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Modelling Techniques 

• Computational Electromagnetics 

– Reasonably mature, more trusted in industry 

– Significant increase in computing power 

• Commercial codes 

– Testing, validation & maintenance 

– Documentation 

• Different levels of approximation 
– Method of moments → MLFMM  

– Physical optics (with diffraction) 

– Geometrical optics → Aperture integration 
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Method of Moments 

• Small complex structures, e.g. feed horn 

• Current flowing on surfaces 

– Electric current on metal surfaces 

– Electric and magnetic on dielectric surfaces 

• Current expanded as sum of basis functions 

–   

• Entire domain possible 

• Typically triangular 
– Very general 
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Method of Moments 

• Wire segments in 2D 

 

• Simple field calculation 

–   

• Sampled boundary condition (basis function) 

• Dense matrix equation – “Full wave solution” 

• Memory ∝ N2 ∝ f4; Solution time ∝ N3 ∝ f6 

• Example: FEKO 
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Multilevel Fast Multipole Method 

• Larger problems, e.g. dishes at L-band 

• Group basis function interaction in blocks 

• Iterative solution of sparse matrix 

• Memory / Solution time ∝ N log N ∝ f2 log f 

• Still a full wave solution, same accuracy 
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Physical Optics 

• Even larger problems, dishes at X-band 

• Current approximated from incident field 

–   

• Field calculated from current integral 

• Can hybrid this with MoM 

– Modify MoM currents 

– One directional coupling 

– Not for large MoM regions 
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Physical Optics, PTD extension 

• PO current independent of edge effects 

• Physical theory of diffraction (PTD) 

correction 
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• Step-wise approach 

• Feed → sub-reflector 

   → main reflector 

   → Far field 

 

 

 

• Low frequency limit 

• Example: GRASP9; FEKO (single reflection) 

Physical Optics 
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Geometrical Optics 

• Even higher in frequency 

• Specular reflection / stationary phase 
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Geometrical Optics 

• Rays of expanding cones 

• Reflected tangential to surface normal 

• Ray “density” modified for curved surfaces 

• For dishes 
– Refined by doing only up to aperture 

– Example: cassbeam (Walter Brisken) 

• Fails if radius of curvature too small 

• Add diffraction terms – UTD 

– Same stationary phase concept with edges 
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Modelling software 

• FEKO 

– Full wave analysis with MLFMM 

– Parallelised for large machines 

(leo cluster with 176 cores, groups of 12 – 32) 

– Rather expensive if not inside EMSS 

• GRASP9 

– Full version & multiple GRASP SE installation 

– 20 000 Euro 

• Pick according to frequency range 

© EMSS Antennas, 3GC-II 2011 12 



Contents 

Current stage in the KAT project 
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KAT Phases 
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• XDM (Done) 

• Single antenna HARTRAO 

• Original KAT = 21 x XDM 

 

• KAT-7 (7 antennas in Karoo) 

• Meant as engineering model 

• Being commissioned 

 

• MeerKAT (64 antennas in Karoo) 

• PDR (July 2011) 

• Currently finalising dish specification 
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MeerKAT Specifications 

• Offset Gregorian 

• Effective focal length /  

Feed illumination angle 

– Fixed at Feq/D = 0.55 

• Final optics selection 

– Finalising layout 

– Mechanical trade-off pending 

• Feed low 
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Offset Gregorian Selection 

• Small dish array 

– Really compound “per antenna” negative effects 

– Cannot “copy” conventional wisdom 

• Offset Gregorian v. Cassegrain 

– Cassegrain have narrow feed angles 

– Decision driven by size of the feed horns 

• Offset Gregorian v. Prime focus 

– Multiple feeds 

• There is “storage” real estate outside the optical path 

© EMSS Antennas, 3GC-II 2011 17 



• Prime focus feed blockage 

– Result in gain ripple (re-radiation from feed) 

– Effect would be smaller on a large dish 

Offset Gregorian v. Prime Focus 
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Inconveniently 

similar to the 

primary beam 



Prime Focus (KAT-7) gain ripple 
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Offset Gregorian v. Prime Focus 

20 
            Prime focus               Offset Gregorian (Vertical-pol) 



Offset Gregorian v. Prime Focus 
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• Far out side-lobes (tipping and Tspill-over) 



Offset Gregorian v. Prime Focus 
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• Near side-lobes rotational variation 

11.5° 

1.4 GHz 



Offset Gregorian v. Prime Focus 

• Allow stronger edge illumination 

• No strut blockage 

– Ae about 10% higher for same projected area 

– Clean patterns 

• RFI reduction 

• Tsys improvement at lower elevations 

• Can get low side-lobes (also traded against Tspill) 

• Cross-polarisation need not be worse 

– Reflector orientation (Mitzugutch) 

– Flatter equivalent system 
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Offset Gregorian Selection 

• Also not a perfect solution 

– Mechanical complexity 

– More surface and cost 

– Two surfaces contributing to phase (Ruze) error 

• Offset reduce main reflector impact by 10 - 15% 

– Lost sky coverage 

• Significant impact on simultaneous observation 

– Shadowing increase minimum spacing 

– Requirements of “Phased” array feeds? 

• Offset Gregorian still the best option 
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Offset Gregorian Selection 

© EMSS Antennas, 3GC-II 2011 25 

Multiple cryogenically-

cooled octave-band 

receivers  

Dual offset reflectors 

Note angle 



Feed Angle Selection 

• Compact 1-1.75 GHz horn 

• Optimised for dishes 

with different focal ratios 

• “Flatter” systems capture 

less of the feed energy 

• In deeper systems the feed 

get in the way of the optical path 

• Flat optimum Feq/D = 0.5 – 0.6 
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Feed Angle Selection 
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MeerKAT Optics Selection 

• Blank page 

– Only feeds fixed (by us), dish optics still open 

– Daunting parameter space 
• Six degrees of freedom on dual reflector system 

– Mechanical trade-off dependent on design 
• MeerKAT / TDP boom / main reflector length 

– Want the best “as built” performance 

• Main reflector sized for sensitivity 

• Sub-reflector sized for road transport 

• Cross-polarisation (Mitzugutch) 
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MeerKAT optics selection 

• Sub-reflector clearance increases feed 

boom length – prefer no clearance 
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MeerKAT optics selection 

• Last trade-off 

Main reflector size v. feed boom length 
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Feed high versus feed low 

• Feed low 

– Allows easy access to the feeds 

– Spill-over better controlled 

• “Sail” upright 

– Not “ideal” stowing 
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Feed high versus feed low 
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Feed high versus feed low 
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Feed high versus feed low 
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Issues 

• Shaping 

– Trade-off between side-lobes and efficiency 

• Designing the extension 

• Beam offset (“Squint” defined otherwise) 

• Tolerance 

• Slots (between panels) impact 
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Shaping 

• Increase the parameter space: shaping 

– Capture more feed energy 

• Deeper effective system for same feed 

• Need not increase side-lobes 

• Typically a small impact on radio astronomy systems 

– Distribute pattern to use surface better 

• Will increase side-lobes 

– Much easier to control aperture field 

• Sensitive to feed pattern 

– Deep taper sensitive to error in centre of sub-reflector 

– Hard illumination has spill-over loss and diffraction 
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Shaping 
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Shaping 

• Almost no mechanical reflector difference 

Feed position further from main dish 
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Designing the extension 

• Extension primarily to shield spill-over 

• Tend to increase gain 

• Reduce diffraction ripple 

• Increase reflection back to feed 

• Increase cross-polarisation 

• Need further optimisation 
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Designing the extension 
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Designing the extension 
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Designing the extension 
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Designing the extension 
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Designing the extension 
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Designing the extension 
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Designing the extension 
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Designing the extension 
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Beam offset 

• Beam offset that decrease with frequency 

– Due to reflected angle ≠ incident angle 

• Oscillating behaviour 

– Due to diffraction from sub-reflector 
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Tolerance 

• Surface RMS accuracy 

– Reduce efficiency (Ruze) 

– Cause variation between beams 

– Very frequency dependent (1mm at 14.5GHz) 
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Tolerance 

• Requirement for beam similarity 
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Tolerance 

• Reduction in efficiency 

• Edges less illuminated than centre 

– Weight the outside less than the centre 

– Kept “loss” per ring 

constant 

– Similar to weighting  

the error with the  

square root of the  

aperture voltage  

pattern 
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Tolerance 
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• Phase error due to length 

• Oblique incidence 



Tolerance 
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Tolerance 

• Effect of alignment 

– Sensitivity at high frequency 

– Pointing 

• Effect of loading tolerance 

– Pointing 

• Can compensate for gravity, not for wind 

– Sensitivity 

– Beam shape and polarimetric variation 
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Tolerance (TUE.3 and TSE.3) 
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Tolerance (TUE.3 and TSE.3) 
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Tolerance (TUE.3 and TSE.3) 
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Tolerance (TUE.3 and TSE.3) 
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Side-lobe specification 

• -30dB side-lobe requirement at 3° from 

bore sight (to avoid RFI) difficult for UHF 

– More or less the first side-lobe 

– Need interaction here on the advantages / 

disadvantages 
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Slots 

• Slots between dish panels 

• Quarter-wave “connecting” slots 

– Narrow band solutions 

• Can model with wire grid 

– 13.5 m prime focus dish with F/D = 0.55 

– 2mm wide slots every 1m (not through centre) 

– MLFMM solution at 580MHz 

– 25 dB side-lobe at 30° 

• Duality - need to work with magnetic fields 
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Slots 
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Interpolation 

• Beam offset vary rapidly with frequency 

– Causes variation in direction dependent gain 

• Base beams from numerical patterns 

– Slow to compute per frequency 

– Large amount of data 

– Need to interpolate 

– Cannot do so on the beam itself 
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Interpolation 

• Interpolation should reflect the physical 

– Propagation terms 

– Interpolate between frequencies where 

k’f  is effectively 0° and 90°, i.e. the 

exponential vary between 1 + j 0  and 0 + j 1 

• Linear interpolation of the real and imaginary 

components yields 0.5 + j 0.5 

• Linear interpolation of amplitude and phase yields 

0.707 + j 0.707 which, is correct in this case 

– Interpolation where the second frequency is 

effectively n2𝜋 + ∆ is a problem 
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Interpolation 

• Interpolating 𝜃, ∅ components for linear 

polarisation on too coarse a grid 
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Interpolation 

• Solved three components of the field 

– Main reflector 

– Feed 

– Sub-reflector 

• Top and bottom are stationary phase points 
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Contents 

Way forward 
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The near (MeerKAT) future 

• Finalise the frequency interpolation 

• Determine basis functions for calibration 

– Does this influence the design? 

• Trade-off of the antenna beam parameters 

– Aperture efficiency 

– Spill-over temperature (extension design) 

– Side-lobe levels (near and far) 

– Cross-polarisation 

– Beam roundness 
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Thank you 


