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Abstract: Peter Samson designed and built a real-time signal-processing computer for music applications in the 1970s.
The Systems Concepts Digital Synthesizer (“Samson Box” for short) was installed at the Center for Computer Research
in Music and Acoustics (CCRMA) at Stanford University in 1977, where it served for over a decade as the principal
music generation system. It was an important landmark in the transition from general-purpose computers to real-time
systems for music and audio, and helped set the stage for the sea change in the music industry from analog to digital
technologies that began in the 1980s and continues at a rapid pace today.

This article focuses on the historical context of the Samson Box, its development, its impact on the culture of
CCRMA and the Stanford Artificial Intelligence Laboratory, its use for music research and composition at Stanford, and
its role in the transformation of the music and audio industries from analog to digital practices. A list of compositions
realized on the Samson Box is included, which shows that from 1978 to its decommissioning in 1992 it was used to
create over 100 finished works, many of which were widely performed and were awarded prizes. A companion article
provides a detailed architectural review and an interview with Pete Samson.

Introduction

The Systems Concepts Digital Synthesizer was a
special-purpose signal-processing computer designed
for music applications that was developed in the
1970s by Peter Samson of Systems Concepts, Inc., a
computer equipment manufacturer in San Francisco.
It helped usher in the modern age of computer music,
which this journal especially celebrates. The Samson
Box, as it was called, was an important landmark
in the transition from general-purpose computers to
real-time systems for music and audio, and it helped
set the stage for the sea change in the music industry
from analog to digital technologies that began in the
1980s and continues at a rapid pace today.

Commissioned in 1975 by John Chowning, John
Grey, James (“Andy”) Moorer, and Loren Rush,
founders of the Center for Computer Research in
Music and Acoustics (CCRMA) at Stanford Uni-
versity and funded by a grant from the National
Endowment for the Arts, it was delivered 9 De-
cember 1977 and was placed into service in 1978.
CCRMA was formed in June 1975. At first, it was a
small project at the Stanford Artificial Intelligence
Laboratory (SAIL), which was under the direction
of John McCarthy (1927–2011). The SAIL facility
was housed in the D.C. Power laboratory build-
ing (named for Donald C. Power, an executive at
General Telephone and Electronics Corp, which
had donated the building to Stanford University),
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located in the wild foothills behind Stanford Uni-
versity. The Samson Box served for over a decade as
the principal music generation system at CCRMA.
It was decommissioned 3 April 1992 (see Figure 1).

In the 1970s, quantitative improvements in the
density, speed, and cost of electronic components
led to qualitative breakthroughs that allowed re-
searchers to shift signal-processing tasks from slow
general-purpose computers to machines specially
designed for music and audio. This led eventually to
the industrialization and diffusion of digital audio
worldwide, bringing about the historic transforma-
tion of music that our field has witnessed over the
last half-century.

The Samson Box was an important proof-of-
concept for, and contributor to, these transforma-
tions. The Samson Box performed all then-popular
synthesis and signal processing techniques in real
time, yet it was sufficiently general-purpose to
support some methods discovered after it was de-
signed. Over its lifetime, it facilitated many research
projects and compositions, and supported hundreds
of users. Some received grants and prizes; others
found wide audiences for works realized on the
Samson Box. A list of works and composers is found
at the end of this article.

Its elegant design still rewards study, but just
as interesting are insights that its history provides
about our unfolding musical culture. This article
focuses on its historical context, its development,
its impact on the culture of CCRMA and SAIL, its
use for music research and composition at Stanford,
and its role in the transformation of the music and
audio industries from analog to digital practices.
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Figure 1. Pete Samson with
the Systems Concepts
Digital Synthesizer
(“Samson Box”). Photo
taken on the occasion of
the Box’s decommissioning

(3 April 1992), in the
CCRMA machine room at
The Knoll, Stanford
University, Stanford,
California. (Photograph by
Patte Wood.)

A companion article (Loy 2013a) provides a
detailed architectural review and an interview with
Pete Samson.

Sea Change

There was a time not that long ago when analog
audio techniques were all that were known, and
the conventional wisdom of the time was that
there would be more of the same in the future.
Then, at Bell Laboratories in the early 1960s,
Max Mathews (1926–2011) demonstrated that the

problems of analog audio could be overcome by
digital technology (Mathews 1963).

Samson (1980) described the advance this way:

Digital synthesis offers numerous advantages
over analog techniques. Every processing el-
ement can be controlled precisely, instanta-
neously, and repeatably. Digital processing,
with its inherent accuracy and stability, can
perform the tasks of current analog modules
with substantially less noise and distortion, and
introduces many new sonic resources, such as
time-varying timbre and reverberation.

Of course, in hindsight, we know that digital
audio has gone far beyond just overcoming the
limitations of analog audio. In his 1963 article in
Science, Max Mathews wrote, “There are no theo-
retical limits to the performance of the computer as
a source of musical sounds.” While this is also true,
in hindsight, we also know that “the computer”
now provides much more than just a source of
musical sounds.

In fact, it is evident that no one in that time period
foresaw the extent to which computer technology
would touch every aspect of music technology as it
does today. Before the mid 1970s, few not actively
working in this field believed that computers had
much relevance to music. Even if some relevance
was granted, it was not clear whether computer
music would ever amount to anything more than a
laboratory curiosity. Disk drives as big as washing
machines and temperamental analog-to-digital and
digital-to-analog converters were required. Even in
the unlikely event that one had access to such rare
and expensive equipment, it was not possible to
calculate music of any meaningful sophistication in
anything remotely close to real time on even the
fastest of these machines. Given that the sounds
being generated were often highly experimental
in nature, the slow turn-around time meant the
pace of the work was glacial. “A time scale of
100—meaning 100 seconds of computational effort
for each 1 second of sound—is not uncommon.
This is despite the use of powerful computers, and
numerous simplifying assumptions and restrictions
in the software” (Samson 1980).
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Given these circumstances, to suppose that digital
signal processing (DSP) might somehow displace a
century’s worth of analog audio practices—dating
back to the work of Alexander Graham Bell and
Thomas Edison—stretched credibility, to say the
least. But hindsight can show us now what foresight
could not tell us then: The way ahead was already
in progress.

Mathews’ Prophecy

To outgrow the limitations of mainframe computers,
digital computers specifically designed to generate
music in real time were needed. At a conference on
music and technology held in 1970, Max Mathews
presciently observed,

The future will add the digital computer to the
equipment of today’s electronic studio. . . . In the
far future, analog devices may be swept away by
more reliable and accurate digital synthesizers
constructed from integrated circuits. The result
will be real-time digital synthesizers which can
be played with all the nuances of present-day
performance and all the precision and range of
sound quality achieved by present-day digital
synthesis. The future grows from the past, and
the past is now long enough to reveal at least
the next step forward (Mathews 1971).

Mathews’ “far future” actually showed up rather
quickly. In the mid 1970s, specialized hardware sys-
tems for sound synthesis leapfrogged over sluggish
software sound synthesis, demonstrating that digi-
tal technology was more than up to the challenge.
The Samson Box provided a particularly powerful
solution to real-time computation of digital audio
that enabled enormous strides in computer music
research and composition at Stanford.

A History of the Box

Andy Moorer (2012) recalls he met Samson in 1963
at the Massachusetts Institute of Technology (MIT)
in the PDP-1 room, and that Samson introduced
him to Steve Russell’s Spacewar! game and also

to software for music generation that could play
multi-part Bach fugues in real time with square
waves. “The tones were made by taking the top four
bits of the accumulator (there was only one) of the
PDP-1 and routing each one to an audio amplifier
(vacuum-tube) and speaker. Each bit was one voice.
You toggled the bits at the desired frequency and you
got four square-wave tones.” Subsequently, Michael
Levitt and Stuart Nelson formed Systems Concepts,
and made PDP-10 peripherals. Samson, who knew
them from MIT, figures that he “was perhaps
the fifth or sixth person” to join the company.
Moorer ended up as a SAIL systems programmer
in 1968, doing “a lot of different things, computer
vision, networking. I programmed the Arpanet IMP
[Interface Message Processor]—I was among the first
hundred or so programmers to actually implement
the early Internet—speech recognition, computer
graphics, robotics, language design, and more. It was
a great time!” Samson and Moorer stayed in touch,
and remained interested in each other’s work.

Chowning told me by electronic mail that he
arrived at SAIL in 1964, “within months of having
read Max’s article [in Science], when the SAIL
computer was still a PDP-1 on [the Stanford main]
campus.” He continued,

I was supported by David Poole, an AI Lab
systems programmer, who in 1966(!) wrote a
music synthesis program native to the PDP-6
(the predecessor of the PDP-10) based on Max’s
Music IV. (It was in 1966 that SAIL moved to
the D.C. Power Lab.) That is the program I used
when I discovered FM in 1967. It resulted in the
NOSCIL unit generator [an oscillator accepting
negative increment or frequency values], that
Andy remembers being “in the air” when he
arrived in 1968.

Accepted as a graduate student at Stanford in
Computer Science in 1972, Moorer told me he
gravitated to “learning the ‘new’ subject of digital
signal processing pretty much as it was developing.”
When later John Grey and Loren Rush arrived at
SAIL, they gravitated together to their common
interest, and eventually formed CCRMA. Moorer
said, “Since none of us were professors, Leland
Smith took the role of the faculty sponsor, which
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was a mixed bag, but ultimately worked out OK. We
applied to NSF [National Science Foundation] and
NEA [National Endowment for the Arts] for grants.
It took many months to write the proposals and
many more months to get the deal.”

Until their ship came in, they were an impover-
ished research project at SAIL, scavenging for spare
instruction cycles on the PDP-10 by working nights
and weekends. Chowning told me “we were the
only ongoing project at SAIL that was not supported,
rather well, by ARPA [Advanced Research Projects
Agency] or NSF or some other government agency.”
Moorer (2012) said,

As for the lab politics, recall that the music
group were parasites on the system, which was
funded by ARPA. . . . We were tolerated, and
very modestly supported (spare change from the
lab budget—all basically on the good will of Les
Earnest, executive director of SAIL).

According to Chowning, ARPA had wanted
CCRMA kicked off SAIL because of the inordinate
number of machine cycles they consumed doing
software sound synthesis. But when Les Earnest
redesigned his famous Finger program (Harrenstien
1977) to include usage by time of day, it quickly
became evident that CCRMA used only nighttime
and weekend cycles that would otherwise have been
wasted, and the issue subsided. Moorer goes on,

I designed and hand built a set of 16-bit D/A
[digital-to-analog] converters for the PDP-10
(four channels). We could only hit about 25 kHz
sampling rate when using all four channels. It
also had two channels of 14-bit A/D converters,
which were as precise as you could get at
that time. John Grey and I started working
together on our dissertations—I would build
analysis and DSP programs for John, as he
needed them. That was also great fun and very
productive. I published a mess of papers in that
era. Chowning became convinced that we had
to get the music computation off the PDP-10—
that there just wasn’t enough horsepower there
to support what we wanted to do—and that we
didn’t see those big computers getting powerful
particularly rapidly. Pete always had an interest

in computer music and often came to our
concerts and talks. Pete, on his own, decided
to start the project to design the Box. We had
talked a bit about it as he was developing it,
but it was largely his idea from start to finish.
We only made one relatively minor change to
the design (adding ramping to the oscillator
frequencies). Everything else was all Pete. He
announced the device at the first computer
music conference [1974], which was held [at
Michigan State University] in [East] Lansing,
Michigan, where Dave Wessel was a professor.

Shortly thereafter, in early 1975, CCRMA got
its funding from the NSF and the NEA, and the
principals then placed an order for one Samson Box
on 12 January 1976, to be delivered in 110 days’
time.

As it turned out, Max’s prophecy was busy
coming true in several places simultaneously. Hal
Alles, of Bell Labs, showed a prototype of his digital
synthesizer at the same conference (Alles 1977,
1979). Also in this time frame, Jon Appleton, Sydney
Alonso, and Cameron Jones were developing the
prototype of the Dartmouth Digital Synthesizer
(Alonso, Appleton, and Jones 1976), which would
later become the Synclavier. Peppino DiGiunio
was developing his 4X series of synthesizers at
the Institut de Recherche et de Coordination
Acoustique/Musique (IRCAM). At Stanford, F.
Richard (“Dick”) Moore was also starting to develop
another synthesizer prototype. The FRMbox, as it
was called, was completed and operational at SAIL
a few months before the Samson Box arrived (Moore
1977, 1985). Moore had worked at Bell Laboratories
with Mathews on the GROOVE system in the late
1960s and early 1970s, and had come to Stanford for
graduate work (Mathews and Moore 1970). During
a conversation with Chowning in 2012, he told
me that Mathews had strongly promoted the idea
of building out Moore’s FRMbox prototype to its
full potential instead of commissioning the Samson
Box, especially in view of the numerous delays in
the Box’s delivery. Originally scheduled for delivery
1 March 1976, its arrival was postponed numerous
times by Systems Concepts, causing Stanford at
one point to threaten breach of contract. Rather
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than taking 110 days to build, it took almost two
years. However, Chowning also told me that he was
persuaded by Moorer, whose technical credentials
he trusted absolutely, to stick to their original
plan and wait for the Samson Box. Moorer told
me,

Really, Pete’s device was the only thing on the
horizon that promised the appropriate horse-
power. I looked at commercial DSP systems at
that time as well. We had one in-house that
was bought for speech research—the SPS-41. It
was really designed for doing FFTs [fast Fourier
transforms], and did less well on anything else.
There were a few others (Culler-Harrison was
one). They all had various problems making it
difficult to do music, such as the lack of rever-
beration memory, not enough precision, and so
on. There was really nothing that satisfied the
needs like Pete’s device did. Dick Moore also
made a digital music synthesizer, but it was
not a terribly powerful device—more of a demo
device. We had heard Hal Alles’s device, and
noted that it had some terrible audio issues,
such as that audio envelopes were calculated
at 1/8th the sampling rate, so that attacks had
noticeable ‘chirps’—a classic rookie mistake
that is repeated again and again, especially from
people that think they know something from
analog synthesizers. In analog, you just update
the control voltages, say, 30 times a second
and all is well. Of course, the analog circuitry
smooths out all the glitches for you. No such
luck in digital.

Designing the Box

At Systems Concepts, Samson had been surveying
the literature and holding discussions with practi-
tioners since about 1972, and had decided that the
design would be organized by its repertoire of syn-
thesis techniques. But it would also need to provide
flexibility necessary to permit experimentation and
development of new techniques. Just how big would
it have to be? Samson decided that he would aim for
a real-time capability on the order of a string quartet,

both by additive and subtractive methods. A larger
design (“symphonic”) would be nice, but seemed
infeasible with extant technology, and a smaller
one (“violin”) would probably be too constraining
on users trying to prepare something larger-scale.
An external host computer would control the syn-
thesizer, sending it a musical score in the form
of a stream of commands (Samson 1985). Samson
envisioned that it could also be controlled inter-
actively by use of real-time input devices for live
performance, although there were some difficulties
here (detailed in the following).

Synthesis techniques included additive, subtrac-
tive, and frequency modulation (FM) synthesis.
Processing effects included filtering, mixing, rever-
beration, random noise generation, and miscella-
neous signal testing functions. It could also read,
process, and write streaming multichannel audio
waveform data for sampling synthesis and musique
concrète. It had a large delay memory for filtering,
table storage, and reverberation. Four 14-bit digital-
to-analog converters (upgraded to 16-bit DACs in
1984) provided state-of-the-art quadraphonic analog
output for three-dimensional audio spatialization.
The Samson Box was able to perform all these
functions simultaneously, in real time, based on a
design including 256 signal generators, 128 signal
modifiers, 32 delay units for reverberation, about
64,000 words of delay memory, and 256 sum mem-
ory locations for combining signals. It used about
2,500 TTL integrated circuits, performed 20 million
multiplications per second across 20-bit data paths,
implemented a continuously variable sample rate,
and supported up to 256 separate channels of read-
data and write-data, and up to 16 channels of analog
I/O (see Figure 2).

Arithmetic and data-path precision was designed
in light of musical aesthetic considerations, as
well as cutting-edge psychoacoustic research. For
example, oscillator frequency precision was almost
three magnitudes below the smallest just noticeable
difference (JND) of pitch (usually given as 3 Hz
for frequencies below 500 Hz). This fine frequency
resolution would not only allow seamless resolution
of pitch, but it would also allow beat frequencies
between oscillators of musically useful duration. For
another example, Samson faced a tradeoff between
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Figure 2. Samson Box
architecture. The Samson
Box elements included
generators, modifiers,
sum memory, delay units,
and delay memory. The
256 generators produced
various band-limited
and non-band-limited
waveforms; applied
linear or exponential

envelopes; performed
frequency modulation;
swept frequency;
read data from computer
memory; and wrote
data to computer memory
or to digital-to-analog
converters.
The 128 modifiers
performed filtering,
resonance, antiresonance,

two- and four-quadrant
multiplication, mixing,
clipping, sample-and-hold,
and uniform noise. Mod-
ifiers interfaced to delay
units, which implemented
table lookup or delay
lines. Each sum memory
location accumulated
all outputs directed to
it on each pass. Generators

wrote to generator-side
sum memory, modifiers to
modifier-side sum memory.
Generators and modifiers
wrote to this-pass sum
memory and read from
last-pass sum memory,
but modifiers could
also read from this-pass
and could replace contents
on writing sum memory.

the substantial cost of memory and oscillator quan-
tization noise. With a sine wave table address size of
13 bits, the oscillators achieved a respectable 76.5 dB
signal-to-noise ratio. As amplitude decreased, so did
noise, because it was “signal with noise” (Blesser
and Kates 1978). Oscillator glissando effects could
be instantaneous or as slow as 9.3 Hz/sec at 20 kHz.
Frequency sweep rate was also well below a JND of
pitch so that glissandi sounded continuous.

Samson (1980) wrote about fabricating the Box as
follows.

Engineering of the Synthesizer made heavy use
of computer-aided design techniques developed
on the Systems Concepts in-house computing
facility. All schematic drawings for the system
were done by machine, and machine-checked for
consistency. For the printed-circuit logic boards,
computer programs did the parts placement,

resulting in assembly drawings; and then
laid out the complete wiring of each card.
Results were full-size artwork and a paper tape
to run the numeric-controlled drill making
the printed circuit boards. For those portions
of the Synthesizer on wire-wrap panels, the
computer system produced data files for fully
automatic machine wrapping: This avoids a
significant source of error and ensures the
best possible workmanship. As another part of
the design automation process, various items
of metalwork—brackets, chassis, etc.—were
designed with the aid of computer programs
which created paper tapes to run the actual
metalworking machines.

Diagnostics testing were a central feature of
the design. Samson added, “More than 10% of the
hardware in the Synthesizer is strictly for diagnostic
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purposes. In support of this hardware, some 50,000
words of diagnostic software have been written.”

Chance Favors a Prepared Mind

I can attest that, outside of a small handful of
researchers, digital audio was almost completely
under the radar in those times. Most academics and
professionals were in the dark, and the public at large
had no clue. No doubt we each have a story of how
we came to computer music; mine is inextricably
bound up with the creation of the Samson Box and
its software, and I offer it to help get the flavor
of the times. In 1974 I was a part-time lecturer in
charge of a small classic electronic music laboratory,
built by Herbert Bielawa at San Francisco State
University (SFSU), with a Buchla 100 synthesizer
and a collection of audio gadgets of our own devising.
I’d read Lejaren Hiller and Leonard Isaacson’s book
Experimental Music (Hiller and Issacson 1959),
had heard the Illiac Suite, and was familiar with
Max Mathews’s Technology of Computer Music
(Mathews et al. 1969). Although these results were
interesting, they seemed aesthetically primitive—
and in any event, remote and unobtainable. I
dismissed their meager results as a consequence of
the unwieldy nature of computers. (And I was not
incorrect.)

But one day in 1974 a colleague invited me
to attend a public lecture at SAIL, where I met
John Chowning and heard his charismatic work.
The sophistication and advancement of his music,
coupled with his penetrating insights on digital
technology, lit me on fire. I saw the promise of his
approach at once, and applied immediately to do
doctoral study at Stanford with him. I approached
Andy Moorer, then a systems programmer at SAIL,
and basically begged him to give me access. He
skillfully tested my resolve, handing me a two-
foot thick stack of computer manuals, including
such digital esoterica as the PDP-10 UUO Manual
(Unimplemented User Operations, cf. Frost 1975),
cheerily saying, “Here you go. Read these, and
when you have understood them, give me a call
back, OK?” I took it home, heartily wolfed it down
(comprehending a little), and called him back two

weeks later. My diligence was rewarded with a guest
account at one of the most advanced computer
laboratories on the planet, rubbing shoulders with
the titans of artificial intelligence (AI). Believing
I’d died and gone to heaven, I threw myself into
the work, driving down from San Francisco on
weekends, working insane hours to catch up with
the technology.

A few months later the phone rang in my office
at SFSU, and the caller introduced himself as Pete
Samson. He told me Chowning had given him
my name, and that he wanted to come have a
“look-see” at my studio to get a feel for analog
electronic music practices. When he arrived, he
required mere seconds of orientation before he more
or less thoroughly understood what was possible.
When I asked him his business, he told me he
was developing a real-time digital synthesizer for
Chowning, and did I want to come take a look at his
studio, since I’d shown him mine? So the next week
I visited Systems Concepts, which had its offices
above a restaurant in San Francisco’s SoMa (South
of Market Street) district, and listened to Samson
describe his synthesizer design.

I heard him as though he were speaking a
foreign language, which was shocking, given that
I considered myself to be a serious practitioner of
electronic music. But I plainly understood little of
what he said. Eventually, I would understand much
more, but I would also come to appreciate why
it had sounded so foreign: Digital audio required
a fundamental reimagining of both the art and
the science of sound. It would take much more
than a little getting used to. Access to information
was clearly key. I redoubled my efforts to study at
Stanford, and was admitted to graduate study in the
fall of 1975.

Prototyping the Software

Only months later I was chafing at the glacial
turn-around time of software synthesis on SAIL’s
PDP-10 when I heard the news that the Samson
Box had been ordered. Given my background in
interactive analog performance, I was strongly
attracted to the idea of doing improvised computer

32 Computer Music Journal



Compositional
Methods

note 0.1 flt 1 440Hz –6dB;

note 0.2 vln 1.1 330Hz –18dB;

.

.

.

Compositional level
Score File

Interpreter
Process
Control

MBOX

Scheduler

Mid Level

High Level

flt

vln

bn

ob

Instruments FM()

Wav()

Filt()

DAC()

Synthesis
Methods

Time

flt

vln1

note 0.3 vln 1.0 300Hz –15dB;

vln2

1.30.3

fo
rk
(f
lt
)

fo
rk
(v
ln1

)

fork
(vln2

)

Processes

init

1.12.01.0 . . .

flt

cmds

vln1
cmds

vln2
cmds

flt

ter

vln1,2
ter

exit

Synthesizer Command Stream

LINGER

Low Level

Synthesizer command generation

Time management

Command merging

System functions

Per-process operation (performed by each instance)
Initialize

Wait_until(begin_time); // pause process, emit LINGER
Claim processing elements, sum memory, set running modes
Bind parameters to processing elements (emit commands)
Wait_until(begin_time + segment_duration);

Repeat  (e.g., for multi-segment envelope)
Terminate

Bind parameters from note statement.

Clear running modes
Free processing elements, sum memory
Terminate self 

Wait_until(begin_time + duration);

segment_duration += next_segment_duration;

Merge:

Figure 3. Synthesizer
command software
architecture. The MBOX
compiler incorporated
three layers of synthesizer
command software, as
follows. Lower level:
synthesizer command

generation, time
management, and
command merging.
Mid-level: user-provided
(or library-provided)
instrument definitions and
support functions. Higher
level: instrument processes

and score interpreter. The
output of this process was
a file of Box commands
stored on disk that would
subsequently be
transferred to the Box in
real time to realize the
musical performance.

music in real time. Though I knew the Box might
take years to show up—if it showed up at all—I
decided to throw myself into preparing for it. But
the only available documentation was an 18-page
specification (Samson 1974) that we referred to
as the “crib sheet” because it was so abstruse. I
approached Moorer with a proposal: If he would
help me comprehend it, I would write a tutorial
introduction for the others (see Loy 1977 for the
result of this bargain). He accepted, and, over time,
inducted me into the Box’s many digital mysteries.
I eventually joined a small team of Box software
developers: Andy Moorer and Mark Kahrs provided
overall architectural guidance; Moorer provided

systems programming; Kahrs wrote a command
assembler, disassembler (DAB), and a library of code
for resource management; Ken Shoemake further
developed the command assembler; the compiler
(Loy 1981) was my contribution.

Moorer and Kahrs designed the synthesizer
control system in three layers, as follows. Lower
level: synthesizer command generation, time man-
agement, and command merging; mid-level: user-
provided (or library-provided) instrument definitions
and support functions; higher level: instrument pro-
cesses and score interpreter. The compiler integrated
these three layers, as described below (see Figure 3).
Later, David Jaffe extended Kahrs’s DAB into a
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Figure 4. Samson Box
control. In its original
configuration, a PDP-10
provided time-sharing
services and fed Samson
Box command and audio
data in real time to a

PDP-6 on demand from
the Samson Box. A KIM-1
microprocessor serialized
interactive inputs (clavier
keyboard and knobs) to
the PDP-6. After 1983, the
PDP-10 and PDP-6 were

replaced by a Foonly
computer system that
provided both
time-sharing and
interactive real-time
services.

command debugger (Jaffe 1983). Subsequent soft-
ware, such as Bill Schottstaedt’s Pla compiler for
the Box (Schottstaedt 1983), and later interactive
performance systems, shared essentially the same
architecture.

The Day Finally Arrived. . .

At 9:00 AM on 9 December 1977, Samson wheeled
a tall green metal box into the machine room at
SAIL. He connected it to a disused PDP-6 computer,
booted the “Six” from its console switches, and
loaded diagnostic software. He ferociously pounded
the keys of an ancient Model 33 Teletype, then
jabbed his finger at an oscilloscope trace of a single
sine wave. That, he told me, was a continuity test,
the result of summing all of the Box’s generators
through all of its other components. At 5:00 PM, the
acceptance agreement having been signed by both
parties, he packed up and went back to San Francisco.
Except for a few relatively minor hardware bugs we
found over the next several months, it worked
straightaway. The rest would be up to us.

Hooking It Up

Figure 4 shows the initial Samson Box setup at SAIL.
The PDP-6 was a hand-me-down computer loaned

to CCRMA by SAIL for hosting real-time control of
the Samson Box. Moorer designed a direct memory
access (DMA) controller to connect the PDP-6 to
the PDP-10, which was the main time-sharing
computer at SAIL. This required wire-wrapping an
interface between the “Six” and the “Ten,” which
we put together one long weekend with a couple
of six-packs of beer and wire-wrap guns. Moorer
then wrote an application for the “Ten” to fetch
synthesizer command files from the disk and relay
them to the Box via the “Six.”

We also built out the analog audio system to
connect to new listening spaces and interoperate
with the existing audio systems. It took us about a
year to get all the software and hardware systems
working well, and to find and flush out the few bugs
in the Box and the many bugs in our software.

The Box at SAIL

At first, the Samson Box was attached to a commonly
shared sound system in the rooms CCRMA used
at SAIL, so that everyone working near connected
speakers heard every sound. This had the great
benefit of keeping us all apprised of our progress, and
fostered cross-fertilization of research and a strong
sense of community: if you heard something you
liked, you went and talked to its creator. The practice
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did have occasional downsides, however. One day I
was jolted by an immense blast of white noise that
erupted from a nearby loudspeaker. My cup flew
involuntarily out of my hand, spraying coffee across
the room while Julius Smith fumbled frantically for
the volume knob. He had been experimenting with
very narrow band-pass filters—hence very quiet,
hence the volume was all the way up—when they
suddenly, and without warning, went unstable. It
turned out the Box’s filters were designed without
saturating overflow or rounding control (see Loy
2013a). It was a vivid lesson to us all.

In fact, CCRMA grew up as an extension of
the open, casual culture of SAIL, fostered by its
leonine director, John McCarthy, and carried out
with great civility and tact by executive director Les
Earnest. The welcoming environment of SAIL was
exemplified by the login banner on each terminal,
which read, “Take Me I’m Yours!” This we did,
lustily. Though there were some private offices,
they were not actually very private: no one kept his
or her door closed, and there were no locks. In fact,
there was less than no privacy. Besides listening to
what everyone did on the common sound system,
there was also a custom video switch that connected
all graphics terminals (Earnest 1972). An escape
sequence on each keyboard allowed anyone to see
anyone else’s screen (even the director’s) to check
out what they were doing. And (if you were brave)
you could then even interfere directly by typing on
other people’s screens, and they on yours. Sometimes
we’d have heated discussions this way about digital
etiquette and other subjects.

Which is to say, no, we didn’t all just get along.
There were intense, near-constant disputes over
resources, even though the Samson Box largely
relieved CCRMA’s computational burden on SAIL.
Despite the intensely diverse research interests that
shared the same facilities, all SAIL research was
conducted in close, intimate contact. It was the
perfect hothouse for incubating creativity in every
sphere. This atmosphere worked to the advantage of
the CCRMA people because in those times most of
us depended on what the SAIL research community
knew about the nascent field of computer science,
and there was really nowhere else to get that
knowledge. What better way to absorb it than to rub

elbows (and offices, keyboards, screens, machine
cycles, and even volleyballs during after-hours
games) with the “army of generals” that was the
SAIL research community?

The Software

For the most part, we used the Samson Box as
a special-purpose real-time batch processor of
precompiled musical scores. We had hoped to use
it interactively, but at first problems in its design
interfered. In any event, batch processing in real
time was what we needed most at that time, and
it took longer for its real-time capability to be
exploited for reasons discussed in the following.

My compiler, MUSBOX (MBOX for short; see
Loy 1981), was designed to support real-time batch
processing on the Samson Box. MBOX was written in
SAIL (the Stanford Artificial Intelligence Language),
developed by Swinehart and Sproull (1970) at
the Stanford AI Laboratory. SAIL was a variant
of ALGOL-60, including extensions such as a
lightweight process discipline.

I adapted the classic “note statement” model
of Music N software synthesis programs for
score input to MBOX. This allowed composers
to use existing score generation tools such as
Leland Smith’s SCORE program (Smith 1972)
or Bill Schottstaedt’s PLA compositional lan-
guage (Schottstaedt 1983). Inputs to MBOX also
included instrument definitions and user-provided
procedures written in SAIL, time functions, and
files of audio sample data. The compiler’s output
was a file of Box commands stored on disk that
would subsequently be transferred to the Box in
real time. An overview of the software architecture
for constructing synthesizer command streams is
shown in Figure 3.

The compiler read note statements from a text
file; parsed the instrument name, timing informa-
tion, and parameters from each note statement;
forked an instance of the instrument named in each
note statement using the SAIL lightweight-process
discipline; and loaded timing and synthesis parame-
ters into the instantiated instrument variables. The
instruments themselves were special procedures
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written in the SAIL programming language. MBOX
executed a time-based hierarchical scheduler that
received requests from the instrument instances to
run at particular times. When executed, instances
claimed synthesizer processing resources from
the low-level routines, then emitted synthesizer
commands as appropriate to generate or process
sounds, according to each instrument’s design. If
an instrument needed to execute at multiple time
points—for example, to implement an attack-decay-
sustain-release envelope—it would cause itself to be
rescheduled as needed to generate its time-ordered
list of synthesizer commands. Controlling the sched-
uler and the lightweight-process mechanism, MBOX
automatically performed a time-ordered merge of
each instance’s output, and wrote the combined
synthesizer command stream to a file (see Figure 3).

MBOX instruments could monitor the progress
of other instruments using the lightweight process
discipline, allowing instruments to track and modify
each other’s operations collaboratively. For example,
a conductor instrument could describe a tempo
map, or denote a path in space for other sounds
to follow. This could be extended hierarchically.
Other instruments could listen to this information
and plot their tempo and/or position in space
accordingly.

After the user had compiled a score to a disk file
using MBOX, he or she would execute a separate
program on the PDP-10, written by Andy Moorer,
to direct the command stream (as well as any time
functions and audio files needed) to the Box. This
program would buffer blocks of Box commands
(and time functions and audio data, if needed) to
the PDP-6 computer to which it was connected. A
real-time executive in the PDP-6 (also written by
Moorer) fed the commands to the Box, which then
played them in real time.

The Music

The first musical production we did on the Samson
Box was to remaster Chowning’s 1972 piece Turenas
using its original score file. This step validated the
architecture of the Box and proved that our software
and hardware system worked for realistically sized

projects. Chowning’s records date this event to
16 December 1978. That means it took us a year
from when the Box was delivered to get everything
running. After that, the Box became the primary
workhorse of digital synthesis at CCRMA and
remained so for more than a decade. A list of works
created on it is given at the end of this article.

Other Digital Synthesizer Designs of the Time

In 1977 there were a number of research machines
and commercial designs in the making, some of
which would eventually find their way to market.
We can get a sense of where the field was headed and
how the Samson Box stacked up by comparing the
various tradeoffs of these designs (see also Moorer
1989 and Kahrs 2002).

A prototype of the Synclavier, the Dartmouth
Digital Synthesizer, by New England Digital Corp.
(NEDCO) was developed in 1976 (Alonso, Appleton,
and Jones 1976); the first commercial version of the
Synclavier was available in 1978. Up to four banks
of sixteen oscillators could be paired to provide up
to 32 simple FM instruments. No other synthesis
techniques or reverberation were provided. It had no
real-time digital audio output (analog out only). The
Synclavier was controlled by a 16-bit minicomputer
of NEDCO’s own design, called ABLE. This was
integrated directly with the synthesis hardware.
Eight-inch floppy disk drives held software and a 25-
MB moving-head disk held up to 3 minutes of digital
audio, or score sequences of much greater length. A
basic system in 1978 cost US$ 13,000. Fully built
out, a Synclavier cost about as much as a Samson
Box. The Synclavier price included the ABLE CPU,
however, and it was shipped with software; the
Samson Box came with neither CPU nor software
(although Stanford’s software was available free of
charge—in the event you happened to have a PDP-10
available).

The Coupland Digital Music Synthesizer was
a 16-voice polyphonic real-time instrument with
a full organ-type keyboard, based on a TI9900
minicomputer, but the user controlled the system
only through a fixed-function console that was not
programmable. Though advertised, it was never
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released commercially (Computer Music Journal
1978).

The Bell Digital Synthesizer was the machine
designed by Hal Alles (1979) mentioned by Moorer,
above. Though it was strictly a research machine
at Bell Labs, the General Development System
(GDS) by Music Technology, Inc., was a reduced-
feature version of this machine controlled by a
Zilog Z80 microcomputer, scheduled for release in
1979. It implemented additive synthesis. Besides the
limitations noted for Alles’s architecture above, the
GDS version did not scale beyond 32 oscillators, and
was limited to 12-tone tempered tuning. Crumar, an
Italian synthesizer manufacturer, commercialized it
in the early 1980s.

The Fairlight CMI was, like the Synclavier,
Coupland, and Bell synthesizers, a performance-
oriented machine. It came equipped with a musical
keyboard, computer keyboard, light pen, and bitmap
graphic screen. Designed by Peter Vogel and Kim
Ryrie, and based on a Motorola 68000 system
design by Tony Furse, the CMI was introduced in
1979, costing about US$ 36,000. It stemmed from a
1976 prototype called the Quasar M8, a waveform
modeling system using additive synthesis, that led
to the development of the Fairlight CMI I as a
sampling synthesizer, having eight voices of 8-bit
samples each. It included sequencing (“Page R”) and
waveform editing software. It was soon followed by
a host of other samplers from competitors including
Ensoniq, E-mu, Roland, and others (Doornbusch
2009).

The DMX-1000, designed by Dean Wallraff and
manufactured by Digital Music Systems, was a
signal processor based on bit-slice microprocessors.
This attractive design required a controlling com-
puter and four to six units, costing US$ 8,000 each,
to achieve an orchestra of 32 FM instruments. It
came with software, the Music-1000 programming
language, and example programs for FM synthesis
and filtering. Like the Samson Box, it was a special-
purpose computer optimized for signal processing,
to be used as a coprocessor in a larger system. In
production in 1979, it was mostly purchased by
academic laboratories (Wallraff 1979).

Other non-commercial research machines in
the years 1976–1979 included the FRMbox (Moore

1977); the SSSP Digital Synthesizer (Buxton et al.
1978); Iannis Xenakis’s UPIC system in Paris;
the 4A, 4B, and 4C machines made by DiGiunio
at IRCAM (Moorer et al. 1979); and the Syter
system at the Groupe de Récherches Musicales
(GRM). The FRMbox was a programmable bus
architecture framework with a controller that could
communicate data and operation directives between
collections of modules. So long as the modules
obeyed the FRMbox bus protocol, they could
perform any function—however, these modules
would have to be designed and fabricated. As I recall,
Moore implemented only an oscillator and envelope
module. The SSSP synthesizer had a sophisticated
graphical user interface and could perform VOSIM
synthesis, additive synthesis, FM, and waveshaping
in real time. It was controlled by an LSI-11 computer.
It was used as a platform for research in user-
interface design and for real-time music performance
and composition (Fedorkow, Buxton, and Smith
1978). The 4C machine was a single-board DSP
controlled by a PDP-11, implementing 64 oscillators,
32 envelopes, and various timing and control
functions (Moorer 1989).

Some synthesis hardware systems, like the DMX-
1000, 4C, FRMbox, and Samson Box, were designed
as coprocessors. The rest were integrated single-
use, interactive instruments, some with knobs,
musical keyboards, and consoles. The keyboard-
oriented machines such as the Synclavier and
Fairlight mostly competed for placement with
major recording studios, academic laboratories, or
pop/rock stars such as Peter Gabriel (Fairlight) and
Frank Zappa (Synclavier).

The market for these instruments never recovered
from the introduction in the 1980s of mass-produced
MIDI synthesizers such as the E-mu Emulator (1982),
Yamaha DX-7 (1983), Ensoniq Mirage (1985), Korg
M1 (1988), and Roland D-50 (1987). Just as low-cost
personal computers replaced mainframes, so too did
low-cost digital music instruments replace these
first-generation hardware synthesizers.

The same commercial constraints also affected
Systems Concepts: There was never another Samson
Box sold. At around US$ 100,000, it was by far the
most expensive digital synthesizer, and the software
we developed for it was not portable because it
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was written for a computer architecture that soon
became obsolete.

Critique

In an online article critiquing the Box, Julius Smith
(2005) wrote, “The Samson Box was an elegant
implementation of nearly all known, desirable unit-
generators in hardware form, and sound synthesis
was sped up by three orders of magnitude in many
cases [compared to software sound synthesis]. It was
a clear success.”

The Samson Box largely delivered the synthesis
design goals that Samson had initially outlined. One
aim was implementation of all major synthesis tech-
niques known at the time, prominently including
additive and subtractive synthesis.

Additive synthesis was robustly implemented,
with many unit generators (256), a flexible envelope
architecture, and enough ways to connect them to
realize dozens of voices in real time. Expressive
articulation of individual harmonics was straight-
forward, implemented by sending updates via the
command stream. Mike McNabb told me he used
additive synthesis extensively in his Samson Box
music. He said, “Pete once told me after hear-
ing my piece Love in the Asylum that ‘this [use
of additive synthesis] is what the box was made
for.’”

The Box supported Chowning-style FM synthesis
with arbitrary multi-modulator and multi-carrier
topologies. Subtractive synthesis was supported
by the combination of digital filtering and the
sum-of-cosines mode for oscillators.

The delay memory allowed for development of
sophisticated reverberation systems. I was able
to make a straightforward implementation of the
reverberator design proposed by Moorer (1979),
which I featured prominently at the climax of my
thesis composition, Nekyia. Jaffe and Smith (1983)
also used delay memory to realize plucked-string
synthesis on the Box.

But from a design perspective, the Box’s limita-
tions were just as interesting as its capabilities, as
they revealed to us a great deal of useful informa-
tion with which to design better solutions. In the

following sections, we consider several of the most
prominent issues that its design presented.

Interactivity

A year before the Samson Box arrived, Andy Moorer,
Robert Poor, and I had prepared a set of interactive
controls for the Samson Box consisting of a clavier
keyboard (a 61-note musical keyboard) and a set of
knobs and switches. Moorer hooked them up to a
KIM-1 single board microcomputer, which he pro-
grammed to transmit serialized control information
to the PDP-6. But, to my knowledge, these controls
were only used—and then but briefly—to control the
FRMbox during Dick Moore’s PhD thesis defense.
Some architectural difficulties with the Box pre-
vented its use for interactive real-time applications:
The way the Box was designed to receive commands
from the controlling computer effectively prevented
interactive control.

The first Box limitation was that, by default,
the Box continuously read commands via a DMA
channel from the PDP-6’s memory to set up a
patch or change parameter values. If the score being
performed required no new commands for a while,
a “linger” command inserted into the command
stream would cause the Box to suspend reading
additional commands for a duration specified by
the linger command; meanwhile, the Box contin-
ued running, generating samples. After the linger
command expired, the Box would resume reading
the command stream to update the state of the Box.
This arrangement worked well for preprogrammed
scores, but there was no way to interrupt or abort
a linger command in progress, which might last for
as much as a minute. This design prevented the Box
from being able to respond to impromptu interactive
inputs.

A work-around was to not use linger commands—
that is, to disable timing within the command
stream entirely, and depend upon the PDP-6 for all
timing. In this scenario, the PDP-6 would receive
interactive performance events from users and
“immediately” assemble and send commands to
the Box to synthesize the corresponding musical
sounds. But “immediately” on a PDP-6 was much

38 Computer Music Journal



slower and less deterministic than on the Box. An
interrupt service routine on the PDP-6 might take
hundreds of microseconds to execute, depending
on its complexity and whether any tasks with
higher priority interfered. Stacking interrupts from
multiple inputs could extend these delays to audible
proportions. By contrast, the Box could process
a new parameter update every 195 nanoseconds.
Clearly, it would have been better if the finer timing
resolution of the Box could have controlled timing
on the PDP-6, rather than the other way around.

But the Box’s second limitation made that
solution impossible: Originally, the Box did not
have a way to communicate sample-level timing or
synthesis event information back to the controlling
computer.

Later on, in 1984, I’m told that Samson retrofitted
a way for the expiry of an envelope segment to
trigger an interrupt to the controlling computer.
This ultimately made it possible for the Box to
provide sample-level synchronization to the con-
trolling computer, and some serious—and not so
serious—real-time applications eventually followed,
described below.

By this time the controlling computer was a
Foonly F4, however, not a PDP-6. Whereas the
“Six” had been a dedicated real-time CPU for the
Box, the Foonly also ran the time-sharing system
for CCRMA. Although the Foonly had plenty of
bandwidth to transfer blocks of commands and
audio to the Box at interrupt level, its response
to user input ordinarily went through the time-
sharing layer of the operating system, which meant
interactive applications competed with other time-
sharing services, degrading their responsiveness.
A work-around for this situation was to run the
interactive application in “spacewar” mode, which
guaranteed a modicum of real-time response to user
inputs.

Named for Steve Russell’s game mentioned
earlier, spacewar mode had originally been developed
at SAIL to support Russell’s game in particular,
and real-time interactivity under time-sharing in
general. Andy Moorer told me via electronic mail
that only one application at a time could avail itself
of spacewar mode, which ran in “User I/O mode”
to poll I/O devices every 1/60 second. “Address

mapping was turned on, so you didn’t have to write
PC-relative (relocatable) code. On the other hand,
you couldn’t reference system memory, or any
memory outside of your ‘core image’ (remember
that term?).”

The fact that there was but one command stream
to the Box was a related problem, because all poly-
phonic command updates had to be merged together
in time order by the controlling computer. Moorer
(1989) gives the example of merging M envelopes
with N points each, resulting in computational
complexity MN. He continues, “Notice that a
consequence of the single command stream with
embedded timing information is that keyboard
performance is essentially ruled out. The pressing
of a key is asynchronous, and the data (envelope
control) for that note would have to be merged
into the command stream, which is only possible
for very simple (and musically trivial) command
streams.”

Nonetheless, the Box was eventually used for
some fully interactive applications. For example,
David Jaffe is shown in a YouTube video triggering
notes on the Box in real time from a computer
keyboard (Olczak 1984). Bill Schottstaedt (2012)
told me, “We had compositional algorithms that
we could control as they were generating sound via
Pla . . . we were changing the music as the box
computed it and played it.” Doug Keislar told me,
“I adapted code written by Bill [Schottstaedt] and
David [Jaffe] to control the Box in real time, and
put them in a SAIL program I called KEYBD that
added a GUI and other functionality,” enabling in-
teractive polyphony for research in tuning systems
(Keislar 2013; see Keislar 1987 for details). Keislar
recalled “playing 3- and 4-note chords from the com-
puter keyboard” using this software. (The keyboard
scanning mechanism, not the Box, imposed the
maximum of four polyphonic notes.) But “simul-
taneously pressed keys often resulted in glaringly
different attack times.” He attributed this to his
application’s not using spacewar mode, which he
had not known about.

On the lighter side, David Jaffe reported imple-
menting the then-popular computer game Pong
using spacewar mode, and generating the sounds
on the Samson Box using plucked-string synthesis
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(which, because it generated its own envelopes
implicitly, did not require sample-level control).

Load-Balancing Fast Synthesizers and
Slow CPUs

Lurking beneath the Samson Box’s interactive
difficulties lay a fundamental problem that affected
virtually every design of this era: How to structure
a slow CPU to provide musically uniform response
times to user input gestures while simultaneously
servicing the asynchronous demands of a high-speed
synthesis engine for data and control. There were
(and still are) many ways to get load balancing
wrong. For example, Moorer (1989) documents
critical computational load-balancing and timing
problems encountered while developing the 4C
machine.

He also told me anecdotally of similar difficulties
he witnessed with the Bell Digital Synthesizer. It
had many rows of sliders for interactive synthesis
control. But moving a handful of sliders at the
same time so “crowbarred” the machine that it
stopped responding for several minutes while it
worked through all the interrupts the sliders had
generated. Moorer told me via electronic mail,
“Recall that we are talking about gawd-awfully slow
microprocessors—circa 1977 or so.”

In the “bad old days” before general-purpose com-
puters got fast enough, latencies in the controlling
computer were very common problems that every
designer of synthesizer systems struggled with (see
also Moorer 1989; Kahrs 2002). The solution was to
use sufficiently fast processors and high-bandwidth
control interfaces that could mask the latencies—
but in the 1970s, such machines were still decades
away.

A Grab Bag of Architectural Issues

We tended to stumble over problems as we gained
mastery in using the Box, extending our reach
into its capabilities. For example, we eventually
realized that the size of the scratchpad memory
for interconnecting processing elements (called

sum memory) cramped the complexity of patches.
There could only be 128 processing element outputs
stored independently—64 for generators, 64 for
modifiers—though there were 256 generators and
128 modifiers. As a result, there were many more
processing elements than there were independent
ways to connect them. The size of sum memory
was limited because of the high bandwidth of access
required of it by the processing elements.

We found out the hard way that the filtering
algorithms lacked saturating overflow and rounding
control. This meant they could “blow up” if pressed
to their numerical limits.

It was difficult to generate very-low-amplitude
sine waves, which would have been useful for
generating vibrato signals. The higher the sampling
rate the worse the problem. The eventual solution
was to implement vibrato by periodic changes
to oscillator frequency in the command stream.
Though this cluttered up the command stream,
it allowed more interesting vibrato to be realized
through mixtures of filtered noise and sinusoidal
vibration calculated in the host computer, and
lessened the processing burden on the Box.

Critique of the Box’s Generality

One of Samson’s stated goals was to provide a
flexible architecture of basic building blocks that
would allow the Box to be used for synthesis
techniques not yet discovered. In the white paper
mentioned earlier, Samson (1974) wrote,

This synthesizer is viewed as general-purpose,
not only because its design encompasses the
currently favored synthesis techniques, but also
because it offers basic computational building
blocks which can be interconnected, under
program control, to perform at high speed new
synthesis techniques as they are developed.

With plenty of hindsight, we can now ask
how true that prediction was. For a fact, some
synthesis algorithms invented after it was designed
were adaptable to the Box, but some were not.
Waveshaping (Arfib 1978; Lebrun 1979), for example,
was developed after the Box was designed. It could

40 Computer Music Journal



be implemented by storing tables of Chebychev
polynomial functions in delay memory, but the Box’s
limited number of delay memory ports restricted
waveshaping to 32 independent voices. Likewise,
plucked string synthesis, as developed by Jaffe and
Smith (1983; see also Karplus and Strong 1983),
depended on filtering wavetables, and so was also
limited to 32 voices on the Box. But Jaffe found
creative ways to overcome the 32-voice limit. He
told me,

Silicon Valley Breakdown and May All Your
Children Be Acrobats both used a combination
of plucked-string techniques with FM and other
synthesis techniques, . . . so I got more than
just 32 voices that way. Also, for the very high
notes, I didn’t use delay units at all! The delays
needed to be less than the pipeline delay of the
delay units, so I used simple modifiers and sum
memory.

Techniques such as general waveguides (Smith
2006, 2008), Chant vocal synthesis (Rodet, Potard,
and Barrière 1984), physical modeling synthesis
(Smith 2012), and some forms of reverberation,
however, did not fit at all.

Normative Musical Ideas

Not all the problems were Samson’s fault. Nor-
mative ideas about music that we built into our
software also caused problems. For example, at one
point I was hired by Stanford psychoacoustician
Roger Shepard to realize his signature acoustic illu-
sion, the Shepard tone (Shepard 1964), on the Box, to
accelerate his research. Though this was straightfor-
ward to program on a mainframe, implementation
on the Box was tortured because we had carried
over the Music N software synthesis model—which
Shepard‘s illusion violated. In Music N, the note
statements were all isolated events and, once trig-
gered, statically evolved without further input. But
this left out the possibility of dynamic interactions
among notes, such as real musicians have with their
instruments and each other. For MBOX, I eventually
developed the system of meta-instruments described
above, but by then Shepard had lost interest. Jaffe

later developed a system where note statements
could update running patches to re-strike a note that
was already sounding. He told me,

So, for example, in the opening of Silicon Valley
Breakdown, a single string is plucked over and
over with the dynamics filter and pick position
filter changing, with alternating up and down
picking. The energy from one note caries over
into the next, builds up, and so on.

The Problem of Unique Software

The reason to go to the trouble of designing and
implementing special-purpose hardware is if there
is a significant performance benefit not obtainable
any other way that makes it worth the effort and
cost. For the Samson Box, the benefit was its capable
real-time processing power. But we paid dearly in
software development costs to gain this benefit.
After all, the Box came without a scrap of software.
In his critique, Julius Smith (2005) points out
that

[t]ens of man-years of effort went into software
support. A large instrument library was written
to manage the patching of hardware unit
generators into instruments. . . . Debugging
tools were developed for disassembling, editing,
and reassembling the synthesizer command-
stream data. Reading and manipulating the
synthesizer command stream was difficult
but unavoidable in serious debugging work.
Software for managing the unique envelope
hardware on the synthesizer was developed,
requiring a lot of work. Filter support was
complicated by the use of 20-bit fixed-point
hardware with non-saturating overflow and
lack of rounding control. General wavetables
were not supported in the oscillators. Overall, it
simply took a lot of systems programming work
to make everything work right.

Hard on the heels of these costs was the cost of
developing musical scores for the Box. Debugging a
score by reading and understanding the synthesizer
command stream was as non-trivial as it was
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unavoidable for all but the simplest scores—at least
in the early days. This was an especially tricky
dilemma for me as implementer and maintainer of
the compiler, as I—and others—stumbled over bugs
while I was trying to write my thesis, Nekyia (Loy
1979), to graduate. I must finish the composition
to graduate; but I must fix the bugs in order to
write the piece; but fixing the bugs could more
than eat up all the composing time I had—and
then I wouldn’t graduate! It became so difficult, I
eventually formulated a rule: If I’m fixing a problem,
I’m debugging; if I’m working around a bug, I’m
composing!

But whereas it might have been straightforward
to conjure up a software-synthesis solution to a
problem, the lure of the Box was its ability to do
quite a lot of processing of a fairly general nature
in real time. So we’d keep trying to adapt our ideas
to the Box if we possibly could. A great deal of
creativity was spent trying to find the right size
shoehorn to make a new synthesis algorithm fit on
the Box. This took a lot of time. Smith (2005) goes
on to say,

Research into new synthesis techniques slowed
to a trickle. . . . Reconfiguring a complicated
patch of Samson Box modules was much more
difficult [than software synthesis], and a lot
of expertise was required to design, develop,
and debug new instruments on the Box. Many
new techniques such as waveguide synthesis
and the Chant vocal synthesis method did not
map easily onto the Samson Box architecture.
Bowed strings based on a physical model could
not be given a physically correct vibrato mech-
anism due to the way delay memory usage was
constrained. Simple feedback FM did not work
because phase rather than frequency feedback
is required. Most memorably, the simple inter-
polating delay line . . . was incredibly difficult
to implement on the Box, and an enormous
amount of time was expended trying to do it.
While the Samson Box was a paragon of design
elegance and hardware excellence, it did not
provide the proper foundation for future growth
of synthesis technology. It was more of a music
instrument than a research tool.

I remember a hallway conversation (where most
of our best work took place) one day with Chowning
and Moorer after about a year’s experience with the
Box. Our consensus was that, if only general-purpose
computers were 100 times more powerful, we
would not need—nor want—specialized hardware
synthesis. This sentiment was later borne out in
spades with the limitations that were built into
commercial MIDI synthesizers and PC sound cards,
which made the Samson Box seem, in comparison,
like the Starship Enterprise from Star Trek.

The Problem of Unique Hardware

And then there’s the greatest limitation of them
all: there was exactly one Samson Box in the
whole world, it was not portable, and it would cost
US$ 100,000 each to build more of them.

This was also a disincentive to explore real-time
applications of the Box. Jaffe told me by electronic
mail, “There was a strong motivation not to do
anything performance-oriented with the Samson
Box due to its lack of portability. A tape piece could
be played worldwide (Silicon Valley Breakdown was
played in over 25 countries), whereas a live Samson
Box could be played in exactly one location.”

Worse: When anyone left Stanford, all music and
research done on the Box was left behind, stranded.
Until at least the mid 1990s, no digital storage
medium was big enough, portable enough, and
cheap enough to allow researchers to carry away
works of musically useful proportions in digital
form. Jaffe told me,

As you’ll remember, in those days a 100 MB
disk, a UDP [user disk pack], had to be shared
among many users. For this reason, I have
virtually no copies of my files from those
days, as they were all on 7- and 9-track DART
[dump-and-restore technique] tapes that become
unreadable with time. This also discouraged
sound-file-based pieces at CCRMA. It really
wasn’t practical to have more than one or two
people working on them at the same time.

No one even bothered to create a driver for saving
digital audio output from the Box until the mid 1980s
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because, in those days, storage was prohibitively
expensive and limited in capacity. Though I was long
gone from Stanford by that time, this was finally
done at my instigation: I’d graduated and gone to
teach at UC San Diego, and desperately wanted the
bits to my thesis. A long-time CCRMA/SAIL staff,
hacker, and friend, known to all simply as Tovar,
wrote a magnetic tape driver for me. Nekyia, at 10
min duration, required ten nine-track “magtapes” to
store. A decade later, we used the very last computer
on the Stanford campus that had a nine-track
magtape drive (in the Chemistry department) to read
the tapes and store the bits on one writable compact
disc (at a cost of US$ 25 a disc). Over the intervening
years to the present, Nekyia has survived across a
plethora of different kinds of media, fleeing from
one to the next as each became obsolete.

Finally, all software written for the Box was also
stranded at Stanford. All of our Box-specific code,
plus the unique operating system and software
development tools CCRMA inherited from SAIL,
were all tied to Digital Equipment Corp. 36-bit
hardware, were utterly non-portable, and died when
the PDP-10 architecture died.

Conclusions

The Samson Box and the system we developed at
CCRMA to control it provided by far the most
powerful and general-purpose solution to real-time
digital audio computation of its era, enabling enor-
mous strides in computer music. It implemented
all synthesis techniques known at the time, and
was general-purpose enough to handle many new
approaches.

Limitations in its design frustrated development
of interactive applications for several years. Though
these problems were eventually overcome, the Box
was used mostly to realize precomputed musical
scores. Because it was an expensive and unique
piece of hardware controlled by a unique computer
system running unique software, at a time when
disk storage was still very primitive, one’s work on
it was chained to CCRMA.

Nonetheless, the Samson Box remained the gold
standard for music synthesis for over a decade. It

stood at the crossroads of the transformation of
music and audio from analog to digital practices, a
technological sea change that continues today at a
rapid pace.

The ultimate testimony of the Samson Box is
the music it was used to create. Over its lifetime,
more than one hundred works were composed
with it. Many of these works are listed at the end
of this article. It served hundreds of composers
and researchers. Numerous compositions won
prestigious prizes. Many pieces are still performed,
and many recordings are still commercially available
35 years later. The Box unleashed a burst of creative
energy among composers of its day that helped put
computer music on the map.

Epilogue: The End—Or Not

Eventually, the hothouse environment of SAIL came
to an end. Shortly after I left Stanford in 1980,
SAIL moved from the D.C. Power building to new
facilities on campus; CCRMA took over the whole
building. The PDP-6 was replaced with a Foonly F2
(and later an F4) computer, designed by Dave Poole
(the same man who’d helped Chowning develop
synthesis software in the mid 1960s). Development
of new Box software and music continued over the
years. Bill Schottstaedt wrote his own compiler
called sambox, which was widely used. Schottstaedt
(2012) told me,

I think some composers continued to use
MBOX, in particular Chowning; others, like
Mike McNabb, went off on their own path.
Many people puttered around with the library
code—Julius Smith, Ken Shoemake, David Jaffe.
I have a list of the music group documentation
files towards the very end of its life—say from
1990 or so. Besides those mentioned above, I see
Andy Moorer, John Strawn, and Marc LeBrun.
And many others developed instruments: Jan
Mattox, Paul Wieneke, Xavier Serra, etc. David
Jaffe wrote a debugger for the Samson box. It
was a group effort.

With the advent of MIDI and networked personal
computers, costs plummeted, and computational
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power multiplied. Eventually, individuals of or-
dinary means could afford systems for creating
sophisticated digital music, and the function of
CCRMA as a technology magnet dissipated. In
fact, some technological developments at CCRMA
actually discouraged collaboration: It was no longer
possible to snoop other’s screens; an audio crossbar
switch was set up so that users only heard their
own sounds from the Box. Chowning has told me
several times that he regretted these developments
for the isolation they encouraged. But CCRMA has
remained a pre-eminent forum for collaboration
between musicians and scientists—a function no
technology can replace.

Eventually, as Moore’s Law predicts, general-
purpose computers became fast and cheap enough to
sweep past the capabilities of specialized hardware
synthesizers. Today, 35 years later, even the average
cell phone has computational power comparable to
the Samson Box; they fit in your hand; they run
on precious little power; they cost several orders of
magnitude less each than the Box did; and there are
billions of them all around the globe. On 3 April
1992, the Samson Box was decommissioned and
moved to the permanent collection of the Musée de
la Musique, part of the Cité de la Musique, in Paris,
France, ending an era.

Or was it the end? Certainly users’ experiences
informed subsequent practices in academia and
industry. Speaking of the Music Kit for the NeXT
computer (Jaffe and Boynton 1989), Jaffe told me
that it “was my attempt to unify what at Stanford
had been two divergent paradigms: the Music N
legacy and MIDI.” Further recent signs of life: In
order to capture some old Box scores in digital
format, Schottstaedt, assisted by Mike McNabb,
recently wrote a Samson Box emulator in the
C programming language, which runs in real-
time on a standard laptop using 32-bit floating
point arithmetic (Schottstaedt and McNabb 2012).
Because 32-bit floating point has 24 bits of mantissa
precision—4 bits more than the data paths in the
Box (20-bit fixed-point fractional)—the sound from
Schottstaedt’s emulator surpasses the fidelity of
the Box. It runs comfortably in real time on a
standard laptop. McNabb and Schottstaedt used
the emulator to remaster the soundtrack for the

film Mars in 3D composed originally for the Box in
the 1980s (see McNabb and Schottstaedt 2012; Loy
2013b).

The progress of computer music in the late 20th
century can be compared to the development of
the steam engine and its impact on the industrial
revolution. Originally, steam engines were so
bulky and inefficient that their only practical
applications were stationary—pumping water from
mines. But having even a single practical application
was enough to give engineers and tinkerers a
target of opportunity for improvements. When an
improvement devised by James Watt increased their
efficiency to the point that steam engines could
be incorporated into moving vehicles, the age of
steam was born. This history is reminiscent of
the progress of computer music. Even the scarce
availability of general-purpose computers was
sufficient for engineers and tinkerers to explore the
rich ramifications of this new resource for music.
Just as a threshold of efficiency unleashed the age of
steam, so too a threshold of integration unleashed
the age of computer music. Just as knowledge
sharing through publication among principals in the
industrial revolution led to breakthroughs, so too the
open intellectual framework of many institutions
and individuals around the world—often shared
in the pages of this journal—led quickly to the
transformative music technologies our field now
enjoys.
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List of Compositions

This listing of music composed on the Samson Box
is a compilation of lists provided by Patte Wood,
Bill Schottstaedt, Andrew Nelson, and others. Any
inaccuracies or omissions are the responsibility of
this author alone.

The listing below shows dates of composition
and/or first performance. Also note, “quad” means
“quadraphonic” (i.e., four-channel surround) sound.
The CCRMA standard for distribution of four-
channel audio was based on the conventional layout
of the Cartesian coordinates, as follows. Channel 1:
front right, channel 2: front left, channel 3: rear left,
channel 4: rear right. “Web” means the music is
available by searching for the composer or title on
the World Wide Web.

1978 John Chowning, Turenas (quad; originally
produced 1972, remastered for the Box
December 1978; stereo reduction on John
Chowning, Wergo, WER 2012-50); Stuart
Dempster, Standing Waves (Web); Bill
Schottstaedt, Five Bagatelles, The Gong
Tormented Sea, You’re So Far Away

1979 Jonathan Berger, To the Lost History of
Hope; David Jaffe, From a Sleeping Circus
Animal’s Perspective (quad); Paul Kirk,
Desert Dance; Gareth Loy, Nekyia (quad;
Bourges prize 1981; stereo reduction on
Computer Currents 5, Wergo, WER 2025-
2); Janis Mattox, Dragon’s View; Mike
McNabb, Mars Suite (on Mike McNabb,
Wergo, WER 2020-2); Mike McNabb with Bill
Schottstaedt, Mars in 3D (on Mars in 3D, AIX
Records, AIX86067), Music for Altered States
(on Altered States: Original Soundtrack,
most of track 8 [uncredited], RCA Victor,
3983-2-RG); Bill Schottstaedt, Daily Life
among the Phrygians (on Computer Music,
LP issued by IBM Deutschland GmbH in
1984, no catalog number; fragment used
[without credit] in Altered States, directed
by Ken Russell, 1980); Paul Weineke, A
Garden for Orpheus

1980 Jonathan Berger, A Pocketful of Posies
(Bourges Prize 1983); Tristram Cary, Nonet;

Johannes Goebel, Mother Goose; David Jaffe,
May All Your Children Be Acrobats; W.
Andrew Schloss, The Towers of Hanoi (on
The Digital Domain: A Demonstration,
Elektra/Asylum, 9 60303-2; Web)

1981 Jonathan Berger, Meteora (Bourges prize
1987); Chris Chafe, Solera (Bourges Prize
1982); Thierry Lancino, Static Arches (Web);
Janis Mattox, Call to the Spirits (on Digital
Digital Domain: A Demonstration, Elek-
tra/Asylum, 9 60303-2), John Chowning,
Phoné (on John Chowning, Wergo, WER
2012-50); Michael McNabb, Love in the
Asylum (quad; Bourge prize 1982; stereo
reduction on Michael McNabb, Wergo,
WER 2020-2); Bill Schottstaedt, Colony (ex-
cerpt from Colony V on Digital Domain: A
Demonstration, Elektra/Asylum, 9 60303-2);
Paul Weineke, Attend

1982 Jonathan Berger, Diptych (on CDCM Com-
puter Music Series Vol. 8, Centaur CRC2091);
David Jaffe, Silicon Valley Breakdown (avail-
able at the iTunes Music Store); Janis Mattox,
Song from the Center of the Earth (excerpt on
Digital Digital Domain: A Demonstration,
Elektra/Asylum, 9 60303-2); Malcolm Singer,
Man versus Machine

1983 Chris Chafe, In a Word (Bourges Prize 1984;
on Dinosaur Music, Wergo, WER 2016-50),
Neriage; Bill Schottstaedt, From the Book
of the Burning Mirror, Variation on Ives’
Unanswered Question; Paul Weineke, A
Garden for Orpheus

1984 Jonathan Berger, An Island of Tears (Bourges
prize 1991); Joanne Carey, Gamelan R-
gong Gong; Chris Christensen, Untitled;
Kent Deveraux,Study No. 3; Doug Fulton,
Red Cup and Rat; David Jaffe, Bristlecone
Concerto No. 2; Marc LeBrun, Need to Know;
Bill Schottstaedt, Daybreak, Dinosaur Music
(on Dinosaur Music, Wergo, WER 2016-50);
Amnon Wolman, Etude (Homage à Bartok
No.2)

1985 Douglas Fulton, Bowling for Blood (on
Computer Music Currents 11, Wergo, WER
20312); David Jaffe, Telegram to the President
(on CDCM Computer Music Series Vol. 8,
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Centaur, CRC 2091); Stanislaw Krupowicz,
Thus Spake Bosch (Web); Fred Malouf,
Chromatonal (quad); Michael McNabb,
Invisible Cities (on Michael McNabb, Wergo,
WER 2015-50); Adolfo Nuñez, Canales; Bill
Schottstaedt, Water Music (first movement
on Dinosaur Music, Wergo, WER 2016-50);
Bill Schottstaedt, Jonathan Berger, David
Jaffe, Doug Fulton, and Robert Shannon,
Fanfare; Heinrich Taube, JubJub; Amnon
Wolman, A Circle in the Fire for bass clarinet
and tape (NewComp first prize 1988; on
Computer Music Currents 6, Wergo, WER
2026-2), If Thorns. . . , Mora for soprano,
mezzo-soprano, oboe, percussion, and tape
(Minnesota Composers Forum prize 1988),
Perhaps, at Last, Some Such Hours Passed

1986 Chris Chafe, Quadro on CDCM Computer
Music Series Vol. 8, Centaur, CRC 2091);
Doug Fulton, You’ll Never Walk Again;
David Jaffe, The Fishing Trip; Richard
Karpen, Eclipse (Newcomp prize 1986;
Bourges Prize 1987); Stanislaw Krupow-
icz, Farewell Variations on a Thema by
Mozart for amplified string quartet and tape
(Irino Prize 1987); Ira Mowitz, Jubilum;
Bill Schottstaedt, Put on a Happy Face,
Sonata

1987 Douglas Fulton, Tip the Velvet; David Jaffe,
Grass for female chorus and tape; Richard
Karpen, Exchange for solo flute and tape
(Bourges prize 1987; Newcomp prize 1987;
National Flute Association prize 1988), Il
Nome for soprano and tape (Bourges prize
1989; on Computer Music Currents 7, Wergo,
WER 2027-2); Servio Marin, Fantasmas de
los mundos; Ira Mowitz, Darkening (Web);
Bill Schottstaedt, Brand X Music; Amnon
Wolman, And Then She Said for actress, tape,
four pre-recorded voices, and live computer
graphics, M for orchestra and tape, Medea
(Ars Electronica finalist 1987; on Medea,
Divided Records, Div03)

1988 Rachel Boughton, Pigeon Fantasies sound-
track for short film (Bourges honorable
mention); Joanne Carey, Cloud’s Lament
(Danish Institute for Electronic Music

[DIEM], Audioarkiv CD 89-002); Fred Mal-
ouf, Sacrifice for celletto and tape; Heinrich
Taube, Tremens (Bourges honorable men-
tion); Amnon Wolman, Ladders and Plains
music for multimedia performance (on
Medea, Divided Records, Div03), Nautilus
for three singers, radio operator and tape
(Minnesota Composers Forum award), Play
by Samuel Beckett (incidental music)

1989 Anthony Holland, Die Heiligenstadter Tes-
tament (Bourges finalist 1991); Geir Johnson,
RADAR, Some of Sam; Ira Mowitz, Shim-
mering (on A la Memoire d’un Ami, New
Albion, NAR 047; Web); Bill Schottstaedt,
Busted Pipes, I’m Late, Icicles, Idyll, Long
Ago and Far Away, Pastorale, Wait For Me!,
Windmills; Amnon Wolman, The Day the
Bank Came Through for narrator, percus-
sionist, and tape, Distant Images, for oboe
and tape, Distorted Reflections for oboe,
chamber ensemble, and tape, Reflections on
Pedestals, for orchestra and tape

1990 Joanne Carey Intonations of the Wind; Judith
Schatin, Tenebrae super faciem abyssi; Bill
Schottstaedt, Brown Music; Amnon Wolman,
The Many Faces of Marilyn—Four Requiems,
for improvisation group and tape (revised
1991, on The Marilyn Series, Centaur, CRC
2573)

1992 Stanley Jungleib, Earth Sighs
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