
MeqTrees on Opensuse 10.3 (64-bit)
This shows all the steps that I took to install successfully MeqTrees on my OpenSuSe 10.3 64-bit

desktop.

Useful links
The Meqtrees Wiki page http://www.astron.nl/meqwiki/ , in particular the links pointing to “Building

Timba” (http://www.astron.nl/meqwiki/BuildingTimba/ActualBuild)

In the Wiki, there are several further links concerning the building of all software requirements for

building MeqTrees.

Major Problems and Observations
SuSe tends to use lib64/ subdirectories rather than lib/ for all 64-bit stuff. This seems to cause a lot of

aggravation when building Timba. I have included all the generation of the required symbolic links.

Several commands (make, make installs etc) require root privileges. Occasionally, using sudo is not

enough and you have to login explicitely as root. (or with root access).

PyQt is broken in SuSe and cannot be removed etc and substituted with something working (problems

with Scintialla). I have forced the rebuilding of PyQt (otherwise MeqTrees would not work). It may have

some side effects, however.

Step 1. Getting Timba
I am registered with Astron, hence I used Subversion + ssh to check yout (later to update) Timba:

svn co svn+ssh://salvini@lofar9.astron.nl/var/svn/repos/trunk/Timba

It will prompt for the password etc. It is also possible to check out as anonymous (see the Wiki page).

Software Requirements
The following table shows all the software requirements to build Meqtrees:

Mandatory

Timba The core package

Casacore Usig casacore instead of AIPS++ libraries is highly recommended

Pyrap Python casacore interface

PyQt Python Qt bindings etc (source of trouble in OS 10.3)

Blitz C++ scientific library

Qwt nd PyQwt To produce graphs etc in meqbrowser

Optional

Casarest To produce images from measurements sets

karma To visualize the images

Step 2. Building Casacore
First, download casacore from http://www.google.com/casacore

Have a good look also at the MeqTrees Wiki page http://www.astron.nl/meqwiki/LinkingWithCasaCore

These are the Casacore requirements:

• scons

• cfitsio

• wcslib

• lapack/blas

• fftw3

• flex/bison

• fortran compiler and fortran-to-c library, e.g. gfortran and libgfortran

On my system, this is what needed to do:

scons
It was already available (in SuSe repository anyway)

cfitsio
Download from http://heasarc.nasa.gov/fitsio/fitsio.html then:

tar xvzf cfitsio3090.tar.gz

cd cfitsio/

./configure --prefix=/usr/local ("./configure --help" gives a list of available

options)

sudo make install

Because of the use of lib and lib64 in OS 10.3, you should now make a symbolic link

ln -s /usr/local/lib/libcfitsio.a /usr/local/lib64/libcfitsio.a

wcslib
Download it from http://www.atnf.csiro.au/pub/software/wcslib/wcslib.tar.gz

tar xvzf wcslib.tar.gz

cd wcslib-4.3/

./configure --prefix=/usr/local

make install

cp wcsconfig.h /usr/local/include/wcslib

Painfully, the lib vs. lib64 issue bites you again. See how we build Casacore later on)

lapack, blas
Available in OS 10.3. Can install from Yast etc (need lapack, liblapack3, blas, libblas3). I have not tried

to use more efficient BLAS & LAPACK such as Intel MKL library etc.

fftw3
Available in OS 10.3. Can install from Yast etc (need fftw3 and fftw3-devel)

Flex and bison
Already available in OS 10.3 (or installable from repositories)

gfortran
Available in my system, but can be easily installed from repository.

Finally, build casacore!
bzip2 -d casacore-0.3.0patched.tar.bz2

tar xvf casacore-0.3.0patched.tar

cd casacore-0.3.0/

./batchbuild.py enable_hdf5=false prefix=/usr/local \

wcsincdir=/usr/local/include extrafflags=-fPIC \

wcslibdir=/usr/local/lib64/ install -j3

Use the –j3 only if you are compiling on a multicore system! (Otherwise omit –j 3)

Step 3. Pyrap
First, download casacore from http://code.google.com/p/pyrap

Have a good look also at the MeqTrees Wiki page

These are the pyrap requirements:

• python

• numpy

• numarray

python
It was already available (in SuSe repository anyway)

numpy
Available from repository (Yast) (python-numpy and python-numpy-debug)

numarray 1.5.2

Download from http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=32367 then:

cd numarray-1.5.2/

python setup.py install

ln -s /usr/local/include/python2.5/numarray/ /usr/include/python2.5/

Finally, build pyrap:
cd /usr/lib64/python2.5/site-packages/numpy/core/include/numpy

ln -s numpyconfig.h config.h

cd pyrap_fitting && ln -s tags/pyrap_fitting-0.1.0/ current \

./batchbuild.py numpyincdir=/usr/lib64/python2.5/site-packages/numpy/core/include\

 casacoreroot=/usr/local

Step 3. Build PyQt
The original PyQt in OS 10.3 is not quite suitable as it gives trouble with QScintilla.

These are the PyQt requirements:

• PyQt 3.x

• QScintilla 1

Both can be downloaded from http://www.riverbankcomputing.co.uk/software/pyqt/download3

On my system, this is what needed to do:

qscintilla 1
tar xvzf QScintilla-1.71-gpl-1.7.1.tar.gz

cd QScintilla-1.71-gpl-1.7.1/

cd qt/

/usr/lib/qt3/bin/qmake qscintilla.pro

make (This may have to be run from within a shell with root privileges)

pyqt 3.x
tar xvzf PyQt-x11-gpl-3.17.4.tar.gz

cd PyQt-x11-gpl-3.17.4

python configure.py -n /usr/lib/qt3/include -o /usr/lib/qt3/lib

make -j4

make install

Step 4. Build Blitz++
First, download from http://sourceforge.net/projects/blitz/

Look also at the Wiki page on Blitz

http://www.astron.nl/meqwiki/BuildingTimba/RequiredSoftware/BlitzBuildNotes)

Finally, carry out the following:

tar xvzf blitz-0.9.tar.gz

cd blitz-0.9/

export CC=gcc

export CXX=g++

export FC=gfortran

export F77=gfortran

export F90=gfortran

./configure --enable-64bit --enable-shared --enable-optimize \

 --prefix=/usr/local/blitz/gnu4/ CXX="g++ -fPIC"

make

make install

cd /usr/local/blitz

sudo ln -s /usr/local/blitz/gnu4/lib /usr/local/blitz/gnu4/lib64

Step 5. qwt and pyqwt
These are required to get some graphis into the MeqTrees browser.

Download PyQwt-4.2.3 from http://pyqwt.sourceforge.net/. This includes also Qwt 4.2.0 which is all we

need. Hence with root privileges (IMPORTANT!):

tar xvzf PyQwt-4.2.3.tar.gz

cd PyQwt-4.2.3/qwt-4.2.0/

/usr/lib/qt3/bin/qmake qwt.pro

make

install -m 644 include/* /usr/local/include

install -m 755 lib/libqwt.so.4.2 lib/libqwt.a /usr/local/lib

ldconfig

There may be problems here: what I did to sort them out was (possibly you need to be root):

cd /usr/local/lib

chmod 755 libqwt.so.4.2.0

ln -s libqwt.so.4.2.0 libqwt.so.4.2

ln -s libqwt.so.4.2.0 libqwt.so.4

ln -s libqwt.so.4.2.0 libqwt.so

Now complete PyQwt

cd ../configure (i.e.: cd ~/PyQwt-4.2.3/configure)

python configure.py -Q ../qwt-4.2.0

make

make install

Step 6. Build Timba at last!
This is actually simple. First, however, you have to make an appropriate variant file in

~/Timba/autoconf_share. The file must be called variant.host where host is the name of the system

where you are building Timba. Have a look at the variants available and modify them accordingly. Here

is the variant file entry I added for using gcc 4.x on my OpenSue box (it is only a small portion of the

variant file)

gnu4.compiler.conf: CXX=ccache\ g++ --enable-shared --with-cppflags="-msse \

 -m3dnow -msse2 -Wno-deprecated " --with-threads --with-sse \

 --with-ldflags="--enable-new-dtags"

gnu4.compiler.aipspp.var: --with-casacore=/usr/local --with-wcs=/usr/local

cd ~/Timba

./bootstrap

mkdir -p build/gnu4_debug

cd build/gnu4_debug

../../lofarconf

make –j 4

Optional Step 7. Try to run Timba
You could check if everything hangs together:

cd ~/Timba/install

source timba-init.sh

./make-symlink-tree.sh symlinked-gnu4_debug

cd ~

_timba-setup symlinked-gnu4_debug

meqbrowser.py

You should then be able to start the browser and from there the server, load a TDL etc

Optional Step 8. Making Images
For that, you could use casarest and karma, for example.

Casarest
This is included in the Timba download. So the procedure is quite simple:

cd ~/Timba/casarest

./batchbuild.py prefix=/usr/local casacoreroot=/usr/local install

You can now test lwimager:

cd image

lwimager ms=demo.MS

karma
To visualise images etc you could download karma from

http://www.atnf.csiro.au/computing/software/karma/index.html using the following procedure

rsync -a rsync.science-software.net::karma/common/ /usr/local/karm

 /usr/local/karma/csh_script/install-karma

You can now view the image

cd ~/image

/usr/local/karma/bin/kvis demo-I-mfs1.fits

