

Calculating Beam Pattern Inaccuracies and Their Implications

Stefan J. Wijnholds e-mail: wijnholds@astron.nl

3GC-II Workshop Albufeira (Portugal), 19 – 30 Sep. 2011

SKA: ambition to achieve >70 dB DR

Possible limiting factors

- PAF compound beam / AA station beam accuracy
- PAF compound beam / AA station beam stability
- ionospheric modeling accuracy

Pivotal issues

- How do we specify DDE modeling accuracy?
- What accuracy is required?

Answers needed for rigorous system design!

Example: Aperture Tile in Focus Van Cappellen and Bakker, PAST, 2010

PAF for WSRT, increases survey speed 25x

key specs

Frequency range1000Instantaneous bandwidth300 ISystem temperature< 55</td>Aperture efficiency75%PolarizationdualSimultaneous beams37 duField of view8 degReflectors12 x

1000 – 1750 MHz

300 MHz < 55 K 75% dual linear 37 dual pol 8 deg² 12 x 25 m

AST(RON

Beam spec: 1% error at HPBW rel. to main beam

Error propagation in beamforming Stefan J. Wijnholds, CalIm, July 2011

- Beamformer equation: y(t) = w^H(θ) v(t)
 w^H(θ) weight vectors parameterized by θ
 v(t) receiving element output voltages
 - y(t) beamformer output voltage
- **θ** depends on element response and noise covariance
- assumed parameter covariance models:
 - for calibration: Cramer-Rao bound
 - for drift: independent parameter variation
- standard error propagation formula

 $var(y) = (\partial y / \partial \boldsymbol{\theta}^{\mathsf{T}}) \operatorname{cov}(\boldsymbol{\theta}) (\partial y / \partial \boldsymbol{\theta}^{\mathsf{T}})^{\mathsf{T}}$

AST(RON

Propagation of calibration errors Stefan J. Wijnholds, CalIm, July 2011

•

•

•

AST(RON

x 10⁻³

compound beam amplitude standard deviation SNR = 200-3 y-direction (degrees) -2 0.8 y-direction (degrees) bi-scalar BF 0.6 0 constraint: 0.4 beam peak 0.2 2 2 3 3 fixed (selfcal) -2 2 -2 0 x-direction (degrees) local relative error (%) • SNR of 200 -3 -3 needed to y-direction (degrees) -2 y-direction (degrees) 3 satisfy beam 0 2 requirement

2

0

x-direction (degrees)

3GC-II Workshop, Albufeira (Portugal), 19 – 30 September 2011

2

3

-2

for **APERTIF**

- 5 -

Propagation of drift errors (on axis) Stefan J. Wijnholds, CalIm, July 2011 AST(RON

- 2% rel. error
- bi-scalar BF
- constraint:
 beam peak
 fixed (selfcal)
- 2% variations
 well within acceptable tolerances

Element patterns on the sky Van Cappellen, AJDI, 27 Mar 2008

3GC-II Workshop, Albufeira (Portugal), 19 – 30 September 2011

AST(RON

Propagation of drift errors (off axis) Stefan J. Wijnholds, CalIm, July 2011 AST(RON

- 2% rel. error
- bi-scalar BF
- constraint:
 beam peak
 fixed (selfcal)

 max 2%
 variation acceptable to satisfy beam spec APERTIF
 max 2%

Measured drift using apex-source Stefan J. Wijnholds, CalIm, July 2011

- 5 min observation at 1441.5 MHz
- gain calibrated using first 10 s
- < 1% variation after 5 min \rightarrow 10 15 min update rate?

3GC-II Workshop, Albufeira (Portugal), 19 – 30 September 2011

AST(RON

Calibration error propagation for AAs Wijnholds, Grainge & Nijboer, SKA-low, Sep. 2011 AST(RON

Impact of station cal. errors on LOFAR LBA station beam

Assumptions

- LBA_OUTER, CS302
- 4-9-'11, 15:00 UTC
- 1 s, 195 kHz
- @ 50 MHz
- calibration errors from CRB
- SNR_{max} = 0.01

Rigorous PAF and AA station error propagation

Pivotal for translation top level \rightarrow hardware level specs APERTIF example: 1% rel. error at HPBW

- SNR > 200 in calibration measurement
- calibration update at most every 10 minutes

Key questions

- How do we specify beam pattern accuracy?
- What beam pattern accuracy is required?

Basic principle: beam errors should stay below noise

Implications (example)

- "random" beam errors every 5 minutes
- station sensitivity 20 m²/K (from AA-low specs)
- 1σ (60 MHz, 300 s): 0.51 mJy
- FoV (180-m station, 300 MHz): 2.42e-5 sr
- strongest source (typical field): 40 mJy
- required accuracy: 0.51 / 40 = 1.3 % (w.r.t. peak)
- for 90-m station: 0.18 % (w.r.t. peak)

Implications

beam accuracy (%) at time scales of 30 s (I) and 300 s (r)

AST(RON

Balancing against other errors (e.g. ionosphere)

- snapshot calibration with \sim 3 5 in FoV
- second order ionospheric phase screen
- interpolation errors due to higher order terms
- small scale variations between calibration sources

Beam modeling and measurement limitations

- Craeye (CalIm): fit difference with modeled pattern
- Maaskant et al.: use CBFPs (modeling accuracy ~1%)

Current state of the art at this workshop!

Specification of beam pattern accuracy is pivotal

- translation from top level to hardware level specs
- Fundamental approach
 - keep errors due to beam inaccuracy below noise
- Practical approach
 - balance beam errors against other errors
 - limitations of state-of-the-art models

We can gain crucial insight from this workshop!