Built from makenew/python-package.
Complete pipeline for easy data fitting with Python 3.
Check out the example fits on Fitalyzer. See the Fitalyzer README for details on how to use Fitalyzer for visualizing your fits.
This package is registered on the Python Package Index (PyPI) as scipy_data_fitting.
Add this line to your application's requirements.txt
scipy_data_fitting
and install it with
$ pip install -r requirements.txt
If you are writing a Python package which will depend on this,
add this to your requirements in setup.py
.
Alternatively, install it directly using pip with
$ pip install scipy_data_fitting
Documentation is generated from source with pdoc. The latest version is hosted at pythonhosted.org/scipy-data_fitting/.
To get started quickly, check out the examples.
Then, refer to the source documentation for details on how to use each class.
from scipy_data_fitting import Data, Model, Fit, Plot
# Load data from a CSV file.
data = Data('linear')
data.path = 'linear.csv'
data.error = (0.5, None)
# Create a linear model.
model = Model('linear')
model.add_symbols('t', 'v', 'x_0')
t, v, x_0 = model.get_symbols('t', 'v', 'x_0')
model.expressions['line'] = v * t + x_0
# Create the fit using the data and model.
fit = Fit('linear', data=data, model=model)
fit.expression = 'line'
fit.independent = {'symbol': 't', 'name': 'Time', 'units': 's'}
fit.dependent = {'name': 'Distance', 'units': 'm'}
fit.parameters = [
{'symbol': 'v', 'guess': 1, 'units': 'm/s'},
{'symbol': 'x_0', 'value': 1, 'units': 'm'},
]
# Save the fit result to a json file.
fit.to_json(fit.name + '.json', meta=fit.metadata)
# Save a plot of the fit to an image file.
plot = Plot(fit)
plot.save(fit.name + '.svg')
plot.close()
The above example will fit the line using the default algorithm
scipy.optimize.curve_fit
.
For a linear fit, it may be more desirable to use a more efficient algorithm.
For example, to use numpy.polyfit
, one could set a
fit_function
and allow both parameters to vary,
fit.parameters = [
{'symbol': 'v', 'guess': 1, 'units': 'm/s'},
{'symbol': 'x_0', 'guess': 1, 'units': 'm'},
]
fit.options['fit_function'] = \
lambda f, x, y, p0, **op: (numpy.polyfit(x, y, 1), )
Controlling the fitting process this way allows, for example, incorporating error values and computing and returning goodness of fit information.
See scipy_data_fitting.Fit.options
for further details on how to
control the fit and also how to use lmfit.
The scipy-data_fitting source is hosted on GitHub. Clone the project with
$ git clone https://github.com/razor-x/scipy-data_fitting.git
You will need Python 3 with pip.
Install the development dependencies with
$ pip install -r requirements.devel.txt
Lint code with
$ python setup.py lint
Run tests with
$ python setup.py test
or
$ make test
Generate documentation with pdoc by running
$ make docs
Run an example with
$ python examples/example_fit.py
or run all the examples with
$ make examples
Please submit and comment on bug reports and feature requests.
To submit a patch:
- Fork it (https://github.com/razor-x/scipy-data_fitting/fork).
- Create your feature branch (
git checkout -b my-new-feature
). - Make changes. Write and run tests.
- Commit your changes (
git commit -am 'Add some feature'
). - Push to the branch (
git push origin my-new-feature
). - Create a new Pull Request.
This Python package is licensed under the MIT license.
This software is provided "as is" and without any express or implied warranties, including, without limitation, the implied warranties of merchantibility and fitness for a particular purpose.