Glish code should be prepared to deal with it. See section 2.4.4 for
an example.

Constructing Domains and Cells

The Glish meq.domain function constructs a record corresponding to a Domain object. Its usage is pretty much
self-evident:

meq.domain := function (startfreq,endfreq,starttime,endtime)

The meq.cells() function is somewhat more elaborate:

const meq.cells := function (domain=F,num_freq=F,num_time=F,

freq_grid=[],time_grid=[],

freq_cell_size=[],time_cell_size=[])

All of the arguments are optional, allowing different ways of specifying a Cells. For example,
cells := meq.cells(meq.domain(0,1,0,1),2,2);

creates a regular 2×2 grid for the domain [0, 1]× [0, 1]: cell centers at (0.25,0.75), cell sizes of (0.5,0.5). The
same Cells can be alternatively specified as:

cells := meq.cells(freq grid=[0.25,0.75],time grid=[0.25,0.75]);

letting the constructor derive the domain & cell size automatically. The two forms can even be mixed:
cells := meq.cells(meq.domain(0,0,0,1),freq grid=[0.25,0.75],num time=2);

produces the same Cells yet again – note that the freq grid values override the freq component of the
domain.

If not supplied in the function call, the default cell sizes are computed to perfectly tile the specified domain.
The freq and time cell size arguments allow you to supply explicit cell sizes. These may be scalars –
implying the same size for all cells along that axis – or vectors. In the latter case, the size of the vector must
match the corresponding x grid or num x argument.

2.3 Fail-records and fail-states

Run-time errors during execution are reported via special structures called fail-records. Because fail-records can
appear within different data structures (see below), they deserve to be documented separately. A fail-record
has the following layout:

field name type description

message string a description of the error.
node name string [optional] name of originating node, if any.
node class string [optional] classname of originating node, if any.
origin string origin: usually just the source file name.
origin line int origin location: usually just the source line number.
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Because most errors tend to cascade from lower-level subsystems up to the application level, accumulating
more specific descriptions along the way, fail-records usually come in a list. Lower-level errors then appear at
the head of the list, and higher-level errors appear at the tail.

Certain data classes described below (e.g., Result and VellSet) support a fail-state – i.e., a form of the data
object describing a failure. A fail-state is represented by a record with a single field named fail, containing a
list of fail-records. The kernel uses this layout consistently for indicating fail state, so all Glish code can follow
a simple policy and process fails in the same way everywhere:

• Any record with a fail field represents an object in fail-state.

• In fail-state, no other meaningful fields exist.

• The fail fields always contains a list of fail records (even if the list contains only one element).

2.4 MeqResult and related data objects

A Result contains the result of a Request’s execution. A Result is also a record (derived from DataRecord on
the C++ side). Theoretically, this record is completely free-form, with its contents dependant on the commands
in the original Request (and in some cases even on node type – e.g., a Solver’s result will contain solution
metrics). If, however, the original Request contains a cells command – asking the node to evaluate itself
over the given Cells – and the command is executed successfully, then the returned Result has a well-defined
structure:

field name type description

cells Cells the Cells of the result (not necessarily matching the request cells – see 5.4)
values VellSet[] list of result values
integrated bool flag indicating if the values are integrations or samplings (default is false,

implying samplings)

Two other common types of Result are the empty result (empty record), returned when a Request does
not contain any commands with return values, and the fail-result (see section 2.3), returned when a run-time
error arises during execution.

2.4.1 Sampling vs. integration

A Result can represent both a sampling of some function at the cell centers, or an integration over each cell.
The integrated flag is used to indicate this, if missing, false (i.e. a sampling) is assumed. Leaf nodes set
this flag according to the type of value they return (for example, a Spigot reading visibilities from a data set
returns integrations; a Parm representing gain returns samplings). Non-leaf nodes should take care to pass this
flag from child to parent properly. This flag is also taken into account when performing resampling of results
(section 5.4).

2.4.2 Multiple values

Note that the values field is defined as a list of VellSets. In Glish, a list is implemented as a record, using the
rec[1], rec[2], etc. syntax to access fields by number. Even if there is only one VellSet in the list, you still
have to access it as result.values[1].

Each VellSet represents a function f : R2 → R or C. A set of N VellSets then represents f : R2 → RN

or CN .5 Another way to look at it is that a set of VellSets allows multiple “planes” for a single Cells. For
example, a Spigot may return four planes at a time for the four correlations. Function nodes expect all child
Results to either have the same number of planes, and will apply the function to each set of planes (cross-slice)
independently; however, some children may have only one plane, in which case it is re-used in each cross-slice.

The Selector and Composer nodes can be used to decompose and assemble Results on a plane-by-plane
basis. The Selector node has one child; it returns a Result composed of specific plane(s) from its child. The
Composer assembles a Result from all the planes returned by its children.

5In fact, the set can even contain a mix of R and C codomains.
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2.4.3 VellSet

A VellSet is essentially a sampling or integration (see 2.4.1) of some function f : R2 → R or f : R2 → C over a
certain Cells. A Cells defines a domain & grid in R2 space – usually interpreted as frequency-time – specified
by the grid vectors (x1, ..., xN ) and (y1, ..., yM ). Thus, a VellSet contains an N ×M matrix of function values
fij = f(xi, yj).

If the function is dependent on K real parameters (p1, ..., pK), then the VellSet may also contain a set of

perturbed values {f (k)
ij }, which can be used to estimate the partial derivatives ∂f/∂pk. The math behind this is

explained in section 1.2. Within a tree, the parameters pk are uniquely indentified by their integer spids (from
solvable parameter IDs).

On the C++ side, VellSet is derived from DataRecord. The VellSet record has three forms: regular,
empty and fail.

Regular VellSets

The regular form of a VellSet contains the following fields:

field name type description

value Vells the Vells containing the function value {fij}
optional, only appear if calc deriv>0 was specified in the original Request:

spids int[] a list of K integer spids identifying the parameters
perturbations double[] a list of K perturbations {δk} (must be same length as spids)

perturbed value Vells[] a list of K Vells containing the perturbed values {f (k)
ij }

optional, only appear if calc deriv>1 was specified in the original Request:

perturbations 1 double[] second set of K perturbations {δ(2)
k }

perturbed value 1 Vells[] second set of K perturbed values {f (2k)
ij }

Spids, perturbations and perturbed values will only appear if calc deriv is specified in the original Request,
and the tree above the node contains solvable parameters. A setting of calc deriv=2 causes two sets of

perturbations and perturbed values to be computed (usually with δ
(2)
k = −δ

(1)
k ), used to estimate the second-

order derivatives of f , which can potentially achieve a better fit, at the expense of almost doubling the computing
time.

Empty VellSets

An empty VellSet is just an empty record, corresponding to a default-constructed (empty) object in C++.
While empty VellSets shouldn’t be present in well-formed results, they can still appear in node state records
and other structures, thus Glish code should be prepared to deal with them.

Fail-VellSets

A fail-VellSet is used to indicate a run-time error or other failure. This is represented by a standard fail-state
record (see section 2.3). The difference between this and a fail-Result is discussed below.

Vells

On the Glish side, a Vells object is simply a double or complex scalar or a 2D array. On the C++ side,
Vells is a wrapper class around the scalar/array, providing run-time type and size information, and built-in
mathematical operations, and copy-on-write semantics. This is discussed in detail in the context of Function
nodes (section 5.5.4).

Scalar Vells represent values with no time-frequency variation. Array Vells represent dependence over a
specific Cells. This implies that all array Vells within a Result must be consistent in shape with the Result’s
Cells; scalar Vells, on the other hand, are by definition consistent with any and all Cells.
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2.4.4 Empty Cells in Results

A Result record containing an empty Cells field is used to represent constant values – or values with no
time-frequency dependence. In other words, a Result with an empty Cells record will be the same for any
possible set of real cells. Such a Result may only contain scalar Vells. This property of a Result is important
during resampling (see 5.4), since constant values do not need to be resampled.

2.4.5 Fail propagation

Note that a Result that is not in a fail-state itself may nonetheless contain one or more VellSets in a fail-state.
One way to look at it is that a fail-Result represents a complete fail, while a fail-VellSet represents a partial fail
localized to one plane. For example, if a Spigot node is configured to return four correlations, and the data
source only contains XX and Y Y , then the XY and Y X planes will be represented by fail-VellSets. On the
other hand, if an error occurs while reading from the data set, this is represented by a complete fail-Result.

Depending on the tree, partial fails may be recoverable. Fails propagate down the tree in an orderly fashion.
For most nodes, a partial fail from one of its children will result in a fail-VellSet at the same position in the
output Result (the contents of the fail – origin & description – are preserved.) In our example, partial fails
could propagate down the XY /Y X trees, to a Sink node, which could then handle them benignly (by not
writing XY/YX data, for example). Partial fails can even “disappear” on their way down a tree – consider a
Selector node that is configured to select plane 1 of the Result. Partial fails in the other planes will simply
be discarded.
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Chapter 3

Node Initialization & State

The fundamental behaviour of & interface to a node is provided by the C++ class Meq::Node. This is an
abstract class; at least one pure virtual methods is declared (Node::getResult()) that must be defined by
subclasses to implement specific functionality.

All nodes share the following basic traits:

• A node may have a number of child nodes. Generally, a node has no knowledge of the types of its children.
Subclasses may assign formal child labels (akin to argument names) to specify semantics, or may leave
their children unlabeled. Child labels are assigned via the constructor of the subclass.

A node also has no direct knowledge of its parents, and is only allowed to infer things from the requests
that it receives.

• Each node has a unique node index (integer>0) and an optional unique node name. A Forest object
acts as a repository of nodes, and maintains a map between names, indices and node objects (see section 6).

• A Node maintains a node state record, which should completely determine the behaviour of the node.

• A Node has an execute() method, taking a Request parameter, and returning a Result. Normally, a
node is expected to call execute() with the same Request on its children, and form its result based on
the results of its children. Thus, requests propagate up the tree, and results percolate down the tree. This
is discussed in Chapter 5.

The subject of handling requests will be dealt with later. This chapter deals with everything related to node
initialization and state.

3.1 Node state in C++ and Glish

Each node’s state is mapped to a state record (DataRecord in C++, standard record in Glish). The base Node

class defines this record and provides a number of tools for maintaining it. Note that the internal state of a
C++ object, as determined by its data members, is physically different form the state record, and it is up to
the object itself to maintain coherency between the two. Coherency is critically important, since the Glish
layer only has access to the state record, and not to an object’s internal data members. As will be seen below,
the Node class implements a number of facilities that simplify the task of maintaining coherency.

Node state is almost always inherited from superclass to subclass. Subclasses define state in terms of
additions to state defined by their superclass. State defined by the base Node class is common to all nodes.

3.1.1 Access to state

On the C++ side, state may be read via the Node::state() method, and changed via the Node::setState()

method. On the Glish side, these are mapped to the getnodestate() and setnodestate() methods of the
meqserver proxy (see Chapter 6). The argument to setState() (or setnodestate()) does not have to be a
complete new state record; instead, it should only contain those fields that actually need to be changed.

Another mechanism of state changes is the request rider. A Request can contain a command that changes
the state of a node or a group of nodes (section 5.3).
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When a node is constructed, it is passed1 an init-record (also called the defrec, for definition record), which
is nothing more and nothing less than the complete initial state record of the node. This is the mechanism via
which all run-time arguments to a node are specified. Later in a node’s lifetime, it may be reconfigured (via
setState() or request riders). A node is not obliged to be reconfigurable in every single aspect, although it’s
good design to make it so as much as possible. If some of the node state may only be set once via init() and
not changed later on via setState() – we’ll call this static state – it should be clearly documented as such.
The assumed default is dynamic state, i.e., state that may be reconfigured at any time via setState().

The individual fields of the state record are known as state fields.

3.1.2 Categories of state fields

All state fields belong to one of the following categories:

Static state can only be set up at construction time, via the init-record. Static state is protected: any attempts
to modify it should return an error. By design, static state is kept to a minimum.

Dynamic state can be specified at construction time, and freely changed later on via setState() or request
riders. Node classes are designed so that most of state is dynamic. This is the assumed default, unless
clearly documented otherwise.

Informational state does not affect the behaviour of a node. It is a one-way street: nodes maintain these
fields to provide additional info to outsiders (thus improving transparency, i.e., monitoring and debugging),
but any changes to these fields from the outside are simply ignored.

Script code can monitor informational state, but should have any operational dependencies on it. Due to
performance concerns, the setting of informational state may be compiled out of optimized builds of the
kernel.

Other state fields that a node class does not recognize are simply ignored. Outsiders may read and change
these fields at will; this can be useful for tagging a node with additional informational attributes.

3.1.3 Clients

It is useful to introduce the term client, referring a software component (or even the user himself) that initiates
the creation of nodes, specifies state changes, issues initial requests, etc.

From a node’s point of view, the client is any external entity that accesses the node interface. From the
MeqServer’s point of view, the client is the scripting layer, or perhaps another C++ component that interfaces
with it via OCTOPUSSY. From the scripting layer’s point of view, the client is the user himself, or perhaps a
batch script run by the user that uses standard functions in the scripting layer.

3.1.4 The Node Contract

Even the base Node class exhibits some non-trivial behaviour with regards to maintaining state and processing
requests. This behaviour is not defined or constrained by the node interface as such. The node interface
simply defines a collection of methods (init(), setState(), execute()) and data formats. Meanwhile, it’s
the implementations of these methods that provide additional semantics, such as tying node behaviour to node
state.

These additional semantics are known as the node contract. For example, maintaining a state record that
is coherent with internal C++ object state is part of the basic node contract. Responding to changes in dynamic
state is another part of the contract. Other examples will be discussed below. In general, the contract is a set
of obligations that a node can be trusted to follow.

A conventional contract brings together at least two parties. In the case of the MeqTree kernel, the other
party to the contract is the client (scripting layer, tree builder, tree user, etc.). The obligations of the client
are also specified in the contract. In particular, the setState() interface to a node is an extremely powerful
tool; node classes provide only minimal sanity checking, so it’s always possible to configure a node into some
sort of senseless state. Correct interaction of nodes within a tree requires nodes to be consistently configured.
Thus, the contractual obligations of a node to behave correctly are only valid as long as the client meets its
obligations of configuring the node(s) consistently. We will see specific examples of this later on.

1via the init() method in C++, or via the createnode() call in Glish.
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It is helpful to view the kernel in the context of a multi-layered software system. The lowest level is the
MeqTree kernel itself; on top of that is the MeqServer interface, and on top of that a thin scripting layer. On top
of that – now completely in the scripting domain – we have application-specific scripts to build trees, and still
higher up, user-level tools to operate, manage and visualize trees. The interfaces grow more application-specific
towards the upper layers, while contracts grow less specific. The overall design philosophy here relies on the
fact that it is far easier to implement complex semantics in a scripting language; thus the higher layers in the
scripting domain can ensure more and more elaborate aspects of the node contracts, until the user is completely
protected from these complexities.

Note that an end user will hardly ever need to change (or even see) node state directly; a tree developer,
however, will be working with this stuff constantly. As will become apparent in this chapter, a node’s internals
are completely exposed to tweaking and experimentation. The C++ kernel imposes no policy and does very
few sanity checks, so it is perfectly possible to thoroughly confuse a node (or an entire tree) through misguided
manipulation of its state record. Again, we assume that it is up to the scripting side tools to shield end-users
from the more “dangerous” capabilities. Remember, prohibition is for policy-makers!

When developing new node classes, it is very important to define and document their contracts in detail.

3.2 Standard Node state fields

Table 3.1 lists all the state fields defined and maintained by the Node class. Here we will only discuss the basic
fields; the more advanced ones will be documented in further chapters.

field name type default description

static state:
class string the node class
nodeindex int 0 the node index
children — null children specification (see 3.2.2)

dynamic state:
name string "" node name
node groups HIID[] [] list of groups that this node belongs to
auto resample int 0 auto-resampling mode (see 5.4)

cache-related dynamic state (see 4.1):
cache policy — null caching policy (placeholder; not currently implemented)
request id HIID null rqid corresponding to cached result
cache result Result null cached result
cache result code int 0 cached result code

depmask-related dynamic state (see Chapter 4.3):
depend mask int 0 current depmask
known symdeps HIID[] [] list of known symdeps
active symdeps HIID[] [] list of active symdeps
symdep masks record [] current symdep masks
gen symdeps HIID[] [] list of generated symdeps
gen symdeps group HIID[] [] list of groups for generated symdeps

informational state:
children names string[] list of child names. Can’t be used to specify child nodes: use

the children field instead.
request Request last handled request

Table 3.1: Base state defined by the Node class

3.2.1 Constructing nodes: classes, names, indices

To construct a node, a client must provide the init record – i.e., an initial state record. Note the “default”
column in Table 3.1 – only a few state fields need to be specified, since the rest have reasonable defaults that
will be filled in by the node at construction time (a default of “null” indicates that the field, if missing, will
remain unfilled). Also, the cache-related and depmask-related state fields are not normally set at construction
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time, but rather are filled by the node itself during operation. The node state interface provides full access to
them mostly for debugging and monitoring purposes.

The class of a node is obviously an external, static property – once a node object is instantiated, its class is
defined “for life”. The class field is usually set by the client in the scripting layer, and used by MeqServer as
a key into a node constructor registry, when determining which node class to actually instantiate. The class

string is usually formed by concatenating the C++ namespace identifier with the C++ class name. Thus, a
Meq::Parm is specified as "MeqParm".

The node index (field nodeindex) is not normally specified by the client, but rather automatically assigned
to the object at construction time, and placed into the nodeindex field. The index is also a static property.

The node name (field name) is just a free-form identifier supplied by the client. The name is used to identify
the object for subsequent operations. The MeqServer object maintains a Forest, which is essentially just a
repository of node objects, with name→node and index→node maps. A node may be created with an empty
name (which is the default), such anonymous nodes are then only identifiable by their indices. Note that while
the name of the node may be changed via a setState() call, this is probably a bad idea, since the current
Forest implementation does not support node renaming (i.e. cannot update the name→object map).

3.2.2 Specifying children

The children field of the state record is used to specify a node’s children. The children set is a static property2,
and must be specified at construction time. The children field takes the form of a list or record of child

specifiers. A child specifier can be:

• An integer node index referring to an already existing node.

• A string node name, which does not have to match an existing node. The child can be created later on;
MeqServer includes a mechanism for recusively resolving named children (see Chapter 6).

• A record, which will be used as an init-record to create a child node on the fly. This option allows whole
subtrees to be specified via one big nested record.

Child labels

Certain node classes can predefine labels (HIIDs) to identify their children. Think of child labels as being the
equivalent of named arguments in a programming language. Without labels, children can only be specified by
their ordinal number (a-la positional arguments). Thus, labels help distinguish children with specific roles. For
example, the UVW node (used to compute UV W coordinates) may label its children, e.g., “Ra”, “Dec”, “X”,
“Y”, “Z”. If the child roles are all the same (e.g., the Sum node, which sums the results of its children), or are
obvious from position (e.g., binary function nodes, including non-commutative ones such as Sub and Div), then
labels are not used.

Labels have the following implications for the children field:

• Given a node class that predefines child labels, children may be specified as a record. Child labels are
matched to field names (on a mismatch, node creation fails, and an error is reported.)

• If children is a list rather than a record, then child nodes are simply matched by position, and any labels
are ignored.

• If children is a record but the node class does define any labels, then child nodes are matched by their
position in the record. This way of specifying children is discouraged, since the abstract record type does
not provide for a fixed order of fields.

Child information

After a node has been created and all children have been resolved, the children field of the state record is
replaced with either a list of child node indices if no labels are predefined, or a record of labels to indices
otherwise. This field is treated as static state, so any attempts to modify it via the setState() mechanism will
fail. The (purely informational) children names field is filled with a similar list or record of child names.

2The ability to connect children dynamically may be implemented in future versions if necessary. In any case, it would be
provided via a separate function rather than the generic setState() mechanism, so the children field would remain protected.
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3.2.3 Node groups

A node may be assigned to one or more node groups. Node groups are used to restrict the commands of a
Requestto a specific set of nodes. This mechanism is discussed in detail in section 5.3. Examples of its use may
be found in the documentation for the Parm and Solver nodes.

3.3 Creating init-records in Glish

The meq.node() function (in meq/meqtypes.g) can be used to put together a basic init-record. This record
can then be extended with additional fields as required:

const meq.node := function (class,name,children=F,groups="")

The mandatory class and name arguments are strings specifying the node class and node name. The
optional children argument is a list or record of child specifiers (see above). The groups argument specifies
the node groups, this can be a list of HIIDs or strings; in the latter case (as is usual for most meq functions),
meq.node() will convert the strings to HIIDs automatically.

Specialized node classes may define functions of their own to put together the corresponding init-records.
An example of this is meq.parm() (see Glish file for details).

3.3.1 The defrec map

The kernel build system includes a mechanism for automatically generating Glish scripts that define class-
specialized init-records. This code – known as the defrec map – is generated based on comments found in each
node’s class header file, and may be used as an alternative to the meq.node() function.

The defrec map is made available by including meq/defrec.g. This defines the following function:

const meqdefrec := function (class,name=’’,children=F,groups="")

The function can be used exactly like meq.node(), but with one important difference: it returns a complete
init-record for the specified class, including any specialized fields defined by that class. These fields are initially
populated with default values.

In addition to this, the init-record returned by meqdefrec() is also self-documenting. The record itself is
tagged with a ::description attribute, containing a textual description of the node class. Record fields are
also tagged with ::description attributes of their own.

3.4 The C++ side

The rest of this chapter deals with implementation of node state on the C++ side. You probably don’t need to
read this unless you’re developing your own node classes.

The following is a list of Node methods responsible for initializing and changing state:

// public: Initializes node with init record

// Note that Ref::Xfer implies that ref to record will be taken over

virtual void init (DataRecord::Ref::Xfer &initrec);

// public: Reinitializes node with init record (called after de-serializing)

virtual void reinit (DataRecord::Ref::Xfer &initrec);

// public: Changes dynamic node state (note: non-virtual)

// Node can attach to/take over record contents as needed.

void setState (DataRecord &rec);

// protected: Checks init record for missing fields, fills in defaults where needed

// (called from Node::init())
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virtual void checkInitState (DataRecord &rec);

// protected: Implementation for setting or changing internal dynamic state

// (called from Node::setState())

// Node can attach to record contents as needed. If initializing,

// then record is the state record and should not be changed. If

// not initializing, node can take over contents as well.

virtual void setStateImpl (DataRecord &rec,bool initializing);

3.4.1 Managing data objects via CountedRefs

Many of the methods described here (and in Chapter 5) take arguments of type Class::Ref::Xfer or Ref::Copy.
These arguments are known as counted refs. Counted refs are properly documented in the DMI Programmer’s
Guide; this section provides a brief primer.

Counted refs provide an efficient object management mechanism. Most DMI data objects can be accessed via
a counted ref; this allows the same object to be shared by many “owners”, and to be passed around efficiently.
Refs may be copied (in which case a second ref to the same object is created) or transferred (xferred), in which
case the new ref is attached to the object while the old one is detached. When the last ref to an object is
detached, it is automatically destroyed. DMI containers (DataRecord, DataFields) hold their contents via
counted ref.

Counted refs may be read-only or read-write. Holders of a read-only ref cannot legally write to an object
(without engaging in C++ const violations, which are caugfht by the compiler). The holder of a ref may
privatize it: this operation ensures that a “private” copy of an object is made. The privatization operation
is essential for avoiding unnecessary (and presumably expensive) copying of large data objects: refs are smart
enough to figure out when actual copying is not required. For example, a singly-referenced object is already
private to begin with. An object with no writable refs can also be considered “private” to each read-only ref
holder, since there’s no legal way to modify the object.

For example, a Request object is passed up the tree via read-only refs. This means that all nodes deal with
the same object; if a node needs to modify a request, it must privatize its ref first. This ensures that Requests
are copied only when really necessary. A similar mechanism is employed for Results and the result cache:
children returns refs to result objects, and retain refs in their cache. Because most nodes do not modify child
results, but rather process them as read-only before discarding, only a single instance of that Result object
needs to exist.

All counted ref types are instantiations of the CountedRef<T> template defined in DMI. Most classes define
the nested type Class::Ref as a shortcut for CountedRef<class>. The ::Ref::Xfer and ::Ref::Copy types
are aliases for ::Ref itself, these are used in function declarations to document the function’s behaviour, i.e.,
whether it can be expected to take a copy of the ref, or to transfer the ref.

3.4.2 init()

The base Node::init() method is called with an init-record, directly after a node has been constructed. The
method is virtual, and thus can be redefined in subclasses if needed. It does the following:

1. Takes over the init record, sets it as the state record, ensures a private & writable copy.

2. Adds the node’s classname to the state record if not already present. If present, checks that the name
actually matches the node class.

3. Calls the virtual checkInitState() method with the state record, to ensure that it’s complete, and that
any missing defaults are filled in.

4. Calls setStateImpl(staterec,true) to set up internal state from the state record (setting the second
argument – initializing – to true indicates that the node is being initialized with a full state record.)

5. Processes the children field to set up connections to child nodes (see 3.2.2).

6. Any errors will result in an exception being thrown at the caller. A node object that fails init() is under
no obligation to be usable; the only method that’s not allowed to fail is the destructor.
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Derived classes need to implement their own init() only if they have some special initialization needs that
can’t be taken care of via setStateImpl(). The init() method in a derived class should do the following:

1. Call the parent class’s init() with the init-record. This should ultimately call Node::init(), thus setting
up the state record, and calling setStateImpl() to set up dynamic state.

2. Set up static state defined at the child class level.

3. Perform any specific initialization.

4. Throw exceptions on any error.

Note that if only static state needs to be implmeneted, then it is easier to handled it in setStateImpl()

(when initializing is true); there’s little point in redefining init() specifically for that purpose only. (Most
node classes do find it sufficient to only redefine setStateImpl(), and not bother with any of the other state-
related methods.)

3.4.3 checkInitState()

Note the virtual checkInitState() method called from Node::init(). This is meant to check the init-record
for mandatory fields, and insert missing defaults. Alternatively, this can be done in setStateImpl() when the
initializing is true. The second way is usually easier, since setStateImpl() is almost always redefined by
subclasses.

A derived checkInitState() should call the parent version, then check for defaults and mandatory fields
defined by the child class, and throw an exception if any fields are missing.

A couple of macros defined in Node.h are meant to help implement this method. The
requiresInitField(rec,field) macro checks if the specified field is present, and throws an exception other-
wise. The defaultInitField(rec,field,deflt) macro inserts a default value for a field if it is missing.

3.4.4 setStateImpl()

The virtual setStateImpl() method is responsible for setting up and/or modifying node state. Note that this
method is protected – the rest of the world must call it via through init() or setState().

void Node::setStateImpl (DataRecord &rec,bool initializing);

The first argument is a record, the second argument tells the method whether the node is being initialized
(and rec is a complete init-record), or simply updated (and rec contains only a subset of state, i.e. only those
fields that are actually being changed).

Most node classes can get away with implementing their own setStateImpl(), and not worrying about any
of the other methods described in this section. A node’s setStateImpl() should follow this checklist:

1. If the initializing is false, check the record for protected fields (i.e. for attempts to mod-
ify static state). Throw a FailWithoutCleanup exception (see below) if any are present. The
protectStateField(record,field) macro defined in Node.h is a convenient way to do this.

2. If initializing is true, check for mandatory state fields – throw FailWithoutCleanup is any are missing
– and/or fill in defaults (unless checkInitState() has been already been redefined to do the same). Setup
static state (unless handled by init()).

3. Call the parent class’s setStateImpl(), which presumably sets up inherited state.

4. Parse the record and modify dynamic state relevant to the child class. Note that the standard DMI hook
methods get() and get vector() are very handy for doing this operation:

if( rec[StateField].get(var,initializing) )

// field is present, react if needed

else

// field is missing, react if needed
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The get() method employed here does the following: if StateField is present in rec, assigns its value
to var (throwing an exception is the types are incompatible) and returns true. If the field is missing,
optionally (only if initializing is true) inits it from the value in var, and returns false. The standard
setStateImpl() methods make extended use of this mechanism.

5. Throw exceptions on error. A Node::FailWithoutCleanup should be thrown if and only if no internal
state was modified. All other exceptions will invoke the “rollback” mechanism described below. You
can rely on DataRecord (and other DMI classes) to throw an exception when datatypes mismatch or
something else goes wrong; throw a FailWithCleanup exception if you want to indicate some other kind
of failure.

The base Node::setStateImpl() method handles all of the dynamic state listed in Table 3.1.

3.4.5 setState()

The non-virtual setState() method defined in Node provides the public interface for setting state. Basically,
it defers parsing the record to setStateImpl(), while providing a transaction mechanism of sorts:

1. Calls setStateImpl(rec,false) to process the record. The false value indicates that state is being
modified rather than [re]initialized. (Note that if the supplied record happens to be the node state record
itself, true will be passed in instead.)

2. Catches FailWithoutCleanup exceptions and rethrows them at the caller with no additional action.

3. Catches all other execeptions, and does a cleanup before rethrowing them. The cleanup consists of calling
setStateImpl(staterec,true), so as to reset internal state from the current state record. This is meant
to roll back from situations where an error midway through setStateImpl() could cause internal object
state to decohere from the state record.

4. On success, merges the supplied record into the current state record.

This design ensures that if a setStateImpl() call fails (i.e., with an exception), both the state record and
the internal state of the object are rolled back to their values prior to the call. (Assuming they were mutually
consistent to begin with.) In other words, the node object is guaranteed to remain usable.

Note that implementations setStateImpl() should ignore any unrecognized fields in the init and state
record. This allows the outside world to assign arbitrary informational attributes to node state.

3.4.6 Serialization & persistency issues

MeqServer already supports persistent nodes (i.e. being able to save/load nodes and trees to a file). Further
down the road, we plan for the the capability to move a node across a network. Both capabilities hinge on being
able to serialize a node – i.e., to turn it into a stream of bytes, and to unpack it from a stream of bytes.

Serialization is implemented through standard DMI mechanisms. A DataRecord is inherently serializable.
To serialize a node, MeqServer simply serializes its state record. To unserialize a node, it recreates (un-serializes)
the state record, creates a node object (as specified by the record’s class field), and calls init() on it with
the record.

Thus, subclasses of Node should take care to maintain their state record appropriately. Each node class
should ensure that it is completely re-creatable (via init()) from a snapshot of its state record at any point
in time. Basically, this means that a 1-1 mapping should be maintained between the state record and internal
object state. One possible exception to this are internal caches; if these are not maintained in the state record,
then the worst than can happen from re-creating a node is a cleared cache.



Chapter 4

The Node Cache, Symdeps &
Depmasks

4.1 Caching issues

To avoid unnecessary recalculations, a node’s result can be retained in a cache. Obviously, this trades off
performance against memory footprint. Three broad caching policies have been identified so far:

Never: no caching at all, values are always recalculated anew.

Always: result is always cached, until a different request comes in. (This is the policy implemented currently).
While expensive in terms of memory, is very useful for debugging, since it allows one to pause the system
and examine the most recent result of every node.

Smart: result is cached according to memory availability, expected request sequence, etc. Some varieties of
this policy are discussed here.

Caching policy can be set on a per-node basis, via the cache policy field of the state record. The cache
itself is also part of the node’s state record (and thus can even be changed manually if needed.)

From a design point of view, the “Smart” policy is really the only interesting one. As will be discussed in
this chapter, the kernel provides a number of mechanisms that allow a node to get pretty smart about its cache.

4.1.1 Result/Request dependencies

The simplest scenario of cache use is when identical requests (i.e. with identical rqids) are sent to the same
node. If a node has a cached result, it can return that immediately rather than doing a wasteful recalculation.

Real-life trees involve some more sophisticated scenarios. For example, in a solve-tree, a Solver node iterates
over a tree by issuing a series of requests, with each subsequent request containing updates to parameter values.
Some branches of the tree have no dependence on solvable parameters, it is obviously wasteful to recalculate
those, so the cache must somehow be used.

Thus, the decision to use cache hinges on knowing the dependencies of a particular Result. When a node
caches a result, it also caches the rqid. In the trivial case, if the next request has the same rqid, the node can
immediately return the cached result. In fact the cache can be more discriminating. Each cached result also
has a dependency mask (or depmask for short) that describes what properties of a request the result depends
on. The depmask is a bitmask, with each bit indicating a particular dependency. Typical dependencies include:

• The request’s Cells (envelope domain and grid), obviously enough. Example nodes with this dependency:
Parm (with a non-zero degree polynomial), Time, Freq.

• Only the envelope domain of the Cells. Example: the Spigot, since it always returns data at the native
resolution of the dataset, ignoring the resolution specified in the Cells.

• Updated Parm values sent up by a solver.

• The configuration of a WSum node.

27
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• Any combination of the above.

If a node has children, then its result’s dependencies are almost always the union of the children dependencies,
plus (in some cases) additional dependencies introduced by the node itself (e.g. the UVW node always adds a
dependency on Cells). In other words, the depmask of the result is a bitwise-OR of the depmasks of the
children’s results, OR the node’s own local depmask. Obviously, the set of dependencies grows as results
propagate down the tree.

Given a cached result and its depmask, a node can be somewhat more discriminating in choosing when to
return a cached result. For example, if the depmask indicates that the result depends on Cells only, then all
further requests with the same Cells can be served from the cache. The same applies to other dependencies.
In global optimization terms, this means that when a tree is re-evaluated for a slightly different request, it
recalculates only those sub-trees that have been updated. The problem is how to determine if a different
request has the same Cells, without doing a brute-force comparison (which can be quite expensive if done at
every node). This is where the hierarchical part of request IDs come in.

An rqid is a HIID – essentially, a string of integer indices. Each index corresponds to one bit in the depmask.
For example, if the depmask is structured as follows:

bit 0 Parm values from solver
bit 1 WSum configuration
bit 2 resolution of Cells
bit 3 envelope domain of Cells

then the rqid is composed of four indices:
<domain index>.<resolution index>.<config index>.<value index>
The decision whether a new request can be served from the cache becomes quite simple: just compare all

indices of the rqid for which the corresponding depmask bit is set, and use the cache only if none of them differ.
In other words, the components of the rqid describe how a request is different from previous requests. The

domain index must change whenever a new domain is requested, the config index must change whenever a WSum

is reconfigured, the value index must change at each solve iteration, etc.
Of course, this scheme only works if the depmasks returned by the nodes (generally, somewhere up the tree),

and the request IDs generated by request originators (generally, down the tree) have the same semantics. The
depmask/rqid correspondence represents a contract between request generators and dependency generators to
apply these semantics consistently. The Node class provides a number of mechanisms for automatically setting
up consistent semantics throughout the tree, see the discussion on symdeps below.

The general scheme implemented at the Node level does not assume any application-specific semantics at all.
The depmask is simply treated as set of N bits, and the rqid as a corresponding set of N indices. All semantics
are defined at the application level!

4.1.2 Smart caching behaviour

The previous discussion focused on how depmasks determine whether a cached result can be reused. In a similar
vein, depmasks can also help us define a smart caching policy (Note: this is not yet implemented.)

Let’s assume that the request generator has knowledge of how the next request is going to be different from
the current one. This seems a reasonable assumption: a Sink always knows that its next request is going to have
a different domain/cells, a Solver knows that its next request is going to contain updated parameter values,
etc. This information can be expressed as a diffmask: a bitmask describing which components of the rqid are
going to change. The diffmask can be passed along in the request record, and treated as a hint by the caching
code.

Now, each node returning a result has the following information: its result depmask, the depmasks of its
children’s results, and a diffmask hint describing the next expected request. The following caching behaviour
appears reasonable:

1. If a dependency will change in the next request (diffmask & depmask != 0), then the node can clear
cache (since the next request will invalidate it anyway).

2. If the parent dependencies are exactly equal to those of a child, then the parent does not need the child’s
cache (because any request requiring a recalculation of the parent result will also require a recalculation
of the child result.) It can then tell the child to release cache. Note that this decision does not require a
diffmask hint.
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3. If the parent dependencies are larger than those of a child, then the child should retain cache (unless it
has already decided to clear it based on the diffmask hint.)

4. A child can clear cache if all of its parents have told it to release cache.

The child/parent interaction implies that regardless of diffmasks, cache only needs to be retained at those
points of the tree where the dependency set grows.

Note that the diffmask hint is not required for correct operation of the caching system. If the hint is wrong,
then the worst that can happen is that either cache is retained or cleared when it shouldn’t be. If the hint is
missing, the nodes can fall back to a strategy of aggressive caching (i.e. retaining cache at points where the
dependency set grows), or no caching at all. The two strategies can be implemented as variations of the “Smart”
caching policy.

We have now defined all cache-related behaviour locally: all decisions are made on the basis of depmasks
and diffmasks, and no knowledge of the structure of a tree (or the application domain) is required. The next
section will describe how depmasks are actually generated.

4.1.3 Cache and the state record

The cache is actually stored in the node state record. The cache result field contains a read-only counted ref
to the result. The cache result code field contains the result code, which includes the depmask (see 5.2). The
request id field is the rqid of the original request.

The node cache may be cleared by assigning a boolean false to the cache result field. It is also possible
to modify the cache on the fly (for example, substituting in another result). This may be a useful feature
for debugging and experimentation, though if abused, it can thoroughly confuse the caching and dependency
tracking mechanism.

4.2 The local depmask

The depend mask field of the state record defines the local depmask of the node. The local depmask indicates
which dependencies a node introduces into its result. For most Function-derived nodes, this mask is null,
indicating that the result dependencies are fully determined by child dependencies. Leaf nodes, on the other
hand, will generally have non-null masks.

The depmask is just a set of N bits with no specific semantics associated with them. The association between
individual bits and specific result properties is set up via the mechanism of symbolic dependencies, or symdeps
for short.

4.3 Symdeps in a nutshell

A symdep is a HIID (thus, symbolic – since HIIDs have a symbolic representation) that identifies some
application-specific dependency of the result. Node classes will typically define some standard symdeps, such
as this set used in the standard nodes:

“Domain”: result depends on the requested domain (i.e., the envelope domain of the Cells). Most non-trivial
leaf nodes have this symdep.

“Resolution”: result depends on the resolution of the Cells. Most nodes with a time and/or frequency
dependence have this symdep.

“Parm.Value”: result depends on parameter values passed up from the solver. Solvable Parms have this
symdep.

A node’s set of symdeps is generally known to the node class at construction time. Then, when a tree is
initialized, different symdeps are dynamically associated with different bits of the depmask, as described below.
Essentially, this maps abstract concepts (the symdeps) onto specific bits of the depmask. In other words, this
mechanism defines the bitmask semantics.
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4.3.1 Symdep masks

Note that certain nodes can be viewed as symdep generators. These are nodes that generate new requests.
For example, the Sink node generates requests with different domains and resolutions, thus we say that Sink

generates the "Domain" and "Resolution" symdep. The ModRes node changes the resolution of requests, thus
it generates the "Resolution" symdep. The Solver node generates the "Parm.Value" symdep.

These nodes are responsible for associating a particular bit of the depmask with each symdep that they
generate. Typically, the association is fixed when a tree is initialized. These associations (known as symdep
masks) are then recursively sent up the tree, thus becoming known to all child nodes. Nodes up the tree can
then compute their local depmasks by combining the symdep masks of their specific symdeps.

4.4 Symdeps: the hairy details

This section describes the details of how symdeps and depmasks are set up and maintained. Note that all of
this is maintained in the node state record.

4.4.1 Known and active symdeps

The known symdeps of a node are just that, all the symdeps that a node (typically, its class) knows about. This
is usually specified once and for all in the node’s constructor, by calling the setKnownSymDeps() method.

A subset of the known symdeps – the active symdeps set – determines what symdeps currently apply to the
node’s result. For some node classes, this is always the entire known set. Other classes, however, may change
their active set depending on state. For example, if a Constant node is configured to provide a constant value
as a sampling, then it has no active symdeps at all, as the value will be the same for any domain or resolution.
However, if it is (re)configured to provide the constant as an integration, then it begins to depend on resolution
– since the integrated value is the product of the value by cell size.

The active symdeps set may be changed by calling the setActiveSymDeps() method, or by changing the
active symdeps field (a list of HIIDs) of the state record. Whenever this is done, the local depmask is auto-
matically recalculated using the known symdep masks, by calling the virtual resetDependMasks() method.

The known symdeps may also be changed at any time (though I can hardly see why anyone would want
to do this), by calling the setKnownSymDeps() method, or by changing the known symdeps field of the state
record.

4.4.2 Propagating symdep masks

A node will automatically keep track of the symdep masks associated with its known symdep set. These are
sent up as commands in a request (see 5.3), and processed at the Node class level.

• The Add.Dep.Mask command contains a map of symdeps to symdep masks. (This command usually
originates at the symdep generator nodes, see 4.4.3 below). In response to this command, Node adds
all the masks it finds for its known symdeps to its internal map of symdep masks. After this, it calls
resetDependMasks() to recalculate its local depmask.

• The Clear.Dep.Mask command clears all known symdep masks.

One consequence of this design is that each node maintains its own local mapping of symdeps to depmasks.
While at first glance this may seem redundant and even wasteful – since the mapping would appear to be the
same throughout a tree – consider the following points:

• When a tree is distributed throughout a cluster, maintaining a single “global” map becomes difficult (and
actually violates the principle of locality!) Keeping a copy of the map at each node avoids this problem.

• The map is not really global anyway. For example, consider a rippled tree with multiple solvers. The
solvable parm set of solver 1 and the solvable parm set of solver 2 need to be represented by different bits
in the depmask. Thus, the "Parm.Value" symdep of different groups of parms will actually be mapped
to different depmasks!

Note that node group facility (see 5.3) provides an elegant mechanism for distributing different symdep
masks to different node groups.
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• The map is small, and changes very infrequently (if at all – usually, it will be set up only once when a
tree is initialized). Thus there is really no performance cost associated with keeping local copies.

The map of known symdep masks is maintained in the symdep masks field of the node state record. It is
possible to change this field on the fly, an automatic call to resetDependMasks() always results.

4.4.3 Generating symdep masks

Nodes that generate new requests also need to generate Add.Dep.Mask commands containing their symdep
masks assignments. Node provides a simple facility for doing this automatically.

A node class can specify its mapping of generated symdeps to masks by calling the setGenSymDeps()

method at construction time. The standard node classes specify some pre-assigned masks by default: bit 0
for "Parm.Value", bit 1 for "Resolution", bit 4 for "Domain". This allows for simple trees to be put together
using just the defaults.

For more elaborate trees – e.g., rippled trees with multiple solvers – different Solver nodes need to be
assigned different masks for the same symdep. This can be done via the gen symdeps field of the state record.
This field has to contain a map (e.g. record) of symdeps to depmasks; if specified, it overrides any previously
set mappings.

Additionally, a node may be configured to generate symdeps for a particular node group only. This useful for,
e.g., multiple solvers. By default, the All group is used, but this can be overridden via the gen symdeps group

field of the state record.

Once the generated symdeps are configured, a node needs to be told to send them up to its children.
This is done by passing it the Init.Dep.Masks command via a request rider. In responce to this command,
Node::processCommands inserts the appropriate Add.Dep.Mask commands into the request rider based on the
current setting of gen symdeps and gen symdeps group.

Operationally, all this is typically done once at init time:

• Request generator nodes are created with an initial state record containing their generated symdep as-
signments (if the default assignments need to be overridden).

• Once all the nodes and trees have been created, a request containing the following two commands is
given to all the root nodes: Resolve.Children and Init.Dep.Masks. (The first command is required to
resolve named children.) This is done by MeqServer automatically, in response to the Resolve.Children

command.

• This initial request is propagated up the tree, accumulating symdep masks from other generator nodes
along the way.

• All trees are now ready for use.

4.4.4 Order of state updates

Because it is possible to change everything about a node’s symdeps and masks by modifying the state
record, and a state update may contain multiple fields, the order in which it is updated becomes important.
Node::setStateImpl() employs the following order:

1. Updates the known symdep set from known symdeps, if specified.

2. If specified, reloads the symdep masks from symdep masks, and calls resetDependMasks().

3. If specified, sets the active symdeps from active symdeps, and calls resetDependMasks().

4. If specified, sets the local depmask from depend mask.

Basically, this order implies that if the local depmask is explicitly changed via depend mask, the specified
value overrides any implicit value calculated from, e.g., an active symdeps.
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4.4.5 Specialized node behaviour

Note that all these facilities are provided at the basic Node level, but special node classes are free to ignore them,
or make use of only some subset. For example, the Parm class1 needs to maintain separate predict symdeps and
solve symdep sets. It deals with this in the following way:

• It ignores the Node-level active symdeps, initially specifying an empty set of active symdeps. This implies
that its Node-level local depmask stays at zero.

• It maintains two of its own symdep sets: predict symdeps and solve symdeps, and two corresponding
depmasks: the predict depmask and the solve depmask.

• It overrides the resetDependMasks() method, to recompute the two depmasks whenever known symdep
masks change.

• It returns either one or the other mask from getResult(), depending on what sort of request is being
serviced.

1And currently, this is the only example.



Chapter 5

Executing Requests

The virtual Node::execute() method is responsible for processing a Request:

virtual int execute (Result::Ref &resref,const Request &req);

The node is supplied a Request object, and it is expected to return a Result by attaching it to the counted ref
passed in as the first argument. The return value is called the result code: this incorporates the depmask of
the result, plus several additional flags such as RES WAIT and RES FAIL (see below).

A parent node will generally call the execute() methods of its children. In the current single-threaded
implementation, the entire tree is evaluated via nested execute() calls. In a multi-threaded or distributed
implementation, the parent will probably call stub methods in the communication layer, which will in turn call
execute() on the child nodes.

The Node::execute() method is the fulcrum of the entire MeqTree kernel. A solid understanding of how it
works is vital for both tree design and node development, and also beneficial to advanced users that need to
deal directly with trees.

5.1 Node::execute() steps

The Node::execute() method looks at the request, and calls a number of virtual handler methods for various
aspects of processing. Most node classes will override one or more of these handler method(s) to implement
their specific node behaviour. Node::execute() also provides fundamental node functionality, such as cache
management and exception handling.1

The base Node::execute() performs a number of processing steps. These will now be described in detail,
grouped by function.

5.1.1 Checking the cache

Init return code. Set the current return code to 0. It will be accumulated in further steps via a bitwise-OR
operation.

Step 1. Compare the request id to the previous rqid, if any. Set a local “new request” flag for the benefit of
further logic below.

Step 2. If there’s a cached Result, and the request id matches the cached rqid/depmask (see 4.1 for a
discussion), immediately return the cached Result and cached result code. On mismatch, clear the cache and
proceed.

Note that the caching policy also determines how fail-results are dealt with. If the cache contains a fail-
result, the node may choose to ignore it and attempt to recalculate the result to see if the fail conditions have
gone away.

1You may have noted that execute() is declared virtual. Most node classes will only redefine specific handler methods, not
execute() itself. The possibility to reimplement execute() is reserved for the exotic cases. This is not to be undertaken lightly,
however, as the base Node::execute() provides so much useful behaviour.

33
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Step 3. For new requests only: call the virtual readyForRequest() handler, and if the return value of that
is false, immediately return the code RES WAIT (result will be empty).

virtual bool readyForRequest (const Request &req);

The handler is passed the current Request, i.e., the req argument to execute() itself. The purpose of this
handler is to support nodes that block on external events. None as such have been implemented, so this is
currently just a placeholder. The default handler always returns true.

Step 4. For new requests only: if a rider subrecord is present, parse it and call the virtual processCommands()
handler to process commands targeted at the node (see details in 5.3).

5.1.2 Polling children

Step 5. If node has children, call the virtual pollChildren() handler to pass the request on to the children
and collect their results. Bitwise-OR the return value of pollChildren() into the current return code.

virtual int pollChildren (std::vector<Result::Ref> &child_results,

Result::Ref &resref,

const Request &req);

The handler is called with the same resref and req arguments that were given to execute() itself. Child
results should be returned via the child results, which is pre-sized to the number of children prior to calling
pollChildren().

The default implementation of pollChildren() is appropriate for most node classes that pass their requests
on to the children unmodified. “Control” nodes (e.g. Sink, Solver, ModRes, ReqSeq) will define their own
version. This is the default Node::pollChildren() behaviour:

• Calls execute() (with req) on all the child nodes, collects their Results (by ref) into the child results

vector, and accumulates a return code as a bitwise-OR of the children’s execute() return values. Note
that the refs to child Results are expected to be read-only.

• If the accumulated return code has the RES FAIL bit set, its is assumed that at least one of the children has
returned a fail-result (see 2.3). In this case, pollChildren() creates a new fail-Result object, attaches
it to resref, and fills it with all the fail-records found in child results.

• The accumulated return code is the return value of the handler.

Note that resref is passed to pollChildren() only as a means of reporting possible fails. If the handler
returns a code with RES FAIL in it, it should attach a fail-result to resref. If no RES FAIL is reported, the
handler should leave resref alone (in fact, anything it does to it will be simply ignored when no RES FAIL is
returned.)

If the pollChildren() return value contains RES WAIT or RES FAIL, execute() returns (see section 5.1.5).
Otherwise, it proceeds to the next step:

Step 6. If auto-resampling is enabled (see 5.4), compare the resolutions of the child results, figure out a
common resolution (Cells) to resample them to, and perform the resampling. Throw an exception if this is
not possible.

Note that if the child results do not contain any VellSets (which will be the case when the Request does
not have a cells command), this step is skipped.

A result Cells may be initialized based on how the resampling went (see 5.4).
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5.1.3 Evaluating cells

Step 7. If the request contains a cells command (with a Cells object), call the virtual getResult() handler
to process the command, passing in the vector of child Results returned by pollChildren(). The return value
of getResult(), along with the node’s current depmask (see 4.2), is bitwise-ORed into the current return code.

virtual int getResult (Result::Ref &resref,

const Cells::Ref &cells,

const std::vector<Result::Ref> &child_results,

const Request &req,bool newreq);

The resref and req arguments are the same as those passed to execute(). The cells argument is a ref
to the result cells, if any were initialized during the resampling stage above, or otherwise to the Cells in the
request (see 5.4 for details). The child results vector is built up in pollChildren(), it will be empty if the
node has no children. Finally, the newreq flag indicates if it is a new request, this flag is set in Step 1 above.

The getResult() handler is responsible for attaching a Result object to resref. In most cases, it will
create a new object. Note, however, that certain nodes may pass on child results transparently (e.g., ModRes,
ReqSeq), they do this by simply copying a ref from the child results vector.

If getResult() returns a RES WAIT code, it is allowed (and expected) to leave resref unattached. Otherwise,
a valid Result must be provided! Any errors occurring inside getResult() can be reported by throwing an
exception.

5.1.4 Handling exceptions

Error handling. If an exception is thrown at any stage of the process, execute() will catch it, create an
output Result with a fail-result describing the exception, and add return the current return code, with a
RES FAIL flag added in.

Thus, throwing an exception is the normal way for processCommands(), getResult(), or any other handler
to indicate a failure. Note that a node should remain in a usable state (i.e. should be able to process further
Requests) after most exceptions; methods that are liable to leave the node in a non-usable state should provide
their own exception handling code that performs the necessary cleanups and re-throws the exceptions. See the
setState() rollback mechanism described in section 3.4.5 for one such example.

5.1.5 Caching and returning a Result

Returning. Whenever any kind of Result is returned, it is stored in the cache according to the current policy,
and returned via the resref argument. The accumulated return code is returned along with the result. If the
result is new (i.e. not returned from cache at step 2), the RES UPDATED flag is added to the return value.

Note that if the accumulated return code contains RES WAIT, then no Result is expected (resref remains
unattached). In all other cases, a valid Result object should be attached to resref (in case of exceptions, this
will be a fail-result).

5.1.6 All Results are read-only!

Prior to returning a Result, execute() recursively changes resref and all other refs found inside the result
object to read-only. This implies that the caller of execute() (i.e. the parent node, or MeqServer) cannot
[legally] change the Result contents. This is deliberate – the node can now hold a ref to the Result in the
cache, and be assured that no-one can [legally] change the contents.

In most cases, parent nodes will process the Results of their children as read-only, and discard them
afterwards (actually, only the parents’ refs are discarded – the Result objects themselves persist if still referenced
somewhere, e.g., in a child’s cache). Some nodes may want to modify child Results “in place”. To do this, they
will need to privatize their refs for writing first (see 3.4.1), thus ensuring that a private copy is made if the same
object is still referenced somewhere. The same applies to individual components of the Results. Essentially,
this is a robust copy-on-write mechanism that assures that data is duplicated only when needed, with very little
effort required from the node developer.

Note also that when a Result is moved across to the scripting layer, some sort of copying is implicitly
performed. Glish does not deal with Result objects directly, but rather with their Glish representations.
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5.2 Result codes

As described above, the return value of execute() is simply the accumulated result code. The result code
describes certain properties of the returned Result. Part of it is simply the result depmask (see 4.1.1, the other
part contains a number of bitflags listed below. Note that the property semantics are defined in such a way
that, in most practical cases, a flagged property in any child result is inherited by the parent’s result. This
allows execute() to accumulate the correct result code via a simple bitwise-OR. The following additional flags
are defined:

RES UPDATED: result has changed from that of previous Request. This bit is usually cleared when the node
returns a result from the cache, and set otherwise.

RES VOLATILE: result may change in response to external events, even without new requests. (This is not
implemented for now, and only meant as a placeholder for future developments, such as dynamically
growing domains, partial integration, etc.)

RES FAIL: result is a fail. Note that this is not the same thing as a result containing some mix of valid and
failed VellSets; rather, this indicates a failure for the whole result overall. RES FAILs are usually generated
in an exception handler. Note that the default implementation of pollChildren() and execute() causes
fails to cascade down the tree.

When this flag is returned, a Result object is still expected; it should contain one or more fails describing
the error. Note that depmasks can be meaningfully combined with RES FAIL, to indicate that the fail
depends on something (i.e. may go away if a particular dependency changes). The “smart” caching policy
may make use of this.

RES WAIT: no result available, wait for notification or try later. If this flag is raised, then no Result should
be returned. Note that dependency flags can be meaningfully combined with RES WAIT, since it usually
possible to indicate the dependencies of a node in advance. No current code uses this, however.

The return value of a node’s getResult() method should describe any additional properties introduced by
the getResult() calculation (additional with respect to the node’s current depmask – see 4.2). Most function
nodes will return zero, indicating no additional dependencies.

5.3 Commands in request riders

The optional rider sub-record of a Request is used to send commands to nodes. The Solver node, for example,
relies on this feature to send up parameter updates during iterative solutions. Commands are specified as sets.
Each command set is a record (DataRecord in C++), with the field names (i.e. HIIDs) being the commands
per se, and the field value being the command value a.k.a. arguments. Commands with no arguments are
indicated with a boolean true, a boolean false value implies that the command is not issued.2 If the set
contains multiple commands, they are processed in a specific order determined by the node class. Some example
commands are:

state: changes the state of a node (available for all nodes);

add dep mask: adds symdep masks (available for all nodes, discussed in 4.3).

update values: incremental updates of solvable parameters (see documentation for the Solver and Parm

nodes).

Since commands are seen as record fields in Glish, and plain HIIDs in C++, we will use both forms (foo bar

and "Foo.Bar") interchangably.

2This may seem redundant – why not simply omit a command if it is not meant to be issued? Consider though that Glish has
no built-in facility for removing record fields. The “false=no command” convention allows one to effectively remove a command
from an existing set by assigning the F value to it.
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5.3.1 The command handler

Commands are processed by a virtual handler method, called from execute():

virtual void processCommands (const DataRecord &rec,Request::Ref &reqref);

The rec argument is the command set to be processed (see below). The reqref argument is a ref to the
current Request. Because the processCommands() handler is called before pollChildren(), it can modify the
request (i.e., add commands to it) before it is passed on to the children. Node itself, for example, uses this
capability when accumulating symdep masks (see 4.3). The reqref should be privatized for writing before a
Request is modified, because requests are normally passed around as read-only.

Node classes implementing their own commands will need to redefine this handler. It is important, however,
that the new handler calls the parent class’s handler first, so that commands implemented in superclasses
(especially Node itself) are handled properly. Unknown commands should be ignored – in fact, handlers are
usually implemented to simply look up known commands, and ignore the rest.

Any errors arising during command processing may be indicated by throwing exceptions (these will be caught
by execute()). The handler should take care to perform any cleanup, and leave the node in a usable state.

The base handler, Node::processCommands(), processes all standard Node-level commands. These are listed
in section 5.3.4.

5.3.2 Rider subrecord layout

The rider record is structured so that it is possible to associate a command set with a specific node or a set of
nodes. Each node thus checks if the request contains any commands for itself. Note that in a very large tree,
such repeated checks may grow quite expensive. For this reason, nodes that need to receive a lot of commands
should be assigned to a node group.

A node may be associated with one or more groups. Each group is identified by a HIID, a node’s group
assignments are a part of its dynamic state (see 3.2). All nodes implicitly belong to the all group. A node’s
groups are used as a first-level index into the rider record. If a node belongs to groups foo and bar, then
Node::execute() will check for the command subrecords (CSRs) rider.foo, rider.bar, and rider.all, in
that order, and process any CSRs that it finds.

Judicious use of node groups practically eliminates the overhead of command lookup. The rider itself contains
very few fields (if any), so looking up the CSR for a group is very fast. If your tree frequently uses commands to
control a small subset of nodes (e.g., a solve-tree uses commands to update solvable parameters), these nodes
should be placed in a group of their own, and commands should be kept in that group’s CSR. All other nodes
will only check for the all CSR – which is usually not present. Thus, only the required subset of nodes will
engage in the possibly expensive business of CSR parsing and command processing.

The all CSR allows for commands to be sent to any node; but because of the associated overhead, this
should only be used for infrequent operations (e.g., reconfiguring a tree – as opposed to iterative solving).

CSR layout

Each CSR contains a number of command sets. These command sets may be associated with specific nodes.
There are three ways to specify these associations (we will use csr here to refer to the CSR itself):

All nodes in group: The command set contained in the field csr.command all applies to all nodes in the
group. For example:

- req.rider.foo.command_all

[ save_polc=T,state=[solvable=F] ]

...will call processCommands() on all nodes in group foo, with the command set
[save polc=T,state=[solvable=F] (meaning save polcs, and set to non-solvable).

Via node index: Command sets may be associated with a node index. This is done via
csr.command by nodeindex, which is essentially a map from node index to command set. For example:

- req.rider.foo.command_by_nodeindex

[ #19 = [ value=1,save_polc=T ], #41 = [ value=2,save_polc=T ] ]
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...will cause a processCommands() call on nodes 19 and 41, but only if these nodes actually belong to group
foo. (Note that since Glish only supports strings for record field names, the ’#ddd’ form is used to specify a
“numeric” node index.)

Via lists: The third way is to associate command sets with lists of nodes matched by name or node index.
This is done via a list of records in csr.command by list. For example:

- req.rider.foo.command_by_list

[ #1 = [ name="RA DEC",nodeindex=[17,32],

command=[ save_polc=T,state=[solvable=F] ]

],

#2 = [ command=[ state=[solvable=F] ] ]

]

...will call processCommands() with the first command set on nodes ‘RA’, ‘DEC’, 17 and 32 (if they belong
to group foo), and with the second command set on all other nodes in group foo. To be more specific, the
command by list field is treated as a list of records. Each record in the list must contain a command field (the
command set itself), plus an optional name field (string or list of strings) and/or an optional nodeindex field
(integer or list of integers). Node::execute() will iterate through the list of records one by one; if the node’s
name is found in name3, or the node index is found in nodeindex, then processCommands() is called with the
contents of command. Once a match is found, list processing stops. As a special case, if neither name nor index
is specified, then the entry is a “wildcard” matching any node. Wilcards are only useful at the end of the list,
to catch nodes not matched by previous entries.

5.3.3 Command evaluation order

As you can see, the rider allowss for more than one command set per node. In this case, processCommands()
will be called several times, once for each set. It is important then to define the order in which the rider is
parsed:

• The outer loop is over node groups, in the order in which they are specified in the node’s state record.
The all group is checked last.

• Within a group’s CSR, the processing order is from least specific to most specific: command all,
command by list, command by nodeindex.

• Once a command set is passed to a node’s processCommands() method, the order of processing is deter-
mined by the node class implementation. Generally, a subclass should call its parent’s processCommands()
first, so general commands (such as state) will be processed before more class-specific commands (such
as save polc).

5.3.4 Standard node commands

The following is a list of standard commands implemented at the Node level. Commands are listed in the form
of Glish record field names. The actual order of processing is the same one as given here:

resolve children: resolves all children specified by name into actual nodes. An exception is thrown if a name
does not match any known node. This command is normally issued by MeqServer at initialization time,
in responce to a "Resolve.Children" request. This command has no value.

state: calls setState() (see 3.4.5) with the command value. This command thus allows for any field of the
dynamic state to be modified.

clear dep mask: clears accumulated symdep masks (see 4.3). This command has no value.

add dep mask: accumulates symdep masks (see 4.3). The command value is a record of symdep:mask pairs.

init dep mask: if the node is a dependency generator (see 4.3), this command causes it to add its generated
symdep masks to the request, as an add dep mask command placed into the command all field of the CSR
for the configured gendep group.

3In the future, pattern matching will be supported as well.
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5.3.5 Building up command riders in Glish

In Glish, the command rider is simply a part of the request record, and may be created and manipulated just
like any other [sub]record. In addition, meq/meqtypes.g defines some handy shortcuts for adding commands to
a request:

const meq.add_command := function (ref req,group,node,command,value=T);

This function modifies the request object passed in via the req argument. A CSR for group will be initialized
if required, and a command with the specified value added to the appropriate field of the CSR. The node

argument specifies the target node(s) as follows:

• an empty list (i.e. []) targets command at all nodes. The command is added to the command all set.

• a single integer is treated as a node index. The command is added to command by nodeindex (initializing
a command set if necessary).

• a list of integers is treated as node indices. The command is added to command by list, with a nodeindex

key.

• a string or a list of strings is treated as node name(s).The command is added to command by list, with
a name key.

• an empty string array ("") adds a wildcard entry to command by list.

A second shortcut is handy for inserting a state update command:

const meq.add_state := function (ref req,group,node,state);

This will add a state command, with the supplied state record as its value. All other arguments have the
same meaning as for add command().

5.4 Resolution & resampling

Resolution & gridding is a complicated business. Most nodes expect their children’s results to have the same
resolution (i.e. same Cells), yet performance constraints require our trees to operate at different resolutions.
Node implements a flexible mechanism for automatically controlling the resolution of child results. Before going
into detail, it helps to take a step back and review some basic requirements:

• In the first instance, the grid/resolution is determined by incoming data. We’ll call this the full resolution

grid.

• It may be prohibitively expensive to evaluate some subtrees (e.g. predict) at full resolution. Thus we
should support going from full resolution to reduced resolution (integration) and back (upsampling).

• Parent nodes will not always have sufficient information to determine what the best resolution for a child
is (i.e. the optimum predict resolution may perhaps be only determinable within the predict subtree).
Thus, a child should be able to return data at any resolution is deems fit, and let the parent deal with it.

5.4.1 Treatment of resolution

To satisfy these requirements, the following behaviour w.r.t. resolution is implemented:

1. The requested resolution (or grid) is defined by the Cells object supplied with the cells command
of a Request.

2. The requested resolution is merely a hint! A node is not obligated to honor the grid of the Cells. It
must, however, honor the envelope domain. The gridding of the result is indicated by the Cells returned
in the Result object.
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3. Some leaf nodes (e.g. Const and Parm with no time-frequency dependence, when configured to return
samplings and not integrations) return resolution-free Results. This is indicated by a missing Cells in
the Result.

4. Other leaf nodes (e.g. Parm, Freq, Time – generally, nodes meant to evaluate some analytic function over
the domain) are easily able to evaluate themselves over any given grid. These nodes will always return
a Result at the requested resolution; the tree designer may rely on this behaviour as it is part of the
contract for those nodes.

5. Data-driven leaf nodes (e.g. Spigot) completely ignore the requested resolution. The gridding of their
Result is fully determined by the layout of incoming data.

6. Most non-leaf nodes with multiple children (e.g., most of the Function-derived nodes) can only operate
on child results of the same resolution. In the event that different resolutions are returned, any node can
be configured to auto-resample child results to a common resolution. This is done by Node::execute()

prior to calling getResult().

7. Some special nodes (such as ModRes) can modify the resolution in the request before passing it up.

Note each node’s treatment of the requested resolution (i.e. honor/ignore/modify) is part of the node class
contract, and should be clearly documented in the Node Reference. Thus, while parent nodes have no control
over (or knowledge of) what resolution their children are going to use for their results, the tree designer can
always see the global picture, and determine which resolution is used where in the tree. By enabling auto-
resampling at key points in the tree, and possibly adding some ModRes nodes, the designer can always ensure
predictable results.

The brute-force approach (as opposed to careful tree design) is to enable auto-resampling at all nodes. This,
however, is a waste of CPU, and is never actually necessary.

5.4.2 Selecting auto-resampling modes

Auto-resampling is enabled via the node state record, on a node-by-node basis. The actual resampling is
performed in Node::execute(), and it can follow one of several strategies:

Upsample: Find the highest resolution among child results, upsample all other results to it.

Integrate: Find the lowest resolution among child results, integrate all other results to it.

Use Resolution Driver: Resample everything to the resolution of a specific child (this child is called the
resolution driver).

Use Request: Resample everything to the resolution of the Request. If this strategy is selected, the node
is guaranteed to honor the requested resolution. If all child results have the same resolution, but it is
different from the requested one, resampling is performed.

Fail: Fail outright (return a fail-result, that is) if resolutions differ. This option is mainly useful for debugging;
in a properly designed tree, any node that can potentially encounter this situation should be configured
to use one of the other strategies.

Note that when selecting a high or low resolution for integration or upsampling, resolution-free results are
ignored, since they never require resampling.

The auto-resampling strategy is determined by two fields in the node state record (note that this is dynamic
state). The resample child index field enables the “Use Resolution Driver” strategy, if set to an ordinal
child number (≥ 1 in Glish, ≥ 0 in C++ – note the index suffix and remember automatic 0-1-base conversion
discussed in section 2.1.6) or a HIID child label (see 3.2.2). The specified child becomes the resolution driver. If
the field is set to boolean false, or an out-of-bounds number (< 1 in Glish, < 0 in C++), then this resampling
strategy is not enabled.

If the resolution driver returns a resolution-free result (see 2.4.4), then a fail is reported. This situtation
indicates an error in tree design, since resolution-free results are returned by only a few nodes, under well-defined
circumstances.

If a resolution driver is not enabled, then the auto resample field can define another resampling strategy.
It can be set to one of the following values:
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NONE (= 0): do nothing, do not even check the child resolutions. This is the default setting initialized by
the Node class constructor.

FAIL (= −2): check resolutions and return a fail-result if they do not match. This is the default setting
initialized by the Function class constructor. Since this is somewhat slower that the NONE setting, the
default for optimized builds may possibly be changed to NONE in the future.

INTEGRATE (= −1): select the “Integrate” strategy.

UPSAMPLE (= 1): select the “Upsample” strategy.

REQUEST (= 2): select the “Use Request” strategy.

The auto resample and resample child index fields are mutually exclusive. If a resolution driver is
selected, auto resample will be automatically reset to “none”.

5.4.3 A working example

Figure 5.1 shows an example of a tree that operates at different resolutions – full data resolution for “fast”
operations such as phase shift and subtract, and reduced resolution for predict. The reduction of resolution is
controlled by ModRes nodes (see below). Nodes for which resampling is enabled are indicated by a red label in
the node box: ”UPS” for upsample, ”INT” for integrate, ”RES/DR” for using a resolution driver. The predict
branch is evaluated at a (presumably reduced) resolution determined by its root ModRes node, this is visually
indicated by a coarser grid background. The CondEq node integrates its child results to the lower of the two
resolutions: this is appropriate for solving. The Subtract node uses original data resolution as the driver.

Figure 5.1: A multiple-resoulution tree employing auto-resampling

Implementation issues

For the time being, Node only supports integral resamplings. In other words, the higher-resolution cells must
be perfect tilings of the lower-resolution cells. A fail-result is generated otherwise. This keeps things simple,
and avoids interpolation errors.4

4In the future, we may add support support arbitrary regridding if needed.
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This limitation is less serious than may appear. Resolutions are never chosen randomly – from a tree
designer’s point of view, they are completely deterministic. Current facilities for resolution control (the ModRes

node mentioned below) only allow for integral resolutions. As for the original data resolution, it always comes
in from the data access nodes (Sink and Spigot), which are tightly coupled: for each snippet of data, the
Sink issues a Request with a Cells corresponding to the data layout, while the corresponding Spigot is then
ready to return a Result with the same cells. Thus, the tree designer can always define working resolutions for
subtrees in terms of integral factors of the original data resolution.

Upsampling currently uses linear interpolation. In the future, we may add support for more sophisticated
resampling.

5.4.4 Controlling the resolution

The ModRes utility node may be used to change resolution mid-tree. A ModRes always has a single child; upon
receiving a Request from its parent, it modifies its resolution up or down by a fixed factor (independent for
each axis), as determined by its node state. The modified Request is passed on to its child, and the child’s
Result is returned directly to the parent.

In the future, we envision an adaptive resolution reducer (ARR) node, which adaptively selects a minimum
required resolution based on some application-specific considerations. These may include:

• For solving, the predict tree need only supply enough cells to constrain the solution. The minimum
resolution can be determined by the Solver node, and passed along in the Request as a hint to any ARR
nodes up the tree.

• For subtracting predicted sources, the cells need only be big enough to ensure linearity over a cell.

Note also that the Identity node, when configured with a “Use Request” resampling strategy, becomes a
resolution coupler, ensuring resampling all results to the requested resolution.

5.4.5 How this applies to getResult()

Note that the getResult() handler discussed above receives two crucial pieces of information: a vector of child
results, and a Cells (passed by ref). The Cells parameter defines the expected result cells, and it is set up as
follows:

• If auto-resampling is not enabled, or the node has no children, then this is simply the cells from the
Request. The resolutions of child results, if any, are not constrained.

Note that most nodes’ contracts specify that “this node only deals with child results at the same resolution”
(this is true, e.g., for all Function nodes), and leave it up to the tree designer to ensure it (i.e. by enabling
auto-resampling where necessary). The node’s behaviour when a contract is violated does not need to be
defined (although one can reasonably expect an exception to be thrown, leading to a fail-result).

• If auto-resampling is enabled, then the resolutions of child results are constrained: they will all have
the indicated Cells (with the exception of resolution-free results, which have no cells). Most nodes are
expected to return a result at the same resolution.

• If auto-resampling is enabled and all child results are resolution-free, then the Cells ref is empty. In this
case, most nodes’ result will should be resolution-free as well. In the rare case where the node introduces
its own time-frequency dependence (e.g. the UVW node), it should get a Cells from the request.

5.5 Function nodes

Function is an important subclass of Node, representing some function of its children’s results. The main
feature of Function is an abstract evaluate() method, which takes a vector of Vells objects, computes some
function over them, and returns a Vells result.

Remember that a Vells is a an N ×M matrix (f̄ = {fij}) of R or C values, representing a set of sampling
or integrations of a function f : R2 → R or f : R2 → C over some cells. Vells are organized into VellSets,

containing the main value {fij}, plus an optional set of K ×S (S = 1, 2) perturbed values f̄sk = {f (sk)
ij }, which
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correspond to S sets of perturbations w.r.t. K solvable parameters. A VellSet will also contain S vectors of

the perturbations themselves, {δ(s)
k }.

The Result of child l will contain Ql VellSets. Most of the time, Ql = 1; when Ql > 1, the result represents
a multidimensional function f : R2 → {R or C}Ql . Note that each plane of such a function may have its own
set of solvable parameters and perturbed values. We will use the notation f̄lq to designate the main value for

child l, plane q, and f̄
(sk)
lq to designate the corresponding perturbed value for parameter k from set s.

The evaluate() method of a Function-derived node implements some compound function of L child Vells

defined over the same Cells. We will designate this function as F = F (f̄1, ..., f̄L). The value of this function
is a Vells itself, F̄ = {Fij}, also defined over the same Cells.

The Function class provides a getResult() method that iterates over all Vells in its child results, calls
evaluate() to compute F , and collect the resulting Vells into an output Result. The same operation is done
for all perturbed values. Thus, the Function class implements a basis for all nodes that calculate a compound
function of their children. PSS4 includes an automatic code generator (documented elsewhere) that will generate
a full C++ implementation of a Function-derived node class, given a symbolic expression for the F function.
The kernel also provides a toolkit of Functions that implement most primitive mathematical operations.

5.5.1 Dealing with multiple planes

Note that an implementation of evaluate() defines F for a single set of Vells. When child results contain
multiple planes, Function deals with it as follows:

• If all child results contain the same number of planes Q (Q = Q1 = ... = QL), the function F is applied
separately to each plane q = 1...Q.

• Child results with a different number of planes are supported in only one scenario: some results may have
1 plane, and some may have Q > 1 planes, but Q must be the same for all multi-planar results (a fail is
generated if this condition is not met). Results with 1 plane are then artificially expanded to Q planes by
reusing the same VellSet for all planes from 1 to Q. (This is roughly similar to scalar-vector operations
in Glish.)

5.5.2 Dealing with perturbed values

Each plane (aka VellSet) q of result l may contain a number of perturbed values. These are also evaluated.
Note that the set of parameters (identified by spids) with respect to which the values are perturbed is not
necessarily the same for each child result or plane, in fact, some planes or results may contain no perturbed
values at all.

To simplify the description here, let’s remember that Function deals with multiple result planes indepen-
dently, on a plane-by-plane basis (see above). Hence, we’ll assume we’re dealing with only one plane, and l
child results for that plane. We’ll also forget about multiple perturbation sets, since those are all dealt with in
the same way.

Function starts by figuring out all the spids present in the VellSets of the children. Thus, it ends up with a
list of spids, (κ1, ..., κn), which is simply the union of the spid sets from each child’s VellSet. For each spid κi,
it then needs to compute the perturbed value of F with respect to parameter κi (F̄ (κi)), based on the perturbed
Vells (f̄ (k)) found in the child VellSets.

This is done by calling evaluate() n times to compute F̄ (κi) for each κi, while selecting the input Vells

from each child’s result as follows. If spid κi is present in the list of spids for the VellSet of child l, the
perturbed value f̄ (lk) is used (where k corresponds to spid κi). Otherwise, the main value f̄l is used.

If this seems complicated at first glance, remember that the end result is quite simple. A Function node
computes some function over its children’s results. If the subtrees above the node contain solvable parameters,
then perturbed values of that same function w.r.t. all the solvable parameters must be computed as well,
based on perturbed values returned by the children. Everything else follows from this simple requirement.

5.5.3 Restrictions on child results

A Function node imposes certain restrictions on the structure of its child results, which the tree designer should
be aware of. If the results do not have the right layout, a fail is always generated.
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• The first restriction has already been covered above – all results must have the same number of planes, or
must be a mix of Q planes and single planes. Composer and Selector nodes should be placed appropriately
to ensure this.

• The second restriction has also been mentioned – all results must have the same Cells. Auto-resampling
may need to be enabled to ensure this. This implies that all Vells in the results will have either the same
M × N shape, or will be scalars (i.e. no time-frequency dependence).

• The child results must be either all samplings or all integrations. The two types cannot be mixed in the
same expression.

• The next restriction involves the values of the perturbations (δκ) themselves. When F is evaluated over
perturbed values for parameter κ, and these perturbed values appear in more than one VellSet, the result
is sensible only when the perturbation δκ is the same thoroughout.

• Finally, if more than one perturbed value set is used (think double-differencing), Function requires that
all child results have the same number of sets, though any child may always return zero sets (no perturbed
values at all).

Note that the last two restrictions are almost always met automatically, since the perturbations δκ are usually
determined by the parameters (i.e. Parm nodes) themselves. Single- or double-differencing is determined by the
value of calc deriv in the Request, which is also the same for all children. You’d be hard-pressed to construct
a tree that didn’t meet these two restrictions. Nevertheless, it’s something to keep in mind in case you see
Function nodes failing unexpectedly.

5.5.4 Implementing evaluate(): Vells arithmetic

The evaluate() method is defined as follows:

virtual Vells evaluate (const Request &req,

const LoShape &shape,

const std::vector<const Vells*> &args);

The req argument is simply the original Request. shape indicates the shape of the output Vells (i.e.
the shape of the result Cells, see 5.4.5). The last parameter is a vector of pointers to argument Vells, which
Function sets up for each call so that the correct combination of main values and perturbed values is used. Note
that the resulting Vells is returned by value; this is a very fast operation, since Vells utilizes copy-on-write
for its contents.

Implementations can take advantage of Vells math. Vells is an intelligent wrapper for real or complex 2D
arrays or scalars, with overloaded operators and functions for basic math and implicit conversion from scalar
values to a Vells. It provides automatic type promotion, and can also implictly “expand” a scalar to an
array. For example, the doubled product of two Vells a and b may be obtained simply by stating c=2*a*b.
This notation conveniently hides a lot of messy processing: real Vells are automatically promoted to complex
if the other argument is complex, scalars are expanded to arrays if the other argument is an array, and the
operation is performed on an element-by-element basis.5 As another example, here’s an actual implementation
of evaluate() for the Cos node (computes cosine of child result):

Vells Cos::evaluate (const Request&,const LoShape &,

const vector<const Vells*>& args)

{

return cos(*(args[0]));

}

Table 5.1 lists all the primitive operators and functions available with the Vells class. Most of these operate
on const arguments and return a new Vells object by value. The exception are in-place operators ("+="
and friends), which modify a Vells in place and return it as "Vells&" (these obviously require a non-const
argument). The C++ syntax allows one to freely combine primitive operations into complicated expressions,
while the compiler takes care of creating and destroying intermediate Vells objects as appropriate.

5An exception is thrown if two array Vells have a different shape. Note that having the same Cells in all child results ensures
the same shape for all Vells.
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basic arithmetic:
- unary negation
+ - * / standard binary arithmetic operators

in-place arithmetic:
+= -= *= /= arithmetic, modifies the left-hand Vells in-place

unary functions, R → R and C → C:
exp() log() log10() ex, lnx, log x
sqr() sqrt() x2,

√
x

pow2()...pow8() x2...x8

sin() cos() tan() sine, cosine, tangent
sinh() cosh() tanh() hyperbolic sine, cosine, tangent
conj() complex conjugate

unary functions, R → R only:
ceil() nearest integer ≥ x
floor() nearest integer ≤ x
acos() asin() atan() arccosine, arcsine, arctangent

unary functions, R → R or C → R:
abs() fabs() absolute value |x| (both names are equivalent)
norm() norm: |x|2
arg() argument of a complex number (the φ in x = |x|eiφ)
real() imag() real and imaginary parts

array reductions:
min() max() mean()

sum() product()

these reduce the argument (presumbaly, an array Vells) to a single scalar.
Note that min() and max() are only defined for real arguments.

binary functions:
tocomplex() x + iy
pow() xy

atan2() arctan(y/x), also defined for x = 0
posdiff() angular difference: for two angles x, y in the range [−π, π], returns x − y

renormalized into [−π, π] by adding ±2π as necessary.

Note: some Vells functions are defined for real arguments only. Applying them to a complex Vells will result
in a fail.

Table 5.1: Available Vells operations

Copy-on-write specifics

Since Vells employ copy-on-write, using Vells math for complicated expressions incurs very little overhead in
comparison to an “optimized” implementation with explicit looping over array elements. The amount of messy
coding saved, on the other hand, is huge.

Copy-on-write means that when one Vells is assigned to or initialized from another Vells, the two start
off sharing the same data. This makes copy/assignment operations very economical, since the underlying data
array is not copied. Any subsequent attempts to modify either Vells will cause a true private copy of the data
to be made. Thus, copying of data arrays is deferred until it is actually needed (which may be never).

Consider, for example, an implementation of Add:evaluate(). The Add node adds the results of any number
of children:

Vells Add::evaluate (const Request&, const LoShape&,

const vector<const Vells*>& args)

{

if( args.empty() )

return Vells(0.);

Vells result(*args[0],DMI::READONLY);

for( uint i=1; i<args.size(); i++ )

result += *(args[i]);

return result;
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}

The result Vells is initialized from the first argument Vells, and shares data with it. As soon as the second
argument is added in, a private copy of result’s data is implicitly created. If, however, only one argument is
passed in to begin with, the result will still share data with it when returned.



Chapter 6

The MeqServer Interface

Figure 6.1: MeqServer and MeqTree control
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