
An Entity-Component Model for Extensible
Virtual Worlds

Toni Alatalo
Playsign Ltd and realXtend association

Abstract
We propose an architectural framework for building a wide variety of 3D virtual world applications. The
applications consist of entities to which arbitrary functionality is added in components with custom data
and associated code. The values of the attributes are automatically synchronized among the participants
in a networked environment. A core API provides basic functionality for graphical user interfaces,
controller input, audio and means for 3d scene manipulation for application code. The open source
realXtend project has implemented this fully in the new Tundra SDK and in a limited form in an add-on for
the Opensimulator server.

Keywords: 3D virtual world, architecture, extensiblility, entity-component model

Introduction
Since 2007, the realXtend project has developed a freely available open source virtual world platform that
lets anyone create their own applications using it's platform as a base. RealXtend began as a
collaboration of several small companies that coordinated in developing a common technology base that
they then applied in different application fields including virtual worlds, video games and educational
applications. The realXtend association was founded in early 2011 to coordinate the development in an
open manner.

Similar to several other 3D virtual world platforms, the realXtend project has take a client-server approach.
A browser-like client called a viewer renders content enabling end users to see and manipulate a 3D
window into a virtual world where the content itself is stored and shared on a (typically remote) server.
The realXtend project has developed an open source viewer called Naali, the Finnish word for the arctic
fox, referring to the Finnish origins of the project and also a reference to the open source Firefox web
browser because Naali aims for similar wide-spread availability as a browser for virtual worlds. The Naali
viewer can connect to Second Life (SL), Open Simulator, or realXtend's own Tundra server. It can run on
Windows, Linux, Mac and some mobile platforms.

One architectural goal of the realXtend project has been to build entirely on open standards and open
source software to remove the roadblock of proprietary software and pave the way for 3D virtual worlds to
become widely used. To this end, Naali and Tundra make use of HTTP, COLLADA, XMPP and open
source software such as OGRE 3D, Qt, OpenSimulator, and Blender. An immediate benefit can be seen
in that realXtend supports 3d geometry in the typical polygon mesh format so existing game characters,
CAD models and building models can be used by exporting them from e.g. 3ds Max, Maya and Blender.
RealXtend has had this capability since the initial prototype, whereas Second Life (a widely used but
proprietary 3D virtual world) has been limited to its own special representation using prims (primitive
graphical objects) and finally brought mesh support to public beta in late 2010. The tool allows reuse of
existing models and scripts from libraries on the web. Any model asset in realXtend can be included in a
scene via a URL reference, and the Naali graphical user interface supports drag-and-drop of 3D models
from web pages like Google 3D Warehouse to the 3D virtual world scene. In realXtend, a virtual world can
be snapped together from existing components like Lego bricks, and instantly viewed.

Another architectural goal of realXtend is flexible editing of virtual worlds -- editing can be done locally,
and the creation published later. This is in contrast to Second Life where all edits and additions happen on
remote servers -- the client application being no more than an interface to server side functionality.
Naali/Tundra can run completely standalone, without the complexity of setting up a separate server for
local editing as with Opensimulator [opensim-on-a-stick]. This is similar to how a HTML web page can be
authored locally by just editing the HTML, CSS and Javascript sources, before publishing them simply by

copying the files over to a web server. Tundra can similarily open scenes from local files to show the 3d
view, which streamlines object and scene creation so that changes to texture images, 3d models and
scripts update immediately in the final form without any uploads to a virtual world system.

A final architectural goal of our project is extensibility - the ability to dynamically add or remove
functionality to a virtual world platform to meet the needs of specific applications. The approach is similar
to web browsers, which also download both data and executable code from servers so that applications
can implement custom behaviour in the client. This makes realXtend a generic platform: the same viewer
executable can be used to connect to any server, when the scene and associated custom Javascript code
is downloaded from the web and executed locally to implement the specific behavior. Our extensibility
architecture is the focus of the rest of this paper. For a generic introduction to the platform and the
modules, see [rex-overview].

Extensible Scene Architecture
Independent of any particular virtual world viewer and server implementation, we can define an extensible
scene model. A scene is defined by the entities it has -- there is nothing hardcoded about them at the
platform level. This differs essentially from the current OpenSimulator paradigm when using the SL
protocol where the model is largely predefined and hardcoded into the platform: so, in SL, there is always
a certain kind of terrain, a sky with a sun, and each client connection gets an avatar to which the controls
are mapped [VWRAP]. We argue that there is no need to embed assumptions about the features of the
world in the base platform and protocols.

Our Naali viewer uses an Entity-Component-Action (ECA) model as a basis to construct extensible
scenes. The model was adapted from contemporary game engine architectures [ec-links]. Entities are
unique identities, with no data or typing. They aggregate components, which can be of any type and store
arbitrary data. Applications built using Naali can add their own components to have the data they need for
their own functionality. The code that handles the data exists in preinstalled custom modules or in scripts
loaded at runtime as a part of the application data. To get a matching server counterpart where the scene
is entirely built with Entity-Components, we have added a server module to the Naali codebase and a new
protocol without application level assumptions. This whole we call the Tundra SDK, and it consist of both
viewer and server executables.

The Tundra platform provides basic functionality for all ECAs: persistence, network synchronization
among all the participants via a server and a user interface for manipulating components and their
attributes (and eventually will support security). In addition, Tundra introduces a new concept called “entity
actions”, a simple form of remote procedure call. The ECA architecture is demonstrated in two examples
later in this article.

To demonstrate the feasibility of this generic scene modeling approach, we are using Tundra to develop a
growing collection of example scenes in a directory available on GitHub [tundra-scenes]. Below, we
present two of them to illustrate how the ECA model works in practice. In the first example, we implement
a SL-like avatar using a set of pre-existing generic ECAs and specific JavaScript code that runs both on
the server and the clients. The second example is a presentation application that lets a presenter control
the view for the others as the presentation proceeds.

Avatars are not part of the platform
Avatars are graphical representations of the user within the virtual world. It may seem at first that the
concept of an avatar is integral to 3D virtual worlds. Second Life's avatar protocol is hardcoded into the
platform. Yet, many virtual worlds, simulation platforms, and games do not have a single character as the
locus of control: for instance, map applications or astronomical simulations are about efficient navigation
and time control of the whole space, not about moving one's presence around. Game genres like real time
strategy games feature controlling several units, similar to board games like chess. Thus, we argue
instead that avatars should not exist as part of the base platform because many simulations do not require
them. Of course, a generic platform must still allow the implementation of avatar add-in functionality.
Below we describe a proof of concept implementation of avatars as add-ins using the realXtend ECA
model. The full source code is available at [tundra-avatar].

The architecture of the avatar example uses a client (brown), a server (purple), arrows representing
network messages, and filled boxes representing ECAs on the client, server or shared by both.

Avatar functionality is split in two parts: The first part governs the visual appearance and related
functionality to modify the looks and clothing, and the use of animations for communication. The second
part gives every user connection a single entity as the point of focus and control. The default inputs from
arrow keys and the mouse are mapped to move and rotate the avatar. In this discussion, while we cover
the basics of avatar appearance, the focus is on the latter control functionality.

The server-side functionality to give every new client connection a designated avatar is implemented in
JavaScript (avatarapplication.js, see code below). Upon a new connection, this script creates a new
Avatar entity and attaches these components to it: EC_Mesh for the visible 3D model and an associated
skeleton for animations; EC_Placeable for the entity to be positioned in the 3D scene;
EC_AnimationController to change and synchronize the animation states; and EC_Script to implement the
functionality of a single avatar. Different parts of the same script are executed on the client, where it adds
two additional components: a new camera which follows the avatar and a keybinding to toggle between
camera modes.

function serverHandleUserConnected(connectionID, userconnection) {
 var avatarEntity = scene.CreateEntity(scene.NextFreeId(),
 ["EC_Script", "EC_Placeable", "EC_AnimationController"]);
 avatarEntity.Name = "Avatar" + connectionID;
 avatarEntity.Description = userconnection.GetProperty("username");
 avatarEntity.script.ref = "simpleavatar.js";

 // Set random starting position for avatar
 var transform = avatarEntity.placeable.transform;
 transform.pos.x = (Math.random() - 0.5) * avatar_area_size + avatar_area_x;
 transform.pos.y = (Math.random() - 0.5) * avatar_area_size + avatar_area_y;
 transform.pos.z = avatar_area_z;
 avatarEntity.placeable.transform = transform;
}

A second script for an individual avatar (simpleavatar.js) adds additional components: AvatarAppearance
for the customizable looks, RigidBody for physics; and, on the client side, an InputMapper for user input.
Entity actions are used to make the avatar move according to the user controls. These actions are
commands that can be invoked on an entity, and executed either locally in the same client or remotely on
the server, or on all connected peers. For example, the local code sends the action "Move(forward)" to be
executed on the server when the up-arrow is pressed on the client. The built-in EC_InputMapper

component provides triggering actions based on input, so the avatar code only needs to register the
mappings it wants. The server maintains a velocity vector for the avatar and applies physics for it. Using
ECA attributes, the resulting position in the transform attribute of the component Placeable is
automatically synchronized with the generic mechanism so the avatar moves on all clients. The server
also sets the animation state to either "Stand" or "Walk" based on whether the avatar is moving. All
participants run common animation update code to play back the walk animation while moving, calculating
the correct speed from the velocity data from the physics on the server.

These two parts are enough to implement basic avatar functionality using the ECA model. This proof of
concept implementation totals in 369 lines of JavaScript code in two files. The visual appearance comes
from a pre-existing AvatarAppearance component, which reads an XML description with references to the
base meshes used and individual morphing values set by the user in an editor. Implemented in C++, it
uses the realXtend avatar model from an earlier realXtend prototype which did not have the ECA model,
but is re-used in this demo as is. A more generic and customizable appearance system could be
implemented with the ECAs, but that is outside the scope of the demo and description here.

It is worth noting that the division of work between the clients and the server described here is not the only
one possible. With Tundra SDK, the same core code and API is used both for the server and the clients,
making it simple to reconfigure what is executed where. This model of clients sending commands only and
the server doing all the movement is identical to how the Second Life protocol works. It is suitable when
trust and physics are centralized on a server. A drawback is that user control responsiveness can suffer
from network lag. It is already possible to use the physics module on the client end too, which can allow
movement code to run locally as well.

With the ability to run custom code also in the client, it is easy to extend avatar related functionality. For
example, in one project for schools, we added the capability for avatars to carry objects around as a
simple means for 3D scene editing. Another possibility is to further augment the client with more data that
is synchronized for animations, for instance, the full skeleton for motion capture or machine vision based
mapping of the real body to the avatar pose. In our open source Chesapeake Bay watershed demo scene,
there are minigames with customized game character controls, for example flying as an osprey with the
ability to dive to catch fish. These were implemented by using the human avatar functionality as a starting
point, and modifying it according to the different animal characteristics.

A Collaborative Presentation Tool
To demonstrate an entirely different use of the ECA framework, we consider an application that, in its
simplest form, implements collaborative presentations where one user controls sequencing through a
collection (of web pages or PowerPoint slides) while other viewers watch. The presentation tool gives the
presenter the means to control the position in the prepared material, for example to select the currently
visible slide in a slideshow. In a local setting where everyone is in the same physical space, it is simply
about choosing what to show via the overhead projector. In a remote distributed setting, there must be
some system to get a shared view over the network, and that is the use case in this example.

A shared, collaborative view of a set of 2D web pages could be implemented without realXtend technology
by using regular web browsers with HTML, Javascript and some backend server logic. Our goal here is to
illustrate the use of the ECA model and automatic attribute synchronization for developing custom
functionality. In a minimal implementation of shared collaborative presentations, we can use ECA without
using avatars or geography. Alternatively, because it is easy to do, we could add those components back
in to build shared presentations like the one in Figure 2 where different avatars see the presentation from
different view points. [We could go further and consider a situation where we added multiple views for the
presentation, like slide view and outline view, or where we animate the presentation content or where we
add voice and text chat components used for communicating with other viewers or to add annotations to
the presentation -- but here the application is kept simple.]

Two Naali clients stand nearby and view the presentation stage of the TOY system, an open source
learning environment for the Future School of Finland project. The one on the left just added a web page

to the stage, and is currently carrying the object.

No matter how the presentation view is made, the presenter typically needs the same controls. In Second
Life, avatar controls are fixed and, to control a presentation, one might need to create a presentation
sequence object with mouse click controls to press virtual buttons. In realXtend, custom controls in the
client can directly change the shared scane state.

Regarding the implementation in realXtend ECA, the simplest way to get a shared, synchronized view of
the presentation slides is to use a static camera which shows a single webpage view. It then suffices for
the server to change the current page on that object for everyone to see it. We could implement this in a
2D GUI, but it is done in the 3D scene here to to illustrate the its extensibility.

So, we add a new entity called Presentation. This is a non-spatial entity, an application which is globally
available in the scene. For example the Tundra chat application is implemented in a similar fashion. To
display web pages, we need a few basic components: EC_Placeable to have something in the scene;
EC_Mesh to have geometry (e.g. a plane) on which to show the slides; and WebView to render HTML
from URLs. Let's add two additional components for our custom functionality: a EC_DynamicComponent
for custom data, and an EC_Script to implement the user interface for presentation controls. As data, we
need two attributes: a list of URLs and an index number for the current position. This custom data
becomes part of the scene data and is automatically stored and synchronized among the participants. The
EC_Script component is a reference to Javascript or Python code which implements the logic.

To handle the user input, we have two options: either handle input events and modify the state
correspondingly directly in the client code, or send remote actions like in the avatar example. Let's use
remote actions again so we can use the server as a broker for security, and to get a similar design to
compare with the avatar example. So client side code maps right-arrow and spacebar keys to
“SetPresentationPos(index+1)” etc. The server can then check if the caller has permissions to do that
action, for example in presentation mode, only the designated presenter is allowed to change the shared
view. Then if the presentation material is left in the scene for later use, control can be freed for anyone.
The index attribute is synchronized for all participants so the outline GUI can update accordingly. To add
an outline view, we could can add a 2D panel with thumbnails of all the slides and highlight the current
one. For free browsing, clicking on a thumbnail can open a new window with that slide, while the main
presentation view remains.

Thus, we have a simple, complete shared presentation application implemented on top of a generic ECA
model virtual world platform architecture. Source code of an implementation of this model is available at
[tundra-slideshow], with the additional feature that it automatically creates the presentation when a
premade slideshow (e.g. a PowerPoint file) is added to the scene.

Related work
Simulations have long demonstrated that avatars and geography are not always required -- the open
source Celestia universe simulator (http://www.shatters.net/celestia) lets users view 100,000 stars but
does not have any hardcoded land or sky. Nor are we the first to propose a generic component model for
virtual world base architectures. For example, the NPSNET-V system is a minimal microkernel on which
arbitrary code can be added at runtime using the the Java virtual machine [NPSNET-V]. A contemporary
example is the meru architecture from the Sirikata project, where a space server only knows the locations
of the objects. Separate object hosts, either running on the same server or any client / peer, can run
arbitrary code to implement the objects in the federated world [sirikata-scaling]. Messaging is used
exclusively for all object interactions [sirikata-scripting]. The idea with the Entity-Component-Action
mechanism in Naali is, instead, to lessen the need to invent particular protocols for all networked
application behavior when, for many simple cases, using automatically synchronized attributes suffices. In
preliminary talks with some Sirikata developers, we concluded that they aimed to keep the base level
clean from high level functionality, but that capabilities like attribute synchronization would be desirable in
application level support scripts.

The Naali ECA model borrows the idea of using aggregation and not inheritance from the game engine
literature [ec-links]. Automatically synchronized attribute data, and using same Javascript code on both
the client and server side, is inspired by a gaming oriented virtual world platform called Syntensity
[syntensity]. The difference is that in Syntensity the entities exists on the scripting level only, and basic
functionality like object movements is hardcoded in the Sauerbraten/Cube2 first person shooter platform.
In Naali, all functionality is now implemented with the ECs, so the same tools work for e.g. graphical
editing, persistence and network sync identically for all data.

The document-oriented approach of having representing worlds externally as files has precedents in 3D
file format standards like VRML, X3D and COLLADA. Unlike those, the realXtend files do not directly
include 3D geometry, but describe a scene using URL references to external assets, for example meshes
in the COLLADA format. Essentially, these files describing scenes are a mechanism for
application-specific custom data, which is automatically synchronized over the net. They have script
references that implement the functionality of the applications, similar to the way HTML documents
contain JavaScript references. This is not specified in the file format; instead, it is how the bundled Script
component works.

Status of the realXtend implementations
There are currently two generations of realXtend technology available. The original protype, GPL licensed
fork of the SL viewer, has become mostly irrelevant as the newer Naali viewer has matured. It is built-from
scratch, available under the Apache 2 license, and is the modular and extensible platform. Taiga (which
combines OpenSimulator and the realXtend add-on for it) is a continuation and refinement of the original
server project (BSD license). Latest addition to the new generation, Tundra, completes the Naali
codebase with server functionality and a new protocol built purely on the ECA design. It has the same API
both on the server and clients, resulting in a powerful toolkit for networked application development. All
the functionality is configured by the applications, but the platform has the building blocks such as
playback of 3d skeletal animations and physics collisions in the efficient C++ libraries (Ogre3D for
graphics, Bullet for physics). This way the Javascript driven logic can still perform well.

Regarding the status of the Naali viewer, it has matured and been deployed to customers by some of the
development companies. It is a straightforward modular C++ application with optional Python and
JavaScript support. The Qt object metadata system is utilized to expose the C++ internals automatically.
This covers all modules including the renderer and user interface as well as all the ECs. The QtScript
library provides this for Javascript support, and PythonQt does the same for Python. There is also a QtLua
so Lua support can be added. Thanks to the Ogre3D graphics engine, Naali runs both on e.g. the N900

http://www.shatters.net/celestia

mobile phone with OpenGL ES, and on powerful PCs with multiple video outputs with the built-in CAVE
rendering support. There is also an experimental WebNaali client, written in Javascript to run in a web
browser, doing the EC synchronization over WebSockets and rendering with WebGL.

Regarding the status of the generic ECA architecture, this is implemented in Naali and hence is in use
throughout in the Tundra SDK which complements the original Naali codebase with a server module
[tundraproject]. This configuration enables Naali to run standalone for local content authoring or for single
user applications, but it can also be used as a server instead of using OpenSimulator. With Tundra,
LLUDP is not used; instead, all basic functionality is achieved with the generic EC synchronization. For
the transport, we use a new protocol called kNet which can run on top of either UDP or TCP [knet]. kNet is
similar to eNet but performed better in tests with regards to flow control. The Tundra server lacks many
basic features of the more advanced OpenSimulator, like running untrusted user authored scripts and
combining multiple regions to form a large grid. However, Tundra is already useful for both local authoring
and deploying applications with custom functionality on public servers. And it serves as an example of
how a generic EC approach to virtual worlds functionality can be simple yet practical.

The generic EC architecture was proposed to the OpenSimulator core and accepted as the plan of record
in December 2009 [adam-ecplan]. The actual refactoring of OpenSimulator scene code to be built with EC
has only been experimented a little, though. However, EC can be utilized with the Naali client
communicating with the OpenSimulator servers running the realXtend addon (modrex) in a limited fashion.
These servers still assume the hardcoded SL model, but developers using Naali can add additional
arbitrary client side functionality and have the data automatically stored and synchronized over the net via
OpenSimulator. Entity actions are currently not implemented in this Opensimulator realXtend addon.

The realXtend platform does not yet solve all problems related to virtual world architectures. Naali does
not currently address scaling at all, nor is federated content from several possible untrusted sources
supported. We started by having providing power at the small scale to provide the ability to easily make
rich interactive applications. Another important missing element in our current EC synchronization
architecture is security, e.g. a permission system. An initial implementation is planned to cover the basic
capabilities, similar to how Syntensity already has attributes that can only change only if the server allows.
In the future, we look forward to continuing collaboration with e.g. the OpenSimulator and Sirikata
communities to address the trust and scalability issues. OpenSimulator is already used to host large grids
by numerous people, and the architecture in Sirikata seems promising for the long run [sirikata-scaling]
[sirikata-scaling2]. Also Intel research has recently demonstrated how multiple servers can be used to
host a single scene for thousands of interacting users, using Opensimulator [intel-distributedscene]. We
will see whether that design can be either easily be ported to the Tundra server or better utilized for
realXtend as is by using OpenSimulator.

Applications implement functionality against the Naali/Tundra core API. It's role is similar to the W3C DOM
standard in HTML browsers. We are currently freezing the 1.0 version of it, so that applications developed
now will continue to work in next releases. It is documented in [naali-apidocs]. This API is to be reviewed
considering ease of development, challenges in scalability and security, and with regards to
interoperability and standardization.

Conclusion
In this paper, we described the realXtend project and focused especially on its Entity-Component-Action
architecture which provides a general extensibility mechanism for building 3D virtual worlds. The Tundra
SDK, which is built entirely using the EC model, is a true platform that does not get in the way of the
application developer; they can create anything from a medical simulator for teachers, to action packed
networked games - and always with a custom interface that exactly fits the application's purpose.
Seemingly fundamental elements of virtual worlds (such as support for avatars) can instead be treated as
an add-in functionality, so the overall architecture can make less commitment and thereby accommodate
a wider range of kinds of virtual worlds. We demonstrated how this generic approach to virtual world
architectures can be simple and practical, yet powerful and truly extensible. We hope this is taken into
consideration both in future Opensimulator development and upcoming standardization processes, for
example if the IETF VWRAP or IEEE Metaverse standardization efforts choose to address in-world scene
functionality. We will continue to develop the realXtend platform and applications on top of it. Anyone is
free to use it for their needs, and motivated developers are invited to participate in the effort which is
mainly coordinated on-line.

References

Author biography
Toni Alatalo is the CTO of a small games company, Playsign, and the current lead architect of the open
source realXtend platform. Before realXtend, he worked at the Blender Foundation's first open movie
project, Elepants Dream, as the technical director. His work, both earlier in Blender and now realXtend,
has focused on scripting APIs (Python and Javascript), but also taking care of the development as a
whole. Playsign is planning to use reX as platform for arcade style multiplayer action games. Toni's earlier
life in the '90s was centered around Internet services and web development, so he's very curious and
keen to jump on all sorts of interactions of virtual worlds and the web. Although as an ex VJ and a
hobbyist dancer he's looking forward to the interplay with the physical spaces even more!

NPSNET-V Andrzej Kapolka, Don McGregor, and Michael Capps. 2002. A unified component
framework for dynamically extensible virtual environments. In Proceedings of the 4th
international conference on Collaborative virtual environments (CVE '02). ACM, New
York, NY, USA, 64-71. DOI=10.1145/571878.571889
http://doi.acm.org/10.1145/571878.571889

opensim-on-a-stickhttp://becunningandfulloftricks.com/2010/10/07/
a-virtual-world-in-my-hands-running-opensim-and-imprudence-on-a-usb-key/

rex-overview https://github.com/realXtend/doc/blob/master/acm_multimedia/overview.rst
tundra-scenes https://github.com/realXtend/naali/blob/tundra/bin/scenes/
tundra-slideshow https://github.com/realXtend/naali/tree/tundra/bin/scenes/SlideShow
tundra-avatar Application XML and usage info at

https://github.com/realXtend/naali/tree/tundra/bin/scenes/Avatar/ , Javascript sources
in https://github.com/realXtend/naali/tree/tundra/bin/jsmodules/avatar/

naali-apidocs http://www.realxtend.org/doxygen/
adam-ecplan Adam Frisby on Opensim-dev, Refactoring SceneObjectGroup - Introducing

Components. The plan PDF is attached in the email,
http://lists.berlios.de/pipermail/opensim-dev/2009-December/008098.html

VWRAP Joshua Bell, Morgaine Dinova, David Levine, "VWRAP for Virtual Worlds
Interoperability," IEEE Internet Computing, pp. 73-77, January/February, 2010

http://doi.acm.org/10.1145/571878.571889
http://becunningandfulloftricks.com/2010/10/07/
https://github.com/realXtend/doc/blob/master/acm_multimedia/overview.rst
https://github.com/realXtend/naali/blob/tundra/bin/scenes/
https://github.com/realXtend/naali/tree/tundra/bin/scenes/SlideShow
https://github.com/realXtend/naali/tree/tundra/bin/scenes/Avatar/
https://github.com/realXtend/naali/tree/tundra/bin/jsmodules/avatar/
http://www.realxtend.org/doxygen/
http://lists.berlios.de/pipermail/opensim-dev/2009-December/008098.html

sirikata-scaling(1,
2)

Daniel Horn, Ewen Cheslack-Postava, Tahir Azim, Michael J. Freedman, Philip Levis,
"Scaling Virtual Worlds with a Physical Metaphor", IEEE Pervasive Computing, vol. 8,
no. 3, pp. 50-54, July-Sept. 2009, doi:10.1109/MPRV.2009.54
http://www.cs.princeton.edu/~mfreed/docs/vworlds-ieee09.pdf

sirikata-scaling2 Daniel Horn, Ewen Cheslack-Postava, Behram F.T. Mistree, Tahir Azim, Jeff Terrace
, Michael J. Freedman, Philip Levis "To Infinity and Not Beyond: Scaling
Communication in Virtual Worlds with Meru."
http://hci.stanford.edu/cstr/reports/2010-01.pdf

sirikata-scripting Bhupesh Chandra, Ewen Cheslack-Postava, Behram F. T. Mistree, Philip Levis, and
David Gay. "Emerson: Scripting for Federated Virtual Worlds", Proceedings of the
15th International Conference on Computer Games: AI, Animation, Mobile,
Interactive Multimedia, Educational & Serious Games (CGAMES 2010 USA).
http://sing.stanford.edu/pubs/cgames10.pdf

ec-links Mick West, Evolve Your Hierarchy -- Refactoring Game Entities with Components
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/

syntensity http://www.syntensity.com/
knet http://bitbucket.org/clb/knet/
tundraproject http://realxtend.blogspot.com/2010/11/tundra-project.html
intel-distributedsceneDan Lake, Mic Bowman, Huaiyu Liu. "Distributed Scene Graph to Enable Thousands

of Interacting Users in a Virtual Environment"
http://www.pap.vs.uni-due.de/MMVE10/papers/mmve2010_submission_7.pdf

http://hci.stanford.edu/cstr/reports/2010-01.pdf
http://sing.stanford.edu/pubs/cgames10.pdf
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/
http://www.syntensity.com/
http://bitbucket.org/clb/knet/
http://realxtend.blogspot.com/2010/11/tundra-project.html
http://www.pap.vs.uni-due.de/MMVE10/papers/mmve2010_submission_7.pdf

	Abstract
	Introduction
	Extensible Scene Architecture
	Avatars are not part of the platform
	A Collaborative Presentation Tool
	Related work
	Status of the realXtend implementations
	Conclusion
	References
	Author biography

