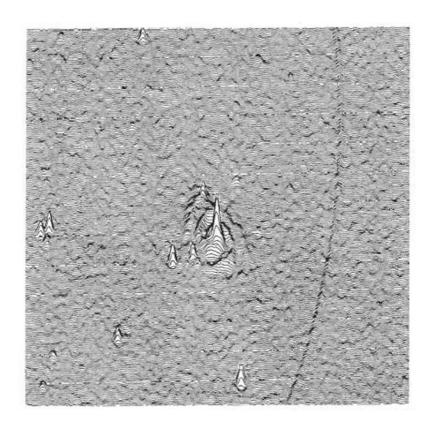
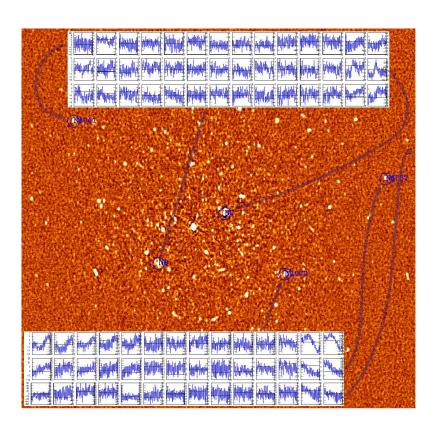


Antenna Beams and the SKA: How to Select a Dish Design?

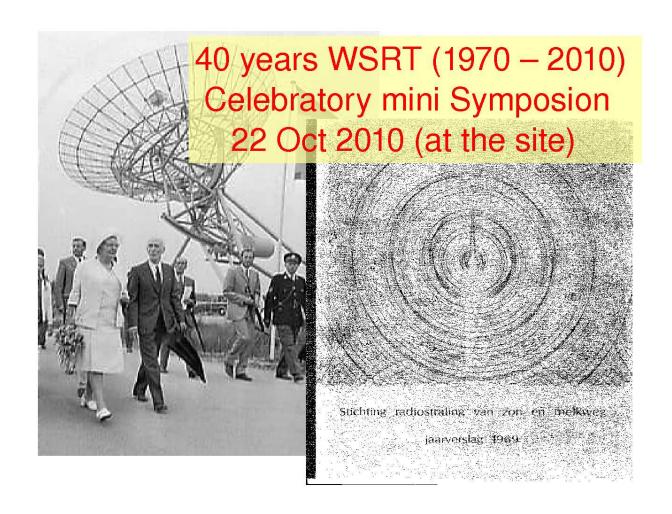

A. G. Willis

National Research Council of Canada Herzberg Institute of Astrophysics Dominion Radio Astrophysical Observatory

Sept 19, 2011


In the Beginning ...

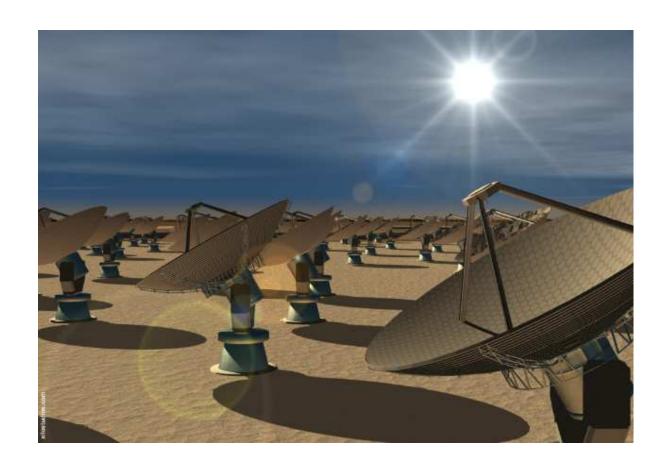
- 1970 WSRT image of M51
- Original WSRT had receivers with approximately 250K system temperature
- With the exception of strong 3C sources, most instrumental effects hidden in the noise
- Continuum receivers had a single channel with a few MHz bandwidth


Today

- Direction dependent effects see the AJDI of 23-02-2010 for a detailed explanation
- Receiver temperatures have dropped by a factor 8 or so
- Many instrumental effects can be routinely seen above the noise
- Continuum receivers may have broadband multi-GHz bandwidths and produce data with thousands of channels

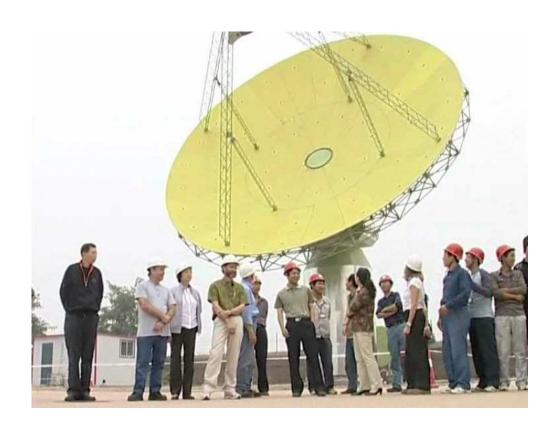
Dish selection for the SKA is a Critical Exercise

Receivers, correlators, backends, electronics, computers, all come and go but the dishes seem to survive largely unchanged.



Possible Dish Designs

- Azimuth-Elevation mount with 3rd 'sky-rotation' Axis (ASKAP)
- Offset Gregorian design (Allen Telescope Array, GBT)
- Equatorial mount has not been ruled out but polar axis orientation could be a problem at low latitudes of the SKA sites (WSRT)
- new 'Eureka' design?


Basic Dish with Azimuth-Elevation Mount

- One of the Original SKA dish designs had a simple Azimuth-Elevation mount structure
- This design has been rejected at the SKA dish CoDR in July 2011 because of the sky rotation with respect to dish orientation

Still in the Running - ASKAP

- Dish with Azimuth-Elevation mount and third 'sky-rotation' axis ASKAP
- Images show celebration at testing of first ASKAP antenna at factory in China note dish rotation between first and second images
- possible issues scattering off struts, central feed blockage

Still in the Running - ASKAP

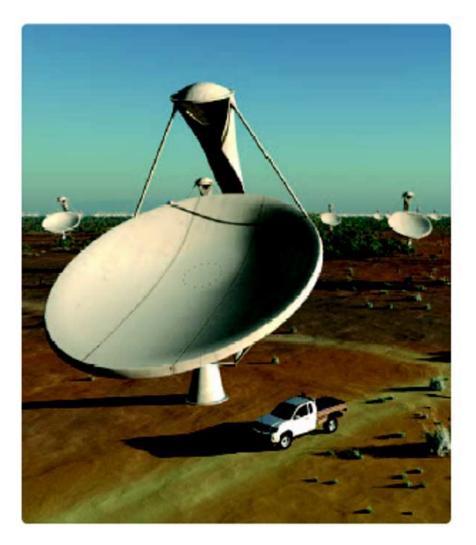
- Dish with Azimuth-Elevation mount and third 'sky-rotation' axis ASKAP
- Images show celebration at testing of first ASKAP antenna at factory in China note dish rotation between first and second images
- possible issues scattering off struts, central feed blockage

Offset Gregorian - Generic SKA Design - Feed Up

- advantages no scattering and no central feed blockage
- disadvantages position of beam maximum response varies as a function of frequency

Offset Gregorian - South African Variant - Feed Down

- advantages no scattering and no central feed blockage
- disadvantages position of beam maximum response varies as a function of frequency
- disadvantage? Can offset Gregorians accomodate Phased Array Feed systems for SKA phase 2?


How to quantitatively select between different SKA dish designs?

- At present just a bunch of 'My dish is better than your dish' opinions
- We need a to provide a quantitative way to distinguish between dish designs
- Simulation can be an important part of this process. It can also help antenna designers refine their designs
- We should learn a lot about the beam pattern behaviour of various antennas at this workshop
- MeqTrees is as far as I know, the only data processing system which can easily 'observe' a sky model with a wide variety of potential beam patterns
 - ☐ We need to select a model sky (something from the SKADS mdel skies developed at Oxford?)
 - ☐ Select the various effects which will be included in the simulations besides the beam characteristics
 - ☐ Define the characteristics of the array which would be used for the simulated observations (maximum size, range of frequency, number of channels, number of dishes etc)
- Do simulations and provide feedback to the dish designers as they optimize designs.
- Produce a report where weighted evaluations are given to different designs

Finally ... The Really Big Question

Who's driving that vehicle that seems to appear in all SKA simulations? RTS? PED?

 SKA Project Director testing a method of transportation applicable to both Australian and South African SKA sites

