Solving

- MeqTree is a powerful tool for simulation
- Whatever effect you can simulate, you can solve for Basic Model of a Solve Tree:

Solving in MeqTree

- model \& data : any tree

Note: In MeqTree there is no difference between model and data, solvable parameters can show up at any side

- (Solvable) Parameters: Leaf Nodes
- MeqParm: returns result + perturbed values
- can be functions of Freq/Time/.. (more later)
- difference :
- MeqCondeq :returns difference + derivatives
- Solver:
- MeqSolver: Aips++ LM solver: adjusts parameters in several iterations
- Needs a list of Solvable Parameters (by name)
MXM_demo_solve.py

MeqParm

- MeqParm represents a function on a given domain (Funklet)

First input parameter of MeqParm gives the funklet with initial coefficients e.g. Meq.Parm(3.) : funklet is constant, initialized with 3.

- Coefficients of the function are the actual solvable parameters
Default Funklet: polc: $\mathrm{n} \times \mathrm{m}$ polynomial in Freq/Time defined by shape of matrix

$$
\begin{aligned}
& \text { e.g.: }\left[\left[c_{00}, c_{01}, c_{02}\right]\left[c_{10}, c_{11}, c_{12}\right]\right]: \\
& \quad f(v, t): c_{00}+c_{01} \cdot t+c_{10} \cdot v+c_{02} \cdot t^{2}+\ldots
\end{aligned}
$$

Adjust MXM_demo_parm1.py:
data is $2 *$ time + freq
fit 2×2 polc
What happens if you fit a 2×3 polc? Inspect Solver result hint: you can force the shape of the polc by setting the shape field of the MeqParm

ParmTables

- In real life, you want to use your solved parameters:
- Correct the data (see Oleg's 3c343 script)
- Store for later use -> parmtables (Aips++ table)
- table_name : specifies the table, creates new table if not existing
- Solver options for saving solutions:
- save_funklets =True;
- last_update = True;
- for each MeqParm several entries:
- funklets defined on a specific domain
- if a table is specified, MeqParm will always try to initialize with best fitting (on request domain) funklet(s)
- lookup on ParmName + domain

