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Abstract

This document describes the derivation of the approximate analytical beam models for the LOFAR low
band and high band antennas and its usage in calibration and correction of image plane effects.

1 Introduction

This document describes the derivation of the beams for the LOFAR low band antenna (LBA) and the high
band antenna (HBA). The geometries of the LBA and HBA dipoles are given in Fig. 1 and Fig. 2 respectively.
We assume both of these to be composed of linear, thin wire elements. Moreover, we assume the ground
plane to be an infinite conducting plane.

Note the essential parameters in the dipole geometry are the height h, length L and the slants α, α1, and α2

for both the LBA and HBA geometries. Although the geometry is defined in rectangular coordinates (x, y, z),
we derive the beam in spherical polar coordinates (r, θ, φ) where θ and φ are the declination (measured from
the zenith) and the azimuth respectively.

This document is organized as follows: After an initial introduction to basic electromagnetic constants,
we derive the vector magnetic potential of an infinitesimal dipole element. Next, using this, we derive the
far field electric field intensity. Afterwards, assuming a sinusoidal current distribution along the dipole, we
derive the far field electric field and hence the beamshape. Next, we derive the E-Jones matrix for the beam
and move on to the derivation of the full measurement equation. Next we consider correction of images for
the effect of the beam. Finally, we derive the station beam which uses multiple dipole elements.
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Figure 1: LBA X dipole geometry

2 Vector magnetic potential

Before we proceed, we define some fundamental parameters in electromagnetic theory (1),

c =
1√
µ0ǫ0

, ω = 2πf, k =
ω

c
(1)

where c is the speed of light in free space, f is the frequency, and k is the propagation constant. We consider
an infinitesimal dipole with slant α (in xz plane) placed at the origin as in Fig. 3, with current I0. The far
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Figure 2: HBA X dipole geometry

field retarded magnetic potential is given by

Ax = sin α
e−jkr

r

µI0d

4π
, Ay = 0, Az = cosα

e−jkr

r

µI0d

4π
(2)

where d is the dipole length.
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Figure 3: Infinitesimal dipole at origin

For a shift of origin of (ξ, η, ζ) in rectangular coordinates, the corresponding change in r in spherical polar
coordinates is given in (3).

r̄ = r − (ξ sin θ cosφ + η sin θ sin φ + ζ cos θ) (3)

Next, we consider an infinitesimal dipole with an origin shift of (a, 0, b) as in Fig. 4. Using (3), we get the far
field retarded magnetic potential as in (4).

Ax = sinα
e−jkr

r

µI0d

4π
exp(jk(a sin θ cosφ + b cos θ)), Ay = 0, Az = cosα

e−jkr

r

µI0d

4π
exp(jk(a sin θ cosφ + b cos θ)) (4)

Note also that the conversion from (x, y, z) components to (r, θ, φ) components are given by (5).




Ar

Aθ

Aφ



 =




sin θ cosφ sin θ sin φ cos θ
cos θ cosφ cos θ sin φ − sin θ
− sinφ cosφ 0








Ax

Ay

Az



 (5)
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Figure 4: Infinitesimal dipole shifted by (a, 0, b)

Once we have found A, we can derive the vector electric field E as in (6).

E = −jωA− j

ωµǫ
∇(∇ � A) (6)

Ignoring terms with r−2 or r−3, we get the electric field terms as in (8). Note we have ignored the component
in r because we know it to be identically zero for far field. For the far field, we also take the limit to get (7).

lim
r→∞

e−jkr

r
= −jk (7)

Eθ =
µId

4π
ωk(cosα sin θ − sin α cos θ cosφ) exp (jk(a sin θ cosφ + b cos θ)) (8)

Eφ =
µId

4π
ωk(sin α sin φ) exp (jk(a sin θ cosφ + b cos θ))

We should remind ourselves that the electric field components in (8) are only due to a small length of the
dipole. For the full contribution, we have to integrate over the dipole length. Finally, by superposition, we
get the full contribution from all branches as a linear sum. In order to do so, we have to assume the current
distribution along the dipole.

3 Current distributions

For a typical center fed, finite length dipole, we assume a sinusoidal current distribution with current being
zero at the ends. This is directly applicable to the LBA model which has only an open conductor. However,
for the HBA model this is not straight forward. In order to solve this, we follow the procedure given in [5]. In
[5], each branch of the dipole is assumed to have a sinusoidal current distribution. In addition, the starting
phase of the current was calculated from the preceding path length of the conductor.

In order to take into account the effects of the ground plane, we use image theory. The assumed current
distribution for the LBA and HBA dipoles with their images due to ground plane is given in Fig. 5 and 6,
respectively.

We first consider the LBA (as well as the horizontal branches of the HBA) as in Fig. 7.

branch 1 : α← π − α, a = l, b = h− l/ tanα, I = I0 sin
( k

sinα
(L− l)

)
, l ∈ [0, L] (9)

branch 2 : α← α, a = −l, b = h + l/ tanα, I = I0 sin
( k

sin α
(L + l)

)
, l ∈ [−L, 0]

branch 3 : α← −α, a = −l, b = −(h + l/ tanα), I = I0 sin
( k

sin α
(L + l)

)
, l ∈ [−L, 0]

branch 4 : α← −π + α, a = l, b = −(h− l/ tanα), I = I0 sin
( k

sinα
(L− l)

)
, l ∈ [0, L]

If we consider the currents on the bottom vertical branches of the HBA (note the initial phase), as in Fig.
8, we get (10).

branch 1 : α← π/2, a = L, b = h− L/ tanα1 + l, I = ejkL/ sin α1I0 sin
(
k(L1 − l)

)
, l ∈ [0, L1] (10)
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Figure 5: LBA dipole on infinite ground plane
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Figure 6: HBA dipole on infinite ground plane
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Figure 7: Currents on horizontal branches
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Figure 8: Currents on bottom vertical branches
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branch 2 : α← π/2, a = −L, b = h− L/ tanα1 + l, I = −e−jkL/ sin α1I0 sin
(
k(L1 − l)

)
, l ∈ [0, L1]

branch 3 : α← π/2, a = −L, b = −(h− L/ tanα1 − l), I = −ejkL/ sin α1I0 sin
(
k(L1 + l)

)
, l ∈ [−L1, 0]

branch 4 : α← π/2, a = L, b = −(h− L/ tanα1 − l), I = e−jkL/ sin α1I0 sin
(
k(L1 + l)

)
, l ∈ [−L1, 0]
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Figure 9: Currents on top vertical branches

Similarly, if we consider the currents on the top vertical branches of the HBA, as in Fig. 9, we get (11).

branch 1 : α← π/2, a = L, b = h + L/ tanα2 − l, I = −ejkL/ sin α2I0 sin
(
k(L2 − l)

)
, l ∈ [0, L2] (11)

branch 2 : α← π/2, a = −L, b = h + L/ tanα2 − l, I = e−jkL/ sin α2I0 sin
(
k(L2 − l)

)
, l ∈ [0, L2]

branch 3 : α← π/2, a = −L, b = −(h + L/ tanα2 + l), I = ejkL/ sin α2I0 sin
(
k(L2 + l)

)
, l ∈ [−L2, 0]

branch 4 : α← π/2, a = L, b = −(h + L/ tanα2 + l), I = −e−jkL/ sin α2I0 sin
(
k(L2 + l)

)
, l ∈ [−L2, 0]

In order to find the electric field for the full length of the dipole, we need to use the integrals in (12).

Γ+(A, B, k, L, α)
△
=

∫ L

0

exp (jk(Al + B)) sin

(
k

sin α
(L− l)

)
dl (12)

=
−ejkB

k(A2 − 1/ sin2 α)

(
ejkAL

sin α
− jA sin(

kL

sin α
)− 1

sin α
cos(

kL

sin α
)

)

Γ−(A, B, k, L, α)
△
=

∫ 0

−L

exp (jk(Al + B)) sin

(
k

sin α
(L + l)

)
dl

=
−ejkB

k(A2 − 1/ sin2 α)

(
e−jkAL

sin α
+ jA sin(

kL

sin α
)− 1

sin α
cos(

kL

sin α
)

)

4 Electric field intensity

4.1 LBA and HBA horizontal branches

Eθ1=
µI0ωk

4π
(− cosα1 sin θ − sin α1 cos θ cosφ) (13)
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∫ L

0

exp (jk(l sin θ cosφ + (h− l/ tanα1) cos θ) sin

(
k

sinα1

(L− l)

)
dl

=
µI0ωk

4π
(− cosα1 sin θ − sin α1 cos θ cosφ)

Γ+(sin θ cosφ− cos θ/ tan α1, h cos θ, k, L, α1)

Eφ1=
µI0ωk

4π
(sin α1 sinφ) (14)

∫ L

0

exp (jk(l sin θ cosφ + (h− l/ tanα1) cos θ) sin

(
k

sinα1

(L− l)

)
dl

=
µI0ωk

4π
(sin α1 sinφ)

Γ+(sin θ cosφ− cos θ/ tan α1, h cos θ, k, L, α1)

Eθ2=
µI0ωk

4π
(cosα1 sin θ − sinα1 cos θ cosφ) (15)

∫ 0

−L

exp (jk(−l sin θ cosφ + (h + l/ tanα1) cos θ) sin

(
k

sin α1

(L + l)

)
dl

=
µI0ωk

4π
(cosα1 sin θ − sinα1 cos θ cosφ)

Γ−(− sin θ cosφ + cos θ/ tanα1, h cos θ, k, L, α1)

Eφ2=
µI0ωk

4π
(sin α1 sin φ) (16)

∫ 0

−L

exp (jk(−l sin θ cosφ + (h + l/ tanα1) cos θ) sin

(
k

sin α1

(L + l)

)
dl

=
µI0ωk

4π
(sin α1 sin φ)

Γ−(− sin θ cosφ + cos θ/ tanα1, h cos θ, k, L, α1)

Eθ3=
µI0ωk

4π
(cosα1 sin θ + sinα1 cos θ cosφ) (17)

∫ 0

−L

exp (jk(−l sin θ cosφ− (h + l/ tanα1) cos θ) sin

(
k

sin α1

(L + l)

)
dl

=
µI0ωk

4π
(cosα1 sin θ + sinα1 cos θ cosφ)

Γ−(− sin θ cosφ− cos θ/ tanα1,−h cos θ, k, L, α1)

Eφ3=
µI0ωk

4π
(− sinα1 sin φ) (18)

∫ 0

−L

exp (jk(−l sin θ cosφ− (h + l/ tanα1) cos θ) sin

(
k

sin α1

(L + l)

)
dl

=
µI0ωk

4π
(− sinα1 sin φ)

Γ−(− sin θ cosφ− cos θ/ tanα1,−h cos θ, k, L, α1)

Eθ4=
µI0ωk

4π
(− cosα1 sin θ + sin α1 cos θ cosφ) (19)

∫ L

0

exp (jk(l sin θ cosφ− (h− l/ tanα1) cos θ) sin

(
k

sinα1

(L− l)

)
dl

=
µI0ωk

4π
(− cosα1 sin θ + sin α1 cos θ cosφ)

Γ+(sin θ cosφ + cos θ/ tan α1,−h cos θ, k, L, α1)
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Eφ4=
µI0ωk

4π
(− sin α1 sin φ) (20)

∫ L

0

exp (jk(l sin θ cosφ− (h− l/ tanα1) cos θ) sin

(
k

sinα1

(L− l)

)
dl

=
µI0ωk

4π
(− sin α1 sin φ)

Γ+(sin θ cosφ + cos θ/ tan α1,−h cos θ, k, L, α1)

We can also derive the electric field components for the top horizontal branch of the HBA by using π − α2

for α1 in the above formulae.

4.2 HBA bottom vertical branches

Eθ1=
µI0ωk

4π
(sin θ) exp(jk

L

sin α1

) (21)

∫ L1

0

exp (jk(L sin θ cosφ + (h− L/ tanα1 + l) cos θ) sin (k(L1 − l)) dl

=
µI0ωk

4π
(sin θ) exp(jk

L

sin α1

)Γ+(cos θ, L sin θ cosφ + (h− L/ tanα1) cos θ, k, L1, π/2)

Eθ2=
µI0ωk

4π
(sin θ)(− exp(−jk

L

sinα1

)) (22)

∫ L1

0

exp (jk(−L sin θ cosφ + (h− L/ tanα1 + l) cos θ) sin (k(L1 − l)) dl

=
µI0ωk

4π
(sin θ)(− exp(−jk

L

sinα1

))Γ+(cos θ,−L sin θ cosφ + (h− L/ tanα1) cos θ, k, L1, π/2)

Eθ3=
µI0ωk

4π
(sin θ)(− exp(jk

L

sinα1

)) (23)

∫ 0

−L1

exp (jk(−L sin θ cosφ− (h− L/ tanα1 − l) cos θ) sin (k(L1 + l)) dl

=
µI0ωk

4π
(sin θ)(− exp(jk

L

sinα1

))Γ−(cos θ,−L sin θ cosφ− (h− L/ tanα1) cos θ, k, L1, π/2)

Eθ4=
µI0ωk

4π
(sin θ)(exp(−jk

L

sin α1

)) (24)

∫ 0

−L1

exp (jk(L sin θ cosφ− (h− L/ tanα1 − l) cos θ) sin (k(L1 + l)) dl

=
µI0ωk

4π
(sin θ)(exp(−jk

L

sin α1

))Γ−(cos θ, L sin θ cosφ− (h− L/ tanα1) cos θ, k, L1, π/2)

4.3 HBA top vertical branches

Eθ1=
µI0ωk

4π
(sin θ)(− exp(jk

L

sin α2

)) (25)

∫ L2

0

exp (jk(L sin θ cosφ + (h + L/ tanα2 − l) cos θ) sin (k(L2 − l)) dl

=
µI0ωk

4π
(sin θ)(− exp(jk

L

sin α2

))Γ+(− cos θ, L sin θ cosφ + (h + L/ tanα2) cos θ, k, L2, π/2)

Eθ2=
µI0ωk

4π
(sin θ)(exp(−jk

L

sin α2

)) (26)

∫ L2

0

exp (jk(−L sin θ cosφ + (h + L/ tanα2 − l) cos θ) sin (k(L2 − l)) dl

=
µI0ωk

4π
(sin θ)(exp(−jk

L

sin α2

))Γ+(− cos θ,−L sin θ cosφ + (h + L/ tanα2) cos θ, k, L2, π/2)
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Figure 10: LBA Beam at 10 MHz

Eθ3=
µI0ωk

4π
(sin θ)(exp(jk

L

sin α2

)) (27)

∫ 0

−L2

exp (jk(−L sin θ cosφ− (h + L/ tanα2 + l) cos θ) sin (k(L2 + l)) dl

=
µI0ωk

4π
(sin θ)(exp(jk

L

sin α2

))Γ−(− cos θ,−L sin θ cosφ− (h + L/ tanα2) cos θ, k, L2, π/2)

Eθ4=
µI0ωk

4π
(sin θ)(− exp(−jk

L

sin α2

)) (28)

∫ 0

−L2

exp (jk(L sin θ cosφ− (h + L/ tanα2 + l) cos θ) sin (k(L2 + l))dl

=
µI0ωk

4π
(sin θ)(− exp(−jk

L

sin α2

))Γ−(− cos θ, L sin θ cosφ− (h + L/ tanα2) cos θ, k, L2, π/2)

The total electric field then is given by (29). Note that this is for the X dipole (we prefer to call it Ex). For
the Y dipole, we just need to substitute φ + π/2 instead of φ in our formulae.

E =

4∑

i=1

Ei, Ei = [0 Eθi Eφi]
T (29)

For the LOFAR LBA, we have α = 45 deg, L = 1.38 sinα m and h = 1.706 m. The beamshapes at 10 MHz and
80 MHz are given in Fig. 10 and Fig. 11 respectively. For the LOFAR HBA, we have α1 = 50 deg, α2 = 80 deg,
L = 0.366 m and h = 0.45 m. The choice of L1 and L2 is purely arbitrary. In our case, we take L1 and L2 such
that the top and bottom current paths have equal length. The beamshapes for this model at 100 MHz and
240 MHz are given in Fig. 12 and Fig. 13, respectively.

5 Station beamshape

In this section, we derive the beam shape of a station with multiple dipoles with beamforming. We follow the
procedure given in [4]. Let us consider a plane wave approaching from the direction θ0, φ0 (spherical polar
coordinates) onto a station with N dipole elements. The vector propagation constant, k0, for the approaching
plane wave can be given as in (30), where ω0 is the reference frequency (say 2π60 Mrad/s).

k0 =
ω0

c




− sin θ0 cosφ0

− sin θ0 sin φ0

− cos θ0



 (30)
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Figure 11: LBA Beam at 80 MHz
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Figure 12: HBA Beam at 100 MHz
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Figure 13: HBA Beam at 240 MHz
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Let the rectangular coordinates of a dipole element in the station be given by pn where n is the element
index (31).

pn =




px

py

pz



 , n = 0, 1, . . . , N − 1 (31)

Due to the spatial distribution of the elements, each has a different delay of reception of the plane wave.
For instance, the delay at the n-th element τn can be given as in (32).

τn =
1

ω
kT

0 pn (32)

We define the array manifold vector vk(k), for an arbitrary direction k, as in (33).

vk(k) =





exp(−jkTp0)
exp(−jkTp1)

...
exp(−jkT pN−1)




, k =

ω

c




− sin θ cosφ
− sin θ sin φ
− cos θ



 (33)

We assume a narrowband system and hence, the delay compensation is done just by using a phase shift
for the signal of each element of the station. Now imagine we need to beam form in the direction (θ0, φ0). The
vector of phase shifts for each element can be given as the weight vector w as in (34), where the delays τn

are given in (32).

w =
1

N





exp(−jωτ0)
exp(−jωτ1)

...
exp(−jωτN−1)




(34)

Then the frequency-wavenumber response for the station, Υ(ω,k), is given by (35).

Υ(ω,k) = wHvk(k) (35)

Assuming the elements have identical beams, given by E(θ, φ), the beamshape for the station is given by
(36).

B(ω; θ, φ) = Υ(ω,k)E(θ, φ) (36)

Note that at the phase centre, in (35) we get Υ(ω,k) = 1 and therefore the beam shape evaluates to B(ω; θ, φ) =
E(θ0, φ0). In other words, at the phase centre, the station beam gain is equivalent to the gain of the dipole
beam.

6 E-Jones matrix

In order to analyze the projection affecting polarized radiation, we refer to Fig. 14. We take the plane wave

approaching the antenna to be linearly polarized, with components Λ1 and Λ2 in the directions −θ̂ and φ̂,
respectively. As in [2, 1], we take the principle of reciprocity into account to find the components seen by
the X,Y dipoles, i.e., Vx and Vy respectively.

If we use γ = π/2 − θ for elevation, and β = φ − π/4 for azimuth, the root mean squared (RMS) voltages
seen by the X and Y dipoles can be given as in (37) which summarizes our analysis in a neat and compact
form. Note the field components in θ and φ directions are given by Eθ(γ, β) and Eφ(γ, β) respectively.

[
Vx

Vy

]
=

[
Eθ(γ, β) Eφ(γ, β)

Eθ(γ, β − π/2) Eφ(γ, β − π/2)

]
×
[

Λ1

Λ2

]
(37)

7 Measurement equation

We now consider the calibration of an interferometric array composed of dipoles as described above. This is
directly applicable to the calibration of LOFAR CS1 . We start with (37). Consider the sky model to be only
composed of N sources. Let us consider the visibilities seen on the baseline formed by station p and station
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Figure 14: Attenuation of polarized radiation by the Beam
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q. We also ignore leakage between the X and Y dipoles at each station. Then, the visibility seen on baseline
pq can be expressed as in (38).

[
XX XY
Y X Y Y

]

pq

(38)

=

[
g11,p 0

0 g22,p

]
Kp

(
N−1∑

s=0

[
Eθ,p(γ, β) Eφ,p(γ, β)

Eθ,p(γ, β − π/2) Eφ,p(γ, β − π/2)

]

s

× E{
[

Λ1

Λ2

]
×
[

Λ1

Λ2

]H

}s

×
[

Eθ,q(γ, β) Eφ,q(γ, β)
Eθ,q(γ, β − π/2) Eφ,q(γ, β − π/2)

]H

s

)
KH

q

[
g11,q 0

0 g22,q

]H

= GpKp

(N−1∑

s=0

Ep,s(γ, β)CsE
H
q,s(γ, β)

)
KH

q GH
q

=

N−1∑

s=0

Jp,sCsJ
H
q,s

Note in (38), we have used subscripts p and q to denote terms belonging to stations p and q respectively.
Moreover, we have absorbed the phase shift due to a source being off phase centre in Λ1 and Λ2 for simplicity.
For an arbitrary source the coherency is given as in (39), which simplifies to a scalar matrix if Q = U = V = 0.
Furthermore, I can be complex for a source off phase centre. For an unpolarized source, we have:

E{
[

Λ1

Λ2

]
×
[

Λ1

Λ2

]H

} = 0.5

[
I + Q U − jV

U + jV I −Q

]
= 0.5I

[
1 0
0 1

]
(39)

After substitution of (39) back to (38), for a single (unpolarized) source, (N = 1), we get (40).

[
XX XY
Y X Y Y

]

pq

(40)

=
I

2

[
g11,p 0

0 g22,p

]

×





Eθ,p(γ, β)E⋆
θ,q(γ, β) Eθ,p(γ, β)E⋆

θ,q(γ, β − π/2)
+Eφ,p(γ, β)E⋆

φ,q(γ, β) +Eφ,p(γ, β)E⋆
φ,q(γ, β − π/2)

Eθ,p(γ, β − π/2)E⋆
θ,q(γ, β) Eθ,p(γ, β − π/2)E⋆

θ,q(γ, β − π/2)
+Eφ,p(γ, β − π/2)E⋆

φ,q(γ, β) +Eφ,p(γ, β − π/2)E⋆
φ,q(γ, β − π/2)





×
[

g⋆
11,q 0
0 g⋆

22,q

]

8 Calibration

The essential objectives of LOFAR (CS1) calibration are

• Estimation of clock phases and electronic gains: G Jones matrices

• Estimation of beamshapes: E Jones matrices

• Removal of strongest sources: Cas A, Cyg A, Tau A, Vir A, Sun etc.

It should be noted here that for a single subband (bandwidth 0.16 MHz), the phase introduced by the beam
is negligible compared to the phase introduced by the clock. Thus, in order to determine positions of discrete
sources, the essential unknowns are the G Jones matrices. However, in order to accurately determine source
fluxes, we need to estimate the E Jones matrices.

8.1 Single pass approach

Here we make an important assumption that the beams of all stations are identical (which we have to make
in any case until we solve for the differences, which also enables us to drop the subscripts p and q). Then
we can simplify (40) to get (41).
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[
XX XY
Y X Y Y

]

pq

(41)

=
I

2

[
g11,p 0

0 g22,p

]

×
[

|E(γ, β)|2 Eθ(γ, β)E⋆
θ(γ, β − π/2) + Eφ(γ, β)E⋆

φ(γ, β − π/2)
Eθ(γ, β − π/2)E⋆

θ(γ, β) + Eφ(γ, β − π/2)E⋆
φ(γ, β) |E(γ, β − π/2)|2

]

×
[

g⋆
11,q 0
0 g⋆

22,q

]

Now let us consider solving for J Jones matrices (without any beam) for the visibilities in (41). Our
measurement equation will be as in (42).

[
XX XY
Y X Y Y

]

pq

(42)

=
I

2

[
J11,p J12,p

J21,p J22,p

]
×
[

J11,q J12,q

J21,q J22,q

]H

Note that if we ignore the cross terms XY and Y X in the solution process and assume the off diagonal terms
of (42) to be zero, it reduces to (43).

XX =
I

2
J11,pJ

⋆
11,q =

I

2
g11,p|E(γ, β)|2g⋆

11,q (43)

Y Y =
I

2
J22,pJ

⋆
22,q =

I

2
g22,p|E(γ, β − π/2)|2g⋆

22,q

The solutions of (43) will yield us the true phase of g11 and g22 (upto a complex ambiguity), but not the
amplitudes because of the beam. Nevertheless, we can use these solutions (i.e., J11 and J22) to correct for the
clock phase. This will also enable us to subtract the contribution of each source from the visibilities. On the
other hand, if we try to solve for the full J Jones matrices in (42), the solutions will not give us the uv plane
phase correction. So, in conclusion, without prior knowledge of the beam, the only alternative is to solve for
the diagonal terms of the J Jones matrices only and use them for uv plane phase correction. Indeed, with
full knowledge of the beam we can improve our solutions by solving for the full J Jones matrices.

The drawbacks of this approach are:

• Interaction of solutions of Cas A and Cyg A, even when Cas A has a high enough signal to noise ratio
(SNR), the poor SNR of Cyg A solution would corrupt the residuals.

• The residuals are biased by the beam gain in direction of Cas A, (or Cyg A), depending on which solution
is used to correct the residuals.

• Inherent assumption that the beams are identical.

• The solution differs from the true solution by a complex scalar for the X and Y system. After correction,
this does not affect XX or Y Y , but it is remaining in XY and Y X correlations. This is similar to the
phase zero difference in WSRT. Thus the U and V polarizations are inaccurate.

8.2 Two pass approach

In the two pass approach, we need to have an a priori beam model. Thus, we can apply this to situations
where the beams are not identical (i.e., with rotated dipoles). In the first pass, we estimate the G Jones
matrices, using a pre calculated E Jones in (38). After correcting the visibilites using our estimated G, in
the second pass, we peel off the strong sources (Cas A and Cyg A), without assuming any beam model, and
using a full J Jones matrix for each source (per direction). The advantages of this approach are:

• No interaction of solutions, even when Cyg A is close to horizon

• In the second stage, we can solve for larger time intervals, thus giving a better SNR, improving the
removal of Cyg A.

• We can peel off Cas A and Cyg A using full J Jones matrices.
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• Unlike the single pass approach, the ambiguity for the X and Y system is the same (a complex scalar).
Hence we do not have the phase zero difference problem. So all polarizations I,Q,U,V are accurate upto
the beam model error.

However, there are some drawbacks of this approach:

• Requirement of an a priori beam model

• Need the accurate fluxes of sources in the model (especially Cas A to Cyg A flux ratio)

• Requires more computations

Not also that the solutions obtained in the second pass (i.e., the J matrices) should be identically equal
to the E Jones matrices in the ideal case. However, this is affected by the a priori beam model we use in
the first pass. Moreover, the ratio of the solutions in the directions of Cas A and Cyg A (say using Frobenius
norm) should give us some idea of their flux ratio, subject to a systematic offset introduced by the beam.

8.3 The Holy Grail approach

This approach does not assume an a priori beam model. In this approach, we first solve for the full J Jones
for each source in our model. Note from (38) that we can factor

Jp,s = GpEp,s(γ, β), p ∈ [0, M − 1], s ∈ [0, N − 1] (44)

For N stations, and for M sources, we have NM solutions for J Jones. Moreover, these are a product of
N G Jones matrices and M E Jones matrices, assuming identical beamshapes. If we can find this unique
factorization, we can recover both clock phaces as well as the true beamshapes. The factorization can be
found using alternating least squares:





ET
0 (γ, β)⊗ I

ET
1 (γ, β)⊗ I

...
ET

N−1(γ, β)⊗ I




vec
(
Gp

)
=





vec
(
Jp,0

)

vec
(
Jp,1

)

...
vec
(
Jp,N−1

)




(45)





I⊗G0

I⊗G1

...
I⊗GM−1




vec
(
Es(γ, β)

)
=





vec
(
J0,s

)

vec
(
J1,s

)

...
vec
(
JM−1,s

)




(46)

By solving (45) and (46) alternatively, we can converge to a solution. However, matrix factorization always
results in a unitary ambiguity. Once we have the J Jones solutions, we need some a priori knowledege to
remove this ambiguity. Current calibration software does not have this capability yet. Unlike the previous
two cases where we only have a scalar ambiguity, thie methods introduces a matrix ambiguity, which can
only be resolved by using external calibrators.

9 Correction for the beam

Let us assume that we have used the solutions of (43) in the direction of a particular source to correct the
residual data. However, this does not correct for the effect of the beam, which is an image plane effect. For
instruments such as WSRT, where the beam remains stationary with respect to the image, the correction
can be applied after the final image for the full observation has been made.

However, for LOFAR, this approach fails because the beam moves with respect to the image (or vice
versa). Let us consider the correction of an image with sufficiently small integration time such that we can
assume the beam remains constant (in reality this will only hold for a snapshot image). We also assume the
beams are identical for all stations. Note that as we see later, we do not need to make snapshot images for
correction of Stokes I images, in other words, for Stokes I, we can use the whole integration time for imaging
and correct for the beam withot making snapshots or facet images.

Let γ0,β0 be the elevation and azimuth of the source whose solution was used to correct the residual data
at the time of the snapshot (e.g. the phace centre). Then, we have the solutions as given by (47) for single
pass approach and as given by (48) for the two pass approach.

Ĝp =

[
ĝ11,p 0

0 ĝ22,p

]
≈
[

g11,p|E(γ0, β0)| 0
0 g22,p|E(γ0, β0 − π/2)|

]
(47)
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Ĝp =

[
ĝ11,p 0

0 ĝ22,p

]
≈
[

g11,p 0
0 g22,p

]
(48)

Let us only consider the case when we have (47) as our solution because the alternative case is simpler.
Let γ,β be the elevation and azimuth of an arbitrary pixel on the snapshot that we wish to correct for the
beam. Let us define C and Ĉ(γ, β) to be the true and estimated coherencies respectively of the pixel we are
concerned with as in (49). Note that the estimated coherency depends on the patricular values of γ, β when
the snapshot was made. The estimated and true full Stokes parameter values are given by Î,Q̂,Û and V̂ and
I,Q,U and V respectively.

C
△
= 0.5

[
I + Q U + jV

U − jV I −Q

]
, Ĉ(γ, β)

△
= 0.5

[
Î + Q̂ Û + jV̂

Û − jV̂ Î − Q̂

]
(49)

We also assume we have made full polarization images and let the The corrected visibilities for baseline
pq using the solution in (47) at that pixel can be given by (50), where we have used (38).

Ĝ−1
p

[
XX XY
Y X Y Y

]

pq

Ĝ−H
q (50)

= 0.5

[
Î + Q̂ Û + jV̂

Û − jV̂ Î − Q̂

]

=

[
1/|E(γ0, β0)| 0

0 1/|E(γ0, β0 − π/2)|

]
×
[

Eθ(γ, β) Eφ(γ, β)
Eθ(γ, β − π/2) Eφ(γ, β − π/2)

]
× 0.5

[
I + Q U + jV

U − jV I −Q

]

×
[

Eθ(γ, β) Eφ(γ, β)
Eθ(γ, β − π/2) Eφ(γ, β − π/2)

]H

×
[

1/|E(γ0, β0)| 0
0 1/|E(γ0, β0 − π/2)|

]

Using (49), we can rewrite (50) in compact form as

Ĉ(γ, β) = Π(γ, β)CΠ(γ, β)H (51)

where Π(γ, β) is given by (52).

Π(γ, β)
△
=

[
|E(γ0, β0)| 0

0 |E(γ0, β0 − π/2)|

]−1

×
[

Eθ(γ, β) Eφ(γ, β)
Eθ(γ, β − π/2) Eφ(γ, β − π/2)

]
(52)

By inverting (51), we can get the full Stokes parameters for pixel at (γ,β), after correcting for the beam.
However, for longer integration time, things become more complicated. Let Ĉ be the coherency for the full
observation as given in (53).

Ĉ =
∑

γ,β

Ĉ(γ, β) =
∑

γ,β

(
Π(γ, β)CΠ(γ, β)H

)
6=
∑

γ,β

(Π(γ, β))C
∑

γ,β

(
Π(γ, β)H

)
(53)

We see from (53) that for longer integration, we cannot apply the integrated beam to recover the true co-
herency. However, if we are only concerned with Stokes I value at the given pixel (i.e. we assume sources to
be unpolarized), we can indeed do this. We use the fact that for an unpolarized source, C = II, where I is an
identity. The proof is given in (54).

Î = trace(Ĉ) (54)

= trace(
∑

γ,β

Ĉ(γ, β))

= trace(
∑

γ,β

(
Π(γ, β)CΠ(γ, β)H

)
)

=
∑

γ,β

(
trace(Π(γ, β)CΠ(γ, β)H)

)

=
∑

γ,β

(
trace(CΠ(γ, β)HΠ(γ, β))

)

= trace(C
∑

γ,β

(
Π(γ, β)HΠ(γ, β)

)
)

= Itrace(
∑

γ,β

(
Π(γ, β)HΠ(γ, β)

)
)
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We can simplify our correction in (51) even further if we know a priori the sources are unpolarized. Notice
that both C and Ĉ are Hermitian. So we see (51) as the eigenvalue decomposition of Ĉ (for a Hermitian
matrix, the eigenvalues are real and the eigenvectors are orthonormal). So, without knowing the beam itself,
we can recover Stokes I flux for an unpolarized pixel. This can also be used for verification of existing beam
models.

10 Flux estimation

In this section we consider the estimation of flux densities of the sources in our sky model, in particular the
ones in the A team. We start from (38) and consider perfect uv plane calibration. The observed data Vpq is

given by (55) and assuming perfect calibration, ignoring the phase term, we get the corrected data Ṽpq for
the interferometer pq as in (56).

Vpq = GpKp

(N−1∑

s=0

Ep,s(γ, β)CsE
H
q,s(γ, β)

)
KH

q GH
q (55)

Ṽpq = (Kp)
−1(Gp)

−1Vpq(Gq)
−H(Kq)

−H =
(N−1∑

s=0

Ep,s(γ, β)CsE
H
q,s(γ, β)

)
(56)

In order to estimate fluxes, we need information of the beam or in other words the E-Jones matrix.
However, in reality we only have a model which always has some error. There are basically two ways of
estimating the flux as well as the beamshape. The obvious method is to find them both using uv plane data.
The other way is to use snapshot images.

10.1 Direct method

If the true E-Jones is given by Ẽp,s(γ, β), let us relate this to the value that we model, Ep,s(γ, β), as in (57).

Ẽp,s(γ, β) = Ep,s(γ, β)(1 + εs(γ)), 0 ≤ γ ≤ π/2 (57)

In (57), we assume the error εs(γ) for a given source s is real and is only dependent on the elevation γ.
The estimate of the coherencies C̃s is related to the true coherencies Cs as in (58), assuming that the solver
converges to the optimal value.

N−1∑

s=0

Ẽp,sCsẼ
H
q,s =

N−1∑

s=0

(1 + εs(γ))2Ep,sCsE
H
q,s =

N−1∑

s=0

Ep,sC̃sE
H
q,s (58)

For unpolarized sources, we have C̃s = Ĩs/2I, Cs = Is/2I as our coherencies, where the true and estimated
Stokes I components are given by Is and Ĩs, respectively. For the m-th source, assuming we have accurate
fluxes for all other sources, the estimate is given as in (59).

Ĩm = (1 + εm(γ))2Im +
1

trace(Ep,mEH
q,m)

N−1∑

s=0,s6=m

((1 + εs(γ))2 − 1)Istrace(Ep,sE
H
q,s) (59)

The error in the flux estimate κm is given as in (60).

κm(γ) = ((1 + εm(γ))2 − 1)Im +
1

trace(Ep,mEH
q,m)

N−1∑

s=0,s6=m

((1 + εs(γ))2 − 1)Istrace(Ep,sE
H
q,s) (60)

For idential beams, (60) has only real terms. We see that if εm(γ) > 0, then κm(γ) > 0 and if εm(γ) < 0,
then κm(γ) < 0. We can use (60) to find the optimal value of elevation, γm, for a given source to estimate its
flux with minimum error. This implies that we can find the optimal time for flux estimation of each source.

In order to proceed, we have to make some assumptions about the error in our beam model. At the zenith,
we assume we have no error, or εs(γ = π/2) = 0 and at the horizon, we assume the error to be maximum. We
shall assume a linear relationship, with maximum error of η at the horizon, as in (61).

εm(γ) =
η

π/2
(π/2− γ), 0 ≤ γ ≤ π/2 (61)

Note that in (61), the elevation γ is unique to each source.
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Figure 15: Elevation of the A Team during a 24 hour observation

We have given the elevations of the A Team sources during a 24 hour observation in Fig. 15. For the same
observation, we have given the calculated value of (60) for Cyg A, Tau A, and Vir A, respectively in Fig. 16.
This is for an observation with LBA dipoles at 60 MHz. The nominal flux values used were: Cas A (20000Jy),
Cyg A (20000 Jy), Tau A (1800 Jy) and Vir A (3000 Jy).

Using Fig. 16, we can find the best time (or elevation) for flux estimation of each source. We have given
the first results of this measurement in Figs. 17,18,19. Note that this is our initial result and we need to
iterate to arrive at more accurate values.

10.2 Snapshot method

Estimation of flux and beam model can be simplified by using snapshot images. If we make snapshot images
of the sky (say at 15 min intervals), the absolute positions of the sources on the dipole beam can be given
as in Fig. (20) for a 24 hour observation. Note that we exploit the 90 degree rotation of the Y dipole w.r.t. X
dipole to double the number of positions.

For each position in Fig. (20), we get a contraint on the beam model as well as the flux of the selected
source. This can be given as in (62).

‖Ĉ−E(θ)CE(θ)H‖2 (62)

In (62), we have parametrized the beamshape using an orthonormal basis (i.e., polar shapelets) where the

parameters are given by θ. The estimated flux from the snapshot image is given as Ĉ and the true (unknown)
flux is given by C, in coherency form. By alternatively solving (62) for the beam and the fluxes, we can
hopefully obtain a unique solution.
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Figure 17: Flux ratio Cas A/Cyg A, with Cas A at 20000 Jy
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Figure 18: Flux of Tau A, with Cas A at 20000 Jy
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Figure 19: Flux of Vir A, with Cas A at 20000 Jy
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