Skip to content
Switch branches/tags
This branch is up to date with master.

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time

GillespieSSA: Gillespie’s Stochastic Simulation Algorithm (SSA)

GillespieSSA provides a simple to use, intuitive, and extensible interface to several stochastic simulation algorithms for generating simulated trajectories of finite population continuous-time model. Currently it implements Gillespie’s exact stochastic simulation algorithm (Direct method) and several approximate methods (Explicit tau-leap, Binomial tau-leap, and Optimized tau-leap).

The package also contains a library of template models that can be run as demo models and can easily be customized and extended. Currently the following models are included, decaying-dimerization reaction set, linear chain system, logistic growth model, Lotka predator-prey model, Rosenzweig-MacArthur predator-prey model, Kermack-McKendrick SIR model, and a metapopulation SIRS model.


You can install GillespieSSA from CRAN using


Or, alternatively, you can install the development version of GillespieSSA from GitHub using

devtools::install_github("rcannood/GillespieSSA", build_vignettes = TRUE)


The following example models are available:

Latest changes

Check out news(package = "GillespieSSA") or for a full list of changes.

Recent changes in GillespieSSA 0.6.0

  • MAINTAINER: Maintainer has been changed to Robrecht Cannoodt.

  • DOCUMENTATION: Documentation was roxygenised and markdownised.

  • DOCUMENTATION: Port demo’s to vignettes.


  • DOCUMENTATION: Remove ’s from examples.

  • MINOR CHANGE: Many functions were refactorised in order to clean up the code.

  • MINOR CHANGE: Functions which are marked “Not intended to be invoked stand alone.” are no longer being exported.

  • BUG FIX: Fix warning and potential error in OTL.

Recent changes in GillespieSSA 0.5-4 (2010-08-16)

  • DOCUMENTATION: Fix typos in documentation.


  • Brown D. and Rothery P. 1993. Models in biology: mathematics, statistics, and computing. John Wiley & Sons.
  • Cao Y., Li H., and Petzold L. 2004. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. J. Chem. Phys. 121:4059-4067. doi:10.1063/1.1778376
  • Cao Y., Gillespie D.T., and Petzold L.R. 2006. Efficient step size selection for the tau-leaping method. J. Chem. Phys. 124:044109. doi:10.1063/1.2159468
  • Cao Y., Gillespie D.T., and Petzold L.R. 2007. Adaptive explicit tau-leap method with automatic tau selection. J. Chem. Phys. 126:224101. doi:10.1063/1.2745299
  • Chatterjee A., Vlachos D.G., and Katsoulakis M.A. 2005. Binomial distribution based tau-leap accelerated stochastic simulation. J. Chem. Phys. 122:024112. doi:10.1063/1.1833357
  • Gillespie D.T. 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81:2340. doi:10.1021/j100540a008
  • Gillespie D.T. 2001. Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115:1716-1733. doi:10.1063/1.1378322
  • Gillespie D.T. 2007. Stochastic simulation of chemical kinetics. Annu. Rev. Chem. 58:35 doi:10.1146/annurev.physchem.58.032806.104637
  • Kot M. 2001. Elements of mathematical ecology. Cambridge University Press. doi:10.1017/CBO9780511608520
  • Pineda-Krch M. 2008. Implementing the stochastic simulation algorithm in R. Journal of Statistical Software 25(12): 1-18. doi: 10.18637/jss.v025.i12
  • Pineda-Krch M., Blok H.J., Dieckmann U., and Doebeli M. 2007. A tale of two cycles — distinguishing quasi-cycles and limit cycles in finite predator-prey populations. Oikos 116:53-64. doi:10.1111/j.2006.0030-1299.14940.x


GillespieSSA — Gillespie's Stochastic Simulation Algorithm (SSA)



No packages published