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ABSTRACT

Data-parallel programming is more important than ever since serial performance is stag-
nating. All mainstream computing architectures have been and are still enhancing their
support for general purpose computing with explicitly data-parallel execution. For CPUs,
data-parallel execution is implemented via SIMD instructions and registers. GPU hard-
ware works very similar allowing very efficient parallel processing of wide data streams
with a common instruction stream.

These advances in parallel hardware have not been accompanied by the necessary ad-
vances in established programming languages. Developers have thus not been enabled to
explicitly state the data-parallelism inherent in their algorithms. Some approaches of GPU
and CPU vendors have introduced new programming languages, language extensions, or
dialects enabling explicit data-parallel programming. However, it is arguable whether the
programming models introduced by these approaches deliver the best solution. In addi-
tion, some of these approaches have shortcomings from a hardware-specific focus of the
language design. There are several programming problems for which the aforementioned
language approaches are not expressive and flexible enough.

This thesis presents a solution tailored to the C++ programming language. The concepts
and interfaces are presented specifically for C++ but as abstract as possible facilitating adop-
tion by other programming languages as well. The approach builds upon the observation
that C++ is very expressive in terms of types. Types communicate intention and semantics
to developers as well as compilers. It allows developers to clearly state their intentions and
allows compilers to optimize via explicitly defined semantics of the type system.

Since data-parallelism affects data structures and algorithms, it is not sufficient to en-
hance the language’s expressivity in only one area. The definition of types whose opera-
tors express data-parallel execution automatically enhances the possibilities for building
data structures. This thesis therefore defines low-level, but fully portable, arithmetic and
mask types required to build a flexible and portable abstraction for data-parallel program-
ming. On top of these, it presents higher-level abstractions such as fixed-width vectors and
masks, abstractions for interfacing with containers of scalar types, and an approach for au-
tomated vectorization of structured types.

The Vc library is an implementation of these types. I developed the Vc library for re-
searching data-parallel types and as a solution for explicitly data-parallel programming.
This thesis discusses a few example applications using the Vc library showing the real-
world relevance of the library. The Vc types enable parallelization of search algorithms
and data structures in a way unique to this solution. It shows the importance of using the
type system for expressing data-parallelism. Vc has also become an important building
block in the high energy physics community. Their reliance on Vc shows that the library
and its interfaces were developed to production quality.
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Introduction





1
SIMD

Computer science research is different from
these more traditional disciplines.

Philosophically it differs from the physical sciences
because it seeks not to discover, explain,

or exploit the natural world, but instead to study
the properties of machines of human creation.

— Dennis M. Ritchie (1984)

This thesis discusses a programming language extension for portable expression
of data-parallelism, which has evolved from the need to program modern SIMD1

hardware. Therefore, this first chapter covers the details of what SIMD is, where it
originated, what it can do, and some important details of current hardware.

1.1 THE SIMD IDEA

The idea of SIMD stems from the observation that there is data-parallelism in al-
most every compute intensive algorithm. Data-parallelism occurs whenever one or
more operations are applied repeatedly to several values. Typically, programming
languages only allow iterating over the data, which leads to strictly serial seman-
tics. Alternatively (e.g. with C++), it may also be expressed in terms of a standard
algorithm applied to one or more container objects.2

Hardware manufacturers have implemented support for data-parallel execu-
tion via special instructions executing the same operation on multiple values (List-
ing 1.1). Thus, a single instruction stream is executed but multiple (often 4, 8, or
16) data sets are processed in parallel. This leads to an improved transistors per
FLOPs3 ratio4 and hence less power usage and overall more capable CPUs.

1 Single Instruction, Multiple Data
2 Such an algorithm can relax the iteration ordering and thus place additional restrictions on the

semantics—in terms of concurrency—of the executed code. (cf. [36])
3 floating-point operations
4 The number of transistors required for instruction decoding and scheduling is large relative to the

transistors needed for the arithmetic and logic unit. However, mainly the latter must be increased if

3
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Figure 1.1: Transformation of four scalar operations into one SIMD operation.

; scalar multiply-add: 1 FLOP per instruction
mulss %xmm1,%xmm0
addss %xmm2,%xmm0

; SSE multiply-add: 4 FLOP per instruction
mulps %xmm1,%xmm0
addps %xmm2,%xmm0

; AVX multiply-add: 8 FLOP per instruction
vmulps %ymm1,%ymm0,%ymm0
vaddps %ymm2,%ymm0,%ymm0

; AVX with FMA multiply-add: 16 FLOP per instruction
vfmadd213ps %ymm1,%ymm0,%ymm2

Listing 1.1: Example of SIMD instructions in x86-64 assembly.

Figure 1.1 visualizes the conceptual idea of SIMD execution. Code that needs to
execute four add operations on four different value pairs needs four instructions
to execute the addition operations. Alternatively, the same result can be achieved
with a single SIMD instruction that executes four addition operations on two vec-
tors with four values each. In terms of operations per instruction, the SIMD variant
is a factor four better. Since on most modern CPUs the scalar and the vector instruc-
tion execute equally fast this translates directly to a factor four higher operations
per cycle throughput.

In the following, 𝒲T denotes the number of scalar values in a SIMD vector reg-
ister of type T (the width of the vector). Thus, with SSE6 or AltiVec 𝒲float = 4 and
with AVX7 it is 8 (see Section 1.4). In addition, 𝒮T denotes sizeof(T). It follows
that 𝒮T ⋅ 𝒲T is the size of a SIMD vector of type T in Bytes.

a CPU5 adds SIMD instructions or grows the SIMD width. Therefore, the total number of transistors
grows by a fraction whereas the peak performance (in terms of operations per cycle) doubles.

6 Streaming SIMD Extensions
7 Advanced Vector Extensions
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1.2 SIMD COMPUTERS

In the original Von Neumann architecture [66] from 1945 the processing unit of a
computer consists of a “central arithmetical part”, a “central control part”, vari-
ous forms of memory, and I/O. In all of the first computer designs registers and
operations were meant to store and process only single (scalar) values. Thus, the
ALUs8 only processed one value (normally two inputs and one output) with a
given instruction. This model later became known as SISD (according to Flynn
[24]), because a Single Instruction processes a Single Data element.

In 1972, the ILLIAC IV [38] was the first array machine to introduce SIMD com-
puting [78]. Array machines employ multiple processing units (PEs9) in parallel,
which are controlled from the same instruction stream. They may support condi-
tional execution via flags that enable/disable a selected PE. The PEs have some
form of local memory and a local index to identify their position in the whole ma-
chine. Tanenbaum [78] describes the history and architecture of these machines in
more detail. These machines became known as SIMD machines because a Single
Instruction processes Multiple Data elements.

The modern implementation of SIMD machines are called vector machines. The
name vector stems from the use of wide registers able to store multiple values.
Associated vector instructions process all entries in such vector registers in parallel.
For some time, vector instructions were only targeted at specific problems, such
as multimedia processing. However, over the years many more instructions have
been introduced, making the vector units more suited for general purpose com-
puting.

Whereas array machines have a greater separation between the different PEs,
vector machines use the same memory for the whole vector register. Additionally,
there is no natural identification in vector machines that would resemble the local
index of array machines. Vector instructions, in most hardware, calculate the re-
sult for all vector lanes10 and have no means to selectively write to the destination
register. Subsequent blend instructions (or a combination of and, andnot, or) can
be used to achieve conditional assignment. Newer vector instructions (the Intel
Xeon Phi and AVX-512) now support generic write-masking encoded into every
instruction.

The rest of the document will focus on vector machines. Most considerations can
be directly translated to a classical SIMD machine, though.

8 Arithmetic Logic Units
9 Processing Elements

10 A vector lane (or SIMD lane) identifies a scalar entry in a vector register. Most SIMD instructions
execute the same operation per lane and do not read/write any data from/to lanes at a different
offset in the register. In that sense they are comparable to the PEs of array machines.
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Figure 1.2: Overview over common SIMD vector operations. Shuffle operations are special
because they execute cross-lane data movement and are important to build
reduction functions, for example. Load and gather operations copy 𝒲T values
from consecutive or indexed—respectively—memory locations. The reverse
operations, store and scatter, also exist. The remaining depicted operations
show the concurrent execution of 𝒲T operations on 𝒲T different operands.

1.3 SIMD OPERATIONS

The set of possible SIMD operations closely mirrors the available scalar instruc-
tions. Accordingly, there are instructions for arithmetic, compare, and logical op-
erations. Figure 1.2 gives an overview for 𝒲T = 4. However, SIMD instruction sets
typically are not complete. For instance, the SSE 32-bit integer multiply instruction
did not exist until the introduction of SSE4. Also division (especially for integers)
is a likely candidate for omission in SIMD instruction sets (cf. [41, 70]). This differ-
ence in available operations is one reason why it is not easy to predict the speedup
from vectorization of a given algorithm.
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1.3.1 alignment

SIMD programming requires special attention to alignment, otherwise the pro-
gram may perform worse or even crash. The C++ standard defines alignment in
[48, §3.11]:

Object types have alignment requirements which place restrictions on
the addresses at which an object of that type may be allocated. An
alignment is an implementation-defined integer value representing the
number of bytes between successive addresses at which a given object
can be allocated.

For fundamental types the alignment requirement normally equals the size of the
type.

A vector register requires 𝒲T ⋅ 𝒮T Bytes when stored in memory. SIMD archi-
tectures typically require the natural alignment of vectors in memory to be equal
to their sizes. Thus, the alignment requirement is 𝒲T times higher than for type T
(𝑎𝑙𝑖𝑔𝑛𝑜𝑓 (VT) = 𝒲T ⋅ 𝑎𝑙𝑖𝑔𝑛𝑜𝑓 (T), where VT is the type for a vector of T). Only every
𝒲T

𝑡ℎ address in an array of T is a valid aligned address for vector register load and
store operations. One may therefore consider the memory to be an interleaving of
memory that is local to each SIMD lane. Consequently, memory is partitioned into
𝒲T parts for a given type T.

Nevertheless, there are several mechanisms to break this natural partitioning of
the memory and assign data to different SIMD lanes. The most obvious of them are
unaligned loads and stores. These are usable with an arbitrary offset into an array.
It is also possible to execute two aligned loads and stores together with one or more
vector shuffle instructions. Additionally, for greatest flexibility, a SIMD instruction
set might support gather and scatter instructions. These take a base address and a
vector of offsets to load or store the entries of a vector from/to arbitrary memory
locations.

1.3.2 comparisons

Another important set of instructions are comparisons. In contrast to compare op-
erations of fundamental types, there cannot be a single true or false answer for
a SIMD comparison. Instead there must be 𝒲T boolean values in the result. This
implies that such an instruction cannot sensibly set any of the flags that most ar-
chitectures use for branching instructions.

A vector of 𝒲T boolean values is called a mask. There exist different implemen-
tations for such masks. They can either use the same registers as the data vectors
or they are stored in specialized mask registers. Special mask registers can thus be
optimized to store only max{𝒲T∀T} Bits. If the mask is stored in a vector register,
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it is useful to have an instruction converting the mask to an integer where every
bit corresponds to one boolean value of the mask.

1.4 CURRENT SIMD INSTRUCTION SETS

There have been many different SIMD computers, but the most relevant SIMD in-
struction sets at the time of writing are the ones based on x86, ARM, and PowerPC
architectures.

1.4.1 powerpc

The PowerPC architecture is most relevant for its use in the Xbox 360 and PlaySta-
tion 3 game consoles and the Blue Gene supercomputers. These CPUs provide
SIMD instructions known as AltiVec, VMX, VMX128, or Velocity Engine. PowerPC
Microprocessor Family : Vector / SIMD Multimedia Extension Technology Programming
Environments Manual [70] documents the details: The vector registers are 128 bits
wide and can store sixteen 8-bit, eight 16-bit, or four 32-bit integers or four 32-bit
single-precision floats. Thus, 64-bit data types, especially double-precision floats,
are not supported in AltiVec vector registers. In addition to typical arithmetic op-
erations the instruction set contains FMA11 operations. Also, AltiVec contains a
generic permute instruction for very flexible data reorganization from two source
registers.

1.4.2 arm

The ARM architecture is becoming more and more relevant, not only because of its
use in mobile products, but moreover because of its potential as energy-efficient
general-purpose computing platform. Most current ARM designs include a SIMD
instruction set called NEON, which was introduced with the ARM Cortex™-A8
processor (ARMv7 architecture). Introducing NEON™ [47] provides an introduc-
tion. The vector registers can be accessed as sixteen 128-bit or thirty-two 64-bit reg-
isters. There is no need to explicitly switch between 128-bit and 64-bit vector regis-
ters as the instruction used determines the view on the register bank. If the VFPv3
instructions are implemented, the vector registers additionally alias the floating-
point registers. The registers can pack 8-bit, 16-bit, 32-bit, or 64-bit integers or 32-bit
single-precision floats. Optionally, NEON supports fast conversion between sin-
gle-precision floats and fixed-point, 32-bit integer, or half-precision floats.

Even without the NEON extension, ARM CPUs (since ARMv6) support a small
set of SIMD instructions on integer values packed into standard 32-bit registers.

11 Fused Multiply-Add
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1.4.3 x86

Intel introduced the first SIMD extension to the x86 family in 1997 with the “Pen-
tium processor with MMX Technology” [69]. This extension is still supported but
for all practical purposes superseded by the SSE and SSE2 extensions that followed
in 1999 and 2001. SSE provides eight (sixteen in 64-bit mode) vector registers which
are 128 bits wide. It supports 8-bit, 16-bit, 32-bit, and 64-bit integers in addition
to 32-bit single-precision and 64-bit double-precision floats. The available instruc-
tions for the different integer types differ slightly and some useful integer instruc-
tions were only added with later SSE revisions. For all recent microarchitectures
the usage of SIMD instructions improves computational throughput by a of factor
𝒲T .12 With the Intel SandyBridge and AMD Bulldozer microarchitectures (both
released in 2011) AVX was introduced, doubling the SIMD register width on x86.
However, AVX only shipped full-width arithmetic instructions for single-preci-
sion and double-precision floats. Thus, 𝒲T effectively only doubled for float and
double. With the Intel Haswell microarchitecture (released in 2013) AVX2 was in-
troduced. AVX2 includes the missing integer arithmetic instructions. Additionally,
AVX2 includes gather instructions able to optimize indirect array reads. AMD in-
troduced FMA instructions with the Bulldozer microarchitecture in 2011. The use
of FMA instructions is required on Bulldozer for full performance. Intel introduced
FMA with Haswell and thus doubled SIMD performance relative to the previous
microarchitecture, as well.

1.4.4 intel xeon phi

The Intel Xeon Phi is a highly parallel, high performance computing accelerator to
compete with GPUs13 for general-purpose computing. It is built from many small,
relatively slow, but 16-way vectorized CPU cores. The Xeon Phi provides 32 vector
registers of 512 bits width. It supports sixteen 32-bit integers, sixteen 32-bit single-
precision floats, or eight 64-bit double-precision floats. There is limited support
for 64-bit integers. Other data types are supported via cheap conversions at load
or store.

On the Xeon Phi, one vector register is exactly as large as one cache line. Con-
sequently, any unaligned vector load or store is certain to be more expensive than
an aligned access. This is clearly visible in the Xeon Phi’s instruction set where un-
aligned loads and stores each require two instructions: one instruction per cache
line. Furthermore, the large register size has implications on locality considera-

12 This is not entirely true for the AMD Bulldozer microarchitecture. The effective SIMD width is that
of SSE. AVX support is implemented as execution of two 128-bit operations.

13 Graphics Processing Units
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Figure 1.3: Themaximum single-precision FLOP/cycle when using SIMD/scalar instructions
on a single thread on x86(-64) (maximum of AMD and Intel CPUs) plotted
against year of releases of new microarchitectures. [74, 26, 41]

tions since loading one full vector does not fetch any other related or unrelated
data.

1.5 THE FUTURE OF SIMD

In the last years we have seen a steady rise in importance and performance relative
to scalar instructions for SIMD (see Figure 1.3). This development is unlikely to
reverse. It is consequential to expect that vector registers are going to become wider
and/or that more efficient SIMD instructions will be released. The AVX instruction
coding (VEX prefix) has a 2-bit field encoding the width of the register. Values 0
and 1 are used for 128-bit and 256-bit width, respectively. Values 2 and 3 are likely
to be used for 512-bit and 1024-bit wide vectors.

GPUs have shown the great potential of SIMD in general purpose computing.
The important GPU architectures are internally similar to SIMD architectures, even
though they are typically able to make independent progress on all the “quasi-
threads”, requiring an explicit barrier for inter-lane communication. Their pro-
gramming models are becoming more flexible with every release and will likely
converge more and more to general purpose programming models (such as full
C++ support).
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1.6 INTERACTION WITH OTHER FORMS OF PARALLELISM

Hardware designers have implemented several dimensions of parallel execution
in current CPU architectures to achieve high performance. It is therefore certainly
possible that, if use of the SIMD dimension is increased, a different dimension has
less opportunity to parallelize the execution. This section will discuss the issue.

1.6.1 instruction level parallelism

CPUs use pipelining to start execution of subsequent instructions in the instruc-
tion stream while previous ones have not been retired yet. However, in general
an instruction cannot start before all its input registers are ready, implying that
all instructions writing to those registers need to have retired. Therefore, a stream
of instructions where each one depends on the output of the previous one can-
not benefit from pipelining. It is often possible to execute several serial instruction
streams on independent data streams in the same time required to process a single
data stream. Consequently, compilers (and sometimes also developers) apply loop
unrolling to create this data-parallel stream of independent calculations.

Some transformations from a scalar implementation to a SIMD implementation
may reduce the opportunity for pipelined execution. This is especially the case
with “vertical vectorization” (cf. [59]), where several independent, serially exe-
cuted instructions are transformed into a single SIMD-parallel instruction. In such
a case the execution units are stalling for longer durations in the SIMD implemen-
tation. It is one of the reasons why vectorization sometimes does not yield the ex-
pected speedup. Especially, because current compilers are sometimes not as smart
about loop unrolling SIMD code as they are for scalar code.14 Manual loop un-
rolling of SIMD code often improves the vectorization results.

Superscalar execution is another dimension of parallelism present in current
CPUs [40]. The CPU schedules instructions to different execution units, which
work independently. Typically, the execution units are specialized for a specific
set of instructions. For example, the Intel SandyBridge CPU can schedule execution
of up to 6 micro-ops every cycle. Mapped to actual instructions this could be one
floating-point add/sub, one floating-point mul, and two 128-bit load instructions
[41]. Superscalar execution therefore does not compete with SIMD parallelization.
It equally accelerates SIMD and scalar instructions.

Speculative execution is an optimization tied to branch prediction. The CPU pre-
dicts which path the code will take at a given branch instruction. It will then con-
tinue to execute the predicted code path (only operations that can be rolled back) as
if the branch was taken. On a mis-prediction this work will be rolled back and the
other branch will be executed. SIMD code often has fewer branches because branch

14 This is not a fundamental problem, but just missing optimizations in the compiler.
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conditions are tied to scalar values and not the whole vector. Consequently, SIMD
code has to execute all branches and use conditional assignment to merge the re-
sults. SIMD code therefore does not benefit as much from speculative execution
and might not yield a good speedup for algorithms with many conditionals.

1.6.2 multiple cores

Common frameworks for thread-parallelization, such as OpenMP [68] and TBB15

[45] provide easy to use multi-threaded execution of data-parallel algorithms (and
more) via fork-join execution. The common parallel-for construct splits the work
of a given loop into several chunks that are executed on separate worker threads.
This parallelization strategy is very efficient because it makes the code scale from
low to high CPU core counts rather easily. However, SIMD relies on data-paral-
lelism as well. Therefore, on the one hand, vectorization and multi-threading may
compete for the same inherent parallelism. On the other hand, the combination
of multi-threading and vectorization may also complement each other, because
in contrast to SIMD execution threads allow concurrent execution of different/di-
verging tasks.

1.7 COMMON OPTIMIZATION CHALLENGES

If a given scalar code is transformed into SIMD code the throughput of arithmetic
(and logic and compare) operations can increase as much as by a factor of 𝒲T . For
almost every algorithm this requires an equal increase in load/store throughput.
Thus, the size of the working set increases and the cache may be under consider-
ably higher pressure.

The load/store unit may also be a bottleneck. For example, the Intel SandyBridge
and AMD Bulldozer microarchitectures both can execute up to two 128-bit loads
and one 128-bit store per cycle [74, 41]. Thus, only one AVX vector can be read from
L1 cache per cycle, and only one AVX vector can be stored to L1 cache every second
cycle. This is a considerable limitation, given that these CPUs can execute two AVX
floating-point instructions or even three AVX logical operations per cycle. Intel
therefore improved the Haswell microarchitecture to allow two 256-bit loads and
one 256-bit store per cycle [40].

Figure 1.4 shows the result of a benchmark (cf. Appendix A) testing the float-
ing-point operations throughput for different scenarios. It turns out that SIMD
improves the throughput for every tested case. Even if very few operations are
executed over a very large working set, the result is slightly improved by using
SIMD. This is visible in the lower plot showing the speedup factor AVX

Scalar .

15 Intel Threading Building Blocks
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Figure 1.4: The plot shows the measured (single-precision) FLOPs per clock cycle depend-
ing on the working set size and the amount of calculation per data access
(loads and stores combined). The benchmark was compiled and executed
once with AVX instructions and once without SIMD instructions for an AMD
Bulldozer CPU. It uses FMA instructions in both cases. However, the number
of values that are processed in parallel depend on 𝒲float .
The speedup plot shows the quotient of the AVX throughput relative to the
scalar throughput ( AVX

Scalar ). (Note that for AVX, with 𝒲float = 8, the best
theoretical speedup is 800%. See Appendix A for the benchmark code.)
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1.8 CONCLUSION

Software developers and designers have to consider SIMD. Developers need to
understand what SIMD can do and how it can be used. Only then a developer
can design data structures and algorithms which fully utilize modern CPUs. Es-
pecially compute intensive programs need to use the SIMD capabilities, otherwise
CPU utilization will only be at 6–25% of theoretical peak performance. However,
programs that are bound by memory accesses can also benefit from vectorization
since SIMD can make many memory operations more efficient (cf. Figure 1.4). Only
tasks such as user interaction logic (and other inherently sequential codes) often
have no use for SIMD.

From the discussion of different forms of parallelism we can conclude that it is
helpful for developers to understand how SIMD and other forms of parallelism
work. Blindly vectorizing a given code might not yield the expected performance
improvement. Therefore, the interface for data-parallel programming should pro-
vide as much guidance as possible. Such an interface needs to be designed from
use-cases of important parallelization patterns, and not only from existing hard-
ware capabilities. This design process will additionally lead to an abstraction that
can hide the substantial differences in hardware.



2
LOOP-VECTORIZATION

It is a common pattern of software development to execute a sequence of opera-
tions on different input values. Programming languages support this pattern with
loop statements. In particular, the for-loop is designed for iteration over an index
or iterator range. In many cases the individual iterations of the loop are indepen-
dent from one another (or could be expressed in such a way) and could therefore
be executed in any order and even in parallel. This observation has led to many
parallelization interfaces that build upon parallelization of loop iterations.

Loop-vectorization, including auto-vectorization, is likely the most prevalent
method of vectorization. Since this work presents a solution for SIMD program-
ming in C++ this chapter will present the main alternatives and discuss their limita-
tions and issues. The following chapters on Vc (Part II) will show that these issues
are solved / do not occur with SIMD types.

2.1 DEFINITIONS

countabl e loop s A common requirement of tool-based vectorizers is that
the number of iterations a loop will execute can be determined before the loop is
entered. Loops where this condition holds are called countable.

v ec tor i zat ion The process of transforming a serial/scalar code into vector/
SIMD code is called vectorization. This transformation is relatively simple to apply
for (inner) loops. As a simple example consider Listing 2.1. (The iteration-count
can be determined before the loop is entered, making the loop countable.) The iter-
ations are all independent, because &d[i] != &d[j] ∀𝑖 ≠ 𝑗. Thus, the loop may
be transformed into N/𝒲float iterations where each remaining iteration executes

void func(float *d) {
for (int i = 0; i < N; ++i) {
d[i] += 1.f;

}
}

Listing 2.1: A simple countable loop of independent calculations.

15
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+++++++++++++++++++++++++

+++++++++++++++++++++++++
+++++++++++++++++++++++++
+++++++++++++++++++++++++
+++++++++++++++++++++++++

+++++++++++++++++++++++++

i = 0..N:
d[i] + 1

i = 0..N/4:
d[4i]
d[4i+1]
d[4i+2]
d[4i+3]

+
+
+
+

1
1
1
1

i = N-N%4..N:
d[i] + 1

Figure 2.1: Illustration of the loop transformation which the vectorizer applies: A loop
over N additions is transformed into a vectorized loop and possibly a scalar
prologue and/or epilogue loops. This transformation is the basic strategy for
(automatic or manual) vectorization of most data-parallel problems.

𝒲float additions with one instruction (Figure 2.1). Plus a remainder loop in case
N is not a multiple of 𝒲float .

auto -vec tor i zat ion Auto-vectorization describes the process of automati-
cally locating vectorizable code and applying the necessary code transformations.
In most cases this is done in an optimization step of the compiler. Alternatively,
there are tools (i.e. meta-compilers) translating scalar code to (compiler-specific)
SIMD code. The auto-vectorizer identifies vectorizable loops or possibly vectoriz-
able sequences of scalar operations on adjacent values in an array.

e x p l i c i t loop -v ec tor i zat ion For a given loop, the developer can annotate
the loop as SIMD loop. There are two basic approaches to these loop annotations:

1. The loop annotation tells the compiler that the developer expects the loop to
be vectorizable under the transformation rules of the auto-vectorizer. There-
fore, the developer can reason about his/her code with serial semantics1. On
the other hand, if auto-vectorization fails it is now possible for the compiler to
generate more diagnostic information.2 In addition to stating the intent, the
annotation typically supports additional clauses able to guide the vectorizer
to better optimizations.

2. The loop annotation alters the semantics of the loop body. Serial semantics
do not apply anymore. Instead vector semantics are used and the compiler
does not have to prove that serial semantics and vector semantics produce

1 “Serial semantics” characterizes the normal C++ sequenced before rule [48, §1.9 p13].
2 At least with GCC3 4.9.1 no useful diagnostics were printed when the loop failed to be vectorized

(even with the -Wopenmp-simd flag).
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the same result. Thus, cross-iteration data-dependencies (e.g. for (int i
= 0; i < N - 1; ++i) a[i] += a[i + 1];) will not inhibit vectoriza-
tion, enabling a new class of algorithms to be vectorizable via loops. How-
ever, it can lead to subtle bugs where the developer (erroneously) reasons
about the code with serial semantics.

The following discussion will only refer to the second variant of explicit loop-
vectorization, because it is the more general and powerful solution. The first vari-
ant only slightly improves over the auto-vectorization status-quo.

v ec tor s emant i c s A thorough definition of vector semantics is an important
prerequisite for an implementation of explicit loop-vectorization in a program-
ming language. The Parallelism TS [49] states the following on the semantics of
code executed with a vector-parallel execution policy:

The invocations of element access functions […] are permitted to exe-
cute in an unordered fashion […] and unsequenced with respect to one
another within each thread.

For a loop, this means that individual iterations can make independent progress,
progress in lock-step, or in any conceivable interleaving. Riegel [71] defines a pos-
sible forward progress guarantee for “weakly parallel execution”:

The implementation does not need to ensure that a weakly parallel EA4

is allowed to execute steps independently of which steps other EAs
might or might not execute.

Geva et al. [30] state a formal definition of the wavefront execution model (cf. [35]),
which is a stricter progress guarantee for vector semantics:

A SIMD loop has logical iterations numbered 0, 1, …, N-1 where N is
the number of loop iterations, and the logical numbering denotes the
sequence in which the iterations would execute in the serialization of
the SIMD loop. The order of evaluation of the expressions in a SIMD
loop is a partial order, and a relaxation of the order specified for se-
quential loops. Let X𝑖 denote evaluation of an expression X in the i𝑡ℎ

logical iteration of the loop. The partial order is:
For all expressions X and Y evaluated as part of a SIMD loop, if X is
sequenced before Y in a single iteration of the serialization of the loop
and i ≤ j, then X𝑖 is sequenced before Y𝑗 in the SIMD loop.
[ Note: In each iteration of a SIMD loop, the “sequenced before” rela-
tionships are exactly as in the corresponding serial loop. — end note ]

4 EA (Execution Agent) is defined by ISO/IEC 14882:2011 [48, §30.2.5.1] as: “An execution agent is an
entity such as a thread that may perform work in parallel with other execution agents.”
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This overview shows that there is no consensus—at this time—for the specifics
of vector semantics. Any further discussion in this document involving vector se-
mantics applies to all variants of vector semantics, though.

2.2 AUTO-VECTORIZATION

2.2.1 uses for auto-vectorization

It is the job of a compiler to create the best machine code from a given source. The
executable code should make use of the target’s features (in terms of instruction
set and micro-architecture) as much as is allowed under the “as-if” rule of C++ [48,
§1.9 p1]. Therefore, auto-vectorization is an important optimization step. Many
codes can benefit without any/much extra effort from the developer’s side. This is
important for low-budget development or developers without experience in par-
allel programming. It can also be used for highly optimized codes. Though, in this
case explicit loop-vectorization should be preferred, as the implicit expression of
parallelism is fragile in terms of maintainability.

2.2.2 inhibitors to auto-vectorization

Intel documented the capabilities and limitations of the ICC5 auto-vectorizer in
detail [4]. They point out several obstacles and inhibitors to vectorization:

Non-contiguous memory accesses: Non-contiguous memory accesses lead
to inefficient vector loads/stores. Thus the compiler has to decide whether
the computational speedup outweighs the inefficient loads/stores.

Data dependencies: Data dependencies between the iteration steps make it
hard or impossible for the compiler to execute loop steps in parallel.

Countable: If the loop is not countable the compiler will not vectorize.

Limited branching: Branching inside a loop leads to masked assignment. In-
stead of actual branches in the machine code, the auto-vectorizer has to emit
code that executes all branches and blend their results according to the con-
dition on each SIMD lane. If the compiler determines that the amount of
branching negates the improvement of vectorization it will skip the loop.

Outer loops: Outer loops (loops containing other loops) are only vectorized af-
ter certain code transformations were successful.

Function calls: Function calls inhibit vectorization. However, functions that
can be inlined and intrinsic math functions are exceptions to this rule.

5 Intel C++ Compiler
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Thread interaction: Any calls to mutexes, or atomics inhibit auto-vectoriza-
tion.

Auto-vectorization in GCC [5] additionally documents that for some SIMD trans-
formations the order of arithmetic operations must be modified. Since this kind
of optimization can change the result when applied to floating-point variables
it would deviate from the C++ standard. The standard specifies that operators of
equal precedence are evaluated from left to right. Consequently, Auto-vectorization
in GCC [5] recommends the -ffast-math or -fassociative-math flags for best
auto-vectorization results.

2.2.3 limitations of auto-vectorization

In most cases, auto-vectorization cannot instantly yield the best vectorization of a
given algorithm (if at all). This is in part due to the limited freedom the compiler
has in transforming the code, such as aliasing issues, fixed data structures, point-
er alignment, function signatures, and conditional statements. Another important
part is that the user did not express the inherent data-parallelism explicitly. The
compiler has to infer information about the problem that got lost in translation to
source code. Finally, the user has to limit himself to a subset of the language as
listed in Section 2.2.2.

If a user wants to vectorize his/her code via auto-vectorization, it is necessary
to let the compiler report on its auto-vectorization progress and use this informa-
tion to adjust the code for the needs of the vectorizer. Sometimes this can require
larger structural changes to the code, especially because data storage must be trans-
formed from arrays of structures to structures of arrays. Additionally, users should
add annotations about the alignment of pointers to improve vectorization results.

2.2.3.1 aliasing
Auto-vectorization relies on iterations over arrays to express the per-iteration in-
put and output data. Since structures of arrays work best for the vectorizer, the
loop body typically dereferences several pointers to the same fundamental data
type. The compiler must account for the possibility that these pointers are equal
or point to overlapping arrays. Then, any assignment to such an array potentially
alters input values and might create cross-iteration dependencies.
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float add_one(float in) {
return in + 1.f;

}

Listing 2.2: A simple function.

float *data = ...
for (int i = 0; i < N; ++i) {
data[i] = add_one(data[i]);

}

Listing 2.3: A function call in a loop.

2.2.3.2 fixed data structures
A major factor for the efficiency of a vectorized algorithm is how the conversion
from 𝒲T scalar objects in memory to a single vector register and back is done.
The compiler has no freedom to improve the data layout, which is fully defined
by the types used by the algorithm. At the same time, the scalar expression of the
algorithm conceals the problem from the developer who often is oblivious to the
limitations of the vector load and store operations of the hardware.

2.2.3.3 pointer alignment
In most cases the compiler cannot deduce whether a given pointer uses the neces-
sary over-alignment for more efficient vector load and store instructions. Without
extra effort, and an understanding of hardware details, the user will therefore cre-
ate a more complex vectorization of the algorithm than necessary.

2.2.3.4 function signatures
Consider a simple function like Listing 2.2. A function defines an interface for data
in- and/or output. There are fixed rules how to translate such code to a given ABI6.
For example the in parameter has to be stored in the bits 0–31 of register xmm0
on x86_64 Linux. Unless the compiler is allowed/able to inline the function, the
function itself cannot be vectorized. Neither can a calling loop, such as Listing 2.3,
be vectorized in this case.

In theory, the above limitation can be solved with LTO7. With LTO the compiler
has more opportunity to inline functions since it still has access to the abstract
syntax tree of the callee when the optimizer vectorizes the caller loop.

6 Application Binary Interface
7 Link Time Optimization
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2.2.3.5 conditional statements
Many algorithms require conditional execution which depends on the actual val-
ues of the input data. Since the algorithm is expressed with scalar types, the user
has to use if-statements (or while, for, or switch). These cannot be vectorized
as actual branches. Instead, the vectorized code has to execute all cases and implic-
itly mask off assignments according to the conditions in the different vector lanes.
This leads to more code that needs to be executed and the user may be completely
unaware of the cost of conditionals (and possible alternatives), unless (s)he has
learned how the vectorizer and the target hardware works.

2.3 EXPLICIT LOOP-VECTORIZATION

ICC has integrated explicit loop-vectorization (SIMD-loops) in their compiler via
the #pragma simd extension [42]. Intel considers this extension important enough
that they are pursuing inclusion of this feature in the C++ standard (cf. [30, 35]). The
extension is a significant improvement over auto-vectorization, where the devel-
oper has no mechanism to ensure SIMD parallel execution of a given loop.

All the limitations described in Section 2.2.3 still apply to explicit loop-vectori-
zation. In contrast to auto-vectorization, the user explicitly expresses that the al-
gorithm is data-parallel, which improves diagnostics and maintainability. In addi-
tion, optional clauses to the SIMD-loop syntax allow the user to guide the compiler
to a more efficient vectorization.

Vector semantics (as defined in Section 2.1) imply the following restrictions,
which are correct and well-defined scenarios with serial semantics:

• The behavior is undefined for loops with cross-iteration dependencies, un-
less correctly annotated with a clause such as safelen. It would be desirable
to require compilers to make SIMD-loops with such dependencies ill-formed.
This is impossible, though, because the dependencies might be hidden be-
hind pointer aliasing. The issue is thus only detectable at run time.

• Thread synchronizing operations, such as mutexes, may deadlock. Current
implementations of explicit loop-vectorization either have to declare syn-
chronizing operations either as undefined behavior or ill-formed.

• If an exception is thrown in a vector loop, the behavior is undefined or may
result in a call to std::terminate.8

If such a case occurs in a (non-inline) function called from the SIMD-loop, the com-
piler cannot recognize the condition, in which case auto-vectorization would be
inhibited. With vector semantics it is well-defined behavior to call the function

8 std::terminate is the consequence of throwing a second exception during stack unwinding [48].
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for each entry in the SIMD vector in sequence, though. This can lead to deadlock,
surprising side-effects (e.g. global variables), or inconsistent exceptions with a pos-
sible call to std::terminate.

The user must therefore be aware of the different semantics and the functions
(s)he calls. Especially calls into library functions may be fragile as a new release of
the library might become unsafe to use in a SIMD-loop.



3
INTRODUCTION TO SIMD TYPES

Perhaps the greatest strength of an object-oriented
approach to development is that it offers a mechanism that

captures a model of the real world.
— Grady Booch (1986)

3.1 THE SIMD VECTOR TYPE IDEA

Most of the current commodity hardware supports SIMD registers and instruc-
tions. However, C++ projects that target these systems have no standardized way
to explicitly use this part of the hardware. The solutions that currently serve as best
practice are auto-vectorization (i. e. pure scalar code / cf. Section 2.2), OpenMP 4
[68] and Cilk Plus [44] SIMD loops (cf. Section 2.3), vendor-specific SIMD intrinsics
(cf. Section 3.2), and (inline) assembly. C++ itself only provides types and operators
for scalar integer and floating-point registers and instructions. The standard leaves
most of the mapping of type names to exact register widths implementation-de-
fined. SIMD registers and operations are simply ignored in the standard and left
to “as-if” transformations of the optimizer (auto-vectorization).

If C++ were to provide types that map to implementation-defined SIMD regis-
ters and instructions then SIMD instructions would be just as accessible as scalar
instructions (see Figure 3.1). Such a SIMD type should, in most respects, behave
analogous to the scalar type, in order to make SIMD programming intuitively us-
able for any C++ developer. The obvious difference to scalar types is that instead of
storing and manipulating a single value, it can hold and manipulate 𝒲T values in
parallel.

Since the differences between different target microarchitectures are a lot more
significant in SIMD instructions than in scalar instructions, the portability concerns
with these types are a lot more apparent than with scalar types. Therefore, while
the type needs to be target-dependent, the interface must be target-agnostic. The
type thus needs to express data-parallel execution in an abstract form. It should
not be designed specifically for SIMD execution, which is just one form of efficient

23
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Programming
Language

Computer

Fundamental Type

scalar
Registers &
Instructions

abstracts
abstracts

packed
Registers &
Instructions

SIMD Type

abstracts

Figure 3.1: Programming languages abstract how computers work. The central process-
ing units of the computer is controlled via registers and instructions. Most
languages, notably C++, use types and their associated operators to abstract
registers and instructions. Though, since the advent of SIMD registers and
instructions there exists a gap in the abstraction.

data-parallel execution. Such a strong design focus on SIMD could make the type
less portable, thus less general, and therefore less useful.

On the other hand, a type that cannot translate to the most efficient SIMD in-
structions (in all but maybe a few corner cases) would not be useful either. Users
that want to explicitly optimize for a given target architecture should be able to do
so with the SIMD type. The design goal is therefore to make the vector types (to-
gether with a properly optimizing compiler) as efficient as hand-written assembler
SIMD code.

3.2 SIMD INTRINSICS

All major C++ implementations provide SIMD intrinsics as an extension to the stan-
dard. These extensions provide types and functions that map directly to the avail-
able SIMD registers and instructions. One of the most widespread extensions are
x86 SIMD intrinsics for MMX1, SSE, AVX.

Another important extension are builtin vector types, which provide more con-
textual information to the middle-end and back-end of the compiler. The GCC and
clang implementations of vector builtins support operators for the vector types and
retain more information for the optimizer about the per-entry operations that are
executed. This allows the compiler to be smarter about optimizing sequences of
SIMD operations.

1 Multimedia Extensions
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3.3 BENEFITS OF A SIMD VECTOR TYPE

A SIMD vector type constitutes the low-level interface to SIMD programming.2 It
is possible to build higher levels of abstraction using standard C++ facilities on top
of these types. If this lowest level of SIMD programming is not provided then users
of C++ will be constrained to work within the limits of the provided higher level
abstraction. Even if such an abstraction were very efficient for most problems, it
could lead to a situation where an additional and unrelated means of SIMD pro-
gramming (outside of standard C++) were still required.

In some cases the compiler might generate better code if only the intent is stated
instead of an exact sequence of operations. Therefore, higher-level abstractions
might seem preferable to low-level SIMD types. In my experience this is not the
case because programming with SIMD types makes intent very clear and com-
pilers can optimize sequences of SIMD operations. This is effectively identical to
optimizations on scalar operations.

SIMD types themselves do not lead to an easy and obvious answer to efficient
and easily usable data structures. However, SIMD types reveal inefficient data
structures, as they become hard or awkward to use. This can guide developers
to create more efficient data structures for vectorization. Chapter 10 shows a high-
level interface to data structure vectorization, which can make creation of proper
vectorizable data structures easier or even completely transparent for a user of a
given interface (such as shown in Chapter 11). On the other hand, a SIMD pro-
gramming abstraction that completely hides vectorized memory accesses behind
scalar memory accesses requires compiler diagnostics to guide the developer to
more efficient data structures.

One major benefit from SIMD types is that the programmer can gain an intu-
ition for SIMD. This subsequently influences further design of data structures and
algorithms to better suit SIMD architectures.

Additionally, there are already many users of SIMD intrinsics (and thus a primi-
tive and non-portable form of SIMD types). Providing a cleaner and portable SIMD
API3 would provide many of them with a better alternative. Thus, SIMD types in
C++ would capture existing practice.

2 One could argue that target-specific intrinsics or builtins should be considered as the low-level in-
terface. I believe this is the wrong approach, since the programming language should only provide
abstractions for all the machines it may be compiled for and not concrete, target-specific interfaces.

3 Application Programming Interface
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3.4 PREVIOUS WORK ON SIMD TYPES

3.4.1 intel C++ class interface to sse

Intel has provided simple C++ wrapper classes with the Intel C++ Compiler. These
classes use operator overloading to make intrinsics more convenient to use from
C++. However, these classes have stopped short from becoming a more generic
solution for data-parallel programming. The types are directly tied to a specific
SIMD register width. Therefore, these types can only be used for compatible tar-
gets. Code written with these types does not scale to newer hardware, even if it
is a compatible target. Access to scalar entries in a SIMD vector is provided, but
breaks aliasing requirements, leading to subtle bugs.4

3.4.2 e.v.e.

The E.V.E. [21] library wraps the AltiVec instruction set of PowerPC CPUs. As
the paper notes, it would be feasible to implement different target architectures,
such as MMX/SSE2 and thus provide a portable API. The main emphasis was
put on vectorization of calculations on larger data structures with more or less
homogeneous treatment. The E.V.E. library built a basis for the NT2 project [20],
which now contains a more modern and more flexible SIMD abstraction called
Boost.SIMD (Section 3.5.1).

3.4.3 macstl

Another library wrapping AltiVec exists, where MMX and SSE up to SSE3 were
added later on, called macstl [62]. This library focuses on a main class for process-
ing which is an improved STL5 valarray implementation with vectorized opera-
tions on it. However, the flexibility for heterogeneous processing, required for the
track finder, was missing. The library is not licensed as Free Software, and was
thus unsuitable for the tracker.

3.4.4 kisel/gorbunov’s headers

The Kalman filter, the most compute-intensive part of the track finder, has pre-
viously been vectorized, which was presented in [33]. For this work, a small ab-
straction around SSE was developed. This work was evaluated and incorporated
into the library presented here. In the mean time, this Kalman filter benchmark has
been modified to use Vc, showing a slight improvement in performance [53].

4 This is normally not a problem for projects compiled with ICC, since the compiler per default does
not enforce strict-aliasing rules.

5 Standard Template Library
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3.5 OTHER WORK ON SIMD TYPES

Since its first public release of the Vc library in 2009 there have been several new
projects to abstract SIMD types very similar to the basic idea discussed here. The
main difference in the interface abstraction of Vc to the other libraries is that Vc ab-
stracts data-parallel programming as independent from 𝒲T as possible. The other
libraries encode 𝒲T in the type name or encode the target SIMD instruction set in
the type name.6

3.5.1 boost.simd

The Boost.SIMD library7 abstracts SIMD objects via the pack<T, N> class template
[18, 17]. N may be omitted to compile for the native 𝒲T of the target. This makes
pack<T> almost equal to Vc::Vector<T> except for the ABI incompatibility issue
of pack<T> discussed in Chapter 6. The Vc mask type is available in Boost.SIMD
as pack<logical<T>, N>, thus tying the mask API to the value vector API, which
I specifically chose differently for the design of Vc (Section 5.2). Compare oper-
ators of pack<T> return bool, instead of the mask type for Boost.SIMD, requir-
ing predicate functions to do vectorized compares instead. The implementation of
write-masking is not as generic as in the Vc API: Boost.SIMD provides the if_-
else function that implements a vector blend and special functions like selinc
and seldec to execute write-masked increment and decrement. The Vc API builds
these expressions with standard C++ operators instead (Section 5.3).

In contrast to the Vc operators, Boost.SIMD uses expression templates with the
operators for pack. This enables the library to do code transformations on longer
expressions, such as fusing multiplications and additions/subtractions or reorder
elementwise operations. Vc instead relies on the compiler optimizer to do these
kind of optimizations, because expression templates can increase compile times
significantly and make diagnostic output from ill-formed programs unreadable.
Also from experience with Vc, a good optimizing compiler nowadays generates
optimal machine code in almost all uses. The few remaining issues are solvable
“missed-optimization” issues in the compiler. The important benefit of the Vc ap-
proach is that the vectorization quality does not depend on how many temporary
values are captured in variables, which is a major “gotcha” with expression-tem-
plate solutions.

6 Vc also encodes the SIMD instruction set in the type name, but it is an internal type name. The
user-visible types are target-agnostic.

7 Boost.SIMD is not in boost yet. This is the intention of the developers, though.
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3.5.2 other libraries

The VCL Library [25] and the Generic SIMD Library [83] are two more implemen-
tations of C++ wrapper libraries around SIMD intrinsics. They are competing im-
plementations for the ideas presented here and in earlier publications such as Kretz
[55] and Kretz et al. [59].
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4
A DATA-PARALLEL TYPE

Programs must be written for people to read,
and only incidentally for machines to execute.

— Harold Abelson et al. (1996)

The SIMD vector class shall be an abstraction for the expression of data-parallel
operations (cf. Section 3.1). If the target architecture of a compilation unit does
not support SIMD instructions, but similar data-parallel execution, the expressed
data-parallelism shall be translated accordingly. The following list states the de-
sired properties for such a type:

• The value of an object of Vector<T> consists of 𝒲T scalar values of type T.

• The sizeof and alignof of Vector<T> objects is target-dependent.

• Scalar entries of a SIMD vector can be accessed via lvalue reference.

• The number of scalar entries (𝒲T ) is accessible as a constant expression.

• Operators that can be applied to T can be applied to Vector<T> with the same
semantics per entry of the vector. (With exceptions, if type conversions are
involved. See below.)

• The result of each scalar value of an operation on Vector<T> does not depend
on 𝒲T .1

• The syntax and semantics of the fundamental arithmetic types translate di-
rectly to the Vector<T> types. There is an additional constraint for implicit
type conversions, though: Vector<T> does not implicitly convert to Vector<
U> if 𝒲T ≠ 𝒲U for any conceivable target system.

1 Obviously the number of scalar operations executed depends on 𝒲T . However, the resulting value
of each scalar operation that is part of the operation on Vector<T> is independent.

31
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1 namespace Vc {
2 namespace target_dependent {
3 template <typename T> class Vector {
4 implementation_defined data;
5

6 public:
7 typedef implementation_defined VectorType;
8 typedef T EntryType;
9 typedef implementation_defined EntryReference;

10 typedef Mask<T> MaskType;
11

12 static constexpr size_t MemoryAlignment = implementation_defined;
13 static constexpr size_t size() { return implementation_defined; }
14 static Vector IndexesFromZero();
15

16 // ... (see the following Listings)
17 };
18 template <typename T> constexpr size_t Vector<T>::MemoryAlignment;
19

20 typedef Vector< float> float_v;
21 typedef Vector< double> double_v;
22 typedef Vector< signed int> int_v;
23 typedef Vector<unsigned int> uint_v;
24 typedef Vector< signed short> short_v;
25 typedef Vector<unsigned short> ushort_v;
26 } // namespace target_dependent
27 } // namespace Vc

Listing 4.1: Template class definition for Vector<T> .
A concrete implementation for SSE2 could call the inner namespace SSE , use
the intrinsic types __m128 , __m128d , and __m128i for VectorType , a union

for the data member, T & for EntryReference ,
𝒮VectorType

𝒮T
for size() , and

𝒮VectorType for MemoryAlignment .

• The compiler is able to identify optimization opportunities and may apply
constant propagation, dead code elimination, common subexpression elimi-
nation, and all other optimization passes that equally apply to scalar opera-
tions.2

4.1 THE VECTOR<T> CLASS TEMPLATE

The boilerplate of the SIMD vector class interface is shown in Listing 4.1. There
are several places in this listing where the declaration says “target-dependent” or
“implementation-defined”. All of the following listings, which declare functions of
the Vector<T> class (to insert on line 16), do not require any further implementa-
tion-specific differences. All these differences in Vector<T> are fully captured by
the code shown in Listing 4.1.

2 In practice, there are still a few opportunities for compilers to improve optimization of SIMD oper-
ations.
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The only data member of the vector class is of an implementation-defined type
(line 4). This member therefore determines the size and alignment of Vector<T>.
Therefore, the SIMD classes may not contain virtual functions. Otherwise, a virtual
table were required and thus objects of this type would be considerably larger
(larger by the minimum of the pointer size and the alignment of VectorType).

4.1.1 member types

The member types of Vector<T> abstract possible differences between implemen-
tations and ease generic code for the SIMD vector types.

VectorType
(line 7) is the internal type for implementing the vector class. This type could
be an intrinsic or builtin type. The exact type that will be used here depends
on the compiler and compiler flags, which determine the target instruction
set. Additionally, if an intrinsic type is used it might not be used directly (on
line 4) but indirectly via a wrapper class that implements compiler-specific
methods to access scalar entries of the vector.

The VectorType type allows users to build target- and implementation-spe-
cific extensions on top of the predefined functionality. This requires a func-
tion that returns an lvalue reference to the internal data (line 4). See Sec-
tion 4.10 for such functions.

EntryType
(line 8) is always an alias for the template parameter T. It is the logical type
of the scalar entries in the SIMD vector. The actual bit-representation in the
SIMD vector register may be different to EntryType, as long as the observ-
able behavior of the scalar entries in the object follows the same semantics.

EntryReference
(line 9) is the type returned from the non-const subscript operator. This type
should be an lvalue reference to one scalar entry of the SIMD vector. It is not
required for EntryReference to be the same as EntryType &. Consider an
implementation that uses 32-bit integer SIMD registers for Vector<short>,
even though a short uses only 16 bits on the same target. Then EntryRefer-
ence has to be an lvalue reference to int. If EntryReference were declared
as short & then sign extension to the upper 16 bits would not work correctly
on assignment.

MaskType
(line 10) is the mask type that is analogous to bool for scalar types. The type is



34 a data-parallel type

used in functions that have masked overloads and as the return type of com-
pare operators. A detailed discussion of the class for this type is presented in
Chapter 5.

4.1.2 constants

size() The vector class provides a static member function (size()) which iden-
tifies the number of scalar entries in the SIMD vector (line 13). This value is deter-
mined by the target architecture and therefore known at compile time. By declar-
ing the size() variable constexpr, the value is usable in contexts where constant
expressions are required. This enables template specialization on the number of
SIMD vector entries in user code. Also it enables the compiler to optimize generic
code that depends on the SIMD vector size more effectively. The size() function
additionally makes Vector<T> implement the standard container interface, and
thus increases the reusability in generic code.3

MemoryAlignment The MemoryAlignment static data member defines the align-
ment requirement for a pointer passed to an aligned load or store function call of
Vector<T>. The need for a MemoryAlignment static data member might be sur-
prising at first. In most cases the alignment of Vector<T> will be equal to Mem-
oryAlignment. However, as discussed in Section 4.1.1, implementations are free
to use a SIMD register with different representation of the scalar entries than En-
tryType. In such a case, the alignment requirements for Vector<T> will be higher
than 𝒲T × 𝒮T for an aligned load or store. Note that the load and store functions
allow converting loads (Section 4.3.1). These functions need a pointer to memory
of a type different than EntryType. Subsequently the alignment requirements for
these pointers can be different. Starting with C++14 it may therefore be a good idea
to declare MemoryAlignment as:

template <typename U>
static constexpr size_t MemoryAlignment = implementation_defined;

IndexesFromZero() The IndexesFromZero() function (line 14) returns a Vec-
tor<T> object where the entries are initialized to the successive values {0, 1, 2,
3, 4, …}. This constant is useful in many situations where the different SIMD
lanes need to access different offsets in memory or to generate an arbitrary uni-
form offset vector with just a single multiplication.

3 It would suffice to define only the size() function and drop size(). Personally, I prefer to not use
function calls in constant expressions. Additionally, a 50% difference in the number of characters
makes size() preferable because it is such a basic part of using SIMD types.
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4.1.3 namespace

Line 2 defines a namespace that is not part of the standard interface. A user should
be able to access the natural SIMD registers and operations via the Vector<T> type
and its typedefs float_v, double_v, …. However, consider the case of compiling
two translation units with different target compiler flags. In that case Vector<T>
could map to different SIMD widths even though they had the same type. Thus, the
code would compile, link, and possibly even run—but not correctly—. The name-
space turns the Vector<T> types into different symbols and thus ensures correct
linkage of different translation units. An implementation may choose to document
the target-dependent namespaces, as discussed in Section 4.9.2.

4.1.4 simd type aliases

The code on lines 20–25 declares handy aliases for the Vector<T> class template.
The intent of these aliases is to make SIMD vector code more concise and recog-
nizable.

There is a design decision here: whether to use the types char, short, int, long,
and long long or the int8_t, int16_t, int32_t, and int64_t typedefs. The prob-
lem with the latter list is that these types are optional. Thus, the definition of
int32_v (≡ Vector<int32_t>) is optional, too. Since the intN_t typedefs must
map to one of the fundamental types in the first list of types, definition of the SIMD
Types with the fundamental types of the first list is more general.

It is a sensible choice to additionally declare typedefs for intN_v in the presence
of intN_t typedefs.

4.2 SIMD VECTOR INITIALIZATION

The interface for initialization (excluding loads (covered in Section 4.3) and gathers
(covered in Section 4.8)) is shown in Listing 4.2. The Vc vector types are not POD4

types because the class interface needs full control over the implicit and explicit
initialization methods (and because there is no guarantee about the POD-ness of
VectorType). The decision for what constructors to implement follows from syn-
tactical and semantical compatibility with the builtin arithmetic type EntryType.
Thus, the expressions in Listing 4.3 must compile and behave analogous to the
corresponding fundamental types.

4 Plain Old Data
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1 // init to zero
2 Vector();
3

4 // broadcast with implicit conversions
5 Vector(EntryType);
6

7 // disambiguate broadcast of 0 and load constructor
8 Vector(int); // must match exactly
9

10 // implicit conversion from compatible Vector<T>
11 template <typename U>
12 requires ImplicitConversionAllowed<U, EntryType>()
13 Vector(Vector<U>);
14

15 // static_cast from vectors of possibly (depending on target)
16 // different size (dropping values or filling with 0 if the size is
17 // not equal)
18 template <typename U>
19 requires ExplicitConversionAllowed<U, EntryType>()
20 explicit Vector(Vector<U>);

Listing 4.2: Initialization and conversion constructors for Vector<T> .

1 double_v a0{}, a1(); // zero-initialized
2

3 float_v b = 0, c = 2.f;
4 short_v d = -1; // -1
5 ushort_v e = -1; // numeric_limits<unsigned short>::max()
6 int_v f = short(-1); // -1
7 uint_v g = short(-1); // numeric_limits<unsigned int>::max()
8

9 ushort_v h = d; // numeric_limits<unsigned short>::max()
10 int_v i = g; // implementation-defined value for i
11

12 float_v j = static_cast<float_v>(a);
13 double_v k = static_cast<double_v>(d);

Listing 4.3: A few statements that are valid initialization expressions, if the builtin scalar
types were used. They must work equally well with the Vector<T> types
(as shown).
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de fault cons tructor The default constructor on line 2 creates a zero-initial-
ized object. The constructor may not keep the object uninitialized. Because, if the
expression T() is used with a fundamental type, a “prvalue of the specified type,
which is value-initialized” [48, §5.2.3] is created. The term “value-initialized” im-
plies “zero-initialized” for fundamental types.

d e s tructor or copy/move cons tructor There is no need for a destruc-
tor and explicitly declared copy and/or move constructors as long as the vector
type does not use external storage.5 There might be a need for these functions if
the Vector<T> type is used as a handle to remote data, for instance on an accel-
erator card. Such an implementation needs to be able to add the destructor and
copy/move constructors and assignment operators, though.

4.2.1 broadcasts

The constructor on line 5 declares an implicit conversion from any value of a type
that implicitly converts to EntryType. This means that in places where a variable
of type Vector<T> is expected, a variable of type T works as well. The constructor
then broadcasts the scalar value to all entries of the SIMD vector. This kind of
implicit conversion makes it very easy and natural to use numeric constants in
SIMD code.

The constructor on line 8 is a special case of the preceding broadcast constructor
on line 5. This constructor is required because initialization with the literal 0 is am-
biguous otherwise. The load constructor (see Section 4.3 line 8 of Listing 4.7) and
the Vector(EntryType) constructor match equally well, with just a single implicit
type conversion. If EntryType is int, then this extra constructor overload on line
8 must be removed from overload resolution, because otherwise the signatures
of the constructors on lines 5 and 8 are equal. For all the other Vector<T> types
the Vector(int) constructor must not participate in overload resolution except
when the argument to the constructor is exactly an int. Otherwise the expression
short_v v(1u) would be ambiguous. This can be implemented with a template
parameter which must be deduced to exactly be an int using an additional en-
able_if parameter:

template <typename U>
Vector(U a, typename enable_if<is_same<U, int>::value &&

!is_same<U, EntryType>::value,
void *>::type = nullptr);

5 See Section 8.2.1 for why a trivial copy constructor makes an important difference.
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1 template <typename A, typename B>
2 concept bool ImplicitConversionAllowed() {
3 return is_integral<A>::value && is_integral<B>::value &&
4 is_same<conditional_t<is_signed<A>::value,
5 make_unsigned_t<A>, make_signed_t<A>>,
6 B>::value;
7 }

Listing 4.4: Possible implementation of the ImplicitConversionAllowed concept.

4.2.2 simd vector conversions

The fundamental arithmetic types implicitly convert between one another. (Not
every such conversion is value-preserving, which is why some compilers emit
warnings for type demotions, and why brace-initialization with a narrowing con-
version is ill-formed.) Conversions should work in the same manner for SIMD
types. However, there is no guarantee that the number of scalar entries in a SIMD
vector type is equal to the number of entries in a different type. Therefore, the
conversions between Vector<T> types are split into implicit and explicit conver-
sions. The intent is expressed with requires expressions (the Concepts Lite C++

extension that is on track for C++17 [77]) and can just as well be implemented with
enable_if.

It is important that code written with the Vector<T> types is as portable as pos-
sible. Therefore, implicit casts may only work if 𝒲T = 𝒲U holds on every possible
target system. There is no real guarantee for this to work with any type combina-
tion. It is a reasonable assumption, though, that 𝒲T = 𝒲make_signed_t<T> for any
unsigned integral type T (since make_signed_t<T> “occupies the same amount of
storage” as T [48, §3.9.1]). Therefore, the ImplicitConversionAllowed concept
(line 12) must check for both types to be integral and to differ only in signedness
(Listing 4.4).

If only these implicit casts were allowed, then the interface would be too restric-
tive. The user needs to be able to convert between SIMD vector types that possibly
have a different number of entries. The constructor on line 20 therefore allows all
remaining conversions not covered by the preceding constructor. Since the con-
structor is declared explicit it breaks with the behavior of the builtin arithmetic
types and only allows explicit casts (such as static_cast or explicit constructor
calls).

It would certainly be possible to define additional guaranteed 𝒲T relations by re-
quiring implementations to implement some vector types with multiple registers.
As a matter of fact, this is how I initially implemented Vc: 𝒲int = 𝒲float was
guaranteed. This was easy to support with only SSE and Larrabee (now Xeon Phi)
implementations, but required two SSE int vectors to implement the AVX target.
This is due to the initial AVX revision not including instruction support for inte-
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1 float_v f(float_v x) {
2 float_v r;
3 for (size_t i = 0; i < float_v::size(); i += double_v::size()) {
4 r = r.shiftIn(
5 double_v::size(),
6 static_cast<float_v>(g(static_cast<double_v>(x.shifted(i)))));
7 }
8 return r;
9 }

Listing 4.5: Sample code for portably calling the function g(double_v) on a full float
_v .
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Figure 4.1: Vector filling algorithm used in Listing 4.5

ger vectors of 256 bits. However, conversions between different integer types and
floating-point types are very important to many algorithms and therefore must be
supported.

The conversion constructor on line 20 converts 𝑛 = min(𝒲T , 𝒲U) values for a
conversion from Vector<T> to Vector<U>. The remaining 𝑛0 = max(0, 𝒲U − 𝑛)
entries in the target variable are set to zero. This implies that user code that wants
to portably implement an algorithm, which needs to convert between vectors of
possibly different widths, the use of vector types as defined here is cumbersome.
One would have to employ a pattern such as shown in Listing 4.5.

The idea of the code in Listing 4.5 is visualized in Figure 4.1. However, this
code does not qualify as an intuitive solution. A developer will rather think of the
subscript operator for accomplishing the task. Subscripting for a target-dependent
number of entries in the vector requires an even more awkward and non-obvious
interface. Listing 4.6 shows a possible syntax for a portable subscripting solution.
It thus becomes clear that a better solution for the cast issue needs to be provided.
One possible solution uses a new cast function (simd_cast) that can cast from mul-
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1 float_v f(float_v x) {
2 float_v r;
3 for (size_t i = 0; i < float_v::size(); i += double_v::size()) {
4 r[{i, double_v::size()}] = static_cast<float_v>(
5 g(static_cast<double_v>(x[{i, double_v::size()}])));
6 }
7 return r;
8 }

Listing 4.6: Syntax idea for implementing Listing 4.5 via the subscript operator. The ar-
gument to the subscript operator consists of a start offset and a length, thus
allowing arbitrary partial assignment/extraction. Since the subscript operator
only supports a single parameter the argument must be converted from an
initializer list.

tiple Vector<T> to one Vector<U> or from one Vector<U> to multiple Vector<T>.6

An even more convenient solution builds upon these casts and the Vector<T> type
to create a SimdArray<T, N> abstraction for composing multiple Vector<T> into
one type (cf. Chapter 7).

4.3 LOADS AND STORES

The vector types need an interface for loading and storing SIMD vectors from/to
memory. In contrast to the primary motivation of providing the same syntax and
semantics as for fundamental types, these functions have no equivalent in their
underlying fundamental types T. The load & store functions are required because
they are a portable and efficient interface for converting between arrays of a fun-
damental scalar type and vector types. Without load & store functions, data could
not reasonably be converted in a portable fashion: All input and output of data to
a vectorized algorithm would be required to exclusively use the Vector<T> types.
Obviously, this would be an unrealistic requirement for the majority of applica-
tions.

Nevertheless, loads and stores are an unfortunate requirement that should rather
be eliminated from the set of required operations user code has to call. There are
different ideas to hiding loads and stores behind abstractions on top of SIMD types
and standard containers. These abstractions still build upon the load & store func-
tions in the Vector<T> interface, though. Chapter 9 describes one of the ideas.

Listing 4.7 shows the interface for loads and stores for the Vector<T> types.
These functions convert 𝒲T consecutively stored scalar objects of type T to one
object of type Vector<T> and back. Thus, the start address (pointer to the first
scalar object) and the type of the scalar objects are sufficient to fully characterize

6 Such a simd_castfunction is implemented in Vc, supporting Vector<T>, Mask<T> (cf. Chapter 5),
SimdArray<T, N>, and SimdMaskArray<T, N> (cf. Chapter 7). This shows that it is possible to define
and implement this function generically.
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1 // load member functions
2 void load(const EntryType *mem);
3 template <typename Flags> void load(const EntryType *mem, Flags);
4 template <typename U, typename Flags = UnalignedT>
5 void load(const U *mem, Flags = Flags());
6

7 // load constructors
8 explicit Vector(const EntryType *mem);
9 template <typename Flags>

10 explicit Vector(const EntryType *mem, Flags flags);
11 template <typename U, typename Flags = UnalignedT>
12 explicit Vector(const U *mem, Flags flags = Flags());
13

14 // store functions
15 void store(EntryType *mem) const;
16 void store(EntryType *mem, MaskType mask) const;
17 template <typename Flags>
18 void store(EntryType *mem, Flags flags) const;
19 template <typename Flags>
20 void store(EntryType *mem, MaskType mask, Flags flags) const;
21 template <typename U, typename Flags = UnalignedT>
22 void store(U *mem, Flags = Flags()) const;
23 template <typename U, typename Flags = UnalignedT>
24 void store(U *mem, MaskType mask, Flags = Flags()) const;

Listing 4.7: Declaration of the load and store functions.

1 void Vector<T>::load(const U *mem) {
2 for (size_t i = 0; i < size(); ++i) {
3 (*this)[i] = static_cast<T>(mem[i]);
4 }
5 }
6 void Vector<T>::store(U *mem) const {
7 for (size_t i = 0; i < size(); ++i) {
8 mem[i] = static_cast<U>((*this)[i]);
9 }

10 }

Listing 4.8: The semantics of a converting load. A concrete implementation will use vec-
tor loads and conversions, of course.

the required load or store operation. (The case of distributed scalars is handled by
gather and scatter functions, which are described in Section 4.8.)

4.3.1 converting loads and stores

Some SIMD hardware can convert between different data types without extra run-
time overhead when executing a load or store instruction [46]. Therefore, and be-
cause it is very convenient for writing portable conversion code, the load & store
functions provide a generic variant that can access arrays of different scalar types.
Semantically, these functions behave as described in Listing 4.8. Thus, 𝒲T values
of type U are converted with load/store functions in Vector<T>, independent of
𝒲U , in contrast to the converting constructor in Section 4.2.2.
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Not all conversions are equally efficient in terms of hardware support. How-
ever, for reasons of portability, the full set of conversions between fundamental
arithmetic types is made available through these functions.

4.3.2 load/store flags

SIMD hardware makes a difference between aligned and unaligned vector loads
and stores (cf. Section 1.3.1). Additionally, most algorithms can be optimized if
the developer can hint at the temporal usage of the data.7 The alignment can, in
theory, be determined from the start address, and thus would not require addi-
tional specification in the function call. However, since the alignment can only be
determined from the pointer value at runtime, such a check would incur a penalty.
Using unaligned load/store instructions unconditionally would be more efficient
than checking the alignment of the pointer. An unaligned load/store instruction in
hardware can do the alignment test much more efficiently. Therefore, per default,
the load/store functions translate to unaligned load/store instructions.

4.3.2.1 alignment
If the user can guarantee alignment, a tag type can be used as last argument to
select the optimized load/store instructions at compile time, without any runtime
overhead. It is important that the API is built via a template and tag type, rather
than a boolean (or enum) function argument. A boolean function argument cannot
guarantee compile-time optimization. Especially, such an API would allow pass-
ing a non-constant expression as flag variable which cannot be optimized at all.
Via the tag type the user of the API is required to provide a constant expression
and thus decide between aligned or unaligned memory access when (s)he writes
the code.

4.3.2.2 non-temporal access
Loads and stores can be further optimized for non-temporal accesses. Many data-
parallel algorithms use a streaming pattern, where the input and/or output mem-
ory locations are used only once. Therefore, this data should not evict other data,
which might be used repeatedly in the algorithm, from the CPU caches. The load-
/store functions in Vc can therefore be called with the Vc::Streaming tag type.
This tag hints to the Vector<T> implementation that the data can be moved past
the caches. (Most CPUs can use specialized load and store buffers for streaming
loads and stores.) If the requested load/store operation cannot be executed as a
streaming variant, the implementation will silently fall back to a non-streaming
variant.

7 Non-temporal load/store hints tell the CPU that the given memory addresses are referenced only
once and memory transfers may bypass the cache hierarchy.
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Streaming stores executed with the Vc::Streaming tag may use non-globally or-
dered stores if the target CPU supports this. Thus, two stores to the same memory
location, where at least one is a streaming store, have undefined behavior unless
a memory fencing operation is called between the stores. This allows to reach the
highest store throughput, but requires a good understanding of the implications
when used by a developer.

4.3.2.3 prefetching
A last flag that I implemented for the load/store functions makes prefetching in
loops significantly simpler. By adding the Vc::PrefetchDefault tag type, the
Vector implementation is asked to emit software prefetch instructions for a tar-
get-dependent predefined stride. Thus, a call to

float_v(memory, Vc::Aligned | Vc::PrefetchDefault)
may result in up to three instructions being called, one of which is the load instruc-
tion. In addition, prefetch instructions for the lowest level cache and second lowest
level cache may be called. These prefetches are called with a predefined offset to
the memory address that is passed to the load function.

The prefetch flag is therefore a shorthand to prefetching explicitly in many loops.
However, not all loops require the same prefetch stride lengths, which is why in-
stead of the predefined strides the user may also set the strides explicitly. In almost
all cases, a developer adds prefetches after the program or component is already
working and is only modified for speed optimizations. The developer then deter-
mines the prefetch strides through intuition and/or trial and error.

Note that prefetches only need to be called once for any address inside one cache
line. Thus, two subsequent loads/stores to neighboring SIMD vectors may result
in more software prefetch instructions than necessary. This depends on the ratio of
the cache line size to the vector register size. As this ratio is target dependent, the
API appears to introduce a portability issue in this case. There is no easy solution
from the load/store interface side. However, the compiler is, in theory, able to drop
the superfluous prefetch instructions.8

8 This is possible if the relative difference between prefetch instructions is considered by the compiler.
It could apply an algorithm that keeps the first prefetch call and drops every subsequent prefetch
call that would reference the same cache line as a previous call.
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1 Vector &operator++();
2 Vector operator++(int);
3 Vector &operator--();
4 Vector operator--(int);
5

6 MaskType operator!() const;
7 Vector operator~() const;
8 Vector operator+() const;
9 Vector operator-() const;

Listing 4.9: Declaration of unary operators.

4.4 UNARY OPERATORS

The unary operators (increment, decrement, logical negation, one’s complement,
unary +, and unary -) behave as 𝒲T applications of the operator to the scalar val-
ues in the vector. However, there is an API issue that results from integral pro-
motion, which is applied to the operand of unary +, unary -, and one’s comple-
ment. Integral promotion leads to operands of builtin integral types smaller than
int/unsigned int getting promoted to int or unsigned int before the operator
is applied. This implies that ushort_v and short_v would have to return int_v
from unary +, unary -, and one’s complement. However, since 𝒲short = 𝒲int
does not hold for most targets, this is not possible (except if the return type were
SimdArray<int, short_v::size()>9). For the fundamental integral types, inte-
gral promotion to int normally does not cause a performance hit because int is
defined to be the natural integer type of the target CPU. Though, for vector types,
integral promotion may require more overhead than is acceptable. Therefore, the
SIMD vector types do not perform integral promotion. This is also the case for bi-
nary operators (cf. Section 4.5). On the other hand, integral promotion may make
much more sense for the SimdArray<T, N> types.

The declaration of the interface for the unary operators is shown in Listing 4.9.
As discussed above, the return types of the functions on lines 7–9 do not follow
the integral promotion rules. These operators can therefore lead to subtle differ-
ences compared to scalar code, such as the example in Listing 4.10 demonstrates.
The assertion on line 7 fails because the builtin compare operator performs inte-
gral promotion, promoting the right hand side of the comparison to int. However,
while b holds the value −40000, w holds 𝒲short values of 216−40000 = 25536. Con-
version of one value in w to int does not change that value. Thus, line 7 compares
-40000 == 25536.

9 See Chapter 7.
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1 unsigned short a = 40000;
2 auto b = -a; // decltype(b) == int
3

4 ushort_v v = 40000;
5 auto w = -v; // decltype(w) == ushort_v
6

7 assert(b == w[0]); // this fails

Listing 4.10: Subtle differences between scalar code and vector code, because of differ-
ences in integer promotion.

4.5 BINARY OPERATORS

Binary operators express arithmetic, comparison, bitwise, and shift operations.
They implement the central part of the SIMD functionality by executing 𝒲T op-
erations in parallel on the SIMD vector entries. If the EntryType is not of integral
type, the bitwise, shift, and modulo operators need to be ill-formed. They would
certainly be implementable, but since the builtin non-integral types do not imple-
ment these operators, the SIMD types follow the same semantics.

The interface for these operators is shown in Listing 4.11. In this form of declara-
tion, the compiler will allow the right-hand operand to be implicitly converted via
a non-explicit conversion constructor. Thus, conversions from integer-vectors of
differing signedness and broadcasts from scalars would be possible. However, the
resulting type would solely be determined by the type of the left-hand operand.
Consequently, int_v() + uint_v() would result in an int_v, whereas uint_v()
+ int_v() would result in a uint_v. Also, int_v() + 1.f would compile and re-
sult in an int_v, whereas any operation with a scalar value on the left-hand side
(such as 1.f + float_v()) would not compile at all. Thus, there is a need for
further refinement of the binary operators, which can be done via non-member
operators.

4.5.1 generic non-member binary operators

The definition of two of the non-member binary operators (one arithmetic and one
comparison operator) is shown in Listing 4.12. There is only a slight difference
in the return type between comparison operators and the remaining binary op-
erators. Compares obviously must return a mask type and therefore require the
Vector<T>::MaskType return type. The operator’s implementation simply for-
wards to the member operators using the same type for the left and right operands.
The evaluation of this type does all the magic. Especially important is the fact
that if TypesForOperator<L, R> leads to a substitution failure no error is emit-
ted, but the operator is silently removed from the candidate list (SFINAE10 [81]).

10 Substitution Failure Is Not An Error
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1 Vector operator* (Vector x) const;
2 Vector operator/ (Vector x) const;
3 Vector operator+ (Vector x) const;
4 Vector operator- (Vector x) const;
5

6 MaskType operator==(Vector x) const;
7 MaskType operator!=(Vector x) const;
8 MaskType operator>=(Vector x) const;
9 MaskType operator<=(Vector x) const;

10 MaskType operator> (Vector x) const;
11 MaskType operator< (Vector x) const;
12

13 private:
14 // Use SFINAE to disable the operator if EntryType is not integral:
15 // 1. Variant, for Vector arguments
16 template <typename U>
17 using ReturnVectorIfIntegral =
18 typename std::enable_if<std::is_convertible<U, Vector>::value &&
19 std::is_integral<EntryType>::value,
20 Vector>::type;
21 // 2. Variant, for int arguments
22 template <typename U>
23 using ReturnVectorIfIntInt =
24 typename std::enable_if<std::is_convertible<U, int>::value &&
25 std::is_integral<EntryType>::value,
26 Vector>::type;
27

28 public:
29 template <typename U> ReturnVectorIfIntegral<U> operator%(U x) const;
30

31 template <typename U> ReturnVectorIfIntegral<U> operator&(U x) const;
32 template <typename U> ReturnVectorIfIntegral<U> operator|(U x) const;
33 template <typename U> ReturnVectorIfIntegral<U> operator^(U x) const;
34

35 template <typename U> ReturnVectorIfIntegral<U> operator>>(U x) const;
36 template <typename U> ReturnVectorIfIntegral<U> operator<<(U x) const;
37 template <typename U> ReturnVectorIfIntInt <U> operator>>(U x) const;
38 template <typename U> ReturnVectorIfIntInt <U> operator<<(U x) const;

Listing 4.11: Declaration of binary operators.

1 template <typename L, typename R>
2 inline TypesForOperator<L, R> operator+(L &&x, R &&y) {
3 using V = TypesForOperator<L, R>;
4 return V(std::forward<L>(x)) + V(std::forward<R>(y));
5 }
6 // ...
7

8 template <typename L, typename R>
9 inline typename TypesForOperator<L, R>::MaskType operator==(L &&x,

10 R &&y) {
11 using V = TypesForOperator<L, R>;
12 return V(std::forward<L>(x)) == V(std::forward<R>(y));
13 }
14 // ...

Listing 4.12: Non-member operators for the Vc SIMD vector types.
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Thus, TypesForOperator<L, R> determines every aspect of which binary opera-
tors are supposed to compile or throw an error and which implicit conversions are
involved.

The TypesForOperator<L, R> type (see Listing 4.13, line 56) in Vc is defined
as an alias template for the TypesForOperatorInternal struct. The alias tem-
plate simplifies TypesForOperatorInternal by swapping the types L and R if L is
a non-vector type. Therefore, the first template argument to TypesForOperator-
Internal is guaranteed to be a SIMD vector type, unless neither L nor R is a SIMD
vector type. The third template argument (a boolean) provides a simple mecha-
nism to specialize the struct for type combinations where a substitution failure
should result (and thus inhibit the binary operator to participate in overload res-
olution). The conditions for this are simply that the non-member operators may
only participate in overload resolution for type combinations that involve at least
one vector type and where L and R are not equal, in which case the operator would
lead to an ambiguity with the member operator in the vector class.

The struct on line 48 defines an empty type for operands where the operators
are not supposed to match. Note that the struct does not contain the member
type type, thus leading to the intended substitution failure. The struct on line
51 specializes for the case where V is a SIMD vector type, the operand types are
different, W is convertible to a SIMD vector type, and the combination of types
yields valid implicit conversions. Since not all conversions to SIMD vector types
or between vector types are implicit, the binary operator may not invoke such a
conversion and turn an explicit conversion to an implicit one. This is determined
via the isValidOperandTypes function defined on line 35. For all allowed type
combinations V and W the member type type on line 52 determines the SIMD vector
type to use as return type and for conversion of the operands before calling the
member operator.

By additionally declaring operator overloads that are !isValidOperandTypes
as deleted, the interface catches incorrect use and gives some hint to the user why
the code does not compile (Listing 4.14). Currently C++ only allows to encode an
explanation in the type name. Appendix I describes the issue of custom diagnostics
for ill-formed function overloads in more detail and suggests a simple extension
to the standard to improve the diagnostic output.11

The isValidOperandTypes function ensures that the following type combina-
tions for the operands are invalid:

11 Using a static_assert for improved error messages is also possible here and it can be used to ex-
plain the error directly, thus making correcting errors in the usage of the interface easier. On the other
hand, with a staticāssert, a trait that checks whether a binary operator for two given operands
is defined will return a positive answer even though an actual call would fail to compile because of
the static assertion. (see Appendix I for the details)
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1 template <typename T, bool> struct MakeUnsignedInternal;
2 template <typename T> struct MakeUnsignedInternal<Vector<T>, true> {
3 using type = Vector<typename std::make_unsigned<T>::type>;
4 };
5 template <typename T> struct MakeUnsignedInternal<Vector<T>, false> {
6 using type = Vector<T>;
7 };
8 template <typename Test, typename T>
9 using CopyUnsigned = typename MakeUnsignedInternal<

10 T, isIntegral<T>() && isUnsigned<Test>()>::type;
11

12 template <typename From, typename To>
13 constexpr bool isNarrowingFloatConversion() {
14 return is_floating_point<From>::value &&
15 (is_integral<To>::value || (is_floating_point<To>::value &&
16 sizeof(From) > sizeof(To)));
17 }
18

19 template <typename T> static constexpr bool convertsToSomeVector() {
20 return is_convertible<T, double_v>::value ||
21 is_convertible<T, float_v>::value ||
22 is_convertible<T, int_v>::value ||
23 is_convertible<T, uint_v>::value ||
24 is_convertible<T, short_v>::value ||
25 is_convertible<T, ushort_v>::value;
26 }
27

28 template <typename V, typename W>
29 constexpr bool participateInOverloadResolution() {
30 return isVector<V>() && !is_same<V, W>::value &&
31 convertsToSomeVector<W>();
32 }
33

34 template <typename V, typename W>
35 constexpr enable_if<isVector<V>(), bool> isValidOperandTypes() {
36 using type = CopyUnsigned<W, V>;
37 return isVector<W>() ? (is_convertible<V, W>::value ||
38 is_convertible<W, V>::value)
39 : (is_convertible<W, type>::value &&
40 !isNarrowingFloatConversion<
41 W, typename type::EntryType>());
42 }
43

44 template <
45 typename V, typename W,
46 bool VectorOperation = participateInOverloadResolution<V, W>() &&
47 isValidOperandTypes<V, W>()>
48 struct TypesForOperatorInternal {};
49

50 template <typename V, typename W>
51 struct TypesForOperatorInternal<V, W, true> {
52 using type = CopyUnsigned<W, V>;
53 };
54

55 template <typename L, typename R>
56 using TypesForOperator = typename TypesForOperatorInternal<
57 decay_t<conditional_t< isVector<L>(), L, R>>,
58 decay_t<conditional_t<!isVector<L>(), L, R>>>::type;

Listing 4.13: The traits the non-member binary operators need for SFINAE and return
type evaluation.
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1 template <
2 typename V, typename W,
3 bool IsIncorrect = participateInOverloadResolution<V, W>() &&
4 !isValidOperandTypes<V, W>()>
5 struct IsIncorrectVectorOperands {};
6 template <typename V, typename W>
7 struct IsIncorrectVectorOperands<V, W, true> {
8 using type = void;
9 };

10

11 template <typename L, typename R>
12 using Vc_does_not_allow_operands_to_a_binary_operator_which_can_have_\
13 different_SIMD_register_sizes_on_some_targets_and_thus_enforces_\
14 portability =
15 typename IsIncorrectVectorOperands<
16 Traits::decay<Conditional<isVector<L>(), L, R>>,
17 Traits::decay<Conditional<!isVector<L>(), L, R>>>::type;
18

19 template <typename L, typename R>
20 Vc_does_not_allow_operands_to_a_binary_operator_which_can_have_\
21 different_SIMD_register_sizes_on_some_targets_and_thus_enforces_\
22 portability<L, R> operator+(L &&, R &&) = delete;

Listing 4.14: Declaration of explicitly deleted operators for improved diagnostics on in-
correct usage.

• If both operands are SIMD vectors, at least one of them must be implicitly
convertible to the other type.

• If one operand is a scalar type, then an implicit conversion from the scalar
type to the return type must be possible.

• Furthermore, a conversion from scalar type to vector type may not lead to
a narrowing conversion from a floating point type. This essentially forbids
float_v × double because the double operand would have to be converted
to the narrower single-precision float type. On the other hand double_v ×
float does not require a narrowing conversion and therefore works.

The return type is determined via the CopyUnsigned<Test, T> alias template
on line 9. The rules are as follows:

• The return type is the unsigned variant of T if T is integral and Test is an
unsigned type.

• Otherwise the return type is T.

Thus, if one operand is an unsigned integer vector or scalar and the other operand
is a signed integer vector or scalar, then the operands are converted to the corre-
sponding unsigned integer vector. However, in contrast to the semantics of builtin
integer types, no full integer promotion is applied, leaving 𝒮T of the vector entries,
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1 Vector &operator*= (Vector<T> x);
2 Vector &operator/= (Vector<T> x);
3 Vector &operator%= (Vector<T> x);
4 Vector &operator+= (Vector<T> x);
5 Vector &operator-= (Vector<T> x);
6

7 Vector &operator&= (Vector<T> x);
8 Vector &operator|= (Vector<T> x);
9 Vector &operator^= (Vector<T> x);

10 Vector &operator<<=(Vector<T> x);
11 Vector &operator>>=(Vector<T> x);
12 Vector &operator<<=(int x);
13 Vector &operator>>=(int x);

Listing 4.15: Declaration of assignment operators.

and thus 𝒲T unchanged. It follows that int_v × unsigned int yields uint_v and
short_v × unsigned int yields ushort_v. The latter implicit conversion from un-
signed int to ushort_v is unfortunate, but since short_v + 1 should be valid
code and return a short_v, it is more consistent to also convert unsigned int im-
plicitly to short_v or ushort_v.

The non-member operators were explicitly designed to support operator calls
with objects that have an implicit conversion operator to a SIMD vector type. This
is possible by leaving W less constrained than V (in Listing 4.13).

4.5.2 optimizing vector × scalar operations

Note the shift operator overloads for an argument of type int on lines 38–37 in
Listing 4.11. This touches a general issue that is not fully solved with the binary
operators interface as declared above: Some operations can be implemented more
efficiently if the operator implementation knows that one operand is a scalar or
even a literal. A scalar operand would be converted to a SIMD vector with equal
values in all entries via the non-member binary operators (which Vc therefore does
not define for the shift operators).

The issue is certainly solvable, and a topic for future research. A possible solu-
tion could be not to call V::operator⋯(V) from the non-member operators and
instead call a template function such as
template <typename V, typename L, typename R>
V execute_operator_add(L &&, R &&)

. This function could then be overloaded such that one overload implements Vector
+ Vector and the other overload implements Vector + Scalar.

4.6 COMPOUND ASSIGNMENT OPERATORS

Apart from simple assignment, C++ supports compound assignment operators that
combine a binary operator and assignment to the variable of the left operand. The
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1 EntryReference operator[](size_t index);
2 EntryType operator[](size_t index) const;

Listing 4.16: Declaration of the subscript operators for scalar access.

standard defines the behavior “of an expression of the form E1 op = E2 […] equiv-
alent to E1 = E1 op E2 except that E1 is evaluated only once.” [48, §5.17] Thus, the
simplest implementation calls the binary operator and the assignment operator.

However, compound assignment operators could do more than the combination
of binary operator and assignment operator. The additional constraint of com-
pound assignment operators, that the result of the binary operator needs to be
converted back to the type of the left operand, allows any scalar arithmetic type as
operand. This may be best explained with an example. Consider
short_v f(short_v x) {

return x *= 0.3f;
}

with SSE where 𝒲short = 2 ⋅ 𝒲float . In this case Vector<short>::operator*=(
float) can be implemented as two float_v multiplications with the low and
high parts of x. For binary operators this is not implemented because the return
type would have to be something like std::array<float_v, 2> or std::tuple<
float_v, float_v>. However, for compound assignment operators this return
type problem does not exist because the two float_v objects will be converted
back to a single short_v.

At this point only the more restrictive compound assignment operators are im-
plemented in Vc and shown in Listing 4.15. The SimdArray<T, N> type (cf. Chap-
ter 7) could make this easier to implement. The exact details of the necessary inter-
face are a topic for future research.

4.7 SUBSCRIPT OPERATORS

Subscripting SIMD vector objects is a very important feature for adapting scalar
code in vectorized codes. Subscripting makes mixing of scalar and vector code
intuitively easy (though sometimes at a higher cost than intended).

However, while subscripting is desirable from a users point of view, the C++

language standard makes it close to impossible. The issue is that the non-const
subscript operator needs to return an lvalue reference to the scalar type (Entry-
Reference) and assignment to this lvalue reference needs to modify the SIMD vec-
tor, which is of type VectorType. This requires aliasing two different types onto
the same memory location, which is not possible with standard C++. Even a union
does not solve the issue because aliasing via unions is only well-defined for lay-
out-compatible types.
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1 EntryType operator[](size_t index) const {
2 EntryType mem[size()];
3 store(mem);
4 return mem[index];
5 }

Listing 4.17: The offset in a SIMD register via operator[] is defined by the memory
order.

Therefore, the return type of the non-const subscript operator is implementation-
defined (see Listing 4.16). Most compilers provide extensions to standard C++. One
popular extension is explicit aliasing via unions. However, there are also other
ways of allowing explicit aliasing, such as GCC’s may_alias attribute. If Vc is
compiled with GCC then the return type of the non-const subscript operator will
be EntryType with the may_alias attribute.

The const subscript operator intentionally returns a prvalue and not a const
lvalue reference. With a reference, read-only access would require the compiler to
also violate the strict aliasing rules. And it is a very rare use-case to store a reference
to the return value from the const subscript operator and then modify the object
through a non-const reference. If the user wants to have a (mutable or immutable)
reference to an entry in the SIMD vector (s)he can (and must) use the non-const
subscript operator. Finally, as noted in Section 4.1.1, the EntryReference type is
not necessarily the same as EntryType&. Therefore, in order to actually return En-
tryType, the generic definition of the const operator needs to return a prvalue.

The effect of the const subscript operator is shown in Listing 4.17. Most impor-
tantly, this defines the indexing order of the values in the SIMD vector: Access to
the value at offset i via the subscript operator yields the same value a store and
subsequent array access at offset i produces. Of course, the same indexing order
must be used for the non-const subscript operator.

4.8 GATHER & SCATTER

A gather operation in SIMD programming describes a vector load from a given
base address and arbitrary (positive) offsets to this address. The scatter operation
is the reverse as a vector store. (see Figure 4.2)



4.8 gather & scatter 53

ptr

3
17
8
3

ptr[3]
ptr[17]
ptr[8]
ptr[3]

gather

ptr

3
17
8
3

v0
v1
v2
v3

scatter

+3

+17

+8

+3

+17

+8

Figure 4.2: Graphical representation for gather and scatter operations. Both operations
needs a base pointer (ptr) and a vector of offsets to this pointer ({3, 17,
8, 3}). This is used to calculate the addresses in memory: For the gather
operation, these values from memory are read into the corresponding lanes
of the return vector. For the scatter operation a third input—a vector of
values—is written into the memory locations.

1 struct iovec {
2 void *iov_base; // Pointer to data
3 size_t iov_len; // Length of data
4 };
5 ssize_t readv (int fildes, const struct iovec *iov, int iovcnt);
6 ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

Listing 4.18: Scatter/gather functions in POSIX [79].

4.8.1 prior art

Portable and intuitive gather & scatter APIs—in terms of function calls—do not
have an obvious solution. The most interesting prior art is the syntax of valarray
gather/scatter (Section 4.8.1.4).

4.8.1.1 posix
The Open Group Base Specifications, Issue 6, IEEE Std 1003.1 [79] specify readv and
writev in POSIX 1003.1 - 2004 (Listing 4.18). readv can be used to scatter from
a file descriptor into a given number of arbitrarily sized buffers. writev does the
reverse of readv. Note that the functions are not type-safe (the void* erases the
type information), which is fine for file descriptor I/O but not for a C++ API for
SIMD vector types. Furthermore, the interface requires the user to create an array
of pointers to the locations in memory instead of a single pointer and a vector of
offsets. The POSIX gather/scatter interface thus is not a good starting point for
gather/scatter for Vector<T>.
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1 __m512 _mm512_i32gather_ps(__m512i index, void const *addr,
2 int scale);
3 __m512 _mm512_mask_i32gather_ps(__m512 v1_old, __mmask16 k1,
4 __m512i index, void const *addr,
5 int scale);
6 __m512 _mm512_i32extgather_ps(__m512i index, void const *mv,
7 _MM_UPCONV_PS_ENUM conv, int scale,
8 int hint);
9 __m512 _mm512_mask_i32extgather_ps(_m512 v1_old, __mmask16 k1,

10 __m512i index, void const *mv,
11 _MM_UPCONV_PS_ENUM conv, int scale,
12 int hint);
13

14 void _mm512_i32scatter_ps(void *mv, __m512i index, __m512 v1,
15 int scale);
16 void _mm512_mask_i32scatter_ps(void *mv, __mmask16 k1, __m512i index,
17 __m512 v1, int scale);
18 void _mm512_i32extscatter_ps(void *mv, __m512i index, __m512 v1,
19 _MM_DOWNCONV_PS_ENUM conv, int scale,
20 int hint);
21 void _mm512_mask_i32extscatter_ps(void *mv, __mmask16 k1,
22 __m512i index, __m512 v1,
23 _MM_DOWNCONV_PS_ENUM conv,
24 int scale, int hint);

Listing 4.19: The gather/scatter intrinsics for the Intel MIC architecture [46].

4.8.1.2 mic intrinsics

Much closer in functionality to the requirements of the vector types API are the
SIMD gather/scatter intrinsic functions that Intel introduced with their compiler
for the MIC12 architecture (Listing 4.19). In its simplest form the gather takes an int
index vector, multiplies the values with the scale parameter (which may be 1, 2,
4, or 8) and uses these as Byte-offsets in the memory pointed to by addr to load 16
values. Thus v = _mm512_i32gather_ps(index, addr, scale) is equivalent
to:
for (int i = 0; i < 16; ++i) {
v[i] = *reinterpret_cast<const float *>(

reinterpret_cast<const char *>(addr) + index[i] * scale);
}

In contrast to the POSIX functions, the memory regions that are read (buffers) are
of fixed size (𝒮float ). Instead of one pointer per memory location, here a single
pointer with a fixed number of offsets is used. Thus, the _mm512_i32gather_-
ps intrinsic resembles a subscript operator applied to an array of floats (v =
addr[index]). However, note that the MIC intrinsics are not type-safe: they pass
the pointer as void * and require the caller to determine the scaling factor.

The remaining gather functions in Listing 4.19 provide additional features:

12 Many Integrated Core
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1 std::valarray<std::size_t> idx = {0, 1, 2, 4}; // index array
2 v2.resize(4); // sizes must match when assigning from gen subscript
3 v2 = v1[idx]; // from indirect array

Listing 4.20: Example code for a gather from valarray v1 to valarray v2 [85].

• Masked gathers allow to load fewer values from memory as determined by
the corresponding bits in the mask. This allows addr + index[i] * scale
to point to an invalid address for all i where mask[i] is false.

• The extended variants accept a parameter to do type conversions in addition
to the load. For example, a float vector can be gathered from random shorts
in an array.

• The hint parameter is used to do cache optimizations, possibly marking the
affected cache lines as LRU13.

Scatter functions do the reverse of gather functions. They store a (masked) set of
scalar values from a vector register to memory locations determined by the index
and scale parameters.

4.8.1.3 array notation
Array notation is another important interface. It is available as an extension to
C/C++ with Cilk Plus [80]. With this extension the user can express operations on
whole arrays with very little code. For instance A[:] = B[:] + 5 is equivalent
to for (i = 0; i < size(A); i++) A[i] = B[i] + 5. With this extension a
gather is written as C[:] = A[B[:]] and a scatter accordingly as A[B[:]] =
C[:]. The interface requires a single new concept (which is the central concept
of array notation) to be type-safe, concise, and intuitively clear. This syntax also
naturally expresses converting gather/scatters. Masking is possible as well by the
generic masking support in the array notation syntax [43, §5.3.6], which extends
the semantics of if/else statements.14

4.8.1.4 stl
Finally, the standard library provides related functionality in the std::valarray
and std::indirect_array classes. An indirect_array is created if a valarray
object is subscripted with a valarray <size_t> object. The object can then be as-
signed to a new or existing valarray object (with the right size). Listing 4.20 shows
an example. The expression v2 = v1[idx] executes the gather operation in the as-
signment operator of v2. The reverse assignment is also possible and implements

13 Least Recently Used
14 In Cilk Plus if/else statements are extended to accept arrays of booleans. Thus, both the if and

else branches can be executed. Section 5.1.1 covers this topic in depth.
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1 void maskedArrayGatherScatter(float *data, int_v indexes) {
2 const auto mask = indexes > 0;
3 float_v v(data, indexes, mask);
4 v.scatter(data, indexes, mask);
5 }
6

7 struct S { float x, y, z; };
8

9 void structGatherScatter(S *data, int_v indexes) {
10 float_v v(data, &S::x, indexes, indexes > 0);
11 v.scatter(data, &S::y, indexes, indexes > 0);
12 ...
13 }

Listing 4.21: Example usage of the first generation gather/scatter interface in Vc.

a scatter operation. However, these gather and scatter operations are limited to
valarray objects.

4.8.2 initial vc interface

The initial approach to gather and scatter interfaces in the Vc SIMD vector classes
was done via member functions, and for gathers additionally via constructors. A
simple gather and scatter example, using this interface, is shown in Listing 4.21. A
tricky issue were gather and scatter operations on an array of a non-fundamental
type, such as a struct, union, or array. In the case of an array of struct, the user
needs to specify the member variable of the struct that (s)he wants to access. A
possible interface for this is shown at the bottom of the example in Listing 4.21.

This interface can certainly support all features of the underlying hardware, or
emulate such features on SIMD hardware that does not have the respective in-
struction support. However, the interface is hardly intuitive. The order of param-
eters does follow a logical pattern (outer array, possibly struct members, indexes,
and optionally a mask as the last parameter), but even then I often had to look up
the interface in the API documentation. A more intuitive interface needs to relate
closer to known C++ syntax, which is something the array notation in Cilk Plus and
valarray nicely demonstrate.

Furthermore, the necessary overloads to support arbitrary nesting of structs and
arrays quickly get out of hand. For every possible composition of structs, unions,
and arrays two (unmasked and masked) gather and scatter function overloads are
required. In some situations it may be necessary to supply more than one index
vector: The first indexes subscript an outer array and the offsets in the inner array
are not equal for all entries but require another index vector. The gather/scatter
function approach simply does not scale in that respect. The following sections will
therefore present a scalable and more intuitively usable solution.
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1 template <typename I>
2 inline auto operator[](I &&i)
3 -> decltype(subscript_operator(*this, std::forward<I>(i))) {
4 return subscript_operator(*this, std::forward<I>(i));
5 }
6

7 template <typename I>
8 inline auto operator[](I &&i)
9 const -> decltype(subscript_operator(*this, std::forward<I>(i))) {

10 return subscript_operator(*this, std::forward<I>(i));
11 }

Listing 4.22: Generic subscript member operator that forwards to a non-member func-
tion.

4.8.3 overloading the subscript operator

The problems discussed above do not exist for scalar types because the subscript
operator and the member access operations support arbitrary access of members in
such nested data structures. Thus, the question is whether the syntax that works
for scalars can be made to work for SIMD vector types as well. It is possible to
overload the subscript operator with one parameter of arbitrary type, and thus
also with a parameter of SIMD vector type. However, it is not possible to overload
the subscript operator of existing types because C++ does not support non-member
subscript operators. Thus, in order to implement gathers and scatters via the sub-
script operator, the array/container class needs to specifically have support for the
SIMD types. On the other hand, adding a gather subscript operator directly to all
container classes would make all of them depend on the declarations of the SIMD
types. Luckily, there is a clean way around it that effectively creates opt-in non-
member subscript operators.15 A class simply needs the two subscript operators
defined in Listing 4.22. Then, if the subscript_operator function is declared
(with the right signature), the subscript operator can be used with the types the
subscript_operator functions implement.

As long as the C++ standard library does not implement such a subscript opera-
tor, the container classes in the std namespace cannot support SIMD vector sub-
scripting. Therefore, only a new type can implement these subscript operators. It
is possible to adapt existing container classes with the AdaptSubscriptOperator
class shown in Appendix H (Listing H.1) and thus create a Vc::vector type that
implements std::vector with the additional subscript operator.16

15 For implementing the gather and scatter subscript operator overloads it would, of course, be better if
non-member subscript operators were possible. Informal feedback from the C++ committee has been
that there is interest for a concrete proposal on the issue.

16 The exception is std::array and other container classes that need to be POD or aggregates.
Vc::array therefore needs to be a verbatim copy of std::array plus the new subscript operator.
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4.8.4 a subscript operator for simd gather and scatter

Once there are container classes that support subscripting with arbitrary, user-de-
fined types, subscripting with Vc’s vector types can be implemented (Listing 4.23).
The requirements for the subscript_operator function are the following:

• It must accept only a specific subset of container classes, specifically those
that use contiguous storage for its entries.

• The container may use storage on the free store. However, nested containers
are constrained: Only the outermost container may use the free store.

• The container and/or its entries may be arbitrarily cv-qualified.

• It must accept a specific set of types for the index parameter.

– Any type that implements the subscript operator and contains as many
entries as the gathered vector will contain / the vector to scatter con-
tains.

– SIMD vectors of integral type and with Vector<T>::size() equal for
the value vector and index vector.

The enable_if statement allows to implement the function such that it only
participates in overload resolution if and only if …

… the has_subscript_operator type trait finds a usable subscript operator in
the IndexVector type (cf. Appendix G).

… the has_contiguous_storage type trait determines that the Container type
is implemented using contiguous storage for the entries in the container.17

… the is_lvalue_reference type trait determines that dereferencing the first
iterator of the Container type returns a type that can be used to determine
a pointer to the first element of the contiguous storage of the container.

Whether the subscript_operator function participates in overload resolution
directly determines whether the generic forwarding member subscript operators
in Vc::array and Vc::vector participate in overload resolution. This is due to the
return type of the subscript operators, which lead to substitution failure (which is
not an error) if and only if subscript_operator is not usable.

17 Such a trait cannot really be implemented for all I know. However, it is possible to define a list of
classes and class templates that will work as expected.
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1 template <typename Container,
2 typename IndexVector,
3 typename = enable_if<
4 Traits::has_subscript_operator<IndexVector>::value &&
5 Traits::has_contiguous_storage<Container>::value &&
6 std::is_lvalue_reference<decltype(
7 *begin(std::declval<Container>()))>::value>>
8 inline SubscriptOperation<
9 typename std::remove_reference<

10 decltype(*begin(std::declval<Container>()))>::type,
11 typename std::remove_const<
12 typename std::remove_reference<IndexVector>::type>::
13 type> subscript_operator(Container &&c,
14 IndexVector &&indexes) {
15 return {std::addressof(*begin(c)),
16 std::forward<IndexVector>(indexes)};
17 }

Listing 4.23: Generic subscriptōperator function that passes the context for a gath-
er/scatter operation to the SubscriptOperation class.

4.8.5 a proxy type for gather/scatter

The subscript_operator function then returns an object of type SubscriptOp-
eration that contains a pointer to the beginning of the container storage and a
const reference to the index vector. A naïve approach would return Vector<T> di-
rectly, where T is determined by the type of the entries in the container. However,
in this case converting gathers, nested subscripting, as well as any scatter opera-
tion would not be possible. Returning a proxy object allows to implement further
subscript operators and delayed gather and scatter invocations to determine the
SIMD vector entry type from the assignment operator.

The SubscriptOperation (Listing 4.24) class needs three template parameters:
Obviously the type of the memory pointer and the type of the index vector/ar-
ray/list need to be parameters. The third template parameter is needed for effi-
cient implementation of the subscript operators in SubscriptOperation. This will
be explained below.

4.8.6 simple gather/scatter operators

The proxy type implements the conversion operator for gathers (line 14) and the
assignment operator for scatters (line 15). Both of these functions may only partic-
ipate in overload resolution if the memory pointer type is an arithmetic type and
the template parameter type V is a SIMD vector type.The gather and scatter op-
erations are then, together with the template parameter type V, fully defined and
thus support type conversion on load/store. The conversion is defined by the en-
try type of the SIMD vector type and the type of the memory pointer. At this point
the number of entries in the SIMD vector is known and therefore the size of the
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Figure 4.3: Graphical representation of the nested scalar subscript gather operation.
(ptr is a nested array type, such as array<array<float, 4>, 20>)

index vector can be checked. If the size of the index vector is encoded in the type,
then this will be used to additionally determine participation of the functions in
overload resolution.18

Since scatter is implemented via an assignment operator in SubscriptOpera-
tion, it appears consistent to support compound assignment as well. In Vc I de-
cided against doing so, because compound assignment implies that an implicit
gather operation needs to be executed. Since gather/scatter are rather expensive
operations, I believe the user should see more clearly that the memory access pat-
terns of the code are sub-optimal. Not allowing compound assignment forces the
user to explicitly execute a gather and a scatter, thus making the memory accesses
more obvious.

The two operators implement unmasked gather and scatter. Masked gather scat-
ter will be discussed in Section 5.4. The functions on lines 17 and 18 provide an
interface to extract the necessary information in a minimal interface.

4.8.7 the nested scalar subscript operator

The SubscriptOperation class (Listing 4.24) implements three subscript opera-
tors. The scalar subscript operator on line 24 allows to use gather/scatter for nested
containers. The second operator on line 31 implements gather/scatter operations
for different offsets in nested containers.19 The third operator on line 37 enables
gather/scatter to use arrays of structs.

18 An alternative to removing a function from overload resolution are diagnostics via staticāssert
statements. (Compare footnote 11 on page 47.)

19 Basically, only nested arrays will work because of the requirement that only the outer container may
allocate the data on the heap.
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1 template <typename T,
2 typename IndexVector,
3 typename Scale = std::ratio<1, 1>>
4 class SubscriptOperation {
5 const IndexVector m_indexes;
6 T *const m_address;
7

8 using ScaledIndexes = implementation_defined;
9

10 public:
11 constexpr SubscriptOperation(T *address,
12 const IndexVector &indexes);
13

14 template <typename V> operator V() const;
15 template <typename V> SubscriptOperation &operator=(const V &rhs);
16

17 GatherArguments<T, ScaledIndexes> gatherArguments() const;
18 ScatterArguments<T, ScaledIndexes> scatterArguments() const;
19

20 SubscriptOperation<
21 std::remove_reference_t<decltype(m_address[0][0])>, IndexVector,
22 std::ratio_multiply<
23 Scale, std::ratio<sizeof(T), sizeof(m_address[0][0])>>>
24 operator[](std::size_t index);
25

26 template <typename IT>
27 SubscriptOperation<
28 std::remove_reference_t<
29 decltype(m_address[0][std::declval<const IT &>()[0]])>,
30 ScaledIndexes>
31 operator[](const IT &index);
32

33 template <typename U>
34 SubscriptOperation<
35 std::remove_reference_t<U>, IndexVector,
36 std::ratio_multiply<Scale, std::ratio<sizeof(T), sizeof(U)>>>
37 operator[](U T::*member);
38 };

Listing 4.24: The SubscriptOperation proxy type. It implements conversion to/from SIMD
vector types via gather/scatter calls and additional subscript operators.
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The scalar subscript operator (line 24) executes a constant array subscript for a
nested array (see Figure 4.3). Semantically, the operator implements the same be-
havior as scalar subscripting. Thus, the expression data[int_v::IndexesFrom-
Zero()][3] references the elements data[0][3], data[1][3], data[2][3],
… .

4.8.7.1 return type
The subscript operator must determine the new template arguments for the Sub-
scriptOperation return type:

• The memory pointer previously pointed to an array of arrays. The new point-
er must point to the beginning of the first array in the outer array. Thus, the
type changes from array of U to U.

• The IndexVector type does not change at this point, also because its value
is not modified.

• Because of the above, the index vector would now contain incorrect
offsets. Consider the expression data[int_v::IndexesFromZero()][3]
(as above) and assume data is of type Vc::array<Vc::array<float,
100>, 100>. Then data[int_v::IndexesFromZero()] returns an ob-
ject of type SubscriptOperation<Vc::array<float, 100>, int_v, ra-
tio<1, 1>>. The subsequent call to the nested scalar subscript operator (op-
erator[](std::size_t)) determines the memory pointer type to be float
and retains the index vector as {0, 1, 2, …}. Since &data[1] − &data[0]
= 𝒮Vc∶∶array<float,100>

𝒮float
= 100, the correct offsets to the new float-pointer are {0,

100, 200, …}. The pointer difference expression (&data[1] - &data[0])
is not a constant expression, but the sizeof fraction obviously is. Therefore,
the std::ratio template argument is scaled with these two sizeof values
(line 22).

By using a template parameter, this fraction is built up in subsequent sub-
script operator calls and the division is evaluated at compile time inside the
cast and assignment operators or the gatherArguments and scatterArgu-
ments functions. Thus, the multiplication of the index vector is delayed as far
as possible. This is not only an optimization. It is necessary to delay the divi-
sion to implement the member subscript operator (Section 4.8.10) correctly.
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1 template <typename U = T>
2 auto operator[](enable_if_t<(has_no_allocated_data<T>::value &&
3 has_subscript_operator<T>::value &&
4 is_same<T, U>::value),
5 size_t> index)
6 -> SubscriptOperation<
7 remove_reference_t<decltype(m_address[0][index])>,
8 IndexVector,
9 ratio_multiply<

10 Scale, ratio<sizeof(T), sizeof(m_address[0][index])>>>;

Listing 4.25: The complete declaration of the nested scalar subscript operator as used
in Vc.

4.8.7.2 participation in overload resolution
The scalar subscript operator (line 24) may not be instantiated with the Subscript-
Operation<T, I, S> class if T does not implement the subscript operator for ar-
guments of std::size_t. This can be implemented via a dummy template pa-
rameter (U) to the subscript operator and modifying the subscript expression in
the decltype expression such that it becomes a dependent type on U, while at the
same time requiring U to be equal to T. In addition to delayed instantiation, the
operator shall not participate in overload resolution if T does not implement the
subscript operator or if T is a container that does not store its data inside the object.
This last requirement is important to make the offset calculation work as described
above. See Listing 4.25 for a possible declaration.

4.8.7.3 nested container requirements
A container class that can be dynamically resized typically stores its data in a heap-
allocated array outside of the container object. The object itself typically has only
two or three member variables: pointers to begin and end of the data, and possi-
bly a pointer to the end of the allocated memory. A well known example is std
::vector. Consider what Vc::array<std::vector<int>, N> implies for SIMD
gather and scatter operations, which require a single pointer to memory and a list
of offsets to that pointer. In general, there is no guarantee about the dynamically
allocated memory, thus the pointers of the std::vector objects could possibly
cover the whole range of addressable memory.20 On a system with a pointer-size
of 64 bits, the index vector would be required to use 64-bit integers or risk point-
ing to incorrect addresses. Especially for SIMD vector gathers and scatters this is
a very limiting requirement. The gather and scatter instructions in the MIC in-
struction set and the AVX2 gather instructions only support 32-bit integer offsets.
In addition, these instructions assume unsigned integers and thus only positive
offsets. The base pointer would therefore have to be the numerically smallest one.

20 or worse: different segments of memory
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Overall, these constraints and complications show that an interface to gather/scat-
ter for these kinds of nested container types is not worth the effort. The user would
be much better served with writing a loop that assigns the scalar values sequen-
tially.21

4.8.8 type of the index vector

As mentioned above (and more below), at some point the index vector values must
be scaled with the ratio stored in the std::ratio template parameter. However,
when the multiplication is executed, the index vector type must be able to store
these larger values. It would be easiest if the scaled index vector type were equal to
the type used for the initial subscript. However, the scale operation of the indexes is
implicit and not at all obvious to the user, who did not study the implementation
of nested subscripting. The user only sees the need for the type of the subscript
argument to be able to store the offsets for the outer subscript. Thus, a vector of
16-bit integers may appear to be sufficient.

Obviously, a 16-bit integer can quickly overflow with the scale operations in-
volved for nested arrays.22 Therefore, the index vector type needs to be promoted
transparently before applying the scale operation. The safest type for promotion
would be a std::size_t. However, as discussed above, the interface should pref-
erably avoid 64-bit offsets, since they cannot be used for gather/scatter instructions
on at least one major platform. Thus, integral promotion to int or unsigned int
is the most sensible solution.

The promoted index vector type is captured in the ScaledIndexes member type
(line 8). The discussion showed that there is no definite answer on the type pro-
motion. Since the type is only used internally, the implementation may choose the
exact rules.

For Vc I chose the following logic for the ScaledIndexes member type:

• If IndexVector is Vector<T> or SimdArray<T, N> and 𝒮T ≥ 𝒮int , then Sca-
ledIndexes is set to IndexVector.

• If IndexVector is Vector<T> or SimdArray<T, N> and 𝒮T < 𝒮int , then Sca-
ledIndexes is set to SimdArray<int, IndexVector::size()>.

• If IndexVector is an array with known size (std::array, Vc::array, or
fixed-size C-array), then ScaledIndexes is set to SimdArray<promoted_-
type<T>, N> (where T is the value type of the array).

21 Or even better: The API limitation uncovers the flaw in the data structure and leads to a redesign
and better data structures.

22 Consider Vc::array<Vc::array<float, 1000>, 1000> data: The first subscript operator only
works with values from 0–999, which easily fit into a 16-bit integer. However, with the second sub-
script those indexes must be scaled by 1000, thus exceeding the representable range.
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Figure 4.4: Graphical representation of the nested vector subscript gather operation.
(ptr is a nested array type, such as array<array<float, 4>, 20>)

• If IndexVector is an initializer_list<T>, then ScaledIndexes is set to
vector<promoted_type<T>>.

• If IndexVector is a vector<T>, then ScaledIndexes is set to vector<pro-
moted_type<T>>.

4.8.9 the nested vector subscript operator

The second subscript operator on line 31 also implements gather and scatter on
nested arrays (see Figure 4.4). In contrast to the above subscript operator, it al-
lows to use different offsets on all nesting levels. Thus, data[i][j] references the
values {data[i[0]][j[0]], data[i[1]][j[1]], …}. The second subscript’s
offsets therefore need to be added to the scaled original offsets. This is why the re-
turn type of the subscript operator is SubscriptOperation<U, ScaledIndexes,
ratio<1, 1>>.

As for the scalar subscript operator, the vector subscript operator may not be
instantiated together with the SubscriptOperation<T, I, S> class unless T im-
plements the scalar subscript operator. Since the subscript operator is declared as
a template function and the subscript expression in the deduction of type U of the
return-type SubscriptOperation<U, ScaledIndexes> depends on the template
type, this requirement is already fulfilled. In addition, the operator may only par-
ticipate in overload resolution if and only if …

… T implements the subscript operator.

… T is a container that stores its data inside the object. (cf. Section 4.8.7.3)
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Figure 4.5: Graphical representation of the nested struct subscript gather operation.
(ptr is an array of struct type, such as array<S, 20> , with struct S {
float x, y, z; };)

… the operators function parameter type implements the subscript operator. This
requirement fully disambiguates the function with the scalar subscript oper-
ator.

… the number of values in IndexVector and the function parameter type IT are
equal or at least one of them cannot be determined as constant expression.

4.8.10 the nested struct member subscript operator

The third subscript operator on line 37 in Listing 4.24 enables gather and scatter
for arrays of structs (see Figure 4.5). The API defined here does not have a direct
counterpart in scalar code. The reason for this is that the dot-operator is not over-
loadable in C++ (yet).

Consider a container of type Vc::vector<S> with a simple structure (struct
S { float x, y, z; }) for the following discussion. Then, to access S::x of a
given array element with offset i, the required scalar code is data[i].x. The data
member access via .x is not overloadable in a generic proxy-class returned from
data[indexes] (where indexes is a vector/array of indexes). Therefore, with
C++14, the only way to implement a vectorized struct gather requires data[in-
dexes] to return a struct of proxy objects that are named x, y, and z. It follows
that such an implementation must know the members of the struct before tem-
plate instantiation. Such a return type therefore is not generically implementable
with C++14. There is research going into the compile-time reflection capabilities
required for creating such code [73].
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4.8.10.1 emulating member access
Member access is too important to postpone its use with Vc until some future C++

standard provides the capabilities, though. Therefore, consider an alternative that,
at least when seen in code, is suggestive enough to a developer that (s)he can un-
derstand intuitively what it does and how it can be used in new code.

The solution I chose in Vc therefore had to rely on a different operator over-
load or member function. The subscript operator is the semantically closest relative
to accessing member variables via the dot operator. However, instead of an inte-
gral argument, the subscript operator needs to know the member variable offset
in the struct, which can be expressed with pointers to members. Thus, data[in-
dexes][&S::x] in Vc expresses the equivalent of data[index].x in scalar code.

4.8.10.2 participation in overload resolution
The nested struct member subscript operator may only participate in overload res-
olution if the template parameter T of the SubscriptOperation class template is
a class or union type. Otherwise, the pointer to member type in the function
parameter list would be an ill-formed expression.

4.8.10.3 return type
The return type of operator[](U S::*) follows the same considerations as the
return type for operator[](std::size_t) (cf. Section 4.8.7.1). However, now the
importance of using a fraction template parameter instead of immediate scaling or
a single integer for the scaling parameter becomes clear. Consider a struct that
contains an array: struct S2 { float x[4], y; }. The index scale factor for
&S2::x thus would be 𝒮S2

𝒮float[4]
= 20

16 , which is not an integral value. In order to
access a scalar element, the user must call another subscript operator for the S2::x
array, which will result in the scaling fraction 𝒮float[4]

𝒮float
= 16

4 . The final scaling that
is applied in e.g. SubscriptOperation::operator V() thus becomes 20⋅16

16⋅4 = 5.

4.8.10.4 digression: implications for operator.()
The SubscriptOperation class is a use case for an overloadable operator.()
that needs to do more than just forward to an object returned by the operator
(i.e. the current operator->() cannot be used either). A possible operator.()
declaration for SubscriptOperation could look like the one in Listing 4.26. For
a container of type Vc::vector<S>, the code data[indexes].x would thus call
data[indexes].operator.(&S::x) The type S could be deduced from the pa-
rameter type of the operator.() declaration.
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1 template <typename U>
2 SubscriptOperation<
3 std::remove_reference_t<U>, IndexVector,
4 std::ratio_multiply<Scale, std::ratio<sizeof(S), sizeof(U)>>>
5 operator.(U T::*member);

Listing 4.26: A possible operator.() overload that can capture the requirements of
SubscriptOperation .

1 namespace Vc {
2 using target_dependent::Vector;
3 using target_dependent:: float_v;
4 using target_dependent::double_v;
5 using target_dependent:: int_v;
6 // ...
7 }

Listing 4.27: Declaration of the default SIMD vector type(s).

4.9 SELECTING THE DEFAULT SIMD VECTOR TYPE

Section 4.1 (Listing 4.1) showed that the Vector<T> class is defined inside a target-
dependent namespace. Thus, the class (and its type aliases) need to be imported into
a public namespace. The Vc namespace therefore must import all vector types from
one of the target-dependent namespaces with using declarations (Listing 4.27).
The default choice is very important to the idea of a portable SIMD vector type be-
cause it allows using a different target-dependent implementation of Vector<T>
with just a recompilation (using a different compiler or compiler flags).23

4.9.1 the scalar Vector<t> implementation

In addition to the vector types in the Vc namespace, the Vc::Scalar namespace
is always defined. The Vc::Scalar::Vector<T> class is implemented with T as
VectorType member type, thus storing a single scalar value. However, in contrast
to the fundamental type T, Vc::Scalar::Vector<T> implements the complete
SIMD types interface and thus is always available as a drop-in replacement for
Vc::Vector<T>.

The scalar implementation is especially useful for

• making debugging a vectorized algorithm easier.

• testing that a given code works with a different vector width.

• targets without SIMD registers/instructions.

23 Since this has consequences on ABI compatibility, the default might need to be a little more conser-
vative and user-configurable. Chapter 8 discusses the issue.



4.9 selecting the default simd vector type 69

• implementing generic algorithms that need to be able to process chunks of
data that are smaller than the native SIMD width (cf. Section 9.1).

4.9.2 several simd generations in one translation unit

For some target architectures it is possible to support more than one SIMD register
width. This can be supported by using documented namespace names for the dif-
ferent SIMD targets. Then a user that knows that (s)he targets this architecture can
explicitly use SIMD registers and operations that are not declared as the default
type.

As an example consider a x86 target with AVX instruction support. In addition to
256-bit SIMD registers the target also supports 128-bit SIMD registers (SSE). Thus,
the types Vc::AVX::float_v and Vc::SSE::float_v as well as Vc::Scalar::
float_v are available to the user. (The type Vc::float_v would then be an alias
for Vc::AVX::float_v.)

For a problem where only 4 entries in a single-precision float SIMD vector are
needed Vc::SSE::float_v will perform better than Vc::AVX::float_v because
it requires half of the memory bandwidth and because not all instructions on the
CPU work equally fast for AVX vectors as for SSE vectors. As we will see later
(Chapter 7), the different vector types can be abstracted into a higher level type,
alleviating the need for #ifdefs checking for a specific target architecture.

Experience has shown that it is useful to forward declare all user-visible types
from target-specific namespaces even in case they are incompatible with the tar-
get system of the current compilation unit. This makes it easier for users to write
target-specific code without using the preprocessor, only relying on template in-
stantiation rules.

4.9.3 implementation considerations

If you consider that there are definitions for all possible SIMD targets (and thus
platform specific code) in different namespaces, the question remains how the li-
brary decides what namespaces are made visible and which one of them to choose
as the default. This selection can (and must) be implemented with the preproces-
sor. This is obvious for hiding implementations that would be ill-formed because
of the use of platform- and implementation-specific types. Choosing the default
SIMD vector type could be possible with template programming, but still requires
some constant expression that identifies the supported SIMD targets. Today, this
information is not accessible through standard C++ and must rely on compiler-spe-
cific macros, making an implementation with preprocessor expressions straight-
forward.
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For most target architectures there is a very limited set of choices with regard to
SIMD. Today, one of the most diverse SIMD targets is the x86_64 architecture (an
overview was given in Section 1.4). Let us consider a compilation unit with com-
piler flags set for the AMD Piledriver microarchitecture.24 This microarchitecture
supports the following SIMD (or SIMD related) instruction extensions: MMX, SSE,
SSE2, SSE3, SSE4A, SSSE3, SSE4, F16C, FMA, AVX, XOP. Since the user will expect
that in this case the most advanced registers and instructions will be used, the de-
fault Vector<T> implementation should use vector registers of 256 bits width for
floating-point types and 128 bits for integral types.25 See Chapter 8 for a discussion
of the ABI implications.

4.10 INTERFACE TO INTERNAL DATA

The Vc::Vector class does not implement all operations that a user might want to
use. Most importantly, there exist specialized instructions for specific application
domains that are not easy to capture in a generic interface. Thus, if the Vc types
should be usable also for such special application domains it must be possible to
access internal and implementation-dependent data.

The Vc::Vector class therefore defines the data() member function and a con-
structor that converts from a VectorType object:
Vector(VectorType);
VectorType &data();
const VectorType &data() const;

For example, a user might want to use the SSE intrinsic _mm_adds_epi1626 with
Vc::SSE::short_v and can thus write his/her own abstraction:
Vc::SSE::short_v add_saturating(Vc::SSE::short_v a,

Vc::SSE::short_v b) {
return _mm_adds_epi16(a.data(), b.data());

}

The choice of the data() function is rather arbitrary. Alternatively, the Vec-
torType could also be returned via a conversion operator (operator Vector-
Type &()) or a non-member friend function such as (VectorType &internal_-
data(Vector<T> &)). The conversion operator might be the most convenient so-
lution, though it can certainly be argued that it is too convenient because the im-
plicit conversion can be unintended and nonobvious. However, the conversion
operator could also be declared as explicit, in which case the data() member
function is more convenient again.

24 For instance, the compiler flag for GCC for the AMD Piledriver microarchitecture is -march=bdver2.
25 Vc used 256 bits (two 128-bit operations per vector) for int_v and uint_v before Vc 1.0.
26 This intrinsic adds 16-bit integers with signed saturation, thus returning SHRTM̄IN/SHRTM̄AX if the

addition would underflow/overflow. This functionality may certainly be abstracted for the Vc::
Vector types, but currently this is not the case.
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4.11 CONCLUSION

This chapter has introduced the API for a type that allows data-parallel execution
for arithmetic types. On the one hand, I have shown how the interface has to be
designed to follow the syntax and semantics of existing C++ as much as possible.
On the other hand, I have shown where the semantics have to differ from the scalar
types.

The resulting programming interface enables users to write explicitly data-paral-
lel code without sacrificing serial semantics. Thus, the user does not have to reason
about concurrent execution of serially stated algorithms but can reason about se-
rially executing operations of which each processes data in parallel. Vc’s Vector<
T> type thus enables a data-parallel programming model which is easy to reason
about without abandoning functionality.





5
DATA-PARALLEL CONDITIONALS

The effective exploitation of his powers of abstraction
must be regarded as one of the most vital activities

of a competent programmer.
— Edsger W. Dijkstra (1972)

Conditional statements are some of the most important language elements in C++.
if statements enable programs to follow different code paths depending on arbi-
trary boolean conditions. In most cases an if statement is translated as a branch-
ing instruction. These instructions can be expensive on modern processors, if the
branch prediction unit chooses the wrong branch. In such a case the pipeline has to
be flushed and execution must restart at the other branch. This can incur penalties
on the order of 100 cycles.

In order to overcome costly pipeline flushes on incorrect branch prediction, con-
ditional move instructions have been introduced. A conditional move instruction
typically executes a load or register copy if one or more specific flag(s) is/are set.
Thus, an optimizing compiler might translate the code if (condition) { x =
y; } into a compare instruction and a subsequent conditional move instruction.

Not every conditional jump in machine code is translated from an if statement.
Conditional jumps are used for loop exit conditions in while or for statements.
Furthermore, switch statements describe jumps into one out of several code sec-
tions, where each one can be identified via one or more integral value(s). Instead
of a switch statement, the logic can alternatively be expressed as several if state-
ments. This is functionally equivalent, but often compilers optimize switch state-
ments via jump tables, while if cascades are typically translated as consecutive
compares and jumps.

73
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1 int_v f(int_v a, int_v b) {
2 if (a < b) {
3 a += 1;
4 } else {
5 a -= 1;
6 }
7 return a;
8 }

Listing 5.1: Example code relying on overloaded semantics for if statements with mask
arguments.

5.1 CONDITIONALS IN SIMD CONTEXT

The SIMD types, as defined in Chapter 4 do not return booleans from the compare
operators. Instead, they return Vector<T>::MaskType, which is an alias for Mask<
T>. This mask type is the equivalent of a Vector<bool> type, but with additional
type information about the associated Vector<T>::EntryType. (The need for this
additional type information will be discussed in Section 5.2.) Thus, operations re-
turning a definitive true or false answer with scalar types, return multiple true
and/or false values in one return value with SIMD types. Obviously, these mask
types cannot work directly with the builtin conditional statements in C++.

For SIMD code there are two principal choices for the semantics of if, for,
while, and switch:

1. By enhancing the language and modifying compilers accordingly, it is pos-
sible to overload the meaning of conditional statements with operands of
mask type. This has been implemented in Cilk Plus for the array notation
extension [80]. Conditional statements subsequently do not disable a branch
unless all entries of the mask are false (though essentially this is an optional
optimization). Instead, all code branches are executed, only with some vector
lanes implicitly disabled. Consider the example code in Listing 5.1 on a sys-
tem with 𝒲int = 4 and a = {1, 2, 3, 4}, b = {7, 0, 7, 7}: The ex-
pression a < b then returns a mask with 4 boolean values: {true, false,
true, true}. The compiler therefore has to translate the if-branch (line 3)
into instructions that modify a only at the indexes 0, 2, and 3. Subsequently,
a will be a = {2, 2, 4, 5}. The else-branch (line 5) then may only mod-
ify the SIMD vector entry at index 1. Thus, a must become a = {2, 1, 4,
5}, which is the return value of the function f.

2. The alternative keeps the semantics of the existing conditional statements
unchanged. Then, mask types can only be used for conditional statements
if a reduction function from a mask to a single boolean value is used (cf.
Section 5.2.7). Still, the functionality described above (modifying a subset of
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1 int_v f(int_v a, int_v b) {
2 if (a < b) {
3 return a + 1;
4 } else {
5 return a - 1;
6 }
7 }

Listing 5.2: Code example that shows unclear return semantics: both branches must ex-
ecute but from where does the function return and what is the return value?

1 int f(int_v a, int_v b) {
2 if (a < b) {
3 return +1;
4 } else {
5 return -1;
6 }
7 }

Listing 5.3: Code example that shows unresolvable ambiguity: both branches must ex-
ecute but there can be only one return value because the return type is a
scalar int .

a SIMD vector, selected via a mask) can be implemented via write-masking
expressions (cf. Section 5.3).

5.1.1 consequences of implicit masking

Consider the implications of if statements that accept SIMD masks. The code ex-
ample in Listing 5.2 is a small modification of the example in Listing 5.1 that would
be equivalent for scalar types. However, with SIMD vector types both of the two
return statements in the code must be taken. It is certainly possible to define that
this code blends the SIMD vectors from the two return statements according to
the implicit masks in the if and else branches. However, already a seemingly
small change, such as returning an int instead of int_v (Listing 5.3) leads to unre-
solvable ambiguity: Should the function return +1 or -1? Similar ambiguity issues
occur with non-complementary masked return statements and function calls in-
side the branches. Throwing exceptions and locking/unlocking mutexes would
even have to be disallowed altogether.

There is a more fundamental uncertainty resulting from implicit masking via if
statements on SIMD vector masks: How should different SIMD vector types in-
teract? An if statement from int_v comparison returns 𝒲int boolean answers. If
the branch contains code with short_v or double_v, should it be implicitly write-
masked or not? If yes, how? There is no natural and obvious behavior for applying
write masks of different 𝒲T .
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This shows that if statements with non-boolean arguments limit the language
features allowed in the if/else branches. This makes the feature much less in-
tuitive. The implicit mask context changes the semantics significantly in different
regions of the source code. And the problem is aggravated if a developer requires
else if or switch statements.

5.1.2 design decision for vc

For the Vc library I therefore decided that the semantics of if, for, while, and
switch must not change for explicit SIMD programming.1 Everything else would
be too surprising and unintuitive to users, especially developers that read existing
code without prior knowledge about SIMD programming. This may sound obvi-
ous, but consider that many developers will start from a scalar implementation of
their algorithm. In the scalar code the conditional statements correctly express the
logic of the algorithm. When a developer subsequently vectorizes the code (s)he
starts with replacing scalar types with the Vc vector types. At this point it may
appear like a logical simplification of the vectorization process to keep the condi-
tional statements unchanged in order to minimize the effort for the user. However,
as discussed above, this comes at a considerable cost in consistency of semantics.2

Thus, part of the issue is the question whether it is more important to ease initial
vectorization of an algorithm or whether maintenance effort is more important.
Even then, whether implicit write-masking via conditional statements eases initial
vectorization at all certainly depends on the algorithm: The restricted semantics
might lead to an even larger effort required for converting a given scalar code to
SIMD code.

5.2 THE MASK<T> CLASS TEMPLATE

Analogous to the Vector<T> class discussed in Chapter 4, there needs to be a type
acting as a SIMD vector of booleans. This is necessary for attaching the SIMD con-
text to a type instead of implicit context. There are three main approaches:

• Reuse/Specialize the Vector<T> class (Vector<bool>).

• Define a new class (Mask<T>) with a type as template parameter.

• Define a new class (Mask<Size>) with a size as template parameter.

1 This is nice, because otherwise a pure library solution would not be possible.
2 There is not really a precedent in C++ for such differences in semantics / allowed operations for

certain code regions. The transactional memory extensions for C++ [61] may introduce local semantics
where actions inside a transaction are restricted to reversible operations. Approaches like explicit
SIMD loops (Section 2.3) or the Intel Array Building Blocks framework [67] also rely on restricted
local semantics.
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5.2.1 why vector<bool> is not enough

The type bool is part of the integral types in C++. Since values of type bool “partici-
pate in integral promotions” [48, §3.9.1] they can be used in any expression where
an int can be used.3 Therefore, it appears as if the interface provided by Vector<
T> is a good fit for boolean values, too. The additional functionality a SIMD vector
of booleans should provide (such as the population count or reductions) could still
be defined as non-member functions.

However, considering that 𝒲T may be different for different T it follows that
𝒲bool = max({𝒲T | ∀T}). Otherwise Vector<bool> would only be usable for a
(target-dependent) subset of Vector<T> types. This definition of Vector<bool>
implies that 𝒲bool may be greater than 𝒲T for some types T. Consider an SSE
target, where 𝒲short = 8, 𝒲float = 4, and 𝒲double = 2. Consequently, 𝒲bool
would need to be 8 (16 if Vc::Vector<signed char> were supported by Vc) and
store 50% or 75% unused data for masks interacting with float_v and double_v,
respectively. Considering the implementation implications, this issue turns out to
have serious efficiency implications, as well: With the SSE instruction set, boolean
vectors are stored in the 128-bit SSE registers with 64/32/16/8 bits all set to either
0 or 1 for every associated value in the value vector. Thus, the hardware gener-
ates and expects booleans in different bit representations, depending on the SIMD
vector type (or more accurately: 𝒮T ).

In addition to the size issue, there is good reason to use a single bool return value
for the equal and not-equal comparison operators (cf. Section 5.2.6). Thus, Vector<
bool> would need to specialize these functions, which is certainly possible, but, to
a certain degree, defeats the purpose of using a generic class.

5.2.2 vc::mask<t> definition

As discussed in Section 5.2.1, it is beneficial to define several mask types instead of
a single boolean vector type. Looking at the SSE instruction set we have seen that
Mask<Size> would suffice to define the minimal set of mask types for an x86/SSE
target system. However, consider that the AVX instruction set uses 𝒲float = 8
and 𝒲double = 4 on top of the SSE vector sizes. Using the SIMD vector size as
template parameter for the mask type thus would lead to subtle portability issues
(this is the same issue discussed in Chapter 6 for Vector<T, N>): Consider the
return types of the expressions int_v() == int_v() and float_v() == float
_v(). With the SSE target they would both return the same Mask<4> type, whereas
with AVX the types would differ: Mask<4> and Mask<8> respectively. The general
solution (Mask<T>) therefore uses a different mask type for every SIMD vector type

3 “A prvalue of type bool can be converted to a prvalue of type int, with false becoming zero and true
becoming one.” [48, §4.5]
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1 namespace Vc {
2 namespace target_dependent {
3 template <typename T> class Mask
4 {
5 implementation_defined data;
6

7 public:
8 typedef implementation_defined VectorType;
9 typedef bool EntryType;

10 typedef implementation_defined EntryReference;
11

12 static constexpr size_t MemoryAlignment = implementation_defined;
13 static constexpr size_t size() { return implementation_defined; }
14 // ... (see below)
15 };
16 template <typename T> constexpr size_t Mask<T>::MemoryAlignment;
17

18 typedef Mask< float> float_m;
19 typedef Mask< double> double_m;
20 typedef Mask< signed int> int_m;
21 typedef Mask< unsigned int> uint_m;
22 typedef Mask< signed short> short_m;
23 typedef Mask<unsigned short> ushort_m;
24 } // namespace target_dependent
25 } // namespace Vc

Listing 5.4: SIMD mask class definition.

Vector<T>.4 That way the types are different for every target and the user will be
forced to use explicit type conversions.

Listing 5.4 shows the definition of the SIMD mask type. Except for the Entry-
Type member type all member types in Listing 5.4 are implementation-defined. This
is analogous to the definition of the Vector<T> class in Listing 4.1. The different
types are used for abstracting the following concepts:

VectorType
(line 8) This type is used by the implementation to store a SIMD vector of
booleans. For some implementations, this type may be equal to Vector<T>::
VectorType but there is no such requirement.

EntryType
(line 9) This is an alias for bool. The member type is defined for generali-
ty/interface compatibility with Vector<T>. This type signifies the concep-
tual entry type. The actual entries in VectorType may use a different binary
representation than bool.

EntryReference
(line 10) This type is used as the return type of the non-const subscript op-

4 Implicit and explicit conversions between Mask<T> and Mask<U> can be a no-op whenever 𝒮T =
𝒮U ∧ 𝒲T = 𝒲U .
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1 Mask();
2 explicit Mask(bool);
3 template <typename U> Mask(const Mask<U> &);
4 template <typename U> explicit Mask(const Mask<U> &);

Listing 5.5: Declaration of the Mask<T> copy and cast constructors.

erator. It is therefore used to reference a single boolean entry in the internal
mask representation. Note that the most compact binary representation for a
SIMD vector of booleans uses a single bit per boolean value. In this case there
cannot be a type representing the actual bits of the boolean value of a single
mask entry.5 Thus, EntryReference can also be a proxy class that can access
(read and write) individual bits of such a mask via the assignment operators
and cast-to-bool operator.

The Mask<T> type needs a single data member of an implementation-defined type
(line 5). This member defines the size and alignment of the Mask<T> type.

The number of entries in the SIMD vector, in general, is different from 𝒮Mask<T> ,
which is why the size() constant (line 13) defines this value. To be consistent, the
size() function must return the same value as Vector<T>::size().

The Mask<T> type defines a MemoryAlignment static data member, just as Vec-
tor<T> does. Analogously, its value is the alignment requirement of pointers to
EntryType (i. e. bool) in aligned load and store calls (Section 5.2.4). Implementa-
tion experience tells that in most cases the alignment of Mask<T> will not be equal
to Mask<T>::MemoryAlignment. This is due the SIMD mask register either using
several Bytes or only a single bit per boolean entry.

Finally, analogous to the type aliases for Vector<T>, the mask types implement-
ed in the Vc library are aliased to the types float_m, double_m, … (lines 18–23).

5.2.3 constructors

The constructors for the Mask<T> class need to replicate the semantics of the bool
type as much as possible. The necessary declarations are shown in Listing 5.5.

The default constructor of Mask<T> initializes the value of all entries in the mask
to false. This is required for compatibility with the expression bool(), which
constructs a bool with the value false.

The copy and move constructors and operators are omitted for the same reason
as for Vector<T> (cf. Chapter 4).

5 The object representation of any type in C++ takes up 𝑁 bytes, where 𝑁 is integral. This is also evi-
dent from the sizeof operator which returns a size_t denoting the number of bytes in the object
representation of the type.
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1 explicit Mask(const bool *mem);
2 template<typename Flags> explicit Mask(const bool *mem, Flags f);
3

4 void load(const bool *mem);
5 template<typename Flags> void load(const bool *mem, Flags);
6

7 void store(bool *) const;
8 template<typename Flags> void store(bool *mem, Flags) const;

Listing 5.6: Declaration of the Mask<T> load and store functions.

The constructor on line 2 initializes a mask object with all values set to the bool-
ean value passed in the argument. Therefore, this constructor implements a broad-
cast from one scalar value to all entries in a SIMD vector. Note that, in contrast to
the broadcast constructor from Vector<T>, the broadcast constructor of Mask<T>
is declared as explicit. This is a deviation from the behavior of the scalar bool
type. However, for boolean vectors the usefulness of a broadcast is mostly limited
to initialization of mask objects. If a developer really needs to use a mask with all
entries set to either true or false, then it is very likely that a scalar control-flow
statement (such as if) is much better suited for the task. On the other hand, if im-
plicit conversions from scalar bool to Mask<T> were possible, a user might fail to
notice that an expression produces a bool instead of the intended mask object.

Finally, the two constructor functions on lines 3 and 4 implement implicit and
explicit (static_cast) conversions between mask objects. The two functions, as
declared in Listing 5.5, are ambiguous. They need to be adjusted, such that the
implicit constructor only participates in overload resolution if 𝒲U = 𝒲T for all
possible targets. According to the discussion of implicit conversions in Chapter 4
this restriction can be implemented via the following enable_if expression:
enable_if<differs_only_in_signedness<U, T>::value>

The explicit constructor then simply requires the inverse condition to enable_-
if.

5.2.4 loads and stores

Mask types can implement load and store functions, reading from / writing to ar-
rays of EntryType (which is bool). These functions can be useful to write code that
is independent of the SIMD register width and to interface with non-SIMD code
(or I/O in general). Listing 5.6 shows the declaration of the necessary functions.
The Flags argument is analogous to the one for the Vector<T> load/store func-
tions. The default uses unaligned loads and stores and can be set to aligned load
and store via the second argument.
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1 Mask operator!() const;
2

3 Mask &operator&=(Mask);
4 Mask &operator|=(Mask);
5 Mask &operator^=(Mask);
6

7 Mask operator&(Mask) const;
8 Mask operator|(Mask) const;
9 Mask operator^(Mask) const;

10

11 Mask operator&&(Mask) const;
12 Mask operator||(Mask) const;

Listing 5.7: Declaration of logical and bitwise operators for Mask<T> .

1 bool operator==(Mask rhs) const;
2 bool operator!=(Mask rhs) const;

Listing 5.8: Declaration of the Mask<T> comparison operators.

5.2.5 logical and bitwise operators

Listing 5.7 shows the declaration of the operators for logical and bitwise opera-
tions. Each operator simply applies the operation component-wise. There is no
need for non-member overloads as was required for Vector<T>, because the con-
version rules are much simpler for different vectors of booleans. The implicit and
explicit conversion constructors fully suffice.

5.2.6 comparison operators

Listing 5.8 shows the declaration of the comparison operators that implemented
for Vc::Mask. Note, that the return type is a scalar bool and not a SIMD type.
Returning another mask type would make the compare operator basically an alias
for the xor operator. Typically, it is more interesting to determine whether two
given masks are equal (or not) and this requires a single boolean.

It is certainly possible to additionally define a meaning for relational compare
operators (less/greater). The most obvious definition would be an interpretation
of the boolean entries as bits of an integer and then compare the integers. Up to
now I did not come across a use case for such operators, though, which is why I
have not defined an interface for it.
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5.2.7 reduction functions

In order to use a mask object in an if statement or loop condition there needs to be
a reduction function from the vector of boolean values in the mask to a single bool.
The three reductions all_of, any_of, and none_of [48, §25.2.1–§25.2.3] present in
the C++ standard library are applicable to masks. For Vc I added a fourth function:

all_of: Returns true if and only if all entries in the mask are true.

any_of: Returns true if and only if at least one entry in the mask is true.

none_of: Returns true if and only if all entries in the mask are false.

some_of: Returns true if and only if there is at least one entry that is true and
at least one entry that is false (note that some_of always returns false for
arguments of type Vc::Scalar::Mask<T>).

The usefulness of the first three functions should be obvious. The some_of re-
duction, however, is not used that often. It can be a useful check to determine
whether a condition in the SIMD lanes diverged. For example, it could signify that
a program still needs to continue iterating, but at least one vector lane is idle and
a reorganization of the data vectors might increase the throughput.

The template functions reducing a mask object to a boolean need to be declared
in such a way that they do not participate in overload resolution unless the tem-
plate argument actually is a Mask<T> type (from any internal namespace).

In addition to the declarations for the Vc::Mask types, the reduction functions
are also declared for bool arguments. That way the functions can be used in generic
code where scalar types and Vc::Vector types can be used at the same time.

There are a few more useful reduction functions, which return integral values
instead of a boolean. They are declared as member functions of Mask<T> (List-
ing 5.10):

Population Count Returns how many values in the mask are true.

Index of First Returns the index of the first true value in the mask.

Index of Last Returns the index of the last true value in the mask.

Bit Representation Returns the mask as one boolean entry per bit in an un-
signed int.
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1 namespace Vc {
2 namespace target_dependent {
3 template <typename T> class Mask {
4 // ...
5 bool isFull() const;
6 bool isNotEmpty() const;
7 bool isEmpty() const;
8 bool isMix() const;
9 // ...

10 };
11 } // namespace target_dependent
12

13 template <typename Mask> inline bool all_of(const Mask &m) {
14 return m.isFull();
15 }
16 template <typename Mask> inline bool any_of(const Mask &m) {
17 return m.isNotEmpty();
18 }
19 template <typename Mask> inline bool none_of(const Mask &m) {
20 return m.isEmpty();
21 }
22 template <typename Mask> inline bool some_of(const Mask &m) {
23 return m.isMix();
24 }
25

26 inline bool all_of(bool b) { return b; }
27 inline bool any_of(bool b) { return b; }
28 inline bool none_of(bool b) { return !b; }
29 inline bool some_of(bool) { return false; }
30

31 namespace target_dependent {
32 using Vc::all_of;
33 using Vc::any_of;
34 using Vc::none_of;
35 using Vc::some_of;
36 } // namespace target_dependent
37 } // namespace Vc

Listing 5.9: Declaration of the Mask<T> reduction functions.

1 int count() const;
2 int indexOfFirst() const;
3 int indexOfLast() const;
4 unsigned int bits() const;

Listing 5.10: Mask reductions with integral return value.
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1 std::valarray<int> data = {1, 6, 2, 5, 3, 4};
2 data[data > 4] = -1;
3 // now data == {1, -1, 2, -1, 3, 4}

Listing 5.11: std::valarray allows to assign to a subset of its entries via the subscript
operator and a std::mask_array argument.

5.3 WRITE-MASKING

The term write-masking is used to denote the expression that disables an arbi-
trary set of vector lanes for writes to the destination register (or memory location).
This is equivalent to the conditional move operation for scalars, applied to several
values in parallel. Hardware support for write-masking requires a rather simple
operation: instead of writing all bits from some temporary buffer to the destina-
tion register, some lanes are disabled, thus keeping the old value in the destination
register unchanged.

From the language side, this operation has been implemented via implicit mask-
ing (such as the masked if statements in Cilk Plus [80]) or blend functions, which
essentially implement the SIMD equivalent of the C++ ternary operator (conditional
operator). However, std::valarray declares a write-masking syntax, which is
very similar to the needs of the SIMD vector types (see Listing 5.11).

5.3.1 conditional operator

For SIMD blend operations, the conditional operator (a < b ? 1 : -1) would be
a very natural solution. It is straightforward to translate this conditional expression
from scalar context into SIMD context. The operator expresses, that for a given
condition, its result should be the value of either the first or the second expression
after the question mark. In the SIMD case, where a boolean is replaced by a vector
of booleans, the conditional operator states that the results of the first expression
must be blended with the results of the second expression according to the mask
in the conditional expression before the question mark.

With the current C++ standard, overloading the conditional operator is not al-
lowed [48, §13.5]. (According to Stroustrup [75] “there is no fundamental reason to
disallow overloading of ?:”, though.) Therefore, until C++ gains this ability, condi-
tional operators have to be replaced by a function call for supporting SIMD types.6

For the Vc library, I defined the function
Vector<T> iif(Mask<T>, Vector<T>, Vector<T>).

The name iif is an abbreviation for inline-if. To allow generic use of this function,

6 Informal feedback from the C++ committee has been that there is interest for a concrete proposal on
allowing overloads of the conditional operator.
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void filter(/*...*/) {
// ...
float_t sigma2 = measurementModel.sigma2;
float_t sigma216 = measurementModel.sigma216;
float_t hch = measurementModel * F.slice<0, 2>();
float_t denominator = Vc::iif (hch < sigma216, hch + sigma2, hch);
// ...

}

Listing 5.12: Part of the Kalman-filter code that uses iif . The float_t type can be
defined as either float or float_v .

1 WriteMaskedVector<T> operator()(MaskType);

Listing 5.13: Declaration of the function call operator for write-masking support in Vec-
tor<T> .

Vc provides the overload
T iif(bool, T, T).

Thus, iif can be used in template functions where both bools and Vc mask types
may be used as the first argument to iif. As an example, Listing 5.12 shows how
iif is used inside the Kalman-filter. The float_t type can be defined to anything
that returns either a boolean or a Vc mask on operator<. Thus, the implementa-
tion of the algorithm is generically usable for SIMD and scalar types.

5.3.2 write-masked assignment operators

The iif function would suffice to translate any scalar conditional code to a vec-
torized code. However, it is neither a good general interface, nor does it properly
express intention of the code, hiding behind unnecessarily complex expressions.
Therefore, I created a new syntax for the Vector<T> types to express conditional
assignment with any assignment operator:
x(x < 0) *= -1;

This line of code reads as: multiply x with -1 where x is less than 0. The general
syntax is vector-object ( mask-object ) assignment-operator initializer-clause. The Vec-
tor<T> class template therefore declares the function call operator as shown in
Listing 5.13. This operator returns a temporary object which stores a (non-const)
lvalue-reference to the Vector<T> object and a copy of the mask object. The Write-
MaskedVector class template overloads all assignment operators which imple-
ment the write-masked assignment to the Vector<T> object.

In addition to assignment operators the WriteMaskedVector can also implement
the increment and decrement operators.

The choice for the function call operator (parenthesis) instead of the subscript
operator (square brackets), which std::valarray uses, was deliberate. The se-
mantics of the builtin subscript operator allow the expression to be assigned to
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and to be used as right-hand-side of an assignment. But WriteMaskedVector may
only be used on the left-hand-side of an assignment. In addition, the expression
x[scalar < 0] *= -1 is valid C++, because bool is implicitly promoted to int
and thus dereferences the entry either at offset 0 or 1. It is very likely a coding error,
though, which is why it is better not to reuse the subscript operator for write-mask-
ing. Furthermore, the subscript operator can be useful in a future extension of the
Vector<T> interface to implement shuffles. Therefore, it is a clearer separation to
attach the write-masking semantics to a different syntax.

5.3.2.1 alternative: Vc::where
The function call operator syntax has a significant downside: It is impossible to
write generic functions with conditional assignment that work with SIMD vector
types and fundamental types. It would require an operator overload for funda-
mental types, or rather a change to the language specification. Therefore, I worked
on alternative solutions:
Vc::where(x < 0, x) *= -1; // variant (1)
Vc::where(x < 0) | x *= -1; // variant (2)
Vc::where(x < 0) (x) *= -1; // variant (3)

The goal was to have a function/expression that can return a WriteMaskedVector
object for vector types and fundamental types.

• The first variant uses less “magic” but does not have such an obvious con-
nection between the modified variable x and the assignment operator.

• The second variant states more clearly that an assignment to x is executed.
However, it requires an operator between the where function and the as-
signee that has lower precedence than assignment operators. In any case,
this operator will be deprived of its normal semantics, which is a potentially
confusing solution.

• The third variant is a compromise of the first two variants. It uses the function
call operator of the return type of the where function to make it clearer that
assignment is applied to the x variable.

All three variants of the where function can be overloaded with fundamental types.
All four solutions for write-masking (where and Vector<T>::operator()) can

be translated to optimal SIMD code and thus only differ in syntax. Vc will support
the Vector<T>::operator() solution for backwards compatibility with previ-
ous versions in any case. However, the applicability of Vc in generic functions is
so important that one of the where solutions must be available additionally. The
members of the concurrency study group of the C++ committee expressed a prefer-
ence for the first variant because the other variants use a foreign syntax. Basically,
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the argument is that the first variant is easiest to implement on the one hand and
easiest to memorize for users on the other hand.7

5.3.2.2 return type of masked assignment operators
The assignment operators that are declared in the WriteMaskedVector type can
return either:

• A reference to the Vector<T> object that was modified.

• A temporary Vector<T> object that only contains the entries where the mask
is true.

• The WriteMaskedVector object.

• Nothing (void).

Intuitively, the most sensible choice appears to be a reference to the modified Vec-
tor<T> object. However, then the statement (x(x < 0) *= -1) += 2 may be
surprising: it adds 2 to all vector entries, independent of the mask. Likewise, y +=
(x(x < 0) *= -1) has no obvious interpretation anymore because of the mask
in the middle of the expression.

Consider that write-masked assignment is used as a replacement for if-state-
ments. Using void as return type therefore is a more fitting choice because if-
statements have no return value. By declaring the return type as void the above
expressions become ill-formed, which seems to be the best solution for guiding
users to write maintainable code and express intent clearly.

5.4 MASKED GATHER & SCATTER

Finally, let us look at masked gather and scatter operations. (Gather/scatter was in-
troduced in Section 4.8.) A gather expression creates a temporary Vector<T> object
that can be assigned to an lvalue. If the user wants to assign only a masked subset
of the gathered values, the write-masked assignment as described in Section 5.3
suffices. However, write-masked gather is special in that there are memory reads
which are unnecessary (and thus should be omitted for performance reasons) and
potentially even invalid, out-of-bounds accesses. Therefore, we rather want write-
masked assignment from a gather operation to propagate to the gather function
itself. Then the gather function can use the mask to omit loads for the SIMD lanes
that will not be used on assignment.

The scatter function, called from a scatter expression, must use the mask infor-
mation for the same reasons: it should avoid unnecessary stores and must omit

7 Consequently, follow-up papers for data-parallel types to the C++ committee will focus on the where
function as the sole solution.
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out-of-bounds stores. However, for scatters the scatter expression is on the left
hand side of the assignment operator and thus basically follows the same logic
as normal write-masking. Therefore, masked scatters simply work as soon as the
SubscriptOperation class supports the write-masking syntax introduced above.

To support masked gathers, the WriteMaskedVector class declares an assign-
ment operator for an rvalue-reference to SubscriptOperation:

template <typename T, typename I, typename S>
void operator=(SubscriptOperation<T, I, S> &&);

The operator will call gatherArguments on the SubscriptOperation object and
use that information to execute a masked gather and assign the result to the refer-
enced Vector<T> object.

Note that this only allows direct assignment from the gather expression. The
user can not execute additional operations (though this could be supported via
expression templates).

5.5 CONCLUSION

In this chapter I have shown how an interface to conditionals in data-parallel al-
gorithms needs to be defined. The Mask<T> type delivers a powerful interface to a
vector of boolean values and can be used as a predicate to assignment.

The Mask<T> class and write-masking syntax enables users to write data-par-
allel code which clearly expresses what the computer will execute while still en-
abling data-dependent processing. Therefore, in contrast to loop-vectorization or
extended if statements, no implicit write-masking and branch flattening is neces-
sary. The Vc interface consequently makes bad algorithm or data structure design
visible. It helps users understand the cost of conditionals and facilitates a search
for optimizations.



6
VECTOR CLASS DESIGN ALTERNATIVES

There is no obvious natural choice for the class that provides the SIMD types. The
choices I considered are:

1. Declare multiple Vector<T> class templates in separate namespaces for each
possible SIMD target (Listing 6.1). This design has been discussed in Sec-
tion 4.1 in detail and is the class design used in the Vc library.

2. Declare a single Vector<T, SimdInterface> class template (Listing 6.2).

3. Declare a single Vector<T, Width> class template (Listing 6.3).

6.1 DISCUSSION

At first glance the choices appear equivalent. It is possible to additionally provide
the other two interfaces with any of the above choices. However, there are im-
portant differences: not every interface adaption can be done transparently. Vec-
tor<T, SimdInterface> can be declared as an alias template for SimdName-
space::Vector<T>. In this case the types are equal.

1 namespace SSE {
2 template <typename T> class Vector;
3 }
4 namespace AVX {
5 template <typename T> class Vector;
6 }
7 namespace ...
8 #if DEFAULT_IS_SSE
9 using SSE::Vector;

10 #elif DEFAULT_IS_AVX
11 using AVX::Vector;
12 #elif
13 ...
14 #endif
15 template <typename T, std::size_t N> class SimdArray;

Listing 6.1: The Vector<T> Design.

89
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1 namespace Common {
2 enum class SimdInterface {
3 ...
4 };
5 template <typename T, SimdInterface I> class Vector;
6 }
7 template <typename T>
8 using Vector = Common::Vector<T,
9 #if DEFAULT_IS_SSE

10 Common::SimdInterface::SSE
11 #elif DEFAULT_IS_AVX
12 Common::SimdInterface::AVX
13 #elif
14 ...
15 #endif
16 >;
17 template <typename T, std::size_t N> class SimdArray;

Listing 6.2: The Vector<T, SimdInterface> Design.

1 template <typename T> constexpr std::size_t defaultWidth();
2 template <typename T, std::size_t N = defaultWidth<T>()> class Vector;

Listing 6.3: The Vector<T, Width> Design.

The Vector<T> types in the different namespaces in design 1 are different types.
Consequently, they cannot be unified in a single class template Vector<T, Simd-
Interface>. This means, if a Vector<T, SimdInterface> type is desired, it has
to be a new type and does not match objects of type Vector<T> (though providing
implicit conversion is easy). The implication is that template argument deduction
may be less convenient to use (see below).

It is easily possible to declare alias templates of Vector<T, Width> to Vector<
T> in different namespaces. Equally, it can be aliased to or from Vector<T, Simd-
Interface> (see Listing 6.4). Nevertheless, Vector<T, Width> and Vector<T,
SimdInterface> are not equivalent: Consider the type Vector<float, 8>. It is
the same type irrespective of the target system supporting vectors of 𝒲float = 8
or not. Thus, a symbol (such as the function void f(Vector<float, 8>)) which
is compiled for SSE and AVX would link, but crash or simply fail to work as ex-
pected at runtime. (This is due to Vector<float, 8> using two __m128 member
objects for SSE and only a single __m256 for AVX.) The type Vector<T, Width>

1 template <typename T, std::size_t Width>
2 using Vector2 = Vector<T, simdInterfaceForWidth<T, Width>()>;
3

4 template <typename T, SimdInterface I>
5 using Vector2 = Vector<T, widthForSimdInterface<T, I>()>;

Listing 6.4: Possible aliasing of Vector<T, Width> to or from Vector<T, SimdIn-
terface> .
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1 template <typename T> void f(Vector<T> v);
2 void g() {
3 f(float_v()); // compiles
4 f(double_v()); // compiles
5 f(AVX::double_v()); // only compiles if AVX is the
6 // compile-time default anyway
7 }
8

9 // with Concepts-Lite:
10 template <SimdVector T> void f2(T v);
11 // alternative with C++14:
12 template <typename T> enable_if_t<is_simd_vector<T>::value> f2(T v);
13

14 void g2() {
15 f2(SSE::float_v());
16 f2(Scalar::double_v());
17 f2(AVX::double_v());
18 }

Listing 6.5: Generic Function with Vector Parameter for design 1.

therefore does not ensure type safety and either needs a third template parameter
to identify the SIMD architecture, or needs to be placed into a namespace as was
done for Vector<T>. Therefore, the Vector<T, Width> type is a bad choice for
the fundamental SIMD vector type. It is still a useful interface, though. Chapter 7
presents the details of a Vector<T, Width> class template.

In design 2, the fundamental SIMD vector class is more generic than in design
1. This is relevant for generic functions that are supposed to work for any possible
SIMD vector type, independent of the current compile-time default. On the other
hand, most code should only use the compile-time default SIMD vector type, there-
fore alleviating the issue. With design 1, a generic function that wants to accept any
vector type, including from different namespaces, needs to use an unconstrained
template parameter as function parameter type. In order to ensure that the gener-
ic function only works with a SIMD vector type parameter, std::enable_if can
be used (see Listing 6.5). It is expected that a future C++ revision will introduce
concepts, a solution that allows expressing requirements for template parameters
[77].

With the current C++ standard, design 2 can express such a generic function more
naturally (see Listing 6.6). If, on the other hand, a fully generic function wants to
support both fundamental scalar types and SIMD vector types, std::enable_if
or a concept are needed anyway.
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1 template <typename T, SimdInterface I> void f(Vector<T, I> v);
2 void g() {
3 f(SSE::float_v());
4 f(Scalar::double_v());
5 f(AVX::double_v());
6 }

Listing 6.6: Generic Function with Vector Parameter for design 2 (design 3 is equivalent).

6.2 CONCLUSION

Design 3 is a bad choice for building the low-level type for writing data-parallel
algorithms and data structures. Designs 1 and 2 appear like equally good design
choices. Feedback from the C++ committee’s study group on concurrency was that
they would prefer to see design 2 realized for a vector type in the C++ standard.
The reason why I chose design 1 for the Vc library is that it requires considerably
fewer template constructions which work around restrictions of C++. The second
template parameter in design 2 makes specialization of member functions for a
given implementation impossible, because it requires partial template specializa-
tions for function templates, which is not supported in C++.



7
SIMDARRAY: VALARRAY AS IT SHOULD HAVE BEEN

The STL already defines a set of classes for data-parallel processing since its in-
ception. This class has been used by some people for vectorization of their pro-
grams. There is very little encouragement in the C++ community to use the valar-
ray classes, though.

7.1 STD::VALARRAY<T>

The C++ standard defines the valarray class as “a one-dimensional smart array,
with elements numbered sequentially from zero” and as “a representation of the
mathematical concept of an ordered set of values” [48, §26.6.2.1]. The std::val-
array<T> class template thus can be used as a container which additionally im-
plements all arithmetic, logical, bitwise, and compare operators for arithmetics
manipulation. Application of such a binary operator evaluates the corresponding
elements of the operands using the operator for type T. The order of element-wise
evaluation is unspecified and therefore, it is undefined behavior if an operator call
on one element depends on another element.

The standard allows implementors of the STL to implement valarray with ex-
pression templates [82], which can make sequences of operator calls cache-effi-
cient, even though the expression is executed on the complete container.

The number of elements in valarray<T> is set at runtime with the call to the
constructor or the member function resize. This interface therefore implies that
valarray<T> must use some form of dynamic memory allocation. Additionally,
all operations thus have to rely on runtime bounds.

The above has substantial consequences limiting the usefulness of valarray<T>:

1 template <typename T>
2 valarray<T> f(const valarray<T> &a, const valarray<T> &b) {
3 return a + b;
4 }

Listing 7.1: This function might exhibit undefined behavior.
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• The valarray<T> interface is not fully type-safe. The function f in Listing 7.1
compiles fine. However, ISO/IEC 14882:2011 [48, §26.6.3.1] states: “If the ar-
gument arrays do not have the same length, the behavior is undefined.” It
is obviously much easier for development if invalid operations are caught at
compile time, which is only possible if the type encodes all information nec-
essary to determine which operations are safe and which cannot work. For
valarray this is not possible because the size is unknown at compile-time.

• valarray<T> cannot be implemented in a way that it generically supports
the optimal SIMD implementation of the expressed algorithm. This is due to
the fact that the type carries no information about the number of elements.
As a consequence all valarray<T> functions must work for any number of
elements.

• Using valarray<T> with an element count that matches the SIMD width
of the target system neither guarantees vectorization nor can it create the
optimal SIMD implementation, unless the container size were visible as a
constant expression to the compiler.

• Even if operations with operands T and U are well-defined, the same opera-
tion is not defined for objects of types valarray<T> and valarray<U>.

As we have seen, the valarray<T> class expresses data-parallelism. However, it
fails to express it in a way that makes it suitable for optimal vectorization and/or
optimal memory cache usage (small working sets for better cache and TLB1 usage).
The next section describes an alternative that builds upon the SIMD vector types
described in Chapter 4 and Chapter 5.

7.2 VC::SIMDARRAY<T, N>

The class template SimdArray<T, N> implements the same interface as Vector<
T>. The only difference is in the internal data member(s) and thus also the interface
to access the internal data. A template instantiation requests a certain number of
elements in the data-parallel type, which needs to be mapped onto the hardware
capabilities of the target system.

As an example consider the type SimdArray<float, 8> on x86_64: If the target
system does not support AVX then the implementation must use two SSE::Vec-
tor<float> members. With AVX it can use a single AVX::Vector<float> mem-
ber.

This has the same problem as discussed for Vector<T, Width> in Chapter 6.
Therefore, the SimdArray<T, N> class needs a third template parameter to make

1 translation look aside buffer
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1 template <typename T, std::size_t N,
2 typename VectorType = select_best_vector_type<T, N>>
3 class alignas(nextPowerOfTwo((N + VectorType::size() - 1) /
4 VectorType::size()) *
5 sizeof(VectorType)) SimdArray;

Listing 7.2: The SimdArray<T, N> class template definition.

1 typedef Vc::float_v float_v;
2 typedef Vc::SimdArray<double, float_v::size()> double_v;
3 typedef Vc::SimdArray<int, float_v::size()> int_v;
4 typedef Vc::SimdArray<unsigned int, float_v::size()> uint_v;

Listing 7.3: The declaration of SIMD types with an equal number of scalar entries enables
simple conversion between different data types.

the SSE and AVX variants unique types. The class template therefore is declared as
shown in Listing 7.2. For implementation purposes, it may be useful to add a fourth
defaulted template parameter, which is initialized to VectorType::size(). That
way the class can be specialized for N == VectorType::size().

The alignas attribute is specified in order to ensure the same alignment on all
target systems. That way, if the in-memory representation is equal, the memory
for one SIMD implementation can be copied to code with a different SIMD imple-
mentation.

7.3 USES FOR SIMDARRAY

The SimdArray<T, N> class is not a drop-in replacement for valarray. The im-
portant difference is that SimdArray<T, N> is compile-time sized. Therefore, the
working-set size must be derived from constraints in the algorithm or the involved
data types.

The intended use of SimdArray<T, N> is with a value for N that is small. Thus,
a typical value for N is somewhere between 2–16, possibly 32. Larger values create
large working sets which can become less efficient to process for the CPU.

7.3.1 conversion between different data types

The most important use for SimdArray<T, N> is the declaration of portable SIMD
types that can easily convert between different underlying arithmetic types. This
requires the SIMD types to have the same number of scalar entries. For example,
with SimdArray<T, N> at hand, a developer can, if (s)he determines that his/her
main data type in data structures and algorithms is float, use the type aliases
shown in Listing 7.3. With these types, conversions between float, double, int,
and unsigned int do not pad zeros or drop values. This solves the issue discussed
in Section 4.2.2.
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7.3.2 portable code for fixed-width algorithms

Some problems can be expressed more clearly and efficiently with a fixed width of
the vector type. For example, consider a problem where only three or four values
are available for processing in parallel. In this case the developer can use SimdAr-
ray<float, 4> instead of float_v. This allows to optimize better in case a target
supports different vector widths, such as x86_64. Instead of using AVX::float_-
v, SimdArray<float, 4> would then use SSE::float_v. This uses less memory,
faster load/store instructions, and possibly faster arithmetic instructions. Com-
pare Section 12.1 for an example for this use-case.

7.4 IMPLEMENTATION CONSIDERATIONS

7.4.1 expression templates

Since the SimdArray<T, N> class is possibly composed of multiple Vector<T> ob-
jects (depending on 𝑁𝑉 = N

𝒲T
), the use of expression templates needs to be consid-

ered. Expression templates can solve the problem that a sequence of operator calls
is normally executed one operator after another. However, each operator call on
SimdArray<T, N> must forward to 𝑁𝑉 operator calls on the Vector<T> members.
This leads to a proliferation of temporaries and thus increases register pressure
(register values must be stored to memory before the next operator is executed).
With expression templates the order of evaluation can be transposed, such that the
inner iteration is over the operator calls and the outer iteration over the Vector<T>
members.

There are reasons why expression templates are not needed or may even perform
worse in this situation, though:

1. Because of instruction level parallelism (cf. Section 1.6.1), it may be more effi-
cient to execute the sequence of operators in the unmodified order. Consider
𝑁𝑉 = 4. Then x * y * z can execute in 11 cycles with a CPU where the
multiplication instruction has a latency of 4 cycles and a throughput of 1 cy-
cle (cf. [39]). Because the operator call x * y compiles to four multiplications
of Vector<T>: tmp0 = x0 * y0; tmp1 = x1 * y1; tmp2 = x2 * y2;
tmp3 = x3 * y3;.

2. Expression templates make the interface more complicated for the compiler
and increase compile time. Additionally, the diagnostic message from the
compiler on incorrect use can become very hard to parse for a human. If there
is no clear evidence of improvement this cost rather should be avoided.
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1 template <typename T, std::size_t N, typename VectorType>
2 class SimdArray {
3 static constexpr std::size_t N1 = nextPowerOfTwo(N - N / 2);
4 static constexpr std::size_t N2 = N - N1;
5 SimdArray<T, N1> data1;
6 SimdArray<T, N2> data2;
7 };

Listing 7.4: With a recursive implementation of SimdArray<T, N> , arbitrary values of
N are possible. This is most efficiently implemented with a first member that
uses a power of two value for N and a second member that covers the
remainder. Note that the third template argument is omitted to have se-
lect_best_vector_type determine the best type. Thus, SimdArray<
float, 13> for an AVX target will be built from one AVX::float_v , one
SSE::float_v , and one Scalar::float_v .

3. Since C++11, expression templates have the issue that assignment to a new
variable declared with auto will store an expression object instead of the re-
sult of the evaluated expression. This can be surprising and makes the inter-
face slightly fragile. (There is effort going into solving this issue for a future
revision of the C++ standard.)

The intended use of SimdArray<T, N> is with a relatively small N argument (i.e.
SimdArray<T, N> is not a container class). With small N, 𝑁𝑉 will also be small, so
that register pressure is typically in a manageable range for the CPU.

7.4.2 recursive versus linear implementation

The SimdArray<T, N> class can generally be implemented in two different ways:

1. A SimdArray<T, N> object stores 𝑁𝑉 = N
𝒲T

Vector<T> objects in an array.

2. A SimdArray<T, N> object stores two SimdArray<T, N / 2> objects un-
less N == Vector<T>::size(), in which case the SimdArray<T, N> object
stores a single Vector<T> object.

The first implementation strategy requires the use of loops in order to imple-
ment the member functions of SimdArray<T, N> in a generic way. The second
implementation strategy can be implemented as recursive function calls. This is
especially useful for reduction functions where the reduction can thus easily be
executed as a tree-like fold. Furthermore, the second strategy allows an implemen-
tation that allows any possible value for N as is shown in Listing 7.4.

For the Vc library I have used the second implementation strategy. This can be
translated to perfect machine code by current C++ compilers. However, compile
time for complex uses of SimdArray<T, N> is rather high.
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7.5 MASK TYPES

Analogously to the Mask<T> class template a mask type is needed to correspond to
SimdArray<T, N>. This SimdMaskArray<T, N> type implements the Mask<T> in-
terface with the same implementation strategy as SimdArray<T, N>. Furthermore,
the mask reduction functions (Section 5.2.7) need to be overloaded for SimdMask-
Array<T, N>.

7.6 CONCLUSION

This chapter has presented class templates that solve the Vector<T, N> use-case
in a slightly safer way. The SimdArray<T, N> and SimdMaskArray<T, N> types
are built on top of the low-level Vector<T> and Mask<T> types and show that dif-
ferent efficient abstractions for data-parallel computing can be built on top of Vec-
tor<T>. The combination of Vector<T> and SimdArray<T, N> increase usability
of the vector type interface (cf. Section 7.3.1) making several use-cases easier to
express.



8
ABI CONSIDERATIONS

8.1 ABI INTRODUCTION

An Application Binary Interface (ABI) describes machine-, operating system-, and
compiler-specific choices that are not covered by a programming language stan-
dard. The most important issues are function calling conventions, memory/stack
organization, and symbol name mangling. For Linux the ABI is standardized and
documented [64, 50]. For Windows the ABI is implicitly defined by its develop-
ment tools. (Other compiler vendors either provide incompatible products or re-
verse-engineer the Windows ABI.) For all targets, the goal is to have an ABI that
allows interoperability. Developers expect that their choice of compiler (and com-
piler version) does not have an influence on the TUs1 that can be linked together
correctly. Compiler vendors and operating system vendors have a great interest in
providing this guarantee.

8.2 ABI RELEVANT DECISIONS IN VC

The interface choices for Vc have a direct influence on the ABI of the Vc library.

8.2.1 function parameters

If a Vector<T> is used as a function parameter, there are two principal choices for
implementing the parameter passing in the function call convention:

1. The vector can be passed as a single SIMD register.

2. The vector is pushed onto the stack and thus passed via memory.

Choice 1 is the most efficient choice for the majority of situations. This requires a
trivial copy constructor and destructor in Vector<T> (which recursively requires
the copy constructor and destructor to be trivial for all non-static data members)
with the Linux ABI [64].

1 translation units
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If a union of intrinsic type and array of scalar type is used to implement the data
member of Vector<T>, the Linux x86_64 ABI requires different parameter passing,
which is derived from all members of the union. With a trivial copy constructor
and destructor a union with 𝒮 = 16 must be passed as two SSE registers or two
general purpose registers, while with 𝒮 = 32 the parameter must be passed via
memory2 [64, §3.2.3]. (According to the rules in [64, §3.2.3] there is a workaround
to achieve parameter passing via SIMD registers: The array inside the union must
be declared with zero entries.3)

This shows that, in addition to the interface definition, the concrete implemen-
tation strategy also has an influence on the resulting ABI of the vector types. This
needs to be considered carefully when implementing the library. Consequently,
an implementation should avoid a union based implementation and rather use
a different compiler extension for explicit aliasing, such as GCC’s may_alias at-
tribute.

The discussion above equally applies to Mask<T> and all derived types, of course.

8.2.2 linking different translation units

A user can compile two TUs with different compiler flags for the target microarchi-
tecture (for example, so that one is compiled for SSE and the other for AVX). This
most likely happens with one TU in a library and the other in an application. Then
Vc vector or mask types in the interfaces between the TUs are incompatible types.
The most complicated architecture probably is x86: Very old systems have no us-
able SSE support, old systems support SSE, current systems AVX or AVX2, and
future systems AVX-512. 𝒲T is different: xmm vs. ymm vs. zmm registers. Conclud-
ing, it might be a good idea that packagers do not treat x86 as a single architecture
anymore, but several ones. There is great interest in not having to take that path,
though. The following sections will explore the issue in detail.

8.3 PROBLEM

The Vector<T> type is defined as a target-dependent type, which, similarly to
int4, uses the most efficient register size on the target system. For SIMD regis-
ters this implies that the number of values 𝒲T stored in a Vector<T> object can be
different between different microarchitectures of the same architecture. The SIMD
Types interface (Chapter 4) at least ensures that the types Vector<T> are different

2 GCC implements it this way. The clang/LLVM compiler (version 3.4) passes unions with 𝒮 = 32
via a single AVX register, though.

3 Clang/LLVM (version 3.4) in this case inverts the behavior for AVX unions and passes via memory.
4 “Plain ints have the natural size suggested by the architecture of the execution environment” [48,

§3.9.1 p2]
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if the register sizes differ. Therefore, the use of Vector<T> is safeguarded against
incompatible linking, which would result in spurious runtime errors.

For the following discussion, consider an Intel Haswell system, which imple-
ments the x86_64 architecture and AVX2 SIMD registers & operations as a part of
its microarchitecture (for simplicity, ignore the MMX instruction set). Then,

• with AVX2 𝒲float = 8 and 𝒲int = 8,

• with AVX 𝒲float = 8 and 𝒲int = 4,

• with SSE 𝒲float = 4 and 𝒲int = 4, and

• without using SIMD functionality 𝒲float = 1 and 𝒲int = 1 (the Scalar
implementation mentioned in Section 4.9.1).

The Vector<T> incompatibility between different SIMD instruction sets implies
that a TU built for Intel SandyBridge differs in ABI to a TU built for Haswell. This
breaks with the guarantee compiler vendors would like to retain: the ABI for a
given architecture should stay stable. With the current Vector<T> proposal, im-
plemented on top of SIMD intrinsics, the ABI would only be stable within mi-
croarchitectures.

One could argue that it is technically correct that some microarchitectures (those
with differing SIMD widths) of the same architecture are partially incompatible,
and thus the ABI could/should reflect this. On the other hand, it is very desirable
that such incompatibilities are either hidden from (or consciously enabled by) the
user. Thus, if it is at all possible to have the compiler automatically adapt between
the microarchitectural differences, then implementors should invest in getting the
Vector<T> ABI right from the outset.

8.3.1 fixed 𝑤t in interfaces is not the solution

A common idea for solving the above issue, is to request that the SIMD type uses
a user-defined width (cf. Fog [25] and Wang et al. [83]). Then the type would use
the same 𝒲T on any target and the types would be equal in different TUs.

There are two issues with this:

1. There is no guarantee that the specific 𝒲T can be implemented efficiently on
all target systems. Consider, for example, the common choice of 𝒲float = 4
compiled for an Intel Xeon Phi. The type would have to be implemented with
a 512-bit SIMD register where 75% of the values are masked off. On a target
without SIMD support, four scalar registers would have to be used, which
increases register pressure.5

5 With luck this might just be the right loop-unrolling to achieve good performance, but it is the wrong
mechanism to achieve this effect.
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2. Even though the types are equal, the specific parameter passing implementa-
tion might be different. Consider a vec<float, 8> type translated for either
AVX or SSE. Then the function

void f(vec<float, 8>)
would use ymm0 with AVX and xmm0 and xmm1 with SSE to pass the function
parameter from the caller to the function. Thus, if this were the preferred so-
lution for implementors, vector types would have to be passed via the stack
for function parameter passing (cf. Section 8.2.1). In addition, the in-memory
representation and alignment requirements for the different microarchitec-
tures must be defined in such a way that they work correctly on all systems.

From my experience, and in order to enable full scaling to different SIMD targets,
I prefer a solution where a fixed 𝒲T is only chosen because it is dictated by the
algorithm, not because of technical complications with ABI compatibility.

8.3.2 derived types

A class that is derived from Vector<T> or a class that has a non-static Vector<T>
member will not have a different type in different TUs which are compiled for dif-
ferent SIMD widths. Thus, the linkage safety built into Vector<T> does not work
for any derived types. Furthermore, this suggests that a solution that transparently
adapts the ABI differences must be rather invasive.

The compiler would have to compile Scalar, SSE, AVX, and AVX2 (to stay with
the x86_64 example) variants of all derived types and functions that use these
types. The symbols would need additional information about the SIMD target as
part of the name mangling.

Automatic adaption (such as a call from an AVX TU to an SSE TU) between
derived types will be a problem, though. Consider that TU1 creates an object of
a derived type D. A call to a member function, which is not declared inline and
instead was compiled for a different SIMD width in TU2 now would require a
transparent conversion of the object from one SIMD width to a different SIMD
width. There cannot be a generic strategy to perform such a conversion without
breaking the semantics guaranteed to the implementation of D.
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1 // a.cc (SSE2 : float_v::size() == 4):
2 static float_v globalData;
3 void f(float_v x) { globalData = x; }
4 float_v g() { return globalData; }
5

6 // b.cc (AVX2 : float_v::size() == 8):
7 float_v h(float_v x) {
8 f(x); // calls f(x[0...3]) and f(x[4...7])
9 // now globalData is either x[0...3] or x[4...7], depending on the order of

10 // calls to f above
11 return g(); // calls concatenate(g(), g())
12 }
13

14 int main() {
15 cout << h(float_v::IndexesFromZero()); // {0 1 2 3 4 5 6 7}
16 return 0;
17 }
18

19 // prints:
20 // 0 1 2 3 0 1 2 3
21 // or:
22 // 4 5 6 7 4 5 6 7

Listing 8.1: Impure functions break the adaption strategy of using multiple calls to TUs
with shorter SIMD width.

8.3.3 serial semantics

Consider an ABI adaption strategy that splits a function call from TU1 with a Vec-
tor<T> argument with 𝒲(1)

T to multiple function calls to the function compiled
with 𝒲(2)

T = 𝒲(1)
T

𝑁 in TU2. This approach exposes non-serial semantics. This man-
ifests, for instance, if two functions are intended to be called in serial succession,
communicating via a global (or thread-local) variable.6 If the adaption from an
AVX2 TU to an SSE TU is done via calling the SSE function twice with the low
and high parts of the vector argument, then the first function will be called twice,
before the second function is called twice.

Consider the example in Listing 8.1. The developer expected serial semantics in
function h. Instead, f is called twice, before g is called twice. Therefore, the conclu-
sion is that adapting between different SIMD widths cannot be done via splitting
a function call into multiple function calls.

6 This is probably a bad design, but that does not invalidate the problem.
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8.3.4 largest common simd width

Consider a compiler implementation that identifies types that depend on 𝒲T and
automatically compiles these symbols for all possible 𝒲T the target supports (ex-
tending the mangling rules accordingly). Then, when the TUs are linked to a single
executable, the linker can detect whether for some symbols some 𝒲T translations
are missing. In this case it can drop these 𝒲T symbols. The same could be done
by the loader when the program is dynamically linked, right before executing the
program. The largest remaining 𝒲T symbols can then be used to execute the pro-
gram.

This solution should work as long as no dynamically loaded libraries are used
(e.g. Plug-ins). Because, if an incompatible library (i.e. one that does not have the
symbols for the currently executing 𝒲T ) is loaded, the program cannot switch
back down to a smaller 𝒲T . Thus, at least the ABI compatibility with dynamically
loaded symbols cannot be guaranteed by this approach.

8.3.5 simd-enabled functions

The SIMD-enabled functions described in [30] provide the semantic restriction
which works around the issue described in Section 8.3.3. The code in Listing 8.1
would still produce the same result, but because of the semantic restriction for the
functions f and g the undefined behavior would be expected.

On the other hand, a member function of a class with members of vector type
that accesses such members will still not be automatically adaptable between dif-
ferent TUs. Consider Listing 8.2. The call to D::f on line 21 will pass a this pointer
to an object storing two float_v objects with 𝒲float = 8 placed next to each other
in memory. The function D::f, on the other hand, (line 10) expects two float_v
objects with 𝒲float = 4 consecutively in memory (Figure 8.1). In order to adapt
such differences between TUs automatically, the adaptor code would have to cre-
ate two temporary objects of type D (with the ABI in a.cc), copy the data, call the
function D::f twice, copy the resulting temporary objects back into the original
object and return. But such a strategy breaks with the call to next->f(). Non-
vector members cannot be transformed generically and the next pointer would
therefore point to an untransformed object.

Effectively, the strength of vector types (namely target-optimized data struc-
tures) inhibits the creation of automatic ABI adaption between TUs with different
𝒲T .
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1 typedef Vector<float, Target::Widest> float_v;
2 struct D {
3 float_v x, y;
4 unique_ptr<D> next;
5 D() : x(float_v::IndexesFromZero()), y(0) {}
6 void f() [[simd]];
7 };
8

9 // a.cc (widest float_v::size() == 4):
10 void D::f() [[simd]] {
11 y = (y + 1) * x;
12 if (next) {
13 next->f();
14 }
15 }
16

17 // b.cc (widest float_v::size() == 8):
18 int main() {
19 D d;
20 d.next.reset(new D);
21 d.f();
22 }

Listing 8.2: Member functions as SIMD-enabled functions?

x0
x1
x2
x3
x4
x5
x6
x7

y0
y1
y2
y3
y4
y5
y6
y7

x0
x1
x2
x3

y0
y1
y2
y3

x4
x5
x6
x7

y4
y5
y6
y7

Figure 8.1: Memory layout differences depending on ABI. The memory layout of d in the
caller is shown on the left. However, the function D::f expects the memory
layout as shown on the right.
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8.4 SOLUTION SPACE

In order to enable compilers to keep ABI compatibility for the complete x86_64
architecture, the solution needs to …

1. …make ABI breakage of derived types impossible (or obvious to the user).
(cf. Section 8.3.2)

2. …keep one function call as one function call. (cf. Section 8.3.3)

3. …not require a specific 𝒲T from dynamically loadable libraries. (cf. Sec-
tion 8.3.4)

8.4.1 drop the default vector type

After extensive consideration and some prototyping I have not found an idea to
transparently solve the issue while keeping a default vector type with varying 𝒲T
for different microarchitectures. At this point the only solution I can conceive is
a vector type that does not have a default 𝒲T , or at least not one that follows the
microarchitecture.

The C++ committee feedback on the Vector<T> type as specified in Chapter 4 sug-
gested to use a policy type to select the Vector implementation instead of names-
paces (cf. Chapter 6). Therefore, the following discussion refers to the following
class template (with possible tag types and a portable default for x86_64):
namespace Vc {

namespace Target {
struct Scalar {}; // always present
struct Sse2 {}; // x86(_64) specific
struct Avx {}; // x86(_64) specific
struct Avx2 {}; // x86(_64) specific
typedef target_dependent Widest; // always present

}
template <typename T, typename Impl = Target::Sse2> class Vector;

}

The user who wants to have a different default behavior can do something along
the lines of:
template <typename T> using Vector = Vc::Vector<T, Vc::Target::Avx>;

Or, to get the behavior described in Chapter 4:
template <typename T> using Vector = Vc::Vector<T, Vc::Target::Widest>;

With this declaration of the default, the ABI can be stable for the complete x86_64
architecture until the user selects a specific microarchitectural subset (such as Tar-
get::Avx) explicitly. Thus, ABI incompatibilities will only occur after a (at least
to a certain degree) conscious choice of the user. And at the same time it requires
a minimal amount of code to get the behavior described in Chapter 4, which can
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1 // a.cc
2 int_v f() [[multitarget]] {
3 return int_v::IndexesFromZero();
4 }
5

6 // b.cc
7 int_v f() [[multitarget]];
8

9 int main() [[multitarget]] {
10 cout << f() << '\n';
11 return 0;
12 }

Listing 8.3: A very simple example using the multitarget attribute.

be very useful for controlled environments, such as homogeneous cluster systems
and some in-house software.

8.4.2 improving multi-𝑤t support

I believe it should be possible to declare a new function attribute that makes multi-
SIMD-target deployment easier and at the same time can ease some bits of the ABI
inconvenience.

Consider an attribute—let us call it multitarget—that instructs the compiler to
create all possible microarchitectural variants for this function, for the given target
architecture.7 The compiler would then create a binary that can execute with the
optimal 𝒲T on different microarchitectures. Calls to functions with this attribute
then need to be resolved at run time (via the loader or lazy), except if the call orig-
inates from another function with the multitarget attribute, in which case the
target may already be known.

I will discuss a possible implementation and the ABI implications using the ex-
ample code shown in Listing 8.3. The function f returns a vector object with the
values {0, 1, 2, 3, 4, …} (depending on 𝒲int ). When a.cc is compiled for
x86_64, the compiler creates the following symbols:

• _Z1fv@SSE2

• _Z1fv@AVX

• _Z1fv@AVX2

For b.cc, the compiler creates the following symbols:

• main@SSE2

• main@AVX

7 I will only discuss different 𝒲T to focus on the ABI issue here. It should be possible to extend the
idea to transparently support different versions of SSE, too.



108 abi considerations

• main@AVX2

When the two TUs are linked, the call to f from main is resolved by using the
same suffix. When the application is started, the loader has to resolve the call to
main. It therefore has to execute a run-time test for the microarchitecture and then
resolve the main function accordingly.

A function without the multitarget attribute can call a multitarget function,
in which case the call has to be resolved at run time. But if the called multitarget
function has vector types (or derived types) in its input or output, then the calling
function must also be declared with multitarget. Otherwise, the code will only
run on systems with 𝒲T equal to the one used in the non-multitarget function.
On the other hand, this could be intended: a library uses multitarget functions
to be generically usable, while an application linking to that library uses a fixed
microarchitecture (and therefore no multitarget functions).

This feature eases the ABI issue because new code using vector types could eas-
ily be prepared to work across microarchitectures. This is especially important for
libraries that are shipped in binary form. The ABI issue would resurface as soon
as a new microarchitecture with different 𝒲T is released. At this point existing li-
braries will not contain support for the new ABI and fail to integrate with new code.
The problem could be reduced for dynamic libraries that are linked at startup by
applying the strategy described in Section 8.3.4. But as discussed before, plug-ins
will break the scheme in any case.

8.5 FUTURE RESEARCH & DEVELOPMENT

This chapter has shown that there is still unclear direction how to define a por-
table vector type which enables compiler vendors to make a target architecture
ABI-compatible throughout all SIMD variants. The requirements of C++ users cer-
tainly differ on this point and there will probably be no clear one-fits-all answer.
This issue needs more experience and work in real-world use to come to a final
conclusion.
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LOAD/STORE ABSTRACTIONS

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth (1974)

Load and store operations are the main reason why a user of Vector<T> needs to be
concerned with 𝒲T and the differences for different target systems. Consider the
typical vectorization approach of a loop transformation. In this case a loop over an
array of scalar values is transformed into a loop with a stride of 𝒲T and Vector<T>
loads and stores inside the loop, which enable processing of 𝒲T values in parallel.
Because of these loads and stores, which the user calls, 𝒲T surfaces into the loop
stride. This is similar to portable code which requires using the sizeof operator
in order to work correctly. This is, of course, the correct way to handle the architec-
ture differences, but it is unfortunate that a user has to think about this problem.
The vector types would be much nicer and much easier to use if 𝒲T would never
surface into user code. Then, the user is only concerned with expressing data-par-
allel processing and data-parallel storage, which is the abstraction level that is most
useful for algorithm and data structure development.

In the following I will present a few ideas and approaches to solve the issue.
Much of this topic is still open for research and development.

9.1 VECTORIZED STL ALGORITHMS

The C++ committee is currently developing an extension of the existing STL algo-
rithms, which support execution in parallel. The preliminary specification [36] “de-
scribes requirements for implementations of an interface that computer programs
written in the C++ programming language may use to invoke algorithms with par-
allel execution”. As such, it deals with parallelization in terms of multi-threading
and SIMD. The specification of the std::par_vec policy requires the compiler to

109
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1 std::vector<int> data = ...;
2 for_each(Vc::vec, data.begin(), data.end(), [](auto &x) {
3 x = x * x + 3;
4 });

Listing 9.1: Example of the for_each algorithm with the Vc::vec policy.

treat code called from such algorithms special in such a way that “multiple func-
tion object invocations may be interleaved on a single thread”. The library there-
fore does not actually vectorize the code, it only annotates code so that the compiler
might do it.

9.1.1 vectorized algorithms with vector types

There is an alternative approach using vector types, which works nicely with ge-
neric lambdas and is a useful abstraction to hide load and store functions of the
vector types. Consider the example use of for_each in Listing 9.1. The implemen-
tation of for_each can call the lambda with any type that implements the required
operators. Therefore, the for_each implementation can use the int_v type and a
scalar type.1 The scalar type can either be int or Vc::Scalar::int_v. The latter
has the advantage that the lambda can rely on having the full Vc interface available.
The need for using more than just the int_v type arises from the possibility that
data.size() is not a multiple of 𝒲int . In that case there will be a number of en-
tries in data that cannot be loaded or stored as a full SIMD vector without risking
an out-of-bounds memory access.2 Additionally, an implementation of for_each
may choose to do a prologue that processes initial elements as scalars if they are
not aligned on the natural alignment of SIMD objects.

The parallel algorithms proposal [36] needs to use vector semantics (cf. Sec-
tion 2.1) in the code that is called from a parallel algorithm using the std::par_-
vec policy. With the vector types solution presented here, the vectorization policy
of the parallel algorithms would not need to restrict thread synchronization and
exceptions.

1 This could even be taken further to additionally support smaller SIMD types. For example on an
AVX2 machine, where the main vector type is AVX2::int_v, the next choice would be SSE::int_v,
and finally Scalar::int_v.

2 The load/store problem can be solved with partial loads and stores, either as masked load/store
instructions or a concatenation of partial loads / segmentation into partial stores. However, then
partially unused/invalid values would have to be passed to the lambda in the unused parts of the
vector. Such an implementation of the algorithm would therefore have to use SimdArray<T, N> for
prologue and epilogue.
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9.1.2 implementation

Listing 9.2 shows a possible implementation of a vectorized for_each. The im-
plementation could be generalized further to support containers that do not store
their values in contiguous memory. In the same manner support for the restrictive
InputIterator class of iterators can be implemented. Obviously, memory access
would not use efficient vector loads and stores anymore. Note that vectorization
of composite types becomes possible with the work described in Chapter 10.

9.2 VECTORIZING CONTAINER

It is possible to implement a container class template which stores the data in mem-
ory, such that it is optimized for data-parallel iterations. For fundamental arith-
metic types this is as simple as ensuring alignment of the first entry and padding
at the end of the container for full vector loads and stores. For structured types the
simdize<T> helper (cf. Chapter 10) can be used to create an interleaving of the
data that is appropriate for vector iterations.

A very important feature of such a container is the ability to additionally access
and iterate the stored data via scalar types. This is a non-trivial problem since it
requires accessing the same memory via different types, which is undefined behav-
ior in C and C++. The container class can solve it in the same way that Vector<T>
solves it for the subscript operator (Section 4.7).

Vc implements such a container for fundamental arithmetic types with the Vc
::Memory class template. It allows both runtime sized containers as well as using
a constant expression for the size. The latter enables a few optimizations since the
compiler knows the loop bounds and can calculate some offset calculations at com-
pile-time.

9.3 CONCLUSION

This chapter has discussed possible abstractions that hide the loop strides and vec-
tor loads and stores. That way the 𝒲T differences, which can make writing porta-
ble code more fragile, can be concealed from the user.

This area of research and development is still at the beginning. However, the
existing abstractions show that the approach discussed here can make portable
use of vector types considerably easier.

Further developments in reflection capabilities in the C++ language will also en-
able more powerful abstractions in this area. Therefore, serious research effort in
this area should take the possibilities of reflection in C++ into account and con-
tribute to the standardization process to ensure that a future C++ standard will be
expressive enough.
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1 template <typename It, typename UnaryFunction>
2 inline enable_if<
3 is_arithmetic<typename It::value_type>::value &&
4 is_functor_argument_immutable<
5 UnaryFunction, Vector<typename It::value_type>>::value,
6 UnaryFunction>
7 for_each(Vc::vec_policy, It first, It last, UnaryFunction f) {
8 typedef Vector<typename It::value_type> V;
9 typedef Scalar::Vector<typename It::value_type> V1;

10 for (; reinterpret_cast<uintptr_t>(addressof(*first)) &
11 (V::MemoryAlignment - 1) &&
12 first != last;
13 ++first) {
14 f(V1(addressof(*first), Vc::Aligned));
15 }
16 const auto lastV = last - (V::Size + 1);
17 for (; first < lastV; first += V::Size) {
18 f(V(addressof(*first), Vc::Aligned));
19 }
20 for (; first != last; ++first) {
21 f(V1(addressof(*first), Vc::Aligned));
22 }
23 return move(f);
24 }
25

26 template <typename It, typename UnaryFunction>
27 inline enable_if<
28 is_arithmetic<typename It::value_type>::value &&
29 !is_functor_argument_immutable<
30 UnaryFunction, Vector<typename It::value_type>>::value,
31 UnaryFunction>
32 for_each(Vc::vec_policy, It first, It last, UnaryFunction f) {
33 typedef Vector<typename It::value_type> V;
34 typedef Scalar::Vector<typename It::value_type> V1;
35 for (; reinterpret_cast<uintptr_t>(addressof(*first)) &
36 (V::MemoryAlignment - 1) &&
37 first != last;
38 ++first) {
39 V1 tmp(addressof(*first), Vc::Aligned);
40 f(tmp);
41 tmp.store(addressof(*first), Vc::Aligned);
42 }
43 const auto lastV = last - (V::Size + 1);
44 for (; first < lastV; first += V::Size) {
45 V tmp(addressof(*first), Vc::Aligned);
46 f(tmp);
47 tmp.store(addressof(*first), Vc::Aligned);
48 }
49 for (; first != last; ++first) {
50 V1 tmp(addressof(*first), Vc::Aligned);
51 f(tmp);
52 tmp.store(addressof(*first), Vc::Aligned);
53 }
54 return move(f);
55 }
56

57 template <typename It, typename UnaryFunction>
58 inline enable_if<!is_arithmetic<typename It::value_type>::value,
59 UnaryFunction>
60 for_each(Vc::vec_policy, It first, It last, UnaryFunction f) {
61 return for_each(first, last, move(f));
62 }

Listing 9.2: A possible implementation of a vectorized std::for_each .
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AUTOMATIC TYPE VECTORIZATION

The only way of finding the limits of the possible
is by going beyond them into the impossible.

— Arthur C. Clarke (1962)

An important pattern in data structure design for data-parallel processing is the
creation of structures with Vector<T> members. Thus, conceptionally the devel-
oper creates a vector variant of the structure.

Generally, one of the optimization aspects of data structure design is storage
order. The three main constraints to optimize for are:

1. maintainability of the code,

2. vector loads and stores,

3. and efficient memory access (e.g. cache usage).

Classically, there are two approaches: AoS and SoA (see Figure 10.1, cf. [76]).
With AoS the program uses arrays of structures (where the structures are built from
fundamental arithmetic types) to store its data in memory. With SoA (structures of
arrays) the storage order in memory is transposed. This latter storage order is used
by many developers to improve the data structures for vector loads and stores. At
the same time SoA often decreases locality of related objects and thus decreases
cache efficiency. Furthermore, the data structures are significantly changed, from
containers storing many objects into objects storing many containers. This conflicts
with the typical approach of object-orientation and significantly alters the logical
structure of the data.

Therefore, for vectorization, the AoVS data structure layout is important. In this
case arrays of vectorized structures are defined (see Figure 10.1). This introduces the
concept of vectorization of structures with several important benefits:

• It constructs chunks of memory that keep related data localized in memory,
thus allowing the CPU to reuse cache line fetches more efficiently and to ease
the load on the prefetcher.

113
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AoS SoA AoVS

a0…d0
a1…d1
a2…d2
a3…d3
a4…d4
a5…d5
a6…d6
a7…d7

a0…7

b0…7

c0…7

d0…7

a0…3
b0…3
c0…3
d0…3
a4…7
b4…7
c4…7
d4…7

Figure 10.1: Illustration of the memory layout for different storage orders. AoS (array of
structures) shows an array of eight objects which stores the four members
a, b, c, d . SoA (structure of arrays) shows the transposition of AoS where
a structure of four arrays is stored in memory. AoVS (array of vectorized
structures) finally rearranges this into an array of small chunks of SoA storage
order that are exactly as large as 𝒲T (𝒲T = 4 in this example).

• At the same time it stores the corresponding members from neighboring ob-
jects in memory in such a way that the member values of 𝒲T objects can
be transferred efficiently to a vector register and back. This is the basis for
horizontal vectorization (cf. [59]).

• SoA requires the use of many arrays of fundamental types. This makes alias-
ing related optimizations difficult for the compiler. It must assume that all
pointers of the same data type may point to the same memory location. With-
out this restriction the compiler is able to transform the code more freely.
With AoVS the compiler only has to assume aliasing of the outer array over
the vectorized structures, which leads to more optimization opportunities.

• It is possible to access the Vector<T> objects directly in memory. With struc-
tures or arrays of scalar types a new Vector<T> object must be created, which
is stored on the stack in case of register spilling or a function call. This enables
the compiler to optimize memory usage register allocation.

Compared to AoS the maintainability still decreases, though. The logical structur-
ing suffers in a similar way as for SoA, since multiple scalar objects are combined
to a single vectorized object.

Maintainability of AoVS suffers especially because it is not sufficient for most
applications to only use vectorized data structures. Therefore, many users will
have to duplicate the data structures as a scalar and a vectorized variant (e.g. List-
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1 struct Point {
2 float x, y, z;
3 float length() const { return std::sqrt(x * x + y * y + z * z); }
4 };
5 struct PointV {
6 float_v x, y, z;
7 float_v length() const { return Vc::sqrt(x * x + y * y + z * z); }
8 };

Listing 10.1: The typical pair of data structures that appear in horizontally vectorized
applications.

1 template <typename T> struct Point {
2 T x, y, z;
3 T length() const { return std::sqrt(x * x + y * y + z * z); }
4 };
5 using Point1 = Point<float>;
6 using PointV = Point<float_v>;

Listing 10.2: With a class template the code duplication from Listing 10.1 can be avoided.

ing 10.1). The scalar structure, that is, a structure with member variables of fun-
damental arithmetic types, is duplicated as a vectorized structure, which provides
the same members (variables and functions) but with Vc vector types replacing the
scalar types. This scalar structure is necessary to support the equivalent of working
with a scalar entry of a Vector<T> object for structured types.

Code development that follows this pattern is tedious work and error-prone be-
cause it requires significant amounts of copy-and-paste programming and all the
typical programming errors resulting from only testing one of the types. Further-
more, if the developer wants to insert and extract a scalar object to/from the vec-
torized structure a lot of boring and repetitive work is required. This is another
candidate for subtle bugs.

This chapter therefore discusses solutions that automate this data structure vec-
torization. The feature is limited by the capabilities of the current C++ standard.
Therefore, it is important to investigate what is still missing from the language to
make this feature more powerful and useful. The basic approach is the develop-
ment of an expression that can automate the idea shown in Listing 10.2, where the
template parameter(s) can either be a scalar or vector type. This implies a discus-
sion of the existing reflection capabilities in C++: How can types, interfaces, and
function implementations be transformed directly from C++ (i.e. without an addi-
tional “meta” compiler).
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1 template <typename T>
2 struct ReplaceTypes : public std::conditional<
3 (std::is_same<T, short>::value ||
4 std::is_same<T, unsigned short>::value ||
5 std::is_same<T, int>::value ||
6 std::is_same<T, unsigned int>::value ||
7 std::is_same<T, float>::value ||
8 std::is_same<T, double>::value),
9 Vc::Vector<T>,

10 T> {};
11 template <template <typename...> class C, typename... Ts>
12 struct ReplaceTypes<C<Ts...>> {
13 using type = C<typename ReplaceTypes<Ts>::type...>;
14 };

Listing 10.3: Basic ReplaceTypes class template.

10.1 TEMPLATE ARGUMENT TRANSFORMATION

Given a type C<Types...>, it is possible to transform this type into a new type
that uses Vector<T> as template argument for every argument T that is a type
supported by Vector<T>. To build the simplest expression we start with an alias
template
template <typename T> using simdize = typename ReplaceTypes<T>::

type;.
The ReplaceTypes class template has to implement the necessary transformation.
This class template can be built from two parts: First, if the template argument T
is not a class template and the type is a valid template argument to Vector<T>,
then the member type type is an alias for Vector<T>, otherwise it is simply T itself
(lines 1–10 in Listing 10.3). Second, if the template argument is a class template then
its template arguments must be replaced recursively by substituting each one via
ReplaceTypes (lines 11–14 in Listing 10.3).

This simple implementation for simdize<T> is a solution that can automate the
idea from Listing 10.2. The type PointV is now equal to simdize<Point1>. Or, to
show the recursing capabilities, consider the type
simdize<std::tuple<std::vector<float>, std::string, std::pair<

double, short>>>
which is thus the same type as
std::tuple<std::vector<float_v, std::allocator<float_v>>, std::

string, std::pair<double_v, short_v>>>.
The simdize<T> expression “greedily” replaces any occurrence of an arithmetic
type (usable with Vc) somewhere in the template arguments with a SIMD type.1

1 Note that std::string is an alias for std::basics̄tring<char, std::chart̄raits<char>,
std::allocator<char>>. Thus, if Vector<T> supported char as template argument, the
std::string type would also be transformed, but with a questionable result. This is therefore a
hint that Vector<T> should only support signed char and unsigned char, but not char itself.
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This is a good start, but for simdize<T> to be really useful some more effort is
required:

1. Ensure that the number of values in the vector types is equal for all replaced
types. In the tuple example above, the combination of float_v, double_v,
and short_v likely makes the whole simdized type useless. With SSE we
would get 𝒲float = 4, 𝒲double = 2, 𝒲short = 8 and thus the type can
only be used for horizontal vectorization with a SIMD width of two entries.
We should therefore make use of the SimdArray<T, N> class template (cf.
Chapter 7) to reconcile the vector widths.

2. Replace the bool type with a Mask<T> type. The template argument T needs
to be chosen heuristically.

3. The number of entries in the mask types need to match the number of entries
in the vector types as well. We need to consider the use of the SimdMaskAr-
ray<T, N> type for masks.

4. There needs to be an easy to use interface for converting objects of the scalar
structure type T to objects of the vectorized structure type simdize<T>. This
includes a simple broadcast, but also insertion and extraction of on scalar
object at a given SIMD offset.

5. The C++ standard does not require an implementation to allocate correctly
aligned memory with the new operator for over-aligned types. Thus, alloca-
tion of a simdize<T> (as defined above) object on the heap would likely lead
to crashes. The type should therefore overload the new and delete operators
to return correctly aligned memory addresses.

6. The memory alignment issue also needs to be fixed for std::allocator<T>.
If a simdize<T> type is used with a type that uses std::allocator for mem-
ory allocation, then over-alignment might also not be supported correctly,
leading to crashes. Thus, Vc::Allocator<simdize<T>> needs to be used in-
stead.

7. Template parameter packs only match types. Therefore, simdize<std::ar-
ray<int, 3>> would not be transformed. The simdize expression should
transform class templates with non-type template parameters as well.

8. Conditional assignment of one simdize<T> object to another one should be
possible. This should be shorthand for conditional assignment of each mem-
ber variable of the objects.

9. The resulting type should provide a constant expression that identifies the
SIMD vector size in the same manner that Vc::Vector<T>::size() does.
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10.2 ADAPTER TYPE

In the following I will use these types as abbreviations for the different stages of
the simdize<T> transformation:

D The scalar data structure to be transformed (e.g. std::tuple<float, std::
pair<unsigned int, int>>).

C The class template underlying the type D (e.g. std::tuple and std::pair).

S The vectorized structure, which is D with all template arguments replaced by
SIMD types (e.g. std::tuple<float_v, std::pair<uint_v, int_v>>).

A The adapter class inheriting from S.

The ReplaceTypes implementation above created a type S which is equal to an
instance of the class template C with Vector<T> arguments. This is a limitation
as soon as we want to declare additional member or non-member functions or
even static member variables for this type. For member functions and variables this
is obvious, since—apart from a few non-member operator alternatives—member
functions must be declared within the class declaration. For non-member func-
tions it is possible to live without a new type. However, the type S is a member
of the namespace in which the C class template is declared. Argument-dependent
name lookup will thus search in a namespace which is unknown to the simdize<
T> implementation. Any non-member function thus would have to be placed in
the global namespace. A derived type A, can be placed in a custom namespace of
the simdize<T> implementation. Then, the non-member functions can be declared
in the same namespace and thus the global namespace stays clean.

On the other hand, the new type A should not disable argument-dependent name
lookup for functions of the original type D. Consider the example in Listing 10.4.
The distance function, from line 6 is in the Utils namespace, but on line 15 it is
called without namespace qualifier. This works as long as the template parameter
P is a class which is either directly contained in the Utils namespace or one of
its direct or indirect base classes is contained in the Utils namespace. Thus, the
code in line 15 continues to compile if we modify simdize<T> to generate a type
that is derived from Utils::Point<T>. We can conclude that we can create an
adapter class on top of the simdized type S, as long as S is a class type (including
struct and union) and contained in the adapter class via inheritance (i.e. not via
composition).

The basic pattern for implementing the adapter class is shown in Listing 10.5.
In this simple form the Adapter class template inherits from its template parame-
ter. The logic that vectorizes the data structure is still completely implemented in
ReplaceTypes.
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1 namespace Utils {
2 template <typename T> class Point {
3 T x, y, z;
4 };
5 template <typename T>
6 T distance(const Point<T> &a, const Point<T> &b) {
7 return std::sqrt(a * a + b * b + c * c);
8 }
9 }

10

11 using Point = Utils::Point<float>;
12

13 template <typename P>
14 float f(const P &p1, const P &p2) {
15 return min_reduction(distance(p1, p2));
16 }

Listing 10.4: Non-member function relying on argument-dependent name lookup.

1 template <typename Base> class Adapter : public Base {};
2

3 template <template <typename...> class C, typename... Ts>
4 struct ReplaceTypes<C<Ts...>> {
5 using type = Adapter<C<typename ReplaceTypes<Ts>::type...>>;
6 };
7

8 template <typename T> using simdize = typename ReplaceTypes<T>::type;

Listing 10.5: The required code for adding an adapter class on top of the simdized type.

10.2.1 vector width

Once we have an adapter class A deriving from S we can easily implement the
constant expression that denotes the SIMD width (cf. item 9 above). This requires
a static constexpr member function in the Adapter class template. The value
of this member requires a solution for the reconciliation of the vector widths (cf.
item 1 above).

To determine the common vector width, a heuristic needs to be applied since
there is no obvious intended width if different arithmetic types are used in the
template arguments of D. A simple and effective strategy is the use of the natural
vector width of the first Vector<T> that is substituted. This strategy allows an
implementation that does a single pass over the template arguments.

The definition of such a simdize<T> implementation is shown in Listings 10.6
and 10.7. The code in Listing 10.6 extends the previous simdize<T> implementa-
tion with a new template parameter N:

• The new parameter N to simdize and ReplaceTypes selects whether Vec-
tor<T> or SimdArray<T, N> is used (cf. line 22).

• The Adapter class uses the template parameter N to implement the size()
function.
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1 template <typename T, std::size_t N,
2 bool = (std::is_same<T, short>::value ||
3 std::is_same<T, unsigned short>::value ||
4 std::is_same<T, int>::value ||
5 std::is_same<T, unsigned int>::value ||
6 std::is_same<T, float>::value ||
7 std::is_same<T, double>::value)>
8 struct ReplaceTypes;
9

10 template <typename T, std::size_t N = 0>
11 using simdize = typename ReplaceTypes<T, N>::type;
12

13 // specialization for non-simdizable types
14 template <typename T, std::size_t N>
15 struct ReplaceTypes<T, N, false> {
16 typedef T type;
17 };
18

19 // specialization for simdizable arithmetic types
20 template <typename T, std::size_t N>
21 struct ReplaceTypes<T, N, true>
22 : public std::conditional<(N == 0 || Vector<T>::size() == N),
23 Vector<T>, SimdArray<T, N>> {};
24

25 template <typename Base, // A class template instance with vectorized
26 // template arguments
27 typename Scalar, // The same as Base except with
28 // non-vectorized template arguments
29 std::size_t N>
30 class Adapter : public Base {
31 public:
32 typedef Scalar ScalarType;
33 static constexpr std::size_t size() { return N; }
34 };

Listing 10.6: Extending ReplaceTypes to use an equal SIMD width for all replaced types.

10.2.2 recursive type substitution

The code in Listing 10.7 is used to recurse over the template arguments of D. The
partial specialization of ReplaceTypes on line 76 uses the template class Substi-
tuteOneByOne to substitute the template argument types. The result of this substi-
tution is returned as a structure type with one static member for the determined
vector width and a template alias that can instantiate a given class template with
the substituted parameter pack. If the type substitution yields the same types (line
80) then ReplaceTypes defines its member type type to the original template ar-
gument that it was instantiated with (i.e. it does not use the Adapter class). Other-
wise, the substituted type contains a vector type and therefore needs to create an
instance of the Adapter class template which derives from it (line 82).

The SubstituteOneByOne class template needs two parameter packs to iterate
over the template arguments. One parameter pack stores the types that are already
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35 // Typelist for multiple parameter packs in one class template
36 template <typename... Ts> struct Typelist;
37

38 // Try substituting one type after another - the first one that
39 // succeeds sets N (if it was 0)
40 template <std::size_t N, typename Replaced, typename... Remaining>
41 struct SubstituteOneByOne;
42 template <std::size_t N, typename... Replaced, typename T,
43 typename... Remaining>
44 struct SubstituteOneByOne<N, Typelist<Replaced...>, T, Remaining...> {
45 private:
46 // U::size() or 0
47 template <typename U, std::size_t M = U::size()>
48 static std::integral_constant<std::size_t, M> size_or_0(int);
49 template <typename U>
50 static std::integral_constant<std::size_t, 0> size_or_0(...);
51 typedef simdize<T, N> V;
52 static constexpr auto NN =
53 N != 0 ? N : decltype(size_or_0<V>(int()))::value;
54

55 public:
56 using type = typename SubstituteOneByOne<
57 NN, Typelist<Replaced..., V>, Remaining...>::type;
58 };
59

60 // specialization for ending the recursion and setting the return type
61 template <std::size_t N_, typename... Replaced>
62 struct SubstituteOneByOne<N_, Typelist<Replaced...>> {
63 // Return type for returning the vector width and list of
64 // substituted types
65 struct type {
66 static constexpr auto N = N_;
67 template <template <typename...> class C>
68 using Substituted = C<Replaced...>;
69 };
70 };
71

72 // specialization for class templates where all template arguments
73 // need to be substituted
74 template <template <typename...> class C, typename... Ts,
75 std::size_t N>
76 struct ReplaceTypes<C<Ts...>, N, false> {
77 typedef typename SubstituteOneByOne<N, Typelist<>, Ts...>::type tmp;
78 typedef typename tmp::template Substituted<C> Substituted;
79 static constexpr auto NN = tmp::N;
80 typedef typename std::conditional<
81 std::is_same<C<Ts...>, Substituted>::value, C<Ts...>,
82 Adapter<Substituted, C<Ts...>, NN>>::type type;
83 };

Listing 10.7: Extending ReplaceTypes to use an equal SIMD width for all replaced types.
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substituted and the other pack stores the types that still need to be processed.2

The type T between the two lists signifies the type that is being processed by the
current SubstituteOneByOne instance. This type is transformed via a simdize<
T, N> expression (line 51) and thus recurses if the type T is a template instance.
In case the N parameter to SubstituteOneByOne was zero, a successful type re-
placement then has to define the vector width for all remaining type replacements.
Line 53 therefore checks for N == 0, in which case it tries to call V::size() as a
constant expression. If this were ill-formed then a zero is returned through the
SFINAE mechanism in the size_or_0 member function overloads (lines 47–50).
With T processed, the substitution process recurses via defining the next Substi-
tuteOneByOne instance (line 56) as the member type type. Line 62 finally ends the
recursion of SubstituteOneByOne when the Remaining parameter pack is empty.
This SubstituteOneByOne instance then defines the return type type as a struct
with the information that needs to be passed back to ReplaceTypes, which cap-
tures this type on line 77.

10.2.3 broadcast constructor

With the adapter class A deriving from S, it is possible to add a constructor to the
generated type, which allows the conversion from an object of type D to S. This is
analogous to the broadcast constructor of Vector<T>. It converts a scalar object to
an object of the vectorized type by broadcasting the scalar members into all entries
of the vector members. The constructor definition is shown in line 12 of Listing 10.8.
Note that the interface ensures the existence of the std::tuple interface for the
constructor parameter type U. This is necessary to access the data members of the
constructor argument, as shown in line 19.

10.2.4 inherited constructors

The constructors of C (which are still valid and useful for the template instantiation
S) can be inherited by A, so that no functionality is lost (line 2 of Listing 10.8).3 For
completeness A needs a defaulted default constructor (line 5), which will be usable
only if S has a default constructor.

2 C++ cannot distinguish where one pack ends and the next starts. Therefore, the first pack is passed
via the Typelist class template.

3 Constructor inheritance is not the right solution for aggregates. In this case no constructor would be
inherited even though the base type can be instantiated via brace initialization. Alternatively, a ge-
neric constructor that forwards all arguments can be used. However, such a forwarding constructor
requires complicated logic to determine whether to use parenthesis, braces, or double braces (such
as for std::array) for the call to the base constructor.
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1 // inherit constructors from base class
2 using S::S;
3

4 // default constructor, ill-formed if S::S() is ill-formed
5 Adapter() = default;
6

7 // broadcast constructor
8 template <
9 typename U, typename Seq = make_index_sequence<std::tuple_size<

10 typename std::decay<U>::type>::value>,
11 typename = std::enable_if_t<has_tuple_interface<U>::value>>
12 Adapter(U &&x)
13 : Adapter(static_cast<const D &>(x), Seq()) {}
14

15 private:
16 // implements the broadcast
17 template <std::size_t... Indexes>
18 Adapter(const D &x, Vc::index_sequence<Indexes...>)
19 : S{get<Indexes>(x)...} {}

Listing 10.8: The constructor definitions of the simdize<T> adapter class.

1 template <typename S, typename D, std::size_t N>
2 D simdize_extract(const Adapter<S, D, N> &a, std::size_t i);
3

4 template <typename S, typename D, std::size_t N>
5 void simdize_insert(Adapter<S, D, N> &a, std::size_t i, const D &x);

Listing 10.9: The definition of the scalar insertion and extraction functions.

10.3 SCALAR INSERTION AND EXTRACTION

The Adapter class implements conversion from a scalar object to a vector object.
Insertion and extraction of scalar objects into/from a vector object with a given
offset are still missing, though (cf. item 4 on page 117). This can be implemented
via a subscript operator in the Adapter class. However, if S implements a subscript
operator they would likely conflict. In general, this is true for any member function
in the Adapter class, which is why the safest solution are a non-member functions
for insertion and extraction.

Listing 10.9 shows a simple and sufficient interface for the insertion and extrac-
tion functions. The simdize_extract function constructs a new scalar object of
type D from the values at vector offset i from the vectorized object a. An imple-
mentation of this function needs to read all members of a in order to copy this data
and uses the std::get template function to do so. This function must be defined
for the type S, which was vectorized with the simdize<T> expression. In addition,
the std::tuple_sizetype must be specialized for S, since the function needs to
know how many members it needs to read. Likewise, D must implement std::get
and std::tuple_size for writing the members to the returned object.
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The simdize_insert function works analogously and uses std::get and std
::tuple_size to copy the member values of x to the members of a at vector offset
i.

10.4 COMPLETE SPECIFICATION

In the same manner as shown above, the ReplaceTypes class template can be ex-
tended to also transform bool arguments to mask types. The complete specifica-
tion of simdize<T> is as follows:
namespace detail {

template <typename S, typename D, std::size_t N>
class Adapter : public S {
public:

typedef D ScalarType;
static constexpr std::size_t size() { return N; }
using S::S;
Adapter() = default;
template <typename U, typename = std::enable_if_t<

has_tuple_interface<U>::value>>
Adapter(U &&x);

};
template <typename S, typename D, std::size_t N>
D simdize_extract(const Adapter<S, D, N> &a, std::size_t i);
template <typename S, typename D, std::size_t N>
void simdize_insert(Adapter<S, D, N> &a, std::size_t i, const D &x);

}

template <typename T, std::size_t N = 0, typename MT = void>
using simdize = /*see below*/;

The alias template simdize<T, N, MT> denotes a type that is one of the follow-
ing:

Adapter<C<simdize<Ts, N, MT>...>, N>
…if T is a class template C<Ts...> without non-type template parameters.
If N is zero the first simdize<U, 0, MT> expression that yields a type with
a static constexpr member function named size() defines N and MT for all
subsequent simdize expressions in the pack expansion:

• N is set to simdize<U, 0, MT>::size().

• If U is bool and MT is not void then MT stays unchanged.

• If U is bool and MT is void then MT is set to float.

• Otherwise MT is set to U.

Adapter<C<simdize<U, N, MT>, Values...>, N>
…if T is a class template C<U, Values...> with non-type template param-
eters of a single integral type (Values). If N is zero the simdize<U, 0, MT>
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expression sets the template parameter N of Adapter to simdize<U, 0, MT>
::size().

Vc::Vector<T>
…if T is one of the arithmetic types supported by Vc::Vector and N is either
zero or equal to Vc::Vector<T>::size().

Vc::SimdArray<T, N>
…if T is one of the arithmetic types supported by Vc::Vector and N is neither
zero nor equal to Vc::Vector<T>::size().

Vc::Mask<MT>
…if T is bool, MT is not void, and N is either zero or equal to Vc::Mask<MT>
::size().

Vc::Mask<float>
…if T is bool, MT is void, and N is either zero or equal to Vc::Mask<float>
::size().

Vc::SimdMaskArray<MT, N>
…if T is bool, MT is not void, and N is neither zero nor equal to Vc::Mask<MT
>::size().

Vc::SimdMaskArray<float, N>
…if T is bool, MT is void, and N is neither zero nor equal to Vc::Mask<MT>::
size().

T
…otherwise.

10.5 CURRENT LIMITATIONS

To use the full capabilities of the simdize<T> expression, data structure design is
required to follow a specific pattern. This limits the range of application for simd-
ize<T>.

• simdize<T> depends on a specific pattern of data structure definition and
associated meta-data/-functions. Since the std::tuple class template fully
implements such a pattern the simdize<T> solution requires the std::tuple
interface. This makes std::tuple, std::pair, and std::array immedi-
ately usable with simdize<T>.
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• Users have to define their data structures as template classes (or structs),
where all data member types are template parameters of the class. Addi-
tionally, the user has to implement get<N> and std::tuple_size in order
to activate the conversion functions between scalar to vector objects. The lat-
ter effectively provides a “back-door” to accessing the private (and pro-
tected) data members.

• The simdize<T> solution is limited to data structures without non-type tem-
plate parameters.4 Support for every non-type template parameter combina-
tion needs a new specialization in the simdize<T> implementation. There-
fore, only a limited set of non-type template parameter class templates will
be supported. Most importantly, std::array is supported.

• Functions that use such a vectorizable data structure must be defined as tem-
plate functions and therefore either be defined in header files (inline or un-
named namespace) or explicitly instantiated in the source file.

10.6 CONCLUSION

This chapter has presented a solution for automatic vectorization of data structures
and the template functions that work with these types. The simdize<T> expression
helps users to create data structures that deliver the best compromise between data
locality and efficient vector loads and stores (or AoS vs. SoA). If a user can follow
the required pattern for data structure design, (s)he will have a powerful abstrac-
tion mechanism available for expressing both scalar and vector operations. Chap-
ter 11 shows an example where simdize<T> enables generic vectorization without
full knowledge about the user’s data structure.

4 This is due to a limitation in variadic templates in current C++.
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11
NEAREST NEIGHBOR SEARCHING

Search algorithms are a fundamental class of algorithms in computer science (cf.
[54]). In general, a search algorithm searches through a set of values for some value
that matches a search predicate.

The most significant optimization for search algorithms is a reduction of the
complexity. Typically, a linear search (𝒪(𝑁)) can be improved to a binary search
(𝒪(log 𝑁)). This requires the set of search values to be structured in a supporting
manner for the search algorithm. For example, a binary tree data structure is used
because it allows simple lookup with 𝒪(log 𝑁) complexity.

Nearest neighbor search algorithms are a specialization using a search predicate
evaluating a distance function 𝑑. The entry in the set that produces the smallest
value for the distance function is the nearest neighbor and thus the result of the
search. With one-dimensional search keys and a sorted set, nearest neighbor search
can be as simple as a binary search using the less operator to find the two neigh-
boring elements where the return value of the less comparison differs. Of those
two elements, the element with the shorter distance is the correct search result.

If the search keys are multi-dimensional, the problem is not as simple anymore.
Consideration of only a single dimension cannot yield any useful conclusion about
the actual distance of the entry in the set. Therefore, there is no natural sorting
order that can make searching as simple as in the one-dimensional case. Never-
theless, there are data structures (e.g. k-d tree [6], quad tree [22], …) improving
nearest neighbor searches with multi-dimensional keys significantly, achieving a
complexity of 𝒪(log 𝑁).

Complexity is not the only important characteristic of the efficiency of a given
search algorithm. In some applications, the value for 𝑁 is known to be bounded.
Then it is important to compare the actual run time of an 𝒪(𝑁) algorithm against an
𝒪(log 𝑁) algorithm. Generally, the simple, brute-force approach is faster for small
values of 𝑁. This is due to more efficient memory access patterns (linear instead of
random) and less overhead for address calculation. For some 𝑁 = 𝑁0 the 𝒪(𝑁) and
𝒪(log 𝑁) algorithms will be equally fast, and consequently the 𝒪(log 𝑁) algorithm
will be more efficient for 𝑁 > 𝑁0.

129
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1 template <class Iterator, class T>
2 Iterator find(Iterator first, Iterator last, const T &value) {
3 for (; first != last; ++first) {
4 if (*first == value) {
5 break;
6 }
7 }
8 return first;
9 }

Listing 11.1: A typical std::find implementation.

1 template <class Iterator, class T>
2 Iterator find(Iterator first, Iterator last, const T &value) {
3 typename simdize<Iterator>::value_type value_v = value;
4 for (simdize<Iterator> it = first; it < last; ++it) {
5 const auto mask = *it == value_v;
6 if (any_of(mask)) {
7 return it.scalar() + mask.indexOfFirst();
8 }
9 }

10 return last;
11 }

Listing 11.2: Vc::find implementation using a simdize<T> implementation extended
for random-access iterator [48, §24.2.7] types.

11.1 VECTORIZING SEARCHING

To show the applicability of vectorization to searching in general, I reimplemented
the std::find algorithm (cf. [48, §25.2.5] and Listing 11.1) with Vc. This imple-
mentation is presented in Listing 11.2. The find algorithm iterates over a given
iterator range (first to last) and compares each value against the search value.
If the value matches, the iterator is returned. If no match is found, the last iterator
is returned. This algorithm is a classical linear search with 𝒪(𝑁) complexity.

11.1.1 loop-vectorization fails

The search loop is not loop-vectorizable (i. e. not auto-vectorizable) because loop-
vectorization requires a countable loop (cf. Section 2.1). With the break statement in
line 5 the iteration count is input-data dependent. In order to vectorize the search
loop, the algorithm has to compare 𝒲T values per iteration; and thus potentially
execute 𝒲T − 1 comparisons more than necessary. To a developer it is obvious
that this is efficient and correct, but to the compiler this is an incorrect translation
of the source code and it would have to prove that it is allowed to do it under the
“as-if” rule of C++ [48, §1.9 p1].
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11.1.2 explicit vectorization

The vectorization of the std::find algorithm with Vc (Listing 11.2) is a straight-
forward transformation from iterating over one entry at a time to processing 𝒲T
entries per iteration. For this example I have extended simdize<T> (cf. Chapter 10)
to recognize iterator types and in particular random-access iterators (random_-
access_iterator_tag, cf. [48, §24.4.3]). The iterator type is then adapted to return
simdize<iterator::value_type> from operator* and move the scalar iterator
by 𝒲T with the increment and decrement operators. The comparison operators of
the adapted iterator ensure that both iterators use the same alignment and thus no
out-of-bounds access will be allowed.

The Vc::find implementation is slightly simplified since it assumes that the dis-
tance of first to last is a multiple of 𝒲T . To account for this possibility the im-
plementation would need an epilogue, and possibly a prologue, which processes
the remainder values correctly (e.g. as scalars).

In the loop body the find algorithm has to execute the equality comparison,
which produces a mask object (line 5). If any of the values in the comparison are
equal, then the mask has at least one true value and thus the any_of reduction
returns true. At this point the algorithm needs to return the (scalar) iterator of this
value. The vectorized iterator returns the iterator value to the first scalar with the
scalar() member function. The index of the first true value in the mask deter-
mines the additional offset, which is used to advance the scalar iterator accordingly
(line 7). If no value in the complete set matches, the algorithm returns last, as in
the std::find implementation.

11.1.3 benchmark

The following benchmark compares the efficiencies of the Vc::find and std::
find implementations. The benchmark was compiled with GCC version 4.8.2 us-
ing its libstdc++ implementation of std::find (which is an optimized implemen-
tation compared to Listing 11.1). The optimization relevant compiler flags used
were:

-O3 -ffp-contract=fast -march=core-avx-i -DNDEBUG.
The benchmark code (cf. Appendix B) executes 10,000 calls to find. The search

values are picked from random locations in the haystack using a uniform distri-
bution. The 10,000 searches are repeated at least 100 times (more often for smaller
haystacks) and the execution times of each repetition are recorded. Afterwards
these values are used to calculate the mean and standard deviation1 of the find

1 This assumes that execution time follows a normal distribution, which is not exactly true. However,
it works well enough for approximating the error.
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Figure 11.1: Benchmark results of a reimplementation of std::find with Vc (Listing 11.2).
The benchmark (cf. Appendix B) uses differently sized haystacks containing
random float values (x axis). The average number of CPU cycles required
to execute std::find or a vectorized find are plotted in the first diagram.
The second plot shows the quotient (speedup factor) of the two graphs on the
left. The benchmark was executed on an Intel i5 3360M CPU with 2.80 GHz
(“Turbo Mode” and power management were disabled—cf. Appendix D—)
using the AVX implementation of Vc.

function’s run time. If the relative error is larger than 5% the measurement is re-
peated, because the system was likely active with different tasks that competed for
execution resources.

11.1.4 results

Figure 11.1 shows the result of the benchmark. It is clearly visible that vectorization
improves the efficiency of the find implementation by at least a factor 3 up to
slightly more than 𝒲float = 8. The largest speedup is at 213⋅4 Bytes = 32 KiB2. The
CPU that executed the benchmark has 32 KiB of L1 cache, 256 KiB = 216 ⋅ 4 Bytes
of L2 cache, and 3 MiB = 219 ⋅ 1.5 ⋅ 4 Bytes of L3 cache. The three cache sizes can be
found in the “Speedup” plot of Figure 11.1, limiting the vectorization improvement
for large data sets.

2 The values are of type float and thus 4 Bytes large.
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1 template <class Iterator, class V>
2 std::array<Iterator, V::size()> find_parallel(Iterator first,
3 Iterator last,
4 const V &value) {
5 std::array<Iterator, V::size()> matches;
6 for (auto &x : matches) {
7 x = last; // initialize with “not ”found
8 }
9 typename V::mask_type found(false);

10 for (; first < last; ++first) { // scalar iteration over haystack
11 const auto mask = *first == value && !found;
12 if (any_of(mask)) {
13 found |= mask; // keep track of the lanes that are done
14 for (int i : where(mask)) {
15 matches[i] = first; // the iterator for the return value
16 }
17 if (all_of(found)) {
18 break; // all lanes found a match, return
19 }
20 }
21 }
22 return matches;
23 }

Listing 11.3: Alternative vectorization of the find algorithm using a different vectoriza-
tion direction.

11.1.5 vectorization direction

There is an alternative vectorization for the find algorithm that executes the search
loop for multiple lookups in parallel (cf. Listing 11.3). In this case the value param-
eter is a vector type and the iteration over the haystack is done with scalar iterators.
This approach also speeds up the find algorithm compared to the std::find im-
plementation, but not as efficient as the vectorization shown above. This is due to
the implementation having to keep track of the vector lanes that already had a hit,
in order to return the iterator to the first match. In addition, the vector usage is
suboptimal since one lane after another becomes unused as the search values are
found. This is different for the implementation above, where only the last vector
compare in the iteration potentially executes unused compare operations.

11.1.6 the merit of vectorization

Vectorization of search algorithms cannot improve the complexity of the algo-
rithms. However, it can make the actual implementation perform more efficiently.
SIMD instructions improve load throughput, reduce branching, improve compare
operations throughput, and can potentially reduce the number of pointer chases
necessary to arrive at the answer. The effect is most visible for algorithms which
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are not slowed down by memory latency (by avoiding pointer chasing3 or hiding
the latency efficiently).

11.2 VECTORIZING NEAREST NEIGHBOR SEARCH

Having shown that vectorization of search algorithms can generally improve the
efficiency of the implementation, let us investigate nearest neighbor search algo-
rithms. As for the vectorization above, we have two principal choices of vectoriza-
tion:

1. Execute the search for several search keys in parallel.

2. For one search key compare several entries of the haystack in parallel.

It may additionally be possible to vectorize the compare operation (vertical vec-
torization [59]) since the evaluation of the distance function consists of multiple
scalar operations. This document will not cover vertical vectorization of this prob-
lem any further, because it does not scale and competes with ILP4 (cf. Section 1.6.1)
and therefore is not a useful transformation.

11.2.1 vectorization approach

The two remaining choices were shown to have a clear winner above (cf. Sec-
tion 11.1.5). There is no apparent reason why approach 1 would work better for
an exhaustive nearest neighbor search. For a search in a search tree, the situation
appears to be fundamentally different. These data structures are built in such a
way that each scalar entry on a tree node needs to be fully evaluated to determine
the next node. Thus, vectorization seems to require approach 1. For the k-d tree
algorithm, approach 1 has been researched for raytracing on GPUs before (cf. [37,
27]).

Searching is very sensitive to load performance since the whole task of the search
algorithm is to walk through a data structure to identify the match. Thus, a good
algorithm does as much as possible per load, per cache line, and per pointer chase.
Likewise, a good implementation of a given algorithm tries to optimize the same
issues. Vectorization approach 1 for a non-exhaustive search can improve mem-
ory load efficiency only in special cases (i.e. if the matches are closely localized).
However, in most cases the matches to the search keys will be stored in unrelated
locations of the data structure. Then the loads cannot be coalesced, resulting in a
load performance similar to the scalar implementation.

3 The term “pointer chasing” is used to describe dereferencing a pointer to load a pointer which,
in turn, is dereferenced to load the next pointer, and so on … This is a typical implementation of
container iteration for linked data structures such as linked lists and trees.

4 Instruction Level Parallelism
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Figure 11.2: SIMD algorithm for nearest neighbor search for 𝑞 = (3, 5) in a set 𝑆 =
{(1, 6), (7, 3), (4, 5), (5, 8)} for a system with 𝒲T = 4.

Consequently, the rest of the chapter focuses on approach 2. The search algo-
rithm therefore must be able to execute comparisons for multiple values in the
haystack for a single input in parallel. Section 11.3.5.1 quantifies the differences of
approaches 1 and 2.

11.2.2 linear nearest neighbor search

Consider the simple case of four two-dimensional values in the haystack and a
system with 𝒲float = 4. Then the algorithm simply calculates the distance for
all four values in parallel. It then determines the vector entry with the minimum
value, which identifies the nearest neighbor (Figure 11.2).

This idea can be extended for implementing a complete vectorized linear nearest
neighbor search algorithm as shown in Listing 11.4. To showcase how simple the
Vc SIMD implementation is, Listing 11.5 shows a scalar implementation of the
linear nearest neighbor search algorithm.

The algorithm expects at least one entry in the vector argument for simplifying
the return semantics. This precondition is verified first by the function. If the condi-
tion is not met it throws an exception. The first element of the input data initializes
the nearest neighbor candidate variable. Subsequently, all remaining elements in
the input data are compared against the candidate. If a point with a smaller dis-
tance is found, the candidate is updated.
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1 template <typename T>
2 T findNearest(const T &x_,
3 const std::vector<simdize<T>> &data) const {
4 auto it = data.begin();
5 const auto end = data.end();
6 if (it == end) {
7 throw std::invalid_argument("data must not be empty");
8 }
9 const simdize<T> x(x_);

10 simdize<T> candidate = *it;
11 auto bestDistance = distance(x, *it);
12 for (++it; it != end; ++it) {
13 const auto tmp = distance(x, *it);
14 where(tmp < bestDistance) | candidate = *it;
15 where(tmp < bestDistance) | bestDistance = tmp;
16 }
17 return simdize_extract(
18 candidate, (bestDistance.min() == bestDistance).indexOfFirst());
19 }

Listing 11.4: Vectorized implementation of the linear search algorithm in Listing 11.5.

1 template <typename T>
2 T findNearest(const T &x, const std::vector<T> &data) {
3 auto it = data.begin();
4 const auto end = data.end();
5 if (it == end) {
6 throw std::invalid_argument("data must not be empty");
7 }
8 T candidate = *it;
9 auto bestDistance = distance(x, *it);

10 for (++it; it != end; ++it) {
11 const auto tmp = distance(x, *it);
12 if (tmp < bestDistance) {
13 candidate = *it;
14 bestDistance = tmp;
15 }
16 }
17 return candidate;
18 }

Listing 11.5: Simple linear nearest neighbor search implementation.
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1 template <typename T>
2 T distance(const Point<T, 3> &p0, const Point<T, 3> &p1) {
3 const auto dx = p0[0] - p1[0];
4 const auto dy = p0[1] - p1[1];
5 const auto dz = p0[2] - p1[2];
6 return dx * dx + dy * dy + dz * dz;
7 }

Listing 11.6: A possible implementation of a generic distance function.

The SIMD implementation requires one additional idea: The algorithm deter-
mines 𝒲T candidates from disjunct and interleaved subsets of the input data. At
the end of the loop the resulting best candidates are compared and reduced to a
single one (in the same manner as Figure 11.2), which is the return value. Thus,
horizontal reduction over SIMD vectors happens only at the very end of the algo-
rithm.

Note that the data type for the input data is different in the scalar and SIMD
implementation. The vectorized function expects a vector of vector objects of type
simdize<T> (cf. Chapter 10), where T is the type of the search point.

11.2.3 programmability

Consider how few modifications are necessary to arrive at the vectorized find-
Nearest implementation starting from Listing 11.5. Most importantly, a developer
needs to understand masks and write-masking and how simdize<T> can be used
to create vectorized generic interfaces. The distance function, which is called
from both findNearest implementations, needs to be vectorizable, though. This
is actually very easy with a generic implementation, such as shown in Listing 11.6.

11.2.4 benchmark

The two findNearest functions can be benchmarked analogously to the bench-
mark for std::find (cf. Section 11.1.3). Appendix C presents the full benchmark
code. The benchmark was compiled with GCC version 4.8.2. The optimization rel-
evant compiler flags used were:

-O3 -ffp-contract=fast -march=core-avx-i -DNDEBUG.
The benchmark measures the run times of insertion and searching for the scalar

and vectorized linear nearest neighbor search data structures (LinearNeighbor-
Search and LinearNeighborSearchV). These two classes implement the mem-
ber function findNearest as shown in Listing 11.4 and Listing 11.5. The bench-
mark iterates over different haystack sizes and executes 10,000 nearest neighbor
lookups for each. The statistics are determined in the same way as described in
Section 11.1.3.
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Figure 11.3: Benchmark results of linear nearest neighbor searching with the implemen-
tations Listing 11.4 and Listing 11.5.

The point objects used in the benchmark are three-dimensional points using sin-
gle-precision floating point variables (12 Bytes per point object) and a distance
function as shown in Listing 11.6. Most importantly, this distance function omits
the square-root function since searching for the nearest neighbor does not depend
on the actual magnitude but only on a correct total order.

11.2.5 results

The vectorized search is consistently more efficient than the scalar variant as Fig-
ure 11.3 shows. The first plot shows the average number of CPU cycles a single
function call required to execute the scalar or vectorized findNearest functions.
The values on the x-axis need to be multiplied by 12 Bytes to determine the size of
the data set in Bytes. Thus, the smallest search iterated over 96 Bytes and the largest
search over 12 MiB. A run time of 107 cycles multiplied by 10,000 searches and 100
repetitions (for the statistics) at 2.8 GHz equates to 107+4+2

2.8⋅109 Hz ≈ 1 h. The second plot
in Figure 11.3 shows the quotient of the run time of the scalar function divided
by the run time of the vectorized function (speedup factor). It clearly shows that
vectorization improves the efficiency of the exhaustive search considerably.

The benchmark was executed on an Intel i5 3360M CPU with 2.80 GHz (“Turbo
Mode” and power management were disabled—cf. Appendix D—) using the AVX
implementation of Vc. At 218 ⋅ 12 Bytes = 3 MiB haystack size, the L3 cache is ex-
hausted and memory performance decrease the achievable speedup. The speedup
of the vectorized algorithm is still a factor of four for the largest benchmarked data
set, though, showing the usefulness of vectorization for exhaustive nearest neigh-
bor search implementations.
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Figure 11.4: k-d tree decomposition for the point set (17, 15) (30, 32) (40, 38) (13, 41) (6,
78) (11, 77) (52, 88) (60, 27) (63, 54) (77, 2) (91, 15) (90, 58) (82, 59) (84, 96)
(98, 94).

Inserting new points into the search data structure is slightly slower for the
vectorized variant, though. This is obvious if you consider that inserts of scalar
structures need to be adapted for a std::vector<simdize<T>> container. This re-
quires the simdize_insert function (cf. Section 10.3) to change the storage order
to AoVS. Benchmarking insert performance shows that the scalar data structure
requires 65%–85% of the run time of the vectorized data structure. Note, though
that this overhead is only necessary if the interface needs to use scalar structures. If
the program already uses AoVS storage the insert can be even more efficient since
it then uses vector loads and stores for copying the data.

11.3 K-D TREE

Finally, this section will show how the vectorization approach from the previous
section can be applied to the k-d tree algorithm. Bentley [6] introduced the k-d tree
data structure in 1975. The data structure is a binary search tree enabling nearest
neighbor search with 𝒪(log 𝑁) complexity [28].

Each node of the k-d tree stores a single point. The depth of the node in the tree
determines which dimension of the multi-dimensional point is used as discrimi-
nator for traversal. Consider the example shown in Figure 11.4. There are 15 points
stored in the k-d tree. After sorting for the first dimension, the (60, 27) point is at
the center and therefore chosen for the root node of the tree. All points with 𝑥 < 60
are inserted on the left child node and points with 𝑥 > 60 are inserted on the right
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child node.5 From this construction, the tree contains seven points on the left and
right subtrees. The next node is discriminated via the second dimension. There-
fore, the left child node stores the (13, 41) point and the right child node stores the
(90, 58) point. Since k-d tree structure in this example only uses two dimensions,
the next level of the tree discriminates on the first dimension again.

This data structure leads to inserts with 𝒪(log 𝑁) complexity (without balanc-
ing). Most importantly, nearest neighbor lookup is now possible with 𝒪(log 𝑁)
complexity.

11.3.1 k-d tree nearest neighbor lookup

Given a search point 𝑝 = (𝑝𝑥, 𝑝𝑦) nearest neighbor lookup traverses the tree down
to a leaf node using the same rules as described above for insertion. This leaf node
then is used as a first candidate for the solution. The algorithm then walks the tree
back up to the root node. For every node it checks whether the hypersphere around
the search point, with radius equal to the distance to the candidate point, intersects
the splitting plane. If it does intersect, the algorithm must check on the other side
of the splitting plane for a closer match.

The k-d tree nearest neighbor search algorithm is inherently not vectorizable
with this original definition of the tree structure. One might consider speculative
calculation of the distance for multiple nodes down the tree to create a vector of
points from the data set. However, this makes the implementation complex and
unlikely to increase efficiency.

11.3.2 k-d tree vectorization

In order to efficiently vectorize, the k-d tree data structure must be modified. The
idea is to create nodes that store 𝒲T points instead of a single one. One node hence
stores one simdize<T> object instead of one T object (cf. Listing 11.7). (The original
k-d tree structure uses one object of T per node.) This requires changes to the insert
and nearest neighbor search algorithms as presented in the following.

The following algorithm descriptions use the function 𝐾𝐷(𝑥), which returns the
discriminator of the object 𝑥 for the 𝐷th dimension (most commonly 𝐾𝐷 returns
the 𝐷th coordinate of a point, e.g. 𝐾0((7, 5)) = 7 and 𝐾1((7, 5)) = 5). The Node
structure contains four members: a vector of data (𝑑𝑎𝑡𝑎 of type simdize<T>), two
pointers to the child nodes (𝑙𝑜 and ℎ𝑖), and an integer 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 tracking the last fill
index of 𝑑𝑎𝑡𝑎.

5 Bentley [6] originally suggested that points with equal discriminator use the concatenation of all
dimensions to determine where the point needs to be inserted. But other strategies, such as always
choosing left or right or alternating left/right according to some heuristic are also conceivable and
often more efficiently implementable.
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1 template <typename T,
2 std::size_t Dimensions = std::tuple_size<T>::value>
3 class KdTreeV {
4 using V = simdize<T>;
5 template <std::size_t SplittingPlane> struct Node : public V {
6 std::array<
7 std::unique_ptr<Node<(SplittingPlane + 1) % Dimensions>>, 2>
8 child;
9 unsigned int entries;

10 void insert(const T &);
11 void findNearest(const V &, Candidate &) const;
12 };
13 std::unique_ptr<Node<0>> root;
14

15 public:
16 void insert(const T &x);
17 T findNearest(const T &x) const;
18 };

Listing 11.7: The structure of the vectorized k-d tree class.

11.3.2.1 the insert algorithm

𝐼𝑁𝑆𝐸𝑅𝑇(𝑥, 𝑄 = 𝑅𝑂𝑂𝑇, 𝐷 = 0):
1: if 𝑄 = Λ then
2: 𝑄 ← new Node
3: for 𝑖 = 0 to 𝒲T − 1 do
4: 𝑄.𝑑𝑎𝑡𝑎𝑖 ← 𝑥
5: end for
6: 𝑄.ℎ𝑖 ← Λ
7: 𝑄.𝑙𝑜 ← Λ
8: 𝑄.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ← 1
9: return

10: end if
11: if 𝑄.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 < 𝒲T then
12: 𝑄.𝑑𝑎𝑡𝑎𝑄.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ← 𝑥
13: 𝑄.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ← 𝑄.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 + 1
14: return
15: end if
16: if 𝐾𝐷(𝑄.𝑑𝑎𝑡𝑎𝑖) < 𝐾𝐷(𝑥)∀𝑖 then
17: 𝑄 ← 𝑄.ℎ𝑖
18: else if (not 𝐾𝐷(𝑄.𝑑𝑎𝑡𝑎𝑖) < 𝐾𝐷(𝑥))∀𝑖 then
19: 𝑄 ← 𝑄.𝑙𝑜
20: else
21: if 𝑐𝑜𝑢𝑛𝑡(𝐾𝐷(𝑄.𝑑𝑎𝑡𝑎𝑖) < 𝐾𝐷(𝑥)) >= 𝒲T/2 then {majority in 𝑄 smaller than

𝑥}
22: for all 𝑑 in 𝐾𝐷(𝑄.𝑑𝑎𝑡𝑎𝑖) do
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23: if 𝑑 is maximal then
24: 𝑅 ← 𝑖
25: end if
26: end for
27: 𝑄.𝑑𝑎𝑡𝑎𝑅 ↔ 𝑥
28: 𝑄 ← 𝑄.ℎ𝑖
29: else
30: for all 𝑑 in 𝐾𝐷(𝑄.𝑑𝑎𝑡𝑎𝑖) do
31: if 𝑑 is minimal then
32: 𝑅 ← 𝑖
33: end if
34: end for
35: 𝑄.𝑑𝑎𝑡𝑎𝑅 ↔ 𝑥
36: 𝑄 ← 𝑄.𝑙𝑜
37: end if
38: end if
39: 𝐷 ← 𝐷 + 1 mod 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠
40: 𝐼𝑁𝑆𝐸𝑅𝑇(𝑥, 𝑄, 𝐷)

On INSERT, the algorithm first checks whether the node 𝑄 is fully filled (cf. lines
1–15). If not, 𝑥 is inserted into the node and the algorithm terminates. Otherwise,
if INSERT is called with a full node (𝑄.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 = 𝒲T ) the algorithm must deter-
mine where 𝑥 needs to be stored. There are three choices: to the 𝑙𝑜 child node, to
the ℎ𝑖 child node, or to this node. The first two choices are analogous to the orig-
inal k-d tree insert algorithm, only that the condition requires all discriminators
of 𝑄.𝑑𝑎𝑡𝑎 to agree on ℎ𝑖 or 𝑙𝑜. If they do not agree then min𝑖(𝐾𝐷(𝑄.𝑑𝑎𝑡𝑎𝑖)) < 𝑥 ≤
max𝑖(𝐾𝐷(𝑄.𝑑𝑎𝑡𝑎𝑖)).6 One of the entries in 𝑄 then needs to be swapped with 𝑥 be-
fore the recursion continues to a child node. The algorithm determines whether the
majority of discriminators agree on ℎ𝑖 (line 21). If yes, the entry in 𝑄.𝑑𝑎𝑡𝑎 with max-
imum discriminator is swapped with 𝑥 and INSERT recurses to 𝑄.ℎ𝑖. Otherwise,
the entry in 𝑄.𝑑𝑎𝑡𝑎 with minimum discriminator is swapped with 𝑥 and INSERT
recurses to 𝑄.𝑙𝑜. Alternatively, the mean of the discriminator values in the node 𝑄
can be used to decide on the direction.

Note that on node creation not only the first entry in the vector 𝑑𝑎𝑡𝑎 is initial-
ized; rather the object 𝑥 is broadcast to all entries of the 𝑑𝑎𝑡𝑎 vector (cf. line 3). This
ensures that all entries contain valid values for subsequent vector compares. For

6 Actually, the algorithm is defined such that only the less-than operator is used. This leads to the
𝑥 ≤ max relation.
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INSERT this is not important because compares are only executed on fully filled
nodes. But the FINDNEAREST algorithm depends on it.7

A possible optimization modifies the INSERT algorithm such that records in
the nodes are sorted according to their discriminator value. This enables quick re-
trieval of the leftmost and rightmost discriminator values without the use of vector
reduction operations in FINDNEAREST.

After insertion of the same 15 points as for Figure 11.4 the vectorized tree struc-
ture looks as in Figure 11.5. The root node (in red) contains four points and thus
partitions the complete area into three subareas. A C++ implementation of the IN-
SERT algorithm is presented in Appendix E.

11.3.2.2 the findnearest algorithm
The vectorized FINDNEAREST algorithm uses the same idea as originally defined
for the optimized k-d tree [28].8 The algorithm must descend the tree according to
the discriminator 𝐾𝐷(𝑥) on each node until it reaches a leaf node. It determines the
best candidate of a leaf node using the algorithm from Figure 11.2. For leaf nodes,
it is important that none of the entries yield incorrect answers and therefore must
use valid records. This was ensured by the broadcast of the INSERT algorithm on
node construction. Effectively, a leaf node that is not fully populated will calculate
the same distance multiple times for the exact same data. Only the first minimum
distance in the vector will be used by the algorithm; therefore this works fine with-
out extra masking support.

The choice for descending on the ℎ𝑖 or 𝑙𝑜 child is not as obvious as with the
scalar k-d tree, though, because there are multiple discriminator values stored in
each node (𝐾𝐷(𝑑𝑎𝑡𝑎𝑖)). This is visible in Figure 11.5. The root node (in red) stores
four records: 𝑑𝑎𝑡𝑎0…3 = (40, 38) (52, 88) (60, 27) (63, 54). Since the root node dis-
criminates on the x-coordinate, there is one record left of the search point (50,
5) and three records on the right. In this case, the search point’s discriminator
value lies between the minimum and maximum of the node’s discriminator values
(min(𝐾𝐷(𝑑𝑎𝑡𝑎)) < 𝐾𝐷(𝑥) < max(𝐾𝐷(𝑑𝑎𝑡𝑎))) and it appears like an arbitrary choice
whether to first descend the 𝑙𝑜 node or the ℎ𝑖 node. The best choice for optimization
in the tree ascent stage is to use the center between the minimum and maximum
discriminator values of the current node (min(𝐾𝐷(𝑑𝑎𝑡𝑎))+max(𝐾𝐷(𝑑𝑎𝑡𝑎))

2 ). Therefore, the
algorithm aliases the ℎ𝑖 and 𝑙𝑜 children as 𝑛𝑒𝑎𝑟 and 𝑓 𝑎𝑟. The 𝑛𝑒𝑎𝑟 child is set to ℎ𝑖 if
the discriminator of the search point is larger than the center discriminator of the
current node; otherwise it is set to 𝑙𝑜. The 𝑓 𝑎𝑟 child references the opposite node.

7 In fact, FINDNEAREST can be defined in such a way that the broadcast is unnecessary. This would
imply extra overhead for the algorithm, though.

8 The optimized k-d tree stores records only in leaf nodes; non-leaf nodes are only used for partition-
ing. The leaf nodes are defined as buckets and thus store multiple records and require a linear nearest
neighbor search such as discussed in Section 11.2.2.
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Figure 11.5: Vectorized k-d tree decomposition with 𝒲T = 4 for the same data set as
used in Figure 11.4.

Geometrically, this is an intuitive choice and denotation. In Figure 11.5 the center
is at 𝑥 = 40+63

2 = 51.5, marked with the red dashed line. The search point (50, 5)
is left of that line and therefore the 𝑙𝑜 child is chosen as the 𝑛𝑒𝑎𝑟 child. Since the
algorithm only considers the dimension used for the discriminator of the current
node, it does not matter that the arrow pointing to 𝑛𝑒𝑎𝑟 is actually longer than the
arrow pointing to 𝑓 𝑎𝑟.

Before recursing to 𝑛𝑒𝑎𝑟, the vectorized FINDNEAREST algorithm has an opti-
mization opportunity not available to the scalar algorithm. If the search point is
located between the discriminator values of the current node (such as for the root
node in Figure 11.5), the current best distance might be less than Δ𝑚𝑖𝑛. In this case
no record stored in or below 𝑛𝑒𝑎𝑟 can yield a better distance and the recursion can
be ended before reaching a leaf node. Since this can only be the case if a record in
the current node yields the best distance, the current node’s records must be con-
sidered before recursing. In Figure 11.5, the distance to the (60, 27) record in the
root node thus yields the candidate with 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √584.

Recursion to the 𝑛𝑒𝑎𝑟 child invokes the FINDNEAREST algorithm on that node.
The algorithm can make use of the current best distance to skip further recursion.
Thus, it will not consider the ℎ𝑖 child of 𝑛𝑒𝑎𝑟 because it is designated as the 𝑓 𝑎𝑟 child
(the search point is below the dashed line) and the current best distance from the
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root node is less than Δ(1)
𝑚𝑎𝑥 = 77−5 = 72 > 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √584 ≈ 23.2. It must consider

the records in the node itself, though, because Δ(1)
𝑚𝑖𝑛 = 15 − 5 = 10 < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. The

candidate from the 𝑛𝑒𝑎𝑟 child in the example will be (30, 32) with 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √1129,
which is larger than the current best distance and therefore does not update the
candidate.

If the 𝑛𝑒𝑎𝑟 child is searched first, and thus the search point’s discriminator value
is less than or larger than all discriminator values of the current node, the algorithm
subsequently checks whether records in the current node might have a shorter
distance. However, if the current best distance is already less than Δ𝑚𝑖𝑛, neither the
records in the node, nor the 𝑓 𝑎𝑟 child can yield a closer result and the algorithm can
return. Geometrically, this is a test whether the hypersphere with radius 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
around the search point reaches into the area of the current node. Otherwise, the
candidate is updated if the current node contains a record with shorter distance.

After the 𝑛𝑒𝑎𝑟 child and the current node have been considered, the algorithm
might still need to descend the 𝑓 𝑎𝑟 child. In Figure 11.5, the circle around the search
point with radius √584 reaches outside of the area of the root node. Thus, there
could be a record closer to the search point in or below the 𝑓 𝑎𝑟 child. The algorithm
determines this via comparing Δ𝑚𝑎𝑥 (the maximum distance in the dimension of the
discriminator to the records of the node) against 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒.9 If the 𝑓 𝑎𝑟 child needs to
be considered, the algorithm recurses to that node to determine a candidate. To
work efficiently, the recursion must always carry the current candidate for near-
est neighbor to its child nodes. That way the recursion inside the children can use
the current best distance value to avoid descending the tree unnecessarily. If the
𝑓 𝑎𝑟 child finds a better candidate it replaces the current best and returns it. At this
point the node is done and can return to its caller.10 In Figure 11.5, the 𝑓 𝑎𝑟 child
determines (77, 2) with 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √738 as its candidate, but discards it after com-
paring against the current best. The root node finally returns (60, 27) as the nearest
neighbor of (50, 5).

9 At this point it is important that the distance of the 𝑓 𝑎𝑟 child in the dimension of the discriminator
really corresponds to the distance of Δ𝑚𝑎𝑥. This would not be the case if the decision for 𝑛𝑒𝑎𝑟 and 𝑓 𝑎𝑟
was made via a different method than the center between the minimum and maximum discriminator
values of the node.

10 The call to the 𝑓 𝑎𝑟 child can thus use tail-recursion, which can be optimized as a jump instead of a
full function call & return.
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11.3.3 vc implementation

The INSERT and FINDNEAREST algorithms can easily be implemented in C++ us-
ing the Vc library and especially the simdize<T> facility from Chapter 10. The
source code for these algorithms is presented in Appendix E and the necessary
data structures were already shown in Listing 11.7.

In addition to the presented simdize<T> facilities from Chapter 10, the code re-
quires a simdize_shifted function. This function returns a new object where all
vector entries are shifted to the left or right depending on the second argument.

The k-d tree implementations need three functions to determine the relevant
properties from the objects inserted into the tree (Point<float, N> in the bench-
mark):

• get_kdtree_distance determines the distance between two points (or vec-
tors thereof).

• get_kdtree_1dim_distance determines the distance between two points
(or vectors thereof) in only one coordinate.

• get_kdtree_value returns the value of one coordinate to use as discrimi-
nator value (𝐾𝐷).

11.3.3.1 optimizations
The FINDNEAREST implementations were optimized for the target machine as
much as possible. In a perfectly balanced tree with 2𝑛 − 1 nodes, there are 2𝑛−1 leaf
nodes and 2𝑛−1 − 1 nodes with two children. This is why all implementations first
test whether the node is a leaf node case. In the vectorized implementation, the
case of a search point between the minimum and maximum discriminator values
of a node introduces one more case to special-case in the implementation.

In the vector implementations, the candidate object needs to be updated if a
closer record is found in the current node. Since the candidate object is built as
a vector (cf. Section 11.3.3.3), the update is executed as a masked assignment. The
mask fully suffices to get correct results and thus no branching (if statement) is
required. For larger types (point objects with more than 3 dimensions), the num-
ber of instructions needed to execute the masked assignment become expensive
enough that an additional branch to skip the complete masked assignment is ben-
eficial.

In all implementations, the tree is implemented in such a way that the dimension
used for the discriminator is attached to the node type. This increases the code
size but on the other hand allows the compiler to optimizes memory accesses and
register usage more aggressively.
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11.3.3.2 search key vectorization
As discussed in Section 11.2.1, there is a second approach for vectorization of the
nearest neighbor lookup algorithm. To quantify the differences, I implemented a
third FINDNEAREST function which searches for the nearest neighbors for mul-
tiple search keys in parallel. It reuses the scalar k-d tree data structure, and thus
its INSERT implementation. The implementation for the findNearest function is
presented in Listing E.5 (Appendix E).

11.3.3.3 candidate object
All three findNearest functions in the node classes use a single candidate object
that is passed on from node to node to store the current best result and distance.
In case of the vectorized nodes implementation, this candidate object stores a vec-
tor of objects and a vector of distances. This avoids horizontal reductions while
traversing the tree. Only after the root node returns, a reduction is executed to
determine the nearest neighbor.

11.3.4 benchmark

The benchmark program introduced in Section 11.2.4 compares the vectorized
FINDNEAREST implementation against the equivalent scalar k-d tree implemen-
tation. The difference to Section 11.2.4 is that the program now examines the run
times of inserts and nearest neighbor searches of the scalar and vectorized k-d tree
data structures (KdTree and KdTreeV).

11.3.5 benchmark results & discussion

in s er t e f f i c i ency The run times of the scalar and vectorized INSERT al-
gorithms (cf. Listing E.1 and Listing E.2 in Appendix E) are plotted in the first
diagram of Figure 11.6. The second diagram shows the quotient of the two graphs
from the first diagram. It shows that the vectorized implementation is not signif-
icantly slower than the scalar implementation, even though it requires a lot more
code. To the contrary, the vectorized implementation is actually more efficient for
larger trees. The ability of the vectorized INSERT algorithm to move objects that
were already stored in a node to a child node leads to a more balanced tree than
for the scalar k-d tree algorithm. With random input, the scalar k-d tree INSERT
algorithm creates trees with a depth roughly 100%–150% larger than the optimal
depth. The vectorized algorithm (with 𝒲T = 8), creates trees with a depth roughly
0%–40% larger than the optimal depth. In both cases the tree is less balanced the
more nodes are inserted.
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Figure 11.6: Benchmark results of k-d tree insertion. The left plot shows run times in
CPU cycles. The right plot show the quotient and thus the speedup of the
vectorized implementation over the scalar implementation.
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Figure 11.7: Benchmark results of k-d tree nearest neighbor searching. The left plot
shows run times in CPU cycles. The right plot show the quotient and thus
the speedup of the vectorized implementation over the scalar implementa-
tion.
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f indneare s t e f f i c i ency The run times of the scalar and vectorized nearest
neighbor search algorithms (cf. Appendix E) are plotted in the first diagram of Fig-
ure 11.7. The second diagram shows the quotient of the two graphs from the first
diagram. It shows that the vectorized k-d tree nearest neighbor search is approxi-
mately a factor 3–4 faster. Since the tree is not rebalanced after random insertions,
Figure 11.7 shows the combined efficiency of the INSERT and FINDNEAREST al-
gorithms/implementations. If the tree is perfectly balanced when the FINDNEAR-
EST algorithm is executed the scalar implementation executes roughly a factor four
faster. This effect is less pronounced for the vectorized k-d tree implementation,
which is why the relative speedup between scalar and vectorized k-d tree imple-
mentations decreases. Figure 11.8 shows the nearest neighbor search efficiency on
balanced trees storing three-dimensional, six-dimensional, and nine-dimensional
points.

h i gher d imens ions The k-d tree algorithm and its implementation (cf. Ap-
pendix E) allow an arbitrary number of dimensions. The effect of dimensionality
on the efficiency of the FINDNEAREST algorithm was therefore tested with the
benchmark and is shown in Figure 11.8. The scalar implementation exhibits ap-
proximately an order of magnitude difference in run time for three dimensional
( ), six dimensional ( ), and nine dimensional ( ) k-d tree nearest neighbor
search. This scales slightly better for the vectorized implementation ( , , and

), which is clearly visible in the larger speedups for higher dimensions ( ,
, and ). This can be understood if we consider that the mean distance be-

tween the points in the random set increases with more dimensions. Consequently,
the hypersphere around a candidate point on average has a larger radius and thus
increases the likelihood for descending the far child. This is, of course, true for both
the scalar and vector implementations. However, the additional tree traversal is
more efficient through vectorization, therefore yielding the greater speedup.

memory latency The major cost of k-d tree nearest neighbor searching is the
memory latency incurred by pointer chasing on tree traversal. The cost of a single
node traversal is equivalent for the scalar and vector implementations. The impor-
tant difference between the two implementations is the tree size. With 𝒲T = 8
the vectorized tree has almost a factor of eight fewer nodes in the tree11 and con-
sequently the tree depth is three less. If we assume that the time spent at a single
node in the tree is approximately equal for the scalar and vector implementations,
then the vector implementation is only faster because it has to look at fewer nodes.
The reduction of the tree depth is the major improvement of the vectorized imple-
mentation. A reduction of the tree depth is also possible with the scalar k-d tree
(e.g. by storing multiple records in nodes and using an exhaustive nearest neigh-

11 Since the leaf nodes can be partially filled, the difference is not an exact factor of eight.
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Balanced Trees of Point<float, 9>
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Figure 11.8: Benchmark of k-d tree lookup in three, six, and nine dimensions. The plots
show the efficiency of lookups on balanced trees. (cf. Appendix E and Appen-
dix C)
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bor search for every node). This approach increases the time spent at a single node
since it is basically a serialized implementation of the vectorized FINDNEAREST
algorithm. Overall, the achievable speedup from comparison vectorization is di-
minished by the latency incurred from tree traversal. If tree traversal is considered
as the serial part of the algorithm then Amdahl’s law [3] describes the scalability
issue of the parallelization of a search tree algorithm.

in f luence of cpu cache s The graphs in the run time plots (left plot) of Fig-
ure 11.6, Figure 11.7, and Figure 11.8 follow 𝒪(log 𝑁) complexity. At certain points
(marked with “exceeds L3”) the graphs bend upwards and continue with a differ-
ent slope, though still with 𝒪(log 𝑁) complexity. The points where the graphs bend
upwards correspond to a haystack size where the complete k-d tree data structures
occupies more memory than the level 3 cache can hold (3 MiB for the CPU that ex-
ecuted the benchmark). These points are different for the scalar and vectorized
trees because the overhead from the tree structure is smaller for the vectorized
tree. Every memory allocation (one per tree node) requires alignment to 16 Bytes
and extra memory to store the length of the block [63]. Therefore, each node in the
scalar k-d tree requires 48 Bytes of memory to store one record.12 Each node in
the vectorized k-d tree (in this case with AVX and Point<float, 3>) requires 160
Bytes of memory to store one node and thus only 20 Bytes per single record.13

11.3.5.1 vectorization direction
Figure 11.9 plots the run time normalized to the number of search keys for calls
to findNearest of the three implementations in Appendix E. It is clearly visible
that vectorization of the search key ( ) leads to the most efficient k-d tree imple-
mentation for small trees. From 40 or more entries in the tree, the implementation
using node vectorization ( ) wins over search key vectorization. From ca. 120
or more entries, even the scalar implementation ( ) outperforms search key vec-
torization. The graph for vectorization on the search key shows linear scaling on
𝑁 (𝒪(𝑁) complexity). This implies that on average the majority of the tree nodes
needs to be searched. Consider that the search algorithm has to find eight (the
benchmark was compiled for AVX with 𝒲float = 8) random records in the tree.
Thus, it is obvious that for most of the time the largest distance of the candidate set
will lead to traversal of the far child and consequently lead to traversal of almost
the complete tree structure.

If search key vectorization leads to a mostly exhaustive search, then comparing
against the exhaustive search implementation from Section 11.2.2 is inevitable. The

12 16 Bytes for the two child-pointers. 12 Bytes for the Point object; padded to 16 Bytes. 16 Bytes for
malloc bookkeeping.

13 16 Bytes for the two child-pointers; padded to 32 Bytes. 96 Bytes for the simdize<Point> object. 16
Bytes for malloc bookkeeping; padded to 32 Bytes.
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Figure 11.9: k-d tree vectorization over the search key run times.

results from the exhaustive nearest neighbor search are plotted as a fourth graph
( ) in Figure 11.9. The efficiency is consistently better for the simple linear imple-
mentation. Note that the linear search uses scalar search keys and returns values,
though. This makes it perform worse at very small haystacks (especially below
𝒲T ) since the conversion between T and simdize<T> adds overhead which is not
present with (linear) search key vectorization.

Note the plateau of the vectorized nodes implementation ( ) at tree sizes 1–8.
This is due to the root node being able to store 8 points (𝒲float = 8). Consequently,
the run time of a nearest neighbor search is equal for 1–8 entries in the tree. A
second, though slightly inclined plateau is visible in the range 9–24, where the
depth of the k-d tree is two.

11.4 CONCLUSION

There exist different variants of the k-d tree data structure in the literature and
in applications. It will be interesting to apply the vectorization approach to these
variants as well. Preliminary tests have shown additional potential in vectorization
of search trees with additional reduction of the depth (e.g. with 𝒲T + 1 instead of
2 child nodes).

The work of this chapter has shown that vectorization of search data structures
is possible with vector types; allowing explicit expression of data-parallel storage
and execution. This is a major improvement over loop-vectorization, which only
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solves the programming language shortcoming of expressing data-parallel execu-
tion. Especially useful in the development of the vectorized search algorithms and
data structures was that vector types guide the developer to the solution by sug-
gesting storage via vector types, which in turn necessitates improvements to the
INSERT and FINDNEAREST algorithms.





12
VC IN HIGH ENERGY PHYSICS

The track reconstruction software for the HLT1 [2, 13, 19] at ALICE2 [12, 14], an ex-
periment at the LHC3 [9] in Geneva, was the original application for Vc [55]. Rohr
[72] describes how, since then, the track reconstruction software as been optimized
for GPU usage and relies on OpenCL [65] and CUDA [15] for parallelization. For
CPU development, Vc has become an important building block in High-Energy
Physics software and is thus in production use on thousands of different machines
with different operating systems and C++ compilers.

The following sections will describe some of these projects. The first example on
ALICE analyzes the use of Vc and the vectorization approach in depth.

12.1 ALICE

The ALICE detectors record information about particles that pass through it. It
uses many different subdetectors to record different information and for different
particle types. The central detectors for tracking the trajectories of charged parti-
cles are the TPC4 and ITS5 detectors. These detectors record space points where
a particle passed through and interacted with the material/gas at this point. The
detectors cannot relate the space points to individual particles. However, the re-
construction algorithms can recover this relation. Particle identification and energy
measurement is possible with different subdetectors on the outer layers.

The task of the ALICE software is the reconstruction of the physical events in
the detector from the measurements of the detectors. The track reconstruction soft-
ware analyzes space points to reconstruct the trajectories of charged particles. In
principle, this is just a complex “connect the dots” task. Track reconstruction yields
information about the momentum, primary and secondary vertexes (origins for
several trajectories), and the expected trajectory through the outer detectors.

1 High-Level Trigger
2 A Large Ion Collider Experiment
3 Large Hadron Collider
4 Time Projection Chamber
5 Inner Tracking System
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Finally, the complete physics information yields a description of the events in the
detector. The main interest in ALICE is the research of matter at high energies and
densities. Since the detector can not measure the events in the vacuum at the center
of the detector, the reconstructed track information is used to infer the physics at
the collision points.

12.1.1 approximating maps

Some of the reconstruction algorithms require the transformation of the measured
quantities to error-corrected physical quantities. The issue is that not all measure-
ments can be mapped directly with an analytical function to known reference val-
ues. These corrections are measured via detector calibration.

One example of such an adjustment is the transformation of pad/time coordi-
nates (TPC coordinates) to three-dimensional space points (𝑥, 𝑦, 𝑧). In principle,
the pads at the end-caps of the TPC determine the 𝑥 and 𝑦 coordinates and the
drift times in the TPC infer the 𝑧 coordinate. However, several corrections need to
be applied, correcting for small variations in alignment of the detector parts, space
charge in the TPC, and other distortions. The TPC is therefore calibrated via match-
ing trajectories from the ITS subdetector to trajectories from the TPC. The result is
that several correction steps are applied in the ALICE software when converting
from pad/time coordinates to space points. These corrections are implemented in
the ALICE Offline software stack and require a lot of conditional execution and
memory lookups in tabulated correction data.

This implementation of coordinate transformation is inefficient, though, because
it requires several memory lookups in large data structures and a lot of branching.
Sergey Gorbunov therefore approximated the transformation via a spline imple-
mentation. The spline calculation is still computationally expensive. Vectorization
of the calculation can speed up the spline implementation further, thus making
this critical transformation as efficient as possible.

12.1.2 spline vectorization

The current ALICE code base using this transformation does not employ horizon-
tal vectorization, where a vector of pad/time inputs would yield a vector of three-
dimensional space-points. Additionally, horizontal vectorization requires gathers
in the lookup of the tabulated values for the spline, since the tabulated values are
different for different pad/time input values. As the following sections will show,
the efficiency of the vectorized implementation is mainly limited by load through-
put of the tabulated values and thus horizontal vectorization does not easily im-
prove over vertical vectorization.
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1 template <typename T> static inline T GetSpline3(T v0, T v1, T v2, T v3, T x) {
2 const T dv = v2 - v1;
3 const T z0 = T(0.5f) * (v2 - v0);
4 const T z1 = T(0.5f) * (v3 - v1);
5 return (x * x) * ((z1 - dv) * (x - 1) + (z0 - dv) * (x - 2)) + (z0 * x + v1);
6 }

Listing 12.1: Implementation of an elementary spline.

Vertical vectorization is still interesting for this task since 15 elementary splines
(cf. Listing 12.1) have to be calculated for implementing the 2D input / 3D output
approximation. Five elementary splines are required per dimension in the output
(cf. Figure 12.1): Four splines in the second input dimension6 calculate the input
data for the fifth spline in the first input dimension. Thus, there are twelve inde-
pendent splines calculated from the tabulated data which are used as input for
the three subsequent splines. Consequently 12 ⋅ 4 = 48 tabulated values must be
loaded from memory for the complete coordinate transformation.

The spline function in Listing 12.1 is a generic implementation supporting both
fundamental arithmetic types as well as any of the Vc vector types. This makes it
easy to build and test different implementations using different memory layouts
with a single spline function.

12.1.2.1 implementation in production use
The implementation in production use at ALICE uses vertical vectorization. The
tabulated values build a two-dimensional table (for the two input dimensions)
with three values in each cell (for the three output dimensions). This is depicted
in Figure 12.1. The dashed magenta arrow ( ) and the dotted green arrow ( )
point out the two principal memory orders for storing the tabulated values. Since
each 𝜏𝑖,𝑗 = (𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗) stores three values there are three natural options:

1. Store three separate tables for 𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , and 𝑧𝑖,𝑗 .

2. Store the complete 𝜏𝑖,𝑗 = (𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗) in each point of the table.

3. Pad 𝜏𝑖,𝑗 with an additional zero and store it in each point of the table.7

In the ALICE implementation the memory order follows the dotted green arrow
( ) and uses variant 3 for storage of 𝜏. The vectorization is chosen over 𝜏, which
is the reason for the zero-padding. Thus, a single vector load for one table cell at
(𝑖, 𝑗) loads (𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗 , 0). These vectors are subsequently used as input variables
to the elementary spline function (cf. Listing 12.1).

6 These four splines may be evaluated in arbitrary order.
7 This is a typical approach for vertical vectorization, in order to allow aligned vector loads for three-

dimensional data.



158 vc in high energy physics

,

input
value

1. s
plin

e
2. s

plin
e

3. s
plin

e

4. s
plin

e

5. spline

𝜏0,0

𝜏0,1

𝜏0,2

𝜏0,3

𝜏0,4

𝜏1,0

𝜏1,1

𝜏1,2

𝜏1,3

𝜏1,4

𝜏2,0

𝜏2,1

𝜏2,2

𝜏2,3

𝜏2,4

𝜏3,0

𝜏3,1

𝜏3,2

𝜏3,3

𝜏3,4

𝜏4,0

𝜏4,1

𝜏4,2

𝜏4,3

𝜏4,4

𝜏5,0

𝜏5,1

𝜏5,2

𝜏5,3

𝜏5,4

𝜏6,0

𝜏6,1

𝜏6,2

𝜏6,3

𝜏6,4

first input dimension

se
co

nd
in
pu

t
di
m
en

si
on

Figure 12.1: Layout and usage of the tabulated values.

This vectorization approach requires 𝒲float to be exactly four. The ALICE im-
plementation thus simply fails to vectorize if 𝒲float ≠ 4. This solution obviously
leaves room for improvement.

As Section 12.1.3.1 will show, the speedup of this implementation is roughly
a factor two, but only on systems with 𝒲float = 4. Therefore, the following will
discuss alternative implementations. After benchmarking the different approaches
the results will be discussed.

12.1.2.2 alternative implementation using advanced features
The following discussion uses these type aliases:
typedef Vc::SimdArray<float, 4> float4;
typedef Vc::SimdArray<float, 12> float12;
typedef Vc::SimdArray<float, 16> float16;

Float4 This implementation is a slight modification of the original ALICE imple-
mentation (cf. Listing F.9). It uses the float4 type instead of float_v to solve
the portability issue mentioned above. This allows the formulation of the al-
gorithm in a way which expresses the fixed width of the data-parallelism in
the algorithm. This is an example for the use-case mentioned in Section 7.3.2.
It uses (aligned) vector loads to load {𝑥, 𝑦, 𝑧, 0} into 4-wide vectors for a three-
fold parallelization of the spline calculation.

The Float4 implementation is shown in Listing F.3.

Float16 In the Float4 implementation, the 12 initial splines are executed as
four vectorized spline evaluations using {𝑥, 𝑦, 𝑧, 0} as inputs. This can be com-
bined into a single spline evaluation using float16. The Float16 imple-
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mentation therefore combines four float4 loads via simd_cast to a single
float16 object. The float16 object resulting from the spline evaluation is
subsequently partitioned into four float4 objects again to evaluate the final
three splines.
The Float16 implementation is shown in Listing F.4.

Float12 By changing the storage order of the tabulated data to follow the dashed
magenta arrow ( ) in Figure 12.1 and variant 1 for 𝜏, it is possible to do vec-
tor loads with four relevant values. Thus, the four vector entries with value
0 in the Float16 implementation are optimized out. Instead of four vectors
with 75% relevant data, the implementation only loads three vectors. Each
float4 object then contains 100% relevant data. The float12 type can be im-
plemented using one eight-wide vector and one four-wide vector on a system
with 𝒲float = 8.
The Float12 implementation is shown in Listing F.5.

Float12 Interleaved The third storage order uses variant 2 for 𝜏 and follows
the dashed magenta arrow ( ) in Figure 12.1. Four float12 vector loads
thus yield the {𝑥, 𝑦, 𝑧} inputs for all twelve initial splines. The resulting vec-
tor with 𝒲float = 12 is subsequently dissected into four float4 objects stor-
ing the four {𝑥, 𝑦, 𝑧} values and an arbitrary fourth value for the final three
splines.8

The Float12 Interleaved implementation is shown in Listing F.6.

Horizontal 1 In order to investigate the potential of a different vectorization di-
rection—which requires vectorization of the calling code—I implemented a
horizontal vectorization of the approximation. A vector of two-dimensional
inputs with native vector width (𝒲float ) is used as input to the function. The
Horizontal 1 implementation then executes 𝒲float times more splines
with a single call than the implementations above. In addition to vectoriz-
ing the splines, a horizontal implementation also vectorizes the calculation
of the indexes for the tabulated data.
This implementation uses the data structures from the Float4 implemen-
tation. Since, independent from the direction over 𝜏 in Figure 12.1, there
are always four 𝜏𝑖,𝑗 elements consecutively in memory and each 𝜏𝑖,𝑗 stores
four scalar values, the implementation could load up to sixteen consecutive
scalar values with a vector load. However, the loaded values need to be trans-
posed into native vector objects. Therefore it is not beneficial to load all val-
ues at once. The consecutive loads with subsequent transposition implement

8 In principle, this should use SimdArray<float, 3>, but as this is harder to optimize for an imple-
mentation (and currently not optimized in Vc), I chose float4.
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a gather operation, which can execute more efficiently because it makes use
of the data-locality built into the data structure. The expression Vc::tie(x,
y, z) = map[ind] is implemented in Vc as a vector load which loads three
consecutive values at the memory addresses identified by map[ind[0]],
map[ind[1]], map[ind[2]], map[ind[3]], … and subsequently uses
vector instructions for transposition. The vector transposition places the first
values of each load into x, the next into y, and the final values into z.

The Horizontal 1 implementation is shown in Listing F.7.

Horizontal 2 This implementation uses the same interface as the Horizon-
tal 1 implementation. However, the storage order for the tabulated values
is different. It equals the order from Float12 (separate tables for 𝑥, 𝑦, and 𝑧
and neighboring values in the first input dimension). Thus, it can load and
deinterleave four vectors per gather: Vc::tie(x[0][0], x[1][0], x[2][
0], x[3][0]) = fXYZ[ind]. After loading 16 vectors (four gathers), all
spline calculations for a single output dimension can be executed. This is
therefore repeated twice for the 𝑦 and 𝑧 results.

The Horizontal 2 implementation is shown in Listing F.8.

An important consequence of using SimdArray<T, N> for vertical vectoriza-
tion is the ability of using the best available vector instructions on systems with
𝒲float > 4. For example, on an AVX system, the Float16 implementation will
execute two elemental spline evaluations using float_v objects with eight entries
each. On an SSE system it compiles to four elemental spline evaluations instead.

12.1.3 benchmark

To evaluate the efficiency of the different spline implementations I adjusted the
benchmark program from Chapter 11. It constructs the splines in such a way that
they can approximate the transformation [−1, 1]2 → [−1, 1]3. The number of tab-
ulated values for the spline is increased starting from 42 up to 2352. This tests the
complexity of the algorithm (which is supposed to be 𝒪(1)) and shows how the
CPU caches influences the run time.

Each run time measurement is repeated (and the measurement discarded) until
the standard deviation of the 100 timed executions is below 5%. This helps elim-
inating results that were influenced by a busy system which would increase the
deviations in consecutive executions.

The tabulated values for the different spline data structures are initialized with
the exact same values. This makes the run times comparable and allows verifica-
tion that the results are equivalent. For comparability, the spline evaluations are
also executed with the same input coordinates for each run time measurement.
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Starting with GCC version 4.9, the compiler is able to auto-vectorize the scalar
implementation. Since it is easier to reason about a scalar implementation that is
not auto-vectorized and since ALICE does not use GCC 4.9 in production use yet,
auto-vectorization is turned off for the benchmark. For comparing manual vectori-
zation against automatic vectorization, the scalar implementation is compiled and
benchmarked a second time with auto-vectorization turned on.

Refer to Appendix F Listing F.11 for the complete benchmark code.

12.1.3.1 results
Figures 12.2 & 12.3 show the results of the benchmark compiled with the AVX or
SSE implementations of Vc, respectively. The benchmark was executed on an In-
tel i5 3360M CPU with 2.80 GHz (“Turbo Mode” and power management were
disabled—cf. Appendix D—). The code was compiled with GCC version 4.9.1 us-
ing the following optimization relevant compiler flags:

-O3 -ffp-contract=fast -march=core-avx-i -DNDEBUG.

The plots on top of Figures 12.2 & 12.3 show the run time of the coordinate trans-
formation approximation normalized to a single transformation.9 The run time of
the Scalar ( ) implementation is compared against all the other implementa-
tions in the “Speedup” plots below.

All graphs, except for the Alice ( ) graph, exhibit an approximately flat scal-
ing behavior (𝒪(𝑁)) with respect to the size of the map. At about ca. 2⋅103 tabulated
values, which corresponds to the size of the L1 cache of 32 KiB, the graphs bend
upwards. There is a second bend at ca. 1.5 ⋅ 104 tabulated values, corresponding to
the size of the L2 cache of 256 KiB. The Alice ( ) implementation runs longer
for small maps and slightly better for larger map sizes (compare Alice ( )
against Scalar ( ) in Figure 12.2 and Alice ( ) against Float4 ( ) in
Figure 12.3). This is discussed in Section 12.1.3.2.

In Figures 12.2 & 12.3, the run times of Float4 ( ), Float16 ( ), and
Float12 Interleaved ( ) are approximately equal. For AVX (Figure 12.2),
the efficiency of Float16 ( ) is slightly higher compared to the other two,
though. The Float4 ( ) and Scalar ( ) implementations show the same
run times in the AVX and SSE variants. The Float12 ( ) implementation is
slightly slower than Float4 ( ), with the efficiency degrading faster for larger
map sizes.

The Horizontal 1 ( ) and Horizontal 2 ( ) implementations exhibit
the shortest run times in Figure 12.2 and results comparable to Float4 ( ) or
Float12 ( ) in Figure 12.3. Note that the Horizontal 2 ( ) implementation

9 Note that the Horizontal 1 ( ) and Horizontal 2 ( ) implementations evaluate 𝒲float
transformations with a single function call.
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Figure 12.2: Efficiency of the spline implementations using Vc’s AVX implementation.
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Figure 12.3: Efficiency of the spline implementations using Vc’s SSE implementation.
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is more sensitive to larger map sizes than the Horizontal 1 ( ) implementa-
tion.

Finally, the Auto-Vectorized ( ) graph clearly shows that the auto-vector-
izer improved the run time of the Scalar ( ) implementation. Nevertheless,
it runs longer than any of the explicitly vectorized implementations for AVX and
SSE.

12.1.3.2 discussion
al i c e The behavior of the original Alice ( ) implementation is counterin-
tuitive. The expectation is that the efficiency degrades only due to memory loads
which miss the cache (i.e. for larger map sizes). Investigation of the implementa-
tion has shown that this is due to the use of if statements for the calculation of
the memory addresses (cf. Listing F.9). This is translated by GCC to jump instruc-
tions and thus leads to branching and mispredictions on execution. The branches
are more expensive for smaller maps, where branch prediction is more likely to
be incorrect. If the implementation instead uses min/max instructions to clamp
the index values (cf. Listing F.2), the efficiency only depends on cache misses and
consequently only starts degrading for map sizes that exceed the respective cache
sizes. Since all the other implementations use min/max instructions for clamping,
they show a flat graph up to the point where the L1 cache is exceeded. The Alice
( ) implementation is more efficient for larger map sizes because the CPU can
speculate that no index clamping is necessary. It can thus fetch data from memory
earlier than the implementations which first have to wait for the results of the min
and max instructions.

The Alice ( ) implementation is written using float_v directly, and there-
fore falls back to the scalar implementation if 𝒲float ≠ 4. This is why the Alice
( ) graph in Figure 12.2 is on the order of the Scalar ( ) implementation.

a t ta inabl e s p e edup / amdahl ’ s law In general, the speedup cannot
attain the full vector width. For the vertically vectorized implementations this is
mostly due to the latency induced by offset calculation into the map of tabulated
values as well as the subsequent load latencies. The Float12 ( ) implemen-
tation requires vector transposition and therefore introduces additional latency
between the actual parallelized spline evaluation. The horizontal vectorizations
require deinterleaving gathers and therefore also introduce additional latency be-
fore the actual parallelized spline evaluation. According to Amdahl’s law [3], this
limits the attainable speedup and especially limits scalability with regard to the
vector width.
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hor i zontal impl ementat ions The vectorization opportunities for hori-
zontal vectorization are better because in addition to parallelizing the splines, the
index calculation can be executed in parallel. On the one hand, this solves the Am-
dahl problem since the horizontal vectorization parallelizes the complete execu-
tion of the approximation function. On the other hand, a different map index per
vector entry implies the need for gather operations, which load the input argu-
ments to the elemental spline functions. Since gather operations are, in general,
more expensive than loads of successive values in memory this limits the attain-
able speedup for horizontal vectorization. Figure 12.3 shows that the horizontal
implementations do not achieve higher efficiencies than vertical vectorization. This
is different for AVX; Figure 12.2 shows that horizontal vectorization scales better
with the vector width for this problem.

index typ e While testing the influence of the index calculation strategy on
the total efficiency of each approximation implementation, I noticed that there is a
10% difference in efficiency depending on whether the index variable is declared
as a signed or unsigned integer. Using unsigned int the total run time is longer
than with int. This was not investigated further and all implementations simply
use int for the benchmark. The discrepancy is likely due to the different overflow
properties of unsigned int and int. An unsigned int is specified to implement
modulo 2𝑛 arithmetics. For an int, on the other hand, it is undefined behavior
if the variable over- or underflows. Subsequently, the compiler can assume that
adding a positive value to an int variable yields a larger value. This is not true for
unsigned int and thus inhibits certain optimizations in combination with pointer
arithmetics.

s p e edup w i th vert i cal vector i zat ion The Float16 ( ) and Float4
( ) efficiencies for SSE/AVX are expected. The benchmark result shows how,
on the one hand, vertical vectorization, using 3-component vectors, can also bene-
fit from wider vectors if an additional dimension of data-parallelism exists in the
algorithm. The Float4 ( ) implementation, on the other hand, shows that with
x86, the code cannot be translated to a more efficient variant, but at the same time
also does not have to fall back to scalar execution, as in the Alice ( ) imple-
mentation. Using a larger SimdArray<float, N> type enables the solution to scale
slightly better to targets up to 𝒲float = 16. In this problem this is limited to a single
vectorized spline evaluation which can use the float16 type. The spline evalua-
tion in the second dimension only requires three spline evaluations and therefore
cannot scale above 𝒲float = 4. The Float12 ( ) and Float12 Interleaved
( ) implementations avoid the calculation of 4 unused spline evaluations present
in the Float4 ( ) and Float16 ( ) implementations. However, this requires
a different memory layout for the map which leads to unaligned loads. Subse-
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quently, many of the loads span over two cache lines, further increasing the la-
tency introduced by the vector gather/deinterleave code. This increases the serial
portion of the code and limits the attainable speedup.

auto -vector i zat ion The efficiency of Auto-Vectorized ( ) must be
compared against Float4 ( ). The latter is the closest equivalent for the vec-
torization approach the compiler takes. It shows that auto-vectorization can only
make limited assumptions about the code and thus not transform it into the clear
data-parallel execution possible via explicit vectorization.

12.2 KALMAN-FILTER

The Kalman-filter [51] is an important tool in applications that need to predict a
trajectory or need to find a set of parameters (and their errors and correlations)
that describe a trajectory. As such, it is used extensively in track reconstruction al-
gorithms for high energy physics experiments (cf. [29]). In these experiments, up
to several thousand particles move from the collision point through the detector
and its strong magnetic field (cf. Section 12.1). The detector itself contains material
which interacts with the measured particles. Therefore, the magnetic field, the de-
tector material, and the properties of the particle determine the trajectory through
the detector.

12.2.1 vectorization

Vectorization of the Kalman-filter has been researched and implemented by Gor-
bunov et al. [33, 32], Gorbunov et al. [34], Kisel et al. [53], and Kretz [55] for many
different target systems. Kretz [55] developed the Vc abstraction as part of porting
the ALICE related work to the Intel Larrabee.

Based on this previous work, the track reconstruction software for ALICE (at
CERN10), STAR11 (at RHIC12), and CBM13 (at FAIR14) make use of vectorized
Kalman-filter implementations. While ALICE turned to GPUs and currently uses a
CUDA/OpenCL implementation15, the Vc based ALICE tracker has been adapted
by Fisyak et al. [23] for the STAR experiment. At this point the STAR experiment
uses Vc in production code in both online and offline software (J. Lauret, personal
communication, 02/20/2015).

10 European Organization for Nuclear Research; in Geneva
11 Solenoidal Tracker at RHIC
12 Relativistic Heavy Ion Collider; at Brookhaven National Laboratory
13 Compressed Baryonic Matter; experiment at FAIR
14 Facility for Antiproton and Ion Research; in Darmstadt
15 The target hardware for the Vc implementation did not make it to market, necessitating the use of

NVIDIA or AMD GPUs.
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Kisel et al. [52] developed the KF Particle package and recently vectorized the
project using the Vc library (M. Zyzak, personal communication, 02/20/2015).
This work enables fully vectorized usage of Xeon Phi accelerator cards in addi-
tion to full utilization of the host CPUs.

12.2.2 example

Listing 12.2 shows a (slightly reduced) Kalman-filter example from track recon-
struction. It is used to fit the track parameters of several particles in parallel. In
the Filter function a new measurement (m) is added to the Track state. The data
structures in the example are declared as structures of vectors (cf. AoVS in Chap-
ter 10). The objects thus each contain the data of 𝒲float tracks. Consequently, in-
stead of working with one track at a time, the code explicitly states that multiple
tracks can be filtered in parallel and that their data is stored interleaved in memory.

12.3 GEANT-V

Geant-V16 is a “particle transport application used in detector simulation” [10].
The preceding Geant versions are widely used in high energy physics software.
Improving its performance will therefore benefit the whole community. Carminati
et al. [10] write:

Monte Carlo simulation is one of the most demanding computing task,
due to the slow decrease of the statistical fluctuations around the es-
timated mean, which is proportional to the inverse of the square root
of the number of events simulated. Moreover particle transport simu-
lation is one of the most experiment-independent applications in High
Energy Physics.

It is therefore a very important result if this software can execute more efficiently.
The computing costs for high energy physics experiments could be significantly
reduced.

12.3.1 data-parallel processing

According to Carminati et al. [11], the particle transport problem the Geant17 soft-
ware addresses contains a lot of intrinsic parallelism. There are many events that
need to be processed according to the same rules. Inside these events are tracks
which again need to be processed in the same way. Besides multi-core optimiza-
tions, the Geant-V project in particular investigates vectorized processing.

16 GEometry ANd Tracking Vector (Prototype) project
17 GEometry ANd Tracking
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1 struct Covariance {
2 float_v C00,
3 C10, C11,
4 C20, C21, C22,
5 C30, C31, C32, C33,
6 C40, C41, C42, C43, C44;
7 };
8

9 struct Track {
10 float_v x, y, tx, ty, qp, z;
11 float_v chi2;
12 Covariance C;
13

14 float_v NDF;
15 // ...
16 };
17

18 struct HitInfo {
19 float_v cos_phi, sin_phi, sigma2, sigma216;
20 };
21

22 void Filter(Track &track, const HitInfo &info, float_v m) {
23 Covariance &C = track.C;
24 const float_v residual =
25 info.cos_phi * track.x + info.sin_phi * track.y - m; // ζ = Hr - m
26 const float_v F0 = info.cos_phi * C.C00 + info.sin_phi * C.C10; // CH
27 const float_v F1 = info.cos_phi * C.C10 + info.sin_phi * C.C11;
28 const float_v F2 = info.cos_phi * C.C20 + info.sin_phi * C.C21;
29 const float_v F3 = info.cos_phi * C.C30 + info.sin_phi * C.C31;
30 const float_v F4 = info.cos_phi * C.C40 + info.sin_phi * C.C41;
31 const float_v HCH = F0 * info.cos_phi + F1 * info.sin_phi; // HCH
32 const float_v wi = 1.f / (info.sigma2 + HCH);
33 const float_v zetawi = residual * wi; // (V + HCH)¹ ζ
34 const float_v K0 = F0 * wi;
35 const float_v K1 = F1 * wi;
36 const float_v K2 = F2 * wi;
37 const float_v K3 = F3 * wi;
38 const float_v K4 = F4 * wi;
39 track. x -= F0 * zetawi; // r -= CH (V + HCH)¹ ζ
40 track. y -= F1 * zetawi;
41 track.tx -= F2 * zetawi;
42 track.ty -= F3 * zetawi;
43 track.qp -= F4 * zetawi;
44 C.C00 -= K0 * F0; // C -= CH (V + HCH)¹ HC
45 C.C10 -= K1 * F0;
46 C.C11 -= K1 * F1;
47 C.C20 -= K2 * F0;
48 C.C21 -= K2 * F1;
49 C.C22 -= K2 * F2;
50 C.C30 -= K3 * F0;
51 C.C31 -= K3 * F1;
52 C.C32 -= K3 * F2;
53 C.C33 -= K3 * F3;
54 C.C40 -= K4 * F0;
55 C.C41 -= K4 * F1;
56 C.C42 -= K4 * F2;
57 C.C43 -= K4 * F3;
58 C.C44 -= K4 * F4;
59 track.chi2 += residual * zetawi; // χ² += ζ (V + HCH)¹ ζ
60 track.NDF += 1;
61 }

Listing 12.2: Example Kalman-filter implementation from the SIMD-KF benchmark.
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ROOT/5.34.09 (patched) Vc (SIMD) version
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Figure 12.4: Speedups obtained from vectorising simple algorithms for the box, cone
and tube shapes from the ROOT shape library. The functions presented are
distFromOutside and distFromInside , i.e. the distance to the shape
boundary from a point outside and from inside the shape respectively.
[reproduced from 84]

Wenzel et al. [84] then discuss the details of the vectorization effort, which was
initiated “on the geometry component”:

The necessary prerequisite is the availability of (contiguous) data on
which the same operations should be carried out. In the Geant-Vector
prototype, this is being realised by grouping the particles in the same
logical volume (potentially from different events) into a data-parallel
container called a basket [31].

12.3.2 uses of vc

Wenzel et al. [84] write about the choices they considered for vectorization and
their experience with Vc:

Considering the difficulties of trying to get the code to autovectorise,
versus the relative ease of programming (and compiler independence)
with a library like Vc, we then opted for the second choice for the pur-
pose of this first performance evaluation. At the time of writing, several
of the simple shapes, such as boxes, cones, tubes (including their seg-
mented forms), have been successfully ported to Vc code.

The Geant-V project was thus able to show several improvements through their
Vc reimplementations of existing geometry algorithms. Figures 12.4 & 12.5 show
the results from vectorization of the geometry codes. It is clearly visible how Vc has
enabled the Geant-V project to achieve consistent efficiency improvements while
expressing their parallel processing in a portable way.
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Figure 12.5: Results from the benchmark comparing the scalar algorithm (ROOT seq) with
a vector-oriented algorithm using various degrees of usage of SIMD instruc-
tions [VEC(noSIMD), VEC(SSE4) and VEC(AVX)]. Comparison of the runtime per
particle showing a speedup factor of roughly 3 comparing the original ver-
sion to the AVX code.
[reproduced from 84]

12.4 ROOT

The ROOT library [8] is a de facto standard building block for the software of high
energy physics experiments and many other physics projects. About | ROOT [1]
summarizes the functionality: “The ROOT system provides a set of OO frame-
works with all the functionality needed to handle and analyze large amounts of
data in a very efficient way.” It is used by thousands of scientists world-wide
and dozens of current experiments (e.g. ALICE, ATLAS, BaBar, CMS, COMPASS,
LHCb, PHENIX, PHOBOS, STAR, …) use it for their software.

Since the 5.34/18 release of ROOT, the Vc library is included as a module. This
enables Vc to reach a large audience. At the same time the inclusion of Vc in ROOT
gives physics experiments an easier adoption strategy, since the ROOT library is
already an accepted prerequisite.
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12.5 CONCLUSION

On the basis of the ALICE usage I have been able to show how API improvements
and extensions since previous Vc releases improve the applicability and flexibil-
ity of Vc. The ALICE example also has shown how there are often many possible
approaches to vectorizing a given algorithm, each with different scaling behavior.
Finally the ALICE example (as well as the k-d tree example in Section 11.3) has
shown that Amdahl’s law is relevant when considering vectorization opportuni-
ties.

This chapter has shown that the Vc library is in production use in large soft-
ware projects and international communities. The ROOT, Geant-V, STAR, and
CBM discussions have shown that Vc has become an important building block
in software development for high performance computing in high energy physics
experiments. This is an important achievement since it proves the portability and
compatibility of the library.
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CONCLUSION

Chapter 1 has made the case that software developers and designers have to con-
sider SIMD. Developers need to understand what SIMD can do and how it can be
used in order to design data structures and algorithms which fully utilize mod-
ern CPUs. The presented vector and mask types (Part II) give software developers
a flexible, portable, and efficient solution to explicit data-parallel programming.
At the same time, through their API, these types guide the developer to a better
understanding of efficient data-parallel execution and software design.

Chapter 2 has discussed the main alternative approach of loop transformations.
I have shown the limitations, language restrictions, and semantic subtleties that
are part of this approach. The data-parallel vector and mask types as presented in
Part II overcome these limitations since they work inside the traditional C++ type
system and follow the well-understood serial semantics of the sequenced before rule
[48, §1.9 p13]. Chapter 4 has given a thorough discussion of the API for the vector
type, which allows data-parallel execution for arithmetic types. The user does not
have to reason about concurrent execution of serially stated algorithms but can
reason about serially executing operations of which each processes data in parallel.
Vc’s Vector<T> type thus enables a data-parallel programming model which is
easy to reason about without abandoning functionality.

In Chapter 5 I have then defined a type for vectors of booleans and have shown
how these mask types can be used to develop data-dependent algorithms via write-
masking. Therefore, in contrast to loop-vectorization or extended if statements in
array notation, no implicit write-masking and branch flattening is necessary. The
Vc interface consequently makes bad algorithm or data structure design visible.
It helps users understand the cost of conditionals and facilitates a search for opti-
mizations.

The remaining chapters of Part II have presented some of the higher abstrac-
tions that can be built upon the vector and mask types. These abstractions make
data-parallel programming easier and more efficient.

The relevance of my research is evident in the interest of the concurrency study
group of the C++ committee. Currently, the main obstacle to the study group is
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the implication for ABI compatibility. Therefore, Chapter 8 has discussed the chal-
lenge implementors of C++ are facing with regard to binary compatibility across
microarchitectures. Despite this question there is consent in the study group to in-
vestigate the vector type programming model for use in standard C++. At the same
time there is more research to be done in abstracting the vector width differences
(i.e. enable programmers to write code without using the 𝒲T constant). One of the
abstraction ideas has been presented in Chapter 9, which has shown that the STL
algorithms can be a good interface for vectorization and that vector types resolve
the semantic issues of the current parallel algorithms proposal.

Chapter 10 has presented a solution for automatic vectorization of data struc-
tures and the template functions that work with these types. The simdize<T> ex-
pression enables the implementation of vectorized algorithms with a generic inter-
face and supports developers to create data structures that deliver the best com-
promise between data locality and efficient vector loads and stores (or AoS vs.
SoA).

Part III has discussed example applications of the Vc library. It has shown that
vectorization of search data structures is possible with vector types, allowing ex-
plicit expression of data-parallel storage and execution. This is a major improve-
ment over loop-vectorization, which only solves the programming language short-
coming of expressing data-parallel execution. I have also shown that the Vc library
is in production use in large software projects and international communities. Vc
has become an important building block in software development for high per-
formance computing in high energy physics experiments. This is an important
achievement since it proves the portability and compatibility of the library.
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A
WORKING-SET BENCHMARK

using Vc::float_v;

// This example shows how an arbitrary problem scales depending on working-set
// size and FLOPs per load/store. Understanding this can help to create better
// implementations.

// The Runner is a method to generate the different scenarios with all parameters
// to the Work available as constant expressions. The idea is to have the compiler
// able to optimize as much as possible so that the actual workload alone is
// benchmarked.

// The Runner recursively calls operator() on the Work template class with varying
// arguments for N and FLOPs.
template <template <std::size_t N, std::size_t M, int, int> class Work,

std::size_t N = 256, std::size_t M = 4, int FLOPs = 2>
struct Runner {

static void run() {
Work<N, M, (N > 4096 ? 1 : 4096 / N), FLOPs>()();
Runner<Work, N, M, int(FLOPs * 1.5)>::run();

}
};
template <template <std::size_t N, std::size_t M, int, int> class Work,

std::size_t N, std::size_t M>
struct Runner<Work, N, M, 211> {

static void run() { Runner<Work, N * 2, M>::run(); }
};
template <template <std::size_t N, std::size_t M, int, int> class Work,

std::size_t M, int FLOPs>
struct Runner<Work, 256 * 1024 * 1024, M, FLOPs> {

static void run() {}
};

// The Flops helper struct generates code that executes FLOPs many floating-point
// SIMD instructions (add, sub, and mul)
template <int FLOPs> struct Flops {

inline float_v operator()(float_v a, float_v b, float_v c) {
typedef Flops<(FLOPs - 5) / 2> F1;
typedef Flops<(FLOPs - 4) / 2> F2;
return F1()(a + b, a * b, c) + F2()(a * c, b + c, a);

}
};
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template <> inline float_v Flops<2>::operator()(float_v a, float_v b, float_v c) {
return a * b + c;

}
template <> inline float_v Flops<3>::operator()(float_v a, float_v b, float_v c) {

return a * b + (c - a);
}
template <> inline float_v Flops<4>::operator()(float_v a, float_v b, float_v c) {

return (a * b + c) + a * c;
}
template <> inline float_v Flops<5>::operator()(float_v a, float_v b, float_v c) {

return a * b + (a + c) + a * c;
}
template <> inline float_v Flops<6>::operator()(float_v a, float_v b, float_v c) {

return (a * b + (a + c)) + (a * c - b);
}
template <> inline float_v Flops<7>::operator()(float_v a, float_v b, float_v c) {

return (a * b + (a + c)) + (a * c - (b + c));
}
template <> inline float_v Flops<8>::operator()(float_v a, float_v b, float_v c) {

return (a * b + (a + c) + b) + (a * c - (b + c));
}

// This is the benchmark code. It is called from Runner and uses Flops to do the
// work.
template <std::size_t _N, std::size_t M, int Repetitions, int FLOPs>
struct ScaleWorkingSetSize {

void operator()() {
constexpr std::size_t N = _N / sizeof(float_v) + 3 * 16 / float_v::Size;
typedef std::array<std::array<float_v, N>, M> Cont;
auto data = Vc::make_unique<Cont, Vc::AlignOnPage>();
for (auto &arr : *data) {

for (auto &value : arr) {
value = float_v::Random();

}
}

TimeStampCounter tsc;
double throughput = 0.;
for (std::size_t i = 0; i < 2 + 512 / N; ++i) {
tsc.start();
// ------------- start of the benchmarked code ---------------
for (int repetitions = 0; repetitions < Repetitions; ++repetitions) {

for (std::size_t m = 0; m < M; ++m) {
for (std::size_t n = 0; n < N; ++n) {
(*data)[m][n] =

Flops<FLOPs>()((*data)[(m + 1) % M][n], (*data)[(m + 2) % M][n],
(*data)[(m + 3) % M][n]);

}
}

}
// -------------- end of the benchmarked code ----------------
tsc.stop();

throughput =
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std::max(throughput, (Repetitions * M * N * float_v::Size * FLOPs) /
static_cast<double>(tsc.cycles()));

}

const long bytes = N * M * sizeof(float_v);
printf("%10lu Byte | %4.2f FLOP/Byte | %4.1f FLOP/cycle\n", bytes,

static_cast<double>(float_v::Size * FLOPs) / (4 * sizeof(float_v)),
throughput);

}
};

int main() {
ScaleWorkingSetSize<256, 4, 10, 2>()(); // dry-run before the real benchmark
printf("%10s | %4s | %4s\n", "Working-Set Size", "FLOPs per Byte",

"Throughput (FLOPs/Cycle)");
Runner<ScaleWorkingSetSize>::run();
return 0;

}

Listing A.1: The benchmark code for Figure 1.4.





B
LINEAR SEARCH BENCHMARK

int main() {
std::cout << std::setw(15) << "N" << std::setw(15) << "std"

<< std::setw(15) << "stddev" << std::setw(15) << "Vc"
<< std::setw(15) << "stddev" << std::setw(15) << "speedup"
<< std::setw(15) << "stddev" << '\n';

// create data
std::vector<float, Vc::Allocator<float>> data;
constexpr std::size_t NMax = 1024 * 128 * float_v::size();
data.reserve(NMax);
std::default_random_engine rne;
std::uniform_real_distribution<float> uniform_dist(-1000.f, 1000.f);
for (auto n = data.capacity(); n > 0; --n) {
data.push_back(uniform_dist(rne));

}

for (std::size_t N = float_v::size() * 2; N <= NMax; N *= 2) {
const std::size_t Repetitions = 100 + 1024 * 32 / N;

// create search values
std::vector<float> search_values;
search_values.reserve(10000);
for (auto n = search_values.capacity(); n > 0; --n) {
search_values.push_back(

data[std::uniform_int_distribution<std::size_t>(0, N - 1)(rne)]);
}

enum { std, vec };

std::vector<decltype(data.begin())> iterators[2];
iterators[std].resize(search_values.size());
iterators[vec].resize(search_values.size());
TimeStampCounter tsc;
std::vector<decltype(tsc.cycles())> cycles[2];
cycles[std].resize(Repetitions);
cycles[vec].resize(Repetitions);

double mean[2] = {};
double stddev[2] = {};
do {
// search (std)
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for (auto n = Repetitions; n; --n) {
tsc.start();
for (std::size_t i = 0; i < search_values.size(); ++i) {
iterators[std][i] =

std::find(data.begin(), data.begin() + N, search_values[i]);
}
tsc.stop();
cycles[std][Repetitions - n] = tsc.cycles();

}

// search (vec)
for (auto n = Repetitions; n; --n) {
tsc.start();
for (std::size_t i = 0; i < search_values.size(); ++i) {
iterators[vec][i] =

Vc::find(data.begin(), data.begin() + N, search_values[i]);
}
tsc.stop();
cycles[vec][Repetitions - n] = tsc.cycles();

}

// test that the results are equal
for (std::size_t i = 0; i < iterators[vec].size(); ++i) {
assert(iterators[std][i] == iterators[vec][i]);

}

// output results
std::cout << std::setw(15) << N;
for (int i : {std, vec}) {
mean[i] = 0;
stddev[i] = 0;
std::sort(cycles[i].begin(), cycles[i].end());
for (double x : cycles[i]) {
mean[i] += x;
stddev[i] += x * x;

}
mean[i] /= cycles[i].size();
stddev[i] /= cycles[i].size();
stddev[i] = std::sqrt(stddev[i] - mean[i] * mean[i]);

}
std::cout << std::setw(15) << mean[std] / search_values.size();
std::cout << std::setw(15) << stddev[std] / search_values.size();
std::cout << std::setw(15) << mean[vec] / search_values.size();
std::cout << std::setw(15) << stddev[vec] / search_values.size();
std::cout << std::setw(15) << std::setprecision(4) << mean[std] / mean[vec];
std::cout << std::setw(15)

<< mean[std] / mean[vec] *
std::sqrt(

stddev[std] * stddev[std] / (mean[std] * mean[std]) +
stddev[vec] * stddev[vec] / (mean[vec] * mean[vec]));

std::cout << std::endl;
} // if the error is large the system was busy doing something else and we

// better repeat the experiment
while (stddev[std] * 20 > mean[std] || stddev[vec] * 20 > mean[vec]);

}
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return 0;
}

Listing B.1: The benchmark code for Figure 11.1.





C
NEAREST NEIGHBOR BENCHMARK

constexpr int NumberOfSearches = 10000;
constexpr int FirstSetSize = 64;
constexpr int MaxSetSize = 32 * 1024 * 1024;
constexpr int Repetitions = 100;
constexpr auto StepMultiplier = 2;
constexpr bool Optimize = true;
constexpr int Dimensions = 3;
using PointEntry = float;
constexpr PointEntry loCoord = -100;
constexpr PointEntry hiCoord = +100;

enum { KdS, KdV, LnS, LnV, NBenchmarks };

class Runner {
const int SetSize;
TimeStampCounter tsc;
double mean[NBenchmarks] = {};
double stddev[NBenchmarks] = {};

public:
Runner(int S) : SetSize(S) {}
void recordTsc(int Test, double norm) {

const double x = tsc.cycles() / norm;
mean[Test] += x;
stddev[Test] += x * x;

}
void printRatio(int i, int j) {

if (i >= 0 && j >= 0) {
const auto ratio = mean[i] / mean[j];
std::cout << std::setprecision(3) << std::setw(9) << ratio;
std::cout << std::setprecision(3) << std::setw(9)

<< ratio * std::sqrt(stddev[i] * stddev[i] / (mean[i] * mean[i]) +
stddev[j] * stddev[j] / (mean[j] * mean[j]));

}
}
template <typename C, typename F>
void benchmarkInsert(const int Test, C &&clear, F &&fun, double err = 5) {

do {
mean[Test] = 0;
stddev[Test] = 0;
for (auto rep = Repetitions; rep; --rep) {
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clear();
tsc.start();
fun();
tsc.stop();
recordTsc(Test, SetSize);

}
mean[Test] /= Repetitions;
stddev[Test] /= Repetitions;
stddev[Test] = std::sqrt(stddev[Test] - mean[Test] * mean[Test]);

} while (stddev[Test] * err > mean[Test]);
std::cout << std::setw(9) << std::setprecision(3) << mean[Test];
std::cout << std::setw(9) << std::setprecision(3) << stddev[Test];
std::cout << std::flush;

}
template <typename F>
void benchmarkSearch(const int Test, F &&fun, double err = 20) {

do {
mean[Test] = 0;
stddev[Test] = 0;
fun(); // one cache warm-up run:
for (auto rep = Repetitions; rep; --rep) {
tsc.start();
fun();
tsc.stop();
recordTsc(Test, NumberOfSearches);

}
mean[Test] /= Repetitions;
stddev[Test] /= Repetitions;
stddev[Test] = std::sqrt(stddev[Test] - mean[Test] * mean[Test]);

} while (stddev[Test] * err > mean[Test]);
std::cout << std::setw(9) << std::setprecision(3) << mean[Test];
std::cout << std::setw(9) << std::setprecision(3) << stddev[Test];
std::cout << std::flush;

}
};

template <typename Container, typename F, std::size_t... Indexes>
void emplace_helper(Container &c, F &&f, Vc::index_sequence<Indexes...>) {
c.emplace_back(f(Indexes)...);

}

int main() {
using Point = ::Point<PointEntry, Dimensions>;

// output header
using std::cout;
using std::setw;
using std::setprecision;
cout << "NumberOfSearches: " << NumberOfSearches << '\n';
cout << "T: " << typeid(Point).name() << '\n';
cout << "Volume: ";
for (auto i = Dimensions; i; --i) {
cout << hiCoord - loCoord << ((i > 1) ? " " : "\n");

}
cout << setw(8) << 'N' << setw(18) << "KdTree" << setw(18) << "KdTreeV"
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<< setw(18) << "Linear" << setw(18) << "LinearV" << setw(18) << "Kd/KdV"
<< setw(18) << "Lin/LinV";

{
constexpr auto Width = Optimize ? 6 : 3;
cout << setw(Width) << "DS" << setw(Width) << "DV";

}
cout << setw(18) << "KdTree" << setw(18) << "KdTreeV" << setw(18) << "Linear"

<< setw(18) << "LinearV" << setw(18) << "Kd/KdV" << setw(18) << "Lin/LinV"
<< std::endl;

// random haystack values and search points
std::default_random_engine randomEngine(1);
typename std::conditional<std::is_floating_point<PointEntry>::value,

std::uniform_real_distribution<PointEntry>,
std::uniform_int_distribution<PointEntry>>::type

uniform(loCoord, hiCoord);
std::vector<Point> randomPoints;
randomPoints.reserve(MaxSetSize);
typedef Vc::make_index_sequence<Dimensions> InitSequence;
for (int i = 0; i < MaxSetSize; ++i) {
emplace_helper(randomPoints, [&uniform, &randomEngine](int) {

return uniform(randomEngine);
},

InitSequence());
}
std::vector<Point> searchPoints;
searchPoints.reserve(NumberOfSearches);
for (int i = 0; i < NumberOfSearches; ++i) {
emplace_helper(searchPoints, [&uniform, &randomEngine](int) {

return uniform(randomEngine);
},

InitSequence());
}

for (int SetSize = FirstSetSize; SetSize <= MaxSetSize;
SetSize *= StepMultiplier) {

cout << setw(8) << SetSize << std::flush;
Runner testRunner(SetSize);

KdTree<Point> pointsTree;
testRunner.benchmarkInsert(KdS, [&]() { pointsTree.clear(); },

[&]() {
for (int i = 0; i < SetSize; ++i) {
pointsTree.insert(randomPoints[i]);

}
});

KdTreeV<Point> pointsTreeV;
testRunner.benchmarkInsert(KdV, [&]() { pointsTreeV.clear(); },

[&]() {
for (int i = 0; i < SetSize; ++i) {
pointsTreeV.insert(randomPoints[i]);

}
});
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LinearNeighborSearch<Point> linearSearch(SetSize);
testRunner.benchmarkInsert(LnS, [&]() { linearSearch.clear(); },

[&]() {
for (int i = 0; i < SetSize; ++i) {
linearSearch.insert(randomPoints[i]);

}
});

LinearNeighborSearchV<Point> linearSearchV(SetSize);
testRunner.benchmarkInsert(LnV, [&] { linearSearchV.clear(); },

[&] {
for (int i = 0; i < SetSize; ++i) {
linearSearchV.insert(randomPoints[i]);

}
});

testRunner.printRatio(KdS, KdV);
testRunner.printRatio(LnS, LnV);

cout << setw(3) << pointsTree.depth();
if (Optimize) {
pointsTree.optimize();
cout << setw(3) << pointsTree.depth();

}
cout << setw(3) << pointsTreeV.depth();
if (Optimize) {
pointsTreeV.optimize();
cout << setw(3) << pointsTreeV.depth();

}
cout << std::flush;

testRunner.benchmarkSearch(KdS, [&] {
for (int i = 0; i < NumberOfSearches; ++i) {

const auto &p = searchPoints[i];
const auto &p2 = pointsTree.findNearest(p);
asm("" ::"m"(p2));

}
}, 15);
testRunner.benchmarkSearch(KdV, [&] {

for (int i = 0; i < NumberOfSearches; ++i) {
const auto &p = searchPoints[i];
const auto &p2 = pointsTreeV.findNearest(p);
asm("" ::"m"(p2));

}
});
testRunner.benchmarkSearch(LnS, [&]() {

for (int i = 0; i < NumberOfSearches; ++i) {
const auto &p = searchPoints[i];
const auto &p2 = linearSearch.findNearest(p);
asm("" ::"m"(p2));

}
});
testRunner.benchmarkSearch(LnV, [&]() {

for (int i = 0; i < NumberOfSearches; ++i) {
const auto &p = searchPoints[i];
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const auto &p2 = linearSearchV.findNearest(p);
asm("" ::"m"(p2));

}
});

testRunner.printRatio(KdS, KdV);
testRunner.printRatio(LnS, LnV);
cout << std::endl;

}
return 0;

}

Listing C.1: The benchmark code for Figures 11.3, 11.6, 11.7, 11.8, and 11.9.





D
BENCHMARKING

Listing D.1 shows the script I used before executing any of the benchmarks shown
in this document. The script tests for the existence of a Turbo Modus of the CPU,
and disables it if present. On newer Linux kernels with an Intel CPU the Turbo
Modus is controlled via the Intel P-state driver [7]. In this case a simple boolean
switch is exposed by the driver to disable the Turbo Modus. Otherwise, the Turbo
Modus is identified in the cpufreq kernel module as a frequency which is 1 MHz
higher than the nominal frequency of the CPU. Additionally, the scaling gover-
nor is set to performance mode, to alleviate the need for warm-up phases in the
benchmark.

1 #!/bin/sh
2 cd /sys/devices/system/cpu
3 no_turbo=intel_pstate/no_turbo
4 if test -f $no_turbo; then
5 echo 1 > $no_turbo
6 else
7 freq=$(cut -d" " -f1,2 cpu0/cpufreq/scaling_available_frequencies)
8 freq1=${freq% *}
9 freq2=${freq#* }

10 test $(($freq2+1000)) -eq $freq1 && \
11 echo $freq2 | tee cpu[0-9]*/cpufreq/scaling_max_freq >/dev/null
12 echo performance | tee cpu[0-9]*/cpufreq/scaling_governor >/dev/null
13 fi

Listing D.1: Shell script enabling reproducible benchmarks on current x86 CPUs.
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E
C++ IMPLEMENTATIONS OF THE K-D TREE ALGORITHMS

E.1 INSERT ALGORITHM

template <typename T, std::size_t Dimensions>
void KdTree<T, Dimensions>::insert(const T &x) {

if (root) {
root->insert(x);

} else {
root = make_unique<Node<0>>(x);

}
}

template <typename T, std::size_t Dimensions>
template <std::size_t SplittingPlane>
void KdTree<T, Dimensions>::Node<SplittingPlane>::insert(const T &x) {

auto &child = (get_kdtree_value<SplittingPlane>(x) <
get_kdtree_value<SplittingPlane>(data))

? child[0]
: child[1];

if (child) {
child->insert(x);

} else {
child = make_unique<Node<ChildSplittingPlane>>(x);

}
}

Listing E.1: The C++ implementation of the scalar k-d tree insert algorithm.

template <typename T, std::size_t Dimensions>
void KdTreeV<T, Dimensions>::insert(const T &x) {

if (root) {
root->insert(x);

} else {
root = make_unique<Node<0>>(x);

}
}

template <typename T, std::size_t Dimensions>
template <std::size_t SplittingPlane>
void KdTreeV<T, Dimensions>::Node<SplittingPlane>::insert(const T &x) {

using namespace std;
if (entries < V::Size) {
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const auto less = get_kdtree_value<SplittingPlane>(V(x)) <
get_kdtree_value<SplittingPlane>(v());

if (any_of(less)) {
where(less.firstOne() <= VEntry::IndexesFromZero()) | v() =

iif(less.firstOne() == VEntry::IndexesFromZero(), xv,
simdize_shifted(v(), -1));

} else {
// if none_of(x < this) then x will be the largest value in this node
simdize_assign(v(), entries, x);

}
++entries;

} else {
const auto less = get_kdtree_value<SplittingPlane>(v()) <

get_kdtree_value<SplittingPlane>(V(x));
if (all_of(less)) { // go to the lo child
childInsert(child[1], x);

} else if (none_of(less)) { // go to the hi child
childInsert(child[0], x);

} else {
int i = less.count();
if (i > V::size() / 2) {

const T xx = simdize_extract(v(), V::size() - 1);
where(i <= VEntry::IndexesFromZero()) | v() =

iif(i == VEntry::IndexesFromZero(), xv, simdize_shifted(v(), -1));
childInsert(m_child[1], xx);

} else {
const T xx = simdize_extract(v(), 0);
where(i >= VEntry::IndexesFromZero()) | v() =

iif(i == VEntry::IndexesFromZero(), xv, simdize_shifted(v(), 1));
childInsert(m_child[0], xx);

}
}

}
}

template <typename T, std::size_t Dimensions>
template <std::size_t SplittingPlane>
void KdTreeV<T, Dimensions>::Node<SplittingPlane>::childInsert(ChildPtr &child,

const T new_x) {
if (child) {
child->insert(new_x);

} else {
child = make_unique<Node<ChildSplittingPlane>>(new_x);

}
}

Listing E.2: The C++ & Vc implementation of the vectorized k-d tree insert algorithm. The
broadcast of new_x to all entries in the vector is implemented in the Node
constructor.
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E.2 FINDNEAREST ALGORITHM

template <typename T, std::size_t Dimensions>
T KdTree<T, Dimensions>::findNearest(T x) const {

if (!root) {
throw std::runtime_error(

"No values in the KdTree, which is required for findNearest.");
}
CandidateType nearest =

std::make_pair(T(), std::numeric_limits<DistanceType>::max());
m_root->findNearest(x, nearest);
return nearest.first;

}

template <typename T, std::size_t Dimensions>
template <std::size_t SplittingPlane>
void KdTree<T, Dimensions>::Node<SplittingPlane>::findNearest(

const T &x, CandidateType &candidate) const {
// terminal node: return best distance from this node
if (child[0] == child[1]) {

const auto distance = get_kdtree_distance(x, data);
if (distance < candidate.second) {
candidate = std::make_pair(data, distance);

}
return;

}

const auto dx = get_kdtree_1dim_distance<SplittingPlane>(x, data);

const std::size_t index = (get_kdtree_value<SplittingPlane>(x) <
get_kdtree_value<SplittingPlane>(data))

? 0
: 1;

if (child[index]) {
// if we have a child node on the side where the search point would get
// stored, that node is an obvious candidate
child[index]->findNearest(x, candidate);

}
if (dx < candidate.second) {

const auto distance = get_kdtree_distance(x, data);
if (distance < candidate.second) {
candidate = std::make_pair(data, distance);
if (dx >= candidate.second) {

return;
}

}
if (child[index ^ 1]) {
// if we have a child on the "wrong" side it could still be/find the nearest
// neighbor, but only if the shortest distance of the search point x to the
// splitting plane is less than the distance to the current candidate.
child[index ^ 1]->findNearest(x, candidate);

}
}

}
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Listing E.3: The C++ implementation of the scalar k-d tree nearest neighbor search algo-
rithm.

struct CandidateType {
V nearest;
DistanceTypeV distance =

DistanceTypeV(std::numeric_limits<DistanceType>::max());
T min() const {

return simdize_extract(nearest, (distance == distance.min()).firstOne());
}

};

template <typename T, std::size_t Dimensions>
T KdTreeV<T, Dimensions>::findNearest(T x) const {

if (!root) {
throw std::runtime_error(

"No values in the KdTree, which is required for findNearest.");
}
CandidateType nearest;
root->findNearest(V(x), nearest);
return nearest.min();

}

template <typename T, std::size_t Dimensions>
template <std::size_t SplittingPlane>
std::pair<T, DistanceType> KdTreeV<T, Dimensions>::Node<

SplittingPlane>::findNearest(const V &x, CandidateType &candidate) const {
// guess near and far child nodes
auto nearChild = child[0].get();
auto farChild = child[1].get();

if (nearChild == farChild) { // iff both are nullptr
// leaf node. 50% of nodes in a balanced tree are leaf nodes.
const auto distance = get_kdtree_distance(x, v());
if (Dimensions < 4 || any_of(distance < candidate.distance)) {
where(distance < candidate.distance) | candidate.nearest = v();
candidate.distance = min(candidate.distance, distance);

}
return;

} else if (nearChild && farChild) {
// The other 50% of nodes in a balanced tree have two children.
const auto left = get_kdtree_value<SplittingPlane>(v())[0];
const auto right = get_kdtree_value<SplittingPlane>(v())[V::size() - 1];
const auto xx = get_kdtree_value<SplittingPlane>(x)[0];

DistanceTypeV dxMax = get_kdtree_1dim_distance(xx, right);
DistanceTypeV dxMin = get_kdtree_1dim_distance(xx, left);

if (xx >= right) {
std::swap(dxMax, dxMin);
std::swap(nearChild, farChild);

} else if (xx > left) { // xx is between left & right
if (left + right < xx * 2) { // discriminate on center
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std::swap(dxMax, dxMin);
std::swap(nearChild, farChild);

}
const auto distance = get_kdtree_distance(x, v());
if (Dimensions < 4 || any_of(distance < candidate.distance)) {
where(distance < candidate.distance) | candidate.nearest = v();
candidate.distance = min(candidate.distance, distance);

}
if (all_of(dxMin < candidate.distance)) {
nearChild->findNearest(x, candidate);

}
if (all_of(dxMax < candidate.distance)) {
farChild->findNearest(x, candidate);

}
return;

}
nearChild->findNearest(x, candidate);
if (all_of(dxMin < candidate.distance)) {

const auto distance = get_kdtree_distance(x, v());
if (Dimensions < 4 || any_of(distance < candidate.distance)) {
where(distance < candidate.distance) | candidate.nearest = v();
candidate.distance = min(candidate.distance, distance);

}
if (all_of(dxMax < candidate.distance)) {
farChild->findNearest(x, candidate);

}
}

} else if (child[0]) {
const auto left = get_kdtree_value<SplittingPlane>(v())[0];
const auto xx = get_kdtree_value<SplittingPlane>(x)[0];
const auto dx = get_kdtree_1dim_distance(xx, left);
if (xx < left) {
child[0]->findNearest(x, candidate);
if (all_of(dx < candidate.distance)) {

const auto distance = get_kdtree_distance(x, v());
if (Dimensions < 4 || any_of(distance < candidate.distance)) {
where(distance < candidate.distance) | candidate.nearest = v();
candidate.distance = min(candidate.distance, distance);

}
}

} else {
const auto distance = get_kdtree_distance(x, v());
if (Dimensions < 4 || any_of(distance < candidate.distance)) {
where(distance < candidate.distance) | candidate.nearest = v();
candidate.distance = min(candidate.distance, distance);

}
if (all_of(dx < candidate.distance)) {
child[0]->findNearest(x, candidate);

}
}

} else { // only child[1]
const auto right = get_kdtree_value<SplittingPlane>(v())[V::size() - 1];
const auto xx = get_kdtree_value<SplittingPlane>(x)[0];
const auto dx = get_kdtree_1dim_distance(xx, right);
if (xx > right) {
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child[1]->findNearest(x, candidate);
if (all_of(dx < candidate.distance)) {

const auto distance = get_kdtree_distance(x, v());
if (Dimensions < 4 || any_of(distance < candidate.distance)) {
where(distance < candidate.distance) | candidate.nearest = v();
candidate.distance = min(candidate.distance, distance);

}
}

} else {
const auto distance = get_kdtree_distance(x, v());
if (Dimensions < 4 || any_of(distance < candidate.distance)) {
where(distance < candidate.distance) | candidate.nearest = v();
candidate.distance = min(candidate.distance, distance);

}
if (all_of(dx < candidate.distance)) {
child[1]->findNearest(x, candidate);

}
}

}
}

Listing E.4: The C++ & Vc implementation of the vectorized k-d tree nearest neighbor
search algorithm.

template <typename T, std::size_t Dimensions>
simdize<T> KdTree<T, Dimensions>::findNearest(const simdize<T> &x) const {

if (!m_root) {
throw std::runtime_error(

"No values in the KdTree, which is required for findNearest.");
}

CandidateTypeV nearest = std::make_pair(
simdize<T>(), DistanceTypeV(std::numeric_limits<DistanceType>::max()));

m_root->findNearest(x, nearest);
return nearest.first;

}

template <typename T, std::size_t Dimensions>
template <std::size_t SplittingPlane>
void KdTree<T, Dimensions>::Node<SplittingPlane>::findNearest(

const simdize<T> &x, CandidateTypeV &candidate) const {
using V = simdize<T>;
V data_v(m_data);
if (m_child[0] == m_child[1]) {

const auto distance = get_kdtree_distance(x, data_v);
where(distance < candidate.second) | candidate.first = data_v;
candidate.second = min(distance, candidate.second);
return;

}

const auto dx = get_kdtree_1dim_distance<SplittingPlane>(x, data_v);
const bool indexDisagrees = (get_kdtree_value<SplittingPlane>(x) <

get_kdtree_value<SplittingPlane>(data_v)).count() %
x.size() !=

0;
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const std::size_t index =
(get_kdtree_value<SplittingPlane>(x) <
get_kdtree_value<SplittingPlane>(data_v)).count() > x.size() / 2

? 0
: 1;

if (m_child[index]) {
m_child[index]->findNearest(x, candidate);

}
if (indexDisagrees) {

if (m_child[index ^ 1]) {
m_child[index ^ 1]->findNearest(x, candidate);

}
const auto distance = get_kdtree_distance(x, data_v);
where(distance < candidate.second) | candidate.first = data_v;
candidate.second = min(distance, candidate.second);

} else if (any_of(dx < candidate.second)) {
const auto distance = get_kdtree_distance(x, data_v);
where(distance < candidate.second) | candidate.first = data_v;
candidate.second = min(distance, candidate.second);
if (all_of(dx >= candidate.second)) {

return;
}
if (m_child[index ^ 1]) {
m_child[index ^ 1]->findNearest(x, candidate);

}
}

}

Listing E.5: The C++ & Vc implementation of vectorized nearest neighbor search in a scalar
k-d tree.





F
ALICE SPLINE SOURCES

F.1 SPLINE IMPLEMENTATIONS

typedef std::array<float, 2> Point2;
typedef std::array<float, 3> Point3;
typedef simdize<Point2> Point2V;
typedef simdize<Point3> Point3V;

class Spline /* or Spline2 or Spline3*/ {
const int fNA; // # points A axis
const int fNB; // # points B axis
const int fN; // # points total
const float fMinA; // min A axis
const float fMinB; // min B axis
const float fStepA; // step between points A axis
const float fStepB; // step between points B axis
const float fScaleA; // scale A axis
const float fScaleB; // scale B axis

Vc::vector<Vc::SimdArray<float, 4>> fXYZ; // Spline
// Spline2: Vc::vector<float> fXYZ;
// Spline3: Vc::vector<std::array<float, 3>> fXYZ;

};

inline void Spline::Fill(int ind, float x, float y, float z) {
fXYZ[ind][0] = x;
fXYZ[ind][1] = y;
fXYZ[ind][2] = z;

}

inline void Spline2::Fill(int ind, float x, float y, float z) {
ind = ind / fNB + fNA * (ind % fNB);
fXYZ[ind] = x;
fXYZ[ind + fN] = y;
fXYZ[ind + 2 * fN] = z;

}

inline void Spline3::Fill(int ind, float x, float y, float z) {
ind = ind / fNB + fNA * (ind % fNB);
fXYZ[ind][0] = x;
fXYZ[ind][1] = y;
fXYZ[ind][2] = z;
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}

Listing F.1: The class layouts for the different spline implementations.

inline std::tuple<int, int, float, float> evaluatePosition(Point2 ab, Point2 min,
Point2 scale, int na,
int nb) {

const float lA = (ab[0] - min[0]) * scale[0] - 1.f;
const int iA = std::min(na - 4.f, std::max(lA, 0.f));
const float lB = (ab[1] - min[1]) * scale[1] - 1.f;
const int iB = std::min(nb - 4.f, std::max(lB, 0.f));
const float da = lA - iA;
const float db = lB - iB;
return std::make_tuple(iA, iB, da, db);

}

using Vc::float_v;
typedef float_v::IndexType index_v;
inline std::tuple<index_v, index_v, float_v, float_v> evaluatePosition(

Point2V ab, Point2 min, Point2 scale, int na, int nb) {
const float_v lA = (ab[0] - min[0]) * scale[0] - 1.f;
const auto iA = static_cast<index_v>(std::min(na - 4.f, std::max(lA, 0.f)));
const float_v lB = (ab[1] - min[1]) * scale[1] - 1.f;
const auto iB = static_cast<index_v>(std::min(nb - 4.f, std::max(lB, 0.f)));
const float_v da = lA - Vc::simd_cast<float_v>(iA);
const float_v db = lB - Vc::simd_cast<float_v>(iB);
return std::make_tuple(iA, iB, da, db);

}

Listing F.2: The map index calculation common to the different spline implementations.

Point3 Spline::GetValue(Point2 ab) const {
float da1, db1;
int iA, iB;
std::tie(iA, iB, da1, db1) =

evaluatePosition(ab, {fMinA, fMinB}, {fScaleA, fScaleB}, fNA, fNB);
int ind = iA * fNB + iB;
typedef Vc::SimdArray<float, 4> float4;
const float4 da = da1;
const float4 db = db1;
float4 v[4];
const float4 *m = &fXYZ[0];
for (int i = 0; i < 4; i++) {
v[i] = GetSpline3(m[ind + 0], m[ind + 1], m[ind + 2], m[ind + 3], db);
ind += fNB;

}
float4 res = GetSpline3(v[0], v[1], v[2], v[3], da);
return {res[0], res[1], res[2]};

}

Listing F.3: Float4 spline implementation.

Point3 Spline::GetValue16(Point2 ab) const {
float da1, db1;
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int iA, iB;
std::tie(iA, iB, da1, db1) =

evaluatePosition(ab, {fMinA, fMinB}, {fScaleA, fScaleB}, fNA, fNB);
typedef Vc::SimdArray<float, 4> float4;
typedef Vc::SimdArray<float, 16> float16;
const float4 da = da1;
const float16 db = db1;
const float4 *m0 = &fXYZ[iA * fNB + iB];
const float4 *m1 = m0 + fNB;
const float4 *m2 = m1 + fNB;
const float4 *m3 = m2 + fNB;
const float16 v0123 =

GetSpline3(Vc::simd_cast<float16>(m0[0], m1[0], m2[0], m3[0]),
Vc::simd_cast<float16>(m0[1], m1[1], m2[1], m3[1]),
Vc::simd_cast<float16>(m0[2], m1[2], m2[2], m3[2]),
Vc::simd_cast<float16>(m0[3], m1[3], m2[3], m3[3]), db);

const float4 res = GetSpline3(
Vc::simd_cast<float4, 0>(v0123), Vc::simd_cast<float4, 1>(v0123),
Vc::simd_cast<float4, 2>(v0123), Vc::simd_cast<float4, 3>(v0123), da);

return {res[0], res[1], res[2]};
}

Listing F.4: Float16 spline implementation.

inline Point3 Spline2::GetValue(Point2 ab) const {
float da1, db1;
int iA, iB;
std::tie(iA, iB, da1, db1) =

evaluatePosition(ab, {fMinA, fMinB}, {fScaleA, fScaleB}, fNA, fNB);
typedef Vc::SimdArray<float, 4> float4;
typedef Vc::SimdArray<float, 12> float12;
const float4 da = da1;
const float12 db = db1;
const float *m0 = &fXYZ[iA + iB * fNA];
const float *m1 = m0 + fNA;
const float *m2 = m1 + fNA;
const float *m3 = m2 + fNA;
const float12 xyz = GetSpline3(

Vc::simd_cast<float12>(float4(m0), float4(m0 + fN), float4(m0 + 2 * fN)),
Vc::simd_cast<float12>(float4(m1), float4(m1 + fN), float4(m1 + 2 * fN)),
Vc::simd_cast<float12>(float4(m2), float4(m2 + fN), float4(m2 + 2 * fN)),
Vc::simd_cast<float12>(float4(m3), float4(m3 + fN), float4(m3 + 2 * fN)),
db);

float4 v[4];
Vc::tie(v[0], v[1], v[2], v[3]) =

Vc::transpose(Vc::simd_cast<float4, 0>(xyz), Vc::simd_cast<float4, 1>(xyz),
Vc::simd_cast<float4, 2>(xyz), float4::Zero());

float4 res = GetSpline3(v[0], v[1], v[2], v[3], da);
return {res[0], res[1], res[2]};

}

Listing F.5: Float12 spline implementation.

inline Point3 Spline3::GetValue(Point2 ab) const {
float da1, db1;
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int iA, iB;
std::tie(iA, iB, da1, db1) =

evaluatePosition(ab, {fMinA, fMinB}, {fScaleA, fScaleB}, fNA, fNB);
typedef Vc::SimdArray<float, 4> float4;
typedef Vc::SimdArray<float, 12> float12;
const float4 da = da1;
const float12 db = db1;
const float *m0 = &fXYZ[iA + iB * fNA][0];
const float *m1 = m0 + fNA * 3;
const float *m2 = m1 + fNA * 3;
const float *m3 = m2 + fNA * 3;
const float12 xyz =

GetSpline3(float12(m0), float12(m1), float12(m2), float12(m3), db);
const float4 t0 = Vc::simd_cast<float4, 0>(xyz);
const float4 t1 = Vc::simd_cast<float4, 1>(xyz);
const float4 t2 = Vc::simd_cast<float4, 2>(xyz);
const float4 res =

GetSpline3(t0, t0.shifted(3, t1), t1.shifted(2, t2), t2.shifted(1), da);
return {res[0], res[1], res[2]};

}

Listing F.6: Float12 Interleaved spline implementation.

Point3V Spline::GetValue(const Point2V &ab) const {
index_v iA, iB;
float_v da, db;
std::tie(iA, iB, da, db) =

evaluatePosition(ab, {fMinA, fMinB}, {fScaleA, fScaleB}, fNA, fNB);
float_v vx[4];
float_v vy[4];
float_v vz[4];
auto ind = iA * fNB + iB;
const auto map = Vc::make_interleave_wrapper<float_v>(&fXYZ[0]);
for (int i = 0; i < 4; i++) {
float_v x[4], y[4], z[4];
Vc::tie(x[0], y[0], z[0]) = map[ind];
Vc::tie(x[1], y[1], z[1]) = map[ind + 1];
Vc::tie(x[2], y[2], z[2]) = map[ind + 2];
Vc::tie(x[3], y[3], z[3]) = map[ind + 3];
vx[i] = GetSpline3<float_v>(x[0], x[1], x[2], x[3], db);
vy[i] = GetSpline3<float_v>(y[0], y[1], y[2], y[3], db);
vz[i] = GetSpline3<float_v>(z[0], z[1], z[2], z[3], db);
ind += fNB;

}
Point3V XYZ;
XYZ[0] = GetSpline3<float_v>(vx, da);
XYZ[1] = GetSpline3<float_v>(vy, da);
XYZ[2] = GetSpline3<float_v>(vz, da);
return XYZ;

}

Listing F.7: Horizontal 1 spline implementation.

inline Spline2::Point3V Spline2::GetValue(Point2V ab) const {
index_v iA, iB;
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float_v da, db;
std::tie(iA, iB, da, db) =

evaluatePosition(ab, {fMinA, fMinB}, {fScaleA, fScaleB}, fNA, fNB);
auto ind = iA + iB * fNA;
Point3V xyz;
{

float_v x[4][4];
Vc::tie(x[0][0], x[1][0], x[2][0], x[3][0]) = fXYZ[ind];
Vc::tie(x[0][1], x[1][1], x[2][1], x[3][1]) = fXYZ[ind + fNA];
Vc::tie(x[0][2], x[1][2], x[2][2], x[3][2]) = fXYZ[ind + 2 * fNA];
Vc::tie(x[0][3], x[1][3], x[2][3], x[3][3]) = fXYZ[ind + 3 * fNA];
xyz[0] = GetSpline3(GetSpline3(x[0], db), GetSpline3(x[1], db),

GetSpline3(x[2], db), GetSpline3(x[3], db), da);
}
ind += fN;
{

float_v y[4][4];
Vc::tie(y[0][0], y[1][0], y[2][0], y[3][0]) = fXYZ[ind];
Vc::tie(y[0][1], y[1][1], y[2][1], y[3][1]) = fXYZ[ind + fNA];
Vc::tie(y[0][2], y[1][2], y[2][2], y[3][2]) = fXYZ[ind + 2 * fNA];
Vc::tie(y[0][3], y[1][3], y[2][3], y[3][3]) = fXYZ[ind + 3 * fNA];
xyz[1] = GetSpline3(GetSpline3(y[0], db), GetSpline3(y[1], db),

GetSpline3(y[2], db), GetSpline3(y[3], db), da);
}
ind += fN;
{

float_v z[4][4];
Vc::tie(z[0][0], z[1][0], z[2][0], z[3][0]) = fXYZ[ind];
Vc::tie(z[0][1], z[1][1], z[2][1], z[3][1]) = fXYZ[ind + fNA];
Vc::tie(z[0][2], z[1][2], z[2][2], z[3][2]) = fXYZ[ind + 2 * fNA];
Vc::tie(z[0][3], z[1][3], z[2][3], z[3][3]) = fXYZ[ind + 3 * fNA];
xyz[2] = GetSpline3(GetSpline3(z[0], db), GetSpline3(z[1], db),

GetSpline3(z[2], db), GetSpline3(z[3], db), da);
}
return xyz;

}

Listing F.8: Horizontal 2 spline implementation.

Point3 Spline::GetValueAlice(Point2 ab) const {
float lA = (ab[0] - fMinA) * fScaleA - 1.f;
int iA = (int)lA;
if (lA < 0)
iA = 0;

else if (iA > fNA - 4)
iA = fNA - 4;

float lB = (ab[1] - fMinB) * fScaleB - 1.f;
int iB = (int)lB;
if (lB < 0)
iB = 0;

else if (iB > fNB - 4)
iB = fNB - 4;

Point3 XYZ;
if (Vc::float_v::Size == 4) {
Vc::float_v da = lA - iA;
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Vc::float_v db = lB - iB;
Vc::float_v v[4];
int ind = iA * fNB + iB;
const Vc::float_v *m = reinterpret_cast<const Vc::float_v *>(&fXYZ[0]);
for (int i = 0; i < 4; i++) {
v[i] = GetSpline3(m[ind + 0], m[ind + 1], m[ind + 2], m[ind + 3], db);
ind += fNB;

}
Vc::float_v res = GetSpline3(v[0], v[1], v[2], v[3], da);
XYZ[0] = res[0];
XYZ[1] = res[1];
XYZ[2] = res[2];

} else {
float da = lA - iA;
float db = lB - iB;
float vx[4];
float vy[4];
float vz[4];
int ind = iA * fNB + iB;
const float *m = reinterpret_cast<const float *>(&fXYZ[0]);
for (int i = 0; i < 4; i++) {

int ind4 = ind * 4;
vx[i] = GetSpline3(m[ind4 + 0], m[ind4 + 4], m[ind4 + 8], m[ind4 + 12], db);
vy[i] = GetSpline3(m[ind4 + 1], m[ind4 + 5], m[ind4 + 9], m[ind4 + 13], db);
vz[i] = GetSpline3(m[ind4 + 2], m[ind4 + 6], m[ind4 +10], m[ind4 + 14], db);
ind += fNB;

}
XYZ[0] = GetSpline3(vx, da);
XYZ[1] = GetSpline3(vy, da);
XYZ[2] = GetSpline3(vz, da);

}
return XYZ;

}

Listing F.9: Alice spline implementation.

Point3 Spline::GetValueScalar(Point2 ab) const {
float da, db;
int iA, iB;
std::tie(iA, iB, da, db) =

evaluatePosition(ab, {fMinA, fMinB}, {fScaleA, fScaleB}, fNA, fNB);
int ind = iA * fNB + iB;
float vx[4];
float vy[4];
float vz[4];
for (int i = 0; i < 4; i++) {
vx[i] = GetSpline3(fXYZ[ind][0], fXYZ[ind + 1][0], fXYZ[ind + 2][0],

fXYZ[ind + 3][0], db);
vy[i] = GetSpline3(fXYZ[ind][1], fXYZ[ind + 1][1], fXYZ[ind + 2][1],

fXYZ[ind + 3][1], db);
vz[i] = GetSpline3(fXYZ[ind][2], fXYZ[ind + 1][2], fXYZ[ind + 2][2],

fXYZ[ind + 3][2], db);
ind += fNB;

}
return {GetSpline3(vx, da), GetSpline3(vy, da), GetSpline3(vz, da)};
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}

Listing F.10: Scalar spline implementation.

F.2 BENCHMARK IMPLEMENTATION

constexpr int NumberOfEvaluations = 10000;
constexpr int FirstMapSize = 4;
constexpr int MaxMapSize = 256;
constexpr int Repetitions = 100;
constexpr auto StepMultiplier = 1.25;

enum EnabledTests {
Float4,
Float16,
Float12,
Float12Interleaved,
Horizontal1,
Horizontal2,
Alice,
Autovectorized,
Scalar,
NBenchmarks

};

EnabledTests &operator++(EnabledTests &x) {
return x = static_cast<EnabledTests>(static_cast<int>(x) + 1);

}

template <typename Input> struct VectorizeBuffer {
typedef simdize<Input> InputV;
InputV input;
int entries = 0;
int operator()(Input x) {
simdize_assign(input, entries, x);
entries = (entries + 1) % InputV::size();
return entries;

}
};

struct Runner {
TimeStampCounter tsc;
double mean[NBenchmarks] = {};
double stddev[NBenchmarks] = {};
const std::vector<Point2> &searchPoints;

Runner(const std::vector<Point2> &s) : searchPoints(s) {}
template <typename F> void benchmark(const int Test, F &&fun, double err = 20) {

do {
mean[Test] = 0;
stddev[Test] = 0;
for (const auto &p : searchPoints) {
fun(p);
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} // one cache warm-up run to remove one outlier
for (auto rep = Repetitions; rep; --rep) {
tsc.start();
for (const auto &p : searchPoints) {
fun(p);

}
tsc.stop();
const double x = tsc.cycles() / NumberOfEvaluations;
mean[Test] += x;
stddev[Test] += x * x;

}
mean[Test] /= Repetitions;
stddev[Test] /= Repetitions;
stddev[Test] = std::sqrt(stddev[Test] - mean[Test] * mean[Test]);

} while (stddev[Test] * err > mean[Test]);
std::cout << std::setw(9) << std::setprecision(3) << mean[Test];
std::cout << std::setw(9) << std::setprecision(3) << stddev[Test];
std::cout << std::flush;

}
template <typename I, typename J> void printRatio(I i, J j) {

const auto ratio = mean[i] / mean[j];
std::cout << std::setprecision(3) << std::setw(9) << ratio;
std::cout << std::setprecision(3) << std::setw(9)

<< ratio * std::sqrt(stddev[i] * stddev[i] / (mean[i] * mean[i]) +
stddev[j] * stddev[j] / (mean[j] * mean[j]));

}
};

int main() {
std::default_random_engine randomEngine(1);
std::uniform_real_distribution<float> uniform(-1.f, 1.f);

std::vector<Point2> searchPoints;
searchPoints.reserve(NumberOfEvaluations);
for (int i = 0; i < NumberOfEvaluations; ++i) {
searchPoints.emplace_back(

Point2{uniform(randomEngine), uniform(randomEngine)});
}
Runner runner(searchPoints);

for (int MapSize = FirstMapSize; MapSize <= MaxMapSize;
MapSize *= StepMultiplier) {

Spline spline(-1.f, 1.f, MapSize, -1.f, 1.f, MapSize);
Spline2 spline2(-1.f, 1.f, MapSize, -1.f, 1.f, MapSize);
Spline3 spline3(-1.f, 1.f, MapSize, -1.f, 1.f, MapSize);
for (int i = 0; i < spline.GetNPoints(); ++i) {

const float xyz[3] = {uniform(randomEngine), uniform(randomEngine),
uniform(randomEngine)};

spline.Fill(i, xyz);
spline2.Fill(i, xyz);
spline3.Fill(i, xyz);

}
std::cout << std::setw(8) << spline.GetMapSize() << std::flush;

for (EnabledTests i = EnabledTests(0); i < NBenchmarks; ++i) {
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VectorizeBuffer<Point2> vectorizer;
switch (i) {
case Scalar:
runner.benchmark(Scalar, [&] {

const auto &p2 = spline.GetValueScalar(p);
asm("" ::"m"(p2));

});
break;

case Alice:
runner.benchmark(i, [&](const Point2 &p) {

const auto &p2 = spline.GetValueAlice(p);
asm("" ::"m"(p2));

});
break;

case Autovectorized:
runner.benchmark(i, [&](const Point2 &p) {

const auto &p2 = spline.GetValueAutovec(p);
asm("" ::"m"(p2));

});
break;

case Float4:
runner.benchmark(i, [&] {

const auto &p2 = spline.GetValue(p);
asm("" ::"m"(p2));

});
break;

case Float16:
runner.benchmark(i, [&] {

const auto &p2 = spline.GetValue16(p);
asm("" ::"m"(p2));

});
break;

case Float12:
runner.benchmark(i, [&] {

const auto &p2 = spline2.GetValue(p);
asm("" ::"m"(p2));

});
break;

case Float12Interleaved:
runner.benchmark(i, [&] {

const auto &p2 = spline3.GetValue(p);
asm("" ::"m"(p2));

});
break;

case Horizontal1:
runner.benchmark(i, [&] {

if (0 == vectorizer(p)) {
const auto &p2 = spline.GetValue(vectorizer.input);
asm("" ::"m"(p2));

}
});
break;

case Horizontal2:
runner.benchmark(i, [&] {

if (0 == vectorizer(p)) {
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const auto &p2 = spline2.GetValue(vectorizer.input);
asm("" ::"m"(p2));

}
});

}
for (EnabledTests i = EnabledTests(0); i < NBenchmarks; ++i) {

if (i != Scalar) {
runner.printRatio(Scalar, i);

}
}
std::cout << std::endl;

}
return 0;

}

Listing F.11: Benchmark program for the different spline implementations.
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THE SUBSCRIPT OPERATOR TYPE TRAIT

In some situations generic code can base a decision on whether a given type im-
plements the subscript operator or not. This kind of query is part of the type traits
that are ubiquitous in generic programming.

The subscript operator poses a special challenge because the non-member sub-
script operator is not allowed in C++11. The BOOST operator type traits rely on
non-member overloads to detect whether a specific operator is callable for a given
type. Therefore, the BOOST type traits library does not contain a type trait for the
subscript operator.

To implement a type trait the following problem thus needs to be solved: For a
given type T the expression
decltype(std::declval<T>()[0])

resolves to the return type of the subscript operator of type T. If T does not imple-
ment a subscript operator that accepts an integer argument, then the expression
above is invalid and results in a compilation error. The property, whether a given
expression resolves to a valid type or is an invalid expression must be used to cre-
ate an expression that is either true or false.

The approach for such issues thus leads us to the SFINAE [81] feature in C++. A
function with template parameters, where substitution of the parameters would
lead to a substitution failure is not an error, but rather the function will silently be
removed from the list of candidates for overload resolution. Thus the function
template <typename T,

typename = decltype(std::declval<T>()[0]) void test();

is visible if the subscript operator of T exists and invisible otherwise. Thus, we
have improved the situation slightly from “compilation error or not” to “function
is visible or not”. But this is not much better because a function not being visible
typically just leads to a compilation error.

The enable_if pattern is well known and simply inverts the condition to make
a different function visible for the remaining cases:
template <typename T>
typename enable_if< condition<T>::value>::type test();
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template <typename T>
typename enable_if<!condition<T>::value>::type test();

In that manner we would need an expression that could invert the type of the
subscript operator to be there or not. But this is not possible. Thus, there is no way
to have one function visible for types with subscript operator and another function
visible for types without subscript operator. It is only possible to have one function
removed from overload resolution if the subscript operator is not usable.

The solution therefore depends on the parameter to our test function. The pa-
rameters of a function determine their priority in overload resolution. A function
call where the argument type must be implicitly converted is not used if an over-
load with the exact parameter type is visible. There are many possible types to use
here, but one of the simpler cases is the constant 1 which is of the exact type int,
but can also be implicitly converted to float. The two functions thus become:
template <typename T,

typename = decltype(std::declval<T>()[0]) void test(int);
template <typename T> void test(float);

Finally, the selected function must lead to a true or false value. This is easy
with the std::true_type and std::false_type types. The test functions can use
these types as return types. Thus, the complete type trait can be implemented as:
template <typename T,

typename =
decltype(std::declval<T>()[0]) std::true_type test(int);

template <typename T> std::false_type test(float);

template <typename T>
struct has_subscript_operator : public decltype(test<T>(1)) {};

Now, the constant expression has_subscript_operator<T>::value is a boolean value
that can be used to, for instance, base implementation strategies on the presence
of a subscript operator of a template parameter type T.
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THE ADAPTSUBSCRIPTOPERATOR CLASS

template <typename Base> class AdaptSubscriptOperator : public Base {
public:

using Base::Base;

// explicitly enable Base::operator[] because the following would hide it
using Base::operator[];

// forward to non-member subscript_operator function
template <

typename I,
typename = typename std::enable_if<!std::is_arithmetic<typename std::decay<

I>::type>::value>::type // arithmetic types should always use
// Base::operator[] and never match this one

>
auto operator[](I &&arg)

-> decltype(subscript_operator(*this, std::forward<I>(arg))) {
return subscript_operator(*this, std::forward<I>(arg));

}

// const overload of the above
template <typename I,

typename = typename std::enable_if<
!std::is_arithmetic<typename std::decay<I>::type>::value>::type>

auto operator[](I &&arg) const
-> decltype(subscript_operator(*this, std::forward<I>(arg))) {

return subscript_operator(*this, std::forward<I>(arg));
}

};

Listing H.1: Generic adaptor class to add the forwarding subscript operator to existing
container classes. This enables non-member subscript functionality for the
adapted class.
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SUPPORTING CUSTOM DIAGNOSTICS AND SFINAE

The following is the reproduction of a paper that was submitted to the C++ com-
mittee and discussed at the Urbana 2014 meeting. It is relevant for the interface
design described in Section 4.5.

Committee feedback was that there is general interest in solving the problem.
But at this point it is not clear enough (to the committee) whether the improved
diagnostics from concepts [77] will already solve the issue in an acceptable manner.
To go forward this paper needs more motivational examples and possibly a more
general solution.

I.1 PROBLEM

Static assertions are a very useful tool to improve error messages if a library inter-
face is used incorrectly. Consider the addition operator in Listing I.1.

This has the following effects:

1. operator+ is a viable function for portable and unportable uses of the addi-
tion operator.

2. The program is ill-formed if an unportable type combination is used.

3. The compiler will output the second argument to the static_assert as cus-
tom diagnostic output if an unportable type combination is used.

1 class simd_float;
2 template <typename T> simd_float operator+(simd_float, T) {
3 static_assert(has_compatible_vector_size<simd_float, T>::value,
4 "Incompatible operands: the SIMD register sizes for "
5 "both operands must be equal on all possible target "
6 "platforms to ensure portable code. Use an explicit "
7 "type conversion to make the code portable.");
8 return ...;
9 }

Listing I.1: Example usage of static_assert for a more informative error message.
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1 template <typename T, typename U,
2 typename = decltype(std::declval<T>() + std::declval<U>())>
3 std::true_type test(int);
4 template <typename T, typename U> std::false_type test(...);
5 template <typename T, typename U = T>
6 struct has_addition_operator : public decltype(test<T, U>(1)) {};

Listing I.2: A type trait that checks for the existence of operator+(T, U) .

1 template <typename T>
2 enable_if_t<has_compatible_vector_size<simd_float, T>::value,
3 simd_float>
4 operator+(simd_float, T);
5 template <typename T>
6 enable_if_t<!has_compatible_vector_size<simd_float, T>::value,
7 simd_float>
8 operator+(simd_float, T) = delete;

Listing I.3: Using a deleted function as an alternative implementation to Listing I.1.

4. A SFINAE (or concept) check for the usability of the addition operator for an
unportable type combination is impossible to implement.

The has_addition_operator trait in Listing I.2 will not tell whether a call to
operator+(T, U) leads to a failed static assertion. This depends on the rules
of substitution failure: The expression decltype(std::declval<T>() + std::
declval<U>())> yields a valid type even if has_compatible_vector_size<
simd_float, T>::value is false.1 The substitution rules do not depend on
whether a static assertion fails on instantiation of a template function. They do
depend on whether the (viable) function is accessible (public vs. private) or de-
leted, though. Thus, the has_addition_operator trait will tell whether an addition
operator is inaccessible or deleted.

Listing I.3 shows an implementation of operator+ that solves the SFINAE issue
of Listing I.1 but at the cost of losing custom diagnostics output. The compiler has
no idea why the library developer decided to declare the function as deleted. Thus,
all it can do is tell that a deleted function was used. This tells a user of the library
that either the library developer made a mistake or it was really intended that this
overload is forbidden.

There is no way in current C++ to declare a function in such a way that all four
items are satisfied:

1. viable for incorrect use

2. ill-formed for incorrect use

3. custom diagnostics output for incorrect use

1 It would be possible to modify Listing I.1 such that the return type is invalid, but then the function
would not be viable for unportable type combinations and the static_assert would never fail…
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4. SFINAE or Concepts can check for usability, not only viability

The Custom diagnostics and SFINAE features are mutually exclusive.

I.2 POSSIBLE SOLUTIONS

Approaches:

1. Introduce a new type trait (which requires compiler support) that can detect
whether a given expression fails a static assertion.

2. Extend concepts to do “negative matching” to enable customized diagnos-
tics. Thus, a call to simd_float + double would match the second overload
in Listing I.4 as best viable function and make such a program ill-formed with
the string after error used for diagnostics. In a template parameter substi-
tution this would lead to a failure and thus enable has_addition_operator
to check for usability of the addition operator.

1 template <typename T>
2 requires has_compatible_vector_size<simd_float, T>::value
3 simd_float operator+(simd_float, T);
4 template <typename T>
5 requires !has_compatible_vector_size<simd_float, T>::value
6 error "<how to use + correctly>"
7 simd_float operator+(simd_float, T);

Listing I.4: Notion of “negative matching” as an extension to concepts.

3. Introduce an additional check at the end of overload resolution [16, §13.3],
in the same spirit as the check for accessibility:

§13.3 [over.match]
If a best viable function exists and is unique, overload resolution succeeds and produces it as the result. Otherwise
overload resolution fails and the invocation is ill-formed. When overload resolution succeeds, and the best viable
function is not accessible (Clause 11) in the context in which it is used or template instantiation would lead to a
failed static_assert, the program is ill-formed.

The intention is to trigger a substitution failure when a static_assert
would fail and thus enable SFINAE.

4. Extend the delete expression for deleted functions [16, §8.4.3] to accept an
optional string argument that will be used for diagnostics output.

§8.4.1 [dcl.fct.def.general]
Function definitions have the form
function-definition:

attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt function-body
function-body:
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1 template <typename T>
2 enable_if_t<!has_compatible_vector_size<simd_float, T>::value,
3 simd_float>
4 operator+(simd_float, T) =
5 delete ("Incompatible operands: the SIMD register sizes for "
6 "both operands must be equal on all possible target "
7 "platforms to ensure portable code. Use an explicit "
8 "type conversion to make the code portable.");

Listing I.5: Providing custom diagnostics to a deleted function.

ctor-initializeropt compound-statement
function-try-block
deleted-definition
= default ;
= delete ;

deleted-definition:
= delete ( string-literal ) ;
= delete ;

§8.4.3 [dcl.fct.def.delete]
A function definition of the form:
attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt = delete ;

deleted-definition
is called a deleted definition. A function with a deleted definition is also called a deleted function.

A program that refers to a deleted function implicitly or explicitly, other than to declare it, is ill-formed, and the
resulting diagnostic message (1.4) shall include the text of the string-literal, if one is given, except that characters
not in the basic source character set (2.3) are not required to appear in the diagnostic message. [ Note: This includes
calling the function implicitly or explicitly and forming a pointer or pointer-to-member to the function. It applies
even for references in expressions that are not potentially-evaluated. If a function is overloaded, it is referenced
only if the function is selected by overload resolution. — end note ]

With this solution the deleted function in Listing I.3 can be extended as
shown in Listing I.5.

I.3 EVALUATION

Approaches 1 and 3 require instantiation of the constant part of the function body
to evaluate the static_assert during overload resolution, before actually select-
ing the function. This seems novel territory for such a small feature.

Similarly, approach 2 requires extensions to the concepts design, which is cur-
rently not even a working draft for a Technical Specification.

Approach 4 can be implemented as a fairly small extension to the current check
whether a function is deleted at the end of overload resolution. The issue of in-
tegrating string-literals from program source code to diagnostic compiler output
was already solved for static_assert.

The recommendation is to proceed with approach 4.



ACRONYMS

ABI Application Binary Interface

ALICE A Large Ion Collider Experiment

ALU Arithmetic Logic Unit

API official: Application Programming Interface
better: Application Programmer Interface

AVX Advanced Vector Extensions

CBM Compressed Baryonic Matter; experiment at FAIR

CERN European Organization for Nuclear Research; in Geneva

CPU Central Processing Unit

FAIR Facility for Antiproton and Ion Research; in Darmstadt

FLOP floating-point operation

FMA Fused Multiply-Add

GCC GNU Compiler Collection

Geant GEometry ANd Tracking

Geant-V GEometry ANd Tracking Vector (Prototype) project

GPU Graphics Processing Unit

HLT High-Level Trigger

ICC Intel C++ Compiler

ILP Instruction Level Parallelism

ITS Inner Tracking System

LHC Large Hadron Collider

LRU Least Recently Used
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222 acronyms

LTO Link Time Optimization

MIC Many Integrated Core

MMX Multimedia Extensions

PE Processing Element

POD Plain Old Data

RHIC Relativistic Heavy Ion Collider; at Brookhaven National Laboratory

SFINAE Substitution Failure Is Not An Error

SIMD Single Instruction, Multiple Data

SISD Single Instruction, Single Data

SSE Streaming SIMD Extensions

STAR Solenoidal Tracker at RHIC

STL Standard Template Library

TBB Intel Threading Building Blocks

TLB translation look aside buffer

TPC Time Projection Chamber

TU translation unit
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GERMAN SUMMARY

Datenparalleles Programmieren ist wichtiger als jemals zuvor, denn die serielle
Leistung stagniert. Alle wichtigen Computerarchitekturen haben ihre Unterstüt-
zung für universales Rechnen in expliziter datenparalleler Ausführung erweitert
und weitere Erweiterungen sind angekündigt. Diese Fortschritte paralleler Hard-
ware wurden allerdings nicht von den entsprechend nötigen Erweiterungen der
etablierten Programmiersprachen begleitet. Softwareentwickler wurden also nicht
in die Lage versetzt die inhärente Datenparallelität ihrer Algorithmen explizit an-
zugeben. CPU und GPU Hersteller haben daher neue Sprachen, Spracherweite-
rungen oder Dialekte entwickelt, um datenparalleles Programmieren zu ermög-
lichen. Diese Lösungen haben allerdings einige Nachteile und sind nicht für jede
Aufgabe das geeignete Werkzeug. Die vorliegende Dissertation befasst sich daher
mit einer datentypbasierten Lösung für die C++ Programmiersprache.

SIMD

Die Idee der datenparallelen Ausführung rührt von der Beobachtung her, dass in
rechenintensiven Algorithmen häufig verschiedene Daten mit den gleichen Opera-
tionen verarbeitet werden. Daraus folgte die Entwicklung von Computern, die mit
einer einzelnen Instruktion mehrere Daten verarbeiten konnten (Flynn [3] prägte
dafür den Namen SIMD2). Softwareseitig wird die bestehende Datenparallelität in
Algorithmen aber gar nicht als parallele Ausführung abgebildet, denn typischer-
weise bieten Programmiersprachen für das Verarbeiten von unterschiedlichen Da-
ten mit den gleichen Operationen nur Schleifenausdrücke an. Schleifen sind aber
immer als serielle Iterationen über eine Iterationsvariable definiert. Damit liegt der
Sprache inhärent eine serielle Semantik zugrunde, welche in ISO/IEC 14882:2011
[9, §1.9 p13] durch die sequenced before Regel charakterisiert ist.

Das folgende Bild zeigt die konzeptionelle Transformation, die nötig ist, um von
der seriellen Ausführung von vier Additionen zu der parallelen Ausführung zu
gelangen:

+++++++++++++++++++++++++

+++++++++++++++++++++++++

+++++++++++++++++++++++++

+++++++++++++++++++++++++

+++++++++++++++++++++++++
+++++++++++++++++++++++++
+++++++++++++++++++++++++
+++++++++++++++++++++++++

a0 + b0

a1 + b1

a2 + b2

a3 + b3

↷

a0
a1
a2
a3

+
+
+
+

b0
b1
b2
b3

2 Single Instruction, Multiple Data
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Beide Varianten sind heutzutage auf einem Hauptprozessor ausführbar. Die linke
Variante braucht vier Instruktionen während die Rechte mit einer einzigen SIMD
Instruktion auskommt. Da auf aktuellen Prozessoren die Ausführungskosten für
eine skalare Instruktion weitestgehend mit denen einer SIMD Instruktion gleich
sind, ist die rechte Variante vier mal effizienter.

vektorisierung

Diese Transformation nennt man auch Vektorisierung, da skalare Variablen (skalare
Register) in Vektorvariablen (Vektorregister) transformiert werden. Die folgende
Illustration zeigt die Transformation einer Schleife, welche von einem automati-
schen Vektorisierer (Autovektorisierung) durchgeführt wird:

void func(float *d) {
for (int i = 0; i < N; ++i) {
d[i] += 1.f;

}
}

+++++++++++++++++++++++++

+++++++++++++++++++++++++
+++++++++++++++++++++++++
+++++++++++++++++++++++++
+++++++++++++++++++++++++

+++++++++++++++++++++++++

i = 0..N:
d[i] + 1

i = 0..N/4:
d[4i]

d[4i+1]
d[4i+2]
d[4i+3]

+
+
+
+

1
1
1
1

i = N-N%4..N:
d[i] + 1

Dabei wird eine Schleife über N Additionen in eine vektorisierte Schleife, und
eventuell skalare Prolog- und Epilogschleifen, übersetzt. Dies ist die grundlegende
Strategie für automatische Vektorisierung der meisten datenparallelen Probleme.
Bei einer manuellen Vektorisierung geht der Softwareentwickler meist analog vor,
da der Großteil der Datenparallelität in skalaren Quelltexten in Schleifen abgebil-
det ist. Dabei hat der Softwareentwickler aber zusätzlich die Möglichkeit Daten-
strukturen anzupassen, was einem Compiler, zumindest mit C/C++, nicht erlaubt
ist.

Nun könnte man durchaus die Auffassung vertreten, dass automatisches Vek-
torisieren gut genug funktioniere und manuelles Vektorisieren zu aufwändig sei.
Allerdings sollte man bei dieser Überlegung beachten wie viel effizienter eine vek-
torisierte Verarbeitung sein kann, und ob es im Zweifelsfall vertretbar ist darauf zu
verzichten. Denn meist erfordert die automatische Vektorisierung auch manuelle
Anstrengungen und bewusste Einschränkungen beim Entwickeln.

Die folgende Abbildung zeigt die maximale Anzahl von Fließkommaoperatio-
nen (FLOP) in einfacher Genauigkeit pro Takt für SIMD Instruktionen und skala-
re Instruktionen für x86 Prozessoren (Maximum von AMD und Intel) aufgetragen
über die Jahre der Veröffentlichung einer neuen Mikroarchitektur [4, 8, 10]. Dabei
wird nur ein einziger Prozessorkern (bzw. Thread) berücksichtigt:
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Da eine Anwendung, welche viel Rechenzeit beansprucht, viel Geld sparen kann
wenn sie effizienter rechnet (oder weniger Energie verbraucht wenn sie schneller
wieder in den Leerlauf zurückkehrt), dürfen heutzutage die wenigsten Entwickler
die mögliche Effizienzsteigerung durch SIMD ignorieren.

SIMD DATENTYPEN

Die folgende Abbildung zeigt wie Programmiersprachen die Funktionsweise eines
Computers abstrahieren:

Programmiersprache

Computer

Fundamentaler
Datentyp

skalare Register
& Instruktionen

abstrahiertabstrahiert

Vektor Register
& Instruktionen

SIMD Type

abstrahiert

Der Prozessor des Computers wird über Register und Instruktionen gesteuert. Die
meisten Sprachen, insbesondere C++, benutzen Datentypen und deren zugehörige
Operatoren, um Register und Instruktionen zu abstrahieren. Allerdings existiert
seit der Einführung von SIMD Registern und Instruktionen eine Diskrepanz in
der Abstraktion.

arithmetische typen

Daher ist es sinnvoll neue Datentypen zu definieren, welche die Vektor Register
und Instruktionen abbilden. Das Klassen template Vector<T> soll entsprechend die
folgenden Eigenschaften haben:

• Der Wert eines Objekts vom Typ Vector<T> besteht aus 𝒲T skalaren Werten
vom Typ T.

• 𝒲T , sizeof und alignof von Vector<T> sind abhängig vom Zielrechner.
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• Die skalare Einträge des Objekts lassen sich als lvalue Referenz abrufen.

• Die Anzahl der skalaren Einträge (𝒲T ) ist als konstanter Ausdruck bereitge-
stellt.

• Operatoren die mit T funktionieren, lassen sich mit der gleichen Semantik
pro Eintrag auf Vector<T> anwenden.

• Das Ergebnis jedes skalaren Wertes einer Operation auf Vector<T> ist unab-
hängig von 𝒲T .

• Die Syntax und Semantik der fundamentalen arithmetischen Datentypen las-
sen sich direkt auf Vector<T> übertragen.

• Der Compiler ist fähig Optimierungsschritte genauso anzuwenden wie auf
skalare Operationen.

masken

Äquivalent zu Vector<T> wird ein Klassen template Mask<T> definiert. Diese Da-
tentypen werden für den Rückgabewert von Vergleichsoperatoren von Vector<T>
benötigt. Sie identifizieren 𝒲T boolesche Werte.

Des Weiteren sind Maskentypen wichtig, um bedingte Ausführung zu vektori-
sieren. Dabei wird eine neue Syntax eingeführt:
x(x < 0) = 0; // Setze x auf 0 wo x negativ ist

Dieser Ausdruck beschreibt einen parallelen Vergleich und eine bedingte Zuwei-
sung in den Einträgen wo der Vergleich true zurückliefert. Semantisch entspricht
dieser Ausdruck der folgenden Schleife:
for (std::size_t i = 0; i < x.size(); ++i)

if (x[i] < 0)
x[i] = 0;

Die allgemeine Sprachregel ist:
vector-object ( mask-object ) assignment-operator initializer-clause.

Es ermöglicht damit eine effiziente Schreibweise für die Vektorisierung von Algo-
rithmen welche datenabhängige Unterscheidungen machen müssen.

höhere abstraktionen

Aufbauend auf Vector<T> und Mask<T> werden die Klassen templates SimdArray<
T, N> und SimdMaskArray<T, N> definieren. Während Vector<T> und Mask<T>
mit einer zielrechnerspezifischen Vektorbreite (𝒲T ) arbeiten, kann die Anzahl der
Einträge bei SimdArray vom Entwickler gewählt werden. Die Implementierung
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nutzt dann die beste Zerlegung in Vektorregister und skalare Register für das ge-
wählte N. Dieser Datentyp ist insbesondere von Bedeutung, wenn zwischen ver-
schiedenen Vektordatentypen konvertiert werden muss, da 𝒲T und 𝒲U im allge-
meinen nicht gleich sind. Außerdem lassen sich manche Algorithmen klarer und
effizienter mit einer festen Vektorbreite beschreiben.

Der simdize<T> Ausdruck ermöglicht die generische Vektorisierung von Da-
tenstrukturen. Dabei wird ein Argument C<Ts...> rekursiv übersetzt in C<simd-
ize<Ts>...>. Ist T ein fundamentaler Datentyp ergibt simdize<T> entsprechend
Vector<T>, Mask<T>, SimdArray<T, N>, oder SimdMaskArray<T, N>. Sind nun
noch der Funktionsaufruf get<N>(std::declval<T>()) und der konstante Aus-
druck std::tuple_size<T>::value definiert, dann können die Funktionen sim-
dize_extract und simdize_insert genutzt werden, um Objekte vom Typ T
an einem gegebenen Index zu extrahieren oder einzufügen. Damit funktioniert
simdize<T> also mit std::tuple und jedem anderen Klassen template, welches
die tuple Schnittstelle implementiert.

Der simdize<T> Ausdruck unterstützt damit eine Aufteilung der Daten im Spei-
cher, die weder Array of Struct noch Struct of Array (vergleiche [11]) folgt. Array of
Struct ist die klassische skalare Herangehensweise, während die nicht typbasier-
ten Ansätze zur expliziten Datenparallelisierung Struct of Array empfehlen. Mit-
hilfe von simdize<T> kann man stattdessen leicht eine Array of Vectorized Struct
Speicherorganisation erstellen. Dies ist cacheeffizienter und konzeptionell näher
am objektorientierten Programmieren als Struct of Array. Die verschiedenen Spei-
cherorganisationen sind in der folgenden Abbildung illustriert:

AoS SoA AoVS

a0…d0
a1…d1
a2…d2
a3…d3
a4…d4
a5…d5
a6…d6
a7…d7

a0…7

b0…7

c0…7

d0…7

a0…3
b0…3
c0…3
d0…3
a4…7
b4…7
c4…7
d4…7
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ANWENDUNGEN

Die Vc Bibliothek ist eine Implementierung dieser Datentypen und als freie Soft-
ware für jeden Nutzer frei verfügbar und wird inzwischen weltweit eingesetzt. Ich
habe die Vc Bibliothek entwickelt, um datenparallele Datentypen zu erforschen
und als eine Lösung für das explizit datenparallele Programmieren. Um die Rele-
vanz der Bibliothek zu zeigen werde ich im Folgenden zwei Beispiele diskutieren.

suche

Die Suche ist eine häufige Aufgabe in Computeranwendungen, welche in vielen
verschiedenen Varianten vorkommt. Fast immer besteht bei einem Suchalgorith-
mus eine Abhängigkeit des Ausführungspfades von den Daten. Damit kann weder
der Compiler noch der Algorithmus entscheiden wie viele Iterationen eine Schleife
in der Suche brauchen wird bevor die Schleife startet. Dies ist für schleifenbasierte
Vektorisierer ein Ausstiegskriterium. Die typbasierte Vektorisierung kann aber re-
lativ einfach für Suchalgorithmen verwendet werden. Im Zweifelsfall werden ein
paar Vergleiche zu viel ausgeführt, was aber das Ergebnis nicht beeinflusst.

Entsprechend kann der std::find Algorithmus [9, §25.2.5] mithilfe der Vc Bi-
bliothek implementiert werden. Der Vergleich von std::find und “Vc::find”
zeigt eine deutliche Effizienzsteigerung durch Vektorisierung:
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Dabei ist, dank des Einsatzes von simdize<T>, die vektorisierte Implementierung
“Vc::find” immer noch eine generische Funktion.

Komplexere Suchalgorithmen werden meist nicht nur als alleinstehende Algo-
rithmen definiert, sondern benötigen auch entsprechend zugeschnittene Daten-
strukturen. So wird bei der Suche der nächsten Nachbarn häufig k-d Tree [2, 6] ein-
gesetzt. Dieser Suchalgorithmus erwartet eine spezielle Baum Struktur mit einem
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(skalaren) Diskriminatorwert pro Knoten. Entsprechend kann diese Baum Struk-
tur nicht direkt datenparallel durchlaufen werden.

Die k-d Tree Datenstruktur kann aber so verändert werden, dass in jedem Kno-
ten 𝒲T Diskriminatoren gespeichert werden. Die INSERT und FINDNEAREST Al-
gorithmen müssen dafür entsprechend angepasst werden. Die Schnittstellen der
Algorithmen bleiben dabei gleich zu der klassischen, skalaren k-d Tree Variante:
INSERT fügt einen Eintrag in den Baum ein und FINDNEAREST sucht den einen
Eintrag im Baum für den die Abstandsfunktion minimal ist.

Die folgende Abbildung zeigt einen Vergleich verschiedener Implementierun-
gen für die Suche nächster Nachbarn:

Balancierte Bäume mit Point<float, 3> Einträgen
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Die erste Kurve ( Skalar) zeigt eine klassische, skalare Implementierung des k-d
Tree FINDNEAREST Algorithmus. Die zweite Kurve ( Vektor Knoten) zeigt die
mithilfe von simdize<T> vektorisierte k-d Tree Implementierung mit 𝒲T Einträ-
gen pro Knoten im Baum.

Die dritte Kurve ( Vektor Suchschlüssel) zeigt einen alternativen Ansatz. Der
Suchalgorithmus wurde vektorisiert indem er nach 𝒲T nächsten Nachbarn paral-
lel sucht. Horn u. a. [7] und Foley u. a. [5] beschreiben diese Parallelisierung für ei-
nen GPU Raytracer. Man sieht, dass diese Vektorisierung nur für sehr kleine Such-
mengen effizient funktioniert. Anstatt eines Suchbaumes bietet sich dann schon
die vollständige nächste Nachbarn Suche an, bei der in einer linearen Suche alle
Einträge in der Suchmenge verglichen werden. Diese letzte Implementierung (mit
einem skalaren Interface in der findNearest Funktion) zeigt die vierte Kurve (
Vektorisierte Lineare Suche).
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alice

Das ALICE Experiment am CERN setzt Vc für eine effiziente Koordinatentrans-
formation ein. Dabei wird mit 15 elementaren Splinefunktionen ein zweidimen-
sionaler Punkt in einen dreidimensionalen Punkt transformiert. Die Berechnung
der 15 Splinefunktionen wird in der ALICE Implementierung mithilfe von Vc par-
allelisiert. Da dort noch eine Version von Vc eingesetzt wird, die SimdArray<T,
N> nicht unterstützt, wird die Vektorisierung nur durchgeführt wenn 𝒲float = 4.
Daher läuft die Software auf der eigentlich effizienteren Hardware mit AVX-In-
struktionen langsamer als auf Hardware mit SSE-Instruktionen. Ich habe daher
noch weitere Implementierungen der Koordinatentransformation erstellt, um zu
zeigen wie viele Varianten bei einer typischen Aufgabe auftreten können und wel-
che Probleme sich dabei jeweils ergeben. In jedem Fall ist diese Anwendung durch
das Gesetz von Amdahl [1] in ihrer Effizienzsteigerung limitiert.

Die Laufzeiten und die Beschleunigung relativ zur skalaren Ausführung von der
originalen ALICE Implementierung und einer Implementierung mit SimdArray<
float, 4> (Float4) zeigt die folgende Abbildung:
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Dies zeigt, dass die Effizienz dank Vc um einen Faktor zwei gegenüber der ska-
laren Implementierung gesteigert werden kann. Für die Anwendung macht dies
einen großen Unterschied, denn die Transformation muss für alle Detektormess-
werte durchgeführt werden. Weniger Rechenzeit an dieser Stelle bedeutet weni-
ger Ressourcenanforderung und Energieverbrauch, was sich letztlich in geringe-
ren Anschaffungs- und Betriebskosten niederschlägt.
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FAZIT

SIMD Hardware darf heutzutage von Entwicklern nicht mehr vernachlässigt wer-
den. Um sie aber effizient nutzen zu können, muss der Entwickler Verständnis
und Intuition für diese Form der datenparallelen Verarbeitung erlernen. Nur so
kann ein Entwickler die nötigen Datenstrukturen und Algorithmen entwerfen.
Die Vektor- und Maskentypen der Vc Bibliothek bieten genau diese Programmier-
schnittstelle, welche gleichzeitig dem Entwickler helfen kann die Funktionsweise
der datenparallelen Ausführung zu erlernen. Dabei bilden die Klassen Vector<
T> und Mask<T> die elementaren Bausteine, auf denen höhere Abstraktionen zum
effizienteren Programmieren aufgebaut werden können.

Mit Vc vektorisierte Anwendungen zeigen, dass wertvolle Effizienzsteigerun-
gen möglich sind. Gleichzeitig zeigt die nähere Untersuchung, dass diese Verbes-
serungen nicht durch eine automatische Schleifenvektorisierung möglich sind. Die
Vektortypen ermöglichen folglich die Entwicklung eines portablen und verständ-
lichen Quelltextes, welcher zu effizienteren Programmen führt als ohne Vektor-
typen möglich wäre.
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