MeerKAT Optics Design

Isak Theron

iptheron@emss.co.za
(Dirk de Villiers \& Robert Lehmensiek)

Contents

- Overview of modelling techniques
- Current stage in the KAT project
- MeerKAT specification
- Questions
- Way forward

Modelling Techniques

- Computational Electromagnetics
- Reasonably mature, more trusted in industry
- Significant increase in computing power
- Commercial codes
- Testing, validation \& maintenance
- Documentation
- Different levels of approximation
- Method of moments \rightarrow MLFMM
- Physical optics (with diffraction)
- Geometrical optics \rightarrow Aperture integration

Method of Moments

- Small complex structures, e.g. feed horn
- Current flowing on surfaces
- Electric current on metal surfaces
- Electric and magnetic on dielectric surfaces
- Current expanded as sum of basis functions
$-\vec{J}_{s}=\sum_{n=1}^{N} \alpha_{n} \vec{f}_{n}$
- Entire domain possible
- Typically triangular - Very general

Method of Moments

- Wire segments in 2D
- Simple field calculation
$-\vec{E}(\vec{r})=\sum_{n=1}^{N} \alpha_{n} \int_{\text {basis }} \overline{\bar{G}}\left(\vec{r}, \vec{r}^{\prime}\right) \cdot \vec{f}_{n}\left(\vec{r}^{\prime}\right) d A^{\prime}$
- Sampled boundary condition (basis function)
- Dense matrix equation - "Full wave solution"
- Memory $\propto N^{2} \propto f^{4}$; Solution time $\propto N^{3} \propto f^{6}$
- Example: FEKO

Multilevel Fast Multipole Method

- Larger problems, e.g. dishes at L-band
- Group basis function interaction in blocks
- Iterative solution of sparse matrix
- Memory / Solution time $\propto N \log N \propto f^{2} \log f$
- Still a full wave solution, same accuracy

Physical Optics

- Even larger problems, dishes at X-band
- Current approximated from incident field
$-\vec{J}_{s}(\vec{r})=2 \vec{n} \times \vec{H}_{i}(\vec{r})$
- Field calculated from current integral
- Can hybrid this with MoM
- Modify MoM currents
- One directional coupling
- Not for large MoM regions

© EMSS Antennas, 3GC-II 2011

Physical Optics, PTD extension

- PO current independent of edge effects
- Physical theory of diffraction (PTD) correction

$\frac{\Gamma_{2}}{f^{2}=\text { sss }}$
© EMSS Antennas, 3GC-II 2011

Physical Optics

- Step-wise approach
- Feed \rightarrow sub-reflector
\rightarrow main reflector
\rightarrow Far field
- Low frequency limit
- Example: GRASP9; FEKO (single reflection)

Geometrical Optics

- Even higher in frequency
- Specular reflection / stationary phase

Source
Propagation
$e^{-j k L}$
Field point

Integrate
over area

$$
\operatorname{Re}\left[e^{-j k L}\right]
$$

© EMSS Antennas, 3GC-II 2011

Geometrical Optics

- Rays of expanding cones
- Reflected tangential to surface normal
- Ray "density" modified for curved surfaces
- For dishes
- Refined by doing only up to aperture
- Example: cassbeam (Walter Brisken)
- Fails if radius of curvature too small
- Add diffraction terms - UTD
- Same stationary phase concept with edges
© EMSS Antennas, 3GC-II 2011

Modelling software

- FEKO
- Full wave analysis with MLFMM
- Parallelised for large machines (leo cluster with 176 cores, groups of 12 - 32)
- Rather expensive if not inside EMSS
- GRASP9
- Full version \& multiple GRASP SE installation
- 20000 Euro
- Pick according to frequency range

Contents

Current stage in the KAT project

© EMSS Antennas, 3GC-II 2011

KAT Phases

- XDM (Done)
- Single antenna HARTRAO
- Original KAT $=21 \times$ XDM

- KAT-7 (7 antennas in Karoo)
- Meant as engineering model
- Being commissioned

- MeerKAT (64 antennas in Karoo)
- PDR (July 2011)
- Currently finalising dish specification
© EMSS Antennas, 3GC-II 2011

Contents

MeerKAT specification What is fixed

© EMSS Antennas, 3GC-II 2011

MeerKAT Specifications

- Offset Gregorian
- Effective focal length /

Feed illumination angle

- Fixed at $F_{e q} / D=0.55$
- Final optics selection
- Finalising layout
- Mechanical trade-off pending
- Feed low

Offset Gregorian Selection

- Small dish array
- Really compound "per antenna" negative effects
- Cannot "copy" conventional wisdom
- Offset Gregorian v. Cassegrain
- Cassegrain have narrow feed angles
- Decision driven by size of the feed horns
- Offset Gregorian v. Prime focus
- Multiple feeds
- There is "storage" real estate outside the optical path

Offset Gregorian v. Prime Focus

- Prime focus feed blockage
- Result in gain ripple (re-radiation from feed)
- Effect would be smaller on a large dish

Prime Focus (KAT-7) gain ripple

$\iint_{\Gamma}{ }^{2}$ MSS

© EMSS Antennas, 3GC-II 2011

Offset Gregorian v. Prime Focus

Offset Gregorian v. Prime Focus

- Far out side-lobes (tipping and $\mathrm{T}_{\text {spill-over }}$)

Prime Focus

Offset Gregorian

© EMSS Antennas, 3GC-II 2011

Offset Gregorian v. Prime Focus

- Near side-lobes rotational variation

© EMSS Antennas, 3GC-II 2011

Offset Gregorian v. Prime Focus

- Allow stronger edge illumination
- No strut blockage
- A_{e} about 10\% higher for same projected area
- Clean patterns
- RFI reduction
- $\mathrm{T}_{\text {sys }}$ improvement at lower elevations
- Can get low side-lobes (also traded against $\mathrm{T}_{\text {spill }}$)
- Cross-polarisation need not be worse
- Reflector orientation (Mitzugutch)
- Flatter equivalent system

Offset Gregorian Selection

- Also not a perfect solution
- Mechanical complexity
- More surface and cost
- Two surfaces contributing to phase (Ruze) error
- Offset reduce main reflector impact by 10-15\%
- Lost sky coverage
- Significant impact on simultaneous observation
- Shadowing increase minimum spacing
- Requirements of "Phased" array feeds?
- Offset Gregorian still the best option
© EMSS Antennas, 3GC-II 2011

Offset Gregorian Selection

Feed Angle Selection

- Compact 1-1.75 GHz horn
- Optimised for dishes with different focal ratios
- "Flatter" systems capture less of the feed energy
- In deeper systems the feed get in the way of the optical path
- Flat optimum $\mathrm{F}_{\mathrm{eq}} / \mathrm{D}=0.5-0.6$

Feed Angle Selection

© EMSS Antennas, 3GC-II 201127

MeerKAT Optics Selection

- Blank page
- Only feeds fixed (by us), dish optics still open
- Daunting parameter space
- Six degrees of freedom on dual reflector system
- Mechanical trade-off dependent on design
- MeerKAT / TDP boom / main reflector length
- Want the best "as built" performance
- Main reflector sized for sensitivity
- Sub-reflector sized for road transport
- Cross-polarisation (Mitzugutch)

MeerKAT optics selection

- Sub-reflector clearance increases feed boom length - prefer no clearance

MeerKAT optics selection

- Last trade-off Main reflector size v. feed boom length

Feed high versus feed low

- Feed low
- Allows easy access to the feeds
- Spill-over better controlled
- "Sail" upright
- Not "ideal" stowing

Feed high versus feed low

Feed high versus feed low

Symmetry plane far field

© EMSS Antennas, 3GC-II 2011

Feed high versus feed low

Contents

Questions

What is still undecided

© EMSS Antennas, 3GC-II 2011

Issues

- Shaping
- Trade-off between side-lobes and efficiency
- Designing the extension
- Beam offset ("Squint" defined otherwise)
- Tolerance
- Slots (between panels) impact
- Increase the parameter space: shaping - Capture more feed energy
- Deeper effective system for same feed
- Need not increase side-lobes
- Typically a small impact on radio astronomy systems
- Distribute pattern to use surface better
- Will increase side-lobes
- Much easier to control aperture field
- Sensitive to feed pattern
- Deep taper sensitive to error in centre of sub-reflector
- Hard illumination has spill-over loss and diffraction

Shaping

Shaping

- Almost no mechanical reflector difference Feed position further from main dish

© EMSS Antennas, 3GC-II 2011

Designing the extension

- Extension primarily to shield spill-over
- Tend to increase gain
- Reduce diffraction ripple
- Increase reflection back to feed
- Increase cross-polarisation
- Need further optimisation

Designing the extension

TU3

Designing the extension

Designing the extension

Designing the extension

TS3

Designing the extension

TS3e20

© EMSS Antennas, 3GC-II 2011

Designing the extension

© EMSS Antennas, 3GC-II 2011

Designing the extension

© EMSS Antennas, 3GC-II 2011

Designing the extension

TS3e20

© EMSS Antennas, 3GC-II 2011

Beam offset

- Beam offset that decrease with frequency
- Due to reflected angle $=$ incident angle
- Oscillating behaviour
- Due to diffraction from sub-reflector
(a)

© EMSS Antennas, 3GC-II 2011

Tolerance

- Surface RMS accuracy
- Reduce efficiency (Ruze)
- Cause variation between beams
- Very frequency dependent (1 mm at 14.5 GHz)

Tolerance

- Requirement for beam similarity

© EMSS Antennas, 3GC-II 2011

Tolerance

- Reduction in efficiency
- Edges less illuminated than centre
- Weight the outside less than the centre
- Kept "loss" per ring constant
- Similar to weighting the error with the square root of the aperture voltage pattern

Tolerance

- Phase error due to length
- Oblique incidence

© EMSS Antennas, 3GC-II 2011

Tolerance

© EMSS Antennas, 3GC-II 2011

Tolerance

- Effect of alignment
- Sensitivity at high frequency
- Pointing
- Effect of loading tolerance
- Pointing
- Can compensate for gravity, not for wind
- Sensitivity
- Beam shape and polarimetric variation
© EMSS Antennas, 3GC-II 2011

Tolerance (TUE. 3 and TSE.3)

Perturbation type 5

Perturbation type

Perturbation type 2

Perturbation type 8

Perturbation type 3

Perturbation type

Tolerance (TUE. 3 and TSE.3)

Tolerance (TUE. 3 and TSE.3)

Perturbation type 5

Perturbation type 8

Perturbation type 3

Perturbation type 9

Perturbation type 4

Perturbation type 7

Perturbation type 2

Perturbation type 8

Perturbation type 3

Perturbation type 9

Tolerance (TUE. 3 and TSE.3)

Perturbation type 5

Perturbation type 9

Perturbation type 3

Side-lobe specification

- -30dB side-lobe requirement at 3° from bore sight (to avoid RFI) difficult for UHF
- More or less the first side-lobe
- Need interaction here on the advantages / disadvantages
- Slots between dish panels
- Quarter-wave "connecting" slots
- Narrow band solutions
- Can model with wire grid
- 13.5 m prime focus dish with $\mathrm{F} / \mathrm{D}=0.55$
-2 mm wide slots every 1 m (not through centre)
- MLFMM solution at 580 MHz
-25 dB side-lobe at 30°
- Duality - need to work with magnetic fields

Gain of a 13.5 m prime focus dish with 2 mm slots every 1 m at 580 MHz

Interpolation

- Beam offset vary rapidly with frequency
- Causes variation in direction dependent gain
- Base beams from numerical patterns
- Slow to compute per frequency
- Large amount of data
- Need to interpolate
- Cannot do so on the beam itself

Interpolation

- Interpolation should reflect the physical
- Propagation terms $e^{-j k L}=e^{-j k^{\prime} f}$
- Interpolate between frequencies where $k^{\prime} f$ is effectively 0° and 90°, i.e. the exponential vary between $1+\mathrm{j} 0$ and $0+\mathrm{j} 1$
- Linear interpolation of the real and imaginary components yields $0.5+\mathrm{j} 0.5$
- Linear interpolation of amplitude and phase yields $0.707+\mathrm{j} 0.707$ which, is correct in this case
- Interpolation where the second frequency is effectively $n 2 \pi+\Delta$ is a problem

Interpolation

- Interpolating θ, \varnothing components for linear polarisation on too coarse a grid

© EMSS Antennas, 3GC-II 2011

Interpolation

- Solved three components of the field
- Main reflector
- Feed
- Sub-reflector
- Top and bottom are stationary phase points

Contents

Way forward

© EMSS Antennas, 3GC-II 2011

The near (MeerKAT) future

- Finalise the frequency interpolation
- Determine basis functions for calibration
- Does this influence the design?
- Trade-off of the antenna beam parameters - Aperture efficiency
- Spill-over temperature (extension design)
- Side-lobe levels (near and far)
- Cross-polarisation
- Beam roundness

Thank you

