
The Machine Learning Paper (mlpaper) Package

Ryan Turner

Rigorous design of machine learning (ML) challenges is at least as difficult as rigorous design of experiments. Challenges are
experiments comparing multiple machine learning algorithms (possibly with adversarial agents). Part of experimental design
involves proper analysis with confidence intervals (error bars) and statistical tests.

Surprisingly, error bars and significance levels are rarer in ML than other parts of science, even though ML methodology is often
based upon statistics. Challenges and benchmark data sets tend to plateau: Initial big gains are followed by a long period of
incremental gains. Once these gains become small, they are often explainable purely by sampling noise.

To enable widespread error analysis with minimal time overhead we present the mlpaper Python package.1 The mlpaper package
is usable as a simple one-liner using a dictionary of sklearn compatible objects [8] and train/test data sets. The routine will train,
test, and evaluate the models on multiple loss functions. Individual pieces of this process are usable in a modular way.

Considering multiple loss functions is a design principle of mlpaper. Often challenges and analysis are based upon a single
(somewhat arbitrary) loss function, and ML developers often become obsessed with incremental improvements in a single metric.
The mlpaper package supports the Bayes’ decision rule calculation that converts a predictive distribution into a different action
for each loss function. The classic example for regression is for MSE one should report the mean of the predictive distribution
while for MAE one should report the median [7]. This conversion is done automatically within the package and is essential if
one wants to ensure a single model is being benchmarked fairly and consistently across multiple metrics. The classification
benchmark can build loss functions with arbitrary loss matrices; this allows, for example, probabilistic predictions to be converted
to a “don’t know” option and evaluated.

The interface The mlpaper package was largely motivated by noticing that applied ML projects contain many repeated
“boilerplate” code segments that frequently repeat across projects. These typically consist of: splitting data, training models,
testing models, evaluating with statistical analysis, and finally proper formatting of tables.

The high level interface of the package has just two phases: just_benchmark and just_format_it. These work as follows:

import mlpaper.classification as btc
from mlpaper.classification import STD_BINARY_CURVES, STD_CLASS_LOSS
performance_df, performance_curves_dict = \

btc.just_benchmark(X_train, y_train, X_test, y_test, 2, classifiers,
STD_CLASS_LOSS, STD_BINARY_CURVES, ref_method=’iid’)

This benchmarks all the models in the classifiers dictionary classifiers on the data (X_train, y_train, X_test,
y_test) for 2-class classification. It uses the loss function described in the dictionaries STD_CLASS_LOSS, and the curves (e.g.,
ROC, PR) in STD_BINARY_CURVES. ref_method defines the model that is the reference to compare against (using a paired
statistical test giving tighter error bars) for assessing statistically significant performance gains. We provide an iid dummy model
(JustNoise) that provides constant predictions to serve as a simple baseline. The classifiers dictionary is as simple as:

classifiers = {’iid’: btc.JustNoise(),
’Nearest Neighbors’: KNeighborsClassifier(3),
’Linear SVM’: SVC(kernel=’linear’, C=0.025, probability=True),
’RBF SVM’: SVC(gamma=2, C=1, probability=True)}

The objects need not be sklearn objects but merely support the methods fit and predict_log_proba as per the sklearn
interface. Equivalent routines are available in mlpaper.regression for regression problems.

Although the most convenient way to benchmark is via the “do-it-all” just_benchmark routine, the package also allows
modular usage of just_benchmark’s three phases. This allows for building a dataframe of: predictive distributions on each
test point and model (get_pred_log_prob), the losses for each prediction (loss_table), and the mean loss for each method
along with error bars and p-values (loss_summary_table).

1This package is found at https://github.com/rdturnermtl/mlpaper.

https://github.com/rdturnermtl/mlpaper


Sciprint The performance_df is a pandas dataframe with a table summarizing the performance. However for publishable
results, one must first format it correctly. The sciprint module formats these tables for scientific presentation [2]. The performance
dataframe is converted to cleanly formatted tables: correct significant figures, shifting of exponent for compactness, and correct
alignment of decimal points, units in headers, etc. Here we use:
import mlpaper.sciprint as sp
print(sp.just_format_it(performance_df, shift_mod=3, unit_dict={’NLL’: ’nats’},

non_finite_fmt={sp.NAN_STR: ’{--}’}, use_tex=True))
Both plain text and LATEX tables are available via the use_tex argument. The above snippet produces the LATEX table:

AP p AUC p AUPRG p Brier p NLL (nats) p sphere p zero one p

Linear SVM 0.952(99) <0.0001 0.950(77) <0.0001 0.88705 <0.0001 0.34(24) <0.0001 0.29(16) <0.0001 0.31(24) <0.0001 0.15(12) 0.0006
Nearest Neighbors 0.94(14) <0.0001 0.969(69) <0.0001 0.93498 <0.0001 0.18(21) <0.0001 0.42(70) 0.4241 0.15(18) <0.0001 0.025(51) <0.0001
RBF SVM 0.93(18) <0.0001 0.957(94) <0.0001 0.92081 <0.0001 0.14(20) <0.0001 0.18(18) <0.0001 0.12(17) <0.0001 0.025(51) <0.0001
iid 0.53(16) – 0.5(0) – 0(0) – 1.004(22) – 0.695(11) – 1.005(27) – 0.53(17) –

The sciprint module automatically enforces good practices for presentation of numeric results. Sciprint crops the significant
figures on the performance number to match the specified number of error digits. The p-values are limited to specified number of
digits. The package even automatically adjusts the exponent of each column to minimize its width for written compactness.

Data splitter The package comes with a data splitter module that supports random, ordinal, or temporal splitting across
features in pandas dataframes. It also allows for jointly splitting across multiple features to test difficult generalization cases
(e.g., test set of random unseen users and later in time than training).

Loss functions The mlpaper package is based upon two types of metrics: loss functions and curve summaries. From a decision
theoretic perspective, loss functions are the more justified metric for evaluation; they are also easier to place confidence intervals
on. The loss for model A on iid test data with labels y1:N works as

LA =

N∑
i=1

`i =

N∑
i=1

`(yi, ai) , ai = argmin
a

EPA(yi|xi)[`(yi, a)] , (1)

where ai is the Bayes’ optimal action for the loss function `. The mlpaper package has built-in support for general loss matrices
for hard classification but also supports the log loss (NLL), Brier loss, and spherical loss as proper scoring rules [5] to evaluate a
model’s soft predictions. The modular system is extendable, allowing for new metrics to be easily added. Non-probabilistic
methods are usable by “pipelining” with a calibrator [6, 9], some of which are in sklearn.

Curve summaries create a performance curve and then summarize with a single number. We support ROC, precision-recall, and
precision-recall-gain [4] curves. Great care is taken to ensure these curves and summaries are unbiased and behave correctly for
a random classifier, something that was not done in sklearn (e.g., see issue #4577).

Error bars Putting error bars on the loss functions is essentially placing an error bar on the mean of `. Note this places a
confidence interval on what the performance would be on a new (N → ∞) test set from the same distribution, and with the
same trained model. Given the individual losses `1:N , we support three methods for confidence intervals: t-test, bootstrap, and
Bernstein bound. The t-test is fairly standard, but makes a central limit assumption that the error distribution on the mean is
normally distributed. The percentile bootstrap still makes some asymptotic assumptions but weaker than the t-test. For very
conservative error bars, we offer the Bernstein bound, which is distribution free and holds for finite sample [1], but requires a
bounded loss; otherwise, it results in infinite error bars.

Significance tests The p-values are designed to match the error bars, and therefore constructed using either t-test, bootstrap,
or Bernstein bound. The confidence interval (U,L) on ∆L := LA − LR and p-value p (on H0: LA = LR) are designed to be
coherent in the sense that: L = 0 or U = 0 if the confidence interval is computed with coverage α = 1− p. Construction of
p-values from the t-test and bootstrap are standard, but Bernstein is more novel.

Error bars on curves The error bars and significance tests for the curves are produced via bootstrap [3]. We place confidence
intervals on both the raw curves (for plotting) and their AUC summaries (for tables). We built a vectorized bootstrap that
reweights the data points via a multinomial distribution. This avoids re-creating the data sets in memory upon resampling, which
is very slow for large data sets. For example, the MATLAB bootstrap routine (bootstrp) takes this approach, and is often
slower than training the classifier itself for large data sets.

Conclusions We have presented a package with utility to be used in many ML challenges and publications. The use of one-liner
performance tables with error bars and significance levels should make its use universal in ML. The package still has much
potential for expansion beyond classification and regression to more complex tasks such as structured prediction problems.

2



Acknowledgments We thank Riashat Islam for setting up continuous integration testing in the mlpaper package, and Jane
Hung for proofreading.

References
[1] J.-Y. Audibert, R. Munos, and C. Szepesvári. Exploration–exploitation tradeoff using variance estimates in multi-armed

bandits. Theoretical Computer Science, 410(19):1876–1902, 2009.
[2] T. Cole. Too many digits: The presentation of numerical data. Archives of Disease in Childhood, 2015.
[3] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. CRC Press, 1994.
[4] P. Flach and M. Kull. Precision-recall-gain curves: PR analysis done right. In Advances in Neural Information Processing

Systems, pages 838–846, 2015.
[5] T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical

Association, 102(477):359–378, 2007.
[6] M. Kull, T. S. Filho, and P. Flach. Beta calibration: A well-founded and easily implemented improvement on logistic

calibration for binary classifiers. In Proceedings of the International Conference on Artificial Intelligence and Statistics,
volume 54, pages 623–631, 2017.

[7] J. Marchini. Lecture notes in foundations of statistical inference, 2013.
[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,

et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
[9] J. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in

Large Margin Classifiers, 10(3):61–74, 1999.

3


