
Astronomical Data Analysis Software and Systems XV P173

ASP Conference Series, Vol. XXX, 2005
C. Gabriel, C. Arviset, D. Ponz and E. Solano, eds.

Implementing Arbitrary Measurement Equations With
The MeqTree Module

O.M. Smirnov & J.E. Noordam

ASTRON, P.O. Box 2, 7990AA Dwingeloo, The Netherlands

Abstract.

A Measurement Equation (ME) is a mathematical model of an in-
strument (e.g. a radio telescope) and the observed object(s). It can
be used to predict the data measured with the instrument. In general,
calibration of an observation (e.g. selfcal in radio astronomy) involves
solving for parameters of an ME in some shape or form, by comparing
observed and predicted data. Most calibration packages implicitly or ex-
plicitly implement some specific form of the ME. By sheer necessity, this
involves making some simplifying assumptions about the instrument and
the observation. As new instruments come on-line (WSRT LFFEs, LO-
FAR, etc.) we find ourselves pushing the limits of these assumptions.
The MeqTree module provides a flexible system to implement MEs of
arbitrary structure and complexity, and to solve for arbitrary subsets of
their parameters.

1. Introduction

Measurement Equations (MEs) play a crucial role in the calibration of interfer-
ometric observations, since the latter always involve some sort of model fitting.
The ME of an interferometer was derived in its closed form by Hamaker et
al. (1996). For practical calibration purposes, however, the ME needs to be
expressed in a computable form, employing a limited number of parameters.
Calibration with an ME then follows a conventional model-fitting loop: initial-
ize parameters from apriori guesses — use the ME to predict observables —
compare to data — adjust parameters — repeat to a (hopefully) satisfactory fit.

All existing radiointerferometry calibration packages implicitly or explicitly
implement some simplified and fixed form of the ME. The traditional selfcal
algorithm is a good example. In its simplest formulation, it models the sky by
a single point source, and the instrument by a single complex gain/phase term
per each antenna. Despite the apparent simplicity of this model, it has served
radioastronomers in good stead for over two decades!

However, a fixed ME makes it very hard or impossible to calibrate for
effects unaccounted for by the software designer. Even older instruments can
push the envelope of existing packages; future instruments such as LOFAR and
SKA make the situation worse by magnitudes. These instruments will require
sophisticated models with many ME parameters which current packages are
simply not equipped to handle. Moreover, at the moment we can only guess

1



2 Smirnov & Noordam

which formulations of the ME will actually allow for calibration, so we will need
to continue experimenting with different MEs as these instruments come on-line.
Clearly, what is needed is a toolkit for constructing and fitting MEs.

2. The MeqTree Concept

The MeqTree (Measurement Equation Tree) module provides such a toolkit.
Any model or ME is, in the final analysis, nothing more than a mathematical
expression, and as such can be represented by a tree.

MeqTrees are constructed out of MeqNodes. Nodes receive MeqRequests
from their parents and pass them on to their children, get MeqResults in return,
perform some operation on them, and return the result of that to their parents. A
MeqRequest generally defines a domain and gridding in N-D space (for example,
time-frequency space), and a MeqResult represents a sampling of some function
over that domain, with optional perturbed values.

A typical MeqNode performs some mathematical operation on the results of
its children. MeqTrees provide a large collection of node classes for most math-
ematical operations, and new node classes may be added by writing a (usually
simple) C++ class. A vital feature of MeqTrees is that tensors are represented
in an elegant and economical manner. This allows for a mathematically com-
plete model of polarization effects (Hamaker 2000), which have up to now been
notoriously difficult to understand and calibrate for.

Thus, we can build a tree representing any function or model or ME, and
evaluate that model simply by giving a request to the root node of the tree, and
waiting for a result to come back. If you can write it down as an expression,
you can predict it with a MeqTree.

2.1. Solving For MEs

Building an ME is just half the job, what about fitting it to the observed data?
MeqTrees provide some specialized node classes to facilitate this:

MeqParm leaf nodes represent ME parameters. These can be atomic,
or can in turn be functions of, e.g., frequency and time (Mevius et al. 2006,
this volume). Any subset of MeqParms may be designated as solvable; solvable
MeqParms will return perturbed values along with their main value.

CondEq (Conditioning Equation) nodes compare the results of their two
children — e.g., a predict subtree on one side, and observed data supplied by a
Spigot leaf on the other — and convert perturbed values into numeric derivatives.

A Solver node does the actual fitting. It collects residuals and derivatives
from all its CondEq children, builds a Jacobian matrix, and executes one step
of the Levenberg-Marquant minimization algorithm. This results in a set of
parameter updates, which are then sent back up to the solvable MeqParms. The
cycle is repeated until a satisfactory fit is reached, or for some maximum number
of iterations. The Solver node then returns a result.

Control nodes such as the ReqSeq (Request Sequencer) provide flow
control. For example, multiple Solvers may be fired in series to solve for different
sets of paremeters in turn, a subtract branch can be activated, subtracting the
fitted model from the data, a correction branch may apply derived corrections
to the residuals, etc.



Implementing Arbitrary MEs With MeqTrees 3

Sink nodes are found at the root of trees. Sinks write their childrens’ results
out to disk (e.g., to an AIPS++ MS). Depending on the structure of the tree,
these results may represent predicted visibilities, residuals, corrected data, etc.

In this way, MeqTrees allow one to solve for arbitrary parameters of any ME.
To elaborate on a previous statement, if you can write it down as an expression,
you can solve for it using MeqTrees. (Of course, the data needs to provide
enough constraints to solve for the given parameters...)

3. The MeqTree Module

The MeqTree module is implemented by a software package loosely called Meq-
Timba. MeqTimba consists of the following components:

• A computational kernel, mostly implemented in C++ (and using libraries
from AIPS++, FFTW, etc.) The kernel provides all MeqNode classes,
implements basic facilities for creating MeqNodes and connecting them
into trees, and provides a low-level interface for controlling MeqTrees.

• A set of I/O agents to feed the kernel with data and to dispose of the
results. The current set includes agents for reading/writing AIPS++ Mea-
surement Sets (MSs), and also agents for pipelining data over the network.

• A GUI called the MeqBrowser, implemented in Python/PyQt. The browser
provides kernel control (bulding trees, attaching MSs, running trees) and
visualization. The browser also provides an interface to the stepwise de-
bugging and tree profiling functions of the kernel.

• A Python-based Tree Definition Language (TDL). TDL scripts can be
loaded and run by the browser, which feeds them to the kernel to construct
and run trees. TDL allows one to define MeqTrees in high-level terms. The
typical turnaround time for modifying and re-executing a TDL-described
ME is measured in seconds. This makes the system remarkably easy to
“play” with.

The design of MeqTimba has a number of important highlights:
Policy-free: The kernel is (almost) entirely policy-free; it operates with very
basic concepts (nodes and trees), with mimumum assumptions about the prob-
lem domain. All policy — and thus the problem domain, complete with MEs,
data formats, etc. — is defined from the scripting side via TDL. This makes the
system eminently adaptable to new instruments and problems (including those
outside radioastronomy per se).
Data transparency: each node maintains a state record that can be examined
from the browser. No MeqTree is ever a black box, and the user can examine
the behaviour of the model to any level of depth or detail. Node states can also
be published into the browser as a tree runs, providing an execution history.
Visualize everything: the browser provides built-in tools for visualizing re-
sults and other data structures. Even more importantly, TDL scripts can define
bookmarks that provide “canned” views of the tree which the user can access
with a couple of mouse clicks. In fact, trees can contain visualization branches
that compute derived quantities that are not used in calibration per se, but do
provide additional insight into calibration fidelity.
Naturally parallelizable: MeqTimba has been designed with parallelization
in mind. The current version of the kernel is single-threaded (although the



4 Smirnov & Noordam

browser can control it remotely over a network), but future development will
allow for trees to execute in parallel and be distributed across a cluster. The
built-in tree profiler will aid in determining optimal parallelization strategies.

4. Current Status And Future Directions

Over the past year, MeqTimba has been gradually exposed to WSRT data. One
current project (Brentjens 2005) involves custom trees for high-dynamic-range
calibration of a complex field (3C343) which is hard to deal with using traditional
selfcal due to the presence of off-axis bright sources. Performance on par with
existing packages has been demonstrated, and current work aims to “go where
no package has gone before” and calibrate for finer effects. A second project
aims to provide a set of canned central point source trees for online and offline
processing of full-polarization WSRT calibrator observations. On a completely
different tack, Willis (2005) has been using MeqTrees to simulate observations
with the projected CLAR telescope, characterized by a time-variable beam, and
show that such a beam may be successfully calibrated for.

In the near future, we will be applying MeqTrees to data from the new
WSRT Low-Frequency Front Ends (LFFEs), giving a preview of the LOFAR
sky. The WHAT project – a prototype LOFAR station linked up with the
WSRT – will provide a very interesting test for MeqTrees, being one of the first
examples of a truly heterogenous (phased array vs. dish) interferometer.

MeqTrees will play an integral role in LOFAR calibration. The LOFAR
Local Sky Model (Smirnov & Noordam 2003; Nijboer et al. this volume) will use
MeqTrees to represent sky sources; we see this as the only way to get a handle on
the complex and overcrowded sky seen by LOFAR. The ionosphere is critical at
low frequencies, and will also require a relatively sophisticated model (Noordam
2005). Here again MeqTrees are expected to play a vital role.

References

Brentjens, M. 2005, presentation at SKA WFI Workshop, Dwingeloo1

Hamaker, J.P., Bregman, J.D., Sault, R.J. 1996, A&AS, 117, 137

Hamaker, J.P. 2000, A&AS, 143, 515

Mevius, M. 2006, this volume, [P.78]

Nijboer, R.J., Noordam, J.E. & Yatawatta, S. 2006, this volume, [P.57]

Noordam, J.E. 2005, presentation at SKA WFI Workshop, Dwingeloo2

Smirnov, O.M. & Noordam, J.E. 2003, in ASP Conf. Ser., Vol. 314, ADASS XII,
ed. F. Ochsenbein, M. Allen, & D. Egret (San Francisco: ASP), 18

Willis, A.G. 2005, presentation at SKA WFI Workshop, Dwingeloo3

1http://www.skatelescope.org/pages/news/SKA WFI2005/scd.pdf

2http://www.skatelescope.org/pages/news/SKA WFI2005/MIM%20may%20202005.ppt

3http://www.skatelescope.org/pages/news/SKA WFI2005/wfi talk full.pdf


