
Yangshun Tay
Front End Engineer

How Modern Static Site
Generators Work 🦖

About Me

Front End Engineer @ Facebook Menlo Park

NUS School of Computing/NUSMods/NUSWhispers

Open Source - Docusaurus/Tech Interview Handbook

Static Site Generators?

• If you've learnt HTML/CSS before, one of the ways you probably would have started was to write an index.html file,
wrote some HTML tags and included some CSS files inside for styling. That is an example of a simple static website.

• A static site generator is a tool that generates such static sites.

Source: Rendering on the Web

• Over here we have the spectrum of rendering. All websites/web apps fall somewhere on the spectrum.
• Traditional SSGs are somewhere in the static SSR category
 whereas modern SSGs are closer to the client-side end are in the CSR with prerendering category.

https://developers.google.com/web/updates/2019/02/rendering-on-the-web

Traditional SSGs

www
├── blog
│ ├── foo
│ │ └── index.html
│ ├── bar
│ │ └── index.html
│ └── qux
│ └── index.html
├── static
│ ├── main.css
│ └── logo.jpg
└── index.html

www
├── blog
│ ├── foo.md
│ ├── bar.md
│ └── qux.md
├── layouts
│ ├── default.html
│ └── page.html
├── static
│ ├── main.css
│ └── logo.jpg
└── index.html

• Traditional static site generators are great for static websites driven by non-viewer specific content like a landing
page, a blog or documentation.

• On the left you have the source files written in HTML and Markdown. And on the right, the SSG will compile the files
into HTML files ready to be served by any web server.

Traditional SSGs

/blog/bar/ /blog/bar/index.html
/main.css /blog/foo/ /blog/foo/index.html

/main.css

Browser

Server

• Every page navigation is a full-page refresh and static assets already present on the current screen are loaded again

Traditional SSGs

• Jekyll, Hugo and Hexo are examples of traditional SSGs that have been out for a while and have been used by many

Modern SSGs

Client-side navigation

Rich interactive content

Route-based code-splitting

Asset pipeline (with the help of a module bundler)

Progressive Web Apps

• What makes modern SSGs different? Modern SSGs improve on the developer experience and performance.
• The main difference being modern SSGs use module bundlers that treat every type of resource as a module,

including images.
• Hence with modern SSGs, it is easier to post-process assets thanks to the use of module bundlers.

Modern SSGs
www
├── blog
│ ├── foo
│ │ └── index.html
│ ├── bar
│ │ └── index.html
│ └── qux
│ └── index.html
├── static
│ ├── main.css
│ └── logo.jpg
├── app.js
├── foo.js
├── bar.js
├── qux.js
└── index.html

www
├── blog
│ ├── foo.md
│ ├── bar.md
│ └── qux.md
├── layouts
│ ├── Default.jsx
│ └── Page.jsx
├── static
│ ├── main.css
│ └── logo.jpg
└── index.html

• The original source files of a modern SSG look really similar to a traditional SSG. But the output is pretty different.
• For each path there's both an index.html file and a corresponding .js file generated.

Modern SSGs

/blog/foo/
/blog/foo/index.html
/app.js
/main.css

/blog/bar/ /bar.js

Browser

Server

/blog/bar/
/blog/bar/index.html
/app.js
/main.css

/blog/foo/ /foo.js

Browser

Server

• In modern SSGs, after the initial load (where the HTML file is loaded, subsequent page navigations fetch the JS file
for the next page and do a client-side transition, exactly like how route-splitter single-page apps work.

Modern SSGs

• Gatsby, VuePress and Docusaurus are examples of modern SSGs.

Modern SSG Stack

Bundler - Webpack/Rollup

Templating/View - React/Vue

Router - React Router/Reach Router/Vue Router

Styling - Unopinionated

• Modern SSGs have similar architectures and consist of common parts such as a bundler, templating engine, router.
• Styling is however pretty unopinionated and users are free to choose their favorite solution

Lifecycle

Bootstrapping
Directory

Generation

Development Build

• SSGs as they implied by the generators in their name, are actually compilers.
• During development, the bootstrap lifecycle process runs. During build, an additional step has to occur, which is to

server-side render each page (prerender) as directories.

Bootstrap Lifecycle
Blog Plugin Sitemap Plugin Google Analytics

Plugin

loadContent()
Scan and load Markdown

files - -

contentLoaded() Create routes for each file - -

configureWebpack() Add Markdown loader - -

getClientModules() - - Inject analytics.js

postBuild() - Generate
sitemap -

• Every SSG's bootstrap process goes through similar phases - fetching content, allowing extensions of the bundler
config, injecting client side modules and some other hooks into the lifecycle of an app.

• Plugins are a way to spread the functionality across various lifecycle methods. They're only called when a certain
lifecycle method is activated.

Bootstrapping
Files + Data = Routes

// Generated routes.js
[
 {
 path: '/',
 component: 'HomePage.jsx',
 },
 {
 path: '/blog/foo',
 component: 'BlogPost.jsx',
 },
 {
 path: '/blog/bar',
 component: 'BlogPost.jsx',
 },
...
]

• The value an SSG framework provides over an SPA is that routes are based on the directory structure of your project
instead of you having to explicitly define it.

• Hence it's important that the bootstrap process generates a routes file for you.

Directory Generation

www
├── blog
│ ├── foo
│ │ └── index.html
│ ├── bar
│ │ └── index.html
│ └── qux
│ └── index.html
├── static
│ ├── main.css
│ └── logo.jpg
├── app.js
├── foo.js
├── bar.js
├── qux.js
└── index.html

www
├── static
│ ├── main.css
│ └── logo.jpg
├── app.js
└── index.html

Typical Single-Page App
Generate root index.html and core
JS bundle

Modern Statically Generated Site
Generate additional index.html
and JS bundle for every route

• We want the website to function as a single-page app after the initial load. Hence there's an additional step of
generating an index.html for every entry point available.

• Another benefit of this is that if JavaScript is disabled, the site still works as there are HTML files corresponding to
each path.

THANK YOU!

