

LOFAR Imager: taking Direction Dependent Effects into account using A-Projection

Cyril Tasse, Ger van Diepen, Joris van Zwieten, Bas van der Tol

Sanjay Bhatnagar, Urvashi Rau, Kumar Golap

Outline

- Imaging for the dummies
- UV-Brick
- A-Projection

- Each baseline "draws" a fringe on the sky
- The superposition of the information of many baseline draws the image.

- Each baseline "draws" a fringe on the sky
- The superposition of the information of many baseline draws the image.

- Each baseline "draws" a fringe on the sky
- The superposition of the information of many baseline draws the image.

Deconvolution?

Deconvolution?

Deconvolution?

- Calibration

- Calibration

$$V_{pq} = \underbrace{(g_p.g_q^*)}_{S} \int \mathcal{B}(l,m).\mathcal{I}(l,m)$$

. exp $(-2\pi i (u_{pq}l + v_{pq}m + w_{pq}.(\sqrt{1 l^2 m^2} - 1)))dl.dm$
Small field of view

- Imaging

$$\mathbf{I}(\mathbf{l},\mathbf{m}) = \frac{1}{\mathbf{B}(\mathbf{l},\mathbf{m})} \mathbf{FT}(\frac{V(u,v)}{[g.g^*](u,v)})$$

- Calibration

- Imaging

... When Direction Dependent Effects (DDE) become a problem : Beam

LOFAR stations are phased arrays

- Beam is variable in frequency and time
- Beam can be station-dependent

... When Direction Dependent Effects (DDE) become a problem : Beam

One off-axis source IQUV=(100, 40, 20 10) 08^h36^m 24^m 00m 07h54 J2000 Right Ascension B C -10-50 ΧХ -20 XY -100 -30 L C -10 -20 -20 -40YΧ -60^L -30 L

... When Direction Dependent Effects (DDE) become a problem : Beam

One off-axis source IQUV=(100, 40, 20 10) "Traditional" imager removes visibility with constant amplitude 08^h36ⁿ 24^m an 100 30 20 50 10 0 0 -10-50 -20 -100L -30 100020003 060007000 1000200030004000500060007000 30 60 20 40 10 20

²⁰ -10 -20 -20 -30 0 1000200030004000500060007000 ²⁰ -30 0 1000200030004000500060007000 ⁰⁰

Big field of view : station, direction, time and frequency dependent

Other direction dependent effects :

- Projection of the dipoles on the sky
- Faraday rotation
- + Effect on the polarisation

The Measurement Equation

Hamaker 1996

The "Vec" Operator

then
$$\operatorname{vec}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}) = (\boldsymbol{B}^T\otimes\boldsymbol{A})\operatorname{vec}(\boldsymbol{X})$$

The "Vec" Operator

then
$$\operatorname{vec}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}) = (\boldsymbol{B}^T\otimes\boldsymbol{A})\operatorname{vec}(\boldsymbol{X})$$

$\operatorname{Vec}(V_{pq}) = (G_q^* \otimes G_p) \int_{S} (E_{q,\vec{s}}^* \otimes E_{p,\vec{s}}) \operatorname{Vec}(F_{\vec{s}}.F_{\vec{s}}^+) \exp\left(i \ \vec{b_{pq}}.\vec{s}\right) \ d\vec{s}$

Bhatnagar 08

Bhatnagar 08

VisXX VisXY VisYX VisYY Ж GridXX GridXY max=1.000 max=0.004 max=0.041 max=0.050 FT GridYX GridYY

Bhatnagar 08

Bhatnagar 08

The inverse map is approximative! (based on pseudo-inverse)

$$\begin{aligned} \operatorname{Vec}(V_{pq}) &= (G_q^* \otimes G_p) \operatorname{FT}\left[\left(E_{q,\vec{s}}^* \otimes E_{p,\vec{s}} \cdot \exp\left(-2\pi i w_{pq} \cdot \left(\sqrt{1-l^2-m^2}-1\right)\right) \right) \right] \\ & \star \int_S \operatorname{Vec}(X_{\vec{s}}) \cdot \exp\left(-2\pi i (u_{pq}l+v_{pq}m)\right) dl. dm \end{aligned}$$

This equation is linear in Sky

Bhatnagar 08

The inverse map is approximative! (based on pseudo-inverse)

See Urvashi Rau PhD thesis

Bhatnagar 08

The inverse map is approximative! (based on pseudo-inverse)

Gridding in practice?

Deconvolution?

- Plug in the casa architecture
- Full Polarization
- Convolution function is mapped by i,j,t, nu
- lonosphere easy to plug in
- Will run in parallel

LOFAR Beam: The Mueller Matrix varying over the image plane

One pair of antennae, one time and frequency value

LOFAR Beam: The Mueller Matrix varying over the image plane

Beam bormalized by Beam Jones matrix at the center of the field (we correct the visibilities accordingly before the imaging)

!!! Color bar is adapted to the image here otherwise you don't see anything!!!

Beam variability across a subband during a 6 hours observation (ordinate in per thousand)

How many convolution function?

- One convolution every 10 minutes
- 8 hour oberving run
- 45 antenna: 990 baselines
- 16 Mueller elements
- 1 complex number pert pixel
- Average size 30*30 pixel
- = 1216 Tbytes

How many convolution function?

- One convolution every 10 minutes
- 8 hour oberving run
- 45 antenna: 990 baselines
- 16 Mueller elements
- 1 complex number pert pixel
- Average size 30*30 pixel
- = 1216 Tbytes

 $\rightarrow\,$ We compute the convolution functions on the fly

- We compute and store the Aterm and Wterm at the minimum resolution

How many convolution function?

- One convolution every 10 minutes
- 8 hour oberving run
- 45 antenna: 990 baselines
- 16 Mueller elements
- 1 complex number pert pixel
- Average size 30*30 pixel
- = 1216 Tbytes
- \rightarrow We compute the convolution functions on the fly

- We compute and store the Aterm and Wterm at the minimum resolution

One off-axis source IQUV=(100, 40, 20 10)

BBS predict (DFT)

BBS predict (DFT)

AW degridding (clean component put by hand)

Recovered IQUV=(100, 40, 20 10) fluxes to better than 1%

Gasperin
Mathematical framework-works

Same simulated dataset with one off-axis source and the beam (IQUV=100,40,20,10)

On real data (A2255)

JAWS

Casa

Roberto Pizzo

On real data (3C196)

3C196 off axis ~150MHz

- Calibrated using 3C196+2 sources sources
- AW visibility estimates for those. Little difference?

On real data (3C196)

Beam taken into account

No Beam taken into account

On real data (3C196)

Beam taken into account

No Beam taken into account

JAWS: 3C66

Flux = 63 Jy

Aleksandar Sulevski

JAWS: 3C66

Flux = 65 Jy

Aleksandar Sulevski

JAWS: 3C66

Flux = 51 Jy

Aleksandar Sulevski

Conclusion and Next steps

Conclusion:

- Full Polarisation Framework based on Measurement Equation is working
- Very flexible
- Effect will be seen at higher dynamical range?

Next steps:

- Optimise code
- Study convergence major cycle & SelfCal
- Ionosphere phase screen model
- Full Multi-Frequency cleaning
- Faraday Rotation?

... Start doing serious survey science

