Skip to content

rcorty/ggQQunif

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
 
 
man
 
 
 
 
 
 
 
 
 
 
 
 

gg_QQ_unif

ggbigQQ extends ggplot2 to allow the user to make a quantile-quantile plot with a big dataset. Specifically, geom_big_qq uses all the data provided to calculate quantiles, but drops points that would overplot before plotting. In this way, the resultant figure maintains all the accuracy of a Q-Q plot made with a large dataset, but renders as fast as one from a smaller dataset and, when stored as a vector graphic, has the file size of a Q-Q plot from a smaller dataset.

Examples

Here's an example where geom_qq takes 14 seconds to render the plot on my intel i5 and geom_big_qq takes 1 second to produce the same plot.

set.seed(27599)
d <- data.frame(s = runif(n = 5e5))

# # takes 14 seconds
# d %>%
#   ggplot(mapping = aes(sample = s)) +
#   geom_qq(distribution = qunif) +
#   QQ_scale_x() +
#   QQ_scale_y()


# takes 1 second
d %>%
  ggplot(mapping = aes(sample = s)) +
  geom_QQ_unif() +
  scale_x_QQ() +
  scale_y_QQ() +
  theme_minimal()

This geom works with other aesthetics, too.

set.seed(27599)
n <- 5e5
d <- data.frame(fac1 = sample(x = LETTERS[1:3], size = n, replace = TRUE),
                fac2 = sample(x = LETTERS[1:3], size = n, replace = TRUE),
                s = runif(n = n))

# takes 1 second
d %>%
  ggplot(mapping = aes(sample = s, color = fac1)) +
  geom_QQ_unif() +
  facet_wrap(~ fac2) +
  scale_x_QQ() +
  scale_y_QQ() +
  theme_minimal()

About

QQ plots for big collections of p-values

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages