3GC-II Workshop: Beam modeling Albufeira, Portugal, 2011 Workshop overview by Isak Theron

NRF National Research Foundation

Jan Noordam

- Station/dish beam shapes are not identical
- Need to know the beams
- Difficult to distinguish between beam shape and sky model uncertainties
 - Limit the ability to do pointing correction
- Difference between actual beam and model must be smooth
- How do we get the beam shape?

Jan Noordam

- Open loop
 - Use theoretical model
 - Measure once, e.g. on a bright source
- Closed loop
 - Continuously measured, using sources in field
 - Time, frequency and polarisation
 - Almost an improved self-cal
 - This is the only way that can deliver

– Need parameterised beam models, but still do

as good as possible with the actual beam EMSS Antennas, 3GC-II 2011

Tony Willis

- Dishes define life of a telescope
- Selection of the SKA dish from the options (If we can select, we can also optimise)
- Three classes of dishes
 - Prime focus with 3rd axis, e.g. ASKAP
 - Offset Gregorian, e.g. ATA
 - Prime focus equatorial, e.g. WSTR
- Need to provide a process of selection

 Simulation with MegTrees

Tony Willis

- Select a sky model
- Select which effects to include
- Define the test array
 - Size, and number of dishes
 - Frequency and number of channels
- Simulate and calibrate (blind) data
 - Provide feedback to dish designers
 - Beam movement with frequency
- Report how to weigh the various issues © EMSS Antennas, 3GC-II 2011

Walter Brisken

Cr Ch

- EM simulations are complex
- Final geometry unknown – Tolerances, fine detail, etc.
- Why model beams?
 - Do trade-offs, e.g. A_e and T_{sys}
 - Understand observed defects, e.g. polarisation
- Work with (complex) voltage beams
- Overview of modelling techniques

Walter Brisken

- Cassbeam software
 - Geometrical optics
 - Full polarisation
 - No diffraction
- GRASP 9 analysis (by Bruce Veidt)
 - Physical optics, PTD extension
 - Very efficient dish analysis
 - Adding small features, e.g. struts very costly

Walter Brisken

- Prime focus beam ripple
 - Associated with beam broadening
- Keep optical path free of scatterers
 Use shapes that are easy to model
- Can image through beam nulls
 Move with frequency
 - Do we want variation
- Side-lobes are polarised
- Defined circular pointing measurements? © EMSS Antennas, 3GC-II 2011

Marianna Ivashina

- Use numerical beam patterns
- Expanded again i.t.o. analytic ones
- Use shifted elements as basis function
- Small number needed
- For reflectors, expand the feed pattern

Overview of beam modelling

- Ben Mort
 - OSKAR imports EM beam simulations
- Stefan Wijnholds
 - APERTIF
 - Derive beam specification from SNR requirement
 - Balance beam errors against other errors

Christophe Craeye

- Determine beam from a cylindrical mode expansion of a known aperture distribution
 - Fourier transformed to form beams
 - Radial dependency
 - Fourier Bessel series (go to zero at edge)
 - Zernike series (orthogonal if on an infinite plane, but not required)
 - Relatively few modes
 - Derived from required angular extent
 - Zernike Bessel functions better for small number
 - Could be used as basis functions for beam calibration © EMSS Antennas, 3GC-II 2011

Christophe Craeye

- Determined AA station beams
 - Mutual coupling correction for < $\lambda/3$ elements
 - Use constant element pattern
 - Cannot scan too low
 - Smooth degradation
 - Solve for the difference between computed and measured beams
 - Fitted with 120 modes?

Peter Williams

- Showed beam patterns of ATA
 - Fairly consistent between dishes
 - Shroud needed for tipping performance
- Beam offset (angle between X and Y beams)
 - Measured in HEX pattern
 - Vary with time
- Gain and leakage correction
 - -7 parameters
 - Averaged for all antennas

Isak Theron

- Overview of modelling techniques
- Overview dish design
 - Parameter trade-offs
 - Shaping and spill-over shielding extension
- Interpolating complex values must reflect the physics
- Frequency interpolation on components of dish pattern
 - Main reflector, sub-reflector, feed

Future

- Extend Tony's system characterisation plan
 - To be done for MeerKAT options investigation
 - MeerKAT layout
 - Need to determine optimal pattern θ-stepping
 - Define model sky
 - Pipeline that takes pattern and output quality
- Careful consideration of the phase slope
 - Process above
 - 14.5 GHz prime focus/offset Gregorian patterns
 - Mechanical solution

Future

- Determine 2x2 parameterised beam model
 - Basis functions for calibration expansion
 - Spatial distribution and how to interpolate
 - Frequency interpolation
 - Starting coefficients from theoretical beams
 - Dishes: Combine Christophe and Isak's ideas
 - Phase dependence as a function of frequency
 - Zernike Bessel expansion of main aperture
 - Diffraction coefficients / small aperture distribution for sub-reflector basis functions

