AST(ZON

LOFAR Imager: taking Direction Dependent Effects into account using A-Projection

Cyril Tasse, Ger van Diepen, Joris van Zwieten, Bas van der Tol
Sanjay Bhatnagar, Urvashi Rau, Kumar Golap

Outline

- Imaging for the dummies
- UV-Brick
- A-Projection

Principle DUMMIES

Principle DUMMIES

Principle
 DUMMIES

Principle DUMMIES

Principle DUMMIES

Principle DUMMIES

Principle DUMMIES

Principle DUMMIES

Principle DUMMIES

Principle DUMMIES

Resolution $=$ Wavelength $/$ Distance

Principle

DUMMIES

- Each baseline "draws" a fringe on the sky
- The superposition of the information of many baseline
"draws" the image.

Principle

DUMMIES

- Each baseline "draws" a fringe on the sky
- The superposition of the information of many baseline draws the image.

Principle

DUMMIES

- Each baseline "draws" a fringe on the sky
- The superposition of the information of many baseline draws the image.

Principle

DUMMIES

- Each baseline "draws" a fringe on the sky
- The superposition of the information of many baseline draws the image.

Traditional Calibration and imaging (scalar)

Traditional Calibration and imaging (scalar)

Gridding in practice?

Gridding in practice?

Gridding in practice?

Gridding in practice?

Gridding in practice?

DUMMIES

Minor
Cycle

DUMMIES

Deconvolution?

$$
\xrightarrow[\substack{\text { Minor } \\ \text { Cycle }}]{ }
$$

Next Talk

Presentation of UV-Brick by Iniyan

AST(ZON

LOFAR Imager: taking Direction Dependent Effects into account using A-Projection

Cyril Tasse, Ger van Diepen, Joris van Zwieten, Bas van der Tol
Sanjay Bhatnagar, Urvashi Rau, Kumar Golap

Traditional Calibration and imaging (scalar)

Traditional Calibration and imaging (scalar)

Traditional Calibration and imaging (scalar)

- Calibration

$$
\begin{aligned}
& V_{p q}=\left(g_{p} \cdot g_{q}^{*}\right) \int_{S} \mathrm{~B}(\mathrm{l}, \mathrm{~m}) \cdot \mathrm{I}(\mathrm{l}, \mathrm{~m}) \\
& \cdot \exp \left(-2 \pi i\left(u_{p q} l+v_{p q} m+u p q \cdot\left(\sqrt{4-l^{2}}-\frac{1}{2}\right)\right) d l . d m\right. \\
& \text { Small field of view }
\end{aligned}
$$

Traditional Calibration and imaging (scalar)

- Calibration

$$
\left.\left.\begin{array}{l}
V_{p q}=\left(g_{p} \cdot g_{q}^{*}\right) \int_{S} \mathrm{~B}(\mathrm{l}, \mathrm{~m}) \cdot \mathrm{I}(\mathrm{l}, \mathrm{~m}) \\
\quad \cdot \exp \left(-2 \pi i\left(u_{p q} l+v_{p q} m+v_{p q \cdot(\sqrt{1+}}+\sqrt{\text { Small field of view }}\right.\right.
\end{array}\right)\right) d l . d m
$$

- Imaging

$$
\mathrm{I}(1, \mathrm{~m})=\frac{1}{\mathrm{~B}(1, \mathrm{~m})} \mathrm{FT}\left(\frac{V(u, v)}{\left[g \cdot g^{*}\right](u, v)}\right)
$$

Traditional Calibration and imaging (scalar)

- Calibration

$$
\left.\left.\begin{array}{l}
V_{p q}=\left(g_{p} \cdot g_{q}^{*}\right) \int_{S} \mathrm{~B}(\mathrm{l}, \mathrm{~m}) \cdot \mathrm{I}(\mathrm{l}, \mathrm{~m}) \\
\quad \cdot \exp \left(-2 \pi i\left(u_{p q} l+v_{p q} m+v_{p q \cdot(\sqrt{1+2}} \quad\right. \text { Small field of view }\right.
\end{array}\right)\right) d l . d m
$$

- Imaging

$$
\mathrm{I}(1, \mathrm{~m})=\frac{1}{\mathrm{~B}(1, \mathrm{~m})} \mathrm{FT}\left(\frac{V(u, v)}{}, \begin{array}{l}
\text { Beam correction in } \\
\text { the image plane }
\end{array}\right.
$$

... When Direction Dependent Effects (DDE) become a problem : Beam

LOFAR stations are phased arrays

- Beam is variable in frequency and time
- Beam can be station-dependent

... When Direction Dependent Effects (DDE) become a problem : Beam

One off-axis source IQUV=(100, 40, 20 10)

... When Direction Dependent Effects (DDE) become a problem : Beam

One off-axis source IQUV=(100, 40, 20 10)

"Traditional" imager removes visibility with

 constant amplitude
... When Direction Dependent Effects (DDE) become a problem : Beam

One off-axis source IQUV=(100, 40, 20 10)

"Traditional" imager removes visibility with constant amplitude

... When Direction Dependent Effects (DDE) become a problem : Beam

One off-axis source IQUV=(100, 40, 20 10)

"Traditional" imager removes visibility with constant amplitude

... When Direction Dependent Effects (DDE) become a problem : Beam

One off-axis source IQUV=(100, 40, 20 10)

"Traditional" imager removes visibility with constant amplitude

... When Direction Dependent Effects (DDE) become a problem : Ionosphere

Big field of view : station, direction, time and frequency dependent Other direction dependent effects :

- Projection of the dipoles on the sky
- Faraday rotation
+ Effect on the polarisation

The Measurement Equation

The "Vec" Operator

$$
\text { If } \quad \boldsymbol{A}=\left[\boldsymbol{a}_{1} \boldsymbol{a}_{2} \cdots \boldsymbol{a}_{n}\right]
$$

Columns of a
Matrix

$$
\text { And } \quad \operatorname{vec}(\boldsymbol{A})=\left[\begin{array}{c}
\boldsymbol{a}_{1} \\
\boldsymbol{a}_{2} \\
\vdots \\
\boldsymbol{a}_{n}
\end{array}\right]
$$

then

$$
\operatorname{vec}(\boldsymbol{A} \boldsymbol{X} \boldsymbol{B})=\left(\boldsymbol{B}^{T} \otimes \boldsymbol{A}\right) \operatorname{vec}(\boldsymbol{X})
$$

The "Vec" Operator

$$
\text { If } \quad \boldsymbol{A}=\left[\boldsymbol{a}_{1} \boldsymbol{a}_{2} \cdots \boldsymbol{a}_{n}\right]
$$

Columns of a Matrix

$$
\text { And } \quad \operatorname{vec}(\boldsymbol{A})=\left[\begin{array}{c}
\boldsymbol{a}_{1} \\
\boldsymbol{a}_{2} \\
\vdots \\
\boldsymbol{a}_{n}
\end{array}\right]
$$

then $\quad \operatorname{vec}(\boldsymbol{A X B})=\left(\boldsymbol{B}^{T} \otimes \boldsymbol{A}\right) \operatorname{vec}(\boldsymbol{X})$

$$
\left.\operatorname{Vec}\left(V_{p q}\right)=\left(G_{q}^{*} \otimes G_{p}\right) \frac{\operatorname{Beam}\left(4^{*} 4\right)}{\left(E_{G}^{*}, \vec{B}\right.} \otimes E_{p, \vec{s}}\right) \cdot \operatorname{Vec}\left(F_{\vec{s}} \cdot F_{\vec{s}}^{+}\right) \cdot \exp \left(i \overrightarrow{b_{p q}} \cdot \vec{B}\right) d \vec{s}
$$

A-Projection

Convolution function (4*4)

This is an EXACT map from sky plane to the Visibilities in the UVW space!

A-Projection

The inverse map is approximative! (based on pseudo-inverse)

$$
\begin{aligned}
\operatorname{Vec}\left(V_{p q}\right)=\left(G_{q}^{*}\right. & \left.G_{p}\right) \operatorname{FT}\left[\left(E_{q, \vec{s}}^{*} \otimes E_{p, \vec{s} \cdot} \cdot \exp \left(-2 \pi i w_{p q} \cdot\left(\sqrt{1-l^{2}-m^{2}}-1\right)\right)\right)\right] \\
& \star \int_{s} \operatorname{Vec}\left(X_{\vec{s}}\right) \cdot \exp \left(-2 \pi i\left(u_{p q} l+v_{p q} m\right)\right) d l \cdot d m
\end{aligned}
$$

This equation is linear in Sky
Npix

$$
\boldsymbol{V}^{M}=\mathrm{A} \boldsymbol{I}^{M}
$$

Nvis

A-Projection

The inverse map is approximative! (based on pseudo-inverse)

$$
\boldsymbol{I}^{R}=\left[\mathrm{A}^{\dagger} \mathrm{A}\right]^{-1} \mathrm{~A}^{\dagger} \boldsymbol{V}^{R}
$$

$=A^{H} A$

A-Projection

The inverse map is approximative! (based on pseudo-inverse)

$$
\boldsymbol{I}^{R}=\left[\mathrm{A}^{\dagger} \mathrm{A}\right]^{-1} \mathrm{~A}^{\dagger} \boldsymbol{V}^{R}
$$

This is the beam square in the image plane if $A^{H} A$ is diagonal

See Urvashi Rau PhD thesis

JAWS: the practice

- Plug in the casa architecture
- Full Polarization
- Convolution function is mapped by $\mathrm{i}, \mathrm{j}, \mathrm{t}$, nu
- Ionosphere easy to plug in
- Will run in parallel

After a number of iteration, the flux in the clean component converges to the true values (to be studied)

Gridding

H

A given baseline A given Timeslot A given frequency slot

Gridding

A given baseline A given Timeslot A given frequency slot

GridXX

GridXY

GridYX

GridYY

Gridding

H

A given baseline A given Timeslot A given frequency slot

GridXX

GridXY

GridYX

GridYY

Gridding

A given baseline A given Timeslot A given frequency slot

GridXY

GridYX

GridYY

Gridding

A given baseline A given Timeslot A given frequency slot

Gridding

Loop over baseline Loop over time Loop over frequency

DeGridding

DeGridding

DeGridding

DeGridding

DeGridding

DeGridding

FFT
 Next point in:

u, v, w
 antenna_i, antenna time, freq

DeGridding

LOFAR Beam: The Mueller Matrix varying over the image plane

$\max =0.396$

$\max =0.396$

$\max =0.538$

$\max =0.320$

$\max =0.497$

$\max =0.424$

$\max =0.497$

$\max =0.320$

$\max =0.424$
$\max =0.458$

$\max =0.392$

$\max =0.392$

$\max =0.343$

One pair of antennae, one time and frequency value

LOFAR Beam: The Mueller Matrix varying over the image plane

Beam bormalized by Beam Jones matrix at the center of the field (we correct the visibilities accordingly before the imaging)

!!! Color bar is adapted to the image here otherwise you don't see anything!!!
... When Direction Dependent Effects (DDE) become a problem : Beam

... When Direction Dependent Effects (DDE) become a problem : Beam

... When Direction Dependent Effects (DDE) become a problem : Beam

... When Direction Dependent Effects (DDE) become a problem : Beam

... When Direction Dependent Effects (DDE) become a problem : Beam

... When Direction Dependent Effects (DDE) become a problem : Beam

... When Direction Dependent Effects (DDE) become a problem : Beam

... When Direction Dependent Effects (DDE) become a problem : Beam

JAWS: the practice

How many convolution function?

- One convolution every 10 minutes
- 8 hour oberving run
- 45 antenna: 990 baselines
- 16 Mueller elements
- 1 complex number pert pixel
- Average size $30 * 30$ pixel
$=1216$ Tbytes

JAWS: the practice

How many convolution function?

- One convolution every 10 minutes
- 8 hour oberving run
- 45 antenna: 990 baselines
- 16 Mueller elements
- 1 complex number pert pixel
- Average size $30 * 30$ pixel
$=1216$ Tbytes
\rightarrow We compute the convolution functions on the fly
- We compute and store the Aterm and Wterm at the minimum resolution

JAWS: the practice

How many convolution function?

- One convolution every 10 minutes
- 8 hour oberving run
- 45 antenna: 990 baselines
- 16 Mueller elements
- 1 complex number pert pixel
- Average size $30 * 30$ pixel
$=1216$ Tbytes
\rightarrow We compute the convolution functions on the fly
- We compute and store the Aterm and Wterm at the minimum resolution

Mathematical framework-works

BBS predict (DFT)

One off-axis source IQUV=(100, 40, 20 10)

Mathematical framework-works

BBS predict (DFT)

AW degridding (clean component put by hand)

Mathematical framework-works

BBS predict (DFT)
AW degridding (clean component put by hand)

Mathematical framework-works

Mathematical framework-works

Mathematical framework-works

Francesco Da Gasperin

Mathematical framework-works

Same simulated dataset with one off-axis source and the beam (IQUV=100,40,20,10)

On real data (A2255)

Casa

JAWS

On real data (3C196)

3C196 off axis $\sim 150 \mathrm{MHz}$

- Calibrated using 3C196+2 sources sources
- AW visibility estimates for those. Little difference?

NOT Taking the beam into account

Taking the beam into account

On real data (3C196)

Beam taken into account

No Beam taken into account

On real data (3C196)

A given baseline

- Ionosphere more important than beam ?
- Sky model too wrong? Do SelfCal?
- Beam model too wrong?

Beam taken into account

- Something else?

JAWS: 3C66

Flux = 63 Jy

Aleksandar Sulevski

JAWS: 3C66

Flux $=65 \mathrm{Jy}$

Aleksandar Sulevski

JAWS: 3C66

Flux = 51 Jy

Aleksandar Sulevski

Conclusion and Next steps

Conclusion:

- Full Polarisation Framework based on Measurement Equation is working
- Very flexible
- Effect will be seen at higher dynamical range?

Next steps:

- Optimise code
- Study convergence major cycle \& SelfCal
- Ionosphere phase screen model
- Full Multi-Frequency cleaning
- Faraday Rotation?
... Start doing serious survey science

