diff --git a/Stackoverflow_Survey_Analysis updated with xgboost.ipynb b/Stackoverflow_Survey_Analysis updated with xgboost.ipynb new file mode 100644 index 0000000..0b85411 --- /dev/null +++ b/Stackoverflow_Survey_Analysis updated with xgboost.ipynb @@ -0,0 +1,16085 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Stackoverflow_Survey_Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Introduction\n", + "Stack overflow is a professional community for developers. They conduct developer surveys every year since 2011. The collected data is available open-source on the web. The Dataset would help us to answer real-world questions with the help of proper analysis. The most popular language that developers use can be found through the analysis. We also can find the developer role which pays the highest salary. The aim of our project is to analyze the 2018,2019 and 2020 developer surveys datasets from where we collect valuable insights from them." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import seaborn as sns\n", + "import warnings; \n", + "warnings.simplefilter('ignore')\n", + "import pycountry\n", + "import plotly.express as px\n", + "import matplotlib.patches as mpatches\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import LabelEncoder\n", + "from sklearn import preprocessing\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score\n", + "from sklearn.metrics import r2_score\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.naive_bayes import GaussianNB\n", + "from sklearn.naive_bayes import MultinomialNB\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.neural_network import MLPClassifier\n", + "from sklearn.model_selection import StratifiedKFold\n", + "from sklearn.svm import LinearSVC\n", + "import time\n", + "from sklearn.metrics import hamming_loss\n", + "from sklearn.metrics import jaccard_score\n", + "from sklearn.linear_model import SGDClassifier\n", + "from sklearn.multiclass import OneVsRestClassifier\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "from sklearn.ensemble import GradientBoostingClassifier\n", + "from xgboost import XGBClassifier\n", + "from sklearn.model_selection import GridSearchCV\n", + "from sklearn.metrics import accuracy_score\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Stackoverflow 2018 Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
RespondentHobbyOpenSourceCountryStudentEmploymentFormalEducationUndergradMajorCompanySizeDevType...ExerciseGenderSexualOrientationEducationParentsRaceEthnicityAgeDependentsMilitaryUSSurveyTooLongSurveyEasy
01YesNoKenyaNoEmployed part-timeBachelor’s degree (BA, BS, B.Eng., etc.)Mathematics or statistics20 to 99 employeesFull-stack developer...3 - 4 times per weekMaleStraight or heterosexualBachelor’s degree (BA, BS, B.Eng., etc.)Black or of African descent25 - 34 years oldYesNaNThe survey was an appropriate lengthVery easy
13YesYesUnited KingdomNoEmployed full-timeBachelor’s degree (BA, BS, B.Eng., etc.)A natural science (ex. biology, chemistry, phy...10,000 or more employeesDatabase administrator;DevOps specialist;Full-......Daily or almost every dayMaleStraight or heterosexualBachelor’s degree (BA, BS, B.Eng., etc.)White or of European descent35 - 44 years oldYesNaNThe survey was an appropriate lengthSomewhat easy
24YesYesUnited StatesNoEmployed full-timeAssociate degreeComputer science, computer engineering, or sof...20 to 99 employeesEngineering manager;Full-stack developer...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", + "

3 rows × 129 columns

\n", + "
" + ], + "text/plain": [ + " Respondent Hobby OpenSource Country Student Employment \\\n", + "0 1 Yes No Kenya No Employed part-time \n", + "1 3 Yes Yes United Kingdom No Employed full-time \n", + "2 4 Yes Yes United States No Employed full-time \n", + "\n", + " FormalEducation \\\n", + "0 Bachelor’s degree (BA, BS, B.Eng., etc.) \n", + "1 Bachelor’s degree (BA, BS, B.Eng., etc.) \n", + "2 Associate degree \n", + "\n", + " UndergradMajor \\\n", + "0 Mathematics or statistics \n", + "1 A natural science (ex. biology, chemistry, phy... \n", + "2 Computer science, computer engineering, or sof... \n", + "\n", + " CompanySize \\\n", + "0 20 to 99 employees \n", + "1 10,000 or more employees \n", + "2 20 to 99 employees \n", + "\n", + " DevType ... \\\n", + "0 Full-stack developer ... \n", + "1 Database administrator;DevOps specialist;Full-... ... \n", + "2 Engineering manager;Full-stack developer ... \n", + "\n", + " Exercise Gender SexualOrientation \\\n", + "0 3 - 4 times per week Male Straight or heterosexual \n", + "1 Daily or almost every day Male Straight or heterosexual \n", + "2 NaN NaN NaN \n", + "\n", + " EducationParents RaceEthnicity \\\n", + "0 Bachelor’s degree (BA, BS, B.Eng., etc.) Black or of African descent \n", + "1 Bachelor’s degree (BA, BS, B.Eng., etc.) White or of European descent \n", + "2 NaN NaN \n", + "\n", + " Age Dependents MilitaryUS \\\n", + "0 25 - 34 years old Yes NaN \n", + "1 35 - 44 years old Yes NaN \n", + "2 NaN NaN NaN \n", + "\n", + " SurveyTooLong SurveyEasy \n", + "0 The survey was an appropriate length Very easy \n", + "1 The survey was an appropriate length Somewhat easy \n", + "2 NaN NaN \n", + "\n", + "[3 rows x 129 columns]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2018 = pd.read_csv(r'D:\\project\\Stackoverflow-Analysis\\Data\\survey_results_sample_2018.csv')\n", + "df2018.head(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(99, 129)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2018.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "#print(df2018.columns.tolist() !--> Listing coloumsn in table" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "#dropping the columns\n", + "#drop_cols = ['Respondent', 'OpenSource', 'Student', 'FormalEducation', 'CompanySize', 'CareerSatisfaction', 'HopeFiveYears', 'LastNewJob', 'AssessJob1', 'AssessJob2', 'AssessJob3', 'AssessJob4', 'AssessJob5', 'AssessJob6', 'AssessJob7', 'AssessJob8', 'AssessJob9', 'AssessJob10', 'AssessBenefits1', 'AssessBenefits2', 'AssessBenefits3', 'AssessBenefits4', 'AssessBenefits5', 'AssessBenefits6', 'AssessBenefits7', 'AssessBenefits8', 'AssessBenefits9', 'AssessBenefits10', 'AssessBenefits11', 'JobContactPriorities1', 'JobContactPriorities2', 'JobContactPriorities3', 'JobContactPriorities4', 'JobContactPriorities5', 'JobEmailPriorities1', 'JobEmailPriorities2', 'JobEmailPriorities3', 'JobEmailPriorities4', 'JobEmailPriorities5', 'JobEmailPriorities6', 'JobEmailPriorities7', 'UpdateCV', 'CommunicationTools', 'TimeFullyProductive', 'EducationTypes', 'SelfTaughtTypes', 'TimeAfterBootcamp', 'HackathonReasons', 'AgreeDisagree1', 'AgreeDisagree2', 'AgreeDisagree3', 'DatabaseWorkedWith', 'DatabaseDesireNextYear', 'PlatformDesireNextYear', 'FrameworkWorkedWith', 'FrameworkDesireNextYear', 'IDE', 'NumberMonitors', 'Methodology', 'VersionControl', 'CheckInCode', 'AdBlocker', 'AdBlockerDisable', 'AdBlockerReasons', 'AdsAgreeDisagree1', 'AdsAgreeDisagree2', 'AdsAgreeDisagree3', 'AdsActions', 'AdsPriorities1', 'AdsPriorities2', 'AdsPriorities3', 'AdsPriorities4', 'AdsPriorities5', 'AdsPriorities6', 'AdsPriorities7', 'AIDangerous', 'AIInteresting', 'AIResponsible', 'AIFuture', 'EthicsChoice', 'EthicsReport', 'EthicsResponsible', 'EthicalImplications', 'StackOverflowRecommend', 'StackOverflowVisit', 'StackOverflowHasAccount', 'StackOverflowParticipate', 'StackOverflowJobs', 'StackOverflowDevStory', 'StackOverflowJobsRecommend', 'StackOverflowConsiderMember', 'HypotheticalTools1', 'HypotheticalTools2', 'HypotheticalTools3', 'HypotheticalTools4', 'HypotheticalTools5', 'WakeTime', 'HoursComputer', 'HoursOutside', 'SkipMeals', 'ErgonomicDevices', 'Exercise', 'SexualOrientation', 'EducationParents', 'Dependents', 'MilitaryUS', 'SurveyTooLong', 'SurveyEasy']\n", + "#df2018.drop(drop_cols, axis=1, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "#df2018.shape #checking rows and col after dropping the table" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Data Filtering - Sorting & Renaming\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "col=['Age','ConvertedSalary','Country','Currency','DevType','Employment','RaceEthnicity','Gender','SalaryType','Hobby','JobSatisfaction','JobSearchStatus','OperatingSystem','UndergradMajor','YearsCoding','YearsCodingProf','LanguageDesireNextYear','LanguageWorkedWith','FormalEducation']\n", + "df=df2018[col]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "#renaming the colo\n", + "# 'ConvertedSalary': 'SalaryUSD'\n", + "df.rename(columns={'ConvertedSalary': 'SalaryUSD' }, inplace =True)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeCountryCurrencyDevTypeEmploymentFormalEducationGenderHobbyJobSatisfactionJobSearchStatusLanguageDesireNextYearLanguageWorkedWithOperatingSystemRaceEthnicitySalaryTypeSalaryUSDUndergradMajorYearsCodingYearsCodingProf
025 - 34 years oldKenyaNaNFull-stack developerEmployed part-timeBachelor’s degree (BA, BS, B.Eng., etc.)MaleYesExtremely satisfiedI’m not actively looking, but I am open to n...JavaScript;Python;HTML;CSSJavaScript;Python;HTML;CSSLinux-basedBlack or of African descentMonthlyNaNMathematics or statistics3-5 years3-5 years
135 - 44 years oldUnited KingdomBritish pounds sterling (£)Database administrator;DevOps specialist;Full-...Employed full-timeBachelor’s degree (BA, BS, B.Eng., etc.)MaleYesModerately dissatisfiedI am actively looking for a jobGo;PythonJavaScript;Python;Bash/ShellLinux-basedWhite or of European descentYearly70841.0A natural science (ex. biology, chemistry, phy...30 or more years18-20 years
\n", + "
" + ], + "text/plain": [ + " Age Country Currency \\\n", + "0 25 - 34 years old Kenya NaN \n", + "1 35 - 44 years old United Kingdom British pounds sterling (£) \n", + "\n", + " DevType Employment \\\n", + "0 Full-stack developer Employed part-time \n", + "1 Database administrator;DevOps specialist;Full-... Employed full-time \n", + "\n", + " FormalEducation Gender Hobby \\\n", + "0 Bachelor’s degree (BA, BS, B.Eng., etc.) Male Yes \n", + "1 Bachelor’s degree (BA, BS, B.Eng., etc.) Male Yes \n", + "\n", + " JobSatisfaction JobSearchStatus \\\n", + "0 Extremely satisfied I’m not actively looking, but I am open to n... \n", + "1 Moderately dissatisfied I am actively looking for a job \n", + "\n", + " LanguageDesireNextYear LanguageWorkedWith OperatingSystem \\\n", + "0 JavaScript;Python;HTML;CSS JavaScript;Python;HTML;CSS Linux-based \n", + "1 Go;Python JavaScript;Python;Bash/Shell Linux-based \n", + "\n", + " RaceEthnicity SalaryType SalaryUSD \\\n", + "0 Black or of African descent Monthly NaN \n", + "1 White or of European descent Yearly 70841.0 \n", + "\n", + " UndergradMajor YearsCoding \\\n", + "0 Mathematics or statistics 3-5 years \n", + "1 A natural science (ex. biology, chemistry, phy... 30 or more years \n", + "\n", + " YearsCodingProf \n", + "0 3-5 years \n", + "1 18-20 years " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.sort_index(axis=1).head(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(99, 19)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#21 col has been selected rfom 129, compared the shape\n", + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Age 32\n", + "SalaryUSD 53\n", + "Country 0\n", + "Currency 39\n", + "DevType 1\n", + "Employment 0\n", + "RaceEthnicity 38\n", + "Gender 32\n", + "SalaryType 50\n", + "Hobby 0\n", + "JobSatisfaction 18\n", + "JobSearchStatus 16\n", + "OperatingSystem 26\n", + "UndergradMajor 11\n", + "YearsCoding 0\n", + "YearsCodingProf 15\n", + "LanguageDesireNextYear 29\n", + "LanguageWorkedWith 25\n", + "FormalEducation 2\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "print(df.isnull().sum()) #Finding Null Values" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Age object\n", + "SalaryUSD float64\n", + "Country object\n", + "Currency object\n", + "DevType object\n", + "Employment object\n", + "RaceEthnicity object\n", + "Gender object\n", + "SalaryType object\n", + "Hobby object\n", + "JobSatisfaction object\n", + "JobSearchStatus object\n", + "OperatingSystem object\n", + "UndergradMajor object\n", + "YearsCoding object\n", + "YearsCodingProf object\n", + "LanguageDesireNextYear object\n", + "LanguageWorkedWith object\n", + "FormalEducation object\n", + "dtype: object" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.dtypes #data_types" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Validation - Total Cells vs Missing %" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total : 1881\n", + "Total missing : 387\n", + "Missing Percentage: 20.574162679425836 %\n" + ] + } + ], + "source": [ + "#Find % of missing data\n", + "missing_count = df.isnull().sum() #number of missing\n", + "total_cells = np.product(df.shape) # number of cells (cols x rows)\n", + "total_missing = missing_count.sum()\n", + "missing_percent = (total_missing*100)/total_cells\n", + "\n", + "print('Total : ', total_cells)\n", + "print('Total missing : ', total_missing)\n", + "print('Missing Percentage: ', missing_percent, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Missing Percentage column-wise" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "def missing(df,column,n):\n", + " empty_cells=df[column].isnull().sum()\n", + " return (empty_cells*100.0)/n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Age : 32.32 %\n", + "SalaryUSD : 53.54 %\n", + "Country : 0.00 %\n", + "Currency : 39.39 %\n", + "DevType : 1.01 %\n", + "Employment : 0.00 %\n", + "RaceEthnicity : 38.38 %\n", + "Gender : 32.32 %\n", + "SalaryType : 50.51 %\n", + "Hobby : 0.00 %\n", + "JobSatisfaction : 18.18 %\n", + "JobSearchStatus : 16.16 %\n", + "OperatingSystem : 26.26 %\n", + "UndergradMajor : 11.11 %\n", + "YearsCoding : 0.00 %\n", + "YearsCodingProf : 15.15 %\n", + "LanguageDesireNextYear : 29.29 %\n", + "LanguageWorkedWith : 25.25 %\n", + "FormalEducation : 2.02 %\n" + ] + } + ], + "source": [ + "total_cells=df.shape[0]\n", + "for column in df.columns:\n", + " res=missing(df,column,total_cells)\n", + " print(column,\":\",\"{:.2f}\".format(res),\"%\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gender Filtering \n", + "### Data Cleaning Starts" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Gender\n", + "Female 5\n", + "Female;Male 1\n", + "Female;Male;Transgender;Non-binary, genderqueer, or gender non-conforming 1\n", + "Male 59\n", + "Male;Non-binary, genderqueer, or gender non-conforming 1\n", + "Name: Gender, dtype: int64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Gender: null = 13312 (21.6%)\n", + "df['Gender'].unique()\n", + "#count number of each gender\n", + "df.groupby('Gender')['Gender'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "#replace\n", + "df['Gender'] = df['Gender'].fillna('Non-binary, genderqueer, or gender non-conforming')\n", + "df['Gender'].replace('Female;Male;Non-binary, genderqueer, or gender non-conforming', 'Female', inplace =True)\n", + "df['Gender'].replace('Female;Male;Transgender;Non-binary, genderqueer, or gender non-conforming', 'Female', inplace =True)\n", + "df['Gender'].replace('Female;Non-binary, genderqueer, or gender non-conforming', 'Female', inplace =True)\n", + "df['Gender'].replace('Female;Transgender;Non-binary, genderqueer, or gender non-conforming', 'Female', inplace =True)\n", + "df['Gender'].replace('Male;Non-binary, genderqueer, or gender non-conforming', 'Male', inplace =True)\n", + "df['Gender'].replace('Male;Transgender;Non-binary, genderqueer, or gender non-conforming', 'Male', inplace =True)\n", + "df['Gender'].replace('Transgender;Non-binary, genderqueer, or gender non-conforming', 'Non-conforming', inplace =True) ##not sure\n", + "df['Gender'].replace('Female;Male', 'Female', inplace =True)\n", + "df['Gender'].replace('Female;Male;Transgender', 'Female', inplace =True)\n", + "df['Gender'].replace('Female;Transgender', 'Female', inplace =True)\n", + "df['Gender'].replace('Male;Transgender', 'Female', inplace =True) \n", + "df['Gender'].replace('Non-binary, genderqueer, or gender non-conforming', 'Non-conforming', inplace =True) #\n", + "df['Gender'].replace('Transgender', 'Male', inplace =True) " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "lst=df.groupby('Gender')['Gender'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATQAAAERCAYAAAD14FsaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8f0lEQVR4nO3dd3QUVf/H8ffuJtlNb6STShJ6CwTpTZCuoIgCCgGVoqjYeCgiKjZURMUGosBPHgRFUB5AwAIqqKhIlR4InfTed3d+f6wsLElI293Z3dzXOTk5mZm997spn9yZuTOjkCRJQhAEwQEo5S5AEATBXESgCYLgMESgCYLgMESgCYLgMESgCYLgMESgCYLgMESgCYLgMESgCYLgMESgCYLgMESgWUBUVBRJSUlyl1ElhULB888/b/F+du7ciUKhYOfOncZlvXv3plWrVhbvGyAlJQWFQsGKFSus0p8gP7sOtDNnzjBt2jTi4+Nxc3PDzc2NFi1a8Mgjj3Dw4EG5y7OKqKgoFAoFCoUCpVKJj48PrVu3ZtKkSezZs8ds/axevZq3337bbO2Zky3XJliXwl6v5dy0aRP33HMPTk5OjB07lrZt26JUKjl27Bjr16/n7NmznDlzhsjISKvXFhUVRe/eva0yMoiKisLX15ennnoKgPz8fI4ePcqXX37JlStXeOKJJ3jrrbdMXlNSUoKTkxNOTk417mfo0KEcPnyYlJSUGr9Gr9dTVlaGi4sLSqXhf2fv3r3JyMjg8OHDNW6nrrVJkkRpaSnOzs6oVCqz9SfYrpr/RtuQ5ORk7r33XiIjI/nhhx8ICQkxWb9gwQI++OAD4x+RPdNqtej1elxcXKrcJiwsjPvuu89k2YIFCxgzZgyLFi0iLi6OqVOnGtdpNBqL1QuGwLwaYpbu62YUCoWs/QsykOzQpEmTJED6/fffa/W6o0ePSnfddZfk6+srqdVqqUOHDtI333xjss3y5cslQNq1a5f0xBNPSI0aNZLc3Nyk4cOHS2lpaSbb6vV6af78+VJYWJjk6uoq9e7dWzp8+LAUGRkpjR8/3mTb7Oxs6fHHH5caN24subi4SE2aNJFee+01SafTGbc5c+aMBEhvvPGGtGjRIikmJkZSKpXSvn37qnxPkZGR0pAhQypdl5+fL/n5+UlhYWGSXq83LgekefPmGb/Oy8uTHn/8cSkyMlJycXGRAgICpH79+kl79+6VJEmSevXqJQEmH5GRkZIkSdKOHTskQPr888+lOXPmSKGhoZJCoZCys7ON63bs2GHsq1evXlLLli2lv/76S+rSpYuk0WikqKgo6cMPP6z053DmzBmT5Te2ebParn4/ly9fbtLGDz/8IHXv3l1yc3OTvL29pdtvv106cuSIyTbz5s2TAOnkyZPS+PHjJW9vb8nLy0tKSkqSCgsLq/x5CPKyyxHapk2biI2N5ZZbbqnxa/755x+6detGWFgYM2fOxN3dnS+++ILhw4fz1VdfMWLECJPtH330UXx9fZk3bx4pKSm8/fbbTJs2jbVr1xq3ee6553jppZcYPHgwgwcP5u+//+a2226jrKzMpK2ioiJ69erFxYsXmTx5MhEREfz666/MmjWLy5cvVzj+s3z5ckpKSpg0aRJqtRo/P7/af5MADw8PRowYwSeffMKRI0do2bJlpdtNmTKFdevWMW3aNFq0aEFmZia7du3i6NGjJCQkMGfOHHJzc7lw4QKLFi0ytn29+fPn4+LiwtNPP01paelNR5TZ2dkMHjyYUaNGMXr0aL744gumTp2Ki4sLEydOrNV7rElt1/v+++8ZNGgQMTExPP/88xQXF7N48WK6devG33//TVRUlMn2o0aNIjo6mldffZW///6bZcuWERgYyIIFC2pVp2AlcidqbeXm5kqANHz48ArrsrOzpfT0dONHUVGRcd2tt94qtW7dWiopKTEu0+v1UteuXaW4uDjjsqsjg379+pmMap544glJpVJJOTk5kiRJUlpamuTi4iINGTLEZLvZs2dLgMkIbf78+ZK7u7t04sQJk3pnzpwpqVQq6dy5c5IkXRtReHl5VRgNVuVmIzRJkqRFixZJgMlIlBtGaN7e3tIjjzxy036GDBliHPlc7+qIKSYmxuT7ff26G0dogLRw4ULjstLSUqldu3ZSYGCgVFZWJklSzUdoN6utshHa1X4yMzONyw4cOCAplUpp3LhxxmVXR2gTJ040aXPEiBGSv79/hb4E22B3B5ny8vKAyv8L9+7dm4CAAOPH+++/D0BWVhY//vgjo0aNIj8/n4yMDDIyMsjMzGTAgAGcPHmSixcvmrQ1adIkFAqF8esePXqg0+k4e/YsYPhPX1ZWxqOPPmqy3fTp0yvU9eWXX9KjRw98fX2NfWdkZNCvXz90Oh0///yzyfZ33XUXAQEBdfsG3eDq9yk/P7/KbXx8fNizZw+XLl2qcz/jx4/H1dW1Rts6OTkxefJk49cuLi5MnjyZtLQ09u7dW+caqnP58mX2799PUlKSyai3TZs29O/fny1btlR4zZQpU0y+7tGjB5mZmcbfQ8G22N0up6enJwAFBQUV1i1ZsoT8/HxSU1NNDpKfOnUKSZKYO3cuc+fOrbTdtLQ0wsLCjF9HRESYrPf19QUMu0uAMdji4uJMtgsICDBue9XJkyc5ePBglSGVlpZm8nV0dHSl29XF1e/T1e9bZV5//XXGjx9PeHg4HTp0YPDgwYwbN46YmJga91ObmkNDQ3F3dzdZFh8fDxjmjnXu3LnGbdXG1Z9Z06ZNK6xr3rw527Zto7Cw0KS2m/0eeHl5WaROoe7sLtC8vb0JCQmp9LT/1WNqN56+1+v1ADz99NMMGDCg0nZjY2NNvq7qNL9Uh1kuer2e/v37M2PGjErXX/1jvqqmI52auPp9uvH9XW/UqFH06NGDDRs2sH37dt544w0WLFjA+vXrGTRoUI36MWfNgMmo93o6nc6s/VTHnL8HguXZXaABDBkyhGXLlvHHH3/QqVOnare/OtJwdnamX79+Zqnh6vy2kydPmoxk0tPTjaO4q5o0aUJBQYHZ+q6pgoICNmzYQHh4OM2bN7/ptiEhITz88MM8/PDDpKWlkZCQwMsvv2wMtKoCpi4uXbpUYSR04sQJAONB+asjoZycHJPXXh1lXa+mtV39mR0/frzCumPHjtGoUaMKI0fBvtjdMTSAGTNm4ObmxsSJE0lNTa2w/sb/noGBgfTu3ZslS5Zw+fLlCtunp6fXuoZ+/frh7OzM4sWLTfqrbMb6qFGj+O2339i2bVuFdTk5OWi12lr3X53i4mLuv/9+srKymDNnzk1HPLm5uSbLAgMDCQ0NpbS01LjM3d29wnZ1pdVqWbJkifHrsrIylixZQkBAAB06dAAM/wQAk+OLOp2OpUuXVmivprWFhITQrl07Vq5caRKUhw8fZvv27QwePLiub0mwEXY5QouLi2P16tWMHj2apk2bGq8UkCSJM2fOsHr1apRKJY0bNza+5v3336d79+60bt2ahx56iJiYGFJTU/ntt9+4cOECBw4cqFUNAQEBPP3007z66qsMHTqUwYMHs2/fPr799lsaNWpksu0zzzzDxo0bGTp0KElJSXTo0IHCwkIOHTrEunXrSElJqfCa2rh48SKrVq0CDKOyI0eOGK8UeOqpp0wOwN8oPz+fxo0bM3LkSNq2bYuHhwfff/89f/75JwsXLjRu16FDB9auXcuTTz5JYmIiHh4eDBs2rE71hoaGsmDBAlJSUoiPj2ft2rXs37+fpUuX4uzsDEDLli3p3Lkzs2bNIisrCz8/P9asWVNp+NemtjfeeINBgwbRpUsXHnjgAeO0DW9vb6tc3ypYmJynWOvr1KlT0tSpU6XY2FhJo9FIrq6uUrNmzaQpU6ZI+/fvr7B9cnKyNG7cOCk4OFhydnaWwsLCpKFDh0rr1q0zbnN1usCff/5p8trKpgvodDrphRdekEJCQqqdWJufny/NmjVLio2NlVxcXKRGjRpJXbt2ld58803jVIXrJ9bWVGRkpHFCqUKhkLy8vKSWLVtKDz30kLRnz55KX8N10zZKS0ulZ555Rmrbtq3k6ekpubu7S23btpU++OADk9cUFBRIY8aMkXx8fCqdWPvll19W6KemE2sjIyOl9957r8Lrk5OTpX79+klqtVoKCgqSZs+eLX333XcV2qyqtqom1n7//fdSt27dJFdXV8nLy0saNmxYlRNr09PTTZZXNZ1EsA12ey2nIAjCjezyGJogCEJlRKAJguAwRKAJguAwRKAJguAwRKAJguAwRKAJguAwRKAJguAwRKAJguAwRKAJguAwRKAJguAwRKAJguAwRKAJguAwRKAJguAwRKAJguAwRKAJguAwRKAJguAw7PIW3EIdlJdASQ6U5EJJHiiU4OIGLu7g7P7vZ43cVQpCvYhAs1eSBNlnIO0oZCZDcfa/YZXz7+d/P4r//VpXWl2LoFAZgs3FHZzdwNUXvELBOxy8w8C78b8fEeBhngchC4I5iVtw24P8VEg7cu0j9QikH4fyQvlqcvWFgGaGj+BWENwGgloawlAQZCICzdbotHB5P6TsgrO74eLfUJQhd1U1o1BCUCuI7AoRXQyfPQLlrkpoQESgyU2S4NI+OL3DEGLn/4CyArmrMh+/JhDZBWL7Q1x/MYITLEoEmhy0pXB6JxzbBCe2Q8EVuSuyDicNxPSGZkOg6WBwr/uzSAWhMiLQrEVXDie3w+GvDCFWli93RfJSKCH8FkO4NRsKftFyVyQ4ABFolnblMOz/Lxz8wn6OhckhqBUkjIN2Y0HtIXc1gp0SgWYJJblwYC3sXwWXD8hdjX1Re0PC/XDLZPCJkLsawc6IQDOn3Ivw+wewd6XYpawvhcqwO9r5YcNJBUGoARFo5pB6BH59Fw6tA3253NU4ntD2cMtUaHUnqJzlrkawYSLQ6uPML7D7HTj1ndyVNAwewZD4IHScCO7+clcj2CARaHVx9H/wy1tw6W+5K2mYnDSGEwi9Z4Gbn9zVCDZEBFptpB2DLU9Dyi9yVyIAaHyg90xIfAhU4rJkQQRazZTmw87XYM9HoNfKXY1wo0bxMOAVw5UIQoMmAq06B7+E7+ZC/mW5KxGqE9vfEGwB8XJXIshEBFpV0o7C5qfh7C65KxFqQ+lsOHHQeya4+shdjWBlst+xNiUlBYVCwf79++UuxaAkD7bOho+6izCzR/py2PMhvJcIRzfJXY1gZXUKtKSkJBQKBVOmTKmw7pFHHkGhUJCUlFTf2qzvwFp4ryP8/r44VmbvCtNg7Vj46kEoypK7GsFK6jxCCw8PZ82aNRQXFxuXlZSUsHr1aiIi7OySlcIM+GwEbJgEBalyVyOY06Ev4YPOcGyL3JUIVlDnQEtISCA8PJz169cbl61fv56IiAjat29vXLZ161a6d++Oj48P/v7+DB06lOTk5Ju2ffjwYQYNGoSHhwdBQUHcf//9ZGRY6MLus78Zdi+Tf7RM+4L8ClJhzWjYMMVwxlpwWPU6hjZx4kSWL19u/PrTTz9lwoQJJtsUFhby5JNP8tdff/HDDz+gVCoZMWIEer2+0jZzcnLo27cv7du356+//mLr1q2kpqYyatSo+pRakSTBrkWwcqg4g9lQHPgclvSCywflrkSwkDqd5UxKSiInJ4ePP/6Y8PBwjh8/DkCzZs04f/48Dz74ID4+PqxYsaLCazMyMggICODQoUO0atWKlJQUoqOj2bdvH+3ateOll17il19+Ydu2bcbXXLhwwdhPfLwZTskXZcHXU+HE1vq3JdgflRoGvWa4hEpwKPWaXh0QEMCQIUNYsWIFkiQxZMgQGjUyvQvpyZMnee6559izZw8ZGRnGkdm5c+do1apVhTYPHDjAjh078PCoeE+s5OTk+gfahb3wZRLknqtfO4L90pXCpifg/J8w9C1wdpW7IsFM6n29yMSJE5k2bRoA77//foX1w4YNIzIyko8//pjQ0FD0ej2tWrWirKys0vYKCgoYNmwYCxYsqLAuJCSkfsX+/hFsf1bcEUMwOLAaUg/B6LWGx/QJdq/egTZw4EDKyspQKBQMGDDAZF1mZibHjx/n448/pkePHgDs2nXzuV0JCQl89dVXREVF4eRkpuvz9DrY/CTsXWGe9gTHceUQLLsVRq+B0HZyVyPUU70n1qpUKo4ePcqRI0dQqVQm63x9ffH392fp0qWcOnWKH3/8kSeffPKm7T3yyCNkZWUxevRo/vzzT5KTk9m2bRsTJkxAp9PVvsDSAlh9jwgzoWr5l2H5YDj+rdyVCPVklisFvLy88PLyqti4UsmaNWvYu3cvrVq14oknnuCNN964aVuhoaHs3r0bnU7HbbfdRuvWrZk+fTo+Pj4olbUsN/8KLB8k7lcmVK+8ENaMMRyWEOyW417LmXYU/ns35J6XuxLB3nR+BAa+IncVQh04ZqBd2Aur7oSSHLkrEexV4kMw+A1QKOSuRKgF2S9ON7uzv8Fnw0WYCfXz58eGE0kO+P/ekTnWCC1lt2E3s7xQ7koER5EwHoa9I0ZqdsJxRmgizARL+HslbHwUqrhUT7AtjjFCO/8H/N9wEWaC5bQbC7e/B7U90y5Ylf3/dNKPw+pRIswEy9r/X/jmYTFSs3H2HWh5l2DVXVCcLXclQkNw4HPYOlPuKoSbsN9AK84xhJmYZyZY0x9L4O/P5K5CqIJ9Blp5CXw+GtKOyF2J0BBtftJw3FawOfYZaBsfhXO/yl2F0FDpymDtfYZDHoJNsb9A27MEDn0hdxVCQ1eQCmvGGvYWBJthX4F27nfYNkfuKgTB4NLf8L/H5a5CuI79BFp+KnwxXtycUbAtB9fAbxVvbCrIwz4CTac13Da74IrclQhCRdvnQvIOuasQsJdA+26uOAkg2C5JB+smQNZpuStp8Gw/0A6tg98/kLsKQbi54mz4fIzhDsmCbGw70DJOwcbH5K5CEGom/Sj88ILcVTRoth1om6aLazQF+/LnMsPZeEEWthto+z+HlF/krkIQakfSGyZ+a0vlrqRBss1AK8oyPD9TEOxRxgn4+eYPAxIswzYD7bvnoChD7ioEoe52vQ1XDstdRYNje4F29jfYt0ruKgShfvTlsHGa4SHXgtXYVqDpyg0nArD/m+gKApf2iSlHVmZbgfbru5B+TO4qBMF8drwCWWfkrqLBsJ1Ay06Bn8SBVMHBlBfB9/PkrqLBsJ1A2/w0aIvlrkIQzO/IN+KGkFZiG4H2zwY49Z3cVQiC5YjbXlmF/IGmK4dt1p9zdjFPz33ri/F/PR/Xl/No/WEBf126dkZKkiSe21FCyELD+n7/V8jJzOrPWFXX7pu/lhL4Rj6Bb+Sz8FfTyZd7LmjpsLQArV6cFHE4F/4wjNQEi3KSuwAOfA55F6zaZXaxRLdPC+kT7cS3Y90IcFNwMkuPr+ba07Ff313Gu3vKWDnclWhfJXN3lDJgVRFHHvFA41T5U7Sra/dgqo7ndpSyaYwbkgRDPy/itiZOtA5SodVLTNlcwtKhrjgpxVO6HdL3z0PTwaBylrsShyVvoOl1hgmIVrZgdynh3kqW3+FqXBbte22wKkkSb+8p49meau5oZvjl+7/hrgS9mc/Xx7Tc26ryX8jq2j2WoadNkIq+0YZve5sgJccy9LQOUvHG7jJ6RjiRGKYy63sVbEjWacOT2BMflLsShyXvLuc/GyAr2erdbjyupWOIiru/LCLwjXzaLyng471lxvVnciSuFEj0i7mW994aBbc0VvHb+ap3O6trt3WgkhOZOs7l6jmbo+dEpp5WgUqSs/Qs31/OS33VlnnDgu3Y9bbhMItgEfIFmiTBrkWydH06W8+Hf5UR56dk231uTO3owmNbS1i53xA+VwoMT8cOcjfd9QtyV3ClsOonZ1fXbvMAFa/cqqH/Z0XctqqIV2/V0DxAxeRNxbzeX822ZC2tPiig/ZICfj6rtdC7F2SVe95wmEWwCPl2OU9shVR5rnXTS9Ax1BAuAO1DVBxO0/PR3nLGt3OxaLtTOrowpeO1PlbuL8NTraBLYxVN3yvgz4fcuZAnce+6Ys487oG6iuN1gv2RlE6cCx3Mx3vdebGdhFIcKzU7+UZovyyUresQTwUtAkzfevNGSs7lGkZfwR6GdamFpmcbUwslgt2r/pZV1+6NMor0vPBTKYsHadhzUUe8v5I4fxV9op0o18OJzKpHg4L9kJw0HA8fxd3O79Pr1L2sStaw/Uiq3GU5JHkC7fRPcOFPWboG6Bau4vgNYXEiU0+kt+HbEe2jINhDwQ+nr+325ZVK7Lmgo0t41Qftq2v3Rk9sK+WJzmoaeynR6aH8updq9RI6MXvDrkkuHuyLGM8g3mPAyeH8letpXPfxL+L5A5YgT6DtekuWbq96orOa3y/oeOWXUk5l6Vl9qJylf5fxSKJhV1ChUDD9Fhde+qWUjcfLOZSqY9yGYkI9FQxvdm0v/db/K+S9P8pq3O71vkvWciJTxyOdDGdME8NUHMvQ8+3JcpbuLUOlUNDUX/5pgkLt6V392B0+me5l7zLixACOFbhV2Gbv2Wz2ns2WoTrHZv1jaBmn4PROq3d7vcQwFRvucWXWD6W8+FMp0b5K3h6gYWyba9MxZnRzobBcYtL/SsgpkegeoWLrfW4mc9CSs/RkFOlr1S5AcbnEtG9LWDvSFaXC0F5jLyWLB2mY8E0JaidYOVyDq7M4xmJPdB4hfO9zN7PPdSAzu/q5Zh//fJoO93ewQmUNh0KSJOvu2Gx/Fn5dbNUuBcGSyr2j2egxkudS2lKoq/moWqmAn2f0obFvxRGcUDfWHaFpywzPChAEB1Di15zP1SN55WwzylNrP5rWS/C/A5eZ2ruJBaprmKwbaMc2iVtrC3avICCBTxR3suhcTL3b2njgkgg0M7JuoP290qrdCYI5ZQV3Z3HZMJafDzdbm0cv53EqLZ/YQM/qNxaqZb1Ayz5rmK4hCHZEQkFqaD9eKxzC1ymBFulj44HLPNlfBJo5WG9ewOGvEM8KEOyFpHQipfHtPOD+Hp1PT+DrVMuEGcCmA5cs1nZDY70R2j/rrdaVINSV5KTheMgdzE7ry9+nrDNqOp1RyOGLubQK87ZKf47MOoGWmQxXDlmlK0GoC0ntyb7Au5h5qQcnTrpW/wIz23jgkgg0M7DOLufRjVbpRhBqS+/qz67wyXQvfZc7T97GiULrhxkYdjutPSXUkqKionj77bet3q+VAm2TVboRhJrSeYSytfHjdChYxH0ne3GxRN570V3KLeGvOl4KlZSUhEKhqPBx6tQpM1dp+yy/y5l/BS7utXg3glAT5d7RfON+N/POtqEww7auld24/xKJUX51eu3AgQNZvny5ybKAgABzlGVXLP8TTd6BOLspyK3EvwWfhsylRfpLPH26Xa0uUbKWbw9frvNup1qtJjg42ORDpVLxzTffkJCQgEajISYmhhdeeAGt9tpdZBQKBUuWLGHo0KG4ubnRvHlzfvvtN06dOkXv3r1xd3ena9euJCdfu7N0cnIyd9xxB0FBQXh4eJCYmMj3339/0/pycnJ48MEHCQgIwMvLi759+3LgwIE6vdebsfxP9YyYeybIpyCwA4sCXqLZxWd58UxzyvW2e8F/RkEZJ1ILzNbeL7/8wrhx43j88cc5cuQIS5YsYcWKFbz88ssm282fP59x48axf/9+mjVrxpgxY5g8eTKzZs3ir7/+QpIkpk2bZty+oKCAwYMH88MPP7Bv3z4GDhzIsGHDOHfuXJW13H333aSlpfHtt9+yd+9eEhISuPXWW8nKyjLb+wVrXJy+sDnki3k2gnVlBXfnnbLbWXmpsdyl1MqLd7RkXJeoWr0mKSmJVatWodFojMsGDRpEdnY2t956K7NmzTIuX7VqFTNmzODSJcPfpEKh4Nlnn2X+/PkA/P7773Tp0oVPPvmEiRMnArBmzRomTJhAcXHVDwJv1aoVU6ZMMQZfVFQU06dPZ/r06ezatYshQ4aQlpaGWn3tWGVsbCwzZsxg0qRJtXq/N2PZY2jpJ0SYCVYjKZRcCe3HawWD+cZCs/otbc/prFoHGkCfPn348MMPjV+7u7vTpk0bdu/ebTIi0+l0lJSUUFRUhJub4S4fbdq0Ma4PCgoCoHXr1ibLSkpKyMvLw8vLi4KCAp5//nk2b97M5cuX0Wq1FBcXVzlCO3DgAAUFBfj7+5ssLy4uNtmVNQfLBprM9z0TGgZJ6cTZ0CE8n3UbO5N95S6nXvacqdsumLu7O7GxsSbLCgoKeOGFF7jzzjsrbH/9aM7Z+dq92xT/3p+vsmV6veHef08//TTfffcdb775JrGxsbi6ujJy5EjKyq7d7PTGOkJCQti5c2eFdT4+PjV7gzVk2UBL+dmizQsNmxyz+i0to6CUU2kFxAZ61LuthIQEjh8/XiHo6mv37t0kJSUxYsQIwBBYKSkpN63jypUrODk5ERUVZdZabmTZQLu4z6LNCw2TpPZkX9BdzLwoz6x+S/srJcssgfbcc88xdOhQIiIiGDlyJEqlkgMHDnD48GFeeumlOrcbFxfH+vXrGTZsGAqFgrlz5xpHb5Xp168fXbp0Yfjw4bz++uvEx8dz6dIlNm/ezIgRI+jYsWOda7mR5c5yFmVB3gWLNS80PHrXRvwSPoWupYu584R8s/ot7cCFXLO0M2DAADZt2sT27dtJTEykc+fOLFq0iMjIyHq1+9Zbb+Hr60vXrl0ZNmwYAwYMICEhocrtFQoFW7ZsoWfPnkyYMIH4+Hjuvfdezp49azxmZy6WO8t5eif83x0WaVpoWHQeoWz3uZvZZzuQXS7fo2StpWWoF5sf6yF3GXbJcr8dlw9arGmhYSj3juFr95E8d7Y1xRlVPz7Q0ZxIzaekXIfGueG8Z3OxXKBdEYEm1E2xf0tWu9zFKynx6CTToyIXPpyILi+twms82g/B/7apFZaXpZ8ld9d/Kb1yCl1eGr59H8Ir0XTPoeCfHeT8tBKprBj31v3wu/Uh4zptbiqpa+cSMv5tlGrrPMykXCdx9HIe7SPs+4ytHMQITbAZ+YEd+ZjhvHuTe/WHjF8E1x2ALss4S9raZ3Fv1q3S7SVtKU4+wbg17Ub2j8sqrNcV5ZK1dTH+g6fj5BNM2roX0ES2xS22EwCZ2z/At1eS1cLsqoMXckWg1YFlAq28GDIb3pX+Qt1kBfcwzOo/F1bttio303uGFf/+JU4+IajDW1e6vTokHnVIPADZP1V8poU25woKtRvuzXsCoIloQ3nmeYjtROGRn1AonXBr2rW2b6nektPNdwlUQ2KZQEv9BySdRZoWHINhVn9/XisYVOdZ/ZKunMIjO/FKHG6c/FlbTn5hSOWllKUmo/IKpOzyCTxa90NXUkDOL6sIGv1Kndqtr0s5JbL0a+8sE2ji+JlQBUnpTEroEJ7P7s9P9ZzVX3Tid/QlBbi3urXObag0HjQa8gQZm95C0pbh3qovrjEdyNjyDp4JQ9HmppL21XzQa/HuNgb3Zt3rVXNNXc6t+rpJoWqWCbScqq+6FxomycmVYyF3MCetL3+fqv+kUYCCg9txjemAk6d/9RvfhFt8V9zir+1Wlpw7RHl6Cn79J3Np6SQaDXsGlbsvl//vSTThrVC5+9Sz8updyRUjtLqwTKAVZVqkWcH+SGpP/v73Xv0nzTirX5ubRsnZAwSMmG22NgEkbTlZ2z/Ef+iTaLMvI+l1aCIMx+ec/cIovXwct9hbzNpnZTILyyjV6lA7iakbtWGZQCsUgdbQ6V0bsavR3fzn/C1cPuli9vYLDn2Hys0b1yaJZm0399c1aGISUAfHUpaaDPprx4IlvdbkDKulXcktIdLf3Wr9OQIxQhPMSusZxnfedzPzbAK52Zb59ZIkPQWHvse91a0olKYjmIxNC1F5+uPbK8mwra6c8ozzhpV6LbqCTMpST6Nw0eDsG2ry2rKMcxQe+4WQpHcBcPJrDAol+Qe2o/LwpTzzAi4hcRZ5T5W5lCMCrbYsFGgZFmlWsF1lPjF87XY38862ojjdsrtJJSn70eWl49Gmf4V12rx0UFybjKsryOLyiseMX+f9sZ68P9ajDm9F8JjXjMslSSJr63v49n0QpYvh1jpKZzX+g6eT9d2HSLpy/PpPwcmzkQXfmakreeLEQG1Z5lrOBVFQXLcn2Aj2pdi/Jaud7+KVsxVn9Qv188yApjzSx7y3/nF05h+h6XVQnGP2ZgXbkh/YkaXSCBafj5a7FIclznTWnvkDrSgL8ZQnx5UZ0pO3S4fxWQ1m9Qv1I+ai1Z4FAk2cEHA0kkLJ5dDbeDV/EP870/Ce9SiXK3lihFZbItCEKl2d1T8v6zZ+TvaRu5wGp6TcelNEHIUFAk2c4bR3kpMrR0OGMzu1D/vNNKtfqD2tTgRabYkRmmAkqb34O/AuZlzsTrID3qvf3pTrxLHo2jJ/oJXkmb1JwbL0bo34xf9uZp6zzKx+oW60VrwqwVGYP9BUztVvI9gErWcY273vZtbZBHKzHP9e/fZGpxcjtNoy/2+xk7r6bQTZLWl/D7/rwtBKStr4its92SJXZw1Q8WoIoWoWGKGJQLN1f0Z25L2c3+QuQ6iGr9oXeEbuMuyK+a9VcdJUv40gq498feQuQagBpUJcSlZbFgg0cVDZlu2N6MAfuSfkLkOoAZVC3AuttsQIrYH50E88ScheuDqLqTO1Zf5AU4kRmq3aH96ePWJ0Zjc8nT3lLsHuiBFaA/JhI+vdy0uoP08XEWi1ZYFAE2c5bdGB8Lb8mnNc7jKEWvBSe8ldgt0xf6C5+Zm9SaH+PmwUJHcJQi2JEVrtmT/QPEPM3qRQP4cat2F3zjG5yxBqSQRa7Vlml1PjY/Zmhbr7MED8k7FH3i7ecpdgdywzc0+M0mzG4bDW/JJzVO4yhDoIcRd/R7VloUALtkizQu19FBha/UaCTQrzFLc5ry0RaA7sSGhLfhKjM7sV5iECrbYsE2g+ERZpVqidj4LD5S5BqCNXJ1cauYp5g7VlmUDza2KRZoWaOxbSgh3ZR+QuQ6gjcfysbiwTaP7i4ahy+yhEjJLtmdjdrBvLBFqjOIs0K9TM8eDm/Jgtjp3Zs0ivSLlLsEuWCTSNF3g1tkjTQvWWhEYhiYc927Xm/s3lLsEuWe4OcoHNLNa0ULUTQc34Xhw7s3vN/MTfT11YLtCCW1usaaFqS8KixejMzqlVamK8Y+Quwy5ZLtAaJ1qsaaFyyYHxfC/mndm9OJ84nJTiKVx1IQLNgSxpHIteEs9ytHfN/MXuZl1ZLtA8AsFHnKmxltOBcWzLEcfOHEFzP3FCoK4s+1iZ8E4WbV64ZknjODE6cxAJgQlyl2C3LBtojUWgWcOZgCZsFaMzh9DItRGxvmJiel1ZNtAiOlu0ecFgaXhTMTpzEInB4thzfVg20IJbg4e484YlnW0Uw7fizKbD6BwiBgH1YdlAUyggrr9Fu2jolkY0Qyfp5C5DMJNOweIwTX1Y/lnz8QMt3kVDdd4/is1idOYwwjzCaOwpLhmsD8sHWpM+oBKPtrOEpZEtxejMgXQL7SZ3CXbP8oHm4g5R3S3eTUNz3j+STWJ05lD6RfaTuwS7Z/lAA7HbaQHLIluhlbRylyGYia/aV5zhNAMrBdptVummobjoF8HGXDE6cyR9IvqI6zfNwDqB5hsFAeL6NHP5OKo1Wr0YnTmS/pFiNoA5WCfQAJoNtVpXjuySbwTfiNGZQ/Fy8eKWkFvkLsMhWC/QEsaBwnrdOapl0WJ05mj6RvTFWeksdxkOwXoJ4xsJcQOs1p0juuLTmK9zj8ldhmBmd8bdKXcJDsO6Q6ZOD1q1O0ezLKYt5fpyucsQzCjWJ5b2ge3lLsNhWDfQmtwqntlZR6neoWzIPS53GYKZjYwfKXcJDsW6gaZQQKIYpdXFJzEJlOnL5C5DMCONSsPQGHGyzJysf5S+3RhwdrN6t/YszTuEr/LEsTNH0z+yP95qb7nLcCjWDzRXH2h9t9W7tWefxnQQozMHdHdT8XdgbvLMo+j0kCzd2qN0r2DW5YtjZ46mTaM24mSABcgTaMGtIaKLLF3bm0+bdKBUVyp3GYKZPdD6AblLcEjyzXQVJweqleERyLr8E3KXIZhZrE8sfcL7yF2GQ5Iv0FrcAR5BsnVvD1bEdaJEjM4czgOtH0ChUMhdhkOSL9BUztD1Mdm6t3WZHgF8IUZnDqexR2MGRQ2SuwyHJe/FlZ0miYcRV2FlXCeKdSVylyGY2YRWE1ApVXKX4bAUkiRJslZwaB18JQ6QXi/LvREDQ/0p1hbLXYqJzB8zyfoxi/IMw+VX6jA1gXcE4tnGE22BlrQNaRT8U0B5ZjlOnk54JngSdGcQKreq/4BTN6SSuyeX8qxyFE4KXKNcCborCLcmhrmK+nI9Fz+9SP6+fJy8nQgdF4pHSw/j69O3pFOeWU7o/aGWffNmEOYRxv+G/w9nlbgQ3VLkv6Nc65Hw+4dw8S+5K7EZK+NvoTjnkNxlVODs60zw3cG4BLkAkLMrh3PvnKPJi01AAm2OluB7glGHqSnPKOfSyktoc7RETIuosk11sJrQ+0NxCXBBX64nc1smKW+mEL8gHicvJ7J3ZlNytoSYuTEUHCzg/EfnafZuMxQKBWXpZWT/lE2T5+3jcrrH2j8mwszCbON+Pre9JHcFNiPHzY81Bclyl1Epr/ZeeLb1RB2sRh2sJmhkEEqNkqJTRWgaa4h4NAKv9l6oA9V4tPAg6K4g8vfnI+mq3gnw6eKDR0sPXAJd0IRpCB4djL5YT8kFw+526eVSPNt5ognT4HerH7p8Hbp8w4NhLq28RPCoYFSutr8L19yvOYOixbEzS7ONQIvsIm4A+a+V8V0o0hbJXUa1JL1Ezu856Ev1uMVWfimbrliH0lWJQlWzM3p6rZ7sndkoXZVowjUAaMI1FJ0sQl+mp+BQAU4+Tqg8VeT8moPCWYFXBy+zvSdLeibxGXFm0wrk3+W8qv+LcGIbNODb4+S6+fJ5oW2Ozq4qOV/C6ZdOoy/Xo1QriXg0Ak2YpsJ22nwt6RvT8evlV22befvzuPDhBfRlepy8nYh6JgonT8Ovpm8PX0rOl3By9kmcPJ0IfzgcXaGO1A2pRM+MJvUrwzE4l0AXwh4Iw9nX9nbp+kX0Ew9AsRL5Twpcb8sz8MdSuauQzeJ2Q1iaa3vHzq6n1+opzyxHX6wn989csn/OJnpmtEmo6Yp1pLyRgspdReTjkSicbj4y0ZfqKc8pR5evI+unLAqPFtLkuSY4eVX+//bCsgtoIjS4BLiQui6VJs81IX1LOqUXSol4tOrjdXJwUbrw9fCvCfcMl7uUBsE2djmv6jUT3PzlrkIWua4+rC46LXcZ1VI6KVEHqXGNciX47mA04Royv8s0rtcV60hZmIJSYxi9VRdmAEq1oU23WDcaP9AYhUpB9s/ZlW5bcLSA0oul+Pfzp/BYIZ5tPFGqlXh38qbwWKHZ3qe5TG47WYSZFdlWoLn7w8DX5K5CFquadqOg3Pb+IKslgVRuGOTrinWkvJmCQqUg8vFIlC51+/WS9BL6cn2F5foyPZc/u0xoUigKpQL0GE84SFoJSW87OxsA8b7xTGg1Qe4yGhTbCjSANqMgrmE9xzPP1Zv/Fp2Ru4xqXfnyCoXHCylLL6PkfInh62OF+HTxMe5m6kv1hD0Qhq5YR3lOOeU55SZBc2LmCfL25gGGXc0r665QdKqIsowyilOKufDJBbTZWrw7VbxPWPrGdDzaeOAa6QqAW5wbeXvzKDlfQtYPWbjF2c599lQKFS90fUE8/MTKbOekwPWGLoL3O0NZvtyVWMV/m3Yn38aPnQFo87RcWHoBba7WeCYy6qkoPFp5UHC0gOLThonAJ2ecNHld/BvxuAQY5q6VXSlDV2SYdoECyi6XcW7XOXQFOlQeKlyjXYmeHV3hREPJhRJy/8wl9sVY4zKvjl4UHivk9CunUQeraTylsQXffe2MaT6GVo1ayV1Gg2NbJwWu98fHsOVpuauwuHyNNwMiwsgvL5C7FMFMwjzC2HDHBlydXOUupcGxvV3OqxIfhMjucldhcf9t2k2EmQNRoOD5rs+LMJOJ7QaaQgF3LgGN495zvVDtyaqSc3KXIZjRxFYT6RzSWe4yGizbDTQA78Yw7F25q7CY1c16kFuWJ3cZgpm0C2jHtPbT5C6jQbPtQANoORw6ON6p7yK1B/9Xcl7uMgQz8XLxYkHPBTgpbfM8W0Nh+4EGhrlpQa3lrsKsVjfrSU5ZrtxlCGbyYtcXCfWw/VsYOTr7CDRnDYxaCWr7uBC5OkUu7mJ05kDubXovt0beKncZAvYSaAD+TeCuT0BhPyVXZU2znmSL0ZlD6BjUkRmdZshdhvAv+0qH+Nug/3y5q6iXIhd3VpZdlLsMwQzCPcNZ1HuRuBrAhthXoAF0nQbt75e7ijr7olkPskpz5C5DqCdPZ0/e6/sePhofuUsRrmN/gQaGS6Miu8ldRa2VOLuyouyy3GUI9aRSqHiz15vE+MTIXYpwA/sMNJUzjPoM/OzjXvJXfdGsF5mlld8WR7AfMxJn0DWsq9xlCJWwz0ADw62Gxm8Eb9u6oV9VSpxdWV5+Re4yhHp6sPWDjGk+Ru4yhCrYb6CB4UqC8RvBM0TuSqq1rlkvMkqz5C5DqIexzcfyeMLjcpch3IR9BxqAXzSM+wbcGsldSZVKnTR8qhWjM3t2Z9yd/CfxP3KXIVTD/gMNIKApjPsabPSM07rmvUgvEaMzezUoahDzuswTT22yA44RaADBreG+9eDiKXclJspUaj7VpstdhlBHfcL78EqPV1A6wITuhsCxfkqNO8DYL8DZdm7F/FXzXqSVZMhdhlAHg6MHs7D3QnHBuR1xrEADiOwKY9baxH3UylUufKrPrH5Dwebc2/ReXuvxmrgKwM44XqABRPeEB38AP3knPm5o3psrxWJ3095MbTuVOZ3niGNmdsgxAw2gUZwh1KJ6yNJ9ucqFZWJ0ZlcUKJjZaSYPt3tY7lKEOnLcQANw84P7N0DCOKt3/XWzXlwWozO7oVFpWNBzAWObj5W7FKEeHDvQwHCZ1O2L4baXrXbroXKlM8skcYmTvQh2D2bFoBUMih4kdylCPTl+oF3VdRrc+7lVpnVsbN6LS8VpFu9HqL/2ge35fMjntPRvKXcpghk0nEADaDoQHthm0es/tUonPkbcvNEe3BV3F5/c9gmNXG33KhOhdmz3QcOWVJAOa8bAhT/M3vSGFv14rviE2dsVzMdF6cKMxBnc0+weuUsRzKxhjdCu8giApE3Q8QHAfKfmtUonPlaIx9LZslifWFYPWS3CzEE1zBHa9ZJ3wMZHIbf+Dy35pvmtPFty0gxFCZYwutlonur4FGqVWu5SBAsRgQZQmg/bn4W9K+rchE6h4vYWHTlXJO5Ia2v8NH7M7zafno17yl2KYGEi0K6X/CNsfKxOo7X/Ne/L7JJTFihKqI8+4X2Y12Ue/q7+cpciWIEItBuV5BlGa3+vrPFLdAoVw1smklJ4yYKFCbUR4BrA7Ftm0y+yn9ylCFYkAq0qp36ATU9AztlqN93UrC+zSsXozBYoFUrujr+bxxMex9PGbiUlWJ4ItJvRlsLvH8DPC6Esv9JN9Aolw1vewplC8axNubVp1IY5nefQwr+F3KUIMhGBVhP5qfDji7B/NUh6k1VbmvXmP6WnZSpMAAjzCGNa+2kMiR4i7pDRwDXMeWi15RkEd7wPD+2AyO7GxXqFkqXOZTIW1rD5afyY2Wkm/xv+P4bGDBVhdp2vv/6a2NhYVCoV06dPt3r/UVFRvP3221bvV4zQ6iJ5B+x4ha3urjxTdkbuahocNyc3xrccT1LLJNzqcHfipKQkVq5cyauvvsrMmTONy7/++mtGjBiBI/xJBAUFMWHCBB577DE8PT3x9LTu8cT09HTc3d1xc7Pu3aPFCK0umvSBB78jqOdMEgIT5K6mwfBy8eKh1g+x5c4tPNzu4TqF2VUajYYFCxaQne14d0UpKCggLS2NAQMGEBoaWucwKyur+95HQECA1cMMRKDVS/uwrqwctJIVA1fQI6wHCjNeRiVcE+YRxsxOM/lu5Hc8lvCYWeaU9evXj+DgYF599dUqt/nqq69o2bIlarWaqKgoFi5caLI+KiqKV155hYkTJ+Lp6UlERARLly6ttu9//vmHoUOH4uXlhaenJz169CA5ORkAvV7Piy++SOPGjVGr1bRr146tW7caX5uSkoJCoWD9+vX06dMHNzc32rZty2+//QbAzp07jQHWt29fFAoFO3furPH7mT9/PuPGjcPLy4tJkyaxYsUKfHx82LRpE02bNsXNzY2RI0dSVFTEypUriYqKwtfXl8ceewydTmfS1vW7nAqFgmXLljFixAjc3NyIi4tj48aNJv1v3LiRuLg4NBoNffr0YeXKlSgUCnJycqr9nl4lAs0MOgR14IN+H7B5xGbGtxiPl4uX3CU5hBb+LXi95+tsHrGZsc3H1mtEdiOVSsUrr7zC4sWLuXDhQoX1e/fuZdSoUdx7770cOnSI559/nrlz57JixQqT7RYuXEjHjh3Zt28fDz/8MFOnTuX48eNV9nvx4kV69uyJWq3mxx9/ZO/evUycOBGtVgvAO++8w8KFC3nzzTc5ePAgAwYM4Pbbb+fkSdNL6ubMmcPTTz/N/v37iY+PZ/To0Wi1Wrp27Wrs/6uvvuLy5ct07dq1xu/nzTffpG3btuzbt4+5c+cCUFRUxLvvvsuaNWvYunUrO3fuZMSIEWzZsoUtW7bw2WefsWTJEtatW3fT7/kLL7zAqFGjOHjwIIMHD2bs2LFkZRke73jmzBlGjhzJ8OHDOXDgAJMnT2bOnDk3ba8y4hiaBZRoS9hyZgtrjq3haNZRucuxKx7OHgyMHsiI2BG0CWhjkT6SkpLIycnh66+/pkuXLrRo0YJPPvnE5Bja2LFjSU9PZ/v27cbXzZgxg82bN/PPP/8AhlFIjx49+OyzzwCQJIng4GBeeOEFpkyZUmnfs2fPZs2aNRw/fhxn54oPYAkLC+ORRx5h9uzZxmWdOnUiMTGR999/n5SUFKKjo1m2bBkPPPAAAEeOHKFly5YcPXqUZs2akZOTg6+vLzt27KB3794ANX4/7du3Z8OGDcZtVqxYwYQJEzh16hRNmjQBYMqUKXz22Wekpqbi4eEBwMCBA4mKiuKjjz4ytjV9+nTjCQmFQsGzzz7L/PnzASgsLMTDw4Nvv/2WgQMHMnPmTDZv3syhQ4eMfT/77LO8/PLLZGdn4+Pjc7MfqZEYoVmAxknDnXF38sWwL1g1eBWjm43GXyMuvamKAgWdgjvxSvdX2DFqB/O6zLNYmN1owYIFrFy5kqNHTf/xHD16lG7dupks69atGydPnjTZtWrT5lqdCoWC4OBg0tIMN/ccNGgQHh4eeHh40LKl4QaS+/fvp0ePHpWGWV5eHpcuXaq03xvru77fkJAQAGO/lanp++nYsWOF17q5uRnDDAwnHKKiooxhdnXZzfq/sWZ3d3e8vLyMrzl+/DiJiYkm23fq1Omm7VVGPHDQwtoGtKVtQFv+k/gf/rjyB1tTtvLd2e/Ir2KibkPS0r8lfcL7MCRmCI09G8tSQ8+ePRkwYACzZs0iKSmp1q+/MZgUCgV6vWGu4rJlyyguLjbZztXVtX4FV9Lv1ekqV/utD3d395v2dbW/m73vqtTlNbUlAs1KVEoVXUK70CW0C8/e8iy7L+1m5/md/HrpVy4XNow7dDgpnUgMSqRvRF96h/cm2D1Y7pIAeO2112jXrh1NmzY1LmvevDm7d+822W737t3Ex8ejUqlq1G5YWFiFZW3atGHlypWUl5dX+AP38vIiNDSU3bt306tXL5N+6zJauZ453o8lNW3alC1btpgs+/PPP2vdjgg0GTirnOkd3pve4b0BOJ17ml8v/sruS7vZm7qXYm2xvAWaUbR3NB2COtApuBPdw7rb5PWVrVu3ZuzYsbz77rvGZU899RSJiYnMnz+fe+65h99++4333nuPDz74oF59TZs2jcWLF3Pvvfcya9YsvL29+f333+nUqRNNmzblmWeeYd68eTRp0oR27dqxfPly9u/fz3//+9969Wup92MukydP5q233uI///kPDzzwAPv37zeesKjNhGkRaDYgxjuGGO8Y7mtxH2W6Mg6kH+Bg+kH+yfyHQxmHuFJ4Re4Sa0SpUBLvG0+HoA50COpAQmCC3dy258UXX2Tt2rXGrxMSEvjiiy947rnnmD9/PiEhIbz44ot12i29nr+/Pz/++CPPPPMMvXr1QqVS0a5dO+Pxrccee4zc3Fyeeuop0tLSaNGihXE6Q31Y6v2YS3R0NOvWreOpp57inXfeoUuXLsyZM4epU6eiVtf8hpziLKcdyCjO4HDGYQ5nHOZUzinO5p3lQv4FSnQlstXkp/Ej3jeeON844nziiPeNp4lPEzROGtlqEhzLyy+/zEcffcT58zW/P6EINDslSRKpRamcyzvH2fyznM8/T1ZxFtml2eSU5JBVkkVOaQ4F5QW1alelUOHu7I6niycBrgEEuwcT7B5MkFuQ8XOYZxh+Gj8LvTOhofrggw9ITEzE39+f3bt38+ijjzJt2jReeumlGrchAs3BlevKKSgvQKvXopN0Jp+1ei1OSic0ThrUKjVuTm5mnbwqCLXxxBNPsHbtWrKysoiIiOD+++9n1qxZODnV/MiYCDRBEByGmFgrCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILDEIEmCILD+H99W0JmFvH2AQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(3,3))\n", + "plt.pie(list(lst.values), labels=list(lst.keys()), autopct='%1.1f%%') # Plot the pie chart\n", + "plt.title('Gender Distribution') # Add a title\n", + "plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle\n", + "\n", + "# Display the pie chart\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(99, 19)" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isnull().sum()['Gender']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Country" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Country\n", + "Algeria 1\n", + "Argentina 2\n", + "Australia 1\n", + "Belgium 1\n", + "Brazil 1\n", + "Bulgaria 1\n", + "Chile 1\n", + "China 2\n", + "Colombia 1\n", + "Croatia 1\n", + "Denmark 1\n", + "Dominican Republic 1\n", + "Finland 1\n", + "France 3\n", + "Germany 5\n", + "Greece 1\n", + "India 16\n", + "Indonesia 2\n", + "Ireland 1\n", + "Israel 1\n", + "Japan 1\n", + "Kenya 1\n", + "Latvia 1\n", + "Netherlands 1\n", + "Nigeria 1\n", + "Poland 3\n", + "Romania 1\n", + "Russian Federation 4\n", + "South Africa 1\n", + "Spain 2\n", + "Sweden 3\n", + "Ukraine 1\n", + "United Kingdom 7\n", + "United States 28\n", + "Name: Country, dtype: int64" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.groupby('Country')['Country'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Country'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "df['Country'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Country'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "lst=df.groupby('Country')['Country'].count()\n", + "lst = lst.sort_values(ascending=False)\n", + "lst=lst[:50]" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABM0AAAIFCAYAAADBQQobAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADHDElEQVR4nOzdd3QU1fvH8U8CJIR0eg+EDgHpvYNA6MUGiBAQUYoKCILSggiKUqWLdBEQUASVjnSkN+khNEWqlNBJ7u8PTvaX3YSmmd184f06Zw/s7GSfu7uzszPP3PtcN2OMEQAAAAAAAAAbd1c3AAAAAAAAAEhqSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAgOdOjhw51KZNG1c343+Wm5ubBgwYYLs/bdo0ubm56cSJEy5r07OqTZs2ypEjx1P/nSu38RMnTsjNzU3Tpk1zSXwAABILSTMAAB7Dzc3tiW6//faby9ry2WefxVv3zz//1CuvvKKAgAD5+fmpUaNGOn78+BPHio6O1tSpU1W1alWlTp1anp6eypEjh8LCwrR9+/bEfFn/2oEDBzRgwACSNc+xX375xS6B97/or7/+0oABA7R7925XN+WpzJ49WyNHjnR1MwAAsIybMca4uhEAACRls2bNsrs/Y8YMrVixQjNnzrRb/uKLLypDhgyWtsXNzU0vvvii3njjDbvlxYoVU6FChWz3o6KiVLx4cV29elXdu3dXihQpNGLECBljtHv3bqVJk+aRcW7duqWmTZtq6dKlqly5sho0aKDUqVPrxIkTmjdvno4cOaJTp04pa9aslrzOJzV//ny9/PLLWrNmjapWrfrEf3fnzh25u7srRYoU1jXuGebm5qb+/fvbklXR0dG6d++ePD095ebm5tS2dO7cWWPHjtX/8iHt9u3bVapUKU2dOjVe77B79+4pJiZGnp6eT/WcztjG69evr/3798dLWhtjdOfOHaVIkULJkiWzLD4AAFZL7uoGAACQ1L3++ut297ds2aIVK1bEW+4sefPmfWzscePG6ejRo9q6datKlSolSQoNDVVISIiGDRumwYMHP/Lve/TooaVLl2rEiBF6//337R7r37+/RowY8Z9egysYY3T79m15eXk9dQLieXPjxg15e3s/8frJkiUjOfIv3L9/XzExMY9c598mvVy5jbu5uSllypQuiw8AQGJheCYAAIngxo0b6t69u7JlyyZPT0/ly5dPX375ZbzeL25uburcubO+/fZb5cuXTylTplSJEiW0bt26p4p369Yt3b59+6GPz58/X6VKlbIlzCQpf/78qlGjhubNm/fI5z5z5owmTpyoF198MV7CTHqQIPnggw/sepnt2rVLoaGh8vPzk4+Pj2rUqKEtW7bY/d2AAQMS7IWUUD2sHDlyqH79+tqwYYNKly6tlClTKjg4WDNmzLD7u5dfflmSVK1atXjDZGOfY9myZSpZsqS8vLw0ceJE22OOPXquXLmi999/3/YZ5s6dW59//nm8pMacOXNUokQJ+fr6ys/PT4ULF9aoUaMe+Z5K0pdffqny5csrTZo08vLyUokSJTR//vwE1501a5ZKly6tVKlSKTAwUJUrV9by5cvt1vn1119VpUoVWztKlSql2bNn263z/fffq0SJEvLy8lLatGn1+uuv688//7Rbp02bNvLx8VFERITq1q0rX19ftWzZUtKD3kpdu3ZVunTp5Ovrq4YNG+rMmTPx2vtvP8NYe/fuVZUqVeTl5aWsWbNq0KBBmjp16mPrpLVp00Zjx46VZD90OdaTfi8TUrVqVYWEhGjHjh0qX768vLy8lDNnTk2YMMFuvbt376pfv34qUaKE/P395e3trUqVKmnNmjV268XW+fryyy81cuRI5cqVS56enho3bpztexoWFmZ7DbH1wBKqaRYTE6NRo0apcOHCSpkypdKlS6c6derYDZt23MZjP6N169apQ4cOSpMmjfz8/PTGG2/on3/+sXv+RYsWqV69esqcObM8PT2VK1cuffLJJ4qOjrZ7f37++WedPHnS1ubYdj6sptnq1atVqVIleXt7KyAgQI0aNdLBgwft1ondTxw7dkxt2rRRQECA/P39FRYWpps3bz7yMwMAILHR0wwAgP/IGKOGDRtqzZo1ateunYoWLaply5apR48e+vPPP+P1ylq7dq3mzp2rd99913bSXKdOHW3dulUhISGPjTdt2jSNGzdOxhgVKFBAffr0UYsWLWyPx8TEaO/evWrbtm28vy1durSWL1+u69evy9fXN8Hn//XXX3X//n21atXqiV7/H3/8oUqVKsnPz089e/ZUihQpNHHiRFWtWlVr165VmTJlnuh5HB07dkwvvfSS2rVrp9atW2vKlClq06aNSpQooUKFCqly5cp69913NXr0aH300UcqUKCAJNn+laTDhw+refPm6tChg9q3b698+fIlGOvmzZuqUqWK/vzzT3Xo0EHZs2fXpk2b1Lt3b509e9ZWt2nFihVq3ry5atSooc8//1ySdPDgQW3cuFHvvffeI1/PqFGj1LBhQ7Vs2VJ3797VnDlz9PLLL2vJkiWqV6+ebb3w8HANGDBA5cuX18CBA+Xh4aHff/9dq1evVq1atSQ92Abatm2rQoUKqXfv3goICNCuXbu0dOlS27Ywbdo0hYWFqVSpUhoyZIjOnTunUaNGaePGjdq1a5cCAgJsMe/fv6/atWurYsWK+vLLL5UqVSpJ0ptvvqlZs2apRYsWKl++vFavXm3X1v/6GUoPau/FJj179+4tb29vTZ48+Yl6SnXo0EF//fVXgsOln/Z7mZB//vlHdevW1SuvvKLmzZtr3rx5euedd+Th4WH7fl27dk2TJ09W8+bN1b59e12/fl3ffPONateura1bt6po0aJ2zzl16lTdvn1bb731ljw9PdWkSRNdv35d/fr101tvvaVKlSpJksqXL//QdrVr107Tpk1TaGio3nzzTd2/f1/r16/Xli1bVLJkyUe+ps6dOysgIEADBgzQ4cOHNX78eJ08eVK//fabLeE4bdo0+fj4qFu3bvLx8dHq1avVr18/Xbt2TV988YUk6eOPP9bVq1d15swZ23vp4+Pz0LgrV65UaGiogoODNWDAAN26dUtfffWVKlSooJ07d8ZLDL7yyivKmTOnhgwZop07d2ry5MlKnz697XsHAIBTGAAA8FQ6depk4v6E/vjjj0aSGTRokN16L730knFzczPHjh2zLZNkJJnt27fblp08edKkTJnSNGnS5LGxy5cvb0aOHGkWLVpkxo8fb0JCQowkM27cONs6Fy5cMJLMwIED4/392LFjjSRz6NChh8bo2rWrkWR27dr12PYYY0zjxo2Nh4eHiYiIsC3766+/jK+vr6lcubJtWf/+/U1Chx5Tp041kkxkZKRtWVBQkJFk1q1bZ1t2/vx54+npabp3725b9v333xtJZs2aNfGeN/Y5li5dmuBjrVu3tt3/5JNPjLe3tzly5Ijder169TLJkiUzp06dMsYY89577xk/Pz9z//79h78hD3Hz5k27+3fv3jUhISGmevXqtmVHjx417u7upkmTJiY6Otpu/ZiYGGOMMVeuXDG+vr6mTJky5tatWwmuc/fuXZM+fXoTEhJit86SJUuMJNOvXz/bstatWxtJplevXnbPtXv3biPJdOzY0W55ixYtjCTTv39/27L/8hl26dLFuLm52W1vly5dMqlTp473nAlx/D7GeprvZUKqVKliJJlhw4bZlt25c8cULVrUpE+f3ty9e9cYY8z9+/fNnTt37P72n3/+MRkyZDBt27a1LYuMjDSSjJ+fnzl//rzd+tu2bTOSzNSpU+O1o3Xr1iYoKMh2f/Xq1UaSeffdd+OtG/v5GxN/G4/9jEqUKGFruzHGDB061EgyixYtsi1z3FaNMaZDhw4mVapU5vbt27Zl9erVs2ub42uN+3pi37dLly7Zlu3Zs8e4u7ubN954w7Ysdj8R970zxpgmTZqYNGnSxIsFAICVGJ4JAMB/9MsvvyhZsmR699137ZZ3795dxhj9+uuvdsvLlSunEiVK2O5nz55djRo10rJly+yGPyUktkdTw4YN9fbbb2vHjh0KCQnRRx99pFu3bkmS7d+EeurE1hmKXSch165dk6SH9kSLKzo6WsuXL1fjxo0VHBxsW54pUya1aNFCGzZssD3f0ypYsKCt140kpUuXTvny5XuqGUBz5syp2rVrP3a977//XpUqVVJgYKAuXrxou9WsWVPR0dG24bMBAQG6ceOGVqxY8dSvx8vLy/b/f/75R1evXlWlSpW0c+dO2/Iff/xRMTEx6tevn9zd7Q/TYnsBrVixQtevX1evXr3i1Y2KXWf79u06f/68OnbsaLdOvXr1lD9/fv3888/x2vfOO+/Y3f/ll18kKd52ndCQ3Yd5ks9w6dKlKleunF2PrNSpU9uGiP5bT/u9TEjy5MnVoUMH230PDw916NBB58+f144dOyQ9GK7s4eEh6UEvz8uXL+v+/fsqWbKk3Wcbq1mzZkqXLt2/fl0LFiywTcTg6EkmYXjrrbfs6qS98847Sp48ue3zluy31evXr+vixYuqVKmSbt68qUOHDj11m8+ePavdu3erTZs2Sp06tW15kSJF9OKLL9rFjvX222/b3a9UqZIuXbr0r/cnAAD8GyTNAAD4j06ePKnMmTPHSzLFDhM8efKk3fI8efLEe468efPq5s2bunDhwlPF9vDwUOfOnXXlyhXbSXzsCe+dO3firR9bBy3uSbEjPz8/SQ9Olh/nwoULunnzZoLDHgsUKKCYmBidPn368S8kAdmzZ4+3LDAwMF79pUfJmTPnE6139OhRLV26VOnSpbO71axZU5J0/vx5SVLHjh2VN29ehYaGKmvWrGrbtq2WLl36RDGWLFmismXLKmXKlEqdOrXSpUun8ePH6+rVq7Z1IiIi5O7uroIFCz70eSIiIiTpkUN5Y7e5hD6X/Pnzx9smkydPHm8m1JMnT8rd3V25cuWyW/6wIa4JeZLP8OTJk8qdO3e89RJa9jSe9nuZkMyZM8ebECFv3rySZFdrbfr06SpSpIhSpkypNGnSKF26dPr555/tPttYT7pNPkxERIQyZ85sl3x6Go77Hx8fH2XKlMnu9fzxxx9q0qSJ/P395efnp3Tp0tkmH0noNT3Oo7bHAgUK6OLFi7px44bdcsdtJzAwUJKe6vsPAMB/RU0zAAD+x2XLlk2SdPnyZUkPeul4enrq7Nmz8daNXZY5c+aHPl/+/PklSfv27YtXj+m/eFgvmIf1rnvYbIzmCYq4x3pUcjCumJgYvfjii+rZs2eCj8cmStKnT6/du3dr2bJl+vXXX/Xrr79q6tSpeuONNzR9+vSHPv/69evVsGFDVa5cWePGjVOmTJmUIkUKTZ06NV7xflfw9PSM17MtMSTGZ5jUzZo1S23atFHjxo3Vo0cPpU+fXsmSJdOQIUNsCc64nnSbdJUrV66oSpUq8vPz08CBA5UrVy6lTJlSO3fu1IcffvjY2T4Ty/Ow7QAAkj6SZgAA/EdBQUFauXJlvOL6scOYgoKC7NY/evRovOc4cuSIUqVK9a+GbcUOdYv9W3d3dxUuXNhuJr1Yv//+u4KDgx859DI0NFTJkiXTrFmzHjsZQLp06ZQqVSodPnw43mOHDh2Su7u7LakX21PkypUrdkXon6THz8M8yXC0J5ErVy5FRUXZepY9ioeHhxo0aKAGDRooJiZGHTt21MSJE9W3b9+H9o5asGCBUqZMqWXLltkNm506dWq8dsTExOjAgQMPTVjG9vzav3//Q+PFbnOHDx9W9erV7R47fPhwvG3yYc8RExOjiIgIux5CCX3W/0VQUJCOHTsWb3lCyxLysG3gab+XCfnrr79048YNu95mR44ckSRb4fr58+crODhYCxcutGtLQsMnn/Y1JCRXrlxatmyZLl++/K96mx09elTVqlWz3Y+KitLZs2dVt25dSdJvv/2mS5cuaeHChapcubJtvcjIyH/d7rjbo6NDhw4pbdq08Xr0AQCQFDA8EwCA/6hu3bqKjo7WmDFj7JaPGDFCbm5uCg0NtVu+efNmu1pHp0+f1qJFi1SrVq2H9q6QlODQzevXr2vkyJFKmzatXZ20l156Sdu2bbNLnB0+fFirV6/Wyy+//MjXky1bNrVv317Lly/XV199Fe/xmJgYDRs2TGfOnFGyZMlUq1YtLVq0yG5417lz5zR79mxVrFjRNtwzNtkTWx9Mkm7cuPHIHlqPE3uifeXKlX/9HNKDmfo2b96sZcuWxXvsypUrun//viTp0qVLdo+5u7urSJEikhIeDhsrWbJkcnNzs+tVd+LECf3444926zVu3Fju7u4aOHBgvB49sT1satWqJV9fXw0ZMsQ23NZxnZIlSyp9+vSaMGGCXbt+/fVXHTx48IlmwIzdbkePHm23PHYm0cRSu3Ztbd68Wbt377Ytu3z5sr799tsn+vuHbQNP+71MyP379zVx4kTb/bt372rixIlKly6d7fsW+52N2wPq999/1+bNm5+o/Y96DQlp1qyZjDEKDw+P99iT9MKaNGmS7t27Z7s/fvx43b9/3/Z+JPR67t69q3HjxiXY7icZrpkpUyYVLVpU06dPt3uN+/fv1/Lly20JOwAAkhp6mgEA8B81aNBA1apV08cff6wTJ07ohRde0PLly7Vo0SK9//778WpChYSEqHbt2nr33Xfl6elpOxlN6CQ4rrFjx+rHH39UgwYNlD17dp09e1ZTpkzRqVOnNHPmTFsxculB7a2vv/5a9erV0wcffKAUKVJo+PDhypAhg7p37/7Y1zRs2DBFRETo3Xff1cKFC1W/fn0FBgbq1KlT+v7773Xo0CG99tprkqRBgwZpxYoVqlixojp27KjkyZNr4sSJunPnjoYOHWp7zlq1ail79uxq166devTooWTJkmnKlClKly6dTp069cTvd1xFixZVsmTJ9Pnnn+vq1avy9PRU9erVlT59+qd6nh49euinn35S/fr11aZNG5UoUUI3btzQvn37NH/+fJ04cUJp06bVm2++qcuXL6t69erKmjWrTp48qa+++kpFixa11cpKSL169TR8+HDVqVNHLVq00Pnz5zV27Fjlzp1be/futa2XO3duffzxx/rkk09UqVIlNW3aVJ6entq2bZsyZ86sIUOGyM/PTyNGjNCbb76pUqVKqUWLFgoMDNSePXt08+ZNTZ8+XSlSpNDnn3+usLAwValSRc2bN9e5c+c0atQo5ciRQ127dn2i97Z58+YaN26crl69qvLly2vVqlVP3APsSfXs2VOzZs3Siy++qC5dusjb21uTJ09W9uzZdfny5cf2ZopNXr377ruqXbu2kiVLptdee+2pv5cJyZw5sz7//HOdOHFCefPm1dy5c7V7925NmjTJVky/fv36WrhwoZo0aaJ69eopMjJSEyZMUMGCBRUVFfVE70GuXLkUEBCgCRMmyNfXV97e3ipTpkyC9c+qVaumVq1aafTo0Tp69Kjq1KmjmJgYrV+/XtWqVVPnzp0fGevu3buqUaOGXnnlFR0+fFjjxo1TxYoV1bBhQ0lS+fLlFRgYqNatW+vdd9+Vm5ubZs6cmWBCrkSJEpo7d666deumUqVKycfHRw0aNEgw7hdffKHQ0FCVK1dO7dq1061bt/TVV1/J399fAwYMeKL3CQAAp3PNpJ0AAPzv6tSpk3H8Cb1+/brp2rWryZw5s0mRIoXJkyeP+eKLL0xMTIzdepJMp06dzKxZs0yePHmMp6enKVasmFmzZs1j4y5fvty8+OKLJmPGjCZFihQmICDA1KpVy6xatSrB9U+fPm1eeukl4+fnZ3x8fEz9+vXN0aNHn/h13r9/30yePNlUqlTJ+Pv7mxQpUpigoCATFhZmdu3aZbfuzp07Te3atY2Pj49JlSqVqVatmtm0aVO859yxY4cpU6aM8fDwMNmzZzfDhw83U6dONZJMZGSkbb2goCBTr169eH9fpUoVU6VKFbtlX3/9tQkODjbJkiUzkmzv5cOeI/ax1q1b2y27fv266d27t8mdO7fx8PAwadOmNeXLlzdffvmluXv3rjHGmPnz55tatWqZ9OnT215Dhw4dzNmzZx/9ZhpjvvnmG9tnnj9/fjN16lTTv3//eNuSMcZMmTLFFCtWzHh6eprAwEBTpUoVs2LFCrt1fvrpJ1O+fHnj5eVl/Pz8TOnSpc13331nt87cuXNtz5M6dWrTsmVLc+bMGbt1Wrdubby9vRNs861bt8y7775r0qRJY7y9vU2DBg3M6dOnjSTTv39/23r/9TPctWuXqVSpkvH09DRZs2Y1Q4YMMaNHjzaSzN9//51g22Ldv3/fdOnSxaRLl864ubnZvZ9P+r1MSJUqVUyhQoXM9u3bTbly5UzKlClNUFCQGTNmjN16MTExZvDgwSYoKMj2fV6yZIlp3bq1CQoKsq0XGRlpJJkvvvgiwXiLFi0yBQsWNMmTJzeSzNSpU40xJt7zxL7mL774wuTPn994eHiYdOnSmdDQULNjxw7bOo7beOxntHbtWvPWW2+ZwMBA4+PjY1q2bGkuXbpk9/wbN240ZcuWNV5eXiZz5symZ8+eZtmyZXbfL2OMiYqKMi1atDABAQFGkq2dsa819jXEWrlypalQoYJtm23QoIE5cOCA3Tqx34kLFy7YLU9oGwMAwGpuxlBNEwAAZ3Fzc1OnTp3iDRkDYO/999/XxIkTFRUV9chhy1apWrWqLl68qP379zs9thWmTZumsLAwbdu2TSVLlnR1cwAA+J9ATTMAAAC41K1bt+zuX7p0STNnzlTFihVdkjADAACQqGkGAAAAFytXrpyqVq2qAgUK6Ny5c/rmm2907do19e3b19VNAwAAzzGSZgAAAHCpunXrav78+Zo0aZLc3NxUvHhxffPNN6pcubKrmwYAAJ5j1DQDAAAAAAAAHFDTDAAAAAAAAHBA0gwAAAAAAABw8MzXNIuJidFff/0lX19fubm5ubo5AAAAAAAAcBFjjK5fv67MmTPL3f3Rfcme+aTZX3/9pWzZsrm6GQAAAAAAAEgiTp8+raxZsz5ynWc+aebr6yvpwZvh5+fn4tYAAAAAAADAVa5du6Zs2bLZ8kWP8swnzWKHZPr5+ZE0AwAAAAAAwBOV8GIiAAAAAAAAAMABSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAQXJXNwD/zme7Lloeo1extJbHAAAAAAAASIroaQYAAAAAAAA4IGkGAAAAAAAAOCBpBgAAAAAAADggaQYAAAAAAAA4IGkGAAAAAAAAOCBpBgAAAAAAADggaQYAAAAAAAA4IGkGAAAAAAAAOCBpBgAAAAAAADggaQYAAAAAAAA4IGkGAAAAAAAAOCBpBgAAAAAAADggaQYAAAAAAAA4IGkGAAAAAAAAOCBpBgAAAAAAADggaQYAAAAAAAA4IGkGAAAAAAAAOCBpBgAAAAAAADggaQYAAAAAAAA4IGkGAAAAAAAAOCBpBgAAAAAAADggaQYAAAAAAAA4IGkGAAAAAAAAOCBpBgAAAAAAADggaQYAAAAAAAA4IGkGAAAAAAAAOCBpBgAAAAAAADhwadJsyJAhKlWqlHx9fZU+fXo1btxYhw8ftlunatWqcnNzs7u9/fbbLmoxAAAAAAAAngcuTZqtXbtWnTp10pYtW7RixQrdu3dPtWrV0o0bN+zWa9++vc6ePWu7DR061EUtBgAAAAAAwPMguSuDL1261O7+tGnTlD59eu3YsUOVK1e2LU+VKpUyZszo7OYBAAAAAADgOZWkappdvXpVkpQ6dWq75d9++63Spk2rkJAQ9e7dWzdv3nzoc9y5c0fXrl2zuwEAAAAAAABPw6U9zeKKiYnR+++/rwoVKigkJMS2vEWLFgoKClLmzJm1d+9effjhhzp8+LAWLlyY4PMMGTJE4eHhzmo2AAAAAAAAnkFuxhjj6kZI0jvvvKNff/1VGzZsUNasWR+63urVq1WjRg0dO3ZMuXLlivf4nTt3dOfOHdv9a9euKVu2bLp69ar8/PwsabsrfLbrouUxehVLa3kMAAAAAAAAZ7l27Zr8/f2fKE+UJHqade7cWUuWLNG6desemTCTpDJlykjSQ5Nmnp6e8vT0tKSdAAAAAAAAeD64NGlmjFGXLl30ww8/6LffflPOnDkf+ze7d++WJGXKlMni1gEAAAAAAOB55dKkWadOnTR79mwtWrRIvr6++vvvvyVJ/v7+8vLyUkREhGbPnq26desqTZo02rt3r7p27arKlSurSJEirmw6AAAAAAAAnmEuTZqNHz9eklS1alW75VOnTlWbNm3k4eGhlStXauTIkbpx44ayZcumZs2aqU+fPi5oLQAAAAAAAJ4XLh+e+SjZsmXT2rVrndQaAAAAAAAA4AF3VzcAAAAAAAAASGpImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOSJoBAAAAAAAADkiaAQAAAAAAAA5ImgEAAAAAAAAOXJo0GzJkiEqVKiVfX1+lT59ejRs31uHDh+3WuX37tjp16qQ0adLIx8dHzZo107lz51zUYgAAAAAAADwPXJo0W7t2rTp16qQtW7ZoxYoVunfvnmrVqqUbN27Y1unatasWL16s77//XmvXrtVff/2lpk2burDVAAAAAAAAeNa5GWOMqxsR68KFC0qfPr3Wrl2rypUr6+rVq0qXLp1mz56tl156SZJ06NAhFShQQJs3b1bZsmUf+5zXrl2Tv7+/rl69Kj8/P6tfgtN8tuui5TF6FUtreQwAAAAAAABneZo8UZKqaXb16lVJUurUqSVJO3bs0L1791SzZk3bOvnz51f27Nm1efPmBJ/jzp07unbtmt0NAAAAAAAAeBpJJmkWExOj999/XxUqVFBISIgk6e+//5aHh4cCAgLs1s2QIYP+/vvvBJ9nyJAh8vf3t92yZctmddMBAAAAAADwjEkySbNOnTpp//79mjNnzn96nt69e+vq1au22+nTpxOphQAAAAAAAHheJHd1AySpc+fOWrJkidatW6esWbPalmfMmFF3797VlStX7HqbnTt3ThkzZkzwuTw9PeXp6Wl1kwEAAAAAAPAMc2lPM2OMOnfurB9++EGrV69Wzpw57R4vUaKEUqRIoVWrVtmWHT58WKdOnVK5cuWc3VwAAAAAAAA8J1za06xTp06aPXu2Fi1aJF9fX1udMn9/f3l5ecnf31/t2rVTt27dlDp1avn5+alLly4qV67cE82cCQAAAAAAAPwbLk2ajR8/XpJUtWpVu+VTp05VmzZtJEkjRoyQu7u7mjVrpjt37qh27doaN26ck1sKAAAAAACA54lLk2bGmMeukzJlSo0dO1Zjx451QosAAAAAAACAJDR7JgAAAAAAAJBUkDQDAAAAAAAAHJA0AwAAAAAAAByQNAMAAAAAAAAckDQDAAAAAAAAHJA0AwAAAAAAAByQNAMAAAAAAAAckDQDAAAAAAAAHJA0AwAAAAAAAByQNAMAAAAAAAAckDQDAAAAAAAAHJA0AwAAAAAAAByQNAMAAAAAAAAckDQDAAAAAAAAHJA0AwAAAAAAAByQNAMAAAAAAAAckDQDAAAAAAAAHJA0AwAAAAAAAByQNAMAAAAAAAAckDQDAAAAAAAAHJA0AwAAAAAAAByQNAMAAAAAAAAckDQDAAAAAAAAHJA0AwAAAAAAAByQNAMAAAAAAAAckDQDAAAAAAAAHJA0AwAAAAAAAByQNAMAAAAAAAAckDQDAAAAAAAAHJA0AwAAAAAAAByQNAMAAAAAAAAc/KukWXBwsC5duhRv+ZUrVxQcHPyfGwUAAAAAAAC40r9Kmp04cULR0dHxlt+5c0d//vnnf24UAAAAAAAA4ErJn2bln376yfb/ZcuWyd/f33Y/Ojpaq1atUo4cORKtcQAAAAAAAIArPFXSrHHjxpIkNzc3tW7d2u6xFClSKEeOHBo2bFiiNQ4AAAAAAABwhadKmsXExEiScubMqW3btilt2rSWNApJ22e7Lloeo1cxti0AAAAAAOA6T5U0ixUZGZnY7QAAAAAAAACSjH+VNJOkVatWadWqVTp//rytB1qsKVOm/OeGAQAAAAAAAK7yr5Jm4eHhGjhwoEqWLKlMmTLJzc0tsdsFAAAAAAAAuMy/SppNmDBB06ZNU6tWrRK7PQAAAAAAAIDLuf+bP7p7967Kly+f2G0BAAAAAAAAkoR/lTR78803NXv27MRuCwAAAAAAAJAk/Kvhmbdv39akSZO0cuVKFSlSRClSpLB7fPjw4U/0POvWrdMXX3yhHTt26OzZs/rhhx/UuHFj2+Nt2rTR9OnT7f6mdu3aWrp06b9pNgAAAAAAAPBE/lXSbO/evSpatKgkaf/+/XaPPc2kADdu3NALL7ygtm3bqmnTpgmuU6dOHU2dOtV239PT8+kbDAAAAAAAADyFf5U0W7NmTaIEDw0NVWho6CPX8fT0VMaMGRMlHgAAAAAAAPAk/lVNM2f67bfflD59euXLl0/vvPOOLl269Mj179y5o2vXrtndAAAAAAAAgKfxr3qaVatW7ZHDMFevXv2vGxRXnTp11LRpU+XMmVMRERH66KOPFBoaqs2bNytZsmQJ/s2QIUMUHh6eKPEBAAAAAADwfPpXSbPYemax7t27p927d2v//v1q3bp1YrRLkvTaa6/Z/l+4cGEVKVJEuXLl0m+//aYaNWok+De9e/dWt27dbPevXbumbNmyJVqbAAAAAAAA8Oz7V0mzESNGJLh8wIABioqK+k8NepTg4GClTZtWx44de2jSzNPTk8kCAAAAAAAA8J8kak2z119/XVOmTEnMp7Rz5swZXbp0SZkyZbIsBgAAAAAAAPCvepo9zObNm5UyZconXj8qKkrHjh2z3Y+MjNTu3buVOnVqpU6dWuHh4WrWrJkyZsyoiIgI9ezZU7lz51bt2rUTs9kAAAAAAACAnX+VNGvatKndfWOMzp49q+3bt6tv375P/Dzbt29XtWrVbPdja5G1bt1a48eP1969ezV9+nRduXJFmTNnVq1atfTJJ58w/BIAAAAAAACW+ldJM39/f7v77u7uypcvnwYOHKhatWo98fNUrVpVxpiHPr5s2bJ/0zwAAAAAAADgP/lXSbOpU6cmdjsAAAAAAACAJOM/1TTbsWOHDh48KEkqVKiQihUrliiNAgAAAAAAAFzpXyXNzp8/r9dee02//fabAgICJElXrlxRtWrVNGfOHKVLly4x2wgAAAAAAAA4lfu/+aMuXbro+vXr+uOPP3T58mVdvnxZ+/fv17Vr1/Tuu+8mdhsBAAAAAAAAp/pXPc2WLl2qlStXqkCBArZlBQsW1NixY59qIgAAAAAAAAAgKfpXPc1iYmKUIkWKeMtTpEihmJiY/9woAAAAAAAAwJX+VdKsevXqeu+99/TXX3/Zlv3555/q2rWratSokWiNAwAAAAAAAFzhXyXNxowZo2vXrilHjhzKlSuXcuXKpZw5c+ratWv66quvEruNAAAAAAAAgFP9q5pm2bJl086dO7Vy5UodOnRIklSgQAHVrFkzURsHAAAAAAAAuMJT9TRbvXq1ChYsqGvXrsnNzU0vvviiunTpoi5duqhUqVIqVKiQ1q9fb1VbAQAAAAAAAKd4qqTZyJEj1b59e/n5+cV7zN/fXx06dNDw4cMTrXEAAAAAAACAKzxV0mzPnj2qU6fOQx+vVauWduzY8Z8bBQAAAAAAALjSUyXNzp07pxQpUjz08eTJk+vChQv/uVEAAAAAAACAKz1V0ixLlizav3//Qx/fu3evMmXK9J8bBQAAAAAAALjSUyXN6tatq759++r27dvxHrt165b69++v+vXrJ1rjAAAAAAAAAFdI/jQr9+nTRwsXLlTevHnVuXNn5cuXT5J06NAhjR07VtHR0fr4448taSgAAAAAAADgLE+VNMuQIYM2bdqkd955R71795YxRpLk5uam2rVra+zYscqQIYMlDQUAAAAAAACc5amSZpIUFBSkX375Rf/884+OHTsmY4zy5MmjwMBAK9oHAAAAAAAAON1TJ81iBQYGqlSpUonZFgAAAAAAACBJeKqJAAAAAAAAAIDnAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAgUuTZuvWrVODBg2UOXNmubm56ccff7R73Bijfv36KVOmTPLy8lLNmjV19OhR1zQWAAAAAAAAzw2XJs1u3LihF154QWPHjk3w8aFDh2r06NGaMGGCfv/9d3l7e6t27dq6ffu2k1sKAAAAAACA50lyVwYPDQ1VaGhogo8ZYzRy5Ej16dNHjRo1kiTNmDFDGTJk0I8//qjXXnvNmU0FAAAAAADAcyTJ1jSLjIzU33//rZo1a9qW+fv7q0yZMtq8efND/+7OnTu6du2a3Q0AAAAAAAB4Gkk2afb3339LkjJkyGC3PEOGDLbHEjJkyBD5+/vbbtmyZbO0nQAAAAAAAHj2JNmk2b/Vu3dvXb161XY7ffq0q5sEAAAAAACA/zFJNmmWMWNGSdK5c+fslp87d872WEI8PT3l5+dndwMAAAAAAACeRpJNmuXMmVMZM2bUqlWrbMuuXbum33//XeXKlXNhywAAAAAAAPCsc+nsmVFRUTp27JjtfmRkpHbv3q3UqVMre/bsev/99zVo0CDlyZNHOXPmVN++fZU5c2Y1btzYdY0GAAAAAADAM8+lSbPt27erWrVqtvvdunWTJLVu3VrTpk1Tz549dePGDb311lu6cuWKKlasqKVLlyplypSuajIAAAAAAACeAy5NmlWtWlXGmIc+7ubmpoEDB2rgwIFObBUAAAAAAACed0m2phkAAAAAAADgKiTNAAAAAAAAAAckzQAAAAAAAAAHJM0AAAAAAAAAByTNAAAAAAAAAAckzQAAAAAAAAAHJM0AAAAAAAAAByTNAAAAAAAAAAckzQAAAAAAAAAHJM0AAAAAAAAAByTNAAAAAAAAAAckzQAAAAAAAAAHJM0AAAAAAAAAByTNAAAAAAAAAAckzQAAAAAAAAAHJM0AAAAAAAAAByTNAAAAAAAAAAckzQAAAAAAAAAHJM0AAAAAAAAAByTNAAAAAAAAAAckzQAAAAAAAAAHJM0AAAAAAAAAByTNAAAAAAAAAAckzQAAAAAAAAAHyV3dAOBpfLbrouUxehVLa3kMAAAAAACQtNHTDAAAAAAAAHBA0gwAAAAAAABwQNIMAAAAAAAAcEDSDAAAAAAAAHBA0gwAAAAAAABwQNIMAAAAAAAAcEDSDAAAAAAAAHBA0gwAAAAAAABwQNIMAAAAAAAAcEDSDAAAAAAAAHBA0gwAAAAAAABwQNIMAAAAAAAAcEDSDAAAAAAAAHBA0gwAAAAAAABwQNIMAAAAAAAAcEDSDAAAAAAAAHCQpJNmAwYMkJubm90tf/78rm4WAAAAAAAAnnHJXd2AxylUqJBWrlxpu588eZJvMgAAAAAAAP7HJfkMVPLkyZUxY0ZXNwMAAAAAAADPkSQ9PFOSjh49qsyZMys4OFgtW7bUqVOnHrn+nTt3dO3aNbsbAAAAAAAA8DSSdE+zMmXKaNq0acqXL5/Onj2r8PBwVapUSfv375evr2+CfzNkyBCFh4c7uaV4Xny266LlMXoVS2t5DAAAAAAA8GhJuqdZaGioXn75ZRUpUkS1a9fWL7/8oitXrmjevHkP/ZvevXvr6tWrttvp06ed2GIAAAAAAAA8C5J0TzNHAQEByps3r44dO/bQdTw9PeXp6enEVgEAAAAAAOBZk6R7mjmKiopSRESEMmXK5OqmAAAAAAAA4BmWpJNmH3zwgdauXasTJ05o06ZNatKkiZIlS6bmzZu7umkAAAAAAAB4hiXp4ZlnzpxR8+bNdenSJaVLl04VK1bUli1blC5dOlc3DQAAAAAAAM+wJJ00mzNnjqubAAAAAAAAgOdQkh6eCQAAAAAAALgCSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMBBkp4IAMD/+2zXRctj9CqW1vIYAAAAAAD8L6CnGQAAAAAAAOCApBkAAAAAAADggKQZAAAAAAAA4ICkGQAAAAAAAOCApBkAAAAAAADggKQZAAAAAAAA4ICkGQAAAAAAAOCApBkAAAAAAADggKQZAAAAAAAA4CC5qxsAIOn7bNdFy2P0KpY2ycVOCvEBAAAAAK5BTzMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAQXJXNwAAkLDPdl20PEavYmmJncTiAwAAAEga6GkGAAAAAAAAOCBpBgAAAAAAADggaQYAAAAAAAA4IGkGAAAAAAAAOCBpBgAAAAAAADggaQYAAAAAAAA4IGkGAAAAAAAAOCBpBgAAAAAAADggaQYAAAAAAAA4SO7qBgAAgAc+23XR8hi9iqUldhKK/7zGdnV8Yjs/tqvjE9v5sV0dn9jOj+3q+M9r7KQQ/1lGTzMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMABSTMAAAAAAADAAUkzAAAAAAAAwAFJMwAAAAAAAMDB/0TSbOzYscqRI4dSpkypMmXKaOvWra5uEgAAAAAAAJ5hST5pNnfuXHXr1k39+/fXzp079cILL6h27do6f/68q5sGAAAAAACAZ1SST5oNHz5c7du3V1hYmAoWLKgJEyYoVapUmjJliqubBgAAAAAAgGdUclc34FHu3r2rHTt2qHfv3rZl7u7uqlmzpjZv3pzg39y5c0d37tyx3b969aok6dq1a9Y21sluR123PMa1ax7ETkLxie382K6OT2znx3Z1fGI7P7ar4z+vsV0dn9jOj+3q+MR2fmxXxye282O7Ov7zGjspxP9fE5sfMsY8dl038yRruchff/2lLFmyaNOmTSpXrpxtec+ePbV27Vr9/vvv8f5mwIABCg8Pd2YzAQAAAAAA8D/k9OnTypo16yPXSdI9zf6N3r17q1u3brb7MTExunz5stKkSSM3NzcXtsx1rl27pmzZsun06dPy8/N7ruITm8+c2M9+fGLzmT8vsV0dn9h85sR+9uMTm8/8eYnt6vjPa+ykwhij69evK3PmzI9dN0knzdKmTatkyZLp3LlzdsvPnTunjBkzJvg3np6e8vT0tFsWEBBgVRP/p/j5+bn0S+HK+MR2jef1tT+vsV0dn9iu8by+dt53Yj9P8YntGs/ra39eY7s6/vMa29Xxn9fYSYG/v/8TrZekJwLw8PBQiRIltGrVKtuymJgYrVq1ym64JgAAAAAAAJCYknRPM0nq1q2bWrdurZIlS6p06dIaOXKkbty4obCwMFc3DQAAAAAAAM+oJJ80e/XVV3XhwgX169dPf//9t4oWLaqlS5cqQ4YMrm7a/wxPT0/1798/3rDV5yE+sfnMif3sxyc2n/nzEtvV8YnNZ07sZz8+sfnMn5fYro7/vMb+X5SkZ88EAAAAAAAAXCFJ1zQDAAAAAAAAXIGkGQAAAAAAAOCApBkAAAAAAADggKQZAAAAAAAA4CDJz56J/+7atWtavXq18uXLpwIFCri6OU5x/vx5nT9/XjExMXbLixQp4qIWAcB/c/XqVUVHRyt16tR2yy9fvqzkyZPLz8/PRS0DAAAAnk3MnvkMeuWVV1S5cmV17txZt27d0gsvvKATJ07IGKM5c+aoWbNmrm6iZXbs2KHWrVvr4MGDit203dzcZIyRm5uboqOjLY2/Zs0aVatWzdIYD7Nq1SqtWrUqwWThlClTXNImAIknNDRUDRo0UMeOHe2WT5gwQT/99JN++eUXF7UMsM7Nmzd16tQp3b171245F8Gc4/bt20qZMqWrm4FnUHR0tKZNm/bQY9fVq1e7qGVwhoiICE2dOlUREREaNWqU0qdPr19//VXZs2dXoUKFnNKG27dvx/tt4QIkEkJPs2fQunXr9PHHH0uSfvjhBxljdOXKFU2fPl2DBg16ppNmbdu2Vd68efXNN98oQ4YMcnNzc2r8OnXqKGvWrAoLC1Pr1q2VLVs2p8QNDw/XwIEDVbJkSWXKlMnprzvWlStXNH/+fEVERKhHjx5KnTq1du7cqQwZMihLliyWxn4ek4auPuA8c+aMfvrppwRPaIcPH25pbFe7ceOG1q5dm+Brf/fddy2J+fvvvyf4vlatWtW2z3/WHThwIMH3vGHDhk5tB4kE6124cEFhYWH69ddfE3zc6otgz7OYmBh9+umnmjBhgs6dO6cjR44oODhYffv2VY4cOdSuXTtXNxEWclYi4b333tO0adNUr149hYSEuOzY9XnnigsTa9euVWhoqCpUqKB169bp008/Vfr06bVnzx598803mj9/vmWxb968qZ49e2revHm6dOlSvMdd2cFi7Nix6tSpk2Wxt2/frnnz5iX4eS9cuNCyuM8CkmbPoKtXr9qG7yxdulTNmjVTqlSpVK9ePfXo0cNp7Zg/f/5Dv5g7d+60JObx48e1YMEC5c6d25Lnf5w///xTM2fO1PTp0xUeHq7q1aurXbt2aty4sTw8PCyLO2HCBE2bNk2tWrWyLMbj7N27VzVr1pS/v79OnDih9u3bK3Xq1Fq4cKFOnTqlGTNmWBbb2UnDvXv3PvG6Vh50uPKAc9WqVWrYsKGCg4N16NAhhYSE2Hq0Fi9e3CltcNWP/65du1S3bl3dvHlTN27cUOrUqXXx4kWlSpVK6dOntyxpdufOHd2/fz/e8nv37unWrVuWxHQ0ffp0pU2bVvXq1ZMk9ezZU5MmTVLBggX13XffKSgoyJK4x48fV5MmTbRv3z5b72FJtm3eGQkUVyYSbt++ra+++kpr1qxJMEGe2L+pxYoVe+L9iVW/5++//76uXLmi33//XVWrVtUPP/ygc+fOadCgQRo2bJglMRPiypMMV12YGDRokKZPn66hQ4eqffv2tuUhISEaOXKk5UmzpHBBxlkJ+tGjRz/xulb9tkiuSSTMmTNH8+bNU926dRP9uR+nW7duT7xuYm9zSWH/Krn2wkSvXr00aNAgdevWTb6+vrbl1atX15gxYyyLK0k9evTQmjVrNH78eLVq1Upjx47Vn3/+qYkTJ+qzzz6zNLYkNW3aVCtXrlSJEiXslo8aNUp9+/a1LGk2Z84cvfHGG6pdu7aWL1+uWrVq6ciRIzp37pyaNGliScxnisEzJ0+ePGbu3LkmKirKpEuXzqxatcoYY8zu3btNmjRpnNKGUaNGGR8fH9O5c2fj4eFhOnToYGrWrGn8/f3NRx99ZFncRo0amfnz51v2/E9jx44dpnPnziZNmjQmTZo0pkuXLmb37t2WxEqdOrU5duyYJc/9pGrUqGF69OhhjDHGx8fHREREGGOM2bhxowkKCrI0dsaMGc2MGTMsjRGXm5ubcXd3t/37qJuV0qRJY37++WdLYzxMqVKlTL9+/Ywx//95X79+3TRs2NCMGzfO8vjfffedSZEihalfv77x8PAw9evXN3nz5jX+/v6mTZs2lsauUqWKad++vYmOjra99lOnTpnKlSubBQsWWBa3atWqpnPnzvGWd+zY0VSsWNGyuHHlzZvX9puyadMmkypVKjNx4kTToEED06RJE8vi1q9f3zRq1MhcuHDB+Pj4mAMHDpj169eb0qVLm3Xr1lkWN67w8HATHBxsZs2aZby8vGz7uDlz5piyZctaGrtFixYmbdq05u233zb9+/c3AwYMsLslNsfnf9TNKhkzZjS///67McYYX19fc/jwYWOMMYsWLTIVKlSwLG5crtzPrFy50qRKlcqEhISY5MmTm6JFi5qAgADj7+9vqlWrZmnsXLlymZUrVxpj7H/PDx48aAICAiyN7crXbYwxERERpkiRIna/83F/6xNbjhw57G7e3t7Gzc3NBAYGmsDAQOPm5ma8vb1Nzpw5Ez12XB07djQFChQw8+fPN15eXmbKlCnmk08+MVmzZjWzZs2yJGamTJls32tnq1q16hPdrNjm4u4/e/XqZfz8/EzZsmVN165dTdeuXU25cuWMn5+f6dWrV6LHjqtFixamQoUKZtu2bcbb29ssX77czJw50+TLl88sWbLE0tje3t7m+PHjxhj7fUxkZKTx9PS0NHa2bNnMmjVrjDEPfluOHj1qjDFmxowZJjQ01NLYxhjz9ddfm3Tp0pmDBw/aln355ZfGz8/P0uOZwoULmzFjxhhj/v89j4mJMe3bt7cdz+PhSJo9g8aOHWuSJ09uAgICTJEiRUx0dLQxxpjRo0ebqlWrOqUN+fLlM7NnzzbG2O8M+/btazp16mRZ3AsXLpi6deuaAQMGmPnz55tFixbZ3Zztzz//NP379zeenp7G29vbJEuWzFSsWNHs378/UeP07NnTDBw4MFGf82n5+fnZEndxP/MTJ05Y/gPo7KThiRMnbLcffvjB5MqVy0yYMMHs2bPH7Nmzx0yYMMHkyZPH/PDDD5a2w5UHnD4+Prb3PCAgwLZN79692/IkqTGu/fH39/c3hw4dsv3/wIEDxhhjtmzZYvLly2dZ3A0bNpiUKVOaSpUq2Q64K1WqZFKmTOm0xJGXl5c5efKkMebBfqdVq1bGGGP2799v0qZNa1ncNGnSmD179hhjHuxrYt//VatWmaJFi1oWNy5XJhL8/PzMhg0bLI2R1Pj6+prIyEhjjDHZs2e3vf7jx48bLy8vp7TBlfsZV16YSJkypTlx4oRdbGOM+eOPP4y3t7elsV19QcaVCfpvv/3WVKhQwbZ/M8aYQ4cOmUqVKlmWuIrlikTCl19+aTp27GhiYmIsef7/Be3atTN9+vSJt7xfv34mLCzM0tiuvDCRJUsWs3HjRmOM/T5m4cKFJjg42NLY3t7etuOYLFmy2N6D48ePW75/i/X555+bLFmymMjISPPZZ5855Tc+VapUtt/U1KlTm7179xpjjDlw4IDJmDGjpbGfBSTNnlHbtm0zCxcuNNevX7ctW7JkidMOur28vGwHXOnSpbP1sDpy5IhJnTq1ZXF/+ukn4+/vb7syGPdmda+fWHfv3jXff/+9CQ0NNcmTJzdly5Y1X3/9tYmKijKRkZGmZcuWpkCBAoka89133zUBAQGmcuXKpnPnzrarVbE3Z0iXLp3ZuXOnMcb+B3D58uUma9aslsZ2ZdKwVKlSCfb2+vnnn03x4sUtje3KA84MGTLYkkUFChSwJaV3797tlIMOV/74p02b1hw5csQY86Bn79KlS40xD5InqVKlsjT2rl27TIsWLUzBggVNiRIlTFhYmK0tzhD3e160aFFbD89jx45Z+rkHBATYrkoHBweb1atX2+I6K4HiykRCgQIFbEnD50XJkiVt360GDRqYVq1amTNnzpiePXtaflIVy5X7GVdemChevLiZOXOmrR2x23p4eLjlvVpdfUHGlQn64OBg2/41ru3bt5scOXJYGtsViYTGjRsbf39/kzNnTlO/fn3TpEkTu5uzHT161CxdutTcvHnTGGOccmzl5+eX4G/4kSNHjJ+fn6WxXXlhonv37qZixYrm7NmztiTthg0bTHBwsKU9mI15cDHkt99+M8Y8GCXTvXt3Y8yDUVJZsmSxNHZcPXv2NGnSpDEBAQFm8+bNlsfLkiWL7TescOHCts4tmzZtsnxbexZQ0+wZVbJkSRUpUkSRkZHKlSuXkidPbqtB4wwZM2bU5cuXFRQUpOzZs2vLli164YUXFBkZaatFY4UuXbro9ddfV9++fZUhQwbL4jwq/nfffSdjjFq1aqWhQ4cqJCTE9ri3t7e+/PJLZc6cOVHj7t27V0WLFpUk7d+/3+4xZ9W5atiwoQYOHKh58+bZ4p46dUoffvih5ZNP3L59W5MmTdLKlStVpEgRpUiRwu5xK2ug7Nu3Tzlz5oy3PGfOnDpw4IBlcSVpw4YNWrNmjX799VcVKlQo3uu2st5O2bJltWHDBhUoUEB169ZV9+7dtW/fPi1cuFBly5a1LG6swMBAXb9+XZKUJUsW7d+/X4ULF9aVK1d08+ZNS2MXK1ZM27ZtU548eVSlShX169dPFy9e1MyZM+2+71YoWrSovv32W0tjPMqLL76oN998U8WKFdORI0dstWj++OMP5ciRw7K4ISEh2rNnj3LmzKkyZcpo6NCh8vDw0KRJkxQcHGxZ3LgKFiyo9evXx6vbNn/+fBUrVszS2MOGDdOHH36oCRMmWFY3Lq7UqVPryJEjSps2rQIDAx/5O3L58mVL2vDee+/p7NmzkqT+/furTp06+vbbb+Xh4aFp06ZZEtORK/cz3t7etnpamTJlUkREhG1GuYsXL1oau1+/fmrdurX+/PNPxcTEaOHChTp8+LBmzJihJUuWWBrbla9belDHKbbGUtq0afXXX38pX758CgoK0uHDhy2Nffbs2QTrVkZHR+vcuXOWxg4ODlZkZKSyZ8+u/Pnza968eSpdurQWL16sgIAAS2IGBAQkiVpKly5d0iuvvKI1a9bIzc1NR48eVXBwsNq1a6fAwEBLayh6eXlp48aNypMnj93yjRs3Wj7ZTL58+XT48GHlyJFDL7zwgiZOnKgcOXJowoQJypQpk6WxBw8erE6dOilbtmyKjo5WwYIFFR0drRYtWqhPnz6Wxg4LC9OePXtUpUoV9erVSw0aNNCYMWN07949y84XEqpdmCVLFqVKlUqVK1fW1q1btXXrVknW1S6sXLmyVqxYocKFC+vll1/We++9p9WrV2vFihWqUaOGJTGfJSTNnkE3b95Uly5dNH36dEmyFSvu0qWLsmTJol69elnehurVq+unn35SsWLFFBYWpq5du2r+/Pnavn27mjZtalncS5cuqWvXri5JmEkPCsd+9dVXatq0qTw9PRNcJ23atFqzZk2ixk3s5/s3hg0bppdeeknp06fXrVu3VKVKFf39998qV66cPv30U0tjuzJpWKBAAQ0ZMkSTJ0+2TfZw9+5dDRkyRAUKFLA0tisPOIcPH66oqChJDyZiiIqK0ty5c5UnTx6nFGp25Y//4MGDbSfSn376qd544w298847ypMnT6LP1Hrt2jXbrGXXrl175LrOmCZ97Nix6tOnj06fPq0FCxYoTZo0kqQdO3aoefPmlsXt06ePbty4IUkaOHCg6tevr0qVKilNmjSaO3euZXHjcmUioWTJkrp9+7aCg4OVKlWqeAnyxE5cjRgxwpY4GDFihEtmtXv99ddt/y9RooROnjypQ4cOKXv27EqbNq1T2uDK/YwrL0w0atRIixcv1sCBA+Xt7a1+/fqpePHiWrx4sV588UVLY7v6gowrE/Q1atRQhw4dNHnyZNuEOjt27NA777yjmjVrWhrbFYmEqVOnWvK8T6tr165KkSKFTp06ZXfc9uqrr6pbt26WJs3ef/99vfPOO9q5c6dKly4t6cFM2VOmTFHfvn0tiyu59sKEh4eHvv76a/Xr10/79u1TVFSUihUrFi95aIWuXbva/l+zZk0dOnRIO3bsUO7cuS2bvGvEiBEJLk+WLJk2btyojRs3SnpwzmJV0mzMmDG6ffu2JOnjjz9WihQptGnTJjVr1szyROWzwM1Y2e0HLvHee+9p48aNGjlypOrUqaO9e/cqODhYixYt0oABA7Rr1y7L2xATE6OYmBglT/4gLztnzhxt2rRJefLkUYcOHSybSbJ169aqVKmS3nzzTUue/3/BmTNnJElZs2Z1SfyNGzdqz549ioqKUvHixS0/0HO1rVu3qkGDBjLG2H5s9+7dKzc3Ny1evNh2EITEdfnyZd2+fVuZM2dWTEyMhg4datvH9OnTR4GBga5uYqJIliyZzp49q/Tp08vd3T3B5IUxRm5ubk6ZQTIpuXz58mN7QSW29evXa+DAgXb7uH79+qlWrVqWxq1Zs6ZOnTqldu3aKUOGDPFec+vWrS2N/7xy5X7m+PHjioqKUpEiRXTjxg11797dFnv48OFO6XHoCq5+3cuWLdONGzfUtGlTHTt2TPXr19eRI0dsCfrq1atbFvvChQtq3bq1li5dakuM379/X7Vr19a0adOUPn16y2I7OnnypOWJhKQiY8aMWrZsmV544QX5+vpqz549Cg4O1vHjx1WkSBHbBUKrzJs3T6NGjdLBgwclPbgY+9577+mVV16xNK6jmzdvOv3CBPC/gqTZMygoKEhz585V2bJl7Xb+x44dU/HixR/bW+F/2aeffqqRI0eqXr16Kly4cLyr8VZO1x3r6NGjWrNmjc6fP6+YmBi7x/r162dJzJiYGA0aNEjDhg2z/bj7+vqqe/fu+vjjj+Xu7m5J3KTm2LFjioiIUOXKleXl5WVLJljtxo0b+vbbb3Xo0CFJDw54WrRoIW9vb8tju9rdu3cT3NazZ8/uohY9W9auXasKFSooefLkWrt27SPXrVKliiVt2Lt37xOv+6yfXLlKqlSptHnzZr3wwgtOj129enVVqVJF/fv3t1v+zz//qFmzZlq9erUlcZs1a6bSpUvrww8/tFs+dOhQbdu2Td9//70lcQFHzk7QHzlyxHY8kT9/fuXNm9fymMePH3faUPe45s+fr3nz5unUqVO2Ybmxdu7c6ZQ2+Pr6aufOncqTJ4/dedP27dtVu3ZtXbp0ySnteJ44e/8+evRovfXWW0qZMmWCQyXjsvJc8d69e8qfP7+WLFli+WgUKemNVvhfRtLsGZQqVSrt379fwcHBdjv/PXv2qHLlyrp69aolcffu3auQkBC5u7s/9iTLqhOrhGpLxXJzc9Px48ctiRvr66+/1jvvvKO0adMqY8aMdgdYbm5ulh0A9O7dW998843Cw8NVoUIFSQ/qXQ0YMEDt27e3fHik9OBHJnfu3PF+bMaMGaNjx45p5MiRlsV+WD2Ktm3bWl6PwtmKFy+uVatWKTAwUMWKFXvkQbyVB5xHjhxRu3bttGnTJrvlVvZ6Sio//ufOndMHH3ygVatW6fz58/HqND5rPb5ie7g9SRI6MV9706ZNNW3aNPn5+T12WL+V9fscuSJRXLx4cY0bN84pw9Mcubu7K02aNKpQoYK+/fZb28WAc+fOKXPmzJZt7+nSpdPq1atVuHBhu+X79u1TzZo1LavxlFT2M872NEkhq+rYwXXc3d1VpUoVtWvXTi+99JLl9bSkB4mMjz/+WG3atNGkSZMUFhamiIgIbdu2TZ06dXLKsask1a1bVyVKlNAnn3wiX19f7d27V0FBQXrttdcUExOj+fPnW94GZ/2udOvWTZ988om8vb3VrVu3R65rZakNZ+/fc+bMqe3btytNmjQuP1fMkiWLVq5c6ZSkGaMVEg81zZ5BJUuW1M8//6wuXbpI+v+aTpMnT1a5cuUsi1u0aFH9/fffSp8+vYoWLWo7yXJk5RczMjLSkud9UoMGDdKnn34a78qJ1aZPn67JkyerYcOGtmVFihRRlixZ1LFjR6cceCxYsEA//fRTvOXly5fXZ599ZmnSzJX1KCTn9i5s1KiRrV5e48aNE/W5n0ZYWJiSJ0+uJUuWKFOmTE65Ah8YGGj78Q8ICHDZj3+bNm106tQp9e3b1/LXnhR6ecXdr+7atUsffPCBevToYfs92bx5s4YNG6ahQ4cmalx/f3/be+vv75+oz/1vHD16VG3btnVqojjWZ599pu7du+vTTz9NsBe11cmblStXqkOHDipbtqwWL15s6aQPsaKiohIs5ZAiRQpLe8y7cj/jygkYrPyNfhxXTzyRVBL00dHRmjZtmu2CjOPxhFW9OqUHF9mmTp2qbt26qXPnznr11VfVtm1blSlTxrKY48aN06RJk9S8eXNNmzZNPXv2VHBwsPr16+fUxOzQoUNVo0YNbd++XXfv3lXPnj31xx9/6PLly7ZaU1Zx9u/Krl27dO/ePdv/H8bqYzpn79/jHse4+lyxU6dO+vzzzzV58mRbGSOrrF69WqlTp5aUNOpf/y8jafYMGjx4sEJDQ3XgwAHdv39fo0aN0oEDB7Rp06bHDu/5LyIjI5UuXTrb/10tNmHnzHo3//zzj15++WWnxYt1+fJl5c+fP97y/PnzO+3A49KlSwme2Pr5+Vk+49Xy5cu1bNmyeHXc8uTJo5MnT1oa+3G9CxM7aRZ3iJTjcCln2r17t3bs2JHgdmeVpPLjv2HDBq1fv942+YSVHnUBIi4rkzZxawi9/PLLGj16tG3WTOlBsi5btmzq27dvoiZy4xaJTgoFo9u0aeP0RHGsOnXqSFK84vPOukKcKVMmrV27VmFhYSpVqpS+//57y6+SFy5cWHPnzo23D50zZ44KFixoWVxX7mfiTsDg7CSWK+viufJ1S0knQf/ee+9p2rRpqlevnkJCQpy6jylatKhGjRqlYcOG6aefftK0adNUqVIl5c2bV23btlWrVq1sx/iJ5dSpUypfvrykB7NIxk6w06pVK5UtW1ZjxoxJ1HgPExISoiNHjmjMmDHy9fVVVFSUmjZtqk6dOlk+i6Szf1fi7tNceRzlqv279GAyoQ8++ECpUqWyW37r1i198cUXlpXSibVt2zatWrVKy5cvV+HCheOVcknMxHxs2Y779+9r7dq1atu2rctqXv+vY3jmMyoiIkKfffaZXbHiDz/8MF432GfRjBkz9MUXX+jo0aOSpLx586pHjx5q1aqV5bHbtWunUqVK6e2337Y8VlxlypRRmTJl4o3T79Kli7Zt26YtW7ZY3oaQkBC9/fbb6ty5s93yr776SuPHj9eBAwcsi+3KehRBQUHq2LGj03sXulqpUqU0YsQIVaxY0dVNcbqCBQvq22+/VbFixSyP9TRJX2cUBvfy8tLOnTvjJUwOHjyo4sWL69atW5a3wVW8vb2dniiO5ap6dpL98A7pQY/qQYMG6cMPP9SgQYMsS9gtXrxYTZs2VYsWLWzF11etWqXvvvtO33//veU9be/fv6/Bgwc/NycZSWFY6v379zV79mzVrl3bZbOgu1LatGk1Y8YMu4sSrnLnzh2NGzdOvXv31t27d+Xh4aFXXnlFn3/+eaIlkoKDg7VgwQIVK1ZMJUuWVPv27dWhQwctX75cr7322nMxDNiVvytxnT59WpKULVs2p8Rz5f7d8Tct1qVLl5Q+fXrLL0KFhYU98nGrLhL6+vpq3759Tukp/iyip9kzKleuXPr666+dGjOhoXkPE3cYYWIaPny4+vbtq86dO9vV9nr77bd18eJFu2mGrZA7d2717dtXW7ZscepEBEOHDlW9evW0cuVKuyFTp0+f1i+//GJJTEexXfovXLhg9wM4bNgwy68cV6pUSTNmzNAnn3wi6UGvm9iZzqpVq2ZpbFf1LpQeDOUYMWLEQ4voWnnA+fnnn6tnz54aPHiwS4aLLV26VD4+Prak3dixY/X111+rYMGCGjt2rKWz2o0cOVK9evXSxIkTLT/4SGoz5BUoUEBDhgzR5MmTbUMr7t69qyFDhiR6z6PH1eyLyxkFowsWLGh5r9mHsTIp9jiO11b79OmjAgUKWN4zqUGDBvrxxx81ePBgzZ8/X15eXipSpIhWrlzplPcjefLk+uKLL/TGG29YHuthYmJidOzYsQSH6lWuXDlRYyWF4e/JkyfX22+/bZtF0BUGDRqkli1bPrLukVU8PDyUO3dup8eNa/v27ZoyZYrmzJkjb29vffDBB2rXrp3OnDmj8PBwNWrUSFu3bk2UWNWrV9dPP/2kYsWKKSwsTF27dtX8+fO1ffv2xw6TtcLNmzcTPJaycoIbV/6u3L9/X+Hh4Ro9erRtEjEfHx916dJF/fv3j3dcl5hcuX9/WH3WPXv22HoZW8lVPeerV6+utWvXkjT7l+hp9gxyVQbdcYZGxyFFcXdQVrUhZ86cCg8Pj3eQO336dA0YMMDyYaOuLC75119/aezYsXYzOHbs2FGZM2e2LKaj8ePH69NPP9Vff/0lScqRI4cGDBhg+UnH/v37VaNGDRUvXlyrV69Ww4YN7epR5MqVy7LYrupdKD2olzZ58mR1795dffr00ccff6wTJ07oxx9/VL9+/SydASj2++544OGs4WKFCxfW559/rrp162rfvn0qWbKkunfvrjVr1ih//vyWHpQEBgbq5s2bun//vlKlShXvwNLKZOXhw4f11Vdf2U1N36VLF+XLl8+ymHFt3bpVDRo0kDHGdiKxd+9eubm5afHixSpdunSixQoPD3/idZ0xVHn16tXq06ePSxLF69ate+TjiZ1AievkyZPKnj17vO/6/v37tWPHDpcO67Nao0aN1LRpU5e8xi1btqhFixY6efJkvMSlFfvYpDBTryRVrVpV77//vstqdr7wwgvav3+/ypQpo9dff12vvPKK0qZN65TYw4YN0/HjxzVmzBinDs2UHlx0njp1qg4fPqy6devqzTffVN26de2O7c+cOaMcOXLo/v37iRIzJiZGMTExtrpOc+bM0aZNm5QnTx516NAhwZpXVrhw4YLCwsL066+/Jvi4lcczrvxdeeedd7Rw4UINHDjQ7oL7gAED1LhxY40fP96y2K4QWy/x6tWr8vPzi3deGhUVpbfffltjx451YSutM2HCBIWHh6tly5YqUaJEvGGhVnVoeVaQNHsGubu72wryx/XXX38pV65cThk+s3LlSn344YcaPHiw3Y449ofhxRdftCRuypQptX///nhX6o4eParChQvr9u3blsSFvQsXLsjLy0s+Pj5Oi3n16lWNGTPGbkiyM+pRDBkyRMOHD1e9evWc2rtQetCjdPTo0apXr558fX21e/du27ItW7Zo9uzZlsV25UmV9OBq6P79+22J2f3792v+/PnauXOn6tatq7///tuy2NOnT3/k41adYC9YsECvvfaaSpYsaduvbtmyRdu2bdOcOXPUrFkzS+I6unHjhr799lu7BH2LFi3iHYA9a1yZKHa8KOXYDma9soYrTzKKFi2qvHnzKjw8PMFaR0lhcgwrzJs3T71791bXrl0TfM+t7PUT648//tC3336rOXPm6MyZM3rxxRfVsmVLNW7cOF4dpMTUpEkTrVmzRqlTp1ahQoXiHU9YOQlBnjx51LZtW7Vp0+ahx013797Vd99998wlylu2bKmTJ09q5MiRqlq1qn744QedO3dOgwYN0rBhw1SvXj3LYrvyd8Xf319z5sxRaGio3fJffvlFzZs319WrVy2LLUlXrlzR/Pnzdfz4cX3wwQdKnTq1du7cqQwZMihLliyJHm/69Okyxqht27YaOXKk3T7Uw8NDOXLksHTCvLjmz5//0FEiVvWcT+g4IhazZz4eSbNnSGw9q65du+qTTz6xS1hER0dr3bp1OnHixCNnS0ksISEhmjBhQrx6R+vXr9dbb71lWdf7kJAQtWjRQh999JHd8kGDBmnu3Lnat2+fJXFdYe/evQoJCZG7u/tjZ9hzxkHm88qVvQu9vb118OBBZc+eXZkyZdLPP/+s4sWL6/jx4ypWrJjlBzyulDp1am3YsEEFCxZUxYoV9cYbb+itt97SiRMnVLBgQd28edPVTUx0uXLlUsuWLTVw4EC75f3799esWbMUERHhopY9H1yZKHb8Lt+7d0+7du1S37599emnn8abICCxbd++/aEH+Il5Iu/qWRQdufIkw9vbW3v27HHZcL0rV65o69atCQ4NtbL3+MMSxM7qxexo48aNmj17tr7//nvdvn3b0plbXVXryJX++ecfffPNN7bzgoIFCyosLMwpw+RiZcqUSYsWLVLp0qXl5+en7du3K2/evPrpp580dOhQbdiwwbLYrvxdSZ8+vdauXZtgjdLKlSvrwoULlsXeu3evatasKX9/f504cUKHDx9WcHCw+vTpo1OnTmnGjBmWxV67dq3Kly9v6fDTRxk9erQ+/vhjtWnTRpMmTVJYWJgiIiK0bds2derUSZ9++qlL2oVHo6bZM2TEiBGSHlydmDBhgpIlS2Z7LDaDPmHCBKe0JSIiQgEBAfGWx+4crRIeHq5XX31V69ats9U027hxo1atWqV58+ZZFjeuM2fO6Keffkrw5GL48OGJFqdo0aK2HoWPmmHPWQeZ586d0wcffGCbKt2xLYndhsclCuOyMmnoyplis2bNqrNnzyp79uzKlSuXli9fruLFi2vbtm3y9PRM9HhJKVFbsWJFdevWTRUqVNDWrVs1d+5cSdKRI0csKdqdFIpknz17NsGT1ddff11ffPGFJTETcvToUa1ZsybBk2mrZp1yZf2+WK6sK5ZQr6IXX3xRHh4e6tatm3bs2GFZ7Dlz5uiNN95Q7dq1tXz5ctWqVUtHjhzRuXPn1KRJk0SN5epZFB05bt/OVKZMGR07dswlSbPFixerZcuWioqKijeMyc3NzdKkWVKYfT0ub29veXl5ycPDwza7o1VcnRRzdqJ03bp1atiwofz8/FSyZElJDxIKAwcO1OLFiy0ddh7XjRs3bKNzAgMDdeHCBeXNm1eFCxe2vF6mK39XOnfurE8++URTp061HTPeuXNHn376abxJvRJbt27d1KZNGw0dOtS2z5ekunXrqkWLFpbGjvue3759O97xhNU1eceNG6dJkyapefPmmjZtmnr27Kng4GD169fPaZNf3L59WylTpnRKrGcFSbNnSOyBRrVq1bRw4UJLC2E/TqlSpdStWzfNnDnTNgPSuXPn1KNHj0SteeOoWbNm+v333zVixAj9+OOPkh4MHdq6datTZrpbtWqVGjZsqODgYB06dEghISE6ceKEjDEqXrx4osaKjIy0Tf+dFA4y27Rpo1OnTqlv375OmTY7bqIwbqzYZN3zMHSpSZMmWrVqlcqUKaMuXbro9ddf1zfffKNTp05ZMulFUkrUjhkzRh07dtT8+fM1fvx4W1f+X3/9VXXq1En0eEmhSHbVqlW1fv36eCfRGzZsUKVKlSyJ6ejrr7/WO++8o7Rp0ypjxozxTqatSpqFh4c/sn6fVZJSojghGTJk0OHDhy2NMXjwYI0YMUKdOnWSr6+vRo0apZw5c6pDhw6JPvw9dtjX/fv35ebm9tzOoig9mP26e/fu+vvvvxMc+m/l9ta9e3e1bdtWgwcPtnQ4YkKSwuQnkZGRmj17tmbPnq3Dhw+rSpUqCg8P10svveTqplnGFYnSTp066ZVXXtH48eNtF/qjo6PVsWNHderUyWmjQ/Lly6fDhw8rR44ceuGFF2yT/EyYMMHyEh+xnDUJgeMECytXrlTWrFn1wgsvSHpQDP/u3buW917etm2bJk6cGG95lixZLC2vIT14r3v27Kl58+bp0qVL8R63+vj11KlTKl++vKQHM5LHJuNbtWqlsmXLasyYMZbEjY6O1uDBgzVhwgSdO3dOR44cUXBwsPr27ascOXKoXbt2lsR9VjA8E5Y4duyYmjRpoiNHjtimLz59+rTy5MmjH3/80eWzA1mldOnSCg0NVXh4uHx9fbVnzx6lT59eLVu2VJ06dfTOO+9YEnfdunUqX768rZhqrPv372vTpk1OuVrn6+ur9evXq2jRopbHkh4Up461a9cuffDBB+rRo4ddDb1hw4Zp6NChlhcUdlbvwsfZvHmzNm/erDx58qhBgwaJ/vxxC4LHff8TkhROfBKTq4pkx52V+K+//lK/fv30yiuvqGzZspIe1DT7/vvvFR4e7pTJKIKCgtSxY0d9+OGHlseKy1X1++LWCHV3d3dZotgxYWeM0dmzZ/XZZ5/p/v37lg4f8vb21h9//KEcOXIoTZo0+u2331S4cGEdPHhQ1atX19mzZy2JmypVKh08eNDl+5IbN25o7dq1Ce7fnTHZSlzOGqbo7e2tffv2KTg42LIYjzJz5kxNmDBBkZGR2rx5s4KCgjRy5EjlzJlTjRo1sjR22bJltW3bNhUpUkQtW7ZU8+bNLamv9DCuqHUkSXnz5lXdunWdmij18vLS7t27401kc/jwYRUtWtQpNZgladasWbp//77atGmjHTt2qE6dOrp8+bI8PDw0bdo0vfrqq5bFdvYkBI8bAhyXlT0f06dPr2XLlqlYsWK286Xg4GCtWLFCbdu21enTpy2L3alTJ61Zs0affPKJWrVqpbFjx+rPP//UxIkT9dlnn6lly5aWxZak4OBgLViwQMWKFVPJkiXVvn17dejQQcuXL9drr71mWW+zgQMHavr06Ro4cKDat2+v/fv3Kzg4WHPnztXIkSO1efNmS+I+MwyeSadPnzZjx441H374oenatavdzVliYmLMsmXLzKhRo8yoUaPM8uXLTUxMTKLHuXr16hPfrObj42OOHTtmjDEmICDA7N+/3xhjzO7du01QUJBlcd3d3c25c+fiLb948aJxd3e3LG5cBQoUMDt37nRKLEelSpUyP//8c7zlP//8sylevLilsVeuXGlSpUplQkJCTPLkyU3RokVNQECA8ff3N9WqVbM0tiutXbvW3Lt3L97ye/fumbVr1zqlDceOHTMff/yxee2112zb/y+//GL73j0L3NzcnujmrO+5r6+viYiIcEqsuFKlSmVOnjxpjDEmY8aMZseOHcYYYyIiIoyfn59lcU+cOGH73Tpx4sQjb1aK/YwdP/dy5cqZgwcPWho7S5YsZu/evcYYYwoXLmxmz55tjDFm06ZNlr73VapUMT/88INlz/8kdu7caTJmzGj8/PxMsmTJTLp06Yybm5vx9vY2OXPmtDS2K7e3Jk2amLlz51oa42HGjRtn0qZNawYNGmS8vLxs+5upU6eaqlWrWh7/o48+Mn/88YflcRIyatQo4+PjYzp37mw8PDxMhw4dTM2aNY2/v7/56KOPLI2dKlUqp+/by5cvn+B3/IcffjBlypRxalviunHjhtmxY4e5cOGC5bFatGhhKlSoYLZt22a8vb3N8uXLzcyZM02+fPnMkiVLLI/vKu3atTONGzc2d+/eNT4+Pub48ePm5MmTplixYua9996zNHa2bNnMmjVrjDEPjmmOHj1qjDFmxowZJjQ01NLYxjx47QMGDDDGGDNmzBjj5eVlatasaQICAkzbtm0ti5srVy6zcuVKY8yD89XY7/vBgwdNQECAZXGfFSTNnkHP20l87MnEk9ysliFDBnPgwAFjzIMk0qJFi4wxD5Jm3t7elsV1c3Mz58+fj7f88OHDxtfX17K4cS1btszUqlXLREZGOiVeXClTprS973EdOHDApEyZ0tLYpUqVMv369TPG/P+P0PXr103Dhg3NuHHjLI1tjDGHDh0ynTp1MtWrVzfVq1c3nTp1MocOHbI8rqsTtb/99pvtQMPDw8P24z9kyBDTrFkzy+P/888/ZtmyZWbmzJlm+vTpdrdnWdu2bc348eOdHjdv3rxmy5YtxhhjKlSoYIYMGWKMMWbOnDkmXbp0Tm+PszkmTE6dOmVu3brllNjNmzc3w4YNM8YYM3DgQJMuXTrz5ptvmqCgINOkSRPL4s6dO9cEBwebr776ymzatMns2bPH7uYMVapUMe3btzfR0dG2/fupU6dM5cqVzYIFC5zSBmdZtGiR7TZ58mSTPXt2079/fzN//ny7x2KPa6xSoEABWyIl7ondvn37TJo0aSyNbYwx4eHh5saNG/GW37x504SHh1saO1++fLakdNzX3rdvX9OpUydLY7siUTpnzhyTPXt288UXX5j169eb9evXmy+++MLkyJHDzJkzxynf97t375rg4OAEjyGdIWPGjOb33383xjxI4Bw+fNgY8+D7WKFCBZe0yRmuXLliSxQlS5bMZMuWzaRIkcJUrlzZREVFWRrb29vbdhEuS5Ystvf/+PHjlp6rxYqOjra76Pzdd9+ZLl26mNGjR5s7d+5YFjdlypS2Cy5x9y9//PGHU173/zqGZz6DXDVE0NGqVatsReEdC4pOmTIl0eLEHSp14sQJ9erVS23atLEbpjd9+nQNGTLE8mmyGzdurHr16ql9+/b64IMPtGjRIrVp08ZWY27lypWJGi+2NsGiRYtUp04du+Lv0dHR2rt3r/Lly6elS5cmatyEBAYG6ubNm7p//75SpUoVr/6KlcUtixcvrpCQEE2ePFkeHh6SHkyN/uabb2r//v2WDmmIO1QsMDBQGzZsUKFChbRnzx41atTI0okvFixYoNdee00lS5a0be9btmzRtm3bNGfOHDVr1syy2O7u7jp37pytrl6sI0eOqGTJkpbOMCZJ5cqV08svv6xu3brZde3funWrmjZtqjNnzlgW+3G1X5xVyNUVhgwZouHDh6tevXoJ1lmyarhar1695Ofnp48++khz587V66+/rhw5ctjq93322WeWxE3IgQMHEhw61bBhQ6e1wZkuX76s27dvK3PmzIqJidHQoUO1adMm5cmTR3369LGsfmpSmEUxICBAv//+u/Lly6eAgABt3rxZBQoU0O+//67WrVvr0KFDlrfBWdvbo2YKjcvq997Ly0uHDh1SUFCQ3b796NGjKlKkiOVD9pIlS2arXxnXpUuXlD59ektfe9whyenTp9eKFSv0wgsv6OjRoypbtmyC9ZcSyzfffKOBAwcqLCwswX27Ffu3x21zzvq+Z8mSRStXrow3i6Qz+Pn5ae/evcqRI4eCgoI0e/ZsVahQQZGRkSpUqJClM4FfunRJ/fr1e+jEPs44ltmwYYP27t2rqKgoFS9eXDVr1rQ8ZpEiRfTVV1+pSpUqqlmzpooWLaovv/xSo0eP1tChQy09fnSlEiVKqGvXrnr99dft9q0DBw7UihUrtH79elc3MUljIoBn0MGDB/Xdd99JkpInT65bt27Jx8dHAwcOVKNGjZySNAsPD9fAgQNVsmRJy4vCx60fNHDgQA0fPlzNmze3LWvYsKEKFy6sSZMmWZ40Gz58uKKioiQ9eA+ioqI0d+5c5cmTx5LaVrEzqhlj5OvrKy8vL9tjHh4eKlu2rNq3b5/ocRPiypnOJkyYoAYNGihr1qy2oql79+6Vm5ubFi9ebGlsb29v28lMpkyZFBERoUKFCkmSLl68aGnsnj17qnfv3ho4cKDd8v79+6tnz56WJM1iE7Vubm5q06ZNgona2AKnVtq3b1+CdazSp09v+fvuqiLZjp+zIysL4seaNGmSfHx8tHbt2ni13dzc3CxLmsVNir366qsKCgqyJW6sqN+XkOPHj6tJkybat2+fXW2z2N+3xD6pGz16tN566y2lTJlSo0ePfuS6Vr3v9+/f15IlS1S7dm1JD05ye/XqZUksR0lhgpsUKVLYTuzTp0+vU6dOqUCBAvL397e05o7k/O3NlTOFxpUzZ07t3r07Xi27pUuXOiWpYRwmF4q1Z88epU6d2tLYGTNm1OXLlxUUFKTs2bNry5YteuGFFxQZGZlgLcXEFHusmNDvjFVJq6TwHZce1Lj6/PPPNXny5Hi1ga3mykkIWrVqpWPHjqldu3bKkCGD5RN4JaRixYoqWbKkPD09nRY/LCxMe/bsUZUqVdSrVy81aNBAY8aM0b1795xWh/j27dvau3dvgslKqy7A9evXT61bt9aff/6pmJgYLVy4UIcPH9aMGTO0ZMkSS2I+U1zWxw2WcdUQwbgyZsxoZsyY4ZRYcXl5eZkjR47EW3748GHj5eXl9PY4y4ABAyzvzpzURUVFmYkTJ9pq902aNMkp70mjRo3MpEmTjDHGdO/e3eTOndsMGjTIFC9e3NSoUcPS2F5eXrZaDHEdOXLEsu29TZs2pk2bNsbNzc28+uqrtvtt2rQxb731lhk8eLBT6oBkyZLFbNy40Rhj38184cKFJjg42NLYrqj9YowxRYsWtbsVKlTIpEqVyvj5+ZlixYo5vT3OcvfuXRMWFmaOHz/u0nbUr1/fNGrUyFy4cMH4+PiYAwcOmPXr15vSpUubdevWJXq8HDlymIsXL9r+/7Cb1bW1vLy8LK+hFatYsWLm8uXLxpiHD5NzphdffNF8++23xhhj3nzzTVO6dGkza9YsU7t2bVO6dGlLYzt7ezPGmFWrVpkCBQokWAP2ypUrpmDBgpbFjvX111+bLFmymDlz5hhvb2/z3XffmUGDBtn+b5WAgAATGBho3N3dbf+Pvfn5+Rl3d3fTsWNHy+Ib47paR8+7xo0bG19fX5MpUyZTq1Yt06RJE7ublWbOnGmmTp1qjDFm+/btJm3atMbd3d2kTJnSzJkzx9LYPj4+Zvfu3ZbGeJjo6GgzcOBAkzlzZpMsWTLbMVWfPn3M5MmTndqWyMhIs2DBAqcN+//1119t9TGdXZ923bp1pmbNmiZdunTGy8vLVKhQwSxbtszSmM8KkmbPIFeexMdKnTq1rSC+M+XNm9f06NEj3vIePXqYvHnzOrUt169fd/pEBEnFrVu3npvXHhERYfuhjYqKMh06dDCFCxc2TZs2tfxEMzQ01EyZMiXe8ilTpphatWpZGtvVidru3bubihUrmrNnz9oKuW7YsMEEBwfbTjqs4soi2Y6uXr1qmjRp4pKLFM7k5+fn8qRZmjRpbN91Pz8/W+3AVatWmaJFi7qyaZaqUqWK+fHHH50SK2XKlOb06dPGmIfXTXSmbdu2mdWrVxtjjDl37pypXbu28fX1NcWLF7f8ZNMV21uDBg3M8OHDH/r4qFGjTOPGjS2JHdesWbNM7ty5bSeSWbJksfxEetq0aWbq1KnGzc3NjBo1ykybNs12mz17ttm0aZOl8Y1xXa0jR86qlxjrjz/+ML/++qtTa+fFFffiX0I3Z3LmJAQlS5Y0mzdvtjxOQsLDw01wcLCZNWuW3YQfc+bMMWXLlnVJm5wld+7cpmPHjubvv/92dVPwFKhp9gw6fvy4oqKiVKRIEd24cUPdu3e3DWMZPny4U6Zv//DDD+Xj46O+fftaHiuuX375Rc2aNVPu3LlVpkwZSdLWrVt19OhRLViwQHXr1rU0fmRkpDp37qzffvtNt2/fti03TqjJ4KppymPduHFDH374oebNm5dg3Q2r68/MnDlTEydO1PHjx21T1I8YMULBwcGWT1HvKhMmTFC/fv30yiuvqGzZspIe1DT7/vvvFR4ersyZM9vWfdbqLd29e1edOnXStGnTFB0dreTJkys6OlotWrTQtGnTlCxZskSN99NPP9n+f+HCBafXfnmUffv2qUGDBpbWz4vrzJkz+umnnxLc11g1tKF169YqWrSounbtasnzP4nAwEDt3LlTOXPmVK5cuTR58mRVq1ZNERERKly4sKW1Z1xp3rx56t27t7p27aoSJUrI29vb7vHYIfGJoVy5cvLx8VHFihUVHh6uDz74QD4+Pgmu64zhyK7kiu0tKCjokcMgDx06pFq1aunUqVOJHjshN2/eVFRUVLz6YlZau3atypcvH2+//qyLjo7W4MGDNWHCBJ07d05HjhxRcHCw+vbtqxw5cqhdu3aJHtPZQ5Bhb9u2berVq5f69eunkJCQeNu8n5+fZbFz586tiRMnqkaNGnb1tQ4dOqRy5crpn3/+sSy29OB7/uWXX+rgwYOSpIIFC6pHjx6qVKmSpXGlB+/rrl27lCtXLstjIfFQ0+wZFBwcbPu/t7e3JkyY4PQ23L59W5MmTdLKlStVpEiReDtiq06s6tatqyNHjmj8+PG2Ar0NGjTQ22+/rWzZslkSM67XX39dxhhNmTLFqfUBRo8erY8//lht2rTRokWLFBYWpoiICG3btk2dOnVySht69uypNWvWaPz48WrVqpXGjh2rP//8UxMnTrS8SPf48ePVr18/vf/++xo0aJDtQCswMFAjR458ZpNmHTt2lCSNGzdO48aNS/AxyZp6JOfOndMHH3xgm+zD8fqL1Qe7Hh4e+vrrr9W3b1/t379fUVFRKlasmPLkyWNJvMaNG8db5szaL49y9epVXb161SmxVq1apYYNG9oObkNCQnTixAkZY1S8eHHL4ubJk0cDBw7Uxo0bE0zcWFXTK66QkBDt2bNHOXPmVJkyZTR06FB5eHho0qRJdr+7VujWrVuCy93c3JQyZUrlzp1bjRo1sqTm0muvvSYp4fc4sbf3adOmqX///lqyZInc3Nz066+/JlhjyM3N7ZlPmrliezt37twjk0XJkyfXhQsXLImdkFSpUjm1bqRkXyf39u3b8S4MJHYiYe/evU+8bmImqB19+umnmj59uoYOHWpXCzckJEQjR460JGn23nvvKWfOnFq1apVy5syprVu36tKlS+revbu+/PLLRI/3MLdu3ZIxxratnTx5Uj/88IMKFiyoWrVqJXq8h+3PE2Jlja2AgABdu3ZN1atXt1vujAv9f/75p3Lnzh1veUxMjO7du2dZXEmaNWuWwsLC1LRpU9vv2oYNG1SjRg1NmzZNLVq0sDT+Sy+9pN9++83pSbPAwMAEz0vjHke0adNGYWFhTm3X/wp6mj2DgoODtW3bNqVJk8Zu+ZUrV1S8eHEdP37c8jZUq1btkY+vWbPG8ja4go+Pj3bs2KF8+fI5NW7+/PnVv39/NW/e3O6KTb9+/XT58mWNGTPG8jZkz55dM2bMUNWqVeXn56edO3cqd+7cmjlzpr777jv98ssvlsUuWLCgBg8erMaNG9u9/v3796tq1aqJXhj+YT88CXlWZ1IMDQ3VqVOn1Llz5wQn+3hWE5Wu5FgM3hijs2fPaubMmapSpUqCEyMkNlfNzpwzZ86HPubm5uaU37Vly5bpxo0batq0qY4dO6b69evryJEjSpMmjebOnRvvxCMxVatWTTt37lR0dLTt9+XIkSNKliyZ8ufPr8OHD8vNzU0bNmxQwYIFEzX2yZMnH/m4Vb3X3d3d9ffffzu1l5GjYsWKPdFJxuOOef4NV2xvuXLl0rBhwxK8SCBJCxcu1AcffGDp982V77n0oHdbz549ndZr3t3d3a6X1cNYncRwRc+ftGnTavXq1SpSpIj8/f21detW5cuXT6tXr1b37t21a9euRI+ZkFq1aqlp06Z6++23deXKFeXLl08eHh66ePGihg8fnui/a0+67bq5uWn16tWJGjuu0qVLK3ny5HrvvfcSvNAfN4Gc2Fw5k2OBAgX01ltvxeu5Pnz4cH399de23mdWuXnzpl5++WWlS5fOqbOQjxgxQp9++qlCQ0NVunRpSQ9GYy1dulRdu3ZVZGSkZs6cqa+++sppk8j9L6Gn2TPoxIkTCf6w3rlzR3/++adT2uCqpNjDrtjFHmxlz57dbra/xFaqVCmdPn3a6UmzU6dO2WYs9PLy0vXr1yU9mBmnbNmyTkmaXb582Xb128/Pz5YsqlixouUztkZGRqpYsWLxlnt6eurGjRuJHs+VM4VK0ubNm3Xp0iXVr1/ftmzGjBnq37+/bty4ocaNG+urr76ydFvfsGGD1q9fr6JFi1oW41Gio6M1bdo0W083x9mHrDjQXL16tTp37qwtW7bE621w9epVlS9fXhMmTLCse/+IESPs7ru7uytdunRq3bq1evfubUlMR66anTkpzLIWO4Ok9OAE89ChQ7p8+fJTJdH/rdheZFOnTrVte1evXtWbb76pihUrqn379mrRooW6du2qZcuWJWpsHx8f20W406dP6+uvv9atW7fUsGFDS4eyJDSb47Vr1/Ttt9/qm2++0fbt2y2LHatOnToaP368ChcubDvJ2LZtm/bu3as2bdrowIEDqlmzphYuXJjoFwpcsb3VrVtXffv2VZ06dZQyZUq7x27duqX+/fvb/e5YwZXvuST16NHDqb3mk8K+TXJNz5/o6Gj5+vpKepBA++uvv5QvXz4FBQXp8OHDlsRMyM6dO22/r/Pnz1fGjBm1a9cuLViwQP369Uv037Wk0nFg//792rVrl9PPWSTXzuR4/PjxBGfdbtiwoT766CNLY0vSd999p+XLlytlypT67bff7PbnVs5CvmHDBg0aNEhvv/223fKJEydq+fLlWrBggYoUKaLRo0eTNEsASbNnSNyaO8uWLZO/v7/tfnR0tFatWqUcOXJY2oamTZs+dh03NzctWLDAkvhFixa17XwcayNID6aPf/XVVzVx4sR4B4SJYfLkyXr77bf1559/JlgfwKqu9a6cpjxWcHCwIiMjlT17duXPn1/z5s1T6dKltXjxYgUEBFga29lT1Ldu3TrRn/NpDBw4UFWrVrWdvOzbt0/t2rVTmzZtVKBAAX3xxRfKnDmzBgwYYFkbsmXL5rRtKyHvvfeepk2bpnr16ikkJMQpQ6FHjhyp9u3bJzg8x9/fXx06dNDw4cMtSyQkhZMrb29v23ClTJkyKSIiQoUKFZKkRO/RGdfAgQP1wQcfxBuqdevWLX3xxReWD9W7d++evLy8tHv3boWEhNiWWzEcMiFffPGFVqxYYbft+fv7a8CAAapVq5bee+899evXL1GHEsXWyjt9+rTy5MmjOXPmqE6dOrpx44bc3d01YsQIzZ8//6G9khLTmjVrNGXKFC1cuFD+/v5q0qSJ5TGlB9t09+7d49VnHTRokE6ePKnly5erf//++uSTT5zSu9bq7a1Pnz5auHCh8ubNq86dO9tOpg8dOqSxY8cqOjpaH3/8saVtcPV7vnjxYluv+bCwMFWqVEm5c+dWUFCQvv32W7Vs2TJR4zmjzvCTKFiwoNavXx+vPfPnz7fs4pgrh7zHdfPmTVvybvny5WratKnc3d1VtmzZx/a0TSzHjh1TRESEKleuLC8vL9sQSSuVLFnSJRf6pQcXghYvXqyBAwfK29tb/fr1U/HixbV48WK9+OKLlsbOli2bVq1aFS9JvHLlSqeU8vn4448VHh6uXr16yd3d3fJ4sZYtW6bPP/883vIaNWqoe/fukh5cOOnVq5fT2vQ/xelTD8AycaerdZzC1sPDw+TNm9csXrzY0jY8bgYaq2ei+fHHH02+fPnM5MmTzd69e83evXvN5MmTTYECBcycOXPMrFmzTNasWU337t0tib9582aTM2fOeNMHWz2NcFKYpnz48OFm1KhRxhhjVqxYYVKmTGk8PT2Nu7u7GTlypKWxXTVFfaz79++b+fPnm08++cR88sknZuHCheb+/fuWxcuYMaPZtm2b7f5HH31kKlSoYLs/b948U6BAAcviG2PMsmXLTK1atUxkZKSlcR4mTZo05ueff3ZqzOzZs5sDBw489PGDBw+abNmyOaUtp06dMqdOnXJKrLhcNTvzw2ZSvHjxouVTtMfKmTOn5TMmPoy3t7dZs2ZNvOVr1qwxPj4+xpgHM/n6+vomWsw6deqY+vXrmw0bNpgOHTqYLFmymLZt25ro6GgTHR1tOnbsaMqUKZNo8RydOXPGDBo0yOTKlcukSZPGuLu7mzlz5piYmBjLYjry8/MzR48ejbf86NGjxs/Pzxjz4Hsf+xkkplu3bpmhQ4ea0NBQU6JECVOsWDG7m1VOnDhhQkND7Y4l3d3dTWhoqFNmsHXle27Mg+/ayZMnjTHGZMmSxfz+++/GGGOOHz9uvL29LYkZ15EjR8zEiRPNJ598YsLDw+1uVvrxxx+Nv7+/+eyzz0yqVKnMF198Yd58802TIkUK89NPP1kSc+nSpWbBggXGmAevO1++fMbNzc2kTZvWrFy50pKYCSlcuLAZNWqUOXXqlPHz87PNlLp9+3aTIUMGS2NfvHjRVK9e3fY9i51FMiwszHTr1s3S2PPmzTMFCxY0U6dONdu3bzd79uyxu1nl3r17Jjw83DZTsrONGzfOeHh4mLffftvMmDHDzJgxw3To0MF4enqaCRMmWB4/MDDQHDt2zPI4jrJly5bg7MjDhw+3Hbvu2bPH8m3+fxVJs2dQjhw5nDJVcVJUqlQps3Tp0njLly5dakqVKmWMMeaHH34wwcHBlsQvUKCAadq0qdmyZYuJjIw0J06csLtZJalMUx7XiRMnzIIFCyz94Y3LFVPUG/PgQD5PnjwmVapUtpOZVKlSmXz58ln2o+jp6WmXMKlQoYIZNGiQ7X5kZKRlJxSxAgICjIeHh3F3dzc+Pj4mMDDQ7ma1TJkymcOHD1seJy5PT88ET+ZiHT161KRMmdKy+Pfu3TN9+vQxfn5+xt3d3bi7uxs/Pz/z8ccfm7t371oWN66IiAjbdzoqKsp06NDBFC5c2DRt2tTSfZybm5s5f/58vOWrVq0yadOmtSxuXJMnTzZ169Y1ly5dckq8uFq0aGFy5sxpFi5caE6fPm1Onz5tFi5caIKDg83rr79ujHmw3y9RokSixUyTJo3ts75+/bpxc3Mz27dvtz1+8OBB4+/vn2jxYs2fP9+EhoYab29v89JLL5kff/zR3LlzxyRPntz88ccfiR7vUdKnT2+mT58eb/n06dNN+vTpjTHG/PHHH5Zsgy1atDBp06Y1b7/9tunfv78ZMGCA3c1qly9fNlu3bjW///67uXz5suXxYrnyPTfmQQLlt99+M8YYU6NGDdtF1lGjRpnMmTNbEjPWpEmTTLJkyUyGDBnMCy+8YIoWLWq7WZUojXsSvW7dOlOzZk2TLl064+XlZSpUqGAWLVpkypcvb0nshFy6dMmpiXFjjPn+++9NihQpjLu7u6lZs6Zt+eDBg02dOnUsjd2qVStTu3Ztc/r0aePj42NLmi1dutQULFjQ0tiOHSycdaHfmAfJaVdddDXGmIULF5oKFSqY1KlTm9SpU5sKFSqYH3/80Smx33//ffPpp586JVZcsfuXBg0a2C7yN2zY0CRPntx2vvTll1+aV155xelt+1/A8MxnUFIYwuMq+/btS7Cre1BQkPbt2yfpwRDOs2fPWhL/5MmT+umnnxKsC2GV+/fva/DgwWrbtq2yZs0q6cFsZ7EznjnDvXv3VKdOHU2YMME2e2FQUJBThx20bNlSLVu2dPoU9e+++65y5cqlLVu22IbOXLp0Sa+//rreffdd/fzzz4keM0OGDIqMjFS2bNl09+5d7dy5U+Hh4bbHr1+//sgZ0BKDq+u6de/eXaNGjdKYMWOcNkttlixZtH///od+v/fu3atMmTJZFr9Lly5auHChhg4dqnLlykl6UN9uwIABunTpksaPH29Z7FjOnp05tn6Tm5ub8ubNa/dZR0dHKyoqKl59DquMGTNGx44dU+bMmRUUFBRvBs+dO3daFnvixInq2rWrXnvtNd2/f1/Sg5pyrVu3ttXiyZ8/vyZPnpxoMS9fvqyMGTNKelDXzNvbW4GBgbbHAwMDbfUzE9Orr76qDz/8UHPnzrUNmXKVLl266O2339aOHTtUqlQpSQ/qa02ePNlW+2bZsmWWDF9bsmSJfvnlF1WoUCHRn/tJBAYG2l6zM7nyPZeksLAw7dmzR1WqVFGvXr3UoEEDjRkzRvfu3bN0JkPpwRDUTz/9VB9++KGlceL66KOPlCZNGr3xxhuqVKmSVqxYYXssKipKtWvXTnBChP/iSUq5JE+eXBkzZtSLL76YYP2pxPTSSy+pYsWKOnv2rN12VaNGjSdq63+xfPlyLVu2zHb8HitPnjyWDw115flijRo1tHbtWsvLBjmKe860YcMGp8aOFR0draFDh2rZsmUqUqRIvON1q/Yz7du3V8GCBTVmzBgtXLhQkpQvXz6tXbvWVhc7dpgm4mP2zGdIUigO7mrFihXTCy+8oEmTJsnDw0PSg4RO+/bttWfPHu3atUsbN27U66+/bsmPRYMGDdSmTRs1a9Ys0Z/7UXx8fLR//36n//jElS5dOm3atMmWNHOmKVOmqFq1ao+cYc8q3t7e2rJliwoXLmy3fM+ePapQoYKioqISPeY777yjPXv26PPPP9ePP/6o6dOn66+//rJt899++61Gjhypbdu2JXrspKJJkyZas2aNUqdOrUKFCsU76Ig9IEhMXbp00W+//aZt27YlWCS7dOnSqlatWrxZLhOLv7+/5syZo9DQULvlv/zyi5o3b66rV69aEteVpk+fLmOM2rZtq5EjR9rV6vTw8FCOHDlsCUSrxU1MJ6R///6WtyEqKso2c2FwcLB8fHwsi+Xu7q5z584pXbp0kiRfX1/t3bvXtp89d+6cMmfOnOgz+nXo0EFz585VoUKF1KpVK7366qsKDAxUihQptGfPnkSfHfRxvv32W40ZM8ZWmDxfvnzq0qWLWrRoIenBdz92sqHEVLBgQc2ZM8eyWqhJmave84ScPHlSO3bsUNq0aTVr1ixNmjTJslh+fn7avXu3U+t5zZ8/X61atdLcuXPVsGFD2/IbN26oTp06On/+vNasWaPMmTMnWsywsLDHrhMTE6Pz589r7dq1+uCDDzRw4MBEix/rSRNiVhxPxPL19dXOnTuVJ08eu1kkt2/fbknCMqmYMGGCwsPD1bJlS5UoUSLeRai422Jic/U506NmT7V6xlT8eyTNniGhoaGqWrWq7QrVvn37VLx4cbvi4B06dLC0OLirbdq0SQ0bNpS7u7vtQHPfvn2Kjo7WkiVLVLZsWc2cOVN///23evTokejxJ02apEGDBqlt27YJTiNs1Y9Ao0aN1LRpU5cWqO/atas8PT0tmV3qcfLkyaPjx48rS5YsqlKliqpUqaKqVas6pcdf6tSptWTJEttVmlgbN25UgwYNbLOIJqaLFy+qadOm2rBhg3x8fDR9+nS7wtg1atRQ2bJl9emnnyZ67LgiIiI0depURUREaNSoUUqfPr1+/fVXZc+e3VYc3iqPO+ieOnVqosc8d+6cihcvrmTJkj20SPbOnTuVIUOGRI8tSenTp9fatWvjTW5x8OBBVa5cWRcuXLAk7tPM1mfF9i5Ja9euVYUKFZQ8edLsIG+cULTZ2dzd3RUaGmq70LZ48WJVr17ddnJz584dLV26NNGTZtKDpMi8efM0ZcoU/f7776pdu7Z+/vnneBMx/F979x0V1bm1AfwZmqAoYEelWhERC7aYWEFEo2K9Xiv2ayxYE1JsWBL1qoTojcaggLFFJCoWLCAgVgQUUBERFIKKRgU7yMz5/nA5nwNoTDJnDh6e31quxZwz8u4QZ5izz373lrNDhw7B398f69evLzPN4suzixcvolWrVqL8e39t3LhxaNOmjc6qZ1/7+eef4e3tjQMHDqBLly7qhNmdO3cQFRWFunXr6jSeN+3fvx+fffYZsrKytP693yd5B4jzeeK1Xr16oXXr1li8eLH6xoSNjQ2GDh0KlUqFkJAQ0dYGXn2O8/Pzw5UrVwC8StZ7e3ujfv36oq77rgb4CoVC1NdZWbhm0pVHjx6993NLG3JF/49JMxmxtLREWFgYXFxcALyazhEdHa0uP921axcWLFiAy5cvSxmm6B4/foytW7ciLS0NwKs7lMOGDdPJNg+pfglIecfmtWnTpiE4OBgNGzYsNQaxtzXk5OQgKioKMTExiI6OxrVr12BpaYkuXbrgl19+EW3dUaNGISEhAQEBAWjbti0A4OzZs5gwYQJat26NwMBA0dbOz8+Hqakp9PX1NY4/ePAApqam6sozMURHR8PDwwMdO3ZETEwMrly5Ant7e3z33Xc4f/686B/0pHLz5k1MnjwZhw8f1pjQ6+7ujnXr1ola7ejr64vU1FRs3rxZncgoKCjAuHHj0LBhQ9EqnYKCgt77uWJ9CE1ISIChoaG6onPv3r3YvHkzmjZtioULF4r6b/21lStXlnqzRalUYsSIEdi+fbtW1/sr24LEqIQoCxeUAHDt2jVs3rwZQUFBePLkCXr37o1BgwaJvm1Kavfu3cOQIUMQExODihUrlrgJJ1aCmkqni6TZt99+i9WrV6N3796l3nidPn26aGuvWLECS5cuxd69ezF//nzk5OQgOjq6xLZBXcvLy8PYsWNFrfaSUkpKCrp3745WrVohMjISffv2xaVLl/DgwQOcPHlS1OTV4cOH0bdvX7Ro0UK9DfzkyZO4ePGiTqZYSqUsXDPpip6e3p/e0Ht900/M9zY5YNJMRoyNjXHt2jX1uNyPP/4YHh4e6vHgN27cgJOTkyg9SEhaUt6xycjIgK2tLbp37/7OGHRVbvzs2TOcOHEC27dvx9atWyEIgroHkBjy8vLg5eWFsLAwdRVMUVER+vbti8DAQI3tZHLSoUMHDB48GLNmzdLYUnDu3DkMGDAAv//+u07iuHfvnsYWntdbycT28OFDpKenQxAENGzYUKPXk1j69++PiIgIVKhQAc7OzgBeXcgVFhaWeP2JcYFRVFSEbdu2wd3dXbRqurdp06YNfHx8MHDgQGRkZKBp06YYMGAA4uLi0Lt3b5302KtZsya+/fZbjBs3Tn1MqVRi6NChSElJUd+p15b3TVoB4ieuygKVSoUDBw4gICAAhw4dQkFBgSjrlIXKSgBwdXVFVlYWxo0bh1q1apWISU5VElWrVkVaWhqqV6/+pz9/qZKFukiaveumi0KhUG/NFouPjw9WrlwJW1tbREVFqa8nSFz5+flYu3YtLl68iCdPnqBVq1aYMmWKqD1SgVctbdzd3UvsEPHx8cGRI0dE6dP5/PlzREREqFsJffnllxrv5QYGBvD19RV167WU10zAq63P3333HSIiInD37l2oVCqN89p8nUdHR7/X85KTkzF16lStrStHTJrJiI2NDbZs2YJOnTqhsLAQ5ubmCAsLU19MJScno3PnzrK/O3nt2jUcP3681Dei+fPni7buy5cvYWJiUq62jwCAvr4+bt++rW68/69//Qv+/v46vag+cuQIoqKiEBUVhcTERDg4OKi3aHbq1EmUhIZKpcLKlSuxb98+FBYWwtraGqNHj4ZCoYCDg4NOh0FIwdTUFMnJybCzs9NImt24cQNNmjTBixcvRF3/6dOn6urG169zfX19jBo1Cj/88AMqVqwo6vpSKAtJlIoVK+LKlSs63y5mZmaGhIQE1K9fH8uXL0dkZCQOHz6MkydPYujQocjOzhY9hri4OPTo0QMbN27EoEGDUFRUhCFDhiA1NRWRkZHqpvkkvrt374o27KUsVFYCr15rp0+fVifI5SwoKAhDhw5FhQoVEBgY+M6kmVTJQl0kzaRQvGLz4MGDcHZ2LrElU66VXlIqbYiWLhkbGyM5ObnE2mlpaWjevLkon+PWr1+PAwcOICwsDMCrnm6Ojo4wMTEB8Krdxdy5czFr1iytr11W/Pvf/0Z0dDRGjhwJS0vLEu933t7eOonj8ePH2L59O37++WfEx8fL7r1N28pmcxD6W3r16gUfHx91c/CKFSvik08+UZ9PSkoSfY+61DZu3IjJkyejevXqqF27tsYbkUKhEDVpZmhoCGtra8nfdF68eKGT5rivFc+7Hzp0CE+fPtXZ+gDQs2dP1KhRA7Nnz8bBgwdhbm4u+ppLly7FwoUL4erqChMTExw8eBBmZmbYtGmT6GuXBebm5rh9+3aJO+OJiYk66X8ya9YsREdHIywsTL2tIDY2FtOnT8fs2bN1MklS18pCNVHbtm2RmJio86SZIAjq5OixY8fUd6mtrKzwxx9/6CSGNm3aYPfu3fD09ISRkRECAgKQnp6O48eP6+QmQVFREaKionD9+nV1y4Fbt26hSpUqog4EKIvEnI5cViq4mjRpgufPn0sdhk68+TP38vKSJIY/2+6bl5enm0B0rHg1/L///W+JIil/DA0NkZSUJNn6NWrUwIULF0okzS5cuCDae+zWrVvx+eefaxzbtm2bevjFL7/8gnXr1omSNIuMjMTUqVNx5syZEv278vPz8dFHH2H9+vUa185iOHToEA4cOCDZZOSYmBgEBARg9+7dqFOnDgYMGIB169ZJEsuHhEkzGVm8eDEGDBiAzp07q5uDv9nnZdOmTejRo4eEEYpPinHdb/r666/x1VdfYcuWLahatarO1lUqlVi2bBnWr1+P3NxcpKWlwd7eHvPmzYOtra3GdiKxSVG8unr1asTExGDFihX4/vvv1VVmXbp0QaNGjURZMzg4GP/73/8wadIkAK8u5Hv37o2ff/75naXfcjF06FB88cUX2LVrFxQKBVQqFU6ePIk5c+Zg1KhRoq+/e/duhISEoEuXLupjvXr1gomJCYYMGSLLpBkgfeLks88+w+zZs/H777+X2gtErEl/Li4uWLJkCVxdXREdHa3+/5uZmanTqtZu3bohODgYAwcOhIODA6Kjo1G9enXR17158yZ69uyJrKwsFBQUwM3NDZUrV8by5ctRUFCA9evXix5DefRnzcetra1FW/u7777D7NmzsXTp0lL7W8mtafP79N5RKBSitVv4s1YKZmZmovxumzVrFhYvXoxKlSr9aaJAjN6wZeFmTHk2YsQIBAQESDJEa8KECZg4cSIyMjLUw6xOnjyJ5cuXi1bplZ6erjFt3tjYWOMzc9u2bTFlyhRR1vbz88OECRNKfe80MzPDpEmTsHr1atGTZhYWFjq9RgSAO3fuIDAwEAEBAXj06BGGDBmCgoIC7NmzR+cTqT9U3J4pQ1I2B5eaFOO639SyZUukp6fj5cuXsLGxKXFBKUZ/AOBVg/CgoCD4+vpiwoQJSElJgb29PXbu3Ak/Pz+cPn1alHWBV1vi7ty5o+4l9Xr6j5gN0d8lOTkZ0dHRiIyMxP79+1GzZk1R+mtVqFAB6enpGj0/jI2NkZ6eLnnjXF0oLCzElClTEBgYCKVSCQMDAyiVSgwbNgyBgYEl3n+0rWLFioiPjy8xSfLSpUto27atzqsddaF44uR1ctzb21tniZPSEsIKhUL0RrJJSUkYPnw4srKyMGvWLPXQg2nTpuH+/fvYtm2bKOu+rfrkzJkzaNCggUbCTMztS56enqhcuTICAgJQrVo19XboqKgoTJgwAdeuXRNt7fLszxI5YlaWv36tFV9frk2b9+7d+9Zzp0+fhr+/P1Qqlehb/3Wta9eu+O9//4uWLVuWmd6wpDtSDtESBAF+fn5YtWoVbt26BQCoU6cO5s6di+nTp4syEfp1G5vX08eLS01NRYsWLUR5ndvY2CA8PLzE58Y31+7Ro4cok1rf9Msvv2Dv3r0ICgrSSSuRPn36ICYmBr1798bw4cPRs2dP6Ovrw9DQEBcvXmTS7D2x0kyG3na3TNdZbSkMHjwYR44c0fm47tc8PT0lWTc4OBg//fQTunfvrvHf7uzsjNTUVFHXFgQBXl5e6ml+L168wH/+858Sv/jF7ochCAISExMRFRWF48ePIzY2FiqVSrTG8EVFRSW2wRoaGuLly5eirFfWGBkZYePGjZg3bx5SUlLw5MkTtGzZUmd9OTp06IAFCxYgODhY/f/h+fPnWLRoETp06KCTGHTN29sbLi4uuHjxIqpVq6Y+3r9/f0yYMEEnMWRmZupkneKaN2+O5OTkEsdXrlwpaoL2bb9P3d3dRVuzNCdOnMCpU6dK3PSytbVFTk6OTmMpTxITEzUev3z5EomJiVi9ejWWLl0q6trHjx8X9fuXNf369Stx7OrVq/Dx8UFYWBiGDx8OX19fCSIT1/Hjx9W9YV//P5eiNyxJIyUlBa1atQLwqpeYLikUCsycORMzZ85UD4mrXLmyqGvWq1cPKSkpb02aJSUliXbjOTc3t0TF7psMDAxw7949UdZ+06pVq3D9+nXUqlULtra2JWLSdoHFoUOHMH36dEyePFmS3nlywaQZyUqDBg0wb948nDlzRufjugGoqx90LScnp9TG8yqVSvQkTvH+LyNGjBB1vdL06dMHJ0+exKNHj+Ds7IwuXbpgwoQJ6NSpk2j9zYonC4HSE4Zyb55rbW0t6halt/n+++/h7u6OevXqaUySNDY2xuHDh3Uejy6UhcSJrnuZ/Rmx+zeWla1LKpWq1Mqi33//XfSLHKkVFhaWOthHF+87pTXhd3FxQZ06dbBy5co/7YP1T3Tu3Fm0713W3bp1CwsWLEBQUBDc3d1lP2CpLPSGJWmUleS4rn6P9OrVC/Pnz0fv3r1L/P5+feOzd+/eoqxdt25dpKSkvHVQV1JSkugTSwHdF1jExsYiICAArVu3hoODA0aOHImhQ4fqNAY54PZMkhWpx3UDr5rFhoSE4Pr165g7dy6qVq2KhIQE1KpVS7QG6a1bt8bMmTMxYsQIjUmGvr6+OHr0KE6cOCHKumXF3Llz0blzZ3zyySd/2pdEW953kmFZuejWtrf1u1AoFDA2NkaDBg3Qr18/UStcnz17hq1bt6qrKR0cHDB8+HD1FCa5sbCwwMmTJ9G0aVON13lsbCwGDhyI3NxcncSxZcsWrF+/HpmZmTh9+jRsbGzg5+cHOzu7UqtFtEHKbXIWFhalrm1mZoZGjRphzpw5cHNzE2194FXliZmZGX766Sf1FvgaNWqgX79+sLa2luX7zLVr1zB27FicOnVK43hZ2J6Ynp4OZ2dn0RMbeXl5CAgIwJUrVwAAjo6OGDt2rM5+z+lafn4+li1bhh9++AEtWrTA8uXLRe8vVBbo6enhzp076ubrb76/kzy9T8JdoVBg9+7dWl23ZcuW773tUoyWMrm5uWjRogWMjIwwdepUdd/hq1evYu3atSgqKkJiYqIoVZbTpk1DVFQU4uLiSk3YtW3bFl27doW/v7/W1y4Lnj59ip07d2LTpk04d+4clEolVq9ejbFjx8r+5ps2MGlGpEVJSUlwdXWFmZkZbty4gatXr8Le3h7ffPMNsrKyEBwcLMq6e/fuxejRo/Hll1/C19cXixYtwtWrVxEcHIz9+/eLfkEnldOnT+P+/fvqSXrAq62qCxYswNOnT+Hp6YkffvhBoxqMtKNr165ISEiAUqlUl9mnpaVBX18fTZo0wdWrV6FQKBAbG8t+CVpSFhInP/74I+bPn48ZM2Zg6dKl6v6JgYGBCAoKEu2uefF+R6+3yQUFBWHRokWiDjsJCgoq9XheXh7i4+Oxc+dOhISEoE+fPqLF8Pvvv8Pd3R2CIODatWtwcXHBtWvXUK1aNZw4cULUaZJS6dixIwwMDODj4wNLS8sSF3qlVYFp26NHjzQeC4KA27dvY+HChUhNTcWFCxdEW/v8+fNwd3eHiYkJ2rZtCwCIi4vD8+fPceTIEfWWLrlYsWIFli9fjtq1a2PZsmWiJeDLorLWG5bEJ9WN10WLFr33c8XaPZOZmYnJkyfj6NGj6ipLhUIBNzc3/O9//xMtWZybm4tWrVpBX18fU6dOVX92TU1Nxbp166BUKtVFDmKTosDiTVevXkVAQAC2bNmCvLw8uLm5Yd++faKv+yFj0oxIi1xdXdGqVSusWLFC407hqVOnMGzYMNy4cUO0tU+cOAFfX19cvHgRT548QatWrTB//nxZT0z18PBAly5d1NNSk5OT0apVK3h5ecHBwQErV67EpEmTsHDhQmkDlSE/Pz+cOHECmzdvVk8iys/Px/jx4/Hxxx9jwoQJGDZsGJ4/f6617ZJ/5Rd63759tbJmWfK2xEn16tURExOjk8RJ06ZNsWzZMnVj+tfvcSkpKejSpQv++OMP0WN407Zt27Bz5853NhEX2+rVqxESElKiIkrbioqKsGPHDiQlJanf4+VcWVmpUiXEx8ejSZMmksVQWoWjIAiwsrLCjh07RO2f+Mknn6BBgwbYuHEjDAxedVMpKirC+PHjkZGRgZiYGNHWloKenh5MTEzg6ur6zj6Fcmx5oKenBw8PD/UNvrCwMHTr1k3nvWGJdOnBgwdIT08H8Kq9ji56b9+8eROTJ0/G4cOHNRJ27u7uWLdunU4S1VIVWJRGqVQiLCwMmzZtYtLsTzBpJhPl+WJS6nHdbzIzM0NCQgLq16+vcUF58+ZNNG7cWHZTn6RmaWmJsLAwuLi4AAC+/vprREdHIzY2FgCwa9cuLFiwAJcvX5YyTFmqW7cujh49WqKK7NKlS+jRowdycnKQkJCAHj16aC2RUnxy4+upjcWPAeJu15NSUVERdu7cqZEc12XixMTEBKmpqbCxsdF4j7t27RqaN2+O58+f6ySO1zIyMtC8eXM8efJEp+u+KS0tDe3bt8eDBw9EW+P+/fvq4Q/Z2dnYuHEjnj9/jr59+8p2+1qbNm2wZs0afPzxx5LFEBUVpZE009PTQ40aNdCgQQN1IkssJiYmSExMLJE0vHz5MlxcXPDs2TNR19c1Ly+v99o2JsetyOW93QNJKz4+XmMLeMuWLSWOSHwPHz5Eeno6BEFAw4YNYWFhobO1pSywoL+PgwBkonhTweIXk29+EJHbxWRiYqK62X3xSVe6VqFChRLbOYBXF1ViTXEszx4+fKhRRh0dHQ0PDw/14zZt2iA7O1uK0GQvPz8fd+/eLZE0u3fvnvo1YG5ujsLCQq2t+WYj8GPHjuGLL77AsmXL1NUep0+fxjfffINly5Zpbc2yxsDAAMOHD8fw4cPVx27fvo25c+di7dq1oq9vZ2eHCxculBgI8K4x7mJ5/vw5/P39dbKV4V0KCgpKDGfQluTkZPTp0wfZ2dlo2LAhduzYgZ49e+Lp06fQ09PDmjVrEBISItnkZm178/fn8uXL8fnnn2PZsmWlDvZ5XeEqJicnJ8mSlVWqVEFWVlaJpFl2drYs+88EBgZKHYJkmAwjKdy9exdDhw5FVFSUemhWXl4eunbtih07dsj6usXCwgJt2rSRZO24uDhs2LChxPG6devizp07EkRE70Ug2Tl69KjQqlUrITw8XMjPzxfy8/OF8PBwwcXFRThy5IjU4Unm0aNHoq8xbtw4wdPTUygsLBRMTU2FjIwM4ebNm0LLli0Fb29vra5lbm4uWFhYvNcfubK2thaio6MFQRCEgoICwcTERDh27Jj6fFJSkqz/+6U0bNgwwc7OTggNDRWys7OF7OxsITQ0VLC3txdGjBghCIIgbN++XWjdurUo6zs6OgonTpwocTwmJkZo0qSJKGtKKSUlRfjhhx+EDRs2CA8fPhQEQRDu3bsnzJgxQzA2NhaaNm2qkzg2btwo1K1bV9ixY4dQqVIlYfv27cKSJUvUX4ul+Pudubm5oK+vL5iamgp79+4Vbd334e3tLbi7u4vyvXv27Cl8+umnQmxsrDBp0iShbt26wtixYwWlUikolUrhs88+E9q1ayfK2lJQKBSCnp6e+k/xx28eE1NSUpJgY2Mj6OnpCY0bNxYSExOFWrVqCaampkKVKlUEfX194bfffhM1hmnTpgn16tUTduzYIWRlZQlZWVnC9u3bhbp16wrTp08XdW0ikr8hQ4YILi4uwuXLl9XHLl26JLi4uAhDhw6VMDJ5q1GjhpCQkCAIgiCYmpoK169fFwRBEI4cOSLUq1dPytDoHbg9U4aaNWuG9evXl9jScOLECUycOFFdgisna9aswcyZM996/vHjx+jZsydOnjwpahz5+fkYNGgQzp8/j8ePH6NOnTq4c+cO2rdvj0OHDpXoT/FPvNmc+v79+1iyZAnc3d01qm4OHz6MefPmvfNn8yGbPHkyLl68iOXLl2PPnj0ICgrCrVu31FUfW7duhZ+fH+Li4iSOVH6ePHmCmTNnIjg4GEVFRQBeVUGNHj0aa9asQaVKldRNslu0aKH19U1MTBAXF4dmzZppHE9KSkK7du10vk1QTPv27cOgQYPUP2d7e3ts3LgRQ4YMQevWrTFjxgz07NlTZ/Fs3boVCxcuxPXr1wEAderU0Xkz/tfb5Nq1a4ecnJwS/w606W3b/vPz85GQkIC0tDTExMSgdevWWl+7evXqiIyMVG9BrVKlCuLi4tRrpaamon379sjLy9P62lKIjo5+7+d27txZtDg8PDzUQwi2bNmC/fv3w93dHRs3bgTwagpbfHw8zpw5I1oMhYWFmDt3LtavX4+ioiIIggAjIyN89tlnWLp0qWx72RGRbpiZmeHYsWMlKq7OnTuHHj16yOb3Slkzfvx43L9/H7/++iuqVq2KpKQk6Ovrw9PTE506dYKfn5/UIVIpmDSTofJ0MfmaiYkJNmzYgFGjRpU49+TJE7i7u+P+/ftITU3VSTwnT57U6Dnk6uoq6noDBw5E165dMXXqVI3ja9euxbFjx7Bnzx5R15fKH3/8gQEDBiA2NhampqYICgpC//791ee7d++O9u3bY+nSpRJGKT9KpRInT55Ub5nKyMgA8CqZY2pqqpMYOnXqBGNjY2zZskW9RTc3NxejRo3Cixcv/tLFd1nXtm1bdOzYEYsXL8bPP/+MWbNmwdHREZs2bZJsewEAPHv2DE+ePJFkcuPjx4+xfft2BAQE4Pz586K2HejatWupx6tUqYLGjRtj8uTJojUP1tPTw507d9Q/4zf7nwCv/s3XqVNHdm0XACArKwtWVlalNuLPzs6GtbW1aGuXpWTls2fP1Anq+vXr48cff8TKlSu5jYeI/pHKlSvjxIkTJW5sJiYmonPnzqW2m6F/7nWBRVxcHJ48eaIusOjQoQMOHjyo1QIL0h4mzWSoPF1MvhYSEoKRI0di586dGoMOnj59Cnd3d9y9exfR0dGwtLQUZf3nz58jIiICn376KQDgyy+/REFBgfq8gYEBfH19YWxsLMr6pqamuHDhAho0aKBxPD09HS1atJC0SbYu5Ofnw9TUtMTErQcPHsDU1FS0fkPlmbGxMa5cuaKTSUOlSU9PR//+/ZGWlgYrKysAUPd92rNnT4nXwofMzMwM8fHxaNCgAZRKJSpUqIDw8HDRk/FlUUxMDAICArB7927UqVMHAwYMwMCBAyVNHopJT08Pubm56t4ylStXRlJSkvp1J+ekmb6+Pm7fvl0iKXv//n3UrFlT1P9mKZOVBQUFWLhwIY4ePYoKFSpg7ty58PT0xObNm/HNN99AX18fU6ZMUU+NJiL6O/r164e8vDxs374dderUAQDk5ORg+PDhsLCwwG+//SZxhPKm6wIL+mc4CECGNm3ahP79+8Pa2rrUi0k5GjRoEPLy8vDvf/8bBw4cQJcuXfD06VP07NkTubm5oibMgFdbhw4cOKBOmq1duxaOjo7q7ROpqamwtLQUbZtktWrVsHfvXsyePVvj+N69e9VNjOXMzMys1OO6GF9dXjVr1gwZGRmSJc0aNGiApKQkHD16VF1B6uDgAFdX1/eawPYhefz4sbrpub6+PkxMTNQX77qWm5uLOXPmICIiAnfv3i0xvVSMJMKdO3cQGBiIgIAAPHr0CEOGDEFBQQH27NlTYhCFHHl5eaFChQoAgBcvXuA///mP+k70mzdn5EYQhFJfy0+ePBHtBtSbiq+tq/eV+fPnY8OGDXB1dcWpU6cwePBgjBkzBmfOnMGqVaswePDgEjeIiIj+qrVr16Jv376wtbXVuF5s1qwZfvnlF4mjkyeVSoXAwECEhobixo0bUCgUsLOzQ+3atd/6O4/KBibNZKg8XUy+afz48Xjw4AH69euHvXv3Yv78+bh16xaio6PVd1DEsnXrVnz++ecax7Zt26a+sP3ll1+wbt060ZJmixYtwvjx4xEVFYV27doBAM6ePYvw8HB1DxYibVqyZAnmzJmDxYsXo3Xr1iXKyXUx2U6hUKBHjx7o0aOH6GtJ7fDhw+rksEqlQkREBFJSUjSe82aVrVi8vLyQlZWFefPmwdLSUvTfKX369EFMTAx69+4NPz8/9OzZE/r6+li/fr2o65YVo0eP1ng8YsSIEs8prS3Bh+x1DzmFQoF58+ahYsWK6nNKpRJnz54VpU9icVIlK3ft2oXg4GD07dsXKSkpaN68OYqKinDx4kVZf4YjIt2ysrJCQkICjh07VuJ6kbRPEAT07dsXBw8ehLOzM5ycnCAIAq5cuQIvLy+EhobKtrhFDrg9U+ZevHiBChUqlKsPWj4+Pli5ciVsbW0RFRWlvnsiJktLS5w+fRq2trYAgBo1aiAuLk79OC0tDW3atEF+fr5oMZw9exb+/v7qQQ8ODg6YPn26OolGpE16enrqr998f3l9p0wX28UiIiLUFU8qlUrj3KZNm0RfX1fe/Fm/ja5+5m/rgSIWAwMDTJ8+HZMnT0bDhg3Vxw0NDXHx4sVyUWlW3rzuIRcdHY0OHTpobK83MjKCra0t5syZo/HvQdvGjBnzXs/bvHmz1tc2MjJCZmYm6tatC+BVz9Zz587ByclJ62sRUfkTGRmJqVOn4syZMyVucObn5+Ojjz7C+vXr8cknn0gUoTxt3rwZ3t7e2Lt3b4leqZGRkfD09MTatWtldyNMLlhpJkMqlQpLly7F+vXrkZubi7S0NNjb22PevHmwtbUVdcKZVAYMGKDx2NDQENWrV4e3t7fG8dDQUFHWz8vL07jzfO/ePY3zKpVK9G007dq1w9atW0Vdg+i148ePv/VccnKy6OsvWrQIvr6+cHFx0UnFk5SKJwSlZGVlVWJLpphiY2MREBCA1q1bw8HBASNHjsTQoUN1tj7p3uv3ljFjxuD777/XSdVqcWIkw96XUqnUSBQaGBjobMAKEcmfn58fJkyYUOp7q5mZGSZNmoTVq1czaaZl27dvx1dffVXqcKFu3brBx8cHW7duZdKsjGKlmQz5+voiKCgIvr6+mDBhAlJSUmBvb4+dO3fCz88Pp0+fljpErZPyrjAANGzYEN999x0GDhxY6vlff/0VX331FdLT00VZHwCuX7+OzZs3IyMjA35+fqhZsyYOHToEa2trODo6irYuEfD/0wx//vlnxMfHi171ZGlpiRUrVmDkyJGirkOajhw5glWrVmHDhg3qSlpdePr0KXbu3IlNmzbh3LlzUCqVWL16NcaOHYvKlSvrLA4isenp6cHDw0O9NTQsLAzdunUrsQVerJuARCRvNjY2CA8Ph4ODQ6nnU1NT0aNHD2RlZek4MnmrXbs2wsPD31qpn5iYCA8PD05GLqOYNJOhBg0aYMOGDejevbvGxKfU1FR06NABDx8+lDpE2fH29saxY8cQHx9fokHx8+fP4eLiAldXV3z//feirB8dHQ0PDw907NgRMTExuHLlCuzt7fHdd9/h/PnzCAkJEWVdIqmmGVarVg3nzp1D/fr1RV2HAAsLC41KvqdPn6KoqAgVK1aEoaGhxnMfPHggejxXr15FQEAAtmzZgry8PLi5uWHfvn2ir0u61a1bt3eej4yM1FEkuiX1TUAikjdjY2OkpKS8dcp4eno6nJyc8Pz5cx1HJm9GRka4efPmWwfT3bp1C3Z2drIe8PMh4/ZMGcrJySn1jVClUuHly5cSRCR/X331FX799Vc0btwYU6dORaNGjQC8urhbu3YtioqK8NVXX4m2vo+PD5YsWYJZs2ZpVF1069YNa9euFW1dKp/KwjTD8ePHY9u2bZg3b55O1ivP/Pz8pA5BQ+PGjbFixQp8++23CAsLk1X/Ovp/zs7OGo9fvnyJCxcuICUlpcSABDlhMoyIxFS3bt13Js2SkpLemtihv0+pVMLA4O2pF319fRQVFekwIvormDSToaZNm+LEiROwsbHROB4SEoKWLVtKFJW81apVC6dOncLkyZPh4+Oj7vmjUCjg5uaG//3vf6hVq5Zo6ycnJ2Pbtm0ljtesWRN//PGHaOtS+VNWphm+ePECP/30E44dO4bmzZuXqHhavXq1TuORs7KaoNDX14enpyc8PT2lDoVEsGbNmlKPL1y4EE+ePNFxNERE8tCrVy/MmzcPPXv2LHV3zIIFC/Dpp59KFJ18CYKgMZW5OFaYlW1MmsnQ/PnzMXr0aOTk5EClUiE0NBRXr15FcHAw9u/fL3V4smVnZ4fw8HA8ePBA3busQYMGqFq1quhrm5ub4/bt27Czs9M4npiYqJ7ARaQNhw4dKnWaoa4lJSWp+0KkpKRIFkd5o6+vj9u3b6NmzZoax+/fv4+aNWvqZIInlW8jRoxA27Zt8d///lfqUIiIPjjffPMNQkND0ahRI0ydOhWNGzcG8KqX2bp166BUKvH1119LHKX8vM8NSA4BKLuYNJOhfv36ISwsDL6+vqhUqRLmz5+PVq1aISwsDG5ublKHJ3tVq1ZF27Ztdbrm0KFD8cUXX2DXrl1QKBRQqVQ4efIk5syZwzdg0qqyMs3wXdM75a6wsBB3794tMVXT2tpa9LXf1ga1oKBAY+IfkVhOnz5dojqCiIjez5u7Y7788kuN3THu7u5Yt26dqLtjyituvf+wcRAAkQwUFhZiypQpCAwMVO+ZVyqVGDZsGAIDA6Gvry91iCQzUk0zHDBgwJ8+R6FQYPfu3aLFIJVr165h7NixOHXqlMZxQRCgUChErfLy9/cHAMycOROLFy+Gqamp+pxSqURMTAxu3LiBxMRE0WKg8qX4a10QBNy+fRvnz5/HvHnzsGDBAokiIyKSh4cPHyI9PR2CIKBhw4awsLCQOiSiMolJMxmyt7dHXFwcqlWrpnE8Ly8PrVq1QkZGhkSRieOvTE3r27eviJFILzs7G8nJyXjy5Alatmwp6fY5Kj90Oc2wPE+W69ixIwwMDODj4wNLS0uNiZZAycbp2vR66/fNmzdRr149jUS8kZERbG1t4evri3bt2okWA5UvxV/renp6qFGjBrp164YePXpIFBURERGVN0yayZCenh7u3LlToudMbm4urK2tZddoUE9PT+OxQqHQ2EL05oWl3PrtdOrUCfv27YO5uTmAVwlENzc3mJiYSBsYlUtKpVI9zVCspFl5VqlSJcTHx6NJkyaSxdC1a1eEhobybjQRERERlQvsaSYjb16kHj58GGZmZurHSqUSERERsLW1lSAycb3Z1+fYsWP44osvsGzZMnTo0AHAq/4n33zzDZYtWyZViKKJjY1FYWGh+vGIESNw4cIF2NvbSxgVlVecZiiupk2bSj4N93UvucLCQmRmZqJ+/frvHKFO9E/Fx8fjypUrAABHR0dOASciIiKdYqWZjLyuuCpeaQUAhoaGsLW1xapVq2Q9RrhZs2ZYv349Pv74Y43jJ06cwMSJE9UfvOWieFVh5cqVcfHiRSbNiGQoMjJSfQPAyckJhoaGGuerVKkiegzPnz/H1KlTERQUBABIS0uDvb09pk2bhrp168LHx0f0GKh8uHv3LoYOHYqoqCh1NXVeXh66du2KHTt2oEaNGtIGSEREROWC3p8/hT4UKpUKKpUK1tbW6slqr/8UFBTg6tWrsk6YAcD169fVH67fZGZmhhs3bug8HiIibXF1dcWZM2fQvXt31KxZExYWFrCwsIC5ubnOtkv6+Pjg4sWLiIqK0phg6Orqip07d+okBiofpk2bhsePH+PSpUt48OABHjx4gJSUFDx69AjTp0+XOjwiIiIqJ7inQoYyMzOlDkEybdq0waxZs7Blyxb1uOTc3FzMnTsXbdu2lTg6cby5FVelUiEiIgIpKSkaz5H7AASi8uD11kgp7dmzBzt37kT79u01+kU6Ojri+vXrEkZGchMeHo5jx47BwcFBfaxp06ZYt24dBwEQERGRzjBpJhP+/v6YOHEijI2N4e/v/87nyvkO7aZNm9C/f39YW1vDysoKwKuJkg0bNsSePXukDU4ko0eP1ng8adIkjccKhUJ2AxCIyqPOnTtLHQLu3btXYsgMADx9+rTENE+if0KlUpXYggy8ajfxZi9TIiIiIjGxp5lM2NnZ4fz586hWrRrs7Oze+jyFQoGMjAwdRqZ7giDg6NGjSE1NBQA4ODjA1dWVF3REJAvPnj1DVlaWxhAQAGjevLnoa3fq1AmDBw/GtGnTULlyZSQlJcHOzg7Tpk3DtWvXEB4eLnoMVD7069cPeXl52L59O+rUqQMAyMnJwfDhw2FhYYHffvtN4giJiIioPGDSjGTrxYsXqFChApNlRCQL9+7dw5gxY3Do0KFSz+uiojQ2NhYeHh4YMWIEAgMDMWnSJFy+fBmnTp1CdHQ0WrduLXoMVD5kZ2ejb9++uHTpkkbleLNmzbBv3z7Uq1dP4giJiIioPOAgAJIVlUqFxYsXo27dujA1NVX3d5s3bx4CAgIkjo6I6O+bMWMG8vLycPbsWZiYmCA8PBxBQUFo2LAh9u3bp5MYPv74Y1y4cAFFRUVwcnLCkSNHULNmTZw+fZoJM9IqKysrJCQk4MCBA5gxYwZmzJiBgwcPIiEhgQkzIiIi0hlWmsmQUqlEYGAgIiIi1FM03xQZGSlRZOLz9fVFUFAQfH19MWHCBKSkpMDe3h47d+6En58fTp8+LXWIRER/i6WlJfbu3Yu2bduiSpUqOH/+PBo1aoR9+/ZhxYoViI2NlTpEIiIiIiJZYaWZDHl7e8Pb2xtKpRLNmjWDs7Ozxh85Cw4Oxk8//YThw4dDX19ffdzZ2Vnd44yI6EP09OlTdRN+CwsL3Lt3DwDg5OSEhIQEUdfW09ODvr7+O/8YGHC2EP1zp0+fxv79+zWOBQcHw87ODjVr1sTEiRNRUFAgUXRERERU3vATrgzt2LEDv/76K3r16iV1KDqXk5ODBg0alDiuUqnw8uVLCSIiItKOxo0b4+rVq7C1tYWzszM2bNgAW1tbrF+/HpaWlqKu/a6m66dPn4a/vz8nGpJW+Pr6okuXLvj0008BAMnJyRg3bhy8vLzg4OCAlStXok6dOli4cKG0gRIREVG5wKSZDBkZGZWaOCoPmjZtihMnTsDGxkbjeEhICFq2bClRVLpTWFhY6pZca2triSIiIm3x9vbG7du3AQALFixAz549sXXrVhgZGSEwMFDUtfv161fi2NWrV+Hj44OwsDAMHz4cvr6+osZA5cOFCxewePFi9eMdO3agXbt22LhxI4BXvc4WLFjApBkRERHpBJNmMjR79mx8//33WLt2bbmbHDl//nyMHj0aOTk5UKlUCA0NxdWrVxEcHFxiu4ecXLt2DWPHjsWpU6c0jguCAIVCoZOpekQkrhEjRqi/bt26NW7evInU1FRYW1ujevXqOovj1q1bWLBgAYKCguDu7o4LFy6gWbNmOluf5O3hw4eoVauW+nF0dDQ8PDzUj9u0aYPs7GwpQiMiIqJyiEkzGYqNjcXx48dx6NAhODo6wtDQUON8aGioRJGJr1+/fggLC4Ovry8qVaqE+fPno1WrVggLC4Obm5vU4YnGy8sLBgYG2L9/PywtLctdspSoPKpYsSJatWqls/Xy8/OxbNky/PDDD2jRogUiIiLwySef6Gx9Kh9q1aqFzMxMWFlZobCwEAkJCVi0aJH6/OPHj0t8riEiIiISC5NmMmRubo7+/ftLHYZkPvnkExw9elTqMHTqwoULiI+PR5MmTaQOhYhEMnDgQLRt2xZffPGFxvEVK1YgLi4Ou3btEm3tFStWYPny5ahduza2b99e6nZNIm3o1asXfHx8sHz5cuzZswcVK1bUSM4mJSWhfv36EkZIRERE5YlCEARB6iCItMXe3h5xcXGoVq2axvG8vDy0atUKGRkZEkUmrjZt2mDNmjX4+OOPpQ6FiERSo0YNREZGwsnJSeN4cnIyXF1dkZubK9raenp6MDExgaurq8Zk4uLkXMlMuvHHH39gwIABiI2NhampKYKCgjRuBHbv3h3t27fH0qVLJYySiIiIygtWmpGs3Lhxo9T+XQUFBcjJyZEgIt1Yvnw5Pv/8cyxbtgxOTk4ltq5UqVJFosiISFuePHkCIyOjEscNDQ3x6NEjUdceNWoUt32TTlSvXh0xMTHIz8+HqalpiSTtrl27YGpqKlF0REREVN4waSYjFhYWpV7UmJmZoVGjRpgzZ45s+3rt27dP/fXhw4dhZmamfqxUKhEREQFbW1sJItMNV1dXAK/uwL+JgwCI5MPJyQk7d+7E/PnzNY7v2LEDTZs2FXVtsadzEhX35u/xN1WtWlXHkRAREVF5xqSZjPj5+ZV6PC8vD/Hx8fj0008REhKCPn366DYwHfD09AQAKBQKjB49WuOcoaEhbG1tsWrVKgki043jx49LHQIRiWzevHkYMGAArl+/jm7dugEAIiIisH37dlH7mRERERERlVfsaVaOrF69GiEhITh16pTUoYjGzs4OcXFxqF69utShEBFp3YEDB7Bs2TJcuHABJiYmaN68ORYsWIDOnTtLHRoRERERkewwaVaOpKWloX379njw4IHUoZBInj17hqysLBQWFmocb968uUQREREREREREX2YuD2zHCkoKCi1ifSHzt/fHxMnToSxsTH8/f3f+dzp06frKCrdunfvHsaMGYNDhw6Vep49zYiIiIiIiIj+GlaalSMzZsxAamoqwsPDpQ5Fq+zs7HD+/HlUq1YNdnZ2b32eQqFARkaGDiPTneHDh+PmzZvw8/NDly5d8NtvvyE3NxdLlizBqlWr0Lt3b6lDJKK/oWrVqkhLS0P16tXfOuzlNVYRExERERFpFyvNZGTWrFmlHs/Pz0dCQgLS0tIQExOj46jEl5mZWerX5UlkZCT27t0LFxcX6OnpwcbGBm5ubqhSpQq+/fZbJs2IPlBr1qxB5cqVAbx92AsREREREYmDlWYy0rVr11KPV6lSBY0bN8bkyZPfWYlFH64qVaogKSkJtra2sLGxwbZt29CxY0dkZmbC0dERz549kzpEIiIiIiIiog8KK81k5Pjx41KHIDmlUonAwEBERETg7t27UKlUGucjIyMlikxcjRs3xtWrV2FrawtnZ2ds2LABtra2WL9+PSwtLaUOj4i0RKVSIT09vdT3t06dOkkUFRERERGRPDFpRrLi7e2NwMBA9O7dG82aNXtn/x858fb2xu3btwEACxYsQM+ePbF161YYGRkhMDBQ2uCISCvOnDmDYcOG4ebNmyheJK5QKDjwg4iIiIhIy7g9k2SlevXqCA4ORq9evaQORVLPnj1DamoqrK2tUb16danDISItaNGiBRo1aoRFixbB0tKyxE0BMzMziSIjIiIiIpInJs1IVurUqYOoqCg0atRI6lCIiLSqUqVKuHjxIho0aCB1KERERERE5QK3Z5KszJ49G99//z3Wrl0r+62Zs2bNwuLFi1GpUqW3Tk59bfXq1TqKiojE0q5dO6SnpzNpRkRERESkI0yakazExsbi+PHjOHToEBwdHWFoaKhxPjQ0VKLItC8xMREvX75Uf/02ck8eEpUX06ZNw+zZs3Hnzh04OTmVeH9r3ry5RJEREREREckTt2eSrIwZM+ad5zdv3qyjSIiItEtPT6/EMYVCAUEQOAiAiIiIiEgETJoRydCjR48QGRmJJk2aoEmTJlKHQ0RacPPmzXeet7Gx0VEkRERERETlA5NmRDIwZMgQdOrUCVOnTsXz58/h7OyMGzduQBAE7NixAwMHDpQ6RCIiIiIiIqIPCnuakSxYWFiU2rvLzMwMjRo1wpw5c+Dm5iZBZLoRExODr7/+GgDw22+/QRAE5OXlISgoCEuWLGHSjOgDtW/fPnh4eMDQ0BD79u1753P79u2ro6iIiIiIiMoHVpqRLAQFBZV6PC8vD/Hx8di5cydCQkLQp08fHUemGyYmJkhLS4OVlRVGjRqFOnXq4LvvvkNWVhaaNm2KJ0+eSB0iEf0Nenp6uHPnDmrWrFlqT7PX2NOMiIiIiEj7WGlGsjB69Oh3nm/RogW+/fZb2SbNrKyscPr0aVStWhXh4eHYsWMHAODhw4cwNjaWODoi+rtUKlWpXxMRERERkfjeftuaSEY+/fRTpKamSh2GaGbMmIHhw4ejXr16qFOnDrp06QLg1bZNJycnaYMjIiIiIiIi+gCx0ozKhYKCAhgZGUkdhmg+++wztG3bFtnZ2XBzc1Nv47K3t8eSJUskjo6ItCUuLg7Hjx/H3bt3S1SerV69WqKoiIiIiIjkiUkzKhcCAgLQokULqcMQlYuLC1xcXAAASqUSycnJ+Oijj2BhYSFxZESkDcuWLcM333yDxo0bo1atWhrDT0obhEJERERERP8MBwGQLMyaNavU4/n5+UhISEBaWhpiYmLQunVrHUemGzNmzICTkxPGjRsHpVKJzp0749SpU6hYsSL279+v3q5JRB+uWrVqYfny5fDy8pI6FCIiIiKicoGVZiQLiYmJpR6vUqUK3NzcEBoaCjs7Ox1HpTshISEYMWIEACAsLAyZmZlITU3Fli1b8PXXX+PkyZMSR0hE/5Senh46duwodRhEREREROUGK82IZMDY2Bjp6emoV68eJk6ciIoVK8LPzw+ZmZlwdnbGo0ePpA6RiP6hFStW4NatW/Dz85M6FCIiIiKicoGVZkQyUKtWLVy+fBmWlpYIDw/Hjz/+CAB49uwZ9PX1JY6OiLRhzpw56N27N+rXr4+mTZvC0NBQ43xoaKhEkRERERERyROTZkQyMGbMGAwZMgSWlpZQKBRwdXUFAJw9exZNmjSRODoi0obp06fj+PHj6Nq1K6pVq8bm/0REREREIuP2TCKZCAkJQXZ2NgYPHox69eoBAIKCgmBubo5+/fpJHB0R/VOVK1fGjh070Lt3b6lDISIiIiIqF5g0IyIi+gDY2Njg8OHDrB4lIiIiItIRJs2IZMDX1/ed5+fPn6+jSIhILJs3b0Z4eDg2b96MihUrSh0OEREREZHsMWlGJAMtW7bUePzy5UtkZmbCwMAA9evXR0JCgkSREZG2tGzZEtevX4cgCLC1tS0xCICvcyIiIiIi7eIgACIZSExMLHHs0aNH8PLyQv/+/SWIiIi0zdPTU+oQiIiIiIjKFVaaEclYcnIy+vTpgxs3bkgdChEREREREdEHhZVmRDKWn5+P/Px8qcMgIi2Kj4/HlStXAACOjo4ltmcTEREREZF2MGlGJAP+/v4ajwVBwO3bt7FlyxZ4eHhIFBURadPdu3cxdOhQREVFwdzcHACQl5eHrl27YseOHahRo4a0ARIRERERyQy3ZxLJgJ2dncZjPT091KhRA926dcOXX36JypUrSxQZEWnLv/71L2RkZCA4OBgODg4AgMuXL2P06NFo0KABtm/fLnGERERERETywqQZkcw9f/4cJiYmUodBRP+QmZkZjh07hjZt2mgcP3fuHHr06IG8vDxpAiMiIiIikik9qQMgInEUFBRg9erVJarQiOjDpFKpYGhoWOK4oaEhVCqVBBEREREREckbk2ZEH7CCggJ8+eWXcHFxwUcffYQ9e/YAADZt2gQ7OzusWbMGM2fOlDZIItKKbt26wdvbG7du3VIfy8nJwcyZM9G9e3cJIyMiIiIikiduzyT6gH3xxRfYsGEDXF1dcerUKdy7dw9jxozBmTNn8NVXX2Hw4MHQ19eXOkwi0oLs7Gz07dsXly5dgpWVlfpYs2bNsG/fPtSrV0/iCImIiIiI5IXTM4k+YLt27UJwcDD69u2LlJQUNG/eHEVFRbh48SIUCoXU4RGRFllZWSEhIQHHjh1DamoqAMDBwQGurq4SR0ZEREREJE+sNCP6gBkZGSEzMxN169YFAJiYmODcuXNwcnKSODIiIiIiIiKiDxsrzYg+YEqlEkZGRurHBgYGMDU1lTAiIhKDSqVCYGAgQkNDcePGDSgUCtjZ2WHQoEEYOXIkK0uJiIiIiETASjOiD5ienh48PDxQoUIFAEBYWBi6deuGSpUqaTwvNDRUivCISAsEQUCfPn1w8OBBODs7o0mTJhAEAVeuXEFycjL69u2rHgJCRERERETaw0ozog/Y6NGjNR6PGDFCokiISCyBgYGIiYlBREQEunbtqnEuMjISnp6eCA4OxqhRoySKkIiIiIhInlhpRkREVIb16NED3bp1g4+PT6nnly1bhujoaBw+fFjHkRERERERyZue1AEQERHR2yUlJaFnz55vPe/h4YGLFy/qMCIiIiIiovKBSTMiIqIy7MGDB6hVq9Zbz9eqVQsPHz7UYUREREREROUDk2ZERERlmFKphIHB21uQ6uvro6ioSIcRERERERGVDxwEQEREVIYJggAvLy/1lNziCgoKdBwREREREVH5wKQZERFRGVZ8Sm5pODmTiIiIiEj7OD2TiIiIiIiIiIioGPY0IyIiIiIiIiIiKoZJMyIiIiIiIiIiomKYNCMiIiIiIiIiIiqGSTMiIiIiIiIiIqJimDQjIiIiIiIiIiIqhkkzIiIiIiIiIiKiYpg0IyIiIioD7ty5g2nTpsHe3h4VKlSAlZUV+vTpg4iICJ3GoVAosGfPHp2uSURERFQWGUgdABEREVF5d+PGDXTs2BHm5uZYuXIlnJyc8PLlSxw+fBhTpkxBamqq1CFqKCwshJGRkdRhEBEREYmKlWZEREREEvvss8+gUChw7tw5DBw4EI0aNYKjoyNmzZqFM2fOAACysrLQr18/mJqaokqVKhgyZAhyc3PV38PLywuenp4a33fGjBno0qWL+nGXLl0wffp0fP7556hatSpq166NhQsXqs/b2toCAPr37w+FQqF+vHDhQrRo0QI///wz7OzsYGxsjODgYFSrVg0FBQUaa3p6emLkyJFa+9kQERERSYVJMyIiIiIJPXjwAOHh4ZgyZQoqVapU4ry5uTlUKhX69euHBw8eIDo6GkePHkVGRgb+9a9//eX1goKCUKlSJZw9exYrVqyAr68vjh49CgCIi4sDAGzevBm3b99WPwaA9PR07N69G6Ghobhw4QIGDx4MpVKJffv2qZ9z9+5dHDhwAGPHjv3LcRERERGVNdyeSURERCSh9PR0CIKAJk2avPU5ERERSE5ORmZmJqysrAAAwcHBcHR0RFxcHNq0afPe6zVv3hwLFiwAADRs2BBr165FREQE3NzcUKNGDQCvEnW1a9fW+HuFhYUIDg5WPwcAhg0bhs2bN2Pw4MEAgF9++QXW1tYa1W1EREREHypWmhERERFJSBCEP33OlStXYGVlpU6YAUDTpk1hbm6OK1eu/KX1mjdvrvHY0tISd+/e/dO/Z2Njo5EwA4AJEybgyJEjyMnJAQAEBgbCy8sLCoXiL8VEREREVBax0oyIiIhIQg0bNoRCofjHzf719PRKJOBevnxZ4nmGhoYajxUKBVQq1Z9+/9K2jrZs2RLOzs4IDg5Gjx49cOnSJRw4cOAvRk5ERERUNrHSjIiIiEhCVatWhbu7O9atW4enT5+WOJ+XlwcHBwdkZ2cjOztbffzy5cvIy8tD06ZNAQA1atTA7du3Nf7uhQsX/nI8hoaGUCqV7/388ePHIzAwEJs3b4arq6tGNRwRERHRh4xJMyIiIiKJrVu3DkqlEm3btsXu3btx7do1XLlyBf7+/ujQoQNcXV3h5OSE4cOHIyEhAefOncOoUaPQuXNnuLi4AAC6deuG8+fPIzg4GNeuXcOCBQuQkpLyl2OxtbVFREQE7ty5g4cPH/7p84cNG4bff/8dGzdu5AAAIiIikhUmzYiIiIgkZm9vj4SEBHTt2hWzZ89Gs2bN4ObmhoiICPz4449QKBTYu3cvLCws0KlTJ7i6usLe3h47d+5Ufw93d3fMmzcPn3/+Odq0aYPHjx9j1KhRfzmWVatW4ejRo7CyskLLli3/9PlmZmYYOHAgTE1N4enp+ZfXIyIiIiqrFML7dJ8lIiIiInqL7t27w9HREf7+/lKHQkRERKQ1TJoRERER0d/y8OFDREVFYdCgQbh8+TIaN24sdUhEREREWsPpmURERET0t7Rs2RIPHz7E8uXLmTAjIiIi2WGlGRERERERERERUTEcBEBERERERERERFQMk2ZERERERERERETFMGlGRERERERERERUDJNmRERERERERERExTBpRkREREREREREVAyTZkRERERERERERMUwaUZERERERERERFQMk2ZERERERERERETF/B/bTK66YGhaBAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(15,4))\n", + "plt.bar(list(lst.keys()), lst.values, color='skyblue') # Plotting the bars\n", + "\n", + "# Adding labels and title\n", + "plt.xlabel('Country') # Label for x-axis\n", + "plt.ylabel('Count') # Label for y-axis\n", + "plt.title('Top 50 Countries according to participation') # Title of the plot\n", + "plt.xticks(rotation=90) # Rotate labels by 90 degrees\n", + "\n", + "# Display the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hobby" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Hobby'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Hobby\n", + "No 20\n", + "Yes 79\n", + "Name: Hobby, dtype: int64" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.groupby('Hobby')['Hobby'].count()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## UndergradMajor" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "11" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['UndergradMajor'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "UndergradMajor\n", + "Computer science, computer engineering, or software engineering 56\n", + "A natural science (ex. biology, chemistry, physics) 7\n", + "Another engineering discipline (ex. civil, electrical, mechanical) 7\n", + "A business discipline (ex. accounting, finance, marketing) 5\n", + "Fine arts or performing arts (ex. graphic design, music, studio art) 4\n", + "Information systems, information technology, or system administration 3\n", + "Mathematics or statistics 2\n", + "Web development or web design 2\n", + "A social science (ex. anthropology, psychology, political science) 1\n", + "A humanities discipline (ex. literature, history, philosophy) 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['UndergradMajor'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "def refactor_major(df):\n", + " conditions_major = [(df['UndergradMajor'] == 'Computer science, computer engineering, or software engineering'), \n", + " (df['UndergradMajor'] == 'Another engineering discipline (ex. civil, electrical, mechanical)'),\n", + " (df['UndergradMajor'] == 'Information systems, information technology, or system administration'), \n", + " (df['UndergradMajor'] == 'Mathematics or statistics'),\n", + " (df['UndergradMajor'] == 'A natural science (ex. biology, chemistry, physics)') \n", + " |(df['UndergradMajor'] == 'A health science (ex. nursing, pharmacy, radiology)'), \n", + " (df['UndergradMajor'] == 'Web development or web design'), \n", + " (df['UndergradMajor'] == 'A business discipline (ex. accounting, finance, marketing)'), \n", + " (df['UndergradMajor'] == 'A humanities discipline (ex. literature, history, philosophy)')\n", + " | (df['UndergradMajor'] == 'A social science (ex. anthropology, psychology, political science)')\n", + " | (df['UndergradMajor'] == 'Fine arts or performing arts (ex. graphic design, music, studio art)'),\n", + " (df['UndergradMajor'] == 'I never declared a major') ]\n", + " \n", + " choices_major = ['Computer Science', 'Engineering', 'Info Systems', 'Math/Stat', 'Other Science',\n", + " 'Web Design/Dev', 'Business', 'Arts and Science', 'No major']\n", + " df['UndergradMajor'] = np.select(conditions_major, choices_major, default = np.NaN)\n", + " return df\n", + "\n", + "df = refactor_major(df)\n", + "df['UndergradMajor'].replace('nan', 'No major', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "lst=df['UndergradMajor'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAGvCAYAAADhQ1e3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACsP0lEQVR4nOzdd3iT5frA8W+SJt17092yNwjIUAqCDBmiKKgo4Dp6xD3w53GAE/U4UY8DEFAUBAegILL3HmXv1b33bpP390clUNvSQds3ae/PdfXSvPNOaJM7z7gfjaIoCkIIIYQQdaRVOwAhhBBCWDdJJoQQQghxTSSZEEIIIcQ1kWRCCCGEENdEkgkhhBBCXBNJJoQQQghxTSSZEEIIIcQ1kWRCCCGEENdEkgkhhBBCXBNJJoRVGjBgAAMGDFA7jAYRGhrK5MmT1Q6D6dOno9Fo1A5DCGEFJJkQ1+zSh05qamql+zt27NhkP/jVpNFo0Gg0PPTQQ5Xuf/nll83HVPVvI4QQ9UGSCSGsmJ2dHb/88gvFxcUV9i1cuBA7O7s6X/uVV16hoKDgWsITQjQTkkyIZs9kMlFYWHhN11AURZUP3mHDhpGdnc2ff/5Zbvv27ds5f/48I0aMqPO1bWxsrikZuZJar48QonFIMiEa3caNG9FoNCxevJi3336bwMBA7OzsGDRoEGfOnKlw/DfffENERAT29vb06tWLLVu2VHrdoqIipk2bRsuWLbG1tSUoKIipU6dSVFRU7jiNRsPjjz/ODz/8QIcOHbC1tWXVqlUAHDp0iMjISOzt7QkMDOStt95i7ty5aDQaLly4YL5GaGgoI0eO5K+//qJHjx7Y29vz9ddfAzB37lxuuukmfHx8sLW1pX379nz55ZcV4lUUhbfeeovAwEAcHBwYOHAgR48erdVrGRAQQP/+/fnxxx/Lbf/hhx/o1KkTHTt2rHDOli1buPPOOwkODja/Ts8880yFD/vKxkyUlpby5ptvEhERga2tLaGhofznP/+p8Bpf7fURQjQ9NmoHIJqvd999F61Wy/PPP09WVhbvv/8+EyZMYNeuXeZj5syZwyOPPELfvn15+umnOXfuHKNHj8bDw4OgoCDzcSaTidGjR7N161b+9a9/0a5dOw4fPszHH3/MqVOnWLp0abl7r1+/nsWLF/P444/j5eVFaGgocXFxDBw4EI1Gw0svvYSjoyOzZ8/G1ta20vhPnjzJ3XffzSOPPMLDDz9MmzZtAPjyyy/p0KEDo0ePxsbGht9//53HHnsMk8nElClTzOe/9tprvPXWW9xyyy3ccsst7N+/nyFDhlTaZXE199xzD0899RS5ubk4OTlRWlrKkiVLePbZZyttcVmyZAn5+fn8+9//xtPTk927d/PZZ58RGxvLkiVLrnqvhx56iPnz53PHHXfw3HPPsWvXLmbMmMHx48f57bffavT6CCGaIEWIazRt2jQFUFJSUird36FDByUyMtL8eMOGDQqgtGvXTikqKjJv//TTTxVAOXz4sKIoilJcXKz4+PgoXbt2LXfcN998owDlrvn9998rWq1W2bJlS7l7f/XVVwqgbNu2zbwNULRarXL06NFyxz7xxBOKRqNRDhw4YN6WlpameHh4KIBy/vx58/aQkBAFUFatWlXh+ebn51fYNnToUCU8PNz8ODk5WTEYDMqIESMUk8lk3v6f//xHAZRJkyZVuMY/AcqUKVOU9PR0xWAwKN9//72iKIqyYsUKRaPRKBcuXKj036ay+GbMmKFoNBrl4sWL5m2Xzr0kKipKAZSHHnqo3LnPP/+8Aijr1683b7va6yOEaHqkm0Oo5v7778dgMJgf33jjjQCcO3cOgL1795KcnMyjjz5a7rjJkyfj6upa7lpLliyhXbt2tG3bltTUVPPPTTfdBMCGDRvKHR8ZGUn79u3LbVu1ahV9+vSha9eu5m0eHh5MmDCh0vjDwsIYOnRohe329vbm/8/KyiI1NZXIyEjOnTtHVlYWAGvXrqW4uJgnnniiXFfC008/Xem9rsbd3Z1hw4axcOFCAH788Uf69u1LSEhIpcdfGV9eXh6pqan07dsXRVE4cOBAlfdZuXIlAM8++2y57c899xwAK1asKLe9qtdHCNH0SDeHaBSV1SsIDg4u99jd3R2AjIwMAC5evAhAq1atyh2n1+sJDw8vt+306dMcP34cb2/vSu+fnJxc7nFYWFiFYy5evEifPn0qbG/ZsmWl16zsGgDbtm1j2rRp7Nixg/z8/HL7srKycHV1rfK5eXt7m1+H2rjnnnu47777iI6OZunSpbz//vtVHhsdHc1rr73G8uXLza/1lfFV5eLFi2i12gqvh5+fH25ububndElVr48QoumRZEJcs0sj/qsarZ+fn1/prACdTlfp8Yqi1DoGk8lEp06d+Oijjyrdf+X4Cij/7byuKrvG2bNnGTRoEG3btuWjjz4iKCgIg8HAypUr+fjjjzGZTNd838qMHj0aW1tbJk2aRFFREePGjav0OKPRyM0330x6ejovvvgibdu2xdHRkbi4OCZPnlyj+GpayKo+XmMhhHWQZEJcs0vN6SdPnqzwoZ2fn09MTAxDhgyp83VPnz5t7q4AKCkp4fz583Tp0sW8LSIigoMHDzJo0KA6V20MCQmpdDZJZduq8vvvv1NUVMTy5cvLtbz8s5vlyud2ZStLSkpKhdaCmrC3t2fMmDEsWLCA4cOH4+XlVelxhw8f5tSpU8yfP5+JEyeat69Zs6bae4SEhGAymTh9+jTt2rUzb09KSiIzM7PKbhUhRNMnYybENRs0aBAGg4Evv/yywjfbb775htLSUoYPH17r6/bo0QNvb2+++uqrcjMc5s2bR2ZmZrljx40bR1xcHLNmzapwnYKCAvLy8qq939ChQ9mxYwdRUVHmbenp6fzwww81jvlSa8uVrStZWVnMnTu33HGDBw9Gr9fz2WeflTv2k08+qfG9/un5559n2rRpvPrqq7WKT1EUPv3002qvf8stt1Qa46XWoGupaSGEsG7SMiGumY+PD6+99hqvvPIK/fv3Z/To0Tg4OLB9+3YWLlzIkCFDGDVqVK2vq9freeutt3jkkUe46aabGD9+POfPn2fu3LkVxkzcd999LF68mEcffZQNGzbQr18/jEYjJ06cYPHixeZ6B1czdepUFixYwM0338wTTzxhnhoaHBxMenp6jVo8hgwZgsFgYNSoUTzyyCPk5uYya9YsfHx8SEhIMB/n7e3N888/z4wZMxg5ciS33HILBw4c4M8//6yyVaE6Xbp0KddaU5m2bdsSERHB888/T1xcHC4uLvzyyy81ag3p0qULkyZN4ptvviEzM5PIyEh2797N/PnzGTNmDAMHDqxT3EKIJkDNqSSiaVmwYIHSu3dvxdHRUbG1tVXatm2rvP7660phYWG54y5NDV2yZEm57efPn1cAZe7cueW2/+9//1PCwsIUW1tbpUePHsrmzZuVyMjIclNDFaVsKul7772ndOjQQbG1tVXc3d2V6667Tnn99deVrKws83H8PaWyMgcOHFBuvPFGxdbWVgkMDFRmzJihzJw5UwGUxMRE83EhISHKiBEjKr3G8uXLlc6dOyt2dnZKaGio8t577ynffvtthemlRqNRef311xV/f3/F3t5eGTBggHLkyBElJCSkVlNDr6ayqaHHjh1TBg8erDg5OSleXl7Kww8/rBw8eLDCa//PqaGKoiglJSXK66+/roSFhSl6vV4JCgpSXnrppQr/xld7fYQQTY9GUeow2k2IZuTpp5/m66+/Jjc3t8pBo03Rq6++yowZMygtLVU7FCGEhZMxE0Jc4Z8zUtLS0vj++++54YYbmlUiAZCQkFDnLhchRPMiYyaEuEKfPn0YMGAA7dq1IykpiTlz5pCdnX3VQY1Nzblz5/jtt99YsmQJI0eOVDscIYQVkGRCiCvccsst/Pzzz3zzzTdoNBq6d+/OnDlz6N+/v9qhNZrNmzfz+uuvM2DAgCrrdgghxJVkzISokdDQUJ5++uk6lXsWQgjRtDWJMROJiYk88cQThIeHm5dUHjVqFOvWrVM7tBqZN28ebm5uDXqP3377jd69e+Pq6oqzszMdOnSoVWKwZ88e/vWvfzVcgEIIIayW1XdzXLhwgX79+uHm5sZ///tfOnXqRElJCX/99RdTpkzhxIkTaofYaIxGIxqNBq22fI64bt06xo8fz9tvv83o0aPRaDQcO3asRlUPL6lqzQshhBDC6utMDB8+XAkICFByc3Mr7MvIyDD//8WLF5XRo0crjo6OirOzs3LnnXeWqxswbdo0pUuXLsqcOXOUoKAgxdHRUfn3v/+tlJaWKu+9957i6+ureHt7K2+99Va5ewDK//73P2XYsGGKnZ2dEhYWVq5+wqWaClfGcuDAAXPNgUv7r/yZNm2aoiiKUlhYqDz33HNKixYtFAcHB6VXr17Khg0bzNeZO3eu4urqqixbtkxp166dotPpytUxuOSpp55SBgwYUO1ruXz5cqVHjx6Kra2t4unpqYwZM8a8LyQkRPn444/LvbYPPvig4uXlpTg7OysDBw5UoqKiKrye3333nRISEqK4uLgo48ePV7Kzs83HGI1G5b333lMiIiIUg8GgBAUFlXt9o6OjlTvvvFNxdXVV3N3dldGjR1f6/IQQQqjLqrs50tPTWbVqFVOmTMHR0bHC/ktdByaTiVtvvZX09HQ2bdrEmjVrOHfuHOPHjy93/NmzZ/nzzz9ZtWoVCxcuZM6cOYwYMYLY2Fg2bdrEe++9xyuvvMKuXbvKnffqq68yduxYDh48yIQJE7jrrrs4fvx4jZ5D3759+eSTT3BxcSEhIYGEhASef/55AB5//HF27NjBokWLOHToEHfeeSfDhg3j9OnT5vPz8/N57733mD17NkePHsXHx6fCPfz8/Dh69ChHjhypMo4VK1Zw2223mSsxrlu3jl69elV5/J133klycjJ//vkn+/bto3v37gwaNIj09PRyr+fSpUv5448/+OOPP9i0aRPvvvuuef9LL73Eu+++y6uvvsqxY8f48ccf8fX1BcrW3xg6dCjOzs5s2bKFbdu24eTkxLBhw8qV1hZCCGEB1M5mrsWuXbsUQPn111+vetzq1asVnU6nREdHm7cdPXpUAZTdu3crilL2TdrBwaHcN+ehQ4cqoaGhitFoNG9r06aNMmPGDPNjQHn00UfL3e/6669X/v3vfyuKUn3LhKJcbmG40sWLFxWdTqfExcWV2z5o0CDlpZdeMp8HlGsRqExubq5yyy23KIASEhKijB8/XpkzZ065qoV9+vRRJkyYUOU1rmyZ2LJli+Li4lKh6mFERITy9ddfK4pS+ev5wgsvKNdff72iKIqSnZ2t2NraKrNmzar0ft9//73Spk0bxWQymbcVFRUp9vb2yl9//XXV5yuEEKJxWfWYCaWGE1GOHz9OUFBQuRUt27dvj5ubG8ePH6dnz55A2YwFZ2dn8zG+vr7odLpyYxB8fX1JTk4ud/0+ffpUeHzlYlF1cfjwYYxGI61bty63vaioCE9PT/Njg8FA586dr3otR0dHVqxYwdmzZ9mwYQM7d+7kueee49NPP2XHjh04ODgQFRXFww8/XKPYDh48SG5ubrk4oKzg09mzZ82P//l6+vv7m1+748ePU1RUxKBBg6q8x5kzZ8qdD1BYWFjuHkIIIdRn1clEq1at0Gg09TbIUq/Xl3us0Wgq3fbPlTGv5lIicmXiU1JSUu15l0o379u3r0LlRScnJ/P/29vb13jJ7YiICCIiInjooYd4+eWXad26NT/99BP3338/9vb2NbrGpdj8/f3ZuHFjhX1Xzkq52mtX3f1yc3O57rrrKl2xUwaDCiGEZbHqMRMeHh4MHTqUL774otIlpi8tU92uXTtiYmKIiYkx7zt27BiZmZm0b9/+muPYuXNnhcft2rUDLn/wXbli5D9bLQwGA0ajsdy2bt26YTQaSU5OpmXLluV+/Pz8rjnm0NBQHBwczK9b586dazyVtnv37iQmJmJjY1MhtpqWX27VqhX29vZV3rN79+6cPn0aHx+fCvdwdXWt2ZMUQgjRKKw6mQD44osvMBqN9OrVi19++YXTp09z/PhxZs6cae5+GDx4MJ06dWLChAns37+f3bt3M3HiRCIjI6tdlromlixZwrfffsupU6eYNm0au3fv5vHHHwegZcuWBAUFMX36dE6fPs2KFSv48MMPy50fGhpKbm4u69atIzU1lfz8fFq3bs2ECROYOHEiv/76K+fPn2f37t3MmDGDFStW1Cq+6dOnM3XqVDZu3Mj58+c5cOAADzzwACUlJdx8880ATJs2jYULFzJt2jSOHz/O4cOHee+99yq93uDBg+nTpw9jxoxh9erVXLhwge3bt/Pyyy+zd+/eGsVkZ2fHiy++yNSpU/nuu+84e/YsO3fuZM6cOQBMmDABLy8vbr31VrZs2cL58+fZuHEjTz75JLGxsbV6/kIIIRqW1ScT4eHh7N+/n4EDB/Lcc8/RsWNHbr75ZtatW8eXX34JlDWvL1u2DHd3d/r378/gwYMJDw/np59+qpcYXn/9dRYtWkTnzp357rvvWLhwobnFQ6/Xs3DhQk6cOEHnzp157733eOutt8qd37dvXx599FHGjx+Pt7c377//PgBz585l4sSJPPfcc7Rp04YxY8awZ88egoODaxVfZGQk586dY+LEibRt25bhw4eTmJjI6tWradOmDQADBgxgyZIlLF++nK5du3LTTTexe/fuSq+n0WhYuXIl/fv35/7776d169bcddddXLx40TwboyZeffVVnnvuOV577TXatWvH+PHjzWMqHBwc2Lx5M8HBwdx+++20a9eOBx98kMLCQlxcXGr1/IUQQjQsKad9jTQaDb/99htjxoxROxQhhBBCFVbfMiGEEEIIdUkyIYQQQohrYtVTQy2B9BIJIYRo7qRlQgghhBDXRJIJIYQQQlwTSSaEEEIIcU0kmRBCCCHENZFkQgghhBDXRGZzCFGJzPxiUnKKSM4pIiWniKyCEvKLjRSUGCksMVLw9/8XlBgpLDaSX2yksLRsfRUbrQadVoONVvv3f/9+rNOg02ox6LS42NvgZm/AzUH/948BN/vL/+9iZ1PjBdyEEEJtkkyIZiensIRzKXmcS83lYlo+yTlFJGcXkZJbROrfyUOxseYrwzYEnVaDh6OBADd7gjwcCHS3J8jdgSAPewLdHQhws8dgIw2LQgjLIOW0RZNUajQRk1HAuZRcc+JwNiWPcyl5pOYWqR3eNdNqwMfZjiAPeyK8nWjfwoV2/i609XPG2U5f/QWEEKIeSTIhrF6J0cTJxByOxGVx+O+fE4k5FJeq27qgBo0GAt3tae9flly083ehvb8LQR4OaocmhGjCJJkQVic+s4AD0ZkciM7gQEwmR+KyKGqGiUNtuNjZ0C3YnR4h7vQI9aBbsBt2ep3aYQkhmghJJoTFy8wvZtuZNLaeSWHrmVRi0gvUDsnq6XUaOga4cn2YJ30iPOkZ6o6DQYZQCSHqRpIJYXGKSo3svZDB1jOpbD2dytH4LEzyW9qg9DoNnQJcubGVN4Pb+dIxwEVmkwghakySCWERYtLz+etoIptOpbDnQjqFJdJtoSY/FztuaufD4HY+9I3wki4RIcRVSTIhVHMhNY+VRxJYeTiBI3HZaocjqmCv13FDKy8Gt/Phpra+eDvbqh2SEMLCSDIhGtXZlFxWHkpg5ZFEjidIAmFtNBroFuTGmG4BjOrcAndHg9ohCSEsgCQTosHFpOfz6/44Vh5O4GRSjtrhiHqi12kY0MaH27sFcFM7H2xtpCtEiOZKkgnRIIpLTfx1NJGf9sSw7Wwq8lvWtLna67mlkz9juwfQI9RD7XCEEI1MkglRr04n5bBwdwxLo+JIzytWOxyhgmAPB27rFsDdvYLxc7VTOxwhRCOQZEJcs/ziUv44mMCiPdHsj85UOxxhIWy0GoZ29OP+vqHSWiFEEyfJhKizuMwC5mw5z+K9MeQWlaodjrBgHQNcmNQnlNFdW8jYCiGaIEkmRK0djc/im83nWHEogVKpJiVqwdPRwN29grm3d4h0gQjRhEgyIWps86kUvtl8jq1nUtUORVg5G62GYR39mDKwJe38XdQORwhxjSSZEFdVajTx+6F4vtl8XupCiHqn0cCQ9r48OagVHVq4qh2OEKKOJJkQlSo1mli8N5YvNpwhLlMW1hINS6OBwe18eWpQKzoGSFIhhLWRZEKUoygKyw/G88na05xPzVM7HNEMDWrrw1ODW9E50E3tUIQQNSTJhDBbfyKJ//51SrozhEUY2MabZ25uLUmFEFZAkgnBrnNp/Pevk+y9mKF2KEKUo9HArV1a8OLwtvi72qsdjhCiCpJMNGNH47N4b9VJNp9KUTsUIa7KTq/lXzeG8+iACBwMNmqHI4T4B0kmmqGs/BL+u/oEP+6KRspECGvi62LLC0PbMrZ7ABqNRu1whBB/k2SiGVEUhcV7Y3hv1UlZN0NYtU4Brrw6sj29wqRMtxCWQJKJZuJwbBavLjtCVEym2qEIUW+Gd/Tj1ZHtaeEm4ymEUJMkE01cZn4x7/91kkW7pUtDNE1OtjZMHdaG+3qHSNeHECqRZKKJUhSFRXtieH/VCTLyS9QOR4gG1yPEnXfHdqKlj7PaoQjR7Egy0QTFZuQz9edDbD+bpnYoQjQqg42WKQNa8tjACPQ6rdrhCNFsSDLRxCzaHc1bK47LkuCiWWvj68y7YzvRLdhd7VCEaBYkmWgikrIL+b9fDrHhpNSMEAJAq4GJfUKZOqyN1KYQooFJMtEE/HYglunLj5FVIGMjhPincG9HZt7VTRYQE6IBSTJhxVJzi/jPr4dZfSxJ7VCEsGgGnZapw9rw4A1hMuNDiAYgyYSV2nAimeeXHCRNik8JUWORrb35cFwXvJxs1Q5FiCZFkgkrU2o08d+/TvLNlnPIv5wQteflZMtH47rQv7W32qEI0WRIMmFF4jILeOLH/eyPzlQ7FCGsmkYDD90QxgtD22KwkSmkQlwrSSasxIaTyTzzUxSZUoBKiHrTMcCFL+7pToino9qhCGHVJJmwcCaTwifrTvPZ+tPSrSFEA3C11/PpXV0Z0MZH7VCEsFqSTFiwjLxinvopis2npHaEEA1Jq4HnhrRhysCWaocihFWSZMJCnUzM4cH5e4jNKFA7FCGajeEd/fhwXBcpciVELUkyYYE2nUrh8R/2kyMlsYVodO38XZg9qQcBsqy5EDUmyYSF+X7nRaYvP4pR1gsXQjVeTga+uvc6eoR6qB2KEFZBkgkLYTIpvLXiON9uO692KEIIyqpmvn1bR+7sEaR2KEJYPEkmLEB+cSlPLjzA2uPJaocihPiH525uzRODWqkdhhAWTZIJlSVmFfLg/D0cjc9WOxQhRBUm9Qlh+ugOsq6HEFWQZEJFxxOyuX/uHhKzC9UORQhRjZGd/floXFepmClEJSSZUElUTCaTvt0ty4YLYUVuaOnF1/ddh6OtTB0V4kqSTKhg17k0Hpy/l1yZ+imE1ekc6MrcyT3xlJVHhTCTZKKRbTqVwiPf76WwxKR2KEKIOgrzcuS7B3oR5OGgdihCWARJJhrRX0cTeeLHAxQbJZEQwtr5ONvy48O9aenjpHYoQqhOkolGsiwqjucWH6RUilEJ0WT4ONuy6F+9CfeWhEI0bzIsuREs2h3NMz9FSSIhRBOTnFPEPbN2cTEtT+1QhFCVJBMNbMHOi7z022EkjxCiaUrMLuTub3YSk56vdihCqEaSiQa09EAcry47gnQkCdG0xWcVctc3O4nNkIRCNE+STDSQtceSeH7JQUkkhGgm4jILuHvWTuIzC9QORYhGJ8lEA9h+NpUpP+6XMRJCNDMx6WUJRWKWVLUVzYskE/UsKiaTh+fvpahUpn8K0RxdTMvnnlk7Sc8rVjsUIRqNJBP16FRSDpPn7iav2Kh2KEIIFZ1LzePB+XsoLJH3AtE8SDJRT6LT8rl39i4y82WtDSEEHIjO5MmFBzBJd6doBiSZqAepuUVMmLOT5JwitUMRQliQ1ceSmP77UbXDEKLBSTJxjYpKjfzru73EpMsIbiFERd/tuMjXm86qHYYQDUqSiWs09edD7I/OVDsMIYQFe3fVCZYfjFc7DCEajCQT1+CzdadZFiVvEEKIq1MUeH7JQXaeS1M7FCEahCQTdbTiUAIfrT2ldhhCCCtRXGriX9/t5UxyjtqhCFHvJJmog0OxmTy3JEqqWwohaiW7sJR/fb+PnEKZ9SWaFkkmaikxq5CHv9tLYYkUpRJC1N65lDyeW3wQRb6NiCZEkolaKCg28tB3e0jKlimgQoi6W30sif9tlBkeoumwUTsAa/Ly0sMcictWO4xmK3PrD2RtW1hum41HIAEPf2V+XBR3nIzN31OccBI0Wgw+4fiMewOt3rbK65bmpJK5cR4F5/ahlBZh4+aP5y1PY+vfCoCsXb+SvfsXAFyvH4tLr9sv3y/+JOmr/4ffxI/QaHX1+XRFE/fh6pN0DnTlxlbeaocixDWTZKKGFu+N4df9cWqH0ezpvYLxHf/25Q3ay41rRXHHSVo8Ddc+d+Ix+BE0Wh3FyefRaKpugDMW5pK4YCp2wZ3xuXM6WgdXSjPi0do5AVCcfJ6srT/gfcdroCik/PIGdmHdMXiHopiMpP31BZ7DHpdEQtSaSYEnFx7g9yduINDdQe1whLgmkkzUwKmkHKYtkyp2FkGrQ+fkXumu9HWzcbluFK697zRv03sGXvVy2Tt/xsbFC68RT18+x83P/P8labHovUOxD+lSts87lJK0WAzeoWTv+gW7oA7Y+re+hickmrOM/BIeXbCPnx/ti51eElJhvSSZqEZBsZEpP+ynQBbssQilGfHEfjERjU6PIaAt7pGTsHHxwZiXSXHCSRw7DCDx++cpyUxE7xmIW//7sAvsUOX1Cs7swi6sOylLZ1AYcwSdkyfO3W7BueswAAzeoZRmxFGanQwKlKbHYfAKoSQjgdzDa/Gf9EkjPXPRVB2Jy+bVpUf4751d1A5FiDrTKDKk+KqeW3yQX/bHqh2GAArO7sVUUojeIwBjbjpZ2xZSmptGiwe+oCQ1msQFz6O1c8Z94AMYfMPJPbKenAMraPHAF+g9Aiq95sUPbgPApecYHNveQFHCaTLWfYPHkCk4dRoEQM6BlWTvXVZ2XI9bce52C0mLXsa5+0gUk5GsbT+C1gaPwf/CLqhj47wYosl5b2wnxvcMVjsMIepEWiau4ud9sZJIWBD7iB6XH/iEYduiDbFfPkDeia3oPYMAcOo6DKfONwPg4RtB4cWD5B5eg3vk5MovqijY+rXEPXISAAbfCEpSL5ITtdKcTDh3uwXnbreYT8k9vA6NwR7bgLbEzXoU/4kfYcxJI3X5+wQ8MgeNjb7+n7xo8t74/Ri9wz0J8XRUOxQhak2mhlbhdFIOry49onYY4iq0dk7oPQIozYw3j6PQe5X/Zqf3DKI0O6XKa+ic3Cs9x1jFOcb8LLK2/YjH4Ecpij+F3qMFeo8A7EI6oxhLKcmQQbqibvKKjTz9UxRGWbJcWCFJJipRWGJkyo8yTsLSmYoLKM1MQOfogY2rLzonD0rTyrcklaTHYePiU+U1bAPaU5Je83My1s/GuecYbFy8QDGiGK/4HTEZwSTFzETdHYjO5PP1Z9QOQ4hak2SiEv/96ySnknLVDkP8Q8b6ORRGH6Y0K4nC2OOk/Po2aLQ4to9Eo9Hg0mss2ft+J+/EVkoy4snc/D2l6bE4dR5ivkbSov+Qve9382OXnrdSFH+SrB2LKcmIJ+/YRnIPrsKp+4gK9y84f4CS9Dic/95n8GtNaXosBWf3khO1CrQ6bKoYmyFETX22/jRRMZlqhyFErcgAzH/YeyGdcV/vQFoaLU/Ksvcoij2KsSAbnb0rtoHtces/Eb27v/mYrJ1LyNm/AlNhDgbvMNwG3l9uNkfslw/g1GkQbjdMMG/LP7ObzE3zKcmIx8bVF5eeY8yzOS4xlRSRMO9JvEe/iME33Lw95+BfZG75Ho1Oj8eQx3CI6NmAr4BoLsK9HFnx5I3YG2S6qLAOkkxcobDEyC2fbuFcap7aoQghmrkJ1wfz9m2d1A5DiBqRbo4rfPDXSUkkhBAW4Ydd0aw/kaR2GELUiCQTf9t3MZ1vt51XOwwhhDCb+vNhsvJluXJh+SSZoKx744Ulh2SchBDCoqTmFvHuqhNqhyFEtSSZoGz1PuneEEJYokV7otl3MV3tMIS4qmafTOyPzmDOVuneEEJYJkWBl387QqlRapgIy9WskwmjSeE/vx6W7g0hhEU7kZjDbPnSIyxYs04mfth1kROJOWqHIYQQ1fp07Wli0vPVDkOISjXbZCIjr5iP1pxSOwwhhKiRghIj05YfVTsMISrVbJOJ/64+SaZMuRJCWJH1J5L583CC2mEIUUGzTCaOxGWxaHe02mEIIUStTf/9KHlFpWqHIUQ5zTKZmL78qAy6FEJYpaTsIr7efE7tMIQop9klE0sPxLH3YobaYQghRJ3N3nKO5JxCtcMQwqxZJRN5RaXM+PO42mEIIcQ1yS828vGa02qHIYRZs0omvtx4lqTsIrXDEEKIa7Z4bwxnknPVDkMIoBklEyk5RbKQlxCiyTCaFN6TdTuEhWg2ycTn60+TX2xUOwwhhKg3a44lseeCrNsh1NcskomY9HwW7o5ROwwhhKh376yUcWBCfc0imfhk7WmKZZEcIUQTdCA6k5VSyEqorMknE+dSclkaFad2GEII0WA+WH0SkxTPESpq8snEzHWnMcofmRCiCTuXkscf0johVNSkk4kzybksPxivdhhCCNHgvlh/BkWRL05CHU06mZi57rSUzRZCNAsnk3L462ii2mGIZqrJJhMX0/L445C0Sgghmo/P1p9ROwTRTDXZZOLbreelVUII0awcjc9m86kUtcMQzVCTTCay8ktYsi9W7TCEEKLRfbXprNohiGaoSSYTP+y+KNUuhRDN0vazaRyKzVQ7DNHMNLlkosRoYv72C2qHIYQQqpHWCdHYmlwy8fvBeFkZVAjRrK06kkhsRr7aYYhmpMklE7O3yMqgQojmzaTAwt3RaochmpEmlUxsP5PKsYRstcMQQgjV/bQnlhJZk0g0kiaVTMzeKq0SQggBkJpbxKojUsRKNI4mk0zEZuSz4WSy2mEIIYTFWLDzotohiGaiySQTS/bGImXphRDisl3n0zmdlKN2GKIZaBLJhKIo/CxFqoQQooIfdslATNHwmkQysf1sGnGZBWqHIYQQFueX/bHkF5eqHYZo4ppEMrF4b4zaIQghhEXKKSxleZQseigaltUnE1kFJTJiWQghruIn+cIlGpjVJxPLD8ZTVCpzqYUQoioHojOJSZeKmKLhWH0y8bNk3EIIUa3fD0lXh2g4Vp1MnEzM4WBsltphCCGExZNxE6IhWXUysTQqTu0QhBDCKpxIzOFMstScEA3DqpOJv2TgpRBC1Ji0ToiGYrXJxKmkHM6l5qkdhhBCWI3fDyWoHYJooqw2mZDpoEIIUTvnU/M4LOPMRAOw2mTir6OSTAghRG0tPyhjzUT9s8pkIiY9n6Px2WqHIYQQVmflYfkiJuqfVSYT0iohhBB1E5dZwMlEmdUh6pdVJhMyXkIIIepu06lktUMQTYzVJRMpOUXsj85QOwwhhLBaG0+mqB2CaGKsLplYdzwJk6J2FEIIYb32Xsggr0iWJRf1x+qSia1nUtUOQQghrFqx0cQ2eS8V9ciqkglFUdh5Lk3tMIQQwuptPCVdHaL+WFUycTIph9TcYrXDEEIIq7dJxk2IemRVycT2M9IqIYQQ9SEus4DTSTJFVNQP60omzkofnxBC1BeZ1SHqi9UkE0aTwq7z6WqHIYQQTcau89LaK+qH1SQTh2IzySmUqUxCCFFf9kdnqh2CaCKsJpnYflYyaCGEqE/pecWcT81TOwzRBFhNMrFDkgkhhKh3+y5KRWFx7awimVAUhaiYTLXDEEKIJkeSCVEfrCKZOJuSR66UfhVCiHq3X5IJUQ+sIpk4EpeldghCCNEknU7OIaewRO0whJWzimTiUKwkE0II0RBMChyQWR3iGllFMiEtE0II0XBk3IS4VhafTJhMCkfjJZkQQoiGcjA2U+0QhJWz+GTiXGouecVGtcMQQogm61SirNEhro3FJxMyXkIIIRpWfFahDMIU18Tik4nDMl5CCCEa3OnkXLVDEFbM4pOJo/HZaocghBBNnixHLq6FxScT51KkbrwQQjS0U0nSMiHqzqKTidyiUlJzi9QOQwghmrxT0jIhroFFJxMXZDU7IYRoFKelZUJcA8tOJtIkmRBCiMaQmF1ItszoEHVk2cmEtEwIIUSjkXoToq4sOpk4n5qvdghCCNFsXEyT91xRNxadTEg3hxBCNJ7E7EK1QxBWyrKTCenmEEKIRhOfWaB2CMJKWWwykV1YQlpesdphCCFEs5GQJS0Tom4sNpmQDFkIIRqXJBOiriw2mUjNkVYJIYRoTAlZ8iVO1I3lJhNS+VIIIRpVZn4JBcVGtcMQVkiSCSGEEGbSOiHqwoKTCenmEEKIxibjJkRdWGwykSYtE0II0egSJZkQdWC5yYRMCxVCiEaXWSDrc4jas9hkQsZMCCFE48stLFU7BGGFLDaZSJMxE0II0ehyZOVQUQeWm0zkScuEEEI0ttwiaZkQtWeRyURxqYnCEpPaYQghRLOTI8mEqAOLTCakaIoQQqhDxkyIurDMZKJEkgkhhFCDdHOIurDIZCK/WH6ZhRBCDTIAU9SFRSYT0jIhhBDqkG4OURcWmUwUlcrgSyGEUEOejFkTdWCRyUSpUVE7BCGEaJaMJnn/FbVnkclEiVFaJoQQQg0mRZIJUXsWmUwUSzIhhBCqkJYJURcWmUwYpZtDCCFUIQ0Toi5s1A6gMjqtRu0QhKiTVo4FTPQ/h50+Ar1bASW2KRhss9DrMtBqZWlnYQ10wHC1gxBWxiKTCb3OIhtMhKjScO9UprquJzThT77Wj8A3JoyiC3G09upOng4S9FlkKImgT8PVtRRHxwJsbXPQ2WShKMmUlCRiMsl6NEJ9Wq1B7RCEFbLQZEJaJoTl02lMPB10jomalbgm7YQcOBTYhaMFKfTZ/yd7wsaTkrkUm2INvdveikOyP0WGUpJ9CkmwyeRYdgIZWZlAW0DBzU2Hp6cJF9cSnBwLMRiy0eoyMJlSKClJQlGkmNCVfvwxg61b84mJLsbWVkP79nY8/C8PgoKu/mG4aVMu8+ZmkJhYSkCgDQ8/7Mn11zuY9y9enMninzIBGD/ejTvHuZn3HT9eyMxPU/n8iwB0TfZ9Sqd2AMIKWWYyYSMtE8JyeRtKeCP4AINzlqFPPl9u35fevtjFF2I4tgOvLveRknErWvsV/L71U1xdfenbYSzB8W4EFTnQixbku5pI9iwgXptOTEY8Z8/mAvq/f5yBAAA0GgUPDy2engouLsXYO+Rja8hBo03HaEyipCQFaF4Dlw8dKuTW0S60aWuL0agwZ046L05NZM63gdjbV/4ecvRoIW+/lcyDD3nQu7cD69fnMu21RL78KpCwMAPnzhYxf14Gb73th6LAKy8ncl0PB8LDDRiNCp98ksozz3g14UQCNBp5/xW1Z5HJhEG6OYQF6uGawzSfzXRM/h1NbHaF/UcCOrE18wTDlQgAgi6uJs5wMybDSLxDV5Fy4SR/bv8fDg6u9OtyJ57ZvjhklRKa5UgojkAQOR5GkjzyiDelEZOeQEFhAQCKoiEtTSEtDcDw948bEASATgdeXhrc3U24uJRgb5+H3pCFRpOG0ZhMSUlqI7xCjevdd/3LPZ461Yc7xl7k9OkiOne2r/ScX3/NomdPB8aPdwPg/vs92LevgGVLs3j6GW+iY0oICzfQrVvZ+eHhBmJiigkPN/DTT5l07mRH27Z2Dfq81CbJhKgLi0wmZMyEsCSTWsTxb7vV+CasRxNTdXXAL31aQGYWNkrZt1aH7UvxvHM4aSmQbxqGb4SBpLOHyc/PYs2O2RgMDvTtegd+hUEoOWUljJ3TdTinu9ASFxRNKFneRpJccokzphKTGk9JSeVdHUYjJCUpJCVpuJxsuAOhABgMl5MNZ+ci7OxzsbEpSzZKSxMpLc2qvxdMJXl5ZS0zzs5VN9MfO1bIHXe4ldvWs4c927blAxAWZiAutoSkpFJAITa2hNBQA/HxJfy1KpcvvwpoqPAtiHRziNqz0GSi6TYhCuvgqDPxcvBRbiv5HfvUI9UefzSgE5szjwNgY7r8+xuWvYc0umEs1ZGdNQj/1noSTu0HoLg4n427v0OnM9C7620EKa1QMi4nCxpFg1uyDW7JbrTBDZMuggyfUhKdsoktTiE+NRGjsWalj4uLIT5eIT5eA9j9/eMFlLWi2NmBt48WN7dSnJwKsbPLw8YmA0VJo7Q0AaMxr0b3UYvJpPC/L9Lo0NGWsLCqx0xkpBtxdy//YenmriM9vex1DAkx8MCDHrw4NQGABx/yICTEwAsvJPCvf3mwd08+332Xgc5Gw5QpnlW2gFgzndZW7RCuauPGjQwcOJCMjAzc3NzUDqeCyZMnk5mZydKlS9UOpVFZZDJhkDETQiURDgW8GbCL69OXoktIrvF5X/3dKgGgv+KbndO673Aa0ZPcrFIUo5bM1EgC2uqJO7HLfIzRWMy2fT+h0Wjp0Xkk4YZOkFpxsSWtUYNngh5PPOmAJ0Z9G9J8i0lwyCY2P5nEtCSUOhYJKCyEmGgTMdFawOHvH+/Lz8NJg5cXuLn9PRPFLhedLvPvmShJmEzqTnudOTOVCxeK+eTTFtd8rVGjXBg1ysX8ePVfOTjYa2jf3pbJk2P54n8BpKaU8vZbyXy/IBiDoWl9+dHZONXLdb766iteeOEFMjIysLEp+6jJzc3F3d2dfv36sXHjRvOxlxKEM2fOEBERUS/3/6fQ0FAuXrwIgJ2dHb6+vvTq1YtHH32Um266qd7u8+mnn9b577A6BQUFeHl5cfDgQbZu3cr9998PgFarxcXFhdatWzNixAieeuopXF1dGySGqlhmMiHdHKKRXTm1UxNTuymax/3bs/HvVgkAmyvGQWpLiwnXnOHQ390NiqIhLakvge31xB7bWu46imJiz8Hl7GE5XTrcTFunXpBc9QqOuhINPrG2+OBNF7wpsWtHqk8x8baZxOYlkZJef+MkcnMVcnOhrAnc6e8fPyrORCnFybGgUWeifDYzlV078/no4xZ4e1/9Lc3dQ0dGRvnWnMwMIx4elTftZ2UZ+e77DD7+uAXHTxQRGKg3/5SWlnWDhIc3ramUNjrHernOwIEDyc3NZe/evfTu3RuALVu24Ofnx65duygsLMTOrmz8yYYNGwgODm6wROKSN954g4cffpji4mIuXLjAggULGDx4MG+++SYvv/xyvdyjIT/E16xZQ0hICC1btmTr1q24uLhw8uRJFEUhMzOT7du3M2PGDObOncu2bdto0eLak+uasshPbVsb6bMTDU+nMfFc8BkOhszky5wnCYtdisZY+1oPX/kHl3usV8r/WXms/QZb+yt/pzWkJvQiqGPV34YOHl3DT7ve5pB+Gyb/mv2Z6gu1+Efbcd1pP26N78K9uoEM9e9Dp6C2uLm41fTp1IGGzEwTZ8/Cgf02bNnizLp1AaxZ3ZF1aweyZfNdHDs6kaTE+yjIH4+G0dgaBmBn1xm93pe6vg0pisJnM1PZujWP/37QAn9/fbXntG9vx4H9BeW27dtXQPv2lTftf/m/NMaOdcXb2waTqfwihEZjWfdKU1NfLRNt2rTB39+/QgvErbfeSlhYGDt37iy3feDAgQCYTCZmzJhBWFgY9vb2dOnShZ9//rnC9bdt20bnzp2xs7Ojd+/eHDlSfXeks7Mzfn5+BAcH079/f7755hteffVVXnvtNU6ePGk+7siRIwwfPhwnJyd8fX257777SE29nJz//PPPdOrUCXt7ezw9PRk8eDB5eWVdgZMnT2bMmDHmY3NycpgwYQKOjo74+/vz8ccfM2DAAJ5++mnzMaGhobzzzjs88MADODs7ExwczDfffFMh/mXLljF69GjzY41Gg5+fH/7+/rRr144HH3yQ7du3k5uby9SpU83HXe01NZlMBAYG8uWXX5a714EDB9BqtebWnOpYZDLhYm8jVTBFg/E2lPBly92c8HmVJ5JfK6sRUUcn/dqzIeN4uW06U/nfXW1uFuEuKRXOTYnrSnDnoVe9/vFTW1myfQa7ldWUtFCgFn8Wdnlags47cP3pAO5Ivo57bAcyqMX1tA9shZNj/Xxg1ISiQFqawqlTsHevgc2bXVm7Nog1q7uwft0Qtm+bwKmTE0lJvpeiwvFoNSOxtb0RO7sO6PVeVV535sw01q7N5T8v++DgoCE9vZT09FKKii43Db37bjKzZ6ebH99+uyt79uSzZHEm0dHFzJ+fzqlTRdw6puK3yX1784mNLeHWW8u6PNq0sSUmuoTdu/L5449stFoICqo+gbE2NvWUTEBZ68SGDRvMjzds2MCAAQOIjIw0by8oKGDXrl3mZGLGjBl89913fPXVVxw9epRnnnmGe++9l02bNpW79gsvvMCHH37Inj178Pb2ZtSoUVUOUL6ap556CkVRWLZsGQCZmZncdNNNdOvWjb1797Jq1SqSkpIYN24cAAkJCdx999088MADHD9+nI0bN3L77bdX2bXx7LPPsm3bNpYvX86aNWvYsmUL+/fvr3Dchx9+SI8ePThw4ACPPfYY//73v8slOCaTiT/++INbb731qs/Hx8eHCRMmsHz5cvOYqqu9plqtlrvvvpsff/yx3HV++OEH+vXrR0hISI1eR4vs5tBoNLjZ60nLK1Y7FNGEVDe1sy6+ahGCknG03LZLszmu5L15Dqc6TMVYWv4NJzmmA8Fd9EQf/OOq9zl/4QDnLxwgoEVbeoaPwDZRD7Vcw8YhS0tYlhNhONGXYHI8S0lyzyfelEZ0ejyFheqMe6jZTBQt7u5GnJwLsbfPx8Ymk9+XLwDguWcTyl3vhRe8GTrMGYDk5FKu/F7SoYMd/3nZh7nfZvDtt+kEBOh5/Q2/CoM2i4pMfPZZGq+86oP27wt4e9vw+OOe/Pe/Kej1Gqa+6IOtrUV+H7smNrr6TSaefvppSktLKSgo4MCBA0RGRlJSUsJXX30FwI4dOygqKmLgwIEUFRXxzjvvsHbtWvr06QNAeHg4W7du5euvvyYyMtJ87WnTpnHzzTcDMH/+fAIDA/ntt9/MH/o15eHhgY+PDxcuXADg888/p1u3brzzzjvmY7799luCgoI4deoUubm5lJaWcvvtt5s/aDt16lTptXNycpg/fz4//vgjgwYNAmDu3LmVdj/ccsstPPbYYwC8+OKLfPzxx2zYsIE2bdoAmFtyrr/++mqfU9u2bcnJySEtLQ1XV9dqX9MJEybw4YcfEh0dTXBwMCaTiUWLFvHKK6/U5CUELDSZAPBwNEgyIepFTad21tYp37asyzhWYbuNqeIHjE3CBUIHFnA2vmKNguTo1gR3vo3ow0urXWUpLv4EcfEn8PYKpXebW3FIcYCSuhWrck6zwTntimmoPkYSXXKJK0khNi2hTt/yGkLZTBTT3zNR7P/+8WTatGnA3zNRvDW4uRvLZqLY5mKjz0JRUvn0U8cKM1EiI52IjLz6B6atrZZ584MqbL9lhAu3jHCp5Iymw0bvVm/XGjBgAHl5eezZs4eMjAxat26Nt7c3kZGR3H///RQWFrJx40bCw8MJDg7m6NGj5Ofnm5OES4qLi+nWrVu5bZc+GKEsIWjTpg3Hj5dvJawpRVHQaMqSxoMHD7JhwwacnCr+jpw9e5YhQ4YwaNAgOnXqxNChQxkyZAh33HEH7u7uFY4/d+4cJSUl9OrVy7zN1dXVnCBcqXPnzub/v9R9kZx8eRD4smXLGDlyJFpt9QnspVYSjUbDmTNnqn1Nu3btSrt27fjxxx/5v//7PzZt2kRycjJ33nlntfe6xGKTCXfHpjWoSTSu2k7trIuvAsIqtEoA2FSRD/jvXcjZgPuhkv3JMWEEdbqT2CM/o5iqTw5SUi/we+qnuLr40LfjWFwz3FEK654oaRQNbkk2uCW50RY3TLqWpPuWkOiYQ1wtp6E2tsJCiIlRiIm5ciaKD9AKuDwTxdW1BCenImztctDpMlCU1L/XRJEF2K5k0Ff8UKyrli1bEhgYyIYNG8jIyDC3LLRo0YKgoCC2b9/Ohg0bzLMpcstG+bJixQoCAsrX9LC1bZgpq2lpaaSkpBAWFmaOYdSoUbz33nsVjvX390en07FmzRq2b9/O6tWr+eyzz3j55ZfZtWuX+Rp1odeX7zLTaDSYrngvWL58Oe+++26NrnX8+HFcXFzw9PTk3LlzQPWv6YQJE8zJxI8//siwYcPw9PSscfwWm0x4OEgyIWovwqGANwJ20zv9t1pN7aytM75tWFtJqwRUHDNxieHUXgJ73E9sfOXXTIkJJLDDXcQdW4zJWPUsjitlZSfz5/YvcXBwpW+XO/HK9kXJr9m5V6M1avCKN+CFJx3/noaa6ldMgl0WcQXJJKYlN9j0t/p2eSaKzd8/jpTNRAFQcHXV4uUFLq4lODrkY2ubi1aX3mzXRKnPlgko6+rYuHEjGRkZvPDCC+bt/fv3588//2T37t38+9//BqB9+/bY2toSHR1drkujMjt37iQ4uGzwc0ZGBqdOnaJdu3a1ju/TTz9Fq9WaB012796dX375hdDQUPOU1n/SaDT069ePfv368dprrxESEsJvv/3Gs88+W+648PBw9Ho9e/bsMcealZXFqVOn6N+/f41jPH36NBcvXqzQulCZ5ORkfvzxR8aMGYNWq63xa3rPPffwyiuvsG/fPn7++WdzN1RNWW4y4STJhKi5Yd5pTHVdT1jin2hiGv6b5tcB4ZW2SkDlYyYuCTqzgliHEVXuT4n1w7/t3SSeWoSxFt0M+flZrDVX1RyLX2GwuapmfdCVaPCNscUXH7riQ7GdQqpvEQmGTGJyE0nNSKu3e1Vny5YtnDhxgtTUVGxsbAgKCmLw4MF4eVU9WBPg6NGjbNiwgczMTPMI/FatWpGVpZCVBdu372bbtm0A9OvXj759B6LRgIeHhoyMGL77bgVffjkOe/tcNNp0TKZkiouTaWproujrsWUCypKJKVOmUFJSUu7DLDIykscff5zi4mLz4EtnZ2eef/55nnnmGUwmEzfccANZWVls27YNFxcXJk2aZD7/jTfewNPTE19fX15++WW8vLzKzaKoTE5ODomJiZSUlHD+/HkWLFjA7NmzmTFjBi1btgRgypQpzJo1i7vvvpupU6fi4eHBmTNnWLRoEbNnz2bv3r2sW7eOIUOG4OPjw65du0hJSak0kXF2dmbSpEm88MIL5rEZ06ZNQ6vVmrtVamLZsmUMHjwYBweHctsVRSExMdE8NXTHjh288847uLq6mlsxavqahoaG0rdvXx588EGMRmO5WSM1YbnJhLRMiGpoNArPBJ1jonYlbok7IKdx7nvOpxWrM6vum62qZQLAfvdKvMePJiWp6i6DtHhvfFtNIOXsIkqKapcYlVXV/P7vqppjCFJal6uqWV8MhRpaXLSjBX5chx+FTiaSvQtIsMkkOiuBrOyGK8998eJFevbsSYsWLTCZTKxfv54FCxbw2GOPYTBU/r4RExPDL7/8wqBBg2jdujWHDx9m0aJFPPLII/j4+JCUlMSGDRu45557UBSFhQsXEhERga+vLykpRmbNWsHIkSPZts2dssGhV1sTJfvvNVGSKClJo9J+LQumb4CWiYKCAtq2bYuvr695e2RkJDk5OeYppJe8+eabeHt7M2PGDM6dO4ebmxvdu3fnP//5T7nrvvvuuzz11FOcPn2arl278vvvv1f573/Ja6+9xmuvvYbBYMDPz4/evXuzbt06czIDZV0w27Zt48UXX2TIkCEUFRUREhLCsGHDzMWhNm/ezCeffEJ2djYhISF8+OGHDB8+vNJ7fvTRRzz66KOMHDkSFxcXpk6dSkxMjLnGRk0sW7asXCJ1SXZ2Nv7+/mg0GlxcXGjTpg2TJk3iqaeewsXl8tiemr6mEyZM4LHHHmPixInY29euuqtGsdC2ym+3nueNPypvRhbNm7ehhNeDD3BzznL0Weca/f5Tu9/CnxlVj8N4OaYbXRbsqXJ/zuBJ7CntVeX+S9x9skiLXkhxQX6d4gT+rqo5gghDF5TUxmuuz3M1llsNNTev4cpx5+Xl8cEHHzB58uQqp7H9/PPPFBcXc88995i3zZ49Gz8/P0aOHMnRo0fZsWMHDz30kHlfnz596NChA1u2bCE3N7fKD4urKT8TpQh7+zxsbDLRaNL/XhMls07PuSFdf/0qnBxbqR1Gk5WXl0dAQAAffvghDz74YLXHp6am4u/vT2xsbLlkzNJYbsuEDMAU/9DDNYfXfLbQKXl5vU3trK1zPi35K/PqSa6umlZvp/ULcLm1H9nVtBhkJLviHjiBrIRFFObWrdmlrKrm7+zhdzq3H0xbl15ortIqUl8cs3TmaagQTLankWT3POJMqcSkJVBYyxaXqykqKis0drVvUjExMeVG/wNERESY5/H7+PiQlpZGVlYWiqKQlpaGj48P6enpREVF8a9//atOsZWfiXJpTRRPrlwTxctbU5ZsOBViZ5uHjT4TRUmltDQRozG3Tve9Fna2/tUfJGrswIEDnDhxgl69epGVlcUbb7wBUG29iEvS09P56KOPLDqRAAtOJnxcLHuxGdF47msRx5QGmNpZF98EtsZ0lVYJuHo3B4DGZCTceJwoWlZ7v6xUZ5x970Gr/Yn87MzahFrBoWNrOcRa2rTsSyefSHQJjdfX75Kmw8U8DTWMTJ9SEl1yiS9JvaZpqIqisGrVKoKCgvDx8anyuNzcXBwdy5eJdnJyMs8e8Pb2ZtCgQXz//fcADBo0CG9vb7777jtuvvlmzp49y8aNG9HpdAwbNqzGhXyqU1gIsTEKsTH/XBNFnZkoNjYu9Vq0SpT54IMPOHnyJAaDgeuuu44tW7ZUO8bnktatW9O6desGjvDaWWwyEeTuUP1Bosmy1xl5JeQ4txX/jkPqYbXDAeCCdwSrrjJW4pLqWiYA3NbMwu6mDynMq36QZE66I44ed6O1WUJuPay3cfLMdk6e2U5YSFe6BQ5Bn6Bp1G59jaLBPUmPe5I77XDHqGtJxt/TUGOLkolPTSw3Je5qVqxYQXJyMg888MA1x9WjRw969OhhfhwVFYWtrS2BgYF8/vnnPPzww2RnZ/Pzzz/z1FNPVTnSvz5dfSYKuLpq6nUmip1d463l0Fx069aNffv2qR1Gg7PYZKKFmz16nYaSWlb5E9bt8tTOpejik9QOp5xvgtpizKg+sdHV4FdWW5BLhEM8R/Oq/jZ9pbwse+ydx+Gi+5XslMQanVOd8xejOH8xioAWbegRNhK7pNpX1awPun9MQy01tCXVt5hEuyxi85NISk+pdBrqypUrOX36NJMnTy432KwyTk5O5rUTLsnNza20MBFAfn4+mzZt4v777ycuLg5PT0/zj8lkIi0tzSKanS/NRCl7K3f5+6csIbg0E8XDQ8HVtQQHh3z0hmy02gxMpqRKZ6LY2UoyIerGYpMJnVZDoLsD51MbbuCWsByNPbWztqK9wlhZzViJS2rSMgHgtWE2Nt1eobSGFSwLcuywc7wDN7+lZCbG1uwmNRAXf5K4+JN4eQXTu81tOF5DVc36YFOswS/GFr9L01DtTaT8PQ01NrdsNdQ///yTEydOMGnSpEorD/5TUFAQ58+fN69eCWXVCQMDAys9/q+//qJ37964uLgQFxdXrqXEZDJZRY2NS2uipKUB6AHXv38uz0Tx9NTi4WHE2aUYB/t8bPSVl4UWojoWXVg+2EO6OpoyjUbh2eCzRIV+xlc5TxAe+xuaUstLJAC+CW6PUanZeA1tDT+HdalxhHnVbmBlYZ4Bk+Z2PALqXmmvKqmp0fyx7VNWJc4hyz8bjZ1lrN5rKNAScNGeHqf9GZPQlTOrDnL8yDGee+RpvDw8yc3NJTc3t9y4i99++421a9eaH19//fWcOXOG7du3k5qaysaNG4mPjy9X5viSs2fPkpaWZt4XEBBAamoqp0+fZt++fWg0mlpVBrRURiMkJ5s4cULDnt22bNrkTlZme7XDElbKYlsmQJKJpqrc1M7kxp/aWVsxniGsqMFYiUtq2jIB4LdrAWdCHqluSY5yigttUGxH4xW8ktTo0zU/sYayspNZtf1LHBxcyqpq5vih1GBsR2P5cXfZ6o7TP3iz3PZHJz9MeLuW5OXnk5WVVa4oUFBQELfffjsbNmxg/fr1eHh4cNddd1UYtFlSUsKff/7JHXfcYT7fxcWF4cOHs2zZMmxsbBgzZkyF0sdNhYeHh9ohCCtlsXUmAGZvOcdbK+q2cIuwPN1dc5h+aWpnkTpTO+vite4j+K0GYyUumXm4G35/VF1n4p/O3PMZ0fG1byTU6Y04Oq0h+VzD1mMx6O3p0+0O/IuCUbItJ6moSrZXKUluecSZ0ohJizdPHRXV+/e//20RY0GE9ZGWCdHg7vWPY4rDGvzi16k+tbO2Yj2C+b0WrRIA2lqm54HHlxLtenvtTgKMJTpyc4bg11JP4pmDtT6/popLCti0+3t0Ohuu73obwUqbBqmqWV9cUm1wSXWlFa6YtGFkepeSdGk11NQESkstPyFSi7RMiLqy6GQixNOx+oOERbLXGflP8HHGlvyBQ+ohyFA7orqZHdqJ0lq0SgBoazkjwu7AOnzH30lSHYpJmUq1ZGUMpEUbA/Ena94aUhdGYynb9y1hu0ZDj04jiLDtAqmW/cGsNWnwSNLjcWkaqk0r0n1KSHTMJq4opVbTUJs6Z2fnJtt9IxqeRScT0jJhfcIdCnkjYBd90peiS7CsqZ21Fe8ezLKs2nezaU217zkMSdpMEv1qfR6AYtKSnnIDAe30xB3fXqdr1O6GCnsP/cFe/mjUqpr1QVeqwTvegDdedMKLUkNb0vyKiLfNJjY/ieQqpqE2B01hUKlQj0UnE/YGHUEe9sSkF6gdiqjGEK90XnRbT3jiSouc2lkXs8Jq3yoBNZ/NcSXHTQtxu30AmWl17D5QNKQmXk9QBz0xRzfV7Rp1cKmqZuuWfejsE4kuwbo+iG2KNfhG2+GLHd3+MQ01JieRtMx0tUNsNH5+ftUfJEQVLDqZAOjg7yrJhIXSaBSeDjrPJO1K3BK3Q+MvI9BgEtyDWJZ1ok7n1qVlQqMohBUd4gAVlzGu8TXQkBJ/HcGdDEQfXlPn69TFqTM7OHVmB6HBXegeNBR9osYqV+a+NA01AHt64E+hs4kk7wIStBlEZyWQnWM9A4drSwZeimth8clExwAXVh2tn4p/on54Gkp4PTiKIbnLMFjB1M66mBPWmZI6tEpA7cdMXOK2Zg4ON39Cfu61jUNIju1EcGc90YdWXtN16uJC9EEuRB+khX9rekaMxC7RcM1VNb87sJTvDywlNqvsfaC1VxhP953EwIjeVZ7zx4kNfLBlDrFZiYS6B/CfAY9yU8Tlhb6+2rWQr3YvBODf19/DI73uMu87EH+Ml1d/xPKJX2GXY0NIjiMhONKbQHLdjSR75BNHOjHp8eRfw4qulsaakonJkyeTmZnJ0qVL1Q5F/M2ii1YBdGjhqnYI4m/dXXNY1upP9to/ycjYjzFkNs1EItEtgF/r2CoBoKnjgD5NUQHhdjF1vu+VkmPaEtylZqsSNoT4hFMs2/oRazN+IK9FARp93d9q/J29eSnyEVZOmsWKSbPoG9KdB3/9DydTzld6/N7Ywzy+/A3u6jyCPyfPZmirG3no15c5kVL2+3o8+Swfbv2WL0ZP4/NR0/jvltkcTzkLQKmplJf++pB3hj6Hjbbidy2nDB3hZ5258WwId2f2ZpxzJP0DexDhH4qtrfUuTqjRaK66UFptTJ48GY1Gw6OPPlph35QpU9BoNEyePLlG17pw4QIajYaoqKg6xzNw4EBmz54NlBUz6927N66urjg7O9OhQweefvpp87HTp0+na9eutb7HvHnzcHNzq3OMTYEVJBNXr7kvGt69/nHsiJjHL8WP0SXmezRFWWqH1KDmhHejxFT3qY916ea4xHPdN+ht6+fPMjk6guDOd6DRqPdnnpYWwx/bZrIicXadq2re3LIfN0X0IcwjiHCPIF7s/zAOBnsOxB+t9Pg5+35mQHgvHr3+blp5hfJC/4fo6Nua+ft/BeBM2kXaeUfQL+Q6bgi9jnbeEZxNiwbgq12LuD6oM139q+9u0igaXFJsaH3GlYHnI5iQ04+xbv3pF9SdEL+gRlkIrL54eXnVa7xBQUEsWrSIgoLLXdSFhYX8+OOPBAcH19t9qpOens62bdsYNWoU69atY/z48YwdO5bdu3ezb98+3n777TqvWCvKs/hkwsfFDm9n6834rZW9zsibYUc4Fvgub2W8gH/cajQ1LCdtzZJcW1xTqwSA5hqa9XUZyYR71F+ylhwTTGCnO9Fo1f1Tz8lOYdX2L1l+8XPSfFPRONbtg8toMrLs2DoKSgrpHtCx0mP2xx3lhpDrym2LDOvFvriy5KOtdzjnMmKIy04iNiuR8+kxtPEK40JGHIsPr+SFGx+uU2xakwb3RD3tTrtz84XW3FfYn1s9b+T6oC4EePujVfnf4Gr8/f3r9Xrdu3cnKCiIX3/91bzt119/JTg4mG7dupm3rVq1ihtuuAE3Nzc8PT0ZOXIkZ8+eNe8PCysrG9+tWzc0Gg0DBgwod58PPvgAf39/PD09mTJlSoXEYMWKFXTv3h1fX19+//13+vXrxwsvvECbNm1o3bo1Y8aM4YsvvgDKWhdef/11Dh48iEajQaPRMG/ePAA++ugjOnXqhKOjI0FBQTz22GPm5es3btzI/fffb666qtFomD59en29lFbDcn+7ryCtE40n3KGQ71tt5ojbC9yX8E5ZjYhm5NuI7hSbiq/pGppraJkA8Nk2F61WU/2BNZQSE0BA+7vRWcA35fz8bNbunMOvJz8i0TsOjUvNYjqecpY2Hw0l4oPB/Gf1h8y67S1ae4VWemxKXjpejuWLL3k5upOSVzYzo5VXKC/2/xf3/PQsExY/x4uRj9DKK5SX/vqA/wz4N5vO72bQnEkMm/sgO2Oi6vxcdaUavOMMdDrtxfCY9txnHMBI735cF9wRH0/vOl+3IbRoUf+rhT7wwAPMnTvX/Pjbb7/l/vvvL3dMXl4ezz77LHv37mXdunVotVpuu+02c+2P3bt3A7B27VoSEhLKJScbNmzg7NmzbNiwgfnz5zNv3jzzh/8ly5cv59Zby7r7/Pz8OHr0KEeOHKk03vHjx/Pcc8/RoUMHEhISSEhIYPz48QBotVpmzpzJ0aNHmT9/PuvXr2fq1KkA9O3bl08++QQXFxfzec8///w1vHLWSf13lxro0MKFjSdT1A6jSbvZK50X3TcQkbASTUzznD2T4uLHL9knr/k6WuO1TWPQR58k+IYSLsTX359napwvfm3uIen0IkqLry1Zqg9lVTUXoNPZ0KvLGEI0bVHSq25ujvAIZtX9c8gpymPlyY08s+IdltzzWZUJRXXu63Yr93W7PKZkyeE/cTQ4cF1ABwbMupc/Jn5NQk4KU5a/zvZHfsLWxlCn+1xJX6TBL8YOP+zohq95Gmq8PoOYnETSM9Wr7NYQycS9997LSy+9xMWLFwHYtm0bixYtYuPGjeZjxo4dW+6cb7/9Fm9vb44dO0bHjh3x9i5Lujw9PStMXXV3d+fzzz9Hp9PRtm1bRowYwbp163j44bKWpaKiIlatWmVuJXjiiSfYsmULnTp1IiQkhN69ezNkyBAmTJiAra0t9vb2ODk5YWNjU+FeV46rCA0N5a233uLRRx/lf//7HwaDAVdXVzQaTbOeXmsVyURHGYTZIDQahScDzzNZ9yfuidua1NTOuvi2ZQ+KMq69JeZaWyYAAg7/zAXPu6o/sBbS4r3wDp9A6oWFlBRaRi0Qo7GUHft/ZodGQ49OtxBh27XSqpoGnZ4w97Llwjv7teFgwgm+3buEd4e9UOFYb0cPUvPK14dIzcvA27HyUtHp+Zl8sm0eP9/zGQfijxHmEUiYRxBhHkGUGks5lxFDO++Ia3+y/3xOBVoCLpRNQ+1JCwpcjCR7FRKvTSc6M4Gc3NqtKFtXGo2m3rs5ALy9vRkxYgTz5s1DURRGjBiBl5dXuWNOnz7Na6+9xq5du0hNTTW3SERHR9OxY+XdWJd06NABne7yGBx/f38OH748A2v9+vX4+PjQoUMHABwdHVmxYoW5NWPnzp0899xzfPrpp+zYsQMHh6qLJK5du5YZM2Zw4sQJsrOzKS0tpbCwkPz8/Kue15xYRTdHxwBJJuqTp6GEzyL2ctL3VZ5JeaUskWjmUp19+bkeWiUANNfYMgFge3gL/v71/+eZkeSOZ8i92Do61fu1r4misPfQCn7a8zbH7Pai+F59oKZJMVFkrLwlo3tAB7Zd3F9u25YLe7guoEOlx7++/nMe6jkOfxcfjIqJUuPlsUFGk7HRym3bZ+sIOedInzNBjE/txV0OAxgY0JM2ARE42DfcB5a3t3eDldF+4IEHmDdvHvPnz+eBBx6osH/UqFGkp6cza9Ysdu3axa5duwAorkHr2T9j1mg05f6tli9fzujRoyucFxERwUMPPcTs2bPZv38/x44d46effqryPhcuXGDkyJF07tyZX375hX379pnHWdQkzubCKlomgjwcCHCzJy6zeTa/15furrlM89lC5+TlaOKa9oyM2prbsieFmfUzPqQ+kgmA4Jh1JNgMrJdrXSkz2QVX/3vISVpEgQUWYTp8fB2HWWeuqvnfRV8xIPx6Alx8yS3OZ9mxteyIjmLBuA8AePqPt/Fz9uL/Ih8B4MHr7uDOhU/y9e5FDIrow/Lj6ziUeLLSVozN5/dwLj2Gj0f8B4Cufm05k36RDWd3Ep+TjFarI9yj8WYfXMkpXYdTugsRuKBoQsj2MpLkmkecMZWYtPh6+yALDAysl+tUZtiwYRQXF6PRaBg6dGi5fWlpaZw8eZJZs2Zx4403ArB169ZyxxgMZd1LRmPtBn8risLvv//OggULrnpcaGgoDg4O5OXlme/3z3vt27cPk8nEhx9+aB5Eu3jx4gpx1jbGpsYqkgmA68M9+HV/nNphWKV7/ON5wmENfvFrrW7VzsaQ5uTNkpxT9Xa9utaZ+CfHrT/jccfNpDfAYlrZaU44e9+DVreYPAstGX2pquax3FiWrlpLSlY6zraOtPOOYMG4D+gf1hOAuOwkNJrLA1Z7BHbis1Gv8d8ts3l/8yxC3QOZffvbtPUOL3f9gpIiXl37Cf8bPR3t39Nn/V18eHPw0zz357sYdHo+HvEf7PXqzybTKBpcU2xwTXGlNa6YtOFk+paS6JRDbHEK8WmJdV4NNTQ0tH6DvYJOp+P48ePm/7+Su7s7np6efPPNN/j7+xMdHc3//d//lTvGx8cHe3t7Vq1aRWBgIHZ2dri6Vt9SvW/fPvLz87nhhhvM26ZPn05+fj633HILISEhZGZmMnPmTEpKSrj55puBstfi/PnzREVFERgYiLOzMy1btqSkpITPPvuMUaNGsW3bNr766qty9wsNDSU3N5d169bRpUsXHBwcml33h9UkE73DPSWZqAV7nZGXgk9wR8kfOKQetNpVOxvDvFbXU1BPrRIAmtL6axYPy9tPOp3r7XpXyslwwNHtLrS6n8lJS26Qe9SHEe0DGdE+EH+/VvRqOapCVc0l98yscM7ItgMZ2fbqrTr2els2PfxDhe13dxnJ3V1GXnvgDUhr0uCRoMcDD9rjQalNa9J9i0l0yCa2MIWE1MQaL1jWkMkEgItL5bPxtFotixYt4sknn6Rjx460adOGmTNnlpv+aWNjw8yZM3njjTd47bXXuPHGG8sN4KzKsmXLuOWWW8rVzoiMjOSLL75g4sSJJCUl4e7uTrdu3Vi9ejVt2rQBygaE/vrrrwwcOJDMzEzmzp3L5MmT+eijj3jvvfd46aWX6N+/PzNmzGDixInma/ft25dHH32U8ePHk5aWxrRp05rd9FCNYiVL5MWk53Pj+xvUDsPihdoX8mbgbvqmL0WXJ2XIq5Pu6MUwfw8KjPU3IHHxTwFw7mK9XMtksGXPsJnkZTfcUt/2zkWYCn8jKzm+we5Rnzw9g+jT9jacUhxRSqxwAZBGUGKrkOpbRIJtFrF5ZauhVsbDw4Mnn3yykaNreJ07d+aVV15h3LhxaofSbFhNy4SMm7g6mdpZN/NaX09BZt3W4KiKxmikvjJ0bXERETbnOURQPV2xooIcW2wdbsfdfzkZCdENdp/6cqmqprOLN/06jsUtwwOlULrvrqQv0uAfbYc/dnTHlyIHhRSfAhL0mURnJ5KRVdZUGRISonKk9a+4uJixY8cyfPhwtUNpVqymZQLg2cVR0tVxBY1G4Ymg89yv/VNmZNRBhqMnQ1t4UVBav8nXkgU+KDH19y3f5OzB9n7vUNzAH5gGu1L0NitIizlb/cEWxMHBhb6d78Ar1x8lr+FacJqSAhcTSV75BPRrRViHlmqHI5oAq5gaekmfcE+1Q7AInoYSZrbcy0nf13g2WaZ21tX81r3rPZEAoJ5mc1yizUkn3C2tXq9ZmeJCG4qKR+Id2qbB71WfyqpqfssvJz8k0TsWjavVNLiqxj5bS+g5J4KD1JmpIpoeq/qr693Mk4muLrlM991K55TlaGMz1Q7HqmU6eLAwt4G+gTfAFDGfzXM41e55TNe4nHd1Sot15JuG4RthIOls/Xb/NLSSkkI27f7h76qatxKiaXfVqprNnY2vAzqXa6/sKQRYWctEkIcDge72aofR6O72j2d7xHf8VvoYXWO+Q1uYqXZIVu+71n3IL81vmIs3QDJhE3+OUN+ier9uZYylOrKzBuHfunuj3K++lVXV/IVF+9/mjPMR8Laq70yNxq6lm9ohiCbEqpIJgMjWlrVATkOx1xl5PewYR4PeZ0bG87SIW4XGJP3B9SHL3o2F+eca7gb13M1xSYsDi6D+1v+6KsWoJTM1koC21zfODRuCorDv0Ap+2v02x+z2VFtVs7mxbeWudgiiCbG6ZOLm9r5qh9CgQu0L+a7VFo64T2VSwls4pkSpHVKT832bfuSW5DXcDUobZqCk4fguAup/CYUqKYqGtKS+BLa/ofqDLdzh4+tZvPMdDug2YfTXNFpSZqk0Bi12EW5qhyGaEKtr/+sb4YWzrQ05RU3rW/ogz3Re8pCpnQ0t296VH/PPN+xNGrCsbtC5v4izG1r9gfVGQ2pCL4I6Gog5sr4R79swTp3ZyakzOwkJ6sx1wUPRJ2qhGZaqsGvljkZvdd8lhQWzut8mg42WyDZNo6tDo1F4MvgcB0K/YE7e47SM+QVNQ8wuEGYL2txATkkDL4/agMmEw87leKowBiAlrivBnRsziWlYF2MO8eu2/7Ip7xcKW5SATfNqqrDr0LwHs4v6Z3XJBFh/V4dM7VRHjp0rCxq6VQJQGnjBn7CsXQ16/aokx3Qg2MLLTNdWYuIZlm37iLVpC8hrkd88vq1rNdi3rXw5diHqyir/cga29UGvs75vEl1dclnaahV7HJ5idOxHGDKtqziQtVvQpl/Dt0pAg7ZMADiv+w5nt4ZZMro6ydGtCe58G2is7+/vatLSY/lj22esSJhFln8WGvumO1jTNtQFrYM6vz+i6bLKZMLFTm9VNSfu8k9gm0ztVFWunQsLCutnvYyr0SkaaOCishpjKeHU3yqntZUcE0ZQpzvRaKzy7eOqcnJSWbX9K5ae/5xU3xQ0TlY3rKxa0sUhGoLV/qUMae/LltOpaodRJVutiZdCTnJn6e9lMzJk1U5V/djmBrKzjzT4fQyKDmj4Qknua2dh2/89ivLVWZMiJSaQwI7jiTu2BJOx5oOh/zpyijXHTpfb5u3syIvDB1R6fGJWDn8dOUVsRhYZ+QWM7tqe/q3Dyh2z/2IcKw6doLi0lJ5hQYzu2t68Lz0vn2827ebpm/thp6/5t/HCgmzW7fwWvd6OPl3H0qIkFCWraQz6tm8vyYSof1abTNzc3o/Xlh9t6C+BtRZsX8ibgXu4IWMpuoQEtcMRQJ6tM98VNs4CVoZG+pPS5mYR4ZTEsXyvRrlfZVJi/fFvezeJpxZhLKl5AuXr4sQjkZfrV+i0VbdwFBuNeDg50DnIn+VRxyrszysqZvHeQ9zVswseTg7M2bKHlj6etG9RNq7q131HGNG5Ta0SiSuVlBSyec8PaLU6enW5lVBte6uuqqlv4YiNu53aYYgmyGrbKf1c7egW5KZ2GGY3eWawptWvbNJNITLmS3S5kkhYioVtbySrOLtR7mWrNF5+7r1xDjqVBwymxXvj23ICetuaf0DptFpc7O3MP462VZd0DvZwY1SXdnQLboFNJUlHWm4+9no9XYNbEOzhRksfT5Kyy8bFHIiOQ6fV0inw2otzmExGdh749e+qmoettqqmQ5emMRNOWB7r/Iv42+3dA9kfnana/TUahccDL3C/rmzVTk2ehTWTCPJtnZhfGNNo9zMojffhrkuOJsw7jzPx6paYT0/0wCt0AmnRCykuqL5EeUpOHm8sX4uNTkuIpzu3dGqLu2PdnoOXsyPFpUbiMrJwd7AnJj2TXmFB5BeXsOrIKf49oHedrlslRWHfoZXsYyUd2w2kvWsfNElWsvy5Buy7+KgdhWiirGoJ8n/KKiih19trKSpt3Koz7vpSpgcfZHjeMgyZZxr13qJ25nQezic5RxvtfmElbrz3QeON5Slp2Y2tQQ9ZRHefq1cOWQmLKMzNqfKY4wnJFJca8XZ2JKewiNVHT5FVUMTzQ/tjp7/6d5u3/1jPja3DKoyZOBybyF9HT1FiNNI9OIChHVuzeM9B/FxdCHB3YdmBYxhNJoZ0aE2XoPovIdo6ojedfQegS1TAAv4dqmIIc8Xnkc5qhyGaKKtumXC11zO4vS8rDjVOl0JXl1ym+W6jS8oytHGZjXJPUXf5BkfmF8U26j31NO6UQv2ZAwT2UoiJV3+qZlaqM86+96DV/kR+dmalx7TzL//NONjDjbdXrOdgTDzXh9dtOexOgX50CvQzPz6bnEZ8Zg5junXk3ZUbmNC7G852tsxct41wbw+c7WzrdJ+qnDq7k1NndxIc2JHrQoZjsNCqmg7d1OviSExM5L777mP79u3o9XoyMzNVi0U0DKsdM3HJHd0DG/weV07t7BYzX6Z2Womf2t5IRnFWo96zbDZH4wo89Xuj37MqOemO2HvejZNHzQaG2hv0eDk5kpZbPyu4lhqN/Lr/CHf06ERqbh5GRSHCxxMfFye8nByJTs+sl/tUJjr2CL9dqqoZUGxZVTVttDh0rp9kYvLkyYwZM6ZW53z88cckJCQQFRXFqVN1n9a8adMmbrrpJjw8PHBwcKBVq1ZMmjSJ4uLiOl/zShqNhqVLl9bLtZobq08m+rf2xse5fr9pQNnUzulhxzka9D7vZjxHgKzaaVUKDA7MK278QbA2KvxJ2e/9C28LWhEzL9MevdM4XLz9qj22qKSUtLz8emstWHvsDG38vAl0d0VRFExX9P+YFIXG6NVNTDzDsq0fsybte3Jb5KMxqP82a9/BE62deg3RZ8+e5brrrqNVq1b4+NRt3MaxY8cYNmwYPXr0YPPmzRw+fJjPPvsMg8GAsYELxYnqqf9bfo10Wg1jugXU2/WC7QuZ32oLxzymMjnhTVm100otbhtJelHjF/fQm9T5kwpNtayS7AU5dmht78DNr3zL4e9RxzibnEZ6Xj4XUtOZt30fWo2GbsEtAFi4K4qVh06Yjy81mojLyCIuIwujyURWQSFxGVmk5lRc9TUxK4eomASGdmwNgI+zExpg17lojsUnkZydS5C7W4M9539KT49jxbbPWBE/i0z/TFWrajpe13BLEAwYMIAnn3ySqVOn4uHhgZ+fH9OnTzfvDw0N5ZdffuG7775Do9EwefJkAKKjo7n11ltxcnLCxcWFcePGkZSUVOV9Vq9ejZ+fH++//z4dO3YkIiKCYcOGMWvWLOzt7cnLy8PFxYWff/653HlLly7F0dGRnJwciouLefzxx/H398fOzo6QkBBmzJhhjhPgtttuQ6PRmB8DLFu2jO7du2NnZ0d4eDivv/46paWXv1xqNBq+/vprRo4ciYODA+3atWPHjh2cOXOGAQMG4OjoSN++fTl79nLV44MHDzJw4ECcnZ1xcXHhuuuuY+/evXX8V1Cf1ScTAHdcd+1dHeapnTaP/z21M74eIhNqKNTbM7dYnX8/QyOPmbjEacOPuLhbVonkwjwDJu1teARcHjCZVVDIDzsP8N6fm/h+xwEcDXqeGNQXp79bJjLyC8guLDIfn11YyMdrtvLxmq1kFxax6eQ5Pl6zlcV7D5W7l6Io/LzvMKO7tsPWpuwbuN5Gx129urDm2BmW7D3Mbd074OrQ+DUWcnJS+Wv7139X1Uxu9KqaOhcDti3dGvQe8+fPx9HRkV27dvH+++/zxhtvsGbNGgD27NnDsGHDGDduHAkJCXz66aeYTCZuvfVW0tPT2bRpE2vWrOHcuXOMHz++ynv4+fmRkJDA5s2bK93v6OjIXXfdxdy5c8ttnzt3LnfccQfOzs7MnDmT5cuXs3jxYk6ePMkPP/xgThr27NljPj4hIcH8eMuWLUycOJGnnnqKY8eO8fXXXzNv3jzefvvtcvd58803mThxIlFRUbRt25Z77rmHRx55hJdeeom9e/eiKAqPP/64+fgJEyYQGBjInj172LdvH//3f/+Hvo71UCyBVc/muNKoz7ZyOK52/eMVpnZa8lBsUWPfdxrG+7kVCxw1hsiCYKZ8ck6Ve6ePepqonFaq3Ptq9LZGbA0rSY0+Xf3BzUBZVc3baVESjpLV8AWwXG4OwWVQ3Qa3Vmby5MlkZmaaxxYMGDAAo9HIli1bzMf06tWLm266iXfffReAMWPG4Obmxrx58wBYs2YNw4cP5/z58wQFBQFl3RgdOnRg9+7d9OzZs8J9jUYjDz30EPPmzcPPz4/evXszaNAgJk6ciIuLCwC7d++mb9++xMTE4O/vT3JyMgEBAaxdu5bIyEiefPJJjh49ytq1a9FUsr6MRqPht99+KzcmZPDgwQwaNIiXXnrJvG3BggVMnTqV+Ph483mvvPIKb775JgA7d+6kT58+zJkzhwceeACARYsWcf/991NQULYytIuLC5999hmTJk2q9b+BJWoSLRMA43rUvHXCXV/KpxH7OOk7jedSXsYjcaskEk1EkY0dc0sTVbu/vhHrTPyT25pZ2Dta3gStkiIdBYW34BPWvvqDm4Gyqpo/svjQDC66nUbj0YDfRnUaHHtVP3blWnXuXH7K6aUP8qocP36coKAgcyIB0L59e9zc3Dh+/Hil5+h0OubOnUtsbCzvv/8+AQEBvPPOO3To0IGEv6sN9+rViw4dOjB//nyg7EM/JCSE/v37A2WJUFRUFG3atOHJJ59k9erV1T63gwcP8sYbb+Dk5GT+efjhh0lISCA///LA4StfA1/fsm6lTp06ldtWWFhIdnZZAb1nn32Whx56iMGDB/Puu++W6wKxRk0mmbiteyDOtld/I+3sksuvrf5in+NT3Br3odSIaIJ+bjeAlMJ01e6vV2E2xyXawjzCHeJUu//VGEt05OYOwa9lF7VDsRhXVtU87XSoQapq2nf0QudcdYXR+vLP5nmNRoPJ1DDzYwMCArjvvvv4/PPPOXr0KIWFhXz11Vfm/ZdaL6Csy+L+++83t0J0796d8+fP8+abb1JQUMC4ceO44447rnq/3NxcXn/9daKiosw/hw8f5vTp09jZXe42u/I1uHS/yrZdel2mT5/O0aNHGTFiBOvXr6d9+/b89ttv1/DKqKvJJBNOtjaMrWLsxJ1+iWyL+J5lpY/RPWY+2sKmverW5ouljFqYT4sPc9C8ns3SE+WbUn89XsKQ7/PwfL9sf1Ri9SOhjyYbGbs4n9BPys75ZGdRhWN+OFRC0Mc5uL+XzbN/FZbbdyHTROvPcskuargWoGKdLd+WVj2AqzHYKOpOB/RaPwsbC5g9UBlTqZasjIG0aNND7VAsi6Kw//Cf/LT7bY7Y7kKpx5k5Tn3qv0hXfWjXrh0xMTHExFyuTnvs2DEyMzNp377mLVju7u74+/uTl3d5QO69997LxYsXmTlzJseOHavQjeDi4sL48eOZNWsWP/30E7/88gvp6WVfQPR6fYWZId27d+fkyZO0bNmywo/2KuvK1ETr1q155plnWL16NbfffnuF8R7WxPLaRK/BpL6hzN9xAUUpm9r5f8EnGWf8e9XOTLWjazx5xQpdfLU80FXP7YsLKt1/Q7AN4zpoePj3wkquUFF+CYS7abmzvZ5n/qp4Tmq+iYd+L2DerfaEu2sZ8WM+N4XpGNm6LDN/bEUh7w62xcW24T5sf24XSXLeieoPbEA2JnWTCV1aAmGeOZxOcFQ1jqooJi3pKTcS0M5A3PHtaodjcY6e2MhRNtIq4nq6+A1El1D3qpp6f0dsQ13rN8B6MnjwYDp16sSECRP45JNPKC0t5bHHHiMyMpIePSpPNr/++muioqK47bbbiIiIoLCwkO+++46jR4/y2WefmY9zd3fn9ttv54UXXmDIkCEEBl7+kvnRRx/h7+9Pt27d0Gq1LFmyBD8/P9zc3ICyGR3r1q2jX79+2Nra4u7uzmuvvcbIkSMJDg7mjjvuQKvVcvDgQY4cOcJbb71Vp+dfUFDACy+8wB133EFYWBixsbHs2bOHsWPH1ul6lsAyv8LUUZiXI+M7OjOv1VaOeUzl/sTmObVzeCs9b91kx23tKu+Lva+LgdcibRkcXvNcsmeAjv8OseOujnpsK/nidC5DwdVWw/iOenoG6BgYpuN4Sllz3sLDJeh1cHsV8dSHEp2Bb03qL0mvRp2Jf/LbMR+N+mFUTdGQmng9QR0i1Y7EYp0+u4uft73LjuIVFLcwgbb2SaqjhbZKQFmT/7Jly3B3d6d///4MHjyY8PBwfvrppyrP6dWrF7m5uTz66KN06NCByMhIdu7cydKlS4mMLP+79OCDD1JcXGwe/HiJs7Mz77//Pj169KBnz55cuHCBlStXmlsYPvzwQ9asWUNQUBDdunUDYOjQofzxxx+sXr2anj170rt3bz7++GNCQkLq/Px1Oh1paWlMnDiR1q1bM27cOIYPH87rr79e52uqrcnM5jA7sw4W3K52FBZD83o2v423Z0zbih/kFzJNhH2ay4FHHOnqV/Om1dBPcni6t4Gne18uNJRRoBDySQ6bJjsS4qalxze5fDnCnl4BOnrOymXDJEeCXBvuE+6njkN4S+VWCYB7Mtsx5svDaofB2XtmcjHecgpZVcUn8DDRh9eoHYbF8/ONoFer0dgn2UJp9W/ZGjsb/P/TC63B8n8HGsL333/PM888Q3x8PAZDw48ZEU2sZQKAloPAt6PaUTQ77vYa5o+xZ+LSAnrNymViFz1DW9rw/OpCHu9l4HymiW5f59Lxf7n8fKx+p8OV6AzMNqXV6zXrSu0xE5cEHLOOgVzJsZ0I7nyL2mFYvMSksyzf+jFrUr8jt0VetVU1HXv5NstEIj8/n7Nnz/Luu+/yyCOPSCLRiJpeMgHQ9wm1I2iWbmun5/C/nTjzpDPTB9ix6UIph5KN/Os6A3f9XMAnQ+34ZZw9Dy4vIDmv/kZ6/9Y2ksSClHq73rXQqTxm4hK7qA34+lnHn3dyTFuCu9yqdhhWIT0jnhXbPmdF3DdVV9XUaXC+of6qAluT999/n7Zt2+Ln51euLoRoeNbxblNbHceCS/P8Y7IURaUKj60s5OuR9pxJN1FqgshQG9p46WjtqWVXbP3U0i/R6pmjWM7sHL2FtEwAhCZsUjuEGkuOjiC48x1oLHqwh+XIyU0rq6p5biapvknlqmo6dPNB51L/6xVZg+nTp1NSUsK6detwcnJSO5xmpWn+5er0cP2jakfRrL21uYhhETZ099dhNEGp6XI/b4kRjPU0UmdZuwHEF1RdHKex2ai0NkdlHDb/hJun9ZTnTY4JJrDTnWiucbpdc1JYmMu6nfP4+fh/ifeKQeOmxzmy4VdSFuKfmu5f7XWTwdZF7ShUkVusEJVoNNePOJ9hIirRSHRWWddCekHZ/mMpZftPppbtT8y93PUw8bcCXlp7eQposfHyNYuNEJdd9vhMesXuimMpRn46WsobA8u+HbX10qLVaJizv5gVp0o4kWqiZ4tr788t0eqZbWFzfm0saDizRlEILzyodhi1khITQED7u9HZNKlZ6w2utLSYLXt+ZL9hI3pvB7XDEc1Q0/2LtXMpSyi2z1Q7kka3N97IwPmXy7w+u7oIKGJSFz3zxtiz/GQJ9y+7nCjc9UtZLYppkQamDyir6BadZUJ7RZNzfI5Ct68vF4b5YEcxH+woJjJEx8bJl2saKIrCv34v5KOhtjgaypr87fUa5o2xY8rKQopK4fNb7AhwufY89ve2/YnLt6z1HixlzMQlrmvm4DD0U/JzSqs/2EKkxvni1+Yekk4vorS4WO1wrIdGQ++xVS+UJURDanpTQ6+UmwIzu0JxrtqRiHpWqrVhVLvuxOartw5HZV6I70rP+Za1jHDK2P9wOM36xhC5+2aQemEhJYU1K6zW3LXs2Ztbn39F7TBEM9V0uzkAnLxlZkcT9UfbARaXSIDltUwAeK79Br2t9f2pZyS54xlyL7YOllnN09L0Hnu32iGIZsz63mFqq+8T4OSrdhSiHhk1OmZpctQOo1I6C2zn02alEu6eqXYYdZKZ7IJrwATsnZvn+KeaCu/eE9+wCLXDEM1Y0x0zcYnBEQb8H/zxjNqRiHqyou0Aoi1srMQluoZZKPGa+W6bx+lWT2EyXT3bycxLYdnOWRyN2U1JaRFergHcO+AFQrzbVHp8Vl4av+78iuiUk6RmxRPZ8Tbu6Del3DHHY/eyeOtMcvIz6BTalwmRz2OjK5tlUlCUy/u/PcYTI/6Lh3PlSX92qhPO3veg0S0mP1O9FWEtWR9plRAqa/otEwDdJ4FXa7WjEPXAqNHxjS6v+gNVYondHAA2MScJ8bv6YMb8ohw+WvoUWq0Nj93yLi+P+5bbez+Kg8G5ynNKTSU427kyrPu9BHhW/GZsUkzMX/cON7QfxXNjPiM65RTbjq8w71+2ezY3tB9VZSJxSU6GA/Zu43Hy9K7mmTY/4df1wq+lvL8JdTWPZEKrg8HT1Y5C1IOVbSO5mBevdhhVstSWCYAWBxdfdf+aqEW4O3lz38CphPq0xcvFn3ZBPfB2bVHlOZ7OftzR73Gubz0EO0PFsQ15hVnkFmbRv/2t+HuE0imkD4kZFwE4l3iUi8knGdixZmvp5GXZo3cch6tP1fE0NzobGwbc96DaYQjRTJIJgLYjILiP2lGIa2DSaPlGV3FJdUtiiWMmLrE9uh1//6pbTg5f2E6wdxvmrHmd/5s/lnd/fqRcK0JdONm54eLgyfHYvRSXFHI28TABnuEYjaX8tOUT7u7/DFptzWuOFOTYgv523P2DrymupqLb8NG4+1vfTB3R9DSfZALg5jfVjkBcgz/b9OdCXpzaYVyVJbdMAIREr61yX2pOAluOLcfbJYApI97lhvaj+Hnb5+w8+Ved76fRaHhw8Kus2r+At5c8SKBnS/q0Gc7qqIW0atEVvc7AR0uf5I1Fk9h0ZGmNrlmUb8DIGDyDmveAQwdXN3rffpfaYQgBNIcBmFcK6gntRsPx5WpHImrJpNHyjb4YitSO5Oq0Fp5MOGz7FY87h5KeUrGIlaIoBHu3ZvT1DwEQ5NWKhIwLbD32O73bDK3zPSP8OzH19v+ZHydlxrD71Br+746v+Xj50wzoeDsdgnvx9uKHaOnfqdKxF/9UXGiDyTAS79BVpFw4WefYrFm/8fdh6yDVLoVlaF4tE1A2dkJrPesViDKrW/fnXG6s2mFUS1fNbAlLEJazr9LtLg4e+LmHlNvm5xZMRm79rn2yaMvH3NbnUUyKidjUM3QPj8TZ3p1WLTpzOuFQja9TWqwjP28YvhGd6jU+a+ATFkGngTerHYYQZs0vmfCMKCuzLayGgoavDSVqh1Ejlt4yAeC8dh5OrhUbJcP9OpKcGVNuW3JWbLUzLWpj+4mVONi60Dm0L4pS9mIZTaXm/yqm2r2AxlId2VmD8G/dvd5itAYDJ/9LFkQTFqV5/jZGvghXme4mLMvqNv05kxtT/YEWwBqSCW1pMeHasxW239RpLOeTj/PX/h9IyYpjz+l1bDu+gv4dbjUfs2zXbL5b/26582JTzxCbeoaikgJyC7OITT1DQsaFCtfPKcjgr/0/cGe/xwFwsHXGzy2YDYd/5VziUU7GHSDcr0Otn49i1JKZGklA2+trfa41at3nRgLb1v51EqIhNa8xE5c4eUO/J2HD22pHIqqhoOErQylYyXpPWivo5gDwWPMNhhvfpbjAaN4W4tOWh4e8zvLdc/hz//d4Ovsztu9j9Gw12HxMdn4a6f/o9nj3l0fM/x+Teoq9Z9bh4eTLGxN+LHfcz9u+4KbOd+Lm6GXedu/AF/l+w3tsPPIrg7uMI8SnbZ2ej6JoSEvqS2B7PbHHttbpGtbAxmBL5L33qx2GEBU07YW+rqY4H77oBVnW8Y23uVrTuj/PllxQO4wa+2p/Vzz+sqyFvqqSMP4tjie5qx1GvfMOiCLmyHq1w2gQvcfeTb9xE9QOQ4gKmmc3B4DBAUZ9qnYU4ioUNHxlawX9BlfQGq0nN/fZPAetzjIrdl6LlLiuBHeq++wTS+Xk6UWvW8eqHYYQlWq+yQRAy0HQfaLaUYgqrG91A6dyo9UOo1aspZsDQJdwnjDfprm8d3JsB4I7j1Q7jHrV/57J6G3t1A5DiEo172QCYMjb4BKodhSiEl/bqx1B7VlTywSA/76F0PQaJwBIjmlNcOfbQGP9TzCwXUfa3TBA7TCEqJIkE3YuMFq6OyzNhlY3cDznotph1JqmllMb1WY4uYdAf7WjaDjJMWEEdboTjcZ63+psbG0Z+uhTaochxFVZ719YfWo5GLrdp3YU4gpf2lvnr6Y1dXNcEnRmpdohNKiUmEACO45Hq7POyWs33j0JN78mnPGJJsE637EbwtB3pLvDQmxq2Y/jORfUDqNONFbWzQFgv3sFXj7W+UFbUymx/vi3vRud3rqq3wa270i3YaPUDkOIajXtd5DasHMpm93xg4yWVtuXjjaQXfm+k8+dpCStYjVMj5s8aDGx4tLUhXGFJP+aTMGFAkrSSvC72w+voV7ljsncnkniz4mYCk243+iO/92XvwUWpxRz4YMLREyPQGdf/eqWmqu0TAw+e4b40oprYtzt5sarvn4Vtp8uKuLz1BSOFhYSX1rK/3n7MNHDo9wxv2dn8XFKCvkmE7e5uvKiz+VqlXElxTwUE8OSkFCcdFePPTRjJ6n0qO7pWbW0eG98W04g5dwiSoosf+Cp3taOoY8+jaYJjPkQTZ8kE1dqNRi63QsHFqgdSbO1OaIvR7PPV7k/YloEyhUf2EVxRVz47wVcerpUerypyITB24BLTxcSFyZW2F+aU0rc3DgCHwpE763n4scXcWzniEvXsuvFfx+P752+NUokALTGqsdMLA4JxXjF49NFRTwUG8NQ58qrsRaaTATqDQx1duHd5KQK+zNKS3ktMZF3/PwJ1Ov5d1ws1zs4MsDJCYA3kpJ41tun2kQCwHn99ziP6kNOpnWULa+r9EQPvEInkBa9kOKCfLXDuaob75mEWyVJphCWSLo5/mnoO+ASoHYUzdbXToar7rdxsUHvpjf/5ETlYPAx4NjWsdLjHcId8LvLD7febmhsKn7DK04pRmevw/V6VxzCHXBs50hRfNnSpJk7M9HoNLj2cK1x/FdrmfCwscH7ip9NebkE6fX0tK985cdO9va84OPDLS4uGCr5dhpTUoKTVstwFxc62dvTy8GBs8Vlsa/IzsZGo+HmKhKVCnEbS4lQTtToWGuXkeyKe+AE7Jwst6R+cMcudB3atKa2iqZNkol/snOVYlYq2Rbem0PZ52p8vKnUROaOTNxudKtzU7Ctry2mYhMFFwsozS2l4HwBdkF2GPOMJP+ajP+9tRv4prlKy8SVihWF37Ozud3Vtc6xhxgMFCoKxwoLyTQaOVJYSBtbW7KMRmampvCKT+0W6HJbOxs7h5q1wFi7rFRnnH3vwcHFTe1QKrBzcmbYlGeke0NYFenmqEyrm6HrvRAl3R2N6Utn+yrHSlQmZ38Oxnwj7jfUvSS0zlFH4MOBxM6KRSlWcOvrhnMnZ2LnxOIxyIOS1BKiP41GMSr4jPHBtefVWylqmkysy8khx2jkNteat3r8k6tOxww/f15KSKBQMTHaxYUbHJ14JTGBCW7uxJWUMCUullJFYYqXF0OdK+8KukSbl024UyLH8r3rHJM1yUl3xNHzbrQ2S8hNT1U7HLOb//U4zh5e1R8ohAWRZKIqw96Bs+shJ17tSJqF7WHXczC74kqWV5OxOQPnTs7o3a9thL7LdS64XHf5gzbvRB5FsUW0uLcFp148RdCjQdi42nD2jbM4tnHExqXqP5ua1pn4NSuLGx0d8bG5ttgHOzsz+IqujD35+ZwqKuJlH1+GnTvHBy1a4GWjY/zFi/Swd8DT5up/8t4bZmPT9WVKS6yrXkZd5WXaY+88Dhfdr2SnVBxT09g6DBhM6+v7qR2GELUm3RxVsXOF274ETfNo9lXbV66Vj3moSnFqMblHc3GPrN+FqkwlJuK/i6fFpBYUJxejGBUc2zpi62+LrZ8t+WerGbRXg5aJuJISduTnMdbVrX6C/luxycQbSYlM9/UjurgYIwo9HRwIM9gSajBwqLCg2mvoUmIJ9c6t17gsXUGOHVrbO3DzU3dquJufPzfd/0j1B1qIjRs3otFoyMzMVDsUYQEkmbia8AEweLraUTR5O8N6cSDrTK3OydiSgY2LDc5d6ncQXcryFJw6OWEfal82a+SK3EApLf+4MjXp5vgtKxMPnY7Iv2dd1Jev0tO4wdGR9nZ2GIHSKxYELlEUaloCw2/X902hAnWtFOYZMGlvwyMgTJX7a3U6bnn8eQx29VdDfvLkyWg0GvOPp6cnw4YN49ChQ/Vy/b59+5KQkIDrNXTViaZDkonq9HsSOkrtiYb0pWvtPlQVk0Lm1kzc+rmh+ceql7HfxJK45HJztam0bHBlwcUCFKNCaUYpBRcLKEoqqnDdwrhCsnZn4Xt72cBFW39b0ED6pnRyonIoSijCPryaN/tqkgmTovBbVhZjXF2x+ccn9v8lxPNRSrL5cbGicLywkOOFhZQokFRayvHCQi4WF1e47pmiIv7MzuYJr7LxDuEGA1qNhl8yM9mUm8v54mI62dVskSjD2UME+TePbo4rFRfoKTGOxiu4VaPfO/LeB/Bv1aberzts2DASEhJISEhg3bp12NjYMHJk/cwSMRgM+Pn5yUBRAUgyUTOjPwffTmpH0STtDu3J/lq2SuQey6UkrQT3/hW7OIrTiinNvFwYqjSjlLPTznJ22llKM0tJXZXK2Wlnifs2rtx5iqIQPy8ev7v90NqW/VloDVoCHgogZXkKcd/G4X+ff7XjM6prmdiRn09CaSm3V9LFkVBSQuoVRa1SSksYe/ECYy9eIMVYytyMdMZevMBriQkVYp+elMiLPr44aMtit9NqecfPn/+lpfJKYgKv+PjiW4vqj4Enltf42KakpEhHQeEt+IS1b7R7dhgwmO633Nog17a1tcXPzw8/Pz+6du3K//3f/xETE0NKSkql3RRRUVFoNBouXLgAwMWLFxk1ahTu7u44OjrSoUMHVq4sK7/+z/PnzZuHm5sbf/31F+3atcPJycmczFxp9uzZtGvXDjs7O9q2bcv//vc/877i4mIef/xx/P39sbOzIyQkhBkzZgB//55Pn05wcDC2tra0aNGCJ598skFeN1F7MgCzJgwOcNcC+GYAFGSoHU2T8qWbC2RVLMh0Nc4dnek4r2Ol+8JfCi/32OBtqPLYK2k0GsJfDq+w3aWri7mAVY0YjVfd3c/RkWNt2la6b35wSLnHAXpDlcdeSaPRsOAf5wIMcHJigFPLas+vjN3+NfiMH0ty0tWfT1NkLNGRmzsEv5Z6Es8cbNB7+bdqw+CHpjToPS7Jzc1lwYIFtGzZEk9PzxqdM2XKFIqLi9m8eTOOjo4cO3YMp6t0z+Xn5/PBBx/w/fffo9Vquffee3n++ef54YcfAPjhhx947bXX+Pzzz+nWrRsHDhzg4YcfxtHRkUmTJjFz5kyWL1/O4sWLCQ4OJiYmhpiYGAB++eUXPv74YxYtWkSHDh1ITEzk4MGG/fcRNSfJRE25h8Id38KCO0Bpfm+wDWFvyHXszTqtdhj1q5pkwpqEpGwlmT5qh6EKU6mWrIyBtGijJ/7k3ga5h5O7B6OfexmbBlwv5I8//jB/+Ofl5eHv788ff/yBVluzRuno6GjGjh1Lp05lLbPh4RUT7iuVlJTw1VdfERERAcDjjz/OG2+8Yd4/bdo0PvzwQ26//XYAwsLCOHbsGF9//TWTJk0iOjqaVq1accMNN6DRaAgJuZwkR0dH4+fnx+DBg9Hr9QQHB9OrV6+avxiiQUk3R21E3ASDp6kdRZPxlXv9zsSwCE0omXDa8AOuHta1MFZ9Ukxa0lNuJLBd/SdUOr2e0c+/jJO7R/UHX4OBAwcSFRVFVFQUu3fvZujQoQwfPpyLFy/W6Pwnn3ySt956i379+jFt2rRqB286ODiYEwkAf39/kpPLxgHl5eVx9uxZHnzwQZycnMw/b731FmfPlk0Lnzx5MlFRUbRp04Ynn3yS1atXm6915513UlBQQHh4OA8//DC//fYbpZWsdSPUIclEbfV7CjrcrnYUVm9/cHd2ZZ1SO4z6V8OiVdZAoyiEFx9ROwx1KRpSEnsT1CGyXi87+KEp+Les/wGX/+To6EjLli1p2bIlPXv2ZPbs2eTl5TFr1ixz64Ry5ayfkvJrszz00EOcO3eO++67j8OHD9OjRw8+++yzKu+n/0cri0ajMV8/N7dsyvGsWbPMCU5UVBRHjhxh586dAHTv3p3z58/z5ptvUlBQwLhx47jjjjsACAoK4uTJk/zvf//D3t6exx57jP79+1eIWahDkom6uPUL8K2+H15U7csa9tlandKm0zIB4LZmFvZOzbs3VIOGlPjrCOo0uF6u1334aDoOqJ9r1ZZGo0Gr1VJQUIC3d9nMnysHSEZFRVU4JygoiEcffZRff/2V5557jlmzZtXp3r6+vrRo0YJz586ZE5xLP2Fhl6fkuri4MH78eGbNmsVPP/3EL7/8Qnp6OgD29vaMGjWKmTNnsnHjRnbs2MHhw4frFI+oX837XaKuDA4wfgHMGigDMusgKqgbOzNPqh1Gw2hC3RwAmqICIuxiOZIrq1emxHYmuLOe6EN/1vkawR27EDnxwXqM6uqKiopITCybKp2RkcHnn39Obm4uo0aNomXLlgQFBTF9+nTefvttTp06xYcfflju/Keffprhw4fTunVrMjIy2LBhA+3atatzPK+//jpPPvkkrq6uDBs2jKKiIvbu3UtGRgbPPvssH330Ef7+/nTr1g2tVsuSJUvw8/PDzc2NefPmYTQauf7663FwcGDBggXY29uXG1ch1CMtE3XlEQZj50iFzDr40qsJrzvQxJIJAK/1s7AxyFsFQHJMO4K71G0ap6uvHyOf+T+02sZ7z1i1ahX+/v74+/tz/fXXs2fPHpYsWcKAAQPQ6/UsXLiQEydO0LlzZ9577z3eeuutcucbjUamTJlCu3btGDZsGK1bty43lbO2HnroIWbPns3cuXPp1KkTkZGRzJs3z9wy4ezszPvvv0+PHj3o2bMnFy5cYOXKlWi1Wtzc3Jg1axb9+vWjc+fOrF27lt9//73GM1NEw9IoV3aYidrb+gmslUGZNXUwqAv32jTd1pzF/wWa4KCw2Lvf41RC/VbstGY+QReJOfwbilKzMTJ6O3vuefO/eAWHNmxgQqhEvm5cqxuehi73qB2F1fjSq3bLYludJtgyAeC3fT4aebcwS44JIbDTnWhqMsVSo2H4lGckkRBNmrw91IfRn0GbW9SOwuIdCejEtswTaofRYHSKBppoQ5/NxWME+zW9FpdrkRITQED7u9FVsxLroPsfpVWvvo0UlRDqkGSiPuhs4I65EHKD2pFYtC99WqgdQoMyKE17/EzgkV/UDsHipMb54tf6HmwMhkr39x03ga5DRzRyVEI0Pkkm6oveDu5eCP5d1I7EIh0N6MTmzONqh9GgDE18cpTtoc34+clbxj+lJXjhEzEB/T8WUrtuxK30GXu3SlEJ0bjknaE+2bnAvb+CZ+OvOmjpvvJt2q0S0PRbJgCC4zeoHYJFSk90xzPkXmwdHAHoEDmYyPseUjkqIRqPJBP1zdEL7vsNXALVjsRiHGvRgY0ZTbtVAkDfDP6cnDYvxt2zabfA1FVmsguuARNod+Nghjz6hCzNLZqVpv/upwa3IJi0HJyk0A/AV35BaofQKPTNoGUCIKwgSu0QLJabbzBDH32yUWtJCGEJJJloKJ4RMPkPcPRROxJVnfBvz4aMY2qH0SiaQzcHgMvab3F0kdaJfwpo487wRzqhs5G3VdH8yG99Q/JqBZN+B4cmXPGxGl/5BasdQqNpLsmEtriIcJsLaodhUfxbujLisc7YGJrH74AQ/yTJREPzaVvW5WHfsEsNW6JTvm1Z38RncFypOYyZuMRz7TcY7OSDEyCgjRsjH+/C/7d331FRHe0fwL+7y7KVIr0JS5EqIIogagK8SsBCbDEWLMSSGDUmBtRgXjti17wajQ0Bf7aoWLEkahSjMXbUGIqCxoZBBTFERWDn9wdhzUpbmgvs8zlnz2FvmXlmgXufnTtzL19AnwfRXJpz9FMnUzdg2F5AqK/uSN6q1Za2YGieN3GqCF+uOf9O3GdPYKefq+4w1M6mtSF6jveEtpAu+xDNpjlHP3Uz9yhNKCTG6o7krbhh6oSjGjJWoow2NOubqcmpOHB5mjtjwd7LGN3GuEOLr1m/d0Iq0uyTiRMnToDD4eDp06fqDgWwaAOMPAIYOqg7kga3xtJOo3olAECLadaJVeveDdiYFqo7DLVw8jXDe6Nb02BLQv5Ro/+E8PBwcDgczJ8/X2n5nj17Gu2c6o4dOyI7Oxt6enrqDqWUgW1pQtHSV92RNJhME0cc0aCxEmX4TPNOLJYp29Udwlvn9q4luoS7gMttnMc8QtShxkc/oVCIBQsWIC+vaTxGWltbG2ZmZnVKdl69elWPEQEQGwDD9gEuofVbbiOxxsoBchUfzdycaMp9Jv5N+/czsDDXnJNqmyBrBAx2arRfnghRlxonE127doWZmRnmzZtX5XaJiYlwc3ODQCCATCbDkiVLqtx+5syZaNOmDTZs2ABra2tIpVKMHTsWJSUlWLhwIczMzGBiYoK5c+cq7bd06VK4u7tDIpGgZcuWGDt2LAoKChTrK7rMUV1sMpkMc+bMwbBhw6Crq4uPP/5YxU+nBvhCoP9GwHdM/ZetRlkmrfDDU80aK1FG0y5zlLH+40d1h9DgOBzgnQGt0Klf879ESUht1DiZ4PF4iImJwYoVK3Dv3r0Kt7l48SI+/PBDDBw4ENeuXcPMmTMxbdo0xMfHV1l2ZmYmDh06hMOHD2Pr1q2IjY1Fjx49cO/ePSQnJ2PBggX473//i7Nnz75uAJeL5cuX4/r160hISMBPP/2EyZMnV1qHqrEtXrwYnp6euHz5MqZNm6by51MjXC7QbQHw3lwAzeNEtMaqlUb2SgCAlrx5/A5rSvzLHhgaN9/ZDFraXHQb4w6PQM24kyshtcFhjKk8Si48PBxPnz7Fnj174OfnB1dXV8TGxmLPnj3o06cPyooKCwvDo0eP8OOPr7+xTJ48GQcOHMD169crLHvmzJlYtGgRHj58CB0dHQBASEgI0tPTkZmZCS63NO9xdnZGeHg4vvrqqwrL2blzJ8aMGYPHjx8DKO2ZCAwMRF5eHvT19VWKTSaTwcvLC7t371b1o6m733YBu8cAJU13QNttY3v01pGjhJWoOxS16P/MCf1XVvz33dw9Cx6FC4Ve6g6j3ol1tdFjnAdMbHTVHQohjVqtR4wtWLAACQkJSE0tP9AuNTUVnTp1UlrWqVMn3LhxAyUllZ9oZDKZIpEAAFNTU7i6uioSibJlOTk5ivdHjx5Fly5dYGlpCR0dHQwdOhRPnjzB8+fPK6xD1di8vb0rjbNBtO4LDNvTpO9Fsbals8YmEoBm3WfiTdJjGyHVa169Ey3MJeg3pR0lEoSooNZHv3fffRfBwcGIioqqt2D4fL7Sew6HU+Eyuby0G/327dvo2bMnPDw8kJiYiIsXL2LlypUA6j5oUiKR1Gn/WrHpWDrTQ7/p3YL6DyM7HNTQsRJlNHXMBABwi1/BjnNT3WHUGyvnFug3uR10DUXqDoWQJqFOX6Xmz5+P/fv348yZM0rLXVxccPr0aaVlp0+fhqOjI3i8+hvxfvHiRcjlcixZsgQdOnSAo6MjHjx4UOU+byu2WjN2BEYeBcw91R1Jjay1dtHoXgkA4GnomIkyBkfXQiBqBP9DddTa3xI9P/OEQNS8eloIaUh1Sibc3d0RFhaG5cuXKy2PiIjAsWPHMGfOHGRkZCAhIQHffvstIiMj6xTsmxwcHFBUVIQVK1YgKysL//d//4fVq1dXuc/biq1OdEyB8IOAU3d1R6KSu4YyHNDwXgkA4GtwzwQAcAvyYaf7SN1h1BqPz0WX4S7wH+QEHk9zL1kRUht1/o+ZPXu24rJDmbZt22L79u3Ytm0bWrdujenTp2P27NkIDw+va3VKPD09sXTpUixYsACtW7fG5s2bq52y+rZiqzOBFBi0FQieB/C01R1NldbauGl8rwQA8DQ8mQAA45Ox4Gk1vc9Bx1CIfpPawdnPXN2hENIk1Wg2R1P0ww8/oFu3bnj58iW0tRv3SblSDy4DO0cAuVnqjqScewbWCNXXQjErVncoavdZjgfeib2k7jDU7o/BS5D5QKjuMFRm7WqAoJFuEEr41W9MCKlQs+7L+/PPP7F37160atWq6SYSAGDhBXxyEnDvr+5Iylkvc6dE4h+aPmaijPmFrU3jtikcoF03G/Qc70mJBCF11KyTie7du+Po0aOKGR5NmkAH6Lce6LUS4IvVHQ0A4EELa+zN17xncFRG08dMlNHOuACrRn61QCjho/sYd3ToZQ8OPWODkDpr1sOVL168qO4Q6p/XEMCqPbDjIyBHvTdIWmfrjuK8a2qNoTHhldBJqUzLmwdwT9xD3WFUyNJRH10/coO0hUDdoRDSbDTrnolmy9gJGP0T4D1CbSFkt2iJPdQroYTXrEcf1Yzo3EEYmzSu7ypcLge+79uh1xdelEgQUs8omWiq+EKg5zKgfwIgfPuPV19v64FiOY2V+DeeZj6SpFKy3F/UHYKCvqkYfSe1g3d3GV3WIKQBUDLR1Ln1Bj75ufTSx1vyUN8Ku/PT3lp9TQUNwFQm/WkTdFuof2Cj27uW+PDr9jC1pdtiE9JQKJloDlrYAB8dBjpPBLgN37W83s4TRfKiBq+nqaGeCWUceQnsStR3KUxqIEDP8Z4IGOwEvnbTvzMnIY0ZJRPNBU8L6DoT+DgZaOnbYNX8qWeB3fnpDVZ+U0ZjJsrTP7IOQsnbHTvB4QDugVYYNN0XNq0N32rdhGgqSiaaG7PWwIgfgPe/BcT1fyDdYN8Wr+R1e4hac0U9E+VxXxTAXlz183LqUwtzCfpOaod3BzhCW9i4BoAS0pxRMtEccThA26HA+AtA2+GorzsIPdI1Q+Iz6pWoDJeSiQoZHV8PLX7DHmq4Why07yHDgK/bw8zu7Q9IJkTTUTLRnIkNgPeXlz7W3My9zsVtcPBGYUlhPQTWPPHkdJ2jIrzH92Fr9FeDlW9mp4sPp7aHT6gdeFp0SCNEHeg/TxO0bF86liJkASCo3Yj2xzqm2EG9ElWinonKmZ3dBE49T3aR6Gmja7gL+k5qB0MLaf0WTgipEUomNAWXB3QYA4w/D7T+oMa7b3BoT70S1aBkonL8rKtoaV4/HxCPz0W7bjYIm+0Hpw7m4NR3ltLM3b59GxwOBykpKQ1Wx8yZM9GmTZsGK580PpRMaBodM+CDWGDYXsCwlUq7PJaaYMdf1CtRHS5d5qiSVeqeOpdh72WMwTN80aGXPfiCtzPd88yZM+DxeOjRQ/Xbgzf1k+mtW7cwePBgWFhYQCgUwsrKCr169UJammr3l4mMjMSxY8caOErSmFAyoansAoBPfwH+Mw3Q1qly0/hWPnhJvRLVomSiasLLx2BqVrsEwNBKit4TvRDyiTt0jUT1HFnVYmNj8dlnn+HkyZN48KDqmSmMMRQXN+07wxYVFSEoKAj5+fnYtWsX0tPT8f3338Pd3R1Pnz5VqQypVApDQ5qWq0komdBkWtrAu5HAF1eBTp9X+DTSXIkRtv+VoYbgmh6aGlo9m4cna7S9nrEIXT9yxYCp7WHp1KKBoqpcQUEBvv/+e3z66afo0aMH4uPjldafOHECHA4Hhw4dQrt27SAQCLBp0ybMmjULV65cAYfDAYfDQXx8PBhjmDlzJqytrSEQCGBhYYEJEyZUWndmZiZ69eoFU1NTSKVStG/fHkePHlXaRiaTISYmBiNGjICOjg6sra2xdu1apW3OnTsHLy8vCIVCeHt74/Lly1W2+fr168jMzMSqVavQoUMH2NjYoFOnToiOjkaHDh0U2927dw+DBg2CgYEBJBIJvL29cfbsWQAV98ysX78eLi4uEAqFcHZ2xqpVqxTryi697Nq1C4GBgRCLxfD09MSZM2eUyjh9+jQCAgIgFovRokULBAcHIy8vDwAgl8sxb9482NraQiQSwdPTEzt37qyyraT+UDJBSmd9BM0GPr8C+H4K8F4/BCne0RcvSl6qMbimg1NCPRPVkSRvhb5h9bfY1jEQInCoMwbP9IWTr5nanqexfft2ODs7w8nJCUOGDMGGDRvAWPnf81dffYX58+cjNTUVQUFBiIiIgJubG7Kzs5GdnY0BAwYgMTERy5Ytw5o1a3Djxg3s2bMH7u6Vz7IqKChA9+7dcezYMVy+fBkhISEIDQ3FnTt3lLZbsmSJIkkYO3YsPv30U6SnpyvK6NmzJ1xdXXHx4kXMnDkTkZGRVbbZ2NgYXC4XO3fuRElJSaWx+fv74/79+9i3bx+uXLmCyZMnQy6vOKPevHkzpk+fjrlz5yI1NRUxMTGYNm0aEhISlLb7+uuvERkZiZSUFDg6OmLQoEGKnp6UlBR06dIFrq6uOHPmDE6dOoXQ0FBFjPPmzcPGjRuxevVqXL9+HRMnTsSQIUOQnJxcZXtJ/aC7upDXpCZAt/lAx8+AnxcjL+MQthXcVHdUTQZd5qgehzHYFl7FZbhUuF6spw3vbjK4drZoFNM8Y2NjMWTIEABASEgI8vPzkZycjICAAKXtZs+ejaCgIMV7qVQKLS0tmJmZKZbduXMHZmZm6Nq1K/h8PqytreHj41Np3Z6envD09FS8nzNnDnbv3o19+/Zh/PjxiuXdu3fH2LFjAQBTpkzBsmXLcPz4cTg5OWHLli2Qy+WIjY2FUCiEm5sb7t27h08//bTSei0tLbF8+XJMnjwZs2bNgre3NwIDAxEWFgY7OzsAwJYtW/Do0SOcP38eBgYGAAAHB4dKy5wxYwaWLFmCvn37AgBsbW3x+++/Y82aNRg+fLhiu8jISMXYlFmzZsHNzQ03b96Es7MzFi5cCG9vb6UeDTc3NwBAYWEhYmJicPToUfj5+QEA7OzscOrUKaxZswb+/v6Vxkbqh/r/W0njo2cJ9FwG+ehj6GnXE3yu+h/W1BRwS+g6hyr0j8RCLFX+HiPS4aNjXwcMneMH9wCrRpFIpKen49y5cxg0aBAAQEtLCwMGDEBsbGy5bb29vastr3///njx4gXs7OwwevRo7N69u8rxFQUFBYiMjISLiwv09fUhlUqRmpparmfCw8ND8TOHw4GZmRlycnIAAKmpqfDw8IBQKFRsU3ayrcq4cePw8OFDbN68GX5+ftixYwfc3Nxw5MgRAKW9BF5eXopEoip///03MjMzMXLkSEilUsUrOjoamZmZlbbF3NwcABRtKeuZqMjNmzfx/PlzBAUFKdWxcePGcnWQhkE9E6RShjqWmO43HZ94fIL46/HYmbETL+mSR6WoZ0I1nMIXsBPexW8F5tA1EqJNV2u4dDSHViN7GFdsbCyKi4thYWGhWMYYg0AgwLfffgs9vdd32pRIJNWW17JlS6Snp+Po0aM4cuQIxo4di0WLFiE5ORl8fvmEPTIyEkeOHMHixYvh4OAAkUiEDz74AK9eKd/O/s19ORxOpZcbakJHRwehoaEIDQ1FdHQ0goODER0djaCgIIhEqg+CLSgoAACsW7cOvr7Kzw3i8ZR/5/9uS9mU37K2VFVnWR0HDhyApaWl0jqBQFDRLqSeqT/9J42eqcQUU3ym4HC/wxjjOQaGQhqlXREaM6E6y3vJCBrhirDZpT0RjS2RKC4uxsaNG7FkyRKkpKQoXleuXIGFhQW2bt1a5f7a2toVjjcQiUQIDQ3F8uXLceLECZw5cwbXrl2rsIzTp08jPDwcffr0gbu7O8zMzHD79u0atcPFxQVXr17Fy5evvwT8+uuvNSoDKD2xOzs74++//wZQ2oOQkpKC3Nzcavc1NTWFhYUFsrKy4ODgoPSytbVVOQYPD49Kp5u6urpCIBDgzp075epo2bKlynWQ2qOeCaIyQ5EhxrUZh4/dP8bh24exJXULfnvym7rDajQ41DNRNQ4H0oAAGISHQ+Jb+ViBxiApKQl5eXkYOXKkUg8EAPTr1w+xsbEYM2ZMpfvLZDLcunULKSkpsLKygo6ODrZu3YqSkhL4+vpCLBZj06ZNEIlEsLGxqbCMVq1aYdeuXQgNDQWHw8G0adNq3OMwePBgfP311xg9ejSioqJw+/ZtLF68uMp9UlJSMGPGDAwdOhSurq7Q1tZGcnIyNmzYgClTpgAABg0ahJiYGPTu3Rvz5s2Dubk5Ll++DAsLiwovo8yaNQsTJkyAnp4eQkJCUFhYiAsXLiAvLw9ffvmlSm2JioqCu7s7xo4dizFjxkBbWxvHjx9H//79YWRkhMjISEycOBFyuRydO3dGfn4+Tp8+DV1dXaVxGaRhUDJBaozP4yPUPhSh9qG4+ugqNqduxo9//IhiedOeX19XNGaiYlxdXeiFhqLFkDAIavBNVJ1iY2PRtWvXcokEUJpMLFy4EFevXq10/379+immOT59+hRxcXHQ19fH/Pnz8eWXX6KkpATu7u7Yv39/pfdjWLp0KUaMGIGOHTvCyMgIU6ZMwbNnz2rUDqlUiv3792PMmDHw8vKCq6srFixYgH79+lW6j5WVFWQyGWbNmqWYsln2fuLEiQBKe15+/PFHREREoHv37iguLoarqytWrlxZYZmjRo2CWCzGokWLMGnSJEgkEri7u+OLL75QuS2Ojo748ccfMXXqVPj4+EAkEsHX11cxpmXOnDkwNjbGvHnzkJWVBX19fbRt2xZTp05V/QMjtcZhFc1zIqSGHj1/hB0ZO7AjYwcev3is7nDUYsvhVtC6nKruMBoNsbc39Pt/AJ3gYHD/NQCQENL8UDJB6lVRSRFO3DuB/Zn78fP9nzWqt2LrAXvwrmr2bcd5RkbQ790Lev36NZleCEJI3VEyQRpM3ss8HL59GEmZSbj6uPIu4eZi2z5bcK/fUHcYbx+XC0nnTtD/4APoBAaCU8HMBEJI80bJBHkrbuffRlJWEpKyknC/4L66w2kQ3++xASdVQ+a0c7kQeXlBN/g96AQHg29qqu6ICCFqRMkEeasYY7iUcwmHbh1C8r1kPPz7obpDqjffJ7YEJ+OWusNoOFwuxO3aQSc4GDrvBYFvYqLuiAghjQQlE0St0nLTcPzucSTfTcbvT34HQ9P9c9y+3RLI/EPdYdQvHg9in/bQDQ6GTteu0DIyUndEhJBGiJIJ0mjkPM9B8r1knLh7Amezz6KwiT32fPtWc+D2XXWHUWdaZmaQ+PlB0rEjJJ07QavF239aJyGkaaFkgjRKL4pf4Gz2WZzNPovzD88jIy+j0fda7NhkCna36Y0H4UokEPv6liYQnTpC8M/DnAghRFWUTJAmIb8wHxceXsD5P8/j0p+XkJGXgRJW8eOR1WVHghHYg8Y/BoQjEkHk5gZxhw6QdPSDyMMDHC26fx0hpPYomSBN0vOi57jy6ApSclJw9fFVZORmIOdFjlpj2rHBAOxP9cZQDpcLbZkMInd3iNp4QuTpCYGjIyUPhJB6RckEaTbyXuYhLTcNGXkZSM9NR1peGm7l33prN87asU4P7PGTt1JXRTgiEbRlMggcHCBq7QahmxuELi7gqvBES0IIqQtKJkizVlRShMz8TKTnpuPOX3dwv+A+HhQ8wP2/7uPRi0f1Og5jx2opWN7TeiuvQlwu+Obm0La1hbZMBm1bGQS2ttC2tYWWmZnisc2EEPI2UV8nadb4PD6cDZzhbOBcbt2rkleliUXBfcUr++9s5Bfm42nhU+QX5uNZ4TP8VfSXapUV120MB1cigZaxMbSMjKBlYgyekdE/7/9ZZmoCbRsbcAWCOtVDCCH1jXomCKlGsbwYz149w9PCp3hW+Az5hfkoKCrAq5JXKJIXoUhehFclr9DjrBzcoiKAMTC5HJAzcPha4AiF4ApF4IpFpT+LROAKheAIReCKSt/zDAzAFYnU3VRCCKkVSiYIIYQQUidcdQdACCGEkKaNkglCCCGE1AklE4QQQgipE0omCCGEEFInlEw0sPj4eOjr66s7DJWFh4ejd+/e6g6DEEJIE0LJhAru3r2LESNGwMLCAtra2rCxscHnn3+OJ0+U73Yok8nwzTffqCfIf1y5cgXvv/8+TExMIBQKIZPJMGDAAOTkqHab5//973+Ij49v2CCJxmhsyTSHw8GePXvUHQYhzQ4lE9XIysqCt7c3bty4ga1bt+LmzZtYvXo1jh07Bj8/P+Tm5qolrqKionLLHj16hC5dusDAwAA//PADUlNTERcXBwsLC/z9998qlaunp9eoDv6k4YSHh4PD4ZR7hYSE1FsdAwYMQEZGRr2VV1fZ2dno1q2busMgpPlhpEohISHMysqKPX/+XGl5dnY2E4vFbMyYMYwxxvz9/RkApRdjjMXFxTE9PT12+PBh5uzszCQSCQsODmYPHjxQKm/dunXM2dmZCQQC5uTkxFauXKlYd+vWLQaAbdu2jb377rtMIBCwuLi4crHu3r2baWlpsaKioirb9Ntvv7EePXowHR0dJpVKWefOndnNmzcZY4wNHz6c9erVS7FtSUkJi4mJYTKZjAmFQubh4cF27NihWH/8+HEGgB09epS1a9eOiUQi5ufnx9LS0pTq3LdvH/P29mYCgYAZGhqy3r17K9a9fPmSRUREMAsLCyYWi5mPjw87fvx4lW0gdTd8+HAWEhLCsrOzlV65ubnqDq3eFRYWqjsEQpo1Siaq8OTJE8bhcFhMTEyF60ePHs1atGjB5HI5e/LkCbOysmKzZ89WHJQZK00m+Hw+69q1Kzt//jy7ePEic3FxYYMHD1aUs2nTJmZubs4SExNZVlYWS0xMZAYGBiw+Pp4x9jqZkMlkim3eTEYYY+zMmTMMANu+fTuTy+UVxnzv3j1mYGDA+vbty86fP8/S09PZhg0bFCf/N5OJ6Oho5uzszA4fPswyMzNZXFwcEwgE7MSJE4yx18mEr68vO3HiBLt+/Tp75513WMeOHRVlJCUlMR6Px6ZPn85+//13lpKSovSZjho1inXs2JGdPHmS3bx5ky1atIgJBAKWkZGhyq+J1NKbv+s3AWDr1q1jvXv3ZiKRiDk4OLC9e/cqbbN3717m4ODABAIBCwgIYPHx8QwAy8vLY4y9TqbLzJgxg3l6erKNGzcyGxsbpqurywYMGMCePXum2Ka6BJYxxq5du8ZCQkKYRCJhJiYmbMiQIezRo0eK9f7+/mzcuHHs888/Z4aGhiwgIEDRpt27dzPGXv9fJSYmsoCAACYSiZiHhwf75ZdflOpau3Yts7KyYiKRiPXu3ZstWbJEqU2EEEomqvTrr78qHXzetHTpUgaA/fnnn4wxxmxsbNiyZcuUtomLi2MAFN/8GWNs5cqVzNTUVPHe3t6ebdmyRWm/OXPmMD8/P8bY64PeN998U23MU6dOZVpaWszAwICFhISwhQsXsocPHyrWR0VFMVtbW/bq1asK9//3Cebly5dMLBaXO7iOHDmSDRo0iDGm3DNR5sCBAwwAe/HiBWOMMT8/PxYWFlZhfX/88Qfj8Xjs/v37Ssu7dOnCoqKiqm0vqT1VkgkrKyu2ZcsWduPGDTZhwgQmlUrZkydPGGOMZWVlMT6fzyIjI1laWhrbunUrs7S0rDaZkEqlrG/fvuzatWvs5MmTzMzMjE2dOlWxTXUJbF5eHjM2NmZRUVEsNTWVXbp0iQUFBbHAwEBFGf7+/kwqlbJJkyaxtLQ0RbJcUTLh7OzMkpKSWHp6Ovvggw+YjY2Nonfv1KlTjMvlskWLFrH09HS2cuVKZmBgQMkEIW+gZKIKZcnErl27KlyvajIhFouVlu3atYtxOBzGGGMFBQUMABOJREwikSheAoGAmZiYMMZeH/ROnTqlUtyPHz9m27dvZxEREczOzo7p6+uzq1evMsYY69atGxs2bFil+/77BPPbb78xAEpxSSQSxufzmY+PD2PsdTKRk5OjKOPSpUsMAPvjjz8YY4yJRCK2YcOGCutLSkqqsA4tLS324YcfqtReUjvDhw9nPB6v3Gc/d+5cxljpife///2vYvuyv9VDhw4xxhibMmUKa926tVKZX3/9dbXJhFgsVuqJmDRpEvP19WWMqZbAzpkzh7333ntK6+/evcsAsPT0dMZYaTLh5eVVrs0VJRPr169XrL9+/ToDwFJTUxljjA0YMID16NFDqYywsDBKJgh5Az01tAoODg7gcDhITU1Fnz59yq1PTU1FixYtYGxsXGU5fD5f6T2HwwH755EoBQUFAIB169bB19dXaTsej6f0XiKRqBS3oaEh+vfvj/79+yMmJgZeXl5YvHgxEhISIKrBw6TKYjtw4AAsLS2V1gneeHLlv9tY9hhsuVwOAFXWWVBQAB6Ph4sXL5Zrr1QqVTlWUjuBgYH47rvvlJYZGBgofvbw8FD8LJFIoKurq5gZlJ6ejvbt2yvt6+PjU22dMpkMOjo6ivfm5uaKMm/evInnz58jKChIaZ9Xr17By8sLQOmMpePHj1f495GZmQlHR0cAQLt27aqNBVBuo7m5OQAgJycHzs7OSE9PL/e/7+Pjg6SkJJXKJkRTUDJRBUNDQwQFBWHVqlWYOHGi0knx4cOH2Lx5M4YNG6Y4eWpra6OkpGaPoTY1NYWFhQWysrIQFhZWr/GXxWRvb6+YzeHh4YGEhAQUFRWVS3Le5OrqCoFAgDt37sDf37/WMXh4eODYsWP46KOPyq3z8vJCSUkJcnJy8M4779S6DlI7EokEDg4Ola6vKBEuSxJrq6oyVUlgCwoKEBoaigULFpQruywZAFRPvqtKhAkhqqFkohrffvstOnbsiODgYERHR8PW1hbXr1/HpEmTYGlpiblz5yq2lclkOHnyJAYOHAiBQAAjIyOV6pg1axYmTJgAPT09hISEoLCwEBcuXEBeXh6+/PJLlWNNSkrCtm3bMHDgQDg6OoIxhv379+PgwYOIi4sDAIwfPx4rVqzAwIEDERUVBT09Pfz666/w8fGBk5OTUnk6OjqIjIzExIkTIZfL0blzZ+Tn5+P06dPQ1dXF8OHDVYprxowZ6NKlC+zt7TFw4EAUFxfj4MGDmDJlChwdHREWFoZhw4ZhyZIl8PLywqNHj3Ds2DF4eHigR48eKrefvF1OTk44ePCg0rLz58/XqUxVEti2bdsiMTERMpkMWloNewhzcnIq16a6tpGQ5ojuM1GNVq1a4cKFC7Czs8OHH34Ie3t7fPzxxwgMDMSZM2eUuoRnz56N27dvw97evtpLH/82atQorF+/HnFxcXB3d4e/vz/i4+Nha2tbo1hdXV0hFosRERGBNm3aoEOHDti+fTvWr1+PoUOHAijtbfnpp59QUFAAf39/tGvXDuvWrau0l2LOnDmYNm0a5s2bBxcXF4SEhODAgQM1ii0gIAA7duzAvn370KZNG/znP//BuXPnFOvj4uIwbNgwREREwMnJCb1798b58+dhbW1do/aTmissLMTDhw+VXo8fP1Zp308++QRpaWmYMmUKMjIysH37dsUNz8q+4dfUvxPYhIQEZGZm4tKlS1ixYgUSEhIAAOPGjUNubi4GDRqE8+fPIzMzEz/88AM++uijGvcMVuezzz7DwYMHsXTpUty4cQNr1qzBoUOHat0+QpotdQ/aIISox/Dhw8vdGwUAc3JyYowpD1Yso6enp3SPkzenhn733XdKM3kqmxr6b8uWLWM2NjaK93K5nH3zzTfMycmJ8fl8ZmxszIKDg1lycrJim4yMDNanTx+mr6/PRCIRc3Z2Zl988YViSrS/vz/7/PPPy7UZFQzAvHz5smJ9Xl4eA6B0n5O1a9cyS0tLxdTQ6OhoZmZmVvWHS4iG4TD2z0hAQgipo7lz52L16tW4e/euukNpMKNHj0ZaWhp+/vlndYdCSKNBYyYIIbW2atUqtG/fHoaGhjh9+jQWLVqE8ePHqzuserV48WIEBQVBIpHg0KFDSEhIwKpVq9QdFiGNCiUThJBau3HjBqKjo5Gbmwtra2tEREQgKipK3WHVq3PnzmHhwoX466+/YGdnh+XLl2PUqFHqDouQRoUucxBCCCGkTmg2ByGEEELqhJIJQgghhNQJJROEEEIIqRNKJgghhBBSJ5RMEEIIIaROKJkghBBCSJ1QMkEIIYSQOqFkghBCCCF1QskEIYQQQurk/wGT/q7iv3wBdAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(5,5))\n", + "plt.pie(list(lst.values), labels=list(lst.keys()), autopct='%1.1f%%') # Plot the pie chart\n", + "plt.title('Undergrad Major') # Add a title\n", + "plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle\n", + "\n", + "# Display the pie chart\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['UndergradMajor'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "df.dropna(subset=['UndergradMajor'], inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['UndergradMajor'].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Job Status" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "JobSearchStatus\n", + "I‚Äôm not actively looking, but I am open to new opportunities 54\n", + "I am not interested in new job opportunities 18\n", + "I am actively looking for a job 11\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['JobSearchStatus'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "df.dropna(subset=['JobSearchStatus'], inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "# refactoring JobStatus\n", + "# changing the jobstatus to seeking and non seeking\n", + "def refactor_job(df):\n", + " '''function to change JobStatus category to Seeking and Non Seeking'''\n", + " \n", + " conditions_job = [(df['JobSearchStatus'] == 'I am actively looking for a job'),\n", + " (df['JobSearchStatus'] == 'I am not interested in new job opportunities')\n", + " | (df['JobSearchStatus'] == 'I’m not actively looking, but I am open to new opportunities')]\n", + " \n", + " choices_job = ['Seeking', 'Not seeking']\n", + " \n", + " df['JobSearchStatus'] = np.select(conditions_job, choices_job, default=np.nan)\n", + " \n", + " return df\n", + "\n", + "df = refactor_job(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "JobSearchStatus\n", + "nan 54\n", + "Not seeking 18\n", + "Seeking 11\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['JobSearchStatus'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['JobSearchStatus'].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Employment" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Employment\n", + "Employed full-time 77\n", + "Employed part-time 6\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Employment'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Employment'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "df['Employment'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "#im not considering the retired person here\n", + "#Refactoring the employment\n", + "def refactor_emp(df):\n", + " \n", + " conditions_emp = [(df['Employment'] == 'Employed full-time'),\n", + " (df['Employment'] == 'Independent contractor, freelancer, or self-employed'),\n", + " (df['Employment'] == 'Not employed, but looking for work'),\n", + " (df['Employment'] == 'Employed part-time')]\n", + " \n", + " choices_emp = ['Full-time', 'Self-employed', 'Not employed', 'Part-time']\n", + " \n", + " df['Employment'] = np.select(conditions_emp, choices_emp, default=np.nan)\n", + " \n", + " return df\n", + "\n", + "df = refactor_emp(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "lst=df['Employment'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAFeCAYAAAAR/sFoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA740lEQVR4nO3dd3xT5eIG8Ockadp0073SFiir0ELZ1ovsJQIqsgQqqFwFUUG9ggsBRcGrIEOcP8EBigqIogiCoIKKrLJHJ5vuvZIm5/dHL9FaRkuSvhnP9/PpR3s4SZ7Op+97xivJsiyDiIjICShEByAiImosLD0iInIaLD0iInIaLD0iInIaLD0iInIaLD0iInIaLD0iInIaLD0iInIaLD0iInIaLD1yeDt37oQkSdi5c6foKEQkGEuPLGrVqlWQJOmab3/88YfoiE5jzZo1ePPNN2+435w5c677Nbvy1qtXL6tnJrI2legA5JjmzZuHpk2b1tkeExMjII1zWrNmDY4ePYrp06dfd7+777671teltLQUU6ZMwV133YW7777btD04ONhaUYkaDUuPrGLw4MHo3Lmz6BhUD/Hx8YiPjze9n5ubiylTpiA+Ph7jx48XmIzI8ji9SUJkZmZCkiS8/vrreOutt9CsWTO4u7tjwIABOHfuHGRZxksvvYSIiAhoNBoMHz4c+fn5tZ4jOjoad9xxB7Zu3YoOHTrAzc0NsbGxWL9+fb0yfPnll+jUqRM0Gg0CAgIwfvx4XLhwwfTvK1euhCRJOHjwYJ3HvvLKK1Aqlab9e/XqhXbt2uHw4cPo2bMn3N3dERMTg6+++goA8PPPP6Nbt27QaDRo1aoVtm3bVuc5L1y4gPvvvx/BwcFwdXVF27Zt8eGHH9ba58rxyS+++ALz589HREQE3Nzc0LdvX6Smppr269WrF7777jucOXPGND0ZHR1dr8/LP6Wnp0OSJCxevLjOv/3222+QJAmfffYZgL+mSk+ePIlRo0bB29sb/v7+ePzxx1FZWVnn8Z9++qnpa+Dn54cxY8bg3LlzN5WTqF5kIgtauXKlDEDetm2bnJOTU+stNzfXtF9GRoYMQO7QoYMcGxsrL1q0SH7++edltVotd+/eXX722WflxMREeenSpfJjjz0mS5IkT5o0qdZrRUVFyS1btpR9fX3lWbNmyYsWLZLj4uJkhUIhb9261bTfjh07ZADyjh076uTs0qWLvHjxYnnWrFmyRqORo6Oj5YKCAlmWZbm4uFjWaDTyk08+WefjjI2Nlfv06WN6v2fPnnJYWJis1Wrl//znP/KyZcvk2NhYWalUyp9//rkcEhIiz5kzR37zzTfl8PBw2cfHRy4uLjY9/vLly3JERISs1WrlefPmyW+//bY8bNgwGYC8ePHiOh9LQkKC3KlTJ3nx4sXynDlzZHd3d7lr166m/bZu3Sp36NBBDggIkD/55BP5k08+kTds2FCvr2FOTo4MQH7xxRdN22699Va5U6dOdfadOnWq7OXlJZeVlcmyLMsvvviiDECOi4uThw4dKi9fvlweP368DECeMGFCrce+/PLLsiRJ8ujRo+UVK1bIc+fOlQMCAmp9DYgsjaVHFnWlTK725urqatrvSukFBgbKhYWFpu3PPPOMDEBu3769rNfrTdvHjh0rq9VqubKy0rQtKipKBiCvW7fOtK2oqEgODQ2VExISTNv+WXo6nU4OCgqS27VrJ1dUVJj227RpkwxAnj17dq3XDQsLkw0Gg2nbgQMHZADyypUrTdt69uwpA5DXrFlj2nby5EkZgKxQKOQ//vjDtH3Lli11Hv/AAw/IoaGhtf4wkGVZHjNmjOzj4yOXl5fX+ljatGkjV1VVmfZbsmSJDEA+cuSIaduQIUPkqKgouaGuVnrvvvuuDEA+ceKEaZtOp5MDAgLk++67z7TtSukNGzas1nNOnTpVBiAfOnRIlmVZzszMlJVKpTx//vxa+x05ckRWqVR1thNZCqc3ySreeust/Pjjj7XeNm/eXGe/kSNHwsfHx/R+t27dAADjx4+HSqWqtV2n09WafgSAsLAw3HXXXab3vb29kZSUhIMHD+Ly5ctXzbZv3z5kZ2dj6tSpcHNzM20fMmQIWrduje+++860LSkpCRcvXsSOHTtM21avXg2NRoMRI0bUel5PT0+MGTPG9H6rVq3g6+uLNm3amD6uv3+M6enpAABZlrFu3ToMHToUsiwjNzfX9DZw4EAUFRXhwIEDtV5r0qRJUKvVpvd79OhR6zktbdSoUXBzc8Pq1atN27Zs2YLc3NyrHvd75JFHar3/6KOPAgC+//57AMD69ethNBoxatSoWh9vSEgIWrRoUevzTWRJPJGFrKJr1671OpElMjKy1vtXClCr1V51e0FBQa3tMTExkCSp1raWLVsCqDluGBISUuc1z5w5A6CmlP6pdevW2LVrl+n9/v37IzQ0FKtXr0bfvn1hNBrx2WefYfjw4fDy8qr12IiIiDpZfHx8bvix5OTkoLCwEO+99x7ee++9OpkAIDs7u9b7//y8NWnSpNZzWpqvry+GDh2KNWvW4KWXXgJQU/7h4eHo06dPnf1btGhR6/3mzZtDoVAgMzMTAJCSkgJZluvsd4WLi4tlPwCi/2HpkVBKpbJB22VZtmacq+a499578f7772PFihXYvXs3Ll68eNXRzc1+LEajEUDN6Pa+++676r5/P7uyPs9pDUlJSfjyyy/x22+/IS4uDt988w2mTp0KheLGE0b//GPAaDRCkiRs3rz5qh+Lp6enxXIT/R1Lj+xaamoqZFmu9Uv19OnTAHDNsxWjoqIAAKdOnaozSjl16pTp369ISkrCG2+8gW+//RabN29GYGAgBg4caLGPITAwEF5eXjAYDOjXr5/FnvefRWOuQYMGITAwEKtXr0a3bt1QXl6OCRMmXHXflJSUWtdppqamwmg0mr4mzZs3hyzLaNq0qWlkTtQYeEyP7NrFixexYcMG0/vFxcX4+OOP0aFDh6tObQJA586dERQUhHfeeQdVVVWm7Zs3b8aJEycwZMiQWvtfuY7tgw8+wLp16zBmzJhaxxvNpVQqMWLECKxbtw5Hjx6t8+85OTk39bweHh4oKioyN56JSqXC2LFj8cUXX2DVqlWIi4urMwK94q233qr1/rJlywDUXL8J1FwQr1QqMXfu3DqjU1mWkZeXZ7HcRH/HkR5ZxebNm3Hy5Mk62xMTE9GsWTOLvU7Lli3xwAMPYO/evQgODsaHH36IrKwsrFy58pqPcXFxwcKFCzFp0iT07NkTY8eORVZWFpYsWYLo6GjMmDGjzmOSkpLw1FNPAYBVLthesGABduzYgW7dumHy5MmIjY1Ffn4+Dhw4gG3bttW5RrE+OnXqhLVr1+KJJ55Aly5d4OnpiaFDh5qVMykpCUuXLsWOHTuwcOHCa+6XkZGBYcOGYdCgQfj999/x6aef4t5770X79u0B1Iz0Xn75ZTzzzDPIzMzEnXfeCS8vL2RkZGDDhg3497//bfp8E1kSS4+sYvbs2VfdvnLlSouWXosWLbBs2TL85z//walTp9C0aVOsXbv2htOPEydOhLu7OxYsWICZM2fCw8MDd911FxYuXAhfX986+48bNw4zZ85E8+bN0bVrV4vlvyI4OBh//vkn5s2bh/Xr12PFihXw9/dH27Ztr1su1zN16lQkJydj5cqVWLx4MaKioswuvU6dOqFt27Y4ceIExo0bd8391q5di9mzZ2PWrFlQqVSYNm0a/vvf/9baZ9asWWjZsiUWL16MuXPnAqg5gWnAgAEYNmyYWTmJrkWSG/vMACILiY6ORrt27bBp0yarv1Zubi5CQ0Mxe/ZsvPDCC1Z/PVuWkJAAPz8/bN++vc6/zZkzB3PnzkVOTg4CAgIEpCO6Ph7TI6qHVatWwWAwXPPEDWexb98+JCcnIykpSXQUopvC6U2i6/jpp59w/PhxzJ8/H3feeedN37/S3h09ehT79+/HG2+8gdDQUIwePVp0JKKbwpEe0XXMmzcPTzzxBDp06GA6A9EZffXVV5g0aRL0ej0+++yzWneyIbInPKZHREROgyM9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGiw9IiJyGirRAYjsiSzLyC/ToahCj8IKPYoq9Cgq16OwXIeiimoUVuj+2va/fy+u0MMoA2qlBJVSARelBBelAmqVAirFX//v8r9/UykVcFUpEODpiiAvVwR5u9X818sVwd5u8HDljy3RzeJPD9FV6A1GZOaWITW7tOYtpxQpWaVIzy1Fpd4oNJu3mwpaP3dom7hD66cx/X/TAA9E+btDkiSh+YhsmSTLsiw6BJEoFToD0nJqii0lu8RUcmfyylFttL8fDW83FeIjfBEf4YP4CF+01/og1EcjOhaRzWDpkVPJKanCnxn52JuZjz0Z+Th1uRh22G0NEujlivYRPmgf4Yt4rS/aR/jA110tOhaRECw9cmi5pVXYlZKL39Py8GdmPjJyy0RHsgmRfu5or/VFYnN/9G0ThCAvN9GRiBoFS48cSlW1AXszCvBrag5+PZ2LE5eLwe/w65MkoH2EL/q1CUK/2GC0DvEWHYnIalh6ZPcq9QZsP5GNr5Mv4NeUHOEnmtg7rZ8GfVsHo39sMLo19YNKySubyHGw9MguGY0yfkvLw9fJF7Dl6GWUVFWLjuSQvN1U6NkqCP3aBKF36yB4u7mIjkRkFpYe2ZWjF4qw4eAFfHvoIrJLqkTHcSouSgm3tQjEvd0i0btVEBQKXhpB9oelRzbvbF45NiZfwNfJF5CWwxNRbEG4rwZjumgxuquWJ8GQXWHpkU2qqjbg64MXsHbvORw4Wyg6Dl2Di1JC/9hgjOsWhcTm/rwwnmweS49sSnGlHp/+cQardmdy+tLONAvwwNiukRjZOYLXAZLNYumRTcgqrsT/7crAZ3vO8qQUO+eqUmBIXCjGdY9Epyg/0XGIamHpkVCp2SV49+d0bEy+CJ2Blxo4moRIXzzetwV6tQoSHYUIAEuPBNl/Jh9v70zH9pNZvHjcCXTQ+uLxfi3Qm+VHgrH0qFH9eDwL7/ychv1nCkRHIQE6aH0xvR9HfiQOS48axZHzRZj77THsY9kRgK7Rfpg5uDU6RTURHYWcDEuPrCqnpAqv/XAS6w6cd/jVDKjh+scGY+agVogJ8hIdhZwES4+sQldtxIe7M7D8p1SU8mxMug6lQsKIjuGY0b8l1/4jq2PpkcX9eDwL8787jsy8ctFRyI54qJV4ckArTEyM5i3OyGpYemQxKVklmLfpOH5NyRUdhexYB60vFo6IR6sQTnmS5bH0yGxF5Xos+vEUVu85i2oeuCMLcFFKeOi25ni0bwxcVUrRcciBsPTILBsOnse8b4+joFwvOgo5oGaBHlhwdzy6NuWdXcgyWHp0U/LLdHh2/RH8cOyy6Cjk4CQJGNMlEs/c3prr+ZHZWHrUYFuPXcazG44gt1QnOgo5kWBvV8wb3g4D24aIjkJ2jKVH9VZSqcecb45j3YHzoqOQExvUNgTz7mzLdfzoprD0qF4OnC3AY58dxPmCCtFRiBDg6Yrl9yagezN/0VHIzrD06LpkWcbbP6dh0dbTPDOTbIpKIeHpQa3w79uai45CdoSlR9eUXVyJJ744hF2pvO6ObNfgdiH478j28HRViY5CdoClR1f1y+kczFibjLwynqxCtq9ZgAfemdAJLYN5QTtdH0uP6li1OwMvfXcCBk5nkh1xVyvx6t1xGN4hXHQUsmEsPTIxGGXM+/YYPvr9jOgoRDftvlui8PwdsXBRKkRHIRvE0iMAQGlVNR5dcwA7TuWIjkJkto6RvlgxrhNCfHhZA9XG0iNcLKzA/av24uTlEtFRiCwmwFON5fd25GUNVAtLz8kdOV+EBz7ai+ySKtFRiCxOrVJg2dgE3sWFTFh6TuyHo5cxY20yKvQG0VGIrEapkPDaiHiM6BQhOgrZAJaek3r35zQs+OEk+NUnZyBJwOw7YjHp1qaio5BgLD0nU20w4oWNR/HZn+dERyFqdNP7tcD0fi1FxyCBWHpOpNpgxNTVB7D1eJboKETCTLo1GrPviIUkSaKjkAAsPSdhMMp47LOD+O7IJdFRiIQb0TECr90TD6WCxedsWHpOwGiUMeOLZGxMvig6CpHNGNg2GEvHJsBVpRQdhRoRS8/BybKMp748zDXwiK7i1hh/vDehMzx4s2qnwdJzYLIs49kNR3jSCtF1JET64pMHunGVBifBm9M5sNkbj7HwiG7g4NlCPPTJPlRV83pVZ8DSc1Dzvj2OT/7gjaOJ6mN3ah4e/yyZK4s4AZaeA3r1+xP4cHeG6BhEduWHY5fx3IYjomOQlbH0HMzrW07h3V/SRccgskuf7z2HhT+cFB2DrIil50A+3JWB5TtSRccgsmtv70zDSs6UOCyWnoPYlZKL+d+fEB2DyCG8tOk4fuSdixwSS88BnMkrw7TPDvAgPJGFGGXgsc8O4vD5QtFRyMJYenaurKoakz/eh8JyvegoRA6lQm/AAx/tw/mCctFRyIJYenZMlmXMWJuM01mloqMQOaSckircv2oviiv5R6WjYOnZscU/nuaKCURWdjqrFE+sTRYdgyyEpWenNh+5hGU8U5OoUWw7kY3/28UzOh0BS88OnbxcjCe/PMRVz4ka0cLNJ3liiwNg6dmZgjIdJn+8D+U63ieQqDHpDEZMW3MQJTy+Z9dYenak2mDEI2sO4Fx+hegoRE7pbH45Zq3nrcrsGUvPjrzx42n8lpYnOgaRU/vu8CWs3sObudsrlp6d2JuZj3d/ThMdg4hQs4rJycvFomPQTWDp2YHSqmo88UUyeMMVIttQVW3EI6sPoFxXLToKNRBLzw7M+/YYj+MR2Zi0nDK88PUx0TGogVh6Nm7rscv4Yt950TGI6CrWHTiPdfv582lPWHo2LL9Mh2d4phiRTXth41Gcy+f9Oe0FS8+GzfnmGPLKdKJjENF1lOsMmPstpzntBUvPRm0/kYVvDl0UHYOI6mHbiWxs431w7QJLzwaVVOrx3IajomMQUQPM+fYYKvW8U5KtY+nZoFe+P4nLxZWiYxBRA5wvqMCyn1JEx6AbYOnZmN/T8vD53rOiYxDRTXj/lwyk5XB9S1vG0rMhRqOMud8e4+oJRHZKZzDixY08qcWWsfRsyLoD53HyconoGERkhl2puTwJzYax9GxEpd6ART+eFh2DiCxg/nfHUVrFW5TZIpaejfhwdwYuFfHkFSJHkFVchUVb+UesLWLp2YCCMh3e3skVFIgcyUe/Z+L4Ra7EYGtYejZg2U+pKKnkVAiRIzEYZczbxJNabA1LT7Bz+eX49A8uSEnkiP5Iz8eedC78bEtYeoK9tuUUdAaj6BhEZCXLfkoVHYH+hqUn0OHzhdh0mKc2EzmyXam5OHC2QHQM+h+WnkCvfH+CF6ITOYGl23l7MlvB0hPkp5NZ+CM9X3QMImoEO0/l4PD5QtExCCw9YZZs419+RM6Ex/ZsA0tPgP1n8nHofJHoGETUiLadyOJ1ezaApSfAh7szRUcgokYmy8DyHZzhEY2l18guFVVgy9HLomMQkQCbj15GShZvKi8SS6+Rffz7GVQbecomkTOSZR7bE42l14gq9QZ89icXiCVyZpsOX0Q6F5oVhqXXiDYcvIDCcr3oGEQkkFGumfEhMVh6jWgVT2AhItT8AVypN4iO4ZRYeo1kV0ouTvEANhEBKKrQ4/sjl0THcEosvUaycneG6AhEZEN4fF8Mll4jyMwtw0+nskXHICIbsjezgJcvCMDSawQf/Z7JG0sTUR2f/XlOdASnw9KzMoNRxsZkLh9ERHVtTL6Aaq6n2ahYelb2R3oe8st0omMQkQ3KK9Ph59M5omM4FZaelfEMLSK6nvUHL4iO4FRYelZkNMrYcixLdAwismHbjmehuJI3rWgsLD0r2pORj9zSKtExiMiGVVUb8f1hzgg1FpaeFW0+ym9kIroxTnE2HpaelRiNMn7gEkJEVA/7MvNRWM4T3hoDS89K9p0pQHYJpzaJ6MaMMvBLSq7oGE6h0UqvV69emD59uun96OhovPnmmw1+nokTJ+LOO++0WC5r4VmbRNQQv/DShUbRoNKbOHEiJEmq85aaavlFETMzMyFJEpKTk2ttX7JkCVatWmXx17MkWZax5RinNomo/lh6jUPV0AcMGjQIK1eurLUtMDDQYoFuxMfHp9Fe62YdOFuIS0WVomMQkR3JLqnC8YvFiA3zFh3FoTV4etPV1RUhISG13h544IE6U47Tp09Hr169bjpY06ZNAQAJCQmQJMn0XP+c3uzVqxceffRRTJ8+HU2aNEFwcDDef/99lJWVYdKkSfDy8kJMTAw2b95c6/mPHj2KwYMHw9PTE8HBwZgwYQJycy0zp86pTSK6Gbw7i/XZ7Iksf/75JwBg27ZtuHTpEtavX3/NfT/66CMEBATgzz//xKOPPoopU6Zg5MiRSExMxIEDBzBgwABMmDAB5eXlAIDCwkL06dMHCQkJ2LdvH3744QdkZWVh1KhRFsm+gysqENFN4BSn9TW49DZt2gRPT0/T28iRI62RyzRl6u/vj5CQEPj5+V1z3/bt2+P5559HixYt8Mwzz8DNzQ0BAQGYPHkyWrRogdmzZyMvLw+HDx8GACxfvhwJCQl45ZVX0Lp1ayQkJODDDz/Ejh07cPr0abNyZ5dUIj2nzKznICLntP9MAcqqqkXHcGgNLr3evXsjOTnZ9LZ06VKzQzz88MO1irSh4uPjTf+vVCrh7++PuLg407bg4GAAQHZ2zQjs0KFD2LFjR63XbN26NQAgLS3NnA8Ff2bkm/V4InJeOoMRv6XliY7h0Bp8IouHhwdiYmJqbVMoFJD/sWCcXl//e8nNmzcPTz31VEOjmLi4uNR6X5KkWtskSQIAGI01S3iUlpZi6NChWLhwYZ3nCg0NvekcQM2qCkREN+uX0znoHxssOobDanDpXU1gYCCOHj1aa1tycnKdMrqWoKAgBAUF1dqmVqsBAAaDwRIRa+nYsSPWrVuH6OhoqFQW+RSY7EnnSI+Ibh5PZrEui5zI0qdPH+zbtw8ff/wxUlJS8OKLL9YpwYYKCgqCRqMxnWRSVFRkiagAgEceeQT5+fkYO3Ys9u7di7S0NGzZsgWTJk0yq2TzSquQkl1qsZxE5HzO5pcjI5fnBViLRUpv4MCBeOGFF/D000+jS5cuKCkpQVJSklnPqVKpsHTpUrz77rsICwvD8OHDLREVABAWFobdu3fDYDBgwIABiIuLw/Tp0+Hr6wuF4uY/JXszCyyWkYicFw+TWI8k//NgHN20VzefwLs/p4uOQUR2LumWKMwb3k50DIdks9fp2aPks4WiIxCRAzhxqVh0BIfF0rMQg1HGkQuWO+5IRM7r5KWSOmfEk2Ww9CzkdFYJynWWP9OUiJxPSVU1zuVXiI7hkFh6FnKQU5tEZEHHOcVpFSw9Czl8vlB0BCJyIDyuZx2WvTLbiaXb4HU1xqpyFP76KcpTfoexvAjqoGZo0u/fcA1tCdlQjcJfP0FF2j5UF12GwtUDblHt4dtzIlRe/td8TtloQNGuNSg9vhPGsgIoPf3g0a4vfBLHmO58U7RnPYr/XAcA8Ok2At5d7zY9vuriKeRvXYGQpEWQFErrfgKI7BhLzzpYehZyNq9cdIQ68n5YBn3OGQTc8SSUnn4oO7YDWZ8/j7AHV0Ch1kB3OQ0+iWOgDmoKY2Up8re/h5z1LyH0vjev+ZzFe9ahJHkz/IfMgDogElWXUpC3eQkUrh7w7jwMuuwMFO1ajcB7ZgOyjJx18+DWtCPUgdGQjQbkbXkL/oOmsfCIbuDEZZaeNXB60wIq9QZkldjWorFGfRXKT+2Gb+9JcNO2g0uTMPj+axxcmoSi5OBmKFw9EDzmZXi06QEX/wi4hreGX/+Hobuciuriay+NVHXhBDQx3eDevAtUPsHwaP0vaKIToLtUszqFPu88XAKjoYlqD010B7gERkOfdx5ATWG6advCNbRlo3wOiOzZ+YIKFFfW/x7GVD8sPQs4l18Omzu72GgAZCMk5T9uxq1yRdX5Y1d/SFU5AAkK12uvdOEa3gaVZw5Bn38BAKDLTkfl+eNwa9YJAKAOjEZ1wQVUF2ejuigb1fkXoA6Igr7gEkqPbINvjwmW+fiIHJws11y6QJbF6U0LOGODU5sKV3e4hrVG0W+fw8VfC6WHL8pO/IKqiyehalJ3JQm5WofCnSvhHnsbFK7u13xe7+73wFhVjovvPwwoFIDRCN/bJsCzbW8AgEuAFr63JSFr7QsAAN+e98ElQIusz59Dk16TUJFxAEW71wAKFfz6/RtuWt51guhaTlwqRtem115LlBqOpWcBZ/Jtr/QAwP+OJ5G3eQkurLgPkBRQhzSHR5vbUHU5tdZ+sqEaORsX1DxmwCPXfc7yE7+i7PhOBAx9Ci6BUdBlpaNg+/tQevrDM64vAMAr4XZ4Jdxuekzpke2Q1Bq4hrfGhfcfRmjSIhhK8pD7zWsIf+j/IKnqtxoHkbPhySyWx9KzgLN5tnfmJgC4NAlFyL0LYNRVwqgrh8rTDzkbF8LFN8S0z5XCqy7KRvDYV647ygOAgp0r4dP9HnjE9gTwv+nM4mwU/fGlqfT+zlBehKLdaxB870JUXTwNF78wuPiFw8UvHLKhGvqCC1AHRlv04yZyFBcKeYG6pfGYngXY6kjvCoXaDSpPPxgqS1GRcQCaFt0B/K3wCi4ieMx8KDXeN3wuWV8FSLW/bSRJAcjGq+5f8NMH8OpyJ1TeAYBsgPz3pZuMBsB49ccREZBTUiU6gsPhSM8CbPFyBQCoSN8PAFD5haO64BIKdn4IF78IeMb1qym8r1+FLisNQffMBoxGGEprlkZSaDxNJ8Bkff4sNC1ugXenoQAATUxXFP22FkrvQKgDIqHLSkPx3q/hGd+/7utnHIQ+/wL8h8wAAKhDWqI6/3zNtYEluYBCCZVfeGN8KojsUm4pS8/SWHpmMhplnC+wzSkIY1U5Cn/5CNUluVC6ecG9VSJ8b0uCpFShuigLFal7AACXVj5W63HBY1+BW2Q8AEBfcBmuFX8dV/Dr9xAKf/0U+VtXwFheBKWnHzw7DIbvrWNqv7a+Cvnb3kHgsJk1I0EAKu8ANOn3EHI3vwlJ6QL/ITOgcHG15qeAyK7ll+lgMMpQKiTRURwG19Mz0/mCcvxr4Q7RMYjIQe19rh8CvfjHoaXwmJ6ZbHVqk4gcA4/rWRZLz0wXi2zrTixE5Fh4XM+yWHpmKtdVi45ARA6MIz3LYumZqayKC8cSkfVwpGdZLD0zVXCkR0RWxNKzLJaemcp0HOkRkfVwetOyWHpmKmfpEZEV5ZbqREdwKCw9M/FEFiKyJk5vWhZLz0wc6RGRNekMvD+tJbH0zMSRHhFZk8HIm2ZZEkvPTBzpEZE1VRtYepbE0jNTOa/TIyIr4kjPslh6ZirXc3qTiKynmqVnUSw9M3GkR0TWZOBCyxbF9fTMxL/BqKHGhV7Ek24b4XfpV9FRyB64+gHIEJ3CYXCkZyaNi1J0BLIzqy+FoWPGFDzluxg5YX1ExyFbJ/HXtCXxs2kmD1eWHt2cry4Ho0v6g5jmtRSXwwdABlfHpqtQ8HeMJbH0zOSu5gwxmWdTTgC6p03Evz2X4XzEEMj8y57+jt8PFsXPppk40iNL+THXD/9KHYf7NMuRGTEcsoJ/UBEAlZvoBA6FpWcmjvTI0n7J90Wv1NEYo16OVO0IyAoX0ZFIJFcv0QkcCkvPTO5qjvTIOvYUeqNfygjcpXoLJ7WjIStdRUciEdx8RCdwKCw9M3GkR9aWXOyJQSnDcbv0Fo5ox0F2cRcdiRqTq7foBA6FpWcmD470qJGcKHXH0JQhGGBchgPaiZDVHqIjUWPg9KZFsfTM5O7KkR41rpQyDe5OGYCe+mXYo30QMkcCjs2NX19LYumZicf0SJSzFW4YndIHiVVLsUv7EIxuTURHImvgSM+iWHpm4vQmiXapUo3xKT3RrfxN/KR9BEb3ANGRyJI4krcolp6ZPDi9STYiR+eC+1NuRaeSRdgS8TgMHiGiI5EleASKTuBQ+BvbTAGePI2cbEuBXoWHUrvBQ9UZC6KTMbjoc6hKLoiOVUf0myU4U1T3lu1TO7vgrSGaOtvf36/Dx4f1OJpds7JJp1AlXunrhq7hf822vP5bFV7brQMAzLxVjScT//r53HO+GlO/r8SeBz2gUtjRLd98wkUncCgsPTOFN6n7w0lkC8qqlXg0tRM0yg54OfoIhpWshUvxGdGxTPZO9sDfFwU/mm1E/0/KMbLt1S/G33mmGmPbuSBR6wY3FbBwtw4DPinDsameCPdW4HCWAbN3VGHTve6QZeCOz8oxoLkKccFKVBtlPPxdJd67Q2NfhQcA3hGiEzgUTm+aKdxXA8nOfobIuVQYlHgyrQPa5c7HmrBnoPNtJjoSACDQQ4EQz7/eNp2uRvMmEnpGXf04+eq73TG1ixodQpRoHaDEB0PdYJSB7Rk1CzmfzDUiPliJPk1V6NtMhfhgBU7m1qxF99/dOtwWqUKXcDs8Bs+RnkWx9Mzk5qKEvwenOMn2VRkVeDY9Dm2y5mFl6AuoatJKdCQTnUHGp4f1uD9BDamef0WW6wG9EfDT1OwfF6TA6TwDzhYZcabQiNN5RrQLUiAt34iVyXq83McOf07d/QEXziZZEkvPAjjFSfbEICswN6MNWl+ejXeC56DCv63oSPj6ZDUKK2VM7FD/+4zO3FaJMC8J/ZrVHKVpE1hzjK//J+UY8Gk5Xu3rhjaBSjy0qQKv9XfFlrRqtFtRioR3S/HLmWprfSiW5c1RnqXxmJ4FRDTR4NC5QtExiBpEliUsONMSC/AcZkSm40H5K3jkJAvJ8n8HdRjcQoUwr/r9Hb5gVxU+P6rHzokecFP9NTJ8uLMaD3dWm97/KFkHL1cJt0Qo0Wp5KfZO9sD5YhljvqpAxuOecFXZ+LEJHx7PszSO9CxA24T3QiT7tvhsM7Q99zQWBr6CkqDOjfraZwqN2JZuwIMJ9Rvlvf5bFRbsqsLWCR6ID772MbrcciPm/lyFZYPdsOeCAS39FWjhr0TvpirojcDpPKOlPgTr4UjP4lh6FtAskPdAJMfw9rloxJ19AvP8F6Iw5JZGec2VyToEeUgY0vLGE0+v7a7CS79U4Yfx7ugcdv2TUmZsqcKM7q6I8FbAYKw5/ndFtVGudeaozfJvLjqBw2HpWUBzlh45mA8vaNEh81E82+QN5IXeZrXXMcoyVibrcV97lzqXEiRtqMAz2ypN7y/cVYUXdlThw2EaRPsqcLnUiMulRpTq6rbXj2nVOJ1nwCNda0aPXcKVOJlrxOYUPd7br4NSktDK3w5+/QW1EZ3A4fCYngU0D/QUHYHIKtZcCsUaPIwRwXdhpscmBF3cbtHn35ZuwNkiGfdfZWrzbJERCumvYnp7nw46A3DPlxW19nuxpxpzev21uniFXsa0zZVYe48Giv+dCRrhrcCywW6YtLESrirgozvdoHGx8eN5ABAUKzqBw5FkWbaHQb7N6/jSj8gv04mOQWRVtwfm4gXv7xByYSsk8FeHVbkHAE+niU7hcOxgfG8fmgVwipMc3/c5Abgl7T486LEM5yKGQJbs8GJve8GpTatg6VlIi2BOcZLz2J7nhx6p4zBBsxwZEXdCVvBIicVxatMqWHoW0kHrKzoCUaPble+D3qmjMFq9HCnaeyAr1Td+ENUPR3pWwdKzkE5RfqIjEAnzZ6E3+qfcjbuUy3FCOwayyu3GD6Lr40jPKlh6FhIT5Ak/D/6VS84tudgTg1OG4XYsx5HI8ZBdeOOGm6JQASFxolNYTK9evTB9+nTRMQCw9CyqY2QT0RGIbMKJUncMPX07+hmW4UDkRMhqHvNukOC2gPrm/mCYOHEiJEmCJElQq9WIiYnBvHnzUF198/cbnThxIu68884b7rdz505IkoTCwsJa29evX4+XXnrppl/fklh6FtQlmqVH9Hdp5RrcfXoAeuqXYo92MmRXH9GR7ENEF7MePmjQIFy6dAkpKSl48sknMWfOHPz3v/9t8PMYDAYYjebfrs3Pzw9eXl5mP48lsPQsqDNLj+iqzla4YXRKbyRWLcGv2odh1PAY+HVFdDXr4a6urggJCUFUVBSmTJmCfv364ZtvvsGiRYsQFxcHDw8PaLVaTJ06FaWlpabHrVq1Cr6+vvjmm28QGxsLV1dX3H///fjoo4+wceNG0why586ddV4zMzMTvXv3BgA0adIEkiRh4sSJAOpOb0ZHR+Pll19GUlISPD09ERUVhW+++QY5OTkYPnw4PD09ER8fj3379tV6jV27dqFHjx7QaDTQarV47LHHUFZW1qDPDUvPguLCfeGq4qeU6FouVaoxIeU2dCtbjJ+002B0DxQdyTZFdrfo02k0Guh0OigUCixduhTHjh3DRx99hJ9++glPP/10rX3Ly8uxcOFCfPDBBzh27BiWLl2KUaNGmUaPly5dQmJiYp3X0Gq1WLduHQDg1KlTuHTpEpYsWXLNTIsXL8att96KgwcPYsiQIZgwYQKSkpIwfvx4HDhwAM2bN0dSUhKu3D8lLS0NgwYNwogRI3D48GGsXbsWu3btwrRp0xr0ueBvaAtSqxSIj+D0DdGN5OhccH9KIhJK3sAPEY/D4BEiOpLt8NECTaIs8lSyLGPbtm3YsmUL+vTpg+nTp6N3796Ijo5Gnz598PLLL+OLL76o9Ri9Xo8VK1YgMTERrVq1gre3NzQajWn0GBISArW67kl7SqUSfn41I/igoCCEhITAx+favw9vv/12PPTQQ2jRogVmz56N4uJidOnSBSNHjkTLli0xc+ZMnDhxAllZWQCAV199FePGjcP06dPRokULJCYmYunSpfj4449RWVl5zdf5J5aehXWO5rQNUX0V6VV4OLUb4ov+i28inkS1F5fSQaT5q1ts2rQJnp6ecHNzw+DBgzF69GjMmTMH27ZtQ9++fREeHg4vLy9MmDABeXl5KC8vNz1WrVYjPj7+hq8xePBgeHp6wtPTE23bNnwh4r+/RnBwMAAgLi6uzrbs7GwAwKFDh7Bq1SrTa3p6emLgwIEwGo3IyMio9+vyNgoW1jmKx/WIGqqsWonHUjthprIDXoo6iuFla+FSlCk6lhjRt5r9FL1798bbb78NtVqNsLAwqFQqZGZm4o477sCUKVMwf/58+Pn5YdeuXXjggQeg0+ng7l5ztqhGo4Ek3fhm3B988AEqKmpu/u3iUv8V76/4+2OuvN7Vtl05kaa0tBQPPfQQHnvssTrPFRkZWe/XZelZWOcoP0gSwNt4EzVchUGJp9Lb4xlFPOZEH8PI8rVQFzrZTZdj+pn9FB4eHoiJiam1bf/+/TAajXjjjTegUNRM8v1zavNa1Go1DAZDrW3h4XVH5VemPf+5ryV07NgRx48fr/NxNRSnNy3Mx90FLYJ4TRKROfRGCc+lt0ObrLn4MPQFVPm1Eh2pcQS1BXwirPLUMTEx0Ov1WLZsGdLT0/HJJ5/gnXfeqddjo6OjcfjwYZw6dQq5ubnQ6/VX3S8qKgqSJGHTpk3IycmpdWaouWbOnInffvsN06ZNQ3JyMlJSUrBx40aeyGIL/hXDM9KILMEgKzAvow1aX5qNt4PnoiKgnehI1tVygNWeun379li0aBEWLlyIdu3aYfXq1Xj11Vfr9djJkyejVatW6Ny5MwIDA7F79+6r7hceHo65c+di1qxZCA4ObnAhXU98fDx+/vlnnD59Gj169EBCQgJmz56NsLCwBj0P19Ozgn2Z+bjnnd9FxyBySNMj0zFZ/goeOcmio1jepB+AKPNPZKFrY+lZgSzLuOXVn3C5uP6n0RJRw0zRnsEUaT28s/eKjmIZbr7A0+mAgmsUWhOnN61AkiQMasfrjois6e1zUYg/OwNz/F5DYUjdi6XtTkxfFl4jYOlZye1xoaIjEDmFVRcj0CFzGmY1eQN5oT1Fx7l5Lax3PI/+wulNKzEaZXR/dTuyS6pERyFyKncHZ2OWx7cIvPgTJNjJrzeFCngqBXDnzS2sjSM9K1EoOMVJJML6rCB0TX8AU72W4GL4IMiSHfyaa96XhddI7OC7wX5xipNInM05AUhMS8ID7stwLuIOyJINHy+LHyU6gdNg6VlR12g/BHq5io5B5NR+ymuCHqn3YrzbcmRo74SssLEbUak9gVa3i07hNFh6VqRQSBjYNlh0DCICsLvAB71TRmGky1tI0Y6ErKy7UoAQrW6/6VXSqeFYelbGKU4i27KvyAv9U+7CcOVyHNeOhaxyExuIU5uNiqVnZd2a+iPA00b+oiQik8PFnrg9ZSgGYzkOaydAdvFo/BDuAUCz3o3/uk6MpWdlSoWEO+Ibdm84Imo8J0vdMSxlMPoalmG/dhJkdSPeML7d3YDSxo4xOjiWXiOYmBiNeixPRUQCpZe7YURKf/TQLcMf2smQXa+96rfFdJpo/degWlh6jSA6wAN9WgWJjkFE9XC+0hVjUnrjlsol+EU7BUaNv3VeKDIRCG74iuNkHpZeI5l0a1PREYioAS5XqZGU0gNdyhZhu/ZRGN0tvGRY1wct+3xUL7wNWSMasPhnnM6y3KKKRNR4fFyqsSDqAAYUroWy9JJ5T+YZAsw4CihdLBOO6o0jvUbE0R6R/SrSqzAltSviC1/DxvCnUO1lxgrnnSay8AThSK8RVeoNuOXV7Sgo14uOQkRm0igNmBt9FHeVroVLUWb9H6hwqRnlefHevCJwpNeI3FyUGNM1UnQMIrKACoMST6e1R2zOfHwa9hx0vjH1e2CbO1h4AnGk18guFVWgx8IdqDby007kSJSSEc9Gn8a4qi/gln/y2js+sA3Qdmm8YFQLR3qNLNRHwyWHiByQQVbgpYzWaHPpBawInouKgHZ1d4ruwcITjCM9AfafKcCIt38THYOIrOzxyHRMltfBM+dgzYYJG4DmfcSGcnIsPUGGv7Ubh84Vio5BRI3goYizmBx4FAGj3xIdxelxelOQR3o1Fx2BiBrJu+cjcSh+tugYBJaeMAPahiAh0ld0DCJqBO21vujbhmtr2gKWnkBPD2wtOgIRNYIZ/VqIjkD/w9IT6Jbm/ujRIkB0DCKyoo6RvujFG87bDJaeYE8PbM1lh4gc2Iz+LUVHoL9h6QkWF+GD2+NCRccgIivo1tQPPVpYeHUGMgtLzwbMHNgaahW/FESORKWQMHc418uzNfxNawMi/d0xKTFadAwisqD7EqPROsRbdAz6B5aejZjWJwYBnmrRMYjIAoK9XXksz0ax9GyEl5sLf0iIHMTzQ2Lh6aoSHYOugqVnQ8Z0iUTrEC/RMYjIDP+KCcDQ9mGiY9A1sPRsiFIhYc6wtryEgchOqZUKzOPJKzaNpWdjujfzx4TuUaJjENFNmHxbUzQL9BQdg66DpWeDZg1ujSh/d9ExiKgBIppo8Ggf3m7M1rH0bJC7WoXXR7aHgtOcRHbjxaFt4eaiFB2DboClZ6O6RPth0q1NRccgonro1yYI/WO5ioI9YOnZsP8MbIVmgR6iYxDRdXiolXhxKE9esRcsPRvm5qLE6yPbQ8l5TiKbNf+uOGj9eAzeXrD0bFzHyCZ4sAenOYls0chOEbgzIVx0DGoAlp4deKJ/S7QM5mnQRLYkJsgT84a3Ex2DGoilZwdcVTXTnCpOcxLZBDcXBZbfmwCNmmdr2huWnp2Ij/DFlF7NRccgIgCz72jLFRTsFEvPjjzetwW6N/MTHYPIqQ2JD8W93SJFx6CbxNKzIyqlAivGdUJEE43oKEROKdLPHQvujhMdg8zA0rMzfh5qvJ/UGe48lkDUqFyUEpaNTYCXm4voKGQGlp4dahPqjTdGtudqDESNaOag1miv9RUdg8zE0rNTg+NC8WjvGNExiJxC39ZBeOBfvF7WEbD07NiM/i0xgPf7I7Kq2FBvLBmbAIlTKw6BpWfHJEnC4tEd0CqYq60TWUO4rwarJnWBp6tKdBSyEJaenfNwVeH9pM7wdefBdSJL8nV3wUf3d0WQt5voKGRBLD0HEOnvjrfu7cg7thBZiKtKgQ+SOiMmiLf/czQsPQdxa0wAnhvSRnQMIrunkIAlYxLQOZo3gnBELD0HMunWpnikN29VRmSOOcPaYlC7ENExyEpYeg7mPwNb46HbmomOQWSXpvRqjqRbokXHICti6TmgZ25vg/tv5TVFRA1xd0I4Zg5qLToGWRlLz0HNHhqLCd2jRMcgsgs9WgRg4T3xomNQI2DpObB5w9tibFet6BhENq2D1hdvj+8EFyV/HToDfpUdmCRJeOWuOIzsFCE6CpFN6hrth08f7MaLz50IS8/BSZKEhSPicVdCuOgoRDblXzEB+Oj+riw8J8PScwIKhYTXR7bHHfGhoqMQ2YQ+rYPwfxM7Q8MlupwOS89JKBUS3hzdAYN5/RE5uUFtQ/DuhE5wVbHwnBFLz4molAosHZuAe3iMj5zUmC5avDWuI09acWKSLMuy6BDU+Bb/eBpLtqeIjkHUaKb1jsFTA1uJjkGCsfSc2Bd7z+HZDUdQbeS3ADkuhQS8OLQt7kuMFh2FbABLz8n9cjoHU1cfQGlVtegoRBanVirwxqj2GNo+THQUshEsPcLxi8WY/PE+XCisEB2FyGICPF2x/N4EdG/mLzoK2RCWHgEAckur8NAn+7H/TIHoKERm6xzVBG+N64hgLgBL/8DSIxNdtRHPbTiCL/efFx2F6KZNTIzGc0Pa8AxNuiqWHtXxwa/peHXzSRh4ggvZEXe1EgtGxGMYj9/RdbD06Kp+Pp2DJ79IRm6pTnQUohtqFuiBd8Z3QstgL9FRyMax9OiackurMPOrw9h+Mlt0FKJrGtQ2BK+Pas97aFK9sPTohj794wzmf3cCFXqD6ChEJkqFhKcHtsJDPZuLjkJ2hKVH9ZKWU4rpnyfjyIUi0VGIeDkC3TSWHtWb3mDEm9tO4+2daeA5LiTKkLhQzBnWFoFerqKjkB1i6VGD7c3Mx4y1yThfwIvZqfGEeLvhpTvboX9ssOgoZMdYenRTSir1eHHjMaw/eEF0FHJwkgTc2zUSswa3hpebi+g4ZOdYemSWTYcv4vmvj6KwXC86Cjmg5oEeWDAiHl2i/URHIQfB0iOzFZbrsPjH01i95yxXbCCLcFFKeLhnc0zrE8PFXsmiWHpkMaezSvDSpuP4NSVXdBSyYx20vlg4Ih6tQnihOVkeS48s7sfjWZj/3XFk5pWLjkJ2xF2txJMDWmFSYjQUCkl0HHJQLD2yCl21ESt3Z2D5T6ko4Vp9dB1qpQKju2jxaJ8YBHFVBLIylh5ZVU5JFV7fcgpf7j/Ha/uoFqVCwt0J4Xisbwto/dxFxyEnwdKjRnH0QhHmfnsMezO5Xp+zk6SaC8xn9G+J5oGeouOQk2HpUaPaeuwy3vk5DQfOFoqOQgL0bR2EJwe0QmyYt+go5KRYeiTE3sx8vPtzGrafzAa/Ax1fYnN/PDWwFTpGNhEdhZwcS4+ESs0uwXu/pOPrgxehMxhFxyEL6xjpi6cGtEJiTIDoKEQAWHpkI7KKK/Hh7gys2XMWJZU829OeuSglDGoXiomJUegUxTupkG1h6ZFNKanUY82es1i5OxOXiytFx6EGCPB0xb1dtRjXPQrBvPSAbBRLj2ySrtqIjckX8Omeszh0rlB0HLqOrtF+GNtNiyFxYVCrFKLjEF0XS49sXmp2Cb7afwFfH7zA0Z+NCPBUY0THCIzqouVlB2RXWHpkN4xGGbtSc7HuwHlsPZaFCr1BdCSnolYqcGuMP0Z30aJvm2C4KDmqI/vD0iO7VKEzYPvJLHx3+BJ2nMpGpZ5nflqDj8YFvVsFol9sMHq2DOR6dmT3WHpk98qqqrHtRE0B/pqSyxGgmbR+GvRvE4J+sUHoGu0HFUd05EBYeuRQdNVGJJ8rxO9pefg9PRcHzhZCV81R4PVIEhAf4YsBscHo1yaYS/qQQ2PpkUOr1Btw4EwBfk/Pw+9peTh0vhB6A7/lo/3dER/hi+7N/NGvTRBXNyCnwdIjp1Kuq8bezIL/jQTzcPRCEQwOvvxDkJcr4iN80UHrg/gIX7SP8IWPO4/NkXNi6ZFTq9AZkJZTitTsv73llOJMXpldjgi93FSIj/BB+wjf/xWdL0J8OIojuoKlR3QVeoMRZ/LKkZpdWqsU03JKUa4Td6KMu1qJUB83hPlqEOajQajvX/+v9dMg0s8dksRVx4muhaVH1ACyLCO/TIeiCj2KKvQorNCj+Mr/l+v/2l5es72womZfvUGGQgIkSYJCApSSBEmSoFJKcFMp4aZWQuOigMZFCY1aCY2LCgFeaoT7ahDqo0GYrxvCfDRo4qEW/SkgsmssPSIichq8AIeIiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJwGS4+IiJzG/wPxZxmgs8BbxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(4,4))\n", + "plt.pie(list(lst.values), labels=list(lst.keys()), autopct='%1.1f%%') # Plot the pie chart\n", + "plt.title('Employment Type') # Add a title\n", + "plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle\n", + "\n", + "# Display the pie chart\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Employment'].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## JobSatisfaction" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "JobSatisfaction\n", + "Moderately satisfied 26\n", + "Slightly satisfied 17\n", + "Neither satisfied nor dissatisfied 11\n", + "Extremely satisfied 9\n", + "Slightly dissatisfied 9\n", + "Moderately dissatisfied 6\n", + "Extremely dissatisfied 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['JobSatisfaction'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['JobSatisfaction'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "df['JobSatisfaction'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['JobSatisfaction'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAIkCAYAAACXwuERAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+XklEQVR4nOzddVwV2fsH8M8lREVCBVEUu7ABWxTsVmxdu2vt1bVbsdvVtbHWtRVbcQVdEwsTC7tAaen7/P7wx3y5xu6KyBCf9+vFS++Z4LmcO+fOM3PmHI2ICIiIiIiIiIgoWempHQARERERERFResSEnIiIiIiIiEgFTMiJiIiIiIiIVMCEnIiIiIiIiEgFTMiJiIiIiIiIVMCEnIiIiIiIiEgFTMiJiIiIiIiIVMCEnIiIiIiIiEgFTMiJiIiIiIiIVMCEnIiI6AeZPHkyNBoNAgIC1A7lX8XH+q3evHmD1q1bI3v27NBoNFi0aFHSB/cViY2ZiIgopWBCTkRE9C82bNgAjUYDb2/vZP/d7u7ucHJyQo4cOZA5c2YULFgQbdu2xZEjR755Xx8+fMDkyZNx6tSpJItv2LBhOHr0KMaMGYNNmzahQYMGSbZv4MfETERElFIwISciIkqh5s2bh2bNmkGj0WDMmDFYuHAhWrVqhfv372Pbtm3fvL8PHz5gypQpX0xux48fj4iIiG/e58mTJ9G8eXP88ssv6NSpE4oXL/7N+/gnPyJmIiKilMJA7QCIiIjoc7GxsZg2bRrq1q2LY8eOfbb87du3Sfr7DAwMYGDw7acFb9++hbm5eZLG8l8lNmYiIqKUgnfIiYiIEuHkyZOoXr06jI2NYW5ujubNm+POnTtfXDcgIABt27aFqakpsmfPjiFDhiAyMvIf9x8QEICQkBBUq1bti8tz5Mih/D86OhoTJ06Eg4MDzMzMYGxsjOrVq+Ovv/5S1nn8+DEsLS0BAFOmTIFGo4FGo8HkyZMBfPl57OPHj8PR0RHm5ubIkiULihUrhrFjxwL4Xzd+EcHy5cuV/QHA+/fv8csvv6B06dLIkiULTE1N0bBhQ1y/fv2z9xEZGYnJkyejaNGiyJgxI3LlyoWWLVvi4cOHiYo5/kJGoUKFYGRkhPz582Ps2LGIiorSWS9//vxo0qQJzpw5g4oVKyJjxowoWLAgNm7c+I/1QkRElJSYkBMREX2jEydOoH79+nj79i0mT56M4cOH4+zZs6hWrRoeP3782fpt27ZFZGQkXF1d0ahRIyxZsgR9+vT5x9+RI0cOZMqUCe7u7nj//v0/rhsSEoI1a9bA2dkZs2fPxuTJk+Hv74/69evj2rVrAABLS0usWLECANCiRQts2rQJmzZtQsuWLb+4z1u3bqFJkyaIiorC1KlTMX/+fDRr1gx///03AKBGjRrYtGkTAKBu3brK/gDg0aNH2Lt3L5o0aYIFCxZg5MiRuHHjBpycnPDy5Uvld8TFxaFJkyaYMmUKHBwcMH/+fAwZMgTBwcG4efPmN8cMAL169cLEiRNhb2+PhQsXwsnJCa6urmjfvv1n6z548ACtW7dG3bp1MX/+fGTNmhXdunXDrVu3/vHvTURElGSEiIiI/tH69esFgFy6dElERMqVKyc5cuSQd+/eKetcv35d9PT0pEuXLkrZpEmTBIA0a9ZMZ38DBgwQAHL9+vV//L0TJ04UAGJsbCwNGzaUGTNmyOXLlz9bLzY2VqKionTKAgMDxcrKSnr06KGU+fv7CwCZNGnSZ/uIjzXewoULBYD4+/v/Y4wAZODAgTplkZGREhcXp1Pm5+cnRkZGMnXqVKVs3bp1AkAWLFjw2X61Wu03x3zt2jUBIL169dJZ75dffhEAcvLkSaUsX758AkC8vLyUsrdv34qRkZGMGDHiH98zERFRUuEdciIiom/w6tUrXLt2Dd26dUO2bNmU8jJlyqBu3bo4dOjQZ9sMHDhQ5/WgQYMA4IvrJjRlyhRs3boVdnZ2OHr0KMaNGwcHBwfY29vrdI/X19dHhgwZAABarRbv379HbGwsypcvjytXriTqfcY/F75v3z5otdpv2tbIyAh6eh9PMeLi4vDu3Tuly3vCeHbt2gULCwvl75FQYqYzi/97Dh8+XKd8xIgRAICDBw/qlJcoUQLVq1dXXltaWqJYsWJ49OjRN/9uIiKixGBCTkRE9A2ePHkCAChWrNhny2xtbREQEIDw8HCd8iJFiui8LlSoEPT09L7Yvf1THTp0wOnTpxEYGIhjx47hp59+wtWrV9G0aVOd59Dd3NxQpkwZZMyYEdmzZ4elpSUOHjyI4ODgRLxLoF27dqhWrRp69eoFKysrtG/fHtu3b/9PyblWq8XChQtRpEgRGBkZwcLCApaWlvDx8dGJ5+HDhyhWrFiSDcz25MkT6OnpoXDhwjrlOXPmhLm5uVJ38fLmzfvZPrJmzYrAwMAkiYeIiOjfMCEnIiJKZom5+2tqaoq6detiy5Yt6Nq1Kx4+fIgLFy4AADZv3oxu3bqhUKFCWLt2LY4cOYLjx4+jVq1a33x3O16mTJng5eWFEydOoHPnzvDx8UG7du1Qt25dxMXF/eO2M2fOxPDhw1GjRg1s3rwZR48exfHjx1GyZMlEx/Mt/uvfV19f/4vlIpKU4RAREX0VE3IiIqJvkC9fPgCAr6/vZ8vu3r0LCwsLGBsb65Tfv39f5/WDBw+g1WqRP3/+RMVQvnx5AB+7zwPAzp07UbBgQezevRudO3dG/fr1UadOnc9Gcv/WCwF6enqoXbs2FixYgNu3b2PGjBk4efKkzujtX7Jz507UrFkTa9euRfv27VGvXj3UqVMHQUFBOusVKlQIvr6+iImJ+eq+viXmfPnyQavVfvb3fvPmDYKCgpS6IyIiSimYkBMREX2DXLlyoVy5cnBzc9NJMG/evIljx46hUaNGn22zfPlynddLly4FADRs2PCrv+fDhw84d+7cF5cdPnwYwP+6zcff6U14Z/fChQufbZ85c2YA+Cwx/pIvjexerlw5APhsCrFP6evrf3aXeceOHXjx4oVOWatWrRAQEIBly5Z9to/47b8l5vi//aJFi3TKFyxYAABo3Ljxv+6DiIgoOSXNQ1tERETpyNy5c9GwYUNUqVIFPXv2REREBJYuXQozMzNljuyE/Pz80KxZMzRo0ADnzp3D5s2b8dNPP6Fs2bJf/R0fPnxA1apVUblyZTRo0AA2NjYICgrC3r17cfr0abi4uMDOzg4A0KRJE+zevRstWrRA48aN4efnh5UrV6JEiRIICwtT9pkpUyaUKFECf/75J4oWLYps2bKhVKlSKFWq1Ge/f+rUqfDy8kLjxo2RL18+vH37Fr/99hvy5MkDR0fHf/z7NGnSBFOnTkX37t1RtWpV3LhxA1u2bEHBggV11uvSpQs2btyI4cOH4+LFi6hevTrCw8Nx4sQJDBgwAM2bN/+mmMuWLYuuXbti1apVCAoKgpOTEy5evAg3Nze4uLigZs2a/xg3ERFRslN3kHciIqKUL356ritXrihlJ06ckGrVqkmmTJnE1NRUmjZtKrdv39bZLn5artu3b0vr1q3FxMREsmbNKj///LNERET84++MiYmR1atXi4uLi+TLl0+MjIwkc+bMYmdnJ3PnztWZ5kyr1crMmTOV9ezs7OTAgQPStWtXyZcvn85+z549Kw4ODpIhQwad6cQ+nULMw8NDmjdvLtbW1pIhQwaxtraWDh06yL1793T2h69MezZixAjJlSuXZMqUSapVqybnzp0TJycncXJy0ln3w4cPMm7cOClQoIAYGhpKzpw5pXXr1vLw4cNvjjn+7zZlyhRlfzY2NjJmzBiJjIzUWS9fvnzSuHHjz/7uX4qRiIjoR9GIcOQSIiKif7JkyRIMGTIEDx48QKFChdQOh4iIiNIIPkNORET0Ly5dugRjY2MOCkZERERJis+QExERfcWuXbtw6tQpbNmyBb169Uqy+bKJiIiIAIBd1omIiL6iQIECCA0NRYsWLbBo0aLPpjMjIiIi+h5MyImIiIiIiIhUwGfIiYiIiIiIiFTAhJyIiIiIiIhIBWl+dBqtVouXL1/CxMQEGo1G7XCIiIiIiIgojRMRhIaGwtraGnp6X78PnuYT8pcvX8LGxkbtMIiIiIiIiCidefbsGfLkyfPV5Wk+ITcxMQHw8Q9hamqqcjRERERERESU1oWEhMDGxkbJR78mzSfk8d3UTU1NmZATERERERFRsvm3x6Y5qBsRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREanAQO0A6H9mXQ1QOwRKYLSdhdohEBERERFRGsY75EREREREREQqYEJOREREREREpAIm5EREREREREQqYEJOREREREREpAIm5EREREREREQqYEJOREREREREpAJVE3JXV1dUqFABJiYmyJEjB1xcXODr66uzjrOzMzQajc5Pv379VIqYiIiIiIiIKGmompB7enpi4MCBOH/+PI4fP46YmBjUq1cP4eHhOuv17t0br169Un7mzJmjUsREREREREREScNAzV9+5MgRndcbNmxAjhw5cPnyZdSoUUMpz5w5M3LmzJnc4RERERERERH9MCnqGfLg4GAAQLZs2XTKt2zZAgsLC5QqVQpjxozBhw8fvrqPqKgohISE6PwQERERERERpTSq3iFPSKvVYujQoahWrRpKlSqllP/000/Ily8frK2t4ePjg19//RW+vr7YvXv3F/fj6uqKKVOmJFfYRERERERERImiERFROwgA6N+/Pw4fPowzZ84gT548X13v5MmTqF27Nh48eIBChQp9tjwqKgpRUVHK65CQENjY2CA4OBimpqY/JPakMutqgNohUAKj7SzUDoGIiIiIiFKhkJAQmJmZ/WsemiLukP/88884cOAAvLy8/jEZB4BKlSoBwFcTciMjIxgZGf2QOImIiIiIiIiSiqoJuYhg0KBB2LNnD06dOoUCBQr86zbXrl0DAOTKlesHR0dERERERET046iakA8cOBBbt27Fvn37YGJigtevXwMAzMzMkClTJjx8+BBbt25Fo0aNkD17dvj4+GDYsGGoUaMGypQpo2boRERERERERN9F1YR8xYoVAABnZ2ed8vXr16Nbt27IkCEDTpw4gUWLFiE8PBw2NjZo1aoVxo8fr0K0RERERERERElH9S7r/8TGxgaenp7JFA0RERERERFR8klR85ATERERERERpRdMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAWqJuSurq6oUKECTExMkCNHDri4uMDX11dnncjISAwcOBDZs2dHlixZ0KpVK7x580aliImIiIiIiIiShqoJuaenJwYOHIjz58/j+PHjiImJQb169RAeHq6sM2zYMLi7u2PHjh3w9PTEy5cv0bJlSxWjJiIiIiIiIvp+GhERtYOI5+/vjxw5csDT0xM1atRAcHAwLC0tsXXrVrRu3RoAcPfuXdja2uLcuXOoXLnyv+4zJCQEZmZmCA4Ohqmp6Y9+C99l1tUAtUOgBEbbWagdAhERERERpUL/NQ9NUc+QBwcHAwCyZcsGALh8+TJiYmJQp04dZZ3ixYsjb968OHfunCoxEhERERERESUFA7UDiKfVajF06FBUq1YNpUqVAgC8fv0aGTJkgLm5uc66VlZWeP369Rf3ExUVhaioKOV1SEjID4uZiIiIiIiIKLFSzB3ygQMH4ubNm9i2bdt37cfV1RVmZmbKj42NTRJFSERERERERJR0UkRC/vPPP+PAgQP466+/kCdPHqU8Z86ciI6ORlBQkM76b968Qc6cOb+4rzFjxiA4OFj5efbs2Y8MnYiIiIiIiChRVE3IRQQ///wz9uzZg5MnT6JAgQI6yx0cHGBoaAgPDw+lzNfXF0+fPkWVKlW+uE8jIyOYmprq/BARERERERGlNKo+Qz5w4EBs3boV+/btg4mJifJcuJmZGTJlygQzMzP07NkTw4cPR7Zs2WBqaopBgwahSpUq/2mEdSIiIiIiIqKUStWEfMWKFQAAZ2dnnfL169ejW7duAICFCxdCT08PrVq1QlRUFOrXr4/ffvstmSMlIiIiIiIiSlqqJuT/ZQr0jBkzYvny5Vi+fHkyRERERERERESUPFLEoG5ERERERERE6Q0TciIiIiIiIiIVMCEnIiIiIiIiUgETciIiIiIiIiIVMCEnIiIiIiIiUoGqo6wTpXezrgaoHQL9v9F2FmqHQERERETpDO+QExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRCpiQExEREREREamACTkRERERERGRChKVkF+5cgU3btxQXu/btw8uLi4YO3YsoqOjkyw4IiIiIiIiorQqUQl53759ce/ePQDAo0eP0L59e2TOnBk7duzAqFGjkjRAIiIiIiIiorQoUQn5vXv3UK5cOQDAjh07UKNGDWzduhUbNmzArl27/vN+vLy80LRpU1hbW0Oj0WDv3r06y7t16waNRqPz06BBg8SETERERERERJSiJCohFxFotVoAwIkTJ9CoUSMAgI2NDQICAv7zfsLDw1G2bFksX778q+s0aNAAr169Un7++OOPxIRMRERERERElKIYJGaj8uXLY/r06ahTpw48PT2xYsUKAICfnx+srKz+834aNmyIhg0b/uM6RkZGyJkzZ2LCJCIiIiIiIkqxEnWHfOHChbhy5Qp+/vlnjBs3DoULFwYA7Ny5E1WrVk3SAE+dOoUcOXKgWLFi6N+/P969e/eP60dFRSEkJETnh4iIiIiIiCilSdQd8rJly+qMsh5v7ty5MDBI1C6/qEGDBmjZsiUKFCiAhw8fYuzYsWjYsCHOnTsHfX39L27j6uqKKVOmJFkMRERERERERD9Cou6QFyxY8It3qiMjI1G0aNHvDipe+/bt0axZM5QuXRouLi44cOAALl26hFOnTn11mzFjxiA4OFj5efbsWZLFQ0RERERERJRUEpWQP378GHFxcZ+VR0VF4fnz598d1NcULFgQFhYWePDgwVfXMTIygqmpqc4PERERERERUUrzTf3L9+/fr/z/6NGjMDMzU17HxcXBw8MDBQoUSLroPvH8+XO8e/cOuXLl+mG/g4iIiIiIiCg5fFNC7uLiAgDQaDTo2rWrzjJDQ0Pkz58f8+fP/8/7CwsL07nb7efnh2vXriFbtmzIli0bpkyZglatWiFnzpx4+PAhRo0ahcKFC6N+/frfEjYRERERERFRivNNCXn83OMFChTApUuXYGFh8V2/3NvbGzVr1lReDx8+HADQtWtXrFixAj4+PnBzc0NQUBCsra1Rr149TJs2DUZGRt/1e4mIiIiIiIjUlqgh0f38/JLklzs7O0NEvrr86NGjSfJ7iIiIiIiIiFKaRM9R5uHhAQ8PD7x9+1a5cx5v3bp13x0YERERERERUVqWqIR8ypQpmDp1KsqXL49cuXJBo9EkdVxEREREREREaVqiEvKVK1diw4YN6Ny5c1LHQ0RERERERJQuJGoe8ujoaFStWjWpYyEiIiIiIiJKNxKVkPfq1Qtbt25N6liIiIiIiIiI0o1EdVmPjIzEqlWrcOLECZQpUwaGhoY6yxcsWJAkwRERERERERGlVYlKyH18fFCuXDkAwM2bN3WWcYA3IiIiIiIion+XqIT8r7/+Suo4iIiIiIiIiNKVRD1DTkRERERERETfJ1F3yGvWrPmPXdNPnjyZ6ICIiIiIiIiI0oNEJeTxz4/Hi4mJwbVr13Dz5k107do1KeIiIiIiIiIiStMSlZAvXLjwi+WTJ09GWFjYdwVERERERERElB4k6TPknTp1wrp165Jyl0RERERERERpUpIm5OfOnUPGjBmTcpdEREREREREaVKiuqy3bNlS57WI4NWrV/D29saECROSJDAiIiIiIiKitCxRCbmZmZnOaz09PRQrVgxTp05FvXr1kiQwIiIiIiIiorQsUQn5+vXrkzoOIiIiIiIionQlUQl5vMuXL+POnTsAgJIlS8LOzi5JgiIiIiIiIiJK6xKVkL99+xbt27fHqVOnYG5uDgAICgpCzZo1sW3bNlhaWiZljERERERERERpTqJGWR80aBBCQ0Nx69YtvH//Hu/fv8fNmzcREhKCwYMHJ3WMRERERERERGlOou6QHzlyBCdOnICtra1SVqJECSxfvpyDuhERERERERH9B4m6Q67VamFoaPhZuaGhIbRa7XcHRURERERERJTWJSohr1WrFoYMGYKXL18qZS9evMCwYcNQu3btJAuOiIiIiIiIKK1KVEK+bNkyhISEIH/+/ChUqBAKFSqEAgUKICQkBEuXLk3qGImIiIiIiIjSnEQ9Q25jY4MrV67gxIkTuHv3LgDA1tYWderUSdLgiIiIiIiIiNKqb7pDfvLkSZQoUQIhISHQaDSoW7cuBg0ahEGDBqFChQooWbIkTp8+/aNiJSIiIiIiIkozvikhX7RoEXr37g1TU9PPlpmZmaFv375YsGBBkgVHRERERERElFZ9U0J+/fp1NGjQ4KvL69Wrh8uXL393UERERERERERp3Tcl5G/evPnidGfxDAwM4O/v/91BEREREREREaV135SQ586dGzdv3vzqch8fH+TKleu7gyIiIiIiIiJK674pIW/UqBEmTJiAyMjIz5ZFRERg0qRJaNKkSZIFR0RERERERJRWfdO0Z+PHj8fu3btRtGhR/PzzzyhWrBgA4O7du1i+fDni4uIwbty4HxIoERERERERUVryTQm5lZUVzp49i/79+2PMmDEQEQCARqNB/fr1sXz5clhZWf2QQImIiIiIiIjSkm9KyAEgX758OHToEAIDA/HgwQOICIoUKYKsWbP+iPiIiIiIiIiI0qRvTsjjZc2aFRUqVEjKWIiIiIiIiIjSjW8a1I2IiIiIiIiIkgYTciIiIiIiIiIVMCEnIiIiIiIiUkGinyEnIqJvM+tqgNoh0P8bbWehdghEREREvENOREREREREpAYm5EREREREREQqYEJOREREREREpAIm5EREREREREQqYEJOREREREREpAIm5EREREREREQqUDUh9/LyQtOmTWFtbQ2NRoO9e/fqLBcRTJw4Ebly5UKmTJlQp04d3L9/X51giYiIiIiIiJKQqgl5eHg4ypYti+XLl39x+Zw5c7BkyRKsXLkSFy5cgLGxMerXr4/IyMhkjpSIiIiIiIgoaRmo+csbNmyIhg0bfnGZiGDRokUYP348mjdvDgDYuHEjrKyssHfvXrRv3z45QyUiIiIiIiJKUin2GXI/Pz+8fv0aderUUcrMzMxQqVIlnDt37qvbRUVFISQkROeHiIiIiIiIKKVJsQn569evAQBWVlY65VZWVsqyL3F1dYWZmZnyY2Nj80PjJCIiIiIiIkqMFJuQJ9aYMWMQHBys/Dx79kztkIiIiIiIiIg+k2IT8pw5cwIA3rx5o1P+5s0bZdmXGBkZwdTUVOeHiIiIiIiIKKVJsQl5gQIFkDNnTnh4eChlISEhuHDhAqpUqaJiZERERERERETfT9VR1sPCwvDgwQPltZ+fH65du4Zs2bIhb968GDp0KKZPn44iRYqgQIECmDBhAqytreHi4qJe0ERERERERERJQNWE3NvbGzVr1lReDx8+HADQtWtXbNiwAaNGjUJ4eDj69OmDoKAgODo64siRI8iYMaNaIRMRERERERElCVUTcmdnZ4jIV5drNBpMnToVU6dOTcaoiIiIiIiIiH68FPsMOREREREREVFaxoSciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUoOoo60RERGnVrKsBaodACYy2s/jhv4N1nnIkR30TESUF3iEnIiIiIiIiUgETciIiIiIiIiIVMCEnIiIiIiIiUgETciIiIiIiIiIVMCEnIiIiIiIiUgETciIiIiIiIiIVMCEnIiIiIiIiUgETciIiIiIiIiIVMCEnIiIiIiIiUgETciIiIiIiIiIVMCEnIiIiIiIiUgETciIiIiIiIiIVMCEnIiIiIiIiUgETciIiIiIiIiIVMCEnIiIiIiIiUgETciIiIiIiIiIVMCEnIiIiIiIiUgETciIiIiIiIiIVMCEnIiIiIiIiUgETciIiIiIiIiIVMCEnIiIiIiIiUoGB2gEQEREREaU2s64GqB0C/b/RdhZqh0CUaLxDTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKSCFJ2QT548GRqNRuenePHiaodFRERERERE9N0M1A7g35QsWRInTpxQXhsYpPiQiYiIiIiIiP5Vis9uDQwMkDNnTrXDICIiIiIiIkpSKbrLOgDcv38f1tbWKFiwIDp27IinT5+qHRIRERERERHRd0vRd8grVaqEDRs2oFixYnj16hWmTJmC6tWr4+bNmzAxMfniNlFRUYiKilJeh4SEJFe4RERERERERP9Zik7IGzZsqPy/TJkyqFSpEvLly4ft27ejZ8+eX9zG1dUVU6ZMSa4QiYiIiIiIiBIlxXdZT8jc3BxFixbFgwcPvrrOmDFjEBwcrPw8e/YsGSMkIiIiIiIi+m9SVUIeFhaGhw8fIleuXF9dx8jICKampjo/RERERERERClNik7If/nlF3h6euLx48c4e/YsWrRoAX19fXTo0EHt0IiIiIiIiIi+S4p+hvz58+fo0KED3r17B0tLSzg6OuL8+fOwtLRUOzQiIiIiIiKi75KiE/Jt27apHQIRERERERHRD5Giu6wTERERERERpVVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUwISciIiIiIiISAVMyImIiIiIiIhUYKB2AERERERERCnZrKsBaodACYy2s1A7hCTDO+REREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKmBCTkRERERERKQCJuREREREREREKkgVCfny5cuRP39+ZMyYEZUqVcLFixfVDomIiIiIiIjou6T4hPzPP//E8OHDMWnSJFy5cgVly5ZF/fr18fbtW7VDIyIiIiIiIkq0FJ+QL1iwAL1790b37t1RokQJrFy5EpkzZ8a6devUDo2IiIiIiIgo0QzUDuCfREdH4/LlyxgzZoxSpqenhzp16uDcuXNf3CYqKgpRUVHK6+DgYABASEjIjw02CUSGhaodAiUQEpLhh/8O1nnKwfpOX1jf6Q/rPH1hfacvrO/0Jznq/HvF558i8o/rpeiEPCAgAHFxcbCystIpt7Kywt27d7+4jaurK6ZMmfJZuY2NzQ+JkdKuzz9FlJaxvtMX1nf6wzpPX1jf6QvrO/1JTXUeGhoKMzOzry5P0Ql5YowZMwbDhw9XXmu1Wrx//x7Zs2eHRqNRMbL0ISQkBDY2Nnj27BlMTU3VDod+MNZ3+sM6T19Y3+kL6zv9YZ2nL6zv5CUiCA0NhbW19T+ul6ITcgsLC+jr6+PNmzc65W/evEHOnDm/uI2RkRGMjIx0yszNzX9UiPQVpqamPNDTEdZ3+sM6T19Y3+kL6zv9YZ2nL6zv5PNPd8bjpehB3TJkyAAHBwd4eHgoZVqtFh4eHqhSpYqKkRERERERERF9nxR9hxwAhg8fjq5du6J8+fKoWLEiFi1ahPDwcHTv3l3t0IiIiIiIiIgSLcUn5O3atYO/vz8mTpyI169fo1y5cjhy5MhnA71RymBkZIRJkyZ99tgApU2s7/SHdZ6+sL7TF9Z3+sM6T19Y3ymTRv5tHHYiIiIiIiIiSnIp+hlyIiIiIiIiorSKCTkRERERERGRCpiQExEREREREamACTkREVESiouLUzsEIiIiSiWYkFO6tn37drVDoCSyaNEiPH78WO0wKJ1bt24dSpQogcjISLVDSTdat26NGTNmqB0GJaOJEyfi5cuXaodBKcyKFSvUDoF+sPbt26fJqa+ZkFO65e7ujvbt22Pq1Klqh0Lf6f79+xg+fDjGjx+PZ8+eqR0OpVMiAmtraxgZGaF27dpMypNJ2bJlMWnSJCxZskTtUCgZvH79GnPnzkWnTp3w5s0btcOhFOLQoUOYOnUq+vbtq3Yo9INotVrUq1cP27dvx/Dhw9UOJ0kxIad0q1KlSpg/fz4WLVqESZMmqR0OJZKIoEiRIjh//jz27NmD0aNH48mTJ2qHRemQRqNBnTp1sHTpUsTFxcHJyQlRUVFqh5WmabVaTJgwAfPmzcPQoUOxbNkyxMbGqh0W/UA5c+bEjRs38OTJE7Rr1w6vX79WOyRKAapUqYKxY8fiwoUL6Nmzp9rh0A+gp6eHbt26Ye3atVi1ahVGjBihdkhJhgk5pUtxcXHIkSMH+vXrh+nTp2PRokVYsGCB2mFRImi1WgBAxYoVcfToUWzfvh1z585l93VKdnFxcTAwMICZmRk6deqES5cuoUmTJkzKf5C4uDjo6X08jWnWrBl69uyJYcOGYc2aNRARlaOjHyF+fIbChQvD3d0dt27dwuDBg/Hq1SuVIyM1xcTEIGvWrBg4cCB69+6Ny5cvY+jQoWqHRUko/tjX09ODjY0NBg0ahIULF2LixIkqR5Y0mJBTuiMi0NfXBwC4ubnhzp07EBH88ssvmDlzpsrR0bdIWJcTJkzA8ePHYWlpid9++w2TJk1i93VKVvr6+tixYwdcXFxw48YNVKpUCZcuXULNmjXZff0HiD/2R40ahebNm+PDhw8oUKAABg4ciMWLF6scHf0I8XU+fvx4zJ07F+bm5ti5cye6dOnCO+XplIjA0NAQALB69Wp4e3sjICAAy5Ytw88//6xydJRU4o/9X3/9FX369MH79+9RpkwZTJ8+PW10XxeidGr8+PFiYWEhW7dulfXr10uXLl3ExMREpkyZonZo9I3mzJkjWbNmlVOnTomnp6ds3rxZjIyMpGPHjvL06VO1w6N04unTp2JjYyMLFy4UEZHY2FjZsWOHlClTRqpUqSKRkZHqBpgG7d27V7JkySLnz5+XmJgYCQgIkOnTp4uenp4sWrRI4uLi1A6RktiCBQvE3NxcvLy8xNvbW/bv3y82Njbi7Owsr169Ujs8UsmUKVPE3Nxc/vzzT3F3d5cePXpI8eLFpU+fPmqHRknk2LFjYmJiIqdPnxYRkYCAAFm5cqVkyJBBRowYoXJ038dA7QsCRGp49+4dPDw84Orqig4dOgAA6tevj2LFimH69OnIlCkTRo4cqXKU9F+dP38enTp1gpOTk1KWO3du1K9fHxkzZsS4ceNQoEABFSOk9CAoKAiRkZGoXr06gI9X9Js0aYLY2Fj06tULLVq0wO7du5ExY0aVI007goKCULhwYdjb28PAwADZs2fHuHHjEB4ejl9++QVZsmRBt27dlLsrlPrduHEDbdu2VY4zBwcH5M+fH/Xr10evXr2watUqWFtbqxwlJafAwECcOHEC06ZNQ9u2bQEAjo6OWLVqFZYtW4Zhw4Zh4cKFKkdJ3ysgIAA5c+ZExYoVAQDZs2dH586dERISgl9//RXm5uYYP368ylEmDrusU7pkYGCAx48f63Rxy5UrF7p16wY7Ozv8+uuvGDNmjIoR0n8RFxeHmJgYvHv3TukSrNVqERMTA2dnZwwZMgTr1q3DyJEjORov/XB58+aFhYUF/vrrL6UsY8aMaN68OYoWLYojR46gcePGKkaY9mTJkgU3b95UHk+Jf86wUaNG0Gq16N27N3bu3KlmiJRE5P/HBXj16hWePn2qlMfGxqJ06dLo168fDh06hJYtW+L9+/dqhUkqMDExQVhYGB4+fKiUmZub4+eff0ahQoWwfPly5eYLpQ7yhXFAChUqhJcvX+L06dNKWebMmVGrVi1kzpwZEydOxKJFi5IxyqTDhJzSvPhBvxIyMzODi4sLLl++jDt37ijl1tbWsLOzQ9WqVXHz5k0ODJTCfFqX+vr6MDQ0ROvWrfHHH3/g5MmT0NPTg4HBx84/OXLkQNOmTfHu3TtYWlqqETKlUfFtg1arRXR0NICPyaGjoyPc3d1x+PBhZV09PT2UKlUKbm5u2LBhgxrhpnoJj/34pFtE0LhxY1SvXh1DhgzBgwcPlDvhlpaWGDBgAP744w+0atVKlZjp+3za3ms0GgBA37594ePjg3Xr1gGA0t7nzp0bnTt3Rv78+WFmZpa8wVKy+dI5XVxcHKpWrYq7d+/i7t27SnnmzJlRsWJFVK1aFVmzZv3itpTyaLVa5XiPjY2FVquFiKBkyZJwdnbGihUrcO7cOWX9bNmyoXXr1jhy5EiqHTdAI8w4KA3TarXKKLy3bt1CYGAgChcuDCsrK5w+fRq9e/dGo0aN0KNHD5QuXRphYWHo3Lkzmjdvjm7dugH4eNIX3zCQehLW5YkTJ/D69WsYGBigbt26MDU1Rbdu3XD58mUsXboUdevWRWhoKDp06IDu3bsrJ+QJ90GUWPFtwuHDh7Fjxw5cuXIFLVu2RIMGDVC0aFG4uLgAAGrWrAknJyfs27cPhw4dwsmTJ5E7d251g0+FEh63v/32Gy5duoSwsDCUL18eI0aMwIkTJzB37lxERUVhwoQJyJgxI2bNmgU9PT0cPHgQwMeTuvjEjVK+hHV++PBhPH78GGZmZihbtiyKFSuG/v3749atW+jSpQv69euHN2/eoGfPnnByclIeN4uLi+OjCmlMws/FpUuXEBoaCktLS5QuXRr3799H9erVUadOHYwYMQJ2dnaIiIhAp06dUKtWLQwYMAAajYbnASlcwvpZuHAhrl69igcPHqBly5b46aef8OTJE4wePRoGBgZo06YNihQpgjlz5ijfyRqNJlW290zIKc1KmEiPHTsWu3fvRnh4OCwsLGBvb48lS5bA3d0ds2bNgkajQY4cORAQEIDY2FhcuXIF+vr6TMZToFGjRmHv3r3IkiULsmXLhhs3bsDb2xtBQUFYunQp1q1bhxIlSiA8PBwZM2bE9evXYWBgwLqkJLVv3z789NNPGDJkCKytrbF161YEBQXh1KlTiI6OhqurKzw9PREaGorMmTNjy5YtsLe3VzvsVO3XX3/Fhg0bMHToUISHh2P9+vWoUqUKdu7cif3792Pr1q3YuXMnChcujKxZs8LLywuGhoY89lOxUaNGYceOHbCxsUGWLFlw+fJl7Nu3Dzly5MDSpUuxceNGZMqUCRkyZFCWx4+4TWnLp+d027ZtQ5YsWeDv74969ephzpw5eP78Odq0aQNLS0totVpotVpERETgxo0bPKdLZUaPHo21a9di6tSp8Pf3x7Zt22BtbY0TJ07g2LFj2Lt3L9zc3FCgQAGYmZnh1KlTqbu9T+ZB5IiS3YIFC8TKykpOnjwpIiLdu3cXc3NzZZTG8+fPy6pVq6Rbt24yYcIEiYmJEZGPIyRTyrJ69WrJkSOHXLx4UUREVq5cKRqNRvbu3SsiIpGRkXLixAlZvHixrFy5UqnL+H+JksKbN2+katWqsmTJEhERiYiIkGzZssmIESN0RvWOiIiQBw8eyPv379UKNVXTarXK/8+fPy/FihWTs2fPiojInj17JEuWLLJixQqdbe7cuSN+fn5KPfDYT10S1vmmTZskV65ccu7cORERWbZsmWg0GtmyZYuIiISEhMj9+/dlxYoVsm3bNrb36cSSJUskZ86cyjnciBEjxNjYWDnHe/Dggbi5ucmwYcNk+vTpPKdLhS5duiS2trbKsX/06FHJmDGjrF27Vme9169fy7Nnz9JEe8+EnNKUGzduKP/XarUSGRkpzZs3l8WLF4uIyMGDB8XExER+//13EfmYwEVERHy2n9R8UKcVp06d+qxsxIgRMnnyZBER2b17t2TJkkVWrVolIiKhoaESHBz82Tb8EqbvsXjxYtmwYYNOWWBgoNjZ2cnjx4/l4cOHkjt3bundu7ey/Pjx4/L48ePkDjXN6Nmzp9y/f1+nbP/+/VKiRAkR+Xjsm5iYKMl4SEiI7N69+7MpzjjlWeqxefPmz8rGjBkjAwcOFJHP2/uQkBB5+PDhZ9uwvU9brl+//llZx44dZfr06SIismvXLjEzM1PagvDwcImOjv5sG57TpVyDBg1SLq7E8/T0lOLFi4uIyM6dO3Xa+9DQUNm9e7cEBgbqbJPa23s+REFpRu/evbF582bltUajgZ6eHiIiIlCtWjWcOHEC7dq1w9y5c9GnTx9ER0fDzc0NZ8+e/Wygj9T27Ela89tvv2HcuHEQEZ26effuHaKjo3HgwAF06dIFc+fORe/evSEi2LJlC37//XfExsbq7IvPEFJivXjxAt7e3qhatapOefz0ZhcvXkS9evXQsGFDrFy5EgBw//59rF+/Ho8ePVIj5FTv4MGDMDMzQ758+XTKs2bNisKFC8PNzU059vv16wcA8Pb2xqFDh+Dn56ezDZ8TTR1+//137N69Wxm4KZ5Go0H27Nnh7u7+WXvv7u6OnTt34sOHDzr7YnufdnTq1AmrVq3SKYuKisLLly9RuXJlnD9/Hl27dsXs2bPRr18/xMTEYPXq1Th16tRnA/LynC5lOn78OAwMDFC5cmWdchFBtmzZsHXrVvTo0UOpYwC4ePEi3N3d4e/vr7NNqm/v1bwaQJRUTp48KcePH1eujL548UJZ1qxZMylUqJCYmprK+vXrlfKXL19KzZo1lSvulDJMnTpVjh07ptzpuHv3rrJs4cKFUrZsWTExMZFly5Yp5e/evZOGDRvK1KlTkz1eSpt69uwpw4YNU3rQnD17VqetGDZsmGg0GmndurXOdmPHjpWyZcvKs2fPkjXetMDFxUXc3NyUY3/t2rVy9epVEfnYpufNm1c0Go0sXLhQ2SYiIkIaNGgg7du31+nuTKnD9OnT5eDBg0qdx3dRFfnYNTlbtmySOXNmnUcTgoKCpF69ejJ27Nhkj5eSx86dO+XZs2cSFRUlIqLTng4ZMkQsLS0lY8aMsmnTJqX83bt3UrNmTVmwYEGyx0vfrkaNGrJ161bl2N+4caPy+KGIiJ2dnWg0Glm6dKlSFhERIY0aNZLWrVun+jvin2JCTqlexYoVpVy5csrBuXr1amnYsKHSBebhw4diZ2endHf88OGDvH//Xho2bCiOjo7s4paC1KxZU6pWrarU5ZEjR0Sj0ciuXbtE5OOJmKOjo1hbW8vx48fF399fHjx4IA0bNpQKFSqwWxoliW3btomlpaVcuXJFKevQoYOULVtWVq9eLSIiAQEB0q5dO8mcObOsXr1ali5dKj///LOYmJjItWvX1Ao91Ro8eLDkyZNHOfYfP34sVapUEQcHB6Xb6pUrV8TExERatWol69atk+3bt0vt2rWlVKlSyrHPpDz1qFevnvK9LCLi4eEhFhYW4urqqpR16tRJjIyM5OjRo3Lv3j3x9fWV+vXri4ODA9v7NMrZ2Vny5cun1O/KlSulWrVqymNs9+/fl7p160rhwoUlMDBQ4uLi5O3bt9KgQQOpXLkyz+lSgV9//VXy58+vXHCJP7erUaOGHDhwQEREfH19pXjx4lK+fHlZu3atrFy5UurUqSMlS5ZUPhtpKSlnQk6p2t69e6VIkSLKXazXr1/LqVOnxM7OTjp27Khcbd+zZ4/kzJlTChUqJBUrVpQqVaqIvb29ckedDbj67t69K2XLlpUzZ86IiMjly5fFx8dH+vXrJ9myZZPt27eLiMj79+/FwcFBSpUqJVmyZJEqVapI1apVWZeUZObPny9FixYVkY9tzIoVK+T9+/fSvn17qVatmjKwzJs3b2T48OFStGhRcXBwkFatWomPj4+aoadK4eHh0qJFCxkzZoyIiLi6usqDBw/kyJEj0rRpU6lYsaJykePs2bNSuXJlKVy4sFSrVk06dOjAYz8Vun//vtjb28vff/8tIiJ///23+Pn5yciRI6VkyZI6SXmTJk0kT548YmJiIpUqVRJHR0fWeRp17NgxsbGxUcaDuXv3rvj5+UmRIkWkefPmyjnd/v37pXLlymJmZib29vbi4OAgFSpU4OciFYiNjZU2bdpIjx49RERk6NCh4uvrK2fOnJEWLVpIzZo15fDhwyIi4ufnJ/Xr15cyZcqIo6OjdO/ePc3WMRNyStW8vb0lY8aMsmPHDvn111+ldOnSIiKyb98+qVChgrRr104uX74sIiL+/v4ybdo0mT17tk63SF5lTxkePXok5ubmMnnyZOnZs6cULFhQwsPDxc/PTwYOHCimpqby559/iohIWFiYnD17VrZu3Srnzp1jXVKS8vb2luLFi4uzs7POqM5v376VNm3aSNWqVWXdunXK+i9fvpTY2Fj58OGDWiGnenPmzBE9PT1p166daDQaZcCuI0eOSKNGjXSS8pCQEHn79q0EBQUp2/PYT10CAwPF2tpaunXrJj///LMYGRlJRESEPH78WH799VcpVqyYzJ49W1n/zJkzcuTIEfH29k4TIyrTl/n6+kr+/Pll3rx58ssvv0iZMmVE5OOAvba2ttKoUSO5dOmSiHy8OL9y5UpZvHix/PnnnzwPSEX+/PNP0Wg00qhRI9FoNMqFbE9PT2nWrJk4OzvLoUOHlPX9/f11vl/TYh0zIadUKy4uTsLCwmTq1KliZmYmWbJkkadPnyrLEybl8VPlfCqtXWFLreK7mR47dkz09PTExMREvLy8lOWPHj1SkvIdO3Z8cR9pqesSqW/gwIGi0WikcuXKOuXxSXm1atVk9erV7CL9nRL+/YoWLSoGBgY6zwyK/C8pr1Sp0hd7ILAOUpf4tvrOnTtiaGgoJiYm4u3trSxPmJTPmjXrH/dBaUtoaKi4urqKtbW1GBkZ6YwhkzAp5zld6le+fHnRaDTKWBDx7Xh8Ul6rVi2l+3pCabW9T+VD0lF6pqenB2NjYwQGBiIsLAyZM2fGuXPnlOXNmjXD+PHj8fjxYyxfvhyenp6f7YMjsqYMGo0GAPDy5UuICMLCwuDp6Yng4GAAQIECBTBixAh06dIFffv2xR9//PHZPlL9CJuUYoSFheHWrVvo1asXwsLC0KFDB2WZpaUlli9fDhsbGyxevFhnZgf6NlqtVjn2L1++DBMTE7i4uGDkyJE4cOCAsl79+vUxePBgWFpawsXF5bPR1OP3QSmfiCht9aVLlyAiiIuL05khI1++fOjXrx9atGiBjRs3YvLkyZ/th+192iL/Pyp6lixZ4O/vj/fv36NAgQI4ePCgsk6pUqWwfft2PH78GLNnz4aHh8dn++E5XcqVcMac69evI3PmzOjfvz9cXV2xbNkypR2vUaMGRowYATMzM4wZMwbnz5/X2U9abe85DwClOlqtVufL2NbWFgcOHMCpU6cwbNgwREREoGvXrgA+JuUajQZDhgxB4cKF4eTkpFbY9AUJ6zI4OBh2dnYICgrC8ePH0aZNG0RFRWHUqFEwMTFBgQIFMHz4cAQGBmL9+vU6SRLR9xIRaDQa3LhxA3nz5lWmY9mwYQPmzJmDDh06KBeCLC0tsWjRIowePRrVq1dXOfLUKeGxf+PGDdjY2ODEiRMwNzfHwIED0aZNG+zcuRONGzcG8DEpj4yMxJkzZ5A3b141Q6dESljnISEhKF26NJ4+fYpHjx6hYcOGiImJwdq1a6Gnp4f8+fOjX79+CA4Oxr1795Tjk9KeT8/pqlatisaNG+PkyZPYtGkToqKiMGbMGAD/S8pr1KiBYsWKoXbt2mqFTd8gYR2fP38e5cqVw+HDh2FoaIicOXNi8ODB0NPTw4ABAwB8TMqjoqLg4eGBChUqqBl68lHz9jzRt0rYTW3JkiU6U1/du3dPhg4dKrlz55YNGzbobHf69Gl2ZUphEtalq6urjB49Wnx9fZWyjRs3ikajkfHjx0tISIhS/vLlS3ZXpCQV3wVuz549kjdvXhk1apQyqFBYWJisX79eihcvLh06dNDZjp/DxEn4dxs/frzY2trKkSNHlOcCIyIiZMCAAZIxY0Y5ePDgF/fB9jx1SVjn06ZNk169eomfn59SdvToUTExMZFu3brprPvq1Svl+EyrXVXTs0/P6aZMmSJhYWEiIvL06VP55ZdfxM7OTmbOnKmz3aNHj9gGpBIJj9vx48dL3rx5ZevWrUp5YGCgTJs2TTQajSxfvvyL+0gPdc2EnFKFT7+IR44cKXnz5hVXV1d58uSJUn737l0ZMmSI5MmTRzZu3PjZftLDQZ3SfZrEjBw5UnLmzClr166V169f6yxbv3696Ovry8SJE5UE6Wv7Ifoe7u7ukjFjRlm1apW8fPlSZ1lYWJi4ublJqVKlpHHjxipFmDYkPG7HjRsnOXPmlMOHD8ubN28+W69fv35ibGwsO3fuTO4wKYl82k6PGjVKcuXKJatXr5YXL17oLDty5IiYmppKjx49PtuOyXjak7BOf/nlF8mVK5esWLFCGdBR5ON4AvFJ+ZfGE+A5Xcr2aXufI0cOOXXq1GftfWhoqEydOlX09fV1BnNMT5iQU6rz+++/i6Wlpc4gMAkP+idPnsiwYcNEX19fZ5RGSnm2bdsmVlZWyjzDIh8b5sePHytT2W3YsEE0Go0y/zPR99qzZ488e/ZMeR0aGirNmzeX6dOni8jHBNzPz0/mzp0r+/btk/DwcImIiJCVK1dKpUqV5Pnz52qFnmp9mlT7+vqKra2t0kYHBQXJ/fv3ZcWKFcrUh1qtVn766SdxdnZO9njp+30668C+ffskZ86cOt/dwcHB8vDhQ2XE/KNHj4pGo5EZM2Yka6yUfD79XKxbt05y5swpFy9eVMq0Wq1yEf7FixcyatQoyZ07t7i5uSVrrJQ4CWchEfk4fZm9vb0ySNu7d+/k5s2bMm3aNDlz5ox8+PBBwsPDZdSoUVK1atV0eQGOCTmlaP369ZM9e/aIyMcGOiYmRvr37y8jRowQEZHbt2/L2rVrpXz58lKpUiU5cuSIUr548WJePU1BmjZtKhMnTtQp++2336RJkyYi8rHO5s6dKwULFhQ7Ozvp3bu30nXt8OHDaXKaC0p+Hh4eUq1aNZ27cx8+fBB7e3sZMmSIhIWFyeDBg6V69eqSL18+MTAwkHnz5onIx0Q94VRb9N8sWbJEmjVrJnFxccqJlre3t+TIkUMuX74sXl5eMmDAACldurRkz55dHBwclEQ9MjKSvWFSod69e8vQoUNF5H93QtesWSM1a9YUEZHr16/L9OnTpXDhwpI/f37p16+fvH37VkRELl68yPY+jWrfvr3OOZ3Ix3moO3XqJCIit27dkhUrVoidnZ0ULFhQtm/fLiIfE7ply5bxnC4VWLJkiXTs2FGn3b5586aYmJjIiRMn5MKFC9KnTx8pU6aM5MqVS/LmzStHjx4VkY8X6NLrIyocppJSrMDAQBgbGyuD+mg0GhgYGCBLlixYtWoVFi1ahK5du2LPnj1o3LgxTE1NMXjwYERHR8PW1haDBw+Gvr4+4uLiVH4nFBkZiT59+mDcuHE65bGxsTh27Bj69u2LJk2a4PLly+jfvz9atmwJLy8vPH/+HADQoEEDGBgYKKPwEiVWrVq1sHv3blhbW+Pu3bt4/PgxMmXKhF69emHz5s3IkSMHnj59iu7du+Px48f4+eefcejQIURFRcHY2BhmZmZqv4VUp0WLFti9ezf09PRw+fJlAICDgwPy5cuH5s2bo379+tDX18fMmTPh5+eHoKAgPHjwAABgZGQEPT09nRF6KWWLi4tD06ZNMWfOHABQ2u0cOXLg1KlT6NSpExo1aoQ7d+5g5MiRGDJkCPbu3Qt/f38AQIUKFdjep1GFChVCo0aNAADR0dEAgLx58+LYsWMYMWIEOnbsiBMnTqBZs2aoX78+evbsCX9/f+TPnx8DBw7kOV0q0KVLF7i5uUFPTw9eXl4AgJIlS6JZs2ZwcXFBrVq1kClTJsyYMQMvX76EmZkZ/v77bwCAqakpNBpN+hzEUe0rAkRf8umVsfXr1ytz07548UJ69+4thQsXlrlz5yrdnU+dOiU1atRQrrJTyjR//nxp2bKl8nratGnSuXNnWbt2rTLIj6+vr5QtW1Zu3rypUpSUFiW86/b06VMpWbKk9O/fX3lm3MfHR+lSF98G9e7dW3r16sU7domU8C7JsWPHJHv27DJ//nylbPPmzXLmzBmd9apXry4rV65M1jgpaXz63b169WpxdnZWepZs2rRJunbtKm5ubsqjH2/fvhU7Ozu5cOFCssdLyePTXi7Lli2TZcuWSUREhPj5+cnEiROlbNmysnjxYrlz546IiHh5eUmNGjU+e96YUq6E35MeHh5SsGBBmTBhglJ2+PBhnUcTREScnZ2V8/v0TCPy/5P/EaUgcXFxynySMTExaN68Od6/f48BAwagS5cuAD7eQc+aNSuAj1MqNGrUCJkzZ8auXbvS35W1FEw+udK5evVqjB07Fo0bN8aGDRsAAOHh4TA2NoaIIDIyEq1bt0Z0dDSOHj3K+Wbpu8RPt5Lwc3jnzh3Y2tpi1qxZ2LVrF2rUqIFBgwYhf/78ynYPHjzAunXrsGLFCpw+fRqlSpVS6R2kXlFRUTAyMgIAPH36FKamppg8eTKOHz+OPn36YMiQIcq6Hz58QEBAAPr3748XL17A29sbBgacmTW1SfjdDQCbNm3CokWLkC9fPmzYsAGmpqaIjIxExowZERcXh6ioKLRq1QofPnzAX3/9xfY+nWjfvj0uXryISZMmoUOHDsiQIQPCwsKQJUsWAB97VTRr1gx6enpwd3fnOV0qEBsbq7TZPj4+KFq0KMaMGYMLFy6gQYMGmDhxorJueHg4nj59ilGjRuHp06e4fPky23tVLwcQfcHt27eV/y9YsEAuXLggb9++lbZt20q1atV0BvcKCQmRHTt2SO3ataVs2bISHR0tIunv2ZOU6sKFC8pd7r59+8rWrVslMjJSNm3aJLly5ZKuXbsq6wYHB8uMGTOkbt26Uq5cOaUu+fwofa+HDx9Ko0aNRERk9+7dkjt3buUuzOzZs6VcuXIyfPhwZcYGLy8v6dq1qxQtWlSuXr2qVtip2vbt22Xu3LkiIjJ48GApVqyYiIg8ePBAhg8fLsWKFZMlS5Yo669fv14qVqwoNWrUUI59Pi+auvz1119y7949EREZMmSIzJgxQ2JjY2Xjxo1SqVIladasmTKFZVhYmCxYsECcnJzEwcGB7X0alvCO6Lx58+TYsWMiItKtWzcpUqSIrF27VvlchIaGyq5du6RmzZo653T8XKRsO3bskOHDh4vIxzEBSpYsKXFxceLv7y/Dhw+XSpUqyeTJk5X1d+7cKTVq1BBnZ2e29/+PCTmlKHfv3hWNRiPLli2TkSNHStasWZUT59evX0vr1q3F0dFR1qxZIyIfT+7Gjx8vXbp0UbrKsGup+rRarTx//lwsLS2ld+/e0q1bNzEyMlKSm7CwMNm4caPkypVLunfvrmy3ePFiGTBgAOuSktSVK1fEyspKypQpIxqNRjZv3qyzfPbs2WJnZyfDhw+XV69eyYcPH+To0aPy9OlTlSJO/VxdXUWj0Yizs7NkzZpVfHx8lGUPHz6UESNGSLFixZSuiu/evZMtW7YoJ2U89lMPrVYroaGhYmJiIrVq1ZJu3bqJubm5XLt2TUQ+1qWbm5tUqlRJXFxcJDQ0VERE/vzzTxk5ciTb+zTs4cOHYmZmJn379pWRI0dKpkyZ5MaNG8ryzp07S7FixWTt2rUSFhYmT548kSlTpkifPn34uUhF/vzzT9FoNFKlShUxNTXVmTknICBAScqnTp0qIh9n1XB3d2d7nwATckpRoqOjZc2aNWJoaCimpqbKM8VRUVEi8r+kvHr16so846Ghocod8fR+hS2l8fLykmzZskmGDBlk165dOsvik3Jra2vp0aPHZ9uyLikpzZ07VzQajRQvXlwpi29XRD4m5eXLl5c+ffp8Ng85JY6jo6Po6ekps2Ik9PDhQ/nll1/E1tZWXF1ddZbx2E+dIiIixMTERIyMjGTv3r06y2JiYmTjxo1SpUoVadmypTKlVTzWedoUFhYmO3fulEyZMomJiYk8evRIRHSnPuvcubMUL15c1q9fL1FRURIWFsZzulTIyclJNBqNcpNFq9Uq9RiflFeuXFlGjRqlsx3r+CM+rEMpiqGhIUxNTREbG4vQ0FAcOHAAAJAhQwbExsbCysoKy5YtQ65cuTB16lQcPHgQWbJkUUZlTPjsGqlHRKDVapEhQwaYm5sjW7ZsOH78OHx8fJR1jI2N0aJFC8yePRvr16/HjBkzdPbBuqSkVLRoUUyZMgVarRaOjo6IiYlBhgwZEBUVBQAYNWoUWrZsiZs3b/I51u8UPzq2ra0tBg0ahAULFmDevHkIDQ0F8LF9KFiwIPr374+qVavi6tWrkATD2fDYT32ioqLw5MkTmJqawtjYGCtWrMCdO3eU5QYGBujQoQMGDBiAy5cvY+bMmTrbs87TJmNjY2TOnBkajQaGhoaYN28eACBTpkyIjIwEAGzcuBGVK1fG4MGDcfz4cRgbG/OcLhWqXbs2ZsyYgc2bN2PkyJGIjY2FRqNBXFwcsmfPjrFjx6JMmTLw9/dne/8lal4NIBL53/Pe8c8IxcTEyP379+X3338XjUajPIeY8Bmid+/eycSJE3llLYX50rP7Wq1WTpw4ITY2NtKjRw+drqvxjhw5wrqkJPW1cSQuXrwoBQsWlGrVqul85s6dOyciIoGBgckRXprzT894zpw5U2nL47sri4g8evRIoqKilG059kfq8rU6f//+vVhaWkrt2rXlzp07n9XrqVOn2N6nYZ/OIx0YGCgPHjyQP//8U6ysrKRXr17Kugk/Q7Nnz+bnIpX4p/b+jz/+EAMDAxk5cqROfXp7e0tcXFy6nWf83zAhJ1UlPKiDgoJ0urGFhYXJwoULRaPRyIIFC5Ty4cOHy6VLl5TXbMBThoR1+ezZM2Uwt/jy/fv3i42NjfTp00d5ltzZ2VmnKzvrkpJC/Bf9+fPnZenSpTJr1iy5e/eusvzSpUtSqFAhqVatmty+fVvGjBkj+fPnl1evXqkVcqqW8Nh3d3eX9evXy6ZNm3Tac1dXV9HX15eZM2fK9evXpUmTJlK1atUv7oNSvoT1df/+fbl69apERUUpbfiTJ08kR44cUq9ePfHx8ZG4uDhp3Lixznc52/u0J+Hn4tWrVxIcHKx0T3/37p1s2LBBrKyspG/fvsp6Q4YMkZMnTyqv+blI2RLW8Y4dO2T58uUye/ZsiYiIUMq3bdsmGTJkkMGDB8vVq1eladOm4uTkxGT8H3DaM1JN/HREADB37ly4u7vjw4cPKFiwIDZv3owMGTIgOjoaK1aswLBhw9ChQwc8ffoU/v7+uHnzJqdISEES1uWkSZOwf/9+PHjwADVq1MBPP/2ENm3aIEOGDHB3d8fw4cNhZWWF8PBwhISE4M6dO8iQIYPK74DSCvn/6c12796NAQMGoFChQsiQIQPOnz+PXbt2oVGjRgA+TsvSoUMHhIeHQ0Swa9culC9fXuXoUx9JMJ3c6NGjsWHDBhQpUgTXrl1DvXr1MGjQIDg7OwP42M67uroiZ86cyJQpE86fPw9DQ0MVo6fESFjnEydOxLZt2xAaGoosWbJg+vTpqFWrFiwtLfH06VNUrVoV2bJlg1arhYjg2rVrrPM0KuF5wKxZs7B3715ERUXBwsICbm5usLa2RnBwMPbu3YuRI0fC1tYWBgYGePjwIR48eMBzulRm9OjR2LRpE4oXLw4/Pz9YWFhg8eLFqFChAgwMDLBv3z60a9cOhQsXhpGREdv7f6PixQAiEREZO3as5MqVS5YsWSIHDx6U7NmzS/369ZXBP7RarezZs0caN24sffv25RQJKdikSZPEyspKdu7cKc+ePZPKlStLuXLlZPHixRIZGSkiH7srurq6yoQJEziKKv0QZ86cEUtLS2WKRD8/P9FoNGJqaipbtmxR1ouJiRFPT0/eGU8C8+fPlzx58ii9l9auXSsajUYaNmyoc/fr4sWLcvr0aY6umwZMmTJFcuXKJfv27ZPY2FipXbu2FCpUSJYuXSpv374VEZGXL1/KrFmzZO7cuWzv04mxY8eKlZWVuLm5yYEDB6Rs2bJSqFAhpZdSaGionDx5Ujp06CADBgzgOV0qtGjRIrG2tpYrV66IyMcekBqNRsqUKSOnT59W6vTx48dy/vx5nUdS6cuYkJOqjh49KqVKlRIvLy8RETl8+LBkyZJFLCwsxM7OTknKRURJ6ER4UKdEFy5cEDs7Ozlx4oSIiHh6ekrmzJmlfPnyUrx4cfntt9+UUa0TdnnilzAlpcjISFmwYIFMnDhRRESePn0qNjY20r9/fxk0aJBkypRJdu/ezc9dEnr37p30799f1q1bJyIf55g1NzeXSZMmSd68eaVGjRri4eHx2Xasg9Tr+vXrUq1aNTl48KCIfPwuNzU1lapVq0rWrFll6dKl8ubNGxHR7Z7K7+607cSJE2Jvby+nT58WkY+JmpmZmRQqVEhy5Mih8+hQQvxcpB7v3r2TkSNHipubm4iI7Nq1S8zMzGTFihVSvnx5KVOmjHh6eurMYiLCx5L+DRNySlafPjdy9OhR5ZmyI0eOSPbs2eX333+XBw8eSLZs2aRBgwbi6+v7j/sgdXxaDy9evJC1a9dKdHS0eHh4iIWFhaxdu1ZERIoXLy6lS5eWGTNm8IuXfrjLly/LpUuXJCwsTBwdHaV3794SFxcnd+7cESMjI9FoNLJz5061w0y1Pj2xioyMlL/++ksCAgLk2rVrUrBgQVm0aJGIiGzdulUyZMggjo6O4u3trUa4lAQ+rfOnT5/Kpk2blF4mVlZW8vvvv4vIx+mPihQpIq6urp9Nb0Zpy6fnAadPn1bmmj58+LBYWlrK8uXL5d69e5I7d24pWrSoMr7M1/ZBKcunx75WqxUPDw95/fq13LhxQ4oUKSKLFy8WEZG9e/eKRqMRa2truXbtmhrhplqc24WSjVarVZ47e/PmDQCgXr16aNOmDSIiIuDq6oqBAweiT58+yJo1K/Lly4ejR49+Nj1K/D5IPQnr8tGjRwCAXLlyoVWrVtDX18fKlSvRs2dPdO3aFcDH6Y9CQkLw+vVrTnFBSUr+fxiUc+fOYePGjQAAe3t7lC9fHn5+fggPD0fv3r2hp6cHQ0NDtGvXDmPGjEGJEiXUDDvVSvic6I4dO3Dv3j0YGRnB0dER2bNnh5eXF/LmzYsuXboAACIiItC0aVMULFgQdnZ2aoZOiZSwzm/evAkAsLGxQePGjWFgYIBVq1ahVatW6NGjBwAgT548iIyMxPXr12FiYqJa3PRjJTwPePr0KQDA0dERffr0QVxcHBYtWoRevXphwIAByJMnD4oWLYrnz59j5MiROvvhOV3KlfDY37x5M7y8vKDRaFCrVi1YWVnh8uXLsLKyQps2bZT1hw8fjiZNmqBUqVJqhp7qMCGnZJHwoJ49ezaGDBmC69evA/j45f3+/Xu8ePECVapUAfBxPvKyZcvi9u3bWLt2rWpx0+cS1uXkyZPRuXNnnD9/HgBgZmYGEcGbN2+g1WqV5NvY2BirVq3CokWLlPlFib6X/P/gUrt27YKLiwtu3LihM/fx69evce3aNURHRyMyMhJubm549uwZJkyYAFtbWxUjT51ERDn2x4wZg2HDhuHAgQP48OGDUv727VuEhobC398fERER2LdvH+rVqwc3Nzfo6elBq9Wq+RboG306YGf79u1x7NgxAEDWrFkRFxcHf39/Za7p+G12796NLVu2sL1PoxJ+LmbOnInRo0fD09MTAGBlZYW3b9/C19cXlSpVAgBER0fD0tISf/31Fw4cOKBa3PTfJWzvR48ejQkTJsDT0xNBQUGIi4sDAPj5+eHx48eIiIjAu3fvsG7dOmTLlg2///479PX1lfXoP1Dx7jylQ7/88ovkyJFD/vzzT53nw2NiYqRw4cJSt25d2bZtm9SqVUsqV66sdJXhs4Ypz+jRoyVnzpyyY8cOefnypVIeEREhP/30k1SpUkUGDBggzs7OUqpUKaUu+RwRJaWTJ0+KsbGxrFq16ovLf/rpJ2WwGVNTU2XKPUq8adOmiYWFhVy6dEnCw8N1lt28eVOyZcsmRYoUkQIFCkjp0qWVAX7YNTX1Gj16tFhZWcnBgwfl2bNnOsv69Okj1tbW0rNnT6lcubKUKFFC+c5me5+2jRw5UiwsLGTv3r2ffS6cnJykWLFismHDBqlRo4ZUqVKFn4tUyNXVVbJnz67MI55QcHCwFClSRMzNzSV//vxSpkwZpb2nb8NpzyjZuLu7Y+DAgdizZw8cHBwAAOHh4bh79y4cHBzg7e2NTp06IWPGjLCwsMDhw4dhaGiocyWWUoZLly6hTZs2cHNzg5OTEyIjI/H+/XtcvXoVFSpUgJGREYYMGYKAgAAYGxtj8+bNrEtKUvJxDBSMHDkSQUFBWLt2LYKCgnD9+nX88ccfCAoKwsSJE1GiRAls2rQJWq0Wjo6OKFSokNqhp2rBwcFo37492rdvj65du+L58+e4d+8eVq1ahSpVqqB379549uwZjh8/Do1Gg759+8LAwACxsbGc1iiVunHjBtq0aYMVK1agZs2aCAsLw7t373Dq1CnUrVsX1tbWGDx4MN6+fYsMGTJg7dq1bO/TgUOHDmHAgAHYs2cP7OzsEBcXh5CQEFy/fh3Ozs64desWBg8ejPfv3yN37tzYs2cPPxepTFBQEDp37oxWrVqhW7duePz4MW7duoVVq1ahePHiGDlyJIyNjeHm5oYsWbKgffv2bO8TiX8tSjavXr1C9uzZ4eDggNu3b2Pv3r1wc3PD8+fP0blzZ6xcuRI3btzA27dvYW1tDY1Gw4M6hQoNDYW+vj5sbW1x4cIF7Ny5E+7u7nj9+jXs7OywZs0arFmzBvr6+ko3RtYlJSWNRgONRoNMmTJh165d8PDwwO+//46QkBBotVoEBQWhZcuWuH37Njp37qx2uGmGnp4e7t69C29vb+TNmxfLly/Hy5cvkSFDBkybNg3BwcGYOHEiihUrpmwTFxfHYz8V+TRhCgwMREBAAGxtbeHt7Y0tW7bg6NGjePLkCYoUKYKdO3diyZIliIuLUx5TYnuf9kiC+eeBj+cBmTJlQtmyZeHr64s///wTbm5uCAwMRKVKlXD48GF4eHjg9evXsLKy4jldKvDpsW9qagp/f3/s2LEDuXPnxuLFixEUFIQ8efJg2bJlCAkJwYoVK9CvXz9lG7b3icNLVJRsihQpgsDAQNSqVQuNGzeGr68vBg0ahO3bt2PVqlU4e/YsDA0NkTt3bmg0Gmi1Wh7UKVSFChUQGBiI+vXro06dOggNDcWMGTPg6emJW7du4dq1azAwMFC+vEWEdUnfLb5D16VLl7Bjxw6ICJo2bYry5cujWbNmyJAhA4YNG4Zjx45h4cKFyJw5M96+faty1GmLiYkJZs+eje3bt6Nly5YoUqQIpk+fjlOnTqFt27a4ffv2Z9twIMfUI+EJ+a1btwAANWrUgI2NDcqXL4/atWsjOjoaM2bMwOvXr/Hs2TOcPHkSwP/qme192pNwALeXL18CAKytrZExY0Y4Ojqidu3a8PPzw7Bhw7B//36cPHkSR48eBQDkzJmT53SpQMJjf9euXfD09ISenh4mTZqEly9fonXr1ihXrhxmzpyJbdu2Yfz48Xj9+jWio6N19sP2PnF4ZFCycXBwwIIFC3DgwAH07NkTNWvWhLW1Nfz8/FCxYkWYmprqrM8uTSlTXFwcTExMcPPmTWzduhWlSpVC9erVYWxsDK1Wi4IFC342cBNHUaXvJQkGcBswYAD69esHe3t7VKpUCZs3b8aTJ0907sru2rULxsbGMDY2VjHq1OvTu2EJtW3bFk5OTggPD0fBggUBfDyZu3//Puzt7ZMzTEpCCU/Ip0yZgn379mH69Olo1KgRTpw4gV27dqFw4cKoVq0ajIyMoNVqUaJEic++u9nepy0JPxeurq54/Pgx+vTpA0dHR4wbNw5XrlyBnZ0dnJyckCNHDjx58gRlypRB9uzZdfbDc7qUSxIM4Pbrr79i9+7d6Nu3L+zt7VG3bl3Url0bL1++RP78+ZVtTpw4gRIlSiBDhgwqRZ228BlySlKfdndJ2IXtU7GxsQgPD0enTp0QHByMU6dOscFOQf7pOa9Pl0VGRiIsLAxdunTB27dvceHCBV4lpSR38uRJNG/eHPPmzUOfPn2+eOLv7e2NjRs3YtOmTTh16hTKli2rQqRpT8IEPeHxHxYWBm9vb8ybNw9PnjzB1atXeRcsFUpYv6NHj8b69euxYcMGlChRAvny5dNZNzw8HIGBgejXrx9evnyJS5cusb1PB0aNGoX169djxYoVqFy5MvLkyaOzPDY2FkFBQejRowcCAwNx6tQpfi5SGVdXV+XGWYUKFT47B/zw4QP+/vtvLFiwAC9evMCVK1dgYGDwjxdw6b9h9kNJKv7gdXd3B/D1risRERH4888/4eLiglevXsHDw4NT4qQw8XW5YcMGhIWFAfhfl+FPL7qsX78eTZo0QVBQEM6dO8fpLui7zZ8/Hzdu3ADwMQHUarXYvn072rZti759+yI0NBTnzp3D0KFD0aNHD7x58wbPnj3D1q1bceXKFXh6ejIZ/05z5szBkCFDAOje9Ux4/F+7dg1LliyBVqtVTs547KceXl5eAP5Xv97e3ti7dy92796Nhg0bwtLSEi9evMC2bduU7qn79+9H27ZtERQUpFx8ZZ2nLRERETqv9+7di23btsHDwwOtW7dWpqv19vZW1lmzZg06dOiAV69e4eTJk/xcpHCzZ8/Go0ePlNcBAQHw8PDAwoULUalSJTx79gxHjhxBhw4dMGnSJAQHBytjSBgYGODy5cvKAG5Mxr8fL2NTkrt69SqGDh0KY2Nj1KpV64tXzqKjoxETEwNnZ2eMGzeOozKmUCEhIRgyZAj8/PwwZcqULza6enp6qFmzJuLi4tC/f3/o6+uzLinRtFotYmJi4ObmhiZNmgD4XwJoamqKkydP4vjx49iwYQPevXuHkJAQREdHo27duvDx8UG/fv0wduxYWFhYqPk2Ur34dvvKlSt48eIFcufO/cX1ypUrh2nTpsHW1hZ6eno89lORIUOGIDo6GtWrV1fa9qCgIPj7+6NEiRK4ceMGNm7ciP379+PZs2coUqQI3N3dYW9vj759+6JTp05s79OgunXromLFipgxY4ZSFh4eDisrK9ja2sLX1xc7d+7EmjVrlMcWDh8+jKxZs6JOnToYMWIEz+lSOE9PT3h4eOCXX35RyiwsLBAVFYX9+/cjR44cWL58OQICAmBlZYW5c+ciMjISs2bNQs6cOVG4cGG290mMXdYpyQUGBqJ69eqoV68eFixY8NX1YmJiYGhoCOCfu7aTusaPH4+bN29i8+bNMDY2/tcroaxL+h6hoaEwMTFRukWfPXsWmTJlgp2dHQ4ePIiVK1fi5MmTcHFxwU8//YQGDRrgwIEDmDlzJk6cOAETExO130Kacf78eTRv3hwrVqxAy5Yt/7VbIqczSl3u3r2LQoUKwdDQEHfv3kXx4sURFhYGZ2dnvHnzBuHh4Wjbti1q1qyJZs2awcLCAr///js6deqk7IPtfdpz+fJllCpVCkZGRoiOjkaGDBmwe/duTJgwAXnz5sXt27fh7OyMcuXKIX/+/OjTpw8OHz6M8uXLK/vg5yLliq+b+GT60KFDyJ07N8qWLYsNGzZgxYoVuHHjBoYOHYoGDRqgRo0aGDduHB4+fIht27Yp+2F7n8SScc5zSmO0Wq3ExsYq/xcR5fXu3bsld+7ccu7cOdXio28TFxf3xfKLFy9KxowZZd++fckcEaU3S5culfHjx8vLly9F5GN7kj9/filatKjcunVLRESCgoKU/8cbOnSoODs7S2hoaLLHnBbExMQo//+0HRg2bJjY2dlJQEBAcodFP8hvv/0mr1+/Vl5v3rxZKlWqJLt27RIRkSdPnsjixYvl6NGjEh4eLiIiERERUrVqVX4PpGGXLl2SyMhI5fXs2bOladOmEhUVJSIia9euleHDh8vWrVuVNvr+/ftiZ2cn3t7eqsRM32bMmDEya9Ys5Vz99u3bkilTJunevbv4+fmJiEhYWJg8ePBAZztnZ2cZNmxYcoebrvDSBiXKmzdvoNFolKtjV65cAfC/Z8ZLliyJAgUK4NKlSwDA54hSsDt37gD4X7fgY8eO4e+//1aWV6hQAT169MDKlSvx7t07VWKk9OHJkydYs2YNNm3ahFevXkFfXx/Xr1+HRqNBp06dcP36dZiamqJEiRIAAB8fHwwdOhQbNmzA4sWLkSVLFpXfQeoycuRIhIWFKV0OZ82ahQkTJuD48ePKOq1bt0ZMTAzu3r0LABznI5Xbv38/FixYgEmTJuH9+/cAgOLFiyNTpkxYvXo19u/fj7x582Lw4MGoV68e9PT08Pz5c7Rp0wZRUVFo3Lixyu+AfoS5c+eiYsWKOH78OGJiYgB8nBnnxIkT6N69O2JjY9GjRw/MmzcPHTp0QI4cORAUFIThw4fD1NQUdnZ2Kr8D+jcfPnzAtWvX4O7ujtWrVyM2Nha2trbYuHEj/vrrL8yYMQO3bt2CsbExChUqhLCwMJw5cwYNGjTA+/fvMWfOHLXfQtqm9hUBSn0mT54sxYoVU66geXp6ikajkebNm4urq6tyh2X+/PmSPXt2effunZrh0j+YN2+eaDQa8fLyEhGRu3fvSq5cuaRo0aLSoUMHuXDhgkRERIiXl5cUKVJEbty4ISJfv5tO9L2mTZsm+fLlE1dXV3ny5ImIiISEhEihQoXEwcFBrl69KiIi165dk759+0qVKlXk+vXrKkacOj1+/FgsLCykfPnyyl3QSZMmSb169cTS0lK6desmBw8eFBGRpk2bSuPGjdUMl5JIbGyszJs3T6pUqSI9e/aUN2/eiMjH46lOnTpSr1492b17t7L+pk2bpEaNGlKlShWJjo5W9kFpT+vWrcXS0lLc3d0lIiJCRES8vLzE1NRUfvrpJ6UH0ocPH2TJkiVSv359sbe3Vz4XPC9IueJ7sQYHB0unTp3EyclJFi9erNTdzp07JU+ePNK7d2+lB9rBgwelY8eO0qhRIx77yYAJOX2z7du3S7169aRGjRry6NEjEfnYrXnw4MFSqlQpKVy4sMyfP188PDzExcVFlixZIiL/axAo5YiJiZF27dqJpaWleHp6iojIw4cPxdPTUxwcHKRKlSpSo0YNuXjxotja2krHjh1VjpjSqvgv/OjoaOnatasULFhQXF1d5cWLFyLyv6S8fPnycvPmTRERuXXrlpJQ0Lfz8fGRUqVKib29vXz48EFERPz9/cXLy0vq1q0rdnZ2Uq1aNRk/frxYW1srbQSlTvFdj0VEXF1dxcnJSfr166dcNL969arUqVNH6tevL3v37hURkcuXL8vq1auVE/GEjzdQ2hCffIt8TMqtra1l//79Srmnp6eYmppKp06dJCwsTEREVq9eLRMnTlQ+D/xcpGwJL5ZcunRJatWqJQ4ODrJy5Uql7uKT8j59+sijR48kNjZWfHx8lG1Zxz8WE3JKFHd3d6lTp444OjqKr6+viHy8ahoZGSmjR48WFxcXyZw5s2g0Gqlfv77K0dKXxDeusbGx0q5dOzEzM5NTp04py6Ojo+XkyZPStWtXKVKkiOTOnVssLS2Vq6e8wEJJ7Y8//hB7e3tp2bKl2NjYiKGhocycOVOeP38uIh+T8mLFikmBAgU+e46cEuf69etSokQJsbOzU+6Ui4iEh4eLr6+v9OrVS0qVKiUajUbGjh2rYqT0PRK21ytWrJCePXtKnjx5xMjISPr37y9v374VkY9Jed26daVBgwayY8cOnX3w7ljakzBR++OPP2TdunWi0WikUKFC4u7urlzE8fT0FDMzM+nYsaNy8TQePxepx9ChQ6VRo0ZSrVo1yZ49uxQoUECWL1+u1OmuXbskX7580rp1a3n27JmyHXs//HhMyOmbJPxS37dvn9SpU0eqVasm9+/f11kvMDBQ9u/fLy4uLmJubi5r165N7lDpHyT8An316pVERUVJ27ZtJVu2bF+8C3bmzBlZtWqVmJiYyLhx45IzVEonfHx8JGvWrLJu3ToJDAwUEZFffvlFsmXLJjNnzlTulAcHB4udnZ3SO4e+TXwbnvBfHx8fKV68uNjb2yt3wBK6d++ezJkzR7JmzSo+Pj7JGi8lrenTp4upqans2LFDTp06Jb169ZJy5cpJ7969xd/fX0Q+dl8vV66cDB06VOVoKbmMGzdOsmXLJuvWrZNZs2aJs7OzWFhY6CTlXl5eotFoZNKkSeoGS4myefNmyZo1q1y5ckUCAwMlKChImjZtKuXLl5cVK1YoN2k2b94sLi4uTMKTGRNy+k++dmAePHhQatWqJY6Ojsoz5VqtVjnZe/XqlXTv3l369++vLCN1HT9+XMaMGSMiIgMGDJCmTZtKdHS0xMbGStu2bSV79uzKM+Wf1teGDRukRIkSyrO9REnFy8tL8uXLp/S4iTdixAgxNDSUOXPmKKPAsh1JnITt+Pv37+XVq1dK2e3btz9LyhPeCXv69Kk4ODjIzp07kzdoShJarVaCg4PF0dFR5s6dq1M+ffp0yZ8/vwwcOFAZTf/+/fs8IU8nXrx4IYUKFZKNGzfqlDdr1uyzZ8qvXbvGrsup1MyZM6V8+fISFRWlfIe+e/dOnJycJF++fLJy5Uqdx1pEeGc8OXGUdfpXCeca3LdvH9auXYslS5bg7du3aNSoEUaPHo2MGTOiW7duePjwITQaDeLi4iAiyJkzJ2rWrIlDhw7h/fv3/zqHNf1YUVFROHz4MI4fP47q1atj69atmD17NgwNDaGvr48tW7agdu3aaNGiBU6fPv1ZfZUoUQJxcXEcNZ+SXFRUFEJDQ5W2Jjw8HAAwbdo0ZM+eHa6urti7dy9iY2PVDDPVEhHlbzt16lS0bdsWJUuWRO/evbF+/XrY2tpix44diIqKgpOTE8LDw2FoaKiMqm5jY4OYmBjcunVLzbdBiaTRaGBqagpDQ0M8f/5cp3zcuHEoVqwYtm7din79+iEwMBCFCxeGnp4eR9VPJ6KiomBhYQEAiI6OBgBs374dFhYWGDt2LNzd3RETE4OyZcvCwMCA7XAqIiIAgEyZMiE6OhpRUVHQaDSIiYlBtmzZ4Orqinfv3mHx4sXYt2+fzjacZzz58C9N/yr+gBw1ahQGDBgAd3d3LFu2DA0bNsSOHTtQt25dDB48GJkzZ0bPnj3h6+sLAwMDJZl79OgRjI2NeWCnAEZGRpgzZw4yZsyIv//+G+3atYOtrS2Aj1PTGRgYYMuWLahTpw5at26NEydO6Gzv7e0NPz8/GBkZqRE+pWF16tSBra0t2rdvDwAwNjYGAAQHB6NmzZro0qULmjRpotO20H8X/zebOHEilixZgp9//hk7d+6En58fJk2aBD8/P5QqVQp//PEHoqOjUbx4cURGRirt9tGjR/Hy5Uu0atVKzbdB30Gr1aJQoUI4e/Ysnj59qrOsbNmyKFKkCAoUKAAzMzOlnN/baZ+1tTWsra2xcuVKAECGDBmUhLtgwYJ4+PAh1q9fD0NDQ2Wb+KkSKeWLb/ubN2+O+/fvY8qUKQCg1OeHDx9Qt25dtGnTRmnf+R2b/NjS0n+yadMmbNmyBQcOHMDevXsxdepUXL16FRkzZgQANG3aFEOHDkVwcDAWL14M4OOXf0hICHx8fLBp0yaYm5ur+A7St/irnbGxsQgKCoKDgwO6deuGGzduYPz48RAR6OvrIyYmBgYGBti8eTPKlSuH+fPnK/uIiIiAgYEBLl26BGtra7XeCqVB8Z/PRYsW4cOHD7C3t8e1a9dw9epVLF++HH5+fpgxYwYKFy6scqSp25MnT3Ds2DH88ccfaN68OUQEFy5cwOTJk1GgQAFotVqULl0abm5ucHJy0jkBz58/Py5fvoySJUuq+A4oseJ7SMyZMwevX79Gz549cefOHURERCA2NhYPHjxAz549MXv2bN4ZT0fie7tNmDABvr6+6NevH4CPCbehoSHMzc1x9epVHDhwQM0w6T+K/y79lFarRYECBbBx40YsX74c/fr1w99//407d+5gwYIFyJ8/P6ZMmQI9PT32gFSJRr5We5SuiYjOFbLJkyfj2bNnWLt2LbZt24Z+/frB1dUV/fv3R1hYGCIiImBpaYm///4bVapUgZ6enrKPmJgYnRM7Sj4iAq1WC319/c+WhYWFYfLkyThz5gzq1q2LqVOnKnX+9OlTWFtbQ09PT+cOScLHF4i+VXybcPXqVZibm6NAgQI6y+Pi4uDj44Nhw4bh1q1byJw5M+Li4rBv3z44ODioFHXa8eLFC9SqVQtnzpzB33//jc6dO2Pu3Lno168fIiMjsW3bNlSvXh2FChVStomNjeXdsFTkn9rouLg46Ovr48mTJ6hduzYyZswIAwMD6OnpISwsDLdv34aBgQHb+TTo0zqN/yzECw0NxZYtWzBnzhxkzZoV5cuXx7Vr1xAcHIxbt25BX1//s20o5fv0XB4Ajh07hl69einLc+bMibNnz8LQ0PCL61PyYEJO/yggIAAWFhbo3bs3LC0t0aZNG9SoUQNz5sxB//79ISL47bffEBsbiyFDhijbJWz8eYCr48mTJ8iXL5/yesmSJbhy5QrMzMzQsWNHVKxYEQEBAZg9ezbOnj2LatWqYfTo0WjTpg3y5MkDNzc3AEzCKWkdPHgQPXr0wNatW1GzZs2vfrYuXLiADBkywMrKij0yEiG+3U3Y/j5+/BhNmjRBs2bNsHLlSkyfPh0DBgwAAFy9ehVTpkzBsGHD4OTkpGbolAQ2bNiA1q1bI0uWLDqfgfj2PCIiAps3b8bLly9haGiIUaNGwcDAgElXGufu7o6mTZt+cVlERAR8fX2xcOFCxMbGwtjYGMuXL1fGkuB5QOowZ84cvHjxQumt+iXv3r3D8+fP8eHDB1SsWBH6+vq8+Kq25Bo9jlKHI0eOyLFjx0Tk4+jGkydPFhGRQ4cOKfOKb926VVk/PDxc6tevLyNGjFAlXvqyWbNmiUajkevXr4uIyNixY8XCwkJat24tVatWlaxZs8rx48dFRMTf31/Gjx8vtra2kjt3bnFwcPhspE2i7xE/ouv79++lX79+smDBgq+uy1Fdv1/Cv+G7d+90RqWfMGGCaDQanSmtwsLCpHHjxlK/fn3+/dOA4OBgMTU1lYkTJ35x+dfmjeZ80mnblStXpGDBguLh4SEi/322Co6qnnpotVqZM2eOODo6yvPnz7+4zpfaeB776uOlEFIEBARgzZo1uHHjBsqWLYt9+/bhwoULAIAqVapg4MCB2Lx5s/Js+NOnTzFy5Ei8ffsWs2bNUjl6Sqhu3bq4ePEiGjVqhN27dwP4eGeyYsWKePz4MaZNm4YGDRrgyJEjqFOnDkaOHIk2bdrg6dOnaNiwIa+WUpLSaDQ4f/48OnTogOzZs6NFixYAvtx7hndhvl/833DatGnYs2cPrKysULNmTYwaNQpTp07Fy5cvsXTpUsTExCAmJgb379+Hv78/rly5ojw/zHpIvUxNTTFo0CBcv34dYWFhMDY21jnO4u+Af3r88c542pY/f35kypQJBw4cQK1atb7Yc/FLbTLPA1IPjUaD6tWrY968ebhw4QJatmz5WZ1+qW3nsa8+fuOSwsLCApMmTUJsbCx27dqFJUuWoGzZstBqtTA3N0eXLl3Qvn179OzZE8WLF0fHjh0RFRWFCxcuKF3dKGWwt7fHlClTULFiRTRu3Bh79+5VBtXLnz8/pk2bhm7duqFRo0bw8PCAqakpypQpgyZNmijPivFLmJJS5cqVkSdPHly5cgV3795FXFwcH2X5gdavX48VK1age/fuyJIlC3bu3Kk8N7hmzRrMnTsXr169QmBgIBwdHXH16lUYGhoiNjaWyXgq8rXB15o3b46jR4/i5MmTXz3OePylTSKinI/J/z+VGhcXh6xZs2LatGnYvn07zp8//8Vt+ZlIPRJOPZewHahcuTI6duyI6dOn4927d6zTVILPkBOA/10VffDgAQYNGgStVos3b95gzpw5qFevnrJeXFwcHjx4AD8/P1hYWMDe3h56enq8m5pCfHpn68qVK1i0aBG2bt2KM2fOoHLlykpdv3r1CpMmTcKaNWvg7e0Ne3t7FSOn9MLJyQkPHjzA1q1bUb16dSZ/SeTTY3/58uUwMTFBly5dEBYWhg0bNmD16tVwcHDAunXrAHyc7iZz5szKNnx+OPW4c+eOMmUl8HGgJmNjY1SrVk0pGzhwIPz8/LBp0yZkz55djTApmb158wZWVlbK9/zly5d1BsS8d+8eevbsibZt22LQoEE85lOhkSNHYtKkSciSJQsAYNasWQgNDYWzszPq1q0LADh79iz69u2LlStXolq1auz1lAqwdtK5+Ktq8VfQ8ufPj4MHD2LmzJmwtbXFiBEjcOzYMWV9fX19WFtbo0GDBihfvrzSvZHJeMoQ3+DG15m9vT2GDx+OBg0aoFmzZvDx8VEGesqVKxcmTpyImTNnokyZMmqGTWlM/HXe27dv48CBA/Dy8oKvry8AwNPTE3nz5kX37t3x999/c3qlJCD/P6UVAGzevBnr16/H0aNHlXY9S5Ys6NatG3r37o2rV6+iZ8+eAKCTjAPstphazJ8/HyVLlsTp06cBAL6+vujWrRt69OiBn376CRcvXkRkZCTat2+PBw8e4NWrVwC+fjed0oYpU6bAyckJDx8+hEajgZeXFypUqAAXFxfMmjULWq0WRYsWRYsWLTBlyhS8f/+ex3wq8+TJE2zYsAE1a9bEhw8fAACRkZHw9vZGx44d0b17dxw6dAhVq1ZFgQIF4OrqCoCPgqUKajy4TilDwoEdLl++LOfOnVMGARMROX36tHTo0EHKli0rhw8fFhERFxcXmT9/frLHSv8sYV36+vqKRqORSZMmKWXXrl0TFxcXyZUrl1LHnw7owoFbKCnt3LlTLCwspGTJkpI1a1axt7eX3377TVleuXJlKVq0qHh4eHAgse+Q8DgeOXKkmJiYSJEiRcTMzExq1aqls25oaKgsX75crK2tZebMmckdKiWRmJgYadeunVhaWoqnp6eIiDx8+FA8PT3FwcFBqlSpIjVq1JCLFy+Kra2tdOzYUeWIKTls375d6tWrJzVq1JBHjx6JiMjFixdl8ODBUqpUKSlcuLDMnz9fPDw8xMXFRZYsWSIi/31wN0oZfHx8pFSpUmJvby8fPnwQkY+D83p5eUndunXFzs5OqlWrJuPHjxdra2uljaCUjQl5OpWwAR43bpyULFlScuTIIVWrVpWRI0cqy06fPi1dunSRLFmySLly5aRgwYISHR2tRsj0FQnrcvbs2TJ06FAxMzMTjUYjv/76q7Ls2rVr0qJFC8mTJ494e3urESqlE1euXBFzc3NZvny5BAcHy4ULF2TEiBFibW0tK1asUNYrWbKklC1bVjmpoMR79+6dtGjRQq5fvy6vX7+WP/74Q2xsbMTFxUVnvZCQENm5cydH1U2l4i+cxsbGSrt27cTMzExOnTqlLI+OjpaTJ09K165dpUiRIpI7d26xtLSUW7duiQiTr7TO3d1d6tSpI46OjuLr6ysiIh8+fJDIyEgZPXq0uLi4KDPm1K9fX+VoKbGuX78uJUqUEDs7OwkPD1fKw8PDxdfXV3r16iWlSpUSjUYjY8eOVTFS+q+YkKdz06ZNkxw5csipU6fk1atXMmjQINFoNNK3b19lHV9fX9m5c6fMmTNHORng3dSUZ/LkyZI9e3Zxd3eXPXv2yPjx48XAwECGDx+urHP9+nVxcnKSZs2aqRgppXVubm5Svnx5iYyMVMqePHkiQ4YMkapVq8rjx4+Vcj8/PxUiTFsWL14sBQoUkIYNG8qbN29ERCQiIkJ27dolBQoUkBYtWnxxOyblqUvC+nr16pVERUVJ27ZtJVu2bF+8C3bmzBlZtWqVmJiYyLhx45IzVEpmCS+07Nu3T+rUqSPVqlWT+/fv66wXGBgo+/fvFxcXFzE3N5e1a9cmd6iUCPH1m/BfHx8fKV68uNjb20tYWNhn29y7d0/mzJkjWbNmFR8fn2SNl74dE/J0JmGjffv2balWrZoyH/WRI0fExMREunTpIlmzZpWBAwd+cR88iVPfs2fPdF6HhoaKs7OzzJs3TykLCwuT1atXi56ens4V0nv37rGLMP1Q27dvl5w5c8q9e/d0yv/66y/JkiULe2gksb/++kvp5eTv76+UxyflhQsXlurVq6sYIX2v48ePy5gxY0REZMCAAdK0aVOJjo6W2NhYadu2rWTPnl28vLxE5PO74Bs2bJASJUrIkydPkj1u+rG+9l1+8OBBqVWrljg6OsqDBw9E5OPnIv6z8erVK+nevbv0799fWUYpU8I6fv/+vbx69Uopu3379mdJecJerE+fPhUHBwfZuXNn8gZN34xP+acjkmAuQm9vb9ja2qJ9+/ZwcHCAp6cnunfvjvnz52P16tWoU6cOfvvtN3To0OGz/XAQEHX16NEDgwcP1ikTETx69Aj+/v5KmbGxMdq1a4cWLVrA1dUV48ePBwAUKVJEGYyP6HvJFybqsLGxQZYsWbB3714EBgYq5UWLFkW+fPkQERGRnCGmKV86bp2cnLBq1SoYGhrip59+UsozZsyIRo0aYfLkybCysuIxn0pFRUXh8OHDOH78OKpXr46tW7di9uzZMDQ0hL6+PrZs2YLatWujRYsWOH369GfTHJUoUQJxcXGcmjSNSThy9r59+7B27VosWbIEb9++RaNGjTB69GhkzJgR3bp1UwZ6i4uLg4ggZ86cqFmzJg4dOoT3799zaqwUShIM2Dl16lS0bdsWJUuWRO/evbF+/XrY2tpix44diIqKgpOTE8LDw2FoaKi09TY2NoiJicGtW7fUfBv0X6h6OYCSTcKrn2PHjpXy5cvLmzdvlPLBgwdL3759lS6mY8eOlQYNGkibNm14NzWFCQoKUurp/fv3Svn48eOlUqVKcu7cOZ31J0yYIE2aNJFMmTLJ4sWLkzVWStvi249z587Jli1bZNOmTcqyKVOmiLm5ucycOVOuX78ugYGBMmrUKMmbN6+8evVKrZBTtYRt8bFjx2T16tWyZ88euXv3roiI/P3332Jtbf3Zs6FRUVFf3AelHrGxseLo6PjZI2XxPdbiB3rLkSOH0ust3m+//SYZMmSQFy9eJGvMlDxGjhwp1tbW0rx5cylSpIjY29vL9u3bRURk//79Uq9ePXFyclLaiXiTJ0+WEiVKSGBgoApR07eYMGGCZM+eXfbu3SsnT56UmjVrio2NjTJ4n4+Pj5QuXVry5MkjERERynZHjhwRCwsLuXnzplqh03/EhDyduXLlitSpU0f+/vtvpUyr1Urt2rWV54ojIyOlVatWsmbNGmUdnsSpb9euXToJ+OrVqyVXrlxKt+C//vpLnJycpGPHjkpSHhISIs2bN5e1a9fKsGHDxNHRUQICAtg9jZLMrl27xNjYWGxtbcXU1FSqV6+uDDIzbdo0sbW1FTMzMylbtqzkypVLrly5onLEqV/8hY0aNWpI1apVpVSpUnLgwAER+fjccJ48eaRRo0YqR0nfK76djomJkYCAABkyZIh0795dqlatKuPGjVOWx3dRjYmJkXr16kmDBg2UfXz48EFWrVqlM4MKpR0bN24Ua2trpV39448/RKPRyP79+5V1Dh06JOXKlVO6p8fFxUlwcLC0bNlSLl++rErc9N89fvxYKlWqJMeOHRMREQ8PD8mcObPy/H/8+fmVK1ekY8eOOo+V3r17l4+qpBJMyNORZcuWSbNmzaRBgwbKsybxB/LatWvFxsZGGjRoIJUrV5bSpUsrBzWTN/UdOHBANBqNuLq6SnBwsIiIvH37VsqWLSulS5dWnhHbvXu31KlTR/LkySPVqlWTkiVLSunSpUVEZP78+VKmTBmdq6dEiRHfJkRGRkqLFi1k48aN4u/vLxcvXpT/a+/e43K8/z+Av+676KADKZWcRk4JoRo5sy2TJDkfNmeayExrIgw1GZE5Gwox5JxNTLKSkagcEzKn0oFS6aT78/vDr+vbPXy/jLkrr+fj4bF1XZ/rut9X131dXe/rc2ratKmwtraWvqeXLl0SR44cEYcOHXph7AN6c4GBgcLU1FR6qbpkyRKhoaGh1Efw1KlTQi6XKw3oSBWHQqF45VgtOTk54ptvvhEff/yxmD17ttLf57/++ksUFxe/8AKdL9Qrj78/j82dO1eMGTNGCPE8GdfX15eml8zJyRFpaWlCiOcv6kq/B39/kUPl271790STJk1EWlqa2Ldvn9DR0ZFmK8nPzxebN2+WngFLceDlikdd1U3m6f3R0tJCREQEqlatiitXrsDGxkbqm9K7d28AwNGjR2Fubg5/f3+oqamhpKSEfcbLAQcHByxbtgzTp0+HEAKurq4wMjLC8ePHYW9vjz59+uDw4cNwdnZG06ZNcfnyZZw8eRL169eHu7s7ACAxMRHm5ubsR0pvTSaTITw8HD4+PjA0NISdnR0MDQ1haGiIAwcOoF+/fujZsyeOHTuGFi1aoEWLFqoOucIq7Scq/n8MkIsXL6Jfv36ws7PDvn378P333yMgIAAuLi7Iy8tDZmYm7OzsEBcXBwsLC1WHT2/or7/+Qv369aW/uytWrMD58+ehr6+P4cOHw9bWFt999x38/PwQHh6OwsJCfPfddxg4cCDq1KmDoKAgAMr9i0v/SxVfaV/vjIwMGBoa4v79+zA2NsaFCxcwfvx4LF68GK6urhBCICgoCM+ePYO7uzs6duwIQPl7oa7OFKC8Kb3PizJjPhUXF6NKlSpYtmwZ1q5dCz8/P0yaNAkAcPXqVezfvx8fffQRGjVqJO2H57YCUunrAPrXvOqN+O7du4WxsbEYO3asNEflq/ANW/lQdjqL5cuXC5lMJnx9faV+XxkZGaJdu3aiWbNmL7wlFeJ5c6cZM2YIfX19cfHixfcVNlVyJ06cEGZmZkJHR0dqEld630lMTBQtW7YUTZo0UepmQW+mbG1YZGSkyM/PFx4eHsLf318cPXpU6OjoiLVr1wohnv/ut2zZIlauXKnUZ5yzYlQcixYtEjKZTGpe7uXlJQwNDcWAAQOEnZ2dqFGjhtQ/PD09XcyePVs0b95cmJmZiXbt2imdd6pcjhw5IjVZ/uabb8S8efOEEM+bo5fOK759+3apfF5enrC3txfffPONSuKlN1f2uT0zM1Pp/u/t7S1kMpmYNm2atCw3N1c4ODgIe3t7toKpBJiQV0JlL8wjR46I4OBgsWHDBunBbPv27cLMzExMmTJFaVqisg9ubKZePoSFhYnFixeL6OhoaVlAQMBLk3Jra2vRsmVLcfXqValsbm6u8Pb2Fh07dhRxcXHvO3yq4P4+92lZz549EydPnhRmZmbCwcHhhW2uXLkibG1tOc/4P1T2Pj5jxgxhZmYmUlNThb+/v1BTUxOamppi8+bNUpmsrCzxySefiNmzZ6sgWnoXYmNjRf/+/YWZmZk4c+aM8PLyEmfOnBFCCJGcnCzGjBkj1NTUpKQ8OztbxMfHi0OHDikN7kaVS3p6uhgwYIBo2rSpGDRokNDQ0JD+nj9+/Fh4eHgIU1NTsW3bNpGdnS0uXrwoevXqJdq0acPvQwU0f/580aZNG9GrVy/h5+cnLR87dqxQU1MTkydPFhMmTBDdu3cXlpaWUtcDJuUVGxPySszDw0OYm5sLGxsbYWNjI0xMTKSRFoODg0WdOnWEu7u7uHLlioojpZfZtGmTMDMzE66uruLs2bNK615VU16vXj0xYsQIpbJZWVlKcxMTva6bN29K//+ypFyhUIiIiAhhbGwsDQpZtiz7KL69jIwM4erqqjRy9sSJE4W2traIjo4WycnJ4saNG8Le3l5YW1vzAbyCu3jxonB2dhaGhobCwsJCqSXb/fv3xdixY0WVKlXE77///sK2bA1ReV28eFE0atRIqKmpiXXr1gkh/pOAXbx4UXz99ddCQ0NDmJqailatWonu3btL919+LyqOTZs2CVNTU7FixQoxYMAAYWNjI8aOHSut9/f3F/379xcDBw4U3t7e0v2e9/2Kjwl5JbV+/XphZGQkjaAZHBz8wsibW7duFWpqamLZsmUqipJeZceOHUJbW1vs3LlTGhzr75YuXSoN9FaalGdlZbGlA70TBw4cEKampuLw4cPSsld9n0qTcmdn5/cVXqVVtpZj8+bNQl1dXbRs2VJcvnxZWn7v3j3h4uIi9PT0hImJibC2thYdO3bkA3gF9feardjYWDFy5EihpqYmzZhReu09ePBAjB8/XshkMo6Q/QEoPe9JSUmiV69e4rPPPhOtW7cWYWFhSuWePXsmrl27Jn777TcRExMjfaeYqJVvf7/2V65cKYKCgoQQzwfl++mnn0SrVq3E6NGjpTKls5iU4v2+cmBCXgmU9gsu+7Ds6ekp5s+fL4R43m9cV1dXequalZUllT1y5Agv5nImLS1NdOvWTaxcuVJpeU5Ojjhz5oyIioqSli1dulSoqamJmTNnipycHGk5zym9rVOnTomhQ4eKVq1avVZSfvLkSaGuri6GDh36vkKsdMo+nBUUFIjExETRu3dvUbVqVfHnn38KIZR//+Hh4eLw4cNKIyjzAbziKptkXbhwQTg4OAgjIyOpT3npub9796744YcfeK4rsb8naqWj5587d04MGTJEWFpavpCUP3ny5L/ug8qXsvfyrVu3ik2bNglHR0exZcsWaXlpUm5lZSWNpk+VExPyCm7VqlVCJpOJ8PBwIcR/LvABAwaI6dOni7CwMKGrqytNg6FQKMSPP/4ofH19lfbDBK78SEtLExYWFmLfvn3SstWrV4sBAwYImUwmzMzMhJ2dnXSuFy5cqPQz0bsSHx8vxo0bJywtLZWayL6q+XpUVNT/HCySXi48PFwEBgYKIYSYMGGCmDBhgigpKRGJiYmiU6dO4qOPPhIpKSlCiFd3BeADeMVS9nwlJiYKmUwm5s6dKy2Li4sT/fr1E6ampi8k5aWYlFc+Zb8XsbGx4vTp00rzyEdGRoqhQ4eK1q1bi99++00IIUS/fv3E0qVL33us9M+UvY49PDyErq6uaNy4sdDX1xc9evRQKpuTkyNWrVolateu/cKzO1UeTMgruLS0NDFu3Dihra2t9MAcGBgobG1thaamppSMC/F8ABAHBwcxZ84cVYRLryEtLU3UqVNHjBs3Thw/fly4uLiIli1bCldXV3H06FGxe/du0bBhQ/H9999L2/y3wbeI3lTpC7qLFy+KefPmCVNTU9G4ceP/mZTTm1MoFCI3N1f07t1bdOrUSTg4OAh9fX2RkJAglUlKShIdOnQQjRo1EqmpqUIIvkSt6MpeP35+fmLatGlCX19fyGQy4enpKa2Li4sTzs7Ook6dOuLcuXOqCJXeo7Lfi1mzZokWLVqIWrVqCTs7O+Hh4SGti4yMFF988YXQ0dERVlZWomHDhhyzowLKzMwUzs7OIj4+XqSmpoodO3aIunXrin79+imVe/LkiQgJCeF9vxJjQl6Bld64c3JyxJQpU4SWlpbUnPn27dvik08+ERYWFmLPnj3i6dOn4tq1a+Lzzz/nwD8VwO+//y709fVFw4YNRevWrcXx48dFRkaGEEKIR48eCSsrK6WaFCGYING7tXv3bmFoaCjc3d3FsGHDRKNGjYSFhYVUIyMEv3PvQunvMDc3VzRv3lzIZDKxcOHCF8olJSUJOzs70aRJE3H//v33HSb9S+bNmydq1qwpDh06JPbt2ydmz54t1NXVxfTp06Uy8fHxomvXrkoDJ1LltmDBAlGrVi0REREhUlJSxJQpU4RMJhMTJ06UyiQmJoqQkBCxePFiDu5VAQUEBIiPPvpIfP755+Lhw4dCCCHy8/PFnj17xEcfffTKMVmYlFdOTMgrqLJNmtavXy98fHyETCYTenp6Ui3WtWvXRLdu3USzZs2Evr6+sLGx4cA/FUhaWpq4devWC8sfPXokOnfuLI0JQPSuPXz4UFhZWYlFixZJy06cOCEGDx4smjdvLo4fP67C6CqPsi80Hj58KBwdHUWPHj1Ejx49lKY0Kzuwk7m5uRg4cOD7DpXegbt37yr9nJOTI7p16yaWLFkiLcvNzRUbNmwQcrlceHl5ScuvX7/OLgmVWNl7wZUrV0THjh2lmRWOHDkidHV1xRdffCFq1KghJk+e/NJ98JmuYjlx4oTUAqLsTDilSbm5ubno3LmzCiOk94kJeQX33Xffidq1a4v169eLuXPnih49eghNTU1x9OhRIYQQqampIi4uTmzbtk2cOXOGc5VWcGlpacLBwUF8/PHH/ONL/5rU1FRhamoqNm7cqLQ8PDxc1KtXT1hYWCgN9EZvx8fHR5pvOiMjQzg5OYkuXbooJeVCCPH06VPx4MEDXvsV0OjRo1+o8Xry5ImoV6+eUhP10uUuLi5CJpOJWbNmKa1jUl75lE3GY2JihBBC/PTTT+LRo0ciIiJCmJqaivXr14vCwkIxcOBAIZPJxJAhQ1QVLv0DL7tuFQqFOHXqlDAzMxOffvqp0rr8/Hyxbds2MWDAAF7zHwiZEEKAKqQHDx6gZ8+e8Pb2xrBhwwAAd+7cwezZs7F7924cOXIEXbt2fWG7kpISqKmpve9w6S1kZGTg559/RlRUFNLS0nDq1ClUqVKF55L+FTk5ORg0aBBat26N2bNnQ0dHR1rXv39/nDp1Cubm5ggLC0O1atUgk8lUGG3Flp2djS5dusDLywuDBw8GANy/fx9ubm548uQJBg8ejC+//BL29vawtrbGkiVLAPA+XtFkZ2dDU1MTGhoaePz4MWrUqAEA8Pb2xrFjx7B8+XK0b99eKj9nzhxcuHABx48fx6JFizB16lRVhU7/IiGEdP+cNWsWjh49isOHD8PIyAgymQzu7u4oLCxEQEAANDQ0MGvWLJw/fx66urr45ZdfIJfLVXwE9L8oFArpPB07dgx//fUXDA0N0bx5czRt2hTR0dEYOHAgWrZsiSNHjkjbFRUVoWrVqi/sgyonnt0KrLCwEHfu3IGenp60rG7dupg1axZq164NFxcXHDt27IXt+BBX8dy7d09KgqKjo1GlShU8e/aM55LeWuk72adPnyInJwcAoKurix49emDz5s04dOgQ8vLypLI1a9aEp6cn9u/fDx0dHSbjb0ihUCj9rK+vj+rVqyM8PBwA8OzZM5iZmWHlypUwMjLC8uXL0bx5czx+/Bi+vr7Sdrz2K4a9e/fi8ePH0NfXh4aGBn7++We0aNECSUlJAICePXtCU1MTK1euxJ9//gng+QuxhIQEODs7Y9KkSdi9ezcyMzPB+pPKp/T+eeHCBZw9exYBAQGoVasWZDIZhBC4fPkyUlJSoKGhgcLCQiQmJmLAgAHYtWsX5HL5C/cTKn9KE2lPT0+MGzcOW7duxY8//ogBAwbg8OHDsLOzw65du3D58mU4ODhI25Um42X3QZUXa8griLJvUctycHCAjo4O1qxZAwMDA6mss7Mzzp49iyZNmiAiIuI9R0v/hqysLOjr60Mmk7F2jN6J0vtKaGgoAgIC8ODBAzRo0ADjxo2Ds7MzJk+ejP3796N///4wNzfH9evXceDAAURHR6NevXqqDr9CS05Ohra2NoyNjTF16lTk5+djw4YNStd2Wloazp8/j4cPH2LEiBFQU1PDs2fPoK6uruLo6XUcPnwYjo6O8PX1xVdffQU9PT2kp6fj008/hUKhwL59+9CoUSPs27cPq1evxrVr11C/fn1kZWVBLpcjISEB/v7+CAoKwpkzZ6CpqanqQ6J/wapVq3D06FEUFRUhJCQE1apVk2pEN23ahHnz5qFFixbIyspCXl4eLly4ADU1tVc+F1L5ExQUhJkzZyIkJAR2dnZYunQpZs2aheDgYLi4uAAAoqOj0blzZ0ybNg1Lly5VccT0vvGvegVQtqlKTk4OCgoKYGRkBOB589F169Zh2bJlmDlzJrS1tfH06VMAwLZt29C9e3eVxU3vVvXq1QE8T6KYjNO7IJPJcPjwYQwePBienp7o3bs3Zs6cicmTJ6Nu3bpYtWoV6tevjz///BNhYWEwNjbGoUOHmIz/A+fOnYO1tTUAICQkBIMGDULdunVhYWGB5ORkZGdn48iRI6hTpw5atGiB4uJi1KpVC7169ZL2UVJSwmS8AnFwcMCyZcswffp0CCHg6uoKIyMjHD9+HPb29ujTpw8OHz4MZ2dnNG3aFJcvX8bJkydRv359uLu7AwASExNhbm7OmtBKTEtLCxEREahatSquXLkCGxsb6Zmvd+/eAICjR4/C3Nwc/v7+UFNT40v5cq70ub30pcnFixfRr18/2NnZYd++ffj+++8REBAAFxcX5OXlITMzE3Z2doiLi4OFhYWqwycVYA15OVf2DeiCBQtw7NgxXLt2Dd27d8fw4cPRt29f+Pr6Ys+ePVAoFOjcuTNOnz6NkpISxMTEQE1NjX1PiAgAkJubK/UHF0Lg6dOnGDhwIDp06ABvb2/k5OTA0tISffv2RUBAgHTfKCkpQU5ODtTV1ZX6k9PrWbt2LebPn4/w8HA0a9YMjx49wvXr11FQUICoqCjcuXMHP//8M2rVqgUtLS3I5XLIZDL4+flJtSdUseTl5aFatWoAgICAAHz99dfw8fGBq6srqlevjszMTNjb2yMvLw+hoaFo1KiR0vZ//fUXVq5ciQ0bNiAqKgqWlpaqOAx6x171PBYSEgI3Nzf06dMH3377LZo0afLKfbCVTPlW9rk9KioK1tbWmDNnDkxNTWFpaYn+/ftjyZIlmDhxIhQKBYKDg/HkyROMHz9eaqbOFy4fHl7R5VzpRT1v3jysXLkS8+fPh7a2NgIDA7Fo0SI8fPgQXl5esLGxQWhoKG7fvo22bdti5cqVfItKRJK5c+fCwMAAbm5uUFNTg0wmg4aGBnJzc+Hk5ISUlBS0a9cOjo6O+OmnnwAAhw4dgoWFBRo1aiS10KA3s379ekyePBkhISFo1qwZAMDAwEAawKtbt25ITk5GYmIivL290bhxY5w8eRKZmZlwcnJSZej0Dx09ehTx8fHo1KkTOnToAHd3d8hkMkybNg0A4Orqipo1ayIsLAy9evWCs7Mzdu3aJX0/8vLysHHjRpw+fRonT55kMl5JlE3Gw8LCkJmZiadPn2L06NEYMGAAiouL4eHhAW1tbUyZMgWNGzcGoJycCSGYjJdjZc+xh4cHduzYgdjYWJiamsLDwwNVqlTBmjVrMGrUKADPW71u2bIF7du3V+ozzuf2D9D7HNKd3kxJSYlQKBTi7t27wsrKSuzatUtal5KSIlxdXYWtra04f/68tLzsdGac2oyIhBAiKytLLFu2TFy8eFEIIURRUZEQ4vk9xsbGRri6ugpzc3MxceJEaV16erpwcnISW7duVVncFd3atWuFurq62LNnj9Ly06dPK/385MkTYWhoKLZs2fLCPngfr1g2bdokzMzMhKurqzh79qzSuuXLlwuZTCZ8fX3F48ePhRDPp7mrV6+eGDFihFLZrKwspbmJqfLw8PAQ5ubmwsbGRtjY2AgTExNx6dIlIYQQwcHBok6dOsLd3V1cuXJFxZHSP5WRkSFcXV2lueSFEGLixIlCW1tbREdHi+TkZHHjxg1hb28vrK2teZ8nwdds5VBCQgLMzMxQs2ZNAIC2tjZycnKkvuElJSUwMTGBj48PrKyscOjQIbRp0wYAlN6c8i0qEY0bNw5nzpzBhQsXoK6ujvDwcJw7dw4jRoxA7dq1MWPGDLi5uaF+/fpYu3attN3y5ctx7do1dOrUSYXRV1z79++Hq6srDhw4AEdHR2m5k5MTatSogdatW0NLSwslJSXQ1dVFq1at8PDhwxf2w/t4xfHLL7/Azc0NmzdvRq9evZRmQAEAd3d3lJSUYMaMGZDJZJg0aRJq1qyJhIQEpa4gQgjo6+u/7/DpPdiwYQMCAwNx5MgRtG3bFtu3b8eIESNw69YttGjRAsOGDYNCocCoUaPQoEEDNG/eXNUh02soWzMeGBiI8ePHo3nz5nBzc5PKeHt7IyMjA7169YK2tjbq1KkDDQ0NREdHQ11dnS1aP3D8S1/O7N+/H8OGDcOYMWMwd+5cGBkZQaFQQFNTEzExMfjyyy8hk8mgUChQo0YNtG/fHvfv31d12ERUDoWGhuK3335DWFgY1NXVoVAoEBsbC19fX6ipqWH06NHo3bs3xo0bh/Xr12PMmDGoU6cO7t69i3379uHEiRNo0KCBqg+jwiksLERYWBgaNmyI5ORkafmAAQOQlJSEX3/9FVpaWgD+0zRRT08PcXFxAF49qwaVX+np6Vi3bh0WL16MQYMGSctzc3Nx5coVFBcXo2PHjpg+fToA4Ntvv8WTJ0/g5eUlJd+lD+Q895XDpUuXYGlpqXQ937x5E1OmTEHbtm0REhKCSZMmYe3atXB0dER2djb09PQwYsQIGBkZ4ZNPPlHxEdDrKJuMFxYWws7ODp999hl+//13aSpRIQTMzMwQEhKCEydOID8/H/r6+ujQoQPkcjnHBSAm5OVJYWEhQkNDUVBQgFu3bmHhwoXw8vKCsbExFixYgAEDBqB+/frw8PAAABQVFeHWrVvo06ePiiMnovJIXV0dxcXFMDAwQFhYGHbs2IHAwEDk5OQgICAAJSUlmDx5Mjw9PdGqVSsEBATg3r17qF+/PqKjozna6z+koaGBOXPmQENDAzt27IAQAlFRUUhKSkJoaCgaNGggPaSXPsx5enrCxsYGAJiQVVBpaWkwMzOTfl6zZg3Cw8OxZ88e1K5dG/Xr10dUVBSmT5+O/Px8/Prrr/Dx8ZHKs3as8li9ejXc3Nxw/PhxdO/eXbreb968iXr16uHo0aMYM2YM/Pz8MGHCBAghsGHDBhQXF2PmzJmwt7cHwMG9yrsTJ07gzp07+PLLLzFx4kQAz6/7ZcuWYezYsRg6dCiio6NhYmKC4uJiVKlS5YXZjxQKBZNx4ijr5c2ZM2fQp08ftG/fHvn5+bC0tMTMmTNhbGyMVatWYcqUKfj888+hp6eH1NRUpKWlIT4+nhczEb3g6tWr8Pb2xq1btxAXF4fdu3dLo3bPnj0bQUFBmDJlCsaNGwcDAwNpOz4Evhupqanw8fHB4cOHkZ2dLXVHKn0wA4DPP/8ctra2+P777wHwd19Rpaeno23btujVqxeGDh2K1atX4/r16+jUqROcnZ2RnZ0NT09PfPnll5gzZw6A/7SEYIuIyic9PR1eXl7Yvn07Dh48iJ49ewJ4Ph/16tWrpTnmXV1dAQBZWVkYMWIE2rVrJ90LqPwS/z9LyaBBg/DkyRPo6+sjKioKkZGRaNmyJQDgxo0b+OKLL5CWloZTp07B2NiY93d6JWZx5YRCoYAQAra2tvjiiy9Qs2ZNKBQK7Nu3D3K5HF5eXpg8eTJat26NoKAgFBQUoG3btvDz82PfEyJ6qebNm8Pc3Bx79+5Fs2bNYGVlJa1buHAhAEgzMgwZMkSq3eM0ie+GiYkJZs+eDblcjlOnTmHHjh2YMWMGqlSpgpKSEvTt2xe3bt3CwYMHpW14H6+YjIyMEBgYCBcXF4SHh0NXVxfLly9H69atUbNmTTx+/Bh6enpK84kzGa+chBAwMjLCsmXLoKWlBUdHRxw7dgwdO3ZEt27dsG3bNjRs2BDGxsbIz8/HnTt38PXXXyM9PR3e3t6qDp9eU7Vq1bBr1y7Y2Njg1KlTWLBggZSMA4C5uTm2bNmCL7/8El26dMGJEydQu3ZtFUZM5RlryFXs6tWr0NPTU2rmtmzZMgQHByM6OhqrVq3C9u3b0alTJ3z33XcwNjZWql0BOCclEb2cEAJDhgxB7dq1cfPmTeTm5sLf318pMZ87dy6WLl0KX19fuLm5MRn/F5TWlJ89exYDBw7EjBkz4OTkhMTERFy8eBFVqlThfbySSE9PR25uLj766COl5Y8fP4aTkxNGjBiBCRMmqCg6+reV7U+8YcMGpKenY/bs2dDV1cXevXvRs2dPJCYmYtKkSUhNTUVKSgqaNGmCqlWr4sSJE9LLOr6YK7/KvkRLS0vDuHHjkJeXBwAYOXKkNKVZabkbN27g888/R5s2bbBr1y5VhU3lHBNyFdqzZw+GDh0KMzMz+Pr6onHjxrC2tgYA9OjRA/b29vD09MSCBQvw66+/ws7ODh4eHjAxMVFx5ERUXpU+BMTExEAul6Ndu3YAgAMHDmDt2rUoKiqCv78/WrduLW3j4+ODQYMGSfPe0ruXmpoKX19fxMbG4saNG6hevTouXbrEZPwDkJ6ejtGjRyMjIwOnTp1isvUBmDlzJrZs2YJ58+bh/v37iIyMRHR0NA4ePIhPP/0UDx8+RGpqKi5duoTGjRujXbt2UFNT472gAvH19cUnn3wCW1tbZGZmYuzYsXj8+DFGjx4tJeUAkJ+fj6ysLNSqVYvXPr0SE3IVKSoqwrRp03Dw4EFoamrCzMwMenp6qFGjBhYuXIht27bhzp070jREPj4+2LRpE9zd3TF16lQVR09E5VFpMr537164u7tj8ODBcHV1RaNGjQA8n8Vh3bp1KCoqwrJly9CqVSsVR/xhSU1NhaenJ9LT03HgwAEm45VcRkYGfv75Z0RFRUn9SFkDWvk9ePAAPXv2hLe3N4YNGwYAuHPnDmbPno3du3fjyJEj6Nq16wvb8XtRcWRnZ6NLly7w8vLC4MGDAQD379+Hm5sbnjx5gsGDB+PLL7+Evb09rK2tsWTJEgA8x/RqTMhVKDU1FT/88APu3LkDU1NTjBkzBt988w0MDQ1x69YtxMfHIyQkBP379wfwfG7DkSNH8mImolc6evQo+vXrh+XLl2PUqFGoWrWq0vpDhw5h3bp1SElJQVBQECwtLVUU6Yfp8ePH0NfX51Q3H4C4uDh4e3ujUaNGWLJkCdTV1XnOPwDJycmwtLTEzp07pVlwhBC4fv06evfujezsbOzYsQOffvqpiiOl11W2K0Kprl27olmzZli3bp10Xd+/fx/ffPMNEhISUFBQAF1dXcTExLzwd5jo75iQq9iDBw+kZoyjRo3CxIkTER0djdDQUAQHB+O33357YeohvmEjIgDYsmULWrVqBSsrKwghUFRUhEmTJsHQ0BA//vgjsrOzcfPmTezatQtqamrw8PBA9erVsXPnToSEhGDJkiWoX7++qg/jg/SyBzyqfLKysqCvrw+ZTMa/3ZXQqwblc3BwgI6ODtasWSPNYCGEgLOzM86ePYsmTZogIiLiPUdLbys5ORna2towNjbG1KlTkZ+fjw0bNihd22lpaTh//jwePnyIESNGsCsCvRYm5OVASkoKfH19cfr0aQwfPhxff/01AODRo0cwMDDggxsRKRFCIDk5GU5OTggNDVVKqr/44gvcuHEDgYGB8PX1xb1795CTk4M7d+7AxsZGGtE7NzcXOjo6qjoEog8KR1OvfMo+m+Xk5KCgoABGRkYAgI0bN2LdunWwt7fHzJkzoa2tjby8PAwfPhxTp05F9+7d+X2oAM6dOyeN7RQSEoJBgwahbt26sLCwQHJyMrKzs7F582bUqVMHLVq0QHFx8Qu14XwRR6+DCXk5UXYU3n79+mHmzJkAeCET0avl5eWhWrVqiIuLQ3FxsZRw+/n54cyZM3BxccGQIUPg7OyM7du3IyAgAEeOHEGNGjVUHToRUYVV9gXLggULcOzYMVy7dg3du3fH8OHD0bdvX/j6+mLPnj1QKBTo3LkzTp8+jZKSEsTExEBNTY2VLeXc2rVrMX/+fISHh6NZs2Z49OgRrl+/joKCAkRFReHOnTv4+eefUatWLWhpaUEul0Mmk8HPzw8uLi6qDp8qGCbk5UjZUXh79OiBBQsWqDokIipnhBAovW3L5XLk5OSgZcuWaNWqFRYtWgQLCwtkZ2fj2rVr+Pjjj6XtJk+ejL/++gshISHQ1NRUVfhERJXGvHnzsHLlSsyfPx/a2toIDAxEUVERRo8ejfHjx+PYsWMIDQ3F7du3YWJigpUrV3Jgvwpg/fr1cHV1RUhICJydnV9aJjk5GaNGjYK3tzcaN26MkydPIjMzE1OmTGHzdHpjTMjLmdTUVHz77bfQ1NTEunXr2KSJiAD8p3lkfn4+tLS0AACxsbFo0qQJ4uPjMXbsWFhZWcHT0xNt27aVtrt06RI2b96MTZs24eTJkxxZnYjoLSgUCshkMty/fx+Ojo7w8vLCwIEDATx/hps/fz5iY2Oxdu1atGnTBgCU+hCzP3H5tm7dOri5uWHnzp3SoMoA8Oeff6J9+/bSzzk5OWjYsCH8/f0xcuRIpX3wHNObYluZcsbExATLly/H2rVrIZPJwPclRAQ8rw1/8OABrKyscP36dYSFhaFbt25ISEhAp06d8PPPPyMmJgY//vgjYmNjAQAxMTFYs2YNwsPDERERwWSciOgfSkhIQGZmptQ0WVtbGzk5OXj69CmA510MTUxM4OPjg9TUVBw6dEjatmxyxkSt/Nq/fz9cXV2xd+9epWTcyckJa9euRX5+PoDn51pXVxetWrXCw4cPX9gPzzG9KSbk5ZCBgQHkcrn0FpaICHj+Rr5t27aws7ND3759ERQUhI4dO6KkpASdO3dGUFAQzpw5gyVLluDy5cuwtrbGuHHj8Ntvv6F169aqDp+IqELav38/2rdvj7lz5yI9PR3A85pyTU1NxMTEAABkMhkUCgVq1KiB9u3b4/79+6oMmd5QYWEhwsLC0LBhQyQnJ0vLBwwYgKSkJMybN09qnVba3UBPTw9xcXEAwAo0eitMyMsxDvZBRGU1bdoUffr0waNHj6CpqYnGjRsDeP4gUDYpP3/+PGbMmIErV66gTZs2MDExUXHkREQVU2FhIUJDQ1FQUIBbt25h4cKFePjwIQwNDbFgwQKsWbMGP/74I+RyOeRyOYqKinDr1i3Url1b1aHTG9DQ0MCcOXPQp08f7NixAwEBARg4cCCSkpIQGhqKBg0aSEm3QqEAAHh6eiIoKAgAWIFGb4V9yImIKoDSQYBiY2Nx4cIFREVF4fDhwzh48CA6dOiA4uJiyOVyqKmpITIyElOnTkVoaCjMzMxUHToRUYV25swZ9OnTB+3bt0d+fj4sLS0xc+ZMGBsbY9WqVZgyZQo+//xz6OnpITU1FWlpaYiPj2fT5QqodNajw4cPIzs7GwkJCTAzM0NxcTGqVKkCAPj8889ha2uL77//HgBnRKK3x4SciKgce9X8xRcvXoSvry9+//13hIaGSiOqh4aGokuXLtDQ0ICGhsb7DpeIqNJQKBQQQkAul2PGjBmoWbMmFAoF9u3bh65du8LLywuGhoaIiopCUFAQCgoKUKtWLfj5+UFdXZ2JWgX18OFD+Pr64tSpUxgyZAhmzJgB4Hni3bdvX9y4cQOXLl2SEnSit8WEnIionCpNxiMjI3Hw4EEIIdCsWTOMGzcOwPMR1H19fREWFobVq1cjPj4e69atw4ULF1CvXj0VR09EVDFdvXoVenp6Si2Mli1bhuDgYERHR2PVqlXYvn07OnXqhO+++w7GxsZKNagAR9qu6Eprys+ePYuBAwdixowZcHJyQmJiIi5evIgqVarwHNM7w4SciKgc27t3L8aPH49u3bpBV1cX+/fvh5ubGxYuXAgASExMhL+/Pw4cOIBatWph06ZNsLa2VnHUREQV0549ezB06FCYmZnB19cXjRs3lu6pPXr0gL29PTw9PbFgwQL8+uuvsLOzg4eHB8fqqIRSU1Ph6+uL2NhY3LhxA9WrV5dqxpmM07vEhJyIqJw6d+4c+vfvDy8vL0yaNAlJSUmwtbVFdnY2Jk6ciDVr1gB4XpN++/Zt6OjowMjISMVRExFVTEVFRZg2bRoOHjwITU1NmJmZQU9PDzVq1MDChQuxbds23LlzB2vXrgUA+Pj4YNOmTXB3d8fUqVNVHD39G1JTU+Hp6Yn09HQcOHCAyTj9K5iQExGVQ0IIbNmyBZcuXcKPP/6Iu3fvokuXLvj000/Rvn17jBs3Dl5eXlJNORERvb3U1FT88MMPuHPnDkxNTTFmzBh88803MDQ0xK1btxAfH4+QkBBpnurAwECMHDmSfcUrscePH0NfXx9yuZzJOP0rmJATEZUTpX3GS/siZmdn49q1a2jbti0cHBxgZmaGzZs348GDB2jfvj3u3buHadOmwd/fX9WhExFVGg8ePJCaKo8aNQoTJ05EdHQ0QkNDERwcjN9++w0WFhZK23AAt8pPoVBwSmL6VzAhJyIqB0qT8T/++AN//vknhg8fLg0odPfuXfTt2xcrVqxA586d8fjxY0yfPh2fffYZ2rVrhyZNmqg4eiKiyiUlJQW+vr44ffo0hg8fjq+//hoA8OjRIxgYGDA5I6J3hncSIiIVK03G9+zZA0dHRxQUFCAjI0Nar1AocOXKFURGRiI3NxeLFy9GfHw87O3tmYwTEf0LTE1NMWvWLHTo0AG//PILfvjhBwCAgYEBSkpKmIwT0TvDGnIionLg9OnT6NOnD/z8/KRpzQDgyZMn0NPTw9KlS+Hh4YFGjRohKysLR48eRZs2bVQYMRFR5Vd2pO0ePXpgwYIFqg6JiCoZJuREROXAkiVLcOTIEfz+++/Izc1FREQEtm7dilu3bmHWrFno168f4uLicPfuXVhZWaFu3bqqDpmI6IOQmpqKb7/9Fpqamli3bh1kMpmqQyKiSoQJORFRORAUFIT58+dj0qRJOHHiBNTU1KCmpoa6deti1apVuH79OszNzVUdJhHRB+nRo0eoXr065HK51M2IiOhd4Lj9RETlgK2tLRwcHLBx40Z06dIFI0eOROfOnXHlyhWcOXOG/RWJiFTIwMAAAEfaJqJ3jwk5EdF78t9qVZo3b44lS5YgNzdXevADgODgYBQUFEBPT+99hUlERK/AZJyI3jUm5ERE79kff/yBGjVqwNLSUilBr1q1qpSMR0ZG4pdffsGOHTsQHh4OQ0NDVYVLRERERP8SvuYjInpPZDIZTpw4gW7duiE5ORklJSUvLXf//n38+uuvuHv3Lv744w9YWVm930CJiIiI6L3goG5ERO/J7du3ceHCBVy/fh2enp7/tezDhw+hoaGB6tWrv5/giIiIiOi9Yw05EdF7cO/ePTRq1AgjRoyAQqH4n+WNjY2ZjBMRERFVckzIiYjeA0NDQ6xZswZaWlpITExUdThEREREVA5wUDcion/B30dU19TUxIQJEyCEwOTJk9GgQQPMmzdPdQESERERkcoxISciesdKk/Hjx4/j+PHjuHbtGhwdHdGtWzdMnDgRQgi4ublBJpNh7ty5qg6XiIiIiFSETdaJiN4xmUyGffv2wcnJCQUFBTAwMMDGjRsxZMgQPH78GGPHjsXq1auxaNGi/zm4GxERERFVXhxlnYjoHbt79y769OkDV1dXTJo0Cenp6WjcuDHGjh2LpUuXSuWWL18OHx8fXL16lfOMExEREX2AmJATEb1j165dQ9++fRETE4NHjx6ha9eu6NWrF9avXw8AOHHiBKytrVGtWjU8efKEo6kTERERfaDYZJ2I6B0rKSmBkZEREhMT0b17d/Tq1Qtr1qwBACQkJGDnzp24ceMG5HI5k3EiIiKiDxgTciKiN1TasKikpAQva2TUokULFBYWon379rC3t8f69euhpqYGANi2bRvi4uJQu3bt9xozEREREZU/bLJORPSGkpKS0LhxYygUCsjlcpw4cQL79u2DiYkJbGxs8Omnn+L27dtwdHSEjo4O5s+fj/z8fJw4cQIbN25EVFQUWrVqperDICIiIiIVY0JORPQGQkNDMX78eKxZswb9+vXD4cOH4eLigq5du+LBgwdQKBT4+uuvMW7cOFy9ehWjR49GRkYG1NXVYWZmBn9/f7Ru3VrVh0FERERE5QDnISciegO1atXCJ598Am9vbzx79gzJyclYsWIFJkyYgCtXrmDz5s3S3OLjxo3Dn3/+ievXr0NfXx9aWlrQ09NT8REQERERUXnBGnIiojd07tw5rFy5ErGxsZDL5QgICEC3bt0AALdu3cKaNWuwfft2zJkzBxMnTlRtsERERERUbnFQNyKi/0KhUCj9FwDatm2L+fPnw9raGomJibh79660rmHDhvjqq68wcuRITJs2DVu2bHnvMRMRERFRxcAm60RE/4VcLkdSUhIuXryI/v37Y+fOnfDz88PZs2cxdepUFBQUYO7cudDT04OTkxMA4KOPPsK4ceNQtWpVdOjQQcVHQERERETlFZusExH9D1OnTsXKlSsxbdo0rFixAhs2bMDo0aMBABcuXMCKFStw9uxZ/PDDD+jbt6+03bNnz6CuzveeRERERPRyTMiJiF5i27ZtaNWqlTQ9Wc+ePXHy5ElMmDABq1evVip7/vx5rFixAhcuXMDs2bMxcOBAVYRMRERERBUM+5ATEZUhhEBSUhJ++OEHVK9eXWmdra0ttm7dil9++QUFBQXS8rZt22Lq1Klo2LAhli5ditzcXPBdJxERERH9L6whJyJ6idzcXOjo6CAuLg41a9ZE3bp1AQCjR4/G7t278fPPP8PZ2RkaGhoAgMLCQjx69AhCCNSuXVuVoRMRERFRBcHOjUREL6GtrY1Hjx6hb9++aNeuHby8vGBjY4PNmzdDLpdj/PjxEEKgd+/e+Omnn3Dw4EGcOnUKVapUUXXoRERERFRBsIaciOhvhBCQyWQAgLCwMEyZMgW2trZwd3eHjY0NAGDChAn45ZdfYGFhgcTERBw9elRaR0RERET0OpiQExH9v9JE/OnTp9DS0kJhYSE0NTVx7NgxTJgwAR07dlRKyrdv3478/Hx07doV5ubmKo6eiIiIiCoaJuRERPhPMn7kyBGsX78e2dnZqFKlCpYvX45mzZrhxIkTGDNmDDp27Ihp06bB2tpa1SETERERUQXHUdaJiADIZDIcPHgQ/fv3h5WVFSZMmICioiLY2Njgxo0b6N69OzZt2oSzZ89iwYIFSEhIUHXIRERERFTBMSEnog/S3xsH5ebmYsWKFZg7dy7mzJmDjh074vbt2xg2bBjMzc0hhED37t0REBCAv/76C4aGhiqKnIiIiIgqCzZZJ6IPSmnT9Ly8PFSrVg0KhQJyuRwZGRmwtbVFWFgYatSoASsrKzg4OGDdunUAgC1btqBv376oXr06nj59Cm1tbRUfCRERERFVdKwhJ6IPikwmQ1paGho0aIBdu3ZBLpdDCAFDQ0O0bNkSO3bsQLt27eDo6IiVK1cCANLT07F//3789ttvAAAtLS1VHgIRERERVRJMyInogyOXy9G3b1+MHDkSBw4cgEwmQ3FxMRo1aoSlS5fCwsICa9askeYU9/f3x/Xr19GpUycAkKZEIyIiIiJ6G2yyTkSVXtl5xUulpaXBx8cHP/30E/bs2QNnZ2c8fvwYQ4cORXp6Ojp16oQmTZogNjYWe/fuRUREBKysrFRzAERERERUKTEhJ6JKrbSPeF5eHkpKSqCnpyetS0lJga+vL1atWoXdu3fDxcUFmZmZWLRoEWJiYpCXl4cmTZpg5syZsLS0VOFREBEREVFlxISciCq9pKQkDBo0CDo6Ohg/fjxMTEzw2WefAQAKCwvxzTffYPXq1di5cycGDhyIZ8+eQS6Xo7i4GGpqalBXV1fxERARERFRZcSnTCKq1BQKBQIDAxEfHw9NTU1kZWXh6dOnMDAwgK2tLcaMGYPRo0ejZs2aGDx4MPT09GBvbw8hBDQ0NFQdPhERERFVYqwhJ6JKLzU1FX5+frh58ybMzc0xefJkBAcHIzIyEgkJCTAwMEDDhg0RGxuLtLQ0REREoEuXLqoOm4iIiIgqOdaQE1GlZ2JiAg8PD/j6+iIqKgqNGzfGnDlzAABnzpzBgwcPsH79etSqVQtpaWkwNDRUccRERERE9CFgDTkRfTBKB3E7c+YM+vXrBy8vL2ldcXExFAoFsrOzUatWLRVGSUREREQfCibkRPRBSU1NhY+PD2JiYtCvXz989913AIBnz55x8DYiIiIieq+YkBPRB6c0Kb9w4QJ69uyJ77//XtUhEREREdEHSK7qAIiI3jcTExPMmjULjRs3RnR0NDIzM1UdEhERERF9gFhDTkQfrIcPHwIAjI2NVRwJEREREX2ImJATERERERERqQCbrBMRERERERGpABNyIiIiIiIiIhVgQk5ERERERESkAkzIiYiIiIiIiFSACTkRERERERGRCjAhJyIiIiIiIlIBJuREREREREREKsCEnIiIqJxo0KABli9f/lplnz59ChcXF+jp6UEmkyErK+tfien27duQyWSIi4v7V/ZfnrzJ75+IiOhdYEJORET0BtLT0+Hq6op69epBQ0MDJiYmsLe3x6lTp157H4GBgahevfoLy2NiYjBhwoTX2kdQUBAiIyMRHR2NlJQU6Ovrv/bnv8qoUaPQr18/pWV169ZFSkoKLC0t33r//828efNgZWX1r34GERFReaOu6gCIiIgqEhcXFxQVFSEoKAgNGzbEw4cPcfz4cWRmZr71vo2MjF677M2bN9G8efN/PVFWU1ODiYnJv/oZREREHyrWkBMREb2mrKwsREZGws/PD927d0f9+vVha2uLmTNnom/fvlI5f39/tGzZEtWqVUPdunXx1VdfITc3FwAQERGB0aNHIzs7GzKZDDKZDPPmzQOg3GRaCIF58+ZJNfG1a9fG1KlTAQDdunXD0qVL8ccff0Amk6Fbt24AgK1bt8La2hq6urowMTHBsGHDkJaWpnQMly9fRp8+faCnpwddXV107twZN2/exLx58xAUFIQDBw5IcUVERLy0yfrJkydha2sLDQ0NmJqa4rvvvsOzZ8+k9d26dcPUqVPx7bffwsDAACYmJtIx/lN3797FoEGDUL16dRgYGMDJyQm3b98GABw9ehSampovNNt3d3dHjx49pJ+joqLQuXNnaGlpoW7dupg6dSry8vLeKi4iIqK3wYSciIjoNeno6EBHRwf79+9HYWHhK8vJ5XKsWLECly9fRlBQEMLDw/Htt98CAOzs7LB8+XLo6ekhJSUFKSkpmDFjxgv72LNnD5YtW4Z169YhKSkJ+/fvR8uWLQEAe/fuxfjx49GhQwekpKRg7969AIDi4mIsWLAA8fHx2L9/P27fvo1Ro0ZJ+7x//z66dOkCDQ0NhIeHIzY2FmPGjMGzZ88wY8YMDBo0CL169ZLisrOzeyGu+/fvo3fv3rCxsUF8fDzWrFmDjRs3YuHChUrlgoKCUK1aNZw5cwaLFy/G/PnzcezYsTf+nZcel729PXR1dREZGYlTp05BR0cHvXr1QlFREXr27Inq1atjz5490jYlJSXYuXMnhg8fDuB5i4JevXrBxcUFCQkJ2LlzJ6KiouDm5vaPYiIiInonBBEREb22kJAQUaNGDaGpqSns7OzEzJkzRXx8/H/dZvfu3aJmzZrSz5s3bxb6+vovlKtfv75YtmyZEEKIpUuXiiZNmoiioqKX7tPd3V107dr1v35uTEyMACBycnKEEELMnDlTfPTRR6/c55dffimcnJyUliUnJwsA4sKFC0IIIby8vETTpk2FQqGQyqxatUro6OiIkpISIYQQXbt2FZ06dVLaj42NjfD09HxlrHPnzhWtW7d+6bqtW7e+8JmFhYVCS0tLhIWFCSGe/z569OghrQ8LCxMaGhri8ePHQgghxo4dKyZMmKC038jISCGXy0V+fr4QQvn3T0RE9D6whpyIiOgNuLi44MGDBzh48CB69eqFiIgItG3bFoGBgVKZ33//HT179oSZmRl0dXUxcuRIZGZm4unTp6/9OQMHDkR+fj4aNmyI8ePHY9++fUrNwl8mNjYWjo6OqFevHnR1ddG1a1cAwJ07dwAAcXFx6Ny5M6pUqfLmB/7/rl69ig4dOkAmk0nLOnbsiNzcXNy7d09a1qpVK6XtTE1NX2g+/7ri4+Nx48YN6OrqSq0UDAwMUFBQgJs3bwIAhg8fjoiICDx48AAAEBwcDAcHB2nwvPj4eAQGBkrb6+jowN7eHgqFAsnJyf8oLiIiorfFhJyIiOgNaWpq4tNPP4W3tzeio6MxatQozJ07F8DzacL69OmDVq1aYc+ePYiNjcWqVasAAEVFRa/9GXXr1kViYiJWr14NLS0tfPXVV+jSpQuKi4tfWj4vLw/29vbQ09NDcHAwYmJisG/fPqXP1dLSepvDfiN/T/plMhkUCsU/2ldubi7atWuHuLg4pX/Xr1/HsGHDAAA2NjZo1KgRfvnlF+Tn52Pfvn1Sc/XSfUycOFFp+/j4eCQlJaFRo0b//ECJiIjeAkdZJyIieksWFhbYv38/gOe11AqFAkuXLoVc/vy9965du5TKV61aFSUlJf9zv1paWnB0dISjoyMmT56MZs2a4eLFi2jbtu0LZa9du4bMzEwsWrQIdevWBQCcO3dOqUyrVq0QFBSE4uLil9aSv05czZs3x549eyCEkGrJT506BV1dXdSpU+d/HtM/0bZtW+zcuRO1atWCnp7eK8sNHz4cwcHBqFOnDuRyORwcHJT2ceXKFZibm/8rMRIREf0TrCEnIiJ6TZmZmejRowe2bduGhIQEJCcnY/fu3Vi8eDGcnJwAAObm5iguLsZPP/2EW7duYevWrVi7dq3Sfho0aIDc3FwcP34cGRkZL23KHhgYiI0bN+LSpUu4desWtm3bBi0tLdSvX/+lsdWrVw9Vq1aVPvfgwYNYsGCBUhk3Nzc8efIEQ4YMwblz55CUlIStW7ciMTFRiishIQGJiYnIyMh4aW38V199hbt372LKlCm4du0aDhw4gLlz52L69OnSC4h/Kj8//4Va8Js3b2L48OEwNDSEk5MTIiMjkZycjIiICEydOlWpmfzw4cNx/vx5+Pj4YMCAAdDQ0JDWeXp6Ijo6Gm5uboiLi0NSUhIOHDjAQd2IiEilmJATERG9Jh0dHXz88cdYtmwZunTpAktLS3h7e2P8+PFYuXIlAKB169bw9/eHn58fLC0tERwcjB9++EFpP3Z2dpg0aRIGDx4MIyMjLF68+IXPql69OjZs2ICOHTuiVatW+P3333Ho0CHUrFnzpbEZGRkhMDAQu3fvhoWFBRYtWoQlS5YolalZsybCw8ORm5uLrl27ol27dtiwYYNUWz5+/Hg0bdoU1tbWMDIywqlTp174HDMzM/z66684e/YsWrdujUmTJmHs2LGYPXv2P/qdlnX9+nW0adNG6d/EiROhra2NP/74A/Xq1UP//v3RvHlzjB07FgUFBUo15ubm5rC1tUVCQoJSc3XgeeuAkydP4vr16+jcuTPatGmDOXPmoHbt2m8dNxER0T8lE0IIVQdBRERERERE9KFhDTkRERERERGRCjAhJyIiIiIiIlIBJuREREREREREKsCEnIiIiIiIiEgFmJATERERERERqQATciIiIiIiIiIVYEJOREREREREpAJMyImIiIiIiIhUgAk5ERERERERkQowISciIiIiIiJSASbkRERERERERCrAhJyIiIiIiIhIBf4PWdUlA9aC4/0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lst=df['JobSatisfaction'].value_counts()\n", + "plt.figure(figsize=(12,4))\n", + "plt.bar(list(lst.keys()), lst.values, color='skyblue') # Plotting the bars\n", + "\n", + "# Adding labels and title\n", + "plt.xlabel('Satisfaction Level') # Label for x-axis\n", + "plt.ylabel('Counts') # Label for y-axis\n", + "plt.title('Job Satisfaction') # Title of the plot\n", + "plt.xticks(rotation=45) # Rotate labels by 90 degrees\n", + "\n", + "# Display the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ethnicity" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "25" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['RaceEthnicity'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "RaceEthnicity\n", + "Black or of African descent 3\n", + "Black or of African descent;East Asian;Hispanic or Latino/Latina;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent 1\n", + "Black or of African descent;Hispanic or Latino/Latina 1\n", + "East Asian 2\n", + "Hispanic or Latino/Latina 1\n", + "Hispanic or Latino/Latina;White or of European descent 1\n", + "South Asian 8\n", + "White or of European descent 41\n", + "Name: RaceEthnicity, dtype: int64" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#count number of each Ethnicity\n", + "df.groupby('RaceEthnicity')['RaceEthnicity'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "#combine Ethnicity by str.match(if each string starts with a match of a regular expression pattern)\n", + "df.loc[df['RaceEthnicity'].str.match('Biracial') == True, 'RaceEthnicity'] = 'Biracial'\n", + "df.loc[df['RaceEthnicity'].str.match('Black or of African descent') == True, 'RaceEthnicity'] = 'Black or African descent'\n", + "df.loc[df['RaceEthnicity'].str.match('East Asian') == True, 'RaceEthnicity'] = 'East Asian'\n", + "df.loc[df['RaceEthnicity'].str.match('Hispanic or Latino') == True, 'RaceEthnicity'] = 'Hispanic or Latino'\n", + "df.loc[df['RaceEthnicity'].str.match('Indigenous') == True, 'RaceEthnicity'] = 'Indigenous'\n", + "df.loc[df['RaceEthnicity'].str.match('Middle Eastern') == True, 'RaceEthnicity'] = 'Middle Eastern'\n", + "df.loc[df['RaceEthnicity'].str.match('South') == True, 'RaceEthnicity'] = 'South Asian'\n", + "df.loc[df['RaceEthnicity'].str.match('White or of European descent') == True, 'RaceEthnicity'] = 'White or European descent'\n", + "df.loc[df['RaceEthnicity'].str.match('Multiracial') == True, 'RaceEthnicity'] = 'Multiracial'\n", + "df.loc[df['RaceEthnicity'].str.match('Native American') == True, 'RaceEthnicity'] = 'Native American'" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "RaceEthnicity\n", + "Black or African descent 5\n", + "East Asian 2\n", + "Hispanic or Latino 2\n", + "South Asian 8\n", + "White or European descent 41\n", + "Name: RaceEthnicity, dtype: int64" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.groupby('RaceEthnicity')['RaceEthnicity'].count() #11 groups of Ethnicity after combining" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "25" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['RaceEthnicity'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "df['RaceEthnicity']=df.groupby(['Country'])['RaceEthnicity'].bfill().ffill()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['RaceEthnicity'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAocAAAH4CAYAAAA4iEdrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFSUlEQVR4nO3dd3hT5d8G8PskaZuOdO9S2gIttGVPmaUMWSIgiAoyRERUVPQnCi5A9MWFguCWJYIoS1FQkSlDNi27lNLBKN0r3UnO+0clGtpCV3KS5v5cVy/pmd+T1vTO85zzPIIoiiKIiIiIiADIpC6AiIiIiMwHwyERERER6TEcEhEREZEewyERERER6TEcEhEREZEewyERERER6TEcEhEREZEewyERERER6TEcEhEREZEewyERNYi9e/dCEARs3LixwY6ZlJQEQRCwatWqWu23atUqCIKApKSkBquFiMhaMBwSNbBbweTWl0KhQEBAACZPnozr169LXZ7emTNnIAgCjh49CgAGNd/+NX36dP1+69atw+LFiyWquu4+++yzWodMIiJrpJC6AKLG6q233kJISAhKSkpw+PBhrFq1CgcOHMDZs2ehVCqlLg/btm2Dt7c3unTpol82cOBATJw4sdK2YWFh+n+vW7cOZ8+excyZM41eY1BQEIqLi2FjY1Or/SZMmICHH34YdnZ2+mWfffYZPD09MXny5AaukoiocWE4JDKSIUOGoHPnzgCAqVOnwtPTE++99x62bt2KsWPHSlwdsH37dgwZMgSCIOiXhYWF4dFHH5WwKkOCINQpSMvlcsjlciNURETU+LFbmchEevfuDQBISEgAAJSVleHNN99Ep06d4OLiAkdHR/Tu3Rt79uyptK9Op8OSJUvQpk0bKJVKeHl5YfDgwTh+/LjBdt999x06deoEe3t7uLu74+GHH8bVq1crHS83NxeHDh3CsGHDanUNffv2xbZt25CcnKzvcg4ODq5U6zvvvIMmTZpAqVSif//+uHz5cqXjtG7dGufPn0d0dDQcHBwQEBCA999/32C76u45vHjxIsaOHQsvLy/Y29ujZcuWeO211/Trb7/nMDg4GOfOncO+ffv0dfft2xdXrlyBIAj4+OOPK13roUOHIAgCvv/++1q9RkRElo4th0QmciuouLm5AQDy8/PxzTff4JFHHsETTzyBgoICLF++HIMGDcLRo0fRvn17/b6PP/44Vq1ahSFDhmDq1KnQaDTYv38/Dh8+rG+dfOedd/DGG29g7NixmDp1KjIyMrB06VL06dMHp06dgqurq/54f/zxBwRBwL333mtQY0lJCTIzMyvV7uzsDFtbW7z22mvIy8vDtWvX9IHKycnJYNt3330XMpkML730EvLy8vD+++9j/PjxOHLkiMF2OTk5GDx4MB544AGMHTsWGzduxCuvvII2bdpgyJAh1b6Op0+fRu/evWFjY4Np06YhODgYCQkJ+OWXX/DOO+9Uuc/ixYvx7LPPwsnJSR8ifXx80KxZM/Ts2RNr167FCy+8YLDP2rVroVKpMGLEiGprISJqlEQialArV64UAYg7d+4UMzIyxKtXr4obN24Uvby8RDs7O/Hq1auiKIqiRqMRS0tLDfbNyckRfXx8xClTpuiX7d69WwQgPvfcc5XOpdPpRFEUxaSkJFEul4vvvPOOwfozZ86ICoWi0vIJEyaIUVFRBssAVPv1/fff67cbNmyYGBQUVKmWPXv2iADE8PBwg+tasmSJCEA8c+aMfllUVJQIQPz222/1y0pLS0VfX19x9OjR+mWJiYkiAHHlypX6ZX369BFVKpWYnJxc5Wshiv/+DBITE/XLIiMjK12zKIril19+KQIQL1y4oF9WVlYmenp6ipMmTaq0PRFRY8duZSIjGTBgALy8vBAYGIgxY8bA0dERW7duRZMmTQBU3Bdna2sLoKIrNjs7GxqNBp07d8bJkyf1x9m0aRMEQcDcuXMrnePW/YKbN2+GTqfD2LFjkZmZqf/y9fVFaGioQVe1TqfD77//XmWX8ogRI/Dnn39W+oqOjq7xdT/22GP66wL+7U6/cuWKwXZOTk4G9zfa2tqia9eulbb7r4yMDPz111+YMmUKmjZtWuVrUVtjx46FUqnE2rVr9cv++OMPZGZmmtX9l0REpsJuZSIj+fTTTxEWFoa8vDysWLECf/31l8HTswCwevVqLFq0CBcvXkR5ebl+eUhIiP7fCQkJ8Pf3h7u7e7Xnio+PhyiKCA0NrXL9f5/2PXbsGDIyMqoMh02aNMGAAQNqfI1VuT203epGz8nJqXSu2wOdm5sbTp8+Xe2xbwXH1q1b16vG/3J1dcXw4cOxbt06LFiwAEBFl3JAQAD69evXYOchIrIUDIdERtK1a1f9/YAjR45Er169MG7cOMTFxcHJyQnfffcdJk+ejJEjR2LWrFnw9vaGXC7HwoUL9Q+t1JROp4MgCPjtt9+qfEr3v/cFbt++HcHBwYiIiKjfBVajuqeERVGs03amMHHiRGzYsAGHDh1CmzZtsHXrVjz99NOQydi5QkTWh+GQyARuhb7o6GgsW7YMs2fPxsaNG9GsWTNs3rzZoAXt9u7j5s2b448//kB2dna1rYfNmzeHKIoICQkxGJOwKtu2bcPQoUPrfC117b5tCM2aNQMAnD17ttb73qnuwYMHw8vLC2vXrkW3bt1QVFSECRMm1LlOIiJLxo/FRCbSt29fdO3aFYsXL0ZJSYm+5ey/LWVHjhzB33//bbDf6NGjIYoi5s+fX+mYt/Z94IEHIJfLMX/+/Eotb6IoIisrCwCQlpaGkydP1noIm/9ydHREXl5enfevDy8vL/Tp0wcrVqxASkqKwbq7tTg6OjoiNze3ynUKhQKPPPIIfvzxR6xatQpt2rRB27ZtG6psIiKLwpZDIhOaNWsWHnzwQaxatQr33XcfNm/ejFGjRmHYsGFITEzEF198gYiICKjVav0+0dHRmDBhAj755BPEx8dj8ODB0Ol02L9/P6KjozFjxgw0b94cb7/9NubMmYOkpCSMHDkSKpUKiYmJ2LJlC6ZNm4aXXnoJ27dvh1KprPYBk0uXLuG7776rtNzHxwcDBw4EAHTq1Ak//PADXnzxRXTp0gVOTk4YPny4cV6wKnzyySfo1asXOnbsiGnTpiEkJARJSUnYtm0bYmJiqt2vU6dO+Pzzz/H222+jRYsW8Pb2NrincOLEifjkk0+wZ88evPfeeya4EiIiMyXVY9JEjdWtYVSOHTtWaZ1WqxWbN28uNm/eXNRoNOL//d//iUFBQaKdnZ3YoUMH8ddffxUnTZpUaagYjUYjfvDBB2KrVq1EW1tb0cvLSxwyZIh44sQJg+02bdok9urVS3R0dBQdHR3FVq1aic8884wYFxcniqIojhkzRhw6dGiVdeMOQ9n8dwgYtVotjhs3TnR1dRUB6Gu9NZTNhg0bDI5b1XA0UVFRYmRkZKUabr/2qvYVRVE8e/asOGrUKNHV1VVUKpViy5YtxTfeeEO/vqqhbG7evCkOGzZMVKlUla7plsjISFEmk4nXrl2r8jUiIrIGgihKcPc3EZmcRqOBh4cHFi5ciKefflrqcsxShw4d4O7ujl27dkldChGRZHjPIZGVyM7OxgsvvIBRo0ZJXYpZOn78OGJiYjBx4kSpSyEikhRbDonIqp09exYnTpzAokWLkJmZiStXrkCpVEpdFhGRZNhySERWbePGjXjsscdQXl6O77//nsGQiKweWw6JiIiISI8th0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh0RERESkx3BIRERERHoMh9Qo7N27F4IgIDc316TnnTdvHtq3b2/ScxIRERkTwyE1mIyMDDz11FNo2rQp7Ozs4Ovri0GDBuHgwYMNep6+ffti5syZDXrMJ598EnK5HBs2bKjVfi+99BJ27drVoLUQERFJSSF1AdR4jB49GmVlZVi9ejWaNWuGtLQ07Nq1C1lZWVKXdkdFRUVYv349Xn75ZaxYsQIPPvhgjfd1cnKCk5OTEasjIiIyLbYcUoPIzc3F/v378d577yE6OhpBQUHo2rUr5syZg/vvv1+/XUpKCkaMGAEnJyc4Oztj7NixSEtL06+fPHkyRo4caXDsmTNnom/fvvr1+/btw5IlSyAIAgRBQFJSkn7bEydOoHPnznBwcECPHj0QFxd319o3bNiAiIgIzJ49G3/99ReuXr1qsH7v3r3o2rUrHB0d4erqip49eyI5ORlA5W7lY8eOYeDAgfD09ISLiwuioqJw8uRJg+MJgoBvvvkGo0aNgoODA0JDQ7F169a71klERGQKDIfUIG61oP30008oLS2tchudTocRI0YgOzsb+/btw59//okrV67goYceqvF5lixZgu7du+OJJ55AamoqUlNTERgYqF//2muvYdGiRTh+/DgUCgWmTJly12MuX74cjz76KFxcXDBkyBCsWrVKv06j0WDkyJGIiorC6dOn8ffff2PatGkQBKHKYxUUFGDSpEk4cOAADh8+jNDQUAwdOhQFBQUG282fPx9jx47F6dOnMXToUIwfPx7Z2dk1fh2IiIiMRiRqIBs3bhTd3NxEpVIp9ujRQ5wzZ44YGxurX79jxw5RLpeLKSkp+mXnzp0TAYhHjx4VRVEUJ02aJI4YMcLguM8//7wYFRWl/z4qKkp8/vnnDbbZs2ePCEDcuXOnftm2bdtEAGJxcXG1NV+6dEm0sbERMzIyRFEUxS1btoghISGiTqcTRVEUs7KyRADi3r17q9x/7ty5Yrt27ao9vlarFVUqlfjLL7/olwEQX3/9df33arVaBCD+9ttv1R6HiIjIVNhySA1m9OjRuHHjBrZu3YrBgwdj79696Nixo74l7sKFCwgMDDRo6YuIiICrqysuXLjQIDW0bdtW/28/Pz8AQHp6erXbr1ixAoMGDYKnpycAYOjQocjLy8Pu3bsBAO7u7pg8eTIGDRqE4cOHY8mSJUhNTa32eGlpaXjiiScQGhoKFxcXODs7Q61WIyUlpdo6HR0d4ezsfMc6iYiITIXhkBqUUqnEwIED8cYbb+DQoUOYPHky5s6dW+P9ZTIZRFE0WFZeXl7j/W1sbPT/vtX1q9PpqtxWq9Vi9erV2LZtGxQKBRQKBRwcHJCdnY0VK1bot1u5ciX+/vtv9OjRAz/88APCwsJw+PDhKo85adIkxMTEYMmSJTh06BBiYmLg4eGBsrKyauu8VWt1dRIREZkSwyEZVUREBAoLCwEA4eHhuHr1qsEDH+fPn0dubi4iIiIAAF5eXpVa5mJiYgy+t7W1hVarrXdt27dvR0FBAU6dOoWYmBj91/fff4/NmzcbjJnYoUMHzJkzB4cOHULr1q2xbt26Ko958OBBPPfccxg6dCgiIyNhZ2eHzMzMetdKRERkKgyH1CCysrLQr18/fPfddzh9+jQSExOxYcMGvP/++xgxYgQAYMCAAWjTpg3Gjx+PkydP4ujRo5g4cSKioqLQuXNnAEC/fv1w/PhxfPvtt4iPj8fcuXNx9uxZg3MFBwfjyJEjSEpKQmZmZp1b3JYvX45hw4ahXbt2aN26tf5r7NixcHV1xdq1a5GYmIg5c+bg77//RnJyMnbs2IH4+HiEh4dXeczQ0FCsWbMGFy5cwJEjRzB+/HjY29vXqT4iIiIpMBxSg3ByckK3bt3w8ccfo0+fPmjdujXeeOMNPPHEE1i2bBmAiq7Tn3/+GW5ubujTpw8GDBiAZs2a4YcfftAfZ9CgQXjjjTfw8ssvo0uXLigoKMDEiRMNzvXSSy9BLpcjIiICXl5ele7nq4m0tDRs27YNo0ePrrROJpNh1KhRWL58ORwcHHDx4kWMHj0aYWFhmDZtGp555hk8+eSTVR53+fLlyMnJQceOHTFhwgQ899xz8Pb2rnV9REREUhHE22/wIiIiIiKrxZZDIiIiItJjOCQiIiIiPYZDIiIiItJjOCQiIiIiPYZDIiIiItJjOCQiIiIiPYZDIiIiItJjOCQiIiIiPYZDIiIiItJTSF0AEZmWrqgI5Wlp0KkLoSsqgq7o1n+LIP7zX11REXSF//n3f76g1UCwsYWgVEKws4XMTgnBzg4ypR2E//7b1g6C0s5gvdzVFQpfP9j4+ULu7Cz1S0FERFVgOCRqZMSyMpTfuIGya9dRfu0ayq9fQ/n16/rvtdnZUpcIAJA5OkLh5wubf8Kiwveff/v7Vfzbzw8ypVLqMhudVatWYebMmcjNzZW6FL2kpCSEhITg1KlTaN++vdTlGEXfvn3Rvn17LF68WOpSiO6KcysTWSCtWo3SixdRlpxSKfxp0tOBRvK/tdzVFQo/P9j4+8MutAWUkZGwj4iATUCA1KWZncmTJyM3Nxc//fSTwfK9e/ciOjoaOTk5cHV1RXFxMQoKCuDt7S1NoVXQarXIyMiAp6cnFApp2yzmzZuHn376CTExMXXa//bX+5bs7GzY2NhApVI1TKFERsSWQyIzp83LQ8n58xVf586h5Nx5lKWkNJoAeCfa3Fxoc3NReuEC1Lt26ZfLXV2hjAiHMjISyogIKCMiYNO0KQRBkLBay2Bvbw97e3upyzAgl8vh6+tr0nOWlZXB1tbWZOdzd3c32bmI6osPpBCZEVGjQfHZc8he8x2u/+8lXB54Ly51uwcpj01B+gcfIn/7byhLTraKYHgn2txcFB76G1lff4PrL7yIhEGDcalrNyRPnIS0d99D3i+/oDQhAaJOJ3WpZmfVqlUGLVqxsbGIjo6GSqWCs7MzOnXqhOPHjxts+9NPPyE0NBRKpRKDBg3C1atX9fsnJCRgxIgR8PHxgZOTE7p06YKdO3canDM4OBj/93//hylTpkClUqFp06b46quv9OuTkpIgCIJBa925c+dw3333wdnZGSqVCr1790ZCQkK117Vv3z507doVdnZ28PPzw+zZs6HRaPTr+/btixkzZmDmzJnw9PTEoEGD6vT6rVmzBp07d4ZKpYKvry/GjRuH9PR0/XVER0cDANzc3CAIAiZPnqw//8yZM2v8mgDAmTNn0K9fP9jb28PDwwPTpk2DWq2uU91EtcFwSCQhbUEBCnbvQfpHHyN5wkTEdemKpDFjkPbOO8jftg3l//kjTHemKyhA0dGjyF61CjdmvYwrw+5DXOcuSJ78GDK//holFy9KXaJZGj9+PJo0aYJjx47hxIkTmD17NmxsbPTri4qK8M477+Dbb7/FwYMHkZubi4cffli/Xq1WY+jQodi1axdOnTqFwYMHY/jw4UhJSTE4z6JFi9C5c2ecOnUKTz/9NJ566inExcVVWdP169fRp08f2NnZYffu3Thx4gSmTJliEPZu337o0KHo0qULYmNj8fnnn2P58uV4++23DbZbvXo1bG1tcfDgQXzxxRd1er3Ky8uxYMECxMbG4qeffkJSUpI+AAYGBmLTpk0AgLi4OKSmpmLJkiXVHutOr0lhYSEGDRoENzc3HDt2DBs2bMDOnTsxY8aMOtVNVBvsViYysdIriVDv3Qv1nj0oOnUKqOYPHtWfWFSEosOHUXT4MDIWfQSFtzcce/aEU+9ecOzZE3IXF6lLbFC//vornJycDJZptdo77pOSkoJZs2ahVatWAIDQ0FCD9eXl5Vi2bBm6desGoCJghYeH4+jRo+jatSvatWuHdu3a6bdfsGABtmzZgq1btxoEmaFDh+Lpp58GALzyyiv4+OOPsWfPHrRs2bJSTZ9++ilcXFywfv16fVANCwur9ho+++wzBAYGYtmyZRAEAa1atcKNGzfwyiuv4M0334RMJtNf2/vvv3/H1+NupkyZov93s2bN8Mknn6BLly5Qq9VwcnLSdx97e3sbtNBW5U6vybp161BSUoJvv/0Wjo6OAIBly5Zh+PDheO+99+Dj41Ov6yC6E4ZDIiMTy8tRdPx4RSDcu6+iW5gkoUlPR96WLcjbsgWQy2HfujUce/eGU+9eULZpA0Fm2Z0p0dHR+Pzzzw2WHTlyBI8++mi1+7z44ouYOnUq1qxZgwEDBuDBBx9E8+bN9esVCgW6dOmi/75Vq1ZwdXXFhQsX0LVrV6jVasybNw/btm1DamoqNBoNiouLK7Uctm3bVv9vQRDg6+ur7469XUxMDHr37m3QgnknFy5cQPfu3Q3uOe3ZsyfUajWuXbuGpk2bAgA6depUo+PdyYkTJzBv3jzExsYiJycHun9uXUhJSUFEREStjnWn1+TChQto166dPhgCFdek0+kQFxfHcEhGxXBIZASanByo9+2Deu8+FB44AB3vEzI/Wi2KY2NRHBuLzGXLIHd1hWOPHhVhsVdPKLy8pK6w1hwdHdGiRQuDZdeuXbvjPvPmzcO4ceOwbds2/Pbbb5g7dy7Wr1+PUaNG1eicL730Ev788098+OGHaNGiBezt7TFmzBiUlZUZbHd70BMEQR+sbmesB2b+G7Tq4lZX76BBg7B27Vp4eXkhJSUFgwYNqnS9NVGb14TIlBgOiRpISVwc1Hv2Qr13L4pPnwb4Jm9RtLm5yN++HfnbtwOCAGV4OJzvHw6X4cOh8PCQujyjCgsLQ1hYGF544QU88sgjWLlypT4cajQaHD9+HF27dgVQcS9dbm4uwsPDAQAHDx7E5MmT9dur1WokJSXVq562bdti9erVKC8vr1HrYXh4ODZt2gRRFPWthwcPHoRKpUKTJk3qVct/Xbx4EVlZWXj33XcRGBgIAPqHd2659QT03brz7yY8PByrVq1CYWGhPtQePHgQMpmsyq54ooZk2X0oRBIrT0tD5hdf4PK9g5A4YiQyFi9GcUwMg6GlE0WUnD+P9HffQ3xUX1x9cjryf/8dujq0Dpmz4uJizJgxA3v37kVycjIOHjyIY8eO6YMfUNG69eyzz+LIkSM4ceIEJk+ejHvuuUcfFkNDQ7F582bExMQgNjYW48aNq3fr14wZM5Cfn4+HH34Yx48fR3x8PNasWVPtAyxPP/00rl69imeffRYXL17Ezz//jLlz5+LFF1/U329YG8XFxYiJiTH4SkhIQNOmTWFra4ulS5fiypUr2Lp1KxYsWGCwb1BQEARBwK+//oqMjIw6P108fvx4KJVKTJo0CWfPnsWePXvw7LPPYsKECexSJqNjOCSqJbG8HPk7diDlySdxuV9/ZCxegvLb7q+iRkSjgXrfPlyf+QLie/dB6rx5FQ8SNQJyuRxZWVmYOHEiwsLCMHbsWAwZMgTz58/Xb+Pg4IBXXnkF48aNQ8+ePeHk5IQffvhBv/6jjz6Cm5sbevTogeHDh2PQoEHo2LFjvery8PDA7t27oVarERUVhU6dOuHrr7+uthUxICAA27dvx9GjR9GuXTtMnz4djz/+OF5//fU6nf/SpUvo0KGDwdeTTz4JLy8vrFq1Chs2bEBERATeffddfPjhh5VqmT9/PmbPng0fH586P13s4OCAP/74A9nZ2ejSpQvGjBmD/v37Y9myZXU6HlFtcIYUohoqvXIFuRs3Ie/nn6HNypK6HJKYbXAwXEaOgMv998PG31/qcozCHKfaIyLj4z2HRHegKypC/m+/IXfjJhQ3ktYiahhlSUnIWLwEGUs+gUPXrnAZORLO9w6ErJ4PPRARSY3hkKgKRadOIXfTJhRs/w26oiKpyyFzJoooOnIERUeO4OaCBXAeNAjukydByYcGiMhCsVuZ6B+60lLkbtqEnHXrUHa5+mm6iGrCofs98HjsMTj27s05n4nIojAcktXTFRYiZ/16ZK1aBW1GptTlUCNj26I5PCZPhvP990P2zzAnRETmjOGQrJY2Px/Z332HnG/XQMsb7snI5J6eSHpvGrp3GQmVrUrqcoiIqsVwSFZHk5OD7JWrkLNuHWcuIdNpFoSHxl6Ho60THm71MCZETIC70l3qqoiIKmE4JKtRnpaO7BXLkfPjBojFxVKXQ1bmwJRO+MQnVv+9vcIeo0NHY3LkZPg4clBjIjIfDIfU6JVdu46sr79G3pYtEBvZDBdkGQRfb4yfnIcyofKUajYyG4xoMQLT205nSCQis8BwSI1WaWIisr78Cnm//gpoNFKXQ1bszPiuWND05B23UcqVeDTiUTze+nE42TqZqDIiosoYDqnR0ebnI2PpMuR8/z1DIUlOcHHG1Ok65MlKarS9m50bprWdhodaPgQbedXTxRERGRPDITUaok6H3I0bkbF4CbTZ2VKXQwQASBrdFS+H3bnVsCpNnJrguY7PYUjIECNURURUPYZDahSKTp1C2tvvoOTcOalLIdIT7JV4YYYjriny6nyM9l7tMbvrbER6RjZgZURE1WM4JItWnp6O9A8/RP4vvwL8VSYzkzG0C55pV/85uQUIuL/5/ZjZaSY87T0boDIiouoxHJJFEsvKkLV6NbI+/4JzH5N5Uijw1kwfnLVJa7BDOto4YmqbqZgYMRG2cs62QkTGwXBIFke9bx/S/m8hypKTpS6FqFoFfTvg8e5njHLsQFUg3rjnDXT3726U4xORdWM4JItRlpSEmwsXonDfX1KXQnRXn85sjn32xv0AM6L5CMzqMgsudi5GPQ8RWReGQzJ7Ynk5Mj//HFlffwOxvFzqcojuqqxLazw64KJJzuVp74k5Xefg3uB7TXI+Imr8GA7JrJVeuYIbs17mU8hkUb5/JhxbnONNes7+TfvjtW6vwcvBy6TnJaLGRyZ1AUTVyV67FokPjGYwJIuii2hh8mAIALtSduGPnbOA2B9Mfm4ialwUUhdAdLvy9HSkvvY6Cvfvl7oUolr7s7c0U991cGmBcad+Bk5uAS7+Aty3GHDksDdEVHvsViazkv/HDtycOxfa3FypSyGqNSGoCR4elwYtTPu2qpTbYUOeDsEZCf8udPAEhi8GwoebtBYisnzsViazoFUX4sbsObj+/PMMhmSxjkT7mjwYAsAMh+aGwRAAijKBHx4FNj8JlBaYvCYislxsOSTJFZ04gRuvzEb5tWtSl0JUZ4KXJyY8rkaJoDHpeds5N8e3p/dBJuqq38gjFBj7LeATYbrCiMhiseWQJCOWlyN90UdInjCRwZAs3oX+zUweDO3kdlhwI+XOwRAAsuKBb/oDsetNUxgRWTSGQ5JEaUICEh96CFlffw3o7vKHjcjMCSonfBIUZ/LzPuPQHCG3dydXp7wI2PIksPU5QFNq3MKIyKIxHJLJFezejaQHx6L0/AWpSyFqEFf7RyBTVmjSc7Z1bo5JZ3bUfseTq4FvBgDZiQ1fFBE1CgyHZFKZX3yJa8/MgK6oSOpSiBqEYGuLZaGmDVp2cjssSL169+7k6tw8DXwVBVzc1rCFEVGjwHBIJqErLcX1l2YhY/FigM9AUSOSFd0WVxQ5Jj3n0w4t0Cz9cv0OUpIHrB8H7Hgd0Jr2XkkiMm8Mh2R05WnpSH50AvJ//VXqUogalkyGr1unmfSUbZ2b1a07uTqHlgKrhwP5qQ13TCKyaAyHZFTFZ84g6cEHUXLmjNSlEDW4oh5tccLWdKHKVmaLBanXIRe1DXvglEPA19HATf5/SkQMh2REeb9uQ/KjE6BJT5e6FCKj+K6TaR9CedoxFM3SjTRvc0EqsGIIcHmncY5PRBaD4ZAanCiKSP94MW689BLEUg6ZQY2TpkM4djqY7kGUNs7NMLkhu5OrUlYArHsIOLnGuOexQn379sXMmTOlLoOoRhgOqUHpCgtxbcazyPryS6lLITKqrd3lJjtXRXfyjYbvTq6KTgNsnQHsftv457qLyZMnQxCESl+DBw9ukOPv3bsXgiAgtxZTdrZq1Qp2dna4efNmrc61efNmLFiwoJYVEkmD4ZAaTNm160h6ZBzUu3ZJXQqRcYWFYL3LRZOd7imnUDRPv2Sy8wEA/voA2DId0Jab9ry3GTx4MFJTUw2+vv/+e0lqOXDgAIqLizFmzBisXr26Vvu6u7tDpVIZqTKihsVwSA2i+Nw5JI0di9JLJv4DRiSBvX3cTHauSOcQPHbayN3J1Yn9HvhuNFCSL835AdjZ2cHX19fgy83t39f/o48+Qps2beDo6IjAwEA8/fTTUKvV+vXJyckYPnw43Nzc4OjoiMjISGzfvh1JSUmIjo4GALi5uUEQBEyePPmOtSxfvhzjxo3DhAkTsGLFikrrP/vsM4SGhkKpVMLHxwdjxozRr7u9W3nNmjXo3LkzVCoVfH19MW7cOKT/5/7sW62au3btQufOneHg4IAePXogLs70M/GQ9WE4pHorjo1FyuTHoM3OlroUIqMTAvzwledZk5zLRmaDt2/eNE13cnUS9wErBgN516Wr4Q5kMhk++eQTnDt3DqtXr8bu3bvx8ssv69c/88wzKC0txV9//YUzZ87gvffeg5OTEwIDA7Fp0yYAQFxcHFJTU7FkyZJqz1NQUIANGzbg0UcfxcCBA5GXl4f9+/fr1x8/fhzPPfcc3nrrLcTFxeH3339Hnz59qj1eeXk5FixYgNjYWPz0009ISkqqMpy+9tprWLRoEY4fPw6FQoEpU6bU4VUiqh2F1AWQZSs6cQJXpz0JXaFpn9okksrJfk2gETJMcq6nnFqiRcJ2k5zrjtLPVUy5N/5HwLeNSU/966+/wsnJyWDZq6++ildffRUADFrjgoOD8fbbb2P69On47LPPAAApKSkYPXo02rSpqLtZs2b67d3d3QEA3t7ecHV1vWMd69evR2hoKCIjIwEADz/8MJYvX47evXvrz+Po6Ij77rsPKpUKQUFB6NChQ7XH+2/Ia9asGT755BN06dIFarXa4HrfeecdREVFAQBmz56NYcOGoaSkBEql8o71EtUHWw6pzgoPH0bKE9MYDMlqCG6uWOZ/3iTninQOwZTTf5jkXDVScANYOQy4dtykp42OjkZMTIzB1/Tp0/Xrd+7cif79+yMgIAAqlQoTJkxAVlYWiv6ZovO5557D22+/jZ49e2Lu3Lk4ffp0nepYsWIFHn30Uf33jz76KDZs2ICCggIAwMCBAxEUFIRmzZphwoQJWLt2rb6Gqpw4cQLDhw9H06ZNoVKp9AEwJSXFYLu2bdvq/+3n5wcABt3PRMbAcEh1ot5/AFenPwWRcySTFbk8IAwFMuMPz2Qjs8ECqbuTq1KaB6x5wKQB0dHRES1atDD4utXil5SUhPvuuw9t27bFpk2bcOLECXz66acAgLKyMgDA1KlTceXKFUyYMAFnzpxB586dsXTp0lrVcP78eRw+fBgvv/wyFAoFFAoF7rnnHhQVFWH9+vUAAJVKhZMnT+L777+Hn58f3nzzTbRr167KJ6ELCwsxaNAgODs7Y+3atTh27Bi2bNliUPctNjY2+n8LggAA0OnqOKc2UQ0xHFKtFezeg2vPPAOxpETqUohMRnBwwJIQ0zxw9aRTS4SmmemDBxIExOqcOHECOp0OixYtwj333IOwsDDcuHGj0naBgYGYPn06Nm/ejP/973/4+uuvAQC2trYAAK32ziF8+fLl6NOnD2JjYw1aMF988UUsX75cv51CocCAAQPw/vvv4/Tp00hKSsLu3bsrHe/ixYvIysrCu+++i969e6NVq1ZsDSSzwnsOqVby/9iB6y+9BJRLO7wFkand6B+Jm/JTRj9PuCoYjxt7sOv6uhUQJ2wGmnQ27qlKSyuNKahQKODp6YkWLVqgvLwcS5cuxfDhw3Hw4EF88cUXBtvOnDkTQ4YMQVhYGHJycrBnzx6Eh4cDAIKCgiAIAn799VcMHToU9vb2le5vLC8vx5o1a/DWW2+hdevWBuumTp2Kjz76COfOnUNiYiKuXLmCPn36wM3NDdu3b4dOp0PLli0rXVPTpk1ha2uLpUuXYvr06Th79izHQCSzwpZDqrG8X7fh+v/+x2BI1kehwGctrxr/NDIF3k5Lh0KnMfq56s1ELYi///47/Pz8DL569eoFAGjXrh0++ugjvPfee2jdujXWrl2LhQsXGuyv1WrxzDPPIDw8HIMHD0ZYWJj+YZWAgADMnz8fs2fPho+PD2bMmFHp/Fu3bkVWVhZGjRpVaV14eDjCw8OxfPlyuLq6YvPmzejXrx/Cw8PxxRdf4Pvvv9c/wPJfXl5eWLVqFTZs2ICIiAi8++67+PDDDxvi5SJqEIIoiqLURZD5y928Bamvvw7wXheyQnkDOuGJLrFGP88zzq0xPdYMnk6uDTsXk7QgEpHpsOWQ7irnhx+R+tprDIZknQQB37TNNPppwlVBmGru3clVMaN7EImoYTAc0h1lr12Lm/PmAWxgJitVck8bHLEz7gDQCpkCC9IzLaM7uSoMiESNCsMhVSvvl1+R9vY7DIZk1X7oXHb3jeppmqoVWt68YPTzGNWtgHj9hNSVEFE9MRxSldQHD+LGq68yGJJV07ZpiW1Ol416jlaqIEw9/adRz2EypXnA2geBTOO+ZkRkXAyHVEnxuXO4/tzzfCqZrN5vPY07RZlCpsDb6Vmw0TWi/9eKsoDvRgEFaVJXQkR1xHBIBspSUjhXMhEANGuKNa7njHqKJ5xaoeVN00zHZ1K5KcDa0UBpgdSVEFEdMBySniYrCylPPAFtVpbUpRBJ7mBfL4iC8Y7fUhWEJ840ku7kqtw8A/zwKKBtRK2iRFaC4ZAAAOVlWhz5PhalqewKIhJ8vPGF91mjHV8hKPB2RiPrTq7Klb3Az89IXQUR1RLDIUHUifhz+TnEnAXiRn8MnbOH1CURSepM/yCUCneeb7c+HncOR6vURtidXJXTPwB735W6CiKqBYZDwsHNl5EYWzHIb2qqiNP3/h80AS0kropIGoKLM5YEGm9YmTCnpnjytAUOdl0fexcCp3+UugoiqiGGQyt3dt81xO40nDM2O1ODE51moSyiu0RVEUknaUAr5MlKjHJshaDAgqycxt+dXJWfZwDJf0tdBRHVAMOhFbt6Pht//RBf5brCfA2ONp2Eop6VJ5snaqwEpRJLm18x2vGnOIcj4oZxn4A2W9pSYP04ICtB6kqI6C4YDq1UQXYJdiw/B1FX/SDXZSVaHFUORO7Qp0xYGZF00vu1QYo81yjHDnVqiumN+enkmijOBtaPB8qKpK6EiO6A4dAKaTU6/P7lGZQU3r1rS6cVcbKoNdIenGuCyogkJJfji3DjzKFc0Z2cCxut8afiM3sZF4BfX5C6CiK6A4ZDK7T/x3ikJ9ducNpzGd5IGvcRdApbI1VFJC11r7Y4Y5tulGM/5hyOyBvGGxrH4pxeDxxfKXUVRFQNQRQ5ea41uXg4FbtW1f1JTH8/AWG/vg5ZQXYDVkUA8FVWFnaqC3CltAxKmYD29vb4n5cXQmzt9NuU6nR4PyMd2/PzUSaK6OXoiDd8fOGpUFR73FdTb+Cn/HyDZb0cHPFVYCAAoEynwxtpN7FbrYanXI43fHzRw9FRv+3y7CyklpfjdR/fBr5i8/LZzObYa5/c4Mdt4RSIH88fY6vh7eR2wOM7AP/2UldCRLdhy6EVybymxr61cfU6xo1UEacHLeRQN0ZwvKgIj7i64vugIHzTJBAaUcTUq1dRpNPpt3k3PR171Gp87B+Ab5sGIV2jwfPX794V2svREfuat9B/feDvr1/3Y14uzpWUYF3TIDzo6oqXU2/g1mfGa2Vl2Jibi5meXg1/wWakrEukUYKhQlDg7ex8BsOqaEuBDZOA4lypKyGi2zAcWonSYg1+//IMNOW6u298Fxzqxji+CgzEKBdXhNrZoZVSif/z9UOqRoPzJRXDqhRotdiUl4tXvL1xj6MjIpVKvOPrh1MlxYgtLr7jsW0FAV4Khf7LRS7Xr7tSVoZ+Tk4ItbPDOFc3ZGu1yNFWDAD9Vloa/uflDaf/bN8YbelmnONOdg5H5PUzxjl4Y5CTBPz0FMAOLCKzwnBoJXatOo+8jDsHiNrQD3XTY2SDHZMMFfzTYngryJ0rKYEGQHeHf7t8m9nZwU+hQMxdwuGxoiL0uhyPoVeuYP7Nm8jV/jv7R0s7O5wsLkaJTocDhYXwkivgJpfjl/w82MoEDFCpGv7izIgY3gKbVPVrUa9KC6dAPG3tTyfXRNx24OASqasgov9gOLQCJ/9I1s+A0pDKSrQ4an8v8oZMb/BjWzudKOLd9DR0tLdHqF3FPYeZWg1sBAHOt7XieSoUyNRqqj1WL0cnLPTzw4rAQLzo5YVjxUV48tpVaP9prXnAxRUt7ewwPCkRX2Vn4SN/f+TpdFiWmYnXvH2wJCMDg64k4ImrV5FW3vgGb/6zt1ODH1MuyLGA3ck1t3sBkHRQ6iqI6B8Mh41cakIeDv9svEF9dVoRJ4rbIO3BN412Dmu0IC0N8aWl+NDP/+4b38VQZ2f0c1IhzE6JASoVPg9ogjMlJThaVDHWnI0g4A0fX/zZrDl+DApGJwcHvJ+ejkfd3HChtAS71AXYEhyCtvZK/F96Wr3rMSdC0wCs9Gj4QaknOUegNbuTa06nATZOAdTGeVqciGqH4bARKy/VYueq83cc6LqhnMvwQTKHumkQb6fdxL5CNVYFNoWvjY1+uadcgXJRRP5/uoQBIFOjgae8+qeVbxdoaws3uRwp5VW3ah0pKkRCWSnGubrhWFER+jg6wUEmw2CVsz5QNhZH+/lBi4b9/6O5UxM8c2Zngx7TKqhvVgREXf3viyai+mE4bMQObb6M/Aa8z/BuEm7Y4dKDi6FTuZvsnI2JKIp4O+0mdqrVWBHYFE1sDYN2pFIJBYDDRYX6ZYllpUjVaNDe3r7G57lZXo5crRZeVQx/U6rTYUFaGub6+EIuCNCKgOaf8KQRRTSmP9syTw986tOwrYZyQY4FOWrYaksb9LhWI2k/cPRLqasgsnoMh43U1fPZOPuXcWZ7uJMbqSJOD14IjX8zk5/b0i1IT8Mv+fn4wM8fjjIZMjQaZGg0KPmnJUUll2O0iyveS0/HkaJCnCspwWupN9FeaY92/wmHwxKvYGdBxSDnhTodPkhPR2xxMa6Xl+HvwkLMuH4NTW1s0Os/D7bc8nlWFvo4OiFCqQQAdLC3x58FBYgrKcG63Bx0qEUINXfnBzRHkaxh76Gc6BKBNtdON+gxrc6utzj/MpHEat4XRRajtFiD3WsuoIF7y2osO0ODE51fQYf4lbC9cFiaIizQ+txcAMCkqykGy9/x9cUoF1cAwGxvb8gygOevX0e5KKLnP4Ng/1diWRkKdBVdz3IAl0pL8XN+HvK1WngrFOjp6IhnPb1gKzP8bBhfWorfC/KxOThEv2yQSoVjxUWYcDUFIba2eL8B7oE0B4LKCZ8ENewTys2cmmDGaXYn11t5EfDzDOCx7YAgSF0NkVXiDCmN0K5V53Hx8E2py4CtUo6O+b/D4dBPUpdCZODaiK54MeJkgx1PLsjxbZkz2l6LbbBjWr3B7wH3cCQEIimwW7mRuRKTYRbBEPjvUDdPSl0KkZ5ga4tlYYkNeswJLhEMhg1t13wg23gjLRBR9RgOG5FidRn2rmv4wXzro2Kom7ZIe/ANqUshK/BVVhbGJieh86VL6HU5HjOuX0NimeHDIVl92+KKIqfK/XMP5+Ls5LNIXmI4lV7mb5m48OwFXHj2AjJ/Mxwz1PWGI9Y+vQEaE4wKYFXKi4Cfn+XsKUQSYDhsRPatjUNxvnkOunsuwxfJ4xZxqBsyqrvOTy2T4es2VY/VWJZRhps/3IRDmIPB8pKrJUjbkobApwIR+FQg0janoeRqxZSGgk5Axudn8eVQOyhkvD+uwSUfAI5+LXUVRFaH4bCRiD+ehoRTGVKXcUcJN5SI51A3ZER3m5+6qEcbnLBNrbSfqBNx7ctr8B7pDVsvww8wpamlUDZRwinCCU4RTlAGKlGaWtEa2WS3gEF+5egS0LjnnpbUznkVczATkckwHDYCZSUaHNgQL3UZNXL9n6FutH4hd9+YqJ5un596Xceqx/1M/zkdcmc53KMqf3Cxa2KHsrQylGWVoSyzDKU3S2HXxA5eBW6I/+0c3u5nZ7wLIKC8sOLpZXYvE5kMw2EjcPTXRBTlmWd3clWyMzQ40XU2ysK7SV0KNWK3z0+t6RCOHY6VH3AovFSInL9yEPBYQJXHUfor4TPaB0kfJCHpwyT4jvGFQ4ADCj87gw8G2OKPBA1af6ZGhy/V+Cu5+jmuqR6S9gPHvpG6CiKrwXEOLVz2jUKc2X1N6jJqTZ2nwdGgx9DR1QcOf2+VuhxqhG7NT/1d0yAAwC/dK7/daYu1uPbVNQQ8FgCFqvq3Q/d+7nDv92+rYqsT9igT1ejeRImWy9Q49oQjruWLeHhjMRKfd4KdgvcfNrjdC4DIBwBHD6krIWr02HJo4f76IQ46C31KsqxEi6MOg5E3eJrUpVAjU2l+6tAQfO9yodJ2ZellKM8sR/LiZJydchZnp5xF7qFcFMQU4OyUsyhNrzwNnr/WE0fXHMfSIUocua5FmIcMoR5yRIcoUK4DLmU1pkkGzUhJHrDnbamrILIKbDm0YPHH03A9LlfqMupFpxVxQtsOrce8Ae+NC6QuhyycKIp4Jz0NO9UVwfDW/NR7o9wAXK20vZ2fHVq83cJgWdqmNOhKdPAb7wcbdxuDdTJBBsXX5/FiNxs0cZbh2HUtyv+TBTU6EVrL/KxmGU6sBrpMBXwipa6EqFFjy6GFKivR4ODGy1KX0WDOZnKoG6q/quanzvRwwxfO/853fO2ra7i5oWKgeJmtDMomSoMvuYMcMmXFcpnC8C2yS6I7Mq9m4pmuFaGxS4AcFzN1+C2+HF+dKINcENDSg2+rRiNqgd9nS10FUaPHlkMLdXx7EgpzK3d5WbKEG0qUPLgYob+8Cpk6V+pyyAJVOT91wmUEhAfArbcbAKAsqwyowy2BAQpv/LVsH34cbQ/ZP3P+NnGWYekQJR77uQR2CmD1SCXsbXi/oVEl/gVc3Aa0GiZ1JUSNFudWtkA5NwuxfsFR6Bpp/5WHlwKtD7wLeWrDTnFG1kdwc8WUaeUokNXvg5RMkGGlxh0dUxpuPmaqB/dmwNNHAPY0EBkF+z8s0P4fLjXaYAgAWbeGumnVRepSyMJdHhBW72AIAONcWzMYmpPsK8CRz6WugqjRYji0MElnMnH1QtXzwjYm6jwNjoY8jqJ7hktdClkowd4en4TUf3D4pg5+eO7s7gaoiBrUXx8CavOeFYrIUjEcWhBRFHFka+VBfBursmItjjoO4VA3VCep/VsjVV5Qr2MIEPBWgQb2ZUUNVBU1mNL8irEPiajBMRxakISTGci8qpa6DJPSaUWcKG2H9DGvS10KWRKFAp+2qjx0TW094toanVJONEBBZBSn1gCpp+++HRHVCsOhhRB1Io7+Yj2thgZE4GymH1LGfQhRzgfs6e7yotoiziazXscIdPDFzHN7GqgiMgpRB+x4TeoqiBodhkMLcenoTeTctO6urcs37HHpoSXQOblKXQqZM0HAirbZ9TsEBMxX69idbAkS/wKSDkhdBVGjwnBoAXRaHY7+ymFdAOD6DeDMkPeg8QuWuhQyU6XdWuNvZf3mG3/YtQ26JB9voIrI6PYslLoCokaF4dACXDiUivzMEqnLMBtZGRqc7DqHQ91QlX7oUl6v/ZuwO9nyJB8AEvdLXQVRo8FwaOa05Toc354kdRlmh0PdUFV0bcLwq1Pdp5UUIOCtQhEOZYUNWBWZxN53pa6AqNFgODRzZ/+6DnVO45omr6HcGuomf9BUqUshM/FbT/t67T/WrTW6JB1roGrIpJIPQHeFrYdEDYHh0IyVl2px4o9kqcswazqtiONlHZA+mk8sWr1mTfGt67k67x7g4IMXz+5tuHrIZMpdgrHR/xU8vkcudSlEjQLDoRk7f+AGivPLpC7D/InA2Sx/pDzCoW6s2aEoL4hC3fat6E4Gu5MtTJlrc6z1fxURGe/gpSvtsCc+BydTGv8MUkTGxnBopkSdiNN76j+IrzW5nHprqBsXqUshExN8vPG5z9k67z/WtTW61rE7WasT8cbuEoQsKYD9O/lo/kkBFuwrhSjWbP7zgykaKN7KR/svDAe4X3u6HIEfF8DtvXy8+IfhA2lJuTqELVUjv7TxzrF+J6XuLbHC7w2Ep83Ha1dao1z376eCz/bU/Z5TIqrAZhYzdSU2g08o18H1G0DJkPcReWAhFKlJUpdDJnK2fzBKhZN12jfAwQcvnt9X53O/d7AMnx8vx+qRSkR6y3H8hhaP/VwMFyXwXDe7O+6bWyJi4k/F6N9MjjT1v0Evs0iHqb8UY9UIezRzk2HYuiL0C5HjvjAbAMDT20rw7gA7ONvVsanUQhV7tsYq+YN4P6UFxGqaiXddTMfFm/lo5ets4uqIGg+2HJqp2J1sNayriqFuXkVZSw51Yw0EZ2d8EnihbvtCwPwiwKG07tNSHrqqxYiWCgwLs0GwqwxjImxwb3MFjl7X3XXf6b8WY1xrG3RvYniv3JUcES52Ah5qbYMuAXJEh8hxIaPieN+fKYeNHHgg3KbONVuaQq/2WOz9NsKvvYr3kkOrDYYAIIrA53sTTFgdUePDcGiG0pLykZqQJ3UZFk2dV45jzR5HcddhUpdCRpY0oBVyZMV12neMW2t0S6zf08k9AuXYlajBpSwtACD2phYHUrQY0uLOHTMrT5XhSo4Oc/tWbl0MdZehqFzEqVQtsotFHLuuRVsfOXKKRbyxpwTLhijrVbOlyPfugve8FiLy6stYnNKsxvttP5OK9Hz2vBDVFbuVzVDszhSpS2gUSou1OKIaho6D/OD8xzdSl0NGICiVWNqibnOO+9t743/n/qp3DbN72SK/VESrZYWQywCtDninnx3Gt62+ZS8+S4vZu0qx/zEHKGSVW8Hc7AWsHmmPiT8Vo7hcxMR2NhjUQoHHfy7GjK62SMzV4f71RSjXAvP62mFMRONqRcz17YHFZSOxKqVJnfYv14pYdzQFMweENXBlRNaB4dDMFGSXIOFkhtRlNBo6rYjjug5oM/o1eG16R+pyqIFlRLdGijymTvvOK5bBsbSg3jX8eE6DtWfKsW60PSK9ZIi5qcXMP0rhrxIwqb1tpe21OhHjNhdjfl87hHlUP/TKqHAbjPpP1/G+JA1Op2uxdKgSLT5R4/vR9vB1EtD1m0L0CZLD29HyO4Ky/KLwQcn9WJ/kV+9jrTuSgmeiW8BGbvmvC5GpMRyamTN7rkGns84nEI1GBM5k+aPFuA8Q+MMcCFqN1BVRQ5DL8XnEjTrtOsatDbqf3NYgZcz6swSze9rh4dYVQa6NjxzJeSIWHiirMhwWlAHHb+hwKrUEM7ZXdH3qREAEoHgrHzsmOKBfiOFbc6lGxNPbS7BmlD0uZ+ug0QFRwRXbhHnIcOSaFsNbWmYIEiEgw78f3i0cjs2J3g123PSCUvxx7ibua+vfYMckshYMh2akrESD8wfr9seO7u7yDQcUP7QEoVtfhUzNezotnbpXW5yxPVPr/fzsvfBSA3Qn31JUDtzeMywXKgJfVZztgDNPORos++xYGXYnarFxrD1CXCuHvLf/KsXg5gp09JPjVKoWmv8cvFwLaC3w86QoyJDqfy8W5A/Fb1c8jXKObw8lMxwS1QHDoRm5cCgVpUVs1TKm6zeA0qHvI2Lf/0GRxtlnLNm3HfLrtN+8YkWDdCffMjxMgXf2l6Kpi4BI74rw9tHhMkxp/2+X8JydJbheIOLbUfaQCQJaext2J3s7ClAqUGk5AJzP0OKHcxqcerIiULbylEEmCFh+sgy+TgIuZurQxd9yZgYRBTmuBQzB3Jwh2J3gZtRzHU3K5rA2RHXAcGhGzu67LnUJViEzXYOT97yG9he+gu2l41KXQ3VQ3jkSe+3jar3faLc26NFA3cm3LB2ixBt7SvH09hKkF4rwVwl4spMN3oz69ynkVLWIlLy7D21zO1EUMe2XEnw0yA6OthXNk/Y2AlaNVOKZ7SUo1QDLhioR4Gz+XcqiTIGkgPvweuYgHLxsuoHqVx9KxsIH2pjsfESNgSDWdBh/MqqbV/Kw6f0TUpdhVezs5eiYtRX2R7dLXQrV0o/PRGKjc+3Coa+9F7ZciYdTSd1aHKluRLktLvuPwJz0ATiepzL5+R1s5Tj8an84KxvXE91ExmT+HzetxMW/U6UuweqUFmtx1Pk+5N/7uNSlUC2IrZrXOhgCwPwSGwZDExIVSpwPfAQj5MswMH6UJMEQAIrKtNhw/Jok5yayVAyHZkBTrsXlE+lSl2GVtBoRx8s7ImP0q1KXQjW0q3ftQ8YDbm3Q48phI1RDtxNtHHE6cAKGYBmGxg/H6XwnqUvCuiO8v5ioNhgOzUBibCYfRJGSCJzJCsDVR96HKOdtuOZMaBqA5Z7narWPr70XZp3fb6SK6BbR1gknAh9Df+1S3B8/BBfVDlKXpJeQUYgz1zhCAVFNMRyaAXYpm4f4VEfEP7QEOkc+2Wiujkb7QYva3SY9t9SW3clGJNq54HDgE+hdthSj4wfiSpF5Tu33Uwwf+COqKYZDiRXmluLqhRypy6B/XLsBnB32ATQ+QVKXQreRebrjU9/atRqOdGuDXgl/G6ki66az98BfgU+he8kSPBwfjWslleeINie/xN7gBANENcRwKLG4Izch8g3LrGSma3Cq+2soC+0odSn0HxcGtECRrLzG2/vYe+Ll8weMWJF10jl4YVfgs+hS+BEmxvfGzdLKs8CYo/SCUvx9JUvqMogsAsOhxC4evil1CVSFgtxyHAudhuKuQ6UuhQAITo5Y2vRSrfaZW2oHVQnvM2soWic//NZkJjoULMLj8d2RVWZ5Q8P8dIpdy0Q1wXAoobSkfOSkFkpdBlWjtOjWUDdTpC7F6l3rH4l0ubrG249wa43e7E5uEBpVE/wc8BLa5r6Ppy53RV655T609fvZmygp10pdBpHZYziUUBxbDc1exVA3nZDxwBypS7Fagq0tloUl1Xh7b6UnXr5w0HgFWYlyl2D8GPAK2mQvxPMJHVGosZwp+qpTUKrB7oscNozobhgOJXQlJkPqEqgmROBMdhMOdSOR7L5tkKDIrvH2c8uUcC5md3Jdlbm2wHf+ryEi4x28nNAOxVrLD4X/9TOfWia6K/6lk0h6cj4Kc0ulLoNqIT7VEcUPLUGLn+dAVsihUUxCJsPXrWv+Iep+t9boc5LTIdZFiXsrrLUdi/9LDoNWbLztBnviMpBXXA4Xe8u7Z5LIVBrvO4CZS4zNlLoEqoNbQ91ovZtKXYpVKO7eBsftbtRoW2+lB15hd3KtFXu2xmc+8xGe+gYWJLVq1MEQAMo0Ovx5Pk3qMojMWuN+FzBjiacZDi1VZroGJ3u8zqFuTGBd5+Iab/tmuQO7k2tB7dUBH3u/jfBrr+L95FCIoiB1SSazh/cdEt0Ru5UlUJBdgqxrNX/ykszPraFuOrr+BPtjv0tdTqOkaR+OPxzia7TtcLfWiGJ3co3k+3TFMu0D+Oqq9bZ+/xWfAY1WB4Wc7SNEVWE4lAC7lBuH0iItjrqOQIeBfnD+c6XU5TQ6v/ao2duTl9Idr1w4ZORqLF+Ob08sLhuJ1ckBUpciuYISDY4n5+CeZh5Sl0JklvixSQKJsXxKubHQlutwXNMZGQ/MlrqUxiU0GOtcLtRo0zfLneBSnGvceixYll8UXnH7CB2SnsHqGwyGt7Brmah6DIcmVlaswY34XKnLoIYkAmeyAyuGupE1rmE/pLKvj3uNthvm1hp9L3OKvNuJEJDmPwAzXRajU+KT+CHVV+qSzI6U4x0mJSVBEATExMQ02DEFQcBPP/3UYMdraEVFRRg9ejScnZ0hCAJyc3Or3M4Yr01DCQ4OxuLFi6UuwyQYDk0s+VwWdFrOpdwYxac64vLDS6BzdJa6FIsm+PviS6+zd93O084dcy5yFpT/EgUZrgcMxlOqT9DtyhT8lOYtdUlmKz5djavZRQ1+3MmTJ0MQBP2Xh4cHBg8ejNOnTzf4uczN999/D7lcjmeeeabSutWrV2P//v04dOgQUlNT4eLiUuUxAgMDkZqaitatWxu73EZv3rx5aN++fZ32ZTg0Md5v2LhdvSFwqJt6iukXCI2gu+t2b2qd4FKUY4KKzJ8oyJHSZDges1+KngkT8XsG76Wrib1xxmk9HDx4MFJTU5Gamopdu3ZBoVDgvvvuM8q5TKm8vPyO65cvX46XX34Z33//PUpKSgzWJSQkIDw8HK1bt4avry8EofLT8WVlZZDL5fD19YVCwUcipMRwaEKiTkTK+SypyyAjuzXUTXmLDlKXYnEEN1csa3L3ew2HurVGdDy7k0WZDa40GYVHlcvQ5/Ij2JvtJnVJFsVYXct2dnbw9fWFr68v2rdvj9mzZ+Pq1avIyKj6fnOtVovHH38cISEhsLe3R8uWLbFkyZJK261YsQKRkZGws7ODn58fZsyYUW0Nc+fOhZ+f3x1bLD///HM0b94ctra2aNmyJdasWWOwXhAEfP7557j//vvh6OiId955p9pjJSYm4tChQ5g9ezbCwsKwefNm/bq+ffti0aJF+OuvvyAIAvr27Qugopt2wYIFmDhxIpydnTFt2rQqu5XPnTuH++67D87OzlCpVOjduzcSEhIAAMeOHcPAgQPh6ekJFxcXREVF4eTJk5Wu45tvvsGoUaPg4OCA0NBQbN26tdprAYD09HQMHz4c9vb2CAkJwdq1ayttk5ubi6lTp8LLywvOzs7o168fYmNj9etjY2MRHR0NlUoFZ2dndOrUCcePH9evP3jwIPr27QsHBwe4ublh0KBByMmp+MCr0+mwcOFC/e9Eu3btsHHjRv2+e/fuhSAI2LVrFzp37gwHBwf06NEDcXFxAIBVq1Zh/vz5iI2N1bdir1q16o7X/F8MhyaUeU2N0kKN1GWQCRTkluNY2JMo7jJY6lIsSsKAMOQJJXfcxsPODa9aeXeyKLdDXOBYjLZZhn6XH8TBnKq76OjO/r6ShZJyrVHPoVar8d1336FFixbw8Ki6RVen06FJkybYsGEDzp8/jzfffBOvvvoqfvzxR/02n3/+OZ555hlMmzYNZ86cwdatW9GiRYtKxxJFEc8++yy+/fZb7N+/H23btq3ynFu2bMHzzz+P//3vfzh79iyefPJJPPbYY9izZ4/BdvPmzcOoUaNw5swZTJkypdrrXLlyJYYNGwYXFxc8+uijWL58uX7d5s2b8cQTT6B79+5ITU01CI4ffvgh2rVrh1OnTuGNN96odNzr16+jT58+sLOzw+7du3HixAlMmTIFGk3F39KCggJMmjQJBw4cwOHDhxEaGoqhQ4eioKDA4Djz58/H2LFjcfr0aQwdOhTjx49Hdnb103JOnjwZV69exZ49e7Bx40Z89tlnSE83/DDx4IMPIj09Hb/99htOnDiBjh07on///vrjjh8/Hk2aNMGxY8dw4sQJzJ49GzY2FTPzxMTEoH///oiIiMDff/+NAwcOYPjw4dBqK34fFy5ciG+//RZffPEFzp07hxdeeAGPPvoo9u3bZ1DDa6+9hkWLFuH48eNQKBT6n9FDDz2E//3vf4iMjNS3Yj/00EPVXu/tBFEUeQOcicTsTMHBjZelLoNMSG4jQ0fxCFQ7V0lditkT7O3x3LNKpMoL7rjdYkUQ+sfvN1FV5kVU2OOC30i8crMfzhQ4Sl1Oo7B6SldEhXk12PEmT56M7777DkqlEgBQWFgIPz8//Prrr+jYsWLg/KSkJISEhODUqVPV3hM2Y8YM3Lx5U99aFBAQgMceewxvv/12ldsLgoANGzZgy5YtOHXqFP78808EBFT/dHrPnj0RGRmJr776Sr9s7NixKCwsxLZt2/THnDlzJj7++OM7XrNOp0NwcDCWLl2KESNGIDMzEwEBAbh48SJCQkIAADNnzkRMTAz27t2r3y84OBgdOnTAli1b9Mtuf21effVVrF+/HnFxcfpgdbdaXF1dsW7dOn1XviAIeP3117FgwQIAFT8TJycn/Pbbbxg8uPIH+EuXLqFly5Y4evQounTpAgC4ePEiwsPD8fHHH2PmzJk4cOAAhg0bhvT0dNjZ2en3bdGiBV5++WVMmzYNzs7OWLp0KSZNmlTpHOPGjUNKSgoOHKjcA1JaWgp3d3fs3LkT3bt31y+fOnUqioqKsG7dOuzduxfR0dHYuXMn+vfvDwDYvn07hg0bhuLiYiiVSsybNw8//fRTnR7uYcuhCV2/lCt1CWRi2nIdjmm7IHPUK1KXYvZu9mt912A4xK21VQZD0cYRsYETMEhchqHxwxkMG9DRxIa/1Sc6OhoxMTGIiYnB0aNHMWjQIAwZMgTJycnV7vPpp5+iU6dO8PLygpOTE7766iukpKQAqOjivHHjhj4EVOeFF17AkSNH8Ndff90xGALAhQsX0LNnT4NlPXv2xIULhrd1dO7c+Y7HAYA///wThYWFGDp0KADA09MTAwcOxIoVK+66792OHxMTg969e1cbDNPS0vDEE08gNDQULi4ucHZ2hlqt1r92t/y3BdXR0RHOzs6VWgJvuXDhAhQKBTp16qRf1qpVK7i6uuq/j42NhVqthoeHB5ycnPRfiYmJ+i7vF198EVOnTsWAAQPw7rvv6pffuq7qfp6XL19GUVERBg4caHDsb7/91uAYt1+Xn58fAFR7XbXBOz5NRNSJHMLGWonA6ZymCHvkPQT88CoEnXG7sSySQoHPw6/dcZOK7uTDJirIPIh2Khz3fhCzrvVCUrxS6nIapaOJ1Xct1pWjo6NBl+8333wDFxcXfP3111W2/K1fvx4vvfQSFi1ahO7du0OlUuGDDz7AkSNHAAD29vY1Ou/AgQPx/fff448//sD48eMb7FruZvny5cjOzjaoU6fT4fTp05g/fz5ksurboe52/Ltd+6RJk5CVlYUlS5YgKCgIdnZ26N69O8rKygy2uz1cCoIAne7uD75VR61Ww8/Pz6Al9JZbIXLevHkYN24ctm3bht9++w1z587F+vXrMWrUqDtel1pdMYPatm3bKoX8/7ZSAobXdeshn/pc1y1sOTSRzGtqlBXzfkNrdinVqWKoG3snqUsxO/lRbXHe5s6Dw7+hdYZrUcP/ITdHOqUrDgVOQ6/ST/Bg/AAkFTMYGkvstTyj33coCAJkMhmKi6ueK/zgwYPo0aMHnn76aXTo0AEtWrQwaCFSqVQIDg7Grl277nie+++/H+vWrcPUqVOxfv36O24bHh6OgwcPVqojIiKihldVISsrCz///DPWr1+vby2NiYnBqVOnkJOTgx07dtTqeLdr27Yt9u/fX+2T0gcPHsRzzz2HoUOH6h/Wycys36ggrVq1gkajwYkTJ/TL4uLiDMZm7NixI27evAmFQoEWLVoYfHl6euq3CwsLwwsvvIAdO3bggQcewMqVK/XXVd3PMyIiAnZ2dkhJSal07MDAwBpfh62trf4extpiy6GJsNWQgIqhbkqGL0LEngWQZ9y5pcxqCAJWtL3zkDSD3SLR/+RvJipIOjp7T+z3fBCzUu5Bevzd76+i+ivT6BB7NRfdGnAqvdLSUty8eRMAkJOTg2XLlkGtVmP48OFVbh8aGopvv/0Wf/zxB0JCQrBmzRocO3ZMf78eUNEKNX36dHh7e2PIkCEoKCjAwYMH8eyzzxoca9SoUVizZg0mTJgAhUKBMWPGVHnOWbNmYezYsejQoQMGDBiAX375BZs3b8bOnTtrda1r1qyBh4cHxo4dW2l4mqFDh2L58uVV3tdXUzNmzMDSpUvx8MMPY86cOXBxccHhw4fRtWtXtGzZEqGhoVizZg06d+6M/Px8zJo1q8YtrdVp2bIlBg8ejCeffBKff/45FAoFZs6caXDcAQMGoHv37hg5ciTef/99hIWF4caNG9i2bRtGjRqFyMhIzJo1C2PGjEFISAiuXbuGY8eOYfTo0QCAOXPmoE2bNnj66acxffp02NraYs+ePXjwwQfh6emJl156CS+88AJ0Oh169eqFvLw8HDx4EM7OzlXew1iV4OBgJCYmIiYmBk2aNIFKparU8lgdthyaSGpCntQlkJnISNfgVK83Ud68vdSlmIXSbq1xSHm12vXudm54Ne6oCSsyPa2jN/5s8hw6qT/CpPjeSC9lMDSlY0kN2yL9+++/w8/PD35+fujWrRuOHTuGDRs26Idwud2TTz6JBx54AA899BC6deuGrKwsPP300wbbTJo0CYsXL8Znn32GyMhI3HfffYiPj6/yeGPGjMHq1asxYcIEgyeD/2vkyJFYsmQJPvzwQ0RGRuLLL7/EypUrq62xOitWrMCoUaOqHLdw9OjR2Lp1a71a8jw8PLB7926o1WpERUWhU6dO+Prrr/XdqcuXL0dOTg46duyICRMm4LnnnoO3d/0Hf1+5ciX8/f0RFRWFBx54ANOmTTM4riAI2L59O/r06YPHHnsMYWFhePjhh5GcnAwfHx/I5XJkZWVh4sSJCAsLw9ixYzFkyBDMnz8fQEWL4o4dOxAbG4uuXbuie/fu+Pnnn/XjOy5YsABvvPEGFi5ciPDwcAwePBjbtm0z+MBwN6NHj8bgwYMRHR0NLy8vfP/99zXel08rm8iqVw6gMK/s7huS1VA6yNEhfQvsj/8hdSmS+u7ZcGx1qvqPHAB8ZBOMgZf+MmFFpqN18sfvrg9hdlIHFGjYkSOVfq28sWJyF6nLIDIbfDcygfzMYgZDqqSkSIujbiPRcYAvVDtXS12OJHStw+4YDAe5RWJgI+xO1jgH4lfnh/BaYnsUZrIDR2oxV3OlLoHIrDAcmgC7lKk62nIdjgtd0WaUDzy3vC91OSb3e6/q7w1yt3PFa42sO7ncpRk2O47Fm0mtUZrOUGgusgvLkJhZiBBPDhFEBPCeQ5NIT8qXugQyY6IInM4JwrVH3oMok0tdjskIIU2x2vVctetfFV3hVtg4ppssdQvDt36vIyJjAV650halOr71mpuTyZynm+gWvkOZQNZ1tdQlkAWwtqFuDvX1glj5HnYAwEC3SAyKs/z7DEvcw/G175uIuPkm3kyMQLmumgsmybFrmehf7FY2gazrhVKXQBbi6g0BJfd/iIhdCyDPvC51OUYj+HjhM5+zVa5zs3XB63HHTFxRwyrybIsVsjFYdLU5xOoSMJmVizfZw0N0C8OhkRXmlqKksOrBO4mqkpGmxanec9Hu9GewSYiRuhyjONs/BKXCySrXvQp3uBeeMXFFDUPt3QlfiKOx7Gqw1KVQLV1KYw8P0S0Mh0aWyS5lqoP8nHIca/UUOrpugvJE/WYYMDeCszM+CbxQ5bqBbpEYbIFPJ+f5dMNS7QP4JqXmsxeQeckrLsfNvBL4unA2GiKGQyPj/YZUVyWFGhxxH4WO/X2h2vWt1OU0mOQBrZAjq9xq6GbrgtcuHZegorrL9u2FxWUj8W2yv9SlUAOISytgOCQCH0gxOoZDqg9tuQ7Hdd2QNeplqUtpEIKdHZY2v1LlujnwgIf6zvMrm4sM/2jMcv0IHZOexrc3GAwbi0s3C6QugcgssOXQyLKu8WEUqh9RBGJzghD28LsI+PE1CLq6TaRuDjKi2yBZEVNp+QC3SAwx8+5kEQLSAgbgnYL78MsVL5Oe+9rnU6DNT6+03KnDMHjc+1Sl5QUxv6Pw3G6UZyQDAGx9W8C1z0TY+bfUb5N3ZDPyj24CALh0Gw3nrg/o15XeiEP2js/gO/EjCFY0vFJcGsMhEcBwaFQ6rQ45aQyH1DAu3VSh5OHFaLZlDmTFFtgiLZfji8jUSotdbV3w2qUTEhRUM6Igw/WAwXgrdyh2JLhLUoPfpI8BnU7/fVlmMtJ/eB2OrXpWuX3J1TNwDI+C3YBwCAob5B3ehLQf34T/459CofJEWXoi8g6shdeYNwFRRMamt6AM6Qhbr2CIOi2y/vgUHoNnWFUwBIBLDIdEABgOjSrnZhF0Gk5dTQ0n5YYMxRY61E1hz7Y4bVv5KeQ5gic81eb3dLIoyJESMAxv5gzCvstuktYid3Ax+L748AYoXP1gF9imyu29hs8y+N5jyLMounQQJcmxcGrdH+VZ12DjFQz7oHYAABuvYJRnXYOtVzDyj2yCMjASdn5hxrkYMxafpoYoihAEDj9E1o33HBpR1g0LbN0hs3drqJuy5m2lLqVWvu1YuVWmv1sEhl7cI0E11RNlNkgIHI2H7T5F1OWHsS9L2mB4O1FbjsLze+HUdmCNQ4xYXgrotJApVQAAW69gaHKuQ5OfDk1eOjTZ12HrGYTynFSoz+yEa+8JxrwEs1VcrkVKdpHUZRBJji2HRpR7k28yZBz5OeU43uoZdHTZCOXJP6Uu567KO0Vgj/0lg2Uuts54/VLVYx1KQZTb4ZL/CMxJH4CT8eY7S03RpcPQlajh2Lp/jffJ2bcKcid32Ae3BwDYeAbCtc9EpP3wBgDANWoSbDwDkbb+Nbj1fQzFiSeRd3AdIFPAfcA0KANbG+NSzFLczQIEeXCOZbJuDIdGVJBdInUJ1IiVFGpw1OMBdOjvC9WuNVKXc0c/3VO5hWu24AVPddWzpJiSqLDHOb8H8MrNvjgXb/6hQH16B+ybdYJC5VGj7fMOb0DRhb/g88hCCApb/XJVh6FQdRj673HP7IJgaw+7gFa4/vV0+E38CNqCLGRufR8BTy6HoLBp8GsxR2w5JGK3slEVZJdKXQI1cppyHY7r7kHmyFl331giYstm2OAcZ7As2i0C90ncnSzaOuJU00m4V1yG++KH4VyB+QdDTV56xX2D7QbVaPu8I5uRd3gjvMcugK13SLXbaYvykHdwHdwHTEfpjUuwcfeHjXsAlEFtIWo1KM+xrPtb6yM1jx/qiRgOjUidwzcZMj5RBE7nBuP6I+9CNMOnS3f3MXyYwtlWhTfjT0lUDSDaOeNo4OOILl+KUZcGIb7QXrJaakt95k/IHVxg37zLXbfNO7IReYfWw+fB+bDzC73jtjm7v4Gqy0gonD0BUQtR+5/hknRagyelG7vUvGKpSyCSHMOhEalz2HJIphOXqkLCw4uhU5pPC5gQ6I9vPA27jmfLfOBZkGbyWnRKNxwMfBK9SpdgbHx/JBVb1kwYoqiD+sxOOLbuX2mImcxfFyFn3yr993mHNyJ3/3fwGPo8FC4+0KpzoFXnQFdWOfgUJ55CefZ1qDoOAwDY+oZBk30NxQnHURDzOyCTQ+EeYNRrMyc3cvmhnoj3HBpJUX4ZtOXW82mbzEPKDRlKRixCuJkMdXOsnz+0+Hfw5r6uERh+6neT1qCz98Q+z4fwSkpXpMdb7n1zJUkx0OZnwKntwErrNPkZgPDvZ/2CU9sBrQaZPy002M6l5yNw7TVe/72uvBTZO7+A1/2vQPhnf4WzJ9wGPInM3xZDkNvAY9gLkNnYGemqzM+NXLYcEgmiKHIgPiNIT87HhoWWNU8sNR7ObjZoF7sMNldOS1aDzNMdEx8vRpGsvKImWxV+Ss2CV/5Nk5xf6+iDXW4P4ZXkzsgp5+dgqhmZAMS9PQQ2cnaskfXib7+RqPkwCkkoP6ccx8KfQUnHAZLVcLF/C30wBIBXZD4mCYYaVQB+bfIi2ud9gGmX72EwpFrRicBNPpRCVo7vmkbCYWxIahVD3YxGh36+UO3+zqTnFpwc8UnQv+MaRrmG4/5Tfxj1nBrnptiqeghvJLVDYQY/91LdpeaVINDdQeoyiCTDcGgkBXxSmcyAplyH40J3tB3pC4+fPjTZea/3j0S6vGKAa5WNE940Yvd2mWszbHJ4CPOSIlGazlBI9ccnlsna8Z3USNitTOZCFIHY3BBcf3ghRFPMGWtjg09Dk/XfviL3g3deaoOfptStJVb5vYHI9AWYc6UNSnV8O6OGwSeWydqx5dBIivIZDsm8xN10RvEjn6DZ5tmQlRQa7Ty5fdsi3iYWANDHNRwjGrg7udgjEmtsHsTC5FCIognCLlmdtHyGQ7JuDIdGUlaskboEokr0Q93snA95VsO35kEmw9dtMgA0fHdykWc7LJePwaLk5g12TKKqFJTw/ZusG8OhkZQVa+++EZEE0tO0KI2aj7anPoFNYsPObVzcvQ2O2Z0DAMxS+MEn73y9j1ng3RlfiA/g06vB9T4WUU0UlJTffSOiRozh0EjK+MmTzFhedjmORTyLjq4/QnlqV4Md9/tOFd1xvVxbYdSpHfU6Vp7PPfhEMwrLUwIbojSiGlOX8v2brBvDoZGUl7DlkMxbSaEGR73GoEM/vwYZ6kbbrhV+d7wMlY0T5l2pe4tktl9vLCoZgbXJ/vWuiagu2K1M1o7h0AjKS7XQ6TjxDJk/Tdk/Q92M8IHHz4vqdaxfe1RMTTdL4V+n7uQM/354r2g4Nib61KsOovpiyyFZO479YATsUiZLIopAbF6z+g110yIYa10voKdrK4w6v7Pm54aAmwH3YobqE3S5MhUbbzIYkvR4zyFZO4ZDI+CTymSJ4m4648ojS6BTOtZ637+i3OFk44h5iedqtL0oyHCtyTBMc1qKexIm49cMz1qfk8hY8vkBn6wcw6ERlPF+Q7JQyTfkOD9iEbQefjXeR/DzwVde5/CSIgC+udfvuK0oUyCpyQhMsl+GXpfH489M9/qWTNTgyjQ6lGl0UpdBJBmGQyNgyyFZsvQ0LWKi5qM8pHWNto/t3xSd3Vpg9B26k0W5LS4HjsbDtsvQ9/JD+CvbtYGqJTIOdi2TNeMDKUbAew7J0uVll+N4xLPocJehbgQ3VywPSsa3iZlVrhfldojzH4nZaf0RE+9krHKJGpy6VAMPJzupyyCSBMOhEWjK2B1Blq/4n6FuOkb7wmnP2iq3udI/DNOUavjmxhgsF20ccNZ3FF5OjcaFeAcTVEvUsMq1fB8n68VuZSKqlqZMh2PogewRL1ZaJ9gr8Xe7cow59293smjriJOBk3GvbimGxw/DBTWDIVkmZkOyZgyHRlDX0UCIzJEoAjF5zXHj4f8zGOomu19bPH2jYu5k0c4ZRwKnIqp8KR6IvxfxhfZSlUvUIHQix6ol68VwaAwMh9QIXbzpgiuPLIFoZw8oFBDCi+BTrMaBwCfRo/QTPBTfDynFSqnLJGoQWk5kQFaM9xwagcB0SI1U8g05SkZ+jFbqTSgWVOhWNB4Z8TZSl0XU4NhwSNaM4dAYmA2pEUtL0yINI4FjwGSpiyEyEh8t38jJerFb2QgE3nRIRGTRBBnfx8l6MRwSERHdRsZwSFaM4dAI2HBIRGTh+D5OVozh0Bj4pkJEZNHYckjWjOHQCHjPIRGRZeM9h2TNGA6NgJ84iYgsm62Sg3mQ9WI4NAJbe7nUJRARUT3wfZysGcOhEdg5cFBgIiJLJVfIoLBhOCTrxXBoBHYO7I4gIrJUbDUka8dwaAS29gyHRESWir0/ZO0YDo3AVqngQylERBbKVsmWQ7JuDIdGYsuuZSIii8Rbg8jaMRwaCd9ciIgsE28NImvHcGgkdnxzISKySHz/JmvHcGgkdo68oZmIyBKx5ZCsHcOhkbBbmYjIMvFpZbJ2DIdGouSbCxGRRXJ0tZO6BCJJMRwaiZM731yIiCyRykMpdQlEkmI4NBJnD3upSyAiojpQuTMcknVjODQSfvIkIrI8gsCeHyKGQyNhOCQisjwOLnaQy/mnkawb/w8wEgdnW8ht+PISEVkSdikTMRwajSAIcGbrIRGRRWGvDxHDoVHxTYaIyLKw5ZCI4dCoVHximYjIovBDPRHDoVGxW5mIyLKw5ZCI4dCo+AmUiMiyMBwSMRwalbMnu5WJiCyFTCHAxYfv20QMh0bk7u8IQZC6CiIiqgk3H0eOcUgEhkOjsrGVw8XbQeoyiIioBjybOEldApFZYDg0Mq9AvtkQEVkCD4ZDIgAMh0bnGaiSugQiIqoBthwSVWA4NDK+2RARWQa+XxNVYDg0MrYcEhGZPwcXW9irbKUug8gsMBwamYOzLRyc+YZDRGTO2GpI9C+GQxPw5EMpRERmjeGQ6F8Mhybg2YRdy0RE5oxPKhP9i+HQBNhySERk3jwD+CGe6BaGQxPw4kMpRERmy85BATdfTlhAdAvDoQm4+jjAXmUjdRlERFQFvxauEGSc65ToFoZDE/Fv4Sp1CUREVIWAMFepSyAyKwyHJuLHcEhEZJb8Q12lLoHIrDAcmgjffIiIzI+tUs7JCohuw3BoIp5NnGCrlEtdBhER/YdfC1fIeL8hkQGGQxMRZAJbD4mIzAzfl4kqYzg0oSat3KUugYiI/sOfD6MQVcJwaEJNWrlJXQIREf3Dxk4O76a835DodgyHJuTu78jxDomIzIRvcxfI5PwzSHQ7/l9hQoIgoElLth4SEZkDjm9IVDWGQxMLjOB9h0RE5iC4rafUJRCZJYZDEwtu48lpmoiIJObiZQ8PfyepyyAySwyHJmavsoVfcxepyyAismoh7dhqSFQdhkMJNGvvJXUJRERWLaQd34eJqsNwKIGQ9vzESkQkFXuVDXtwiO6A4VACzh728AzkvS5ERFLgvd9Ed8ZwKBF2LRMRSYP3GxLdGcOhRBgOiYhMT2En55BiRHfBcCgRjwAnuHjZS10GEZFVaRruDoWNXOoyiMwaw6GE2HpIRGRa7FImujuGQwk168BwSERkKnKFjLOiENUAw6GEfEKcofJQSl0GEZFVCGnvCaWjjdRlEJk9hkMJCYKAVt39pC6DiMgq8P2WqGYYDiUW3sMPAofbIiIyKkdXOzQN51PKRDXBcCgxlbsSTVq5SV0GEVGj1vIeXw58TVRDDIdmILyHv9QlEBE1auHsUiaqMYZDM9CsvRfsHBVSl0FE1Cj5NXeBq4+D1GUQWQyGQzMgt5EhrIuv1GUQETVKrXqw1ZCoNhgOzUR4T755ERE1NIWtDC06eUtdBpFFYTg0E16BKngGOkldBhFRo9K8gzdslbxth6g2GA7NCB9MISJqWOyVIao9hkMzEtbVBwpb/kiIiBqCZ6ATAsI4VBhRbTGJmBGlow2HWyAiaiDtBzSVugQii8RwaGbaDWjKgVqJiOrJ0dUOLTrzQRSiumA4NDMuXvZo1t5T6jKIiCxa2+gmkMv5J46oLvh/jhnqMDBI6hKIiCyWjZ0ckb35gB9RXTEcmiGfEGf4tXCRugwiIosU3sMPdg42UpdBZLEYDs1Uh3vZekhEVFuCTEC7/oFSl0Fk0RgOzVRwGw+4+XIuUCKi2mjW3hPOnvZSl0Fk0RgOzZQgCByGgYiolvi+SVR/DIdmrGU3X9g720pdBhGRRfBt5gLfZrxfm6i+GA7NmNxGhnb9mkhdBhGRRegyLFjqEogaBYZDM9embxPYq/jUHRHRnfg1d0HTSA+pyyBqFBgOzZytUoFOQ4KlLoOIyKx1vb+Z1CUQNRoMhxagdZ8AqDyUUpdBRGSWAlq6oklLN6nLIGo0GA4tgFwhQ9fhIVKXQURklroNZ6shUUNiOLQQLbv6wt3fUeoyiIjMSlAbD/i1cJW6DKJGheHQQggyAd14Tw0RkZ4gAN1HNpe6DKJGh+HQgjRr7wXfZs5Sl0FEZBbCuvnCI8BJ6jKIGh2GQwvTfRQ/JRMRyRUy9qYQGQnDoYXxD3VD00h3qcsgIpJU674BULlzFAciY2A4tEDdRzWHIBOkLoOISBIOzrboMowjOBAZC8OhBfJsokLrqACpyyAikkSP0S1gZ6+QugyiRovh0ELdc38zODjbSl0GEZFJ+Ye6omU3X6nLIGrUGA4tlK29Aj3HtJC6DCIik5HJBPR5OEzqMogaPYZDCxbW1RcBnDKKiKxEm35NOHQNkQkwHFq4qEfCIFPw4RQiatwcXWzR9T4+hEJkCgyHFs7N1xHtBzSVugwiIqPqOSYUtko+hEJkCvw/rRHoMjQY8cfSUJBVInUpVi23MAM/H/4a564eRbmmFJ4uAXi07ywEebUEAMRc2Y8DF35BSsYlFJUWYPboL9HEs+b3jR6/vBurdr2DtsE9MG3QAv3ynbE/YmfMDwCAge0fQv92Y/XrktIu4IcDS/DSqE8hl8kb6EqJTCugpRtCu/hIXQaR1WA4bAQUtnL0HhuK7Z+fkboUq1VUWoCPfnoeof7t8fTQd+GkdEFG3nU42Kr025RpStDctzU6NovCur8+qtXxswpu4qfDX6K5bxuD5dezErDt+CpMH/wOIIr44vfX0KpJZwR4NINWp8X6/YvxSJ8XGAzJYsnkAqIe4UMoRKbEcNhIhLTzQnBbTySdzpS6FKv0Z8x6uDl5YUL0y/plns5+Btt0DRsIoCLo1YZOp8XqXf+HoZ0nISH1DIrL1Pp1ablXEeDeDC0DOgAA/D2aVSzzaIadsT+ghV8bBHm3qutlEUmu46AguPk6Sl0GkVVhOGxEoh5pidTLuSgt0khditU5k3QI4YFdsPzP+Yi/cRqujp7oHXk/eoYPq/exfzuxBk72rujRaigSUg1bh/3dQ5Cedw3ZBWkAgPTca/B3D0ZG3g0cjvsdrzzwRb3PTyQVr6YqdB4WLHUZRFaH4bARcXKzQ9S4ltjxzTmpS7E6mQWp2H9+K/q1GYN7O4xDcnocNh5cBrlMgXtaDqrzcRNSz+DvuN8we/RXVa73dQvC8K6PY9m2ihbL+7tNha9bEJb+Ogsju03DhWvHsP34t5DLFBjT4xm08G9b51qITEluI8OAyRGQy/ncJJGpMRw2MqGdfZAYm4n4Y2lSl2JVRFFEU68w3N9tKgAg0DMUqTlJOHD+lzqHw5KyIny751080udFONm7VLtd74jh6B0xXP/94bg/YGdjjxCfCCz4YTJmPfAZctUZWLHrbcwf9x1s5JxZh8zfPSOawd2f3clEUmA4bISiHglD6uVcqHNKpS7Fajg7uMPXLchgma9rU8Rc+avOx8zMv4Gsgpv48vfX9ctEUQQAPPfVQLzx0Gp4ufgb7KMuzsNvJ9Zg5v0fIyn9Irxdmui/dDoN0nOvIcCjWZ1rIjKFgDBXtOsfKHUZRFaL4bARsnOwQf9J4fh5SQwgSl2NdWjm2xrpuVcNlqXnXYO7qu7Db/i4NsWrD35jsOzXYytQUlaMMT2fgZuTV6V9Nv39GaLbjoabkxdSMuKg1Wn167Q6LURRV+d6iEzBVilH/8kREAQO7k8kFd7M0Ug1aeWOdtH85G0q/dqMRmL6Bfxxci0y8q7jWPwuHLywDX0iR+i3KSzJx7XMy7iZkwyg4knja5mXkV+Urd/m293v4ucjFYHQRmELf/cQgy97Wycobe3h7x4ChdzGoIYL144jPe+a/pxNvVoiLTcF51KO4MD5XyGTyeDtyt8JMm+9xoZB5a6Uugwiq8aWw0bsnlHNcPViNrJvFEpdSqMX5N0KT9w7H1uPLsdvJ9fAQ+WH0T2eRpfQAfptziQfwnd7P9B/v3LX2wCAIZ0mYljnSQCAbHV6nVpMyjSl2HBgKaYMeAMyoeIzn5uTFx7sOQPf7f0ACrkNJvR9BbYKu/pcJpFRhbTzRHgPv7tvSERGJYi3bmKiRinjagE2vnccOg1/zERkvuxVNnjkzW6wV/GBKSKpsVu5kfMKVHGyeiIybwLQb0I4gyGRmWA4tAId7w1CYIS71GUQEVWp0+AgBLf1lLoMIvoHw6EVEGQC7n08EioP3uRNROYlMMId3YZzeCUic8JwaCWUjjYY8mQbKGz4Iyci86ByV+LeKZEQZBy2hsicMClYEa+mKkSNbyl1GUREkCtkGPxkayidbO6+MRGZFMOhlWl1jx/aRAVIXQYRWbk+j4TBO8hZ6jKIqAoMh1ao59hQ+DWvfq5eIiJjiujph4ie/nffkIgkwXBoheRyGQZNaw0HFw4bQUSm5R2kQp+HeXsLkTljOLRSji52GPxEa8jkvBGciExD6WiDwU+2gZwPxhGZNf4fasX8Wrii14OhUpdBRFZAphAweFprzptMZAEYDq1cm75N0Ca6idRlEFFjJgD9J4UjoKWb1JUQUQ0wHBJ6PxiKkHacnYCIjKP7yOYI6+IrdRlEVEMMh6SfQcU7mMNKEFHDatO3CToOCpK6DCKqBYZDAgAobOUY9nRbOHvyfiAiahgh7TzReyzvayayNAyHpOfgbIvhz7aHvYozFhBR/fg2c8a9j3NqPCJLxHBIBlx9HHDfjHawUcqlLoWILJSrjwOGPd0OClu+jxBZIoZDqsQ7yBlDpreBTMFP/ERUO/bOthj+bDvOmUxkwRgOqUqBrdwxYHIEBOZDIqohW6Uc9z3TFs6e9lKXQkT1wHBI1Qrt7IO+41sBDIhEdBe2SjmGP9ce3kEc9YDI0jEc0h1F9PJH9KMMiERUvVvB0LeZi9SlEFEDYDiku4ro6Y9+E1qxi5mIKrFhMCRqdBgOqUbCe/gjekI4AyIR6dko5bifwZCo0WE4pBoL7+GHfpMYEImIwZCoMWM4pFppdY8f+vMpZiKrZqOUY/izDIZEjZVC6gLI8rTs5gsA2LX6AkSdKHE1RGRKNko5hs9oB7/mDIZEjZUgiiL/ulOdXDp2EztXMiASWQs7BwWGPcNgSNTYMRxSvSTGZmDH8nPQlOmkLoWIjMjJ3Q7Dn20Pdz9HqUshIiNjOKR6S0vMx7bPYlFcUC51KURkBB5NnDB8Rjs4utpJXQoRmQDDITWIvIwi/LI0FnnpxVKXQkQNqEkrNwx5sg1s7XmLOpG1YDikBlOsLsP2z07j5pV8qUshogYQ1tUH/SaFQy7nwBZE1oThkBqUpkyLHcvPITE2U+pSiKgeOg5qintGNofAcauIrA7DITU4USdi/4Z4nNlzTepSiKiWBAHoNTYMbaObSF0KEUmE4ZCM5tSfKTi0+TLA3zAii6CwkWHAlAg07+AtdSlEJCGGQzKqyyfSsfvbCygv1UpdChHdgbOnEoOfbAOvQJXUpRCRxBgOyeiybxTi96/OIOdmkdSlEFEVmka6Y+CUSCgdbaQuhYjMAMMhmURZiQa7V19AwqkMqUsholsEoPOQYHS9LwSCjA+eEFEFhkMyqVN/puDwlgToOOUekaRs7RUYMDkcIe28pC6FiMwMwyGZ3I34HPz+9TkU55dJXQqRVXL3d8SQJ9vA1cdB6lKIyAwxHJIkCvNK8cdXZ5GakCd1KURWpUVnb/SbEA4bO7nUpRCRmWI4JMlotToc2nQZp3dzPEQiY5PJBXQf1RztBzSVuhQiMnMMhyS5hJPp2LsuDiXqcqlLIWqUXH0cMHBKBLyDnKUuhYgsAMMhmYWi/DLs+e4ikk5z2j2ihhTZJwA9x7SAjS27kYmoZhgOyaycP3gDBzbEo7yEg2YT1Ye9ygbRE8IR0tZT6lKIyMIwHJLZyc8sxq7VF3AjPlfqUogsUrP2Xug7viXsVbZSl0JEFojhkMySKIqI3XUVh3++Am25TupyiCyCnYMCvR8KQ8tuvlKXQkQWjOGQzFp2aiF2rTqP9OQCqUshMmtNIz3Qb0IrOLraSV0KEVk4hkMyezqtDid+T8aJ35PZikh0GwdnW/QY3YKthUTUYBgOyWLkZRRj/4+XkHwmS+pSiCQnyAS0iQpA1/ubwc5eIXU5RNSIMBySxUk8nYkDP15CfmaJ1KUQScInxBlR41rCK1AldSlE1AgxHJJF0pRrceL3ZJzakcKuZrIaSicbdB/VHOE9/CAIgtTlEFEjxXBIFo1dzWQVBCCilz+6j2wOpaON1NUQUSPHcEiNQmJsBg5siGdXMzU6Xk1V6PNIGHxDXKQuhYisBMMhNRqaci1id13FqR0pKC3SSF0OUb24eNmj2/3N0KKzN7uQicikGA6p0Skt1iDmzxTE7rqK8lJOw0eWxdHVDl2GBSO8hx9kcpnU5RCRFWI4pEaruKAMJ35Pxtm/rvOhFTJ7SkcbdBwchDZ9A6CwkUtdDhFZMYZDavTUOSU4tj0JFw+mQqfjrzuZFxs7OdoNCESHAU1hy/EKicgMMByS1cjLKMLRXxIRfywN/K0nqckVMrTuE4BOQ4Jgr7KVuhwiIj2GQ7I6WdfVOPF7MhJOpLMlkUzOzkGBiF7+aBsdCCc3zoNMROaH4ZCsljqnBKf3XMP5Azf4dDMZncpdiXb9AxHe0w+2SnYfE5H5Yjgkq1dWosGFQ6k4vfsqx0mkBucdpEL7gU3RvKM3ZDIOSUNE5o/hkOgfok7EldgMxPx5FTev5EldDlkyAQhu44n2AwIREOYmdTVERLXCcEhUhZuJeYjdeRUJpzIg8r5EqiEbpRxhXXzQrn8g3HwdpS6HiKhOGA6J7qAwtxQXD6fiwsFU5GUUS10OmSMB8G/hivCefmje0Rs2thyjkIgsG8MhUQ2Ioogbl3Jx/tANXDmZAQ0H1bZ6Tm52aNXdD626+8LFy0HqcoiIGgzDIVEtlRZrkHAyHXGHb+LG5VyA/wdZDblChpD2ngjv7ofAcHcIfMCEiBohhkOiesjPKsalI2mIO3ITuWlFUpdDRiAIgG8zF7To7IOwrj5QOtpIXRIRkVExHBI1kOzUQiTGZiAxNhNpSflsUbRgcoUMTVq5IaSdJ0LaecHBmTOYEJH1YDgkMoLCvFIknc5E4ulMXLuYAy3vUTR7tko5gtp4IqSdJ4Jae3CgaiKyWgyHREZWXqpFyvksJMVmIulMFkoKy6Uuif7h4GKLkHZeaNbOEwEt3SBXyKQuiYhIcgyHRCak04lIu5KH6/G5SI3PReqVPJSXaKUuy2o4ONvCP8wVAWFu8A91hbsfxyIkIrodwyGRhHQ6EZlXC3D9Ui5uxOciNSEXpYWc57mhOLjYIiDUFf5hbggIc+XA1ERENcBwSGRGRFFE1vVC3IivCItpiXlQ55RKXZZFkMkEuPo6wCtQBb8WLggIc4OrD8cfJCKqLYZDIjNXUliOrOvqiq9ramReUyM7tRCaMut9yMXWXgHPJk7wbOIEjyZO8ApUwd3PEXIb3jNIRFRfDIdEFkjUicjLKEbmtYrQmHlNjdy0IqizSxrV7C22Sjmcvezh4mkP9wAnfSB09rSXujQiokaL4ZCokSkuKENBdgkKskugzi5FQVYJCnJKoP5nWXGB+TwtrXSygZObHZzclFC52cHJXQmVuxLOnvZw8bKH0okDThMRmZpJwqEgCNiyZQtGjhxZ5fq9e/ciOjoaOTk5cHV1NXY5ZAJ9+/ZF+/btsXjxYqlLodtoyrQoyi9DWYkGZcUalBZrUVZ8698V/y0r+XdZeWnF09SCAEA/W5zw77L/kMkF2CoVsHVQwM5eAbt//lvxvQ3sHBSwvbXcQQGFjdxk101ERDVT41Fev/jiC8yaNQs5OTlQKCp2U6vVcHNzQ8+ePbF37179trfC3uXLl9G8efO7HrtHjx5ITU2Fi4sLAGDVqlWYOXMmcnNza3c1RnTrmqqSmpoKX19fE1dEDckcf+eMRWErZ7csERFVq8bhMDo6Gmq1GsePH8c999wDANi/fz98fX1x5MgRlJSUQKlUAgD27NmDpk2b1igYAoCtra3ZhKuysjLY2lY/VVZcXBycnZ0Nlnl7exvtfERERESmVONH+1q2bAk/P79KLYQjRoxASEgIDh8+bLD89la2zMxMjBo1Cg4ODggNDcXWrVsNthcEAbm5udi7dy8ee+wx5OXlQRAECIKAefPmAQBKS0vx0ksvISAgAI6OjujWrZtBPVVJSUnBiBEj4OTkBGdnZ4wdOxZpaWn69fPmzUP79u3xzTffICQkRB9wq+Pt7Q1fX1+DL5ms4mXs27cvZs6cabD9yJEjMXnyZP33wcHBWLBgASZOnAhnZ2dMmzYNALBp0yZERkbCzs4OwcHBWLRokcFxbu33yCOPwNHREQEBAfj0008NtsnNzcXUqVPh5eUFZ2dn9OvXD7Gxsfr1CQkJGDFiBHx8fODk5IQuXbpg586dlc7zf//3f5gyZQpUKhWaNm2Kr7766o6vSWFhISZOnAgnJyf4+flVqh24+88uOTkZw4cPh5ubGxwdHREZGYnt27fr1587dw733XcfnJ2doVKp0Lt3byQkJOjXf/PNNwgPD4dSqUSrVq3w2Wef6dclJSVBEARs3rwZ0dHRcHBwQLt27fD3338DwB1/54iIiKyOWAvjxo0T7733Xv33Xbp0ETds2CBOnz5dfPPNN0VRFMWioiLRzs5OXLVqlX47AGKTJk3EdevWifHx8eJzzz0nOjk5iVlZWaIoiuKePXtEAGJOTo5YWloqLl68WHR2dhZTU1PF1NRUsaCgQBRFUZw6darYo0cP8a+//hIvX74sfvDBB6KdnZ146dKlKuvVarVi+/btxV69eonHjx8XDx8+LHbq1EmMiorSbzN37lzR0dFRHDx4sHjy5EkxNja2ymP9t8bqREVFic8//7zBshEjRoiTJk3Sfx8UFCQ6OzuLH374oXj58mXx8uXL4vHjx0WZTCa+9dZbYlxcnLhy5UrR3t5eXLlypcF+KpVKXLhwoRgXFyd+8sknolwuF3fs2KHfZsCAAeLw4cPFY8eOiZcuXRL/97//iR4eHvrXOSYmRvziiy/EM2fOiJcuXRJff/11UalUisnJyQbncXd3Fz/99FMxPj5eXLhwoSiTycSLFy9We91PPfWU2LRpU3Hnzp3i6dOnxfvuu09UqVQGr8XdfnbDhg0TBw4cKJ4+fVpMSEgQf/nlF3Hfvn2iKIritWvXRHd3d/GBBx4Qjx07JsbFxYkrVqzQ1/Tdd9+Jfn5+4qZNm8QrV66ImzZtEt3d3fW/g4mJiSIAsVWrVuKvv/4qxsXFiWPGjBGDgoLE8vLyO/7OERERWZtahcOvv/5adHR0FMvLy8X8/HxRoVCI6enp4rp168Q+ffqIoiiKu3btEgEYBA4A4uuvv67/Xq1WiwDE3377TRTFysFr5cqVoouLi8G5k5OTRblcLl6/ft1gef/+/cU5c+ZUWe+OHTtEuVwupqSk6JedO3dOBCAePXpUFMWKcGhjYyOmp6ff8dpv1ejo6GjwFRERod+mpuFw5MiRBtuMGzdOHDhwoMGyWbNmGRw7KChIHDx4sME2Dz30kDhkyBBRFEVx//79orOzs1hSUmKwTfPmzcUvv/yy2uuKjIwUly5danCeRx99VP+9TqcTvb29xc8//7zK/QsKCkRbW1vxxx9/1C/LysoS7e3t9a9FTX52bdq0EefNm1flOebMmSOGhISIZWVlVa5v3ry5uG7dOoNlCxYsELt37y6K4r/h8JtvvtGvv/V7cOHCBVEUq/6dIyIiskY1vucQqOg2LSwsxLFjx5CTk4OwsDB4eXkhKioKjz32GEpKSrB37140a9YMTZs2Ndi3bdu2+n87OjrC2dkZ6enpNT73mTNnoNVqERYWZrC8tLQUHh4eVe5z4cIFBAYGIjAwUL8sIiICrq6uuHDhArp06QIACAoKgpeXV43q2L9/P1Qqlf57G5vaD7XRuXPnSnWOGDHCYFnPnj2xePFiaLVayOUVT3R2797dYJvu3bvrnwaOjY2FWq2u9FoUFxfru1/VajXmzZuHbdu2ITU1FRqNBsXFxUhJSTHY578/K0EQ4OvrW+3PKiEhAWVlZejWrZt+mbu7O1q2bKn/viY/u+eeew5PPfUUduzYgQEDBmD06NH6OmJiYtC7d+8qX+vCwkIkJCTg8ccfxxNPPKFfrtFo9A84VXVdfn5+AID09HS0atWqymsjIiKyRrUKhy1atECTJk2wZ88e5OTkICoqCgDg7++PwMBAHDp0CHv27EG/fv0q7Xv7H3ZBEKDT1XywXrVaDblcjhMnTujD0i1OTk61uYxKHB1rPt9qSEhItcPtyGQyiLeNDFReXnlMudqcr6bUanWle0JvuVXvSy+9hD///BMffvghWrRoAXt7e4wZMwZlZWUG29f3Z1VVbXf72U2dOhWDBg3Ctm3bsGPHDixcuBCLFi3Cs88+C3v76p+sVavVAICvv/7aIKACqHSu/16X8M8YLPW5LiIiosaoVuEQqHhqee/evcjJycGsWbP0y/v06YPffvsNR48exVNPPVWvomxtbaHVag2WdejQAVqtFunp6ejdu3eNjhMeHo6rV6/i6tWr+tbD8+fPIzc3FxEREfWqsSpeXl5ITU3Vf6/VanH27Nlqh8D5b50HDx40WHbw4EGEhYUZBJz/PvRz6/vw8HAAQMeOHXHz5k0oFAoEBwdXeZ6DBw9i8uTJGDVqFICKYJWUlFTTy6tS8+bNYWNjgyNHjuhbi3NycnDp0iX9h4ea/uwCAwMxffp0TJ8+HXPmzMHXX3+NZ599Fm3btsXq1atRXl5eKbj6+PjA398fV65cwfjx4+t8HVX9zhEREVmjWk9EGh0djQMHDiAmJkb/xx8AoqKi8OWXX6KsrOyuYehugoODoVarsWvXLmRmZqKoqAhhYWEYP348Jk6ciM2bNyMxMRFHjx7FwoULsW3btiqPM2DAALRp0wbjx4/HyZMncfToUUycOBFRUVGVunZrKj09HTdv3jT4utU62K9fP2zbtg3btm3DxYsX8dRTT9Vo3Lz//e9/2LVrFxYsWIBLly5h9erVWLZsGV566SWD7Q4ePIj3338fly5dwqeffooNGzbg+eef119r9+7dMXLkSOzYsQNJSUk4dOgQXnvtNRw/fhwAEBoais2bNyMmJgaxsbEYN25cvVvOnJyc8Pjjj2PWrFnYvXs3zp49i8mTJ+uf4AZQo5/dzJkz8ccffyAxMREnT57Enj179MF3xowZyM/Px8MPP4zjx48jPj4ea9asQVxcHABg/vz5WLhwIT755BNcunQJZ86cwcqVK/HRRx/V+Dqq+p0jIiKySrW9SfG/T37+V1JSkghAbNmyZaV9AIhbtmwxWObi4qJ/GreqJ4GnT58uenh4iADEuXPniqIoimVlZeKbb74pBgcHizY2NqKfn584atQo8fTp09XWm5ycLN5///2io6OjqFKpxAcffFC8efOmfv3cuXPFdu3a3fW6b9VY1dfff/+tr++pp54S3d3dRW9vb3HhwoVVPpDy8ccfVzr+xo0bxYiICNHGxkZs2rSp+MEHHxisDwoKEufPny8++OCDooODg+jr6ysuWbLEYJv8/Hzx2WefFf39/UUbGxsxMDBQHD9+vP6BnMTERDE6Olq0t7cXAwMDxWXLllV6iKaq+tq1a6f/GVSloKBAfPTRR0UHBwfRx8dHfP/99ysd924/uxkzZojNmzcX7ezsRC8vL3HChAliZmamfv/Y2Fjx3nvvFR0cHESVSiX27t1bTEhI0K9fu3at2L59e9HW1lZ0c3MT+/TpI27evFl/3QDEU6dO6bfPyckRAYh79uzRL6vqd46IiMjacG5lCxEcHIyZM2dWGkeRiIiIqCHVuluZiIiIiBovhkMiIiIi0mO3MhERERHpseWQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhIj+GQiIiIiPQYDomIiIhI7/8BOzrHxuyRhYIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lst=df.groupby('RaceEthnicity')['RaceEthnicity'].count()\n", + "plt.figure(figsize=(6,6))\n", + "plt.pie(list(lst.values), labels=list(lst.keys()), autopct='%1.1f%%') # Plot the pie chart\n", + "plt.title('Race/Ethnicity') # Add a title\n", + "#plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle\n", + "\n", + "# Display the pie chart\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Developer Roles" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['DevType'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "df['DevType'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DevType\n", + "Back-end developer 2\n", + "Back-end developer;C-suite executive (CEO, CTO, etc.);Data or business analyst;Database administrator;DevOps specialist;Engineering manager;Full-stack developer;System administrator 1\n", + "Back-end developer;C-suite executive (CEO, CTO, etc.);Database administrator;Designer;Front-end developer;Full-stack developer;Mobile developer 1\n", + "Back-end developer;C-suite executive (CEO, CTO, etc.);Database administrator;DevOps specialist;Engineering manager;Full-stack developer;System administrator 1\n", + "Back-end developer;Data or business analyst;Database administrator;DevOps specialist;Front-end developer;Full-stack developer;System administrator 1\n", + "Back-end developer;Data or business analyst;Designer;Front-end developer;Game or graphics developer;Mobile developer;Student 1\n", + "Back-end developer;Data scientist or machine learning specialist;Desktop or enterprise applications developer;Front-end developer;Full-stack developer 1\n", + "Back-end developer;Data scientist or machine learning specialist;DevOps specialist;Educator or academic researcher;QA or test developer;System administrator 1\n", + "Back-end developer;Data scientist or machine learning specialist;Full-stack developer;Game or graphics developer;Student 1\n", + "Back-end developer;Database administrator;Designer;Desktop or enterprise applications developer;Front-end developer;Full-stack developer 1\n", + "Back-end developer;Database administrator;Designer;Front-end developer;Full-stack developer;Mobile developer;System administrator 1\n", + "Back-end developer;Database administrator;Desktop or enterprise applications developer;DevOps specialist;Full-stack developer;QA or test developer 1\n", + "Back-end developer;Database administrator;DevOps specialist;Front-end developer;Full-stack developer;Mobile developer 1\n", + "Back-end developer;Database administrator;DevOps specialist;Front-end developer;Full-stack developer;QA or test developer;System administrator 1\n", + "Back-end developer;Database administrator;Front-end developer 1\n", + "Back-end developer;Database administrator;Front-end developer;Full-stack developer 1\n", + "Back-end developer;Database administrator;Front-end developer;Full-stack developer;Mobile developer 1\n", + "Back-end developer;Database administrator;Front-end developer;Student;System administrator 1\n", + "Back-end developer;Designer;Educator or academic researcher;Front-end developer 1\n", + "Back-end developer;Designer;Front-end developer;Full-stack developer;Marketing or sales professional;Mobile developer 1\n", + "Back-end developer;Desktop or enterprise applications developer;Embedded applications or devices developer 2\n", + "Back-end developer;Desktop or enterprise applications developer;Embedded applications or devices developer;Front-end developer;Full-stack developer;System administrator 1\n", + "Back-end developer;Desktop or enterprise applications developer;Front-end developer;Full-stack developer 2\n", + "Back-end developer;Desktop or enterprise applications developer;Front-end developer;Full-stack developer;Game or graphics developer;Student 1\n", + "Back-end developer;Desktop or enterprise applications developer;QA or test developer 1\n", + "Back-end developer;DevOps specialist 2\n", + "Back-end developer;DevOps specialist;Front-end developer;Full-stack developer;Mobile developer 1\n", + "Back-end developer;Embedded applications or devices developer 1\n", + "Back-end developer;Embedded applications or devices developer;Full-stack developer 1\n", + "Back-end developer;Engineering manager 1\n", + "Back-end developer;Front-end developer 1\n", + "Back-end developer;Front-end developer;Full-stack developer 5\n", + "Back-end developer;Front-end developer;Full-stack developer;Mobile developer 1\n", + "Back-end developer;Front-end developer;Student 2\n", + "Back-end developer;Full-stack developer 5\n", + "Back-end developer;Full-stack developer;QA or test developer 1\n", + "Back-end developer;Full-stack developer;System administrator 1\n", + "Data or business analyst;Data scientist or machine learning specialist;Database administrator;DevOps specialist 1\n", + "Data or business analyst;Database administrator;DevOps specialist;System administrator 1\n", + "Data or business analyst;Desktop or enterprise applications developer;Game or graphics developer;QA or test developer;Student 1\n", + "Data scientist or machine learning specialist 1\n", + "Database administrator;DevOps specialist;Full-stack developer;System administrator 1\n", + "Database administrator;Full-stack developer;Mobile developer 1\n", + "Designer;Front-end developer 2\n", + "Designer;Front-end developer;Marketing or sales professional 1\n", + "Designer;Front-end developer;QA or test developer 1\n", + "Desktop or enterprise applications developer;Embedded applications or devices developer;Full-stack developer;Game or graphics developer;Mobile developer 1\n", + "Desktop or enterprise applications developer;Front-end developer;Product manager 1\n", + "Embedded applications or devices developer 1\n", + "Embedded applications or devices developer;Engineering manager 1\n", + "Engineering manager;Full-stack developer 1\n", + "Engineering manager;Mobile developer 1\n", + "Front-end developer 1\n", + "Front-end developer;Full-stack developer 1\n", + "Front-end developer;Student 1\n", + "Full-stack developer 8\n", + "Full-stack developer;Product manager 1\n", + "Mobile developer 2\n", + "QA or test developer 1\n", + "Student 2\n", + "Name: DevType, dtype: int64" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.groupby('DevType')['DevType'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "#combine Ethnicity by str.match(if each string starts with a match of a regular expression pattern)\n", + "df.loc[df['DevType'].str.match('Back-end developer') == True, 'DevType'] = 'Developer'\n", + "df.loc[df['DevType'].str.match('Student') == True, 'DevType'] = 'Student'\n", + "df.loc[df['DevType'].str.match('QA or test developer') == True, 'DevType'] = 'Non developer'\n", + "df.loc[df['DevType'].str.match('Product manager') == True, 'DevType'] = 'Manager'\n", + "df.loc[df['DevType'].str.match('Mobile developer') == True, 'DevType'] = 'Developer'\n", + "df.loc[df['DevType'].str.match('Marketing or sales professional') == True, 'DevType'] = 'Non developer'\n", + "\n", + "df.loc[df['DevType'].str.match('System administrator') == True, 'DevType'] = 'Developer'\n", + "df.loc[df['DevType'].str.match('Game or graphics developer') == True, 'DevType'] = 'Developer'\n", + "df.loc[df['DevType'].str.match('Full-stack developer') == True, 'DevType'] = 'Developer'\n", + "df.loc[df['DevType'].str.match('Front-end developer') == True, 'DevType'] = 'Developer'\n", + "df.loc[df['DevType'].str.match('Engineering manager') == True, 'DevType'] = 'Manager'\n", + "df.loc[df['DevType'].str.match('Embedded applications or devices developer') == True, 'DevType'] = 'Developer'\n", + "df.loc[df['DevType'].str.match('Educator or academic researcher') == True, 'DevType'] = 'Student'\n", + "df.loc[df['DevType'].str.match('DevOps specialist') == True, 'DevType'] = 'Developer'\n", + "df.loc[df['DevType'].str.match('Desktop or enterprise applications developer') == True, 'DevType'] = 'Developer'\n", + "\n", + "df.loc[df['DevType'].str.match('Designer') == True, 'DevType'] = 'Non developer'\n", + "df.loc[df['DevType'].str.match('Database administrator') == True, 'DevType'] = 'Developer'\n", + "df.loc[df['DevType'].str.match('Data scientist or machine learning specialist') == True, 'DevType'] = 'Developer'\n", + "df.loc[df['DevType'].str.match('Data or business analyst') == True, 'DevType'] = 'Developer'\n", + "df.loc[df['DevType'].str.match('C-suite executive') == True, 'DevType'] = 'Developer'\n" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DevType\n", + "Developer 74\n", + "Manager 2\n", + "Non developer 5\n", + "Student 2\n", + "Name: DevType, dtype: int64" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.groupby('DevType')['DevType'].count() #11 groups of Ethnicity after combining" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAH4CAYAAACi61KzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABnYklEQVR4nO3dd3hTZcMG8DurTffegw7asgoUkCF7CchUAUEEGeKrr6goqJ9bUAEFFOeriFIUEVSmIkNZsmRTVmlLB9DSvdOVNDnfH9VgLavQ5CQ59++6uCDJycndlLZ3n/Oc58gEQRBAREREJCFysQMQERERmRsLEBEREUkOCxARERFJDgsQERERSQ4LEBEREUkOCxARERFJDgsQERERSQ4LEBEREUkOCxARERFJDgsQkcRkZGRAJpMhPj5e7ChERKJhASJqAvHx8ZDJZMY/arUagYGBGDRoED766COUl5eLHdHq/V3cbuVPRkaG2HGJyMIpxQ5AZEvmzp2L8PBw6HQ65OTkYPfu3Zg5cybef/99bNq0CW3bthU7otXy8fHBt99+W+++xYsXIzMzEx988EGDbYmIboQFiKgJDRkyBJ06dTLefumll7Bz504MGzYMI0aMQGJiIhwcHERMaB0qKyvh6OhY7z4nJyc8/PDD9e5bvXo1iouLG9xPRHQzPARGZGL9+vXDa6+9hosXL2LlypX1Hjt//jxGjx4NT09PqNVqdOrUCZs2bTI+fvToUchkMqxYsaLBfrdt2waZTIZffvnFeF9WVhamTp0KPz8/2Nvbo3Xr1vj6669vKefOnTvRs2dPODk5wd3dHSNHjkRiYmK9bd58803IZDKcP38eY8eOhaurK7y8vPDMM8+gurq6wT5XrlyJjh07wsHBAZ6enhg3bhwuX75cb5s+ffqgTZs2OHbsGHr16gVHR0e8/PLLt5T533r37o127dpd87GYmBgMGjQIwNXDaYsWLcIHH3yAZs2awcHBAb1798aZM2caPPdmnycisj4sQERmMHHiRADA9u3bjfedPXsWXbt2RWJiIv7v//4PixcvhpOTE0aNGoX169cDADp16oSIiAj88MMPDfa5Zs0aeHh4GH+o5+bmomvXrvj9998xY8YMfPjhh2jevDmmTZuGJUuW3DDf77//jkGDBiEvLw9vvvkmnnvuORw4cADdu3e/5nyasWPHorq6GvPnz8e9996Ljz76CI899li9bd555x1MmjQJUVFReP/99zFz5kzs2LEDvXr1QklJSb1tCwsLMWTIELRv3x5LlixB3759b/aWXtPEiRNx6tSpBiXmyJEjSE5ObjBS9M033+Cjjz7Ck08+iZdeeglnzpxBv379kJuba9zmVj5PRGSFBCK6Y8uXLxcACEeOHLnuNm5ubkJcXJzxdv/+/YXY2FihurraeJ/BYBDuvvtuISoqynjfSy+9JKhUKqGoqMh4X01NjeDu7i5MnTrVeN+0adOEgIAAoaCgoN7rjhs3TnBzcxMqKysFQRCE9PR0AYCwfPly4zbt27cXfH19hcLCQuN9CQkJglwuFyZNmmS874033hAACCNGjKj3Gv/9738FAEJCQoIgCIKQkZEhKBQK4Z133qm33enTpwWlUlnv/t69ewsAhM8///y67931DB06VGjWrJnxdklJiaBWq4UXX3yx3nZPP/204OTkJGg0mnrvgYODg5CZmWnc7tChQwIA4dlnnzXed6ufJyKyLhwBIjITZ2dn49lgRUVF2LlzJ8aOHYvy8nIUFBSgoKAAhYWFGDRoEFJSUpCVlQUAePDBB6HT6bBu3TrjvrZv346SkhI8+OCDAABBELB27VoMHz4cgiAY91dQUIBBgwahtLQUx48fv2au7OxsnDx5EpMnT4anp6fx/rZt22LgwIH49ddfGzznySefrHf7qaeeAgDjtuvWrYPBYMDYsWPrZfH390dUVBR27dpV7/n29vaYMmVKo97Pa3Fzc8PIkSPx/fffQxAEAIBer8eaNWswatQoODk51dt+1KhRCAoKMt7u3LkzunTpYvw4GvN5IiLrwgJEZCYajQYuLi4AgAsXLkAQBLz22mvw8fGp9+eNN94AAOTl5QEA2rVrhxYtWmDNmjXGfa1Zswbe3t7o168fACA/Px8lJSVYunRpg/39XSz+3t+/Xbx4EUDdHJl/a9myJQoKClBRUVHv/qioqHq3IyMjIZfLjYfLUlJSIAgCoqKiGuRJTExskCUoKAh2dnY3fxNvwaRJk3Dp0iXs3bsXQN3hvdzcXONhyBt9HAAQHR1t/Dga83kiIuvCs8CIzCAzMxOlpaVo3rw5AMBgMAAAZs+ebZzD829/bwvUjQK98847KCgogIuLCzZt2oTx48dDqVTW29/DDz+MRx555Jr7M+Up+DKZrN5tg8EAmUyGLVu2QKFQNNje2dm53u2mPDNu0KBB8PPzw8qVK9GrVy+sXLkS/v7+GDBgQKP31djPExFZDxYgIjP4e/2av3+IRkREAABUKtUt/WB+8MEHMWfOHKxduxZ+fn4oKyvDuHHjjI/7+PjAxcUFer2+0T/omzVrBgBISkpq8Nj58+fh7e3d4NBRSkoKwsPDjbcvXLgAg8GAsLAwAHUjQoIgIDw8HNHR0Y3Kc6cUCgUeeughxMfH491338WGDRswffr0axaxlJSUBvclJycbP47Gfp6IyHrwEBiRie3cuRNvvfUWwsPDMWHCBACAr68v+vTpgy+++ALZ2dkNnpOfn1/vdsuWLREbG4s1a9ZgzZo1CAgIQK9evYyPKxQKPPDAA1i7du01T+P+9/7+KSAgAO3bt8eKFSvqnZ115swZbN++Hffee2+D53z66af1bn/88ccA6tZBAoD7778fCoUCc+bMMc7F+ZsgCCgsLLxunqYwceJEFBcX4z//+Q80Gs111wnasGFDvTk8hw8fxqFDh4wfR2M/T0RkPTgCRNSEtmzZgvPnz6O2tha5ubnYuXMnfvvtNzRr1gybNm2CWq02bvvpp5+iR48eiI2NxfTp0xEREYHc3FwcPHgQmZmZSEhIqLfvBx98EK+//jrUajWmTZsGubz+7y8LFizArl270KVLF0yfPh2tWrVCUVERjh8/jt9//x1FRUXXzb1w4UIMGTIE3bp1w7Rp01BVVYWPP/4Ybm5uePPNNxtsn56ejhEjRmDw4ME4ePAgVq5ciYceesi4Bk9kZCTefvttvPTSS8jIyMCoUaPg4uKC9PR0rF+/Ho899hhmz559B+/0jcXFxaFNmzb48ccf0bJlS3To0OGa2zVv3hw9evTAE088gZqaGixZsgReXl544YUXjNs09vNERFZCtPPPiGzI36fB//3Hzs5O8Pf3FwYOHCh8+OGHQllZ2TWfl5qaKkyaNEnw9/cXVCqVEBQUJAwbNkz46aefGmybkpJi3P++ffuuub/c3FzhySefFEJCQgSVSiX4+/sL/fv3F5YuXWrc5lqnwQuCIPz+++9C9+7dBQcHB8HV1VUYPny4cO7cuXrb/H0a/Llz54TRo0cLLi4ugoeHhzBjxgyhqqqqQZ61a9cKPXr0EJycnAQnJyehRYsWwpNPPikkJSUZt+ndu7fQunXr6763N/Lv0+D/6b333hMACPPmzWvw2N/vwcKFC4XFixcLISEhgr29vdCzZ0/jqfz/1JjPExFZB5kg/Gt8mojoOt58803MmTMH+fn58Pb2FjvODX344Yd49tlnkZGRgdDQ0HqPZWRkIDw8HAsXLjTpSBQRWS7OASIimyMIAr766iv07t27QfkhIgI4B4iIbEhFRQU2bdqEXbt24fTp09i4caPYkYjIQrEAEZHNyM/Px0MPPQR3d3e8/PLLGDFihNiRiMhCcQ4QERERSQ7nABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHksAARERGR5LAAERERkeSwABEREZHkKMUOQETiqqnVI7+8BgUaLfLLa/76d93f5dU6GARAACAIAgQBEPDX33/92/DXv/HX/QZB+Gt7QCmXwcPJDl7OdvBysoOnk/1ff/99nz0c7BTivgFEJEksQEQ2qrRKh8tFlXWl5q9C889yk6+pQUF5Dcqqa0XN6aBSwNPJDt7OdcXI08keXn/929fFHuHeTmju6wwXtUrUnERkW2SCUPe7GxFZp9IqHVJyy5GSp0FybjlScjVIyStHblmN2NGalK+LPSJ9nBHp64RIH2c093VGlK8L/N3UYkcjIivEAkRkRTKLK3EmqxRnsspwOqsU53PKbK7oNJaHowotA1zRKsAVrQJd0TLAFVG+zlAqOMWRiK6PBYjIQuWVV+NIejFOZ5Xi7JVSnMkqRXGlTuxYVsFOKUeUrzPaBruhW6Q37o70grezvdixiMiCsAARWYhqnR5HMoqwN6UAfyTnIym3HPzqbBoyGRDj54Iezb3Rvbk3ukR4wtGOUyCJpIwFiEhE53PKsDe5AH+k5ONIRhGqdQaxI0mCSiFD+xB3dP+rEMWFuPOQGZHEsAARmVGBpgb7UuoKz/4LBZKfv2MpnOwU6BzuaSxELfxdIJPJxI5FRCbEAkRkQtpaA45mFGFPSj72JhcgMaeMh7WsgLezHbpFeuOeVn4Y2MoPahXXKiKyNSxARE1MEAQcTi/C2uOZ+PV0DjQ14q6zQ3fGxV6JQW38cV9cELpFeEEu58gQkS1gASJqIpcKK7H2eCbWncjE5aIqseOQCfi7qjGifSBGtQ9Cq0BXseMQ0R1gASK6A+XVOmw+lY21xzNx9GIxD29JSAt/F4xsH4RRcYEIcHMQOw4RNRILEFEj6Q0C9l0owNpjmdh+LodnbkmcXAZ0DvfE/XHBGBLrz0t2EFkJFiCiW5ScW461xzKx4WQWz96ia7JXyjGgpR9GxQWhT4wPVDy1nshisQAR3UClthY/HcvEj0czcTqrVOw4ZEX8XdWY2iMMD3VpBmd7LrpIZGlYgIiuobRSh/gDGYg/kM7LT9AdcVErMaFLM0ztEQZfF164lchSsAAR/UNuWTWW7U3DqkOXUKHVix2HbIidUo7744LwWK8IRPg4ix2HSPJYgIgAXCyswOd70rD2eCa0tZzUTKYjlwEDW/nh8d6RiAv1EDsOkWSxAJGkJWaX4bPdqfj1dDb0Bn4pkHl1DvPE430i0DfGl5feIDIzFiCSpKMZRfhsdyp2ns8TOwoRYvxcML1XBEa2D+SZY0RmwgJEkrI7KQ+f7UrF4YwisaMQNRDopsbUHuF4uGszXn+MyMRYgEgStp/NwYc7UnD2SpnYUYhuKsBNjecGRuOBDsG89hiRibAAkU07e6UUb/1yDn+mccSHrE+rAFe8MrQlujf3FjsKkc1hASKblFdejUXbkvDTsUxwbjNZuz4xPnj53paI9nMROwqRzWABIptSrdNj2d40/G93KtfxIZuikMswtlMwnhsYAx8Xe7HjEFk9FiCyGT8nXMGCLeeRVVIldhQik3FRKzFzQDQe6dYMSp4xRnTbWIDI6l3I0+CNTWew/0Kh2FGIzCbazxlvjmiNuyM5P4jodrAAkdWq0urx8c4ULNubDq2eqzeTNA1tG4BXh7ZEgJuD2FGIrAoLEFmlrWdy8NYv53i4iwiAo50CT/Ztjsd6RXAhRaJbxAJEVuVyUSVe33gGu5LyxY5CZHFaB7piyYPtEcWzxYhuigWIrMbaY5l4c9NZlNfUih2FyGLZK+V4cXALTOkexuuLEd0ACxBZvNIqHV7dcAY/J1wROwqR1ejR3BuLxrSDv5ta7ChEFokFiCzan2mFmPVDAuf6EN0GNwcV3hrVBiPaBYodhcjisACRRdLpDXj/t2R8sSeVKzkT3aHh7QLx9qg2cHNQiR2FyGKwAJHFScvXYOaakziVWSp2FCKbEeCmxqIx7XhdMaK/sACRRfn+8CW89cs5VPIyFkRNTiYDJt8dhhcHt4BapRA7DpGoWIDIIhRXaPHi2lPYfi5X7ChENi/K1xkfPNgebYLcxI5CJBoWIBLd3pR8zPohAXnlNWJHIZIMlUKGmQOi8UTvSMjlPF2epIcFiERTU6vHe1uT8PX+dPB/IZE4ekZ545OHOnCCNEkOCxCJIq+sGtO/OYoETnQmEl2EjxO+fuQuhHk7iR2FyGxYgMjsErPLMC3+CK6UVosdhYj+4u6owmcTOvDq8iQZLEBkVrvO52HGquOo4FleRBZHKZdh7sg2eKhLqNhRiEyOBYjMZvn+dLy9ORF6rmxIZNEm3x2G14a1goKTo8mGsQCRyekNAub8fBbfHLwodhQiukW9on3wyUNxcFVzcjTZJhYgMilNTS1mrDqO3Un5YkchokaK9HHC15PvQjMvTo4m28MCRCaTVVKFafFHcD6nXOwoRHSb3B1V+N+EjugW6SV2FKImxQJEJnHycgkeXXEUBRoubkhk7VSKusnR4ztzcjTZDhYganKbT2Vj1o8nUa0ziB2FiJrQlO5heHUoJ0eTbWABoib16a4LWLQ9iSs7E9mofi188dmEDryYKlk9FiBqEnqDgJfWncIPRzPFjkJEJtYr2gdLJ3ZkCSKrxgJEd8xgEDD7xwSsO5EldhQiMpOeUd74clInliCyWnKxA5B1MxgEvLD2FMsPkcTsTSnA9G+OolrHVd3JOrEA0W0TBAEvrTuNn47xsBeRFO1NKcCjK1iCyDqxANFtEQQBL68/gzVHL4sdhYhEtO9CAaatOMISRFaHBYhuy+sbz+L7w5fEjkFEFmD/hUJMjT+CKl7kmKwICxA12pubzuLbP3ldLyK66kAqSxBZFxYgapS5P59D/IEMsWMQkQU6mMYSRNaDBYhu2bxfE/H1/nSxYxCRBTuYVogp8YdZgsjisQDRLVmw5TyW/pEmdgwisgJ/phVh8vLDqNTWih2F6LpYgOimFm1Lwud7UsWOQURW5FB6ESYvP8ISRBaLBYhu6IPfkvHJrgtixyAiK3Q4vQhPrToBvYEXHCDLwwJE17V8fzo+3JEidgwismI7zudhzs9nxY5B1AALEF3TjsRcvPXLObFjEJEN+ObgRSzbyzmEZFlYgKiBc1fK8PT3J8BRayJqKu/8mogtp7PFjkFkxAJE9eSVVWPaiiOo4CmsRNSEBAF49oeTOH6pWOwoRABYgOgfqrR6TFtxFNml1WJHISIbVK0zYPqKo7hYWCF2FCIWIKpjMAh4ZvUJnM4qFTsKEdmwwgotHl1xFOXVOrGjkMSxABEAYOH2JGw/lyt2DCKSgJQ8DWauPgkDJxqSiFiACL+cuoL/7eZCh0RkPjvO52HR9iSxY5CEsQBJXGJ2GV746ZTYMYhIgj7bnYpNCVfEjkESxQIkYSWVWjz27VFU8owvIhLJCz8l4HQm5x6S+bEASZTeIOCp70/gclGV2FGISMKqdQY89u1R5JfXiB2FJIYFSKLe3Xoee1MKxI5BRITs0mrMWHWck6LJrFiAJOiXU1ew9A8uS09EluNQehG+4PclMiMWIInJKa3Gy+tOix2DiKiBD35LxhmuRUZmwgIkIYIg4PmfElBWXSt2FCKiBrR6A2auOYlqHU/MINNjAZKQbw5e5LwfIrJoF/I0mP9rotgxSAJYgCQiLV+DBVvOix2DiOimvvnzInYn5Ykdg2wcC5AE6A0Cnv0hAVUcViYiKyAIwAs/nUJRhVbsKGTDWIAk4NNdF5BwuUTsGEREtyyvvAYvreMq9WQ6LEA27kxWKT7emSJ2DCKiRtt2Nhc/HLksdgyyUSxANqxap8eza05Cp+fiYkRkneb8fBYXCyvEjkE2iAXIhi3cloSUPI3YMYiIbluFtu4XOT1XiaYmxgJkow6mFuLr/elixyAiumPHL5Xgk50XxI5BNoYFyAaVV+sw+8cECPyFiYhsxMc7U3CSJ3NQE2IBskFzfj6HrBJe5Z2IbEetQcCza06ippbLeVDTYAGyMdvO5uCnY5lixyAianLpBRX4ah8P7VPTYAGyIVVaPd7cdFbsGEREJvPpzgvIK6sWOwbZABYgG7L0jzRkl/IbAxHZrgqtHu9uTRI7BtkAFiAbkVtWjS/+SBU7BhGRya07kckJ0XTHWIBsxHtbk1Cp5eRAIrJ9glC3QKLAU13pDrAA2YDTmaVYd4ITn4lIOk5cKsH6E1lixyArxgJkA9765RzX/CEiyXl363lU1NSKHYOsFAuQldtyOhuHM4rEjkFEZHa5ZTX4dBdXiKbbwwJkxWpq9Zi/5bzYMYiIRLNsXzouFVaKHYOsEAuQFYvfn4FLRfzCJyLp0tYa8Pbmc2LHICvEAmSlCjQ1vDggERGA7edysf9CgdgxyMqwAFmp939LRjkn/xERAQDm/nwOegPPBqFbxwJkhZJyyrHmyGWxYxARWYyk3HKs/POi2DHIirAAWaG3N/M3HSKif/vg92RoODJOt4gFyMrsPJ+LvSk81k1E9G8llTp8x1EgukUsQFbmg99SxI5ARGSxvtqXjppaXhaIbo4FyIocSC3A6axSsWMQEVmsvPIarD/OS2TQzbEAWZGlf6SJHYGIyOIt/SMNBs6TpJtgAbISSTnl2J2UL3YMIiKLl1ZQga1nc8SOQRaOBchKcPSHiOjWfb4nVewIZOFYgKxATmk1NiXwmDYR0a06lVmKfTxjlm6ABcgKLN+fDp2ex7OJiBrjf3t4uSC6PhYgC6epqcWqw5fEjkFEZHX2XyjE6UyeOUvXxgJk4b4/dAnl1VzZlIjodnAUiK7HagtQnz59MHPmTLFjmJROb8DX+9PFjkFEZLW2nslBekGF2DHIAjWqAE2ePBkymQwymQwqlQp+fn4YOHAgvv76axgMBlNllKyfE64gu7Ra7BhERFbLIABf8IwwuoZGjwANHjwY2dnZyMjIwJYtW9C3b18888wzGDZsGGprpXeoRqfTmWzfPPWdiOjOrTuehdwy/jJJ9TW6ANnb28Pf3x9BQUHo0KEDXn75ZWzcuBFbtmxBfHw8AKCkpASPPvoofHx84Orqin79+iEhIQEAkJycDJlMhvPnz9fb7wcffIDIyEjj7TNnzmDIkCFwdnaGn58fJk6ciIKC65/SWFxcjEmTJsHDwwOOjo4YMmQIUlKuXjcrPj4e7u7u2LBhA6KioqBWqzFo0CBcvny53n42btyIDh06QK1WIyIiAnPmzKlX7GQyGf73v/9hxIgRcHJywjvvvNPYt/CW7EnOx/mccpPsm4hISrR6A77ex+kEVF+TzAHq168f2rVrh3Xr1gEAxowZg7y8PGzZsgXHjh1Dhw4d0L9/fxQVFSE6OhqdOnXCd999V28f3333HR566CEAdQWqX79+iIuLw9GjR7F161bk5uZi7Nix180wefJkHD16FJs2bcLBgwchCALuvffeeiM0lZWVeOedd/DNN99g//79KCkpwbhx44yP7927F5MmTcIzzzyDc+fO4YsvvkB8fHyDkvPmm2/ivvvuw+nTpzF16tQ7fv+uZekfHLIlImoq3x++hGodL5JKVzXZJOgWLVogIyMD+/btw+HDh/Hjjz+iU6dOiIqKwqJFi+Du7o6ffvoJADBhwgR8//33xucmJyfj2LFjmDBhAgDgk08+QVxcHObNm4cWLVogLi4OX3/9NXbt2oXk5OQGr52SkoJNmzZh2bJl6NmzJ9q1a4fvvvsOWVlZ2LBhg3E7nU6HTz75BN26dUPHjh2xYsUKHDhwAIcPHwYAzJkzB//3f/+HRx55BBERERg4cCDeeustfPHFF/Ve76GHHsKUKVMQERGB0NDQpnoLjc5dKcP+C4VNvl8iIqkqq67FNl4eg/6hyQqQIAiQyWRISEiARqOBl5cXnJ2djX/S09ORmlo3qjFu3DhkZGTgzz//BFA3+tOhQwe0aNECAJCQkIBdu3bVe/7fj/29j39KTEyEUqlEly5djPd5eXkhJiYGiYmJxvuUSiXuuusu4+0WLVrA3d3duE1CQgLmzp1b73WnT5+O7OxsVFZWGp/XqVOnpnrbrmnNEa77Q0TU1H44evnmG5FkKJtqR4mJiQgPD4dGo0FAQAB2797dYBt3d3cAgL+/P/r164dVq1aha9euWLVqFZ544gnjdhqNBsOHD8e7777bYB8BAQFNFbkBjUaDOXPm4P7772/wmFqtNv7bycnJZBm0tQZsSrhisv0TEUnVgdRCZBZXItjDUewoZAGapADt3LkTp0+fxrPPPovg4GDk5ORAqVQiLCzsus+ZMGECXnjhBYwfPx5paWn15uJ06NABa9euRVhYGJTKm0ds2bIlamtrcejQIdx9990AgMLCQiQlJaFVq1bG7Wpra3H06FF07twZAJCUlISSkhK0bNnS+LpJSUlo3rz57bwNTWLn+TwUV5ruzDIiIqkSBOCnY5mYOSBa7ChkARp9CKympgY5OTnIysrC8ePHMW/ePIwcORLDhg3DpEmTMGDAAHTr1g2jRo3C9u3bkZGRgQMHDuCVV17B0aNHjfu5//77UV5ejieeeAJ9+/ZFYGCg8bEnn3wSRUVFGD9+PI4cOYLU1FRs27YNU6ZMgV7fcBJbVFQURo4cienTp2Pfvn1ISEjAww8/jKCgIIwcOdK4nUqlwlNPPYVDhw7h2LFjmDx5Mrp27WosRK+//jq++eYbzJkzB2fPnkViYiJWr16NV199tbFv021bezzTbK9FRCQ1Px3LhCDw2op0GwVo69atCAgIQFhYGAYPHoxdu3bho48+wsaNG6FQKCCTyfDrr7+iV69emDJlCqKjozFu3DhcvHgRfn5+xv24uLhg+PDhSEhIME5+/ltgYCD2798PvV6Pe+65B7GxsZg5cybc3d0hl1878vLly9GxY0cMGzYM3bp1gyAI+PXXX6FSqYzbODo64sUXX8RDDz2E7t27w9nZGWvWrDE+PmjQIPzyyy/Yvn077rrrLnTt2hUffPABmjVr1ti36bYUVWixOynPLK9FRCRFmcVVOJDKk0wIkAkSqcLx8fGYOXMmSkpKxI5yXcv3p2POz+fEjkFEZNNGtQ/EknFxYscgkVnttcBsEQ9/ERGZ3vZzuajSck0gqWMBshApueU4k1UmdgwiIptXqdXjt8RcsWOQyCRTgCZPnmzRh79+PpUtdgQiIsnYdJLLjUidZAqQpdt8il+MRETm8kdyPkq55IiksQBZgMTsMqTmV4gdg4hIMrR6A7ae5ci7lLEAWYDNPPxFRGR2G3kYTNJYgCzA5tMsQERE5vZnWiHyyqrFjkEiYQES2ZmsUqQX8PAXEZG5GQTwCvESxgIkMo7+EBGJZ29KgdgRSCQsQCLbmchLXxARieVgWiH0BklcEIH+hQVIRAWaGiTnlYsdg4hIssqra3HyconYMUgELEAiOphaCGlciY2IyHLtv8DDYFLEAiSiA6n8oiMiEts+zgOSJBYgER1ILRQ7AhGR5J24XIyKmlqxY5CZsQCJJKukChcLK8WOQUQkeTq9gD/T+Aup1LAAieQAjzkTEVkMng4vPSxAIuHhLyIiy8GJ0NLDAiSSgyxAREQWIyVPg5xSXhZDSliARJCar0EOrz9DRGRR9nEUSFJYgETAw19ERJZnX0q+2BHIjJRiB5Cigza8/o9g0KN03ypozu2GoaIYCmdPOLXpD7e7x0EmkwEA9BXFKN4dj+qMEzBUV8A+pDU8B/wHKs+g6+63/ORWVJzdCV3+RQCAnX9zuPeaBPvAGOM2pYfWoezwWgCAW5cH4Nr5fuNjNVeSULT9M/hPeh8yucIUHzoRWbn9/OVUUliAzEwQBJue/1N2aC3KT26B19BnYecdiprsFBRu+RByeye4dhoBQRCQt+5tyORK+Nz/KuR2jig7sgG5a15F4LT/QW6nvuZ+qy+fhlPL3rAf0BIypQqlf65F7g+vI3Dap1C6eEObl47Sfd/BZ/TrgCAgf+1cqMM7wM4nDIJBj8Jtn8Jr8AyWHyK6rvzyGpzPKUMLf1exo5AZ8BCYmZ3LLkNxpU7sGCZTk5UIh+Zd4Bh5F5RufnBq0QMOYXHQZicDAGqLr0B7JQme9/wX9gHRUHkFw3PQfyHUalGRuOe6+/UZ/jxcOgyFnV8EVF4h8BryFCAYUH0xAQCgK8yEyicMDs3awSGsPVQ+YdAVZgKoK2XqkNawD4g2/RtARFaNq0JLBwuQmdny6A8A2Ae1RPXFBOiKsgAA2rw0VGeegzqiIwBA0NeVP5nSzvgcmUwOmUKFmsxzt/w6gq4GMOghV7sAAOx8wlBbnIXasjzUluahtigLdt7NoCvOhub073DvObGpPkQismG8MKp08BCYmdn6aqOuXUfDUFOJK18+DsjlgMEA914T4dy6LwBA5RkMhasPSvasgOfgGZCr7FF2ZCP05QXQa4pu+XWK98RD4ewJh7D2dfv1DoF7r0nIXfMaAMC99yNQeYcgd/Ur8OgzBVXpx1G6fxUgV8JzwGNQh7Rp8o+diKxfUk652BHITFiAzCwx27a/uCoT96Li3G54D58NlU8zaHPTULzjSyicveAc2x8yhRI+972Cwi0fIvPDcYBMDnVY+7oRIuHWXqP0zx9RmfgH/MbPrzeS5BJ3L1zi7jXe1pzeAZmdA+yDWiDry8cRMOl96MsLUbDpPQT95yvIlKqm/vCJyMqlF1SgplYPeyXnC9o6FiAz0tTUIqukSuwYJlW8ezncuo6GU6veAP46NFWWh9I/f4RzbH8AgL1/cwRO+RiGmgoI+looHN2Q/c1zsPOPuun+Sw+tQ+mfP8Hvwbdh5xt+3e30laUo3b8Kfg+9i5oryVB5BkLlGQSVZxAEfS10xVmw8wlrko+ZiGxHrUHAhTwNWge6iR2FTIxzgMwoJde2R3+Av+bmyOr/t5LJ5IBgaLCt3N4JCkc36IqyoM25AMeoLjfcd+mhn1B6YDX8xsyBfcCNy1LxzmVwuWsUlK7egKCHoNdffdCgBwwN8xARATwMJhUcATKjlDyN2BFMzqF5Z5QeWAOFqw/svEOhzU1F2ZENcG470LhNxfl9UDi6QuHqC11+Bop+XwrHqK5wCO9g3Kbgl8VQuHjBo/dkAEDpnz+hZN9KeA9/Hko3P+g1xQAAmZ0acjuHehmq0k9AV5QFr6HPAgDs/KNRW5SJqtSjqC0vAOQKKG+w5hARSdt5FiBJYAEyIymMAHkO+A9K9q5E0fbPYKgshcLZE87th8C9+zjjNnpNEYp3LoO+ogQKZw84t+4Ht388DgC1Zfn1RpLKT/wK6GtRsGF+ve3cuo+He48JxtsGXQ2Kfv8cPiNerBt5AqB09YbHgP+gYMsSyBQqeA19FnKVvSk+fCKyASxA0iATBOEWp57SnXrk68PYk8yl1omILJmfqz0OvTxA7BhkYpwDZEYXJHAIjIjI2uWW1aCkUit2DDIxFiAzkcIZYEREtsLWlywhFiCzkcL8HyIiW5GUUyZ2BDIxFiAzScnl4S8iImuRxF9abR4LkJmk5PGLiYjIWvBMMNvHAmQmyRwBIiKyGsk55eBJ0raNBchMOAeIiMh6VGj1uFzEE1dsGQuQGWhqanGltFrsGERE1AjnORHaprEAmQFHf4iIrE82f3G1aSxAZpCaXyF2BCIiaqQCTY3YEciEWIDMIL+cX0RERNamQMPVoG0ZC5AZFHNJdSIiq8MRINvGAmQGRRUsQERE1qaQBcimsQCZQTELEBGR1eEhMNvGAmQGRTwERkRkdTgCZNtYgMyAh8CIiKxPhVaPKq1e7BhkIixAZsACRERknTgR2naxAJlYrd6A8upasWMQEdFtYAGyXSxAJsb5P0RE1osToW0XC5CJFVfoxI5ARES3iROhbRcLkIlx/g8RkfXiITDbxQJkYlwFmojIevEQmO1iATIxjgAREVkvjgDZLhYgE+Mq0ERE1quQI0A2iwXIxHgWGBGR9arUchkTW8UCZGIllTwLjIjIWukFQewIZCIsQCam0xvEjkBERLepVs8CZKtYgEyMXzpERNZLb+B3cVvFAmRiAodPiYisFg+B2S4WIBPj1w4RkfXiCJDtYgEyMRYgIiLrxTlAtosFyMQEzgIiIrJaHAGyXUqxA9g6fu2QrRsZnolw5SE4FWoRWqKAd54WjtnFkGXmQKjhKrpk3ZR+fsDL/cWOQSbAAkREd2RjejDu8XHA3VF/4O3q8yjRlgIAFJChpS4IsZWeaF7mgIBCA9xzK6HKyoeQmy9yaqJbI1MoxI5AJsICZGIKmUzsCEQmtz3fC8maIfg2pATfeYXix9Jz0At6nFHl4oxbLuAGIOTq9m4GZ3Ss9keLCleEFSvhXaCDc3YJZJdzIFRVifZxEDXAAmSzWIBMTKXkNCuShowqNQZdeATrhc0Yo7XHgoAgHClNuea2pfJq7HTMwE5HAD4AouvulwlAdK0/2lZ5oXmZI4KKAPe8SthnFULIyQMMXFj0b0sLC/G7phxpNVqo5TK0d3DALB8fhNvZ39Lzfy0rw+zsK+jn7IxPgoKN939dVIivi4oAANM8PTHF08v4WEJVFd7KzcHqZmFQSuSXO5mc38NtFQuQidkp+MVD0lFjkOPelOF4N6IZvjr9AbZFdsX7Sg2yq27tkJcgA5JUBUhSFQCuAK7+XIazoEb7Gj+00rghrNQOvgW1cMkugzwzB0K5xjQfkAU7WlmJ8e7uaKN2gF4QsKQgH49evoyfwyPgeJMf2lk6LRbm56Gjg0O9+5Oqq/FJQQE+CwqGAOC/WZno7uSEaHs1agUBc3JzMMfPXzLlBwCg5I9JW8XPrInZKSX0jYLoLy+mtcXxgPmYl/UueuvK8VWrvojXJKNGf/uTojUyLfapL2Of+jLgDSDy6mMRtT5oV+WDqHJHBBXJ4JlXDfWVQghXcgG9/s4/IAu0NCSk3u15/gHokXoB56qr0cnR8brP0wsCXriSjRle3jhWVYmyf4yqpWm1iLa3R1cnJwBAtL39X/ep8XVRETo5OCL2X6XJ1nEEyHaxAJmYiiNAJFFrsv1xxuVt/OD+KWac3Iz7PEOxKKw1fi8+2+SvlaYsRppLMeACIPDq/WpBhXbaYLTWeCC8zA5+BXq45pRDkZkLoaS0yXOIqfyvIuN2kzkrnxUWwFOpwAPu7jhWVVnvsWh7e2Rotbii00EAcFGrRZSdPS5ptVhfWoKfwsJMlN6CcQ6QzWIBMjEWIJKys+VO6Fw1C7+ErUV45gZ8UHQJf4Z3xgJnJVI1mSZ//WpZLQ7ZZ+GQfRbgBSD86mNBek+0r/JFjMYZwUVyeOVVwzG7CEJmDlBba/JsTckgCFiQl4sODg6Isr/+HKBjlZVYV1qKdc3Crvl4pL09Zvr44NHLlwEAM318EGlvj6mXL2GWjy/2VVTg04ICKGUyvOzrd8ORJlshV6vFjkAmwgJkYixAJHUVtQr0vTAWnzdvhkFXPkXX9MP4Sa7E6tb98VnNZZTrxJm/k6UoQ5ZzGTY7A/AH0KrufjtBgVhdAFpXeCKi1B7+hQa45ZZDmZkPobBIlKw381ZuLlJqarAytNl1t6kw6PF/OdmY4+cPjxvMaxnn7oFx7h7G2xtKS+Ekl6O9gwOGpqdhTbMw5NbqMOvKFfwWEQE7Gz9EJHd1ETsCmQgLkInZ8SwwIgDA4xe64NHgQLxc8S6UVUV4+PQ23OvkjY9iumB9yVkYBMs4w0sr0+OYXTaO2WUDHgDCrj7mq3dHXI0vYspdLGbRx7dzc7CnQoNvQkLhr1Jdd7tLWh2ydDo8mXV15O3vdzw26Tw2h0cg1M6u3nOKa2vxWWEBvgkJxanqKoTZ2Rn/1EJAhq5ufpAtU7i4ih3hjvTp0wft27fHkiVLxI5icViATMzd4frfkIikZllmCE65z8M3nkugLjoPz4oCvHl8M8YEtsF8Hx8klKWKHfGG8hQabHPUYJsjAD8AMXX311v0sVSNgEIB7rkVdYs+5hWYJIsgCHgnLxe/azSIDwlF8L/Ky79F2NlhY1h4vfs+LMhHhcGAl339rlmeFuTnYZKHB/xVKpyprobuHxc31AsCpHCZLFOMAOXn5+P111/H5s2bkZubCw8PD7Rr1w6vv/46unfvDplMhvXr12PUqFFN/tpNYfLkySgpKcGGDRvEjnJHWIBMzNf11tbkIJKKwyWu6F75EjaHfAf/rO0AgNZXzuDbKzL80rIvPkAR8qst81DT9egh1F/0MfTqYx4GF8RV+zX5oo9v5eVic1kZPgkKhpNcjvy/5i25yOVQ/3VY6v+yr8BXqcRzPr6wl8sbzA9y/Wu7a80bOlBRgQytFvP9AwAAbdRqpGu1+EOjQU5tLeQyGcJvUrpsgSlGgB544AFotVqsWLECERERyM3NxY4dO1BYWNjkr0XXxwJkYr4utj08THQ7CrUqdEt7BCubh+Puy0shgwAZBAxP3In+9s74vFVvrCw7D51BJ3bUO1YsrzLJoo+rS0oAAI9cvlTv/nf8/XGfmzsAIFunu60rXlcbDHg7NxeLAwMh/2vNH3+VCq/4+uGVnGzYyWSY7x9gLFq2TNHEI0AlJSXYu3cvdu/ejd69ewMAmjVrhs6dOwMAwv460+6+++4zPpaRkXHNUZeZM2fi5MmT2L17NwCgoqICTzzxBNatWwcXFxfMnj27wevX1NTglVdewffff4+SkhK0adMG7777Lvr06QMAiI+Px8yZM7FmzRrMnDkTly9fRo8ePbB8+XIEBATgzTffxIoVKwAAsr/+b+zatcv4fGvCAmRivi4cASK6FkGQYUJKb8wKDcaMknch09ZNhnas0eC5E5vxgHcE3g1pib0liSInNY0bLfroYnBAe+1fiz6WqOBTUAuXnFLIL+dA0FQAAM7FtLjpa6y4waRoAJgXEHjN+9VyOX6NiGhw/2h3d4x2d7/p69oSeROPADk7O8PZ2RkbNmxA165dYf+v0bcjR47A19cXy5cvx+DBg6FoxGn4zz//PPbs2YONGzfC19cXL7/8Mo4fP4727dsbt5kxYwbOnTuH1atXIzAwEOvXr8fgwYNx+vRpREVFAQAqKyuxaNEifPvtt5DL5Xj44Ycxe/ZsfPfdd5g9ezYSExNRVlaG5cuXAwA8PT3v/I0RAQuQifEQGNGNLb4UiZNeC/C5w2KoStON9zcrSMNnBWn4I/JuvOdgwMWKKyKmNK9yeQ32qi9hrxp1iz42v/qYFBd9FJPCw71J96dUKhEfH4/p06fj888/R4cOHdC7d2+MGzcObdu2hY+PDwDA3d0d/v7+t7xfjUaDr776CitXrkT//nVXr1+xYgWCg68260uXLmH58uW4dOkSAgPryu/s2bOxdetWLF++HPPmzQMA6HQ6fP7554iMrFttdMaMGZg7dy6AugLn4OCAmpqaRuWzRCxAJuZop4SzvRKaGutaV4TInHYUeqKv+nVsCvgantl76z3WK/UAuins8E3r/lhalY7K2srr7EUaGrXoY3ZZ3aKPpWWi5bV2Si+vm2/USA888ACGDh2KvXv34s8//8SWLVvw3nvvYdmyZZg8efJt7TM1NRVarRZdunQx3ufp6YmYmBjj7dOnT0Ov1yM6Orrec2tqauD1j4/T0dHRWH4AICAgAHl5ebeVy5KxAJmBr4s9CxDRTWRW26PLxcfxU2QY2l3+tt5jKr0W005twQhXf7zfvAM2F5+FAAmcgtQIN1r0MbjWC+2rfRBT7ozg4rpFHx2sdNFHczNFAQIAtVqNgQMHYuDAgXjttdfw6KOP4o033rhuAZLL5RCE+v/ndbrGzZHTaDRQKBQ4duxYg0Nrzs7Oxn+r/nVGoEwma/DatoAFyAx8XOyRVlAhdgwii6czyDAyZQjeCg/Fw/mLIautrve4T1kO5h//FQ+GxGG+hwvOlWeIE9TKZCpLkelcil+cAQTAqhd9NDeFt7dZXqdVq1bGCc4qlQr6fx3O9PHxwZkzZ+rdd/LkSWNZiYyMhEqlwqFDhxAaWncaYnFxMZKTk42TrePi4qDX65GXl4eePXvedlY7O7sG+awRC5AZ+HAiNFGjvJbeGsf8FmCRYSGU5VkNHm9/+QS+z5RjXat++Fifh6KaEvOHtAE3XPTR4Ia4ar+6RR+LFfDOr4HjlRLIMrMhaLViRTYrmb09FP8YGWkKhYWFGDNmDKZOnYq2bdvCxcUFR48exXvvvYeRI0cCqDsTbMeOHejevTvs7e3h4eGBfv36YeHChfjmm2/QrVs3rFy5EmfOnEFcXByAuhGcadOm4fnnn4eXlxd8fX3xyiuvQP6PM/Wio6MxYcIETJo0CYsXL0ZcXBzy8/OxY8cOtG3bFkOHDr2ljyEsLAzbtm1DUlISvLy84Obm1mDUyBqwAJkBT4UnarwNub445zQXa33/B5e8ow0elwsGjD77O+5xcMNnLXpgTWkiagUezmkqefIKbHNMu7ro418nnSkgQyttIGKrvBBZ6oCAQoPJF30Ui8Kr6c9ucnZ2RpcuXfDBBx8gNTUVOp0OISEhmD59Ol5++WUAwOLFi/Hcc8/hyy+/RFBQEDIyMjBo0CC89tpreOGFF1BdXY2pU6di0qRJOH36tHHfCxcuhEajwfDhw+Hi4oJZs2ahtLT+RX+XL1+Ot99+G7NmzUJWVha8vb3RtWtXDBs27JY/hunTp2P37t3o1KkTNBqN1Z4GLxNs8cCehfl8TyoWbDkvdgwiq+Sg0GNTxCZEXf7xhttd8IvBgsAQHCpJNlMy+jcPg4NJFn0Uizo2FuE//iB2DDIRFiAzWHc8E8/9kCB2DCKrtiTyOEZmfwjZTRZH/C26JxYpq3ClyvbOWrFWdYs+eqNtlReiSh0RWAx45FbCLqugbtFHC/0x5DJwIII//kjsGGQiPARmBjwERnTnZqZ2wPHA+XizegHkldc/1DIweS96qhywvHVffK1JQbVenIuU0lUNFn0MufqYi8Hxpos+isWuWejNNyKrxREgM0jOLcc9H/whdgwim9DeVYPvXT+CQ8GZm26b7RGCheFt8FvxWTMko6YWUesh6qKP/nPnwGPsWJO/DomDBcgMSiq1aD/3N7FjENkMN1UtNjdbg+DMzbe0/eGwuzDfxQ4XNJdNnIzMQS0oEVfjj1aV7ggvsYNfoR4uJlj0MTQ+Hk5du9x8Q7JKLEBmEv3qFmhrb3xxQyJqnK+j9qNv5v8gE27+taWXKbCmdX98qstCmbbcDOlIDMG1bk226GPzXTuhCggwUVISGwuQmdzzwR4k52rEjkFkc54KTcdzpe9BVlN6840BFDt54eOYrlhbchaGWyhOZBvqFn30rb/oY045lJl5EIqKG2wvs7dHzMkTxiuek+1hATKTmatPYMNJ6VzMkciceniW4mv792FXnHLLz0kMaIUFfv44XnrBhMnIGvganNChyh8xGmeEFivglV8DF7kjopd+LXY0MiEWIDNZ+kcq5v3KtYCITMXfXoufg1bA58quRj1vc4s+eF9Whrxq21rEj+5M/9D+WNJ3idgxyITkN9+EmkKrADexIxDZtJwaO3RNn4YjIVMb9byh53fj59QkPOoWCzu5nYnSkbWJcIsQOwKZGAuQmbQMcBE7ApHN0wtyjEkZgC/934Cgcrrl5zlqK/DMyc3YUFKLPu4tTZiQrEW4W7jYEcjEeAjMjLrM+x25ZVyUjcgchvgU4GPZQijLGn/q+77IbnjXAcioaHghVjHoinXI+SEHmlMaGLQG2PnZIXhaMBzCHa77HE2iBjmrc1CTVQOVpwo+w33g0dPD+HjJgRLk/JQDQ7UBHj09EDD+6tlO2nwtMhZlIPLNSCgcFCb92CzV6mGr0dqrtdgxyIQ4AmRGrQJcxY5AJBlb8r0xoHwOSv26Nvq5PVIPYt25o5jl0gpOSkcTpLt1+go90t5Og0whQ7NZzRA1Lwr+4/whd7r+t29tvhYXP7gIpxZOiJwbCa97vJC1PAvlp+tO/68tr0XW8iwEPBiAsNlhKDlQgrKTV9fPufLtFfiN8ZNs+VHIFDwEJgEsQGbUKpAFiMicMqrU6Hx5Bs6FjG/0c1UGHSaf2opfcooxwqMNZBDndOj8zflQeakQ/GgwHCMcYedjB5c2LrD3tb/uc4p2FcHOxw4B4wOgDlTDa4AX3Dq5oXBbIYC6gqRwUMCtixscIxzh1NIJNVfqRqdL/iyBTCGDWyfpzlsMdwuHg/L6o2tkG1iAzIgToYnMr8Ygx70pw7Em8P8gKK5fGq7HuzwX7xz/FSt17mjjav55IeUny+EQ5oBLn1xC4lOJuPD6BRTtLrrhcyovVMK5lXO9+5xjnVGZWgkAsPezh0FrQNXFKtRqalGVXgV1iBr6Cj3y1uUh4GFpL/7HQ1/SwIuhmhEnQhOJ58W0tjgeMB/ztO9CUZHb6Oe3zUzAqkwZNrTqjyWGfBTVNFw8zxS0eVoU7SyC12Av+Az3QVV6FbK/y4ZMKYNHD49rPqe2tBZKt/rf3pWuShiqDDBoDVA4KRA8PRiZX2ZC0Apwv9sdLrEuyPwqE579PaEr0OHSh5cg6AX4jvKF213S+uWtlVcrsSOQGbAAmVGYlxOc7BSo0Jr+In5E1NCabH+ccXkbP/h8Cqf8k41+vgwC7jv3Owao3fC/lj3wfVkiag2Nu7xCowmAOlwN/9H+AACHZg6ozqxG0a6i6xagW+Ha0RWuHa8elq84X4GazBoEPhyI5BeTEfJ4CJRuSqTOTYVTjBOUrtL5cdHamyNAUsBDYGYkl8sQ489RICIxnS13QufsWUgPHnXb+3CpLsULJzZjbbkCd7vHNF24a1C6K6EOVNe7zz7QHrpC3fWf46ZEbWn9YlZbVgu5gxxyu4bf9g06A658cwWBjwRCm6eFoBfg1MIJ9gH2sPe3Nx46kwKlTIkYD9N+TskysACZGSdCE4mvolaBvhfGYmvwMxDktz+yEZGXgi9O/IYPlaEIdvRvwoRXOUY5oian/vIZ2hwtVN6q6z+nuSM0ifWvPag5q4Fj5LXPaMvflA/nWGc4hDlAMAjAPy6RJtTWv23rItwjoFaqb74hWT0WIDPjRGgiy/H4hS6Y7/k2DOrbP5QEAP1S9mHj+QQ85dqmyc8e8rrHC5Wplcj7OQ81uTUoOViCot1F8OrnZdwm58ccZC7NNN727OsJbZ4WOWtyUHOlBoU7ClF6uBReg7wa7L86qxqlh0vhd78fAMA+wB6QAUV7ilB+shw12TVwiJDOGVGcAC0dLEBmxonQRJZlaWYoxmM+qj1b3NF+7PQ1eCzhV2zK12CIR5smSgc4Rjgi9KlQlB4qxYVXLiB/Uz4CHgqA+93uxm1qS2qhLdRezeJjh2bPNoPmrAYXXr+Agq0FCJoSBJfY+t9/BEHAlfgr8B/vD7l93Y8DuZ0cQY8GIX9TPrK+zkLAxACoPK4/2mRrWICkgytBm1m1To/Wb2yD3sC3nciSeNnpsDnkO/hnbW+S/R0L7Yj57o5IKr/YJPsj81g7Yi2iPaLFjkFmwBEgM1OrFGgbzMNgRJamUKtCt7RHsD/kPxCaYNHDjpeOYc3pA3jVqQXc7fg1bw087D0Q5R4ldgwyExYgEfSK8hE7AhFdgyDIMCGlNz7xnQvBzvnmT7gJhaDHg2e245fLmXjQIxYKmTQvLWEtOvl3gkwmzorfZH4sQCLoHcMCRGTJFl+KxKOqBdA10RXB3SqL8erxzVhTqUYnN44wWKpOfp3EjkBmxAIkgnbB7nB3lM6kQiJrtKPQE31LX0dRQM8m22dMTiKWn9yBhXbh8HfgL0KW5i7/u8SOQGbEAiQChVyG7s29xY5BRDeRWW2PLhcfR0LIxCbd7+CkPdh0IRGPucXC/jauT0ZNz1PtiebuzcWOQWbEAiSS3pwHRGQVdAYZRqYMwbcBr0BowgXyHLSVeOrkZmwoqkE/D157Smwd/Tpy/o/EsACJpFc0CxCRNXktvTWedVqAWpegJt1vcNElfHh8K75AACKcg5t033TrePhLeliAROLvpkaMHxdFJLImG3J9cW/lXJT7Nv1k2bvTD2Ht2cN43rkVXFR3fgYaNU7XgK5iRyAzYwESUa9ozgMisjbJFQ7onPUMUkJGN/m+lYZaTDq9FT9fycf9HrGQy/gt2hzCXMMQ3kRn/JH14FeXiHgYjMg6VekVGJhyPzYGzYIgb/ozOr00+ZhzfDNW1bigrWtkk++f6usd3FvsCCQCFiARdQ73hIOKC6MRWatnUjviDff5MDiaZjS3ddZprEzYjXfUzeFt72mS1yCgdwgLkBSxAInIXqlAlwh+UyOyZt9cCcRo/TxUeTXdBVD/SQYBIxJ34pf0VExxj4XKBCNOUuZm74Y43zixY5AIWIBE1puHwYis3vFSZ3TNewGZwfea7DWcasrx3InNWFcG9HC/syvX01U9gnpAKVeKHYNEwAIkMs4DIrINpTolelx4GDtDnoRgwsnLYfmp+N+J7fhEHoxQxwCTvY5U9AnuI3YEEgkLkMgifZwR7OEgdgwiaiJTU7rjfZ+3INib9grwvVMPYMP5E3jGpTUclY4mfS1bpZQr0T2ou9gxSCQsQBagXwtfsSMQURP6+FI4JioWQPuvSyvM31uDu77UwGV+GXwXlmPU6kokFehveb+rz+ggm1OGUasrAQAqvRaPntqCIWvSkfZMChKfSkTBloJ6z6lMrcSFNy5A0At3/oHZmI5+HeFix/XYpIoFyAKMaBcodgQiamL7itzQq/hV5Af2Nd6352ItnrzLDn9Oc8JvEx2hMwD3rKxEhfbm5SSjxIDZ26vRM7T+maOncvV4b0s+fh6pwCePtUbe+jxUX64GAAh6AVdWXEHgI4GQKXiZh38bFDZI7AgkIhYgC9ApzBMhnjwMRmRrcmrs0DV9Go6ETAUAbH3YCZPb26G1rwLt/BWIH6nGpVIBx7JvPAqkNwiYsK4Kc/rYI8Kj/rft8wUGtPVToF+4Eo87Z6CTjwzDi7zgYeeGgi0FcIpxgmMED5H9m1KuxD3N7hE7BomIBchCjGrftNcXIiLLoBfkGJMyAMv834Cgcqr3WGlN3d+eDjcenZm7pwa+TjJM62DX4LFYXzmSC/W4VGrAxRIDkgv1mF5zBh+dSEPtgUoEPsAR5mvpFtANbiaep0WWjQXIQoyKYwEismVvZ8TgSfV81LqGAAAMgoCZW6vRPUSBNr7XXxB136VafHVChy+HX/tK9C19FJjXX42B31binpWVmN9fjZY+Csz+KQ/LetZi+tFKZL52CRdev4CKpAqTfGzWaEj4ELEjmFSfPn0wc+ZMs77m5MmTMWrUKLO+5p1gAbIQkT7OaBvM30aIbNmv+d64RzMHpX5d8eTmapzJ02P16Osf/i6vETBxfRW+HK6Gt+P1v10/3skOSTOckTTDGY93ssOKk1q42MvQLViB175NxeGResx5uD2ufJ4Fg85gig/NqjgoHdA/tH+T7W/y5MmQyWRYsGBBvfs3bNgAmYxzrywVC5AF4WEwItuXVqlGs2VKbEizw65HnBDsev1vw6nFBmSUCBj+fRWUc8ugnFuGbxJ02JRUC+XcMqQWNSwzBZUGzNlTg4+HqHEoS49oLzmivBR4QXUOLjU6jNKEQq2wN+WHaPH6h/aHo6pp50Wp1Wq8++67KC4ubtL9UuNptdpb2o4FyIKMaB8IpZy/LRDZKkEQUPTb/6BJ/hPy0e/jSJuXICgazuv5WwtvOU4/4YSTj1/9MyJGib7hCpx83Akhbg2/Xzy7rQbPdrVHsKscegPwzwGfWoOAMef3YmNhDQZ6tDLFh2gVhkcMb/J9DhgwAP7+/pg/f/4Nt1u7di1at24Ne3t7hIWFYfHixfUeDwsLw7x58zB16lS4uLggNDQUS5cuveE+KyoqMGnSJDg7OyMgIKDBPgGgpqYGs2fPRlBQEJycnNClSxfs3r0bAFBWVgYHBwds2bKl3nPWr18PFxcXVFbWLbtw+fJljB07Fu7u7vD09MTIkSORkZFx3Vw1NTV4+umn4evrC7VajR49euDIkSPGx3fv3g2ZTIbNmzejbdu2UKvV6Nq1K86cOVNvP/v27UPPnj3h4OCAkJAQPP3006iouHo4NywsDG+99RYmTZoEV1dXPPbYYzd8v/7GAmRBvJ3t0SeGK0MT2aqi3/4Hzdnd8B7+POR2jpiVEIoZeAkau6tf95PWV+Gl3+tOY1crZWjjq6j3x10tg4td3f12/zq1/bfUWiQX6vFk57rrhd0VpMD5AgO2pOiw9JgWCpkMMV5yBBZfwvvHt2IZ/NDcOcR8b4AF8HHwQZeALk2+X4VCgXnz5uHjjz9GZmbmNbc5duwYxo4di3HjxuH06dN488038dprryE+Pr7edosXL0anTp1w4sQJ/Pe//8UTTzyBpKSk6772888/jz179mDjxo3Yvn07du/ejePHj9fbZsaMGTh48CBWr16NU6dOYcyYMRg8eDBSUlLg6uqKYcOGYdWqVfWe891332HUqFFwdHSETqfDoEGD4OLigr1792L//v1wdnbG4MGDrzvi8sILL2Dt2rVYsWIFjh8/jubNm2PQoEEoKipqkH/x4sU4cuQIfHx8MHz4cOh0OgBAamoqBg8ejAceeACnTp3CmjVrsG/fPsyYMaPePhYtWoR27drhxIkTeO211677Xv2TTBAEro5lQX47l4vp3xwVOwYRmcDFd4dd8/629z+BA/3Owin/JPrEVyDMXY74UdeeGzR5QxVKqgVsGFf/EE6VTkD7LyqwZrQD2vtfnVS97LgWr+6sgb0S+OxeNYZG17+Yaq1ciTWt+uNT7WWU6zR3+BFavumx0/F0h6ebdJ+TJ09GSUkJNmzYgG7duqFVq1b46quvsGHDBtx33334+8fshAkTkJ+fj+3btxuf+8ILL2Dz5s04e/YsgLrRjJ49e+Lbb78FUDdq6O/vjzlz5uDxxx9v8NoajQZeXl5YuXIlxowZAwAoKipCcHAwHnvsMSxZsgSXLl1CREQELl26hMDAq2cFDhgwAJ07d8a8efOwYcMGTJw4Ebm5uXB0dERZWRn8/Pywfv16DB48GCtXrsTbb7+NxMRE47wmrVYLd3d3bNiwAffcc0+996GiogIeHh6Ij4/HQw89BADQ6XQICwvDzJkz8fzzz2P37t3o27cvVq9ejQcffLBe9vj4eIwdOxaPPvooFAoFvvjiC2Puffv2oXfv3qioqIBarUZYWBji4uKwfv36Rn3eeAU4C9OvhS/8XO2RW1YjdhQiamLNXvzlmveXAuicPRi/hK3F7skbbriP6xUjB5UMSTOcG9z/aAc7PHqN0+f/pjTUYsKZbbjXyQsfxnTF+pKzMAi2OVFaLpNjdPRok77Gu+++i379+mH27NkNHktMTMTIkSPr3de9e3csWbIEer0eCkVdcW3btq3xcZlMBn9/f+Tl5V3z9VJTU6HVatGly9VRLU9PT8TExBhvnz59Gnq9HtHR0fWeW1NTAy8vLwDAvffeC5VKhU2bNmHcuHFYu3YtXF1dMWDAAABAQkICLly4ABeX+itnV1dXIzU19Zq5dDodune/eqkRlUqFzp07IzExsd623bp1a5D9720SEhJw6tQpfPfdd8ZtBEGAwWBAeno6WrZsCQDo1KnTNd+fG2EBsjAKuQyjOwbj010N/0MRke2qqFWg74Wx+Lx5MwzK+gQy4dYvkdEUPCoK8ebxzRgb2BrzfXxxssz2vgf1DOqJQGfTrovUq1cvDBo0CC+99BImT558W/tQqeqP0slkMhgMt19KNRoNFAoFjh07ZixZf3N2rivNdnZ2GD16NFatWoVx48Zh1apVePDBB6FUKo376NixY70i8jcfH9NN3dBoNPjPf/6Dp59uOGoXGhpq/LeTk1ODx2+Gc4As0IOdQsEzJ4mk6fELXTDf6x0Y1B6ivH6rK2fxbcIuzLePhK/aS5QMpjI2ZqxZXmfBggX4+eefcfDgwXr3t2zZEvv376933/79+xEdHd2gmNyqyMhIqFQqHDp0yHhfcXExkpOTjbfj4uKg1+uRl5eH5s2b1/vj7+9v3G7ChAnYunUrzp49i507d2LChAnGxzp06ICUlBT4+vo22IebW8MlXCIjI2FnZ1fv49XpdDhy5Ahatao/Af/PP/9skP3vkZ0OHTrg3LlzDV6zefPmsLO7/sjmrWABskChXo64O9K2vvEQ0a1bmhmK8ZiPas8WomUYdn4Xfk5LwTT3WKjkqps/wcIFOQehR1APs7xWbGwsJkyYgI8++qje/bNmzcKOHTvw1ltvITk5GStWrMAnn3xyzcNlt8rZ2RnTpk3D888/j507d+LMmTOYPHky5PKrP96jo6MxYcIETJo0CevWrUN6ejoOHz6M+fPnY/PmzcbtevXqBX9/f0yYMAHh4eH1DqtNmDAB3t7eGDlyJPbu3Yv09HTs3r0bTz/99DUnfTs5OeGJJ57A888/j61bt+LcuXOYPn06KisrMW3atHrbzp07Fzt27DBm9/b2Ni6o+OKLL+LAgQOYMWMGTp48iZSUFGzcuLHBJOjbwQJkoR68K/TmGxGRzTpU4oruBS8hJ2igaBkcazSYeWIzNpQa0Nu9pWg5msLo6NGQy8z3I2/u3LkNDlt16NABP/zwA1avXo02bdrg9ddfx9y5c2/7UNnfFi5ciJ49e2L48OEYMGAAevTogY4dO9bbZvny5Zg0aRJmzZqFmJgYjBo1CkeOHKl3GEkmk2H8+PFISEioN/oDAI6Ojvjjjz8QGhqK+++/Hy1btsS0adNQXV0NV1fXa+ZasGABHnjgAUycOBEdOnTAhQsXsG3bNnh4eDTY7plnnkHHjh2Rk5ODn3/+2Ti607ZtW+zZswfJycno2bMn4uLi8Prrr9ebzH27eBaYhaqp1ePu+TtRWHFrCzoRkW2SyQR813wPul3+EjKI++16b2Q3vOcgIKPiiqg5GkslV+G30b/By4Ej65bk77PAiouL4e7ubvbX5wiQhbJXKjC1R7jYMYhIZIIgw0MpffCp3xwIdg3P8jKnnqkHse7cMTzn0gpOSuu5wnz/0P4sP9QAC5AFm9itGVzUPFGPiIBFF5vjUdUC6NzE/cVIZdBhyqmt+CWnGCM82kAGyz9jY2KriWJHIAvEQ2AWbtG2JHyy64LYMYjIQgSra7DJ/yt45uwTOwoAICGkHeZ7uuNsWbrYUa6pk18nLB+8XOwYZIE4AmThpvYIh6Pd7Z0eSUS2J7PaHl0uPYGEUMsY1Wh3OQHfJ/yBuQ7R8LQX59T9G5naZqrYEchCsQBZOE8nO4zjGWFE9A86gwwjk4fg24BXICjVYseBDALuO/c7fsnIwET3WChllnHoPtojGj2De4odgywUC5AVeKxXBOwU/FQRUX2vpbfGs04LoDfx6sa3yqW6FC+c2Iy1GgW6ucfc/AkmNqXNFLEjkAXjT1Ur4O+mxgMdg8WOQUQWaEOuL4ZUvYVy38ZfC8lUIvJSsPTEb1iiDEWQo58oGQKdAjE4bLAor03WgQXISjzROxIKueWfbUFE5pdc4YCuWTOREmLaC302Vv+UfdiYdBozXNvAQWHeQ3WTWk+CUm4Zh+LIMrEAWYlQL0eMaGcZw9xEZHkq9HIMTLkfG4NmQbCgS1fY11bjPwm/YlNBJQZ7tDbLa7rbu+P+qPvN8lpkvViArMh/+0TyIqlEdEPPpHbEG+7zYXDwFjtKPf4lmVh4fAuWG3wQ7WzaEzumtJkCB6WDSV+DrB/XAbIy//n2KLadzRU7BhFZuA5uGnzn/BEcCs+IHaUBvUyBH1v3xye6KyjVljXpvn0cfPDr/b9CbQFnx5Fl4wiQlZnRN0rsCERkBY6XOqNr3gvIDL5X7CgNKAQ9xp3Zjs2Xs/CgeywUsqZb6+yxto+x/NAtYQGyMrHBbugV7SN2DCKyAqU6JXpceBg7Q56EYMYrod8qt8pivHpiM9ZUOqCj253/chfkHIQHoh9ogmQkBZb3FUE3NaNvc7EjEJEVmZrSHe/7vAXB3k3sKNcUk3MO8Sd34D27CPjdwdyl/7b/L1QWNAGcLBsLkBXqHO7JUSAiapSPL4XjEcV8aN0t9xeoIUm78fOF85juFgs7uV2jntvcvTmGRQwzUTKyRSxAVurN4a24OjQRNcofRe7oVfwq8gP7ih3luhy0lXj65GZsKNGhr3urW37ejPYzILfAw3xkufi/xUpF+DhjSo8wsWMQkZXJqbFD1/RpOBpi2ZeJCCm8iI9ObMUXskCEOwXdcNtY71j0b9bfTMnIVvA0eCtWUVOLfot3I7esRuwoRGSFXg1LwrTCRZDpKsSOckM6uQqrWvfH5zUXoblG1m+HfIv2vu3NH4ysGkeArJiTvRIv39tS7BhEZKXezojBk+r5qHUNETvKDakMOjxyeit+vlKIUR6xkOHqirBDwoew/NBt4QiQDRj7+UEczigSOwYRWakIx2qs91kKt9w/xY5yS84ExWK+txdSKrOxadQm+Dv5ix2JrBALkA1IzC7DsI/3QW/gp5KIbo+93IANkb+g5eXVYke5JQJkSB6+EDEdp4sdhawUD4HZgJYBrni4i2mvrUNEtq3GIMeQlBH4IehFCIrGnYIuBplHGGLaThQ7BlkxFiAb8dzAGHg5Wf43LSKybC+ktsP/uS6A3slP7Cg3NuQ9QMVLXtDtYwGyEW6OKjw/KEbsGERkA9Zk+2OE9m1U+LQXO8q1xQwFou8ROwVZORYgGzK2UwjaBVvmUvdEZF3Oljuhc/YsZASPFDtKfSpHYMgCsVOQDWABsiFyuQxzRraBTHbzbYmIbqaiVoE+Fx7E1uBnIDThFdvvSM/nAHfOeaQ7xwJkY9qHuGNMx2CxYxCRDXn8QhfM93oHBrWHuEG8Y4C7nxE3A9kMFiAb9MLgFnBVK8WOQUQ2ZGlmKMZjPmo8RZprKFMAo/4HKHmyBzUNFiAb5O1sj9eHtxY7BhHZmEMlruhR8DJyggaa/8W7PwMEdzT/65LNYgGyUaM7BmNY2wCxYxCRjcnXqtAtbTIOhDwGAWaacOjbGujzknleiySDBciGvXNfLILcHcSOQUQ2RhBkeCilDz71mwPBztm0LyZXAffx0Bc1PRYgG+bmoMKSce2hkPO0MCJqeosuNsejqgXQuYWb7kV6zgIC2plu/yRZLEA27q4wTzzZJ1LsGERko3YUeqJv6eso8u/R9DsPjAN6zW76/RKBBUgSnhkQjQ6h7mLHICIblVltjy6XnkBCaBNem0vlBNy/DFComm6fRP/AAiQBCrkMH46Lg4s9T40nItPQGWQYmTwE3wa8AkHZBNfoGjwP8G5+5/shug4WIIkI8XTE2/e1ETsGEdm419JbY5bTAuidA29/Jy2GAR0nN1kmomthAZKQke2DcF9ckNgxiMjGrcv1xZCqt1Du26nxT3YJAEZ83PShiP6FBUhi5o5sjVBPR7FjEJGNS65wQNesmUgJGd2IZ8nqVnt29GzSLJMnT4ZMJsPjjz/e4LEnn3wSMpkMkydPbtLXJMvHAiQxLuq6U+OVPDWeiEysQi/HwJT7sTFoFgT5LUxm7v0CENnXJFlCQkKwevVqVFVVGe+rrq7GqlWrEBpqGxdX1ev1MBgMYsewGixAEtQh1ANP948SOwYRScQzqR3xpvs8GBy8r79R1CCTrvbcoUMHhISEYN26dcb71q1bh9DQUMTFxRnv27p1K3r06AF3d3d4eXlh2LBhSE1NNT6ekZEBmUyGdevWoW/fvnB0dES7du1w8OBB4zaFhYUYP348goKC4OjoiNjYWHz//ff18pSXl2PChAlwcnJCQEAAPvjgA/Tp0wczZ840blNTU4PZs2cjKCgITk5O6NKlC3bv3m18PD4+Hu7u7ti0aRNatWoFe3t7XLp0qQnfNdvGAiRRM/o2R+ewph1mJiK6nhVXgjDaMA9VXtc4GcMzArh/KSAz7cj01KlTsXz5cuPtr7/+GlOmTKm3TUVFBZ577jkcPXoUO3bsgFwux3333ddgZOWVV17B7NmzcfLkSURHR2P8+PGora0FUDey1LFjR2zevBlnzpzBY489hokTJ+Lw4cPG5z/33HPYv38/Nm3ahN9++w179+7F8ePH673GjBkzcPDgQaxevRqnTp3CmDFjMHjwYKSkpBi3qaysxLvvvotly5bh7Nmz8PX1bbL3y9bJBEEQxA5B4sgurcKIT/Yjv7xG7ChEJBFuqlpsbrYawZm/1t2hcgIe/Q3wM90FnCdPnoySkhJ8+eWXCAkJQVJSEgCgRYsWuHz5Mh599FG4u7sjPj6+wXMLCgrg4+OD06dPo02bNsjIyEB4eDiWLVuGadOmAQDOnTuH1q1bIzExES1atLhmhmHDhqFFixZYtGgRysvL4eXlhVWrVmH06Lo5UqWlpQgMDMT06dOxZMkSXLp0CREREbh06RICA6+eUTdgwAB07twZ8+bNQ3x8PKZMmYKTJ0+iXTuult1YHAGSsAA3Byyd2BH2Sv43ICLzKNUp0ePCw9gV8iQEmQIY8ZFJy88/+fj4YOjQoYiPj8fy5csxdOhQeHvXPyyXkpKC8ePHIyIiAq6urggLCwOABoeW2rZta/x3QEDdhafz8vIA1M3FeeuttxAbGwtPT084Oztj27Ztxn2kpaVBp9Ohc+fOxn24ubkhJibGePv06dPQ6/WIjo6Gs7Oz8c+ePXvqHZKzs7Orl4VuHVfGk7i4UA+8N7otnll9UuwoRCQhU1K647NBg3BvbG+zvu7UqVMxY8YMAMCnn37a4PHhw4ejWbNm+PLLLxEYGAiDwYA2bdpAq9XW206lujqpW/bXobu/D5MtXLgQH374IZYsWYLY2Fg4OTlh5syZDfZxIxqNBgqFAseOHYNCoaj3mLPz1QvQOjg4GF+fGocFiDCyfRBScjX4ZNcFsaMQkUT0b+GLwb1vY52gOzR48GBotVrIZDIMGjSo3mOFhYVISkrCl19+iZ49ewIA9u3b1+jX2L9/P0aOHImHH34YQF0xSk5ORqtWrQAAERERUKlUOHLkiPEMtNLSUiQnJ6NXr14AgLi4OOj1euTl5RmzUNNiASIAwKx7onEhT4OtZ3PEjkJENq6Fvws+HB8HuQjLcSgUCiQmJhr//U8eHh7w8vLC0qVLERAQgEuXLuH//u//Gv0aUVFR+Omnn3DgwAF4eHjg/fffR25urrEAubi44JFHHsHzzz8PT09P+Pr64o033oBcLjeO5kRHR2PChAmYNGkSFi9ejLi4OOTn52PHjh1o27Ythg4deofvBHHyBwGoG8L94MH2aB3oKnYUIrJhXk52WPZIJziLeG1CV1dXuLo2/F4nl8uxevVqHDt2DG3atMGzzz6LhQsXNnr/r776Kjp06IBBgwahT58+8Pf3x6hRo+pt8/7776Nbt24YNmwYBgwYgO7du6Nly5ZQq69eR2358uWYNGkSZs2ahZiYGIwaNareqBHdGZ4FRvVkl1bhvk8PIKesWuwoRGRj7BRyrJreBZ24BEcDFRUVCAoKwuLFi41nl5FpcQSI6glwc8DyKXfxyvFE1OTm3R/L8vOXEydO4Pvvv0dqaiqOHz+OCRMmAABGjhwpcjLpYAGiBloGuOLziR2hUvDMAiJqGv/tE4nRHYPFjmFRFi1ahHbt2mHAgAGoqKjA3r17G5yWT6bDQ2B0XetPZOK5HxLA/yFEdCcmdWuGuSOvsQI0kYg4AkTXdV9cMGbfE3PzDYmIrmPcXSGYM8I8Cx0SNQYLEN3Qk32b4+GuPOOAiBrvvrggzLsvlgv1kUViAaKbmjuiDe6N9Rc7BhFZkaGxAVg0pp0oa/0Q3QoWILopuVyGj8bFYVjbALGjEJEVGNjKDx+Oaw8Fyw9ZMBYguiVKhRwfjovDfXFBYkchIgvWO9oHnz7UAUoFf7yQZeP/ULplCrkMi8e0wxieykpE13B3pBe+mNgRdkr+aCHLx/+l1ChyuQzvjW6L8Z05MZqIrrorzAPLHukEtUpx842JLAALEDWaTCbDvPva4JFuzcSOQkQWoF2IO76efBcc7biCPFkPLoRId+TtX85h2b50sWMQkUhaB7pi1fSucHNQiR2FqFFYgOiOvbv1PP63O1XsGERkZtF+zlj9WDd4OtmJHYWo0XgIjO7Yi4Nb4On+UWLHICIzahvshu8e7cryQ1aLI0DUZD7ekYLFvyWLHYOITGxASz98PD4ODnac8EzWiwWImtQXe1Ixf8t5sWMQkYlMvjsMrw9rxRWeyeqxAFGT+3pfOt7afI5XkSeyIXIZ8MrQVpjWI1zsKERNggWITGLb2Rw8t+YkKrR6saMQ0R1yUCmwZFx7DGrNawKS7WABIpNJyinHo98cweWiKrGjENFt8na2w7JH7kL7EHexoxA1KRYgMqniCi2e+O4Y/kwrEjsKETVSc19nLJ98F0I8HcWOQtTkWIDI5Gr1Bsz5+Ry+/fOi2FGI6BZ1jfDEFxM7cYFDslksQGQ23x26iDc3nYVOz/9yRJbs/rggLHigLS9qSjaNBYjM6lBaIf773XEUVmjFjkJE1/B0/yg8NzBa7BhEJscCRGaXWVyJ6d8cQ2J2mdhRiOgvdgo53rmvDcZ0ChE7CpFZsACRKCq1tZj1QwK2nMkROwqR5EV4O+Gj8XFoE+QmdhQis2EBItEIgoAPd6Tgwx0pXDSRSCRjOgZjzsjWcLRTih2FyKxYgEh0W89k47kfElDJRROJzMZFrcS8+2IxvF2g2FGIRMECRBYhLV+D535IwMnLJWJHIbJ5HULd8eG4OK7vQ5LGAkQWQ28Q8PmeVHz4ewq0eoPYcYhsjlwG/LdPc8wcEAWlgqe4k7SxAJHFOXelDM/9cBLnc8rFjkJkM/xd1fjgwfboFukldhQii8ACRBZJW2vAkt+T8cUfadAb+F+U6E4MbOWH9x5oCw8nO7GjEFkMFiCyaMcvFWP2DwlIK6gQOwqR1bFXyvHq0JaY2C1M7ChEFocFiCxelVaPd7eex4qDGTxdnugWRfs54+PxHRDj7yJ2FCKLxAJEVuPAhQI8/9MpZJVUiR2FyGIp5TJM6R6GWffEQK1SiB2HyGKxAJFVKa/W4a1fzuGHo5liRyGyOB1C3fHOfbFoGeAqdhQii8cCRFbp93O5eGn9aeSX14gdhUh0bg4qvDA4Bg91DoVMJhM7DpFVYAEiq1VSqcXi7clYdfgSzxQjybovLgivDG0Jb2d7saMQWRUWILJ653PKMGfTORxMKxQ7CpHZNPd1xtwRrXF3c2+xoxBZJRYgshlbTmfjnV8TkVnMSdJku1zVSswcEI1J3ZpxNWeiO8ACRDalWqfHsr1p+Gx3Ki+uSjZFLgPGdQ7F7Hti4MkFDYnuGAsQ2aSc0mp88FsyfjqeyflBZPW6hHvijeGt0SqQZ3cRNRUWILJpybnleG/refyemCd2FKJGC/d2wux7YjC0bYDYUYhsDgsQScLh9CLM35KIE5dKxI5CdFMxfi74b99IDGsbCIWcp7UTmQILEEnK1jPZeG9rEq8tRhapTZArZvSNwqDWflzPh8jEWIBIcmr1Bvx6JgfL9qbhVGap2HGI0CHUHU/1i0LfFr5iRyGSDBYgkrQ/0wqxbG8adpzP44VWyey6RXjhqX7NuZYPkQhYgIgApOZrsGxvOtYdz0RNrUHsOGTjekf74Kl+zdEpzFPsKESSxQJE9A+Fmhp8++dFfHvwIgortGLHIRsikwEDW/rhqX5RiA12EzsOkeSxABFdQ7VOj3XHs7BsXxrS8jlhmm6fnVKOIW388USfSLTw5zo+RJaCBYjoBgRBwI7EPHy5Nw2H0ovEjkNWpHWgK8Z2CsHI9oFwd+TKzUSWhgWI6BadzizFV/vSsPVsDqp1nCdEDXk4qjCyfRDGdApG60Ae5iKyZCxARI1UUVOL7edysOnkFexNKUAtL7UhaQq5DD2jvDGmYwgGtvKDnZIXKCWyBixARHegqEKLX09nY1PCFRzJKOKp9BIS5uWIMZ1C8ECHYPi7qcWOQ0SNxAJE1ESulFThl1NXsPHkFZy9UiZ2HDIBRzsF7o0NwNhOIegczlPYiawZCxCRCaTma7Dx5BX8nHAF6bzshlVztleie3Mv9G/ph6GxAXCyV4odiYiaAAsQkYmdyizBppNX8MupbOSUVYsdh25BC38X9InxRe9oH3QK84BKwXk9RLaGBYjITARBQGJ2OQ6mFeJgaiEOpReivLpW7FgEwEWtRM8ob/SO9kHvaF/O6SGSABYgIpEYDALOXinDwbQCHEwtxJGMYmhqWIjMQSYDWgW4ok9MXeHpEOoOJUd5iCSFBYjIQtTqDTidVWocITqaUYwqnV7sWDbD08kOd0d6oU+ML3pFe8PXhaM8RFLGAkRkoXR6AxIul+BgaiEOphXi2MViXqj1FrnYK9E6yBXtgt3RNtgdbYPdEOLpKHYsIrIgLEBEVkKnNyAtvwLnc8qQlFOO8znlSMopR1ZJldjRROXlZIcYfxfE+LsgNsgNbYPdEenjBJlMJnY0IrJgLEBEVq6sWoekv8pQWn4F0gs0yCisxOWiSptapdrZXolwbyfE+Lughb8LWvi7IsbfBT4u9mJHIyIrxAJEZKNq9QZcKqpERmEF0vIrcLGwEkUVWpRUaVFcoUNJpRbFlTrR5xnZK+Xwc1XDz9Uevq5q+LnU/dvPVQ3fv/72c1XDmevvEFETYgEikrhqnR6lVToUV14tRiV/3S6p1KG4oq4olVXpIECAXCaDUiGDQi6HQoa6v+WAUi6HQi67+kcmg0Lx199yGZRyGTyc7ODrcrXU+Lna80rpRCQKFiAiIiKSHC58QURERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLDAkRERESSwwJEREREksMCRERERJLz//YvxpBUC6+kAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lst=df.groupby('DevType')['DevType'].count()\n", + "plt.figure(figsize=(6,6))\n", + "plt.pie(list(lst.values), labels=list(lst.keys()), autopct='%1.1f%%') # Plot the pie chart\n", + "plt.title('Developer Type') # Add a title\n", + "#plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle\n", + "\n", + "# Display the pie chart\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Language to worked with" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LanguageWorkedWith\n", + "Java;JavaScript;PHP;SQL;TypeScript;HTML;CSS 2\n", + "JavaScript;PHP;HTML;CSS 2\n", + "C;F#;Haskell;Python;Scala 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['LanguageWorkedWith'].value_counts().nlargest(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "14" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['LanguageWorkedWith'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "df['LanguageWorkedWith'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['LanguageWorkedWith'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LanguageWorkedWith\n", + "Java;JavaScript;PHP;VB.NET;HTML;CSS 3\n", + "Assembly;C;C++;Java;Python;Delphi/Object Pascal 2\n", + "Java;JavaScript;PHP;SQL;TypeScript;HTML;CSS 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['LanguageWorkedWith'].value_counts().nlargest(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## LanguageDesireNextYear" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LanguageDesireNextYear\n", + "C#;JavaScript;PHP;SQL;HTML;CSS 2\n", + "JavaScript;Python;HTML;CSS 1\n", + "C#;JavaScript;TypeScript 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['LanguageDesireNextYear'].value_counts().nlargest(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "18" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['LanguageDesireNextYear'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "df['LanguageDesireNextYear'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['LanguageDesireNextYear'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LanguageDesireNextYear\n", + "Java;Python 4\n", + "JavaScript;PHP;SQL;Swift;CSS;Bash/Shell 2\n", + "C#;Java;JavaScript;Ruby;TypeScript;HTML;CSS 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['LanguageDesireNextYear'].value_counts().nlargest(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Years of coding (Exp)" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "YearsCodingProf\n", + "3-5 years 26\n", + "0-2 years 20\n", + "6-8 years 12\n", + "9-11 years 9\n", + "12-14 years 6\n", + "18-20 years 3\n", + "21-23 years 2\n", + "24-26 years 2\n", + "15-17 years 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['YearsCodingProf'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['YearsCodingProf'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "df['YearsCodingProf'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['YearsCodingProf'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "YearsCodingProf\n", + "3-5 years 27\n", + "0-2 years 21\n", + "6-8 years 12\n", + "9-11 years 9\n", + "12-14 years 6\n", + "18-20 years 3\n", + "21-23 years 2\n", + "24-26 years 2\n", + "15-17 years 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['YearsCodingProf'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Years of coding (Non Exp)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "YearsCoding\n", + "6-8 years 17\n", + "3-5 years 15\n", + "9-11 years 15\n", + "0-2 years 11\n", + "15-17 years 7\n", + "12-14 years 6\n", + "24-26 years 5\n", + "18-20 years 4\n", + "30 or more years 3\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['YearsCoding'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['YearsCoding'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [], + "source": [ + "df['YearsCoding'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['YearsCoding'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "YearsCoding\n", + "6-8 years 17\n", + "3-5 years 15\n", + "9-11 years 15\n", + "0-2 years 11\n", + "15-17 years 7\n", + "12-14 years 6\n", + "24-26 years 5\n", + "18-20 years 4\n", + "30 or more years 3\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['YearsCoding'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Operating System" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OperatingSystem\n", + "Windows 32\n", + "MacOS 20\n", + "Linux-based 15\n", + "BSD/Unix 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['OperatingSystem'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "15" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['OperatingSystem'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [], + "source": [ + "df['OperatingSystem'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['OperatingSystem'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [], + "source": [ + "lst=df['OperatingSystem'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAFeCAYAAACb0VgpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXz0lEQVR4nO3dd3xT9f7H8VdW073pXpSWUVr2EJFRBGQqLpSryHLjuirugbhQcaI48DJ+CnKvgojKEgUcDJmyoYyW1ULpXmmb5Pz+qARqS1lNTtJ+no9HH5qTMz5JS9455zuORlEUBSGEEOIctGoXIIQQwrlJUAghhKiTBIUQQog6SVAIIYSokwSFEEKIOklQCCGEqJMEhRBCiDpJUAghhKiTBIUQQog6SVC4uNGjRxMXF3dJ206cOBGNRlO/BYkGIT09HY1Gw6xZs9QuRTgBCYqz7Ny5k9tvv53IyEiMRiMRERHcdttt7Ny5U9W6jh8/zsSJE9m6dauqddS377//nl69ehESEoKnpyfx8fEMHz6cpUuX2uV4ixcvZuLEiXbZ9+WYNWsWGo2GjRs31vr8kCFDLvnLgBD1QYLibwsWLKBDhw78/PPPjBkzhmnTpjFu3DhWrlxJhw4d+Pbbb1Wr7fjx47z00ku1BsX06dPZu3fvJe33ueeeo6ys7DKruzRTpkzh2muvRaPR8PTTT/Puu+9y4403kpaWxrx58+xyzMWLF/PSSy/ZZd9CNGR6tQtwBgcOHGDkyJHEx8fz66+/0qRJE9tzDz/8MD169GDkyJFs27aN+Pj4yz6eyWTCzc0Nrfbyc9pgMFzytnq9Hr3e8X8CZrOZl19+mX79+rF8+fIaz588edLhNQkhzk3OKIC33nqL0tJSPvvss2ohARAcHMynn35KSUkJb775ZrXnjh07xtixYwkNDcVoNNK6dWtmzJhRbZ1Vq1ah0WiYN28ezz33HJGRkXh6elJYWEhubi6PP/44KSkpeHt74+vry8CBA/nrr7+qbd+5c2cAxowZg0ajqXbt+J9tFKevLU+ZMoXPPvuMZs2aYTQa6dy5Mxs2bKhWW21tFBqNhgceeICFCxeSnJxse121XQ5atWoVnTp1wt3dnWbNmvHpp59eULvHqVOnKCwspHv37rU+HxISAkBxcTFeXl48/PDDNdY5evQoOp2O119/HYDKykpeeuklEhMTcXd3JygoiKuuuoqffvrJ9j599NFHttd4+uc0q9XKe++9R+vWrXF3dyc0NJR77rmHvLy8aseNi4tjyJAhttfu4eFBSkoKq1atAqrOTFNSUnB3d6djx45s2bKlzvfiUs2bN4+OHTvi4+ODr68vKSkpvP/++9XWyc/P55FHHiE6Ohqj0UhCQgJvvPEGVqu1xnqjR4/Gz88Pf39/Ro0aRX5+vl3qFi5KEUpERIQSFxdX5zpxcXFKVFSU7XFWVpYSFRWlREdHK5MmTVI+/vhj5dprr1UA5d1337Wtt3LlSgVQkpKSlHbt2invvPOO8vrrryslJSXKhg0blGbNmilPPfWU8umnnyqTJk1SIiMjFT8/P+XYsWO240yaNEkBlLvvvlv54osvlC+++EI5cOCAoiiKMmrUKCU2NtZ2vEOHDimA0r59eyUhIUF54403lDfffFMJDg5WoqKilIqKCtu6L774ovLPPwFAadu2rRIeHq68/PLLynvvvafEx8crnp6eyqlTp2zrbd68WTEajUpcXJwyefJk5dVXX1UiIiKUtm3b1tjnP1ksFsXDw0Pp2LGjkpOTU+e6t912mxIaGqqYzeZqy998801Fo9EoGRkZiqIoyjPPPKNoNBrlrrvuUqZPn668/fbbyogRI5TJkycriqIoa9asUfr166cAtvfwiy++sO3vzjvvVPR6vXLXXXcpn3zyifLkk08qXl5eSufOnau9Z7GxsUqLFi2U8PBwZeLEicq7776rREZGKt7e3sqXX36pxMTEKJMnT1YmT56s+Pn5KQkJCYrFYqnzNc6cOVMBlA0bNtT6/ODBg6v9jpcvX64AytVXX6189NFHykcffaQ88MADys0332xbp6SkRGnTpo0SFBSkPPPMM8onn3yi3HHHHYpGo1Eefvhh23pWq1Xp2bOnotVqlfvvv1+ZOnWq0qdPH6VNmzYKoMycObPO2kXj0OiDIj8/XwGU6667rs71TodAYWGhoiiKMm7cOCU8PLzah6eiKMqtt96q+Pn5KaWlpYqinAmK+Ph427LTTCZTjQ+RQ4cOKUajUZk0aZJt2YYNG875j/ZcQREUFKTk5ubaln/33XcKoHz//fe2ZecKCjc3N2X//v22ZX/99ZcCKFOnTrUtGzp0qOLp6WkLNEVRlLS0NEWv1583KBRFUV544QUFULy8vJSBAwcqr776qrJp06Ya6y1btkwBlCVLllRb3qZNG6VXr162x23btlUGDx5c5zHHjx9fa22//fabAihz5syptnzp0qU1lsfGxiqAsmbNmho1enh42IJLURTl008/VQBl5cqVddZ1sUHx8MMPK76+vjXC82wvv/yy4uXlpezbt6/a8qeeekrR6XTK4cOHFUVRlIULFyqA8uabb9rWMZvNSo8ePSQohE2jv/RUVFQEgI+PT53rnX6+sLAQRVGYP38+Q4cORVEUTp06Zfu55pprKCgoYPPmzdW2HzVqFB4eHtWWGY1GWzuFxWIhJycHb29vWrRoUWP7i3XLLbcQEBBge9yjRw8ADh48eN5t+/btS7NmzWyP27Rpg6+vr21bi8XCihUrGDZsGBEREbb1EhISGDhw4AXV99JLLzF37lzat2/PsmXLePbZZ+nYsSMdOnRg9+7d1WqJiIhgzpw5tmU7duxg27Zt3H777bZl/v7+7Ny5k7S0tAs6/tm+/vpr/Pz86NevX7XfZceOHfH29mblypXV1k9KSqJbt262x127dgWgT58+xMTE1Fh+Ie/5xfD396ekpMR2Wa02X3/9NT169CAgIKDaa+rbty8Wi4Vff/0VqGrg1+v13HfffbZtdTodDz74YL3WLFxbow+K0wFwOjDO5exAyc7OJj8/39amcfbPmDFjgJoNsk2bNq2xT6vVyrvvvktiYiJGo5Hg4GCaNGnCtm3bKCgouKzXdfYHFmALjX9ec7+QbU9vf3rbkydPUlZWRkJCQo31alt2LiNGjOC3334jLy+P5cuX869//YstW7YwdOhQTCYTAFqtlttuu42FCxdSWloKwJw5c3B3d+fmm2+27WvSpEnk5+fTvHlzUlJSmDBhAtu2bbugOtLS0igoKCAkJKTG77O4uLjG7/Kf74+fnx8A0dHRtS6/kPf8fM5uT7n//vtp3rw5AwcOJCoqirFjx9ZoQ0pLS2Pp0qU1Xk/fvn2BM3+fGRkZhIeH4+3tXW37Fi1aXHbNouFo9L2e/Pz8CA8PP++HyrZt24iMjMTX19f2gXX77bczatSoWtdv06ZNtcf/PJsAeO2113j++ecZO3YsL7/8MoGBgWi1Wh555JEaDY4XS6fT1bpcuYA7317OtpfC19eXfv360a9fPwwGA7Nnz2b9+vX06tULgDvuuIO33nqLhQsXMmLECObOncuQIUNsH8QAPXv25MCBA3z33XcsX76czz//nHfffZdPPvmEO++8s87jW61WQkJCqp21nO2fHRzO9f5c6vvm7u4OcM6uyqWlpbZ1oKqxf+vWrSxbtowlS5awZMkSZs6cyR133MHs2bNtr6lfv3488cQTte6zefPmddYkxNkafVBA1YCm6dOn8/vvv3PVVVfVeP63334jPT2de+65B6j64PDx8cFisdi+oV2Kb775htTUVP7zn/9UW56fn09wcLDtsbONng4JCcHd3Z39+/fXeK62ZRejU6dOzJ49m8zMTNuy5ORk2rdvz5w5c4iKiuLw4cNMnTq1xraBgYGMGTOGMWPGUFxcTM+ePZk4caItKM71PjZr1owVK1bQvXv3WgPd3mJjYwHYu3ev7RLh2fbt20dycnK1ZW5ubgwdOpShQ4ditVq5//77+fTTT3n++edJSEigWbNmFBcXn/fvMzY2lp9//pni4uJqZxWXOjZHNEyN/tITwIQJE/Dw8OCee+4hJyen2nO5ubnce++9eHp6MmHCBKDqm+ONN97I/Pnz2bFjR439ZWdnX9BxdTpdjW+bX3/9NceOHau2zMvLC8BpuizqdDr69u3LwoULOX78uG35/v37WbJkyXm3Ly0tZe3atbU+d3r7f176GDlyJMuXL+e9994jKCioRlvIP39v3t7eJCQkUF5eblt2rvdx+PDhWCwWXn755Rr1mM1mu7/vHTt2JCQkhM8//7xavQALFy7k2LFj1V7vP1+rVqu1ncGe3n748OGsXbuWZcuW1Thefn4+ZrMZgEGDBmE2m/n4449tz1ssllqDWDReckYBJCYmMnv2bG677TZSUlIYN24cTZs2JT09nf/85z+cOnWKr776qloD7+TJk1m5ciVdu3blrrvuIikpidzcXDZv3syKFSvIzc0973GHDBnCpEmTGDNmDFdeeSXbt29nzpw5NQb1NWvWDH9/fz755BN8fHzw8vKia9eutbZ7OMrEiRNZvnw53bt357777sNisfDhhx+SnJx83qlGSktLufLKK7niiisYMGAA0dHR5Ofns3DhQn777TeGDRtG+/btq23zr3/9iyeeeIJvv/2W++67r8ZAw6SkJHr37k3Hjh0JDAxk48aNfPPNNzzwwAO2dTp27AjAQw89xDXXXINOp+PWW2+lV69e3HPPPbz++uts3bqV/v37YzAYSEtL4+uvv+b999/npptuqp83rhZubm5MmTKFUaNG0blzZ2655RaCgoLYsmULM2bMoE2bNtx999229e+8805yc3Pp06cPUVFRZGRkMHXqVNq1a0erVq2Aqi8/ixYtYsiQIYwePZqOHTtSUlLC9u3b+eabb0hPTyc4OJihQ4fSvXt3nnrqKdLT00lKSmLBggWX3UYmGhg1u1w5m23btikjRoxQwsPDFYPBoISFhSkjRoxQtm/fXuv6J06cUMaPH69ER0fb1r/66quVzz77zLbO6e6xX3/9dY3tTSaT8thjjynh4eGKh4eH0r17d2Xt2rVKr169qnX9VJSq7q1JSUm27qenuy2eq3vsW2+9VeN4gPLiiy/aHp+re+z48eNrbBsbG6uMGjWq2rKff/5Zad++veLm5qY0a9ZM+fzzz5XHHntMcXd3r/X9Oq2yslKZPn26MmzYMCU2NlYxGo2Kp6en0r59e+Wtt95SysvLa91u0KBBNbqmnvbKK68oXbp0Ufz9/RUPDw+lZcuWyquvvlptDITZbFYefPBBpUmTJopGo6nx2j/77DOlY8eOioeHh+Lj46OkpKQoTzzxhHL8+PFq70Nt3XBre9/q+l3UZsmSJUpqaqri6+urGAwGpWnTpsqjjz6q5OXlVVvvm2++Ufr376+EhIQobm5uSkxMjHLPPfcomZmZ1dYrKipSnn76aSUhIUFxc3NTgoODlSuvvFKZMmVKtfclJydHGTlypOLr66v4+fkpI0eOVLZs2SLdY4WNRlHs1EIpGqVhw4ZdcjfV87n++uvZvn37ZbeDCCEujrRROKnTU39c7vXx0aNHM2zYsHqp6Z/+2UsnLS2NxYsX07t373o/VmZmJj/++CMjR46s930LIeomQeEAp9sWTjcgQtU8RgaDocaH6umACA8PJzMzs1oXUGcTHx/P008/zfTp03nuuee44oorcHNzO2eXzEtx6NAhvvzyS0aMGIHBYLD1PBNCOI40ZjtAamoqxcXFbNy4kSuuuAKo6nIbFhbG+vXrMZlMtn7yK1euJCYmxiUGPA0YMICvvvqKrKwsjEYj3bp147XXXiMxMbHejrF69WrGjBlDTEwMs2fPJiwsrN72LYS4MHJG4QAtWrQgPDzcNsMoVJ05XHfddTRt2pR169ZVW56amlrj0tOsWbPw9/dn2bJltGrVCm9vbwYMGFBtvIHFYuHRRx/F39+foKAgnnjiiRrdb8vLy3nooYdsYyGuuuqqarPKdurUiSlTptgeDxs2DIPBQHFxMVA1a6tGo2H//v3MnDmTJ554gujoaMrLy9myZQuvvfZafb51jB49GkVRyMjIsGvPIyHEuUlQOEhqamq1OYNWrlxJ79696dWrl215WVkZ69evJzU1tdZ9lJaWMmXKFL744gt+/fVXDh8+zOOPP257/u2332bWrFnMmDGD33//ndzc3Bo3XHriiSeYP38+s2fPZvPmzSQkJHDNNdfYuvP26tXLFmiKovDbb7/h7+/P77//DlR9w4+MjCQhIYGNGzfy0EMPMWnSJPbu3cvSpUvp2bNnvb1nQggnoWqfq0Zk+vTpipeXl1JZWakUFhYqer1eOXnypDJ37lylZ8+eiqJUdTcFlIyMDFu32tNdI0/PMHr2rK4fffSREhoaanscHh5ebRbQyspKJSoqyjYzbnFxsWIwGKrNhlpRUaFERETYtlu0aJHi5+enmM1mZevWrUpYWJjy8MMPK08++aSiKFXTcf/rX/9SFEVR5s+fr/j6+tpm1BVCNExyRuEgvXv3pqSkhA0bNvDbb7/RvHlzmjRpQq9evWztFKtWrSI+Pr7WSfkAPD09qw36Cw8Pt03uVlBQQGZmpm3GUqi6g12nTp1sjw8cOEBlZWW1GwYZDAa6dOlim7G1R48eFBUVsWXLFlavXk2vXr3o3bu37Sxj9erVtgb4fv36ERsbS3x8PCNHjmTOnDm2ebCEEA2HBIWDJCQkEBUVxcqVK1m5cqVtwruIiAiio6NZs2YNK1eupE+fPufcxz9HI2s0mnqfqM/f35+2bduyatUqWyj07NmTLVu2sG/fPtLS0my1+/j4sHnzZr766ivCw8N54YUXaNu2rdNMNSKEqB8SFA50upF61apV1brF9uzZkyVLlvDnn3+es33ifE7Pgrt+/XrbMrPZzKZNm2yPmzVrhpubG3/88YdtWWVlJRs2bCApKcm27HS7ya+//krv3r0JDAykVatWvPrqq4SHh1ebeVSv19O3b1/efPNNtm3bRnp6Or/88sslvQYhhHOS7rEOlJqayvjx46msrLR9K4eqD+YHHniAioqKSw4KgIcffpjJkyeTmJhIy5Yteeedd6p9u/fy8uK+++5jwoQJBAYGEhMTw5tvvklpaSnjxo2zrde7d2+mTp1KkyZNaNmypW3Zhx9+WO0eED/88AMHDx6kZ8+eBAQEsHjxYqxWq0t07RVCXDgJCgdKTU2lrKyMli1bEhoaalveq1cvioqKbN1oL9Vjjz1GZmYmo0aNQqvVMnbsWK6//vpqE7xNnjwZq9XKyJEjKSoqolOnTixbtqzG3fCsVmu1MOvduzfvv/9+tTMhf39/FixYwMSJEzGZTCQmJvLVV1/RunXrS34NQgjnI3M9CSGEqJO0UQghhKiTBIUQQog6SVAIIYSokwSFEEKIOklQCCGEqJMEhRBCiDpJUAghhKiTBIUQQog6ychsUe+Ky81kFZg4WWQiu6icU8UV5BSXk1daSWmFmbIKC2WVFkorqn7KKsyUVVpQFNBqNOi0GjQa0Gk1aDVV/+9h0OHjrsfX3YCPuwFfj6r/9/UwEOBpIMzPnUh/D8L83DHqdWq/BUI0KBIU4pLkFJdz6FQJB0+VcOhUCYeyS0jPKeFoXhnF5ebz78BONBoI8nIj3M+DCH93Iv09aRbiRWKID81DvfH3dFOtNiFclUzhIepksSocyC5m29ECdhwrYPuxAvafLKagrFLt0i5JEx8jzUO9/w4OH1Ii/WgV7oNeJ1dhhTgXCQpRTVaBifWHcthyOJ8dxwrYlVlIaYVF7bLsysOgIyXKj/Yx/nSICaBDTABNfIxqlyWE05CgaORyistZezCHtQeqfg6eKlG7JKcQFeDBFfFB9EgMpkdiEwK95JKVaLwkKBoZi1Vh/aEcft59kj/2n2LviSLkL6BuWg0kR/rRIzGYnolN6BAbgEEuVYlGRIKiESirsLB6XzbLd2Wxcs9J8kpds33BWXgb9fRsHsyA5HD6tAzB2yh9QkTDJkHRQJWUm1m6I4slO7L4fX82pkqr2iU1SG56LT0TgxnSJoJ+SaF4SWiIBkiCogGxWhXWHMhh/uajLN2RRVllw26EdjbuBi19WoZwQ/soUluGoNNq1C5JiHohQdEA7D9ZzPzNR1m45RiZBSa1yxFAqK+RmzpGcUunGGKCPNUuR4jLIkHhoiotVhZvz+T/1mawKSNP7XLEOWg0cGWzIG7pHMM1rUNl1LhwSRIULuZUcTlz1x9mzvoMThSWq12OuAgBngb+1TWGUVfGEeLjrnY5QlwwCQoXseNYATP/SOf7bcepMEvDtCtz02sZ1i6Cu3vGkxDio3Y5QpyXBIWTW38whw9+SeOP/TlqlyLqmUYDqS1CuKtHPN2aBaldjhDnJEHhpNYcOMX7K9JYfyhX7VKEA7SN9ufffRPp3SJE7VKEqEGCwsn8nnaKD35O4890CYjGqEtcII/1b07XeDnDEM5DgsJJbEjP5Y0le9goPZgE0CMxmMf7t6BttL/apQghQaG2A9nFTF6yh592nVC7FOGE+rYK5amBLUkI8Va7FNGISVCoJL+0gnd/2sec9YcxW+VXIM7NoNNwR7c4HumbiI+7Qe1yRCMkQeFgZouVL9dl8N7PaeTL5HziIgR7G3nimhbc3CkKjUamBxGOI0HhQFuP5PP0gu3szixUuxThwtpG+THx2ta0jwlQuxTRSEhQOEBxuZkpy/byf2vTkatMoj5oNDC8YzTPDG6Fn4dcjhL2JUFhZ8t3ZvHiop0yWZ+wi1BfI68OS6FvUqjapYgGTILCTk4Umnjhux0s2ym9mYT9XdcugolDWxMgt2wVdiBBYQdLtmfy9LfbpbFaOFSwtxuTrktmUEq42qWIBkaCoh6VlJuZuGgnX286qnYpohEb3Cac129IwVe60op6IkFRTzYfzuPf/91KRk6p2qUIQVSABx+MaE8H6Rkl6oEExWWyWBWm/pLGh7/sl4FzwqnotRoe7d+c+3o1k3EX4rJIUFyG7KJyxs/dzJ8yw6twYj0Sg3n3lnYEexvVLkW4KAmKS7QpI4/752ySu8wJl9DEx8j7t7TjyoRgtUsRLkiC4hJ8sTadl3/YTYVF7jQnXIdOq+HZQa0Ye1VTtUsRLkaC4iKYKi08++0O5m+WXk3Cdd3SKZqXhyXjpteqXYpwERIUF+h4fhl3f7GRHcdknibh+jrFBvDx7R1p4iPtFuL8JCguwK7jhYyZ9ae0R4gGJcLPnc/u6ERypJ/apQgnJ0FxHqv3ZTN+zmaKy81qlyJEvXM3aHnvlvYMSA5TuxThxCQo6vC/DUd45tvtMj5CNGhaDbx0XTIjr4hVuxThpCQozuGd5Xv54Jf9apchhMM8kJrA49e0ULsM4YQkKP7BYlV4av42ma9JNEojusTw6rBktFoZyS3OkKA4i9li5d//+4vv/zqudilCqGZwm3DeHd5Ous8KGwmKv1VarDw4dwtLd2apXYoQquvdogmfjuyIUa9TuxThBCQogHKzhfu/3MzPe06qXYoQTkPCQpzW6M8tTZUW7vq/TRISQvzDqr3Z3PflZirMMlVNY9eozyhMlRbGztrAmgM5apcihNPq2yqEabd1lDaLRqzR/ubNFivj52yWkBDiPFbsPsn4uZuplEkwG61GGRSKojDhm21yuUmIC/TTrhM8OHcLFhl82ig1yqB46ftdfLvlmNplCOFSlu7M4oXvdqhdhlBBowuK91bsY9aadLXLEMIlzVl/mA9/SVO7DOFgjSooZq9J570V8kcuxOWYsnwfX288onYZwoEaTVD8tOsEL32/U+0yhGgQnl6wnZV7pY2vsWgUQbE7s5BH5m1B2uGEqB9mq8L4OZv560i+2qUIB2jwQZFdVM6dszdSUmFRuxQhGpTSCgt3/d9GThaa1C5F2FmDHnBXbrYw4rN1bD6cr3YpLiv/9zkU/PFVtWX6wCgi7/oEgJylH2LK2IqlOBeNwR1jZCsCeo/GEBR9zn0qikLB73Mo/msZ1vISjJGtCOx/P4bAyKrnzZXkLP2A0rR16LwCCOx/Px5x7WzbF6yfj6Uwm8B+99b/CxYXrX2MP/+9u5sMyGvAGnRQPPrfrSyQbrCXJf/3OZTu/YPQW149s1CrRedZdfvMoq1LMQRFofdtgqWsiII/5lJx4hCR936ORlv7HEEF676hYN3XBA/+N3q/UPJ/+5LK7HQi7vwYjd6Nwk3fU7xlMcHXPUXZwU0U/jmfqAe+RKPRUJmfxcn/vUD4qPfQGj0d8RaIC3Br52gm39hG7TKEnTTYrwCfrD4gIVFftDp03gFnfjzP3GPZp90A3KOT0fuFYgxLwL/HSCxF2ZgLam/oVBSFoo3f4dftFjwTr8AtpCnBQx7FXJxL6b61AFTmHMEjoStuTWLx6TAYa2kB1rJCAHKXTyOg92gJCSczb8MRvliXoXYZwk4aZFCsPZDDW8v2ql1Gg2HOO87Rj+7g2CfjyP7+LcyFtYeAtcJE8fYV6P1C0fsG176vghNYSvKqXUrSGr0wRrSg/PgeANxCmlJ+dBfWynJMhzaj8w5E6+FL8c6VaPRueDa/st5fo7h8k77fyYb0XLXLEHagV7uA+nayyMRD82SqgfpiDG9B0KB/YwiMxFKcS8EfX5E150kixn5k+1ZftPlH8lbNRKk0oQ+MIuSWV9DoDLXuz1KcB4DWy7/acp2nP5aSfAC8U/pRcTKd4/+5H52HL8HXPYnVVEzB73MIHfE6eb9+QenuX9H7hxE06GH0PrWHknCsSovCfV9u5seHriLU113tckQ9alBBYbUqPPTVFrKLytUupcHwaNbpzIOQphgjWnD047GU7Pkdn7b9AfBq3Rv3uHZYSvIo/HMBp76bTNjtb6HRu13SMTU6PUH976u27NSP7+HTcSgVJw5SlraW8DFTKVw/n7wVn9Hk+mcu+fWJ+nWquJxH5m1lzp1d5XaqDUiDuvT0wS9prDsop772pHX3xhAYiTn/zO1itUYvDIGRuEcn02TY01TmHrW1N/yTzjsAAOvfZw+nWUrz0f3jLOM0U8Y2KnMy8OkwBNPhbXjEd0Lr5o5ny6swHd5eL69L1J+1B3P4ePUBtcsQ9ajBBMW6gzlM/WW/2mU0eNaKMsz5mei8AmtfQan6USyVtT6t9wtF5xWAKWPrmX2Wl1J+fC/GiJY1d2euIPenjwm65oGqXlSKFcX695gYqwVFkamvndG7P+1jqwzGazAaRFAUlFbyyLyt0i5hB3m//AfT4e2YC05gOrqb7AWvgkaLV1IvKvOzKFj7P8qz9mMuPFn1/Hevo9G74RF/5pLVsen3UrpvDQAajQafTtdRsOa/lKatpyI7nVM/voPeOxDP5t1qHD9/zTw84jvhFtoMAGNkEqX71lBx8hBFm3/APbKVY94IcVHMVoWH522huNysdimiHjSINooXF+0gS0aH2oW56BSnvn8LS1khOg8/jFFJhI18G52nH4rFjOnoTgo3LsJqKkbn5Y8xujVht79V7TKSOfco1vJS22PfrjeiVJrIWTYVq6kE96gkQoZPqtGmUZGdTume3wgfPdW2zLNld0xHtpM150kMQZEED51g9/dAXJqMnFJeWLiDd25pp3Yp4jK5/IC75TuzuPuLTWqXIYQ4h/dvbcd17SLVLkNcBpe+9JRXUsEz38qNVIRwZhMX7SSnWHoiujKXDooXFu3klPwBCuHU8koreen7XWqXIS6DywbFku2ZfP/X8fOvKIRQ3aK/jvPLnhNqlyEukUsGRX5pBc/LvXuFcCnPfbtDekG5KJcMijeX7eVUcYXaZQghLsLxAhNvLNmjdhniErhcUGw/WsC8Pw+rXYYQ4hJ8uT6DjTJxoMtxqaBQFIXnv9shtzQVwkUpCrzw3U6s8o/YpbhUUPxv4xGZFkAIF7crs5D/bTyidhniIrhMUBSUVvLGUrnHhBANwZTleyky1T4fmHA+LhMUU5bvJbdEGrCFaAhOFVfwoUzi6TJcIigOZBczVxqwhWhQZv6RTvqpErXLEBfAJYLi7eV7ZWZYIRqYCouVVxfvVrsMcQGcPii2Hc1nyY4stcsQQtjBT7tOyH22XYDTB8Vby/bi2vPbCiHq8s7yfWqXIM7DqYNizf5T/JZ2Su0yhBB2tPZgDusO5qhdhqiDUwfFG8ukO6wQjcE7P8lZhTNz2qBYsesEf8ngOiEahT8P5bJmv1w9cFZOGxQfrz6gdglCCAd6d4WcVTgrpwyKDem5bMrIU7sMIYQDbUjP47e0bLXLELVwyqD4ZJWcTQjRGH0iVxKcktMFxb4TRfyy96TaZQghVPDH/hx2HS9UuwzxD04XFJ+sPiDjJoRoxKb/dlDtEsQ/OFVQHM8vk/tgC9HI/bDtOCcKTWqXIc7iVEHx5boMKi1yOiFEY1ZpUfhyXYbaZYizOE1QVFqs/G/jUbXLEEI4ga/+PEy52aJ2GeJvThMUP+06wanicrXLEEI4gVPFFfy4LVPtMsTfnCYo5q6X+00IIc747wa5XaqzcIqgyMgp4Y8DMnxfCHHGn+m5HM4pVbsMgZMExdz1h6VLrBCiGkWBrzfJWYUzUD0oKi1WvtkkjdhCiJrmbzqKVe5uqTrVg+LXfdnklFSoXYYQwgkdLzDxu8wqqzrVg0IG2Akh6vK/jXL5SW2qBoWp0sKK3TKvkxDi3JbvOkFxuVntMho1VYPilz0n5Q9ACFGnCrOVX/bIF0o1qRoUctlJCHEhlu6QwXdqUi0oisvNrJTpxIUQF2DV3mxMlTKlh1pUC4qfd5/AVGlV6/BCCBdSWmFh9T65+51aVAsKacQWQlyMpTuy1C6h0VIlKCxWRe6NK4S4KD/vPkGlRa5CqEGVoNh6JI/80ko1Di2EcFGFJjN/HspVu4xGSZWgWLlHziaEEBfvtzQZpa0GVYJi1T5pnxBCXLw/ZDoPVTg8KLKLytl5vNDRhxVCNAA7jxeQXypzwzmaw4Ni9b5smVJcCHFJrAr8sT9H7TIaHYcHxdoD8ksWQlw6mU3W8RweFH+mS1AIIS6dtFM4nkODIrOgjCO5ZY48pBCigTmcW8rxfPkccSSHBsWG9DxHHk4I0UBtPZKvdgmNikODYnOGBIUQ4vJJUDiWQ4Niy2EJCiHE5ZOgcCyHBYWp0sKuTBk/IYS4fDuOFWCxSj97R3FYUOw7UUSlRX6xQojLV1phIe1kkdplNBoOC4o9WfJLFULUn7/k8pPDOCwo9kpQCCHq0bajBWqX0Gg48IxC2ieEEPUn7WSx2iU0GnJGIYRwSQezJSgcxSFBcaq4nFPFMuOjEKL+nCquoEBugOYQDgkKOZsQQtjD/mz5bHEEhwSFnCIKIezhwMkStUtoFBwSFEfyZAIvIUT9OyBfQh3CIUFxTIJCCGEHEhSO4ZCgOJpX6ojDCCEamWP5JrVLaBQcFBRyRiGEqH8nCyUoHMHuQVFWYSGnRLrGCiHqX25pBRVmq9plNHh2D4pj+XLZSQhhH4oCJ+Sswu7sHhSZBfJLFELYjwSF/dk9KHLlspMQwo6yJCjszu5BUVAmQ+yFEPaTJVct7M7uQZEvc7EIIewor1SuWtibBIUQwqWVlFvULqHBs39QlEnaCyHsp8hkVruEBs/+bRRyRiGEsKOScgkKe5PGbCGESyupkKCwN7sHRbmMmhRC2JFcerI/uwdFpUWCQghhP3Lpyf7sHhRmq2LvQwghGrHSCun1ZG/2Dwo5oxBC2JFVkS+j9qa39wEqLfJLFOJymI7soHD9fCpOHMBSnEuT65/Fs3m3c65funcNRVsWU3HyIIqlEkNwDP7d/4VHfEfbOsU7V5K/ejZKRRleKX0JvPou23PmghOc+O/zhI96D63R066vrT5IUNifAy49yRmFEJdDqTBhCIknsN+9F7S+6cgO3Ju2I+TmiYSPeg/3mDacnP8yFScOAGApLSB36VQCUscScsvLlOxaRen+P23b5yyfRkCv0S4REgByddv+NIpi3zju+PJPcj8KUSuNRuEK/0L6+GXR3u0ITSsP4F+4mxui4jCUmAkzexJS6UFQuRsB5Xp8TRq8SxU8S80YiyswFJnQFpZAQRFKSYnaL8chkvbu4YOISPr6+FzUdkMPHWSgjy/3BwezrayM8ceO8ltCIgCPHj9Ga3d3xgUG8WNhIYuLCvkoMsoe5duFLjiY5r//pnYZTmHWrFk88sgj5Ofn1+t+7X7pSaPR2PsQwgUYtVb6BOXS0yeTNroMoiv245O/G01ZEfzjBohxXh34pWIXew2Ax4Xt311xJ8LiQ7jZm5AKd4Ir3Qko1+FXpsW7TMGzxIJ7SSWGojJ0RaVQUIxSVFR1Q4MGzqoolFit+Ol0AMS6uWFSFHaZTEQYDOwwmbjBz48Ci4UPTmUzKzpG5YovzuV+xowePZrZs2fbHgcGBtK5c2fefPNN2rRpA8D06dP58MMPOXDgAHq9nqZNmzJ8+HCefvppACZOnMhLL70EgE6nw9/fn6SkJG644Qbuu+8+jEZjjeOmpqZy2223kZCQQGpqKnl5efj7+1dbJy4ujkceeYRHHnnkgl7LLbfcwqBBgy7hXaib3YPC3eCQu60KJxJgMHNNcDbdvY6TpEknvGwfHnn70BSVQ9H5t0+xaPjlIo9p0pg5qM/joD4P3C9sG71iIMLqS7jZi9BKT4Iq3AgsN+Bn0uJTpuBVasW9uBJDsQn96XApLAKLa/WymZmbS6nVyoC/z0L8dDpeDwvn6cxMTIqVa319ucrLm+eyMrnNP4BjlZWMP3YUs6IwPjiYa3x8VX4F5/F3AF6OAQMGMHPmTACysrJ47rnnGDJkCIcPH2bGjBk88sgjfPDBB/Tq1Yvy8nK2bdvGjh07qu2jdevWrFixAqvVSk5ODqtWreKVV17hiy++YNWqVficdRaYm5vLH3/8wbx589i9e/dl13+ah4cHHh4X+O3qItg9KIx6CYqGLM7DxDVBJ+nqcZTmyiFCivdiKDiIJs8KeZe2z+TCU/Vb5DmYNVYO6/I5rMuHml/4aqVRNIRZ/Ymw+BBS6UmTCiOB5Qb8TVp8TBpbuBiLy9EVlaItLMaaXwhmdfr6/1BYwLScU0yNjCJIf+afe18fn2qXrzaUlrKvvJxnQ0IZcPAgUyIiCNbruCUjg04entW2dTYag+Gy92E0GgkLCwMgLCyMp556ih49epCdnc2iRYsYPnw448aNs63funXrGvvQ6/W2fURERJCSkkK/fv1o27Ytb7zxBq+88opt3R9//JEOHToQGhp6wUGRnp5O06ZNmT9/PlOnTmX9+vUkJibyySef0K1bVeeGsy89KYpCv3790Ol0LF26FI1GQ25uLm3atGHs2LFMmjTpgt8fBwTF5ae9cA4d/Irp459FJ7cjxFsOEli0B33RMajnz/XkzL1owgNQcL7LQooGMnXFZOqKwQ3wurDtgq1+hJu9CKv0oonZnaByA/4mPb5l4FVqxaPUjLGoHH1xGZqC4qp2l/Lyy6p1cWEhL2Rl8W5EJFd6nbvQCquVSSeyeCM8gsMVFVhQ6OxZ1ZAd5+bGNlMZqd4X1ybiSBqjW73ur7i4mC+//JKEhASCgoIICwtj9erVZGRkEBsbe1H7atmyJQMHDmTBggXVgmLRokVcd911l1Tfs88+y5QpU0hMTOTZZ59lxIgR7N+/H/0/wlyj0TB79mxSUlL44IMPePjhh7n33nuJjIzkhRdeuKhjyqUnUYNOY6VXYAG9fTNpa8ggtuIAvgV70Jblwgn7H9/bVEicV2sOlRyz/8Ec5JS2hFNuJWy/iM80P8WbCLM3YWZvmlQYCa4wwoQ9nLgykZMx0XgWmzGWVKAvKjvTqF9adY/6HwsLeS4rkynhEfTy9q7zOJ/k5nCVlxdJ7u7sMpkwn9VuU6koOHsPd63xAq811uGHH37A++/3qaSkhPDwcH744Qe0Wi0vvvgiN9xwA3FxcTRv3pxu3boxaNAgbrrpJrTa83++tWzZkuXLl9sel5eXs3TpUiZOnHhJtT7++OMMHjwYgJdeeonWrVuzf/9+WrZsWWPdyMhIPv30U+644w6ysrJYvHgxW7ZsqREq5yNnFI2cl95Cv6AcengfJ1mbQaRpH175e9GUlIKKHYlS3AIaVFBcigKNiQKDiR2WE1Tkn+k5+B/DHub5HUEXqcMtyI2sr7MwV5iJejgKT6sH1jVlbJ6RyYCb2lLQKpafK/T4lmsJqNQSYtFhLK7ArciEtqiU/VknWFJYyPy4pgDEu7mh1WiYn59PsF7PoYoKUtwv/4PYnrT1cE0+NTWVjz/+GIC8vDymTZvGwIED+fPPP4mNjWXt2rXs2LGDX3/9lTVr1jBq1Cg+//xzli5det6wUBSlWoP7L7/8QkhISK2Xry7E6QZ2gPDwcABOnjxZa1AA3HzzzXz77bdMnjyZjz/+mMTExIs+ppxRNCJhxgquCcqmm+dRWpJOWOk+jPlpaArMUKB2ddUlV5hZpHYRTqLsUBnpb6TbHmd9lQWAf3d/ou6KwpxvpiKnKkhKtZUc/O0wVqvC4q+3spittu1Or3+aoigceu0Q4fdH8WJKCBFmb5pUenDj1lDem78ZS7GFB/pfgbFZU8pLKjEUl6MrLIHCvxv1nWSMlMbz8oPCy8uLhIQE2+PPP/8cPz8/pk+fbrtklJycTHJyMvfffz/33nsvPXr0YPXq1aSmpta57927d9O0aVPb40WLFnHttdfaHvv6VnUWKCgoqNHrKT8/Hz8/v2rLDGe1yZwOIGsdv4vS0lI2bdqETqcjLS2tzlrPxe5B4Wl03kawhqyldyn9Ak/Q2XiUROtBgov3oi/IQJOrQK7a1Z1fSl5mVRuAwLuVN8mzks/5/Nkf/gDxT8df0H41Gg3xz1atm0E+Gfr8qh5jPSC8R9UH23KKWM62Gtvq0BFm8a/qjlzpQZNKdwJNevzLdfiUKniVWXEvMeNWZEJfVFZ1WaywyC6N+jo7tJ9oNBq0Wi1lZWW1Pp+UlARUXaaqy549e1i6dKmtG62iKHz//fd8+eWXtnUSExPRarVs2rSpWhvIwYMHKSgooHnz5pf1Wh577DG0Wi1Llixh0KBBDB48mD59+lzUPuz+KR7oKf/a7elcg9Z0JSfhpNrVXboWWXtxi4uhwiqDNZ2RBYVjukKO6QovoscYNLH6VzXqW7wIrjASVO6Gv0mL7989xjyKK3ErqUBfWIqmsAQKClEq6v4b0Pn71fn8hSgvLycrq+pMLS8vjw8//JDi4mKGDh3KfffdR0REBH369CEqKorMzExeeeUVmjRpYuttBGA2m8nKyqrRPbZdu3ZMmDABgE2bNlFaWspVV11l287Hx4c777yTxx57DL1eT0pKCkeOHOHJJ5/kiiuu4Morr7zk1/Xjjz8yY8YM1q5dS4cOHZgwYQKjRo1i27ZtBAQEXPB+7B4UQd4SFPXlYgatuTqDpYIW3lFsLzyodiminigaOKkr5qSumL8ALnCGEH+rN5FmX0LNnoRUuhNY4UaASYdfWVW4aJOiCbvM2pYuXWq73u/j40PLli35+uuv6d27Nzk5OcyYMYOPP/6YnJwcgoOD6datGz///DNBQUG2fezcuZPw8HB0Oh1+fn4kJSXx9NNPVxtw99133zFo0KAajcnvv/8+kydP5sknnyQjI4OwsDD69evHq6++eskDCrOzsxk3bhwTJ06kQ4cOQFXj9/Lly7n33nv573//e8H7svsUHl+sy+D5hTvOv6Ko5pyD1iyX12XSlbzWfjBf5W9Xuwzh5J7q8hS3tbpN7TIuSJs2bXjuuecYPny42qVcFLufUQR7yRnF+cR4mBgQdJKuHsdorhwktGQfhvwDlzVorSFIMZXxldpFCKcX5BF0/pWcQEVFBTfeeCMDBw5Uu5SL5oBLTxd4AbORaOdbzNX+J+hkPEIzywG7DVprCFJOZUDdQwCEIMjdNYLCzc2NF198Ue0yLon9G7Mb6RmFTmOlR0ABvf2yaKfPILbyAH4Fu6sGrblwI7MjxWYfxDcwicKKC5ggSjRarnJG4crsHhRNfBr+GUXNQWtpVYPWSkugVO3qXJcGhdaeEayt2Kt2KcKJucoZhSuze1D4eRjwcddTZGoYN0CvfdDafjQFlU43aK0hSFbcWKt2EcJpuevc8TNefvdYUTeHjIaLDfJkx7FCRxyqXjX3KqN/4Am6uB9xyUFrDUFKcb7aJQgnFut7cZP0iUvjoKDwcvqg6OpfyNX+WbQ3HCbefAD/wj3oSk5AttqVNW4pJ/ZDcMO/fCkuTbzfhY1CF5fHMUER6Dz33jVqraQG5dHT5zhtdIeJOT1ozVQIWWpXJ/4puOgEYdEdySqTxBY1NfVrev6VxGVz2KUnNQQYzPQPPkV3r2MkadKJKEvDI38fmiLTBd1pTTiHFPcmEhSiVk39JSgcwWGXnuyt9kFrB9HkWRr1oLWGINms4Se1ixBOqamvBIUjOCQo4uo5KGTQWuOSUpANMlu9+AetRkucX5zaZTQKDgmKMD93fIx6isovrousTmPlqsACevtm0c5wmLiK/fgV7EFbliOD1hqR1ll70EYGY1Wc4/4HwjlEeEVg1ElHB0dw2M0iWob7sCH93NeAvHRW+gafoodXJsm6dKLK9+OVtwdNSYmqd1oT6vMsLybeqw37i4+qXYpwIvH+0uPJURwWFK3CfW1BEWKsZMBZg9bCy/ZhzEuTQWvinJINAexHgkKcIe0TjuOwoLgttpB7T/4fTYr3oi9Il0Fr4qKklFewUO0ihFORrrGO47CgaBHqDceWOupwooFJyT1WdZtOIf7WzL+Z2iU0Go7rSxKSBPrLvwm6aJwST+zDXRouxd+MOiNJQUlql9FoOC4odHoIb+Oww4mGRW8109IrSu0yhJNIDk7GTdc4b2GgBsf2To/s6NDDiYYlWes8U8EIdXUMlc8SR3JsUER0cOjhRMOSUib9pEWVjiESFI7k4DMKCQpx6VKyD6ldgnACeo2ediHt1C6jUXFsUAQ1A68mDj2kaDiiczLwd5Ob1DR2LQNb4mmQy5CO5PgZdBL6OfyQouFo7RmudglCZdI+4XiOD4rm1zj8kKLhSFEMapcgVCZB4XgqnFFcDVr5xy4uTUqRzBnfmGnQ0CFU2jodzfFBYfSB2CsdfljRMCRn7VO7BKGiZv7N8DNKO5WjqTPLf/MBqhxWuL7AklNEeoaoXYZQSeewzmqX0CipExQtJCjEpUs2Ss+5xqpPTB+1S2iU1AmKwHgISlTl0ML1pVzc/a9EAxHoHkjnUDmjUIN6N5iU3k/iEqXkZaldglBBanQqOq1O7TIaJRWDQi4/iUvT6sRe9BqHzZAvnET/2P5ql9BoqRcUMd3AXXoviIvnUVFKM+8ItcsQDuRn9KNLeBe1y2i01AsKnR6aXa3a4YVrS9bLl4zGJDU6Fb1WziLVol5QgFx+EpcsxVSudgnCgfrFytQ/alI3KBL7gUYap8TFS845qnYJwkF83HzoFt5N7TIaNXWDwjMQWgxUtQThmhJOpuEht9ZtFFKjUzHoZNofNakbFACdxqhdgXBBOsVCK69ItcsQDiCXndSnflA0uxoCmqpdhXBBKRo5o2jo/I3+XBkhc8OpTf1uBBoNdBwNK15UuxLhYpJLitUugewfsincVEh5ZjkagwbPBE/ChodhDDfa1rFWWMmal0XB+gIUs4J3sjcRd0Sg9zv3P7+j04+S/0d+tWXeyd7EPR5Xtc9KK8dmHKNoSxF6Pz0Rd0Tg3dr7TF2Ls6nMqSRipGt3I74+8XrcdG5ql9HoqX9GAdB+JOiM519PiLM4w61RS/aUENgnkPjn44mbEIdiUUifko613GpbJ+urLIq2FhE9PpqmTzelMr+Sw1MPn3ff3inetHivhe0n+r5o23N5q/IwZZiIfz6ewN6BHPnkCIqiAFCRXUHe6jxCbwqt/xfsQFqNllta3KJ2GQJnCQqvIEi6Vu0qhIuJzDtMoDFA1RriHo8joEcA7pHueMR4EHVnFJU5lZSllwFgKbWQ92seYSPC8E7yxiPOg6hxUZTuL6V0f2md+9boNRj8DbYfndeZHoLlmeX4tPPBPdKdwKsDsRRZsBRZADg++zhhw8PQebh2j8KekT2J9JZ2KGfgHEEB0Gmc2hUIF5TsEaZ2CdVYyqo+rE9/qJell6FYFLyTzlwWMkYYMQQZKD1Qd1CU7Clh94O72ffUPo7PPo65+MxsiO7R7pSmlWKtsFK8vRi9vx6dj478NfloDBp8O/ra4dU51oiWI9QuQfxN/TaK02K7QUgSnNyldiXChaRYdfyqdhF/U6wKWXOz8Ez0xD3KHQBzgRmNXlPtbABA76vHXHDuaXC9U7zx7eSLW7AbFScrODH/BBlvZxD/fDwarYaAHgGYjphIeyYNvY+e6PujsZRYOPHtCZo+1ZQT809QsL4AtxA3IsdFYghwre6lsb6xdIuQsRPOwnmCAqDTWFj8uNpVCBeSUpSjdgk2mV9kYjpqIv7Z+Mvel/8V/rb/d492xz3anX1P7KNkTwneSd5o9Boi7qjeUH3086ME9QvCdNhE4eZCEl5OIHtxNplfZhLzYMxl1+RIt7S4BY1Go3YZ4m/Oc+kJoM0tYPBSuwrhQpIz96pdAgDHvzhO4V+FNH2qKYbAM9/e9X56FLOCpcRSbX1zobnOXk//5Bbihs5HR8WJilqfL95dTPmxcoL6BlGypwSfNj5ojVr8uvhRsqfk0l6USjz0HgxLGKZ2GeIszhUU7r6QcpPaVQgX4leWT4xnuGrHVxSlKiQ2FdL0iaa4NaneldMjzgONTkPxrjNdecszy6nMqcSzmecFH6cytxJLsQW9f81wsVZYyfwik4jREWi0GrCCYqnqAaWYFRSrcomvTh2D4wfj4+ajdhniLM4VFACdpVFbXJxkY5Bqx878IpP8NflE3xuN1l1LZX4llfmVWCuqusfqPHUE9Awga14WxbuLKUsv4+h/juKR4IFnwpmg2PfUPgo3FQJgMVnImpdF6f5SKrIrKN5VTMb7GbiFuOGd7F2jhuxF2Xi38cYjtmoAomeiJ4WbCjEdMZH7cy6eiRceSM5AGrGdj3O1UQCEt4WoznB0g9qVCBeRUmlhsUrHzv0lF4BDk6uP6YgcF0lAj6quu2EjwkADRz48grXSik+KD+Ejq58FVWRVYCmtujyl0WowHTWR90ce1lIren893snehN4QitZQ/bud6aiJgg0FJExKsC3z7eRLyZ4SDr52EGOYkah7o+r9ddtLx9CONA9ornYZ4h80yulROs4kbQXMuVHtKoSL2BrdlpH6PLXLEPVgev/pXBF+hdpliH9wvktPAIl9IfYqtasQLqJV5l65qU0D0CWsi4SEk3LOoADoK3M/iQtjNJtI9HKdyyuidg+2f1DtEsQ5OG9QRHeBFoPUrkK4iBS99JJxZT0ie9AupJ3aZYhzcN6gAOjzPGicu0ThHJJNJrVLEJdIg4YH2j+gdhmiDs59YTc0CVKGw7Z5aldiV6//Vs6CPZXsOWXFQ6/hymgdb/Q10iL4zLQPvWeVsDqj+qCtezoa+GTIue/JMHGViXk7zBwptOKmg47hOl7tY6RrVNWvvdyscOf3Jr7bU0mYt5Zpg93pG3/mT+KtP8o5XGBl6iDnv+9DSs4RcK1eoOJvV8dcTVJQktpliDo4Z6+ns+VlwIedwFL7iNSGYMCXJdyabKBzhA6zFZ75pZwdJy3sut8bL7eqaQx6zyqheZCWSalnpmP3NGjwNZ57moO52ysJ8dIQH6ClrFLh3XUVfL2rkv0PetPES8vU9RV8vLGCr2/2YMl+M2/+UcGJx73RaDQcyrNyzZelbLzbq85jOAurRsuVCc0pMdc90Z5wLlqNlgXXLqCZfzO1SxF1cP7rOgGx0LFh3y516e1ejG7nRusQHW3DdMy6zp3DBQqbMqufQXgaNIR5a20/5/sA/1eKgb7xeuIDtLQO0fHONe4UlsO2E1WDwXafsnBtCz2tQ3SM7+xGdqnCqdKq7w33/VjGG32NLhESAFrFSmtp0HY5A5sOlJBwAc4fFAA9J4BbzRGpDVVBedV/Az2qf0jP2V5J8JtFJE8r5ukVJkorL/xksMKi8NmmCvyM0Das6tfeNlTH74ctlFUqLDtgJtxbQ7CnhjnbKnHXa7i+lWvNOJqM3PzKleg1esa3Ha92GeICOHcbxWneTeCK++DXt9SuxO6sisIjS010j9aRHHKmjeJfKQZi/bRE+GjYdsLKkytM7M2xsuCWui/M/7Cvklu/KaO0EsJ9NPw00otgz6qgGNvewLYTFpKmFRPsqeF/N3uQZ4IXVplYNcqL534xMW9HJc0Ctcy41oNIX+f+XpFSUqh2CeIiXJdwHdG+0edfUajO+dsoTjMVwvttoSxX7Urs6r4fyliy38zvY72IquOD+ZdDZq7+v1L2P+hNs8Bzr1dSoZBZrHCq1Mr0TZX8km5m/Z1ehHjVvs2Y78poF6qlaYCWZ34uZ/2dXrz5Rzk7sq3MH+7crcVZfhH0C3SN7z6Nnb/Rn0XDFhHgru4dCsWFce6viGdz94Uej6pdhV09sLiMH9LMrBxVd0gAdI2sOtvYn2utcz0vNw0JgVquiNLzn+s80Gs1/GdzZa3rrjxkZudJCw90cWNVuoVBiXq83DQMb21gVbql1m2cSVjBcULc1ZsgUFy4Rzs+KiHhQlwnKAC63A1BiWpXUe8UReGBxWV8u8fML3d40jTg/L+WrVlVH9zhPhfX2GxVFMotNU8iTWaF8YtNfDrEA51Wg8UKlX9nQ6UVLC4yVXVr91C1SxDn0TG0o9xvwsW4VlDojTD0fcA1euJcqPGLTXy5rZK5N3jgY9SQVWwlq9hK2d+N1Qdyrby8upxNxy2k51tZtLeSOxaW0TNWR5vQM+0YLT8s5tvdVWcLJRUKz/xsYt1RMxn5VjYdtzD2uzKOFSrcnFSzkfrl1eUMStTTPrxqf91jdCzYU8m2ExY+/LOC7jGucUknxdqw/jYaGoPWwAtXvCB3r3MxrvGv/2xx3aHjKNg0S+1K6s3HG6s+3HvPrj4GYOZ17oxu54abDlYcMvPe+gpKKhSi/bTc2MrAcz2r9/LZm2OloLwqXHRa2HPKyuy/yjhVqhDkoaFzpI7fxnjROqT6/Zt3nLTwv11mtt5z5u6CNyXpWZWup8fMEloEaZl7o3O3T5yWXOg8t0YVNY1JHkO8/+XfKlY4lus0Zp/NVAAfdYWiTLUrEU6myN2P7uH+KLjen3VDF+MTw4LrFmDUSTdmV+Nal55Oc/eDQVPUrkI4IR9TAbFe6t0aVZzbc1c8JyHholwzKABaDYFWQ9WuQjihFLdAtUsQ/zA4fjDdIrqpXYa4RK4bFACD3wFP6Q4pqkuuMKtdgjiLr5svEzpNULsMcRlcOyi8Q2DIe2pXIZxMSp60XTmTJ7s8SZCHfKFzZa4dFABJ10LbEWpXIZxIy6y9GLSuNU9VQ3Vts2u5ttm1apchLpPrBwXAwDfAT+aMEVUMlgpaesvfg9rifON4tuuzapch6kHDCAp3P7juIxraQDxx6ZK1XudfSdiNUWdkSq8peBpcY/yNqFvDCAqA+F5wxf1qVyGcRIqpTO0SGrUJnSbQIrCF2mWIetJwggKg30sQ213tKoQTSD6VoXYJjVb/2P7c0vIWtcsQ9ahhBYXOAMP/D/xi1K5EqCwu+yA+hsZzsytnEeUdxcQrJ6pdhqhnDSsoALyCYcRcMMg16sZMg0Jrrwi1y2hUDFoDU3pNwcfNR+1SRD1reEEBEJYCw6YhjduNW4oi00U40iMdHqF1cGu1yxB20DCDAqD1MOj1hNpVCBUllxSoXUKjcXXM1dzR+g61yxB20nCDAqD30zIfVCPWJitN7RIahVaBrXi9x+tqlyHsqGEHhUYD138KoclqVyJUEFx0glCPYLXLaNBCPUP58OoP8dB7qF2KsKOGHRQAbl5w61yZPLCRSnEPUbuEBstT78mHV39IiKe8xw1dww8KgIDYqm6zMv9Po5Nslg4N9qDVaHmj5xu0DGypdinCARpHUADEXQUDJ6tdhXCwlMJTapfQID3b9Vl6R/dWuwzhII0nKAA63wld7la7CuFArTP3oNU0rj9ze7u37b0MbzFc7TKEAzW+f0ED34QOo9SuQjiIV3kR8TLwrt7cmHgj49uNr/f9ajQaFi5cWO/7vVgTJ06kXbt2apdRw6xZs/D391ft+HrVjqwWjQaGvl/1/5tnq1uLcIhkQwD7Oap2GS6vd3Rvnr/i+UvefvTo0eTn59caCJmZmQQEBFxGdcKeGt8ZBZwJCzmzaBRSyivULsHldY/szpReU9BpdXbZf1hYGEajjKR3Vo0zKEDCohFJzj2mdgkurXd0b6amTsWos98H+dmXntLT09FoNCxYsIDU1FQ8PT1p27Yta9euta1f2yWi9957j7i4OABMJhOtW7fm7rvPtEkeOHAAHx8fZsyYcd56Pv30U6Kjo/H09GT48OEUFJwZ5b9hwwb69etHcHAwfn5+9OrVi82bN9ueVxSFiRMnEhMTg9FoJCIigoceesj2fHl5OY8//jiRkZF4eXnRtWtXVq1aVe34s2bNIiYmBk9PT66//npycnLOW7M9Nd6gAAmLRqL5iX12/ZBryPrF9uOd3u9g0Dm+a/mzzz7L448/ztatW2nevDkjRozAbDZf0Lbu7u7MmTOH2bNn891332GxWLj99tvp168fY8eOrXPb/fv387///Y/vv/+epUuXsmXLFu6//8y9boqKihg1ahS///4769atIzExkUGDBlFUVATA/Pnzeffdd/n0009JS0tj4cKFpKSk2LZ/4IEHWLt2LfPmzWPbtm3cfPPNDBgwgLS0qpkE1q9fz7hx43jggQfYunUrqampvPLKKxf79tWrxtdG8U/SZtHg6a1mWnpF8VfhAbVLcSmDmg7itates9vlpvN5/PHHGTx4MAAvvfQSrVu3Zv/+/bRseWFjN9q1a8crr7zCnXfeya233kpGRgY//PDDebczmUz83//9H5GRkQBMnTqVwYMH8/bbbxMWFkafPn2qrf/ZZ5/h7+/P6tWrGTJkCIcPHyYsLIy+fftiMBiIiYmhS5cuABw+fJiZM2dy+PBhIiIibK9z6dKlzJw5k9dee43333+fAQMG8MQTVXPVNW/enDVr1rB06dILe+PsoHGfUZwmZxYNXopWbsl5MYYlDOP1Hq+rFhIAbdq0sf1/eHg4ACdPnryofTz22GM0b96cDz/8kBkzZhAUdGaGBm9vb9vPvffea1seExNjCwmAbt26YbVa2bt3LwAnTpzgrrvuIjExET8/P3x9fSkuLubw4cMA3HzzzZSVlREfH89dd93Ft99+azsT2r59OxaLhebNm1c7/urVqzlwoOqLzO7du+natWu119GtW7eLet31Tc4oTpMziwYtuaxE7RJcxs3Nb+b5K55Ho1F3VLvBcOZy1+larFYrAFqtFkVRqq1fWVlZYx8nT55k37596HQ60tLSGDBggO25rVu32v7f19f3gusaNWoUOTk5vP/++8TGxmI0GunWrRsVFVWdJqKjo9m7dy8rVqzgp59+4v777+ett95i9erVFBcXo9Pp2LRpEzpd9RD29nbeG21JUJxNwqLBSslOhwv/LGi0bmt1G091eUrtMs6rSZMmZGVloSiKLUTO/uA/bezYsaSkpDBu3Djuuusu+vbtS6tWrQBISEiodd+HDx/m+PHjtktD69atQ6vV0qJF1T3A//jjD6ZNm8agQYMAOHLkCKdOVZ8BwMPDg6FDhzJ06FDGjx9Py5Yt2b59O+3bt8disXDy5El69OhR6/FbtWrF+vXrqy1bt27dBb4z9iFB8U+nw0JvhD8/U7saUU9ictLxC06moKJQ7VKc1pjWY3i006N2PUZBQUGND/SzLwddqN69e5Odnc2bb77JTTfdxNKlS1myZEm1M4OPPvqItWvXsm3bNqKjo/nxxx+57bbbWLduHW5ubufct7u7O6NGjWLKlCkUFhby0EMPMXz4cMLCwgBITEzkiy++oFOnThQWFjJhwgQ8PM7Mnjtr1iwsFgtdu3bF09OTL7/8Eg8PD2JjYwkKCuK2227jjjvu4O2336Z9+/ZkZ2fz888/06ZNGwYPHsxDDz1E9+7dmTJlCtdddx3Lli1TtX0CpI2idhoNDHoLBr8jEwk2IMmeMkK7NjqNjic7P2n3kABYtWoV7du3r/bz0ksvXfR+WrVqxbRp0/joo49o27Ytf/75J48//rjt+T179jBhwgSmTZtGdHQ0ANOmTePUqVM8/3zdgwYTEhK44YYbGDRoEP3796dNmzZMmzbN9vx//vMf8vLy6NChAyNHjuShhx4iJOTMDLr+/v5Mnz6d7t2706ZNG1asWMH3339vC8SZM2dyxx138Nhjj9GiRQuGDRvGhg0biImJAeCKK65g+vTpvP/++7Rt25bly5fz3HPPXfR7VJ80yj8v9Inq0n+H/90Bper2YxaX78N2g/m0YLvaZTgVHzcfpvScwpWRV6pdinBickZxPnFXwV0r5eZHDUBKUZ7aJTiVON845g6aKyEhzkuC4kIExMK45XJbVReXkrVP7RKcxpURVzJn8Bzi/OLULkW4AAmKC+XmBcO/gF5PAXIzHFcUWHKKSLkbG7e3up1pV0/D1026gYkLI0FxMTQaSH0ahs8Gg5fa1YhLkGxsonYJqjFoDUy6chJPdnlS1YF0wvVIUFyKpOtg3DLwi1G7EnGRUsyNs+9GoHsgn/f/nOsTr1e7FOGCJCguVVgK3L0SYrurXYm4CMn5FzcFREPQKbQT8wbPo0NoB7VLES5KusdeLksl/PQirJsGyFvp7MrcPOkWFYpFsahdit0ZtAYebP8go1qPktvBissiQVFfDv0KC++HgiNqVyLO48aUq9hXfFjtMuwqwT+ByT0m0yKwhdqliAZAvmbUl6Y94b4/oO0ItSsR55Fi8FO7BLvRoGFk0kj+O+S/EhKi3khQ1Cd3P7j+k6putJ4XP3+NcIzk8nK1S7CLUM9QpvefzhOdn8BNd+65jIS4WBIU9pB0Ldy/Dlpdq3YlohYpOQ3v1qgDmw5kwXUL6Bre9fwrC3GRpI3C3nb/AIsfh6JMtSsRf7NodHRr1owyi0ntUi5bgDGAp7o8xaD4QWqXIhowOaOwt1ZDYPx66DgGGdHtHHSKhVbeUWqXcVl0Gh0jWo7g++u/l5AQdidB4QjufjD0PRizGIIS1a5GAMkaj/Ov5KS6hHXh66Ff80zXZ/AzNtyGeeE85MZFjhR7ZVXPqD8/g9/egbJctStqtFJKi9Uu4aJFeEXwWKfH6B/XX+1SRCMjbRRqMRXCmqlVA/UqXO9Dy9UdC4hhgL/aVVwYd507Y5LHMDZ5LO56d7XLEY2QU1x6Gj16NBqNhnvvvbfGc+PHj0ej0TB69Oh6O15ZWRkvvvgizZs3x2g0EhwczM0338zOnTurrVdaWsrTTz9Ns2bNcHd3p0mTJvTq1Yvvvvvu8otw94U+z8JDW6HLPSDdGR0qMu8wgcYAtcs4r74xfflu2Hfc3+5+CQmhGqcICoDo6GjmzZtHWVmZbZnJZGLu3Lm2WwTWh/Lycvr27cuMGTN45ZVX2LdvH4sXL8ZsNtO1a9dqNzG/9957WbBgAVOnTmXPnj0sXbqUm266iZycerzbnXcTGPQmPLCxarCeTLXgMMkeYWqXcE4dQjrwef/PeTf1XSK85RauQl1O86nUoUMHoqOjWbBggW3ZggULiImJoX379rZlS5cu5aqrrsLf35+goCCGDBnCgQMHqu3r6NGjjBgxgsDAQLy8vOjUqRPr168H4L333mPt2rX88MMPDB8+nNjYWLp06cL8+fNp1aoV48aN4/TVuEWLFvHMM88waNAg4uLi6NixIw8++CBjx46t/zcgILZqsN59a6DF4Prfv6gh2ep8U213C+/GjGtmMHvgbBkTIZyG0wQFwNixY5k5c6bt8YwZMxgzZky1dUpKSnj00UfZuHEjP//8M1qtluuvvx6r1QpAcXExvXr14tixYyxatIi//vqLJ554wvb83Llz6devH23btq22X61Wy7///W927drFX3/9BUBYWBiLFy+mqKjIni+7upBWMGIujFsBsVc57riNUEqRc3Qm0KChd3Rv5g6ay2f9P6NzWGe1SxKiGqfq9XT77bfz9NNPk5GRAcAff/zBvHnzWLVqlW2dG2+8sdo2M2bMoEmTJuzatYvk5GTmzp1LdnY2GzZsIDAwEICEhATb+vv27SM1NbXW47dq1cq2Trt27fjss8+47bbbCAoKom3btlx11VXcdNNNdO/ugKnFozvDmB9h/wpYNRmObrD/MRuZlKy9EOqj2vG1Gi39Y/tzZ8qdMi+TcGpOdUbRpEkTBg8ezKxZs5g5cyaDBw8mODi42jppaWmMGDGC+Ph4fH19iYuLA+Dw4arZQLdu3Ur79u1tIVGbC+3o1bNnTw4ePMjPP//MTTfdxM6dO+nRowcvv/zypb3AS5HQF+5cAff8Ch1Hy5316pFfaR7Rno5vp9Br9Fzb7FoWXreQt3q9JSEhnJ5TnVFA1eWnBx54AICPPvqoxvNDhw4lNjaW6dOnExERgdVqJTk5mYqKCgA8POoeSNW8eXN2795d63Onlzdv3ty2zGAw0KNHD3r06MGTTz7JK6+8wqRJk3jyySdxc3NgT6XwtjD0fej3Mmz7L2ycASd3Oe74DVSyMZgjpVkOOVYTjyZc2+xabm5xM5HekQ45phD1wanOKAAGDBhARUUFlZWVXHPNNdWey8nJYe/evTz33HNcffXVtGrViry8vGrrtGnThq1bt5KbW/v151tvvZUVK1bY2iFOs1qtvPvuuyQlJdVovzhbUlISZrMZk0mleYLcfaHLXXD/Whi7DFKGg86oTi0NQEql1a7712v0pEanMrXPVH666Sce6fiIhIRwOU53RqHT6Wzf7HW66r1SAgICCAoK4rPPPiM8PJzDhw/z1FNPVVtnxIgRvPbaawwbNozXX3+d8PBwtmzZQkREBN26dePf//433333HUOHDuXtt9+ma9eunDhxgtdee43du3ezYsUKNJqqOZl69+7NiBEj6NSpE0FBQezatYtnnnmG1NRUfH19HfOG1CXmiqqfAZNh65ewcSbkHVK7KpeSkp9ll38Fcb5xDEsYxnUJ1xHsEXz+DYRwYk4XFMA5P4S1Wi3z5s3joYceIjk5mRYtWvDBBx/Qu3dv2zpubm4sX76cxx57jEGDBmE2m0lKSrJdxnJ3d+eXX37htdde45lnniEjIwMfHx9SU1NZt24dycnJtn1dc801zJ49m2eeeYbS0lIiIiIYMmQIL7zwgl1f/0XzCoLuD8OVD8GBX6ouS+1bClaz2pU5vVaZe9DHRGBWLv+98tB70C+2Hzck3kDH0I71UJ0QzkGm8GioSnOrekztW1r1X1OB2hU5reFterC7KOOStvXQe9A1vCup0an0j+2Pt5t3PVcnhPqc8oxC1APPQGgzvOrHYoYj66pCY98yOLVP7eqcSrLel9q7N9Qu3CucnlE96RXViy7hXTBKG5Fo4OSMojHKPVgVGPuWQsYasFSoXZGqvk3qywtl5w5PrUZLSnAKvaJ60TOqp3RnFY2OBEVjV15U1a6xbxmkLYeSbLUrcrj9oc253rN6L7YIrwjahbSje2R3ekT2IMDd+ScQFMJeJChEdbkH4dhmOLap6r+Zf4G57PzbuTCrwZO7Ol5Di6Ak2jVpR7uQdoR4hqhdlhBOQ4JC1M1ihuzdcHwLnNhZ9XNyN5SeUruyS+PmDWEpVQMYw9tCWBto0hJ00lwnxLlIUIhLU3yyamT4iV1wam/V4+KTUHISirPVOwsx+oFvxFk/kWf+G9gUAuNBI/cuF+JiSFAI+ygv+js4ss8KkJPVl5nyq9bV6Kruw6HRgvbv/1Zbdvr/NVXL9e7gGw4+tQSCUbqnClHfJCiEEELUyenmehJCCOFcJCiEEELUSYJCCCFEnSQohBBC1EmCQgghRJ0kKIQQQtRJgkIIIUSdJCiEEELUSYJCCCFEnSQohBBC1EmCQgghRJ0kKIQQQtRJgkIIIUSdJCiEEELUSYJCCCFEnSQohBBC1EmCQgghRJ0kKIQQQtRJgkIIIUSdJCiEEELUSYJCCCFEnSQohBBC1On/AWnAwidraEfbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(4,4))\n", + "plt.pie(list(lst.values), labels=list(lst.keys()), autopct='%1.1f%%') # Plot the pie chart\n", + "plt.title('Oeratining System Used') # Add a title\n", + "plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle\n", + "\n", + "# Display the pie chart\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Salary Type" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SalaryType\n", + "Monthly 25\n", + "Yearly 22\n", + "Weekly 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['SalaryType'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "35" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['SalaryType'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [], + "source": [ + "df['SalaryType'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 100, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['SalaryType'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SalaryType\n", + "Monthly 42\n", + "Yearly 39\n", + "Weekly 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 101, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['SalaryType'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Currency" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Currency\n", + "U.S. dollars ($) 20\n", + "Euros (€) 11\n", + "British pounds sterling (£) 7\n", + "Indian rupees (₹) 7\n", + "Swedish kroner (SEK) 3\n", + "Russian rubles (₽) 3\n", + "Polish złoty (zł) 2\n", + "Chinese yuan renminbi (¥) 2\n", + "South African rands (R) 1\n", + "Australian dollars (A$) 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Currency'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "23" + ] + }, + "execution_count": 103, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Currency'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [], + "source": [ + "df['Currency'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 105, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Currency'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [], + "source": [ + "df.dropna(subset=['Currency'], inplace = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Currency\n", + "U.S. dollars ($) 27\n", + "Euros (€) 16\n", + "British pounds sterling (£) 10\n", + "Indian rupees (₹) 8\n", + "Chinese yuan renminbi (¥) 5\n", + "Swedish kroner (SEK) 4\n", + "Russian rubles (₽) 4\n", + "Polish złoty (zł) 2\n", + "Brazilian reais (R$) 2\n", + "South African rands (R) 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 107, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Currency'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Salary" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SalaryUSD\n", + "120000.0 3\n", + "30000.0 2\n", + "115000.0 2\n", + "70841.0 1\n", + "36000.0 1\n", + "90000.0 1\n", + "73428.0 1\n", + "128507.0 1\n", + "13212.0 1\n", + "48955.0 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 108, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['SalaryUSD'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "36" + ] + }, + "execution_count": 109, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['SalaryUSD'].isnull().sum() " + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DevType Country \n", + "Developer United States 146687.5\n", + " Ireland 128507.0\n", + "Non developer India 123984.0\n", + "Developer Australia 95968.0\n", + " Colombia 64116.0\n", + " Germany 61191.5\n", + " Sweden 60257.5\n", + " China 52604.0\n", + " Greece 51408.0\n", + " United Kingdom 48144.8\n", + "Name: SalaryUSD, dtype: float64" + ] + }, + "execution_count": 110, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_salary = df.groupby(['DevType','Country'])['SalaryUSD'].mean() \n", + "mean_salary.nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [], + "source": [ + "means = df.groupby(['YearsCodingProf','DevType', 'Country'])['SalaryUSD'].transform('mean')\n", + "df['SalaryUSD'] = df['SalaryUSD'].fillna(means)" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "YearsCodingProf DevType Country \n", + "21-23 years Developer United States 250000.000000\n", + "0-2 years Developer United States 244000.000000\n", + "15-17 years Developer Ireland 128507.000000\n", + "0-2 years Non developer India 123984.000000\n", + "9-11 years Developer United States 115000.000000\n", + "12-14 years Developer Australia 95968.000000\n", + "18-20 years Developer United States 95000.000000\n", + "6-8 years Developer United States 91333.333333\n", + "3-5 years Developer China 85708.000000\n", + "9-11 years Developer United Kingdom 82648.000000\n", + "Name: SalaryUSD, dtype: float64" + ] + }, + "execution_count": 112, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_salary = df.groupby(['YearsCodingProf','DevType','Country'])['SalaryUSD'].mean()\n", + "mean_salary.nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [], + "source": [ + "df.dropna(subset=['SalaryUSD'], inplace = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Age" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Age\n", + "25 - 34 years old 22\n", + "35 - 44 years old 13\n", + "18 - 24 years old 13\n", + "45 - 54 years old 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 114, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Age'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10" + ] + }, + "execution_count": 115, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Age'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [], + "source": [ + "df['Age'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 117, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Age'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAGJCAYAAAADqPm8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA37UlEQVR4nO3deVhV5f7//9dGZBAFxQEhcTbHcEgztRySxPGEaSf7lmKDpYlpdk5JmVODDUfzVA6dPgZ6Dmp5jqaf6lCKgpmmggNqOWBY5jykCCUq3L8/+rk/7QBDphvx+biudV2tdd9rrffece+1X65hO4wxRgAAAAAAoFS52S4AAAAAAIAbEYEcAAAAAAALCOQAAAAAAFhAIAcAAAAAwAICOQAAAAAAFhDIAQAAAACwgEAOAAAAAIAFBHIAAAAAACwgkAMAAAAAYAGBHAAAAAAACwjkAADcQObMmSOHw6GOHTvaLgUAgBuewxhjbBcBAABKR5cuXXTkyBEdPHhQ+/fvV+PGjW2XBADADYsz5AAA3CDS0tK0YcMGzZw5UzVr1lRsbKztkgAAuKERyAEAuEHExsaqWrVq6tevnwYPHpxnID99+rSGDh0qX19fVa1aVREREdqxY4ccDodiYmJc+u7Zs0eDBw+Wv7+/vLy81L59e61cubKUXg0AANc/AjkAADeI2NhY3XvvvfLw8NADDzyg/fv3a8uWLc72nJwcDRgwQIsXL1ZERIReeeUVHT16VBEREbm2tXv3bt1+++369ttvNWHCBM2YMUM+Pj4KDw/X8uXLS/NlAQBw3eIecgAAbgDJyclq3769Vq1apdDQUBljVLduXQ0aNEizZs2SJC1btsw5P3bsWEm/hvS7775ba9asUXR0tIYPHy5JCg0N1YkTJ7RlyxZ5enpKkowxuuOOO3Ty5Ent27fPxssEAOC6whlyAABuALGxsQoICFCPHj0kSQ6HQ/fff7+WLFmi7OxsSVJcXJwqVqyoESNGONdzc3PT6NGjXbZ15swZrVmzRn/+8591/vx5nTp1SqdOndLp06cVFham/fv36/Dhw6X34gAAuE4RyAEAKOeys7O1ZMkS9ejRQ2lpaUpNTVVqaqo6duyo48ePKz4+XpL0/fffKzAwUJUqVXJZ//dPYk9NTZUxRi+++KJq1qzpMk2ePFmSdOLEidJ5cQAAXMfcbRcAAABK1po1a3T06FEtWbJES5YsydUeGxurXr16FXh7OTk5kqS//OUvCgsLy7MPP6cGAMAfI5ADAFDOxcbGqlatWpo9e3autmXLlmn58uWaN2+e6tWrp7Vr1+rnn392OUuemprqsk7Dhg0lSRUrVlRoaGjJFg8AQDnGQ90AACjHfvnlFwUEBOi+++7T/Pnzc7Vv2LBBXbp00ZIlS+Tu7q7BgwcX6KFuPXr0UEpKinbt2qXAwECXbZ48eVI1a9Ys8dcGAMD1jjPkAACUYytXrtT58+f1pz/9Kc/222+/XTVr1lRsbKyWL1+u2267Tc8884xSU1PVrFkzrVy5UmfOnJH064Pgrpg9e7buuOMO3XLLLRoxYoQaNmyo48ePa+PGjfrxxx+1Y8eOUnl9AABczwjkAACUY7GxsfLy8tLdd9+dZ7ubm5v69eun2NhYnT17Vp9++qnGjh2rBQsWyM3NTQMHDtTkyZPVpUsXeXl5Oddr0aKFkpKSNHXqVMXExOj06dOqVauW2rZtq0mTJpXWywMA4LrGJesAAOCqPv74Yw0cOFDr169Xly5dbJcDAEC5QSAHAABOv/zyi7y9vZ3z2dnZ6tWrl5KSknTs2DGXNgAAUDRcsg4AAJzGjBmjX375RZ06dVJWVpaWLVumDRs26NVXXyWMAwBQzDhDDgAAnBYtWqQZM2YoNTVVFy5cUOPGjTVq1ChFRkbaLg0AgHKHQA4AAAAAgAVutgsAAAAAAOBGRCAHAAAAAMCCcv9Qt5ycHB05ckRVqlSRw+GwXQ4AAAAAoJwzxuj8+fMKCgqSm1v+58HLfSA/cuSIgoODbZcBAAAAALjBHDp0SHXq1Mm3vdwH8ipVqkj69Y3w9fW1XA0AAAAAoLxLT09XcHCwM4/mp9wH8iuXqfv6+hLIAQAAAACl5o9um+ahbgAAAAAAWEAgBwAAAADAAgI5AAAAAAAWEMgBAAAAALCAQA4AAAAAgAUEcgAAAAAALCCQAwAAAABgAYEcAAAAAAALCOQAAAAAAFhAIAcAAAAAwAICOQAAAAAAFrjbLgD/57Vtp2yXABTZhLY1bJcAAAAAXBc4Qw4AAAAAgAUEcgAAAAAALCCQAwAAAABgAYEcAAAAAAALCOQAAAAAAFhAIAcAAAAAwAICOQAAAAAAFlgN5NOnT1eHDh1UpUoV1apVS+Hh4dq7d69Ln+7du8vhcLhMI0eOtFQxAAAAAADFw2ogT0xM1OjRo/X1119r1apVunTpknr16qXMzEyXfiNGjNDRo0ed0xtvvGGpYgAAAAAAioe7zZ3HxcW5zMfExKhWrVpKTk5W165dncsrVaqk2rVrl3Z5AAAAAACUmDJ1D/m5c+ckSf7+/i7LY2NjVaNGDbVq1UpRUVH6+eef891GVlaW0tPTXSYAAAAAAMoaq2fIfysnJ0fjxo1Tly5d1KpVK+fy//f//p/q1aunoKAgpaSk6LnnntPevXu1bNmyPLczffp0TZ06tbTKBgAAAACgUBzGGGO7CEkaNWqU/vvf/2r9+vWqU6dOvv3WrFmjnj17KjU1VY0aNcrVnpWVpaysLOd8enq6goODde7cOfn6+pZI7cXltW2nbJcAFNmEtjVslwAAAABYlZ6eLj8/vz/MoWXiDHlkZKQ++eQTrVu37qphXJI6duwoSfkGck9PT3l6epZInQAAAAAAFBergdwYozFjxmj58uVKSEhQgwYN/nCd7du3S5ICAwNLuDoAAAAAAEqO1UA+evRoLVq0SCtWrFCVKlV07NgxSZKfn5+8vb114MABLVq0SH379lX16tWVkpKip59+Wl27dlVISIjN0gEAAAAAKBKrgXzu3LmSpO7du7ssj46O1vDhw+Xh4aHVq1dr1qxZyszMVHBwsAYNGqSJEydaqBYAAAAAgOJj/ZL1qwkODlZiYmIpVQMAAAAAQOkpU79DDgAAAADAjYJADgAAAACABQRyAAAAAAAsIJADAAAAAGABgRwAAAAAAAsI5AAAAAAAWEAgBwAAAADAAgI5AAAAAAAWEMgBAAAAALCAQA4AAAAAgAUEcgAAAAAALCCQAwAAAABgAYEcAAAAAAALCOQAAAAAAFhAIAcAAAAAwAICOQAAAAAAFhDIAQAAAACwgEAOAAAAAIAFBHIAAAAAACwgkAMAAAAAYAGBHAAAAAAACwjkAAAAAABYQCAHAAAAAMACAjkAAAAAABYQyAEAAAAAsIBADgAAAACABQRyAAAAAAAsIJADAAAAAGABgRwAAAAAAAsI5AAAAAAAWEAgBwAAAADAAgI5AAAAAAAWEMgBAAAAALCAQA4AAAAAgAUEcgAAAAAALCCQAwAAAABgAYEcAAAAAAALCOQAAAAAAFhAIAcAAAAAwAICOQAAAAAAFhDIAQAAAACwgEAOAAAAAIAFBHIAAAAAACwgkAMAAAAAYAGBHAAAAAAAC6wG8unTp6tDhw6qUqWKatWqpfDwcO3du9elz4ULFzR69GhVr15dlStX1qBBg3T8+HFLFQMAAAAAUDysBvLExESNHj1aX3/9tVatWqVLly6pV69eyszMdPZ5+umn9b//+79aunSpEhMTdeTIEd17770WqwYAAAAAoOgcxhhju4grTp48qVq1aikxMVFdu3bVuXPnVLNmTS1atEiDBw+WJO3Zs0fNmzfXxo0bdfvtt//hNtPT0+Xn56dz587J19e3pF9Ckby27ZTtEoAim9C2hu0SAAAAAKsKmkPL1D3k586dkyT5+/tLkpKTk3Xp0iWFhoY6+zRr1kx169bVxo0b89xGVlaW0tPTXSYAAAAAAMqaMhPIc3JyNG7cOHXp0kWtWrWSJB07dkweHh6qWrWqS9+AgAAdO3Ysz+1Mnz5dfn5+zik4OLikSwcAAAAA4JqVmUA+evRo7dq1S0uWLCnSdqKionTu3DnndOjQoWKqEAAAAACA4uNuuwBJioyM1CeffKJ169apTp06zuW1a9fWxYsXdfbsWZez5MePH1ft2rXz3Janp6c8PT1LumQAAAAAAIrE6hlyY4wiIyO1fPlyrVmzRg0aNHBpv/XWW1WxYkXFx8c7l+3du1c//PCDOnXqVNrlAgAAAABQbKyeIR89erQWLVqkFStWqEqVKs77wv38/OTt7S0/Pz89+uijGj9+vPz9/eXr66sxY8aoU6dOBXrCOgAAAAAAZZXVQD537lxJUvfu3V2WR0dHa/jw4ZKkt956S25ubho0aJCysrIUFhamOXPmlHKlAAAAAAAUL6uBvCA/ge7l5aXZs2dr9uzZpVARAAAAAAClo8w8ZR0AAAAAgBsJgRwAAAAAAAsI5AAAAAAAWEAgBwAAAADAAgI5AAAAAAAWEMgBAAAAALCAQA4AAAAAgAUEcgAAAAAALCCQAwAAAABgAYEcAAAAAAALCOQAAAAAAFhAIAcAAAAAwAICOQAAAAAAFhDIAQAAAACwgEAOAAAAAIAFBHIAAAAAACwgkAMAAAAAYAGBHAAAAAAACwjkAAAAAABYQCAHAAAAAMACAjkAAAAAABYQyAEAAAAAsIBADgAAAACABQRyAAAAAAAsIJADAAAAAGABgRwAAAAAAAsI5AAAAAAAWEAgBwAAAADAAgI5AAAAAAAWEMgBAAAAALCAQA4AAAAAgAUEcgAAAAAALCCQAwAAAABgAYEcAAAAAAALCOQAAAAAAFhAIAcAAAAAwAICOQAAAAAAFhDIAQAAAACwwN12AQBg22vbTtkuASiyCW1r2C7hmjDuUB5cb+MOQNnDGXIAAAAAACwgkAMAAAAAYAGBHAAAAAAACwjkAAAAAABYQCAHAAAAAMCCQgXyrVu3aufOnc75FStWKDw8XM8//7wuXrxYbMUBAAAAAFBeFSqQP/HEE9q3b58k6bvvvtOQIUNUqVIlLV26VM8++2yxFggAAAAAQHlUqEC+b98+tWnTRpK0dOlSde3aVYsWLVJMTIz+85//FHg769at04ABAxQUFCSHw6GPP/7YpX348OFyOBwuU+/evQtTMgAAAAAAZUqhArkxRjk5OZKk1atXq2/fvpKk4OBgnTp1qsDbyczMVOvWrTV79ux8+/Tu3VtHjx51TosXLy5MyQAAAAAAlCnuhVmpffv2evnllxUaGqrExETNnTtXkpSWlqaAgIACb6dPnz7q06fPVft4enqqdu3aBd5mVlaWsrKynPPp6ekFXhcAAAAAgNJSqDPkb731lrZu3arIyEi98MILaty4sSTp3//+tzp37lysBSYkJKhWrVpq2rSpRo0apdOnT1+1//Tp0+Xn5+ecgoODi7UeAAAAAACKQ6HOkLdu3drlKetXvPnmm3J3L9Qm89S7d2/de++9atCggQ4cOKDnn39effr00caNG1WhQoU814mKitL48eOd8+np6YRyAAAAAECZU6j03LBhQ23ZskXVq1d3WX7hwgW1a9dO3333XbEUN2TIEOd/33LLLQoJCVGjRo2UkJCgnj175rmOp6enPD09i2X/AAAAAACUlEJdsn7w4EFlZ2fnWp6VlaUff/yxyEXlp2HDhqpRo4ZSU1NLbB8AAAAAAJSGazpDvnLlSud/f/755/Lz83POZ2dnKz4+Xg0aNCi+6n7nxx9/1OnTpxUYGFhi+wAAAAAAoDRcUyAPDw+XJDkcDkVERLi0VaxYUfXr19eMGTMKvL2MjAyXs91paWnavn27/P395e/vr6lTp2rQoEGqXbu2Dhw4oGeffVaNGzdWWFjYtZQNAAAAAECZc02B/Mpvjzdo0EBbtmxRjRo1irTzpKQk9ejRwzl/5WFsERERmjt3rlJSUrRgwQKdPXtWQUFB6tWrl1566SXuEQcAAAAAXPcK9VC3tLS0Ytl59+7dZYzJt/3zzz8vlv0AAAAAAFDWFPo3yuLj4xUfH68TJ044z5xf8cEHHxS5MAAAAAAAyrNCBfKpU6dq2rRpat++vQIDA+VwOIq7LgAAAAAAyrVCBfJ58+YpJiZGQ4cOLe56AAAAAAC4IRTqd8gvXryozp07F3ctAAAAAADcMAoVyB977DEtWrSouGsBAAAAAOCGUahL1i9cuKB//OMfWr16tUJCQlSxYkWX9pkzZxZLcQAAAAAAlFeFCuQpKSlq06aNJGnXrl0ubTzgDQAAAACAP1aoQL527drirgMAAAAAgBtKoe4hBwAAAAAARVOoM+Q9evS46qXpa9asKXRBAAAAAADcCAoVyK/cP37FpUuXtH37du3atUsRERHFURcAAAAAAOVaoQL5W2+9lefyKVOmKCMjo0gFAQAAAABwIyjWe8gfeughffDBB8W5SQAAAAAAyqViDeQbN26Ul5dXcW4SAAAAAIByqVCXrN97770u88YYHT16VElJSXrxxReLpTAAAAAAAMqzQgVyPz8/l3k3Nzc1bdpU06ZNU69evYqlMAAAAAAAyrNCBfLo6OjirgMAAAAAgBtKoQL5FcnJyfr2228lSS1btlTbtm2LpSgAAAAAAMq7QgXyEydOaMiQIUpISFDVqlUlSWfPnlWPHj20ZMkS1axZszhrBAAAAACg3CnUU9bHjBmj8+fPa/fu3Tpz5ozOnDmjXbt2KT09XU899VRx1wgAAAAAQLlTqDPkcXFxWr16tZo3b+5c1qJFC82ePZuHugEAAAAAUACFOkOek5OjihUr5lpesWJF5eTkFLkoAAAAAADKu0IF8rvuuktjx47VkSNHnMsOHz6sp59+Wj179iy24gAAAAAAKK8KFcjfffddpaenq379+mrUqJEaNWqkBg0aKD09Xe+8805x1wgAAAAAQLlTqHvIg4ODtXXrVq1evVp79uyRJDVv3lyhoaHFWhwAAAAAAOXVNZ0hX7NmjVq0aKH09HQ5HA7dfffdGjNmjMaMGaMOHTqoZcuW+vLLL0uqVgAAAAAAyo1rCuSzZs3SiBEj5Ovrm6vNz89PTzzxhGbOnFlsxQEAAAAAUF5dUyDfsWOHevfunW97r169lJycXOSiAAAAAAAo764pkB8/fjzPnzu7wt3dXSdPnixyUQAAAAAAlHfXFMhvuukm7dq1K9/2lJQUBQYGFrkoAAAAAADKu2sK5H379tWLL76oCxcu5Gr75ZdfNHnyZPXv37/YigMAAAAAoLy6pp89mzhxopYtW6abb75ZkZGRatq0qSRpz549mj17trKzs/XCCy+USKEAAAAAAJQn1xTIAwICtGHDBo0aNUpRUVEyxkiSHA6HwsLCNHv2bAUEBJRIoQAAAAAAlCfXFMglqV69evrss8/0008/KTU1VcYYNWnSRNWqVSuJ+gAAAAAAKJeuOZBfUa1aNXXo0KE4awEAAAAA4IZxTQ91AwAAAAAAxYNADgAAAACABQRyAAAAAAAsIJADAAAAAGABgRwAAAAAAAsI5AAAAAAAWEAgBwAAAADAAgI5AAAAAAAWEMgBAAAAALCAQA4AAAAAgAVWA/m6des0YMAABQUFyeFw6OOPP3ZpN8Zo0qRJCgwMlLe3t0JDQ7V//347xQIAAAAAUIysBvLMzEy1bt1as2fPzrP9jTfe0Ntvv6158+Zp06ZN8vHxUVhYmC5cuFDKlQIAAAAAULzcbe68T58+6tOnT55txhjNmjVLEydO1D333CNJWrhwoQICAvTxxx9ryJAhpVkqAAAAAADFqszeQ56WlqZjx44pNDTUuczPz08dO3bUxo0b810vKytL6enpLhMAAAAAAGVNmQ3kx44dkyQFBAS4LA8ICHC25WX69Ony8/NzTsHBwSVaJwAAAAAAhVFmA3lhRUVF6dy5c87p0KFDtksCAAAAACCXMhvIa9euLUk6fvy4y/Ljx4872/Li6ekpX19flwkAAAAAgLKmzAbyBg0aqHbt2oqPj3cuS09P16ZNm9SpUyeLlQEAAAAAUHRWn7KekZGh1NRU53xaWpq2b98uf39/1a1bV+PGjdPLL7+sJk2aqEGDBnrxxRcVFBSk8PBwe0UDAAAAAFAMrAbypKQk9ejRwzk/fvx4SVJERIRiYmL07LPPKjMzU48//rjOnj2rO+64Q3FxcfLy8rJVMgAAAAAAxcJqIO/evbuMMfm2OxwOTZs2TdOmTSvFqgAAAAAAKHll9h5yAAAAAADKMwI5AAAAAAAWEMgBAAAAALCAQA4AAAAAgAUEcgAAAAAALCCQAwAAAABgAYEcAAAAAAALCOQAAAAAAFhAIAcAAAAAwAICOQAAAAAAFhDIAQAAAACwgEAOAAAAAIAFBHIAAAAAACwgkAMAAAAAYAGBHAAAAAAACwjkAAAAAABYQCAHAAAAAMACAjkAAAAAABYQyAEAAAAAsIBADgAAAACABQRyAAAAAAAsIJADAAAAAGABgRwAAAAAAAsI5AAAAAAAWEAgBwAAAADAAgI5AAAAAAAWEMgBAAAAALCAQA4AAAAAgAUEcgAAAAAALCCQAwAAAABgAYEcAAAAAAALCOQAAAAAAFhAIAcAAAAAwAICOQAAAAAAFhDIAQAAAACwgEAOAAAAAIAFBHIAAAAAACwgkAMAAAAAYAGBHAAAAAAACwjkAAAAAABYQCAHAAAAAMACAjkAAAAAABYQyAEAAAAAsIBADgAAAACABQRyAAAAAAAsKNOBfMqUKXI4HC5Ts2bNbJcFAAAAAECRudsu4I+0bNlSq1evds67u5f5kgEAAAAA+ENlPt26u7urdu3atssAAAAAAKBYlelL1iVp//79CgoKUsOGDfXggw/qhx9+uGr/rKwspaenu0wAAAAAAJQ1ZTqQd+zYUTExMYqLi9PcuXOVlpamO++8U+fPn893nenTp8vPz885BQcHl2LFAAAAAAAUTJkO5H369NF9992nkJAQhYWF6bPPPtPZs2f10Ucf5btOVFSUzp0755wOHTpUihUDAAAAAFAwZf4e8t+qWrWqbr75ZqWmpubbx9PTU56enqVYFQAAAAAA165MnyH/vYyMDB04cECBgYG2SwEAAAAAoEjKdCD/y1/+osTERB08eFAbNmzQwIEDVaFCBT3wwAO2SwMAAAAAoEjK9CXrP/74ox544AGdPn1aNWvW1B133KGvv/5aNWvWtF0aAAAAAABFUqYD+ZIlS2yXAAAAAABAiSjTl6wDAAAAAFBeEcgBAAAAALCAQA4AAAAAgAUEcgAAAAAALCCQAwAAAABgAYEcAAAAAAALCOQAAAAAAFhAIAcAAAAAwAICOQAAAAAAFhDIAQAAAACwgEAOAAAAAIAFBHIAAAAAACwgkAMAAAAAYAGBHAAAAAAACwjkAAAAAABYQCAHAAAAAMACAjkAAAAAABYQyAEAAAAAsIBADgAAAACABQRyAAAAAAAsIJADAAAAAGABgRwAAAAAAAsI5AAAAAAAWEAgBwAAAADAAgI5AAAAAAAWEMgBAAAAALCAQA4AAAAAgAUEcgAAAAAALCCQAwAAAABgAYEcAAAAAAALCOQAAAAAAFhAIAcAAAAAwAICOQAAAAAAFhDIAQAAAACwgEAOAAAAAIAFBHIAAAAAACwgkAMAAAAAYAGBHAAAAAAAC9xtFwAAAACgdLy27ZTtEoAim9C2hu0Sig1nyAEAAAAAsIBADgAAAACABQRyAAAAAAAsIJADAAAAAGABgRwAAAAAAAsI5AAAAAAAWEAgBwAAAADAgusikM+ePVv169eXl5eXOnbsqM2bN9suCQAAAACAIinzgfzDDz/U+PHjNXnyZG3dulWtW7dWWFiYTpw4Ybs0AAAAAAAKrcwH8pkzZ2rEiBF6+OGH1aJFC82bN0+VKlXSBx98YLs0AAAAAAAKzd12AVdz8eJFJScnKyoqyrnMzc1NoaGh2rhxY57rZGVlKSsryzl/7tw5SVJ6enrJFlsMLmSct10CUGTp6R62S7hmjD2UB9fb2GPcoTy43sadxNhD+XA9jL0r+dMYc9V+ZTqQnzp1StnZ2QoICHBZHhAQoD179uS5zvTp0zV16tRcy4ODg0ukRgCuco8+AKWBsQeUPsYdYMf1NPbOnz8vPz+/fNvLdCAvjKioKI0fP945n5OTozNnzqh69epyOBwWK4Nt6enpCg4O1qFDh+Tr62u7HOCGwdgDSh/jDrCDsYcrjDE6f/68goKCrtqvTAfyGjVqqEKFCjp+/LjL8uPHj6t27dp5ruPp6SlPT0+XZVWrVi2pEnEd8vX15QMSsICxB5Q+xh1gB2MPkq56ZvyKMv1QNw8PD916662Kj493LsvJyVF8fLw6depksTIAAAAAAIqmTJ8hl6Tx48crIiJC7du312233aZZs2YpMzNTDz/8sO3SAAAAAAAotDIfyO+//36dPHlSkyZN0rFjx9SmTRvFxcXletAb8Ec8PT01efLkXLc0AChZjD2g9DHuADsYe7hWDvNHz2EHAAAAAADFrkzfQw4AAAAAQHlFIAcAAAAAwAICOQAAAAAAFhDIgevE8OHDFR4eftU+3bt317hx40qlHuBGwLgD7IiJiVHVqlWv2mfKlClq06ZNqdQD3Ag45tlBIIfT9OnT1aFDB1WpUkW1atVSeHi49u7d69Kne/fucjgcLtPIkSOLvO9ly5apffv2qlq1qnx8fNSmTRv985//zLf/yJEj5XA4NGvWrCLvG7Bp7ty5CgkJka+vr3x9fdWpUyf997//delTUuPut5YsWSKHw3HVAzHjDuXJunXrNGDAAAUFBcnhcOjjjz/O1ScjI0ORkZGqU6eOvL291aJFC82bN6/I+05ISNA999yjwMBA5zEvNjY23/4FGZ/A9ea1116Tw+HIFe5K6pgXExOTa7teXl759ueYh9JS5n/2DKUnMTFRo0ePVocOHXT58mU9//zz6tWrl7755hv5+Pg4+40YMULTpk1zzleqVKnI+/b399cLL7ygZs2aycPDQ5988okefvhh1apVS2FhYS59ly9frq+//lpBQUFF3m9JyM7OlsPhkJsb/96FP1anTh299tpratKkiYwxWrBgge655x5t27ZNLVu2dPYriXF3xcGDB/WXv/xFd955Z759GHcobzIzM9W6dWs98sgjuvfee/PsM378eK1Zs0b/+te/VL9+fX3xxRd68sknFRQUpD/96U+F3veGDRsUEhKi5557TgEBAfrkk080bNgw+fn5qX///i59CzI+bbt06ZIqVqxouwxcR7Zs2aL33ntPISEhebaX1DHP19fX5WSTw+HIsx/HPJQm/i/CKS4uTsOHD1fLli3VunVrxcTE6IcfflBycrJLv0qVKql27drOydfXt8j77t69uwYOHKjmzZurUaNGGjt2rEJCQrR+/XqXfocPH9aYMWMUGxv7hwf/hQsXqnr16srKynJZHh4erqFDhzrnV6xYoXbt2snLy0sNGzbU1KlTdfnyZWf7zJkzdcstt8jHx0fBwcF68sknlZGR4Wy/clndypUr1aJFC3l6euqHH35QQkKCbrvtNvn4+Khq1arq0qWLvv/++3zr3blzp+666y55e3urevXqevzxx13283uZmZkaNmyYKleurMDAQM2YMeOq7wfKpgEDBqhv375q0qSJbr75Zr3yyiuqXLmyvv76a5d+JTHupF8P6g8++KCmTp2qhg0b5tmHcfd/GHflR58+ffTyyy9r4MCB+fbZsGGDIiIi1L17d9WvX1+PP/64Wrdurc2bNxdp388//7xeeuklde7c2XnM6927t5YtW+bSryDj84qDBw/Kzc1NSUlJLstnzZqlevXqKScnR5K0a9cu9enTR5UrV1ZAQICGDh2qU6dOOfvHxcXpjjvuUNWqVVW9enX1799fBw4ccNmPw+HQhx9+qG7dusnLy0uxsbH6/vvvNWDAAFWrVk0+Pj5q2bKlPvvss3zr/emnnzRs2DBVq1ZNlSpVUp8+fbR///6rvsbXXntNAQEBqlKlih599FFduHDhqv1RNmVkZOjBBx/U+++/r2rVquXZp6SOeQ6Hw2W7AQEBufpwzPs/HPNKB4Ec+Tp37pykX89e/1ZsbKxq1KihVq1aKSoqSj///HOx7tcYo/j4eO3du1ddu3Z1Ls/JydHQoUP117/+1eXMYX7uu+8+ZWdna+XKlc5lJ06c0KeffqpHHnlEkvTll19q2LBhGjt2rL755hu99957iomJ0SuvvOJcx83NTW+//bZ2796tBQsWaM2aNXr22Wdd9vXzzz/r9ddf1//8z/9o9+7d8vf3V3h4uLp166aUlBRt3LhRjz/+eL7/EpuZmamwsDBVq1ZNW7Zs0dKlS7V69WpFRkbm+/r++te/KjExUStWrNAXX3yhhIQEbd269Q/fF5Rd2dnZWrJkiTIzM9WpUyeXtpIad9OmTVOtWrX06KOP5tnOuHPFuLuxdO7cWStXrtThw4dljNHatWu1b98+9erVq9j3de7cuVzH2z8an79Vv359hYaGKjo62mV5dHS0hg8fLjc3N509e1Z33XWX2rZtq6SkJMXFxen48eP685//7OyfmZmp8ePHKykpSfHx8XJzc9PAgQOdgf6KCRMmaOzYsfr2228VFham0aNHKysrS+vWrdPOnTv1+uuvq3LlyvnWO3z4cCUlJWnlypXauHGjjDHq27evLl26lGf/jz76SFOmTNGrr76qpKQkBQYGas6cOX/4vqDsGT16tPr166fQ0NB8+5TUMS8jI0P16tVTcHCw7rnnHu3evdulnWOeK455pcQAecjOzjb9+vUzXbp0cVn+3nvvmbi4OJOSkmL+9a9/mZtuuskMHDiwWPZ59uxZ4+PjY9zd3Y2np6eZP3++S/urr75q7r77bpOTk2OMMaZevXrmrbfeuuo2R40aZfr06eOcnzFjhmnYsKFzGz179jSvvvqqyzr//Oc/TWBgYL7bXLp0qalevbpzPjo62kgy27dvdy47ffq0kWQSEhKu/qL/f//4xz9MtWrVTEZGhnPZp59+atzc3MyxY8eMMcZERESYe+65xxhjzPnz542Hh4f56KOPXPbp7e1txo4dW6B9ouxISUkxPj4+pkKFCsbPz898+umnLu0lNe6+/PJLc9NNN5mTJ08aY1z/xq5g3DHubgSSzPLly3Mtv3Dhghk2bJiRZNzd3Y2Hh4dZsGBBse//ww8/NB4eHmbXrl3OZQUZn3ltp1q1aubChQvGGGOSk5ONw+EwaWlpxhhjXnrpJdOrVy+XdQ4dOmQkmb179+a5zZMnTxpJZufOncYYY9LS0owkM2vWLJd+t9xyi5kyZUqBXu++ffuMJPPVV185l506dcp4e3s7x1d0dLTx8/Nztnfq1Mk8+eSTLtvp2LGjad26dYH2ibJh8eLFplWrVuaXX34xxhjTrVu3XJ+fJXXM27Bhg1mwYIHZtm2bSUhIMP379ze+vr7m0KFDzj4c8zjm2UAgR55Gjhxp6tWr5/IhlZf4+HgjyaSmpubZ/sorrxgfHx/n9P333+e7rezsbLN//36zbds287e//c34+fmZtWvXGmOMSUpKMgEBAebw4cPO/gX5kNy6daupUKGC+fHHH40xv35hmDZtmrO9Ro0axsvLy6VGLy8vI8lkZmYaY4xZtWqVueuuu0xQUJCpXLlyrvbo6Gjj4eHh/OC9Yvjw4cbT09P079/fzJo1yxw5ciTfOp9++mnTvXt3l2Vnz541kkxiYqIxxvVDcvv27UZSrvezTZs2fEheh7Kyssz+/ftNUlKSmTBhgqlRo4bZvXt3vv2LY9ylp6eb+vXrm88++8y57Pdf+Bl3jLsbRX6B/M033zQ333yzWblypdmxY4d55513TOXKlc2qVavy3M66detc/q7/9a9//eG+16xZYypVquQS9AsyPvOSlZVlatSoYRYvXmyMMWbMmDHmrrvucrYPHjzYVKxY0aVGHx8fI8m5r3379pkhQ4aYBg0amCpVqjjbr/xD4ZVAvn79epd9v//++8bd3d107tzZTJo0yezYsSPfOlesWGHc3d3N5cuXXZa3adPGTJ061RiTO5BXrVo11z+GjBs3jkB+Hfnhhx9MrVq1XP428grkv1ec3zV/6+LFi6ZRo0Zm4sSJxhiOecZwzLOFS9aRS2RkpD755BOtXbtWderUuWrfjh07SpJSU1PzbB85cqS2b9/unK72cAw3Nzc1btxYbdq00TPPPKPBgwdr+vTpkn693OfEiROqW7eu3N3d5e7uru+//17PPPOM6tevn+8227Ztq9atW2vhwoVKTk7W7t27NXz4cGd7RkaGpk6d6lLjzp07tX//fnl5eengwYPq37+/QkJC9J///EfJycmaPXu2JOnixYvO7Xh7e+e6RCg6OlobN25U586d9eGHH+rmm2/OdV8wIEkeHh5q3Lixbr31Vk2fPl2tW7fW3//+93z7F8e4O3DggA4ePKgBAwY4x9TChQu1cuVKubu768CBA4w73NB++eUXPf/885o5c6YGDBigkJAQRUZG6v7779ff/va3PNdp3769y9/1Hz34LTExUQMGDNBbb72lYcOGOZcXZHzmxcPDQ8OGDVN0dLQuXryoRYsWOS+blX4dewMGDHCpcfv27dq/f7/zFrEBAwbozJkzev/997Vp0yZt2rRJkuvYk+TysFdJeuyxx/Tdd99p6NCh2rlzp9q3b6933nnnqq8fN5bk5GSdOHFC7dq1c/5dJyYm6u2335a7u7uys7PzXK84v2v+VsWKFdW2bVvndjnmwRaesg4nY4zGjBmj5cuXKyEhQQ0aNPjDdbZv3y5JCgwMzLPd398/1z1xBZWTk+N8SMbQoUNz3WsUFhamoUOH6uGHH77qdh577DHNmjVLhw8fVmhoqIKDg51t7dq10969e9W4ceM8101OTlZOTo5mzJjhfJLlRx99VODX0LZtW7Vt21ZRUVHq1KmTFi1apNtvvz1Xv+bNmysmJkaZmZnOLzlfffWV3Nzc1LRp01z9GzVqpIoVK2rTpk2qW7eupF8fkLNv3z5169atwPWhbPrt335eimPcNWvWTDt37nRZNnHiRJ0/f15///vfFRwczLj7HcbdjeXSpUu6dOlSrqcYV6hQIdf91Fd4e3vn+3f9ewkJCerfv79ef/11Pf744y5tBRmf+XnsscfUqlUrzZkzR5cvX3Z5gny7du30n//8R/Xr15e7e+6vgKdPn9bevXv1/vvvO5/q/vuHq15NcHCwRo4cqZEjRyoqKkrvv/++xowZk6tf8+bNdfnyZW3atEmdO3d22XeLFi3y3Hbz5s21adMml3+4IHhcX3r27Jnr7/rhhx9Ws2bN9Nxzz6lChQp5rldS3zWzs7O1c+dO9e3bVxLfNX+PY14psn2KHmXHqFGjjJ+fn0lISDBHjx51Tj///LMxxpjU1FQzbdo0k5SUZNLS0syKFStMw4YNTdeuXYu871dffdV88cUX5sCBA+abb74xf/vb34y7u7t5//33812nIJcRGfPr5TiVKlUyHh4eZsmSJS5tcXFxxt3d3UyZMsXs2rXLfPPNN2bx4sXmhRdeMMb83+U6s2bNMgcOHDALFy40N910k5FkfvrpJ2NM7svqjDHmu+++MxMmTDAbNmwwBw8eNJ9//rmpXr26mTNnTp41ZmZmmsDAQDNo0CCzc+dOs2bNGtOwYUMTERHh7PP7yxWv3FYQHx9vdu7caf70pz+ZypUrcxnRdWbChAkmMTHRpKWlmZSUFDNhwgTjcDjMF198YYwp2XH3ewW5JJZxx7grL86fP2+2bdtmtm3bZiSZmTNnmm3btrlcntmtWzfTsmVLs3btWvPdd9+Z6Oho4+Xlle/fVEFduUw9KirK5Xh7+vTpfNcpyPi8onPnzsbDw8OMHDnSZfnhw4dNzZo1zeDBg83mzZtNamqqiYuLM8OHDzeXL1822dnZpnr16uahhx4y+/fvN/Hx8aZDhw4ul/RfuWR927ZtLtseO3asiYuLM999951JTk42HTt2NH/+85/zrfGee+4xLVq0MF9++aXZvn276d27t2ncuLG5ePGiMSb3GF+yZInx8vIyH3zwgdm7d6+ZNGmSqVKlCpesX+d+f8l6SR7zpk6daj7//HNz4MABk5ycbIYMGWK8vLyueosYxzyOeaWBQA4nSXlO0dHRxphf7/3p2rWr8ff3N56enqZx48bmr3/9qzl37lyR9/3CCy+Yxo0bGy8vL1OtWjXTqVOnXB9ov1fQD0ljjBk6dKjx9/d3Pujmt+Li4kznzp2Nt7e38fX1Nbfddpv5xz/+4WyfOXOmCQwMNN7e3iYsLMwsXLjwDz8kjx07ZsLDw01gYKDx8PAw9erVM5MmTTLZ2dn51piSkmJ69OhhvLy8jL+/vxkxYoQ5f/68s/33H5Lnz583Dz30kKlUqZIJCAgwb7zxRoHuxULZ8sgjj5h69eoZDw8PU7NmTdOzZ09nGDemZMfd7xVnIDeGcYeybe3atXke83775fTo0aNm+PDhJigoyHh5eZmmTZuaGTNm5LqP81pFRETkue9u3bpddZ2CBvL58+cbSWbz5s252vbt22cGDhxoqlatary9vU2zZs3MuHHjnK9p1apVpnnz5sbT09OEhISYhISEAgXyyMhI06hRI+Pp6Wlq1qxphg4dak6dOpVvjWfOnDFDhw41fn5+znG+b98+Z3teY/yVV14xNWrUMJUrVzYRERHm2WefJZBf537/+VmSx7xx48aZunXrGg8PDxMQEGD69u1rtm7detV1OOZxzCsNDmOMKYUT8YBVPXv2VMuWLfX222/bLgW4YTDuADteeuklLV26VCkpKbZLAW4YHPNQWNxDjnLtp59+UkJCghISEvi9UqCUMO4AOzIyMnTw4EG9++67evnll22XA9wQOOahqAjkKNfatm2rn376Sa+//nqeD6wAUPwYd4AdkZGRWrx4scLDw12erg6g5HDMQ1FxyToAAAAAABbwO+QAAAAAAFhAIAcAAAAAwAICOQAAAAAAFhDIAQAAAACwgEAOAAAAAIAFBHIAAAAAACwgkAMAUAZt3LhRFSpUUL9+/Up1vxcvXtSbb76pdu3aycfHR35+fmrdurUmTpyoI0eOlGotAACUd/wOOQAAZdBjjz2mypUra/78+dq7d6+CgoJKfJ9ZWVnq1auXUlJSNHXqVHXp0kU1a9ZUWlqaFi9erGrVqmn69Ol5rnvx4kV5eHiUeI0AAJQnnCEHAKCMycjI0IcffqhRo0apX79+iomJydVn5cqVatKkiby8vNSjRw8tWLBADodDZ8+edfZZv3697rzzTnl7eys4OFhPPfWUMjMz893vW2+9pfXr12vNmjV66qmndOutt6pu3brq1q2b5s2bp1dffdXZt3v37oqMjNS4ceNUo0YNhYWFSZISExN12223ydPTU4GBgZowYYIuX77sXK9+/fqaNWuWy37btGmjKVOmOOcdDofmzp2rPn36yNvbWw0bNtS///3va3sTAQC4DhDIAQAoYz766CM1a9ZMTZs21UMPPaQPPvhAv72gLS0tTYMHD1Z4eLh27NihJ554Qi+88ILLNg4cOKDevXtr0KBBSklJ0Ycffqj169crMjIy3/0uXrxYd999t9q2bZtnu8PhcJlfsGCBPDw89NVXX2nevHk6fPiw+vbtqw4dOmjHjh2aO3eu5s+fr5dffvma34MXX3xRgwYN0o4dO/Tggw9qyJAh+vbbb695OwAAlGUEcgAAypj58+froYcekiT17t1b586dU2JiorP9vffeU9OmTfXmm2+qadOmGjJkiIYPH+6yjenTp+vBBx/UuHHj1KRJE3Xu3Flvv/22Fi5cqAsXLuS533379qlp06YuywYOHKjKlSurcuXK6ty5s0tbkyZN9MYbb6hp06Zq2rSp5syZo+DgYL377rtq1qyZwsPDNXXqVM2YMUM5OTnX9B7cd999euyxx3TzzTfrpZdeUvv27fXOO+9c0zYAACjrCOQAAJQhe/fu1ebNm/XAAw9Iktzd3XX//fdr/vz5Ln06dOjgst5tt93mMr9jxw7FxMQ4w3TlypUVFhamnJwcpaWlFbieOXPmaPv27XrkkUf0888/u7TdeuutLvPffvutOnXq5HImvUuXLsrIyNCPP/5Y4H1KUqdOnXLNc4YcAFDeuNsuAAAA/J/58+fr8uXLLg9xM8bI09NT7777rvz8/Aq0nYyMDD3xxBN66qmncrXVrVs3z3WaNGmivXv3uiwLDAyUJPn7++fq7+PjU6BafsvNzU2/f57spUuXrnk7AACUB5whBwCgjLh8+bIWLlyoGTNmaPv27c5px44dCgoK0uLFiyVJTZs2VVJSksu6W7ZscZlv166dvvnmGzVu3DjXlN/T0B944AGtWrVK27ZtK1T9zZs318aNG10C91dffaUqVaqoTp06kqSaNWvq6NGjzvb09PQ8z9h//fXXueabN29eqLoAACirCOQAAJQRn3zyiX766Sc9+uijatWqlcs0aNAg52XrTzzxhPbs2aPnnntO+/bt00cffeR8EvuVy8Wfe+45bdiwQZGRkdq+fbv279+vFStWXPWhbk8//bQ6deqknj176u9//7u2bt2qtLQ0ff755/rvf/+rChUqXLX+J598UocOHdKYMWO0Z88erVixQpMnT9b48ePl5vbrV4677rpL//znP/Xll19q586dioiIyHO7S5cu1QcffKB9+/Zp8uTJ2rx581VrBwDgekQgBwCgjJg/f75CQ0PzvCx90KBBSkpKUkpKiho0aKB///vfWrZsmUJCQjR37lznU9Y9PT0lSSEhIUpMTNS+fft05513qm3btpo0adJVf8/cy8tL8fHxeu655xQdHa077rhDzZs317hx49SlSxd9/PHHV63/pptu0meffabNmzerdevWGjlypB599FFNnDjR2ScqKkrdunVT//791a9fP4WHh6tRo0a5tjV16lQtWbJEISEhWrhwoRYvXqwWLVoU5G0EAOC64TC/v5ELAABcd1555RXNmzdPhw4dsl1KkTkcDi1fvlzh4eG2SwEAoETxUDcAAK5Dc+bMUYcOHVS9enV99dVXevPNN7mkGwCA6wyBHACA69D+/fv18ssv68yZM6pbt66eeeYZRUVF2S4LAABcAy5ZBwAAAADAAh7qBgAAAACABQRyAAAAAAAsIJADAAAAAGABgRwAAAAAAAsI5AAAAAAAWEAgBwAAAADAAgI5AAAAAAAWEMgBAAAAALDg/wPTp5qHD86DfAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lst=df['Age'].value_counts().nlargest(10)\n", + "plt.figure(figsize=(12,4))\n", + "plt.bar(list(lst.keys()), lst.values, color='skyblue') # Plotting the bars\n", + "\n", + "# Adding labels and title\n", + "plt.xlabel('Age Group') # Label for x-axis\n", + "plt.ylabel('Counts') # Label for y-axis\n", + "plt.title('Age') # Title of the plot\n", + "#plt.xticks(rotation=45) # Rotate labels by 90 degrees\n", + "\n", + "# Display the plot\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Age 0\n", + "SalaryUSD 0\n", + "Country 0\n", + "Currency 0\n", + "DevType 0\n", + "Employment 0\n", + "RaceEthnicity 0\n", + "Gender 0\n", + "SalaryType 0\n", + "Hobby 0\n", + "JobSatisfaction 0\n", + "JobSearchStatus 0\n", + "OperatingSystem 0\n", + "UndergradMajor 0\n", + "YearsCoding 0\n", + "YearsCodingProf 0\n", + "LanguageDesireNextYear 0\n", + "LanguageWorkedWith 0\n", + "FormalEducation 0\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "print(df.isnull().sum())" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 120, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['FormalEducation'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FormalEducation\n", + "Bachelor‚Äôs degree (BA, BS, B.Eng., etc.) 25\n", + "Master‚Äôs degree (MA, MS, M.Eng., MBA, etc.) 17\n", + "Some college/university study without earning a degree 12\n", + "Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.) 3\n", + "Associate degree 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 121, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['FormalEducation'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "EdLevel\n", + "Bachelors 42\n", + "No Degree 15\n", + "Associate 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 122, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Changing column's name\n", + "df.rename(columns={'FormalEducation':'EdLevel'}, inplace =True)\n", + "#Refactoring EdLevel\n", + "def refactor_ed(df):\n", + " '''function to change Education level category to Bachelors, Masters, Professional, Associate, Doctorate, No Degree'''\n", + " conditions_ed = [(df['EdLevel'] == 'Associate degree'),\n", + " (df['EdLevel'] == 'Bachelor’s degree (BA, BS, B.Eng., etc.)'),\n", + " (df['EdLevel'] == 'Master’s degree (MA, MS, M.Eng., MBA, etc.)'),\n", + " (df['EdLevel'] == 'Professional degree (JD, MD, etc.)'), \n", + " (df['EdLevel'] == 'Other doctoral degree (Ph.D, Ed.D., etc.)'),\n", + " (df['EdLevel'] == 'Some college/university study without earning a degree') \n", + " | (df['EdLevel'] == 'Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.)') \n", + " | (df['EdLevel'] == 'Primary/elementary school')\n", + " | (df['EdLevel'] == 'I never completed any formal education')]\n", + " \n", + " choices_ed = ['Associate', 'Bachelors', 'Masters', 'Professional', 'Doctorate', 'No Degree']\n", + " df['EdLevel'] = np.select(conditions_ed, choices_ed, default = np.NaN)\n", + " return df\n", + "\n", + "# applying function to subsets\n", + "df = refactor_ed(df)\n", + "#Assigining the surveyors who havent mentioned their education level to Bachelor’s degree\n", + "df['EdLevel'].replace('nan', 'Bachelors', inplace=True)\n", + "\n", + "df['EdLevel'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cleaned Dataset : 2018_Survey" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(59, 19)" + ] + }, + "execution_count": 123, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cleaned_2018 = df[df.notnull()]\n", + "cleaned_2018.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeSalaryUSDCountryCurrencyDevTypeEmploymentRaceEthnicityGenderSalaryTypeHobbyJobSatisfactionJobSearchStatusOperatingSystemUndergradMajorYearsCodingYearsCodingProfLanguageDesireNextYearLanguageWorkedWithEdLevel
135 - 44 years old70841.0United KingdomBritish pounds sterling (£)DeveloperFull-timeWhite or European descentMaleYearlyYesModerately dissatisfiedSeekingLinux-basedOther Science30 or more years18-20 yearsGo;PythonJavaScript;Python;Bash/ShellBachelors
418 - 24 years old21426.0South AfricaSouth African rands (R)DeveloperFull-timeWhite or European descentMaleYearlyYesSlightly satisfiednanWindowsComputer Science6-8 years0-2 yearsAssembly;C;C++;Matlab;SQL;Bash/ShellC;C++;Java;Matlab;R;SQL;Bash/ShellNo Degree
518 - 24 years old41671.0United KingdomBritish pounds sterling (£)DeveloperFull-timeWhite or European descentMaleYearlyYesModerately satisfiedSeekingLinux-basedComputer Science6-8 years3-5 yearsC#;Go;Java;JavaScript;Python;SQL;TypeScript;HT...Java;JavaScript;Python;TypeScript;HTML;CSSBachelors
618 - 24 years old120000.0United StatesU.S. dollars ($)DeveloperFull-timeWhite or European descentMaleYearlyYesSlightly satisfiednanMacOSComputer Science9-11 years0-2 yearsC;Go;JavaScript;Python;HTML;CSSJavaScript;HTML;CSSNo Degree
835 - 44 years old250000.0United StatesU.S. dollars ($)DeveloperFull-timeWhite or European descentMaleYearlyYesModerately satisfiednanMacOSArts and Science30 or more years21-23 yearsErlang;Go;Python;Rust;SQLAssembly;CoffeeScript;Erlang;Go;JavaScript;Lua...No Degree
1335 - 44 years old8767.0IndiaU.S. dollars ($)DeveloperFull-timeSouth AsianNon-conformingYearlyNoExtremely satisfiednanLinux-basedEngineering3-5 years3-5 yearsJava;PythonJavaBachelors
1418 - 24 years old0.0NetherlandsEuros (€)DeveloperFull-timeWhite or European descentMaleMonthlyNoNeither satisfied nor dissatisfiednanWindowsNo major0-2 years0-2 yearsJava;PythonJava;JavaScript;PHP;VB.NET;HTML;CSSNo Degree
1735 - 44 years old47904.0SwedenSwedish kroner (SEK)DeveloperFull-timeWhite or European descentMaleMonthlyYesModerately satisfiednanWindowsBusiness6-8 years0-2 yearsC#;F#;Haskell;SQL;OcamlC#;SQL;HTML;CSS;Bash/ShellBachelors
1835 - 44 years old8767.0IndiaSwedish kroner (SEK)DeveloperFull-timeSouth AsianFemaleMonthlyYesSlightly satisfiednanWindowsNo major0-2 years3-5 yearsPython;RC;C++;C#Bachelors
2035 - 44 years old95968.0AustraliaAustralian dollars (A$)DeveloperFull-timeSouth AsianMaleYearlyYesSlightly satisfiednanMacOSEngineering15-17 years12-14 yearsC;C++;Go;Python;SQL;Swift;KotlinC;C++;Go;Python;SQL;SwiftBachelors
\n", + "
" + ], + "text/plain": [ + " Age SalaryUSD Country \\\n", + "1 35 - 44 years old 70841.0 United Kingdom \n", + "4 18 - 24 years old 21426.0 South Africa \n", + "5 18 - 24 years old 41671.0 United Kingdom \n", + "6 18 - 24 years old 120000.0 United States \n", + "8 35 - 44 years old 250000.0 United States \n", + "13 35 - 44 years old 8767.0 India \n", + "14 18 - 24 years old 0.0 Netherlands \n", + "17 35 - 44 years old 47904.0 Sweden \n", + "18 35 - 44 years old 8767.0 India \n", + "20 35 - 44 years old 95968.0 Australia \n", + "\n", + " Currency DevType Employment \\\n", + "1 British pounds sterling (£) Developer Full-time \n", + "4 South African rands (R) Developer Full-time \n", + "5 British pounds sterling (£) Developer Full-time \n", + "6 U.S. dollars ($) Developer Full-time \n", + "8 U.S. dollars ($) Developer Full-time \n", + "13 U.S. dollars ($) Developer Full-time \n", + "14 Euros (€) Developer Full-time \n", + "17 Swedish kroner (SEK) Developer Full-time \n", + "18 Swedish kroner (SEK) Developer Full-time \n", + "20 Australian dollars (A$) Developer Full-time \n", + "\n", + " RaceEthnicity Gender SalaryType Hobby \\\n", + "1 White or European descent Male Yearly Yes \n", + "4 White or European descent Male Yearly Yes \n", + "5 White or European descent Male Yearly Yes \n", + "6 White or European descent Male Yearly Yes \n", + "8 White or European descent Male Yearly Yes \n", + "13 South Asian Non-conforming Yearly No \n", + "14 White or European descent Male Monthly No \n", + "17 White or European descent Male Monthly Yes \n", + "18 South Asian Female Monthly Yes \n", + "20 South Asian Male Yearly Yes \n", + "\n", + " JobSatisfaction JobSearchStatus OperatingSystem \\\n", + "1 Moderately dissatisfied Seeking Linux-based \n", + "4 Slightly satisfied nan Windows \n", + "5 Moderately satisfied Seeking Linux-based \n", + "6 Slightly satisfied nan MacOS \n", + "8 Moderately satisfied nan MacOS \n", + "13 Extremely satisfied nan Linux-based \n", + "14 Neither satisfied nor dissatisfied nan Windows \n", + "17 Moderately satisfied nan Windows \n", + "18 Slightly satisfied nan Windows \n", + "20 Slightly satisfied nan MacOS \n", + "\n", + " UndergradMajor YearsCoding YearsCodingProf \\\n", + "1 Other Science 30 or more years 18-20 years \n", + "4 Computer Science 6-8 years 0-2 years \n", + "5 Computer Science 6-8 years 3-5 years \n", + "6 Computer Science 9-11 years 0-2 years \n", + "8 Arts and Science 30 or more years 21-23 years \n", + "13 Engineering 3-5 years 3-5 years \n", + "14 No major 0-2 years 0-2 years \n", + "17 Business 6-8 years 0-2 years \n", + "18 No major 0-2 years 3-5 years \n", + "20 Engineering 15-17 years 12-14 years \n", + "\n", + " LanguageDesireNextYear \\\n", + "1 Go;Python \n", + "4 Assembly;C;C++;Matlab;SQL;Bash/Shell \n", + "5 C#;Go;Java;JavaScript;Python;SQL;TypeScript;HT... \n", + "6 C;Go;JavaScript;Python;HTML;CSS \n", + "8 Erlang;Go;Python;Rust;SQL \n", + "13 Java;Python \n", + "14 Java;Python \n", + "17 C#;F#;Haskell;SQL;Ocaml \n", + "18 Python;R \n", + "20 C;C++;Go;Python;SQL;Swift;Kotlin \n", + "\n", + " LanguageWorkedWith EdLevel \n", + "1 JavaScript;Python;Bash/Shell Bachelors \n", + "4 C;C++;Java;Matlab;R;SQL;Bash/Shell No Degree \n", + "5 Java;JavaScript;Python;TypeScript;HTML;CSS Bachelors \n", + "6 JavaScript;HTML;CSS No Degree \n", + "8 Assembly;CoffeeScript;Erlang;Go;JavaScript;Lua... No Degree \n", + "13 Java Bachelors \n", + "14 Java;JavaScript;PHP;VB.NET;HTML;CSS No Degree \n", + "17 C#;SQL;HTML;CSS;Bash/Shell Bachelors \n", + "18 C;C++;C# Bachelors \n", + "20 C;C++;Go;Python;SQL;Swift Bachelors " + ] + }, + "execution_count": 124, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cleaned_2018.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## After Cleaning Dataset 2018" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total : 1121\n", + "Total missing : 0\n", + "Missing Percentage: 0.0 %\n" + ] + } + ], + "source": [ + "#Find % of missing data\n", + "missing_count = df.isnull().sum() #number of missing\n", + "total_cells = np.product(df.shape) # number of cells (cols x rows)\n", + "total_missing = missing_count.sum()\n", + "missing_percent = (total_missing*100)/total_cells\n", + "\n", + "print('Total : ', total_cells)\n", + "print('Total missing : ', total_missing)\n", + "print('Missing Percentage: ', missing_percent, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Stackoverflow 2019 Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": {}, + "outputs": [], + "source": [ + "na_vals = ['NA', 'Missing']\n", + "survey_main_df = pd.read_csv(r\"D:\\project\\Stackoverflow-Analysis\\Data\\survey_results_sample_2019.csv\", na_values=na_vals)\n", + "schema_df = pd.read_csv(r\"D:\\project\\Stackoverflow-Analysis\\Data\\survey_results_sample_2019.csv\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Cleaning" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": {}, + "outputs": [], + "source": [ + "#Selecting only the required columns for analysis\n", + "survey_df_2019 = survey_main_df[['Age', 'CareerSat', 'ConvertedComp', 'Country', 'Dependents', 'EdLevel', 'Employment', 'Ethnicity', 'Gender', 'Hobbyist', 'ImpSyn', 'JobSat', 'JobSeek', 'LanguageDesireNextYear', 'LanguageWorkedWith', 'MainBranch',\n", + " 'UndergradMajor', 'YearsCodePro', 'DevType']]" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "#changing the name of columns for easier understanding\n", + "# 'MainBranch': 'Profession'\n", + "# 'ConvertedComp': 'SalaryUSD'\n", + "# 'CareerSat': 'JobSatisfaction'\n", + "# 'ImpSyn' : 'CompetenceLevel'\n", + "# 'JobSat' : 'CurrentJobSatis'\n", + "# 'JobSeek' : 'JobStatus'\n", + "\n", + "\n", + "survey_df_2019.rename(columns={'MainBranch': 'Profession', 'ConvertedComp': 'SalaryUSD', 'CareerSat': 'JobSatisfaction', 'ImpSyn' : 'CompetenceLevel', 'JobSat' : 'CurrentJobSatis', 'JobSeek' : 'JobStatus' }, inplace =True)" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeCompetenceLevelCountryCurrentJobSatisDependentsDevTypeEdLevelEmploymentEthnicityGenderHobbyistJobSatisfactionJobStatusLanguageDesireNextYearLanguageWorkedWithProfessionSalaryUSDUndergradMajorYearsCodePro
014.0NaNUnited KingdomNaNNoNaNPrimary/elementary schoolNot employed, and not looking for workNaNManYesNaNNaNC;C++;C#;Go;HTML/CSS;Java;JavaScript;Python;SQLHTML/CSS;Java;JavaScript;PythonI am a student who is learning to codeNaNNaNNaN
119.0NaNBosnia and HerzegovinaNaNNoDeveloper, desktop or enterprise applications;...Secondary school (e.g. American high school, G...Not employed, but looking for workNaNManNoNaNI am actively looking for a jobC++;HTML/CSS;JavaScript;SQLC++;HTML/CSS;PythonI am a student who is learning to codeNaNNaNNaN
228.0AverageThailandSlightly satisfiedYesDesigner;Developer, back-end;Developer, front-...Bachelor’s degree (BA, BS, B.Eng., etc.)Employed full-timeNaNManYesSlightly satisfiedI’m not actively looking, but I am open to n...Elixir;HTML/CSSHTML/CSSI am not primarily a developer, but I write co...8820.0Web development or web design1
\n", + "
" + ], + "text/plain": [ + " Age CompetenceLevel Country CurrentJobSatis \\\n", + "0 14.0 NaN United Kingdom NaN \n", + "1 19.0 NaN Bosnia and Herzegovina NaN \n", + "2 28.0 Average Thailand Slightly satisfied \n", + "\n", + " Dependents DevType \\\n", + "0 No NaN \n", + "1 No Developer, desktop or enterprise applications;... \n", + "2 Yes Designer;Developer, back-end;Developer, front-... \n", + "\n", + " EdLevel \\\n", + "0 Primary/elementary school \n", + "1 Secondary school (e.g. American high school, G... \n", + "2 Bachelor’s degree (BA, BS, B.Eng., etc.) \n", + "\n", + " Employment Ethnicity Gender Hobbyist \\\n", + "0 Not employed, and not looking for work NaN Man Yes \n", + "1 Not employed, but looking for work NaN Man No \n", + "2 Employed full-time NaN Man Yes \n", + "\n", + " JobSatisfaction JobStatus \\\n", + "0 NaN NaN \n", + "1 NaN I am actively looking for a job \n", + "2 Slightly satisfied I’m not actively looking, but I am open to n... \n", + "\n", + " LanguageDesireNextYear \\\n", + "0 C;C++;C#;Go;HTML/CSS;Java;JavaScript;Python;SQL \n", + "1 C++;HTML/CSS;JavaScript;SQL \n", + "2 Elixir;HTML/CSS \n", + "\n", + " LanguageWorkedWith \\\n", + "0 HTML/CSS;Java;JavaScript;Python \n", + "1 C++;HTML/CSS;Python \n", + "2 HTML/CSS \n", + "\n", + " Profession SalaryUSD \\\n", + "0 I am a student who is learning to code NaN \n", + "1 I am a student who is learning to code NaN \n", + "2 I am not primarily a developer, but I write co... 8820.0 \n", + "\n", + " UndergradMajor YearsCodePro \n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 Web development or web design 1 " + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#sorting the columns alphabetically\n", + "survey_df_2019.sort_index(axis=1).head(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Age float64\n", + "JobSatisfaction object\n", + "SalaryUSD float64\n", + "Country object\n", + "Dependents object\n", + "EdLevel object\n", + "Employment object\n", + "Ethnicity object\n", + "Gender object\n", + "Hobbyist object\n", + "CompetenceLevel object\n", + "CurrentJobSatis object\n", + "JobStatus object\n", + "LanguageDesireNextYear object\n", + "LanguageWorkedWith object\n", + "Profession object\n", + "UndergradMajor object\n", + "YearsCodePro object\n", + "DevType object\n", + "dtype: object" + ] + }, + "execution_count": 130, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#datatype of survey data\n", + "survey_df_2019.dtypes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Validation - Total Cells vs Missing %" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total : 1881\n", + "Total missing : 201\n", + "Missing Percentage: 10.685805422647528 %\n" + ] + } + ], + "source": [ + "#Find % of missing data\n", + "missing_count = survey_df_2019.isnull().sum() #number of missing\n", + "total_cells = np.product(survey_df_2019.shape) # number of cells (cols x rows)\n", + "total_missing = missing_count.sum()\n", + "missing_percent = (total_missing*100)/total_cells\n", + "\n", + "print('Total : ', total_cells)\n", + "print('Total missing : ', total_missing)\n", + "print('Missing Percentage: ', missing_percent, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cleaning and Refactoring column values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Gender" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Gender\n", + "Man 87\n", + "Woman 7\n", + "Non-binary, genderqueer, or gender non-conforming 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 132, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Gender'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "metadata": {}, + "outputs": [], + "source": [ + "#lets refactor Gender values to Male, female and Non binary\n", + "#For the purpose of our data analysis we are considering three gender category. This not to defame any gender.\n", + "#refactoring Gender\n", + "\n", + "def refactor_gender(df):\n", + " '''function to change gender category to Male, Female, Non binary'''\n", + " conditions = [(df['Gender'] == 'Man') | (df['Gender'] == 'Man;Non-binary, genderqueer, or gender non-conforming'),\n", + " (df['Gender'] == 'Woman') | (df['Gender'] == 'Woman;Non-binary, genderqueer, or gender non-conforming'),\n", + " (df['Gender'] == 'Non-binary, genderqueer, or gender non-conforming') \n", + " | (df['Gender'] == 'Woman;Man') \n", + " | (df['Gender'] == 'Woman;Man;Non-binary, genderqueer, or gender non-conforming')]\n", + "\n", + " values = ['Man', 'Woman', 'Non-binary']\n", + "\n", + " df['Gender'] = np.select(conditions, values, default = np.NaN)\n", + " \n", + " return df\n", + " \n", + "survey_df_2019 = refactor_gender(survey_df_2019)\n", + "survey_df_2019['Gender'].replace('nan', 'Non-binary', inplace =True)" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019['Gender'] = survey_df_2019['Gender'].fillna('Non-binary')" + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 135, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Assigining the surveyors who havent mentioned their gender to Non-Binary category\n", + "survey_df_2019.isnull().sum()['Gender']" + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Gender\n", + "Man 87\n", + "Non-binary 5\n", + "Woman 7\n", + "Name: Gender, dtype: int64" + ] + }, + "execution_count": 136, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019.groupby('Gender')['Gender'].count()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Age" + ] + }, + { + "cell_type": "code", + "execution_count": 137, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDOElEQVR4nO3de3zO9f/H8ee103VtYwfnOc0xZ1mktJghS/giIqdISiLlkEMHhxRKSueiwreUKJ1jKeObJSkhEeNLOsgiM5tdw/b+/eG36+uyjW22XT7b43677Xa7rs/nfX0+r8/7+lzXnnt/DrMZY4wAAABwWfPydAEAAAC4OEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbkE9z585VnTp15O3trRYtWni6nDwbOnSoatWq5ekyJEkHDhyQzWbT4sWLPV0K8mjx4sWy2Ww6cOCAa1r79u3Vvn17j9V0vpSUFA0fPlxVqlSRzWbT/fff7+mSLKdWrVoaOnSop8tALghtKJGyfsGc+1OpUiVFR0dr1apVBV7uF198oYkTJyoyMlKLFi3SrFmzCrFqFLfPP/9cNptNVatWVWZmZrGsMyuwrlu3rljWl1+zZs3Shx9+6OkyCmTWrFlavHixRo4cqTfffFODBw/2dElAofLxdAFAUXr00UdVu3ZtGWN0+PBhLV68WDfddJM++eQTdevWLd/LW7t2rby8vPT666/Lz8+vCCouHcLDw5WWliZfX1+P1rF06VLVqlVLBw4c0Nq1a9WpUyeP1nM5mDVrlvr06aOePXtetO0XX3xR9AXlw9q1a3Xttddq2rRpni4FKBKMtKFE69KliwYNGqTBgwdrwoQJ+vrrr+Xr66t33nmnQMtLTEyUv79/oQU2Y4zS0tIKZVlWYrPZ5HA45O3t7bEaUlNT9dFHH2ncuHGKiIjQ0qVLPVaLVfn5+RXaZyEzM1NOp/OSlpGYmKiQkJCLtnM6ncU2slqanTlzRqdOnfJ0GSUKoQ2lSkhIiPz9/eXj4z7InJmZqfnz56tJkyZyOByqXLmyRowYoWPHjrna2Gw2LVq0SKmpqa5DrlnnZJ05c0YzZ85U3bp1ZbfbVatWLT344INKT093W0+tWrXUrVs3xcbGqlWrVvL399err74qSUpKStL999+vGjVqyG63q169enriiSfy/Mtl1apVioqKUtmyZRUUFKSrr75ab7/99gVfk5ftlqSPPvpIXbt2VdWqVWW321W3bl3NnDlTGRkZbu3at2+vpk2baufOnYqOjlZAQICqVaumJ5980q1dTue0DR06VGXKlNEff/yhnj17qkyZMqpYsaImTJiQbT1Hjx7V4MGDFRQUpJCQEA0ZMkTbtm3L13lyH3zwgdLS0nTLLbfo1ltv1cqVK3MMDWlpaRozZowqVKigsmXL6l//+pf++OMP2Ww2TZ8+3a3tH3/8oWHDhqly5cqy2+1q0qSJ3njjjYvW8tdff+n2229X9erVZbfbFRYWph49eridP5abtWvXqm3btgoMDFRISIh69OihXbt2ubXJ7XzG6dOny2azuZ7bbDalpqZqyZIlrn38Quc35XROW3p6uqZNm6Z69erJbrerRo0amjhxYrbPgs1m0+jRo7V06VI1adJEdrtdq1evliQtW7ZMLVu2dO3LzZo107PPPptrHevWrZPNZtP+/fv12WefuWo/cOCAa96yZcv08MMPq1q1agoICFBycrIkacWKFWrZsqX8/f1VoUIFDRo0SH/88Ue2/itTpowOHjyobt26qUyZMqpWrZpefPFFSdJPP/2kDh06KDAwUOHh4Rf93GXJz378yy+/qE+fPipXrpwcDodatWqljz/+2K1N1mkh8fHxGjdunCpWrKjAwED16tVLf//9t1tbY4wee+wxVa9eXQEBAYqOjtbPP/+cY515+W7K+kw/9dRTmj9/vuu7cOfOnZKk559/Xk2aNFFAQIBCQ0PVqlWrPPcT/ofDoyjRjh8/riNHjsgYo8TERD3//PNKSUnRoEGD3NqNGDFCixcv1u23364xY8Zo//79euGFF/Tjjz8qPj5evr6+evPNN7VgwQJ99913eu211yRJ1113nSRp+PDhWrJkifr06aPx48dr06ZNmj17tnbt2qUPPvjAbV27d+9W//79NWLECN15551q0KCBTp48qaioKP3xxx8aMWKEatasqW+++UZTpkzRoUOHNH/+/Atu5+LFizVs2DA1adJEU6ZMUUhIiH788UetXr1aAwYMyPV1ednurOWXKVNG48aNU5kyZbR27VpNnTpVycnJmjt3rtsyjx07phtvvFE333yz+vbtq/fee0+TJk1Ss2bN1KVLlwtuR0ZGhmJiYnTNNdfoqaee0pdffql58+apbt26GjlypKSzQbN79+767rvvNHLkSDVs2FAfffSRhgwZcsFln2/p0qWKjo5WlSpVdOutt2ry5Mn65JNPdMstt7i1Gzp0qJYvX67Bgwfr2muv1fr169W1a9dsyzt8+LCuvfZaVxipWLGiVq1apTvuuEPJyckXPCm+d+/e+vnnn3XvvfeqVq1aSkxM1Jo1a3Tw4MELXjzy5ZdfqkuXLqpTp46mT5+utLQ0Pf/884qMjNSWLVvyfeHJm2++qeHDh6t169a66667JEl169bN8+szMzP1r3/9Sxs2bNBdd92lRo0a6aefftIzzzyjPXv2ZDtXbu3atVq+fLlGjx6tChUqqFatWlqzZo369++vjh076oknnpAk7dq1S/Hx8brvvvtyXG+jRo305ptvauzYsapevbrGjx8vSapYsaIr+M6cOVN+fn6aMGGC0tPT5efn59r3r776as2ePVuHDx/Ws88+q/j4eP34449uo3YZGRnq0qWL2rVrpyeffFJLly7V6NGjFRgYqIceekgDBw7UzTffrFdeeUW33Xab2rRpo9q1a1+wr/K6H//888+KjIxUtWrVNHnyZAUGBmr58uXq2bOn3n//ffXq1cut/b333qvQ0FBNmzZNBw4c0Pz58zV69Gi9++67rjZTp07VY489pptuukk33XSTtmzZos6dO2cbGcvvd9OiRYvkdDp11113yW63q1y5clq4cKHGjBmjPn366L777pPT6dT27du1adOmC34/IQcGKIEWLVpkJGX7sdvtZvHixW5tv/76ayPJLF261G366tWrs00fMmSICQwMdGu3detWI8kMHz7cbfqECROMJLN27VrXtPDwcCPJrF692q3tzJkzTWBgoNmzZ4/b9MmTJxtvb29z8ODBXLc1KSnJlC1b1lxzzTUmLS3NbV5mZqZb7eHh4QXa7pMnT2Zb74gRI0xAQIBxOp2uaVFRUUaS+fe//+2alp6ebqpUqWJ69+7tmrZ//34jySxatMitPknm0UcfdVtPRESEadmypev5+++/bySZ+fPnu6ZlZGSYDh06ZFtmbg4fPmx8fHzMwoULXdOuu+4606NHD7d2P/zwg5Fk7r//frfpQ4cONZLMtGnTXNPuuOMOExYWZo4cOeLW9tZbbzXBwcE59qExxhw7dsxIMnPnzr1o3edr0aKFqVSpkjl69Khr2rZt24yXl5e57bbbXNPOf++zTJs2zZz/ayAwMNAMGTIkW9usz9T+/ftd06KiokxUVJTr+Ztvvmm8vLzM119/7fbaV155xUgy8fHxrmmSjJeXl/n555/d2t53330mKCjInDlz5kKbnqPw8HDTtWtXt2lxcXFGkqlTp47be3Dq1ClTqVIl07RpU7fPzaeffmokmalTp7qmZe2bs2bNck07duyY8ff3NzabzSxbtsw1/Zdffsm2b+QkP/txx44dTbNmzdw+a5mZmea6664z9evXd03Leo86derk9tkfO3as8fb2NklJScYYYxITE42fn5/p2rWrW7sHH3zQSHJ7//P63ZT1mQ4KCjKJiYlubXv06GGaNGlywf5A3nB4FCXaiy++qDVr1mjNmjV66623FB0dreHDh2vlypWuNitWrFBwcLBuuOEGHTlyxPXTsmVLlSlTRnFxcRdcx+effy5JGjdunNv0rL/2P/vsM7fptWvXVkxMjNu0FStWqG3btgoNDXWroVOnTsrIyNB//vOfXNe/Zs0anThxQpMnT5bD4XCbd+6hr/PlZ7v9/f1dj0+cOKEjR46obdu2OnnypH755Re35ZYpU8ZtJNPPz0+tW7fWf//731xrOdfdd9/t9rxt27Zur129erV8fX115513uqZ5eXlp1KhReVq+dPbwm5eXl3r37u2a1r9/f61atcrt0HDW4bp77rnH7fX33nuv23NjjN5//311795dxhi3/oyJidHx48e1ZcuWHGvJOkdy3bp12Q5LX8ihQ4e0detWDR06VOXKlXNNb968uW644QbXflmcVqxYoUaNGqlhw4ZufdChQwdJyvZZioqKUuPGjd2mhYSEKDU1VWvWrCnU2oYMGeK2H3///fdKTEzUPffc4/a56dq1qxo2bJjtcyudHVE/t84GDRooMDBQffv2dU1v0KCBQkJCLrq/53U//ueff7R27Vr17dvX9dk7cuSIjh49qpiYGCUkJGQ7nHvXXXe5ffbbtm2rjIwM/frrr5LOjtCeOnVK9957r1u7nEaD8/vd1Lt3b1WsWNFtWkhIiH7//Xdt3rz5gn2Ci+PwKEq01q1bq1WrVq7n/fv3V0REhEaPHq1u3brJz89PCQkJOn78uCpVqpTjMhITEy+4jl9//VVeXl6qV6+e2/QqVaooJCTE9UWZJadDJgkJCdq+fXu2L7u81LBv3z5JUtOmTS9YZ07rzOt2//zzz3r44Ye1du1a17lAWY4fP+72vHr16tnCYmhoqLZv337RmhwOR7Y+CA0NdQszv/76q8LCwhQQEODW7vz+v5C33npLrVu31tGjR3X06FFJUkREhE6dOqUVK1a4Dg1mvbfnv2fnr+vvv/9WUlKSFixYoAULFuS4ztzeQ7vdrieeeELjx49X5cqVde2116pbt2667bbbVKVKlVy3IWu/atCgQbZ5jRo1UmxsrFJTUxUYGJjrMgpbQkKCdu3alef9OKfPwj333KPly5erS5cuqlatmjp37qy+ffvqxhtvvKTazl/XhfqvYcOG2rBhg9u0nPbN4ODgHPf34ODgiwbwvO7He/fulTFGjzzyiB555JEcl5WYmKhq1aq5ntesWdNtfmhoqCS5asra9vr167u1q1ixoqttlvx+N+X0nk6aNElffvmlWrdurXr16qlz584aMGCAIiMjc1wmckdoQ6ni5eWl6OhoPfvss0pISFCTJk2UmZmpSpUq5Xr1YG5fVue70KjWuc79az9LZmambrjhBk2cODHH11xxxRV5WnZ+5HW7k5KSFBUVpaCgID366KOqW7euHA6HtmzZokmTJmW7UCK3K0KNMRetqTiuJk1ISHD9xX/+Ly3p7LluWaEtr7L6YNCgQbmeW9e8efNcX3///fere/fu+vDDDxUbG6tHHnlEs2fP1tq1axUREZGvWnKS2755/gUelyozM1PNmjXT008/neP8GjVquD3P6bNQqVIlbd26VbGxsVq1apVWrVqlRYsW6bbbbtOSJUsKXFtO68qP3PbNS9nf8yJr35owYUK2Efos5we9wqwpv99NOfVzo0aNtHv3bn366adavXq13n//fb300kuaOnWqZsyYke+aSjNCG0qdM2fOSDp793Tp7InWX375pSIjIwv0xR4eHq7MzEwlJCSoUaNGrumHDx9WUlKSwsPDL7qMunXrKiUlpUD3Ccs6UXzHjh35Gm3K63avW7dOR48e1cqVK9WuXTvX9P379+e71sIQHh6uuLg4nTx50m2UYu/evXl6/dKlS10Xlpz/y23Dhg167rnndPDgQdWsWdP13u7fv98t4J2/rooVK6ps2bLKyMgo8L3e6tatq/Hjx2v8+PFKSEhQixYtNG/ePL311ls5ts/ar3bv3p1t3i+//KIKFSq4RtlCQ0OVlJSUrd35o8BS3v/4yG0btm3bpo4dO17Scvz8/NS9e3d1795dmZmZuueee/Tqq6/qkUceydc+fiHn9l/W4dssu3fvztPn9lLXn5f9uE6dOpIkX1/fQruPYNa2JSQkuJYvnR0xPn+E8FK+m84VGBiofv36qV+/fjp16pRuvvlmPf7445oyZUq20zqQO85pQ6ly+vRpffHFF/Lz83MFrL59+yojI0MzZ87M1v7MmTM5/rI710033SRJ2a6iyhptyOlKw/P17dtXGzduVGxsbLZ5SUlJrqCZk86dO6ts2bKaPXt2tltWXOgv67xud1awOXdZp06d0ksvvXTBbSoqMTExOn36tBYuXOialpmZ6br9wsUsXbpUbdu2Vb9+/dSnTx+3nwceeECSXPfxyxrZOH9bn3/+ebfn3t7e6t27t95//33t2LEj2zrPv93CuU6ePJntfatbt67Kli2b7TYZ5woLC1OLFi20ZMkSt310x44d+uKLL1z7Zdbyjh8/7naI+tChQ9mubJbO/nK92D6fm759++qPP/5we2+ypKWlKTU19aLLyDpcncXLy8s1Snmh/sivVq1aqVKlSnrllVfclrtq1Srt2rUrT5/bS5HX/bhSpUpq3769Xn31VR06dCjbci60b+WmU6dO8vX11fPPP+/2uc7pKvVL+W7Kcv576ufnp8aNG8sYo9OnT+e7/tKMkTaUaKtWrXKdKJ+YmKi3335bCQkJmjx5soKCgiSdPRl6xIgRmj17trZu3arOnTvL19dXCQkJWrFihZ599ln16dMn13VceeWVGjJkiBYsWOA6lPjdd99pyZIl6tmzp6Kjoy9a5wMPPKCPP/5Y3bp109ChQ9WyZUulpqbqp59+0nvvvacDBw6oQoUKOb42KChIzzzzjIYPH66rr75aAwYMUGhoqLZt26aTJ0/mekgpr9t93XXXKTQ0VEOGDNGYMWNks9n05ptvFtrhn/zq2bOnWrdurfHjx2vv3r1q2LChPv74Y/3zzz+SLjxStGnTJu3du1ejR4/OcX61atV01VVXaenSpZo0aZJatmyp3r17a/78+Tp69Kjrlh979uzJtq45c+YoLi5O11xzje688041btxY//zzj7Zs2aIvv/zSVd/59uzZo44dO6pv375q3LixfHx89MEHH+jw4cO69dZbL9gXc+fOVZcuXdSmTRvdcccdrlt+BAcHu91D7tZbb9WkSZPUq1cvjRkzRidPntTLL7+sK664ItsFEi1bttSXX36pp59+WlWrVlXt2rV1zTXXXLCOLIMHD9by5ct19913Ky4uTpGRkcrIyNAvv/yi5cuXu+5PeCHDhw/XP//8ow4dOqh69er69ddf9fzzz6tFixZuI9mXytfXV0888YRuv/12RUVFqX///q5bftSqVUtjx44ttHXlJD/78Ysvvqjrr79ezZo105133qk6dero8OHD2rhxo37//Xdt27YtX+vOuv/h7Nmz1a1bN91000368ccftWrVqmzfM5fy3ZSlc+fOqlKliiIjI1W5cmXt2rVLL7zwgrp27aqyZcvmq/ZSz0NXrQJFKqdbfjgcDtOiRQvz8ssvu13mnmXBggWmZcuWxt/f35QtW9Y0a9bMTJw40fz555+uNjnd8sMYY06fPm1mzJhhateubXx9fU2NGjXMlClT3C7RNybnWxJkOXHihJkyZYqpV6+e8fPzMxUqVDDXXXedeeqpp8ypU6cuus0ff/yxue6664y/v78JCgoyrVu3Nu+8845b7Tnd9iEv2x0fH2+uvfZa4+/vb6pWrWomTpxoYmNjjSQTFxfnahcVFZXjpf3nrzu3W37k1Lc53Zbi77//NgMGDDBly5Y1wcHBZujQoSY+Pt5Icrv9wvnuvfdeI8ns27cv1zbTp083ksy2bduMMcakpqaaUaNGmXLlypkyZcqYnj17mt27dxtJZs6cOW6vPXz4sBk1apSpUaOG8fX1NVWqVDEdO3Y0CxYsyHV9R44cMaNGjTINGzY0gYGBJjg42FxzzTVm+fLlub7mXF9++aWJjIx0ve/du3c3O3fuzNbuiy++ME2bNjV+fn6mQYMG5q233sqxb3/55RfTrl074+/v73b7h7zc8sOYs7fSeOKJJ0yTJk2M3W43oaGhpmXLlmbGjBnm+PHjrnaSzKhRo7LV+d5775nOnTubSpUqGT8/P1OzZk0zYsQIc+jQoYv2xYVu+bFixYocX/Puu++aiIgIY7fbTbly5czAgQPN77//7tYmt30zt/39Qp/zc+VnP963b5+57bbbTJUqVYyvr6+pVq2a6datm3nvvfdcbbLeo82bN+fYB+d+VjMyMsyMGTNMWFiY8ff3N+3btzc7duww4eHh2W75kpfvpqzPdE63rnn11VdNu3btTPny5Y3dbjd169Y1DzzwgNv+gLyxGeOhP5cBoBB9+OGH6tWrlzZs2FDkV6Vt3bpVEREReuuttzRw4MAiXRdKl+Lcj2E9nNMGwHLO/3+tGRkZev755xUUFKSrrrqqSNclnT33x8vLy+3CDCC/inM/RsnAOW0ALOfee+9VWlqa2rRpo/T0dK1cuVLffPONZs2adcm3djjfk08+qR9++EHR0dHy8fFx3YbirrvuynYLCyA/inM/RsnA4VEAlvP2229r3rx52rt3r5xOp+rVq6eRI0fmeoHBpVizZo1mzJihnTt3KiUlRTVr1tTgwYP10EMPyceHv3tRcMW5H6NkILQBAABYAOe0AQAAWAChDQAAwAI4IaMEyczM1J9//qmyZcte0r+QAQAAxccYoxMnTqhq1ary8sp9PI3QVoL8+eefXM0GAIBF/fbbb6pevXqu8wltJUjWvwP57bffXP+iCQAAXN6Sk5NVo0aNi/5bL0JbCZJ1SDQoKIjQBgCAxVzs1CYuRAAAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAK4TxtQBIwxcjqdni7jkhhjlJ6eLkmy2+2l7l+jORyOUrfNAC5vhDagCDidTsXExHi6DFyC2NhY+fv7e7oMAHDh8CgAAIAFMNIGFLHUqwZKXhb8qGWcVuCPb0uSUiMGSN6+Hi6oGGSeUeCWpZ6uAgByZMHfJIDFePlYP/B4+1p/GwDA4jg8CgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACfDxdAC5vxhg5nU5JksPhkM1m83BFAHBp+F6DVTHShgtyOp2KiYlRTEyM60sOAKyM7zVYFaENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gpo6NChstlsuvvuu7PNGzVqlGw2m4YOHVr8hQEAgEIXHx+vW265RfHx8R6rgdB2CWrUqKFly5YpLS3NNc3pdOrtt99WzZo1PVgZAAAoLE6nU/PmzdPhw4c1b948OZ1Oj9RBaLsEV111lWrUqKGVK1e6pq1cuVI1a9ZURESEa9rq1at1/fXXKyQkROXLl1e3bt20b98+1/wDBw7IZrNp5cqVio6OVkBAgK688kpt3LixWLcHAABk99Zbb+no0aOSpKNHj2rp0qUeqcPHI2stQYYNG6ZFixZp4MCBkqQ33nhDt99+u9atW+dqk5qaqnHjxql58+ZKSUnR1KlT1atXL23dulVeXv/LzQ899JCeeuop1a9fXw899JD69++vvXv3ysfHc2+TMcb12FN/WViRW1+d04e4zLG/lwrnvreGzycu4vfff9fSpUtd+4oxRkuXLlVMTIyqV69erLUQ2i7RoEGDNGXKFP3666+Szh7zXrZsmVto6927t9tr3njjDVWsWFE7d+5U06ZNXdMnTJigrl27SpJmzJihJk2aaO/evWrYsGGO605PT1d6errreXJycmFtlts6svTo0aPQl18qZJ6R5OfpKpAXmWdcD9nfS4f09HQFBAR4ugxcpowxeuaZZ3Kd/tRTT8lmsxVbPRwevUQVK1ZU165dtXjxYi1atEhdu3ZVhQoV3NokJCSof//+qlOnjoKCglSrVi1J0sGDB93aNW/e3PU4LCxMkpSYmJjrumfPnq3g4GDXT40aNQppqwAAwK+//qrNmzcrIyPDbXpGRoY2b97sGrApLoy0FYJhw4Zp9OjRkqQXX3wx2/zu3bsrPDxcCxcuVNWqVZWZmammTZvq1KlTbu18fX1dj7OSe2ZmZq7rnTJlisaNG+d6npycXOjBzW63ux5/9NFHcjgchbr8ksrpdP5vpMaLj5llnPNesb+XXOd+Ps/9jgPOFx4erquvvlpbtmxxC27e3t5q2bKlwsPDi7UefpsUghtvvFGnTp2SzWZTTEyM27yjR49q9+7dWrhwodq2bStJ2rBhQ6Gs1263F/kXzrnDvg6HQ/7+/kW6vhKpGIfOcYnY30ud4jy0Beux2WwaO3asBg8enOP04t5/ODxaCLy9vbVr1y7t3LlT3t7ebvNCQ0NVvnx5LViwQHv37tXatWvdRscAAMDlq3r16ho4cKAroNlsNg0cOFDVqlUr9loIbYUkKChIQUFB2aZ7eXlp2bJl+uGHH9S0aVONHTtWc+fO9UCFAACgIAYNGqTy5ctLkipUqOC6Y0Rx4/BoAS1evPiC8z/88EPX406dOmnnzp1u88+9zLxWrVrZLjsPCQnhUnQAAC4DDodD48eP1/z583X//fd77HxXQhsAAMBFREZGKjIy0qM1cHgUAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFuDj6QJweXM4HIqNjXU9BgCr43sNVkVowwXZbDb5+/t7ugwAKDR8r8GqODwKAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAJ8PF0AUOJlnvF0BQWTcTrnxyWZVd8rAKUCoQ0oYoFblnq6hEsW+OPbni4BAEo9Do8CAABYACNtQBFwOByKjY31dBmXxBij9PR0SZLdbpfNZvNwRcXL4XB4ugQAcENoA4qAzWaTv7+/p8u4ZAEBAZ4uAQDw/zg8CgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACfDxdAADPMcbI6XRe8jLS09MlSXa7XTabrcDLcjgcl/R6ACjJCG1AKeZ0OhUTE+PpMlxiY2Pl7+/v6TIA4LLE4VEAAAALYKQNgCTpxXZJsnubfL8uPUMa9Z/Q/1/GMdm98/t6m0b9JyTf6wWA0obQBkCSZPc2cuQzcGVfhgqwjPwHRQAojTg8CgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFiAj6cLAFBwxhg5nU5JksPhkM1m83BFnkE/ACgNGGkDLMzpdComJkYxMTGu0FIa0Q8ASgNCGwAAgAXkO7QZY3Tw4EH+mgUAAChGBQpt9erV02+//VYU9QAAACAH+Q5tXl5eql+/vo4ePVoU9QAAACAHBTqnbc6cOXrggQe0Y8eOwq4HAAAAOSjQLT9uu+02nTx5UldeeaX8/Pzk7+/vNv+ff/4plOIAAABwVoFC2/z58wu5DAAAAFxIgULbkCFDCrsOAAAAXECB79O2b98+Pfzww+rfv78SExMlSatWrdLPP/9caMUBAADgrAKFtvXr16tZs2batGmTVq5cqZSUFEnStm3bNG3atEItEAAAAAUMbZMnT9Zjjz2mNWvWyM/PzzW9Q4cO+vbbbwutOAAAAJxVoND2008/qVevXtmmV6pUSUeOHLnkogAAAOCuQKEtJCREhw4dyjb9xx9/VLVq1S65KAAAALgrUGi79dZbNWnSJP3111+y2WzKzMxUfHy8JkyYoNtuu62wawQAACj1ChTaZs2apYYNG6pGjRpKSUlR48aN1a5dO1133XV6+OGHC7tGAACAUq9A92nz8/PTwoUL9cgjj2jHjh1KSUlRRESE6tevX9j1AQAAQAUMbVlq1qypmjVrFlYtAAAAyEWeQ9u4cePyvNCnn366QMUAAAAgZ3kObT/++KPb8y1btujMmTNq0KCBJGnPnj3y9vZWy5YtC7dCAAAA5D20xcXFuR4//fTTKlu2rJYsWaLQ0FBJ0rFjx3T77berbdu2hV8lAABAKVegq0fnzZun2bNnuwKbJIWGhuqxxx7TvHnzCq24orRu3TrZbDYlJSXl2mbx4sUKCQkptpoAAAByU6DQlpycrL///jvb9L///lsnTpzI83KGDh0qm82mOXPmuE3/8MMPZbPZClJaoerXr5/27Nnj6TIAAAAKFtp69eql22+/XStXrtTvv/+u33//Xe+//77uuOMO3XzzzflalsPh0BNPPKFjx44VpJQi5e/vr0qVKhX5ek6fPl3k6wAAANZWoND2yiuvqEuXLhowYIDCw8MVHh6uAQMG6MYbb9RLL72Ur2V16tRJVapU0ezZs3Nt8/7776tJkyay2+2qVatWtkOwtWrV0qxZszRs2DCVLVtWNWvW1IIFC/K0/vj4eDVv3lwOh0PXXnutduzY4Zp3/uHR6dOnq0WLFnrzzTdVq1YtBQcH69Zbb3UbXVy9erWuv/56hYSEqHz58urWrZv27dvnmn/gwAHZbDa9++67ioqKksPh0IIFCxQUFKT33nvPrbYPP/xQgYGB+Rq9ROlijHE9djqdSktLy9eP0+k8Z1me2AL39RZkG7Jvh4c2BACKWIHu0xYQEKCXXnpJc+fOdQWSunXrKjAwMN/L8vb21qxZszRgwACNGTNG1atXd5v/ww8/qG/fvpo+fbr69eunb775Rvfcc4/Kly+voUOHutrNmzdPM2fO1IMPPqj33ntPI0eOVFRUlOvq1tw88MADevbZZ1WlShU9+OCD6t69u/bs2SNfX98c2+/bt08ffvihPv30Ux07dkx9+/bVnDlz9Pjjj0uSUlNTNW7cODVv3lwpKSmaOnWqevXqpa1bt8rL638ZefLkyZo3b54iIiLkcDi0bds2LVq0SH369HG1yXpetmzZHGtJT09Xenq663lycvIFtxUlz7nvf48ePS5pWacyJf9LLaiA681yqdsgne2TgICAS14OAFxuLunmuoGBgWrevPklF9GrVy+1aNFC06ZN0+uvv+427+mnn1bHjh31yCOPSJKuuOIK7dy5U3PnznULbTfddJPuueceSdKkSZP0zDPPKC4u7qKhbdq0abrhhhskSUuWLFH16tX1wQcfqG/fvjm2z8zM1OLFi11BavDgwfrqq69coa13795u7d944w1VrFhRO3fuVNOmTV3T77//frdDycOHD9d1112nQ4cOKSwsTImJifr888/15Zdf5lr77NmzNWPGjAtuHwAAKBkKFNpSU1M1Z84cffXVV0pMTFRmZqbb/P/+97/5XuYTTzyhDh06aMKECW7Td+3ale2v78jISM2fP18ZGRny9vaWJLfwaLPZVKVKFSUmJkqSunTpoq+//lqSFB4erp9//tnVtk2bNq7H5cqVU4MGDbRr165c66xVq5bbyFdWwMqSkJCgqVOnatOmTTpy5Iirbw4ePOgW2lq1auW23NatW6tJkyZasmSJJk+erLfeekvh4eFq165drrVMmTLF7abHycnJqlGjRq7tUfLY7XbX448++kgOhyNfr3c6na7Pl1+BTpa4dOeutyDbILlvx7l9AgAlSYFC2/Dhw7V+/XoNHjxYYWFhhXKlZ7t27RQTE6MpU6a4jaDl1fmHM202myswvfbaa0pLS8uxXWGuR5K6d++u8PBwLVy4UFWrVlVmZqaaNm2qU6dOub0up0PJw4cP14svvqjJkydr0aJFuv322y/Yt3a7nV9Qpdy5+4fD4ZC/f8EPcHrqgu1z13up23B2eZ6/8hwAikKBQtuqVav02WefKTIyslCLmTNnjlq0aOF2SLNRo0aKj493axcfH68rrrjCNcp2MdWqVct13rfffuv6/6nHjh3Tnj171KhRowJULx09elS7d+/WwoULXTcZ3rBhQ55fP2jQIE2cOFHPPfecdu7cqSFDhhSoDgAAUPIUKLSFhoaqXLlyhV2LmjVrpoEDB+q5555zTRs/fryuvvpqzZw5U/369dPGjRv1wgsv5Psq1dw8+uijKl++vCpXrqyHHnpIFSpUUM+ePQu0rNDQUJUvX14LFixQWFiYDh48qMmTJ+fr9TfffLMeeOABde7cOdtFGQAAoPQq0FksM2fO1NSpU3Xy5MnCrkePPvqo2+HGq666SsuXL9eyZcvUtGlTTZ06VY8++miBDqHmZM6cObrvvvvUsmVL/fXXX/rkk0/k5+dXoGV5eXlp2bJl+uGHH9S0aVONHTtWc+fOzdcy7rjjDp06dUrDhg0rUA0AAKBkspkC3NQoIiJC+/btkzFGtWrVynae15YtWwqtwNLmzTff1NixY/Xnn3/mOzwmJycrODhYx48fV1BQUBFViMtJWlqaYmJiJEmxsbH5Ph/s3Ne/Fn1MjrydceDGmSENjwst8DLOfX1BtkG69H4AAE/K6+/vAh0eLejhQ+Tu5MmTOnTokObMmaMRI0YUeLQPAACUTAUKbdOmTSvsOkq9J598Uo8//rjatWunKVOmeLocAABwmSnwnZmSkpL02muvacqUKfrnn38knT0s+scffxRacaXJ9OnTdfr0aX311VcqU6aMp8sBAACXmQKNtG3fvl2dOnVScHCwDhw4oDvvvFPlypXTypUrdfDgQf373/8u7DoBAABKtQKNtI0bN05Dhw5VQkKC293Lb7rpJv3nP/8ptOIAAABwVoFC2+bNmzVixIhs06tVq6a//vrrkosCAACAuwKFNrvdruTk5GzT9+zZo4oVK15yUQAAAHBXoND2r3/9S48++qhOnz4t6ez/+jt48KAmTZqk3r17F2qBAAAAKGBomzdvnlJSUlSpUiWlpaUpKipK9erVU5kyZfT4448Xdo0AAAClXoGuHg0ODtaaNWsUHx+vbdu2KSUlRVdddZU6depU2PUBAABA+RxpS0tL06effup6/umnn2rv3r3666+/9Pnnn2vixIlyOp2FXiQAAEBpl6+RtiVLluizzz5Tt27dJEkvvPCCmjRp4vo/f7/88ovCwsI0duzYwq8UAACgFMvXSNvSpUt11113uU17++23FRcXp7i4OM2dO1fLly8v1AIBAACQz9C2d+9eNWvWzPXc4XDIy+t/i2jdurV27txZeNUBAABAUj4PjyYlJSk9Pd31/O+//3abn5mZ6TYfAAAAhSNfI23Vq1fXjh07cp2/fft2Va9e/ZKLAgAAgLt8hbabbrpJU6dOzfEK0bS0NM2YMUNdu3YttOIAAABwVr4Ojz744INavny5GjRooNGjR+uKK66QJO3evVsvvPCCzpw5owcffLBICgUAACjN8hXaKleurG+++UYjR47U5MmTZYyRdPbfWN1www166aWXVLly5SIpFAAAoDTL939EqF27tlavXq1//vlHe/fulSTVq1dP5cqVK/TiAFyYw+FQbGys63FpRT8AKA0K9G+sJKlcuXJq3bp1YdYCIJ9sNpvr5talGf0AoDQo0D+MBwAAQPEitAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACfDxdAIDLQ3qGTZIpwOtyfpy/9QIALobQBkCSNOo/IYWwjNBLLwQAkCMOjwIAAFgAI21AKeZwOBQbG3tJyzDGKD09XZJkt9tlsxX8cKfD4bikWgCgJCO0AaWYzWaTv7//JS8nICCgEKoBAFwIh0cBAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWICPpwsArMAYI6fTWaTLT09PlyTZ7XbZbLYiW1duHA6HR9YLAMgbQhuQB06nUzExMZ4uo0jFxsbK39/f02UAAHLB4VEAAAALYKQNyKeM7hmF/8k5I3l/4l10y8/DegEAlzdCG5BfPiraT05RLx8AYEkcHgUAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAswMfTBQAFYYyR0+mUJDkcDtlsNg9XhNKE/Q+AJzDSBktyOp2KiYlRTEyM65cnUFzY/wB4AqENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACygxIa2V155RWXLltWZM2dc01JSUuTr66v27du7tV23bp1sNpv27dtXzFUCAADkTYkNbdHR0UpJSdH333/vmvb111+rSpUq2rRpk5xOp2t6XFycatasqbp163qiVAAAgIsqsaGtQYMGCgsL07p161zT1q1bpx49eqh27dr69ttv3aZHR0crPT1dY8aMUaVKleRwOHT99ddr8+bNbu1sNptiY2MVEREhf39/dejQQYmJiVq1apUaNWqkoKAgDRgwQCdPnnS9bvXq1br++usVEhKi8uXLq1u3bm6jegcOHJDNZtPKlSsVHR2tgIAAXXnlldq4cWPRdpKFGWNcj51Op9LS0or059yQL5NDQVZ1zrYURz+WlJ9z94dz90UAKEo+ni6gKEVHRysuLk6TJ0+WdHZEbeLEicrIyFBcXJzat2+vtLQ0bdq0ScOGDdPEiRP1/vvva8mSJQoPD9eTTz6pmJgY7d27V+XKlXMtd/r06XrhhRcUEBCgvn37qm/fvrLb7Xr77beVkpKiXr166fnnn9ekSZMkSampqRo3bpyaN2+ulJQUTZ06Vb169dLWrVvl5fW/3PzQQw/pqaeeUv369fXQQw+pf//+2rt3r3x8cn6b0tPTlZ6e7nqenJxcFN14WTp3u3v06FG8K8+Q5Fu8qywyGf97WOz9WEKkp6crICDA02UAKAVK7EibdDa0xcfH68yZMzpx4oR+/PFHRUVFqV27dq4RuI0bNyo9PV3t27fXyy+/rLlz56pLly5q3LixFi5cKH9/f73++utuy33ssccUGRmpiIgI3XHHHVq/fr1efvllRUREqG3bturTp4/i4uJc7Xv37q2bb75Z9erVU4sWLfTGG2/op59+0s6dO92WO2HCBHXt2lVXXHGFZsyYoV9//VV79+7Ndftmz56t4OBg10+NGjUKr/MAAMBlpUSPtLVv316pqanavHmzjh07piuuuEIVK1ZUVFSUbr/9djmdTq1bt0516tTR8ePHdfr0aUVGRrpe7+vrq9atW2vXrl1uy23evLnrceXKlRUQEKA6deq4Tfvuu+9czxMSEjR16lRt2rRJR44cUWZmpiTp4MGDatq0aY7LDQsLkyQlJiaqYcOGOW7flClTNG7cONfz5OTkUhPc7Ha76/FHH30kh8NRpOtzOp3/G4nyLtJVFa9ztqU4+rGkOHd/OHdfBICiVKJDW7169VS9enXFxcXp2LFjioqKkiRVrVpVNWrU0DfffKO4uDh16NAhX8v19f3fsTGbzeb2PGtaVjCTpO7duys8PFwLFy5U1apVlZmZqaZNm+rUqVMXXK4kt+Wcz263l9pfGFn9I0kOh0P+/v7FuPLiW1WRO2dbir0fS4hz90UAKEol+vCodPYQ6bp167Ru3Tq3W320a9dOq1at0nfffafo6GjVrVtXfn5+io+Pd7U5ffq0Nm/erMaNGxd4/UePHtXu3bv18MMPq2PHjmrUqJGOHTt2KZsEAABKoRI90iadDW2jRo3S6dOnXSNtkhQVFaXRo0fr1KlTio6OVmBgoEaOHKkHHnhA5cqVU82aNfXkk0/q5MmTuuOOOwq8/tDQUJUvX14LFixQWFiYDh486LowAgAAIK9KRWhLS0tTw4YNVblyZdf0qKgonThxwnVrEEmaM2eOMjMzNXjwYJ04cUKtWrVSbGysQkNDC7x+Ly8vLVu2TGPGjFHTpk3VoEEDPffcc9lu8AsAAHAhNsNNhkqM5ORkBQcH6/jx4woKCvJ0OUUqLS1NMTExkqTY2NgiPxfr3PVl9Moo/D93zkjeH3gX3fLzsN7i6MeSorj3PwAlW15/f5f4c9oAAABKAkIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALMDH0wUABeFwOBQbG+t6DBQn9j8AnkBogyXZbDb5+/t7ugyUUux/ADyBw6MAAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABfh4ugDAcs4U8TKLYvl5WS8A4LJGaAPyyfsTb0svHwBgTRweBQAAsABG2oA8cDgcio2NLbLlG2OUnp4uSbLb7bLZbEW2rtw4HI5iXycAIO8IbUAe2Gw2+fv7F+k6AgICinT5AABr4/AoAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABfAfEUoQY4wkKTk52cOVAACAvMr6vZ31ezw3hLYS5MSJE5KkGjVqeLgSAACQXydOnFBwcHCu823mYrEOlpGZmak///xTZcuW9cg/HLey5ORk1ahRQ7/99puCgoI8XU6pQb97Bv3uGfS7Z1ih340xOnHihKpWrSovr9zPXGOkrQTx8vJS9erVPV2GpQUFBV22H+qSjH73DPrdM+h3z7jc+/1CI2xZuBABAADAAghtAAAAFkBoAyTZ7XZNmzZNdrvd06WUKvS7Z9DvnkG/e0ZJ6ncuRAAAALAARtoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDaXG7NmzdfXVV6ts2bKqVKmSevbsqd27d7u1cTqdGjVqlMqXL68yZcqod+/eOnz4sIcqLhlefvllNW/e3HVjyzZt2mjVqlWu+fR58ZgzZ45sNpvuv/9+1zT6vvBNnz5dNpvN7adhw4au+fR50fnjjz80aNAglS9fXv7+/mrWrJm+//5713xjjKZOnaqwsDD5+/urU6dOSkhI8GDF+UdoQ6mxfv16jRo1St9++63WrFmj06dPq3PnzkpNTXW1GTt2rD755BOtWLFC69ev159//qmbb77Zg1VbX/Xq1TVnzhz98MMP+v7779WhQwf16NFDP//8syT6vDhs3rxZr776qpo3b+42nb4vGk2aNNGhQ4dcPxs2bHDNo8+LxrFjxxQZGSlfX1+tWrVKO3fu1Lx58xQaGupq8+STT+q5557TK6+8ok2bNikwMFAxMTFyOp0erDyfDFBKJSYmGklm/fr1xhhjkpKSjK+vr1mxYoWrza5du4wks3HjRk+VWSKFhoaa1157jT4vBidOnDD169c3a9asMVFRUea+++4zxrC/F5Vp06aZK6+8Msd59HnRmTRpkrn++utznZ+ZmWmqVKli5s6d65qWlJRk7Ha7eeedd4qjxELBSBtKrePHj0uSypUrJ0n64YcfdPr0aXXq1MnVpmHDhqpZs6Y2btzokRpLmoyMDC1btkypqalq06YNfV4MRo0apa5du7r1scT+XpQSEhJUtWpV1alTRwMHDtTBgwcl0edF6eOPP1arVq10yy23qFKlSoqIiNDChQtd8/fv36+//vrLre+Dg4N1zTXXWKrvCW0olTIzM3X//fcrMjJSTZs2lST99ddf8vPzU0hIiFvbypUr66+//vJAlSXHTz/9pDJlyshut+vuu+/WBx98oMaNG9PnRWzZsmXasmWLZs+enW0efV80rrnmGi1evFirV6/Wyy+/rP3796tt27Y6ceIEfV6E/vvf/+rll19W/fr1FRsbq5EjR2rMmDFasmSJJLn6t3Llym6vs1rf+3i6AMATRo0apR07drida4Ki06BBA23dulXHjx/Xe++9pyFDhmj9+vWeLqtE++2333TfffdpzZo1cjgcni6n1OjSpYvrcfPmzXXNNdcoPDxcy5cvl7+/vwcrK9kyMzPVqlUrzZo1S5IUERGhHTt26JVXXtGQIUM8XF3hYaQNpc7o0aP16aefKi4uTtWrV3dNr1Klik6dOqWkpCS39ocPH1aVKlWKucqSxc/PT/Xq1VPLli01e/ZsXXnllXr22Wfp8yL0ww8/KDExUVdddZV8fHzk4+Oj9evX67nnnpOPj48qV65M3xeDkJAQXXHFFdq7dy/7exEKCwtT48aN3aY1atTIdWg6q3/Pv1LXan1PaEOpYYzR6NGj9cEHH2jt2rWqXbu22/yWLVvK19dXX331lWva7t27dfDgQbVp06a4yy3RMjMzlZ6eTp8XoY4dO+qnn37S1q1bXT+tWrXSwIEDXY/p+6KXkpKiffv2KSwsjP29CEVGRma7hdOePXsUHh4uSapdu7aqVKni1vfJycnatGmTtfre01dCAMVl5MiRJjg42Kxbt84cOnTI9XPy5ElXm7vvvtvUrFnTrF271nz//femTZs2pk2bNh6s2vomT55s1q9fb/bv32+2b99uJk+ebGw2m/niiy+MMfR5cTr36lFj6PuiMH78eLNu3Tqzf/9+Ex8fbzp16mQqVKhgEhMTjTH0eVH57rvvjI+Pj3n88cdNQkKCWbp0qQkICDBvvfWWq82cOXNMSEiI+eijj8z27dtNjx49TO3atU1aWpoHK88fQhtKDUk5/ixatMjVJi0tzdxzzz0mNDTUBAQEmF69eplDhw55rugSYNiwYSY8PNz4+fmZihUrmo4dO7oCmzH0eXE6P7TR94WvX79+JiwszPj5+Zlq1aqZfv36mb1797rm0+dF55NPPjFNmzY1drvdNGzY0CxYsMBtfmZmpnnkkUdM5cqVjd1uNx07djS7d+/2ULUFYzPGGE+O9AEAAODiOKcNAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENADxs48aN8vb2VteuXT1dCoDLGP8RAQA8bPjw4SpTpoxef/117d69W1WrVvV0SQAuQ4y0AYAHpaSk6N1339XIkSPVtWtXLV682G3+xx9/rPr168vhcCg6OlpLliyRzWZTUlKSq82GDRvUtm1b+fv7q0aNGhozZoxSU1OLd0MAFDlCGwB40PLly9WwYUM1aNBAgwYN0htvvKGsAyD79+9Xnz591LNnT23btk0jRozQQw895Pb6ffv26cYbb1Tv3r21fft2vfvuu9qwYYNGjx7tic0BUIQ4PAoAHhQZGam+ffvqvvvu05kzZxQWFqYVK1aoffv2mjx5sj777DP99NNPrvYPP/ywHn/8cR07dkwhISEaPny4vL299eqrr7rabNiwQVFRUUpNTZXD4fDEZgEoAoy0AYCH7N69W99995369+8vSfLx8VG/fv30+uuvu+ZfffXVbq9p3bq12/Nt27Zp8eLFKlOmjOsnJiZGmZmZ2r9/f/FsCIBi4ePpAgCgtHr99dd15swZtwsPjDGy2+164YUX8rSMlJQUjRgxQmPGjMk2r2bNmoVWKwDPI7QBgAecOXNG//73vzVv3jx17tzZbV7Pnj31zjvvqEGDBvr888/d5m3evNnt+VVXXaWdO3eqXr16RV4zAM/inDYA8IAPP/xQ/fr1U2JiooKDg93mTZo0SWvXrtXy5cvVoEEDjR07VnfccYe2bt2q8ePH6/fff1dSUpKCg4O1fft2XXvttRo2bJiGDx+uwMBA7dy5U2vWrMnzaB0Aa+CcNgDwgNdff12dOnXKFtgkqXfv3vr+++914sQJvffee1q5cqWaN2+ul19+2XX1qN1ulyQ1b95c69ev1549e9S2bVtFRERo6tSp3OsNKIEYaQMAC3n88cf1yiuv6LfffvN0KQCKGee0AcBl7KWXXtLVV1+t8uXLKz4+XnPnzuUebEApRWgDgMtYQkKCHnvsMf3zzz+qWbOmxo8frylTpni6LAAewOFRAAAAC+BCBAAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAv4P3y5OeBNfj1HAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x='Age', y= 'Gender', data=survey_df_2019)\n", + "plt.title(\"Before cleaning Age's outliers from genders\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "metadata": {}, + "outputs": [], + "source": [ + "#We are considering developes of age 15 to 60\n", + "filt = (survey_df_2019['Age'] >= 15) & (survey_df_2019['Age'] <= 60)\n", + "survey_df_2019 = survey_df_2019[filt]" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCGklEQVR4nO3deVxU9f7H8fcIMgOIKK4oiAqmGe5ZelMRtTCXXNNscbdyqVxT8+ZSppbZdtvcNbOsXNuUTNHSzKw0c0mF61KamiuogArf3x/+nMsIuCAwHHk9Hw8fznzPmXM+853vzLw529iMMUYAAADI0wq4uwAAAABcG6ENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENuA7z5s1TlSpVVLBgQRUpUsTd5VyVzWbT2LFj3V2GJGns2LGy2WzuLgM3oHHjxmrcuLHz/r59+2Sz2TRnzhy31XSlTZs26V//+pd8fX1ls9m0ZcsWd5dkKWvWrJHNZtOaNWvcXQpuEKEN+d67774rm82mu+++O8Ppf/zxh7p3767Q0FBNnz5d06ZN07lz5zR27Fg+9CyiU6dOstlsGj58eK6tc+zYsSpfvnyure9G7NixQ2PHjtW+ffvcXcoNu3Dhgh588EGdOHFCr7/+uubNm6eQkBB3lwXkCk93FwC42/z581W+fHn99NNPio2NVVhYmMv0NWvWKDU1VW+++aZz2rFjxzRu3DhJctkqAVf//ve/NWLECLfWEB8fry+++ELly5fXxx9/rEmTJuX7rX87duzQuHHj1Lhx42sGy5CQECUmJqpgwYK5U9w1xMXFaf/+/Zo+fbp69+7t7nKAXMWWNuRre/fu1Q8//KDXXntNJUqU0Pz589PNc/ToUUnKld2iZ8+ezfF15CZPT085HA631rBo0SKlpKRo1qxZ+vPPP/Xdd9+5tR6rsdlscjgc8vDwyJbl3ewYv5H34632fsqr6OfcQ2hDvjZ//nwVLVpULVu2VMeOHdOFtvLly2vMmDGSpBIlSshms6l79+4qUaKEJGncuHGy2WzpjiP7448/1LFjRwUEBMjhcOjOO+/U559/7rLsOXPmyGazae3aterXr59KliypoKCgq9ablJSksWPH6rbbbpPD4VBgYKDat2+vuLi4qz7u4MGD6tmzp0qVKiW73a477rhDs2bNcpnn/PnzGj16tOrUqSN/f3/5+vqqYcOGiomJcZnv8jFOr776qqZNm6bQ0FDZ7XbVrVtXmzZtcpk3o2PabDabBgwYoKVLlyo8PNxZz4oVK9LVvWbNGt15551yOBwKDQ3V1KlTb/g4ufnz5+vee+9VZGSkbr/99gyDuSRt3bpVERER8vb2VlBQkMaPH6/Zs2fLZrOl2424fPlyNWzYUL6+vvLz81PLli21ffv2a9aycuVKNWjQQEWKFFGhQoVUuXJlPffcc9d83MWLF/Xiiy86+7p8+fJ67rnnlJyc7DJfZsczli9fXt27d5d0adw9+OCDkqTIyEjn+M1sV39mx7Td7BhPSEjQwIEDVb58edntdpUsWVL33nuvfv3110z7oXv37oqIiJAkPfjgg7LZbM4t3d27d1ehQoUUFxenFi1ayM/PT4888oikS6FiyJAhCg4Olt1uV+XKlfXqq6/KGJOu/wYMGKDPPvtMVatWlbe3t+rXr6/ff/9dkjR16lSFhYXJ4XCocePG1717+UbG8Ycffqg6derI29tbAQEBeuihh/Tnn3+6zNO4cWOFh4drx44dioyMlI+Pj8qWLatXXnkl3fL++usvtW3bVr6+vipZsqQGDRqUbtxctnHjRjVv3lz+/v7y8fFRRESE1q9f7zLP5bp37Nihhx9+WEWLFlWDBg0kSYcPH1aPHj0UFBQku92uwMBAtWnTxpK74fMqdo8iX5s/f77at28vLy8vdenSRe+99542bdqkunXrSpLeeOMNffDBB1qyZInee+89FSpUSNWqVVO9evXUt29ftWvXTu3bt5ckVa9eXZK0fft23XPPPSpbtqxGjBghX19fffrpp2rbtq0WLVqkdu3audTQr18/lShRQqNHj77qX6wpKSlq1aqVVq1apYceekjPPPOMEhIStHLlSm3btk2hoaEZPu7IkSOqV6+e8wupRIkSWr58uXr16qX4+HgNHDhQ0qXdiDNmzFCXLl3Up08fJSQkaObMmYqKitJPP/2kmjVruiz3o48+UkJCgp544gnZbDa98sorat++vf773/9ec1faunXrtHjxYvXr109+fn5666231KFDBx04cEDFihWTJG3evFnNmzdXYGCgxo0bp5SUFL3wwgvOwHw9Dh06pJiYGM2dO1eS1KVLF73++ut6++235eXl5Zzv4MGDzgAzcuRI+fr6asaMGbLb7emWOW/ePHXr1k1RUVF6+eWXde7cOb333ntq0KCBNm/enOnuxu3bt6tVq1aqXr26XnjhBdntdsXGxqb7UsxI7969NXfuXHXs2FFDhgzRxo0bNXHiRO3cuVNLliy57v6QpEaNGunpp5/WW2+9peeee0633367JDn/vx7ZMcaffPJJLVy4UAMGDFDVqlV1/PhxrVu3Tjt37lTt2rUzXO8TTzyhsmXLasKECXr66adVt25dlSpVyjn94sWLioqKUoMGDfTqq6/Kx8dHxhg98MADiomJUa9evVSzZk1FR0dr2LBhOnjwoF5//XWXdXz//ff6/PPP1b9/f0nSxIkT1apVKz377LN699131a9fP508eVKvvPKKevbsqdWrV1+1r25kHL/00kt6/vnn1alTJ/Xu3Vv//POP/vOf/6hRo0bavHmzy9bFkydPqnnz5mrfvr06deqkhQsXavjw4apWrZruv/9+SVJiYqKaNm2qAwcO6Omnn1aZMmU0b968DGtevXq17r//ftWpU0djxoxRgQIFNHv2bDVp0kTff/+97rrrLpf5H3zwQVWqVEkTJkxwht8OHTpo+/bteuqpp1S+fHkdPXpUK1eu1IEDB/Ls8Z2WY4B86ueffzaSzMqVK40xxqSmppqgoCDzzDPPuMw3ZswYI8n8888/zrZ//vnHSDJjxoxJt9ymTZuaatWqmaSkJGdbamqq+de//mUqVarkbJs9e7aRZBo0aGAuXrx4zXpnzZplJJnXXnst3bTU1FTn7Svr6tWrlwkMDDTHjh1zecxDDz1k/P39zblz54wxxly8eNEkJye7zHPy5ElTqlQp07NnT2fb3r17jSRTrFgxc+LECWf7smXLjCTzxRdfONsu911akoyXl5eJjY11tv32229GkvnPf/7jbGvdurXx8fExBw8edLbt2bPHeHp6pltmZl599VXj7e1t4uPjjTHG7N6920gyS5YscZnvqaeeMjabzWzevNnZdvz4cRMQEGAkmb179xpjjElISDBFihQxffr0cXn84cOHjb+/f7r2tF5//fV04+h6bNmyxUgyvXv3dmkfOnSokWRWr17tbMtsTIaEhJhu3bo573/22WdGkomJiUk3b0REhImIiHDev/x6z54929mWHWPc39/f9O/f/xrPPr2YmBgjyXz22Wcu7d26dTOSzIgRI1zaly5daiSZ8ePHu7R37NjR2Gw2l3EoydjtdufrbYwxU6dONZJM6dKlnePIGGNGjhzpMjYyc73jeN++fcbDw8O89NJLLo///fffjaenp0t7RESEkWQ++OADZ1tycrIpXbq06dChg7PtjTfeMJLMp59+6mw7e/asCQsLc3n9U1NTTaVKlUxUVJTLZ8m5c+dMhQoVzL333utsu/ye7tKli0udJ0+eNJLM5MmTr9ofuDnsHkW+NX/+fJUqVUqRkZGSLu0a6dy5sxYsWKCUlJQsLfPEiRNavXq1OnXqpISEBB07dkzHjh3T8ePHFRUVpT179ujgwYMuj+nTp891HS+0aNEiFS9eXE899VS6aZntLjTGaNGiRWrdurWMMc56jh07pqioKJ0+fdq5O8rDw8O59Sk1NVUnTpzQxYsXdeedd2a4y6pz584qWrSo837Dhg0lSf/973+v+VyaNWvmsmWwevXqKly4sPOxKSkp+vbbb9W2bVuVKVPGOV9YWJhzK8L1mD9/vlq2bCk/Pz9JUqVKlVSnTp10u0hXrFih+vXru2xNDAgIcO5eu2zlypU6deqUunTp4tKXHh4euvvuu9PtSk7r8laSZcuWKTU19bqfw9dffy1JGjx4sEv7kCFDJElfffXVdS8rO2TXGC9SpIg2btyoQ4cOZWt9ffv2dbn/9ddfy8PDQ08//bRL+5AhQ2SM0fLly13amzZt6rJV6PJZ5R06dHCOo7TtVxvvNzKOFy9erNTUVHXq1MllbJUuXVqVKlVKN7YKFSqkRx991Hnfy8tLd911l0s9X3/9tQIDA9WxY0dnm4+Pjx5//HGXZW3ZskV79uzRww8/rOPHjzvXffbsWTVt2lTfffddujH75JNPutz39vaWl5eX1qxZo5MnT2baJ7g57B5FvpSSkqIFCxYoMjJSe/fudbbffffdmjJlilatWqX77rvvhpcbGxsrY4yef/55Pf/88xnOc/ToUZUtW9Z5v0KFCte17Li4OFWuXFmentf/tv3nn3906tQpTZs2TdOmTcu0nsvmzp2rKVOm6I8//tCFCxeuWmO5cuVc7l8OcNfzgX3lYy8//vJjjx49qsTExHRn8krKsC0jO3fu1ObNm9W1a1fFxsY62xs3bqx33nlH8fHxKly4sCRp//79ql+//jXXtWfPHklSkyZNMlzn5eVlpHPnzpoxY4Z69+6tESNGqGnTpmrfvr06duyoAgUy//t5//79KlCgQLpaSpcurSJFimj//v2ZPjYnZNcYf+WVV9StWzcFBwerTp06atGihbp27aqKFStmuTZPT890x4Xu379fZcqUcQlc0v92B1/Zf1eOTX9/f0lScHBwhu1XG+83Mo737NkjY4wqVaqU4bKuPOQgKCgo3R9rRYsW1datW5339+/fr7CwsHTzVa5cOd26Jalbt26ZPpfTp0+7/JF25Wtqt9v18ssva8iQISpVqpTq1aunVq1aqWvXripdunSmy8WNIbQhX1q9erX+/vtvLViwQAsWLEg3ff78+VkKbZf/Gh06dKiioqIynOfKD2tvb+8bXs+N1vPoo49m+oF8+Vi8Dz/8UN27d1fbtm01bNgwlSxZUh4eHpo4cWKGJzpktnXQXHFwd0Zu5rHX68MPP5QkDRo0SIMGDUo3fdGiRerRo8cNLfNyf86bNy/DL6KrBWpvb2999913iomJ0VdffaUVK1bok08+UZMmTfTNN99cc2vrzVymJKtbjjOSXWO8U6dOatiwoZYsWaJvvvlGkydP1ssvv6zFixff0NbUtOx2+1UD8PXI7HXI6TGbmpoqm82m5cuXZ7iuQoUK5Vg9l1/TyZMnpzt2NbP1Z/SaDhw4UK1bt9bSpUsVHR2t559/XhMnTtTq1atVq1atG64L6RHakC/Nnz9fJUuW1DvvvJNu2uLFi7VkyRK9//77mQaqzL5AL28lKFiwoJo1a5Z9BUsKDQ3Vxo0bdeHCheu+ZlaJEiXk5+enlJSUa9azcOFCVaxYUYsXL3Z5fpfPns1NJUuWlMPhcNlCdllGbVcyxuijjz5SZGSk+vXrl276iy++qPnz5ztDW0hIyHWt6/Iu3ZIlS2bp9S1QoICaNm2qpk2b6rXXXtOECRM0atQoxcTEZLq8kJAQpaamas+ePS4nCxw5ckSnTp1yubBs0aJFderUKZfHnz9/Xn///bdL280EwOwc44GBgerXr5/69euno0ePqnbt2nrppZeyHNoyEhISom+//VYJCQkuW9v++OMP5/ScciPjODQ0VMYYVahQQbfddlu2rD8kJETbtm2TMcblNd+1a1e6dUuXthTf7GsaGhqqIUOGaMiQIdqzZ49q1qypKVOmOP+Iws3hmDbkO4mJiVq8eLFatWqljh07pvs3YMAAJSQkpLt8QVo+Pj6SlO4LsmTJkmrcuLGmTp2a7otSurS7Mqs6dOigY8eO6e233043LbO/rj08PNShQwctWrRI27Ztu2o9l/9yT7usjRs3asOGDVmuOas8PDzUrFkzLV261OWYp9jY2HTHIGVk/fr12rdvn3r06JHha9y5c2fFxMQ4lx0VFaUNGza4/BzSiRMn0h37FhUVpcKFC2vChAkuu48vu9rre+LEiXRtl7dqZHYJBklq0aKFpEtnMqf12muvSZJatmzpbAsNDU13Hbpp06al29Lm6+srKf34vR7ZMcZTUlJ0+vTpdMstU6bMVfsiK1q0aKGUlJR075vXX39dNpstWwPilW5kHLdv314eHh4aN25cuvezMUbHjx+/4fW3aNFChw4d0sKFC51t586dS3eoRJ06dRQaGqpXX31VZ86cSbec63lNz507p6SkJJe20NBQ+fn5Zftrmp+xpQ35zueff66EhAQ98MADGU6vV6+e80K7nTt3znAeb29vVa1aVZ988oluu+02BQQEKDw8XOHh4XrnnXfUoEEDVatWTX369FHFihV15MgRbdiwQX/99Zd+++23LNXdtWtXffDBBxo8eLB++uknNWzYUGfPntW3336rfv36qU2bNhk+btKkSYqJidHdd9+tPn36qGrVqjpx4oR+/fVXffvtt84w0apVKy1evFjt2rVTy5YttXfvXr3//vuqWrVqhh/kOW3s2LH65ptvdM8996hv377OL97w8PBr/tbk/Pnz5eHh4RJo0nrggQc0atQoLViwQIMHD9azzz6rDz/8UPfee6+eeuop5yU/ypUrpxMnTji3UhQuXFjvvfeeHnvsMdWuXVsPPfSQSpQooQMHDuirr77SPffck2GolqQXXnhB3333nVq2bKmQkBAdPXpU7777roKCgpzXucpIjRo11K1bN02bNk2nTp1SRESEfvrpJ82dO1dt27Z1nkgjXbo0yJNPPqkOHTro3nvv1W+//abo6GgVL17cZZk1a9aUh4eHXn75ZZ0+fVp2u11NmjRRyZIlr9qvl93sGE9ISFBQUJA6duyoGjVqqFChQvr222+1adMmTZky5bpquF6tW7dWZGSkRo0apX379qlGjRr65ptvtGzZMg0cODDTS+Vkl+sdx6GhoRo/frxGjhypffv2qW3btvLz89PevXu1ZMkSPf744xo6dOgNrbtPnz56++231bVrV/3yyy8KDAzUvHnznH90XlagQAHNmDFD999/v+644w716NFDZcuW1cGDBxUTE6PChQvriy++uOq6du/eraZNm6pTp06qWrWqPD09tWTJEh05ckQPPfTQDdWNq8j181UBN2vdurVxOBzm7Nmzmc7TvXt3U7BgQXPs2LEML/lhjDE//PCDqVOnjvHy8kp3qYW4uDjTtWtXU7p0aVOwYEFTtmxZ06pVK7Nw4ULnPJcvh7Bp06brrv3cuXNm1KhRpkKFCqZgwYKmdOnSpmPHjiYuLs45z5W1GGPMkSNHTP/+/U1wcLDzcU2bNjXTpk1zzpOammomTJhgQkJCjN1uN7Vq1TJffvml6datmwkJCXHOd/kSEBmd2n/lujO75EdGl3q48rIUxhizatUqU6tWLePl5WVCQ0PNjBkzzJAhQ4zD4ci0j86fP2+KFStmGjZsmOk8xhhToUIFU6tWLef9zZs3m4YNGxq73W6CgoLMxIkTzVtvvWUkmcOHD7s8NiYmxkRFRRl/f3/jcDhMaGio6d69u/n5558zXd+qVatMmzZtTJkyZYyXl5cpU6aM6dKli9m9e/dV6zTGmAsXLphx48Y5X/fg4GAzcuRIl0tuGGNMSkqKGT58uClevLjx8fExUVFRJjY2NsO+nT59uqlYsaLx8PBwufzD9Vzyw5ibG+PJyclm2LBhpkaNGsbPz8/4+vqaGjVqmHffffeafXG1S374+vpm+JiEhAQzaNAgU6ZMGVOwYEFTqVIlM3nyZJfLWxiT8djMbLxnVkdGbmQcL1q0yDRo0MD4+voaX19fU6VKFdO/f3+za9cu5zwRERHmjjvuSPfYK9+rxhizf/9+88ADDxgfHx9TvHhx88wzz5gVK1ZkeMmXzZs3m/bt25tixYoZu91uQkJCTKdOncyqVauc82T2eXjs2DHTv39/U6VKFePr62v8/f3N3Xff7XK5Edw8mzHZeOQvAOSwtm3bavv27c4z3nLSwIEDNXXqVJ05cybbfsYJkHJ3HOPWwTFtAPKsxMREl/t79uzR119/7fzpopxc1/HjxzVv3jw1aNCAwIabkpvjGLc2trQByLMCAwPVvXt3VaxYUfv379d7772n5ORkbd68OdPrWWVVzZo11bhxY91+++06cuSIZs6cqUOHDmnVqlVq1KhRtq4L+UtujmPc2jgRAUCe1bx5c3388cc6fPiw7Ha76tevrwkTJuTIF12LFi20cOFCTZs2TTabTbVr19bMmTMJbLhpuTmOcWtjSxsAAIAFcEwbAACABRDaAAAALIBj2m4hqampOnTokPz8/G7qZ2oAAEDuMcYoISFBZcqUuerv5xLabiGHDh1ScHCwu8sAAABZ8OeffyooKCjT6YS2W8jlH0P+888/VbhwYTdXAwAArkd8fLyCg4Od3+OZIbTdQtL+PiKhDQAAa7nWoU2ciAAAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAVwnTbAIowxSkpKcncZeYoxRsnJyZIku93Oz7e5gcPhoN+BXEJoAywiKSlJUVFR7i4DcBEdHS1vb293lwHkC+weBQAAsAC2tAEWdLb2I1IB3r5KuSDfzR9Jks7WeljyKOjmgvKJ1Ivy/XW+u6sA8h0+9QErKuBJQLmSR0H6BMAtjd2jAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACzA090FIG8zxigpKUmS5HA4ZLPZ3FwRAAC5K698F7KlDVeVlJSkqKgoRUVFOQcsAAD5SV75LiS0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQlsWde/eXTabTU8++WS6af3795fNZlP37t1zvzAAAHBLIrTdhODgYC1YsECJiYnOtqSkJH300UcqV66cGysDAAC3GkLbTahdu7aCg4O1ePFiZ9vixYtVrlw51apVy9m2YsUKNWjQQEWKFFGxYsXUqlUrxcXFOafv27dPNptNixcvVmRkpHx8fFSjRg1t2LAhV58PAADIuzzdXYDV9ezZU7Nnz9YjjzwiSZo1a5Z69OihNWvWOOc5e/asBg8erOrVq+vMmTMaPXq02rVrpy1btqhAgf/l5lGjRunVV19VpUqVNGrUKHXp0kWxsbHy9HTfy2SMcd5OSkpyWx24ov/TvC5AruNzAflM2nFu3Pj5S2i7SY8++qhGjhyp/fv3S5LWr1+vBQsWuIS2Dh06uDxm1qxZKlGihHbs2KHw8HBn+9ChQ9WyZUtJ0rhx43THHXcoNjZWVapUyXDdycnJSk5Odt6Pj4/Prqflso7L2rRpk+3LRxalXpTk5e4qkF+lXnTe5HMB+U1ycrJ8fHzcsm52j96kEiVKqGXLlpozZ45mz56tli1bqnjx4i7z7NmzR126dFHFihVVuHBhlS9fXpJ04MABl/mqV6/uvB0YGChJOnr0aKbrnjhxovz9/Z3/goODs+lZAQCAvIYtbdmgZ8+eGjBggCTpnXfeSTe9devWCgkJ0fTp01WmTBmlpqYqPDxc58+fd5mvYMGCzts2m02SlJqamul6R44cqcGDBzvvx8fHZ3tws9vtztvLli2Tw+HI1uXj+iUlJf1vq0YB3rpwozTjj88F5AdpP3/Tfi/mNj75s0Hz5s11/vx52Ww2RUVFuUw7fvy4du3apenTp6thw4aSpHXr1mXLeu12e44PnsvhUZIcDoe8vb1zdH24TmleFyDX8bmAfMzmxs9fQls28PDw0M6dO5230ypatKiKFSumadOmKTAwUAcOHNCIESPcUSYAALAwjmnLJoULF1bhwoXTtRcoUEALFizQL7/8ovDwcA0aNEiTJ092Q4UAAMDK2NKWRXPmzLnq9KVLlzpvN2vWTDt27HCZnvaU4fLly6c7hbhIkSJuPa0YAADkLWxpAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACzA090FIG9zOByKjo523gYAIL/JK9+FhDZclc1mk7e3t7vLAADAbfLKdyG7RwEAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYgKe7CwCQBakX3V1B3pByIePbyFmMP8AtCG2ABfn+Ot/dJeQ5vps/cncJAJCj2D0KAABgAWxpAyzC4XAoOjra3WXkKcYYJScnS5LsdrtsNpubK8p/HA6Hu0sA8g1CG2ARNptN3t7e7i4jz/Hx8XF3CQCQK9g9CgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACPN1dAGB1xhglJSW5uwwXxhglJydLkux2u2w2m5sryhqHw2HZ2gEguxHagJuUlJSkqKgod5dxS4qOjpa3t7e7ywCAPIHdowAAABbAljYgG73T6JTsHsbdZSg5Rer/XVFJ0juNTsru4eaCbkByik39vyvi7jIAIM8htAHZyO5h5MhjAcnuoTxX09W5P/QCQF7E7lEAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAjzdXQCQEWOMkpKSJEkOh0M2m83NFQHIDry3gaxjSxvypKSkJEVFRSkqKsr5AQ/A+nhvA1lHaAMAALCAGw5txhgdOHCAv5AAAAByUZZCW1hYmP7888+cqAcAAAAZuOHQVqBAAVWqVEnHjx/PiXoAAACQgSwd0zZp0iQNGzZM27Zty+56AAAAkIEsXfKja9euOnfunGrUqCEvLy95e3u7TD9x4kS2FAcAAIBLshTa3njjjWwuAwAAAFeTpdDWrVu37K4DAAAAV5Hl67TFxcXp3//+t7p06aKjR49KkpYvX67t27dnW3EAAAC4JEuhbe3atapWrZo2btyoxYsX68yZM5Kk3377TWPGjMnWAgEAAJDF0DZixAiNHz9eK1eulJeXl7O9SZMm+vHHH7OtOAAAAFySpdD2+++/q127dunaS5YsqWPHjt10UQAAAHCVpdBWpEgR/f333+naN2/erLJly950UQAAAHCVpdD20EMPafjw4Tp8+LBsNptSU1O1fv16DR06VF27ds3uGgEAAPK9LIW2CRMmqEqVKgoODtaZM2dUtWpVNWrUSP/617/073//O7trBAAAyPeydJ02Ly8vTZ8+Xc8//7y2bdumM2fOqFatWqpUqVJ21wcAAABlMbRdVq5cOZUrVy67agEAAEAmrju0DR48+LoX+tprr2WpGAAAAGTsukPb5s2bXe7/+uuvunjxoipXrixJ2r17tzw8PFSnTp3srRAAAADXH9piYmKct1977TX5+flp7ty5Klq0qCTp5MmT6tGjhxo2bJj9VQIAAORzWTp7dMqUKZo4caIzsElS0aJFNX78eE2ZMiXbigMAAMAlWQpt8fHx+ueff9K1//PPP0pISLjporLD+++/Lz8/P128eNHZdubMGRUsWFCNGzd2mXfNmjWy2WyKi4vL5SoBAACuT5ZCW7t27dSjRw8tXrxYf/31l/766y8tWrRIvXr1Uvv27bO7xiyJjIzUmTNn9PPPPzvbvv/+e5UuXVobN25UUlKSsz0mJkblypVTaGioO0oFAAC4pixd8uP999/X0KFD9fDDD+vChQuXFuTpqV69emny5MnZWmBWVa5cWYGBgVqzZo3q1asn6dIWtTZt2mj16tX68ccfnVvc1qxZo8jISCUnJ2vYsGFasGCB4uPjdeedd+r1119X3bp1XeZbsWKFRowYoT/++EP169fXggUL9Msvv2jw4ME6ePCgWrVqpRkzZsjHx0eStGLFCo0fP17btm2Th4eH6tevrzfffNMZEvft26cKFSpo0aJF+s9//qONGzeqUqVKev/991W/fv3c77w8wBjjvJ02YOdFaetLUzayKG0f5vXXHjfO9f3CGwa4ETZzE++as2fPOncphoaGytfXN9sKyw6PPPKIjh07pujoaEnSXXfdpWeffVarVq1SyZIlNW7cOCUmJqpo0aKaOnWqfv31Vy1cuFAzZsxQSEiIXnnlFX3++eeKjY1VQECAM7TVq1dPr776qnx8fNSpUyeVLVtWdrtdkyZN0pkzZ9SuXTsNGzZMw4cPlyQtWrRINptN1atX15kzZzR69Gjt27dPW7ZsUYECBZyhrUqVKnr11VdVqVIljRo1Sps2bVJsbKw8PTPO1snJyUpOTnbej4+PV3BwsE6fPq3ChQvnfAfnoJMnT6pNmzbuLuOGvdPopPy93F2FlJQi9Y65dMzpjMiTcni4uaAbcPq81P+7oteeEZa3bNkyl2OjgfwqPj5e/v7+1/z+vqmL6/r6+qp69eo3s4gcFRkZqYEDB+rixYtKTEzU5s2bFRERoQsXLuj999+XJG3YsEHJyclq3Lix+vTpozlz5uj++++XJE2fPl0rV67UzJkzNWzYMOdyx48fr3vuuUeS1KtXL40cOVJxcXGqWLGiJKljx46KiYlxhrYOHTq41DVr1iyVKFFCO3bsUHh4uLN96NChatmypSRp3LhxuuOOOxQbG6sqVapk+PwmTpyocePGZUdXAQCAPC5Loe3s2bOaNGmSVq1apaNHjyo1NdVl+n//+99sKe5mNW7cWGfPntWmTZt08uRJ3XbbbSpRooQiIiLUo0cPJSUlac2aNapYsaJOnz6tCxcuOMOYJBUsWFB33XWXdu7c6bLctEG1VKlS8vHxcQa2y20//fST8/6ePXs0evRobdy4UceOHXP214EDB1xCW9rlBgYGSpKOHj2aaWgbOXKky0WPL29puxXY7Xbn7WXLlsnhcLixmqtLSkpybhX0ytJRokgrbR/m9dceNy7t+yXt+xzAtWUptPXu3Vtr167VY489psDAQNlstuyuK1uEhYUpKChIMTExOnnypCIiIiRJZcqUUXBwsH744QfFxMSoSZMmN7TcggULOm/bbDaX+5fb0gbZ1q1bKyQkRNOnT1eZMmWUmpqq8PBwnT9//qrLlZQuEKdlt9tv2Q+9tGPK4XDI29vbjdVcvzz6VrCUtH1opdceNy6vfncAeVWWQtvy5cv11VdfuWyVyqsiIyO1Zs0anTx50mUXZ6NGjbR8+XL99NNP6tu3r0JDQ+Xl5aX169crJCREknThwgVt2rRJAwcOzPL6jx8/rl27dmn69OnOCw+vW7fupp4TAADIf7IU2ooWLaqAgIDsriVHREZGqn///rpw4YJzS5skRUREaMCAATp//rwiIyPl6+urvn37atiwYQoICFC5cuX0yiuv6Ny5c+rVq1eW11+0aFEVK1ZM06ZNU2BgoA4cOKARI0Zkx1MDAAD5SJaOwHnxxRc1evRonTt3LrvryXaRkZFKTExUWFiYSpUq5WyPiIhQQkKC89IgkjRp0iR16NBBjz32mGrXrq3Y2FhFR0ff1NlNBQoUcF4SJDw8XIMGDcozl0UBAADWkaVLftSqVUtxcXEyxqh8+fLpjun69ddfs61AXL/rPWXYChITExUVFSVJio6OztPHNaWtNa9cXsPKl/xIW3tef+1x46z03gZyS45e8qNt27ZZrQsAAABZkKXQNmbMmOyuAwAAAFeR5atKnTp1SjNmzNDIkSN14sQJSZd2ix48eDDbigMAAMAlWdrStnXrVjVr1kz+/v7at2+f+vTpo4CAAC1evFgHDhzQBx98kN11AgAA5GtZ2tI2ePBgde/eXXv27HG5WnmLFi303XffZVtxAAAAuCRLoW3Tpk164okn0rWXLVtWhw8fvumiAAAA4CpLoc1utys+Pj5d++7du1WiRImbLgoAAACushTaHnjgAb3wwgu6cOGCpEu/H3fgwAENHz5cHTp0yNYCAQAAkMXQNmXKFJ05c0YlS5ZUYmKiIiIiFBYWpkKFCumll17K7hoBAADyvSydPerv76+VK1dq/fr1+u2333TmzBnVrl1bzZo1y+76AAAAoBvc0paYmKgvv/zSef/LL79UbGysDh8+rK+//lrPPvuskpKSsr1IAACA/O6GtrTNnTtXX331lVq1aiVJevvtt3XHHXc4fzvujz/+UGBgoAYNGpT9lQIAAORjN7Slbf78+Xr88cdd2j766CPFxMQoJiZGkydP1qeffpqtBQIAAOAGQ1tsbKyqVavmvO9wOFSgwP8Wcdddd2nHjh3ZVx0AAAAk3eDu0VOnTik5Odl5/59//nGZnpqa6jIdAAAA2eOGtrQFBQVp27ZtmU7funWrgoKCbrooAAAAuLqh0NaiRQuNHj06wzNEExMTNW7cOLVs2TLbigMAAMAlN7R79LnnntOnn36qypUra8CAAbrtttskSbt27dLbb7+tixcv6rnnnsuRQgEAAPKzGwptpUqV0g8//KC+fftqxIgRMsZIuvQzVvfee6/effddlSpVKkcKBQAAyM9u+BcRKlSooBUrVujEiROKjY2VJIWFhSkgICDbi0P+5XA4FB0d7bwN4NbAexvIuiz9jJUkBQQE6K677srOWgAnm83mvGgzgFsH720g67L0g/EAAADIXYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWICnuwsAbiXJKTZJxt1lKDkl49tWcKkPAQBXIrQB2aj/d0XcXUI6/b8r6u4SAADZgN2jAAAAFsCWNuAmORwORUdHu7sMF8YYJScnS5LsdrtsNmvucnQ4HO4uAQDyDEIbcJNsNpu8vb3dXUY6Pj4+7i4BAJCN2D0KAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAI83V0AAKRljFFSUlKOryM5OVmSZLfbZbPZcnR9kuRwOHJlPQBuXYQ2AHlKUlKSoqKi3F1GtouOjpa3t7e7ywBgYeweBQAAsAC2tAHIs1Jap+TMp9RFyeMLj5xdxxXrAYCbRWgDkHd5Kuc/pXJjHQCQDdg9CgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFiAp7sLAGANxhglJSVJkhwOh2w2m5srgsTrAuQnbGkDcF2SkpIUFRWlqKgoZ0iA+/G6APkHoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABeTb0LZmzRrZbDadOnUq03nmzJmjIkWK5FpNAAAAmXFraOvevbtsNpsmTZrk0r506VLZbDY3VfU/nTt31u7du91dBgAAgPu3tDkcDr388ss6efKku0tJx9vbWyVLlszx9Vy4cCHH1wEAAKzN7aGtWbNmKl26tCZOnJjpPIsWLdIdd9whu92u8uXLa8qUKS7Ty5cvrwkTJqhnz57y8/NTuXLlNG3atOta//r161W9enU5HA7Vq1dP27Ztc067cvfo2LFjVbNmTc2bN0/ly5eXv7+/HnroISUkJDjnWbFihRo0aKAiRYqoWLFiatWqleLi4pzT9+3bJ5vNpk8++UQRERFyOByaNm2aChcurIULF7rUtnTpUvn6+rosH3AXY4zzdlJSkhITE3PkX1JSUpqVuuGJZqc09edUn6Xtr7SvEYBbj6e7C/Dw8NCECRP08MMP6+mnn1ZQUJDL9F9++UWdOnXS2LFj1blzZ/3www/q16+fihUrpu7duzvnmzJlil588UU999xzWrhwofr27auIiAhVrlz5qusfNmyY3nzzTZUuXVrPPfecWrdurd27d6tgwYIZzh8XF6elS5fqyy+/1MmTJ9WpUydNmjRJL730kiTp7NmzGjx4sKpXr64zZ85o9OjRateunbZs2aICBf6XkUeMGKEpU6aoVq1acjgc+u233zR79mx17NjROc/l+35+fhnWkpycrOTkZOf9+Pj4qz5X4GakHWtt2rTJnZWmSMr4rWgNKf+7mRt9lpycLB8fnxxfDwD3cPuWNklq166datasqTFjxqSb9tprr6lp06Z6/vnnddttt6l79+4aMGCAJk+e7DJfixYt1K9fP4WFhWn48OEqXry4YmJirrnuMWPG6N5771W1atU0d+5cHTlyREuWLMl0/tTUVM2ZM0fh4eFq2LChHnvsMa1atco5vUOHDmrfvr3CwsJUs2ZNzZo1S7///rt27NjhspyBAweqffv2qlChggIDA9W7d29FR0fr77//liQdPXpUX3/9tXr27JlpLRMnTpS/v7/zX3Bw8DWfLwAAsCa3b2m77OWXX1aTJk00dOhQl/adO3em+wv1nnvu0RtvvKGUlBR5eHhIkqpXr+6cbrPZVLp0aR09elSSdP/99+v777+XJIWEhGj79u3OeevXr++8HRAQoMqVK2vnzp2Z1lm+fHmXLV+BgYHO9UjSnj17NHr0aG3cuFHHjh1TamqqJOnAgQMKDw93znfnnXe6LPeuu+7SHXfcoblz52rEiBH68MMPFRISokaNGmVay8iRIzV48GDn/fj4eIIbcozdbnfeXrZsmRwOR46sJykp6X/veY8cWUXuSVN/TvVZ2v5K+xoBuPXkmdDWqFEjRUVFaeTIkS67Pa/XlbszbTabMzDNmDFDiYmJGc6XneuRpNatWyskJETTp09XmTJllJqaqvDwcJ0/f97lcb6+vumW3bt3b73zzjsaMWKEZs+erR49elz1LFq73c6HNHJN2rHocDjk7e2dCyvN+VXkqDT150af5YWz7gHknDwT2iRp0qRJqlmzpstxaLfffrvWr1/vMt/69et12223ObeyXUvZsmUznfbjjz+qXLlykqSTJ09q9+7duv3227NQvXT8+HHt2rVL06dPV8OGDSVJ69atu+7HP/roo3r22Wf11ltvaceOHerWrVuW6gAAALeePBXaqlWrpkceeURvvfWWs23IkCGqW7euXnzxRXXu3FkbNmzQ22+/rXfffTdb1vnCCy+oWLFiKlWqlEaNGqXixYurbdu2WVpW0aJFVaxYMU2bNk2BgYE6cOCARowYcUOPb9++vYYNG6b77rsv3UkZAAAg/8oTJyKk9cILL7jsbqxdu7Y+/fRTLViwQOHh4Ro9erReeOGFLO1CzcikSZP0zDPPqE6dOjp8+LC++OILeXl5ZWlZBQoU0IIFC/TLL78oPDxcgwYNSnfCxLX06tVL58+fv+oJCAAAIP+xGS7sk6fMmzdPgwYN0qFDh244PMbHx8vf31+nT59W4cKFc6hC5FeJiYmKioqSJEVHR+fY8Vlp15PSLiVn9gdclDyWeOTsOq5YT071WW69LgByzvV+f+ep3aP52blz5/T3339r0qRJeuKJJ7K8tQ8AANya8tzu0fzqlVdeUZUqVVS6dGmNHDnS3eUAAIA8htCWR4wdO1YXLlzQqlWrVKhQIXeXAwAA8hhCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABPdxcAwBocDoeio6Odt5E38LoA+QehDcB1sdls8vb2dncZuAKvC5B/sHsUAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABPdxcAAJm6mAvLzal15PSyAeQ7hDYAeZbHFx63xDoAIDuwexQAAMAC2NIGIE9xOByKjo7O0XUYY5ScnCxJstvtstlsObo+6dLzAoCbQWgDkKfYbDZ5e3vn+Hp8fHxyfB0AkJ3YPQoAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGAB/CLCLcQYI0mKj493cyUAAOB6Xf7evvw9nhlC2y0kISFBkhQcHOzmSgAAwI1KSEiQv79/ptNt5lqxDpaRmpqqQ4cOyc/PL8MfwI6Pj1dwcLD+/PNPFS5c2A0V5n300dXRP9dGH10bfXRt9NHV3Wr9Y4xRQkKCypQpowIFMj9yjS1tt5ACBQooKCjomvMVLlz4lhjkOYk+ujr659roo2ujj66NPrq6W6l/rraF7TJORAAAALAAQhsAAIAFENryEbvdrjFjxshut7u7lDyLPro6+ufa6KNro4+ujT66uvzaP5yIAAAAYAFsaQMAALAAQhsAAIAFENoAAAAsgNAGAABgAYS2W9B3332n1q1bq0yZMrLZbFq6dKnL9O7du8tms7n8a968uXuKdYOJEyeqbt268vPzU8mSJdW2bVvt2rXLZZ6kpCT1799fxYoVU6FChdShQwcdOXLETRXnvuvpo8aNG6cbR08++aSbKs5d7733nqpXr+68sGf9+vW1fPly5/T8Pn6ka/dRfh4/GZk0aZJsNpsGDhzobGMcucqoj/LbOCK03YLOnj2rGjVq6J133sl0nubNm+vvv/92/vv4449zsUL3Wrt2rfr3768ff/xRK1eu1IULF3Tffffp7NmzznkGDRqkL774Qp999pnWrl2rQ4cOqX379m6sOnddTx9JUp8+fVzG0SuvvOKminNXUFCQJk2apF9++UU///yzmjRpojZt2mj79u2SGD/StftIyr/j50qbNm3S1KlTVb16dZd2xtH/ZNZHUj4bRwa3NElmyZIlLm3dunUzbdq0cUs9edHRo0eNJLN27VpjjDGnTp0yBQsWNJ999plznp07dxpJZsOGDe4q062u7CNjjImIiDDPPPOM+4rKY4oWLWpmzJjB+LmKy31kDOPnsoSEBFOpUiWzcuVKlz5hHP1PZn1kTP4bR2xpy6fWrFmjkiVLqnLlyurbt6+OHz/u7pLc5vTp05KkgIAASdIvv/yiCxcuqFmzZs55qlSponLlymnDhg1uqdHdruyjy+bPn6/ixYsrPDxcI0eO1Llz59xRnlulpKRowYIFOnv2rOrXr8/4ycCVfXQZ40fq37+/WrZs6TJeJD6H0sqsjy7LT+OIH4zPh5o3b6727durQoUKiouL03PPPaf7779fGzZskIeHh7vLy1WpqakaOHCg7rnnHoWHh0uSDh8+LC8vLxUpUsRl3lKlSunw4cNuqNK9MuojSXr44YcVEhKiMmXKaOvWrRo+fLh27dqlxYsXu7Ha3PP777+rfv36SkpKUqFChbRkyRJVrVpVW7ZsYfz8v8z6SGL8SNKCBQv066+/atOmTemm8Tl0ydX6SMp/44jQlg899NBDztvVqlVT9erVFRoaqjVr1qhp06ZurCz39e/fX9u2bdO6devcXUqelVkfPf74487b1apVU2BgoJo2baq4uDiFhobmdpm5rnLlytqyZYtOnz6thQsXqlu3blq7dq27y8pTMuujqlWr5vvx8+eff+qZZ57RypUr5XA43F1OnnQ9fZTfxhG7R6GKFSuqePHiio2NdXcpuWrAgAH68ssvFRMTo6CgIGd76dKldf78eZ06dcpl/iNHjqh06dK5XKV7ZdZHGbn77rslKd+MIy8vL4WFhalOnTqaOHGiatSooTfffJPxk0ZmfZSR/DZ+fvnlFx09elS1a9eWp6enPD09tXbtWr311lvy9PRUqVKl8v04ulYfpaSkpHvMrT6OCG3QX3/9pePHjyswMNDdpeQKY4wGDBigJUuWaPXq1apQoYLL9Dp16qhgwYJatWqVs23Xrl06cOCAy/E4t7Jr9VFGtmzZIkn5ZhxdKTU1VcnJyYyfq7jcRxnJb+OnadOm+v3337VlyxbnvzvvvFOPPPKI83Z+H0fX6qOMDue51ccRu0dvQWfOnHH5K2Pv3r3asmWLAgICFBAQoHHjxqlDhw4qXbq04uLi9OyzzyosLExRUVFurDr39O/fXx999JGWLVsmPz8/5/Eh/v7+8vb2lr+/v3r16qXBgwcrICBAhQsX1lNPPaX69eurXr16bq4+d1yrj+Li4vTRRx+pRYsWKlasmLZu3apBgwapUaNGGZ6Sf6sZOXKk7r//fpUrV04JCQn66KOPtGbNGkVHRzN+/t/V+ii/jx9J8vPzczlGVJJ8fX1VrFgxZ3t+H0fX6qN8OY7cffoqsl9MTIyRlO5ft27dzLlz58x9991nSpQoYQoWLGhCQkJMnz59zOHDh91ddq7JqG8kmdmzZzvnSUxMNP369TNFixY1Pj4+pl27dubvv/92X9G57Fp9dODAAdOoUSMTEBBg7Ha7CQsLM8OGDTOnT592b+G5pGfPniYkJMR4eXmZEiVKmKZNm5pvvvnGOT2/jx9jrt5H+X38ZObKy1cwjtJL20f5cRzZjDEm15MiAAAAbgjHtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAGAm23YsEEeHh5q2bKlu0sBkIfxiwgA4Ga9e/dWoUKFNHPmTO3atUtlypRxd0kA8iC2tAGAG505c0affPKJ+vbtq5YtW2rOnDku0z///HNVqlRJDodDkZGRmjt3rmw2m06dOuWcZ926dWrYsKG8vb0VHBysp59+WmfPns3dJwIgxxHaAMCNPv30U1WpUkWVK1fWo48+qlmzZunyDpC9e/eqY8eOatu2rX777Tc98cQTGjVqlMvj4+Li1Lx5c3Xo0EFbt27VJ598onXr1mnAgAHueDoAchC7RwHAje655x516tRJzzzzjC5evKjAwEB99tlnaty4sUaMGKGvvvpKv//+u3P+f//733rppZd08uRJFSlSRL1795aHh4emTp3qnGfdunWKiIjQ2bNn5XA43PG0AOQAtrQBgJvs2rVLP/30k7p06SJJ8vT0VOfOnTVz5kzn9Lp167o85q677nK5/9tvv2nOnDkqVKiQ819UVJRSU1O1d+/e3HkiAHKFp7sLAID8aubMmbp48aLLiQfGGNntdr399tvXtYwzZ87oiSee0NNPP51uWrly5bKtVgDuR2gDADe4ePGiPvjgA02ZMkX33Xefy7S2bdvq448/VuXKlfX111+7TNu0aZPL/dq1a2vHjh0KCwvL8ZoBuBfHtAGAGyxdulSdO3fW0aNH5e/v7zJt+PDhWr16tT799FNVrlxZgwYNUq9evbRlyxYNGTJEf/31l06dOiV/f39t3bpV9erVU8+ePdW7d2/5+vpqx44dWrly5XVvrQNgDRzTBgBuMHPmTDVr1ixdYJOkDh066Oeff1ZCQoIWLlyoxYsXq3r16nrvvfecZ4/a7XZJUvXq1bV27Vrt3r1bDRs2VK1atTR69Giu9QbcgtjSBgAW8tJLL+n999/Xn3/+6e5SAOQyjmkDgDzs3XffVd26dVWsWDGtX79ekydP5hpsQD5FaAOAPGzPnj0aP368Tpw4oXLlymnIkCEaOXKku8sC4AbsHgUAALAATkQAAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwgP8D7gYWQDObFl0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x='Age', y= 'Gender', data=survey_df_2019)\n", + "plt.title(\"After cleaning Age's outliers from genders\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 140, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Age'].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Profession column (Mainbranch)" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Profession\n", + "I am a developer by profession 62\n", + "I am not primarily a developer, but I write code sometimes as part of my work 10\n", + "I am a student who is learning to code 8\n", + "I code primarily as a hobby 6\n", + "I used to be a developer by profession, but no longer am 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 141, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Profession'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 142, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Profession'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019['Profession'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Profession\n", + "I am a developer by profession 62\n", + "I am not primarily a developer, but I write code sometimes as part of my work 10\n", + "I am a student who is learning to code 8\n", + "I code primarily as a hobby 6\n", + "I used to be a developer by profession, but no longer am 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 144, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Profession'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "#Lets refactor column values of Profession column\n", + "#refactoring profession column\n", + "\n", + "def refactor_prof(df):\n", + " '''function to change Profession category to Developer, Student, Non-Developer, Novoice, Ex-Developer'''\n", + " conditions_prof = [(df['Profession'] == 'I am a developer by profession'),\n", + " (df['Profession'] == 'I am a student who is learning to code'),\n", + " (df['Profession'] == 'I am not primarily a developer, but I write code sometimes as part of my work'),\n", + " (df['Profession'] == 'I code primarily as a hobby'),\n", + " (df['Profession'] == 'I used to be a developer by profession, but no longer am')]\n", + " \n", + " choices_prof = ['Developer', 'Student', 'Non developer', 'Novoice', 'Ex-Developer']\n", + " \n", + " df['Profession'] = np.select(conditions_prof, choices_prof, default=np.nan)\n", + " \n", + " return df\n", + "\n", + "survey_df_2019 = refactor_prof(survey_df_2019)" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Profession\n", + "Developer 62\n", + "Non developer 10\n", + "Student 8\n", + "Novoice 6\n", + "Ex-Developer 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 146, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Profession'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EdLevel" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "EdLevel\n", + "Bachelor‚Äôs degree (BA, BS, B.Eng., etc.) 42\n", + "Some college/university study without earning a degree 15\n", + "Master‚Äôs degree (MA, MS, M.Eng., MBA, etc.) 10\n", + "Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.) 9\n", + "Associate degree 5\n", + "Primary/elementary school 3\n", + "Other doctoral degree (Ph.D, Ed.D., etc.) 2\n", + "Professional degree (JD, MD, etc.) 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 147, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['EdLevel'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 148, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['EdLevel'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "metadata": {}, + "outputs": [], + "source": [ + "# Refactoring EdLevel\n", + "def refactor_ed(df):\n", + " '''function to change Education level category to Bachelors, Masters, Professional, Associate, Doctorate, No Degree'''\n", + " conditions_ed = [(df['EdLevel'] == 'Bachelor’s degree (BA, BS, B.Eng., etc.)'),\n", + " (df['EdLevel'] == 'Master’s degree (MA, MS, M.Eng., MBA, etc.)'),\n", + " (df['EdLevel'] == 'Professional degree (JD, MD, etc.)'), \n", + " (df['EdLevel'] == 'Associate degree'),\n", + " (df['EdLevel'] == 'Other doctoral degree (Ph.D, Ed.D., etc.)'),\n", + " (df['EdLevel'] == 'Some college/university study without earning a degree') \n", + " | (df['EdLevel'] == 'Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.)') \n", + " | (df['EdLevel'] == 'Primary/elementary school')\n", + " | (df['EdLevel'] == 'I never completed any formal education')]\n", + "\n", + " choices_ed = ['Bachelors', 'Masters', 'Professional', 'Associate', 'Doctorate', 'No Degree']\n", + "\n", + " df['EdLevel'] = np.select(conditions_ed, choices_ed, default = np.NaN)\n", + " \n", + " return df\n", + "\n", + "# applying function to subsets\n", + "survey_df_2019 = refactor_ed(survey_df_2019)\n", + "survey_df_2019['EdLevel'].replace('nan', 'Bachelors', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "EdLevel\n", + "Bachelors 53\n", + "No Degree 27\n", + "Associate 5\n", + "Doctorate 2\n", + "Professional 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 150, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['EdLevel'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 151, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019.isnull().sum()['EdLevel']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Undergrad Major" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "UndergradMajor\n", + "Computer science, computer engineering, or software engineering 36\n", + "Information systems, information technology, or system administration 15\n", + "Web development or web design 5\n", + "Mathematics or statistics 4\n", + "Another engineering discipline (ex. civil, electrical, mechanical) 4\n", + "A business discipline (ex. accounting, finance, marketing) 3\n", + "A natural science (ex. biology, chemistry, physics) 2\n", + "A social science (ex. anthropology, psychology, political science) 2\n", + "A humanities discipline (ex. literature, history, philosophy) 1\n", + "Fine arts or performing arts (ex. graphic design, music, studio art) 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 152, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['UndergradMajor'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "15" + ] + }, + "execution_count": 153, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['UndergradMajor'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019['UndergradMajor'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "UndergradMajor\n", + "Computer science, computer engineering, or software engineering 43\n", + "Information systems, information technology, or system administration 19\n", + "Web development or web design 6\n", + "Another engineering discipline (ex. civil, electrical, mechanical) 5\n", + "Mathematics or statistics 4\n", + "A natural science (ex. biology, chemistry, physics) 3\n", + "A business discipline (ex. accounting, finance, marketing) 3\n", + "A social science (ex. anthropology, psychology, political science) 2\n", + "A humanities discipline (ex. literature, history, philosophy) 1\n", + "Fine arts or performing arts (ex. graphic design, music, studio art) 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 155, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['UndergradMajor'].value_counts().nlargest(15)" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 156, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['UndergradMajor'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 157, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019.dropna(subset=['UndergradMajor'], inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 158, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['UndergradMajor'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Refactoring UndergradMajor\n", + "def refactor_major(df):\n", + " '''function to change undergrad major category to Computer Science, Engineering, Info Systems, Math/Stat, \n", + " Other Science, Web Design/Dev, Business, Arts and Science'''\n", + " \n", + " \n", + " conditions_major = [(df['UndergradMajor'] == 'Computer science, computer engineering, or software engineering'),\n", + " (df['UndergradMajor'] == 'Another engineering discipline (ex. civil, electrical, mechanical)'),\n", + " (df['UndergradMajor'] == 'Information systems, information technology, or system administration'),\n", + " (df['UndergradMajor'] == 'Mathematics or statistics'),\n", + " (df['UndergradMajor'] == 'I never declared a major'),\n", + " (df['UndergradMajor'] == 'A natural science (ex. biology, chemistry, physics)')\n", + " |(df['UndergradMajor'] == 'A health science (ex. nursing, pharmacy, radiology)'),\n", + " (df['UndergradMajor'] == 'Web development or web design'),\n", + " (df['UndergradMajor'] == 'A business discipline (ex. accounting, finance, marketing)'),\n", + " (df['UndergradMajor'] == 'A humanities discipline (ex. literature, history, philosophy)')\n", + " | (df['UndergradMajor'] == 'A social science (ex. anthropology, psychology, political science)')\n", + " | (df['UndergradMajor'] == 'Fine arts or performing arts (ex. graphic design, music, studio art)')]\n", + "\n", + " choices_major = ['Computer Science', 'Engineering', 'Info Systems', 'Math/Stat', 'No Major', 'Other Science',\n", + " 'Web Design/Dev', 'Business', 'Arts and Science']\n", + "\n", + " df['UndergradMajor'] = np.select(conditions_major, choices_major, default = np.NaN)\n", + " \n", + " return df\n", + "\n", + "# applying function to subsets\n", + "survey_df_2019 = refactor_major(survey_df_2019)" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "UndergradMajor\n", + "Computer Science 43\n", + "Info Systems 19\n", + "Web Design/Dev 6\n", + "Engineering 5\n", + "Math/Stat 4\n", + "Arts and Science 4\n", + "Other Science 3\n", + "Business 3\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 160, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['UndergradMajor'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Job Status" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "JobStatus\n", + "I‚Äôm not actively looking, but I am open to new opportunities 44\n", + "I am not interested in new job opportunities 23\n", + "I am actively looking for a job 12\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 161, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['JobStatus'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8" + ] + }, + "execution_count": 162, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['JobStatus'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019['JobStatus'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 164, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['JobStatus'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "JobStatus\n", + "I‚Äôm not actively looking, but I am open to new opportunities 50\n", + "I am not interested in new job opportunities 24\n", + "I am actively looking for a job 13\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 165, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['JobStatus'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019.dropna(subset=['JobStatus'], inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# refactoring JobStatus\n", + "# changing the jobstatus to seeking and non seeking\n", + "def refactor_job(df):\n", + " '''function to change JobStatus category to Seeking and Non Seeking'''\n", + " \n", + " conditions_job = [(df['JobStatus'] == 'I am actively looking for a job'),\n", + " (df['JobStatus'] == 'I am not interested in new job opportunities')\n", + " | (df['JobStatus'] == 'I’m not actively looking, but I am open to new opportunities')]\n", + " \n", + " choices_job = ['Seeking', 'Not seeking']\n", + " \n", + " df['JobStatus'] = np.select(conditions_job, choices_job, default=np.nan)\n", + " \n", + " return df\n", + "\n", + "survey_df_2019 = refactor_job(survey_df_2019)" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "JobStatus\n", + "nan 50\n", + "Not seeking 24\n", + "Seeking 13\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['JobStatus'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## JobSatisfaction" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "JobSatisfaction\n", + "Very satisfied 33\n", + "Slightly satisfied 21\n", + "Slightly dissatisfied 8\n", + "Neither satisfied nor dissatisfied 6\n", + "Very dissatisfied 4\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['JobSatisfaction'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "15" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['JobSatisfaction'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019['JobSatisfaction'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 172, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['JobSatisfaction'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "JobSatisfaction\n", + "Very satisfied 41\n", + "Slightly satisfied 26\n", + "Slightly dissatisfied 10\n", + "Neither satisfied nor dissatisfied 6\n", + "Very dissatisfied 4\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['JobSatisfaction'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Employment" + ] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Employment\n", + "Employed full-time 64\n", + "Independent contractor, freelancer, or self-employed 12\n", + "Employed part-time 5\n", + "Not employed, but looking for work 4\n", + "Not employed, and not looking for work 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 174, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Employment'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 175, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Employment'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019['Employment'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Employment'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Employment\n", + "Employed full-time 65\n", + "Independent contractor, freelancer, or self-employed 12\n", + "Employed part-time 5\n", + "Not employed, but looking for work 4\n", + "Not employed, and not looking for work 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Employment'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 179, + "metadata": {}, + "outputs": [], + "source": [ + "#Refactoring the employment\n", + "def refactor_emp(df):\n", + " '''function to change Employment category to Full-time, Self-employed, Not employed, Part-time '''\n", + " conditions_emp = [(df['Employment'] == 'Employed full-time'),\n", + " (df['Employment'] == 'Independent contractor, freelancer, or self-employed'),\n", + " (df['Employment'] == 'Not employed, but looking for work')\n", + " | (df['Employment'] == 'Not employed, and not looking for work')\n", + " | (df['Employment'] == 'Retired'),\n", + " (df['Employment'] == 'Employed part-time')]\n", + " \n", + " choices_emp = ['Full-time', 'Self-employed', 'Not employed', 'Part-time']\n", + " \n", + " df['Employment'] = np.select(conditions_emp, choices_emp, default=np.nan)\n", + " \n", + " return df\n", + "\n", + "\n", + "survey_df_2019 = refactor_emp(survey_df_2019)" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Employment\n", + "Full-time 65\n", + "Self-employed 12\n", + "Not employed 5\n", + "Part-time 5\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 180, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Employment'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ethnicity" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [], + "source": [ + "ethnicity_list = survey_df_2019['Ethnicity'].unique().tolist()" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[nan,\n", + " 'White or of European descent',\n", + " 'White or of European descent;Multiracial',\n", + " 'East Asian',\n", + " 'Black or of African descent;East Asian;Hispanic or Latino/Latina;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent;Biracial;Multiracial',\n", + " 'Black or of African descent',\n", + " 'Hispanic or Latino/Latina;Multiracial',\n", + " 'Hispanic or Latino/Latina',\n", + " 'Middle Eastern',\n", + " 'South Asian',\n", + " 'Multiracial',\n", + " 'East Asian;South Asian',\n", + " 'Biracial']" + ] + }, + "execution_count": 182, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#here, you can see that we have long list of values. lets refactor them\n", + "ethnicity_list" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "13" + ] + }, + "execution_count": 183, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(ethnicity_list)" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": {}, + "outputs": [], + "source": [ + "#refactoring long list of values into categories.\n", + "survey_df_2019.loc[survey_df_2019['Ethnicity'].str.match('Biracial', na=False), 'Ethnicity'] = 'Biracial'\n", + "survey_df_2019.loc[survey_df_2019['Ethnicity'].str.match('Black or of African descent', na=False), 'Ethnicity'] = 'Black or of African descent'\n", + "survey_df_2019.loc[survey_df_2019['Ethnicity'].str.match('East Asian', na=False), 'Ethnicity'] = 'East Asian'\n", + "survey_df_2019.loc[survey_df_2019['Ethnicity'].str.match('Hispanic or Latino', na=False), 'Ethnicity'] = 'Hispanic or Latino'\n", + "survey_df_2019.loc[survey_df_2019['Ethnicity'].str.match('Indigenous', na=False), 'Ethnicity'] = 'Indigenous'\n", + "survey_df_2019.loc[survey_df_2019['Ethnicity'].str.match('Middle Eastern', na=False), 'Ethnicity'] = 'Middle Eastern'\n", + "survey_df_2019.loc[survey_df_2019['Ethnicity'].str.match('South Asian', na=False), 'Ethnicity'] = 'South Asian'\n", + "survey_df_2019.loc[survey_df_2019['Ethnicity'].str.match('White or of European descent', na=False), 'Ethnicity'] = 'White or of European descent'\n", + "survey_df_2019.loc[survey_df_2019['Ethnicity'].str.match('Multiracial', na=False), 'Ethnicity'] = 'Multiracial'\n", + "survey_df_2019.loc[survey_df_2019['Ethnicity'].str.match('Native American', na=False), 'Ethnicity'] = 'Native American'" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "15" + ] + }, + "execution_count": 185, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Ethnicity'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 186, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Ethnicity\n", + "White or of European descent 45\n", + "South Asian 8\n", + "Hispanic or Latino 6\n", + "East Asian 4\n", + "Black or of African descent 4\n", + "Middle Eastern 3\n", + "Multiracial 1\n", + "Biracial 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 186, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Ethnicity'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 187, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019['Ethnicity']=survey_df_2019.groupby(['Country'])['Ethnicity'].bfill().ffill()" + ] + }, + { + "cell_type": "code", + "execution_count": 188, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 188, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Ethnicity'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 189, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Ethnicity\n", + "White or of European descent 52\n", + "South Asian 14\n", + "Hispanic or Latino 6\n", + "East Asian 5\n", + "Black or of African descent 4\n", + "Middle Eastern 3\n", + "Multiracial 1\n", + "Biracial 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 189, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Ethnicity'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dependents" + ] + }, + { + "cell_type": "code", + "execution_count": 190, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Dependents\n", + "No 55\n", + "Yes 27\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 190, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019[\"Dependents\"].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 191, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 191, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019[\"Dependents\"].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 192, + "metadata": {}, + "outputs": [], + "source": [ + "#Lets consider that people who didnt respond has no dependents for the purpose of analysis\n", + "survey_df_2019[\"Dependents\"].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 193, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 193, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019[\"Dependents\"].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 194, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Dependents\n", + "No 58\n", + "Yes 29\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 194, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019[\"Dependents\"].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## DevType" + ] + }, + { + "cell_type": "code", + "execution_count": 195, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 195, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['DevType'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 196, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DevType\n", + "Developer, full-stack 12\n", + "Developer, front-end 4\n", + "Developer, back-end;DevOps specialist 3\n", + "Designer;Developer, back-end;Developer, front-end;Developer, full-stack 2\n", + "Student 2\n", + "Developer, full-stack;Engineer, data 2\n", + "Developer, desktop or enterprise applications 2\n", + "System administrator 1\n", + "Developer, front-end;Developer, mobile 1\n", + "Developer, full-stack;Student 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 196, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['DevType'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 197, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019['DevType'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 198, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 198, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['DevType'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 199, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DevType\n", + "Developer, full-stack 12\n", + "Developer, front-end 4\n", + "Developer, desktop or enterprise applications 3\n", + "Developer, back-end;DevOps specialist 3\n", + "Designer;Developer, back-end;Developer, front-end;Developer, full-stack 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 199, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['DevType'].value_counts().nlargest()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## LanguageWorkedWith" + ] + }, + { + "cell_type": "code", + "execution_count": 200, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 200, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['LanguageWorkedWith'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 201, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LanguageWorkedWith\n", + "HTML/CSS;JavaScript 5\n", + "C#;HTML/CSS;JavaScript;SQL 3\n", + "HTML/CSS;JavaScript;PHP;TypeScript 2\n", + "HTML/CSS;JavaScript;PHP;SQL 2\n", + "HTML/CSS 1\n", + "C;C#;HTML/CSS;Java;JavaScript;PHP;Python;SQL;VBA 1\n", + "SQL 1\n", + "C#;HTML/CSS;JavaScript;PHP;SQL;TypeScript 1\n", + "HTML/CSS;JavaScript;PHP;Python;SQL;VBA 1\n", + "C#;HTML/CSS;Java;JavaScript;Objective-C;SQL;TypeScript 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 201, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['LanguageWorkedWith'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 202, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019['LanguageWorkedWith'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 203, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 203, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['LanguageWorkedWith'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 204, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LanguageWorkedWith\n", + "HTML/CSS;JavaScript 5\n", + "C#;HTML/CSS;JavaScript;SQL 3\n", + "HTML/CSS;JavaScript;PHP;TypeScript 2\n", + "HTML/CSS;JavaScript;PHP;SQL 2\n", + "Bash/Shell/PowerShell;JavaScript;SQL 2\n", + "HTML/CSS 1\n", + "C;C#;HTML/CSS;Java;JavaScript;PHP;Python;SQL;VBA 1\n", + "SQL 1\n", + "C#;HTML/CSS;JavaScript;PHP;SQL;TypeScript 1\n", + "HTML/CSS;JavaScript;PHP;Python;SQL;VBA 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 204, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['LanguageWorkedWith'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## CompetenceLevel" + ] + }, + { + "cell_type": "code", + "execution_count": 205, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "CompetenceLevel\n", + "A little above average 30\n", + "Average 21\n", + "Far above average 16\n", + "A little below average 5\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 205, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['CompetenceLevel'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 206, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "15" + ] + }, + "execution_count": 206, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['CompetenceLevel'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 207, + "metadata": {}, + "outputs": [], + "source": [ + "#Assign the null values based on forward fill.\n", + "survey_df_2019['CompetenceLevel'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 208, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 208, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['CompetenceLevel'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 209, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "CompetenceLevel\n", + "A little above average 38\n", + "Average 24\n", + "Far above average 20\n", + "A little below average 5\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 209, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['CompetenceLevel'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Current Job Satisfaction" + ] + }, + { + "cell_type": "code", + "execution_count": 210, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "CurrentJobSatis\n", + "Very satisfied 31\n", + "Slightly satisfied 19\n", + "Slightly dissatisfied 12\n", + "Neither satisfied nor dissatisfied 6\n", + "Very dissatisfied 4\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 210, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['CurrentJobSatis'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 211, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "15" + ] + }, + "execution_count": 211, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['CurrentJobSatis'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 212, + "metadata": {}, + "outputs": [], + "source": [ + "#Assign the null values based on forward fill.\n", + "survey_df_2019['CurrentJobSatis'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 213, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 213, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['CurrentJobSatis'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 214, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "CurrentJobSatis\n", + "Very satisfied 39\n", + "Slightly satisfied 25\n", + "Slightly dissatisfied 12\n", + "Neither satisfied nor dissatisfied 7\n", + "Very dissatisfied 4\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 214, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['CurrentJobSatis'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## LanguageDesireNextYear" + ] + }, + { + "cell_type": "code", + "execution_count": 215, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LanguageDesireNextYear\n", + "HTML/CSS;JavaScript 3\n", + "Go 2\n", + "C# 2\n", + "Elixir;HTML/CSS 1\n", + "Elixir;Go;HTML/CSS;Java;JavaScript;Kotlin;Python;R;Scala;TypeScript;WebAssembly 1\n", + "Java;Kotlin;Python 1\n", + "SQL 1\n", + "C#;HTML/CSS;JavaScript;SQL;TypeScript 1\n", + "C#;HTML/CSS;JavaScript;PHP;Ruby;SQL 1\n", + "C#;HTML/CSS;JavaScript;Python;SQL;TypeScript 1\n", + "C++;C#;Java;SQL 1\n", + "C#;HTML/CSS;R;Rust;TypeScript 1\n", + "Python 1\n", + "Kotlin 1\n", + "Bash/Shell/PowerShell;C++;C#;Rust;SQL 1\n", + "Clojure;Elixir;Java 1\n", + "Bash/Shell/PowerShell;C;C++;C#;HTML/CSS;Java;JavaScript;PHP;Python;Ruby;SQL;Swift 1\n", + "Bash/Shell/PowerShell;C++;Go;Kotlin;Python;TypeScript 1\n", + "HTML/CSS;JavaScript;PHP;SQL 1\n", + "C#;F#;Java;Kotlin;SQL 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 215, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['LanguageDesireNextYear'].value_counts().nlargest(20)" + ] + }, + { + "cell_type": "code", + "execution_count": 216, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4" + ] + }, + "execution_count": 216, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['LanguageDesireNextYear'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 217, + "metadata": {}, + "outputs": [], + "source": [ + "#Assign the null values based on forward fill.\n", + "survey_df_2019['LanguageDesireNextYear'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 218, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 218, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['LanguageDesireNextYear'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 219, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LanguageDesireNextYear\n", + "HTML/CSS;JavaScript 3\n", + "Bash/Shell/PowerShell;Clojure;JavaScript;Python;R;TypeScript 2\n", + "Bash/Shell/PowerShell;C#;JavaScript;Objective-C;Ruby;SQL;Swift;TypeScript 2\n", + "Go 2\n", + "C# 2\n", + "Erlang;Go;Scala;TypeScript 2\n", + "HTML/CSS;JavaScript;PHP;Python;Ruby;SQL;WebAssembly 2\n", + "Kotlin 1\n", + "C#;HTML/CSS;R;Rust;TypeScript 1\n", + "Elixir;Go;HTML/CSS;Java;JavaScript;Kotlin;Python;R;Scala;TypeScript;WebAssembly 1\n", + "Bash/Shell/PowerShell;C++;C#;Rust;SQL 1\n", + "Python 1\n", + "Clojure;Elixir;Java 1\n", + "C#;HTML/CSS;JavaScript;Python;SQL;TypeScript 1\n", + "C#;HTML/CSS;JavaScript;PHP;Ruby;SQL 1\n", + "Bash/Shell/PowerShell;C;C++;C#;HTML/CSS;Java;JavaScript;PHP;Python;Ruby;SQL;Swift 1\n", + "C#;HTML/CSS;JavaScript;SQL;TypeScript 1\n", + "Bash/Shell/PowerShell;C++;Go;Kotlin;Python;TypeScript 1\n", + "SQL 1\n", + "Java;Kotlin;Python 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 219, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['LanguageDesireNextYear'].value_counts().nlargest(20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## YearsCodePro" + ] + }, + { + "cell_type": "code", + "execution_count": 220, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 220, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['YearsCodePro'].value_counts" + ] + }, + { + "cell_type": "code", + "execution_count": 221, + "metadata": {}, + "outputs": [], + "source": [ + "#changing the dtype to float\n", + "survey_df_2019['YearsCodePro'] = survey_df_2019['YearsCodePro'].apply(pd.to_numeric, errors='coerce')" + ] + }, + { + "cell_type": "code", + "execution_count": 222, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "YearsCodePro\n", + "2.0 16\n", + "1.0 8\n", + "3.0 8\n", + "8.0 6\n", + "5.0 4\n", + "4.0 3\n", + "13.0 3\n", + "14.0 3\n", + "9.0 3\n", + "23.0 3\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 222, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['YearsCodePro'].value_counts().head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 223, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "18" + ] + }, + "execution_count": 223, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['YearsCodePro'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 224, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019['YearsCodePro'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 225, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 225, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['YearsCodePro'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 226, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019.dropna(subset=['YearsCodePro'], inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 227, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 227, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['YearsCodePro'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 228, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "YearsCodePro\n", + "2.0 18\n", + "1.0 9\n", + "3.0 9\n", + "8.0 7\n", + "4.0 6\n", + "23.0 5\n", + "14.0 5\n", + "5.0 5\n", + "10.0 4\n", + "20.0 3\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 228, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['YearsCodePro'].value_counts().head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Country" + ] + }, + { + "cell_type": "code", + "execution_count": 229, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Country\n", + "United States 21\n", + "India 10\n", + "Canada 5\n", + "Germany 5\n", + "United Kingdom 4\n", + "New Zealand 3\n", + "Czech Republic 2\n", + "Poland 2\n", + "Argentina 2\n", + "Switzerland 2\n", + "Australia 2\n", + "Brazil 2\n", + "China 2\n", + "Ukraine 2\n", + "Sri Lanka 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 229, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Country'].value_counts().nlargest(15)" + ] + }, + { + "cell_type": "code", + "execution_count": 230, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 230, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Country'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 231, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019['Country'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 232, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 232, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Country'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 233, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Country\n", + "United States 21\n", + "India 10\n", + "Canada 5\n", + "Germany 5\n", + "United Kingdom 4\n", + "New Zealand 3\n", + "Czech Republic 2\n", + "Poland 2\n", + "Argentina 2\n", + "Switzerland 2\n", + "Australia 2\n", + "Brazil 2\n", + "China 2\n", + "Ukraine 2\n", + "Sri Lanka 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 233, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['Country'].value_counts().nlargest(15)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## SalaryUSD" + ] + }, + { + "cell_type": "code", + "execution_count": 234, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SalaryUSD\n", + "100000.0 2\n", + "51150.0 1\n", + "2000000.0 1\n", + "648.0 1\n", + "107000.0 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 234, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['SalaryUSD'].value_counts().nlargest()" + ] + }, + { + "cell_type": "code", + "execution_count": 235, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "26" + ] + }, + "execution_count": 235, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['SalaryUSD'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 236, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019['SalaryUSD'] = survey_df_2019.groupby(['Age', 'EdLevel', 'Country'])['SalaryUSD'].transform(lambda grp: grp.fillna(np.mean(grp)))" + ] + }, + { + "cell_type": "code", + "execution_count": 237, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "25" + ] + }, + "execution_count": 237, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "survey_df_2019['SalaryUSD'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 238, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SalaryUSD\n", + "100000.0 2\n", + "47300.0 2\n", + "114575.0 1\n", + "2000000.0 1\n", + "648.0 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 238, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "survey_df_2019['SalaryUSD'].value_counts().nlargest()" + ] + }, + { + "cell_type": "code", + "execution_count": 239, + "metadata": {}, + "outputs": [], + "source": [ + "country_mean_salary = survey_df_2019.groupby('Country')['SalaryUSD'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 240, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Country\n", + "Canada 366420.000000\n", + "United States 246281.578947\n", + "United Kingdom 179262.000000\n", + "Ireland 114575.000000\n", + "New Zealand 102765.500000\n", + "France 97389.000000\n", + "Netherlands 87994.000000\n", + "Sweden 68268.000000\n", + "Serbia 60000.000000\n", + "Austria 57287.000000\n", + "Name: SalaryUSD, dtype: float64" + ] + }, + "execution_count": 240, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "country_mean_salary.nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 241, + "metadata": {}, + "outputs": [], + "source": [ + "survey_df_2019.dropna(subset=['SalaryUSD'], inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cleaned Dataset:2019_Survey" + ] + }, + { + "cell_type": "code", + "execution_count": 242, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Age 0\n", + "JobSatisfaction 0\n", + "SalaryUSD 0\n", + "Country 0\n", + "Dependents 0\n", + "EdLevel 0\n", + "Employment 0\n", + "Ethnicity 1\n", + "Gender 0\n", + "Hobbyist 0\n", + "CompetenceLevel 0\n", + "CurrentJobSatis 0\n", + "JobStatus 0\n", + "LanguageDesireNextYear 0\n", + "LanguageWorkedWith 0\n", + "Profession 0\n", + "UndergradMajor 0\n", + "YearsCodePro 0\n", + "DevType 0\n", + "dtype: int64" + ] + }, + "execution_count": 242, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#handle all the null value\n", + "survey_df_2019.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 243, + "metadata": {}, + "outputs": [], + "source": [ + "#resetting the index values\n", + "survey_df_2019 = survey_df_2019.reset_index(drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 244, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of rows before cleaning the data is 99\n", + "Number of rows after cleaning the data is 62\n" + ] + } + ], + "source": [ + "cleaned_df_2019 = survey_df_2019[survey_df_2019.notnull()]\n", + "\n", + "print(f\"Number of rows before cleaning the data is {survey_main_df.shape[0]}\")\n", + "print(f\"Number of rows after cleaning the data is {cleaned_df_2019.shape[0]}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 245, + "metadata": {}, + "outputs": [], + "source": [ + "cleaned_df_2019['Age']=cleaned_df_2019['Age'].astype(int)" + ] + }, + { + "cell_type": "code", + "execution_count": 246, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeJobSatisfactionSalaryUSDCountryDependentsEdLevelEmploymentEthnicityGenderHobbyistCompetenceLevelCurrentJobSatisJobStatusLanguageDesireNextYearLanguageWorkedWithProfessionUndergradMajorYearsCodeProDevType
028Slightly satisfied8820.0ThailandYesBachelorsFull-timeNaNManYesAverageSlightly satisfiednanElixir;HTML/CSSHTML/CSSNon developerWeb Design/Dev1.0Designer;Developer, back-end;Developer, front-...
122Very satisfied61000.0United StatesNoBachelorsFull-timeWhite or of European descentManNoA little below averageSlightly satisfiedNot seekingC;C#;JavaScript;SQLC;C++;C#;Python;SQLDeveloperComputer Science1.0Developer, full-stack
228Very satisfied366420.0CanadaNoBachelorsFull-timeEast AsianManYesA little above averageSlightly satisfiedNot seekingPython;Scala;SQLJava;R;SQLNon developerMath/Stat3.0Data or business analyst;Data scientist or mac...
323Slightly satisfied95179.0New ZealandNoNo DegreeFull-timeWhite or of European descentManYesA little above averageSlightly satisfiednanBash/Shell/PowerShell;C;HTML/CSS;JavaScript;Ru...Bash/Shell/PowerShell;C#;HTML/CSS;JavaScript;P...DeveloperComputer Science4.0Database administrator;Developer, back-end;Dev...
428Very satisfied90000.0United StatesYesBachelorsFull-timeWhite or of European descentManYesA little above averageVery satisfiedNot seekingBash/Shell/PowerShell;HTML/CSS;JavaScript;Rust...Bash/Shell/PowerShell;HTML/CSS;JavaScript;PHP;...DeveloperComputer Science8.0Data or business analyst;Database administrato...
\n", + "
" + ], + "text/plain": [ + " Age JobSatisfaction SalaryUSD Country Dependents EdLevel \\\n", + "0 28 Slightly satisfied 8820.0 Thailand Yes Bachelors \n", + "1 22 Very satisfied 61000.0 United States No Bachelors \n", + "2 28 Very satisfied 366420.0 Canada No Bachelors \n", + "3 23 Slightly satisfied 95179.0 New Zealand No No Degree \n", + "4 28 Very satisfied 90000.0 United States Yes Bachelors \n", + "\n", + " Employment Ethnicity Gender Hobbyist \\\n", + "0 Full-time NaN Man Yes \n", + "1 Full-time White or of European descent Man No \n", + "2 Full-time East Asian Man Yes \n", + "3 Full-time White or of European descent Man Yes \n", + "4 Full-time White or of European descent Man Yes \n", + "\n", + " CompetenceLevel CurrentJobSatis JobStatus \\\n", + "0 Average Slightly satisfied nan \n", + "1 A little below average Slightly satisfied Not seeking \n", + "2 A little above average Slightly satisfied Not seeking \n", + "3 A little above average Slightly satisfied nan \n", + "4 A little above average Very satisfied Not seeking \n", + "\n", + " LanguageDesireNextYear \\\n", + "0 Elixir;HTML/CSS \n", + "1 C;C#;JavaScript;SQL \n", + "2 Python;Scala;SQL \n", + "3 Bash/Shell/PowerShell;C;HTML/CSS;JavaScript;Ru... \n", + "4 Bash/Shell/PowerShell;HTML/CSS;JavaScript;Rust... \n", + "\n", + " LanguageWorkedWith Profession \\\n", + "0 HTML/CSS Non developer \n", + "1 C;C++;C#;Python;SQL Developer \n", + "2 Java;R;SQL Non developer \n", + "3 Bash/Shell/PowerShell;C#;HTML/CSS;JavaScript;P... Developer \n", + "4 Bash/Shell/PowerShell;HTML/CSS;JavaScript;PHP;... Developer \n", + "\n", + " UndergradMajor YearsCodePro \\\n", + "0 Web Design/Dev 1.0 \n", + "1 Computer Science 1.0 \n", + "2 Math/Stat 3.0 \n", + "3 Computer Science 4.0 \n", + "4 Computer Science 8.0 \n", + "\n", + " DevType \n", + "0 Designer;Developer, back-end;Developer, front-... \n", + "1 Developer, full-stack \n", + "2 Data or business analyst;Data scientist or mac... \n", + "3 Database administrator;Developer, back-end;Dev... \n", + "4 Data or business analyst;Database administrato... " + ] + }, + "execution_count": 246, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "cleaned_df_2019.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## After Cleaning Dataset 2019" + ] + }, + { + "cell_type": "code", + "execution_count": 247, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total : 1178\n", + "Total missing : 1\n", + "Missing Percentage: 0.08488964346349745 %\n" + ] + } + ], + "source": [ + "#Find % of missing data\n", + "missing_count = survey_df_2019.isnull().sum() #number of missing\n", + "total_cells = np.product(survey_df_2019.shape) # number of cells (cols x rows)\n", + "total_missing = missing_count.sum()\n", + "missing_percent = (total_missing*100)/total_cells\n", + "\n", + "print('Total : ', total_cells)\n", + "print('Total missing : ', total_missing)\n", + "print('Missing Percentage: ', missing_percent, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Stackoverflow Survey Analysis 2020" + ] + }, + { + "cell_type": "code", + "execution_count": 248, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(r\"D:\\project\\Stackoverflow-Analysis\\Data\\survey_results_sample_2020.csv\")\n", + "#df2020.head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 249, + "metadata": {}, + "outputs": [], + "source": [ + "#drop unnecessary columns\n", + "drop_cols = [ 'Age1stCode', 'CompFreq', 'CompTotal', 'CurrencyDesc', 'CurrencySymbol', 'NEWJobHunt','NEWJobHuntResearch', 'NEWLearn', \n", + " 'NEWOffTopic', 'NEWOnboardGood', 'NEWOtherComms', 'NEWOvertime', 'NEWPurchaseResearch', \n", + " 'NEWPurpleLink', 'NEWSOSites', 'NEWStuck', 'OpSys', 'OrgSize', 'PlatformDesireNextYear', 'PlatformWorkedWith',\n", + " 'PurchaseWhat', 'Respondent', 'SOAccount', 'SOComm', 'SOPartFreq', 'SOVisitFreq', 'Sexuality', 'SurveyEase', \n", + " 'SurveyLength', 'Trans', 'WebframeDesireNextYear', 'WebframeWorkedWith', 'WelcomeChange', 'WorkWeekHrs', 'YearsCode']\n", + "df.drop(drop_cols, axis=1, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 250, + "metadata": {}, + "outputs": [], + "source": [ + "#Selecting only the required columns for analysis\n", + "cols =['Age','Gender', 'ConvertedComp', 'Country', 'DevType', 'Hobbyist', 'EdLevel', 'Employment', \n", + " 'Ethnicity', 'JobSat', 'JobSeek', 'LanguageDesireNextYear', 'LanguageWorkedWith', 'MainBranch',\n", + " 'UndergradMajor', 'YearsCodePro']\n", + "df2020 = df[cols]\n", + "#df2020.head()\n", + "#df2020.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 251, + "metadata": {}, + "outputs": [], + "source": [ + "#changing the name of columns for easier understanding\n", + "# 'MainBranch': 'Profession'\n", + "# 'ConvertedComp': 'SalaryUSD'\n", + "# 'JobSat' : 'CurrentJobSatis'\n", + "# 'JobSeek' : 'JobStatus'\n", + "\n", + "df2020.rename(columns={'MainBranch': 'Profession', 'ConvertedComp': 'SalaryUSD', \n", + " 'JobSat' : 'CurrentJobSatis', 'JobSeek' : 'JobStatus' }, \n", + " inplace =True)" + ] + }, + { + "cell_type": "code", + "execution_count": 252, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Age 24\n", + "Gender 11\n", + "SalaryUSD 46\n", + "Country 0\n", + "DevType 20\n", + "Hobbyist 0\n", + "EdLevel 6\n", + "Employment 2\n", + "Ethnicity 17\n", + "CurrentJobSatis 21\n", + "JobStatus 4\n", + "LanguageDesireNextYear 9\n", + "LanguageWorkedWith 1\n", + "Profession 0\n", + "UndergradMajor 13\n", + "YearsCodePro 21\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "print(df2020.isnull().sum())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Validation - Total Cells vs Missing %" + ] + }, + { + "cell_type": "code", + "execution_count": 253, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total cell: 1584\n", + "Total missing values: 446\n", + "Missing: 28.156565656565657 %\n" + ] + } + ], + "source": [ + "#Finding % of missing data\n", + "missing_count = df.isnull().sum() #number of missing\n", + "total_cells = np.product(df2020.shape) # number of cells (cols x rows)\n", + "total_missing = missing_count.sum()\n", + "missing_percent = (total_missing*100)/total_cells\n", + "\n", + "print('Total cell: ', total_cells)\n", + "print('Total missing values: ', total_missing)\n", + "print('Missing: ', missing_percent, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gender" + ] + }, + { + "cell_type": "code", + "execution_count": 254, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "11" + ] + }, + "execution_count": 254, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['Gender'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 255, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Gender\n", + "Man 79\n", + "Man;Non-binary, genderqueer, or gender non-conforming 1\n", + "Woman 8\n", + "Name: Gender, dtype: int64" + ] + }, + "execution_count": 255, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Counting number of each gender\n", + "df2020.groupby('Gender')['Gender'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 256, + "metadata": {}, + "outputs": [], + "source": [ + "#Assigining the surveyors who havent mentioned their gender to Non-Binary category\n", + "df2020['Gender'] = df['Gender'].fillna('Non-binary') \n", + "\n", + "#Grouping genders into 3 groups Man, Womanand Non-binary\n", + "df2020['Gender'].replace('Man;Non-binary, genderqueer, or gender non-conforming', 'Man', inplace =True)\n", + "df2020['Gender'].replace('Woman;Non-binary, genderqueer, or gender non-conforming', 'Woman', inplace =True)\n", + "df2020['Gender'].replace('Woman;Man;Non-binary, genderqueer, or gender non-conforming', 'Non-binary', inplace =True)\n", + "df2020['Gender'].replace('Woman;Man', 'Non-binary', inplace =True)\n", + "df2020['Gender'].replace('Non-binary, genderqueer, or gender non-conforming', 'Non-binary', inplace =True)" + ] + }, + { + "cell_type": "code", + "execution_count": 257, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Gender\n", + "Man 80\n", + "Non-binary 11\n", + "Woman 8\n", + "Name: Gender, dtype: int64" + ] + }, + "execution_count": 257, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Counting number of each gender after\n", + "df2020.groupby('Gender')['Gender'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 258, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "df shape after clean Gender: (99, 16)\n" + ] + } + ], + "source": [ + "\n", + "print('df shape after clean Gender: ', df2020.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Age" + ] + }, + { + "cell_type": "code", + "execution_count": 259, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "24" + ] + }, + "execution_count": 259, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['Age'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 260, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABBO0lEQVR4nO3deXhMd///8dckkkxkt++x1q62WqqEVqWKG+VW+966W0rtVGvpgla1Wi0tbXFbbqVVXUn1Fr6VqqpdKeGmqlRaRCSSIPP5/eGXqZGEJA2Tkzwf15XrmvmcM+e8z5xzZl75nGVsxhgjAAAA5Goe7i4AAAAAt0ZoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoA7Jo1qxZqlixojw9PVW3bl13l5Np/fv3V/ny5d1dhiTp+PHjstlsWrx4sbtLQSYtXrxYNptNx48fd7a1bNlSLVu2dFtNN4qPj9fgwYNVokQJ2Ww2Pf300+4uyXLKly+v/v37u7sMZIDQhjwp9Qvm+r9ixYqpVatWWrduXban+/XXX2vcuHFq1qyZFi1apOnTp+dg1bjTvvrqK9lsNpUqVUoOh+OOzDM1sG7atOmOzC+rpk+frrVr17q7jGyZPn26Fi9erCeeeEJLly5Vnz593F0SkKMKuLsA4HZ6/vnnVaFCBRljdObMGS1evFgPP/ywPv/8c7Vv3z7L09u4caM8PDz0/vvvy9vb+zZUnD+EhoYqMTFRXl5ebq1j+fLlKl++vI4fP66NGzeqdevWbq0nN5g+fbq6du2qTp063XLcr7/++vYXlAUbN25UkyZNNGXKFHeXAtwW9LQhT2vbtq169+6tPn36aMyYMfr222/l5eWl//znP9maXkxMjHx9fXMssBljlJiYmCPTshKbzSa73S5PT0+31ZCQkKBPP/1Uo0aNUr169bR8+XK31WJV3t7eObYvOBwOJSUl/a1pxMTEKDg4+JbjJSUl3bGe1fzs6tWrunz5srvLyFMIbchXgoOD5evrqwIFXDuZHQ6H5syZo5o1a8put6t48eIaMmSIzp8/7xzHZrNp0aJFSkhIcB5yTT0n6+rVq3rhhRdUqVIl+fj4qHz58nrmmWeUnJzsMp/y5curffv2ioiIUMOGDeXr66t3331XkhQbG6unn35aZcuWlY+PjypXrqyXX345018u69atU1hYmAICAhQYGKh77rlHK1asuOlrMrPckvTpp5+qXbt2KlWqlHx8fFSpUiW98MILSklJcRmvZcuWqlWrlg4cOKBWrVqpYMGCKl26tF555RWX8dI7p61///7y9/fXb7/9pk6dOsnf319FixbVmDFj0szn7Nmz6tOnjwIDAxUcHKx+/fppz549WTpP7pNPPlFiYqL++c9/qnv37lqzZk26oSExMVHDhw9XkSJFFBAQoH/84x/67bffZLPZNHXqVJdxf/vtNw0cOFDFixeXj4+PatasqQ8++OCWtfz+++8aMGCAypQpIx8fH5UsWVIdO3Z0OX8sIxs3blTz5s3l5+en4OBgdezYUQcPHnQZJ6PzGadOnSqbzeZ8brPZlJCQoCVLlji38Zud35TeOW3JycmaMmWKKleuLB8fH5UtW1bjxo1Lsy/YbDYNGzZMy5cvV82aNeXj46P169dLklauXKkGDRo4t+XatWvrjTfeyLCOTZs2yWaz6dixY/ryyy+dtR8/ftw5bOXKlXr22WdVunRpFSxYUHFxcZKk1atXq0GDBvL19VWRIkXUu3dv/fbbb2neP39/f504cULt27eXv7+/SpcurbfffluStG/fPt1///3y8/NTaGjoLfe7VFnZjn/++Wd17dpVhQoVkt1uV8OGDfXZZ5+5jJN6WkhUVJRGjRqlokWLys/PT507d9Yff/zhMq4xRi+++KLKlCmjggULqlWrVvrpp5/SrTMzn02p+/Srr76qOXPmOD8LDxw4IEmaO3euatasqYIFCyokJEQNGzbM9PuEv3B4FHnahQsX9Oeff8oYo5iYGM2dO1fx8fHq3bu3y3hDhgzR4sWLNWDAAA0fPlzHjh3TW2+9pV27dikqKkpeXl5aunSpFixYoB9++EHvvfeeJOnee++VJA0ePFhLlixR165dNXr0aG3btk0zZszQwYMH9cknn7jM69ChQ+rRo4eGDBmixx57TFWrVtWlS5cUFham3377TUOGDFG5cuX03XffaeLEiTp9+rTmzJlz0+VcvHixBg4cqJo1a2rixIkKDg7Wrl27tH79evXs2TPD12VmuVOn7+/vr1GjRsnf318bN27U5MmTFRcXp1mzZrlM8/z583rooYf0yCOPqFu3bvroo480fvx41a5dW23btr3pcqSkpCg8PFyNGzfWq6++qm+++UazZ89WpUqV9MQTT0i6FjQ7dOigH374QU888YSqVaumTz/9VP369bvptG+0fPlytWrVSiVKlFD37t01YcIEff755/rnP//pMl7//v21atUq9enTR02aNNHmzZvVrl27NNM7c+aMmjRp4gwjRYsW1bp16zRo0CDFxcXd9KT4Ll266KefftJTTz2l8uXLKyYmRhs2bNCJEyduevHIN998o7Zt26pixYqaOnWqEhMTNXfuXDVr1kw7d+7M8oUnS5cu1eDBg9WoUSM9/vjjkqRKlSpl+vUOh0P/+Mc/tGXLFj3++OOqXr269u3bp9dff12HDx9Oc67cxo0btWrVKg0bNkxFihRR+fLltWHDBvXo0UMPPPCAXn75ZUnSwYMHFRUVpREjRqQ73+rVq2vp0qUaOXKkypQpo9GjR0uSihYt6gy+L7zwgry9vTVmzBglJyfL29vbue3fc889mjFjhs6cOaM33nhDUVFR2rVrl0uvXUpKitq2basWLVrolVde0fLlyzVs2DD5+flp0qRJ6tWrlx555BG988476tu3r5o2baoKFSrc9L3K7Hb8008/qVmzZipdurQmTJggPz8/rVq1Sp06ddLHH3+szp07u4z/1FNPKSQkRFOmTNHx48c1Z84cDRs2TB9++KFznMmTJ+vFF1/Uww8/rIcfflg7d+5UmzZt0vSMZfWzadGiRUpKStLjjz8uHx8fFSpUSAsXLtTw4cPVtWtXjRgxQklJSdq7d6+2bdt2088npMMAedCiRYuMpDR/Pj4+ZvHixS7jfvvtt0aSWb58uUv7+vXr07T369fP+Pn5uYy3e/duI8kMHjzYpX3MmDFGktm4caOzLTQ01Egy69evdxn3hRdeMH5+fubw4cMu7RMmTDCenp7mxIkTGS5rbGysCQgIMI0bNzaJiYkuwxwOh0vtoaGh2VruS5cupZnvkCFDTMGCBU1SUpKzLSwszEgy//73v51tycnJpkSJEqZLly7OtmPHjhlJZtGiRS71STLPP/+8y3zq1atnGjRo4Hz+8ccfG0lmzpw5zraUlBRz//33p5lmRs6cOWMKFChgFi5c6Gy79957TceOHV3G27Fjh5Fknn76aZf2/v37G0lmypQpzrZBgwaZkiVLmj///NNl3O7du5ugoKB030NjjDl//ryRZGbNmnXLum9Ut25dU6xYMXP27Fln2549e4yHh4fp27evs+3GdZ9qypQp5savAT8/P9OvX78046buU8eOHXO2hYWFmbCwMOfzpUuXGg8PD/Ptt9+6vPadd94xkkxUVJSzTZLx8PAwP/30k8u4I0aMMIGBgebq1as3W/R0hYaGmnbt2rm0RUZGGkmmYsWKLuvg8uXLplixYqZWrVou+80XX3xhJJnJkyc721K3zenTpzvbzp8/b3x9fY3NZjMrV650tv/8889pto30ZGU7fuCBB0zt2rVd9jWHw2HuvfdeU6VKFWdb6jpq3bq1y74/cuRI4+npaWJjY40xxsTExBhvb2/Trl07l/GeeeYZI8ll/Wf2syl1nw4MDDQxMTEu43bs2NHUrFnzpu8HMofDo8jT3n77bW3YsEEbNmzQsmXL1KpVKw0ePFhr1qxxjrN69WoFBQXpwQcf1J9//un8a9Cggfz9/RUZGXnTeXz11VeSpFGjRrm0p/63/+WXX7q0V6hQQeHh4S5tq1evVvPmzRUSEuJSQ+vWrZWSkqL/+7//y3D+GzZs0MWLFzVhwgTZ7XaXYdcf+rpRVpbb19fX+fjixYv6888/1bx5c126dEk///yzy3T9/f1dejK9vb3VqFEj/e9//8uwluv961//cnnevHlzl9euX79eXl5eeuyxx5xtHh4eGjp0aKamL107/Obh4aEuXbo423r06KF169a5HBpOPVz35JNPurz+qaeecnlujNHHH3+sDh06yBjj8n6Gh4frwoUL2rlzZ7q1pJ4juWnTpjSHpW/m9OnT2r17t/r3769ChQo52+vUqaMHH3zQuV3eSatXr1b16tVVrVo1l/fg/vvvl6Q0+1JYWJhq1Kjh0hYcHKyEhARt2LAhR2vr16+fy3b8448/KiYmRk8++aTLftOuXTtVq1YtzX4rXetRv77OqlWrys/PT926dXO2V61aVcHBwbfc3jO7HZ87d04bN25Ut27dnPven3/+qbNnzyo8PFzR0dFpDuc+/vjjLvt+8+bNlZKSol9++UXStR7ay5cv66mnnnIZL73e4Kx+NnXp0kVFixZ1aQsODtbJkye1ffv2m74nuDUOjyJPa9SokRo2bOh83qNHD9WrV0/Dhg1T+/bt5e3trejoaF24cEHFihVLdxoxMTE3nccvv/wiDw8PVa5c2aW9RIkSCg4Odn5QpkrvkEl0dLT27t2b5sMuMzUcPXpUklSrVq2b1pnePDO73D/99JOeffZZbdy40XkuUKoLFy64PC9TpkyasBgSEqK9e/fesia73Z7mPQgJCXEJM7/88otKliypggULuox34/t/M8uWLVOjRo109uxZnT17VpJUr149Xb58WatXr3YeGkxdtzeusxvn9ccffyg2NlYLFizQggUL0p1nRuvQx8dHL7/8skaPHq3ixYurSZMmat++vfr27asSJUpkuAyp21XVqlXTDKtevboiIiKUkJAgPz+/DKeR06Kjo3Xw4MFMb8fp7QtPPvmkVq1apbZt26p06dJq06aNunXrpoceeuhv1XbjvG72/lWrVk1btmxxaUtv2wwKCkp3ew8KCrplAM/sdnzkyBEZY/Tcc8/pueeeS3daMTExKl26tPN5uXLlXIaHhIRIkrOm1GWvUqWKy3hFixZ1jpsqq59N6a3T8ePH65tvvlGjRo1UuXJltWnTRj179lSzZs3SnSYyRmhDvuLh4aFWrVrpjTfeUHR0tGrWrCmHw6FixYplePVgRh9WN7pZr9b1rv9vP5XD4dCDDz6ocePGpfuau+66K1PTzorMLndsbKzCwsIUGBio559/XpUqVZLdbtfOnTs1fvz4NBdKZHRFqDHmljXdiatJo6Ojnf/x3/ilJV071y01tGVW6nvQu3fvDM+tq1OnToavf/rpp9WhQwetXbtWEREReu655zRjxgxt3LhR9erVy1It6clo27zxAo+/y+FwqHbt2nrttdfSHV62bFmX5+ntC8WKFdPu3bsVERGhdevWad26dVq0aJH69u2rJUuWZLu29OaVFRltm39ne8+M1G1rzJgxaXroU90Y9HKypqx+NqX3PlevXl2HDh3SF198ofXr1+vjjz/WvHnzNHnyZE2bNi3LNeVnhDbkO1evXpV07e7p0rUTrb/55hs1a9YsWx/soaGhcjgcio6OVvXq1Z3tZ86cUWxsrEJDQ285jUqVKik+Pj5b9wlLPVF8//79Weptyuxyb9q0SWfPntWaNWvUokULZ/uxY8eyXGtOCA0NVWRkpC5duuTSS3HkyJFMvX758uXOC0tu/HLbsmWL3nzzTZ04cULlypVzrttjx465BLwb51W0aFEFBAQoJSUl2/d6q1SpkkaPHq3Ro0crOjpadevW1ezZs7Vs2bJ0x0/drg4dOpRm2M8//6wiRYo4e9lCQkIUGxubZrwbe4GlzP/zkdEy7NmzRw888MDfmo63t7c6dOigDh06yOFw6Mknn9S7776r5557Lkvb+M1c//6lHr5NdejQoUztt393/pnZjitWrChJ8vLyyrH7CKYuW3R0tHP60rUe4xt7CP/OZ9P1/Pz89Oijj+rRRx/V5cuX9cgjj+ill17SxIkT05zWgYxxThvylStXrujrr7+Wt7e3M2B169ZNKSkpeuGFF9KMf/Xq1XS/7K738MMPS1Kaq6hSexvSu9LwRt26ddPWrVsVERGRZlhsbKwzaKanTZs2CggI0IwZM9LcsuJm/1lndrlTg83107p8+bLmzZt302W6XcLDw3XlyhUtXLjQ2eZwOJy3X7iV5cuXq3nz5nr00UfVtWtXl7+xY8dKkvM+fqk9Gzcu69y5c12ee3p6qkuXLvr444+1f//+NPO88XYL17t06VKa9VapUiUFBASkuU3G9UqWLKm6detqyZIlLtvo/v379fXXXzu3y9TpXbhwweUQ9enTp9Nc2Sxd+3K91TafkW7duum3335zWTepEhMTlZCQcMtppB6uTuXh4eHspbzZ+5FVDRs2VLFixfTOO++4THfdunU6ePBgpvbbvyOz23GxYsXUsmVLvfvuuzp9+nSa6dxs28pI69at5eXlpblz57rs1+ldpf53PptS3bhOvb29VaNGDRljdOXKlSzXn5/R04Y8bd26dc4T5WNiYrRixQpFR0drwoQJCgwMlHTtZOghQ4ZoxowZ2r17t9q0aSMvLy9FR0dr9erVeuONN9S1a9cM53H33XerX79+WrBggfNQ4g8//KAlS5aoU6dOatWq1S3rHDt2rD777DO1b99e/fv3V4MGDZSQkKB9+/bpo48+0vHjx1WkSJF0XxsYGKjXX39dgwcP1j333KOePXsqJCREe/bs0aVLlzI8pJTZ5b733nsVEhKifv36afjw4bLZbFq6dGmOHf7Jqk6dOqlRo0YaPXq0jhw5omrVqumzzz7TuXPnJN28p2jbtm06cuSIhg0blu7w0qVLq379+lq+fLnGjx+vBg0aqEuXLpozZ47Onj3rvOXH4cOH08xr5syZioyMVOPGjfXYY4+pRo0aOnfunHbu3KlvvvnGWd+NDh8+rAceeEDdunVTjRo1VKBAAX3yySc6c+aMunfvftP3YtasWWrbtq2aNm2qQYMGOW/5ERQU5HIPue7du2v8+PHq3Lmzhg8frkuXLmn+/Pm666670lwg0aBBA33zzTd67bXXVKpUKVWoUEGNGze+aR2p+vTpo1WrVulf//qXIiMj1axZM6WkpOjnn3/WqlWrnPcnvJnBgwfr3Llzuv/++1WmTBn98ssvmjt3rurWrevSk/13eXl56eWXX9aAAQMUFhamHj16OG/5Ub58eY0cOTLH5pWerGzHb7/9tu677z7Vrl1bjz32mCpWrKgzZ85o69atOnnypPbs2ZOleafe/3DGjBlq3769Hn74Ye3atUvr1q1L8znzdz6bUrVp00YlSpRQs2bNVLx4cR08eFBvvfWW2rVrp4CAgCzVnu+56apV4LZK75Yfdrvd1K1b18yfP9/lMvdUCxYsMA0aNDC+vr4mICDA1K5d24wbN86cOnXKOU56t/wwxpgrV66YadOmmQoVKhgvLy9TtmxZM3HiRJdL9I1J/5YEqS5evGgmTpxoKleubLy9vU2RIkXMvffea1599VVz+fLlWy7zZ599Zu69917j6+trAgMDTaNGjcx//vMfl9rTu+1DZpY7KirKNGnSxPj6+ppSpUqZcePGmYiICCPJREZGOscLCwtL99L+G+ed0S0/0ntv07stxR9//GF69uxpAgICTFBQkOnfv7+Jiooyklxuv3Cjp556ykgyR48ezXCcqVOnGklmz549xhhjEhISzNChQ02hQoWMv7+/6dSpkzl06JCRZGbOnOny2jNnzpihQ4easmXLGi8vL1OiRAnzwAMPmAULFmQ4vz///NMMHTrUVKtWzfj5+ZmgoCDTuHFjs2rVqgxfc71vvvnGNGvWzLneO3ToYA4cOJBmvK+//trUqlXLeHt7m6pVq5ply5al+97+/PPPpkWLFsbX19fl9g+ZueWHMddupfHyyy+bmjVrGh8fHxMSEmIaNGhgpk2bZi5cuOAcT5IZOnRomjo/+ugj06ZNG1OsWDHj7e1typUrZ4YMGWJOnz59y/fiZrf8WL16dbqv+fDDD029evWMj4+PKVSokOnVq5c5efKkyzgZbZsZbe8328+vl5Xt+OjRo6Zv376mRIkSxsvLy5QuXdq0b9/efPTRR85xUtfR9u3b030Prt9XU1JSzLRp00zJkiWNr6+vadmypdm/f78JDQ1Nc8uXzHw2pe7T6d265t133zUtWrQwhQsXNj4+PqZSpUpm7NixLtsDMsdmjJv+XQaAHLR27Vp17txZW7Zsue1Xpe3evVv16tXTsmXL1KtXr9s6L+Qvd3I7hvVwThsAy7nx91pTUlI0d+5cBQYGqn79+rd1XtK1c388PDxcLswAsupObsfIGzinDYDlPPXUU0pMTFTTpk2VnJysNWvW6LvvvtP06dP/9q0dbvTKK69ox44datWqlQoUKOC8DcXjjz+e5hYWQFbcye0YeQOHRwFYzooVKzR79mwdOXJESUlJqly5sp544okMLzD4OzZs2KBp06bpwIEDio+PV7ly5dSnTx9NmjRJBQrwfy+y705ux8gbCG0AAAAWwDltAAAAFkBoAwAAsABOyMhDHA6HTp06pYCAgL/1EzIAAODOMcbo4sWLKlWqlDw8Mu5PI7TlIadOneJqNgAALOrXX39VmTJlMhxOaMtDUn8O5Ndff3X+RBMAAMjd4uLiVLZs2Vv+rBehLQ9JPSQaGBhIaAMAwGJudWoTFyIAAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGAB3KcNuI2MMUpKSnJ3GW5hjFFycrIkycfHh59Wk2S323kfAGQboQ24jZKSkhQeHu7uMpBLREREyNfX191lALAoDo8CAABYAD1twB2SUL+X5JGPdrmUK/LbtUKSlFCvp+Tp5eaC3MRxVX47l7u7CgB5QD76BgHczKNA/g0unl75d9kBIIdweBQAAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRRwdwHIO4wxSkpKkiTZ7XbZbDY3VwQA+QOfv/kDPW3IMUlJSQoPD1d4eLjzwwMAcPvx+Zs/ENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChLZv69+8vm82mf/3rX2mGDR06VDabTf3797/zhQEAYAHvvfeeWrZsqffee8/dpWRKVFSU/vnPfyoqKsptNRDa/oayZctq5cqVSkxMdLYlJSVpxYoVKleunBsrAwAg94qNjdWyZcvkcDi0bNkyxcbGurukm0pKStLs2bN15swZzZ49W0lJSW6pg9D2N9SvX19ly5bVmjVrnG1r1qxRuXLlVK9ePWfb+vXrdd999yk4OFiFCxdW+/btdfToUefw48ePy2azac2aNWrVqpUKFiyou+++W1u3br2jywMAwJ0wadIkORwOSZLD4dCzzz7r5opubtmyZTp79qwk6ezZs1q+fLlb6ijglrnmIQMHDtSiRYvUq1cvSdIHH3ygAQMGaNOmTc5xEhISNGrUKNWpU0fx8fGaPHmyOnfurN27d8vD46/cPGnSJL366quqUqWKJk2apB49eujIkSMqUMAaq8kY43zsrv9CchuX9+G69wf5CPsF7oDrty2Tyz9rfvzxR+3bt8+lbe/evfrxxx/VsGFDN1WVsZMnT2r58uXO99UYo+XLlys8PFxlypS5o7VYIw3kYr1799bEiRP1yy+/SLp2zHvlypUuoa1Lly4ur/nggw9UtGhRHThwQLVq1XK2jxkzRu3atZMkTZs2TTVr1tSRI0dUrVq1dOednJys5ORk5/O4uLicWqxsub6Wjh07urGSXMpxVZK3u6vAnea46nzIfoE7ITk5WQULFnR3GelyOByaOnVqusOmTp2qzz77zKUzw92MMXr99dczbH/11Vdls9nuWD25552xqKJFi6pdu3ZavHixFi1apHbt2qlIkSIu40RHR6tHjx6qWLGiAgMDVb58eUnSiRMnXMarU6eO83HJkiUlSTExMRnOe8aMGQoKCnL+lS1bNoeWCgCAnLd169YMOxji4uJy3WlBv/zyi7Zv366UlBSX9pSUFG3fvt3ZYXOn0NOWAwYOHKhhw4ZJkt5+++00wzt06KDQ0FAtXLhQpUqVksPhUK1atXT58mWX8by8vJyPU5N76jH/9EycOFGjRo1yPo+Li3NrcPPx8XE+/vTTT2W3291WS26RlJT0V++KB7tbvnTdeme/wO1y/WfN9Z/FuU3Tpk0VGBiYbnALCgpS06ZN3VBVxkJDQ3XPPfdo586dLsHN09NTDRo0UGho6B2th2+RHPDQQw/p8uXLstlsCg8Pdxl29uxZHTp0SAsXLlTz5s0lSVu2bMmR+fr4+OSqnfP6LmK73S5fX183VpML3cEudOQi7Be4w+7k4bqs8vDw0NSpU106HFJNmzYtVx0ala69lyNHjlSfPn3Sbb/T73XuencsytPTUwcPHtSBAwfk6enpMiwkJESFCxfWggULdOTIEW3cuDHdjRUAgPygYcOGql27tktbnTp1VL9+fTdVdHNlypRRr169nAHNZrOpV69eKl269B2vhdCWQwIDAxUYGJim3cPDQytXrtSOHTtUq1YtjRw5UrNmzXJDhQAA5A4vvfSSs1fNw8NDL774opsrurnevXurcOHCkqQiRYo47xhxp3F4NJsWL1580+Fr1651Pm7durUOHDjgMvz6S7LLly+f5hLt4ODgXH/ZNgAA2REcHKzevXtr2bJl6t27t4KDg91d0k3Z7XaNHj1ac+bM0dNPP+22c1MJbQAA4I4bPHiwBg8e7O4yMq1Zs2Zq1qyZW2vg8CgAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsoIC7C0DeYbfbFRER4XwMALgz+PzNHwhtyDE2m02+vr7uLgMA8h0+f/MHDo8CAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsIAC7i4AyDccV91dwZ2VciX9x/lNflvvAG4bQhtwh/jtXO7uEtzGb9cKd5cAAJbH4VEAAAALoKcNuI3sdrsiIiLcXYZbGGOUnJwsSfLx8ZHNZnNzRe5nt9vdXQIACyO0AbeRzWaTr6+vu8twm4IFC7q7BADIMzg8CgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCri7AAAwxigpKUmSZLfbZbPZ3FwRAOQ+9LQBcLukpCSFh4crPDzcGd4AAK4IbQDc7vqgRmgDgPQR2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtANzO4XCk+xgA8BdCGwC3i4uLS/cxAOAvhDYAAAALyHJoM8boxIkTSkpKuh31AAAAIB3ZCm2VK1fWr7/+ejvqAQAAQDqyHNo8PDxUpUoVnT179nbUAwAAgHRk65y2mTNnauzYsdq/f39O1wMAAIB0FMjOi/r27atLly7p7rvvlre3t3x9fV2Gnzt3LkeKAwAAwDXZCm1z5szJ4TIAAABwM9kKbf369cvpOgAAAHAT2b5P29GjR/Xss8+qR48eiomJkSStW7dOP/30U44VBwAAgGuyFdo2b96s2rVra9u2bVqzZo3i4+MlSXv27NGUKVNytEAAAABkM7RNmDBBL774ojZs2CBvb29n+/3336/vv/8+x4oDAADANdkKbfv27VPnzp3TtBcrVkx//vnn3y4KAAAArrIV2oKDg3X69Ok07bt27VLp0qX/dlEAAABwla3Q1r17d40fP16///67bDabHA6HoqKiNGbMGPXt2zenawQAAMj3shXapk+frmrVqqls2bKKj49XjRo11KJFC91777169tlnc7pGAACAfC9b92nz9vbWwoUL9dxzz2n//v2Kj49XvXr1VKVKlZyuDwAAAMpmaEtVrlw5lStXLqdqAQAAQAYyHdpGjRqV6Ym+9tpr2SoGAAAA6ct0aNu1a5fL8507d+rq1auqWrWqJOnw4cPy9PRUgwYNcrZCAAAAZD60RUZGOh+/9tprCggI0JIlSxQSEiJJOn/+vAYMGKDmzZvnfJUAAAD5XLauHp09e7ZmzJjhDGySFBISohdffFGzZ8/OseJup02bNslmsyk2NjbDcRYvXqzg4OA7VhMAAEBGshXa4uLi9Mcff6Rp/+OPP3Tx4sVMT6d///6y2WyaOXOmS/vatWtls9myU1qOevTRR3X48GF3lwEAAJC90Na5c2cNGDBAa9as0cmTJ3Xy5El9/PHHGjRokB555JEsTctut+vll1/W+fPns1PKbeXr66tixYrd9vlcuXLlts8DAABYW7ZC2zvvvKO2bduqZ8+eCg0NVWhoqHr27KmHHnpI8+bNy9K0WrdurRIlSmjGjBkZjvPxxx+rZs2a8vHxUfny5dMcgi1fvrymT5+ugQMHKiAgQOXKldOCBQsyNf+oqCjVqVNHdrtdTZo00f79+53Dbjw8OnXqVNWtW1dLly5V+fLlFRQUpO7du7v0Lq5fv1733XefgoODVbhwYbVv315Hjx51Dj9+/LhsNps+/PBDhYWFyW63a8GCBQoMDNRHH33kUtvatWvl5+eXpd5LAACQN2UrtBUsWFDz5s3T2bNntWvXLu3atUvnzp3TvHnz5Ofnl6VpeXp6avr06Zo7d65OnjyZZviOHTvUrVs3de/eXfv27dPUqVP13HPPafHixS7jzZ49Ww0bNtSuXbv05JNP6oknntChQ4duOf+xY8dq9uzZ2r59u4oWLaoOHTrctOfr6NGjWrt2rb744gt98cUX2rx5s8vh3YSEBI0aNUo//vij/vvf/8rDw0OdO3eWw+Fwmc6ECRM0YsQIHTx4UI888oi6d++uRYsWuYyzaNEide3aVQEBAenWkpycrLi4OJc/AACQRxk36tevn+nYsaMxxpgmTZqYgQMHGmOM+eSTT0xqaT179jQPPvigy+vGjh1ratSo4XweGhpqevfu7XzucDhMsWLFzPz58zOcd2RkpJFkVq5c6Ww7e/as8fX1NR9++KExxphFixaZoKAg5/ApU6aYggULmri4OJdaGjdunOF8/vjjDyPJ7Nu3zxhjzLFjx4wkM2fOHJfxtm3bZjw9Pc2pU6eMMcacOXPGFChQwGzatCnDaU+ZMsVISvN34cKFDF8D5Eb/+9//TPPmzU3z5s3N//73P3eXAwB31IULFzL1/Z2tnraEhAQ999xzuvfee1W5cmVVrFjR5S87Xn75ZS1ZskQHDx50aT948KCaNWvm0tasWTNFR0crJSXF2VanTh3nY5vNphIlSigmJkaS1LZtW/n7+8vf3181a9Z0mVbTpk2djwsVKqSqVaumqeF65cuXd+n5KlmypHM+khQdHa0ePXqoYsWKCgwMVPny5SVJJ06ccJlOw4YNXZ43atRINWvW1JIlSyRJy5YtU2hoqFq0aJFhLRMnTtSFCxecf7/++muG4wIAAGvL1s9YDR48WJs3b1afPn1UsmTJHLnSs0WLFgoPD9fEiRPVv3//LL/ey8vL5bnNZnMeknzvvfeUmJiY7ng5OR9J6tChg0JDQ7Vw4UKVKlVKDodDtWrV0uXLl11el95h5MGDB+vtt9/WhAkTtGjRIg0YMOCm762Pj498fHz+1vIAAABryFZoW7dunb788ss0PWB/18yZM1W3bl3nryxIUvXq1RUVFeUyXlRUlO666y55enpmarqlS5fOcNj333/v/P3U8+fP6/Dhw6pevXo2qpfOnj2rQ4cOaeHChc6bDG/ZsiXTr+/du7fGjRunN998UwcOHFC/fv2yVQcAAMh7shXaQkJCVKhQoZyuRbVr11avXr305ptvOttGjx6te+65Ry+88IIeffRRbd26VW+99VaWr1LNyPPPP6/ChQurePHimjRpkooUKaJOnTpla1ohISEqXLiwFixYoJIlS+rEiROaMGFCll7/yCOPaOzYsWrTpo3KlCmTrToAAEDek61z2l544QVNnjxZly5dyul69Pzzz7scbqxfv75WrVqllStXqlatWpo8ebKef/75bB1CTc/MmTM1YsQINWjQQL///rs+//xzeXt7Z2taHh4eWrlypXbs2KFatWpp5MiRmjVrVpamMWjQIF2+fFkDBw7MVg0AACBvshljTFZfVK9ePR09elTGGJUvXz7NeV47d+7MsQLzm6VLl2rkyJE6depUlsNjXFycgoKCdOHCBQUGBt6mCoGcd+zYMefpAEuWLFGFChXcXBEA3DmZ/f7O1uHR7B4+RMYuXbqk06dPa+bMmRoyZEi2e/sAAEDelK3QNmXKlJyuI9975ZVX9NJLL6lFixaaOHGiu8sBAAC5TLbOaZOk2NhYvffee5o4caLOnTsn6dph0d9++y3HistPpk6dqitXrui///2v/P393V0OAADIZbLV07Z37161bt1aQUFBOn78uB577DEVKlRIa9as0YkTJ/Tvf/87p+sEAADI17LV0zZq1Cj1799f0dHRstvtzvaHH35Y//d//5djxQEAAOCabIW27du3a8iQIWnaS5curd9///1vFwUAAABX2QptPj4+iouLS9N++PBhFS1a9G8XBQAAAFfZCm3/+Mc/9Pzzz+vKlSuSrv3+5okTJzR+/Hh16dIlRwsEAABANkPb7NmzFR8fr2LFiikxMVFhYWGqXLmy/P399dJLL+V0jQAAAPletq4eDQoK0oYNGxQVFaU9e/YoPj5e9evXV+vWrXO6PgAAACiLPW2JiYn64osvnM+/+OILHTlyRL///ru++uorjRs3TklJSTleJAAAQH6XpZ62JUuW6Msvv1T79u0lSW+99ZZq1qwpX19fSdLPP/+skiVLauTIkTlfKQAAQD6WpZ625cuX6/HHH3dpW7FihSIjIxUZGalZs2Zp1apVOVogAAAAshjajhw5otq1azuf2+12eXj8NYlGjRrpwIEDOVcdAAAAJGXx8GhsbKySk5Odz//44w+X4Q6Hw2U4AAAAckaWetrKlCmj/fv3Zzh87969KlOmzN8uCgAAAK6yFNoefvhhTZ48Od0rRBMTEzVt2jS1a9cux4oDAADANVk6PPrMM89o1apVqlq1qoYNG6a77rpLknTo0CG99dZbunr1qp555pnbUigAAEB+lqXQVrx4cX333Xd64oknNGHCBBljJF37GasHH3xQ8+bNU/HixW9LoQAAAPlZln8RoUKFClq/fr3OnTunI0eOSJIqV66sQoUK5XhxAPKHwMDAdB8DAP6SrZ+xkqRChQqpUaNGOVkLgHzq+lsHXf8YAPAXPh0BAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQDczm63p/sYAPCXAu4uAADsdrsiIiKcjwEAaRHaALidzWaTr6+vu8sAgFyNw6MAAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALKCAuwsA7jRjjJKSkmSMUXJysiTJx8dHNpvNzZXlLna7nfcEAHIRQhvynaSkJIWHh7u7jFwvIiJCvr6+7i4DAPD/cXgUAADAAuhpAySldEhhb5Ckq5Ln557urgIAkA6+pgDp2p7A3gAAyMU4PAoAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYQAF3F4DczRijpKQkSZLdbpfNZnNzRciL2M4A4NboacNNJSUlKTw8XOHh4c4vVSCnsZ0BwK0R2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAvJsaHvnnXcUEBCgq1evOtvi4+Pl5eWlli1buoy7adMm2Ww2HT169A5XCQAAkDl5NrS1atVK8fHx+vHHH51t3377rUqUKKFt27YpKSnJ2R4ZGaly5cqpUqVK7igVAADglvJsaKtatapKliypTZs2Ods2bdqkjh07qkKFCvr+++9d2lu1aqXk5GQNHz5cxYoVk91u13333aft27e7jGez2RQREaF69erJ19dX999/v2JiYrRu3TpVr15dgYGB6tmzpy5duuR83fr163XfffcpODhYhQsXVvv27V169Y4fPy6bzaY1a9aoVatWKliwoO6++25t3br19r5JmWCMcT5OSkpSYmKi5f+uD+y4wV+r+46u7+vXyfXbHADgLwXcXcDt1KpVK0VGRmrChAmSrvWojRs3TikpKYqMjFTLli2VmJiobdu2aeDAgRo3bpw+/vhjLVmyRKGhoXrllVcUHh6uI0eOqFChQs7pTp06VW+99ZYKFiyobt26qVu3bvLx8dGKFSsUHx+vzp07a+7cuRo/frwkKSEhQaNGjVKdOnUUHx+vyZMnq3Pnztq9e7c8PP7KzZMmTdKrr76qKlWqaNKkSerRo4eOHDmiAgXSX03JyclKTk52Po+Li8vx9/D66Xfs2DHHp49cJuWvh+5a38nJySpYsKBb5g0AuVme7WmTroW2qKgoXb16VRcvXtSuXbsUFhamFi1aOHvgtm7dquTkZLVs2VLz58/XrFmz1LZtW9WoUUMLFy6Ur6+v3n//fZfpvvjii2rWrJnq1aunQYMGafPmzZo/f77q1aun5s2bq2vXroqMjHSO36VLFz3yyCOqXLmy6tatqw8++ED79u3TgQMHXKY7ZswYtWvXTnfddZemTZumX375RUeOHMlw+WbMmKGgoCDnX9myZXPuzQMAALlKnu5pa9mypRISErR9+3adP39ed911l4oWLaqwsDANGDBASUlJ2rRpkypWrKgLFy7oypUratasmfP1Xl5eatSokQ4ePOgy3Tp16jgfFy9eXAULFlTFihVd2n744Qfn8+joaE2ePFnbtm3Tn3/+KYfDIUk6ceKEatWqle50S5YsKUmKiYlRtWrV0l2+iRMnatSoUc7ncXFxOR7cfHx8nI8//fRT2e32HJ2+OyQlJdFrmBHPvx7eyfV9/Tq5fpsDAPwlT4e2ypUrq0yZMoqMjNT58+cVFhYmSSpVqpTKli2r7777TpGRkbr//vuzNF0vLy/nY5vN5vI8tS01mElShw4dFBoaqoULF6pUqVJyOByqVauWLl++fNPpSnKZzo18fHxu+xdcah2SZLfb5evre1vnBzf7a3W7bX1fv80BAP6Spw+PStcOkW7atEmbNm1yudVHixYttG7dOv3www9q1aqVKlWqJG9vb0VFRTnHuXLlirZv364aNWpke/5nz57VoUOH9Oyzz+qBBx5Q9erVdf78+b+zSAAAIB/K0z1t0rXQNnToUF25csXZ0yZJYWFhGjZsmC5fvqxWrVrJz89PTzzxhMaOHatChQqpXLlyeuWVV3Tp0iUNGjQo2/MPCQlR4cKFtWDBApUsWVInTpxwXhgBAACQWfkitCUmJqpatWoqXry4sz0sLEwXL1503hpEkmbOnCmHw6E+ffro4sWLatiwoSIiIhQSEpLt+Xt4eGjlypUaPny4atWqpapVq+rNN99Mc4NfAACAm7EZboqUZ8TFxSkoKEgXLlxQYGBgjkwzMTFR4eHhkqSIiIg8cU7b9cuUKqVzSj74FyYTrkqen1y7GuFOru+8uJ0BQGZl9vs7z5/TBgAAkBcQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABBdxdAHI3u92uiIgI52PgdmA7A4BbI7Thpmw2m3x9fd1dBvI4tjMAuDUOjwIAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWUMDdBQC5wlV3F5BL8D4AQK5FaAMkeX7u6e4SAAC4KQ6PAgAAWAA9bch37Ha7IiIiZIxRcnKyJMnHx0c2m83NleUudrvd3SUAAK5DaEO+Y7PZ5OvrK0kqWLCgm6sBACBzODwKAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAfwiQh5ijJEkxcXFubkSAACQWanf26nf4xkhtOUhFy9elCSVLVvWzZUAAICsunjxooKCgjIcbjO3inWwDIfDoVOnTikgICBf//h5XFycypYtq19//VWBgYHuLgeZxHqzJtabNbHechdjjC5evKhSpUrJwyPjM9foactDPDw8VKZMGXeXkWsEBgbyYWRBrDdrYr1ZE+st97hZD1sqLkQAAACwAEIbAACABRDakOf4+PhoypQp8vHxcXcpyALWmzWx3qyJ9WZNXIgAAABgAfS0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhssa8aMGbrnnnsUEBCgYsWKqVOnTjp06JDLOElJSRo6dKgKFy4sf39/denSRWfOnHFTxZCk+fPnq06dOs6bejZt2lTr1q1zDmed5X4zZ86UzWbT008/7WxjveVOU6dOlc1mc/mrVq2aczjrzVoIbbCszZs3a+jQofr++++1YcMGXblyRW3atFFCQoJznJEjR+rzzz/X6tWrtXnzZp06dUqPPPKIG6tGmTJlNHPmTO3YsUM//vij7r//fnXs2FE//fSTJNZZbrd9+3a9++67qlOnjks76y33qlmzpk6fPu3827Jli3MY681iDJBHxMTEGElm8+bNxhhjYmNjjZeXl1m9erVznIMHDxpJZuvWre4qE+kICQkx7733Hussl7t48aKpUqWK2bBhgwkLCzMjRowwxrCv5WZTpkwxd999d7rDWG/WQ08b8owLFy5IkgoVKiRJ2rFjh65cuaLWrVs7x6lWrZrKlSunrVu3uqVGuEpJSdHKlSuVkJCgpk2bss5yuaFDh6pdu3Yu60diX8vtoqOjVapUKVWsWFG9evXSiRMnJLHerIgfjEee4HA49PTTT6tZs2aqVauWJOn333+Xt7e3goODXcYtXry4fv/9dzdUiVT79u1T06ZNlZSUJH9/f33yySeqUaOGdu/ezTrLpVauXKmdO3dq+/btaYaxr+VejRs31uLFi1W1alWdPn1a06ZNU/PmzbV//37WmwUR2pAnDB06VPv373c5VwO5V9WqVbV7925duHBBH330kfr166fNmze7uyxk4Ndff9WIESO0YcMG2e12d5eDLGjbtq3zcZ06ddS4cWOFhoZq1apV8vX1dWNlyA4Oj8Lyhg0bpi+++EKRkZEqU6aMs71EiRK6fPmyYmNjXcY/c+aMSpQocYerxPW8vb1VuXJlNWjQQDNmzNDdd9+tN954g3WWS+3YsUMxMTGqX7++ChQooAIFCmjz5s168803VaBAARUvXpz1ZhHBwcG66667dOTIEfY3CyK0wbKMMRo2bJg++eQTbdy4URUqVHAZ3qBBA3l5eem///2vs+3QoUM6ceKEmjZteqfLxU04HA4lJyezznKpBx54QPv27dPu3budfw0bNlSvXr2cj1lv1hAfH6+jR4+qZMmS7G8WxOFRWNbQoUO1YsUKffrppwoICHCegxEUFCRfX18FBQVp0KBBGjVqlAoVKqTAwEA99dRTatq0qZo0aeLm6vOviRMnqm3btipXrpwuXryoFStWaNOmTYqIiGCd5VIBAQHOc0VT+fn5qXDhws521lvuNGbMGHXo0EGhoaE6deqUpkyZIk9PT/Xo0YP9zYIIbbCs+fPnS5Jatmzp0r5o0SL1799fkvT666/Lw8NDXbp0UXJyssLDwzVv3rw7XCmuFxMTo759++r06dMKCgpSnTp1FBERoQcffFAS68yqWG+508mTJ9WjRw+dPXtWRYsW1X333afvv/9eRYsWlcR6sxqbMca4uwgAAADcHOe0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AYCbbd26VZ6enmrXrp27SwGQi/GLCADgZoMHD5a/v7/ef/99HTp0SKVKlXJ3SQByIXraAMCN4uPj9eGHH+qJJ55Qu3bttHjxYpfhn332mapUqSK73a5WrVppyZIlstlsio2NdY6zZcsWNW/eXL6+vipbtqyGDx+uhISEO7sgAG47QhsAuNGqVatUrVo1Va1aVb1799YHH3yg1AMgx44dU9euXdWpUyft2bNHQ4YM0aRJk1xef/ToUT300EPq0qWL9u7dqw8//FBbtmzRsGHD3LE4AG4jDo8CgBs1a9ZM3bp104gRI3T16lWVLFlSq1evVsuWLTVhwgR9+eWX2rdvn3P8Z599Vi+99JLOnz+v4OBgDR48WJ6ennr33Xed42zZskVhYWFKSEiQ3W53x2IBuA3oaQMANzl06JB++OEH9ejRQ5JUoEABPfroo3r//fedw++55x6X1zRq1Mjl+Z49e7R48WL5+/s7/8LDw+VwOHTs2LE7syAA7ogC7i4AAPKr999/X1evXnW58MAYIx8fH7311luZmkZ8fLyGDBmi4cOHpxlWrly5HKsVgPsR2gDADa5evap///vfmj17ttq0aeMyrFOnTvrPf/6jqlWr6quvvnIZtn37dpfn9evX14EDB1S5cuXbXjMA9+KcNgBwg7Vr1+rRRx9VTEyMgoKCXIaNHz9eGzdu1KpVq1S1alWNHDlSgwYN0u7duzV69GidPHlSsbGxCgoK0t69e9WkSRMNHDhQgwcPlp+fnw4cOKANGzZkurcOgDVwThsAuMH777+v1q1bpwlsktSlSxf9+OOPunjxoj766COtWbNGderU0fz5851Xj/r4+EiS6tSpo82bN+vw4cNq3ry56tWrp8mTJ3OvNyAPoqcNACzkpZde0jvvvKNff/3V3aUAuMM4pw0AcrF58+bpnnvuUeHChRUVFaVZs2ZxDzYgnyK0AUAuFh0drRdffFHnzp1TuXLlNHr0aE2cONHdZQFwAw6PAgAAWAAXIgAAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFjA/wMPqwZpNd3f1gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Plottig boxplot to check outliers\n", + "sns.boxplot(x='Age', y= 'Gender', data=df2020)\n", + "plt.title(\"Before cleaning Age's outliers from genders\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 261, + "metadata": {}, + "outputs": [], + "source": [ + "#Cleaning Age's outliers from each gender)\n", + "df2020 = df2020[(df['Age'] >= 15) & (df2020['Age'] <= 60)]" + ] + }, + { + "cell_type": "code", + "execution_count": 262, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABAo0lEQVR4nO3deXxMZ///8fckYSaJLKgQQmIrtdbOjUYsTW211lJqd7eW1lYt1VpaRYu2394ttRVFb1VbV1Il9KaqKC2liFqrxJ5YEkuu3x/9ZWqaxBKRyZHX8/HwMHOdM+d85lxnZt65zpkzNmOMEQAAALI0D3cXAAAAgFsjtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAG3Yd68eSpdurRy5MihwMBAd5dzUzabTaNHj3Z3GZKk0aNHy2azubsM3IF69eqpXr16zvsHDx6UzWbTnDlz3FbTP23evFn/+te/5OvrK5vNpu3bt7u7JEtZu3atbDab1q5d6+5ScIcIbcj2pkyZIpvNpho1aqQ6/bffflO3bt1UvHhxzZgxQ9OnT9elS5c0evRo3vQsol27drLZbHrxxRczbZ2jR49WWFhYpq3vTuzatUujR4/WwYMH3V3KHbt69aqeeOIJnTlzRm+//bbmzZun0NBQd5cFZAovdxcAuNuCBQsUFhamH3/8UTExMSpRooTL9LVr1yopKUn/93//55x26tQpjRkzRpJcRiXg6uWXX9awYcPcWkNcXJy++OILhYWF6b///a8mTJiQ7Uf/du3apTFjxqhevXq3DJahoaG6fPmycuTIkTnF3cL+/ft16NAhzZgxQ7169XJ3OUCmYqQN2dqBAwf0/fff66233lK+fPm0YMGCFPPExsZKUqYcFr148eI9X0dm8vLyksPhcGsNS5Ys0fXr1/Xhhx/qyJEj+u6779xaj9XYbDY5HA55enpmyPLudh+/k9fj/fZ6yqrYzpmH0IZsbcGCBcqdO7eaNm2qtm3bpghtYWFhGjVqlCQpX758stls6tatm/LlyydJGjNmjGw2W4rzyH777Te1bdtWefLkkcPhUNWqVfX555+7LHvOnDmy2Wxat26d+vbtq6CgIIWEhNy03oSEBI0ePVoPPvigHA6HgoOD1bp1a+3fv/+mj/vjjz/Uo0cP5c+fX3a7XWXLltWHH37oMs+VK1c0cuRIValSRQEBAfL19VXdunUVHR3tMl/yOU6TJk3S9OnTVbx4cdntdlWrVk2bN292mTe1c9psNpv69++v5cuXq1y5cs56Vq5cmaLutWvXqmrVqnI4HCpevLimTZt2x+fJLViwQI0aNVJERIQeeuihVIO5JP3yyy8KDw+Xt7e3QkJCNHbsWM2ePVs2my3FYcQVK1aobt268vX1lZ+fn5o2bapff/31lrWsWrVKderUUWBgoHLlyqVSpUrppZdeuuXjrl27ptdee825rcPCwvTSSy8pMTHRZb60zmcMCwtTt27dJP213z3xxBOSpIiICOf+m9ah/rTOabvbfTw+Pl4DBw5UWFiY7Ha7goKC1KhRI/30009pbodu3bopPDxckvTEE0/IZrM5R7q7deumXLlyaf/+/WrSpIn8/PzUqVMnSX+FiiFDhqhw4cKy2+0qVaqUJk2aJGNMiu3Xv39/ffrppypTpoy8vb1Vq1Yt7dixQ5I0bdo0lShRQg6HQ/Xq1bvtw8t3sh/Pnz9fVapUkbe3t/LkyaMOHTroyJEjLvPUq1dP5cqV065duxQRESEfHx8VKlRIb775ZorlHT16VC1btpSvr6+CgoI0aNCgFPtNsk2bNumxxx5TQECAfHx8FB4erg0bNrjMk1z3rl279OSTTyp37tyqU6eOJOn48ePq3r27QkJCZLfbFRwcrBYtWljyMHxWxeFRZGsLFixQ69atlTNnTnXs2FFTp07V5s2bVa1aNUnSO++8o48++kjLli3T1KlTlStXLpUvX141a9ZUnz591KpVK7Vu3VqSVKFCBUnSr7/+qtq1a6tQoUIaNmyYfH19tWjRIrVs2VJLlixRq1atXGro27ev8uXLp5EjR970L9br16+rWbNmWr16tTp06KABAwYoPj5eq1at0s6dO1W8ePFUH3fixAnVrFnT+YGUL18+rVixQj179lRcXJwGDhwo6a/DiDNnzlTHjh3Vu3dvxcfHa9asWYqMjNSPP/6ohx9+2GW5H3/8seLj4/X000/LZrPpzTffVOvWrfX777/f8lDa+vXrtXTpUvXt21d+fn5699131aZNGx0+fFh58+aVJG3btk2PPfaYgoODNWbMGF2/fl2vvvqqMzDfjmPHjik6Olpz586VJHXs2FFvv/223nvvPeXMmdM53x9//OEMMMOHD5evr69mzpwpu92eYpnz5s1T165dFRkZqTfeeEOXLl3S1KlTVadOHW3bti3Nw42//vqrmjVrpgoVKujVV1+V3W5XTExMig/F1PTq1Utz585V27ZtNWTIEG3atEnjx4/X7t27tWzZstveHpL0yCOP6LnnntO7776rl156SQ899JAkOf+/HRmxjz/zzDNavHix+vfvrzJlyuj06dNav369du/ercqVK6e63qefflqFChXSuHHj9Nxzz6latWrKnz+/c/q1a9cUGRmpOnXqaNKkSfLx8ZExRo8//riio6PVs2dPPfzww4qKitLQoUP1xx9/6O2333ZZx//+9z99/vnn6tevnyRp/PjxatasmV544QVNmTJFffv21dmzZ/Xmm2+qR48eWrNmzU231Z3sx6+//rpeeeUVtWvXTr169dLJkyf1n//8R4888oi2bdvmMrp49uxZPfbYY2rdurXatWunxYsX68UXX1T58uXVuHFjSdLly5fVoEEDHT58WM8995wKFiyoefPmpVrzmjVr1LhxY1WpUkWjRo2Sh4eHZs+erfr16+t///ufqlev7jL/E088oZIlS2rcuHHO8NumTRv9+uuvevbZZxUWFqbY2FitWrVKhw8fzrLnd1qOAbKpLVu2GElm1apVxhhjkpKSTEhIiBkwYIDLfKNGjTKSzMmTJ51tJ0+eNJLMqFGjUiy3QYMGpnz58iYhIcHZlpSUZP71r3+ZkiVLOttmz55tJJk6deqYa9eu3bLeDz/80Egyb731VoppSUlJztv/rKtnz54mODjYnDp1yuUxHTp0MAEBAebSpUvGGGOuXbtmEhMTXeY5e/asyZ8/v+nRo4ez7cCBA0aSyZs3rzlz5oyz/bPPPjOSzBdffOFsS952N5JkcubMaWJiYpxtP//8s5Fk/vOf/zjbmjdvbnx8fMwff/zhbNu3b5/x8vJKscy0TJo0yXh7e5u4uDhjjDF79+41ksyyZctc5nv22WeNzWYz27Ztc7adPn3a5MmTx0gyBw4cMMYYEx8fbwIDA03v3r1dHn/8+HETEBCQov1Gb7/9dor96HZs377dSDK9evVyaX/++eeNJLNmzRpnW1r7ZGhoqOnatavz/qeffmokmejo6BTzhoeHm/DwcOf95P6ePXu2sy0j9vGAgADTr1+/Wzz7lKKjo40k8+mnn7q0d+3a1Ugyw4YNc2lfvny5kWTGjh3r0t62bVtjs9lc9kNJxm63O/vbGGOmTZtmJJkCBQo49yNjjBk+fLjLvpGW292PDx48aDw9Pc3rr7/u8vgdO3YYLy8vl/bw8HAjyXz00UfOtsTERFOgQAHTpk0bZ9s777xjJJlFixY52y5evGhKlCjh0v9JSUmmZMmSJjIy0uW95NKlS6Zo0aKmUaNGzrbk13THjh1d6jx79qyRZCZOnHjT7YG7w+FRZFsLFixQ/vz5FRERIemvQyPt27fXwoULdf369XQt88yZM1qzZo3atWun+Ph4nTp1SqdOndLp06cVGRmpffv26Y8//nB5TO/evW/rfKElS5bogQce0LPPPptiWlqHC40xWrJkiZo3by5jjLOeU6dOKTIyUufPn3cejvL09HSOPiUlJenMmTO6du2aqlatmuohq/bt2yt37tzO+3Xr1pUk/f7777d8Lg0bNnQZGaxQoYL8/f2dj71+/bq+/fZbtWzZUgULFnTOV6JECecowu1YsGCBmjZtKj8/P0lSyZIlVaVKlRSHSFeuXKlatWq5jCbmyZPHeXgt2apVq3Tu3Dl17NjRZVt6enqqRo0aKQ4l3yh5lOSzzz5TUlLSbT+Hr7/+WpI0ePBgl/YhQ4ZIkr766qvbXlZGyKh9PDAwUJs2bdKxY8cytL4+ffq43P/666/l6emp5557zqV9yJAhMsZoxYoVLu0NGjRwGRVK/lZ5mzZtnPvRje0329/vZD9eunSpkpKS1K5dO5d9q0CBAipZsmSKfStXrlzq3Lmz837OnDlVvXp1l3q+/vprBQcHq23bts42Hx8f/fvf/3ZZ1vbt27Vv3z49+eSTOn36tHPdFy9eVIMGDfTdd9+l2GefeeYZl/ve3t7KmTOn1q5dq7Nnz6a5TXB3ODyKbOn69etauHChIiIidODAAWd7jRo1NHnyZK1evVqPPvroHS83JiZGxhi98soreuWVV1KdJzY2VoUKFXLeL1q06G0te//+/SpVqpS8vG7/ZXvy5EmdO3dO06dP1/Tp09OsJ9ncuXM1efJk/fbbb7p69epNayxSpIjL/eQAdztv2P98bPLjkx8bGxury5cvp/gmr6RU21Kze/dubdu2TV26dFFMTIyzvV69enr//fcVFxcnf39/SdKhQ4dUq1atW65r3759kqT69eunus7k5aWmffv2mjlzpnr16qVhw4apQYMGat26tdq2bSsPj7T/fj506JA8PDxS1FKgQAEFBgbq0KFDaT72XsioffzNN99U165dVbhwYVWpUkVNmjRRly5dVKxYsXTX5uXlleK80EOHDqlgwYIugUv6+3DwP7ffP/fNgIAASVLhwoVTbb/Z/n4n+/G+fftkjFHJkiVTXdY/TzkICQlJ8cda7ty59csvvzjvHzp0SCVKlEgxX6lSpVKsW5K6du2a5nM5f/68yx9p/+xTu92uN954Q0OGDFH+/PlVs2ZNNWvWTF26dFGBAgXSXC7uDKEN2dKaNWv0559/auHChVq4cGGK6QsWLEhXaEv+a/T5559XZGRkqvP8883a29v7jtdzp/V07tw5zTfk5HPx5s+fr27duqlly5YaOnSogoKC5OnpqfHjx6f6RYe0RgfNP07uTs3dPPZ2zZ8/X5I0aNAgDRo0KMX0JUuWqHv37ne0zOTtOW/evFQ/iG4WqL29vfXdd98pOjpaX331lVauXKlPPvlE9evX1zfffHPL0da7uUxJekeOU5NR+3i7du1Ut25dLVu2TN98840mTpyoN954Q0uXLr2j0dQb2e32mwbg25FWP9zrfTYpKUk2m00rVqxIdV25cuW6Z/Uk9+nEiRNTnLua1vpT69OBAweqefPmWr58uaKiovTKK69o/PjxWrNmjSpVqnTHdSElQhuypQULFigoKEjvv/9+imlLly7VsmXL9MEHH6QZqNL6AE0eJciRI4caNmyYcQVLKl68uDZt2qSrV6/e9jWz8uXLJz8/P12/fv2W9SxevFjFihXT0qVLXZ5f8rdnM1NQUJAcDofLCFmy1Nr+yRijjz/+WBEREerbt2+K6a+99poWLFjgDG2hoaG3ta7kQ7pBQUHp6l8PDw81aNBADRo00FtvvaVx48ZpxIgRio6OTnN5oaGhSkpK0r59+1y+LHDixAmdO3fO5cKyuXPn1rlz51wef+XKFf35558ubXcTADNyHw8ODlbfvn3Vt29fxcbGqnLlynr99dfTHdpSExoaqm+//Vbx8fEuo22//fabc/q9cif7cfHixWWMUdGiRfXggw9myPpDQ0O1c+dOGWNc+nzPnj0p1i39NVJ8t31avHhxDRkyREOGDNG+ffv08MMPa/Lkyc4/onB3OKcN2c7ly5e1dOlSNWvWTG3btk3xr3///oqPj09x+YIb+fj4SFKKD8igoCDVq1dP06ZNS/FBKf11uDK92rRpo1OnTum9995LMS2tv649PT3Vpk0bLVmyRDt37rxpPcl/ud+4rE2bNmnjxo3prjm9PD091bBhQy1fvtzlnKeYmJgU5yClZsOGDTp48KC6d++eah+3b99e0dHRzmVHRkZq48aNLj+HdObMmRTnvkVGRsrf31/jxo1zOXyc7Gb9e+bMmRRtyaMaaV2CQZKaNGki6a9vMt/orbfekiQ1bdrU2Va8ePEU16GbPn16ipE2X19fSSn339uREfv49evXdf78+RTLLViw4E23RXo0adJE169fT/G6efvtt2Wz2TI0IP7TnezHrVu3lqenp8aMGZPi9WyM0enTp+94/U2aNNGxY8e0ePFiZ9ulS5dSnCpRpUoVFS9eXJMmTdKFCxdSLOd2+vTSpUtKSEhwaStevLj8/PwyvE+zM0bakO18/vnnio+P1+OPP57q9Jo1azovtNu+fftU5/H29laZMmX0ySef6MEHH1SePHlUrlw5lStXTu+//77q1Kmj8uXLq3fv3ipWrJhOnDihjRs36ujRo/r555/TVXeXLl300UcfafDgwfrxxx9Vt25dXbx4Ud9++6369u2rFi1apPq4CRMmKDo6WjVq1FDv3r1VpkwZnTlzRj/99JO+/fZbZ5ho1qyZli5dqlatWqlp06Y6cOCAPvjgA5UpUybVN/J7bfTo0frmm29Uu3Zt9enTx/nBW65cuVv+1uSCBQvk6enpEmhu9Pjjj2vEiBFauHChBg8erBdeeEHz589Xo0aN9Oyzzzov+VGkSBGdOXPGOUrh7++vqVOn6qmnnlLlypXVoUMH5cuXT4cPH9ZXX32l2rVrpxqqJenVV1/Vd999p6ZNmyo0NFSxsbGaMmWKQkJCnNe5Sk3FihXVtWtXTZ8+XefOnVN4eLh+/PFHzZ07Vy1btnR+kUb669IgzzzzjNq0aaNGjRrp559/VlRUlB544AGXZT788MPy9PTUG2+8ofPnz8tut6t+/foKCgq66XZNdrf7eHx8vEJCQtS2bVtVrFhRuXLl0rfffqvNmzdr8uTJt1XD7WrevLkiIiI0YsQIHTx4UBUrVtQ333yjzz77TAMHDkzzUjkZ5Xb34+LFi2vs2LEaPny4Dh48qJYtW8rPz08HDhzQsmXL9O9//1vPP//8Ha27d+/eeu+999SlSxdt3bpVwcHBmjdvnvOPzmQeHh6aOXOmGjdurLJly6p79+4qVKiQ/vjjD0VHR8vf319ffPHFTde1d+9eNWjQQO3atVOZMmXk5eWlZcuW6cSJE+rQocMd1Y2byPTvqwJu1rx5c+NwOMzFixfTnKdbt24mR44c5tSpU6le8sMYY77//ntTpUoVkzNnzhSXWti/f7/p0qWLKVCggMmRI4cpVKiQadasmVm8eLFznuTLIWzevPm2a7906ZIZMWKEKVq0qMmRI4cpUKCAadu2rdm/f79znn/WYowxJ06cMP369TOFCxd2Pq5BgwZm+vTpznmSkpLMuHHjTGhoqLHb7aZSpUrmyy+/NF27djWhoaHO+ZIvAZHaV/v/ue60LvmR2qUe/nlZCmOMWb16talUqZLJmTOnKV68uJk5c6YZMmSIcTgcaW6jK1eumLx585q6deumOY8xxhQtWtRUqlTJeX/btm2mbt26xm63m5CQEDN+/Hjz7rvvGknm+PHjLo+Njo42kZGRJiAgwDgcDlO8eHHTrVs3s2XLljTXt3r1atOiRQtTsGBBkzNnTlOwYEHTsWNHs3fv3pvWaYwxV69eNWPGjHH2e+HChc3w4cNdLrlhjDHXr183L774onnggQeMj4+PiYyMNDExMalu2xkzZphixYoZT09Pl8s/3M4lP4y5u308MTHRDB061FSsWNH4+fkZX19fU7FiRTNlypRbboubXfLD19c31cfEx8ebQYMGmYIFC5ocOXKYkiVLmokTJ7pc3sKY1PfNtPb3tOpIzZ3sx0uWLDF16tQxvr6+xtfX15QuXdr069fP7NmzxzlPeHi4KVu2bIrH/vO1aowxhw4dMo8//rjx8fExDzzwgBkwYIBZuXJlqpd82bZtm2ndurXJmzevsdvtJjQ01LRr186sXr3aOU9a74enTp0y/fr1M6VLlza+vr4mICDA1KhRw+VyI7h7NmMy8MxfALjHWrZsqV9//dX5jbd7aeDAgZo2bZouXLiQYT/jBEiZux/j/sE5bQCyrMuXL7vc37dvn77++mvnTxfdy3WdPn1a8+bNU506dQhsuCuZuR/j/sZIG4AsKzg4WN26dVOxYsV06NAhTZ06VYmJidq2bVua17NKr4cfflj16tXTQw89pBMnTmjWrFk6duyYVq9erUceeSRD14XsJTP3Y9zf+CICgCzrscce03//+18dP35cdrtdtWrV0rhx4+7JB12TJk20ePFiTZ8+XTabTZUrV9asWbMIbLhrmbkf4/7GSBsAAIAFcE4bAACABRDaAAAALIBz2u4jSUlJOnbsmPz8/O7qZ2oAAEDmMcYoPj5eBQsWvOnv5xLa7iPHjh1T4cKF3V0GAABIhyNHjigkJCTN6YS2+0jyjyEfOXJE/v7+bq4GAADcjri4OBUuXNj5OZ4WQtt95MbfRyS0AQBgLbc6tYkvIgAAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAFcpw24h4wxSkhIcHcZbmGMUWJioiTJbrfz02qSHA4H2wFAuhHagHsoISFBkZGR7i4DWURUVJS8vb3dXQYAi+LwKAAAgAUw0gZkkouVO0ke2egld/2qfLd9LEm6WOlJyTOHmwtyk6Rr8v1pgburAHAfyEafIICbeXhl3+DimSP7PncAyCAcHgUAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAV7uLgD3D2OMEhISJEkOh0M2m83NFQFA9sD7b/bASBsyTEJCgiIjIxUZGel88wAA3Hu8/2YPhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoS6du3brJZrPpmWeeSTGtX79+stls6tatW+YXBgCABcycOVP16tXTzJkz3V3KbdmwYYOeeOIJbdiwwW01ENruQuHChbVw4UJdvnzZ2ZaQkKCPP/5YRYoUcWNlAABkXefOndP8+fOVlJSk+fPn69y5c+4u6aYSEhI0efJknThxQpMnT1ZCQoJb6iC03YXKlSurcOHCWrp0qbNt6dKlKlKkiCpVquRsW7lyperUqaPAwEDlzZtXzZo10/79+53TDx48KJvNpqVLlyoiIkI+Pj6qWLGiNm7cmKnPBwCAzDBixAglJSVJkpKSkvTyyy+7uaKbmz9/vk6fPi1JOn36tBYsWOCWOrzcstb7SI8ePTR79mx16tRJkvThhx+qe/fuWrt2rXOeixcvavDgwapQoYIuXLigkSNHqlWrVtq+fbs8PP7OzSNGjNCkSZNUsmRJjRgxQh07dlRMTIy8vKzRTcYY5213/RWS1bhshxu2D7IRXhfIBDfuWyaLv9ds2bJFO3bscGn75ZdftGXLFlWtWtVNVaXt6NGjWrBggXO7GmO0YMECRUZGKiQkJFNrsUYayMI6d+6s4cOH69ChQ5L+Oua9cOFCl9DWpk0bl8d8+OGHypcvn3bt2qVy5co5259//nk1bdpUkjRmzBiVLVtWMTExKl26dKrrTkxMVGJiovN+XFxcRj2tdLmxlhYtWrixkiwq6ZqknO6uApkt6ZrzJq8LZIbExET5+Pi4u4xUJSUlafTo0alOGz16tD7//HOXwQx3M8bo7bffTrN90qRJstlsmVZP1tkyFpUvXz41bdpUc+bM0ezZs9W0aVM98MADLvPs27dPHTt2VLFixeTv76+wsDBJ0uHDh13mq1ChgvN2cHCwJCk2NjbNdY8fP14BAQHOf4ULF86gZwUAQMbbuHFjmgMMcXFxWe60oEOHDmnz5s26fv26S/v169e1efNm54BNZmGkLQP06NFD/fv3lyS9//77KaY3b95coaGhmjFjhgoWLKikpCSVK1dOV65ccZkvR44cztvJyT35mH9qhg8frsGDBzvvx8XFuTW42e125+3PPvtMDofDbbVkFQkJCX+PrnjwcsuWbuh3Xhe4V258r7nxvTirqVWrlvz9/VMNbgEBAapVq5YbqkpbaGioqlWrpp9++skluHl6eqpKlSoKDQ3N1Hr4FMkAjz32mK5cuSKbzabIyEiXaadPn9aePXs0Y8YM1a1bV5K0fv36DFmv3W7PUi/OG4eIHQ6HvL293VhNFpSJQ+jIQnhdIJNl5uG6O+Xh4aHRo0e7DDgkGzNmTJY6NCr9tS0HDRqkp556KtX2zN7WWWvrWJSnp6d2796tXbt2ydPT02Va7ty5lTdvXk2fPl0xMTFas2ZNqjsrAADZQdWqVVW+fHmXtgoVKqhy5cpuqujmQkJC1KlTJ2dAs9ls6tSpkwoVKpTptRDaMoi/v7/8/f1TtHt4eGjhwoXaunWrypUrp0GDBmnixIluqBAAgKzh9ddfd46qeXh4aOzYsW6u6OY6d+6svHnzSpIeeOAB5xUjMhuHR9Npzpw5N52+fPly5+2GDRtq165dLtNv/Ep2WFhYiq9oBwYGZvmvbQMAkB6BgYHq3Lmz5s+fr86dOyswMNDdJd2Uw+HQkCFD9M4772jgwIFuOzeV0AYAADJdr1691KtXL3eXcdtq166t2rVru7UGDo8CAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAArzcXQDuHw6HQ1FRUc7bAIDMwftv9kBoQ4ax2Wzy9vZ2dxkAkO3w/ps9cHgUAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAV4ubsAINtIuubuCjLX9aup385uslu/A7hnCG1AJvH9aYG7S3Ab320fu7sEALA8Do8CAABYACNtwD3kcDgUFRXl7jLcwhijxMRESZLdbpfNZnNzRe7ncDjcXQIACyO0AfeQzWaTt7e3u8twGx8fH3eXAAD3DQ6PAgAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAL3cXAGQ2Y4wSEhJkjFFiYqIkyW63y2azubmyrMXhcLBNACALIbQh20lISFBkZKS7y8jyoqKi5O3t7e4yAAD/H4dHAQAALICRNkDS+4+cld3T3VW4X+J1m/p9F+juMgAAqSC0AZLsnpKD0CbJuLsAAEAaODwKAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWICXuwtA1maMUUJCgiTJ4XDIZrO5uSLcj9jPAODWGGnDTSUkJCgyMlKRkZHOD1Ugo7GfAcCtEdoAAAAs4I5DmzFGhw8f5q9hAACATJSu0FaiRAkdOXLkXtQDAACAVNxxaPPw8FDJkiV1+vTpe1EPAAAAUpGuc9omTJigoUOHaufOnRldDwAAAFKRrkt+dOnSRZcuXVLFihWVM2dOeXt7u0w/c+ZMhhQHAACAv6QrtL3zzjsZXAYAAABuJl2hrWvXrhldBwAAAG4i3ddp279/v15++WV17NhRsbGxkqQVK1bo119/zbDiAAAA8Jd0hbZ169apfPny2rRpk5YuXaoLFy5Ikn7++WeNGjUqQwsEAABAOkPbsGHDNHbsWK1atUo5c+Z0ttevX18//PBDhhUHAACAv6QrtO3YsUOtWrVK0R4UFKRTp07ddVEAAABwla7QFhgYqD///DNF+7Zt21SoUKG7LgoAAACu0hXaOnTooBdffFHHjx+XzWZTUlKSNmzYoOeff15dunTJ6BoBAACyvXSFtnHjxql06dIqXLiwLly4oDJlyuiRRx7Rv/71L7388ssZXSMAAEC2l67rtOXMmVMzZszQK6+8op07d+rChQuqVKmSSpYsmdH1AQAAQOkMbcmKFCmiIkWKZFQtAAAASMNth7bBgwff9kLfeuutdBUDAACA1N12aNu2bZvL/Z9++knXrl1TqVKlJEl79+6Vp6enqlSpkrEVAgAA4PZDW3R0tPP2W2+9JT8/P82dO1e5c+eWJJ09e1bdu3dX3bp1M75KAACAbC5d3x6dPHmyxo8f7wxskpQ7d26NHTtWkydPzrDiAAAA8Jd0hba4uDidPHkyRfvJkycVHx9/10VlhA8++EB+fn66du2as+3ChQvKkSOH6tWr5zLv2rVrZbPZtH///kyuEgAA4PakK7S1atVK3bt319KlS3X06FEdPXpUS5YsUc+ePdW6deuMrjFdIiIidOHCBW3ZssXZ9r///U8FChTQpk2blJCQ4GyPjo5WkSJFVLx4cXeUCgAAcEvpCm0ffPCBGjdurCeffFKhoaEKDQ3Vk08+qccee0xTpkzJ6BrTpVSpUgoODtbatWudbWvXrlWLFi1UtGhRlx+2X7t2rSIiIpSYmKjnnntOQUFBcjgcqlOnjjZv3uwyn81mU1RUlCpVqiRvb2/Vr19fsbGxWrFihR566CH5+/vrySef1KVLl5yPW7lyperUqaPAwEDlzZtXzZo1cxnVO3jwoGw2m5YuXaqIiAj5+PioYsWK2rhx473dSLfBGOO8nZCQoMuXL1v+342BHa5u6O5M7e8b++TGfQ4A8DebuYt3yIsXLzrDR/HixeXr65thhWWETp066dSpU4qKipIkVa9eXS+88IJWr16toKAgjRkzRpcvX1bu3Lk1bdo0/fTTT1q8eLFmzpyp0NBQvfnmm/r8888VExOjPHnyOMNdzZo1NWnSJPn4+Khdu3YqVKiQ7Ha7JkyYoAsXLqhVq1YaOnSoXnzxRUnSkiVLZLPZVKFCBV24cEEjR47UwYMHtX37dnl4eOjgwYMqWrSoSpcurUmTJqlkyZIaMWKENm/erJiYGHl5pf59kcTERCUmJjrvx8XFqXDhwjp//rz8/f0zZBuePXtWLVq0yJBlZWUzI87K4enuKtzv/BWp33e5bz3jPfTZZ5+5nC8LAPe7uLg4BQQE3PLz+64uruvr66sKFSrczSLuqYiICA0cOFDXrl3T5cuXtW3bNoWHh+vq1av64IMPJEkbN25UYmKi6tWrp969e2vOnDlq3LixJGnGjBlatWqVZs2apaFDhzqXO3bsWNWuXVuS1LNnTw0fPlz79+9XsWLFJElt27ZVdHS0M7S1adPGpa4PP/xQ+fLl065du1SuXDln+/PPP6+mTZtKksaMGaOyZcsqJiZGpUuXTvX5jR8/XmPGjMmITQUAALK4dIW2ixcvasKECVq9erViY2OVlJTkMv3333/PkOLuVr169XTx4kVt3rxZZ8+e1YMPPqh8+fIpPDxc3bt3V0JCgtauXatixYrp/Pnzunr1qjOMSVKOHDlUvXp17d6922W5NwbV/Pnzy8fHxxnYktt+/PFH5/19+/Zp5MiR2rRpk06dOuXcXocPH3YJbTcuNzg4WJIUGxubZmgbPny4y0WPk0faMpLdbnfe/uyzz+RwODJ0+e6QkJCQLUYP0yPnDSdMZGZ/39gnN+5zAIC/pSu09erVS+vWrdNTTz2l4OBg2Wy2jK4rQ5QoUUIhISGKjo7W2bNnFR4eLkkqWLCgChcurO+//17R0dGqX7/+HS03R44czts2m83lfnLbjUG2efPmCg0N1YwZM1SwYEElJSWpXLlyunLlyk2XKylFIL6R3W6/5x9wN/atw+GQt7f3PV0f3OvGl7K7+jurvp8AgLulK7StWLFCX331lcuoVFYVERGhtWvX6uzZsy6HOB955BGtWLFCP/74o/r06aPixYsrZ86c2rBhg0JDQyVJV69e1ebNmzVw4MB0r//06dPas2ePZsyY4bzw8Pr16+/qOQEAgOwnXaEtd+7cypMnT0bXck9ERESoX79+unr1qnOkTZLCw8PVv39/XblyRREREfL19VWfPn00dOhQ5cmTR0WKFNGbb76pS5cuqWfPnulef+7cuZU3b15Nnz5dwcHBOnz4sIYNG5YRTw0AAGQj6brkx2uvvaaRI0e6XNYiq4qIiNDly5dVokQJ5c+f39keHh6u+Ph456VBJGnChAlq06aNnnrqKVWuXFkxMTGKioq6q2+yeXh4aOHChdq6davKlSunQYMGaeLEiXf9vAAAQPaSrkt+VKpUSfv375cxRmFhYSnO6frpp58yrEDcvtv9yvCduHz5siIjIyVJUVFR98U5bTc+p2Rc8uMvCdelXtF//ZGSmf19P+5nAHC77uklP1q2bJneugAAAJAO6Qpto0aNyug6AAAAcBPpOqdNks6dO6eZM2dq+PDhOnPmjKS/Dov+8ccfGVYcAAAA/pKukbZffvlFDRs2VEBAgA4ePKjevXsrT548Wrp0qQ4fPqyPPvooo+sEAADI1tI10jZ48GB169ZN+/btc7liepMmTfTdd99lWHEAAAD4S7pC2+bNm/X000+naC9UqJCOHz9+10UBAADAVbpCm91uV1xcXIr2vXv3Kl++fHddFAAAAFylK7Q9/vjjevXVV3X16lVJf/1W4OHDh/Xiiy+qTZs2GVogAAAA0hnaJk+erAsXLigoKEiXL19WeHi4SpQooVy5cun111/P6BoBAACyvXR9ezQgIECrVq3Shg0b9PPPP+vChQuqXLmyGjZsmNH1AQAAQHc40nb58mV9+eWXzvtffvmlYmJidPz4cX399dd64YUXlJCQkOFFAgAAZHd3NNI2d+5cffXVV2rWrJkk6b333lPZsmWdvxP422+/KTg4WIMGDcr4SgEAALKxOxppW7Bggf7973+7tH388ceKjo5WdHS0Jk6cqEWLFmVogQAAALjD0BYTE6Py5cs77zscDnl4/L2I6tWra9euXRlXHQAAACTd4eHRc+fOKTEx0Xn/5MmTLtOTkpJcpgMAACBj3NFIW0hIiHbu3Jnm9F9++UUhISF3XRQAAABc3VFoa9KkiUaOHJnqN0QvX76sMWPGqGnTphlWHAAAAP5yR4dHX3rpJS1atEilSpVS//799eCDD0qS9uzZo/fee0/Xrl3TSy+9dE8KBQAAyM7uKLTlz59f33//vfr06aNhw4bJGCPpr5+xatSokaZMmaL8+fPfk0IBAACyszv+RYSiRYtq5cqVOnPmjGJiYiRJJUqUUJ48eTK8OLifw+FQVFSU8zZwL7CfAcCtpetnrCQpT548ql69ekbWgizIZrM5L54M3CvsZwBwa+n6wXgAAABkLkIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALMDL3QUAWUHidXdXkDUkXre5uwQAQBoIbYCkft/ldncJAADcFIdHAQAALICRNmQ7DodDUVFRMsYoMTFRkmS322WzcWjwRg6Hw90lAABuQGhDtmOz2eTt7S1J8vHxcXM1AADcHg6PAgAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAL3cXAADGGCUkJEiSHA6HbDabmysCgKyHkTYAbpeQkKDIyEhFRkY6wxsAwBWhDYDb3RjUCG0AkDpCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENgNslJSWlehsA8DdCGwC3i4uLS/U2AOBvhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAghtAAAAFpBtQ9vatWtls9l07ty5NOeZM2eOAgMDM60mAACAtLg1tHXr1k02m00TJkxwaV++fLlsNpubqvpb+/bttXfvXneXAQAA4P6RNofDoTfeeENnz551dykpeHt7Kygo6J6v5+rVq/d8HQAAwNrcHtoaNmyoAgUKaPz48WnOs2TJEpUtW1Z2u11hYWGaPHmyy/SwsDCNGzdOPXr0kJ+fn4oUKaLp06ff1vo3bNigChUqyOFwqGbNmtq5c6dz2j8Pj44ePVoPP/yw5s2bp7CwMAUEBKhDhw6Kj493zrNy5UrVqVNHgYGByps3r5o1a6b9+/c7px88eFA2m02ffPKJwsPD5XA4NH36dPn7+2vx4sUutS1fvly+vr4uywcAANmT20Obp6enxo0bp//85z86evRoiulbt25Vu3bt1KFDB+3YsUOjR4/WK6+8ojlz5rjMN3nyZFWtWlXbtm1T37591adPH+3Zs+eW6x86dKgmT56szZs3K1++fGrevPlNR77279+v5cuX68svv9SXX36pdevWuRzevXjxogYPHqwtW7Zo9erV8vDwUKtWrZSUlOSynGHDhmnAgAHavXu3WrdurQ4dOmj27Nku88yePVtt27aVn59fqrUkJiYqLi7O5R8AALhPGTfq2rWradGihTHGmJo1a5oePXoYY4xZtmyZSS7tySefNI0aNXJ53NChQ02ZMmWc90NDQ03nzp2d95OSkkxQUJCZOnVqmuuOjo42kszChQudbadPnzbe3t7mk08+McYYM3v2bBMQEOCcPmrUKOPj42Pi4uJcaqlRo0aa6zl58qSRZHbs2GGMMebAgQNGknnnnXdc5tu0aZPx9PQ0x44dM8YYc+LECePl5WXWrl2b5rJHjRplJKX4d/78+TQfA2RFv//+u6lbt66pW7eu+f33391dDgBkqvPnz9/W57fbR9qSvfHGG5o7d652797t0r57927Vrl3bpa127drat2+frl+/7myrUKGC87bNZlOBAgUUGxsrSWrcuLFy5cqlXLlyqWzZsi7LqlWrlvN2njx5VKpUqRQ13CgsLMxl5Cs4ONi5Hknat2+fOnbsqGLFisnf319hYWGSpMOHD7ssp2rVqi73q1evrrJly2ru3LmSpPnz5ys0NFSPPPJImrUMHz5c58+fd/47cuRImvMCAABr83J3AckeeeQRRUZGavjw4erWrdsdPz5Hjhwu9202m/OQ5MyZM3X58uVU58vI9UhS8+bNFRoaqhkzZqhgwYJKSkpSuXLldOXKFZfH+fr6plh2r1699P7772vYsGGaPXu2unfvftNv0drtdtnt9rt6PgAAwBqyTGiTpAkTJujhhx9WqVKlnG0PPfSQNmzY4DLfhg0b9OCDD8rT0/O2lluoUKE0p/3www8qUqSIJOns2bPau3evHnrooXRUL50+fVp79uzRjBkzVLduXUnS+vXrb/vxnTt31gsvvKB3331Xu3btUteuXdNVBwAAuP9kqdBWvnx5derUSe+++66zbciQIapWrZpee+01tW/fXhs3btR7772nKVOmZMg6X331VeXNm1f58+fXiBEj9MADD6hly5bpWlbu3LmVN29eTZ8+XcHBwTp8+LCGDRt2R49v3bq1hg4dqkcffVQhISHpqgMAANx/ssw5bcleffVVl8ONlStX1qJFi7Rw4UKVK1dOI0eO1KuvvpquQ6ipmTBhggYMGKAqVaro+PHj+uKLL5QzZ850LcvDw0MLFy7U1q1bVa5cOQ0aNEgTJ068o2X07NlTV65cUY8ePdJVAwAAuD/ZjDHG3UXgb/PmzdOgQYN07NixOw6PcXFxCggI0Pnz5+Xv73+PKgQy3oEDB5ynA8ydO1dFixZ1c0UAkHlu9/M7Sx0ezc4uXbqkP//8UxMmTNDTTz+d7tE+AABwf8pyh0ezqzfffFOlS5dWgQIFNHz4cHeXAwAAshhCWxYxevRoXb16VatXr1auXLncXQ4AAMhiCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0A3M7f3z/V2wCAvxHaALidh4dHqrcBAH/j3REAAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBsDtHA5HqrcBAH/zcncBAOBwOBQVFeW8DQBIidAGwO1sNpu8vb3dXQYAZGkcHgUAALAAQhsAAIAFENoAAAAsgNAGAABgAYQ2AAAACyC0AQAAWAChDQAAwAIIbQAAABZAaAMAALAAfhHhPmKMkSTFxcW5uRIAAHC7kj+3kz/H00Jou4/Ex8dLkgoXLuzmSgAAwJ2Kj49XQEBAmtNt5laxDpaRlJSkY8eOyc/PTzabzd3luE1cXJwKFy6sI0eOyN/f393l4DbRb9ZEv1kT/Za1GGMUHx+vggULysMj7TPXGGm7j3h4eCgkJMTdZWQZ/v7+vBlZEP1mTfSbNdFvWcfNRtiS8UUEAAAACyC0AQAAWAChDfcdu92uUaNGyW63u7sU3AH6zZroN2ui36yJLyIAAABYACNtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AbLGj9+vKpVqyY/Pz8FBQWpZcuW2rNnj8s8CQkJ6tevn/LmzatcuXKpTZs2OnHihJsqhiRNnTpVFSpUcF7Us1atWlqxYoVzOn2W9U2YMEE2m00DBw50ttFvWdPo0aNls9lc/pUuXdo5nX6zFkIbLGvdunXq16+ffvjhB61atUpXr17Vo48+qosXLzrnGTRokL744gt9+umnWrdunY4dO6bWrVu7sWqEhIRowoQJ2rp1q7Zs2aL69eurRYsW+vXXXyXRZ1nd5s2bNW3aNFWoUMGlnX7LusqWLas///zT+W/9+vXOafSbxRjgPhEbG2skmXXr1hljjDl37pzJkSOH+fTTT53z7N6920gyGzdudFeZSEXu3LnNzJkz6bMsLj4+3pQsWdKsWrXKhIeHmwEDBhhjeK1lZaNGjTIVK1ZMdRr9Zj2MtOG+cf78eUlSnjx5JElbt27V1atX1bBhQ+c8pUuXVpEiRbRx40a31AhX169f18KFC3Xx4kXVqlWLPsvi+vXrp6ZNm7r0j8RrLavbt2+fChYsqGLFiqlTp046fPiwJPrNivjBeNwXkpKSNHDgQNWuXVvlypWTJB0/flw5c+ZUYGCgy7z58+fX8ePH3VAlku3YsUO1atVSQkKCcuXKpWXLlqlMmTLavn07fZZFLVy4UD/99JM2b96cYhqvtayrRo0amjNnjkqVKqU///xTY8aMUd26dbVz5076zYIIbbgv9OvXTzt37nQ5VwNZV6lSpbR9+3adP39eixcvVteuXbVu3Tp3l4U0HDlyRAMGDNCqVavkcDjcXQ7uQOPGjZ23K1SooBo1aig0NFSLFi2St7e3GytDenB4FJbXv39/ffnll4qOjlZISIizvUCBArpy5YrOnTvnMv+JEydUoECBTK4SN8qZM6dKlCihKlWqaPz48apYsaL+7//+jz7LorZu3arY2FhVrlxZXl5e8vLy0rp16/Tuu+/Ky8tL+fPnp98sIjAwUA8++KBiYmJ4vVkQoQ2WZYxR//79tWzZMq1Zs0ZFixZ1mV6lShXlyJFDq1evdrbt2bNHhw8fVq1atTK7XNxEUlKSEhMT6bMsqkGDBtqxY4e2b9/u/Fe1alV16tTJeZt+s4YLFy5o//79Cg4O5vVmQRwehWX169dPH3/8sT777DP5+fk5z8EICAiQt7e3AgIC1LNnTw0ePFh58uSRv7+/nn32WdWqVUs1a9Z0c/XZ1/Dhw9W4cWMVKVJE8fHx+vjjj7V27VpFRUXRZ1mUn5+f81zRZL6+vsqbN6+znX7Lmp5//nk1b95coaGhOnbsmEaNGiVPT0917NiR15sFEdpgWVOnTpUk1atXz6V99uzZ6tatmyTp7bffloeHh9q0aaPExERFRkZqypQpmVwpbhQbG6suXbrozz//VEBAgCpUqKCoqCg1atRIEn1mVfRb1nT06FF17NhRp0+fVr58+VSnTh398MMPypcvnyT6zWpsxhjj7iIAAABwc5zTBgAAYAGENgAAAAsgtAEAAFgAoQ0AAMACCG0AAAAWQGgDAACwAEIbAACABRDaAAAALIDQBgButnHjRnl6eqpp06buLgVAFsYvIgCAm/Xq1Uu5cuXSrFmztGfPHhUsWNDdJQHIghhpAwA3unDhgj755BP16dNHTZs21Zw5c1ymf/755ypZsqQcDociIiI0d+5c2Ww2nTt3zjnP+vXrVbduXXl7e6tw4cJ67rnndPHixcx9IgDuOUIbALjRokWLVLp0aZUqVUqdO3fWhx9+qOQDIAcOHFDbtm3VsmVL/fzzz3r66ac1YsQIl8fv379fjz32mNq0aaNffvlFn3zyidavX6/+/fu74+kAuIc4PAoAblS7dm21a9dOAwYM0LVr1xQcHKxPP/1U9erV07Bhw/TVV19px44dzvlffvllvf766zp79qwCAwPVq1cveXp6atq0ac551q9fr/DwcF28eFEOh8MdTwvAPcBIGwC4yZ49e/Tjjz+qY8eOkiQvLy+1b99es2bNck6vVq2ay2OqV6/ucv/nn3/WnDlzlCtXLue/yMhIJSUl6cCBA5nzRABkCi93FwAA2dWsWbN07do1ly8eGGNkt9v13nvv3dYyLly4oKefflrPPfdcimlFihTJsFoBuB+hDQDc4Nq1a/roo480efJkPfrooy7TWrZsqf/+978qVaqUvv76a5dpmzdvdrlfuXJl7dq1SyVKlLjnNQNwL85pAwA3WL58udq3b6/Y2FgFBAS4THvxxRe1Zs0aLVq0SKVKldKgQYPUs2dPbd++XUOGDNHRo0d17tw5BQQE6JdfflHNmjXVo0cP9erVS76+vtq1a5dWrVp126N1AKyBc9oAwA1mzZqlhg0bpghsktSmTRtt2bJF8fHxWrx4sZYuXaoKFSpo6tSpzm+P2u12SVKFChW0bt067d27V3Xr1lWlSpU0cuRIrvUG3IcYaQMAC3n99df1wQcf6MiRI+4uBUAm45w2AMjCpkyZomrVqilv3rzasGGDJk6cyDXYgGyK0AYAWdi+ffs0duxYnTlzRkWKFNGQIUM0fPhwd5cFwA04PAoAAGABfBEBAADAAghtAAAAFkBoAwAAsABCGwAAgAUQ2gAAACyA0AYAAGABhDYAAAALILQBAABYAKENAADAAv4f3OerCZIP3TAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Plottig boxplot to check outliers after cleaning some outliers\n", + "sns.boxplot(x='Age', y= 'Gender', data=df2020)\n", + "plt.title(\"After cleaning Age's outliers from genders\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 263, + "metadata": {}, + "outputs": [], + "source": [ + "#fill Age's null values with mean of each gender\n", + "means = df2020.groupby('Gender')['Age'].transform('mean')\n", + "df2020['Age'] = df2020['Age'].fillna(means)\n", + "\n", + "#convert from float to int\n", + "df2020['Age'] = df2020['Age'].apply(str).str[:2]\n", + "df2020['Age'] = df2020['Age'].apply(int)" + ] + }, + { + "cell_type": "code", + "execution_count": 264, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "df shape after clean Age: (75, 16)\n" + ] + } + ], + "source": [ + "#df before 64461\n", + "print('df shape after clean Age: ', df2020.shape) #no. of Ages' outliners = 64461-44709=19752 (30.6%)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## EdLevel" + ] + }, + { + "cell_type": "code", + "execution_count": 265, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 265, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['EdLevel'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 266, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "EdLevel\n", + "Bachelor‚Äôs degree (B.A., B.S., B.Eng., etc.) 34\n", + "Some college/university study without earning a degree 11\n", + "Master‚Äôs degree (M.A., M.S., M.Eng., MBA, etc.) 10\n", + "Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.) 7\n", + "Associate degree (A.A., A.S., etc.) 5\n", + "Professional degree (JD, MD, etc.) 3\n", + "Other doctoral degree (Ph.D., Ed.D., etc.) 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 266, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['EdLevel'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 267, + "metadata": {}, + "outputs": [], + "source": [ + "#Refactoring EdLevel\n", + "def refactor_ed(df):\n", + " '''function to change Education level category to Bachelors, Masters, Professional, Associate, Doctorate, No Degree'''\n", + " conditions_ed = [(df['EdLevel'] == 'Associate degree (A.A., A.S., etc.)'),\n", + " (df['EdLevel'] == 'Bachelor’s degree (B.A., B.S., B.Eng., etc.)'),\n", + " (df['EdLevel'] == 'Master’s degree (M.A., M.S., M.Eng., MBA, etc.)'),\n", + " (df['EdLevel'] == 'Professional degree (JD, MD, etc.)'), \n", + " (df['EdLevel'] == 'Other doctoral degree (Ph.D., Ed.D., etc.)'),\n", + " (df['EdLevel'] == 'Some college/university study without earning a degree') \n", + " | (df['EdLevel'] == 'Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.)') \n", + " | (df['EdLevel'] == 'Primary/elementary school')\n", + " | (df['EdLevel'] == 'I never completed any formal education')]\n", + " \n", + " choices_ed = ['Associate', 'Bachelors', 'Masters', 'Professional', 'Doctorate', 'No Degree']\n", + " df['EdLevel'] = np.select(conditions_ed, choices_ed, default = np.NaN)\n", + " return df\n", + "\n", + "# applying function to subsets\n", + "df2020 = refactor_ed(df2020)\n", + "#Assigining the surveyors who havent mentioned their education level to Bachelor’s degree\n", + "df2020['EdLevel'].replace('nan', 'Bachelors', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 268, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "EdLevel\n", + "Bachelors 47\n", + "No Degree 18\n", + "Associate 5\n", + "Professional 3\n", + "Doctorate 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 268, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['EdLevel'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## JobSat (CurrentJobSatis)" + ] + }, + { + "cell_type": "code", + "execution_count": 269, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "15" + ] + }, + "execution_count": 269, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['CurrentJobSatis'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 270, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "CurrentJobSatis\n", + "Very satisfied 27\n", + "Slightly satisfied 12\n", + "Slightly dissatisfied 9\n", + "Very dissatisfied 7\n", + "Neither satisfied nor dissatisfied 5\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 270, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['CurrentJobSatis'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 271, + "metadata": {}, + "outputs": [], + "source": [ + "df2020['CurrentJobSatis'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 272, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "CurrentJobSatis\n", + "Very satisfied 32\n", + "Slightly satisfied 13\n", + "Slightly dissatisfied 12\n", + "Neither satisfied nor dissatisfied 10\n", + "Very dissatisfied 8\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 272, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['CurrentJobSatis'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## JobSeek (JobStatus)" + ] + }, + { + "cell_type": "code", + "execution_count": 273, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 273, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['JobStatus'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 274, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "JobStatus\n", + "I am actively looking for a job 12\n", + "I am not interested in new job opportunities 23\n", + "I‚Äôm not actively looking, but I am open to new opportunities 38\n", + "Name: JobStatus, dtype: int64" + ] + }, + "execution_count": 274, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020.groupby('JobStatus')['JobStatus'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 275, + "metadata": {}, + "outputs": [], + "source": [ + "df2020['JobStatus'].fillna(method='ffill', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 276, + "metadata": {}, + "outputs": [], + "source": [ + "#Refactoring JobStatus\n", + "#Changing the jobstatus to seeking and non seeking\n", + "def refactor_job(df):\n", + " '''function to change JobStatus category to Seeking and Non Seeking'''\n", + " \n", + " conditions_job = [(df['JobStatus'] == 'I am actively looking for a job'),\n", + " (df['JobStatus'] == 'I am not interested in new job opportunities')\n", + " | (df['JobStatus'] == 'I’m not actively looking, but I am open to new opportunities')]\n", + " \n", + " choices_job = ['Seeking', 'Not seeking']\n", + " df['JobSeek'] = np.select(conditions_job, choices_job, default=np.nan) \n", + " return df\n", + "\n", + "df2020 = refactor_job(df2020)" + ] + }, + { + "cell_type": "code", + "execution_count": 277, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "JobSeek\n", + "Not seeking 24\n", + "Seeking 12\n", + "nan 39\n", + "Name: JobSeek, dtype: int64" + ] + }, + "execution_count": 277, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020.groupby('JobSeek')['JobSeek'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 278, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 278, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['JobStatus'].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## DevType" + ] + }, + { + "cell_type": "code", + "execution_count": 279, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "14" + ] + }, + "execution_count": 279, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['DevType'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 280, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DevType\n", + "Developer, full-stack 9\n", + "Developer, back-end 5\n", + "Designer;Developer, front-end 2\n", + "Developer, back-end;Developer, front-end;Developer, full-stack 2\n", + "Developer, back-end;Developer, desktop or enterprise applications;Developer, full-stack 2\n", + "Academic researcher;Database administrator;Developer, back-end;Developer, desktop or enterprise applications;Developer, embedded applications or devices;Developer, front-end;Developer, full-stack;Developer, game or graphics;Developer, mobile;Educator;Scientist;System administrator 1\n", + "Database administrator;Developer, back-end;Developer, desktop or enterprise applications;Developer, embedded applications or devices;Developer, front-end;Developer, full-stack;Developer, game or graphics;DevOps specialist;Educator 1\n", + "Data or business analyst;Developer, back-end;Developer, front-end;Developer, full-stack;Developer, QA or test 1\n", + "Designer;Developer, back-end;Developer, front-end;Developer, mobile;Developer, QA or test 1\n", + "Developer, back-end;Developer, full-stack;Educator 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 280, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['DevType'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 281, + "metadata": {}, + "outputs": [], + "source": [ + "df2020['DevType'] = df2020['DevType'].bfill().ffill()" + ] + }, + { + "cell_type": "code", + "execution_count": 282, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DevType\n", + "Developer, full-stack 12\n", + "Developer, back-end 5\n", + "Developer, back-end;Developer, desktop or enterprise applications;Developer, game or graphics 3\n", + "Developer, back-end;Developer, desktop or enterprise applications;Developer, front-end;Developer, full-stack;Developer, QA or test 2\n", + "Developer, back-end;Developer, front-end;Developer, full-stack 2\n", + "Developer, full-stack;Product manager;Senior executive/VP 2\n", + "Data scientist or machine learning specialist;Database administrator;Developer, back-end;Developer, full-stack;Engineer, data 2\n", + "Developer, back-end;Developer, desktop or enterprise applications;Developer, front-end;Developer, full-stack;DevOps specialist 2\n", + "Developer, back-end;Developer, full-stack;Developer, mobile 2\n", + "Developer, back-end;Developer, desktop or enterprise applications;Developer, full-stack 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 282, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['DevType'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 283, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(99, 26)" + ] + }, + "execution_count": 283, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 284, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 284, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "df2020['DevType'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 285, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeGenderSalaryUSDCountryDevTypeHobbyistEdLevelEmploymentEthnicityCurrentJobSatisJobStatusLanguageDesireNextYearLanguageWorkedWithProfessionUndergradMajorYearsCodeProJobSeek
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [Age, Gender, SalaryUSD, Country, DevType, Hobbyist, EdLevel, Employment, Ethnicity, CurrentJobSatis, JobStatus, LanguageDesireNextYear, LanguageWorkedWith, Profession, UndergradMajor, YearsCodePro, JobSeek]\n", + "Index: []" + ] + }, + "execution_count": 285, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020[df2020['DevType'].isnull()]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ethnicity" + ] + }, + { + "cell_type": "code", + "execution_count": 286, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6" + ] + }, + "execution_count": 286, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "df2020['Ethnicity'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 287, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Ethnicity\n", + "White or of European descent 56\n", + "Hispanic or Latino/a/x 5\n", + "East Asian 2\n", + "Middle Eastern 1\n", + "White or of European descent;Indigenous (such as Native American, Pacific Islander, or Indigenous Australian) 1\n", + "South Asian 1\n", + "Indigenous (such as Native American, Pacific Islander, or Indigenous Australian) 1\n", + "Hispanic or Latino/a/x;White or of European descent 1\n", + "Multiracial 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 287, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#count number of each Ethnicity\n", + "df2020.groupby('Ethnicity')['Ethnicity'].count()\n", + "df2020['Ethnicity'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 288, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "#combine Ethnicity by str.match(if each string starts with a match of a regular expression pattern)\n", + "df2020.loc[df['Ethnicity'].str.match('Biracial') == True, 'Ethnicity'] = 'Biracial'\n", + "df2020.loc[df['Ethnicity'].str.match('Black or of African descent') == True, 'Ethnicity'] = 'Black or of African descent'\n", + "df2020.loc[df['Ethnicity'].str.match('East Asian') == True, 'Ethnicity'] = 'East Asian'\n", + "df2020.loc[df['Ethnicity'].str.match('Hispanic or Latino') == True, 'Ethnicity'] = 'Hispanic or Latino'\n", + "df2020.loc[df['Ethnicity'].str.match('Indigenous') == True, 'Ethnicity'] = 'Indigenous'\n", + "df2020.loc[df['Ethnicity'].str.match('Middle Eastern') == True, 'Ethnicity'] = 'Middle Eastern'\n", + "df2020.loc[df['Ethnicity'].str.match('South Asian') == True, 'Ethnicity'] = 'South Asian'\n", + "df2020.loc[df['Ethnicity'].str.match('White or of European descent') == True, 'Ethnicity'] = 'White or of European descent'\n", + "df2020.loc[df['Ethnicity'].str.match('Multiracial') == True, 'Ethnicity'] = 'Multiracial'" + ] + }, + { + "cell_type": "code", + "execution_count": 289, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Ethnicity\n", + "White or of European descent 57\n", + "Hispanic or Latino 6\n", + "East Asian 2\n", + "Middle Eastern 1\n", + "South Asian 1\n", + "Indigenous 1\n", + "Multiracial 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 289, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "df2020.groupby('Ethnicity')['Ethnicity'].count() #11 groups of Ethnicity after combining \n", + "df2020['Ethnicity'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 290, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "df2020['Ethnicity']=df2020.groupby(['Country'])['Ethnicity'].bfill().ffill()" + ] + }, + { + "cell_type": "code", + "execution_count": 291, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Ethnicity\n", + "White or of European descent 63\n", + "Hispanic or Latino 6\n", + "East Asian 2\n", + "Middle Eastern 1\n", + "South Asian 1\n", + "Indigenous 1\n", + "Multiracial 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 291, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#count number of each Ethnicity\n", + "df2020.groupby('Ethnicity')['Ethnicity'].count()\n", + "df2020['Ethnicity'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 292, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 292, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['Ethnicity'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 293, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Age 0\n", + "Gender 0\n", + "SalaryUSD 28\n", + "Country 0\n", + "DevType 0\n", + "Hobbyist 0\n", + "EdLevel 0\n", + "Employment 1\n", + "Ethnicity 0\n", + "CurrentJobSatis 0\n", + "JobStatus 0\n", + "LanguageDesireNextYear 5\n", + "LanguageWorkedWith 1\n", + "Profession 0\n", + "UndergradMajor 9\n", + "YearsCodePro 14\n", + "JobSeek 0\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "\n", + "print(df2020.isnull().sum())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## LanguageDesireNextYear" + ] + }, + { + "cell_type": "code", + "execution_count": 294, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 294, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['LanguageDesireNextYear'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 295, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LanguageDesireNextYear\n", + "Python;TypeScript 2\n", + "C# 2\n", + "HTML/CSS;Java;JavaScript;Python;R;SQL 2\n", + "C++;Python 2\n", + "Go;Kotlin;TypeScript 2\n", + "Go 2\n", + "Assembly;Bash/Shell/PowerShell;C;C#;C++;Go;Haskell;Java;JavaScript;Kotlin;Python;Rust 1\n", + "Kotlin;Python;Swift 1\n", + "Julia;Python;Rust;Swift 1\n", + "HTML/CSS;JavaScript;PHP;TypeScript 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 295, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['LanguageDesireNextYear'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 296, + "metadata": {}, + "outputs": [], + "source": [ + "#df2020['LanguageDesireNextYear'].fillna(method='ffill', inplace=True)\n", + "df2020['LanguageDesireNextYear']=df2020['LanguageDesireNextYear'].bfill().ffill()" + ] + }, + { + "cell_type": "code", + "execution_count": 297, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LanguageDesireNextYear\n", + "Java;Ruby;Scala 2\n", + "JavaScript;Swift 2\n", + "Python;TypeScript 2\n", + "Java;Kotlin 2\n", + "Go;Kotlin;TypeScript 2\n", + "Julia;Python;Rust;Swift 2\n", + "Bash/Shell/PowerShell;C#;Dart;Go;TypeScript 2\n", + "C++;Python 2\n", + "C# 2\n", + "Go 2\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 297, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['LanguageDesireNextYear'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 298, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 298, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['LanguageDesireNextYear'].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## LanguageWorkedWith" + ] + }, + { + "cell_type": "code", + "execution_count": 299, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 299, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['LanguageWorkedWith'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 300, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LanguageWorkedWith\n", + "HTML/CSS;JavaScript;PHP;SQL 5\n", + "C#;HTML/CSS;JavaScript;SQL 2\n", + "Bash/Shell/PowerShell;C#;C++ 2\n", + "Assembly;Bash/Shell/PowerShell;C;C#;HTML/CSS;Java;JavaScript;PHP;Python 1\n", + "Assembly;Bash/Shell/PowerShell;C;C++;Python 1\n", + "Assembly;Bash/Shell/PowerShell;C;C#;C++;Go;HTML/CSS;JavaScript;SQL;TypeScript 1\n", + "Bash/Shell/PowerShell;JavaScript;Python;Swift 1\n", + "C#;HTML/CSS;Java;JavaScript;PHP;Ruby;TypeScript 1\n", + "HTML/CSS;Python 1\n", + "HTML/CSS;JavaScript;Ruby 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 300, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['LanguageWorkedWith'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 301, + "metadata": {}, + "outputs": [], + "source": [ + "#df2020['LanguageWorkedWith'].fillna(method='ffill', inplace=True)\n", + "df2020['LanguageWorkedWith']=df2020['LanguageWorkedWith'].bfill().ffill()" + ] + }, + { + "cell_type": "code", + "execution_count": 302, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LanguageWorkedWith\n", + "HTML/CSS;JavaScript;PHP;SQL 5\n", + "HTML/CSS;Ruby;SQL 2\n", + "Bash/Shell/PowerShell;C#;C++ 2\n", + "C#;HTML/CSS;JavaScript;SQL 2\n", + "Bash/Shell/PowerShell;HTML/CSS;JavaScript 1\n", + "Assembly;Bash/Shell/PowerShell;C;C++;Python 1\n", + "C#;HTML/CSS;JavaScript;PHP;Ruby 1\n", + "C#;C++;HTML/CSS;Java;Python;Ruby;SQL;Swift 1\n", + "C++;Python 1\n", + "C;C++;HTML/CSS;Java;JavaScript;Python 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 302, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['LanguageWorkedWith'].value_counts().nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 303, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 303, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['LanguageWorkedWith'].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## MainBranch (Profession)" + ] + }, + { + "cell_type": "code", + "execution_count": 304, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 304, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['Profession'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 305, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Profession\n", + "I am a developer by profession 59\n", + "I am a student who is learning to code 10\n", + "I am not primarily a developer, but I write code sometimes as part of my work 4\n", + "I code primarily as a hobby 1\n", + "I used to be a developer by profession, but no longer am 1\n", + "Name: Profession, dtype: int64" + ] + }, + "execution_count": 305, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020.groupby('Profession')['Profession'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 306, + "metadata": {}, + "outputs": [], + "source": [ + "df2020.dropna(subset=['Profession'], inplace = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 307, + "metadata": {}, + "outputs": [], + "source": [ + "#Lets refactor column values of Profession column\n", + "#refactoring profession column\n", + "\n", + "def refactor_prof(df):\n", + " '''function to change Profession category to Developer, Student, Non-Developer, Novoice, Ex-Developer'''\n", + " conditions_prof = [(df['Profession'] == 'I am a developer by profession'),\n", + " (df['Profession'] == 'I am a student who is learning to code'),\n", + " (df['Profession'] == 'I am not primarily a developer, but I write code sometimes as part of my work'),\n", + " (df['Profession'] == 'I code primarily as a hobby'),\n", + " (df['Profession'] == 'I used to be a developer by profession, but no longer am')]\n", + " \n", + " choices_prof = ['Developer', 'Student', 'Non developer', 'Novoice', 'Ex-Developer']\n", + " df['Profession'] = np.select(conditions_prof, choices_prof, default=np.nan) \n", + " return df\n", + "\n", + "df2020 = refactor_prof(df2020)" + ] + }, + { + "cell_type": "code", + "execution_count": 308, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Profession\n", + "Developer 59\n", + "Student 10\n", + "Non developer 4\n", + "Ex-Developer 1\n", + "Novoice 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 308, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['Profession'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 309, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 309, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['Profession'].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## UndergradMajor" + ] + }, + { + "cell_type": "code", + "execution_count": 310, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9" + ] + }, + "execution_count": 310, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "df2020['UndergradMajor'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 311, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "UndergradMajor\n", + "A health science (such as nursing, pharmacy, radiology, etc.) 1\n", + "A humanities discipline (such as literature, history, philosophy, etc.) 1\n", + "A natural science (such as biology, chemistry, physics, etc.) 3\n", + "A social science (such as anthropology, psychology, political science, etc.) 1\n", + "Another engineering discipline (such as civil, electrical, mechanical, etc.) 5\n", + "Computer science, computer engineering, or software engineering 43\n", + "Fine arts or performing arts (such as graphic design, music, studio art, etc.) 2\n", + "I never declared a major 1\n", + "Information systems, information technology, or system administration 3\n", + "Mathematics or statistics 3\n", + "Web development or web design 3\n", + "Name: UndergradMajor, dtype: int64" + ] + }, + "execution_count": 311, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020.groupby('UndergradMajor')['UndergradMajor'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 312, + "metadata": {}, + "outputs": [], + "source": [ + "def refactor_major(df):\n", + " conditions_major = [(df['UndergradMajor'] == 'Computer science, computer engineering, or software engineering'), \n", + " (df['UndergradMajor'] == 'Another engineering discipline (such as civil, electrical, mechanical, etc.)'),\n", + " (df['UndergradMajor'] == 'Information systems, information technology, or system administration'), \n", + " (df['UndergradMajor'] == 'Mathematics or statistics'),\n", + " (df['UndergradMajor'] == 'A natural science (such as biology, chemistry, physics, etc.)') \n", + " |(df['UndergradMajor'] == 'A health science (such as nursing, pharmacy, radiology, etc.)'), \n", + " (df['UndergradMajor'] == 'Web development or web design'), \n", + " (df['UndergradMajor'] == 'A business discipline (such as accounting, finance, marketing, etc.)'), \n", + " (df['UndergradMajor'] == 'A humanities discipline (such as literature, history, philosophy, etc.)')\n", + " | (df['UndergradMajor'] == 'A social science (such as anthropology, psychology, political science, etc.)')\n", + " | (df['UndergradMajor'] == 'Fine arts or performing arts (such as graphic design, music, studio art, etc.)'),\n", + " (df['UndergradMajor'] == 'I never declared a major') ]\n", + " \n", + " choices_major = ['Computer Science', 'Engineering', 'Info Systems', 'Math/Stat', 'Other Science',\n", + " 'Web Design/Dev', 'Business', 'Arts and Science', 'No major']\n", + " df['UndergradMajor'] = np.select(conditions_major, choices_major, default = np.NaN)\n", + " return df\n", + "\n", + "df2020 = refactor_major(df2020)\n", + "df2020['UndergradMajor'].replace('nan', 'No major', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 313, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "UndergradMajor\n", + "Arts and Science 4\n", + "Computer Science 43\n", + "Engineering 5\n", + "Info Systems 3\n", + "Math/Stat 3\n", + "No major 10\n", + "Other Science 4\n", + "Web Design/Dev 3\n", + "Name: UndergradMajor, dtype: int64" + ] + }, + "execution_count": 313, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020.groupby('UndergradMajor')['UndergradMajor'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 314, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 314, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['UndergradMajor'].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Employment" + ] + }, + { + "cell_type": "code", + "execution_count": 315, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 315, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['Employment'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 316, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Employment\n", + "Employed full-time 52\n", + "Employed part-time 2\n", + "Independent contractor, freelancer, or self-employed 6\n", + "Not employed, but looking for work 4\n", + "Student 10\n", + "Name: Employment, dtype: int64" + ] + }, + "execution_count": 316, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "df2020.groupby('Employment')['Employment'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 317, + "metadata": {}, + "outputs": [], + "source": [ + "df2020.dropna(subset=['Employment'], inplace = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 318, + "metadata": {}, + "outputs": [], + "source": [ + "#Refactoring Employment\n", + "df2020['Employment'].replace('Employed full-time', 'Full-time', inplace =True)\n", + "df2020['Employment'].replace('Employed part-time', 'Part-time',inplace =True)\n", + "df2020['Employment'].replace('Independent contractor, freelancer, or self-employed', 'Self-employed', inplace =True)\n", + "df2020['Employment'].replace('Not employed, but looking for work', 'Not employed', inplace =True)" + ] + }, + { + "cell_type": "code", + "execution_count": 319, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Employment\n", + "Full-time 52\n", + "Not employed 4\n", + "Part-time 2\n", + "Self-employed 6\n", + "Student 10\n", + "Name: Employment, dtype: int64" + ] + }, + "execution_count": 319, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020.groupby('Employment')['Employment'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 320, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 320, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['Employment'].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Country" + ] + }, + { + "cell_type": "code", + "execution_count": 321, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 321, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['Country'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 322, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Country\n", + "Austria 1\n", + "Belgium 2\n", + "Brazil 2\n", + "Canada 8\n", + "Czech Republic 1\n", + "France 7\n", + "Germany 3\n", + "Greece 1\n", + "India 1\n", + "Indonesia 1\n", + "Israel 1\n", + "Italy 1\n", + "Mexico 2\n", + "Netherlands 1\n", + "Poland 1\n", + "Spain 2\n", + "Tunisia 1\n", + "Ukraine 1\n", + "United Kingdom 10\n", + "United States 27\n", + "Name: Country, dtype: int64" + ] + }, + "execution_count": 322, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "df2020.groupby('Country')['Country'].count()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## YearsCodePro" + ] + }, + { + "cell_type": "code", + "execution_count": 323, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "14" + ] + }, + "execution_count": 323, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['YearsCodePro'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 324, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Age int64\n", + "Gender object\n", + "SalaryUSD float64\n", + "Country object\n", + "DevType object\n", + "Hobbyist object\n", + "EdLevel object\n", + "Employment object\n", + "Ethnicity object\n", + "CurrentJobSatis object\n", + "JobStatus object\n", + "LanguageDesireNextYear object\n", + "LanguageWorkedWith object\n", + "Profession object\n", + "UndergradMajor object\n", + "YearsCodePro object\n", + "JobSeek object\n", + "dtype: object" + ] + }, + "execution_count": 324, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 325, + "metadata": {}, + "outputs": [], + "source": [ + "#convert YearsCodePro data type from obj to int\n", + "df2020[\"YearsCodePro\"]=pd.to_numeric(df2020[\"YearsCodePro\"],errors='coerce')\n", + "\n", + "#fill YearsCodePro's null values with mean\n", + "means = df2020['YearsCodePro'].mean() #means 8.673142457693764\n", + "df2020['YearsCodePro'] = df2020['YearsCodePro'].fillna(means)\n", + "df2020['YearsCodePro'] = df2020['YearsCodePro'].round(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 326, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 326, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['YearsCodePro'].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hobbyist" + ] + }, + { + "cell_type": "code", + "execution_count": 327, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 327, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['Hobbyist'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 328, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Hobbyist\n", + "No 17\n", + "Yes 57\n", + "Name: Hobbyist, dtype: int64" + ] + }, + "execution_count": 328, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020.groupby('Hobbyist')['Hobbyist'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 329, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Age 0\n", + "Gender 0\n", + "SalaryUSD 27\n", + "Country 0\n", + "DevType 0\n", + "Hobbyist 0\n", + "EdLevel 0\n", + "Employment 0\n", + "Ethnicity 0\n", + "CurrentJobSatis 0\n", + "JobStatus 0\n", + "LanguageDesireNextYear 0\n", + "LanguageWorkedWith 0\n", + "Profession 0\n", + "UndergradMajor 0\n", + "YearsCodePro 0\n", + "JobSeek 0\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "print(df2020.isnull().sum())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## ConvertedComp (SalaryUSD)" + ] + }, + { + "cell_type": "code", + "execution_count": 330, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "27" + ] + }, + "execution_count": 330, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['SalaryUSD'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 331, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SalaryUSD\n", + "130000.0 2\n", + "37816.0 2\n", + "116000.0 1\n", + "94500.0 1\n", + "16488.0 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 331, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['SalaryUSD'].value_counts().nlargest()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "mean_salary = df2020.groupby(['Age','EdLevel','Country'])['SalaryUSD'].mean()\n", + "mean_salary.nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 332, + "metadata": {}, + "outputs": [], + "source": [ + "#df2020['SalaryUSD'] = df2020.groupby(['Age', 'EdLevel', 'Country'])['SalaryUSD'].transform(lambda grp: grp.fillna(np.mean(grp)))\n", + "\n", + "means = df2020.groupby(['Age', 'EdLevel', 'Country'])['SalaryUSD'].transform('mean')\n", + "df2020['SalaryUSD'] = df2020['SalaryUSD'].fillna(means)" + ] + }, + { + "cell_type": "code", + "execution_count": 333, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Age EdLevel Country \n", + "34 Bachelors United States 1.176000e+06\n", + "44 Bachelors United States 8.900000e+05\n", + "25 Bachelors France 5.945390e+05\n", + "32 Bachelors United States 4.948333e+05\n", + "35 Professional United States 2.500000e+05\n", + "28 Bachelors United States 1.300000e+05\n", + "38 Bachelors United States 1.250000e+05\n", + "34 Bachelors United Kingdom 1.240920e+05\n", + "48 Associate United States 1.170000e+05\n", + "36 Bachelors United States 1.160000e+05\n", + "Name: SalaryUSD, dtype: float64" + ] + }, + "execution_count": 333, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "mean_salary = df2020.groupby(['Age','EdLevel','Country'])['SalaryUSD'].mean()\n", + "mean_salary.nlargest(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 334, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "SalaryUSD\n", + "79000.0 3\n", + "37816.0 3\n", + "130000.0 2\n", + "116000.0 1\n", + "117000.0 1\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 334, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "df2020['SalaryUSD'].value_counts().nlargest()" + ] + }, + { + "cell_type": "code", + "execution_count": 335, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "24" + ] + }, + "execution_count": 335, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "df2020['SalaryUSD'].isnull().sum() #2952 out of 64461 -> 4.6%" + ] + }, + { + "cell_type": "code", + "execution_count": 336, + "metadata": {}, + "outputs": [], + "source": [ + "df2020.dropna(subset=['SalaryUSD'], inplace = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 337, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 337, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['SalaryUSD'].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cleaned Dataset:2020_Survey" + ] + }, + { + "cell_type": "code", + "execution_count": 338, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Age 0\n", + "Gender 0\n", + "SalaryUSD 0\n", + "Country 0\n", + "DevType 0\n", + "Hobbyist 0\n", + "EdLevel 0\n", + "Employment 0\n", + "Ethnicity 0\n", + "CurrentJobSatis 0\n", + "JobStatus 0\n", + "LanguageDesireNextYear 0\n", + "LanguageWorkedWith 0\n", + "Profession 0\n", + "UndergradMajor 0\n", + "YearsCodePro 0\n", + "JobSeek 0\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "print(df2020.isnull().sum())" + ] + }, + { + "cell_type": "code", + "execution_count": 339, + "metadata": {}, + "outputs": [], + "source": [ + "#resetting the index values\n", + "df2020 = df2020.reset_index(drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 340, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeGenderSalaryUSDCountryDevTypeHobbyistEdLevelEmploymentEthnicityCurrentJobSatisJobStatusLanguageDesireNextYearLanguageWorkedWithProfessionUndergradMajorYearsCodeProJobSeek
036Man116000.0United StatesDeveloper, back-end;Developer, desktop or ente...YesBachelorsFull-timeWhite or of European descentSlightly dissatisfiedI’m not actively looking, but I am open to n...JavaScriptPython;SQLDeveloperComputer Science13.0nan
122Man32315.0United KingdomDatabase administrator;Developer, full-stack;D...YesBachelorsFull-timeWhite or of European descentVery satisfiedI’m not actively looking, but I am open to n...HTML/CSS;Java;JavaScript;Python;R;SQLHTML/CSS;Java;JavaScript;Python;SQLDeveloperMath/Stat4.0nan
223Man40070.0United KingdomDeveloper, back-end;Developer, desktop or ente...YesBachelorsFull-timeWhite or of European descentSlightly dissatisfiedI am actively looking for a jobGo;JavaScript;Swift;TypeScriptC#;JavaScript;SwiftDeveloperComputer Science2.0Seeking
349Man14268.0SpainDesigner;Developer, front-endNoNo DegreeFull-timeWhite or of European descentVery dissatisfiedI’m not actively looking, but I am open to n...HTML/CSS;JavaScriptHTML/CSS;JavaScriptDeveloperMath/Stat7.0nan
453Man38916.0NetherlandsDesigner;Developer, back-endYesNo DegreeFull-timeWhite or of European descentVery satisfiedI am not interested in new job opportunitiesPythonC;JavaScript;PythonNon developerNo major20.0Not seeking
\n", + "
" + ], + "text/plain": [ + " Age Gender SalaryUSD Country \\\n", + "0 36 Man 116000.0 United States \n", + "1 22 Man 32315.0 United Kingdom \n", + "2 23 Man 40070.0 United Kingdom \n", + "3 49 Man 14268.0 Spain \n", + "4 53 Man 38916.0 Netherlands \n", + "\n", + " DevType Hobbyist EdLevel \\\n", + "0 Developer, back-end;Developer, desktop or ente... Yes Bachelors \n", + "1 Database administrator;Developer, full-stack;D... Yes Bachelors \n", + "2 Developer, back-end;Developer, desktop or ente... Yes Bachelors \n", + "3 Designer;Developer, front-end No No Degree \n", + "4 Designer;Developer, back-end Yes No Degree \n", + "\n", + " Employment Ethnicity CurrentJobSatis \\\n", + "0 Full-time White or of European descent Slightly dissatisfied \n", + "1 Full-time White or of European descent Very satisfied \n", + "2 Full-time White or of European descent Slightly dissatisfied \n", + "3 Full-time White or of European descent Very dissatisfied \n", + "4 Full-time White or of European descent Very satisfied \n", + "\n", + " JobStatus \\\n", + "0 I’m not actively looking, but I am open to n... \n", + "1 I’m not actively looking, but I am open to n... \n", + "2 I am actively looking for a job \n", + "3 I’m not actively looking, but I am open to n... \n", + "4 I am not interested in new job opportunities \n", + "\n", + " LanguageDesireNextYear LanguageWorkedWith \\\n", + "0 JavaScript Python;SQL \n", + "1 HTML/CSS;Java;JavaScript;Python;R;SQL HTML/CSS;Java;JavaScript;Python;SQL \n", + "2 Go;JavaScript;Swift;TypeScript C#;JavaScript;Swift \n", + "3 HTML/CSS;JavaScript HTML/CSS;JavaScript \n", + "4 Python C;JavaScript;Python \n", + "\n", + " Profession UndergradMajor YearsCodePro JobSeek \n", + "0 Developer Computer Science 13.0 nan \n", + "1 Developer Math/Stat 4.0 nan \n", + "2 Developer Computer Science 2.0 Seeking \n", + "3 Developer Math/Stat 7.0 nan \n", + "4 Non developer No major 20.0 Not seeking " + ] + }, + "execution_count": 340, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 341, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 50 entries, 0 to 49\n", + "Data columns (total 17 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Age 50 non-null int64 \n", + " 1 Gender 50 non-null object \n", + " 2 SalaryUSD 50 non-null float64\n", + " 3 Country 50 non-null object \n", + " 4 DevType 50 non-null object \n", + " 5 Hobbyist 50 non-null object \n", + " 6 EdLevel 50 non-null object \n", + " 7 Employment 50 non-null object \n", + " 8 Ethnicity 50 non-null object \n", + " 9 CurrentJobSatis 50 non-null object \n", + " 10 JobStatus 50 non-null object \n", + " 11 LanguageDesireNextYear 50 non-null object \n", + " 12 LanguageWorkedWith 50 non-null object \n", + " 13 Profession 50 non-null object \n", + " 14 UndergradMajor 50 non-null object \n", + " 15 YearsCodePro 50 non-null float64\n", + " 16 JobSeek 50 non-null object \n", + "dtypes: float64(2), int64(1), object(14)\n", + "memory usage: 6.8+ KB\n" + ] + } + ], + "source": [ + "df2020.info()#after cleaning the dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### After Cleaning Dataset 2020" + ] + }, + { + "cell_type": "code", + "execution_count": 342, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total : 850\n", + "Total missing : 0\n", + "Missing Percentage: 0.0 %\n" + ] + } + ], + "source": [ + "#Find % of missing data\n", + "missing_count = df2020.isnull().sum() #number of missing\n", + "total_cells = np.product(df2020.shape) # number of cells (cols x rows)\n", + "total_missing = missing_count.sum()\n", + "missing_percent = (total_missing*100)/total_cells\n", + "\n", + "print('Total : ', total_cells)\n", + "print('Total missing : ', total_missing)\n", + "print('Missing Percentage: ', missing_percent, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualization\n", + "After cleaning the datasets, we started visualizations to analyze the datasets." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## To find whether there is any difference between men and women's income from latest stack overflow survey (2020)" + ] + }, + { + "cell_type": "code", + "execution_count": 343, + "metadata": {}, + "outputs": [], + "source": [ + "plt.style.use('seaborn-darkgrid')\n", + "plt.rcParams[\"figure.figsize\"] = (20,10)" + ] + }, + { + "cell_type": "code", + "execution_count": 344, + "metadata": {}, + "outputs": [], + "source": [ + "#sns.boxplot('SalaryUSD', data=df2020, width=0.3) \n", + "#Cleaning SalaryUSD's outliers\n", + "df2020 = df2020[(df2020['SalaryUSD'] < 200000)]" + ] + }, + { + "cell_type": "code", + "execution_count": 345, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Income vs Gender')" + ] + }, + "execution_count": 345, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmgAAANSCAYAAABhoEG0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABzVElEQVR4nOzde5xVdaH///cAMjPeQq6CkKXmXYYRRDtiR0kLL6UHkFK8JakhyPdk6jmIeb8cEbsollJeExMVr2hqXtJM018goBmF1VFCwEG8wzAC+/dHuY+TKKS4Zhiez8fDh7PXZ621P2sPs2fPvGatXVEqlUoBAAAAAACgMK2aegIAAAAAAADrGoEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAaORvf/tbttlmmxx++OFNPZV1Vl1dXSZMmJAhQ4Zk9913z4477ph+/frl+OOPzy9/+cuUSqUmnd8LL7yQbbbZJv/93//dpPMAAIC1WZumngAAAAD/5+GHH85///d/5+23384+++yT/fffPxtssEFeeuml3HPPPRk5cmS+9KUv5fvf/37atPEjHQAArK28mgcAAGgmnnvuuZxwwgnZdNNN8/Of/zxbbLFFo/ERI0bkrLPOyqRJk3LNNdfkm9/8ZhPNFAAA+Lhc4gwAAKCZOO2007J8+fJcfPHF74szSdK6deucdtpp6dKlS66//vomv9QZAADw0Qk0AADAKj355JPZZpttcuedd+aKK67IPvvskx133DH9+/fP97///bzzzjuN1n/nnXcyYcKEfOUrX0lNTU322GOPnHjiifnrX//aaL358+fntNNOyxe+8IXsuOOO+cIXvpDTTjst8+fPb7Te4YcfngMOOCDPPvtsvvGNb6S2tjZ9+/bNf/3Xf+WNN97IrFmzcvTRR6e2tjb9+vXL6aefnrfeeqvRPpYuXZrLLrssAwYMyI477phdd901o0aNyp/+9KcPPfZFixZlxx13zBFHHPG+seXLl6dfv375yle+Ul42ceLEDBw4MDvvvHNqa2szZMiQ3Hrrrat8jGfNmpXf//736d+/f2pqaj5wvbZt2+bSSy/NjTfemIqKikZjd911V4YMGZJevXqltrY2Q4cOzUMPPdRonVtvvTXbbLNNnnjiiYwdOzZ77rlndtxxxwwYMCBXX331++5vzpw5+c53vpPddtsttbW1GT58eObMmbPSuS1YsCDf/e53y5/PvfbaK+eee25effXVRuv1798/w4YNy+WXX54+ffpk5513zs9+9rNVPkYAANCSuMQZAACw2n7wgx+kVCrla1/7Wj71qU/l1ltvzeWXX54k+fa3v50kWbFiRY499tg8/vjj2WuvvfL1r389r776an72s5/lt7/9bW6++eZsttlm+fOf/5yhQ4fmrbfeypAhQ/K5z30uf/zjH3PLLbfkwQcfzA033JDPfvaz5fuuq6vLkUcemf333z8DBgzIr371q9x+++156aWX8sc//jH77bdfBgwYkIceeiiTJk1KRUVFzjrrrCRJQ0NDjj766EyfPj0HHnhgjjrqqCxYsCA33nhjhgwZkquuuio777zzSo+5ffv22WuvvfLAAw9k/vz52XTTTctjjz32WOrq6sqXGrvmmmtywQUXZP/998+QIUPyzjvv5Lbbbsvo0aNTX1+fQw899AMf28cffzxJsvvuu6/y87CygHPRRRflpz/9aXbfffeceOKJWbp0ae6+++4MHz48o0ePzlFHHdVo/TFjxmT99dfPEUcckTZt2uSGG27I//zP/2TDDTfMwQcfnCR56aWXcvDBB2fx4sU57LDD0q1bt/zyl7/MqFGj3nf/c+bMySGHHJKGhoZ87Wtfy2abbZZZs2blxhtvzKOPPpobb7wx7du3L68/bdq0zJ49O6NGjcprr72Wz3/+86s8bgAAaEkEGgAAYLXV19fnF7/4RT71qU8lSb761a+mX79+ufXWW8uB5s4778zjjz+eY445JieddFJ521133TWHHXZYrr322px66qk5++yz8+qrr+aaa65p9Mv5/v3755hjjsnpp5/e6KyK1157LSeeeGKOO+64JMnAgQPTr1+/PPXUUzn11FNz5JFHJkkGDRqUL3zhC/nVr35V3vbaa6/N7373u/zgBz/IvvvuW15+6KGH5itf+Uq++93v5u677/7A4x48eHDuv//+3HnnnTn22GPLy2+77bast956+epXv5okueWWW7Llllvme9/7XnmdQYMGZciQIZk1a9aHPrYvvfRSkmSzzTZ739jbb7+dpUuXvm/5RhttlPXWWy8zZ87MT3/60xx66KE544wzyuNHHXVUhg0blnHjxmXAgAGN4tIGG2yQyZMnp23btkn+/rh/8YtfzOTJk8uB5oc//GE5rvXt27f8mJ144on5xS9+0WguZ599dpYsWZLbbrstn/70p8vLv/SlL+Ub3/hGLrnkkpx55pnl5YsXL86PfvQjYQYAgHWWS5wBAACr7d///d/LcSb5+y/5t9hiiyxcuLC87L777kuSHH300Y223WWXXXLzzTdn+PDhWbRoUZ588sn07dv3fb+g/8IXvpC+ffvmqaeeyiuvvNJobL/99it/vN5662XzzTdPkkbRpXXr1unevXsWLFhQXnb33Xdn4403zq677ppFixaV/2vdunW+8IUv5Pnnn8+f//znDzzufv36pUuXLrnzzjvLy95888089NBD2Wuvvcpnhmy66ab561//mksvvbS8v/XXXz9TpkzJ2Wef/YH7T1J+P5kVK1a8b+ycc87J5z//+ff99//9f/9fkmTKlCnlx+e9x/fmm29mv/32yzvvvJOHH3640T6//OUvl+NMknTv3j2bbLJJ+XNZKpXy4IMPZtttty3HmSRp1apVhg0b1mhfr7/+eh577LH06dMnG264YaM5bLvttunRo0d++ctfNtpmvfXWyy677PKhjwkAALRkzqABAABWW6dOnd63rG3bto2iwt/+9rdssskmjS5n9a6ePXsmSWbOnJlSqZTPfe5zK72fz33uc3nqqafyt7/9LR06dPjA+2/duvVKl7dq1aocPJLkr3/9a+rr6z/0bI25c+dmyy23XOlY69at8x//8R+5/PLL89xzz2X77bfPPffck6VLl2bQoEHl9U499dQcf/zxGT9+fMaPH58uXbpk9913z5e+9KXsueee73vPmPd69+yWl19++X1j3/zmN8tn6STJ7bffnjvuuKPR8SXJYYcd9qHH916r+ly++uqrefPNN8sR7L222mqrRrdfeOGFrFixIr/61a8+9DFeunRpKisrkyTt2rVLmzZ+JAUAYN3l1TAAALDaPiwwvOudd95Z5XrvjScrs3z58iRpdIZHkg/8hf6q7m/FihXp3r17zjnnnA9cZ9ttt/3QfQwcODCXX3557rjjjmy//fa5/fbb07lz5+yxxx7ldbbYYovcc889mTp1ah599NH89re/zR133JFbb701X/rSl3LppZd+4P533XXXJMlvfvObfO1rX2s0ttVWWzWKIlOnTn3f8SXJ+PHjs8EGG6x0/127dm10u1Wr1bugQkNDw/uW/fNZPu/e3nvvvTN06NAP3Ne7Qe1fuX8AAGipBBoAAGCN6t69e/73f/83r732Wtq1a9do7PTTT0+nTp3Kv8SfPXv2Svfx/PPPp6KiIl26dFljc1qwYEF22WWXrLfeeo3Gpk2bliVLlqSqqupD97H55ptnl112yS9+8YscdthhmTZtWo499thydFi2bFn+9Kc/pU2bNtlll13Kl+965ZVX8q1vfSv3339//vSnP2Xrrbde6f579uyZbbbZJg899FBmzZq1ymD0z8eX/P2smF69ejUae+GFF/KXv/wl66+//mrvL0k22WSTfOpTn8pf/vKX94298MILK73/+vr6/Nu//dv71n/ggQecMQMAAP/EnywBAABr1D777JNSqZTrrruu0fLp06dn0qRJeeWVV9K+ffvy+8w88cQTjdZ77LHH8rvf/S59+/Zd6WXSPoovf/nLefvtt/OTn/yk0fIFCxZk+PDh+c53vrNaZ3QMHjw4CxYsyIUXXpgkjS5vtmzZshx22GE56aST8s4775SXd+jQIZ/+9KeTND6DZGUuvPDCVFRUZOTIkXnuuedWus5TTz2V22+/vdGyAQMGJEkuvfTSLFu2rLz8nXfeyejRo/Otb32r0XvyrI6KiooMGDAgL7zwQu65555GY1deeWWj2x07dkzv3r3zm9/8pvy+OO965JFHMmLEiEyYMOFfun8AAGjp/PkSAACwRg0aNCh33313Lrvssjz//PPZbbfdUldXl4kTJ6Zr164ZMWJEkuSMM87IoYcemmOOOSZf+9rXstVWW2X27Nm56aab0q5du5xxxhlrbE7HHHNMHn744fzwhz/MH/7wh+y222554403cuONN+aNN97IuHHjVnkGTfL30HPOOefkl7/8ZXr37p3PfOYz5bGqqqp885vfzA9/+MMMHTo0++23X6qrqzNt2rRMmTIle+211we+x827tttuu0yYMCGnnHJKDj744Oy+++7p27dv2rVrlwULFuSRRx7JjBkzst566+Xoo49ObW1tkuTzn/98Bg8enFtuuSVDhgzJ/vvvn7Zt2+bOO+/MzJkzc+ihh5bf/+df8Z//+Z957LHHcvLJJ2fatGn57Gc/m0ceeSTPPvvs+9Y944wzcthhh+Ub3/hGvva1r2XrrbfOX/7yl9x4441p165d/uu//utfvn8AAGjJBBoAAGCNatOmTX76059mwoQJueuuu/LQQw+lU6dO2XvvvfP//t//K785/VZbbZVbb701l112We67775MmjQpnTp1yuDBgzN8+PA1dnmzJNlggw1yww03ZMKECbn33nvz8MMPZ+ONN852222XCy+8MLvttttq7ae6ujr7779/Jk2a1OjsmXcdf/zx6dy5cyZNmpQf//jHWbx4cT796U/n//2//5dhw4at1n18/vOfz913350777wz9913X6699tq8+uqr2XDDDbPVVlvl29/+dgYNGlR+HN917rnnplevXpk0aVIuvfTStG7dOp/5zGdy7rnnZvDgwat13/+sffv2ufnmm/P9738/v/jFL/LWW2+lV69eueqqq3LggQc2WnebbbbJrbfemh/96EeNPp8DBgzI8ccfn8033/wjzQEAAFqqitKq3p0TAAAAAACANcp70AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFa9PUE2gJ6urebOopAAAAAAAAzUSnThutch1n0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBmkWgaWhoyAEHHJAnn3yyvOyll17KMccck5qamuyzzz655557Gm0zZcqU7L333qmpqcmIESOyaNGi8lipVMq4ceOy2267pW/fvhk7dmxWrFhRHn/11VdzwgknpLa2Nv37988dd9zRaN/PPfdcDj744NTU1GTQoEF59tlnP6EjBwAAAAAA1kVNHmiWLl2aE088MbNnzy4vW7ZsWY477ri0adMmt912W4YNG5ZTTjklf/rTn5IkM2fOzJgxYzJy5MhMmjQpb7zxRkaPHl3e/uqrr86UKVMyfvz4XHLJJbnrrrty9dVXl8dHjx6dN998M5MmTcrw4cNz2mmnZebMmUmSxYsX59hjj02fPn1y6623pra2Nscdd1wWL15c0CMCAAAAAAC0dG2a8s6ff/75fOc730mpVGq0/JFHHsm8efPy85//PBtuuGG22GKLPProo3n66aez9dZb5/rrr8++++6bgw46KEkyduzY7LXXXpkzZ0569OiR6667LqNGjUqfPn2SJCeddFJ++MMfZtiwYXnxxRfz8MMP58EHH0z37t2z9dZbZ/r06bnhhhvSs2fP3HPPPamsrMwpp5ySioqKjBkzJo8++mjuvffeDBw4sOiHCAAAAAAAaIGaNNA89dRT2XXXXfPtb387vXr1arT885//fDbccMPysh/96Eflj2fMmJFjjjmmfLtr167p1q1bZsyYkbZt22bevHnZZZddyuO9e/fO3Llz8/LLL2fGjBnp2rVrunfv3mj8iiuuKO+7d+/eqaioSJJUVFRk5513zvTp0wUamlSpVMrSpUubehqsxLuR+d3nDZqfyspKnx8AAAAAmpUmDTSHHnroSpfPmTMnm222WcaNG5c77rgjm2yySUaNGpW99947SfLyyy+nc+fOjbbp0KFD5s+fn7q6uiRpNN6xY8ckKY+vbNsFCxYkSerq6rLVVlu9b/y9l2BbGb/345NUKpUyZszJ+eMf/9DUU4G10rbbbp/zzhsr0gAAAADQbDRpoPkgixcvzm233Zb99tsvl19+eZ588smMGjUqkyZNyk477ZT6+vq0bdu20TZt27ZNQ0ND6uvry7ffO5YkDQ0NWbJkyQdum2SV4yvTvv0Gad26yd/OhxasVCqlbdtm+eUKa4X11mudjh03EmgAAAAAaDaa5W98W7dunXbt2uXMM89Mq1atssMOO+R3v/tdbrrppuy0006prKx8XzBpaGhIdXV1oxhTWVlZ/jhJqqurP3DbqqqqJFnl+MosWvS2M2j4xJ155gUucdYM1dfX5+ijhyZJrrpq4oc+V9B0Kisr88orbzX1NAAAAABYR3TsuNEq12mWgaZz586pqKhIq1b/d1bKZz/72fzxj39MknTp0iULFy5stM3ChQvTqVOndOnSJcnfL1X27vvMvHvZs3fHP2jbD9v3P18W7Z/94y0o4BNUkcpKv/xvbt77tV9ZWeVz1Ix5ngYAAACgOWmW1+WqqanJ7Nmzs3z58vKyP//5z9lss83K41OnTi2PzZs3L/PmzUtNTU26dOmSbt26NRqfOnVqunXrls6dO6dXr16ZO3du5s+f32i8V69e5X0//fTT5Tf9LpVKmTZtWmpqaj7JQwYAAAAAANYhzTLQHHDAAVmxYkXOOuusvPDCC5k4cWJ+/etfZ8iQIUmSQw45JHfccUduvvnmzJo1K6ecckr23HPP9OjRozw+bty4PPnkk3nyySdz8cUX54gjjkiS9OjRI/369cvJJ5+cWbNm5eabb86UKVMydOjfL1E0YMCAvPHGGznvvPPy/PPP57zzzsuSJUuy7777Ns2DAQAAAAAAtDjN8hJnG264Ya6++uqceeaZOeCAA9KtW7d8//vfzw477JAkqa2tzdlnn51LLrkkr7/+enbfffecc8455e2HDRuWV155JSNHjkzr1q0zePDgHHXUUeXxsWPHZsyYMRkyZEg6deqU888/Pz179izf9xVXXJEzzjgjN910U7bZZptMmDAh66+/fqGPAQAAAAAA0HJVlEquyv9x1dW92dRTAJpIfX19hg4dlCSZOHFyqqq8Bw0AAAAArOs6ddpoles0y0ucAQAAAAAAtGQCDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAArWLAJNQ0NDDjjggDz55JPvG3vzzTezxx575NZbb220fMqUKdl7771TU1OTESNGZNGiReWxUqmUcePGZbfddkvfvn0zduzYrFixojz+6quv5oQTTkhtbW369++fO+64o9G+n3vuuRx88MGpqanJoEGD8uyzz67hIwYAAAAAANZlTR5oli5dmhNPPDGzZ89e6fhFF12Ul19+udGymTNnZsyYMRk5cmQmTZqUN954I6NHjy6PX3311ZkyZUrGjx+fSy65JHfddVeuvvrq8vjo0aPz5ptvZtKkSRk+fHhOO+20zJw5M0myePHiHHvssenTp09uvfXW1NbW5rjjjsvixYs/gaMHAAAAAADWRU0aaJ5//vkMGTIkL7744krHf/e73+W3v/1tOnXq1Gj59ddfn3333TcHHXRQtt1224wdOzaPPPJI5syZkyS57rrrMmrUqPTp0ye77bZbTjrppEycODFJ8uKLL+bhhx/Oueeem6233joHH3xwvvrVr+aGG25Iktxzzz2prKzMKaecki233DJjxozJBhtskHvvvfcTfCQAAAAAAIB1SZMGmqeeeiq77rprJk2a9L6xhoaGfPe7383pp5+etm3bNhqbMWNG+vTpU77dtWvXdOvWLTNmzMiCBQsyb9687LLLLuXx3r17Z+7cuXn55ZczY8aMdO3aNd27d280/vTTT5f33bt371RUVCRJKioqsvPOO2f69Olr8tABAAAAAIB1WJumvPNDDz30A8cuv/zybL/99unXr9/7xl5++eV07ty50bIOHTpk/vz5qaurS5JG4x07dkyS8vjKtl2wYEGSpK6uLltttdX7xj/oEmzv+kfPAdYx7/3ar6jwXAAAAAAArJ4mDTQf5Pnnn8+NN96YO++8c6Xj9fX17zurpm3btmloaEh9fX359nvHkr+flbNkyZIP3DbJKsdXpn37DdK6dZO/nQ/QBJYs+b+n0Q4dNkx1dXUTzgYAAAAAWFs0u0BTKpVy2mmnZdSoUeUzX/5ZZWXl+4JJQ0NDqqurG8WYysrK8sdJUl1d/YHbVlVVfei+3x1fmUWL3vZX87COejcKJ8krr7yVqqplTTgbAAAAAKA56Nhxo1Wu0+wCzUsvvZSnn346f/zjH3PhhRcm+ftZLWeccUbuueee/PSnP02XLl2ycOHCRtstXLgwnTp1SpcuXZL8/VJl777PzLuXPXt3/IO2TfKB4/98WbR/Vip9xAMG1mrv/dovlTwXAAAAAACrp9ldl6tLly65//77c/vtt5f/69y5c0aNGpXzzjsvSVJTU5OpU6eWt5k3b17mzZuXmpqadOnSJd26dWs0PnXq1HTr1i2dO3dOr169Mnfu3MyfP7/ReK9evcr7fvrpp1P6x29ZS6VSpk2blpqamgKOHgAAAAAAWBc0uzNo2rRpk8033/x9yzp06FA+O+aQQw7J4Ycfnl69emWnnXbKeeedlz333DM9evQoj48bNy6bbrppkuTiiy/O0UcfnSTp0aNH+vXrl5NPPjljxozJM888kylTpuT6669PkgwYMCAXX3xxzjvvvHz961/PjTfemCVLlmTfffct6iEAAAAAAABauGYXaFZHbW1tzj777FxyySV5/fXXs/vuu+ecc84pjw8bNiyvvPJKRo4cmdatW2fw4ME56qijyuNjx47NmDFjMmTIkHTq1Cnnn39+evbsmSTZcMMNc8UVV+SMM87ITTfdlG222SYTJkzI+uuvX/RhAgAAAAAALVRFqeQdEz6uuro3m3oKQBOpr6/P0KGDkiQTJ05OVVVVE88IAAAAAGhqnTpttMp1mt170AAAAAAAALR0Ag0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAgrVp6gkAAACrr1QqZenSpU09DVaiVColSSoqKpp4JqxMZWWlzw0AAM2KQAMAAGuJUqmUMWNOzh//+Iemngqsdbbddvuce+5YkQYAgGbDJc4AAGAt4pfLAAAALYMzaAAAYC1RUVGRc88d6xJnzVB9fX2GDRuaJLnyyompqqpq4hnxz1ziDACA5kagAQCAtUhFRYVf/jdzVVVVPkcAAMAqucQZAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABSsWQSahoaGHHDAAXnyySfLy6ZPn56vf/3rqa2tzZe//OXcfPPNjbZ5/PHHc8ABB6SmpiZHHHFE5syZ02j8mmuuyR577JHa2tqceuqpWbJkSXls6dKlOfXUU9OnT5/069cvV111VaNt58yZk6OOOiq9evXKfvvtl8cee+wTOGoAAAAAAGBd1eSBZunSpTnxxBMze/bs8rK6urocc8wx6du3b2677baMGjUq55xzTn71q18lSV566aWMGDEiAwcOzC233JL27dvn+OOPT6lUSpLcd999GT9+fM4+++xce+21mTFjRi666KLy/seOHZtnn3021157bc4444yMHz8+9957b5KkVCplxIgR6dixYyZPnpwDDzwwI0eOzEsvvVTcgwIAAAAAALRoTRponn/++QwZMiQvvvhio+UPPPBAOnbsmBNPPDGf+cxnsv/+++eggw7KXXfdlSS5+eabs+OOO+boo4/O5z73uVxwwQWZO3dunnrqqSTJddddlyOPPDJ77bVXevbsmbPOOiuTJ0/OkiVLsnjx4tx8880ZM2ZMdthhh+yzzz755je/mYkTJyZJfvvb32bOnDk5++yzs+WWW+a4445Lr169Mnny5GIfHAAAAAAAoMVq0kDz1FNPZdddd82kSZMaLd9jjz1ywQUXvG/9t956K0kyY8aM9OnTp7y8uro6O+ywQ6ZPn57ly5fnmWeeaTTeq1evvPPOO5k1a1ZmzZqVZcuWpba2tjzeu3fvzJgxIytWrMiMGTOy/fbbZ/311280Pn369DV12AAAAAAAwDquTVPe+aGHHrrS5d27d0/37t3Lt1955ZXcfffdOeGEE5L8/RJonTt3brRNhw4dMn/+/LzxxhtZunRpo/E2bdqkXbt2mT9/flq1apVNNtkkbdu2LY937NgxS5cuzWuvvfah+/4wFRWrd8xAy/Ler/2KCs8FALCu8poAAAD4VzVpoFkd9fX1OeGEE9KxY8d87WtfS5IsWbKkUWBJkrZt26ahoSH19fXl2ysbL5VKKx1LkoaGhg/d9wdp336DtG7d5G/nAzSBJUv+72m0Q4cNU11d3YSzAQCaitcEAADAv6pZB5q33347xx9/fP73f/83N9xwQ/mHnMrKyvcFk4aGhmy88caprKws3/7n8erq6ixfvnylY0lSVVWVysrKvPbaa+8br6qq+sB5Llr0tr+Qg3XUu1E4SV555a1UVS1rwtkAAE3FawIAAOC9OnbcaJXrNNtA89Zbb+Wb3/xmXnzxxVx77bX5zGc+Ux7r0qVLFi5c2Gj9hQsXZrvttku7du1SWVmZhQsXZsstt0ySLFu2LK+99lo6deqUUqmUV199NcuWLUubNn8//Lq6ulRVVWXjjTdOly5d8vzzz79v3/982bN/ViqtgYMG1jrv/dovlTwXAMC6ymsCAADgX9Usr8u1YsWKjBw5Mn/729/ys5/9LJ/73OcajdfU1GTq1Knl20uWLMlzzz2XmpqatGrVKjvttFOj8enTp6dNmzbZdttts91226VNmzaZPn16eXzq1KnZaaed0qpVq9TU1OT3v/99o7+Amzp1ampqaj65AwYAAAAAANYpzTLQ3HLLLXnyySdz7rnnZuONN05dXV3q6urKlx4bNGhQpk2blgkTJmT27NkZPXp0unfvnl133TVJcuihh+bKK6/MAw88kJkzZ+bMM8/MkCFDUl1dnerq6hx00EE588wzM3PmzDzwwAO56qqrcsQRRyRJ+vbtm65du2b06NGZPXt2JkyYkJkzZ2bw4MFN9XAAAAAAAAAtTLO8xNl9992XFStW5Ljjjmu0vG/fvvnZz36W7t2759JLL83555+fyy67LLW1tbnssstS8Y83gtl///0zd+7cnH766WloaMiXvvSlnHzyyeX9jB49OmeeeWaOPPLIbLjhhjnhhBPypS99KUnSunXr/OhHP8qYMWMycODAbL755rnsssvSrVu34h4AAAAAAACgRasolVwd+eOqq3uzqacANJH6+voMHTooSTJx4uRUVVU18YwAgKbgNQEAAPBenTpttMp1muUlzgAAAAAAAFoygQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIK1aeoJAADQfJRKpSxdurSppwFrnfr6+pV+DKy+ysrKVFRUNPU0AAAKI9AAAFC2dOnSDB06qKmnAWu1YcOGNvUUYK00ceLkVFVVNfU0AAAK4xJnAAAAAAAABXMGDQAAK3XZF15LZetSU08D1hqlf3y5uEITrL6lyysy4tF2TT0NAIAmIdAAALBSla1LqWrd1LMAoGXzhwAAwLrLJc4AAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQsGYRaBoaGnLAAQfkySefLC+bM2dOjjrqqPTq1Sv77bdfHnvssUbbPP744znggANSU1OTI444InPmzGk0fs0112SPPfZIbW1tTj311CxZsqQ8tnTp0px66qnp06dP+vXrl6uuuqrRtqu6bwAAAAAAgI+jyQPN0qVLc+KJJ2b27NnlZaVSKSNGjEjHjh0zefLkHHjggRk5cmReeumlJMlLL72UESNGZODAgbnlllvSvn37HH/88SmVSkmS++67L+PHj8/ZZ5+da6+9NjNmzMhFF11U3v/YsWPz7LPP5tprr80ZZ5yR8ePH5957712t+wYAAAAAAPi4mjTQPP/88xkyZEhefPHFRst/+9vfZs6cOTn77LOz5ZZb5rjjjkuvXr0yefLkJMnNN9+cHXfcMUcffXQ+97nP5YILLsjcuXPz1FNPJUmuu+66HHnkkdlrr73Ss2fPnHXWWZk8eXKWLFmSxYsX5+abb86YMWOyww47ZJ999sk3v/nNTJw4cbXuGwAAAAAA4ONq0kDz1FNPZdddd82kSZMaLZ8xY0a23377rL/++uVlvXv3zvTp08vjffr0KY9VV1dnhx12yPTp07N8+fI888wzjcZ79eqVd955J7NmzcqsWbOybNmy1NbWNtr3jBkzsmLFilXeNwAAAAAAwMfVpinv/NBDD13p8rq6unTu3LnRsg4dOmT+/PmrHH/jjTeydOnSRuNt2rRJu3btMn/+/LRq1SqbbLJJ2rZtWx7v2LFjli5dmtdee22V9/1BKipWfbxAy/Per/2KCs8FwNrP8xgATcXraQBgXdOkgeaDLFmypFFASZK2bdumoaFhleP19fXl2ysbL5VKKx1LkoaGhlXe98q0b79BWrdu8rfzAZrAkiX/9zTaocOGqa6ubsLZAHx8731eA4AieT0NAKxrmuVP4JWVlXnttdcaLWtoaEhVVVV5/J+DSUNDQzbeeONUVlaWb//zeHV1dZYvX77SsSSpqqpa5X2vzKJFb/srH1hHvRuFk+SVV95KVdWyJpwNwMf33uc1ACiS19MAQEvSseNGq1ynWQaaLl265Pnnn2+0bOHCheVLj3Xp0iULFy583/h2222Xdu3apbKyMgsXLsyWW26ZJFm2bFlee+21dOrUKaVSKa+++mqWLVuWNm3+fvh1dXWpqqrKxhtvvMr7/iCl0sc6ZGAt9d6v/VLJcwGw9vM8BkBT8XoaAFjXNMvrctXU1OT3v/99o7/gnDp1ampqasrjU6dOLY8tWbIkzz33XGpqatKqVavstNNOjcanT5+eNm3aZNttt812222XNm3aZPr06Y32vdNOO6VVq1arvG8AAAAAAICPq1kGmr59+6Zr164ZPXp0Zs+enQkTJmTmzJkZPHhwkmTQoEGZNm1aJkyYkNmzZ2f06NHp3r17dt111yTJoYcemiuvvDIPPPBAZs6cmTPPPDNDhgxJdXV1qqurc9BBB+XMM8/MzJkz88ADD+Sqq67KEUccsVr3DQAAAAAA8HE1y0DTunXr/OhHP0pdXV0GDhyYO++8M5dddlm6deuWJOnevXsuvfTSTJ48OYMHD85rr72Wyy67LBX/eCOY/fffP8cdd1xOP/30HH300enZs2dOPvnk8v5Hjx6dHXbYIUceeWTOOuusnHDCCfnSl760WvcNAAAAAADwcVWUSq7w+nHV1b3Z1FMAmkh9fX2GDh2UJJk4cXKqqqqaeEYAH897n9d+uterqWrdxBMCoEWrX5588+FNkng9DQC0LJ06bbTKdZrlGTQAAAAAAAAtmUADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABSsTVNPgOajVCpl6dKlTT0NWKvU19ev9GNg9VVWVqaioqKppwEAAABQKIGGsqVLl2bo0EFNPQ1Yaw0bNrSppwBrpYkTJ6eqqqqppwEAAABQKJc4AwAAAAAAKJgzaFipt3cemrTyzwNWS6n09/+7RBOsvhXLssG0iU09CwAAAIAm4zfwrFyrNknr9Zp6FgAAAAAA0CK5xBkAAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFCwjxxo3n777bz88st5++231+R8AAAAAAAAWrw2/8rKCxcuzOWXX54HHnggCxYsKC/v2rVr9t1333zzm9/MJptsssYnCQAAAAAA0JKsdqB54YUXcthhh2X99dfPkCFDstVWW2WjjTbKW2+9lVmzZuWuu+7KXXfdlRtvvDHdunX7JOcMAAAAAACwVlvtQDN27Nhsu+22ueyyy9K2bdtGY/vss0+OO+64fOtb38pll12W8847b41PFAAAAAAAoKVY7feg+d3vfpcTTjjhfXHmXW3bts0JJ5yQJ554Yo1NDgAAAAAAoCVa7UDz5ptvpkuXLh+6Trdu3fLyyy9/7EkBAAAAAAC0ZKsdaFasWJE2bT78imitW7fO8uXLP/akAAAAAAAAWrLVfg+aJJk/f36WLl36geOvvPLKx54QAAAAAABAS/cvBZrBgwd/6HipVEpFRcXHmhAAAAAAAEBLt9qB5sEHH/wk5wEAAAAAALDOWO1As9lmm32S8wAAAAAAAFhntPpXVp45c2bOPPPMLFq0KEmyaNGijBgxIrW1tfniF7+YiRMnfiKTBAAAAAAAaElW+wyaxx9/PMcee2z69u2bZcuWJUlOPPHEzJgxI//1X/+VjTbaKOPGjUtVVVUGDRr0iU0YAAAAAABgbbfagebHP/5xvvWtb2XkyJFJktmzZ+e3v/1tjj322Hz9619PklRUVOSKK64QaAAAAAAAAD7Eal/i7Nlnn80BBxxQvv3oo4+moqIiX/7yl8vLdtxxx/zv//7vGp0gAAAAAABAS7PagaaioiKlUql8+/HHH0/79u2zww47lJe9+eabqaqqWrMzBAAAAAAAaGFWO9DU1tbm3nvvTZK8+OKLefLJJ7PPPvs0WufnP/95dtpppzU7QwAAAAAAgBZmtd+D5tvf/naOOuqo3H///Zk7d27atWuX4cOHJ0meeOKJXH/99Xn00Udz7bXXfmKTBQAAAAAAaAlWO9DsuOOOufvuu3P//fenVatW2XfffdO+ffskyTPPPJMVK1bkuuuuS21t7Sc2WQAAAAAAgJZgtQNNknTp0iWHH374+5Yfe+yxa2xCAAAAAAAALd1qB5rbb7995Tto0yYbbbRRtt9++3Tq1GlNzQsAAAAAAKDFWu1Ac8kll6x0ealUyptvvpm33347++23Xy644IK0bdt2jU0QAAAAAACgpVntQPPQQw996Pif//znfOc738kll1ySk0466WNPDAAAAAAAoKVqtaZ2tOWWW+akk07KPffcs6Z2CQAAAAAA0CKtsUCTJJ/97GezcOHCNblLAAAAAACAFmeNBpq5c+emQ4cOa3KXAAAAAAAALc4aCzR//vOf8z//8z/ZZ5991tQuAQAAAAAAWqQ2q7ti//79U1FR8b7lpVIpb775Zt5666188YtfzIknnrhGJwgAAAAAANDSrHagOeGEE1a+gzZtsvHGG2ebbbbJpptuusYmBgAAAAAA0FKtdqD5j//4j/LHc+bMSY8ePT6RCQEAAAAAALR0H+k9aAYMGJCDDz4411xzTRYsWLCm5wQAAAAAANCifaRA8+tf/zoDBw7MQw89lC9+8Ys57LDDcsMNN2TRokVren4AAAAAAAAtzkcKNO3bt88hhxyS6667Lo888kj233//PProo9l7770zbNiw3HbbbVmyZMmanisAAAAAAECL8JECzXvV1dWlrq4u8+fPz4oVK7LBBhvkpptuyp577pn7779/TcwRAAAAAACgRflIgeYPf/hDvv/97+fLX/5yBg8enGeffTbf+MY38pvf/CaXXHJJfv7zn+fII4/Md7/73Y81uXnz5uW4447LzjvvnP79++eaa64pjz333HM5+OCDU1NTk0GDBuXZZ59ttO2UKVOy9957p6amJiNGjGh0+bVSqZRx48Zlt912S9++fTN27NisWLGiPP7qq6/mhBNOSG1tbfr375877rjjYx0HAAAAAADAe32kQDNw4MBMmzYtRx11VH79619nwoQJOfDAA7PBBhuU1+ndu3f69+//sSb3n//5n1l//fVz66235tRTT80PfvCD/PKXv8zixYtz7LHHpk+fPrn11ltTW1ub4447LosXL06SzJw5M2PGjMnIkSMzadKkvPHGGxk9enR5v1dffXWmTJmS8ePH55JLLsldd92Vq6++ujw+evTovPnmm5k0aVKGDx+e0047LTNnzvxYxwIAAAAAAPCuNh9loxEjRmTQoEHp2rXrB66z6667Ztddd/3IE3v99dczffr0nHPOOfnMZz6Tz3zmM9ljjz3yxBNP5PXXX09lZWVOOeWUVFRUZMyYMXn00Udz7733ZuDAgbn++uuz77775qCDDkqSjB07NnvttVfmzJmTHj165LrrrsuoUaPSp0+fJMlJJ52UH/7whxk2bFhefPHFPPzww3nwwQfTvXv3bL311pk+fXpuuOGG9OzZ8yMfDwAAAAAAwLs+UqC59tprc+CBB67puTRSVVWV6urq3HrrrfnOd76TOXPmZNq0afnP//zPzJgxI717905FRUWSpKKiIjvvvHOmT5+egQMHZsaMGTnmmGPK++ratWu6deuWGTNmpG3btpk3b1522WWX8njv3r0zd+7cvPzyy5kxY0a6du2a7t27Nxq/4oorPnS+/5jKWq0lHAMAa5+KCt+DmhOfCwCaitcEAMC65iMFmv333z8//vGPc+yxx6Zbt25p27btmp5XKisrc/rpp+ecc87Jddddl+XLl2fgwIE5+OCD8+CDD2arrbZqtH6HDh0ye/bsJMnLL7+czp07v298/vz5qaurS5JG4x07dkyS8vjKtl2wYMEHzrV9+w3SuvVHulpcs7JkyUf65wAAH0uHDhumurq6qafBP3g9AEBT8ZoAAFjXfKSfwB999NG89NJLue2221Y6/oc//OFjTepdf/7zn7PXXnvlG9/4RmbPnp1zzjknn//857NkyZL3RaG2bdumoaEhSVJfX/+B4/X19eXb7x1LkoaGhlXue2UWLXq7RfyVz7uPDQAU6ZVX3kpV1bKmngb/4PUAAE3Fa4Lmp1Qq5fXXX2/qabASK1asyFtvvdnU04C10oYbbpRWrdb+P7ZviT71qU+Vr5rVEnTsuNEq1/lIgeZ//ud/Pspm/5Innngit9xySx555JFUVVVlp512yoIFC/LjH/84PXr0eF8waWhoSFVVVZK/n32zsvHq6upGMaaysrL8cZJUV1d/4Lbv7vuDlEof/Vibi5ZwDACsfUol34OaE58LAJqK1wTNS6lUypgxJ+ePf1wzf4QLAKuy7bbb59xzx7aoSLMqHynQ9O3b9wPHXn755Y88mfd69tlns/nmmzcKI9tvv30uv/zy9OnTJwsXLmy0/sKFC8uXJuvSpctKxzt16pQuXbokSerq6srvM/PuZc/eHf+gbQEAAADWFevSL8gAoCl8pEDzl7/8JePGjcvzzz+f5cuXJ/n7X1Y0NDRk0aJFee655z72xDp37pwXXnghDQ0N5bNe/vKXv6R79+6pqanJT37yk5RKpVRUVKRUKmXatGn51re+lSSpqanJ1KlTM3DgwCTJvHnzMm/evNTU1KRLly7p1q1bpk6dWg40U6dOTbdu3dK5c+f06tUrc+fOzfz587PpppuWx3v16vWxjwkAAABgbVBRUZFzzx3rEmfNlEucwUfnEmfNV0u7xNnq+EiB5rvf/W6WL1+eYcOG5fzzz88pp5ySuXPn5oYbbsh55523RibWv3//XHTRRTnttNMyfPjw/PWvf83ll1+eb3/72xkwYEAuvvjinHfeefn617+eG2+8MUuWLMm+++6bJDnkkENy+OGHp1evXtlpp51y3nnnZc8990yPHj3K4+PGjSsHmIsvvjhHH310kqRHjx7p169fTj755IwZMybPPPNMpkyZkuuvv36NHBcAAADA2qCioiLt2rVr6mnwAdq3b9/UUwDgY/pIgeaZZ57JpEmTst122+X222/PFltskaFDh+azn/1sbrnllvzHf/zHx57YRhttlGuuuSbnnXdeBg8enPbt22f48OH52te+loqKilxxxRU544wzctNNN2WbbbbJhAkTsv766ydJamtrc/bZZ+eSSy7J66+/nt133z3nnHNOed/Dhg3LK6+8kpEjR6Z169YZPHhwjjrqqPL42LFjM2bMmAwZMiSdOnXK+eefn549e37sYwIAAAAAAEg+YqBp06ZNNtpooyTJFltskT/84Q/5/Oc/n3/7t3/LhRdeuMYmt9VWW+Xqq69e6VjPnj1z2223feC2AwcOLF/i7J+1bt06o0ePzujRo1c63qFDh1x++eX/+oQBAAAAAABWw0e62F5tbW2uvPLK1NfXZ8cdd8xDDz2UUqmUZ599NpWVlWt6jgAAAAAAAC3KRzqDZvTo0Rk+fHh69OiRr3/967nuuuvSt2/fLF68OMcff/yaniMAAAAAAECL8pECzVZbbZX7778/9fX1qa6uzuTJk/PUU0+lXbt26dWr1xqeIgAAAAAAQMuy2oHmpZdeWunyV199NUmy9dZbl9fr1q3bGpgaAAAAAABAy7TagaZ///6pqKgo3y6VSo1uv3fZH/7whzU3QwAAAAAAgBZmtQPNgw8++EnOAwAAAAAAYJ2x2oFms802W+U6DQ0N+cMf/rBa6wIAAAAAAKyrVjvQvNe0adNy1lln5fnnn8+KFSsajbVu3TrPPvvsGpkcAAAAAABAS9Tqo2x07rnnZrPNNsvll1+e6urqXHrppTnttNPSrl27jB07dk3PEQAAAAAAoEX5SGfQzJ49OxdddFG23HLL7LDDDllvvfUydOjQdOjQIT/5yU+y3377rel5AgAAAAAAtBgfKdBUV1endevWSZItttgif/zjH/Pv//7v6dmzZ/7617+u0QkCANA0li5v6hkA0NL5XgMArMs+UqDZbbfdcvHFF+e0005LbW1trrnmmgwZMiQPPfRQNt544zU9RwAAClIqlcofj3h0kyacCQDrmvd+DwIAWBd8pPegGTNmTF5//fXcf//92X///bPRRhvl85//fC644IKMGDFiTc8RAAAAAACgRfmXz6BZuHBhOnbsmOuuuy5J8txzz+Xf//3fM2DAgOy9997p0qXLGp8kAADFqKioKH982RdeTWXrJpwMAC3e0uX/d8bme78HAQCsC1Y70Lz99tv5zne+k0ceeSRTpkzJlltumdtuuy1jxoxJly5dUlVVlauuuioTJ07Mpptu+knOGQCAAlS2TqoEGgAAAPhErPYlzi699NLMnTs3119/fbbYYossXrw45557bnr27Jn7778/v/jFL9KvX7+MGzfuk5wvAAAAAADAWm+1A83999+fMWPGpHfv3qmoqMhjjz2Wt99+O4cffnjWW2+9JMnAgQPz2GOPfWKTBQAAAAAAaAlWO9DU1dXl05/+dPn2448/ntatW6dfv37lZR07dsySJUvW7AwBAAAAAABamNUONF26dMmcOXOSJKVSKY888khqamryqU99qrzO008/na5du675WQIAAAAAALQgqx1oDjzwwJx33nl58MEHc/7552fevHk59NBDy+OzZs3K9773vQwYMOATmSgAAAAAAEBL0WZ1Vxw+fHjeeuutnHrqqamoqMioUaNywAEHJEkuvPDCXH311dlzzz0zfPjwT2yyAAAAAAAALcFqB5o2bdpk9OjRGT169PvGDjrooHzlK1/J9ttvv0YnBwAAAAAA0BKtdqD5MNtss82a2A0AAAAAAMA6YbXfgwYAAAAAAIA1Q6ABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAgrVp6gnQTC1/p6lnAEBL5vsMAAAAsI4TaCgrlUrljzd4+oYmnAkA65L3fv8BAAAAWFe4xBkAAAAAAEDBnEFDWUVFRfnjt2sPTVqv14SzAaBFW/5O+WzN937/AQAAAFhXCDSsXOv1BBoAAAAAAPiEuMQZAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFa9aBpqGhIWeddVZ22WWX/Nu//Vu+973vpVQqJUmee+65HHzwwampqcmgQYPy7LPPNtp2ypQp2XvvvVNTU5MRI0Zk0aJF5bFSqZRx48Zlt912S9++fTN27NisWLGiPP7qq6/mhBNOSG1tbfr375877rijmAMGAAAAAADWCc060Jx77rl5/PHHc+WVV+biiy/OTTfdlEmTJmXx4sU59thj06dPn9x6662pra3Ncccdl8WLFydJZs6cmTFjxmTkyJGZNGlS3njjjYwePbq836uvvjpTpkzJ+PHjc8kll+Suu+7K1VdfXR4fPXp03nzzzUyaNCnDhw/PaaedlpkzZxZ+/AAAAAAAQMvUpqkn8EFee+21TJ48OVdffXV69uyZJDn66KMzY8aMtGnTJpWVlTnllFNSUVGRMWPG5NFHH829996bgQMH5vrrr8++++6bgw46KEkyduzY7LXXXpkzZ0569OiR6667LqNGjUqfPn2SJCeddFJ++MMfZtiwYXnxxRfz8MMP58EHH0z37t2z9dZbZ/r06bnhhhvK8wAAAAAAAPg4mu0ZNFOnTs2GG26Yvn37lpcde+yxueCCCzJjxoz07t07FRUVSZKKiorsvPPOmT59epJkxowZ5fiSJF27dk23bt0yY8aMLFiwIPPmzcsuu+xSHu/du3fmzp2bl19+OTNmzEjXrl3TvXv3RuNPP/30J3zEAAAAAADAuqLZnkEzZ86cbLbZZrn99ttz+eWX55133snAgQMzfPjw1NXVZauttmq0focOHTJ79uwkycsvv5zOnTu/b3z+/Pmpq6tLkkbjHTt2TJLy+Mq2XbBgwYfO9x+taK3WEo4BgLVPRYXvQc2JzwUATcVrAgBgXdNsA83ixYvzwgsv5MYbb8wFF1yQurq6nH766amurs6SJUvStm3bRuu3bds2DQ0NSZL6+voPHK+vry/ffu9YkjQ0NKxy3yvTvv0Gad262Z6MtNqWLGm2/xwAaME6dNgw1dXVTT0N/sHrAQCaitcEAMC6ptn+BN6mTZu89dZbufjii7PZZpslSV566aX8/Oc/z+abb/6+YNLQ0JCqqqokSWVl5UrHq6urG8WYysrK8sdJUl1d/YHbvrvvlVm06O0W8Vc+78YrACjSK6+8laqqZU09Df7B6wEAmorXBABAS9Kx40arXKfZBppOnTqlsrKyHGeS5LOf/WzmzZuXvn37ZuHChY3WX7hwYfnSZF26dFnpeKdOndKlS5ckSV1dXfl9Zt697Nm74x+07YcplT7CQTYzLeEYAFj7lEq+BzUnPhcANBWvCQCAdU2zvS5XTU1Nli5dmr/+9a/lZX/5y1+y2WabpaamJk8//XRK/3jlViqVMm3atNTU1JS3nTp1anm7efPmZd68eampqUmXLl3SrVu3RuNTp05Nt27d0rlz5/Tq1Stz587N/PnzG4336tXrEz5iAAAAAABgXdFsA80WW2yRPffcM6NHj86sWbPy61//OhMmTMghhxySAQMG5I033sh5552X559/Puedd16WLFmSfffdN0lyyCGH5I477sjNN9+cWbNm5ZRTTsmee+6ZHj16lMfHjRuXJ598Mk8++WQuvvjiHHHEEUmSHj16pF+/fjn55JMza9as3HzzzZkyZUqGDh3aZI8FAAAAAADQsjTbS5wlybhx43LOOefkkEMOSXV1dYYOHZrDDz88FRUVueKKK3LGGWfkpptuyjbbbJMJEyZk/fXXT5LU1tbm7LPPziWXXJLXX389u+++e84555zyfocNG5ZXXnklI0eOTOvWrTN48OAcddRR5fGxY8dmzJgxGTJkSDp16pTzzz8/PXv2LPrwAQAAAACAFqqiVHKF14+rru7Npp7CGlFfX5+hQwclSd7uc2TSer0mnhEALdbyd7LB765NkkycODlVVVVNPCHe9d7XAz/d69VUtW7iCQHQotUvT7758CZJvCYAAFqWTp02WuU6zfYSZwAAAAAAAC2VQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCtWnqCQAA0DwtXV6RpNTU04C1RukfXy4VFU07D1ib/P17DQDAukmgAQBgpUY82q6ppwAAAAAtlkucAQAAAAAAFMwZNAAAlFVWVmbixMlNPQ1Y69TX12fYsKFJkiuvnJiqqqomnhGsfSorK5t6CgAAhRJoAAAoq6io8Itl+Jiqqqp8HQEAAKvkEmcAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRsrQk0xx57bP77v/+7fPu5557LwQcfnJqamgwaNCjPPvtso/WnTJmSvffeOzU1NRkxYkQWLVpUHiuVShk3blx222239O3bN2PHjs2KFSvK46+++mpOOOGE1NbWpn///rnjjjs++QMEAAAAAADWGWtFoLn77rvzyCOPlG8vXrw4xx57bPr06ZNbb701tbW1Oe6447J48eIkycyZMzNmzJiMHDkykyZNyhtvvJHRo0eXt7/66qszZcqUjB8/PpdccknuuuuuXH311eXx0aNH580338ykSZMyfPjwnHbaaZk5c2ZxBwwAAAAAALRozT7QvPbaaxk7dmx22mmn8rJ77rknlZWVOeWUU7LllltmzJgx2WCDDXLvvfcmSa6//vrsu+++Oeigg7Lttttm7NixeeSRRzJnzpwkyXXXXZdRo0alT58+2W233XLSSSdl4sSJSZIXX3wxDz/8cM4999xsvfXWOfjgg/PVr341N9xwQ/EHDwAAAAAAtEjNPtBceOGFOfDAA7PVVluVl82YMSO9e/dORUVFkqSioiI777xzpk+fXh7v06dPef2uXbumW7dumTFjRhYsWJB58+Zll112KY/37t07c+fOzcsvv5wZM2aka9eu6d69e6Pxp59++hM+UgAAAAAAYF3Rpqkn8GGeeOKJ/O53v8tdd92VM888s7y8rq6uUbBJkg4dOmT27NlJkpdffjmdO3d+3/j8+fNTV1eXJI3GO3bsmCTl8ZVtu2DBgg+d6z9a0VqtJRwDAGufigrfg4C133ufxzyvAQAAq6PZBpqlS5fmjDPOyOmnn56qqqpGY0uWLEnbtm0bLWvbtm0aGhqSJPX19R84Xl9fX7793rEkaWhoWOW+V6Z9+w3SunWzPxlplZYsabb/HABowTp02DDV1dVNPQ2Aj+W9r6U9rwEAAKuj2f5Gfvz48dlxxx2zxx57vG+ssrLyfcGkoaGhHHI+aLy6urpRjKmsrCx/nCTV1dWr3PfKLFr0dov4C7l34xUAFOmVV95KVdWypp4GwMfy3tfSntcAAICOHTda5TrNNtDcfffdWbhwYWpra5P8X0S57777csABB2ThwoWN1l+4cGH50mRdunRZ6XinTp3SpUuXJH+/TNq77zPz7mXP3h3/oG0/TKn0UY6yeWkJxwDA2qdU8j0IWPu993nM8xoAALA6mu11uX72s5/lrrvuyu23357bb789/fv3T//+/XP77benpqYmTz/9dEr/+KmnVCpl2rRpqampSZLU1NRk6tSp5X3Nmzcv8+bNS01NTbp06ZJu3bo1Gp86dWq6deuWzp07p1evXpk7d27mz5/faLxXr17FHDgAAAAAANDiNdszaDbbbLNGtzfYYIMkyeabb54OHTrk4osvznnnnZevf/3rufHGG7NkyZLsu+++SZJDDjkkhx9+eHr16pWddtop5513Xvbcc8/06NGjPD5u3LhsuummSZKLL744Rx99dJKkR48e6devX04++eSMGTMmzzzzTKZMmZLrr7++qEMHAAAAAABauGYbaD7MhhtumCuuuCJnnHFGbrrppmyzzTaZMGFC1l9//SRJbW1tzj777FxyySV5/fXXs/vuu+ecc84pbz9s2LC88sorGTlyZFq3bp3BgwfnqKOOKo+PHTs2Y8aMyZAhQ9KpU6ecf/756dmzZ9GHCQAAAAAAtFAVpZKrI39cdXVvNvUU1oj6+voMHTooSfJ2nyOT1us18YwAaLGWv5MNfndtkmTixMmpqqpq4gkBfDzvfS3teQ0AAOjUaaNVrrNWnkFDAVYsa+oZwNrj3c5dUdG084C1ie8z8JGVSqUsXbq0qafBP6mvr1/pxzQflZWVqfB6DQCAZkSgYaU2mDaxqacAAMA/KZVKGTPm5Pzxj39o6qnwIYYNG9rUU2Altt12+5x77liRBgCAZqNVU08AAABYfX65DAAA0DJ4D5o1oKW8B43LZcC/rr6+vvxXsldeOdH15uEjcMkZ+Nd4zdZ8vfujlee05sn3GwAAiuQ9aPiXVFRU+OUyfAxVVVW+hgD4xHnNBgAA0DK4xBkAAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgAg0AAAAAAEDBBBoAAAAAAICCCTQAAAAAAAAFE2gAAAAAAAAKJtAAAAAAAAAUTKABAAAAAAAomEADAAAAAABQMIEGAAAAAACgYAINAAAAAABAwQQaAAAAAACAggk0AAAAAAAABRNoAAAAAAAACibQAAAAAAAAFEygAQAAAAAAKJhAAwAAAAAAUDCBBgAAAAAAoGACDQAAAAAAQMEEGgAAAAAAgIIJNAAAAAAAAAUTaAAAAAAAAAom0AAAAAAAABRMoAEAAAAAACiYQAMAAAAAAFAwgQYAAAAAAKBgzTrQLFiwIKNGjUrfvn2zxx575IILLsjSpUuTJHPmzMlRRx2VXr16Zb/99stjjz3WaNvHH388BxxwQGpqanLEEUdkzpw5jcavueaa7LHHHqmtrc2pp56aJUuWlMeWLl2aU089NX369Em/fv1y1VVXffIHCwAAAAAArDOabaAplUoZNWpUlixZkokTJ+b73/9+Hn744fzgBz9IqVTKiBEj0rFjx0yePDkHHnhgRo4cmZdeeilJ8tJLL2XEiBEZOHBgbrnllrRv3z7HH398SqVSkuS+++7L+PHjc/bZZ+faa6/NjBkzctFFF5Xve+zYsXn22Wdz7bXX5owzzsj48eNz7733NsnjAAAAAAAAtDxtmnoCH+Qvf/lLpk+fnt/85jfp2LFjkmTUqFG58MIL84UvfCFz5szJjTfemPXXXz9bbrllnnjiiUyePDknnHBCbr755uy44445+uijkyQXXHBBdt999zz11FPZddddc9111+XII4/MXnvtlSQ566yzMmzYsJx88skplUq5+eab85Of/CQ77LBDdthhh8yePTsTJ07MgAEDmuzxAAAAAAAAWo5mewZNp06d8tOf/rQcZ9711ltvZcaMGdl+++2z/vrrl5f37t0706dPT5LMmDEjffr0KY9VV1dnhx12yPTp07N8+fI888wzjcZ79eqVd955J7NmzcqsWbOybNmy1NbWNtr3jBkzsmLFik/oaAEAAAAAgHVJsz2DZuONN84ee+xRvr1ixYpcf/312W233VJXV5fOnTs3Wr9Dhw6ZP39+knzo+BtvvJGlS5c2Gm/Tpk3atWuX+fPnp1WrVtlkk03Stm3b8njHjh2zdOnSvPbaa2nfvv1K51tR8bEPGVgLvfdrv6LCcwEAAAAAsHqabaD5ZxdddFGee+653HLLLbnmmmsaBZQkadu2bRoaGpIkS5Ys+cDx+vr68u2VjZdKpZWOJSnv/5+1b79BWrduticjAZ+gJUv+72m0Q4cNU11d3YSzAQAAAADWFmtFoLnoooty7bXX5vvf/3623nrrVFZW5rXXXmu0TkNDQ6qqqpIklZWV74spDQ0N2XjjjVNZWVm+/c/j1dXVWb58+UrHkpT3/88WLXrbX83DOurd6Jskr7zyVqqqljXhbAAAAACA5qBjx41WuU6zDzTnnHNOfv7zn+eiiy7Kl7/85SRJly5d8vzzzzdab+HCheXLlnXp0iULFy583/h2222Xdu3apbKyMgsXLsyWW26ZJFm2bFlee+21dOrUKaVSKa+++mqWLVuWNm3+/vDU1dWlqqoqG2+88QfOs1RaY4cMrEXe+7VfKnkuAAAAAABWT7O+Ltf48eNz44035nvf+17233//8vKampr8/ve/b/SX61OnTk1NTU15fOrUqeWxJUuW5LnnnktNTU1atWqVnXbaqdH49OnT06ZNm2y77bbZbrvt0qZNm0yfPr3Rvnfaaae0atWsHy4AAAAAAGAt0WyLw5///Of86Ec/yjHHHJPevXunrq6u/F/fvn3TtWvXjB49OrNnz86ECRMyc+bMDB48OEkyaNCgTJs2LRMmTMjs2bMzevTodO/ePbvuumuS5NBDD82VV16ZBx54IDNnzsz/397dB2lV1n0A/64sbwqK4MuMCgilS+IurSxLmYwNIFGKopYhT1YMZZYGjomiiKCLUvZiA2ZmviuZUYRBqYRpSSlm8WYZIiFqpFJqiYDLwj5/NNyPtKD0JGdBPp+ZHc59Xdc553fOH5x7z3fPdSZOnJjTTjstbdu2Tdu2bTN06NBMnDgxixcvzty5c3PTTTflk5/8ZHOeDgAAAAAA4B2krLFx55yQ5/rrr8/Xv/71rfYtXbo0K1euzLhx47Jo0aJ07do1F198cY4++ujSmF/+8pe58sor8/zzz6e6ujp1dXXp3LnzFtu/5ZZbUl9fn0GDBmXChAml99OsW7cuEydOzJw5c9KuXbuMHDkyn/70p7dZ6+rVr749Bw3sctavX5//+Z9TkyTTpv1om++qAgAAAAB2H/vv/9bvoNlpA5pdiYAGdl8CGgAAAADg321PQLPTTnEGAAAAAADwTiWgAQAAAAAAKJiABgAAAAAAoGACGgAAAAAAgIIJaAAAAAAAAAomoAEAAAAAACiYgAYAAAAAAKBgAhoAAAAAAICCCWgAAAAAAAAKJqABAAAAAAAomIAGAAAAAACgYAIaAAAAAACAggloAAAAAAAACiagAQAAAAAAKJiABgAAAAAAoGACGgAAAAAAgIIJaAAAAAAAAAomoAEAAAAAACiYgAYAAAAAAKBgAhoAAAAAAICCCWgAAAAAAAAKJqABAAAAAAAomIAGAAAAAACgYAIaAAAAAACAggloAAAAAAAACiagAQAAAAAAKJiABgAAAAAAoGACGgAAAAAAgIIJaAAAAAAAAAomoAEAAAAAACiYgAYAAAAAAKBgAhoAAAAAAICCCWgAAAAAAAAKJqABAAAAAAAomIAGAAAAAACgYAIaAAAAAACAggloAAAAAAAACiagAQAAAAAAKJiABgAAAAAAoGACGgAAAAAAgIIJaAAAAAAAAAomoAEAAAAAACiYgAYAAAAAAKBgAhoAAAAAAICCCWgAAAAAAAAKJqABAAAAAAAomIAGAAAAAACgYAIaAAAAAACAggloAAAAAAAACiagAQAAAAAAKJiABgAAAAAAoGACGgAAAAAAgIIJaAAAAAAAAAomoAEAAAAAACiYgAYAAAAAAKBgAhoAAAAAAICCCWgAAAAAAAAKJqABAAAAAAAomIAGAAAAAACgYAIaAAAAAACAggloAAAAAAAACiagAQAAAAAAKJiABgAAAAAAoGACGgAAAAAAgIIJaAAAAAAAAAomoAEAAAAAACiYgAYAAAAAAKBg5c1dALB9Ghsb8/rrrzd3Gfyb9evXb3WZnUvr1q1TVlbW3GUAAAAAQElZY2NjY3MXsatbvfrV5i6Bd7jGxsaMGzcmS5c+0dylwC6pR48jMmnSVUIaAAAAAAqx//7t33KMKc5gF+HGMgAAAADAO4cnaN4GnqChCKY423lt/m9UiLbzMsUZAAAAAEXanidovIMGdhFlZWVp06ZNc5cBAAAAAMDbwBRnAAAAAAAABRPQAAAAAAAAFExAAwAAAAAAUDABDQAAAAAAQMEENAAAAAAAAAUT0GzD66+/nosvvjg1NTU55phjctNNNzV3SQAAAAAAwDtEeXMXsLO66qqr8vjjj+fWW2/NqlWrcuGFF+aggw7K4MGDm7s0AAAAAABgFyeg2Yq1a9dm+vTp+e53v5uePXumZ8+eWbZsWaZNmyagAQAAAAAA/mumONuKP/3pT2loaEh1dXWprXfv3lm0aFE2bdrUjJUBAAAAAADvBJ6g2YrVq1dn3333TatWrUpt++23X15//fW88sor6dixY5N1ysqKrBAAAAAAANiVCWi2Yt26dVuEM0lKn+vr65uM79hxr7Ro4WEkAAAAAABg+whotqJ169ZNgpjNn9u0adNk/EsvveYJGgAAAAAAIEmy337t33KMgGYrDjzwwLz88stpaGhIefm/TtHq1avTpk2b7L333ltdp7GxyAoBAAAAAIBdmXm5tuI973lPysvLs3DhwlLb7373u1RWVmaPPZwyAAAAAADgvyNt2Iq2bdtm6NChmThxYhYvXpy5c+fmpptuyic/+cnmLg0AAAAAAHgHKGtsNDnX1qxbty4TJ07MnDlz0q5du4wcOTKf/vSntzp29epXiy0OAAAAAADYae2//1u/g0ZA8zYQ0AAAAAAAAJttT0BjijMAAAAAAICCCWgAAAAAAAAKJqABAAAAAAAomIAGAAAAAACgYAIaAAAAAACAggloAAAAAAAACiagAQAAAAAAKJiABgAAAAAAoGACGgAAAAAAgIIJaAAAAAAAAAomoAEAAAAAACiYgAYAAAAAAKBgAhoAAAAAAICCCWgAAAAAAAAKJqABAAAAAAAoWFljY2NjcxcBAAAAAACwO/EEDQAAAAAAQMEENAAAAAAAAAUT0AAAAAAAABRMQAMAAAAAAFAwAQ3AVlRUVKSioiKrVq1q0nfnnXemoqIiU6dObYbKAID/xplnnpmLLrpoi7bZs2dv9dp+7bXX5qSTTiqyPADgbVBRUZEvfelLTdpnzJiR/v3779D9zp8/f6t98+fPT0VFxQ7bN7BrEtAAbEPLli3zi1/8okn73LlzU1ZW1gwVAQD/rZqamixZsmSLtvnz5+eAAw5ockNl4cKFqa2tLbI8AOBtMnv27Dz88MPNXUZJdXV15s2b19xlADsZAQ3ANtTU1DQJaNasWZMFCxbkiCOOaKaqAID/Ru/evbN8+fK89tprpbb58+dn5MiRWbhwYdavX19qX7RokYAGAHZRBx98cC6//PLU19c3dylJklatWmX//fdv7jKAnYyABmAbBgwYkEcffTRr1qwptT344IOpqanJXnvtVWqrr6/P5MmT069fv/Ts2TP9+/fPXXfdVerv379/pk2bltNOOy2VlZU56aST8vjjjxd6LADAv1RWVqZly5b5wx/+kCR5/vnns2rVqnzsYx9L+/bt8/vf/z5JsmLFivzjH/9ITU1Nli9fnpEjR+aoo45Kv379cs0112TTpk1JkqlTp+aCCy5IXV1dqqur079//8ybNy933HFHjj766Lzvfe/LbbfdVtr/U089lZEjR6a6ujqVlZUZPnx4li9fnuRfQVH//v3zve99L/369ct73/vejBkzZqe5sQQAu5Jzzz03L7zwQm688cZtjnn++eczevTo1NbWpm/fvpk0aVLpujtjxoycccYZmTJlSvr27ZuamppMnjw5jY2Nb7rf3/72txk0aFB69eqV0aNH5x//+EeSLac4e+6551JRUZE5c+Zk4MCBqayszOc+97m88sorpe1Mnz49gwcPzpFHHpm+ffvmsssuy8aNG5MkY8eOzdixY3PiiSfm/e9/f6655poMGTJkizpuuummDB8+/D8+b0CxBDQA23D44YfnwAMPzK9+9atS289//vMMHDhwi3HXX399HnzwwUydOjX33ntvhg4dmrq6uvztb38rjZk6dWrOPPPM/OQnP0n79u0zadKkwo4DAPg/rVq1Sq9evbJ48eIkySOPPJIjjzwye+21V/r06VOa5mzhwoU57LDD0tjYmOHDh+eAAw7I9OnTM2HChNxxxx1bhC4/+9nP0r59+9x9992pqqrKueeem3nz5uX222/PGWecka985St56aWXsmnTppx11lk5+OCDc/fdd+f73/9+Nm7cmK9+9aulbb344ou57777csMNN2Tq1KmZM2dOZs6cWeg5AoB3ggMPPDCjRo3Kddddl2effbZJf319fT71qU9l3bp1uf322/PNb34zDz74YK666qrSmAULFmTFihW58847M378+Nx22235zW9+86b7nTZtWsaNG5dp06ZlxYoVmTx58jbHXnfddfnGN76RO+64I0uWLMnNN9+cJHn00UczadKknHfeebn33ntz2WWX5Yc//GHuv//+0rp33313zj333HznO9/JiSeemCeffDIrVqwo9d9zzz05/vjjt/t8Ac1DQAPwJgYMGFCa5qy+vj6//vWvM2DAgC3G9OjRI1dccUXe+973pnPnzjnrrLOyYcOGPP3006UxJ598cgYOHJhu3bplxIgRnqABgGZUU1NTCmjmz5+fvn37Jklqa2u3CGhqa2sze/bstG3bNnV1dXnXu96VgQMHZvTo0bnhhhtK29t3330zevTodOnSJSeffHJeffXVjBs3Lu9617sycuTINDQ0ZOXKlVm/fn2GDRuWsWPHpkuXLunZs2dOPvnkPPXUU6VtbdiwIZdcckkqKirSr1+/9OvXr8k7cwCA7XPGGWeka9euueKKK5r0PfTQQ3nhhRfy1a9+NRUVFXn/+9+fSy+9NHfeeWdpKtSNGzemrq4u3bt3z0knnZQePXq85XX5nHPOybHHHpsjjzwyl1xySWbNmrXFzBxvNGrUqFRVVaVXr14ZMmRIadt77rlnrrjiigwaNCiHHHJIBg8enCOOOCLLli0rrVtZWZn+/funqqoqXbp0SVVVVe69994kyV/+8pf88Y9/zODBg/9f5w0ojoAG4E0MGDAgDz30UBoaGvLwww/n8MMPT6dOnbYYM3DgwLz++uv58pe/nDPPPDP9+/dPktKjx0ly6KGHlpbbtWuXDRs2FFI/ANBUTU1N6QbI/PnzS++Zqa2tzeOPP576+vosXLgwffr0yfLly9OzZ8+Ul5eX1q+urs7q1avzz3/+M0lyyCGHpKysLEnSpk2bJP+a9/6Nn+vr67Pnnnvm9NNPz8yZM3PxxRdn2LBhufLKK0vTpW3WtWvX0nK7du3S0NCwI04DALzjtWjRIhMnTsyDDz6YuXPnbtG3fPnyHHroodlnn31KbUcddVQaGhryzDPPJEk6deqUdu3alfrfeF2urq4u/XzmM58pjamsrCwtH3HEEVts79/9+zV/872CI488Mj169MiUKVMyatSofOhDH8qiRYu2+M6w+bvGZscff3wpoLnnnntSW1vb5P4FsPMR0AC8id69eydJfve732Xu3Lk57rjjmoy5+uqrM2bMmJSXl2fo0KFbvH9ms5YtW+7wWgGA7VNdXZ0XX3wxS5YsyYsvvpijjjoqSXLYYYelffv2+e1vf5unnnoqtbW1ad26dZP1N98c2fzHGG8MbzbbY4+mv2q99tpr+ehHP5rZs2ene/fuGTVqVC644IIm41q1arXF57ea6x4A2Lajjjoqp556aq644oqsW7eu1L61a/zma/vmf//9mpz833V55syZpZ83PqHTokWLJmO3dU9gW+0PPfRQTjnllPztb39Lv379MmXKlNL3lW3V/5GPfCRPPvlkVq5cmfvuuy8f+chHtrptYOfS9DcJAErKy8tz7LHH5he/+EUeeOCBnHnmmU3GfP/738/EiRPz4Q9/OElK05S4mQIAO6c999wz73nPe3LXXXelsrIybdu2TZKUlZWlT58+mTFjRg499NB07Ngx3bp1y5w5c7Jhw4bSTZQFCxakY8eO6dChw3+030cffTQvvvhiZs2aVQp15s2b5zsDAOxg559/fgYPHpwbb7yx1NatW7c8/fTTeeWVV0rX9IULF6a8vDxdunTJk08++abbfOPTL2/05JNPpmfPnkmSxYsXp2XLljnkkEPy0ksvbXe906dPz6mnnpoJEyYkSekpnPe9733bXOeAAw5IbW1tfvSjH+VPf/pTBg0atN37A5qPJ2gA3sKAAQMyffr0dOrUKZ07d27S36FDhzzwwAN59tln89hjj5X+Era+vr7oUgGA7dSnT5/89Kc/LU1vtlltbW3uv//+9OnTJ0kyZMiQ1NfX59JLL83y5cszd+7cTJ06NaeffnppWrPt1aFDh6xduzZz587Nc889l+nTp2fatGm+MwDADrbvvvvm/PPPz1/+8pdS2wc+8IF07tw5F1xwQZYuXZpHHnkkdXV1OeGEE7L33nv/v/d19dVX5+GHH87ChQszadKkDBs2rPTHINurQ4cOWbBgQZYuXZply5Zl7NixWb169Vt+ZzjhhBNyyy235AMf+MAWU7cBOy8BDcBbOOaYY9LQ0JCBAwdutf/KK6/ME088keOPPz4XXXRRBg8enKqqqjzxxBMFVwoAbK/evXtn7dq16du37xbttbW1WbduXSm4adeuXW644YY888wzGTp0aOrq6vKpT30q55xzzn+8z+rq6px99tm57LLLcuKJJ2bGjBm59NJL8/e//z0vvPDC23JcAMDWffSjH011dXXpc4sWLXLttdcmSU477bScd955GTBgQC6//PL/aj8jRozIuHHjMmLEiFRXV+f888//j7dxzjnnpFOnTvn4xz+eESNGpHXr1jn99NPf8j7DoEGDsnHjRtObwS6krNHz9AAAAAAAu7Snn346Q4cOza9//evstddezV0OsB28gwYAAAAAYBe1Zs2azJs3L3fddVeOP/544QzsQjxBAwAAAACwi1qzZk0++MEPpkuXLrn++uuz3377NXdJwHYS0AAAAAAAABRsj+YuAAAAAAAAYHcjoAEAAAAAACiYgAYAAAAAAKBgAhoAAAAAAICCCWgAAAAAAAAKJqABAAB2S2vXrs03v/nNDB48OFVVVenbt29GjRqVZcuW7ZD9zZ8/PxUVFTtk2wAAwK6nvLkLAAAAKNprr72W4cOHZ+3atRk7dmx69OiRl19+OdOmTcuwYcMyc+bMdO7cubnLBAAA3sEENAAAwG7nW9/6Vv7+97/nZz/7Wfbee+8kycEHH5zJkyfnr3/9a2655ZaMHz++masEAADeyUxxBgAA7FY2bdqUH//4xxkxYkQpnHmjq666KmPGjEmSPPbYYznllFNSVVWVIUOG5L777iuNGzt2bCZPnpxzzz03vXr1yrHHHpuZM2eW+tesWZPzzjsv1dXV+dCHPpQlS5ZssZ+//vWvOeuss9KrV6/0798/11xzTTZu3JgkmTFjRoYNG5azzz47vXv3zk9+8pMdcCYAAIDmJKABAAB2K88880xeeuml1NTUbLX/gAMOSJs2bbJ69ep87nOfyymnnJJZs2blM5/5TMaOHZvHHnusNHbatGnp2bNnZs+enUGDBmXChAl59dVXkyQTJkzIn//859xxxx255JJLcvPNN5fWa2xszDnnnJNOnTrlxz/+cSZPnpxZs2bluuuuK41ZsGBB3v3ud+cHP/hBjjnmmB10NgAAgOZiijMAAGC38vLLLydJ9tlnn1Lbb37zm5x99tmlzwcddFCOO+64HH300fnEJz6RJOnatWueeOKJ3HrrraVwp6KiIp/97GeTJKNHj85tt92WZcuW5bDDDss999yT2267LT179kySfOELX8jll1+eJHnkkUeyatWqTJ8+PXvssUe6d++eCy+8MBdddFGpjrKysnz+859PmzZtdvAZAQAAmoOABgAA2K1sntbsn//8Z6mturq6ND3ZnDlzcuedd+bPf/5zHnjggVRXV5fGbdiwId26dSt9PvTQQ0vL7dq1S5I0NDRkxYoV2bhxY3r06FHqr6ysLC0vX748r7zySnr37l1q27RpU9avX18KkDp16iScAQCAdzABDQAAsFvp2rVrOnTokAULFqSqqipJ0rZt23Tt2jXJv4KR5F9By5AhQ3LWWWdtsX55+f/9GtWyZcsm229sbNzqflu1alVabmhoSPfu3XPttdc2Gde+ffskSevWrf+TwwIAAHYx3kEDAADsVsrLy3Pqqafm1ltvzZo1a5r0v/DCC0mSbt26ZeXKlenatWvp5/7778+sWbPech/du3dPy5Yts2TJklLbH//4x9Jyt27dsmrVqnTs2LG07eeeey5TpkxJWVnZ23CUAADAzk5AAwAA7Ha++MUvZv/998+wYcNy77335tlnn83ixYszfvz4TJkyJb17987w4cPz+OOP5+qrr87TTz+dWbNm5Rvf+EYOOuigt9x+u3btctJJJ6Wuri6LFi3K/Pnzc80115T6jznmmBx88MEZM2ZMli5dmsceeyzjx49P27Zt06JFix156AAAwE7CFGcAAMBup23btrn99ttz66235tprr83KlSvTqlWrVFVVZerUqRk4cGCS5LrrrsvXvva13HjjjTnwwAMzduzYnHjiidu1j/Hjx6euri4jRozIPvvskzPOOCNf+cpXkiQtWrTIt7/97dTV1eW0007LnnvumcGDB+fCCy/cYccMAADsXMoatzVBMgAAAAAAADuEKc4AAAAAAAAKJqABAAAAAAAomIAGAAAAAACgYAIaAAAAAACAggloAAAAAAAACiagAQAAAAAAKJiABgAAAAAAoGACGgAAAAAAgIIJaAAAAAAAAAomoAEAAAAAACiYgAYAAAAAAKBg/wssQO8CRyH1PQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x ='Gender', y='SalaryUSD', data=df2020)\n", + "plt.title('Income vs Gender', fontsize = 14)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### **Analysis**
\n", + "There is a little bit of difference between Gender and income they received respectively. Men tend to receive more salary than women from the above analysis." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Impact on participation rate due to different ethnicity based on country." + ] + }, + { + "cell_type": "code", + "execution_count": 346, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['White or of European descent', 'Hispanic or Latino', 'Indigenous', 'East Asian', 'Multiracial']\n", + "[40, 2, 1, 1, 1]\n" + ] + } + ], + "source": [ + "participation_rate = df2020['Ethnicity'].value_counts().keys().tolist()\n", + "print(participation_rate)\n", + "count = df2020['Ethnicity'].value_counts().tolist()\n", + "print(count)" + ] + }, + { + "cell_type": "code", + "execution_count": 347, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlUAAANoCAYAAABZTGz3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACltklEQVR4nOzdd5iU1d0G4GfoTUWKDbsoWMCG2BtqsIP1S2LD8lkiwRhNoiZEk5hgYtRgid3E7hejYAF7xBZUQAFL1IgFBESKIL3IfH8QNq6ADsPCLnrf17WXM+973vf8ZnY417rPnnMKxWKxGAAAAAAAAL5SreouAAAAAAAAYGUgVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUgeXlpiSFJLd/6fiEJKclaZmkUZLvJHl9xZYGAAAAAMDSKxSLxWJ1FwHfOA8kOSLJ50neStLmP8dHJtkzSTHJz5KsluRPSd5N8mqSDVZ0oQAAAAAAlEqoAlXt+ST7JZmVBaHJp1kwY+XzJLsmeT8LApR1/tN+fBaEKScnuWpFFwsAAAAAQKks/wVV6fUkhyTZO0ndJNtnQaCSJHcneSnJr/PfQCVZsAxY2yTPrbgyAeDb7vPPP6/uEqqd9+Cbx/fUewAAwPJXp7oLgG+MkUn2T7J5kguSPJKk4xfO906ySpLjF3Ntw/9cDwAs4rjjjsvLL7+81NcddthhueSSSyodGz9+fH73u9/le9/7Xjp27FjpXJs2C9br7N69e374wx+WX3AZqrrvTp06ZfTo0Uv9HlSluXPnZs8998zEiROz1lprZcCAASkUCl9/4X8ccsgheeedd7LhhhvmscceW+T8Sy+9lP79+2fQoEEZP358Zs6cmdVXXz3rrrtudt111xx66KFZf/31y6r9/vvvz/nnn7/E87Vr1069evWy+uqrZ7PNNss+++yTww47LHXr1i2rv2U1Z86cXH/99alfv35OPfXUSucW/vvp2LFjbr/9y5v9Lb3zzjsvffr0SatWrfKPf/xjme9XVVbkewAAwLebmSpQFSYm6ZykSZKH8t+N53f4z3/fSzI4yQFZEKB82fgkTZdviQDwbTdp0qQceOCB6d+/f76tK+CuyPegbt26OfTQQ5MkH3/8cQYNGlTytW+88UbeeeedJMmRRx5Z6dy0adNy2mmn5fjjj88999yTESNG5LPPPsvcuXPzySef5JVXXslVV12VAw88MFdccUXVvaAv+PzzzzNz5syMGTMmAwYMSM+ePXPYYYdl3Lhxy6W/r3P88cfn6quvzuzZs6ul/5rAewAAwIpipgosq+lJDkoyJck/kzRPsvCPaReGKgv/iG+fxVw/O8kHSXZffiUCwDfBOuusk4cffrjk9l+eNTBjxox89tlnVV1WlVg4o2K11Varkvu1atUqtWvXTvPmzSsdX9HvwZFHHpm//OUvSZKHHnqo5Jkxffr0SZLUqVMnhx12WMXxYrGYM844Iy+//HLq1q2b4447Lvvtt1/WX3/91KtXL59++mleffXV3HLLLXn77bdz3XXXZf78+TnnnHPKfg033HBDOnToUOlYsVjMnDlzMnr06Nxwww15/PHH8+9//zs/+tGPctdddy3VjJyq8Mknnyzx3BprrJH1118/a6yxRpX01bx586y//vpZa621quR+VWVFvgcAAHy7CVVgWcxLclSSN5M8m2TD/xwflGStJOv95/ng//y38v+PLzA8ydws2H8FAFiiQqGQxo0bV3cZy8UTTzxRpferKUsctW7dOltvvXWGDRuWxx57LD179ky9evW+8pq5c+emX79+SZK99torLVq0qDj35JNPViwFd/XVV2evvfaqdO2qq66aDTbYIAcccEC+973v5Y033sgtt9ySo48+Ouutt17K0aBBgyV+7po1a5bevXvn1FNPzXPPPZdXXnklzz//fHbfveb8tcxll11Wpff7yU9+kp/85CdVes/lrarfAwAAvt0s/wXLokcW7J3yhyxY+uvdJG8k+VeSNv95PiHJ2P+033Ix93j+P//da3kWCgBQPRYu3zVlypQ8++yzX9v+2WefzaRJk5IkRx11VKVzC/fw2GyzzRYJVL6ofv36ueiii5Ik8+bNy+OPP15G5aWpVatWTj/99EVqBAAAvpmEKlCuYpJ7/vP4jCSb/udrqySfJ3nmP8/vSDIjCzapr7+Y+9yXZLUkey/negHgW6xNmzbZZ5//rsN5/PHHp02bNjnvvPMW237q1Km54oorcuCBB6Z9+/bZcccdc9xxx1XMoPiyq666Km3atMlxxx2XJHnuuedy2mmnZeedd067du2y77775uKLL17inhtt2rRJmzZtctVVVy32/KRJk3L99dfn8MMPT8eOHdOuXbt07tw5F198ccaOHbtI+06dOi3y+r7qPRg8eHBFDffff/9ia1hov/32S5s2bXLxxRd/ZbuFDjzwwDRsuGBTuQcffPBr2z/wwANJkjXXXHORGR/jx49PkpL2zWjXrl222WabdOjQYbnPcGrbtm3F49GjRy9yfs6cObn33ntz+umnZ4899kj79u2zzTbbZO+9985ZZ52V559/fpFrkgUbrLdp0yZXXHFF3njjjfzP//xP2rVrlx133DEnn3xy/ud//idt2rSp6PPqq69OmzZt0qlTp0XusfCzubja+vTpkxNOOCG77bZbttpqq+y+++45++yzM3To0EXan3feeYv0kST3339/2rRpk1133TVJ8vzzz+f444/PDjvskA4dOuTII4/MnXfemVmzZn3le/nss8/mpz/9ab7zne9ku+22y1ZbbZVddtklJ510Uu69997MnTt3se/RsrwH06ZNyw033JCjjz46HTp0SLt27bL33nvnJz/5yWLfgyT56KOPKv7NfPTRRxk3blwuvvji7LvvvmnXrl122mmnnHbaaSUFiQAArFws/wXlmpvkhsUc/3uS/0vy2ySbJdk1C5b/mplkfipHmS8leSHJj7P4DewBgBXu/fffzyGHHFIprJg9e3ZefvnlvPzyyxk8eHAuvPDCJV5/xRVX5Lrrrqt0bNSoUbn99tvz4IMP5o477shmm21Wcj0vv/xyfvSjH2XixImVjn/wwQf54IMPcv/99+fPf/5zdtppp5Lv+WXbb799WrVqldGjR6dfv345/PDDF9tu2LBhGTlyZJJUbEL/dZo0aZLOnTunb9++GTBgQKZNm5YmTZostu2UKVMqZnocdthhqV27dqXz6667bpLkww8/zN/+9rccffTRS+y3UCjk//7v/0qqcVnVqlVrsY+TBd/7U045JR988MEi1y3c7P7RRx9N9+7d88Mf/nCx9x81alROOOGETJ06NcmCICTJ1y6l9nXGjh2b7t275/XXX690/JNPPkn//v3zyCOP5Nxzz80pp5yyVPe95557ctFFF6VYLFYce+211/Laa6/lvvvuy0033ZRmzZpVumbmzJk5++yz8/TTTy9yv4kTJ+aFF17ICy+8kIcffji33HLLIp+Ncg0bNiw9evTIxx9/XOn4mDFj8uCDD+bBBx/MCSeckPPOO2+R7+0XX9uFF16YKVOmVBybM2dOBgwYkAEDBuTss8+uNJsJAICVm5kqUK56SY5czNf8JIUkZ/7n+dpZsLTXvCSPfeH6aUn+N8kaSc5fUUUDwLfTK6+8UmmWyQ033JBXXnklv/71rxdp269fv4wfPz6nnXZa+vfvn+eeey7XXHNNWrVqlSS56667Kvb1+LLXXnst1113XbbddtvcfPPNefHFF/Poo49W/IX8lClTSp7hkSz4Zfr//u//ZuLEiWnevHl+9atf5emnn86zzz6b3//+92nRokWmT5+es846a5HQZWneg0KhUBGSvPjiixXLb33ZQw89lCTZaKON0r59+5Jfx8IlwGbPnp3HHntsie369euXuXPnplAoVFzzRV/ctL5nz5455phjcvfdd2fUqFEl17I8DB8+vOLxJptsUvH4888/T/fu3fPBBx+kUaNGOf/88/PII4/kxRdfzMMPP5zzzz8/TZs2TZL8+c9/XuLr6NevX4rFYnr37p1//vOf+etf/5of/OAHufHGG/PKK69knXXWSZKcdtppi3yfl2Tu3Lk59dRT8/rrr6dOnTo5/fTT079//wwcODB/+ctfsuWWW6ZYLObSSy/NP//5z5LfiylTpuQ3v/lNmjZtml69euWFF17IY489lpNOOimFQiFvvPFGevTosch1l156aUWgcuyxx6ZPnz4ZOHBgnnjiifzpT39K69atkyz4fC78HCZZpvfgww8/zKmnnpqPP/44jRs3zk9/+tM88cQTefHFF3PrrbemY8eOSZJbb701l19++RLvc/7556dYLKZnz575xz/+kRdeeCGXXnppxff2qquuqvbPKAAAVcdMFahqg5O0zoIlvRY6JskVSY5LclGSxkkuS/J+kv5JWgQA+BrFYjHTp08vqW2tWrUqlpxKksaNG6dBgwYVz79q8/EkueSSS3LIIYdUPN93332z3nrrVQQPTz75ZMUvXL9o5syZ2WabbXL77benbt26SZLVV189v/jFLzJhwoQ88sgjefnllzNp0qRF/lJ/cX73u99l1qxZadKkSe6+++5ssMEGFee6du2aTTbZJEcffXQmT56ce+65J2eeeeYS7/V170GXLl1y7bXXZt68eXn00Ufz/e9/v9L1n3/+eR599NEkqfTelGKHHXbIBhtskA8//DAPPfRQjjjiiMW269u3b5Jkxx13XOzG8ltvvXXOPvvsXHHFFUmSwYMHZ/DgwUmStdZaKx06dEjHjh2z2267VYRgy9u8efNyzTXXVDzv3LlzxePnn38+b731VpLkV7/6VaXZPauvvno23XTTrLvuujnzzDMzf/78/POf/8z//M//LLaf8847L/vvv3+SZOedd650rlAoJEnq1q1b8lJnd955Z955550kCwKNAw88sOLcLrvskr/+9a/p2rVrRo8eneuvvz677LJLSfedO3duGjVqlDvuuKMiCGnRokV+9rOfpUWLFvnDH/6QQYMG5cknn8y+++6bZMFye3/729+SLNhHp2fPnhX3a9asWdZff/106NAh++67b2bNmpXnnnsuXbt2TZKKz3Q578Fll12WyZMnp169erntttuy1VZbVZzbaaedssMOO6RHjx558sknc9NNN6VLly7ZdNNNF/ua77rrrmyxxRYVxw499NCsttpqOfXUUzNv3rw88cQTOemkk0qqCwCAms1MFahKk7IgKOnwpeMNk/wjyXeSXJDkZ0naJnk1yZ4rskAAWHmNGTMm2223XUlfBx10UNn9bLrpposNDdq0aVMRanzVX52fcsopFYHKFy3cWL1YLC52340v++yzz/Lcc88lSU488cRKgcpC7dq1ywEHHJDtt9++UmBSji/OPlncX/m/9NJLFXualLr01xctDFJeeumlxe4t8/7772fYsGFJFt2g/otOP/30XHvttVl//fUrHf/444/z8MMP55e//GU6deqUo48+OgMHDlzqOr9s1qxZmT59eqWvadOm5aOPPsojjzyS73//+xUzl/bff/9KM3gaN26c448/PgcddFCl0OKLdtxxx4rHS5ohVCgUKoU1VWHhbI+OHTsutrZVV101xx9/fLbccsusvfbalZby+jonnXRSRaDyRSeeeGLFEm5fnG0yderUdOvWLQcccEBOPPHExd6zZcuW2WijjZIs+X1aGp9++mkef/zxJAtmxnwxUFmodu3a+fWvf5169eqlWCzmnnvuWaRNkuyxxx6VApWFdtlll4ol2j766KNlrhkAgJrBTBWoSs2yYAP7xVkzyV0rsBYAoCzbbrvtEs+1aNEiH374YWbMmLHENktaFqt58+YVj79us+4kGTRoUMWm3AsDmcX5qmWJllaXLl0yfPjwDBkyJB9//HHWWmutinMLfwm+3XbbLXYWydfp2rVrevfunc8//zz9+/df5JfnC2eprLbaatlvv/2+8l6dOnXK3nvvncGDB+cf//hHBg4cmLfffjvz58+vaDNs2LB069Ytxx57bKWZD0vr1FNPLandbrvtlt/+9reVjnXo0CEdOnz5r23+a8qUKRUzbZIFs4EWZ911182qq65aUh2lmDp1at54440kyd57773Edt26dUu3bt2W+v5LCpBq1aqVvfbaK3fccUelwGudddbJueeeu8T7zZkzJ8OHD8/MmTOTLJgdtKyGDBlSERR9VWDVvHnzdOzYMc8///wSl/3beuutF3u8bt26WW211TJ+/PiK2gEAWPkJVQAAWCm0atWqYhPz5Wn11Vdf4rmFm2N/8Zf3X7akZb2+uKn4V12/0Bdnc2y44YZf274qHHjggbnkkksyd+7c9O/fv2K5ojlz5uSJJ55IUt4slSRZc801s9tuu+WZZ57JQw89VClUKRaLefDBByvuX79+/a+9X6FQyA477JAddtghyYKZPYMHD84///nPPP744xXv3x133JF11113iTMgylG7du00btw4LVu2zFZbbZWDDjooe+yxR8USVF82f/78vPrqq3nttdfywQcfZNSoUXn//fczZsyYSjNAljQbpJSl4pbGJ598UtFXVX+26tatm4033niJ5xfOuJoyZUpmzpxZaZm+JBkxYkQGDx6c999/PyNHjsyHH36YDz74oEqClC8aO3ZsxeMv7oOzOJtsskmef/75Std80Vd9fxb+u1+amT4AANRsQhUAAPiCxS3dtSKvX2jKlCkVj7/8i+flpVmzZtltt93y9NNPp1+/fhWhyoABAzJ16tTUrVs3BxxwQNn3P/LII/PMM8/kjTfeyIgRIyp+mf3iiy9mzJgxFW3Kseqqq6ZTp07p1KlTfvazn+XOO+/MH/7wh3z++ee5/vrrc+yxx5b1vbntttsqLdG1tF588cX88pe/zIcffrjIuXXXXTe77bbbEpeVWqiUkGlpTJ48ueJxVX+2mjRpssRw6cv9TZ06teL56NGjc8EFF+TFF19c5JqmTZtmxx13zJtvvlllG75Pmzat4nGjRo2+su3CGpc0Q61OHf9bDQDwbeKnPwAAqIG++MvnmTNnpkmTJiuk3y5duuTpp5/O66+/ng8//DAbbLBBxR4re+yxR5o2bVr2vffee+80a9YskyZNykMPPZQf/ehHSZIHHnggSbLVVlulbdu2i7122LBh+cc//pGJEyfml7/8ZaWZP19Wt27ddOvWLZ988kluvvnmfPrppxk5cuTXzkioasOHD88pp5ySuXPnpnHjxtlvv/3Srl27tG7dOptttlmaNWuWefPmfW2oUtW+GCJU9bJUs2fP/srz06dPT7JgptHCz9Jnn32W4447LqNHj06tWrWyxx57pEOHDtl0002zySabVCw3973vfa/KQpUvvgczZszIKqus8rU1r6hwEwCAmk2oAgAANdDaa69d8XjUqFHZfPPNF9tu4MCBGTJkSNZbb7106dJlmfvt1KlTVllllUydOjX/+Mc/cswxx+TZZ59NUv7SXwvVrVs3Xbp0yV/+8pc8/PDD+dGPfpRZs2blscceS/LVG9S//vrrue6665Ikhx12WLbffvuv7a9jx465+eabk3z9L/uXhz/96U+ZO3duVllllfTp02exe9F8+umnK7yuNddcs+LxyJEjl9huzJgxufvuu7Peeutlv/32+8ql8RaaMWNGJk2atMQlsd5///0kCzaeXxiM3XXXXRk9enSSpHfv3vnOd76z2Gur8r1q1apVxeMRI0Zkm222WWLbESNGJFmw9wsAANSq7gIAAGBF+KoliWqibbfdtqLm5557bont7r777lx11VW59tprv/aepbwH9evXz/77758k+cc//pGXXnqp4i/5O3XqVGL1S3bEEUckWRAU/etf/8ozzzyTGTNmpGHDhjn44IOXeN0XQ5Q777yzpL4WLrlVt27dir08VqRXX301SbLLLrssNlBJUmnD9lL22qkKzZo1y0YbbZTkqz9bTz/9dG644Yb07NlzqfY0WRjCfdnnn3+eZ555Jkmy1157VRxf+D6tvvrqSwxUPv7443zwwQdJquZ92m677VKr1oL/HV4Y6i3OxIkTM2jQoCQL/k0CAIBQBQCAb4Uv7nswd+7caqykNGussUZ22223JMktt9xSaeP6hV577bX84x//SJIcdNBBX3vPUt+DhTNeXnnllYoN5Pfff/+vXHKrVJtuumnat2+fJHniiScqfqG9//77f+USZ23btq3YlL5fv3657rrrvnLz71GjRuXGG29MkhxyyCFp3LjxMte+tGrXrp1kweyMxQUBY8eOzR//+MeK5+V+Lhd+X5fm+sMPPzxJ8vzzzy82BJk2bVrFLJ+OHTumZcuWJd/76quvrrQn0ELXX399xWbvXbt2rTi+8H2aMmVKxo8fv8h1s2fPzs9//vOK7/fiXufSvgfNmjXLvvvumyS544478vrrry/SZv78+fnVr36VuXPnplAolL3fDwAA3yxCFQAAVgrFYjHTp09fqq8vWm211SoeP/roo5k8efJif/Fbk/zsZz9LgwYN8umnn+a73/1uHnzwwYwfPz4fffRR7r333px66qmZO3du1lxzzXTr1u1r71fqe9ChQ4e0atUq8+bNy0MPPZRk2Zf++qKFv5zu379/BgwYUOnYV/nDH/5QsQTTFVdckSOOOCJ33nln3nnnnUyaNCmffPJJhgwZkssuuyxdu3bN+PHjs+666+bHP/5xldW+NBaGYu+8807OPffc/Otf/8qnn36aESNG5KabbkrXrl0rhWVf/syWauHeJM8991zGjRuXSZMmfe01xx13XMUeMz/84Q9z/fXXZ9SoURk/fnyeeeaZHHPMMRk9enRq166dc889d6nqGTVqVL7//e9nwIABFa/3N7/5TXr37p1k0eXbFr5P8+fPz2mnnZaBAwdm4sSJGTVqVB544IEceeSRef755yvaL+59Kuc9+OlPf5pVV101c+bMyQknnJCbb745o0aNyqeffpqXXnopJ510UkXod+KJJ1aEgQAAfLvZUwUAgJXCmDFjst122y3VNYMGDcqqq66aJGnQoEG22WabDB06NPfee2/uvffedOzYMbfffvvyKLdKbLrppvnzn/+cHj16ZMyYMfnJT36ySJs111wzN95441dutL1Qqe9BoVDIIYccUjEbZJ111qmYJVIVDjrooPTq1atif42NNtooHTp0+Nrr1llnndx2223p2bNnBg4cmDfeeCNvvPHGEtvvsMMO6dWr11LNsqhK5557bgYPHpzx48enX79+6dev3yJt9t5770yYMCGvvfZaxXJlS2vHHXfMsGHD8uabb2aPPfZI3bp18+qrr6Zu3bpLvKZhw4a54YYbcuqpp2bEiBG5/PLLc/nll1dqU79+/fz2t7/N1ltvvVT1HHrooXnwwQdz2mmnLXLugAMOyK9+9atKx4488sj0798/gwYNyhtvvLHYgHDjjTfOFltskYcffjijR4/O3LlzK72+ct6D9dZbLzfffHN+8IMfZPz48fnDH/6QP/zhD4u0O+mkk3LOOecsxTsAAMA3mZkqAAB8a1xxxRUVG7HXr18/M2bMqO6Svtauu+6axx57LKeccko23XTTNGrUKPXr18+mm26aM844Iw8++GDatGlT8v1KfQ++uOn9wQcfXKV70jRp0iSdO3eueL40yyqtt956+etf/5pbb7013bp1y5Zbbpk11lgj9erVS+PGjbPhhhuma9euue6663L77bcvcS+TFWHddddNnz59ctxxx2X99ddP3bp1U69evay99trZZ599cs011+S6666r2Ktm8ODBJc2w+LLu3bvnuOOOS8uWLVO3bt00a9YsH3/8cUn19e3bNz//+c+z7bbbZtVVV03dunWzzjrr5Mgjj0yfPn1yyCGHLHU9Z511Vq6++upst912adSoUZo3b55dd90111xzTa644orUr1+/Uvt69erllltuybnnnpstttgiDRs2TJ06ddKsWbN07Ngxv/zlL9OnT59873vfS5LMnDmz0syVZXkP2rdvn0cffTRnn3122rdvn1VWWSUNGjTIhhtumCOPPDL33ntvfvazn1VaOg8AgG+3QvGrFiIGAAC+lT744IOK4KNfv35p3bp1NVdETXb//ffn/PPPT5I89dRTWXfddau5IgAAWD7MVAEAABaxcC+VLbfcUqACAADwH0IVAACgkokTJ+Zvf/tbkuToo4+u5moAAABqDgvDAgAAGTJkSAYOHJjatWvn/vvvzyeffJKWLVtW2lsFAADg206oAgAAZOrUqbnqqqsqnteqVSsXXXRRGjZsWI1VAQAA1CyW/wIAALLRRhtl3XXXTb169dK2bdtcddVV2Xfffau7LAAAgBqlUCwWi9VdBAAAAAAAQE1npgoAAAAAAEAJvrV7qowfP7W6S4AVplmzxpk0aXp1lwGQxJgE1DzGJaAmMSYBNY1xiW+Tli1X+do2ZqrAN1yhkNSuXSuFQnVXAmBMAmoe4xJQkxiTgJrGuASLEqoAAAAAAACUQKgCAAAAAABQAqEKAAAAAABACYQqAAAAAAAAJRCqAAAAAAAAlECoAgAAAAAAUAKhCgAAAAAAQAmEKgAAAAAAACUQqgAAAAAAAJRAqAIAAAAAAFACoQoAAAAAAEAJhCoAAAAAAAAlEKoAAAAAAACUQKgCAAAAAABQAqEKAAAAAABACYQqAAAAAAAAJRCqAAAAAAAAlECoAgAAAAAAUAKhCgAAAAAAQAmEKgAAAAAAACUQqgAAAAAAAJRAqAIAAAAAAFACoQoAAAAAAEAJhCoAAAAAAAAlEKoAAAAAAACUQKgCAAAAAABQAqEKAAAAAABACYQqAAAAAAAAJRCqAAAAAAAAlGClDVVOPfXUnHfeeRXP33zzzRx11FHZeuutc8QRR+T111+vxuoAAAAAAIBvmpUyVOnXr1+eeeaZiuczZszIqaeemg4dOuT+++/Ptttum9NOOy0zZsyoxioBAAAAAIBvkpUuVJk8eXL+8Ic/pF27dhXH+vfvn/r16+enP/1pNtlkk/z85z9P48aN8+ijj1ZjpQAAAAAAwDfJSheq/P73v0+XLl3SunXrimPDhg3L9ttvn0KhkCQpFArZbrvtMnTo0GqqEgAAAAAA+KapU90FLI2BAwdm8ODBeeihh3LRRRdVHB8/fnylkCVJmjdvnn//+99feb//ZDDwjbbwc+7zDtQExiSgpjEuATWJMQmoaYxLsKiVJlSZPXt2Lrzwwvzyl79MgwYNKp2bOXNm6tWrV+lYvXr1MmfOnCXer1mzxqlde6WbqLPcbXhev+ouASjBB5ccVN0lwDJp3nyV6i4BoBLjElCTGJOAmsa4BP+10oQqV199dbbaaqvsvvvui5yrX7/+IgHKnDlzFglfvmjSpOkSVmClNWHC1OouAcpSKCz4YXzixKkpFqu7GgDjElCzGJOAmsa4xLdNixZfHyCuNKFKv379MmHChGy77bZJUhGiPPbYYzn44IMzYcKESu0nTJiQNdZY4yvvaSAAVlbGL1Z2xaLPMVCzGJeAmsSYBNQ0xiX4r5UmVLn99tszb968iud//OMfkyTnnntuBg0alBtvvDHFYjGFQiHFYjGvvPJKTj/99OoqFwAAAAAA+IZZaUKVVq1aVXreuHHjJMkGG2yQ5s2b57LLLstvf/vbfPe7380999yTmTNn5oADDqiOUgEAAAAAgG+gb8RO7U2aNMn111+fIUOG5PDDD8+wYcNyww03pFGjRtVdGgAAAAAA8A2x0sxU+bJLLrmk0vP27dunT58+1VQNAAAAAADwTfeNmKkCAAAAAACwvAlVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEK1Wo8uGHH+bkk0/Otttum7322is33XRTxbmLL744bdq0qfR1xx13VGO1AAAAAADAN0md6i6gVPPnz8+pp56adu3apU+fPvnwww/z4x//OGuuuWYOOeSQjBgxIuecc04OO+ywimuaNGlSjRUDAAAAAADfJCvNTJUJEyZk8803z0UXXZQNN9wwe+65Z3beeecMGTIkSTJixIhsscUWadmyZcVXw4YNq7lqAAAAAADgm2KlCVXWWGON/OlPf0qTJk1SLBYzZMiQDBo0KB07dsy0adMybty4bLjhhtVdJgAAAAAA8A210iz/9UWdOnXKmDFjsvfee6dz5855/fXXUygUct111+XZZ59N06ZNc+KJJ1ZaCmxxCoUVVDBAFTN+sbJa+Nn1GQZqCuMSUJMYk4CaxrgEi1opQ5Urr7wyEyZMyEUXXZRevXplyy23TKFQyMYbb5xjjz02gwYNSs+ePdOkSZPst99+i71Hs2aNU7v2SjNRB6CSFi1Wqe4SYJk0b+4zDNQsxiWgJjEmATWNcQn+a6UMVdq1a5ckmT17ds4999y88sor2XvvvdO0adMkSdu2bfPBBx/k7rvvXmKoMmnSdAkrsNKaMGFqdZcAZSkUFvwwPnHi1BSL1V0NgHEJqFmMSUBNY1zi26aUP2ReaUKVCRMmZOjQodl3330rjrVu3Tpz587NtGnT0qxZs0rtN95447z44otfeU8DAbCyMn6xsisWfY6BmsW4BNQkxiSgpjEuwX+tNOtfffTRR+nevXvGjRtXcez1119Ps2bNcvvtt6dbt26V2r/11lvZeOONV3CVAAAAAADAN9VKE6q0a9cuW265ZS644IK8++67eeaZZ3LppZfm9NNPz957751Bgwbl5ptvzsiRI3PXXXelb9++Oemkk6q7bAAAAAAA4BtipVn+q3bt2vnzn/+c3/zmN/mf//mfNGzYMMcdd1yOP/74FAqF9O7dO1deeWV69+6dVq1a5bLLLsu2225b3WUDAAAAAADfECtNqJIka665Zq6++urFntt3330r7bcCAAAAAABQlVaa5b8AAAAAAACqk1AFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBEIVAAAAAACAEghVAAAAAAAASiBUAQAAAAAAKIFQBQAAAAAAoARCFQAAAAAAgBIIVQAAAAAAAEqwUoUqH374YU4++eRsu+222WuvvXLTTTdVnBs1alS6deuWbbbZJgceeGCef/75aqwUAAAAAAD4pllpQpX58+fn1FNPzeqrr54+ffrkV7/6Va699to89NBDKRaLOfPMM9OiRYvcd9996dKlS7p3754xY8ZUd9kAAAAAAMA3RJ3qLqBUEyZMyOabb56LLrooTZo0yYYbbpidd945Q4YMSYsWLTJq1Kjcc889adSoUTbZZJMMHDgw9913X374wx9Wd+kAAAAAAMA3wEozU2WNNdbIn/70pzRp0iTFYjFDhgzJoEGD0rFjxwwbNixbbLFFGjVqVNF+++23z9ChQ6uvYAAAAAAA4BtlpZmp8kWdOnXKmDFjsvfee6dz58753e9+lzXWWKNSm+bNm+fjjz/+yvsUCsuzSoDlx/jFymrhZ9dnGKgpjEtATWJMAmoa4xIsaqUMVa688spMmDAhF110UXr16pWZM2emXr16ldrUq1cvc+bMWeI9mjVrnNq1V5qJOgCVtGixSnWXAMukeXOfYaBmMS4BNYkxCahpjEvwX2WHKpMmTUqzZs2qspaStWvXLkkye/bsnHvuuTniiCMyc+bMSm3mzJmTBg0aLPEekyZNl7ACK60JE6ZWdwlQlkJhwQ/jEydOTbFY3dUAGJeAmsWYBNQ0xiW+bUr5Q+ayQ5U99tgju+22Ww499NDss88+qV+/frm3KsmECRMydOjQ7LvvvhXHWrdunblz56Zly5Z57733Fmn/5SXBvsxAAKysjF+s7IpFn2OgZjEuATWJMQmoaYxL8F9lr381b968PPPMMznnnHOy66675vzzz8/AgQOrsrZKPvroo3Tv3j3jxo2rOPb666+nWbNm2X777fPGG29k1qxZFeeGDBmSrbfeernVAwAAAAAAfLuUHapccskl2W233VK7du1MmzYtffv2zUknnZQ999wzl156ad56662qrDPt2rXLlltumQsuuCDvvvtunnnmmVx66aU5/fTT07Fjx6y99to5//zz8+9//zs33HBDhg8fniOPPLJKawAAAAAAAL69CsXisk3cmjRpUh555JH069cvr776aorFYgr/2aykdevW6dKlSw455JCsueaay1zsuHHj8pvf/CYDBw5Mw4YNc+yxx+a0005LoVDIhx9+mJ///OcZNmxYNthgg1xwwQXZZZddlniv8ePtR7A4O1z2bHWXAJRg0Dl7VHcJUJZCYcH6pBMmWI8XqBmMS0BNYkwCahrjEt82LVt+/Z4qyxyqfNGYMWPy8MMP5+GHH84777yzoINCIYVCITvssEO6dOmS73znO2nSpElVdVk2ocriCVVg5SBUYWXlB3KgpjEuATWJMQmoaYxLfNus8FDli0aMGJHHH388zzzzTIYPH56F3dSvXz+dOnVKly5dsscee1TMalnRhCqLJ1SBlYNQhZWVH8iBmsa4BNQkxiSgpjEu8W1TSqhS9p4qX2eTTTbJaaedlnPOOSddunSpOD5r1qz0798/p59+ejp16pTbbrst8+fPX15lAAAAAAAAVIk6VX3Dzz//PM8//3z69++fAQMG5LPPPkuSFIvFNGjQIPvss08KhUKeeuqpjB07Nr169Ur//v1z00031YhlwQAAAAAAABanykKVl156Kf369cvjjz+eKVOmJEnFpvUdO3ZcZD+VGTNm5NZbb03v3r0zbNiwXHLJJbn44ourqhwAAAAAAIAqtUyhyvDhw/Pwww/n0Ucfzfjx45OkYu+U1q1b59BDD82hhx6atdZaa5FrGzVqlDPOOCMjR45Mnz598tRTTwlVAAAAAACAGqvsUGXffffN6NGjk/w3SGnRokUOOuigdOnSJVtssUVJ99lss82SJLNnzy63FAAAAAAAgOWu7FDlo48+SpKKfVK6dOmS3XbbLbVq1Vqq+0yfPj1bbbVVdthhh3JLAQAAAAAAWO7KDlV22mmnin1SGjduXHYB3bt3T/fu3cu+HgAAAAAAYEUoO1T561//WoVlAAAAAAAA1GzLtFH9F02cODGvvPJKxo4dm2nTpuUHP/hBkuSVV17J5ptvnoYNG1ZVVwAAAAAAACvcMocqI0eOzCWXXJIBAwZUbFifpCJU+eUvf5kJEybk3HPPzZFHHrms3QEAAAAAAFSLZQpVhgwZktNOOy3Tp0+vFKgUCoWKx6NHj87MmTPTs2fPjBs3LmeeeeaydAkAAAAAAFAtapV74eTJk3PmmWdm2rRpWXvttfOb3/wmffr0WaTdr3/966y//vopFou55ppr8vrrry9TwQAAAAAAANWh7FDlr3/9ayZPnpwNN9wwffr0yVFHHZUNNthgkXaHHHJI7rnnnrRu3TrFYjF33nnnMhUMAAAAAABQHcoOVZ5++ukUCoWcddZZWW211b6ybbNmzdKjR48Ui8W8/PLL5XYJAAAAAABQbcoOVUaNGpUk2WGHHUpqv8022yRJxo8fX26XAAAAAAAA1absUGXhxvS1apV2i4Xt69SpU26XAAAAAAAA1absUGXttddOkgwdOrSk9gMHDkyStGrVqtwuAQAAAAAAqk3Zocpuu+2WYrGYq6++OnPmzPnKtpMmTcqVV16ZQqGQnXfeudwuAQAAAAAAqk3ZocqJJ56Y+vXr51//+leOP/74DBo0KLNnz67UZtasWXnkkUdy9NFHZ8yYMalTp06OP/74ZS4aAAAAAABgRSt7g5O11147v/vd7/KTn/wkw4YNqwhLCoVCkgUzWSZPnpzPP/+8Yj+Vnj17Zt11162CsgEAAAAAAFassmeqJMlBBx2UG2+8MWuvvXaKxWKlrwkTJmTevHkpFotp0aJFrrjiihx99NFVVTcAAAAAAMAKVfZMlYV23XXXPPnkk3nuuefy0ksv5aOPPsq0adPSoEGDrLPOOunQoUM6deqUevXqVUW9AAAAAAAA1WKZQ5UkqVWrVvbcc8/sueeeVXE7AAAAAACAGmeZNqrv27dvZsyYUZX1AAAAAAAA1EhlhyoDBw7M+eefn1133TU/+clP8uyzz2b+/PlVWRsAAAAAAECNUXao0qFDhyTJzJkz8/DDD+e0007LHnvskUsuuSRvvvlmlRUIAAAAAABQE5Qdqtxxxx0ZMGBAfvKTn2TzzTdPsVjMhAkTcuutt+aII47IwQcfnBtuuCFjx46tynoBAAAAAACqRaFYLBar4kbvvfdeHnroofTv3z8ffvjhgpsXCikUCunQoUO6du2a73znO2nSpElVdLfMxo+fWt0l1Eg7XPZsdZcAlGDQOXtUdwlQlkIhadFilUyYMDVV8xMIwLIxLgE1iTEJqGmMS3zbtGy5yte2qbJQ5Ytee+21PPTQQ3n00UfzySefLOioUEj9+vXTqVOnXH755VXd5VITqiyeUAVWDkIVVlZ+IAdqGuMSUJMYk4CaxrjEt00poUrZy399lXbt2uWCCy7Is88+mzvvvDN77bVXisViZs2alUceeWR5dAkAAAAAALBc1VleNx46dGgee+yxPP300xXLgSWpMct/AQAAAAAALI0qDVXeeuut9OvXL/3798+YMWOSJMViMXXq1Mmuu+6aLl26ZJ999qnKLgEAAAAAAFaIZQ5V3n///Yog5f3330+yIEhJki222CJdunTJwQcfnObNmy9rVwAAAAAAANWm7FDlxhtvTP/+/fPWW28l+W+QstZaa+WQQw5Jly5d0rp166qpEgAAAAAAoJqVHapcdtllFY8bNWqUzp0759BDD81OO+2UQqFQJcUBAAAAAADUFGWHKrVr187OO++cLl26ZL/99kuDBg2qsi4AAAAAAIAapexQpUePHllvvfWy7777pl69elVZEwAAAAAAQI1Tq9wL//a3v+Wcc87JAw88UJX1AAAAAAAA1Ehlhyrjx49Pkuy5555VVgwAAAAAAEBNVXao0qxZsyTJlClTqqwYAAAAAACAmqrsUKVbt24pFou5+OKLM23atKqsCQAAAAAAoMYpe6P6ffbZJx988EHuueee7Lnnntl1112z+eabp1mzZqlfv/5XXtu1a9dyuwUAAAAAAKgWZYcq3/nOd5IkhUIh06dPzxNPPJEnnnjia68rFApCFQAAAAAAYKVTdqhSLBa/8jkAAAAAAMA3SdmhylNPPVWVdQAAAAAAANRoZYcqrVq1qso6AAAAAAAAarRa1V0AAAAAAADAyqDsmSpjxowpu9N11lmn7GsBAAAAAACqQ9mhyj777FPWdYVCIW+++Wa53QIAAAAAAFSLskOVYrG4Qq8DAAAAAACoTmWHKr169frK87NmzcrkyZPz6quv5vnnn88qq6ySyy+/PK1bty63SwAAAAAAgGpTdqhy2GGHldx2yJAhOeWUU3L++efnwQcfLLdLAAAAAACAalNrRXSy/fbb5wc/+EE++eST3HjjjSuiSwAAAAAAgCq1QkKVJNl///2TJE8++eSK6hIAAAAAAKDKrLBQpWHDhkmSjz/+eEV1CQAAAAAAUGVWWKgycODAJEnjxo1XVJcAAAAAAABVpuyN6ktVLBbz1FNP5eKLL06hUMjWW2+9vLsEAAAAAACocmWHKvvss8/Xtpk7d26mTJmSOXPmpFgsplAo5Pjjjy+3SwAAAAAAgGpTdqgyevTopeuoTp306NEjO++8c7ldAgAAAAAAVJuyQ5XDDjvsa9vUqlUrDRs2zIYbbpi99947rVq1Krc7AAAAAACAalV2qNKrV6+qrAMAAAAAAKBGq1XdBQAAAAAAAKwMlluoMmfOnEydOnV53R4AAAAAAGCFWurlv6ZPn54XXnghtWvXzj777LPI+SeeeCLXXHNN3nnnnRSLxbRs2TLf+973cuKJJ6ZBgwZVUjQAAAAAAMCKtlQzVf72t7+lU6dOOeuss3Lbbbctcv6mm25Kjx498vbbb2f+/PkpFov55JNPcuWVV+aEE07I5MmTq6puAAAAAACAFarkUOXOO+/MhRdemClTpqRYLC4SkLzxxhu5/PLLUywWUywWs//++6dnz5454YQT0qBBgwwfPjy//OUvq7p+AAAAAACAFaKk5b8mTJiQyy67LMViMeuss05++tOfZtddd63U5vLLL8/8+fNTKBRy6qmn5uyzz644d/DBB+eYY47JE088kcGDB6dDhw5V+yoAAAAAAACWs5JmqvTp0yczZszIuuuum/vuuy/7779/VllllYrzEydOzMCBA1MoFNK0adOcccYZla5v165djjzyyBSLxfTr169qXwEAAAAAAMAKUFKo8sILL1TMQFl99dUXOf/8889n/vz5SZL99ttvsRvSf+c730mSDB48eFnqBQAAAAAAqBYlhSoffvhhkmSHHXZY7PmXXnqp4vGXlwVbaKONNkqSfPLJJ0tVIAAAAAAAQE1QUqgyadKkJEmLFi0We37IkCEVj5cUvCycvTJz5sylKhAAAAAAAKAmKClUqVNnwX728+bNW+Tc+PHj8+GHH6ZQKGTjjTdOs2bNFnuPiRMnJklWW221cmsFAAAAAACoNiWFKgtnqIwdO3aRcy+88ELF45133nmJ9xg2bFiSpHnz5ktVIAAAAAAAQE1QUqiy3XbbJUmeeeaZRc498sgjFY/32muvJd6jT58+KRQK2XbbbZeyRAAAAAAAgOpXUqiy3377pVgs5pZbbslbb71Vcfy5557Ls88+m0KhkBYtWmSXXXZZ7PV9+/bNyy+/nCTZc889q6BsAAAAAACAFatOKY06deqUrbfeOsOGDcvRRx+d3XbbLbNnz85LL72UYrGYQqGQs88+O7VqVc5oPvnkk9x55525+eabUygUsuWWW37lbBYAAAAAAICaqqRQJUmuvPLKnHjiiXnvvffy9NNPJ0mKxWKS5Kijjsrhhx9eqf3vfve73H777RXtVltttVx88cVVVTcAAAAAAMAKVXKosuaaa+a+++7L//3f/+Xpp5/O+PHjs+666+awww7LAQccsEj7Bg0aVIQuG2ywQXr37p22bdtWXeUAAAAAAAArUMmhSpI0bNgw3bp1S7du3b627Y477ph58+Zl++23z5577pk6dZaqq8UaN25cfvvb3+bFF19M/fr1c+CBB+bHP/5x6tevn4svvrhiZsxCPXv2zLHHHrvM/QIAAAAAACx70rEEu+66a3bdddcqu1+xWEyPHj2y6qqr5s4778yUKVNywQUXpFatWvnZz36WESNG5Jxzzslhhx1WcU2TJk2qrH8AAAAAAODbrdbXN6kZ3nvvvQwdOjS9evXKpptumg4dOqRHjx55+OGHkyQjRozIFltskZYtW1Z8NWzYsJqrBgAAAAAAvilWmlClZcuWuemmm9KiRYtKx6dNm5Zp06Zl3Lhx2XDDDaunOAAAAAAA4BtvuS3/VdVWXXXV7L777hXP58+fnzvuuCM77bRTRowYkUKhkOuuuy7PPvtsmjZtmhNPPLHSUmCLUygs76oBlg/jFyurhZ9dn2GgpjAuATWJMQmoaYxLsKiVJlT5sksvvTRvvvlm/v73v+eNN95IoVDIxhtvnGOPPTaDBg1Kz54906RJk+y3336Lvb5Zs8apXXulmagDUEmLFqtUdwmwTJo39xkGahbjElCTGJOAmsa4BP+1UoYql156aW699dZcccUV2WyzzbLppptm7733TtOmTZMkbdu2zQcffJC77757iaHKpEnTJazASmvChKnVXQKUpVBY8MP4xIlTUyxWdzUAxiWgZjEmATWNcYlvm1L+kHmlC1V+85vf5O67786ll16azp07J0kKhUJFoLLQxhtvnBdffPEr72UgAFZWxi9WdsWizzFQsxiXgJrEmATUNMYl+K+Vav2rq6++Ovfcc08uv/zyHHTQQRXHe/funW7dulVq+9Zbb2XjjTdewRUCAAAAAADfVCtNqDJixIj8+c9/zv/+7/9m++23z/jx4yu+9t577wwaNCg333xzRo4cmbvuuit9+/bNSSedVN1lAwAAAAAA3xArzfJfTz31VD7//PNce+21ufbaayude/vtt9O7d+9ceeWV6d27d1q1apXLLrss2267bTVVCwAAAAAAfNMUisWvXw2vb9++Vdpp165dq/R+5Rg/3ibPi7PDZc9WdwlACQads0d1lwBlKRQWbPo2YYJNDoGawbgE1CTGJKCmMS7xbdOyZRVtVH/eeeelUCgsc0EL1YRQBQAAAAAAYGmUvPxXCRNaUqtWray99tpZZZVVMmfOnIwdOzYzZ85c0FGdOllvvfXKrxQAAAAAAKAalRSqvPXWW4s9/sc//jE33XRT1ltvvZx99tnp1KlTGjRoUHF+/vz5eemll/LHP/4xb775Znbeeef88pe/rJrKAQAAAAAAVqBa5V745JNP5qabbsomm2ySv//97znwwAMrBSrJgpkrO++8c+6+++5stdVWufvuu9OnT59lLhoAAAAAAGBFKztUufXWW1MoFHLuuedmtdVW+8q29erVy49//OMUi8Xcdddd5XYJAAAAAABQbcoOVf71r38lSbbZZpuS2m+++eZJknfffbfcLgEAAAAAAKpN2aFK7dq1kyRTp04tqf2ECROSJI0aNSq3SwAAAAAAgGpTdqiy0UYbJUnuv//+ktrfdtttSZLNNtus3C4BAAAAAACqTdmhyuGHH55isZgbb7wx99xzzxLbFYvFXH311fnb3/6WQqGQ7373u+V2CQAAAAAAUG3qlHth165d8/e//z3Dhw/Pr371q9x6663Zfffds8EGG6RBgwaZOXNm3nvvvQwYMCBjx45Nkuy3337p3LlzlRUPAAAAAACwopQdqtSrVy/XX399evTokUGDBuX999/PBx98sEi7YrGYJOnSpUt+/etfl10oAAAAAABAdSo7VEmS1VdfPbfffnuefPLJPPTQQ3nxxRczZcqUivPNmzfPHnvskSOOOCIdOnRY5mIBAAAAAACqyzKFKgvtu+++2XfffZMks2bNymeffZamTZumXr16VXF7AAAAAACAalclocoXNWjQIA0aNKjq2wIAAAAAAFSrWtVdAAAAAAAAwMqgpJkqm2++eZJk/fXXz2OPPVbp2NIqFAp58803y7oWAAAAAACgupQUqhSLxZKOAQAAAAAAfFOVFKp07949SbLaaqstcgwAAAAAAODbYKlCla87BgAAAAAA8E1lo3oAAAAAAIASlDRT5evMnz8/kydPTpKsuuqqqVOnSm4LAAAAAABQY5SVfkydOjV9+/bNP//5z7z66quZMmVKpfNrrrlm2rdvn06dOqVz585p2LBhlRQLAAAAAABQXZY6VLn++utz8803Z+rUqUmSYrG4SJuPP/4448aNyxNPPJFevXqlR48eOeaYY5a9WgAAAAAAgGpScqgyZ86cnHvuuXniiScqgpR69eplk002yTrrrJNGjRplzpw5mTZtWkaNGpWRI0cmSaZMmZKLL744L7/8ci6//PLUrl17+bwSAAAAAACA5ajkUOXiiy/O448/niTZaKON0r179+yzzz5p0KDBYttPmjQp/fr1y2233ZZRo0bl8ccfT69evfKLX/yiaioHAAAAAABYgWqV0ujNN9/Mvffem0KhkIMOOigPPPBADjrooCUGKknSrFmzHHfccXnwwQfTuXPnFIvF3H333Xn//ferrHgAAAAAAIAVpaRQ5YEHHkixWMzmm2+eP/zhD6lXr17JHTRs2DB//OMfs/HGG2f+/Pl54IEHyi4WAAAAAACgupQUqrz88sspFAo54YQTytoTpW7dujnmmGNSLBYzePDgpb4eAAAAAACgupUUqowZMyZJstVWW5Xd0XbbbZck+eCDD8q+BwAAAAAAQHUpKVSZPn16kqR58+Zld9SiRYskydSpU8u+BwAAAAAAQHUpKVSZN29ekizVXipf1qhRoyTJnDlzyr4HAAAAAABAdSkpVFmoUCiU3dGyXAsAAAAAAFDdlipUAQAAAAAA+LYSqgAAAAAAAJSgztI0HjJkSOrXr19WR7NmzSrrOgAAAAAAgJpgqUKV//3f/11edQAAAAAAANRoJYcqxWJxedYBAAAAAABQo5UUqvTq1Wt51wEAAAAAAFCjlRSqHHbYYcu7DgAAAAAAgBqtVnUXAAAAAAAAsDIQqgAAAAAAAJRAqAIAAAAAAFACoQoAAAAAAEAJhCoAAAAAAAAlEKoAAAAAAACUQKgCAAAAAABQgrJDlblz51ZlHQAAAAAAADVa2aHKGWeckVNOOSWvvvpqVdYDAAAAAABQI5Udqrz++ut54YUXMmfOnKqsBwAAAAAAoEYqO1SZMWNGkmTTTTetsmIAAAAAAABqqrJDlc033zxJMmTIkCorBgAAAAAAoKYqO1S58MIL06RJk1xwwQW57777Mm3atKqsCwAAAAAAoEapU+6FTzzxRPbYY4/069cvv/jFL9KzZ8+su+66adasWerVq7fE6wqFQm699dZyuwUAAAAAAKgWZYcq1157bQqFQpKkWCymWCxm5MiRGTly5GLbFwqFFIvFimsAAAAAAABWJmWHKjvssENV1gEAAAAAAFCjlR2q3H777VVZBwAAAAAAQI1W9kb1AAAAAAAA3yZlz1T5svnz5+ett97K2LFjM23atHTp0iVJMmrUqKy33npV1Q0AAAAAAEC1WOZQZfLkybnmmmvSp0+fTJ8+veL4wlCle/fumTdvXn7+859nl112WdbuAAAAAAAAqsUyLf81YsSIHHbYYbnjjjsybdq0FIvFFIvFSm3GjBmT9957L6ecckruu+++ZSoWAAAAAACgupQdqsyaNSunnnpqxo4dm8aNG+f000/Pn//850XanXzyyVl11VUzf/78/OpXv8r777+/TAUDAAAAAABUh7JDlTvuuCOjR49Oy5Yt88ADD+RHP/pRdtppp0XanX766bn33nuz1lprZe7cubn99tuXqWAAAAAAAIDqUHao8thjj6VQKOSss85Kq1atvrLt+uuvn7POOivFYjH//Oc/y+0SAAAAAACg2pQdqnzwwQdJkt13372k9gtnsYwdO7bcLgEAAAAAAKpN2aHKnDlzkiT169cvqX29evUWdFir7C4BAAAAAACqTdkJxxprrJEk+de//lVS+1deeaXSdQAAAAAAACuTskOVnXbaKcViMddff/3Xtp01a1auuuqqFAqF7LjjjuV2CQAAAAAAUG3KDlW6deuW2rVr56WXXkqPHj0yevToxbYbPnx4jj/++LzzzjspFAo55phjyi4WAAAAAACgutQp98JNNtkk5557bn7/+9/niSeeyBNPPJHVV1+94vx3v/vdfPTRR5k4cWLFsTPOOCNt2rRZtooBAAAAAACqQdmhSpKceOKJadKkSS655JJMnz49kyZNqjg3dOjQisf16tXLWWedlZNPPnlZugMAAAAAAKg2yxSqJMlRRx2VAw44IA888EBefvnljBo1KtOnT0+DBg2y9tprZ4cddkjXrl3TvHnzqqgXAAAAAACgWixzqJIkTZo0yTHHHGO/FAAAAAAA4Bur7I3qAQAAAAAAvk2qZKbKW2+9lYcffjj//Oc/M27cuEydOjWrr756WrVqlb322isHHXRQWrVqVRVdAQAAAAAAVItlClVmz56dCy+8MA8++GCKxWKKxWLFuXHjxmXcuHF59dVXc8011+TUU0/NmWeeucwFAwAAAAAAVIeyQ5XPP/883bt3z/PPP59isZiGDRtmxx13zIYbbpgGDRpkxowZef/99zNo0KDMmjUrV199daZOnZrzzjuvKusHAAAAAABYIcoOVfr165fnnnsuhUIhxxxzTM4555w0atRokXbTpk1Lr169ct999+XWW2/NPvvskx122GGZigYAAAAAAFjRyt6o/v/+7/9SKBTStWvX9OzZc7GBSpI0adIkv/3tb3PAAQekWCzmtttuK7tYAAAAAACA6lJ2qPLee+8lSU466aSS2p966qlJkuHDh5fbJQAAAAAAQLUpO1SZPXt2kqRFixYltV9nnXWSJJ999lm5XQIAAAAAAFSbskOV1q1bJ0leeeWVktq/8847SZKNNtqo3C4zbty49OjRIx07dszuu++eXr16VYQ7o0aNSrdu3bLNNtvkwAMPzPPPP192PwAAAAAAAF9WdqhywgknpFgs5ve//30mTpz4lW3nzp2byy+/vGJT+3IUi8X06NEjM2fOzJ133pkrrrgiTz/9dP70pz+lWCzmzDPPTIsWLXLfffelS5cu6d69e8aMGVNWXwAAAAAAAF9Wdqhy0EEH5bTTTsvIkSNz+OGHp2/fvpk1a9Yi7QYPHpzjjjsuQ4cOzaGHHpojjjiirP7ee++9DB06NL169cqmm26aDh06pEePHnn44Yfz4osvZtSoUfn1r3+dTTbZJKeddlq22Wab3HfffeW+PAAAAAAAgErqlHvhd7/73SRJw4YNM27cuJx//vn5xS9+kVatWmXVVVfN7NmzM3r06MyYMaPimgcffDAPPvjgYu9XKBTy5ptvLrG/li1b5qabblpkD5dp06Zl2LBh2WKLLdKoUaOK49tvv32GDh1a7ssDAAAAAACopOxQ5cuBRbFYzLx58/Lhhx8ua02Lteqqq2b33XeveD5//vzccccd2WmnnTJ+/PisscYaldo3b948H3/88Vfes1BYLqUCLHfGL1ZWCz+7PsNATWFcAmoSYxJQ0xiXYFFlhyrdu3evyjqW2qWXXpo333wzf//73/PXv/419erVq3S+Xr16mTNnzhKvb9ascWrXLnv1M4Bq1aLFKtVdAiyT5s19hoGaxbgE1CTGJKCmMS7Bf62Uocqll16aW2+9NVdccUU222yz1K9fP5MnT67UZs6cOWnQoMES7zFp0nQJK7DSmjBhanWXAGUpFBb8MD5x4tQUi9VdDYBxCahZjElATWNc4tumlD9kLjtUqS6/+c1vcvfdd+fSSy9N586dkyRrrrlm3n333UrtJkyYsMiSYF9mIABWVsYvVnbFos8xULMYl4CaxJgE1DTGJfivKgtV3nzzzbz88ssZO3ZsZsyYkYYNG2adddbJdtttl/bt21dJH1dffXXuueeeXH755dl///0rjm+99da54YYbMmvWrIrZKUOGDMn2229fJf0CAAAAAAAsc6jy1ltv5cILL8zw4cOX2GazzTbL73//+7Rt27bsfkaMGJE///nPOfXUU7P99ttn/PjxFec6duyYtddeO+eff35+8IMf5Omnn87w4cPTq1evsvsDAAAAAAD4omXaqX3gwIH57ne/m+HDh6dYLKZYLGaVVVbJGmuskcaNG1cce/vtt3P00UfnxRdfLLuvp556Kp9//nmuvfba7LbbbpW+ateunT//+c8ZP358Dj/88Dz44IO55pprss466yzLywMAAAAAAKhQKBbLWw1v8uTJ6dy5c6ZMmZLVVlstZ555Zg444IC0bNmyos24cePyyCOP5Nprr82UKVPSokWLPPzww2natGlV1V+28eNt8rw4O1z2bHWXAJRg0Dl7VHcJUJZCYcGmbxMm2OQQqBmMS0BNYkwCahrjEt82LVt+/Ub1Zc9UufXWWzNlypQ0b9489957b44//vhKgUqyYAP5bt265e9//3tatGiRiRMn5r777iu3SwAAAAAAgGpTdqjyzDPPpFAopEePHll//fW/su16662XHj16pFgs5rHHHiu3SwAAAAAAgGpTdqgycuTIJMlee+1VUvs999yz0nUAAAAAAAArk7JDlblz5yZJ6tatW1L7he1mzZpVbpcAAAAAAADVpuxQZc0110ySvPbaayW1X9hujTXWKLdLAAAAAACAalN2qNKxY8cUi8VcddVVmTNnzle2nTNnTq688soUCoV07Nix3C4BAAAAAACqTdmhynHHHZdatWrljTfeyMknn5wRI0Ystt27776bk046KW+88UYKhUKOO+64sosFAAAAAACoLnXKvbBNmzb5wQ9+kKuvvjqDBw/OwQcfnI022iibbLJJGjVqlBkzZmTEiBF5//33K64588wz06ZNmyopHAAAAAAAYEUqO1RJku7du6dx48a58sorM3PmzLz33nuVQpRisZgkqV+/fs4+++x069ZtmYoFAAAAAACoLssUqiTJiSeemEMPPTQPPfRQBg0alLFjx2b69Olp1KhR1llnnXTo0CFdunRJs2bNqqJeAAAAAACAarHMoUqSNG/ePN26dTMTBQAAAAAA+MYqe6N6AAAAAACAb5OSZqoMGjSoSjvdYYcdqvR+AAAAAAAAy1tJocpxxx2XQqFQJR0WCoW8+eabVXIvAAAAAACAFaXkPVWKxeLyrAMAAAAAAKBGKylUue2225Z3HQAAAAAAADVaSaFKx44dl3cdAAAAAAAANVqt6i4AAAAAAABgZVDynipfZeLEienTp0+GDBmSjz/+ONOnT8/jjz+eJLn88svTtm3bHHjggVXRFQAAAAAAQLVY5lDlxhtvzFVXXZW5c+cmWbChfaFQqDj/8MMP58Ybb8zdd9+dK6+8MquvvvqydgkAAAAAALDCLdPyX5dddlkuv/zyzJkzJ/Xr10/79u0XaTNr1qwUi8UMHjw4Z5xxRorF4rJ0CQAAAAAAUC3KDlWGDRuWG2+8MUly7LHH5oUXXsgtt9yySLsnn3wyxx57bIrFYoYNG5b777+//GoBAAAAAACqSdmhyu23354kOfDAA/OLX/wijRs3rrTs10KNGjXKL37xi3Tp0iXFYjEPPfRQ+dUCAAAAAABUk7JDlcGDB6dQKOSEE04oqf1xxx2XJHnrrbfK7RIAAAAAAKDalB2qTJw4MUmy4YYbltR+3XXXTZJMmzat3C4BAAAAAACqTdmhSuPGjZMkkydPLqn9+PHjkySrrLJKuV0CAAAAAABUm7JDlU033TRJ8sQTT5TUvk+fPkmSzTbbrNwuAQAAAAAAqk3ZocqBBx6YYrGYa665Jq+99tpXtn3sscdy6623plAo5Dvf+U65XQIAAAAAAFSbOuVeeNRRR+Wuu+7Kv//973z/+9/PwQcfnLZt21acf+GFF/LRRx/lqaeeynPPPZdisZgNN9wwRx11VJUUDgAAAAAAsCKVHarUqVMnN954Y0488cS8//776du3b5KkUCgkSU455ZSKtsViMWuvvXauu+661KtXb9kqBgAAAAAAqAZlL/+VJGuttVbuv//+nHHGGWnWrFmKxeIiX40bN87xxx+fPn36ZMMNN6yisgEAAAAAAFassmeqLNSwYcOcddZZOeuss/Luu+9m1KhRmTZtWho2bJi11147bdu2Te3atauiVgAAAAAAgGpTdqgyduzYrL322pWOtW7dOq1bt17mogAAAAAAAGqaspf/2meffXLCCSfk/vvvz7Rp06qyJgAAAAAAgBqn7FBl/vz5efnll/Pzn/88u+22W3784x9nwIAB+fzzz6uyPgAAAAAAgBqh7FDlt7/9bXbeeefUqlUrs2bNyiOPPJIzzjgju+++e37729/mtddeq8o6AQAAAAAAqlWhWCwWl+UGEyZMyCOPPJKHH344w4YNW3DTQiFJsuGGG6ZLly455JBD0qpVq2WvtgqNHz+1ukuokXa47NnqLgEowaBz9qjuEqAshULSosUqmTBhapbtJxCAqmFcAmoSYxJQ0xiX+LZp2XKVr22zzKHKF40aNSr9+vVLv3798u9//3tBB4VCCoVCtttuu3Tp0iX7779/Vlnl6wtb3oQqiydUgZWDUIWVlR/IgZrGuATUJMYkoKYxLvFts8JDlS9666230r9//zz22GP58MMPK2av1K9fP0OHDl0eXS4VocriCVVg5SBUYWXlB3KgpjEuATWJMQmoaYxLfNuUEqrUWV6dt23bNm3bts1ee+2VG264IQMGDEiSzJ49e3l1CQAAAAAAsNwsl1DlpZdeSr9+/fLUU09l0qRJFcdXWWWV7L///sujSwAAAAAAgOWqykKVYcOGpV+/fnn00Uczfvz4JEmxWEydOnWy2267pWvXrunUqVPq1atXVV0CAAAAAACsMMsUqizcN6V///4ZPXp0kgVBSpJstdVW6dq1aw488MA0a9Zs2SsFAAAAAACoRmWHKgcddFDee++9JP8NUtZZZ50ccsgh6dKlSzbeeOOqqRAAAAAAAKAGKDtUGTFiRJKkSZMm6dy5c7p06ZKOHTtWWWEAAAAAAAA1Sdmhyp577pkuXbpkn332Sf369auyJgAAAAAAgBqn7FDl+uuvr8o6AAAAAAAAarRl2qj+i4YPH55XXnklY8eOzbRp0/Lb3/42SfLYY4+lffv2WXvttauqKwAAAAAAgBVumUOVV199Nb/61a/y9ttvVzq+MFS54oorMnr06Jxyyinp0aNHCoXCsnYJAAAAAACwwtValosff/zxHHfccXn77bdTLBZTq1atFIvFSm3GjBmTuXPn5rrrrsuFF164TMUCAAAAAABUl7JDlY8//jg//elPM2/evLRr1y5/+ctf8txzzy3S7q9//Wu23nrrFIvF3HvvvRk4cOAyFQwAAAAAAFAdyg5VbrnllsyaNSvt2rXLHXfckZ133jkNGjRYpN12222X2267Ldtss02S5J577im7WAAAAAAAgOpSdqjy3HPPpVAo5Ic//GHq1av3lW3r16+f7t27p1gsZujQoeV2CQAAAAAAUG3KDlXGjh2bJGnXrl1J7bfYYoskyaRJk8rtEgAAAAAAoNqUHarUrl07STJ37tyS2s+cOTNJFrtEGAAAAAAAQE1Xdqiy3nrrJUlefvnlktoPGDCg0nUAAAAAAAArk7JDlb322ivFYjG9e/fOZ5999pVtR44cmauuuiqFQiG77757uV0CAAAAAABUm7JDlW7dumW11VbLRx99lCOOOCJ9+/bN+++/X3F+7ty5ef/993PTTTflqKOOyuTJk9OoUaMcf/zxVVI4AAAAAADAilSn3AubNm2a3r175/TTT8+oUaNy/vnnJ0kKhUKSpH379hVti8Vi6tSpkz/+8Y9p3rz5MpYMAAAAAACw4pU9UyVJdtppp/ztb3/L9ttvn2KxuMSvzTffPLfffnv23nvvqqobAAAAAABghSp7pspCm222We688868++67eemll/LRRx9l2rRpadCgQdZZZ5106NAh7dq1q4paAQAAAAAAqs0yhyoLtW7dOq1bt66q2wEAAAAAANQoy7T8FwAAAAAAwLdF2TNV3n777QwcODCvvPJKJk6cmMmTJ6dQKGSVVVbJeuutl/bt22fvvfdOq1atqrJeAAAAAACAarHUocorr7ySK664IoMHD15im6FDh+ahhx7K7373u+yyyy4599xz07Zt22UqFAAAAAAAoDot1fJft956a4499tgMHjw4xWKx4qtJkyZZY4010rRp09SuXbvi+Pz58/PCCy/kyCOPzJ133rm8XgMAAAAAAMByV/JMlTvvvDOXXHJJisVi6tWrl65du+bAAw/MVlttlSZNmlRqO27cuAwdOjT9+vXLP/7xj8ybNy8XX3xxGjRokCOOOKLKXwQAAAAAAMDyVlKoMm7cuPzxj39MsVjMJptskquuuiobb7zxEtuvueaa6dy5czp37py33347P/7xjzNixIj06tUr++yzT5o2bVpV9QMAAAAAAKwQJS3/9cADD2TmzJlp0aJFbrvttq8MVL6sTZs2ueWWW9K0adNMnz49Dz74YNnFAgAAAAAAVJeSQpUBAwakUCjk5JNPTvPmzZe6kzXXXDPf+973UiwW88ILLyz19QAAAAAAANWtpFBl5MiRSZIdd9yx7I523XXXJMm7775b9j0AAAAAAACqS0mhymeffZZkwYyTcq233npJkkmTJpV9DwAAAAAAgOpSUqgyd+7cJEmDBg3K7qhx48ZJktmzZ5d9DwAAAAAAgOpSUqhSLBYXNK5VUvPFd/SfaxfeCwAAAAAAYGVSfkoCAAAAAADwLSJUAQAAAAAAKMFShSqFQmF51QEAAAAAAFCj1Vmaxttuu+3yqgMAAAAAAKBGKzlUscE8AAAAAADwbVZSqHLYYYct7zoAAAAAAABqtJJClV69ei3vOpbKnDlzcvjhh6dnz57ZcccdkyQXX3xxbr/99krtevbsmWOPPbY6SgQAAAAAAL5hlmpPlZpg9uzZOeecc/Lvf/+70vERI0bknHPOqTSrpkmTJiu6PAAAAAAA4BuqVnUXsDTefffdHH300Rk5cuQi50aMGJEtttgiLVu2rPhq2LBhNVQJAAAAAAB8E61UocrLL7+cHXfcMf/3f/9X6fi0adMybty4bLjhhtVTGAAAAAAA8I23Ui3/9f3vf3+xx0eMGJFCoZDrrrsuzz77bJo2bZoTTzyx0lJgi1MoLI8qAZY/4xcrq4WfXZ9hoKYwLgE1iTEJqGmMS7ColSpUWZL33nsvhUIhG2+8cY499tgMGjQoPXv2TJMmTbLffvst9ppmzRqndu2VaqIOQIUWLVap7hJgmTRv7jMM1CzGJaAmMSYBNY1xCf7rGxGqdO3aNXvvvXeaNm2aJGnbtm0++OCD3H333UsMVSZNmi5hBVZaEyZMre4SoCyFwoIfxidOnJpisbqrATAuATWLMQmoaYxLfNuU8ofM34hQpVAoVAQqC2288cZ58cUXv/I6AwGwsjJ+sbIrFn2OgZrFuATUJMYkoKYxLsF/lbT+1cCBAzNixIjlXUvZevfunW7dulU69tZbb2XjjTeunoIAAAAAAIBvnJJClV/+8pc55JBD8vHHH1cc69u3b/r27Zv58+cvt+JKtffee2fQoEG5+eabM3LkyNx1113p27dvTjrppOouDQAAAAAA+IYoafmv8ePHp1gsplGjRhXHzjvvvNSqVSudO3dOw4YNl1uBpWjfvn169+6dK6+8Mr17906rVq1y2WWXZdttt63WugAAAAAAgG+OkkKVOnXqZPbs2fnggw/Svn37iuPFalxI7+233670fN99982+++5bTdUAAAAAAADfdCWFKhtvvHFee+21/OhHP8r+++9facbKddddl7p16y5Vp927d1+6KgEAAAAAAKpZSaHKsccem5/+9KcZO3Zs/vKXv1QcLxaLueGGG5a6U6EKAAAAAACwsikpVDn00EMzZ86c3H///ZkwYULmzZuXMWPGpFAoZO21117eNQIAAAAAAFS7kkKVJDnyyCNz5JFHVjxv27ZtkqRfv37VvlE9AAAAAADA8larugsAAAAAAABYGZQ8U+XL3nrrraqsAwAAAAAAoEYrO1RJkrlz52b48OF57733Mnny5BSLxTRt2jQbb7xx2rdvn3r16lVVnQAAAAAAANWqrFDl/fffz4033phHH300M2fOXGybhg0bpnPnzjnllFOyySabLFORAAAAAAAA1W2p91S54YYbcuihh6ZPnz6ZMWNGisXiYr9mzJiRvn37pkuXLrn22muXR+0AAAAAAAArzFLNVLn44otz5513plgsJkk23HDD7LPPPtloo43SokWL1K5dO1OmTMk777yTgQMH5rXXXsu8efNy5ZVX5pNPPsmFF164XF4EAAAAAADA8lZyqPLggw/mjjvuSJJssMEGueiii7Lzzjt/5TWvvvpqevbsmXfffTf33HNP2rdvn8MOO2zZKgYAAAAAAKgGJS3/NXv27PzhD39IoVDIlltumb59+35toJIk2267bf7+979nm222SbFYzKWXXprZs2cvc9EAAAAAAAArWkmhysMPP5wJEyakUaNGue6669KwYcOSO2jQoEGuueaaNGnSJJ9++mn69+9fdrEAAAAAAADVpaRQ5amnnkqhUMgRRxyRli1bLnUnzZs3zzHHHJNisZinnnpqqa8HAAAAAACobiWFKm+99VaS5Dvf+U7ZHXXq1ClJ8uabb5Z9DwAAAAAAgOpSUqgyYcKEJMl6661XdkfrrrtupXsBAAAAAACsTEoKVWrXrp0kqVOnTtkdFQqFSv8FAAAAAABYmZQUqjRv3jxJMnLkyLI7+uijjyrdCwAAAAAAYGVSUqjStm3bJMmAAQPK7mjhBvWbb7552fcAAAAAAACoLiWFKnvssUeKxWLuuuuufPrpp0vdyaRJk3LXXXelUChUbFgPAAAAAACwMikpVDnkkEPSokWLTJs2Leecc07mzp1bcgezZ8/OmWeemalTp6Z58+Y5+OCDyy4WAAAAAACgupQUqjRs2DA//vGPUywWM3DgwBx77LF55513vva6N998M0cddVReffXVFAqFXHDBBalfv/4yFw0AAAAAALCi1Sm14eGHH5633nort912W4YPH54uXbpkm222yQ477JBNN900q666aurVq5fPPvss7733Xl544YUMGTKk4vqTTjopBx544HJ5EQAAAAAAAMtbyaFKklxwwQVZc801c8UVV2TevHkZOnRohg4dusT2xWIx9erVy49//ON069ZtGUsFAAAAAACoPiUt//VFJ598ch566KEcdthhadiwYYrF4mK/GjRokCOPPDL9+vUTqAAAAAAAACu9pZqpstBGG22UXr165eKLL84bb7yRESNGZMqUKZk1a1ZWXXXVtG7dOttss03q1atX1fUCAAAAAABUi7JClYVq166d9u3bp3379lVVDwAAAAAAQI201Mt/AQAAAAAAfBsJVQAAAAAAAEogVAEAAAAAACiBUAUAAAAAAKAEQhUAAAAAAIASCFUAAAAAAABKIFQBAAAAAAAogVAFAAAAAACgBGWHKm3bts0WW2yRmTNnLtU5AAAAAACAlVGdUhqdfPLJ6dChQ7bbbrtss802qV+/fpKkWCwu8ZqvOgcAAAAAALCyKSlUeeGFF/LPf/4zSVK7du1sscUWFefef//9Ss8BAAAAAAC+iUoKVa666qoMGTIkQ4YMyb/+9a8MHz48hUIhxWIxRxxxRBo2bJgtt9wyW221VbbaaquK6wqFwnIrHAAAAAAAYEUqKVTZb7/9st9++yVJZs2alVdffTUnnnhiCoVC1lprrYwdOzaDBg3KoEGDKgUp//u//5utttoqW2yxRbbccstsvPHGy+dVAAAAAAAALGclhSpf1KBBg+y8884Vz/v375+ZM2fm9ddfz2uvvZbXXnstAwYMSJJFgpaGDRtm8803z5133lk11QMAAAAAAKwgSx2qLE6zZs2yxx57ZI899kiStG3bNknSu3fvjBgxIv/617/yxhtvZMyYMXnllVeqoksAAAAAAIAVqqRQ5Y477sj222+ftm3bLtU+KXvssUc6d+5c8XzKlCl58803l75KAAAAAACAalZSqHLxxRenUCikcePG2WabbbLddttVnFuakGW11VartHQYAAAAAADAyqKkUOWoo47KK6+8kvfeey/PP/98XnjhhYpzBx10ULbaaqtsueWWadeuXbbccsvlViwAAAAAAEB1KSlU+c1vfpMkmTx5cl555ZUMHjw4t9xyS5Jk9OjRGT16dB5//PFFrrv11lvTvn37bLHFFmnatGnVVQ0AAAAAALCCLdVG9U2bNk2nTp3SqVOnilDlvvvuy3v/3959x9d4938cf58sxAqhalVwk9sIQkgVbUVLpTWq1Qp1F23tVR02tZVQFdw1ateoNrSoTYs2jT2LJmlipUitIrLz+8Mv150jw4VwkvT1fDw85FzrfM9J8sl1Xe/z/X7/+EPHjh3TsWPHdOLECUVHR0u6M1F9ipIlS6patWqqVq2aunfvnoUvAQAAAAAAAAAA4NG7r1AlPRUqVFC1atXUokULSVJSUpKqVq0qSfLz89OpU6d08uRJRUZGKjIyUlu3biVUAQAAAAAAAAAAOc5Dhyp3s7OzM77+6KOPlC9fPklSRESEjh8/ruPHj2f1UwIAAAAAAAAAADxyDxyq1K1bV5Jkb29vap2bm5vc3Nz08ssvP+hTAgAAAAAAAAAA2MwDhypLlix5oHUAAAAAAAAAAAA5kd29NwEAAAAAAAAAAAChCgAAAAAAAAAAgAmEKgAAAAAAAAAAACYQqgAAAAAAAAAAAJhAqAIAAAAAAAAAAGACoQoAAAAAAAAAAIAJhCoAAAAAAAAAAAAmEKoAAAAAAAAAAACYQKgCAAAAAAAAAABgAqEKAAAAAAAAAACACYQqAAAAAAAAAAAAJhCqAAAAAAAAAAAAmECoAgAAAAAAAAAAYAKhCgAAAAAAAAAAgAmEKgAAAAAAAAAAACYQqgAAAAAAAAAAAJhAqAIAAAAAAAAAAGACoQoAAAAAAAAAAIAJhCoAAAAAAAAAAAAmEKoAAAAAAAAAAACYQKgCAAAAAAAAAABgAqEKAAAAAAAAAACACYQqAAAAAAAAAAAAJhCqAAAAAAAAAAAAmECoAgAAAAAAAAAAYAKhCgAAAAAAAAAAgAmEKgAAAAAAAAAAACYQqgAAAAAAAAAAAJiQI0OVuLg4vfLKKwoODjaWnT17Vp06dVKtWrXk6+ur3bt327CFAAAAAAAAAAAgt8lxoUpsbKwGDBigkJAQY1lycrJ69eqlYsWK6dtvv1WrVq3Uu3dvRUZG2rClAAAAAAAAAAAgN3GwdQPuR2hoqD744AMlJydbLf/111919uxZrVixQs7OzqpYsaKCgoL07bffqk+fPjZqLQAAAAAAAAAAyE1yVE+VPXv2yNvbWytXrrRafvjwYVWtWlXOzs7Gsjp16ujQoUOPuYUAAAAAAAAAACC3ylE9Vdq3b5/u8qioKD3xxBNWy1xdXXXhwoVMj2exZFnTAOCxon4hp0r52eVnGEB2QV0CkJ1QkwBkN9QlIK0cFapk5Pbt23JycrJa5uTkpLi4uAz3KVo0v+ztc1RHHQAwFCtW0NZNAB6Kqys/wwCyF+oSgOyEmgQgu6EuAf+TK0KVPHny6Nq1a1bL4uLilDdv3gz3uXLlFgkrgBzrr79u2LoJwAOxWO6cjF++fEN3TZEGADZBXQKQnVCTAGQ31CX805j5IHOuCFVKlCih0NBQq2V//fVXmiHB7kYhAJBTUb+Q0yUn83MMIHuhLgHITqhJALIb6hLwP7li/KuaNWvq+PHjiomJMZbt379fNWvWtGGrAAAAAAAAAABAbpIrQpV69eqpZMmSGjx4sEJCQjRnzhwdOXJEr7/+uq2bBgAAAAAAAAAAcolcEarY29tr1qxZioqKUps2bfT9999r5syZKlWqlK2bBgAAAAAAAAAAcokcO6fKqVOnrB6XK1dOS5cutVFrAAAAAAAAAABAbpcreqoAAAAAAAAAAAA8aoQqAAAAAAAAAAAAJhCqAAAAAAAAAAAAmECoAgAAAAAAAAAAYAKhCgAAAAAAAAAAgAmEKgAAAAAAAAAAACYQqgAAAAAAAAAAAJhAqAIAAAAAAAAAAGACoQoAAAAAAAAAAIAJhCoAAAAAAAAAAAAmEKoAAAAAAAAAAACYQKgCAAAAAAAAAABgAqEKAAAAAAAAAACACYQqAAAAAAAAAAAAJhCqAAAAAAAAAAAAmECoAgAAAAAAAAAAYAKhCgAAAAAAAAAAgAmEKgAAAAAAAAAAACYQqgAAAAAAAAAAAJhAqAIAAAAAAAAAAGACoQoAAAAAAAAAAIAJhCoAAAAAAAAAAAAmEKoAAAAAAAAAAACYQKgCAAAAAAAAAABgAqEKAAAAAAAAAACACYQqAAAAAAAAAAAAJhCqAAAAAAAAAAAAmECoAgAAAAAAAAAAYAKhCgAAAAAAAAAAgAmEKgAAAAAAAAAAACYQqgAAAAAAAAAAAJhAqAIAAAAAAAAAAGACoQoAAAAAAAAAAIAJhCoAAAAAAAAAAAAmEKoAAAAAAAAAAACYQKgCAAAAAAAAAABgAqEKAAAAAAAAAACACYQqAAAAAAAAAAAAJhCqAAAAAAAAAAAAmECoAgAAAAAAAAAAYAKhCgAAAAAAAAAAgAmEKgAAAAAAAAAAACYQqgAAAAAAAAAAAJhAqAIAAAAAAAAAAGACoQoAAAAAAAAAAIAJhCoAAAAAAAAAAAAmEKoAAAAAAAAAAACYQKgCAAAAAAAAAABgAqEKAAAAAAAAAACACYQqAAAAAAAAAAAAJhCqAAAAAAAAAAAAmECoAgAAAAAAAAAAYAKhCgAAAAAAAAAAgAmEKgAAAAAAAAAAACYQqgAAAAAAAAAAAJhAqAIAAAAAAAAAAGACoQoAAAAAAAAAAIAJhCoAAAAAAAAAAAAmEKoAAAAAAAAAAACYQKgCAAAAAAAAAABgAqEKAAAAAAAAAACACYQqAAAAAAAAAAAAJhCqAAAAAAAAAAAAmECoAgAAAAAAAAAAYAKhCgAAAAAAAAAAgAmEKgAAAAAAAAAAACYQqgAAAAAAAAAAAJhAqAIAAAAAAAAAAGACoQoAAAAAAAAAAIAJhCoAAAAAAAAAAAAmEKoAAAAAAAAAAACYQKgCAAAAAAAAAABgAqEKAAC5TJ5vHOTyorOKlS0gV/cCKtQpr+xP8icfAAAAAADgYXGHBQCAXCTfbEcV6plPyfmSdeOzGN0aEiuHY/Yq8pKz7H/jzz4AAAAAAMDDcLB1AwAAQNawi7Qo/+g8ivdI1PXA28Zf+bgmCSraIL/yf+qkvxfF2LaRAAAAAAAAORgfWQUAIJdw2uIgS7xFt7vGWX1sIqlMshIqJclxn73tGgcAAAAAAJAL0FMFAIBcIqZDvOIbJCixZLL1injJ/oydkkok2aZhAAAAAAAAuQQ9VQAAyC0cpMR/JUv5rRc7T3GS3TWL4l5ItE27AAAAAAAAcglCFQAAcrG8XzrK+TMnJT6ZpOj+sbZuDgAAAAAAQI7G8F8AAORGiVL+kXnkPMdJiSWTdH3VbSUXtnWjAAAAAAAAcrZc1VNly5Ytcnd3t/rXt29fWzcLAIDHynJdKuyXT85znJRQNVHXNkQrsTLzqQAAAAAAADysXNVTJTQ0VI0bN9aYMWOMZXny5LFhiwAAeLzsTltUuH0+OYTYK7Z5vP6eGSMVsHWrAAAAAAAAcodcFaqEhYWpcuXKKl68uK2bAgDAY2cXYZFLC2fZX7RTdO9Y3RoeJ1ls3SoAAAAAAIDcI1cN/xUWFiY3NzdbNwMAgMcvTir8dj7ZX7TTrYGxujWCQAUAAAAAACCr5ZqeKsnJyQoPD9fu3bs1e/ZsJSYm6qWXXlLfvn3l5OSU7j4WbjYByKGoX7hbnm8c5HDCXgmVEpXgmSin7fZW65OLJCuhtu3nVUn52eVnGEB2QV0CkJ1QkwBkN9QlIK1cE6pERkbq9u3bcnJy0rRp03Tu3DmNHTtWMTExGjZsWJrtixbNL3v7XNVRB8A/SLFiBW3dBGQ3P9z5zyHEXoXbOadd301S08faoky5uvIzDCB7oS4ByE6oSQCyG+oS8D+W5OTkZFs3Iqtcu3ZNhQsXluX/o9NNmzbpo48+0sGDB2Vvb/2J3aioGySs6fDy32nrJgAwYd+Hz9q6CcADsVjunIxfvnxDuecMBEBORl0CkJ1QkwBkN9Ql/NOY+SBzrumpIkkuLi5WjytWrKjY2Fhdv35dRYsWTbM9hQBATkX9Qk6XnMzPMYDshboEIDuhJgHIbqhLwP/kmvGvdu3aJW9vb92+fdtYduLECbm4uKQbqAAAAAAAAAAAANyPXBOqeHp6Kk+ePBo2bJj++OMP/fTTT5o0aZLeffddWzcNAAAAAAAAAADkArkmVClQoIC+/PJLXblyRa+99pqGDh2qN998k1AFAAAAyGbszlrk+u/8cvzV/t4bA8AjRk0CkN1Ql4DsLVfNqVKpUiUtWLDA1s0AAAAAkAGHo3Yq1CmfLNctiq+RaOvmAPiHoyYByG6oS0D2l2t6qgAAAADIxmIl58+c5NLcWfZn7ZRYOUlytnWjAPxjUZMAZDfUJSDHyFU9VQAAAABkP3lWOCi/fx7Zn7FTQtVEOfxmr/jafPISgG1QkwBkN9QlIGehpwoAAACARydJKjAsrxKfStL1Rbd16+M4SVJCrSQbNwzAPxI1CUB2Q10Cchx6qgAAAAB4dBKlK0G3lFw8WZKUf5yTJCmBT18CsAVqEoDshroE5Dj0VAEAAADw6DjKuEkgSQ4H7JWcN1kJ/+bTlwBsgJoEILuhLgE5DqEKAAAAgMcjWXI4bK+EakmSo60bA+Afj5oEILuhLgE5AqEKAAAAgMfCPtROdn9bmHgVQLZATQKQ3VCXgJyBUAUAAADAY+Fw4M7lR0ItbhQAsD1qEoDshroE5AyEKgAAAAAeC8eD9pKYeBVA9kBNApDdUJeAnIFQBQAAAMBj4XDQXkmFk5VYIfneGwPAI0ZNApDdUJeAnIFQBQAAAMCjFyc5HLdTQs1EyWLrxgD4x6MmAchuqEtAjkGoAgAAAOCRczhuJ0ucRQmeDGcBwPaoSQCyG+oSkHM42LoBAAAAAHK/BM8kRV26YetmAIAkahKA7Ie6BOQc9FQBAAAAAAAAAAAwgVAFAAAAAAAAAADABEIVAAAAAAAAAAAAEwhVAAAAAAAAAAAATCBUAQAAAAAAAAAAMIFQBQAAAAAAAAAAwARCFQAAAAAAAAAAABMIVQAAAAAAAAAAAEwgVAEAAAAAAAAAADCBUAUAAAAAAAAAAMAEQhUAAAAAAAAAAAATCFUAAAAAAAAAAABMIFQBAAAAAAAAAAAwgVAFAAAAAAAAAADABEIVAAAAAAAAAAAAEwhVAAAAAAAAAAAATCBUAQAAAAAAAAAAMIFQBQAAAAAAAAAAwARCFQAAAAAAAAAAABMIVQAAAAAAAAAAAEwgVAEAAAAAAAAAADCBUAUAAAAAAAAAAMAEQhUAAAAAAAAAAAATCFUAAAAAAAAAAABMIFQBAAAAAAAAAAAwgVAFAAAAAAAAAADABEIVAAAAAAAAAAAAEwhVAAAAAAAAAAAATCBUAQAAAAAAAAAAMIFQBQAAAAAAAAAAwARCFQAAAAAAAAAAABMIVQAAAAAAAAAAAEwgVAEAAAAAAAAAADCBUAUAAAAAAAAAAMAEQhUAAAAAAAAAAAATHGzdAAAAMlN3yk5bNwGACXs/eNbWTQAAAAAA4JGjpwoAAAAAAAAAAIAJhCoAAAAAAAAAAAAmEKoAAAAAAAAAAACYQKgCAAAAAAAAAABgAqEKAAAAAAAAAACACYQqAAAAAAAAAAAAJhCqAAAAAAAAAAAAmECoAgAAAAAAAAAAYAKhCgAAAAAAAAAAgAmEKgAAAAAAAAAAACYQqgAAAAAAAAAAAJhAqAIAAAAAAAAAAGACoQoAAAAAAAAAAIAJhCoAAAAAAAAAAAAmEKoAAAAAAAAAAACYQKgCAAAAAAAAAABgAqEKAAAAAAAAAACACQ62bgAAAACQU9SdstPWTQBgwt4PnrV1Ex4b6hKQM1CXAGQn/6Sa9CjQUwUAAAAAAAAAAMAEQhUAAAAAAAAAAAATCFUAAAAAAAAAAABMIFQBAAAAAAAAAAAwgVAFAAAAAAAAAADABEIVAAAAAAAAAAAAEwhVAAAAAAAAAAAATCBUAQAAAAAAAAAAMIFQBQAAAAAAAAAAwARCFQAAAAAAAAAAABMIVQAAAAAAAAAAAEwgVAEAAAAAAAAAADCBUAUAAAAAAAAAAMCEXBWqxMbGasiQIfLy8lLDhg01f/58WzcJAAAAAAAAAADkEg62bkBWmjRpko4dO6ZFixYpMjJSAwcOVKlSpfTSSy/ZumkAAAAAAAAAACCHyzWhSnR0tFatWqW5c+eqWrVqqlatmkJCQvTVV18RqgAAAAAAAAAAgIeWa4b/OnnypBISEuTp6Wksq1Onjg4fPqykpCQbtgwAAAAAAAAAAOQGuaanSlRUlIoUKSInJydjWbFixRQbG6tr166paNGiafaxWB5nCwEg61C/AGQ31CUA2Qk1CUB2Q10CkJ1Qkx5OrglVbt++bRWoSDIex8XFpdm+ePGCj6VdOU3ExJdt3QQAsEJdApCdUJMAZDfUJQDZDXUJQG6Xa4b/ypMnT5rwJOVx3rx5bdEkAAAAAAAAAACQi+SaUKVEiRK6evWqEhISjGVRUVHKmzevChUqZMOWAQAAAAAAAACA3CDXhCpVqlSRg4ODDh06ZCzbv3+/PDw8ZGeXa14mAAAAAAAAAACwkVyTNuTLl0+tW7fWJ598oiNHjmjr1q2aP3++/vOf/9i6aQAAAAAAAAAAIBfINaGKJA0ePFjVqlXT22+/rVGjRqlPnz5q2rSprZuFdHTt2lWDBw+2WrZu3Tq5u7srICDAavmsWbPUqlUrSZK7u7uCg4PTPWZwcLDc3d2NxydOnNCBAweyuOVZIzY2Vj179lSNGjXUsWPHNOsDAgLk7u6e7r9BgwbZoMW2l9n3Pju4fPmyNmzYYOtmIJfx8fFRYGBgmuWBgYHy8fGRJJ07d07u7u46d+7c426eFVv9jnbs2DHN3w2zkpOT9dVXXxmPBw0a9I+tsYAtPczvcerak1HNBIAH4ePjk+E1WVac8wQFBSksLCzTbVKuC4OCgkwfN7ucGwJ4NFLqUGRkZJp1y5cvT/e+WkZSnzvdvHlTa9asSXddVgoICEj3Plh6uD5DduZg6wZkpXz58unTTz/Vp59+auum4B68vLz0/fffWy0LDg7WE088oeDgYPXp08dYfujQIdWrV++ex/T09NTu3buNx7169VLv3r1Vu3btrGt4Ftm1a5d27dql5cuX64knnkh3G09Pz3T/EObNm/dRNw8PwN/fX8nJyWrevLmtm4J/mJIlS2r37t0qWrSoTduxe/duFS5c2KZtuF979+7V6NGj1aFDB0nS0KFDbdwiAA/jm2++kbOzs62bASAXGTJkiHx9fdMsz4pznk6dOmnx4sWqWLFihtusW7dOTz31lNasWaP69eubOm52OTcE8Og4Ojpq+/bteuutt6yWb926VRaL5YGOuXDhQgUHB6t169aSHt15VZcuXUyHKkB2lqt6qiDnqFOnjsLCwnTr1i1jWXBwsN555x0dOnRIMTExxvLDhw+bClWcnJxUvHjxR9LerHbjxg0VK1ZM1atXzzBUcXR0VPHixdP8K1iw4GNuLcxITk62dRPwD2Vvb6/ixYvL3t7epu0oXry4nJycbNqG+3X3723BggWpsUAOVrRoUT58AiBLFSxYMN1rssdxznP8+HGdOXNGPXr00ObNm62unTOTXc4NATw6Xl5e2r59u9Wymzdv6uDBg6pateoDHfPua6NHdV6VP39+ubi4ZPlxgceNUAU24eHhIUdHRx0/flySdOHCBUVGRqpt27YqWLCgMWxXeHi4rl+/Li8vL2Pfffv2qUWLFvLw8NBbb72l8+fPS7Ie/qtjx446f/68Bg8ebHQV/P3339WxY0fVqFFDzZo1sxryJT2BgYFq3ry5atSooTZt2mjv3r3GOh8fH02ePFkNGzZU69at072hfvDgQfn5+alWrVry8fHR8uXLjeMOGjRIkZGRcnd3f+DulOl1mUzdPbNjx44aM2aMmjRpoueff143b97UhQsX1K9fP9WrV0/e3t4aO3as4uLijHb5+fnJ399fnp6eev7557Vq1Srj2MnJyZo5c6YaNmwoLy8vde/e3aq7aWhoqN555x15enrKw8ND7du3N7qzBwcHy8fHR8uWLVOjRo1Uq1YtffTRR8Zzp2fGjBmqX7++vL29rdohSXFxcRo7dqy8vb3l7e2tDz/8UNeuXTPWL168WI0bN5aHh4fatGmjffv2GeuOHDkiPz8/1axZU82aNdP69euNdfv27VObNm1Uo0YNtWjRQps2bTLWDRo0SBMmTFD//v1Vs2ZNPffcc0bX2ICAAK1evVqrV682hmQCHpe7h3j44Ycf1KxZM3l4eMjX11dbt2612m7t2rVq1KiRvLy8NHbsWCUkJEi68zv+xRdfyMfHR9WrV1fDhg01Y8YM43k6duyo//73v3rnnXeMOrpr1y5jfeqhMKKjozVixAjjd3T48OGKjY1Nt/33qkvt2rVTr169VKdOnTQ9HM3Ytm2bWrduLQ8PD3l5eWnAgAG6deuWzp07Z8y7ltL21N3LAwIC9MEHH2jkyJGqXbu26tevr7lz5xrHTUpK0rx589SkSRNjKMdTp07dd/sA/E9gYKA6duyo6dOny9vbW15eXpowYYLVeVZm5wepz4OSkpLk7+9v1KFZs2bpxRdfNOrU33//rY8++ki1a9dWw4YNNWbMGONDPWbOW3bs2KFXX31VNWrUkK+vrzZv3mysu3s4M7N1GkDOc/HiRfXt21d169ZV9erV9eqrr2r//v3G+oyuS1KuGf7zn/9kOEzPunXr9O9//1vNmjVTfHy8VZ2R7n3Ol1Jzsvo6DYDtNWnSRHv27NHNmzeNZT/++KO8vLyUP39+Y1l6w2elN4RhYGCgZsyYoT179hj31e51f2n//v3GvZVatWrpvffe06VLl4xj7ty5U6+++qpq1qypli1bGsMY3n0va9WqVXrppZdUvXp1eXt7a9SoUUpMTMyidwp4dAhVYBNOTk6qWbOmjhw5Ikn69ddfVb16deXPn19169Y1CvyhQ4dUqVIlFSlSxNh31apVGjZsmL755htdv35d/v7+aY4fEBCgJ598UkOGDNHQoUMVExOj9957z7gpN3DgQM2aNctqvMjUAgMDNWbMGHXr1k1r1qzRM888o65du+rixYvGNmvXrtWXX36piRMnpuleGRYWprffflt169ZVYGCg+vTpo08//VRbtmyRr6+vhgwZoieffFK7d+9Otzt5VgkMDNTkyZM1Y8YMOTk56e2339bt27e1ZMkSTZs2TT/++KMmTZpkbH/06FGdOHFCK1euVO/evTVq1ChjSLWlS5dq7dq1mjJlilauXClXV1d16dJF8fHxSkpKUvfu3VW6dGl99913WrFihRITEzV58mTj2JcuXdKmTZs0b948BQQEaPPmzRm+/ytXrtTixYs1fvx4LVy4UN9++63V+qlTp+rYsWOaO3euFi9erJs3b6pfv36SpN9++02TJk3SyJEjtWHDBnl5eal///5KSkrS5cuX1aVLF1WpUkWrV69Wt27dNHDgQJ08eVJRUVHq1q2b2rRpo7Vr1+rdd9/VoEGDrAKZr776StWqVdO6devUtGlTjRw5Ujdu3FCXLl3UvHlzNW/eXN98801WffuA+3b58mV9/PHH6tatmzZu3KjXXntNAwYMsAodZ8yYoc8++0wzZszQ5s2bjQv5NWvWaNGiRRo3bpw2btyoXr16KSAgwAi/JemLL77Qyy+/bFzkDx8+XElJSWnaMWzYMO3fv1+zZs3S/PnztX//fk2bNi3NdnFxcfesSwcPHtS//vUvff3112rYsOF9vR9nzpxRv3791L59e23YsEHTpk3TL7/8oq+//lolS5Y0Xvvu3bvl6emZZv9NmzYpT548Wr16td555x35+/srPDxckjRz5kzNnz9fQ4YM0erVq1W6dGm9++67io6Ovq82ArB28OBBhYeHa/ny5Ro+fLgWL16sX375RdK9zw9Smz17ttasWaMpU6ZowYIF+vHHH3X27Flj/dChQ3Xjxg0tX75cs2bN0tGjRzV69GhjfWbnLUFBQerTp49atWql7777Tm3bttX777+vY8eO3fP1manTAHKODz/8UImJiVqxYoXWrFmjEiVK6JNPPpGU+XVJyjVDQECAunTpkua4ycnJ2rBhgxo3bqz8+fOrfv36Wr16tbHebC3J6us0ANlD5cqVVaJECe3cudNYtmXLFr3wwgsPdDxfX1916dIlzbD6qaW+v5ScnKxu3bqpQYMGWrdunb788kudOXNGc+bMkSSFhISoR48eevHFF/Xdd9/plVdeUc+ePRUVFWV1zD179mjs2LEaMGCANm7cqFGjRumbb77Rtm3bHuh1AI9TrppTBTmLl5eXEaoEBwfL29tbklSvXj2tW7dOUvrzqfTo0cPY9vXXX9eKFSvSHNvFxUX29vbGUC6rVq2Sq6ur+vfvL0lyc3PT+fPntXjxYmO8yNSWLFmijh07Gus+/PBD7d27V0uXLtUHH3wgSWrZsqWR4N/t66+/VtWqVTVgwABJUoUKFRQWFqZ58+bpxRdfVMGCBY1u2RnZt29fujf55s6da9VzJzPPP/+8MafMtm3bdPHiRX399dfGGMAjRoxQjx499P7770uSLBaLJk2aJFdXV1WuXFl79+41bmTOmzdPI0eONN770aNHq2HDhtq1a5eefvpptWvXTu3btzfG3Hz11Vc1b948oy3x8fEaNmyYKlWqJHd3dzVq1EhHjx7VG2+8ke779/bbb6tx48aSpLFjx+rll1+WJN2+fVtLly7Vt99+a7z/kyZNkre3t06dOqXz58/LYrGoVKlSKlOmjPr376/GjRsrKSlJ69evV+HChTVs2DDZ2dmpQoUKun79umJiYvTVV1/pmWeeMcYkLVeunE6cOKFFixYZ77e7u7vee+89SVK/fv20ePFihYSEqHbt2ka3WMYuRlYbOXKkxowZY7UsISEh3fpx8eJFxcfH68knn1Tp0qXVpUsXubu7K0+ePManmD766CPjZ7pfv37y9/dX//79VbJkSU2YMMEYr9vPz08zZ85USEiIqlWrJkl67rnn1KZNG0l3anGrVq0UFRWlEiVKGG24fv26Nm7cqAULFqhOnTqS7tSLEydOpGnvrl27TNWlHj16PFDX86SkJA0bNsyoM2XKlNEzzzyjkJAQ2dvbG8+ZUS12cXHRwIEDZW9vr3fffVdz587VsWPH5ObmpqVLl2rAgAFq0qSJJGnMmDF68cUX9f3336tdu3b33VYAdyQmJmrMmDEqUKCAKlSooIULF+ro0aNq0KBBpucHd1u2bJn69+9vhLETJ0405j07c+aMtm7dqj179hhD/o0ZM0atW7fW4MGDJWV+3vLVV1+pWbNm6tSpkySpfPnyOnLkiObPn6+pU6dm+voyq9MAsp/0zsNKlSql9evXKzk5WS+88IKaNWumJ598UpLUoUMHde3aVZIyvS5JuWYoXLiw1afKU+zfv19//vmncYO0adOmGj58uM6fP6/SpUubOueTpJiYmCy9TgOQfTRp0kTbt2+Xr6+v4uLi9PPPP2vEiBFau3btfR8rb968cnZ2NoahT0/q+0tRUVHq2bOnOnfuLIvForJly6pp06bGPb5vvvlGtWvXVs+ePSVJXbt2VXR0tP7++2+rYzo7O2vcuHFq2rSppDvXawsWLFBISIixDMiuCFVgM15eXsYnYIKDg42T1Xr16mnixImKi4vToUOH1KNHD6v9nnrqKePrggULZjikTGp//PGHTp48aRVSJCYmZjjObFhYmHr16mW1rFatWkY3aUkqXbp0hs8XFhamGjVqWC3z9PRMNwDKSPXq1dPthZP65uW9pG5jWFiY3NzcrCZVrF27thISEnTmzBlJd4IEV1dXqzasWLFCt27d0oULF/T+++/Lzu5/HdxiYmIUEREhHx8f+fn5ac2aNTp27Jj++OMP/fbbbypWrJhVe8qVK2d8XaBAAWPYobvd/f7/61//Mi4Czp49q/j4+DQ3LZOSkhQREaFnn31WlStXVosWLVS1alU1adJEbdu2lYODg8LDw1W1alWr19C5c2dJ0vz587Vjxw6rn5H4+HiVL1/eeOzm5mbVfkkZvgYgq/Tt2zfNCeXmzZuNIQVTq1Klip5//nl17txZ5cuXN37+8+XLZ2yTciIs3fkdv3Lliq5evaqnn35ahw8f1pQpUxQWFqYTJ04oKirKqieKmd+B06dPKzEx0QhipDv1Pr0w2ExdcnV1feCxfN3c3OTk5KT//ve/CgkJUUhIiEJDQ9WqVStT+5cpU8bq70T+/PmVkJCgy5cv69q1a6pZs6axztHRUdWrV7f6OwHg/rm6uhr1RbI+X8js/CC1K1eu6NKlS/Lw8DCWVahQwag1YWFhSkpK0rPPPmu1X1JSkk6fPm08zui8JSwsLM15iKenZ6Y9Z1KYqdMAso/0zsMcHO7cRrFYLPLz89MPP/ygAwcOKDw8XMeOHTPOnRo2bJjhdcm9rF+/XqVLlzbmRmjSpIlGjBih7777Tj179jRdS5ydnbP0Og1A9tGkSRP17dtXCQkJCgoKUuXKla3u52S11PeXihcvrtatW2vhwoU6ceKEQkNDderUKeNaMzw83Op6UJLxIefUqlevrrx582r69OnGMU6fPn3fIxQAtkCoApvx9PTUpUuXdPToUV26dMkovpUqVVLBggW1d+9ehYaGpumpkvqGuFkJCQmqX7++RowYYWr79D4tmJiYaHVzMbNPFKa3Likp6b7GhcybN6/Vye3d7h5yTEp7czN1OzJ6Tan/v/sEPzExUXZ2dsb6zz//3CpkkO58uurWrVt6/fXXVaRIEfn4+OiVV17RH3/8ofnz51tte/eEjplN7n73upS2pbRl2bJlaW6kuLq6Kl++fFq1apX27NmjHTt2KDAwUMuXL1dgYGCmFzAJCQlq0aKFunfvnu7zSndumt6rnUBWc3V1TVMLMjpZtlgsmj17to4cOaJt27Zpy5YtWrZsmZYtW2Z8Gjv1z3FKTbNYLFq1apXGjx+vtm3bqmnTpho4cKAx50gKM78D6W2TETN16WE+vX3y5En5+fnJx8dHXl5e6tSpkxYtWmR6/4xeb0ZtuvvvBID7l97kz6nrTEbnB+ktu3vblMeJiYkqWLBguiFIiRIldPjw4XTbkrJ/Rud5Gf3+pz7/y6xOV6lSJd39AdhOeudhKZKSktSlSxf9/fff8vX1lY+Pj+Lj49W7d29JyvS6JLMPyiUmJmrjxo26evWq1YTTSUlJRqhi5pxP0iO5TgOQPaSMCrB//35t3bpVL774YpptLBaL1e/zwwSmqc9/Ll68qNdee03VqlXTM888ozfeeEM//vijcQ5lJjyW7oxc0KtXL7Vu3VqNGjVSr169NGrUqAduI/A4MacKbMbZ2VlVqlTRypUr5eHhYXyqxmKxGHORuLm5ZclwSuXLl1d4eLjKlCmjcuXKqVy5cjp06JCWLFmS4fYpfwxSHD58OE2gkNnz3b3/wYMHTe9vhqOjo27dumU8vnXrlq5cuZJpmyIiIqzG2T106JAcHByM3j+nT5+2OuaxY8dUuXJlFSpUSK6uroqKijLev5IlS2ry5MkKDw/Xnj17dOnSJS1evFjvvvuunnnmGUVGRj7wyXilSpV09OhR4/G5c+eMbqJly5aVvb29rl27ZrSlQIECmjBhgi5fvqyDBw9q9uzZevrppzV48GBt3LhRsbGx2r9/v9zc3HTq1CmrdvXv31/z5s1T+fLldfr0aeOY5cqV07Zt20x3nU0v5AIet7CwMH366aeqUaOG3n//fa1fv14lS5a0mlA+9TBcx44d0xNPPKEiRYpo+fLl6tWrl4YMGaLWrVurSJEiunz58n3/Hqf8jp48edJYtnXrVr366qtptjVTlx7Gd999p7p162rKlClq3769atSoodOnTxuv6UF/bwsWLKhixYrp0KFDxrL4+HgdP348S+s8AGuZnR+kVqhQIT3xxBNWc0KdPXvW2LZ8+fK6ceOGLBaL8Tc/JiZGkyZNMjU5873O85ycnKzOp1LP5WKmTgPIGUJDQ7V3714tXLhQ3bt31/PPP29M0pycnJzpdUlmgoKCdOXKFU2fPl1r1qwx/g0aNEgRERE6cOCA6VqS1ddpALIPBwcHPffcc9q+fbt27NiR7nwqd983Sn1Ocrf7uTbasmWLChcurNmzZ+vtt9+Wl5eXzp49a9SWcuXKWV0PSlK7du20fv16q2WrVq3Sa6+9ptGjR6tt27aqWLGizpw5Q41CjkCoApuqW7eu1q9fn6Y3Sr169bRt2zbVrVv3gY/t7OysP/74Q9euXVPLli0VExOjESNGKCwsTD/99JPGjRuX4ae9O3XqpKVLl2rNmjUKDw+Xv7+/Tp48qddff93Uc7dv314nTpzQ1KlTFR4ertWrV2vZsmXq0KGD6fbHx8crKioqzb+U4MTDw0MnT57Uhg0bFB4erhEjRmTai6dBgwYqW7asPv74Y506dUq//vqrxowZo1deeUWFChWSJEVHR2vkyJEKCwvT119/rY0bN6p9+/bGezJt2jRt375dERERGjZsmA4cOKAKFSrIxcVF0dHR2rp1q86dO6dVq1bpq6++MnVjIj1vvfWWFi9erE2bNun333/X0KFDjddWoEABtW3bVp988omCg4MVGhqqjz/+WKdPn1aZMmWUN29ezZw5U6tWrdK5c+e0fv16RUdHy93dXS1atNC1a9c0adIkRUREKDAwUNu2bVODBg3Uvn17HTt2TJ999pkiIiK0du1aTZ06VaVKlTLV5nz58un8+fO6ePHiA71mICsUKlTImHT57Nmz+vHHH3X+/HmrTzmOGzdOR48e1S+//KLPP//cqEtFihRRUFCQMXTF+++/r/j4+Pv+PS5QoIBat26tcePG6ciRIzp69Kg+++wzPf3002m2NVOXzDh9+rR27txp9e/ChQtycXHRqVOndOTIEYWHh2vixIk6evSo8ZpSwvxjx46ZGkoytU6dOmn69Onavn27wsLCNHz4cMXGxsrX1/e+jgPAvMzOD+7WsWNHTZ8+XUFBQTp58qQxV4rFYlHFihXVqFEjffjhhzpy5IiOHz+uwYMHKzo62lTt6dSpkzZt2qRFixYpIiJCCxcu1JYtW+Tn5yfpzlAWGzZs0JEjR3TkyBFNnz7d2NdMnQaQfdy4cSPda7KUemFnZ6f169fr/Pnz2rhxowICAiRJcXFxmV6XSHeuV0NCQnTjxg2r51y/fr0qVaqkpk2bqnLlysa/9u3by8XFRWvWrDFdS7L6Og1A9tKkSRNjDuGyZcumWe/h4aGff/5ZQUFB+v333zV69OgMRxbIly+fLl26pHPnzt3zeV1cXBQZGamgoCCdPXtWc+bM0ebNm43a4ufnp3379mnBggU6ffq0Zs+erZCQkDRDQru4uOjgwYM6deqUQkJCNGjQIEVFRVGjkCMw/Bdsqk6dOpo/f74x+XmKevXq6fbt22nClvvh5+cnf39/RUREaMaMGZo7d67Gjx+v1q1by8XFRR06dFC3bt3S3dfX11d//fWXpk+frqioKFWpUkXz589XxYoVTT13qVKlNHv2bE2aNEnz589XqVKlNGjQIL322mum23/w4MF0x5F86qmntGXLFtWvX1+dOnUywpTOnTsbn4xKj729vWbNmqUxY8bojTfeUP78+dWiRQsNGDDA2KZkyZIqXry4Xn/9dRUvXlyTJ082upS+8847unXrlkaMGKGbN2+qevXq+vLLL1W4cGF5enoa3TRjY2Pl7u6uESNGaOjQoQ8UMrRq1UpXr17VmDFjFBMTo65du1p9ymHQoEH69NNP1bdvX8XHx6tu3bqaM2eO7O3tVaVKFY0bN06zZs3S6NGjVapUKU2ePNn43s2ePVvjx4/XkiVLVLZsWU2ZMsUYbuOLL76Qv7+/vvzyS5UoUUKDBg1Sy5YtTbe5V69eatmypX799Vd6rsAmihcvroCAAPn7++uLL76Qq6urBgwYoIYNGxonx76+vurWrZuSkpLk5+dnTKY6ZMgQDRkyRK1atZKrq6uaN2+ufPnypTvB/L0MGTJE48aNU+fOneXo6ChfX19j4vnUzNQlM9auXZumV9nYsWPVsWNH/fbbb+rUqZPy5MmjunXrqlevXsYnpNzd3dWgQQO1a9funpNL361Lly66efOmhg8frps3b8rT01NLlizJkt6VANJ3r/OD1Lp06aJLly6pT58+sre3V9euXbVv3z7jRsKkSZM0duxYderUSQ4ODmrUqJGGDRtmqh01a9bUpEmTFBAQoMmTJ6t8+fKaNm2a6tevL+nOfG2///673nrrLZUoUUJDhw41zjkzq9MAsp/x48dr/PjxaZb369dPPXv21CeffKKZM2dq6tSpKl++vIYNG6aBAwfqt99+k6enZ6bXJR07dtSkSZN05swZDRkyRNKdMGbLli3GEGKp5cmTR23atNE333yjoUOH3vOcT1KWX6cByF4aNmyohISEdHupSHfOnQ4cOKCePXuqYMGC6tevn9X8cam9+OKLWrFihV5++WVt37490+dt3ry59u7dq759+8piscjDw0MDBw5UQECA4uLi9NRTTykgIEBTpkzR1KlTValSJX3xxRdphj7s3bu3Bg8erDfffFMFChTQc889Jz8/vwe6BgUeN0syfaoASAoMDNSMGTPu+ccTQM507tw5NWnSRNu2bVOZMmVs3RwAeKR27typ6tWrG0HnlStXVL9+fWogAAAAgIdGTxUAAAAAucrKlSu1bNkyffjhh7JYLPr888/l4eFBoAIAAADgoTGnCgAAAIBcJWV41Hbt2umNN95QUlKSZs6caetmAQAAAMgFGP4LAAAAAAAAAADABHqqAAAAAAAAAAAAmECoAgAAAAAAAAAAYAKhCgAAAAAAAAAAgAmEKgAAAAAAAAAAACYQqgAAAAB4bBITE23dBGSC7w8AAACQOQdbNwAAAADA4xEYGKjBgwc/8P4TJkxQmzZtHnj/X375RXPnztWCBQse+BjpcXd3lyT17t1bffr0eeDj3L59W+vWrdOOHTt04sQJ/fXXX7JYLHJ1dVXVqlXVrFkzNW/eXI6OjlnV9GwjLi5Os2fPVp48edS1a1dbNwcAAADItghVAAAAADxyK1eu1IgRI1S6dGlbNyVdq1atkr+/v65du5ZmXWRkpCIjI7V161bNmjVL/v7+ql69+uNv5CP0n//8RwcPHlTv3r1t3RQAAAAgWyNUAQAAAP4hWrZsqWbNmqW77pVXXlFkZKTq1KmjuXPnprtNnjx5Hvi5L1269MD7PkrJyckaMWKEvv76a0lSiRIl9NZbb6lBgwYqWbKkYmJidObMGX377bdav369wsPD9dZbb2nBggXy9PS0ceuzTnb9/gAAAADZDaEKAAAA8A/h4OAgB4f0LwEsFoskyd7eXvnz53+czbKp//73v0ag4u3trVmzZqlAgQJW25QqVUpPP/20Xn/9db377ru6ffu2+vbtq40bN/6j3isAAAAATFQPAAAA4B8qIiJCs2bNkiT9+9//1pw5c9IEKql5e3urf//+ku707Fi8ePHjaCYAAACAbIRQBQAAAIBpsbGxWrZsmTp27Chvb29Vr15djRo1Ut++fbVz58402wcGBsrd3V0zZsyQJJ0/f17u7u5yd3dXcHCw1bZXrlzRrFmz1KFDBz3zzDOqXr266tSpo+bNm2vkyJEKCwvL0teyYMECxcfHS5IGDBigvHnz3nOfjh07ysXFRaVLl1ZMTEy625w9e1bjxo2Tr6+vatWqJU9PT7388ssaP368/vzzz3T3CQgIMN6XjAQHB2f43vn4+Mjd3V2BgYGKi4vTnDlz1Lp1a3l6eqp27dp68803tXz5ciUkJKR5Pe7u7jp//rwkacaMGXJ3d5ePj8893wsAAADgn4jhvwAAAACYEhERoV69eik0NNRq+aVLl7Rp0yZt2rRJvr6+mjhx4n3Pv/LTTz+pf//+io6OtloeHx+vmzdv6o8//lBgYKBmzpypZ5999qFfS1JSkjZt2iRJevLJJ/Xcc8+Z2s/JyUnbtm3LsEfLqlWrNGbMGMXGxlotDw0NVWhoqFasWKFx48apRYsWD/cCMnD9+nW9/vrrOnXqlNXyQ4cO6dChQ9q2bZtmz54te3v7R/L8AAAAQG5HTxUAAAAA93T16lW98847Cg0NlaOjo7p3764ffvhBwcHBWrlypZo1ayZJ+uGHHzR48GBjv5YtW+rAgQPq1q2bpDvzkxw4cEAHDhyQl5eXJCkyMlL9+vVTdHS03Nzc9Nlnn2nr1q0KCgrSt99+q44dO8rBwUFxcXEaPXp0lrye8PBwXb16VZJUr169+9o3o0Bl06ZNGj58uGJjY/XUU09pypQp2rVrl3bv3i1/f3+VKVNGsbGx+uijj/TTTz899GtIz+eff66QkBB17txZ69at06+//qpFixapatWqkqRdu3Zp7dq1xvZz587VgQMHVKpUKUlSt27ddODAAa1fv/6RtA8AAADI6eipAgAAAOCe5syZo3PnzslisWj69OlWw0PVqlVL06dP19ixY7VkyRKtX79erVq10nPPPScHBwc5ODjI0dFRkmSxWNJM7r506VLdvn1bjo6OmjdvnsqWLWusK1q0qKpXry47OzstWrRIZ8+eVXh4uMqXL/9Qr+fMmTPG1xUqVHioY0lSXFycxo0bp+TkZLm5uWnlypVycXEx1rdo0UINGjTQG2+8obNnz2rEiBHasmWLnJycHvq5U7t9+7aGDx+ut956y1j29NNP68svv1STJk0UHR2tjRs3qnXr1pJkDHlmsVgkSY6Ojmm+PwAAAAD+h54qAAAAADKVlJSkb7/9VpLUtGnTDOfb+Pjjj1WsWDFJ0vLly00fv3LlynrzzTf13nvvWQUqqaXuTXLlyhXTx87IjRs3jK+LFCny0Mf76aefdPHiRUnSoEGDrAKVFEWLFtWgQYMkSRcuXNCOHTse+nnv5uLionbt2qX73DVq1JAknTt3LsufFwAAAPinIFQBAAAAkKlTp07p+vXrkmQM85UeJycnNWnSRJK0d+9eJScnmzp+69atNXr0aPXr1y/d9X/++ad+++0343FiYqLZpmfIzu5/l0Ipk9U/jD179kiS8uXLl+mcL40bN1a+fPkk3XmPslq1atXk4JD+gASurq6S7vRmAQAAAPBgGP4LAAAAQKb+/PNP4+uKFStmum3K+ps3b+rGjRsqVKiQ6eeJiYlRUFCQTp48qTNnzujs2bMKDQ015j5JYTasyUzRokWNr+8+/oO4cOGCJMnNzS3TSeDt7e3l5uamEydOKDIy8qGf926Z9bpJGWosK94/AAAA4J+KUAUAAABApm7evGl87ezsnOm2qddHR0ebDlWWLl2qadOmWQ3LJd3pUVKlShW5ublpw4YN99HqzKUOh1LPr2JGYmJimuAk5T261/sjyeipEh0dfV/Pa0bK3DUAAAAAHg1CFQAAAACZujsoycytW7eMr1PCg3tZuHChJkyYIEkqVaqUXnjhBVWpUkUVK1ZUpUqV5OzsrF9++SVLQ5USJUqoTJkyOnfunH799df72nfChAnavXu3vL299f7778vFxcV4j8wEJSnvkdn3J0VMTMx9bQ8AAAAg6zGnCgAAAIBMlS5d2vg6LCws021DQ0MlSQUKFFDhwoXveeyYmBjNmDFDklSjRg1t2LBBQ4cOVZs2bVSzZk0jrMiKIbru9tJLL0mSoqKi9PPPP5vaJz4+Xps3b1Z4eLi2bt2qggULSroTBklSREREpnO+JCQkKCIiQpL1+5p6jpe4uLh097127ZqpNgIAAAB4dAhVAAAAAGSqcuXKxjBemzZtynC7uLg4bd++XZJUq1Ytq3UWiyXdfUJCQowhv1q3bq28efOmu11QUJDxdVJSkum2Z6ZDhw7GcFkTJkwwNWH90qVLdfHiRUlSu3btjGHAvLy8JN2ZBH7nzp0Z7v/jjz8qNjZWkuTp6WksT90bKKMA6eDBg/dsHwAAAIBHi1AFAAAAQKbs7e312muvSZI2b96sHTt2pLudv7+/Ll++LElq27ZtmmNIaXthODj8b0TilF4ud/v5558VGBhoPDYTfphRqlQpde3aVdKdcKdr165W88fcbdOmTZoyZYqkO71MOnfubKxr3LixihcvLkmaOHGirl+/nmb/q1ev6tNPP5UkFS1aVD4+Psa6cuXKGV+nN8zZ6dOn9d13393Py7svKd+HrHpvAQAAgNyKUAUAAADAPfXo0UOlS5dWcnKy+vTpo2nTpiksLEzXrl3TkSNH1L9/fy1atEiS1KxZM2NorRQuLi6SpL/++ks///yzrl+/rtjYWFWuXFlPPPGEJGnFihWaNWuWTp8+rStXrujIkSMaO3asunbtajWkVup5Wx5Wz5491aRJE0nSL7/8opdeekkBAQE6fPiwLl++rEuXLumnn35S37591bdvX8XHx6tQoUL6/PPPVaBAAeM4Tk5OGjFihKQ7Q4C1bdtW69evV1RUlKKiovTDDz/ojTfe0JkzZyRJ48ePt5pTxdvb2+gNNGXKFC1dulQXLlxQZGSkVqxYYfSKyajHz8NK+f7s2rVLFy9e1JUrVx7J8wAAAAA5nSU5OTnZ1o0AAAAAYFs+Pj46f/686tWrpyVLlqS7TUREhLp3767w8PAMj9OyZUuNGjXKajgr6U4vlJYtW1qFIxMmTFCbNm20Y8cO9e7dWwkJCeke087OTu+9954WLFiguLg4vf/+++revbux3t3dXZLUu3dv9enTx/RrThEfH6/PPvtMixYtyrANKapUqaLJkyerUqVK6a5ftWqVRo0alWGPD2dnZ40ePVotWrRIs+7777/XwIED0x3erECBApo1a5Y6d+6sxMRELV68WN7e3sb6lO/fq6++qokTJ6b73IMGDdLq1atVunRpY5i2FFOmTNGcOXOMx46Ojjp48KAxPBoAAACAOxzuvQkAAAAASG5ubvr+++/19ddfa+PGjQoJCVF0dLRKlCihGjVqqG3btqpfv366+/7rX//S1KlTNXPmTJ0+fVp58+Y15g5p3LixVq5cqXnz5mnfvn26evWqnJyc9OSTT6p27drq0KGDqlatqiNHjigoKEibN2+2ClUelqOjoz7++GP5+flp9erVCg4OVnh4uP7++2/Z2dmpWLFi8vDwkK+vr1544QVjKLP0tG3bVk8//bQWLVqkn3/+WX/++afs7e1VpkwZNW7cWG+++aZKliyZ7r4tW7ZU+fLlNX/+fO3du1fXrl1T8eLF1ahRI3Xt2lVlypTJstd8t969e+v27dvauHGjrl27pqJFi+rChQsqW7bsI3tOAAAAICeipwoAAAAAAAAAAIAJzKkCAAAAAAAAAABgAqEKAAAAAAAAAACACYQqAAAAAAAAAAAAJhCqAAAAAAAAAAAAmECoAgAAAAAAAAAAYAKhCgAAAAAAAAAAgAmEKgAAAAAAAAAAACYQqgAAAAAAAAAAAJhAqAIAAAAAAAAAAGACoQoAAAAAAAAAAIAJhCoAAAAAAAAAAAAmEKoAAAAAAAAAAACYQKgCAAAAAAAAAABgAqEKAAAAAAAAAACACf8HrGYjim6djpcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots() \n", + " \n", + "ax.bar(participation_rate,count)\n", + "plt.title('Ethnicity VS Participation',size=20)\n", + "plt.xlabel('Total Count',size = 20)\n", + "plt.ylabel('# Of Developer Did Survey',size = 20) \n", + "for i, v in enumerate(count):\n", + " ax.text(i-.15, \n", + " v+3,\n", + " count[i],\n", + " style = 'italic',\n", + " fontsize=14,\n", + " color = 'magenta')\n", + "ax.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": 348, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbkAAAHBCAYAAABE/LYGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABtL0lEQVR4nO3deXhNV//+8fskkRCJxBBjiKHEkCBEDI0pWkrNpTU0pXhQac1DGsQYs1JBaVGlqKo0LaqmVktFjDErQsxFjDFlPL8//JxvTxMROiQn3q/ryvXkrL3W3p+9rWdf7W11HYPRaDQKAAAAAAAAAAALZJXZBQAAAAAAAAAA8LwIuQEAAAAAAAAAFouQGwAAAAAAAABgsQi5AQAAAAAAAAAWi5AbAAAAAAAAAGCxCLkBAAAAAAAAABaLkBsAAAAAAAAAYLEIuQEAAAAAAAAAFssmswsAsqrk5BTduHEvs8tAFpcvX27mCTKEuYKMYJ4go5gryAjmCTKCeYKMYq4gI7LzPHFxcczsEpAOVnIDT2BtbSWDIbOrQFZmMDBPkDHMFWQE8wQZxVxBRjBPkBHME2QUcwUZwTxBZiLkBgAAAAAAAABYLEJuAAAAAAAAAIDFIuQGAAAAAAAAAFgsQm4AAAAAAAAAgMUi5AYAAAAAAAAAWCxCbgAAAAAAAACAxTIYjUZjZhcBZEV7vH0yuwQAAAAAAACL4b1nl2Jj45Qd00YXF8fMLgHpYCU3AAAAAAAAAMBiEXIDAAAAAAAAACwWITcAAAAAAAAAwGIRcgMAAAAAAAAALBYhNwAAAAAAAADAYhFyAwAAAAAAAEAWt2fPHr377ruqVq2afHx81LlzZ/3222+p+m3ZskUdOnRQ1apVVadOHXXv3l2HDh3K8HVOnDihgIAA+fj4qFq1amrXrp3WrVuXZt9Vq1apdevW8vT0lK+vr0JCQnT//v1U/ZYtW6ZXXnlFXl5e8vf3V3R0dJrn27p1qzw8PPTLL79kuF6JkBsAAAAAAAAAsrRt27apS5cuunLlioYNG6bRo0fL0dFR3bp103fffWfq980336hPnz5KSUnR6NGj9eGHH+revXvq0KGDIiMjn3qd48eP66233tKhQ4cUEBCgiRMn6qWXXtLAgQP1ySefmPUdN26cRowYITc3N02fPl2dO3fWqlWr1KtXLyUnJ5v6fffddxo7dqzq1KmjkJAQXbx4UaNHj0517VOnTmnQoEHq37+/6tev/0zPx2A0Go3PNAJ4Qezx9snsEgAAAAAAACyG955dio2NU3ZMG11cHDP1+q+88ooePnyoH374QXny5JEkJSUlqVmzZkpJSdHmzZt179491atXT0WLFlVYWJhy5MghSbp7964aNGigSpUq6Ysvvkj3Ou+8846ioqK0bt06FS9e3NTu7++vQ4cOadeuXbK1tdXmzZsVEBCgt99+WyNHjjT1W7t2rQYNGqQZM2aoWbNmkqRWrVopT548Wrp0qSRp8uTJWrlypfbt22cad+vWLbVv315eXl6aMmXKMz8fVnIDAAAAAAAAQBZ19epVnT9/Xo0aNTIF3JJkY2OjUqVK6Y8//pD0aJuRu3fvqkWLFqaAW5IcHBxUuHBhXb58Od3rGI1G7d+/Xz4+PmYBtySVLVtWDx480M2bNyVJn3/+uRwcHNS3b1+zfk2bNlWuXLm0bds2SdKlS5d0/PhxtWjRwux+HB3/7y8NkpKS1K9fPzk7O2vcuHHP8mhMCLkBAAAAAAAAIItycHCQnZ2d4uLizNrv3bunw4cPq1y5cpKk/PnzS1Kqfn/88YdiYmJUvnz5dK9jMBiUL1++VOOTk5O1e/du5c+fXy4uLkpJSVFUVJS8vLzk5ORk1tfa2lrW1ta6evWqJOnGjRuSZArNExIS9Ntvv8nb29s0JiQkRKdPn9acOXNkZ2eXoWfyV4TcAAAAAAAAAJBF2dvb64MPPtCGDRv0zTffKDY2VocPH1afPn0UFxenwMBASVKJEiXUqVMnLV++XJs3b9b169e1Z88e9e7dW7lz51a/fv2eeq0hQ4bo8OHD+vTTT3X16lWdPHlSgwcP1qlTpxQUFCQrKyslJCQoKSlJuXPnTjX++PHjunv3rimsLlasmKytrRUREaGrV69qzJgxunnzpvz9/SVJK1as0OrVqzVnzhwVLFjwuZ+RzXOPBAAAAAAAAAD86woVKiRnZ2cNHz7c1JY3b16tWrVK7u7ukh6tuC5TpoxSUlIUEBBg6leyZEmFh4erSJEiT72Oo6OjXF1dNX36dE2fPl2SZGdnp88//1y1atWSJOXMmVMuLi7av3+/4uPjzVZfz5w5U9L/rSrPmzevevfurblz52r+/PnKlSuXRo4cqapVq2rXrl0KCQnRhAkTVLly5b/1fFjJDQAAAAAAAABZ1OTJkzVkyBA5OzsrJCREn332mfz9/XXz5k3NmzfP1G/AgAEaN26cypcvrylTpmj+/Plq3ry5YmJitGzZsqde58svv1TPnj318OFDBQcHa8GCBerTp49SUlI0c+ZMJScnm/p27txZV65c0aBBg3TmzBmdOXNGgwYN0s8//yxJeumll0x9+/btq19//VVhYWHavn273n77bZ0/f159+/ZVly5d1LJlS12+fFn9+vWTr6+vmjRpok8//fSZnpHBaMyO33cK/H17vH0yuwQAAAAAAACL4b1nl2Jj45Qd00YXF8end/oXnDx5Ui1atFCZMmUUFhZmtmp60KBBWrt2rX744QdduHBBPXv2VJ06dbRw4UJZWf3f2uaOHTvq0KFD2rlzpxwcHNK8zo0bN+Tn5yd7e3utXbtW+fLlMx2bMWOG5s2bp08//VT169eX9OhLKmfOnKmFCxcqMTFRklS/fn3duXNH+/fv19q1a1W2bNk0r3Xv3j116NBBRYsW1SeffKLk5GS1atVKOXLk0OjRo3X06FGNHTtWixYt0ssvv5yh58RKbgAAAAAAAADIgn777TcZjUb16NEj1ZcyPt6m5OLFi9q2bZsk6b333jMLuCWpXLlySkxM1JUrV554nb179+rBgwfq1KmTWcD95+tcunTJ1GYwGDRgwADt3LlTq1ev1rZt2xQaGqrTp0+rRIkSTwy4jUajBg8erOTkZE2fPl1WVlb66aefFB0drQkTJsjLy0vt27eXJB09ejQjj0gSITcAAAAAAAAAZEk3b96U9Ghf7b86duyYJMnV1VW3bt1Kt1+OHDlUuHDhJ14nvfGPw2ZXV1dJ0tatWzV16lSlpKTIwcFBHh4eKliwoL755hvdvn1bb7/99hOvM2PGDO3du1effPKJaVX51q1bVaxYMVWqVEmSdPr0aUmP9vPOKEJuAAAAAAAAAMiCypcvL0nat2+fWfuxY8e0YcMGVa9eXaVLl35iv59//lkHDhxQ06ZNlTt37ide5/Fq7b+O/+OPP/TVV1/J1dXV9MWTR44c0YIFC7R//35TvzNnzmjmzJkqU6aMOnbsmOY11q5dq4ULF2rGjBlyc3Mztd+9e1cuLi6mz2vWrJGVlVWGtyqRJJsM9wQAAAAAAAAA/GcaN26sqlWrasaMGbp165aqVKmis2fP6tNPP1W+fPk0adIkSdJbb72llStXKigoSGfPntVLL72ko0ePasGCBSpdurSCgoJM5zx48KBu3bqlatWqmVZTV65cWU2aNNHy5cuVnJysunXr6sqVK1qwYIFSUlI0ffp05ciRQ5LUtm1bLVq0SEFBQQoICNC1a9c0f/582dnZKTQ0VLa2tqnu4+DBgwoKCtLQoUNThdfly5fX1q1btXr1al2/fl2LFy9W69atVaRIkQw/J754EngCvngSAAAAAAAg4/jiyX/HvXv39PHHH+vHH3/UjRs3lC9fPjVo0EABAQEqVKiQqV9sbKymT5+urVu3Ki4uToULF1bjxo3Vu3dv5cmTR5KUkJCg2rVry2g0aufOnWaBdGJioubPn6/w8HBdvnxZTk5Oql27tgICAlS6dGmzmg4ePKjJkyfr6NGjypcvn+rXr6/3338/1X7eknT16lW98cYbqlu3riZMmJDq+N27dxUUFKTt27fLzs5OzZo107Bhw9IMy5+EkBt4AkJuAAAAAACAjCPkRmZhT24AAAAAAAAAgMUi5AYAAAAAAAAAWCxCbgAAAAAAAACAxSLkBgAAAAAAAABYLEJuAAAAAAAAAIDFynDI3bNnT3344YdmbWvXrpW7u7tCQ0PN2ufOnatWrVpJktzd3RUZGZnmOSMjI+Xu7m76fOzYMe3bty/Dxf+X4uPj1adPH1WuXFn+/v6pjoeGhsrd3T3Nn8DAwEyoOPOl92efFVy/fl3r16/P7DIAAAAAAAAA/A02Ge3o7e2t77//3qwtMjJSBQsWVGRkpD744ANTe1RUlHx8fJ56Ti8vL23fvt30OSAgQO+//76qVauW0bL+M9u2bdO2bdu0YsUKFSxYMM0+Xl5eqQJ/ScqZM+e/XR6ew7Rp02Q0GtW0adPMLgUAAAAAAADAc8rwSu7q1asrOjpa9+7dM7VFRkaqe/fuioqK0sOHD03tBw4cyFDIbWtrKxcXl2csOXPExcWpQIEC8vDweGLInSNHDrm4uKT6cXR0/I+rRUYYjcbMLgEAAAAAAADA35ThkNvT01M5cuTQkSNHJEl//PGHLl26pPbt28vR0dG0zciZM2d0+/ZteXt7m8bu2bNHLVq0kKenp95++21dvHhRkvl2Jf7+/rp48aI+/PBD0/YeJ06ckL+/vypXrqwmTZpo2bJl6dYYFhampk2bqnLlymrbtq12795tOubn56epU6fK19dXrVu3TjPg3L9/vzp27KiqVavKz89PK1asMJ03MDBQly5dkru7u8LCwjL62MyEhoam2urEz8/PdD5/f3+NGzdOjRo1UoMGDXT37l398ccf6tevn3x8fFSzZk2NHz9eCQkJpro6duyoadOmycvLSw0aNNCqVatM5zYajZozZ458fX3l7e2t3r1769KlS6bjp06dUvfu3eXl5SVPT0916tRJ0dHRkh792fj5+Wn58uWqW7euqlatqiFDhpiunZbZs2erdu3aqlmzplkdkpSQkKDx48erZs2aqlmzpgYPHqxbt26Zji9ZskQNGzaUp6en2rZtqz179piOHTx4UB07dlSVKlXUpEkTrVu3znRsz549atu2rSpXrqwWLVpow4YNpmOBgYGaOHGi+vfvrypVqqh+/foKDw83/Vl8++23+vbbb+Xn55funxsAAAAAAACArCvDIbetra2qVKmigwcPSpJ27twpDw8P5c6dWzVq1DDtvRwVFaWyZcsqb968prGrVq3SiBEj9M033+j27duaNm1aqvOHhoaqcOHCCgoK0vDhw/Xw4UP973//U/Xq1fX9999r2LBhmjt3rimk/KuwsDCNGzdOvXr1Unh4uOrUqaOePXvqypUrpj5r1qzRwoULNWnSJBkMBrPx0dHR6tKli2rUqKGwsDB98MEHmjx5sjZt2qRmzZopKChIhQsX1vbt29WsWbOMPrZnFhYWpqlTp2r27NmytbVVly5d9ODBAy1dulQzZ87U1q1bNWXKFFP/Q4cO6dixY1q5cqXef/99jRkzxrQFzJdffqk1a9Zo+vTpWrlypfLnz69u3bopMTFRKSkp6t27t4oVK6bvvvtOX331lZKTkzV16lTTua9evaoNGzZowYIFCg0N1caNG5/4/FeuXKklS5ZowoQJWrx4sVavXm12/KOPPtLhw4f12WefacmSJbp796769esnSTp69KimTJmiUaNGaf369fL29lb//v2VkpKi69evq1u3bqpQoYK+/fZb9erVS8OGDdPx48d17do19erVS23bttWaNWvUo0cPBQYGmgXky5YtU6VKlbR27Vo1btxYo0aNUlxcnLp166amTZuqadOm+uabb/6pPz4AAAAAAAAA/7EM78ktPdqX+3HIHRkZqZo1a0qSfHx8tHbtWklp78f93nvvmfq2a9dOX331VapzOzs7y9raWo6OjnJ0dNSqVauUP39+9e/fX5JUsmRJXbx4UUuWLFHr1q1TjV+6dKn8/f1NxwYPHqzdu3fryy+/1KBBgyRJLVu2NPuiyz/7+uuvVbFiRQ0cOFCSVLp0aUVHR2vBggV69dVX5ejoKGtr63S3V9mzZ4+8vLxStX/22WdmK9vT06BBA9Oe5Fu2bNGVK1f09ddfy8nJSZIUHBys9957TwMGDJAkGQwGTZkyRfnz51e5cuW0e/duff311/L19dWCBQs0atQo07MfO3asfH19tW3bNtWqVUsdOnRQp06dZG9vL0lq06aNFixYYKolMTFRI0aMUNmyZeXu7q66devq0KFDevPNN9N8fl26dFHDhg0lSePHj9frr78uSXrw4IG+/PJLrV692vT8p0yZopo1a+r333/XxYsXZTAYVLRoUbm6uqp///5q2LChUlJStG7dOjk5OWnEiBGysrJS6dKldfv2bT18+FDLli1TnTp19Pbbb0uS3NzcdOzYMX3xxRem5+3u7q7//e9/kqR+/fppyZIlOnnypKpVq2baKz1fvnwZ+rMBAAAAAAAAkPU8c8j9eCVvZGSkxo0bJ+lRyD1p0iQlJCQoKipK7733ntm4EiVKmH53dHRUfHz8U691+vRpHT9+3Cw0Tk5OlrW1dZr9o6OjFRAQYNZWtWpV0/YbklSsWLEnXi86OlqVK1c2a/Py8kozkH8SDw+PNFepFypUKMPn+HON0dHRKlmypCnglqRq1aopKSlJ586dk/Qo2M2fP79ZDV999ZXu3bunP/74QwMGDJCV1f8t2H/48KFiYmLk5+enjh07Kjw8XIcPH9bp06d19OhRFShQwKweNzc30+8ODg5KSkpKs+6/Pv+XXnrJFJ6fP39eiYmJ6tChg9mYlJQUxcTEqF69eipXrpxatGihihUrqlGjRmrfvr1sbGx05swZVaxY0ewe3n33XUnSokWL9PPPP5vNkcTERJUqVcr0uWTJkmb1S3riPQAAAAAAAACwPM8Ucnt5eenq1as6dOiQrl69alpxXLZsWTk6Omr37t06depUqpXcfw4oMyopKUm1a9dWcHBwhvrb2dmlaktOTlZKSkq6fdI7lpKSouTk5AxdX5Jy5sxpFgr/1V+3SJFSB65/ruNJ9/Tn/7WxsUl13MrKynT8448/Ngt9JcnJyUn37t1Tu3btlDdvXvn5+al58+Y6ffq0Fi1aZNbX1tbW7HN6X9b412OPa3tcy/Lly03B92P58+dXrly5tGrVKu3atUs///yzwsLCtGLFCoWFhaW6vz9LSkpSixYt1Lt37zSvKz36MtCn1QkAAAAAAADAcj1T+mxvb68KFSpo5cqV8vT0VK5cuSQ9Cm8f72VdsmTJf2T7h1KlSunMmTNydXWVm5ub3NzcFBUVpaVLlz6x/4EDB8zaDhw4kCrgTe96fx2/f//+DI/PiBw5cujevXumz/fu3dONGzfSrSkmJsbsCxqjoqJkY2NjWh1/9uxZs3MePnxY5cqVU548eZQ/f35du3bN9PyKFCmiqVOn6syZM9q1a5euXr2qJUuWqEePHqpTp44uXbr03AFw2bJldejQIdPnCxcu6M6dO5Kk4sWLy9raWrdu3TLV4uDgoIkTJ+r69evav3+/5s+fr1q1aunDDz/Ujz/+qPj4eO3du1clS5bU77//blZX//79tWDBApUqVUpnz541ndPNzU1btmzRmjVrMlRzWn/pAAAAAAAAAMCyPPMS6xo1amjdunWpVmv7+Phoy5YtqlGjxnMXY29vr9OnT+vWrVtq2bKlHj58qODgYEVHR+uXX35RSEiI2dYcf9a1a1d9+eWXCg8P15kzZzRt2jQdP35c7dq1y9C1O3XqpGPHjumjjz7SmTNn9O2332r58uXq3LlzhutPTEzUtWvXUv08DrI9PT11/PhxrV+/XmfOnFFwcHC6q9xffvllFS9eXEOHDtXvv/+unTt3aty4cWrevLny5MkjSbp//75GjRql6Ohoff311/rxxx/VqVMn0zOZOXOmfvrpJ8XExGjEiBHat2+fSpcuLWdnZ92/f1+bN2/WhQsXtGrVKi1btkwJCQkZvt8/e/vtt7VkyRJt2LBBJ06c0PDhw0335uDgoPbt22v06NGKjIzUqVOnNHToUJ09e1aurq7KmTOn5syZo1WrVunChQtat26d7t+/L3d3d7Vo0UK3bt3SlClTFBMTo7CwMG3ZskUvv/yyOnXqpMOHD2vGjBmKiYnRmjVr9NFHH6lo0aIZqjlXrly6ePGi2ZeTAgAAAAAAALAsz7RdiSRVr15dixYtMn2Z4WM+Pj568OBBqvD7WXTs2FHTpk1TTEyMZs+erc8++0wTJkxQ69at5ezsrM6dO6tXr15pjm3WrJliY2M1a9YsXbt2TRUqVNCiRYtUpkyZDF27aNGimj9/vqZMmaJFixapaNGiCgwM1BtvvJHh+vfv3y9fX99U7SVKlNCmTZtUu3Ztde3a1RRuv/vuu7p69eoTz2dtba25c+dq3LhxevPNN5U7d261aNHC9OWYklSkSBG5uLioXbt2cnFx0dSpU1W9enVJUvfu3XXv3j0FBwfr7t278vDw0MKFC+Xk5CQvLy8FBARozJgxio+Pl7u7u4KDgzV8+PDnCn1btWqlmzdvaty4cXr48KF69uyp48ePm44HBgZq8uTJ6tu3rxITE1WjRg19+umnsra2VoUKFRQSEqK5c+dq7NixKlq0qKZOnWr6s5s/f74mTJigpUuXqnjx4po+fboqVKggSZo3b56mTZumhQsXqlChQgoMDFTLli0zXHNAQIBatmypnTt3srIbAAAAAAAAsEAGIxsUW6ywsDDNnj1bP/30U2aXki3t8X7+v7ABAAAAAAB40Xjv2aXY2Dhlx7TRxcUxs0tAOp79GyEBAAAAAAAAAMgiCLkBAAAAAAAAABaL7UqAJ2C7EgAAAAAAgIxjuxJkFlZyAwAAAAAAAAAsFiE3AAAAAAAAAMBiEXIDAAAAAAAAACwWITcAAAAAAAAAwGIRcgMAAAAAAAAALBYhNwAAAAAAAADAYhFyAwAAAAAAAAAsFiE3AAAAAAAAAMBiEXIDAAAAAAAAACwWITcAAAAAAAAAwGIRcgMAAAAAAAAALBYhNwAAAAAAAADAYhFyAwAAAAAAAAAsFiE3AAAAAAAAAMBiEXIDAAAAAAAAACwWITcAAAAAAAAAwGIRcgMAAAAAAAAALBYhNwAAAAAAAADAYhFyAwAAAAAAAAAsFiE3AAAAAAAAAMBiEXIDAAAAAAAAACyWTWYXAGRV3nt2KTY2TkZjZleCrMpgkAoUcGSe4KmYK8gI5gkyirmCjGCeICOYJ8go5goywmDI7ArwImMlNwAAAAAAAADAYhFyAwAAAAAAAAAsFiE3AAAAAAAAAMBiEXIDAAAAAAAAACwWITcAAAAAAAAAwGIRcgMAAAAAAAAALBYhNwAAAAAAAADAYhFyAwAAAAAAAAAsFiE3AAAAAAAAAMBiEXIDAAAAAAAAACwWITcAAAAAAAAAwGIRcgMAAAAAAAAALBYhNwAAAAAAAADAYhFyAwAAAAAAAAAslk1mFwBkVa+NXJnZJfxrlvZtltklAAAAAAAAAP8IVnIDAAAAAAAAACwWITcAAAAAAAAAwGIRcgMAAAAAAAAALBYhNwAAAAAAAADAYhFyAwAAAAAAAAAsFiE3APzL1qwJl6+vt378cd0zjz1x4rgaN66viRPHPrXvzp07VL9+TS1evMCs/aefNuvtt9/UK6/4qnt3fx0+fDDN8cePH1OjRi8rPHz1M9cJAAAAAACQWQi5AeBftG3bVk2bNlGSVLFipWcae/HiBQ0e3E/3799ThQrpjz1y5LBGjhym5ORks75RUfs0atSHcnNz04gRY2Q0pmj06OGpxl+/HqugoMFq1qylWrd+45nqBAAAAAAAyEw2mV0AAGRXBw5EadSo4UpOTpaDg4OKF3fL8NgbN65r4MD3dePGdUlKN+Q+dy5GQ4f204MHDyRJ5ctXMB1buXKZihYtpjFjJsrGxkbXr8dqxoypunPntvLkcZIkJSQkKChoiFxdi6tfv0HPc6sAAAAAAACZhpXcAPAvOH36lIYNG6Bq1arLxsZG7u4VZDAYMjT2/v17Gjy4r4xGo0qXLiNbWzuVKfNSmn1jY69p4MAPVLSoq/Lnz6+iRYvJyclZkpSUlKSdO3fIz+9V2djY/P/+sbKyslKuXPamc0yZEqKbN29o3LhJpn4AAAAAAACWgpAbAP5hf/zxhwYN6quSJUvJ37+bkpKSnrrdyGOJiYn68MMhunr1qqZNm6WrV6+obNlyaYbPcXFxGjjwfdnY5NCIEWN0/fp1s+vcu3dXiYmJKlbM1dS2Y8d2VarkoRw5ckiSli9fol9/3apJk6abwnEAAAAAAABLQsgNAP+g27dvadCg95UrVy5NnvyRzpw5JUmqUKHiU8empKRo3LhgHTlyUFOmzJDRaNTdu3fTHBsfH6/AwIG6deuWpk+fpcuXL6W6jpOTsxwcHLV//17duHFdCxfOV3T0SbVr10GSFBGxXfPnz1Fw8FiVLp32SnEAAAAAAICsjv8uHQD+IQ8ePNCQIf119+5dzZu3SE5Ozjp69IgkqXz5p4fcH388Tb/88pMmTZquihU9tH792jTHJicna/ToIJ048btCQ+erWDFXbdy4XlLqvbv79Omrjz6arA0bfpCNjY38/d9Vo0aNFRNzRqNHD1e3bj3l61v/n7h9AAAAAACATEHIDQD/gKSkJI0cOUwxMWc0Z86nKlKkqCTp+PGjyp8/vwoVKpzu+MWLF2j16q8VGDhStWv7msZKqYPradMmaseO7ZoyZabpSyaPHTsqa2trlStX3qxvy5ZtVL9+Q12+fFlFihSRk5Oz7ty5o8DAgapVq466dOmuO3fu6JNPZikyMkLW1jaqV6+++vTpJ2tr63/k2QAAAAAAAPybCLkB4B8wc+Y07dy5Q4MHBypXLntduHBeCQkJOns2Rp6eVXThwnk5ODjK2dk51dgtWzZqwYJ5atashapWraYLF85Lkg4dOig7OztZWVnpypU/VKhQYS1b9oXWrAlX1649VKyYq6nv8eNHVbhwEV2/HqtcuXIpf/4CpvM7OTmbfRnlyJGBsrfPraCgUZKk4OBAnT9/TkFBo3T3bpyCgz+Um1sptWzZ5t99aAAAAAAAAP8AQm4A+JuMRqO2bNkoSZo2bVKq41FR+9ShQxv17TtQb77ZKdXxzZs3SJJ++GGNfvhhTarjHTu2Vd269TVx4nRt2vSo7+LFC7R48YJUfTt0aKP27TuqX79BadYaGvqRzpyJ1meffSE7u5w6fvyY9uzZpZCQKfL29pEk5c2bVydO/J7BuwcAAAAAAMhchNwA8DclJSVp6NCgVO1bt27Rli2b1LNnHxUvXkKenlXTHN+2bXs1btzUrO3s2RgtWDBPr776murVa6Dixd0kSd2791RSUpJZ36iofVq9+mu1b99RlStXSbVlyWPffRem77//VrNmzTNtn7JjxzbZ2tqatkiJi4vTzZs301xxDgAAAAAAkBURcgPA35QjRw41bPhKqvafftosg8Ggtm3flIODwxPH16hRK1VbWNgqSVKjRq+afTFk3boNUvU9duzRl1u+/npLvfRS2TSvERW1TzNmTNGQIUHy9Kxiar93754cHR1la2sr6dGq8pSUFPn4pK4JAAAAAAAgKyLkBoB/yfHjx1SsWHGzgDs6+pSuXbsqd/fyyps3XzpjH33pZPnyFTN0HTs7O5UqVTrN45cvX9KIEUPVtm17vf56S7NjZcuW08qVy7Ry5TLZ2OTQ/PlzVK2atypXrpqBOwQAAAAAAMh8hNwA8C+4c+e2Ll++qFdeaWLWHhwcqHPnziosbF2643///Zjy5y+gAgVc0u1nNBp14sRxlS3rLmtr61TH79+/r8DAgSpXrrwCAvqnOv7qq6/pwIEoLV68UEajUb6+9dS//5Cn3yAAAAAAAEAWYTAajcbMLgLIil4buTKzS/jXLO3bLLNLyBYMBqlAAUfFxsaJNynSw1xBRjBPkFHMFWQE8wQZwTxBRjFXkBHZfZ64uDhmdglIh1VmFwAAAAAAAAAAwPMi5AYAAAAAAAAAWCxCbgAAAAAAAACAxSLkBgAAAAAAAABYLEJuAAAAAAAAAIDFIuT+h/n5+SksLCxVe1hYmPz8/CRJFy5ckLu7uy5cuPBfl2fG3d1dkZGR//l1/f39FRoa+lxjjUajli1bZvocGBiowMDAf6o0AAAAAAAAABbGJrMLeBEVKVJE27dvV758+TK1ju3bt8vJySlTa3hWu3fv1tixY9W5c2dJ0vDhwzO5IgAAAAAAAACZiZA7E1hbW8vFxSWzy8gSNTwro9Fo9tnR0TGTKgEAAAAAAACQFbBdSSb463YlP/zwg5o0aSJPT081a9ZMmzdvNuu3Zs0a1a1bV97e3ho/frySkpIkPQp8582bJz8/P3l4eMjX11ezZ882Xcff31+ffPKJunfvrsqVK6tJkybatm2b6fiftyu5f/++goODVbNmTdWsWVMjR45UfHx8mvX/8ccf6tevn3x8fFSzZk2NHz9eCQkJkh5ty9KhQwcFBASoevXq+v7775/5+WzZskWtW7eWp6envL29NXDgQN27d08XLlzQO++8Y1b7n7crCQ0N1aBBgzRq1ChVq1ZNtWvX1meffWY6b0pKihYsWKBGjRqpcuXK8vf31++///7M9QEAAAAAAADIOgi5M9n169c1dOhQ9erVSz/++KPeeOMNDRw4ULdu3TL1mT17tmbMmKHZs2dr48aNpv2sw8PD9cUXXygkJEQ//vijAgICFBoaqiNHjpjGzps3T6+//rrWrl2r8uXLa+TIkUpJSUlVx4gRI7R3717NnTtXixYt0t69ezVz5sxU/RISEtSlSxc9ePBAS5cu1cyZM7V161ZNmTLF1Gf//v166aWX9PXXX8vX1/eZnse5c+fUr18/derUSevXr9fMmTO1Y8cOff311ypSpIjp3rdv3y4vL69U4zds2CA7Ozt9++236t69u6ZNm6YzZ85IkubMmaNFixYpKChI3377rYoVK6YePXro/v37z1QjAAAAAAAAgKyDkPtfMGrUKHl5eZn9jBo1Ks2+V65cUWJiogoXLqxixYqpW7dumjt3ruzs7Ex9hgwZIm9vb9WqVUv9+vXT119/LaPRqCJFimjixImqXbu2XF1d1bFjR7m4uOjkyZOmsfXr11fbtm1VokQJvffee7p8+bKuXbtmVsPt27f1448/Kjg4WNWrV1elSpU0duxYFS1aNFW927Zt05UrVzR16lS5u7urdu3aCg4O1ooVK3Tv3j1JksFg0HvvvacyZco8877jKSkpGjFihN588025urrK19dXderU0cmTJ2VtbW3aQ9zFxUW2trapxjs7O2vYsGFyc3NTjx495OzsrMOHD8toNOrLL79Uv3791KhRI5UpU0bjxo2TtbX1c602BwAAAAAAAJA1sCf3v6Bv375q3LixWdvGjRu1YsWKVH0rVKigBg0a6N1331WpUqXUqFEjtW/fXrly5TL1qVatmul3Dw8P3bhxQzdv3lStWrV04MABTZ8+XdHR0Tp27JiuXbtmtlK7ZMmSpt8dHBwkybTdyWNnz55VcnKyKlWqZGrz9vaWt7d3qnqjo6NVsmRJsy+srFatmpKSknTu3DlJUv78+ZUzZ850n9GTlCxZUra2tvrkk0908uRJnTx5UqdOnVKrVq0yNN7V1VXW1tamz7lz51ZSUpKuX7+uW7duqUqVKqZjOXLkkIeHh6Kjo5+rVgAAAAAAAACZj5Xc/4L8+fPLzc3N7Cd//vxp9jUYDJo/f75WrVqlJk2a6Oeff1abNm107NgxU58cOXKYfn8cYBsMBq1atUpdu3ZVfHy8GjdurMWLF6tw4cJm5//z2Mf++uWNafV5kj+vMH8sOTnZ7H/T6pNRx48f1+uvv65Tp07J29tbISEhatasWYbHP+l+n1RTcnJymtu3AAAAAAAAALAMhNyZLDo6WpMnT1blypU1YMAArVu3TkWKFDH7gsg/B96HDx9WwYIFlTdvXq1YsUIBAQEKCgpS69atlTdvXl2/fj1ViP00xYsXl7W1tY4fP25q27x5s9q0aZOqb6lSpRQTE2O2Z3hUVJRsbGxUokSJZ7puWr777jvVqFFD06dPV6dOnVS5cmWdPXvWdE8Gg+G5zuvo6KgCBQooKirK1JaYmKgjR46oVKlSf7tuAAAAAAAAAJmD7UoyWZ48ebRixQo5OjqqRYsWOnXqlC5evKiKFSua+oSEhGj8+PGKi4vTxx9/rLfffluSlDdvXkVERKhRo0a6d++eZsyYocTERCUkJDxTDQ4ODmrdurVCQkI0ZswYGQwGzZgxQ/Xq1UvV9+WXX1bx4sU1dOhQDRo0SDdv3tS4cePUvHlz5cmTJ8PXPHv2rH799VeztnLlysnZ2Vm///67Dh48KEdHR61cuVKHDh1S8eLFJcm0jcvhw4dVtmzZZ7rPrl27atasWSpYsKDc3Nz02WefKT4+/plWigMAAAAAAADIWgi5M5mLi4tCQ0M1bdo0zZs3T/nz59fAgQPl6+urCxcuSJKaNWumXr16KSUlRR07dlTPnj0lSUFBQQoKClKrVq2UP39+NW3aVLly5TJb+Z1RQUFBCgkJ0bvvvqscOXKoWbNmGjBgQKp+1tbWmjt3rsaNG6c333xTuXPnVosWLTRw4MBnut6aNWu0Zs0as7bx48fL399fR48eVdeuXWVnZ6caNWooICBA69atkyS5u7vr5ZdfVocOHfTRRx890zW7deumu3fvauTIkbp79668vLy0dOnSZ/5yTAAAAAAAAABZh8H4rHtb4D9z4cIFNWrUSFu2bJGrq2tml/PCeW3kyswu4V+ztC+r1/8JBoNUoICjYmPjxJsU6WGuICOYJ8go5goygnmCjGCeIKOYK8iI7D5PXFwcM7sEpIM9uQEAAAAAAAAAFouQGwAAAAAAAABgsdiTOwtzdXXV77//ntllAAAAAAAAAECWxUpuAAAAAAAAAIDFIuQGAAAAAAAAAFgsQm4AAAAAAAAAgMUi5AYAAAAAAAAAWCxCbgAAAAAAAACAxSLkBgAAAAAAAABYLEJuAAAAAAAAAIDFIuQGAAAAAAAAAFgsQm4AAAAAAAAAgMUi5AYAAAAAAAAAWCxCbgAAAAAAAACAxSLkBgAAAAAAAABYLEJuAAAAAAAAAIDFIuQGAAAAAAAAAFgsQm4AAAAAAAAAgMUi5AYAAAAAAAAAWCxCbgAAAAAAAACAxSLkBgAAAAAAAABYLEJuAAAAAAAAAIDFIuQGAAAAAAAAAFgsQm4AAAAAAAAAgMWyyewCgKzqx3FvKTY2TkZjZlcCAAAAAAAA4ElYyQ0AAAAAAAAAsFiE3AAAAAAAAAAAi0XIDQAAAAAAAACwWITcAAAAAAAAAACLRcgNAAAAAAAAALBYhNwAAAAAAAAAAItFyA0AAAAAAAAAsFiE3AAAAAAAAAAAi0XIDQAAAAAAAACwWITcAAAAAAAAAACLRcgNAAAAAAAAALBYhNwAAAAAAAAAAItFyA0AAAAAAAAAsFiE3AAAAAAAAAAAi2WT2QUAWVWnpR3+0+t9/Npn/+n1AAAAAAAAgOyAldwAAAAAAAAAAItFyA0AAAAAAAAAsFiE3AAAAAAAAAAAi0XIDQAAAAAAAACwWITcAAAAAAAAAACLZZPZBQDAv23jxvVauXK5zpyJVs6cuVS1ajX16NFbpUuXeerYI0cOa9GiT3Xo0AEZjSl66aVy6tz5Hfn61k/Vd+fOHVq69HP9/vsx2djYqGJFD3Xp0kNVqlQ16/fTT5u1aNGn+uOPS3JzK6UBA4bIw6NyqvMdP35MAQE99MEHA9W69RvPff8AAAAAAADZGSu5AWRrX3+9XGPHjlTOnDkVGDhSPXv20cmTJ9SzZxdFR59Kd+zRo4f1/vv/U0zMafXu/b6GDBkuW1tbBQYO0tq14WZ9f/nlZw0e3FdxcXc0YMBQ9es3WDdv3lDfvr20a9dOU7+oqH0aNepDubm5acSIMTIaUzR69PBU175+PVZBQYPVrFlLAm4AAAAAAIB0sJIbQLZ19eoVzZ07S+XKuevjjz+Rjc2jV16tWi+rc+c3tGDBPE2cOO2J40NCRsvGJodmz/5URYoUlST5+b2i7t39NW/eHDVt2lySFB8fr4kTx8rFpaDmzl0oBwcHSVK9eg3UqVM7ffLJLPn41JIkrVy5TEWLFtOYMRNlY2Oj69djNWPGVN25c1t58jhJkhISEhQUNESursXVr9+gf+35AAAAAAAAZAes5AaQbe3YsV1JSUlq376jKeCWpMKFC8vNrZSOHDn0xLHnzsXo7NkYNWzYyBRwS5KNjY28vX1069ZNXbx4QdKj1dl378apZcs2poBbknLndpCHh6dOnjyh+Ph4JSUlaefOHfLze9VUT2xsrKysrJQrl71p3JQpIbp584bGjZtkVjcAAAAAAABSIz0BkG01b95K1apVl4tLIbP2pKQkXb58SfnzF3ji2BIlSmr16rVphsznz5+VJNPK6xo1amrlynA5Ojqm6nvu3FnlymUvW1tb3blzW4mJiSpWzNV0fMeO7apUyUM5cuSQJC1fvkS//rpV8+YtlJOT8zPfMwAAAAAAwIuGldwAsi0bGxuVKFFSuXLlMmtfvHiB4uLuqE6dl9MdX6hQ4VRB+O7dkYqI+E0VKlRU3rx5JUlWVlYqVszVFHo/tnbtdzpz5rRq1aojg8EgJydnOTg4av/+vbpx47oWLpyv6OiTateugyQpImK75s+fo+DgsSpd+qW/e/sAAAAAAAAvBFZyA3ihrF79tb74YqEKFHCRv3+3Zxp76NABjRw5TFZWVurbN/29sn/9daumT58ke/vc6t37fVN7nz599dFHk7Vhww+ysbGRv/+7atSosWJizmj06OHq1q2nfH3rP9e9AQAAAAAAvIgIuQG8EJKTkzV79kytWrVCLi4FNWPGnDS3F3mSjRvXa9Kk8TIaUzRmzAR5elZ5Yt/ly5do3rzZsre31+TJM822J2nZso3q12+oy5cvq0iRInJyctadO3cUGDhQtWrVUZcu3XXnzh198sksRUZGyNraRvXq1VefPv1kbW39t54BAAAAAABAdkTIDSDbi4uL06hRH2rXrp0qU6aspk6dqYIFCz19oKSUlBTNnz9Hy5Z9IUfHPJowYaq8vKqn2TchIUGTJ4/Xhg0/qFChwpo6dWaa2444OTmb9ttOSkrSyJGBsrfPraCgUZKk4OBAnT9/TkFBo3T3bpyCgz+Um1sptWzZ5vkeAAAAAAAAQDZGyA0gW7t06aKGDOmns2djVLduA40cOVb29vYZGhsf/1CjR4/Qtm1bVbJkKU2a9JFcXYun2ff27VsKDByoQ4cOytOziiZMmKq8efM99RqhoR/pzJloffbZF7Kzy6njx49pz55dCgmZIm9vH0lS3rx5deLE7xm9ZQAAAAAAgBcKITeAbOvixQvq06eHrl+PVadO7+i99z6QwWDI0Nj4+HgNGtRXUVH75O3to/Hjp8jBwSHNvrdv31JAQE/FxJxWkyZNFRgYrBw5cjz1Gt99F6bvv/9Ws2bNU6FChSVJO3Zsk62trWrX9pX0aBX6zZs35ezsnLGbBgAAAAAAeMEQcgPIlhITExUUNFjXr8eqR4/e6tq1xzON//jjaYqK2qdatepo4sTp6YbWY8aMVEzMaTVv3krDho3IUJAeFbVPM2ZM0ZAhQWb7e9+7d0+Ojo6ytbWVJG3evEEpKSny8an1TPUDAAAAAAC8KAi5AWRLGzb8oOjoU3JzK6ny5Stq584dZsfz5MmjihU9FB19SteuXZW7e3nT9iIXLpzXmjXhsrW1U9OmLbR3726zsQaDQT4+tWQwGBQREaHIyAg5Ozurbt0GioyMMOtrZ2eXag/vy5cvacSIoWrbtr1ef72l2bGyZctp5cplWrlymWxscmj+/DmqVs1blStX/YeeDAAAAAAAQPZCyA0gW/rpp02SpLNnYzR4cN9Ux1u1aquKFT0UHByoc+fOKixsnenYzz9vltFoVEJCvEaN+jDV2BIl3LR8+WpJ0vr16yVJt27d0rBhA1L19fGpbRZy379/X4GBA1WuXHkFBPRP1f/VV1/TgQNRWrx4oYxGo3x966l//yHPdvMAAAAAAAAvEIPRaDRmdhFAVtRpaYf/9Hofv/bZf3o9/H0Gg1SggKNiY+PEmxTpYa4gI5gnyCjmCjKCeYKMYJ4go5gryIjsPk9cXBwzuwSkwyqzCwAAAAAAAAAA4HkRcgMAAAAAAAAALBYhNwAAAAAAAADAYhFyAwAAAAAAAAAsFiE3AAAAAAAAAMBiEXK/wPz9/RUaGvpcY93d3RUZGSlJ8vPzU1hY2D9ZGgAAAAAAAABkiE1mFwDL980338je3j6zywAAAAAAAADwAiLkxt+WL1++zC4BAAAAAAAAwAuK7UqgsLAw+fv7a9asWapZs6a8vb01ceJEGY1GU5/Zs2erdu3aqlmzplatWmU2/s/blaSkpGjatGmqWbOmatasqblz5+rVV181bW1y584dDRkyRNWqVZOvr6/GjRunhw8fSpIiIyPl5+en5cuXq27duqpataqGDBmihIQE07V+/vlntWnTRpUrV1azZs20ceNG07G/br9y4cIFubu768KFC5KkH374QU2aNJGnp6eaNWumzZs3/8NPEgAAAAAAAMB/jZAbkqT9+/frzJkzWrFihUaOHKklS5Zox44dkqSVK1dqyZIlmjBhghYvXqzVq1c/8Tzz589XeHi4pk+frs8//1xbt27V+fPnTceHDx+uuLg4rVixQnPnztWhQ4c0duxY0/GrV69qw4YNWrBggUJDQ7Vx40aFh4dLkiIiIvTBBx+oVatW+u6779S+fXsNGDBAhw8ffur9Xb9+XUOHDlWvXr30448/6o033tDAgQN169at53tgAAAAAAAAALIEQm5IkpKTkzVu3DiVLl1arVq1Uvny5XXo0CFJ0tdff60uXbqoYcOGqlChgsaPH//E8yxfvlz9+/eXr6+vKlasqEmTJplWhJ87d06bN2/W1KlT5e7ursqVK2vcuHH69ttvFRcXJ0lKTEzUiBEj5O7urrp166pu3bqmOpYtW6YmTZqoa9euKlWqlN599101btxYixYteur9XblyRYmJiSpcuLCKFSumbt26ae7cubKzs/u7jw4AAAAAAABAJmJPbkiS8ufPLwcHB9NnBwcHJSUlSZKio6MVEBBgOvbSSy+l+UWTN27c0NWrV+Xp6WlqK126tJycnEznSUlJUb169czGpaSk6OzZs6bPbm5uT6yjQ4cOZmO9vLzSXVn+WIUKFdSgQQO9++67KlWqlBo1aqT27dsrV65cTx0LAAAAAAAAIOsi5IYkydbWNlXbn/fk/vPvkmRjk3rqPG77a9/Hn5OTk+Xo6JhmKF2oUCEdOHAgzVoej09r1XVKSopSUlJS39D/v95jBoNB8+fP18GDB7VlyxZt2rRJy5cv1/Lly1WhQoU0xwMAAAAAAADI+tiuBE9VtmxZ05Yh0qMvdLxz506qfnny5FHBggV15MgRU9v58+dNfUuVKqW4uDgZDAa5ubnJzc1NDx8+1JQpU8y+XPJJSpUqZQrCH9u/f79KlSol6VE4fu/ePbNrPxYdHa3JkyercuXKGjBggNatW6ciRYpo27ZtGXwKAAAAAAAAALIiVnLjqd5++22NGTNGFSpUUKlSpRQSEiIrq7T/fsTf31+zZs1S0aJFlTdvXtP+3QaDQWXKlFHdunU1ePBgjRgxQtbW1ho5cqScnJyUJ0+ep9bRtWtXderUSV988YXq16+vrVu3atOmTVq4cKEkycPDQ+Hh4WrWrJkkadasWaaxefLk0YoVK+To6KgWLVro1KlTunjxoipWrPh3Hw8AAAAAAACATETIjadq1aqVbt68qXHjxunhw4fq2bOnjh8/nmbfbt266erVq/rggw9kbW2tnj17as+ePcqRI4ckacqUKRo/fry6du0qGxsb1a1bVyNGjMhQHVWqVNGUKVMUGhqqqVOnqlSpUpo5c6Zq164tSXr33Xd14sQJvf322ypUqJCGDx+uXr16SZJcXFwUGhqqadOmad68ecqfP78GDhwoX1/ff+AJAQAAAAAAAMgsBuNfN1AG/oZff/1VHh4eypcvn6RHX0ZZu3ZtbdmyRa6urplc3bPptLTD0zv9gz5+7bP/9Hr4+wwGqUABR8XGxok3KdLDXEFGME+QUcwVZATzBBnBPEFGMVeQEdl9nri4OGZ2CUgHK7nxj1q5cqWWL1+uwYMHy2Aw6OOPP5anp6fFBdwAAAAAAAAALANfPIl/VHBwsKysrNShQwe9+eabSklJ0Zw5czK7LAAAAAAAAADZFCu58Y8qVKiQ5s6dm9llAAAAAAAAAHhBsJIbAAAAAAAAAGCxCLkBAAAAAAAAABaLkBsAAAAAAAAAYLEIuQEAAAAAAAAAFouQGwAAAAAAAABgsQi5AQAAAAAAAAAWi5AbAAAAAAAAAGCxCLkBAAAAAAAAABaLkBsAAAAAAAAAYLEIuQEAAAAAAAAAFouQGwAAAAAAAABgsQi5AQAAAAAAAAAWi5AbAAAAAAAAAGCxCLkBAAAAAAAAABaLkBsAAAAAAAAAYLEIuQEAAAAAAAAAFouQGwAAAAAAAABgsQi5AQAAAAAAAAAWi5AbAAAAAAAAAGCxCLkBAAAAAAAAABaLkBsAAAAAAAAAYLFsMrsAIKta7v+VYmPjZDRmdiUAAAAAAAAAnoSV3AAAAAAAAAAAi0XIDQAAAAAAAACwWITcAAAAAAAAAACLRcgNAAAAAAAAALBYhNwAAAAAAAAAAItFyA0AAAAAAAAAsFiE3AAAAAAAAAAAi0XIDQAAAAAAAACwWITcAAAAAAAAAACLRcgNAAAAAAAAALBYhNwAAAAAAAAAAItFyA0AAAAAAAAAsFiE3AAAAAAAAAAAi0XIDQAAAAAAAACwWDaZXQCQVX3caf5/er1OH3f6T68HAAAAAAAAZAes5AYAAAAAAAAAWCxCbgAAAAAAAACAxSLkBgAAAAAAAABYLEJuAAAAAAAAAIDFIuQGAAAAAAAAAFgsm8wuAAD+bRs3rtfKlct15ky0cubMpapVq6lHj94qXbrMU8ceOXJYixZ9qkOHDshoTNFLL5VT587vyNe3fqq+O3fu0NKln+v334/JxsZGFSt6qEuXHqpSpapZv59+2qxFiz7VH39ckptbKQ0YMEQeHpVTne/48WMKCOihDz4YqNat33ju+wcAAAAAAMjOWMkNIFv7+uvlGjt2pHLmzKnAwJHq2bOPTp48oZ49uyg6+lS6Y48ePaz33/+fYmJOq3fv9zVkyHDZ2toqMHCQ1q4NN+v7yy8/a/DgvoqLu6MBA4aqX7/Bunnzhvr27aVdu3aa+kVF7dOoUR/Kzc1NI0aMkdGYotGjh6e69vXrsQoKGqxmzVoScAMAAAAAAKSDldwAsq2rV69o7txZKlfOXR9//IlsbB698mrVelmdO7+hBQvmaeLEaU8cHxIyWjY2OTR79qcqUqSoJMnP7xV17+6vefPmqGnT5pKk+Ph4TZw4Vi4uBTV37kI5ODhIkurVa6BOndrpk09mycenliRp5cplKlq0mMaMmSgbGxtdvx6rGTOm6s6d28qTx0mSlJCQoKCgIXJ1La5+/Qb9a88HAAAAAAAgO2AlN4Bsa8eO7UpKSlL79h1NAbckFS5cWG5upXTkyKEnjj13LkZnz8aoYcNGpoBbkmxsbOTt7aNbt27q4sULkh6tzr57N04tW7YxBdySlDu3gzw8PHXy5AnFx8crKSlJO3fukJ/fq6Z6YmNjZWVlpVy57E3jpkwJ0c2bNzRu3CSzugEAAAAAAJAa6QmAbKt581aqVq26XFwKmbUnJSXp8uVLyp+/wBPHlihRUqtXr00zZD5//qwkmVZe16hRUytXhsvR0TFV33PnzipXLnvZ2trqzp3bSkxMVLFirqbjO3ZsV6VKHsqRI4ckafnyJfr1162aN2+hnJycn/meAQAAAAAAXjSs5AaQbdnY2KhEiZLKlSuXWfvixQsUF3dHdeq8nO74QoUKpwrCd++OVETEb6pQoaLy5s0rSbKyslKxYq6m0PuxtWu/05kzp1WrVh0ZDAY5OTnLwcFR+/fv1Y0b17Vw4XxFR59Uu3YdJEkREds1f/4cBQePVenSL/3d2wcAAAAAAHghsJIbwAtl9eqv9cUXC1WggIv8/bs909hDhw5o5MhhsrKyUt++6e+V/euvWzV9+iTZ2+dW797vm9r79Omrjz6arA0bfpCNjY38/d9Vo0aNFRNzRqNHD1e3bj3l61v/ue4NAAAAAADgRUTIDeCFkJycrNmzZ2rVqhVycSmoGTPmpLm9yJNs3LhekyaNl9GYojFjJsjTs8oT+y5fvkTz5s2Wvb29Jk+eabY9ScuWbVS/fkNdvnxZRYoUkZOTs+7cuaPAwIGqVauOunTprjt37uiTT2YpMjJC1tY2qlevvvr06Sdra+u/9QwAAAAAAACyI0JuANleXFycRo36ULt27VSZMmU1depMFSxY6OkDJaWkpGj+/DlatuwLOTrm0YQJU+XlVT3NvgkJCZo8ebw2bPhBhQoV1tSpM9PcdsTJydm033ZSUpJGjgyUvX1uBQWNkiQFBwfq/PlzCgoapbt34xQc/KHc3EqpZcs2z/cAAAAAAAAAsjFCbgDZ2qVLFzVkSD+dPRujunUbaOTIsbK3t8/Q2Pj4hxo9eoS2bduqkiVLadKkj+TqWjzNvrdv31Jg4EAdOnRQnp5VNGHCVOXNm++p1wgN/UhnzkTrs8++kJ1dTh0/fkx79uxSSMgUeXv7SJLy5s2rEyd+z+gtAwAAAAAAvFAIuQFkWxcvXlCfPj10/XqsOnV6R++994EMBkOGxsbHx2vQoL6Kitonb28fjR8/RQ4ODmn2vX37lgICeiom5rSaNGmqwMBg5ciR46nX+O67MH3//beaNWueChUqLEnasWObbG1tVbu2r6RHq9Bv3rwpZ2fnjN00AAAAAADAC4aQG0C2lJiYqKCgwbp+PVY9evRW1649nmn8xx9PU1TUPtWqVUcTJ05PN7QeM2akYmJOq3nzVho2bESGgvSoqH2aMWOKhgwJMtvf+969e3J0dJStra0kafPmDUpJSZGPT61nqh8AAAAAAOBFQcgNIFvasOEHRUefkptbSZUvX1E7d+4wO54nTx5VrOih6OhTunbtqtzdy5u2F7lw4bzWrAmXra2dmjZtob17d5uNNRgM8vGpJYPBoIiICEVGRsjZ2Vl16zZQZGSEWV87O7tUe3hfvnxJI0YMVdu27fX66y3NjpUtW04rVy7TypXLZGOTQ/Pnz1G1at6qXLnqP/RkAAAAAAAAshdCbgDZ0k8/bZIknT0bo8GD+6Y63qpVW1Ws6KHg4ECdO3dWYWHrTMd+/nmzjEajEhLiNWrUh6nGlijhpuXLV0uS1q9fL0m6deuWhg0bkKqvj09ts5D7/v37CgwcqHLlyisgoH+q/q+++poOHIjS4sULZTQa5etbT/37D3m2mwcAAAAAAHiBGIxGozGziwCyoo87zf9Pr9fp407/6fXw9xkMUoECjoqNjRNvUqSHuYKMYJ4go5gryAjmCTKCeYKMYq4gI7L7PHFxcczsEpAOq8wuAAAAAAAAAACA50XIDQAAAAAAAACwWITcAAAAAAAAAACLRcgNAAAAAAAAALBYhNwAAAAAAAAAAItFyA35+fnJ3d09zZ/IyMi/ff6IiAhFR0en2yc0NFTu7u6KiIjI8HkvXLggd3d3Xbhw4e+WCAAAAAAAAMBC2WR2AcgagoKC1KxZs1TtTk5Of/vcXbt21ZIlS1SmTJkn9lm7dq1KlCih8PBw1a5dO0PnLVKkiLZv3658+fL97RoBAAAAAAAAWCZWckOS5OjoKBcXl1Q/tra2//q1jxw5onPnzum9997Txo0bde/evQyNs7a2louLi6ytrf/lCgEAAAAAAABkVYTcyJArV66ob9++qlGjhjw8PNSmTRvt3bvXdHzJkiVq2LChPD091bZtW+3Zs0fSo61QJOmdd95RaGhomudeu3atypcvryZNmigxMVEbN240O/7DDz+oSZMm8vT0VLNmzbR582ZJqbcrOXXqlLp37y4vLy95enqqU6dOpm1SIiMj5efnp+XLl6tu3bqqWrWqhgwZooSEhH/2QQEAAAAAAAD4TxFyI0MGDx6s5ORkffXVVwoPD1ehQoU0evRoSdLRo0c1ZcoUjRo1SuvXr5e3t7f69++vlJQUffPNN5Ie7bndrVu3VOc1Go1av369GjZsqNy5c6t27dr69ttvTcevX7+uoUOHqlevXvrxxx/1xhtvaODAgbp165bZeVJSUtS7d28VK1ZM3333nb766islJydr6tSppj5Xr17Vhg0btGDBAoWGhmrjxo0KDw//x58VAAAAAAAAgP8Oe3JDkjRq1CiNGzfOrK1o0aJat26djEajXnnlFTVp0kSFCxeWJHXu3Fk9e/aUJF28eFEGg0FFixaVq6ur+vfvr4YNGyolJcW0X7aTk5Ny586d6rp79+7V5cuX9corr0iSGjdurJEjR+rixYsqVqyYrly5osTERBUuXFjFihVTt27d5O7uLjs7O929e9d0nocPH6pDhw7q1KmT7O3tJUlt2rTRggULTH0SExM1YsQIlS1bVu7u7qpbt64OHTqkN9988x98kgAAAAAAAAD+S4TckCT17dtXjRs3NmuzsXk0PQwGgzp27KgffvhB+/bt05kzZ3T48GGlpKRIknx9fVWuXDm1aNFCFStWVKNGjdS+fXvT+PSsW7dOxYoVU8WKFSVJjRo1UnBwsL777jv16dNHFSpUUIMGDfTuu++qVKlSpnPnypXL7Dz29vbq2LGjwsPDdfjwYZ0+fVpHjx5VgQIFzPq5ubmZfndwcFBSUtKzPywAAAAAAAAAWQYhNyRJ+fPnNwuA/ywlJUXdunXTnTt31KxZM/n5+SkxMVHvv/++JClXrlxatWqVdu3apZ9//llhYWFasWKFwsLCVKhQoSdeMzk5WT/++KNu3rxpCrkfX+9xyG0wGDR//nwdPHhQW7Zs0aZNm7R8+XItX75cjo6OpjH37t1Tu3btlDdvXvn5+al58+Y6ffq0Fi1aZHbNv36RptFofOZnBQAAAAAAACDrIOTGU506dUq7d+9WRESEafuRZcuWSXoUEkdFRWnnzp167733VKtWLQ0aNEh16tTR3r171axZsyeeNyIiQjdu3FBoaKhKlixpav/tt980adIk7du3T05OTvrmm280bNgwVa5cWf3799frr7+ubdu2mZ17165dunr1qtasWWNaQb59+3ZCbAAAAAAAACCbI+SGJCkuLk7Xrl1L1Z47d27lyZNHVlZWWrdunfz8/HTo0CGFhoZKkhISEpQzZ07NmTNHBQoUUO3atbV7927dv39f7u7ukh5tJXLy5ElVrFjRbPX1unXrVLZs2VTbpLi5uWnevHkKDw/XBx98oBUrVsjR0VEtWrTQqVOndPHiRbOV35Lk7Oys+/fva/PmzfLw8FBERISWLVsmBweHf/pRAQAAAAAAAMhCrDK7AGQNEyZMkK+vb6qfxYsXq3Dhwho9erQ+++wzNW/eXJ9++qlGjBghGxsbHT16VBUqVFBISIgWLFigpk2bat68eZo6darKlCkjSfL399eUKVNMwbj0KBzftGmT2rVrl6oWOzs7tW3bVuvXr1eePHkUGhqqDRs26PXXX9fYsWM1cOBA+fr6mo3x8vJSQECAxowZo5YtWyosLEzBwcG6fv26rly58u8+PAAAAAAAAACZxmBkPwcgTR93mv+fXq/Tx53+0+vh7zMYpAIFHBUbGyfepEgPcwUZwTxBRjFXkBHME2QE8wQZxVxBRmT3eeLi4vj0Tsg0rOQGAAAAAAAAAFgsQm4AAAAAAAAAgMUi5AYAAAAAAAAAWCxCbgAAAAAAAACAxSLkBgAAAAAAAABYLEJuAAAAAAAAAIDFIuQGAAAAAAAAAFgsQm4AAAAAAAAAgMUi5AYAAAAAAAAAWCxCbgAAAAAAAACAxSLkBgAAAAAAAABYLEJuAAAAAAAAAIDFIuQGAAAAAAAAAFgsQm4AAAAAAAAAgMUi5AYAAAAAAAAAWCxCbgAAAAAAAACAxSLkBgAAAAAAAABYLEJuAAAAAAAAAIDFIuQGAAAAAAAAAFgsQm4AAAAAAAAAgMUi5AYAAAAAAAAAWCxCbgAAAAAAAACAxSLkBgAAAAAAAABYLEJuAAAAAAAAAIDFssnsAoCsqt/yXoqNjZPRmNmVAAAAAAAAAHgSVnIDAAAAAAAAACwWITcAAAAAAAAAwGIRcgMAAAAAAAAALBYhNwAAAAAAAADAYhFyAwAAAAAAAAAsFiE3AAAAAAAAAMBiEXIDAAAAAAAAACwWITcAAAAAAAAAwGIRcgMAAAAAAAAALBYhNwAAAAAAAADAYhFyAwAAAAAAAAAsFiE3AAAAAAAAAMBiEXIDAAAAAAAAACwWITcAAAAAAAAAwGLZZHYBQFYVM7rUf3q93AEH/9PrAQAAAAAAANkBK7kBAAAAAAAAABaLkBsAAAAAAAAAYLEIuQEAAAAAAAAAFouQGwAAAAAAAABgsQi5AQAAAAAAAAAWyyazCwCAf9vGjeu1cuVynTkTrZw5c6lq1Wrq0aO3Spcu89SxR44c1qJFn+rQoQMyGlP00kvl1LnzO/L1rZ+q786dO7R06ef6/fdjsrGxUcWKHurSpYeqVKlq1u+nnzZr0aJP9ccfl+TmVkoDBgyRh0flVOc7fvyYAgJ66IMPBqp16zee+/4BAAAAAACyM1ZyA8jWvv56ucaOHamcOXMqMHCkevbso5MnT6hnzy6Kjj6V7tijRw/r/ff/p5iY0+rd+30NGTJctra2CgwcpLVrw836/vLLzxo8uK/i4u5owICh6tdvsG7evKG+fXtp166dpn5RUfs0atSHcnNz04gRY2Q0pmj06OGprn39eqyCggarWbOWBNwAAAAAAADpYCU3gGzr6tUrmjt3lsqVc9fHH38iG5tHr7xatV5W585vaMGCeZo4cdoTx4eEjJaNTQ7Nnv2pihQpKkny83tF3bv7a968OWratLkkKT4+XhMnjpWLS0HNnbtQDg4OkqR69RqoU6d2+uSTWfLxqSVJWrlymYoWLaYxYybKxsZG16/HasaMqbpz57by5HGSJCUkJCgoaIhcXYurX79B/9rzAQAAAAAAyA5YyQ0g29qxY7uSkpLUvn1HU8AtSYULF5abWykdOXLoiWPPnYvR2bMxatiwkSngliQbGxt5e/vo1q2bunjxgqRHq7Pv3o1Ty5ZtTAG3JOXO7SAPD0+dPHlC8fHxSkpK0s6dO+Tn96qpntjYWFlZWSlXLnvTuClTQnTz5g2NGzfJrG4AAAAAAACkRnoCINtq3ryVqlWrLheXQmbtSUlJunz5kvLnL/DEsSVKlNTq1WvTDJnPnz8rSaaV1zVq1NTKleFydHRM1ffcubPKlctetra2unPnthITE1WsmKvp+I4d21Wpkody5MghSVq+fIl+/XWr5s1bKCcn52e+ZwAAAAAAgBcNK7kBZFs2NjYqUaKkcuXKZda+ePECxcXdUZ06L6c7vlChwqmC8N27IxUR8ZsqVKiovHnzSpKsrKxUrJirKfR+bO3a73TmzGnVqlVHBoNBTk7OcnBw1P79e3XjxnUtXDhf0dEn1a5dB0lSRMR2zZ8/R8HBY1W69Et/9/YBAAAAAABeCKzkBvBCWb36a33xxUIVKOAif/9uzzT20KEDGjlymKysrNS3b/p7Zf/661ZNnz5J9va51bv3+6b2Pn366qOPJmvDhh9kY2Mjf/931ahRY8XEnNHo0cPVrVtP+frWf657AwAAAAAAeBERcgN4ISQnJ2v27JlatWqFXFwKasaMOWluL/IkGzeu16RJ42U0pmjMmAny9KzyxL7Lly/RvHmzZW9vr8mTZ5ptT9KyZRvVr99Qly9fVpEiReTk5Kw7d+4oMHCgatWqoy5duuvOnTv65JNZioyMkLW1jerVq68+ffrJ2tr6bz0DAAAAAACA7IiQG0C2FxcXp1GjPtSuXTtVpkxZTZ06UwULFnr6QEkpKSmaP3+Oli37Qo6OeTRhwlR5eVVPs29CQoImTx6vDRt+UKFChTV16sw0tx1xcnI27bedlJSkkSMDZW+fW0FBoyRJwcGBOn/+nIKCRunu3TgFB38oN7dSatmyzfM9AAAAAAAAgGyMkBtAtnbp0kUNGdJPZ8/GqG7dBho5cqzs7e0zNDY+/qFGjx6hbdu2qmTJUpo06SO5uhZPs+/t27cUGDhQhw4dlKdnFU2YMFV58+Z76jVCQz/SmTPR+uyzL2Rnl1PHjx/Tnj27FBIyRd7ePpKkvHnz6sSJ3zN6ywAAAAAAAC8UQm4A2dbFixfUp08PXb8eq06d3tF7730gg8GQobHx8fEaNKivoqL2ydvbR+PHT5GDg0OafW/fvqWAgJ6KiTmtJk2aKjAwWDly5HjqNb77Lkzff/+tZs2ap0KFCkuSduzYJltbW9Wu7Svp0Sr0mzdvytnZOWM3DQAAAAAA8IIh5AaQLSUmJiooaLCuX49Vjx691bVrj2ca//HH0xQVtU+1atXRxInT0w2tx4wZqZiY02revJWGDRuRoSA9KmqfZsyYoiFDgsz29753754cHR1la2srSdq8eYNSUlLk41PrmeoHAAAAAAB4URByA8iWNmz4QdHRp+TmVlLly1fUzp07zI7nyZNHFSt6KDr6lK5duyp39/Km7UUuXDivNWvCZWtrp6ZNW2jv3t1mYw0Gg3x8aslgMCgiIkKRkRFydnZW3boNFBkZYdbXzs4u1R7ely9f0ogRQ9W2bXu9/npLs2Nly5bTypXLtHLlMtnY5ND8+XNUrZq3Kleu+g89GQAAAAAAgOyFkBtAtvTTT5skSWfPxmjw4L6pjrdq1VYVK3ooODhQ586dVVjYOtOxn3/eLKPRqISEeI0a9WGqsSVKuGn58tWSpPXr10uSbt26pWHDBqTq6+NT2yzkvn//vgIDB6pcufIKCOifqv+rr76mAweitHjxQhmNRvn61lP//kOe7eYBAAAAAABeIAaj0WjM7CKArChmdKn/9Hq5Aw7+p9fD32cwSAUKOCo2Nk68SZEe5goygnmCjGKuICOYJ8gI5gkyirmCjMju88TFxTGzS0A6rDK7AAAAAAAAAAAAnhchNwAAAAAAAADAYhFyAwAAAAAAAAAsFiE3AAAAAAAAAMBiEXIDAAAAAAAAACwWITfMuLu7y93dXZcuXUp1bMWKFXJ3d1doaGiGzuXn56ewsDBJ0t27dxUeHp7msX9SaGio/P39M9Q3MDBQgYGB/3gNAAAAAAAAAP47hNxIJUeOHPrpp59StW/evFkGg+G5zrl48WKtXr3a9Pmbb75Rs2bNnrvGJ+nWrVuGQ3gAAAAAAAAAlo+QG6l4e3unCrnv3r2r/fv3q2LFis91TqPRaPY5X758ypkz53PX+CS5c+eWs7PzP35eAAAAAAAAAFkTITdSadSokXbt2qW7d++a2rZu3Spvb2/lzp3b1JbWdh/u7u6KjIw0awsLC9Ps2bO1a9cuubu7SzLfrsTf31/jxo1To0aN1KBBA929e1d79+5Vx44dVaVKFVWtWlX/+9//dPXqVdM5f/31V7Vp00ZVqlRRy5YtFRERISn1diWrVq3Sa6+9Jg8PD9WsWVNjxoxRcnLyP/SkAAAAAAAAAGQ2Qm6kUq5cORUqVEi//vqrqW3Tpk165ZVXnut8zZo1U7du3eTl5aXt27en2ScsLExTp07V7NmzZTQa1atXL7388stau3atFi5cqHPnzunTTz+VJJ08eVLvvfeeXn31VX333Xdq3ry5+vTpo2vXrpmdc9euXRo/frwGDhyoH3/8UWPGjNE333yjLVu2PNd9AAAAAAAAAMh6CLmRpkaNGpm2LElISNBvv/2mRo0aPde5cubMKXt7e+XIkUMuLi5p9mnQoIGqVasmDw8PPXz4UH369FFAQICKFy+u6tWrq3Hjxjp58qSkR/t5V6tWTX369FHJkiXVs2dPdenSRXfu3DE7p729vUJCQtS4cWO5urrqtddeU8WKFU3nAQAAAAAAAGD5bDK7AGRNjRo1Ut++fZWUlKSIiAiVK1dO+fPn/9euV6xYMdPvLi4uat26tRYvXqxjx47p1KlT+v3331WtWjVJ0pkzZ1SpUiWz8f379091Tg8PD+XMmVOzZs0ynePs2bPy9fX91+4DAAAAAAAAwH+LldxIU/Xq1SVJe/fu1ebNm/Xqq6+m6mMwGMw+JyUlPff17OzsTL9fuXJFLVu21M6dO1WpUiUFBQXp3XffNR23scnY381s27ZNbdu2VWxsrOrWratZs2aZgnIAAAAAAAAA2QMruZEmGxsb1a9fXz/99JN+/vln9ezZM1WfHDly6ObNm6bP58+ff+L5/hqIp2fTpk1ycnLS/PnzTW1Lly6V0WiUJLm5uenYsWNmYzp06GD2hZPSoy+dfOONNzRq1ChJj0L4c+fOqVatWhmuBQAAAAAAAEDWxkpuPFGjRo20atUq5c+fX8WLF0913NPTU7/99psiIiJ04sQJjR07Vjly5EjzXLly5dLVq1d14cKFp17X2dlZly5dUkREhM6fP69PP/1UGzduVEJCgiSpY8eO2rNnjz7//HOdPXtW8+fP18mTJ+Xt7Z3qPPv379fvv/+ukydPKjAwUNeuXTOdBwAAAAAAAIDlI+TGE/n6+iopKUmvvPJKmsdbtWqlJk2aqE+fPurRo4eaN2+uggULptn31VdfVUpKil5//XVdv3493es2bdpULVu2VN++ffXGG28oMjJSw4YNU3R0tBISElSiRAmFhoZq9erVat68uTZs2KB58+apUKFCZud5//33lT9/fr311lt69913ZWdnp44dO6ZaBQ4AAAAAAADAchmMj/eAAGAmZnSp//R6uQMO/qfXw99nMEgFCjgqNjZOvEmRHuYKMoJ5goxiriAjmCfICOYJMoq5gozI7vPExcUxs0tAOljJDQAAAAAAAACwWITcAAAAAAAAAACLRcgNAAAAAAAAALBYhNwAAAAAAAAAAItFyA0AAAAAAAAAsFiE3AAAAAAAAAAAi0XIDQAAAAAAAACwWITcAAAAAAAAAACLRcgNAAAAAAAAALBYhNwAAAAAAAAAAItFyA0AAAAAAAAAsFiE3AAAAAAAAAAAi0XIDQAAAAAAAACwWITcAAAAAAAAAACLRcgNAAAAAAAAALBYhNwAAAAAAAAAAItFyA0AAAAAAAAAsFiE3AAAAAAAAAAAi0XIDQAAAAAAAACwWITcAAAAAAAAAACLRcgNAAAAAAAAALBYhNwAAAAAAAAAAItFyA0AAAAAAAAAsFiE3AAAAAAAAAAAi2WT2QUAWVXJ0WcUGxsnozGzKwEAAAAAAADwJKzkBgAAAAAAAABYLEJuAAAAAAAAAIDFIuQGAAAAAAAAAFgsQm4AAAAAAAAAgMUi5AYAAAAAAAAAWCxCbgAAAAAAAACAxTIYjUZjZhcBAAAAAAAAAMDzYCU3AAAAAAAAAMBiEXIDAAAAAAAAACwWITcAAAAAAAAAwGIRcgMAAAAAAAAALBYhNwAAAAAAAADAYhFyA38RHx+voKAgeXt7y9fXV4sWLcrskpAFbdq0Se7u7mY/ffv2zeyykIUkJCSoefPmioyMNLWdP39eXbt2VdWqVdWsWTNt3749EytEVpDWPBk/fnyq98uXX36ZiVUis1y5ckV9+/aVj4+P6tatq4kTJyo+Pl4S7xOYS2+u8E7BY2fPnlX37t3l5eWlBg0aaMGCBaZjvFPwZ+nNFd4pSEvPnj0VGBho+nz06FG1b99eVapU0RtvvKHDhw9nYnV4UdhkdgFAVjNlyhQdPnxYX3zxhS5duqRhw4apaNGieu211zK7NGQhp06dUsOGDTVu3DhTm52dXSZWhKwkPj5egwYN0smTJ01tRqNRAQEBKleunFavXq3Nmzfr/fff1w8//KCiRYtmYrXILGnNE0mKjo7WoEGD1KZNG1Obg4PDf10eMpnRaFTfvn2VJ08eLVu2TLdv31ZQUJCsrKw0dOhQ3icwSW+uDBs2jHcKJEkpKSnq2bOnPD099e233+rs2bMaOHCgChUqpObNm/NOgUl6c6VFixa8U5DKunXr9Msvv5jmxP3799WzZ0+1aNFCkyZN0ooVK9SrVy9t2rRJ9vb2mVwtsjNCbuBP7t+/r1WrVumzzz5TpUqVVKlSJZ08eVLLli0j5IaZ6OholStXTi4uLpldCrKYU6dOadCgQTIajWbtO3fu1Pnz5/XVV1/J3t5eZcqUUUREhFavXq0PPvggk6pFZnnSPJEevV+6d+/O++UFd/r0aUVFRem3335TgQIFJEl9+/bV5MmTVa9ePd4nMElvrjwOuXmnIDY2VhUqVNDo0aPl4OCgkiVLqnbt2tq7d68KFCjAOwUm6c2VxyE37xQ8duvWLU2ZMkWenp6mth9++EF2dnYaOnSoDAaDhg8frl9//VU//vij2rZtm4nVIrtjuxLgT44fP66kpCR5eXmZ2qpXr64DBw4oJSUlEytDVhMdHa2SJUtmdhnIgnbt2qWaNWtq5cqVZu0HDhxQxYoVzVYvVK9eXVFRUf9xhcgKnjRP7t69qytXrvB+gVxcXLRgwQJTaPnY3bt3eZ/ATHpzhXcKHitYsKBmzpwpBwcHGY1G7d27V7t375aPjw/vFJhJb67wTsFfTZ48Wa1atdJLL71kajtw4ICqV68ug8EgSTIYDKpWrRrvFPzrCLmBP7l27Zry5s0rW1tbU1uBAgUUHx+vW7duZV5hyFKMRqPOnDmj7du3q0mTJnrllVc0bdo0JSQkZHZpyAI6deqkoKAg5cqVy6z92rVrKliwoFlb/vz59ccff/yX5SGLeNI8iY6OlsFg0Lx581SvXj21bNlS3377bSZVicyUJ08e1a1b1/Q5JSVFX375pWrVqsX7BGbSmyu8U5AWPz8/derUSV5eXmrSpAnvFDzRX+cK7xT8WUREhPbs2aM+ffqYtfNOQWZhuxLgTx48eGAWcEsyfSbAxGOXLl0yzZWZM2fqwoULGj9+vB4+fKgRI0ZkdnnIop70fuHdgj87ffq0DAaDSpcurbffflu7d+/WyJEj5eDgoFdffTWzy0Mmmjp1qo4ePapvvvlGixcv5n2CJ/rzXDly5AjvFKQya9YsxcbGavTo0Zo4cSL/jIIn+utcqVSpEu8USHr03TKjRo1ScHCwcubMaXaMdwoyCyE38Cd2dnapXryPP//1xY0XV7FixRQZGSknJycZDAZVqFBBKSkpGjJkiD788ENZW1tndonIguzs7FL9FyEJCQm8W2CmdevWatiwoZydnSVJ5cuXV0xMjFasWMG/PL7Apk6dqi+++EIzZsxQuXLleJ/gif46V8qWLcs7Bak83js3Pj5egwcP1htvvKEHDx6Y9eGdAin1XNm3bx/vFEiSZs+eLQ8PD7P/kuixJ+UqvFPwb2O7EuBPChUqpJs3byopKcnUdu3aNeXMmVN58uTJxMqQ1Tg7O5v2GJOkMmXKKD4+Xrdv387EqpCVFSpUSLGxsWZtsbGxqf5TPrzYDAaD6V8cHytdurSuXLmSOQUh040bN06ff/65pk6dqiZNmkjifYK0pTVXeKfgsdjYWG3evNms7aWXXlJiYqJcXFx4p8Akvbly9+5d3imQJK1bt06bN2+Wl5eXvLy8tGbNGq1Zs0ZeXl78cwoyDSE38CcVKlSQjY2N2Rci7N27V56enrKy4v8ueGTbtm2qWbOm2YqXY8eOydnZWfny5cvEypCVValSRUeOHNHDhw9NbXv37lWVKlUysSpkNR9//LG6du1q1nb8+HGVLl06cwpCppo9e7a++uorffTRR3r99ddN7bxP8FdPmiu8U/DYhQsX9P7775uFkYcPH1a+fPlUvXp13ikwSW+uLF26lHcKJElLly7VmjVrFB4ervDwcPn5+cnPz0/h4eGqUqWK9u/fL6PRKOnRd1rt27ePdwr+daR2wJ/kypVLrVu31ujRo3Xw4EFt3rxZixYt0jvvvJPZpSEL8fLykp2dnUaMGKHTp0/rl19+0ZQpU9SjR4/MLg1ZmI+Pj4oUKaIPP/xQJ0+e1KeffqqDBw+qXbt2mV0aspCGDRtq9+7dWrhwoc6dO6fly5crPDxc3bp1y+zS8B+Ljo7W3Llz9b///U/Vq1fXtWvXTD+8T/Bn6c0V3il4zNPTU5UqVVJQUJBOnTqlX375RVOnTlXv3r15p8BMenOFdwoeK1asmNzc3Ew/uXPnVu7cueXm5qbXXntNd+7cUUhIiE6dOqWQkBA9ePBATZs2zeyykc0ZjI//agWApEdfkjB69Ght3LhRDg4O6t69e6q/rQZOnjypCRMmKCoqSrlz51aHDh0UEBBgtoUJ4O7uriVLlqhmzZqSpLNnz2r48OE6cOCA3NzcFBQUpDp16mRylchsf50nmzdv1qxZsxQTE6NixYppwIABaty4cSZXif/ap59+qunTp6d57Pfff+d9ApOnzRXeKXjsypUrGjdunCIiIpQrVy69/fbb6tWrlwwGA+8UmElvrvBOQVoCAwMlSZMmTZIkHTx4UKNGjVJ0dLTc3d01ZswYVaxYMTNLxAuAkBsAAAAAAAAAYLHYrgQAAAAAAAAAYLEIuQEAAAAAAAAAFouQGwAAAAAAAABgsQi5AQAAAAAAAAAWi5AbAAAAAAAAAGCxCLkBAAAAAAAAABaLkBsAAAAAAAAAYLEIuQEAAAALZjQaM7uEf1R2ux8AAAD8+wi5AQAAgEwUGRkpd3f3DP9ERkZKkpKTk7Vs2TKFhISYnS8sLEzu7u4aPHjwv1ZzYGCg3N3dtWrVqucaHxoaKnd3d82YMcOsfe3atRo4cOA/USIAAABeIDaZXQAAAAAAyd7eXo0aNXpqvwIFCkiS1qxZo7Fjx6pFixb/dmn/id27d2vQoEGqVq1aZpcCAAAAC0PIDQAAAGQBefPm1bRp0zLcPyUl5V+sJn0DBw7U//73PxUsWPC5xnfu3FnNmjVT3rx5TW2ZeT8AAACwbITcAAAAAJ5JwYIFnzvglqR8+fIpX758/2BFAAAAeJGxJzcAAABgYfz9/fXhhx9KerRtibu7uwIDA1P1O3DggHr06KHq1avLy8tLnTp10i+//JKqn7u7u1q1aqW4uDhNmDBBDRo0kIeHh1555RXNnDlTDx48MOv/pD25jUajvvnmG3Xs2FE1atSQj4+POnTooLVr15p9oeRf9+QODAzUO++8I0nat2+f3N3d5e/vr8OHD8vd3V316tVLc6V3fHy8atSoIS8vL92/f/8ZnyIAAACyC0JuAAAAwMLUqVNHXl5ekiRXV1e1aNHC9PmxqKgode7cWdHR0apdu7ZcXV21d+9e9erVSz/99FOqcz548ECdO3fW119/rZIlS6p27dr6448/9Mknn2jAgAFPrSk5OVkBAQEaPny4jh8/Li8vL1WtWlXHjh3ToEGDNGXKlCeO9fLyUp06dSQ9WuXdokUL1alTRx4eHipfvryuXLminTt3phq3ZcsW3blzR02bNpW9vf1TawQAAED2xHYlAAAAgIV57733VKhQIe3fv19eXl5p7uV9/vx5de7cWcOHD5e1tbWMRqNGjRqllStX6vPPP5efn59Z/7Nnz6ps2bJat26dihUrJkk6cuSI3nrrLf388886efKkypYt+8Sali5dqi1btqhcuXJasGCBChUqZKqjQ4cOWrRokZo3b65KlSqlGvvWW2+pZMmS2rFjh0qWLGl2P2+88YZCQkIUHh5uCsIf+/bbbyVJbdu2zeCTAwAAQHbESm4AAAAgC7h48aLc3d3T/enTp0+Gz5cvXz59+OGHsra2liQZDAZ169ZNknTixIk0xwwYMMAUcEtSpUqVVK1aNUnSyZMn073eihUrJEkhISGmgFuSihcvrt69e6tcuXI6ffp0hut/rGXLlrK1tdWmTZvMtiS5du2afvvtN5UsWVLe3t7PfF4AAABkH6zkBgAAALIAe3t7NWrUKN0+Hh4eGT6fh4eHcuTIYdZWpEgRSdKdO3fSHFO1atVUbY+/YDK9Pa+vXLmimJgYFShQQJUrV0513N/fX/7+/hkt3Yyzs7MaNWqk9evXa+PGjWrdurUk6fvvv1dycrLatGnzXOcFAABA9kHIDQAAAGQBefPmTXPbkeeVJ0+eVG2PV3Wn9SWOTxpjY/PoXxn+/MWRf3X16lVJ/xei/9PatWun9evXKzw83BRyh4eHy8rKyvQZAAAALy5CbgAAACAbMhgM/8kY6dGXTv6b6tSpo6JFiyoyMlJXrlzRjRs3dOLECfn6+qpw4cL/6rUBAACQ9bEnNwAAAIC/xcXFRZL0xx9/pHk8NjZWK1eu1IEDB57r/FZWVmrTpo1SUlK0efNm/fjjj5IefSklAAAAQMgNAAAAWKDnXXX9byhWrJgKFSqka9eu6dixY6mOb9q0ScHBwVq7du0Tz/G0+2nbtq0MBoM2bdqkzZs3y8nJSa+88srfrh0AAACWj5AbAAAAsEB2dnaSpLt372ZyJY+8/fbbkqQRI0boxo0bpvbz589rzpw5srKyUosWLZ44/mn34+rqqlq1aikyMlKnTp3S66+/Lltb23/wDgAAAGCp2JMbAAAAyAJu3rypwYMHP7VfjRo19NZbb8nNzU2StHXrVvXq1UteXl7q3bv3v13mE3Xr1k27d+/Wr7/+qldffVU+Pj5KSEjQnj179PDhQ/Xt21eVK1d+4nhXV1dZW1vrxIkT6tKli9zd3RUUFGTWp127doqIiJD0aGU3AAAAIBFyAwAAAFnC/fv3tWbNmqf2s7Gx0VtvvaVKlSpp0KBBWrp0qX777Tc9ePAgU0NuGxsbffLJJ/rqq68UFhamiIgIGY1GlS9fXv7+/mrevHm64/Pnz6+QkBDNnj1be/fu1aVLl1KF3NWrV5cklStXTp6env/avQAAAMCyGIxGozGziwAAAACAp1m8eLEmTpyoESNGyN/fP7PLAQAAQBZByA0AAAAgy3r48KFy5sypEydO6N1339XDhw/1yy+/yMHBIbNLAwAAQBbBdiUAAAAAsqy5c+dq8eLFio+PlyQNHTqUgBsAAABmCLkBAAAAZFkVKlSQtbW18uXLp44dO6pbt26ZXRIAAACyGLYrAQAAAAAAAABYLKvMLgAAAAAAAAAAgOdFyA0AAAAAAAAAsFiE3AAAAAAAAAAAi0XIDQAAAAAAAACwWITcAAAAAAAAAACLRcgNAAAAAAAAALBYhNwAAAAAAAAAAItFyA0AAAAAAAAAsFj/D3ZrVcKzRkBNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(15, 5))\n", + "sns.barplot(x = count, y = participation_rate, palette = 'Set1')\n", + "plt.xlabel('Ethnicity', size = 16)\n", + "for i, v in enumerate(count):\n", + " ax.text( v+3,\n", + " i-.15,\n", + " f'{count[i]*100/sum(count):.2f}%',\n", + " style = 'italic',\n", + " fontsize=14,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**From the Survey Analysis, more particpation has been happened from White or of European Ethnicity which is 24573 participation which is very high comparing to others.
\n", + "The least has been recorded as only 0.16% from Indigenous.
\n", + "The second top survey contributors are from South Asians which is 11.93% of the respondents.**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Geographical plot to show number of respondents in each country in 2019" + ] + }, + { + "cell_type": "code", + "execution_count": 349, + "metadata": {}, + "outputs": [], + "source": [ + "#geoplot_2019=cleaned_df_2019.groupby('Country').agg('count')\n", + "geoplot_2019=cleaned_df_2019.groupby('Country').size()\n", + "geoplot_2019=geoplot_2019.to_frame('Respondents')" + ] + }, + { + "cell_type": "code", + "execution_count": 350, + "metadata": {}, + "outputs": [], + "source": [ + "def get_country_code(name):\n", + " try:\n", + " return pycountry.countries.lookup(name).alpha_3\n", + " except:\n", + " return None" + ] + }, + { + "cell_type": "code", + "execution_count": 351, + "metadata": {}, + "outputs": [], + "source": [ + "geoplot_2019['Country'] = geoplot_2019.index\n", + "geoplot_2019['Country_code'] = geoplot_2019['Country'].apply(get_country_code)" + ] + }, + { + "cell_type": "code", + "execution_count": 352, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "coloraxis": "coloraxis", + "geo": "geo", + "hovertemplate": "%{hovertext}

Country_code=%{location}
Respondents=%{z}", + "hovertext": [ + "Argentina", + "Australia", + "Austria", + "Brazil", + "Canada", + "China", + "Czech Republic", + "France", + "Germany", + "India", + "Ireland", + "Israel", + "Lithuania", + "Netherlands", + "New Zealand", + "Pakistan", + "Philippines", + "Poland", + "Serbia", + "South Africa", + "Spain", + "Sweden", + "Switzerland", + "Thailand", + "United Kingdom", + "United States" + ], + "locations": [ + "ARG", + "AUS", + "AUT", + "BRA", + "CAN", + "CHN", + "CZE", + "FRA", + "DEU", + "IND", + "IRL", + "ISR", + "LTU", + "NLD", + "NZL", + "PAK", + "PHL", + "POL", + "SRB", + "ZAF", + "ESP", + "SWE", + "CHE", + "THA", + "GBR", + "USA" + ], + "name": "", + "type": "choropleth", + "z": [ + 2, + 2, + 1, + 2, + 1, + 2, + 2, + 1, + 5, + 6, + 1, + 1, + 1, + 1, + 2, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 1, + 3, + 19 + ] + } + ], + "layout": { + "autosize": true, + "coloraxis": { + "cmax": 10000, + "cmin": 0, + "colorbar": { + "title": { + "text": "Respondents" + } + }, + "colorscale": [ + [ + 0, + "rgb(253, 224, 197)" + ], + [ + 0.16666666666666666, + "rgb(250, 203, 166)" + ], + [ + 0.3333333333333333, + "rgb(248, 181, 139)" + ], + [ + 0.5, + "rgb(245, 158, 114)" + ], + [ + 0.6666666666666666, + "rgb(242, 133, 93)" + ], + [ + 0.8333333333333334, + "rgb(239, 106, 76)" + ], + [ + 1, + "rgb(235, 74, 64)" + ] + ] + }, + "geo": { + "center": {}, + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "projection": { + "type": "natural earth" + } + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAABE0AAAFoCAYAAACixgUDAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3QVYl1f7B/Av3R2KigGigmJ3dztr5uyYOXM6azPm7O7GnDVrdncnJoKoiHR3w/9/Di9MEfVHGnzPdXn5Op7nxOf54etzc859KyUlJSWBjQIUoAAFKEABClCAAhSgAAUoQAEKUOA9ASUGTfiJoAAFKEABClCAAhSgAAUoQAEKUIACHwowaMJPBQUoQAEKUIACFKAABShAAQpQgAIUSEeAQRN+LChAAQpQgAIUoAAFKEABClCAAhSgAIMm/AxQgAIUoAAFKEABClCAAhSgAAUoQAHFBLjTRDEnXkUBClCAAhSgAAUoQAEKUIACFKBAHhNg0CSPPXAulwIUoAAFKEABClCAAhSgAAUoQAHFBBg0UcyJV1GAAhSgAAUoQAEKUIACFKAABSiQxwQYNMljD5zLpQAFKEABClCAAhSgAAUoQAEKUEAxAQZNFHPiVRSgAAUoQAEKUIACFKAABShAAQrkMQEGTfLYA+dyKUABClCAAhSgAAUoQAEKUIACFFBMgEETxZx4FQUoQAEKUIACFKAABShAAQpQgAJ5TIBBkzz2wLlcClCAAhSgAAUoQAEKUIACFKAABRQTYNBEMSdeRQEKUIACFKAABShAAQpQgAIUoEAeE2DQJI89cC6XAhSgAAUoQAEKUIACFKAABShAAcUEGDRRzIlXUYACFKAABShAAQpQgAIUoAAFKJDHBBg0yWMPnMulAAUoQAEKUIACFKAABShAAQpQQDEBBk0Uc+JVFKAABShAAQpQgAIUoAAFKEABCuQxAQZN8tgD53IpQAEKUIACFKAABShAAQpQgAIUUEyAQRPFnHgVBShAAQpQgAIUoAAFKEABClCAAnlMgEGTPPbAuVwKUIACFKAABShAAQpQgAIUoAAFFBNg0EQxJ15FAQpQgAIUoAAFKEABClCAAhSgQB4TYNAkjz1wLpcCFKAABShAAQpQgAIUoAAFKEABxQQYNFHMiVdRgAIUoAAFKEABClCAAhSgAAUokMcEGDTJYw+cy6UABShAAQpQgAIUoAAFKEABClBAMQEGTRRz4lUUoAAFKEABClCAAhSgAAUoQAEK5DEBBk3y2APncilAAQpQgAIUoAAFKEABClCAAhRQTIBBE8WceBUFKEABClCAAhSgAAUoQAEKUIACeUyAQZM89sC5XApQgAIUoAAFKEABClCAAhSgAAUUE2DQRDEnXkUBClCAAhSgAAUoQAEKUIACFKBAHhNg0CSPPXAulwIUoAAFKEABClCAAhSgAAUoQAHFBBg0UcyJV1GAAhSgAAUoQAEKUIACFKAABSiQxwQYNMljD5zLpQAFKEABClCAAhSgAAUoQAEKUEAxAQZNFHPiVRSgAAUoQAEKUIACFKAABShAAQrkMQEGTfLYA+dyKUABClCAAhSgAAUoQAEKUIACFFBMgEETxZx4FQUoQAEKUIACFKAABShAAQpQgAJ5TIBBkzz2wLlcClCAAhSgAAUoQAEKUIACFKAABRQTYNBEMSdeRQEKUIACFKAABShAAQpQgAIUoEAeE2DQJI89cC6XAhSgAAUoQAEKUIACFKAABShAAcUEGDRRzIlXUYACFKAABShAAQpQgAIUoAAFKJDHBBg0yWMPnMulAAUoQAEKUIACFKAABShAAQpQQDEBBk0Uc+JVFKAABShAAQpQgAIUoAAFKEABCuQxAQZN8tgD53IpQAEKUIACFKAABShAAQpQgAIUUEyAQRPFnHgVBShAAQpQgAIUoAAFKEABClCAAnlMgEGTPPbAuVwKUIACFKAABShAAQpQgAIUoAAFFBNg0EQxJ15FAQpQgAIUoAAFKEABClCAAhSgQB4TYNAkjz1wLpcCFKAABShAAQpQgAIUoAAFKEABxQQYNFHMiVdRgAIUoAAFKEABClCAAhSgAAUokMcEGDTJYw+cy6UABShAAQpQgAIUoAAFKEABClBAMQEGTRRz4lUUoAAFKEABClCAAhSgAAUoQAEK5DEBBk3y2APncilAAQpQgAIUoAAFKEABClCAAhRQTIBBE8WceBUFKEABClCAAhSgAAUoQAEKUIACeUyAQZM89sC5XApQgAIUoAAFKEABClCAAhSgAAUUE2DQRDEnXkUBClCAAhSgAAUoQAEKUIACFKBAHhNg0CSPPXAulwIUoAAFKEABClCAAhSgAAUoQAHFBBg0UcyJV1GAAhSgAAUoQAEKUIACFKAABSiQxwQYNMljD5zLpQAFKEABClCAAhSgAAUoQAEKUEAxAQZNFHPiVRSgAAUoQAEKUIACFKAABShAAQrkMQEGTfLYA+dyKUABClCAAhSgAAUoQAEKUIACFFBMgEETxZx4FQUoQAEK/E8gMTER4eHhiI2NRUxMTOrv8fHxSEhIoBMFKPCVCqioqEBVVRUaGhpQV1dP/V1XVxfKyspf6aw5LQpQgAIUoMCXFWDQ5Mv6c3QKUIACX61AREQEnj9/Djc3N7x48QJeXl7yV1BQECpVqoSQkBDo6elBX19f/l6gQAEZTGGjAAW+TgEdHR35PRwWFobQ0FD5y9jYGLdu3YKJiQksLCzkLxsbGxQuXBglSpSAuIeNAhSgAAUokJcFGDTJy0+fa6cABSjwjkBwcDDu3LkDV1dXXL9+HeLP4qVJBEgMDQ1TX6jMzMzoRgEKfGcCvr6+8Pb2lkEV8b1/9+5dGTQ1MjJCzZo1YW1tjcqVK8PAwOA7WzmXQwEKUIACFPi0AIMm/IRQgAIUyMMCYtfIyZMnZbDk9evX8qWoVq1asLKyQsGCBfOwzNe19KSkJLk7IC4uDuIYlDhKIY5apP0ljlywUSA7BTw8POROs2vXrsm/J0TwpGLFimjevLkMprJRgAIUoAAFvncBBk2+9yfM9VGAAhRIR+DixYsyWOLi4iJffho2bIhixYrRCsCrV6/kC6I4diTyt1y4cAExMdFQSkxESGgIEhOTUCB/fnj5eENDXQNhEREwNzVBZFQUlABoamoiMQkwNc+HsmXLonPnzp90DQgIkEcjRBM/3X/06BFeuLoiMiIScfFxKFSwEJ48eSKDJmpqaihRsiRcXJyRmJAoc8jIX4kJKFGyFN6+eSODXQULFpDXDho0SM6HjQLZJSC+P86ePSv//ihZsiSaNWuGOnXqZFf37IcCFKAABSjw1QkwaPLVPRJOiAIUoEDOCHh6euLAgQM4ceIEqlatKl92xO95sfn5+cllR0dHY9LE36CproH4+Dh4+fpBW1MDlcuWRFR0LHz9g9C0ZjmYGulDQ10NSspKUFVRQWxcPNRUVKCro4n4hEQZwDh/+xGeuryBqpqqvNfbLxAaGuqoXrMOnJ2fQ0lJCcFBwRC7RuzLlkNQYABevHBBKVs7hIWFIikxCZ5enqhUuTqq1qgNYxNTxMXFIjE+EdY2JaCqpvbeo5ozfRKcnJ4gCZDBGm1tHURGRshrRKJPDQ1N9OzZA1FRUQgMDJIBmJjoGHm8onPnTvLYBVv2CIhnKp5vXms3b96Uf5+IYJ/4+6RDhw7yGB8bBShAAQpQ4HsSYNDke3qaXAsFKECBdAREnoKtW7fKLfYtW7aULzdaWlp5zsrZ2RkbN6zHS9cXCI+IgoG+LnT1DRHk74vq5W2hp6MJVRVl6OtqIzomFpXK2MDWqtAnnZxfe+D6g+d44+2Pq3efICkJsjqJvr4BLApaon6jpjA1M4e6mga0dXRSAx+hIcGIiAhHMaviUFfXQIC/LwL8/XDvzi2Y58uPhk1afPb5eHt5IigoUD5LLS1t+Pp4IyjQH2GhITiwbxfs7MpATUMDmppa0NXTQ1BAANzfuMHf31fuDBg/blyOVEwRuTHEbgTxuzg+JHa+PHv2TO6msbS0lHlyMlOpZfPmzXIXjqGREUr9/w4HkXenQoUK6Nmz52etcuqCgwcP4oGjI27dvCnXamtri2rVqskjbvnz58+pYb+6fiMjI+XOk6NHj8rdJ71794a5uflXN09OiAIUoAAFKJAZAQZNMqPGeyhAAQp8AwLipVUESx48eCBfYpo0afINzDrzU3R0dJQv4/b29h908vLlS0wYNxY1KpSEnbUlmtSsIK+5ePsxnrxwx9ELt+SfxW4BHW0tGTQZ1q0lmtZOvu6mozPCIiPlLhR3L384u3khJDwS7l5+sC9XAZcvX4aBoRH6/TxcBkLE//5SLS42Fmr/y23Sv2dHJMTHo179BihT2k4GLURlFFHtKKtNlJw+ffo0Tp0+LYNExkaGeOvhKSuyeHp4QF1DXQaARJ4VIyNT+Pv5IDo6Su6q2btnT4aHX716tfwsi10zYidN8eLFYWtbCl26dMlwX9l1Q48ePaBvYIRa9RqiSFEreaTqyaP7uH3jKgoULIi5c2bj7du3sjS3CBblhSaCJ+LvHZH3RPy9Y2pqmheWzTVSgAIUoMB3LMCgyXf8cLk0ClAg7wo4ODjIF1rx0iJ2lnwvTSSi/Gvmn1BXU0OrNj+gV69ecmnbt2/Hrr//hq6OFoJDw2FlVRRLli7HmFEjER8Xi/KVqkBFWQmH//0XrRtWRfPaFRAbG4+DZ2/g6n0nREZGw9hQDzvmj0VCYiJUlJVTyWLj4tB59HwkJSbC0rIAoKyGqKhoecxGBGn8/PyRL19+FC9RCr36D/lqqCPCwzF/1hSMHDECpUuXzpF5LVm6FK9evUH/IcPx8P59eaxITVUVly6cxbUr5/HK9YXccVHI0lImDTU3M5M5dLKyC0MEa76mhLfic7Dj779x/vx5GBoYws/fHxYWBRAUHITEhHjo6urDxNQUF8+fRZEiRTF5ymRY5YH8QcePH8eWLVvk8+7Tp0+OfP7YKQUoQAEKUCA3BBg0yQ1ljkEBClAglwROnTqFhQsXYty4cWjcuHEujZq9w1y5cgU3btyQuz6ePn2KjRs3ygE6deyAyKhomfRUWUkJ/QcMRMeOHeXX5s+fj4sXLqBYkUKIioyU19Wu1wC3rl+Gh7c/1NVU0bVbdzx5/BAuzi5yF4TIQBEcEiqDH91b10f31nVT81KEhkfiofNrHL14D06ub2BqaoK58xdiyu+/Iy4uAfoGhtDR1oGegSFa/dBB5h/52trObRtRML8punbtmqNTO3z4MM6cPYvAwEDMXbxWjrVr+yaEhQSicqWKWL1mDcqWrYAH9+9g9uzZKFeuXI7O50t2LvLH+Pv7y1/icyV23axevQahoSFyd4wIsokdMqKMd/v27b+q4E9OuYng7aJFizB27Nhv9u+knLJhvxSgAAUo8G0IMGjybTwnzpICFKDAJwXc3d3li4lIwiheTkR+hW+liTK6R44cwemTJ+H+1l0egbG1LoTXb33hFxSCGX/OlC+ZkydPwhs3N5m8tW+//jI/S0oLDw+XARYRbBFHcfLlyyctjh0+hKDQcGhraUBTQ1O+sNepVx+zZ82CuroqRvdsA3efACgrK6F4kQIoYmEmj91MXrINoeFRGDly5HvjiLE7deokX4hNTM0RERGGQcPGoqStnUwGq66h8VWwL5g9VeZQcXF6ht27d+XKnIYNG47AoEBYWhaFqqoSZv75J0Suix07dkBFRQ0mJkZo1KiRrEqU2018xkQi5JCQEERERODe/Qd49uwpLPLnlwHGnNi5Iqoaie9DJycneUTn4qXL0NDUhl3pcli3egk0tbTQonlzmQNHzEtUOTI2NoadnZ08YvY9JZYV/iKYKxIwjxkzhuXMc/sbgONRgAIUoECWBBg0yRIfb6YABSjw5QXES+mZM2dksKRMmTJffkIZnMGsWbNw7eoVqKgoIylRJFJVQVx8PHS0NFDezgb3njjLZKaVqlTDhXNn0bxuRRy9cFtWhxEBFZF886fuXaCurIyihfKhbInCOHTuNnQMjOHj7SUDHGVLFkXtiqWwYe8pWBQsjFcvX0JXVxsREVGIiY2VQZOkpEQoKSnLXSkGRsZo0qQpunXr9sFqRGBmz569MrFubGwMVFRV5dGdYlbWcHF+jqLFrFGnfmM0avpfUCeDJFm+/K+pv8njSDNmTJfHYnKr+fj4QCTcFclQcyIQkZF1iJw+4llduHgRIcHBSEhMkmWYxWcpPiEeAX5+MDQyxIrly7M8VxFME7u8RNJl8UscI8tvUUCW8XZ0fACbErawLFIUzVq2hZqaulyGOD717OlDWTI6OioKaupq8HB/A1cXJ4SEBGPQoMGoWaN6Rpb80Wt37tqFmzdv4bnTM5l7JTYmGgULFYKlZSE0adwY2traMqAhkvWKHCTCKSfaw4cPZfBEHNlJ73srJ8ZknxSgAAUoQIGsCjBoklVB3k8BClDgCwmIn5xPnTpVJnjt3LnzF5pF5oYNDg6WRxgCAgLkS72otiJK4IodJa1atoShvq4MnERGxyAxMRHdWtWTSVvFfzMy0JOBkHwWhfHH9Bnw8vLC5MmTERIUgALmJoiJi0NIWBSM9LVgqKeDkBglqCbFoG3DqtDR0sT9p66Ii0+AT0CIrJZjbKALM2M9ePuHwNHpNSb+Pk0GYj7VxPhiF4U4ciF2CqQ0MVcRTBFJS2vXa4IadRpkDigLd4k5OKxbIY/HzJkzO1OVarIw/FdxqyiDu3HjJjRv1Q7FrG3g6vIcD+7dlOWi7Urbwc7WVibENTMzy9KuLHEkSQTuxE6KSlVqyvLPIhFw4aJWsqrRyxfOsLYpmSET5+dPce7UMcTFRmHypEnQ1dXN0P3pXSyCFdNnzICtnT3KVawCl2dP4e3jieioaISGBKFhw4Y4dOggDAwMERDgj/z/XzZ42tSpMuiTE23nzp24cOECpk+fnqX8NjkxN/ZJAQpQgAIUSCvAoAk/ExSgAAW+QYG9e/dC5JIQLx059WKTUyx79uzBxo0boKWpIY/iiEo14pc4jlDcqhjGT5wMcdxo+fLlcoeAuroaChUqBFu70vJojvhJvtjJ0KFDBzlF8fIlXpJFvgiRQ2LUqFH4888/ERQYgPiEBBTIbw5vX3/kMzdDYECA7C80LBKaGupQVlaBvp4OlJSV4R8YjMKFC6Np06b44YcfsrR8EVQZPnw42v7YA2XKls9SX4reLHa9iPLFe3ZuwbF/98PW1g5Lly5R9Pbv5joRIJg4cRImTp0ld/2sXjoPhQrmx4ABA7K8g0IcAxOfNfG7+Lx6enrh9u3bWLZ2a7YEp1xdnLFo7nRYF7dG3Tp15Dg1atSAi4tLcmUnHR1Z+ejdClHXrl2T6zIwMJABxlKlSqX7LEVft27dwgvXl7C2tkJMdLSsRiSCO61atZLHg8Q44ntPlA0W4+Zkc3V1xbRp09CuXbvU3EQ5OR77pgAFKEABCmRWgEGTzMrxPgpQgAJfSEAkPRUvSD///PMXmkHmhxU7Y8RL3so/hqB44fyyo+ev3uLg6Rt44vpG7v5QU1NFtWrV5ZEBERw5d+6czCuyeOF8hIdHQF9PG/GJSpg2fQY2bNgAt1cv0OOHhjh73REv3DxQ3Noapa3MUayAOV66e+Pk1ftQU1WDhoY6ihY0h6e3P3wCgmBqbAhlJcDCzAgv3H1R2rogXnv4ykBLIcsimD13fuYXCsgjGsdPnkH/wSOz1I+iN9+8fgXrVi5GQkI82rZti2HDhil663d1nQgkaukYoEffQdizwwFVKpVDrVq1PrvGl69e4fDhIzAzNZGfO2tra1y6dAl169ZNvXfTpk144PgIFSpXg0j6qqGuIQNuzVu1/Wz/ilwggm1v3d3g5+sNb09PAIl4/dIV+QtaIsDPB1FRkTAU5ayTEuT/1tTQwNWr12BTshQ01NWho6uHO7duoEXLlhg86NN/P+zbt0/uxlFVU0ViQoL8+6RKlSpy55cIpORWE7uyhKXIdcJGAQpQgALfrkBQSBiGTFiMsYM6o0r59AP43+rqGDT5Vp8c500BCuQ5AfFTYZG0UuzA+NhPk79WFJF35fSJY2hQzR492yS/hF67/wyLNh9CbFw8LMyMUdrGEg2q2mOhwyFUtLOWuUJuOjrBurAF7j52wYSBHfHQ2Q0X7zzDJofNGNCvL7Q0VNGwell0bVEbjs9fYcaqPRCJUcqWKoagsBjoG5nKcrtnTh7FnDG9YGZsgFPXHHHnkTMmDeok5/HKwwdj5myCEpJkXpWYmDgZsFm+cpVMKJvZJpJ/zvxrFgb/8ivM81lkthuF7nNYvwKXL5yVyW9FUE3kpciLTewyWbtuPSZPn4ej/+6DuYkB2v7QRiEKseOhy0994Ofjg8AAPzRqWA/r12+ATQkb5DM3xwtXV5lENiw0FNY2thg4dJRC/Wb1oujoKJmH5d324N5tJMTHIyYmRh5Vq1X3v2NgonrU08eOOHxwNxYtXJh6vEccgUvZlSaCFCIwIkqSGxiaIAmJcheXyLMSGhIi8/uIwKyBoSFKlSyFWrVqonLlylldykfvF0mcxQ6xJUuWyES4bBSgAAW+R4Go6FhMnb8JR8/eeG95/bu1xJhB39Yx6/SeT04ETXKiz8x8thg0yYwa76EABSiQiwLipWj58hU4deok7EqXxry5czM1usjBcfbsWfmSdfLECURHReCnnr0RHx8vq3Zk90uR6Dcl38f4X3/F4yePMbhrC3j5BcLFzQt+IVHw9vaBqZEeKpexwche6R+J2XnsCkwM9dG0Zln8MnM9fuzeCw0aJL8kDujfDwbaaggKDkNYRCSCwyJQuUxxuHv7Y+mKNTKxZauWLdCguj3G9G4n70lITISKsnKqociTcu2eEwoXMEOxQslBkntPXmDuxgOIiIxChw7t8WOnLhlOqCqqyQQFBaFi1Rro3K0XVFVzJrnmgb1/Q9/QWL7k/rt/FxYvWiiPcHyt7fz58zIHiEiAKnLaiCNRVatWlcdDstoOHDiAf/7Zh1r1GqJx09ZYsXgWytrbo3v3bjIQ9rF2/cYNvPHwRZ36TeQlm9YuQz5zE9y+fQeGRsZ44fxcHvcR1XDcXr/EiSMHMfWvhVmdbo7e//TxAyyYPR09e/aUx3xOnzkjvx883r6Fjq4u1FRVYVGgAB7cv48tu/59by7iqJcInoSFhshdIMeP7MfbN24oY18GlStVkjl/xGdb9BsbGyttRd8iT0xmq/6Io0UiiFO/QUP079c3R23YOQUoQIEvIZASNMlvbpwaJEkJClQtX+qbD5zkRIAjJ/rMzLNn0CQzaryHAhSgQC4KTJo0SSYXrVylKqytiil8/l+8hCxbtgxPnz5BQmw03nr5oEYFO8TFxaOibTGYmxpgy8EL8qfKvgEhMDc1lQGFIsWKyRd88RNfUQpVvBB17dr1syt+9OiRzO8g8iGIXRb379zCnPkLZQUT8TJ19epV7N29UybJrFOnjgxCzJgxTSbnjI9PkLlF9LQ1sXb6+8dKxDpEvpLYuDjsOHYNtx+9QNsOP6JFixbyp+Nz586VL3CRIQFYM21I8kvvvtO4+ewt1q9fjzZtWqOAmRGa16mEwvlN5K4WAz1tmVNFtMioGLz18UeJogXfW+NrDx+ZSPbI5fv4+99zKFyoENZt2PhZh5QL7ty5C4fNW+Dr6y2DBKs2/K3wvYpe6PT0MVYsngNzczN5rCgsLEyWU7ayslK0ixy/TuTIEDtAxDOCkhKCQiIRGOgPfT19FLQsAsf7t3H3zi3UrFkTgwcNgrm5eZbmJHZUvHZzw6ZNDvDz9ZFBQju70li8eJHsVzyLtNVhZvz5J1q16waLAsmfARHQWbl4DkTlblVVdRQvVRqNmny5akhZAbl04Qzu376OolbFUateYxlQE5WnxBEgI2MT6ZNS0edT44SFheLJowfyV0R4mPze09LSRoFCheHu9lL2K/IIzZ71l0yQ/KkmKvWIBM4iWCt2RYlAi9g1c+r0aYicRyVLlJB5idgoQAEKfE8C6QVNxPr2H7uEG3efYvq4ftDSTK6wJv7b7/M2pS5/85IJqUde0tux8uf4fujQsi5SggxDe7fFkdPXU3e1pHw9pcPbD5zQZ9Sc1P7f/frH+khvR8yitXuwceex9x7Tu3NN6evRs5fymlaNqqeu83PjpLdOe1srrJ4zWh5PTbtrJ+0as/Ozw6BJdmqyLwpQgALZKCBe/kaPHo2JEyfKHAuKNicnJxw/fhz37txE0QLmaFKjLPKbGqJ4kQIf7ULk8ggNj5ABjOevPPDKwxdxCUkICQ2TL7rPX76VL1dlypbDlClTZAJJkYjWz8cTylCGr7+/3KmhqaGG0PBIFM5vDiMDHZy+/lDmITE3N4WyOAQg+6iAChUqyP7Wr10NY31dVCtXAokJiVBWUUaf9o3kPMUOEJGTJComFrZWlrIU8JW7Tvj76AWERkbLIwux0VEoXNAMfoHhsLMqiFG9ko9itPh5GqpXrYLqNWvLPA0bN26E8/Pn8Pb2QmJikgwOiSS0EVHRsCxgLl/+1JSBheP7fPQn5ev3nsajV75YsXKlQo+ib99+aNGmI3x9PHH03/0YP3kGStpmb0lox/t3cP7sCVmqNjDAH3/88UeOJ/BUaPGA3IUwZ+5cuLm9ga1dGejpG8LYxBQNGjf/oIt/D+zBa9fnMveMsoqSTIIqgmrihbpIkSKKDpnudWInhAiSpOyAEEfcnj17JivElC9fAcWKFpHfXxMnT0ajpq1Rt35j2Y8o+zth9BCULGWLfoNHQl/fIEvzyAs3B/j7yV06KipKMDczl1WxzMzN5bGf0qXtIPLG5M+XDyGhoXhw/wHUNTTksxHBLbvS9nB2dpI7jwz0DWSp5jlz5sjjdWwUoAAFvgeBjwVNRODB2zcwNZiQNoji6uaJQeMXYvbEgTJwIq4XLeVIjwg+OOw6jiG92yE6JkbmFfEPDMHaeWNhXaQA0t4vAiYTZ69P/XpK8KJzm/rvBV4+1YcYP+280+4KSW+XyLv3KDLXj+00+ZRBSuApOz8zDJpkpyb7ogAFKJBNAkeOHMHKlSvxzz//yIoZn2uTJ0+Cp7sbPH38YaSvg3pV7TGgY+MslVMgY3zKAAAgAElEQVRNGXP38au4fOcxhnVvCUdnNxw4dU0GMNo1ro4yxQsjJDwCBfOZomA+E3nLu8dfXF57ysCECIBUsS+BiMho7D5xFVfuPoWHj7/sR11NTSZjtTA3QWR0NELCIhCfkIjX7t7Q0daCro4WYmJiZR/GhvooZmOLoUOHYsTwYfLlS1tLvHhpyJ0qPVrVQvVyJbF8+xEcv3wXJYsVRkn7Cmjfvj3Gjh6BjX8Oh4a6Gq4/cMLSbUfw9649qUeIROnmCnZW+Kl1fdiXeP9FfeLirXjo9Ao/duyI/gMVS8Dr4eGBXbt2wdPLC6XLVEDzNsnVfjLbxE/6lZWV4OnxFt5ennB75YqL50+jceMmqFa1ityp8bU0EbRbvXoNKlSuivjYGEQG+8GsYFHUb9JKVrRJrzk9fYRSdva4c/MaHj+8L1+kxe4Fd/fXaNK4MRo1apSaY8bX1xcikWnx4sVRoECB916sxY4FcQTozJmzMkeNePbiWYhKSeIYjk1xa5nMtXuvAQgNC8GL589w+eJZGBoYyBf8ly9fyaM3Ikhy+cIpnDp+GCHBIRgxdhKKl/i+EtvlxOdF7NIRO6CioyJhUdASaupqCPDzQ2hosNzBJnapXDx3EuLzbFHAEqPGTUmdRmREBDw83sDX2wuPHt6Xu9WGDBksE0GzUYACFPjWBdILmqQNaIggwcRZ6zFuaFcZ8EhpKUECERgROyyqV7KTAY60TZEgQ9qAg+jj3UBNSjDj3YSuKXNPGVfMe/Ls9fhr4sDUeaYdW/Qp/i33br6Wd+8zNtT7IHFs2nHSW0/aa3Ljc8GgSW4ocwwKUIACGRBYuGgRYuMSUdq+Ig4f2IVly5Z+tppF+7Y/YHTfDqhappgMQmRXO3DmJs5cd8TK3/8LFIjghciHkB2txcBp0NLSlKVy4+NFnot4lC5jj0cPH2LK4M7Q1dKEo4sbthw4A11tLRSzLo7oyAgEBwVBV1sTzetUwJpdx2Ggq4PFE/sjv6mRnJaLmycSEhJlotkCRazh6vwMa6YOgY62Jrz9gjBh0TYsW7UmNU/J0MEDER8bjfDIOMTGxeC3/u1RqXTx1CXefuSCnccuw9M3EGVKl8Yf0z9/dEAcNbh0+RrKV6qCmrX/S9SZGbftDmvh5+sld0uIqimWhQrJsrMit0t25ALJzJw+ds/MmbOgpq6J2zevom6lUtDT0UK3VnXx2MUNq3efRrtOPVGpem2Fh/R4647rV87j+tWLqFSpMsaMHiXz8PTs2QvWNiURHh6G3r16yB0Ma9auxd27d1G9Zh0UtymFE0cPws6uDFTUNGBqaoY6DRpj93YH/NRnoPzMvducnz/F7etX4OrihF8n/Qnt/wUrD+3bDV9vd3msrWf/odDT01d47rzw4wJubi9RpMjnj5E5rFsOHW0NjBqZO1Wo+MwoQAEK5JTAp46bGBkk5yJLCaJ4+QR8MI2U4zHvHt1597iLuOFjQZOUoMiEX3pgzvLt6NSm/nsVbsS481ftwuxJA+W4aavgpA1UiN0qC9fukUdlUuaeduz0ju6Ivi3ymchdLpkNmog+PmWQE8+PQZOcUGWfFKAABTIpMHDgQLRq2wlVa9SRPdy4ehFHD+2VP/W2tbPDzwMHfNCzyCMickZcuXAWG2cOz+TIH9525OIdHL14B6v/GJz1PlXEGd0kICHuvb5uPHiO4NBwKCkrQUtDHQXzm2L3sStoWbciytv+90IlfnotyhFfv/8M5iaG8vrKpYvjyr2n8AsMQ7dWyV5p26IthxEWHo6pw7pB5EYRwY+/j16GuUUhTJj8uzwacOjQIWzcsA66OtqY/Ps0zJg+DYM6N0X9Kh8eCxC7YI5fvoeT1x6icNFiGD16jMzLkLY9efIEN2/fR9NW7WU+lsw21xfOWDxvBn4b/xuqVav6yW5EPpP0EsC6urrKORoZJQeUcrINGTIUrdt3wZmj+zClf2sYGei+N9xbb39MWrYb85Zt+OQ0RCUgsUPBytrmvcpDly+cwa1rF2QVqX37D8CiUBEc2rcXderUkuWB23X6CdVrfviTt6yseeHsaShtVxJOz10wavwfWemK92ZS4MbVCzh59CDWrl2byR54GwUoQIEvL5B2p0lKgKRlw2qpuzHS28HxsZmnFzhIb5eIuD8ngiZ7D194Lw9LekETMfbHKgMpsovkc4lgcyt4wqDJl//+4QwoQAEKyKSIffv2RYs27dGpa69UkZl//IZe/QfLnADHDu9DSRtrmUR1x47tCPL3xSs3dxgb6CEgOEzu2BjT+wfUrJD1IwSnrz7AofO3sGKKYkdR0j5CJS1DQMMA0NCDkroOkJSApOgQINwHSdGh2fbERbliccTnY+3h81dYtv2YTPz6xtNXJrWtVaceBg9+PxAkEu0WKlQIQwb2Q+92DVC38n8BkwNnbmHd7mOYPLQbalcoKYdasOkAnrz0xJZtO9IdWiSzfOXmgZ79FA84iRKyImmsq4szQkNDcO70MVhbW2PsmNGfrNwjqptMnTYNISGhKF7cGna2trh+46ZMpnn06BEUKWYNL8+3supS/vz5s80+bUczZvwJ+4rV4O3xBoV1YtCiToUPxnL38sOU5TvRrksf1KhV76Nz+fP3cQgPC0USkhAeFi6DJwUKWSIkKAA6OlqIiIiEr68P4uMSMHjEOFy9dBblK1VFiZLZW65W5IpZvmgWzPPll8/SzDzn/HLswXwnHYuqRbOmT8S2rVszXMnqOyHgMihAgW9cIL3jOSkJWdMmcn33aMznlv3urg9xbdpdIuK/vXskJzuO5yiy0yS9BLfvrkWRoEmKWdqdMWlN0pvP59wy8nUGTTKixWspQAEK5IDAmTNnsHDhQnl8AEpASdvS6NZzoDySc+70cfx7YDfMzMxhYKCPCb/9hr69e6FZ7fJyp4VNkQIQgYNrD57J4EmN8lkPmNx66IxVO49j8+zMb4dX0tADtIySfyXEAqGeSBK/x0XlgGD6XR48ewObD5yTyW1F0s9ly1ek5i8Rd1y5cgUb162ROVjES7ioIrRs8s8oYP7fzhGR1Hbc/M2oVb8xAv39EB7gCU/fACipamD12vUfXUtgYCDGjRuPqbMWKVRqWLwQ7tq6ATo62vI5lyhRAtWrV4eFhcVnvebPn4/Tp8+gQsXKKF+5GjzfvkGzlu3wyPEe7MtVgL6BAc6dPIoC+U3RtGlySd3sbuvWrYeGjoHcFXLx2F7MGvlhtaUHz15jyfYjMqeJ+MyKIzxDRo7/6FT+3roJFvmM0LhRI2zduhWWlpZ49swJZvkLoUPnnyCCTCJZq0gum5NNBLDEsSgey8lJZcX6FgHC30b9LIOejRsnJ+xlowAFKPCtCHyqeo6olJNSdUYENY6du5maqFWsTwQF3D190aBWBcxetgMTR/yUeizmc/lI0iZ+VTQR7KdymqSXVyTlOE7KOtLbSSPuW73lIPp2bSEf2+eOAX2sTPOnDJgI9lv5juA8KUABCigocOLECezdu1eW19TX15clfsVP7MtXqoakxHjExkRi4IABMoCScszjl+HDgPgoREZFyyMsdx65wDcwGJtnjYKZcdYqfLx664PfFm7BnsUff5lVcGnJlymrAIkJGbolKxc/+F9Ju1W7jiM6LhFNqpdF7YqlcPneMxy/dEcmGp0+fbocovOPHVC5tDWCQsMRFBKBinbWGNAp/aDCgN9XoFnzVnjx8iXKliuPNm2Sq/R8qokyzVNnLYaBgeEnrxOlXzevX4EF8+dlKnGvo6OjDNBYWhbGn/OWvTeWj7cnRIWd61cuoNOPHXPkRXPWrNkoVaYC7OzLY+v6ZejfqgqKFcr33jxESenRczeha89+spzvxo2b0H/wSJQo9fGdIcFBgfJoUu1aNeHu4Q0RWBJHjHR09dF34HCoZmPuns89S3796xBwWLdCBgNFHp+ffuoOkbyZjQIUoMC3IvCxoImYf8oxk5QdJ2lLDqfkARHJYdPmCkkpwytyi6Qt8Sv6fvfeFCtFSg5/Kmgi+kk71qJpQ+Gw+wTevS+9+aTkZlFkp4kY5908LylrFdWC3i11/K5BTnweuNMkJ1TZJwUoQAEFBEQZ3KCgIPz6668fXH3y5ElsWLcGurq6sC1tj/Hj/wtiiHK/N2/ehMhVIY71xERFol+Hhmha68PjEApMI/USUdmmy5h5OLLm28vbEBsXh4G/r4SGlhY0tbTg6eUDbXVVdG5RG9cdXeAXGAIdLXV4+ARg8NDhMniwYMEC6WdgYIDmzZvj2NEjePL4IXYvSrbecvAskpIgSyC7efpi7FwH7D94SCFSUU559JixGDxi/CdL1YpqIRvXLkPbH1qhegbKSqedxNGjR7FkyRKYm+dDmbLlYWhsCvfXrnB3d0P1atXRsWOHbD+ac+3aNaxatQpdevRDpSo1MHf6bzA30MDEAe3fm57IWbNmz2lEJqqhfccfsW3bDoyfMlMhx7fubrh68ayspDJt1iL4+/khv8XHS2cr1Ckv+mYFREWefbt34OkTR1lZq2LFiujXr983ux5OnAIUoEB2C3wuB0h2j5dX+mPQJK88aa6TAhT4qgTEzhJRLrVbt24fnVe/vr0REx0F8ZOJ/QcOwsfHB6tWrUB4gC/U1FShoqyEmuVLooxNYVhamGV5fa0Hz8CWOaNgYpgD1UGUVYGkxORf/2vyCI+6LpIifDO9G+WZqzv2nLwG1zdeGDBoKOrXry97X7RoEe7euS2PVcTFxSE0NBTlyleAKEcrAlB37tyBOELTsGFDWcb28uXLsqTt0MGDYKavgea1K6CUVUH0nbQMuro6sMxvIuc6e848hZ0fP36MNWvXY9K0Oene8+zJIyxd8BdWrFyBwpaWCvf7qQu9vb0hfonPip2dnTzSkt3t2LFj2LZtOwoXtUL33gNgZpYPjg/uwun2GYzs1vS94VzeeGP0rHXo0bMXTE1N8dzVDR0791B4SspKSkgUkSu271rg7q3rKGlbBrp6ydUjFGki18wL5+coWbIEZs5ULAinSL+8hgIUoMC3LMCgSc48PQZNcsaVvVKAAhT4qMDUqVPly3q9eh9PhJlyc3h4uNxtMu7XX+Hk9Ay92zdCh8bV5REHFRWVbFPuMX4RhnZrmS1JZNOdlJoWlPOVQVLIm+Qvx0YCSspIEtV04iIztY6VO4/jyt2n6D9wEMqXLw9zc/P3+hHVcoYNHQp/Px8ULVpU5vc4eewwatdriMf3b0FTQw3hkTGylKyerg5sbMtg+C8jsHv3bpw8cQxvPbxgoKcDXT19tPmhLTp06JDheW7bvh1Kajpo2Lj5B/fOnj4RgwcNROnSH1bpyfBAuXTDjRs3ce/hE9Sp1xgmIgfP/5rYEbJu6Sysm/Z+4tv2v8zC/AWLZI4WcRTt3oNH6DNQ8QpP6mrK0FJXQUjE+1WXcmm5HCYHBIICA+Dq8hzKyiqoWKUaXr18gbUrFkAkdJqzaPVnR7x66Rx273BAq9at8eD+A1l+2tzcDOLvVTYKUIACeV2AQZOc+QQwaJIzruyVAhSgQLoCPXv2lDk1rKz+K6f7OSoHBwe8enoPU4d1lTsnFGl+gcFYt+ckIqJiMWt0T7kTwy8oFNXLJVd/ebeNnL0BVe1t8FPrzwdxFBk75RolDf3kRLCq6lDSNASUlJAU6oGkUK/3dpxkpE9xrTj60n3cQtSuUx+/jBjx2dsjIyNl1RyR+2Pbti3w8fLGkC5NUi1EcEXki5m6fCdeuPugQqXKGD58uLxHJIsVFWfErqDMtFevXsFhy3ZUqFxNljxOqRgjqtmIPCbLly3NTLdf7J7xv/2GOvWboVLVGh/M4ei+7SigGY0W9SrJrzm/9sDqPWewdGVymVjxHH4eNAizF67+IOCX8gxEkMRIRx2RsQkIi0wOlBjqqCEhEQiLYuDkiz34bBpYBEg2rl4Cy8KWMrFuTGw8mrZoiwN7t6GsfRmERyWg5Q/vByffDRDv2rYRcTERGDRo0HsVdET1K7F7b8uWLdk0U3ZDAQpQgALpCaRXeScvSDFokheeMtdIAQp8FQKdOnXC8uXLFcotIY6TjB0zBkpJCQgNC8eCX3vJKi+fO4YTGhGJf8/dxj8nr8DEQA/9f2yCwNAIbD10HoUKFoCRlip+aFgV/kGhKF7EAjuPXsKzlx5Y9fsg6GhrSqfomFhoaqhnj5mqpqw0k52VczqOmI3RY8ehbt26mZpjt84/wmHWiA9KFcfFx+PA6evYe+o69u0/mNr39GlT0advPxQpUiRT4129eg1nz56FiakpvLx8UK5iVRw+uAei32LFimWqzy9109p166CqoYcWrdt9MAWHtUtRvrAOWtRJDpqI9sYrEOPmb8LeffvlMam//pqFkqXLwbp4KXh7eeLe3RsIDQ6Ux6esbUqid/+hMNJVg5aGKoLD4xAZE/+llspxc0Bg8/qVKGNXAj/88IPsXeTiuXjpMubMniV3ef06aQYSE5OgoaEBZ6enstTzNoc1iIuNhYmpOQoVyIc+fXqnOzMPDw+MHTsWu3btyoGZs0sKUIAC35+ASDb72t0bYwZ1fm9x7yaJTZtglUGT7+9zwBVRgAIU+GoE2rZti82bN8vqH4q2Lp07Ql1NHT169cGqlcthqKeLmaN+Qn5TI6goK3/Qzcw1e3DT8bkMBohKMJ7+IfDyDUCpUiUwZ67Y/g6sXr0aTx46QtSz8fL0gJG+HlrWrYgz1x+iXMkiuHLvmdwFsCUL5YYVWZ+SurbcMYL4mAztOhk5awOatGqX+tKlyFjvXiPK8wb7uuPP4R+WxBXXORw4A2fPcMydl5y7ZMzo0VCKi0BgWDQctmzN6HAfXH/9+g2cO38OnTt1go2NTZb7y+0OTp06hRev3qLdj//l4rl7+wZKlLLF3KnjsXbqwA92kUxeuh2FbewxZMgQOd0Hjg+xcOECmBibIDw8TFaNMjMzg0gsu3bzHnmNyNeTkMhcJrn9fDMzntgl5PH2DXx9vBESEgQkATq6ujAyNsGZk0cQFBCAPgOGoqBlEWx3WIvYmAiMHjUKOjo6cjgRTDt37hxu3XmA/oNHYP5ff8Dp2WN07dodTs+fYUD//rKq2P79+9GlSxfY29t/dJr+/v74+eef5bVsFKAABSiQvsC7QZGUSjYpV4pKNZNnr8dfEwdCVOp5t5yxKOXLoAk/VRSgAAUokO0CYmt5y5Yt5T/iU14SFB0kNjYW6urJOz769+uL6IgwhEdGo2zJIohPSJKl3lZNTX4RXbb1MG47vcaYMb9i6dLFsLUtLV8wPncM6OLFi/KnvKWsLKGsrITureti075zmDqsC0yNsj8hrJKmAaCqkUwQF4Ukkc9EwZLErz18ZTlkyyJFsGjREkUZU69bvHgRAjxfYcbwjyffdThwDlfuPUf7Hzvh/JnTKGudH73bNUDbYSJh66pM7zbJ8GRz+Qbx4jthwgSIHDrDhg37aJ4VkWR29Jgx+Gv+Cnmk6eql87h17SIC/f0wcUBb2FasAcRGICkyEGLnzryNh+AdGIaVa9a9t6IRI0eieMnSsC9bAdHR0QgLDZFHfrS0tHN55RwuqwIH9m7HrRtXUdiyMGztbOHn64eQ0BAkJSZiwIABEIGMk6dO4dGjxzI45vrCBdOmTUOFCv9V+5o3fz5K2JZH1Rq1cfLoIWiqJckk2SJfiaqqaoamGBYWJv/uEwmL2ShAAQpQ4OMC6e00Sfvf0gZR0gZNxJ9vPXDC6jmjIUoef6+Nx3O+1yfLdVGAAl9cQORwaN++vfzHe1aTtooSw2L7ufiJ6+VLF6GtpoTmdSri+oPncHrpLndtbNi0GcbGxhle99u3bzH+1zEIDA6RiU9rV7DFs5dvseL3QRnuK8s3qGoC8dEf7eb567f4Y9lO7N13IMNDXbp0CXt3bMbSSQM+ee/NRy5Yt+sEerdviLqVk5O07jt1HU89wzB16rQMj/st3NCpYwe0rl8Ju45eQuUqVTFx4kSZ0yW99ujxYyxevBg+3t7o0LEjevbogdmzZ0MtLhQTBnZMvcXp5VtMWbrjgzLNolS2+Jz+NmECevQZjOIlSn0LRJxjOgIioeuu7RuwcsWKD76akqdGfEHsJhF/z4jnLkp8pzQRGBYJgk+cPIXhoyfC0MgYly+cgZe7KypXrozatWtnyl3026pVKxw5ckQe9WGjAAUoQIEPBdILmqQNiqRNLPvu1z92vOd7tGbQ5Ht8qlwTBSjwxQWCgoLQu3dv/Pvvv9kyFxGAEflQHjveh5G+NqJj4hASEY2YmGhYmBnhjacfFixcBFtb2yyNJ6q5lChojLfegVjwW98s9ZXRm5WMrZAU5iV3oHysubz2xO/Ld0BXRxsqqhro1KUrmjZ9v8ztp8Yd2K83fuvXFlaW+TM0PW//IAyZvhqH/j2Sofu+hYvFkS13l8fo064B1v9zChGRMTAtUAQzZsz46PTFS7CamhocNm/Gk6fPoKKkhABfT8we1T21ZPWth85Yu+8cHDb/d6zJ2dkZy5avwBs3N+TLZ46e/YYyaPItfEg+Msc1yxfgh9YtZIAjs+33P6aiQuUaqF7rv0TUL1844/jh/bAtVQI9evyU2a5l4GTnzp3yCBgbBShAAQq8L/CxoElRy/zo0DI5b9zHgibimht3n2L6uH4Qx3a+98agyff+hLk+ClAg1wXEkRyxPfyff/7J0tivX7+Gk5MTjh45AvGyaZHPGF6+gShapDDmzV8I8dPU0aNGoHadehg8+P1Sr5kdWLxg3L16Hp5+gdg+b0xmu8n4fWpaCuc3eeziBnNjAzxweoUDZ2+ifuPm6Nat+2fHDA4OxrjRv2DttOQjTRlpl+48xuZ/L2Pzlm0Zue2buFYE41Si/DC4S3N5pKbz6HnYtv3vz75ois+3l18wKlWuht3bN6J4cWu8fv4I88f1wSPn19hz4iqUtY1lVZOUJhLBilQlUZERSIASDA0MULlabZS2L/9NWHGS/wm8cHbC3r83yWBuVtqsWbNRq0Fz2KSz42jFkjkoWdxKBqAz28Ruv3379snjZGwUoAAFvqSAf+sG/w0v0na9WxAxB/9seuR8usvO7E6TjTuTjz9uXjIBVcrnjd2iDJp8ye8cjk0BCnx3AhEREejevTsOHTqU6bVt3boVJ48fQ3x8LCKjopHf1ASevv5o2rQZRo4alel+FblRJOusV94Kz1+9lUd+/hiafsJURfrKrWuWbT8Kx+evUad+I1mSWZQIbtGixXvD/zXzT7i5umD11EEKl21+twNhMezPtahVtyGat2wlczN8D00kXxXHFyZPmoTe7RujZFELLNx8EA0bN0P/AQM/uUQRNPELCkdoSBC83rrBz98f4SHBqGhnhfvPXsnksLNmzXovJ8Xo0aOhqxKPRjXKIjEpCTqa6jh1/TGsylRFg6ZtvgfSL7oGdVVlmUA3N5Lozv1zMvr26YXy5bMW8BLHdiZOmoy5i9d8YPf7+BHo2rUzGjVqlKWgR5s2bbB3715oaiZXCGOjAAUo8CUERNBE/DtF/JsiN383OXxO4aCJIjlNvH0DMfrnTpi+aAvGDe0qE8Z+741Bk+/9CXN9FKBArgqIl3VxJEccXchIE7tGenTvjti4GIidKiL5YYkSpVCnbl2IozmdO79fDi4jfWfk2sDAQIwaPgRWhQtgwsD2UM9gEsaMjJWd14ZHRmH9P2fg7ReE1x7e6Nz1J7k1f+KE8Xjm5IzWDapiePeWWR7y8MW7WLvzGJo2aoBRv47Pcn9fsoN58+bh5vWr0NLUgL6hMXTUgSFdmqNoQXO0Hz4LP/Xs9cnPXVRUlExQrKmuDhPzfHj58iXMzM2hqqKCZcuWySSeq1atwuNHjrJ0bNFiVti7Z48sfW1mqIcJA9rCUE8Hp288wnUnHwwYOgbKyipfkuSbH1tTXQUqKkqIiMrZUs0uzs/gsG45mjdrhq5dPwysihLSGTkSc/LkSdy554i+P//y3jOIiAjH+JE/48CBjOcwercjkWz4xx9/lDlO2ChAAQp8KQH/HxrKocUGk0/Vh8vur5v+q3jQJCPVc9Je+6Vcc2NcBk1yQ5ljUIACeUJAVHsQL4uZ2YVw48YNzJ71F0qWKoUGDRp+sFMiJwHFC8UvwwYjLDwSZcuVR7CPO+aM6ZmTQ6bft0gCmxgHJR0zJIV5Z2p8d29/zN14CKvWbZT3d+/yI1ZOGQQD/eTyptnVuoyZjx/adUDPnl/AKYuLEM9bJP61LWyKszccUbJoIfiGRqNGzVo4f+4MhnRujPKlrDB0xloM+WUUqlWr9sGIoiLK6dOncfbUCfRpWxc7/r0IT/8gVCxjg5dvvORRi0tXrqBt41poVK2MLGX94o0XAkOjEBwaBl1tTehpaaCKvQ2uP36NcX/Mgbo6E3Zm8dFCS0MF2hqqCAiNyXBXKT/5VPTGyxfPIiY6Gg/u3oC1tRUuX74Mq2JW6NTpR5w/fx5aWlqpZaYV6fP4iRO4c9dRlh1OaetXL4FtCetsCRqLyk+//vortm/frsh0eA0FKECBbBfwb9sQSvjEThMk5cjXTQ6dfW8t75YcTvnCu0dt3v26va3Ve5Vx0iaKFddOnL0ea+eN/a53nDBoku3fDuyQAhTIiwLiWMuYMWNgY2PzzS1/1MgR0FaOR0B4LNau34Bfhv6MAR0awN6mSO6tRVUTSlqGUNKzQFJ0CJICX2Zq7It3HuPQxYdYsmyF3KHTvl07HF+f/RVvnF97YtGWw/hl9K+wt7fP1Fy/1E0+Pj7o07s3jq79Aw+fv8aKHUdR3NYe9+7cRnRMDGaO/AllbIrg3I2H2HPmLqbPmAELCws5XUdHR0yb+rvcVix2iVQqY4MhXZohITERHj4BKGxhhrtPX2DNzuNYPmUQNDU+nhxu5rr9MLAojk7dMp+v4ksZfq3jGuupy23fQeFxCk8xJCgIS+dPR0J8LHS0tREVG4+KVWrKo2jGJqaf7cfHx9VDYdwAACAASURBVAtXLpzFDx06Izg4CA5rl8ukgAGBQahWrSr69+v32T5SLjh79hxOnz2PEWMnyf905dI5nDt5GGvWfHh0R+FO37lQ5IhasWKF/MVGAQpQILcFAto1Sh0yB1OYyDHe7d/k4PtBk9xe9/cwHoMm38NT5BooQIEvKiDKs3bo0AFVqlT5ovPI7OCiXOyVy5ewfsNGWdJ45vQ/sHTSQBgb6Ga2y0zfp1y4mtxlkhTklqk+bjo+x8rdp7B9x048ePAAm9etxKIcqgLUevAMOGzegnz58mVqrl/ypr69fsJfI7ohOCwCI2dtwPDhw3F4/x4sn/IzNNT/O1q27fAlHD53A3PmLUDx4sXRpEkTrJk2FHefuEIEqJZP/vmDZXj5BeGvtXsxe1QP6OmmX7Y4Ni4ea/eeQYFSVVGr7n//iPySJt/62NqaqtDTUkVIRByiYxMUXo7DumUwUI7CoE6NZGn056884PTaC7ed3NGqYy8UsyqucF8pF+7duRXHjxzA4OFjEODrIY9xKdpevHiBnXv2oe/A4RgzrB/mzp2DYsWKKXr7Z68Tu/rEMZ2ZM2d+9lpeQAEKUCA7BfzbN0reSZKyoySXfjc5cCY7l5En+2LQJE8+di6aAhTILgGRF6JChQryZfJbbaJ87JxZMzFi1BgYGBigX59e6NWmDupWLp3rS1IyLgYkJSEp6HWmxo6Ni0PfScsxccofmDJpIlZOHYyC5iaZ6iu9m6JjYvHU1R3r956CppYuZs9fCG3t9AMD2TZoNnc0fvx4vHV7CUsLc7i4ecpg2a9jRsFYTxPtGlVDrYp2qSO+euuDeQ7/YuWa9Rg5ciQKGGmiTf3KmL1uH0b2aoOq9unvrBq/YAvaNKiMOpU+/hlatesUzIpXlgl82TIvoKqiDC11ZWioq8A/JOPHcsTIW9cuRINylqhS5v3nOXbBNtRr1gFVa9TO8AQnjh0CXR19WBQqiDYtm6NcuXIK9yFynDi7voa+gRH0tdUgKuBkZztx4gQeP34sj+uwUYACFMgtgYAOjdMZKu2ek7SXZP3rJvu50ySrz5hBk6wK8n4KUCDPCqxbtw5GRkbo1KnTd2Mgzvtv37YVK/8YgmKFcn8HhZKWEaCujaQQj0ybiqSwv87fjFkje8DYUC/T/aS9caHDQZy74Qg9XR1oaahB38gUy1eszLb+c6sjESQ7e/YsRG6Tdu3ayWGfPn2KSRN+Q4Nq9ujUrJYMDPkHh0JNVQ1HL91FSFg4dPUMkC+/BQJ8vREeHoqdC9J/4bz3xBU7j15CaGQU+rRriIp21u/tXklZpwjYLNh6HNPn8qhEbj379MYRSaiH9u+KI6t/T3caa/85h3K1WqKojW2GpikSxRYpXBDePv546eqCDu3boXHj9F4Y0u/2woWL2PvPP1iyeFGGE2srMtFdu3ZBVDvr37+/IpfzGgpQgAJZFgjo2BhQUpI/HEptufBnk39OZ3nueb0DBk3y+ieA66cABTIlcOzYMYjEgv0ycF4/UwPl4k1LlizBkwd3oKamglfu3pg4qAtqVyyVizMAoKoBxGfup+VZneiSbYfxxOUN/AKCkN/MBAa62ihjY4nHL9zhFxiCmnUb4O7t27LKzFufIOz5Z19Wh/xq7m/TuiXymxkjNi4BUFKGkrIKLAsXgbu7O0KDA7Fs8s/YcuQqitvXhIqaKm5fOIrZo7q/N3+RS2PJ1n/h7R+C7q1rIy4mAQu2HISKsjLqV7NHv/bJxz9SmodvMOZtOYZRE2bIpKFsuS/w+pUrChQshPkzfsOScT3eez7vzuaP5TtRqlJdNGzaWuFJ+vv5YtnCmahZowZCwqMRHxeLqpUroF69egr3ERAQABOT7NsplnbgDRs2wNLSEs2aNVN4TryQAhSgQGYFAn4Uu5LfrZuTtk5OzvzZ5B8ez8nsM0u5j0GTrAryfgpQIM8JODs7Y+nSpVi58tvbZfCph5WYmIgB/fuhXsUSUFFWwZ4TlzCocwuYGifv1kg5hyv+t7L4paSM+KRE+TVlJSUkvvuTk3cGUlZWhuhb9qGUnDU+bX/JX0v+4culO89Qv4odKpXOeC6FzHwYD5+/hSv3nBARB6hraCIyPAx+/r6IjY1H7Tp1UbBgQfkT8gUL5sNUWxn5TQ1x5vpD+TJXvEQJjBw1JjPDflX3TJo0CaNGjUJMTAzE0YX9+/6Bupoailnmx6Sff4Spkb6c78b953Dr8QuoKAGdm1ZHFfsS0NHWTF3L30cu4fLdJ1g9dQh8/IOQz9QIHr4BWLTxAKLjE9G0bhUEBAbjjacvwqITMW7qvK/K4UtN5oWzE4qXyN0ApfPzp3BYsxgmxqZoXLUUmtcq+8nl7zpxAw7/HEf1atVQrU5jVKz8YVWltB2sW7kYtWpUwbXrN9GsVXuIajhNmzRGly5dvhT1B+MOHjxYHtMROXvYKEABCuSkQECnxv/7d1DKv3mScuXPxnu40ySrz5VBk6wK8n4KUCDPCYj8JadOnZL/R/c9tp49uiOfoS48fQOgpqaOqJhoqKqoIL+pEbz9g+SSzYwNkJiUiICgMPlnNVVVxMXHp8uho6WBiKjk3SPiPrFrQzTxQi1erFOa6N/TNxCmhnqIjIlFwXwmGNmzNRydXqFBtbIICYuApklhaKokICkmHEhMf7yMPJN+U5YhKDhCzr1ulTIw0tfFo1c+sC5ug4cP7sk8L6VLl8bmTRuREO6HQZ2SjxeERkTi6Qt3zFi1C8uXr/gmqya96+Tp6YmJv42HslIi/ANDYGWZD7/2bS+fQXpt/5nr2HPsCkoUK4gZv7y/42S+wyE8f+kObS1NGQjT09FBVIISOv40EM8eO8LMPD8MDQ1x7/Z1tO3YHVrfWE6YjHy+FLl2q8NaeLx4DC0DM4wa/4cit2TLNc+ePsblY7vQv319FDA3VujvMxHwFHluNuw7h6Ily+KHTv+V3H7y2BEmJmbIb1EgdX6vXF2wffMaWcXq6rWbeOnqDE1NTaxfvz5b1pAdncTHx6N169YyWMhGAQpQICcFAjs3Sa5q878fEqXsK8npP5swaJLlx8qgSZYJ2QEFKJCXBH755RcMHToUtrYZO9//LRndunULG9csly/PWlqa2DpnVK5PXwRKXrzxwtkbD2GkrwcDs3zo3LUHrKys5FxEzpOkMC8gITZTcwsMCUPfiUthkc8EnZrWRKMa5eDlF4hx87dg7PgJqFSpUmq/Li4uGDd2NAZ2agYzEwO5q8bWqhDuPH6BC7cfw9DCSiZJ/Zbb/fv3sWDOLHRvUxdlSxaFhppa6u6Sj62r94QlKFrITO4O6t22EUQS3lcePth26AIG/NgYjWqUx70nL7Fi1wkMHfM7ClkW/paJcmTuri7P4bB6ATbMGIqbD1/gwIV70NYzRLMfOqNIkeyrGJPe5J88eoDbFw7DQFsDpkYGePD8JQZ2aICiBRXLZXTu5kMcve6MApbFEBESAD9vd0REx2PWov/KA0dFRWHKuGHYsWMHZvw5Ew8fOmL/vq/vWJtICiuO6ogjimwUoAAFckogoEuT1B23KTtvc+N3412ncmpJeaZfBk3yzKPmQilAgawKiOM44qhGSvLMrPb3td4vSnHqIgKPnN1Qt7I9erZVPAdBdq9JyaAQlAwKIikxCYgJgZL2fzsfknyfIikqOMND3nrojKnL/5bHSjQ01DB1aFeUKFoQ4iXQ4cAFbN66LTXxpCjBHBwcjGl/TEZcXLz8KXloSIj8MZEIEjSoWhYJWiYYM+bbP6Jz/vx57Nu7F8ULGWPETy0/6bph3xk8ePoSRQqYwS8oBC/feEMcw9LUUJOuiyf0h6aGutwltOnILUycNifDzynlhtjYGKira6TeL456hYWF4OiBf/Dw4T1M+P0vGBoZK9z/vwf2wNbOHppaWrAsXFTh+7LzwiePHLFpzRLYlCyFIF8vzB/bXR6HEkmMbz10wambTzBw1B/Q0cnZst8eb93xxu0VIiLCoK6mjn/37cTQ7s1Qs2wJhZbr5uGLe89eooJtMZm7ZuvJe+g/fELqvU8fP8Txw3uxcMECiPwkgwYNRkhIsAyimJubKzRGbl20b98++Pr6YsiQIbk1JMehAAXymEBgt6apKxY/cHh3w3JO/tl4J4MmWf2oMWiSVUHeTwEK5AmBM2fO4M6dO5gw4b8Xgu914f369MaQzo3kUZrCFmZfbplqyclBlTQNkBThL5OnKRkUBpIS8OS5K46fv44BrSrBQE8nQ3OctW4vHju/webZIzBr7T8wM9LHsJ9a4eKtx5i7YR90tbUAZWXUqFEDJ0+ewsFDh94rK/zzwAGoV78BTp88BjNTM8xf9H39dHrCb+OhoxKPyYN+TNfV+bUHfl+2A1tmj0JwaATOXH+Eszfvw9i8EKrVrIe/t25AeTsbaGhowN3LF8N/nQpjE1PZ141rl2WC2YKFPr/rJCwsFHP/nIR8+QuiXMUqqFm7PoKDg7Bh1WLoaGsjKCgQugYGGDN+qkLP/9zp47hz8wqa/H9OjWdPn+G1mxu69RqIYlbZm8tC/CNYX0sNIs4Xn5gkc/iIssDhUXGp89y/928kBb2SO5bsSxSR32vvtoDgUExYugd/zs+dvEn3bl7C6WOHUNDcGN5+/pg1UgRxVBVyffei9r/MxsKVDtDWTv6edHF+hpOH92HWrL/kn//euROXL1+Bp8dbbNq0KUeTvGZ48v9/zPCvv/5CzZo10aBBg8zcznsoQAEKfFIgoFvTdHeayC2b/8v5lt7Ok6x+3fjvk3wyWRRg0CSLgLydAhT4/gXevn2LKVOmYPPmzd/9Yh89eoSZM6Z+tJzslwaQO020jIGoQHjHaMKiUBGZ2yQpMhBJAS8+O723Pv6YuXovuraog+rlS+CXmeswaVAnJCQmykS2+0/fxLX7TxETE4sW9arg9iNn7Nz9T7r9ih0PYnfF99iG/Nwfgzs3gr1N+jsx1u46DscXb1GkmA2UlNVQpkKV1MSgWzetRmxMLJq1bgdLyyKpPEcO7kHgm6cIiYxDq069YWX96d0Mop96tWvI4IuDgwMKF7NBYmKCrGpka1sKp0+fRtHidmjZpv1nH8GaFQugpqyE33+fIq999eoVdu/eDU0dQ3Tu3vuD+w111BARk4C4+OQExhlpujJgkoTI6I/n3Nm5bSMMEYS+7Rt9tOtBM9ZjyOjJyG9RMCPDZ/jands24a3rYyz89b/8JBnuBMD9p644evkhqjRsi3IVko+3Xb54Fm6uzzB+3LjULlesWAF19f9j7zzAanzfOP5NWlQ0yUj23tvfniEryiqjQbJbKqIpikSDRCoUDSt7ZodsCqGpobRLpfS/nrdfKYVznFNO9TzX9bvO7zjPuO/P+0bvfe77ewtCWVkZ0tIlwTReGurq6rCzs4OcnBwvmUVtoQQogTpAIHXhv+nUJXmUBk04vX1o0IRTgnQ9JUAJ1HkCpLOClZVVvWiLunTJYiycMhRjB/++k8a/uOikTIevSWtGy6Q4LZop1eGT6YyCvK8QFBJEcUoEEzwpHWHvY+B89DyjVSLRRBRf0jKZbjAr5k1G57YlD6I7PU/hyt2nEBEWYspvdptq4fCZm3jxNgqyMtJQnb+Q6ZxT38aMaUrYa76CEf+tarx6F42LT6Khoq7DPACXiiI/DLmL188eIiLiHRo04IeBqWVZ6UxOdhZc7DbDdNlMbHbyx4x5S9C774Aq9/f3PYz8r5kwMjRgyqNsbbcBDRpi9LhJIAEHks0hKS2LeQuWonWb35fYHHJ3RusWzUAehomd9+7dg8chT0hIyWCK0ix07tq9gg0C/A0g3rghir4XIz37R3YIq/cAsY1kllQVcLl14zKOeO7HsP49sWHptN+KrxKxYXPXAICPH1/SMtB/8P+gumAJq2b8cl5ubg522W5GA34BNBIRQjd5CcxV/N9fZZaUHnLx7jM8j0zFh48fsdpgM2RkS3RRvA/uxeRJ49C7d+8yew4fPoyAwEBoamhg+vTpHPvD7Q2ys7NBShS3bfv7kjJu20T3owQogbpBIFVtUkknwrJanOIaeS9xhApdc3oH0aAJpwTpekqAEqjTBMg3jn379gXpmFPXx+nTp3Hr6nnYG1T+5v2f+95QCA2a90JxejSKsz8z5vBJdQCfqCwyPr2DOH8eir99BaN/0bAhQsOjsHWvL2zWqkG0kTAaNuRnvv2XaiKGnK95uBUahmshL5GT940JhnVqLYWCb4V4Gh6Fbj16QlVVtU6L/RJ+T548Qb9+/aq8tEpTpzDZRuXbCZefmJXzFRscfTBLdSlOBvpi3MSp+N/IMXj8KATPHt1lMjoePHiAS1euQ2tFiZBw6pcUeO/bCeuVs5lrsMX5OAaPnYox4xQr2FBUVARNNWWmm0lpJk9ubi4cdjkiOzsLuitWQF5eHv4BgXDf74b2HTvDzLLq1sXfvhXA64ArZkybwjy4f/v2DTo6K9CpW0+oL1lWpe/8DfggKNAAgg0bIIP0oebieBByB7cuBGKn4SKWdiUs+Pn5kfQlHTcevMK95+8xYpwiRoydzNL6qiYlJSYgyHc/Jg7uAokmjdGxDeeZLC/fRcIjKAQbyrWQTkn+jG2WpvDxOVrBjJiYGGzeYo6+/Qcj+NolphQmLS0NW7bUXOegP8Ej9x4RhyUBczooAUqAEuAWgVT1iv/eVdyX6avzm6P+/nPJwzRowuk1pEETTgnS9ZQAJVBnCYSEhODs2bPMt471YWgsVoPN2vloJlV1dsG/ZMAn2Y7RNvke/7TEjIbC+JqXj2zRtpDJ+whSKnMvKg+FxXzo1as34qPfo4d05dKK6PjPMNvtg3adujDfcg8YMAAL5qmiIT8fpkybiXnz5v9LN2vsbAO9dUyQKSHpC9M+WUqyKdMG+GtuHlLTUtGtozzMdedVsOdDTAJIRgF5kO/StiUCL99Hv8EjoKWlASsra3Tp0ZfJBAl9cBcRb15CX289Tp8Jws1bd7BEeyWkpKSxw9oECyb2ZzJ/UtKzEJEmiHGTZ1Y4JzUlGX4+HrC0MGeJB8kCi4qJxRJNXSaAUtXw3O8E5VnT0aVLF0aQVE1NDXaObpCSrnnNHr8jHhDI/4wVc9lP0yb3ufOxSygWbYG5HGSdnPH3RhuxQkwa3pclxqxM2n7wFNr1HgnxJk3Qq09/eB5wRY9unTDjp2wS0o3KxmYrdNYYQlJSGo8e3EVcbBSKvuXB1MSElaNqZI6JiQlTQjRw4MAaOY8eQglQAnWfQOoiRSYsUhL+4EMx0WqrgfcS3jRowundRYMmnBKk6ykBSqDOEpgyZQpI9oWAgECd9bHUMd0VOlCfMgSDWeyaUdNAGrQejOJvuShOfFl29LYDpzBiSF9G0yQxmw8PQkJgvVr1l2UGr9/HwPPMbezcXVlck5SAkKBBfRj+/v4IvXuN6RrUoAEfvuZ/Q0HBN0THJ0NYUACFRUXwv3QP4R9iId9CFo1FBCDeuBGehEdiwKAhIG1kkxI+YYrSdEydOhWaSxdBoW17CIqIYrHWKgbh9cvnkJ2RAh0dHdy5cwfnL1xEy9YKGDF6Ag667mC64Yg0yEfDxjLQWvVD74KkLO/eYQ31hfPRs2dPli/H48ePcfHSJfQdMAx9+g+utC7gmBd6de+C0aNHM58lJiZh9epVUFuijYFDRrB8DjcmBh7zRmvRPEwZ3o/JgPqbceDkLUQmpkNQSAjfi/kYbZmET9HMft17D8CAQcMqbJuY8Alvw18jOysLb8Oeo2dbaagrcc/vU9dC4H0qGI1ERTFg4CCkpWVAVlYKq1eV3A/lh4npRkafRkJCEg0FBCAkJIxzp/1gaGCA9u3b/w2OalmTl5cHFRUVBAUFVcv+dFNKgBKofwTSFk/+L1BSGjCpmVdJLxo04fRuo0ETTgnS9ZQAJVAnCdja2mLQoEEYN+7XQo11yfHFavOx20QD4qLsdaKpCQZ8go3A16wnipPfoDgvgzny8KUnEBYVw0TFaYiP/4SYsFCM69/htw+hx87fwpGgm9DXN6g317Wq60PKZrbaWKN/j05oIi4KLeXREBH60dK3dE1sYgqSUzPw7E0kXkfEIDktB0d8fSts6eXlhZDb1wF+Qdjv3IXlOjqwtnNiHoQ93Z1RkP8VUyZPxqBBA5kA5JMnz7F42WqkpX6B76G9UNNaCdlmFQU3LwQFoiFfERYv/lEmRkolAk+cQHRUNKSkpdGjezcsWLCgQkCTBFyMjDZg+pyFaN+hssisi+M2KE1RZLoikfHp0yfsdnJGbk4O1hqYobFo9bb3JWeS7j+uDjZQGdsHIwZU1FJh92fp5dsoCAkKID45FRlZOWgsIoz8b4V4E5mA0Ncf0LVLV8g0b4GU5CR8jHiDicN6MWVRXdq2wvD+3dg9rsr5d5+E4dX7T3geEQcZuVb4XvgNNjbWiIqKgoJC1VozwcHBuHj5GpI/J0KiaRMmgGVkZIhevXhPR+ny5ct49uwZjIyMuMKLbkIJUAL1m0DqksmMJhf596ok06Sk7XB1v5c4dKF+g+eC9zRowgWIdAtKgBKoWwTu3r0L8suyhYVF3XLsF974+PjgzbMQmK+sWI7xO+f5GklWEF2tVlB8DQD+hkBhQdkxWUWCCIv+gn7tmkIARb88Pij4IY6dvw2ppuJo0KAh0rNz4XHICw0bst9OtVp9rMHNSXmK/Q4HjBgzEeGvnqGbbAMojijpdvLzIA/ZLj4XQLJ0XPa5Q1xcvMKU1NRUrFi+DLNVVBkdmOjoaFhaWqFT1+6Yr66J1y+f49B+Z8yePRtz56oybWbFpeSY9sGlg2SufIh4A0FhYbRv1xExMVFwc9qBVq1bQVhIGJ06dcTr8LcYNGQE5Fq2hrCwMG4HX8WT0Ado2VIOo0eNYs4lnVjOBJ2FvrEFRMXEqvTH+6ArFCeOQ58+fZjPl2pooFvXrggLf4NNlvbVJvZcVFQIz/3OSE2KxZzxAzC0T5dqveIk2EUyhQoKv0NEqCH+14/zIMnDl+8wqOePYNTj1+9x4NRtZGVlQV1rFYKvnMcKnWW/DJaUdzgwMBC+vscw7H//g7aWJsR+cb2qFRKLm5POaUpKShgyZAiLK+g0SoASoASqJpC2dMp/xTiln5cW51Tvexo04fyOpEETzhnSHSgBSqCOEZg0aRIuXLhQZ9vJlr9cRCNBedZM7N2ig2ZSbJSnNOAHvv86WMELt4TP2VvwORuM79+LMXbsGKxZu4554K7vg1zz9Xr6MNpkg9XL1HDAQgdNxavOsrDc64+kjDxs2bIFzZs3r4TuwIEDePchEnm52dhhb8900iksLMSbN2+wy3E3lmithLxCO9jbmKGwsAD9+/VDU5mW+N+IMYwODdE/efHsCTIzUiEoIIDWCu3w+uUzRnekWfMWGDlmApMJMnZC1cKnRA8jJvIDmsm1QkZGGqZOn/3Hy2u1yYC5H1RU5uDhw4fYs8cJouJiWLHaqKzryx83YXHCqxdPcfPqBSR/TkC3NjJYNHMsmorxXjbXn9zZfeQcPsQmYYXqRHRt3wq5efkwcvDBRpvdJV0gACaziAjuslJW9eLFCxw77o/uPfvic2IM1q8rEQvmxUHEg2fMmIHz58/zonnUJkqAEqhFBNI0JpemljCvTIZJSapJhT8vfc+tzyUO0r+/OL1NaNCEU4J0PSVACdQpAkT0dfjw4WXaB3XKuV84o75gLtzMV0BYSLBOuTtPzx66q9fWq2vJygV8/fo1zp6/hF59B+Hu5UBYrlSpcpnvuVv4mFIAs82/7mpC9B5ehb/Dg3t3cPiwd4WMARIUIfoVTSWkIcBfjKiYGMxTVUVA4Ams1t8IAQFB7Nxmjry8XPTt3Qc6OsuxavVqyCu0R9fuvdG9Z28IC4uw4hJbc2wtTDBq5HDmQfjz588wMTHFspV6aFdFSQ9bG/80OTEhHj7uDlg1fyJIt6HuHeQ52e6frbVx84d8p964d/cO5ozrj9y8AvhdvIM+g4ZjzrxFzC/93h57MWbUSIwaybpOiqnpRowYq4iP79+ia6d2GDt27D/z8U8HX7t2jQmwEXFYOigBSoAS+FsCaVpTSlVgS15Lxw812Gr5nAZN/vaKlbtExaVfEXC+F92BEqAEKIFaTeDRo0cgpTnrePhbT24Dvn37Ng577Mc+8xXc3vqf7Hf6+kM8evkO4R/iYGFlzZM6Cf8EzH+Hkn/ySSBjnroWPkS8w4enN2CwdEaVJtm4BUCha1+oq6v/0uTIyEh4H/FB/Kc47HV1qZSdlZCQgJ0OjviSkow9e3YzQZVz584hOi4BM+csZERlD7k5wtrKEqStMAmotOvYE+06VtYk4Ra3/c47sXrVCkhJSTFb+vn5IzI6FgsWaYOfi2Vbj0Lu4t3jG9BfPJVbptfoPnn5BVhp5QaRxqJw3ecOV1dXXLp4HkOHDoOGphZu3ryJB49CobfBHB5ue9BCThYaS5eybCMJ3vn6BUBZRQ3nTvoybap5eezcuZMJwPbvX3UpGy/bTm2jBCgB3iBAgiYks4R5/P4vw6Qm3jd1P8cbAGqxFTTTpBZfPGo6JUAJcJcAeTi0t7evsgyBuyfxzm6ka8zCBfMRtNeMd4z6S0veRsZBb/tBqE4agXsvI+Hm7l4vSqzYxeXufgDgF0JR0Xe0EsnClBH9qtxil/dZDBs/rUw49VfnJCYmQlZWtox1bGws7t27x/xiSMow3n/4CMVJE7FkyZKyLby9D0NETBL/GzkWe3ZaY8H8+ejVswdsbbehXafuGDF6PLtusTQ/JioSQSd8GLHS8kNLWxuLNVf+smUxS5tXMemIhws+vH2F7XpqTAei2jQys3OxxHQ3FCdPZbogEeFc0i64tANRcnIyttpuh/JcNbTv0BkXz55EfGwkNm3ayJKbHz58gNv+A+jdfzDSkj9h1cqVLK37V5OI/xs3boSnp+e/MoGeSwlQArWcQPqyqT8STErjJqU+VlmImwAAIABJREFUVeN7if00aMLprUODJpwSpOspAUqgThA4ceIEyMOfrq5unfCHHSc2bzTByN5tMHYw73WvYMePgm/fMGvVVkYb43TQWXaW1qu5OTk5TElKnwFDIPw1HvMUS7rJlB9Hg27h6oNX8Dp8pEo2ROeB/Ly0atUK+fn5jHDyhAkTmMAJ2ftrXgHaduiI8Fcv0L1bFxgYGFTYh2ieBASewvzF2tiwTge9e/eCmZkZSJtXYxNT6JtYgp//79rx/uli+ni7IzsjFfr6+mXlRM7OzlDo0AP9BlZuV/yn/X73Ofk28XTAUfBnx0FbZRInW/2TtUXfv8N4pxcyvn5Hz+7dcOv2LbRoIQcj441o3bo1fHyP4fXrMDQSFcNS7VW4d+c6Gnz/xugk/WoQ4ViifbPPzQ1degyAqKgojnjuw15X13/iIzuHOjk5QV5enintooMSoAQoAXYJpC2bWpZpUpphUhOvTd3o70TsXquf59OgCacE6XpKgBKoEwTIA9+VK1fqhC/sOrFksToWK43AqEE92F3KU/NJi1xDe08c8TnGPJTRUTUBUlJju20bmog2xvv3EXDdsoIRJz1yJhjCQgJ4H52A1Nwiph0v0SUhAZG3796Rxoj4+PEDOnXqhNDQx0x6cbt27ZGYmIC27TvhxdNHmDVrFtNpxMvLGzGxsUz5jbraQvTt27eSMeYWlhAQaoTUlCRYWVqgUaOSTIxLly4xLWk7dOqCWXPmI+LdG7x4GorZc9WYzwu/fYO3xz706N0XAwYNYzubiPj04P5tXD5/GuJioujevTtu3LiBSUrKGD12ItdumwtnTyHhUwwK83OQ+SURw/p1gfK42tmBhZS9CQgIYMqIvjDccQjR8V+YUioySABt3z43iEnIYuLkafD38YSMdFMme6iqscvREUQjRGWuGiZMns5McXXcBk2NJWjbti3X+FfHRuTemTx5MnOP0kEJUAKUALsE0nWUStoMl1tY+v7n19Ip3PhcYh8NmrB7rX6eT4MmnBKk6ykBSqDWE3BxcUGLFi2YB776OAz09TBhQAdMGFbShrU2j5krbXDqTBDbD9K12ee/sZ1km2RmZuLZs2e4cCYQX/Py0bl7bybTo127dhg5ciTCw8Nx8dJldO7aA40ai0GuRSs0FGiIgoICdOnSndH/SE5KgrSsLPPNmZWZAaNNUqoVQuwKDQ3FgAEDqjSRPIDucXJCI5FG0NBYWqENNBHdJKVj5y9cQvH3IowfPw5nzgQhLz+faS3cv19f3L59B1u27vob95k1RUVFeBP2ChnpaZBXaItWrdv89V7lFxI+AUcPoEFeKgZ0a4u2rZqhZTMpLDHZDWkJMZgsm8O0wK6NY6ubPxIyCmBlZQVJSckyF/bv34/PXzKgsWwV82eL502vFIQm91tUVBT8AwIwcMgoDBg8rGz9kUNuGD92JPr1q7pUjJdYBQQEICUlhSlZooMSoAQoAXYIpK1QAh9Ku+aUar5W//ume4PYMZPOrYIADZrQ24ISoATqNQEiVGlkZITDhw/XWw6kvXKA72G4W5U88NTWkZyWAZNdPvDwqr/Xkt1rR3QaTEw2oplccxR9+wZxcTEmyHH3XggkpGWgtngZy1sGX78EMWF+TJs2jeU1ZOLLly9hZWXNlPqQjjpr1qxCy5YtmT3S0tIgISHB/P/79+/h7u6O2Lg4bLWxQUBAIAYPH8d1HRK2jP/F5LMnjkNOMANTRw+sMMPS9Tiehn2A4sgBWK7KvawWbtj8pz3uPA7D0QshcCOaOFUMkjk0YcosKLRtDzfnHZg4fizTiYwMc3MLPH/+HEOGDUf461dYa7iRaSldOq5ePoe4yAiYmtaO7jQLFy7Erl27GC0fOigBSoASYJVAum75fx9/lXNSuhv3Pm/qSoMmrF6jX82jQRNOCdL1lAAlUKsJbNq0iSknGDKkdqbNcwP+48eP4bjTDoYaM9GjI3e+beeGXezssdUtABExCfA64svOsno/18raBj36DET/AUMQHfUR6WmpSP78GYpK7Gs2kGyBGdMmo3PnzmxzJeKaz56/QHZWJkiXkiZNmlTaw8vbG0+ePkdjEWFs3GiKQ4c80aZ9V/QfVFmThW0DuLzgiMdejO4qhQE9OyI5NYMpG5NvIYPs3K9AcQM0EhFEq2ZS0JmnyOWTq2+724/D4XQkCPY7d1VZRuPt7Y3Y+M/I/5oLGWlJpoU0KekhWSiSMi0hLdscN69fRuPGjbFgsTZysrPhsN0cDQUEkJqSAg+PgxASEqo+B7i4M+myRsrWLCwsuLgr3YoSoATqOoH0lex9qcAtHk1dWA+anDh/CyGPw2BhqAERYVrqXHoNaNCEW3cj3YcSoARqHQFSmkBSra2tK3bSqHWOcMFg8gBw6mQg8C0PzmbLubBjzWzhc+42bj56hYlTpkNFRaVmDq0jp/j4+OJzSipUF2pw7BEJtuyw3QxnUm7znzYJx5tWsQFpCz5w4EBGa0V35Spstt5ZHcdwtKf3QRdEvw+HieYMtGoujf1+l/EpKQVtWsigQQM+LJg6CoKCApirZ49dxppoIfujzIWjg2tg8cfYRJjs8oazqxuaNWtW6UQiqE1KbBQUFJjPiPaHl/dhtG3XAWGvnkNUVAwN+BtAoW1HPH38kGkzLC4u/leBthpw97dHmJqaYt68ebSt+b++EPR8SqAWEUhfRXScuKFSQlRRWFdBaepcMWiSlpGFFca78DL8I0NPc/4U6C1XZf6fBk2qvqFo0KQW/aBRUykBSoC7BNasWYMVK1aga9eu3N24Fu+20cQYraWEsUxlIr6kZ0FCvDHP6oPs8jqD+PR8rF6ztuwhrRajrzHTScDBwNAIPfsMwKQp7GeU/MrQVy+e4vL5UxjQvx/TYYT8R0pufjVIBx0iItqlSxcmI4Gdcf/+fbi5OmOV4Ra0aNmanaXVPvfimQDkp3yoUH6juckJLpuXQ7icQLGteyAUWspi/pQR1W4TNw94HRGNvQE34Lpv/2+3ff36NRx2OUJ1wRLs2bkVCm3bQVRMHDlZWWjbVgGzZyvX6p/bV69e4eDBg0yZDh2UACVACbBCIH319DJNk1I12FKNk+p838TpdJl5pLvdFnsPDOnfDcpTRjLd7sq/p0ETGjRh5V6mcygBSqCeEHjx4gW8vLyYUgA6fhAgD6OOu3aieTNZxMTGo09XBWgqj+epb8NzvubBaIcXuvbsizVr19HLxyYBc0tLKCrNgXwb7ncqycjIwKVzJ5l2wcmfE5GVmY4d9vaV2ge/ePES/oEnkJmRwXxbNme2MvONfVVlOVW5p6u7Al+Sk6Crb4aOHbuwSaD6psdEReKkjxts18ytcAgp0SGBEw/rNZCWLBGBXWvjjrSsHHhvq3338LO3UdjlfQ6Hjxz9LUw/f398jIqDmHgTpCUnQLZZM8xWnlVBLLj6rkb177xu3TpoaWmhR4/a3Xms+knREygBSoAQyFgzg8kPKR2l+SLV/b7pnh9Bk9IsE/3lqhjYp+TfTwc3P+aVZJv8HDQh7129TsPNTh/t2/zQoqpvV5RmmtS3K079pQQoAYaAiYkJlJWVmVR/On4QIMKg27bbwWTLNvh4uyMhPh4CDYpQlJ+LeZOGlvTJKwYSUtIReOU+moqJwnylKsQai9QIxqycr1hh6QYnl7115sGrRsD9dwi5vnucXLDW0KxGjr166Rzu374OGxvrsm4rpCzuqO9xrDfazNhQUJCPkwG+eBr6gMlSERUtaQM8ePBg5nNSkvPhwwfmZ7V9+/bMny1ZpIZiPn7YOuyrET9YOeT1y+e4feMivudlYouOMvgbNChblpmdC13LfXDdrANx0ZLWys5Hz+FZ+EccsF7NyvY8N+f+87cIefsZ+oYbfmublrY22rXvAhnpJtDW0uI5PzgxKCQkBGfPnqUlnpxApGspgXpEIH3NDKbbXHFxcY2+Ntl9qgJlEggxs/OAp6MxOrRtCZOt7jDUnccERcoHTV69+Qj/oGCqb0LaRBeTq0YHJUAJUAL1iAB5ALOzs4Obm1s98po1V0nLWfVFi6Cz2gBPH96BjIw0+PhF0KxFSzx5cAdJifEQFxOHgKAgRk+cBkFBQQR478X2dfNYO4DFWaQdLMlW+Hms2eqO6bPnY+LE2tV5hEW3q33ayZMnkZn7DRMUa06M7nbwFYSG3EUxvmO2sjLzrfxmc0usNdgIQcGKwp/379xkGLx7+xrPnzzChImTkJWbB2mZ5gh9cBsfP3yAQhsF5GWng68BPzRXGXGtVTAn8K+cDcC9m1exaMYo9OzUBqKNKgYRc/PyoWO+F66bl1f4zMLlGAoKi6C/ZDqaiDaq8p7nxK7qXqu2wQE2tvZVCsOWnh0fn4AdO3dCX299WVek6rarJvcnmSZEULxUx6Umz6ZnUQKUQO0ikLFuJsiTNx8favS16U9Bkw/R8dho687Ae/kmskpNE6UJQ5kMk73b1kOiiVjtAl0N1tKgSTVApVtSApQAbxOwsbHBsGHDMGbMGN429B9Zt3btOqb0hb+4AGJiYohLTMECdc1fWvMk9AEin17HyvmKyMsvQEpaJiOA+buRnZuHxiJCzDctZJCSGze/y3jzMQ7SEuIg/6DPnToKYwf3wMMX7zDxf30Z8c+Zq7bixMlTTLCGDvYJXLt2DTfv3IfOKn32F3O4gmRihD68i/TUFCxYshwyMpWFRMsfUfjtG0If3ceQYSMrnBzxLhxXz5/Co0cPsO+QH9v3ArmPQh/eR9jLp+g/cBh69unHsmdE8LapREXhVhLgW6ezCIe3rYGwUNX3pdep63j1Pgb2BksqnXU95Dl2HjqNrp3aolvbFtBQHseyPf9yYmpGFnQt92O3kzPk5OR+a0pmZiYj+FoXx9WrVxEaGgpjY+O66B71iRKgBLhIIH3dzBrNMCnNaGmy62SZF6Q8p3xmSammSXNZybLyHJKFQoaVkQaje0IHzTSh9wAlQAnUMwJJSUnQ09PD0aO/r8WvZ1gquOvufgD8gqKIjY6A0tQp8As4yWQF/Gp8TkqEj7sDNmrPhMW+QAg3EsO6eaMhLVG5bWxGVg62up9A8pcM8PEVM8ESA01lfIxJwNngx3De64bnz5+jQ4cO8Dnijfv3QyAtLYVpI/tg6qgBmLV6K5xd9qJ1a94S/6wt98uBAwfB11AYk6cp/zOTY6Oj0LpNSXcVdkZ2dhbMTfVgsXUX3r59jSMe++DgcoidLZi5pIvL6UAfjBo5EhcuXITminVQaFtS9vOnsc3SBCmfkzBx8nQkJ8WDBAOKvxdAqrEgdFTGQkiwsqAtCdLMWm2L0y6//hky3XMM46erISszFSeOeWPF3IkY0rvTn8wp+3zP4SAM6tkRLyNioa0ygeV1nE6MTUzBhp3eOOYXwOlWtXo96aLj7OwMaenfB4trtZPUeEqAEuCYQIberJKmN6W9b34jasL0xuHS5+WDJuRLKXvXY7A11S7LIClfknPhegj8goKxy3wldu33h8q00WXaJxwDqMUb0EyTWnzxqOmUACXAPoHdu3ejXbt2mDat5soT2Lfy368gOgQ9evaFlIQYPkbFQFtX77dGRbx9g0Cfg1izwZzpiLLDyhju5hVbF/tfvIsjQcEw2mCMESNG4OPHj0wmCxGezc3JxchRozBj5qwK3Xqys7MhLCyMpYsWwsN6FTY7+WLoGEVMn07a9tHBDoGAwEAUFDbA6PGK7CzjqbnWZoYQFmmENu3a49XzJ7CwdWTbvqzMTJgZr4Hf8eN49+4djvgcg85qQ5b3MVi1FMN6dcCAHh0g2kgY/PwN0Lntr7sEPXjxFr7n7sDRpOpsrYJvhVhpcxCzF2qhT98ByMnJwYXTx/Eh7CnmTfkfBvfqXME2ks1VPqPl6Lk7SE3PQER0PNrLt0B8YjI2rlCFeOMS7ZTqHkRjyHKrXZUtiKv7bF7Z/9SpU4iLi8OqVat4xSRqByVACfAggXS9Wf8m02TniTIapUKwqtNGV+ieUz7TJORxGKNjkpefz7QmLi8ay4NYa8QkGjSpEcz0EEqAEuAFAuQB3NLSktEzoePXBNLT00GyTeRat8OTh3fRr39/pv2wyrxFLGPb57gVixT7ol2r5syaFRZ7IdhYHE5OLizvUToxMjISpsaGTJcR37O38TlfAAYGBmzvU18XHPfzx82bwZg2UxW9+w2q1RgSEz4x2SZduvVA/Kc42O5wAX/Dhmz7dMRzP9rKt4CKigr2ubkh+Us6VOYvhrh45eyonzf/+jUX9tYboTtnFHp0bPPLs4lY8l7f84zYa4DjBghWkYVSuvhT0hecuP4Yn7MKMXqiErr36I3wsJe4cu4EkhPjMbBXF+TnZSMu8Qsai4qDlAQ1ayqKx2Hv0Lq5LMxXzWOEBe88Doej92mIi4th5bxJGNCjI9ts2FkQm5AMA3tPuB88hKZNm7KztM7NNTQ0ZP59ERGpGVHsOgeQOkQJ1AMCGfr/JsuzSbmgCcFMsk2WG+1EQtIXhrrm/ClMaQ4ZP3fPKZ1ra6JdrzNOaNCkHvyAUhcpAUqghEBAQABSUlKgo6NDkfyCACkl2L17D0iXmnnqWjhy0BWGhnowMtqAueqa6NS5G0vs3oS9xLObp7FOfSq2uBxD937DQFLY/2YEBQUh9M41bNFVhTfRhohNh7m5OeLj49GpE+slDH9zdm1fExwcjAehzzBlmjKkpGVquzuM/b7eB5GRlowJE8bjxs070FrBfsveosJCOO6wwlyVORg0aBDOnTuPm7duY8bs+WjbviTQ8PD+HTSVlEKnzl0rcSMBjVtnfbFJZ3aFLjmlExOSU6Ft5oyxQ3pDafQAdFJoyRL7sPcxOHT6FsQkpJGbm4f5i7UBPn5ER33AxaAApCZ/xvipymjboSOePX6I2Hcv4Wi8tGxvIji70fEoevQfgYg3L6A7ZyTk5arvuq+22Y//jZ6IBQsWsORfXZ7k6uqK5s2bM13Z6KAEKAFKoCoCGQbKP1RgS9sRlqrCVuP7JvaB9IJwSIAGTTgESJdTApRA7SGgra0NU1PT33Z6qD3eVK+lLi57UVhcDIX2nZAUF4lxY8fC+7AP84DKyjf7HyLe4qyfB0w1p2Pd9kM45M2ZhozGYjXs2rAUzyPiEHA1FJlZ2cjMykSXLl1gYW4OAYHKWhLVS4j3d09ISICNjS1MLbbzvrFsWJj6JQXWmw1x7NgxHDl6FN/5BDF+khIbO5RMJZkZ2603wUBvHdO+unHjxrC0skZkZBQkJCShoCCPmOgYzJqrjrbtOlTY/93bMHjuc2R0fNrLVxZBfRYeif3+l7DHVBsNG1buAvUnYz/GJiI5NQOng5+guKEwhBuLo+h7Mb5nf0ZiSgbkmkmjoPA7hBs2gMVKFWa7z1/SsW67J9S1VqJZMzm8f/cGBUlhUFOqHhG/ou/fMWftNpw+c/ZP7tSLz0lXNnt7e+zbxzttsOsFeOokJVCLCGQYzvlPzaTU6N+IljBTuPM5DZpwfpPQoAnnDOkOlAAlUAsIEO0Comfi4sJ+eUgtcI/rJhJdkgsXLuD5izBkZabB0tICy5YvZzQkhISEWTqPtGC9fC6Qedgj6fsNGjRgaV1Vk7Zvs0WnZiIgJQ8NxJqjT58+jGAsecDdts32r/etqwuJQKm+gSE2WdpBQKDudRoKOOaNHl07YuzYsdDU1MIWGwc0/IvA2bXL55HxJQGf4uNhaWHBBN9IORi5/z09vRh9EXL/DhsxFgrt2jOCsaRE6IDTNhguUUKbFrLMLUTKZTKycyFZri2j9T4/pqfkphVz//o2I4Gd+M9f8ObjJ6SkZ8L/0n00ayaLCUN6YeaYil1/XryNxIXHsVi8bC1zXnTUR1w5cQibllVP5sOLd1Fw8D4H78OcBUT/Gg4PLiRZjKRMp3171oSFedAFahIlQAlUI4EMozllYZDScEhNvIrb1W+xbm5cUho04QZFugclQAnwPAEnJyfIy8tjxowZPG8rrxgYEhKC4Nv38DkxHg47d+D6jRsIe/seyipqLJvof8wbYo0EobH0RwkBy4vLTSRBAI0liyAm2pjJWjl//jzy8/Mxa9asv9muzq8hZTlPX4Rh7kLOuPMqqMLCQpibrofHwQN4+/YtfHz9sHw1+zo3JCixYf1yNGsuB9U5szF48GDGZT8/P7x7H4W8r1mYNXMmc8ajR6F4/foVZGWbobgwD7JSTREb/xmyMlJ4HxkLGWkJJkDSuc2PzBPNTU6wXL0ALZtJcQXl49cfcfVlPOKiItFCpgkTrJkzfiC6tGsFjxPXIK7QD8NHjmX+fJetGQzUxqO5tARXzv55kx0ep/BdRBJGRkZYr6fHBJ2aNPmzJky1GMMjm544cQKJiYnQ1dXlEYuoGZQAJcBLBDI2kMxApi9Ojb422U6DJpzeBzRowilBup4SoARqBQElJSVG04R0YqGDNQJv3rzBcb8AJCYmwEBfj/n21MraBmMmKKFdhz9riZAHUr1VGjh65Aga/oVY589WkgwAOTk5CAoKQl/fAKQ8YM9u9runsOZ97Z5lbmmFqTNU0bKVfO125DfWP7x/Gy+fPoCJiQkMDI0wevxkDBoynG1/o6MjcczbHUOHDGbuLZJdEh0bD43la2C2YQ3WrV2Dnj17MvsSzR9yH75+/Zppey0kJAR+fn507lzS4WaZlgbWqykiKuELgq6HIDuHBFeawM5gCdt2VbXAcIc3JsxcgG49+iAuNgaPH4Ug4kUITLWVcfbWM4jJ98KIUeOYpYvnTYez2XJ0bNOCK2f/vMlikz047HOMEdLNzi2AsABfve8eQ+4dou9y+vTpamFON6UEKIHaTSDDWAV84GPKQxkpEyZ8Uv3vxbf51W5wPGA9DZrwwEWgJlAClED1Erh58yZu3boFMzOz6j2oDu4eHh6Ovfv2Q0REGKREhoyNm8wwf/FySEr+/tvzl8+f4PrlIGzfto0jMqRUgvyCQQIvpSU+5BvdO3fuwsFhJ0d718XFLkSQskVbDB0xui66V8EnL3dnzJyhxLQR37HTAUqz5kFGtqRjEzsjPT0Vfkc9ISUty9xjs1RKhE1JkMR5ly0a8BVj+bJlaNPm191yyHxSBrh+3Vq0bi6D4f1LRJOnjBqApmLcaf/76l0UPM6GwGjzdhQWfoP+Sg3MGDcQbyPjEZ+SBWPz7WjcWJQ512OvA2Kio6A2eXCZLT8zCX39HgO6V9Rr+RM30klL12IfjgcEMhktGhqaGD56AlD0lWFU3wcRqR4/fjyGD2c/gFff2VH/KYG6TiDTpKRDDRklgRO+cnknxUwApTo+b2JLgyac3ls0aMIpQbqeEqAEeJ4AEX+dOXMm0yWDDvYJWFhaIjExCdtstzLp9/fv38e5C5egu3bDbzc7d+YEJMWFMXv2bPYPBfD+/XsmO+j9h4/ga9AAjUUaYdp0JfTt0wfi4uLMLxxUALYiWpIF4el1GMtXG/4V89q26KjXfvTr3QPjxo1DXl4e5sxRwX4v7v9y+CUlGT5e+zFn9iz079//j5h0dZZh4pDumD5m4B/nsjvBxNEXs9R0mIBOoK8H4hMS0atja7TvMxLD/8syKd0zIz0d9lbG2LBUCR3/6+AT+uo9kr6kMR2y4jOKkJ+TgSnDe6N3l7a/NCXpSzoKvhXi4Yu38D4djJOnTpdlj61duw7NWrRCp/YKmDOHiBzW70H+fiTlg1ZWVvUbBPWeEqAEKhHIMFEtCZSUBkxq6FV863F6NTgkQIMmHAKkyykBSoC3CRAtjK1bt2Ibh9kOv/Jy/bp1mKqkhN69e0NGpvpae/5LyllZWWjUqBFThlA6SLaJ6gJNyDRr9kvT3Jx3YuliNSgoKLBtvo+PD+7cuYf4+Di0atUKwiKN0b1XPwgI8CPg+FEMHjwEJsa/D9qwfWgdWHDh4kVExSZghvLftXeujQi2W23EurWrma5Yjrt3o32nHug/aFi1uOK80wbr169l6Wd9sfoCaM8eh2F9K7cs5sS4wEv3cDc8AZLSMsjNSkfO13ykJSdg+RpjtO9YUiZUfpw9HYj06Gcw0FCGi+8lfOVrBHGp5kyp4sTJ0xFy9xYunvbF9vULISQoAGGhisLBN0Je4NCp65CUkoJwIzHY2dlV2P/Vq1fYtMkMJibGZZownPhXF9YSMdgtW7ZAVLQk64cOSoASoAQIgcyNc/+FpAlo0ITz+48GTThnSHegBCgBHiZw9epVhIaGwtjYuFqs3GFnh159+mC/2z6MGTsOK1eurJZzeG3TPU7O6NKjP3r06vNL0wL9jqB75/ZMh5NfjSdPnoBco8ysLBQVfWdKG2RlZZlAV9du3aE0dQpTAvDw4UOkpqXjRGAgWsu3gbKqOoJO+mL8uLE0Df4/uAUFBdDTN4Cped1qMfyne59kXGgvmsN0e9qzxwnSzVtj9LhJf1rG9ucxMVG4e+Mi9PXWs7T29MlAfHz9GGvVlZCakYVHLyMwaXjFjjcsbfTfpMi4JKzfdgBNxUQh3VwOXbp2x9IlS7BvnxvEJGQxcfK0Krcj32h67N2FtORP+JySijGTZmCy0swKc8NfP4eTgy0UWsgiJj4JK+ZPRUxCMsI/xuFzaiYOHvJifg5/pQmVlpbGtGwmmjB0ADY2Nhg2bBjGjBlDcVAClAAlUEaACZqUyzQhHdZq4r249TF6FTgkQIMmHAKkyykBSoC3CZCH7yFDhvz2wZ0bHuzYsQM3rl9Dt25dsdV2e50vGyGZJrPnL0Xz5j86hfzM8ULQSQjyF0FdXb1KxPfu3ceJU6cxcMhwtGolj9BH99Fcuinmzv11i1aib3LsmB9ehoVj6nRlXDx7EoIN+WFkZMg8tNXnkZ2dDQtLK6zfYF7vMHi47cEitfmMHomxiSnsHN24yiAnOxs7bLdg+7ataNq0Kct7W1iY41PUB6ZtsJCAAKzXqaFz25Ysry8/8fGr99jrfx0enp4V1hPNpqcvXkN1we+L7u+1AAAgAElEQVQ7JT16cAdZaV/QoWsvyLepWIqTkZ6KXdstsXu3I5ydnZEQHYF3kXGM8HPfvn3/yt76vOjKlSsgAeENG2g2XH2+D6jvlMDPBDLN5pVkmpSO0iY61fyeBk04vxdp0IRzhnQHSoAS4GECRMvk6NGjNfJATX5RdnVxhsMuR6ZUoK4OIg577HjAH1u8kgdNSzN9eHl6lgm4lmeis2IFtFbooUXLVnjx7DEiwp9j9SrWMnXWrVsHQaFGaNGqNVJSklFcmI8hQ4YiIyOd0TshLWmJzkV9a4FK2kTfufcQCxZr19Xbr0q/LDbqMRkgnTp1YloDnw46+0fNHXYAuTpuQ9++fTBbmf0W13fv3sX//vc/GBroY1j3VpgxtqStMTvjY2witrkHYrWeEVMK+PPw8PDAp8RkLNVeVeln7d3bMDwNCUbSpxjMUluO1vIV/24imShL5s8A+fuLjKSkJCzT0kQxXzEOHvRkqRSJHV/qw1xSFrpkyRIQwWo6KAFKgBIoJcAETZi2OSUZJjX1Km7pSy8ChwRo0IRDgHQ5JUAJ8C6BsLAw7Nu3D3v27KkRI9etXQtRgUJ8/S6AnQ51uxWu2eYtGDh0JAb8QTuCZAAoTZmEPn0qlvGQB7QHjx5DY/la5tpcuXgWTRoLMIK9rAwiECshIVFWMkB0U2y3bUfrNu2goNAO2TnZePksFCOG/w+qqj/U6lnZuzbPCQ4OxvNXb6Ayf3FtdoNt2/18PNGyuTRUVFSYtUy7bP8T0NZlrZTmdweSoIKpwUrs3GEPaWlptm0rXUCEQVuKAUtmlbQEZnWQgImZky9MN20ua31c1Vry95xUc3mMKVeaFBsdBXenbdisM5v5ctPY4Qh015tW0D65ce0S0lPisVJXF7m5udDWWALd+Yp4EvYR34Qkoaenx6qpdF45AqRUc82aNWXtqCkcSoASoAQyN8//JxBo0IRz7DRowjlDugMlQAnwKAFPT0+mTGbhwoU1YuGZM2eYji/15SFD38CQKa0ZOWbiL/lmpKfB0swQCxbMR97Xr4iL+4TYuE+QbdYcizR1mXUPQu7A38cLuxx2otlvhGVLDzl+3I/5NnzaNCUmo+fx48eMAGjLFi1Q+B3Mg3LYqxeIePsa5PyF8+fi7r37IOUra1avqiBoWyM3Rg0e8uLFCxw4eAjGm7fW4Kn//qjk5CT4eO6r0N7adOMmqGvooklTib82kOileB90hVxzWSxZvIjpevC3gwQKj3p5wMNmNctbkICNorZ5WRbInxYuWLAAxpttIS0ji+/fi3DutD+kG2Rg1riSzmEO3kFo02ME+vQbiI8fI9BGoR2+FxXBerMRfHyOMnNU58zG6oVT4OZ/Gfv2H2RZzNR+uy1iY+MwfOQoKCkpMeLR9Xl4e3sz98uvyhPrMxvqOyVQXwlkbplf1j0HTHvh/9oOky46IO2Hf7zn5udi5j71FTnX/KZBE66hpBtRApQArxHQ1dUFKeMgKfs1NUhZSMOGDWvquH9+jrv7ASZoMWq8Ikb9Jnhy9dJZkPanHTt3RZeuPSAoJFRmu7+vF0QEG0BTU/OPAY2vX7+CiNBmZmYjNiYKzs5OzC8gpqYbmVchYWF8iotjMlu6d++GrKxsDB06BJs3b0F+QQE2bTRFjx49/jm36jLg48eP8PQ+Ap160nK4PMfoyI84d9oP1lYWzB+TMjIPT2+sN9r8V7hJwMRhmzkU2shjzRrWAx2/O0xjsRrs9NQh2VSMJZt0LPZizjx1TJz468Bk+Y2ePXuGU0HnsEy3JDvE+4AL5Bp/g/q0Ucz7fccv4dn7BDQVFUFjIX58Sk6H/kZbxMVF48XjeyDdwKKjo2FrYwMbW1tISUmxZCf5e2/y5MnQmD0eV+6+gLObe70PmpD7z9XVFU5OTiwxpJMoAUqg7hPIMl/wLyRNIE6DJhzfXDRowjFCugElQAnwIoH09HRoa2vD39+fF82rUzaRQEbgiZP4EBmFCZOmQaFdB7b88/F2h+KEsWwFM27cuIHu3bsznXbKD/Kg++HDB3Ts2LHCnxMBWdIymQiF1uXx6NEjBN++h4WLl9VlN3/pm6e7C3p064Tp06czc7y8vNCoiQz+N4L1LiapqSl4cO82EuPj0Ld3DyZgwa1AqJamJpTH9IXiiN930fmalw9jh8PQ27ARbdu1Z+ta6hsYYY3BJsbmr19z4LTDGjqzhjMCtDm5ebjz5A1GDewGQYGGSMvMga3nBeiZWsPf1xtNxUSwdOnvBWWrMoZkcamozMG5fZux99gl5DUUh76+Plt218XJysrKzD0oJsZakKwuMqA+UQKUwA8CmRYLfmSUlGaWMK+leSXlMk64+LnYlpJMQjr+ngANmvw9O7qSEqAEeJjArVu3QP7btGkTD1tZt0wjgpfXb9xEcnIyFJVmMSUAZFy9dI7JABkxqrKWQ0pSIg577mMyQIhoa0xMDEgQpnPnznULTg15s9NhF3r1G4ruPSuLhdaQCf/0mE9xsTi0fw8jyFw6NpltwTx1LUhK/VmP5MH927gTfAVDhgyGuJgYJk3ibutid3d3vH/9BLbrq+4oRWxOTs2A38W7eB2ZwJTHsDNI8GL+/AVw8zwOzwMuSE9NRuduvXH25HH47zKsMmhouPMoVhnbQEhICKcDfdFMRgLKs9gTvH358iUMDQ1wzMEQ+/0uQ0iiJdauLdErqs/DwsICEyZMYNoP00EJUAKUQJalWkkJTllApKSZzo/3/5XocPlz8c00aMLp3UeDJpwSpOspAUqAJwns37+faQ1an0RAeeVCkKCJt/dhvIuIgEijRvjf0CGIjY2FSOMmmDFnQQUzA45540vKZ6auNzMjHa1aKyAnJ4vRJ9FYuoQjDQle4VGTdlhaWmOc4gy0bc9etk9N2ljdZx1024P+fXpiypQpzFE2W20xSWk2WrRs/dujk5MSsX+vA+y3b6+20hKSCaU2fy7cLFagsYhwJXtiE5KxaY8vuvboBVNTU7ZRkYwqT08vfIiMROeOHRhh5XXr9ZhfvzdqTkN7+cotwtOzcrDZJRBG5nZo2FAAh9yd0aZVC6ipsa4Fdfr0afgc8cI2vUWwcPWH52H6Czq5eL6+voy4Lik9pIMSoAQogUwrtRIlk9LmOaUZJtX8XszsCIXPIQEaNOEQIF1OCVACvEnAwMAAampqlbq28Ka1ddOqrKwsptVzaUnM8ePH8fL1G+iuNargcEpKEqSlm6GgoACCgoLMZ7eDryEzLRHaWlp1E041eGVvb49mLdpgvOK0ati9dm150v8omoiKMA/+5haWmDRtNtq0aVelE5/iYuDmtBOtWrWEuroa2rdnrxyGXTKkBfqDO9fhaFz5Qfps8COEvk+GpZU1u9tWmJ+QkAA5uZIAycpVqyAnKQZTzarvi9SMLGx1P4lpqpro3K1E78fRzhLLl2mxxWLpogWYOrIfrj98gx2Oe6ot8MQRmBpeTPSe/Pz8sH379ho+mR5HCVACvEggy7p8lmFpUc5/lpZGUsoM597nYpsO8yKOWmUTDZrUqstFjaUEKAFWCUybNo35ZVVERITVJXReDRAIefgQT5+/gqSkDEaMHv/LE58+fohP0RFYpk2DJqxeFpJdJdWsNYYOH83qkjo974inG9opyEOgIT/iEpIxS6Vi5sST0Ad4F/4K6WnJWLxoEVsBAk7BLV2sjrVqk9Grk0KFrd5GfoKZkw8CAk9yekTZeje3/Xj+/Bnmje+P4f27lv3549cfYbbnMHp164KvBUXYsGV7WYDzVOAxiArzY9GiRSzb8eTJE1hZbEHvLu0QnZCCwu/F2LbdHi1btmR5j7o2kZRLkeD9qVOn6ppr1B9KgBL4CwKZ1upgmrAx8RA+kA5p5H1JvOTHe25/LraRBk3+4nJVWEKDJpwSpOspAUqA5wgQXQxzc3N4eHjwnG3UIOD8+fNITU1F+Jt36NytJ9NVZ7ziVDRp8qM1rLuLAxapL2BaCtPBOoE1a9fXu3bDv6Nz4ewJ5OdkIuL9BxiYWqLw2zcEnfJDRnoqmjYRR88e3TFy5EjWAXNpprGxMdrJiEBrzoRKO6qut4NfwAmuiRZHRUXhkNdhJMVFY1T/TiCBmYXTRsLF7wbWm25l2rIXFORDUPBHR6vEhHgE+Hpgq40Nyx6TrAqLLZshJCiAou/f0VpOGnFJqQg8Ub8DBosXL8bWrVvrdfCI5ZuITqQE6jiBrK2LSkVMavRVbKN3HSdb/e7RoEn1M6YnUAKUQA0TuHr1KkJDQ0EeTOjgXQJJSUkICQnB7du3ISvXGmpLfnR8cXLYCgO9dSy3PC31srQsgXzDKyoqyrvOV4NlGRkZWLVqNbY7ulXD7rV3y/NnAnDj2iX0HzgEUZEfoTpHmbmvunb9kXVBvCsqKvpjy2tuUTh79ixCbl6C5ar5lbZcutEJO3btgYyMDLeOg7OzCyLevUFSwifk5BUwGS6hryJwyKfqgAYRY16nuwRBZ86wZYPm0kXIz/uKqdOV8b3wGwJPBEJQSAR2dnaQl5dna6+6MtnGxoYRgh0zhvUOTnXFd+oHJUAJVCRAgialGSXlUkzKiZyQzJOSjBNufi5m4kUvBYcEaNCEQ4B0OSVACfAeARcXF7Ro0QKz2OwAwXue1B+L7Ox2YOqsuZCSkkF8/CecP30cpibGbH3bbmtri6ysr+jbtyfCw9/C2NioTCOlvpDcbmeHfoNHoHuPPvXF5TI/hQT4kf+tqJLfRGjY2cEWc+eqonfv3pUCcUQ8lZSWXLl6Ffp6ejVW0qeutgBrFiiif/cfor0vI6LgHhgM5737uXr99rm5If8bcOvaBcyaPYdpget79Ai0Vxuh6386Jj8fuHjedFy5coVtO5Yt04a4mDgUJ08GCeQdPOAOSYkmOOJznO296sKCgIAApKSkQEdHpy64Q32gBCgBDghkbVtckmHyq1FausPlz2nQhIOL9t9SGjThnCHdgRKgBHiMAEmFnj17Nm1by2PX5XfmFBYWwmzzFphussDFSxdRlJ+DefPm/tGDQ4cOIfzNW6R++YJBw0bh+ZMQkCyTtu06IiU5CTvs7SAsLFwhi4CcRb5JJ9/kkK4+3bt3/+M5tWVCXl4ebLfbYdzEaejQqUttMbta7UxJScYht92wtDBnggVfvnxh/gsOvomPkZFMYE5aVg6x0ZHQ11uHVq1aVas9pZtHR0dju7U5nDdpl533LuoTzPb4wj/wBFdtIB2tiDh2YkICLl2+zOz95s0beHofwWo900pdqh7cvYmGfIVQUprKcgcrdTU1mFtYMNow81Rng78BHwSERZHymXTHAlTmzgUpValvIzw8HGfOnMGGDRvqm+vUX0qAEviJAAmalLUXLtUwKW0vXI3vRY096bXgkAANmnAIkC6nBCgB3iOgoqICd3d3puUwHbWHwFZbWwwdMR4SklIIOnkMZht/33I1IOAEcvIK0avvAIiJN0FKciIsNhrAwMQcXbv3QuqXFDjttIGklBTTmUdt4QLcvHkT589fgJxcc5DuPqSEx8TEpFKpRu2hVrWl5OF13KTpaN+RBk4IoZiYKFw844+vX3ORn1cAKRlZ9Oo7EL1694OQcEnrXzcne2hradRY0IScuWTxImjMGInh/bsxNrx8FwVzl2M4eYq9spg/3a+XLl3Cvr2ukJaShPvBQ2XT798Pwe49e6C+dDn69h/E/Pmlc6dQ9C0XWmy0ySVBgSNeh9Bv4GCmLHLBPFVkZmYh/1shBAUFmNTzc+cv/MnMOvk5CdCtXLkSx44dq5P+UacoAUqAdQJZ25eWqsBWeC0NpKCkIXFpI+KyV04/F9tAgyasX6WqZ9KgCacE6XpKgBLgKQIk1X7GjBmM2CgdtYvAHidnPH36DCNGj2O+3ZYQE8bMmTMZJ169egXyzTzRBpCQkMD379+hvWw5LGwdy0p49rs4QEiQH30GDEfvvv2ZdRnpacgvyIe0tCw83PagbfuOGDdxKu7duQGP/S5QaKOAnTt31FhJRk1dkfT0dFjZbMV6oy1slTjVlH3/4pwvKcnIycmGfJvK4sIJ8Z+wZ6c1vDxr9hdLLy8vvAi9C3uDJQySKcstMHHiJEycOBE9epS0/+XGuHHjBjwPuEGhQ2dYWFhU2DIxMREOu3Zhxhw1nDsdgLZtWkFb+0f2CyvnE50YcXExHPAoqZt3c3ND7IcwZGRmY8qMOTh16iQUFSfX25LJSZMm4cKFC/RnkZWbic6hBOowgSy7pSWZJqVdc5iwSPW/FzWijRE4va1o0IRTgnQ9JUAJ8BSBuLg4bNq0CZ41/PDDUxBqsTGkbIaIVnbvMwhPQ0Mg2kgIRd+LkZzyBSnJyWjZqiWmKE7CvXv30VhcAlNnqJR5+/D+bZw56QczK3sICZVkD/xukMCLo50VRo8aDiUlpT9Nr3Wfv379Gsf9AqGzxrDW2V7TBr949gQRYc+wevXKGj2aZEDNn6uCw9vXIzQsEk6Hz6CYryHk5FrAzGwjZGVluWKPg4MDvqUn4NGrCGgt04GiomKFfa2srNG4iQSGDhqAoUMGs3XmmtWrEBMdjSM+vhXEl1fp6iAvvwA2W22hq7MMIkJCWL1eH4MHs7c/W8bw6GR1dXVGDFdOTo5HLaRmUQKUQE0QyLbXKDumVOu19A+q872oIQ2acHp9adCEU4J0PSVACfAUAdL20s/PD9u3b+cpu6gxrBN48eIFPL290bixOHr3G4iszAx8eBeGgQMG4FXYWyZbQHP5Gog0alRp059bp/7p1Ii34bh0/hSGDB6I6dOm/Wl6rfqcfJO1dKkGzKx2VMmqVjlTzca67rbDhHGjMWrUqGo+qfL2JwIDcOX8GXzJzIHjbieYW1hCU2cdLp7xw5Ytm7liz+rVq8H3LRdmK1Shb+8F7yM+FfYlpWrHjx+HlpYWW+cRXRQDfX2cCQqqlEWxZ7cjwl89R8LnL1g5fzITQHkQkQxra2u2zqgLk4mejJqaGvr0qX8CzXXh+lEfKAFuEciy1yjrjlPaJacmXkUNDrLswonztxDyOAwWhhoQERZkeV1dn0iDJnX9ClP/KIF6RoCU5ZBf5PX09OqZ53XL3c+fP+PTp09wdXVFEwlpdGyvwDxwXL56nXmg5PY45O6MNq1aQE1tIbe3/qf7eXp54WtBMWYo/1lU958a+g8PLyz8Bl3NhTh7NuifWXHj+lXINpNjRFRnz5kDdy9/uLvuwoxpU7jyoE20fDwOHkQrGXEkpaRj2co1GDSoRMOkOoaHhwfuBl+FXDMpNJOWwMp5inga9gGeZ+/ByWVvdRzJ03va29ujV69eIGU6dFAClED9JZC9Q7PEeT6+kjbDpePnrjlc/ryqoMmH6HgsN9qJhKQvzN/Vbnb6aN+mBWjQpOr7kwZN6u/PLfWcEqiTBEhZjoCAABYurFsPv3XyYrHgVE5ODvz8A7B4kTrzTfaBgx4QbSqNkaMnsLCa9SkkQ8VykwFcXZyZbjt1aRABytT0bMxU4exngnQdIt+I8fPz1yU8uHXjCnIyU6Cp8SNt+l86uHbtOqxYZ8wETeYoz8TQoUO5Zo6uznL0atsMN0LDsH79OgwZNpyjvS9evIjnL15ig1HFErCjR4/izKmTGD9xEu7evI7FM8dg56GTaCoujiO+9a/1sLe3N/OzQ8p06KAEKIH6SyB7pxYTMGE0TcoFTMpKcxgNWO5/Lqp3oAJ0EjDZaOsOGxNtJlBSftCgCQ2a1N+fUOo5JVCPCJC68b59+2LCBO4+VNcjhDzt6oMHDxB44jTWGZlx3c7MzAwcP3IQstKSkJKWRmJCIlq3bsXcS6TLTm0e9+/fR+CJU9AzNmfLjfDXL/Ho4V1EfohATlYW84uessoCDB0xhq19eHmy/ipN7N7tyDX9EE59JdlyFy5dQQu55tBbvw5CQkKcblm2npThkO42BXnZEBYQQP8hI7Bkyd+1ASbtrY1NNmL4qHF48+oJ04WqqoCajrYmOsnL4O6TcPTo1QsWFlZc86e2bESCS0TMmpTp0EEJUAL1l0C2A3si29wiJarnXrbV17wCbLH3gMq00RjYp3KHvZ+DJuS9q9fpskwUbtlU2/ahmSa17YpReykBSuC3BHbs2MGkQPfs2ZOSqoMETpw4gayvhZigyB39kbBXL8BXXIiuPfsxtIqKihB00o9pk9q6TXscdN2Bwm+FUJyqhGXLltVqolHR0XBwcIThRqsKD7f3bwcjNS0V/A350ap1G/To2QdxMVE4c/I4crOzMGfObKaTi7i4OOO/j48vvjcQwtgJk2s1D2L8w5C7+BQdgZW6K3jKl7CwMHTrVtKG+G9HQEAA7ty9h4L8fMybPx8jRwxn7m9DQyN069kbktLN8TEiHMOHDcaQIUPYOoZkgG3cZIa1hmaM6HLQqeO4cuEs9uzZgxYtKn5rSTbW0tTAiOHDsXgpb2TzsOUsFyY/f/4c169fx/r167mwG92CEqAEaiuB7F0kaFKurXDFFJPK7Ya59Lno+v1lyNIysrDCeBdehn8s+7Op44aUaZiUD5q8evMR/kHBVN+EXLVi8rURHZQAJUAJ1BECRPBQV1cXXbt2rSMeUTfKE3jy5AkuXwvGIg32H3JJCU5uTi6aSkjga24uXr96hjvXziEtLRWGm+0gKipWAfblC0EQyo3B3EnDoL/dA5OmzYbi5NodKCAPzQaGRug/cChIp6IXz0IZHY2OHdojNzcXSZ9TEBHxDuJiYtDW1oK8vHylG5C0qN21ew8Up87CuzdhuHcnGEu1V6FTF84e8v/Fna69WAWBAQF1riSLsLx37x6uXA/G6HGKuHX9Mrp27oA5c+bg9Okz+JKeA0WlmUhPT8URj73YasO6OGtGRgasbWyxcr0xBAVLsmAePwpB0IljTMaOiIhIlZeStIMnpZP1cZAskwMHDsDR0bE+uk99pgQogf8IZDv+my9fRNf9CJqQ0hx712OwNdWGRBMxlGaeNJeVhN5y1TJNE6UJQ5kMk73b1jPz6vugQZP6fgdQ/ymBOkaAZAOQNPG2bdvWMc+oO4QAefi4FnwHs+eWaJywMz68fwenHVZoIy/PdORpIycJjVljceNRGFKLJTFzzrwK25HSlPtXT8JUcxo+xCTA2MEbuqvWYNy4cewcy3NzyXcl/v7+jMbC7NmzK3HMzs7+YzlSfEICdu/ejQnjxzOZBSTDYIPZVggJV/3AzHMQAAQc80aXTu0wsQ6X8t0IDkZw8B0sX60PL3cXdOrYDq1atcTtuw+wYLE28vPz4Oq4DfZ2rHcb27zFHNNmzUfL1iUBtaysTLju2gZra0uIidFfrKu619+/fw+SBblv3z5e/FGgNlEClEANEch2XP6fBmzxf110SjVhq/d947VuZR7+HDQhHzx69gY73fyYAMmNu09hZlfSotjKSAPKU0bWEB3ePoYGTXj7+lDrKAFKgE0CRGiP6JrIycmxuZJO53UC5GHfy8sb+YXAtFmqbJsbFxuNw/sdoDFjFHp3KQmqkT1Xbz0ErTXGaC7XssKe6WlpOLJ/Byx0ZmGDw2F0b9cS919F4YDHIbbPrusL3r17B2eXvTDaZM12MOtfsLl88QziIiOwadOmf3F8jZ5JAmTfvjfE6PGKCDx+GKNHDMXjp0/RWFwaQ4aNxNYtG7B3r8sfbTp58iQePHiIYSPHYcDg/5XNP3zIDePHjED//v3/uEd9nRAXF8fca0SonA5KgBKovwRy9uiUa5rzI1BSQqT63ouu/RGwJeU5JlvdYag7r0wElgRNSstwLlwPgV9QMHaZr8Su/f6/1D6pb1eRBk3q2xWn/lICdZyAqqoq822epKRkHfe0/rl30MMDiZ+/MKUgfzNIecA2cyPISTbGpuWzy7YwcTyGhcv1IS0ji+ysTKSnpeKM/2F8Tv4MicYC6NK2Je49fYPt+ougtmEXzp+/8DfH1+k1aWlpMDAwhJWdE8/7+Sb8FR6H3IRhPRLltLGxRa9+g9F/0FBsszTBoIEDcOrUaRhtssLD+7cwbvRIdO1aWRCQCMeS7JF9bm7IzinAwKH/Q8dOFUsfc7KzYWe9Ec7OTlwVreX5G4kNA5OTk7FmzRr4+vqysYpOpQQogbpGIHuPzn8ZJv9n7yzAqtqaPv6nW0TEwFbsa3e86rU7sDtQsZUUlBATUcBAEBURbOwu7EK9NhY2SokoKa3ftzaCIiDncPow63nuw93stWbN/NYGObMnsh0k4vmqNTt3q3c37wBEfvrC1SphgxWGbd2sHhdV8ntNk5TUVK7+iYXpsHyLxsrb+fzNHnKaFKfTJluJQDEg0L9/f7AWq5qamsXA2uJjIvvQ4eDoCEvbJdAo5GxDnj/h2rWyTh6sE06nHgPRtHkrsO44Xu4r0KW5Efp2/PVW/PS1+3iXoIYKlavh3vVALmWhQukS6NKqHo5f/g8R0XFwtZ7AwXbZehhJ31WwZMmy4gOfB0svXryIc+cvYpaZLQ+zJTflyIE9SIpnDh5zySkhoZ0tLK0wctxUGFaoiL07tiI9PZVzELbp0Bmnjh7EBo/13B/zv4/Fi5eA1TBhfzib2zjlW6+ERWu5LLWD84plOffZz6uBgUGOKBbtwgp0s2LCrB3x8ePH4enpCT09PQnREO+2zPk0btw4sGgdGkSACBRfAknrp4PrKpy35KtIv6/9h9Mku47JifNB3GGYjOzN1TNh48/uOSydx9TaFStspxRrxwk5TYrvzy1ZTgTkkgD7w/zUqVMykSIglwcgAqPi4+Ph7u6O1u07o0Hj5oXucOvmNRzc5QPbKcZQU1WBy7bjqGxUF+9eBGP6yB5oXKtKHhkbdp+GhoYKxvfrxDlbWMHU/Nqnvv4QieWbD8PXz79QPYrThHPnziHicxy6du8jtWb7bdkAw3JlMH78OKnVUZSKPXnyBEeOncSE3yK17OfP4Wr8VKtWFSy18ffBzvRh8HN07NIDhoYV8zhUfp979XNuVn0AACAASURBVPIFrl03624138YGYR/DoKqmioYNG3EFh589e4ZRI0egZ8+eWO7sjJJ6ZZAYHwNrKytRmiw1slmU24ABA8DaSdMgAkSg+BJI9JgOBShwqcHMSf2DpeSw6z+/Cvm+1izP4gtdSJaT00RIIEkMESAC0kFg4MCBOHz4sHQoQ1oIhcBWX1+kZihggPFwnuS5LrODUTltTB7aDUo/i8UeDgzCwK78tVX9c7PY+ERYufqhRev/cS1427dvz5M+xWHS3r17kZiciV79BonFXEUFBaipKCI5LZOn/c6fOYZyBnroJsdFXwsD8f37d5hbWGKW2QJoamlx01NSkjF/3jR4em7IFRnC7p04cQJhUTHoO2DoX0Xfu3ML16+cxcgRI/D8RQgOHz4EPb1SCH3/Hrq6ulDX0ED3bt0xbNgQTs6qVavxOPgJOv/bCRMmjM+Rnf0hojA7ZPV+3759uQgbGkSACBRfAkkbZv6MMclmUFDMiXDva80kp4mgTx05TQQlSOuJABGQKgL0h6lUHYfAyrA2uDY2C2DjuIJnWdcunUM5pRi0b1Kb5zW8TgyNiIbX7lMIj/6K2nXrI+rTJ0yfPgP16sleu11ebeZlntPipejVfwgqVsobxcPLen7maKkrQ1crq3Vt5JcUfP/Bgp0LHgcDdkJDVQEmJib8bCOXcyMiIrBk6TLYLV6VY5+TnQVMp0xG06ZNc9l8+/ZtXLl+E6PG/b1F5rkzxxET+QHm5uYYNGgQOnbshGnTTHHt2jU8fPQI/fv1Q82aNXNknzlzBlu3+mL7dn+oqqoiLCwMQUFBuHHjJpSVlTF16hSuDba8jV69enFRkDSIABEovgQSN8zMitpj/26xSBMuoiQ7V+dXBIqw72vNKLzYd/E9Fd4sJ6cJb5xoFhEgAjJCgNJzZOSgeFSTRQ19+hJf6Nvu38V9+fIZfhtcsNJsJI+78D9tjd9R7g8eXW0N/Pf0DZJT0uHi6o4yZcrwL0zGV4SGhsJ3mz+mzLQQiyUlNFWgraGMzO8/8Ck25bdOBHm3f/vmFQJPHYajg71YdJOFTTZv3gwoaaDPgKxiyO/evsKhgO1wsLfP0zLYzMwcI8ZNRaXKBTvDZk4ZDb9t2/DlyxesW7+BiyyJi/2K9IwMJMbHw8VlJSpWrJgLzalTp9G2bRsuEmXK1KkooVsK86zs8DT4IU4ePQCnRQ4oWbJkln7v3nHpcrLsSKH0HFn4ySAdiYDoCSR5zWJNcsRe1ERrhofojZPzHchpIucHTOYRgeJGgOWN79q1C1o/w8+Lm/3yZu+BAwcQGR2LQUNH8WxaVFQENq9ZBo+F4ossCHr4Auu2H8dcc0uuuGWdOnk7kfBsgAxOXOG8EvUbNkfzVm1Frn1JbRVoqikjJj4NqekFp+ewWjhOC8zg47OFCkP/diqxsbGwd3CEraNzznf37PBB+TL6GD58eK56UJGRkdxcpxVr8j3XXf6bUaGcAUaOHAkWQfLg8TOMnWiK44cDEPMpAra2NoU+D0lJSXB2XgklFTWoa2gi9N0bzJhuyqXA+fpuw/sPH6GooAgtLXUMGjgQVatW5atmlTSk/bBCsOPHj+dqvtAgAkSg+BJgThOulsnPSBPm9RfHteY06e9sJ+1PBTlNpP2ESD8iQAT4IkAth/nCJfWT2YcNM3MLlCtfATPmWvOk7+OH93D+6C44m43mab6wJlm7+uHVu3DuDyBFRUVUN6rJvX3/3//+hwkTsrrvyOtgxT6HDh2GTX4BIjdRR0OFS8lJScvkok3yG6wrjPf6VViyZDHXsYVGbgL+27dDQVkTXbr35m6wSI71bstQtUoVzJg+LWcyO9cRI0Zgkukc1KxVB0rKytDS0s5xWuzb7YcmDeuhXbt2WGhnj6GjJuHm1QuAkiLu3b6JrT4+uTZmBWGrVKmCs2fP4e7du1wEypgxozkn9/DhI6CqpgbDipVQ26g6F6mSkJiCUeOncDJYV6xL588gJjoKNWsaYdSoUShduvRfj5Z18WFpQ1ZWVmjYsKHEHgNqOSwx9LQxEZAqAkkb5xRQ0yRbzexcHeFea5HTRODngJwmAiMkAUSACEgTAdbW0dnZGYaGhtKkFukiAAFLK9Yq1RTlDSvwJOX82ZOIeXsPc0aLt5NLfNI3lNDKanX98n04XrwN4xwoF28HIzVTARu8vHnSX1Yn3b9/H/47dsFqwWKJm3Dz2mUkxEZhwvhfhUYlrpSUKTBnzlyMNZmBChUr52i2zMEa9vYLUa5cuZzvPX78GNdv3MSjRw8RGRGJWrXrwKhWXdSp1wDrXJdh/fr1KFu2LFzd3PEtJQ337gShS/e+SEtLRpdO/0OjRo04Wez5WLp0GVffJDw8HGpqakhJSeGK0npv9OIcG116DsDn6E+4eycIzZq3ROcCujEFnjmB4Ed38T0zAz26d/9rgd9jx45hz969mD9/Pho2aCCRU/jw4QMcHBzg6+srkf1pUyJABKSDQJL3HLG3G2ZuGE3TddIBQIa1IKeJDB8eqU4EiEBeAlOnToWtrS2qVatGeOSAwFbfbTCsVAMNmxTeajg+LhY3r1/EtUuBGNa1Obq1bSw1BG4+eI4Nu05h1959UqOTKBQJDDyPF6/e8ZVOxYseGqpKPHfKYfLmzzPFmjXu0NfX50V8sZwTFRWFJctWYMHPIsvRn6KweYMrPDzyD+OOiYnheH7+/BknT53C+cDzMKppBHs7O47f169fwZzWTZo2A5tbqUp1qKsoYt68uTl8jx8/gf/9rz0X2cKKvjKnCevSw9KC3r59C48NntDXL4UKlaqhdJmyaPe/zn89m6fBj/D4wR3UrVMLPXt0z3fugwcPsGbNWi5KxtxsHurXry/283716hVWr16NjRs3in1v2pAIEAHpIZC0Kev3oWjiSX7Z+ad8ralrpQeCjGpCThMZPThSmwgQgfwJzJkzB9OnT0fdunUJkYwTYLUXli5bAXObRYVa8ub1S+zx3YBe7RrCQE8Hzf8xKnSNuCc8DnmHDXvOQK90OUyePDlXRxFx6yLK/RY5OaFjlz5cdyFhjZJaKohNSudJ3M3rl/EjLRFDhmS1uKVRMAEW8TF37jy4efjg1asXOLxvB9auyb9+ye9SWGFTFZWsDkbZ4+PHj7Czd+BCz/v36w8/fz+ULm2A5cuWcpEo/AzWZeZ96AdcvHgBYydOQ9Pmrf66/NjhACgrZMJk0iRuXlpaGlhq37179xESEoKXr16zjCEsX74cd+7cEXu78ODgYPj4+MDd3Z0fDDSXCBABOSOQtHkuFPCrS052zaWcr/ghkvuaUwr/vS5nqIVuDjlNhI6UBBIBIiBJAq6urmAddFgRQRqyT8DHZyuU1bXRrWe/Ao1J/vYN7ssXYO38cVmt/KR4fIiMxt3g17hwOxgjx5lwtSDkbdy4cQMXLl3l6mAIa7AWw3E8Ok2s5kzB6tWrUL58eWFtL9dyWN0SFunRoFFTxMfGoHPnzujXrx8XCcLPYA4YDw9PGJQxgOnUKThw8BCXzmNlxV9XpbVr16N27Zro2bMnWC0QV1c3dOzaG43+Em2WlJgIV2dHLv2mZ88esLa2hr6+AeIT4qCnVwpVqlTGfGtrsBbmxsbGcFm1SqypOiza5eLFizAzM+MHKc0lAkRAzgh82zIvx6LsWrDZ3xDlteZkcpoI+iiR00RQgrSeCBABqSLg4uKCJk2a/DXHXaoUJmX+SmDfvn34GP4Jw8dkvUHOb1y+cA5hz2/BfJx4a5gIcnSrfQ8jU02PSyWTt8E6rmz28cXEqXP46nLyNw4s0iT+WwZXAPZvg6V92FnPgu/WrULbW97OJz97WFTGypUrEZ+YhFp1/sHDe7fRvVtXzvmc+f07Lpy/gM6d/y3UGf3+/Xuu0CsbqampXN0SfsbLly+xarUrevfqiYEDB3JLmePEfc06zDJfUKiojRvckJwYjwYN/sHdu/egoqKM0aNGo0mTX6l6Tk5OiPoUjZEjhnMRJ+JwtJ4+fRos2sTS0rJQG2gCESAC8ksgacu8nG452V1zsr4C7J1PnsiTnO46gt3XNKEoN0GfKnKaCEqQ1hMBIiBVBLZt28a9IR0zZoxU6UXKFJ3AxYuX8DY0DD37GucrZJmDBRZM6I3yZUoVfRMxr7x69wn2nL0Dr42bxLyzeLbbvWcvMhVU0blrT6FsqKKkCC0NJcQmFp6i8/TJQ9y/dQ1WVvQBlVf4LN2GRXXdf/AAXXv0RZPmLbHTzweRER9RokRJVK9RC7duXuFa/rJIjj9Tc3jdp7B5zOHGUnMmTpyYayqLfPHeln9nppjP0dAvbYCUlGRYzzXF8uXLUKtWLc5pw/4tUFJSyrMtSyFLS0tHCR1tLtqLdbgS5fDz8+OceGPHjhXlNiSbCBABKSfwzcf8Z/ec7Kojv3/NVp69HBDufXKaCP5gkNNEcIYkgQgQASkiwP7gfvr0KSws+AsJlyITSJV8CNg7OKJT1z6oWz9394vExARsWLUI7lay5SS7cf8ZNh24AP/tO+XyvFk72XMXLmPcpOlCs09HQxmJKRncG7m/jWOH96NqxTJcmh4N/giwOkJu7u548/oNKlSshOSUZLRs3R5VqxlBW6cEdvptxpPHD9CiZSsuBYd1KWNvRlk0iLq6OrS1tcFSUZo2bYr//vsPzZv/KuCckZGB0NBQrr4JazHM61iydBmMav0DRWUltGnbAco/a6l8//4du7dvxudPUYiNjYO13RK8ffUCmamJ6FFAUdg/9zx58iRYQdwjR45i584dYDJ1dHR4VY3neSwCsnHjxujePf9itTwLoolEgAjINIFvW825kBEuoiTbMSKGa82JrjLNTRqUJ6eJNJwC6UAEiIDQCLAPawEBAVyoOQ35IcDeGtsusINlPu1sA7ZvQbMqmmjXVHaK/+44dgkP3nyGm5ub/BzSb5awyAVrG1uYWTnkfMgV1FBlJUWoKCsgOTXzr6IO7NmOf+rVxL///ivolsV2PXNwsCiNuLg4nDlzBm/evgMr9Po9MxOfYz6jUuWq0NbUwODBxnB2Xgk1dXUYlNbHl69foaWtg0+RkZzDZbGTE+rUqQNPT0+EvHyF9LQ0LgKIRYLwMsLCwsCiQrQ0tVG6dCkkfUvGhKlzoKWlje1bvVClkiFGjRrF1QvZ5ueHFa5eWGJvhaFDjLnaLLwOb29vsCiXl69eYauPD1RVVXldytM8lpbDoh+Z44QGESACxZfAN1/JvNAjp4ngzxw5TQRnSBKIABGQIgJcBwc7O7A0HRryRcB9zRoYlKuMzt165TKMheU7O1pgxZwR0NPVwfmbD9GlTaNccxKSviElNR0GpXSlAor1aj907TOIK3Ypj4NFfEVGx6JHn6y6FOIcEeFhOHZwFxY5sk4uNIRNgLUcZi10W7dujf37D+DFixdcoVVWz4RFauiW1IOiggJXA4VFlcyYMRNVq9aAhoYqOnbsgE6dOhW5jkjUp0+wsLBEaf3S+PI1huv0o6enx5m43sMDVWvUQ9XqRli93B7Dhg1Dnz681Tm6eTMIu3btRmjoO1hZWQm9uw5Ly2HRJlScWNhPI8kjArJFgHOacMVLftUo+VnMJKfWiSjua05YLVugpFBbcppI4aGQSkSACBSdAHvDPWDAALCwaxryRYC9CTa3sMDqdVvyGPb44T0cCfBHhbKlcDXoHo54LoTKz+4f+87ewt6Tl6GnWwIb7CZDVYW/riDCprjz+GW8jEjA4qXLhS1aauSxCAVHRydY2y8TmU4qyopcqk5G5vc8e7i7OMHCbB7KlSsnsv1JcG4CjosWISExGUY1qmHG9Glc218LSyuoqqqhf78+6Nixo9CQFVRkds3a9QgLC0flatVx5cJZLuKwevXqhe774cMHLLSzg2H58ujatSv3nzAHSxVjjkRW14QGESACxZfANz8rzmGSb8kSEX5fc8Kq4gtdSJaT00RIIEkMESAC0kNg6NCh2LRpU84bSOnRjDQRlIC7+xpUNaqLVm075BHF6ptEf4rCysULMKxXW6irquLqg5do1qYzOnfvAw8XByw06QstDf46egiq8+/rL9x6jN2nbsDH10+YYqVS1u7de6CgqoUOnYT7AfR3YzXVlPEtNSOP/W/fvMKF04dhb28vlWzkVamrV69y9Uyya5ZcvnwZFStWRI0aNf5q8pYtWzB58mSesYwdPQoL7R241J8/R2BgID5+DMOt27fRscP/MGLECJ7l7tq9G0eOHMEmb2/o6gonKo1F5syaNQt79uzhWQ+aSASIgHwSYE6T3F1zfojlWmOci3wCFaNV5DQRI2zaiggQAfEQWL58OYyNjfP9g1o8GtAuoiLw5csXmJqaYu1G/wK3ePP6Jd69eYW01FS0aNMe+vqlubkrHC2xeNpA6OrwXoRS2Hb0nOKIs2fPCVusVMpjHz4/f01Cr36DRKZfSW2VfDvqvHgWjKMHd8NdTmvGiAyoBASnpKRgsPEg6JcqiSHDRqJatWpcYVlWVLZly5Z5NHJ0dMTHd6/QuHlrzJ49W+gav337ltNBWOPJkyc4duwYbGxshCWS5BABIiCjBJL95+MHF2qSNVgxWHFca5LTROAnhpwmAiMkAUSACEgbAVZ0kIXlM8cJDfkjsHPnTiir6+B/nbrxZVxqSgosZk3EiF7t0L1dE5TQ1uRrvaCTj168g9shEVi+3FlQUTKx3tNrIypXr4OmzVuJRF+WnqOppoS4pLxtiHl1mrAP5ywtY6OXF6VOiOSU/i7U22sDgh89xKfoaLjZmMBj50nEJaVATVUFX+MTMGeeJRe5kj0SExMxdfJEjOzVHndex2Dx4sUS0Jq/Lfft24dsZy9/K2k2ESAC8kbg2/b5OY4SzmHCuuiw7jnI6qaT56uQ7muMLR5/d4jyeSGniSjpkmwiQAQkQuD8+fO4ffs2bG1tJbI/bSp6An379cO6jX5QV9fga7OU5GQc2b8TsZ/DUbmUJjq2rI/qlURf9+L24xB47jkD/x27+dJXViefPn0GT56/xMixJiI1gbUhTkjOm57z7u1rnDyyF0uXLPnr/nv37sXD4GeoX7cWRo8aJVJdSXhuAqyLTgVdFfTv3BIVyurn1CBKSU3D24+RcPU7ga1+23MtYuk+l88cgenQbliwdhd8tuW+L42Mly5dyhWWZQVwaRABIlC8CSTvsMlb0uRnUdhsMnlKmwjhviY5TQR+8MhpIjBCEkAEiIC0EWBF/RwcHODr6yttqpE+QiJw7tw5vAmNRL+BQ4okkbVUvXXjEu7duo5KBtqYNoT39qRF2dB85Vb06DcYvXrl7vxTFFmysMbKej5mzLOBmpq6SNUtyGkS8uIpDu71x7q1awvc33/7dty6dRuTTOfixOE9cLC3E6muxVk4K+LMzqJjp47o0aMn12lnsf0CrLQch1K6OrnQsDevExeux3rPvHVFzObNQ9+2dVDeoBS8D1zErLnmqFmzplSjHTduHJydnWFoaCjVepJyRIAIiJ7Atx22P5vlZNcy+dVFJ6vWiWiuNUavEL1xcr4DOU3k/IDJPCJQXAn079+fK7ynqSneFIziylvcdoeFhcHOzh7LVm8QaOvv3zOxxtkBlmO6oYwI2xFPWrgOYydOQZcuXQTSVxYWP3jwAKfPnsc4kxkiV5el6KRn5O2e8+bNS1w4ffSvjhDr+Tbo1msAypWvgBVOtti1a6fI9S2OG/j4+ODCuVPo27EFbjx8gYbN2uDihUCsNBvDRZj8OXwOBOJTshIWLlyY5575vDkY0b0ZalWpAFPHDShZsiS8t4jWOR4aGopSpUpxNVb4HQkJCWBOk0OHDvG7lOYTASIghwSSdy6QiFUao+W3W5+4gJLTRFykaR8iQATESsDS0hJjxoxB48aNxbovbSY+Am/fvsPuvftgPHwsSpQoeqeLVUvtMK5nUzSqI7zij39SMHP2Qav/dcGoYpACsn//fsQlpaFXX9EVgC3sKXvy+AEunTuBZcuW5pnKCo/6+W9HnX+ao2btOmC1brzWrcR8ayvo6+f9EF/YXnS/YAIHDhzA4/+uYf6kgVydEjaWb9qPr7GJsJk6GPol80aZLPbaj/rN2mDYsGF5BM+dOQ0mAzvin1pVEBYVg7vP3uDm03CutbCohpmZOdc+ecMGD763uHv3LgICAkSqH99K0QIiQAQkRiB5F3OaKEDcfYc1Ri2TmM3ysjE5TeTlJMkOIkAEchHYsGEDEhOTMH++NZGRYwKsM4Wj4yIMGTEWHf79VRhWWUkBLHXja2LeIqF/4tjtvwU/4j6gaf0aqFOtIsoZ6AmdmOu2o9CvVAuTJk0SumxpE7h02XL06GOMCpWqSEy1tauXYuTwobmcpqwryoWLl/D48WMMGTkB1WtkpXWsXLIQ8XFfKZ1PyKfFIv32B+xBgDv/v4OXbNwHnVJlYW71q+PMiRMncOfqOThM/+VMWbhmB6rVbYypU6cKWftf4jZ4euLVq1d8d2LKzMyEi4sLypYtWyx+7kV2ACSYCMgRgeTdLA00T9USkTtSNEaS00TQx4icJoISpPVEgAhIJYHDhw+DFYRdv369VOpHSgmXwNatvrhy9SpGjZuCfxpmRRcxx8n378B3liT8l8Hqm+zbsRmfoqKQFB+DdbbCd2yY2Htg5JgJ6N69u3ANlzJprB7FnLnzYG23DEpKSmLXLjIyHAf2+OPfTh3RtcuvOjXfv3/H8OEjMGKcCdq07ZBLr22bPdC1c8d829uK3QA52XBA/37Q1tSAyZBu6NSifpGs8jt8ETcfvYTbWg8uNWbu7BkY3q0FWjeqnSNv876z+K5VFtOnTy/SHrwsioqKwtKly2Bvb4cyZcrwsgRsjZW1Ndc1x9bGBu3ateNpHU0iAkRAvgkwp0lW7ZKc4iViuVYf8fei6PJNXTjWkdNEOBxJChEgAlJGIC4ujnu7x8LDaRQPAqy4pJubOxo1b4WevQfybTSrb+LsaIXF0wehZAn+6xf8bcM5y7bAbP5C1KhRg2+9ZG0BqxUyeYY5tLVzp16I2o5Txw/hTchTDB5snKtNLdv3yJEj+BQTjz4DchcOjvkcjd3+m7A8nzQeUesrr/KnTZ2MPu0b4OaDECwwHQJNdbUimxr88j1W+hxC9eo1oZj5DY7Th+aSdevhC6zbdQq79wQUeQ9eFma3BeVl7omTJ/Hg4SMYlisL5rxnLdKLUg+Fl71oDhEgArJFIHmvfVagSfbIztQR8bUGH06TgyevIOjuUzhZTYKGuqpsARahtuQ0ESFcEk0EiIBkCcycORNz585FrVq1JKsI7S42AiyiwGXVatSu3xit2vyP732jP0XCz8sFqy3G8r22oAWx8YmwdtuJLb5+QpMpzYJYgd6RE0yhpye++iCuKxzRpnUrDBkyOF80W3x8oKiihZ59BuS6/zT4EYLvB2HevLnSjFSmdBs3egS2LZ8jNJ0jor/gQtAjjO6Xt2Vv4M0HOHs7BKvd1ghtP0EEsQLVLD2NRa+NHTMarL7PunXrBBFJa4kAEZAjAsl7HX52z8nukvNbhRMF/NY9R7j31YcvLpCim3cAbj94Di9nM+jp6oCcJvmjIqeJHP0gkilEgAjkJuDn5wdFRUWMHSu8D8DEWDYIsCijiVPnoEbNX6H8vGgeHx8Hj5X2WGc7kZfpPM25dPsx/I9fxzY/f57my/qkkJAQeHp5w9oubxFWUdjm4e6MqVNMULVK5QLFs+4lUZ/j0N94eK45G9evRqcO7dC5s2hbTovCbmmUOWHsaCybMxLly5QSi3oXbz3GtqNXsH2H9HQ+Cg4O5rrtnD17FsrKylxBchpEgAgQAUYgJcAxV0WTbCoFlYYV1n2NYU75HgBzmPjsPokGdauT06SQR5ScJvQzTASIgNwSePbsGby8vOhNn9yecMGG+fr6QkFZE9179+fL+muXLyAi5BZmj+zJ17q/Tb58JxhHrjzGmnXFp76O4yIndOs9ENVriC7Ki0UVbVjjDJNJE2BUSNrTu3fv4Ou/A6YzLXKOKjMjAzOnjMbRo0eFdtbFURBzSL1+/RqvXzzD3DG9UatqebFi8Nx9EhGxaVjm7CKUfSMjI1GuXDmBZVGko8AISQARkDsCyQGOOTVMsmubiOOr+tBFeViyiJJ3HyLxv1YN4eodUKDThM3z9DsCbxcL1KhiKHdnwqtB5DThlRTNIwJEQCYJDBo0CP7+/tDREW99BZmEJUdKBwYG4uqNWzCdac6XVbeDriMl7BGG9WjN17q/TR4y1xnLnV1Qp04docmUdkF79+5FeFQMho8WXsTOnzafPHoQ3zO+YeqUKYXiYG/9X775gEFDR+XMvRB4GvFfIjFDhEVEC1VMRicwZ7SKigquXApEfaOq0FBTQYfmddGwVlWJWBQWHYtVfsfhuGiJQG2jHz58CB+frXBycoKeXski2xIbG4vJkydz6Tk0iAARIALZBFL2O+U0z8mplfSzxskP/OAcKtmhKMK8rz7UMdch/J6CE/z8TYFOE3Zv37FLVN+E9Tf6wZXvpUEEiAARkE8CK1asQKtWrSj8Xj6Pt0CrXrx4ATf3NXBc5saX5Z+jo7Btw0qsthROStfxS3dw93U0nBaLJ1WFL2NFODk6Ohpu7msx22KhyHZ5+eIZjh/eg1Uuf48wYPUlzC0suY4+LF0vezgtNIe52TzUrs1fCpfIDJIBwazY8iIHOzSuUw0Z6WkY2qMtKpYrLXHN4xO/YeKCtThw6EiuM+ZXMRa9NHnyFBhWrIQ5s2bw3C3nz33OnTuH+/fvw9qa/3bL/OpM84kAEZAdAsn7nSQTaTLYIQfSnQfPczlC2HV+kSZ9u7XhIkyya53IDmXRaEpOE9FwJalEgAhICQHWdvj27duwtbWVEo1IDXEQYK0+Fyy0g8NS15ztXr54gjMnDmPwiPGICA9D7Ncv6NytVy51EuLjYT13CjzspiAsKgYtGwqWXrLG7wi+KerAOUb6WwAAIABJREFUzs5OHGZL1R6+vttQolQ5tGnfUSC9nj8L5qrjKSkpo2bturlkrXCaD0cHB5QuXfAH92XLl6NStVro2r1PztqoyHC4uyyGv1/xKM4r0AEAXPv2nTu2QyEzDUvmjEI5A/HULOFH7+lOG1G/cXPMmSNYEdpbt27h9NlAJCbEY5XLSn5UyJm7dOlStG/fHp065S1eWySBtIgIEAG5IJByoOCCrKI0UP03pwmLMrF32Zpnu+y6Jhev38+5v8R6Eox7dxClajIjm5wmMnNUpCgRIAJFIZCQkAD2B+zKlUX747coe9IayRNgThNTU1Os3ZhVfDU87CO83JZgaPdW2H82CAlJyRjYpQWuPHgL+2XuuRS+fP4sHt67ifS0dAzp3BitGvDfJvjNx0i8fh+BHSeuYvvOPZIHIgENUlJSwNoPW9ouhrKKSpE02OGzHsmxUdDV0cTHyC/oO3wSatWulyPLZakdJk4Yh0aNGhUof/r0GTCZPg+GFSrlzDlz8ghKaqtj0CD+W1MXyRAZXzRoQH/UqmqIFebjpNaSXSev4mjgTYwZPwn9+/NXy+hPo8IjIuHl6Qkzs3lcUVd+B4swcXR0hJaWFr9LaT4RIAJyTCDl4BKW6IGs1JtsQ0V/rW5c8Iub/CJNAo5dgvuimXDftA9D+3VCi8bFJ724oMePnCZy/INJphEBIpBFgL3l79evH5emQ6N4EGA1BUxMJmP9pu2cwU8fP8SDq0dhPq4v0tIzkPQtBXq62nj04h08913EIue8bUE/fgjFRvel2LTIlOeQ/5NX78Jn3zmUMdBHfEISnF1WoUqVKsUD+h9WslSHXr16wXfX4SLZv8zeHMadGuHfVg259YcDg/AqVhFjJpjmyFvnuhQzppmicuWCO+c4LlqEFm06oWnzXz//C61mwdHBHlWrSqYGR5GASGhRTEwMFlibw8vhF3cJqfLXbTMyMrHAfQfqNW0F1j1L0MGcfurq6nyLuXHjBk6fPo3FiyXzRplvhWkBESACYiOQcui3VF1WICPHcYKcWiY5ygjxvvog/pwmQXefcnVMUlJTMd3GHRamw4q944ScJmL7MaGNiAARkBSBK1eu4NKlS3Bw+JXTKSldaF/xEGARRtbWNrBfuprbkLWWbWWkh17/a5pHgZfvwrHlyFWUrVAFoyZMz3Xf020xEmK/YsHkATAopVug8oE3HsE74BSMjGpiwiQT1K2bO41EPFZL1y7MaWJpZQ3LBezNGn9j59YNqF5KEYO6/irI++p9OLaduotZllk/x0z+Ghcn2C1cgJIlCy7auWvXLiQkZ6DfwKHcusiIcBw9sBOLHOn3AS+nMnv2DIzt0QrNG9TkZbpE55y6eg/n/3sJtzVrJaYHizDp3r072rVrJzEdaGMiQASkkwBzmvzZLYcLOeEiT7IjTnJ/FcZ99YEF1xcrqKYJc5poqKvi9ftwmFq7YoXtlGLtOCGniXT+TJFWRIAICJkAizQJCAiAhoaGkCWTOGkkkJiYiNGjx8Br626cOXkYESH3YDN5UIGqfolLQMi7cKzfdRr/duuN3v2HcNElaWlpYKkc5ZS+oN+/LfNd/yjkPTbuO48588xRr96v1BFp5CJuncaMGQMru6UwMCiba+vTJw7hf526QUtLm/t+Sso3qKtrcv/vv2U9tBSSMXN4t1xr4hKSYOd5EAsWu+JS4GkcP7ofixwXoXbtv9edOXjwIF6/+4jR46cgNSUZnutWo12blhg4kFJzCnse2PNvNnsGHKcPRmm9gp2GhckR5/2l3vtRr2lbDBkyRJzbcnux3zvsmT98uGjRVWJXmDYkAkRArARSDi/PZ78/Q0r+nCL4/b85TcQKQIY3I6eJDB8eqU4EiADvBDw8PFCxYkX6oMQ7Mpme+e3bNwwfPgLe2/bi6KEAKMW/g8ng3B/C8zMwPSMD67afgLJueQwfl5WO4L1+NUqppmD26F+FRLPXPn0VCkePPThwiD4k5ceTdTBq1Kwt6tZvkOu22YzxKFFCF07O6/A5+hM2rXNGoyYtkAkFfAkPgc2EfnnE+R4IRGSyMhSVVaCipIjJk03+GmGSLYDljnt4bEDGdwWEvHiC3r16cel6NAonwH6OTCZNwIzh3dGuqWw4BINfvodnwAVs3LS5cAOFPIM56KKiojCd2lgLmSyJIwLyQSDlyHIo5NQ0UQDXZlgM12oDqBmCoE8QOU0EJUjriQARkAkCL1++hJubG7y8vGRCX1JScAI9e/bE1p2H8OTxAzy8eoyrZ8LLOHX1Lh6EJmKi6Txu+uKFZviRloR+nVqgd8fmuUQs8QpAg5YdYGxszIvoYjfn6NGjiI5JQK/+ufmYTR8P/VK6mDjdCv7eblgyawhu3H+O2PhEDO7eFirKyrlY3X36CoeuPodhxaqIj4vBgiJ0w2K1Jtq2bVvszkAQg01MJiEsLAymw3piQBfZqAl15/FLbD8VBI8N4v9dP3XqVNjY2KB69eqCYKe1RIAIyCmB1KPOnKMke3AOk+zrH8hK0RHBffX+5DQR9JEip4mgBGk9ESACMkOA/UHLWg9Xq1ZNZnQmRYtOYNAgY6x034iEhDic3rcFZmN6QV1NtVCBExd6YNDIiWjavDXS09PgudoJmamJaNe0PgZ3b5Nr/fJN+1GniWRSAQo1RAomMEfFmXMXYDrLIpc20ycOR9um9fDpSzyWzRkO1UK662w5EIhMncq4cfkcNLW04O29SQqsk38VLC0tUUr9B2ymDJYZY733nkWKii7MzMzEqvOrV6+wevVqbNy4Uaz70mZEgAjIDoGUo84F1i4pqKaJML6v1m++7ECSUk3JaSKlB0NqEQEiIHwCBw4cwKdPnyh0WvhopVKivYMjBgwejYvnjqNDXQO0+Ie31sGPQ97h8KV7uHn3MfT1SsK4exvcC36FJXNG5bFzx7FLePoxHs7OzlLJQNJKZWRkYOjQYdiwZWcuVUxGD0LAGmtoafDenWTXyeuI+hwD1ZIVMHv2bEmbViz2P3PmDC6dPoJl88bIhL0sFct0kRcsbexQp454W2Ru2LABFSpUoBRQmXhSSEkiIBkCqcdWcnEkYmqawxnJ9lMnp4nAB05OE4ERkgAiQARkhQDLz2edDVatWiUrKpOeRSTAOquw9Bw3j63wXrMEa+ePL5KkdTuO433YJ7jOz7+Fqf/Ri/iUrAJra+siyS8Oi44dO4YrFy9ASUUVMy3skZmZATuL6fBf8XfHR3p6Bt5HRMOocvkcTObOvuhjPAzduhVen6Y4sBW1jSdOnMCda4GwNx3CvR2VhWHmvBUjxpmgTZvcUWGi1t3CwgLLly+HmpqaqLci+USACMgogZTjLj+b4fysZfLTgZJT24Rdc810hHtfrS/9jSLoI0NOE0EJ0noiQARkisC6detQtWpV9O/fX6b0JmX5I/D27Vv4+m1H0xZt8PDaKdhP47+Txn/BL7H31HWsspqQ7+afv8bDzNkXvv7boapaeNoPfxbI1+xBA/ujS5smeP4uAqoqyrAY1xvlDUoVaGRGRibMV+9E2XJlMaFXc1Qoq49jF+8gOlUVk01zt4WWL1LSZU18fDxmTpsCvxVzpUuxArR58OwNth69Bg9P8abIHDp0COHh4Zg5c6ZMcCIliQARkAyB1BO/v7QTvCtO7piVP236JV+tj5VkDJajXclpIkeHSaYQASJQOAGWnjNv3jzs2rWr8Mk0Q6YJDB48BMNGT8DzOxeK5DQZNGs53GxMUK1i7na52VDmu/qjTqMWMDExkWlO4lDexcUFesopGNu/E+c0+duITUiCk9cBzJq/BF5uyzB7eCfcCX6DC/+9wEZvb3GoS3v8RmDEsMHY5DQD2prS3659nI071qz3QunSpcV6hsOHD4enpyf09fXFui9tRgSIgGwR4JwmWaEkYv2q1ttStkBJobbkNJHCQyGViAAREC2BFStWoFWrVujcubNoNyLpEiXACv8OGTkRl07sxdLZw/jS5cSlOzhx4yk+fPwAi/H90alVw1zr4xO/YbSVK06cPMWX3OI8uX/fPjjksYCnNI+9Z4Jw7X4IxvZpgxqVysJ2zS5s8fUvzvgkYvu1a9ewb9c2uBeQniYRpQrYdPfJq/gQlwkbmwViVevcuXO4f/8+peiJlTptRgRkk0DqSdesKiPZjhOuuonor8lpIvjzQk4TwRmSBCJABGSMAEvdYI6TTZuoA4eMHR1f6s63sUX5CpVhoJyAkb3b87X2zLV7eBOvht4DhuL0sQCEPL6PRTOGQEcr62275+5TiMtQw0I7O77kFufJCxbYomopdUweyls9koSkZI631So/jDGZhiZNmhRnfBKxnf2unDdnNufsKsq49/Q13nyIROK3FHRq2QBVK5Qpihie1oy2csN6z41ijzJhkWasVlblypV50pMmEQEiUHwJpJ5yzemek5Va80Ms16o9zYsvdCFZTk4TIYEkMUSACMgWgYULF3J1TVjECQ35JLBjxw68ehuKLxHvsGZ+/nVJCrL8yPkgRP/QR9+BWREqH96/g4frEnjaT8bL0EhcevgB5lbUwo+fJ+f9+/ewt7WGz7LZUFJU5GnpZHsPTJ0xB61bt+ZpPk0SLgGWzmgxbza2LZ/DU4TQhaBHiIqJRci7CLwL/4TU9EzolzaAlpYWosI/wECvBGaO6oUqhsJ1nrDW3+Wr1YHJ5KnCBVCINNZS+/Tp01i8eLFY96XNiAARkE0Cqafd/lD8Z6RJgeYI574aOU0EfmDIaSIwQhJABIiALBJ4/Pgxtm7dCnd3d1lUn3TmgUBwcDD2HziMd29C4GBqzNdb7gu3HuHqkyiYzsldcd596Xw8CH4GFpJPgz8CmzdvRtqXD5g+omehCyM+fYGb/3FYLnBA+fKGhc6nCaIhwLrB6Cgkc46Ov43AoIc4e+0BktMBDW0dVKxYEZMnT4a2tnbOMtZ++s6dO9jkuR6u1hNQskTWvVNX76Jrm0ZQUf57rZuC9jdd5InuPXtj6PC8LcFFQ+WX1Dlz5mDatGmoV6+eqLci+USACMgBgdTT7jmRJawjGdclRwxfVXvMkwN6kjWBnCaS5U+7EwEiIEECc+fOBat7Ub9+fQlqQVuLisDt27cRsO8gBg0fhStHd2K+yQCetzp5+T9EpJdAn4HDc9a8e/Mavl6roa6pifUenjzLoolZBC5evIhzxw9g6ZxfH27T0jPw9kMEPn2JRxVDA3z+moDjV+7iQ+QXzJwzD02bNiV8EiLw5Ekw3FethOPMYahQ5leB01fvw7loEqPKhoiJTcD1+88QEh6LMWPH85RCZWlhju7NjdC2aV2s2noYz19/wA4XMygpKfFt6aSF69CoWSuYmZnxvVbQBY8ePcK2bdvg5vbnm2NBJdN6IkAE5JVA6pk1Wab9GUAi4ms1cpoI/EiR00RghCSACBABWSXw8OFD7N27F+xtKg35IxAUFITL14IwZsJUODuYwc1yDM8fzK7ceYJ1u06iR59B6NK9D1ezTUVFFRazJ2O7vx/U1dXlD5iILXr69CkWO9phtfUkJCR9w/6zQbh2NxjVq1bBDygiNTUF6enp6NqtOyZM4C+dSsSqF0vxo0YMh4nxv/j3ZxHk+89eIzAoGE9ff0RJ3RJI/vYNKqqq0NEtCeeVv7fR/DuuJUuWQBvfcPfpa6RnZMB2ijH+qVkVijymbGVLX7pxHxq37oj+AwaK5HxOnTqFXr0KjrCZP38+xowZgwYNGohkfxJKBIiA/BFIPbv2V2RJVgnYX810cq5/RqAI8b5qN9loGy/NJ05OE2k+HdKNCBABkRNwcHBAz5490bZtW5HvRRuIl8DOnTsRE5uEJs1bYa/veqyzncSXAk6ee5GQpoCM74CiohISExKwwnk5DMTczpQvpaV8ckxMDGytLcFSNdq074ApU6ZIucbFV724uDjMmDYFNatUgIa6Kj5EfUWNWnUFjuoIDQ2FtaU5MjO/Iy09DQ1qVcXi2fyl1izdGIB0ZS0sWbJMJAd09uxZbPT0gFHN2nBZldchxLoKnT9/nisAS4MIEAEiwCuBtHPrOEdJ9hBxgElOQItatzm8qkjzCiBAThN6NIgAESjWBCIjI2FpaQlWNJSGfBHw8fGBfrkqKF3aALt81sJj4WS+DZxsvx6Dh49Bnz59kJSUxBW0pCEYAeYwUS5i/QrBdqbVRSEQEBCAxMRETJrEn9Pxb3tFR0fD1tYWnz5Fod+/rWBizHv796evPmL/pUdYtGRpUczhaQ0r8LrZaz0+f43HgYOHoKqqmmvdyJEjsW7dOhgYGPAkjyYRASJABBiB1HPrCqhhkh1xUlCNE8Huq3adTQcgIAFymggIkJYTASIg+wS8vLxQtmxZGBsby74xZEEOgQULF+J///aEsooKgs4ewIIpA3nqAPI7wg8Rn7Fs8yGs2+BFKTn0bBEBIRNgzhMWdWIxrg/qGRXesvfJq1Cs23Uam322CVmTvOLGjhyO7z9+YPnKVahSpUrOhH379uHr169cPSwaRIAIEAF+CKQFemSl5GSn3vyWgpMdgiKK+2pdZ/GjJs3NhwA5TeixIAJEgAgA6NatG1hINqtiTkP2CbDUAienJRhrMh3nTh1B3TLK6NOxeZEMM7HfgEVLluf64FQkQbSICBCBPAT69O6FnassUEJbs1A6rAW145IVIv9Z/PbtG4YYD4KSkiKq16gJVzc3LqWMRUj17duXazNMgwgQASLAL4HU8x6/1TRRwA/8FlkC0V2rdp7Jr6o0/w8C5DShR4IIEAEiAODw4cMICwvDzJn0D4u8PBDMEbZt9xE8engPT26egfnYv7dNzc/u/Wdv4PiV+/DfvlNesJAdREBqCHz//h0jhg3BrFG90LpRHSgrK+Hh87e4/N9TjOvfETramvDYeQKPXryDgqISBg0Zhn79+otcf5aS9N/1C+jWtjEOBN7Bx/AIlNTVRcvWbVCtWjX069dP5DrQBkSACMgfgbQLv3fey44pybKTc6BwMSjZQ3j3VTvPkD+YYraInCZiBk7bEQEiIL0Exo0bB2dnZxgaGkqvkqQZzwTWrV+P6jUboGmLVtjothjTjNujXGm9AtdnZGTiUGAQ9HS18PRNGOISUxD84i38tu+Apmbhb8F5VowmEgEikEOAFQdeaDsfyExHs3+McP7mQygrKmLW6N5Yt+M46v7TEKam07juOqXFUIT53LlzWLvGHXvdrKCirIzgl++xfucJWC9wgIuLC3x9fen0iAARIAJFIpB6wbOAmiYF1TIRzvdV/51eJH1p0S8C5DShp4EIEAEi8JPA3bt3ceXKFYG7QxBQ6SDAIoe8vDejU5deCDyyA8vnjvyrYpHRXzHdaSOq1agBHR0d1KtXD6zgIw0iQATEQ2D16tVcYe7Pnz9j4QIbeG/aIp6Nf+7CikffuHIBbvMnQVNdFYs89yL801esWe+JLVu2oFOnTmjWrJlYdaLNiAARkB8CaRc3/lnNRCzX5DQR/Bkip4ngDEkCESACckRgxYoVaNWqFTp35r2bgxyZL1emBAYGIuRNKOrWb4igcwcwf+LfQ+oTkpIxbZEXdgfslysOZAwRIAJ/J5Ceng4VFRWwWiZTTSZgre1krPE/hvrN2qL/gAG4fv067t+/D2tra0JJBIgAESgygbRLG7k2OD9+ZKfi/BDLtWpH0yLrTAuzCJDThJ4EIkAEiMAfBHr16oWjR49yf0TTkF0C//33H3bv3QfjoaNx7sh2OEwdlK8xX+MS4eJzEN3aNcaZ6w8xdPREtGzZUnYNJ82JgAwSYA6LyZPGw7BCJSgqKSMqIhz9BgzEkCFDRGrNrVu3YG9nh4oVK6Bhw4bISPyMN+/D0bJdB0yYOAkpKSmcDsePHxepHiScCBAB+SeQdnnTz8iSgmzN7qsj3PvkNBH82SKnieAMSQIRIAJyRuDmzZs4efIklixZImeWFS9zPnz4gIV29nB284L5jAlYazMBBqV080Bw8zuCkI9foKqkhM7dulPr6eL1mJC1UkLAyckJZTV/oIx+SaiqKGH/6evo3qc/Ro0aJTINZ82ahbK6aqhQuiQCgx4iKTkV2poamGdhhRYtWnD7LliwAAMHDiRHqshOgQQTgeJDgHOasC6NP7IiTMT1VbXDlOIDWUSWktNERGBJLBEgArJNYOXKlWjatCnXipiGbBJgb4iNjY1RqpQ+alSvjrE9GqF6xXJ5jIlNSMIMp41cuKyLq7vI25nKJk3SmgiIlsBiJyfULqeJoT3b4dq9Fzhz+zmWrVgpsk0tzOeiZd3K6NqqAZZs3I/xU6Zz6Tnt2rXL2fPMmTN4/PgxV2eFBhEgAkRAUAJpVzYLKqJI68lpUiRsuRaR00RwhiSBCBABOSXQp08fHDx4EGpqanJqofybNXDQIKipqkJXtyTaNaiMsf3/zdfoB8/fYvmm/djq64cSJUrIPxiykAhIGYEJ48bAfGwfeAecwefYBOzdd0AkGi5evBgvngXDxLgrVFVU4LX3FGbPNUfr1q1z7cccKCNGjOBSNWkQASJABIRBIO3qlpwAk2x52QEnorxWaT9ZGOoXaxnkNCnWx0/GEwEi8DcCLNed/cG8bNkyAiWjBJ4/f44TJ06A1S35Fh8D89HdYVimVO4PRympmLVkE7bt2C2jVpLaRED2CSxe5ID3b99gwOBh6N+/v1ANev/+Pby9vfEk+DHaNq2LprWr4uq95wh5H4E9Afvy3cvGxoarZdK8eXOh6kLCiAARKL4E0q75SMR41fYmPO978OQVBN19CierSdD4/y5iNLIIkNOEngQiQASIwF8IsBaYDRo0QI8ePYiTDBLw9/fHkaNH0aFTV6irqyH50zvMGZ37LJOSUzDf1R9TZsxFkyZNZNBKUpkIyAeB7C42wrTGxmY+Qp4/w+Ae7dCvY3Mcv3wX1x+9Rsd/u3Cd0qpUqZJnO1bT6sWLF9R+XpgHQbKIABEAc5oocN1zskua/Ph5/edX4d5XaTcpF3037wD47D6Z870l1pNg3LsDd01Ok/wfVHKa0A8wESACRKAQAlZWVnB0dIS2tjaxkjEC7MPP/YfBGDV+CsLDPuLKyd2wHt+H+yOFjYyMTExx9ISCkgo2em+Curq6jFlI6hIBIpAfAZZeM33qZLRtXBtThmbVplq+6QAyVLSwaNHiAqHFxcVx0YUuLi4ElggQASIgVAJp1305eX/2yBH1tWq7iTl2JKekwcvvMCaO6AU9XR28fh8OU2tXrLCdghaN65DTpIATJ6eJUH8USBgRIALySCA8PBwsVJtFLdCQLQJ37tzBxSvXMWaCKVfodabJCOxfYw1FRUXOEHf/o0hR1MHChQtlyzDSlggQgQIJpKWlYdSIYbCcOBAtG9bCtbtPsf/sTVQ2qgNLS6u/khs9ejTc3NxQtmxZIkwEiAARECqBtBu+vyJLoIAf+AGFP79ykSj5fD97XhHuq7SdUKAdzIniuGorWjerx0Wb/Blpwq49/Y7A28UCNaoYCpWHLAkjp4ksnRbpSgSIgMQIXLhwAUFBQVz7SRqyQ8Bx0SJER8dg+JhJqGFUC062c+A8dzj0SmRFDSV+S8bgOc5cDQX2YalUqdz1TmTHUtKUCBCB3wls3rwZj+7fQ3T0J1SqXAkDjYfm6oyTHy3WZr5Dhw7o2LEjwSQCRIAICJ1A+k2/HJm/HCbZkSdZjpLsIcz7qm3GF2jL17gETLdxh4XpsDyRJsHP32DfsUtU34Rqmgj9Z4EEEgEiIMcEvLy8uLePrI0tDdkhYG9vj6pGddC91wBMmzgMxzzt8ijv6nsYj1+FwX/HTtkxjDQlAkSgUALx8fE8dcTat28fvn79iqlTpxYqkyYQASJABIpCIO2mXwE1TAqqbSKc76u0Hleguqy+CRvmpsO4r9mRJn27teEiTLyczbg0nuI+KNKkuD8BZD8RIAJ8EZg7dy73R3X9+vX5WkeTJUegV69e8PbdC2UVFWxetwLD/m2A2tUq5FLo0p0nOHLpAdZ6bJCcorSzTBEIDQ1F5cqVZUpnUjZ/Ao8ePcK2bdu4tBwaRIAIEAFREUgP2g7gR66qJllX2VVN/vyaPVuw+6oFOE2YwyTy05dckSTMaWLvspVD8HuBWFExkRW55DSRlZMiPYkAEZAaAqyTDiswqqSkJDU6kSIFEzAzt8CUGeYoqVcKa1fYwXJsN+iXLJGz4ENENGzX7MSuPVlvW2gQgcIIREZGwn3NOsR8/gQnJydUqJDbCVfYerovPQRY/ZOBAwdyv9NpEAEiQARESSDt1va8NUwKqm0ixO+rtBqTx6z8HCZsEnOaBBy7BPdFM+G+aR+G9uvEpe0U90FOk+L+BJD9RIAI8E3g1atXYK2IN27cyPdaWiB+AgEBAfgYEY3mLdviwA4vuFvnLoh2/NIdnL31DB6edJ7iPx3Z3JGlcgTs24/SpUvD3c2Vui7J5jFyWrPIQVtbW1SrVk2GrSDViQARkAUC6bd3SERNlZa5nSZ/puT8rtTvhWBTUlNz1TuRiPJSsik5TaTkIEgNIkAEZIvAmTNn8OHDB0yePFm2FC+G2qampmKhnT3MbZywZ5snSip9w+h+HaGirIx3YVFw9NiL7bv2FEMyZHJRCaSnpyMqKgr6+vrQ0NAoqhhaJ2EC3t7eqF69Orp1y2pJTIMIEAEiIEoCabd3cjVN8OMHkN0FRwzXKi1G5ZiVXfj18bM3uUzt06U1l6Zz6kIQgu4+zUnZ+bMlsSj5SLNscppI8+mQbkSACEg1AR8fH2hpaWHEiBFSrScpB7x9+xbb/HfCdJYFvNe7oXppJYzt1wEJSckYYe6CU6fPFIgpLi4Oa9asg4FBady7fw+bvL1zWhYTWyJABGSTwM6dO8GcXxMmFNyKUzYtI62JABGQVgLpd3ZJRLXfnSYSUUAONiWniRwcIplABIiA5AiwNJ1//vkHPXv2lJwStHOhBFjdgpkzZ2HQsLFo3LQxwt49AAAgAElEQVQ59u/cgls3r0FPtwS01FXwOjQC+w8eylcOS+8J/RiBLzGf8eb1Kzg42KNevXqF7kkTiAARkE4CJ06cQEhICMzMzKRTQdKKCBABuSSQ/t9uidil0nykRPaVp03JaSJPp0m2EAEiIBECdnZ26Nu3L1q3bi2R/WlT3giwt8ojRo5EqVL6MJ1lCZa2s8t/Ez5HRyP2awyOHTsOVVXVPMIyMzNx+vRpVKxYEVWrVoWuri5vG9IsIkAEpI7A9evXcfbsWa6ALw0iQASIgDgJpN/9LRU4u4lOQQoI8b5KM4qIFvScyWkiKEFaTwSIABEAMGvWLO6/OnWowrg0PxDPnz8Haxv9/ft3lDYog5jP0Rg3aRqCH9zB/ft3MW+eGViLYhpEgAjIH4EnT55g06ZNWLt2rfwZRxYRASIg9QTS7+5lpUyyS5r88VUBP378EMl95abDpZ6NtCtIThNpPyHSjwgQAZkhMGbMGK6rTrly5WRG5+Kq6Nq163D/wQNoaGjBfokL7t6+iatn9iMy6jNK6JWEmoY2XF3diisespsIyB2BsLAwLFiwAH5+fnJnGxlEBIiAbBBIvxcgEUVVmg6TyL7ytCk5TeTpNMkWIkAEJE6Apens37+fWpBK/CQKV+Dx48fw9/dH0rdkVK5cFV9iopGclIAvXz6D1UAxnT4LXbt2LVwQzSACRECqCSQlJWHUqFE4cuSIVOtJyhEBIiDfBNLv74MCfosoAcRyrdxkiHyDFYN15DQRA2TagggQgeJDICUlBUOHDsWxY8eKj9Eybunnz5/x/v17/Pfff2D1S3r06IGIiAi0b99exi0j9YkAEWAEevfuzTlMVFRUCAgRIAJEQGIEMh7sR3apkp9dh8VyrdKYnCaCHjo5TQQlSOuJABEgAn8QYPUyBg8ejEOH8u/GQsCIABEgAkRAPAQGDBiAw4cPQ4EVEqBBBIgAEZAggfQHB7jfRVm1S8T3VbmRsQStlo+tyWkiH+dIVhABIiBlBOLj4zFy5Eiw1pY0iAARIAJEQLwEmPOaRZgcOHAAWlpa4t2cdiMCRIAI5EMg4+HBn99lTlwWc5I9RHtNThPBH0dymgjOkCQQASJABPIlwFrashonzHGSXytbwkYEiAARIALCJ5CcnIyBAwdyv3uVlZWFvwFJJAJEgAgUgUDGw0Ng7XGyI02y2+eI+lq54cAiaEtLfidAThN6HogAESACIibA3nbu3bsXOjo6It6JxBMBIkAEijeB2NhYjB07lupKFe/HgKwnAlJJIOPxkax+w9kju/8wfkaa5Fz/nCCk++Q0EfxxIKeJ4AxJAhEgAkSgUALGxsbYtGkTSpcuXehcmkAEiAARIAL8E4iKisKsWbOwb98+/hfTCiJABIiAiAlwTpM8DpI/HSbCv1Zu0F/Elsm/eHKayP8Zk4VEgAhICYERI0bA1dUVFSpUkBKNSA0iQASIgHwQCA0Nha2tLXbu3CkfBpEVRIAIyB2BjGDWWTGnf84vB0q2I0VEX5X/IaeJoA8TOU0EJUjriQARIAJ8EBg/fjzs7e1hZGTExyqaSgSIABEgAgURCAkJgbOzM7Zu3UqQiAARIAJSS4A5TQrqmsNqnbDUHVHcV6rfV2qZyIpi5DSRlZMiPYkAEZAbAosXL0b79u3RuXNnubGJDCECRIAISIJAYGAggoKCYGdnJ4ntaU8iQASIAM8EMp+c+K1nzg8oQEEs18r1+/CsI03MnwA5TejJIAJEgAhIgMDy5ctRuXJljBkzRgK705bCIpCQkAAfn63o378fqlevLiyxJIcIEAEeCPj7+yM8PBw2NjY8zKYpRIAIEAHJEsh4euKnoyTbYSKer0r1ekvWcDnYnZwmcnCIZAIRIAKySWDbtm349OkTrK2tZdOAYqo1a2caFhaG9R4e+Pr1KypVqgq9kiVgaWlRTImQ2URA/ARWrFiBihUrcp1yaBABIkAEZIFA5rNTEqhoAijX7SULeKRaR3KaSPXxkHJEgAjIO4Fz587h+PHjWLt2rbybKhf2JSUlYcnSZYiKjES9enVRo0YNVKlSBc2aNZML+8iI4k3gx898emmnwDrksI5klOIo7SdF+hEBIvA7gYxnp3+WLsmuXQKxXCvV6UkHISABcpoICJCWEwEiQAQEJfDkyRM4OjrCz88PWlpagoqj9SIiEB8fD1vbhRgxbjKOHdwFRwcHOi8RsRaG2Hfv3oH9bH38GIbMzEzo6ZXEyJEjhSGaZxlfvnxBqVKleJ7PJp4+fRoXL15C33598b/27fNde+vWLaSmpiIxMRG9ewsedh0dHY2HDx/iwqVLGDl8OBo0aMCXzuKazNLhWDFtlt5Yp04dcW1L+xABIkAEhEIg8/mZHDnZPXQKEizM+0p1eghF/+IshJwmxfn0yXYiQASkhkBsbCz3YWD16tWoWbOm1OhFimQRYB9+XVa7YcKUWXj14imOHdqH+fOtqI6JlD0g79+/5zoP7N0bgNj4BFSsWBkGZQ2hpKSEyMgwfHj7CsuXLxOJ1t+/f4eioiIiIiI4Z9q9e/dx5OhRWFqYo0yZMmBON11dXS6lS19fn5vLBkvRMzAw4CLOjh47hspVamD46Ik4ELAdVSoawsioBtLT07l57Dl8+uw5yhtWhIqqGjLS0/EjMxXlyhuib5/eKFmyJOcgunnzJm7eDEJCYgJK6pbknCtpaWkoW64cdEvo4N37UE6fjIwM7i2nuoYm1NW18Dk6AoONjTmHDJPDUtGUlZW5tRoaGmjTpg2nuyTGixcvuNolrI6Jjo6OJFSgPYkAESACAhHIeH42u0lOrgiT7JydHz+yI09yR6AIel+pdneB9KbFADlN6CkgAkSACEgRgenTp2Pw4MHo2rWrFGlVvFVhKQsODo4YazILl86fhp6uJrp368Z9AKYhWQLsQ/21a9c4p0DIy1dITknlPugbDxuDSpWr5lHu0vlT+O/WTdSpUwuDBg7knAEnT54CO+OqVaugQoUKnMOD1cpgzoLCBovQOHcuEA8fPQL7fyaHfaBXVFBENaNaaNC4GY4e2I1v375BAUBqagoqVq4CRUUFxH79yrpLQqeELr4lJaJegybo1KUntLW1c7YNunEZIc+fQFlJGXr6ZaBf2gBNm7fKpduzJ48R++Uzbt28gpSUFHz//gPVatRE85ZtoVdKHx/ev8X3Hz9QSr80EuLj8PVrDKpVq8k5WlTV1HKZ+PDeHdy4dhE6OiWgrVMSSsrKUFFR5v56T/mWjCeP7sLVdTXU1dULQyPU+yyN8fDhw9iwYYNQ5ZIwIkAEiIA4CWSGnIMkipoo1e4mTjPlci9ymsjlsZJRRIAIyDIBVt+EvQG2sKDCotJwjuwtP4tg2BNwAE2at8LHtyHo168vDA0NpUE9udQhICAAvXr1yjei4NKlS4iKisL70A9c9EXlqjWgqqaOatWN0KBR00J5xER/wscPobh88QzSUlM5x0aJEiURFRmOLzHRCPv4Ae3atsGYMaMLlHXs2DGcOHGScya069gFTZq2gI6OLhSVlLiolj9rg2RfZ3+Nj4uFuoYGFBWVOAdIdpRKocoXMoHZo6KqykXbCHuwqBY3l0WoXKkyahrV4BxLRkZGXBTM69ev0aJFC2FvyclbtWoVF+XC6pjQIAJEgAjIMoHMkEBwHvTs3JvfIkv+/H72Nft1zhzsgtxXrEkv4gR9bshpIihBWk8EiAAREAGBU6dOYd++fVizZg1KlCghgh1IJC8E7OwduA+Fw4cNxdnASxhnMh2Xzp/FzesXYFjeEPOtrXLSLHiRJy9zhPUh/3cecXFxnDPE3387KlevhZDnwahgaMi15u7WtQvOnz+PwPMXULvuP9A3KANDw8qoXbee0JE+ffIID+5cg+VvTksWycL0+/DhA4Ju3YKqhg7atOuIsuWKn+PsyeMHePf2Db58juIcTczxU7FSFZQqqYOKFSugefPmQvmdxVIW582bx9Wh6dGD8vGF/qCTQCJABMROIPPlebHvyTZUqtlFIvvK06bkNJGn0yRbiAARkCsCoaGh3IcGS0tLtG3bVq5skwVjIiMj4bjICebzF8HVeREMK1TA1Jm/on9Cnj/DmeMHYGVlwXexT1mwPz8d2QfZ8PBwXLt+nYuoSIhPwLx5c8G6CjEHHyu+Onz4CBw9dhRfv3zNSe/Q0dbmWmuzCAhW04M5XVjUBYsUiYmJQfCTp1wdDXUNLYydNA3q6hpIT0/Dw3v/IS72C4JuXIXxsNGoW7+hyNCxtB6/LR5IiI+Fy8qVUFFRwfPnz7F5iw8+hIZy9UL0DcqiY+fuaNiYuiX9eRBnTx1DdHQUwkLfYKWzM9T+SP3h5+BYyhWLuGPPFEuZokEEiAARkAcCmS8v/FbTROFnVGJWJAn79zErGlH414pGneUBn0RtIKeJRPHT5kSACBCBwgmwzjrsg8PUqVMLn0wzhEYgMDAQFy5cRLPWHdCmXQe4LF3IpVTMsbDL2YOlLHiuXQkH+4XQ1NQU2t6iFsScHPfv3+eccazeButGYmpqyjkzWDQF61LSsGFD7h4rwBkRGYXo6E9ISvoGHd2SaNS0JTLS0qGtUwJXLpxCWlo6/u3Wh2Pw/Olj1G/YhKuhwWp7xMfHIS72K+7duYG3b15DU0uLizJmTpfSZcpBT780GjdpwdXYKGgwzsoqKiLF4u/jhft3b8Hb25ura7LVdxtXTHbk2MlQVhbt3iI1TMzCH92/yxWxjWYFbssYIDUlFZqaGqhhZMTVAmKdebKL4OanmpeXF+dMY7/3aBABIkAE5IlA5quLnDk5KTfZxmWn7Py8FvZ9JaN/5QmjRGwhp4lEsNOmRIAIEAH+CLBUnatXr3JvXv/2gYM/qbI9e+7ceVxdEfZBX1+/FPdBt2XLlvl2H/qzxkRhlrMPzp+/xCM9PQPtOnRC/QaN8fzpE+zbtRWVq1bH+Mkzc0Qkf/uGudMn4PjxY4WJlYr7LHrC02sj5/D48f070tJS0aptJ1y5dI6rHcFSLTQ0tRDzOQpfY2K4dJjSZcqibNnynO1/joiIMJQvX3g0gChSeoQJ1GH+HJiYTOKKqZ45cxZtOnRFi1YU4VVUxixSKDU1jXtlygrgfvwYiuOH92LOrFmoXbt2HrEsDY5F1nXu3Jkrhk2DCBABIiBvBDJfX/oVUZJd2iQ7wgQK+AEWafIz4kSI9xWrd5Q3lGK3h5wmYkdOGxIBIkAEikbg2bNn3IcKNzc31K9fv2hCJLiKpbuUK1dOKBqscHbGq1evERkRwX3oZ1ELrACmooICjhw5wu3BoiVY+1dWrPLu3Xs4ePAg+vbtAz09Pa5DCauV8ftgqScsBYMNVr9i1arVUFNTx9t3b6CtrQN1dTVUqVwZUVGf0LX3QBjVrJOz/P27N7h94wLmzp4tFPuELYSlwNy+fRv/196dAGdd5Gkcf+QICbkDOTkC5OAKp+GIMLKujgoqOJSixVjrllNTzoy1y66szoziyqLMrOM6Vk1ZW7rWuKsOC3MgWgrK7qA7DCAMiAhyJCEJCZD7IBdHSMJWNwQBOV6aIHmb77/KQszb79v96RB5n/f3/3VeXr6qamr0o3k/sS9hGpKaKgpT/XHuZVxDQs4+XaWz59WVnu+95ctUXVWh6Jg+uu/Bh7rS1IJ6LqbKaM3/rFJxYb4mTszW/fff/7X17Nixw96+ZULh8wUqQQ3A5BFAAIFTAu2Fa09FIRc6ROerkpPz9351+3r3c0KTI0db9OyLb2jlmo12Zs89+Yhmz7iZfbqIAKEJ3x4IIIBAkAmY0MRUBJjjibvi1VFRcG51x3333afe4REK7RWiuXPn6uWXX9bA1FQlJiTqeGurHvruXHs/r7kVyRwxmpiYqJycnPMu0TQMfXrBM7bHRXJKf1ttUpC/Wz17nDy9pP5QvZoPNys2rq+qKsttgHLLt6drz84d9i8s5ujV1tbjSkxIUkJCgsLCw/TRqg/tiSA3dOum4cOHKT0tTQcPltrjZM2Rr71CQxUVE2ePhU1O+Xplxcr3/qD0wf11yy1dqwzWWC1cuEjjsidq0JBMZY0e2xW/bZiTJwJtra0qKirQjm2f6XjLUdss9ta/vuWCx6ibY4RNP5vHH3/cEwGWgQACCJxfoK1w7Rm9Szp6mFz9X7sN/tZZE/rla7+zv3/80Tmqq2/UD3/ysuY/OkcTxn71YRB7eLYAoQnfEQgggEAQCpiqieXLl2vRokVKS0v7xlfQ1tZmwwlzNLKpIDGhhDmW1zT0NM1ATcWGqW6oP3TodEVHZVWlQnqGqL6hXr3Deqv9RLuOHT1q+2GMzMrS4cNHbBm/OYJ1zPgJqq2pVm11pWJjY2TeiGVlZSk5OVnDhw9XS0uLCgsLtfydd1S8r1gJSUma+Z0Hbd+LI82H1Se+r+ITTla1XOi2kMryMh1vbVFlRbltwjY+e5LKy0sVER6pL7d/rtzdX2rAoMGaOHmqrTS52PXe8qU6UFKkf5j394qPj//G9+NiL2g+xX/hhV/oiacXnTbpUhNkMl4IbN60Xn/ZsFafbfmLpkyZqrFjx6hv374XDD7z8vK0cOFCzZkzR/fee68XBiwCAQQQuJhAe9GfT335nCYmp88T7hjduV8/MzQxIclPf/a6nvjRg0pLPdlL7MwQhR08vwChCd8ZCCCAQJAKmAoC0yxx2rRp9ljOb+JqaGjQ84sX68iRo7YS5GQwUq9eYaHKHDZCY8dPVHr6UNs0NDYuTo0NDbaqw9z+ERMbp7raWjU1NdpeGva+XVP3caLdTj1z6NePjy3Ym6fW462qqChVcdFeO85UjpggxPTYqDtUp+qqShvehPQK1cLFL9nnvdqX6deQu3un9pcUa9OGtZo1825NnTpV0dHRV/ulL/n85tYi07dk167d2rxlsxISU3Tr7XcpLePrfSQu+WQ8AIGLCBzYX6w/f/K/ys/brcyMDN1114yAbq9ZsmSJ1q9fb0MTU+nFhQACCFwPAu371pk2sKdOyekIRq7+77sNmnKat6C4VE///HUt/un3T4cm76xaq42f7dK/PPGIwkJDroetuOw1EppcNhkDEEAAga4lsHTpUn344YeaP3++xowZc8WTKygoOKt6xQQSpvqj43r11Ve14dNP7akio8aM7zKNac2Rsea2pc68PvnjavUK7aXmpka1HGtRaO8w+5ed5cve1o03Zmvw4MGaNGmiMjMzO/NlA3ouU93zzooVqqyoVFtbu774Ypu69+iuhPhEJaX0V+rgNA0bOUrx8YkBPR8PQuByBJa9/WsdqqvSjOnTNXny5ICGmhObXnrpJd1zzz164IEHAhrDgxBAAAFfBNqLN3S0d+04V/h0jxP7KZL90OdUN5OT5xB3yte7pZ4dmrz478v086e+r9jok1W0hCaX/g4jNLm0EY9AAAEEurxAaWmpbRDbp08fG56EhLh/UvDYY4/ZW1/S0zPs/7BN5cbIkSPU2Nikmppae8tKYmI/5Uz1vxv7gif+TtXVlfY2gwEDBthP0VNTUzVlyld/AbmSbw5TMWNuZzL7ZfqpXOwyx/+aW6AOHjxob4My/VaGZ41RYnI/G4yYwMhU9ISFBc/Rx1dix9hrJ/Crf3tet9164T4l587MnEhkwhJTBWV6l3RWQ+hrJ8ArI4AAAsEpQKWJ274Rmri5MQoBBBDokgJr1qyxb07mzZunO+64I+A5muM+FzzzjOrq6my1SnVVlQqL9mlE1mjFxfWVbuhmj5UdNCRNcX36Bvy8wf7A7Z9v1rvLf6uy0gO2r8mSJb/ptCWZSpFFzy+2fV2Me2RkpKbd/K3zfgK/f/9+LVr0nAakDlZsn3gNGzFKI7NGd9pceCIEAhFoaKjXlk2f6t0/LNGjP/iBvn3bbZcc9tFHH+mVV16xYW5Xa5J8ycnzAAQQQMAzAXqauG0ooYmbG6MQQACBLi3w1ltvaeXKlXr44Yc1Y8aMgOZqjqRdseJdVdfU2Ns9zOkySYkJtgHrxo0bVVpapn79+9vmrsNGjFRlRYUSEpOU3G+gEhISNXRE1iUbpgY0kS70oL35e/T7//5PjR41WjNn3mP7uAR6mUaXpl9DxzHGZ46rra3Vv77wC33vh/+oyMgo+yVTSfLBe7/TpOzxypk86ayXMf0f/vjJn+ytQa3Hj9vKlMKCvfqrW+/Q7dNnBjolHofAZQms/dMabVr3fyoqLFBGZqaKCgs1ZMgQdeveTU8/9ZQN+i50ffDBB3rzzTc1a9YsPfQQRzhfFjwPRgABBK6iAKfnXD4uocnlmzECAQQQCAoB06TVhCcmDDHhyZ133hnQvM1pOObEFfPGPjQ01L7pMZc5MceU2ZsGtKZ/iPn3AwcO2H/fvXu3Skr22z4nWWPGBfQ6wfKgQ3W19jSdpW+/oZEjs9TU3Kj+/Qdo8KBUe0tNRkaG4uLitGDBAu3Zk6uBA1NVU1Nlb5tpqK/T4ueft7dNmcvYzp//TwqPjNSD333kVHPcGlVWlMm8TlVlmY40N+nZZ//Z2p955ebmauvWrda9Z8+etjqlsKhIqYMzNGfu3wYLJ/Ps4gKFBXna/vkWFebnatSoLGVn32hPwDJ9jQLpGbRq1Sr7c8f0OTE/d2JjY7v4ipkeAgggcH0JHDnaomdffEMr12y0C3/uyUc0e8bN1xfCZa6W0OQywXg4AgggEGwCVVVV9hNfc6LK9OnT7W07ERERzsu4++67dezYMds/w/TSMCdojL8xWz16huhvvveYevf2t6fGwQP71dRYr0OH6lRTXa3c3Tvs6T2mmsScDGSCpZaWY9Y2KipKPXr01I9//KQGDRp02vv999/Xlzt3KnfPHkVFR6uxodFWjqSkJNtKFtNU1lSorFu/Xnm5efaEotCwUIWHR6ihodGeSmRu0znRfkJJKf2UlpaplP4DnPeTgQicKfDi4meUM3mizJ/zQP8sm1vNVq9ebavbRo0aZcOSjqAQXQQQQAABBIJdgNAk2HeQ+SOAAAIBCpgqhxUrVtg3N2PHjrXhSU5OToCjz36YaTy7a9cuFRUVqay8wjYzNZUTvlWZBIpjjlaur6+zt9jU1lTZUOXg/mLb9X7zxk9tNcrs2d9RWVmZrQ4pKS5RU3OzMoYOV7/+qTp69IjCQsNshYppmL+vKF+3T5+lAQMH2SOZe4WGKSaGT+wD3Q8e5y6w7De/VkJ8nHImTTrrFK3zPeOGDRvsz5Pt27fbnyezZ8/mCGF3ekYigAACCHRRAUKTLroxTAsBBBC4mgLr1q2zb3Z27txpb9sxp1qMGzfOVkqYy1SimMeE9Q5XXGyMkpOT7S0ophIiPDzcVlGYU3U6LnMKzGv/8boOlpbbN/7JSSmKionVkPShtqzfVKWcvN3kBntEcUq/AV3mqOKr6dzx3CXFRdq0fq1i4uI0JD1TQ9Iyz/L7JubAayAQqMCa1av0+2Vvadq0mzV69GhbWWb+vJvwz/z68ccf258fpqrEhCU33XRToE/N4xBAAAEEEAg6AUKToNsyJowAAgh0nkBDQ4N987Ns2TI1Nx+2DV2jomPUo2cPTZw8VX3j41VVUaGa2hoV7s3VifZ27S/Zp54hIWo51qLY2BgNSUvX4eYme9RtZGSECgoK1NraqqamZhvCmDdZ5nQeE56Y/97a1qrjLcf12n/9tvMWwjMhgECnCny5fZu2bd2k8rJStbe1yfysKD2434YoEyZMsGHrxRrBdupkeDIEEEAAAQSuoQChyTXE56URQACBriRg+hJs2bJF+fl77Wk5lVWVSkvP0KjR4xQeEaX4hCTFJybaPibmam5qsrehmMDk8OFmHTt21IYikVHRioyItLeqmP4eJmipra1RY2ODDU5MHw7zHKmDhnSl5TMXBK5rgaqqChuQVlWW2749pvnx3r35SkxIVE7OZFtlkp2dfUX9kK5rYBaPAAIIIBC0AoQmQbt1TBwBBBC4ugLmlBZzYktJSYny8vJVWlaq8rJyVVZWaMzY8WpoqFdERJR6R0TYo4YTk1J05Mjhqzspnh0BBJwFTDVYRXmpmpoa1dzYqKamBkVHx+iLbVvtrXdJyclKSUlRRnq6UlNTbVPic09xcn5xBiKAAAIIIBCkAoQmQbpxTBsBBBC4VgInTpxQU1OTWlpabK+Djn9MlUlHT5RrNTdeFwEELizQvXt3W+3Vq1evs/65ktO08EYAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggIIqggwAAAWiSURBVAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJPA/wMj++AOIPl72QAAAABJRU5ErkJggg==", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = px.choropleth(geoplot_2019, \n", + " locations=\"Country_code\", \n", + " color=\"Respondents\", \n", + " hover_name=\"Country\", \n", + " projection=\"natural earth\", \n", + " color_continuous_scale = 'Peach', \n", + " range_color=[0,10000] \n", + " ) \n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Analysing salary distribution among top ten countries" + ] + }, + { + "cell_type": "code", + "execution_count": 353, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8IAAAPeCAYAAAB3JtDPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1jTVxfA8W/Ye6OoKDhBURTEvUetdbSKo2rde7Xu/bpq3Vbr3ntvrbu1tlate4BbEMUBKltkj7x/UFIjoKhIEM7neXgekvzGyU0CN79z77kKpVKpRAghhBBCCCGEEEIIIYQQQgghhMgltDQdgBBCCCGEEEIIIYQQQgghhBBCCJGVJBEuhBBCCCGEEEIIIYQQQgghhBAiV5FEuBBCCCGEEEIIIYQQQgghhBBCiFxFEuFCCCGEEEIIIYQQQgghhBBCCCFyFUmECyGEEEIIIYQQQgghhBBCCCGEyFUkES6EEEIIIYQQQgghhBBCCCGEECJXkUS4EEIIIYQQQgghhBBCCCGEEEKIXEUS4UIIIYQQQgghhBBCCCGEEEIIIXIVSYQLITRGqVRqOoQcEcPnICe304fGlpOfkxBCCCFytpzQj8gJMQghhBBC5DU5oQ+WE2IQQojPhSTChcYMGzYMJycn1qxZo+lQMqV+/fqMHj36rdtER0ezcOFCmjRpgqurKxUrVqRdu3bs3LnzvTso58+fx8nJifPnz39M2B9s4cKFODk5qf24urry5ZdfMnPmTMLDw9W2Hz16NPXr18/08X18fGjfvv07t9uzZw9OTk48efLkg87zNkuWLGH16tWq26nPOTtk1fN41/vSycmJhQsXvtcxO3XqRKdOnVS3d+7cycyZMz84xtdl9nmfOHGCLl264OHhQbly5fjiiy+YOnUqISEhatt9aGxvvvZCCCHE+5B+7NtJPzaF9GOz5ziQtv+amfe8EEII8SGkH/h20g9MIf3AzPH29mbMmDE0aNAAV1dXKleuTJcuXTh48GCWnUMIIXQ0HYDImyIjIzl+/DilSpVi+/btdOvWDYVCoemwPopSqaRv3774+fnRu3dvSpYsSVxcHKdPn2b8+PH4+PgwduxYTYf53rZv3w6kPL/o6GiuX7/OypUrOXHiBFu3bsXKygqA/v3707lz50wf9+jRo1y9evWd29WtW5ft27eTL1++D3sCbzF//nwGDhyout2mTRtq1aqV5edJz/u2V3aaOHGi2u2lS5dSuXLlbDv/3r17GTNmDO3ataNr164YGhri6+vLihUr+PPPP9m9ezfm5uYfFdubr70QQgiRWdKP/XxIP/bTyMn92FSLFi3CxMRE02EIIYTIZaQf+PmQfuCnkZX9wHXr1jFr1iw8PDwYOHAg9vb2RERE8NtvvzF8+HCuXbvG//73vyw5lxAib5NEuNCI1FFd48aNo0uXLpw7d45q1appOKqPc/nyZc6fP8+aNWuoUaOG6v66deuipaXFpk2b6NWrF7a2thqM8v1VqFBB7XaNGjWoXr06HTp0YO7cufz0008AFClS5JOc38rKStU5/dTs7Oyws7PLlnN9qvbKCiVKlNDo+RcvXkzTpk2ZNGmS6r6qVavi4eHBN998w86dO+nZs6fmAhRCCJGnST/28yH92E8jJ/djU5UpU0bTIQghhMiFpB/4+ZB+4KeRVe11/vx5ZsyYQceOHdMkuxs2bIizszMzZ86kWbNmaV5LIYR4X1IaXWjE7t27qVatGlWrVsXBwYFt27apPd6pUyfGjRvHihUrqFu3LuXKlaNdu3Z4e3urtlm4cCFffPEFf/31F82bN6ds2bJ8+eWX7Nu3T7XNm2VoUr1ZFig0NJTJkydTr149ypYtS+XKlRkwYECa/d4mKCgIgOTk5DSPdejQgSFDhqiNEr148SI9evSgUqVKlC1blvr167Nw4cJ09091/PhxOnTogJubG2XLlqVx48Zs3rxZ9Xhq+aFt27ZRr1493N3dOX78OE5OTpw+fVrtWJcuXcLJyYnLly9n+jmmcnV1pVGjRuzbt4+YmBggbWmcGzdu0KVLFypWrIibmxtdu3bl2rVrQMprt2jRIkC9dLeTkxOLFi3C09MTV1dXFi1alOFruH37durWrYurqytdunTh1q1bqscyKgn05rkgZbZI6u/p7Xf48GE8PT1xc3OjRo0aTJgwgYiICLVzvet9mJ4326t+/fosWLCAmTNnUr16dVxdXenRowcPHz5863Hel5OTE5s3b2bcuHFUrlwZNzc3Bg0aRHBwsGqb10tL1q9fn6dPn7J371611yEgIIChQ4dSuXJlypcvn+Y1AIiIiGDMmDFUrlyZSpUqMXv27Le+v1MFBwenW3rL2dmZMWPGULZs2bfG9q7PVnqvPcC9e/fo06cP7u7uuLu7M2DAAB4/fqwWw/r162ncuDHlypWjVq1aTJo0iVevXr3zOQkhhMg9pB8r/Vjpx36afmxm4wkICGDgwIFUrFiRGjVqsHbt2jTHevNz8uTJE0aOHEnNmjVxcXGhWrVqjBw5krCwsPeKUQghRN4m/UDpB0o/MGv6gYsXL6ZAgQKMGDEi3cc7d+5MgwYNVK8TQFxcHLNmzaJOnTqULVuW5s2bc/jwYbX96tevz7Rp0+jSpQuurq6MGzdO9f46e/YsnTp1wtXVlbp167Jz505evHjBwIEDcXNzo06dOqxbt07teHfu3GHgwIFUrVoVFxcXatWqxU8//URsbKxqm3dda928eTNOTk48ePBA7dj79++ndOnSBAYGvrWthBAfTxLhItv5+Phw/fp1WrRoAUCLFi34448/1BJxAMeOHeOPP/7gf//7H3PnziU4OJjvv/+epKQk1TZBQUH8+OOPdO7cmRUrVmBvb8+oUaO4f/9+puNRKpX06dOHM2fOMHz4cFavXs3AgQM5e/ZsmhLRb1O5cmWMjIwYOnQos2fP5vz586p/io6OjvTq1QsbGxsg5Z9o165dsbCwYN68eSxduhQPDw8WLVrEkSNH0j3+X3/9xYABA3BxcWHJkiUsXLiQwoUL8+OPP+Ll5aW27aJFixg1ahQTJkygevXq5MuXj/3796tts2/fPhwdHalYsWKmn+PratSoQUJCAtevX0/z2KtXr+jZsyeWlpYsXLiQefPmERMTQ48ePYiMjKRNmza0bt0aSOkAtmnTRrXvsmXLaN68OQsWLODLL79M99zPnj1j0aJFDB48mLlz5xIREUGnTp0ICAjIdPypJZJat26t+v1NS5YsYejQoVSoUIEFCxYwYMAAjh07RqdOndQ6PFnxPgTYsGEDfn5+TJ8+nZ9++okbN24watSo9zpGZsybN4/k5GTmzp3LyJEj+fPPP5k2bVq62y5atAhbW1vq1KmjKukUGhpKu3btuHnzJuPHj+fnn38mOTmZ7777TvWck5OT6dmzJydPnmTUqFHMmDGDK1eupOmgpqdu3bocOnSIAQMGcPDgQZ4/f656rGvXrlStWjXD2DLz2UrvtX/w4AHt2rUjJCSEmTNnMnXqVB4/fkz79u1V65IfPHiQ2bNn891337F69WoGDBjA/v37mTJlyge+EkIIIT430o+Vfqz0Y9OXVf3Yd8UTHR1Nx44duXfvHlOmTGH8+PHs3LnzrSVKY2Ji6Ny5M/fv32fixImsXr2azp07c+jQIebNm/feMQohhMibpB8o/UDpB6bvffuBERERXLx4kQYNGqCvr5/uNjo6OixZskRVcUGpVDJgwAC2bdtGt27dWLp0KW5ubgwZMiRN8n7z5s2UK1eOJUuWqF4vgKFDh1K/fn2WL19O0aJFmThxIp07d6ZkyZIsWbIEV1dXpk+frhq48uLFC7777jtiYmKYMWMGK1eupGnTpmzcuJENGzaonfNt11qbN2+Ovr5+uu/latWqUaBAgcw1tBDig0lpdCA+Ph5PT0/Gjx9PlSpVsuSYd+/eZdKkSdy8eRMHBwfGjRunSt7kdbt378bCwkI1eqxly5YsXLiQXbt20bdvX9V2iYmJrF69WrW2W1RUFKNGjeL27duqGaExMTFMnTpV9U/R0dGRevXqcfLkSYoXL56peF68eIGhoSGjRo3Cw8MDgCpVqvDo0aMMOxTpsba2ZuXKlYwePZpVq1axatUqdHV1qVChAl9//TWtWrVCW1sbSOk4Vq9endmzZ6OllTIepUaNGpw4cYLz58/TtGnTNMf39fWlZcuWjBs3TnWfm5sbVapU4fz585QvX151f4cOHWjcuLHqdsuWLdm4cSNRUVEYGxsTGxvLkSNH6N27d6af35tSO8FvdvhTYw0LC6Nz5864u7sDUKxYMbZv305UVJRayZ43y9t4eHjQrVs31e30OqZJSUksXrwYV1dXAMqXL0/Dhg3ZuHFjpi+4pZ7Xzs4u3RI7ERERLF26lLZt2zJhwgTV/aVKleK7775j9+7dfPfdd0DWvA8BzMzMWLJkiep98ujRIxYuXEhYWBiWlpaZPs67lCpViunTp6tue3t7c/To0XS3LVOmDHp6elhZWanaaf369YSHh7N161YKFSoEQO3atWnSpAnz589nwYIF/P3333h7e7Ny5Upq164NQLVq1dRGjWZkypQpJCcn89tvv3H8+HEgpfRSgwYN6NatG/nz588wtsx8ttJ77RctWoShoSHr1q1T/c2pVq0aDRs2ZNWqVYwaNYoLFy5gb2/Pd999h5aWlurL4usjaoUQec+n6Ef269ePEydOqN23bNky6tWrlyXHFx9O+rHSj5V+bPqyqh/7rnj27t1LQEAABw8eVC3nU758eb744osMj/nw4UPs7OyYOXMmhQsXBlKW3fHy8uLChQuZjk0IIbKa9CM/L9IPlH6g9APT9779wKdPn5KcnEzRokXV7lcqlWoDRgAUCgXa2tr8888/nDp1innz5tGkSRMAatWqRUxMDHPmzKFZs2bo6KSkugoWLMjw4cNVxzh//jwArVq1Ur1GRkZGtG3bFldXVwYNGgSkVKL87bffuHLlCq6urty7d4/SpUszf/581ee5evXqnDlzhvPnz6u9D992rdXMzIwvvviCX3/9lUGDBqFQKHj27Bnnzp1j9uzZmW5nIcSHy/OJ8Li4OIYNG4aPj0+WHTMyMpLu3btTv359ZsyYwf79+xk4cCDHjh3D2to6y87zOUpISODXX3+lYcOGxMbGEhsbi7GxMRUrVmTHjh307t1b1ZEqUaKE6p8MoEp+vV4SBdQ7Hqmdkejo6EzHlD9/fjZs2IBSqeTJkyf4+/vj5+fHlStXiI+Pf6/n5+HhwW+//cbly5c5ffo0Fy5c4Nq1a1y8eJF9+/axZs0aDAwMaNGiBS1atCAuLo4HDx7g7+/P7du3SUpKIiEhId1jp66JHBUVxYMHD3j06JGqU/VmnKVLl1a73apVK5YvX87vv/9OixYt+P3334mOjlaNYs1qJUuWxMrKir59+9K4cWNq1apFjRo1Mix387bY01O4cGFVpxHA1taWChUqcPHixY+K+3XXrl0jPj6eZs2aqd3v4eFBoUKFuHDhgqrjCB//PgQoV66cqtP4+nFiYmI+KhH+egkrSNtZt7OzS/O5epuzZ89SunRp8ufPT2JiIgBaWlrUrl2bX3/9FUgpVaWrq0utWrVU+xkZGVGnTp13vk6mpqYsWLCAJ0+ecPLkSc6fP8/58+dZu3Yt27dvZ82aNbi5uaW774d8tgDOnTtH5cqVMTAwUD0nExMTPDw8+Oeff4CUC6bbt2/H09OThg0bUqdOHZo3b56mfYUQecen6EcC3L9/n9mzZ6utN2hubp6l5xDvT/qx0o99F+nHZk0/9m3xXLp0iSJFiqiS4AAFChR469qRpUuXZsuWLSQnJ/Pw4UP8/f3x9fXFz89P1e8TQojsJv3Iz4v0A6Uf+C7SD8x8PzCjMvpnz55VG0wAKRULNm7cyNmzZ1EoFNSpU0et/1a/fn1+/fVXfHx8VK9BRq/F69cSU3M0rw/ESI01MjISgJo1a1KzZk0SEhLw9fXF39+fe/fuERoaioWFhdqx33WttXXr1hw8eJBLly5RqVIl9u3bh7Gx8VsHcwohsk6eToT7+voybNiwdNei/Rh79+7FyMiISZMmoa2tzQ8//MDJkye5ceMGderUydJzfW7++usvQkJC2LVrF7t27Urz+KlTp1RtZGhoqPZYaofyzX+Wr2+Xus37vqa//vorc+fOJTAwEAsLC0qXLo2BgcF7HeP1GCpVqkSlSpWAlJF48+bNY+vWrezatYuOHTsSGxvLlClT2L9/P4mJidjb2+Pm5oaOjk6GsYeGhjJx4kSOHz+OQqHAwcFBNeLzzX2MjIzUbjs4OFC5cmX27dtHixYt2LdvH9WrV1d1xj/Es2fPgP86N68zNjZm8+bNLF26lCNHjrB9+3YMDAz45ptv+N///oeenl6Gx30z9vSkjt58nbW1dZauqZI6yze9c9nY2Kg6Ramy4n2Y2ff864yMjDL8gpN6/5vHTe887xNreHg4/v7+uLi4pPt4TEwMERERWFhYpEkS29raZvo8qbOvv/vuO5KTkzl+/DijR49mypQp7NmzJ919PuSzlfqcDh8+nG7pdisrKwCaNGlCcnIyW7ZsUZXzKlSoEMOHD1eNRhVC5B2fqh8ZHx/PkydPKFeu3Hv9zRSfnvRjpR8r/diMfUg/NjPHejOeiIiIdC+o2trapjuzK9XatWtZtmwZ4eHh2NjYULZsWQwNDdO0hRBCZAfpR35+pB8o/UDpB2bsffuBBQsWBEizfrqrq6va5+v1Ev/h4eEolUrVTP03vXjxQpUAz+i1eH2ASkaxvy611PnmzZuJjo6mQIECuLq6plvO/V3XWqtWrYq9vT379u1TJcKbNGmSYWl4IUTWytOJ8AsXLlClShWGDBmSZtTOpUuXmDZtGr6+vjg4ODBw4MAM1/dI77gNGjRQGwm1e/furAz9s7V7924KFy7M1KlT1e5XKpUMHDiQbdu2ZelggdQk3Jv/eKOiolS/X7p0iVGjRtGpUyd69Oih6kzNmjWLy5cvZ/pcgwcPJjw8nHXr1qndb25uzoQJEzh8+DC+vr4ATJ06lWPHjvHLL79QvXp11T/o10fsvmn48OH4+fmxbt063Nzc0NPTIyYmhh07dmQqvlatWjF27Fju37/P2bNnmTNnTqafW3r++ecfjIyMMkyGFitWjNmzZ5OUlIS3tzf79+9n69atFClSRDUa9EOlV4o6KChIlbBMfd2TkpJUn8PXX/PMSB0xHRwcTLFixdKcK7WsoqbZ2Njw4sWLdB9L7dyn1/n9GKamplSuXJmRI0em+7ienh6WlpaEhYWpvQaQ0nF9m2PHjjFx4kS2bt2qViJJS0uLRo0acfHixbe+5z/ks5X6nKpXr55m5CmgKq0E0KxZM5o1a0ZkZCSnT59m5cqVjBgxgooVK37UFzEhxOfnU/Uj/fz8UCgUOeb/jPiP9GOlHyv9WM2ztLTE398/zf1v62MeOHCAGTNmMGLECDw9PVVtPWjQoHTLlgohxKcm/cjPj/QDpR8o/cCsY2VlhZubG8ePH2f48OGq52piYkK5cuVU2xkbG6t+NzU1xcjIKM3a3KkcHByyPM4VK1awbt06Jk+eTKNGjTA1NQVQW3c8sxQKharUf/v27Xnw4AEzZ87M6pCFEBnQ0nQAmtShQwfGjh2bZsROUFAQffr0wdPTkwMHDtCzZ09Gjx7NpUuXMnXcx48fY2Vlxfjx46lRowZt27Z9rw5IbhUUFMSpU6do2rQpVapUUfupWrUqjRs35uTJkzx//jzLzpk60is1IQgpZaJev1By9epVkpOT+f7771WdxqSkJFU55MzOYnBwcODcuXNcu3YtzWMvXrwgOjqaUqVKAXD58mWqVKlCw4YNVZ3GGzduEBoamuH5Ll++TKNGjahSpYpqBOLff/+d6Ri//PJLDA0NmTRpEsbGxjRs2DBTzys9t2/f5o8//qBVq1bpjlw7evQoVatWJSgoCG1tbdzc3Jg0aRJmZmYEBAQA/40O/BCppZRSBQYGcvXqVdWaWum97ul9Bt8WQ/ny5dHT0+PgwYNq91+6dImAgIAMRyBmt8qVK+Pl5ZVmFCWkvA7a2tqq0bwf6s12qly5Mg8ePKBo0aKUK1dO9bN//3527dqFtrY21apVIzExUbXGN6SMTj9z5sxbz1WyZEnCw8NZv359uo8/fPhQ9TlKL7bMfrbSe06+vr6ULl1a9XzKli3LunXr+P3334GUL4cDBgwAUjrgX331Ff379ycxMTHDwQhCiNzrU/Uj/fz8MDExYeTIkdSsWZPWrVtz8uTJT/EUxHuQfqz0Y6UfmzNUrVqVJ0+eqCWwQ0ND033vprp8+TJmZmb07NlTdaE5KiqKy5cvf9CMdSGE+FjSj/y8SD9Q+oHSD8x6AwYM4PHjx8yaNSvdGegRERFq19oqV65MdHQ0SqVS7VrkvXv3WLx48SdZ7uby5cuUKFGCVq1aqZLgz58/5969ex/Uh/T09OTly5fMnDmT4sWLq5VlF0J8Wnl6RnhGNm/eTPXq1enYsSOQ0iG4ffs269evx8PDg+fPnxMbG5tmPz09PQoUKEB0dDQrVqygc+fOrFy5kkOHDtGjRw+OHDlCgQIFsvvp5Bj79u0jMTGRpk2bpvt4ixYt2LlzZ6ZHBGZGlSpVMDAwYMaMGQwaNIioqCgWLFigto5H6tosP/74I61atSIiIoLNmzdz584dIGVdlPRKp7ype/fuHD9+nG7dutGhQweqVKmCoaEh9+7dY82aNZQsWRJPT0/VOY8cOcLWrVspXrw4d+7cYenSpSgUigzXanZ1deXAgQO4uLhgZ2fHlStXWLFixVv3eZ2hoSFNmzZl+/bttG/f/q3lfF6X2hFWKpVERUVx/fp11q1bh6OjI4MGDUp3H3d3d5KTkxkwYAC9e/fG2NiYI0eOEBkZSaNGjQAwMzMD4ODBg5QvX/69RiTq6+vTr18/hgwZQlJSEvPnz8fCwoIuXboAUKdOHaZPn86ECRPo0aMHgYGBLF68WG0kYWoMV65c4eLFi6qyTKksLCzo3bs3ixcvRldXl3r16vHkyRPmz59PiRIlaNmyZabj/ZQ6duzIzp076dSpE7169aJkyZLExsbyzz//sHHjRnr27KkqOfShzMzMuHXrFhcuXMDV1ZWuXbuyf/9+unbtSvfu3bG0tOTw4cPs2LGDMWPGACmjgWvWrMn//vc/QkJCKFSoEBs2bCA0NFS1Dk96ihUrRu/evVm+fDkBAQF8/fXX2NnZERISwv79+zl79ixr167NMLbMfrbefO379+9Pu3bt6NOnD+3bt0dfX5/t27dz/PhxFixYAKRceJ04cSIzZ86kdu3avHz5kkWLFuHo6Iizs/NHtbEQIvf42H6kn58fsbGx1KxZk969e/P777/Tr18/tm/frjY6XmQv6cdKP1b6sTnDN998w4YNGxg4cCBDhgzBxMSEpUuXvvVipKurK1u3bmXGjBnUq1ePFy9esHr1aoKDg2XdXCFEjiL9yJxJ+oHSD5R+YNarVasW48ePZ/r06Vy7do2WLVtStGhRoqOjuXDhArt37yYuLo7OnTsDKW1TqVIl+vfvT//+/SlevDje3t4sWLCAWrVqqQY7ZiVXV1eWLFnCihUrqFChAv7+/ixfvpz4+PhMvXffVLBgQapXr87p06cZPnx4lscrhMiYJMLT4efnx59//ombm5vqvoSEBFWZ3uHDh3PhwoU0+zk7O7N//360tbUpXbo0P/zwAwBlypThzJkz7N+/n759+2bPk8iB9uzZQ8mSJdVmc76uYsWK2Nvbs3PnTuzt7dXKKX8oMzMzFi5cyM8//8yAAQMoVKgQAwcOZN++faptqlSpwoQJE1i7di1Hjx7FxsaGKlWqsGjRIgYMGMDly5czVd7I3Nyc7du3s3LlSk6cOMHWrVtJSEigUKFCNGvWjN69e6vW6Rk9ejQJCQn88ssvxMfHY29vT79+/fD19eXEiRMkJSWlOf6MGTOYMmUKU6ZMAcDR0ZHJkyfz66+/Znp0cN26ddm+fbuqA5sZ3377rep3AwMDChcuTPv27enZs2eGHep8+fKxatUq5s+fz7hx44iJiaFkyZIsXLiQqlWrAtCoUSP279/P6NGjad26NZMmTcp0TGXKlOHLL79k0qRJREZGUq1aNcaOHavq9BQtWpSZM2eydOlSevfuTfHixdXaLlXfvn1ZsmQJvXr1Sndt6O+//x4bGxs2bdrE9u3bsbCwoHHjxgwePDhTa/9kBzMzM3bt2sWSJUtYs2YNL168wMDAgGLFivHTTz/RokWLjz5H9+7dmTZtGj169GDt2rV4eHiwbds2fv75ZyZNmkRcXByOjo5MnTpVrTzQokWLmDNnDgsWLCAuLo4mTZrQtm1b/vjjj7eeb+jQoZQuXZqdO3fy008/8erVK8zMzPDw8GDXrl1qSec3Y8vMZ0tbWzvNa+/s7MzmzZuZN28eI0eORKlUUqpUKRYvXkyDBg0AaNeuHQkJCWzbto0tW7ZgYGBAtWrVGDFiBLq6uh/dzkKI3OFj+5H9+/enU6dOquSMs7MzN2/eZMeOHXIBU4OkHyv9WOnH5gx6enqsX7+eadOmMXXqVBQKBW3btqVw4cKEhISku0/Lli158uQJu3fvZsuWLeTPn586derQoUMHxo8fz/379ylevHg2PxMhhEhL+pE5k/QDpR8o/cBP47vvvqNy5cps3bqVtWvX8uzZM7S1tSlatCgdO3bk22+/VVU70NLSYsWKFcyfP5/ly5cTEhJC/vz56datm6p6Y1br06cPYWFhbNiwgcWLF1OgQAG++eYbFAoFy5cv5+XLl6qBEZlVt25dzp49yzfffPNJYhZCpE+hTK/2RB7k5OTEhg0bqFKlCv3798fc3DxN0lpHR4dChQq981idOnWiWLFiTJ48WXXf4MGDMTc3V7tPiOw2ceJEvLy81DrOQgghhPg4WdmPTM+sWbPw9fVlxYoVWRGuEJ8l6ccKIYTIjaQfKcS7ST9Q5BY9e/ZEX1+fxYsXazoUIfIUmRGejqJFi3L16lUcHBxU961Zs4b4+PhMzeiuUKECFy9eVLvPz8+PZs2aZXmsQmTGhg0b8PPzY8eOHcyePVvT4QghhBC51sf2I0ePHo1CoWD69Omq++7cuZPhDBQhcjvpxwohhMgrpB8phDrpB4rcYvHixTx48IDTp0+zZcsWTYcjRJ6jpekAcqIOHTpw48YN5s2bx8OHDzlw4ABz587N9Dq77dq14+7duyxcuBB/f3/mz5/P48ePpeSF0JhLly6xf/9+unTpIgMyhBBCiE/oY/uR9evX58CBA+zbtw9/f38WLVrE5cuXVWtFCpHXSD9WCCFEXiH9SCHUST9Q5BYnTpzg5MmTjBw5End3d02HI0SeI6XR//V6KSKAf/75hzlz5nDv3j3VehPv03G8fPkyU6dOxcfHh+LFizNu3DgqVar0qcIXQgghhBAaktX9yJ07d7Jq1SoCAgIoWbIkY8aMkX6kEEIIIUQuJP1IIYQQQohPSxLhQgghhBBCCCGEEEIIIYQQQgghchUpjS6EEEIIIYQQQgghhBBCCCGEECJXkUS4EEIIIYQQQgghhBBCCCGEEEKIXEUS4UIIIYQQQgghhBBCCCGEEEIIIXIVHU0HoClBQZEfvK+VlTGhoVFZGM3nT9pE3Qe3R1QUtkULABD0IBCMjbM4Ms2Q94c6aQ910h5pSZuoS689bG1NNRSNEB/Xj8wK8jdCnbRHWhprkxzal5X3SFrSJuqkPdLKzW0i/UihSdKP1DxpgxTSDimkHeS7Qyp5L6SQdnh7G0g/8vMkM8Lfk0IB2tpaKBSajiTnkDZRJ+2hTtpDnbSHOmmPtKRN1El7CKFOPhPqpD3SkjZRJ+2RlrSJOmmPtKRNhMid5LMtbZBK2iGFtIO0QSpphxTSDtIGuZUkwoUQQgghhBBCCCGEEEIIIYQQQuQqkggXQgghhBBCCCGEEEIIIYQQQgiRq0giXAghhBBCCCGEEEIIkefEx8fTrFkzzp8/n+E2f/31F9988w1ubm40b96cP/74Q+1xDw8PnJyc1H6iovL2+qpCCCGEEDmFjqYDEEIIIYQQQgghhBBCiOwUFxfHsGHD8PHxyXCbO3fuMHDgQEaOHEmdOnU4ffo0gwYNYteuXTg7O/P8+XMiIyM5fvw4BgYGqv2MjIyy4ykIIYQQQoh3kES4EEIIIYQQQgghhBAiz/D19WXYsGEolcq3bnfw4EGqVq1K586dAXBwcODEiRMcOXIEZ2dn7t+/j62tLYULF86OsIUQQgghxHuSRLjIsZRKJSHRCTwOi+FxWAyBL2N5GZtIRGwCkXGJRMUlAaBQgALQ1tbC3EAHC0NdzA10sDTSo7ClIQ6WhhQwM0BbS6HZJySEEEIIIXKN2IQknkTE8jQ8huCoeEKjEgiNjic8JoHYxGTi/v1JTFaio6VAV1uBrpYWBrpamBvqYmGoi6WhLjbGehSyMMDe3BBzQx0UCumzCiGEEJ/ahQsXqFKlCkOGDKFChQoZbteyZUsSEhLS3B8ZGQmkJNSLFi36qcIUQohskZis5ElYDM8i4wh+FU/QqziCo+KJjEskJiGZmPgkohOSUCqVKBQKtBSgpVBgqKuNqYEOpvo6mOprY2Oij52pPgXMDLAz08dEX9JPQgjNk79EIkdQKpU8i4zjRmAkNwJfcutZJPdeRBGdkJQlx9fVVlDYwpAydqaUK2iGawEzilobSXJcCCGEEEK8lVKpJOBlLHeev+L281fcff6KB6HRvIiM4+1zyN6fsZ42jlZGOOUzoVQ+Y0rZmlAqnwn6OlpZfCYhhBAib+vQoUOmtitevLjabR8fH86ePUu7du0AuH//PjExMXTq1IkHDx5QunRpxo4d+9bkuKbGvKWeNy+PuZM2SCHtkCKvtkNYdDw3AiO5GRjJ/ZAoHkfE8TA4isTkrP52A9ZGuhS3Mf73x4jSdqYUtzFGR+vfmW3/UihQu53d8up74U3SDtIGuZUkwoXGxCQkcelROP88COWfh2EERMSm2UZLAXZmBhS2MKCQuSEWhjqYGehiZqCDsZ52yl8kpRIlkJCk5GVsAuExCYTHJBL0Ko7H4SmzyeOTlPiFROMXEs3Bm88BMNHXpoqDJTWKWlG9qBXWxnrZ3AJCCCGEECKnUSqV+IfFcPlxOJceRXDlSTih0WlngkFKf7KwhSH5TPSxMtbFykgPS0NdDHW10dfRQk9HCx0tBYnJShKSUmaHR8cnERGb0l8Ni47nxat4nobH8OJVPFHxSdx8FsnNZ5Gqc+hpKyhbwAw3e3Pc7c0pX8hcEuNCCCGEBoSGhvL999/j7u5OgwYNAPDz8yMiIoKhQ4diYmLCypUr6dq1K4cOHcLExCTNMaysjNHW1uz/cWtrU42ePyeQNkgh7ZAit7fDs4hYTvkEccY3mMuPwngcGpPudoa62thbGmJnbkA+UwPymeljYaiLkX7KdXgjPW20FAqSlZCsVJKUrCQ6PpGXMYlExCQQEZPAs5exBITHEBAeQ1h0AiHRCYQ8CufCo3DVeYz1tKlQxILK+fQZ9O99NjamYGz86RvjHXL7eyGzpB2kDXIbSYSLbBWbkMQpv1CO3n7BuYehxCf9N9JMW0tBKVtjXOxMKVvAjNJ2JhS2MET3I78gJCuVPI+MwycoihuBL7ke8JKbzyJ5FZfEH/eC+eNeMABl7Exp5GTLl8622Jjof9Q5hRBCCCHE5yMxKZmrTyM46RvCqfshBLyMU3tcR0tBCRtjnPObpMxisDaiiKUhFoa6WVbKPC4xmacRMdwPjubui1cpP89fERaTwJUnEVx5EsFqwFBXiyoOltQsZkWNolbSbxVCCCGyQXBwMN26dUOpVLJgwQK0tFKuVa1evZqEhASM/03gzJkzhzp16vDnn3/SvHnzNMcJDY3S6Ixwa2tTQkIiecfS6LmWtEEKaYcUubUdkpVKvJ++5IRPMGcfhPEgNDrNNkWtjChbwJRS+YxxLWqDtS7kM9FHKwv/QEXFJ/IwJIb7wVHcD47CJyiKm88iiYpP4oxvCFduxaoS4T3XnMfNqSB1SlhjZ2aQZTFkVm59L7wvaYd3t4GNjSTIP0c5IhEeHx+Pp6cn48ePp0qVKulu89dffzFv3jwePXqEvb09gwcPVo2+BPDw8FCtz5PqypUrqo6o0BylUsnVpxH8ev0Zf/qEqJU7L2CmT/V/Z2R7FLbASE87y8+vpVBQwMyAAmYG1C5uDUBSspLbzyM54xfKmQeh3H7+ilvPIrn1LJIFf/tRuYglX5XJR4NStjLjRgghhBAiF0pWKrn6JIJDN5/zl28IkXGJqsf0tBWUK2hGxcIWeBS2wMXOFL1P3CfU19GimLUxxayN+cLJFvhvdvrVfxPhlx6FExwVz1++IfzlG4ICqGBvTmNnW+qXssXCUPeTxiiEEELkRc+fP6dz584AbNiwASsrK9Vjenp66On9V2FQX18fe3t7nj9/nuHxNJ1cUCo1H4OmSRukkHZIkRvaQalUcu3pS47fDeKETzDBUfGqx7QUUDq/KVUcLXG3N8fFzlS1drdCkZLYCw6OzPJ2MNLVoYydKWXs/kscJiUreRASjXdABDf9/vs7eeZBGMefxjD7xH3KFjClQSlbGpSyoUA2J8Vzw3shK0g7SBvkNhpPhMfFxTFs2DB8fHwy3ObOnTsMHDiQkSNHUqdOHU6fPs2gQYPYtWsXzs7OPH/+nMjISI4fP46BwX9/HI2MjLLjKYgMxCQkceT2C3ZeDcA3OEp1fwEzfb50zseXzvkobmOUZbNo3oe2VkqJybIFzOhTw5HgqHj+9AnmyK0XXA98yTn/MM75hzHvLz9alLOjVfkCGhmNJoQQQgghstbDkGgO3XrO0dsveBb538xvS0NdahW3onZxG6o4WGCgm/UDNN+XQqHA0coIRysjWroWQKlUcu9FFKf8QjjtF8rNZ5FcfRLB1ScRzDpxn2qOlrR0LcA3ljIYWAghhMgK0dHR9OzZEy0tLTZs2ICtra3qMaVSyRdffEH//v3x9PRUbe/v70+xYsU0FbIQIg95ERnHoVvP+fXGM56E/7fsqLGeNrWLW1OnhDWVilhgZpAzBsxqaykoYWtMCVtjPEuYq+7vW8OBvwJjufYkghuBkdwIjGT+ST/KFTCleVk7GjnbYqyn8VSWEOIzpdG/Hr6+vgwbNgzlO4ZWHDx4kKpVq6pGXzo4OHDixAmOHDmCs7Mz9+/fx9bWlsKFC2dH2OIdwqLj2Xz5KXu8AlUza/R1tGhcOh/NyuTHtZBZlpZZyQo2xnq0qVCQNhUK8iQ8hiO3XvDrjWc8i4xj3YXHbLz4mLolbehSuTCl80v5CyGEEEKIz0lispJT90PYcfUplx5HqO430demYSlbviqTj/IFzdHWyll91DcpFAqc8pvglN+EntUcePYylt/vBnHsThB3X7zitF8op/1CmfPnfZq75OfrsnbkN5XS6UIIIcT7CAoKwtTUFAMDA5YvX86jR4/YuHGj6jEAAwMDTE1NqVu3LgsXLqRQoUJYWVkxf/587OzsqFOnjiafghAiF1MqlVx8FM7WK0/550Eoyf+mVox0talfyoaGpWypVMTik1e0ykodKtrTwdhYNVnt+N0grj6J4HpgJNcDI5n7530aOtnSopwdrgXNNDKxTgjx+dJoIvzChQtUqVKFIUOGUKFChQy3a9myJQkJCWnuTy2F7uvrS9GiRT9VmCKTgl7FsfHiE3Z7BRKXmAyAvYUBbSoUpJlL/hwz8uxd7C0M6VXdgW5Vi3Dqfgjbrz7l8uMI1XriNYtZ0bNqEVwKmGk6VCGEEEII8RbhMQns8w5kt1egava3tgKqFbWiaZn81Cpu/Vkvg2NnZkCnSoXpVKkwD0Oi+fXGMw7cfE5gRCwr/vFn1Vl/6pawoXMle+m7CiGEEJlUs2ZNpk+fjqenJ8eOHSM2NpY2bdqobdOyZUtmzJjBiBEj0NHRYdiwYbx69YqqVauyYsUKtLU1X1lGCJG7xCcmc/TOC7ZdeYpP0H/VV90KmdG8rB0NnWwxzAFVrT7G65PVgqPiOfLvbPeHoTEcvPmcgzefU9LWmPbuhfjSOd9nlewXQmiORhPhHTp0yNR2xYsXV7vt4+PD2bNnadeuHQD3798nJiaGTp068eDBA0qXLs3YsWPfmRz/kIFDqfvIoKP/RMQmsOTALTade0h8UsoQtDL5TeherQi1i1vnuNnfmaWrraB+KRvql7LBNyiK9Rcfc+z2C9VMm2qOlgyoVRTn/CZq+33Ue+S1fRQK9dufK/nMqJP2UCftkZa0iTppD/Gx4uPj8fT0ZPz48VSpUiXdbW7dusXEiRO5d+8eJUqUYPLkyZQtWzabIxVZKfhVHJsuPWW3VwCx/w7QNDfQoaVrgVy75I2jtRE/1ClGv5qOXHz2ivWnH3DlSQQnfII54ROMu705nSsXprqjpcygEEIIIV5z9+7dDG8fPXr0rfvq6+szevRoRo8e/UliE0KI2IQk9l5/xvoLjwn5d+1vAx0tvi5rRxu3gjha5c7lYW2M9ehUqTAdPezxDnjJ/uvP+P1uED5BUfx47B6LTj2gdYWCtCpfACsjPU2HK4TIwT67hRVCQ0P5/vvvcXd3p0GDBgD4+fkRERHB0KFDMTExYeXKlXTt2pVDhw5hYmKS7nGsrIzR1v7wEUPW1lIeOzYhiXX/PGTxn75ExqaUQPdwsOT7BiWpXdImV11gs7ExpWppOx4ER7H4T1/2Xn3K2Ycp64i3dCvE8EZOFLQwVNvng94jhv+9J21sTME496zvKJ8ZddIe6qQ90pI2USftIT5EXFwcw4YNw8fHJ8NtoqOj6d27N82bN2fGjBls3bqVPn368Pvvv2NklDsvKORmz17GsuHiE/ZfD1QN0Cxla0w790I0cs73Wc/+ziw9HS2+qVCIGvZm+ARFsenSE47efsGVJxFceRJBCRtjelYrQr2SNp/tgFUhhBBCCCFyu9iEJPb9mwAP/jcBns9Ej2/dCtHC1e6zqb76sRQKBeULmVO+kDmD6hRj3/Vn7Lj6lBev4lnxjz/rLzymVfkCdKpUGBtjSYgLIdL6rBLhwcHBdOvWDaVSyYIFC9DSSrmQtXr1ahISEjD+N2k4Z84c6tSpw59//knz5s3TPVZoaNQHzwi3tjYlJCSSdyxtnmsplUp+uxvEgpMPeP5vicnSBczoX6MIVR1SZpiEhLzScJSfhikwul4xOroVYNmZhxy9HcSeK0855B1Ih4qF6FalCMb62h/+HomKwubfX4ODIyEmOYufQfaTz4w6aQ910h5pSZuoy6g9bGwkMS7eztfXl2HDhqF8xwfp8OHD6OvrM3LkSBQKBePGjePvv//m6NGjeHp6ZlO04mOFRMWz8h9/9l5/RtK/i+SVK2BGj2pF8vQM6BI2xkxq7ES/Go5svfyUvd6B+AZHMfrAbZzymdC3hgM1ilrl2fYRQgghhBAip0lWKjly6wVLTj/gxauUBLidqT7dqhahuUt+dD9ict/nztxQly6VC/NdxUL8cS+YzZefcPv5K7Zcfspur0BalLOjS+XC2JroazpUIUQO8tkkwp8/f07nzp0B2LBhA1ZWVqrH9PT00NP7b7SPvr4+9vb2PH/+/K3H/JgEg1L5cft/rh6GRDPzhC+XHoUDKaPQ+tcqSqdaxQkLfZVn2qWQuSFTmpSmnbs98/+6z9WnL1l7/jGHbj5neP0StKlm8mFt8dr2SqX67c9dXnlvZJa0hzppj7SkTdRJe4j3deHCBapUqcKQIUOoUKFChtt5eXlRsWJFVSJQoVDg7u7OtWvXJBH+GYiKT2TD7/dY+fd9YhJSBhB6FLGgR5UiVCxsLgnef+U31Wdw3WJ0r1qYbVeesuXyU+6+eMWQvTcpV8CMAbUcqVjYQtNhCiGEEEIIkaddfhzOL3/5cedFyiQzSYCnT0dbiy9L56ORsy1nH4ax6qw/1wMj2X41gL3egbR0LUDPqg5YGOWNWfNCiLf7LBLh0dHR9OzZEy0tLTZs2ICtra3qMaVSyRdffEH//v1VFyujo6Px9/enWLFimgo514lNSGLN+UdsvPiExGQl+jpadKlcmE4e9hjqaaOtlTcvMrrYmbL82/Kc9A1h3kk/AiJiGfnrLY7cDWJQLUcKmRu++yBCCCGEyHIdOnTI1HZBQUGUKFFC7T5ra+u3llMXmpeYrGSPVyCrzvoTFpMApPTLvq9dVBK6b2FmoEvv6o60rVCIDRcfs+NaANcDX9J3hzd1S1jzQ+1iFLaU/qsQQgghhBDZ6WlEDL/85cdfviEAGOtp06NqEdq6FcoTyzt9KIVCQfWiVlRztOSCfzgrz/rjFfCS7VcDOHjzOV0qF6a9eyEMdLU1HaoQQoNybCI8KCgIU1NTDAwMWL58OY8ePWLjxo2qxwAMDAwwNTWlbt26LFy4kEKFCmFlZcX8+fOxs7OjTp06mnwKucbVJxFMOXaXx+GxANQoasXw+sWxt5CLZJDyD7duSRuqOlqqBgv8eTeIf+6H0LeGI+3dC+XZgQJCCCFEThcTE6NWWQhSqg3Fx8e/dT9NTTROPW9enuh8+XE4s/+4j29wFADFbIzpWz1lzWuZAZ6594ilsS6D6hbjO49CrD73iD1egfzlG8Jpv1DauxeiR7UimOh/wFfF186pUKjf1hT5zKQlbaJO2iMtaRMhhBAieyQmJbP58lNWnvUnLjEZbQW0dC1A7+oOWBrJeteZpVAoqOJoSWUHCy74h7Pgbz/uBUWx5PRDdl0LoE8NR5qWyS/X6IXIo3JsIrxmzZpMnz4dT09Pjh07RmxsLG3atFHbpmXLlsyYMYMRI0ago6PDsGHDePXqFVWrVmXFihVoa8tIn48Rk5DE4lMP2HE1ACUpZdBH1C9BnRLWcpExHQa62vSvWZSmZfLz88kHnPULYf5JP/70CWbCl6VwsDLSdIhCCCGEeIO+vn6apHd8fDwGBgYZ7mNlZYy2hsvSWVubavT8mhAYEcPUQ7c56B0IgIWRLsMaOdGuUmEpE5iOzLxHbGxMme1oQ+96kUw5dJu/7wWx8dITDt9+wajGzrTxsH+/fr/hf6+DjY0pGBt/SOifRF78zLyLtIk6aY+0pE2EEEKIT+d6wEum/e6jGuDrUdicEQ1KUMw65/ShPzepCfGNDu4cu/OCpacfEvgyjinH7rHtylNGNShB+ULmmg5TCJHNckwi/O7duxnePnr06Fv31dfXZ/To0YwePfqTxJYXXXsSweRjd3ny7yzwb8rZMbhOsQ+bGZLHOFobsaVXFVb96cMvf/nhHfCS7zZeoX9NR9q5F0JLBhEIIYQQOUb+/PkJDg5Wuy84OJh8+fJluE9oaJRGZ4RbW5sSEhKJUqmZGLJbYrKSrZefsPyMP7GJyWgpwNO1AH1rOmJppIuutlaeao93+ZD3iKU2zP26NGf88jPvr/s8DI1h5G5vtp33Z8wXJSlqnckBnVFR2Pz7a3BwJMQkf9BzyEp58TPzLtIm6qQ90srtbWJjIwl+IYQQmhOTkMSivx+w81rK5DNzAx0G1y1G0zL5ZfJZFtFSKPiqdH7ql7Rl17UAVp97hE9QFD23edG0TD4G1i6GjbHMuBcir5CsplCTmKxkzTl/Vp97RLIS8pvqM65RSao5Wmk6tM+KQqGgpWsBqjpYMuXYPS48CmfeX36c9gvlx6+csDHR13SIQgghhADKly/PypUrUSqVKBQKlEolV65coW/fvm/dT9OJAaVS8zFkh7svXjH1t3vcfv4KgPIFzRhRvwRO+U2A/9ogr7TH+/iQNqle1IrKRSzYdjWA5WcecuVJBO3XX6ZzJXu6VSny7rX1XjufUql+W9PkPZKWtIk6aY+0pE2EEEKIrHUj8CUTj9zlUVgMAE1d8jO4djEsjHQ1HFnupK+jxXce9jQpk48lpx+y//ozDt16wV++IfSu7kDbCgXRkepiQuR68ikXKs9extJvhxcrz6YkwZuWyce2LhUlCf4R7MwMWNS6HGMalsBAR4uLj8LpsOEKZx6Eajo0IYQQIs8KCgoiNjal6k3jxo15+fIlU6dOxdfXl6lTpxITE8NXX32l4SjztrjEZBafekCXTVe4/fwVpvo6jG9UipXtyquS4OLT0NHWoqOHPTu6eVCrmFXKQNnzj2m/4TLn/cM0HZ4QQgghhBCfncSkZJadeUjPrdd4FBZDPhM9FrYqy6TGTpIEzwaWRnqMa1SKtR0qUMbOlKj4JOb95UfHTVe4HvBS0+EJIT4xSYQLAE7cC6LDhitce/oSYz1tpjRxZtJXzlIKPQsoFAo8yxdkQ0d3StoaExaTwOA9N5j3133iEzVfLlIIIYTIa2rWrMnhw4cBMDExYfny5Vy+fBlPT0+8vLxYsWIFRkaZLAUtsty1JxF02HCZdRcek6SEBqVs2NHNg6/L2UmpwGxUwMyAn1u4MOvrMuQz0eNJeCwDd11n+u8+RMUnajo8IYQQQgghPguPwmLovvUaq889IkkJXzrbsrVLRarK5LNs51LAjLUdKjDui5KYG+hwPziaHluvMeeEL1Fx8h1HiNxKspx5XHxiMj//eZ893oEAuNiZ8lNTZ+wtDDUcWe5T1NqItR3cWPi3H9uvBrDl8lOuPI5garPSFLGU9hZCCCE+lbt37771tqurK3v37s3OkEQ64hNTZklsuvQEJWBtrMeoBiWoV9LmnfuKT0OhUFCvpA2VHSxYcuohO64FsMc7kHMPQ5nQ2ImKhS00HaIQQgghhBA51u93g5j62z2i4pMwM9BhVIMSNHLOp+mw8jQthYIWrgWoW8KGX07e59CtF2y7EsApvzBGNSgu1XGFyIVkRnge9uxlLL23e7HHOxAF0KVyYVa1Ky9J8E9IX0eL4fVL8HMLF8wNdLjz4hWdN13h7/shmg5NCCGEEEJjfIOj6LrlKhv/TYJ/XTY/O7t6SBI8hzDW02FEgxIsbeNKQTN9Al7G0XeHN3NO+BKbkKTp8IQQQgghhMhR4hOTmfWHL2MP3iYqPgm3QmZs7VxRkuA5iIWRLpO+cmZBq7IUMNPnaXgMP+y+wYTDdwiPTtB0eEKILCSJ8Dzq0qNwOm+6ys1nkZgb6DC/VVkG1iqKjra8JbJD7eLWbOlckfIFzYiKT2LYvpssP/OQZKVS06EJIYQQQmSbZKWSzZee0HnTFXyCorAw1GXON2UY/6UTpgZSvCqn8ShiwZYuFWnpagfA9qsBfLfxCjcDZV09IYQQQgghAJ6Ex9Bz2zV2XgsAUiafLWlbnnym+hqOTKSnmqMV27t60L1GURTAkdsv+Hb9JU76ysQ1IXILyXrmMcp/LzYO3OVNWEwCpWyNWd/RTUp+aEA+U32WtnWlbYWCAKw694gxB25rOCohhBBCiOzxIjKOAbuu88tJPxKSlNQsZsW2LhWpU0Jmgedkxno6jP2iFAtalSWfiR6PwmLosc2L9Rcey6BOIYQQQgiRp13wD6PL5qvcfv4KcwMdfmn57+QzLYWmQxNvYaSnzYTmZVj7XQWKWhsRGp3A8P03mXLsLq9k7XAhPnuSCM9DYhKS+N+hO/xy0o8kJTQpk4/V7StQyFxKoWuKrrYWIxqUYFJjJ/R1tDj7MEzTIQkhhBBCfHL/PAjlu41XuPQoHAMdLcY0LMHcFi5YG+tpOjSRSdUcrdjWxYOGpWxJSlay6NQDhu27qemwhBBCCCGEyHZKpZJtV57yw+7rvIxNpIydKZs6uVOjmEw++5yULWDGxo7udPSwRwH8euM5HTZc5vLjcE2HJoT4CJIIzyOCXsXRZ7sXv90NQltLwYj6KclXA11tTYcmgKYu+VnVrjx2Zv9d/D3tF6rBiIQQQgghsl5ispLFpx4waM8Nwv+tTrSpkzue5QuiUMgsic+NqYEO05o5M75RKQx0tLj8OELTIQkhhBBCCJGt4hOTmfqbDz//eZ8kJXxVOh/L27piZ2ag6dDEB9DX0WJQnWIs+9aVguYGBL6Mo+8Ob+b9dZ/YhCRNhyeE+ACSCM8D7jyPpOu/JVksDHVZ2saVtm5ysTGncc5vysp2FVS3xx28zaZLT1BKiUkhhBBC5AIvIuPot8OLdRceA9C6fAHWdHDDwcpIw5GJj6FQKPi6nB0bO7lT0ua/13LB3w9ISErWYGRCCCGEEEJ8WmHR8fTf6c3+G8/QUsAPtYsy+SuZfJYbuNtbsKWzOy3K2QGw5fJTOm++ik/QKw1HJoR4X5IIz+X+8gmm1zYvXryKp6i1EWs7VMDN3lzTYYkMmBvoqn5XAvNP+jH9uA+JchFRCCGEEJ+x1FLo156+xFhPm2nNSjOqYUn0deTrSG7haGXEsm/Lq27vuhZAn+3ePI+M02BUQgghhBBCfBpPwmPosfUaXgEvMdHXZl7LsnSqVFgmn+Uixno6jGtUil9alsXaWI8HIdF03XyV7VeeyuQ1IT4jcuUpl1IqlWy8+JiRv94iNjGZqg6WrGlfAXsLWQ/8czGwtiMKYK/3M37Yc4OXsQmaDkkIIYQQ4r0kK5UsO/NQVQrdKZ8JGzu684WTraZDE5+ArvZ/Xy9N9LW5HviSjhuvcP5hmAajEkIIIYQQImvdDHxJ9y3XeBweSwEzfda0d6N6UVkPPLeqUcyKrZ3dqVnMivgkJXP+vM/QfTcJi47XdGhCiEyQRHgulJisZPpxHxb8/QAl0Kp8AeZ5lsVEX0fToYn30LZCIX5u4YKhrhYXH4XTfcs1noTHaDosIYQQQohMiYxNZOjem6w+9whI6ZOubl+BwpYyMDMvWNWuPE75TAiPSeD73ddZddafZJk1IYQQQgghPnN/3w+hzw5vwmIScM5nwpoObhS1luWecjtLIz3mtnBheL3i6GkrOO0XSocNV7jgL4N+hcjpJBGey8QmJDHq11vs9X6GAhhWrzijGpRAR0tKsnyOahW3ZlW7CuQ31cc/LKXczt3nsg6JEEIIIXK2+8FRdNl8hTMPQtHX0WLyV06MllLoeUpBc0NWt69Ai3J2KIHl//gz+N/KAEIIIYQQQnyO9ngFMGL/TeISk6nmaMnyb8tjY6yn6bBENlEoFHzrXoi1HdxwtDIkOCqegbuus+jUA1naVIgcTK5E5SIRMQkM2HWdv++HoKetYMbXZWjnXkjWJfnMlcpnwroOFShpa0xodAJ9dnjJSDMhhBBC5Fgn7gXRbctVHofHYmeqz6p25WlSJr+mwxIaoK+jxbhGpZjYuBT6OlqcfRhG501XuPdCBnYKIYTQvPj4eJo1a8b58+cz3ObWrVu0adOG8uXL06pVK27cuKH2+MGDB2nYsCHly5dnwIABhIaGfuqwhRAasvb8I6Yf9yVZCd+UtWNuCxeM9LQ1HZbQgFL/LvnV0jVl0O/6C4/puc2LgIhYTYcmhEiHJMJziWcvY+m1zQvvgJeY6uuwqLUr9UvaaDoskUVsTPRZ8W15PAqbExWfxKA9N/jtzgtNhyWEEEIIoZKUrGTJ6QeMOnCbmIRkPIpYsKGjG875TTUdmtCwZi52rO1QAXsLAwJfxtFj6zWO3w3SdFhCCCHysLi4OIYOHYqPj0+G20RHR9O7d288PDzYs2cPbm5u9OnTh+joaAC8vb0ZN24cAwcOZPv27bx8+ZIxY8Zk11MQQmQTpVLJwr8fsOT0QwB6VC3CuEYl0dGW1EpeZqCrzdgvSjGzeWlM9XW4+SySjhuvcNI3RNOhCSHeIH+tcwHf4Ch6bL3Gg9Bo8pnosaJdedzszTUdlshiJvo6zPcsR8NStiQmKxl36A5bLj/RdFhCCCGEELyKS2T4/pusPf8YgA4VC7GwVTksjaRMoEhR0taEdR3cqOJgQWxiMmMO3mbp6QeybrgQQohs5+vrS9u2bXn06NFbtzt8+DD6+vqMHDmS4sWLM27cOIyNjTl69CgAmzZt4quvvqJFixY4Ozsza9YsTp48yePHj7PjaQghskGyUsnMP3zZcDHlcz2oTjH61nCUCqxCpX4pWzZ3dsfFzpTIf78Xzz/pJ6XShchBckQiXEoRfbgrT8Lpvc2LF6/iKWplxOr2FShhY6zpsMQnoqejxdRmznzrVhCAeX/5seCkn1xAFEIIIYTGBETE0nPbNU77pawHPqWJM0PqFkdHSy4OCXXmhrr84lmO7yraA7Dm/GOG77vJq7hEDUcmhBAiL7lw4QJVqlRh+/btb93Oy8uLihUrqhJeCoUCd3d3rl27pnrcw8NDtX2BAgUoWLAgXl5enyx2IUT2SUxWMvnoXXZ7BaIAxnxRko4e9poOS+RABcwMWNmuPO3dCwGw6dIT+uzw5tlLKZUuRE6g8US4lCL6cH/fD+H7XdeJjEvEtaAZK9uVx87MQNNhiU9MS6FgWL3iDKjpCMDGS0+YfPSujDITQgghRLbzehpB181XuR8cjbWxHsu/LU/j0vk0HZbIwXS0FAyuW4zJXzmhp63glF8o3bdcwz80WtOhCSGEyCM6dOjA2LFjMTQ0fOt2QUFB5Mun3q+xtrbm2bNnALx48eKtjwshPl+JScmMPXibw7deoK2lYEoTZzxdC2g6LJGD6WprMbRecWZ+XQYTfW28A17SceMVzjzIGxM2hcjJdDR5cl9fX4YNG4byHbNZXy9FpFAoGDduHH///TdHjx7F09NTrRQRwKxZs6hXrx6PHz+mcOHC2fBMst9vd14w4chdkpKV1C5uzdSmzhjoams6LJFNFAoFXasUwdpYj6m/3ePwrRdExSUxrVlp9HQ0Pr5FCCGEEHnAkdvPmXLsHglJSkrZGvNzCxcZlCkyrUmZ/DhYGTFy/00ehEbTdctVpjUrTTVHK02HJoQQQgAQExODnp76Mi96enrEx8cDEBsb+9bHM6Kpisqp583LFZ2lDVJIO6TIqB0Sk5IZe+g2f/qEoKetYMbXZahd3Dr7A8wGGn0vvHZOhUL9dnbLynZoUMoGp3zGjD5wmzvPXzF4zw26VSlMnxqOOb5qmvxtkDbIrTSaCE8tRTRkyBAqVKiQ4XZvK0Xk6emJl5cXvXr1Um3/eimi3JgI3389kKm/+aAEviqdjwmNnXL8H1HxaTQva4eFoS6jD9zi5P0Qhu67wexvXDCUQRFCCCGE+ESSlUqW/+PPmnMp62rWLWHN5K+cMdKT/od4Py52pqzv6M7I/be4HviSwXtuMKxeCdr+uwyQEEIIoUn6+vppktrx8fEYGBi89fG3zTS3sjJGW1uzExisrU01ev6cQNoghbRDitfbISEpmR+2Xv03Ca7Fis4VqeuU+yteaeS9YPjf30IbG1Mw1vxyr1nVDjY2puwbaM3UQ7fZeM6ftecfc+tFFAvau5H/Mxg8Ln8bpA1yG40mwjt06JCp7YKCgihRooTafdbW1qpy6nmpFNHWK0+Z++d9ADxdCzCqYQm0ZHhKnlaruDW/eJZl2L6bnPcP5/td1/nFsywm+hr9eAshhBAiF4pNSGLS0bv8cS8YgM6VCjOglqP0R8UHszHWY1lbV6Yd9+HQzefMPuHLo7BohtQtjrYM9hVCCKFB+fPnJzg4WO2+4OBg1TXIjB63tbXN8JihoVEanRFubW1KSEgk7yjOmWtJG6SQdkjxZjskJiUz7tAd/rgXjK62glnflKGstSHBwZGaDvWT0eh7ISoKm39/DQ6OhBjNLfv5qdphUE0HStsY8tMxH84/COWrX/7mp6bOVHawzLqTZCH52/DuNrCxkQT55+izyJTlpFJEmiqNoFQqWXP+MUtPPwSgo4c9g+oUVc2S1yQpF6Huo9rjA0vCVHawZEkbV37YfQOvgJf02+nNolblsDDS/YAgspa8P9RJe6iT9khL2kSdtIf4UHFxcUyePJnffvsNAwMDunfvTvfu3dPd9vfff2fu3Lk8e/YMZ2dn/ve//+Hi4pLNEed8YdHxDN13kxuBkehoKRj7RUmal7XTdFgiF9DT0WLil6VwsDRkyemHbL8awNOIWH5q6oyx3mfxlVUIIUQuVL58eVauXIlSqUShUKBUKrly5Qp9+/ZVPX758mU8PT0BCAwMJDAwkPLly7/1uJpOLiiVmo9B06QNUkg7pFAqISFJyfhDKQN+dbQUzPq6DDWKWuWZ9tHIe+G18ymV6rc15VO0wxdO+Shla8LoA7fxDY5i4K7r9K7uQLcqRXLsgHL52yBtkNt8FlcVcmIpouwsjaBUKpl59C7L/k2CD2lYih8alMgRSfDXSbkIdR/UHh9REqaejSnbbEzovPoCd56/ot+u62zqWSXHlFuR94c6aQ910h5pSZuok/YQ72vWrFncuHGD9evXExAQwKhRoyhYsCCNGzdW287Hx4dhw4bx448/4u7uzrp16+jTpw+///77W/uSec3jsBgG7bnO4/BYzAx0mP1NGdztLTQdlshFFAoF3aoUoYilIROP3OW0Xyi9tnkxV9aeF0IIkY2CgoIwNTXFwMCAxo0b8/PPPzN16lTatWvHtm3biImJ4auvvgKgffv2dOrUiQoVKlCuXDmmTp1K3bp1c+UyjULkZonJSiYevsPxe0HoaCmY+XUZahbLnWuCC81wsDJibYcKzD7hy683nrPsjD/eAS+Z/JUzFoaan8gmRG73WSTCc1IpouwuD6FUKpn1x312XgsAYHDdYnxXwY6QkFef/uSZJCUz1H1Ue3xkSZj8elosb+tK/53e+Lx4hefiMyxt60pBc81dPJT3hzppD3XSHmlJm6jLqD2kFJF4m+joaHbu3MnKlStxcXHBxcUFHx8fNm/enCYRfubMGUqUKEGLFi0AGDp0KJs3b8bX15dy5cppIPqc50bgS4bsvUl4TAIFzfSZ71kOR2sjTYclcqkGpWyxM9Vn6L6b+ARF0XXLNX5u4YKLnfzdF0II8enVrFmT6dOn4+npiYmJCcuXL2fixIns2LEDJycnVqxYgZFRSj/Izc2NH3/8kQULFhAREUGNGjWYMmWKhp+BEOJ9JCcrmfrbPX67m5IEn9G8DLWLSxJcZD0DXW3Gf+lE+ULmzPrDl38ehNFx4xVmNC9N2QJmmg5PiFzts0iE58RSRNlRGiElCe7LLq9AFMDoL0ri6VogxyZGpFyEug9qjywoCeNgZcTKdhXov9ObpxGx9NrmxbK2rthbaHZWm7w/1El7qJP2SEvaRJ20h3gfd+7cITExETc3N9V9FStWZNmyZSQnJ6Ol9V8FFgsLC3x9fbl8+TJubm7s2bMHExMTihQpoonQc5yTviGMO3SbuMRkSuc3YW7LstgY6717RyE+gksBM9Z958bQvTfxDY6iz3YvfmziTP2SNu/eWQghhHgPd+/efettV1dX9u7dm+H+np6equuRQojPi1KpZOrh2xy48RwtBUxtVpo6JSQJLj6tr8va4ZzPhNEHbvE4POXa/eA6xWjrVjDHVQAWIrf48Nrgn1hQUBCxsbEANG7cmJcvXzJ16lR8fX2ZOnVqmlJE+/fvZ+fOndy5c4eRI0d+9qWIlEolP/95X5UEn9C4FJ6uBTQdlvhMFDQ3YGW78jhaGfI8Mo4+2714FBaj6bCEEEKIbBEUFISlpSV6ev8lbG1sbIiLiyM8PFxt2yZNmlC3bl06dOhA2bJlmTVrFgsWLMDc3Dybo855dl0LYOSvN4lLTKZ6UUuWtS0vSXCRbQqYpfRnqxe1JC4xmVG/3mLjxccoZVSUEEIIIYTIAqvPPWL16QcA/K9RKRl0KbJNqXwmbOjoTv2SNiQmK5nz533GHrxDVHyipkMTIlfKsYnwmjVrcvjwYQBVKaLUWd9eXl7pliJavHgx7du3x9zcnOnTp2sy/I+iVCr55aQf26+mlEP/X6NSNHOx03BU4nNja6LPsrblKWptxItX8fTd4cXD0GhNhyWEEEJ8cjExMWpJcEB1Oz4+Xu3+sLAwgoKCmDBhAjt27OCbb75hzJgxhISEvPUcCoXmfj71+ZUoWXzqATP/8CVZCS3K2TG3ZVmM9bU1+rw11R6f448m2yQrPyOmBjrMbVmWtm4FAVjw9wN+/vM+yUrlZ9MeOfVH2kTaIy+3iRBCCLH9ylOWnfEHYFi94jQvK9feRfYy0ddhRvPSDKlbDG0tBcfvBdFl01V8g6M0HZoQuU6OKY0upYhSKJVKFv79gC2XnwIw9ouSfF1O/hGLD2NtrMeyf9cMvx8cTd8d3ixt40pRWddTCCFELqavr58m4Z1628DAQO3+OXPmUKpUKb777jsApkyZwldffcXu3bvp3bt3use3sjJGW1uz40mtrT/NesnxicmM3OXFvmspAzKHfVGKgfVLkNNLtH2q9vicaaRNDP/7XNjYmIKxcZYcdmbbCpQqaM5Ph26z/WoA4fFJzG/nhoGudqaPIe+RtKRN1El7pCVtIoQQIjc6dPM5c/68D8CgBiVp75ZzlyIVuZtCoaBDRXtc7EwZe/A2/mExdN18lTENS9LUJb+mwxMi18gxiXCRkgRffPohGy89AWB0wxK0lHLo4iNZGemxrE15+u/yxicoir47vFjSxpXiNllzYVIIIYTIafLnz09YWBiJiYno6KR0d4OCgjAwMMDMzExt25s3b9KpUyfVbS0tLZydnQkICMjw+KGhURqbUaZQpCQmQkIis/xizau4REbsv8XFR+FoaykY36gkzcraERLyKmtPlIU+ZXt8rjTaJlFRpBaUDA6OhJjkLDt0i9K2GCmUTDxyl2M3n9N26T/MbeGChZHuW/eT90ha0ibqpD3Syu1tYmMjCX4hhMirTvoGM+VYygS89u6FGNywZI7+viPyhvKFzNnUyZ0Jh+9yzj+MSUfvcu1pBMPrl0BfJ8cWdRbisyGfohxCqVSy7B9/1l94DMCI+iVoVb6ghqMSuYWFkS5L2rjilM+E0OgE+u7wxidIOnlCCCFyp9KlS6Ojo8O1a9dU912+fJly5cqhpaXe/c2XLx/3799Xu+/BgwfY29u/9RxKpeZ+PsX5w6IS6LfDm4uPwjHW02Z+y7I0dbHT6PPUZHt87j+abJNP+Rn5wikfi1qXw1RfB++Al3Tfeo3HYTE5uj1y6o+0ibRHXm4TIYQQedPVJxGMPXibJCU0c8nPkHrFcnzlK5F3WBrp8YtnWXpXc0AB7Lv+jO5brvIkPEbToQnx2ZNEeA6x6uwj1px7BMDQesVV6+AJkVUsDHVZ3LocpfObEB6TcrH77gtJhgshhMh9DA0NadGiBZMmTcLb25vjx4+zZs0aOnfuDKTMDo+NjQWgbdu27Nixg3379uHv78+cOXMICAigZcuWmnwK2erZy1h6bb/G7eevsDTUZVlbV6o4Wmo6LCHS5W5vwar25bEz1edRWAw9tl7j5rNITYclhBBCCCFysAch0Qzff5P4JCW1i1szrlEptCQJLnIYbS0Fvao7sLBVOSwMdbkXFEWnTVf4yydY06EJ8VmTRHgOsPqcPyvO+gMwuE4x2rsX0nBEIrcyN9RlcWtXXOxMiYhNZMBOb+48lwuHQgghcp8xY8bg4uJCly5dmDx5Mt9//z2NGjUCoGbNmhw+fBiAJk2aMH78eJYvX06LFi24cuUK69evx9raWpPhZxv/0Gh6bfPiYWgM+U31WdGuPM75pWSsyNmKWRuzpkMFStkap1Q72u7Fab8QTYclhBBCCCFyoKBXcfyw+zovYxMpV8CUqU2d0dGSJLjIuao4WrKpkzvlCpjxKi6JEb/eYv5JPxKTsm7pKSHyEkmEa9ja849YdiYlCf5D7aJ85/H2MpxCfCxTAx0WtS5HuQL/JsN3XZeZ4UIIIXIdQ0NDZs6cydWrVzl16hRdu3ZVPXb37l08PT1Vt9u0acORI0e4evUqW7ZswcXFRQMRZ787zyPptc2LZ5FxOFgasqpdeRytjDQdlhCZYmuSMnCjqoMlsYnJDNt3kz3egZoOSwghhBBC5CCv4hIZtOcGzyLjKGJpyNwWZTHQ1dZ0WEK8U35TfVZ860qHiimTJjddekK/nd68iIzTcGRCfH4kEa5BGy8+ZsnphwD0r+lIp0qFNRuQyDNM9HVY0Koc5QqY8fLfmeGyZrgQQgiRd1x5Ek7fHd6ExSTgnM+Ele3KY2dmoOmwhHgvxno6zGvpQnOX/CQrYfrvPiw98xClLAIshBBCCJHnJSQlM+rXW/gERWFlpMt8z7JYGOlqOiwhMk1HW4shdYszs3lpjPW0ufb0JR03XuGCf5imQxPisyKJcA3ZcvkJC/5+AEDfGg50q1JEwxGJvCYlGV5WVSa9/87r+AZHaTosIYQQQnxip/1C+GH3DaLik3C3N2dpW1csjfQ0HZYQH0RHW4vxX5aiV7WU71Nrzj1i8rF7UjZQCCGEECIPUyqV/PTbPS48CsdQV4tfPMtib2Go6bCE+CD1S9myoaM7JW2NCYtJYOCu66w+50+yDAAWIlMkEa4B2648Zd5ffgD0qlaEHlUdNByRyKtM9HVY2KocpfObEB6TQP8d3viFSDJcCCGEyK2O3H7O8P23iEtMplYxK+Z7lsVEX0fTYQnxURQKBb2rOzLui5JoK+DQzecM2XeTqPhETYcmhBBCCCE0YMnphxy+9QJtBcxoXobS+U01HZIQH6WIpSFr2lfgm7J2KIFlZ/wZvOcG4TEJmg5NiBxPEuHZbMfVAH7+8z4A3asWoVc1SYILzTI1SEmGO+UzISwmgX47vHkYEq3RmAIDA/j77780GoMQQgiR2+y4GsCEw3dJSlbSpEw+Zn1dRtbHE7lKC9cCzGnhgoGOFucehtFvhzchUfGaDksIIYQQQmSjfd6BrLvwGIBxjUpRvaiVhiMSImsY6Grzvy9LMf7LUujraHH2YRgdN17hRuBLTYcmRI4mifBstNsrgNknfAHoUrkwfas7oFAoNByVEGBuqMui1uUoaWtMaHQC/XZ64x+a/cnwuLhYNm9ez+TJ/+Pnn6czZ84MHj3yz/Y4hBBCiNxEqVSy6qy/qh/6rVtBJjZ2QkdbvgqI3KdmMWuWtXXFwlCX289f0X3LNfyCXmk6LCGEEEIIkQ0u+Icx44+U7z29qznQvKydhiMSIut9XdaONe0rUNjCgOeRcfTa5sX2K09RSql0IdIlV7+yyV7vQGYcT/kn3NHDngE1HSUJLnIUC0NdlrR2pYSNMcFR8fTb6c3jsJhsO39iYiLff9+XdetWY2lphbm5BZcvX6B37y7vTIY/efKY8eNH8803jfnyyzr069eDS5cuZLh9dHQUrVs3Z+rUSWkeu3HjOt9/34eGDWvSvHkjfvppImFhoWrbXL58kYEDe9O4cT2+/vpLxo0bwdOnT9S2efYskPHjR9Os2Rc0bdqAMWOGpdnmdadP/03Nmh5vfZ6pDhzYR82aHml+5s6dqdomJiaGxYvn07p1c774ojZ9+nR7a5sIIYTInZKVSub+5cfyf1L+l/au5sCwesXRkn6oyMVcCpixpn0FCpkb8DQiltbLzsosCSGEEEKIXO5hSDSjD9wmKVnJl8629KxWRNMhCfHJlMpnwoaO7tQvaUNispI5f95n7MHbvIqT5aGEeJMkwrPBr9efMe13HwA6VCzED7WLShJc5EgWRrosblOOotZGBL2Kp+8OL56EZ08y/MyZv7l16wY//jiNNm3a4eRUmuXL1wIKtmzZkOF+ERHhDBzYm0ePHvLDD8OYPHk6VlZWDB06kKtXL6e7z4IFc3n2LDDN/Xfu3OaHH/piaGjEtGlz6Nfvey5ePMeYMcNV23h7X2Po0IGYm5szceIUBg8ewZMnj+nXrwfh4eFAysz2wYMHcOfObYYMGcGYMRMIDAzk++/7EBkZmea8V65cYvLk/2W6rXx87lKkiAPLlq1V+2nfvpNqm9mzp7F3707atu3AtGmzyJcvP8OGfc/NmzcyfR4hhBCft8RkJT8evcu2K08BGF6vOL2kIpHIIwpbGrK6fQXK5DchNCqePtu9OXU/RGPxyNI/QgghhBCfTnhMAkP23SAyLhHXgmaM/9JJvveIXM9EX4cZzUsztF5xtLUUHL8XTJfNV/ENitJ0aELkKDqaDiC3O3TzOT/9dg9IKUM5uE4x+ScscjQrIz2WtnGl7w4vHobG0G+HN8u/LU9Bc4NPet7UWd/u7h6qZK2ZWUqy2dTULMP9jhw5SHh4GCtXrsfWNh8AlSpVoWvX9mzduhE3t4pq2589e5oTJ45jYmKS5lhLly6gVCknZsz4GS2tlHFCxsbGzJ//MwEBTylYsBCbN6/H0bEoU6bMVG3j6loeT8+mHD58gA4dOuHldY0nTx7xyy9L8PCoDECRIg506NCaU6dOUrRoeyBlZvrGjevYsmUDxsYmxGRyzIGPzz1Kly5D2bLl0n08Li6WP/74jY4du9K2bcq53Nw8aNv2G/bv342LS9nMnUgIIcRnKy4xmbEHb/P3/RC0FTChsRNNyuTXdFhCZCtrYz2WfVueCcfu8dfdIIbvv8nohiVp6Vog22KIi4tl167tnDp1ksDAp1y4cI62bdtTpIhDtsUghBBCCJGbxScmM/LXWzwJj6WgmT6zvymDvo7M/xN5g0KhoL17IVzsTBlz4BaPwmLouuUqYxqWpKmLXAMQAiQR/kkduf2cyUfvogRaly/AsHrFJQkuMq11529p0vRrXr2K5Nixw8THJ1CzZm1GjBjLnj072L17B9HRUXh4VGbkyHGYm1uo9j1wYB/bt2/h6dPHWFpa0bTp13Tt2hNtbW21bfbt242//wOSk5UUKeJA587dqV+/IdbGerQ2f8zCNTN4Xvt7OnSdgyL8KVZWVrRq9S0dOnRKJ+IUAwf25tq1Kxk+vnPnrxQoUDDN/alJbG/va2hr//enqVq1mm9tJ1vb/Hz77Xeq/QG0tbWxty/Co0cP1bZ9+fIlM2dOpX//79m0ab3aYxER4Vy9eplx4yapEtwAderUp06d+qrbZcqUpVatumrb2NjYYmxsQkBASunz+Pg4ICWJnsrMzOLfGMJV9x08uJ8DB/YxZMhIQkKCWbt25VufK6Ss83r/vi+1a9fLcJuEhESSk5PVzq+jo4OxsTEREeEZ7ieEECJ3eBWXyIj9N7n0OAJ9HS2mNStN7eLWmg5LCI0w0tNmZWcPhm69woEbz5n2uw8vIuPonQ3VEVKX/nnwwA8Pj8pER0dx+fIFjh8/yooV69+aDH/y5DHLly/G2/sasbExFCtWgh49+qgGWQK8evWKZcsWcvLkn8TERFOypBPdu/eiUqWqasc6fPgAW7du5OnTp+TPn59WrdrSt29PtW28vK6yfPlifH19MDExoXbtevTu3Q8jI2PSc+fObfr06cqoUf+jSZPmb22HGze8WbZsEXfv3sHIyJB69RrSu3d/tWM/eODH0qUL8Pb2QktLi+rVa9Kv3/dYW9u89dhCCCGEyNuUSiXTjvtw9UkExnrazPMsi5WRnqbDEuKjBAYG4ONzj9q162Z6H9eCZmzuVJHxh+9wzj+MSUfvcu1pBMPrl5CBISLP+6BE+OPHjylcuHBWx5Kr/HbnBZOOpCTBPV0LMKJBCUmCi/e2bdtmKlWqzKRJ07hz5zbLly/i7t3b2NjYMnLkOAIDA5g/fw5WVjYMGzYKgI0b17JixRJatfqWH34Yio/PXVavXsGLF88ZM2YCALt372D+/Dl0796bAQMGERn5kk2b1jN58jjKli1Hvnz5MTXQRYESg0sbiS1WGyv3rykZd4slS+ZTvHgJqlSplm7Mw4aNJirqv/IrCgVYWBgRHh6NUkmGF7Nq166Hvf0qxo0bReXKVUhKSiYhIQFdXd23tlGDBl/QoMEXave9fPmSa9euULGi+prbv/wyGweHonzzTas0ifD7931JTk7GwsKSyZP/x+nTfwNKateux+DBIzA1NQWgS5ceaWK4evUykZEvKVq0GACVKlXF0bEoS5YsYPTo8RgYGLBgwc8YGhpRq1Zd1X41atTm6689MTAwYPXq5W99nqmePn1CdHQUd+7cpH17T9VM9c6du/PVV80AMDEx4auvmrFz5zZcXSvg4FCUgwf38+CBH1279srUeYQQQlOkn/lxwqLjGbTnBrefv8JYT5ufW7hQsbCFpsMSQqN0tbWY8GUp8pnos/rcI1ade0TQq3hGf1ESHa1P9x0tdemf2bN/QV/fgCNHDvL990No27YFW7ZsYPTo8enul7r0j7m5OT/8MAxjY2MOHNjL0KEDmT9/KW5uFUlMTGTw4P74+z+gS5ceODmV5sqVS4wcOYTJk6erLpodOLCPmTN/okOHzlSuXJVbt26wcOE8FIokWrf+DgA/v/sMGTKAcuUq8OOP0wkOfsGSJQsJCHjKrFnz0sQXHx/P1KkTSUpKemcb+Pr6MGhQPypWrMzUqbMIDg5i2bJFPHrkz9y5iwAIDg7ihx/6UqiQPRMmTCE2NpYVKxYzeHB/1q7dgo6OjN8XQqSQfqIQ4k3rLzzm0M3naCtgevPSFLNOfxCfEJ+Dj60mZWGkyy+eZVlz/hEr//Fn3/Vn3HoWycyvy2BvYfiJoxci5/qgb5SNGzemTJkyNG3alK+++or8+aXEwuuO3w1iwuE7JCvhm3J2jGpYAi1JgosPYGxszOTJ09HR0aFSpSocPXqQoKAgVqxYryrtfe7cP1y/7gWkzApZt24V33zjyeDBKetaV65cFXNzc2bM+Ilvv/2OYsWKExDwlPbtO9G1638zQezsCtKjR0e8va/RsOGXQMqoyr69erMzvAhPI2K5m78Yenon+eefUxkmwlOTwakUCrCxMSU4OBKlMuPnamRkxNKla1i9ejnHjx/l1atXNGvWkG++aUWvXv3emRBPlZyczKxZPxEdHUWHDp1V9588+SenTp1k48bt6Q5KCQsLA2D69B+pWrU606fP4cmTRyxbtpiAgKcsWbIq3f3Cw8OZOXMqNja2qkS0vr4+o0ePZ9SoIXz7bQsA9PT0mDlzLoUK2av2ff33zPLxuQtAQEAAAwcOQUdHh6NHDzF16iQSEhL4+uuWAPTpMwBfXx/69u2u2rdnz75pBg0IIUROI/3MD/fsZSzf777Ow9AYLA11WdCqLM75TTUdlhA5gkKhoG8NR/KZ6DHzD1/233hGcFQ805uXxlBX+90H+ACfcumfM2dOcefOLSZMmEKjRl+ptklISOCXX2ZTs2ZttLS02LBhLXXrNqB//x8A8PCozOPHj9i0aZMqEf7770cBBdOnz8HIyAiAxMQk5syZzrNngdjZqZeSX7VqqdrA17fZsWMLZmbmTJ06S60/P23aZB49ekiRIo78+uteoqJeMXPmXFWVKwsLC374oS+XL1/M8HuHECLvkX6iEOJ1J+4Fsfj0QwCG1S9BNUcrzQYkxEf4mGpSr/O5d4dNo7vSqccQfn3lwL2gKDptusKoWvbc+H1LhtWkAgMDaNPm6wyP26RJc8aOnQjA3bt3WLlyCXfu3CI5WYmTkzN9+36Pk5Ozavvw8HCWL1/E2bNniI2NwcmpDAMG/ECpUs4ZnQKA6Oholi5dyMmTJ4iJiaZ8eTd++GEoRYo4Zur5C5GeD0qEnzp1imPHjnHkyBHmzJlDhQoVaNKkCY0bN8bKKm//wzlxL4j/HbpNkhKaueRn7BclJQkuPljp0i5qMyAsLa0wNDRSW9/a3NwcPz9fIKXsYFxcHDVq1CYxMVG1TY0atQG4dOk8xYoV5/vvhwAQGRmJv/9Dnj59zJUrlwBISEhQi6F6RXcaWBekz3YvnryMw1DXmPDIjC98JSUloXwt461QpPwjT0xMRKnkrTM6LC0tGT58NPXrN2TdulXkz2/Hli0bSE5OZuDAwe9qLhITE5k6dRJ//XWCIUNGUqZMylrYYWFhzJ49jQEDfkhzIe+/fVOet5OTs2p2jodHZUxMTJk0aRwXL56ncmX1MpPBwcEMGzaQkJBgfvlliaq849Wrlxk27HvKlSvPt99+h5aWFvv372Hs2BHMmbOAhg1rv/O5ZKRCBXdmzpyHu7sHhoYpI/mqVKlGWFgoq1cvo3nzFoSHh9GrVxd0dHQYP/5HbG3zce7cP6xduxIDAwPatev4wecXQohPTfqZH8Y/NJoBu67zPDKO/Kb6LGpdDkcrI02HJYSa1q2b06RJ82xd+qdLl+60bZsyUPDw4QPMn/kT34+dy7LFc7m4/ylfrTCjU/sO9OjSNcO4c+LSP/7+DwCoUaOW2r7u7h5s27aJ+/d9KFnS6d/Z6Ppq2+jq6hIXF6e6HR8fh46ODgYGBqr7zM3NAYiIiFDrP1+/7sWuXTv48cdpjB497K3PA6BXr360bdtBLQmuo5Pye1xcPAAtW7ahevWaaq936vapSw4JIQRIP1EI8Z9bzyKZcCRlssi3bgVpUyFtX0yIz8mHVpN63euVm4rbGLOppTtjD97G+0kYP44bjG70C3p060lp5zJpqklZW9uwfPlatcquAHv37uCPP36nadNvgJQlnAYO7P3aNXQF27Zton//Hqxdu5kiRRxRKpWMGzcCf/8H9O37PTY2tmzZsoGBA/uwbt0WChYslOFzmDx5HDdv3qB//x8wNjZmzZqVfP99XzZu3IGZWcaDiYV4mw9KhFtZWdG+fXvat29PSEgIv/32GydPnmTOnDm4ubnRrFkzGjdurErS5BV/+QQz9tAdkpTQpEw+/teolCTBxUd5fY3nVK9foHrTy5cRAIwYMSjdx4ODg4CU8tqzZk3j8uUL6OrqUqSIIyVKlARQS2Knns/OzIClbcvTZ7sXoUo44xdCcFQ8NsZp19wZNKjfB10ofFP+/HaMGzcJHR1d9u7dSf/+P6ity/2myMhIxo0bwbVrVxgyZAStWrVVPfbzz9MpWrQYzZq1UBsgoFQqSUxMRFtbWzX7pXp19YuJVapUB+DevTtqifD7930ZOXIw0dHR/PzzAlxcyqoe27BhDTY2tsyePR89vZQ2qly5Kn37dmfBgrkflQi3tLRKc8EzJe6aXLp0gdDQEA4d+pUXL56zdeseChcuAqRcFAUly5cv5quvmqldaBRCiJxE+pnv787zSH7YfYOwmAQcLA1Z1LocdmYZ9xeE0KTsXvpn0qRx1K5dDR2dlH51cnIye1dMp/XXrdjvryDW5x/WrlyEnb0jTRvUTTfmN5f+eZMmlv5J7cs9e/aM4sVLqLZ7+vQJAAEBTylZ0glHx6JASr83MvIlJ0/+ydGjh+je/b+qQU2bfs2BA/tZuHAeXbv2ICQkhLVrV1K8eAnVdwSA2NhYpk6dTOfO3She/L/738bWNp8qoR8TE8ONG96sWLGYcuXKU7JkKSBlMKylpSUAcXFx+PjcY+7cmRQqZJ9mIKoQIm+TfqIQAiD4VRzD998kLjGZGkWtGFK3uKZDEuKjfWg1qde9Wbkpv6k+y9u6Mnr5ds6FPybW4zv+1nGjsXPpNNWk9PT0KFu2nFpl1zt3bvPHH7/Tu/cAypevAMCuXdswMDBg9uz5qv+3FStWok2b5uzatZ2hQ0fx+PEjvLyuMnr0/2jWLCWBXq6cK82affHvd5He6cZ/44Y3Z86cYvbs+VSrVgMAV1c32rb9mr17d6a7ZKkQmfHRi20FBQURFBTEs2fPSE5OxtjYmB07djBjxgymTJlCo0aNMtw3Li6OyZMn89tvv2FgYED37t3VvpCn6tSpExcuXEhzv6enJ9OnTyciIoLKlSurPWZhYcH58+c/9ull2t/3Qxhz8DZJyUq+dLZlwpdOaH/C9eaESI+JSUr50wkTfqJIkSJpHre0tCI5OZkRIwahq6vLqlUbKFGiFDo6Ojx44MexY4czPHZBcwOWtnWl/W4FUfFJ9N/hzdK2rli/kQwfOXIs0dHRaveljiQDsLGxTff4Gzeu49atG0yfPkft/pIlS3HgwF4iI19mmLx98eI5Q4YMIDAwgEmTplG/fkO1x//66wQAdeuqX0g7evQQR48eYsGCZdjbp7RXQkK82japiXN9/f8SCleuXGLMmGEYG5uwePFKihVT73A/exaIs3MZVRIcQEtLC1fXCuzZszPd55BZXl5XCQh4qirDniouLg5tbW3MzMx59iwQS0srVRI8Vfny7mzZspEnT55IIlwI8Vn4mH5mXnHlSThD994kKj4J53wmLGhVFkujtAPVhMgpNLH0z+XLl6lSJWUgolKppFu3njRr1oIWodH8sKMEIVu8mb35VxxdKuJil3Y5gTeX/smsT7n0T5069Vm6dCE//TSBESPG4uDgiJfXNbZu3QikJJ1fd/PmddWSOc7OZejWrRup40OLFStB//7fM3fuLHbu3AqAnV0BFi9eqTbjftmyhRgZGdKxY1eCgl68V1solUqaNm1IfHwc5ubmDBkyIt3tunZtz+PHj9DX12fatDlqfXAhhHid9BOFyJviEpMZ8estgl7FU9TaiJ+aOss1+Fwqu6tJFStWlO++60q9einXlQ8fPsDMmT+xZMlqFiz4GR+fu1haWtGq1bd06NApw7izu5pUqowqN+loa+FqEsM5wKCIK14BL+m48Qo/NXVOU03qdUqlkrlzZ+LoWIxvv+2gut/BoSjt23dUG3RmaGiIrW0+nj59CqTMTAcwMjJ5bRsj9PT0VBP50nP+/FkMDQ3VBsNaWlpSoYI7586dkUS4+GAflAi/ffs2R48e5ejRozx9+pTq1avTrVs3GjZsqJrBumTJEsaPH//WjuesWbO4ceMG69evJyAggFGjRlGwYEEaN26stt3ChQvVyjV7eXkxePBgOnRI+QD6+vpiYWHBwYMHVdu8beZoVjvjF8roA7dITFbSyMmWSV/JP2ChGS4uZdHV1SU4+AWNGv33OfLxucvixfPp2rUnenp6PHrkzw8/DMPZuYxqm3Pn/gFSLrRlxN7CEGtjPSJ0tHgQGk3/nSnJcKvXLri/uV5HZtcIf/UqktOnT6rKPaby9r6GhYVlhonbqKhXDBrUj9DQEObNW0z58m5ptlm1akOa+0aNGoqTU2m6d+9FkSIOGBoaUaBAQf744zdatfpWtR74mTMnAVSj3u7du8PIkYMpUKAg8+YtTjex7+DgyO3bN4mPj1clw5VKJTdver+19EtmXLlyidWrl+PiUk61NkxycjJ//vkHZcu6oquri4ODIwcO7FOtu5jq+nUvtLS0sLOz+6gYhBDiU8qqfmZecNovhNEHbhOXmIy7vTk/t3DBRP+jx7kK8UlpYumf1AsxqVxcXAFwtDJiTafKtNpnSlxsLH23ezHj6zLUKKpeXvfNpX/epImlfywsLPjll8VMmzaZ3r27AmBvX5hevfoxdeqkNFWk7OwKsHDhcgIDA1i5cint2rVj1aqN6OsbsHHjOpYvX4SnZxvq1KlPeHg469evYtCg/ixZshIrK2uuXLnEr7/uZcWK9W99vhlJSkpi5syfiYuLZ9OmdQwY0JslS1apZoWnGjp0FEqlkl27tjNy5GBmzfpF1ggXQqhkZT8xN03OESKvUCqVzDjuw43ASMwMdJgr339yveysJrV9+yYmTRqHi0s58uXLD6Rcc50wYTTffvsdvXv35+DB/SxZMp/ixUtk2EfN7mpS8O7KTanX1afVy8/i63H4BEUxcNd1aiWnzDxPrSb1uj/++I1bt26wYMEytQEELVu2TnP8J08e4+d3n4oVU/4flihRkooVK7Fu3UocHR2xsbFl3bpVxMbG0qBBxv+f/f0fUrBgIbXzARQqVJjffz/yznYQIiMf9J/C09MTDw8PunbtSuPGjVVlzF5XsWJFHj9+nOExoqOj2blzJytXrsTFxQUXFxd8fHzYvHlzmkS4hYWF6vekpCTmzZtHz549KVeuHAB+fn4ULVoUW9v0Z5p+SmcfhjLy15skJClpWMqGyU2c0ZEkuNAQc3MLOnTozKpVy4iKisLNrSJBQS9YtWoZCoWCEiVKYWJiQoECBdmzZwf58uXD1NSM8+f/YceOlNkfsbExbz2HjpaCao6WXDPRwy/k32R4G9ePnn3WsmVr9u3bxciRQ2nQ4AuCg4OYP/9njh8/luGMEYDVq5fz+PEjunfvjba2DjduXFc9pqenS6lSzmoJ/1S6urqYm5urPda//w9MmDCGiRPH0rx5Cx4+fMCKFUuoW7c+pUo5AzBjxhQSExPp0aMPz54949mzZ6r9LS0tKVTInq5de9K/f0+GD/+Btm3bo62tzaFDv3LjxnV++mnme7XLixfPefHiBaVKOaGnp8c333iyb98uRo0aQs+efTEwMGTv3p08eHCfRYtWAtCs2Tfs3r2DYcMG0b17L/Lly8/Fi+fZunUjnp5tM+xwCSFETpAV/cy84Mit50w6eo+kZCW1ilkxrVlpDHS1372jEBqWU5b+SWVjrIeNsT7xxro8S0xm2N4bjG1Uiq/L/jdwMCcu/QMpM7s3bNhOUNALYmNjsbcvrEr+m5mZq21rY2OLjY0tbm4VKVSoEAMG9ObPP4/TsGFj1q9fRaNGXzF06CjV9u7uFf9dj3Aj3bv3Zvr0H/nuuy44OhYlMTFRNXg2OTmZxMTEdybHUyoApMzsqFDBndatm7Nz51bGjp2otl2lSlX+Pb8HnTq1ZfPm9ZIIF0KoZGU/MbdMzhEiL9l2NYCDN5+jpYBpzUpjbyHLIOR22VVNSqGA0qVL4Onpibf3NRo2/BJQryYFUK5ceU6e/JN//jmVYR9VE9Wk3lW5KbWa1KoF0xg5ZDT7Hppx5NQ5zl3bgwIIiXiVZp8tWzZSrlz5f5fbzFhcXCxTp05ET0+f1q2/Vd0/bNhohg37gc6d2wGgUCgYO3Yi5cqVz/BYr169wsgo7fdFIyOjtw4uEOJdPigRPmPGDJo0aZLmwxcfH8/ff/9Nw4YNqVKlClWqVMnwGHfu3CExMRE3t/9mb1asWJFly5aRnJycYadxz549RERE0KtXL9V9vr6+ODo6fshT+Sjn/cMYvu8m8UlK6pW0YYokwUUO0KtXP6ytbdizZydbtmzA1NQMD4/K9O49QNVBmDZtDvPnz2Hq1Mno6eni6FiMmTPnsWDBz3h5XaN163ZvPYexvg5L27jSd4c394OjGbDrOktau2JhlLnyjumxsyvA/PlLWbJkAVu2bCAxMRF//4f07z+IVq2+zXC/1LLna9asYM2aFWmOuWvXgUzHUK9eQ2bM0GfdupWMGjUEU1MzWrRI6WxAygXWe/fuAvC//41Ks/9XXzVj3LhJODuXYeHCFaxatZTJk/+Hjo4uJUqUZMGCZbi7V8x0PJBSpmft2pWqC6xWVtYsXryKZcsW8csvc4iOjqJ0aRd++WWpap1yY2MTlixZzbJlC1m8+Jd/L4wWYdiw0TRv3uK9zi+EENktK/qZud36fx4y8XDK/6MmZfIxvlEpdLTlgqvInT7l0j+pFAoFlR0sSCyTj8O3XjDl2D2CXsXRvUoRFApFukv/vE4TS/9ERITzzz+nqVatpqqMIsDdu3dUA2Cjo6M5ffpvypRxwd6+sGqb1AGewcHBhIeHExsbm+aClKWlFUWKOPDggR937twiMDCAtWtXsnbtSrXtZsyYwowZUzh9+lK6z+P06b8xMTGhQgV31X0mJiYUKmRPcHAwkFLxKC4uVq3so46ODsWLl8DP7366xxVC5E1Z1U/MLZNzhMhLzvuHMf+vlH7BoDrFqOKQdiCMyH2yq5pUQMBjbt5MSaa/PvgJ/qsmBaCnp4eFhUWaZYhel93VpDJTuen1alID+6dUP7G1LUB42SZwcQvLzgdQ0uMlroVS1iK/ft2Le/fupPke86bo6CjGjBnOrVs3+emnmdjZFQDg4cMH9OvXgwIFCjBgwEyMjU04ceI4M2ZMQV/fIM13m1RKZcaVamWQmfgYH5QIHz16NLVq1cLKSr1knI+PD0OHDsXb2/udxwgKCsLS0lJtDV0bGxvi4uIIDw9Pc2xIGYGzatUqOnfurDaT4P79+yQmJtK6dWueP3+Oh4cHY8aMIV++fGmOkVUuPgpj2L9J8DrFrZna1FkuQIostWvDdnhjxsyiRSvSbDdu3KQ093l6tsHTs02Gxy5ZslS6x9q8eZfq9yZNUtZhSRPXa4nlpW1TkuE+QVH03+XNkjauWBh+eDLc2bkMCxYs48qVSxw5cjDd5/amPXsOfdC5MkqQ16hRixo1aqX7WKFC9hle5HuTi0tZ5s1bnOl4evToQ48efTJ1v7194XfOLLexseF//5uc6fMLIUROkRX9zNxKqVSy6uwjlv/jD8C3bgUZWq84WgoZiClyr0+99E8qLYWCSY2dyGeiz7oLj1l2xp8XkfGMaFAizdI/mfUpl/5JTlYybdpkhg0bTYsWrYCUxM6BA3upUMEdMzMz4uLimDlzCl9+2YSRI8ep9r1w4RwAxYuXwNLSEjMzc7y8rqqVOQwPD+fx40eUKVMWZ+fSaZYaCg4OZvTooXTr1ivDvjPAjh1bCA0NZf36raoShy9ePOfhQz/VDPejRw9x5szf7Nz5q2oGSHR0FDduXH/rjBEhRN6TVf3E3DA5R4i85El4DGMP3iZJCc1c8tPe/eOWHRSfj+yqJuXg4IiLS8r3iLdVk4KUhOzbEt3ZWU0qOjo605Wb0qsm9euJU8y+uIXwJF16b/dicN1iDPjCiT///ANTU7O3rk/+/PkzRo4cwuPH/vz443Rq1aqremz79i0kJycxb95i1XeeSpWq8OpVJHPnzqRevQaqZUlfZ2xsQmhoaJr7o6OjMDY2SXO/EJmV6UT4li1b+PHHH1EoFCiVSmrUqJHudtWrV8/U8WJiYtSS4IDq9ptruKU6f/48z549o21b9ZJwfn5+WFlZMWbMGJRKJfPmzaNv377s3LkzzXoCr/uQa4YKBZzzC2HwnpvEJSZTq5gVM74ujW4eToKntqNcg03xUe3x2j4KhfrtnKiotRHL2rrSd7uXam2RJW3KYf5aMvxD2qNgwYLUrl03V76n5POiTtojLWkTddIeeUNW9zMh8+s+Aty9e5dJkyZx8+ZNHBwcGDduHFWrVv2g5/KpJCuVzPvLj21XngLQp7oDPaoWSffLoxC5SVYs/fO2GRuvUygUDKhVFFsTPeacuM8e70CCo+KZ2tT5g5Ye+JRL/1haWtKgQSNWrVqKvr4+lpZWbNy4luDgICZOnAqAvr4+nTp1Y/Xq5VhaWuHu7oGv7z3Wrl1J9erVqVatBqCgR4/ezJs3G2NjY+rVa0hERDgbN65DS0uLdu2+w8jIOM1SQ4GBAQAUKFBQ7bEHD/xISIhXzTrv2rUnQ4YMYOLEMXz9tSfh4WGsW7cKU1Mz2rXrCECHDp3588/jjBw5hA4dOpOQEM+mTeuJjo6me/fe793uQojc5VP0EzU9OUdT3Tf5biVtkOpzaoeo+ESG7bvJy9hEyhYwZcwXJdHKooqsn1M7fCoabYNMXgdXvLkd6cerUICpaUo1qYkTf6Jw4bTVpKysrFAq1atJlSxZCl1dHcLCnrN///50z5nR+dLzrmpStra26e77ejWp159nqVIp1aRevUpbTeru3XdXbjpz5hIREeGcOXOa6tVrqv1/in7hj0KhoHZFV04+imHOift4PXvF/dOnqF27Drq66acP79/3ZciQgcTHxzFv3iK16k8Az58H4uDgqFZVBaBCBTf+/PM44eGhWFlZpzmug4MDFy6cQ6lUH5T25MljHB0ds+V9Kn8XcqdMJ8I7dOhAyZIlSU5OpkuXLixYsABz8//WHVMoFBgaGlKqVKlMHU9fXz9Nwjv1dkajeo4dO0bt2rXTfIAOHTqEQqFQ7bdgwQJq1qyJl5cX7u7u6RwJrKyM0f6A5PWFB6F0W3uRuMRk6jrZsrxTRfR1ZD1GAGtrU02HkKN8UHsY/veetLExTTMjPCeysTFlW59qtF95jrsvXjFo300296iK+Rtl0t+nPWxsnChXzimrQ81R5POiTtojLWkTddIeuVtW9zMh8+s+RkZG0r17d+rXr8+MGTPYv38/AwcO5NixY1hbp/1ipgmJyUp+OnaXQ7dS1vqa1LwMzZxseMsgdCFylY9d+ufSpUt89VWLTJ+vrVshbEz0GX/oNn/fD6H/Tm/mtij73ssAfeqlf0aOHMuSJQtZtmwhsbGxuLiUY8GCZTg7l1Zt36VLDywsLNi9ewdbt27CwsKCFi1aMXLkMCIj41EqoVWrbzExMWXbtk0cPnwAc3MLypevwLRpsylY8P1mXP388wyePQtUxeju7sG8eYtZtWoZ//vfKLS1talSpRr9+n2vuvjl6FiUxYtXsmzZYqZMmUBSUhIVKrgzZsz4D15jUQiRe3yKfqImJ+d86PXIrCTfraQNUuX0dkhOVjJm02X8QqLJb6bPmm6VyWeW8WzgD5XT2yE7aKQN3nEdXFtbCwMD3ZTH/pWamH39PgMDXbS1tbCxMaVWraro6uoSHR1BrVr/LZNx+/ZtZs2aRf/+/dHWtuLRI3/Gjh2rts3+/TsBMDbWw8bGFFPTlPeapaWx2vnSi+t1Njbl3rspAJKS4jh16iQvXwZhbm6kOsfduzexsrKiePHCafapXr0Su3btUrsvKCiIfv36MXDgQOrWrYuNjSlaWglMmzaZSZMm0a5dypKoUVFRHDq0n0qVKrGuXz3W/fOQ6Yfv8Ps1P/SfPqZxm47pPsfAwECGDBmAtrY227Zto0SJEmm2cXIqye7du9HRSVLL5d27dwtTU1OKFbNPt4z7F1/UZ/36Ndy+fY06deoAEBoairf3Nfr06ZNhm38K8nchd3mv0uiVKlUC4I8//qBgwYIfNQMlf/78hIWFqZVnCAoKwsDAADMzs3T3OXXqFAMHDkxzv6Ghodpta2trLCwseP78eYbnDw2Neu9RHdeeRvD9ruvEJCRT1dGSqV85ERkeTeT7HSbXUShS/jCEhETKBVk+sj2iorD599fg4EiIeXcZx5zAUhsWtSpHvx3e3Hj6kvbL/2FxG1dMDXTk/fEGaQ910h5pSZuoy6g9srPzK7JHVvYz32fdx71792JkZMSkSZPQ1tbmhx9+4OTJk9y4cUP1xUuT4hKTGXswJRmnrYCJXznRuUbRlH6CEJ+Z9Jam+dRL/2zZsgsbG1OCgyMztfRPqvolbbBq7cqw/Te5HhhJj23XWNCqLIXMDdNs+zafcukfIyNjhg8fzfDhozPcRqFQ0KJFa1q0aP3afSkD0yMj/0v2fPllE778skmmzgspM8HTWzIovdfA3d2DJUtWvfV4pUo5M3fuwkyfXwiRt2RlPxE0OznnQ65HZhX5riltkOpzaYdlpx/y+63n6GkrmNm8NFrxCQQHJ7x7x0z6XNrhU9JoG7zjOnhSUjKxsQlq330TEv7P3n1HRXF2YQB/dll6laKCvYFIF2LFoFhiLFGJPSq2aGKJiYk9KvaC0dhiJ7HF2DX2Ek3ymVhRUFQQxIKKFKX3Zef7A9mwgjSBhd3nd84e2Kl37s4Ol3ln3pH+N/0b6elZyM6WvRkmweDBw7B69WpER79G8+Y5vUlt2ZLTm5SFRW0IghYsLa2wY8dO6OkZw8gotzep3wAAMTFxiI1NQlJSOgAgLi4FOjpJhcZVFrp2/QS//vorxowZC0/Pznj27AW+/94Hx48fxzffTHnn+iwt6781JOfCLiMjM1ha1n8znyY6deqCVatWIStLQLVqptix42dERUVh9uwFePUqGT1tzNGkmhOmbjuOVwA23UqB9PcgjGpVFxp5emGYM8cHr169wpQpM/DsWTSePYuWj9PX10eDBg3Ru3d/HD36O4YMGYphw0ZCX98Af/11ASdOnMDEid8gPj6nx65nz54hPj4O9vY5Fw80aNAULi6u+Pbb7zBu3FcwNjaGn99m6OsboEuXnhVyHqSo7wTPR1ZNxW4InzFjBmbNmgUDAwOsW7eu0GmXLFlS5PJsbW0hkUgQEBAANzc3AIC/vz8cHBwKfBbP69evERERAVdXV4XhycnJ6NChA9auXSvvwjIqKgpxcXFo2LDwq8dLcnC/8yIRkw4GIS1LBvfG5lja3QZaGmK1/SNZEEEoWU5VXanykWd6QVB8X9k1MtfHT/0c8eX+27gXlYzxB+5gfV8HGOrkHGa4fyhiPhQxH/kxJ4qYD9VW1nVmSZ77eO3aNXTs2FHhjp2DBw+WYivKXnKGFN8dvQv/iARoS8RY3MMWHo0rx13qROrAubYxtgx0wlcHg/A0Lg0jfw3Aai97NK1R8pMflpZWCs/NIyKi4inrOhFQ/s05yv6/hv9bMQe5KnMe/ngQg61XngIAZna2hl1No3KLtTLnoaIoJQfFPA8uvD0dCo41d1hhvUnp6xtAEAruTWrDhg1YsGAhAgMD0LfvQIXlFra+slKjRuG9SRV3fQXlCwCmTMnpTWrDBsXepGxsbOXTNa1uiO88rDDjOCDT1MXmf5/g+tN4zP/YBjWNdJCVlYV//vkfAMDXN//fXGfn5li3bjNq1LDExo3bsHHjeixbthAymYD69Rtg0aLl8PDwlK/vl1+24tSp4woX2C5a5It161Zh/frVEAQZHBycMH/+Ehgalt8xoCA8LqiWEt0RXpZ0dXXRu3dv+Pj4YPHixYiOjoafn5+8aI2JiYGhoaH8isrQ0FBoa2ujdu3aCssxMDCAq6srlixZggULFkBDQwOLFi1Cu3btYGNTNl0r341MxMSDd5CSmQ23OsbYMswNKYmp/CIQvaWxhT7W93XAuP23ce9lEiYevIN1fR3kV/cRERFVhJI89zEiIgKOjo6YPXs2Lly4gFq1amHatGn5Lr6saHGpmZh0KAj3o5Khr6WBH3rbwbWOiVJjIlJHDc304TfIGV8fDkJoTArG7r2NZZ/YolX9/M+PLYylpRUsLa3KKUoiIiqJynBzDhG924PoZPicCgEADHathe52NZQcESlDRfYmJRLl3On7668H5G0+JelNqqyUpjept72r56bi9CYFAF6f9MCHbTxw4m4Ulp0Pw61nCRiy8yZmf2QNj8bm+Ouvq8WKo27d+li82LfQaWbN8sm3jUZGRpg5cy5mzpxbrPUQFUexG8LzXlVZ3CssizJjxgz4+PjA29sbBgYGmDhxIrp06QIAcHd3x5IlS+Dl5QUAePXqFYyMjArs/mjZsmVYunQpxowZg8zMTHTs2BHff/99mcR472USJrxpBG9e2xir+thDV0sDKWWydCLVY13dAOv7OWL8/tsIikzCVweD8OvY1soOi4iIKrGyrjNL8tzH1NRUbN68GcOGDcOWLVtw4sQJjBo1CqdOnYKlpeU711GeXVq+TEzHuP138DQuDdV0NbG27393oOauV1ldalY2zEd+Ss1JnnWKRIrvlaUs8lHDSBtbBjrhuyN3cSMiAV8fvos5H1lX2ZOy/N4oYj7yY06oMimP85FV6eYcInUTn5qF747eRbpUhpb1TDDxQ15UQuqnMvQm1a1ZDThYGmHWifu4H5WM747eQz9nK0zyaAhtSf6Lxogqs1LdEZ6SkoINGzbAy8sL9evXx/Tp03H27Fk0a9YMvr6+qFWrVrGWo6uri2XLlmHZsmX5xoWEhCi879atG7p1K/iZZcbGxmVWDOd172USxh+4jeSMbDjXMpI3ghNR4WyqG2BdXweMP3AHt18kYrjfNfzQyxZ6mkrrhIKIiKqIsqgzS/LcRw0NDdja2uKrr74CADRr1gz//PMPjh49ii+++KLA5Zua6kNDo3z+8QuLTsLne28jMiEdtUx0sXNUCzS0MMg3nZkZn0uVF/ORn1Jyovvf98Lc3BDQ16/4GN7hffNhDmD32NaYsv82fg98gbmnQpAiAF96NHrvZ9UqC783ipiP/JgTqmzK6nwkUDVuziFSN9JsGaYfv4fIxAzUMdHB4h62kIirZp1F9D4qS29SdarpYtsgZ6z/32Ps9n+G/QEvEPA8AYu626KBmZ6ywyMqtlK1Svn4+CA4OBiffvopjh07hrNnz2Lx4sU4ffo05s2bh82b83dRUdW83Qj+o5c99NgITlRsTWsY5jSG77+DG0/iMOlgEFZ7OfB7REREhSqLOrMkz320sLDI13Vl/fr1ERkZ+c7lv36dUi53yQVFJmLSoSAkpEnRwFQP6/o5wEgkIDY2ST6NSJTTMPHqVRIf0wPmoyBKzUlKivyROLGxSUCarIIDyK+s8/F9p0Yw1hRj541nWH46BI9eJuE7z0bQqEInafm9UcR85KfqOTE3ZwN/VVWW5yMr+805ROroh4sP4R+RAH0tDazobQcjHU1lh0Sk9jQ1xPi6fUN8UM8E806FIDQmBcN23cR3no3wiX3NKntRMKmXUt3K8tdff8HX1xcNGjTAmTNn0KFDB3Tr1g2TJ0/G9evXyzrGCldQI7i+Fu9kJSop2zeN4YY6EgQ8T8TXh4OQlpWt7LCIiKgSK4s6M+9zH3O967mPzs7O+U52hoeHF3lHkSCU7evK4zh8ue82EtKksKtpiM0DnVDdQLvAactj/VX5xXxUrpyU13eksuRDBBG+8miIb9o3hAjA/oAXmPb7PaRlZit9O6vKPlIZX8yHeuWEqi5VPx9JpM6O3I7EgcBIiADM79YUDc0qT89CRAS0bWCKX4c1R4u6JkiXyrDwbChmnQhGcoZU2aERFalUDeGCIEBTUxPp6em4fPkyPDw8AAAJCQnQ06vaXSLce5mECQfuIDkjG05WbAQnel92lobYOaol9LU0cOtZAiYdCkJKJv9AEhFRwcqizsz73Mfbt2/j/Pnz8PPzw7BhwwDk3B2enp4OABg4cCBCQkKwdu1aPHnyBKtXr0ZERAR69epVPhtYgD8exOCbw0FIy5KhRV0T/NTPESa6vPuBqDIb7Fobi3rYQlNDhD/DXmHCgTtISMtSdlhERCpNlc9HEqmzwOcJWPZHGADgi7b18WEjMyVHREQFMTfQxtq+DpjQrgE0xCKcC4nBZztvIigyUdmhERWqVA3hrVq1wuzZszFhwgSIxWJ06tQJly9fxowZM+Dp6VnWMVaY3EbwpAwpnKyMsPpTNoITlQXnOiZY19dB3hg+8UAQrxYjIqIClVWdOWPGDNjZ2cHb2xvz5s3L99zHkydPAgBq1aqFrVu34uLFi+jRowcuXryIzZs3o0aNGuWyfW87fDsSM47dR1a2gI7W5ljVh4/jIaoqOttYYO2nDjDQ1kDgi0R8/lsgIhPTlR0WEZHKUtXzkUTqLDopA9OO3YdUlvP/0IiWdZQdEhEVQiwSwbtFHWwZ4AQrI228SEjH6N8C8cvVp5Cx6x2qpErVEL548WI0a9YMWlpaWL9+PQwMDBASEgIPDw/MmjWrrGOsEPej2AhOVJ4crIywvp8jDLUluBOZiPEH7iAxnXfNEBGRorKqM3Of+3jr1i3873//w/Dhw+XjQkJC4OXlJX/v6uqKQ4cO4c6dOzhy5Ag++OCDstykAgmCgF+uPsXic6EQAPRxrIlF3W2hJSlVeU5ESuJaxwRbBjqjuoEWHr1OxchfAxASnazssIiIVJIqno8kUmcZUhmm/n4Pr1Iy0dhcH3M+suHzhomqCAcrI+wa6opO1hbIlglYf+kxJh64g9jkDGWHRpRPqVp6DQ0N8f333ysMy3tysaq5H5WE8fvZCE5U3uxqGmJDf0eM338b914m4ct9t7G+ryNM9Nj9KxER5VC1OrMggiBg9V+PsNv/GQBgeIs6GOdenyd9iKqoxub62DbIGZMOBSH8VSo+/y0AC7rZwqMxu/UkIipL6lAnEqkLQRCw9Hwo7r5MgpGOBL69mrFnLKIqxlBHgsU9mqJVkAl8LzzEtafxGLTjJny62qBtQ1Nlh0ckV6rW3qysLBw5cgR37tyBVCqF8FaXB0uWLCmT4CpC3kZwRzaCE5U7m+oG2DjACeP338aDmBR8sT8Q6/s6wkxfS9mhERFRJaBKdWZBpDIBi84+wPG7UQCASR4NMcSttpKjIqL3VdNIB1sHOmPasXu4/jQeU47excQPG2CIW21e5EJEVEZUvU4kUif7br3A8btREIuAxT1sUdtEV9khEVEpiEQi9HKwhKOVMWaduI/QmBR8fTgIg11rYbx7A/Z6R5VCqfbCWbNmYdGiRYiLi8tXdFYl914qNoKvYSM4UYVobK6PTf2dYK6vhYexqfhiXyBi2G0KERFBderMgqRnZWPa7/dw/G4UNETAnI+s2QhOpEIMdSRY42WPT50sIQBY8/cjLDjzAFnZMmWHRkSkElS5TiRSJzeexmPVnw8BAF992BAt61VTckRE9L4amOnh58EuGOBiBQD41f85Ru4JwJPXqUqOjKiUd4SfO3cO69evR9u2bcs6ngoT+DwBkw4FISUzm43gREpQ30wPmwc44cv9t/H4dRrG7g3ET/0cUdNIR9mhERGREqlCnVmQ+LQsTD58F3ciE6GlIcLiHrbwaGyu7LCIqIxJNMSY1rEx6pvqYdWfD3HsbhSeJaRjec9mfBwQEdF7UtU6kUidvEhIx/Rj95AtAB/bVsdg11rKDomIyoi2RIzvPBujRb1qmH86BCHRyRi66yameDZGD7sa7CmLlKZUd4QbGhqiRo0aZR1LhZp48A5SMrPhUtuYjeBESlKnmi42D3CClZE2IuLTMXbfbbxISFd2WEREpESqUGe+LTIxHZ//FoA7kYkw1JZgXV9HNoITqTCRSISBzWthZR976Gtp4NazBAz/9RYeveLdEERE70MV60QidZKelY3vjt5FQroUtjUMMLNzEzaMEamgDxuZ4ddhrnCrY4y0LBnmn3mA2SeDkZwhVXZopKZK1RD+5ZdfYtGiRXj48CGk0qq586ZlydCyngnWeLERnEiZrIx1sGmAE+qY6OBFQjrG7A1ERFyassMiIiIlUYU6M68H0ckY+WsAHr9OQ3UDLWwZ6ASX2sbKDouIKkDbBqbYNsgZVsY6eJ6QjpF7buHK49fKDouIqMpStTqRSJ0IgoD5Zx4gNCYF1XQ1sfyTZtDR1FB2WERUTqobamNdX0eMc68PDRFwJjgGn+28iaDIRGWHRmqoVC3AW7ZsQXR0NHr06FHg+Pv3779XUBXBvaEplvZsBm1Jqa4FIKIyVNMopzF83Jtu0sfsDcS6vg5oZK6v7NCIiKiCqUKdmev60zhMOXoPKZnZaGSuh9VeDqhhqK3ssIioAjUy18cvg50x9fd7CHieiK8PBWFyh8bo52zJO6CIiEpIlepEInWz8/oznAuJgYZYhGWfNOOjEYnUgIZYhBEt68K1jgm+P3EfLxLSMfq3QHzZtj6GflAbYv4/RBWkVA3hS5cuLes4KtzyT5pBU4ON4ESVhYWBNjb2d8KEA3cQFpuCsXsD8aOXPewtjZQdGhERVSBVqDMB4GxwNOaeCoFUJsCltjF+6GUHQx32QkSkjqrpaWF9X0csPh+KE3ej4HshDA+ikzG1Y2No8cJsIqJiU5U6kUjd/PvoNdb97xEA4LsOjdhDFpGacbQywu6hrlh8LhTnH8Rg3f8e4dqTOMz72AbmBrxZgMpfqc7GtWjRAgCQnJyMp0+fonHjxsjMzISBgUGZBlee2AhOVPmY6WthY39HfHM4CHcikzBu/2349rJDy3rVlB0aERFVEFWoM3ffeIYf/woHAHS0Nse8j5uyFyIiNaclEWPuR9ZoZKaHdf97hKNBL/HwVQqW9WyG6uwpgoioWFShTiRSN0/j0jDrxH0IAHo71MSnTpbKDomIlMBQR4LFPZqiVZAJVlx4iGtP4zFox034dLVB24amyg6PVFypzshlZmbi+++/R4sWLdC3b19ERUVh+vTpGDVqFBISEso6RiJSI8a6mljfzxEt65kgLUuGbw4H4UJorLLDIiKiClKV60yZIGDVnw/ljeADXKywqLstG8GJCAAgEokw9IM6WO1lDyMdCYIikzB0100EPKvcxzYiosqiKteJROooJVOK747cRXJGNhwsjTDFszEfDUOkxkQiEXo5WGLHkOZoYqGP+LQsfH04CKv+fIhMqUzZ4ZEKK9VZueXLlyMsLAyHDx+GtnbO1esTJ05EXFwcFi5cWKYBEpH60dXUwMre9uhobY6sbAEzjt3D73deKjssIiKqAFW1zsyUyjDnZDB+9X8OAJjYrgG+7dAIGmKe6CEiRa3qm2L7Zy5obK6P16lZ+GL/bRwIeAFBEJQdGhFRpVZV60QidSQTBMw9GYJHr1NhYaCF5Z/Y8pEwRAQAaGCmh58Hu2CAixUA4Ff/5xi5JwCPX6cqOTJSVaX663P27FnMmjULNjY28mE2NjZYsGAB/v777zILjojUl5ZEjEXdbdHLoSZkArDg7APsvB6h7LCIiKicVcU6Mz4tCxMO3MaZ4BhoiEWY97ENhrWow7sdiOidapvowm+wMzpZWyBbJmDZH2FYdDaUd0IQERWiKtaJROpq6+Un+OvhK2hqiLD8k2Z8DjARKdCWiPGdZ2P80NsOxjoShEQnY+jOm/g96CUvEKYyV6qG8JSUFOjq6uYbLpPJkJ2d/d5BEREBgIZYhFmdm2DYB7UBAGv+foT1/3vEP4ZERCqsqtWZEXFpGLUnALeeJ0JfSwOrvezRrVkNZYdFRFWArqYGFvdoiontGkAsAo4GvcTYfYGITspQdmhERJVSVasTidTVhQcx2HL5KQBgeqcmsLc0UnJERFRZfdjIDL8Oc4VbHWOkS2VYcOYBZp8MRnKGVNmhkQopVUO4p6cnVq5cieTkZPmwiIgILFy4EB4eHsVeTkZGBmbOnAk3Nze4u7vDz8/vndN++eWXsLGxUXhdvHhRPv6XX35Bu3bt4OLigpkzZyItLa00m0ZElYxIJMLEDxtiQrsGAIBfrkVg6fkwZMvYGE5EpIrKqs6sCAHPEjDi11t4GpcGSyNtbBvkjJb1qik7LCKqQkQiEYa1UHxu+JCdN3H1cZyyQyMiqnSqUp1IpK5CopIx91QIAGCAixU+sa+p5IiIqLKrbqiNdX0dMc69PjREwJngGHy28yaCIhOVHRqpiFI1hM+ZMwcSiQQtW7ZEWloaPv30U3Tu3BlGRkaYPXt2sZezfPlyBAUFYfv27Zg7dy7WrVuH06dPFzjtw4cP4evri0uXLslfbdu2BQCcOXMG69atw/z587F9+3YEBgbC19e3NJtGRJWUd4s6mNm5CUQADt2OxLTf7yE9i1d8ExGpmrKqM8vbmfvRGHfgNhLSpWhW0xB+g13QyFxf2WERURWV+9zwJhb6iEvLwsSDd7D538e8+JOIKI+qUicSqavYlExMPhKEdKkMrepVw9ftGyk7JCKqIjTEIoxoWRebBzrDykgbLxLSMfq3QPxy9Slk7B2W3pOkNDPFx8ejT58+sLOzg42NDZ48eYJ27dqhYcOGxV5Gamoq9u/fjy1btsDOzg52dnYIDQ3F7t270bVrV4VpMzMz8ezZMzg4OMDCwiLfsnbs2AFvb2906NABADBv3jyMGjUKU6ZMKbDLJCKqmvo4WsJYR4LZJ4Px18NX+HL/bazsbYdqelrKDo2IiMpIWdSZ5c3vylNs+OcxAKB9YzMs6NYUOpoayg2KiKq82ia68BvkjJV/PsTh2y+x5fJTBD5PxILuTWHKepeIqErUiUTqKkMqw9SjdxGdnIl61XSxuIctJGKRssMioirG0coIu4e5YvG5UJwLicH6S49x7Wk85n9sA3MDbWWHR1VUiRrCL1++jCVLliA0NFThGb0ikQjHjh3D9OnT4ebmVqxlBQcHQyqVwsXFRT7M1dUVGzduhEwmg1j8383q4eHhEIlEqFOnTr7lZGdn486dO5gwYYJ8mLOzM7KyshAcHKywfCKq+jytLWCmr4Vvj9xFUGQSRu0JwJpPHVDbhBe9EBFVZWVZZ5a33Ebwz1xrY+KHDaDBEzxEVEZ0NDUws7M1nGsZY8m5UFx7Go/PdtzEoh5N0by2ibLDIyJSiqpUJxKpI0EQsOjsA9yJTIKRjgQr+9jDUKdU998REcFAW4JF3ZuiVb1q8L0QhutP4zFox034dLVB24amyg6PqqBid41+6dIljB49Gk2bNsXOnTtx5coV3L17F1evXsUvv/yChg0bYsSIEbh161axlhcTE4Nq1apBS+u/K9vNzc2RkZGB+Ph4hWnDw8NhYGCAqVOnwt3dHX379sVff/0FAEhMTERGRgaqV68un14ikcDExAQvX74sNAaRqHSv95lXVV/MSdnl4333z8r4Kuvtca5tjG2DcrpJiYhPx8hfA3D3ZaLSt1NZ+ajqL+aDOSlNPki1lHWdWd7EImBax8b4un1DNoITUbno1qwGtg9xQQMzPcSmZGLcvtvYfi2C3QISkdoprzoxIyMDM2fOhJubG9zd3eHn5/fOab/88kvY2NgovC5evCgf/8svv6Bdu3ZwcXHBzJkzkZaWVurtJaqKdlx/hlP3o6EhAhb3sEXdarxZhYjej0gkwicONbFzSHM0sdBHfFoWvj4chJUXHyJTKlN2eFTFFPvSrPXr12P48OGYMmWKwnBjY2O0bNkSLVu2hLGxMTZs2IDNmzcXuby0tDSFRnAA8veZmZkKw8PDw5Geng53d3eMGTMG586dw5dffom9e/fC3NxcYd68y3p7OXmZmupDQ6NUj0gHAJiZGZZ6XlXFnCgqVT50/9snzc0NAX3VedZoWe8f5uaGODLRGCN/uY6g54n4Yt9trBvUHJ2a1SjT9ZQXfl8UMR/5MSeKmA/VVtZ1JpBzcnPevHk4e/YsdHR0MHLkSIwcObLQeZ49e4aePXti48aNaNmy5TunW9nHHm0b8CpkIipfDc30sf0zFyw9H4qT96Kx7n+P4B8Rj7ldbWCmz67SiUg9lEedCADLly9HUFAQtm/fjhcvXmDatGmwsrLK97hGAHj48CF8fX3RunVrhfUDwJkzZ7Bu3Tr4+vrCzMwMM2bMgK+vL+bMmVPKLSaqWv4Ke4X1/3sEAJjcoTFa1qum5IiISJXUN9PDz4NdsO5/j/DbzefYc/M5/CPisaiHLeqb6ik7PKoiit0QHhwcjAULFhQ6Tb9+/Yo8wZhLW1s7X0N17nsdHR2F4ePGjcPQoUPlRWbTpk1x9+5d7Nu3D998843CvHmXVdjzwV+/TinVHWUiUc7J+FevksCL8XMwJ4reKx8pKTB/82tsbBKQVvWvbirP/UMM4KdPHTD993v493Ecxuy8gakdG6Ovs1XZrqgM8fuiiPnIjzlR9K58mJuzYVyVlHWdCZTs5GYuHx8fpKamFrlsNoITUUXR1dSAT1cbuNQyxoqLD3H5cRwGbffHnK7WcG9opuzwiIjKXXnUiampqdi/fz+2bNkCOzs72NnZITQ0FLt3785XK2ZmZuLZs2dwcHCAhYVFvmXt2LED3t7e6NChAwBg3rx5GDVqFKZMmVLoeUkiVRAWk4I5J4MhAPjUyRL9nC2VHRIRqSBtiRjfdmiEFnVNMO90CB7EpGDozpuY0rExetrVgIhdR1IRin1LdHp6urwh+l2qVauG169fF2t5NWrUQFxcHKRSqXxYTEwMdHR0YGRkpBikWJxv3Q0bNkRUVBRMTEygra2N2NhY+TipVIr4+PgCC9S8BKF0r/eZV1VfzEnZ5eN998/K+CrP7dHV1MAPve3Qy74mZAKw9HwYlp8PQ1a2oPTtVkY+quKL+WBOSpMPUi1lXWfmntycNWsW7Ozs0LlzZ4wePRq7d+9+5zy///47UlJSShQ3EVFFEIlE6O1oie2fuaCJhT7i0rLwzeG78P0jDOlZ2coOj4ioXJV1nQjkNK5LpVK4uLjIh7m6uiIwMBAymeINCeHh4RCJRKhTp06+5WRnZ+POnTsKzyd3dnZGVlYWgoODix0PUVUUl5qJyUeCkJqVDbc6xviuQyM2RhFRuWrXyAx7vF3hVscY6VIZFpx5gNkng5GcIS16ZlJrxW4IFwQBYnHhk4tEIgjFPDtta2sLiUSCgIAA+TB/f384ODjkW8/06dMxY8YMhWHBwcFo2LAhxGIxHBwc4O/vLx8XEBAAiUSCpk2bFisWIqraJBpizOrSBOPd60MEYF/AC3xzKAhJ6fwjSERUFZR1nVmSk5sAEBcXB19fX8yfP79kgRMRVaBG5vr4ebALBjWvBSCn5h3+6y2ExfIiHiJSXWVdJwI5N+JUq1ZN4TGL5ubmyMjIQHx8vMK04eHhMDAwwNSpU+Hu7o6+ffvir7/+AgAkJiYiIyMD1atXl08vkUhgYmKCly9fFjseoqomUyrD1N/vITIxA7VNdLCkZzNI3uMRpERExWVhoI11fR0xzr0+NETAmeAYfLbzJoIiE5UdGlVixe4aHQBOnToFAwODd45PSkoq9rJ0dXXRu3dv+Pj4YPHixYiOjoafnx+WLFkCIKcoNTQ0hI6ODjw9PTF58mS0bNkSLi4uOHbsGPz9/eUnKwcPHow5c+bA2toa1atXh4+PD/r3788uiIjUiEgkwvCWdVHfVA+zTwbjypM4jPj1Flb1sUedajwWEBFVdmVZZxZ1ctPUVLFr86VLl6JPnz5o0qRJyQMnIqpA2hIxJndohFb1q2He6RA8jE2F966bmPBhQwxwsYKYd2IRkQoqyzoRANLS0hTqRADy928/ejE8PBzp6elwd3fHmDFjcO7cOXz55ZfYu3cvzM3NFebNu6y3l5OXsg7VuetV5z8VzEGO98mDIAhYcDYEAc8Toa+lgVV97FFNT7NsA6wg3B+UnIM86xSJFN9XNO4LOapKHiQaIoxsVRcf1DXBrOP38SIhHaN/C8SXbethWIs67/U/UVXJAZVMsRvCrays4OfnV+R0lpbFfxbIjBkz4OPjA29vbxgYGGDixIno0qULAMDd3R1LliyBl5cXunTpgrlz52LDhg148eIFmjRpgq1bt6J27doAgO7du+P58+eYM2cOMjMz0aVLF0yZMqXYcRCR6mjfxBxbBzlj8uEgPIlLw/Bfb2FZz2Zwq2ui7NCIiOgdyrrOLMnJzX///Rf+/v44fvx4MaPNwROYlQPzkR9PZilS1X2kbUNT7PF2xfzTD/DPo9dYefEh/gyNxZyu1qhtUvhFoKqak9JiPvJjTqgyKY/zkdra2vlqwtz3Ojo6CsPHjRuHoUOHyrtnb9q0Ke7evYt9+/bhm2++UZg377LedXOOqak+NJR856yZmaFS118ZMAc5SpOHlWdDcPp+DDTEImwY4ooPrAt/NGlVwP1BSTnQ/e9YaG5uCOjrV3wMb+G+kKOq5KGDuSFOW1fHzEN3cPx2JNb97zFuRSZhVX9nVDfSKXoBhagqOaDiKXZD+IULF8p85bq6uli2bBmWLVuWb1xISIjC+379+qFfv37vXNaYMWMwZsyYMo+RiKoem+oG2D6kOaYcvYugyCRMOHgHUz0bwcvJStmhERFRAcq6zizuyc309HTMmTMHc+fOzXfSszA8gVn5MB/58WSWIlXcR8zNgV1jWmHX1adYcvI+bj5LwOAdNzGjmy0+a1EXYnHhrZiqmJP3wXzkx5xQZVAe5yNr1KiBuLg4SKVSSCQ5p0ZjYmKgo6MDIyMjhWnFYnG+Z5Q3bNgQYWFhMDExgba2NmJjY9GoUSMAgFQqRXx8PCwsCm4cfP06RakXVJqZGeLVqySUoCd5lcIc5ChtHo4HvcSaC2EAgBmdGqOZqQ5iY0vWI0Nlwv1ByTlISYH5m19jY5OAtPyPMaso3BdyVNU8zO3cGC6WhvD9Iwz/hL1Cl1V/w6erNdwbmZV4WUXlwNyc9XFVVKKu0YmIqgpzfS1s7O+EBWdCcCY4BkvOh+FBTAomt28ELQmfW0REpMqKe3Lz9u3biIiIwFdffaUw/+eff47evXu/85nhPIFZeTAf+fFkliJ12Ec+bmwKh2HNMf/0A9x8loDZR4Jw7OYzzOlqjZoF3AmhDjkpCeYjP1XPCU9gkq2tLSQSCQICAuDm5gYA8Pf3h4ODQ77nkU+fPh0ikUj+KEcACA4OhrW1NcRiMRwcHODv74+WLVsCAAICAiCRSNC0adN3rl/Z3ytBUH4MysYc5ChJHm48jcfCs6EAAO8WddDLwVJlcsj9QUk5yLM+QVB8ryzcF3JUvTyI8Il9TThaGWHW8ft4EJOCrw/fxaDmtTChXYNStQVUvRxQYdgQTkQqS1sixoJuTdHQTB8b/3mMg4GRCIlOxtKezVDDUFvZ4RERUTkp7slNR0dHnD17VmHeLl26YOHChWjbtm2h61D2P0T8p0wR85EfT2YpUvV9pJaxLjb0d8S+Wy+w7n+PcO1pPAb84o9JHg3Ry6Fmgc/JU/WclBTzkR9zQqpKV1cXvXv3ho+PDxYvXozo6Gj4+fnJG7tjYmJgaGgIHR0deHp6YvLkyWjZsiVcXFxw7Ngx+Pv7yy+YHDx4MObMmQNra2tUr14dPj4+6N+//zu7Rieqih69SsWU3+9CKhPQ2cYC49zrKzskIqJ86pvq4efBLlj7v0f47eZz7Ln5HLeeJWBRD1vUrca/y+qMt0USkUoTiUQY2aouVnnZw1BbgqDIJAzdeRM3nsYrOzQiIioneU9u3r59G+fPn4efnx+GDRsGIOfkZnp6OnR0dFCvXj2FF5BzR7mZWcm70CIiUiaxSISBzWth99DmcLQyQkpmNhafC8UXewPx6FWqssMjIqpUZsyYATs7O3h7e2PevHmYOHEiunTpAgBwd3fHyZMnAeRcJDl37lxs2LABPXr0wIULF7B161bUrl0bANC9e3eMHTsWc+bMwciRI+Ho6IgpU6YobbuIytqrlEx8fegOkjOy4WhlhLldbQq8wI6IqDLQkojxbYdGWNnbDsY6EgRHJ2Pozps4eS9K2aGREvGOcCJSC20bmGLHEBdM+/0eHsSkYMKB2xjfrgGGuNWGiAU8EZHKmTFjBnx8fODt7Q0DA4N8JzeXLFkCLy8vJUdJRFT26pnqYfMAJ+y99RwbLj3GreeJGLzDH8Nb1MHwlnWho8nr4YmIdHV1sWzZMixbtizfuJCQEIX3/fr1Q79+/d65rDFjxmDMmDFlHiORsqVnZeO7o3fxIjEDtU108EMvO2jzcYNEVAW0a2SGX4e5YvbJYNx8loC5p0Jw9UkcpnZsDH0tNouqG/7lIiK1UdtEF9sGOaN7s+rIFoA1fz/CzOP3kZIpVXZoRERUxnJPbt66dQv/+9//MHz4cPm4kJCQdzaCh4SEyJ/xSERUVWmIRRjsWhv7RrjBvaEppDIBW688xeAd/uwZiYiIiIqULRMw+2QwgiKTYKwjwY997GGip6nssIiIiq26oTZ+6ueIsW3qQSwCTt6LxtCdN3E/KknZoVEFY0M4EakVHU0NzO1qg2kdG0MiFuH8g1gM330LYTEpyg6NiIiIiKhMWRrpYGVvOyztaQtzfS08jUvDF/tu49t9gXiVkqns8IiIiKgSEgQBy/4IxZ9hr6ClIYJvLzvUM9VTdlhERCWmIRZhdOt62NTfCTUMtRERn46RvwbgV/9nEARB2eFRBWFDOBGpHZFIhL7OVtg0wAnVDbTw+HUahv96CwcDX/APIBERERGpFJFIhI7WFtg/wg2fOllCBODgzWfw2nYdO69HICtbpuwQiYiIqBLZcvkJDt9+CbEIWNDdFi61jZUdEhHRe3GubYzdQ5ujfWMzSGUCVv0Zjm8O30VcKi8OVgdsCCciteVoZYRdQ5ujbQNTZEhlWHo+DNOP3UdSOrtKJyIiIiLVYqAtwfROTeA32BlOtY2RkpmNNX8/wsDt/vgn/LWywyMiIqJK4GDgC2y5/BQAMLVjY3g2MVdyREREZcNYVxPLP2mGqR0bQ0tDhH8evcbgHTf56Cg1wIZwIlJr1fS0sLKPHb72aAiJWIQLobH4bKc/7rxIVHZoRERERERlzsHKCIfHtcWcj6xhqqeJp3Fp+PpwEL4+FIQnr1OVHR4REREpyYXQWCz/IwwA8HnruvjUyUrJERERlS2RSIR+zlb45TMXNDDVQ2xKJsbtv40Nlx5BKmNPsaqKDeFEpPbEIhE+c6uNrYOcUctYB5GJGfj8twBsufyEfwCJiIiISOWIxSJ84lATB0d+gCFutSER59wRMWC7P5b/EcbnhxMREakZ/4h4zD5xHzIB6ONYE5+3rqfskIiIyk0TCwNsH+KCXvY1IQDwuxqBsXsDEZmQruzQqBywIZyI6A27mobYNbQ5PmpqgWwB2PzvE4zeE4DHvDOGiIiIiFSQgbYEkzwa4jdvV7g3NEW2TMD+gBfos+0aNv3zGCmZfGQQERGRqnsQnYzvjt5FZraA9o3NMK1jE4hEImWHRURUrnQ1NfD9R9ZY1L0p9LU0cPtFIgbvuInTQZHKDo3KGBvCiYjyMNCWYEG3pljQrSkMtSW4+zIJQ3bexL5bzyETeHc4EREREameeqZ6WNXHHhv6OcKupiHSsmTYeuUp+my9jt9uPkemVKbsEImIiKgcPH6VigkH7iA5IxsutYywsLstNMRsBCci9dGlaXXsHtYc9paGSMqQ4otdN7HkXCjSs7KVHRqVETaEExG9RSQSoattdezxdkXLeibIkMrge+Ehvjp4B1FJGcoOj4iIiIioXLjVNcHPg52xrKct6lbTRVxaFn64+BB9tl3DvlsvkMEGcSIiIpXxPD4N4w/cRlxaFppWN8APve2hLWFzARGpn1rGutgywAneLeoAAA4GRmL4r7fwMDZFyZFRWeBfNiKid6hhqI01nzpgimdjaEvEuPokHgN+uYGDgS94dzgRERERqSSRSARPawvs9XbFjM5NYGGghejkTPheCEOfbdew9+ZzNogTERFVcS8T0jFu/x1EJ2eigZke1n7qAEMdibLDIiJSGomGGBM/bICdo1rATE8TD2NT4b37Fg7djoTAtoAqjQ3hRESFEItE6O9ihV1Dm8PB0hApmdlYej4MX+y7jSd8djgRERERqSiJhhhejpY4PKoFpnZsjOoGWohJzsSKiw/Re+s17L7xjM8QJyIiqoLiUjPx2dYreJ6QjtomOljf1wEmeprKDouIqFJo18QCv3q7olW9asiQyrDkXChmHr+PpHT+71NVsSGciKgY6pvqYctAZ3zboRF0NcW49SwBg3f44+erTyHN5h0xRERERKSatCVi9HO2wuFRLTC9U2PUNNRGbEomfvwrHD02X8Xav8MRzccHERERVQlJ6VKMP3AHD2NSUMNQCz/1c4SFgbaywyIiqlTM9LWw+lN7fPVhA2iIRTj/IBaf7fRXdlhUSmwIJyIqJg2xCAOb18Le4W5oVb8aMrMF/HTpMYbtvoXA5wnKDo+IiIiIqNxoScT41MkKh0Z9gFmdm6BeNV0kZ2Rjx/Vn+GTrNficCsaD6GRlh0lERETvkJQuxcSDd/AgOgXmBtr4qZ8jLI10lB0WEVGlJBaJMPSDOtg20Am1jHUQmciLf6sqNoQTEZWQpZEO1njZY97HNjDWkSA0JgWjfwuEz6lgvErJVHZ4RERERETlRlNDjN6Oltg3wg0re9uheW1jZMsEnLgXjc923sTnvwXg9P1oZPI54kRERJVGUroUEw7ewd2XSTDWkWDnqBaoZ6qn7LCIiCo9O0sj7BraHF1sLJQdCpWSUhvCMzIyMHPmTLi5ucHd3R1+fn7vnPbPP/9Er1694OLigp49e+KPP/5QGO/m5gYbGxuFV0pKSnlvAhGpKZFIhG7NauDAiA/Qy6EmRABO3IvGp37X8dvN55DKBGWHSERERERUbsQiEdo1MsOmAU7Y/pkLOttYQEMsQsDzRMw+Gfym2/RHeJ6QpuxQiYiI1FpiehbGH7iNe28awTf0d4StpZGywyIiqjIMtCVY2L2pssOgUpIoc+XLly9HUFAQtm/fjhcvXmDatGmwsrJC165dFaYLDg7GhAkTMHXqVHh4eODSpUuYNGkSDhw4gKZNmyIqKgpJSUk4f/48dHT+685FT49XtRFR+TLR08T3XazRx6Emlv0RhvtRyfjh4kP8HvQSX3s0RIt61ZQdIhERERFRuWpW0xCLe9giJjkDR+68xJHbkYhOzsSO6xHYeT0CH9Q1QXe7Gmjf2Bx6WhrKDpeIiEhtJKRlYcKBOwiOToaJriZ+6ucA6+oGyg6LiKjKEYlEyg6BSklpDeGpqanYv38/tmzZAjs7O9jZ2SE0NBS7d+/O1xB+/PhxtGrVCsOGDQMA1KtXDxcuXMCpU6fQtGlTPHz4EBYWFqhTp44yNoWICHaWRvh5sAuO3onET5ceIzQmBeMP3EHbBqaY+GEDNDLXV3aIRERERETlysJAG5+3rocRLevi0sNXOBgYiStP4nDtaTyuPY2HrmYoPJuYo7tdDbjWMYGYJ5OIiIjKTXxaFsbvv40HMSmopquJn/o7ojHPTxERkZpRWkN4cHAwpFIpXFxc5MNcXV2xceNGyGQyiMX/9drep08fZGVl5VtGUlISACAsLAwNGjQo/6CJiAqhIRbBy8kKntYW2Hr5CQ4ERuKfR69x+fFrfGJfE2Pb1IOFobaywyQiIiIiKlcSsQjtm5ijfRNzPE9Iw8l70Th5LwrP4tNx4l40TtyLhoWBFjybmMPT2hxOVsbQELNRnIiIqKy8Ts3EhAN3EBqTAlM9TfzUz5E3aRARkVpSWkN4TEwMqlWrBi0tLfkwc3NzZGRkID4+HqampvLhjRo1Upg3NDQUly9fxsCBAwEADx8+RFpaGoYOHYpHjx7B1tYWM2fOLLJxvDQXn+fOwwvX/8OcKHqvfOSZRyRSfF9VqeP+UU1PE1M6NsaA5rWw7u9HuBAaiyN3XuJMcDQGu9XGV52bqlU+CqOO+0dRmBNFzAcREVHVVstYF5+3rofRreri9otEnLwXjXMhMYhJzsTeWy+w99YLmOppokMTc3g2MYdLbWNoaoiLXjAREREVKDIxHRMO3MHTuDSY6mliQ39HNDRjIzgREaknpTWEp6WlKTSCA5C/z8zMfOd8r1+/xsSJE9G8eXN07NgRABAeHo6EhARMnjwZBgYG2LJlC4YPH44TJ07AwKDgZ56YmupD4z3+uTYzMyz1vKqKOVFUqnzo/rdPmpsbAvqqU6Sq4/5hbm4IvybVcePxayw8cR8BEfHYdvkp9t16gdHuDTHCvT6MdDSVHWaloI77R1GYE0XMB5VURkYG5s2bh7Nnz0JHRwcjR47EyJEjC5z2zz//xKpVq/D06VPUrl0bX3/9tbzOJCKisiESieBUyxhOtYzxbYdGuPokDn+ExuLvsFd4nZqFg4GROBgYCX0tDXxQ1wRtG5iiTQNTVGePSkRERMX2+FUqxh+4jejkTFgaaWNdX0fUraar7LCIiIiURmkN4dra2vkavHPf6+joFDhPbGwsRowYAUEQsGbNGnn36du2bUNWVhb03zQarlixAh4eHrh48SJ69uxZ4LJev04p9R3hZmaGePUqCYJQ8vlVEXOi6L3ykZIC8ze/xsYmAWmysg6vwnH/AOobaGJLfwdcDH2FTf8+xsPYVKw6/wDbLoXjM7faGNjcCvpaSjscKxX3j/yYE0Xvyoe5ORvGqXDLly9HUFAQtm/fjhcvXmDatGmwsrJC165dFaYLDg7GhAkTMHXqVHh4eODSpUuYNGkSDhw4gKZNmyopeiIi1aYlEaNdIzO0a2SGrGwZbkTE448HOY3icWlZ+DPsFf4MewUAaGyujxb1TOBaxwQutYxhqKOedbM6kwkC0rNkSM3KRlpmNjKzZcjKliErW0BmtgzSNz+zZAKypDJkyXLGCYKA3PIxbx35ZWcbpWwHEVF5ux+VhK8OBiE+LQsNTPWwtq8DavCCMiIiUnNK+w+yRo0aiIuLg1QqhUSSE0ZMTAx0dHRgZGSUb/qoqCgMGzYMALBjxw6FrtO1tLQU7i7X1tZG7dq1ERUVVWgM79PAIAjvN78qYk4UlSofeaYXBMX3VR33DxE6NDFH+yZmuBaZjB9Oh+DR61RsuPQYu288Q19nKwx0sUI1Pa2iF6WCuH/kx5woYj6oJFJTU7F//35s2bIFdnZ2sLOzQ2hoKHbv3p2vIfz48eNo1aqVvM6sV68eLly4gFOnTrEhnIioAmhqiNG6vila1zeFrLOA4Khk/PPoNS4/eo2gyCSExaYgLDYFv/o/hwiAdXUDuNYxhnMtY9jVNOQd41VAtkxAUroU8elZSEjLQnyaFAlpWUhIz0J8WhYS0qRIzpQiNTMbaVnZ//3MkiHtze9lWQayIZyIVJF/RDy+PXIXKZnZsK1hgDVeDjDRYy+ERERESmsIt7W1hUQiQUBAANzc3AAA/v7+cHBwkN/pnSs1NRWjR4+GWCzGjh07YGFhIR8nCAI6d+6McePGwcvLSz79kydP0LBhw4rbICKiYhCLROjhaIUPahrgbHAMtlx+gqdxafC78hS7bzxDT7sa+MytNmqbsNsqIqLSCg4OhlQqhYuLi3yYq6srNm7cCJlMplBr9unTB1lZWfmWkZSUVCGxEhHRf8QiEZrVNESzmob4vHU9xKdm4cqTOPhHxOPmswQ8jUtDSHQyQqKT8av/cwCAhYEWmtUwhJ2lIZrVMIRtTQM+fqgcSWUCEvM0YOf8fPM+Pe97KRLeNHwnpkvLpCFbBEBXUwNaEjG0NESQaOT81NQQ57zEImjmjhOLIX7TC6DoTXeApegUkFRYWT5Gx83NLV/tePPmTXnPlUTl7WxwNHxOhyArW4BrHWOs6GUHA232oEJERAQosSFcV1cXvXv3ho+PDxYvXozo6Gj4+flhyZIlAHLuDjc0NISOjg42bdqEp0+fYufOnfJxQE4X6oaGhmjfvj3Wrl2LWrVqwdTUFKtXr0bNmjXh4eGhrM0jIiqUhliErrbV0dnGAn+FxWL79We49zIJBwIjceh2JDpZW2Bg81qwtzSUn7ghIqLiiYmJQbVq1RR6DDI3N0dGRgbi4+MVehZq1KiRwryhoaG4fPkyBg4cWGHxEhFRwUz0NNHVtjq62lYHAMQkZ+DWswT4RyTgTmQiHsamICY5E38lv8JfD1/J57Mw0EJDMz00NNNHQzM9NDLXRwMzPTYKvCUrW5bTaJ3+5g7tPA3aGRDh5esUeYN2bsN3Uoa01Osz0NaAia4mjHU0c37qSuTvDbQ1oKelAT1NDei++amnpQFdzf+Ga0vE/N+IykxZPUYnKioKSUlJOH/+vMKjHvX09Cp6k0gNCYKAHdefYd3/HgEA2jc2w8LuttCWiIuYk4iISH0o9b/AGTNmwMfHB97e3jAwMMDEiRPRpUsXAIC7uzuWLFkCLy8vnDlzBunp6ejXr5/C/H369MHSpUsxZcoUSCQSfPvtt0hOTkarVq2wefNmaGhoKGOziIiKTUMsgqe1BTo0MYd/RAJ2XI/A5cdxOBsSg7MhMWha3QD9XKzQxcYCOpo8phERFUdaWppCIzgA+fvMzMx3zvf69WtMnDgRzZs3V7jLpyDKOg8vEin+VHfMR35KzUmedYpEqBS3X3Ifya8q56S6oTY+sq2Oj940jKdlZiMkOhlBL5Nw783rWXw6YpIzEZOciatP4hXmN9HVhJWxDmrlvkxyfjbJBjSysmCoLamSDa0yIafr8cT03LuwpUhMz2nQTnzTyJ37M++d2ymZ2aVep7GOBMa6bxq0dd40aOtqwkS34OHGOhJINNgwQ5VDWT5G5+HDh7CwsECdOnWUsSmkxqQyAcv/CMXh2y8BAIOa18Ikj4bQEFe9v2NERETlSakN4bq6uli2bBmWLVuWb1xISIj899OnTxe6HG1tbUyfPh3Tp08v8xiJiCqCSCSCW10TuNU1wYPoZPx28znOBEcjODoZC848wJq/wvGJfU30cbREnWrsNp2IqDDa2tr5Grxz3+e9Uyev2NhYjBgxAoIgYM2aNfke1ZOXqak+NJR8Mt/MzFCp669smI/8lJIT3f++F+bmhkAl6hKW+0h+qpKTOlYm6JTnfWJ6FkKjkhEalYQHUckIjU5CyMskRCdlIP5NQ/C9lwU//kJLQwwLQ235y0RXE0a6mjDS0YSRruTNT00Y6kigo6kBLQ0xtDXF0JaIoSURQ1uSM6ywtnSpTECmVPbfKzsbGQrvZUjJkCI5I/vNz5xXyls/k/M2bKdlQShl3+NiEWCipwUTPU2Y6mnBRE8LpvqaqKanhWr6Wqiml/d3LZjqa8FYV5MNLVSlleVjdMLCwtCgQYPyD5ooj5RMKWYcu4/Lj+MgAjC5QyMMbF5L2WERERFVSuwXjIiokrGuboA5XW3w1YcN8XvQSxwIfIHIxAzsvPEMO288g0stI/Swr4lO1hbQ0+Jd4kREb6tRowbi4uIglUohkeSUuzExMdDR0YGRkVG+6aOiouR3+ezYsUOh6/SCvH6dotQ7ws3MDPHqVVKpGz1UCfORn1JzkpIC8ze/xsYmAWmyCg4gP+4j+alDTurpS1CvYTV0alhNPiw5Q4rnCel4kZCO5wnpeB6f8/uLxHS8Ts1pTM7MluF5fBqex6cpMfrS09PUgJGOBEa6EpjoaL75PedubCOFu7b/u1vbUEcC8Vt/1N69jwiQpWUgLi2jQrerrJmbq8ZFIFR6ZfkYnYcPHyItLQ1Dhw7Fo0ePYGtri5kzZxbaOM6ehZRHFXLwPD4N3x29h9CYFGhLxFjUvSnaNzEvesY8VCEPZYF5YG9SCuuHeu8LAPMAMAeqig3hRESVlImeJoa1qIPP3GrjUvhrHAh8gauP43DreSJuPU/Eigth6GRtge52NeBS2zjfCSwiInVla2sLiUSCgIAAuLm5AQD8/f3h4OCQ707v1NRUjB49GmKxGDt27ICFhUWx1qHsxiNBUH4MlQnzkZ9ScpJnfYKg+F7ZuI/kp2450deSwNrCANYWBgrDRaKchtHnLxPwKiUTscmZeJWSiVepmUhMz7n7OilDiqT0bCRnvnmfLkVmtgwZUhmysgVkZufczV2SdGqIAE2NnDvJNTXE0NIQvfkpznkmtpYG9PM8K1tfWwL93OdlvxlnpJPznG0jHU0YaUugVcpnwr5rP1C3fYTUR1k+Ric8PBwJCQmYPHkyDAwMsGXLFgwfPhwnTpyAgYFBvmWwZ6HKoarm4J+wWIz/NQDxqVkwN9DGVm83ONcxKfXyqmoeyhrzwN6kcnFfyME8MAeqhg3hRESVnIZYBI/GZvBobIaopAycvBeFY0EvERGfjmN3o3DsbhTM9bXQ0docnW0s4GBlxEZxIlJrurq66N27N3x8fLB48WJER0fDz88PS5YsAZBzF5ChoSF0dHSwadMmPH36FDt37pSPA3K6UDc05D8+RETqQlsihqWRDiyNCn6ERlEEQcjp9jy78J4QxKKcBm8JuxYnUpqyfIzOtm3bkJWVBf03DTgrVqyAh4cHLl68iJ49e+ZbDnsWUq6qmgNBELDn5nOs/jMc2QLQrKYhfHs1Qw1djZxeeEqoquahrDEP7E0qF/eFHMxD0Tlgz0JVExvCiYiqkBqG2hjRsi6Gt6iDwOeJOHb3JS6ExiI2JRN7b73A3lsvUMNQG52sLeDR2AwOVkY8yUZEamnGjBnw8fGBt7c3DAwMMHHiRHTp0gUA4O7ujiVLlsDLywtnzpxBeno6+vXrpzB/nz59sHTpUmWETkREVZBIJILmm7u6iahyK8vH6GhpaSncXa6trY3atWsjKirqnetXduMCe3uoWjlIz8rGkvOhOHkvGgDQvVl1zOhsDW2J+L23oSrloTwxD+xNKhf3hRzMA3OgatgQTkRUBYlEIjjXNoZzbWNM69gEV57E4VxIDP4Oe4WopAzs9n+G3f7PYKwjQduGpmjX0Ayt6leDgTYP+0SkHnR1dbFs2TIsW7Ys37iQkBD576dPn67IsIiIiIhIycrqMTqCIKBz584YN24cvLy85NM/efIEDRs2rLgNIpX1NC4NM47dw4OYFGiIgEntG2GgixVE7AWQiIio2NgiQkRUxWlJxPiwkRk+bGSG9KxsXH4chwuhsfj30WskpEtx8l40Tt6LhkQsglMtI7SoWw0t65mgaQ1DaPBucSIiIiIiIlIjZfkYnfbt22Pt2rWoVasWTE1NsXr1atSsWRMeHh5K2z5SDWfuR2PxuVCkZmXDRFcTi7o3RYt61ZQdFhERUZXDhnAiIhWio6mBDk3M0aGJOaQyAbdfJODvsNf4X/grPI1Lg39EAvwjErDhH8BQWwLXOsZwq2MCp1pGaGxhwG7UiYiIiIiISOWV1WN0pkyZAolEgm+//RbJyclo1aoVNm/eDA0NDWVsFqmA9Kxs/HDxIY7ceQkAcKltjIXdmqK6obaSIyMiIqqa2BBORKSiJGIRmtc2QfPaJvi6fUM8jUvDtSdxuPY0HjeexiMpQ4o/w17hz7BXAABdTTHsLI3gaGUEJysjOFgawVCHfyaIiIiIiIhItZTVY3S0tbUxffp0TJ8+vcxjJPUTGpOMOSdDEBabAhGAEa3q4vPW9XjTAhER0XtgCwcRkZqoW00Xdavpoq+zFbJlAoKjk3HtSRwCnifg9otEJGdk48abRnIAEAGoU00X1hYGsKmuD5saBrC2MICZvpZSt4OIiIiIiIiISFVkywTsuvEMG/95DKlMgKmeJuZ/3BQt67MrdCIiovfFhnAiIjWkIRbBrqYh7GoaAgBkgoBHr1IR+CIRt18k4vbzBETEp+NpXBqexqXh/IMY+bzm+lqwrq6P+qZ6qG+qh3qmuqhvqodqupoQiXiVMhERERERERFRcTyLT4PPqRAEvkgEAHzYyAwzOzfhTQhERERlhA3hREQEsUiERub6aGSuDy9HSwBAXGomQqKTERKdggfRyQiJTsbTuDTEpmQi9lEm/n0Up7AMIx0J6lXTRZ1qurA00oGVkQ4sjbVhaaSDGoba0NQQK2PTiIiIiIiIiIgqlWyZgIOBL7Duf4+QliWDvpYGJndohJ52NXiTARERURliQzgRERWomp4WWtU3Rav6pvJhaVnZCI1JQVhMMh6/TsOTuFQ8fp2GyIR0JKZLcScyCXcik/ItSwTAwkAL1Q21YaanBTN9LZjpa8JMXwsNLI2hlZ2NanqaMNbRhL6WBv/pIyIiIiIiIiKVFBqTjMXnQhH05vxJ89rGmNvVBlbGOkqOjIiISPWwIZyIiIpNV1MDjlZGcLQyUhienpWNiPg0PHqViucJ6YhMTEdkYgYiE9LxMikDGVIZopMzEZ2cWeQ6NESAgbYEhjoSGGpLYKQjgaG2Jox0JNDV1ICOpjjnp0Qsf68t0YCuphg6mhrQ1hBDQ0MEiVjxpSEWQSIWQ6IhgoZIBImGCOJSNLjLBAHZspyXTMjzXhAgkwnIzjNMJkBhnEzIGZ8ty502Z5hMBvnvAgD9qBTEJ6QiWwYIQu78OcvNXYYsz/pz1ycI/y1HJp8mZ3pBEPJshQi5m56bAZHov98hEv03/M24N3NBJMKbXIoK/Kkhzs2vOOenWAQNMSARi6EhFkFTQwRNDTG0NcTQkrx5aYig9eZ9aT4TIiIiIiIiosouPSsbW688xa4bz5AtE6CvpYEJ7RrAy8mS/wsTERGVEzaEExHRe9PR1EATCwM0sTDIN04QBLxOzUJkYjpepWS+eWXhVWrO7wmZ2YiKz+lyPTM7p9E2IV2KhHSpEraElE0iFkFbIpY3jGtpiKCnrQkNCNB8M0xbIsauMa2VHSoRERERERFRkQRBwJ9hr/DjX+F4kZAOAPBsYo7vPBvBwkBbydERERGpNjaEExFRuRKJRG+6QtcqYBxgbm6I2NgkyGQCMqQyJGVIkZguRVK6FIkZ//1MTpciNSsb6VnZSJPKkJGVjXSpDGlZ2UjPevNTKkOmVAbpmzu2pbKc36XZOXdal/u2AhC/uTtaLMp59nruHdJisQgaeYe9NY1YlPNeQyyClqYGZNky+TCxfP43d2TnWZ4oz3wikeI6RIB82Tl3fIuQNxOCAAhQvFs899e8w/PmLvdu+Ow8d8ZL37zeHieVKf7MlgnIypYhM1tAZnbOZ5UhlSksXyoTIM3MRgqy8wxNL9sPioiIiIiIiKgChMYkY+XFh7gRkQAAqG6ghakdG8OjsbmSIyMiIlIPbAgnIqJKQSQSQUdTAzqaGuVyRbRMyGkQz9tIXprG8byNy283cpfFs83zXhwgVETrvZIJbxrNM7JlyJLm/MyUynLeZ8uQmS2Drr4OYl4lIyNbeNN4nl30gomIiIiIiIiUJDYlE1svP8Hh25GQCYC2RIwhbrXh3aIOdDU1lB0eERGR2mBDOBERqQWxSAQtiQj570snZRK9eV67REOMgj4c+YUBJtpqcWEAERERERERVV2J6VnYef0Zfrv5HOlSGQCgk7UFvvJoAEsjHSVHR0REpH7YEE5EREREREREREREVEppWdn47eZz7LgegeSMnF7M7C0NMaFdA7jWMVFucERERGpMrMyVZ2RkYObMmXBzc4O7uzv8/PzeOe29e/fQr18/ODk54dNPP0VQUJDC+OPHj6NTp05wcnLC+PHj8fr16/IOn4iIiIiIiIiIiIjU3NLzofjp0mMkZ2SjkbkeVvSyg98gZzaCExERKZlSG8KXL1+OoKAgbN++HXPnzsW6detw+vTpfNOlpqZizJgxcHNzw6FDh+Di4oKxY8ciNTUVAHD79m3MmjULEyZMwN69e5GYmIgZM2ZU9OYQERERERERERERkZqxq2kIJysjLOjWFLuHusKjsRlEIpGywyIiIlJ7SusaPTU1Ffv378eWLVtgZ2cHOzs7hIaGYvfu3ejatavCtCdPnoS2tjamTp0KkUiEWbNm4e+//8bp06fh5eWFXbt24eOPP0bv3r0B5DSwd+jQAREREahTp44Sto6IiIiIiIiIiIiI1EF/l1ro71JL2WEQERHRW5R2R3hwcDCkUilcXFzkw1xdXREYGAiZTKYwbWBgIFxdXeVX0YlEIjRv3hwBAQHy8W5ubvLpLS0tYWVlhcDAwPLfECIiIiIiIiIiIiIiIiIiqlSUdkd4TEwMqlWrBi0tLfkwc3NzZGRkID4+HqampgrTNm7cWGF+MzMzhIaGAgCio6NRvXr1fONfvnxZaAyl6Z0mdx72bPMf5kTRe+UjzzwikeL7qor7hyLmQxHzkR9zooj5ICIiIiIiIiIiIqLSUFpDeFpamkIjOAD5+8zMzGJNmztdenp6oeMLYmqqDw2N0t8Qb2ZmWOp5VRVzoqhU+dD9b580NzcE9PXLMCLl4v6hiPlQxHzkx5woYj6IiIiIiIiIiIiIqCSU1hCura2dr6E6972Ojk6xps2d7l3jdXV137n+169TSn1HuJmZIV69SoIglHx+VcScKHqvfKSkwPzNr7GxSUCarNDJqwLuH4qYD0XMR37MiaJ35cPcnA3jVLiMjAzMmzcPZ8+ehY6ODkaOHImRI0cWOO29e/cwd+5cPHjwAI0bN8a8efNgb29fwRETERERERERERFRWVJaQ3iNGjUQFxcHqVQKiSQnjJiYGOjo6MDIyCjftLGxsQrDYmNj5d2hv2u8hYVFoTG8TwODILzf/KqIOVFUqnzkmV4QFN9Xddw/FDEfipiP/JgTRcwHldTy5csRFBSE7du348WLF5g2bRqsrKzQtWtXhelSU1MxZswY9OzZE0uXLsWePXswduxYnDt3Dnp6ekqKnoiIiIiIiIiIiN5X6fsGf0+2traQSCQICAiQD/P394eDgwPEYsWwnJyccOvWLQhvzoALgoCbN2/CyclJPt7f318+fWRkJCIjI+XjiYiIiEh9pKamYv/+/Zg1axbs7OzQuXNnjB49Grt378437cmTJ6GtrY2pU6eiUaNGmDVrFvT19XH69GklRE5ERERERERERERlRWkN4bq6uujduzd8fHxw+/ZtnD9/Hn5+fhg2bBiAnLvD09PTAQBdu3ZFYmIiFi1ahLCwMCxatAhpaWn4+OOPAQCDBg3C0aNHsX//fgQHB2Pq1Klo37496tSpo6zNIyIiIiIlCQ4OhlQqhYuLi3yYq6srAgMDIZMpPnYkMDAQrq6uEL15Zo5IJELz5s0VLtYkIiIiIiIiIiKiqkdpXaMDwIwZM+Dj4wNvb28YGBhg4sSJ6NKlCwDA3d0dS5YsgZeXFwwMDLBp0ybMnTsX+/btg42NDTZv3izvrtLFxQXz58/HmjVrkJCQgLZt22LBggXK3DQiIiIiUpKYmBhUq1YNWlpa8mHm5ubIyMhAfHw8TE1NFaZt3LixwvxmZmYIDQ0tdB1v2s0rXO56lbX+yob5yE+pOcmzTpFI8b2ycB/JjzlRxHzkx5wQEREREZGqUGpDuK6uLpYtW4Zly5blGxcSEqLw3tHREYcPH37nsry8vODl5VXmMRIRERFR1ZKWlqbQCA5A/j4zM7NY0749XV6mpvrQ0FBax0oAADMzQ6Wuv7JhPvJTSk50//temJsbAvr6FR/DO3AfyY85UcR85MecEBERERFRVafUhnAiIiIiorKmra2dryE7972Ojk6xpn17urxev05R6h3hZmaGePUqCYKgnBgqE+YjP6XmJCUF5m9+jY1NAtJkhU5eEbiP5MecKGI+8lP1nJibs4GfiIiIiEhdqG1DuIXF+/3jw3+c8mNOFJUqHxaGyD3TYFHG8Sgb9w9FzIci5iM/5kQR80ElUaNGDcTFxUEqlUIiySl3Y2JioKOjAyMjo3zTxsbGKgyLjY1F9erV37n8960jywLv0lPEfOSnlJyY/1fLmhcxaUXjPpIfc6KI+ciPOSEqe5WhjuT/VsxBLuYhB/OgpBxUwvPg3BdyMA/MgapRbp+ORERERERlzNbWFhKJBAEBAfJh/v7+cHBwgFisWP46OTnh1q1bEN78Ay4IAm7evAknJ6eKDJmIiIiIiIiIiIjKGBvCiYiIiEil6Orqonfv3vDx8cHt27dx/vx5+Pn5YdiwYQBy7g5PT08HAHTt2hWJiYlYtGgRwsLCsGjRIqSlpeHjjz9W5iYQERERERERERHRexIJgio+8YmIiIiI1FlaWhp8fHxw9uxZGBgYYNSoURg+fDgAwMbGBkuWLIGXlxcA4Pbt25g7dy4ePnwIGxsbzJs3D82aNVNi9ERERERERERERPS+2BBOREREREREREREREREREQqhV2jF0EQBKxYsQKtWrVCixYtsHz5cshksndOHxAQgIEDB8LFxQUfffQR9u/fX4HRlo+MjAzMnDkTbm5ucHd3h5+f3zunvXfvHvr16wcnJyd8+umnCAoKqsBIK05JcvLnn3+iV69ecHFxQc+ePfHHH39UYKQVoyT5yPXs2TO4uLjg6tWrFRBhxSpJPkJCQjBo0CA4OjqiZ8+euHLlSgVGWjFKko9z587h448/houLCwYNGoS7d+9WYKQVLzMzEz169Cj0e6Aux1WgePlQh2MqqYfExETMmjULbdq0QatWrTB9+nQkJibKx8fFxWHixIlwcXGBp6cnjh49qjB/UceG48ePo1OnTnBycsL48ePx+vVr+biS1reVVWnqj8ouKioKX331FVq0aIF27dphyZIlyMjIAABERERg+PDhcHZ2Rrdu3XDp0iWFef/991/06NEDTk5OGDZsGCIiIhTG//LLL2jXrh1cXFwwc+ZMpKWlycdVhVyOGTMG06dPl78vz+9AUd8/ZcrMzMS8efPwwQcfoE2bNli5ciVyr21Xx5xERkZi7NixaN68OTw9PfHLL7/Ix6lbPgqqo5R53Chq3URUNubNm4ehQ4cqDFOXmoH1dOlUps/wfbBuVqTOtTLr4xzqXhezFqZCCVSobdu2CR4eHsL169eFy5cvC+7u7sLWrVsLnDY6Olpwc3MTfvjhB+HRo0fC8ePHBQcHB+HixYsVG3QZmz9/vtCzZ08hKChIOHv2rODi4iKcOnUq33QpKSlC27ZthaVLlwphYWHCggULhDZt2ggpKSlKiLp8FTcn9+/fF+zs7ITt27cLjx8/Fnbt2iXY2dkJ9+/fV0LU5ae4+chr1KhRgrW1tXDlypUKirLiFDcfiYmJQps2bYTvv/9eePz4sbB69WrB1dVViI2NVULU5ae4+Xjw4IHg4OAgHD58WHjy5Ikwb948oW3btkJqaqoSoi5/6enpwvjx4wv9HqjTcbU4+VCXYyqph6+//lrw8vIS7ty5IwQFBQl9+/YVJk6cKB8/duxYwdvbWwgJCRH27dsn2NvbC4GBgYIgFH1sCAwMFBwdHYXDhw8L9+/fF4YMGSKMGTNGvuyS1LeVWWnqj8pMJpMJ/fv3F0aPHi08ePBAuH79utC5c2dh6dKlgkwmE3r27Cl8++23QlhYmLBx40bByclJeP78uSAIgvD8+XPB2dlZ2LZtm/DgwQNh0qRJQo8ePQSZTCYIgiCcPn1acHV1FS5cuCAEBgYK3bp1E+bNmydfd2XP5fHjxwVra2th2rRpgiCU/3egsO+fss2ePVvo0qWLEBgYKPz7779Cy5YthT179qhtTvr37y98/fXXwqNHj4Rz584JTk5OwtmzZ9UuHwXVUco8bhS1biIqG/7+/oKNjY0wZMgQ+TB1qhlYT5dOZfoMS4t1syJ1r5VZH+dQ57qYtTAVhQ3hRfDw8BAOHjwof3/kyBGhQ4cOBU7766+/Cl27dlUYNnv2bGHy5MnlGmN5SklJERwcHBQaJdavX69QZOfav3+/4OnpKT9YyGQyoXPnzgr5UwUlyYmvr68watQohWEjR44UVq5cWe5xVpSS5CPX0aNHhYEDB6pkQ3hJ8rF9+3ahU6dOglQqlQ/z8vIS/vzzzwqJtSKUJB8///yz0KdPH/n7pKQkwdraWrh9+3aFxFqRQkNDhU8++UTo2bNnod8DdTmuFjcf6nBMJfWQkpIi2NraCgEBAfJhN2/eFGxtbYX09HThyZMngrW1tRARESEfP3PmTPmJjaKODVOmTJFPKwiC8OLFC8HGxkZ4+vSpIAglq28rq9LUH5VdWFiYYG1tLcTExMiHHTt2THB3dxf+/fdfwdnZWeFCKG9vb2HNmjWCIAjCjz/+qLDtqampgouLizw/gwcPlk8rCIJw/fp1wdHRUUhNTa30uYyLixM+/PBD4dNPP62Q70BR3z9liouLE5o1ayZcvXpVPmzTpk3C9OnT1TIn8fHxgrW1tRASEiIfNmHCBGHevHlqlY931VHKPG4UtW4ien8ZGRlC9+7dhQEDBih8l9WlZmA9XTqV6TN8H6yb/6PutTLr4xzqXBezFqbiYNfohYiKikJkZCQ++OAD+TBXV1c8f/4c0dHR+abP7YblbcnJyeUaZ3kKDg6GVCqFi4uLfJirqysCAwPzdfkTGBgIV1dXiEQiAIBIJELz5s0REBBQkSGXu5LkpE+fPvjuu+/yLSMpKanc46woJckHkNNdiq+vL+bPn1+RYVaYkuTj2rVr6NixIzQ0NOTDDh48CA8PjwqLt7yVJB8mJiYICwuDv78/ZDIZDh06BAMDA9StW7eiwy53165dQ8uWLbF3795Cp1OX42px86EOx1RSD2KxGBs3boStra3C8OzsbKSkpCAwMBCWlpaoXbu2fJyrqytu3boFoOhjQ2BgINzc3OTzWlpawsrKCoGBgSWubyurktYfVYGFhQW2bt0Kc3NzheHJyckIDAxEs2bNoKenJx/u6ur6zs9cV1cXdnZ2CAgIQHZ2Nu7cuaMw3tnZGVlZWQgODq70uVy2bBl69eqFxo0by4eV53egqO+fMvn7+8PAwAAtWrSQDxszZgyWLFmiljnR0dGBrq4uDh06hKysLISHh+PmzZuwtbVVq3y8q45S5nGjqHUT0fvbvHkzbGxs0LZtW4Xh6lIzsJ4uncr0Gb4P1s3/UfdamfVxDnWui1kLU3GwIbwQMTExAIDq1avLh+X+gX358mW+6WvXrg1nZ2f5+1evXuHEiRNo3bp1+QZajmJiYlCtWjVoaWnJh5mbmyMjIwPx8fH5ps2bKwAwMzMrMFdVWUly0qhRIzRt2lT+PjQ0FJcvX67S+8TbSpIPAFi6dCn69OmDJk2aVGCUFack+YiIiICpqSlmz56Ntm3bon///vD396/giMtXSfLRrVs3tG/fHoMHD4a9vT2WL1+ONWvWwNjYuIKjLn+DBw/GzJkzoaurW+h06nJcLW4+1OGYSupBR0cHH374ocKxcceOHbCxsYGpqek7v/tRUVEAij42REdHv3N8Sevbyqqk9UdVYGRkhHbt2snfy2Qy7Nq1C61atSryMy9sfGJiIjIyMhTGSyQSmJiYyPeJyprLy5cv48aNGxg3bpzC8PL8DhT1/VOmiIgI1KpVC0eOHEHXrl3RsWNHrF+/HjKZTC1zoq2tjTlz5mDv3r1wcnLCxx9/jA8//BD9+vVTq3y8q45S5nFDXWpYImV5+PAh9uzZgxkzZuQbpy41A+vp0qlMn+H7YN2cg7Uy6+Nc6lwXsxam4pAoOwBlS09Pf+cXMzU1FQAUdujc3zMzM4tc7sSJE2Fubo4BAwaUUbQVLy0tTWH7gXfn4F3TFpWrqqYkOcnr9evXmDhxIpo3b46OHTuWa4wVqST5+Pfff+Hv74/jx49XWHwVrST5SE1NxebNmzFs2DBs2bIFJ06cwKhRo3Dq1ClYWlpWWMzlqST5iIuLQ0xMDObMmQMnJyf5P/aHDx+GmZlZhcVcmajLcbU0VPWYSqqjsBrTwsJC4crgXbt24dSpU9i6dSuAor/7RY1PT09/5/j09HT5+7zjgKLr28qktPVYVeLr64t79+7hwIED+OWXX0q9TxT0mecdLwhCpcxlRkYG5s6dizlz5kBHR0dhXHl+Byrz397U1FQ8efIEv/32G5YsWSKvm3R1ddU2Jw8fPkSHDh0wYsQIhIaGYsGCBWjdurXa5iOv9/lb8r7HjaqSI6LKqqg6cs6cOfJzjm9T5ne/rLGeLnuqWkOrY93MWjkH6+P/sC5WxFqY8lL7hvDAwEAMGzaswHFTpkwBkLPzamtry38HUOhdaykpKRg3bhweP36MX3/9tcg73CozbW3tfF/Q3Pdv/5F917RvT1fVlSQnuWJjYzFixAgIgoA1a9ZALFadzhiKm4/09HTMmTMHc+fOVbl9Iq+S7B8aGhqwtbXFV199BQBo1qwZ/vnnHxw9ehRffPFFxQRczkqSjxUrVsDa2hqfffYZAGDBggX4+OOPcfDgQYwZM6ZiAq5k1OW4WlKqfEwl1VFYjbl+/Xp06tQJALB7924sXLgQM2bMgLu7O4Civ/ulHa+rq6vwz1lJ6tvKpjT1WFXi6+uL7du3Y9WqVbC2toa2tna+u0yK85kbGRnl+5zzjtfV1UV2dnalzOW6detgb2+vcLdPrvL8DlTmv70SiQTJycn44YcfUKtWLQDAixcvsGfPHtSrV0/tcnL58mUcOHAAf/31F3R0dODg4ICoqChs2LABderUUbt8vE2Zx42i1k1EhSusjvz222+RnZ39zptuVKlmYD1d9lSxhlbXupm1cg7WxzlYF+fHWpjyUvuG8JYtWyIkJKTAcVFRUfD19UVMTIz8OQe53UFYWFgUOE9ycjJGjx6Np0+fYvv27ahfv365xF1RatSogbi4OEilUkgkObtLTEwMdHR0YGRklG/a2NhYhWGxsbH5uoGo6kqSEyBnP8ot3Hfs2AFTU9MKjbe8FTcft2/fRkREhLzRN9fnn3+O3r17q8wzw0uyf1hYWKBhw4YKw+rXr4/IyMgKi7e8lSQfd+/exdChQ+XvxWIxmjZtihcvXlRozJWJuhxXS0LVj6mkOgqrMXNt27YNy5cvx9SpU+Ht7S0f/q7vfm79WdSxobD5a9SoAQAlqm8ro5LWY1XJggULsGfPHvj6+uKjjz4CkLO9YWFhCtMV5zO3tbWFiYkJtLW1ERsbi0aNGgEApFIp4uPjYWFhAUEQKmUuT5w4gdjYWPlz13JPLJw5cwY9evQot+9AUd8/ZbKwsIC2trb8JB8ANGjQAJGRkWjRooXa5SQoKAj16tVTOKHUrFkzbNy4EW5ubmqXj7cp87hR1LqJqHCF1ZFDhw5FUFAQmjdvDgDIyspCdnY2XFxccOLECZWqGVhPlz1Vq6HVuW5mrQx5TKyPWRcXhLUw5cVbqApRo0YNWFlZKTyz19/fH1ZWVgXutDKZDBMmTMCzZ8+wc+dOlXgGsq2tLSQSCQICAuTD/P394eDgkO8OPCcnJ9y6dQuCIAAABEHAzZs34eTkVJEhl7uS5CQ1NRWjR4+GWCzGrl275H88VElx8+Ho6IizZ8/iyJEj8hcALFy4EJMmTargqMtPSfYPZ2fnfP/UhYeHKxRvVV1J8lG9enU8fPhQYdijR4/khZY6UpfjanGpwzGV1Mfhw4exfPlyzJgxA6NGjVIY5+zsjOfPnys8P8rf3x/Ozs4Aij42ODk5KdSvkZGRiIyMhJOTU4nr28qqJH9fqpJ169bht99+w8qVK9G9e3f5cCcnJ9y9e1feRRuQs73v+szT0tJw7949ODk5QSwWw8HBQWF8QEAAJBIJmjZtWmlzuXPnThw7dkxeN3p6esLT0xNHjhwp1+9AUd8/ZXJyckJGRgYePXokH5ZbO6pjTqpXr44nT54o3I0RHh6O2rVrq2U+3qbM40ZR6yai0luxYgVOnDgh//s4cOBA2Nvb48iRI6hevbpa1Qysp0uusn2G70Pd62bWyjlYH+dgXZwfa2FSIFChNm3aJLi7uwtXrlwRrly5Iri7uwt+fn7y8a9evRKSk5MFQRCEvXv3Ck2bNhUuXrwoREdHy19xcXFKir5szJ49W+jevbsQGBgonDt3TmjevLlw5swZQRAEITo6WkhLSxMEQRCSkpKEVq1aCQsWLBBCQ0OFBQsWCG3bthVSUlKUGX65KG5OVq5cKTg6OgqBgYEK+0RiYqIywy9zxc3H26ytrYUrV65UZKgVorj5ePbsmeDs7CysWbNGePz4sfDjjz8Kzs7OwsuXL5UZfpkrbj5OnDghODg4CIcPHxYeP34s+Pr6Cq6urkJsbKwywy93b38P1PW4mquwfKjLMZVUX1xcnODs7CxMmzZNYV+Ojo4WpFKpIAiCMHLkSGHIkCHC/fv3hX379gkODg5CYGCgIAhFHxtu3rwp2NnZCfv27RPu378vDBkyRBg7dqx8/UXVt1VFYX9fqqKwsDDB1tZWWLVqVYH7Rbdu3YSvv/5aePDggbBp0ybB2dlZeP78uSAIghARESE4ODgImzZtEh48eCBMmjRJ6NmzpyCTyQRBEITjx48LzZs3F86dOycEBgYK3bt3FxYsWCBfd1XI5bRp04Rp06YJglD+34HCvn/KNmbMGGHAgAHC/fv3hb///lto1aqVsH37drXMSWJiotC2bVthypQpQnh4uPDHH38ILVq0EPbs2aOW+RAExTpKmceNotZNRGVnzZo1wpAhQ+Tv1aVmYD1depXlM3wfrJvzU+damfUx6+JcrIXpXdgQXgSpVCosXrxYcHNzE1q2bCn4+vrKvwyCIAgdOnQQ1qxZIwhCzpfe2to63ytvQVoVpaamClOnThWcnZ0Fd3d34eeff5aPs7a2Fg4ePCh/HxgYKPTu3VtwcHAQ+vbtK9y9e1cJEZe/4ubko48+KnCfyC1MVEVJ9pG8VLUhvCT5uHHjhtCnTx/B3t5e6NWrl3Dt2jUlRFy+SpKPffv2CV27dhWcnZ2FQYMGCUFBQUqIuGK9/T1Q1+NqrsLyoS7HVFJ9x48fL3Bftra2FiIiIgRBEITY2Fhh7NixgoODg+Dp6SkcO3ZMYRlFHRsOHjwoeHh4CM7OzsL48eOF169fy8cVVd9WFYX9famKNm3a9M79QhAE4fHjx8Jnn30m2NvbC927dxf++ecfhfn//PNPoUuXLoKjo6Pg7e0tPH36NN/yW7duLbi6ugozZswQ0tPT5eOqQi7zntwThPL9DhT1/VOmxMREYcqUKYKzs7PQunVrYe3atfLY1TEnoaGhwvDhw4XmzZsLnTp1En7++We1zsfbdZQyjxtFrZuIysbbDeGCoB41A+vp0qssn+H7YN2cnzrXyqyPc7AuZi1M7yYShDd9IhAREREREREREREREREREamAqvXwDyIiIiIiIiIiIiIiIiIioiKwIZyIiIiIiIiIiIiIiIiIiFQKG8KJiIiIiIiIiIiIiIiIiEilsCGciIiIiIiIiIiIiIiIiIhUChvCiYiIiIiIiIiIiIiIiIhIpbAhnIiIiIiIiIiIiIiIiIiIVAobwomIiKhCZGZmokePHrh69Wqx57l27Rp69eoFJycn9O/fH8HBweUYIRERERERERERERGpCjaEE6moQ4cOwcbGBvv371d2KHKenp44dOjQO8cfP34cffr0gYODA1q2bIlJkybhyZMnZbb8srJ27VoMHTq0zOe1sbFRaCD8559/MHDgQDg5OcHV1RWjR49GUFCQfPzVq1dhY2MjfzVr1gxt2rTB1KlTERsbW6r4iMpLRkYGJk+ejNDQ0GLPExERgc8//xydO3fG0aNHYWNjg3HjxiEzM7McIyUiIoC1ZHliLUlERESqjHVk+WEdSURUcmwIJ1JRJ06cQN26dXH06FFlh1Is58+fx9y5czFq1CicPHkSfn5+yM7OxpAhQ5CcnKzs8BSMHDkSa9euLdd1BAUFYdy4cejZsyd+//137NmzB1ZWVhg2bBiePXumMO2lS5dw6dIl/PHHH/jxxx8RHh4Ob29vpKamlmuMRMUVFhaG/v374+nTpyWab9euXXB0dMSECRNQv359zJw5E2KxGOHh4eUUKRER5WItWX5YSxIREZEqYx1ZflhHEhGVHBvCiVTQq1evcPnyZYwfPx43btxARESEskMq0pEjR+Dl5YUePXqgTp06sLOzww8//IDk5GT89ddfyg5Pgb6+PkxMTMp1HceOHUPbtm3x2WefoV69erC2tsa8efNgYWGBkydPKkxrYWEBCwsLWFpaokWLFti8eTNiYmLw22+/lWuMRMV17do1tGzZEnv37s037saNG/Dy8oKjoyN69uyJM2fOKMzXpUsX+XtdXV2cP38eTZs2rZC4iYjUFWvJ8sVakoiIiFQV68jyxTqSiKjk2BBOpIJOnz4NQ0NDfPLJJ6hevbrCFZienp7YvXs3+vfvDwcHB/Tq1Uvetc2zZ89gY2ODs2fPolOnTnBwcMDYsWMRHx8PIKdrI09PT4V1DR06VH4lYmZmJpYsWYJ27drBzs4Onp6eBTZ8FUQsFiMwMBApKSnyYdra2jhy5Ag8PDxKvPzk5GTMmDEDrVu3hr29Pbp27Yrz58/Lx9vY2GD16tVo2bIlvvjiC3Tp0gU///yzwjJ69uxZYDdOebsSOnToEIYOHYo1a9agZcuWcHNzw5IlSyAIQrG2u7B8hISE4NWrV/JhIpEIfn5+6N+/f6HzmpqaolOnTjh37tx7xUBUVgYPHoyZM2dCV1dXYXhMTAzGjh0LLy8vHDt2DKNHj8b06dNx48YNADldo+vo6OCrr75CmzZtMGzYMISFhSljE4iI1AprSdaSrCWJiIioNFhHso5kHUlElQ0bwolU0IkTJ9C+fXuIxWJ4enriyJEjCkXQ2rVrMWbMGPz+++8wNDTEwoULFebfuHEjVq5ciV27duHOnTv5irF32bx5M/7880+sXbsWp0+fRu/evbFgwYJiPRtm8ODBCAoKwocffohvvvkG+/fvR1RUFOrVqwcDA4MSL3/RokV49OgR/Pz8cPz4cbi5uWHWrFkKzxa+ePEi9uzZg++++w7du3dXuBP14cOHePTokcLdqO9y69YtPHr0CHv27MHs2bOxY8cO/Pvvv8VJ2Tv17dsXr1+/RocOHfDll19i586dePr0KWrVqlWsKz8bN26Mhw8fvlcMROVt9+7daNOmDYYMGYJ69eqhV69eGDBgALZv3w4ASE1NxYoVK/DBBx9gy5YtsLS0xPDhwxX+OSUiorLHWpK1JGtJIiIiKg3WkawjWUcSUWXDhnAiFRMZGYmbN2+iU6dOAIAuXbogIiIC/v7+8mn69OmDTp06oUGDBhgxYoT86stcX331FRwdHeHk5ISePXvizp07xVp306ZNsWjRIjg7O6NOnTr44osvkJWVhcePHxc5b6tWrbB79260atUKFy5cwPfff48OHTpg/vz5kMlkJV7+Bx98gPnz58PW1hb169fHyJEjER8fr3A144ABA9CwYUM0btwYPXr0QEBAAF6+fAkAOHXqFNzd3WFsbFxk7NnZ2ViwYAEaNmyIXr16oWnTpsXO2bs0atQI+/fvR5cuXXD9+nUsXLgQnTt3xqRJk5CWllbk/IaGhmwspEovPDwcFy9ehIuLi/y1a9cu+XdaQ0MDnp6eGDp0KOzs7LBgwQLIZDJcuHBBuYETEakw1pI5WEuyliQiIqKSYR2Zg3Uk60giqlwkyg6AiMrWiRMnoK2tDXd3dwBAixYtYGxsjMOHD8PNzQ0AUL9+ffn0BgYGyMrKUlhGvXr1Ch3/Lp06dcI///yDpUuXIjw8HPfu3QOQU5QVh4uLC9avX4+MjAxcu3YNR44cwe7du1G3bl0MHz68RMvv3bs3zp8/j3379iE8PBx3797NN22tWrXkvzdq1Ag2NjY4ffo0hg8fjlOnTmHs2LHFitvMzEx+hSiQkzOpVFrgtBKJRF5E55U7TCL577DcuHFjrFixAlKpFLdu3cKJEyewb98+WFhY4Pvvvy80puTkZIWYiCojqVSKnj174osvvlAYnvs9sLCwQIMGDeTDtbS0UKtWLURGRlZonERE6oS1ZA7WkqwliYiIqGRYR+ZgHck6kogqF94RTqRiTpw4gfT0dLi6uqJZs2ZwdHREQkICTp8+jfT0dACApqZmoct413iRSJRvWN7iatWqVZgyZQokEgl69+5d7GfxpKSkYP78+fIrH7W1tdGuXTv88MMP6Natm7xLn5Isf+rUqVi2bBmMjIwwaNAgbNq0Kd802traCu+7d++Os2fP4uHDh3j27Bk6duxYrPi1tLTyDXvX83iMjIyQlJSUb3hiYqJ8PAAsW7YMwcHBAHIK0Q8++AA+Pj4YOXIkLl++XGRMISEhaNKkSbHiJ1KWBg0a4MmTJ6hXr5789ccff+DYsWMAAGdnZ4SEhMinz8zMREREBGrXrq2skImIVB5ryRysJVlLEhERUcmwjszBOpJ1JBFVLrwjnEiFPHr0CPfu3cP333+Pli1byoeHhYXhm2++wblz595r+Zqamgpd2wiCgGfPnsnf//bbb/Dx8cHHH38sX2/udIXR0dHBsWPH5FdZ5mVoaCgvDou7/OTkZBw/fhz79u2Do6MjAOCvv/4qMpYePXpg9erVOHLkCDw8PKCvr19o3KVhY2OD8PBwJCQkKHRxFBgYCF1dXfmVsZcuXYJUKsWsWbMU5jcyMoKpqWmh64iPj8f58+fx9ddfl3X4RGVq8ODB2LlzJ1atWoU+ffrgzp07WLlyJRYvXgwA8Pb2xmeffQZXV1e0adMGW7duhba2Ntq3b6/cwImIVBRryRysJVlLEhERUcmwjszBOpJ1JBFVPmwIJ1IhJ06cgImJCQYMGKBwRaC1tTXWr1+PI0eOvNfy7e3tER8fj507d6J9+/bYuXMnEhIS5ONNTExw8eJF2NvbIyoqSt6YlZmZWehyNTQ08MUXX2DlypXIzMxEp06dIJVK8e+//+LYsWPYuXNniZavpaUFXV1dnD17Fqampnj06BHmz59fZCxWVlZwdHTE9u3b4evrW/IEFUPz5s1hbW2NSZMm4ZtvvoGpqSnu37+PpUuXYsiQIfIrX8eNG4fJkydDW1sbPXv2hKamJm7evImtW7diyZIlCsuMiYkBkHMl7OPHj+Hr6wtLS0v069evXLaBqKzUqlULGzduxIoVK7Bt2zbUqFED06dPxyeffAIAcHJywo8//ogVK1ZgyZIlsLe3x9atW6Gnp6fkyImIVBNryRysJVlLEhERUcmwjszBOpJ1JBFVPmwIJ1IhJ06cQM+ePQvsFmfQoEFYtGgRxOLSPxGhfv36mDZtGjZs2IAff/wRXl5e+Oijj+TjFy9eDB8fH3Tv3h01atRAv379oKGhgfv37+PDDz8sdNmjRo2CsbEx9uzZgw0bNgDIKXK3bNkCe3v7Ei1fS0sLvr6+WLZsGXbu3InatWvjyy+/xI8//oj79++jUaNG74yjW7duCAkJKbc7TsViMbZu3QpfX1+MHz8eCQkJqFmzJgYMGIDPP/9cPt3HH38MLS0t+Pn5Yc+ePcjKyoKNjQ0WL16cr3uk3GcvaWpqombNmujQoQO+/PLLfN0sEVUGebs6B4A2bdrg0KFD75y+U6dO6NSpU3mHRUREYC2Zi7Uka0kiIiIqGdaROVhHso4kospHJBTVPwgRkRpZtWoVXr58iWXLlik7FCIiIiKqYlhLEhEREVFpsI4kIiofvCOciAhAcHAw7t+/j19//VV+9ScRERERUXGwliQiIiKi0mAdSURUvkrfHwkRkQoJCgrCvHnz0K9fP7i5uSk7HCIiIiKqQlhLEhEREVFpsI4kIipf7BqdiIiIiIiIiIiIiIiIiIhUCu8IJyIiIiIiIiIiIiIiIiIilcKGcCIiIiIiIiIiIiIiIiIiUilsCCciIiIiIiIiIiIiIiIiIpXChnAiIiIiIiIiIiIiIiIiIlIpbAgnIiIiIiIiIiIiIiIiIiKVwoZwIiIiIiIiIiIiIiIiIiJSKWwIJyIiIiIiIiIiIiIiIiIilcKGcCIiIiIiIiIiIiIiIiIiUilsCCciIiIiIiIiIiIiIiIiIpXChnAiIiIiIiIiIiIiIiIiIlIpbAgnIiIiIiIiIiIiIiIiIiKVwoZwIiIiIiIiIiIiIiIiIiJSKWwIJyIiIiIiIiIiIiIiIiIilcKGcCIqc4IgKDuEShFDVcA8ERERUWVUGWqUyhADEREREZW9ylDnVYYYiIjUARvCqcx9++23sLGxgZ+fn7JDKRZPT09Mnz690GlSU1Oxdu1adOvWDY6OjnB1dcXAgQOxf//+EhctV69ehY2NDa5evfo+YZfa2rVrYWNjo/BydHTERx99hGXLliE+Pl5h+unTp8PT07PYyw8NDcWgQYOKnO7QoUOwsbHBs2fPSrWewvz000/Ytm2b/H3uNleEstqOovZLGxsbrF27tkTLHDp0KIYOHSp/v3//fixbtqzUMeZVnO1+V8wPHjxA69at4eHhgcePH+PZs2ewsbHBoUOHyiS2ory9LxIRkfKxniwc68kcrCeL5/Lly5gwYQLatWsHJycn+ef06tWrMltHcZW2zsud7+2Xvb092rZtiwkTJuDRo0flFHXRivOZvb0PvV2bExFRxWGtWTjWmjlYaxbO09MTzZs3x4sXLwocX5pzl+/rXTVj3ldZn28s69q9KMU5HhCRIomyAyDVkpSUhPPnz8Pa2hp79+7FiBEjIBKJlB3WexEEAV988QXCw8MxZswYNGnSBBkZGbh06RJmz56N0NBQzJw5U9lhltjevXsB5Gxfamoq7ty5gy1btuDChQvYs2cPTE1NAQDjxo3DsGHDir3c06dP49atW0VO1759e+zduxfVq1cv3QYUYvXq1ZgwYYL8fb9+/dCuXbsyX09BSpqvijR37lyF9xs2bECLFi2UFE2O0NBQDB8+HLq6uti+fTvq1KmDzMxM7N27F3Xr1lVqbEREpBysJ6sO1pPloyzryRUrVmDr1q3o2rUrZs2aBRMTE4SEhGDLli04e/Ysdu3aBUtLyzJZV0X48ssv0b59e/n7tLQ03L17Fxs3bsTIkSNx+vRpaGtrKy/AEni7NicioorBWrPqYK1ZPsqy1kxJScH3339faS4qqV69uny/ySs7OxszZ85EZGQk7O3tlRAZESkTG8KpTB0/fhwAMGvWLHh7e+PKlSto3bq1kqN6P/7+/rh69Sr8/PzQtm1b+fD27dtDLBZj165d+Pzzz2FhYaHEKEvO2dlZ4X3btm3Rpk0bDB48GCtXrsTChQsBoNwaI01NTeUFa3mrWbMmatasWSHrqsyNt40bN1Z2CAoePnwIb29v6OvrY/v27bCysgIAaGlp5ds/iYhIfbCerDpYT5aPssrXiRMnsGXLFsyYMQPDhw+XD2/VqhU8PDzQp08fLFq0COvWrSuT9VWEunXr5tvvWrduDX19ffj4+ODKlSvw8PBQTnAlVNlqcyIidcFas+pgrVk+yjJfRkZG+Oeff7Bv3z7079+/zJZbWu86p7ho0SI8fvwYCxcuhLW1dcUHRkRKxa7RqUwdPHgQrVu3RqtWrVCvXj389ttvCuOHDh2KWbNmYfPmzWjfvj0cHBwwcOBA3L59Wz7N2rVr0blzZ/z555/o2bMn7O3t8dFHH+HIkSPyad7VlfHbXYO8fv0a8+bNQ4cOHWBvb48WLVpg/PjxJeoCOSYmBgAgk8nyjRs8eDC++eYbhStHr1+/jlGjRuGDDz6Avb09PD09sXbt2gLnz3X+/HkMHjwYLi4usLe3R9euXbF79275+NwuiX777Td06NABzZs3x/nz52FjY4NLly4pLOvGjRuwsbGBv79/sbcxl6OjI7p06YIjR44gLS0NQP7uXYKCguDt7Q1XV1e4uLhg+PDhCAgIAJDz2eWeSMvb/Y2NjQ3WrVsHLy8vODo6Yt26de/8DPfu3Yv27dvD0dER3t7euHfvnnzcu7oJentdALBu3Tr57wXNd/LkSXh5ecHFxQVt27bFnDlzkJCQoLCuovbDgrydL09PT6xZswbLli1DmzZt4OjoiFGjRuHx48eFLqekbGxssHv3bsyaNQstWrSAi4sLJk2ahNjYWPk0ebtf9PT0xPPnz3H48GGFz+HFixeYPHkyWrRoAScnp3yfAQAkJCRgxowZaNGiBT744AP4+voWun8X5OHDhxg2bBgMDQ2xa9cueSM4kL/LzEOHDqFZs2YIDAzEgAED4ODggA4dOih0IQUA0dHR+Oabb+RxzZkzB6tWrVL4PGQyGX766Se0b98eTk5OGDdunMLnnuvOnTsYNWoUWrZsiebNm+OLL75AaGiofHzud/Ly5csYOnQoHB0d0b59e+zfvx/R0dGYMGECXFxc4OHhgV9++aVEuSEiUnesJ1lPsp4sm3py8+bNaNy4Mby9vfONq1+/PqZMmQIXFxcIgiDPZUGvvN+HGzduYMiQIXByckKLFi0wbdo0vH79WmHZ4eHhmDBhgrwmGzt2LB4+fKgwTUxMDL766iu4uLigRYsWmD17NlJSUgrdnsIYGRnlG1ZUXZtbc544cQJffPEFnJyc0L59e6xfv17hu1ZQt57v2o8K2/fe9nbX6JmZmfjxxx/RsWNHODo6okePHjh8+HCJ8kBEREVjrclak7Vm2Z279PT0RIsWLbBs2TJERkYWOq1MJsPmzZvRuXNneaw7d+6Uj58wYQI++eQThXm8vb1hb2+P9PR0+bBFixbho48+KjK2XMePH8eOHTvQp08f9OvXr9jxADl3km/evBk9evSAo6MjnJ2dMXDgQFy5cuWd60tPT8cPP/yALl26wN7eHs2bN8eIESNw//59+TTTp0/H8OHDcfDgQXz00Uewt7dHr1698PfffyssKzg4GCNGjICLiws6dOiA33//vdjbTUT/YUM4lZnQ0FDcuXMHvXv3BgD07t0bf/zxh0JDHACcOXMGf/zxB77//nusXLkSsbGxmDhxIrKzs+XTxMTEYP78+Rg2bBg2b96M2rVrY9q0aflOoBRGEASMHTsW//zzD7777jts27YNEyZMwOXLl0vUDV2LFi2gp6eHyZMnw9fXF1evXpX/8a1fvz4+//xzmJubA8j54zR8+HCYmJhg1apV2LBhA9zc3LBu3TqcOnWqwOX/+eefGD9+POzs7PDTTz9h7dq1qFOnDubPn4/AwECFadetW4dp06Zhzpw5aNOmDapXr46jR48qTHPkyBHUr18frq6uxd7GvNq2bYusrCzcuXMn37jk5GSMHj0a1apVw9q1a7Fq1SqkpaVh1KhRSEpKQr9+/dC3b18AOUVh3uJi48aN6NmzJ9asWfPOYuXly5dYt24dvv76a6xcuRIJCQkYjmdZUQABAABJREFUOnToO581U5Dc7m/69u1bYFc4QM5zeCZPngxnZ2esWbMG48ePx5kzZzB06FCFwqos9kMA2LFjB8LDw7FkyRIsXLgQQUFBmDZtWomWURyrVq2CTCbDypUrMXXqVFy8eBGLFy8ucNp169bBwsICHh4e8m6eXr9+jYEDB+Lu3buYPXs2fvjhB8hkMnz22WfybZbJZBg9ejT++usvTJs2DUuXLsXNmzdx8uTJYscZHh4Ob29vGBgYYNeuXahRo0aR88hkMnz99dfo1q0bNm/ejObNm2P58uX43//+ByDnxKG3tzdu3ryJmTNnYsmSJQgODs7XNZOvry/Wr1+Pvn37Yt26dTAxMcEPP/ygMM2VK1fkz4pavHgxFi5ciMjISAwcODDfZz958mR4enpi06ZNaNCgAebOnYthw4ahSZMm+Omnn+Do6IglS5Yo/MNMRETvxnqS9STryYKVtJ6MiYlBcHAw2rdv/87uXgcPHoxRo0ZBJBLJu/7M++ratSskEgn69OkDIOek+fDhw6Gjo4Mff/wRM2fOxLVr1zBs2DD5NkdFRWHAgAF4/PgxfHx84Ovri9jYWHh7eys8z3P16tWwtLTETz/9BG9vb+zbt69Yd6bLZDJIpVL5Kzk5Gf/88w9++OEH1KpVC25ubgBQrLo2l4+PDwwMDLB27Vr06tUL69aty1cfFsf77nvfffcdfv75Z/Tr1w+bNm2Cu7s7pk+fLr9zkYiI3h9rTdaarDULVtpzlyKRCIsXL4ZMJsP3339f6LQ+Pj5Ys2YNPvnkE2zcuBFdu3bF4sWLsX79egCAh4cHHjx4gFevXgEAMjIycOvWLWRlZckvZACAv//+Gx06dCjWdj18+BCzZ8+GtbU1fHx8ShQPkPOYoZ9++gkDBgzA1q1bsWDBAsTHx2PSpEnyCzHeNnXqVBw8eBBjxoyBn58fZsyYgdDQUHz77bcQBEE+XVBQELZt24avvvoK69evh4aGBiZOnCi/2CEqKgpDhgxBUlISfH19MWnSJKxYsQJRUVHF2nYi+g+7RkdOA4qXlxdmz56Nli1blskyQ0JC4OPjg7t376JevXqYNWsWWrVqVSbLrqwOHjwIExMT+RVlffr0wdq1a3HgwAF88cUX8umkUim2bdsGAwMDADnPEpk2bRru378vf0ZHWloaFi1aJO+aqH79+ujQoQP++usvNGrUqFjxREdHQ1dXF9OmTZOfEGnZsiWePn36ziKjIGZmZtiyZQumT5+OrVu3YuvWrdDU1ISzszM++eQTfPrpp9DQ0ACQU0y2adMGvr6+EItzrjNp27YtLly4gKtXr6J79+75lh8WFoY+ffpg1qxZ8mEuLi5o2bIlrl69CicnJ/nwwYMHo2vXrvL3ffr0wc6dO5GSkgJ9fX2kp6fj1KlTGDNmTLG37225hfHb/wTkxhoXF4dhw4ahefPmAICGDRti7969SElJUejG5+1uaNzc3DBixAj5+4KK1ezsbKxfvx6Ojo4AACcnJ3Tq1Ak7d+4sdsNx7npr1qxZYFc4CQkJ2LBhA/r37485c+bIh1tbW+Ozzz7DwYMH8dlnnwEom/0QyLlD5aeffpLvJ0+fPsXatWsRFxeHatWqFXs5RbG2tsaSJUvk72/fvo3Tp08XOG2zZs2gpaUFU1NTeZ62b9+O+Ph47NmzB7Vq1QIAfPjhh+jWrRtWr16NNWvW4O+//8bt27exZcsWfPjhhwByuqPMeyVpYR4/foxhw4YhNjYWWVlZxb6TXBAEjBs3Tv4PiqurK86dO4c///wT7dq1w++//47w8HAcPHhQfhxp1aoVOnXqJF9GYmIidu7ciREjRsifw9SuXTtER0fLG9QB4IcffkC9evWwefNm+Wfm7u6Ozp07Y82aNVi9erV82k8//VS+X+vp6aF///5wdHTEpEmTAABNmzbF2bNncfPmTfl+TUSqpTzqyC+//BIXLlxQGLZx48Zi/7NflbGeZD3JerJgJa0nc+/IqV27drGW/3bXn+fOncOZM2cwc+ZM+bHthx9+QIMGDbBp0yZ5HE5OTujevbt8m3/55RdkZmbi559/lne/2rRpUwwaNAiBgYHybf7oo48wY8YMADm15D///FPonTW5Zs2apbCfAzk1WNu2bTFt2jTo6+sDKF5dm8vOzg4rVqyQT5Oamort27fjyy+/lB9jiuN99r0HDx7I8517B3/r1q3x/PlzXL16FT169Ch2HERUdbCOrHisNVlrstYs2Pucu6xTpw4mT56MhQsXYv/+/QoXF+R69OgR9u3bh8mTJ8s/e3d3d4hEImzatAmDBw+WP97m8uXL6NGjB27evAkNDQ00aNAA169fR6tWrRAREYHHjx8X65iWmpqKiRMnQiQSYc2aNdDR0SlRPNWqVZP3Ppm3Fx9tbW1MnDgRISEh+T6/zMxM+XPTu3XrBiDnQpXk5GQsXboUsbGx8ho5KSkJhw4dkndVr6enhyFDhuDKlSv46KOP8Msvv8jvSM+t0xs0aFApuqAnqmrUviE8IyMD3377rUKXt+8rKSkJI0eOhKenJ5YuXYqjR49iwoQJOHPmDMzMzMpsPZVJVlYWfv/9d3Tq1Anp6elIT0+Hvr4+XF1dsW/fPowZM0ZeXDVu3FjhhELu3aBvX0WV9w9JboGSmppa7Jhq1KiBHTt2QBAEPHv2DE+ePEF4eDhu3ryJzMzMEm2fm5sbzp49C39/f1y6dAnXrl1DQEAArl+/jiNHjsDPzw86Ojro3bs3evfujYyMDDx69AhPnjzB/fv3kZ2djaysrAKXPXr0aAA5RfWjR4/w9OlTeaH1dpy2trYK7z/99FNs2rQJ586dQ+/evXHu3DmkpqbKr2wta02aNIGpqSm++OILdO3aFe3atUPbtm0xZcqUIud9O/aC1KlTR6Gx0MLCAs7Ozrh+/fp7xZ1XQEAAMjMz851McnNzQ61atXDt2jV5MQm8/34IAA4ODvJCMu9y0tLS3qsh/O27e94uvmrWrPnOqxMLcvnyZdja2qJGjRqQSqUAALFYjA8//FDe9c6NGzegqamJdu3ayefT09ODh4dHsT6n48ePw97eHqtWrcLIkSMxZcoU/PLLL/LjQ2FcXFzkv+c24ud+FleuXEGdOnXk/5ACgIGBATp06ICrV68CyPnss7Ky8hXLH3/8sbwhPDU1FXfu3MGECRMUPjMjIyP5PxLviin3+J73H8DczzcpKanI7SOiqqc86kgg56p1X19fhWcVGhsbl+k6KiPWk6wni8J6svj1pESS869+SR9fA+ScIJ/6f/buO67K8v/j+Ouw9x6CA1AU91YstczKTC1LU8tv27JsT3+alTbMTFtmmranM0eZIy0zU9PcG0EUFUT23nB+fyAkuVCBwzm8n48Hjzz3ucfnuu8DXef+3NfnGj2a2267jXvvvbf8OLt27WLEiBEYjcbyvmLDhg1p0qQJGzZs4H//+x/btm2jffv2FeYgrVevHmvXrgUoLy1adrO/TIMGDSpVHvWJJ56gV69eGI1G/vnnHz744AP69+/PhAkTytsMlevXlvnvZ/2mm27im2++YceOHRX6vBdzJZ+9srb36dOnwvL/lmQXEcuhfmTNU19Tfc2LUV/z8u9d3n333axatYq3336bnj17njXf+d9//43RaKR3797lfTMoLa0+c+ZMtm3bxg033EDLli3ZuHEjAwYMYNOmTXTs2JHAwEC2bNkClI4Gd3Nzq1Q1gVdeeYXDhw/z4YcfEhISclnxlFUJSklJITo6mpiYmPJ+7bl+R+3s7Mqncjx16hRHjhzh6NGj59zGy8urwnztZ55zoLxffebDqu3ataswvaSIVE6dToRHRUWdVZKiKixevBgnJycmTJiAtbU1Tz31FOvWrWPv3r3lTzZZmj/++IPk5GQWLlzIwoULz3p//fr15W13dHSs8F5ZJ/O/N2nOXK9snUu9Vj/99BPvvfceJ0+exMPDgxYtWlR4+utSWFlZ0aVLF7p06QKUPp33/vvvM2fOHBYuXMjdd99NXl4eb7zxBkuXLqWoqIgGDRrQoUMHbGxszht7SkoK48ePZ82aNRgMBoKCgspvDP13Gycnpwqvg4KC6Nq1K0uWLOG2225jyZIlXH311ZUqNX0+8fHxAGd1WACcnZ35/vvvmTlzJitWrGDevHk4ODgwcOBAXn75Zezs7M673//Gfi5lT3Seydvb+6JzzFyKsvIy5zqWj4/PWQnLqvgcVvYzfyYnJ6fzfukpW/7f/Z7rOJcSa1paGjExMbRq1eqc7+fm5pKeno6Hh8dZSfgzb3ZeSKtWrfjqq69wdXXl2WefZfLkyXzyySc89thjF932v7+7Z7YvNTX1nA8anbms7Nr/twN/ZuyZmZkYjcZKfz7ONUrov9dBRCxTdfUjCwoKOHHiBG3atKn031ZLof6k+pPqT57fpfYnAwICMBgMxMbGnnef6enp2NjYlI+iBkhOTmbUqFE0btyY1157rXx5RkYGJSUlfPrpp3z66adn7cve3h4o7U9WZhT65fZb69evT5s2bYDSOUI9PT0ZO3Ys1tbWFeKtTL+2zH8/62U3G8+cg7MyruSzV1Y23lIfnBeRitSPNA31NdXXVF/z/C7n3uWZykqk33rrrbz88st89tlnFd4v6+ucq+IAUF7u+9prry0vpb9p0yZuvPFGAgICWLp0KQUFBaxfv56ePXtWeADyXL7//nuWLVvGfffdV6FCwaXGs2fPHl577TX27NmDo6MjoaGh5Yno853j9evX89ZbbxEdHY2zszPNmzcv/2yduc1/z3nZvdayc56enn7OfrX+votcujqdCN+yZQvh4eE8++yzZ42k3Lp1K2+99RZRUVEEBQXxxBNPnHdukHPt9/rrr6/wFNWPP/5YlaHXOj/++CMNGzZk4sSJFZYbjUaeeOIJ5s6dW6UPAfz3fwxlsrOzy/+9detW/u///o977rmHESNGlHew3nnnnUqNNijzzDPPkJaWxldffVVhubu7O6+++irLly8nKioKgIkTJ7Jq1So++OADrr766vL/yZ35JO5/vfDCC0RHR/PVV1/RoUMH7OzsyM3NZf78+ZWKb/Dgwbz00kscPnyYTZs2lZf1u1wbN27EycnpvDeNGjduzJQpUyguLmb37t0sXbqUOXPm0KhRo/InRC/XuW42JSYmlt+MKrvuxcXF5b9fZ17zyih7EjopKYnGjRufdayGDRtectzVwcfHh4SEhHO+V9bhP1eH+Eq4urrStWtXRo8efc737ezs8PT0JDU1tcI1ACrM+Xgh1113Ha6urgA88MADrF27lo8//phu3bqVl6y6HP7+/hw9evSs5WXzCsG/CfDk5OQK1/7M2F1dXTEYDOcsr5WYmIiHh8dlxygilqW6+pHR0dEYDIZa8/+jmqT+pPqT6k9WHU9PT1q1asX69et58cUXzzlP+PTp05k7dy5r167Fx8eHgoICHn/8cfLz8/n444/Lk9tQelPZYDBw//33n/OGYdmNPFdXV1JSUs56f9OmTTRo0OC885VfrkGDBrFq1Srmzp3LjTfeSI8ePcrjuFi/tkxqamqF98r6j2cmpc+cExbOPcrqYp+9C3FzcwNKEw1n3tQ/fPgwaWlplz2HqojUTupHmob6muprqq9ZvRo1asSzzz7LW2+9ddbDJmV9na+//rrCQ5hlypLLvXr1YsaMGezbt499+/Yxbtw4AgMDyc/PZ+vWrWzevLnCw4/nsmfPHiZNmkSHDh3OWwmgMvGUzTcfFhbGL7/8QuPGjbGysmLdunWsWrXqnPs9duwYjz/+ODfccAOzZs2iYcOGGAwGvv/++wrTMlaGp6fnOe9PVvYerIj86+K1aC3Y8OHDeemll856+iYxMZFHHnmEQYMG8fPPP/PQQw8xZswYtm7dWqn9Hj9+HC8vL1555RW6d+/O0KFDL6nzYm4SExNZv349/fv3Jzw8vMJPt27d6Nu3L+vWrSt/kqoqlI3CLEsIwr83Ccrs2LGDkpISnnzyyfKOZHFxMRs3bgQq/0RbUFAQf//9Nzt37jzrvYSEBHJycmjWrBlQWrIkPDycG264obwjuXfvXlJSUs57vG3bttGnTx/Cw8PLb8j8+eeflY7xpptuwtHRkQkTJuDs7FxhTuRLdeDAAX777TcGDx5c4cZXmZUrV9KtWzcSExOxtramQ4cOTJgwATc3N+Li4gAqVeL6fMrKK5U5efIkO3bsKJ8r61zX/Vy/WxeKoV27dtjZ2bFs2bIKy7du3UpcXNwVJWOrUteuXdm1a1d5+cgzrVy5Emtr6/InfC/Xf89T165dOXLkCCEhIbRp06b8Z+nSpSxcuBBra2uuuuoqioqKWLNmTfl2BQUFbNiw4ZKPbzAYmDx5Mo6OjrzwwgtkZGRcdlu6du3KiRMnOHDgQPmyvLy8Cp3MDh064ODgcNa86WXliaD06d/WrVuzYsWKCjc8MzMz+eOPP3QTUkTKVVc/Mjo6GhcXF0aPHk2PHj244447zpqWwRKpP6n+pPqTVW/EiBEcOnSI77777qz3oqKi+PHHH7n66qvLH64cP348e/fuZdq0aWeNsHJxcaFly5ZER0dX6Cc2bdqUjz76qHwqms6dO7Nr164KyfDk5GQeeuihavtb9sorr2Bvb8+bb75ZXtK1Mv3aMmf2awFWrVqFo6Nj+XQ3Li4uZ/3t2b59+1lxXOyzdyFlfcz/zus7derUsxI2ImL+1I+seeprqq+pvmbNuOeee+jUqRNvv/12heVlFQRSU1Mr9M1SUlL48MMPy38v2rRpg5eXFzNmzMDe3p7WrVvj5+dH48aNmT59Ovn5+VxzzTXnPX56ejpPP/00Li4ufPDBB9ja2p5zvcrEEx0dTVpaGvfeey+hoaHl1+xCn/29e/eSn5/PyJEjadSoUfmDEWX3Jy9lpH63bt3YsWNHhb9LUVFRHD9+vNL7EJFSdXpE+Pl8//33XH311dx9991AaWfiwIEDfP3113Tu3JlTp06Rl5d31nZ2dnYEBASQk5PD7Nmzuffee/n000/55ZdfGDFiBCtWrCAgIKCmm1PtlixZQlFR0XlLidx2220sWLCg0k8JVkZ4eDgODg68/fbbPP3002RnZzNt2rQKozXL5mt5/fXXGTx4MOnp6Xz//fccPHgQKH2K/1xljf/rwQcfZM2aNTzwwAMMHz6c8PBwHB0dOXToEF988QVNmzZl0KBB5cdcsWIFc+bMoUmTJhw8eJCZM2diMBjOO1dz27Zt+fnnn2nVqhX16tVj+/btzJ49+4LbnMnR0ZH+/fszb9487rrrrguW+DlTWefYaDSSnZ3Nnj17+OqrrwgODubpp58+5zYdO3akpKSExx9/nJEjR+Ls7MyKFSvIzMwsn8+u7Im6ZcuW0a5du0t6StHe3p5Ro0bx7LPPUlxczIcffoiHhwf33XcfUFoeZ9KkSbz66quMGDGCkydP8vHHH5/15J6bmxvbt2/nn3/+OWv+QQ8PD0aOHMnHH3+Mra0t1113HSdOnODDDz8kNDSU22+/vdLxVqe7776bBQsWcM899/Dwww/TtGlT8vLy2LhxI99++y0PPfTQFc8J4+bmxv79+9myZQtt27bl/vvvZ+nSpdx///08+OCDeHp6snz5cubPn8/YsWOB0ieEe/Towcsvv0xycjL169fnm2++ISUl5bJKOQYGBvLKK68wevRoXn75ZaZNm3ZZbRkwYACzZ8/m8ccf5+mnn8bNzY0vv/yS5OTk8vPk7OzMY489xgcffICjoyPdunVj3bp1FRLhAM8//zwjRoxg5MiRDB8+nMLCQmbPnl0+SkpE5EKutB8ZHR1NXl4ePXr0YOTIkaxevZpRo0Yxb9688nLAlkj9SfUn1Z+sev369WPjxo28+eab7Nq1i759++Lk5MTu3bv58ssv8fT05M033wTgq6++YtGiRTz44IM4OjpWuJFuZ2dHy5Ytee655xg5ciTPP/88t956K8XFxXzxxRfs2rWrfJqb+++/nyVLlvDQQw/xyCOPYGtry8yZM6lXrx633HLLWaU8q0KDBg0YMWIEM2bM4Ouvv+ahhx6qVL+2zIoVK/D29ubaa69ly5YtfP/99zz77LPlyYFevXrxyy+/0K5dO4KCgli0aBExMTFnxXGxz96FNG/enL59+zJlyhTy8vJo0aIFf/75J2vXrmX69OlVc6JEpNZTP7L6qK+pvqb6mjXDysqKSZMmceutt1ZYHhYWxq233sorr7xCbGwsrVu35siRI7z//vs0aNCA4ODg8u2vueYalixZQo8ePcpLoIeHhzNnzhw6d+58wWqNL7/8MrGxsTz//PPEx8dXeCChTL169SoVT9nv3yeffIKNjQ02NjasWrWqfLT7uT77rVq1wsbGhilTpvDggw9SUFDAokWL+OOPP4BLm7v9vvvuY+HChYwYMYInn3yS4uJi3n///fMm90Xk/JQIP4fo6GjWrl1Lhw4dypcVFhYSEhIClJaD2bJly1nbNW/enKVLl2JtbU2LFi146qmnAGjZsiUbNmxg6dKlPProozXTiBq0aNEimjZtWv5k4X916tSJBg0asGDBAho0aFDh6fvL5ebmxkcffcS7777L448/Tv369XniiSdYsmRJ+Trh4eG8+uqrfPnll6xcuRIfHx/Cw8OZPn06jz/+ONu2batUySN3d3fmzZvHp59+yu+//86cOXMoLCykfv36DBgwgJEjR5bP3TNmzBgKCwv54IMPKCgooEGDBowaNYqoqCh+//33s0rqAbz99tu88cYbvPHGGwAEBwfz2muv8dNPP1X6qd9evXoxb9688k5tZQwbNqz83w4ODjRs2JC77rqLhx566LydbD8/Pz777DM+/PBDxo0bR25ubvkokG7dugHQp08fli5dypgxY7jjjjuYMGFCpWNq2bIlN910ExMmTCAzM5OrrrqKl156qby8UEhICJMnT2bmzJmMHDmSJk2aVDh3ZR599FFmzJjBww8/zPLly886zpNPPomPjw/fffcd8+bNw8PDg759+/LMM89Uaj6gmuDm5sbChQuZMWMGX3zxBQkJCTg4ONC4cWPefPNNbrvttis+xoMPPshbb73FiBEj+PLLL+ncuTNz587l3XffZcKECeTn5xMcHMzEiRO54447yrebPn06U6dOZdq0aeTn59OvXz+GDh3Kb7/9dllxDBw4kLVr15bP3dS9e/dL3oeNjQ2ff/45EydOZMKECdjY2HDrrbfi4eHBkSNHytd75JFHcHJy4uuvv+brr7+mQ4cO/N///V+Fz+lVV13Fl19+ybRp03juueews7Ojc+fOTJ48maZNm15WG0Wk7rjSfuRjjz3GPffcU14Or3nz5uzbt4/58+db9A1M9SfVn1R/snq8+eabhIeHM3/+fF599VWys7MJDAxkyJAhjBgxonzqmLJ+3BdffMEXX3xRYR/169fn999/p0ePHnz++edMnz6dp556CltbW1q1asWXX35ZXto3ICCAH374gSlTpjBmzBjs7OwIDw/n/fffx93dvVoS4QAjR45kyZIlzJgxg1tvvRV/f/9K9WsBnn76abZs2cK8efMICAjg1Vdf5a677ip/f+zYsRQVFTF58mRsbGzo168fzz//PC+//HKF/Vzss3cxU6ZMYfr06Xz99dekpqbSpEkTpk2bdkWj5kTEvKgfWX3U11RfU33NmhMUFMSzzz7LpEmTKiyfNGkSs2bNYu7cucTHx+Pt7U2/fv145plnKvzOXXvttSxZsqRCVZ2yRHivXr0ueOx9+/YB8O677553nSeeeIInn3zyovG4uroyY8YM3nnnHZ5++mmcnZ1p0aIF3333HQ8//DBbt26ld+/eZ7X93XffZfr06YwaNQp3d3fat2/Pt99+yz333MPWrVsJCwur1Hn09PRkzpw5TJw4kTFjxuDs7MxDDz10zs+LiFyYwXgp9RgsWFhYGN988w3h4eE89thjuLu7n5W0trGxoX79+hfd1z333EPjxo0rzFfxzDPP4O7uftE5LEQux/jx49m1a1eFzrRIXRIZGUl0dDR9+vSpMPfkHXfcQb169TSSRkSqVVX2I8/lnXfeISoqitmzZ1dFuCLnpP6k1DUnTpzg+uuvZ9KkSZd0U15EpCqpHyl1hfqaIiJiKhoRfg4hISHs2LGDoKCg8mVffPEFBQUFlRrR3b59e/75558Ky6KjoxkwYECVxyp12zfffEN0dDTz589nypQppg5HxGRycnJ4+umnGT58ODfeeCPFxcUsX76cvXv38sILL5g6PBGpQ660HzlmzBgMBkOFp+cPHjx43tErIldK/UkREZHaQf1IsUTqa4qIiKlZmTqA2mj48OHs3buX999/n6NHj/Lzzz/z3nvvVXo+3jvvvJOIiAg++ugjYmJi+PDDDzl+/DgDBw6s5silrtm6dStLly7lvvvu04MWUqe1a9eODz74gD179vD444/z5JNPEhMTw2effVZe+kpEpCZcaT+yd+/e/PzzzyxZsoSYmBimT5/Otm3byueKFKlq6k+KiIjUDupHiiVSX1NERExNpdFPO7MUEcDGjRuZOnUqhw4dwt/fnwceeOCSOo7btm1j4sSJREZG0qRJE8aNG0eXLl2qK3wRERERMZGq7kcuWLCAzz77jLi4OJo2bcrYsWPVjxQRERGxQOpHioiIiFQvJcJFRERERERERERERERERMSiqDS6iIiIiIiIiIiIiIiIiIhYFCXCRURERERERERERERERETEoigRLiIiIiIiIiIiIiIiIiIiFkWJcBERERERERERERERERERsSg2pg7AVBITM00dwmXz8nImJSXb1GHUiLrUVjDT9mZn4xsSAEDikZPg7FzpTc2yvZepLrUV6lZ761Jbofa019fX1dQhSB1mzv3Ii6ktv+OWROe06lnsOb2CfvWVsthzaiI6n1WvKs+p+pFiSufrR+rvhnnSdTNPum7mR9fMPJ113Uz4faeqqB9pnjQi3MwYDGBtbYXBYOpIql9daiuovZasLrUV6lZ761Jboe61V6Su0e941dM5rXo6p1VP57Rq6XxWPZ1TsXT6jJsnXTfzpOtmfnTNzJOum9QmSoSLiIiIiIiIiIiIiIiIiIhFUSJcREREREREREREREREREQsihLhIiIiIiIiIiIiIiIiIiJiUZQIFxERERERERERERERERERi2Jj6gBEaqOiEiNpuYWkZBeQnFNAak4h2QXF5BeVUFBUQn5RMUUlRqytDNhYGU7/1woXe2vcHGxxd7DB3cEWTydbvJ3tsLYymLpJIiIiIiJiQkXFJSTnFJKUlU9iVgFZBUXkFpaQW1BMTmExZGfzyul1v9wcQ4mTMy52Nrg62ODmYIOrvQ0+Lnb4u9hjY61n2kVERERExHwcTcnB9/S/Vx44RffWjXB1UIpSqp8+ZVKnpeUUciAhkyPJORxPzeV4Wi7HUnM5lZlPibFqjmFtZcDf1Z4AN3vquTkQ7OlIYx9nmvg4EeDmgJVBSXIREREREUtxKjOfqMRsjqbkcDQlh5iUHGJSc0nNKeRCXzEcC/LOSISfINfO4ZzrWRnAx9mOADcHGng40MTHmVBfZ0J9nPFxtsOg7xciIiIiIlJLZOQV8s5vUfy5+zgHTi97a3UUho0nebxnMEPaB+o7jFQrJcKlzigqLmFffCY7YzM4cCqTA/GZxGXkn3d9A+DpZIuXkx1eTrY429tgb2OFvY0VDjZWWFsZKC4xUlRipLjESGGJkez8ItLzikjPLSQjr4jUnAKKS4zEpecRl54HpFc4hqOtFaE+zrQOcKNNoCvXtLLG3mg8fXQREREREanNCopK2HMyg91xGeyPz2RffCaJWQXnXd/ayoCPsx0+zna4OtjgZGuNo60VjrbWOBX++93ktjb1yLFzIDu/iIy8IjJPf89IysqnoNhIQlYBCVkF7IrLqLB/D0db2gS40r6+O+3qu9HC3xU7G40eFxERERGRmpeYlc9j8/dwJCUHpzOWB3s7ciCzmCm/HyY6OYfR14dqwKBUGyXCxWIZjUYOJ+ew+Wgq/xxLY8eJ9NKSg//RyNORJj7ONPJ0LP3xcKSBhwMeTnbYXGFJ8+ISI4lZ+cRn5HMyszQZfiQ5h+jk0tEhuYUl7DmZyZ6TmczZDiw7iLezHW0D3ejayIPwIE8aeDjoiSgRERERkVrAaDRyOCmHv2NS2RyTyo4T6eQXlVRYx9oAId7OBHs5EezlSLCXE428HPF3tcfD0fb8N3iys8v/+dx1TcDZ+axVSoxGUnIKic/I42RGPkdTcjiclE1UYjbH03JJyy1kfXQK66NTALCzNtCuvjs9GntxdYgXQZ6O+m4hIiIiIiLVLju/iGcW7eNISg5+LnZMvTEM3i997+vhHZgTkcYHf0Tz466TeDja8mj3YJPGK5ZLiXCxKCVGI3tPZvJHZBJro5I4kZZX4X13Bxs6NfSgdYArLfxdae7vgot99f0aWFsZqOfmQD03B9rjXuG9ohIjx1NzOZiQyd64TPaezOBQYjbJ2QWsjUxibWQSAAFu9nQN8uSqYE+6BXvibKdfWxERERGRmmI0Gtkfn8lvh5L4LTLpdKWnf3k729GhvjutA1xpVa/0O4aDrXW1xGJl+HdEeeuAiu/lFRYTlZTNrtgMdsVlsCs2nZScQv45lsY/x9J4/49o6rs70LOJN33CfGkd4KqkuIjIOcTExPD666+zfft23N3dufvuu3nooYfOue7+/fsZP348hw4dIjQ0lNdee43WrVvXcMQiIiK1z4Sf9hGRkIWXky2z72xHfZt/HyA2GAwM79QAFzsb3vj1EJ//fYw2gW50D/EyYcRiqcwio1ZQUMCgQYN45ZVXCA8Pv+C6J06c4JZbbuGTTz656LpiOSITs1i27xS/HkwkKfvfUoR21gY6NfSga5AnXRp60NTPudaU2LCxMhDi7USItxM3t/DHYAAXdyf+2neSbcfT2RyTyu64DE5m5LN0TzxL98Rja22gayNPrg315pom3ng725m6GSIiIiIiFulocg4/74tn1cFETmX+W7bc3saKjg3cCQ/yJDzIkyY+TrUioexga03rADdaB7jxP0oT+DEpuWw8msLGIylsP5FObHoec7fHMnd7LIHuDvQJ86VvCz98fFxNHb6ISK1QUlLCyJEjadOmDYsXLyYmJobnnnsOf39/brnllgrr5uTkMHLkSG655Rbefvtt5syZwyOPPMLq1atxcnI6zxFEREQs34boFBZsO4EBePuWltR3d6xQAavMrW3qEZGQxfydcUxaHcm8+ztpIKBUuVr/icrPz+f5558nMjKyUutPmDCBnJycao5KaoO0nEJWHUxg2b5THEzIKl/ubGdNj8ZeXNfUh6uCvXCyq57RGNXBwdaa9g3caVffnQe7NSK3sJjtJ9LZEpPK+sPJHE/LY8ORFDYcSWHS6kja1Xejbws/rm/mi4ejranDFxERERExazkFxayJSOSnvfEV5t92si39jtG7mQ9Xh3jhWE0jvquSwWAg2NuJYG8nhndqQE5BMVtiUllzKJE/DycTl57HV1uO89WW47Rv6MHAVn7c0My32kazi4iYg6SkJFq0aMGECRNwcXEhODiYq666im3btp2VCF++fDn29vaMHj0ag8HAuHHj+PPPP1m5ciWDBg0yUQtERERMq7C4hCm/RwFwV6f6dGjgfsH1n7wmhL+OpBCXnsdnm47x9LWNayJMqUNqdSI8KiqK559/HqPRWKn1f/rpJ7LP8VSJWJaIhCzmbY9l1cEECopLPxs2VgauaeJN/1b+dAvyxM7GysRRVg1HW2u6h3jRPcSLZ65tzJGUHNZFJfNHVDL74zPZGZvBztgMpv5+mKuCPenbwo9rmnjr5pWIiIiIyCWIS89j3o5Ylu6JJ7ugGCid6/vqEC8GtK5H9xAv7M38O4aTnTW9mvrQq6kPeYXFrI9O4deDCfwVncLO42nsPJ7Ge2uj6d/Kn6HtA2no6WjqkEVEapyfnx8ffPABUFpZY/v27fzzzz+MHz/+rHV37dpFp06dyquCGAwGOnbsyM6dO5UIFxGROmvJnnhOpOXh42JfqXm/HWytebF3E55dvI8FO+MY3qk+vi721R+o1Bm1OhG+ZcsWwsPDefbZZ2nfvv0F101NTWXKlCl88cUXDBgwoGYClBpTXGJkXVQSc3fEseNEevnyMD8Xbm3tT5/mfhY/ItpgMNDY25nG3s48EN6IU5n5rI5IZOWBBCISslgfncL66BSc7azp09yX29sG0MJfJQ5FRERERM5nT1wGP2w7we+RSZScfv66kacjt7auR/+WfvhY6A0YB1trbgzz5cYwX1JyCvjtSCrfbTxKXEY+c7fHMn9HLL2b+nBv14b6TiEidVbv3r2Ji4vjuuuu46abbjrr/cTEREJDQyss8/b2vmhVy//OplH2uhbMsiGXQNfNPOm6mR9dM/OSV1jM55tiAHjq+lCc7a0pH+d6xjU0GCq+7tHYi3b13dgVm8EXfx9jzI1NayxmsXy1OhE+fPjwSq/79ttvc/vtt9O0qX5BLElhcQk/743ny83HOZaaC4C1lYHrm/owrGN92gS41or5+EzB39Weuzs34O7ODYhOzmblgQRWHUggLiOfxbvjWbw7nuZ+Ltzeth43tfDT3BoiIiIiIqftPJHOrE0xbD2WVr4sPMiDuzo14KpgT6zq0HcMb2c7HusVyh2t/Nh0JJX5O+LYcCSFNYeSWHMoiS6NPHggvCFdGnmaOlQRkRo1bdo0kpKSmDBhApMmTeLll1+u8H5ubi52dnYVltnZ2VFQUHDefXp5OWNtfe4KI97eevDIHOm6mSddN/Oja2Ye5m45RnJOIfU9HLmzS6OKlXsd//23j48rODtX2HZMv5bc9enf/LTvFGNvaYW3hT6ULDXPIjJjGzduZNu2bSxbtuyStjPHext15QmogqISlu2L55utsZw4nQB3d7BhcPsA7mgXiJ+r5f0RvJJr28THmcd7hvBYj2C2HU9nyZ6T/HYoiYMJWUxaE8UH66Lp28KPoR0CaerrUsWBn/HP/zzJdcHN6shnGepWW6FutbcutRXqXntFRMTy7IpNZ/bGGLacToDbWBno28KP/3VqQKiv84U3tnBWBgNXh3hxdYgXUYnZfPPPcX49mMA/x9L451gaXRp58FiPYFoHuJk6VBGRGtGmTRsA8vPzeeGFFxg9enSFxLe9vf1ZSe+CggIcHBzOu8+UlOxzjgj39nYlOTmTSs4OKbWArpt50nUzP7pm5sNoNDJ73WEAhrQPwM7GquJ1y87G5/Q/k5IyIbekwvahbra09Hdh/6ksPl0byUNXBdVc8JXk46MHMsyR2SfC8/LyePXVVxk/fvwFO5r/daEnMM2BpT4BVVxiZMmOWN5bfYjYtNIEuI+LHQ/3bMzd3YJwtjf7j+xFXem17evrRt+ODUnJLmDR9hP8sOUY0YnZ5aPEr27izYgeIVwX5oeVVRVksy7yJNfFWOpn+VzqUluhbrW3LrUV6l57RUTE/B1JzmHan9H8FZ0ClFaZurW1Pw+ENyLArfLfI+uKUF9nXu/XnFE9gvnunxMs3nOSf46l8cAPO+kV6s0j3YMJ9anbDw6IiGVKSkpi586d3HDDDeXLQkNDKSwsJCsrCy8vr/Ll/v7+JCUlnbW9n5/fBY9xvkSO0Xj+96T20nUzT7pu5kfXrPbbfDSN6OQcnGytua1NPeA/1+2M62c0VnxdysCwjvUZvyKChTtPcm+XhtiacQ5Pag+zzyru3r2b48eP89RTT1VY/vDDD3Pbbbfx+uuvn3O7cz2BaQ4s9Qkoo9HIxiOpfPTnEaKSsgHwdbHjsetCubGJJw421uRm5pKbaeJAq1F1XNvbWvgysLkPO06kM39HHL9HJrHxcDIbDyfTyNOROzvWZ0Arf5zsrC//IBd5kut8LPWzfC51qa1Qt9pbl9oKtau9egJTREQqIy23kE83xvDjrjiKjWBtgAGt6/FgeCMC3ZUAv5gANwdevD6Uu7s0YPbGGJbvP8UfUcn8eTiZ29sG8Gj3YDwcbU0dpohIlTlx4gRPPPEE69atw9/fH4C9e/fi5eVVIQkO0K5dOz799FOMRiMGgwGj0cj27dt59NFHTRG6iIiISS3ZEw9A/1b+uFzmgMYbw3yZ9ucRkrILWB+dQu+mPhffSOQizD4R3rZtW3799dcKy/r06cObb75J9+7dL7itqW/iXwlLegLqUEIW7/9xmK3H0wFwtbfh/q4NGdYxkAYBHiQlmT7hUpOq/toa6NDAgw4NPDiZkcf8HXEs2XOSY6m5vPNbFDP/OsrtbQMY3qk+3s52F9/dWQGf8c9zPsl1kc0t6LN8MXWprVC32luX2gp1r70iImJ+ikqMzN8Ry2ebjpGZXwTANU28efKaEIK9nEwcnfkJcHNgfN8w7u3SkE82HOX3yCR+3HWS1RGJPNo9mNvbBmBTFdWmRERMrE2bNrRq1YqXXnqJsWPHEhsby5QpU8qT24mJibi6uuLg4EDfvn159913mThxInfeeSdz584lNzeXm2++2cStEBERqVmZeUX8ebi0Ssqtrf0vez+21lb0a+HHt1tPsGL/KSXCpUqYbSL8zI5nUNDZcwX4+/vj7e1tgsiksjLzipi18SgLdsZRYgQ7awNDO9Tn/q4NcXe0NcsR+7VdgJsDT1/bmIevCmLZvnjmbo/leFoe3/xznHk7Yrm1dT3u6dJA5SFFRERExGztj8/krdWRRCRkAdDU15lnrm1M1yBPE0dm/kK8nZh8a0u2HU9j6u+HiUrK5p3foli8+yT/d30o7eq7mzpEEZErYm1tzYwZM3jjjTcYNmwYjo6O3HPPPdx7770A9OjRg0mTJjFo0CBcXFyYNWsW48ePZ/78+YSFhTF79mycnPTAlYiI1C1rDiVSUGyksbcTYX4uV7Svfq38+XbrCf6KTiEtt1AVqOSKmW0i/MyOp5iXEqORZftOMf3PI6TmFgJwQzNfnro2RAnYGuJkZ83QDvW5o30g6w8n89WW4+w9mcmCnXEs2n2Sm1v4cV+XhgR768ubiIiIiJiH7IIiPtkQw/wdsZQYSytNPXFNCANb18Nao5WrVKeGHnx7T0cW7TrJrI1HiUzM5uG5uxjaIZDHeoRc2dRLIiIm5u/vz/Tp08/5XkRERIXXbdu2ZfHixTURloiISK21fP8pAPq39MdwhSMcQ32cCfNzISIhi18PJjK0Q2BVhCh1mNkkwv/b0fzv68q+J6YVlZTNW79GsudkBgAhXk680LuJRmeYiJXBwLWhPlzTxJutx9P4cvNx/jmWxrJ9p/hl3yl6N/PhgfBGV/wUl4iIiIhIddp0NIU3Vx0iIasAgL4t/Hjm2saXN/WPVIqNlYGhHQLpE+bLh39Gs2zfKebtiGP94WReurEZ4cH6jiciIiIiYulOZeazMzYDA3BTC78q2efNLfyISMjit0NKhMuVM5tEuJi3wuISvtpynC/+PkZRiRFHWyseviqIOzvWx9baytTh1XkGg4EujTzp0siTvScz+GrzcdYdTua3Q0n8diiJ65r6MPLqIEJ9nE0dqoiIiIhIudzCYqati2bhrpMANPBwYMz1TZWErUEeTraM7xvGTc19eWt1JHEZ+Tzx4x4Gtq7Hc9c10ehwEREREREL9ufhZADaBLrh72pfJfu8rqkPH6yLZmdsOqk5BXg66QFnuXzKQEq1O3Aqk3u/28HsjTEUlRi5tok3Cx/owj1dGioJXgu1DnBj6m2tmHNfJ25q7osBWBuZxPCvt/HSsgMcTc4xdYgiIiKVVlBQwIABA9i8efN51/njjz8YOHAgHTp04JZbbuG3336rwQhF5HLticvg7m+3lyfBh3UIZM69nZQEN5FuwV7Mva8zwzoEYgCW7o3n7m+3se90NTAREREREbE866KSAOgV6l1l+wx0dyDMz4USI6w/nFJl+5W6SVlIqTb5RSVMX3+EB77fQVRSNh6Otkzs35wpA1viV0VPBkn1CfVx5s3+LZhzXyeub+aDEVgdkciwr7fy6vKDHE/NNXWIIiIiF5Sfn89zzz1HZGTkedc5ePAgTzzxBIMHD2bJkiXceeedPP300xw8eLAGIxWRS1FcYmT2xhgemruTY6m5+LnYMf2ONrzQOxQHW40+NiUnO2te6B3KJ8PaUs/VnuNpeYyYu4svNx+juMRo6vBERERERKQKZeYVsfV4OgDXhvpU6b7LEutrTyfaRS6XSqNLtTiclM0ryw8SmZgNQJ8wX17o3UQlLMxQEx9n3r6lJYcSsvh0Uwx/RCWz4kACvx5MoF9Lf0a288HX1EGKiIj8R1RUFM8//zxG44UTL8uWLaNbt27ce++9AAQFBfH777+zYsUKmjdvXhOhisglSM4u4Oklm9kQVVp+76bmvoy+PhQ3B1sTRyZn6tjAgx/u7cSkNZGsjkhkxl9H2XQ0lTf7NddD0SIiIiIiFmLjkRSKS4yEeDnRyNOxSvfdq6kPszbGsCUmldzCYhz10LNcJiXCpUoZjUbm74hj2p/RFBQb8XS05aUbm9KradU+DSQ1r5mfC1MGtuLAqUxmb4zhr+gUft53inW7j7Hb1MGJiIj8x5YtWwgPD+fZZ5+lffv2513v9ttvp7Cw8KzlmZmZ1RidiFyObcfTGPfLQZKzC3CwsWLsjU3p19Lf1GHJebg62DCxf3O6h3jxzm9R7DiRzj3fbeetAS3o1NDD1OGJiIiIiMgVWh9d+oDyNVVYFr1ME28nAt3sicvIZ/vxdLo39qryY0jdoES4VJmk7AJeXxnBpqOpAFwd4smrN4Xh7axR4Jakhb8r79/emj1xGczccJS9UfHl733zzzGGdG+mp7NERMTkhg8fXqn1mjRpUuF1ZGQkmzZt4s4777zgdgbDZYdWa5W1yRLbZio6p1WjxGjky83HmbXhKCVGaObvwlv9mxPs5WTq0KrWGZ8Tg6Hi62o9bDV+Tg0GAwNa+9Ouvhujf9pPZGI2jy/YzeM9Q7inSwMMFvjLod/7qqdzKiIiIlL7lBiNbIlJA0pzQVXNYDDQLdiLRbtP8ndMqhLhctmUCJcqseloCuOXR5CaW4i9jRVPXRPCkPaBFnljQ0q1CXRjxpC2bD3gDe+XLvts03G+P5DGw1cFcVubethYW5k2SBERkUuQkpLCk08+SceOHbn++uvPu56XlzPWFvz/OG9vV1OHYHF0Ti9fdn4RLyzYxYq9pQ9f3tGpAa8PbIWTnQV+lXX89++Kj48rODvX6OGr83Pq4+PKT096M27JHhZtj2Xan0eISM5h6pB2uFpoWXv93lc9nVMRERGR2iMyMZvU3EIcba1oE+BWLccID/YsTYQfTQGaXHR9kXOxwLsHUpOKS4x8timGz/8+hhFo6uvMG/2a08SnZm/aiOl0buRR/u9Ad3sO5xQy+bcofth2glE9Qri+mQ9WeiBCRERquaSkJB544AGMRiPTpk3Dyur8ie6UlGyLHJVmMJQmGZKTM7nI1OpSSTqnVyYuPY/nl+wjMjEbGysDY24I5fZ2ATjZ2VjmOc3OpmxCqaSkTMgtqZHD1uTndOx1jWnm5ci7aw+zat8pIuP/4v3bW1Hfo2rnEzQl/d5Xvao+pz4+SqiLiIiIXKktMaWVgTs19MC2mgYLdGnogZUBjqbkEp+RRz03h2o5jlg2JcLlsqXkFPDKLwfZciwNgEFtA3juuibY21juCCm5sO/u6ciiqEw+/zuG42l5vLTsAC38XXiiZwhdg6q+PIqIiEhVOHXqFPfeey8A33zzDV5eFy+3ZcnJDaPRsttnCjqnl27b8TTG/HyAtNxCvJxseefWlrSr715+Hi3ynJ7RHqOx4usaOXyNnFMDg9sF0tzPhRd/2k90cg73fb+TKbe2pH0D9+o+eI2yyM+oiemcioiIiNQem08nwrucMVCuqrk62NCqnht7TmawOSaVgW0Cqu1YYrmUsZTLsvNEOnd/u50tx9JwsLHi9X5hjL2xqZLgdZyNlRVDOwSyaEQXRl4VhJOtNQdOZfH4wj08+eMeopKyTR2iiIhIBTk5OTz00ENYWVnx3Xff4e/vb+qQROq8n/fG8/jCPaTlFtLcz4Wv/9eBdvUtK0la17UKcOOr4R1o7udCWm4hjy3czS/7Tpk6LBERERERqYT8ohJ2xmYAEF7NA+C6BXsAsPn0fOQil0pZS7kkRqORH7ad4NH5u0jMKiDYy5Gv7+7AzS1001j+5Wxnw8NXB7H4oS4M6xCIjZWBv4+m8r9vtvHmr4dIyi4wdYgiIlKHJSYmkpeXB8CsWbM4duwYkydPLn8vMTGRzMxMU4YoUicZjaXTLr2+6hDFJUb6hPny6Z3tVP7OQvm52jP7znZc19SHwmIjE1ZGMOOvIxg15FdEREREpFbbHZdOflEJPs52NPZ2qtZjdWroAcCOE+n6riCXRYlwqbT8ohJeWxnB+39EU2yEm5r78vX/OtLYW/OBy7l5OdnxQu9Q5t/fmeub+VBihKV74hn0+RY+2xRDTkGRqUMUEZE6qEePHixfvhyAVatWkZeXx5AhQ+jRo0f5z8SJE00cpUjdUlRi5K3VkczaGAPAfV0b8mb/5jjYWps4MqlOjrbWvH1LCx4IbwjAl5uP8/qqQxQV18z86CIiIiIicul2nigdDd6poTsGg6Faj9Wqnis2VgaSsgs4kZZXrccSy6Q5wqVSErPyGf3TfvaezMTaAE/3asKdHQKr/Y+cWIaGno68fUtLdsWm88G6aPaezOSTDTEs3hPPo1cHcXMLf6yt9FkSEZHqERERcd7XK1eurOlwROQ/cguLeWnZAf6KTsHKAC/0DmVI+0BThyU1xMpg4LEeITRwd2Ti6kMs23eKtNxCJg1ooQchRERERERqoZ2x6QA1MoWVg601req5sisugx2x6TT0dKz2Y4pl0Yhwuah98Znc9/0O9p7MxM3BhmmD23BXx/pKgssla1ffnS/uas/E/s0JdLPnVEY+r608xD3fbWdzTKqpwxMRERGRGpaeW8io+bv5KzoFexsr3rm1pZLgddStberxzq2tsLex4q/oFB5bsJu03EJThyUiIiIiImcoKjGy52TpiPD29d1q5JjtG5Qm3HeeSK+R44llUSJcLmj5/lOMnLuTxKwCQryd+Pp/Hega5GnqsMSMGQwG+jT3Y8GDXXipX3Nc7K2JTMzmiYV7eGbRXg4nZZs6RBERERGpAcnZBTw6fzf74jNxd7Bh5pC2XBvqY+qwxISuDfXm4zva4OZgw56TmTw8dycJmfmmDktERERERE6LTMwit7AEF3vrGps2t8Ppkec7YpUIl0unRLick9FoZOaGo4xfEUFBsZGejb344q72NPBQ2QmpGvY2Voy8pglLRnRlWIdArK0MbDiSwvBvtjFpdSTJ2QWmDlFEREREqkl8Rh4j5+0iKikbH2c7Zt/ZjjaBNTOaQGq3dvXdmT2sHX4udhxNyeWR+buIz9BcgCIiIiIitcGu2NLR4G0D3WpsutN29d0wACfS8kjM0oOycmmUCJezFBSVMH5FBF/8fQyA+7s2ZOptrXCx15TyUvU8nGx5oXco8+/vTK9Qb0qMsGj3SQZ9/g9f/H2MvMJiU4coIiIiIlXoRFouI+ft4lhqLgFu9nx6Z7saG0kg5qGJjzOf3dWeQHcHTqSVPjRxIi3X1GGJiIiIiNR5u06Pym5fA/ODl3Gxt6Gpb+l3xp2nE/EilWUWifCCggIGDBjA5s2bz7vOH3/8wcCBA+nQoQO33HILv/32Ww1GaDky8gp5atEeVhxIwNoAL/dpyuM9Q7DSfOBSzRp5OjJlYCtmD2tHy3qu5BQWM3PDUQZ/8Q+/7DtFidFo6hBFRERE5AodTc5h5LxdnMzIp5GnI7OHtVPVKTmnADcHZg9rRyNPR05m5PPI6YcnRERERETENIxGY3kiul0NzQ9epqyC2L6TmTV6XDF/tT4Rnp+fz3PPPUdkZOR51zl48CBPPPEEgwcPZsmSJdx55508/fTTHDx4sAYjNX+x6bmMmLOTbcfTcbaz5oNBrRnYJsDUYUkd06GBO18Ob8+b/ZoT4GZPQlYBE1ZGcO93O/jnWKqpwxMRERGRy3Q0JYdHF+wmMauAJj5OzBrWjnpuDqYOS2oxf1d7Zg1tS4i3EwlZBYyct4vo5GxThyUiIiIiUiedzMgnKbsAGysDLf1da/TYreqVHm9/vEaEy6Wp1YnwqKgohg4dyrFjxy643rJly+jWrRv33nsvQUFB/O9//yM8PJwVK1bUUKTmb9/JDB78YSdHU3Lxc7Hjszvb0y3Yy9RhSR1lZTBwUws/FjzQhSd7huBsZ01EQhaPLdjD04v2EJWkm18iIiIi5uR4ai6PLdhNcnYBTX2d+WRoO3yc7UwdlpgBHxd7PhnallAfZ5KzCxg1fzcxKTmmDktEREREpM7ZH186GruprzMOttY1euzWAaUjwg+cyqKoRNVjpfJqdSJ8y5YthIeHM2/evAuud/vtt/PCCy+ctTwzUyUSKmNDdAqPzN9NSk4hzXyd+ep/HQj11Rx9Ynr2Nlbc27Uhi0d0YWj7QKytDGw8ksr/vtnGm6sOkZCZb+oQRUREROQiYtNzGXV6JHhjbyc+vqMNHo62pg5LzIiXkx0zh7alqa8zKTmFPLZgN7HpKpMuIiIiIlKTDpwqzbm1qOHR4ABBXo4421mTV1RCtAbKySWo1Ynw4cOH89JLL+HoeOE545o0aULz5s3LX0dGRrJp0yauuuqq6g7R7K04cIrnl+4jv6iEq4I9mX1nO3xd7E0dlkgFnk52vHh9KPPv70zvpj6UGGHp3ngGffEPMzccJbugyNQhioiIiMg5xGfk8dj83ZzKzCfYy5EZQ9ri6aSR4HLpPBxt+fiONoR4lZZJf2zBHk7pwVgRERERkRpTNiK8ZT2XGj+2lcFAi9Pl0ffFaxCsVJ6NqQOoaikpKTz55JN07NiR66+//oLrGgw1FFQVKou5KmKfuz2Wqb8fBuDmln6Mv6kZNta159mIqmyrOTDb9p4Rr8FQ8fUFN7uM9gZ5OfLOwJbsjsvggz+i2R2XwRd/H2PJ7pOMvDqI29rUq1Wf4TJme20vU11qb11qK9S99oqIyJVJyspn1ILdxGXk08jTkZlD2uKtcuhyBTyd7JgxpA0j5+3ieFoejy3Yzexh7fS5EhERERGpZiVGIwdOZQGmGREOpfOEbz2Wxr74TG5vG2CSGMT8WFQiPCkpiQceeACj0ci0adOwsjp/QszLyxnrWpgwqyxv78v/Q2M0Gnlv9SE+Op0Ef6B7MK/0b4mVVe3MbFxJW82R2bXX8d/fIx8fV3C+tLL6l9Pe3j6uXNcmkFX74pm8MoIjSdm8vSaK+btO8n99m9OnpT+GWpipM7tre4XqUnvrUluh7rVXREQuXWZeEU8t2suJtDzquzswY0hbfFR5SqqAj4s9M4a05eG5uziWmsvjC3fzydB2KrcvIiIiIlKNjqXmkl1QjL2NFY19TDO1buvTI8L3a0S4XAKLSYSfOnWKe++9F4BvvvkGLy+vC66fkpJtliPaDIbSBERyciZG46VvX1xiZPJvUSzadRKAUT2CeTC8ISkpWVUc6ZW70raaG7Ntb3Y2Pqf/mZSUCbklldqsKtrbuZ4Lc+7pwKLd8Xy6MYboxGwe+XYb7eu78fS1jWkT6HZ5O65iZnttL1Ndam9daivUrvb6+CgZLyJSW+UVFvPckr1EJmbj7WzH9Dva4O+qJLhUnXpuDswc2paR83ZxOCmHZxfvZcaQtjjaWps6NBERERERi1Q2P3iYnws2JhpU2Sqg9H7g4aRscgqKcbJT/18uziIS4Tk5OTz00ENYWVnxzTff4OvrW6ntTH0T/0oYjZcef0FRCeNXHGTNoSQMwP/dEMrgdoHl+6utLqet5szs2ntGrEZjxdeV2vwK22ttZcWQ9oHc3MKPb/45zg/bYtkZm8EDP+zkhmY+PN4zhAYejpd/gCpkdtf2CtWl9taltkLda6+IiFReUYmRl5YdYGdsBi721nw0uHWt6YuJZWng4cjHd7Tl4bk72Xsyk7E/H2DqwJa1cqokERERERFztz++rCx6zc8PXsbXxR5fFzsSswqITMyiXX13k8Ui5sNsvyEmJiaSl5cHwKxZszh27BiTJ08ufy8xMZHMTJVHKJNXWMzzS/ex5lASNlYG3hrQojwJLmIJXOxteKxHCD8+2IVbWvljANYcSmLIl1uZ+nsUaTmFpg5RRERExKKVGI28+esh1kenYG9jxXu3taapr+lukojlC/F24r3bW2NvY8WGIym8uToSo57WExERERGpcgdOlyNvWc+0VRrD/Eq/Y0YkZJs0DjEfZpsI79GjB8uXLwdg1apV5OXlMWTIEHr06FH+M3HiRBNHWTvkFBTzzOK9/H00FQcbKz64vTU3hFVu1LyIufF3tefVvmF8f29Hrgr2pKjEyLwdcdz2+RY+3RRDdkGRqUMUERERsUgf/XmEX/adwtoAbw1oQYcGejpfql/bQDcmDWiBtQF+2XeKj/86auqQREREREQsSlGJkYiE0hHhLf1Nmwhv5ls6P/mhxNo33a/UTmZTGj0iIuK8r1euXFnT4ZiNrPwinl60l91xGTjbWfPhoNYqFyF1QlNfF6YNbsPmmFSmrYvmUGI2szfGMH9HHA+EN2Rwu0Dsbcz2WSARERGRWmXe9li+23oCgJdvasY1TbxNHJHUJT2bePNSn2a8seoQX285jpeTLcM7NTB1WCIiIiIiFuF4ai55RSU42lrRyMu0U181Oz0i/FCCEuFSOcoCWbD03EIeW7Cb3XEZuNrb8PEdbZQElzonPMiTb+/pyMT+zWnk6UhabiHv/xHNoM+3sGT3SYpKVDpRRERE5EqsP5zMe38cBuDxHsEMaFXPxBFJXXRr63o81iMYgA/+iGZtZJJpAxIRERERsRCRp0dfh/o4Y2UwmDSWZqen3zqclK17+1IpSoRbqNScAkYt2M2BU1m4O9gwc0hbWgW4mTosEZOwMhjo09yPefd1YtyNTfFzsSMhq4CJqyMZ9tVWVkckUqK5BEVEREQuWcSpLMb9coASIwxsU4/7ujY0dUhSh93ftSGD2wVgBF5ZfpADpzJNHZKIiIiIiNmLTCydj7vp6SS0KdX3cMDZzpqCYiNHU3JMHY6YASXCLVBSVj6PzNtNZGI2Xk62zBrWjjB/0/+BEjE1G2srbmsbwKIRXXm2V2M8HG05lprLS8sOcO93O9hwJAWjEuIiIiIilXIqM59nl+wlt7CEro08GHN9KAYTjw6Qus1gMPBC71C6BXmSX1TCc4v3cSoz39RhiYiIiIiYtbJEeOjp+blNycpgoGnZPOEqjy6VoES4hYnPyGPkvF0cScnBz8WO2cPa0cTH9H+cRGoTexsrhndqwJKHujDy6iCc7ayJSMjimUV7GTlvF9uOp5k6RBEREZFaLbugiGcX7yUxq4AQbycm39oSG2t9vRTTs7EyMOmWFoR4O5GUXcBzi/eSU1Bs6rBERERERMxWWWn0ZrUgEQ7/lkc/lJBt4kjEHOhOhQU5lZnPo/N3czwtj0A3e2YNa0eQl5OpwxKptZztbHj4qiCWjOjK3Z0bYG9jxc7YDB6dv5uR83ax9ViaRoiLiIiI/EdxiZFxyw6WV6D64PbWuNjbmDoskXIu9jZ8cHtrvJxsOZSYzcu/HKBY8weKiIiIiFyytNxCErIKAGrNoMtmfqdHhCdqRLhcnBLhFiIhM59R83cRm55HoLsDs4a1o4GHo6nDEjELHk62PH1tYxY92IUh7QOxtTaw40Q6oxbs5pH5u5UQFxERETnDx+uPsOFICvY2Vrx3WysC3R1MHZLIWQLdHZg6sBV21gbWR6cw7c9oU4ckIiIiImJ2ok6XRQ90d6g1D0CH+ZWNCM/SfXu5KCXCLUBSVj6jFpwxEnxoW+q56WaUyKXyc7Vn9PWhLB7RVQlxERERkXNYeSCBb7eeAODVm5rRKsDNxBGJnF+bQDfG9w0D4Idtsfyy75SJIxIRERERMS+HallZdIDG3s5YGyA9r6h8tLrI+SgRbuaSsgt4dP5ujqXmUs/VnplD2ykJLnKF/JUQFxERETnLgVOZvPnrIQDu69qQPs39TByRyMX1ae7HQ90aAfDW6kPsj880cUQiIiIiIuajbER4aC0piw5gZ2NFQ8/SisjRyZonXC5MiXAzlpxdwKj5u4hJzcXf1Z5PhrVVWUKRKnRmQnzofxLiD8/dxV/RyUqIi4iISJ2QnF3AC0v2kV9UQvcQL0Z1DzZ1SCKV9vDVQfRs7EVBsZEXl+4jOVujRkREREREKiPydCK86ely5LVF2Xzl0Uk5Jo5Eajslws1USnYBoxbs5mhKLn4udnwytC313TUnuEh18He158X/JMR3xWXw7OJ9DP9mOysPJFBUooS4iIiIWKbC4hLG/LyfhKwCgjwdebN/c6ytDKYOS6TSrAwGXu/XnCBPRxKyChj7836KiktMHZaIiIiISK1WVGIsH3Fdm0qjAzT2dgLgcJJGhMuFKRFuhpJPzwl+JDkHXxc7PhnajgYeSoKLVLeyhPjSh7pyT+cGONlaE5WUzSvLDzL4i39YuDOO/CLdUBMRERHL8u7aw+yMzcDZzpqpt7XCxd7G1CGJXDIXexumDmyFs501O2IzeO+PaFOHJCIiIiJSq51IzaWg2IiDjVWtq0ZcPiI8WSPC5cKUCDczabmF/O+zzRxOysHH2Y6ZQ9qWz4UgIjXD18Wep65tzM8ju/Jo9yA8HG2JS89j8m9R3PrpZr7afIys/CJThykiIiJyxZbti+fHXScxAG/2b06wl5OpQxK5bMHeTrx2c3MAFuyM46c98SaOSERERESk9opOKU0yh3g7YWWoXVXBGnuXJcKzKdH0pXIBSoSbkaz8Ip5YuIeD8Zl4O9kyc0hbgnQjSsRk3BxsGdEtiJ8f7soL1zWhnqs9KTmFfPzXUQbM3sxHf0ZzKjPf1GGKiIiIXJbIxCzeXhMFlM6x3KOxt4kjErly14Z6M/LqIAAm/xbJwVOZJo5IRERERKR2OnK6LHpZGfLapKGHAzZWBnILS4jP0D14Ob9qSYQfP368OnZbp+UWFvPMor0cPJWFl7MdM4e2JbgW/vERqYscbK0Z1rE+i0d0YULfMEK8nMguKOabf04w8LMtjFt2gN0n0kwdpoiIWVA/UqR2yMovYszPB8gvKqFbsCcjujUydUgiVWZEt0b0aOxFQbGRMT8fUDUnEQtRVf3IU6dO8dRTT9G1a1d69uzJpEmTyM8/9w32UaNGERYWVuFn7dq1VRKHiIiIqR05XXa8NlYGs7G2Ko9L84TLhVTL5G59+/alZcuW9O/fn5tvvhl/f//qOEydkV9UwgtL9rErLgNXexu+HdEVfzsrVO1BpHaxsbaifyt/bm7px/rDKczZfoJtx9NZdTCRVQcTaV/fjeGdGnBNE2+srWpXKRkRkdpC/UgR0zMajbyx6hDHUnPxd7XnjZub17oyeCJXwspgYELfMO75bjux6Xm8tjKCd25tiUGfcxGzVhX9SKPRyFNPPYWbmxvff/896enpvPTSS1hZWfF///d/Z61/+PBhpkyZwlVXXVW+zN3d/YraISIiUluUJcJDTpchr20aezsRlZRNdHIOPZuogpmcW7WMCF+/fj2DBg3i999/5/rrr+fuu+/mhx9+ICUlpToOZ9GKiksY+/N+thxLw9HWimmDW9MqUB1qkdrMymDg2lBvPhnaju/u7ki/ln7YWBnYGZvB6J/2M/iLf5i7PZbsAo08ERH5L/UjRUxvzvZYfo9MwsbKwNu3tMDDydbUIYlUOXdHWyYNaIGNlYE/opKZsz3W1CGJyBWqin5kdHQ0O3fuZNKkSTRt2pTOnTvz1FNPsWzZsrPWLSgo4MSJE7Rp0wZfX9/yHzs7u6psloiIiEkUlxiJSc0FamdpdIAmPv/OEy5yPtWSCPfy8uKuu+7im2++Yd26dfTv358///yTG264gREjRrB48WJyc3Or49AWpbjEyPgVEayPTsHexor3bmtNm0A3U4clIpcgzN+F1/s1Z8OY3jwQ3hB3Bxti0/N4d+1hBszezHtrDxOTkmPqMEVEag31I0VMa1dsOtP+PALAs70a0zpA3z/EcrUKcOPZXo0BmPbnEXbHZZg4IhG5ElXRj/T19eWzzz7Dx8enwvKsrKyz1o2OjsZgMNCwYcMqbYeIiEhtcDIjj/yiEuysDQS6O5g6nHMqS9AfTtL9dTm/akmEnykxMZHExETi4+MpKSnB2dmZ+fPn06tXL3799dfqPrzZKjEambQ6kl8jErGxMjD5lpZ0buRh6rBE5DL5uznweM8Qlo0MZ8wNoQR5OpKVX8yc7bHc8eVWnli4m3VRSRSVaM4DEZEy6keK1KzUnAJeWnaA4hIjfcJ8GdI+0NQhiVS7Ie0DuaGZL8UlRsb+vJ+0nEJThyQiVeBy+5Fubm707Nmz/HVJSQnfffcd3bp1O2vd6OhoXFxcGD16ND169OCOO+5g3bp1F43NYDj753zL9VO7f3TdzPNH1838fnTNTPNzNOXf+cFtrA1Vct0u9P/Cy/lp4ls6IvxoSg4lRmO1nxMxT9UyR/iBAwdYuXIlK1euJDY2lquvvpoHHniAG264AWfn0g/mjBkzeOWVV+jTp89F91dQUMCgQYN45ZVXCA8PP+c6+/fvZ/z48Rw6dIjQ0FBee+01WrduXaXtqilGo5H31h5m6d54rAzwZv/mdG/sZeqwRKQKONhaM7hdILe3DWDT0VQW7oxjQ3QKm2PS2ByThr+rPYPaBjCwTT28nVVOTUTqnqruR4pI5RiNRl5fdYiErAKCvRwZ16cZmi9Z6gKDwcC4Pk05lJjFsdRcXl1xkA8GtcZKn38Rs1Md/cgpU6awf/9+Fi5ceNZ70dHR5OXl0aNHD0aOHMnq1asZNWoU8+bNo02bNufcn5eXM9bW5x6X5O3tWsmWSm2i62aedN3Mj65ZzTu1LwGAsEB3fHwu7/xXuG6O//7/z8fHFZyvfN5xTy8X7G2syC8qIcfKmhCf2jmXuZhWtSTCBw0aROfOnbn//vvp27cvnp6eZ63TqVMnjh8/ftF95efn8/zzzxMZGXnedXJychg5ciS33HILb7/9NnPmzOGRRx5h9erVODnVzrkLLuSTDUeZtyMOgFduasb1zXxNHJGIVDUrg4HuIV50D/EiNj2XRbvi+WlvPKcy85m54Sifboqhd1MfhrQPpF19N92IFpE6oyr7kSJSeXN3xPFXdAp21gYmDWiJk521qUMSqTEu9ja8fUsLHvhhJ5uOpvL91hPc00WljkXMTVX3I6dMmcLXX3/N+++/T7Nmzc56/7HHHuOee+7B3d0dgObNm7Nv3z7mz59/3kR4Skr2WSPKDIbSREFyciZGFYkzG7pu5knXzfzompnO3mOpANR3sSUpKfOStj3ndcvOpmzikaSkTMgtqZI4G3k6EpmYzc7DibhSNfs8n8t9IEBMq1oS4W+//Tb9+vXD1ta2wvKCgoLyuXnCw8PPO7q7TFRUFM8//zzGi/yFW758Ofb29owePbr0ae5x4/jzzz9ZuXIlgwYNuuL21KSvNh/ji82lHfLR14cyoFU9E0ckItWtvrsjT14Twsirg/jtUCILd8ax52Qmv0Yk8mtEIiHeTgxsXY9+Lf3wdNIocRGxbFXVjxSRyos4lcVHf0YD8EyvJoT66il6qXua+rrw3HVNmLQ6ko//Okqnhh60rKcbXSLmpCr7kW+88QZz5sxhypQp3HTTTedcx8rKqjwJXqZx48ZERUVdcN/nu81pNJ7/Pam9dN3Mk66b+dE1q3nRyaWl0UO8nC773Fe4bsaKy6mi6xnk6URkYjZHU3Lp0bhq9imWpVrmCB8zZgyZmWc/IRIZGclzzz1X6f1s2bKF8PBw5s2bd8H1du3aRadOncpHTBoMBjp27MjOnTsvKW5Tm78jlo//OgrAkz1DNCefSB1jb2NFv5b+fDG8A9/e3YGBbephb2PFkeQcPlgXTb9Zmxn7837+PppCiXp+ImKhqqofKSKVk1NQzEu/HKCw2EivUG/uaBdg6pBETOb2NvW4rqkPxSVGXv7lANkFRaYOSUQuQVX1I6dPn87cuXN577336N+//wWPN3bs2ArLDh48SOPGugsvIiLmzWg0crQsEe5dux+UDvJyBP6d01zkv6psRPgPP/zA66+/jsFgwGg00r1793Oud/XVV1d6n8OHD6/UeomJiYSGhlZY5u3tfcFy6lC7Jrdfsf8UU34/DMBD3RpxX/i5y7CVxVybYq8udamtYMbtPSNeg6Hi6wtuZq7tvQyX09YW9Vx5pZ4rz/ZqzKqDCSzdHc/+U1msOZTEmkNJ1HO159Y29bi1tT/13ByqJ/DLpGtruepae6XmVEc/UkQqZ+rvURxLzcXPxY6XNS+41HEGg4FxNzZl38kMjqflMfX3w4zvG2bqsETkAqq6H3n48GFmzJjByJEj6dSpE4mJieXv+fr6kpiYiKurKw4ODvTu3ZvnnnuO8PBwOnTowM8//8y2bdt4/fXXq6RtIiIipnIqM5+cwmKsrQw09Khd957/qywRfkyJcDmPKkuEDx8+nKZNm1JSUsJ9993HtGnTKpQHMhgMODo6nnNOnSuVm5uLnV3FcsF2dnYUFBScdxsvL2esratlQPwl+/3gKV5beQiA+68OZtwtLS96A8rbu+6UaKtLbQUzbK/jv79HPj6u4HxpT4iZXXuvwOW01Qd4pL4nj1wfxr64dOb/c5zFO2KJz8xn9sYYPt0UQ8+mvgzr3JDrW/jhYFt75vPUtbVcda29Uv1M2Y8UqctWHUjg532nsDLA6/2a4+5oe/GNRCycu6Mtb/Rvzqj5u1m27xRXBXvSp7mfqcMSkfOo6n7kb7/9RnFxMTNnzmTmzJkV3ouIiKBHjx5MmjSJQYMG0adPH8aPH8/MmTOJi4ujadOmfPbZZzRo0KBK2ygiIlLTjpxOKjfycMSmluTRzifYywmAmNRcE0citVWVzhHepUsXoLTTGBgYWGOjCezt7c9KehcUFODgcP4nVVJSsmvFiLadJ9J5fOEeikqM3NzCj8euakhyctZ51zcYShMQycmZFj8nRl1qK5hxe7Oz8Tn9z6SkTMgtqdRmZtvey1BVbfW3s+LJ7kE83LUBf0Qls2T3SbYeT+fPQ4n8eSgRF3trbgzzpX9Lf9rVdzPZiC5dW8tVm9rr46NkvKWprn5kQUEBgwYN4pVXXjnvfJD79+9n/PjxHDp0iNDQUF577TVat25dJccXqa1OpOUyaU1pBa0HwxvRqaGHaQMSqUU6NvDggfBGfP73Md5aHUmrAFfquzuaOiwROY+q7EeOHDmSkSNHnvf9iIiICq+HDBnCkCFDLvt4IiIitdHRlNKkctlo69qskWdpjCk5hWTkFeLmoAe8paIqS4SPHTuWcePG4eLiwvTp0y+47qRJk6rqsAD4+/uTlJRUYVlSUhJ+fhd+atvUN/EjE7N4ZvFe8otK6NHYi1dvaoYBQ6XiMhpNH39NqUttBTNs7xmxGo0VX1dqc3Nr7xWoqrba21hzU3M/bmrux4m0XH7aG8/y/Qmcysxn8e54Fu+Op767Aze38KNfS38aepqmw6Jra7nqWnul+lVXPzI/P5/nn3/+gtPl5OTkMHLkSG655Rbefvtt5syZwyOPPMLq1atxcnKq9LFEzElRiZFXlh8ku6CY9vXdGHFVkKlDEql1HroqiH+OpbE7LoNXfolg9p3tsLGqBU/Ti0gFprwfKSIiYqnKyowHedX++yLOdjb4utiRmFVATEoubQKVCJeKandNg0pq164dO3bswHj6rrzRaGT79u20a9fOxJGd34m0XJ78cS9Z+cW0C3Rj0oAWtb7EhIjUPg08HHmsRwg/PdyVmUPaMqCVP0621sSm5/HZ38cY9MU/PPjDTn7cFUd6bqGpwxURqTFRUVEMHTqUY8eOXXC95cuXY29vz+jRo2nSpAnjxo3D2dmZlStX1lCkIjXvq83H2HsyExd7a97o11zJPZFzsLEy8Ea/5rjYW7PnZAafbYoxdUgiIiIiIjXieFrpiPBGJhpgdamCysuja55wOVuVjQg/86nKmnjCMjExEVdXVxwcHOjbty/vvvsuEydO5M4772Tu3Lnk5uZy8803V3sclyMpu4AnFu4hObuApr7OvH9761o1r6+ImB8rg4HOjTzo3MiD/7s+lD+iklm+/xSbY1LZczKDPSczeHftYbqHeNG3hR/dQ7z0d0dEao3q6Edu2bKF8PBwnn32Wdq3b3/e9Xbt2kWnTp3KS2gaDAY6duzIzp07GTRoUJXEIlKb7I/P5LO/Sx8QGX19KPXczj+dlEhdF+juwNgbmjLul4N8ufkY3UO8aBPoZuqwROQMNX0/UkREpC44dnq+7SBzSYR7OrL1WFp5SXeRM1XLEOTs7GymTp1KdHQ0JSUljB49mvbt2zN8+HBiY2Or5Bg9evRg+fLlALi4uDBr1iy2bdvGoEGD2LVrF7Nnz66V5Swz84p46sc9xKbnUd/dgWmDWuPqUKVTtYtIHedga03fFn5MG9yGX0aG8/S1jWnq60xhsZE/opIZ8/MB+n7yN+NXHGRDdApFxZWb111EpCZUVT9y+PDhvPTSSzg6XvhLW2Ji4lnT6Xh7exMfH39Z8YvUZnmFxYxfcZDiEiM3NPOhb/MLTyUlItCnuR83NfelxAgTVkaQV1hs6pBE5Dxq4n6kiIiIpcsrLCY+Ix8wwxHhKRoRLmerlgzshAkTOHjwIIMHD+bnn3/m119/5a233mLlypW89tprzJ49+5L3GRERccHXbdu2ZfHixVcUd3XLKyzmuSV7iUzMxsvJlul3tMHHxd7UYYmIBfNxsefuzg24u3MDIhOzWLE/gdURicRn5rN8fwLL9yfg7mBD72Y+9Anzo0MDd6xVHlVETKg6+pEXkpubi52dXYVldnZ2FBQUXHA7gwX+qSxrkyW2zVRq2zn9+K8jHE3JxcfZjjE3NsXKDP+fX9vOaZU6o00GQ8XX1XpYSz6nVeT/bghl+4l0jqXm8tH6I4y+PvS86+p8Vj2dU6msmu5HioiIWKIT6XkYAVd7GzwczWO+7WCv0oR9TKpGhMvZqiURvm7dOr755htCQkKYMmUK1113Hf369aNly5bcfvvt1XHIWq+ouISxyw6wMzYDF3trPhrchgYe5vE0jYhYhqa+LjS91oUnrglhT1wGvx5MZM2hRFJyClm8O57Fu+PxcbbjhjBfbmruS6t6ruWlgkVEakpN9yPt7e3PSnoXFBTg4HD+ctFeXs5YW1dLYaVawdvb1dQhWJzacE7/ikxi7vY4AKYObUdoQy8TR3RlasM5rXKO//5d8fFxBWfnGj28RZ7TKuIDvDu0Pfd+sYX5O+K4pWMDejb1veA2Op9VT+dULkb3I0VERK5cWVn0Rp6OZnNvOMizdET48dRcikqM2JjhQ99SfaolEW40GrG1tSUvL49NmzYxfvx4ANLT02tlufLqVmI08vqqQ/wVnYK9jRXv39aaZn4upg5LROooK4OBdvXdaVffnWeva8L242n8ejCR3yOTSMouYO72WOZujyXQ3YE+Yb70ae5LqI+z2XR8RMS81XQ/0t/fn6SkpArLkpKSziqXfqaUlGyLHJVmMJQmGZKTMzEaTR2NZagt5zQjr5Dn5u0A4I52AbT2diQpKdN0AV2B2nJOq0V2Nj6n/5mUlAm5NTN9jUWf0yrU0suBIe0DWLDzJM/P28nc+zvh5nD2CBmdz6pX1efUx0cJdUul+5EiIiJX7tjp8uINzaQsOkA9N3vsbazILyrhZHqeWcUu1a9aEuHdunXjlVdewcnJCSsrK2644QY2bdrEG2+8Qe/evavjkLWW0WjkvbWHWXEgAWsDvH1LC9o3cDd1WCIiANhYGega5EnXIE/+74ZQ/j6ayqqDCfx5OJm49Dy+2nKcr7YcJ9jLkRvDfLkxzI8Qb91AEJHqU9P9yHbt2vHpp59iNBoxGAwYjUa2b9/Oo48+esHtLDm5YTRadvtMwdTndPKaKBKyCmjk6chT1za2iOtr6nNaLc5oj9FY8XWNHN4Sz2kVe/Kaxvx9NJXjaXlM+e0wr/drft51dT6rns6pXIzuR4qIiFy5M0eEmwsrg4FGno5EJmYTk5qjRLhUUC01Hd966y1atmyJnZ0dH3/8MS4uLkRERHDttdcybty46jhkrfXF5mPM21FagvDVvmH0aOxt4ohEpLqcPBnHn3/+YeowLputtRU9m3jzZv8W/DrqKt4a0IJeod7YWRs4mpLLp5uOMfSrrdz19Ta+3HyME2mac0VEql5N9CMTExPJy8sDoG/fvmRkZDBx4kSioqKYOHEiubm53HzzzVVyLBFT+/VgAqsOJmJtgNduDsPR1trUIYmYLUdbaybc3BwrA6w4kMBvhxJNHZKInEH3I0VERK7c8dP3fIPMLJlcFm9Miu5ZS0XVMiLc1dWVl19+ucKy+++/vzoOVav9uCuOTzbEAPD8dU3o19LfxBGJSHXIz89j4cJ5rF+/jpMnY9my5W+GDr2LRo2CTB3aZXOwtT49AtyXrPwi/jyczOqIRP4+mkpUUjZRf2Uz46+jtPB34cYwX24I8yXA7fzz6YqIVFZN9CN79OjBpEmTGDRoEC4uLsyaNYvx48czf/58wsLCmD17tspnikVIzi7gnd+iALg/vBGtA9xMHJGI+Wsb6MZ9XRvy5ebjTFodSbv67vg425k6LBFB9yNFRESqgjmOCId/S7kf1+At+Y9qSYQXFhayZMkS9uzZQ1FREcb/1K6aNGlSdRy2VlkdkcjkNaU3nUZ0a8SdHeubOCIRqQ5FRUU8+eSjHDkSTefOXcnJyWbbti2sWbOS2bO/rnQy/KOP3ici4gDTp88uX/b557P48stPL7DNLDp06ERJSQlz537P0qU/kpiYQEBAIIMGDWHw4GEV1o+IOMinn87g4MH9lJQYCQtrzqOPPklY2L8lHY1GI3PmfMdPPy0iIeEU/v71uOOOOxk8eCj9WvqTkVfImv3xzJn7HXG713M4N40oR3c+btiRFtfcxo0tA7gxzPe88+7Nnz+HH3+cR2JiIsHBwTz88CiuuqpHpc6RiNQN1dGPjIiIuODrtm3bsnjx4ksPVqSWm/J7FOl5RTT1dWZEt0amDkfEYjx8VRB/RacQmZjNpNWRTB3YEoPBYOqwROo83Y8UERG5Mpl5RaTkFALmNUc4QAOP0nhVxVT+q1oS4ePGjePXX3+lZ8+euLi4VMcharW/j6bw6vKDGIHB7QJ45GrzHRUqIhe2YcOf7N+/lylTPsDe3oEVK5bx5JPPMnTobfzwwzeMGfPKRfcxZ853zJv3Pe3bd6yw/JZbbiM8/OoKy4qKChk/fize3j60bNkKgOnT32f+/DncdttgrrnmOmJjT/DZZzOJi4vjySefBeDEieM88cRIwsKan47JwNy53/HYYyP48svvadQoGIAZM6axYMEcRox4lJYtW7Fp0wbef/8dbGxsGDhwEG4Othz+7VtSty/nvuH3k+Ncn/XbdhK/+ScO5qSyN+FOPvgjmi4hXlzX2IvezXzwciodITN37nfMnPkRDzzwMGFhLfjll6WMGfM806bNol279ld2IUTEYtT1fqRIVVkTkchvh5KwtjIw/qYwbK2rZVYskTrJ1tqK124O497vdpRXTurT3M/UYYnUeepHioiIXJljp5PIPs52ONtVS/qw2jT0KBsRnmfiSKS2qZZP8urVq/n444/p3r17dey+VtsTl8GLS/dTVGLkxjBfXuwdqifDRSzYsWOl0x907NiZffv2AuDm5s748W/g6nrh8qNxcbFMn/4BGzb8ec4v6X5+/vj5VZxS4aOP3iMnJ5dPPpmCvb0DaWlp/PjjfG655TZeeGFshW3Hjn2eW2+9naCgYBYunIuDgwNTpnyIo2Npp6BTpy4MGXILCxfO47nn/o+TJ+OYN+97nn12NLfffkf5OgkJp9iyZRMDBw4iPT2Nn35azKhRTzJ8+L0APDPsZmZ/4cc3X8wk7Pq72JdqZMuRFLYcSWHK71F0auhBrxA3vvzqc4YN+x/33/8QAN26Xc2jjz7Il1/O5oMPZlzO6RcRC1SX+5EiVSU159+S6Pd1bUiYv5IBIlWtqa8LD4Y3YvamGKb8fpgujTzwdFKJdBFTUj9SRETkyhxLzQHMryw6QEOP0mk74zPyKCwu0cPgUq7a5gj3969782EfTsrm2cV7ySsqoVuQJ6/dHIa1lZLgUrfcccct9Ot3C1lZmaxatZyCgkJ69LiGF198iUWL5vPjj/PJycmmc+euTJ48iTP/DP388xLmzfuB2NjjeHp60b//rdx//0NYW1tXWGfJkh+JiTlCSYmRRo2CuPfeB+nd+wYAli//mcmT32TGjM+ZNu1dIiMj8PT0YvDgYQwffs95437iiZHs3Ln9vO8vWPATAQGBZy339S0d+bF7906srf9tS2XKfX/00XvExp7gww9n8tlnn1x0/cOHo1i4cB6PPPJEeSzHj8dQXFxM9+49K6zbsWNnSkpK2Lx5I0FBwQQFhXDXXXeXJ8EBHB0d8fX1IzY2FoA//1yLnZ0d/fvfWmFfr7/+b/m47OxsBg4cTI8e11RYp0XTJgC8GO6JT6NQ/o7NZNG2E+yPz+SfY2ls3bYVu6xMtpU0Ytm+eHqF+uBib8O1117HrFkfk5+fh7295hgXkbrbjxSpSlN/P0xqbiGNvZ0YEa6S6CLV5f7whqyNSiIyMZspvx/mrQEtTB2SSJ2mfqSIiMiVOZZSOiLc3MqiA3g72+FgY0VeUQlx6XkEeTmZOiSpJaolET5q1CgmTpzIyy+/TFBQEDY25lVC4XKczMjjqR/3kJ5XROsAVybf2lJPnEidNXfu93Tp0pUJE97i4MEDzJo1nYiIA/j4+DJ69DhOnozjww+nMm3aNB5//DkAvv32S2bPnsHgwcN46qnniIyM4PPPZ5OQcIqxY18F4Mcf5/Phh1N58MGRPP7402RmZvDdd1/z2mvjaN26Tfno6ZKSEl59dQzDhv2PkSMfY9mypcyY8SFNmoQSHn7VOWN+/vkxZGdnn7dN3t4+51x+zTXX0aDBZ4wb93907RpOcXEJhYWF2NraXvQ8PfzwKEJCmlS6asTHH39IQEAgQ4feVb7M3d0DgPj4kxXWjY09AZSOOgfKR3if6cSJ40RHH6ZTp64AREYeokGDRuzatZ2ZMz/i8OEofH39uOeeBxg4cBAAgYH1eeGFMWfta/36ddjY2NCwYSPc3Rx4qLEvt7Xw5XhqLmsiElm0eCspwO5Me3avPMRb1pFcFexFQ6MbxcXFxMaeoHHj0EqdBxGxbHWxHylSlf6ITOLXiESsDTC+bxh2NvpOIlJdbK2teOWmZjzw/Q5WRyRyY5gvvZud+3uDiFQ/9SNFRESuzPHTpdGDzDARbjAYaOjpSGRiNifSlAiXf1VLj/DTTz8lISGBAQMGnPP9AwcOVMdhTSY1p4AnFu4hIauAEC8n3r+9NU521hffUMRCOTs789prk7CxsaFLl3BWrlxGYmIis2d/XV4CfPPmjWzfXjoCOysri6+++oyBAwfxzDMvANC1azfc3d15++03GTbsfzRu3IS4uFjuuuue8tLaAPXqBTJixN3s3r2TG264CQCj0cgDDzzEgAG3AdCmTTvWrVvLxo3rz5sIDwlpfFltdXJyYubML/j881msWbOSrKwsBgy4gYEDB/Pww6MumBC/lMRvVFQkW7Zs4v/+7+UKX+YbNQqibdv2fP75bHx9/enUqQtxcSd45523sLOzIzc395z7y8/PY+LE8djZ2XPHHcMASEtLJSkpgddee4UHHxxJUFAwa9b8ypQpbwGUJ8P/a926taxYsYzBg4fi5laxHHwDD0fuD2+E9SEvZv0FD/UM47eoFI4k5/Dn4WQMCUnYAVNX7WPw9e50D/HCwVZ/P0XqsrrWjxSpSum5hUxaEwnA3V0a0rKeq4kjErF8LfxduadLQ77acpy310TSqaE7SoWLmIb6kSIiIlfmWGrpvWRzLI0OpfeiIxOzyxP6IlBNifC33367OnZbK2UXFPH0or0cS82lnqs9H93RBg/Hi48EFbFkLVq0qpCs9fT0wtHRqcI82G5u7hw9Gg3A3r27yc/Pp3v3aygqKipfp3v30vLbW7dupnHjJjz55LMAZGZmEhNzlNjY42zfvhWAwsLCCjG0atW2/N92dnZ4eHicNykMUFxcjNFoPO/7F3qS3NPTkxdeGEPv3jfw1Vef4e9fjx9++IaSkhKeeOKZ8253KX78cT6enl707dv/rPfefHMyU6a8xbhxLwLg4uLKY489xRdfzMbB4exy4zk52Ywd+wL79+/jzTcnU69eAACFhUWkpaUxceI7XHttb6B0jvBTp+L58stPz5kIX7fud1577WXatm3PqFFPnTd+o7EEgBHdGvFIj8ZEJWWzOiKRX34/Shqw9UQ6//x8AEdbK65p4s2NYb5cFeylUWwidVBd6keKVLV31x4mJaeQEC8nHr4qyNThiNQZD10VxLqoZI6k5PDe2sN8fK+XqUMSqZPUjxQREbl8RqOxPBFujqXR4d95wk8oES5nqJZEeNeupWV2s7KyOHbsGKGhoRQUFFRIglmCgqISXly6nwOnsvBwtOWjO9rg72pv6rBETM7Z2fmsZedKyJbJyEgH4MUXnz7n+0lJiUBpue933nmLbdu2YGtrS6NGwYSGNgU4K4n93+NZWVldMNH99NOjLmuO8P/y96/HuHETsLGxZfHiBTz22FNYX+E0CcXFxaxfv5bevW885whzLy9vJk16l8zMTJKSEqlfvwFWVlZMnToJNzf3CuueOhXP6NHPcvx4DK+/PomePXuVv+fk5ITBYKBbt+4VtunW7Sq2bNlESkoyXl7e5cvnzfuejz/+kA4dOjFp0lTs7c//98/ZufTvf05ODm5uboT6OBPq40yLwsO8vAoGdghhS6odcRn5rDqYyKqDiTjbWdMr1Jsbm/sR3sgDG003IVIn1JV+pEhVW384mRUHErAywCs3NcNeD5OJ1Bh7m9IS6SPm7OSX/QnccTCBNj7mefNQxJypHykiInL50nILyS4oxgDUdzfPvmwDj9K4NSJczlQtifCCggJef/11Fi1aBMCqVauYPHkyubm5vPfee7i7u19kD7VfcYmRV1cc5J9jaTjaWvHBoNYEa84Bkcvi4lJatvPVV9+kUaNGZ73v6elFSUkJL774NLa2tnz22TeEhjbDxsaGI0eiWbVq+RXHMHr0S+Tk5Jz3fR8f33Mu//bbr9i/fy+TJk2tsLxp02b8/PNiMjMz8PDwuKLY9u/fS1paGr1733jO99esWUVwcGNCQ5vi6lp6Lg8e3E9JSQnNmoWVr3f4cBTPPfcE+fn5vPfedNq371hhPw0bNsRoNFJUVFghqV02Sr9smdFo5MMPp7Jw4TxuuOEmxo2bcNE50Rs1Kh2VFht7HDe3VuXLY2NPYGtry4u3hmNra8u++ExWRySyJiKRhKwCftmfwC/7E3B3sKFXUx9uDPOlU0MPbKwqN6+6iJifutCPFKlqWflFvH26JPrwTg1oE+h2kS1EpKq1CXTjrk71+WFbLC8t3sOcezvibKf5iUVqkvqRIiIil+9EWh4Avi52ZvtgdVlJ97K2iABUy6f5nXfeISoqisWLF5cnTp588klSU1N58803q+OQNcpoNDLl9yh+O5SEjZWBKQNb0Urz74lctlatWmNra0tSUgLNm7cs/7G2tuaTT6Zz8mQc6elpHDsWQ//+A2nevGV5qfK//94IQElJyRXF0KhRcIVj//fnfInerKxM/vprHceOHa2wfPfunXh4eOLu7nFFcQHs27cHa2trWrRodc73v/76c7799ssKy+bN+wEXFxc6dOgMlI4Ef+aZxzAYDMyc+flZSXCgfCT4mjW/Vlj+119/0qRJ0/JR3bNmfczChfMYNux/jB//5kWT4FA6T7ujoyNr1/5WvsxoNLJu3Vrat++InZ0dBoOB1gFuPNurCT+PDOfTYe0Y2j4QLydb0vOKWLonnicW7qH/rL95e00k246nUXKBUf4iYp4svR8pUh1m/HWUhKwCGno48MjVKokuYiqjugfT0MOBk+l5fLgu2tThiNQ56keKiIhcvhPppaOoy0ZVm6Oy2GPT8ygq0X1jKVUtjyf/+uuvfPzxx4SF/TsSMSwsjDfeeIMHH3ywOg5Zo2ZvjOHHXScxAG/0a054kKepQxIxa+7uHgwffi+fffYJ2dnZdOjQicTEBD777BMMBgOhoc1wcXEhICCQRYvm4+fnh6urG5s3b2T+/DkA5OWZptzJ7bffwZIlCxk9+jmuv/5GkpIS+fDDd1mzZhXPPvtilRwjOvowgYH1z1t6/I477mTq1Ek0btyENm3asWbNKlavXskLL4wpLwH3wQdTSU1N4YUXxpKdnc3evXvKt3d2diYkpDEdO3ame/eefPTRe+Tl5dK4cRNWrvyFPXt2MWnSuwBERkbw/fdf06JFS6677gb27dtbIZaQkBBcXFxISUlh796DBAeH4OzsgoODA3feeTdfffUZtra2tG7dll9++YmIiAN89NGss9pkZTDQvoE77Ru489x1Tdh+Io3VEYn8fiiJlJxCftx1kh93ncTXxY7rm/lycws/Wvi7YDBopLiIubP0fqRIVdsdl8HCnXEAjL2xKQ621iaOSKTucrC15pWbmjFy3m4W747n5hb+dGigEagiNUX9SBERkcsXe3oUdQOP809xWtuVjWbPLyohPiPPrJP6UnWqJRGenZ2No+PZH7CSkhKKi4ur45A1Zt72WD77+xgAo68P5Yawc5dLFpFL8/DDo/D29mHRogX88MM3uLq60blzV0aOfLw8mfvWW1P58MOpTJz4GnZ2tgQHN2by5PeZNu1ddu3ayR133FnjcderF8CHH85kxoxp/PDDNxQVFRETc5THHnuawYOHVckxUlKScXU9f4nTgQMHkZ+fz48/zuPbb7+kUaMgxo9/kxtv7AtAYWEhGzeuB2Dq1Elnbd++fUemT58NwOuvv82XX37KvHk/kJaWSnBwCBMnTqFHj2sAWLduLUajkQMH9vPoow+cta9p0z6hU6fO/PHHH4wdO5Zp0z6hY8fSUekPPPAw1tbW/PTTYubM+Y7g4BDefvs92rZtf8H2W1sZ6NLIky6NPBndO5R/jqex+mAif0Qlk5hVwNztsczdHktjbycGtPLn5hZ++Licf75yEandLLkfKVLVCotLmPjrIYzAgFb+dGmkB3RFTK1jQw/u6tqQOVuO89bqQ3x/TyfszLS0pIi5UT9SRETk8p1IL02Em+v84FA6uKq+uwPRyTmcSMtVIlwAMBiNVV9X9sUXXyQ7O5t33nmHnj178tNPPwHwwgsv0KBBA959991K7Sc/P5/XXnuNX3/9FQcHBx588MHzPsG5evVq3nvvPeLj42nevDkvv/wyrVqdu4wwQGJi5iW3a9WBBF5efhCAkVcH8fBVNV920GAAHx9XkpIysfSKwHWprWDG7c3OxjckAIDEIyfB2blSm5ltey9g+/atrFixjHHjJlRYboltvZCaam9BUQmbY1JZdTCBP6KSyS8qLY9vZYCrgr0Y0Mqfnk28q3VOG11b0/H11ZQklqqq+pHV6XL6keagNv2OW4rqPqdf/H2MmRuO4uloy/wHOuPhePHpSsydRX9OL7NffaUs+pyagMEAtk4O9J66luScQpPdO7AkVf0ZVT/ScplrP1J/h82Trpt50nUzP7pmNefhuTvZGZvBxP7N6dPc74r2dc7rVkPfd15Yso91h5MZfX0oQ9oHVum+1Y80T9WSHXj11VexsbEhPDyc3NxcBg8ezI033oibmxuvvPJKpffzzjvvsHfvXr7++mvGjx/P9OnTWbly5VnrRUZG8vzzz/PII4+wdOlSWrRowSOPPEJubtWVSt50NIXxKyMAGNo+kIe6NaqyfYuIZQgICKRnz16mDqPOsLOxomcTb97s34KVj3bjpRub0jbQjRIjbDiSwthlB7j5k9L5xPedzKAanvsSkWpQVf1IEUsXk5LD53/HAPDcdU3qRBJcxFy4O9nyfO8mAHy5+RhHk3NMHJFI3aB+pIiIyOWLLR8Rbr6l0eHfecJPpJlmKlWpfaqlNHpaWhq33347rVq1IiwsjJiYGHr27Enjxo0rvY+cnBwWLFjAp59+SqtWrWjVqhWRkZF8//339O3bt8K6GzZsIDQ0lNtuuw2A5557ju+//56oqCjatGlzxe3ZezKD0Uv3U1xipE+YL8/3bqJ5aEXkLAEBgQQEVO1TZlI5LvY23N42gNvbBhCTksPy/af4ZX8CpzLzy+cTD/Zy5JZW9RjQ2h8vJztThywi51EV/UgRS2c0GnlrdSQFxUa6BXtyU3NN1yRS29wY5ssv+xLYcCSFt9ZE8snQtljpPoJItVI/UkRE5PLkFRaTmFUAQH0zLyfe0LM0kX8sVYlwKVWlifBNmzYxadIkIiMjK4y8MxgM/Pzzz4wZM4bOnTtXal8HDx6kqKiIDh06lC/r1KkTn3zyCSUlJVhZ/TuY3cPDg6ioKLZt20aHDh1YtGgRLi4uNGp05aO2o5OzeWbRXvKKSugW5MmEm8P05VVEpBYL8nJiVI8QHukezNZjaSzbd4rfI5M4mpLLR+uPMHPDUXqFenNbmwC6BHnob7pILVGV/UgRS/fz3lNsP5GOg40VY24I1UO6IrWQwWBg9PWhDPtqKztOpPPz3ngGtgkwdVgiFkn9SBERkStTNhrcxd4ad4dqGT9bYzQiXP6rykqj//XXXzz00EM0b96cb7/9lr///pt9+/axefNmvvrqKxo3bswDDzzAjh07KrW/xMREPD09sbP7d9Sej48P+fn5pKWlVVi3X79+9OrVi+HDh9O6dWveeecdpk2bhru7+xW1KT4jjycX7iE9r4hW9VyZfGtLbK2rb65ZERGpOlYGA12DPHm9X3NWPtqNl/s0pU2AK0UlRtYcSuKJH/dw++f/8OXmYyRlF5g6XJE6rar7kSKWLDm7gA//jAbgke7B1Hc376f1RSxZoLsDj3YPBuDDdUdIVp9TpMqpHykiInLl/i2L7mj2D1o3PJ0Ij03Po7hEU2VKFY4I//jjj7n//vt58cUXKyx3d3cnPDyc8PBw3N3dmTlzJrNnz77o/nJzcyskwYHy1wUFFb88pqamkpiYyKuvvkq7du2YM2cOY8eOZfHixXh7e5/3GBf6fU7LKeSJH/eQkFVAsJcjHw5qjbO99UXjrm5lMZv536JKqUttBTNu7xnxGgwVX19wM3Nt72WoS22F2tleVwcbbmsbwG1tA4hMzGLx7niW7z9FXHoeM/46yqyNMVzTxJtBbesRHuxZ6VHitbGt1amutVdqTlX3I0Us2XtrD5ORV0SYnwt3dqxv6nBE5CKGdazPygMJHEzI4v0/DvNm/xamDknEoqgfKSIicuXKRk838DDv+cEB/F3tsbEyUFhsJDErn3pu5t8muTJVlgg/ePAgb7zxxgXXGTJkCA8++GCl9mdvb39WwrvstYNDxQ/u1KlTadasGf/73/8AeOONN7j55pv58ccfGTly5Dn37+XljPV5Rndn5xcxYu4uYlJyCXB34IeRVxFYy+ZF8PZ2NXUINaYutRXMsL2O//4e+fi4grPzJW1udu29AnWprVB72+vj48pVLQJ4raCYX/acZM6WY2yLSWVtZBJrI5No4OnI/8KDGNalIV7OlZtLvLa2tbrUtfZK9avqfqSIpdpwJIVfIxKxMsC4Pk2xsdKTSSK1nY2VgXF9mnLf9ztYdTCRm1v60z3Ey9RhiVgM9SNFRESuXGzavyPCzZ21lYEAN3uOp+URl5GnRLhUXSI8Ly/voqXIPT09SUlJqdT+/P39SU1NpaioCBub0jATExNxcHDAzc2twrr79u3jnnvuKX9tZWVF8+bNiYuLO+/+U1KyzzmirbC4hGcW7WXXiXTcHW2YNqg1dkVFJCVlViru6mYwlCYgkpMzMVp4VYe61FYw4/ZmZ+Nz+p9JSZmQW1Kpzcy2vZehLrUVzKu9vYLc6RXUhqjEbJbsOckv+xI4kZrL5JUH+WDNIfo092VYh/o093c55/bm1NaqUJva6+OjZLwlqep+pIglyiss5p01kQDc2bE+Lfz1d1DEXDT3d+XOjvX5YVssk9dEMu/+zjjamr7inIglUD9SRETkypWXRreAEeFQOkXR8bQ8YtPy6NjA1NGIqVVZItxoNGJldeH5sw0GA8ZK3jlv0aIFNjY27Ny5k86dOwOwbds22rRpc9Zx/Pz8OHz4cIVlR44coU2bNheJueLr4hIjry6PYHNMGo62Vnx4e2uCvZxMfrP/XIzGs+O3VHWprWCG7T0jVqOx4utKbW5u7b0CdamtYF7tbeLjzPPXhfJ4jxBWRyQyf0ccBxOy+HnvKX7ee4q2gW4M6xDIdU19sD1HNRFzamtVqGvtlepX1f1IEUv05ZbjxGXk4+9qzyNXB5s6HBG5RI9cHczayCROZuTz+d/HeKJniKlDErEI6keKiIhcufLS6O6WkQgvHdmeVp7gl7qtyhLhACtWrMDF5dyj5gAyMys/qtrR0ZHbbruNCRMm8NZbb5GQkMAXX3zBpEmTgNLR4a6urjg4ODB06FDGjBlD69at6dChAwsWLCAuLo7bb7+90sczGo28u/YwqyMSsbEy8M6tLWkV4HbxDUVExGI42FpzS+t6DGjlz56TmczfEcuaQ0nsjstgd1wGPs52DGobwO1t6+HjYm/qcEUsSlX2I0UszdGUHL795zgAz1/XBCc7jSQVMTdOdtY8f10oLyzdx3dbT9C/pT8h3k6mDkvEIqgfKSIicvmKS4zEZZQmjBvUsimCL1fg6YR+nBLhQhUmwgMDA/niiy8uul5AQECl9zl27FgmTJjAfffdh4uLC08++SR9+vQBoEePHkyaNIlBgwbRr18/srOzmTVrFvHx8bRo0YKvv/4ab2/vSh8rJiWXBTvjMACv3RxGt2DN2SUiUlcZDAbaBrrRNtCNZ67NZ/HueH7cfZKk7AJmb4rhi83HuCHMl7s716eHSnSLXLHq6EeKWAqj0cg7v0VRWGyke4gXvUIr/x1HRGqXa0O96dnYi/XRKbzzWyQzhrTFcK4520Sk0tSPFBERuTKJWfkUFhuxtjLg52oZA3/qn06Ea0S4QBUmwn///feq2lU5R0dHJk+ezOTJk896LyIiosLrIUOGMGTIkMs+VgMPB+7sWJ/29d24vpnvZe9HREQsi4+LPQ9fHcT94Q1ZG5nEvB1x7I7LYOWBBFYeSOCqxscY1j6Aq4I9sdKNTJHLUh39SBFLsToikX+OpWFvY8ULvZsoaSZi5p7v3YQtx9LYejydVQcT6dvCz9QhiZg19SNFRESuTFmyONDNHhsry/i+qRHhcqYqLY1uzmysrXj+uiamDkNERGopW2sr+jT3o09zPw6cyuT7rSdYE5HIpuhkNkUnE+LlxPBO9bm5pT/2Nheeo05ERKQysvKLeO+PaADu79rQYsrUidRl9d0dGdGtETP+Osr7fxymR2MvXOx1a0ZERERETKNsfvD6FvR9s2xEeFJ2AXmFxTjYanqxukx36kVERC5RC39X3uzfgqUPd+XhniE421lzJCWHiasjufXTzXy2KYa0nEJThykiImbukw1HSc4uoJGnI/d2aWjqcESkivyvUwOCPB1JySnkkw1HTR2OiIiIiNRhZSPCy5LHlsDNwQZnu9Lk98mMfBNHI6amRLiIiMhlqufmwLj+LfnlkXCevrYx/q72pOQUMmtjDAM+3cw7v0VxMkMleERE5NJFnMpiwc44AEb3DsVO1UZELIadjRWjrw8FYMHOOCJOZZk4IhERERGpq06kld67tKQKZAaD4Yx5wnNNHI2Ymu6miIiIXCEXexvu7tyAJSO68Ga/5jT3cyG/qIQFO+O4/fN/mLAygiPJOaYOU0REzESJ0cjbv0VSYoQbw3wJD/Y0dUgiUsW6BnnSJ8yXEiOnf9+Npg5JREREROqgstLoDSxoRDhonnD5lxLhIiIiVcTG2oqbWvjxzd0dmDmkLeFBHhSXGPll3ymGfbWV//tpPwdOZZo6TBERqeWW7oln78lMnO2sebZXY1OHIyLV5JlejXG2s2bvyUyW7ok3dTgiIiIiUgeVJYrre1hWIry+e+kI91glwus8JcJFRESqmMFgoHMjD6bf0Zav/teBXqHeGIHfI5O497sdPPnjHrafSDN1mCIiUgul5hQwff0RAB7pHoyvi72JIxKR6uLrYs8j3YMB+Hj9EdJyCk0bkIiIiIjUKVn5RaTnFQH/Jo4thUaESxklwkVERKpRq3quTBnYirn3deLmFn5YG+Dvo6k8Mm83D83ZycYjKRhVClNERE776M8jZOQV0dTXmSHtA00djohUsyHtA2nq60x6XlH5QzAiIiIiIjWhLEns4WiLk521iaOpWmUj3DUiXJQIFxERqQFNfJx5vV9zFj7YhcHtArC1NrArLoOnF+1lxJydbDqqhLiISF23Oy6Dn/edAmDMDU2xsTKYOCIRqW42Vgb+7/pQAJbujWdXbLqJIxIRERGRuuJkRmmSOMDN8iqR1Xf7d0S47rnWbUqEi4iI1KAGHo6MuaEpPz3UleGd6mNvY8Wek5k89eNeRszZxeajqeqciYjUQcUlRqb8FgXALa38aRvoZuKIRKSmtKvvzsDW9QB457coikvUFxQRERGR6heXkQ9AfXfLmh8cIOB0m7ILiknPLTJxNGJKSoSLiIiYgI+LPc/2asKSCgnxDJ74cQ8Pz93F5hglxEVE6pKle+M5mJCFi701j/cMMXU4IlLDnugZgqu9DYcSs1m8+6SpwxGp006dOsVTTz1F165d6dmzJ5MmTSI/P/+c6+7fv58hQ4bQrl07Bg8ezN69e2s4WhERkct3Mr1sRLjlJcLtbazwdbEDIDZD5dHrMiXCRURETMjH2a40IT6iC3d2rI/d6ZLpTyzcw8h5u/jnmBLiIiKWLj23kBmn5wYeeXUw3s52Jo5IRGqah5Mtj3YPAuCTDUdJyy00cUQidZPRaOSpp54iNzeX77//nvfff5+1a9fywQcfnLVuTk4OI0eOpHPnzixatIgOHTrwyCOPkJOTU/OBi4iIXIayOcIDLHBEOPw70j02LdfEkYgpKREuIiJSC/i42PP8daUjxId1CMTO2sDO2AweW7CHR+bvZucJzRcpImKpZm2MIT2viMbeTgxpF2DqcETERAa1CyTUx5n0vCI+2XDU1OGI1EnR0dHs3LmTSZMm0bRpUzp37sxTTz3FsmXLzlp3+fLl2NvbM3r0aJo0acK4ceNwdnZm5cqVJohcRETk0sWdHikdaIEjwgECyxLh6RoRXpcpES4iIlKL+LrY80Lv0AoJ8R0n0nl43i6eWbSXiIQsU4coIiJV6FBCFj/uigPgxd6h2FjrK5pIXWVjZeCF3k0AWLz7pPp9Iibg6+vLZ599ho+PT4XlWVln/z7u2rWLTp06YTAYADAYDHTs2JGdO3fWRKgiIiJX7GRG2YhwexNHUj3KRoTHKRFep9mYOgARERE5W1lC/J4uDfn87xh+2hPPhiMpbDiSQp8wXx7tHkxDT0dThykiIlfAaDQy9fcoSoxwQzMfOjfyMHVIImJinRp60CfMl18jEpn6exSzh7UrT7KJSPVzc3OjZ8+e5a9LSkr47rvv6Nat21nrJiYmEhoaWmGZt7c3kZGRFzzGf3+ly17rV9286LqZJ10386NrVn0y84rIyi8GSkeEV+U5Pud1M/zn/Rq4pmcmwvUZqruUCBcREanF/F3teenGZtzduSGzNhzl14hEfo1I5LdDiQxsE8CIbo3wc7XMpzZFRCzdqoOJ7IjNwN7GiqevbWzqcESklnjq2sb8eTiZnbEZrDyYwM0t/E0dkkidNWXKFPbv38/ChQvPei83Nxc7O7sKy+zs7CgoKDjv/ry8nLE+T/UXb2/XKwtWTELXzTzpupkfXbOqdyqudBpGb2c7GgZ6VMsxKlw3x3///+fj4wrOztVyzDO1DCoEID6roPSYUicpES4iImIGGnk6MnFAC+7t0pAZG46w8Ugqi3af5Jf9pxjaPpB7uzbEw9HW1GGKiEgl5RQUM+3PaAAeDG9EPQudk01ELp2/qz0PdmvEjL+OMm3dEa5p4o2znW7fiNS0KVOm8PXXX/P+++/TrFmzs963t7c/K+ldUFCAg8P5/5+ekpJ9zhHh3t6uJCdnYjRWSehSA3TdzJOum/nRNft/9u46LKrsjQP4d2gkJSUURAWLEgQDu9buXdtddY21Y81dY+1YO1ns1lVx7bX3ZysqimKCCIIIIt1wf38goyOtwDAz38/z+DzOzfecCd57zz3nlBz/oCgAWblnZGRcsR471/ctIQHZE49ERsYBSZnFes7caCHrHG8+JOLtu1ioKH1bt3A2pssmXkkRERHJEDtTbazqZo97ITFY979A+IbGYuedEBx+EIb+dS3Rx8USmqrK0g6TiIgKsPnGa0TEp8JCTwN9XS2lHQ4RlTF9XSzxj99bhEQnY8uN1xjdmKNGEJWmuXPnYu/evVi6dCnatGmT6zampqaIjIyUWBYZGQkTE5N8j51XQ44g5L2Oyi6+b7KJ75vs4XtW/N58nDfbXFejxOpW4n0TJJejFN5PIy01qCqLkJYh4G1sMiz0OM2kIsp9LJ4yIiUlBdOnT4erqys8PDywZcuWPLd9+vQpevfuDQcHB3Ts2BE3btwoxUiJiIhKl7OlHv7q5YgVXWuhmrEWElIzsPFqELpvuY2jD8OQkcmrAyKisiooKhF7fEIAABOaVYG6Spm+LCMiKVBTUcKEplUAAHt83uBVVKKUIyJSHGvXrsW+ffuwfPlytG/fPs/tHB0dce/ePQgf7/ALgoC7d+/C0dGxtEIlIiL6amGxKQAAcz35nXJRSSSC2cfR195+LC8pnjJ9x2XJkiXw8/PD9u3bMWvWLKxduxanT5/OsV1cXBwGDRqEqlWr4tixY2jVqhVGjRqF9+/fSyFqIiKi0iESieBhY4hd/etgbrvqMNdVR0R8Kub9+xx9d/rgamCU+KYMkaIpygOVZ8+eRdu2beHs7IzevXvj0aNHpRgpKRpBELD80kukZwpoULk8GtkYSDskIiqjGlUxRMPKBkjPFLD84kvmdUSl4OXLl1i/fj1+/vlnuLi4ICIiQvwPACIiIpCcnNWD7rvvvkNsbCzmz5+PFy9eYP78+UhKSkLbtm2lWQQiIqJCCf3YI9xMzqfpMv9YvuzykuIpsw3hiYmJOHjwIGbMmIFatWqhVatWGDJkCHbv3p1j2yNHjqBcuXKYPXs2rKysMGbMGFhZWcHPz08KkRMREZUuJZEI39UwwcGf6mJcExvoaqjgZWQixh32w8i/H+JpeLy0QyQqdYV9oPL58+eYOHEihg0bhqNHj6JGjRoYNmwYkpKSpBA1KYL/BUThWuAHqCiJMKFpFYi+nCiUiOgzE5pVgaqyCNdffcB/L6OkHQ6R3Dt//jwyMjKwYcMGeHh4SPwDAA8PD5w8eRIAoK2tjU2bNsHHxwfdunWDr68vPD09Ua5cOWkWgYiIqFDCYj82hOvJd0N4Bd2sHu/Z5SXFU2bnCH/y5AnS09Ph7OwsXubi4oKNGzciMzMTSkqf2vBv3bqFFi1aQFn505yohw4dKtV4iYiIpE1NRQl9XS3RoZYptt4MxoH7b3D7dTT677qLtjVNMKKhNSrI+VOeRMCnByr/+usv1KpVC7Vq1cLz58+xe/dufPfddxLbXr16FVWrVkWXLl0AABMmTMDu3bvx4sUL2NvbSyF6kmcp6ZlYfvElAKCPiyWsDHijnIjyV6m8Jvq4WGL7rWCsuPQS9azLczoFohI0dOhQDB06NM/1T58+lXjt4OCAI0eOlHRYRERExUoQBHEPaXM5v1do/rGhP5RDoyusMnv1FBERgfLly0NNTU28zMjICCkpKYiOjpbYNjg4GAYGBvj999/RsGFDfP/99/Dx8SnliImIiMoGPU1VjGtqg4M/uaJNdWMIAE4+fofuW25jzX+BiE9Jl3aIRCUqrwcqfX19kZmZKbGtvr4+Xrx4AR8fH2RmZuLw4cPQ1tZGpUqVSjtsUgC77gTjTUwyjLXVMLgeP2NEVDiD3CvBRFsNb2KSsetOsLTDISIiIiIZF5eSjoTUDACAma78zhEOfBr6PYxDoyusMtsjPCkpSaIRHID4dWpqqsTyxMREeHp6YsCAAfjrr79w4sQJDB48GKdOnYKZmVme55DFUQizY5bF2ItKkcoKyHB5P4tXJJJ8ne9uslrer6BIZQUUq7xlvayW+pqY36EG+rhYYtXlANwNicGO28E46heGn+tbobujGVSVC/9MXFkvL1G2gh6oNDD4NCdzu3btcOHCBfTp0wfKyspQUlLCpk2boKenl+855PF7wO948fu8TsPjUrDtZlYD1tgmNtBSV85nT8qLXH9OvzKv/ubTynOdSkFJ1KeWujLGNLHBbyeeYOvNYHSoZapQo/zwM0pERERUvMJisnpHG5RThYaqfF+bmnFodIVXZhvC1dXVczR4Z7/W0JC84FNWVkaNGjUwZswYAEDNmjVx9epVHD16FMOHD8/1+AYGWlAuws3/ssbQUEfaIZQaRSorIIPl1fz0PTIy0gG0tIq0u8yV9xsoUlkBxSpvWS9rEyMdNK5thvP+77DwlD9eRiRg2YWXOPzgLWa0r4Hm1U2KNEdtWS8vUVEeqPzw4QMiIiIwc+ZMODo6Yu/evZg2bRqOHDkCQ0PDXI8v63lkQfgdL36GhjqYe/YFktMz4WpVHn09bDg3+DeSy8/pN+bV30ou61SKirs++3po459H73DrVRQ8b4ZgdW/ngneSM/yMEhERERWP0I+NwuZyPj848KmM7+JSkJ4pQEWJ1+KKpsw2hJuamuLDhw9IT0+HikpWmBEREdDQ0ICurq7EtsbGxrCxsZFYZm1tjbCwsDyPHxWVIJNPE4tEWRd/79/HQRCkHU3JUqSyAjJc3oQEGH38b2RkHJCUme/m2WS2vF9BkcoKKFZ5Za2sTiblsLt/HRx9GIZNV4MQEJmAwdvvwN1KH+ObVkFV4/xvuJel8hoZ8UYo5a0oD1QuW7YMtra26Nu3LwBg7ty5aNu2LQ4dOpTn/JCymkcWpCx9x+VFdp1eevgG3vdDIQIwtpE13r+Pl3ZoMkuuP6dfmVd/K7muUykoyfoc08ga/V9F4R/fUHSqaQwni/xHL5EXxV2nzCOJiIhI0WX3jjZTgFGGDLXUoKosQlqGgIj4FIUoM0kqsw3hNWrUgIqKCu7fvw9XV1cAgI+PD+zt7aGkJNkDx8nJCbdv35ZYFhAQgA4dOuR7Dlm+yBcE2Y6/KBSprIAMlvezWAVB8nWhdpe18n4DRSoroFjllaWyKotE6OZgjtZ2Jth6Mxh774bgZlA0+uzwQVcHMwxvYA39cqr5HkOWykuKqSgPVD569Aj9+/cXv1ZSUkL16tURGhqa7znk+TvA73jxyswUsOzCSwBAh1qmqG6qw/otBnL5Of3GvPqbTy+PdSpFJVGfdiba6GRfAUcfvsWfF15iW19nKMnjk1l54GeUiIiIqHiExihOQ7iSSAQzXQ28/pCE0JhkhSgzSSqzYzpqamqiS5cumD17Nh48eIBz585hy5YtGDBgAICsm5nJyVlf1l69euHp06dYs2YNgoKCsGrVKgQHB6Nz587SLAIREVGZpa2ugtGNK+PAj65oVs0ImQJwyDcMXbfcwh6fEKRllE4vNKKS8PkDldnyeqDSxMQEL1++lFgWGBgIS0vL0giVFMBR3zfwC4tDOVVl/OJhLe1wiEjGjWhoDS01ZfiHx+PEo3Bph0NEREREMii7IdxcT13KkZQOzhOu2MpsQzgATJs2DbVq1cLAgQMxZ84cjB49Gq1btwYAeHh44OTJkwAACwsLeHl54eLFi+jQoQMuXrwIT09PmJqaSjN8IiKiMs9SXxNLOtXExu8dYGushfiUDKy4FIBe233w38v3ENjthmRQUR6o/P7773HgwAF4e3sjKCgIy5YtQ2hoKLp27SrNIpCcSErNwOJTTwEAP7pXhJG2YtxkIKKSY6ilhsH1KgEA1l15hYTUdClHRERERESyJiw2BYBi9AgHgAofyxkWkyLlSEgayuzQ6EDWTczFixdj8eLFOdY9ffpU4rWLiwsOHz5cWqERERHJFZeK+tjRrw6OP3qL9Vde4fWHJEz0fgS3SoWbP5yorJk2bRpmz56NgQMHQltbO8cDlQsXLkS3bt3Qrl07JCQkYNOmTXj79i1q1KiB7du3w9DQUMolIHmw43Yw3sYmw0JPA31cOMoAERWPH5wtcPhBGEKik7HtZjBGNqos7ZCIiIiISEYIgiDuGW2uIA3h2eUMZY9whVSmG8KJiIio9CgridDZ3gwtbI3F84ffeh2Nvjs/zh/e0ApG0g6SqJCK8kBlz5490bNnz9IKjRTE29hk7LgdAgAY06Qy1FXK9GBcRCRD1FSUMK6JDSYdfYw9PiHobF8Blvqa0g6LiIiIiGRAbHI6ElIzAAAVdBVj1DIzPQ6Nrsh4N4aIiIgkfD5/ePPP5w/ffBt//RfA+cOJiAphzX+BSEnPhHtlAzSvxseIiL5VWFgo/vvvkrTDKDMaVzGEWyV9pGYIWP1foLTDISIiIiIZkd0YbFBOFRqqylKOpnSYi4dGL3sN4SEhITh37py0w5Br7BFOREREubLU18TiTjXhExyN5Rdf4llEAuaf9MfO65oY39QGDSsbQCQSSTtMIqIyx/dNDP59GgERgN871IRIJIIgSDsqItmUkpKMv//ej//97zLCwt7g1q0b+P773qhUyUraoUmVSCTC+GZV0HeHDy4+j4RPcDRcKupLOywiIiIiKuNCP84PbqGnGMOiA5/mQg+PT0V6pgAVJenfz0xOTsbOnTtx/vx5hISE4MqVKxg4cCAqV+a0R8WNPcKJiIgoX9nzh//WphqMtNXx+kMSxh95hLGH/fDqfaK0wyMiKlMyBQF/XnwJAOhsXwG1LfSkHBGR7EpPT8fo0cOxbdtmlC9vAD09ffj43MLQoQPx+nVQvvsGBgZg8uRx+O67ZmjXrgXmzZuF9+8jJbZ59y4cs2ZNR4cOLdG6dRNMmzYJwcGv8zzmlSv/wcPDNcfyzMxM7NmzE716dUWzZg3RqVMnnDlzKsd2//13CYMG9UOrVo3www9dsGWLJ9LS0gqsh1u3bmDIkAFo0aIhevbshD17dkIQBFQ10kI3BzMAwJ8XXyIjk0/cEBEREVH+sntFmynI/OAAYKStBhUlETIyBUTGp0g7HKSnp2PAgAFYv349DA0NUb58eVy/fh09e/ZEYGDhR3tatGgR+vfvn+u67du3o1WrVnBwcEDXrl1x+fJlifWZmZnYu3cvOnbsCGdnZ7Ro0QILFixAfHy8eBs7O7s8/31+3tTUVCxfvhxNmzaFg4MDOnXqhJMnT0qc79q1a7keZ9iwYfmWccWKFbnut3nz5kLXE3uEExERUYGUlUToYm+GH+pXxpITj7HX5w2uv/qAXjt88L2TOX6ubwUdDaYVREQnH4fDPzweWmrKGOFhLe1wiGTa1av/4fFjPyxduhLq6ho4deo4Ro8ej++/74I9e3Zg6tTfc90vMjICY8YMh4WFJWbOnIvk5GR4eq7DuHG/YOvWPVBRUUFSUhLGjfsFIpEIEydOhaqqGrZv98KoUT9j584D0NWVfIjl7t07mDPnt1zP5+W1EXv27MDgwcNRs2ZN3L9/G3/88TtEIhFatfoOAHD79g3MmPErmjdvhREjRiEwMAAbN65DTEw0xo+fnGcd+Pk9xOTJ49CiRSsMGTIcDx7cx4YNq5GRkYH+/X/EsAbWOPMkAs8jEnDU7624YZyIiIiIKDfZQ6ObKVCPcCWRCGa66giOTkZobDIqSPkhgAsXLsDX1xeenp7Q0NDAkSNHMHXqVLRq1QpeXl6YP39+gcfYsmULtm7dCjc3txzrtm7diqVLl2LkyJGoXbs2Dh06hBEjRmDHjh1wdc16sNfLywsrV67E4MGDUb9+fQQGBmL16tV4/vw5tmzZApFIhP379+c49r///ovNmzejd+/e4mWTJk3C1atXMXHiRFhbW+Po0aOYMGECtLW10bhxYwCAv78/tLW1czRg6+rq5lvOJ0+ewM3NDRMnTpRYbm5uXmAdZeMdayIiIio0HQ1VjG1igy72Zlh56SX+FxCFvXff4JT/O4zwsEbn2hWgXAaGFyIikobE1Ays+98rAMDgepVgqKUm3YCIZFx2r+86dVzx6JEfAEBXVw+zZs2Fjk7eN0z++ecIEhLisXjxcujp6QMA9PX1MWbMcPj43Ia7e31cunQer18HYceO/bCxqQIAqFKlKnr27IQLF86hS5fuAIDExATs3LkNe/bsgJaWNpKSJM+VnJyMgwf3omfP3ujf/0eIRMB337XA/fu++Pvv/eKG8BMnjsHUtAJmzpwLZWVl1K1bD1FRUdi/fzdGj54AFZXcb89s2bIJ1arZ4fff5wIA6tVrgPT0dOzcuRXff98L+uU08HMDKyy/+BIbr7xCK1tjPpxIRERERHl687FHuLmuupQjKV1muhoIjk5GWEwKYCndWLJ7fbu7u8PX1xdA1vXKsmXLCmwYDg4OxuLFi3HhwgXo6OjkWJ+cnIz169fjp59+wsiRIwEAjRs3Rq9evbBu3Tps3boVmZmZ+Ouvv/DDDz+IG5gbNGiA8uXLY/z48fDz84O9vT2cnJwkjh0WFoaDBw+ib9++aNeuHQDgzp07OHPmDDw9PdGkSRMAQP369REUFIT//vtPoiHczs4uxzEL4u/vj27duhV5v8/x6oiIiIiKrFJ5TSzvWhvXX0VhxcUABEYlYuHZ5/j7figmNqvCOSqJSCFtu/UakQmpsNTXwA/OFtIOh+RQjx4d0a5dR8THx+HMmZNITU2Dh0dj/PrrdBw+fACHDh1AYmICXF3dMHnyDHEjMAAcO+aN/fv34M2bYJQvb4D27Tvhxx+HQEVFWWIbb+9DCAoKRGamgEqVrDBgwCA0b94SAHDy5DEsXjwP69dvxurVf+L586coX94A3bv/gD59ch+SDwBGjRqK+/fv5rn+4MF/YGaW84l+Y2MTAMCDB/ehrPzp9kX9+h751lPXrj3RoIGHRPlVVVUBAKmpWUMhNmrUFBs2bBY3gktukypedvz4URw75o3x4yfj/ftIbN36l8S5VFVVsWHDFpQvX15iuYqKqsSwgqmpqdDQ0ISy8qf61tXVQ1paGhITE3L0QM/e5949HwwaJDlcYLNmLbBnzw48eHAfdevWQ09HMxz2DcWrqCR43QjC+KZVchyLiIiIiAgomz3CS+I65/O8+9gxbwQe2A21d2+w5Bhw0Nq6WK5z+vfvj1u3buW5/vz587C0zNnqbmpqCgDw8fGReCA2uyE5PwsXLkRwcDC2b9+O1atX51jv6+uL2NhYtGrVSrwsa6SqVli+fDmSk5ORmpqKzp07o23bthL72tjYAMhqbLe3t89x7EWLFkFdXR0TJkwQLzt9+jQqVaokEbtIJMK+ffsk9n3y5Anc3d0LLN/noqKiEB4ejho1ahRpvy+xIZyIiIi+Wn1rA9QdoI+DvmHwvPYKzyMSMPzAA7S0NcKYJjYKNd8QESm2NzFJ2H0nBAAwtrEN1FSUpBwRyat9+3ajbl03zJ69AE+e+GPTprV4+tQfRkbGmDx5BsLCQrFq1TIYGBhh4sQpAICdO7fC03M9unf/AWPGTMDz50+xebMn3r0Lx/TpMwEAhw4dwMqVyzBo0FCMHDkWcXGx2LVrO+bMmYHate1hYpJ1syYzMxMzZ07FDz/0xdChv+D48aNYv34VqlSpCnf3+rnGPHHiVCQkJORZJkNDo1yXN27cDJaWXpgxYwrc3NyRkZGJtLQ0cYN1XsqXLy9umE5JScHz58+wfPliWFhYws2tHgBAW1sb9vaOAIC0tDQEBb3C2rUroK+vj+bNP900atiwMTp16gYNDQ1s3rwpx7mUlZVRtWo1AIAgCPjwIQqHD+/FnTu38Ouv08XbdevWE5MmjcGePTvRsWMXBAW9wsGDe1G/fsNcG8EBIDT0DdLS0lCpUiWJ5RYWFQFk9ZivW7ceVJSVML5pFYw97If990LRzcEMVgbl8q0jIiIiIlI8giBk9YhG2ZsjvLivc6ZN+3Sds2rVMji2/gE348vDqYIaUh+dLZbrnFmzZkk8/PolExOTXJe3atUK69evx+jRo+Hh4YGMjAykpqZCTa3gUeXGjRuHatWqQSTKfUTOly9fAgCsra0llltZWSEjIwOvX7+Gra0tfvst57RP586dAwBUrVo1x7r79+/j9OnTWLhwIbS1tcXLnzx5gmrVquHYsWNYv349goKCYGVlhYkTJ6Jly6wHDVJSUhAYGAhLS0t07twZL1++hLGxMfr164dBgwblWZYnT54AAC5duoRFixbh3bt3qFatGsaPH1+ohwaysSGciIiIvomKshJ617HAd9WNselaEI48CMO5Z5H4X0AU+rtaYoBbRWiqKhd8ICIiGbb2v0CkZghwraSPJlUNpR0OyTEtLS3MmbMQKioqqFvXHadPH0dERAQ8PbeLb0jcuHENDx9mDbEXHx+Pbdu80LlzN4wbNwkA4OZWD3p6eli0aB569eoLIyMnhIa+Qe/e/fHjj0PE56pQwRyDB/fDgwf30bJlGwBZN89++mkIOnToAgCwt3fE5csXce3a//K8QVS5ss1XlbVcuXLYsGELNm/ehHPnTiM+Ph4dOrRE587d8fPPIwpsEAeAH3/sjeDg11BXV8eCBcugrp7zht+UKeNx69YNKCkpYerU32Fk9Klh3sKi8OMmnjt3RjyPeIMGHmjT5lMPCxeXuujTZwDWr1+F9etXAQBsbe0wa1be8/9l31QrV05LYnm5clmN3J8/XNCgsgEaVjbA1cAorLwcgBVdaxc6biIiIiJSDDHJ6UhMywAAVNApW0OjF/d1zg8/9IWNTRXxdY5Vk+9x49RTZJrrYVJb12K5zsmtwbiwZd23bx9Wr16N48ePIy4uDvXr10evXr0wduzYfBvEbW1t8z129jXE543V2ef8fP2Xsucsb9asWa7n8PLygoWFBTp16iSxPCoqCq9evcKjR48wfvx4GBsbY8+ePRg1ahQ8PT3RuHFjPHv2DOnp6QgMDMT48eOhp6eH8+fPY+nSpYiNjcX48eNzjcnf3x8AEBERgXnz5iE1NRW7du3C8OHD4enpiUaNGuVbF9nYEE5ERETFonw5NUxtWQ3dHMzw58WXuBsSA68br/GP31uMaWyD1tWN83zCj4hIlt0Nica5Z5FQEgETmtrwt45KVI0atSSGzytf3gCamuUkbnTo6ekhIOAFAMDP7wFSUlLQsGFjpKeni7dp2DBrrrbbt2/Czc0Jo0ePhyAAcXFxCAp6hTdvgnH37h0AWT2mP1erloP4/2pqatDX10fSl5NnfyYjIwOCIOS5Pq/5sbPKVx6TJk1F8+YtsW2bF0xNK2DPnh3IzMzEqFHj8twv24QJUyAIAv7+ez8mTx6HJUtW5riRNXDgEPTpMwD//nsKCxbMQWZmhvgGWFHUrFkb69Z54u3bYKxcuRITJ47BmjWbIBKJsGzZQpw48Q8GDhwMF5e6ePs2DFu2eGLixNFYtWoDNDRyNtALQma+5xOJJEeeGNfUBjeCPuBKQBRuvIpCPWuDIpeBiIiIiORX9rDohlpq0ChjnVaK+zrnzp2bsLGpgtGjsxpZrz19A1HUKwRGxuDwyw8ApHudY2BggNmzZ6Nt27ZYt24dzM3N4eXlhczMTEyZMiXP/QqSmZn/NYSSUs7R63x8fDB8+HBYWlpi4cKFOda/ffsW58+fx9SpU3OUKS0tDRERETh8+DBq1aoFAKhXrx46d+6M9evXo3HjxrC2toanpyfs7e1hYJB1jVK/fn0kJydj8+bNGDJkSK7znbdt2xY2NjZo3LixeKh7Dw8PdO7cGatXr2ZDOBEREUmHrYk2Nn7vgAvPI7HqcgDCYlPw28knOHg/FBObV0EN05yJDRGRrMrIFLD8YgAAoIu9GaoZaxewB9G3yX6S/3O5NaJmi42NAQD8+uvYXNdHRkYAAEJCQrBkyQL4+NyCqqoqKlWylhjyO7/zKSkp5XsDaOzYEV81R/iXTE0rYMaM2VBRUcWRIwfxyy9jcr2R87m6dbPmoatTxxX9+3+P3bu352gId3R0AgC4urrh7dswbN++9asawi0sLGFpaQkjoyYQBGXMmzcbvr73YGFhiX/+OYL+/X/Czz+PEG9fo0Yt9O//PU6cOIru3X/IcTwtrazfk8TERInliYlZPcG/7OVhbVAO3zuZY+/dN1h+KQB7+utDRZnTNBARERFRlrCYrIZw8zI2LDpQctc5b958dp2jpIw4HVOk1XMC8O3XOT/++ONXzRH+JXNzcyxatAiqqqrYs2cPfv311wKvc/KS3aCckJAAPb1PUzBl9wT/ssH55MmTmDp1KqytreHl5SWeYupz//77L0QiEdq3b59jnZaWFoyNjcWN4EDW9FH169fH/v37xefMbSjzpk2b4uDBg3j58iWcnJxyrDc3N4e5ueR1oqqqKho2bJhjDvL8sCGciIiIip1IJEILW2M0rGyA3T4h2HYzGL6hsRi46x461a6AER7WMNQqeN4bIqKy7vijt3j6Lh7a6soY3tBK2uEQ5aCtnXWjY+bMeTnmmgayeiJkZmbi11/HQlVVFV5eO1C1qi1UVFQQGBiAM2dOfnMMkydPz9GY+zkjI+Ncl+/cuQ2PH/th4cJlEsurVbPFsWNHEBcXCz09/Rz73b17Bykpyahf30O8TEVFBVWqVEVAQNacef7+jxAaGooWLVpJ7GtrWx1+fg8KWzR8+PABN25cRb16DVC+/Kce2HZ21QFk3YBTUVGBIAjiOcmzVa5sAz09PQQGBuR6bAsLSygrK+PNm2CJ5SEhWa+trKxz7DOkfiWcfByOwPeJOOQbhh/qWBS6LEREREQk30Jjs+YHN9crW8Oif42CrnPKl5e8ztnkuR1DTkUgHUpo28YY/xbDdc6cOXMkpiv6Ul5zhHt6esLX1xfr1q2TWF69enUcOHAAMTExuTZIF0blypUBAEFBQXBw+NTDPSgoCKqqqqhYsaJ42ebNm7F06VK4ublh3bp1ufbKBrLm6HZ1dZWYQiqblZUVwsLCIAiCxOh46enp4gcLHj9+jPv376NXr14SDfzJyVkPZmT3Ev/S5cuXkZycjDZt2kgsT0lJyXOf3PDRYCIiIioxGqrKGFzPCn8PqovvaphAAHDU7y26b7mNnbeDkZaR/3A9RERlWXxKOtZfeQUAGFLPCuXL8QEfKntq1aoNVVVVREa+Q/XqNcX/lJWVsXHjWoSFheLDhw94/ToI7dt3RvXqNcXD3d24cQ1AwcPrFaRSJWuJc3/5L6+5vuPj43DlymW8fv1KYvmDB/ehr18+10ZwADh9+gTmzZsl7jkNZPWi9vN7iCpVqonL9scfvyE8/K14m4yMDNy9extVqhR+rr+UlBTMnz8bx48flVh+69YNAECVKtVgYVERysrKePDgvsQ2r1+/QkxMDMzNc2+sVldXh6OjMy5fvijRE+XSpQvQ1tZGzZo55wHX1VDFCA9rAIDn9SBEJ6Xl2IaIiIiIFFN2j3CzMtgjvKgKc50TExMtvs6pVbMWKuiXAwBcvnIFwLdf59jY2MDe3j7Pf3nN9R0bG4vz588jIEDygdi7d+/CwMDgqxvBAcDZ2RnlypXDmTNnxMsEQcDZs2fh5uYmjmnfvn1YsmQJ2rZtCy8vrzwbwQVBwIMHD1CnTp1c1zdp0gTR0dG4evWqeFlqair+97//wcXFBQDw7NkzzJkzB9evX5fY9+TJk7CwsMiz1/zp06cxbdo0REdHi5clJibi0qVLcHd3L7gyPmKPcCIiIipxpjrqmNuuOno4Zs0f7h8ej9X/BcL74VuMa2IDDxsDzqlLRDJn681gRCWmoVJ5TXzvXPCwzkTSoKenjz59BsDLayMSEhLg7OyCiIh38PLaCJFIhKpVbWFoaAgzM3McPnwAJiYm0NHRxc2b13DgwF4AQHJy3vPilaSuXXvA2/tvTJ48AS1atEJkZARWrfoT586dwfjxv+a5X58+A3Dx4jlMnjweffoMQFpaKnbt2o7ExEQMGjQUANC5czd4ex/C5MnjMWjQz+Lh1l++fIEVK9bleewvVahQAe3bd8LWrV5QVlaBnZ0dnj9/DE9PT3To0BmVK9sAAHr27I09e3YAyBqu/e3bMGzd+hcqVDBDx45dAWTdMHr27ClMTExgYmIKABg4cDDGjfsFv/8+Fe3bd4Kf3wPs3bsTw4ePynOoyM72Zvj7fhheRCbgr2tB+LVF4Rv2iYiIiEh+hX6cI9xMT/YbwgtznaOtrS15nRMTCWW/O/gn4H8ApHed07t3b+zduxcjRoxA27Zt8e7dO8yfPx/Hjx/H77///k3H1tTUxKBBg7Bu3TqoqqrC2dkZhw4dwqNHj7BjR9b1SEREBBYuXAgLCwv07dsXjx8/ljhGpUqVxD2uQ0NDERcXh6pVc7+m6NixI3bt2oVJkyZh4sSJMDU1xY4dO/D27VusWrUKANCmTRt4eXlhypQpGDduHExMTHD8+HFcuHABq1evFvcSf/36NaKiosTDpA8ZMgSnT5/Gzz//jGHDhiEzMxN//fUXkpKSMHr06ELXCRvCiYiIqNQ4WuhhW19nnHgUjrX/C8TrD0mY4P0I9azLY0LTKqhsWE7aIRIRFUpIdBL23g0BAIxrYgNVzsNLZdjPP4+AoaERDh8+iD17dkBHRxeurm4YOnSkeJ7phQuXYeXKZZg/fw7U1FRhbW2DxYtXYPXqP+Hrex89evQq9bgrVDDDqlUbsH79auzZswPp6ekICnqFX34Zm+uc2tmsrStj3bq/sHHjOsydOxMZGRlwcqqDadN+FzdMGxgYYv16L2zYsAZLly5EUlIiatasjdWrN4nnDC+sSZOmwdzcAv/8cwTh4WEwMzPDkCHD0KtXf/E2I0eOhYmJCby9D2Hfvl0wNDRC3br1MHToL+LeF+/fR2L48J/w008/Y/DgYQAAF5e6mDdvCbZs2YTp0yfByMgEv/wyFr1798szHhUlESY0s8EvBx/ikG8oejiZM8ciIiIiIoSK5wiX/aHRgcJd5yxYsAyrVmVd56RDCUrlTNDip6l4dnaX1K5zLCwssG3bNixduhReXl5IT09HQEAAJk+ejH798s7zC2vkyJFQVlbGgQMHsGXLFlStWhXr168X99DOHnL8zZs36Nu3b479Fy5ciG7dugEA3r9/DwDQ1dXN9VyqqqrYunUrli9fjhUrViAhIQE1a9bEtm3bxPOGa2pqYuvWrVixYgVWr16NDx8+oFq1ali7di1atmwpPtb69etx5MgRPH36FABQpUoV7Nq1C8uXL8eMGTOQmpqKunXrYv78+RJDvBdEJOQ307sci4iIk3YIX0UkAoyMdBAZGQd5f+cUqayADJc3IQHGlc0AABGBYYCWVqF2k9nyfgVFKiugWOVVpLICxV/e+JR0bL35Gnt83iA9U4CykgjfO5nj5/pW0NHI/1k9Y+Pch+shKg2ymkcWRNF+077Vr0cf4dKL93C30sea7va5jmrBOi1+cl2nX5lXfytZqdO7d+/g1KnjmDFjtrRDyVdZqs9J3o9w+eV7NKhcHqu62Us3mG9Q3HXKPJKkKbc8siz9blDh8X2TTXzfZA/fs+IjCAKarLmKpLRM/P2TK6wMSu5ByVzfNyld73zO63oQNl0LQqfapvi9jV2R9y+JPPLGjRvw9vbGokWLiv3YlIXdFoiIiEgqtNVVMLqxDfb/6IrGVQyRkSlg79036LblNg77hiIjk1c4RFQ23XkdjUsv3kNZBIxvWoVTOxCVAjMzczRq1FTaYciUMU1soKIkwrXAD7gaGCXtcIiIiIhIimKS0pGUljUndgU5mCP8a5h/HBI+NDZFypF8YmlpKdErmoofG8KJiIhIqiqV18SfXWphTffaqGxQDtFJaVh47gX677oLn+BoaYdHRCQhI1PA8ksvAQDdHM1Rxaj0n2InUkRmZuZo3LiptMOQKZXKa+IHZwsAwKpLAUjPyJRyREREREQkLdnzgxtrq0FdRTGbBs0+PgAQ9nGI+LKADeElr0x/2lNSUjB9+nS4urrCw8MDW7ZsKXCfkJAQODs74+bNm6UQIRERERWXetYG2DOgDiY2qwIddRU8j0jA8AMPMO3YY4TFlp0ElYgU21G/t3gekQAddRUMbWAl7XCIiPI1uF4l6GuqIjAqEYcfhEk7HCIiIiKSkux7a2YK2hscAMw+zo3+Ni6FI1EqkDLdEL5kyRL4+flh+/btmDVrFtauXYvTp0/nu8/s2bORmJhYShESERFRcVJRVkKvOhY4PKguujuaQUkEnHsWiZ5b72Dj1VdISsuQdohEpMDiU9Kx8corAMDPDaygr6kq3YCIiAqgo6GCYR8f2vG8FoTY5DQpR0RERERE0hAak90Qri7lSKTHWFsdykoiZGQKiExIlXY4VErKbEN4YmIiDh48iBkzZqBWrVpo1aoVhgwZgt27d+e5zz///IOEhIRSjJKIiIhKgn45VUxtWQ27+teBS0U9pKRnYvON1+ix5TbO+L+TdnhEpKA233iND0lpsDbQRE9HM2mHQ0RUKF0czGBjWA4xyenwuv5a2uEQERERkRSEfZwXO3uebEWkrCRCBZ2sBwHK0vDoVLLKbEP4kydPkJ6eDmdnZ/EyFxcX+Pr6IjMz57xWHz58wNKlS/HHH3+UZphERERUgqoZa2NDTwcs7lQT5rrqeBefit9OPpF2WESkgF5/SMK+u28AAOOaVoGKcpm9lCIikqCiJMKEplUAAAfuh+JVFEfRIyIiIlI0HBo9i9nHBwFCOQ2jwlCRdgB5iYiIQPny5aGmpiZeZmRkhJSUFERHR8PAwEBi+0WLFqFr166oVq1aoc8hEhVbuKUmO2ZZjL2oFKmsgAyX97N4RSLJ1/nuJqvl/QqKVFZAscqrSGUFpFdekUiEFrZGaFi5PHb7vMHWG+zJRESlb9XlAKRnCmhQuTwaVjYoeAciojLE3bo8PGwMcCUgCqsuB2BF19rSDomIiIiIStGbjz2gzRW8Idz849DwYWwIVxhltiE8KSlJohEcgPh1aqrk2P3Xrl2Dj48Pjh8/XujjGxhoQVmGe3EYGupIO4RSo0hlBWSwvJqfvkdGRjqAllaRdpe58n4DRSoroFjlVaSyAtIt75QO+hjYqIrUzk9EisknOBr/vXwPZREwrgl/g4hINo1tYoPrrz7gSkAUbr/+gLqVyks7JCIiIiIqBYIgiIcCN1PgodGBTz3iw2JSpBwJlZYy2xCurq6eo8E7+7WGxqcvanJyMmbOnIlZs2ZJLC9IVFSCTPbgE4myGiDev4+DIEg7mpKlSGUFZLi8CQkw+vjfyMg4ICnn1AW5kdnyfgVFKiugWOVVpLICZae8WcmLYiftRFS6gj8kAQB61bFEZcNyUo6GiOjrWBuUQ+86Fth1JwQh0cmoW0naERERERFRaRAAlFNTRjk1ZZh97BGtqGqZZXXw0VCV3Y6yVDRltiHc1NQUHz58QHp6OlRUssKMiIiAhoYGdHV1xds9ePAAwcHBGDNmjMT+P//8M7p06ZLvnOGy3GghCLIdf1EoUlkBGSzvZ7EKguTrQu0ua+X9BopUVkCxyqtIZQUUr7xERB1rV0B1U23YmmhLOxQiom8yunFltKlujGrG/D0jIiIiUhRKIhF29qsDkQhQleGRkotDPavy2N2/Dh9yVyBltiG8Ro0aUFFRwf379+Hq6goA8PHxgb29PZSUPn1RHRwc8O+//0rs27p1a8ybNw8NGzYs1ZiJiIiIiEj+KCuJUN1UsabBICL5pCTi7xkRERGRIjLRUeye4NlEIhEfclcwZbYhXFNTE126dMHs2bOxYMECvHv3Dlu2bMHChQsBZPUO19HRgYaGBqysrHLsb2pqCkNDw9IOm4iIiIiIiIiIiIiIiIiIpKxMj4Ewbdo01KpVCwMHDsScOXMwevRotG7dGgDg4eGBkydPSjlCIiIiIiIiIiIiIiIiIiIqa8psj3Agq1f44sWLsXjx4hzrnj59mud++a0jIiIiIiIiIiIiIiIiIiL5VqZ7hBMRERERERERERERERERERUVG8KJiIiIiIiIiIiIiIiIiEiuiARBEKQdBBERERERERERERERERERUXFhj3AiIiIiIiIiIiIiIiIiIpIrbAgnIiIiIiIiIiIiIiIiIiK5woZwIiIiIiIiIiIiIiIiIiKSK2wIJyIiIiIiIiIiIiIiIiIiucKG8FImCAIGDRqEw4cPSyz/8OEDRo8eDWdnZzRv3hxHjx6VWP/48WP07NkTjo6O6N69O/z8/CTWHz9+HC1btoSjoyNGjhyJqKgoiXMuW7YM9erVg5ubG5YsWYLMzMxCn1saUlJSMH36dLi6usLDwwNbtmyRdki5Sk1NRYcOHXDz5k3xsuDgYPz4449wcnJCu3btcOXKFYl9rl27hg4dOsDR0REDBgxAcHCwxPpt27ahUaNGcHZ2xvTp05GUlCReV1C9FHTurxUeHo4xY8bAzc0NjRo1wsKFC5GSkiKX5Q0KCsLgwYPh7OyMpk2bwsvLq9Dnk7Wyfmno0KGYOnWq+LU0f3cKOvfXOnv2LOzs7CT+jRkzRi7Lm5qaijlz5qBu3bpo0KABli9fDkEQ5LKsRJRTbGwsZsyYgQYNGqBevXqYOnUqYmNjxeulmXsqClnJZ0tTWc0p5UFZyuNkWVnNn2RZWFgYhg0bhjp16qB58+bYtm2beB3rlOQF7/XJtsePH+e4T9CtWzfxeuYo8oF1LT1l9V4c5U5R2jtIwQhUajIyMoQ//vhDsLW1FQ4dOiSxbtiwYcLAgQOFp0+fCgcOHBBq164t+Pr6CoIgCAkJCULDhg2FRYsWCS9evBDmzp0rNGjQQEhISBAEQRB8fX0FBwcH4ciRI4K/v7/Qr18/YejQoeJjb968WWjSpIlw+/Zt4fr164KHh4fg5eVVqHNLyx9//CF07NhR8PPzE/7991/B2dlZOHXqlFRj+lJycrIwcuRIwdbWVrhx44YgCIKQmZkpdOzYUZg4caLw4sULYePGjYKjo6Pw5s0bQRAE4c2bN4KTk5OwefNm4dmzZ8LYsWOFDh06CJmZmYIgCMLp06cFFxcX4cKFC4Kvr6/Qrl07Yc6cOeJz5lcvBZ37a2VmZgrff/+9MGTIEOHZs2fC7du3hVatWgmLFi2Su/JmZGQIrVu3FiZOnCgEBgYKly5dEurUqSP8888/clfWLx0/flywtbUVpkyZIgiCdH93Cjr3t1i/fr0wbNgw4d27d+J/MTExclne33//XWjdurXg6+srXLt2TXB3dxf27t0rl2UlopzGjRsndOvWTXj48KHg5+cn9OjRQxg9erR4vTRzT0UhC/lsaSqrOaU8KEt5nKwri/mTrPv++++FcePGCYGBgcLZs2cFR0dH4d9//2WdktzgvT7Zd/ToUaFz584S9wmioqIEQZDufT4qXqxr6SmL9+Iod4rS3kGKhw3hpeTt27dCv379hKZNmwqurq4SyXFQUJBga2srBAcHi5dNnz5dfCPj4MGDQvPmzcU/HpmZmUKrVq3Ex/j111/F2wqCIISGhgp2dnbC69evBUEQhCZNmkicz9vbW2jWrFmhzi0NCQkJgr29vfjHVhAEYd26dUK/fv2kFtOXnj9/LnTq1Eno2LGjxB+Ga9euCU5OThKNOgMHDhRWr14tCIIgrFy5UqIciYmJgrOzs3j/Pn36iLcVBEG4ffu24ODgICQmJhZYLwWd+2u9ePFCsLW1FSIiIsTLjh07Jnh4eMhdecPDw4WxY8cKcXFx4mUjR44UZs2aJXdl/dyHDx+Exo0bC927dy8TvzsFnftbTJw4Ufjzzz9zLJe38n748EGoWbOmcPPmTfGyTZs2CVOnTpW7shJRTgkJCUKNGjWE+/fvi5fdvXtXqFGjhpCcnCzV3FNRyEI+W9rKak4p68paHifLymr+JMuio6MFW1tb4enTp+Jlo0aNEubMmcM6JbnAe33yYfny5cKECRNyXcccRT6wrqWrLN6Lo5wUqb2DFA+HRi8ljx49gpmZGQ4dOgQdHR2Jdb6+vjAzM4OlpaV4mYuLC+7duyde7+LiApFIBAAQiUSoU6cO7t+/L17v6uoq3tfMzAzm5ubw9fVFeHg4wsLCULduXYljv3nzBu/evSvw3NLw5MkTpKenw9nZWSImX1/fMjOs5q1bt+Du7o79+/dLLPf19UXNmjVRrlw58TIXF5c83ytNTU3UqlUL9+/fR0ZGBh4+fCix3snJCWlpaXjy5EmB9VLQub+WsbExvLy8YGRkJLE8Pj5e7sprYmKClStXQltbG4IgwMfHB7dv34abm5vclfVzixcvRufOnVG1alXxMmn+7hR07m/x8uVLWFtb51gub+X18fGBtrY23NzcxMuGDh2KhQsXyl1ZiSgnJSUlbNy4ETVq1JBYnpGRgYSEBKnmnopCFvLZ0lZWc0pZV9byOFlWVvMnWaahoQFNTU0cPnwYaWlpCAgIwN27d1GjRg3WKckF3uuTD3ndJwCke5+Pig/rWrrK4r04ykmR2jtI8bAhvJQ0b94cS5YsgYGBQY51ERERMDExkVhmaGiI8PDwfNe/ffsWAPDu3bs810dERACAxPrsm0/Z6/M7tzRERESgfPnyUFNTEy8zMjJCSkoKoqOjpRbX5/r06YPp06dDU1NTYnlB71V+62NjY5GSkiKxXkVFBfr6+uL3Kr96KejcX0tXVxeNGjUSv87MzMSuXbtQr149uSxvtubNm6NPnz5wdnZGmzZt5Las169fx507d/DLL79ILJfm705JlVcQBAQGBuLKlSto06YNWrZsiWXLliE1NVXuyhscHAwLCwt4e3vju+++Q4sWLbBu3TpkZmbKXVmJKCcNDQ00btxY4u/Kjh07YGdnBwMDA6nmnopCFvLZ0lZWc0pZVhbzOFlWVvMnWaauro6ZM2di//79cHR0RNu2bdG4cWP07NmTdUpygff65MPLly/h7++Pjh07omnTppg5cybi4+MBSPc+HxUf1rX0lNV7cZSTIrV3kOJRkXYA8iI5OTnPH1JjY2OJp1a+lJSUJPFlBwA1NTWkpqYWan1ycnKe65OTk8WvP18HAKmpqQUeWxryigmAVOMqjG95L3N7rz5fLwhCvvVSWu/l0qVL8fjxY/z999/Ytm2b3JZ39erViIyMxOzZs7Fw4UK5fG9TUlIwa9YszJw5ExoaGhLrpPm7U1LlDQ0NFR975cqVCAkJwbx585CcnCx35U1MTERQUBD27duHhQsXIiIiAjNnzoSmpqbclZVIURUl99y1axdOnToFLy8vANLNPRWFLOezpaWs5JSyqqzmcbKsrOZPsu7ly5do1qwZfvrpJzx//hxz585F/fr1WackE3ivTz7k9z4aGBggODgYlpaWWLBgAWJjY7Fw4UL8+uuv2LBhg1TvBVHxYW4uPWX1XhwVnjzeEyfFw4bwYuLr64sBAwbkum7dunVo2bJlnvuqq6vn+PKmpqaKb2h87XpNTU2JHw51dXXx/4GsYSoKOrY05BUTAKnGVRjq6uo5niQszHulq6ub4/35fL2mpiYyMjLyrZeCzl0cli5diu3bt2PFihWwtbWV6/La29sDyLrJOGnSJHTv3h1JSUl5nk8Wy7p27VrUrl1bondWNmn+7pTU75KFhQVu3rwJPT09iEQi1KhRA5mZmfj111/h5uYmV+VVUVFBfHw8/vzzT1hYWADIuvjYu3cvrKys5KqsRIqqsLnn7t27MW/ePEybNg0eHh4ApJt7KgpZzmdLQ1nKKWVVWc3jZFlZzZ9k2fXr1/H333/j8uXL0NDQgL29PcLDw7FhwwZUrFiRdUplHu/1yYeC3scbN25AXV0dqqqqAIBFixahe/fuCA8PZ44iJ5ibS09ZvRdHhSfP9/9JcbAhvJi4u7vj6dOnX7WvqakpIiMjJZZFRkbC2Ng43/XZw0Lkt7+pqSmArCEqsufEyB46JHt9fueWBlNTU3z48AHp6elQUcn6iEZEREBDQwO6urpSi6swTE1N8eLFC4llhXmvatSoAX19fairqyMyMhJVqlQBAKSnpyM6OhrGxsYQBCHfeino3N9q7ty52Lt3L5YuXYo2bdrIZXkjIyNx//59iYvZqlWrIi0tDcbGxggICJCbsgLAiRMnEBkZKZ6HJTvROHPmDDp06CC1352CfvO+hb6+vsTrKlWqICUlBcbGxnJVXmNjY6irq4tv4gJA5cqVERYWBjc3N7kqK5GiKkzuuXnzZixZsgSTJ0/GwIEDxculmXsqClnOZ0taWcspZVVZzeNkWVnNn2SZn58frKysJG5W1qxZExs3boSrqyvrlMo83uuTD0V9H7PzifDwcOYocoK5uXSVxXtxVHjydv+fFBPnCC8DnJyc8ObNG4m5DXx8fODk5AQAcHR0xL179yAIAoCsuTXu3r0LR0dH8XofHx/xvmFhYQgLC4OjoyNMTU1hbm4usd7Hxwfm5uYwMTEp8NzSUKNGDaioqOD+/fsSMdnb20NJqWx/ZB0dHfHo0SPxsB9AVux5vVdJSUl4/PgxHB0doaSkBHt7e4n19+/fh4qKCqpXr15gvRR07m+xdu1a7Nu3D8uXL0f79u3ltrwhISEYNWqUxJBZfn5+MDAwgIuLi1yVFQB27tyJY8eOwdvbG97e3mjevDmaN28Ob29vqf7uFHTur/W///0P7u7uEj37/f39oa+vDxcXF7kqr6OjI1JSUhAYGCheFhAQAAsLC7l8b4kopyNHjmDJkiWYNm0aBg8eLLFOmrmnopDlfLYklcWcUlaV1TxOlpXV/EmWmZiYICgoSKKnT0BAACwtLVmnJPd4r082vHjxAs7OzggODhYv8/f3h4qKCqysrJijyAnWtfSU1XtxVHjydv+fFJRApa5Zs2bCoUOHJJYNGjRI6Nevn+Dv7y8cOHBAsLe3F3x9fQVBEIS4uDihXr16wty5c4Xnz58Lc+fOFRo2bCgkJCQIgiAId+/eFWrVqiUcOHBA8Pf3F/r16ycMGzZMfOxNmzYJHh4ewo0bN4QbN24IHh4ewpYtWwp1bmn5/fffhfbt2wu+vr7C2bNnhTp16ghnzpyRakx5sbW1FW7cuCEIgiCkp6cL7dq1E8aNGyc8e/ZM2LRpk+Dk5CS8efNGEARBCA4OFuzt7YVNmzYJz549E8aOHSt07NhRyMzMFARBEI4fPy7UqVNHOHv2rODr6yu0b99emDt3rvhc+dVLQef+Wi9evBBq1KghrFixQnj37p3EP3krb3p6utCtWzdh0KBBwvPnz4VLly4JDRo0ELZt2yZ3Zc3NlClThClTpgiCIN3fnYLO/bXi4uKERo0aCRMmTBBevnwpXLp0SfDw8BA8PT3lsrxDhw4VfvjhB8Hf31/477//hHr16gnbt2+Xy7ISkaQPHz4ITk5OwpQpU3L92y0I0s09FYUs5bOloazmlPKirORxsq4s5k+yLDY2VmjYsKHw66+/CgEBAcL58+cFNzc3Ye/evaxTkju81yebMjIyhM6dOwsDBw4Unj59Kty+fVto166dMGvWLEEQpHufj4oX61o6yuq9OMqfvLd3kOJhQ7gU5JYcR0ZGCsOGDRPs7e2F5s2bC8eOHZNY7+vrK3Tp0kWwt7cXevToITx69Ehi/aFDh4QmTZoITk5OwsiRI4WoqCjxuvT0dGHBggWCq6ur4O7uLixdulT8Q1SYc0tDYmKiMHnyZMHJyUnw8PAQtm7dKu2Q8vT5HwZBEIRXr14Jffv2FWrXri20b99euHr1qsT2ly5dElq3bi04ODgIAwcOFF6/fi2xftOmTUL9+vUFFxcXYdq0aUJycrJ4XUH1UtC5v8amTZsEW1vbXP/JY3nfvn0rjBw5UqhTp47QsGFDYcOGDeLvi7yV9Uuf30AVBOn+7hR07q/17Nkz4ccffxScnJyEhg0bCmvWrBHHJW/ljY2NFX799VfByclJqF+/vlyXlYgkHT9+PM+/3cHBwYIgSDf3VBSylM+WhrKcU8qDspTHybKymj/JsufPnws//vijUKdOHaFly5bC1q1bWackl3ivT3aFhoYKI0eOFFxdXQU3Nzdh7ty5QkpKing9cxT5wLqWnrJ6L47yJu/tHaR4RILwcewJIiIiIiIiIiIiIiIiIiIiOcBJMIiIiIiIiIiIiIiIiIiISK6wIZyIiIiIiIiIiIiIiIiIiOQKG8KJiIiIiIiIiIiIiIiIiEiusCGciIiIiIiIiIiIiIiIiIjkChvCiYiIiIiIiIiIiIiIiIhIrrAhnIiIiIiIiIiIiIiIiIiI5AobwomIiIiIiIiIiIiIiIiISK6wIZyIiIiIiIiIiIiIiIiIiOQKG8KJ5NThw4dhZ2eHgwcPSjsUsebNm+Pw4cN5rj9+/Di6du0Ke3t7uLu7Y+zYsQgKCiq24xeXNWvWoH///sW+r52dHW7evCl+ffXqVfTq1QuOjo5wcXHBkCFD4OfnJ15/8+ZN2NnZif/VrFkTDRo0wOTJkxEZGflV8REREREBzCVLEnNJIiIikmfMI0sO80gioqJjQziRnDpx4gQqVaqEo0ePSjuUQjl37hxmzZqFwYMH4+TJk9iyZQsyMjLQr18/xMfHSzs8CYMGDcKaNWtK9Bx+fn745Zdf0LFjR/zzzz/Yu3cvzM3NMWDAAISEhEhse+XKFVy5cgXnz5/HypUrERAQgIEDByIxMbFEYyQiIiL5xVyy5DCXJCIiInnGPLLkMI8kIio6NoQTyaH379/j+vXrGDlyJO7cuYPg4GBph1Qgb29vdOvWDR06dEDFihVRq1Yt/Pnnn4iPj8fly5elHZ4ELS0t6Ovrl+g5jh07hoYNG6Jv376wsrKCra0t5syZA2NjY5w8eVJiW2NjYxgbG8PMzAxubm7w9PREREQE9u3bV6IxEhERkXxiLlmymEsSERGRvGIeWbKYRxIRFR0bwonk0OnTp6Gjo4NOnTrBxMRE4gnM5s2bY/fu3fj+++9hb2+Pzp07i4e2CQkJgZ2dHf7991+0bNkS9vb2GDZsGKKjowFkDW3UvHlziXP1799f/CRiamoqFi5ciEaNGqFWrVpo3rw59u/fX6iYlZSU4Ovri4SEBPEydXV1eHt7o0mTJkU+fnx8PKZNm4b69eujdu3a+O6773Du3Dnxejs7O6xatQru7u4YPnw4Wrduja1bt0oco2PHjrkO4/T5UEKHDx9G//79sXr1ari7u8PV1RULFy6EIAiFKnd+9fH06VO8f/9evEwkEmHLli34/vvv893XwMAALVu2xNmzZ78pBiIiIlJMzCWZSzKXJCIioq/BPJJ5JPNIIipr2BBOJIdOnDiBpk2bQklJCc2bN4e3t7dEErRmzRoMHToU//zzD3R0dDBv3jyJ/Tdu3Ijly5dj165dePjwYY5kLC+enp64dOkS1qxZg9OnT6NLly6YO3duoeaG6dOnD/z8/NC4cWOMHz8eBw8eRHh4OKysrKCtrV3k48+fPx+BgYHYsmULjh8/DldXV8yYMQOpqanibS5evIi9e/di0qRJaN++Pc6cOSNe9/LlSwQGBqJ169YFxn7v3j0EBgZi7969+P3337Fjxw5cu3atMFWWpx49eiAqKgrNmjXDiBEjsHPnTrx+/RoWFhaFevKzatWqePny5TfFQERERIqJuSRzSeaSRERE9DWYRzKPZB5JRGUNG8KJ5ExYWBju3r2Lli1bAgBat26N4OBg+Pj4iLfp2rUrWrZsicqVK+Onn34SP32ZbcyYMXBwcICjoyM6duyIhw8fFurc1atXx/z58+Hk5ISKFSti+PDhSEtLw6tXrwrct169eti9ezfq1auHCxcu4LfffkOzZs3wxx9/IDMzs8jHr1u3Lv744w/UqFED1tbWGDRoEKKjoyWeZvzhhx9gY2ODqlWrokOHDrh//z7evn0LADh16hQ8PDygp6dXYOwZGRmYO3cubGxs0LlzZ1SvXr3QdZaXKlWq4ODBg2jdujVu376NefPmoVWrVhg7diySkpIK3F9HR0fiSVYiIiKiwmAumYW5JHNJIiIiKhrmkVmYRzKPJKKyRUXaARBR8Tpx4gTU1dXh4eEBAHBzc4Oenh6OHDkCV1dXAIC1tbV4e21tbaSlpUkcw8rKKt/1eWnZsiWuXr2KRYsWISAgAI8fPwaQlZQVhrOzM9atW4eUlBTcunUL3t7e2L17NypVqoQff/yxSMfv0qULzp07hwMHDiAgIACPHj3Ksa2FhYX4/1WqVIGdnR1Onz6NH3/8EadOncKwYcMKFbehoaH4CVEgq87S09Nz3VZFRUWcRH8ue5mKyqef5apVq2LZsmVIT0/HvXv3cOLECRw4cADGxsb47bff8o0pPj5eIiYiIiKiwmAumYW5JHNJIiIiKhrmkVmYRzKPJKKyhT3CieTMiRMnkJycDBcXF9SsWRMODg6IiYnB6dOnkZycDABQVVXN9xh5rReJRDmWfZ5crVixAr/++itUVFTQpUuXQs/Fk5CQgD/++EP85KO6ujoaNWqEP//8E+3atRMP6VOU40+ePBmLFy+Grq4uevfujU2bNuXYRl1dXeJ1+/bt8e+//+Lly5cICQlBixYtChW/mppajmV5zcejq6uLuLi4HMtjY2PF6wFg8eLFePLkCYCsRLRu3bqYPXs2Bg0ahOvXrxcY09OnT1GtWrVCxU9ERESUjblkFuaSzCWJiIioaJhHZmEeyTySiMoW9ggnkiOBgYF4/PgxfvvtN7i7u4uXv3jxAuPHj8fZs2e/6fiqqqoSQ9sIgoCQkBDx63379mH27Nlo27at+LzZ2+VHQ0MDx44dEz9l+TkdHR1xcljY48fHx+P48eM4cOAAHBwcAACXL18uMJYOHTpg1apV8Pb2RpMmTaClpZVv3F/Dzs4OAQEBiImJkRjiyNfXF5qamuInY69cuYL09HTMmDFDYn9dXV0YGBjke47o6GicO3cO48aNK+7wiYiISI4xl8zCXJK5JBERERUN88gszCOZRxJR2cOGcCI5cuLECejr6+OHH36QeCLQ1tYW69atg7e39zcdv3bt2oiOjsbOnTvRtGlT7Ny5EzExMeL1+vr6uHjxImrXro3w8HAsWLAAAJCamprvcZWVlTF8+HAsX74cqampaNmyJdLT03Ht2jUcO3YMO3fuLNLx1dTUoKmpiX///RcGBgYIDAzEH3/8UWAs5ubmcHBwwPbt27F06dKiV1Ah1KlTB7a2thg7dizGjx8PAwMD+Pv7Y9GiRejXr5/4yddffvkFEyZMgLq6Ojp27AhVVVXcvXsXXl5eWLhwocQxIyIiAGQ9Cfvq1SssXboUZmZm6NmzZ4mUgYiIiOQTc8kszCWZSxIREVHRMI/MwjySeSQRlT1sCCeSIydOnEDHjh1zHRand+/emD9/PpSUvn5GBGtra0yZMgUbNmzAypUr0a1bN7Rp00a8fsGCBZg9ezbat28PU1NT9OzZE8rKyvD390fjxo3zPfbgwYOhp6eHvXv3YsOGDQCykty//voLtWvXLtLx1dTUsHTpUixevBg7d+6EpaUlRowYgZUrV8Lf3x9VqlTJM4527drh6dOnaNq06VfXU36UlJTg5eWFpUuXYuTIkYiJiUGFChXwww8/4OeffxZv17ZtW6ipqWHLli3Yu3cv0tLSYGdnhwULFuQYHil77iVVVVVUqFABzZo1w4gRI3IMs0RERESUH+aSWZhLMpckIiKiomEemYV5JPNIIip7REJB44MQESmQFStW4O3bt1i8eLG0QyEiIiIiGcNckoiIiIi+BvNIIqKSwR7hREQAnjx5An9/f+zZs0f89CcRERERUWEwlyQiIiKir8E8koioZH39eCRERHLEz88Pc+bMQc+ePeHq6irtcIiIiIhIhjCXJCIiIqKvwTySiKhkcWh0IiIiIiIiIiIiIiIiIiKSK+wRTkREREREREREREREREREcoUN4UREREREREREREREREREJFfYEE5ERERERERERERERERERHKFDeFERERERERERERERERERCRX2BBORERERERERERERERERERyhQ3hREREREREREREREREREQkV9gQTkREREREREREREREREREcoUN4UREREREREREREREREREJFfYEE5ERERERERERERERERERHKFDeFERERERERERERERERERCRX2BBORERERERERERERERERERyhQ3hREREREREREREREREREQkV9gQTkREREREREREREREREREcoUN4USkUARBkHYIZSIGIiIiIiobeVlZiEHWsM6IiIhIGspCDlIWYlA0rHMi2caGcFIoEydOhJ2dHbZs2SLtUAqlefPmmDp1ar7bJCYmYs2aNWjXrh0cHBzg4uKCXr164eDBg0X+I33z5k3Y2dnh5s2b3xL2V1uzZg3s7Owk/jk4OKBNmzZYvHgxoqOjJbafOnUqmjdvXujjP3/+HL179y5wu8OHD8POzg4hISFfdZ78rF+/Hps3bxa/zi5zaSiucjRv3lziPapevTrc3d0xfPhwPHnypBgiLZwvy2NnZ4c1a9aU2vmJiEj2MTfMH3PDLMwNC6c0vk+pqalYsGABjh07VizH+/w7FRISAjs7Oxw+fLhYjk1ERPKHuWP+mDtmYe5YOLLwfYqNjcXkyZNx584d8bL+/fujf//+UoyKiIpKRdoBEJWWuLg4nDt3Dra2tti/fz9++ukniEQiaYf1TQRBwPDhwxEQEIChQ4eiWrVqSElJwZUrV/D777/j+fPnmD59urTDLLL9+/cDyCpfYmIiHj58iL/++gsXLlzA3r17YWBgAAD45ZdfMGDAgEIf9/Tp07h3716B2zVt2hT79++HiYnJ1xUgH6tWrcKoUaPEr3v27IlGjRoV+3lyU9T6yk+TJk3wyy+/AADS09Px7t07bNmyBQMHDsTJkydhaGhYLOfJT3GWh4iIFA9zQ9nB3LBkFGcuVVrfp3fv3mH79u1YuHBhsR/bxMQE+/fvR6VKlYr92EREJPuYO8oO5o4lQxZzx2/l7++Po0ePonv37uJls2bNkmJERPQ12BBOCuP48eMAgBkzZmDgwIG4ceMG6tevL+Wovo2Pjw9u3ryJLVu2oGHDhuLlTZs2hZKSEnbt2oWff/4ZxsbGUoyy6JycnCReN2zYEA0aNECfPn2wfPlyzJs3DwBK7CaVgYGBOCkuaRUqVECFChVK5VzFWV8GBgY53id7e3u0bNkSp0+fRt++fYvtXHnhTUoiIvoWzA1lB3PDklGc9SUP3yc1NbUcnzUiIqJs8vC37kvMHZk7FgVzxyxVq1aVdghEVEQcGp0UxqFDh1C/fn3Uq1cPVlZW2Ldvn8T6/v37Y8aMGfD09ETTpk1hb2+PXr164cGDB+Jt1qxZg1atWuHSpUvo2LEjateujTZt2sDb21u8zZfD32T7cjiiqKgozJkzB82aNUPt2rXh5uaGkSNH5tgvPxEREQCAzMzMHOv69OmD8ePHSzxNd/v2bQwePBh169ZF7dq10bx5c6xZsybX/bOdO3cOffr0gbOzM2rXro3vvvsOu3fvFq/PHvZo3759aNasGerUqYNz587Bzs4OV65ckTjWnTt3YGdnBx8fn0KXMZuDgwNat24Nb29vJCUlAcg5JI+fnx8GDhwIFxcXODs748cff8T9+/cBZL13a9euBSA5hLadnR3Wrl2Lbt26wcHBAWvXrs3zPdy/fz+aNm0KBwcHDBw4EI8fPxavy2sooi/PBQBr164V/z+3/U6ePIlu3brB2dkZDRs2xMyZMxETEyNxroI+h7n5sr6aN2+O1atXY/HixWjQoAEcHBwwePBgvHr1Kt/j5EVPTy/HsubNm2PBggUYOHAgHBwcMGPGDADAkydPMGrUKNSrVw+1atVCo0aNMG/ePCQnJwP49D3K7V/296i4h2QiIiLFwtyQuSFzw+LLDQv6PmUf/8vhWb+s2+TkZMyePRuNGzcWf76yh/8MCQlBixYtAADTpk0Txz516lQMHDgQs2bNQp06ddCuXTtkZGQU+TuV29DoX/MdISIi+cTckbkjc8fSzR379++PSZMmYcyYMXBycsJPP/0EIGuEoPHjx8PNzQ1169bFzJkzsWLFihz3CA8ePIj27dujdu3aaNq0KdasWYOMjAyJ8vz44484dOgQ2rRpg9q1a6Nz587477//AGR9NrN7wA8YMEA8HPqXQ6Pb2dlh9+7dmDFjBtzc3ODs7IyxY8ciMjJSvE1GRgY8PT3RoUMHODg4wMnJCb169cKNGzcKrCsi+nZsCCeF8Pz5czx8+BBdunQBAHTp0gXnz5+X+IMEAGfOnMH58+fx22+/Yfny5YiMjMTo0aMl/khGRETgjz/+wIABA+Dp6QlLS0tMmTIFL1++LHQ8giBg2LBhuHr1KiZNmoTNmzdj1KhRuH79epGGV3Fzc0O5cuUwYcIELF26FDdv3hQ3JFpbW+Pnn3+GkZERgKyGxx9//BH6+vpYsWIFNmzYAFdXV6xduxanTp3K9fiXLl3CyJEjUatWLaxfvx5r1qxBxYoV8ccff8DX11di27Vr12LKlCmYOXMmGjRoABMTExw9elRiG29vb1hbW8PFxaXQZfxcw4YNkZaWhocPH+ZYFx8fjyFDhqB8+fJYs2YNVqxYgaSkJAwePBhxcXHo2bMnevToASAr8ezZs6d4340bN6Jjx45YvXo12rRpk+u53759i7Vr12LcuHFYvnw5YmJi0L9/f4SGhhY6/uyhmXr06CH+/5fWr1+PCRMmwMnJCatXr8bIkSNx5swZ9O/fX/zeAsXzOQSAHTt2ICAgAAsXLsS8efPg5+eHKVOmFLifIAhIT09Heno6UlNTERoaivnz58PIyAht27aV2Hb37t2wt7fH+vXr0aNHD7x79w59+/ZFUlISFi1ahL/++gvt27fHzp07sWPHDgCfhpH6/N93330HFRUVdO3atUhlJCIi+hJzQ+aGzA1z9zW5YWG/T4WxYMEC/Pfff5gyZQo2b96MFi1aYMmSJTh06BBMTEzEN6BHjBgh/j+QdWM8LCwM69atw8SJE6GkpPTN36mv+Y4QEZF8Yu7I3JG5Y+5KOnc8deoUtLS0sGHDBgwZMgSpqakYOHAg7t69i+nTp2PhwoV48uRJjnnGN23ahN9//x3169fHxo0b0bdvX/z111/4/fffJbbz8/PD5s2bMWbMGKxbtw7KysoYPXo0YmJiUKtWLcycORMAMHPmzHy/WytWrEBmZiaWL1+OyZMn4+LFi1iwYIF4/bJly7B+/Xr88MMP8PLywty5cxEdHY2xY8eKH8wgopLDodEBpKamolu3bvj999/h7u5eLMccMWIELly4ILFs48aNaNasWbEcn4rm0KFD0NfXFz8Z1rVrV6xZswZ///03hg8fLt4uPT0dmzdvhra2NgAgISEBU6ZMgb+/P2rXrg0ASEpKwvz588XDtVhbW6NZs2a4fPkyqlSpUqh43r17B01NTUyZMgWurq4AAHd3d7x+/TrPRCY3hoaG+OuvvzB16lR4eXnBy8sLqqqqcHJyQqdOndC9e3coKysDyEpYGzRogKVLl0JJKesZmIYNG+LChQu4efMm2rdvn+P4L168QNeuXcW9eAHA2dkZ7u7uuHnzJhwdHcXL+/Tpg++++078umvXrti5cycSEhKgpaWF5ORknDp1CkOHDi10+b6UnXznlhi9ePECHz58wIABA1CnTh0AgI2NDfbv34+EhASJoYK+HCLJ1dVV/FQhgFwT4oyMDKxbtw4ODg4AAEdHR7Rs2RI7d+4sVMPx5+etUKFCrsMuxsTEYMOGDfj+++/FiRYA2Nraom/fvjh06JB4yPHi+BwCgK6uLtavXy/+nLx+/Rpr1qzBhw8fUL58+Tz38/b2zvGkqEgkwtKlS3MM/2Rubo5JkyaJX1+5cgU1atTAqlWrxN+1Bg0a4OrVq7h58yaGDh2aYxips2fP4syZM5g+fXqx/U4TERUH5pGyibkhc0Pmhrn7mtywsN+nwrh16xYaNmwo/vy5u7ujXLlyMDQ0hJqaGmrUqAEga2jOmjVrivdLT0/HH3/8IX5Pw8PDv/k79TXfESKiomAeKTuYOzJ3ZO6Yu5LOHVVVVTFnzhyoqakBAP7++28EBATg0KFD4u9UvXr10LJlS/E+cXFx4kbn3377DQDg4eEBfX19/Pbbb/jpp59QrVo18baHDx8WD/terlw59OvXDzdu3ECbNm3Ew6BXrVo13yHRbW1tsXDhQvHrBw8e4PTp0+LX2b3YP+9Jrq6ujtGjR+Pp06ecnoeohCl8Q3hKSgomTpyI58+fF+txX758iaVLl0rMbZHbsMFU8tLS0vDPP/+gZcuWSE5ORnJyMrS0tODi4oIDBw5g6NCh4gSuatWq4mQVAExNTQEgx5NZn/9xyk6CEhMTCx2TqakpduzYAUEQEBISgqCgIAQEBODu3btITU0tUvlcXV3x77//wsfHB1euXMGtW7dw//593L59G97e3tiyZQs0NDTQpUsXdOnSBSkpKQgMDERQUBD8/f2RkZGBtLS0XI89ZMgQAFmJe2BgIF6/fi1O5r6MM/umVLbu3btj06ZNOHv2LLp06YKzZ88iMTFR/LRfcatWrRoMDAwwfPhwfPfdd2jUqBEaNmyIX3/9tcB9v4w9NxUrVhQnqwBgbGwMJycn3L59+5vi/tz9+/eRmpqKDh06SCx3dXWFhYUFbt26JTH39rd+DoGseb2zk9XPj5OUlJRvQ3izZs0wcuRIAFlPIkdFReHUqVOYNGkSkpKS8P3334u3/bJ+PTw84OHhgbS0NLx48QJBQUF49uwZoqKioK+vn+NcT548weTJk9GlSxfxkERERGUB80jZxNyQuWFBmBsWPjcsyvepMNzd3bFv3z68ffsWTZo0QZMmTcQ5Z3709fUl5scsju/U13xHiIgKi3mk7GDuyNyxIMwdSy53tLGxETeCA8CNGzdQsWJFcSM4AGhra6NZs2a4efMmAODevXtITk5G8+bNkZ6eLt4uu+H96tWr4oZwAwMDibnPP4+/KL5syK5QoYLEMf78808AWVMaBAQEICgoCBcvXgSQ87tARMVPoRvCX7x4gYkTJ0IQhGI9bmpqKkJCQmBvbw9jY+NiPTYV3aVLl/D+/Xv8/fff+Pvvv3Os/9///ocmTZoAADQ1NSXWZf/h/XKum8+3y96mqJ+jf/75B8uXL0dYWBj09fVRo0YNaGhoFOkYn8dQt25d1K1bF0DWE4ArVqzA3r178ffff6Nfv35ITk7G3LlzcfToUaSnp8PS0hLOzs5QUVHJM/aoqCjMmjUL586dg0gkgpWVlfhJ0y/3KVeunMRrKysruLm5wdvbG126dIG3tzcaNGggvgj4Gm/fvgUAiZtc2bS0tLB7925s2LABp06dwv79+6GhoYHOnTvjt99+k0iavvRl7LnJfmr0c4aGhggLCytCCfKXPV9PbucyMjJCXFycxLLi+BwW9jP/JX19fdjb20ssa9q0Kd69e4elS5dKPDX8Zf1mDxW0e/duJCYmwszMDA4ODlBXV89xnvfv32PEiBGwsbHBnDlzilQ2IqKSxDxSdjE3ZG7I3DBvRc0Ni/J9KowZM2agQoUK+OeffzB37lzMnTsXzs7OmD17NqpXr57nflpaWjmWfet36mu+I0REhcE8UrYwd2TuyNwxbyWdO36Z43348AGGhoY59vt8WXR0NADkOXrAu3fv8oxfJBLlG39ecquHz+vy4cOHmDNnDh4+fAhNTU1UrVoV5ubmAIpe50RUdArdEH7r1i24u7tj/PjxOZ7auXPnDhYsWIAXL17AysoKo0aNynOOjy8FBARAJBKhYsWKJRA1FdWhQ4dQsWJFzJ8/X2K5IAgYNWoU9u3bV6SbMwXJ6w9mQkKC+P937tzBlClT0L9/fwwePFicxC1ZsgQ+Pj6FPte4ceMQHR2Nbdu2SSzX09PDzJkzcfLkSbx48QIAMH/+fJw5cwYrV65EgwYNxEna508Jf2nSpEkICAjAtm3b4OzsDDU1NSQlJeHAgQOFiq979+6YPn06Xr58ievXr2PZsmWFLlturl27hnLlyqFWrVq5rrexscHSpUuRkZGBBw8e4OjRo9i7dy8qVaokfgr1a2Unk5+LiIgQD9+d/b5nZGSIG4A/f88LI/sp7cjISNjY2OQ4lyz8ptSuXRvXrl3Dhw8fck28AcDT0xPbtm3DnDlz0Lp1a+jo6ACAeK6lbKmpqRg5ciRSUlKwbt26XBvKiYikhXmk7GJuyNyQuWHxKer36fM5UoGcvY7U1NQwYsQIjBgxAqGhobh48SLWr1+PiRMn4sSJE4WOqzi+U1/zHSEiKgzmkbKFuSNzR+aOxedbv0+mpqZ49epVjuXv378X/19XVxdA1rzc1tbWObbN635lScmef97Ozg4nTpyAjY0NlJSUcPnyZZw5c6ZUYyFSVIUfo0wO9enTB9OnT8/xxE5ERASGDRuGbt264dixYxgyZAimTp2KO3fuFOq4AQEB0NbWxuTJk+Hh4YEePXrg8uXLJVEEKkBERAT+97//oX379nB3d5f4V69ePXz33Xe4fPkywsPDi+2c2UMgZT9lCGQNTZX9NBqQNURLZmYmRo8eLU5WMzIycO3aNQCFf+rMysoKN27cwP3793Ose/fuHRITE2FrawsA8PHxgbu7O1q2bClOVv38/BAVFZXn+Xx8fNC6dWu4u7uLn3z877//Ch1jmzZtoKmpidmzZ0NLS0tivpai8vf3x/nz59G9e/dcG0RPnz6NevXqISIiAsrKyuKeI7q6uggNDQWAIg3L+KXsIZyyhYWF4d69e+J5vHJ733O7+MgvBkdHR6ipqeH48eMSy+/cuYPQ0FDxHEVl2cOHD6Gnp5fvsOo+Pj6oWrUqunfvLm4EDw8Px7NnzyQ+V7NmzYKfnx9Wr16d69O6RETSxDxSNjE3ZG7I3LD4FPX7pK2tLVEfgGSdJCcno02bNtiyZQsAwNzcHH379kX79u3F79nnQ2/mpzi+U1/zHSEiKgzmkbKDuSNzR+aOxac4vk9ubm4ICQmBv7+/eFlycjL+97//iV87OjpCVVUV4eHhsLe3F/9TUVHB8uXLERISUuiYC5t75icgIADR0dEYMGAAqlatKn4Pi/JdIKJvo9A9wvOye/duNGjQAP369QOQlRT4+/tj+/btcHV1RXh4OJKTk3Psp6amBjMzMwQEBCA5ORkeHh4YOnQozp49ixEjRmD//v05hhKmkuXt7Y309HS0b98+1/VdunTBwYMHC/0kYmG4u7tDQ0MDixYtwtixY5GQkIDVq1dLzH2cPSfMH3/8ge7duyMmJga7d+/GkydPAGT1jPh8TqG8DBo0COfOncNPP/2EPn36wN3dHZqamnj27Bm2bNmCatWqoVu3buJznjp1Cnv37kWVKlXw5MkTbNiwASKRKM95TxwcHHDs2DHUqlULFSpUwN27d+Hp6ZnvPp/T1NRE+/btsX//fvTu3TvfYYQ+l52AC4KAhIQEPHz4ENu2bYO1tTXGjh2b6z516tRBZmYmRo4ciaFDh0JLSwunTp1CXFwcWrduDeDTE4HHjx+Ho6NjkZ6EVFdXx4gRIzB+/HhkZGRg1apV0NfXx8CBAwEATZo0wcKFCzFz5kwMHjwYYWFhWLduXY4hfHR1dXH37l3cvn1bPBxUNn19fQwdOhTr1q2DqqoqmjVrhpCQEKxatQpVq1ZF165dCx1vSYuKipK4UEpKSoK3tzeuX7+OCRMm5JsoOjg4YP369fD09ISTkxOCgoKwadMmpKamij9X27Ztw+HDhzFo0CBoampKnEtNTQ01a9YsqaIREX0T5pFlG3ND5obMDYtPUb5Po0ePRrNmzbBp0yZs2rQJjo6OuHDhAm7cuCHeXkNDA7Vq1cLatWuhqqoKOzs7BAYG4siRI+LekNkPUV6/fh1VqlSBo6Njrucuju/U13xHiIi+BfPIsoe5I3NH5o7Fp6i5Y246dOgAT09PjBw5EmPHjoWuri62bt2K9+/fi4caL1++PIYMGYJVq1YhPj4e7u7uCA8Px6pVqyASifKdbudL2bnnpUuXoKenV6R9s1WuXBna2trYuHEjVFRUoKKigjNnzoiHhmdeSVTy2BCei4CAAFy8eBHOzs7iZWlpaahcuTKArGFdbt26lWO/6tWr4+jRo/jll1/Qv39/8XAk1atXx6NHj3DgwAEmnqXs8OHDqFatmvjpxS+5uLjA0tISBw8ehKWlZbE85aWrq4s1a9bgzz//xMiRI2FhYYFRo0bB29tbvI27uztmzpyJrVu34vTp0zAyMoK7uzvWrl2LkSNHwsfHp1DDKunp6WH//v3466+/cOHCBezduxdpaWmwsLBAhw4dMHToUPH8QFOnTkVaWhpWrlyJ1NRUWFpaYsSIEXjx4gUuXLiQY5hCAFi0aJF4bj4AsLa2xpw5c/DPP/8U+onkpk2bYv/+/eLEuTB++OEH8f81NDRQsWJF9O7dG0OGDMkzkTcxMYGXlxdWrVqFGTNmICkpCdWqVcOaNWtQr149AEDr1q1x9OhRTJ06FT169MDs2bMLHVPNmjXRpk0bzJ49G3Fxcahfvz6mT58uHsKocuXKWLx4MTZs2IChQ4eiSpUqEnWXbfjw4Vi/fj1+/vlnnDx5Msd5Ro8eDSMjI+zatQv79++Hvr4+vvvuO4wbN65Qcw6VlsuXL0s8WV6uXDlUrlwZs2bNQp8+ffLdd9iwYfjw4QN27NiBdevWwczMDJ07d4ZIJMKmTZsQGxuL8+fPAwC2bNki7hWUzcLCAhcuXCj+QhERFQPmkWUbc0PmhswNi09Rvk+//PILhg0bhqioKGzevBlpaWlo2rQp5s+fjxEjRoj3+eOPP7By5Ups2bIFERERMDQ0RI8ePcQ3rbW1tfHTTz9h//79uHz5Mq5evZrruYvjO1WY70hx/EYQEWVjHln2MHdk7sjcsfgUNXfMjYqKCjZv3oz58+dj9uzZUFFRQadOnaCvr4/AwEDxduPGjYOxsTH27NkDLy8v6OnpoX79+pgwYYK4cbswqlWrhg4dOmD37t343//+l6O3fWHo6Ohg/fr1WLJkCcaOHQstLS3UqFEDu3btws8//4w7d+6gefPmRT4uERWeSBAEQdpBlAV2dnbYsWMH3N3d8csvv0BPTw/Dhw+X2EZFRQUWFhZfdfwlS5bgxYsX8PT0LI5wiWTGrFmz4OvrK5GwExERyRPmkUSFx9yQiIjoE+aRRPlj7kife/78OQICAtC6dWvxvOoA0KNHD1SoUAFr166VYnREVFaxR3guKleujHv37sHKykq8bMuWLUhNTc2RjOZm6tSpEIlEWLhwoXjZkydP8nzaiUge7dixAwEBAThw4ACWLl0q7XCIiIhKBfNIotwxNyQiIsof80iiT5g7Um4SExMxduxY9OnTB61atUJGRgZOnjwJPz8/TJo0SdrhEVEZpSTtAMqiPn36wM/PDytWrMCrV69w7NgxLF++XDzPREGaN2+OY8eOwdvbG0FBQVi7di18fHzEc/wQKYI7d+7g6NGjGDhwIDp06CDtcIiIiEoF80ii3DE3JCIiyh/zSKJPmDtSbhwdHbFy5Uo8fPgQI0eOxOjRoxEUFAQvLy/xEPZERF/i0OgffT4UEQBcu3YNy5Ytw7Nnz2BqaoqffvqpSInjwYMH4eXlhdDQUFSrVg3Tpk1D3bp1Syp8IiIiIpIS5pFERERE9DWYRxIRERGVLDaEExERERERERERERERERGRXOHQ6EREREREREREREREREREJFfYEE5ERERERERERERERERERHKFDeFERERERERERERERERERCRXVKQdgLRERMSV6PENDLQQFZVQoueQFayLT1gXn7AuJLE+PmFdfFJidZGQAOPKZgCAiMAwQEur+M9RzL6sC2NjHSlGQ4qupPPIr8HfztyxXnLHeskd6yV3Za5eykgeU+bqpYyQhXphHknSVBbzyK8hC9/1kqKoZZf5cn9l/iDz5f5KilpuQHHLznIXDvNI2cQe4SVAJAKUlZUgEkk7EuljXXzCuviEdSGJ9fEJ6+IT1sUnrAui/PE7kjvWS+5YL7ljveSO9ZI71kvuWC9EikGRv+uKWnaWW9qRlC5FLTeguGVnuaUdCZU0NoQTEREREREREREREREREZFcYUM4ERERERERERER0VdITU3FnDlzULduXTRo0ADLly+HIAjSDouIiIiIwIZwIiIiIpJjqamp6NChA27evJnnNk+fPkXv3r3h4OCAjh074saNG6UYIRERERHJsnnz5uHatWvYvHkz/vzzTxw4cAD79++XdlhEREREBDaEExEREZGcSklJwYQJE/D8+fM8t4mLi8OgQYNQtWpVHDt2DK1atcKoUaPw/v37UoyUiIiIiGRRdHQ0Dh06hLlz58LBwQH169fHoEGD4OvrK+3QiIiIiAiAirQDICIiotKVmflpmL7wuGSYamlJMRqikvHixQtMnDixwGEpjxw5gnLlymH27NlQVlbGmDFjcPnyZfj5+aFJkyalFC0REeUnPVNAZHwK3iekIj0+Hi0/Ln8YFgtNfaC8pioMyqlCJBJJM0wiUkA+Pj7Q1taGm5ubeNnQoUOlGBGRYkvPyER8SgbiU9MRn5KO1AwBGZkCRIkJaPVxmxtBH6CinQZVZRHUVZSgpqIENWUlaKurQEddBcpKzCeIiOQJG8KJiIgUhCAI+MfvLbZdfIIrH5f13OqD6jammNSsCmxNtKUaH1FxunXrFtzd3TF+/Hg4OTnlu12LFi2grKwsXnbo0KFSiJCIiHKTkJqOu8ExePw2Dk/exeN5RAIi4lOQ/RyfZmoy/D9uO/LgQySpaQAAyqkqw1JfAzZGWrA304WjuS6qGmvxZjYRlajg4GBYWFjA29sbGzduRFpaGrp164YRI0ZASSn3gThl/Zmd7PhlvRxfQ1HLXhbKnZEpICw2GcEfkhAWm4KI+BREJqQiIj4V7+JT8D4hDfEp6UhJz8x1/8/zh8lHH4vzhy+JAOhqqEBPUxV6Giow1S8HQw1lmOqow1RXHRV01GGhpwFDLTW5fQCvLLzf0qKoZWe5pRsHlTw2hBMRESmA9IxMzDv7HCcehUMzNU28XFkE3AuJwU977mFO2+poaWcsxSiJik+fPn0KtV1wcDAcHBzw+++/48KFC7CwsMCUKVPg4uKS735l6UKJF2+5Y73kjvWSO9ZL7kqrXt7FpeDMk3f438so+IbGIiMz52geykoiGGmpQv+zVeZ66oiECmKT0pGYloFnEQl4FpGA0/7vAAB6mipoZGOIplUNUc+6PDRUlXMc92vw85I71gsposTERAQFBWHfvn1YuHAhIiIiMHPmTGhqamLQoEE5tjcw0IKysnzMVGloqCPtEKRGUcteGuVOz8hEYGQCHoXGwj8sFi8jEvDqfQJev09Eakbujdy5KaemDB0NFWioKkNZJIJW2qccoKa5DuKU1ZGSnonU9EykpGciOS0DiakZEADEJKcjJjkdAPAwLC7X4+uoq8DGRBtVjbVR1UQbtqbaqG2hB1Pd3BvYZZGifs4BxS07y03yig3hREREck4QBCw6/wInHoVDWQSM8LACVmSt2/+TKxZeC8WVgCj8dsIfmqrKaGhjIN2AiUpRYmIiPD09MWDAAPz11184ceIEBg8ejFOnTsHMzCzXfcrqDUxevOWO9ZI71kvuWC+5K4l6Sc/IxEm/tzhwOxhXX0bi85ksrAzLwdXKAPYWuqhloQcrw3Iw0lKHkpIISEgAfs/a7vykZoCWFlLSMxDyIQmvIhPg9yYWPq8/4N7rD4hJSsfxR+E4/igcepqq6Opsgd5ulWBXoXjKw89L7lgvpEhUVFQQHx+PP//8ExYWFgCA0NBQ7N27N9eG8KioBJl/WEQkyvqev38fhwJmIZI7ilr2kiq3IAh4E5OM+29i8TA0Fk/C4/EiMiHPXt2qyiJU1NeEuZ4GjLXVYKytDhNtNRhpq8NISxU66irQVleBlroKVL4cESYhAZie9d9NPR2AXKaIS8/IzGoET0r72BiehiQoISAsBm9jU/A2LhlvY1MQHpeCuJR0+AZHwzc4WuIYhlpqqGGqjRqm2qhZQQeOFrrQ1VAtjuoqNYr6OQcUt+wsd+HLbWTEPFcWsSGciIhIzh1+EIajD99CSQQs7lQTTcw0xetMtNWxrHMt/HHmKU4+foeZp55gZ786MNeTn6eYifKjrKyMGjVqYMyYMQCAmjVr4urVqzh69CiGDx+e6z5l7Qamol60FoT1kjvWS+5YL7kriXpJTM2A98Mw7LnzBm/jUsTLHS100crOGA0rG6BieU3JnVLSEJXycUSbhAQYfVwcGRkHJGXdLNcTAY7G5eBoXA59nSogPVOA75sYXHrxHheeRSI8LgXbrr3Ctmuv4G6lj8H1KqFORf2vKgM/L7mTlXrhDUwqTsbGxlBXVxc3ggNA5cqVERYWluc+Zfn7URSCID9lKSpFLfu3llsQBAS8T8St19HwfRMD3zexiExIzbGdpqoSqhlro5qxFmwMy6FSeU1UKl8OpjrqhZ7yJEecwhfrcimHspISDMqpwaCcGoCsv2tGRjqIjJT8u5aanonX0UkIikpE4PtEvIpKxIvIBAS+T8T7hFRcCYjClYCorGMAqGqshTqWenD++C/7+GWdon7OAcUtO8tN8ooN4URERHLsTUwSVl0OAACMbmyDJlWNsp6E/oyykgi/tbZFUFQSHr2Nw/x/n2FtD3u5ne+K6HPGxsawsbGRWGZtbZ3vzUugbF4k8eItd6yX3LFecsd6yV1x1EtaRiaOPAiD1/XX+JCU1ahdXlMV3RzN0KGWKSz1PzV+53uuQtzIBgBlkQh1LPVRx1IfYxvb4GbQB3g/fIv/XkTiZlA0bgZFw9lCF6Ma28DBXPerysTPS+5YL6RIHB0dkZKSgsDAQFSuXBkAEBAQINEwTqTIopPScCvoA268+oCbQR/wLl6y4VtFSYQaptpwMNdDzQrasDPRhqW+ZqEbvKVBTUUJVY20UNVIsld5UloGnr2Lx5PwePi/i8fD0Fi8/pCE5xEJeB6RgP33QgEA1U200aByeTSobIBaZro5e68TEVGxYkM4ERGRHPvzwkskpWWijqUe+rjkfTNGVVkJ89pXxw/b7uDW62icfRqB1tVNSjFSIulwcnLC7du3JZYFBASgQ4cOUoqIiEj+XH4RiRWXAvAmJhkAUFFfA/3rVkTbGibFNm93fpSVRGhQ2QANKhvgTUwSdt4OwT9+b3HvTSwG772PNtWNMXNDdukAAQAASURBVKpRZVSQo3k9iah02NjYoGnTppg2bRpmz56NiIgIeHp6YsSIEdIOjUhqwmKTcfF5JC49j8T9N7ESz6ypqyjB2UIPdSrqwdFCFzVNdUolFygNmqrKcLTQg6OFnnhZZEIqfN/E4F5IDO6GxOB5RAKevIvHk3fx2HIzGLoaKnC3Ko/m1YzQ0MYAmnJSF0REZQkbwomIiOTU/ZAY/C8gCsoiYFqralAqoIe3pb4mfnSvBM9rQVj7v0A0q2YE1TI4DzLRt4qIiICOjg40NDTQq1cv7Nq1C2vWrEGnTp3g7e2N4OBgdO7cWdphEhHJvHdxKVh64QUuvXgPADAop4qhDazQuXYFqEgpx7DQ08TUltUw6GPO84/fW5x5EoFLL97jFw9r/OBsUaZ7oRFR2bNs2TLMnTsXvXv3hqamJvr27Yv+/ftLOyyiUhUSnYR/n0Tg4vNIPHkXL7GuilE51LMyQD1rfThZ6MlNw3dhGGmpoYWtMVrYGgMA3iek4sarD7gWGIUbQR8Qm5yOs08jcPZpBNRVlNCwsgFa2GY1imupsemGiKg48NeUiIhIDgmCgHVXAgEAnewrwNqgXKH26+9qiUO+YQiLTcHxR+Ho6mBWkmESSYWHhwcWLlyIbt26wcLCAl5eXpg/fz48PT1RpUoVeHp6wtTUVNphEhHJLEEQcPxROP68+BIJqRlQVhKhn6slBrlXQjm1snHz20RHHb+1sUVPJ3P8eekl7oXEYMWlAJx/Fonf29gWOnciItLR0cGSJUukHQZRqYtJSsO5ZxE4+fgdHoTGipcriQAnCz00rWaEplUNYcYRV8QMtdTQvpYp2tcyRXqmgEdhsfjv5XucfxaJNzHJuPA8EheeR0JdRQlNqxqifS1TuFUqz4f0iIi+ARvCiYiI5NDDsDjcfxMLNWURhtSzKvR+GqrKGFDXEisuBWDrzdfoWLsC56simff06dN8X7u4uODw4cOlGRIRkdyKT0nHwrPP8e/TCACAvZkOpreyRVVjrQL2lA47U21s+t4BRx6+xerLAXgQGot+O+9iSouq6Fi7grTDIyIiKlMyMgXcePUB3g/DcCUgCumZWQOfK4mAupX00dLWGI2rGsKgnJqUIy37VJRE4qHURzWqjGfvEnD+eQTOP4vE6w9JOPMkAmeeRMBEWw3f1TBFx1qmsDbkg3pEREXFhnAiIiI5tNfnDQDguxomMNFRL9K+3RzMsPVmMMJiU/C/l+/RrJpRSYRIREREcubx2zhMO/YYobEpUBYBwxpaY0DdimW+F5NIJEI3BzM0sC6PuWee4dbraPxx5hl8QmIwpUVVztdJREQK711cMrbdeI0jD7JGkMtWzVgL7Wqaok11YxhrF+3eA30iEolgZ6oNO1NtjGhojSfv4nHcLxxnnrzDu/hU7LgdjB23g+FSUQ89nczRpIqh1KaZISKSNWwIJyIikjNvY5Nx8XlWL6xedSyKvL+GqjK62FfAtlvBOHg/lA3hREREVKDT/u8w799nSEnPhLmeBua3r47aZrrSDqtIKuhqYE0Pe2y7GYxN117hxKNwPA2Px/KutTisKxERKSTfNzHYfy8UF59Hint/62qooH1NU3SqXaHMjvgiy0QiEWqY6qCGqQ7GNrHBlcAoHPd7i2uBUfAJjoFPcAyMtdXQ1d4MXR0qwIgPIBAR5YsN4URERHLmmF84MgTAtaIeqhlrf9UxujuaYcftYNx+HY1X7xM5/BYRERHlKiNTwIarr7D9VjAAwMPGAHPbVYe2umzeblASiTCoXiU4WuhixokneBGZgB9338OyzrVgby5bDftERERfIyNTwOUXkdh1JwQPw+LEyx3MddHNwQwtbI2gwdFSSoWaihKaVzNC82pGCI9LweEHYfB+EIaI+FR4Xg/C5puv8V0NE/R3tUQVIz6UQESUG7kaP+P9+/cYM2YMXF1d0apVK871SERECkcQBJx4HA4A6GT/9fNaVtDVgIeNIQDg+MfjEREREX0uNT0TM074ixvBB9StiGWda8lsI/jnXCrqY3tfZ1Qz1kJUYhqGH/DF2Y/znhMREcmj5LQMHLgXih5bb2PKMX88DIuDqrIIne0r4OSYRtjSxwnta5myEVxKTHXUMaKhNY4Pdce8dtXhaK6LjEwBJx6Fo9d2H4w/4of7ITEQBEHaoRIRlSmyf3X6kSAIGDlyJDIzM7Fjxw6Eh4djypQp0NbWRuvWraUdHhERUal4EBqLNzHJKKeqjKZVv21I83Y1TfDfy/c44/8Ov3hYQ0lUtuf3JCIiotKTmJqBX48+wq3X0VBREuH3NrZoV9NU2mEVK1MddXj1csKME/64EhCFGcf9EZechu5O5tIOjYiIqNgkp2Xg8IMwbL8VjKjENACAnoYKujuZo6eTOYy11WBkpIPIyLgCjkSlQVVZCW1qmKBNDRM8CovFjtshuPg8ElcConAlIAr2ZroYUr8S6luXh4j3cYiI5Kch3M/PD/fu3cO5c+dQsWJF1KxZE0OGDMHmzZvZEE5ERAojuzd4c1sjaH7jU9oeNobQUlPG27gU+L6JhbOlXnGESERERDIuOikN4w774dHbOGiqKmFpp1pwty4v7bBKRDk1ZSzrXAvLLrzA375hWHjuBRLTMjC+bU1ph0ZERPRNcmsAN9dVR1/XiuhY2/Sb7ylQyatlpovFnWoiKCoRu31CcPxROB6GxWLsYT84mOtiWAMr1K2kzwZxIlJoctMQHhwcDAMDA1SsWFG8zM7ODqtWrUJaWhpUVVWlGB0REVHJS88UcOFZJICs3tzfSv3jXFTHHoXjlH84G8KJiIgIMUlp+OXgAzyPSICehgpWdauNWmbyPXe2spIIk1tUhZa6CrbfCsaqy4GAigr6O5tJOzQiIqIiS03PxKEHYdh287VEA/hP7pXQvpYpVJXlajZVhWBlUA7TW9liaANr7LwdjEO+YXgQGouRfz9EHUs9DGtohTqW+tIOk4hIKuTmr5qRkRHi4uKQlJQkXvb27Vukp6cjLo7DthARkfy7HxKDmOR06GuqFtsFTpvqWQ3ql1+8RybnmSIiIlJoccnpGH3oIZ5HJMCgnCo8eznKfSN4NpFIhFGNKuMXD2sAwKrzz7HlxmvpBkVERFQEgiDg3yfv0HPbHSy/+BJRiWkw11XHjFbV8PeguujiYMZGcBlnpKWG8U2r4MjguvjB2RyqyiLcDYnBsP0PMP6IHwLfJ0o7RCKiUic3PcIdHR1hYmKCuXPn4rfffkNERAS2bt0KAEhLS8t1n5IaEST7uBxxhHXxOdbFJ6wLSayPT1gXn3xNXVx+mdUbvFEVA6go57PjZ6tEIsnXX3KppActNWVEJabh8ds42JuX/s1ufi6IiIikLz4lqxHcPzwe+pqqWN/TATaGWtIOq9T95F4JqsoirLociPVXXkFTVRm96lhIOywiIqJ83Q2JxqrLgXj8NqvDmJGWGn5uYIWO7AEul4y11TGpeVX0c7XEtlvB8H74FlcConA9MApdHMzwc30rGGqpSTtMIqJSITcN4erq6li5ciXGjRsHFxcXGBoaYsiQIVi4cCG0tbVzbG9goAXlEv4jb2ioU6LHlyWsi09YF5+wLiSxPj5hXXxS2LoQBAH/C/gAAOjobAkjo3z20/z098/ISAfQyv8mdrPqJjj+IAy3QuPQzEF6N3r5uSAiIpKO1PRMTPR+hEdv46CnoYJ1PexRxUjxGsGz9a9bEVBRwarzz/HnxZcop6qMTvYVpB0WERFRDiHRSVh5KQCXX74HAGiqKqF/3Yro52rJOcAVQAVdDUxtWQ2961hg7f8CcenFexzyDcOpx+8w0K0i+rhYQIOfAyKSc3LTEA4ADg4OuHDhAiIiIlC+fHlcvXoV5cuXh1YuN/ijohJKtEe4oaEO3r+Pg6KPIsu6+IR18QnrQhLr4xPWxSdFrYsn4fF4E50EdRUl1DTQQGRkPtOCJCTA6ON/IyPjgKTMfI9dr6Iejj8Iw5mHYRjsWvoN4bnVRb4N/URERFRsMjMFzD79FHdDYqClpow1Pexha5LzYXNFM65lNURGJ2K3zxvMP/sM5cupolEVQ2mHRUREBABITsvA9lvB2HE7GKkZApRFYE9gBWZlUA5LO9fC3ZBorLwUAP/weGy4+gr/+L3Fr82roqGNgbRDJCIqMXLTEB4dHY0RI0Zg/fr1MDY2BgBcunQJbm5uee5T0o0sglDy55AVrItPWBefsC4ksT4+YV18Uti6+O/j0931rMpDXUU5/30+WycIkq9z08DaAMpKIgS8T8TrqCRULK9ZcEAlgJ8LIiKi0rfo9BP8+yQCykoiLO5YEzVM+TAakDVn+LimNohLScc/fuGYftwfnr0cWT9ERCR1/718jz8vvEBobAqArPsEE5pVQWXDclKOjKStjqU+tvV1xr9PIrDmvwC8iUnGuCN+aFLFEBOaVYG5noa0QyQiKnZyMwGIvr4+EhMTsXTpUgQHB+PgwYM4dOgQhgwZIu3QiIiIStytoKxh0RtULl/sx9bRUIGTRdbc4Dc+noeIiIjk3767b+D5XwAAYGYbW7hbF3+eIctEIhGmtawGdyt9JKdnYvyRR3gbmyztsIiISEGFRCdh/BE/TPR+hNDYFJhoq2FxxxpY3b02G8FJTEkkwnc1THDgJ1f0c7WEspIIl1++x/fb7mDLjddITc9/1EAiIlkjNw3hALBixQoEBwejY8eO2L59O1atWgUHBwdph0VERFSiElLT8TAsayh0N6uSuUHt/vG4t9gQTkREpBBuvvqA5RdfAgBGNrJGu5qmUo6obFJRVsKijjVRxagc3iekYuxhPySkpks7LCIiUiAZmQJ23wlBr+0+uBIQBRUlEQa6VcTfg+qiua0xRCU1PyjJNC01FYxtYoPd/eugjqUeUtIzseHqK/TZ4QMf3vshIjkiN0OjA4CNjQ127twp7TCIiIhK1d3gGGRkCrDQ04ClfskMW+5WSR/rAdwJjkZGpgBlJV5IExERyauQ6CRMP+GPTAHo4WKJH90qSjukMk1bXQUru9bGT3vuI+B9IuacfobFHWuw4YGIiErcy8gEzPv3Gfw+PhzvWlEPU1pUgzV7gFMhVTHSwsbvHXDmSQRWXHqJV1FJ6LHxGnrVscCIhtbQVFWWdohERN9ErnqEExERKaJbr6MBAG5W+iV2juqmOtBWV0Z8SgaehMeV2HmIiIhIuhJTM/Dr0ceITU5HrQo6mNelNht0C6GCrgYWd6oJFSURLj6PxPZbwdIOiYiI5FhaRia8rgeh38678AuLg5aaMqa3qob1PR3YCE5FJsoeLv1HV3SoZQpBAPb6vEHv7T648/GeExGRrGJDOBERkYy7+XHIKvcSGhYdAJSVRHCtqA/gU8M7ERERyRdBEDD3zFO8iEyAQTlVLO1cExrsBVRoDua6+LV5FQDAhquvcONVlJQjIiIiefQ8Ih4Dd9/DpmtBSM8U4GFjgP0/uqKrgxkfXqNvoqepitlt7bD1p7ow1VHHm5hkjDj4AIvOPUdiaoa0wyMi+ipsCCciIpJhkfEpCHyfCBEgbqguKW6cJ5yIiEiu7b8XinPPIqGiJMKSTjVhoqMu7ZBkTlcHM3SuXQGZAjDjxBOExiRLOyQiIpITmULWXOADd9/D84gE6GmoYG676ljepRZM+TebilEzOxPs/9EF3R3NAACHfMPQb6cPHoXFSjkyIqKiY0M4ERGRDLv/JusipJqxFvQ0VUv0XHU/NrQ/DItDWkZmiZ6LiIiIStfjt3FYdTkAADCuiQ0cLfSkHJFsEolE+LVFVdSsoIPY5HT8dsIf6cybiIjoG4XHpWDk3w+x8nIA0jI+9QL/roYJe4FTidBWV8HUltWwvqc9THXUERydjMF778PretZIBEREsoIN4URERDLs/psYAIBTKdystjLQhJ6GClLSM/H0XXyJn4+IiIhKR3xKOmac8Ed6poCmVQ3xvbO5tEOSaeoqSljYoQa01ZXxMCwOnteDpB0SERHJsLNPI8RzNWuoKGFaq2pY3qUWDLXUpB0aKYC6lcpjz4A6aGVnjAwB2HQtCMP3++JNTJK0QyMiKhQ2hBMREcmwB6FZPcIdLXRL/FwikUjcOyy7JzoRERHJNkEQsODsc4REJ8NMVx2/t7Flz7JiYK6ngRmtbAEA224G4/ZrTi1DRERFk5yWgT9OP8X04/6IS0lHzQo62NW/DrpxLnAqZboaqpjfvjrmtLWDlpoyfENj0XfHXZz2fyft0IiICsSGcCIiIhmVkJou7pldWsOXOn1scPf92BOdiIiIZNuxR+E4+zQCyiJgXvsa0NUo2alWFElLO2N0tq8AAcDMk0/xITFV2iER0f/Zu+/wGs83DuDfk733DomdBBE79ipqtkbRqs2PalWHUmrUpkYHNYtuihatUWqU0lo1QohIJCSRyN7jZJzn90fkxKksMt4zvp/rynXJe95zzv3eJ865z3u/z/MQaYj7iVkYt/MaDt6KhZ4MmNDOA9tf9YOnnZnUoZGOkslk6NfYGTvHtEJzdytk5hZg/pE7WHE8BPJ8LgNDROqLjXAiIiINFRiTDoUAXK2M4WxpXCPP2cytqBGeBiG4JhQREZEmi0nLwad/3gMATOlYR/k5T1Xng+71UdfODAmZuVj2RwjrJyIiKtfvQbEY8+NV3EvIgr25ETa80gxTO9aBgT5P5ZP03KxNsHm4Hya184AMwL4bMZiw8xqiUjhVOhGpJ356EhERaaiiUdk1NRocAHycLWGkL0Nydh4ikvklh4iISFMphMDiY3eRmVsAX1crjGlTW+qQtJKJoT6W9veGgZ4MZ+4l4ugdTiFKREQly8krwPLjd7HgSDCy8xRoXdsaP4xuidYeNlKHRqRCX0+GKR3rYN3QprAxNcTd+EyM+v4qToUkSB0aEdFT2AgnIiLSUAGP1+n2q8HRW0YGemjiYln4/NFcJ5yIiEhT/Xw9Gv9GpMDEQA8L+3pBX49rjVaXRk4WmNTeAwCw5tQ9JGTIJY6IiIjUTXRqDibuuo79Nx5BBmBSOw98+UozOJgbSR0aUana1bHDD6Nbws+tcKr0D3+7jbV/3kN+AadKJyL1wUY4ERGRBipQCATGpAMA/NxrdhrTZo9HoN9gI5yIiEgjRSRnY91f4QCAt7vUg4etqcQRab+xbWrDx9kCaTn5WH6cU6QTEVGxyxHJGPPDVdyNz4StqSHWD/XFlI51eJEaaQRnS2NsHt4Mo1vXAgD8dPUhpv1yE8lZuRJHRkRUiI1wIiIiDRSRnI2svAKYGOihnr15jT530Yjw24/Sa/R5iYiIqPIUQmDx0WDI8xVo42GDV5q7Sh2STjDQ18OCPl4w1JfhbFgSjtzmFOlERLpOCIGdV6Lw9s83kZqTDx9nC3w3qgX869hKHRrRMzHQ18P0rvWw+qXGMDPUx5XIVIz98RqC4zKkDo2IiI1wIiIiTVTUhPZ2tqjxq8R9nC0AAGEJmcjJK6jR5yYiIqLK2X8jBgHRaTAz1MeCFxtBT8bRZjWlgYM5/tfeEwCw5s9QTpFORKTDcvIKsOhoMD47HYYCAfRr7IStI/zgYmUidWhEz61bQwfsGNkctW1MEJMmx8Rd1/HHHV78R0TSYiOciIhIAwXFFjbCfZwta/y5nS2NYWdmiAIB3I3PrPHnJyIioucTnyHH+sdTor/ZqQ5Ptktg9OMp0jPkBfj0dJjU4RARkQTi0uWYvDsAh2/HQV8GvN+9Phb28YKJob7UoRFVWn0Hc3zzegu087SFPF+BuYfv4Muz4ShQcFkYIpIGG+FEREQaqGhEeGOXmm+Ey2Qy5fNyenQiIiLNsfbPe8jMLUATF0u80txN6nB0koGeDB/1agg9GXA8OB7n7ydJHRIREdWg4LgMjN95DUGxGbA2McC6ob54raU7ZJyhhbSIlYkhPh/SVLlu+LeXIjHrt9vI5qyCRCQBNsKJiIg0TH6BQjkSu2ia8prW+PFI9KKR6UTqKjc3FwMGDMDFixfL3TcqKgotWrSo0L5ERJrmTGgiTt5NgL4MmNu7YY0vrULFvJ0tMaKFOwBg5YlQLjVDRKQjzt5LxP9+uo64jFzUtTfDt6NaoK0n1wMn7aSvJ8P0rvWwpJ83jPRl+OteIib/FMClYYioxrERTkREpGHCErMgz1fAwlgftW1NJYmBI8JJE8jlcrz//vsICQmp0P4LFy5EVlZWNUdFRFTzMnPzsepk4Xvh661roaGjNBfSUbEpHT3hZGGE6NQcbL8QIXU4RERUzXZffYgPfr2F7DwF2njYYPurzeFuLc33eaKa1MfHCRuHNYONqSHuxGVg3M7rCOUye0RUg9gIJyIi0jBFzWdvZ0voSTR9mo9L4Qn0B0nZyJDnSxIDUVlCQ0MxfPhwRERUrLnw22+/ITOTX8aJSDvtuBCBuIxcuFmb4H/tPaUOhwCYGxlgZo8GAIDv/41CaAI/g4iItFGBQmDNqVCs+fMeFAJ4uakL1g1pCksTA6lDI6oxfu7W+Hpkc3jamiI2XY5JP13n8jBEVGPYCCciItIwQbEZAIDGEk2LDgB2ZkZwsTSGAHDncTxE6uTSpUvw9/fH7t27y903OTkZq1evxuLFi2sgMiKimvUgKQs7rzwEAHzQvT5MDPUljoiKdGvogC717VGgEFh7KhRCCKlDIiKiKpSdV4CZv97C7mvRAIBpnetibu+GMNDnKXnSPbVsTLH9teZoWcsambkFeG9fIPbdiJE6LCLSAbz0jIiISMMUrcvt83idbql4O1vgUbocwXEZaO1hI2ksRP81cuTICu+7cuVKDB48GA0bNqzwfSSajKFERbGoU0zqgHkpGfNSMm3Oy2enw5CvEOhY1w5dGtg/033VMi9PxCKTqf5eYyFUYV4+6FEfF+4n4d/IVJwOTUSPRg6Vf1CJqOXfCxGRRFKy8/De/kAExqTD2EAPC/t4oaeXo9RhEUnK2tQQ64f6YtnxuzhyOw4rjocgMTMXk9p5QMYCgoiqCRvhREREGiRfIXDv8dSZ3hKOCAeARo4WOB2aiJB4jggnzfXPP//gypUrOHToUIXvY2dnDn01HMVhby/txTHqinkpGfNSMm3Ly6k7sfg7PAmG+jIsGeILB4fnqx3UKi+mxe+/Dg6WgLm5ZKFURV4cHCwxpWt9rD8VinVnw/FSGw+NH7WvVn8vREQSeJSWg+m/BCI8KQtWJgb4dFAT+LlbSx0WkVowenxhiIuVCXZciMDWfx4gOSsPM7rXh74em+FEVPXYCCciItIgEclZyC0QMDPUh5u1iaSxNHQsPPF8N55rWpJmysnJwYIFC/Dxxx/DxKTi/5+SkjLVarSbTFbYdEhMTAdn1S3GvJSMeSmZNuYlN1+Bjw8EAgBea+kOK5lAQkL6Mz2GWuYlMxNFY6YTEtKBbEWNh1DVeRne1Bm7L0UgKjkbXxy7g4ntPCr/oBJQy7+XEjg4sFFPRNUnPDEL036+gbiMXDhZGGHdUF/Ud5Duoi0idSSTyTC1Yx3YmRpi7Z/3sPd6NJKz8rCorxeMDNTvonMi0mxshBMREWmQkLjCpnN9B3PoSdyJa+hU+GU+PDEL+QUKrnNGGufGjRuIjIzE9OnTVbb/73//w6BBg8pcM1wdT/ALoZ5xSY15KRnzUjJtysvOKw8RmZIDe3MjTGjnUanjUqu8PBGHEKq/17SqyouJoT7e7lIP84/cwdcXIjCgsTOcLI0r/8ASUau/FyKiGnQzOg3v7Q9Eak4+6tiZYv1QX7hYSXsBO5E6G9HSHbZmhvj492CcuBuPtJw8rHq5McyN2LYioqrDM9ZEREQaJOTxtOhFo7Gl5GZlAnMjfeQrBO4nZUsdDtEza9asGf744w8cOHBA+QMAS5cuxTvvvCNtcERElZCYmYsdFyIAANO71OXJRA3worcjmrlZISdfgS/PhksdDhERPaO/w5Pw5t4bSM3JRxMXS3w1ojmb4EQV0NvbCZ8NbgJTQz1cikjB1D03kJyVK3VYRKRFtKoRHhMTgylTpqBly5bo0aMHvvnmG6lDIiIiqlKh8erTCJfJZE9Mj851wklzxMfHIycnByYmJvD09FT5AQBnZ2fY29tLHCUR0fP76vwDZOUVoLGLJfr4OEkdDlWATCbDBz3qQwbg96A43IpJkzokIiKqoJN34zHjwC3k5CvQro4tNg5rBhszQ6nDItIY7erYYdOwZrA2MUBQbAYm7w5AXLpc6rCISEtoVSP83XffhZmZGfbt24ePPvoIn3/+OY4fPy51WERERFUm5HHDWR0a4QDQ0NECABDCdcJJg3Tq1AlHjhyROgwiompxPykLB27EACgcDS71UipUcT7OlujXxBkAsO6vcAjOL05EpPZ+D4rFR4eCUKAQ6OXliE8HNYGZkb7UYRFpnCauVtj2WnM4WRjhflI2puwJQExajtRhEZEW0JpGeGpqKq5fv46pU6eiTp066NmzJzp37ozz589LHRoREVGVSMnOQ1xG4fRQ9R3UpRFeGEcIR4STGgsODoa/v7/K70OGDKnQvkREmmbD2XAUCKBzPTu0qm0jdTj0jN7o4AkjfRmuRqXin/BkqcMhIqIy/HozBh8fCYZCAAOaOGNJP28Y6mvN6XaiGlfHzgxbX/WDm7UJolJyMPmnAESlcCk+IqocrflkNjExgampKfbt24e8vDyEhYXh6tWr8PHxkTo0IiKiKlE0LbqbtQksjNVjrc9GykY4R4QTERFJLeBhKk6HJkJPBkzrUlfqcOg5uFiZYEQLdwDA+rNhKFBwVDgRkTracy0aS/8IgQAw1M8V819sBH09zsJCVFnu1qbYOsIPHrameJQux+TdAbifmCV1WESkwdTjLHoVMDY2xoIFC7BkyRJ89913KCgowJAhQzBs2LBS71NdM8QVPS5noGMunsRcFGMuVDEfxZiLYiXlIjSheH3wSuXoifvKZKq/P6sGjubQkwFJWXlIzMqFg7lRJQIrGf8uiIiIyieEwLq/wgEAA5u6oJ69esweQ89ubNvaOHDzEe4lZOHI7VgMbOoidUhEVIbjx49j2rRpKttefPFFrFu3TqKIqLp9fzkSX5wp/Mwd2cod73atBxm/sBJVGWdLY2wZ4Ye39t5AWGIWpuwJwIZXmqGBmiwTSESaRWsa4QBw7949dO/eHePHj0dISAiWLFmC9u3b46WXXnpqXzs7c+hX81Q19vaW1fr4moS5KMZcFGMuVDEfxZiLYk/mIiJNDgDw87SDg0MlcmRa/Pnn4GAJmFfui0QdB3OExWciTq6At2f1vXb8uyAiIird6dBE3IhOg7GBHqZ08JQ6HKoEa1NDjPevjXV/hWPz3/fRy8sRJoZcb5ZIXYWGhqJ79+5YsmSJcpuxsbGEEVF1+vJUiLIJPt6/NqZ2rMMmOFE1cDA3wpbhfpj2y00Ex2XgjT0B+PIVX3g789wQET0brWmEnz9/Hj///DPOnDkDExMT+Pr6IjY2Fps2bSqxEZ6UlFmtI8Lt7S2RmJgOoeOzmDEXxZiLYsyFKuajGHNRrKRcBEalAADczQ2QkJD+/A+emQmHx/9MSEgHshWVirWOjSnC4jNxLSwBje1MKvVYJSkpF5W6EICIiEjL5CsENpwtPCn/eutacLRgA0bTDW/hjt3XohGbLsfe69EY3aa21CERUSnu3buHRo0awdHRUepQqJp9fTECG87eBwC80dETE9vxwjOi6mRjZoiNw3zxzr5ABMak462fb2LTsGZo5GQhdWhEpEG0Zo3wwMBAeHp6wsSk+AR848aNER0dXep9hKi+n+p+fE36YS6YC+aC+WAuKp+LAoVA2OM1kerbm1fJY1dVruvamwEAwhKzauzvgoiIiIodC4rDg+RsWJsYYHTrWlKHQ1XA2EAPb3T0BAB8cykSGfJ8iSMiotLcu3cPderUkToMqmbfX45UNsHf6lyHTXCiGmJlYoj1Q33h62qJtJx8vLn3BkLjM6UOi4g0iNY0wp2cnPDgwQPk5uYqt4WFhaFWLZ4EICIizReTlgN5vgKG+jK425hKHY6Keo8b4eGPG/VERERUc/ILFPjq/AMAwOg2tWFhrDUTv+m8vj7OqGNnirScfOy6+lDqcIioBEIIhIeH49y5c3jxxRfRs2dPrFmzRuX8JGm+nVeisO6vcADA+70aYby/h8QREekWC2MDrBvqi8Yulkh93AwPS2QznIgqRmsa4T169IChoSHmzZuH8PBwnDp1Cps3b8bo0aOlDo2IiKjSiprMnrZmMNBTr/XH6tkXrjEenpgFweHaRERENerQrVg8TM2BnZkhhrdwkzocqkL6ejL8r33hiMOdV6KQlpMncURE9F/R0dHIzs6GkZERPv/8c3z44Yc4ePAgVq1aVep9ZDLN/9GW46jIz55rD/HZ6TAAwP/ae2D6Cw0lj4mv+fMfw7MehzYct7a83pYmBvjylabwdrZAcnYe3txzAw+SsnTi2HX1NVfH4ybNJPml4pGRkahdu/JrXVlaWuKbb77BsmXL8Morr8DOzg5Tp07FiBEjqiBKIiIiaRU1woumIVcnHram0JMB6fJ8JGTmcl1SqpSqqg2JiHRBbr4C2y9EAADGtq0NU0N9iSOiqtbTyxE7LkbgXkIWdl55iDc61pE6JCKtURV1p7u7Oy5evAhra2vIZDL4+PhAoVBg5syZmDNnDvT1Vd+X7ezMoa+vHeOS7O0tpQ6h2n1/4QFWn7oHAHire3180NsLgG4ce0k0+rhNi//fOThYAubmFb6rRh93JajjcTsA+GlKe4z86iJux6ThzZ9vYveU9qjrUPHXsyLU8dhrAo+btJXkjfA+ffqgcePG6N+/P/r27QtnZ+fnfqwGDRrg66+/rsLoiIiI1IOyEW6nfo1wIwM91LIxRURyNsISs9gIp0qpytqQiEjb/Rr4CI/S5XAwN8KQZq5Sh0PVQE8mw+QOdfDhb7fx09WHeLWlO2xMDaUOi0grVFXdaWNjo/J7/fr1IZfLkZqaCjs7O5XbkpIyNX5EmUxW2DRITEyHNk8IduBGDJb+EQIAGN2mFsa1dENSUoZOHPt/acVrnpkJh8f/TEhIB7IV5d5FK477OWjCca8b3ARv7LmB0IRMjNj8D7a+6odaVbCMoCYce3XgcVf8uB0c2DTXRJJfgnj27FkMGTIEp06dwgsvvIBRo0Zh586dSEpKkjo0IiIitRGepL4jwgGuE05Vh7UhEVHF5OQV4OuLhaPBx/vXhglHg2utbg3s0cjRHJm5Bfjh3yipwyHSGlVRd549exb+/v7Izs5WbgsKCoKNjc1TTfAiQmj+j7YcR2k/R2/HYdnjJvjIVu54u3NdADKdOHZtfs2f5/+gNhy3Nr7e1qaG2DDMF3XtzRCXkYupe27gUZpcJ45dV19zdTlu0kySN8Lt7Ozw2muv4bvvvsOZM2fQv39//PXXX+jZsycmTpyI/fv3qxSTREREukYIoWww12EjnLQca0MioorZf/MR4jNy4WxpjEG+HA2uzfRkMkx5PCX6nmsPkZSVK21ARFqiKurOFi1awNjYGPPmzUNYWBjOnDmDVatWYdKkSTV0FFTVzoUl4uOjwRAAXvFzxbtd60Gm6cP4ibSQnZkRNg5rBg9bU8SkyfH2zzeRkpUndVhEpIYkb4Q/KT4+HvHx8Xj06BEUCgXMzc2xZ88edOvWDX/88YfU4REREUkiPiMXmbkF0JcBHlUw1VN1qGtfuB5TWGKmxJGQNmFtSERUspy8Anx7KRIAMKGdB4wM1OqrPVWDzvXs4ONsgew8Bb6/zFHhRFXteetOCwsLbN++HUlJSRg6dCjmzp2LESNGsBGuoa5EpmD2wSAUKAT6+jhh5gsN2AQnUmMO5kbY8IovnCyMEJ6Uhen7biJDni91WESkZiRfIzwoKAhHjx7F0aNH8fDhQ3To0AHjx49Hz549YW5eeFJ948aNmD9/Pnr37i1xtERERDWvaJR1LRtTtT3RXTRle1hiFoQQPFlAz421IRFR+X4LjEViZi5cLI0xsMnzrWlLmkUmk2FKhzp4d38gfgmIxti2tblWOFElVVXd2bBhQ3z99dc1FTZVk9uP0jHjwC3I8xXoXM8OC15sBD1+ryVSey5WJtjwSjP8b3cAgmIz8P6BW1g3pCmXDSIiJckb4UOGDEHr1q0xbtw49OnTB7a2tk/t06pVK0RGRkoQHRERkfTUfX1wAPC0NYWeDEjLyUdSVh7szY2kDok0FGtDIqKy5Rco8P3lwvfA0W1qw1BfPS+So6rXoa4tvJ0scCcuAz9dfYg3Hk+XTkTPh3UnFQlPzML0X24iM7cArWpbY8XAxjDg5yuRxqhjb4b1Q5vijT03cC0qFXMOBWH1S/x/TESFJG+Er1y5Ev369YOhoeqVzLm5ucp1efz9/eHv7y9RhERERNIqGhGuzo1wE0N9uFubIDIlB+GJWWyE03NjbUhEVLYjQXF4lC6HnZkhXmrK0eC6RCaTYbx/bXx4MAh7rkVjVOtasDCW/LQOkcZi3UkAEJ2ag2k/30BqTj58nC2wdlATGKvpTGxEVDpvZ0t8OrgJpv8SiHNhSVh4NBiL+npDX48zOxDpOsk/1WfPno309PSntoeEhOD999+XICIiIiL1ogkjwgGgjl3x9OhEz4u1IRFR6QoUQrk2+KjWtTjlow7q1tABdexMkS7Pxy8BMVKHQ6TRWHdSYmYupv18A3EZuahrb4Z1Q3xhbsQLjIg0VctaNvhkYGPo68lw7E48Vp8KhRBC6rCISGKSfLLv3LkTixcvhkwmgxACHTt2LHG/Dh061HBkRERE6kc5ItxOvRvhnnZmOBuWhIhkNsLp2bA2JCKqmJN34xGRnA0rEwMM8XOVOhySgJ5MhnFtPbDwaDB2XonCiBZuvCCC6Bmw7qQiWbkFeG9/ICJTcuBmZYwvh/rCxsyw/DsSkVrrWM8Oi/t6Yd7hO/glIAZOFsaY0M5D6rCISEKSNMJHjhyJhg0bQqFQYOzYsVi3bh2sra2Vt8tkMpiamqJRo0ZShEdERKQ2krNykZKdBxmKR1yrK09bUwDAg+RsiSMhTcPakIiofEIIfPN4NPirLdw5Yk2HvejtiK3/3Ed0mhy/3nyEES3dpQ6JSGOw7iQAyC9Q4MODtxEUmwEbU0Osf6UZnCyNpQ6LiKpIb28npGTnYfWpe9j09304WBjhpaYuUodFRBKR7JtzmzZtAAAnT56Em5sbZDKu1UBERPRfRU1lZ0tjtR/t42FX2AiPYCOcngNrQyKisp0NS0JIfCbMDPUxvIWb1OGQhAz09TCmbW2sPBGK7/+NwhA/VxjqS77yHZHGYN2p24QQWHo8BBfuJ8PEQA+fDW4Cj8cXdROR9hjewh2x6bn47nIklv9xF/bmRuhY107qsIhIApI0wufMmYO5c+fCwsICX375ZZn7rlixooaiIiIiUj8RSYVNZU879f9i7mlbOGI9JjUHufkKGBnwhCxVDGtDIqKyCSHw9cUIAMArzV1hbcqpW3XdgCYu2HY+ArHpcvx+Ow4v+XKUE1FFsO6kzX/fx+FbsdCXASsG+qCpq5XUIRFRNZnWuQ4SMuU4cjsOs3+7jc0j/NDExVLqsIiohvEMNRERkRorGl1d20b9G+F2ZoYwN9KHABCZwlHhREREVeVqVCoCY9JhbKCHka1qSR0OqQFjAz283rrwb+Hby5FQCCFxRERE6u/n69HYcbFwmZHZPRuiUz17iSMiouokk8kwr3cjtPO0RU6+Au/tC0QkZzEk0jmSjAh/8opKXl1JRERUuqJGuIearw8OFH7B8LA1RVBsBiKSs1HfwVzqkEhDsDYkIirbD/9GAQAGNHGGvbmRxNGQuhjczAU7LkQgIjkbZ+8loWsDNnSIysO6U3f9GZKAVSdDAQCTO3hiUDNXiSMioppgqK+HlS/5YMruGwiOy8D0fTex/bXmsDNjTU2kKyQfEZ6ZmYk1a9YgLCwMCoUCs2bNQvPmzTFy5Eg8fPhQ6vCIiIgkpWyEa8iaZZ6PG/YPkrIkjoQ0FWtDIiJVYYmZOBeWBBnA0eCkwtzIAEP8Chs5P/4bKXE0RJqHdafuCHiYivlH7kAAGOTrgkntPKQOiYhqkLmRAT4f0hRuVsaISsnBu/sCkZVbIHVYRFRDJG+EL1y4EGfOnIFMJsPBgwfxxx9/YPny5XBwcMCiRYukDo+IiEgyCoVQTjHuoQFTowPFDfsITjVFz4m1IRGRqp3/FjZjujaw15gL46jmjGjhBgM9Ga49TENgTJrU4RBpFNaduiEyORszDtyCPF+BzvXs8GHPhpDJZFKHRUQ1zMHcCOuG+sLaxABBsRmYdzgIBQouLUOkCyRvhJ85cwarV69G3bp1cezYMXTv3h39+vXD+++/j8uXL0sdHhERkWQepeVAnq+Avp4MrtYmUodTIZ5shFMlsTYkIiqWkJmLI0GxAIBRrTkanJ7maGGMPj5OAIqn0CeiimHdqf1Ss/Pw7v5ApObko7GLJZYP8IGBHpvgRLrK084Mnw1uCiN9Gc6GJWHdX2FSh0RENUDyRrgQAoaGhsjJycH58+fRtWtXAEBqairMzNR/PVQiIqLqEp6QCQCoZW2iMV/WPW0fT43ORjg9J9aGRETF9l57iLwCAV9XK/i5W0sdDqmp1x9fJPFnSAKiUliDEVUU607tllegwKzfbiMiORsulsZYO6gJTAz1pQ6LiCTm62aFj/t4AQB2XnmIn69HSxwREVU3A6kDaNeuHebPnw8zMzPo6emhZ8+eOH/+PJYsWYIePXpIHR4REZFkwh43wmtr0DSoRbGmZOchNTsP1qaGEkdEmoa1IRFRoey8AvwcEAMAGN2Go8GpdA0czNGhri3+CU/GrisPMfOFBlKHRKQRWHdqLyEElh0PwdWoVJgb6eOzwU3hYG4kdVhEpCZ6ezshKiUHm/6+jzWnQuFmbYIOde2kDouIqonkI8KXL1+Oxo0bw8jICBs2bICFhQWCg4PRtWtXzJ07V+rwiIiIJHP/cSNck9YDNTPSh5NF4QkGTo9Oz4O1IRFRoYOBj5CWk4/aNiboUt9e6nBIzRVNnf9b4COkZOdJHA2RZmDdqb2+uRSJw7dioScDlg/wQQNHc6lDIiI1M96/Nvo3cUaBAD46FITQx+fgiEj7SD4i3NLSEvPmzVPZNm7cOGmCISIiUiNFU6N7alAjHChs3Mdl5CIiORu+blZSh0MahrUhERGQrxD48cpDAMDIVrWgryFLpJB0Wte2gZeTBYLjMrAvIAYT2nlIHRKR2mPdqZ2OB8dj47n7AIAPejTgKE8iKpFMJsPcXg0Rk5qDq1GpeG9fIL4Z1QIODlJHRkRVTfJGeF5eHg4cOICbN28iPz8fQgiV21esWCFRZERERNIK18Cp0QHA084M/0amIiI5S+pQSAOxNiQiAk6HJCA6NQfWJgYY0MRZ6nBIA8hkMoxqXQvzj9zB7msP8XrrWjA2kHwSQCK1xrpT+9yMTsPC3+8AAF5t6Y5hzd0kjoiI1Jmhvh4+eakxJu66jojkbMzYfwu/vNVR6rCIqIpJ/q1o7ty5WLZsGZKTk58qOImIiHRVfoECkUmFjWQPWzOJo3k2RVO5P+DU6PQcqro2zM3NxYABA3Dx4sVS9zl9+jRefvlltGjRAgMHDsTJkycr/bxERJWx8/Fo8Feau8HEUF/iaEhT9GzkAGdLYyRl5eHYnTipwyFSezwnqV2iU3Pwwa+3kFsg0KmeHd7tWk/qkIhIA9iYGuKzwU1hbWKAW4/S8f6e61DwM4FIq0g+Ivz48ePYsGEDOnbklTZERERFotPkyFcImBjowfHxmtuaorZNYSM8ko1weg5VWRvK5XLMmDEDISEhpe5z584dTJs2DbNmzULXrl1x7tw5vPPOO/j555/h7e1d6RiIiJ7VrUfpuBmTBgM9GV7hSDZ6Bgb6ehje3A3rz4Zj99WHGNjEGTIZp9UnKg3PSWqPzNx8vH8gEElZeWjkaI5l/X24rAgRVZiHrSlWvdwYb+29iSM3H8HV3AhvdKwjdVhEVEUkHxFuaWkJZ+fKT/W2b98+eHl5PfXDE5hERKSJIh6PBq9tawo9DTuBWetxI/xhag5HVtAzq6raMDQ0FMOHD0dERESZ+x06dAjt2rXDmDFj4Onpiddffx3+/v74/fffKx0DEdHz2HOtcDR4Ly9HOJhr1sVwJL2XfV1gbKCHu/GZuP4wTepwiNRaVdWdJC2FEPj4SDDuJWTB3twInw5uCjMjzqZCRM+mZS0bzHuxEQBg+4UInAiOlzgiIqoqkjfCp06dimXLluHevXvIz89/7sfp168fzp07p/w5ffo0PD09MWbMmCqMloiIqGZEpBSOpvbQsPXBAcDN2gQyAJm5BUjOzpM6HNIwVVUbXrp0Cf7+/ti9e3eZ+w0ePBgffPDBU9vT09Of+7mJiJ5XQmYu/rhTeNJtREt3iaMhTWRtaoh+jZ0AALsfX1RBRCWrqrqTpLX1nwc4cy8RhvoyrH6pMZwtjaUOiYg01IAmzvhf57oAgIVHgxEcmyFxRERUFSSfGv2rr75CXFwcBgwYUOLtQUFBFXocExMTmJiYKH/fsmULhBAlntgkIiJSdxFJmtsINzbQg5OlMWLT5YhKyYGdGUezUcVVVW04cuTICu1Xv359ld9DQkJw/vx5vPrqq2XeT50maiiKRZ1iUgfMS8mYl5KpS14O3IhBvkKgmZsVmrpaShsM1CcvKp6IRSZT/b3GQlDHvDxhRAt37L/xCKdDEhCbngMXK5Py71QF1D0vRP9VVXUnSedEcDy2XyicAeqjXg3h62YlcUREpOlm9/VBYGQKzt9Pxoxfb+G7US14XotIw0neCF+5cmWVP2ZKSgq++uorLF26FEZGfJMiIiLNo8kjwgGglo3J40Z4NprxZAQ9g+qoDSsqKSkJb7/9Nlq2bIkXXnih1P3s7Myhry/5xEpPsbeXvmmmjpiXkjEvJZMyL7n5Cuy7+QgAMKlrfTg4qM9rpFZ/L6bF778ODpaAublkoahVXp7g4GCJDvXt8c+9RBwKTsTsvjW7ZJy65oXov6SsO6nygmMzsPBoMABgZCt3DGjiInFERKQN9PVkWD7AB2N/vIaI5Gx8+NttbBzWDIZqeA6AiCpG8kZ427ZtAQAZGRmIiIhAgwYNkJubCwsLi+d+zF27dsHJyQl9+vSpqjCJiIhq1MOUHADF621rmlrWprgSmYqoxw19ooqqjtqwIhISEjB+/HgIIbBu3Tro6ZX+JTcpKVOtRrvJZIVNh8TEdAghdTTqg3kpGfNSMnXIy9GgOMSny+FoYYS2LuZISJB+iQZ1yMtTMjPh8PifCQnpQLaixkNQy7z8xxBfZ/xzLxG7Lj7AqOYuMDGs/vVyNSEvANTqIhOSllR1J1VeUlYuZvx6C/J8BdrVscXbXepJHRIRaRFLEwOsHdQE4368husP07DqZCg+6tUQMnU6EUBEFSZ5Izw3NxeLFy/Gvn37AADHjh3DJ598guzsbHz66aewtrZ+pscTQmDv3r2YNGlSuftW1/sWpwMrxlwUYy6KMReqmI9izEWh/AIFHqUVNsJr25pUfT5qYErR2raFU3BGpeZUOn7+XeiWqq4NKyI2NhZjxowBAHz33Xews7Mr9z7qeIJfCPWMS2rMS8mYl5JJmZefrhau5zzUzxX6enpq9fqo1d/LE3EIofp7TVOrvPxHp7r2cLM2QXRqDn6/HYdBzVxr7LnVOS9ET5Ki7qTKyytQ4MPfbiM2XQ4PW1Ms6+8NAz1+WSSiqlXHzgzLBvjgvX2BOHDzERo6WmB4CzepwyKi5yB5I3zVqlUIDQ3F/v37lWsxvv3225gzZw6WLl2K1atXP9Pj3bx5E7Gxsejfv3+Z+9XElJacDqwYc1GMuSjGXKhiPorpei4iErNQIArX2m5U2x56Vf2lvgamFPWpbQfgPmIzcqts1I2u/13oiqquDcuTlZWFSZMmQU9PD9999x0cHR2r9PGJiCoiMCYNgTHpMNSXYXANNixJe+nryTC8uRs+PxOG3dei8bKvC0cxEf1HTdedVHlCCKw6GYrrD9NgbqSPtS83gZWJodRhEZGW6ljXDm93qYt1f4Xj0z9DUdfeFG08bKUOi4iekeSN8D/++AMbNmyAl5eXcpuXlxeWLFmCCRMmPPPjnT17Fq1bty73qs3qnNJSU6YDqwnMRTHmohhzoYr5KMZcFLpxPxkAUNvODMnJGVWfixqYUtRavzDo+wmZlZ7ataS/C05pqb2qujYsSXx8PCwtLWFiYoItW7YgIiIC33//vfI2ADAxMYGlJf/OiKhmFI0G7+3tBDszI4mjIW3xUlMXbP77PkITMnE1KhWtattIHRKRWqmJupOq1t7rMThw8xFkAJb190EdezOpQyIiLTeqdS2ExGfi96A4zDkYhG9eb6GxyxgS6SrJG+GZmZkwNX36jUOhUKCgoOCZH+/GjRto2bJlhfat7iYLpwMrxlwUYy6KMReqmI9iup6Lh4/X1fa0M6ueXNTAlKLu1oWf7UlZeciQ58PcqPIlh67/XeiKqq4NS9KpUyesWLECQ4YMwbFjx5CTk4Nhw4ap7DN48GCsXLmySp6PiKgs8RlynLibAAB4ldMtUhWyNDFA/ybO+CUgBj9dfchGONF/1ETdSVXnalQKPv0zFADwdpe66Fiv/OWMiIgqSyaT4aNeDfEgORu3H6Vj5q+3sWNkc5ga6ksdGhFVUPXODV4BPXr0wKeffoqMjAzltsjISCxduhRdu3Z95scLCQlBgwYNqjJEIiKiGhWV8nh9cDvNvbrdwtgANqaFU9QVHQ9RRVR1bQgAwcHB8Pf3V/l9yJAhAICjR48iODj4qR82wYmopuy/EYMChUBzdyt4O3MmCqpaI1q4AwD+upeIR2msyYieVB11J1WPuHQ55hwMQoEAXvR2xKjWtaQOiYh0iImhPla/1Bh2ZoYITcjEsj/uQnCkBpHGkLwRvmDBAhgYGMDf3x/Z2dkYOnQoevXqBSsrK8yfP/+ZHy8hIQFWVlbVECkREVHNeJhaeJLSU8OneatlYwKgeIQ7UUVUdW1IRKTO8gsUOHDzEQBgWHOOBqeqV9feDK1rW0MhgP2P/9aIqBDrTs2Qm6/A7IO3kZSVh4aO5pjbuxFk1bXeJRFRKZwsjbFyYGPo68lw7E48dj1e2oiI1J/kU6OnpKRg8ODBaNKkCby8vPDgwQN07twZ9erVe67Hu3HjRhVHSEREVLOiHjeOPTR4RDgAuFubIDAmHZEcEU7PoKprQyIidfZXWBLiM3JhZ2aI7g0dpA6HtNRQPzf8G5mKX28+wqR2HjDUl3xMBJFaYN2pGT49fQ83Y9JhaWyAVS815nTERCSZFrWs8W7Xelj75z2sOxMGLycLLj1DpAEka4SfP38eK1asQEhIiMo0EjKZDAcPHsTs2bPRunVrqcIjIiKShBBCa0aE17YpXG8viiPCqQJYGxKRLvrlejQA4KWmLmxOUrXp1sAe9uZGSMzMxenQRPTycpQ6JCJJse7UHAcDH+GXgBjIACzp541aNk+v6U5EVJNGtHDDrUfpOBoUh48OBeG7US3hbGksdVhEVAZJvmmfO3cOkyZNgre3N77//ntcuHABt27dwsWLF/HNN9+gXr16GD9+PK5duyZFeERERJJJzclHZm4BAKCWrWY3wotOUkSlckQ4lY21IRHpoojkbFyKSIEMwOBmrlKHQ1rMQF8Pg3xdAAC/BERLHA2RtFh3ao47selYeSIEAPC/9p7oWM9O4oiIiAovmprbqyEaOpojKSsPcw7eRm6+QuqwiKgMkowI37BhA8aNG4eZM2eqbLe2toa/vz/8/f1hbW2NTZs2YevWrVKESEREJImi9bQdLYxgYqiPDInjqYyiNcKjkjkinMrG2pCIdFFRQ7JjPTu4WZtIHA1pu0G+Lvj6YgSuRKYiPDELdTV85iGi58W6UzOkZOdh1m+3kVsg0KmeHSa295A6JCIiJRNDfax6qTHG/HANN2PS8enpe5jds6HUYRFRKSQZEX7nzh0MHjy4zH2GDRuG27dv11BERERE6qFoWvSiJrImKxoRHpsu59WxVCbWhkSka3LyCnDoViwAYKgfR4NT9XOxMkHnevYAOCqcdBvrTvVXoBCYdzgIMWly1LIxweK+3tCTyaQOi4hIRS0bUyzp7w0ZgF8CYvDbzUdSh0REpZCkEZ6TkwNra+sy97G1tUVSUlINRURERKQeolIKG+Hu1pq/9pmdmSFMDfUgAESncXp0Kh1rQyLSNSfuxiMtJx+uVsZoX4dTvVLNeKV54UUXh27FIjuvQOJoiKTBulP9bf77Pi4+SIGJgR5WvdQYliaSTGhKRFSujnXtMLmDJwDgk5MhuP0oXeKIiKgkkjTChRDQ0yv7qWUyGYQQNRQRERGReniYWjiNuDaMCJfJZMXrhKdwenQqHWtDItI1P1+PAVC4Nri+Hke5Uc1o62mLWjYmyMwtwLGgOKnDIZIE60719mdIAr65FAkAmNe7ERo6WkgcERFR2Sa080DnenbILRCY9dttJGflSh0SEf2HZJfU/f7777CwKL2YSU/n1TNERKR7ikeEa34jHCg8jpD4TDxM4YhwKhtrQyLSFXdi03HrUToM9GR42ddF6nBIh+jJZBjSzBXr/grHzwExeNnXBTJON0w6iHWnenqQlIVFR4MBAK+1dMeLPk4SR0REVD49mQyL+3lj7I/XEJGcjQVHgvH5kKa82JVIjUjSCHdzc8OOHTvK3c/VlWulERGRbileI1zzp0YHALfHDX1OjU5lYW1IRLrk54DC0eA9GjrAzsxI4mhI1wxs6oLNf99HcFwGbj1KR1NXK6lDIqpRrDvVU05eAWYfDEJmbgFauFthepe6UodERFRhFsYG+OSlxhj34zVceJCMHRcj8L/2nlKHRUSPSdIIP3XqlBRPS0REpNZy8xWIS5cD0J4R4W5WjxvhqWyEU+lYGxKRrsiQ5yunpB7anE0Wqnk2pobo5eWIw7fj8HNADBvhpHNYd6qnVSdDEZqQCTszQywf4AMDfUlW8yQiem4NHMwxu2cDLDp6F1/98wDN3Kzg72krdVhEBInWCCciIqKnRaflQAAwNdSDrZmh1OFUCeWIcDbCiYiIcPhWLHLyFahnb4YW7tZSh0M6aqifGwDg+J04pGTnSRwNEem63wIf4eCtWOjJgKX9veFgYSx1SEREz2VAExe83NQFAsD8w3eUg12ISFpshBMREamJJ6dF15b1Gjk1OhERUSEhBH65UTgt+lA/V635rCfN09TVEo0czZFbIHDkdqzU4RCRDguJz8Cqk6EAgMkdPNHGg6MniUizfdCjPho6miM5Ow9zDwchv0AhdUhEOo+NcCIiIjXxMCUbgPZMiw4UN8Iz5AVIy+GIIyIi0l03otMQnpgFEwM99GvsLHU4pMNkMhkGNSucmv/AzUcQQkgcERHpogx5PmYfDII8X4H2dWwx3t9D6pCIiCrNxFAfKwc2hrmRPq4/TMOGc/elDolI57ERTkREpCaKRoS7W5tKHEnVMTXUh93jad45PToREemy/TcfAQB6eTnCwthA4mhI1/X1cYKxgR7CE7NwIzpN6nCISMcIIbDsjxBEJGfDycIIi/t6Q48zpRCRlvCwNcWCPl4AgB/+jcKZ0ASJIyLSbWyEExERqYmolMeNcBvtGREOcJ1wIiKiDHk+TgTHAwBe9nWROBoiwMLYAD29HAEUjgonoqoxefJkzJ49W+ow1N7e6zE4cTce+noyrBjYGDaPL54mItIWPRo64LWW7gCAhUeDEfV4FkgiqnlshBMREamJh6naNzU6ALhZFR7PQzbCiYhIRx0NioM8X4G69mZo5mYldThEAIDBjy/KOB4cjwx5vsTREGm+w4cP48yZM1KHofZuPUrHZ6fvAQCmd6nLz0Ui0lpvd6kLX1dLZMgLMOfxUhBEVPPYCCciIlIDQgjEpMoBFI+g1hYcEU5ERLru18cjbgf5ukDGqV9JTTRzs0JdOzPI8xU4GhQndThEGi0lJQWrVq2Cr6+v1KGotdTsPMw5eBv5CoHuT4yWJCLSRob6elg+wAfWJga4E5ehvAiIiGoWG+FERERqIDUnH1l5BQAAF0tjiaOpWq6PG+ExaXKJIyEiIqp5d2LTcScuA4b6MvTzcZY6HCIlmUyGQc0KR4VzenSiyvnkk0/w8ssvo0GDBlKHorYUQmDh0WDEpMlRy8YEC15sxIvDiEjruViZYHE/b8gA/BIQw4sPiSTARjgREZEaiEkrHC1tb24EE0N9iaOpWu5WHBFORES6q6jB2L2BA9dAJbXTz8cZhvoyBMdlICg2XepwiDTS+fPn8e+//+LNN9+UOhS19sPlKJwLS4KRvgwrBzSGhbGB1CEREdWIDnXtML6dBwBg+fG7uJ+UJXFERLqFFQcREZEaiHncJHaz0q7R4MATU6On5UAIwav+iYhIZ2TnFShHfbz8eD1mInViY2aI7g0c8EdwPA7ceASfXpZSh0SkUeRyOT7++GMsWLAAJiYVW+JK078OFcX/LMdx/WEqNp4LBwB80KMBvF0sqiGy6vc8x64NtOK4n4hdJlP9vdS7aMNxPwddPW6geo99SgdP3HiYin8jU/HRoSB8PbK52gyE0dXXXFePWxexEU5ERKQGiqYNd7XSrvXBAcDFyhgyAPJ8BRKz8uBgbiR1SERERDXiRHA8MnML4G5tgtYeNlKHQ1SiQc1c8EdwPI7dicM7XevBzEg9TsoSaYIvv/wSTZs2RefOnSu0v52dOfT1tWOCTnv7il04k5KViwVHglEggEHN3fC/Hg01/uLoih67ttHo4zYt/n/n4GAJmJtX+K4afdyVoKvHDVTfsW8c3Rp9vziLkPhMbL4YiaWDfKvleZ6Xrr7munrcuoSNcCIiIjVQNDV60Xra2sRQXw9OlsaITZcjOjWHjXAiItIZvz6eFv1lXxfoafhJf9JerWrboJaNCaJScnAiOB4vcfYCogo7fPgwEhIS0KJFCwBAbm4uAODYsWO4du3aU/snJWVq/MgzmaywaZCYmA4hyt5XCIGZv95GdGoOPGxN8V6XOkhMzKiZQKvBsxy7NtGK487MhMPjfyYkpAPZinLvohXH/Rx09biB6j92PQAL+zTC278E4ocLEfB1MscLjRyr/omeka6+5s9z3A4ObJprIjbCiYiI1EC0Fk+NDhROj17UCG/mZiV1OERERNUuLDETAdFp0JcBA5o4Sx0OUan0ZDK83NQFG87dx4GbMWyEEz2D77//Hvn5+crf16xZAwD44IMPSr2PtjQZhCj/WHZfjcbp0EQY6suwvL8PzAwNtOL4K3Ls2kijj/uJuIVQ/b3cu2rycVeCrh43UL3H3q6OHca0qY3vLkdiybG78HKygLu1afU82TPS1ddcV49bl2jHXDxEREQaTjk1uhaOCAeeWCf8ccOfiIhI2xWNBu9Yzx6OFtp5oRtpjwFNXaCvJ8PNmHSEJmRKHQ6RxnB3d4enp6fyx9zcHObm5vD09JQ6NMndiU3HF3+FAQDe6VIPXs6auS44EVFVm9rRE76uVsiQF2DuoTvIKyh/hgIien5shBMREUlMCFE8NbqlljbCH490ZyOciIh0QW6+AodvxQIABnF0LWkAB3MjdK5nBwA4cCNG4miISNNl5ubjo0NByCsQ6NbAHsNbuEkdEhGR2jDQ18OyAd6wNDbArUfp2HjuvtQhEWk1rWqE5+bmYtGiRWjTpg06dOiATz/9FIJzGhARkZpLy8lHZm4BAMBFi6dGB4CHaWyEExGR9jsdmoDUnHw4WRihfV07qcMhqpBBzVwBAL8HxUGez5FJRM9j5cqVWLlypdRhSEoIgZUnQhGZkgNnS2PM690IMk1fGJ2IqIq5WplgwYuNAAA//BuFc2GJEkdEpL20qhG+dOlS/PPPP9i+fTvWrl2LPXv2YPfu3VKHRUREVKai0eB2ZoYwMdSXOJrqwanRiYhIlxRNiz6gqQsM9HjynzRDO09buFgaIy0nH3+GJEgdDhFpqIO3YnE0KA76MmBZf29YmxpKHRIRkVrq1tABIx7PmLHw92DEpssljohIO2lNIzwlJQW//PILlixZgmbNmqF9+/aYMGECAgICpA6NiIioTNGP1wd309L1wQHAzarw2GLT5chXcLYWIiLSXlEp2bgUkQIZgJebclp00hz6ejIMbOoMADgY+EjiaIhIE4UnZmH1yVAAwJSOdeDnbi1xRERE6m16l3rwdrJAak4+5h+5w3NmRNVAaxrhV65cgYWFBdq2bavcNnnyZKxYsULCqIiIiMoX83iUtKuV9jbCHS2MYaAnQ4FCID6DV7gSEZH2KmogtvW00eqL3Eg7DWhSePHG5YgU5axFREQVkZNXgI8OBSEnX4G2HjYY27a21CEREak9IwM9LB/gA3MjfVyLSsX28w+kDolI62hNIzwyMhLu7u44cOAA+vTpgxdeeAEbNmyAQlH6ulYyWfX9VPfja9IPc8FcMBfMB3NR9s+j9MKTjG7WJjWWi5r4LHzyx0BfBtfH659Hp+ZU+u+CqKJyc3MxYMAAXLx4sdR9bt++jWHDhsHPzw9Dhw5FYGBgDUZIRNqkQCFw6FYsAOBlX1eJoyF6dm7WJmjtYQMBKP+WiYgq4vMzYQhNyISdmSEW9fOGHr+4ERFVSG1bU8zp2RAAsP1CBC5HJEscEZF2MZA6gKqSlZWFBw8e4KeffsKKFSsQHx+PBQsWwNTUFBMmTHhqfzs7c+jrV+91APb2ltX6+JqEuSjGXBRjLlQxH8V0LRcJ2QUAgIZu1nBwUD32asmFafHnn4ODJWBuXvXPUYI6jhaITMlBmgJPHWdF6NrfBVWeXC7HjBkzEBISUuo+WVlZmDx5MgYOHIiVK1di165dmDJlCo4fPw4zM7MajJaItMGliGTEZeTC2sQAXevbSx0O0XN5qakz/o1IwaHAR5jYzoPNLCIq14ngePwSEAMZgMV9veFgbiR1SEREGuVFHydcjkzBrzcfYf6RYOwc0xJ2ZnwvJaoKWtMINzAwQEZGBtauXQt3d3cAQHR0NHbt2lViIzwpKbPaRpTJZIUn6xMT0yF0fEkH5qIYc1GMuVDFfBTT1Vw8SMgAAFjpAwkJ6QCqOReZmXB4/M+EhHQgu/TZU6qSg2lh2XE3KgUJdWwqfL+ScvE8jXTSLaGhoZgxYwZEOf+Bjhw5AmNjY8yaNQsymQxz587FX3/9haNHj2LIkCE1FC0RaYuDgYUjaF/0doKRgdZMwEY6pnsDB1gYhyI6TY4rkSlo42ErdUhEpMYepmZj6R93AQBj29aGfx2+ZxARPY8PutfHzeg0hCVm4ePfg/HFkKa8IJGoCmjNN3NHR0cYGxsrm+AAULduXcTExJR6HyGq76e6H1+TfpgL5oK5YD6Yi9J/FAqB6KI1wi1NaiwXNfFZ+N+fojXQH6bmVPrvgqg8ly5dgr+/P3bv3l3mfgEBAWjVqhVkj79cymQytGzZEtevX6+BKIlIm6Tl5OFMaAIAYGBTZ4mjIXp+Job66O3lBAD4LZDToxNR6fIKFJh76A4ycwvg62qFKR08pQ6JiEhjmRjqY/kAHxgb6OHC/WTsuvJQ6pCItILWjAj38/ODXC5HeHg46tatCwAICwtTaYwTERGpm3R5PjJzC6dGd3m8hra2crcubIQ/SsuROBLSBSNHjqzQfvHx8WjQoIHKNnt7+zKnUwfUa636oljUKSZ1wLyUjHkpWVXk5Y878cgtEGjgYA5vZwutyLFa/r08EYtMpvp7jYWgjnmpYi/5OmPfjRj8GZKAzNx8WBiXf/pIF/JCRKo2nruPW4/SYWlsgGUDvGFQzctQEhFpu/oO5nivWz2sPBGKL8+Go1Vta3g7c1ZEosrQmkZ4vXr10K1bN8yZMwcLFy5EfHw8tm7diqlTp0odGhERUaliUuUAADszQ5gY6kscTfVyeTwiPDpNLnEkRMWys7NhZKS67paRkRFyc3NLvY+dnTn01fAkn709vxyXhHkpGfNSssrk5ffgeADAq/4ecHS0qqqQ1IJa/b2YFr//OjhYAubmkoWiVnmpYl3tLdDIORR3YzPwd1QaXvev+ChPbc4LERW7cD8JP/wbBQBY8GIj5QxgRERUOUOaueLC/WScDk3E3MN38P2oljAz0u5zhkTVSWsa4QCwZs0aLFmyBK+99hpMTU3x+uuvY/To0VKHRUREVKrox6OjdeGkgdvjEe/xGXLkFyg4WoDUgrGx8VNN79zcXJiYlP5/MikpU61Gu8lkhU2HxMR0Lh3wBOalZMxLySqbl9D4TNyISoW+ngxdPa2RkJBe9UFKQC3/XjIz4fD4nwkJ6UC2osZDUMu8VIN+Pk64G5uBnecf4MX6duXuryl5cXBgo56oshIy5Pj4SDAAYKifK7o1dCjnHkREVFEymQzzejfC7UdXEJGcjbV/hmL+i15Sh0WksbSqEW5paYlVq1ZJHQYREVGFxehQI9zO3AiG+jLkFQjEZsjhbm0qdUhEcHZ2RkJCgsq2hIQEODk5lXk/dTzBL4R6xiU15qVkzEvJnjcvBx+vo9y5nh1sTI20Lrdq9ffyRBxCqP5e09QqL9Wgr48T1v8VjluP0hEan4n6DhUbfa/teSHSdUIIfPjzDSRm5aGuvRne7VpP6pCIiLSOtakhFvfzxtQ9N/BbYCz8PW3R27vs8xREVDIOxSIiIpJQdGphI9zNWrvXBwcAPZlM2fAvmhKeSGp+fn64du0axOMz9kIIXL16FX5+fhJHRkSaIr9Agd+DChvhA5q4SBwNUdWxMzNC53qFI8GLLvYgItpzLRqn7sTBSF+GZf29tX6JLyIiqbSqbYPx7TwAAMuPhyjPIRLRs2EjnIiISEKPHq+XrQsjwgHA9fH06EUj4YmkEB8fj5ycwr/BPn36IC0tDcuWLUNoaCiWLVuG7Oxs9O3bV+IoiUhT/B2ejKSsPNiZGaJjXVupwyGqUgObFl7cceR2LPILan4aeiJSL6HxmfjiTBgAYHrXemjoaCFxRERE2u1/7T3h62qFzNwCzDt8B/kKTrtD9KzYCCciIpKQco1wa91ohLsUjQhnI5wk1KlTJxw5cgQAYGFhgS1btuDKlSsYMmQIAgICsHXrVpiZmUkcJRFpikO3HgEA+vo4w0CfX7FJu3Soawd7cyMkZ+fhXFiS1OEQkYRy8gow93AQcgsEuns5YkQLN6lDIiLSegZ6Mizt7w1zI33cjEnDtvMPpA6JSOPwWzoREZGEihrCbjoyItxN2QjXnKnRo6KicOLECanDoEoIDg6Gv7+/yu9DhgxR/t6sWTPs378fN27cwN69e9G4cWMpwiQiDZSUlYuzj5uDA5s6SxwN6bqYmGj89dfpKn1MAz0Z+vkUrkf5W+CjKn1sItIs6/4KR1hiFuzNDLF6mB9kMpnUIRGRlqiOGkabuFmb4KNeDQEAX1+MwNWoFGkDItIwBlIHQEREpKvSc/KRIS8AUDxluLZz0aCp0XNycvD999/j5MmTiIqKwrlz5zB27FjUrVtX6tCIiEhNHA2KQ4FCoLGLJeo7mEsdDukouTwHP/+8G2fPnkFMzENcunQBw4e/Bg8Pzyp5/IFNXfD9v1H4JzwJCZm5cDA3qpLHJSLNcfZeIvZejwYALOzrBQcLYyTk5EocFRFpuuquYbRJb28nnL+fjEO3YjH/8B3sHNMK1qaGUodFpBHYCCciIpJI0bTodmaGMDHUlziamqEpI8Lz8/MxZswYhISEoEOHDsjMzMT58+dx6NAh7N27t8xmeGhoKFavXo2rV69CT08P3bp1wwcffABHR0flPo8ePcKqVavwzz//IDc3F+3bt8fMmTNRp04dlcfat28fvv76a9y/fx+Ojo4YMmQIpk6dCn394r+Xc+fO4bPPPkNoaCjs7e3x+uuvY8KECSojNB48eIAVK1bg33//hb6+Pvr06YOZM2fCwqLsNf1u3ryJVatWITAwEObm5hgyZAimTZsGIyOeACciEkLgYGAsAGBgE44GJ2nk5+fj7bffQHh4GFq3bousrExcuXIJJ04cxdat35Z5Innr1o347rsdT21/8813MHLkaOXjn9j3Lcz/2Ie8nAy8ca0BFs3+EE2aNAUAHDlyEMuXLyr1OebOXYjmzVti2LCXSt2nX7+B+Oijj5/aPm/eLJiammHu3IWl3rdIVFQk1q37FDduXIO+vj66d++JqVPfhrk51y8mqqyEDDkWH7sLABjZyh3t69pJHBERaYPK1DBPunMnCFOmjMOHH85Dv34DldsvX76I995766n9O3TohFWrPgcA5Obm4qeffsDRo4cRFxcLR0cnDBr0MoYOHQkDg5KbzOvWrcWePbtw7ty/5cZ26dIFbN26EeHh92BnZ4/Bg4fhtddGPfeMGjN7NMCN6DREJGdj6R93seqlxpydg6gC2AgnIiKSSExqYSPcRUemRQeKR4THpstRoBDQ11PPgv3UqVPKtaJNTEywf/9+zJ49G7169cK2bduwbNmyEu8XGxuLMWPGwMPDA6tXr0Z2djY+++wzjB8/Hvv374ehoSGysrIwbtw4yGQyLFy4EEZGRti4cSNGjRqFQ4cOwcbGBgDw448/YsmSJZgwYQI++ugjXL9+HRs2bEBubi7ef/99AMD169fxxhtvoG/fvnjnnXdw5coVrF69GgUFBZg8eTIAIC0tDWPHjoWDgwNWrlyJpKQkrF69GlFRUdi+fXupOYiMjMT48ePRvHlzfP7557h37x4+++wzpKSkYPHixVWbcCIiDRQcl4HQhEwY6cvQ29ux/DsQVYO///4Lt28HYvXqz2FsbILffz+Et99+D8OHD8LOnd9h9uz5pd43NPQuWrRohSlTpqlsd3FxVf77yy8/w6FDv6LLwDE4FlmApAdn8e67b+Lrr39ErVq10b59J2ze/DUAQCYDbGzMkJKShZUrlyAzMxPt2nWEubm5cp8n7d+/BydPHkf//i+rbFcoFFi//jOcPn0KffsOKDcH6enpmD79Ddjb22Pu3IVITk7Gxo3rEB0djU8/XV/u/YmodAohsPBoMFKy89DI0RxvdeLsWERUNSpTwxTJzc3FsmUfo6Cg4KnbQkLuwtzcHGvXfqmy3crKUvnvL75Yg2PHjmDs2Enw8WmM4ODb+OqrrxAe/gCzZy946jGvX7+KvXt/qtDxBQbexKxZ7+KFF3ph0qQ3cOPGdWzatA4FBQUYPXpchR7jv8yM9LG0vzcm7LyO06GJ2H8jBkP83J7rsYh0CRvhREREEolWrg+uG9OiA4CjhTH09WQoUAjEZ8jV9iKA8PBwAIC/vz8CAgIAADY2NlizZg2srKxKvd/evXuRnp6OTZs2wdbWFgBgZ2eHMWPG4MKFC+jcuTOOHTuG8PBwHDp0CA0bFq7x1KhRI7zwwgs4evQoXn31VWRlZWHt2rWYOHEiZs6cCQBo37490tLS8M8//ygb4evXr4ePjw9Wr14NAOjSpQvy8/OxefNmjBkzBiYmJti1axdSUlKwb98+2NkVjt5wdnbG5MmTceXKFbRq1arEY/nqq69gbm6OjRs3wsjICF27doWJiQmWLFmCN954A25u/LJFRLqtaDR41wYOsDLhtIQkjYiIBwCAli1b49atQACAlZU1Pv54CSwtS69ZgMITxP36DUTTpr4l3h4b+wj79/+Md9+diV79BuHU5gtId/KC6z9r8OOP3+LDD+fB1tZWWfPIZICDgyU2bfoKDx7cx6ZNO5S3/fc57twJwsmTxzF58lvw82uu3B4aGoLPP1+NoKBbMDauWI184MDPSEtLxY4dPyovKHR0dMLMme/gxo3raNaseZn3J6LS7bzyEBcfpMDYQA/L+vvAyEBP6pCISEtUpoYpsm3bJmRmZpZ4W2joXdSv37DUOic1NQW//bYfU6e+jZEjxwAA2rRpCzMzY6xduxZTprytrGMAICsrC8uXL4KjoxPi4mLLjW3Hji1o2NAL8+cvAQC0a9cB+fn5+P77rzF8+KswNn6+82E+zpZ4q3NdfHEmDJ+eDkPzWtaoZ88lmojKwkY4ERGRRIqmB3dV02bwk155ZSD69RuIjIx0HDt2BLm5eejUqQtmzvwI+/btwS+/7EFWViZat26LWbPmwtraRnnfgwcPYPfunXj4MBK2tnawdG2FlLo9EJNW3Ag/ePAADhz4BQ8ehEOhEPDw8MSYMRPQo0dPAIVThM+bNw8bN27HunVrERISDAcHB4waNQoTJ04sNe7Ro0fj0qVLpd5+8uRJ1KpV66ntzs6FU9xeuXIFBgbF5VLXrl3LzNPIkSPRtWtXlS9LhoaFzRG5vPD17tmzJ3bt2qVsgpe0z99//43MzEyMHj1a5fE//PBD5b9zc3Nx8eJFTJ8+XWWfF198Edu2bcOVK1fQsWNHnDt3Dq1atVI2wQGgU6dOMDc3x19//VVqI/zcuXPo2rWryjToffr0waJFi3Du3DkMHz68zFwQEWmz3HwFjt2JAwAMbMpp0dVJVdYs/fu/hHHjJqksSVJUs0RE3EdBgeKpmuXIkYP45JOlKjWLra0dhg4doZxuvCTTpk3G9etXS719797f4Or69EVojo5OAIAbN65DX7+4ZmnfvlOZeUpJSUF8fBwaNmxU6j5XrlxGQUEBunTpBgtjA/Rs5IDDt+NgUccP58//XeJ9EhISsHXrJgwaNFQ5ffp/CSHw6aefoE6dehgxYqTKbUuXfgxTU1Ns2fINZs9+v8xjKHLx4nk0a9ZC2QQHgLZt28HMzBznz//NRjjRc7oTm44NZwsvEH6/e33UsTeTOCIi7VZTNUxp512KaphNm7Zj48bPcfv2bbWsYYrcvBmAn3/eg8WLl2P27BlP3R4SEoyWLVuXev/MzEy8/PJQdOrURWV7vXr1AADR0Q9Vzu1s3PgF7O3t0apVW3zzzbYyY8vNzcW1a1cwYcIUle3du7+AnTu/w40b19GmTbtyj7E0I1u54+L9ZFx4kIy5h+7gm9dbwJgXKhGVio1wIiIiiRRNje5qrf6NcAD46acf0aZNWyxcuBx37gRhy5YvERwcBAcHR8yaNRcxMdH44os1sLNzwIwZhQ3b77//Glu3bsTQoSMwffr7CAkJxuatm2GQkoCYfj5oAWv88ssefPHFGkyYMBlvvfUO0tPT8MMP32LRorlo2tRX2ZRWKBRYsGA2Rox4HTNnzsDPP/+MVatWoVGjRujcuXOJMX/88cfIyMgo9ZicnJxK3N6rVy9s3LgRb7/9Njp16oSCggLk5uaWuza2nZ2dsuEsl8sRFBSExYsXw8PDA506FX6Zs7S0RMuWLQEUfjkKCwvDJ598AltbW/Tt2xcAEBQUBEtLSyQkJGDGjBkICAiAtbU1Xn/9dUydOhUymQyRkZHIy8t7al1xT8/CdbTCw8PRsWNH3Lt3D/369VPZR19fH7Vq1VKOfP+vnJwcPHz48Km10O3s7GBhYVHq/YiIdMVf9xKRmpMPJwsjtPWwLf8OVKOqqmbZvn0r4uJiMWdO4dSYRTXLxImT0bnzHERGPlKpWZycnq5ZJk9+E4cO/YqNG79A/foN4O/fvsSYZ8yYXeqIJgCwt3cocXuXLt1Rq9Y2zJ37Idq29UdBgQJ5eXnKi+xKExISDAD4559zWL/+MyQkxKNevfqYPPkttG/fEQBw/344zMzMlc89sKkLDt+OQ1S+ORQJ8cjKyoKZmWpjbN26ddDTk+F//3uz1Oc+efIP3L4diHXrNqucoAeA+fMXo379BmXG/l8PHtzHCy/0Utmmr68PV1c3REY+eKbHIqJC2XkFmHv4DvIVAt0a2GOwr4vUIRHphOquYUo77/JkDTN//mxMnDgBEyZMwcGD6lfDAIXnLJYtW4QxY8ajfv2GT90ul8sREfEArq7uGDduJO7fD4O9vQOGDh2hXKPbzc0dH3ww+6n7njx5EgYGBqhd20O57fLlCzh69DB27PgRx48fLTe+6OiHyMvLg4eHh8p2d/faAApHw1emEa4nk+Hjvl54/bsrCE3IxPq/wvBBj2ern4h0CRvhREREEimeGl0zGuHm5uZYtGgFDAwM0KaNP44ePYT4+Hhs3fotLCwsAAAXLvyDmzcLpxLPyMjAN99sw8svD8G7734AoHB0zpmIHNw+/BVu372Lfo2dER39EK+9Nhrjxk1SPpeLixsmThyFGzeuo1evFwEUjh4aP34SBgwYBEdHS7Rq1QrHjx/H6dOnS22EN2jwfF8EzM3N8dNPP2HdunU4dOgQ0tPT0b59e7z66qt45513ym2IA8BLL72E+/fvw8TEBF9++SVMTJ5+nadOnYpz585BT08Py5YtUzbmk5KSlOt8jx07Fm+//Tb+/vtvrF+/Hjk5OXj//feRnp4OAMrcPxk7AOUFAOnp6cpt/92vtIsESnvs8u5HRKQrDt56BADo38QZ+noyiaOh/6qqmsXa2horVy7FiBGvo169+io1i4ODJerXT1epWXr2fLpmAQBfXz+cOfMn/vnnbKknkevWrfdcx2pmZoZNm3Zg+/YtOHHiKDIyMjBgQE+8/PJQ/O9/U0s9mRwSchcAkJiYiNmz5yE3Nw+//LIbH374Hlav/gL+/u2RmZmhUkO0rGUNd2sTxMiMYAggKytTpRGenJyEAwcO4NVXX4elpeV/n1Jp587v4evrV+IorWdtggNAZmYGzMyernXMzMzKPDFPRKVb++c9RCRnw8nCCHN7N4JMxs86oppQEzVMkbJqmLFjRyMhIR1Nm6pfDQMAmzevh5mZKUaNGof4+Linbg8Pv4eCggJERj7A5MlvwtLSCufOncGmTeuQnp6GKVPeKvFxz5z5E/v378fQocOVy+JlZGRgxYolmDjxDXh4eFbo2IrOmfy3Pimqm6qiPnEwN8KCPl54d18gdl+LRltPW3Spb1/pxyXSRmyEExERSeRR0dTo1pqxRriPTxOVacJtbe1gamqm0iy1trZGWFgoACAw8Abkcjk6dixct7pI01btcfvwV7hz4yowqDPefvs9AIXN1wcP7uPhw0hcvfovACAvL08lhiZNmin/bWRkBDs7O2RlZZUac0FBAYQQpd7+5PH8l52dHRYuXIi+fftiw4YNcHNzw7Zt26BQKFSmKC/Nxx9/DIVCgR9++AFvvPEGNm/e/FTDfurUqZg0aRJ+++03zJkzBwUFBRg2bBjy8vKQlZWF6dOnY/z48QCAdu3aITU1FV9//TUmT54MhUJR5vPr6RVOi1XW8Zd2Qqu8x+aJMCLSZXHpcly4nwwAGNCEI+TUUVXVLB07Fk6V+e+/F1GvXn2VmiUq6h5u3QrGlSsVq1lsbGyQnZ1dasyVqVlsbW3xwQez0aNHT3zzzTY4O7tg587voFAoMG3auyXep0ePXvD0rIN27TooR2X7+7fHuHGvYdu2zfD3bw+FQjUemUyG/k2csS2g+Pcn/fbbASgUCgwb9lqpsd68GYC7d+9gxYo1pe7zrMqqW2QyThNK9KxO3o3HrzcfQQZgUV9v2JiWPzqTiKpGTdQw5Z13adpUvWuYq1f/xW+/7cfWrd+W+ti1anlg9eov4O3dWDm9eevWbSGXy/HTTz/g9dfHPnXh/5kzp7Bo0Ty0atUKb75ZvATdunVr4ezs/NRyLmURorxzKlVTn3Ssa4fXWrpj19WHWHw0GD+NbQUHC804x0hUk9gIJyIikkB6Tj7S5YVfUjRhjXAAJY4qLmmUc5G0tFQAwMyZ75R4e2JiPADg4cMorFq1HFeuXIKhoSE8POqgQYPCqa3++2Xqv8+np6dX5heucePGPdca4f/l5uaGlStXwtDQEDt37sTMmTOVjebSdOjQAUBhA7t///746quvnmqEt25dOBKqffv2ePjwITZv3oxhw4Ypc92tWzeV/bt06YLdu3fj3r17ypFW/72SuOjK46IvdRYWFiVebZyRkaGcdv6/iu5b2v3KGuVFRKTtjtyOhUIAzd2t4GFrKnU4VIKqrlkSEkquWTw96yin46xszfLOO1Ofa33N/3J2dsHcuQthYGCI/fv34s03p5dYs7i4uMDFRfVCjsLRZ+3w66+/ACisB7KyVGuB/o2dsT2vcFajdIUhnhx3dPr0SXTs2BG2trYo7VBPnz4JS0urCq//WRGFcT59YWRWVqZy/VEiqphHaTlY9kcIAGBs29po7WEjbUBEOqamapiqPO9SkzVMVlYWVqxYjNdfH4s6deoiPz9feUGcQqFAfn4+DAwMYGFhoVzq5Unt23fCwYMHcP9+OJo29VVu3737R2zY8AVatGiFLVs2IydHQAjg77/P4sSJP7BtW2FzXqFQKHORn58PPT29Eussc3MLZbyq8RfWVSXNvve8pnWuiyuRKbgbn4mFR4Oxbqgv9Dh4gUgFG+FEREQSiHk8LbqtqSFMDfXL2VszWVgUNksXLFiqsi5S0KN0rDgRCuHkAIVCgZkz34GhoSG2bfsODRo0goGBAcLDw3Ds2JFKx7Bo0aIyp5wqbY3wrVu3IiAgABs2bFDZ7u3tjT179iA1NVV5VfGTLly4ALlcjq5duyq3GRgYwMvLC3fvFk5BeuPGDURFRT21bneTJk1w7do1AMXrfOfm5qrsU3SltrGxMTw8PKCvr48HD1TXvoyIiAAA1K9fHwBQt25d5bYiBQUFiIqKQu/evUs8fnNzczg7Oz/12ImJicjMzFQ+NhGRrhFC4OCtWADAQI4G1xql1SxFbG3tnqpZ2rdvhZSUbISFVU3NMmvWR2XOcuPg4Fji9u+//wa3bwc+NcK6YcNGOHhwP9LT02BtbfPU/c6fPwe5XI5u3V5Q2S6X58DGprDG8fDwRGZmJpKTk5V1j5u1CZxkaUg0s8WJ0BRMcrQGAMTHx+Hu3WBMnDihzOP8++9z6Ny5a5mjw55V7dqeePgwUmVbQUEBoqOj0aVL9yp7HiJtV6AQWPB7MNLl+WjsYokpHSo2BTARSed5apiqPu9SkzXMnTu3ERMTja+//gpff/2Vym0rVy7BypVLcO7cv7h79w5u3QrEyy8PUWlUy+WPz8U9rmuEEPjiizX4+efd6NnzRcybtxAWFhbIySlcLu706ZPIzZVjzJgRT8XfrVs79O07AHPnLnzqNnf3WtDX13+qPomKKvzd07NOiTl5HkYGelja3wejf7iKiw9SsOvKQ7zeuvwBH0S6hI1wIiIiCRQ1wl2tNWM0+PNo0qQpDA0NkZAQh969+yi3J2XdhMGtw4gTvZGckoyIiAeYPn0GvL0bK/e5cOEfAOVP0V2eevWeb62qtLQ0nDx5EmFhYSrbr169Cjs7uxKb4ADw66+/4tSpUzh58qTyCt+MjAxcu3YNLVu2BAD89ddf2LRpE1q0aAFXV1cAhSdrL1y4AC8vLwCFI79lMhkOHz6s3AYAp06dgo2NDerXrw9DQ0O0bt0ax48fx8SJE5XTkx47dgyWlpZo1qxwOrOOHTti+/btSEpKgp2dHQDg3LlzyMrKQseOT18hXaRjx444ffo05syZo1wT/dixY9DX10e7du2eLaFERFriZkw6IpKzYWKghxe8HKQOh6pIaTVLSEgwNmz4AuPGTYKRkZGyZvHxaaxs5FZVzeLhUee57peRkY5z584gIuK+yvYbN67Dxsa2xCY4APz550mcPn0KLVu2hpVVYTM7Ozsb58//rVy7u00bfwCFJ4EHD34FQOFFevlRt6Bw8sKhW7GY2M4DMpkMt28HAoCy3ilJWloqoqIiMGrUmOc61tK0bdsOO3d+p9Kwv3TpArKzs9C2LWsWoor69lIkrkWlwsxQH0v7ecNAn0sLEKm7Z61hquO8S03WMN7ePti27TuVbQkJCZg9+32MH/8/dOxYOAvfvXuhWLt2JWrVqoU2bYprgVOnjsPFxVU5Qn3Llg34+efdGDHidUyb9i709FRHUk+YMBlDhw5X2fbrr/tx8OB+bNv2Xal1lrGxMfz8WuDMmT/x2mujledrTp8+BQsLCzRu3LTc/DyLuvZmeK9bPaw8EYoN58LR2sMGXk5VN+qcSNOxEU5ERCSB6Mfrg7tZae/aPdbWNhg5cgy2bduMzMxMtGjRCvHxcdi2bTNkmXLkWrpCGFnA1dUN+/btgZOTEywtrXDx4j/Ys2cXACAnp/R1qKrTa6+9hl27dmHq1Kno27cv4uLisGzZMhw6dAjz588v9X6TJk3C0aNHMXXqVEycOBG5ubn46quvkJmZibfffhsA8Oqrr+Knn37ClClTMG3aNOV063fv3sX27dsBALVr18aoUaOwbdu2x9OUtsGff/6J3377DfPnz4ehYeE6fVOnTsX48ePxzjvvYOjQobh27Rq2b9+OGTNmwNS0cLrekSNH4ocffsD48eMxbdo0pKSkYPXq1ejSpYvKyerr16/Dzs5OeRX5pEmTcPjwYUyaNAnjx4/H/fv38emnn2L48OFwcyt/WjMiIm10MPARAOAFL0eYG/HrtLYos2aRydCgQSNYWKjWLLVqOeOPP05KXrMMHvwKDhz4GbNmvY8XXuiFhIR4fPHFWpw4cQzvvTez1PuNHDkGf/55AjNmTMeYMeOhUCjwww/fIjs7GxMnTgEAuLi4om/fAVi//lPI5TmoXdsTu3f/iHx5Jgx9euJhag6uP0xDi1rWuHcvFEZGRvDw8EBCQnqJz3nvXuF6pnXqPN+FikXu3r0DQ0Mj1K1b+DiDBr2CX37Zjffeewvjx/8PaWmp2LhxHdq16wBfX79KPReRrrgZnYat/9wHAMx6oQFqc+kPIo3wPDWMupx3eZ4axszMXKWZDwAxMdEAAFdXN+Vt3bv3xM6d32Hp0o/xv/+9CQcHRxw/fhTnzv2FpUs/gZ6eHkJCgvHjj9/Cx6cxunfviVu3AiGTATY2ZkhJyUKdOnXh6ur21LTuf/99FgBU4sjNzcXdu8FwcnKCk1PhEnRjx07Eu+++ifnzZ6N//5cQGHgDu3Z9jzfemFbmdPfPa0gzV5wPT8aZe4mYdzgI349qCRMtnYGS6FnxmzsREZEEYlILR4S7aMj64M/rf/+bCnt7B+zbtxc7d34HS0srtG7dFjkWHRAnTBGdJsfy5WvwxRdrsGzZIhgZGaJOnXr45JPPsG7dWgQEXMewYa/WeNzu7u745ptvsHr1amzbtg35+fkICwvDrFmzMGrUqFLvV79+ffz4449Yu3YtZs2ahfz8fLRt2xbLli1DgwYNAAAODg7YtWsXVq9ejY8//hhZWVlo1qwZvv32W+Wa4QDw0UcfwcXFBbt378bWrVtRu3ZtLF26FMOGDVPu0759e6xfvx7r1q3DW2+9BWdnZ8yaNQsTJhRPS2pnZ4fvvvsOy5cvxwcffABzc3P06dMHs2bNUol9xIgRGDx4MFauXKk8lh07dmDVqlWYPn06bG1tMW7cOEyfPr1KckxEpGly8gpwPLhwncWBTZwljoaqWmk1y+TJbylneXmyZjE2NoKnZ12VmuWVV2q+ZnFxccUXX2zCxo3rsHPnd8jPz8eDB/fx5pvvYOjQp6fxLFKnTl18+eVX2LJlA1asWIK8vDw0b94Cc+bMh5ubu3K/mTM/gqWlJX788TtkZ2fBy8sHn322EfuiDPFbYCwO3XqEFrWskZSUpJyetTRJSUkAAEtLq0od80cfzYSLiyu+/HIrgMLpTdet24wvvvgUixfPg5mZObp3fwHTpr1bqech0hUZ8nzMO3IHBQJ40dsR/RqXvHwUEamnZ61hSjrvokk1TEWYmJjg8883YuvWjdi+fQtSU1NQt259LF++Gp07dwMAnDnzJ4QQCAq6jTfeGP/UY6xbt1k5S055EhMT8MYb4zF+/P+UFxS2atUGS5euwo4dW/DRRx/AwcEJb775Dl57rfRzSpUhk8kwr3cj3PruCu4nZePzM2GY3bNhtTwXkaaRCSGE1EFIIT6+5CuUq4JMBjg4WCIhIR26md1izEUx5qIYc6GK+SimS7mY+estnA5NxMweDTC8xdOja6s1F5mZcKxbOCV3fHgMYG5exU9Qvsk/Xce1h2lY1t8bvb3LPtFSUi4cHcs+0VqVLly4gAMHDigbxETVWUc+D11673wWzEvJmJeSVSQvR27H4uPfg+FubYL9E9sopzjUZmr596IGdYxa5gXA1av/4vffD5W4VmVVuxaVism7A2BmqI+jU9vB1FBfbfPyXzVZRxL9l7rVkQCw4Mgd/B4UBzcrY/w4phUsjMseN6Up/9erg64eu1Yc93PUD1px3M9BiuOuyRqmLNrwml98kIxpP98EAKx5uTG6Nih/OSdtOO7n8TzHzTpSM3GxFyIiIglEPx4R7matvVOjl6VobfSiPKizWrVqoWfPnlKHQUREEjt4KxYAMKCJs040wUnzuLq6KUc5Vbfm7lZwtzZBVl4BTt1NqJHnJKKqd+R2LH4PioOeDFjcz7vcJjgRUXWoyRpG2/l72mJU61oAgCXH7iI+Qy5xRETSYyOciIhIAjGP1wh31fKp0UtTNCX8o3T1L8jZCCcioujUHPwbkQIZgP6cFp3UlKurG7p06VYjzyWTyTDg8f+FQ7ce1chzElHVikrJxqqToQCASe094eduLXFERKSrarKG0QVvdqoDLycLpObkY+HvwVDo0jBvohKwEU5ERFTDMuT5SJfnA9DdRribVeFIeE0YEU5ERHT48Wjw1h42OvvZTfRfA5o4Qwbg38hU1nREGia/QIH5R+4gM7cAzd2tMN7fQ+qQiIioihjq62FpP28YG+jhUkQKdl55KHVIRJJiI5yIiKiGxaQVnii0MTWEmZG+xNFIo6iJ8ChN/UeEExGRblMIoRzxOrApR4MTFXGxMkFrDxsAwOHbsdIGQ0TP5KsLEQiMSYeFsT4W9/OGgR6X/CAi0iZ17M3wfvf6AIANZ8MRHJshcURE0mEjnIiIqIZFpxZNi66b64MDxY3w6LQcCE7RREREauxaVCqi0+QwN9JH9wYOUodDpFaKp0eP5bSbRBrialQKvr4QAQCY07MhZzohItJSg31d0K2BPfIVAvOOBCEnr0DqkIgkwUY4ERFRDSsaEe5mrbsnHJwtjSEDIM9XICU7T+pwiIiISnUwsHA0eG9vR5gY6uZMLkSl6d7QAeZG+ohOzcG1qFSpwyGicqTl5GHBkWAIFF7I0tvbSeqQiIiomshkMszt3QiOFka4n5SNz06HSR0SkSS0qhF+/PhxeHl5qfxMnz5d6rCIiIhUFDXCdfnKeyMDPThYGAEAojk9OhERqanM3HycvJsAABjYxEXiaIjUj6mhPno2cgQAHArk9OhE6kwIgeXHQxCbLkdtGxN80KO+1CEREVE1szE1xMI+XpAB2HcjBqdDEqQOiajGaVUjPDQ0FN27d8e5c+eUP0uXLpU6LCIiIhXRqWyEA0+uE54jcSREREQlOxEcj5x8BerYmaKpq6XU4RCppaLp0U/cjUemPF/iaIioNAcDY3HybgL09WRY0t8H5kYGUodEREQ1oK2nLUa1rgUAWPrHXcRncEAK6RataoTfu3cPjRo1gqOjo/LHyspK6rCIiIhUZD9ek8fTzlTiSKTlaVt4/Fm5XKOIiIjU082YdADAS01dIJPJJI6GSD35uVvBw9YU2XkKBMemSx0OEZXi0K3CpT6mdqyDJi68uIuISJdM7VQH3k4WSM3Jx9mwJKnDIapRWnXp371799ChQwepwyAiIirTu13r4/rDVLT1sJE6FElN7uCJRk4WeOHxdJpERETqZrx/bTRwMMdQP1epQyFSWzKZDJ+81Bg3olPRvJYNkpIypA6JiErwbrf6CE3IVM7iQEREusNQXw+fDWmKP+7EobcXz8ORbtGaRrgQAuHh4Th37hy2bNmCgoIC9OnTB9OnT4eRkVGJ96muC/qLHpcDBpiLJzEXxZgLVcxHMV3JRUMnczR0Mi9zn2rNxROPKZOp/l6TXK1N8For93L305W/CyIiUj/u1qZ4tWX5n1VEuq6BgzkaOppDT48FG5G6auxiicYcCU5EpLMczI0wslUtqcMgqnFa0wiPjo5GdnY2jIyM8PnnnyMqKgpLly5FTk4O5s2b99T+dnbm0Nev3pnh7e1ZXBZhLooxF8WYC1XMRzHmoli15MK0+PPPwcESMC+7Ka8u+HdBRERERERERERERBWlNY1wd3d3XLx4EdbW1pDJZPDx8YFCocDMmTMxZ84c6Ovrq+yflJRZrSPC7e0tkZiYDiGq5zk0BXNRjLkoxlyoYj6KMRfFqjUXmZlwePzPhIR0IFtRxU9QtUrKhYMDm+JEREREREREREREVDqtaYQDgI2Njcrv9evXh1wuR2pqKuzs7J7av7qbLEJU/3NoCuaiGHNRjLlQxXwUYy6KVUsunng8IVR/V2f8uyAiIiIiIiIiIiKiiqreucFr0NmzZ+Hv74/s7GzltqCgINjY2JTYBCciIiIiIiIiIiIiIiIiIu2kNY3wFi1awNjYGPPmzUNYWBjOnDmDVatWYdKkSVKHRkRERERERERERERERERENUgmhPZMMhoSEoLly5fj+vXrMDc3x6uvvoq33noLsupaDJyIiIiIiIiIiIiIiIiIiNSOVjXCiYiIiIiIiIiIiIiIiIiItGZqdCIiIiIiIiIiIiIiIiIiIoCNcCIiIiIiIiIiIiIiIiIi0jJshBMRERERERERERERERERkVZhI7wMiYmJmD59Olq1aoWOHTti9erVyM/PV96enJyMt99+Gy1atECPHj3w66+/qtz/9u3bGDZsGPz8/DB06FAEBgaq3H7o0CH07NkTfn5+eOutt5CUlKS8TQiBNWvWoF27dmjbti1WrVoFhUJRvQdchrS0NMydOxcdOnRAu3btMHv2bKSlpSlv16VcPEkIgQkTJmDfvn0q23U1HxUhl8vx0UcfoXXr1ujUqRN27NghdUhVIjc3FwMGDMDFixeV2yIjIzFu3Dg0b94c/fr1w7lz51Tu888//2DAgAHw8/PDmDFjEBkZqXL7N998g86dO6NFixb46KOPkJ2drbxNHfMYGxuL6dOno23btujcuTNWrFgBuVwOQPdy8eDBA0ycOBEtWrRAt27dsG3bNuVtupaLJ02ePBmzZ89W/l6d74XlvQ8TaYJFixZh9OjRKtt09T2EtWjVUOfXuDJYg5SPn8HFcnNzsWjRIrRp0wYdOnTAp59+CiEEAN3OS0xMDKZMmYKWLVuiR48e+Oabb5S36XJeiHRNeTXXN998Ay8vL5WfTz75RHl7ZT5X1ZkmfeaXp6y6aenSpU+9vj/88IPyvppcMx8/fvypY5s+fToA7f6usG/fvqeO28vLC97e3gCAqVOnPnXbn3/+qby/JtbCunqOtqTjvn79Ol599VW0aNECL774Ivbu3atyn5deeump1//u3bsANKuGK+nYq/P9TJ2OnSpIUKnGjRsnxo8fL0JCQsTly5dF165dxaZNm5S3T5kyRYwdO1YEBweLPXv2iKZNm4qAgAAhhBCZmZmiY8eOYuXKlSI0NFQsWbJEdOjQQWRmZgohhAgICBDNmjUT+/fvF0FBQWLUqFFi8uTJysfevn276Nq1q7h8+bI4f/686NSpk9i2bVvNJuAJ7777rhgyZIi4efOmCAwMFK+88op4++23lbfrUi6KFBQUiMWLF4tGjRqJX375ReU2XcxHRS1evFgMHDhQBAYGij/++EO0aNFC/P7771KHVSk5OTnirbfeEo0aNRIXLlwQQgihUCjEwIEDxYwZM0RoaKjYvHmz8PPzEw8fPhRCCPHw4UPRvHlzsX37dnH37l3xzjvviAEDBgiFQiGEEOLo0aOiVatW4tSpUyIgIED069dPLFq0SPmc6pZHhUIhhg8fLiZNmiTu3r0rLl++LHr16iVWrlypc7koKCgQvXv3FjNmzBDh4eHi9OnTomXLluK3337TuVw86dChQ6JRo0biww8/FEJU/3thWe/DRJrgypUrwsvLS4waNUq5TZffQ1iLVg11fo2fF2uQ8vEzWNX8+fNF7969RUBAgPjnn3+Ev7+/2LVrl87nZfjw4eLdd98V4eHh4vjx48LPz0/88ccfOp8XIl1TXs01d+5csXDhQhEXF6f8SU9PF0JU/nNVnWnKZ355yqqbhCg8F75lyxaV1zcrK0sIofk188aNG8WUKVNUji01NVXrvytkZ2erHHN0dLTo1auXWLZsmRBCiF69eolff/1VZR+5XC6E0MxaWFfP0ZZ03HFxcaJ169Zi7dq1Ijw8XBw6dEj4+vqKP//8UwghRH5+vvD19RWXLl1Sef3z8vKEEJpTw5V07EJU7/uZuhw7VRwb4aWQy+VixowZ4v79+8pty5cvF5MmTRJCCPHgwQPRqFEjERkZqbz9o48+Up5c2Lt3r+jRo4fyDVOhUIhevXopG6YzZ85U7iuEENHR0cLLy0tEREQIIYTo2rWrSnP1wIEDonv37tV0tGXLzMwUPj4+4vr168ptV69eFT4+PiInJ0enclHk0aNHYtSoUaJbt26idevWKvHpYj4qKjMzU/j6+qp8KG3YsEHlJL+mCQkJES+99JIYOHCgygfuP//8I5o3b64snIUQYuzYsWLdunVCCCE+//xzlePOysoSLVq0UN5/5MiRyn2FEOLy5cuiWbNmIisrSy3zGBoaKho1aiTi4+OV2w4ePCg6deqkc7mIjY0V77zzjvJkgBBCvPXWW+Ljjz/WuVwUSU5OFl26dBFDhw6tkffC8t6HidSdXC4X/fv3FyNGjFD5P6yr7yGsRauGOr/GlcEapGz8DFaVnJwsGjduLC5evKjctmXLFjF79mydzktKSopo1KiRCA4OVm6bNm2aWLRokU7nhUjXlFdzCSHEq6++Kn766acS71+Zz1V1pimf+RVRVt0khBCdO3cWZ8+eLfG+ml4zz5gxQ6xdu/ap7br2XWHz5s2iZ8+eQi6XC7lcLnx8fERYWFiJ+2paLayr52hLO+6dO3eKPn36qOw7f/588f777wshhLh//77w9vZWvr//lybUcKUduxDV936mLsdOz4ZTo5fCyMgIa9asgaenJwAgJCQEp06dQtu2bQEAAQEBcHV1Ra1atZT3adWqFa5du6a8vVWrVpDJZAAAmUyGli1b4vr168rbW7durbyvq6sr3NzcEBAQgNjYWMTExKBNmzYqj/3w4UPExcVV63GXRE9PD5s3b4aPj4/K9oKCAmRmZupULorcunULrq6u+OWXX2Bpaalymy7mo6Lu3LmD/Px8tGjRQrmtVatWCAgIUKtpg57FpUuX4O/vj927d6tsDwgIQOPGjWFmZqbc1qpVq1JfZ1NTUzRp0gTXr19HQUEBbt68qXJ78+bNkZeXhzt37qhlHh0dHbFt2zY4ODiobM/IyNC5XDg5OeHzzz+HhYUFhBC4cuUKLl++jLZt2+pcLop88sknePnll9GgQQPltup8LyzvfZhI3W3duhVeXl7o2LGjynZdfQ9hLVo11Pk1rgzWIGXjZ7CqK1euwMLCQvm9HiicNn7FihU6nRcTExOYmppi3759yMvLQ1hYGK5evQofHx+dzguRrimv5gKAsLAw1KlTp8T7V+ZzVZ1pymd+RZRVN2VkZCA2NrbCr6+m1cz37t0r8dh06btCSkoKvvrqK8yYMQNGRkYICwuDTCZD7dq1n9pXE2thXT1HW9pxFy198F8ZGRkAgNDQULi6usLY2PipfTSlhivt2Kvz/Uxdjp2eDRvhFTBq1CgMGDAAlpaWeP311wEA8fHxcHJyUtnP3t4esbGxZd7+6NEjAEBcXFypt8fHxwOAyu1FBUrR/WuSiYkJunTpAiMjI+W27777Dl5eXrCzs9OpXBTp0aMHVq1aBTs7u6du08V8VFR8fDxsbW1V/pYcHBwgl8uRkpIiXWCVMHLkSHz00UcwNTVV2V7e61zW7WlpaZDL5Sq3GxgYwMbGRvl3oG55tLKyQufOnZW/KxQK/PDDD2jXrp3O5eJJPXr0wMiRI5Vr8ehiLs6fP49///0Xb775psr26nwvLO99mEid3bt3D7t27cKcOXOeuk0X30MA1qJVRZ1f48pgDVI6fgY/LTIyEu7u7jhw4AD69OmDF154ARs2bIBCodDpvBgbG2PBggXYvXs3/Pz80LdvX3Tp0gXDhg3T6bwQ6Zryaq6EhASkpKRg//796NGjB/r27Yvt27dDCAGgcp+r6kwTPvMrqqy66d69e5DJZNi8eTO6dOmCl156Cfv371fuq8k1sxAC4eHhOHfuHF588UX07NkTa9asQW5urk59V9i1axecnJzQp08fAIUXtlhYWGDWrFno1KkTXnnlFZw5cwYANLIW1tVztKUdd61atdC8eXPl74mJiTh8+DDat28PoPDcg6GhIaZMmYKOHTti1KhRuHHjBgBoTA1X2rFX5/uZuhw7PRsDqQOQUk5OTql/oI6OjsqrhObNm4fU1FQsXboU77//PjZv3ozs7GyVNzigcBR5bm4uAJR7e05OTqm35+TkKH9/8jYAyvtXtYrmAgB++OEH/P7779i2bRuA8o9V03JRFFNF8/Ff2piPqlLasQOaEf+zqMzfQUmv85O3CyHUPo+rV6/G7du38fPPP+Obb77R2VysW7cOCQkJWLhwIVasWKFzfxdyuRwff/wxFixYABMTE5XbqvO9sLzHJpJSeTXGggUL8Pbbbz81SgPQ7s8W1qLVT1fqMNYghfgZXLKsrCw8ePAAP/30E1asWIH4+HgsWLAApqamOp0XoPCEYffu3TF+/HiEhIRgyZIlaN++vc7nhUjbVKbmCgsLA1B4wn/Tpk0ICgrC0qVLoa+vj3HjxlXqc1WdaXMN9WTddOvWLchkMtSrVw+jRo3C5cuXMX/+fFhYWKBXr14aXTNHR0crX8fPP/8cUVFRWLp0KXJycnTmu4IQAnv37sWkSZOU28LCwpCTk4NOnTph8uTJOH78OKZOnYrdu3crv49qai38JG3+Hl1ROTk5yvMMI0aMAACEh4cjNTUVw4YNw/Tp07Fnzx6MHTsWR44c0fgarmi2g+p4P1P3Y6eS6XQjPCAgAGPGjCnxtg0bNqBnz54AAG9vbwDA8uXL8corryAqKgrGxsZP/XHn5uYqTzI87+2mpqYq/7GKpqYo2ve/V7dUlYrm4scff8TSpUsxZ84cdOrUqcxj0dRcABXPR0m0MR9VpbRjA/DUCTpNZ2xs/NSVfxV5na2srJ56bZ+83dTUFAUFBWqdx9WrV+Pbb7/FZ599hkaNGul0Lnx9fQEUnoz+4IMPMHToUGRnZ6vso825+PLLL9G0aVOVK86LVOd7YXmPTSSlsmqMGTNmoKCgQPnF9L+0+f2UtWj104U6jDVIMX4Gl8zAwAAZGRlYu3Yt3N3dARSeHN+1axc8PT11Ni/nz5/Hzz//jDNnzsDExAS+vr6IjY3Fpk2bULt2bZ3NC5E2qkzN1bZtW1y4cAG2trYAAC8vLyQlJWHXrl0YN25cpT5X1Zm21lD/rZsaNmyI7t27w8bGBkDh+fD79+9j165d6NWrl0bXzO7u7rh48SKsra0hk8ng4+MDhUKBmTNnom3btjrxXeHmzZuIjY1F//79ldvefPNNjB49GtbW1gAKX/Nbt25hz549eO+99wBobi38JF3+TgAAmZmZePPNN3H//n3s3LlT+be5ZMkS5OTkwMLCAgCwcOFCXL16Fb/++is6dOgAQHNruEGDBlXb+5m6HzuVTKcb4f7+/ggODi7xtoyMDBw5cgR9+vSBnl7hDPJF66olJyfD2dkZCQkJKvdJSEiAo6MjAJR6e9G0CWXd39nZGUDhFBRFaw0UTclQ9PhVraxcFNm+fTtWrVqFWbNmYezYscrt2pYLoGL5KI025qOqODs7Izk5Gfn5+TAwKHz7iY+Ph4mJCaysrCSOrmo5OzsjNDRUZVtFXmcfHx/Y2NjA2NgYCQkJqF+/PgAgPz8fKSkpcHR0hBBCbfO4ZMkS7Nq1C6tXr8aLL74IQPdykZCQgOvXr6tcMNOgQQPk5eXB0dFReRX9k/tray4OHz6MhIQE5VpJRYXisWPHMGDAgGp7LyzvfZhISmXVGKNHj0ZgYCBatmwJAMjLy0NBQQFatGiBw4cPa/X7KWvR6qftdRhrEFX8DC6Zo6MjjI2NlU1wAKhbty5iYmLQtm1bnc1LYGAgPD09VU7gNW7cGJs3b0br1q11Ni9E2qgyNRcAZRO8SP369ZUjzCvzuarOtLGGKqlukslkyqZRkXr16uHChQsANL9m/u+x1a9fH3K5HI6OjjrxXeHs2bNo3bq1sukNAHp6eiq/A4WveWhoqMbXwk/S5e8EGRkZmDRpEiIiIvDtt9+qrJltYGCgbIIDUI6gjo2N1fgarjrfz9T92KlkXCO8FNnZ2XjvvfcQEBCg3Hbr1i3o6+ujbt26aN68OR4+fKiy3seVK1eU6y74+fnh2rVrynVyhBC4evUq/Pz8lLdfuXJFed+YmBjExMTAz88Pzs7OcHNzU7n9ypUrcHNze2r9gZqyf/9+rFq1CnPmzMHEiRNVbtO1XJSH+Sidj48PDAwMcP36deW2K1euwNfXV3nBibbw8/PDrVu3lNOpAIXHWtrrnJ2djdu3b8PPzw96enrw9fVVuf369eswMDCAt7e32ubxyy+/xE8//YRPP/1U5QpTXctFVFQUpk2bpjLdXGBgIOzs7NCqVSudysX333+PgwcP4sCBAzhw4AB69OiBHj164MCBA9X6Xlje+zCRulqzZg0OHz6s/D/z6quvomnTpjhw4ACcnJx07v30SaxFK0/dX+PKYA3yNH4Gl8zPzw9yuRzh4eHKbWFhYXB3d9fpvDg5OeHBgwcqo1vCwsJQq1Ytnc4LkS4qq+bau3cvXnzxReX7AQAEBQWhXr16ACr3uarO1P0z/1mVVjd98cUXGDdunMq+d+7cKfX11aSa+ezZs/D391eZoS8oKAg2NjZo1aqVTnxXuHHjhvKC6yKzZ8/GnDlzVLYVveaaXgs/SVe/EygUCkybNg1RUVH4/vvv0bBhQ5XbR48ejS+//FJl/+DgYNSrV0/ja7jqfD9T92OnUggq1bRp08TgwYPFrVu3xOXLl0Xv3r3FsmXLlLdPmDBBjBo1SgQFBYk9e/YIX19fERAQIIQQIj09XbRr104sWbJEhISEiCVLloiOHTuKzMxMIYQQV69eFU2aNBF79uwRQUFBYtSoUWLKlCnKx96yZYvo1KmTuHDhgrhw4YLo1KmT2LFjR80m4LHk5GTRvHlz8eGHH4q4uDiVn/z8fCGE7uSiJN27dxe//PKLyjZdzkd55s+fL/r37y8CAgLE8ePHRcuWLcWxY8ekDqtKNGrUSFy4cEEIIUR+fr7o16+fePfdd8Xdu3fFli1bRPPmzcXDhw+FEEJERkYKX19fsWXLFnH37l3xzjvviIEDBwqFQiGEEOLQoUOiZcuW4vjx4yIgIED0799fLFmyRPlc6pbH0NBQ4ePjIz777LMS3yd0KRf5+fliyJAhYsKECSIkJEScPn1adOjQQXzzzTc6l4v/+vDDD8WHH34ohKj+98Ky3oeJNMW6devEqFGjlL/r6nsIa9Gqo66vcWWwBqkYfgYXmzx5shgxYoQICgoSf/31l2jXrp349ttvdTovaWlpomPHjmLmzJkiLCxMnDx5UrRt21bs2rVLp/NCpGvKq7mioqJEixYtxIoVK8T9+/eVn5OHDx8WQlT+c1WdadJnflnKqpsCAgJE48aNxbZt28SDBw/Ejz/+KJo2bSquXr0qhNDsmjk9PV107txZvP/+++LevXvi9OnTolOnTmLr1q06812he/fu4tChQyrbjh07Jpo0aSL2798v7t+/L9avXy+aNWsmIiMjhRCaXQvr6jnaJ4979+7dwtvbW/z5558q/9eTk5OFEELs2LFDtGrVSpw4cULcu3dPfPzxx6JDhw4iPT1dCKF5NdyTx17d72fqduxUPjbCy5CWliZmz54t2rZtK9q2bSuWL18u5HK58vaEhAQxZcoU4evrK3r06CEOHjyocv+AgAAxaNAg4evrK1555RVx69Ytldt/+eUX0bVrV9G8eXPx1ltviaSkJOVt+fn5Yvny5aJ169bC399frF69WvnmW9MOHTokGjVqVOJP0QejruSiJCU1wnU5H+XJysoSs2bNEs2bNxedOnUSX3/9tdQhVZknP3CFEOL+/fvi9ddfF02bNhX9+/cXf//9t8r+p0+fFr179xbNmjUTY8eOFRERESq3b9myRbRv3160atVKzJkzR+Tk5ChvU7c8btmypdT3CSF0KxdCCPHo0SPx1ltviZYtW4qOHTuKTZs2Kf+f6lounvTkSXghqve9sLz3YSJN8N9GuBC6+R7CWrTqqOtrXBmsQSqGn8HF0tLSxMyZM0Xz5s1F+/btxfr165Xx63JeQkJCxLhx40TLli1Fz549xddff828EOmYitRcly9fFsOHDxfNmjUT3bt3Fzt37lR5jMp8rqozTfrML0t5ddPx48fFwIEDha+vr+jTp89TzTxNrpnv3r0rxo0bJ5o3by46duxYY5//6sLX11f89ddfT23fs2eP6N27t2jatKkYPHiwuHTpksrtmloL6+o52iePe8KECSX+Xy86x6BQKMSmTZtEt27dRNOmTcXrr78ugoODlY+laTXcf1/z6nw/U7djp/LJhHhiPhsiIiIiIiIiIiIiIiIiIiINp14LNhAREREREREREREREREREVUSG+FERERERERERERERERERKRV2AgnIiIiIiIiIiIiIiIiIiKtwkY4ERERERERERERERERERFpFTbCiYiIiIiIiIiIiIiIiIhIq7ARTkREREREREREREREREREWoWNcCIiIiIiIiIiIiIiIiIi0ipshBMRERERERERERERERERkVZhI5xIS+3btw9eXl7Yu3ev1KEo9ejRA/v27Sv19kOHDmHw4MHw9fWFv78/3nnnHTx48KDKHr+qrF+/HqNHj67y+3p5eeHixYvK3//++2+8+uqr8PPzQ6tWrTBp0iQEBgYqb7948SK8vLyUP40bN0aHDh0wa9YsJCQkPFd8RERERABryerEWpKIiIi0GevI6sM6kojo2bERTqSlDh8+DA8PD/z6669Sh1IhJ06cwMcff4yJEyfiyJEj2LFjBwoKCjBq1ChkZGRIHZ6KCRMmYP369dX6HIGBgXjzzTcxcOBA/Pbbb9i1axfc3NwwZswYREVFqex77tw5nDt3DidPnsTnn3+OsLAwjB07FllZWdUaIxEREWkv1pLVh7UkERERaTPWkdWHdSQR0bNjI5xICyUmJuL8+fN466238O+//yIyMlLqkMp14MABDBkyBAMGDEDt2rXRpEkTrF27FhkZGThz5ozU4akwNzeHjY1NtT7HwYMH0bFjR7z++uvw9PREo0aNsGjRIjg6OuLIkSMq+zo6OsLR0RGurq5o27Yttm7divj4ePz000/VGiMRERFpJ9aS1Yu1JBEREWkr1pHVi3UkEdGzYyOcSAsdPXoUlpaWeOmll+Dk5KRyBWaPHj3w448/Yvjw4fD19cXLL7+snNomKioKXl5e+OOPP9CzZ0/4+vpiypQpSElJAVA4tVGPHj1Unmv06NHKKxFzc3OxYsUKdO7cGU2aNEGPHj2we/fuCsWsp6eHgIAAZGZmKrcZGxvjwIED6Nq16zM/fkZGBubMmYP27dujadOm6NOnD06cOKG83cvLC1988QX8/f3xxhtvoHfv3vj6669VHmPgwIElTuP05FRC+/btw+jRo7Fu3Tr4+/ujdevWWLFiBYQQFTrusvIRHByMxMRE5TaZTIYdO3Zg+PDhZd7Xzs4OPXv2xPHjxysVAxEREekm1pKsJVlLEhER0fNgHck6knUkEakbNsKJtNDhw4fRrVs36OnpoUePHjhw4IBKEbR+/XpMnjwZv/32GywtLbF06VKV+2/evBmffvopfvjhB9y8efOpYqw0W7duxenTp7F+/XocPXoUgwYNwpIlSyq0NszIkSMRGBiILl264L333sPevXsRGxsLT09PWFhYPPPjL1u2DOHh4dixYwcOHTqE1q1bY+7cucjNzVXu8+eff2LXrl344IMP0L9/fxw7dkx527179xAeHo7evXuXG/u1a9cQHh6OXbt2Yf78+fjuu+/wzz//VCRlpXrllVeQlJSE7t27Y+rUqfj+++8REREBd3f3Cl352aBBA9y7d69SMRAREZFuYi3JWpK1JBERET0P1pGsI1lHEpG6YSOcSMvExMTg6tWr6NmzJwCgd+/eiIyMxJUrV5T7DB48GD179kTdunUxfvx45dWXRaZPn45mzZrBz88PAwcOxM2bNyv03N7e3li2bBmaN2+O2rVr44033kBeXh7u379f7n3btWuHH3/8Ee3atcOpU6cwb948dO/eHYsXL4ZCoXjmx2/Tpg0WL14MHx8f1KlTBxMmTEBKSorK1YwjRoxAvXr10KBBAwwYMADXr1/Ho0ePAAC///47OnXqBGtr63JjLygowJIlS1CvXj28/PLL8Pb2rnDOSlO/fn3s3bsXvXv3xuXLl7F06VL06tUL77zzDrKzs8u9v6WlpcqVrEREREQVwVqyEGtJ1pJERET0bFhHFmIdyTqSiNSLgdQBEFHVOnz4MIyNjdGpUycAQNu2bWFtbY39+/ejdevWAIA6deoo97ewsEBeXp7KY3h6epZ5e2l69uyJv//+GytXrkRYWBhu374NoLAoq4gWLVpgw4YNkMvluHTpEg4cOIAff/wRHh4eGDdu3DM9/qBBg3DixAns2bMHYWFhuHXr1lP7uru7K/9dv359eHl54ejRoxg3bhx+//13TJkypUJx29vbK68QBQpzlp+fX+K+BgYGyiL6SUXbDAyK35YbNGiANWvWID8/H9euXcPhw4exZ88eODo6Yt68eWXGlJGRoRITERERUUWwlizEWpK1JBERET0b1pGFWEeyjiQi9cIR4URa5vDhw8jJyUGrVq3QuHFjNGvWDP9v776jo6raNg7fk94bCTUQeughEAjSQUSkKEVUUIqiKEUpKoIo0hGR3qSI0qSKUUCqKEoRpNcAIfQaCAnpdb4/8jIfkY4JEya/ay3Wypyy9332FGf5zN4nOjpaa9euVWJioiTJ1tb2vm3ca7/BYLhj2+1frsaPH6+PP/5YNjY2atmy5UPfiycuLk5Dhw41/fLR3t5ederU0dixY9W0aVPTkj6P0n6/fv00evRoubm5qV27dpoxY8Ydx9jb22d63KxZM61fv14nT57U+fPn9eyzzz5Ufjs7uzu23et+PG5uboqJiblj+82bN037JWn06NEKDQ2VlPFFtFq1aho8eLDeeustbd++/YGZjh07plKlSj1UfgAAgFv4LpmB75J8lwQAAI+G75EZ+B7J90gAOQszwgELcurUKR05ckSfffaZgoODTdvDwsLUp08fbdiw4T+1b2trm2lpG6PRqPPnz5seL168WIMHD9YLL7xg6vfWcffj4OCglStXmn5leTtXV1fTl8OHbT82NlarVq3S0qVLValSJUnS5s2bH5ilefPmmjhxokJCQlSvXj05OzvfN/fj8Pf3V3h4uKKjozMtcbR//345Ojqafhm7ZcsWpaamauDAgZnOd3Nzk5eX1337iIqK0saNG9W7d++sjg8AACwY3yUz8F2S75IAAODR8D0yA98j+R4JIOehEA5YkNWrV8vDw0Ovvvpqpl8Eli5dWlOnTlVISMh/ar9ChQqKiorS/PnzVb9+fc2fP1/R0dGm/R4eHvr9999VoUIFXblyRSNHjpQkJScn37dda2trvffeexo3bpySk5PVqFEjpaamatu2bVq5cqXmz5//SO3b2dnJ0dFR69evl5eXl06dOqWhQ4c+MEvBggVVqVIlzZ07V2PGjHn0AXoIVapUUenSpdWrVy/16dNHXl5eOnr0qL788ku98cYbpl++du/eXX379pW9vb1atGghW1tb7dmzR7Nnz9aoUaMytRkRESEp45ewp0+f1pgxY1SgQAG1bds2W64BAABYJr5LZuC7JN8lAQDAo+F7ZAa+R/I9EkDOQyEcsCCrV69WixYt7rosTrt27TRixAhZWT3+HRGKFi2qTz75RNOnT9eECRPUunVrPf/886b9I0eO1ODBg9WsWTPly5dPbdu2lbW1tY4ePaq6devet+0uXbrI3d1dixYt0vTp0yVlfMmdNWuWKlSo8Ejt29nZacyYMRo9erTmz58vX19fdevWTRMmTNDRo0dVokSJe+Zo2rSpjh07pvr16z/2ON2PlZWVZs+erTFjxqhHjx6Kjo5W/vz59eqrr+qdd94xHffCCy/Izs5Oc+bM0aJFi5SSkiJ/f3+NHDnyjuWRbt17ydbWVvnz51eDBg3UrVu3O5ZZAgAAuB++S2bguyTfJQEAwKPhe2QGvkfyPRJAzmMwPmh9EADIRcaPH6/Lly9r9OjR5o4CAACApwzfJQEAAPA4+B4JANmDGeEAICk0NFRHjx7VDz/8YPr1JwAAAPAw+C4JAACAx8H3SADIXo+/HgkAWJBDhw5pyJAhatu2rYKCgswdBwAAAE8RvksCAADgcfA9EgCyF0ujAwAAAAAAAAAAAAAsCjPCAQAAAAAAAAAAAAAWhUI4AAAAAAAAAAAAAMCiUAgHAAAAAAAAAAAAAFgUCuEAAAAAAAAAAAAAAItCIRwAAAAAAAAAAAAAYFEohAMAAAAAAAAAAAAALAqFcAAAAAAAAAAAAACARaEQDgAAAAAAAAAAAACwKBTCAQAAAAAAAAAAAAAWhUI4AAAAAAAAAAAAAMCiUAgHAAAAAAAAAAAAAFgUCuEAAAAAAAAAAAAAAItCIRwAAAAAAAAAAAAAYFEohAPINYxGo7kj5IgMAAAAAAAAAAAAlo5COHKNDz/8UP7+/pozZ465ozyUhg0bqn///vc9Jj4+XpMnT1bTpk1VqVIlVa1aVa+99pqWLVv2yAXXHTt2yN/fXzt27PgvsR/b5MmT5e/vn+lfpUqV9Pzzz2v06NGKiorKdHz//v3VsGHDh27/xIkTateu3QOPW7Fihfz9/XX+/PnH6ud+pk2bpm+//db0+NY1PwlZeR2StH37dvXs2VN16tRRQECA6Xm6fv16puP8/f01efLk+7bVoUMHdejQIcuyAQAAAAAAAAAA2Jg7APAkxMTEaOPGjSpdurSWLFmiN998UwaDwdyx/hOj0aj33ntP4eHh6tq1q0qVKqWkpCRt2bJFn3/+uU6cOKFPP/3U3DEf2ZIlSyRlXF98fLwOHjyoWbNmadOmTVq0aJG8vLwkSd27d1fHjh0fut21a9dq7969Dzyufv36WrJkifLmzft4F3AfEydOVM+ePU2P27Ztqzp16mR5P3fzqON1P19//bVmz56tJk2aaODAgfLw8NCxY8c0a9YsrV+/XgsWLFCBAgUeur0vvvgiS3IBAAAAAAAAAADcQiEcucKqVaskSQMHDlSnTp30999/65lnnjFzqv9m9+7d2rFjh+bMmaNatWqZttevX19WVlZasGCB3nnnHfn4+Jgx5aOrXLlypse1atVSzZo11b59e40bN07Dhw+XJBUpUiRb+vfy8jIV27Nb/vz5lT9//ifSV1aN1+rVqzVr1iwNGDBAnTt3Nm2vUaOG6tWrp1atWmnEiBGaMmXKQ7dZsmTJLMkGAAAAAAAAAABwC0ujI1f48ccf9cwzz6hGjRry8/PT4sWLM+3v0KGDBg4cqJkzZ6p+/fqqWLGiXnvtNR04cMB0zOTJk/Xcc8/pjz/+UIsWLVShQgU9//zzCgkJMR3z72W1b/n3MueRkZEaMmSIGjRooAoVKqh69erq0aPHHefdT0REhCQpPT39jn3t27dXnz59Ms16/+eff9SlSxdVq1ZNFSpUUMOGDTV58uS7nn/Lxo0b1b59ewUGBqpChQpq0qSJFi5caNp/azn1xYsXq0GDBqpSpYo2btwof39/bdmyJVNbu3btkr+/v3bv3v3Q13hLpUqV1LhxY4WEhCghIUHSnUt9Hzp0SJ06dVLVqlUVGBiozp07a9++fZIynrtbhdnbl+r29/fXlClT1Lp1a1WqVElTpky553O4ZMkS1a9fX5UqVVKnTp105MgR0757LXH+774kacqUKaa/73ber7/+qtatWyswMFC1atXSoEGDFB0dnamvB70O7+bf49WwYUNNmjRJo0ePVs2aNVWpUiV16dJFp0+fvm87M2fOVMmSJdWpU6c79hUtWlQff/yxAgMDMy3NHxsbq4EDB6p69eoKDAzUBx98oGvXrpn2/3tpdH9/fy1cuDDTOb169cp0TlpammbOnKnmzZurUqVKqly5sl577TX9/fff980PAAAAAAAAAAByBwrhsHgnTpzQwYMH1bJlS0lSy5Yt9dtvv2UqqknSunXr9Ntvv+mzzz7TuHHjdO3aNb3//vtKS0szHRMREaGhQ4eqY8eOmjlzpnx9ffXJJ5/o5MmTD53HaDTq3Xff1datW/XRRx/p22+/Vc+ePbV9+/ZHWiK6evXqcnJyUt++fTVmzBjt2LFDiYmJkjIKku+88468vb0lSaGhoercubM8PDw0fvx4TZ8+XUFBQZoyZYrWrFlz1/b/+OMP9ejRQ+XLl9e0adM0efJkFS5cWEOHDtX+/fszHTtlyhR98sknGjRokGrWrKm8efPq559/znRMSEiIihYtqqpVqz70Nd6uVq1aSklJ0cGDB+/YFxsbq7fffluenp6aPHmyxo8fr4SEBHXp0kUxMTFq27atXn75ZUkZBe22bduazv3mm2/UokULTZo0Sc8///xd+758+bKmTJmi3r17a9y4cYqOjlaHDh108eLFh85/a8n3l19+2fT3v02bNk19+/ZV5cqVNWnSJPXo0UPr1q1Thw4dTM+tlDWvQ0maN2+ewsPDNWrUKA0fPlyHDh3SJ598cs/jIyIiFBoaqvr169/z1gLt27dXly5dMu2fN2+eUlJSNHHiRH344YfatGmThg4det9s48ePV3p6usaNG6d+/frp999/18iRI037v/76a02bNk2vvvqqZs+erWHDhikqKkq9evUy/VgCAAAAAAAAAADkXiyNLik5OVmtW7fW559/ruDg4Cxps1u3btq0aVOmbd98840aNGiQJe3j4f3444/y8PAwzYZt1aqVJk+erOXLl+u9994zHZeamqpvv/1WLi4ukqS4uDh98sknOnr0qCpUqCBJSkhI0IgRI0zLqhctWlQNGjTQ5s2bVaJEiYfKc/XqVTk6OuqTTz5RUFCQJCk4OFhnz569Z4H0bvLkyaNZs2apf//+mj17tmbPni1bW1tVrlxZL774otq0aSNra2tJGYXwmjVrasyYMbKyyvj9S61atbRp0ybt2LFDzZo1u6P9sLAwtWrVSgMHDjRtCwwMVHBwsHbs2KGAgADT9vbt26tJkyamx61atdL8+fMVFxcnZ2dnJSYmas2aNeratetDX9+/3Srq//sHDLey3rhxQx07dlSVKlUkScWLF9eSJUsUFxeXaQnyfy+9HhQUpDfffNP0+G6F9rS0NE2dOlWVKlWSJAUEBKhRo0aaP3/+fQvHt7vVb/78+e/IIEnR0dGaPn26XnnlFQ0aNMi0vXTp0nr99df1448/6vXXX5eUNa9DSXJzc9O0adNMr5OzZ89q8uTJunHjhjw9Pe84/tKlS5IkX1/fh+5DkipWrKivvvpKkvTMM89o//792rx5833PKV26tEaNGmV6fODAAa1du9b0+OrVq+rTp0+mmeT29vZ6//33dezYsbuOMQAAAAAAAAAAyD1yfSE8KSlJH374oU6cOJGl7Z48eVJjxozJdB9qd3f3LO0DD5aSkqJffvlFjRo1UmJiohITE+Xs7KyqVatq6dKl6tq1q6kwXLJkSVMRXJLy5csnSXfMLr29wHaruBofH//QmfLly6d58+bJaDTq/PnzOnPmjMLDw7Vnzx4lJyc/0vUFBQVp/fr12r17t7Zs2aKdO3dq3759+ueffxQSEqI5c+bIwcFBLVu2VMuWLZWUlKRTp07pzJkzOnr0qNLS0pSSknLXtt9++21JGT8IOHXqlM6ePWsqEv87Z9myZTM9btOmjWbMmKENGzaoZcuW2rBhg+Lj402z8rNaqVKl5OXlpffee09NmjRRnTp1VKtWLX388ccPPPff2e+mcOHCpiK4JPn4+Khy5cr6559//lPu2+3bt0/Jyclq3rx5pu1BQUEqVKiQdu7caSqES//9dShlFKhvFcFvbychIeGuhXAbm4z/ZNxvOf27+fcqAL6+vrp58+Z9z/l3ITt//vyZ3otjx46VlHGbgfDwcJ05c0a///67pDtfnwAAAAAAAAAAIPfJ1YXwsLAwffjhh5nuZZsVkpOTdf78eVWsWFE+Pj5Z2jYezR9//KHr169r+fLlWr58+R37//rrL9WrV0+S5OjomGnfrQL5v4t+tx9365hHfQ398ssvGjdunC5duiQPDw+VLVtWDg4Oj9TG7RmqVaumatWqScqYWTx+/HgtWrRIy5cv1xtvvKHExEQNGzZMP//8s1JTU+Xr66vAwEDZ2NjcM3tkZKS++OILbdy4UQaDQX5+fqYZ7P8+x8nJKdNjPz8/Va9eXSEhIWrZsqVCQkJUs2ZN048LHsfly5cl/X+x9nbOzs5auHChpk+frjVr1mjJkiVycHDQSy+9pM8++0x2dnb3bPff2e/m1mz02+XJk8c0Qzor3LoP+N368vb2VkxMTKZtWfE6fNjX/C0FChSQwWDQhQsX7tlmdHS0bGxs5OzsbNr27zG2srJ6YNa7Zbv9nIMHD2rIkCE6ePCgHB0dVbJkSRUsWFDSo48DAAAAAAAAAACwPLn6HuE7d+5UcHDwXZej3rVrl1q3bq1KlSqpRYsWWrdu3UO3Gx4eLoPBoMKFC2dlXDyGH3/8UYULF9a8efMy/Zs7d65cXV21ePHiLO3v1n2R/11IjIuLM/29a9cuffLJJ2rcuLH+/PNP7dixQ99///0jL+Xcu3dvde7c+Y7t7u7uGjRokNzd3RUWFiZJGjFihNatW6cJEyZoz5492rhxo8aMGWOa4Xs3H330kQ4ePKjvv/9e+/bt05o1a/Tpp58+dL42bdpo586dOnnypLZv3642bdo80vX927Zt2+Tk5KTy5cvfdX/x4sU1ZswY/f3331q8eLFatWqlJUuWaN68ef+pX+n/i9S3i4iIkJeXl6T/f95vv5/87c/5w7i1YsTdln6PiIi46wztJ83T01Ply5fXX3/9dc9i85QpU1SjRo27XkdWuXVPeCcnJ61evVp79uzR8uXL//NrDAAAAAAAAAAAWI5cXQhv3769Pv300ztmHkZEROjdd99V69attXLlSr399tvq37+/du3a9VDthoeHy8XFRf369VPt2rX18ssvP/B+uMh6ERER+uuvv9SsWTMFBwdn+lejRg01adJEmzdv1pUrV7Ksz1tLq9+avSxlLJMfFRVlerx3716lp6fr/fffN82QTktL07Zt2yQ9/LLTfn5++vvvv7Vv37479l29elXx8fEqXbq0JGn37t0KDg5Wo0aNTLNzDx06pMjIyHv2t3v3bjVu3FjBwcGmGdV//vnnQ2d8/vnn5ejoqMGDB8vZ2VmNGjV6qOu6m6NHj+q3335TmzZtZG9vf8f+tWvXqkaNGoqIiJC1tbUCAwM1ePBgubm56eLFi5L+f7bz47i1NPwtly5d0t69exUcHCzp7s/77t2772jnfhkCAgJkZ2enVatWZdq+a9cuXbx40XTvc3Pr0qWLjh8/rgULFtyxLywsTD/++KNq1qx515ntWSU8PFxRUVHq2LGjSpYsaRrXR3l9AgAAAAAAAAAAy5arl0a/l4ULF6pmzZp64403JGUUHI8ePaq5c+cqKChIV65cUWJi4h3n2dnZqUCBAgoPD1diYqJq166trl27asOGDerWrZuWLFmiihUrPunLybVCQkKUmpqqZs2a3XV/y5YttWzZMi1dujTL+gwODpaDg4O+/PJL9erVS3FxcZo0aZI8PDxMx9y61/TQoUPVpk0bRUdHa+HChQoNDZWUcZ/n2+9Vfi9vvfWWNm7cqDfffFPt27dXcHCwHB0ddfz4cc2ZM0elSpVS69atTX2uWbNGixYtUokSJRQaGqrp06fLYDDccQ/023OuXLlS5cuXV/78+bVnzx7NnDnzvufcztHRUc2aNdOSJUvUrl27+y5PfrtbhX2j0ai4uDjTrPSiRYuqV69edz2nSpUqSk9PV48ePdS1a1c5OztrzZo1iomJUePGjSVJbm5ukqRVq1YpICDgkVZssLe3V7du3dSnTx+lpaVp4sSJ8vDwUKdOnSRJ9erV06hRozRo0CB16dJFly5d0tSpUzMtD34rw549e/TPP/+Ylpm/xcPDQ127dtXUqVNla2urBg0a6Pz585o4caJKliypVq1aPXTe7NS0aVNt27ZNw4cP1/79+9WkSRM5OTnpwIED+u677+Tp6anhw4dna4ZixYrJxcVF33zzjWxsbGRjY6N169aZbn/wMK9PAAAAAAAAAABg2SiE30V4eLh+//13BQYGmralpKSoWLFikjKWjN65c+cd55UpU0Y///yzunfvrg4dOpiWOi5TpowOHz6spUuXUgh/glasWKFSpUqZZkX/W9WqVeXr66tly5bJ19dX1tbW/7lPNzc3TZ48WWPHjlWPHj1UqFAh9ezZUyEhIaZjgoODNWjQIH333Xdau3atvL29FRwcrClTpqhHjx7avXu36b7l9+Pu7q4lS5Zo1qxZ2rRpkxYtWqSUlBQVKlRIzZs3V9euXU33He/fv79SUlI0YcIEJScny9fXV926dVNYWJg2bdqUaUnvW7788ksNGzZMw4YNkyQVLVpUQ4YM0S+//PLQqyPUr19fS5YsMRXkH8arr75q+tvBwUGFCxdWu3bt9Pbbb9/zBwJ58+bV7NmzNXHiRA0cOFAJCQkqVaqUJk+erBo1akiSGjdurJ9//ln9+/fXyy+/rMGDBz90pnLlyun555/X4MGDFRMTo2eeeUaffvqpaWn0YsWKafTo0Zo+fbq6du2qEiVKZBq7W9577z1NmzZN77zzjn799dc7+nn//ffl7e2tBQsWaMmSJfLw8FCTJk3Uu3fvh7qX+ZMyfPhwBQcHa+nSpRo0aJDi4uJUsGBBtW3bVl26dMn2ZdxdXV01bdo0ffXVV+rVq5ecnZ1VtmxZLViwQO+884527dqlhg0bZmsGAAAAAAAAAACQsxmM97rRay7j7++vefPmKTg4WN27d5e7u7vee++9TMfY2NioUKFCj9X+V199pbCwMM2cOTMr4gJPhS+++EL79+/P9EMAAAAAAAAAAAAAILsxI/wuihUrpr1798rPz8+0bc6cOUpOTr6jOH43/fv3l8Fg0KhRo0zbQkND7zkzGbA08+bNU3h4uJYuXaoxY8aYOw4AAAAAAAAAAAByGStzB8iJ2rdvr0OHDmn8+PE6ffq0Vq5cqXHjxqlgwYIPdX7Dhg21cuVKhYSE6MyZM5oyZYp2795tuuc4YOl27dqln3/+WZ06dVLz5s3NHQcAAAAAAAAAAAC5DEuj/8/tS6NL0rZt2/T111/r+PHjypcvn958881HKmQvW7ZMs2fP1sWLF1WqVCkNGDBA1apVy674AAAAAAAAAAAAAID/oRAOAAAAAAAAAAAAALAoLI0OAAAAAAAAAAAAALAoFMIBAAAAAAAAAAAAABaFQjgAAAAAAAAAAAAAwKLYmDuAuURExJg7Qrbz8nJWZGScuWNYHMY161n8mMbFyadYAUlSxKlLkrNztndp8WNqJoxr1nvcMfXxcc2GNAAAAAAAAAAAS8GMcAtlMEjW1lYyGMydxLIwrlmPMc16jGn2YFyzHmMKAAAAAAAAAMguFMIBAAAAAAAAAAAAABaFQjgAAAAAAAAAAAAAwKJQCAcAAAAAAAAAAAAAWBQK4QAAAAAAAAAAAAAAi0IhHACyWbrRaPrbeNvfAAAAAAAAAAAAyB425g4AAE+jtHSjrsQk6eyNeJ29kaCL0Um6Hp+syLhkRcanKCohRYmpaUpKTZdNQoKO/u+8epO3KdnBUbZWBrnY28jD0VYejjbycLSTt4udfN0dVMjDQb7ujiro7iA7G36vBAAAAAAAAAAA8KgohAPAA6SmpSvsWpyOXInVkcsxOno5Rqcj45Wc9nCzu//9QZuWblRaulGJqcm6Fpd8z/OsDVKxPM7yz+ci/7wuKpvXRWXzu8qe4jgAAAAAAAAAAMB9UQgHgH9JNxp14mqcdp69oZ1no7T3fLSSUtPvOM7W2iBfD0f5eWbM3vZ2tlMeZzt5OdnK09FODrZWsrexkkNygjQ+45xf3qmmZHsnpaSnKzYpTVH/mz1+IyFFV2KSdD4qQReiE3U+KkEJKRkF+LBrcVp9+Iokyc7aoIoF3VS1sIeqFnZXpQJusrGmMA4AAAAAAAAAAHA7CuEAICk5NV07z97QpuPX9Fd4pKISUjLtd7W3Udl8LiqX31Xl8ruqlI+zCrg5yNrK8ODG49JMf3o42knO9g88xWjMWHr92NU4Hbsao2NX43T4coyuxyVr97lo7T4XLUlysbdWrWJeqlfSW88U9ZSLPR/rAAAAAAAAAAAAVEwA5Fqp6UbtOH1Da45e0ZbwSMUl/3/B2snWWlUKu6taEQ9VL+Kp4t5OsjI8RNE7ixgMBuV3c1B+NwfVK5lHUkZx/MyNBO0+F6Xd56K162yUbiSkaF1ohNaFRsjW2qAafp5qVj6fWnk4PbGsAAAAAAAAAAAAOQ2FcAC5zpnIeK08fEWrD1/JdI9uHxc7NSjprQalvFW5UM5bctxgMKiol5OKejmpTUBBpaUbdejSTW0Ou67NJ6/r7I0E/RUeqb/CIzVqY5ieK+2t5hXyq3x+V3NHBwAAAAAAAAAAeKIohAPIFdKNRm0Jj9Si3ee163/LikuSu4ONXiiXT8/5+6hCAdcnOuv7v7K2MiigkLsCCrnrg3rFFX49Tr8euao1R67oamyylu+/pOX7L6lCAVe9GlhIz5b2lm0OK+4DAAAAAAAAAABkBwrhACxaQkqaVh++okV7LujsjQRJkpVBqlnMSy3K51OdEnkspjhcPI+zetYppu61i+pEdLIWbjuljccjdOhSjA5dCtXEzXZqE1BArwQWlJuDrbnjAgAAAAAAAAAAZBsK4QAsUkJKmpbtvaj5u84rKiFFkuRib63WlQqobeWCyu/mYOaE2cfayqDapbxVxtNeveoV108HLunH/Zd0LS5ZM7ad0YJd5/VKYEG1r+IrDycK4gAAAAAAAAAAwPJQCAdgURJS0rR830XN/+e8bvyvAF7I3UHtqhRSiwr55WRnbeaET1YeZzu9/YyfOlUvrE3Hr2nuP+d0IiJO3+04p8V7LujlgILqWL2wPBwpiAMAAAAAAAAAAMtBIRyARUhLN+qXQ5f1zdbTiozPKID7ejioS40ialI2n2ysnp57f2cHW2srPV82r54r46M/w67r27/PKvRqrObvOq+fDl7SW8FF9EpgIdnbWMYy8QAAAAAAAAAAIHejEA7gqbfzzA1N2ByuExFxkqSC7hkF8KZl88rGQu7/nVWsDAbVL+WteiXzaEt4pKZvPa0TEXGa9OcpLdt3UT1qF9NzZXxkZcjdPxwAAAAAAAAAAABPNwrhAJ5aF6ITNO73cP158rokydXeRm8/U0RtKxeULQXw+zIYDKpTIo9qFvPSr0euaPrW07p0M0mf/RqqpfsuakCjUirp42zumAAAAAAAAAAAAI+FQjiAp05qWroW7bmgGdvOKCk1XdYGqU1AQb1T0497XT8iayuDWlTIr+f8fbRw93nN3XlOBy7e1Bvzd6t9VV+9U9NPjra5677qAAAAAAAAAADg6UchHMBT5fDlGI1Yf9y0DHrVwu765NlSKpbHyczJnm4OttbqUsNPzcrl07g/wvX7iWuav+u8NhyLUL9nS6pOiTzmjggAAAAAAAAAAPDQKIQDeCokpabrm62ntXDXeRkluTvYqFe94mpePp8M3M86y+R3c9BXL5bTXyeva8ymMF26maS+IYfVvHw+fdighFzs+c8GAAAAAAAAAADI+ahoAMjxTkTEatCvxxR2LWMWeJOyedWnfnF5OdmZOZnlqlMij4KKeGjG1jP6Yfd5rTp8RbvORunz50urup+nueMBAAAAAAAAAADcF4VwADlWWrpRC3ed1/Stp5WabpSno60GNi6teiVZpvtJcLS1Vu/6xVW/ZB4NXntMF6IT1WP5Qb0aWFDv1y0uexsrc0cEAAAAAAAAAAC4K6oYAHKka7FJ6rH8gCb/dUqp6UbVLZFHiztXpQhuBpV93fVDx6pqE1BAkrRk70W99cNenb2RYOZkAAAAAAAAAAAAd0chHECOs+tslF6fv0e7z0XL0dZKnzUupa9fKsdS6GbkZGet/o1KaWLrCvJwtNXxiDh1mL9H60OvmjsaAAAAAAAAAADAHSiEA8gx0o1Gffv3GfVYfkCR8Skq4e2keW9U0UsVC8hgMJg7HiTVLOalhR2qKNDXXfEpaRq4OlQjNxxXUmq6uaMBAAAAAAAAAACYUAgHkCPEJKaqz0+H9M3WM0o3Ss3L59P37QNV1MvJ3NHwL3ld7TWtbSW9VaOIDJJ+OnBZ7y7Zr4jYJHNHAwAAAAAAAAAAkEQhHEAOEB4Rq04L92rbqRuyt7HS541L64sm/nKwtTZ3NNyDjZVB3WoV1eQ2FeXmYKPDl2PUccFeHbx409zRAAAAAAAAAAAAKIQDMK+/T0eq5dStOnsjQXld7DT7tQC9WDG/uWPhIQUX9dTc1wNVPI+TrsUl692l+/XLocvmjgUAAAAAAAAAAHI5CuEAzMJoNGrxngv64MdDupmYqkoF3TT3jSoqk8/V3NHwiHw9HDWnfWXVL5lHKWlGDVt3XJM2hyvdaDR3NAAAAAAAAAAAkEtRCAfwxKUbjRr7+0mN/f2k0o1Smyq++uaVSvJ2tjN3NDwmZzsbjX6xnLo+4ydJmr/rvD5bHaqk1HQzJwMAAAAAAAAAALkRhXAAT1RSaroGrjqqJXsvSpLer1tMX7etJDsbPo6edlYGg96p6achL/jLxsqgDcci9P7yA4pOSDF3NAAAAAAAAAAAkMtQeQLwxMQkpuqDHw9q4/FrsrEyaFjTMupUvbAMBoO5oyELNS2XT5PaVJCznbX2XripLov26UJ0grljAQAAAAAAAACAXOSpKIQnJyerefPm2rFjxz2P+eOPP/TSSy8pMDBQLVq00G+//fYEEwJ4kKsxSeq6ZL/2nI+Ws521JrauoCZl85o7FrJJtSKemv1aZeV1sdOZGwl6Z/F+nboeb+5YAAAAAAAAAAAgl8jxhfCkpCT17dtXJ06cuOcxoaGh6tmzp9q0aaOQkBC99tpr6tWrl0JDQ59gUgD3ciE6Qe8s3qewa3HK42ynGa8GqLqfp7ljIZuV9HHWd+0DVSyPkyJik9V1yX6FXokxdywAAAAAAAAAAJAL5OhCeFhYmF555RWdPXv2vsetWrVKNWrUUMeOHeXn56fXX39dwcHBWrNmzRNKCuBezkTGq+vi/bp4M0m+Hg6a066y/PO6mDsWnpC8rvaa+UqAyuZzUVRCit5bekD7L0SbOxYAAAAAAAAAALBwOboQvnPnTgUHB2vJkiX3Pa5Vq1b66KOP7tgeE8PMQ8CcTl6LU9cl+3U1NlnFvJw089UAFXR3MHcsPGEeTraa1raSAgu5KS45TT2XH9SO0zfMHQsAAAAAAAAAAFgwG3MHuJ/27ds/1HElSpTI9PjEiRPavn27XnvttfueZzA8drQc79a1WfI1mgPj+vCOXY1Vj2UHFZWQolI+zpr6ckV5OdvdcVyuGNPbrs1gyPw4W7rLgWPq6mCjyS9X1Mc/H9H20zfUJ+SQxrYsr5rFvMwd7aHlxHF92jGmAAAAAAAAAIDsYjAajUZzh3gY/v7+mjdvnoKDg+97XGRkpNq3by9vb2/NmzdPVlZ3n/SelpYua+scPSEeeGoduhCt9rP+1s3EVFXydde8t6rLw+nOIniuERcnufxvOfjYWMnZ2bx5zCgpNU0fLNqrdYevyM7GSt92ClKdUj7mjgUAAAAAAAAAACxMjp4R/qiuXbumN998U0ajUZMmTbpnEVySIiPjLHoGmsEg5cnjquvXY/R0/NTh6cC4PlhYRJzeXbI/owhe0E2TWpVXanySrsUn3fX4XDGmcXHy/t+f167FSAnp2dpdTh/TIY1LKSkpVX+EXdfbc3dpQuvyqlbE09yxHiinj+vT6L+Mqbe3a/aEAgAAAAAAAABYBIsphF+5ckUdO3aUJM2bN09eXg9ebjc3FDKMxtxxnU8a43p3p6/Hq/uyA4pOTFX5/K6a2LqCnO1sHmqsLHpMb7suozHz42ztNoeOqbWVlUY2L6tPfjmiv8Ij1XvFYU1sXUFVC3uYO9pDyanj+jRjTAEAAAAAAAAAWc0i1gaPj4/X22+/LSsrKy1YsED58uUzdyQg1zkflaDuyw8oMj5FpX2cNalNBbnYW8xvbZDFbK2t9GWLcqpZzFNJqenq89Mh7Tsfbe5YAAAAAAAAAADAQjy1hfCIiAglJiZKkmbMmKGzZ89q9OjRpn0RERGKiYkxZ0Qg17h0M1Hdlh5QRGyyiudx0pSXK8rNwdbcsZDD2dlY6asXyyvYz0MJKenq/dMhHb8aa+5YAAAAAAAAAADAAjy1hfDatWvr119/lSStW7dOiYmJatu2rWrXrm36N2LECDOnBCzfjfhk9Vx+UJdjklTE01FT21aSp5OduWPhKWFvY6WvXyqvwEJuiktO0/s/HtT5qARzxwIAAAAAAAAAAE+5p2bd4mPHjt3z8dq1a590HACS4pPT1Punwzp7I0H5Xe01rW0leTtTBMejcbC11tiWFfTu0v06ERGnHssP6tvXAuTtYm/uaAAAAAAAAAAA4Cn11M4IB2BeqWnp+mTlER25HCN3BxtNblNR+VwpXOLxuDrYaFKbivL1cNDF6ES9/+Mh3UxMMXcsAAAAAAAAAADwlKIQDuCRpRuNGrb+uP4+fUP2NlYa36qCiuZxMncsPOW8ne00uU1F5XG2U9i1OPX96bASU9LMHQsAAAAAAAAAADyFKIQDeGRT/jylX49clbVBGt2inCoWdDN3JFgIXw9HTW5TQS721tp/8aYGrz2mdKPR3LEAAAAAAAAAAMBThkI4gEeyeM8Fzd91XpL02fOlVau4l5kTwdKU8nHR1y+Vl42VQb8dv6apf50ydyQAAAAAAAAAAPCUoRAO4KFtCb+u8X+clCT1qF1UzcvnN3MiWKqqhT30+fOlJUnz/jmvFQcumTkRAAAAAAAAAAB4mlAIB/BQTkTEauCqUKUbpZcq5len6oXNHQkWrmm5fOpa00+S9NXGE9p2KtLMiQAAAAAAAAAAwNOCQjiAB7oWl6w+Px1WfEqaggq765NnS8pgMJg7FnKBt2sUUbPy+ZRmlD5ddVQnImLNHQkAAAAAAAAAADwFKIQDuK/ElDR9FHJYV2KSVMTTUaNfLCdbaz468GQYDAYNfK6Uggq7Ky45Tb1XHNL1uGRzxwIAAAAAAAAAADkc1SwA95RuNGrI2mM6fDlG7g42Gt+qgtwcbM0dC7mMrbWVRr9YTn6ejroam6xPfjmilLR0c8cCAAAAAAAAAAA5GIVwAPc05++z2nj8mmysDBr9YjkV8XQ0dyTkUm4Otvq6ZXm52Ftr/8Wb+uq3MBmNRnPHAgAAAAAAAAAAORSFcAB39dfJ65q57YwkqX+jkqpa2MO8gZDrFfVy0vBmZWWQFHLwsn7cf8nckQAAAAAAAAAAQA5FIRzAHc5ExuvzX0NllNQmoIBeqljA3JEASVKtYl7qWaeYJOnr309q97ko8wYCAAAAAAAAAAA5EoVwAJnEJafq41+OKC45TZUKuunDBiXMHQnIpEM1Xz1fxkdp6Ub1X3lUl24mmjsSAAAAAAAAAADIYSiEAzAxGo0auva4Tl2Pl7eznUa3KCtbaz4mkLMYDAZ91ri0yuR1UVRCij7++YiSUtPNHQsAAAAAAAAAAOQgVLgAmMzdeU6bTlyTjZVBo18sJ28Xe3NHAu7KwdZaY14qJw9HWx27Gquxv4eZOxIAAAAAAAAAAMhBKIQDkCT9fTpS07acliR9/GxJVSroZt5AwAPkd3PQ8KZlZJD004HLWn34irkjAQAAAAAAAACAHIJCOABdjUnS578ek1HSSxXzq3WlAuaOBDyU4KKeeqemnyRp1MYTCouIM3MiAAAAAAAAAACQE1AIB3K51HSjPlt9VFEJKSrt46yPG5Y0dyTgkXSpUUQ1inoqKTVdn6w8otikVHNHAgAAAAAAAAAAZkYhHMjlZm47rb0XbsrZzlqjWpSTvQ0fC3i6WBkMGvZCGeVztdfZGwkasf64jEajuWMBAAAAAAAAAAAzypaK17lz57KjWQBZbNupSH23I+P9OrBxaRXxdDRzIuDxeDjZalTzsrKxMmjj8WtavPeiuSMBAAAAAAAAAAAzypZCeJMmTdS2bVt9//33unLlSnZ0AeA/uhKTpC/WHJMkvRxQQM/5+5g5EfDfVCzopt71ikuSJm0O19ErMWZOBAAAAAAAAAAAzCVbCuF//fWXWrdurU2bNunZZ5/VG2+8oR9++EGRkZHZ0R2AR3T7fcH987qod/0S5o4EZIlXAguqQSlvpaYbNXDVUcUlc79wAAAAAAAAAAByo2wphHt5ealdu3aaN2+eNm/erGbNmunPP/9Uo0aN1KVLF/30009KSEjIjq4BPIRZ205r3//uC/5li7LcFxwWw2AwaOBzpZTP1V7nohI1ZtNJc0cCAAAAAAAAAABmkO3Vr4iICEVEROjy5ctKT0+Xs7Ozli5dqvr162v9+vXZ3T2Af9lzPirTfcF9PbgvOCyLu6OthjUtIyuDtPrwFa05yi06AAAAAAAAAADIbWyyo9GjR49q7dq1Wrt2rS5cuKCaNWvqzTffVKNGjeTs7CxJmjZtmj7//HM1btw4OyIAuIubiSka9OsxGSW9WCEf9wWHxQr0ddfbNfw0c/sZjd4YpooF3PjRBwAAAAAAAAAAuUi2FMJbt26toKAgde7cWU2aNJGnp+cdx1StWlXnzp3Lju4B3IXRaNSoDWG6EpOkwh4O+rBBSXNHArLVmzWK6J+zN7T3wk0NXB2q2a8FyNaa2wAAAAAAAAAAAJAbZEtF4Msvv9ScOXPUrl27TEXw5ORkbdy4UZIUHBysUaNGZUf3AO5i9ZEr2ng8QtZWBg1rVlZOdtbmjgRkKxsrg4Y2LSM3BxsduRyjb7aeNnckAAAAAAAAAADwhGRLIbx///6KiYm5Y/uJEyfUt2/f7OgSwH2cu5GgMb+dlCS9W9NP5fO7mjkR8GTkd3PQwMalJUnz/zmv3eeizBsIAAAAAAAAAAA8EVm2NPoPP/ygoUOHymAwyGg0qlatWnc9rmbNmlnVJYCHkJqWrkFrQhWfkqZAX3d1rFbY3JGAJ6phKW+9VDG/fj54WUPWHtMPHavKxT5b7gwCAAAAAAAAAAByiCyrBLRv316lSpVSenq6OnXqpEmTJsnd3d2032AwyNHRUaVLl86qLgE8hFl/n9WhSzFytbfR0Bf8ZW1lMHck4InrU7+4/jkbpYvRiRr7+0l90cTf3JEAAAAAAAAAAEA2ytIpcdWqVZMk/fbbbypYsKAMBgpugDkdvHhT3+84K0ka8Fwp5XdzMHMiwDyc7Ww0pIm/ui7Zr1WHr6huiTxqUMrb3LEAAAAAAAAAAEA2ybJC+IABAzRw4EC5uLhoypQp9z121KhRWdUtgHtITEnT4LXHlG6UmpTNq+f8fcwdCTCryr7u6lCtsOb9c04jN5xQxYJu8na2M3csAAAAAAAAAACQDazMHQBA9pi25bTO3kiQj4udPm5YwtxxgBzh3Zp+KuXjrKiEFI1Yf1xGo9HckQAAAAAAAAAAQDbIshnht8/yZsY3YF67z0Vp0Z4LkqSBjUvLzcHWzImAnMHOxkpDXyijjgv3aEt4pH4+eFktKxUwdywAAAAAAAAAAJDFsmVGeFxcnL7++muFh4crPT1d/fr1U+XKldW+fXtduHAhO7oE8D9xyakauu64JKllxfyqVczLzImAnKWkj7O61SoqSRr/R7jORyWYNxAAAAAAAAAAAMhy2VIIHzx4sDZv3iyDwaCVK1dq/fr1GjlypLy9vTVkyJDs6BLA/0zafEoXoxNVwM1evesXN3ccIEdqX9VXgb7uik9J0/D1x5XOEukAAAAAAAAAAFiUbCmEb968WWPGjFGxYsW0bt06NWjQQE2bNlXfvn31zz//ZEeXACRtPx2pFQcuSZIGPe8vZ7ssu/sBYFGsrQwa9HxpOdhYafe5aP30v/cNAAAAAAAAAACwDNlSCDcajbK1tVViYqK2b9+uevXqSZKio6Pl5OSUHV0CuV5MYqqG/29J9FcDCyqoiId5AwE5nK+Ho7rXKSYpYyWFSzcTzZwIAAAAAAAAAABklWwphNeoUUOff/65evbsKSsrKzVq1Ejbt2/XgAED1LBhw0duLzk5Wc2bN9eOHTvuecyRI0fUtm1bBQQEqE2bNjp06NB/uQTgqTPuj5O6GpusIp6O6vm/4h6A+3s1sKACCropPiVNI9Yfl5El0gEAAAAAAAAAsAjZUggfOXKkypUrJzs7O02dOlUuLi46duyY6tWrp4EDBz5SW0lJSerbt69OnDhxz2Pi4+PVtWtXBQUFacWKFQoMDNS7776r+Pj4/3opwFPh79ORWnX4igxSxnLPttbmjgQ8FawMBn3+fGnZ21hpx5ko/XLosrkjAQAAAAAAAACALJAtNxB2dXXVZ599lmlb586dH7mdsLAwffjhhw+coffrr7/K3t5e/fr1k8Fg0MCBA/Xnn39q7dq1at269SP3CzxN4pPTNGpDxg9FXgksqIBC7mZOBDxd/Lyc9G5NP03685TG/xGuGkW9lM/V3tyxAAAAAAAAAADAf5AthfCUlBSFhITo4MGDSk1NvaOQPWrUqIdqZ+fOnQoODlafPn1UuXLlex63f/9+Va1aVQaDQZJkMBhUpUoV7du3j0I4LN70rad18WaSCrjZq3ttlkQHHkf7qr7adOKaDl2K0agNJzS+VXnTf1MAAAAAAAAAAMDTJ1uWRh84cKBGjBihGzdu/Kf7rbZv316ffvqpHB0d73tcRESE8ubNm2lbnjx5dPkyS9zCsh24eFNL9lyQJA14rpSc7FgSHXgc1lYZS6TbWhu09VSkfj1y1dyRAAAAAAAAAADAf5AtM8I3bNigqVOnqlatWtnR/B0SEhJkZ2eXaZudnZ2Sk5Pve54lT/a7dW2WfI3mkJPGNTk1XSPWH5dRUvPy+VSzmJe5Iz2WnDSm2ea2azMYMj/Olu5yw5hmgxLezupa009T/zqtcX+cVI1invJ2/v//tjCuWY8xBQAAAAAAAABkl2y7R3i+fPmyo+m7sre3v6PonZycLAcHh3ue4+XlLGvrbJkQn6PkyeNq7ggWKSeM67gNxxV+PV7eLnYa3qaSPJzsHnxSDpYTxjTbOP7/Z423t6vk7PxEurXoMc0mfZqU1ebwSB26cFNTt53V5HaBdxzDuGY9xhQAAAAAAAAAkNWypRDerVs3jRgxQp999pn8/PxkY5Mt3Zjky5dP165dy7Tt2rVrdyyXfrvIyDiLnoFmMGQUFq5fj9F/WJ0e/5JTxjUsIk5Tfw+TJH3UoIRS45N0LT7JfIH+g5wyptkqLk7e//vz2rUYKSE9W7vLFWOajfo3LKGOC/Zq5f6LeraEl2oXz1htgXHNev9lTL29KZ4DAAAAAAAAAO4tWyrUs2bN0tWrV9W8efO77j969GiW9hcQEKBZs2bJaDTKYDDIaDRqz549eu+99+57Xm4oZBiNueM6nzRzjmtaulFD1x1XWrpR9UvmUcNS3hbxHFv0a/W26zIaMz/O1m4teUyzkX9eV7Wr4quFu89r9MYTqtI5SI621qb9jGvWY0wBAAAAAAAAAFktWwrhX375ZXY0m0lERIRcXV3l4OCgJk2aaOzYsRoxYoRee+01LV68WAkJCXrhhReyPQfwpC3ec0FHLsfIxd5a/Z4tKYMlL20AmMm7tfy06USELt1M0oytZ9S7fnFzRwIAAAAAAAAAAI8gW26SXb16dVWvXl3lypWTi4uLKleurHLlypm2Z4XatWvr119/lSS5uLhoxowZ2r17t1q3bq39+/dr5syZcnJyypK+gJzi8s1EfbP1tCTpg7rF5eNib95AgIVytLXWJ8+WkiQt2nNeoVdizJwIAAAAAAAAAAA8imyZEZ6cnKyhQ4dqxYoVkqR169Zp9OjRSkhI0Lhx4+Tu7v7IbR47duy+jytVqqSffvrp8UMDT4GvN51UYmq6Khdy00sV85s7DmDRahX3UmN/H60/FqER60/o+zcCzR0JAAAAAAAAAAA8pGyZEf7VV18pLCxMP/30k+ztM2asvv/++7px44aGDx+eHV0CFm9z2DVtPnld1lYG9W9USlYsiQ5ku74NSsjV3kahV2O1ZM8Fc8cBAAAAAAAAAAAPKVsK4evXr9fAgQPl7+9v2ubv769hw4bpzz//zI4uAYsWn5ymMZtOSpLeCPJVCW9nMycCcoc8znb6oG4xSdL0Lad1LjLezIkAAAAAAAAAAMDDyJZCeFxcnBwdHe/Ynp6errS0tOzoErBoM7ed0ZWYJBV0d9DbNYqYOw6Qq7xYMb8Cfd2VmJquQT8fktFoNHckAAAAAAAAAADwANlSCG/YsKHGjRun2NhY07Zz585p+PDhqlevXnZ0CVis41djtXjPeUlSv4Yl5WBrbeZEQO5iZTDo00alZGtt0O/HIrTpxDVzRwIAAAAAAAAAAA+QLYXwQYMGycbGRsHBwUpISFCbNm303HPPyc3NTZ9//nl2dAlYpHSjUaM2nlCaUXq2tLdqFfcydyQgVyqax0mdqhWWJI3ddFLxyaxuAgAAAAAAAABATmaTHY1GRUWpVatWKl++vPz9/XXmzBnVqVNHxYsXz47uAIv104FLOnQpRs521upbv4S54wC5Wufgwlp3PELnIhM0e/sZfVCP/6YBAAAAAAAAAJBTZWkhfPv27Ro1apROnDiR6R6qBoNBK1euVP/+/RUUFJSVXQIW61pcsqb8dUqS9F6tosrram/mREDu5mBrrSEvltdb3+/SD3suqFn5fCrh7WzuWAAAAAAAAAAA4C6ybGn0LVu26O2331aZMmU0f/58/f333zp8+LB27Nih77//XsWLF9ebb76pvXv3ZlWXgEWb8MdJxSalqWw+F7WtXNDccQBIalgmn+qXzKO0dKNG/xaW6UdfAAAAAAAAAAAg58iyGeFTp05V586d9fHHH2fa7u7uruDgYAUHB8vd3V3Tp0/XzJkzs6pbwCLtPHND60IjZGWQBjxXStZWBnNHAvA/HzYooe2nb2jv+WitOXpVTcvlM3ckAAAAAAAAAADwL1k2Izw0NFStWrW67zFt27bVkSNHsqpLwCKlpKVrzKYwSdLLAQVVNp+rmRMBuF0Bdwe9XaOIJGni5nDFJKaaOREAAAAAAAAAAPi3LCuEJyYmyt3d/b7HeHp6KjIyMqu6BCzSkr0XdToyQZ6OtnqvVlFzxwFwF68H+aqol6Mi41M0fetpc8cBAAAAAAAAAAD/kmWFcKPRKCur+zdnMBi4nypwHxGxSZq17YwkqWfdYnJ1yLK7FwDIQrbWVur3bElJ0vJ9F3X0SoyZEwEAAAAAAAAAgNtlaZVtzZo1cnFxuef+mBgKBcD9TPrzlOJT0lShgKual+e+w0BOVq2Ip54v46N1oRH6cmOY5rSrLGsrg7ljAQAAAAAAAAAAZWEhvGDBgpozZ84DjytQoEBWdQlYlD3no7T26FUZJPV7tqSsDBTUgJyud73i2hIeqSOXY/TzwUtqHVDQ3JEAAAAAAAAAAICysBC+adOmrGoKyHVS040a89tJSVKrSgVUNp+rmRMBeBjeLvZ6t1ZRjfv9pKZtOa1nS/vI3dHW3LEAAAAAAAAAAMj1suwe4QAe3/J9FxV2LU7uDjbqVruoueMAeARtKxdUCW8nRSemasa2M+aOAwAAAAAAAAAARCEcMLvrccn6ZutpSVL32kXlwWxS4KliY2XQRw1KSpJ+3H9Rx6/GmjkRAAAAAAAAAACgEA6Y2dS/TikuOU1l87nopYoFzB0HwGMIKuKhRqW9lW6Uvv79pIxGo7kjAQAAAAAAAACQq1EIB8zowMWbWnn4iiTp44YlZW1lMHMiAI/rg3rFZW9jpb3no7XhWIS54wAAAAAAAAAAkKtRCAfMJC3dqDG/hUmSWpTPp4oF3cycCMB/UcDNQZ2qF5YkTdwcroSUNDMnAgAAAAAAAAAg96IQDphJyMFLCr0aKxd7a/WsW8zccQBkgQ5BvirgZq+rscn6fuc5c8cBAAAAAAAAACDXohAOmMHNxBRN33JakvRezaLycrIzbyAAWcLB1lq965eQJC3455zORyWYOREAAAAAAAAAALkThXDADGZtP6voxFSV8HZSm8oFzR0HQBZqUDKPqhfxUHKaURM3h5s7DgAAAAAAAAAAuRKFcOAJO3U9Xsv2XpAk9alfQjZWBjMnApCVDAaDPmxYQtYG6Y+w6/r7dKS5IwEAAAAAAAAAkOtQCAeesPF/nFSaUapXIo+C/TzNHQdANiiex1mvBBaSJH296aRS0tLNnAgAAAAAAAAAgNyFQjjwBG0Nj9T20zdkY2VQr3rFzR0HQDZ65xk/eTra6syNBC3de9HccQAAAAAAAAAAyFUohANPSEpausb9cVKS1K5KIRX2dDRzIgDZydXBRj3qFJUkzdp+Rtfjks0bCAAAAAAAAACAXIRCOPCELNt3UWdvJMjLyVZv1Shi7jgAnoAWFfKrbD4XxSWn6Zutp80dBwAAAAAAAACAXINCOPAE3IhP1qztZyRJ3WsXlYu9jZkTAXgSrAwGfdighCTp54OXdfxqrJkTAQAAAAAAAACQO1AIB56Ab7aeUWxSmvzzuqh5+fzmjgPgCQoo5K5GpX1klDT+j5MyGo3mjgQAAAAAAAAAgMWjEA5ksxMRsQo5eEmS9GGDErK2Mpg5EYAn7f26xWRnbdCuc9H68+R1c8cBAAAAAAAAAMDiUQgHspHRaNS4308q3Sg1Ku2jQF93c0cCYAYF3R30epCvJGnC5nAlp6abOREAAAAAAAAAAJaNQjiQjX4Pu65d56Jlb2OlD+oVM3ccAGbUqXph5XG20/moRC3dd9HccQAAAAAAAAAAsGgUwoFskpSarombwyVJrwf5qoCbg5kTATAnZzsbda9VVJL07d9ndCM+2byBAAAAAAAAAACwYBTCgWyyaPd5XYxOlI+LnTpVK2zuOABygGbl88k/r4tik9I0Y9sZc8cBAAAAAAAAAMBiUQgHssG12CTN2XFWktSzTjE52VmbORGAnMDayqA+9YtLkn46cElh1+LMnAgAAAAAAAAAAMtEIRzIBtO3nlZCSroqFHBVk7J5zR0HQA5StbCHGpTyVrpRmvDHSRmNRnNHAgAAAAAAAADA4lAIB7LY8auxWnnoiiSpT/0SsjIYzJwIQE7zQd1isrU2aMeZKG09FWnuOAAAAAAAAAAAWBwK4UAWMhqNmrg5XEZJjUr7qFJBN3NHApAD+Xo46rXAQpKkCX+EKzUt3cyJAAAAAAAAAACwLDm6EJ6UlKRPP/1UQUFBql27tubMmXPPYzds2KAXXnhBgYGBateunQ4fPvwEkwIZtp26oZ1no2RrbVDPukXNHQdADvZWjSLydLTVmRsJWr7/krnjAAAAAAAAAABgUXJ0Ifyrr77SoUOHNHfuXH3xxReaMmWK1q5de8dxJ06c0Icffqh3331XP//8s8qWLat3331XCQkJZkiN3Co1PWM2uCS9GlhIhdwdzZwIQE7mYm+j92oXlSTN2n5GUQkp5g0EAAAAAAAAAIAFybGF8Pj4eC1btkwDBw5U+fLl9dxzz+ntt9/WwoUL7zh269atKlmypFq2bKkiRYqob9++ioiIUFhYmBmSI7f6+eAlnYqMl7uDjd4KLmLuOACeAi9VyK+S3s66mZiq2dvPmDsOAAAAAAAAAAAWI8cWwkNDQ5WamqrAwEDTtqpVq2r//v1KT898L1UPDw+FhYVp9+7dSk9P14oVK+Ti4qIiRShG4smITUrVjK0ZRax3nvGTq4ONmRMBeBpYWxnUp35xSdLyfRd1+nq8mRMBAAAAAAAAAGAZcmy1LiIiQp6enrKzszNt8/b2VlJSkqKiouTl5WXa3rRpU23atEnt27eXtbW1rKysNGPGDLm7u5sjOnKhuTvP6UZCiop4OqpNQAFzxwHwFKnu56k6xb30V3ikJv0ZrnGtKpg7EgAAAAAAAAAAT70cWwhPSEjIVASXZHqcnJycafuNGzcUERGhQYMGKSAgQIsWLdKAAQP0008/KU+ePPfsw2DI+tw5xa1rs+RrNIe7jevlm4latOeCJOmDesVka5NjF1rIkXLFa/W2azMYMj/Olu6esjG9dOmiTpw4rrp165s7yn1l57j2qldc205F6q/wSO0+F6WgIh5Z30kO9LS9VgEAAAAAAAAAT48cWwi3t7e/o+B967GDg0Om7V9//bVKly6t119/XZI0bNgwvfDCC/rxxx/VtWvXu7bv5eUsa2vLL1jmyeNq7ggW6fZxHb4xTEmp6Qou5qU2wUVloKLzWCz6ter4/5813t6ukrPzE+k2p49pYmKi5s+fr99++03nz5/XgQO71alTJxUrVszc0e4rO8bV29tV7YP9NP/vM5qy9bR+qVxbVla557Mkp79WAQAAAAAAAABPnxxbCM+XL59u3Lih1NRU2dhkxIyIiJCDg4Pc3NwyHXv48GF16NDB9NjKykplypTRxYsX79l+ZGScRc9AMxgyCgvXr8fIaDR3Gsvx73E9fClGIfsyXmc9a/np+vVYMyd8+uSK12pcnLz/9+e1azFSQnq2dvc0jGlqaqq6dXtbp06Fq1q16nJ1vaktW7Zq5cqVmjVrrooU8bvnuadOhWvatEk6eHC/DAYr1axZW927v688ebxNx1y9ekVTp07Url07lZycoqCgaure/QMVLlzEdMw//+xQ79497mi/Zs3aGjNmglavXqmRI4fcM8fAgYPVtGlzSdLq1Su1aNF8XbhwXt7ePnrhhebq2PFN03+/7uXo0SOaOnWCQkOPytHRWQ75KutQemPN/+ukmpXPd99zLcF/ea16e1M8BwAAAAAAAADcW44thJctW1Y2Njbat2+fgoKCJEm7d+9WxYoVZWWVeSZ33rx5dfLkyUzbTp06pYoVK963j5xaIMpKRmPuuM4nzWiU0tONmvBHxuuuabm8KpPPlbH+Dyz6tXrbdRmNmR9na7c5eEy3bPlTR44c0pgxE2Rv76A1a1bp/ff76JVXWmrhwnnq3//zu5537VqE3n//PRUq5KvPPx+mxMREzZw5Vb16ddd33/0gGxsbJSQkqFev7jIYDPrww/6ytbXT3Lmz1aPHO5o/f6nc3NwlScePH5ezs7PGjp2SqQ83t4z38jPP1NY333xn2m4wSB4eTurff4Di4uJUo0YtGY3S0qWLNGnSWNWv/6y6d++lqKgb+vbbGQoLO64RI8bccwwuXDiv3r27q3z5Sho6dJROnz6tb2ZMlU1CnKa6OalhKW852FpnwWjnfDn5tQoAAAAAAAAAeDrl2EK4o6OjWrZsqcGDB2vkyJG6evWq5syZo1GjRknKmB3u6uoqBwcHvfLKK+rfv78qVKigwMBALVu2TBcvXlSrVq3MfBWwZJvDrmvvhZuyt7FSt1pFzR0HeKqcPXtGklSlSpAOHz4kSXJzc9cXXwyTq6vbPc/75ZefFBcXq9Gjx8nd3UOS5OHhoQ8+eE+7d/+j4OBn9Mcfv+ns2TOaN2+JihcvIUkqUaKk2rZ9UZs2bVTLlm0kSWFhx1WiRClVqHD3H015enrK09PT9NhgkH799SedOXNa06fPkaenp9LS0vT997NVrVqwhg8fbTrW37+MOnZ8Tf/887eqVatx1/YXLpwrJydnffnlWNna2uqZZ2rLxs5OEyeM0VX/Rlq054LeDC5y13MBAAAAAAAAAMD95dhCuCQNGDBAgwcPVqdOneTi4qL3339fjRs3liTVrl1bo0aNUuvWrdW0aVPFxcVpxowZunz5ssqWLau5c+cqT548Zr4CWKqUtHRN/uuUJOn1qoWU383hAWcA9/fyyy3UtGkLxcbGaN26X5WcnKLatevq448/1YoVS/Xjj0sVHx+noKDq6tdvoKkILEkrV4ZoyZIfdOHCOXl6eql58xf10Ud9MrW/cmWIQkJ+1Jkzp5SeblSRIn7q2PEtNWzYSJL0668rNXr0cE2b9q0mTRqrEyeOydPTS23avKr27TvoXnr27Kp9+/bcc/+yZb+oQIGCd2z38ckrSTpwYJ+srf//P0XPPFP7vuPUqlVb1axZO9P129raSpKSk5MkSXXq1Nf06d+aiuCZj0k2bTtx4piqVAm6b3+3i4y8rgkTJqhlyzYqX76CJOnGjUjdvBmtmjXrZDq2ePGS8vDw0LZtW+9ZCN+5828980wtUzZJatTwOU0c/5WsroTq+x3eerFCfuVxtnvojAAAAAAAAAAAIEOOLoQ7Ojpq9OjRGj169B37jh07lulx27Zt1bZt2ycVDbncj/sv6eyNBHk52apj9cLmjgMLsXjxQlWrVl2DB49UaOhRzZgxRceOHZW3t4/69RuoS5cuauLEr+Xl5a0PP/xEkjR//neaOXOa2rR5VR980FcnThzTt9/OVHR0pPr2HSBJ+vHHpZo48Wu99VZX9ejRSzExN7VgwVwNGTJQFSpUVN68GfeiTk9P16BB/fXqq6+ra9fuWrXqZ02bNlElSpRUcPAzd8384Yf9FRcXd89ruv2+3berW7eBfH1na+DAT1S9erDS0tKVkpKSqSh8N7fP0k5KStKJE8c1btxoFSrkq+rVMwrOLi4uqlgxQJKUkpKiM2dOa8qU8fLw8FDDhs+Zzj179owKFCikzp3b6/TpcOXJ4602bV5Vu3ZvyGAw3NH37NkzZGVlpa5du5u2ubi4ytraWpcvX8p07M2bNxUTE6OLF8/f9TqSkhJ1+fKlTPcsv3V9zs7OsjFG6WpKmmZtP6P+jUrdd0wAAAAAAAAAAMCdcnQhHMiJouNTNGtbxrLO79b0k7MdbyNkDWdnZw0ZMko2NjaqVi1Ya9euUkREhGbOnCsXFxdJ0t9/b9PBg/slSbGxsfr++9l66aXW6t37I0lS9eo15O7uri+/HK6WLV9RsWIldPHiBbVr10GdO79t6it//oLq0uUNHTiwT40aPS9JMhqNevPNt9W8eUtJUsWKAdq8+Xdt2/bXPQvhxYoVf6xrdXJy0vTpc/TttzO0ceNaxcbGqnnzRnrppTZ6551uDyyIS1Lnzu107txZ2dvba+TIr2Vvf+fKDJ980kc7d/4tKysr9e//uby9Mwrzp06dVFpams6dO6OuXbvL1dVNW7Zs1vTpkxQTc1PvvtsjUzs3bkRqzZrVeuutN+Xq6mq6n7WDg4OefbaxVqxYqmLFiqtu3QaKiorUhAljZW1trcTExLtmj42NlSQ5O7vcZWycVSqPra5K+unAJb0SWFDF8zg/cDwAAAAAAAAAAMD/o4IHPKIpv59QdGKqiuVx0osVC5g7DixI2bLlZWPz/x/Lnp5ecnR0MhXBJcnd3V3h4WGSpEOHDigpKUm1atVVamqq6ZjatetKkv75Z4eKFSuh99/PWCY9JiZGZ86c1oUL57Rnzy5JGTOmb1e+fCXT33Z2dvLw8FBCQsI9M6elpcl4qyp8F7dfz795enrqo4/6q2HDRvr++9nKly+/fvhhntLT09WzZ+97nndL376fyGg0avnyJerXr7e++mrCHQX7Tp3eVvv2HbV+/RqNHDlE6elpat68pXx9i2jMmIkqU6acaYZ5UFB1JSUlafHiBXr99U6Zxn3lyhClp6epU6dOSk/PnOOjjwbI1tZWo0cP15dfDpO9vb3eeKOzEhLi7lqcl3TfMZMkH1cH1S+ZR3+EXdfkP09pfKsKDxwPAAAAAAAAAADw/yiEA4/gfFSC5v5vNnivesVlY3Xn8snA43J2vnPWr4PDve8/f/NmtCTp44973XX/tWsRkqQLF87rq69GavfunbK1tVWRIkVVsmTGctv/Lsj+uz8rK6v7Fm179er2WPcI/7d8+fJr4MDBsrGx1U8/LVP37h/IysrqvudUqxYsSapSJUgdOryihQvn3lEIDwioLCmjyH358iXNnfudmjdvKRcXFz3zTK072nzmmdpauTJEp0+fUoUKFU3b//jjN1WvXkNeXl66di0m0zlOTk4aMGCQevX6SJcvX1L+/AXk5OSklStDVKjQ3W+d4OSU8VzHx9+5rHxcXJycnV3Us04x/RUeqS3hkdp55oaq+3nedzwAAAAAAAAAAMD/oxAOPIIpf55Sclq6gv08VLMoRSmYl4uLqyRp0KDhKlIk872mPTycZGXloPT0dH38cS/Z2tpq9ux5KlmytGxsbHTqVLjWrfv1P2fo1+9TxcfH33O/t7fPXbfPn/+9jhw5pFGjvs60vVSp0lq58ifFxNyUu7vHHeft2bNLSUmJeuaZ2qZtNjY2KlGipMLDT0qSjh49rIsXL+rZZ5/LdG7p0mV06NABSdLx46E6fPiQXnqpdaaCe1JSxlLmt2aJS1JExFUdP35Mr7zS7q7XsnXrX3J1dVWlSpVVvHgJSRlLqUdEXFXp0mXueo6Tk5N8fPLq/PnM9xC/cSNS8fFxKlq0mPy8nPRyQAEt2XtREzaHa/4bVWTNj28AAAAAAAAAAHgo959uB8Bk/4VobTx+TQaD1Lt+cRkMFKRgXuXLV5Ctra2uXbuqMmXKmf5ZW1tr3LhxunTpoqKjo3T27Bk1a/aSypQpZ1qq/O+/t0mS0v+9zvcjKlKkaKa+//3vXvf6jo2N0ZYtm3X27OlM2w8c2CcPD8+7FsElae3a1Ro+/ItMM6nj4+N06NBBlShRynRtQ4d+pitXLpuOSUtL0549/6hEiZKSpJMnwzR27JfavXtnpvY3bdqg/PkLZJrFfuTIIUlSxYqV75rp559/1NSpEzNtW7p0kaysrFSrVp27niNlzGjftu0vJScnm7b98ccmWVtbq0qVapKkt2v4ycXeWici4vTrkSv3bAsAAAAAAAAAAGTGjHDgIRiNRk3cHC5JeqVqYZXycdEDbvELZDt3dw+1b99Rs2d/o7i4OAUGVlVExFXNnv2NbGysVbJkaTk7u6hAgYJasWKp8ubNK1dXN+3YsU1Lly6SJCUm3vv+39mpVauXFRKyXP369dWzzz6na9ciNHHiWG3cuE59+nx8z/Pat++o33/fqH79+qh9+45KSUnWggVzFR8fr7fe6ipJeuml1goJ+VH9+vXRW2+9Y1pu/eTJMI0fP1WS1KBBI/3wwzwNH/6F3nmnu7y9fbRhw1pt2fKnhg8fnWmW+MmTYbKzs5Ovr+9dM7388mvq27enJk0aq9q162nXrp2aP/87vf56JxUq9P/nHDp0UJ6enqZtr7/eSRs3rtdHH32gV199XefOndHMmdPUokUr5c+fX5Lk4WSrt4KLaNKfpzR962k95+8jB1vr/zb4AAAAAAAAAADkAswIBx7ChmMROngpRo62VvqwcWlzxwFM3nmnm3r27KPNm3/Xxx/30vTpkxUQEKgFCxbIxcVFkjRy5Nfy9vbRiBFDNGhQfx0+fEijR4+Xn19R7d+/zyy58+cvoIkTpytv3rz64Yd52rVrpzZv3qTu3XupTZtX73le0aLFNHXqLNnZ2WvYsEEaMWKIPD299M0336pYseKSJC+vPJo2bbYKFy6iMWNGadCg/kpKStKkSTNUpUqQpIx7oU+YME01atTSt9/O0KeffqTTp09p5MgxqlevYaY+IyMjTcvQ30316jX0xRfDtXPnDn38cS9t3rxJvXt/pG7d3s903Hvvvanvv59teuznV1Tjx09RYmKiPv/8Ey1Z8oNeeaW9evf+KNN5rwQWUkE3e0XEJmvBrsxLqQMAAAAAAAAAgLszGI25c15rRESMuSNkK4NB8vZ21bVrMcxc/o+SUtP1ynf/6OLNJL1b008DXqzAuGahXPFajYuTT7ECkqSIU5ckZ+ds7e5pG9M9e3ZpzZpVGjhwsLmj3Jc5x3V96FUNXB0qR1srrehSXd7Odk82QDb5L2Pq43PvHycAAAAAAAAAAMCMcOABlu69oIs3k+TjYqc3gu6+NDKAx1egQEHVqVPf3DFytOf8fVShgKsSUtI1Y+tpc8cBAAAAAAAAACDHoxAO3EdUfIrm7DgrSepWq6gc7bg3L5DVChQoqLp165s7Ro5mMBjUu17G0u+/HLqssGtxZk4EAAAAAAAAAEDORiEcuI9Z288oNilNpX2c1ax8PnPHAZCLBRRyV8NS3ko3SpM2h5s7DgAAAAAAAAAAORqFcOAeTkfG68cDlyRJvesXl5XBYOZEAHK7nnWKycbKoO2nb+jv05HmjgMAAAAAAAAAQI5FIRy4h8l/nlJaulG1i3upWhFPc8cBABX2dFTbygUlSRM3Z3xGAQAAAAAAAACAO1EIB+5i97ko/XnyuqwN0gd1i5s7DgCYdKlRRK72Ngq7FqfVh6+YOw4AAAAAAAAAADkShXDgX9KNRk34I+P+uy0rFVCxPE5mTgQA/8/d0VZdahSRJE3felrxyWlmTgQAAAAAAAAAQM5DIRz4l7VHryr0aqyc7azVtaafueMAwB3aVi6oQu4OuhaXrAW7zpk7DgAAAAAAAAAAOQ6FcOBfFu+5IEnqXL2wvJzszJwGAO5kZ2OlnnWKSZKW7L1o5jQAAAAAAAAAAOQ8NuYOAOQ0zcrlU2kfF7Wr6mvuKABwT8+W9lbHar6ysTKYOwoAAAAAAAAAADkOhXDgX16tUsjcEQDggQwGg96vW9zcMQAAAAAAAAAAyJFYGh0AAAAAAAAAAAAAYFEohAMAAAAAAAAAAAAALAqFcAAAAAAAAAAAAACARaEQDgAAAAAAAAAAAACwKBTCAQAAAAAAAAAAAAAWhUI4AAAAAAAAAAAAAMCiGIxGo9HcIQAAAAAAAAAAAAAAyCrMCAcAAAAAAAAAAAAAWBQK4QAAAAAAAAAAAAAAi0IhHAAAAAAAAAAAAABgUSiEPwVu3rypgQMHqmbNmqpRo4b69++vmzdvmvbfuHFD77//vgIDA9WwYUP9/PPPmc4/cuSI2rZtq4CAALVp00aHDh3KtH/VqlVq1KiRAgIC1KNHD0VGRpr2GY1Gff3116pRo4aqV6+ur776Sunp6dl7wTlUUlKSPv30UwUFBal27dqaM2eOuSOZ3ZUrV/TBBx+oevXqqlOnjkaNGqWkpCRJ0rlz59S5c2dVrlxZTZs21ZYtWzKdu23bNjVv3lwBAQHq2LGjzp07l2n/999/rzp16igwMFCffvqpEhISTPtyy3PRtWtX9e/f3/Q4O9/LD/ocedolJydryJAhqlatmmrWrKlx48bJaDRKYlwf16VLl/Tuu++qSpUqatiwob7//nvTPsYUAAAAAAAAAGBuFMKfAl988YVCQ0M1c+ZMffvttzp58qQ+++wz0/4BAwYoJiZGS5YsUbdu3fTZZ5/pwIEDkqT4+Hh17dpVQUFBWrFihQIDA/Xuu+8qPj5eknTgwAENHDhQPXv21JIlS3Tz5k0NGDDA1PZ3332nVatWacqUKZo0aZJWrlyp77777skOQA7x1Vdf6dChQ5o7d66++OILTZkyRWvXrjV3LLMxGo364IMPlJCQoIULF2r8+PH6/fffNWHCBBmNRvXo0UPe3t768ccf9dJLL6lnz566ePGiJOnixYvq0aOHWrdureXLl8vLy0vdu3c3FSbXrVunKVOmaOjQoZo7d67279+vMWPGmPrODc/F6tWrtXnzZtPj7H4v3+9zxBIMHz5c27Zt07fffquxY8dq6dKlWrJkCeP6H/Tu3VtOTk5asWKFPv30U02YMEEbNmxgTAEAAAAAAAAAOYMROVpcXJyxbNmyxn379pm27dmzx1i2bFljYmKi8cyZM8bSpUsbz507Z9r/6aefGj/55BOj0Wg0Llu2zNiwYUNjenq60Wg0GtPT043PPfec8ccffzQajUbjxx9/bDrWaDQaL168aPT39zeePXvWaDQajfXq1TMdazQajSEhIcYGDRpk3wXnUHFxccaKFSsa//77b9O2qVOnGt944w0zpjKvsLAwY+nSpY0RERGmbStXrjTWrl3buG3bNmPlypWNcXFxpn2dOnUyTpo0yWg0Go0TJkzINHbx8fHGwMBA0/i2b9/edKzRaDT+888/xkqVKhnj4+NzxXNx48YNY926dY1t2rR5Iu/lB32OPO1u3LhhLFeunHHHjh2mbTNmzDD279+fcX1MUVFRxtKlSxuPHTtm2tazZ0/jkCFDGFMAAAAAAAAAQI7AjPAczsrKSt98843Kli2baXtaWpri4uK0f/9+FShQQL6+vqZ9VatW1d69eyVJ+/fvV9WqVWUwGCRJBoNBVapU0b59+0z7g4KCTOcWKFBABQsW1P79+3XlyhVdunRJ1apVy9T2hQsXdPXq1ey65BwpNDRUqampCgwMNG2rWrWq9u/fn2uXivfx8dHs2bPl7e2daXtsbKz279+vcuXKycnJybS9atWq93zdOTo6qnz58tq3b5/S0tJ08ODBTPsrV66slJQUhYaG5ornYvTo0XrppZdUsmRJ07bsfC8/6HPkabd79265uLioevXqpm1du3bVqFGjGNfH5ODgIEdHR61YsUIpKSkKDw/Xnj17VLZsWcYUAAAAAAAAAJAjUAjP4RwcHFS3bl3Z2dmZts2bN0/+/v7y8vJSRESE8ubNm+mcPHny6MqVK5J0z/2XL1+WJF29evWe+yMiIiQp0/5bRc9b5+cWERER8vT0zPQ8eHt7KykpSVFRUeYLZkZubm6qU6eO6XF6eroWLFigGjVqPPB1d7/9N2/eVFJSUqb9NjY28vDwML0uLfm52L59u3bt2qXu3btn2p6d7+UHfY487c6dO6dChQopJCRETZo00bPPPqupU6cqPT2dcX1M9vb2GjRokJYsWaKAgAC98MILqlu3rtq2bcuYAgAAAAAAAAByBBtzB4CUmJh4z/+J7+Pjk2lW7YIFC7RmzRrNnj1bkpSQkJCpIChJdnZ2Sk5Ofqj9iYmJ99yfmJhoenz7Pkmm83OLe42jlPvG4l7GjBmjI0eOaPny5fr+++8f+3V5t9fd7fuNRqPFPhdJSUn64osvNGjQIDk4OGTal53v5Qe1/bSLj4/XmTNntHjxYo0aNUoREREaNGiQHB0dGdf/4OTJk2rQoIHefPNNnThxQsOGDdMzzzzDmAIAAAAAAAAAcgQK4TnA/v371bFjx7vumzp1qho1aiRJWrhwoYYPH64BAwaodu3akjJm5f27AJCcnGwqoj3ufkdHx0zFB3t7e9PfUsZS1rnJvcZJ0h0Fy9xozJgxmjt3rsaPH6/SpUvL3t7+jtnZD/O6c3Nzu+O1dvt+R0dHpaWlWexzMWXKFFWoUCHTTPtbsvO9/KC2n3Y2NjaKjY3V2LFjVahQIUnSxYsXtWjRIvn5+TGuj2H79u1avny5Nm/eLAcHB1WsWFFXrlzR9OnTVbhwYcYUAAAAAAAAAGB2FMJzgODgYB07duy+x3z77bf66quv1K9fP3Xq1Mm0PV++fLp27VqmY69duyYfH5/77r+1tOz9zs+XL5+kjCWZb92P9daytbfazy3y5cunGzduKDU1VTY2GW+biIgIOTg4yM3NzczpzGvYsGFatGiRxowZo+eff15SxniFhYVlOu5hXndly5aVh4eH7O3tde3aNZUoUUKSlJqaqqioKPn4+MhoNFrsc7F69Wpdu3bNdP/zWwW/devWqXnz5tn2Xn7Q58jTzsfHR/b29qYiuCQVK1ZMly5dUvXq1RnXx3Do0CH5+fllKkCXK1dO33zzjYKCghhTAAAAAAAAAIDZcY/wp8BPP/2kr776SgMGDFCXLl0y7atcubIuXLiQ6Z7du3fvVuXKlSVJAQEB2rt3r4xGoyTJaDRqz549CggIMO3fvXu36dxLly7p0qVLCggIUL58+VSwYMFM+3fv3q2CBQvecY9WS1e2bFnZ2Nho3759pm27d+9WxYoVZWWVe99GU6ZM0eLFizVu3Dg1a9bMtD0gIECHDx82LXMsZYzXvV53CQkJOnLkiAICAmRlZaWKFStm2r9v3z7Z2NioTJkyFv1czJ8/XytXrlRISIhCQkLUsGFDNWzYUCEhIdn6Xn7Q58jTLiAgQElJSTp16pRpW3h4uAoVKsS4Pqa8efPqzJkzmWZnh4eHy9fXlzEFAAAAAAAAAOQIT3fVKBeIiorS0KFD1apVKzVr1kwRERGmf2lpaSpcuLBq166tjz/+WKGhoVq2bJlWrVql119/XZLUpEkT3bx5UyNGjFBYWJhGjBihhIQEvfDCC5Kkdu3a6eeff9ayZcsUGhqqfv36qX79+ipcuLBp/9dff60dO3Zox44dGjt27D2Xcbdkjo6OatmypQYPHqwDBw5o48aNmjNnTq4ci1tOnjypadOm6Z133lHVqlUzvTarV6+uAgUKaMCAATpx4oRmzpypAwcO6OWXX5YktWnTRnv27NHMmTN14sQJDRgwQL6+vgoODpYktW/fXt9++602btyoAwcOaPDgwXrllVfk6Oho0c9FoUKF5OfnZ/rn7OwsZ2dn+fn5Zet7+UGfI0+74sWLq379+howYIBCQ0P1119/aebMmWrXrh3j+pgaNmwoW1tbffbZZzp16pQ2bdqkb775Rh06dGBMAQAAAAAAAAA5gsF4a8oWcqTVq1erb9++d93322+/ydfXV9evX9fAgQO1bds2+fj4qE+fPmrevLnpuAMHDuiLL77QyZMn5e/vryFDhqhcuXKm/StWrNCkSZMUHR2tWrVqadiwYfL09JQkpaWl6auvvtKKFStkbW2tl19+WR9++KEMBkP2XngOlJCQoMGDB2v9+vVycXFRly5d1LlzZ3PHMpuZM2dq7Nixd9137NgxnTlzRgMHDtT+/fvl5+enTz/9VDVr1jQds3nzZo0cOVKXL19WYGCghg0bZiqE3Wr/+++/V3Jysho3bqwvvvjCdM/g3PJc9O/fX5L05ZdfSsre9/KDPkeedjExMRo2bJg2bNggR0dHtW/fXj169JDBYGBcH9OtIveBAwfk5eWl119/XZ06dWJMAQAAAAAAAAA5AoVwAAAAAAAAAAAAAIBFYWl0AAAAAAAAAAAAAIBFoRAOAAAAAAAAAAAAALAoFMIBAAAAAAAAAAAAABaFQjgAAAAAAAAAAAAAwKJQCAcAAAAAAAAAAAAAWBQK4QAAAAAAAAAAAAAAi0IhHAAAAAAAAAAAAABgUSiEAwAAAAAAAAAAAAAsCoVwwEKtWLFC/v7+WrZsmbmjmDRs2FArVqy45/5Vq1apVatWqlixooKDg9WrVy+W3IgrAAAKHElEQVSdOXMmy9rPKpMnT1aHDh2y/Fx/f3/t2LHD9Hjr1q167bXXFBAQoKpVq+rtt9/WoUOHTPt37Nghf39/079y5cqpZs2a6tevn65du/ZY+QAAAAAAAAAAACwBhXDAQq1evVpFihTRzz//bO4oD2Xjxo364osv1KVLF/3666+aM2eO0tLS9MYbbyg2Ntbc8TJ56623NHny5Gzt49ChQ+revbtatGihX375RYsWLVLBggXVsWNHnT9/PtOxW7Zs0ZYtW/Tbb79pwoQJCg8PV6dOnRQfH5+tGQEAAAAAAAAAAHIqCuGABbp+/bq2b9+uHj16aNeuXTp37py5Iz1QSEiIWrdurebNm6tw4cIqX768xo4dq9jYWG3evNnc8TJxdnaWh4dHtvaxcuVK1apVS6+//rr8/PxUunRpDRkyRD4+Pvr1118zHevj4yMfHx8VKFBA1atX18yZMxUREaHFixdna0YAAAAAAAAAAICcikI4YIHWrl0rV1dXvfjii8qbN2+mWeENGzbUwoUL9corr6hixYp66aWXTMttnz9/Xv7+/lq/fr0aNWqkihUr6t1331VUVJSkjOXWGzZsmKmvDh06mGZHJycna9SoUapTp47Kly+vhg0basmSJQ+V2crKSvv371dcXJxpm729vUJCQlSvXr1Hbj82NlYDBgzQM888owoVKqhJkybauHGjab+/v78mTpyo4OBgvffee2rcuLG+++67TG20aNHirkvL3768+YoVK9ShQwdNmjRJwcHBCgoK0qhRo2Q0Gh/quu83HseOHdP169dN2wwGg+bMmaNXXnnlvud6eXmpUaNG2rBhw3/KAAAAAAAAAAAA8LSiEA5YoNWrV6t+/fqysrJSw4YNFRISkqkwO3nyZHXt2lW//PKLXF1dNXz48Eznf/PNNxo3bpwWLFiggwcP3lEgvpeZM2fqjz/+0OTJk7V27Vq1bNlSw4YNe6j7Vbdv316HDh1S3bp11adPHy1btkxXrlyRn5+fXFxcHrn9ESNG6NSpU5ozZ45WrVqloKAgDRw4UMnJyaZjfv/9dy1atEgfffSRmjVrpnXr1pn2nTx5UqdOnVLjxo0fmH3v3r06deqUFi1apM8//1zz5s3Ttm3bHmbI7unll19WZGSkGjRooG7dumn+/Pk6e/asChUq9FCz0UuWLKmTJ0/+pwwAAAAAAAAAAABPKwrhgIW5dOmS9uzZo0aNGkmSGjdurHPnzmn37t2mY1q1aqVGjRqpWLFievPNN00zwm/54IMPVKlSJQUEBKhFixY6ePDgQ/VdpkwZjRgxQpUrV1bhwoX13nvvKSUlRadPn37guTVq1NDChQtVo0YNbdq0SZ999pkaNGigoUOHKj09/ZHbr1atmoYOHaqyZcuqaNGieuuttxQVFZVphvWrr76q4sWLq2TJkmrevLn27duny5cvS5LWrFmj2rVry93d/YHZ09LSNGzYMBUvXlwvvfSSypQp89Bjdi8lSpTQsmXL1LhxY/3zzz8aPny4nnvuOfXq1UsJCQkPPN/V1TXT7HoAAAAAAAAAAIDcxMbcAQBkrdWrV8ve3l61a9eWJFWvXl3u7u766aefFBQUJEkqWrSo6XgXFxelpKRkasPPz++++++lUaNG2rp1q7788kuFh4fryJEjkjIKxQ8jMDBQU6dOVVJSknbu3KmQkBAtXLhQRYoUUefOnR+p/ZYtW2rjxo1aunSpwsPDdfjw4TuOLVSokOnvEiVKyN/fX2vXrlXnzp21Zs0avfvuuw+VO0+ePKZZ61LGmKWmpt71WBsbG1Nh/3a3ttnY/P/HcsmSJfX1118rNTVVe/fu1erVq7V06VL5+Pjos88+u2+m2NjYTJkAAAAAAAAAAAByE2aEAxZm9erVSkxMVNWqVVWuXDlVqlRJ0dHRWrt2rRITEyVJtra2923jXvsNBsMd224v+I4fP14ff/yxbGxs1LJly4e+P3hcXJyGDh1qmo1tb2+vOnXqaOzYsWratKlpmfFHab9fv34aPXq03Nzc1K5dO82YMeOOY+zt7TM9btasmdavX6+TJ0/q/PnzevbZZx8qv52d3R3b7nWPcDc3N8XExNyx/ebNm6b9kjR69GiFhoZKyiiOV6tWTYMHD9Zbb72l7du3PzDTsWPHVKpUqYfKDwAAAAAAAAAAYGmYEQ5YkFOnTunIkSP67LPPFBwcbNoeFhamPn36aMOGDf+pfVtb20zLbRuNRp0/f970ePHixRo8eLBeeOEFU7+3jrsfBwcHrVy50jTz+3aurq6mgvXDth8bG6tVq1Zp6dKlqlSpkiRp8+bND8zSvHlzTZw4USEhIapXr56cnZ3vm/tx+Pv7Kzw8XNHR0ZmWXd+/f78cHR1Ns/W3bNmi1NRUDRw4MNP5bm5u8vLyum8fUVFR2rhxo3r37p3V8QEAAAAAAAAAAJ4KFMIBC7J69Wp5eHjo1VdfzTRLuXTp0po6dapCQkL+U/sVKlRQVFSU5s+fr/r162v+/PmKjo427ffw8NDvv/+uChUq6MqVKxo5cqQkKTk5+b7tWltb67333tO4ceOUnJysRo0aKTU1Vdu2bdPKlSs1f/78R2rfzs5Ojo6OWr9+vby8vHTq1CkNHTr0gVkKFiyoSpUqae7cuRozZsyjD9BDqFKlikqXLq1evXqpT58+8vLy0tGjR/Xll1/qjTfeMM3G7969u/r27St7e3u1aNFCtra22rNnj2bPnq1Ro0ZlajMiIkJSxuz806dPa8yYMSpQoIDatm2bLdcAAAAAAAAAAACQ01EIByzI6tWr1aJFi7su1d2uXTuNGDFCVlaPf0eEokWL6pNPPtH06dM1YcIEtW7dWs8//7xp/8iRIzV48GA1a9ZM+fLlU9u2bWVtba2jR4+qbt269227S5cucnd316JFizR9+nRJGYX3WbNmqUKFCo/Uvp2dncaMGaPRo0dr/vz58vX1Vbdu3TRhwgQdPXpUJUqUuGeOpk2b6tixY6pfv/5jj9P9WFlZafbs2RozZox69Oih6Oho5c+fX6+++qreeecd03EvvPCC7OzsNGfOHC1atEgpKSny9/fXyJEj71iy/db94G1tbZU/f341aNBA3bp1u2PpdwAAAAAAAAAAgNzCYHzQmsUAkIuMHz9ely9f1ujRo80dBQAAAAAAAAAAAI+JGeEAICk0NFRHjx7VDz/8YJqRDgAAAAAAAAAAgKfT46+RDAAW5NChQxoyZIjatm2roKAgc8cBAAAAAAAAAADAf8DS6AAAAAAAAAAAAAAAi8KMcAAAAAAAAAAAAACARaEQDgAAAAAAAAAAAACwKBTCAQAAAAAAAAAAAAAWhUI4AAAAAAAAAAAAAMCiUAgHAAAAAAAAAAAAAFgUCuEAAAAAAAAAAAAAAItCIRwAAAAAAAAAAAAAYFEohAMAAAAAAAAAAAAALAqFcAAAAAAAAAAAAACARfk/qlWoZn8tnGoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize = (20, 10))\n", + "\n", + "countries = cleaned_df_2019['Country'].value_counts().sort_values(ascending = False)[:10].index.tolist()\n", + "\n", + "for i, country in enumerate(countries):\n", + " plt.subplot(4, 3, i + 1)\n", + " temp_salaries = cleaned_df_2019.loc[cleaned_df_2019['Country'] == country, 'SalaryUSD']\n", + "\n", + " ax = temp_salaries.plot(kind = 'kde')\n", + " ax.axvline(temp_salaries.mean(), linestyle = '-', color = 'red')\n", + " ax.text((temp_salaries.mean() + 1500), (float(ax.get_ylim()[1]) * 0.55), 'mean = $ ' + str(round(temp_salaries.mean(),2)), fontsize = 12)\n", + " ax.set_xlabel('Annual Salary in USD')\n", + " ax.set_xlim(-temp_salaries.mean(), temp_salaries.mean() + 2 * temp_salaries.std())\n", + " ax.set_title('Annual Salary Distribution in {}'.format(country))\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Overall, the country which has the highest mean annual salary is the United States of America(240,000) Dollars. The second highest country which provides the highest mean salary is Australia(164,926) Dollars. Though India has a higher number of respondents, it has the lowest mean salary of $25,213.We can understand that the mean salary of a developed country is much higher than that of a developing country." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Analysing impact of education level on salary" + ] + }, + { + "cell_type": "code", + "execution_count": 354, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "Could not convert ['Very satisfiedSlightly satisfiedVery satisfied'\n 'South AfricaUnited StatesNetherlands' 'NoNoNo'\n 'AssociateAssociateAssociate' 'Full-timeFull-timeFull-time'\n 'White or of European descentWhite or of European descentWhite or of European descent'\n 'ManManMan' 'NoNoYes' 'AverageA little above averageFar above average'\n 'Very satisfiedSlightly satisfiedSlightly dissatisfied'\n 'Not seekingSeekingnan'\n 'HTML/CSS;JavaScript;PHP;SQL;TypeScriptBash/Shell/PowerShell;HTML/CSS;JavaScript;Python;Other(s):Bash/Shell/PowerShell;C;C++;C#;HTML/CSS;Java;JavaScript;PHP;Python;Ruby;SQL;Swift'\n 'HTML/CSS;JavaScript;PHP;SQL;TypeScriptBash/Shell/PowerShell;HTML/CSS;JavaScript;PHP;PythonBash/Shell/PowerShell;C++;Go;HTML/CSS;Java;JavaScript;Kotlin;PHP;Python;Ruby;SQL;TypeScript;VBA'\n 'DeveloperDeveloperDeveloper'\n 'Computer ScienceInfo SystemsComputer Science'\n 'Designer;Developer, back-end;Developer, front-end;Developer, full-stackDeveloper, full-stackData or business analyst;Data scientist or machine learning specialist;Database administrator;Designer;Developer, back-end;Developer, desktop or enterprise applications;Developer, front-end;Developer, full-stack;Educator;Marketing or sales professional;Student;System administrator'] to numeric", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\nanops.py:1680\u001b[0m, in \u001b[0;36m_ensure_numeric\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 1679\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 1680\u001b[0m x \u001b[38;5;241m=\u001b[39m x\u001b[38;5;241m.\u001b[39mastype(np\u001b[38;5;241m.\u001b[39mcomplex128)\n\u001b[0;32m 1681\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mTypeError\u001b[39;00m, \u001b[38;5;167;01mValueError\u001b[39;00m):\n", + "\u001b[1;31mValueError\u001b[0m: complex() arg is a malformed string", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\nanops.py:1683\u001b[0m, in \u001b[0;36m_ensure_numeric\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 1682\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 1683\u001b[0m x \u001b[38;5;241m=\u001b[39m x\u001b[38;5;241m.\u001b[39mastype(np\u001b[38;5;241m.\u001b[39mfloat64)\n\u001b[0;32m 1684\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[0;32m 1685\u001b[0m \u001b[38;5;66;03m# GH#29941 we get here with object arrays containing strs\u001b[39;00m\n", + "\u001b[1;31mValueError\u001b[0m: could not convert string to float: 'Very satisfiedSlightly satisfiedVery satisfied'", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[354], line 3\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m#removing outliers from Associate group\u001b[39;00m\n\u001b[0;32m 2\u001b[0m salary_edu \u001b[38;5;241m=\u001b[39m cleaned_df_2019\u001b[38;5;241m.\u001b[39mgroupby([\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mEdLevel\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m----> 3\u001b[0m associate_mean \u001b[38;5;241m=\u001b[39m \u001b[43msalary_edu\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_group\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mAssociate\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmean\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSalaryUSD\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[0;32m 4\u001b[0m filt \u001b[38;5;241m=\u001b[39m (salary_edu\u001b[38;5;241m.\u001b[39mget_group(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mAssociate\u001b[39m\u001b[38;5;124m'\u001b[39m)[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSalaryUSD\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m>\u001b[39m associate_mean)\u001b[38;5;241m.\u001b[39mto_frame()\n\u001b[0;32m 5\u001b[0m filt \u001b[38;5;241m=\u001b[39m filt[filt[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSalaryUSD\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m==\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m]\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\generic.py:11556\u001b[0m, in \u001b[0;36mNDFrame._add_numeric_operations..mean\u001b[1;34m(self, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[0;32m 11539\u001b[0m \u001b[38;5;129m@doc\u001b[39m(\n\u001b[0;32m 11540\u001b[0m _num_doc,\n\u001b[0;32m 11541\u001b[0m desc\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mReturn the mean of the values over the requested axis.\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 11554\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[0;32m 11555\u001b[0m ):\n\u001b[1;32m> 11556\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mNDFrame\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmean\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumeric_only\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\generic.py:11201\u001b[0m, in \u001b[0;36mNDFrame.mean\u001b[1;34m(self, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[0;32m 11194\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmean\u001b[39m(\n\u001b[0;32m 11195\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m 11196\u001b[0m axis: Axis \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 11199\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[0;32m 11200\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Series \u001b[38;5;241m|\u001b[39m \u001b[38;5;28mfloat\u001b[39m:\n\u001b[1;32m> 11201\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_stat_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 11202\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmean\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnanops\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnanmean\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumeric_only\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[0;32m 11203\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\generic.py:11158\u001b[0m, in \u001b[0;36mNDFrame._stat_function\u001b[1;34m(self, name, func, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[0;32m 11154\u001b[0m nv\u001b[38;5;241m.\u001b[39mvalidate_stat_func((), kwargs, fname\u001b[38;5;241m=\u001b[39mname)\n\u001b[0;32m 11156\u001b[0m validate_bool_kwarg(skipna, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mskipna\u001b[39m\u001b[38;5;124m\"\u001b[39m, none_allowed\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m> 11158\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_reduce\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 11159\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumeric_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnumeric_only\u001b[49m\n\u001b[0;32m 11160\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\frame.py:10519\u001b[0m, in \u001b[0;36mDataFrame._reduce\u001b[1;34m(self, op, name, axis, skipna, numeric_only, filter_type, **kwds)\u001b[0m\n\u001b[0;32m 10515\u001b[0m df \u001b[38;5;241m=\u001b[39m df\u001b[38;5;241m.\u001b[39mT\n\u001b[0;32m 10517\u001b[0m \u001b[38;5;66;03m# After possibly _get_data and transposing, we are now in the\u001b[39;00m\n\u001b[0;32m 10518\u001b[0m \u001b[38;5;66;03m# simple case where we can use BlockManager.reduce\u001b[39;00m\n\u001b[1;32m> 10519\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[43mdf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_mgr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreduce\u001b[49m\u001b[43m(\u001b[49m\u001b[43mblk_func\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 10520\u001b[0m out \u001b[38;5;241m=\u001b[39m df\u001b[38;5;241m.\u001b[39m_constructor(res)\u001b[38;5;241m.\u001b[39miloc[\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m 10521\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m out_dtype \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\internals\\managers.py:1534\u001b[0m, in \u001b[0;36mBlockManager.reduce\u001b[1;34m(self, func)\u001b[0m\n\u001b[0;32m 1532\u001b[0m res_blocks: \u001b[38;5;28mlist\u001b[39m[Block] \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m 1533\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m blk \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mblocks:\n\u001b[1;32m-> 1534\u001b[0m nbs \u001b[38;5;241m=\u001b[39m \u001b[43mblk\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreduce\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1535\u001b[0m res_blocks\u001b[38;5;241m.\u001b[39mextend(nbs)\n\u001b[0;32m 1537\u001b[0m index \u001b[38;5;241m=\u001b[39m Index([\u001b[38;5;28;01mNone\u001b[39;00m]) \u001b[38;5;66;03m# placeholder\u001b[39;00m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\internals\\blocks.py:339\u001b[0m, in \u001b[0;36mBlock.reduce\u001b[1;34m(self, func)\u001b[0m\n\u001b[0;32m 333\u001b[0m \u001b[38;5;129m@final\u001b[39m\n\u001b[0;32m 334\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mreduce\u001b[39m(\u001b[38;5;28mself\u001b[39m, func) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mlist\u001b[39m[Block]:\n\u001b[0;32m 335\u001b[0m \u001b[38;5;66;03m# We will apply the function and reshape the result into a single-row\u001b[39;00m\n\u001b[0;32m 336\u001b[0m \u001b[38;5;66;03m# Block with the same mgr_locs; squeezing will be done at a higher level\u001b[39;00m\n\u001b[0;32m 337\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m2\u001b[39m\n\u001b[1;32m--> 339\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalues\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 341\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvalues\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[0;32m 342\u001b[0m \u001b[38;5;66;03m# TODO(EA2D): special case not needed with 2D EAs\u001b[39;00m\n\u001b[0;32m 343\u001b[0m res_values \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39marray([[result]])\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\frame.py:10482\u001b[0m, in \u001b[0;36mDataFrame._reduce..blk_func\u001b[1;34m(values, axis)\u001b[0m\n\u001b[0;32m 10480\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m values\u001b[38;5;241m.\u001b[39m_reduce(name, skipna\u001b[38;5;241m=\u001b[39mskipna, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 10481\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m> 10482\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mop\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\nanops.py:96\u001b[0m, in \u001b[0;36mdisallow.__call__.._f\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 94\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m 95\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m np\u001b[38;5;241m.\u001b[39merrstate(invalid\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mignore\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[1;32m---> 96\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 97\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 98\u001b[0m \u001b[38;5;66;03m# we want to transform an object array\u001b[39;00m\n\u001b[0;32m 99\u001b[0m \u001b[38;5;66;03m# ValueError message to the more typical TypeError\u001b[39;00m\n\u001b[0;32m 100\u001b[0m \u001b[38;5;66;03m# e.g. this is normally a disallowed function on\u001b[39;00m\n\u001b[0;32m 101\u001b[0m \u001b[38;5;66;03m# object arrays that contain strings\u001b[39;00m\n\u001b[0;32m 102\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_object_dtype(args[\u001b[38;5;241m0\u001b[39m]):\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\nanops.py:158\u001b[0m, in \u001b[0;36mbottleneck_switch.__call__..f\u001b[1;34m(values, axis, skipna, **kwds)\u001b[0m\n\u001b[0;32m 156\u001b[0m result \u001b[38;5;241m=\u001b[39m alt(values, axis\u001b[38;5;241m=\u001b[39maxis, skipna\u001b[38;5;241m=\u001b[39mskipna, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 157\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 158\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43malt\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 160\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\nanops.py:421\u001b[0m, in \u001b[0;36m_datetimelike_compat..new_func\u001b[1;34m(values, axis, skipna, mask, **kwargs)\u001b[0m\n\u001b[0;32m 418\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m datetimelike \u001b[38;5;129;01mand\u001b[39;00m mask \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 419\u001b[0m mask \u001b[38;5;241m=\u001b[39m isna(values)\n\u001b[1;32m--> 421\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmask\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 423\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m datetimelike:\n\u001b[0;32m 424\u001b[0m result \u001b[38;5;241m=\u001b[39m _wrap_results(result, orig_values\u001b[38;5;241m.\u001b[39mdtype, fill_value\u001b[38;5;241m=\u001b[39miNaT)\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\nanops.py:727\u001b[0m, in \u001b[0;36mnanmean\u001b[1;34m(values, axis, skipna, mask)\u001b[0m\n\u001b[0;32m 724\u001b[0m dtype_count \u001b[38;5;241m=\u001b[39m dtype\n\u001b[0;32m 726\u001b[0m count \u001b[38;5;241m=\u001b[39m _get_counts(values\u001b[38;5;241m.\u001b[39mshape, mask, axis, dtype\u001b[38;5;241m=\u001b[39mdtype_count)\n\u001b[1;32m--> 727\u001b[0m the_sum \u001b[38;5;241m=\u001b[39m \u001b[43m_ensure_numeric\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msum\u001b[49m\u001b[43m(\u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype_sum\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 729\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m axis \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(the_sum, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mndim\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m):\n\u001b[0;32m 730\u001b[0m count \u001b[38;5;241m=\u001b[39m cast(np\u001b[38;5;241m.\u001b[39mndarray, count)\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python311\\site-packages\\pandas\\core\\nanops.py:1686\u001b[0m, in \u001b[0;36m_ensure_numeric\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 1683\u001b[0m x \u001b[38;5;241m=\u001b[39m x\u001b[38;5;241m.\u001b[39mastype(np\u001b[38;5;241m.\u001b[39mfloat64)\n\u001b[0;32m 1684\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[0;32m 1685\u001b[0m \u001b[38;5;66;03m# GH#29941 we get here with object arrays containing strs\u001b[39;00m\n\u001b[1;32m-> 1686\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCould not convert \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mx\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m to numeric\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01merr\u001b[39;00m\n\u001b[0;32m 1687\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 1688\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m np\u001b[38;5;241m.\u001b[39many(np\u001b[38;5;241m.\u001b[39mimag(x)):\n", + "\u001b[1;31mTypeError\u001b[0m: Could not convert ['Very satisfiedSlightly satisfiedVery satisfied'\n 'South AfricaUnited StatesNetherlands' 'NoNoNo'\n 'AssociateAssociateAssociate' 'Full-timeFull-timeFull-time'\n 'White or of European descentWhite or of European descentWhite or of European descent'\n 'ManManMan' 'NoNoYes' 'AverageA little above averageFar above average'\n 'Very satisfiedSlightly satisfiedSlightly dissatisfied'\n 'Not seekingSeekingnan'\n 'HTML/CSS;JavaScript;PHP;SQL;TypeScriptBash/Shell/PowerShell;HTML/CSS;JavaScript;Python;Other(s):Bash/Shell/PowerShell;C;C++;C#;HTML/CSS;Java;JavaScript;PHP;Python;Ruby;SQL;Swift'\n 'HTML/CSS;JavaScript;PHP;SQL;TypeScriptBash/Shell/PowerShell;HTML/CSS;JavaScript;PHP;PythonBash/Shell/PowerShell;C++;Go;HTML/CSS;Java;JavaScript;Kotlin;PHP;Python;Ruby;SQL;TypeScript;VBA'\n 'DeveloperDeveloperDeveloper'\n 'Computer ScienceInfo SystemsComputer Science'\n 'Designer;Developer, back-end;Developer, front-end;Developer, full-stackDeveloper, full-stackData or business analyst;Data scientist or machine learning specialist;Database administrator;Designer;Developer, back-end;Developer, desktop or enterprise applications;Developer, front-end;Developer, full-stack;Educator;Marketing or sales professional;Student;System administrator'] to numeric" + ] + } + ], + "source": [ + "#removing outliers from Associate group\n", + "salary_edu = cleaned_df_2019.groupby(['EdLevel'])\n", + "associate_mean = salary_edu.get_group('Associate').mean()['SalaryUSD']\n", + "filt = (salary_edu.get_group('Associate')['SalaryUSD'] > associate_mean).to_frame()\n", + "filt = filt[filt['SalaryUSD'] == False]\n", + "cleaned_df_2019.drop(index=filt.index, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig = plt.figure(figsize = (20, 10))\n", + "\n", + "education_2019 = cleaned_df_2019['EdLevel'].value_counts().sort_values(ascending = False).index.tolist()\n", + "\n", + "for i, edu in enumerate(education_2019):\n", + " plt.subplot(3, 2, i + 1)\n", + " temp_salaries = cleaned_df_2019.loc[cleaned_df_2019['EdLevel'] == edu, 'SalaryUSD']\n", + "\n", + " ax = temp_salaries.plot(kind = 'kde')\n", + " ax.axvline(temp_salaries.mean(), linestyle = '-', color = 'red')\n", + " ax.text((temp_salaries.mean() + 1500), (float(ax.get_ylim()[1]) * 0.55), 'mean = $ ' + str(round(temp_salaries.mean(),2)), fontsize = 12)\n", + " ax.set_xlabel('Annual Salary in USD')\n", + " ax.set_xlim(-temp_salaries.mean(), temp_salaries.mean() + 2 * temp_salaries.std())\n", + " ax.set_title('Annual Salary Distribution in {}'.format(edu))\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, the respondents who have done Doctorate have the highest mean salary among all other education levels. Secondly, the respondents who have done Bachelors degree have more salary than that of Masters degree holders. This may be due to years of professional coding experience and due to the higher number of respondents in that category than that of Masters degree(No of respondents in Bachelor degree is 35659 and number of respondents in masters degree is 16940)\n", + "\n", + "The most interesting is that the respondents who do not have any degree have a mean salary of $90k. This shows the improvement in online learning and advancement of technology that is shifting the company from relying on University degrees." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Distribution of respondents based on age" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "col =['Age', 'Country']\n", + "df_2020= cleaned_df_2019[col]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "df_2020['Age_range'] = 0\n", + "df_2020['Age_range']= np.where((df_2020['Age']>=15) & (df_2020['Age']<=19), '15 - 19 years', df_2020.Age_range)\n", + "df_2020['Age_range']= np.where((df_2020['Age']>=20) & (df_2020['Age']<=24), '20 - 24 years', df_2020.Age_range)\n", + "df_2020['Age_range']= np.where((df_2020['Age']>=25) & (df_2020['Age']<=29), '25 - 29 years', df_2020.Age_range)\n", + "df_2020['Age_range']= np.where((df_2020['Age']>=30) & (df_2020['Age']<=34), '30 - 34 years', df_2020.Age_range)\n", + "df_2020['Age_range']= np.where((df_2020['Age']>=35) & (df_2020['Age']<=39), '35 - 39 years', df_2020.Age_range)\n", + "df_2020['Age_range']= np.where((df_2020['Age']>=40) & (df_2020['Age']<=45), '40 - 45 years', df_2020.Age_range)\n", + "df_2020['Age_range']= np.where((df_2020['Age']>=46), '46 and above years', df_2020.Age_range)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_2020_age = df_2020.groupby(['Age_range']).size().reset_index(name='Count')\n", + "df_2020_age.sort_values(by=['Count'], ascending=False, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize = (10, 6))\n", + "sns.set_style('white')\n", + "sns.set_context('paper', font_scale=1.5)\n", + "sns.barplot(x=\"Count\", y=\"Age_range\", palette='inferno', data=df_2020_age).set(xlabel=\"Age\", ylabel = \"Count\")\n", + "plt.title('Distribution of respondents based on age')\n", + "\n", + "for y, x in enumerate(df_2020_age['Count']):\n", + " label = \"{:,}\".format(int(x))\n", + " plt.annotate(label, xy=(x, y), va='center')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Impact on the increase in popularity of a language in the current-year due to developer’s interest in the previous year.(Based on 2019 and 2020 dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#seperate language for getting individual one\n", + "cols = ['LanguageWorkedWith']\n", + "df_19 = survey_df_2019[cols]\n", + "df_20 = df2020[cols]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#splitting 'LanguageWorkedWith' and sort_values(by=['Count'], ascending=False, inplace=True)\n", + "language_2019= df_19['LanguageWorkedWith'].str.split(';', expand=True).stack().value_counts().to_frame('2019')\n", + "language_2019['Language'] = language_2019.index\n", + "language_2019.reset_index(drop=True, inplace=True)\n", + "language_2019 = language_2019[['Language', '2019']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "language_2020= df_20['LanguageWorkedWith'].str.split(';', expand=True).stack().value_counts().to_frame('2020')\n", + "language_2020['Language'] = language_2020.index\n", + "language_2020.reset_index(drop=True, inplace=True)\n", + "language_2020 = language_2020[['Language', '2020']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "language_all= pd.merge(language_2019, language_2020,on = ['Language'], how = 'outer')\n", + "language_all.fillna(0, inplace=True)\n", + "language_all['2019'] = language_all['2019']. astype(int)\n", + "language_all['2020'] = language_all['2020']. astype(int)\n", + "language_all.set_index('Language', inplace=True)\n", + "#language_all" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "language19_20=(language_all/language_all.sum())\n", + "language19_20.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "language19_20.plot(kind='bar', figsize=(12,8))\n", + "plt.title('Programming Language worked by Respondents in 2019 and 2020', fontsize = 18)\n", + "plt.xlabel('Languages', fontsize = 14)\n", + "plt.ylabel('Percentages', fontsize = 14)\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Analysis\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The most language that worked in 2019 and 2020 is JavaScript.In 2020, people worked slightly in javascript compare to 2019. The 2nd highest working language is HTML/CSS. For HTML/CSS the percentage is slightly low in 2020. There are some language people worked in only one year. Elixir, Clojure, F#, Web assembly are those languages that people used in 2019. Respondent started to use Perl, Haskell, Julia in 2020 on a small scale." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Programming language desired to work" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "#language desire net year\n", + "cols_1 = ['LanguageDesireNextYear']\n", + "df_19 = survey_df_2019[cols_1]\n", + "df_20 = df2020[cols_1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "languagedesire_2019= df_19['LanguageDesireNextYear'].str.split(';', expand=True).stack().value_counts().to_frame('2019')\n", + "languagedesire_2019['Language'] = languagedesire_2019.index\n", + "languagedesire_2019.reset_index(drop=True, inplace=True)\n", + "languagedesire_2019 = languagedesire_2019[['Language', '2019']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "languagedesire_2020= df_20['LanguageDesireNextYear'].str.split(';', expand=True).stack().value_counts().to_frame('2020')\n", + "languagedesire_2020['Language'] = languagedesire_2020.index\n", + "languagedesire_2020.reset_index(drop=True, inplace=True)\n", + "languagedesire_2020= languagedesire_2020[['Language','2020']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "languagedesire_all = pd.merge(languagedesire_2019, languagedesire_2020,on = ['Language'], how = 'outer')\n", + "languagedesire_all.fillna(0, inplace=True)\n", + "languagedesire_all['2019'] = languagedesire_all['2019']. astype(int)\n", + "languagedesire_all['2020'] = languagedesire_all['2020']. astype(int)\n", + "languagedesire_all.set_index('Language', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "languagedesire19_20=(languagedesire_all/languagedesire_all.sum())\n", + "languagedesire19_20.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "languagedesire19_20.plot(kind='bar', figsize=(12,8))\n", + "plt.title('Programming Language desire to work', fontsize = 18)\n", + "plt.xlabel('Languages', fontsize = 14)\n", + "plt.ylabel('Percentages', fontsize = 14)\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In 2019, respondents said that they wanted to work in javascript is around more than 10 % and the fewer respond have a desire to work on VBA next year. People started to work in Haskell, Julia, and pearl in 2019 though the amount was less around 5% of people have the desire to work in those languages in 2021. Here, phyton is the 2nd one in which people have the desire to work in both 2019 and 2020." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Distribution of surveyors based on their developer role." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "col = ['DevType']\n", + "dev_18=df[col]\n", + "dev_19 = survey_df_2019[col]\n", + "dev_20= df2020[col]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "dev_2018= dev_18['DevType'].str.split(';', expand=True).stack().value_counts().to_frame('2018')\n", + "dev_2018['Developer'] = dev_2018.index\n", + "dev_2018.reset_index(drop=True, inplace=True)\n", + "dev_2018 = dev_2018[['Developer', '2018']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dev_2019= dev_19['DevType'].str.split(';', expand=True).stack().value_counts().to_frame('2019')\n", + "dev_2019['Developer'] = dev_2019.index\n", + "dev_2019.reset_index(drop=True, inplace=True)\n", + "dev_2019 = dev_2019[['Developer', '2019']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dev_2020= dev_20['DevType'].str.split(';', expand=True).stack().value_counts().to_frame('2020')\n", + "dev_2020['Developer'] = dev_2020.index\n", + "dev_2020.reset_index(drop=True, inplace=True)\n", + "dev_2020 = dev_2020[['Developer', '2020']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df18_19 = pd.merge(dev_2018, dev_2019,on = ['Developer'], how = 'outer')\n", + "devtype_all = pd.merge(df18_19,dev_2020, on=[\"Developer\"], how=\"outer\")\n", + "devtype_all.fillna(0, inplace=True)\n", + "devtype_all['2018'] = devtype_all['2018']. astype(int)\n", + "devtype_all['2019'] = devtype_all['2019']. astype(int)\n", + "devtype_all['2020'] =devtype_all['2020'].astype(int)\n", + "devtype_all.set_index('Developer', inplace=True)\n", + "devtype_all" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "devtype_all.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dt_all=devtype_all/devtype_all.sum()\n", + "dt_all.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(devtype_all/devtype_all.sum()).plot(kind='bar', figsize=(12,8))\n", + "plt.title('Developer Types pertcentages', fontsize = 18)\n", + "plt.xlabel('Developer Types', fontsize = 14)\n", + "plt.ylabel('Percentages', fontsize = 14)\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In developer types, developers who are full stack and working backends are the most in the three years. There is a presence of student developers only in 2019 the percentage is 7.5%. Those who are working back end and full stack their percentages increased throughout the three years. For those who are working as marketing and sales professionals, their percentage is lowest compare to others." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Impact of education/experience/responsibilities on gender inequalities.(Based on 2019 dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cols = ['Gender','EdLevel', 'Dependents', 'SalaryUSD', 'YearsCodePro', 'Age', 'Country']\n", + "df2019 = survey_df_2019[cols]\n", + "df2019 = df2019[df2019.Gender != \"Non-binary\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df2019['exp_range'] = 0\n", + "df2019['exp_range'] = np.where((df2019.YearsCodePro >= 0) & (df2019.YearsCodePro <= 5), '0 - 5 years', df2019.exp_range)\n", + "df2019['exp_range'] = np.where((df2019.YearsCodePro > 5) & (df2019.YearsCodePro <= 10), '6 - 10 years', df2019.exp_range)\n", + "df2019['exp_range'] = np.where((df2019.YearsCodePro > 10) & (df2019.YearsCodePro <= 15), '11 - 15 years', df2019.exp_range)\n", + "df2019['exp_range'] = np.where((df2019.YearsCodePro > 15) & (df2019.YearsCodePro <= 20), '16 - 20 years', df2019.exp_range)\n", + "df2019['exp_range'] = np.where((df2019.YearsCodePro > 20), 'more that 20 years', df2019.exp_range)\n", + "#df2019" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, axes = plt.subplots(2,2, figsize = (12, 8))\n", + "g1 = sns.countplot('Gender', data=df2019, ax=axes[0][0]).set(title = 'A. Gender')\n", + "g2 = sns.countplot('Dependents', data=df2019, ax=axes[0][1]).set( title = 'B. Dependents')\n", + "g3 = sns.countplot('EdLevel', data=df2019, ax=axes[1][0]).set(title = 'C. EdLevel')\n", + "g4 = sns.countplot('exp_range', data=df2019, ax=axes[1][1]).set(title = 'D. exp_range')\n", + "\n", + "axes[1][0].tick_params(axis='x', rotation=45)\n", + "axes[1][1].tick_params(axis='x', rotation=45)\n", + " \n", + "fig.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sns.countplot('EdLevel', hue='Gender', data=df2019)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "sns.countplot('Dependents', hue='Gender', data=df2019)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### **Analysis**
\n", + "\n", + "\n", + "After exploring the 2019 dataset, we have found that we cannot answer this question since male and female observations are significantly unbalanced." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What is the gender distribution among top 5 countries of respondents in 2019?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "all = df2019.groupby(['Country','Gender']).size().reset_index(name ='Count')\n", + "all['Total'] = all.groupby(['Country'])['Count'].transform('sum')\n", + "all = all.sort_values(by=['Total'], ascending=False)\n", + "#all.set_index('Total')\n", + "Top = all[:10].sort_values(by=['Total'], ascending=False)\n", + "Top" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# from raw value to percentage\n", + "total = Top.groupby(['Country'])['Count'].sum().reset_index()\n", + "total['Percentage'] = [i / j * 100 for i,j in zip(total['Count'], total['Count'])]\n", + "\n", + "woman = Top[Top.Gender=='Woman'].groupby(['Country'])['Count'].sum().reset_index()\n", + "woman['Percentage'] = [i / j * 100 for i,j in zip(woman['Count'], total['Count'])]\n", + "woman.sort_values(by=['Percentage'], ascending=False, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "woman" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "total" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, ax = plt.subplots(figsize = (10, 6))\n", + "\n", + "# bar chart 1 -> top bars (group of 'Man')\n", + "bar1 = sns.barplot(x=\"Country\", y=\"Percentage\", data=total, color='darkblue')\n", + "# bar chart 2 -> bottom bars (group of 'Woman')\n", + "bar2 = sns.barplot(x=\"Country\", y=\"Percentage\", data=woman, color='#5E96E9')\n", + "\n", + "# add legend\n", + "top_bar = mpatches.Patch(color='darkblue', label='Man')\n", + "bottom_bar = mpatches.Patch(color='#5E96E9', label='Woman')\n", + "plt.legend(handles=[top_bar, bottom_bar])\n", + "\n", + "# Fix the legend so it's not on top of the bars.\n", + "legend = ax.get_legend()\n", + "legend.set_bbox_to_anchor((1, 1))\n", + "\n", + "ax.set_ylabel('Percentage', fontsize = 12)\n", + "ax.set_xlabel('Top 5 Countries', fontsize = 12)\n", + "plt.title('Gender vs Top 5 Countries in 2019', fontsize = 14)\n", + "\n", + "def add_value_labels(bar2, spacing=5):\n", + " \"\"\"Add labels to the end of each bar in a bar chart.\n", + "\n", + " Arguments:\n", + " ax (matplotlib.axes.Axes): The matplotlib object containing the axes\n", + " of the plot to annotate.\n", + " spacing (int): The distance between the labels and the bars.\n", + " \"\"\"\n", + " # For each bar: Place a label\n", + " for rect in bar2.patches:\n", + " # Get X and Y placement of label from rect.\n", + " y_value = rect.get_height()\n", + " x_value = rect.get_x() + rect.get_width() / 2\n", + "\n", + " space = spacing # Number of points between bar and label. Change to your liking.\n", + " va = 'bottom' # Vertical alignment for positive values\n", + " label = \"{:.1f}%\".format(y_value) # Use Y value as label and format number with one decimal place\n", + "\n", + " # Create annotation\n", + " bar2.annotate(\n", + " label, # Use `label` as label\n", + " (x_value, y_value), # Place label at end of the bar\n", + " xytext=(0, space), # Vertically shift label by `space`\n", + " textcoords=\"offset points\", # Interpret `xytext` as offset in points\n", + " ha='center', # Horizontally center label\n", + " va=va, # Vertically align label differently for\n", + " color='white', fontsize=12, style='italic') \n", + "\n", + "#Add value bar\n", + "add_value_labels(bar2)\n", + "\n", + "plt.tight_layout(pad=0., w_pad=-16.5, h_pad=0.0) \n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### **Analysis**
\n", + "\n", + "\n", + "In terms of male and female statistics, it can be seen that the US has the relatively largest female percentage at about 10.9%. Follow by Canada, the UK at 9.6% and 8.0% respectively. India and Germany have the fewest female respondents among the top 5 at around 5%." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Where are the most data scientist come from in 2019?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#creating data scientist scientist df\n", + "ds = survey_df_2019[survey_df_2019['DevType'].str.contains('Data scientist') == True ]\n", + "ds = ds.reset_index(drop=True)\n", + "len(ds)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ds_country = ds.groupby(['Country']).size().reset_index(name ='Count')\n", + "ds_country.sort_values(by=['Count'], ascending=False, inplace=True)\n", + "top_ds_country = ds_country[:10]\n", + "top_ds_country" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, ax = plt.subplots(figsize = (10, 6))\n", + "ax=sns.barplot(x=\"Count\", y=\"Country\", data=top_ds_country )\n", + "ax.set_ylabel('Countries', fontsize = 12)\n", + "ax.set_xlabel('The Number of Data Scientists', fontsize = 12)\n", + "plt.title('Top 10 Countries of Data Scientists in 2019', fontsize = 14)\n", + "\n", + "for y, x in enumerate(top_ds_country['Count']):\n", + " label = \"{:,}\".format(int(x))\n", + " plt.annotate(label, xy=(x, y), va='center')\n", + "\n", + "plt.tight_layout() \n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Analysis\n", + "\n", + "\n", + "There are 5,788 data scientists who responded to the Stackoverflow survey in 2019. Most data scientists are from the US with 1,550 people and it is 3 times higher than data scientists from India. Followed by Germany and the UK with 427 and 339 people respectively. The rest are Canada, France, Netherlands, Brazil, Russia, and Australia which have less than 200 data scientists." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Which countries pay the most to Data Scientists in 2019?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ds_mean_salary = ds.groupby('Country')['SalaryUSD'].mean().reset_index(name ='Mean')\n", + "ds_mean_salary.sort_values(by=['Mean'], ascending=False, inplace=True)\n", + "ds_mean_salary" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#Plottig boxplot to check outliers after cleaning some outliers\n", + "sns.boxplot('Mean', data=ds_mean_salary)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#Cleaning Age's outliers from each gender)\n", + "ds_mean_salary = ds_mean_salary[(ds_mean_salary['Mean'] <= 280000)]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#Plottig boxplot to check outliers after cleaning some outliers\n", + "sns.boxplot('Mean', data=ds_mean_salary)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Top_mean_salary = ds_mean_salary[:10]\n", + "Top_mean_salary" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, ax = plt.subplots(figsize = (10, 6))\n", + "ax=sns.barplot(x=\"Mean\", y=\"Country\", data=Top_mean_salary )\n", + "ax.set_ylabel('Country', fontsize = 12)\n", + "ax.set_xlabel('Average Salary in US$', fontsize = 12)\n", + "plt.title('The Top 10 highest paying data scientist country in 2019', fontsize = 14)\n", + "\n", + "for y, x in enumerate(Top_mean_salary['Mean']):\n", + " label = \"${:,}\".format(int(x))\n", + " plt.annotate(label, xy=(x, y), va='center')\n", + "\n", + "plt.tight_layout() \n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Analysis**
\n", + "\n", + "\n", + "In 2019, the top three countries which have a highest mean annual salary of a data scientist are Ireland (275,851), Luxembourg (272,769), and the USA (265,211). Apart from that, the mean salary of the rest of the countries is less than (200,000) per year. Japan provides the highest mean annual salary among Asian countries (118,969)
\n", + "*Figures in Dollars* **$**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mydf2018 = pd.read_csv(r\"C:\\Users\\Aneesh Angane\\Downloads\\stack-overflow-developer-survey-2018\\survey_results_public_2018.csv\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Most Popular IDE's in 2018" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Split IDEs and explode into separate rows\n", + "individual_ides = mydf2018['IDE'].str.split(';').explode()\n", + "\n", + "# Count occurrences of each IDE and sort by value\n", + "ide_counts_value_sorted = individual_ides.value_counts().sort_values(ascending=False)\n", + "\n", + "# Plotting - Sorted by value\n", + "plt.figure(figsize=(8, 6))\n", + "plt.bar(ide_counts_value_sorted.index, ide_counts_value_sorted.values, color='skyblue')\n", + "plt.title('IDE Usage')\n", + "plt.xlabel('IDE')\n", + "plt.ylabel('Count')\n", + "plt.xticks(rotation=45, ha='right')\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Analysis of IDE Usage\n", + "\n", + "1. **Popular IDEs**: Visual Studio Code, Visual Studio, and Notepad++ are among the most widely used IDEs, with high user counts ranging from 25,870 to 26,280.\n", + "\n", + "2. **Text Editors**: Sublime Text, Vim, and IntelliJ are also popular choices, with user counts ranging from 19,477 to 21,810.\n", + "\n", + "3. **General-purpose Editors**: TextMate, Coda, and Light Table are also used, although they have lower user counts compared to other IDEs.\n", + "\n", + "4. **Emerging Trends**: IPython / Jupyter, Atom, and Emacs show significant adoption, indicating a growing interest in interactive computing environments, lightweight editors, and customizable text editors, respectively.\n", + "\n", + "5. **Industry Standard**: Xcode, primarily used for macOS and iOS development, maintains a substantial user base due to its integration with Apple's development ecosystem.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Coders perception about AI in 2018" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import random\n", + "# Assuming df2018 is your DataFrame\n", + "df = df2018[['AIDangerous','AIInteresting','AIResponsible','AIFuture']]\n", + "\n", + "# Strip leading and trailing whitespace from all columns\n", + "df = df.applymap(lambda x: x.strip() if isinstance(x, str) else x)\n", + "\n", + "# Mapping for shorter versions\n", + "short_mapping = {\n", + " 'Algorithms making important decisions': 'Algorithms',\n", + " 'Artificial intelligence surpassing human intelligence (\"the singularity\")': 'AI Singularity',\n", + " 'Evolving definitions of \"fairness\" in algorithmic versus human decisions': 'Fairness Evolution',\n", + " \"Increasing automation of jobs\": 'Automation',\n", + " \"The developers or the people creating the AI\": 'Developers',\n", + " \"A governmental or other regulatory body\": 'Government/Regulatory',\n", + " \"Prominent industry leaders\": 'Industry Leaders',\n", + " \"Nobody\": 'No Responsibility',\n", + " \"I'm excited about the possibilities more than worried about the dangers.\": 'Excited about AI Future',\n", + " \"I'm worried about the dangers more than I'm excited about the possibilities.\": 'Worried about AI Future',\n", + " \"I don't care about it, or I haven't thought about it.\": 'Indifferent about AI Future'\n", + "}\n", + "\n", + "# Replace responses with shorter versions\n", + "df.replace(short_mapping, inplace=True)\n", + "\n", + "# Function to create value count plots for each column\n", + "def plot_value_counts(column_name, ax):\n", + " colors = ['skyblue','yellow']\n", + " df[column_name].value_counts().plot(kind='bar', color=random.choice(colors), ax=ax)\n", + " ax.set_title(f'Value Counts for {column_name}')\n", + " ax.set_xlabel('Response')\n", + " ax.set_ylabel('Count')\n", + " ax.tick_params(axis='x', rotation=45)\n", + "\n", + "# Create subplots\n", + "fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 10))\n", + "\n", + "# Plot value counts for each column\n", + "for i, column in enumerate(df.columns):\n", + " plot_value_counts(column, axes[i//2, i%2])\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analysis\n", + "\n", + "### AIDangerous:\n", + "- The most commonly cited concern is \"Algorithms making important decisions,\" followed closely by \"Artificial intelligence surpassing human intelligence\" and \"Evolving definitions of fairness.\"\n", + "- \"Increasing automation of jobs\" is also a significant concern but appears to be less frequently mentioned compared to the other categories.\n", + "\n", + "### AIInteresting:\n", + "- The most interesting aspect for respondents seems to be \"Increasing automation of jobs,\" followed by \"Algorithms making important decisions\" and \"Artificial intelligence surpassing human intelligence.\"\n", + "- \"Evolving definitions of fairness\" appears to be less intriguing to respondents compared to other categories.\n", + "\n", + "### AIResponsible:\n", + "- The majority of respondents believe that responsibility lies with \"The developers or the people creating the AI.\"\n", + "- Fewer respondents attribute responsibility to \"A governmental or other regulatory body,\" \"Prominent industry leaders,\" or \"Nobody.\"\n", + "\n", + "### AIFuture:\n", + "- A significant proportion of respondents express excitement about the future of AI, indicating that they are \"Excited about the possibilities more than worried about the dangers.\"\n", + "- However, there is also a notable percentage of respondents who are \"Worried about the dangers more than excited about the possibilities.\"\n", + "- A smaller portion of respondents either \"Don't care about it\" or \"Haven't thought about it.\"\n", + "\n", + "Overall, these results suggest a complex and varied perspective on AI technology. While many see great potential in AI, there are also concerns about its implications, particularly regarding decision-making, automation of jobs, and the ethical considerations surrounding its development and regulation.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predicting the growth of languages for upcoming years based on the survey answers (2018, 2019, 2020)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cols = ['LanguageWorkedWith']\n", + "df_18 = df[cols]\n", + "df_19 = survey_df_2019[cols]\n", + "df_20 = df2020[cols]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "#splitting 'LanguageWorkedWith' on ';' \n", + "language_2018= df_18['LanguageWorkedWith'].str.split(';', expand=True).stack().value_counts().to_frame('2018')\n", + "language_2018['Language'] = language_2018.index\n", + "language_2018.reset_index(drop=True, inplace=True)\n", + "#language_2020.sort_values(by=['Count'], ascending=False, inplace=True)\n", + "language_2018 = language_2018[['Language', '2018']]\n", + "#language_2018" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "#splitting 'LanguageWorkedWith' on ';' \n", + "language_2019= df_19['LanguageWorkedWith'].str.split(';', expand=True).stack().value_counts().to_frame('2019')\n", + "language_2019['Language'] = language_2019.index\n", + "language_2019.reset_index(drop=True, inplace=True)\n", + "#language_2020.sort_values(by=['Count'], ascending=False, inplace=True)\n", + "language_2019 = language_2019[['Language', '2019']]\n", + "#language_2019" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#splitting 'LanguageWorkedWith' on ';' \n", + "language_2020= df_20['LanguageWorkedWith'].str.split(';', expand=True).stack().value_counts().to_frame('2020')\n", + "language_2020['Language'] = language_2020.index\n", + "language_2020.reset_index(drop=True, inplace=True)\n", + "#language_2020.sort_values(by=['Count'], ascending=False, inplace=True)\n", + "language_2020 = language_2020[['Language', '2020']]\n", + "#language_2020" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "compare_df = pd.merge(language_2018, language_2019,on = ['Language'], how = 'outer')\n", + "language_all = pd.merge(compare_df, language_2020,on = ['Language'], how = 'outer')\n", + "language_all.fillna(0, inplace=True)\n", + "language_all['2018'] = language_all['2018']. astype(int)\n", + "language_all['2019'] = language_all['2019']. astype(int)\n", + "language_all['2020'] = language_all['2020']. astype(int)\n", + "language_all.set_index('Language', inplace=True)\n", + "#language_all" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(language_all/language_all.sum()).plot(kind='bar', figsize=(12,8))\n", + "plt.title('Programming Language Use by Respondents', fontsize = 14)\n", + "plt.xlabel('Languages', fontsize = 12)\n", + "plt.ylabel('Percentages', fontsize = 12)\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### **Analysing the growth of languages from 2018 to 2020 before predicting part**\n", + "\n", + "The most language the developers use between 2018 to 2020 is JavaScript(14%). The second and third highest working language is HTML/CSS(13%) and SQL(11%). JavaScript and SQL had the same steady increasing trend over the three years. The percentage of HTML/CSS was slightly increased from 2018 to 2019. However, it dropped to the same level as 2018 in 2020. Python was responsible for about 9% in 2018. After then, it decreased to 8% in 2019 and it rose 1% in 2020.\n", + "\n", + "There are some languages that were in only 2019; Elixir, Clojure, F#, Web assembly, and Erlang. Perl, Haskell, Julia was in the 2019 and 2020 surveys with small percentages." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#Preparing data for ML\n", + "df_language_2018 = language_2018[['Language', '2018']]\n", + "df_language_2018 = df_language_2018.rename(columns={'2018': 'Number'})\n", + "df_language_2018['Year'] = '2018'\n", + "df_language_2018['Year_Total'] = df_language_2018['Number'].sum()\n", + "df_language_2018['Fraction'] = df_language_2018['Number']/df_language_2018['Number'].sum()\n", + "df_language_2018 = df_language_2018[['Year', 'Language', 'Number', 'Year_Total', 'Fraction']]\n", + "df_language_2018.sort_values(by=['Fraction'], ascending=False, inplace=True)\n", + "#df_language_2018\n", + "df_language_2019 = language_2019[['Language', '2019']]\n", + "df_language_2019 = df_language_2019.rename(columns={'2019': 'Number'})\n", + "df_language_2019['Year'] = '2019'\n", + "df_language_2019['Year_Total'] = df_language_2019['Number'].sum()\n", + "df_language_2019['Fraction'] = df_language_2019['Number']/df_language_2019['Number'].sum()\n", + "df_language_2019 = df_language_2019[['Year', 'Language', 'Number', 'Year_Total', 'Fraction']]\n", + "df_language_2019.sort_values(by=['Fraction'], ascending=False, inplace=True)\n", + "#df_language_2019\n", + "df_language_2020 = language_2020[['Language', '2020']]\n", + "df_language_2020 = df_language_2020.rename(columns={'2020': 'Number'})\n", + "df_language_2020['Year'] = '2020'\n", + "df_language_2020['Year_Total'] = df_language_2020['Number'].sum()\n", + "df_language_2020['Fraction'] = df_language_2020['Number']/df_language_2020['Number'].sum()\n", + "df_language_2020 = df_language_2020[['Year', 'Language', 'Number', 'Year_Total', 'Fraction']]\n", + "df_language_2020.sort_values(by=['Fraction'], ascending=False, inplace=True)\n", + "#df_language_2020\n", + "\n", + "#Append Dataset 2018 x 2019 x 2020\n", + "df_language = pd.concat([df_language_2018[:10], df_language_2019[:10], df_language_2020[:10]] , axis=0)\n", + "#resetting the index values\n", + "df_language = df_language.reset_index(drop=True)\n", + "#df_language" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cols = ['Language', 'Fraction']\n", + "df_language_2018_ = df_language_2018[cols][:10]\n", + "#df_language_2018_\n", + "cols = ['Language', 'Fraction']\n", + "df_language_2019_ = df_language_2019[cols][:10]\n", + "#df_language_2019_\n", + "cols = ['Language', 'Fraction']\n", + "df_language_2020_ = df_language_2020[cols][:10]\n", + "#df_language_2020_" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_language_2018_.set_index('Language', inplace = True)\n", + "df_language_2018_t = df_language_2018_.T\n", + "df_language_2018_t['Year'] = '2018'\n", + "df_language_2018_t.Year = pd.to_datetime(df_language_2018_t.Year)\n", + "df_language_2018_t = df_language_2018_t[['Year','JavaScript', 'HTML/CSS', 'SQL', 'Python', 'Java', 'Bash/Shell/PowerShell', 'C#', 'PHP', 'TypeScript', 'C++']]\n", + "#df_language_2018_t\n", + "df_language_2019_.set_index('Language', inplace = True)\n", + "df_language_2019_t = df_language_2019_.T\n", + "df_language_2019_t['Year'] = '2019'\n", + "df_language_2019_t.Year = pd.to_datetime(df_language_2019_t.Year)\n", + "df_language_2019_t = df_language_2019_t[['Year','JavaScript', 'HTML/CSS', 'SQL', 'Python', 'Java', 'Bash/Shell/PowerShell', 'C#', 'PHP', 'TypeScript', 'C++']]\n", + "#df_language_2019_t\n", + "df_language_2020_.set_index('Language', inplace = True)\n", + "df_language_2020_t = df_language_2020_.T\n", + "df_language_2020_t['Year'] = '2020'\n", + "df_language_2020_t.Year = pd.to_datetime(df_language_2020_t.Year)\n", + "df_language_2020_t = df_language_2020_t[['Year','JavaScript', 'HTML/CSS', 'SQL', 'Python', 'Java', 'Bash/Shell/PowerShell', 'C#', 'PHP', 'TypeScript', 'C++']]\n", + "#df_language_2020_t\n", + "\n", + "#Append Dataset 2018 x 2019 x 2020\n", + "all_language = pd.concat([df_language_2018_t, df_language_2019_t, df_language_2020_t] , axis=0)\n", + "#resetting the index values\n", + "all_language = all_language.reset_index(drop=True)\n", + "all_language.set_index('Year', inplace = True)\n", + "all_language" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "all_language.columns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ax = all_language.plot(grid=True, lw=0.5, figsize=(14,6), marker='o')\n", + "\n", + "#Show the legend outside of the plot.\n", + "legend = ax.get_legend()\n", + "legend.set_bbox_to_anchor((1, 1))\n", + "plt.title('Fraction of total queries in the year for top programming languages', fontsize = 14)\n", + "plt.xlabel('Languages', fontsize = 12)\n", + "plt.ylabel('Fraction of total queries in the year (%)', fontsize = 12)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are trying to answer the question \"Predicting the growth of languages for upcoming years based on the survey answers (2018, 2019, 2020).\"\n", + "\n", + "Since we have only 3 years of datasets, there is not enough data to use the time series forecasting method to predict the future popularity of programming languages. With the very small number of observations, there is insufficient data to split the observations into training and testing. We need more observations to build the predictive model, this question we leave for further exploration in future projects." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Can we predict the salary of Data Scientists?" + ] + }, + { + "cell_type": "code", + "execution_count": 356, + "metadata": {}, + "outputs": [], + "source": [ + "#Rename columns\n", + "cleaned_2018.rename(columns={'JobSatisfaction': 'CurrentJobSatis', 'JobSearchStatus': 'JobStatus', 'YearsCodingProf':'YearsCodePro'}, inplace =True)" + ] + }, + { + "cell_type": "code", + "execution_count": 357, + "metadata": {}, + "outputs": [], + "source": [ + "sal_df = ['Age', 'Country', 'EdLevel', 'DevType', 'YearsCodePro', 'SalaryUSD']\n", + "df1 = cleaned_2018\n", + "df2 = survey_df_2019\n", + "df3 = df2020" + ] + }, + { + "cell_type": "code", + "execution_count": 358, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(166, 6)" + ] + }, + "execution_count": 358, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Append Dataset 2018 x 2019 x 2020\n", + "df_sal = pd.concat([df1[sal_df], df2[sal_df], df3[sal_df]], axis=0)\n", + "#resetting the index values\n", + "df_sal = df_sal.reset_index(drop=True)\n", + "df_sal.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 359, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7" + ] + }, + "execution_count": 359, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#creating data scientist scientist df\n", + "all_ds = df_sal[df_sal['DevType'].str.contains('Data scientist') == True ]\n", + "all_ds = all_ds.reset_index(drop=True)\n", + "len(all_ds)" + ] + }, + { + "cell_type": "code", + "execution_count": 360, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeCountryEdLevelDevTypeYearsCodeProSalaryUSD
028.0CanadaBachelorsData scientist3.0366420.0
125.0ArgentinaBachelorsData scientist3.08400.0
219.0NetherlandsAssociateData scientist1.087994.0
325.0United StatesBachelorsData scientist6.066750.0
434United KingdomNo DegreeData scientist3.077556.0
553United KingdomDoctorateData scientist28.074970.0
625United StatesBachelorsData scientist8.5979000.0
\n", + "
" + ], + "text/plain": [ + " Age Country EdLevel DevType YearsCodePro SalaryUSD\n", + "0 28.0 Canada Bachelors Data scientist 3.0 366420.0\n", + "1 25.0 Argentina Bachelors Data scientist 3.0 8400.0\n", + "2 19.0 Netherlands Associate Data scientist 1.0 87994.0\n", + "3 25.0 United States Bachelors Data scientist 6.0 66750.0\n", + "4 34 United Kingdom No Degree Data scientist 3.0 77556.0\n", + "5 53 United Kingdom Doctorate Data scientist 28.0 74970.0\n", + "6 25 United States Bachelors Data scientist 8.59 79000.0" + ] + }, + "execution_count": 360, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_ds['DevType'] = 'Data scientist'\n", + "all_ds" + ] + }, + { + "cell_type": "code", + "execution_count": 361, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "77556.0" + ] + }, + "execution_count": 361, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Divide SalaryUSD into 2 groups; SalaryUSD >= median and SalaryUSD < median \n", + "all_ds['greater than median'] = all_ds['SalaryUSD'] >= all_ds['SalaryUSD'].median()\n", + "all_ds['SalaryUSD'].median() #56616.0 USD" + ] + }, + { + "cell_type": "code", + "execution_count": 362, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{False: 0, True: 1}\n" + ] + } + ], + "source": [ + "\n", + "#Encoding the target\n", + "labelencoder = preprocessing.LabelEncoder()\n", + "all_ds['gt_median'] = labelencoder.fit_transform(all_ds['greater than median'])\n", + "\n", + "le_name_mapping = dict(zip(labelencoder.classes_, labelencoder.transform(labelencoder.classes_)))\n", + "print(le_name_mapping)\n", + "#{False: 0 (SalaryUSD < median), True: 1 (SalaryUSD >= median}" + ] + }, + { + "cell_type": "code", + "execution_count": 363, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 1\n", + "1 0\n", + "2 1\n", + "3 0\n", + "4 1\n", + "5 0\n", + "6 1\n", + "Name: gt_median, dtype: int64" + ] + }, + "execution_count": 363, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = all_ds.drop(['SalaryUSD', 'greater than median', 'gt_median', 'DevType'], axis = 1)\n", + "y = all_ds['gt_median']\n", + "X.shape\n", + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 364, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Age_25.0Age_28.0Age_34Age_53Country_CanadaCountry_NetherlandsCountry_United KingdomCountry_United StatesEdLevel_BachelorsEdLevel_DoctorateEdLevel_No DegreeYearsCodePro_3.0YearsCodePro_6.0YearsCodePro_8.59YearsCodePro_28.0
0FalseTrueFalseFalseTrueFalseFalseFalseTrueFalseFalseTrueFalseFalseFalse
1TrueFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalse
2FalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalse
3TrueFalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseTrueFalseFalse
4FalseFalseTrueFalseFalseFalseTrueFalseFalseFalseTrueTrueFalseFalseFalse
5FalseFalseFalseTrueFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseTrue
6TrueFalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalseTrueFalse
\n", + "
" + ], + "text/plain": [ + " Age_25.0 Age_28.0 Age_34 Age_53 Country_Canada Country_Netherlands \\\n", + "0 False True False False True False \n", + "1 True False False False False False \n", + "2 False False False False False True \n", + "3 True False False False False False \n", + "4 False False True False False False \n", + "5 False False False True False False \n", + "6 True False False False False False \n", + "\n", + " Country_United Kingdom Country_United States EdLevel_Bachelors \\\n", + "0 False False True \n", + "1 False False True \n", + "2 False False False \n", + "3 False True True \n", + "4 True False False \n", + "5 True False False \n", + "6 False True True \n", + "\n", + " EdLevel_Doctorate EdLevel_No Degree YearsCodePro_3.0 YearsCodePro_6.0 \\\n", + "0 False False True False \n", + "1 False False True False \n", + "2 False False False False \n", + "3 False False False True \n", + "4 False True True False \n", + "5 True False False False \n", + "6 False False False False \n", + "\n", + " YearsCodePro_8.59 YearsCodePro_28.0 \n", + "0 False False \n", + "1 False False \n", + "2 False False \n", + "3 False False \n", + "4 False False \n", + "5 False True \n", + "6 True False " + ] + }, + "execution_count": 364, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cats_lst = X.select_dtypes(include = ['object']).columns.tolist()\n", + "for col in cats_lst:\n", + " X = pd.concat([X.drop(col, axis=1), pd.get_dummies(X[col], prefix=col, prefix_sep='_', drop_first=True)], axis=1)\n", + "X.shape\n", + "X" + ] + }, + { + "cell_type": "code", + "execution_count": 365, + "metadata": {}, + "outputs": [], + "source": [ + "#Splitting data\n", + "X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.30, random_state=142)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model Training" + ] + }, + { + "cell_type": "code", + "execution_count": 366, + "metadata": {}, + "outputs": [], + "source": [ + "all_metrics = {}\n", + "\n", + "def metrics_data(title, labels, predictions):\n", + " \"\"\"\n", + " INPUT:\n", + " title - Display title for classification algorithm\n", + " labels - Actual values for target variable\n", + " predictions - Predicted values for target variable\n", + " \n", + " OUTPUT:\n", + " metrics - Dictionary of classification metrics for given title\n", + " \"\"\"\n", + " metrics = {\n", + " title: {\n", + " \"model\": title,\n", + " \"accuracy\": accuracy_score(labels, predictions),\n", + " \"precision\": precision_score(labels, predictions),\n", + " \"recall\": recall_score(labels, predictions),\n", + " \"f1-score\": f1_score(labels, predictions),\n", + " \"r2\": r2_score(labels, predictions)\n", + " }\n", + " }\n", + " print(metrics)\n", + " return metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 367, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time: 0.008356571197509766\n", + "{'Decision Trees': {'model': 'Decision Trees', 'accuracy': 0.3333333333333333, 'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'r2': -1.9999999999999996}}\n", + "Accuracy on train set: 0.5\n" + ] + } + ], + "source": [ + "#DecisionTreeClassifier\n", + "start = time.time()\n", + "modelDC = DecisionTreeClassifier(max_depth = 12, min_samples_leaf = 10)\n", + "modelDC.fit(X_train, y_train)\n", + "end = time.time()\n", + "TimeDC = end - start\n", + "print('Time: ', TimeDC)\n", + "\n", + "#Evaluating model on test set\n", + "y_pred = modelDC.predict(X_test)\n", + "all_metrics.update(metrics_data(\"Decision Trees\", y_test, y_pred))\n", + "\n", + "#Evaluating model on train set\n", + "y_pred = modelDC.predict(X_train)\n", + "accuracyDC2 = accuracy_score(y_train, y_pred)\n", + "print('Accuracy on train set: {}'.format(accuracyDC2))" + ] + }, + { + "cell_type": "code", + "execution_count": 368, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'Multinomial Naive Bayes': {'model': 'Multinomial Naive Bayes', 'accuracy': 0.3333333333333333, 'precision': 0.5, 'recall': 0.5, 'f1-score': 0.5, 'r2': -1.9999999999999996}}\n", + "Accuracy on train set: 1.0\n" + ] + } + ], + "source": [ + "#MultinomialNB\n", + "start = time.time()\n", + "modelNB = MultinomialNB(alpha=0.005)\n", + "modelNB.fit(X_train, y_train)\n", + "end = time.time()\n", + "TimeNB = end - start\n", + "\n", + "#Evaluating model on test set\n", + "y_pred = modelNB.predict(X_test)\n", + "all_metrics.update(metrics_data(\"Multinomial Naive Bayes\", y_test, y_pred))\n", + "\n", + "#Evaluating model on train set\n", + "y_pred = modelNB.predict(X_train)\n", + "accuracyNB2 = accuracy_score(y_train, y_pred)\n", + "print('Accuracy on train set: {}'.format(accuracyNB2))" + ] + }, + { + "cell_type": "code", + "execution_count": 369, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time: 0.0\n", + "{'Gaussian Naive Bayes': {'model': 'Gaussian Naive Bayes', 'accuracy': 0.3333333333333333, 'precision': 0.5, 'recall': 0.5, 'f1-score': 0.5, 'r2': -1.9999999999999996}}\n", + "Accuracy on train set: 1.0\n" + ] + } + ], + "source": [ + "#GaussianNB\n", + "start = time.time()\n", + "modelGNB = GaussianNB()\n", + "modelGNB.fit(X_train, y_train)\n", + "end = time.time()\n", + "TimeGNB = end - start\n", + "print('Time: ', TimeGNB)\n", + "\n", + "#Evaluating model on test set\n", + "y_pred = modelGNB.predict(X_test)\n", + "all_metrics.update(metrics_data(\"Gaussian Naive Bayes\", y_test, y_pred))\n", + "\n", + "#Evaluating model on train set\n", + "y_pred = modelGNB.predict(X_train)\n", + "accuracyGNB2 = accuracy_score(y_train, y_pred)\n", + "print('Accuracy on train set: {}'.format(accuracyGNB2))" + ] + }, + { + "cell_type": "code", + "execution_count": 370, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time: 0.022150516510009766\n", + "{'Logistic Regression': {'model': 'Logistic Regression', 'accuracy': 0.3333333333333333, 'precision': 0.5, 'recall': 0.5, 'f1-score': 0.5, 'r2': -1.9999999999999996}}\n", + "Accuracy on train set: 1.0\n" + ] + } + ], + "source": [ + "#Logistic Regression\n", + "start = time.time()\n", + "modelLR = LogisticRegression()\n", + "modelLR.fit(X_train, y_train)\n", + "end = time.time()\n", + "TimeLR = end - start\n", + "print('Time: ', TimeLR)\n", + "\n", + "#Evaluating model on test set\n", + "y_pred = modelLR.predict(X_test)\n", + "all_metrics.update(metrics_data(\"Logistic Regression\", y_test, y_pred))\n", + "\n", + "#Evaluating model on train set\n", + "y_pred = modelLR.predict(X_train)\n", + "accuracyLR2 = accuracy_score(y_train, y_pred)\n", + "print('Accuracy on train set: {}'.format(accuracyLR2))" + ] + }, + { + "cell_type": "code", + "execution_count": 371, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time: 0.1588306427001953\n", + "{'Random Forest': {'model': 'Random Forest', 'accuracy': 0.6666666666666666, 'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'r2': -0.4999999999999998}}\n", + "Accuracy on train set: 1.0\n" + ] + } + ], + "source": [ + "#RandomForestClassifier\n", + "start = time.time()\n", + "rfc = RandomForestClassifier()\n", + "rfc.fit(X_train, y_train)\n", + "end = time.time()\n", + "TimeRFC = end - start\n", + "print('Time: ', TimeRFC)\n", + "\n", + "#Evaluating model on test set\n", + "y_pred = rfc.predict(X_test)\n", + "all_metrics.update(metrics_data(\"Random Forest\", y_test, y_pred))\n", + "\n", + "#Evaluating model on train set\n", + "y_pred = rfc.predict(X_train)\n", + "accuracyRFC2 = accuracy_score(y_train, y_pred)\n", + "print('Accuracy on train set: {}'.format(accuracyRFC2))" + ] + }, + { + "cell_type": "code", + "execution_count": 372, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time: 0.017019987106323242\n", + "{'LinearSVC': {'model': 'LinearSVC', 'accuracy': 0.6666666666666666, 'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'r2': -0.4999999999999998}}\n", + "Accuracy on train set: 1.0\n" + ] + } + ], + "source": [ + "#LinearSVC\n", + "start = time.time()\n", + "svc = LinearSVC()\n", + "svc.fit(X_train, y_train) \n", + "end = time.time()\n", + "TimeSVC = end - start\n", + "print('Time: ', TimeSVC)\n", + "\n", + "#Evaluating model on test set\n", + "y_pred = svc.predict(X_test)\n", + "all_metrics.update(metrics_data(\"LinearSVC\", y_test, y_pred))\n", + "\n", + "#Evaluating model on train set\n", + "y_pred = svc.predict(X_train)\n", + "accuracySVC2 = accuracy_score(y_train, y_pred)\n", + "print('Accuracy on train set: {}'.format(accuracySVC2))" + ] + }, + { + "cell_type": "code", + "execution_count": 373, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time: 0.07270050048828125\n", + "{'Gradient Boosting Classifier': {'model': 'Gradient Boosting Classifier', 'accuracy': 0.6666666666666666, 'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'r2': -0.4999999999999998}}\n", + "Accuracy on train set: 1.0\n" + ] + } + ], + "source": [ + "#Gradient Boosting Classifier\n", + "start = time.time()\n", + "\n", + "grb= GradientBoostingClassifier()\n", + "grb.fit(X_train,y_train)\n", + "end = time.time()\n", + "Timegrb = end - start\n", + "print('Time: ', Timegrb)\n", + "\n", + "#Evaluating model on test set\n", + "y_pred = grb.predict(X_test)\n", + "all_metrics.update(metrics_data(\"Gradient Boosting Classifier\", y_test, y_pred))\n", + "\n", + "\n", + "#Evaluating model on train set\n", + "y_pred = grb.predict(X_train)\n", + "accuracygrb2 = accuracy_score(y_train, y_pred)\n", + "print('Accuracy on train set: {}'.format(accuracygrb2))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 374, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Time: 0.06940317153930664\n", + "{'XGboost Classifier': {'model': 'XGboost Classifier', 'accuracy': 0.3333333333333333, 'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'r2': -1.9999999999999996}}\n", + "Accuracy on train set: 0.5\n" + ] + } + ], + "source": [ + "#Xgboost Classifier\n", + "start = time.time()\n", + "\n", + "XGB= XGBClassifier()\n", + "XGB.fit(X_train,y_train)\n", + "end = time.time()\n", + "TimeXGB = end - start\n", + "print('Time: ', TimeXGB)\n", + "\n", + "#Evaluating model on test set\n", + "y_pred = XGB.predict(X_test)\n", + "all_metrics.update(metrics_data(\"XGboost Classifier\", y_test, y_pred))\n", + "\n", + "\n", + "#Evaluating model on train set\n", + "y_pred = XGB.predict(X_train)\n", + "accuracyXGB2 = accuracy_score(y_train, y_pred)\n", + "print('Accuracy on train set: {}'.format(accuracyXGB2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model performance comparison" + ] + }, + { + "cell_type": "code", + "execution_count": 375, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
modelaccuracyprecisionrecallf1-scorer2
0Decision Trees0.3333330.00.00.0-2.0
1Multinomial Naive Bayes0.3333330.50.50.5-2.0
2Gaussian Naive Bayes0.3333330.50.50.5-2.0
3Logistic Regression0.3333330.50.50.5-2.0
4Random Forest0.6666670.6666671.00.8-0.5
5LinearSVC0.6666670.6666671.00.8-0.5
6Gradient Boosting Classifier0.6666670.6666671.00.8-0.5
7XGboost Classifier0.3333330.00.00.0-2.0
\n", + "
" + ], + "text/plain": [ + " model accuracy precision recall f1-score r2\n", + "0 Decision Trees 0.333333 0.0 0.0 0.0 -2.0\n", + "1 Multinomial Naive Bayes 0.333333 0.5 0.5 0.5 -2.0\n", + "2 Gaussian Naive Bayes 0.333333 0.5 0.5 0.5 -2.0\n", + "3 Logistic Regression 0.333333 0.5 0.5 0.5 -2.0\n", + "4 Random Forest 0.666667 0.666667 1.0 0.8 -0.5\n", + "5 LinearSVC 0.666667 0.666667 1.0 0.8 -0.5\n", + "6 Gradient Boosting Classifier 0.666667 0.666667 1.0 0.8 -0.5\n", + "7 XGboost Classifier 0.333333 0.0 0.0 0.0 -2.0" + ] + }, + "execution_count": 375, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_metrics = pd.DataFrame(all_metrics).T\n", + "all_metrics = all_metrics.reset_index(drop=True)\n", + "all_metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 376, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelAccuracy_trainTime
0Decision Trees0.50.008357
1Multinomial Naive Bayes1.00.007516
2Gaussian Naive Bayes1.00.000000
3Logistic Regression1.00.022151
4Random Forest1.00.158831
5LinearSVC1.00.017020
6Gradient Boosting Classifier1.00.072701
7XGboost Classifier0.50.069403
\n", + "
" + ], + "text/plain": [ + " Model Accuracy_train Time\n", + "0 Decision Trees 0.5 0.008357\n", + "1 Multinomial Naive Bayes 1.0 0.007516\n", + "2 Gaussian Naive Bayes 1.0 0.000000\n", + "3 Logistic Regression 1.0 0.022151\n", + "4 Random Forest 1.0 0.158831\n", + "5 LinearSVC 1.0 0.017020\n", + "6 Gradient Boosting Classifier 1.0 0.072701\n", + "7 XGboost Classifier 0.5 0.069403" + ] + }, + "execution_count": 376, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Creating new df to store model performances\n", + "Model = ['Decision Trees', 'Multinomial Naive Bayes', 'Gaussian Naive Bayes', 'Logistic Regression', 'Random Forest', 'LinearSVC','Gradient Boosting Classifier','XGboost Classifier',]\n", + "Accuracy_train = [accuracyDC2, accuracyNB2, accuracyGNB2, accuracyLR2, accuracyRFC2, accuracySVC2,accuracygrb2,accuracyXGB2]\n", + "Time = [TimeDC, TimeNB, TimeGNB, TimeLR, TimeRFC, TimeSVC,Timegrb,TimeXGB]\n", + "\n", + "#Create df from lists\n", + "cols = ['Model', 'Accuracy_train', 'Time']\n", + "data = list(zip(Model, Accuracy_train, Time))\n", + "\n", + "performance = pd.DataFrame(data, columns=cols)\n", + "performance" + ] + }, + { + "cell_type": "code", + "execution_count": 377, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
modelaccuracyprecisionrecallf1-scorer2Accuracy_trainTime
0Decision Trees0.3333330.00.00.0-2.00.50.008357
1Multinomial Naive Bayes0.3333330.50.50.5-2.01.00.007516
2Gaussian Naive Bayes0.3333330.50.50.5-2.01.00.000000
3Logistic Regression0.3333330.50.50.5-2.01.00.022151
4Random Forest0.6666670.6666671.00.8-0.51.00.158831
5LinearSVC0.6666670.6666671.00.8-0.51.00.017020
6Gradient Boosting Classifier0.6666670.6666671.00.8-0.51.00.072701
7XGboost Classifier0.3333330.00.00.0-2.00.50.069403
\n", + "
" + ], + "text/plain": [ + " model accuracy precision recall f1-score r2 \\\n", + "0 Decision Trees 0.333333 0.0 0.0 0.0 -2.0 \n", + "1 Multinomial Naive Bayes 0.333333 0.5 0.5 0.5 -2.0 \n", + "2 Gaussian Naive Bayes 0.333333 0.5 0.5 0.5 -2.0 \n", + "3 Logistic Regression 0.333333 0.5 0.5 0.5 -2.0 \n", + "4 Random Forest 0.666667 0.666667 1.0 0.8 -0.5 \n", + "5 LinearSVC 0.666667 0.666667 1.0 0.8 -0.5 \n", + "6 Gradient Boosting Classifier 0.666667 0.666667 1.0 0.8 -0.5 \n", + "7 XGboost Classifier 0.333333 0.0 0.0 0.0 -2.0 \n", + "\n", + " Accuracy_train Time \n", + "0 0.5 0.008357 \n", + "1 1.0 0.007516 \n", + "2 1.0 0.000000 \n", + "3 1.0 0.022151 \n", + "4 1.0 0.158831 \n", + "5 1.0 0.017020 \n", + "6 1.0 0.072701 \n", + "7 0.5 0.069403 " + ] + }, + "execution_count": 377, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Join result2018 with weather2018 to get the Maximum temperature (Degree C)\n", + "all_performance = pd.merge(left = all_metrics , right = performance ,\n", + " left_on = ['model'], right_on = ['Model'], how = 'left')\n", + "drop_cols = ['Model']\n", + "all_performance.drop(drop_cols, axis=1, inplace=True)\n", + "\n", + "all_performance" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Unfortunately, none of the models has good enough r2 values. The best model is Logistic Regression with $R^2$ just approximately 0.4. We cannot confidently say that Logistic Regression is a good fit to predict the salary of Data Scientists.But at the same time even after applying a boosting algorithm like Gradient Boosting Classifier logistic regression and Random Forest still gets a lead in case of model accuracy.\n", + "Even XGboost was'nt helpful and it did'nt perform well in comparison to Random Forest and others.\n", + "**This questionS we leave for further exploration in future projects.**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hamming Loss (HL) and Jacard Score On Models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- Hamming loss is the fraction of labels that are incorrectly predicted ( evaluation metrics for a classifier model.) \n", + "- The Jaccard Index, also known as the Jaccard similarity coefficient, is a statistic used in understanding the similarities between sample sets. (To measure Similarity)" + ] + }, + { + "cell_type": "code", + "execution_count": 378, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Clf: RandomForestClassifier\n", + "Jacard score: 0.6666666666666666\n", + "Hamming loss: 0.3333333333333333\n", + "---\n" + ] + } + ], + "source": [ + "def avg_jacard(y_true,y_pred):\n", + "\n", + " jacard = np.minimum(y_true,y_pred).sum(axis=0) / np.maximum(y_true,y_pred).sum(axis=0)\n", + " \n", + " return jacard.mean()\n", + "\n", + "def print_score(y_pred, clf):\n", + " print(\"Clf: \", clf.__class__.__name__)\n", + " print(\"Jacard score: {}\".format(avg_jacard(y_test, y_pred)))\n", + " print(\"Hamming loss: {}\".format(hamming_loss(y_pred, y_test)))\n", + " print(\"---\") \n", + "\n", + "rfc = RandomForestClassifier()\n", + "rfc.fit(X_train, y_train)\n", + "\n", + "y_pred = rfc.predict(X_test)\n", + "\n", + "print_score(y_pred, rfc)" + ] + }, + { + "cell_type": "code", + "execution_count": 379, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Clf: MLPClassifier\n", + "Jacard score: 0.6666666666666666\n", + "Hamming loss: 0.3333333333333333\n", + "---\n" + ] + } + ], + "source": [ + "mlpc = MLPClassifier()\n", + "mlpc.fit(X_train, y_train)\n", + "\n", + "y_pred = mlpc.predict(X_test)\n", + "\n", + "print_score(y_pred, mlpc)" + ] + }, + { + "cell_type": "code", + "execution_count": 402, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Clf: SGDClassifier\n", + "Jacard score: 0.46153846153846156\n", + "Hamming loss: 0.5\n", + "---\n", + "Clf: LogisticRegression\n", + "Jacard score: 0.6923076923076923\n", + "Hamming loss: 0.2857142857142857\n", + "---\n", + "Clf: MultinomialNB\n", + "Jacard score: 0.6923076923076923\n", + "Hamming loss: 0.2857142857142857\n", + "---\n", + "Clf: LinearSVC\n", + "Jacard score: 0.5384615384615384\n", + "Hamming loss: 0.42857142857142855\n", + "---\n", + "Clf: GradientBoostingClassifier\n", + "Jacard score: 0.5384615384615384\n", + "Hamming loss: 0.42857142857142855\n", + "---\n", + "Clf: XGBClassifier\n", + "Jacard score: 0.38461538461538464\n", + "Hamming loss: 0.5714285714285714\n", + "---\n" + ] + } + ], + "source": [ + "sgd = SGDClassifier()\n", + "lr = LogisticRegression()\n", + "mn = MultinomialNB()\n", + "svc = LinearSVC()\n", + "grb= GradientBoostingClassifier()\n", + "XGB=XGBClassifier()\n", + "\n", + "\n", + "\n", + "for classifier in [sgd, lr, mn, svc,grb,XGB,]:\n", + " clf = OneVsRestClassifier(classifier)\n", + " clf.fit(X_train, y_train)\n", + " y_pred = clf.predict(X_test)\n", + " print_score(y_pred, classifier)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Findings: It has been found that better Hamming loss has been found in Logistic Regression and MultinomialNB **which is 0.28**
\n", + "Jaccard similarity scores give us the distribution of label sets when using the models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Predicting what causing Job satisfaction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An examination of work satisfaction variables based on Stack Over Flow survey data from 2020. Job satisfaction can be defined by factors such as compensation, benefits, work environment, team members, work-life balance, education level, place, and so on. By analyzing the Stack Over Flow survey data from 2020, I will try to find some features that are negatively and positively affecting job satisfaction in various countries." + ] + }, + { + "cell_type": "code", + "execution_count": 403, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "CurrentJobSatis\n", + "Very satisfied 19\n", + "Slightly satisfied 9\n", + "Slightly dissatisfied 8\n", + "Very dissatisfied 6\n", + "Neither satisfied nor dissatisfied 3\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 403, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['CurrentJobSatis'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 404, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['Very satisfied', 'Slightly satisfied', 'Slightly dissatisfied', 'Very dissatisfied', 'Neither satisfied nor dissatisfied']\n", + "[19, 9, 8, 6, 3]\n" + ] + } + ], + "source": [ + "participation_rate = df2020['CurrentJobSatis'].value_counts().keys().tolist()\n", + "print(participation_rate)\n", + "count = df2020['CurrentJobSatis'].value_counts().tolist()\n", + "print(count)" + ] + }, + { + "cell_type": "code", + "execution_count": 405, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTUAAAMyCAYAAAC8XCUXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXhUZ97G8XtmMnEjhOBOgzuFlipQpS5AZavb3Xp3+9a2K5Xt1rdbgbobtBSoYaVA0eLumiCBuNtk5Lx/pJlmyAQSCDmZ5Pu5rl5NznnOOb8zmZkwdx6xGIZhCAAAAAAAAAAChNXsAgAAAAAAAACgNgg1AQAAAAAAAAQUQk0AAAAAAAAAAYVQEwAAAAAAAEBAIdQEAAAAAAAAEFAINQEAAAAAAAAEFEJNAAAAAAAAAAGFUBMAAAAAAABAQCHUBIA65Ha7zS4BOCaepzwGjQ0/z7rh8XjMLqFO8bwAAKBxCzK7AAAN28iRI5WSklLtfrvdrvDwcLVp00ZDhgzRuHHjdMopp9RjhQ3HjBkzNG/ePP3vf//z2T5+/HhNmDBBkrRjxw4zSjPFwoUL9cEHH2jHjh0qKSlRfHy8/vKXv+jKK6887nNWfiznzZundu3a1Umt9fUzKi0t1XfffacFCxZox44dysrKUlBQkOLi4tSrVy+dddZZuuKKKxQcHHxSru/xeDRx4kQlJyfrn//8p8++v/3tb/r222/Vtm1bzZ8/v06uZxiGPvvsM02dOlUHDhyQJCUkJOjNN99Ut27d6uQatVVWVqZ3331XISEh+vOf/+yz76abbtLKlSs1dOhQff7556bUdzzS09P12muvacmSJcrOzlZUVJQGDhyot956y+zSTrqMjAw999xzuv766zV06FCffd27d5ck3Xfffbr//vvNKM+vgwcPatSoUdXut9lsCgsLU4sWLdS3b1+NHj1a5557riwWy0mrad++fXrqqaf0zDPP1Nn7qpmO9joHAACNB6EmgBPidDqVl5envLw8bdu2TV9++aUeffRR3XbbbWaXVq9effVVvfPOO1U+VDdVv/76q+68804ZhuHddujQITVr1szEqsy1YsUKPfbYYzp8+LDPdofDoaKiIh04cEA//fST3n77bb3wwgsn5bn0yCOPaPr06brqqqvq/Nz+vPHGG1WCtX379ql169b1cn1/br75Zq1bt0733XefaTXUJYfDoZtuuknJycnebdnZ2bLb7eYVVU+ys7M1evRo5efn67rrrjO7nDrjdrtVWFiowsJCJSUl6YcfftCpp56ql156SW3atKnz623fvl1jx46Vw+Go83ObpbG9zgEAgH+EmgBqZPDgwXr//ferbPd4PCooKNDSpUv1yiuvKCcnRy+88IJOOeUUnXnmmSZUao60tLRq98XExKhDhw71WI35pk2bJsMwFBkZqfHjx6tnz54qKytrsqHm9u3bddddd6m4uFgdOnTQn/70Jw0ePFjx8fFyu906dOiQ5s+fr48//lgpKSm688479fnnn6tPnz51Wkd6enq1+5o3b64OHTqoVatWdXa9qVOnSpJ69eql559/Xq1bt1ZxcbEiIiLq7Bq1dbTHICEhQR06dFBCQkI9VnRi1qxZ4w0077jjDt18882y2+0ntVdfQ1FcXKz8/Hyzyzghd955p+68806fbS6XS3l5edq9e7emTZumn3/+WatWrdJtt92mSZMmKS4urk5ryMvLa1SBpnT01zkAAGg8CDUB1IjNZqs2iIiKitKYMWPUtWtX3XDDDTIMQ+PHj29SoebR3Hzzzbr55pvNLqNeZWZmSpLOOOMMDR8+3ORqzPf666+ruLhYnTp10jfffKPo6Gif/XFxcerTp4/OOOMM3XLLLSouLtbLL7+sTz/9tN5qfOSRR/TII4/U6TkrngfXXHONevToIak85G+oXnnlFbNLqLWMjAzv1/fcc4+pgTFqz263+/2ZVfwxbOTIkfrss8/07LPPKjk5WQ899JA+/vhjEyoFAABoeFgoCECdGTRokIYNGyZJWr9+vbKyskyuCGapWJwhPDzc5ErM53a7tXjxYknSddddVyXQrGzw4MEaM2aMJGn58uXKzs6ulxpPFp4HJ1/lhVAINBunm2++2TtlxK+//qply5aZXBEAAEDDQE9NAHWqZ8+eWr58uSQpJSVFzZs3l/T7Ahx33XWXLrjgAv373//W1q1bFR4erj59+ujtt9/2Lo7icDg0depUzZo1Szt37lRRUZGaNWumgQMH6tprr9XZZ5/t99oVi0K8//776tmzp8aPH68FCxYoNzdXrVu31rBhw3THHXccdSh4YWGhJk6cqLlz52rv3r1yOByKj4/XkCFDdOONN2rAgAE+7SsvMCNJK1eu9NZRsZDNsRahcbvdmjFjhn744Qdt2bJFBQUFiomJUe/evXX55Zfrkksu8TuUtGIRp+eff16XXnqpPvnkE82cOVP79u2TxWLRKaecoiuvvFJjxoxRUNDxvd1nZmbq888/18KFC7Vv3z653W61atVKp512mm6++eYqi70cubDUt99+q2+//VZS/S3WsX37dn3xxRdasWKF0tLSZLfb1aFDB51zzjm65ZZbajQEfs6cOfrkk0+0bds22Ww2de/eXVdffbWuuuoqWa21+3tgTk6OnE6npPKFgo5l1KhRWrdunZo1a6bCwkK/Q03XrVunadOmac2aNUpPT1dpaakiIyPVtWtXjRo1Stddd51PkFixCFCFyj+Xiufk0RYKKikp0aRJkzRnzhzt2rVLDodDsbGx6tWrl0aPHq3LLrtMNptNkv9FUB5//HE9/vjjkqTPPvvM+8eP47mXIy1dulSTJ0/W5s2blZaWpoiICPXs2VPXXnutLr30Um+7ivegChMmTNCECRN87vdYCwXV9v3hyMdj3rx5stvtev/997VgwQJvvf3799eNN95Y7XubP0e+90i/vwdW3NOKFSu8vcQ3bdqkCRMmaMqUKSosLFTr1q1133336bLLLvMefzyvnYo6Kh6zuXPn6rPPPtP27dvldDrVuXNnjRs3TuPGjZMk5ebm6t1339XcuXOVmpqqqKgonX766XrggQfUsWPHGt9/xb1WqLjPq666Si+88EKV9gUFBfrggw/0888/6+DBgwoLC1NiYqKuu+46XXLJJdVex+l0asqUKZo5c6b391Hz5s01ZMgQ3XTTTX5/5ifDX/7yF/34449yuVz64osvdPrpp1dpU1hYqClTpmjRokXauXOncnNzZbfbFR8fr0GDBunGG29Uv379vO39vVYrvj/y/bqsrEzff/+95s2bp61btyo3N1dWq1XNmjVTv379NGbMmGpHZxw+fFifffaZFi9e7F0wrHnz5ho0aJDGjh171PmDc3Jy9Omnn+qXX37RgQMH5Ha71bp1a5111lm6/fbbq8zPW5PXOQAAaDwINQHUqcrhW0XIUdmBAwd0yy23qKCgQFL5ByVJ3kAzOTlZ9957r3bv3u1zXHp6un766Sf99NNPGj16tF544QWFhIT4rSElJUX/+Mc/fObUSk5OVnJysr7//nu99tprGjFiRJXjNmzYoAceeECpqak+2w8dOqQffvhBP/zwg2655Rb97W9/q3WwVZ2srCzdd999Wrt2rc/2zMxMLVy4UAsXLtTkyZP1xhtvKDY21u858vLydO2111YJTNevX6/169dr3rx5evfdd/3+PI5mwYIFeuSRR6rMWbdv3z7t27dPU6ZM0UMPPaQ//vGPtTrvyTRhwgS9+eab8ng83m0Oh0Nbt27V1q1bNXHiRL3++ut+A4EKL7/8sj744AOfbatXr9bq1av17bff6p133lFkZGSNa4qLi1N4eLiKi4v15Zdf6vLLL1fbtm2rbX/mmWdWGw643W499dRTmjx5cpV9OTk5PnVOmjSpVnVWJzc3VzfddJN27tzpsz0jI8P7HJ06daree+89hYWF1fi8J3ovDodDTz75pE9YW1HvsmXLtGzZMs2ePVuvvvpqnSyaUxfvD5s2bdKTTz6pvLw877aysjItWLBACxYs0IMPPqi77rrrhGv159lnn9VXX33l/T45Odlnleu6eO0899xzVaZM2LJli5544gkdOHBAY8eO1c033+yzWFZWVpamT5+uJUuWaNq0aUd9bRyvpKQkXXbZZT7XdTgcWrlypVauXKnVq1frySefrHLc4cOH9ec//7nKcz81NVXTp0/X9OnT9ac//UkPPfTQSZ/DtHXr1howYIBWr16tFStWyO12+7ynb9q0SXfddZd3yocKTqdT+/fv1/79+/X999/rP//5j6699tpaXfvAgQO64447fBajqlBSUqJDhw5p9uzZfv9wtWnTJt1+++1Vfo+kpKQoJSVFP/74o/74xz/q0UcfrXLu5cuX64EHHvB5vUjlP8+kpCRNnjxZL730ki688MJa3Q8AAGhEDAA4ihEjRhiJiYnGH/7whxq1v/HGG43ExESjV69eRkFBgXf7H/7wByMxMdFITEw0Bg0aZMyaNcvIzMw0fv31V2P16tWGYRhGdna2MXLkSCMxMdHo3bu38b///c/YvXu3kZOTY6xbt864//77ved48MEHq1y7Yt+AAQOMxMRE46mnnjJ2795tZGZmGj/++KNxxhlneM+9Z88en2OTk5ONoUOHGomJicbAgQONDz74wNi3b5+RnZ1tLFu2zKf+l19+2Xucw+EwCgsLjYceeshITEw0rr/+eqOwsNAoLCw0PB6PYRiG8cYbb3iPrczhcBhXX321kZiYaHTv3t146qmnjK1btxo5OTnG1q1bjX/961/e466//nrD6XT6/dn079/f6NGjh/H8888bO3fu9NZ85ZVXeo//9ttva/Tzq7B27VqjT58+RmJiojF8+HDjq6++MlJSUoysrCxj3rx5xuWXX+4998SJE73HFRcXG4WFhcb1119vJCYmGg899JD38XA4HLWqwZ/Kj+WBAwd89n300UfefVdddZUxf/58IzMz0zh06JAxceJE47TTTjMSExONvn37Glu3bq32vImJicZFF11kzJ8/38jKyjJ27Nhh/OMf//Due+CBB2pd95NPPuk9vn///sbjjz9uzJ8/3+c1UhMffPCBz2tg3bp1RkZGhnHw4EFjwYIFxrhx47z7x48f7z2u4nnq7+dS4bHHHjMSExONESNG+Fyz4nk4YMAA44svvvC+LrZs2WI8/PDD3uu9/fbbhmEYhsfj8Z67Yt+kSZO821wu1wndy5F1JSYmGvfff7+xbt06b10PPvigd9+rr75qGIZhlJSUGIWFhca5555rJCYmGq+88opRWFhoFBcXe89Z8To/8v3ueN8fDMMwDhw44POzHzJkiPH5558bBw8eNDIyMozvv//ee+5evXoZ+/fvr9FzoeJnOmnSJO/5Kx7jintavny5z/P6/vvvN5KSkoyDBw/6vG7r4rXTt29fIzEx0bjpppuMVatWGZmZmcbixYuNc845x3tvo0aNMoYMGWJMmjTJSE1NNQ4fPmyMHz/e6NGjh5GYmGj885//rNG9G4ZhFBYWGrt27fLWvWDBgirvM5XvvVevXsYrr7xi7N6920hLSzN+/vln73toYmKisWLFCp/zFxUVGRdddJH3uf/uu+8aSUlJRk5OjrF+/Xqf59i7775b47oNw/c58cYbb9T4uGeffdZ73Pbt273bCwoKvL/fhg8fbnzzzTdGcnKykZ2dbWzbts0YP3680b9/f++9FBUVGYbx+2t1wYIF3vPu2rXL53F0uVze9/sBAwYYH3/8sbFnzx4jOzvb2Llzp/Hxxx97n789evTwef56PB7vY3jBBRcYP//8s5GSkuL93X/ttdd6r7tmzRqfe92xY4fRr18/IzEx0Rg5cqTx3XffGampqUZWVpaxYMEC7+/OXr16ef8NYRg1e50DAIDGg1ATwFHVJtRcsmSJ9wPKn/70J599lT/0T5482e/xL7zwgjfgmzdvnt82zzzzjM+H2Moqf4D1F4Ls27fPGDRokJGYmGjcfffdPvsqAtM+ffoYmzZtqnKsy+Uy7rnnHm99O3fu9NlfEQj5e5yqCzU///xz7/YvvvjC7/1WDhuObFP5A/nnn39e5disrCxvwHvnnXf6PX91Kj4wDhs2rEp4aBjl4eWYMWO8QU1WVpbP/oqf92OPPVar6x5LdaFmRkaG90P79ddfb5SWllY5Njk52Tj11FONxMRE49prr632vOedd56Rk5NT5fjnnnvO22bDhg21qrugoMC46qqrfJ6jiYmJRs+ePY2rrrrKePbZZ4358+cf9YO32+02hg8fbiQmJhq33XabNzSvrLi42DjrrLOMxMREY9y4cVX2H+3nUl2oOWzYMCMxMdF48803qxzj8XiMm266yUhMTDQuvfTSKvsr7nPq1Kl1ei+bNm0yunfvbiQmlv/xwp+7777bG0JWflwrXjf+wqTqQs0TeX+oHGD16tXL2LJlS5XjK4dKH374od/7qc7UqVP9vr8Yhm+oOWLEiCp/GDGMun3tXHvttUZZWZnP/pkzZ3r3d+/e3Vi7dm2V8//lL3/xhle1UfmxXb58eZX9lV9rP/zwQ5X927dv9+5/9tlnffa99tprRmJi+R/B1q9f7/f6Fb+PevfubaSnpx9X3bUJNT/++GPvcUuXLvVu/+KLL7zbKwd8lX3yySfeNosXL/bZV/l5cuT7feXn5vfff+/33D///LO3zVdffeXdvnPnTu/2VatWVTkuLy/P+7x65plnfPbdcMMN3udEdnZ2lWNLS0u9oehll11WZf/RXucAAKDxYKEgADXidrtVVFRU5b/s7Gxt3LhRr776qu6++25J5au5Pvjgg37PY7FY/A4V83g8mjp1qiTpggsu0MiRI/0e/+ijjyo+Pl6SNGnSJL9tOnTo4K3lyO233nqrJGnRokXeIfA5OTmaM2eOJOkPf/iD+vTpU+VYm82mf//73woODpZhGD7DOI9XxbDb3r1768Ybb/Tb5rbbblOvXr0kqdprxsbG6rrrrquyPS4uzjt/2sGDB2tc19atW7V582ZJ5fOqVR6iWiEsLEz//ve/JZUPP/zuu+9qfP6TYfr06SopKZEkPfXUU36nJujYsaPuvfdeSdLGjRu993ikhx9+2O9Q/7/85S/ehVhqe7+RkZGaOHGi7rjjDoWGhnq3u91ubdmyRZ9++qnuuusunXbaafr73//us6J1haKiIo0ZM0aXXnqp7rzzTr/DXcPCwtS3b19JqrNFhiqmiDhyWKtU/nr+17/+pU8//VTvvPNOjc95ovcyY8YMGYah8PBwPfzww36vceedd6pr1646/fTT/dZeU3X5/nD22Wd7X8+VDR8+3DsFR21eq7Vx/vnn+51bty5fO7fddluVof5Dhgzx+XrgwIFVjquYlzItLa1mN1NLp5xyis/coRW6d+/uncezYq5HSTIMQ19//bUk6ZJLLlH//v39nvevf/2rQkND5XQ6q0yDcDJUXggqNzfX+3Xr1q1144036vrrr9fgwYP9Hlt5HtvavDdERETo5ptv1iWXXKLRo0fX6twV7x2S//eP6Ohovfnmm/rqq690zz33eLfv2rVLq1evliTdc889fudyDQkJ8f47Y8eOHdqwYUON7wkAADQezKkJoEbWrFmjQYMGHbNdWFiYXnrpJfXs2dPv/nbt2vld/XnHjh3eebOONj9WcHCwRo0apa+//lqrVq2SYRhVApELL7yw2vkjR4wYoQkTJsjpdGrlypUaNWqU1qxZI8Mwjnnt5s2ba+jQoVqyZInPQgTHIzc31ztP20UXXXTUthdffLG2bt2qnTt3Kicnp8oHvN69e1e7EFDFQk0VoUVNVL63oz0ePXr0UOfOnZWUlKSVK1fq9ttvr/E16lpFzZ07d1ZiYmK17S6++GI999xzkqRVq1ZVCajsdrvf+Val8hW8hw4dql9++UWrVq2qdY2hoaF65JFHdNddd2n+/PlatGiRVqxY4RNglpaWaurUqfrpp580YcIEn/kLo6Ki9Ne//rXa87tcLm3btk1ZWVne7+vCqaeeqgULFujLL79UWlqaLrnkEp1xxhmKiYmRVB4YnXLKKbU654neS8ViZMOGDat2xe/+/ftr5syZtarLn7p8f6guHLPb7YqJiVFGRkatXqu1Ud17cl29diT/91fxHiTJb6AryTtfasWCWnXNX5BaIT4+Xvv27VNxcbF32+7du73PvZ49e6qoqMjvsRaLRd27d9eGDRuqzIt8MlQOCSsbOXJktX8IlMoDxXXr1nm/d7vdNb7mkCFDfILpI+Xl5XkDyCPP3a1bN8XGxio3N1ePPvqoVq5cqfPOO09DhgzxhvinnnpqlXNWfv0kJiZW+/j36NFDNptNbrdba9asqfb1BQAAGi9CTQAnJCQkRNHR0eratauGDh2qMWPGKCEhodr2/lZyluSzgEPXrl2Pes2K/YWFhSooKKgSkh7tg3mnTp28X1cs+FHbay9ZssTnmOORlpbmDUq6dOly1LaV96emplYJNY+2mnfFB8eKa9VExeMSHR2tFi1aHLVt165dlZSUdMKPx4mqqPlYP7+EhARFR0crPz9fhw4dqrK/bdu23sfMn4peXf6OramoqChdccUVuuKKKySVL9iycuVKLVq0SAsWLJDT6VRhYaHuueceTZ8+3e/CKSkpKVqxYoX27t2r/fv3a9++fUpKSpLD4Tjuuqrzt7/9TRs2bFBOTo7mzp2ruXPnymazqW/fvjrrrLN0/vnnV1mJujaO514qevRVfj2fLHX5/lDd+590fK/V2qju2nX12pH8vxdVXjQpKirK73F1tfBadY72HlnxB7DKCyRV7rX5/PPP6/nnnz/mNerjPbBidIEkv38cdDqdWrVqlbZs2eJdHGjv3r0+i+ZJx/cc83g8WrdunTZt2qTk5GQdOHBASUlJOnTokM/5Kn8dEhKiJ598Ug8//LAcDoe+/PJLffnllwoPD9epp56qc845R+eff36VfzNUfvxruqiR2b+DAACAOQg1AdTI0KFD9fnnn5/weapbsbywsND7dXh4+FHPUXl/cXFxlQ93/j7sVag89LfimrW5dsXqzpV79RyPytesrqeZv5r89Vipi5WdK6uo7ViPhVR3j8eJqm3N+fn5fmuu6c+/LsPDTp06qVOnTho7dqxSU1P1r3/9S4sWLVJxcbE+/vhj/fOf//S2zc3N1RNPPKE5c+ZUCSYiIiJ02mmnKSMjQ1u3bq2z+jp37qzp06frnXfe0cyZM5WVlSW3263169dr/fr1Gj9+vIYMGaJnn322ViHjidxLRa/uyq/nk6Uu3x+q61FdH4713nuir52ansMMtX2PrPwzP5nH1FblsK99+/Y++2bNmqVnn322ytQVFotFXbp0Uf/+/Y97iPzy5cv1xBNPaN++fVX2tWvXTmeeeWa1Uy6MHj1aHTt21HvvvacFCxaotLRUxcXFWrhwoRYuXKhnn31WV1xxhf71r395nz8N9fEHAAAND6EmgAbhyKDyaCoHexUhQmVHC5wqn7ui986R166uN1Hla/u7bm1UDjKrG1rnb399hAYV16hJUFlXj8fxqNy7q65qLi0trdGxR3uOHOnrr79WUlKS2rdvX+3cqRVatWqlN998U+eff75SU1O1ceNG7z6n06k//vGP3vkMhw4dqtNPP12JiYnq0qWLOnXqJKvVqocffrhOQ02pfIjuP//5T/3973/Xpk2btHTpUv36669at26dXC6XVq9erVtvvVWzZs2q0XPhRO8lLCxMBQUFx/x51QUz3h/qU6C83utT5ft7//33dfbZZ5tYze8q5o2MjY319hqXpDlz5ujBBx+UYRiKi4vT+eefrz59+qhLly5KTExUdHS09u3bd1yh5saNG3XHHXfI6XQqIiJC559/vvr27atu3bopMTFRcXFxcrlcR51nunfv3nr99ddVWlqqFStWaNmyZVq6dKl27twpt9utadOmqbCwUOPHj5fk+8eKjRs3VhvIAwAAEGoCaBAqD7Hds2ePevToUW3b3bt3Syqfh61iXr/KKvdmOVJSUlKVax557YpFK/zZs2ePJKlNmzbVtqmJVq1ayWKxyDAM7d2796htK+63Lq5bExXXyM/PV0ZGxlGHoNfV41HhoYce0po1azR06FC99NJLVfZXDrEqf/Bt06aNtm3b5q2nOmlpad4ePf6GdR8+fFgej6fa4bAVP6vKgcKxTJ48WZs3b1anTp2OGWpK5cOQ+/fvr9TUVJ/7nT17tjcE/Nvf/qbbbrvN7/E5OTk1rq22rFar+vfvr/79++uee+5Rdna2XnzxRX333Xc6fPiwfv75Z11++eXHPM+J3kvr1q1VUFCg/fv3H/U6//vf/xQfH6/hw4erW7dux6zLHzPeH+pTXb12GpPWrVt7v05JSTlqW3/zOp8MO3bs0K5duySpyry/r7zyigzDULt27TRlyhS/w+2P933htddek9PpVFRUlL799tsqPURrc+7Q0FCdc845OueccySVv14eeeQRbdmyRXPmzFFaWppatmzp8/o5ePDgUadGqK/HHwAANEysfg6gQajoTSJJP/30U7XtysrKNH/+fEmqNlxYtGhRtcfPmzdPUnlPyYoFCgYNGuQNsY527aysLO8CMUcuPFHbD1WxsbHexVVmz5591LYVNXXu3Nnvqtx1rfKiEEd7PLZt2+YdjliTRaRqYv/+/Tp8+HC186NVLN4REhLi88G9ouakpCTvAkz+zJo1y/u1v8VDSkpKql3wIycnx/vzr26FYX8q2iYnJ2vx4sU1OqYirKu8AE/lhT7GjRvn97iSkhKtX79eku8cgcdr48aNuv766zV06FBvoFJZXFyc/v73v3u/r+nq1Sd6LxU/u1WrVlXbM3vXrl1699139eyzz2rHjh01qsufunh/aMjq6rVjhpMVZvXo0cO7eFHF7wx/ioqKdMYZZ2jEiBH673//e1JqqfDOO+94vx47dqz36+zsbCUnJ0uSLrjggmrnD122bJn36yNfT0d7HCteq8OHD/cbaB7t3FOmTNGVV16pkSNH+p3Hs2vXrrr77ru931e8f1T+HXS0x3/t2rXq37+/LrzwQp/nJwAAaDoINQE0CDabTddcc42k8qF0v/zyi992//3vf73B1pgxY/y2WbFihebOnVtl+549e7zzgl5yySXehTni4uJ03nnnSZK++OILbw+yyjwej55++mk5nU5ZLJYqixdULDZRm9V7Kz6YbtmyRV9++aXfNp9++qm2bdsmqfr7rWt9+vRR7969JUkTJkzw21OptLRUTz/9tKTygLEmvfNqouK6GzZsUHZ2ts++srIy74fnvn37+nwQv/LKK71DFJ966im/QdeBAwf09ttvSyoP0atbKffFF1+sssqwYRj6z3/+I4fDIavV6hMqHMv111/vndPv0Ucf1ZYtW47aftKkSd6f+XXXXefdXvEck3x771bweDz697//7e1N5++5WDGnY02fp61bt9bGjRuVl5dX7Zy6FbVKUocOHWp03hO9l4r3ivz8fE2YMMHvNd544w1J5cOrK3qGSbV/DOri/aEhq8vXTn2rPEdpXa6cHhQUpKuvvlqStHjx4moDs1dffVVZWVk6dOjQUUcXnKhPPvlEM2fOlFQeXFb+I1Llx6C63rbbt2/Xe++95/3+yMeq8uuxun1JSUl+/1By+PBhn0C38vGRkZHatm2bUlJSNGPGDL+1Vbx/WK1WtWvXTpLUr18/9ezZU1L58P+K0Lay0tJSvfDCC3I4HEpJSVG/fv189tf2dQ4AAAIToSaABuPuu+9W27ZtZRiG7r//fr322mvas2ePcnNztXHjRv31r3/Vp59+Kkm68MILddFFF1V7rgcffFDvvfeeDh06pMzMTE2bNk033XSTiouLFRsbqwcffNCn/aOPPqro6GiVlZXplltu0YcffqgDBw4oJydHK1as0O233+7tpXXbbbdV+QBV0YNyx44d2rJli3Jyco75YWrcuHHq06ePJOmZZ57R008/re3btysvL0/bt2/X008/7V11d+DAgbrllltq/mCeoCeffFJ2u105OTkaN26cJk+erMOHDys7O1sLFizQDTfc4O3B89hjj6lVq1Z1ct2KIMHhcOiOO+7QypUrlZ2drY0bN+quu+7yrtT8hz/8wee4uLg47890zZo1uv7667VgwQJlZ2crNTVVkydP1nXXXafc3FzZ7Xa9+OKLfnsn2Ww2bdy4UbfccotWrlypnJwcbd68Wffff7+mT58uSbrjjjtqNfy8c+fOevrpp2WxWJSdna0xY8bo0Ucf1bx583TgwAHl5eXp4MGD+umnn3T33XfrqaeeklQehlb0JpakM8880/v1Qw89pHnz5ik9Pd077PsPf/iDpk2b5m3jb67Wiufp6tWrtW/fvirB8ZFatGjhDay//vprPf7449q4caOys7N14MABTZ06VQ8//LCk8gD0yGGx1TnRe+nfv7+uvPJKSdJ7772nf/zjH9q2bZtycnK0YcMGPfDAA5ozZ44k6f777/f2uqv8GCxevFhpaWnHfAykE39/aMjq6rVjhsrTj8yePVu5ubneRaRO1D333OMdhv7QQw/pxRdf1M6dO5WTk6NNmzbpscce8wb9gwcP1ujRo4/rOk6nU0VFRT7/ZWdna8+ePfrxxx91++23e38PdOzYUc8884zP8dHR0d7n28KFC/Wf//xHe/bsUU5OjrZv367XXntN1113nc+cqUe+niqPAJgxY4by8/O9f1CoeK3u3LlTDz/8sPd1tmfPHn3wwQe68sorfXpoVz73qFGjvIuH/fOf/9Rbb72lXbt2KScnR7t379b48eP17rvvSpIuuugixcXFeY994oknFBQUpPz8fI0bN05ffPGFDh48qKysLC1ZskS33nqrd47RP/7xj1WmRDie1zkAAAg8zKkJoMGIiYnRRx99pLvuuktJSUl6++23vb2DKrv88su9vQT9GTFihFavXq1XXnlFr7zyis++Vq1a6d133/X58CSVryT74Ycf6p577lFGRoZeeuklv3M63n777XrooYeqbB82bJjef/99FRcXe4O5zz77TMOGDau2zuDgYL377ru69957tX79ek2cOFETJ06s0u7MM8/Uyy+/XK8rJ/fv318TJkzQ//3f/ykjI0P/+te/qrQJCgrS//3f/9Vonsia6tevn+699169+eab2rJli2666aYqbW644QZdfPHFVbbfdtttKioq0oQJE7RlyxbdeeedVdrExcXplVdeUa9evfxev0uXLho4cKAmT57s99rXXnut/vrXv9b6vq655hqFhYXpueeeU0ZGhr7//nt9//33ftva7XbdfvvtVa5zzjnn6JJLLtGMGTO0f/9+3XPPPVWOTUhI0MiRI/XVV1+ppKTEO0ddhWHDhmnmzJlKTU3VBRdcIKl8eGdFDyl//v73v2vv3r1av369pk2b5hM2VoiPj9c777zj7f18LHVxL08//bSKior0888/a8qUKZoyZUqVc9x00026/fbbfbYNGzZMGzZs0NatW3X22WfLbrdr3bp1R10h+0TfHxq6unjtmCE0NFQDBgzQ+vXr9c033+ibb77R0KFDq+1VXBvNmjXTRx99pLvvvlvJycn66KOP9NFHH1Vp169fP02YMKHaeXiP5d133/UGe0czbNgwvfLKK36nIHniiSd08803q7i4WJ9//rnf+7/22mu1bNkypaSkVFnFvGPHjmrdurUOHz6s8ePHa/z48brqqqv0wgsv6OGHH9bq1auVkZGhGTNm+O1xOWLECGVmZmrTpk0+57bb7XrjjTd0++23KzMzU6+//rpef/31Ksf3799f//73v322DRo0SG+88YYefvhh5ebm6plnnqkS6ErlIxgeeOABv49XbV/nAAAg8BBqAmhQOnXqpB9++EGTJ0/W7NmztWvXLhUXF6tly5bq16+fxowZo9NPP/2o5+jdu7f++c9/avz48Vq8eLGKi4vVoUMHXXTRRbrxxhv9Li4klX84nT17tr744gvNmzdPSUlJcjqdatWqlYYMGaJx48ZV2wPrrLPO0hNPPKHPPvtMKSkpioqKUmZm5jHvNz4+XhMnTtSPP/6oH3/8UVu3blVBQYFatGih7t2765prrtGoUaOO+wPziTj33HM1Z84cffrpp1q4cKF3AaY2bdpo+PDhuu666466gMPxeuCBB9S/f3998cUX2rRpkwoLCxUbG6vevXtr7NixGjVqVLXH3nfffTrvvPP02WefaeXKlUpPT1dYWJjat2+vCy64QNdee22VQPtIzzzzjPr166eJEydq7969Cg4OVr9+/XTjjTdq5MiRx31fo0eP1jnnnKNZs2ZpyZIl2r59u3JyclRUVKTo6Gi1adNGZ511li6//HJ17tzZ7zleeeUVDRs2TN9++6127twph8OhyMhIde7cWSNHjtS4ceNUVFSkyZMny+PxeHs9Vhg7dqwyMzM1depUZWRkKDY2VqmpqUcNNaOiovTll1/qm2++0axZs7Rz504VFBQoIiJCHTp00IgRI3TzzTfXakX4uriX0NBQTZgwQXPnztWUKVO8w+SjoqI0YMAA3XTTTTrjjDOqXPe+++5TSUmJt2dfXFycUlNTq50vsMKJvD8Egrp47Zjh1Vdf1TPPPKNVq1aprKysRqu411SXLl30ww8/6JtvvtFPP/2knTt3qrCwUJGRkerevbsuu+wyXX311T7Dt+uC3W5XRESE2rZtqz59+ujiiy8+6u+9vn376ttvv9W7776rZcuWKSMjQ0FBQWrRooX69euncePGadiwYfrHP/6hKVOm6JdffpHT6fQGfEFBQXrnnXf03HPPadOmTZJ+73HZrl0777kXLlyow4cPy2KxqHnz5urVq5euvvpqnXfeeXrrrbe0adMmrV69WtnZ2d7nSvfu3TV9+nR99tlnWrhwoZKTk+VwOBQTE6MePXpo9OjRuuqqq/w+hqNGjdKcOXP0+eefa9GiRTpw4IAcDoeaNWumgQMHaty4cX5f49Lxv84BAEBgsRj+Zu4GgADUvXt3SeUfZu6//36TqwEAAAAAACcLc2oCAAAAAAAACCiEmgAAAAAAAAACCqEmAAAAAAAAgIBCqAkAAAAAAAAgoBBqAgAAAAAAAAgorH4OAAAAAAAAIKDQUxMAAAAAAABAQCHUBAAAAAAAABBQCDUBAAAAAAAABBRCTQAAAAAAAAABhVATAAAAAAAAQEAh1AQAAAAAAAAQUAg1AQAAAAAAAAQUQk0AAAAAAAAAAYVQEwAAAAAAAEBAIdQEAAAAAAAAEFAINQEAAAAAAAAEFEJNAAAAAAAAAAGFUBMAAAAAAABAQCHUBAAAAAAAABBQCDUBAAAAAAAABBRCTQAAAAAAAAABhVATAAAAAAAAQEAh1AQAAAAAAAAQUAg1AQAAAAAAAAQUQk0AAAAAAAAAAYVQEwAAAAAAAEBAIdQEAAAAAAAAEFAINQEAAAAAAAAEFEJNAAAAAAAAAAGFUBMAAAAAAABAQCHUBAAAAAAAABBQCDUBAAAAAAAABBRCTQAAAAAAAAABhVATAAAAAAAAQEAh1AQAAAAAAAAQUAg1AQAAAAAAAAQUQk0AAAAAAAAAAYVQEwAAAAAAAEBAIdQEAAAAAAAAEFAINQEAAAAAAAAEFEJNAAAAAAAAAAGFUBMAAAAAAABAQCHUBAAAAAAAABBQCDUBAAAAAAAABBRCTQAAAAAAAAABhVATAAAAAAAAQEAh1AQAAAAAAAAQUAg1AQAAAAAAAAQUQk0AAIBGYvTo0erevbu6d++uXr16KSsr66jtf/zxR2/77t2765133qmnSgObYRjatGlTle3jx4/3PpYjR46ss+tlZ2frqaee0rnnnqs+ffpo6NChGjt2rJYsWXLSrnk0K1as8HneHDx4sF6uCwAAUBmhJgAAQCNx2WWXeb92u92aPXv2UdtX3m+xWHyOh3+rV6/W2LFj9dJLL9XL9Vwul2655RZNmjRJhw8fltPpVF5enjZs2CCn01kvNQAAADREhJoAAACNxKWXXurz/axZs6ptW1RUpCVLlni/HzRokNq2bXvSamsM/vOf/+jGG2/Uxo0b/e5v27athg4dqqFDh6p///51cs2NGzdq586d3u9jY2M1YMAAtWvXTr169Top1wQAAAgEQWYXAAAAgLrRvn17DRw4UOvWrZMkrVmzRmlpaWrZsmWVtgsXLlRpaan3e3ppHtuWLVuOuv/qq6/W1VdfXafXTE1N9fl+ypQpat++/Um9JgAAQCCgpyYAAEAjUjmc9Hg81Q5Br7zdbrfroosuOum1ofYcDofP95UDTQAAgKaMnpoAAACNyMUXX6znnntOLpdLUvkQ9FtuucWnTWlpqRYvXuz9/swzz1SzZs0kSYWFhfrkk0/0008/6cCBA7JYLGrXrp3OPvts3XbbbYqPj/c514oVK3TzzTdLklq2bKnvvvtOTz31lBYtWiSLxaKePXsqJSXF2+Nw6NCh+vzzz6vU/d577+mVV16RVB6yLlq0SHFxcce832XLlmnSpEnatGmTsrKy5PF4FBsbq+7du+uyyy7TFVdcIYvFUuW4w4cP68MPP9Svv/6qQ4cOyeFwKCwsTO3atdNZZ52lO++8U9HR0VXuscLKlSvVvXt3SdK8efPUrl07jR8/XhMmTJBUPhR9/vz5x12rv2tK8l7zqquu0gsvvHDMa0rS3LlzNWnSJG3evFlFRUWKi4vTwIEDdeONN2ro0KF+H1eXy6XJkydr2rRp2rNnj2w2mwYNGqR77723+h8GAABAPSLUBAAAaETi4uJ05plnasGCBZKk9evX69ChQ2rTpo23zcKFC1VcXOz9/vLLL5ckJSUl6Y477qiymvXOnTu1c+dOTZkyRW+++aaGDBni99pOp1N33HGHzzDt5s2b67TTTtObb74pqXyhnYyMDLVo0cLn2Mo9R88+++waBZrvvvuu/ve//1XZnpGRoYyMDC1ZskTr16/XU0895bN/3759uvHGG5WRkeGzvaioSDt27NCOHTs0a9YsffPNN2revPkx66iJ4631RLjdbj3++OP6/vvvfbanpaVp9uzZmj17tm6//XY99thjPvsdDofuuusu/frrrz7bFy5cqCVLljDcHQAANAgMPwcAAGhkKg9BNwyjyoJBP/30k/friIgIjRw5UiUlJbrrrrt8As3OnTurZ8+estvtkqTc3Fzde++9Sk9P93vd7OxsbdmyRVFRUerTp49CQ0N12WWX6eqrr/b2QPR4PD7Xl6QDBw74BKFXXXXVMe9x//79eu2113zuo3fv3urbt69CQ0O92ydNmqS5c+f6HPv44497A02LxaLu3burX79+ioqK8rZJSUnRl19+KUmKjo7W0KFDFRkZ6d0fFRXlXaAnJCSkzmutuGbnzp19zlVxzS5duhz1mpI0fvx4n0CzWbNm6tu3r2JjY73bPvroI3399dc+x73yyis+gabNZtMpp5yitm3byu1265tvvjnmtQEAAE42emoCAAA0MqNGjVJ4eLi3N+bMmTP1xz/+UVJ5L7yKXpySdP755ys0NFRffPGFkpOTJUnBwcF69913NXz4cEnlPRtvuukmpaWlKTc3V59++qkeeeQRv9du27atpkyZori4OGVlZSkqKkrBwcE67bTTtGzZMm89f/jDH7zHVO6lGRsbq3POOeeY97hp0yZ5PB5J5fNM/vjjjwoLC5NUHq7efPPNSklJUefOnX2C2vT0dBUUFMhut8vlcumjjz7y3mdJSYmuvPJK7+NQsep4z5499fnnn+v666/X2rVrfbbVxPHUWnH+adOm6fHHH/eeq6bXzM7O1kcffeT9/vrrr9ff//53BQcHy+Fw6Mknn9S3334rSXrzzTd1zTXXKCgoSPn5+frqq6+8xyUkJOjdd99Vr169JJVPZ/DII4/I6XTWqA4AAICThZ6aAAAAjUxYWJjOP/987/ebN2/WgQMHJEmLFy9WUVGRd19Fr87KvScvuOACb9AnSR07dvQJIf3N21jhhhtu8A4db968uYKDgyVJ11xzjbfN2rVrfVb1rhxqXnrppd5jjiYhIcH7dWpqqt5//31t2bJFHo9HcXFxmjJlitatW6dp06bp1ltv9Tnuxx9/1Nq1azV79myf+ywrK1Pr1q293xcWFh6zjpo43lpPxMKFC72LDNlsNv3tb3/zPq4hISF66KGHvG3T0tK8PWVXr17tszjRQw895A00pfI5Wyv/LAEAAMxCT00AAIBG6LLLLvMZejxz5kzdeeedPuFlixYtdPrpp0v6vVeiJE2fPl3Tp0+v9txJSUkqLS31GTpdoXfv3n6PueCCCxQdHa38/HwZhqHZs2fr1ltv1YEDB7R582ZvuyuvvLJG9zd48GANHjxYa9askdPp1Jtvvqk333xTERER6tevn0499VSNGjVKPXr08Ht8cHCw3G63vv76a23cuFGbNm3Srl27vD0qpfI5KevCidZ6PCr/PN1ut/r373/U9tu2bVP//v21f/9+n+3+FhIaNmyYT29OAAAAM9BTEwAAoBEaPny4z0rlM2fOVFlZmX755RfvttGjR8tms0mqXa9EwzCUl5fnd1/FKupHCgkJ0aWXXupTj+TbS/OUU05R3759a1SD1WrV+++/r1tuuUUxMTHe7UVFRVq2bJneeOMNXXHFFbrxxhu1b98+n2M3bdqka665RqNHj9YTTzyhKVOmaMeOHWrfvr1PT826ciK1Hq+CgoJatc/NzZVUPgS/siNXu5fkcw8AAABmoacmAABAI2Sz2XTxxRd752Dcvn27vvzyS5+wq/KCQqGhod5g89prr62yIvaRKi+aU1nFXJH+XHPNNZo4caIkacOGDTp48KBPqFnTXpoVIiIi9Pe//12PPPKI1qxZo2XLlmnt2rXavHmzdz7R1atX689//rNmzpwpm82mQ4cO6bbbbvM+DqNHj9aVV16pAQMGKCYmRo8++miV1cLrwvHUeiIq96INCwvTokWLjtq+YrGjiIgIn+25ubk+w+clVVk1HgAAwAyEmgAAAI3U5Zdf7rOwTOUVuDt16uTTK7Jbt25av369pPKhyNHR0T7nmjFjhvLy8tStWzd169ZNVqv/AT9HC+P69Omj7t27a8eOHZKk999/3zv03Gaz6fLLL6/xvRUUFGjv3r1KSkpSRESEzj//fJ122mmSJKfTqTfeeEPvvfeeJCk5OVk7duxQr1699O2333oDzW7duunVV1/1OW9NAzvDME56rSeiW7du3q9LSkp0+PBhde/e3bstKSlJc+bMUdeuXdWtWzd16NBBktS1a1ef86xcudKnh60k74JPAAAAZiLUBAAAaKT69eunjh07eoc0l5aWevdV7qUpla+YXhFqbtmyRW+++abuueceWSwW7d69W0888YS3J+eFF16oN95447hquuaaa/Tcc89Jkr7++mvv9uHDh1fpEXg0DzzwgH799VdJ5b0L4+PjNXDgQEn+g9WKEDYtLc277fDhw0pOTlanTp3k8Xj0zTff+AR2LpfL5xx2u937dU5OjvdrwzBksVjqvNYTMWLECP373//2zgv6r3/9S2+99Zbi4+NVVlam559/XgsXLpRU3pNz/vz5iouL0+DBgxUTE+OdXuDll19Wz549vWHn9OnT9cMPP5xwfQAAACeKUBMAAKARu+yyyzRhwgS/2yu7/vrr9dlnn3l7Kr7xxhuaNGmSWrZsqR07dsjpdEoqD/buueee467n8ssv18svvyyn0+nT2/Gqq66q1XnuvvtuLV++XB6PR0VFRbruuuvUpUsXRUdHKyUlxafHZdeuXb29FE855RTv9qKiIl1++eVKTExUampqlV6alVeJl+Rd1V2Sdu/erUsuuUT5+fn68MMPlZiYWOe1noiWLVtq3LhxPsP9R40apa5duyotLU2ZmZnetjfeeKP33kJDQ3XHHXfolVdekVS+Wvtll12mHj16KC8vTwcPHjzhofEAAAB1gYWCAAAAGrEjw0tJ6t+/vzp27OizLSoqSu+//76aN2/u3ZaRkaHNmzd7A02bzab//ve/J7RKd7NmzTRq1Kgq1z7vvPNqdZ6hQ4fq6aefVlDQ73+j37t3r9avX+8TEiYkJOj111/39qS85pprfIZYOxwObdq0yXtM27ZtvfsOHDjgvXdJOuecc3xq2L17t9LT03X48OGTUuuJevzxxzVixAjv96WlpdqyZYtPoHnhhRfqwQcf9Dnujjvu8JkKwO12a8uWLTp48KCsVquefPLJOqkPAADgRBBqAgAANGJHzp0p+Q86Jalnz56aNWuW7rvvPvXu3VtRUVEKCgpSy5Ytdemll+qbb77RRRdddMI1XX311T7fX3zxxd6Fampj7Nix+uGHH3TDDTeoW7duCgsLk81mU0xMjAYOHKi//vWvmjlzpk/vzPDwcE2cOFE33XST2rRpo6CgIEVERKh///568skn9c0333jDx+LiYp8Fdq666io99thj6tSpk+x2u2JiYjR48OBqV3w/0VpPVHBwsN555x29+uqrOvfccxUfHy+73a7IyEgNGTJEzz77rF577TWfsFUqH/7+0ksv6cUXX9SAAQMUFham6OhojRw5Ul999ZWuueaaOqsRAADgeFmM2sxyDgAAAJygb775Rv/85z+933/55ZcaMmSIiRUBAAAg0NBTEwAAAPUmLS3NZ47PDh06aPDgwSZWBAAAgEDEQkEAAAA4qfbs2aOnnnpKwcHB2rBhgwoKCrz7br311jqbQxIAAABNB6EmAAAATqro6GitXLmyyvbTTjtNY8eONaEiAAAABDpCTQAAAJxU8fHxOuWUU5SSkiKr1ao2bdpo5MiRuuuuu2S3280uDwAAAAGIhYIAAAAAAAAABBQWCgIAAAAAAAAQUAg1AQAAAAAAAAQUQk0AAAAAAAAAAYVQEwAAAAAAAEBAIdQEAAAAAAAAEFAINQEAAAAAAAAEFEJNAAAAAAAAAAGFUBMAAAAAAABAQAkyuwAAANCwlTrdyihwKKuoTFmFDuWXOlXkcKukzK2iMpeKy9wqcpT/v/iI74vKXCop88gwDBmSPIYhw5D3exm/bZPKt6t8v9ViUajdqlC7TWF2m0LsNoXarQqz2xT629ehFV8H2RQWbFVUqF1x4cFqFhGsuAi7moUHKy4iWDFhdlksFnMfRAAAAAB1ymIYhmF2EQAAoH653B4dyi3VobwSZRY6lPlbaJlZWKbMQoeyCh3KLCwPMYvK3GaXe0JsVotiw+zlYWd4sJpF2BUXUR54tooJU7vYMLVtFqa2sWGKCOHvvQAAAEAgINQEAKARMgxD6QUOHcgu1oGcYh3ILvH5OjW/VG4P/wQ4UkyYXW0rhZwVX7f57esWUSFmlwgAAABAhJoAAAS03OIy7Ugt0M60Au1KL9T+7GLtzy5WSk6JHC6P2eU1OuHBNnVpEaFTEqLULSHS+1+n5hGyWRniDgAAANQXQk0AAAJAkcOlnWkFv/1XqJ1pBdqRWqD0AofZpUFSsM2qzvERPkHnKS0j1Tk+QiFBNrPLAwAAABodQk0AABqYgznFWn8gV1sO5WtnaoF2pBUoJbdE/MYOPDarRV1bRKhv21j1bx+jfu1i1bN1FEEnAAAAcIIINQEAMFFBqVMbDuRpw8Fcrdufq/UHcpVZSO/Lxsxus6h7q6jyoLNdedCZ2DJSQTar2aUBAAAAAYNQEwCAeuJye7Q9tUDrD+R6/9uTUUgPTCjUblWv1tHq1y5WA9rHanDHZmofF252WQAAAECDRagJAMBJ4nC5tXZfrpbtydTyvdnamJKrUieL96Bm2saG6dROzTS0c3MN7RynbgmRZpcEAAAANBiEmgAA1BG3x9DGg7n6dU+Wlu3J0up92YSYqDPxkcEa1rm5Tu/aXMO7NleXFoScAAAAaLoINQEAOE6GYWjb4QL9uidTy/ZkaWVStgocLrPLQhPRKjpUp3ctDznPPqWFWsWEml0SAAAAUG8INQEAqIWsQofmbU/Xwh0ZWrY3S9lFZWaXBEiSeraO1qgeCRrRI0ED28fKarWYXRIAAABw0hBqAgBwDDvTCjR3W5rmbk3T+gO58vCbEw1cXESwzk1soRE9EnRO9xaKDrWbXRIAAABQpwg1AQA4gsvt0YqkbM3dlqZ529K1P7vY7JKA4xZktWhwx2Ya2SNBo3omqFtClNklAQAAACeMUBMAAEl5xU4t2Jmun7emaeHODBWUMjcmGqf2cWE6r2dLXdqvtQZ1aCaLhWHqAAAACDyEmgCAJiu/1KnZm1P144ZDWrYnSy7GlaOJaRsbptF9W+nSfm3Uv32s2eUAAAAANUaoCQBoUkqdbs3blq4fNqTolx0ZKnN5zC4JaBA6xIXrkn6tdWm/1urdJsbscgAAAICjItQEADR6LrdHi3dn6of1h/Tz1jQVOhhaDhxNl/gIXdqvtS7t30aJLZmDEwAAAA0PoSYAoFEyDEMrk7L1w4ZDmrU5VdlFZWaXBASkxJaRurx/G10zuJ1ax4SZXQ4AAAAgiVATANDI7M8q1ler9uu7dSk6lFdqdjlAo2G1SGcnttC4Ie11Xq+WstusZpcEAACAJoxQEwAQ8MpcHv20JVVfrdqvX/dkid9swMnVPCJYVw1sq3GnttcpDE8HAACACQg1AQABa29GoSat3K9pa1OUxfBywBQDO8Rq3JD2uqx/G0WEBJldDgAAAJoIQk0AQEApdbo1e3OqJq7cr5VJ2WaXA+A3EcE2XdKvtcad2l6DO8aZXQ4AAAAaOUJNAEBA2JlWoEkr9+vbdSnKLXaaXQ6Ao0hsGalbhnfSNYPaKdRuM7scAAAANEKEmgCABsvjMTRna6o+WppMr0wgAMWG23XdqR10y/COrJwOAACAOkWoCQBocApKnfp61QF9uixZB7JLzC4HwAkKslp0YZ9Wuv2MzhrcsZnZ5QAAAKARINQEADQY+7OK9dHSJE1Zc1CFDpfZ5QA4Cfq3j9XtZ3TS6L6tZbdZzS4HAAAAAYpQEwBgunX7c/Teor36aUuqPPxWApqEltEhuum0jrphWEfFRQSbXQ4AAAACDKEmAMAUhmHo561pem/RXq3el2N2OQBMEhJk1bWD2+muc7qqfVy42eUAAAAgQBBqAgDqlcvt0XfrD+mtBbu1N6PI7HIANBBBVouuHNhW947ops7xEWaXAwAAgAaOUBMAUC9cbo+mrUvRm7/s1r6sYrPLAdBA2awWXdK3te4b2U2JLaPMLgcAAAANFKEmAOCkcro9mrb2oN78ZY/2ZxNmAqgZi0W6oFdL3T/yFPVpG2N2OQAAAGhgCDUBACeF0+3RlDUH9eYvu3Uwp8TscgAEsBHdW+j+UadoUIdmZpcCAACABoJQEwBQp8pcHn2z5oDe+mWPUnIJMwHUnTO6NdcDI0/RsC7NzS4FAAAAJiPUBADUiTKXR1+vPqC3f9mtQ3mlZpcDoBE7J7GF/nZxD/VsHW12KQAAADAJoSYA4IQYhqHv1qfovz/tpGcmgHpjtUhXDGir/zs/Ue3jws0uBwAAAPWMUBMAcNx+3Z2p52Zt0+aUfLNLAdBEBdusuvG0Drp/5CmKiwg2uxwAAADUE0JNAECt7Ugt0POztmnBjgyzSwEASVJUSJD+dHYX3XFWZ4UHB5ldDgAAAE4yQk0AQI2l5ZfqlTk7NHVtitwefn0AaHhaRIXogVGn6PpT2yvIZjW7HAAAAJwkhJoAgGMqdLj07sI9+mBxkkqcbrPLAYBj6hwfoYcv6K5L+rU2uxQAAACcBISaAIBqudweTVq5X6/P26XMwjKzywGAWhvaOU7/vqK3erRipXQAAIDGhFATAODX0t2ZeuL7zdqTUWR2KQBwQmxWi/4wrIP+74Luigmzm10OAAAA6gChJgDAR2peqZ6ZsVUzNh42uxQAqFPNI4L1yIXdNe7U9rJYLGaXAwAAgBNAqAkAkFQ+1PyjpUl6fe4uFZUxbyaAxqt/uxg9fUUfDWgfa3YpAAAAOE6EmgAALd+bpSe+36ydaYVmlwIA9cJikcYMbqfHLuqh5pEhZpcDAACAWiLUBIAmLKPAoedmbtO361LMLgUATBEdGqQHz0/Uzad3ks3KkHQAAIBAQagJAE2Q22Pos2XJ+t/PO1VQ6jK7HAAwXY9WUXrxmn7qz5B0AACAgECoCQBNzNr9Ofrnt5u19XC+2aUAQINis1p0+xmd9NAF3RVqt5ldDgAAAI6CUBMAmohSp1svzd6hT35Nkod3fgCoVsfm4Xrh6n46vWtzs0sBAABANQg1AaAJWJmUrUenbFByVrHZpQBAQLBYpOtO7aC/j+6hqFC72eUAAADgCISaANCIlZS59eLs7fp0WbJ4tweA2msVHapnr+qjUT1bml0KAAAAKiHUBIBGavneLD02daP20TsTAE7Y5f3b6KnLeysuItjsUgAAACBCTQBodIocLr04e7s+X76P3pkAUIfiIoL15GW9dMWAtmaXAgAA0OQRagJAI/Lr7kw9Nm2jDmSXmF0KADRa5/dqqRev6UevTQAAABMRagJAI1DkcOm5mds0ceV+emcCQD1IiArRy2P665zEFmaXAgAA0CQRagJAgNt4MFd/+Wq9kjKLzC4FAJoUi0W6dXgn/e3iHgoJspldDgAAQJNCqAkAAcowDL23aK/+O2eHnG7eygHALD1aRen16waqe6sos0sBAABoMgg1ASAApReU6qHJG7R4V6bZpQAAJIUEWfXYRT102xmdZLFYzC4HAACg0SPUBIAA88uOdD08eYOyisrMLgUAcISzE1vov2P6KSEq1OxSAAAAGjVCTQAIEGUuj16YtV0f/5rEYkAA0IDFRQTrxWv66fxeLc0uBQAAoNEi1ASAALAno1D3T1ynrYfzzS4FAFBDNwzroCcu7aVQO4sIAQAA1DVCTQBo4L5etV9P/7hVxWVus0sBANRSn7bRevvGwWofF252KQAAAI0KoSYANFDFZS79beom/bDhkNmlAABOQEyYXa+O66+RPRiODgAAUFcINQGgAUrOLNKdn6/RjrQCs0sBANQBi0W699xu+r/zE2W1sjo6AADAiSLUBIAGZt62NP316/UqKHWZXQoAoI6d2S1eb1w/UHERwWaXAgAAENAINQGggTAMQ6/O3aXx83aJN2YAaLzaxITqzRsHaWCHZmaXAgAAELAINQGgAcgrcerBr9dr/vZ0s0sBANSDYJtV/7ikp24Z3snsUgAAAAISoSYAmGx7ar7+/Nka7c8uNrsUAEA9u2JAGz1/dV+FBweZXQoAAEBAIdQEABN9vz5Fj03dqFKnx+xSAAAmSWwZqQ9vOVXt48LNLgUAACBgEGoCgAlcbo+em7lNHy1NNrsUAEADEBcRrHdvGqxTO8WZXQoAAEBAINQEgHqWV+LUXZ+v1rK92WaXAgBoQIJtVj1/dV9dM7id2aUAAAA0eISaAFCP9mcV65aPlispq8TsUgAADdQ953bVIxd2l8ViMbsUAACABotQEwDqyZp9OfrjxyuUW+o2uxQAQAN3cZ9W+t/YAQoLtpldCgAAQINEqAkA9eDHDSn6v6/Xi/WAAAA11bdtjD64ZYhaRoeaXQoAAECDQ6gJACfZaz9v1+vz9og3WwBAbbWKDtUHtwxRn7YxZpcCAADQoBBqAsBJ4nR79H+TVuvHzRlmlwIACGBhdpteHTdAF/VpZXYpAAAADQahJgCcBHklTt383hJtOFxsdikAgEbAYpEeu6iH7jqnq9mlAAAANAiEmgBQx/ZlFuq6d5bocCELAgEA6tYfz+ysf17Sk5XRAQBAk0eoCQB1aNXeDN360QoVufiwCQA4Oa4a2FYvX9tPQTar2aUAAACYhlATAOrIzxsP6N6vNqjMQ6AJADi5RnRvobduHKywYJvZpQAAAJiCUBMA6sBXS3foHz/uklsEmgCA+jG4YzN9dMupigm3m10KAABAvSPUBIATNGHmOr2yKEUGgSYAoJ4ltozUZ7cPU6uYULNLAQAAqFeEmgBwnAzD0NOTf9Un63IkAk0AgEnaxobp8z8OVZcWkWaXAgAAUG8INQHgOLjdbj3w4XzN2FtmdikAAKh5RLA+uW2o+raLMbsUAACAekGoCQC1VFJaqtvfnqtlafTOBAA0HJEhQXr3psE6o1u82aUAAACcdISaAFALWbn5uvmtedqSH2x2KQAAVBFss+qtGwfpvF4tzS4FAADgpCLUBIAa2ncoXTe/t0j7SsPMLgUAgGoF26x688ZBOp9gEwAANGKEmgBQA7v3p+jm93/VIWe42aUAAHBMwTarJtwwUBf0bmV2KQAAACcFoSYAHMPW3cn648crddgdYXYpAADUmN1m0YQbBulCgk0AANAIWc0uAAAasnVbd+n2j5YTaAIAAo7Tbei+iWs1e3Oq2aUAAADUOXpqAkA1lq/for98vUFpRozZpQAAcNzsNovGXz9QF/VpbXYpAAAAdYZQEwCOYBiGFq9cp0e+3aY0xZpdDgAAJyzIWh5sXtyXYBMAADQODD8HgEoMw9CcRcv18NQtBJoAgEbD5TF0/6R1mrnpsNmlAAAA1Al6agLAbzwej6bPW6Rn5uxThi3e7HIAAKhzQVaLXrtugC7t18bsUgAAAE4IoSYASHK5XJo6a57+u/CwMoJamF0OAAAnTZDVorduHKQLWBUdAAAEMEJNAE2ey+XSpB9+0htL05VhTzC7HAAATrrgIKs+vW2oTu/a3OxSAAAAjgtzagJo0lwulyZPn6MJSw8TaAIAmowyl0d/+my1Nh3MM7sUAACA40KoCaDJcrvdmjpzrt5atE9pdlaDBQA0LYUOl279eKX2ZBSaXQoAAECtEWoCaJIqAs13f9mpg8EdzC4HAABTZBWV6aYPVuhQbonZpQAAANQKoSaAJsftdmvarHn6cP5m7Q3pYnY5AACY6lBeqW76cIWyi8rMLgUAAKDGCDUBNCkej0ffzp6vT+eu066QREkWs0sCAMB0ezKKdMtHK1XocJldCgAAQI0QagJoMjwej7776Rd98fMqbQ/tKQ9vgQAAeG1KydOfPl0th8ttdikAAADHxCd6AE2Cx+PR93MWaOLspdoa2lsu2cwuCQCABmfZ3izdP3Gd3B7D7FIAAACOilATQKPn8Xg0fe4ifTVrkbaG9VWZgswuCQCABmvO1jQ9Pm2j2WUAAAAcFaEmgEbNMAzN+mWJJs2Yr23hfVSsYLNLAgCgwZu8+qAmzN9ldhkAAADVItQE0KgtWrFGk2fM047w3so3wswuBwCAgPHKzzs1feMhs8sAAADwi1ATQKO1asMWTfx2pnYFd1W2EWl2OQAABBTDkB6avEHr9ueYXQoAAEAVhJoAGqWtu/bqsyk/aJcnQYfU3OxyAAAISA6XR3/6bI0O5hSbXQoAAIAPQk0AjU7S/hR9OOlb7SkM1l5bO7PLAQAgoGUWOvTHT1aroNRpdikAAABehJoAGpVDaRl6f9JU7c4s1s7QREkWs0sCACDg7Ugr0L0T18ntMcwuBQAAQBKhJoBGJCsnTx9MmqbtB9K1O7KfXAZvcQAA1JVFOzP05A+bzS4DAABAEqEmgEaioLBIH3/9nTbt3KsDsYNU5AkyuyQAABqdL5bv14dLkswuAwAAgFATQOArdTj02dTpWr1xizLiBynDFWJ2SQAANFrPztiqedvSzC4DAAA0cYSaAAKay+XSpO9ma/GKtSpK6KPkskizSwIAoFHzGNIDk9ZpR2qB2aUAAIAmjFATQMAyDEPT5y3S3CXLZUnopk2lcWaXBABAk1BU5tadn69WXgkrogMAAHMQagIIWMvXbtT3cxYoKKalVjlaiZXOAQCoP8lZxXrw6/UyDFZEBwAA9Y9QE0BA2rEnWV9+N1OGLVjrjM6sdA4AgAnmb0/Xq3N3mV0GAABogkgBAASc1IwsffrND8rNK1BSWA/lu1npHAAAs4yfv0s/b2XhIAAAUL8sBuNFAASQwqJivfnpV1q3eYfcbfppVWGs2SUBTZKlIF32+f+VxeOSJDku+KcUUXVeW0tBumx7FsmSvlOWklzJYpURESdPq15ydztXCqn94l6W9J2yJf0qa3ay5CiSguwyolrL3X6gPJ1Ok6z+/9BhTdkg674VsuYclJzFUlCojNi2cnc4VZ72gyXLEVNYeNyy7Zwr275VUkmeFBold5t+cve6WAoKqXqB4mwF//yCLB6XnINvkKfDkFrfW03Zds5T0JYZMoIjVHbhv6SgYL/tLBm7FLzk7fLbie8q51n3VntOS8Yu2XYvKn9cXaVSaLQ8Cd3lShwlRTT3bZtzQMELXpUhi5xn3yejeec6uzcEpqiQIP1w/5nqHB9hdikAAKCJoHsTgIDhcrk08btZWrt5u2LaJ+rnvBizSwKaJsNQ0LrJ3kCzOtb9q35r5/bZbslPlTU/VbZ9q+Q8404ZMW1qft0NU2VL+tV3u9MtS3aSrNlJ8uxfI+cZd0r20N/3u10KWvWZbIc3H3FcsSwZu2TN2CX3oY1yDb1Fstq8u4M2TJUteXn5pe3hspTkKmjPIlkL0sqvcYSgrbNl8bjkiW4tT/tBNbun41GULdv2n8tvrdNp1QaacjkUtOn7Gp3StmWGgnbO891YnCNb8nJZD6yR69Sb5Wnd27vLaNZenuadZc1KUtCGqXKO+D/JwgCgpqzA4dLdX6zRt/ecobBg27EPAAAAOEH86xNAQDAMQz/8vFALlq1SqzbttaQgQQYLAwGmsCYvkzVr71HbWPIOKWjt195A07DY5IlpKyP8996cFkeB7Ms/ktw1Wz3ZmrzMJ9A0gkLkiW0vI/j3nmHWnH0KWv+Nz3G2bbN9Ak3DHl5+XNDvwaft8GbZts36/aDSfFmTV0iS3J2Hq+zS/8jdeXj5NdJ3yJK9z/d+8w/LemBNefteo09qwBe0+UdZ3GUyZJG78+n+G7kcsi/7QNa8Q8c8n3XfKp9A0wiOlCe6lfc91uJ2KmjlJ7Lkp/oc53088g7Junfpcd4NGpPtqQX6x3ebzC4DAAA0EfTUBBAQlq5arx9+XqD4uDitLGurYg+9QABTlOQpaMv0Yzaz7V4ki+GRVB4+Os++39sj07Z9joK2zZYkWYqzZU1ZL0+HU495zqBdv3i/9sS0lfPMu6TgCMldpqAVn8mWtrX8/AfXydX7Eik8TnKVyZb0e+DmadlDzqG3lvduLCuWfek7suYeLD9uzxK5e1wo2eyy5uyXRcZvx/T0HlsRqlpy9suI6/j7/W6ZKYsMeeI6+fRorGuWwgxZD22UJBkJieX3eGSbzL2yr50kS1HWsU9oeBRUKcx1t+wp17BbJZtdlozdsi97Xxa3UxaPW7bNP8o1/E/etp42/WXYp8niLFHQ7gUq63IGvTWhaWtTNKRjnG4Y1sHsUgAAQCPHvzwBNHjbdu3VxO9nyW63a19wBx0u8zOXHYB6EbRhmizO0mO2s2bs9H7taTfQZ4i5u/t5MirNe2nN2X/sCxdm+oR07lNGlAeakmQLlrv7KN/r5xyQJFmyk2VxObzbXd0v+H24dnC43N3O8e6zuMt+741Y6R6N39oblebRtLh+32/JSpItdUv5+XuPPva9nADb7oXesNXd7ogh7m6X7EvfUfDiCTULNFXeo9ZSkvv7KXpeJNnskiSjRTe5O5/h3WdN3yE5CioVEyRP677l5ynOkfXI4f1osp76cYs2HcwzuwwAANDIEWoCaNBSM7L06ZQfVVBQKMV10obC2i8qAqBuWFM2yHa4fGipYQ87altXr4vl6jVa7i5nytOyl+9Oi9UbnEmSjphz0y97qJwDxsjV40K5O50mI7ad7/4j55X8bb5PIyJezgHXytX9fLk7DpURleDbzhbi9zhVuj+Ls8Tn/1L5EHbvpbfMKD80obuM+G7Hvpfj5XZ6h7gbssjTqlfV/em/h8nuVr3lbnX0XqOWokyf7498fIz4rr+3NTyyHjHs3tP69xqqzHWKJqvM5dHdX65RXknNppYAAAA4Hgw/B9BglToc+mLqdCUfSFG7Lon6MauZxDyagDnKShS08VtJkmG1ydVrtOwbplbb/GjDyS05B3wDQj9DqKsIiZSnuvkjJVnTd/l8b4T/tlp3RJw8v8396Pe4Sj1KK9fiiesgw2ItD/IOrpenRaKsKRt+bxfXqfz41K2yZu2VIUv5kPeTyJq+w9vr1IhuJYX4X2XaCI6Qu/v5cnc9S0Frvzr6SQ3D93uPx3e33Tf0teSnSq37/N68cuiZsVsqK5GCjx54o2k4mFOif3y7SRNuOImLZgEAgCaNUBNAg2QYhr7/6Ret3rhVnTt20M95zeUw6FwOmCVo8w+ylOZLktyJo2REtTy+E3ncCtr8g++mVj1PrLiSXNl2zfd+awRHymjW/piHWfIOyfrb6uZS+TydCosp/yYkSu4uZyhoz2LZUtbLlrLe287dpr+M2LaS4ZGtopdm235Ve4/WMUvGHu/XfleMt9rkHHCtPB2GSLZqVkQ/ghEW63uN/EO+vTOPWBxIjiLf74MjZITGyFKaVx4AZ+09qXOKIrBM33hY53Y/qGsHn9zXBgAAaJpICAA0SMvXbtSsX5aqdcsW2uKMV6azZh/QAdQ9S8ZuWfetlCR5IlvInXje8Z3I8ChozSRZM38P59wte8qIaXv8xTkKZV/6niyOwt/Pecq5kvUYi4kVZsr+63uyVAw3l6rMy+nue4Wc/a4qXyk9JEqe6NZy9bxIrlP/IEmyHlgra/5hGRar3D0vPv57qCFr3kHv10Z066oNgoLLe6XWMNCUJKNZe5+pBIK2zJQqetEWZyto5y8+7S1uh47kifm9FkvugRpfG03Dk99v1r6somM3BAAAqCV6agJocPanHNbXP/4kW5BNZeEttCmLeTQB07idClo32bs4jWvAGMl2HP98MDwKWj1RtoNrf98UFCrXgGuOvzZHgexL3pG14PfehJ7Ydj6L//hjKcyQfcnb3p6nkuRu3UeetgOOaGiVp+tZ8nQ9q+pJPC7vCu6eDqd656K07l0q257FshRnSUFh8rTuJVfvy6odKl4blRf/MUKjT/h8kiRrkNynjFDQ1pnl32YnKXj2MzIi42UpSJPFfcSciP5WNw/5vZaaLlCEpqOozK0HvlqvqXedriAb/SkAAEDd4V8WABqUgsIifTZ1utIzs9WmTVstzI2VwTyagGls236S9bfFZNwdh8pocRwL4XjcClr5mW+gabHJdepNUk3m0/SnJE/2RW/Kmn/493OGRss57Naj9tK05KfKvmiCz4rfnqhWcg26vlaXtyYtk6U4W4Y1SK6eF0qSbDvmyr5hqqyF6ZI1SJayQtn2rZR96ds1WwzpWMqKf/86KPTEz/cbd+JIudv0935vcZXKmntQFrdTniOGuVdeAd67rfK8m2X0yENVGw7k6tW5O4/dEAAAoBYINQE0GB6PR1NmzNWm7bvUrVMH/Zofq0I3HcoBs1hyU2TbvUBS+TyVrj6X1f4kHreCVnwi26GN3k2G1SbX0JuOfy7NklwFL55QHh5WnDM0Rs4z7zlqSGrJPyz74rdkcRT8Xl5UKznPvLt2i9u4HAra8bMkyd3lDCksVvK4vfN6ehK6q+zSZ+XqVb5wkDXvkKyHN9fiBqtRaai8ceRq7yfCYpVr6E1yDhgjT0xbGdYgGSGRcnc5Q87T7/Bt66+HaKWg02J4qu4HJL29YI+W76UnLwAAqDukBQAajAXLVmv+0hXq0KaVDriitack3OySgCbNenizN6SylBUqZMa/qm0bMuc/kiTnoOvk6Ti0fKNhKGj1l7KlbvG2M2x2uYbeevyBpqNI9iXv+A7FDo9T2Zl3SxHNqz+uKKv8uLLf5970xLaTc/idtR4abtu9QBZHoYygELkTy+fhtBSkyeIsLT9vy57lQ9db9ZC2li8kZMneJ7XtX+05a8QeLv1Wv8XjknGM5rViscrT+fQqK8xbCtJ9vvf4m8vT9fs8m4ad92345zGk//t6vWb95WzFhNvNLgcAADQC9NQE0CDs3LtPU2b8rIiIcNnCY7U0L8bskgCcYGxm2zbbZ9Vww2aX8/Q7jj/QNDyyr/zEp4emJyJeZWffd/RA0+WQfdkHvj00m3Uo76FZ27kuHYWy7VooSXJ3O1cK+W3O398CTUky7OVDw41KQ8QtFYvvnAAjpNL8wpWud6IsadtkTV4u2/afysPXyvsqLepk2IJlxHWsenzlWupg7lA0XofySvX3bzeZXQYAAGgk6KkJwHTZuXn6fOp05RUUqnvXzpqZHasyg7+5AGYzwuPkie/qf6ezRNa8Q95vPc06SDa7jNAoSZIlO1m2HXN9DnENvkFGi1OOux7brgU+K6cb9lA5z7izfPj3UQRtni5rQdrvx4U3k3P4nyV7LYacV9SwY64srlIZwRG+CxLZKweY5SGfxVU56Kz9tY5khDeTflsUyVKcfcLnqxC06Qfv4+PJSiofcm4NkqUgzTvMXpI87Qb4DDWv4Ducv2Wd1YXGacamwzpn1QGNPbW92aUAAIAAR6gJwFQul0tf/fCTdiXtU49unbWpKEqpZVU/NAOof56OQ38fSn4ES8ZuBS95y/u989SbpYjf57O0bf/Zu2K6JBnWINn2LpFt75Kq10lIlLv7+eXnTdumoJ3zfz/vWfeWf+Euk23XL74HWu2yr/3Kb33uU0bI06qXVJIr677lR1Yv+4qP/R7n6nO5jGbVhC3FObIl/Vp+/u7n+QSZRlRLGUGh5YvspG2Tu+uZsqZu+31/XAf/56wFo3kXKa38nJbCzBM+XwVPh1Nl3TJdkmRN31m++nlotCz5qbIY5QscGfZwuXqN9nu8pVK4bTSr2pMTONJTP27RqZ3j1Dmenr0AAOD4EWoCMNWCZau1dNU6dWrfVrlGqNYURJldEoATVZova9p2n00Wj8tnKHNlRtjv001YSgt8emNWsB7eIssRK2tbHAU+vQQrc7cfLEmy7V8jyxErj1uKs6vv6XiUYeJB22aXz2UZFit35zOOKNAm9ykjFLRtlqzpOxQ8/R+y/DbXpCe6lTyt+1R73pqq3GvWkrv/hM9Xwd3tbFlTt8qatbf83Ec8rkZIpJyn/8n/IkGOAllK88vb2ewyjlgtHfCnuMyth7/ZoG/uPF1Wq8XscgAAQIBifCcA0yTtT9G3P81XVGSEQsPDtSCnmTziww0Q6KxZST69NOvqnMfDkn18x1U5T36qrPtXS5JcPS6QbFX/Luzucb6c/a6SJzJBcrvKh6h3OLV87k7rif8d2WjW3juvpiU/7agBbK1Yg+Q84y65el8iT3Tr8tXPbcHyRLeSq/v5Kjvvb9X2XrVWmoPT07KHZLXVTU1o9Nbsy9HHvyabXQYAAAhgFsMw6vZTBwDUQElpqV774Ett3LZLvRK7aGV+jDYVRR77QABowmybpytoV/nwfOepN5fPc2lmPRumKei3KQWcQ2+Vp20/U+tBYAmz2/TTX89Wh+bhZpcCAAACED01AdQ7wzA0Y95ibdi6U906t1eWM1ibi5hXCwCOxd35dBm/9Wi3HjZ5FWnDkO3w5vIvw2LlaXPiQ+zRtJQ43frbtI2ijwUAADgehJoA6t2m7bs0e8Gvatmiuez2YC3KjfV+SAcAHEVEc3na9pdUPs+oyupoCPpxsKTvkKUkV5LkShwlWfhnJWrv1z1Zmriy7uaIBQAATQf/+gRQr3LzCzT5xzkqc5apRfNm2lgYqWyX3eyyACBguPpcKsNml8VdJtu+FabVUbGSvSciXp5Ow0yrA4HvhZnbdTjPvIAeAAAEJkJNAPXG4/Fo6oy52p28X106tleey6Z1rHYOALUTHid3t3MlSbY9i6QjVnevD5b8VFlTt0mSXP2vqZOFkNB0FThc+vs0k6dTAAAAAYeFggDUm6Wr1umdL6aoVYvmio6K0oys5kotCzG7LAAA0AC8Mqa/rhnczuwyAABAgKCnJoB6cSgtQ1NmzlVwsF0x0VHaXhxOoAkAALyembFVGQUOs8sAAAABglATwElXVubUVz/M1uG0THVs21pFbqtW5kebXRYAAGhAcoud+td3m80uAwAABAhCTQAn3YLlq7V64xZ16dhOVqtVS/Ni5DR4+wEAAL5mb0nVzE2HzS4DAAAEAFIFACfVwcNp+vHnhYqOjFR4WKj2loRqf2mY2WUBAIAG6pnpW1Vc5jK7DAAA0MARagI4adxut6bNmqfM7By1bZUgh8eiZXkxZpcFAAAasMN5pXpj3m6zywAAAA0coSaAk2bp6vVauX6zOrZvI4vFojUFUSrx2MwuCwAANHAfLtmrPRmFZpcBAAAaMEJNACdFela2vv9pgUJDQhQZHq5sZ5C2FUWYXRYAAAgATrehp37YYnYZAACgASPUBFDnPB6Pvpv9iw6mpqlD21aSpGV5MTJkMbkyAAAQKBbvytQsFg0CAADVINQEUOdWb9yqpavWqUPb1rJardpbEqrDZSFmlwUAAALMf2ZsU0mZ2+wyAABAA0SoCaBO5eYX6LvZ82WxWhUTFSmXx6IV+dFmlwUAAAJQSm6J3vyFRYMAAEBVhJoA6oxhGJr+8yLt2XdQndq3kSStL4xUkTvI5MoAAECgem/xXiVnFpldBgAAaGAINQHUmU3bd+mXZSvVplWCgmw2Fbhs2lQYaXZZAAAggJW5PHrqRxYNAgAAvgg1AdSJouISTZs1T2VOl5o3i5EkLc+PlpvFgQAAwAlasCNDc7akml0GAABoQAg1AdSJ+UtXavvuZHXu0FaSdLA0RPtKw0yuCgAANBbPzNiqUieLBgEAgHKEmgBOWEpqumYvXKq4ZjEKttvlMaRlLA4EAADq0IHsEn22LNnsMgAAQANBqAnghBiGoRnzFisrO0+tE+IlSVuKIpTnsptcGQAAaGze/GWP8kqcZpcBAAAaAEJNACdk47ZdWrZmg9q3aSmLxSKHx6L1BVFmlwUAABqhvBKn3lqw2+wyAABAA0CoCeC4lToc+nHuArlcLsVElweZGwoj5TB4awEAACfHJ0uTdSi3xOwyAACAyUgeABy3JSvXacvOverYvnxxoCK3VVsKI02uCgAANGYOl0f/+3mn2WUAAACTEWoCOC6Z2bmaMX+xoiLCFRoSLElakx8ttywmVwYAABq7aWsPakdqgdllAAAAExFqAqg1wzA065clOpyaoXatW0qScpxB2lUSZnJlAACgKfAY0ouzt5tdBgAAMBGhJoBa25W0X4tWrFHrVi1ktZa/jeS4ghRkMUyuDAAANBXzt6dr+d4ss8sAAAAmIdQEUCsul0s/zFmg4pJSxcXGeLd3CSvVuIR09YkolE2EmwAA4OR7fha9NQEAaKoINQHUyvK1m7R+6w51bNdGFovv/JmhNo9Oi8nXmIR0JYYVy0K4CQAATqINB3I1Y+Nhs8sAAAAmINQEUGOFRcWaOX+xgu12RYXaqm0XGeTW2c1ydXWLDHUMLanHCgEAQFPz8k/b5XJ7zC4DAADUM0JNADW2eOVa7d2fovZtW+nm/Ld0deFninNnVNu+md2l8+NydHl8hloHO+qxUgAA0FQkZxVr2roUs8sAAAD1jFATQI1k5eRpzqJliomOVB/PNrV1H1Cvso26M+9ljS76RlGevGqPTQh26pL4LF0Ul6Xm9rJ6rBoAADQFb/2yW24P094AANCUEGoCqJFffl2pw2kZapMQr3NLZnu32+TRIMcK3ZP7gkYWT1eop7jac7QLdejK+EyNaJataJurPsoGAABNQHJWsX7YQG9NAACaEothGPxJE8BRpaSm69nxH8hqtej86GRdUfRVtW1LLGFaHnquVoSeJZcluNp2HkPaURyudQVRKvZUPz8nAABATXRtEaGfHzxHVqvl2I0BAEDAo6cmgGNatHyNUtMz1LJZtM4umXPUtmFGiUaUzNK9uc9rcOlSWQ2333ZWi9QzolhjW6bp1Kh8BVuY4B8AABy/PRlFmrGJldABAGgqCDUBHFOXju3UoW0btTo4S8082TU6Jsoo0MXF3+quvJfU27FOqqZTeJBF6h9VqHEt09QvskA2wk0AAHCcJszfLQaiAQDQNDD8HECNZGVlKeS90xTpSD+u41NtbfRL2MXaE9zzqO2K3FatK4jSjuJwGWL4GAAAqJ13/jBIF/VpbXYZAADgJCPUBFCF2+WSo7RY4ZHRv2/c8JX07Z0nfO59QV00P2y0Uuydjtouz2XTmvxo7S0NlQg3AQBADfVuE60ZD5xldhkAAOAkI9QE4MPj8ej7T15X6oG9GnTmBeo77ByFh0dKb50mZe6os+vssPfWL2EXKzOo1VHbZZbZtaogSimO0Dq7NgAAaNw+vGWIRvVsaXYZAADgJCLUBOBj77b1mvbBK7JYrXIUFymhbUeN6hGrzhv/W+fX8siizcGDtDDsQuXZ4o7a9pAjWKvyo5XhrH5FdQAAAEnq3z5W3997htllAACAk4hQE4CX2+3WtPdf1t5tG9S+W0+53S5lHj6o6+1z1Cqo4KRd16UgrQk5XUvDRqnYGnnUtskloVpdEKVcl/2k1QMAAALfp7cP1TmJLcwuAwAAnCSsfg7Aa++WtUrasUkt2naQJNlsQRqY4DmpgaYkBcmlYY7Fujf3eZ1d/JOCjdJq23YKK9XVLTJ0dmyOIm2uk1oXAAAIXG/+stvsEgAAwElEqAlAkuRyOrVq4SxJUmhYhHd7n5Ll9VZDiBw6u/Rn3Zv7vIaWLpLV8B9aWi1SYniJxiSka1h0nkKt7nqrEQAABIaVSdnanJJndhkAAOAkIdQEIEnauXGlDu7ZpoQ2HbzbWjr3K951uN5riTCKdEHxD7on70X1c6ySDI/fdjaL1DeySGMT0jUwskB2i/92AACgafpwSZLZJQAAgJOEUBOAXE6n1i2dK6vNpuDQMO/23sUrTKxKivXk6PKir/Xn/FeUWLa52nbBVkODows0NiFdvSIKZRVTBQMAAGn6xkNKz69+WhsAABC4CDUBaM/WtUrZu0Pxrdp7t8U7D6mVa7+JVf0uwZ2msYWf6Jb88erg3FNtuzCbR8Nj8jUmIV3dwoplIdwEAKBJc7oNfbZsn9llAACAk4BQE2ji3G631i2ZK0k+vTR7lqw0q6RqtXft080Fb+u6gvfV0pVSbbuoILfObZarq1pkqEMIvTMAAGjKJq7cr1In828DANDYEGoCTVzy9g06sHub4tv83kszwp2rts69JlZ1dN2cO3RH/mu6qvALNXNnVtsuzu7SBc2zdWnzTLUMdtRjhQAAoKHILirTt+uq/2MoAAAITISaQBPm8Xi0/td58njcPiuedy9d3+DnpbTIUO+y9bor72VdVDRVEZ78atu2CinTZfFZuiAuS3FBznqsEgAANAQfsWAQAACNDqEm0ITt27lZSds3Kr51O++2IKNMXRybTKyqdmxya4hjme7NfV4jimcqxFNSbdsOoQ5d1SJD58bmKMrmqscqAQCAmXalF2rRzgyzywAAAHWIUBNoogzD0IZf58nldCosIsq7vUvpZgUbZSZWdnyC5dQZpfN1b97zOr3kFwUZ/ntkWixSt/ASjUlI1/CYXIVZmWMLAICm4EN6awIA0KgQagJN1MG927V323o1b9X2942GocTS9abVVBfCjWKNKpmhe3Jf0MDS5bIY/kNLq0XqFVGssQnpGhyVL7vFU8+VAgCA+rRoV4Z2pxeaXQYAAKgjhJpAE1TRS9NRWqKIqBjv9jbOJEV7ckysrO5EG3m6pHiK7sr7r3o61kuG/zlC7VZDA6MKNa5lmvpGFMrWwOcSBQAAx8cwpI+W0lsTAIDGglATaIIO79utXZvXqnnLtj7bu5euNamik6e5J0PXFH2h2/NfVxfnjmrbhVoNDYvJ19iWaUoML5KFcBMAgEbnu3UpKnQwrzYAAI0BoSbQBG1asVClRQWKiI71bot2Zam1c595RZ1kbdwHdUPB+7ox/x21du2vtl2EzaOzY/N0TYsMdQqtftEhAAAQeIrL3PpxwyGzywAAAHWAUBNoYrLSDmnHxpWKbdFKFovFu70x9tL0p7Nrt/6Y/4auKfhUzd3p1baLtbt0XlyOrojPUJtgRz1WCAAATqavVh0wuwQAAFAHCDWBJmbHhhUqzM1WdLN47za7p1SdHVtNrKr+9XRu0p15/9WlhZMV5cmttl2LYKdGx2fporgsxdsDb1V4AADga8OBXG07nG92GQAA4AQRagJNSElRoTavXKTImGY+vTS7OjYrSE1vfimrPBpQtlL35L6gUcU/KtRTXG3bdqEOXRGfqZHNshVja3qPFQAAjcnX9NYEACDgEWoCTcjuzWuUlZai2BatfLZ3dWwyqaKGwS6XTi9dqPvyntOZJXNlN/wPN7dYpC5hpbomIV1nxuQq3Oqu50oBAEBd+HZdikqd/B4HACCQEWoCTYTb5dLG5b/IHhyioCC7d3u8M0Ux7mwTK2s4Qo1SnVsyW/fmvqAhpUtkNfx/2LFapB4RxRrbMk1Do/MUYvHUc6UAAOBE5JU49dOWVLPLAAAAJ4BQE2gi9u/eokPJu9S8ZVuf7U29l6Y/kUaBLir+TnfnvaQ+jjWS4T+0DLJI/SKLNK5lmvpHFiiIcBMAgIDx1UqGoAMAEMgINYEmwDAMbVm1WG63SyFh4d7tQUaZOjh2mlhZw9bMk6UriybpT/mvqltZ9QspBVsNnRpdoLEJ6eoZXiSrjHqsEgAAHI/lSVnal1VkdhkAAOA4EWoCTUDGof3as3W9mrVo7bO9o2O77HKaVFXgaOk+rOsKP9LN+W+qnTOp2nbhNo/OiM3TtQnp6hpWLBFuAgDQYBkGCwYBABDICDWBJmD7+hUqKshVZEwzn+0MPa+dDq4k3VrwpsYWfKgWrsPVtosOcmtEs1xd1SJD7UJK67FCAABQG1PWHJTbwx8hAQAIRISaQCNXmJ+rLasWKSo2XhaLxbs9xpWpeBcT5B+PROc2/Sn/f7qicKJi3VnVtmtud+mi5tm6pHmmEuxl9VghAACoifQCh+ZvTze7DAAAcBwINYFGbtem1crNTFNsfEuf7fTSPDFWGepbtlZ35b2kC4u+VbinoNq2rUPKdHmLTJ3fLFvNghjuDwBAQ/Ld+hSzSwAAAMchyOwCAJw8brdbW1cvUXBomGw2m3e71XCrk6P6hW9Qc0Fy61THUvVzrNbK0LO0LOxclVlC/bbtGFaqDqGl2lUSprUFUSp08xYMAIDZ5m9LV3GZS+HB/F4GACCQ0FMTaMQOJe/U4f171KxFK5/t7cp2KdRgrse6FCKHziqdq/tyn9OwkoWyGS6/7SwWKTG8RGMS0nVadJ5Cre56rhQAAFRW4nTr561pZpcBAABqiVATaMR2bVotp8Oh0PBIn+1dHZtNqqjxCzeKdX7Jj7on7wX1d6yUxfD4bWezSH0iizQ2IV2DovJlt/hvBwAATr4fNxwyuwQAAFBLhJpAI1VcmK8d61coqllzn+2hniK1dO43qaqmI8aTq8uKJuvPef9V97Lq5y8NthoaFFWosQnp6h1RKJtYgRUAgPq2aGem8kqY9xoAgEBCqAk0Unu3bVBuVrpimrfw2d6+bKesBGf1poUnXWMKP9WteW+oo3N3te3CbB6dHpOvaxPSdUpYsSz8jAAAqDdlbo9+2pxqdhkAAKAWCDWBRsgwDG1b+6uCguyy2Xwnve/o2GFSVU1bO/d+3VTwjm7If0+tXAerbRcV5NY5zXJ1dYsMdQwtqccKAQBo2n7cyBB0AAACCUv8AY1Q2sEkHdyzXbFHLBAU5i5QC1eKSVVBkrq4dqpz/i5tDe6nBWEXKcfWwm+7ZnaXzo/LUXpZoVbmRyu1LKSeKwUAoGn5dU+WMgsdio/kdy4AAIGAnppAI7R7yzqVFBcoPDLaZ3vHsh2ymFQTfmeRod5lG3RX3ssaXTRFkZ68atsmBDt1aXyWLozLUvMg5voCAOBkcXsMzdx02OwyAABADRFqAo2Mo7RE29f+qsjoZrJYfCPMjo7tJlUFf2zyaJBjue7NfUEji6cr1FNcbdv2oQ5d2SJDI2JzFG1z1WOVAAA0HayCDgBA4CDUBBqZ5B0blZWWotj4lj7bI925au5OM6kqHI1dTg0vXaB7857X8JJ5CjLK/LazWKSu4SW6NiFdw2NyFW5113OlAAA0bqv35ehwHnNaAwAQCAg1gUbEMAztWL9SkkVB9mCfffTSbPjCjBKNLJmle3Nf0KDSX2Ux/IeWVovUK6JYYxPSNSQqX8EWTz1XCgBA42QY0vQNDEEHACAQEGoCjUhuVrqSd25STPOqi890LGPV80ARZeRrdPE03Z33sno51pV/wvIjyGpoQFShxrVMU7/IAtkINwEAOGFztqaaXQIAAKgBQk2gEdm/a4uK8nIUGRPnsz3GlalYd6ZJVeF4xXkydXXRl/pj/mvqUlZ9T9sQq6Gh0QUam5Cu7uFFssh/CAoAAI5t7f5c5Rb7nwoGAAA0HISaQCNhGIZ2blyloOBgWa2+L216aQa21u4U3VD4gf6Q/7bauvZV2y7C5tFZsXm6NiFdnUNLJMJNAABqze0x9MuOdLPLAAAAx0CoCTQS2emHdCh5l2LiEqrsa1e2y4SKUNc6ufbotvzxurbgE8W7qx8aFxPk1qi4HF0Zn6m2IaX1WCEAAI3DvG2EmgAANHRBZhcAoG7s27lFRQV5im/d3md7hDtXse4sk6rCydDDuVmJeVu1KXiQFoZdqHxbM7/t4oOdurh5tg45grUqP1oZzmC/7QAAgK+FOzPkcnsUZKMPCAAADRW/pYFGoHzo+UoFh4TKYrH47GtXttekqnAyWeVR/7LVuifvRZ1f9L3CPEXVtm0TUqYrWmRqVLNsxQQ567FKAAACU0GpSyuTs80uAwAAHAWhJtAIZBzar8P79yqmedWh522de0yoCPUlSC4NcyzWfbnP6aySObIbjmrbdg4r1TUtMnRWTK4ibK56rBIAgMDDEHQAABo2Qk2gEdi3a4tKigoUHhnts93ucaiF86BJVaE+hcihc0rm6L7c53Rq6WJZDf+hpdUidY8o1piEdA2NzlOI1V3PlQIAEBjmbyfUBACgISPUBAKcx+PRjvUrFBIWXmXoeWtnsmzymFQZzBBhFOnC4u91T96L6utYLRn+f/5BFqlfZJHGJaRrQGSBgiw8TwAAqCwps0h7MgrNLgMAAFSDUBMIcGkHk5Sesk+xflY9b1vG0POmKtaToyuKvtKf8/+nU8q2VNsu2GpoSHSBxiakq1dEoawy6rFKAAAatvkMQQcAoMEi1AQC3L6dW1RaXKjQiEif7RbDozbOJJOqQkOR4E7VuMKPdUv+BLV3Vr9oVLjNo+Ex+RqTkK6uYcWyEG4CAKC529LMLgEAAFSDUBMIYG63Wzs2rFBoRFSVoefxrkMKMUpNqgwNTXtXsm4peEvXFXygBNehattFBbk1olmurmyRofYhPH8AAE3bmn05yit2ml0GAADwg1ATCGAZh/YrKy1FMc3iq+xj6Dn86ebcrj/lv6orC79UrDur2nbN7S5d2DxblzbPVMvg6ldUBwCgMXN5DC3bm2l2GQAAwA9CTSCAHUreJUdxUZWh55LU9ihDjdG0WWSoT9k63Z33ki4qmqYIT361bVuFlOmy+CxdEJelZkH0VAEAND2/7qn+j4AAAMA8QWYXAOD4GIahvdvWKyg4pMrQ80h3rmLc2SZVhkBhk1tDHL+qn2O1VoaepWWh58phDfPbtkOoQ+1DMrS7JExrC6JU4ObXBwCgaVhGqAkAQINET00gQBXkZOnwvt2Kio2rsq+Vc58JFSFQBatMZ5bO0715z+u0kl9kM/z3yLRYpFPCS3RtQrpOj8lVqNVdz5UCAFD/dqUXKqOAqVgAAGhoCDWBAJWSvFNF+bmKjG5WZV9L534TKkKgCzeKdV7JDN2b94IGlK6QxfD4bWezSL0jijUuIV2Do/Jlt/hvBwBAY7F8L701AQBoaAg1gQC1f9dWyWKR1Wbz3WEYSnAeNKcoNArRnjxdWvyN7sx7WT3KNlTbzm41NDCqUONapqlPRKFsMuqxSgAA6s8yQk0AABocQk0gADlKS5S8Y6MiY6oOPY9xZyrMKDahKjQ28Z4MXVv4uW7Pe02dnLuqbRdqNXRaTL7GtExTYniRLISbAIBGZjnzagIA0OAQagIB6FDyLuVlZ1Yzn+YBEypCY9bGfVB/KHhXN+a/q9au6p9fkTaPzo7N09UtMtQxtKQeKwQA4OTam1mktPxSs8sAAACVEGoCASglaafcLpfswSFV9rVkkSCcJJ1du/TH/Nd1TcGninOnV9uumd2l8+NydHl8hloHs7ACAKBx+HVPptklAACASgg1gQDjdru1Z8tahUZEVtlnMTxKcKWYUBWakp7OTbor77+6pGiyojy51bZLCHbqkvgsXRSXpeb2svorEACAk2AZQ9ABAGhQgswuAEDtZBzar6z0Q4qJa1FlX5wrTcEGPeNw8lnl0UDHSvVxrNXq0DO0NHSUSq3hftu2C3WobYhDSaWhWp0frXw3v3oAAIGHxYIAAGhY6KkJBJjUA3vlKC5SaHjVnpotXftNqAhNmV0unV66UPflPaczSubKXk2obrFIXcJKdW1Cus6IyVW41V3PlQIAcGIOZJfoYA6LMQIA0FAQagIB5uCe7bIF2WWxWKrsa8kiQTBJqFGqESWzdU/uCxpculRWw39oabVIPSOKNbZlmk6NyleIxVPPlQIAcPxWJmWbXQIAAPgNoSYQQBylJTq4d7vCo2Kq7LMabrVwMp8mzBVlFOji4m91d95L6u1YKxmG33ZBFql/VKHGtkxT/8gCBRFuAgACwPoDuWaXAAAAfkOoCQSQjJR9KszLUWR0bJV9ca5UBclV/0UBfjTzZOmqoom6I/9VdS3bVm27EKuhU6MLNDYhXT3Ci2SR/xAUAICGYAOhJgAADQahJhBA0g4my1nmUHBoWJV98a7DJlQEHF0r9yFdX/ihbsp/S+2cydW2C7d5dGZsnq5NSFeX0BKJcBMA0ABtO1ygMhejCwAAaAgINYEAcmDPNtnswX73NSfURAPW0bVXtxZM0NiCj9TiKM/VmCC3Rsbl6MoWGWoXUlqPFQIAcGxlbo+2Hs43uwwAACBCTSBglBQV6tC+XX6Hnkv01ERgSHRu1Z/y/6fLCycpxl39Ygvxdpcuap6t0c0zlWAvq8cKAQA4OoagAwDQMBBqAgEiPSVZhfm5ivATaoZ5ChXhKaj/ooDjYJWhfmVrdHfei7qg6DuFH+W52yakTJe3yNR5zbIVG+SsxyoBAPBvw8Fcs0sAAACSgswuAEDNpB1MltvllD04pMq+5k56aSLwBMmtoY4l6u9YpRWhZ2t52Dkqs4T6bdsprFQdQ0u1qyRMawuiVOjm1xcAwBz01AQAoGGgpyYQIPbt2iJ7sP/Ah6HnCGQhcujs0p91b+7zGlq6SDbD5bedxSIlhpdoTEK6hkXnKdTqrudKAQCQ9mYWqaCU0QMAAJiNUBMIAEUFeUo7mOR36LnEIkFoHCKMIl1Q/IPuyXtB/R0rZTH8ry5rs0h9I4s0NiFdAyMLZLewCi0AoP4YhrTxYJ7ZZQAA0OQRagIBIO1gkory8xQRFVtln8XwKM6VVv9FASdJjCdXlxVN1p/zX1H3sk3Vtgu2GhocXaCxCenqHVEoq4x6rBIA0JStZwg6AACmI9QEAkBWaoo8HreC7PYq+2LcmbKLIVBofFq40zSm8FPdmjdeHZx7qm0XZvPo9Jh8jUlI1ylhxbIQbgIATjLm1QQAwHyEmkAAOLRvj99AU2I+TTR+7dz7dHPB27q+4H21dKVU2y4qyK1zmuXqqhYZ6hBaUo8VAgCaGoafAwBgPpaPBRo4Z1mZDu/frbCIaL/7mU8TTUVX5w51ce7U1uD+WhB2kXJs8X7bxdlduiAuR2llhVqVH63UspB6rhQA0Nil5pcqt7hMseHBZpcCAECTRU9NoIHLTj+k4oJ8hUdG+d0f5/p/9u47vsmy+x/4585e3Xu3FNoyy0b2FgFRQAQBQVREhgJu/KqPiv7E8bgeRYaLBxwPikwFFQRE9mrZdNG9d7Pn/fsjNG3atE3bJA1w3q+XL5vkuu/rShrS5ORc55S4eEWEdBwGLLrrkrG4+n1MVG6DzFTT5NgggR73+pdjgm85fHlUooEQQohjpRYrOnoJhBBCyB2NgpqEuLnyojxoNSoIxdJGtzGsCZ7Gig5YFSEdiwsT+mlPYmnVGoxW/Qahqent5hEiLaYFlGKUdyU8uQYXrpIQQsjtLLVY3tFLIIQQQu5otP2cEDdXVpQPgAHDMI1u8zRWgAuj6xdFiJsQQI+hmkPoqz2J46LROCMaDgPTuP4swwCdJWp0EqtxXSVBktwDahO3A1ZMCCHkdpFGQU1CCCGkQ1FQkxA3xrIscjOuQSiW2Lzd21jm4hUR4p7ErBpj1XsxQHMUR8XjkSQcCJZpHLTkMEA3qQpdxGpcVkpxSSGDjqVNC4QQQlqPtp8TQgghHYs+yRHixlSKGlSWFjVZT9PbWOriFRHi3jzZGkxS/YLF1R+gmzYZYFmb4/gcFn08FJgZVIyeUgW4sD2OEEIIaUpaCWVqEkIIIR2JgpqEuLHyojyolDVNdj73NlCmJiG2+JnKMF35HR6v+QSddClNjhNxWAzyqsHMoGLES5RgKLhJCCHETmUKHSqUuo5eBiGEEHLHoqAmIW6srCgfRoMBfIHA5u1etP2ckGaFGPMxR/ElHq5Zh1BDTpPjpFwThntX44HAEsSImm46RAghhNRHzYIIIYSQjkNBTULcWHF+Fjhc281MeCYtZKYaF6+IkFtTtCEDj9X8BzPkm+BnLG5ynDfPiLG+lbjfvxShAq0LV0gIIeRWRM2CCCGEkI5DjYIIcVMmkwkFmakQS5qqp0lZmoS0VoL+MuKqr+KioB+OiCeghuttc1yAQI9J/uXI1wpwpsYTZXrb2dKEEELubNQsiBBCCOk4FNQkxE3Jq8qhlFdDJJXZvJ2CmoS0DQcm9NadQQ9dEs4Kh+CYeCzUHKnNsWFCHcICypCpFuGs3APVBr6LV0sIIcSd0fZzQgghpONQUJMQN1VdXgKNWglv/2Cbt3sbqPM5Ie3BgwF3aY+gt+40TopG4pRoBPSM0ObYGLEGUSINUlUSJMk9oDTZLgtBCCHkzpJWQpmahBBCSEehmpqEuKnKshIYDQbw+LYzwyhTkxDHELEajFL/gWVVa9BfcxQc1mBzHIcBEqQqPBhUjIGe1RAyJhevlBBCiLupUFIHdEIIIaSjUFCTEDdVVVYMgGnydg9jpesWQ8gdQMYqcI9qJ5ZUv4+e2nMAaztoyWOAXjIlZgUVo7dMDh4FNwkh5I6WW6Hq6CUQQgghdyQKahLiporzMiEQimzexmN1ELP0BpoQZ/AxVeB+5Y94ouZjdNFdaXKcgMOiv6ccMwNL0FWiBAesC1dJCCHEXeRVqjt6CYQQQsgdiYKahLghvU6L8uJ8iCS2m5fIjNUuXhEhd54gYyFmKb7FIzWfI0Kf2eQ4CdeEod7VmBFYglixCqDgJiGE3FHyKumLZkIIIaQjUFCTEDdUXVEKjVoFkbipoGaVaxdEyB0swpCFR+RrMUv+FQINBU2O8+QZMdqnCtMCShEh1LhwhYQQQjoSZWoSQgghHYO6nxPihqrKiqFVKyEMibB5u8xU5doFEULQRX8dsfoUXBH0wd/iCaji+tkc58c3YIJfBQq1Apyp8USJXuDilRJCCHElytQkhBBCOgYFNQlxQ9XlpQDLgsPl2rzdg7afE9IhOGDRU3ce3XQXcF44CEfF46HkeNgcGyLU4b6AMmRrhDhb44lKA9/FqyWEEOIKlKlJCCGEdAwKahLihsqK88Fwmq4OQZmahHQsLowYoD2ORO1ZnBYNx3HxaOgY2429okRaRApLka4W45zcAwoj/eklhJDbSX4VBTUJIYSQjkA1NQlxMyzLoiQvE8Im6mkC1CiIEHchgA7DNH/hqap3MEh9GFxWb3McwwBdJGo8GFiCuzyrIeIYXbxSQgghzqLSGVGu0Hb0MgghhJA7DgU1CXEzGpUSNVXlEIolNm9nWBOkphoXr4oQ0hwJq8J49a9YWv0eemtPgWFNNsdxGaCHTIlZgSXo61EDPmN7HCGEkFtLLm1BJ4QQQlyOgpqEuBlFdQV0Gg2EIrHN2yWmGnBAgRBC3JGXqQr3Kn/Gk9X/RoLuYpPj+BwWfT0UmBVYgh5SBbhgXbhKQgghjkbNggghhBDXo8JehLgZRU0ltBo1+ELbQU0PY5VrF0QIaTV/UwlmKDYjnxuBQ5JJyOJ3sTlOxDXhLq8a9JAqcU7ugXS1GCwYF6+WEEJIe1GzIEIIIcT1KFOTEDejqK4Cy5rAbaLzucxE9TQJuVWEGXPxsHwD5tRsQLAhr8lxMp4RI32qMD2gFFEi+mBMCCG3GsrUJIQQQlyPMjUJcTPy6opmb5eY5C5aCSHEUToZ0hBT8ymuCXrisHgiKrgBNsf58A0Y71uJEp0CZ2o8UagTunilhBBC2qK4hhoFEUIIIa5GQU1C3ExVWQm43Kb/aYpNSheuhhDiKAxYdNNdRLzuMi4IB+Af8d2Qc7xsjg0U6DHZvxx5GiHOyD1Qrhe4eLWEEEJag7qfE0IIIa5HQU1C3ExFST74QlGTt4soqEnILY0LE/pqT6Gn9jzOiIbiuGgMNByJzbHhIi3ChFrc0IhwrsYTNUb6s00IIe6oQqnr6CUQQgghdxz6dESIG9HrtJBXVTTZ+RygTE1Cbhd86DFEcxh9tKdwUjQKp0TDYWAaZ2QyDBAr1iBGpEGKSoIkuQdUJts1dwkhhHSMcgUFNQkhhBBXo0ZBhLgRRXUldFpNs5maFNQk5PYiZtUYrd6HZVVr0E9zDBzWaHMchwG6SlWYGViCAR41EDAmF6+UEEJIU+RaA3QGel0mhBBCXImCmoS4EUVNJbQadZOZmgxrgpCl7pqE3I48WDkmqnZgcfX76K5NAljW5jgeh0WihwKzgorRSyYHl4KbhBDiFsqVVFeTEEIIcSUKahLiRhTVlTAa9ODy+DZvF7JqcGA70EEIuT34msoxTfk9FtZ8jFjdtSbHCTksBnrKMTOwBAkSJRh6bSCEkA5FW9AJIYQQ16KgJiFuRFFdCYYBGIaxebvYpHDxigghHSXYWIDZiq8xr+YLhOmzmhwn5ZowzLsaMwJLECNSAxTcJISQDlFOzYIIIYQQl6KgJiFupKaqAoDtgCZA9TQJuRNFGW7gUfnneFD+LfwNRU2O8+IZMda3ElP9yxAm1LhwhYQQQgCggrafE0IIIS5F3c8JcSPyqjLw+I27H9cSUVCTkDtWvP4Kuuiv4pKgH46I70Y119fmOH+BHhP9KlCgFeBMjSdK9U2/phBCCHEc2n5OCCGEuBYFNQlxI4rqymaDmpSpScidjQMWibqz6K5LxjnhYBwTj4WKI7M5NlSow/0BZchSi3BW7oEqg+1avYQQQhyDtp8TQgghrkVBTULchMlkglJeTUFNQkiLeDBgkPYf9NaexinRCJwUj4SOEdkcGy3WIFKkQZpajPNyDyiN9KefEEKcoYIyNQkhhBCXok82hLgJjUoBvVYLnkDY5BgBS3XyCCF1hNBihGY/+mmP45h4LM4Kh8DENP7TzmGAeIkancVqXFVKkayQQWvidsCKCSHk9kWZmoQQQohrUaMgQtyEWqmAQa8DX9B0piafpQL0hJDGpKwSd6t2Y2n1e+ilPQOwJpvjuAzQU6bErMAS9JHJwWdsjyOEENJ6Cq2+o5dACCGE3FEoqEmIm9CoFNDrdc1uP+ezlAFACGmat6kS9ym3YlHNh4jTXW5ynIDDop+nHDMDS9BNqgAHrAtXSQghtye1ztjRSyCEEELuKBTUJMRNqJVyGFoMalKmJiGkZYHGYsxUbMIjNZ8hUp/R5Dgx14QhXjV4MLAEncUqMBTcJISQNlNRUJMQQghxKQpqEuImNColGIYBwzBNjhFQUJMQ0goRhmzMl6/DQ/IvEWTIb3KcB8+IUT5VmBZQiggh1e4lhJC2UOspqEkIIYS4EjUKIsRNqFUKoIUsKdp+Tghpi876FMTqU3FVkIjD4ntQyfW3Oc6Xb8AEvwoUaQU4I/dAsa7pxmWEEEKs0fZzQgghxLUoqEmIm1ApasC2sPOTR0FNQkgbMWDRXZeMBN0lJAkH4h/xeCg5njbHBgt1mCIsR45GiLM1nqgw8F28WkIIufXQ9nNCCCHEtSioSYibUFZXgstrOnDAY3XUzIMQ0m5cGNFfewK9tGdxRjQcx0WjoeWIbY6NFGkRISxFhlqMc3IPyI30toEQQpqiMRjBsmyzpYQIIYQQ4jj06YQQNyGvrgSP33RQk2+iepqEEMcRQI+hmoPooz2JE6LROCMaBgPT+DWIYYDOEjU6idW4ppIgWe4BtYnbASsmhBD3xrKARm+CWECvkYQQQogrUKMgQtyERq0El9v09wxUT5MQ4gwSVoWx6t+wtOpd9NGcBMPa3j7JYYDuUhVmBpagn0cN+IzJxSslhBD3p9IZOnoJhBBCyB2DgpqEuAGWZaFTq8BpNqhJmZqEEOfxZKsxWbUNi6v/ja7aZDRV5JfPYdHHQ4FZQcXoKVWAS2UxCCHEgjqgE0IIIa5DQU1C3IDRYIDBoAeX2/R2JcrUJIS4gp+pFA8ov8NjNZ8iRp/a5DgRh8UgrxrMDCpGnEQJhoKbhBBCHdAJIYQQF6KgJiFuQKfVwGgwNJupyQVtZyKEuE6oMQ9z5Rsxt2YDQgw5TY6Tck0Y4V2NBwJKES1Su3CFhBDifqgDOiGEEOI61CiIEDdg0GlhNBog5EqaHMNhqX4dIcT1YgxpeLwmDdf4PXFYMhHl3ECb47z5BozzrUSpToEzNZ4o0AldvFJCCOl4Gtp+TgghhLgMBTUJcQN6vRYmoxFcXtP/JDmgoCYhpON01V9CfPUVXBT0x9+SuyHneNscFyDQY5J/OfI0QpyVe6BML3DtQgkhpAMZTVSKgxBCCHEVCmoS4gZ0Wg2Mxua3nzMU1CSEdDAOTOitO43uuvM4KxqKY6Kx0HBsZ5iHi7QIE2qRqRHhXI0nqo30loMQcvujmCYhhBDiOvQJgxA3oNeZMzU5zTQK4rC0nYkQ4h74MGCw5m/00Z7CSdEonBINh55pvN2cYYBOYg2iRRqkqiQ4L/eAytT06xwhhNzqWGqaRgghhLgMBTUJcQP6mzU1uc1matKbZEKIexGxGoxS/47+mmM4Kh6L88LBMDGNg5YcBkiQqtBZosIVhQwXFTJoWepVSAi5/VCmJiGEEOI69ImCEDeg12oAAAzDNDmGA8rUJIS4Jxkrxz2qnVhS/T56aM8BTTQ24zFAoocCM4OKkSiTg8dQWQ1CyO3FxFJUkxBCCHEVCmoS4gb0Oh2aDmeaUfdzQoi78zGVY6ryRzxR8zE66642OU7IYTHAU46ZgSXoKlGCQ5nohJDbBb2cEUIIIS5D288JcQMGvc5cfK4Z1CiIEHKrCDIW4iHFN8jhxeCgeBLy+DE2x0m4Jgz1rsYQr2qKAxBC3JreYEBmTh5WLX0MXbt0anIcl9PS19SEEEIIcRQKahLiBkzGlreWcyioSQi5xUQaMrFAvhap/K44JJ6EUl6IzXEMgxaz1QkhpCPxuRywJhNMJiMFLgkhhBA3QUFNQtyAyWRsMUuJtp8TQm5Vcfpr6Ky/jiuCPvhbPAFVXL+OXhIhhLQKwzAwmUww2PFFNCGEEEJcg2pqEuIGTCYTmBaimrT9nBByK+OARU/deSyu/gBBhvyOXg4hhLRKc80cCSGEENIxKKhJiBtgKQuTEHIHYMHgD8lUFPPCOnophBDSagwYUHNzQgghxH3Q9nNC3IDJZGqxoJwJXNcshhBCnMAEDvZIZ+KSsH9HL4UQQtqGAViKahJCCCFug4KahLgBk9HY4ptkE0OJ1YSQW5MRHOyUzsE1Ye+OXgohhLQLBTUJIYQQ90FBTULcAMua0FKnIMrUJITcigwsF/8TPoRrbFdAo+3o5RBCSJuxoKAmIYQQ4k4oqEmIG7Br+zllahJCbjEGho/1+vtxTu4PoKSjl0MIIe3i4+kBqUTc0csghBBCyE0U1CTEDRj0+ha7alKmJiHklsKXgjf7Rzzo2QOTVZqOXg0hhLQbj8dFRGhwRy+DEEIIITdRUJMQN2AyGoEWgposKFOTEHKLEHoCc34CogYjqKPXQgghhBBCCLktUZSEEDdgMhlbztRkKFOTEOL+tBCictIGIGpwRy+FEEIIIYQQchujoCYhbsBkNIJpoaimif65EkLcnMokwA7DKKi94zp6KYQQQgghhJDbHG0/J8QNcLjcFrtpUqMgQog7U5iE2M2Mx6DZzyE0qnNHL4cQQgghhBBym6OgJiFugMfjg2VNzY6hRkGEEHdVYxLhV84EDH7oecQk9Oro5RBCCCGEEELuABTUJMQNcHm8ljM1afs5IcQNVRnF2MufhGFznkdk524dvRy3x5pYVBQqYTI2/5pPCCHujifgwCdY2tHLIIQQcgejoCYhboDDbTkL08DwXbASQgixX4VRgt8FUzBi7nMI7xTf0cu5JTAcBnwhFxcP5uHq8QLoNcaOXhIhhLRJQKQHZv7fgI5eBiGEkDsYBTUJcQMcTstBTT0jdMFKCCHEPqUGGfZLpmL0w88iJDK2o5dzS/H0F2PYzC4YOCUGV44W4OKhXCgqtB29LEIIaRWm+R6XhBBCiNNRUJMQN8DhcsG08M5Qd4cHNW/UcPHfFClOFAlQpOaCy7AIlxoxKlSLRxOU8BXZ3spZruFg3RUpDhcIUaziQspn0dtPh4VdlegfqG/TWq5X8rD+qhRnSgSo1nHgLzJhaLAWS3soECZtujbqqWIBvrkuQXKZACoDg2CJEaPDtFjcXQFfYeP1qwwMPr4gw++5IlRqOQiWGDE1Ro3F3ZTg2ahGkFzGx6z9fgCA78eVo39A2+6fPV4/44n/pUvQ2VOPXyeVW32wOVEkwH9TzfdToWcQKDZhWLAWT3RTIkJmnZV2qZyHGX/6gwGLH8ZVoK8T10wcp9jggb88pmPs3GcRFB7d0cu5ZQnEPPQZH4nEMeHISCpF8oFclGTVdPSyCCHELgyHopqEEEI6FsO2VMiPEOJ0Jw/swuHdPyCyS/cmx/BYHWZWfObCVbmPnZkivHraC3qT7TfPASIjvhpViQQfg9X1mTVczDvoi1J140xYBixe61+DuV3UrVrL/lwhnjnubXMtMr4J34yqRKJ/48DcllQJ3j7nafOcQWIjtoytQJSHdcDvsUM+OFZkDmZ7CUyo1pkjmbNiVVg9sHHgY95fvjhdIsCoUA02jKxq1f1qjQtlfDx0wBcmlsHqAdWY1bnuMfzoggwbrspsHifisvh4aBXGhFlnpM054ItzpQIkeOuxfUI5uFQ+1q0V6D1x2HsGxj/8LAJCIjp6ObedwvQqJP+Vi8zkUtA7NEKIOwvu5IkHXuzf0csghBByB6OPjoS4AQ6HC7Tw4dXACGDCnfeNeEoVD6+cqgto8jksunrrESatC2CWarhY+o83tPVigiwLvHTSyxLQ5DAsuvvq4SUwZ1KyYPDOOU+kVtmfsF6q5mBVvbVIeCb08NWDzzH/8hR6Dp497gWNdWwVKVU8vHvew3LZW2BCd189OIz5uGI1Fy+d9LIKYFwo41sCms8nynFqeglGhWoAANtuiFGitn75/rtAgNMlAjBg8Uwvhd33qS1Wn/OEiWUg45swJVpjuX7HDZFVQNNXaEScV9391BgZLD/qjfRq6yDzQ51VAIDrVXz8mC5x6tpJ++TqvXHEbzYmzH+BAppOEtLZGxOf7Im5qwej1+hw8IUtlychhJCOQJmahBBCOhoFNQlxAxwuF/bEK+/EupqbrktgYOuCiL9MKMfOieU4eF8ZlveUW8blK3nYlyOyXD5aJMCFcoHl8oYRldg+oRz7p5QiUmaOOhpYBuuv2N+1c3OKBAq9+WXTV2jE3kll+GVCOf43vtwS2MxT8rAzS2x13IYrUst9iPEw4MCUUmyfUI61w6ssY5LKBDhaVLfeC+V1jaFGhGrBMMDQYB0AwMgyuFxRdzvLAh9dMAdNJ0dpGmWsOtKJIoFl7smRGkh45vttYoFPL9UFbkeGanD4/lLsmVSOTaMrIeKax+lNDN5P9rA65z0RGnjyzcHmb65LYWx6Bz/pQFk6HxwLeBgT5j8Hv6DQjl7Obc8rQIzhs+LwyLtDMXh6LGQ+d97rPyHEvbVUOokQQghxNgpqEuIG7GkUBNyZQc3jxXX3eUqUBvHedQG7xd2UEHLr0hsv1gsE1g9w9vTVYUSoOSDoJWDxcJzKctuhAqFVhmdz9uXWnXNajBohN+tn9vA1YGRo3Zbq3+vNrTWa56g1L14JD4F5zWPCtOjqrbd5nEJf90GhNnBY+/+Gt/+aLcL1Kj54DIvlPZ2bpfn19bog8L3RddvOr1XyUKiqex4v76lAbYLZoCAd5nSpe8yPFgpRrqn78yPgAuPCzRmf+UouDubfec9zd5eh88OZkEcwcf5K+PgHdfRy7ihCMQ99747CvLcHY/zj3RAY5dHyQYQQ4gIU0ySEENLRqFEQIW6A4dj3/YKOEbQ86DbzTC85ilVclKg5GHwzU7EWlwMIOSy0RvO76vp1Li/VC3Am+lnXuOzrX3celYGDjGoeuvk2n91YpWWQq6h7yWxYN7Ovvw4H8sxByfpZlOnVPKgMdb/fRmsJ0OFalXn8pXrHeQrqAphynfl+1Q9k1m6j15uATy+Zt3w/EKtuVJfTkQqVHBwtND8HvQUm9Kv3GOQorAPzMQ3WMSBQh29uBkSNLIPkMj7GhtcFgseEabE907z1/Md0CcZHUCdod5GiDcCliEdwz5xl8PD27ejluL3cnHxoNc55/nK8gD4P+KEyT4qsczUouaFqsXQJIYQ4C20/J4QQ0tEoqEmIG7A/U1PU8qDbzNQYTZO3Xa7goUZfFzAMl5oDaSYWyJTXvbwFiq33MwdLrC9n1LQc1MyosX65bO6ccj0HxSoOgiSmVh2XWcMDy5ozH3rXC7zuyRYjQqbA/ptBUz6HRU9fc0Dxp3QJchU8iLgslnV3bpbm/jwR2Jt1EvoG6Kwa+phY6w82xgaBFhnf+n6nVfOsgpoDAuvu76liAWp0jFVgl3SMq5ogXIt5DPfMXgyZp3dHL8ftsSyLPb/sQ25OAfQ6XcsHtBOPEcMT4fBgQ8Cht3SEEBfj8WnTHyGEkI5F74AJcQN8gX0ZmHdipmZTDCbgvSTrbuK1W8CVesYqa1MmsA6o1d/GDQBVupbflFdqrcd48Fs+Z5DE1KrjdCYGSgMDGZ9FD18DxoRpcDBfhG+uSy1ZjgAwL04FXxELlYHBFzdrgs7tokSQxLnFKE+X1D3/6pcBAIBgiXVmZkoVDwMC6zI506r4Vrc3fFy8hSyCxEYUq7kwsAzOlgoadUknrnVRE4L02McxcfaTkMg8Wz7AjbAmk90Z8I42bea9SDp7EedOJ6O0pBxiiQiBQQHg8531lksN1pgFU40XmGpvMEZ+y4cQQogD8EX0UZIQQkjHor9EhLgBgVAElmXBsmyzRdf1nDsvU9MW083O5vWDbCND6xrkqAzWjyG/wUNa29Snlkrf8vYpdYNz8hrES3gNz3lzfFuOk/HN1306tAobr0nxZ64IFRoOAiUmPBCjttSn3HRdgjINFx58ExZ1U7Z4H9rramVdsCTe23obfc+bneWrbwaIP7rggY0jK+EhYJGv5OCra9YNmRr+jsznNKD4Zrf6yxV8Cmp2oCR1GHISFmHizIUQS2UtH+Bmit99FxypFL5z54Ln7++yeRmGQUhYMELCgjF05F24mHQFp46fRX5eIXhcLgKDAiCRils+UWvxAATIwfrLAbkMqPACtFSblhDiXAKRfTuNCCGEEGehoCYhbkAgFIHD5cJkMoLLbfqfpe4ObBTUkNEEvHjSC79m1wUGZHwTXu9f49R5W9oI3VRYtK3HAeYGOk/1UOKpHo0DlpVaxtK057EEJbyFLAwmYP1VKXbcEKNYzYWv0ISJkRqs7CWHuJ2v9noTUKiqi8gGiKyzQgVc4PEEJT66aG5icr5MgFG7AxAlMyKjhgeN0fqe2irD5S+qy/bMVdAHpY5yRhWB4h5P4p4HH4dQLOno5bSJZMAA5D+9HBVffwPPyZPhu2ABRPFxLl2Dl7cnho8ejIGD++Lq5RScOn4ON9KzYNDrERDoD08vD4d3DmYYAJ4KwFMBViUCKr0AhQTNv9IQQkjbUKYmIYSQjkZ/iQhxAzyBEFwuD0aDoYWg5p2dqak3Ac8d98Yf9bqQ8zksPhpShTBpXZBN3GAruL5BZNHQoP6jhN9y7caG28sNDXZ6G0wNznlzvJjb+Lj6JaiaOq4lG67IoNBz4Cc0YkGCOXNz9VlPbM0wB6FkfBOK1VxsSpHiRg0PX46qtOu8TZHrGKu6mTIbj9kT3ZS4Usm3/H4Ueg6uVJrvbIK3HtfrbUGX8hpvla9/ziot1enqCCdU0ajsvQR3P7AAAuGt+3ojGz4cjEQCVqVC9Y4dqN6xA9Ihg+H7yCOQjhjh8GBic4QiIfr074VefbojIy0LZ08l4eql6yguKoGPrzf8/H3BccJWeUaiASQasDqeObhZ7QGw9O+KEOI4lKlJCCGko9G7W0LcgEAoApfLg8nYfLMaNUfa7O23M70JePpo44Dmx0OqMDLUuiGHlMeCx9QFyJR665c6RYPt5t6ClmtRejUYY+85vYX2HyfgsHYFNQuVHPyQbg5eLumhhITHolTNwc83zNmrM2NVODejBLM6m4OdRwqFuFTevu+w9HYEXzkM8MnQKqweUI1uPnoIuSz8hEbM7aLExpHWQdWGDZMA6+Byw0ZDxPmOqjqhpt/TGD/j0Vs6oAkAHJEIsuHDra5THj+B3CcX48a9U1C59SeYtK4tb8DlchGXEIvZ8x/A0pWPY/zE0eBwOEhPzUR+XiH0en3LJ2kDRmAAE1QOxOYA/hUAr/m/M4QQYi8BZWoSQgjpYPSXiBA3IBCYt58bDS0FNW+92naOwLLAiye8cCi/LtAi4rL4z7DKRgFNAOBygHCZEVk3O6CXqK0DicUq68uxni1/yI/ysG6E0+ic9S578E2Wpj22jvOvF9Crf1yMp8HmtuyG/nNJBq2RQZjUiFmx5sDlpQq+JZOytmHSiBAttt4Mfl4oF6CnX9uDGZ4Ngrpak+2FchhgVmc1ZnVWW11/o8Y6m6NhoyHAurZpwyAyca7DqjjoBy7DmPvm2N24zN153D0e8j/+aHS9LiMDRa+/jtJPP4XPQ7PgM2eOy+tuhoaHIDQ8BMNGDcaFpMs4dewssrPyzHU3gwMgkTi+7ibDNQF+VWB9q4AamTl7k+puEkLagU+ZmoQQQjoYBTUJcQN8oQhcHg9Go7HZcao7NKj56SUZ9ubUfcgXcVmsH1GJwcGNA5q1evjqLUHN82XWQZqL5XWXJTwTYr1aDvYFik0IEBtRerORzfkyAcZH1GV6Xah3zh6+dRlXcV4G8DmsJdPxfJkA3XwNNo/r6dtyplZGNRe7ssyPxdM95BDc/Dwh1zXeGi6tl01Zo2vfdlsxz/xYqQzmIGzDzFQAOFIgQLGai2I1ByNCdOjlV3d/zpRYP+aJ/o3vq7xeFquPkIKarnJAmQDO0Kcw5t7Z4PJun7cFHqNGgREKwTaRkWmsqEDZF+tQ/tXX8Lz3XvgueASiONfX3RwxeggGDu6Hq5eu49Txc8hMz4LBaERAgJ/z6m56KQCvm3U3K7wAJdXdJIS0HmVqEkII6Wi0/ZwQN2Dv9nPNHbj9PLmMjw1Xre/3+4Ormg1oAsDY8LpAxpUKPv4uMAfV5DoGW1Lrmp+MCtVCaGeiwbh63bi33xCjUGl+Cb1eycOh/LqMpwkRGsvPUj6LwUF1a92SKrEEII8UCHC5gm/zuKZ8dNEDRpZBZ0897o+pG+8hqAtg1gYclfU6jHsK2r+fO1RSF3TPt9HI570kD7x62gufXfLAJxdl0N0cnlHDxRdX6gLyEyM1Nrevl2nq/iTFejYf4CftxwL4XdkD/JHPYOSUOU4NaJpY1wepOVIppEOHtjiO1elQvX07Mu+7HzmPPQ7FP/+4YHXWRCIh+g5IxKKnHsHjS+ej38DeUChUSEu5gdKScphMznn8GIkGTHgxEJMHeNUADH2ZQAixH2VqEkII6Wj09RohboDL44EvEEKtUjQ7TsNIYAIHHNw5Hzy/uCK1alAj5LL4LlWK71IbB3iHBGuxpLu5U/jd4Rp08dIjrdocNFx8xAfdfAzIU3BRpTMHz7gMiye7WXcW335DjB2Z5kxIf5ERHw+tttz2eFcltmeKoTUyqNJxMGmvP2I9DUip4kN3MxMzTGrE1BjrrddLeyjwT6EALBhkyXkYtycA4TIjrlbWvQQn+ukwPKT5QO2FMj4O5Jm34K/spbDaqt7DVw8Ow8LEMjiUL8S4cC3+LqgLtPbya/7c9ugXqEd6jfnxzLIR1JzWSY0Pks23HysSYvTuAASKTUir5lkyVb0FJjzTy/bz/HpV3ePhiPWSpplYBvtUveA1ZjkG3z0NXK7zPph+dO4j9Avsh5ERIx1yPoNeD4bDsWvNHnePh+LgQbvPrTx+HMrjxyHs0hk+8+fD6/77wXHhdnwul4v4rp0RlxCLgrwinD97AUlnLiA99QZkMikCgvzB5/NbPlErMQI9EFwGNqACqPIEKj0BI71FJIQ0jzI1CSGEdDT6S0SImxCKJVDUVDU/iGGg5kggNTUf/LxdlKg5OFJgXfNNa2RwusR2kCFIXJfdx+MAnw6rwiMHfVGq5sLEMlZZkQDwcl85Enyss2PzlVzL+cOk1tmCETIj3r+rCs+f8IbexEBl4OBSRd1apDwT/j24CuIGr6x9/PV4ua8ca857gIU5IFpVUZeVGCA24r27qtHSLtN/XzBnO/by01ltfQfM2+Onx6ix7YYE225IsC9HBOXNreLDgrXo1Y56mrUGBugsNTovlzcOrMyPU+FQvghnS82PSZmGizJNXeDJT2jExlGVCLDRJKhcw7Fs7Rdx2Ua/F+I4RpbBb+o+CLh7BQaNvc8pnbcBgGVZvHfmPXx/7XtUxFY4JKjJsix2bNgAlVyOPiNGIK5PH4gkkibHe4wZg0I+H2hlEx5tWjqKXvsXSj/5FD4PPQSfuXPA8/Vt7/LtxjAMwiJCEBYRguGjBuNi0mWcOn4O2Vl54PN4CAzyh5jqbhJCOhh1PyeEENLRKKhJiJsQS2QwtrD9HAA0jAxS3BlBzaQyPth21HmL9TRiz8QybLgiw1/5QhSquJDyWPT21+HxrkoMDGx9t+F7IrXo5FmODVelOFUsQJWOAz+RCUOCtFjaQ4kIme1t04/Eq9DDV4+vrkmRVCaAQs8gSGzE6DBzdqmfqPns2yMFApwuMQcXnm0i0/GNATUIlpiwM1OEIhUXAWIj7onQ4NlExzxfhoRoLfVBk8sFYFlYBWIFXODb0RXYlCLFr9kiZMl54IBFhMyIseFaPJqghFcT2+CTy+qCpCNCtOBTcRSnMLIc7NH0Q+g9KzFg9GSH12usxbIsVp9cjW2p2wAAh/MOw2AygMdp39sOhmHAFwhw8fhx3Lh6FUHh4egzciS6DRgALz+/RuO5np6QDhoE5dGjbZrPWF6OsrVrUf7VV/Ccci/8FiyAsHPndt2H1vL28cKIMUMx4GbdzdPHzyEzIxsGoxGBgX7w8HRy3U2lCKj0BpRiUN1NQkh9tP2cEEJIR2NYlm1/oTVCSLv9umUtriUdR1hMfLPjhtfsRIQ+w0WrIsTaM8e8LE2bfr673KoZUHu8fc4DW26WFPhsWCXujrDd3IW0nYHlYpdmIKInP4O+w+92WkDTaDLiX8f/hd0Zu62u3zBuA4aEDWn3+S+dOIFta9cirFMnVJSUQFlTA5/AQPQcPBg977oLQZGRVvet8qefUPSv19s9LwCAYSAdOhS+CxZANqzlep3OYDQakZ5yA2dOJuHalVQoFUr4+nnD18/HaVm3AMBq+ebMzRoZwNK3DoQQ4PEPh0MkdXxJDEIIIcRe9K6UEDch9fKB0dBypqb6Du2ATtzDQ53r6oUeyHPMtlSWBfbfrBUaLDFibBgFNB1Nz3KxUzsYnae+6NSApsFkwEv/vNQooAkA+3P2O2SOqPh4ePj4QKVQIDgyEjHduoE1mXBk1y5sWrMGOzZsQMblyzAazVnTHuPHA46qGcqyUB49ityFC3Fjyn2o+uUXmHSurf/K5XIR360L5j76IJasfAxjJ4wAywLpqTdQkF8Evd45pRsYoR5McBnQKQfwqwC4VCKCkDsdbT8nhBDS0SioSYibkMo87RpHQU3SkQYF6ZB4s4nP7iwxjA7oWXW0SIAilfmD0aJuCnDpL5NDaVkeduiGI+GBVUgcPMZpAU29UY/nDj+HP7L+sHn7wZyDDumC7unri+iEBFSXlQEAOBwO/IKD0al7d0g8PHDx2DH88OGH+O7993Hp+HEYRSJI+vdv97wNadPSUPjKq0gfMxala9fCUFnp8DmawzAMwiNCMWX6RCx/4UlMmzkFXt6eyMrMQdaNHKjVGufMyzOB8a8yBzeDSwABfQlByJ2Iy+eAQ3+wCSGEdDD6S0SImxBLPcwpay1Qcxp3/SbElV7pKwcDFoUqLg7ktz9b8/tUc6OXKJkBD3ZStzCatIaG5WOnYSR6PvgSegwY7rR5tEYtlh9ajoO5TXcar9BU4FzxOYfM1yUxEUajESZTXZCUYRh4+vggumtX+IeGIic1FdvWrcM3b72F8ohwh8xri7GsDGWffY70UaNR+Nq/oM1wfXkQH19vjBw7FE89twhzFzyIqE6RKCosQXpaJmqq5XBGpSGGAzBeCjAx+UB4ISBVAaCKRoTcKShLkxBCiDtoU1DTZDJhz549WL58OcaMGYM+ffqgZ8+eGDZsGBYsWIBNmzZBLpfbPHbVqlWIj49HfHw85s2bZ3XbvHnzLLetWrWqLUtr9ZytcePGDSgU1g038vLyLOeOj4/HqVOn2rtct3Xx4sVG1506dcrq/ufl5TlkLoPBgI0bN2Ly5MlITExEnz59MHnyZHz77bdOm7Ml9efcvn27w88vlsrAAi1++FRxPBw+NyGtkeivx33R5iywb661L8ieXs3F4Zsd7v/VvwYC+ozkMCqTADuMY9Bn1ip07dv+WpZNUWgVWHZgGY7mt9yM50D2AYfMGRUfDw9vb8ibyI4US6WI6NIF4bGxqC4vx+/XU5webmO1WlT9/DNu3DsFOYsWQXn8uJNnbEwsFqH/oD548ukFeHzxw+jTvxfkcgXSUm6grLTcKgjsSIxUDSa8CIjOA7xqAMY58xBC3IdIJujoJRBCCCGt735eVVWFRYsW4cKFC41uKy0tRWlpKU6cOIGvv/4aa9euRa9evRyy0I5UUVGBzz//HFu3bsUff/wBmezO2v6bn5+Pjz76CL/99huuX7/ukjlXr16NrVu3Wl2Xnp6OkpISdOvWzSVrcDWx1AM8vgAGvQ58QdPZb0qulwtXRYht7w+uxvuDq9t9ns5eRlyfXeyAFZH6lCYhdmMcBs5+HrHd+zplDpZl8fuJ3/HetfdQziu365gDOQewauCqdm+B9w4IQGR8PFLOn7fZ9bwWXyBAcFQUTOHhqMzLhW9V+5+zLWJZKI/8A+WRfyCMj4fvI4/A697JYASuCwDweDwkdI9DfLcuyMstQNKZC0g6ewnpqZmQeUgREOgPPr99nehtYYR6ILgMrH8FUOVp/s/o+HkIIR1P5k1BTUIIIR2v1e80ly9fbhXQlEgkiIqKAsMwyMrKgkqlAgCUlJTgiSeewL59++Dr62vXuRMSEiw/d+rUqbVLc4rTp09jyZIljTI07xS//fYbVq1aBV0TjRA8PT0xcOBAy2WhsP1bUQ0GA3bvrmsywefz0a1bN8jlcvTq1cspc7oDkUQGPl8Ag675oKaC4wkTGHBomx8hxIYakwh7OBMw5KHnEZPgnC8WWZbFnqN78M6Vd6AUK+0+rkRVggulF9A7sHe719AlMRFXTp6EyWRqses3h8uFvHNn+J51zPZ3e2lTUlD4f/+Hko8/gu+cOfB+6CHwfHxcNj/DMIiIDENEZBiGjRqMC+cv48yJ88jOzAGPx0NQSCDEYpHj5+WZAP8qsL5VgNwDqPACdBQAIeR2IvW+Pd5/E0IIubW1Kqh5/vx5q+3Vjz/+OJ5++mmIxWIAgFKpxBtvvGEJSFVVVeG7777D8uXL7Tr/K6+80prluER2dvYdG9AEgNTU1CYDmgDQtWtXbNmyxaFzVlVVQa2uq6v3xhtvYMaMGVZjHD2nOxBLPcATCKDXayFG01vMWYYLFccDMlONC1dHCLkVVBnF2MubiOFznkdkl+5OmYNlWWw/vB3vp74PlVjV6uMPZB9wSFAzOiEBMm9vKKqq4GnHl6cVkZGIcnFQs5axtAyln/4HZRs2wuv+++H7yCMQdopx6Rp8/XwwevxwDBraH1cuXsfp42eRdSMHRpMJgYH+8PCUObyJFMMB4CUHvORglWJzcFMlcegct5qi6kxcyD+E/Kp0qHRyCHlihHl3wYCoexDgEdGmc6YWn8HVwhMoUeRCZ1BDJvRGjF9PDIieCImgrgnh1cITOHB9s93nHZcwH91CBgMATCYjzmT/jmtFJ6DQVkEi8ETngD4Y3Ok+8LmNg1s1mnJsOfUGjCYD7u66AAnBg9p03+xxNvsPHL+xEyK+FI8Ofgd8bl0AvUZdjvO5B5BdcQUKbRW4HB78pWHoFjIEXYMHgWHqvhAxGPX45sT/QaNXYHCn+zEg6h6nrfl2QEFNQggh7qBVNTUvXbpkdXnRokWWgCYASKVSrF692uq68+fPt3OJ5E6j1Vp3Uo2IaNub/FuNSCIFXyCCoZkgci0Fh7agE0KsVRgl2CuYghHzVjktoGkymfC/v/6Hd9PehUrU+oAmYN6C7gg+gYEIj41FVbl9W991MhkUzWxVdwVWo0HV1q24MXkycp9cDOXJky5fg0QixoC7+uDJ5Y/iscUPo3ffHpDXKJCakuH8upsRRUB07h1bd/NU5m/46fwHSCk+A4W2EibWALVejvTS89h67j1klDYu7dQcg1GH3Re/wO9Xv0FO5TVo9AqYWCNqNOW4kH8YP555B1WqEoes/VDq/3Aq61fUaMoh4Iqg0FYiOe8gfru0web4k5l7YDQZ4CcNQ3zQAIeswZYadTlOZ+0FAPQIGWYV0Mwqv4zvTr+Ji/mHUa0uhdGkh86gRkF1Og5c34xfL2+A0WS0jOdx+egZam6odiZrH+SaCqet+3Yg9aKgJiGEkI7XqkzNhg1MPv/8czz//PMQieq2LonFYmzevNmS3dia+pPz5s3D6dOnAQDTpk3Du+++a3W7TqfDli1bsGvXLmRnZ0MikeCuu+7C008/jZqaGsyaNcsyNiUlpcl5TCYTfvzxR/z000/IzMyERCLBgAEDsHjxYnTvXvdBcMyYMcjPz7c6duzYsQCAp556Ck8//XSTc7zwwguWjFWJRILjx49bBXsB4MKFC5g5c6bl8tq1azFu3Lgmz1krMzMTmzZtwunTp1FUVAStVguZTIbo6GiMHTsWDz/8MKTSxs071Go1tmzZgv379yMzMxMqlQp8Ph+BgYHo27cvFi1ahNjYWMv4+Pj4RueovW7NmjWYPn06Tp06hfnz51tu/+uvvxAeXtdltrVrtTVn7fnDwsJw8ODBFucEgOvXr+Orr77CqVOnUFlZCZlMhq5du+K+++7DfffdBy7XdjeSo0ePYtOmTbh48SK0Wi26dOmC+fPn47777rM53pE4HA5kXj4oyc9ucayC6wUYcp2+JkLIraHMKMUf4qkYPfdZhEZ1dsocRqMRW/Zvwec5n0Mr1LZ8QBPyFfm4Wn4V3fzaVx+ZYRjE9emDa+fPg2VZu7IMKyIjIbMzCOpULAvF339D8fffEHbtCt9H5sNr8mQwfL7LlsDj8dC1RzwSuschLycfSWcv4vzZi5a6m4FB/uDxnF130+tm3c3bv0PY5YJ/cCrrV8tlIU8MT5E/ypUFMLFGmFgjDlz/L0K9V0PMt++984HrW5BVXpdw4CH0BZ8nRIWyEACg1FXjwPXNmNH3eQCAROCJMO8uTZ6vUlUMlc68C0TEkyLU2/xaotRW42rhMQBAz9ARGB0/G4dSfsSlgiPIqbyGoposBHtGW85TrshHSpH5/fzgTvdZZUM62tGM7TCYdGDAoEfYcMv1Gr0Sv1/9BgaTHgDAYXjwk4ZArq2ERm/+jJJZdhEnM/dgaOxUy3E9QofhbPbvMJh0OJK+DZN7LHLa2m91lKlJCCHEHbTq3WrfvtbNBmoDjKNHj8aQIUMwaNAghISEOKU5kEKhwMKFC5GUlGS5TqPRYO/evTh06FCzAcb69Ho9li5dikOHDlmu02q1+PPPP3H48GF8++236N+/f7vX+8ADD1iCmiqVCocPH8bEiROtxvz++++Wn318fDBy5MgWz3vy5Ek8+eST0Gg0VtdXV1fjwoULuHDhAg4cOIBvv/3WKqCs0WiwcOFCnD171uo4o9GInJwc5OTkYO/evfjmm28wYIBjvlFv61rb68cff8Rbb70Fo7Hu2/fKykocP34cx48fx44dO/DFF180mvOTTz7BunXrrK67dOkSXnjhhUaPm7N4ePuiICutxXEKrrfzF0MIuSUUGzzwl2w6xs59BsERztnSbDQa8fW+r7GhcAN0wpazyVtyIPtAu4OaABCVkACZhwcU1dXw8PZucXxFVCQi672PcAfaa9dQuOpllH70MXzmzIHPQ7PAteO+OArDMIiICkdEVLil7ubpE+eQeSMHAj4fQcEBEDmt7malue5mjQyovH3rbuoMGhzN2GG53DmgL+7utgA8Dh8l8mz8dO7fMLEGaA1qpBafQWL46BbPmV+VhtSSuvcmw2IfQN9I8xfjF/IO4+80c7PFguoMlCny4S8LQ7Rfd0T72c7iVunk+O70mzcvMZjQ7TF4iwMAAMXyLLA363hH3Tw+yq8bLhUcMd9ek2kV1Dx+YxdYsAj27IRO/s5rGFqlKkFGqfnfc4RPAjxFdZnYVwtPQGcwlzIScEV4sN8L8JOGQm/UYWfypyisuQEAuJj/N+6KmQIuxxxY9xD5ItK3K7IrriKjNBlVqhJ4SwKddh9uZTIfCmoSQgjpeK366rRXr14YM2aM1XU1NTXYtWsXXnrpJYwaNQoTJ07Exx9/3CjDsb1Wr15tFdDk8/no2rUr/Pz8oFar8e9//9uu8yQlJeHQoUPw8PBAYmIi/P39LbfpdDp89NFHlsuJiYmIjo62Oj4xMREDBw5EWFhYs/MMGjTIatv0vn37Go35448/LD/fe++94LeQocGyLF555RVLkJDL5SI+Ph59+vSBT73GAxcvXsSnn35qdez69eutAnPh4eHo06cPgoKCLNfpdDqr4wYOHIjQ0FCr8wwcOBADBw60etwcudaBAwciMTHR6lwJCQk2r7fl2LFjePPNNy0BTbFYjO7du1v9vk6dOoXXX3/d6rgDBw40CmiGhoYiLi4OXC63USd2Z/Hy8YdRr29xnJzjukYThBD3Vaj3xF9eD2L8Iy84LaBpMBiw4dcNWF+0HjpB+wOaALA/e79DzuMfEoLQmBhUl5XZNV7r6QmVCwOGrWEoKUHpJ58gbfQYFL7xBrSZmS5fQ23dzaeffxJzHnkQEdHhKCwoRnpaJmpq5I127DgCw2HBeMuB6DwgvBCQtK2sgTtLL02yBNg4DA9j4+eCxzG/5wv0iELv8NHoFjIEA6Mnw0/a/PvLWlcLj1t+DvKIsgQ0AXO2YWxAb/QMG4HBne63zNWcI2k/QaM3N/3qGTocUfW+dNAZ6r6crq2fWb+OZv3bC6szkHkze3RIp/vtui9tlZR7wBJsbbjFnWEYBHlEgc8VolvIUPhJQ2+uW4C4oLrkBb1RA7VebnVsnOVcLC7kH3ba+m91lKlJCCHEHbR6X9EHH3yAp59+GsePH7d5+40bN7B+/Xp8/fXXWLlyJRYuXNjuRebm5mLPnj2Wy507d8bGjRsRFhYGlmXxxRdf4D//+Y/d55s0aRLWrFkDkUgEvV6PJUuW4J9//gEAJCcnw2AwgMfj4eOPP8bPP/+MV1991XLsRx991Girsy0Mw2D69OmWgN3ff/8NpVJp2Wp98eJFq8DvtGnTWjxnWVkZ8vLyLJd//fVXS5d4g8GAVatW4ffff0dkZCTkcus3aNevX4dEIoFKpcKSJUuwcuVKAObg40svvYRdu3YBMDcGqrVlyxZ8/PHHWL9+vdV19mjrWrds2YK8vDzLNn8A+L//+z8MGmRfgfkPP/zQ8qGrd+/eWLduHXxvNpD48ccf8cYbb1jWs3TpUst2+40bN1rOweFw8P7772PKlCkAzKUMFi9ejIKCArvW0B5iqQfAtPyhsYZLQU1C7nS5ei8c9X0IEx5eCb+g0JYPaAOdXoe1u9dic+VmGPgGh503qyYLaZVp6OLT9FZYezAMg/i+fZF28aL9W9CjoiCpqmrXvM7EqtWo+t9WVG39CbKRI+G7YAGkdzmvyYottXU3+/TvibTrGThz8jyuX01DUUEJ/Px84OPn3WLH+dZiGABSNSBVg9XygQpvQC4FWOdtXXaV3Mrrlp/9ZWEQ8q2bJQ3rPL3V58ypd86GW8q5HB4m93jS7nNlll2yZH2K+TIMqbcdGwCEvLr11gZn6wcy69+fYxk7AQCRvt0Q7hNn9xpay2DU43qxeYs7AwbR/j2tbu8TMRZ9IsaCZVkYTdavXVXqUsvPXA4fEr51c8Zovx5gwIAFi2uFJzC00zTwuK4rDXEr4HAYSDxuz8xqQgght5ZWv1OUyWT45ptvsHbtWowYMaLJ7EK9Xo8PPvgA3333XbsXeezYMavC9a+++qol845hGCxbtgy9e/e261w8Hg9vvPGGpQ4on8+3CigajUZUOejDzvTp0y1v+jUaDQ4ePGi5rX7mZlxcnFUtz6Z4eXlZ1S9dt24dTpw4AY1GAx6Ph3feeQfJycnYu3dvo3qk69evx/nz57F//34sXbrUcr1er0dwcLDlsqM6vbdnrW2Vn5+PK1euWC4vX77cEtAEgNmzZyMmpi6T6a+//gIAyOVyXLx40XL91KlTLQFNwFzn84UXXnDIGlsi9fSGPYkwCq43HJ8vQwi5VWTrfHA84GHcM/9ZpwU0tTotPtn5CTZXOTagWetAtmMaBkXGx0Msk0FZU2PX+IqoSIfM63QsC8Xhw8hZsAA3pk9H9a5dYO3I5Hek2rqb8x5/CEtWPIZR44fDaDIhPTUThflFMBgc/7wAzHU3mZBSoFMu4FcJcI0tH+TGyhV1X2J7iHyg1atwKvNX7L6wFr9d3ogLeYegN9qfBa3RK6HUVtU7py8qlEU4nLoVOy98hj+vbkJ6yXm7MmtZ1oQj6T9bLg+Mngwhz7oGfJBnlKUuZmrJWegMGqSVnLPcHuJp/tI6s+wSCqrTATBOz9LMqbwKvdFc29dPGtpkHVKGYSwBSZWuBhfyDuFS/hHL7b3CRoLDsa7pKubLLJmdOqPGKihNzCReAjCclr9EIoQQQpytTRXgGYbBuHHjMG7cOCiVSpw5cwYnT57EsWPHrDL9AOCzzz7DjBkzrAJcrZVZbwsWl8u1WfNx6NChSE5ObvFcMTEx8PKy7hzt3WArms6O7tP2CA4OxpAhQ3D06FEAwN69ey3Bsvpbz6dOnWrX+QQCARYsWGDJnNy9ezd2794NPp+PhIQE9OvXDyNHjsSgQYNsNsJhGAYSiQT79+9HcnIyrly5gsuXL1t1G69fh7I92rvWtmj43HvssceaHX/9uvlNam5urtUbf1tZofZmiraXzNMbHC4XBoMePF7TWQFGhg8VxwNSk7zJMYSQ21OGzg/nQh7GPXOfhpdvgFPm0Gg1+PeOf2ObchuMPOcElPbn7MeS3kvafZ7A8HAER0aiIDMTsgZ/321Re3tD7ekJsZ1BUHegvXoNBS+tQsmHH8Fn7lxz3U077quj1K+7OXzUXY3rboYEQiRy/FZUhme8LepuKnTVlp81eiV+OPv/rDprZ5QmISn3L9zXaxl8pSEtnk9Z73yAuW7m0YwdMJrqgt7Xi08hwqcrJvdYBAGv6ffgN8ouofpm5qKYL0P3kCGNxkgEnugVNhIX8g4hreScVUCzc0BfBHhEgGVNOHFj183r+iDQw7lfHuRV1tUf95O1vGU/s+wS9lz6wuq6+KCBGNppqs3xfrIwlCnNwei8qhTENMgEvdPR1nNCCCHuotWZmnq9HsXFxaisrAQASKVSjBo1CqtWrcKePXuwY8cOqw7aVVVVVllwbVE/e9Db29tmN86AAPs+2Hl6eja6ruH56meFtteMGTMsPx89etSSFVi79ZzL5baqs/YzzzyDf/3rX1b1OvV6PS5duoRNmzbh0Ucfxd13340jR45YHVdWVobly5djxIgRePbZZ7F582acO3cOMpkMcXHO2R7U1rW2VcMt9y2pzchVq9VW1/v5+TUaa+t54wwyLx8IhGLotZoWx8ppCzohd5xUbQCSwhfgnodXOC2gqVKr8O62d/Gz6menBTQBIK0yDdk12e0+D4fDQUK/ftCq1XbXfLxlsjUbMJSUoPTjj5E2egyKVq+GLrv9j19r+fn7YszdI7D8+ScxZ/4MhEeGoTC/CBlpWZDXKJxfdzPs1qu7qTfW/U3Pr0qzCmjWqtGUY9fFz6HVt3zf6m/9BoC0knNWAc1auZXX8Oe1Tc2eKznvL8vPvcJGgce1HTQe0XkGRnaZiUCPKEgEnvCThuGumCmY0M38BXJK8RmUKfPBMBwM7jTF5jkcqVSRY/nZ346gZo2m3Oqyp8gP8UEDGmVpWs5Zr7ZpcU2OzTF3MgpqEkIIcRd2Z2rq9XqMHDkSFRUVYFkWU6dOxXvvvddoXLdu3bBy5UqrbuRldhbwb4pYXLcNRqlUwmQyNarlVFpa2vAwmxyVFWivsWPHwtvbG1VVVdDpdDhw4IBVRuGwYcPsDsjWmjt3LubOnYvr16/j2LFjOHv2LJKTk1FRYX6TnJeXh6VLl+K3335DVFQUWJbFokWLLFuze/bsiUceeQT9+vVDaGgotm3bhldeecVxd7oda22P+s8TANi0aVOz2/prnwu1dU5rVVdXNxpr7/OrvWSePhAIRdBp1Ob6ms2o4fgiGPRGm5A7xVVNIK5GP4p75iyFzNPbKXMoVAq888s7+E3/G0xcx33B15T92fuxsGf7a29HxcdDJJFArVBA4tH8aycAVERGIuzS5XbP21FYlQqVP/yIyv9thWzUKPgueATSgQNdugaJVIIBg/uid/9eSEvJwJkT55ByLR2FBcXw8/eBj6+T6m7K1IBMDVYjMGduymUA697bYFnW+t9SiFcsxsbPhUTgiSsFx3DshrkzulxTgaS8g7gr5t4Wztc4cNwzdDgGxdwLo8mAoxnbLdmUN8ouIK8y1WZ9y1J5LvKrzBmPDMNBz7ARTc7JMBwkho+22ZndaDLgZKa59n3X4LvgIzGXNbqY/zcu5B1GtboMQp4IMf69MDR2WpNbxVujWl332UIisCNDWy9HoEcUtAYVqtWlqNGUY/fFtegeMhRj4uc2qscrEdZ9mV2jad/nmNsRBTUJIYS4C7vfbfL5fISEhFjeSB08eLDJYGVRUZHV5cDAwHYsEZYGM4C5NuWFCxcajalt9ONsrc1AEAgEVvUZf/vttzZtPQcArVaLlJQU7Nu3D1u2bEFCQgIef/xxS73K+g199Ho9Dh06BAA4d+6cVa3JjRs3YsqUKZbO5q0J2Nl7/9u61vaonyEMAOnp6fD09LT8JxaLsXnzZhw5cgQFBQWWDN2oqCir2rCnT59udO4TJ060e332EIjEkHp4QWdHpmYVr/kO9ISQ28clTQiuxy7CpIefclpAs0ZRgzd/fhO/Gn51SUATcFwX9OCoKARFRKDKzi9RVX5+0MjaH1jpcCYTFAcPImf+I8h8YAaq9+wB66Q6l03h83no1iMe8xfOxuLlj2HkuGEwGo1IS7mBwoJi59XdFOlu1t3MAXzdu+5m/U7hDBjc0+0x+EpDIOJL0S/qbkT71W1tvlGa3PL5eNYBJR9JEEbFPQSJwBMeIl+MT5gPcb3mNxllts9Zv4N6mFdnSAQtfyFgy+WCf1CjKQeXw8egaHNA9kz27zic+j9UqorA5fCg1itwtfA4diR/CqOp/b+r2k7tACDgtlzi6q6YKXio/yo8ctdqjIp7yHL9lcJjSCk+02h8/XNq9I6pN387kXrdemUgCCGE3J5a9RX69Ol13Rlramrw1FNPWdW7BMxdvut3Ivf390fPnu2rQzNq1Cirb1DfeOMNS+DUZDLh448/bvcW96Y0bIRUu+2+NVvUG25Br9167unpadXluyXffPMN7rvvPqxcuRJvv/02fvjhB6sgY8OMiNrHrGGQ+eTJk5afz549i82bN1vdXv8DSFvvf1vX2h6dOnWyagS0du1aXLp0yXL5q6++wmeffYbnnnsO999/vyVQKRaLrWpmbt++HQcO1DWwuHbtGj755JN2r88eDMPANzDUrqBmJdc5W08JIe4lSR2GjLhFmDhnCSQy55TCqJJX4bWfXsMfpj/AclzXhuxq+VXk12ui0lYcDgfxfftCrVTavwU98tbcgt4UzZUrKHjhRaSPG4+yL7+E0cU1QxmGQWR0OKY9OBlPPfck7n9gEiRSCTIzcpCdlQutRtvySdoyL88IJqDSHNwMKgUEjqmL7kj1A4xSoTc8RL5Wt4d5dbb8XG1HVmDDTMcgj2hLIx8A4HEFVjUtq9W2v7zOKKtLEugUkNjivLboDBqczjI3v+wVNgIeIh8YTUacy/kTgLkL+uLhH2LIzdqVZYo83ChrnJzQWia27r2qgNu6rMFeYSPhLwu3XL5efKrRmPqBaBPrmi95biUyytQkhBDiJlrVKGjmzJn45ZdfLFl/SUlJmDx5MsLCwuDj44OCgoJGWX8rVqyAUNi+P3yhoaGYNm0atm/fDsDc4GX8+PHo3LkzCgsLLYE2Z/Dxsa5buGjRIgQGBmLYsGF48cUX7TpHQkICunfvjitXrlh92Jo4cWKrHpvZs2dj8+bNlq3bb775JtavX4/Q0FBUVFQgu15tLaFQaAmYdunSxeo8zzzzDDZs2ACtVtsoKA2Yt/jXNlOq3z0cMGeWymQyzJkzBw8//LDD19peK1aswMqVKwGYA7AzZ85EbGws9Ho9srKyLOMSExMxatQoy+Vly5bhxIkTMBqN0Ov1WLZsGWJiYsDn85GRkQGj0Qgul+uwRkrN8Q0MhsGODrdVvACwANx70x0hpD3OqiNQ2G0RJs5cCKFY4pQ5Kqor8Oq2V/EP958OeUE5kH0Aj3R/pN3niU5IgEgigUalgrhBWRFbKqMiEXr1arvndTeGoiKUfvgRytath/e0afB9ZD4ELg7g+gf4YsyEEbhrWH9cvnANp46fRXZWHliWRWCgP2QeUod8mVkfw2EBbzlYLzmglJi3pqvELR/oAr7SEFSpSwAAJrbx+4j6mZcNt6rbIhN6Q8gTQ2sw1wQ3so2zYesH5WwF+iuURVBo694/188WbY2k3L+g1svB54rQP/IeAEClqgi6m2uL9u0OhuEgyq87jt/YCQAoqslEl8C+bZqvlpAngfpmBqXBRj1RADAY9VBoKyHiSyHiW78meIn8UabIAwCbNU5rO6sDaHQsoe3nhBBC3EerMjX5fD6+/PJL9O1b90bEaDQiJycHFy5csApo8vl8PPPMM5g5c6ZDFvrqq69aZXzqdDpcvXoVlZWVCAgIwLx58xwyT0P9+vWDR736XJWVlUhJSbFkW9rrgQceaHRd/cxXe3h7e2PDhg1WjWyKi4uRlJRkFSQUCAR49913ER5u/hY6Pj6+0Tb369evWwKaYWHWBdbrBzqHDRtmVYe0uLgYGRkZKCgocMpa22vixIlYuXKl5cOSyWRCWlqaVUAzJiYGa9eutTqub9++eO2116wySDMzM5Gamgqj0Yjp06cjMbFtWQyt5eHtDwYtZxoZGT4UHG/nL4gQ0iFOqqJR3GsZ7p71hNMCmmUVZVj106oOC2gC5qCmI4TExCAgNNTuLegKf3/oJM55XN0Bq1Kh8vvvkXHPROQ+9RRUZ8+6fA0SqQQDh/TD4hWP49En56JnYldUVdUgLeUGyssqndNUiAEYmQpMRCEQlQd4ygE7/qY6U2i9TEyVrgZVDTInq1R1lz1EjZsV2hJS75zFNVkwNdjSXT8709PGOQurMyw/C3kSeItbv/tDrVMgKdf877dvxFiIBeYM0tqAJgBL5/X62ZRaQ/sbPYnrbZXXGRvvbvnvyX/hiyPLsfnU60jOPWh1G8uyqFAVWi7b2navrXcfKKjZmKe/e3xhQAghhLS6grufnx++//57fP7555g4cSIiIiIgkUjA5/Ph7++PHj164IknnsCuXbuwePFihy1UKpXihx9+wPLlyxETEwOBQICAgADMnDkTO3futAqKCQSOq/Mik8nw9ddfY9CgQZBIJBCLxYiJiUGPHj1adZ4pU6ZYbeWOjo5G7969W72eXr16Ye/evVi+fDkSExPh4eEBLpcLiUSCuLg4zJs3D3v27MGkSZOsjnvnnXewatUqxMXFgc/nQygUIjY2FosWLcLOnTuRkJBgGbtv3z7Lz5GRkVi3bh0SExMhFAot83Tu3Bktaeta22vJkiX46aefMHXqVISFhUEoFEIkEiEuLg5PPfUUtm3bZrM50+zZs/HDDz9g9OjR8PLyglgsRp8+ffDBBx9gzZo1Dl1jczx9fAGGY1dWaCWPtqATcjs6quqEqn5P4e4HH4NQ5JwPjyXlJXhx24s4wT/RoSnfF0ovoERV0u7zcLlcxPfrB7Vcbt8BDIOKyIh2z+v2TCYoDvyF7IfnIfPBmaj+9bcOqbvZvWcCHnliDhYvfxQjxwyBwWBA6vUMFLmi7mbszbqbnI6puxkX1B+cetvDD17/zhI0q1KV4FpRXd3uaL+mGxzWlxBcVzanRlOO4zd2WoLEaSXnUarItdweZeOctVmKABDo0bZ/B2ey90Fn1EDEl6FPxDjL9QJe3WtWbad2Xb3MRyGv/V8meArrArUNO5sD1h3Rk/MOokRe94X6mex9qFQVWy7H2MhSVenqyjf4SkLavd7bCY/PgYdfy3VMCSGEEFdgWGd8Te5gSqUS2dnZCAoKgq+vr80tS59//jk+++wzAEBQUBCOHDni6mU2Kzs7GxMmTLC84Vy+fDmWLVvWwasi7qi0MBffffwvePoGQCxtvpFFD9Vx9FK7pokRIcQ1Dqu6QD/wKYy6bw74DvySrr7CkkK8uONFJAuT3aKGxcsDX8acrnPafZ6clBRsfu89+IeGQmRHFqZHUTG6/flnu+e91fBCQuD78Fx4z5wJrh3d4p2hrKQcF5Iu4/SJcyguKoVIKERQcACEIudta2VNDFAtM29N17u20cmxjJ04l1PXKFLAFcFLHIAKVSGMJnNQV8gTY+7Af0Em9AYAZJVfsTrmgT7PWn5mWRbbzv8bhTU3LNdJBV4Q8aUoVxaiNjs1yDMaM/u+2Oi9864LnyO7wlxOqnf4aIzo0rqdVXJNBTafeh1GkwHDO89An4i6MkJGkxFfHn0eOqMGkT5dcX/iUzib/QdOZO4GAEzsvhBdAvu1ar6Gzmb/YdnO3i14MMZ1nW91e4k8Fz+de9dSD5NhOPCThkKrV0Gurdtu7iUOwJwBr4LPtX4+/H7la6SWmLObh8VOR9/I8e1a7+3EP0KGWa8M7OhlEEIIIQDakKnZEUpLSzFt2jQMGTIEPXv2xIwZM6DV1n3jW1ZWZpVd2LCGZEfT6XR4++23LQFNDoeD+++/v4NXRdyVp7cfBCIxdJqWt2dVUaYmIbeVv1QJMA1ZgdH3z3VaQDOvKA/Pbn8WyaJktwhoAsCBHMdsQQ/t1Al+ISGoLm+cuWWLPCgQOtGdl3FkKCxEyQf/RvrIUSj6f+9Al5fX8kEO5h/oh7ETRmL5809i9vwHEBIejPy8QmSkZUEhd063aYbDgvGRAzF5QFgRIFa3fJCDDI6ZgvigAZbLOqMGpYpcS0BTwBNjUo8nLQFNwJwtmF+VZvmvPoZhMLnnk/CX1mUkKnXVKFcWoDag6SsJweQeT9pMBqifiVi/kZG9TmbugdFkgEzog55hI6xu43K4liBgTuU1rP/nOUtA008aik7+7S/nE+Zd916/uF4WZq1AjwiM77oAXI55lxTLmlCmyLMKaPpIgnB/4tONApoAUFovkzXYs1O713s78Qm6fct2EEIIufW0qlFQR4mMjERoaCgKCgqg1+tx6dIljBgxAjExMVCr1cjIyIC+XmOV1taqdJZHH30UfD4fqampKCysq90zfvx4h9WQJLcfoVgCmZcPKkuLWhxLHdAJuT2wAP5UdYdw+NMYPvFBcHnO+fOcXZCN53Y9hxRJilPO31bni8+jQlMB3wZdoVuLx+cjoW9fHPzlFwRF2LGllmFQGRmBoNS0lsfehkwqFSq3bEHl99/DY+xY+D66AJK+7Wvg0lpSmRSDhvRH3wG9kXotDaePn0dqSjoK8ovhH+ALH19vxzcVYgDIVIBMBVYjMGdu1sjgzCg/h8PFhG6PIda/Ny4V/IMSeQ70Rh1kQm9E+3VHv8i7G3VFb4lE4ImZ/V/Cxby/kVJ8GlXqErAsC29JILoE9kPv8NFWDYPqq98IR8hvXZCqXFmI60XmjuGDoieDx+E3GjMwehKEPDEu5h9BtboUIr4MMX49MDR2Gric9r++BXlEQcz3gFovR4WyEFqDGkKedamO+KABCPSIRFLuX8ipuAaFtgpcDhc+kmB0CeyLXmEjbT4+Gr0SVTe3p4v5MgR7xbR7vbcTnxCqMUoIIcR93BLbzwHgxIkTWLx4MTSaxsXA65s6dSree+89F62qeffcc0+j7uJBQUH43//+h9DQ0A5aFbkV7PvfRlw8cRARnbs1P5Bl8WDl5+CzOtcsjBDicCaWwe/qnvAcvQKD755m1ZzNkW7k3sBzvz6HdEm6U87fXq8Pfh0z4ma0+zyZ165hy3vvISgiAkJxy/VIPQsK0PXAX+2e93YhSuwFv0cegceECWCc9FxsDsuyyM7MxfnTF3Ah6TKqq6rh6eWJgAA/cHnOWw9r4AKVnkCVJ2By/f0mrXcsYwfO5ZjLR9zTfSHi2rmlvVZ6aRL2Xt4IAEgMG4WRcbMcct7bxd0Lu6NL/6COXgYhhBAC4BbZfg4AgwcPxq+//ooFCxage/fu8PT0BI/Hg1AoREhICMaPH4+1a9e6TUATMHdO9/b2hlAoRFRUFKZPn44ffviBApqkRf7B4TCZTC0PZBhUcf2dvyBCiFMYWQa/qfvAZ/xzGDJhutMCmmnZaVi+Z7nbBjQBx3VBD4+NhV9wsN1b0GuCg6F30lb/W5HmwkXkP/scMsbfjfJvvoVR4Zyt4E1hGAbRnSIx/aEpeOq5J3DvtHsgEotwIyMbOdl5VuWHHDovzwgmoNLcVCiwDODrWz6IdKgeocNRm117ozTZYefNKE26+RODnmEjHXbe24UvZWoSQghxI7dMpiYhd5L0y+ewbeP7CI/tCg6n+e8eBigOoIv2gotWRghxFCPLwR5NP4ROWIkBoyc7fIttrWvp1/Dcn88hV5rb8uAOxOPw8Pesv+Ep8Gz3uQ789BOO7NyJTj162DW+07HjCMjIaPe8tyOOVArvGQ/AZ958CMLDWj7ACRRyJS5fvIZTx84iJ9tc6zAoKAAyD+cFV1gWgEJi3pqubjnjl3SMfVe+QlrJOfA4Ajw+ZE2rt9I3pNWr8PXxVTCY9Ogc0BeTejzhoJXeHhgOgyc/HQku/5bJiyGEEHKbo79IhLghb/8gCEUSaNXKFsdW8AJdsCJCiCMZWC52aQYiYvILTg1oXkq9hBX7V7h9QBMADCYDDuUccsi5ort2BZfPh87OrL6KqEiHzHs7MimVqPjvZmRMmIC8FSuhSkpq+SAHk3lIcdfQ/li68nE8umgOuvdMQGVFFVJTMlBRXglnfD/PMADjoQITWQhE5QEectQ24CHuY2jsNPA4fBhMOlwpPN7u810pPA6DSQ8Ow8XgTlMcsMLbi4efiAKahBBC3Ar9VSLEDXn5BkIslUGjajmoWcYLccGKCCGOome52KkdjE73v4i+w+92WkDz/LXzWPnXShRKClse7CYctQU9sksX+AYGorqszK7x1SEhMPAbNzsh9RiNkP/xB7Jnz0HWrIdQs28fWKPRpUvgC/jokdgNjz45F4ueXoDhowZDp9MjLSUDRYUlMBqcsx5GpAMTWgp0ygF8qwCOa+83aZqnyA99I8yd1pPzDsJoavvvxmgyIjnvIACgb8Q4+EiCHbLG24lvMHU+J4QQ4l5o+zkhburn9e8hJ/0qQqJimx/IsphR+TkE1CyIELenZXnYpRuKbtOeR/cBw50W0Dx58SRePvYyyiT2BfXchYAjwJGHjkDKb/+24j9/+AFHf/sNnbp3t2t87D//wD8zq93z3kn4YWHwefhheD84A1yZrEPWUFpShuRzl3DmxHmUlJRBLBIhMDgAQqHz6qSyJgao9jBvTddTMJzcOXqPj8TQBzp39DIIIYQQC8rUJMRNBUVEQ6dVtzyQYVDOo2wCQtydhuVjp2Ekesx4CT0GjnBaQPPo+aN48diLt1xAEwB0Jh2O5B1xyLmiu3UDl8uFXmffFz4VkVEOmfdOos/PR8l77yF91GgUr3kX+vx8l68hINAf4yeOxvIXFmPWw9MRFBKIvNwC3EjPhkLR8m6HtmA4LBifGiAmFwgtAsR2/K0m5DbgQ5mahBBC3AwFNQlxU74B5m3l9iRTl/FCnb0cQkg7qFkBdhjHoPfMl9Ct31CnzXPozCGsOrUKlZJKp83hbPuz9zvkPJFxcfAOCLC7C3p1WCiMPOd0n7/dmRQKVPz3v0i/ewLyVj4D9QXXN6+TeUgxeNgALHtmIRY8MQddu8ehorwSaSk3UFlR5fy6m5H5gIcCVHeT3M58gqnzOSGEEPdCQU1C3JS3XyB4PD4M+pazjMqpriYhbktpEmInOx4DHnoJ8YmDnDIHy7L448QfeOXcK6iWVDtlDlc5mn8UakP7M99EEgk69+oFeVWVXeNNPB6qQzumu/dtw2iE/PffkTXrIWQ9NBs1v//RIXU3e/buhkcXz8WipxZg6IhB0Gp1SL2egeIiJ9bdFGvBhJaY6276VFHdTXJbokxNQggh7oaCmoS4KW//IIgkUrubBVFuCCHuR24SYRdnAu6a8xI69+jnlDlYlsWvR3/FGxfegFwsd8ocrqQ2qHEs/5hDzhXbowcYhoFBr7drfDl1QXcYdXIy8leuRMaEe1Dx3//C6KSt4E3hcDjo1DkaM+bcj2XPPoHJ998NgVCIjIws5GbnQ6t1Th1qhm8EE1gBxOYAgWUA377nHiHuTuzBh0hKNWQJIYS4FwpqEuKmpJ7e8PD2hUbd8gdBHUeMGo6PC1ZFCLFXtVGMPdxJGDZ3FWISEp0yB8uy2H54O96++jYUYoVT5ugIjtyC7uXnh5qKCrvGV4WHw8Sht0aOpM/LQ/Gad5E+ejSK33sf+sJCl68hKDgAd08eg+XPP4mZc6fV1d3MyIZSoXLKnNZ1N4sBkcYp8xDiKrT1nBBCiDuid+6EuCmGYRAUHgON0r5ARRmf6moS4i4qjBL8KpiCEQ+/hMgu9nXfbi2TyYT//fU/vJf6HlQi5wRmOsqRvCPQG9uf4Sbx8EDnnj1RbWdQ08TnozqUXkudwSSXo+Lbb5E+/m7kP/ss1JcuuXwNHp4yDBk+EEtXPo5HFs5GQrcuKC+vcEHdTSWYqAKqu0luaf7hso5eAiGEENIIBTUJcWOBoVEwmQx2jaVmQYS4hzKjFPtEUzF6/ksIj01wyhwmkwlb/tyCD298CLXo9uu8rNArcKLwhEPOFdujBwDAaLDvtbSCtqA7l8GAmr37kPXgTGTNmYuaP/8EazK5dAkCoQC9+nTHY4sfxqKnFmDI8IHQanVIS7mB4qJSGJ1UB7Su7mbuzbqbrr3fhLRHYJRHRy+BEEIIaYTX0QsghDTNLzgMXK65WRCPL2h2bBk1CyKkwxUbZPhLNh1j5z6L4IgYp8xhNBrx7e/fYl3BOuiEzqkL6A72Z+/HiPAR7T5PZHw8PH18UFNRAZ/AwBbHV97cgs5xcaDtTqQ+fx7558+DHxEB33nz4P3AdHCkrtviWlt3s1PnaIwYOxTJZy/i7OlkZKRnQSIWITAoAAJh839724LhG4DACrD+lUCVp/k/PdUqJO4tIMqzo5dACCGENEKZmoS4Mf+QCEhkHlApalocW831h55x/IcvQoh9CvSe+MtrJsbPf8FpAU2DwYANv27AFwVfQCe4fQOaAHAo9xAMdmaqN0fm5YXYHj3s3oJuFApRExzc7nmJ/fS5uSh+5x2kjR6D4g8+gL6oyOVrCAoOwIR7x5rrbs6ZioCgAOTW1t1UOrHupm811d0kbo8v4sInqGM6n+fl5SE+Pt7y36JFi5oce+rUKauxeXl57Z7f3nMWFxejuLi40fX1j92+fXu713O7u3jxYqPrnPF7BczvqTZu3IjJkycjMTERffr0weTJk/Htt986bc6W0POlsXnz5lkek1WrVlnddjs9Xjdu3IBCYV12ruHr36lTpxw239atWzF9+nT06dMHiYmJuPvuu/H+++87dc7mjBkzxjLnZ5991qpjKahJiBuTenjBJyAEKoUdHY0ZBqW0BZ2QDpGn98bfvrMxYf7zCAh1zvZlvV6Pz3d/ji9Lv4RecPt3VK7WVuN00WmHnCu2Rw+wJpPd24orImkLekcw1dSg4utvkD5uPPKfex7qy1dcvgYPTxmGjBiEZc8sxPzHH0J8184oL61AeuoNVFZWU91NckcKiPAAw2E6ehkAgL///ht//vlnRy/DQqlU4pNPPsGECROQlZXV0cu5ZeXn5+O5557DzJkzXTbn6tWr8eGHHyI9PR0ajQYqlQrp6ekoKSlx2RoIqaiowOrVqzFlyhRUVVW5ZM6NGzfiX//6F65cuQKVSgWNRoPs7GyXBe8djbafE+LGGIZBRGxX5KRftWt8ET8Sofos5y6KEGIlW+eDE4Gzcc/cFfAJcE6Gn1anxX92/wc/VP8AA7/92Yu3igPZBzAkdEi7zxOVkAAPHx/IKyvh7e/f4vjKyAiwp06BcUIAi9jBYEDNb7+h5rffIO7fD34LFkA2ZgwYF3amFwgFSOzbAz17d0NmRjbOnkrClYvXkZZyA97envAL8AWXy3X4vIxYC4hLwOp5QKUnUO0JmCgHgXSsADerp/nOO+9g2LBhkEicnz3q6emJgQMHWi4LhULLzxkZGZg/fz7Kysqcvo7b2W+//YZVq1ZBp7O9A6W530FbGQwG7N6923KZz+ejW7dukMvl6NWrl1PmJI5X/3fkb8f7O3dz+vRpLFmypFGGZi2hUGh1Hz09HVMG5JdffrH8zOFw0L17d2i1WvTt29dpczoTBTUJcXP+IeEAAJZlwTDNf0tezKfsIkJcKUPnh7PBczHx4eXw8g1wyhwarQYf7vgQPyt/hpHnnAYm7upgzkG8eter4DDtC+p4+voiOiEBV06dsiuoaRCJIA8MhKeNrYTEtdRnzyHv7DnwoyLhO28+vKdPA8cFgYxaHA4HsV1iENslBkWFJUg+dxFnTyXdrLspRmBwAAQCx9fDtNTd9Ks0BzYrPQED1d0kHcPdmgQVFhbis88+w0svveT0ubp27YotW7bYvK24uJgCmg6QmpraZEATaP530FZVVVVQq+saLb7xxhuYMWOG1RhHz0kc71b/HWVnZzcZ0ASAgIAAp9zHwsJCy8+LFy/GihUrrG6/1R5X+uqXEDfnHxwOkVgKjarpF7xaldxAaBixC1ZFCEnV+uN82AJMnLfSaQFNlVqFd7e9i59UP91xAU0AKNeU43zxeYecq3NiIoxGI0x2NgCiLujuRZ+dg+K330ba6DEo+fBD6Dsg4BwcEoh77h2H5c8vxoOz74d/oB9yc/KR6cy6m9ybdTc75QIhVHeTdIzASPfL1Nm8eTNSU1M7ehnkFqXVaq0uR0REdNBKCHG9+s//2+G5T5mahLg538BQSD28oFLIIZa28E05w6CYH4EoHb3JI8SZrmkDcSXqUUycvQQyLx+nzKFQKbDmlzX4Vf8rTNw7txP3/uz96B/cv93niY6Ph4e3N+SVlfDy82txfEVkJKJOn4F7VJEjtUzV1Sj/8iuUb/ovPO+5B74LHoG4e3eXrsHTywNDR96FAXf1xdXLKThz8jzSUzNRmF8E/wA/eHl7trizorUYBoCnEvBUglULgQovQCEF6BlKnEwo5cEr0P2+MDcYDHjzzTfx3XffterfW1lZGb7++mscPHgQhYWF4PP5iIqKwrhx4zBv3jx4eFi/1z516hTmz59vufzXX38hPDwc8+bNw+nT1nWfa8dNmzYN7777rs35S0tL8dlnn+HQoUOoqqpCaGgo7rnnHjzxxBOQyWSNxut0Ovzwww/49ddfkZGRAZPJhODgYAwZMgSPPvooIhvUgM7Ly8PYsWMtl8+dO4f3338fe/fuhcFgQEREBLZs2QJvb+9mH6fMzExs2rQJp0+fRlFREbRaLWQyGaKjozF27Fg8/PDDkEqljY5Tq9XYsmUL9u/fj8zMTKhUKvD5fAQGBqJv375YtGgRYmNjLePj4+MbnaP2ujVr1mD69OlN/g7aulZbc9aePywsDAcPHmxxTgC4fv06vvrqK5w6dQqVlZWQyWTo2rUr7rvvPtx3331Nlig5evQoNm3ahIsXL0Kr1aJLly6YP38+7rvvPpvjW1J/rUFBQThy5AjOnTuHL7/8EklJSdBoNIiJicH06dMxZ84c8Hi2Q0Dnz5/Htm3bcO7cORQVFYHP5yMyMhKjRo3CvHnz4OPT+P1u/cdy79692LVrF3766SeoVCqEhITgiy++sPp9N+XGjRvYsGEDjh8/bvl3MWXKFDzxxBPNHld//trnSy25XI7//ve/OHToELKzs6FSqSAUChEaGoq77roLjz32GMLCwhqds6SkBN9++y2OHTuG3NxcaLVaiMViREREYMSIEViwYAF8fX0bHWcwGPDTTz9h7969SEtLg1wuB5fLhb+/P3r27InHH38ciYmJlvFjxoxBfn6+1Tlq/+0+9dRTePrppxv9e968eTMGDRrU5rXamvPll1/Gyy+/DABISUlpcU4AyM3NxZdffomjR4+ipKQEEokEsbGxmDhxImbNmtVkuYaLFy/iyy+/xNmzZ6FQKBAdHY2ZM2di7ty5Nsfbi4KahLg5Hp+P0OguuHruGBDUciOgIn4UBTUJcaLLmmCkxj6OSbMXQyJzTvZKjaIGb/3yFv4w/QGWe2fXdTyQcwCrBq5qd5DIOyAAEXFxSE1KsiuoqZdIoAgIgEdpabvmJU6i16Nmzx7U7NkDyYAB8H10AWSjRzs8mNgcgVCA3v16olef7riRnoVzp5Jx+eI1FBeXwsfHG37+vuByHb8pihFrgbASsDoeUOUFVHtQ3U3iNMExXi79d9WSzp07Iz09HQBw9uxZ7NixwyqQ0ZykpCQsWbIElZWVluu0Wi2uXLmCK1eu4Oeff8aXX36Jzp07O2XtKSkpeP/9963mz8rKwvr163HkyBFs3boVAoHAcltZWRkWLVqEK1esm6ZlZWUhKysLv/zyC95//33cc889Tc65cuVK/PPPP5bLfD6/xYDmyZMn8eSTT0Kjsc4Mr66uxoULF3DhwgUcOHAA3377rVUgVqPRYOHChTh79qzVcUajETk5OcjJycHevXvxzTffYMCAAc2uwV5tXWt7/fjjj3jrrbesGhBWVlbi+PHjOH78OHbs2IEvvvii0ZyffPIJ1q1bZ3XdpUuX8MILLzR63Nrq+++/x9tvv221M+XatWv4f//v/+HChQv48MMPrcYbDAasWbMG3333ndX1Go3G8m/j+++/x0cffYShQ4c2Oe+aNWusnmtyuRxRUVEtrvfQoUNYuXKl1e8wKysLn332Gf7++28YDK2vJV9cXIw5c+Y0anxT2wwqPT0dv/32G7Zs2YIuXbpYbk9NTcW8efMaNexRKBS4du0arl27hn379uG7775DUFCQ5XaTyYTnn38e+/btszrOaDSioKAABQUF2L9/Pz744APce++9rb4/trR1re114MABPPfcc1a/r+rqapw/f94SGP/yyy8bzbl161a8+eabVv9mUlNT8fbbb+PYsWPQ69veBJXeARFyCwiJjIXRaN8/9CKqq0mI0ySrQ5HeZRHumb3EaQHNKnkVXv/5dXNAk3NnBzQBoERVgotlFx1yrrjevWHQ6WgL+m1GdeYM8pYuw417JqLihx9gqlcnzRU4HA46x3XCrHnTseyZhbjn3rHg8bjISMtEXm4BdLq2v1FvDiMwgAksBzplAwHlAO/OaSJGXCe4k3ttPV+xYoVVxtgHH3xgV8fg0tJSLF261BJQ5HA4iIuLQ1xcnCVoW1BQgKVLl1rVWmxKQkJCo4y/hIQEDBw4EJ06dbJ5zKZNm1BZWYmIiAj06tULfH5dndyrV69i165dlsssy2LFihVWAc2wsDB0794dIpEIgDkg+8ILLyAlJaXJdf7zzz8QiUTo2bMnZDIZpkyZ0uz9YlkWr7zyiiVgweVyER8fjz59+lg97hcvXsSnn35qdez69eutAnPh4eHo06ePVXBDp9NZHTdw4ECEhlonbQwcOBADBw5ssfFLW9c6cOBAq4w5oO531/B6W44dO2YVnBGLxejevbtV1t+pU6fw+uuvWx134MCBRgHN0NBQxMXFgcvlYuvWrS3O3ZKKigq89dZbYFkWcXFxjbIkf/31V1y7ds3qug8//NAqoMnn8xEXF4eQkBDLdVVVVViyZAkuXmz6/dg///wDHo+HHj16wMfHB5MmTWoyK7RWYWFhowCZt7c3unfvDrFYjIsXL+LqVfsa5tb38ccfWwU0o6Ki0KdPH6vfUWVlJZ5//nmr49566y3L6wnDMOjcuTP69OmDwMBAy5icnBy8+eabVsf98ssvVgHNwMBA9OnTxyq712QyWQWUExMTER0dbXWexMREDBw40GYGaUNtWWvt+euLiYmx/JtrSWpqKp599lnL74vP56Nr165W9yMlJQUrV64EW6/Z5uXLl7F69WqrgGZAQAC6du0KPp+PQ4cOoaSkpMX5m0KZmoTcAvyCw8Dl8mHQ68DjC5odq+R6Q8HxgsxU7aLVEXJnOKeOQEG3RbjnwcchkjTecuUIFdUV+Ne2f+EI5wgFNOs5kH0AiQEtf9BoSXRCAqReXlBUVcHTxtahhioiIxF19ly75yWuocvORvHqt1D26X/gPWsWfObOBT8osOUDHSg4NAgTQ8djyIhBuJR0FaeOn0Vudh44HA6CggMgkTq+yRHDZQHfarA+1YBcClR6ARqRw+chd6agTl4dvQQrXl5eePHFFy3bJSsqKvDRRx9h9erVzR73zTffoKKiAoA5aLJp0yZ07doVgDnotWDBAiiVSmRnZ2PHjh2YM2dOs+d75ZVXcPz4cTz66KOW6/7v//6v0TbN+jgcDj7++GNLZmVGRgZmzJgBlcpck/fcuXN48MEHAQCHDx+2BAgZhsG7776LqVOnAjAHaBcuXIjr169Dp9Nh3bp1+OSTT2zO6eHhge3btyMyMhIKhcIq0GBLWVmZVTDo119/tQRpDQYDVq1ahd9//x2RkZGQy+VWx16/fh0SiQQqlQpLlizBypUrAZiDjy+99JIlaFu/FuqWLVvw8ccfY/369VbX2aOta92yZUujLbYt/e7q+/DDDy2PY+/evbFu3TrLFt8ff/wRb7zxhmU9S5cutQQWN27caDkHh8PB+++/bwkyp6SkYPHixSgoKLBrDU3R6/Xw8/PDxo0b0aNHDwDAf//7X7zzzjuWMRcuXLA891NTU/Htt99abuvduzc++eQTS0DzwIEDeOGFF6BSqaDVavH6669j+/btNrO3eTwevv/+e/Tu3Rs6na7ZBji1vv/+eyiVSsvlefPmYdWqVeDxeKiqqsKKFStw8uTJVj8OycnJlp/ffPNNPPTQQ5bLP/zwA1avXo3Q0FD4+/ujuLjYEnivf9yXX36J4cOHAzA/hz/66CN8/fXXlkClRqOxfMFw6dIleHp6oqamBlOnTsWaNWvA4ZjzB+tn5xYUFEChUEAmk+Hjjz/Gzz//jFdffdUy50cffdSozIE999HetX788ccArLftL1q0yO5s988//9xSjzMyMhLffvutZY6DBw/i6aefhsFgwPnz53HkyBGMHDkSAPD1119bZdw+//zzWLhwIRiGQUFBAZYsWYLr16/btQZbKFOTkFuAf0gEJDJPqBQ1do2nbE1CHOukKgpFvZbh7llPOC2gWV5Zjpd/ehl/c/+mgGYD+7P3O+Q8PoGBCI+NRXV5uV3jdTIZFH4tBz+JezFWV6N840akjxuH/BdfhKZBVooreHl5Ytiou/DUs09g3uMPoUt8LEpLy5GemomqyuoWAwttwTAA46kEE1UAROQDMiUAei0hbccwQFC0e2VqAsD06dOtti//9NNPuHDhQrPH/PHHH5afH3roIUtQBwB69epltSX04MGDDlxtnfHjx1ttFY+NjUXfvn0tl+t3Uv/zzz8tP/fu3dsS0ATMGU6LFi2yXP7777+tMqDqmzJliqXupkwma1QztCEvLy9LoAYA1q1bhxMnTkCj0YDH4+Gdd95BcnIy9u7d26hu6Pr163H+/Hns378fS5cutVyv1+sRHBxsuWxPsMse7VlrW+Xn51tlzy5fvtyqZuHs2bMRExNjufzXX38BMG/Frp/lOHXqVKus2fj4eLzwwgsOWeOyZcssAU0AmDNnjlVWcP3M5p9++sny90ggEODDDz+0ytAcN24cFi9ebLl89erVRuUQag0dOhS9e/e2nMtW3cmGjh8/bvk5OjraEtAEzF8+vP/++03WJm1O/WzFnTt3Yt++fZYs7Tlz5iA5ORkHDx7E119/bZVJXP+4LVu24NChQ1AoFGAYBitWrEBycjL+/PNPfPHFF1bPvdWrV+PMmTM4fPgwXnvtNUtA02g0Wp0TcNzzv61rbSudTofDhw9bLj/xxBNWAdgxY8bgrrvuslyu/zpa//c8cOBAPPHEE5bAeGhoaItfSrWEMjUJuQVIPbwQGBqJ3BvX4enT/FYMACjmR6Kz9pILVkbI7e+YqhPk/Zbi7mnzwRfYLnzdXiXlJVj1yyqcEZyhvh825Cvyca38Grr6dW15cDMYhkF8375ISUoCy7J21YmrjIyErLyiXfOSDqLXo2b3HtTs3gPJwIHwXbAAstGjXFofUCgSWupuZqRl4uypZFy9dB3FxaXw9fGGr7Pqbkq0gKTYXHez8mbdTZZyGUjr+IbKIBC558fFN954A1OnToVerwfLsnjjjTfw4osv2hyrVCqtmmOsX7/eKjOwofZkDDXH1tbm+vUtdTqd5ef6W8qTkpJsNreppVKpkJ2dbXPbe/dWNlITCARYsGCB5fHZvXs3du/eDT6fj4SEBPTr1w8jR47EoEGDbAabGIaBRCLB/v37kZycjCtXruDy5ctW3ZabCsC2VnvX2hb1s0wB4LHHHmt2fO1zKTc31+rLLFtZofZmirakZ8+eVpdr66iW3qwRXj9j7vLly5afu3btajNLcNy4cfjoo48sly9evGgVNK3V2ucaAGRnZ1t+7tu3b6Pt6kFBQYiOjkZGRkarzrtw4UKcOXMGJpMJSUlJSEpKAsMwiIqKQr9+/TB06FCMGjWqUbOrJ598Eq+99hoA85cFf//9NzgcDrp06YJ+/fph2LBhGD58uFXt2/qkUilOnDhhee5fvHjRKhMVQJtqhNrS3rW2VlZWltW/49dee80yvy21z/3q6mqrQLqt53mvXr0sWd5t4Z5/pQghVhiGQWRcD2RcS7JrfBE/EiwoNkJIe/2t6gLdwGUYe99c8B30pqChotIivLj9RSQJk+gfbTP2Z+9vd1ATAKLi4yHx8ICyuhqyFpolAEB5VBQikpLbPS/pWKrTp6E6fRqCmBj4zp8Hr2nTwHFA5oK9OBwOusTHonNcJxQVFCPp7EWcO3MBGWmZkEjFCAoKAF/Ab/lErcQIDEBQOVj/SqDKw9xYyEBv/4l9gtysnmZ9nTt3xmOPPYYNGzYAMGeQNWx0Uqu1mVH21OhsC0/Pxo9n/Qy6+kEvR63ZVsfqljzzzDMIDAzEt99+i9zcXADmbMtLly7h0qVL2LRpE8LDw/H6669jxIgRluPKysqwevVqHDhwwCpw6efnh6ioqEYBQUdo61rbquGW+5bU/l4a1mn1s9Gw0Nbzoy28vBqXjKgf2Kr/PKv/vGmqmUzD65t6DNryXKtfS7OpGqpteVxGjBiBr7/+Gv/5z3+QlGT+/MyyrFWTLZlMhiVLlmDhwoWW42bOnAmZTIZ169ZZnq8mkwkpKSlISUnBDz/8AD8/P7z44otW2dNKpRLvvvsuduzYYdXwxtPTE927d28yu7U92rrWtmrrc79hEy9bv2eGYSCTySioScjtLjgiBlwuH3qdrsXgipYjQRU3AD5G6tpLSFv9pUwAM/QpjJ78EHh8xwcbACC/OB/P73gel8WXWx58h9ufvR/L+y5v93n8Q0MRGh2NnNRUu4KaWk9PqLy9IXHSh1ziWrrMTBS9uRqllrqbc8APdF3dTYZhEBIWjJCwYAwdeRcuJl3B6ePnkJ2dBy6Hg6DgQEikYsfPyzUBftVgfW/W3azwBrTOyTwnt4/gGPeqp9nQ0qVL8dtvv1nqKh44cMDmuIZbL59++mnMnz/f6etrqDXZgvXXPHTo0CZrZtaSSGzX6xWL2/Z6MnfuXMydOxfXr1/HsWPHcPbsWSQnJ1vqkubl5Vke/6ioKLAsa9WpvWfPnnjkkUfQr18/hIaGYtu2bXjllVfatBZHr7U9Gj6emzZtajZDsfZ33jAjsLq6ce+D2kzK9mrN8ywgIACZmZkAzB3DbWl4va2gKdC255pUKrU8FrYeE6Dtj8uQIUMwZMgQFBYW4ujRozhz5gySk5Mt2aEKhQIffPAB/P39rYJ+kyZNwqRJk5CZmYnjx49bjissLAQAlJeX46WXXkJoaKiluc5LL72E/fvNpZKio6OxcOFCDBgwAFFRUTh58iQWLFjQpvvQkrasta0a/n7XrFmDcePGNTm+dgu+Pc99o9Fo+ffaFrQPhZBbRFB4DGRe3lDWVNo1vkAQ0/IgQkgjLIA/lN3AHbESI++d7bSAZk5BDlZuX0kBTTtl1WQhvTK93edhGAYJ/fpBq9HYXdeQuqDffoxVVSjfsAEZY8eh4KVV0Dhpu2lzvLw9MXz0YDz13BOY99gsxMZ1QmlJGdJSbzi/7mZ0PhBRQHU3SbPCE1qfeeVKIpGo2e2Ptby8vBAQEGC5nJKSAk9PT6v/fvvtN/zxxx9IT2/73xlH/pvt3Lmz5efU1FSIRCKr9SYnJ2Pnzp24fPky1Gp1k12mW7vtWqvVIiUlBfv27cOWLVuQkJCAxx9/3FKvsv62fb1ej0OHDgEwNzmqn422ceNGTJkyxdLZvDWBKXsfx7autT0adhNPT0+3+r2IxWJs3rwZR44cQUFBgeX3EhUVZZWVe/r06UbnPnHiRLvX11pdunSx/Hzt2jWrxku1aoN1tWrrZjbUli3+9UsmnD59utHvPjs72xKgs5fRaEROTg4OHz6Mb7/9FiKRCA8++CDef/99/Pnnnzhw4IBVvc/aert6vR4ZGRk4cOAAvvrqK4SHh2Pu3Ln45JNPcPjwYWzfvt3qd1hb97agoMDqMfrggw/w4IMPIjo6GgzDOOW539a1tkd0dLTV7zg1NbXR6+jWrVtx8OBBZGVlWUr9yGQyq2xfW8/9M2fOtGtbPgU1CblFiKUyhEbHQ1FTZdf4PH7nlgcRQqyYWAb7VL0gHfMchk+aCW4THxLa60buDazYtQLXJa4PpNzK9uc4pmFQ5M0t6Co7t9JURFJQ83bF6vWo3rULmVOnIXvBo5AfPuyUYGJzhCIh+vTvhSeWzcfjS+djwF19oVKpkZaSgdLiMhiNJqfMy0g0YMKKgZhcwLsaYJwzD7k1eQdJ4OHruhINbTVq1CjcfffdLY4bM2aM5ec///wT27dvt1w+ffo03nrrLbz66quYPXu2pVNxS/gNvvSsbURiMrX/31L9ztylpaV4++23LTU3i4uL8frrr+P//b//h0cffRTLli1r93y1vvnmG9x3331YuXIl3n77bfzwww9Wr4m12Ve1agMXRUVFVtfX71h99uxZbN682er2+gGMtj6ObV1re3Tq1MmqEdDatWtx6VJdH4OvvvoKn332GZ577jncf//9lkClWCy2qiW4fft2q8zia9eutZiN6wz1MxR1Oh2ef/55q9/lX3/9ZSnxAAB9+vRBQkKCw+av/+8yMzMTH374oeX3XlFRgVdeeaXVNViTk5Mxfvx4PPnkk3j33XexZs0aq1qQXC7X5vNk3759mDRpEpYtW4YPPvgA//nPf6yepw2DtrXHNcxkrf/cT0tLw+eff251e/3709bnflvX2h4SiQSDBw+2XP7+++/xzz//WC7v2rUL//73v/HSSy/hwQcfxM6dOy23jRo1yvLz0aNH8f3331su5+Xl4a233mrX2mj7OSG3kIjYBFw7f9SuBhflvGCoGSnErLLZcYQQMyPLYJ+6N3zHrcBd4+53yBsAW9Ky0/Dc3ueQKcl0yvlvZweyD2BJ4pJ2nycwPBzBkZEoyMyE1I5aTWofH6g9PSGuqWn33MR9qU6ehOrkSQg6dYLv/Pnwmnq/S+tucrlcxCXEokt8JxTmFyH53CWcO52MjLQbkEqlCAzyp7qbxGXcPUuzvldeeQVHjx5tth7bokWLsHv3bkttw5dffhmff/45vL29ce3aNUsQQSaT4fHHH7dr3obdnV955RV8+eWXiI6Otmqs0hYTJkxAfHy8pWHQ1q1b8ccffyAiIgIZGRlW9/Xpp59u11z1zZ49G5s3b7ZsBX3zzTexfv16hIaGoqKiwqqxi1AotARf62f8AeZalxs2bIBWq7Vsb65PqVRatjE3fBynTp0KmUyGOXPm4OGHH3b4WttrxYoVWLlyJQBzEGrmzJmIjY2FXq9HVlaWZVxiYqJVMGfZsmU4ceIEjEYj9Ho9li1bhpiYGPD5fGRkZMBoNILL5TqskZI9evXqhQceeAC//PILAHNTqnHjxqFTp06Qy+UoKCiwjJVIJHjzzTcdOv+sWbOwefNmSzbjl19+iZ07dyIoKAjp6enQaDStfkz69euHwYMHWwLKu3btwqFDhxATEwONRoOMjAyrAODkyZMBABMnTsT69estTYk2btyIbdu2ITIyEgqFAhkZGZZgKMMwmDhxIgBYfoe1tTQ//PBDS6ZkWlpaoy9K6zcOaliHdNGiRQgMDMSwYcOabHzWnrW219NPP43jx4/DZDJBp9Nh4cKFiI6OhkAgsKqZGxoaigcffNByeeHChdizZ4/ldWv16tX4+uuv4eXlhbS0NOj1+nY99ylTk5BbSHBEDPgCEXQadcuDGQb5gsZdEAkhjRlZDn5V90PAhOcwePxUpwU0r2dcx4q9Kyig2UaplanIqclp93k4HA4S+vaFRqWyfws6ZWveMXQ3SIAgVgAAszFJREFUbqDojTeQPnoMSj79FIayMpfOzzAMQsNDMOn+u7H8hcV44KH74ePnjezsPGTdyIFKZcd7gLbMyzWB8asGOuUAwSWAUNvyQeS2FdHVt+VBbiI4OBgrVqxodkx4eDjWrl1rVXsyPz8fV65csQQ0JRIJNmzY0GTDkoY6deqEiIgIy2WlUokrV64gJ6f9f6d4PB7Wr19vVQOyqqoKly5dsgpovvzyyxg5cmS756vl7e2NDRs2WDWyKS4uRlJSklWQUCAQ4N1337V0y46Pj2/UjOT69euWgGZYWJjVbfUDncOGDbPKLCsuLkZGRoZVQM2Ra22viRMnYuXKlZYEE5PJhLS0NKuAZkxMDNauXWt1XN++ffHaa69ZvcfMzMxEamoqjEYjpk+fjsTERIessTXeeOMNPPDAA5bLer0eKSkpVo+/n58fvvzyS8THxzt0bi8vL6xdu9aqTmdpaSkuX74MjUaDrl27Yvbs2a0+70cffWTVob2mpgYXLlxASkqKVUBz/vz5mDRpEgBz1uS6desQWe/9XkVFBZKTk5Genm55v8jhcPDSSy+hT58+AMzPw0WLFlnNX/t7ZVkWvr6+VjVy6z/3+/XrBw8PD8vlyspKpKSkID8/v9n719a1tlfv3r3xzjvvWGWYZmVlWQU0/f398dVXX1k1p4qMjMS///1vCIV1tbzz8/Nx9epV6PV6DBs2zK6M+6ZQUJOQW0hgWBQ8vX3t34IuiG15ECF3OAPLwS7NAIRPfgEDx9zrkO1JtlxKvYQVf65AriTXKee/U/yZ3f66QAAQlZAAsVQKtZ0dZqmu5p3HWFmJ8nXrkT5mLApe/j9oUhzfubcldXU3F2HeY7PQqUs0SorLkJ56A9VVNc6ru+mlqKu7KaW6m3cahsMgLP7WydQEgHnz5qFr167Njhk6dCh+//13PPbYY+jSpQukUin4fD7CwsIwa9Ys7Ny5E/3797d7ToZhsHHjRowePRoeHh4QCAQIDw9H375923t3AJiznXbv3m0JSnh7e4PH48HPzw/jxo3Df//7X6c0IOnVqxf27t2L5cuXIzExER4eHuByuZBIJIiLi8O8efOwZ88eSzCo1jvvvINVq1YhLi4OfD4fQqEQsbGxWLRoEXbu3Gm1bXnfvn2WnyMjI7Fu3TokJiZCKBRa5qlfV9TRa22vJUuW4KeffsLUqVMRFhYGoVAIkUiEuLg4PPXUU9i2bZtVHddas2fPxg8//IDRo0fDy8sLYrEYffr0wQcffIA1a9Y4dI32EggEeOedd/D9999jxowZiI6OhkgkglQqRffu3bF8+XL8/vvvrfq30RqJiYnYtWsXZs6cicDAQPD5fMTExGDFihXYunUrZDJZq8/p6+uLrVu34u2338bQoUPh5+cHHo8HoVCI8PBw3Hvvvfjvf//bqHlVVFQUdu/ejZdffhkDBgyAt7c3uFwuxGIxYmJiMGPGDGzbtg2PPvqo1XHLly/HmjVr0KNHDwiFQvD5fERGRmLu3LnYuXMnhg4dahlb/7kvk8nw9ddfY9CgQZBIJJZ56gdkm9LWtbbXtGnTsHv3bjz00EOIjo6GWCyGQCBATEwMHn30UezcubNR7VnAXFJj+/btmDx5Mnx9fSEUCtG1a1e89tpr2LhxY5N1ge3BsK4uHEQIaZd9/9uIiycOIaJz82/cAIDDGvBAxRfgQ++ClRFy69GzXOzS3oXO9z2HxMFjnBbQPH/tPF48/CKKJbY7SxL7dffrjv/d+792n8doNOKbt95CWUEBQqKj7TomcfsOiOwMgpLbk3TIYPguWADp8OFOe71ojtFoREZaFs6cPI9rl1OgkCvh4+sFP39fp2WYAwCr4wGVXkC1B8BSTsTtLijGEzNeck4AgxBCCHEkeldCyC0mLDoOJpPRruwME8NDET+qxXGE3Im0LA87dcMQP+0lpwY0T106hecOPUcBTQe5Un4FBYrmt6TZg8vlomv//lApFHZnu1XSFvQ7nvL4CeQuehI3pkxB5U8/waR17Rbt2rqbcx6ZgaUrH8f4iaPA4XCQnnoD+XmFlppejsYIDGCCyoHYHMC/AuC1vUspcX+30tZzQgghdzYKahJyiwmOiIFILIVGaV+2UD5tQSekEQ3Lx079CHR/4EX0HDTSaQHNo0lH8eLRF1EmdW1NvtvdgewDLQ+yQ3RCAkQSCTTNNJeoj7agk1q69AwU/et1pI8eg9L/fAZDeblL56+tuzl56gQ8/fyTmP7QffD28UJ2lrnuptqpdTerqO7mbS6i66219ZwQQsidi4KahNxi/ILD4eUXCHl1hV3j8wWdYILrt8gR4q7UrAA7DaPQe9YqdOs/zGnzHD57GKtOrkKFxL5/q8R+B3IcE9QMiY6Gf0gIqu1sBKPw94euXpMJQowVFSj74gukjx6DgldegTYtzeVr8PbxwojRQ/D080/i4UdnIiY2CsVFpVR3k7QJX8hFUCevlgcSQgghboCCmoTcYrhcLjr36Ae1Qm7XeC1HgjJeiJNXRcitQWkSYCc7Dv1nv4z4xEFOmYNlWfx58k+8cvYVVEuqnTLHnS65JBklqpJ2n4fL4yGhf3+o5Pa9noJhUBEZ0fI4csdhdTpU/7IdN6bch5zHF0Lxz1GXr0EkEqLvgEQsenoBHl86H30H9oZCoUJayg2UlpRbOjw7GiPRgAkvBmLyAK8agHHOPMQ1Qrt4g8ulj4iEEEJuDfQXi5BbUERsPDg8LvQ6+7Z95Qta7h5IyO1ObhJiF2cC7pqzCp179HPKHCzL4tdjv+L15NdRI65xyhwEYMHir5y/HHKu6Ph48EUi+7egR1KdYtI85bFjyH3iCdyYMgVV27bBpNO5dH4ul4v4rp0xd8GDWLrycYy9ZyQAID01EwVOrbupBxNcVld3k0t1N29FVE+TEELIrYSCmoTcgkKjusDLxx/yKvu2teZSUJPc4aqNIvzKnYShc1YhJiHRKXOwLIsdf+/A21fehkJMHbKdzVF1NcNiY81b0O2siSgPCoReJHLI3OT2pk1LR+Grr5nrbn6+FoYK15aiYBgGYREhmDLtHix/4UlMn3UvvHy8kJWZi+zMXOfX3Yylupu3ovAEqqdJCCHk1kFBTUJuQUKxBDEJiVDYWVdTwfVBOTfIyasixD1VGiX4lT8Fwx9ehai4Hk6Zw2QyYevBrXg35V2oRPZl/JH2OVd8DpWaynafh8fnI6FvXyiq7SwVwDCoiKAt6MR+xvJylH3+OdJHj0Hha69Bm57u8jX4+HpjxJiheOq5RXj40ZmIiolAUVEp0tMyUVPtgrqb4QWAVAWqu+neJF4C+IXJOnoZhBBCiN0oqEnILSoqrjsAwGg02jU+W5jgzOUQ4pbKjFLsE92P0fNfQnisc/4NmEwmfLf/O/w7499Qi5yT+UQaM7JGHMw56JBzRXftCr5AAK3avt9fJXVBJ23AarWo+nmbue7mE4ugOHbM5WsQi0XoN7A3Fj29AAuXzEPf/omQy5VIS7mBslIn1t2UasCEFwHRVHfTnUUk0NZzQgghtxYKahJyiwqNjoPM0xvKGvsylbIF8dQFndxRig0y/CF5AGPmv4TQ6C5OmcNoNOKbfd/g05xPoaUtli63P2e/Q84TFhsLv+Bgu7egVwcH4/+zd9/hUVXpH8C/d2pm0nvvPfSE3nsTREBRQcBeUexti7vurrs/t+u6a1ndXV1Xd7EXRGmCFQSkSkshvfc29d7fHwlhAoHcZOZmUr6f5+EhM3PuOe8kkEzeOed9rTqdS9amIUiS0PzFFyi86WbkXr4MdW+/3ed1NzUaDVIzkrHmhqtwx703Yc6C6ZAkIPtULkqKy2C1KlMPU9C3191MKAACWXezv4lK59FzIiIaWJjUJBqgfPwDEZmQiobaKlnjW9XeqNREKhwVUf9QavXBdp9VmL/+IYRFxyuyhs1mw4sfv4i/lvwVFl3fJiSozZ7SPWiwON+QSafXI2XMGPlH0FUq1PEIOrmA+dQplP7ox8iePQeVzz0HW63zJRV6QhAEREVHYOmKRbjnoduwfNVS+Ph4Iz+vAGdyC9DaalJmXY0IIaiuLbkZVgHo+KaQuwkCmwQREdHAw6Qm0QAWnzYKdqtVdi2sM/p0hSMicr8iqy8+978aC9Y/iOAIZY4JW61W/OWDv+Clipdg1SnTSZi6ZxNt+Lzwc5fMFZ+RAbVGA4tZXnKlhkfQyYXsVVWoevZs3c2fwpyb2+cx+Af4YcacKbj7oduw+vqrEJsQg7KS8va6m43K1N1UtdfdjC8GokpZd9ONwhJ94emrd3cYREREPcKkJtEAFhmfAoOXD1qa5O1UKtQlw87/9jSI5Vv98WXQGixc/yACQ5XZmWyxWvDn9/+Mf9X8C1YtE5rutjXfNUfQo5OSEBASgvoqebvf68PDYddqXbI20VmSyYS6TZuQe9kSFNx6K5q//rrPYzAYPDB2whjcdvf1uOmOtRgzdiQaG5r6oO5mK+tuulHimBB3h0BERNRjzG4QDWBBYVEIDo9GY628OnAWlQFl2jhlgyJyk1xLIL4NXYuF6+6Df3CYImuYzCb87p3f4d/1/4ZNy1pw/cE3Jd+gxep8x3m9wYCU0aPRWFcna7ykVqM2kiU9SCGShObdX6DgxpuQu+wK1L3zLiQ31N1MG5aC625YhdvvvRGz50+DKEnIPpXHupuDUMKYYHeHQERE1GNMahINYIIgIGl4FkytzT04gs4u6DT4nDYHYV/Eeixaey/8ApXZbdJqasVv3v4N/tv8X9g1dkXWoJ4z283YXbTbJXPFDxsGtVoNq8zkEY+gU18wnzyJ0scfx+k5c1D1t7+5pe5mdEwkLl+5GPc8eBuWXbkY3j5eOJNXgPy8Qpj6ou5maCXA2sWKCYn1hneAh7vDICIi6jEmNYkGuOjENOg9jDC1NMsaX6RLgg0ahaMi6jsnzCE4FHMjFq+9Bz7+gYqs0dzajF+99Su8a3oXoppHIvubz/I/c8k80cnJ8A0KQoPcLuiRkbBr1C5Zm6g79soqVP75mba6m0/8DObcvD6PISDQH7PmTcPdD96G1euvQnRcFErP1t1sULDupl8jhPiitrqbRud3ZlNniZk8ek5ERAMTk5pEA1xodAJCImNRX10ha7xd0KJIl6hwVER946gpDD8k3IJF122Al6+/Ims0Njfi5//7OT6wfsCEZj/1ZfGXMNmc3y1m8PRE8qhRaJB5BF3UaFAfwSPo1Lckkwl1//0vci+7DIW33Y7mb7/t8xiMRgPGTRyD2++5ATfefh1GZw5HQ30jTp/MRXVljbJ1N6PLgLhC1t10ocRMHj0nIqKBiUlNogFOrVYjbfQEmFqb2AWdhpSDrRHITr4VC6+9A57evoqsUd9Yj5/+76fYIm6BpGJH3v6q1daKr4q/cslcicOHQwBgs8prAsUj6OQ2koSmXbtQcP0NyF2+AnXvvQdJ5r9bV9FoNEgfnoq1N12DOzbeiJnzpsEuijh9MhelxWWw2fqi7mYtoGZJkN4KjPKCb7DR3WEQERH1CpOaRINAbMpwGD3ld0Ev1cajVfBUOCoi5exvjUJhxh1YeO3tMHp5K7JGTX0NfrTpR9iO7UxoDgBbC1zTBT0mJaXtCHpNjazxtVFREFV8OUXuZT5+HKWPPobsOXNR9fwLsMvcbewqgiAgOjYKV1y5GHc/eCuWXbkYXt5eyMvpi7qbtay76YRENggiIqIBjK/CiQaB4IgYhMUkyD6CLgkq5HoMUzgqImV82xKLspEbMP/qW+BhVCY5X11bjcc2PYZdql1MaA4Quwt3w2p3fpea0dsbScOHo15mUlPUalEfEe70ukSuYKuoQOWf/oTTs2aj9Oc/h+XMmT6PITAoALPnT8fdD96K1euvRHRsW93NnNNn0Ngg/1RJTwgqCYJfIxBXBESy7mZPJI5hPU0iIhq4mNQkGgQEQUDq6Imwmk2y61jl6EeAqRoaaL5qSUBt5gbMu/IG6D0MiqxRWVOJh996GF9rvgYERZYgBTRaG/FN6TcumSth+HBAkmCXeXS2JibWJesSuYrU2oq6N95EzqLFKLzjTjTv2dvnMRg9jRg3KRO33XMDbrj9Oowck4H6+gacPpWL6ipl6m4KAiB4OdTd9Glk3c1L8A8zIiCCJ3eIiGjgYlKTaJCITR4GTx8/NDfUyhrfpPZDuYa14Gjg2NWShOZxd2Puiuuh03soskZZZRke3PQg9mr3MqE5AG3Nd80R9NjUVPgEBMg/gh7NI+jUT0kSmnbuRMH69chbsRL1H3zQ53U3tVoNMoanYt3N1+L2e27EjDlTYbfb2+pulpQrW3czvBJIKGTdzYtg13MiIhro+AqcaJDwDw5DVGIa6qsrZV+T4zFCwYiIXGd7Sypsk+7F7CvWQqvTKbJGcXkx7n/nfhzwOMCE5gC1s3AnbKLzCRIvPz/EZ2TIPoJu1+vREBrq9LpESjL98ANKHn4E2XPnoerFl2Cvr+/T9QVBQExcFJZfdRk2PHAblq1cDKOnEXm5Bcg/UwiTyazMuho7625eRALraRIR0QDHpCbRICEIAlJGjIPdboVol7cboVCXBJOgzI43IleQAHzWkgH1tPswc+m10Gi1iqxTUFKA+969D0c8jigyP/WNenM9viv7ziVzJY8cCUkUYZf5/ZRd0GmgsJWXo/IPf8DpWbNR9uQvYMnP7/MYgoIDMHvBdGx86DZcu3YloqIjUVpchpxs1t3sKz5BHgiOVqbRHhERUV9hUpNoEIlJHgZv30A01lXLGi8KGpzRs2EQ9U8iBGxpGQnDzPsxbfEqqDUaRdbJK8rDxvc34rjhuCLzU9/alr/NJfPEpqXB298fjbXySnrURkdDErjFlwYOqaUFtf/5T1vdzbs2oOU717wh0BNGTyPGT87C7RtvxPW3rcGIUeltdTdP5qK6qlb5upuxRe11N4delXE2CCIiosGASU2iQcTHPxBxaSNRX1sl+5psPY+gU/8jSgI2t4yC75z7MWXhSqjVakXWyc7PxsYPNyLbmK3I/NT3thdshyg5nwjxCQhAXFoa6qvlvUlkMxjQGMIkAQ1Aooim7duRv3Yd8q68CvUffgRJoTqXF6PVajBsRBrW37Iat919A2bMmQK73YbTp/JQpmTdTQ9Le93NAiBgaNXdZD1NIiIaDJjUJBpkkoZnAgBsVnk1oxo0gajQRCgZElGP2CUVPmzNRPCCBzFp/hVQKdSA5UTOCWzcvBF5xjxF5if3qDZV40D5AZfMlTRqFESbTfZuMR5Bp4HOdPQoSh56CNlz56H673+HvaGhT9cXBAGx8dFYvmoJNtx/Ky5fsRAGTyPycgpQcKYIZiXrbgYPnbqb/mFGhMb7uDsMIiIipzGpSTTIxKeOREBwOOqqymVfk6MfqWBERPLZJBU+aB2HqMsexvjZSyAodJz3yKkj2PjZRhQYCxSZn9xrW4GLjqCnpsLLz0/2EfSamBgMvUOsNBjZyspQ8bvfI3vmLJT94pewFPT998qgkEDMWTAD9zx4K65ZtwKR0eEobq+72dTYF3U3ywBjq8vX6A/SJ/PNbCIiGhyY1CQaZPQGIzKypqCpoVb2C/4CfQosgl7hyIguzSqp8Z55EuKWPYzM6QsUS2h+f+J73Lf9PpQYSxSZn9xvW/42lyQ8/IKCEJ2cLPsIutVoRFMwuwnT4CG2tKD29deRs3ARCjdsQMu+fX0eg6eXJyZMHovbN96EG25djeEj01Fb24DsU7moqZb/Wqcn2uputkCILj1Xd3OQvGWhUglInRjm7jCIiIhcgklNokEoaXgmDEZvtDTJOzZmF7TIZcMgciOLpMF7lilIXf4IRk+eo1hCc++Rvbh/x/0oN8rfyUwDT3lLOY5UOd/JXhAEpIwZA5vFIv8IegyPoNMgJIpo2rYd+detRd5Vq1D/0cfuqbs5Mh3X37oat919PabNnAyr1YZTJ3JQVlqhfN3NxPa6m6qBXXczdkQgjD46d4dBRETkEkxqEg1CoVHxiEpMQ21lmexrTnpkQgQ791LfM0lavGudjmErH8GICTMUS2h+dfArPPTlQ6jylN9IiwYul3VBT02Fp68vmurrZY1nXU0a7ExHjqDkwQeRPW8+ql9+GfbGxj5dXxAExCXEYMU1S3H3A7di6YqFMBg9+q7uZmIBEFIFaAdm3c30KTx6TkREgweTmkSDkCAIyMiaAtFug13mzoVmtS+KdYkKR0bUWaukxbu2mRi16hFkjJ2q2Dqf7/scj37zKGqMNYqtQf3L1vytLpknIDQUUYmJqK+Slwy3eHmhOSDAJWsT9We20lJU/PZ3yJ4xE2W/egqWoqI+jyEoJBBzF87EPQ/ehqvXrkB4VBiKi0qRc7qt7qYSBJUEwb8BiG+vu2kYOHU3jb46xA4PdHcYRERELsOkJtEgFZ82Cv5Boairln/M9oRHloIREXXWLOrwnjgXY695FGmjJyqyhiRJ+GzPZ/jRvh+hzlinyBrUPxU1FeF49XGn5zl7BN1qsciu3cfdmjSUiC0tqH3tNeQsWIiiu+9By4EDfR6Dp5cnJk4Zizs33oTrO+pu1uPUiRzl627GtNfd9O7/dTdTJ4RBpeKpHCIiGjyY1CQapIxe3kgdMwmNdTWyX8xXaqNQrQ5VODIioFHU433VAkxY/SiSR4xVZA1JkrD568144vsn0GCQV1+WBhdX7daMS0uD0dsbzbKPoMe6ZF2iAcVuR+PWrchfvQZ5V1+Nhs2bIdn7tv6kVqfF8FEZuP621bh1w/WYNmtSp7qbdpsy8QgeFggRlUBCARBQ12/rbqZPDnd3CERERC7FpCbRIJYyYiw8DJ5obZZf7+qkIVPBiIiAersHPlIvxpTVjyIhfbQia0iShPd2v4cnjz6JJoMyRxCp/9tW4Jq6mkEREYiIi0OdzC7oJh8ftPj5uWRtooHIdOgwiu9/ADnz5qP6lX/A3tS334cFQUB8YixWXnM5NjxwC5YsXwAPgwdyc/JRmF8Ms1mhuptaO4TgGoe6m1ZF1umN8ERf+Id5ujsMIiIil2JSk2gQC4tJRGR8So8aBuXrUtEieCkYFQ1ltXYjPtYuxdTrHkFsynBF1pAkCZt2bMKvT/waLR4tiqxBA0NefR5y6nKcnkcQBKRmZsLc2ir/CDq7oBPBWlKCiqefRvaMmSj/9a9hKSru8xiCQ4Iwb9Es3PPgbVh13XKERoSguKgUudn5aGpqVmTNc3U3C4GI/lF3M427NImIaBBiUpNoEFOpVMjImgKb1QK7zCNgkqDGKY/RygZGQ1K13ROfeCzDzHWPIDoxXZE1RFHEvz/7N36b81u0erj/l0hyP1cdQY9tP4LeIrPTM+tqEp0jNjej5l+vImfBAhRtvBetBw/2eQxe3p6YNHUc7rr3Zqy/eTXSh6egtroOp0/moramTrm6m96OdTeb4I66m1q9GklZIX2+LhERkdKY1CQa5BIyRsMvMAT1VfIbBmV7jIQNGgWjoqGmwuaFLcYVmL3uYUTEJSuyht1uxz+3/BN/zv8zTHqTImvQwLMt3zVH0EOiohAaHY06mV3QW/390erj45K1iQYNux2Nn36KM9dcizNXX4OGLVvcUndzxOgM3HDbGtyyYT2mTJ8As9mC0ydzUF6mdN3Nira6m/51fVp3MykrBDoPvq4jIqLBh0lNokHO09sXGWOnoqGuWvYuBIvKgDx9hsKR0VBRavPBdp9VmLfuIYRFJyiyhs1mw4sfv4i/FP8FZr0ytdJoYDpZexIFDQVOz6NSqZCelQVTSwuPoBO5QOuhQyi+9z7kzF+A6n/+E3aFjoJfjEqlQkJSHK5cvQwbHrgFiy+fD71e71B306LIuoLWDiGkb+tuskEQERENVkxqEg0B6WMmwejlg6b6WtnXnPTIdMMBKRpsiq2++Nzvasxb9wBCIpXpCG21WvHXD/+KlypeglXXf5oyUP/hyiPoBk9PtDbLS77wCDpR96zFxaj4zf8he+ZMlP/m/2AtKenzGEJCgzH/stm4+8HbcNWaKxAaHoKiwpI+rrupzAkDv1AjwpP8FJmbiIjI3ZjUJBoCgiNikDRsTI8aBjVoAlGsTVQwKhrsCiz++CJoDRasewBBYVGKrGGxWvDn9/+Mf1T/A9Z+1GWW+hdXHUEPjYlBcGQk6mUeQW8JDITJi92GieQQm5pQ889/InvefBTddx9aDx/u8xi8fbwwedp43HXfzVh/87VIG5aMmuraPqq7WQLEFLu87iZ3aRIR0WDGpCbRECAIAoaNmw61RgNTq/wdB0eNExWMigazXEsAvglbi4Xr7kNAiDK/UJnMJvz+nd/j3/X/hk1rU2QNGhyOVh9FaVOp0/Oo1Wqkjx2LlqYm2cmNWh5BJ+oZux2Nn2zBmVVX48y1q9Hw6WeQRLFPQ9DqtBg5ZhhuvP063LrhekyeNh5mswWnTrTX3VSoDqhgMLu07qZGq0LG1AjXBEdERNQPMalJNETEJA9DVEIqasqLZV9TowlDiTZOuaBoUDptDsK+iOux6LqN8AtUpttqq6kV//f2/+HN5jdh1/RtkwkamLYVuGa3ZmxqKjwMBphaWmSNr4lVpuwC0VDQ+v33KN64ETkLFqLm1Vchyiz94Cpn625eteYK3HX/Lbhs2Xzo9HrkZJ9BYX4xLH1RdzO493U3UyaEwcNT6+LoiIiI+g8mNYmGCLVajZETZ8FmtcJmlf/i+KiBuzVJvhOmYByKuRGL194Dn4AgRdZobm3GU289hXdM70BU9+3uHRq4XFVXMyI+HkEREbKPoDcFBcFiNLpkbaKhylpYiPKnfo3TM2eh/Onfwlrq/M7rngoNa6u7ec+Dt2HVmuUIDQtGYWEJcnPy0dwk702OnhJUEoSAs3U3ywGPntXdHDlLmdIvRERE/QWTmkRDSNKwTASFRaGmQn4R/iptJMo00QpGRYPFMVMYfki4BYuu2wAvX39F1mhsbsSTm57E+5b3mdCkHjlYcRCVLZVOz6PWaJCWlYWWxkZ5FwgCaqL5PZTIFcTGRtS88gqy581H8f0PoPXIkT6P4WzdzTvP1t3MSEZ1VU0f1N1shhArv+5mVJo/AiO9XB4LERFRf8KkJtEQojcYMXLiLLQ01UPsQX0q1tak7hxqjcDp5FuxcPWd8PT2VWSN+sZ6/HTTT/GJ/RNIatf/0kiDmwQJ2wu2u2SuuLQ0aD08enAEnXU1iVzKZkPD5s04c9UqnFlzHRo+6/u6mzq97lzdzbvPr7tZ2Qd1NwsB/zqI6Lqm9KjZfDOFiIgGPyY1iYaY1NET4OMfhPqaCtnXVGhjUKFhoXnq2v7WKOSn3Y6F194Oo5e3ImvUNtTix5t+jO3SdkgqJjSpd1zVBT0yMRFBYWGor66WNb4xJARWD71L1iaizlr370fxPRuRs3ARal59za11N++872YsvnwedDotcrLPoKhAybqbNiC4GnnSbgQPF+Ad6NHxmG+wAbEjAhVZl4iIqD9hUpNoiPENCEb6mMmor67s0RGpY6ytSV3Y0xqL0hF3YcG1t8LD6KnIGtV11Xjsf4/hc9XnTGiSU/aV70OtqdbpeTRaLVIzM9Hc0CDvApUKtTyCTqQoa0EByp96CqdnzUb5b38La1lZn8cQFh6CBUvm4O4Hb8Oq1VcgKCQIhQXFbXU3m11fd7OpsRkGTz2mLEvDdb+YhAW3DEdovA9GzIqCIAguX4+IiKi/YVKTaAhKz5oMg9ELzY11sq8p1cWjWh2mXFA04HzVkoCaMRsw/6obofcwKLJGZU0lHt70ML7SfAXw9zNykl2yY2fhTpfMFZ+RAY1WC4tJXuMOdkEn6htiQwNqXn4F2XPnofiBB9F69Fifx+Dj643J0ydgw/23YN3N1yI1PQlVlTU4fSoXtbX1Lqu7WVVZjfikWEREhUGlEpCUFYIrHxmLkTPZIIiIiIYGJjWJhqDwmEQkj8hCdZn8hkEAcNQ4QaGIaKDZ1ZKEprEbMHfF9dDpPbq/oBfKKsvw4KYHsVe7lwlNcpnP8j9zyTyRiYkICA1Fncwu6A1hYbDpdC5Zm4hksNnQ8PHHOHPllThz3XVo3LbNLXU3R2UOx013rMWtG9Zj4uSxMLWacPpkLiqcrLtps9lgt9sxOmvEBbsyBRV/aBIR0dDApCbRECQIAkZNngO9hweaG+tlX1esTUSNOljByGgg2NGSCuuEezBn+TpoFUrSFJcX4/537scBjwNMaJJL7SndgwaLzGPjl6DT65GamYmmennfQyWVCrXR3D1F5A6t+/ajaMPdyFm0CDX/fh2izCZfrqJSqZCYHI+r167AXffdjIVL50Cj1SDn9BkUFZTAYrH2eM7K8iqEhocgY0SaAhETERENDExqEg1RUQlpSMgYg+qyYvkXCQIOG6coFxT1axKAz1oyoJp6L2YtWwONVqvIOoWlhbj/3ftxxOOIIvPT0GYTbdhVuMslc8VnZECtVsNiNssaXxPDLuhE7mTNL0D5L3+J07Nmo+L3v4e1vLzPYwiLCMXCJXNx90O34arVyxAUEojC/CLk5eSjRWbdTVEU0dDQhHETMmE0KlP+hYiIaCBgUpNoiBIEAWOmzIVWq0NLk/xdSyW6RFRoIhWMjPojEQK2NI+Ax4z7MO2yq6HWaBRZJ68oDxvf24gfDD8oMj8RAGzN3+qSeaKTkuAfEiK7C3p9RATsCr0ZQETyifX1qH7p7211Nx96GKYf+v5njq+vD6bMmIi77rsZa2+6BsmpiaisrEb2qVzUdVN3s662Hn7+vhiZObwPIyYiIup/mNQkGsKikzIQnzEKVaVFPbruoHG6QhFRfyRKAja3jILv3AcwddGVUKvViqyTnZ+NjR9uxGnjaUXmJzrr65Kv0WJ1/vip3mBA6pgxaKyV11FdUqtRG8k3hYj6DasVDR9+iLwVK5G/dh0ad+xwWRMfufQeeozOGoGb71qHW+5aj/GTstDaasKpkzmoKK+C3X5hHdCqqhqMHDMMQcEBfRorERFRf8OkJtEQplKpMGbKXGg0GrQ2N8m+rkobgUJtkoKRUX9hl1T4qDULQQsewKT5V0ClUubHxsnck9j48UbkGfMUmZ/Ikdluxu6i3S6ZKy4jAyq1GlaLRdb4mlgeQSfqj1q++w5Fd96F3EWLUfOf/0Bsbe3T9VUqFZJSEjrqbi64bA7UGjVysvNQVFgCa3vdzaamZnh46DFm7Mg+jY+IiKg/YlKTaIiLTRmB2NQRqCot7NF1h4xTIbKDy6Bmk1T4oHUcwhc/gAmzl17QXdVVjp4+io2fbkSBZ4Ei8xN1xVVH0GNSUuAXFIQGuUfQIyNh1yiz25mInGc5cwblT/4C2TNnoeIPf4S1oqJP1xcEAWERoVh8+Tzc89BtuPKaZQgMDEB+e93NkuIyJKUkIC6Bb5AQERExqUk0xKlUKmROnQeVSg1Ta7Ps6xo0gcjVD1MwMnInq6TG++aJiFv2MMbOWKRYQvPgiYO4b+t9KDb2oGEVkQt8UfwFTDaT0/MYPD2RPGoUGuvqZI0XNRrUR/AIOlF/Z6+vR/WLLyJnzlyUPPIITMeP93kMvr4+mDpzIjY8cAvW3XQNklIT4Ofvi3ETMxU7OUFERDSQ8KchESEubRRiUzJQXdKz2ppHDJNhgzINY8h9LJIG71mmIPmKRzB68hzFEpp7j+zF/TvvR5lnmSLzE11Kq60VX5V85ZK5Eoa1vcFjs1pljWcXdKKBQ7JaUf/+B8hbvgL5669H486d7qu7eec63PPgbRg5hm8qExERAUxqEhEAtVqN0VPmQoIEc6v85hmtam+c8hijYGTU10ySFu9ZpyFj5SMYOXGmYgnNrw5+hYe+fAiVxkpF5ieSY1v+NpfME5uaCp/AQDTU1MgaXxcVCZG7rIgGnJY9e1B0x51o2LzZLeur1WoEBPor9rOZiIhooOEWKyICACRmZCImKQOF2ccRmZgq+7pjhvFINB+BXnL+GCe5V6ukxXu2mRiz6kGkjZ6o2Dq79u/Cj/f+GHXGOsXWIJJjV+EuWO1WaNVap+YxensjafhwHNi1CwGhod2Ot+t0qI8Ih3+RcmUXDksSfoq23WTDAPxKuHgS9Ywk4UNIOAygDoAHgEQACyFgYi+TJ8ckCZ9Awg8AGgB4AkgFsAwChl1izt5c96Uk4W1IKAKgBzASwDoICOtivF2ScC8kFAKYC2DDJT4vzjohSXgMEiQAT0NAynnxVEsS3oWEAwCqAKgBJABYAgGTzht7jySiAMB8AHcqGDN1TxMSAp9589wdBhEREYE7NYmonVqjQdaMhYAg9KgTulXlgR8M4xSMjPpCs6jDe/Y5GHv1I4olNCVJwtY9W/H4d48zoUn9QqO1Ed+UfuOSuRJHjIAEwG6zyRpfExPrknW7YpIkvAJ5x2O3ShLuh4TtACoBWAE0AjgI4DeQ8Lwk9nj9NyQRP4KELwHUALABqAewF8CPIeHtixzd7c11uyQJv4OEPABaAC0AvgbwGCQ0dDH+cwCFAHQArlGw2Z1dkvB8e0IzFbggoblfknAXJHwEoASABUArgGMA/g8S/nne531pe6zbAJzq46PP1Jn/2usg6HTuDoOIiIjApCYROUjIGIPEYaNRWdKzLtQnPTLRrPJWKCpSWqOoxwfCAoxf/SiSRyqToJYkCZu/3oyffv9TNBgaFFmDqDdcegTd3x8NtbWyxtdGR0FU4AhpqyThF5BwRsbYYknC3yDhbPpMDyAJgNFhzBYAn/YgiXZYkvBfh9vG9jnPpoAkAK9BwoHz5uztdZvak7fxAP4FAfe3J/9q0ZYAdGSVJLzZPn4hgCAFj/B+CnR8DRaelzw9I0n4NSScPd+gRdsOTcfP+3sADjk81+ntj4sAXpCZsCbXU3l6wv+aa9wdBhEREbVjUpOIOqjVaoyduRg6vQeaGupkXycKGhwwzlAuMFJMvWjAh6pFmLT6ESRmKFMfVZIkvL/7ffzi6C/QZJC/C5ioL+ws3AmbKG935aV4+fkhPiMD9dXVssbb9Xo0hoU5va6jY5KE+yDhmMzxmx0SmsEA/goBvxNUeB4CHCP7oAdJtA8dxiYCeLF9zmchwOsi43p7XYvUduQcAEYA0AoCMh3Gnjpvjc1o241qAHClwrs032tf2whgynmPvwwJZ//FRQH4GwT8QVDhRQgIdxj3iUP8ekHA9PaPc9A54Ul9x+/KK6H25pu4RERE/QWTmkTUSXRiOlJHT0B1aVGPunsW6lNRpmFH34Gk1m7Ax5olmLb2UcSljlBkDUmSsGnHJjx14ik0ezQrsgaRM+rMddhXvs8lcyWPHAlJFCHa7bLG18S65numVZLwRPvR7bIeXKcHEIe23ZDLICCwfeeijyBgvMO4nszpBSAabUXbr4YAr/Y5QwUBwy8xZ2+uc2xrZ2j/28PhvlbHse11N4G25+qj4C7NbwBUtH88EYDOYa1yScIRh7HXQ+jYMeolCFgFATMArAQw4bzE6zSH2x9zt2bf02gQsH6du6MgIiIiB2wURESdCIKArOkLkX10Pxpqq+AbECz72v2es7Co/jWo0PMabNS3qu2e+NTjcsxc8wAi4pIVWUMURby+9XU8k/8MTB5sJEX917b8bZgY7nwt2ZjUVHj7+aGhthZ+QUHdjq+Jjkbcnr0QnNx1ZwZwyOH22SIS33Vz3TpBhXVo21l4/ndtx+RhSA9i2djexMYmSZ1ScpIkXXLO3lzn6fDx2bdMWi7y+LuQ0ADAB8Cy7p6Ekz5zSDiOPy8xefi8scPPuz1LEDDrIrtI0wB4o63m6T4AlZKEYHbB7jM+CxdCGxHh7jCIiIjIAXdqEtEFwqLjMXz8DNRWlPZot2a9JginPUYpGBm5QoXNC1uMyzF73cOKJTTtdjv+ueWf+HP+n2HSM6FJ/dv2gu0Qe9EQ53y+gYGIS0+XfQTdZjCgMaQnKcNL8wFwEwQ8ft6R7e6oBQFaQYAkSaiSJLwhidjr8PiSXhzV1ggC1IIAuyShtL125xmHxy+7yJw9uc4gCDi713U/gDpJwi6HsentY+skCR+233clBBgUTAQ2ShKOOtw+P2mZ75Dw9EZbPc3PJAm/kUT8UhLxuiSi8iI/d9WCgPT2j0Wg09eIFCYICLzpRndHQUREROdhUpOIupQ5dR58A4JRW9mTg4fAYcNkmARD9wPJLcps3tjufRXmrXsYYdEJiqxhs9nw0uaX8FzxczDrzYqsQeRKVa1V+L7ie5fMlTRyJOw2G0RRXpK0Jsb5I+haAHdAwEsQsFQQIPQyabcZwM0417BHAHAFgMucSAK+Cgl3QMJn7bc1AG6GgPHdzCn3umsgQABQCuB6SHipPWkYCmBO+5j/tTflCQKwqNfPRJ7jQMeu10Cg4xj9WTUOH6sB/BIS/goJ36Jt9+UmABsg4ZuLJDZjHT4+wiPofcZ77hx4pKd3P5CIiIj6FJOaRNQl/+AwjJ4yDw21lbLrwwGAVeWBQ8apCkZGvVVs9cUOv2swb/2DCImM7f6CXrBarfjbh3/Di+UvwqKzKLIGkRJc1gU9LQ3efn5olNkFvSY2xunUlF4QsEAQoHdyB2LFeZEkAJjoZEOdivNuD8OFuxeduW6yIOAnEDAKQACAMADzAfwGAoyCgHLpXGL0arTtSFVSjsPnMK6Lxx3rfNYB6CqVbgbwe0g41UViM9bh65HTuxCppwQBQRvudncURERE1AUmNYnookZNmoWg0ChUlRf36Loc/QhUq0MViop6o8Dihy8CV2PhugcQFBalyBoWqwXPvP8MXql+BVatVZE1iJSyrWBbj8ptXIxfUBCik5PRUFPT/WAAVqMRTTLqb/aFZgApaNvRCLQlzR6FhP858XkxA0gF4Nt++xCAByBhezdz9uS6TEHAzwUVXhFUeF5Q4U5BBf/25OV/2juNRwKY3T7+sCThMUnEKknENZKIJyUReS7qJl7u8LFfF4+fv383AMDPIeANCHjMoWyADcC/ukh3+zt8XI22GqSkLO+FC+CRmuLuMIiIiKgLTGoS0UV5+foja/pCtDY2wGbtQZJKELDPczYPxvUTeZYAfB26FgvX34+AkHBF1jCZTfj9O7/Ha/Wvwaa1KbIGkZLKmstwtOpo9wO7IQgCkkePhtVsln8E3UVd0J21QVDhaUGFlyBghcP9/4GE471Mnv1UUOH/BBX+3t7VGwDsAJ6HhLJLzNnb6xydkSTsbv94DdpqdR6TJPwMEo6j7Xi9BcABAI+jrYansxodPjZ28bjHebfXQ8Aooa3O5wRBwJUOOzF/ANBwXkyOxV1EAE3OhUvdUakQvGGDu6MgIiKii2BSk4guadi4aYiIT0ZF8ZkeXVetjUCefpgyQZFsp81B+C58PRavvRd+ga5rSOKo1dSKp995Gv9t+i/sGvmlCoj6m60FW10yT1xaGjx9fdFUXy9rfE2sMuUgeksQBKyBAB+H+z538m0qrSDglvb6lwBgBfCVgtcBwGuQIAFIBDCp/b630dbp3RfAyxDw6/aZWwF86IK34hzf0jk/gQmg0+cUaNuN6ijD4WMJFx7DP79itfPtrehSfC67DPrERHeHQURERBfBpCYRXZKH0RMT5iyFJIpobW7s/gIHB43TYBF0CkVG3TlhDsGh6BuwaO098AlQ5nhrc2sznnrrKbzd+jYTmjTguaquZkBoKCITElBfVSVrvMXLC80BAS5Zu6dMkoQiSYLpvB2BakGA43eNyh7M2SJJKJAk2M+b00sQ4NlpTskl13XlmCRhf/vH1+Fc86TT7feltc+b6jD3yW5n7Z5jnF2db4g5r0bp+fvau0tatp53uydd7qmH1GoE33Wnu6MgIiKiS2BSk4i6lTxiHJJHjEVFcX6Pas6ZVJ44ZJymYGR0MUdNofgh/mYsWns3vP2USZY0NjfiyU1P4n3r+xDV3C9EA19hYyFO1Jxweh5BEJCamQmrxSL7e2ZfH0FvlSRcJ4m4BhI2QMKX5z1ukSSUOdz2RfeKJAmrJRGrIeEeSDh23uM1ktTpuLSvk9ddymvtic/hAMY4NAdqbv/b8Wi44bzHnOHn8HFLF4+f3z/7+Hm3S8+7ff7+escYPQDoFG58NJT5Xn45dHFx7g6DiIiILoFJTSLqllqtxsR5V8DT2xf11ecfhru00/pRqNBEKhQZdeWQKQKnkm7DwtV3wtNbzq//PVffWI8nNj2BT+yfQFKxeioNHlvzXXcE3ejtjeaGBlnja2L6NqlpEIROCbM3HWpV2iUJL0PqlJQbJ6MLejgAx735/4SEuvY5zZKEv523w/LsnL297mL2SBLOpqavO2/s2Z2Ujs+t9bzHnBHssF5XPy2TBAGOrdreRNtOWaAt0fy2w3NNAOB3XtLSsaCBMi3fCACg0SCIuzSJiIj6PSY1iUiWsOh4jJ48F3VV5bDbe9AIRhCw12se7FArFxx1ONAahfzU27F49e0wenkrskZtQy1+vOnH2CZtY0KTBh1XHUEPiohAeGws6mQeQTf5+qLFT5k3IS7mGocEXBWAuyHhfknETZDwqcO4dJyrSQkAByQJP5LEjj9nqc9rdJML4HZIeLB9zu8c5piOtgSfM9d1RZQkvN6eGBwPIO28scntf58A0ChJOCFJHbsfXdHf2rEm5vm7Ls+6yeG5VgO4FxLuk0TcAqnTEfjVXSRv8xySnuzHrRy/5cuhi2LamIiIqL9jUpOIZMucvgChUfGoLC7o0XUN6kAcNUxUKCo6a29rDEpG3IUF194KD6Mr9hxdqLquGo/97zF8rvqcCU0alHLrc5Fbl+v0PIIgIC0rC2aTSf4R9Ji+bRg0XhBwPYSOF4NWtCUU6xzGpAJ4zKEmJQDUAjjm8MfRZQCWONw2AchG5y7d4wDcdV7CrrfXnW8ngAK0vcBd08XYFe3Ptx7ATZDwo/YkoQeApTJ2o3YnCecaBJXjwu7lQNtx+FscPu82AHk491wFANdDwNgukrd5Dh+nuiBeupCg1SLojtvdHQYRERHJwKQmEcnm5eOHCXOWwmoxwdzaVbWwi/vBMA61amWa1RDwVUs8qsfcjflX3Qi9x/mtJlyjqqYKj2x6BF9pvgJ/l6bBzFVH0GNTU2H09ERLo7wma31dVxMArhAEPA0BMwAEAdCgrd5kOoA7IOBXEODTg7qNgiDgZkGFJyFgIgB/AGoA3gBGAXgQAh6HAP15c/b2OkdWScKb7UnKaQBiuxg7XBDwUwgdtS217fP/CgIiXFCfUi0IGO1w+2IVWi8TBPwWAqah7blq2v+eDOA3EHBFF7FIktTR6EgNINPpaKkrflddCW1EhLvDICIiIhkEqSddP4hoyLNZrXj35d8j54eDiE5K77R7pzuB1lLMa3gDKhmda0m+3S2JaB17F2ZfcR20Or0ia5RXlePhtx/GAf0BJjRp0Ev1T8Vbl7/l9DyiKOKfTz2F0jNnEJmQIOuake++B4PMJCj1TwckCU+2/5xbCOB2wTV7CHIkCQ+0zzsOwI9cNC+dI+j1SPzsU2hDQ90dChEREcnAV0NE1CMarRaT5l0BvcGIxrrqHl1brQ3HKY8xCkU2NO1oSYVlwkbMWb5OsYRmSUUJ7n/7fhzwYEKThoaTtSdR2FDo9DwqlQrpWVkwt7bKPoJe64bdmuRaYwCcTYl9B8j+2nfnG4c3BBfzm7Ei/K5exYQmERHRAMKkJhH1WGRCKkaMn4Hq8mKIotj9BQ4OGaeiSeWjUGRDhwTgs5YMqKZsxKxla6DRahVZp7C0EPe9cx8OexxWZH6i/mprgWuOoMekpsLDaERrc3P3g9H3dTXJ9QRBwPL2pGM1gIMumNMuSdjZ/nEy2upykmsJBgOCbr3V3WEQERFRDzCpSUQ9JggCxs+6DEFhUags6VnTILugxV7PeQpFNjSIELCleQQ8pt+LaUuugVqjUWSdM8VnsPG9jfjB8IMi8xP1Z67qgh4WG4vgyEjUy+yC3hwUCLOnMo2+qO/MA3A2Pf2xC0qu7EFbghQA1nKXpiICb7gBmiDW/iYiIhpImNQkol7xCQjCpHnLYTG3wtQibwfSWWW6OOTqMxSKbHATJQGbm0fCZ879mLr4KqjVakXWySnIwcYPNuK08XT3g4kGoaNVR1HWXOb0PGq1GmlZWWhtapLfBZ1H0Ac8tSDgpvbk434AhU4eQX/XoQHSSO7SdDlNeDgCb7nZ3WEQERFRDzGpSUS9NmzsVCSPGIfywtwe1wzbb5yFZpWXQpENTnZJhQ9bMxG08EFMmn8FVCplvoWfzD2JjR9vRK4xV5H5iQYCCZLLuqDHpaVBbzDA1NIia3xNDJOag8FIQcB7ggrvCipEO5mI/K2gwnuCCg+wOZAiQh54ACqDwd1hEBERUQ/xlRER9Zpao8G0RVfC2z8QNeUlPbrWqvLAt14L2QddJpukwgetYxGx+EFMmL1UsYTmsexj2PjpRuQb8xWZn2ggcdUR9Ij4eARGRKC+Wl5ztabgYFiYYCHqE4bMTPguuczdYRAREVEvMKlJRE4JjojBhNlL0dRQC4vZ1KNry7WxOOmRqVBkg4dVUuN98wTEXf4wxs5YBEGho4eHThzCvZ/di2JjsSLzEw00BysPoqpVXi3MS1FrNEjPykJLQ4O8CwSBuzWJ+oIgIPTxx90dBREREfUSk5pE5LTRU+YiPm0UygpyenwM/aBxGurUgQpFNvBZJDXes0xG8hWPYvSUuYolNL87+h3u33E/yjydryFINFiIkojt+dtdMldcWhq0Hh6yj6DXsq4mkeJ8ly+HYfgwd4dBREREvcSkJhE5TavTY9riq2Dw9EZ9dUWPrhUFDb72Wgw7lGl4M5CZJQ3es05HxspHMXLiTMUSml8f+hoPffEQKjx79rUjGgq2FrimrmZkYiICQ0NlH0FvCAmB1UPvkrWJ6EIqT0+E3H+fu8MgIiIiJzCpSUQuERmfgqzpC1FXVQ6b1dKja+s0IThsnKxQZANTq6TFu/aZGHnVIxg2dqpi6+w+sBuPfP0Iqo3yEi1EQ83+sv2oM9U5PY9Gq0VaVhaa5R5BV6lQGx3t9LpE1LWgO26HJijI3WEQERGRE5jUJCKXGTtjEaIS01FekNfja497jEO5JkqBqAaeFlGH9+xzkLXqUaSNmaTIGpIkYduebXhs72OoM9YpsgbRYGCTbNhRuMMlc8Wlp0Oj1cJikld/uCYm1iXrElFn2tgYBKxb5+4wiIiIyElMahKRy3gYPTF10UqotRo01vVw558g4BuvRbAIOmWCGyCaRD3eE+Zj/OpHkTxynCJrSJKET77+BD/9/qdoMMjcNUY0hG3Nd80R9KikJASEhqKuSl7zoYbwMNh0Q/t7IpESQh95BAL/bxEREQ14TGoSkUvFp43CyImzUVVWBLvN1qNrW9Q+2Oc5R6HI+r8G0QPvqxZh8upHkZgxRpE1JEnC+7vfx5NHnkSjoVGRNYgGmz2le9Bocf7/i06vR2pmJprr62WNl1Qq1EZxBzuRK3lOngzv2bPdHQYRERG5AJOaRORSgiBg0vwrEJWQhtL87B5ff0afgXxdigKR9W+1diM+0izBtOseQVzqCEXWkCQJb+18C0+deArNhmZF1iAajKyiFZ8Xfu6SueLT06FSq2E1m2WNr2EXdCLX0WgQ+tij7o6CiIiIXIRJTSJyOU9vX0y/7Gpo9R6oqyrv8fV7PeejUeWrQGT9U7XdE5v1l2PG2kcQk5ShyBqiKOI/2/6Dp7OfRqtHqyJrEA1m2/K3uWSe6ORk+IeEoE5mF/T6iAjYtVqXrE001PlffTX0ycnuDoOIiIhchElNIlJEXOoIjJu5GHXVFbCY5TXFOMuq0uNL76WwQ61QdP1Hpc0LnxqXY876RxAZr8wOVbvdjlc/fRV/zPsjTPqefS2IqM1XJV+hxdri9Dx6gwHJo0ejqa5O1nhJrUZtZKTT6xINdWo/PwTfc7e7wyAiIiIXYlKTiBQhCALGzboMCemjUZqfDUmSenR9rSYU+z1nKhNcP1Fm88ZW75WYu+5hhEUnKLKGzWbD3zf/Hc8WPQuzXt5xVyK6kNluxu7i3S6ZK2HYMAgqFawWi6zxtTyCTuS0kEcegdp36JwCISIiGgqY1CQixeg9DJh5+bXw9g1AdVlxj6/P9hiNM7o0BSJzvxKrD3b4XYP56x9GSGSsImtYrVY8/9HzeKH8BVh08pInRHRxrjqCHpOSAr+gIDTU1MgaXxcRAbt68O9cJ1KK59Sp8Ft+hbvDICIiIhdjUpOIFBUWnYDJC1agpakeppamHl+/12se6tUBCkTmPoVWP+wKXI2F6x5AUJgynY0tVgueef8ZvFz1MqxaqyJrEA01XxR9AbPd+R3PBk9PJI8cKTupKWq1qI+McHpdoqFIZTQi/Oc/c3cYREREpAAmNYlIcaMmzUbamEkoK8iDKIo9utYm6PCl11LYoFEour51xhKAr0LWYuG6+xEQEq7IGmaLGX945w94rf412LQ2RdYgGopabC34qvgrl8yVMHw4BEGAzSrvTYeaGGV2dBMNdsH33w8t69ISERENSkxqEpHi1BoNZiy5BkHhUSgvyuvx9fWaIHznNVeByPpWtjkQe8PXY/Hae+EfFKrIGq2mVjz99tN4s+lN2DV2RdYgGspceQTdJyBA/hH0qEiIKr5sI+oJQ1YW/NesdncYREREpBC+OiaiPuEfHIapi66EaLejqaGux9fn6YchRz/c9YH1kZPmYByMvhGL1t4Dn4AgRdZobm3GU289hbda32JCk0ghnxd9Dqvd+ZIOnj4+SBoxQnZS067ToT5cmd3dRIORoNMh/Be/gCAI7g6FiIiIFMKkJhH1mbQxkzBy4ixUlRTAZu1545p9nrNRqw5WIDJlHTOF4lj8LVh43QZ4+ylTH7SppQm/2PQLvG95H6K6Z0f8iUi+Rksjvi391iVzJY4YAUmSYLfJKxNRwy7oRLIF3XUX9Anx7g6DiIiIFMSkJhH1GZVKhWmLr0JsynCUnDkNSZJ6dL1d0OJL76WwCHqFInS9w6ZwnEy6DQtX3wEvHz9F1mhoasAT/3sCm+2bIal79jklop7bVuCaI+ixqaltR9Bra2WNr42OhshdZ0Td0mekI/CmG90dBhERESmMSU0i6lNGLx/MXr4W3n6BqCwp6PH1jWp/fOV1GUT0/1/sD7RG4kzqHVh07W0wevkoskZdYx1+/L8fY6u0FZKKCU2ivrCzYCfsovMlHrz8/BCfkYH66mpZ4+16PRrDlKnHSzRoaDSI+OUvIWgGR4NBIiIiujgmNYmoz4XHJGL6ZVfDajahqUHeDiVHpbp4HDROVyAy19nbGoOSERuw4JpbYPD0UmSN6rpqPPa/x7BTtZMJTaI+VGuuxb7yfS6ZK2nECIh2O0S7vCRpTSy7oBNdSuANN8AjI8PdYRAREVEfYFKTiNxi2LhpGD1lHqpKCmG1mHt8/QnDWOTohykQmfO+bolH9egNmH/VjdAbjIqsUVVThUc3PYov1V9iAGxaJRp0tuZvdck8sWlp8PH3l30EvSY6GhKPoBN1SRcfj6ANd7k7DCIiIuojTGoSkVucra+ZkD66V/U1AeA7z7mo1PSvbsBftCSiMWsD5q68Hjq9hyJrlFeV48G3HsS32m+Z0CRykx0FOyBKzjfl8g0MRGxaGhpkHkG3GQxoDBl4DdOIFCcICP/VL6HSD5y620REROQcJjWJyG08jJ6YvXwt/IJCUV50psfXi4IGX3gvQ7PK2/XB9cLO5hSYJ2zEnBXrodUp80tVSUUJHnj7AezX72dCk8iNKlsrcbDioEvmSh41CjabDaIoL0laE8Mu6ETn87/2WhgzM90dBhEREfUhJjWJyK1CImMxY8k1EG1WNNbJ26nkyKTyxG7vZbDBfQ0BJABbW9KBKRsxa9kaaLRaRdYpLC3Efe/ch0MehxSZn4h6xpVH0L39/NBUVydrfG1MDFhFl+gcbXQ0Qh64391hEBERUR9jW0Aicrv0zMmoKDqDr7e+B73Bs8fHtms1ofjGayGmNn3U55sXRQj4rHkYjDPuwZRFV0KtViuyTn5JPu7/4H6cMpxSZP7BQDwjwvYfGwBAiBGgva5zclmqk2D9q1X2fKoRKmiWXvrHpP2wHfaP5HfBVi9RQz3y3L8RSZQgfi9CPCZCqpQAKwADIEQKUI9VQxV34XuPkkWCfZcd4nERaAHgA6hHqKGaooKguvB/gFgswvavts+LZq0Gqmjl3s+0fWKD+L0IIUiA5hYNBIfaj2KxCHGvCLFIBJoBaAAhSIAqXQVVlgqCxmFsqQjbP9pjXqeBKqp/vge7vWA7Hhn/iNPz+AUFISopCacPHYJPQEC34y2enmgKCoJ3VZXTaxMNeFotIn//O6g8Pd0dCREREfWx/vlbAhENKYIgYNKCFUgenoXSM6dlH8F0VKhPxVHDRAWiuzhRErC5eSS85tyPqYuvUiyhmVOQg3vev4cJzUuQLBLs2+QnF/sDySbB9qYN9k/tkIokwAxABNAMSKck2P5jg/2rC5+T7W0bxO9EoAmADkAdYP/CDvuWrp+/fWfb/UKSoGhCUywWIR5s+7+rGqfqlNC0H7DD9qqtLRHbiLbnaQGkEgn27XbYXrNBMp/be6gKV0GIarvevsUOSeyf+xJLm0txtOqo0/MIgoCUMWNgs1jkH0GP5RF0IgAIvuduGEaOdHcYRERE5AZMahJRv6D3MGD28rUIjohBaX52rxoHHTFMRoEuWYHoLmSXBHzUmomgBQ9g8vzlUKmU+XZ6Ku8UNn68EbnGXEXmHwwkiwTb/2yQKrr5N6Np28F5sT8I7Dxcldz911TwvPh8QowAOG4cMqBTUtH+tR3SGanT40K4ADhsMLXvsrftbGwnFouQ8tquUc9SQ3ufFkJSW/JPPCRCaur8ORBzREgF7eNnKJN074j1M3tbLQY9oBp27nlKNdK5xwBABQhhAuBQClcqbUtuOlJlts0hVUgQDzjfkEcpn+V/5pJ5YlNT4enri+b6elnja1lXkwiekycj8Oab3R0GERERuQmPnxNRvxEYGok5K9bjg389g+ryYgSFRfVsAkHAN16LYGxoQpCtVJkgAdglFT4wZSFq0X0YO3Nxpx1prnQs+xge3PogioxFisw/GIgFImwf24Da7scKXhceST9LkiTY/m2DVN2WeVNNVkGV1n1SU5Wogiqx63FSswTri+eOu2uWaSD4OxyxPnouUSfEC9BcqYGgFSA1SLD+09q2ExOAeFjsOH4tlZxLWgqJAgRBgCpeBXt2W9JQKpUgJAsdz+nsLk1VhgqqUAV3aeaJkErbP3fpKgg6h+f5g9i2MxMAtO3HyUNVkEQJ9s12iIfbHhSPiZAWSBDUbdeq0lRtyVATYN9jhyqz6+P17rYtfxvuz3K+ll9gWBgiExKQ98MP8Pb373a82dsbzQEB8KypcXptooFIHRCAiP/7jWI/g4mIiKj/405NIupX4tNGYvqSa2BqaUZjXc9/WbcLWnzuvRwNqu6TAr1hldR43zwBsUseVjSheejEIdz72b1MaF6EZJNgfcMK27/lJTS7I34vQipsS8oJIQLU053f1Wjfagda2z5WZaqgSjjvR27juQ/VmWoI2rZ/S4JPW53Js6QGh92X5nMfdiQOdefuczzCLf4gtu1eVcElz+dS7HvO7bJ03KUJdI5fiBc6kquCSoBqnMNYKzo+XwAgaASoUtofrwek0/3zCHphYyFO1px0eh5BEJCamQmrxSJ7pzq7oNOQJQiI+M2voQkOdnckRERE5EZMahJRvzNq0myMm7EINeXFMLe29Ph6i8qAnT4r0Sq4tmmARVLjPfNkJC57BGOmzlMsobnv2D7cv/N+lHmWKTL/oGBDxzFsABCShY4dij0lNZ7b0QgA6oVqp3cEitli2w5FADAC6pldJBV9HWKwnJfEMp37UPB2iMWhh5Zkar/GMdHp0b5L097WTAgAVKNUEAKU28kkNUiQcttjMQBCdOe1BD+H22Z05vA8oQZg7PywYwkA+4H+WzPVZV3QU1Nh9PZGc0ODrPGsq0lDVcC6tfCaPt3dYRAREZGbMalJRP2OSqXC1MVXIT1zMkrzs2Gzye9YfVaz2hef+yyHVdB1P1gGs6TBu5ZpSF/5CEZNmqVYQvPbw9/iwd0PosJYocj8g44BUM9Vtx3d9ujd18S+296RbBNSBac7bUuSBNtWW8dt9VR1l7Gpx5xLdNq/skMsEyFZJIjHHRKiaEtKniVEOhzrPiZCMkkQT7aPVbXX5ETbzlPUAdC0ra+kjvUBCFHCBQlh1XBVR51QKV+C/Xs7JIsEqapzHU3ViAuPlwsx525L+dK5RG4/sy1/m0vmCY6MRHhsLOpkdjU3+fqixc+3+4FEg4g+Ix0hDzzg7jCIiIioH2BSk4j6Ja1Ojzkr1iMqMR0lead61TioVhOKL7yWwu7kt7pWSYt3bTMxatWjGD5umlNzXcruA7vx8FcPo9pYrdgag4a6bUeldoMW6vHqXieZpWapU21L9WTnE4DSaenckXhj56SkI9V4FVQTVIAAoAawvWKD9XdW2N61AXa0PccF6k5JVlW4qmNHqrhHhPUP1o5j86pxKgieQlsn+Pau6aqxqs47PRUg5jskNUMuXEvwaasXCq+22/ZP7LD+zgrri1ZIZe1H/uMFqOdd+LkXDA4NhUR0PNf+Jqc+B7n1zjfzOnsE3dza2oMj6LFOr0s0UAhGIyJ//3sIOte8YUlEREQDG5OaRNRvefsFYP5VN8IvMARlBTm9mqNMF4c9XgvQ21RIi6jD+/bZyLr6UaSNmdTLWS5NkiRs37sdj+99HLVGFxSIHAIErdCpDmVv2ffb2xKIAIRYAapw538s2vc6HGXPuniMgtBeOzOg63mExM61Nc/SLNdAPU3dlkD0bOskrp6vhnp2W1JQ3CsCzQD0gHqSsrs0AUAqP/e/SxXS9edPCBMu2lAJxvbdrBf7PDkkSsXS/tsFfesZ1xxBj0tLg9HLCy2Njd0PBo+g09AS9qMfQR8f7+4wiIiIqJ9gUpOI+rWw6HjMXr4WKpUatZW962h+Rp+Bg8ae77BsEvV4T5iPcasfQ/LIcb1auzuSJGHLN1vwkwM/Qb2hXpE1qGuSTWo7pt1OPdb5BKBYLkIqaE/yCW0Ngi469rQI279swNmNuca25B807fGdkmB92QqprnNKXtAIUE9TQ3uzFrqNOmhv1EI9tm23qtQidTTtUU9QQzAIbV3Gv7DD8lcLLL+xwPKsBbZtNkhW53c9SnYJcCz/2EUZW6lVgvVVK8RD7Z9rNSCECh07N9EC2F6zwf591zUzBU+HZGed0yErZluBa46gh0RHIzQ6GvXV8nZst/r7w+Tt3f1AogHOZ/Fi+K1c4e4wiIiIqB9hUpOI+r3kEeMwZeFKNNXXormxd4m/44bxOOkxRvb4BtEDH6gWYdK1jyAxQ/51PSFJEj744gP8/PDP0WiQtyuLXEfKltp2NAKAFhASnD+m3ZG4Q1s9yE4JOce1rRJsH9pwdguxaoQK2nu00N6ohfYOLYTg9usaAdsnti7n6Ir96/b6oMa24+0AYN9ih/0Le1tCUNs2p7hXhO0d+fNelAnotA1a30VMO+3nErc+gPZWLbQ3aaG9W9t2/P7suE/tkOq7SLQ6zCm19s/j5wBwouYEChsLnZ5HpVIhLSsLrc3N7IJO1E4bFYWwn//M3WEQERFRP8OkJhH1e4IgIGvGIoyeMg+Vxfm96ogOAPuNs1CgS+l2XJ3dgA81l2HqdY8gPm1kr9bqjiRJeGvnW/jV8V+h2dDc/QXkcuIphwRkvOD0Ufbz51SlXPxHrJQtnev8LQDqeec6rgveQqdu6VKeBKmp++SW1CBBPNC2vnqKGoJOgNQkdSRaVaNV0D2gg2pMW1xSjuT8ce7zLhd0nT+HkiRBPOawG3aCGoJ/+/MUBKhnqc91PBfRaWwH7cXX629c1TAoNi0NBk9PtDbL+95QE8u6mjSIaTSI/N1voeaOZCIiIjoPk5pENCCo1WrMvHw10jInoyQ/G1aLpeeTCAK+9lqEUu3FEwDVdk9s1l2OGdc9gpikDCcivjhRFPGfbf/B09lPo9WjVZE1qHtinkMCMsn5H4dSVeej2Jeas9ORcgMu6I4u+J2XHOxqB+N57LvtgA2A77lj71KpdG43aHs8jrUtpWIndz56dL4p2c6brxmA9dzNswnNjtsqAYKvQ4fzrp6n4/W97HDfV1yV1AyLjUVwZCTqZXZBbw4KhNmzi7P/RINAyL0bYRg92t1hEBERUT/EpCYRDRh6DwPmX3UjEtNHozjvJOz2nh+fFQUNdnsvQ4Um8oLHKm1e+NSwHLPWP4KohFRXhHwBu92OVz99FX/M+yNMelP3F5AipFqHo+cAhHAX7NIscthG6HFhAq8Tx92HLW1d2DvFV3NeHU39peOTqiSIR9p3aU5TQ1C3jZfMDvPozvsbOLdbtJcErdD5uZjPG3Beg2Kp6rznKUqdE7znJUkBdI7R2MXj/ciRqiMoay5zeh61Wo20rCy0NDXJvoZH0Gkw8lm8GIE33+zuMIiIiKifYlKTiAYULx8/LLj6ZkTEJaE49xREsefnUe2CFp97L0e1OrTjvjKbN7Z6r8ScdQ8hPCbRlSF3sNlsePmTl/Fs0bMw68/P/lBfcuzYDQ3O1bB0Zs6Kc3MKYZeeT4jp/Lhty7nGPVKT1Lbr8ixPAIGXXtv2eVt9TiFIgGrEuR/tnZKhlvP+BrpOIvbQpXZaCjqh0+fC/q0dYkXb/1lJkmDfZQccNiuroi98WeKY8BUC+/dOTQmSy3ZrxqWlQW8wwNQir9wGu6DTYKPPSEf4r37p7jCIiIioH2NSk4gGHP/gMCy8+lYEBIeh9Mxp2c00HNlUeuz0WYlaVSBKrD7Y4XsV5q17CKFRca4PGG0Jzec/eh7Plz0Pi64XR+fJpaRah0RZgNBRz/Ji7IftsP7bCuu/rbC92/UO4U5zdpMkVYWoIKQ4JANPSrA+a4X1FSusf7NCqjw3l3pSW2fzixGLRUin2sarZ3QeK4QLQPtN8XRbMlHMdqglGuF8klCIdpij5sLH1VMdusq3ALZXbLD+3QrrX6wQv3GIJUyAkHhhPJ2SxZH9O6kJAFvzt7pknoj4eARFRKBO5hH0puBgWAwGl6xN5G7qgABE/+UvUPHfNBEREV0Ck5pENCCFRcdj/qqbYPD0RnnRmV7N0WLX4F8Vw7Er4FosWPcQgsOjXRtkO4vVgmfffxYvV70Mq9ba/QWkuE7HvWUcaZbqJEgFbX/EkovsDnY4KSwYu0++aZZqOu/YNAFSmdSphqRqjArq8eoLL3Zg39m2q1OIEKBK7fxjXfASoBrZdp94SITldxaIB9viF+IFqCKcfxng+By6ajykSlFBPVfdkVyF2J6obHQYFABoVmouSN5KzdK5z6sGEEL6f1LzYOVBVLXKS0ReilqjQXpWFloaG7sfDACCgNoYZb6HEfUptRqRf/ojtBER7o6EiIiI+jkmNYlowIpLHYE5K9ZBAFBdXtKja60WC4pyjiM4ORML1z+AwFBlfnkyW8z447t/xL/q/gWbtuc1QEkhDptlBYNrEmVnj48DkHWsW9AL0KzRQL1EDSFOAAxo+6lsBIQkAZpVGmgWaS45h5gjQio4t0uzK+qFaqimqgA/tDUS8gJUY1XQrLz03HKp4lVA+9JSsdTlzmn1eDU0N2raEqy+aBuva9udqZ6phvYGbadj7Gc5NjISEoWOWqH9mSiJ2FGwwyVzxaalQavTwdwqr6EYu6DTYBD6+GPwHD/e3WEQERHRACBIvTm3SUTUjxz44jNsf+dVePn5wzcguNvxVosZRbknkZg+GotW3ybrmt4wmU343bu/w1vNb8GusXd/AdEAZXvXBvF42y5NzfUal+wABQDbZzaI+9rnXaGBKm1gvBc7MXwiXpr/ktPzWC0WvPTEE2isq0NotIxdmKKIzE1vQWtmzV4amPyuuhLhv/iFu8MgIiKiAWJg/HZARHQJY6bOw8R5y1BfXYHmxvpLjrWYTSjKPYHk4Zm47Lo7FUtotrS24Ndv/RqbWjYxoUmDnirz3MsJ8VTPm3d1RZIkiCfb5/JGpxqk/d2+sn2oM9U5PY9Wp0NaVhaa6y/9fa2DSoVaOclPon7IY/QohP3kJ+4Og4iIiAYQJjWJaMATBAGT5y/HmKnzUVlSgNbmpi7HmU2tKMk7hdRRE7B4zZ3w9gtQJJ6mlib84q1f4D3zexDVrknwEPVnqlhVR9Mh8agISXT+EIiUd67upnqyuttmTv2JTbJhZ+FOl8wVl54OjU4Hi8kkazy7oNNApAoKQvSzz0LQ6dwdChEREQ0gTGoS0aCg1mgwa9kajJw4C+WFuTC1Nnd63NTajNIzp5GWORmLV98OLx8/ReJoaGrAzzb9DB/bPmZCk4YU9bz2wpoN6OjG7gz7vvYdzv6AavTAe7niqi7oUUlJCAgJQX11tazxDeHhsDExRAOIpNUi5m9/hSZYmZMTRERENHgNvN8SiIguQqf3wLyV12PYuGkoy8+BxdTWXMPU0oSy/BwMGzcNi665FUYvH0XWr2usw4//92N8Jn4GScVyxTS0qCJVUA1ve1lh3+NcyQWpUoKU3fZ/SLNAMyAaBJ3v29Jv0WiR2bn8EnR6PVIyM9FUVydrvKRSoTYqyul1ifpKxJNPwjBihLvDICIiogGISU0iGlT0BiPmX3UT0sZMRMmZ02iorUJZQS5GTpyJhVffAoOnlyLrVtdV4/H/PY6dqp1MaNKQpblcA93jOmjXa52aRwgWoHtcB93jOqgSBuZLFatoxa6iXS6ZKyEjAyqNBlaZDYB4BJ0GCr/rroPf8ivcHQYRERENUAPzNwUioksweHphwdW3IHnEWNRVlWP0lLmYv+pm6A1GRdarqqnCY5sewxfqL4CBt6GMiBSy9YxrjqBHJyfDPyhI9hH0+ogI2DUal6xNpBT9uHEIe+xRd4dBREREAxhf8RLRoOTp7YtF196GkvzTiE8bBa1Or8g65VXlePSdR7FPt48JTSLq5OuSr9FibYFR69wbKnqDAcljxuDbLVsQFBHR7XhJrUZdVCQCz+Q7tS6RUtRxcYh97i8Q1Gp3h0JEREQDGHdqEtGg5eXrj5SR4xVLaJZWlOKBtx/APj0TmkR0IZPdhC+Kv3DJXAnDhkFQqWCzWmWNr4mJdcm6RC4XFIT4f/0Tah9l6lsTERHR0MGkJhFRLxSVFeG+d+7DIY9D7g6FiPqxbfnbXDJPTEoK/HpwBL0uMgJ27oKjfkY0GpHw6r+gDQ11dyhEREQ0CDCpSUTUQ/kl+bj3vXtxzHDM3aEQUT+3u2g3zHZ5DX4uxeDpieSRI9FQUyNrvKjVoj6y+6PqRH1F1GgQ+9KL0CckuDsUIiIiGiSY1CQi6oHcwlxsfH8jThpOujsUIhoAWmwt+Lr4a5fMFT9sGARBgN1mkzW+JoZd0Kl/kAQBYb99Gl5ZWe4OhYiIiAYRJjWJiGQ6lXcK93x0D3KMOe4OhYgGkK35rumCHpuaCp+AAPlH0KOiIKr4Uo/cz+fBBxC4aJG7wyAiIqJBhq90iYhkOJ59HBs/2Yh8I7sJE1HPfF70OayivAY/l+Lp44OkESPQUFsra7xdp0N9eLjT6xI5Q33tNYi66SZ3h0FERESDEJOaRETdOHzyMDZ+thFFnkXuDoWIBqBGSyP2lO5xyVwJw4dDEkXY7XZZ42t5BJ3cyDp9OlKeeMLdYRAREdEgxaQmEdEl7P9hP+7bcR9KPUvdHQoRDWCu6oJ+9gi63IZBNTHREAXBJWsT9URzWhqG/fU5d4dBREREgxiTmkREF/Ht4W/x4K4HUWGscHcoRDTA7SjYAbsob3flpXj7+yM+I0N2UtOu16MxLNTpdYl6ojkyAiNe/RfUGo27QyEiIqJBjElNIqIufHngSzz81cOoMla5OxQiGgRqzbXYX77fJXMljRgB0W6HKPMIek1MrEvWJZKjxd8faf/+N/Q+Pu4OhYiIiAY5JjWJiM6z47sdeHTPo6g1ymvGQUQkx2f5n7lknti0NHj5+aGxrk7W+JqYaEg8gk59wGw0Iv4fr8CLDaqIiIioDzCpSUTUTpIkfPL1J/jx/h+j3ljv7nCIaJDZUbADkiQ5PY9vYCBiU1NRXyVvJ7nNYEBjcLDT6xJdislgQNgLLyAgLc3doRAREdEQwaQmERHaEpoffvkhfn7452g0NLo7HCIahCpbK3Gw8qBL5koZPRp2ux2iKMoaXxPLLuikHJOHBwKf+TPCxo11dyhEREQ0hDCpSURDniRJeOfzd/CrH36FZkOzu8MhokFsa/5Wl8wTk5oKTx8fNMk8gl4bEwPn94gSXahVr4fXb59GzLRp7g6FiIiIhhgmNYloSBNFEW9ufxO/OfUbtHi0uDscIhrktudvd8k8/sHBiE5ORp3MI+gWT080BwW5ZG2is1p0Omh//jMkz5vn7lCIiIhoCGJSk4iGLFEU8epnr+L3ub+HycPk7nCIaAgoaS7B0aqjTs8jCAJSxoyBzWqVXaezJoZH0Ml1WnQ62B95BMOXLXN3KERERDREMalJREOS3W7H3zf/Hc8WPguz3uzucIhoCHHVEfTYHh5BZ11NcpUWrRbNG+7CuNXXQhAEd4dDREREQxSTmkQ05NhsNrzw0Qt4vux5WHQWd4dDREPMtvxtLpknMCwMkQkJqK+uljXe7O2NZn9/l6xNQ1ezVouqm27ElBtvZEKTiIiI3IpJTSIaUixWC559/1m8VPkSrFqru8MhoiGooLEAJ2tOOj3P2SPoFrNZ/hH02Fin16Whq1mrRcnqazHrjjug1mjcHQ4RERENcUxqEtGQYbaY8ex7z+LVuldh09rcHQ4RDWHbClyzWzMuLQ1Gb280NzTIGs8j6NRbzVot8pZfgbkbNkCn17s7HCIiIiImNYloaDCZTXjtvdewb88+eEve7g6HiIY4Vx1BD46MRFhsLOpldkE3+fqixdfXJWvT0NGs1SJ32eVYeN99MHrzZygRERH1D0xqEtGg19Lagn+98y/s3LMTceFxmGObg0Ax0N1hEdEQll2Xjdz6XKfnEQQBaZmZMJtMPTiCzt2aJN/ZhOaiBx6AN2uyEhERUT/CpCYRDWpNLU34x9v/wK7vdiEuMg7ent7QQouZ5pkIEAPcHR4RDWGu2q0Zl5YGD09PtDQ1yRpfG8OkJsnTqNMxoUlERET9FpOaRDRoNTQ14JW3XsFXB75CQnQCPI2eHY/poMMs8yz4i/wljYjcw1VJzZDoaIRFR8s+gt4SEAATjxBTN2o9PJC7YjkTmkRERNRvMalJRINSXWMdXvrfS/j24LdIjEmE0WC8YIwOOsw2z+ZRdCJyi+M1x1HUWOT0PCqVCmlZWWhtbpZ/BJ27NekSKjw9cWblCly2cSMTmkRERNRvMalJRINOTX0NXvzvi9h3dB+SYpNg8DBcdOzZHZtB9qA+jJCIqI2rdmvGpqbCw2iEqblZ1njW1aSLKfbxQeHKFVi6YQMTmkRERNSvMalJRINKdW01XnzzRRz84SBS4lLgoffo9hottJhlmYVQe2gfREhEdM7W/K0umScsLg4hUVGok3kEvTkoCGZPz+4H0pCSG+CP0hXLseyOO5jQJCIion6PSU0iGjQqayrx/BvP4/DJw0iJT4Fep5d9rQYazLDMQLg9XMEIiYg6O1J1BGXNZU7Po1ar246gy2wWBAA1MdFOr0uDx/GQYNQsW4YrbruNCU0iIiIaEJjUJKJB40TuCRw9fRTR4dHQaXU9vl4NNaZZpiHSHqlAdEREF5IgYXvBdpfMFZuaCp3BAFNLi6zxNTGxLlmXBjYJwP7ICDQvWYIrbr2VCU0iIiIaMJjUJKJBI2tYFqZkTUFhaSFaTa29mkMNNaZapiLGxnpzRNQ3XHUEPTIhAUHh4bKPoDeFBMNiuHjNYRr8RJUKX8bFQVqwAFfccgsTmkRERDSgMKlJRIOG0WDE9Suux8TRE5FTkAOT2dSreVRQYZJ1EuJsca4NkIioC99XfI+qVnmJyEtRazRIy8pCS2OjvAsEAbU8gj5kWXVabE9MgGH2LCY0iYiIaEBiUpOIBhUvoxduWHkDxo8cj9P5p51KbE60TkSyLdnFERIRdSZKInYU7HDJXHHp6dDqdDC3ytutXhPDXelDkcloxKeJiQiaOZMJTSIiIhqwmNQkokHH29MbN155I8YOH4vT+ad7fRRdgICx1rEYaR3p4giJiDpz5RH0wLAw1FdXyxrfEBoKq15+UzUa+Bp9fbE5MQHxc+eyhiYRERENaExqEtGg5OPlg1tW3YIJIycgpyAHLa3yGmd0ZZhtGCZYJkCQBBdGSER0zr6yfag31zs9j1anQ2pmJprq6uRdoFKhNppH0IeKitBQfJoQj5GLF+Pym26C0dvb3SERERER9RqTmkQ0aPl4+eDmVTdjcuZk5BbmormluddzJdgTMN0yHWpJ7cIIiYja2CSby46gx2dkQKPTwWKSV36jJpZH0Ac7CcDpxETsjInGxCuuwKLrroPOw8PdYRERERE5hUlNIhrUvIxeuHHljZg+bjryivLQ2CyzgUYXIsQIzDbPhk7SuTBCIqI22wq2uWSeqKQk+IeEyD+CHh4Om47f1wYru0aD/SNG4FBIMOasWoU5V10FjVbr7rCIiIiInMakJhENekaDEeuXr8fsibNRUFKAhqaGXs8VJAVhnnkePEVPF0ZIRAR8U/INmixNTs+j0+uRmpmJRplH0CWVCrVRUU6vS/2PycsLO0eOQFGAPxatXYupS5ZApeLLfyIiIhoc+KqGiIYEg4cBa69Yi7mT56KotAj1jb2vXecj+WCeeR78RD/XBUhEQ55VtGJX0S6XzJWQkQG1RgOrxSJrfC27oA86dWFh2JKWCktwMJbddBPGzp4NQWBtaCIiIho8mNQkoiFDr9NjzeVrsGDaAhSXF6O2vrbXcxlgwFzzXITaQ10YIRENda7qgh6dnAz/oCDUV1XJGl8XGQG7RuOStcn9StJS8WlkBLwjI7HyjjuQMX68u0MiIiIicjkmNYloSNFpdbh2ybW4bMZlKK8qR1WtvF/4u6KFFjMtM5FkS3JhhEQ0lH1V/BVarC1Oz6M3GJA8Zoz8I+hqNeoiI51el9xLVKtxcvx4fG4wIColBVfedRfi0tLcHRYRERGRIpjUJKIhR6PRYNXiVbhi7hWora9FaWVpr+dSQYVx1nHIsmRBkHisj4icY7Kb8GXxly6ZKyEjA4JKBZvVKmt8TWysS9Yl9zAbjfh+xnTst1qQmpmJK++8E2H9oKzA4sWLkZqaitTUVGRkZKC6mwZWH374Ycf41NRUPP/8830Uad8oKirq9Pz27NnT8dg777zT6bGBTJIkHDly5IL7n3322Y7nN3v2bJetV1NTg5/97GeYOXMmhg8fjvHjx2PVqlX48ssvFVvzUvbs2dPpa1lUVNQn6xIRDTVMahLRkKRWq7F8/nJcu+RamM1m5BfnQ5KkXs+XYk/BDMsMaCV2lCUi52zLd00X9JiUFPgFBcnugl4XGQG7Wu2StalvNQYH49spk3Gqrg6jp0/Hittvh19wsLvDAgAsXbq042O73Y4tW7Zccrzj44IgdLqeBoZ9+/Zh1apVePrpp/tkPZvNhvXr1+ONN95AaWkprFYr6uvrcejQIVhlvqlDREQDE5OaRDRkCYKAeVPm4YaVN0Cr0SKnIMepxGa4GI555nnwEr1cGCURDTW7i3fDYpfX4OdSDF5eSBwxAo218uoHi1ot6iMinF6X+lZ5chI+z0hHZVMTpi1bhqU33gijt7e7w+qwZMmSTrc/+eSTi45tbm7Gl1+e26mcmZmJyCFUFiEoKAjjx4/v+DMQ/fKXv8SaNWtw+PDhLh+PjIzseH6jRo1yyZqHDx/GqVOnOm77+flh9OjRiIqKQkZGhiJrEhFR/8CK8EQ0pAmCgEljJsHT6Il/vfsvnMw7ieTYZKh7uVvJV/LFfPN8fKH7ApXqShdHS0RDQbO1GV8Vf4VZMbOcnitx+HDs37EDdpsNahmNgGpiYxBQWOj0uqQ8u1qNvLFZOADAqNViyZo1GD1tWr/rcB4dHY0xY8bg+++/BwDs378f5eXlCA29sNHerl27YDKZOm4PtV2a06dPx/Tp090dhlOOHTt2ycdXrFiBFStWuHTNsrKyTrffeustREdHK7omERH1D9ypSUQEYGTqSNxx7R2ICovCidwTsNp6f1xJDz1mWWYhwZbgwgiJaCjZVuCaI+ixqanwCQhAfU2NrPF1UVEQVXx52N81+/vj4Ny5+M5qRWhUFFZt2IAx06f3u4TmWY7JSVEUL3oE3fF+rVaLhQsXKh4bDXxms7nTbceEJhERDW7cqUlE1C4pNgkbrtuAlze9jBM5J5AYmwgPvUev5lJDjQnWCfAVfXFQexCS0Ptj7UQ09Ows3AmraIVW5VydXk8fHyQOH47vv/gCASEh3Y6363SoDw+Hf3GxU+uScspSU3E8KRGlpaVIz8rCwrVrZX1t3WnRokV46qmnYLPZALQdQV+/fn2nMSaTCV988UXH7alTp8Lf3x8A0NTUhH/+85/49NNPUVhYCEEQEBUVhenTp+OGG25AUFBQp7n27NmDdevWAQBCQ0Px3nvv4Wc/+xl2794NQRCQnp6O4uLijh1+48ePx2uvvXZB3C+++CJ+//vfA2hLsu7evRsBAQGynvPHH3+MN954A8ePH4coihg+fDhuvvlmJCYmXvSad955B4899ljH7ZMnT3Z6/MiRI3jttdfw/fffo6KiAjabDd7e3khKSsKiRYuwatUqaLUXfs/45ptv8MYbb+DIkSOorq6GKIrw8/NDamoqli5dimXLlnWZEC8tLcXLL7+Mr7/+GiUlJTCbzTAYDIiKisK0adNw2223wcfHB0Dnz/lZe/fu7Wh4tH37dkRFReHZZ5/FX/7yFwBtR9F37NjR61i7WhNAx5rLly/Hb37zm27XBIBt27bhjTfewNGjR9Hc3IyAgACMGTMGa9asuWgpAJvNhv/973945513kJOTA7VajczMTNx1111djiciItdjUpOIyEFESATuXHMn/vH2P3Dg2AHERcXBy9j7Gplp9jQESoH4SvcVWoVWF0ZKRINZo6URe0v3YkrkFKfnShwxAgd27YLdbpdVWqM2JoZJzX7Iqtcjd9JEnFar0VJVhcmLFmHWypXwMBrdHVq3AgICMHXqVHz++ecAgIMHD6KkpAQRDjVcd+3ahZaWlo7bl19+OQAgLy8PN9988wXdo0+dOoVTp07hrbfewnPPPYexY8d2ubbVasXNN9/c6Vh0YGAgJk6ciOeeew5AW2ObyspKBJ/XXMlx5+j06dNlJTQlScKjjz6K9957r9P9e/fuxd69e3H11Vd3O0dXPvjgAzzyyCMQRbHT/bW1tfjuu+/w3Xff4csvv8QzzzzTKbH5wgsv4A9/+MMF81VWVqKyshJffvklDh48iJ/97GedHs/Pz8eaNWtQWdm5lE5zczNOnjyJkydP4pNPPsGmTZsQGBjYq+d0vt7G6gy73Y7HHnsM77//fqf7y8vLsWXLFmzZsgU33ngjHnnkkU6Pm81m3H777fj666873b9r1y58+eWXPO5ORNRHeL6IiOg8gX6BuO2a2zBj3AwUlBSguk5e5+CLCRaDscC0ACH2/r2Thoj6l635W10yT2xqKrz9/dEg8wh6bXQ0xH56jHmoaggNxeHLFuOI2QxRFLFo7VosWLNmQCQ0z3I8gi5J0gUNgz799NOOjz09PTF79my0trbi9ttv75TQjI+PR3p6ekfirq6uDnfddRcqKiq6XLempgbHjh2Dt7c3hg8fDg8PDyxduhQrVqzo2PEnimKn9QGgsLCwUyJ0+fLlsp7nq6++2imhKQgC4uLiEBcXB0EQ8N///lfWPI6am5vxxBNPdCQ0dTodMjIyMGrUKHh5nXvjdceOHXj99dc7bhcUFOBPf/pTx21PT08MGzYMI0aMgIfHuZMob7zxBrZt61zy4rHHHutIaAqCgNTUVIwcORLeDk2oiouLO9bz8fHB+PHjO8Xj7e3d0aBHr9df8jn2Jtaza8bHx3ea6+yaCQndlwF69tlnOyU0/f39MWLECPj5+XXc98orr1zwdfv973/fKaGpVquRnJyMyMhI2O12bNq0qdu1iYjIedypSUTUBW9Pb9xw5Q0I9A/E5s83o9XUisjQyF7XKzPAgFmWWTisOYzjmuMA8wVE1I2dhTvxE/EnUKt617jsLG9/f8RnZODot9/C/7ydaF2xeejRGBoK3/Oab1DfEwUBxaNGIj8lBYXZ2QiJjsbC665D0ogR7g6tx+bMmQOj0dixG3Pz5s246aabALTteju7ixMA5s2bBw8PD/z73//GmTNnALQl8l544QVMnjwZQNtOwrVr16K8vBx1dXX417/+hYceeqjLtSMjI/HWW28hICAA1dXV8Pb2hk6nw8SJE/HNN990xHPdddd1XOO4S9PPzw8zZszo9jmKooi///3vHbeNRiOee+65jpj37NmDDRs2oKGhodu5HJ0+fbrj82Y0GrF9+/aOXaMtLS24/fbbcejQIcTGxnbaWXnkyJGORGh0dDQ+/PBDGAwGAG3J3nXr1qG4uBjx8fGdEscVFRVobGyEVquFzWbDK6+80vEcWltbccUVV3R8Xc52HU9PT8drr72Ga6+9FgcOHOh0nxy9ifXs/Ocf25e7Zk1NDV555ZWO29deey0ef/xx6HQ6mM1mPPHEE3j33XcBAM899xxWrlwJjUaDhoYGvPnmmx3XhYSE4IUXXkBGRgaAtvIKDz30EKzW3tdnJyIiebhTk4joInRaHVYuWIn1K9ZDgIDs/OwLjn31hAoqjLaNxjTLNGgl5+rkEdHgV2Oqwf7y/S6ZK3nkSIg2G0S7Xd7asTEuWZd6z+zpieML5uN0XBwKTp9G0qhRuHrjxgGZ0AQAg8GAefPmddw+evQoCgsLAQBffPEFmpubOx47u6vTcffk/PnzOxJrABAbG9spCdlVncSzVq9e3ZEEDAwMhE6nAwCsXLmyY8yBAwc6ddF2TGouWbKk45pLOX36dKcdozfddFOnmCdMmIBbbrml23nO53gsvrW1FX/729+wf/9+WK1WGI1GvPTSS/j+++/xwQcfdErshjjUWi0rK8NLL72EY8eOQRRFBAQE4K233sL333+Pd955B9dff32n6z788EMcOHAAW7Zs6fQcLBYLwsPDO243NTX1+Pl0pbexOmPXrl0dTYbUajUeffTRjq+zXq/HAw880DG2vLy8Y+fuvn37OjUneuCBBzoSmkBbDVnHf1tERKQcJjWJiC5BEATMGD8Dd6y+A8EBwTiRc8Lpd96jxCgsNC+En+jnmiCJaNBy5RF0L39/NNbVyRpfGxMDiUfQ3aY6NhZHli5BviiiorgY4+bOxVV33YVghxqUA5HjEXSgbXck0Dl5GRwcjEmTJgE4twsQAD766COkpqZ2+nO2iQ/QVnvTZDJ1ue6wYcO6vH/+/PkdjW4kSepIZBYWFuLo0aMd46644gpZz6+goKDT7QkTJlwwZuLEibLmchQZGYklS5Z0xPnqq69i9erVGDt2LFavXo3nnnsOBw8evOC6rKwsZGVlAWirLfrcc89hxYoVGDt2LK6//nq8/PLLOHHixEXX1el0sNvt+O9//4sf/ehHuPzyyzvtbgXaalK6grOx9objvy+73Y5Ro0Z1+vc1derUTuOPHz8O4MKvc1eNhLr62hMRkesxqUlEJMPwlOG4Z909SE9Kx8m8k2hpben+okvwkrww3zwfCbbu6z0R0dC1o2AHJElyeh7foCDEpqaivlpejWCrwYBGGUfVybXsGjVyJ03EqalTkF9YCIvJhPnXXovL1q+Hwav3Tev6i8mTJ3fqVL5582ZYLBbs3Lmz477Fixd3NLTqyS5ASZJQX1/f5WNnu6ifT6/XdyQLz8YDdN6lmZycjBEyd8e2tnZuCNhVA52zSdSe+s1vfoO77767065Nk8mE/fv344UXXsC1116LpUuX4vDhwx2Pq1QqvPTSS1i/fj18fX077m9ubsY333yDZ555BsuWLcOaNWuQn5/fab0jR45g5cqVWLx4MX7605/irbfewsmTJxEdHd1pp6arOBNrbzU2NvZofF37m0Lnf50d/02f5fgciIhIOaypSUQkU1RYFO667i7854P/4KsDXyEiJAL+vl3/oiSHGmpMsE5AkBiE/dr9sAuu2e1ARINHRWsFDlUewuiQ0U7PlTxqFI5++y1EUYRK1f372jWxMfC5SPMVcr1mf39kT5+GWo0GJT/8gLDYWMxdtQopY8b0up5zf6NWq7Fo0aKOmocnTpzA66+/3im55Lib08PDoyOxeeWVV17Qgfp8XhdJ/J6tzdiVlStX4j//+Q8A4NChQygqKuqU1JS7SxNoa27jqKsk6/ndxOXSarXYsGED7rzzThw+fBhff/019u/fj8OHD3fU6Dx16hRuueUWbN26tSN56unpiccffxwPPfQQ9u/fj2+++QYHDhzA0aNHO+p07tu3D7feeis2b94MtVqNkpIS3HDDDR1fl8WLF+OKK67A6NGj4evri4cffviCbuGu0JtYneHYgMhgMGD37t2XHH+22dH5X+e6urpOx+eB3n+diYioZ5jUJCLqAT9vP9x01U0I8A3Ali+2oLm12akGQgCQaE+Ev+iPr3RfoUnlmtpURDR4bM3f6pKkZmxaGrx8fdFUVwef9vqCl1IbE4PY7/axr5nCRJUKxSNHoGTYMFRVVKCxthYjp0zB3KuvltXYaaC5/PLLOzVycex4HRcX12lXZFJSUsex6uPHj1+wy/Hjjz9GfX09kpKSkJSUdNFk/aWSX8OHD0dqaipOnjwJAHjppZc6jp6r1Wpcfvnlsp9bYmJip9t79+7FmDFjOt3neHRbrpaWFuTl5SE3NxdWqxUrVqzA6NGjAbQ1J3rjjTfw5JNPAmhLsO3Zswfz5s1DY2MjcnNzkZeXB09PT8ybN6/j+LvVasUzzzyDF198EQBw5swZnDx5EhkZGXj33Xc7EppJSUn44x//2CkeuQm7nuwy722szkhKSur4uLW1FaWlpUhNTe24Ly8vD5999hkSExORlJSEmJi2WsNdfZ0dd/wCvfs6ExFRzzGpSUTUQ3qdHqsWr0JIUAje+fQdnMo7hcTYRGjUvf+WGiAFYIF5Ab7VfYtidbELoyWigW5b/jY8NK7rrs494R8cjOjkZJw+fFhWUtPi6YnmoEB4Vck7sk491xgcjNxJk9DkaUTR6dMweHpiwerVGD9vHjTawdlQbuTIkYiNje04QuxYB/P8mptz5szpSGoeO3YMzz33HO68804IgoDs7Gz89Kc/7djJuWDBAjzzzDO9imnlypV46qmnAAD//e9/O+6fPHnyBTvwLiUuLg4JCQnIzc0FALz44osYN24cMjMzAbQluv7xj3/0OL6nnnoKmzZtAtCWaPX19cWcOXMAtB3bPv+N1bO377nnHnz99dcA2nYXBgUFdSRZu0r0nk0Kl5eXd9xXWlqKM2fOIC4uDqIoYtOmTZ0SdjabrdMcWod/t7W1tR0fS5J0yTeAexurM2bNmoUnn3yyoy7oT37yE/z1r39FUFAQLBYLfv3rX2PXrl0A2nZy7tixAwEBAcjKyoKvr2/HTtzf/va3SE9P70h2fvTRR/jggw+cjo+IiLrHpCYRUS+oVCrMnjgbkSGReP3D13Ei5wTio+LhafTs/uKL0EGHaZZpOKU+hUPaQzyOTkQAgJLmEhyrOoZhQV03O5FLEASkjB6N4/v2dZtgOKsmJpZJTQXYNRoUjhmN8rQ0NDU0oPzECcSmpWHe1VcjNi3N3eEpbunSpfjLX/7S5f2Orr32Wrz66qsdOwOfeeYZvPHGGwgNDcXJkyc7GvdptVrceeedvY7n8ssvx29/+1tYrdZOuwuXL1/e47nuvvtu3HfffQDaaoKuXr0aKSkpsFgsOHPmDCRJglqt7lGDnZtuugkffvghTCYT7HY77rzzTkRHRyMoKAjl5eUoKSnpGBsQENDRaOmOO+7At+0lJ5qbm3HNNdcgISEBPj4+KC4u7rTjMjExsWOXYnJycsf9zc3NuPzyy5GSkoKysrILdmk6dq0/u/5Z2dnZuOyyy9DQ0ICXX34ZKSkpF32OvY3VGaGhobj66qs7lR+YM2cOEhMTUV5ejqqqqo6xa9as6XhuHh4euPnmmzsaVZWVlWHp0qVIS0tDfX09ioqKnD4aT0RE8rBREBGRE1ITUrFx/UZMzZqK/JJ8lFeXd3/RJQgQkGpPxSLzIgTZLyw8T0RDk8u6oKelwdPHB00XaahyvprYGJesS+fUh4fj8OVLUZaWhrKCAtSUlWHC/Pm45t57h0RCE7gweQkAo0aNQmxsbKf7vL298dJLL3VquFNZWYmjR492JDTVajV+97vfIc2Jz52/v3/HzkfHtefOndvjuRYvXozbbrut47YkSTh58iTy8vIgSRLuvvvuLhvLXEp8fDz+9Kc/wWg0dtxXWFiI77//vlNC09vbG3/+8587aj6OHz8eP//5z6HRnNvHkpubi4MHD3ZKEoaEhODPf/5zxxsdK1eu7HTE2mw248iRIx3XREZGdorj7NcCAGbMmNEp9uzsbFRUVKC0tPSSz7G3sTrrsccew6xZszpum0wmHDt2rFNCc8GCBR2J6rNuvvnmTqUJ7HY7jh07hqKiIqhUKjzxxBMuiY+IiC6NSU0iIicF+gXillW34OrFV8NkMiG7IBuiKDo1p7fkjbmWuRhtHQ21xHf7iYa6bQXbXDJPYFgYIuLjUe/wC/ulmL290XyRztHUMzadDjmTJ+HEvLlo0mhw5ocfoDcacfktt2Dx+vXwGkLdks+vnQl0negEgPT0dHzyySfYsGEDhg0bBm9vb2g0GoSGhmLJkiXYtGkTFi5c6HRMK1as6HR70aJFHY1heur+++/HCy+8gIkTJ8LT0xOenp6YNGkSXnzxRWzYsKFXc86aNQuffPIJbr75ZqSnp8PT0xNqtRpeXl4YNmxYR/Oc8ePHd7pu1apV+OCDD7B69WokJSXBYDB0HGEfM2YM7r33XmzevLnT7kyj0Yj//Oc/WLt2LSIiIqDRaODp6YlRo0bhiSeewKZNmzqSjy0tLZ0a7CxfvhyPPPII4uLioNVq4evri6ysrIt2oHc2VmfpdDo8//zz+OMf/4iZM2ciKCgIWq0WXl5eGDt2LH71q1/hT3/6U6dkK9B2Yufpp5/G//3f/2H06NEwGAzw8fHB7Nmz8eabb2LlypUui5GIiC5OkHpSwZmIiC5KkiQcPH4Q//34vygsK0RiTCI89B7dX9iNeqEee3R7UK3iEVCioezty99Giv/Fj2/KtXfbNnz0j38gPiND1m6niMOHEX3wkNPrDmU1MTE4M2E8rAYD6qqqUFNWhuTRozH/2msRGh3t7vAIwKZNm/DjH/+44/brr7+OsWPHujEiIiIi6g53ahIRuYggCBiTMQYb12/EmIwxyCnIQU19jdPz+kq+mGuei5HWkVBJ/LZNNFRty3fNbs24tDQYvbzQ3NAga3xNTGz3g6hLFg8PnJ4xHadnzoBZp0NRdjZaGhsxY8UKrLr7biY0+4ny8vJONT5jYmKQlZXlxoiIiIhIDv52TETkYuEh4bhrzV1YOmspaupqkF+cD2c3xaugwjDbMCwwL4C/yKOgREORq+pqBkdGIiwuTvYRdJOfL1qH0NFoV6lMTMDhZZejJjYWrc3NyDt+HP4hIVh5552YvXIl9AaDu0Mc0nJycrB27VrcdNNNuOyyy1BWVtbx2PXXX++ymo1ERESkHHY/JyJSgMHDgKsvuxrR4dHYtGUTTuSeQFJMErRarVPz+kl+mG+ej2OaY/hB8wNEwbnanUQ0cGTXZSOvPg/xvvFOzSMIAtIyM5F79GgPuqDHIPLIEafWHSpM3t44M3486iMjIIoiKvLzYWptxcjJkzH36qvhHxzs7hAJgI+PD/bu3XvB/RMnTsSqVavcEBERERH1FJOaREQKEQQBU7KmICI0Aq9/8DqOnT6G2MhY+Hj5ODWvCiqMsI1ApD0S3+q+Rb1KXhdjIhr4tuVvwy0jb3F6ntjUVHh4eqKlqQme3t7djq+JZVKzOzatFiUjRqAsPQ2SWo3mxkaU5ecjKDwcC9aswcjJk6HW8KV3fxEUFITk5GQUFxdDpVIhIiICs2fPxu233+70G5BERETUN9goiIioDzQ0NWDTlk3YvXc3jAYjosKiXHK0zQ47jmqO4rjmOCSB386JBrv0gHT8b+n/nJ5HFEX845e/RHlhISLi5e38HPXue/BobHR67cFGEgRUJiagcMwY2AwGiHY7SvPzYbfZMGLSJMxYvhwBISHuDpOIiIho0OHbxUREfcDHywfXL78eCVEJ+GD7B/jh9A+Ij46H0WB0al411BhlG4UoexS+1X2LBpW8xh9ENDAdrzmOosYiRHlHOTWPSqVCWlYWzpw82aMj6BHHjjm17mDTGByMM+PHoSUwsO12XR0qCgsRFhuL6cuWYdiECVCpWMKeiIiISAlMahIR9RG1Wo1ZE2chJT4Fb3/6Nr478h28Pb0RGRrp9K7NQCkQC80LcVhzGCc1J7lrk2gQ25a/DdcPv97peeLS0uBhMMDU3AyDl1e342timdQ8y2w0oiArEzXtu1ztNhtK8vIgqFSYMH8+pl1+OXzbE51EREREpAwePycicgOr1Ypd3+3CRzs+QlVtFeKj42HwcE0n3EpVJfZo96BRxWOiRIPRyOCReH3x607PY7fb8fKTT6K6rAzhsbGyrhn99jvQNzc7vfZAZVerUTpsGEqHD4PYXh+zvroaVSUliEpKwszly5EyZgw7ZxMRERH1ASY1iYjcqKCkAG9/+jb2H9sPP28/hIeEu+SXYRts+EHzA05oTsAu2F0QKRH1FwIEbL1yK0I9Q52ea/cHH2Dbm28iYfhwWeNjvvsO4cdPOL3uQFQdF4uCzCxYvDwBAFaLBSV5edDq9Rg7axamXHYZPH2cawRHRERERPKxyA8RkRvFRMTgruvuwtplayEIAo7nHIfJbHJ6Xg00GGkbicvMlyHGFuOCSImov5AgYVvBNpfMFZeWBp3BAFNLi6zxNTHydnQOJs0BATi2YAGyp0+HxcsTkiShpqICBadOITopCdds3Ih511zDhCYRERFRH+NOTSKifuJM8Rm8teUtHDx+EP6+/ggLCnPZEcYKVQUOaA+gVlXrkvmIyL3Gho7FPxb+w+l57DYbXnriCdRVVyMsRsYbIJKEMW+9DV1rq9Nr93cWoxFFo0aiMikJaP9ebG5tRemZMzB4eWH8vHmYuGABDJ6ebo6UiIiIaGhiUpOIqB8xW8zY/vV2bN61GXWNdUiIToCH3sMlc0uQkKPOwWHtYZgFs0vmJCL3UAkq7LhqBwINzjej+fzdd7Fj0ybZR9Djvt2D0FOnnF63v7IYDCgZPgwVKSmQ1GoAbcnf8sJCWEwmJA4fjhnLlyMmJcXNkRIRERENbex+TkTUj+h1eiyeuRhpiWnY9MkmHD55GIH+gQgNDHV616YAAUn2JMTYY3BUcxSnNachCqKLIieiviRKIrYXbMeq1FVOzxWXng6tXg9zayv0hu4bltXExgzKpKbVQ4+SYcNRnpoCqb0JkCRJqK2oQG1lJcJjYzF58WIMnzgRGq3WzdESEREREXdqEhH1UyazCdu+3oZPdn2ChuYGJEQnQK/Tu2z+BqEB32u/R4m6xGVzElHfmRQ+CS/Of9HpeawWC1564gk01dcjJCqq+wtEEZmb3oLWPDh2fFv1epRmZKA8LRWiQ7KyuaEB5QUF8Pb3x9g5czBuzhx4+fq6MVIiIiIicsSkJhFRP3c6/zTe/uRtHDl9BMEBwQgOCHZZrU0AKFGV4Hvt92hQNbhsTiJSnkbQ4POrP4ev3vlE2/ZNm7D7vfcQP2yYrPHxX3+DkOxsp9d1J5tOh9KMdJSlp3dKZlrMZpTm50OlUmHY+PGYctllCI2OdmOkRERERNQVJjWJiAaAVlMrPv3yU3z6xadobmlGQkwCdFqdy+YXIeKU+hSOao/CKlhdNi8RKesXU36BK5KucHqenKNH8fpvf4uw2FjoPLqv4+tbXIy07TucXtcdbFotytLTUZaRDrvu3PdR0W5HRXExWpuaEJeejqlLliBxxAioVCo3RktEREREF8OkJhHRAHIy9yTe2vIWfsj5AQG+AQgLdl2HdAAww4zD2sPIUedAEvjjgai/mxE1A3+Z8xen57GYTHjhpz+FqbkZwZGR3Y4X7HZk/m8TNNaB8yaIXaNBWVoaSodlwK4/V8pDkiTUVVWhprwcIZGRmLRoEUZOmQKd3nXlPoiIiIjI9ZjUJCIaYFpaW7Bzz0589uVnqKqtQmRoJPx8/Fy6Rq1QiwPaA6hQV7h0XiJyLZ1Kh93X7Ian1tPpuT574w189dFHso+gJ375JYJy85xeV2l2jRrlKakoHT4MtvN2obY0NaEsPx+ePj7InDED4+fNg2+g8x3liYiIiEh5TGoSEQ1QZZVl2LxrM745+A3MZjNiI2Nh8Oi+c3FPFKoK8b32ezSrml06LxG5zm+m/QaXJVzm9DynDx3Cf/7wB0TEx0Or6768hX9BAVI+3+X0ukqxGAwoT0tFeUpKp52ZQFvdzPKCAkiShLTMTExZsgSRCQluipSIiIiIeoNJTSKiAUySJBzPOY6PPv8IR08ehYfeA1HhUdCoNS5bQ4SIPHUeftD8gCZVk8vmJSLXmBszF3+c9Uen5zG1tODFn/wEFosFQeHh3Y4X7HZk/fd/UNtsTq/tSs3+/ijLSEd1XBwktbrTY1azGeVFRbBZLIhKSsLkxYuRmpkJ9XnjiIiIiKj/Y1KTiGgQsFqt+PbQt9i8azPyi/MRHBCMkMAQl9bbFCEiX52PHzQ/sFM6UT9i0Biw6+pdMGic36n9yWuv4dtPP0V8Roas8Um7diMwP9/pdZ0lAaiLjERZRjoaukjIWi0WVBQVwWIyISoxEePnzUP6uHGsm0lEREQ0gDGpSUQ0iNQ31mPHNzuw/ZvtqG2oRXR4NHy8fFy6hgQJhepCHNUcRb2q3qVzE1Hv/GHmHzAvdp7T85w8cABv/OlPiEpMhEar7XZ8wJkzSN79hdPr9pZdrUZVQgLKMtJh8vW94HGb1YqKoiKYWloQmZCACfPnI2PcOFkd3omIiIiof2NSk4hoECosLcTHn3+MvYf3QhRFxEbGQq9z7Y4kCRKKVcU4qj2KWlWtS+cmop5ZFL8IT09/2ul5Wpua8PxPfgLRbkdgWFi341VWK7L+twkqu93ptXvC4uGB8rRUVKSkXND8B2hLZlYWF6O1qQkR8fEYN28ehk+YAL3BtXWHiYiIiMh9mNQkIhqkJEnC4ZOH8dHOj3A85zi8jF6IDI1UpHZciaoER7VHUa2qdvncRNQ9T60ndl+9Gzp19w1+uvPhP/6B/Tt2IC49Xdb45J07EVBY5PS6crT4+aE0Ix3V8fEX1MsEALvNhsqSErQ0NCAsNhbj583DsAkTYPB0vjs8EREREfUvruskQURE/YogCBiVNgppCWn46sBX2LJrC47nHEdoUCiC/INcWm8zQoxAhDkCZaoyHNUcRaW60mVzE1H3mq3N+Lrka8yMnun0XInDh2P/jh2w22xQa7p/qVgbE6toUlNUqVAXFYnylBQ0RER0OcZut6OqpARN9fUIjY7G7JUrMWLSJBi8vBSLi4iIiIjci0lNIqJBTq/TY/bE2RiVNgrbvtqGXXt34Xj2ccRExMDL07W/8IeJYQizhKFCVYFjmmMoU5e5dH4iurit+VtdktSMTU2FT0AA6mtqEBAS0u342ugoiCoVVKLo9NqOWnx9UZmUhKqEeNgucmzcbrejurQUjXV1CImMxIwrrsCISZPg6ePaWsJERERE1P/w+DkR0RCTW5iLjz//GAeOHYAgCIiJiIFO6/yR1a5UCVU4pj2GEnWJIvMT0Tk+Oh98fvXn0Kq6b/DTnfdeegkHv/gCcWlpssanbt8Ov2Ln/5/btFpUx8WhMikRzcHBFx1nMZtRVVICU3MzAsPDMXbOHIyaMgVeXTQLIiIiIqLBiUlNIqIhyG6348APB7D5883ILsiGXqtHZFiky5sJnVUj1OCY9hiKVEWA6069E9F5Xpj7AiZHTnZ6niPffIO3nnsOMampsurwBp8+jYRvvu31eg2hoahMSkRNbCzESxx5b2lqQlVxMURJQnhsLDJnzkR6Vha8/Px6vTYRERERDUw8fk5ENASp1WqMGzEOw5OHY9/Rfdj+zXbkFuRCo9EgKiwKHvoLuwk7I0AKwDTLNNQJdTilOYV8dT5sgs2laxARsLVgq0uSmnFpafD290dDTQ38L7Fj8qza6GhI3+6B0IP3yi1GIyoTE1CZmAjzJY6LS5KEhpoaVJeVQefhgYThw5E5YwaSRo2CTq/MGzFERERE1P9xpyYREcFsMWP/0f3Y/s12ZOdnQ61WIzI0EgaPruvYOcsKK/LUecjWZKNeVa/IGkRDUYBHAHZctQNqVfe7K7vz9t/+hqPffovY1FRZ49M+2wrfskvX0W1r+hOFiuQk1IeHAyrVRcfa7XbUlpejvroaXn5+SMvMxKhp0xCTkgLVJa4jIiIioqGBSU0iIupgsVrw/bHvsf3b7TiZexKCICAqLApGg1GxNStUFTitPo0idRFEwbWNRoiGolcWvIJxYeOcnufQl1/inb/9DbHp6bKSiCEnTyJ+z94L7pcEAY0hIaiOjUVNXCxsHpfeCW41m1FVWoqWpiYEhIZi9NSpGDZhAkKionr9XIiIiIho8OHxcyIi6qDT6jBh9ARkDsvEwRMHseObHTiRewKiKCIqLAqeRk+XrxkihiBEDIHJakKOJgc56hw0q5pdvg7RULE1f6tLkppxaWnw8vdHY20tfAMDux1fGxODuL3fQZCkjkRmTWwsamJjYL1I93JHrU1NqCwpgSiKCIuNxZxVq5CelQVvf3+nnwsRERERDT7cqUlERBdls9lw+ORh7Ph2B344/QNsdhuiwqLg5eml2JoSJJSoSnBacxplqjJIAn9MEfVEiCEE267aBkFwvivX/555BicOHEBMSoqs8bF798Lk44Oa2FhZiUxRFFFfXY26ykpodTrEpqVhzPTpSBk9GrpudnQSERER0dDGpCYREXXLbrfjWPYx7PhmB46cPAKLzYLI0Ej4eF28uYcrNAlNyFZnI1eTC7NgVnQtosHktUWvYXTIaKfn+X73brz7wguIk3kEXa7WpiZUl5fD0toKn8BApIwahRGTJyM2LY31MomIiIhIFiY1iYhINlEUcTznOHZ8swOHTh6CyWxCZGgkfL19FV3XDjsK1YXIU+ehXFXO3ZtE3ViXsQ4PjXvI6XlqKirw95/9DB5GI3wCApyay2a1orayEg01NfAwGBCRkIARkyYheeRI+AYFOR0rEREREQ0tTGoSEVGPSZKEk7knsWPPDhz84SBaWlsQERoBX29flxx5vZRWtOKM5gzOqM+gTlWn6FpEA1WkVyS2rNzi9DySJOGNP/4R2UeOICY5uVfXN9XVoaaiAqIoIiAkBMMmTEDK6NGITEyEWu18l3YiIiIiGpqY1CQiol6TJAnZ+dnY8e0OHDh2AE0tTQjyD0KQf1CfJCtqhVqcUZ9BviYfrUKr4usRDSRvLnkTwwKHOT3P/p078f7f/474jAzZb1pYTCbUlJejubERnj4+iEtPx7Dx45E0YgQM/9/enUc3VeZ9AP/eLE2Tpk2b0EIXWmqBtijUwlhmfBERcBxgQEAOcxzE0RFxQSuecWFGfUX0uLw44ggIIgiHIqKHQQSBERFQWWRRurC0hVK6Q9e0Tdvs9/0j9k4vLdiNppHvh5PT+9zc3OeXJoLne55Ff+3W5CUiIiKi6wd3Pyciok4TBAGDBgzCwJiBOF90Hj+k/4CjmUeRfT4bWn8twkPDofX/5c1COitEDEGIMwRJziRcUlzCBeUFFCuL4RSc16xPIl+xp2BPt4Sa0fHxCAgMhKW2FoHBwVe8zu12o7ayEubKSiiVSoRFRWHUlCkYnJSE0MjIaz6Km4iIiIiuLxypSURE3aq6thonTp/AgeMHcKH4ApxuJ0KNoTAFm3ok1HDCiVJlKYoURShVljLgpOvWgKAB2D5te5fvI4oiNvzf/6EgJwdRAwfKnnO73bCYzTBXVsJptyPIZEJ8cjISf/MbxCQkQO3n1+X+iYiIiIjawlCTiIiuCYfDgezz2TiScQQnzpxATW0NgvRB6NunLzR+mh6pwQUXyhRlKFIWoURZAofg6JF+iXoDlaDCl9O/RKQ+ssv3OrpnD75cuxaxQ4ZI62Saq6rgtNmgDw5G1MCBiB8+HAOHDoXBZOqG6omIiIiIro6hJhERXXMXKy7ixOkT+P7H71FysQSiKKJfaL8e2ViomQsuXFJcQpGyCMXKYtgFe4/0S9STNEoNfhfxO4yPHo8x/cfAoDF0y30vFRVh7WuvoamhAW63G3qDAf0HDUL88OGITUxESFgYp5cTERERUY9iqElERD3GarPi5NmTOPzTYZw6dwr1lnoEG4IRZgqDWqXusTrccKNcUY4SZQlKFaWwKCw91jdRdzP6GzEqchRGR43GbZG3QafWdXsfoihi25o1aKitRfyIERiQkABj374MMomIiIjIaxhqEhFRjxNFEYVlhfgx60ccTj+MixUXoVKpEGoM7dHRm83qhXqUKkpRpixDuaIcLsHVo/0TdYgIDNAOwKSESbgt8jYMMbV/V/Iudfvz/zIyyCQiIiKi3oChJhEReZWl0YKMMxk4knkEZ/PPotZSC71Oj1BTKAK0AT1ejxNOlCvKUaosRZmijKM4qVfQiBqEu8IR7g6H9YIVQ2OH4pmHnmHASERERETXLYaaRETUK4iiiJJLJcjKzcLRjKMoLC2E1W5FcFAwQo2h8FN7ZxflOqEOZYoyXFJeQrminJsNUY9Qikr0cfdBmDsM4a5wGEUjBHgCTHOdGZZGC/533v+iX2g/L1dKREREROQdDDWJiKjXcTqdyCvMQ0Z2Bo6fPI5LlZfgFt0wBZtgCjZBqVR6pS4RImqEGingrFBUMOSkbqESVVKIGeYOg8ltggKKNq91u904k3cGD898GGNGjunZQomIiIiIegmGmkRE1Ks1NjXizPkzSD+djozsDFTXVkOpUMIYbITRYPRawAl4NhwyC2aUK8pRrvSEnNxVndqjIyFmW3Iv5OLmhJvx1F+e4hR0IiIiIrouMdQkIiKfUWWuQnZeNjJzM3Hm3BlU11ZDEASYgk0wGoxQqVRerU+EiHqhHlWKKulhFsxwC26v1kXeJYgCgsQgGN1GmNwmmNwmBIvBHQoxL1dlroLVZsXCJxci1BjajdUSEREREfkGhppEROSTaupqkHM+B1m5WTiZexLVtdUAgBBDCEwGE9RqtZcr9HDBhRqhBtWKainorBfqAQ6u+9XSilopvDS5TTC6jVCj699Hp8uJmtoaVJur4XK7EGYMw7NznkV4WHg3VE1ERERE5FsYahIRkc+rra9FTn4OTp09haycLFTWVMItumEINCAkKARaf22vmqJrhx1ViirUKmphFswwK8yoE+rgElzeLo06QCEqECQGweA2wCAaYHAbYHQboYOu2/qw2qyoqa2Buc4MCEBIUAgSByZi2OBhGBw7mKM0iYiIiOi6xVCTiIh+VSyNFuTk5+DMuTM4mXsSFTUVsNqs8Nf4I8QQAoPe4NV1OK/EDTcsggVmwewJOxVmmAUzGoQGiAL/qfYmQRQQKAbC4DYgWAyWQky9qO/SFPK2uN1u1FnqUF1bjSZrEzRqDUwhJtw0+CYkxiVicOxgBAcGd2ufRERERES+iKEmERH9atkddhSUFiCvMA9ZOVm4UHIBdfV1AOAZxWnwjOLszZxwok6og0WwoF5RD4tgkY6b0MRp7N1IEAUEiAGy4NLgNiBQDIQS1y4It9qsqKmrQW1dLdyiG0H6IPTv1x9JCUmIi47DgKgB0Phprln/RERERES+iKEmERFdF0RRRLW5GucKz+HshbPIzMlEVU0VrHYrNH4aGAINMAQa4Kf283ap7eaEUxZyWgQLmoQm6WGFlaM8f6YW1dCKWumhE3Wyn1pRC3/4d/vIy7Y4HA7UWmpRW18Lq80KjVoDY7ARNw66EQk3JCAuOg6hxtBetWQCEREREVFvw1CTiIiuS3aHHQUlBThXeA5n8s7gQvEF1NbXwuVyQaPRIDgwGEH6oF6z4VBniBBhhdUTcApWeeDZ3Ibn2Fd3aBdEwRNKQtsqpGzZ7o6NejqrZYhps9mgVCphCDQgOjwaiXGJ0mhMf42/12okIiIiIvI1DDWJiIgA1FnqUFhaiIKSApw+dxqFZYWos9TB5XLBz88PhkADgvRBv8ppwCJE2GCDVbDCITjgavlHaH3shLPN862Of26LEKGEEkpRCenPz8cqqKAUlVBAIR1ffk3L61o+1zy6Uuhlc/DtDjvqLHXSSEyVUiULMaMjotE/oj/XxiQiIiIi6gKGmkRERG0w15tRXFaMwtJCZOdno6CkAHWWOjicDgiCgMCAQOgD9NDr9FApVd4ul7zE5XLB0miBpcECS6MFLrcLKqUKQfogREdEY0jcEPQP74/oiGgYAg3eLpeIiIiI6FeDoSYREVE7WBotKC4rRmlFKYrKinD2wllU11ajvqEeoluESq1CUEAQ9AF6BGgDuB7ir5Aoimi0NqK+oR6WBgvsDjsECNDr9AgOCsbAmIGIiYxBeGg4ovpFMcQkIiIiIrqGGGoSERF1gtvtRpW5CqXlpSi9VIrzxeeldTkbrY0AALVKjQBtAHRaHQK0AT69Puf1RBRFOJwONDY1orGpEQ1NDXA4HAAArb8WQfogxETGIK5/HMLDwhERFoFQYyiUymu3QzoREREREckx1CQiIuomDocDFysvorS8FOVV5SgqK0JhWSHqLfVoaGqA0+UEAPhr/KWwU+evYxjmRZeHl3aHHQCgVqqh0+oQpA9CVL8o9A/vj1BjKMLDwhEeGv6rXFuViIiIiMiXMNQkIiK6htxuN6rN1aioqUB5VTnKq8pRUFKA0vJSNDQ1oNHaiOZ/itUqNbT+Wvhr/KHVeH4y8Ow6URRhd9hhs9ukANNqs0IQBCiVSuj8dQgICEBUX094GWYMQ6gxFH1C+iDEEAKFQuHtt0BERERERJdhqElEROQFNrsNlTWVqKiuQE1tDaprq3Gx8iLKystQ31CPJmsTrDYrRFGEKHrW7PT384ef2g9+fn7wU3l+qlXq63r9TqfLCbvd7gktHTbp2O6wAy3+D0etUkPjp0GALgDhYeGIiYhBqDFUehgNRgbIREREREQ+hKEmERFRL9K8GU1NbY3nUef5ebHyIsqrylFnqYPVZoXdYYfD4YDD6ZC9XqVSeUJPdeuHL4WfzaMrm0dY2h122O2e4NLldEEQBIgQoVQopaBXo9YgUB8IU7AJfUL6wKA3IFAfCL1Oj8CAQATpg2A0GLm2KRERERHRrwBDTSIiIh/icrnQ0NQAS6MFDY0Nnp24fz6us9ShylyFmroamOvM/w0Df34IEICfc01RFD3BoFuUzikUCigUCigVSigEBQSFIB0rlArPzxbXCIIAhUIBURThdrvhdrvhcrvgFt1SW/YQf37+57anEEBQCFI9zaMrRYhSGKvx08Bf4w9TsAlGgxGmEBP0Or2023xgQKDnpy6QgSURERER0XWCoSYREdGvkNvtRkNTgyf4bKyHpcECq80Kp8sJh9MBp9Ppefzcdjgc0qhIm8MGm90mnWt+uFwuWSjZHF62DDsVCk/4qVQqpRGjGrXGM/1bo4Gf2k+aRq9Wq6FWqaFSqqBSeR7NbX+NP/QB/w0udf46nxppSkRERERE1xZDTSIiImoXl8v131DU5YTL6WkrFUooVUopkFSr1FAoFAwhiYiIiIjomuF2nkS9gNvtxvbt25GamoqxY8ciOTkZQ4cOxahRo/DAAw9g3bp1qK+vb/O1CxYsQHx8POLj4zF79mzZc7Nnz5aeW7BgQbfVe7U+O+L8+fOwWCyyc8XFxdK94+PjceTIka6W22Vjx46V6lm6dKl0vjfW2hWZmZmtzh05ckT2HouLi7ulL6fTiVWrVmHSpElISkpCcnIyJk2ahLVr116zPn9Jyz63bNnSI336GqVSCY2fBnqdHsGBwTCFmNC3T1/0MfZBSFAI9Dq9tGM7A00iIiIiIrqWVN4ugOh6ZzabMXfuXGRkZLR6rqKiAhUVFTh8+DDWrFmD5cuXY9iwYV6osntVV1dj2bJl+PTTT/HVV19Br9d7u6TrWklJCd555x3s2LED2dnZPdLnokWL8Omnn8rOnTt3DuXl5RgyZEiP1EBERERERES+i6EmkZelpqbKAk2dToeYmBgIgoALFy6gsbERAFBeXo6HH34Yu3btgtFobNe9ExISpOMbbrihewvvpKNHj+Kxxx5rNULTF2k0GqSkpEjtoKAgL1bTOTt27MCCBQtgt9vbfD4oKEj2HjUaTZf7dDqd2LZtm9RWq9UYMmQI6uvrMWzYsGvSJxEREREREf26MNQk8qKffvpJNmX5oYcewpNPPgmtVgsAaGhowMKFC6UAyGw2Y8OGDUhNTW3X/V944YXuL7qLCgoKfhWBJgCEhoYiLS3N22V0SW5u7hUDTQBITEzs9vdoNpvR1NQktRcuXIgZM2bIrvH13ysRERERERFdW1xTk8iLsrKyZO25c+dKgSYABAQEYNGiRbJzP/30U4/VR3Qt2Gw2Wbt///5eqoSIiIiIiIh8FUdqEnmRKIqy9rJly/DMM8/A399fOqfVarF+/XppdGNH1p+cPXs2jh49CgCYNm0a3nzzTdnzdrsdaWlp+OKLL1BQUACdToff/va3ePLJJ1FXV4c//elP0rU5OTlX7MftduOTTz7BZ599hvz8fOh0Otxyyy149NFHceONN0rXjR07FiUlJbLXjhs3DgDwxBNP4Mknn7xiH88++6w0YlWn0+HQoUOysBcAMjIyMHPmTKm9fPlyjB8//or3bCkzMxMffvghjh8/DovFggEDBmDmzJmYNWvWFV9TXFws1Q8A69evx8iRI6V2eXk51q5di4MHD6KoqAg2mw1arRb9+/fH6NGj8cADD7S5lEB+fj7WrVuHo0eP4uLFi7DZbNDr9RgwYADGjRuH++67DwEBAa1e19TUhLS0NHz99dfIz89HY2Mj1Go1wsLCMHz4cMydOxdxcXHS9fHx8a3u0XzujTfewPTp03HkyBHcf//90vPffPMNoqKiOl1rW3023z8yMhJ79+79xT4BIDs7G6tXr8aRI0dQU1MDvV6PxMRETJkyBVOmTIFSqWzVDwAcOHAA69atQ2ZmJmw2GwYNGoT7778fU6ZMafN6IiIiIiIi6p0YahJ50fDhw2Xt5oDxjjvuwK233oqRI0ciPDz8mmwOZLFYMGfOHJw4cUI6Z7VasXPnTuzbt++qAWNLDocDjz/+OPbt2yeds9ls2L17N/bv34+1a9fiN7/5TZfrveeee6RQs7GxEfv378eECRNk1/znP/+RjkNCQnD77be3696ffvopXnnlFbhcLulcbm4uXnvtNRw8eBAOh6PD9ebm5mL27Nkwm82y8xaLBWfOnMGZM2ewa9cubNiwAX379pWe/+GHH/DII4/AarXKXldbW4uMjAxkZGRgz549WLt2rSzgtlqtmDNnDo4fPy57ncvlQmFhIQoLC7Fz50589NFHuOWWWzr8ftrS2Vq76pNPPsGrr74q+7xqampw6NAhHDp0CJ9//jnef//9Vn2+++67WLFihexcVlYWnn322Va/NyIiIiIiIurdOP2cyIuGDRuGsWPHys7V1dXhiy++wPPPP48xY8ZgwoQJWLJkSasRjl21aNEiWaCpVquRmJgIk8mEpqYmvP322+26z4kTJ7Bv3z4EBgYiKSkJffr0kZ6z2+145513pHZSUhIGDBgge31SUhJSUlIQGRl51X5Gjhwpm6a8a9euVtd89dVX0vEf//hHqNXqX6z/5MmTWLRokSwgCw0NRWJiItRqNfbt24fy8vJfvM/lXn31VSnQFAQBAwcORHJyMsLCwqRrCgsL8corr0htURTxwgsvSCGhUqlEfHw8kpOTERISIl2XmZmJf/3rX7L+Vq5cKQvmoqKikJycLAtM7Xa77HUpKSmIiIiQ3SclJQUpKSmyz7Etna01JSUFSUlJsnslJCS0eb4tBw8elAXQWq0WN954o+z7c+TIEbz88suy1+3Zs6dVoBkREYHBgwdDqVS22omdiIiIiIiIejeGmkRetnjxYtx6661XfP78+fNYuXIl7rrrLqxevbpb+iwqKsL27dul9sCBA/HVV19h69atOHjwIFJTU+F2u9t9v4kTJ+LAgQP47LPPsH//ftx2223Sc+np6XA6nQCAJUuWYM6cObLXvvPOO0hLS8P06dOv2ocgCLJrvv32WzQ0NEjtzMxMWfA7bdq0dtW+Zs0aqT4AeOaZZ/D9999j69at2L17t2wH+Y5IT0+Xjj/88EPs2LEDmzZtwnfffYe5c+dCqVQiJiYGAKRgsLKyEsXFxdLrvvzyS2zbtg2bNm3CgQMHMHnyZKjVasTFxaG+vl7WX3Z2NnQ6HQDgsccewzfffINNmzbh22+/xd133y1dl5ubKx2npaW1mnadlpaGtLQ0jB49+qrvr7O1pqWlyYJuAPjHP/6BtLQ0LFmy5Kp9AsA///lPadmGm2++GXv37sWWLVuwd+9eLFy4UFZPXl6e1F61apV0rFAo8Pbbb2Pfvn3Yvn07Pv/881bhLhEREREREfVuDDWJvEyv1+Ojjz7C8uXLMXr06CuOLnQ4HFi8eDE2bNjQ5T4PHjwoCy1ffPFFaaSbIAiYN28ebr755nbdS6VSYeHChdI6oGq1WhYoulyuVlOwO2v69OlQKDx/bVmtVuzdu1d6ruXIzcGDB8vW8ryaQ4cOSccpKSl4+OGHIQgCAM9IvkWLFnWq1pYjMtPS0rBv3z5YLBYIgoCnnnoK6enp2L17N95//33pd2cwGGTrqa5YsQKHDx+G1WqFSqXC66+/jvT0dOzcubPV+qgrV67ETz/9hK+//hqPP/64dN7hcKBfv35Su7t2nu9KrZ1VUlKCU6dOSe3U1FTZmqT33nsvYmNjpfY333wDAKivr0dmZqZ0furUqZg8ebLUjo+Px7PPPtstNRIREREREVHP4JqaRL2AIAgYP348xo8fj4aGBhw7dgw//PADDh48KBtZBwBLly7FjBkzZIFSR+Xn50vHSqWyzTUW/+d//kc22vBKYmNjYTAYZOeCg4Nlbbvd3qk6L9evXz/ceuutOHDgAABg586dUjjVcur51KlT23W/2tpaWeDacpOfZsOGDYNOp0NjY2OHan3kkUfw0ksvAfCMKv3222+hUCgwaNAgjBgxAqNGjcJtt90GPz8/6TV+fn544IEHsHLlSgDAtm3bsG3bNqjVaiQkJGDEiBG4/fbbMXLkyDY3whEEATqdDl9//TXS09Nx6tQpnDx5UrbbeMtp9l3R1Vo74/L/Fv76179e9frs7GwAnpHJLTflautzbuscERERERER9V4MNYm8zOFwoLq6Gn5+fggJCUFAQADGjBmDMWPGAABOnz6NZ555RppKazabkZmZiZSUlE732XK0XnBwMFSq1n8VhIaGtuteQUFBrc5dfr+OTGX/JTNmzJBCzQMHDqC+vh75+fnS1HOlUtnunawv3+CmrXUkBUGAXq/vcKg5c+ZM6PV6rFixQgrj3G43cnJykJOTg40bN8JkMuG5556ThbBPP/00wsLCsHbtWhQVFQHwfEeysrKQlZWFdevWISoqCi+//LJsinhlZSUWLVqEPXv2yIJLk8mEmJiYVoFgd+hsrZ11+ZT7X9IcWDc1NcnOm0ymVte29T0mIiIiIiKi3ouhJpGXOBwO3H777aiuroYoipg6dSreeuutVtcNGTIE8+fPl+1GXllZ2aW+tVqtdNzQ0AC32y1N625WUVHRrnt11yi89ho3bhyCg4NhNptht9uxZ88eWWA3atSodgeyAQEBsnZtbW2ra1wuF6qrqztV68SJEzFx4kTk5+fj0KFDOHbsGNLT01FWVgYAqKqqwvPPP4+IiAhZSD1r1izMmjUL2dnZOHjwII4fP4709HSpjuLiYjz++OPYsWMHYmJiIIoi5s6dK03NHjp0KP7yl79gxIgRiIiIwObNm/HCCy906j38ko7W2hUtv7cAsG7duqsuM9D83WzP59ze7zsRERERERH1DlxTk8hL1Go1wsPDpWmxe/fuvWJYefHiRVm75XqNnXHDDTdIx1arFRkZGa2u+f7777vUR3u1nBbcHn5+frL1EHfs2NGpqeeAZz3TlruDHz16tNU1x44dk20k1B4OhwN5eXnYs2cPVq9ejaioKMyaNQvvvvsu9u/fjy1btsjWTt29ezcAwGazIScnB7t27UJaWhoSEhLw0EMPSetVNk/1bu5j3759AIAff/xRttbkqlWrMHnyZGnzm44Edu39PDpba1fExcXJ2ufOnUNQUJD00Gq1WL9+Pb777juUlpZKI4ZjYmJkv++2PufDhw93uT4iIiIiIiLqOQw1ibyo5W7edXV1eOKJJ2TrXQKe9Rjfe+89qd2nTx8MHTq0S/2OGTNG2gwHABYuXCgFp263G0uWLJFtrNKdLt8IqaamRuq3vWbMmCEdHzhwQJp6HhQUhHHjxnWonuZp/s33+vjjj6V2cXExXn311Q7dD/BsWjRx4kTMmzcPixcvxnvvvScLRi8f3do8Svajjz7ClClTMH/+fLz22mvYuHGjLGS8fDRt82d4eej9ww8/SMfHjx/H+vXrZc+3rKWzn0dna+2KG264QbYR0PLly5GVlSW1V69ejaVLl+Jvf/sb7r77bimo1Gq1sjUzt2zZgj179kjtM2fO4N133+1yfURERERERNRzOP2cyItmzpyJf//739IouxMnTmDSpEmIjIxESEgISktLW42ye+qpp6DRaLrUb0REBKZNm4YtW7YA8Gyocuedd2LgwIEoKyuTgq1rISQkRNaeO3cuwsLCMGrUKDz33HPtukdCQgJuvPFGnDp1ShakTZgwocO/mzlz5mD79u3SmpmLFi3CmjVrYDAYcPbsWTgcDiiVyg5tsDNhwgSsXLlSWgd11apV2Lx5M6Kjo2GxWJCXlyfVLQgCJkyYAMCze/f69eulqduvvPIKVq5ciYiICFRXV6OgoEDqQ6PRSAHuoEGDZP0//fTT+OCDD2Cz2VqF5IBnyYHmzZ1a7h4OeEa66vV6/PnPf8Z99913xffY2Vq76qmnnsL8+fMBeALYmTNnIi4uDg6HAxcuXJCuS0pKkgXW8+bNw+HDh+FyueBwODBv3jzExsZCrVYjLy8PLperw58zEREREREReQ9HahJ5kVqtxocffojhw4dL51wuFwoLC5GRkSELNNVqNZ5++mnMnDmzW/p+8cUXZSM+7XY7Tp8+jZqaGoSGhmL27Nnd0s/lRowYgcDAQKldU1ODnJwcabRle91zzz2tzrUc+dpe0dHRePvtt2VhaElJCU6fPg2Hw4FRo0bh97//fYfuqVarsWLFCkRHR0vnqqurkZ6ejnPnzkmBpkKhwPPPP4/k5GQAnk2bPvjgA9lGNpcuXcKJEydkIaGfnx/efPNNREVFAQDi4+NbTbvPzs6WAs3IyEjZcy2DzlGjRslGjl66dAl5eXkoLS296nvsbK1dNWHCBMyfP18a+el2u3H27FlZoBkbG4vly5fLXjd8+HC89NJLshGk+fn5yM3NhcvlwvTp05GUlNQtNRIREREREdG1x1CTyMtMJhM+/vhjLFu2DBMmTED//v2h0+mgVqvRp08f3HTTTXj44YfxxRdf4NFHH+22fgMCArBx40akpqYiNjYWfn5+CA0NxcyZM7F161ZZCOXn59dt/er1eqxZswYjR46ETqeDVqtFbGwsbrrppg7dZ/LkybKp0wMGDMDNN9/cqZrGjRuHLVu2YNKkSTAajdBoNEhMTMRLL72EVatWtbk7/C+JiYnBtm3b8Pe//x233HILgoODoVQqpfc7Y8YMbN68GQ8++KDsdcOGDcPOnTuRmpqKpKQkBAYGQqlUQqfTYfDgwZg9eza2b9+OiRMnyl73+uuvY8GCBRg8eDDUajU0Gg3i4uIwd+5cbN26FQkJCdK1u3btko6jo6OxYsUKJCUlQaPRSP0MHDjwF99jZ2vtqsceewyfffYZpk6disjISGg0Gvj7+2Pw4MF44oknsHnz5jY3i7r33nuxceNG3HHHHTAYDNBqtUhOTsbixYvxxhtvdGuNREREREREdG0JYkd36SAin9fQ0ICCggL07dsXRqOxzfUOly1bhqVLlwIA+vbti++++66ny7yqgoIC3HXXXdKox9TUVMybN8/LVRERERERERFRT+CamkTXoYqKCkybNg2AZ6p0QkICPv74Y2kKdmVlpWw03+VrNnqb3W7Ha6+9JpvGfffdd3u5KiIiIiIiIiLqKQw1ia5D0dHRiIiIQGlpKRwOB7KysjB69GjExsaiqakJeXl5cDgc0vWdWavyWnjwwQehVquRm5uLsrIy6fydd97ZbWs2EhEREREREVHvx+nnRNepw4cP49FHH4XVar3qdVOnTsVbb73VQ1Vd3R/+8IdWu3n37dsXmzZtQkREhJeqIiIiIiIiIqKexpGaRNep3/3ud/jyyy+xYcMGHDt2DEVFRWhsbIRSqYTRaMRNN92EqVOnYvz48d4uVTJixAjU1NSgqakJ/fr1w4gRIzBv3jwGmkRERERERETXGY7UJCIiIiIiIiIiIp+i8HYBRERERERERERERB3BUJOIiIiIiIiIiIh8CkNNIiIiIiIiIiIi8ikMNYmIiIiIiIiIiMinMNQkIiIiIiIiIiIin8JQk4iIiIiIiIiIiHwKQ00iIiIiIiIiIiLyKQw1iYiIiIiIiIiIyKcw1CQiIiIiIiIiIiKfwlCTiIiIiIiIiIiIfApDTSIiIiIiIiIiIvIpDDWJiIiIiIiIiIjIpzDUJCIiIiIiIiIiIp/CUJOIiIiIiIiIiIh8CkNNIiIiIiIiIiIi8ikMNYmIiIiIiIiIiMinMNQkIiIiIiIiIiIin8JQk4iIiIiIiIiIiHwKQ00iIiIiIiIiIiLyKQw1iYiIiIiIiIiIyKcw1CQiIiIiIiIiIiKfwlCTiIiIiIiIiIiIfApDTSIiIiIiIiIiIvIp/w9WEFDSjuaYEAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.pie(count, explode = (0.01,0.01,0.1,0.1,0.2), labels = participation_rate, shadow=True, autopct=lambda p : f'{p:.2f}% ({p * sum(count)/100:,.0f})', textprops={'fontsize':18, 'weight':'bold'})\n", + "plt.title(\"Propotion of Job Satisfaction from the Dataset\",fontsize = 20)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**In further Analysis, we will split into two categories like Satisfied or Not Satisfied**" + ] + }, + { + "cell_type": "code", + "execution_count": 406, + "metadata": {}, + "outputs": [], + "source": [ + "# Applying one hot encoding\n", + "df_indicator = df.isnull().astype(int).add_suffix('_nan')\n", + "df = pd.concat([df, df_indicator], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 407, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "best mean cross-validation score: -0.360\n", + "best parameters: {'max_depth': 30, 'min_samples_leaf': 10}\n", + "test-set score: -0.417\n" + ] + } + ], + "source": [ + "# Grid search for good parameters, I used the mean absolute error as the main measure of quality\n", + "param_grid = {'min_samples_leaf': [10,15,20],'max_depth': [20,30,40]}\n", + "grid = GridSearchCV(RandomForestRegressor(n_estimators=100,n_jobs=-1, oob_score=True), param_grid=param_grid,\n", + " scoring='neg_mean_absolute_error',cv=5, return_train_score=True)\n", + "X_train_grit = X_train.sample(frac=0.5, random_state=42)\n", + "grid.fit(X_train_grit, y_train.loc[X_train_grit.index])\n", + "print(\"best mean cross-validation score: {:.3f}\".format(grid.best_score_))\n", + "print(\"best parameters: {}\".format(grid.best_params_))\n", + "print(\"test-set score: {:.3f}\".format(grid.score(X_test, y_test)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Here Random Forest is used to Predicting Job satisfaction, model did not yield much better output and turned out to be very complex to get insights.** Random forest Regressor, Logistic Regression which may yield good results." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Trying with Logistic Regression" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Used Sklearn library to create a Logistic Regression model.\n", + "\n", + "Before creating a model, need to create data, Using model coefficients, features that have negative and positive effects on job satisfaction to be calculated." + ] + }, + { + "cell_type": "code", + "execution_count": 408, + "metadata": {}, + "outputs": [], + "source": [ + "numericals = [\"Age\",\"SalaryUSD\",\"YearsCodePro\"]\n", + "categoricals = [\"Country\",\"EdLevel\",\"Employment\",\"Hobbyist\",\"UndergradMajor\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 409, + "metadata": {}, + "outputs": [], + "source": [ + "pd.set_option('display.max_columns', None)" + ] + }, + { + "cell_type": "code", + "execution_count": 410, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "CurrentJobSatis\n", + "Very satisfied 19\n", + "Slightly satisfied 9\n", + "Slightly dissatisfied 8\n", + "Very dissatisfied 6\n", + "Neither satisfied nor dissatisfied 3\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 410, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2020['CurrentJobSatis'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Performing further Spliting of CurrentJobSatis Coloumn**\n", + "- Delete \"Neither satisfied nor dissatisfied\"\n", + "- Combine \"Very satisfied\" and \"Slightly satisfied\", label as \"Satisfied\" -->1\n", + "- Combine \"Very dissatisfied\" and \"Slightly dissatisfied\", label as \"Dissatisfied\"-->0\n", + "- Delete rows \"Neither satisfied nor dissatisfied\"" + ] + }, + { + "cell_type": "code", + "execution_count": 411, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "df = df2020.drop(df2020[df2020.CurrentJobSatis == \"Neither satisfied nor dissatisfied\"].index)\n", + "\n", + "df.CurrentJobSatis = [1 if each == \"Very satisfied\" else \n", + " 1 if each == \"Slightly satisfied\" else \n", + " 0 if each == \"Very dissatisfied\"else \n", + " 0 if each == \"Slightly dissatisfied\" else\n", + " each for each in df.CurrentJobSatis]" + ] + }, + { + "cell_type": "code", + "execution_count": 412, + "metadata": {}, + "outputs": [], + "source": [ + "# Dropping nan in Converted Salary if any\n", + "df = df.dropna()" + ] + }, + { + "cell_type": "code", + "execution_count": 413, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeSalaryUSDYearsCodeProCountryEdLevelEmploymentHobbyistUndergradMajorCurrentJobSatis
036116000.013.0United StatesBachelorsFull-timeYesComputer Science0
12232315.04.0United KingdomBachelorsFull-timeYesMath/Stat1
22340070.02.0United KingdomBachelorsFull-timeYesComputer Science0
34914268.07.0SpainNo DegreeFull-timeNoMath/Stat0
45338916.020.0NetherlandsNo DegreeFull-timeYesNo major1
\n", + "
" + ], + "text/plain": [ + " Age SalaryUSD YearsCodePro Country EdLevel Employment \\\n", + "0 36 116000.0 13.0 United States Bachelors Full-time \n", + "1 22 32315.0 4.0 United Kingdom Bachelors Full-time \n", + "2 23 40070.0 2.0 United Kingdom Bachelors Full-time \n", + "3 49 14268.0 7.0 Spain No Degree Full-time \n", + "4 53 38916.0 20.0 Netherlands No Degree Full-time \n", + "\n", + " Hobbyist UndergradMajor CurrentJobSatis \n", + "0 Yes Computer Science 0 \n", + "1 Yes Math/Stat 1 \n", + "2 Yes Computer Science 0 \n", + "3 No Math/Stat 0 \n", + "4 Yes No major 1 " + ] + }, + "execution_count": 413, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cols= [\"Age\",\"SalaryUSD\",\"YearsCodePro\", \"Country\",\"EdLevel\",\"Employment\",\"Hobbyist\",\"UndergradMajor\", \"CurrentJobSatis\"]\n", + "df = df[cols]\n", + "df.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 414, + "metadata": {}, + "outputs": [], + "source": [ + "# one hot encoding\n", + "df = pd.get_dummies(df, columns = categoricals )" + ] + }, + { + "cell_type": "code", + "execution_count": 415, + "metadata": {}, + "outputs": [], + "source": [ + "# Normalization of numerical features\n", + "for each in numericals:\n", + " df[each] = (df[each] - df[each].min()) / (df[each].max() - df[each].min())" + ] + }, + { + "cell_type": "code", + "execution_count": 416, + "metadata": {}, + "outputs": [], + "source": [ + "#df.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 417, + "metadata": {}, + "outputs": [], + "source": [ + "# Split data into X and y\n", + "X = df.drop(\"CurrentJobSatis\", axis = 1)\n", + "y = df.CurrentJobSatis" + ] + }, + { + "cell_type": "code", + "execution_count": 418, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeSalaryUSDYearsCodeProCountry_BelgiumCountry_BrazilCountry_CanadaCountry_Czech RepublicCountry_FranceCountry_GermanyCountry_GreeceCountry_IndonesiaCountry_IsraelCountry_ItalyCountry_NetherlandsCountry_PolandCountry_SpainCountry_United KingdomCountry_United StatesEdLevel_AssociateEdLevel_BachelorsEdLevel_DoctorateEdLevel_No DegreeEdLevel_ProfessionalEmployment_Full-timeEmployment_Not employedEmployment_Part-timeEmployment_Self-employedEmployment_StudentHobbyist_NoHobbyist_YesUndergradMajor_Arts and ScienceUndergradMajor_Computer ScienceUndergradMajor_EngineeringUndergradMajor_Info SystemsUndergradMajor_Math/StatUndergradMajor_No majorUndergradMajor_Other ScienceUndergradMajor_Web Design/Dev
00.4848480.7196810.444444FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
10.0606060.1865330.111111FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseFalse
20.0909090.2359390.037037FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
30.8787880.0715580.222222FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseFalseFalse
41.0000000.2285870.703704FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseFalse
50.2121210.4011370.000000FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
60.7575760.6723830.814815FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseFalseTrueFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
70.1515150.4839580.074074FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
90.1212120.5119900.074074FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseFalse
100.7575760.5660340.703704FalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalse
110.3333330.1830230.333333FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
120.5757580.3856170.481481TrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
130.4242420.4747590.074074FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
140.4545450.6004690.407407FalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseFalse
150.3636360.8088730.333333FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseFalse
170.0606060.2148070.037037FalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
180.1212120.2216940.111111FalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
191.0000000.4582831.000000FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseTrueFalse
200.5454550.7770190.259259FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalseFalse
210.0909090.3119440.111111FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseFalse
220.2424240.5571090.185185FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseFalse
230.7272731.0000000.814815FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseFalse
250.5454550.0857010.518519FalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseFalse
260.4242420.5818090.444444FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
300.1515150.1330050.185185FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseFalse
310.1515150.4839580.281111FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseFalse
330.2424240.2215790.222222FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseFalse
340.3636360.5827070.222222FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalse
350.8484850.7260520.888889FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
360.0000000.0000000.281111FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseFalse
370.1515150.4839580.037037FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
380.1818180.6693510.074074FalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseTrueFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
390.0303030.2215790.281111FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueTrueFalseFalseTrueFalseFalseFalseFalseFalseFalse
400.2424240.8088730.037037FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalseFalseFalseFalse
410.2424240.3723150.037037FalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseTrueFalse
430.6666670.1183970.518519FalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseFalse
440.0303030.2215790.037037FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalseFalseFalseFalse
450.2727270.2038170.037037FalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
460.3030300.4624950.111111FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
470.2727270.2454830.148148FalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseFalse
480.3030300.4865890.296296FalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseFalseFalse
490.6666670.5731510.370370FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseTrue
\n", + "
" + ], + "text/plain": [ + " Age SalaryUSD YearsCodePro Country_Belgium Country_Brazil \\\n", + "0 0.484848 0.719681 0.444444 False False \n", + "1 0.060606 0.186533 0.111111 False False \n", + "2 0.090909 0.235939 0.037037 False False \n", + "3 0.878788 0.071558 0.222222 False False \n", + "4 1.000000 0.228587 0.703704 False False \n", + "5 0.212121 0.401137 0.000000 False False \n", + "6 0.757576 0.672383 0.814815 False False \n", + "7 0.151515 0.483958 0.074074 False False \n", + "9 0.121212 0.511990 0.074074 False False \n", + "10 0.757576 0.566034 0.703704 False False \n", + "11 0.333333 0.183023 0.333333 False False \n", + "12 0.575758 0.385617 0.481481 True False \n", + "13 0.424242 0.474759 0.074074 False False \n", + "14 0.454545 0.600469 0.407407 False False \n", + "15 0.363636 0.808873 0.333333 False False \n", + "17 0.060606 0.214807 0.037037 False False \n", + "18 0.121212 0.221694 0.111111 False False \n", + "19 1.000000 0.458283 1.000000 False False \n", + "20 0.545455 0.777019 0.259259 False False \n", + "21 0.090909 0.311944 0.111111 False False \n", + "22 0.242424 0.557109 0.185185 False False \n", + "23 0.727273 1.000000 0.814815 False False \n", + "25 0.545455 0.085701 0.518519 False True \n", + "26 0.424242 0.581809 0.444444 False False \n", + "30 0.151515 0.133005 0.185185 False False \n", + "31 0.151515 0.483958 0.281111 False False \n", + "33 0.242424 0.221579 0.222222 False False \n", + "34 0.363636 0.582707 0.222222 False False \n", + "35 0.848485 0.726052 0.888889 False False \n", + "36 0.000000 0.000000 0.281111 False False \n", + "37 0.151515 0.483958 0.037037 False False \n", + "38 0.181818 0.669351 0.074074 False False \n", + "39 0.030303 0.221579 0.281111 False False \n", + "40 0.242424 0.808873 0.037037 False False \n", + "41 0.242424 0.372315 0.037037 False False \n", + "43 0.666667 0.118397 0.518519 False False \n", + "44 0.030303 0.221579 0.037037 False False \n", + "45 0.272727 0.203817 0.037037 False False \n", + "46 0.303030 0.462495 0.111111 False False \n", + "47 0.272727 0.245483 0.148148 False False \n", + "48 0.303030 0.486589 0.296296 False False \n", + "49 0.666667 0.573151 0.370370 False False \n", + "\n", + " Country_Canada Country_Czech Republic Country_France Country_Germany \\\n", + "0 False False False False \n", + "1 False False False False \n", + "2 False False False False \n", + "3 False False False False \n", + "4 False False False False \n", + "5 False False False False \n", + "6 False False False False \n", + "7 False False False False \n", + "9 False False False False \n", + "10 False False False True \n", + "11 True False False False \n", + "12 False False False False \n", + "13 False False False False \n", + "14 False False False False \n", + "15 False False False False \n", + "17 False False True False \n", + "18 False False True False \n", + "19 False False False False \n", + "20 False False False False \n", + "21 False False False False \n", + "22 False False False False \n", + "23 False False False False \n", + "25 False False False False \n", + "26 False False False False \n", + "30 False False False False \n", + "31 False False False False \n", + "33 True False False False \n", + "34 False False False False \n", + "35 False False False False \n", + "36 False False False False \n", + "37 False False False False \n", + "38 False False True False \n", + "39 True False False False \n", + "40 False False False False \n", + "41 False False False False \n", + "43 False False False False \n", + "44 True False False False \n", + "45 False False False False \n", + "46 True False False False \n", + "47 False True False False \n", + "48 True False False False \n", + "49 False False False False \n", + "\n", + " Country_Greece Country_Indonesia Country_Israel Country_Italy \\\n", + "0 False False False False \n", + "1 False False False False \n", + "2 False False False False \n", + "3 False False False False \n", + "4 False False False False \n", + "5 False False False False \n", + "6 False False False False \n", + "7 False False False False \n", + "9 False False False False \n", + "10 False False False False \n", + "11 False False False False \n", + "12 False False False False \n", + "13 False False False False \n", + "14 False False False True \n", + "15 False False False False \n", + "17 False False False False \n", + "18 False False False False \n", + "19 False False False False \n", + "20 False False False False \n", + "21 False False False False \n", + "22 False False False False \n", + "23 False False False False \n", + "25 False False False False \n", + "26 False False False False \n", + "30 False False False False \n", + "31 False False False False \n", + "33 False False False False \n", + "34 False False False False \n", + "35 False False False False \n", + "36 False False False False \n", + "37 False False False False \n", + "38 False False False False \n", + "39 False False False False \n", + "40 False False False False \n", + "41 False True False False \n", + "43 True False False False \n", + "44 False False False False \n", + "45 False False True False \n", + "46 False False False False \n", + "47 False False False False \n", + "48 False False False False \n", + "49 False False False False \n", + "\n", + " Country_Netherlands Country_Poland Country_Spain \\\n", + "0 False False False \n", + "1 False False False \n", + "2 False False False \n", + "3 False False True \n", + "4 True False False \n", + "5 False False False \n", + "6 False False False \n", + "7 False False False \n", + "9 False False False \n", + "10 False False False \n", + "11 False False False \n", + "12 False False False \n", + "13 False False False \n", + "14 False False False \n", + "15 False False False \n", + "17 False False False \n", + "18 False False False \n", + "19 False False False \n", + "20 False False False \n", + "21 False False False \n", + "22 False False False \n", + "23 False False False \n", + "25 False False False \n", + "26 False False False \n", + "30 False False False \n", + "31 False False False \n", + "33 False False False \n", + "34 False False False \n", + "35 False False False \n", + "36 False True False \n", + "37 False False False \n", + "38 False False False \n", + "39 False False False \n", + "40 False False False \n", + "41 False False False \n", + "43 False False False \n", + "44 False False False \n", + "45 False False False \n", + "46 False False False \n", + "47 False False False \n", + "48 False False False \n", + "49 False False False \n", + "\n", + " Country_United Kingdom Country_United States EdLevel_Associate \\\n", + "0 False True False \n", + "1 True False False \n", + "2 True False False \n", + "3 False False False \n", + "4 False False False \n", + "5 False True True \n", + "6 True False False \n", + "7 False True False \n", + "9 False True False \n", + "10 False False False \n", + "11 False False False \n", + "12 False False False \n", + "13 True False False \n", + "14 False False False \n", + "15 False True False \n", + "17 False False False \n", + "18 False False False \n", + "19 True False False \n", + "20 False True False \n", + "21 False True False \n", + "22 True False False \n", + "23 False True False \n", + "25 False False False \n", + "26 True False False \n", + "30 True False False \n", + "31 False True False \n", + "33 False False False \n", + "34 False True False \n", + "35 False True True \n", + "36 False False False \n", + "37 False True False \n", + "38 False False False \n", + "39 False False False \n", + "40 False True False \n", + "41 False False False \n", + "43 False False False \n", + "44 False False False \n", + "45 False False False \n", + "46 False False False \n", + "47 False False False \n", + "48 False False False \n", + "49 False True True \n", + "\n", + " EdLevel_Bachelors EdLevel_Doctorate EdLevel_No Degree \\\n", + "0 True False False \n", + "1 True False False \n", + "2 True False False \n", + "3 False False True \n", + "4 False False True \n", + "5 False False False \n", + "6 True False False \n", + "7 True False False \n", + "9 True False False \n", + "10 False False False \n", + "11 True False False \n", + "12 True False False \n", + "13 False False True \n", + "14 True False False \n", + "15 True False False \n", + "17 True False False \n", + "18 True False False \n", + "19 False True False \n", + "20 True False False \n", + "21 True False False \n", + "22 True False False \n", + "23 True False False \n", + "25 True False False \n", + "26 False False True \n", + "30 True False False \n", + "31 True False False \n", + "33 True False False \n", + "34 True False False \n", + "35 False False False \n", + "36 False False True \n", + "37 True False False \n", + "38 True False False \n", + "39 False False True \n", + "40 True False False \n", + "41 False False True \n", + "43 False True False \n", + "44 False False True \n", + "45 True False False \n", + "46 True False False \n", + "47 True False False \n", + "48 True False False \n", + "49 False False False \n", + "\n", + " EdLevel_Professional Employment_Full-time Employment_Not employed \\\n", + "0 False True False \n", + "1 False True False \n", + "2 False True False \n", + "3 False True False \n", + "4 False True False \n", + "5 False True False \n", + "6 False False False \n", + "7 False True False \n", + "9 False True False \n", + "10 True True False \n", + "11 False True False \n", + "12 False True False \n", + "13 False True False \n", + "14 False True False \n", + "15 False True False \n", + "17 False True False \n", + "18 False True False \n", + "19 False True False \n", + "20 False True False \n", + "21 False True False \n", + "22 False True False \n", + "23 False True False \n", + "25 False True False \n", + "26 False True False \n", + "30 False True False \n", + "31 False False True \n", + "33 False True False \n", + "34 False True False \n", + "35 False True False \n", + "36 False True False \n", + "37 False True False \n", + "38 False False False \n", + "39 False False False \n", + "40 False True False \n", + "41 False True False \n", + "43 False True False \n", + "44 False True False \n", + "45 False False False \n", + "46 False True False \n", + "47 False True False \n", + "48 False True False \n", + "49 False True False \n", + "\n", + " Employment_Part-time Employment_Self-employed Employment_Student \\\n", + "0 False False False \n", + "1 False False False \n", + "2 False False False \n", + "3 False False False \n", + "4 False False False \n", + "5 False False False \n", + "6 False True False \n", + "7 False False False \n", + "9 False False False \n", + "10 False False False \n", + "11 False False False \n", + "12 False False False \n", + "13 False False False \n", + "14 False False False \n", + "15 False False False \n", + "17 False False False \n", + "18 False False False \n", + "19 False False False \n", + "20 False False False \n", + "21 False False False \n", + "22 False False False \n", + "23 False False False \n", + "25 False False False \n", + "26 False False False \n", + "30 False False False \n", + "31 False False False \n", + "33 False False False \n", + "34 False False False \n", + "35 False False False \n", + "36 False False False \n", + "37 False False False \n", + "38 False True False \n", + "39 False False True \n", + "40 False False False \n", + "41 False False False \n", + "43 False False False \n", + "44 False False False \n", + "45 True False False \n", + "46 False False False \n", + "47 False False False \n", + "48 False False False \n", + "49 False False False \n", + "\n", + " Hobbyist_No Hobbyist_Yes UndergradMajor_Arts and Science \\\n", + "0 False True False \n", + "1 False True False \n", + "2 False True False \n", + "3 True False False \n", + "4 False True False \n", + "5 False True False \n", + "6 False True False \n", + "7 False True False \n", + "9 True False False \n", + "10 False True False \n", + "11 False True False \n", + "12 False True False \n", + "13 False True False \n", + "14 True False False \n", + "15 True False False \n", + "17 False True False \n", + "18 False True False \n", + "19 False True False \n", + "20 True False True \n", + "21 True False False \n", + "22 True False False \n", + "23 True False False \n", + "25 True False False \n", + "26 False True False \n", + "30 False True False \n", + "31 False True False \n", + "33 True False False \n", + "34 False True False \n", + "35 False True False \n", + "36 False True False \n", + "37 False True False \n", + "38 False True False \n", + "39 True False False \n", + "40 False True True \n", + "41 False True False \n", + "43 False True False \n", + "44 False True True \n", + "45 False True False \n", + "46 False True False \n", + "47 True False False \n", + "48 False True False \n", + "49 False True False \n", + "\n", + " UndergradMajor_Computer Science UndergradMajor_Engineering \\\n", + "0 True False \n", + "1 False False \n", + "2 True False \n", + "3 False False \n", + "4 False False \n", + "5 True False \n", + "6 True False \n", + "7 True False \n", + "9 True False \n", + "10 False True \n", + "11 True False \n", + "12 True False \n", + "13 True False \n", + "14 True False \n", + "15 True False \n", + "17 True False \n", + "18 True False \n", + "19 False False \n", + "20 False False \n", + "21 True False \n", + "22 True False \n", + "23 True False \n", + "25 True False \n", + "26 True False \n", + "30 False False \n", + "31 False False \n", + "33 True False \n", + "34 False False \n", + "35 True False \n", + "36 False False \n", + "37 True False \n", + "38 True False \n", + "39 True False \n", + "40 False False \n", + "41 False False \n", + "43 False False \n", + "44 False False \n", + "45 True False \n", + "46 True False \n", + "47 True False \n", + "48 True False \n", + "49 False False \n", + "\n", + " UndergradMajor_Info Systems UndergradMajor_Math/Stat \\\n", + "0 False False \n", + "1 False True \n", + "2 False False \n", + "3 False True \n", + "4 False False \n", + "5 False False \n", + "6 False False \n", + "7 False False \n", + "9 False False \n", + "10 False False \n", + "11 False False \n", + "12 False False \n", + "13 False False \n", + "14 False False \n", + "15 False False \n", + "17 False False \n", + "18 False False \n", + "19 False False \n", + "20 False False \n", + "21 False False \n", + "22 False False \n", + "23 False False \n", + "25 False False \n", + "26 False False \n", + "30 False False \n", + "31 False True \n", + "33 False False \n", + "34 True False \n", + "35 False False \n", + "36 False False \n", + "37 False False \n", + "38 False False \n", + "39 False False \n", + "40 False False \n", + "41 False False \n", + "43 False False \n", + "44 False False \n", + "45 False False \n", + "46 False False \n", + "47 False False \n", + "48 False False \n", + "49 False False \n", + "\n", + " UndergradMajor_No major UndergradMajor_Other Science \\\n", + "0 False False \n", + "1 False False \n", + "2 False False \n", + "3 False False \n", + "4 True False \n", + "5 False False \n", + "6 False False \n", + "7 False False \n", + "9 False False \n", + "10 False False \n", + "11 False False \n", + "12 False False \n", + "13 False False \n", + "14 False False \n", + "15 False False \n", + "17 False False \n", + "18 False False \n", + "19 False True \n", + "20 False False \n", + "21 False False \n", + "22 False False \n", + "23 False False \n", + "25 False False \n", + "26 False False \n", + "30 True False \n", + "31 False False \n", + "33 False False \n", + "34 False False \n", + "35 False False \n", + "36 True False \n", + "37 False False \n", + "38 False False \n", + "39 False False \n", + "40 False False \n", + "41 False True \n", + "43 True False \n", + "44 False False \n", + "45 False False \n", + "46 False False \n", + "47 False False \n", + "48 False False \n", + "49 False False \n", + "\n", + " UndergradMajor_Web Design/Dev \n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 False \n", + "4 False \n", + "5 False \n", + "6 False \n", + "7 False \n", + "9 False \n", + "10 False \n", + "11 False \n", + "12 False \n", + "13 False \n", + "14 False \n", + "15 False \n", + "17 False \n", + "18 False \n", + "19 False \n", + "20 False \n", + "21 False \n", + "22 False \n", + "23 False \n", + "25 False \n", + "26 False \n", + "30 False \n", + "31 False \n", + "33 False \n", + "34 False \n", + "35 False \n", + "36 False \n", + "37 False \n", + "38 False \n", + "39 False \n", + "40 False \n", + "41 False \n", + "43 False \n", + "44 False \n", + "45 False \n", + "46 False \n", + "47 False \n", + "48 False \n", + "49 True " + ] + }, + "execution_count": 418, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": 419, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0\n", + "1 1\n", + "2 0\n", + "3 0\n", + "4 1\n", + "5 1\n", + "6 1\n", + "7 0\n", + "9 0\n", + "10 1\n", + "11 1\n", + "12 0\n", + "13 1\n", + "14 1\n", + "15 1\n", + "17 1\n", + "18 1\n", + "19 1\n", + "20 0\n", + "21 1\n", + "22 1\n", + "23 1\n", + "25 1\n", + "26 1\n", + "30 0\n", + "31 1\n", + "33 0\n", + "34 1\n", + "35 1\n", + "36 1\n", + "37 1\n", + "38 0\n", + "39 0\n", + "40 1\n", + "41 1\n", + "43 1\n", + "44 1\n", + "45 0\n", + "46 0\n", + "47 1\n", + "48 0\n", + "49 1\n", + "Name: CurrentJobSatis, dtype: int64" + ] + }, + "execution_count": 419, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 420, + "metadata": {}, + "outputs": [], + "source": [ + "# split data into train and test sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=7)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Checking Model Coefficent**" + ] + }, + { + "cell_type": "code", + "execution_count": 424, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 78.57%\n" + ] + } + ], + "source": [ + "# define the model\n", + "model = LogisticRegression()\n", + "# fit the model\n", + "model.fit(X, y)\n", + "\n", + "# get importance\n", + "importance = model.coef_[0]\n", + "\n", + "# make predictions for test data and evaluate\n", + "y_pred = model.predict(X_test)\n", + "predictions = [round(value) for value in y_pred]\n", + "accuracy = accuracy_score(y_test, predictions)\n", + "print(\"Accuracy: %.2f%%\" % (accuracy * 100.0))" + ] + }, + { + "cell_type": "code", + "execution_count": 423, + "metadata": {}, + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (3488427352.py, line 1)", + "output_type": "error", + "traceback": [ + "\u001b[1;36m Cell \u001b[1;32mIn[423], line 1\u001b[1;36m\u001b[0m\n\u001b[1;33m We have recieved **78.57% Accuracy** which is good enough to move ahead with predictions.\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" + ] + } + ], + "source": [ + "We have recieved **78.57% Accuracy** which is good enough to move ahead with predictions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting Features affecting Job Satisfaction" + ] + }, + { + "cell_type": "code", + "execution_count": 401, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABwUAAAl1CAYAAAA67nt0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yN5+P/8XcSIRIhRGjtUKKtFaNGUSKoUKstVaVGrdZqaUWJvUf1I1patCi1Y9VqUVo1YtaqGUHUCEHESiTn94ev+5cj64Sk4fZ6Ph7n8Tj3uu7rPrmvuz3n7bouO4vFYhEAAAAAAAAAAAAA07LP6AoAAAAAAAAAAAAASF+EggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGBymTK6AgAAAAASFxYWpjp16jxRGc2aNdOYMWPSqEb/naNHj6pkyZIZXQ1Tmz17tkaNGmUs9+jRQ927d3+ssjZu3Kh58+bp+PHjunbtmpycnPTiiy9q0qRJKl68uCRp165dmjVrlg4dOqSrV6/K0dFRefLk0eDBg1WtWrU0uab0ktz96OXlZbw/duzYf1Wlp4qPj4/Onz8vSRo9erSaN2+ebucKCgpS//79JWXc881isSg4OFi///67du3apfDwcEVERMjFxUU5c+ZUoUKFVKNGDdWuXVsFChT4z+v30NN03z6rz/SIiAjdv39fefLkSbDN399fy5Ytk5T+9z0AAEBaIRQEAAAA8NS4fv26xo0bpx07dmjTpk0ZXR1TW7FihdVyUFCQPvnkE9nZ2aWqnO+++05fffWV1bqoqCidOHHC+CF9xYoV8vf3V1xcnLFPTEyMQkNDlTNnzse8gvTH/YhHHT58WMOHD9e+ffsSbLt+/bquX7+u06dPa8uWLRo9erRatmypXr16yc3N7T+r49N03164cEFDhw7VrVu39NNPP2VoXVJr6dKlGjdunCZPnpxoKAgAAPAsIhQEAAAAnhGNGjWSi4tLqo7x9vZOp9qkvYiICDVs2FARERHKnz9/RlfH1E6cOKHDhw9LkhwdHRUTE6Pz58/rr7/+UvXq1W0u5/z58woMDDSWPTw8VKFCBWXOnFmxsbHKkSOHbt++rZEjRxqBoKurq6pUqSIXFxddvXpVxYoVS9uLSyPcj3jUjh079NFHHykmJkaSZGdnp+LFi6to0aLKli2boqOjdfHiRR06dEi3b99WbGysfv75Z23btk3z589Xrly50r2OT9N9e+LECbVo0UK3b9/Wa6+9lqF1Sa3+/fsrKCgoo6sBAACQ5ggFAQAAgGfEp59+mqFD0aW327dvKyIiIqOr8VxYvny58f7tt9/WggULJEmLFy9OVSi4c+dOIyApXLiwli1bliC4PnjwoG7cuCFJyp49u1avXv1M9LrhfkR858+fV/fu3Y37vX79+urXr1+iwdudO3e0cOFCTZo0SXfv3lVoaKg6d+6shQsXysHBIV3r+TTdtxEREbp9+3ZGV+OxhIWFZXQVAAAA0gWhIAAAAAA8R+Li4rRq1SpJkoODg7p3765ly5bp3r172rhxoyIiImzu0XTlyhXjfc2aNRPtyXr16lXjfcWKFZ+JQDA1ntd5BJ833333nW7evClJqlevnv73v/8lOdRu1qxZ1a5dOxUpUkRdunSR9CAcX7VqlZo2bfpfVTlZ3LdPbsyYMc/knL0AAOD5Zp/RFQAAAAAA/He2b9+uS5cuSZLKlCkjDw8P1ahRQ9KDef7i9yJMSXR0tPE+R44cie5z7969FPcBnnbr16833nfv3t2muTdr1aqlunXrGsu//PJLutQNAAAAsBWhIAAAAAA8R+KHfj4+PpIkPz8/Y92SJUtsLstisaTJPsDT7OrVq7p+/bqxnJq5+ho2bGi8P3r0aFpWCwAAAEg1hg8FAAAAnlMWi0UbN27U2rVrtX//fl29elX29vbKkyePXnvtNTVp0kQVKlSwqayYmBitX79eW7du1YEDB3T16lVFRUXJxcVFOXPmVNmyZVW3bl35+vom6GETFBSk/v37W607f/68vLy8jOX4Q90ltT4x8ctu1qxZgqHe/P39tWzZMkkPetDFxsZq/Pjx2rx5s+7fv6/8+fPr9ddfV9++fZUpk/XXp5CQEC1dulR//fWXLly4oFu3bilXrlwqWbKkfH191bRpU2XOnDmlj05Hjx7V0qVLFRwcrHPnzik6Olpubm4qUKCAqlSpoubNm6tQoUIplmOLW7duacOGDcayr6+vpAfhoLOzs27fvq1Tp05p9+7dqlixYqJl7Ny5U23btk2wfsqUKZoyZUqy51+2bJnxeUvSxo0bE8yTmZb3pfTgHlmyZIl27NihsLAwxcTEyM3NTa+++qr8/PzUsGFDq79tWt6P8cv63//+pzfffFNhYWFauHChNm/erAsXLig2NlZ58+ZV9erV1apVKxUrVizFa4qNjdXKlSv1yy+/6PDhw4qKilKuXLlUrlw5vffee6pWrZr279+vli1bSkr83s8ot27dUlBQkDZv3qxjx47p+vXrcnFx0QsvvKBq1arp7bff1ksvvZSqMo8fP67Zs2dr+/btCg8PV44cOeTl5aU333xTTZs2laOj4xPV+dG2f+TIEb322ms2HVu+fHl16NBBOXPmTHHo3KftORoZGally5YZf6vIyEhlzZpV7u7uKl++vOrVq6datWolOC4wMDDBsyA4ONg4Z/78+bVp06Y0vf7EREVFaenSpdq0aZOOHTummzdvytnZWUWKFNHrr7+uVq1aKW/evFbHxP9cHor/vBs9erSaN28uyfq/H/HXJ+bUqVNatGiRgoODdf78ed2+fVs5c+ZU8eLFVatWLb3zzjtydnZO8vg2bdooODhYzs7O2rdvnyRpy5YtWrZsmQ4cOKDw8HC5uLioaNGiqlevnlq2bKmsWbOm+BkBAIDnD6EgAAAA8BwKCwvTZ599pr///jvBttOnT+v06dNauHCh3nzzTY0aNSrRueIe2rFjhwYMGKCwsLAE227cuKEbN24oNDRUK1askLe3t7755hu5u7un6fWkhaioKHXq1EmhoaHGuuPHj8vBwcEqFIiNjdXEiRM1e/Zs3b9/36qMS5cu6dKlS9qyZYu+++47ffXVVypbtmyi57NYLBo3bpx+/PHHBL3pwsPDFR4ern379mnGjBnq2LGjPv300ye+xl9//VW3b9+WJL366qsqWrSopAdzoNWtW1crVqyQ9KC3YFKhYHpKy/vyzp07GjFihJYuXZro57t582Zt3rxZs2bNUmBgYIJwMj0sX75cQ4cONf4GDz28tvnz56tv375q3759kmWcO3dOPXv21JEjR6zWX7p0SevXr9f69ev1zjvvJBtQZJRff/1VgwYN0rVr16zWX79+XdevX9fRo0c1e/Zsvffee+rfv79NYd78+fM1cuRIxcTEGOsetp+tW7fqhx9+0KRJk1SyZMnHrneOHDnk5uZm9BYcMWKEfvrpJ5uGw82bN6/69euX4n5P23N0586d6tWrV4K/VUxMjCIjI3X69GktXbpU5cqV05QpU+Th4fFE50vr61+9erWGDh2qGzduWK2PjIzUgQMHdODAAc2ePVtDhw5V48aNn6juybl7967GjBmjBQsWJHgOXb58WZcvX9Zff/2l7777TkOHDjX+oUZKZfr7+2vt2rVW66Ojo7Vnzx7t2bNHP/74o2bMmKHixYun6fUAAIBnH6EgAAAA8Jw5deqUPvzwQ4WHh0uS7O3tVbp0aRUtWlQxMTE6cuSIQkJCJEnr1q3TuXPnNHfu3ER7MQQHB6tTp07G3HJOTk7y9vbWiy++KEm6cOGC9u3bp7t370qS9u3bp88//1w//PCDUYanp6datmypW7duGXNuOTs766233kq/DyERo0aNsgoEH4o/tGZcXJx69+6tX3/91Vj34osvqmzZsnJ2dtb58+e1d+9excTEKCwsTG3bttW0adNUtWrVBOV+++23Vp9DkSJF9Morryhr1qy6fPmyDhw4oBs3bigmJkbTpk1TtmzZ1KlTpye6xvhDhz76Q3iTJk2MUHDdunUaOHCgsmXLlqCMPHnyGD3QDh06pMOHD0t6EDKWKlVK0oPPyd7+wWwVp0+fVnBwsHGNlStXNsqKH+ql5X0ZHR2tTp06adeuXca6XLlyqUKFCnJ2dtbJkyeNeh85ckRt27bVsmXLlCNHjnS7Hzds2KDVq1crLi5Orq6uqlixonLmzKmwsDDt3r1bcXFxun//vsaMGaOiRYvqjTfeSFDG5cuX1bZtW/3777/GupdfflleXl66deuWdu7cqcjISC1ZskT//PPPE9U3rS1atEgBAQHGcqZMmeTt7a2CBQvq5s2b2r17t65du6bY2FjNmzdPISEhmj59erLB4I4dO7R8+XJZLBZlzZpVVapUkZubm06ePKmDBw9KetCj98MPP9T8+fONEPxxvPXWW/rpp58kPehZ16BBA7Vq1UoNGzZ8onKlp+85GhISoi5duujOnTuSJFdXV5UvX165c+dWVFSUTp48qVOnTkmS9u/frw4dOmj58uVycHCQJJUqVUotW7bU5cuX9fvvv0uSPDw8jOGKc+bMmebXH9/8+fM1ZMgQY9nR0VHe3t7Knz+/wsPDtXfvXt2+fVu3b9/WF198oSxZsqh+/fqSZDzbNm3aZDyLateubfTy9PT0tPlzjI6OVufOnbVz505jXc6cOVWxYkW5uroqLCxMe/fu1f3793XlyhX16NFDw4YN07vvvptkmRaLRV988YUxx2WRIkWM5+6hQ4eM/4ZdvHhRXbp00dq1a5UlSxab6wwAAMyPUBAAAAB4jty7d0+9e/c2fuz09vbWqFGjEvyovX37dvXr10+XLl3S4cOHNXToUI0dO9Zqn9jYWA0ZMsT4IbdWrVoaO3as3NzcrPa7ceOGhgwZojVr1kiS/vrrL508edIYItDb21ve3t4KCwszfszOmTOnhg0blubXn5zff/9dLi4uCggIkK+vr27fvq3169erTp06xj7fffedEQi6urpq0KBBeuutt6yGsgsPD9fQoUP122+/6e7du+rTp49WrFhh1ZPm5s2b+v777yVJdnZ2GjlypN5++22r+kRFRWno0KFauXKlce7WrVsnO8Rcci5cuGCEcw4ODlZznUlS1apVlSdPHl2+fFl37tzRypUr9f777ycox9PT0/jbBAYGGuFa7dq11aNHjwT7BwUFGef19vZO9O+alvel9GAo04eBoL29vT799FN16NDBqsfn9u3b1atXL924cUPnz5/XhAkTNHz48HS7H1etWiVJ6tChg7p3724ViJ48eVJdunQxeklNmzYt0VBw0KBBRiDo5uamr776Sq+//rqx/fbt2xozZowWLlxo/F2eBvv27bMKaapWraqRI0dazc0XExOjmTNn6n//+5/i4uK0fft2jR07VgMHDkyy3AsXLkiS6tSpoxEjRihXrlzGtt27dxv31PXr1/Xll1/q559/NsLq1OrUqZPWrl2rK1euSHowz+DDIXMLFy6sypUrq1KlSqpUqZIRZtniaXyOTpkyxQgEa9eurYkTJybolbtmzRp98cUXiomJ0fHjx/XLL7+oSZMmxjG1a9fWzp07jVAw/nMjPa7/oePHj2vkyJHGcrVq1TRq1Cirv0l4eLj8/f21detWWSwWDRo0SK+//rqyZctm1PH06dPG86h9+/ZW/5jBVqNGjTICQXt7e/Xu3VsdOnSwCrrPnz+v/v37a+fOnYqLi9PQoUPl5eWlMmXKJFrmnTt3tH79erm7u2vEiBFG0Co9CAx//vlnjRgxQnFxcTp//rxWrlyZbMgIAACeP4/3f8MAAAAA/nOTJk3SoEGDbHpNnTo10TIWLFig48ePS5JeeeUVzZo1K9FeLlWrVtW8efOMnmLLly9PMO9UcHCw0VvE3d1dEydOTPBDrvRg6L2xY8cqd+7cxrr4PbieJmPHjlWzZs3k6uqqvHnzqm3btkZwcfXqVX377beSHoRq33//vRo3bpxgbisPDw9NnjzZCBOvXr2aoEfL3r17jV4vVapUSRAISlK2bNk0atQo4/wPe1M9rpUrVyouLk7Sg7/vo8P92dvbq1GjRsbykiVLHvtcqZWW9+X169c1a9YsY3nAgAHq3LlzgnnhqlatqnHjxhnLy5cvTzDUYFpr06aN+vXrlyBgeemllzR69Ghjef/+/YqMjLTaZ//+/UbAkilTJk2fPt0qEJQe9AwbNmzYUzd06FdffaXY2FhJUsWKFfX9999bBYLSg95cXbt2tQoB582bpzNnziRbdrVq1RQYGGgVCD48z4wZM4wAZt++ffrjjz8e+xry5s2rqVOnJjpM5pkzZ7Ro0SJ9/vnnqlWrlurXr68RI0Zo165dCYaMfNTT+Bzdvn278X7IkCGJDtPr5+enjh07GsubN29+rHOl9fV/++23xlCy3t7e+v777xOEtB4eHvrf//6nggULSnrwzHj4jy/SypkzZ7R48WJjedCgQerSpUuCnq/58+fXjBkzVL58eUkPwvHE/qFDfPb29po2bZpVICg9+AcmrVu3VtOmTY11T3LPAwAAcyIUBAAAAJ4Rv/zyixYuXGjTa926dYmWMW/ePON937595eTklOT5ChYsaNVTbOHChVbbb968qcqVKytfvnx65513Eh1q8qHMmTOrXLlyxvLDubmeJvnz51fdunWT3L5o0SKjN0uDBg2MH3ETY29vr759+xrLixcvNkIRSVZzyj0MBxPj6Ogof39/DRkyRD/88INKly5t07Uk5uHQoFLCoUMfetjTR5IOHz6cYN669JKW9+WWLVt07949SQ/CttatWydZVq1atYyeRi4uLgkCxrTk4OCgLl26JLm9UqVKxhx1cXFxVkOESg/mSHuoefPmSfYkkqQvv/zysXuUprWQkBCjp6gkDRs2TJkzZ05y/9atWxvPiri4OKt741F2dnYaOnSoMWzlo0qWLGkMByk9edBdpkwZrVq1Ss2aNUvynJIUGhqqn376SR988IEaNmyoTZs2Jbnv0/gcfdhLUEr++fTOO+/o888/V2BgoLp37/5Y50rL64+OjtaWLVuM5eTmpcyWLZtxb2TJksUYmjitLFmyxJhztmzZsmrVqlWS+2bOnFkjRoww/oHJ7t27dfTo0ST3r1GjRrLtP37v9nPnzqW26gAAwOQIBQEAAIDnRFhYmNHrxtHR0abh0GrWrGm8j//DviTVq1dPc+bM0e+//67PPvssxbJcXV2N9w97cjxNvL29k92+bds243316tVTLK9o0aIqUKCApAc/fMcP2OIPebdv3z4NGzZMERERiZZTr149tWrVSq+//nqCubhsdeDAAaM3jrOzc5LhZ8mSJeXl5WUsL1q06LHOlxppfV8+7E0nPejN9GhPzkdNnz5dO3fu1I4dO/Taa6+lpuqpUrRo0UR7mT1kZ2enfPnyGcu3bt2y2h4/7Egq1H3I1dVVvr6+j1nTtBW/11m5cuVUrFixFI955513jPc7duxIcr9KlSqpUKFCyZYVf5jc4ODgFHvupSRnzpwaM2aMNm/erP79+6ty5crJznt46tQpdevWTcOHDzd66sb3ND5H4z+fevbsqb///jvR/QoWLKiPPvpI9erVs+nvmpi0vP7t27cb/+CiYMGCKlu2bLJltWrVShs2bND+/fuTHab2ccS/723puVusWDGr/wYld9+n9Ix8+N8dyfofoAAAAEjMKQgAAAA8MzZu3Gj1Y19qHThwwHhvb29v01xT8YOJU6dOKS4uzuY5uS5duqSTJ0/qyJEj2r17t9WPpIn9OJ7RHp2b6lEHDx403q9Zs0b79u1LscyHPdYk6cSJE0ZPv+LFi+u1114zAq158+ZpwYIFKlu2rKpXr64aNWqoVKlSjz3/2aPi9xL09fVNthdZkyZNjGE1f/nlF/n7+yfbc+9JpfV9+TD8lKRSpUqlWFb8IC49pRReSbIapjF+z9KbN28awamdnZ1effXVFMsqV65cmg+J+Dji93hKKaR5KH44cvz4cd2/fz/B8K+SrHqNJeXll1+Wvb294uLidOPGDYWFhRnDRj6JPHnyqF27dmrXrp3u3LmjvXv3Kjg4WNu2bdOhQ4cSPOPmzp2r7Nmzq1evXqk6T0Y8R1u3bi1/f39J0rFjx9SiRQvlz59fNWrUUI0aNVSlSpVke/SlpdRcf/zefra0kWzZsqXbdcS/7225T6UH9/3evXslKdle2oULF062nPjPkYe9FQEAAB4iFAQAAACeE/F7ot27dy/BsIspefijemK91U6ePKn169fryJEjOnv2rM6dO2c1BN2jnrS3TnrInj17kttu3bpldT2PM0/To0PdTZgwQW3btlVoaKikByHQ3r17tXfvXk2ePFlubm5644039Oabb6pmzZqJhiK2iImJsRp6cv/+/ckOZRc/cLt586bWrVtnNUdVWkvr+zJ+ecn1zPuvJTYv26Pih8Dx28iVK1eM99myZbNpaNC8efOmsobp49q1a8b7R+d2S0r8ulssFkVGRiaYM/DR/ZKSNWtWubq6GvNFXrt2LU1CwUfP8frrr+v111/Xp59+qmvXrum3337TzJkzjfYtPeiV2rx58yTP/7Q8R5s1a6aDBw9aDd16/vx5LViwQAsWLFCmTJlUvnx5+fr6qmHDhlbz/D2JJ73+q1evGu8zsu1HRUVZ9WJ84YUXbDou/v2c3NCwKT1LUuodDQAAnm+EggAAAMBz4ubNm09cxu3bt61CwYiICA0ePFi//vprksc4OzurcuXKunz5sg4fPvzEdUgvWbNmTXJbVFTUE5f/6DBuefPm1YoVKzRr1iwtXbpUZ8+etdp+/fp1rVixQitWrFCBAgU0ZMgQ1ahRI9Xn3bJli1Uwc/bs2QTnSs7ixYvTNRRM6/sy/o/p6dnDMbWSm4MuJfH/frZe09Myp2D8kDm5Nhbfo/vdvn070VDQ1s8ia9asRigYv/duesmZM6datGiht99+W6NGjdLcuXMlPQjoV61apY8//thq/6fxOTpo0CDVqlVLs2bN0o4dO6x6rt6/f1/BwcEKDg7W+PHj1b59e/Xq1eux/+FCWl1//LZv672WHh4d+tfWthh/v+TC0LTqQQ4AAJ5PhIIAAADAcyL+j6Rly5Z94vnioqKi9P777+v06dPGOnd3d5UpU0YvvfSSihUrJi8vL5UoUUKZMmXSF1988Z+HgvF/yH4Sj4YPa9aseew5tB4tt2vXruratauOHTumP/74Q9u3b9eePXt09+5dY7+wsDB169ZNM2fOtGnOvfjiDx36OHbv3q2QkBAVLVr0icpJSlrfl1mzZjWCxv8iAPovxL//bJ0jLLlQIT09GljYGnTE92ioklTAY+vfN/5nFn9OOlvcv39fq1ev1tWrV3XlyhV17do12V7F8Tk4OCggIED79+/XoUOHJCUcFvJpfo7WrFlTNWvW1LVr1/Tnn3/qr7/+0vbt23Xp0iVjn5iYGH3//fe6du2aRowYkepzpOX1x79P4j8//2uPhoC3b99W5syZUzwu/n3/NP2DBgAAYC6EggAAAMBzws3NzXgff5i1x/X1118bP+S6urpqzJgxqlOnTpJDl0VGRj7xOR8VGxubbA+sR8OFx+Xq6ioHBwcjZIyIiEiTUDA+Ly8veXl5qVOnTrp3756Cg4O1evVqrVy5UrGxsYqJidHEiRNTFZrduHFDv//+u7E8Z84cm0LFO3fuqFq1akaYsnjxYvXr1y/1F2WDtL4v3dzcjFDw8uXLevnll5PdPzo6WpkyZXqqe9+4u7sb72/fvq2oqKgU50K7fPnyE53zzJkzWrNmjc6ePStPT0917tw5yX3jh++Phh/xexZfuHDBpnPH38/R0dHqHokv/rCqSYmKirLqjZraoS7t7OzUr18/Y6jKqlWrprrHbt26dY1Q8NFQ92l4jqYkZ86caty4sRo3bizpwfyoGzZs0Pz5842AcMmSJWrfvn2qn4tpef3x75Pw8HCbzn/v3j1lyZLF9grbIFu2bHJ0dDSGEL148WKS93B8//77r/E+rYZkBQAAeNTT+60HAAAAQJoqWbKk8T4sLMxq7rWkXLp0ScuXL9euXbusfqi3WCxWPdD69esnX1/fZOcyOn/+/GPW3Fr8IepS6nl07ty5NDmnvb29vLy8jOUDBw7YdNyqVau0ZcsWnTp1StHR0VbbIiIitHv37kTnjsqSJYtq1KihMWPGaMiQIVbnfbSc5Kxevdr4YdrDw0OVKlWy6bisWbOqfv36xvKKFSus5shKS2l5X0qy+jv9888/KZa1YMEClSlTRvXq1dP333+fipr/d/LmzWvMkWaxWGzqKfakvcmOHj2qr7/+WkFBQdq/f3+y+8YP3x+dczR+KJtSOYntV6hQoSSD/2PHjqVY1sGDB41AL1++fKkOWxwcHFS4cGFjecuWLak6XrJ+ZsUPeDPyOZqce/fu6ejRozp69Gii24sXL65u3bpp8eLFxt/bYrFo9+7dqTpPWl9/atv+zZs3Va5cOVWvXl2tW7dOs57ldnZ2Vs+1ffv22XTc33//bbxPr57ZAAAAhIIAAADAc6JEiRJWP9gvW7YsxWNmzZqlfv366YMPPtCHH35orI+IiLDqseHt7Z1sOWfOnNHx48eN5cR+fLW1p5aLi4vxPv4wdo+yWCzatm2bTWXaIn4Pu+XLlxtBQ1KOHTumvn37qnPnzvLz87MKErt27aqqVauqdevWWrVqVbLlvPnmm8Z7i8WSqvkN4//g/uabb6aqN1yTJk2M91evXtXGjRttPjY10vK+lGQVfK5bty7FsrZu3aqYmBidOXPG6t562noOxu+dtnbt2mT3jY6O1m+//fZE53sYQkoP2m9Sbty4YdUTr0CBAlbb47ebv//+W6dOnUrx3EFBQYke/6gdO3akOCdl/LKqVq2a4rkTU6tWLeP90qVLk33uJGbHjh3G+/j3Z0Y+R5Oydu1alStXTk2aNNGXX36Z7L558+ZV+fLljeVHn00p1SWtr798+fJGgBwaGppkqPnQ1q1bFRcXp/DwcN27d88qfE4umLTFa6+9Zry35Zl28uRJqzA8tcNEAwAA2Orp+pYDAAAAIN3Y29urZcuWxvK3336b7I/9J06c0Lx584zl5s2bG+8fHSIw/g+1j4qOjlb//v2t1iXW6yx+b5rkesMVKVLEeL969eok91u8eLFCQkKS3J5aLVu2NH4oPn78uGbOnJnkvrGxsVbzaxUpUkQVKlQwlsuVK2e8X7RoUbJzo8Xv8eLm5qZcuXLZVN/Q0FCrH5kbNGhg03EPVa5cWXnz5jWWFy9enKrjbZWW96UkNW7c2BgO8J9//kn2B/mDBw/qzz//lPRgmMr4Aayt9+N/Jf5ntGTJkmQDj8mTJyfaAzU1XnnlFTk6Okp6EFgk9TeJH7x6eHioYMGCVttfeuklVaxY0VgeNGhQsr1O58+fb/SYsrOz0zvvvJPkvrdu3dK4ceOS3L5jxw6r0L1169ZJ7pucDz74wHjm3b59Wx999JFNQ5dK0i+//GLcY25ubvLz8zO2ZeRzNCnxn02HDx9Otvff/fv3deLECWPZ09MzybokVte0vv5cuXLJ19fXWB4zZozi4uKSrPv06dON5UaNGlltf3jvJ1X3lLRs2dIIRf/++2/Nnz8/yX1jYmI0ePBgY9nLy0tlypRJ9TkBAABsQSgIAAAAPEfatWtnBD1RUVFq3bq1tm7dmmC/P//8Ux06dDDCqrx58+qDDz4wtru6ulrNHTVu3DidPHkyQTl///233nvvPe3Zs8dqfWLDfrq6uhrvIyIikuyN88Ybbxjvp0+frg0bNlhtj46O1o8//qihQ4cmevzj8vT0VIsWLYzlCRMmaNKkSbp7967VfhcvXlTPnj0VHBxsrOvbt69Vz5PmzZsbwdXx48fVu3dvXbx4McE5jx8/btVb59EALDnLly833r/wwgtWPXpsYW9vr7feestY3rZtm9WcV2kpre5L6UEw0L59e2M5ICBAixYtStCzc9++ffrkk0+M0KBVq1ZWQzvaej/+V8qVK2cM6RoTE6OOHTtq586dVvtER0dr0qRJVmGH9Hi9npycnFSnTh1j2d/fX9euXbPaZ9euXZo4caKx/PbbbydaVp8+fYyAaPfu3ercuXOCe+n+/fv6/vvvNWzYMGNdmzZt9OqrryZbz0WLFmn06NEJgvXffvtNH3/8sfF3b9KkSYplJaVgwYIaOHCgsXz8+HE1aNBAs2bNSnK424sXL2rEiBH64osvJD34GwQEBFjNBZmRz9GkvPjii6pdu7ax3Lt3b/31118J9rtz544GDhyos2fPSnrQFqtXr261T/bs2Y33oaGhCXoSpsf1d+/e3Xi2bt++Xb17907wN7px44Y+++wzY4jdF154IUH4HP9zPHLkSILzpKRw4cJWQf6wYcP0/fffJwgYL1y4oM6dOxvhq6Ojo9U/KAEAAEhrmVLeBQAAAIBZ5MyZU5MmTdJHH32k27dvKzw8XB07dlTRokX1yiuvKC4uTidOnLDq/ZE1a1Z9/fXXVj9mS1KXLl2MH7wvXLigxo0by9vbWwUKFNDt27d18uRJq556rq6uxlB/j4YLD8/zwgsv6OLFi4qNjVWrVq1UpUoV3blzRyNHjpSzs7Mk6f3339ecOXN0/fp1RUdH65NPPtErr7yi4sWL6+bNm9q/f7/xI/BHH32kGTNmpNnnN2DAAB0/flz79u2TxWLRtGnT9PPPP6tixYrKkSOHzp8/r7///tsqoPjwww9Vt25dq3Ly5Mmjzz77TKNHj5Ykbdq0SVu3blXp0qWVP39+2dvb6/Tp0zpw4IARahQtWlRdunSxqZ4Wi0UrV640lhs0aPBYwVCTJk2Mzy8uLk5LlixRz549U11OStLyvpSkHj16aP/+/dqxY4diYmIUEBCgqVOnytvbW1myZNHJkyethnMtVaqUPv30U6sybL0f/0sBAQE6dOiQzp8/rytXrqht27Z69dVXVaJECd25c0fBwcHGve/u7q6rV69KUpJz8qWkZ8+e2rJli+7cuaO9e/fK19dXVatWVbZs2RQSEmI1B1qBAgXUtWvXRMspX768+vXrp5EjR0p6EDDXrVtX5cuXV4ECBXTr1i3t2rXLKrx57bXX9Pnnnydbv/Lly2vv3r2aNWuWli9frtdee03Ozs46fPiw1b3y8ssva9CgQY/1GTzUsmVLXbt2TZMmTZIkRUZGavTo0Ro3bpxeeeUVvfDCC8qePbsiIyMTDHMpSZ999lmC3mhSxj1Hk9O/f3/t2rVLkZGRCg8PV4cOHVSsWDF5enrKzc1NV65c0Z49e4x6ODg4aPDgwQl6/uXPn1+Ojo6KiYnRtWvX9N5776ls2bKKjY3VmDFj0uX6S5QooYCAAAUEBMhisWj9+vXasmWLKlWqpDx58igiIkI7d+7U7du3JT2Yv3X8+PEJniPxe6RPnjxZR44cUdasWeXr62sVlqf0OR49elT79u1TXFycJk6cqB9++EGVKlVStmzZdP78ee3Zs0f379+X9OAfYvTv359eggAAIF0RCgIAAADPmQoVKmj+/Pnq27ev8cN5SEhIokNtFipUSBMmTFDZsmUTbGvSpIlOnz6tadOmyWKxKDY2Vrt3704w3JydnZ1atWqlBg0aqE2bNpJkFcjE1759eyMoO3/+vJYuXWqsf/hDac6cOfX999/rk08+UXh4uKQHPTni9+bIlCmTPvnkE33wwQdpGgpmyZJFs2fP1tChQ7Vs2TLFxcUpMjJSmzZtSrCvo6OjunfvnmRQ0q5dO0VHR2vy5MmKiYlRdHS09uzZk6A3jCRVqVJFY8aMkZubm0313LVrl86fP28sxx+yMDVKlCihl19+2RjCNCgoSN27d0+X+fbS6r6UHvz9p0+frqFDh2rp0qWyWCz6999/E+3p+MYbb2jcuHGJhiW23I//JQ8PD/3444/q2bOnMXzo4cOHjR5P0oP21r59e2XOnFnTpk2TlHCYRlsVK1ZMgYGB6t27t6KiohQVFZXoXIUvv/yypkyZoqxZsyZZVtu2bZU7d24NHTpU169f1/379xUcHGzVo1Z6EIy0a9fOqndhUho3bqwaNWooMDBQ169f16+//ppgn1q1amnChAmJhsep1bVrV1WsWFHDhg3TsWPHJD0YKvjgwYM6ePBgoscULlxYQ4cOTXI+w4x6jianYMGC+uGHH9SrVy/jOXLq1KlE54PMnTu3Bg8enGhQ5uTkpFatWmnOnDmSZBXsf/7553J3d0+X63/33XeVLVs2DRkyRNevX9fdu3eNIVzj8/Dw0MSJE63m/3uoRYsW+umnnxQVFaWYmBhjHs8sWbLYHArG/+9FUFCQLBaLrl27luh96u7urgkTJqhatWo2lQ0AAPC4CAUBAACA51DJkiW1cuVKrVu3Ths3bjR618XExChnzpx65ZVX5OvrazU/W2J69+6tmjVrav78+dqzZ4/Cw8NlsViUPXt2FSpUSGXLllXz5s3l5eWl+/fvK1euXIqIiNDFixe1ffv2BD+Ut2vXTjly5NC8efMUEhKi6Oho5cqVK0GPkLJly2rdunX6+eeftWHDBp0+fVrR0dHKmzevqlSpovfff18lS5ZUZGRkmn92WbJk0ahRo9SuXTstW7ZMO3bs0L///quoqCg5OzurcOHCqlatmt59990E86s9qnPnzqpXr56WLl2qXbt26fTp04qKipKTk5M8PDxUvnx5vfnmm6pZs2aq6hh/6NACBQo8UYDVpEkTIxS8cOGC/vzzT6shXNNSWt2X0oMgbOTIkXr//fe1dOlS7dy5UxcvXtS9e/fk7u4ub29vNWvWLNlrsfV+/C8VLlxYS5Ys0fLly7VmzRqdOHFC169fl5ubmypWrKg2bdqoQoUKVnPtxR8KMbVq1Kih9evXa+7cufrjjz909uxZ3b17V3ny5JGnp6caN26sBg0a2BQ8+vn5qWbNmlqyZIm2bNli1N3R0VGFChVS1apV9e6771oNKZmSjz/+WJUrV9acOXO0d+9eXbt2Tbly5VK5cuXUvHlz1apV67GvPTEVK1bU8uXLtX37dm3ZskWHDh1SWFiYEXTmypVLHh4eKlWqlOrXr68qVaqkGG5m1HM0OaVLl9bq1av1yy+/aOPGjTp69KiuXbumuLg4ubu7q2jRoqpTp44aN26c7P3Vv39/5c+fX0uXLlVYWJhiYmKUJ08eXb582RiuN62vX3rQO/r111/XokWLtGXLFp06dUqRkZFycXFRsWLF5OvrqxYtWiQZFufLl08LFy7U5MmTtWfPHl2/fl3Ozs5Grz5bPfzvRdu2bRUUFKQdO3bo4sWLunXrlrJnz66XX35ZderUUdOmTeXi4pKqsgEAAB6HneXRiRUAAAAAAMAz7csvvzR6iA0aNEitW7fO4BoBAAAAyGj0FAQAAAAA4Cm3bNkyXblyRYUKFVKlSpWUK1euZPePP5xl8eLF07t6AAAAAJ4BhIIAAAAAADzl/vnnH82ePVuS1KlTJ/Xt2zfJfTds2KDjx49LkrJly5bk3IsAAAAAni9pPzs8AAAAAABIU6+//rrxfvbs2Vq7dq0enQ0kLi5Oa9as0eeff26sa9myZYrzLwIAAAB4PjCnIAAAAAAATzmLxaK2bdsqODjYWJc/f36VKFFCOXPm1NWrV3X8+HFduHDB2F6qVCnNmzdPTk5OGVFlAAAAAE8ZQkEAAAAAAJ4BUVFR6tu3r37//fcU923QoIFGjBihbNmy/Qc1AwAAAPAsIBQEAAAAAOAZEhwcrFWrVmn//v06f/687t69qyxZsqhAgQIqX768mjdvzjyCAAAAABIgFAQAAAAAAAAAAABMLlNGVwBA6oSH30zzMnPlclFExK00LxcwI9oLYBvaCmAb2gpgG9oKYBvaCmAb2gpgG9rKs8PDw9Wm/ezTuR4AnnJ2dpKDg73s7DK6JsDTj/YC2Ia2AtiGtgLYhrYC2Ia2AtiGtgLYhrZiToSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYXKaMrgAApJVKE//I6CoAAAAASAehYxpmdBUAAACAZx49BQEAAAAAAAAAAACTIxQEAAAAAAAAAAAATI5QEAAAAAAAAAAAADA5QkEAAAAAAAAAAADA5AgFAQAAAAAAAAAAAJMjFAQAAAAAAAAAAABMjlAQAAAAAAAAAAAAMDlCQQAAAAAAAAAAAMDkCAUBAAAAAAAAAAAAkyMUBAAAAAAAAAAAAEyOUBAAAAAAAAAAAAAwOUJBAAAAAAAAAAAAwOQIBQEAAAAAAAAAAACTIxQEAAAAAAAAAAAATI5QEAAAAAAAAAAAADA5QkEAAAAAAAAAAADA5AgFAQAAAAAAAAAAAJMjFAQAAAAAAAAAAABMjlAQAAAAAAAAAAAAMDlCQQAAAAAAAAAAAMDkCAVNwsfHR15eXom+du7cmWD/nTt3ysvLy1hOar/0lprzPnpdVapU0cCBA3Xr1q0nrsejn0dqtWnTRoGBgU9cDwAAAAAAAAAAgPSQKaMrgLTz5Zdfys/PL8H6HDlyZEBt0kdgYKC8vb0VFxenCxcuaNCgQRo3bpyGDh2a0VUDAAAAAAAAAAB4atFT0ERcXV3l4eGR4JU5c+aMrlqayZEjhzw8PJQ3b16VK1dOXbp00dq1azO6WgAAAAAAAAAAAE81QsHnRFRUlD777DN5e3urfv36OnjwYKqO/+233+Tn56eyZcvqnXfeUXBwsCTpjz/+UNmyZXXnzh1j361bt6p8+fK6e/euLBaLvvnmG1WvXl0VK1ZU165d9e+//6bZdWXNmtVq+dKlS+rZs6cqVaqkUqVKqVmzZtqzZ4+x/cyZM+rYsaO8vb1Vq1YtzZkzx+r4+fPnq0aNGvL29lb//v0VHR2d4meQmKCgIDVo0EBlypRR8+bNtWvXLmObj4+Pxo8fr+rVq6tp06ayWCz66quvVL16dZUpU0Zt2rTRiRMnkr1uO7u0faVHmRnxAgAAAGBeGf19gxevZ+FFW+HFy7YXbYUXL9tetJVn52Urhg99TgwePFghISGaO3euIiIi5O/vb/OxR48eVb9+/TR06FCVKVNGW7ZsUadOnbRy5UpVq1ZNWbNm1R9//KH69etLkn799Vf5+PjIyclJP/30k1atWqWJEycqd+7c+uGHH9ShQwetWrVKjo6OT3RNERER+umnn9S4cWNjXd++fZU9e3YtWLBAFotFEyZM0JAhQ7Rq1Srdu3dPHTp00KuvvqpFixbp3Llz6tOnjwoWLChnZ2dJ0vr16zVz5kyFh4ere/fuKlOmjFq1apXsZ1C4cGGregUFBWn48OEaPHiwypQpo6CgIHXu3Fnr1q1T3rx5JUmrVq3SzJkzZbFYtGHDBi1cuFDffPON8uTJo0mTJql///5asmRJotedK5eLHBzSPs93d3dN8zIBAAAAIK3wnQWwDW0FsA1tBbANbcVcCAVNZPDgwRo+fLjVunz58mnBggVau3at5syZo1dffVWS9PHHH2vYsGE2lTtz5ky1aNFCb731liSpbdu22rVrl+bPny9/f3/Vq1dPv/76q+rXr6/Y2Fht2LBBI0aMkCTNmDFDgwcPVuXKlSVJw4YNU/Xq1fXnn3/Kx8cn1dfYqVMnOTg4yGKx6M6dO3Jzc9OQIUMkSRaLRb6+vqpfv75eeOEFSVLr1q3VuXNnSQ96MEZERGjUqFHKli2bihcvroEDB8re/v8HbIMHD5anp6dKlCihatWq6ejRozZ9BvH99NNPatOmjZo2bSrpQVC5a9cuzZ07V3369JEkNW7cWF5eXpKkHTt2yNHRUfny5VO+fPkUEBCgkJCQJD+DiIhbqUr+U2Jn9+DBfvXqTVksaVcuAAAAAKQlvrMAyeP7PWAb2gpgG9rKsyV3btvCW0JBE+nZs6fq1atntS5Tpkw6ffq0YmNjVbJkSWN96dKlbS731KlTWrt2rRYuXGisi4mJUfXq1SVJDRs21Mcff6zo6Gjt27fP2Hbr1i1dvHhRn376qVXwdvfuXYWGhj7WNY4YMUJly5aVxWLRtWvXNHfuXLVq1UqrVq2Su7u7WrVqpTVr1mjv3r06ffq0Dh06pLi4OEnS6dOn5enpqWzZshnlvf3225KknTt3SpIKFSpkbHN1dTWGD03pM3j08/rkk0+s1pUrV06nTp0ylvPnz2+8b9iwoebOnas6deqoXLly8vX11TvvvJPs55AeD2GLJX3KBQAAAIC0wHcWwDa0FcA2tBXANrQVcyEUNBF3d/cEQ1lK0tWrVxOsy5w5s83lxsbGqlOnTkbPt4ecnJwkSZUqVZKzs7O2bdumP//8U76+vsqcObPu3r0rSfrf//4nT09Pq2Nz5Mhh8/njy5s3r3GNRYoU0auvvqrKlStr7dq1ev/999WhQwdFRkbKz89PPj4+iomJUffu3SU9CEhT4uDgYLVs+b+nXUqfQXxZsmRJsC42NtYIJx/dx8PDQ2vXrtVff/2l33//XTNnztSiRYu0fPnyBHMmAgAAAAAAAAAAPI60n5gMT52iRYvK0dFRBw8eNNYdOXLE5uM9PT0VFhamwoULG6+FCxfqjz/+kCTZ29vrzTff1ObNm7Vx40Y1bNhQkpQ9e3a5u7srPDzcOO7FF1/U+PHjdfr06TS5Nnt7e1ksFsXGxurkyZPatWuXZs2apa5du6pWrVq6fPmypAfhXpEiRXTmzBnduXPHOH7s2LHGUKdP8hk8uu/ff/9tte7vv/9OEIw+tHnzZi1evFi1atXS0KFDtWLFCoWGhur48eOp+SgAAAAAAAAAAACSRE9BE7l586bCw8MTrHdxcVGTJk00fPhwjR49Wnfv3tWUKVMS7HfgwAHdu3fPal2lSpXUrl07tW7dWqVLl1atWrW0adMmzZo1S7Nnzzb2a9iwodq3by8nJydVqVLFWN+uXTt9/fXXcnd3V9GiRfXtt99q7969Gjly5GNd440bN4xrvHXrln744QfFxsbKx8dHjo6Osre31+rVq+Xj46ODBw8qMDBQkhQdHa3q1asrd+7cGjRokLp27arQ0FAtWLBAkyZNSvG8tnwG8fcdMGCAihUrprJly2rp0qU6evSoxowZk2jZcXFxGjdunDw8PPTyyy9r9erVypo1q4oUKfJYnxEAAAAAAAAAAMCjCAVNZNSoURo1alSC9b169VJAQICGDx+u9u3bK0eOHGrTpo3Gjh1rtd+ECRMSHPvrr7+qXLlyGjdunAIDAzVu3DgVKlRIEydOVKVKlYz9ypUrp5w5c6pGjRpWw3R27NhRt27d0qBBgxQVFaVSpUpp5syZjz18aI8ePYz3WbNmValSpTR9+nQVLFhQkjRkyBB98803+uqrr+Tp6amBAweqX79+OnLkiLy9vfXtt99q2LBhatasmXLnzq0vvvhCtWrVMuYUTIotn8FDfn5+unLliiZPnqzw8HC9/PLL+uGHH1SsWLFEy/bx8VHPnj01evRohYeHG+Hp435GAAAAAAAAAAAAj7KzWJgiEniWhIffTNPy7Oyk3LlddeXKzWd+wthKExMO5woAAADg2Rc6pqEpvrMA6clM3++B9ERbAWxDW3m2eHi42rQfcwoCAAAAAAAAAAAAJsfwoXgqVK5cWdHR0UluX716tfLly/cf1ggAAAAAAAAAAMA8CAXxVFiyZIni4uKS3J4nT57/sDYAAAAAAAAAAADmQiiIp0LBggUzugoAAAAAAAAAAACmxZyCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmlymjKwAAaWVXn5oZXQWYnJ2dlDu3q65cuSmLJaNrAzy9aCuAbWgrgG3s7DK6BgAAAIA50FMQAAAAAAAAAAAAMDlCQQAAAAAAAAAAAMDkCAUBAAAAAAAAAAAAkyMUBAAAAAAAAAAAAEyOUBAAAAAAAAAAAAAwOUJBAAAAAAAAAAAAwOQIBQEAAAAAAAAAAACTIxQEAAAAAAAAAAAATI5QEAAAAAAAAAAAADA5QkEAAAAAAAAAAADA5AgFAQAAAAAAAAAAAJMjFAQAAAAAAAAAAABMLlNGVwAAMlKliX9kdBUAAAAApCB0TMOMrgIAAADwzKOnIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAkSTdu3NCYMWPk4+OjsmXLqkGDBpo1a5bi4uLS/dxRUVFavnx5up5j79696tKliypXrqxKlSqpffv22rdvX7qeMzmBgYFq06ZNhp0fAAAAAAAAAAA8XwgFoWvXrundd9/VoUOHNHLkSP3yyy/q0aOHvvvuO40cOTLdzz9r1iwtXbo03cpfv369PvzwQ5UsWVJz5szRggULVKJECbVt21Z79uxJt/MCAAAAAAAAAAA8LTJldAWQ8SZOnKjMmTNr5syZypIliySpYMGCcnJy0scff6wPPvhAnp6e6XZ+i8WSbmVHRUVp0KBB6tatmz7++GNjff/+/fXvv/9q/PjxWrBgQbqdHwAAAAAAAAAA4GlAKPici46O1urVq/XFF18YgeBDtWvX1qxZs5Q/f37duHFDEyZM0MaNG3Xv3j35+Pho4MCBypEjh3bu3Km2bdvq2LFjxrH+/v6SpDFjxigwMFChoaHKli2bVq1apSxZsqhDhw7q1KmTgoKCNGXKFEmSl5eXjh07Jh8fHzVo0EArVqxQ7ty5lTNnThUrVkwDBw40yu/atatKliyp3r17J3t9mzZtUlRUlNq2bZtgW79+/XT37l1jefHixZo5c6bCwsLk4uIiPz8/DRw4UA4ODvL391eOHDl06dIl/f7773Jzc9Onn36qpk2bSpIuXbqkkSNHavv27bpz546KFy+ugQMHqkKFCpKkkydPKiAgQEeOHFHZsmX10ksvWdUluXMnxs4u2ctOlYdlpWWZAAAAAJDW+M4CJI/v94BtaCuAbWgr5kQo+Jw7e/asbt++rdKlSyfYZmdnpypVqkiSOnbsqDt37mjatGmSpCFDhsjf319Tp0616Tzr16/X+++/r2XLlum3337T+PHj5evrKz8/P504cUL79u1TYGCgsf+qVas0c+ZMWSwWHTp0SJMnT9aAAQNkZ2enmzdvauvWrerTp0+K5z169KiKFi2qbNmyJdhWoEAB431wcLBGjBih8ePH65VXXtGhQ4f0+eefq2rVqqpXr54kad68eerVq5f69OmjOXPmaPDgwapTp45cXV3Vt29fZc+eXQsWLJDFYtGECRM0ZMgQrVq1StHR0ercubMqVqyoESNGaMeOHRo1apTKly9v87njy5XLRQ4OaT/yr7u7a5qXCQAAAABphe8sgG1oK4BtaCuAbWgr5kIo+JyLjIyUJLm6Jt2wjx49quDgYK1bt84YRnT8+PHy8/NTSEiITedxc3NTv3795ODgoI8++kjTp0/XoUOH5OnpKWdnZzk6OsrDw8PYv3HjxvLy8pIk5cuXT0OGDNHevXtVoUIFbdiwQZ6enipevHiK571582aigeCjnJ2dNXLkSCOEK1CggH788UedOHHCWOfl5aVOnTpJknr16qU5c+boxIkT8vb2lq+vr+rXr68XXnhBktS6dWt17txZkrRt2zZdv35dQ4YMkbOzs4oVK6bg4GBFRETYfO74IiJupXlPQXd3V129elPpOJIrAAAAADwRvrMAyeP7PWAb2gpgG9rKsyV3btvCW0LB55ybm5sk6caNG0nuExISouzZs1vNK1isWDHlyJFDISEhyQaKDxUoUMBqKEwXFxfdv38/yf3z589vvM+ePbtq1qypdevWqUKFClq7dq38/PxSPKf04PoeBp/JKVWqlJycnDR58mSdPHlSx44d05kzZ1S9enVjnyJFihjvHwaN9+/fl52dnVq1aqU1a9Zo7969On36tA4dOqS4uDhJD4YOLVKkiJydnY3jS5curS1btth87kelx0PYYkmfcgEAAAAgLfCdBbANbQWwDW0FsA1txVzSfgxCPFMKFSokV1dXHT58ONHt3bp1U+bMmRPdFhsbq9jYWNkl0m3t0cDP0dExwT6WZJ4kj85v2KhRI/3666+KjIzUtm3b1LBhwySPje/VV19VaGiooqKiEmzbvXu3unfvrjt37ujPP/9U8+bNdeXKFdWoUUOTJ082hvdM6Rri4uLUoUMH/fDDD8qXL586duyocePGJXut8cuy5dwAAAAAAAAAAABPglDwOZcpUyb5+flp3rx5io6Ottq2adMmbdq0SUWKFFFkZKTVUKEnT55UVFSUPD09jYArfvAWFhZmcx0SCxUf5ePjo8jISM2cOVNeXl4qVKiQTWXXqFFDrq6umjt3boJts2fP1sWLF5U1a1YtXrxYb7/9toYNG6Z3331XxYoV09mzZ5MNLh86efKkdu3apVmzZqlr166qVauWLl++LOlBGFi8eHGFhobq5s2bxjH//POP8f5Jzg0AAAAAAAAAAGALQkGoR48eioqKUseOHRUcHKyzZ89q8eLF8vf3V9u2bfXSSy+pZs2a6tevnw4cOKADBw6oX79+qlSpkkqUKKHixYvLyclJ06ZN07lz5zRjxgwdOXLE5vNnzZpVly9fTjZIdHJyUp06dfTjjz/a3EtQejBM6ZdffqnAwEB9/fXXOnXqlP755x8FBARo8+bNGjhwoKQHw4zu27dPx44d04kTJ+Tv76/w8PAEQWlismfPLnt7e61evVrnz5/XunXrFBgYKEmKjo5WtWrV9OKLL2rAgAE6deqUgoKCtGbNGuP4Jzk3AAAAAAAAAACALQgFIQ8PD82fP18FCxZU37591ahRI82ePVs9e/aUv7+/JGns2LEqWLCg2rVrp44dO6p48eL65ptvJD2YX2/48OFavXq1GjVqpKNHj6p169Y2n79u3bqKi4tTw4YNdfXq1ST38/PzU3R0tM3zCT7UuHFjffPNN9q1a5fee+89ffjhh/r33381b948lStXTpLUvXt3ubu7q2XLlmrfvr2yZMmiVq1aWfXoS8oLL7ygIUOGaPr06WrUqJG+//57DRw4UJkyZdKRI0fk6Oio7777Tjdu3FCzZs00f/58q8/nSc4NAAAAAAAAAABgCzsLYxTiGbFo0SKtXLky0aFAnyfh4TdT3ikV7Oyk3LlddeXKzedywthKE//I6CoAAAAASEHomIbP7XcWwFbP+/d7wFa0FcA2tJVni4eHq037ZUrnegBP7MyZMzp06JCmTp2q3r17Z3R1AAAAAAAAAAAAnjmEgnjqhYWFacCAAapTp47eeustY/369euN4U0TU6FCBc2YMeO/qCIAAAAAAAAAAMBTjVAQT73XX39d+/fvT7C+evXqWr58eZLHOTk5pV+lAAAAAAAAAAAAniGEgnhmubi4yMXFJaOrAQAAAAAAAAAA8NSzz+gKAAAAAAAAAAAAAEhfhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyWXK6AoAQEba1admRlcBzxA7Oyl3bldduXJTFktG1wZ4etFWANvQVgDb2NlldA0AAAAAc6CnIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmFymjK4AAODZU2niHxldBQAAADxHQsc0zOgqAAAAAM88egoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREK4rHduHFDY8aMkY+Pj8qWLasGDRpo1qxZiouLS/dzR0VFafny5elW/pkzZ9SjRw9VqlRJZcuW1dtvv61ffvklzcr38fFRUFBQmpUHAAAAAAAAAACQnEwZXQE8m65du6aWLVsqT548GjlypAoUKKCDBw9q+PDhOnfunAICAtL1/LNmzdLOnTvVtGnTNC/7zp07atu2rWrXrq158+YpS5Ys2rp1q/r16ydHR0fVr1//ic+xZMkSOTs7p0FtAQAAAAAAAAAAUkYoiMcyceJEZc6cWTNnzlSWLFkkSQULFpSTk5M+/vhjffDBB/L09Ey381sslnQre9u2bbp9+7aGDBlirCtcuLCOHDmiRYsWpUkomCtXricuAwAAAAAAAAAAwFaEgki16OhorV69Wl988YURCD5Uu3ZtzZo1S/nz59eNGzc0YcIEbdy4Uffu3ZOPj48GDhyoHDlyaOfOnWrbtq2OHTtmHOvv7y9JGjNmjAIDAxUaGqps2bJp1apVypIlizp06KBOnTopKChIU6ZMkSR5eXnp2LFj8vHxUYMGDbRixQrlzp1bOXPmVLFixTRw4ECj/K5du6pkyZLq3bt3stdnb2+vW7duaf/+/SpXrpyxvk+fPrp3754kaefOnfr888/10Ucf6ZtvvpGDg4PatGmjbt26GZ/RxIkTtWbNGkVERChv3rzq0qWLWrZsKenB8KHdu3dX8+bN1aZNG1WrVk27d+/Wrl279OKLL2rgwIGqUaNGknW0s0vhj5QKD8tKyzIBAAAAIK3xnQVIHt/vAdvQVgDb0FbMiVAQqXb27Fndvn1bpUuXTrDNzs5OVapUkSR17NhRd+7c0bRp0yRJQ4YMkb+/v6ZOnWrTedavX6/3339fy5Yt02+//abx48fL19dXfn5+OnHihPbt26fAwEBj/1WrVmnmzJmyWCw6dOiQJk+erAEDBsjOzk43b97U1q1b1adPnxTPW61aNXl6euq9996Tt7e3Xn/9ddWoUUNly5a12u/q1atavny5fvjhB124cEH9+vWTu7u7WrRooe+//16bN29WYGCg3N3dtWzZMg0fPlx16tRR7ty5E5xz2rRpGjx4sAYPHqyJEycqICBAmzZtkr19wmk/c+VykYND2k8H6u7umuZlAgAAAEBa4TsLYBvaCmAb2gpgG9qKuRAKItUiIyMlSa6uST8Mjh49quDgYK1bt84YRnT8+PHy8/NTSEiITedxc3NTv3795ODgoI8++kjTp0/XoUOH5OnpKWdnZzk6OsrDw8PYv3HjxvLy8pIk5cuXT0OGDNHevXtVoUIFbdiwQZ6enipevHiK582SJYt+/vlnTZs2TevWrVNgYKACAwP1yiuvaNKkSSpSpIgk6f79+xo1apRKliypV199VR9++KEWLFigFi1aqGTJkqpSpYrR07Br16765ptvFBoammgo+MYbb6h58+aSpG7duqlJkyYKDw9X3rx5E+wbEXErzXsKuru76urVm0rHUVkBAAAA4InwnQVIHt/vAdvQVgDb0FaeLblz2xbeEgoi1dzc3CRJN27cSHKfkJAQZc+e3WpewWLFiilHjhwKCQlJNlB8qECBAnJwcDCWXVxcdP/+/ST3z58/v/E+e/bsqlmzptatW6cKFSpo7dq18vPzS/GcD+XIkUP9+vVTv379dPz4cW3cuFE//vijevbsqZUrV0qSnJ2dVbJkSeOYUqVK6YcffpAk+fr66q+//tKYMWMUEhKiI0eOSJJiY2MTPd/DoFGSsmXLJknJXmt6PIQtlvQpFwAAAADSAt9ZANvQVgDb0FYA29BWzCXtxyCE6RUqVEiurq46fPhwotu7deumzJkzJ7otNjZWsbGxskukq9ujIZijo2OCfSzJPH0end+wUaNG+vXXXxUZGalt27apYcOGSR4b36JFi7RmzRpjuUSJEurWrZsmTJigY8eOKSIiQpKUKZN1ph4XF2dc16RJk/T5558rU6ZMatq0qRYuXJjsOVN7rQAAAAAAAAAAAKlBKIhUy5Qpk/z8/DRv3jxFR0dbbdu0aZM2bdqkIkWKKDIy0mqo0JMnTyoqKkqenp5GCBYVFWVsDwsLs7kOiYWKj/Lx8VFkZKRmzpwpLy8vFSpUyKayjx8/runTpysuLs5qffbs2ZU5c2ajJ19kZKRVnQ8ePGgMX7pgwQIFBASob9++8vPz0507dyQR9AEAAAAAAAAAgIxBKIjH0qNHD0VFRaljx44KDg7W2bNntXjxYvn7+6tt27Z66aWXVLNmTfXr108HDhzQgQMH1K9fP1WqVEklSpRQ8eLF5eTkpGnTpuncuXOaMWOGMcSmLbJmzarLly8nGyQ6OTmpTp06+vHHH23uJShJbdu21blz59S9e3ft2bNH586d0++//66AgAC1bt3aqhdkQECAjh8/rvXr1+unn35S69atJT0YYvX333/XuXPntHv3bn3xxReSlCBEBQAAAAAAAAAA+C8QCuKxeHh4aP78+SpYsKD69u2rRo0aafbs2erZs6f8/f0lSWPHjlXBggXVrl07dezYUcWLF9c333wj6cG8ecOHD9fq1avVqFEjHT161AjUbFG3bl3FxcWpYcOGunr1apL7+fn5KTo6OlXzCRYqVEjz58+Xvb29unfvrgYNGmj06NF666239Pnnn1vtW7NmTb3//vsaOXKkPvvsM7311luSpFGjRumff/5Rw4YN1b9/f7355psqU6aM/vnnH5vrAQAAAAAAAAAAkFbsLIxnCBNbtGiRVq5cqblz56ZpuTt37lTbtm117NixNC3XFuHhN9O0PDs7KXduV125cpMJY2GzShP/yOgqAAAA4DkSOqYh31mAFPD9HrANbQWwDW3l2eLh4WrTfpnSuR5Ahjhz5owOHTqkqVOnqnfv3hldHQAAAAAAAAAAgAxFKAhTCgsL04ABA1SnTh1jSE9JWr9+vTG8aWIqVKigGTNm/BdVBAAAAAAAAAAA+M8QCsKUXn/9de3fvz/B+urVq2v58uVJHufk5GRT+ZUrV86QoUMBAAAAAAAAAAAeB6EgnisuLi5ycXHJ6GoAAAAAAAAAAAD8p+wzugIAAAAAAAAAAAAA0hehIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGBymTK6AgCAZ8+uPjUzugoZws5Oyp3bVVeu3JTFktG1AZ5etBXANrQVwDZ2dhldAwAAAMAc6CkIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmlymjKwAAAJ5tlSb+kdFVAAAAJhc6pmFGVwEAAAB45tFTEAAAAAAAAAAAADA5QkEAAAAAAAAAAADA5AgFAQAAAAAAAAAAAJMjFAQAAAAAAAAAAABMjlAQAAAAAAAAAAAAMDlCQQAAAAAAAAAAAMDkCAUBAAAAAAAAAAAAkyMUBAAAAAAAAAAAAEyOUBAAAAAAAAAAAAAwOUJBAAAAAAAAAAAAwOQIBQEAAAAAAAAAAACTIxQEAAAAAAAAAAAATI5QEAAAAAAAAAAAADA5QkEAAAAAAAAAAADA5AgFAQAAAAAAAAAAAJMjFAQAAAAAAAAAAABMjlAQAAAAAAAAAAAAMDlCQQAAAAAAAAAAAMDkCAUBAAAAAAAAAAAAkyMUBAAAAAAAAAAAAEyOUPA5d+PGDY0ZM0Y+Pj4qW7asGjRooFmzZikuLi7dzx0VFaXly5enS9lBQUHy8vIyXq+++qrefPPNVJ0vMDBQbdq0sWlff39/+fv7P2ZtAQAAAAAAAAAA0lemjK4AMs61a9fUsmVL5cmTRyNHjlSBAgV08OBBDR8+XOfOnVNAQEC6nn/WrFnauXOnmjZtmi7lv/DCC1qyZIkk6d69ewoODtbAgQNVuHBheXt7p+m5BgwYkKblAQAAAAAAAAAApCVCwefYxIkTlTlzZs2cOVNZsmSRJBUsWFBOTk76+OOP9cEHH8jT0zPdzm+xWNKtbElycHCQh4eHsVygQAGtXr1a69atS/NQ0NXVNU3LAwAAAAAAAAAASEuEgs+p6OhorV69Wl988YURCD5Uu3ZtzZo1S/nz59eNGzc0YcIEbdy4Uffu3ZOPj48GDhyoHDlyaOfOnWrbtq2OHTtmHPtwCM0xY8YoMDBQoaGhypYtm1atWqUsWbKoQ4cO6tSpk4KCgjRlyhRJkpeXl44dOyYfHx81aNBAK1asUO7cuZUzZ04VK1ZMAwcONMrv2rWrSpYsqd69ez/WdTs7O1stHz9+XMOHD9fff/+tF198UW3btlXr1q0TPXbr1q0aO3aszpw5o9dee02FCxfWrVu3NGbMmATXHRwcrJ9++sk41sfHR927d1fz5s3Vpk0b1apVS1u3btWePXtUokQJTZw4UTNmzNAvv/wiDw8PjRgxQq+99lqS12Fn91iXn2xZaVkmYFa0FwAAgIzD/4MByeP7CmAb2gpgG9qKOREKPqfOnj2r27dvq3Tp0gm22dnZqUqVKpKkjh076s6dO5o2bZokaciQIfL399fUqVNtOs/69ev1/vvva9myZfrtt980fvx4+fr6ys/PTydOnNC+ffsUGBho7L9q1SrNnDlTFotFhw4d0uTJkzVgwADZ2dnp5s2b2rp1q/r06fNY17xnzx5t27ZNP/74oyTp7t276tSpk5o1a6bhw4crJCREAQEBcnFxSTCk6blz59StWzd169ZNb775platWqWpU6c+9tCn33zzjUaOHKkBAwbok08+0TvvvKMPPvhAS5Ys0VdffaURI0Zo5cqViR6bK5eLHBzSfjpQd3d6OwK2or0AAAD89/h/MMA2tBXANrQVwDa0FXMhFHxORUZGSkp+2MujR48qODhY69atM4YRHT9+vPz8/BQSEmLTedzc3NSvXz85ODjoo48+0vTp03Xo0CF5enrK2dlZjo6OVkN8Nm7cWF5eXpKkfPnyaciQIdq7d68qVKigDRs2yNPTU8WLF7fp3P/++68xTGhMTIxiYmJUv359vfLKK5IeBJDu7u5Gr8MiRYro/PnzmjNnToKwb/HixSpTpow+/vhjSVKvXr20bds2m+qRmNq1a6tBgwaSJF9fX61Zs0Y9e/aUnZ2dWrRooU8++STJYyMibqV5T0F3d1ddvXpT6TyiK/DMo70AAABkHP4fDEge31cA29BWANvQVp4tuXPbFt4SCj6n3NzcJEk3btxIcp+QkBBlz57dal7BYsWKKUeOHAoJCbFpHr0CBQrIwcHBWHZxcdH9+/eT3D9//vzG++zZs6tmzZpat26dKlSooLVr18rPzy/Fcz6UJ08eYwjP+/fv6/Tp0xozZowCAgI0evRohYSE6OjRo1bzC8bGxlrV96Fjx44l6FVZrly5ZD+/5BQoUMB47+TkpHz58snu/5I+JycnxcTEJHt8ejyELZb0KRcwI9oLAADAf4//BwNsQ1sBbENbAWxDWzEXQsHnVKFCheTq6qrDhw+rTJkyCbZ369ZNb7/9dqLHxsbGKjY21gix4rt//74yZfr/t5Wjo2OCfSzJPEEend+wUaNGGjt2rHr06KFt27ZZzS+YkkyZMqlw4cLGcrFixXT37l317dtXAwYM0P3791W1alUNGjQoxbIcHBwS1Dup60jqc3m0bvHZ26f9cKAAAAAAAAAAAAAPkUQ8pzJlyiQ/Pz/NmzdP0dHRVts2bdqkTZs2qUiRIoqMjLQaKvTkyZOKioqSp6enEfhFRUUZ28PCwmyuQ2Lh2aN8fHwUGRmpmTNnysvLS4UKFbK5/MRYLBZZLBbFxcXJ09NTp0+fVoECBVS4cGEVLlxY+/fvN3oXxle8eHEdPnzYat2jyw85Ojrq1q1bxvKtW7cUERHxRPUGAAAAAAAAAAB4EoSCz7EePXooKipKHTt2VHBwsM6ePavFixfL399fbdu21UsvvaSaNWuqX79+OnDggA4cOKB+/fqpUqVKKlGihIoXLy4nJydNmzZN586d04wZM3TkyBGbz581a1Zdvnw52SDRyclJderU0Y8//qiGDRum6vpiY2MVHh6u8PBwXb58Wbt379a3336r6tWrK3v27GrcuLHu3r2rQYMG6dSpU9qyZYtGjhwpd3f3BGW1aNFC+/fv1/fff6/Tp09r2rRp2r17d6LBZunSpXX06FGtXbtWp0+f1qBBg+gJCAAAAAAAAAAAMhRJxXPMw8ND8+fPV8GCBdW3b181atRIs2fPVs+ePeXv7y9JGjt2rAoWLKh27dqpY8eOKl68uL755htJUrZs2TR8+HCtXr1ajRo10tGjR9W6dWubz1+3bl3FxcWpYcOGunr1apL7+fn5KTo6OlXzCUrSxYsXVb16dVWvXl1vvPGGevTooYoVK2r8+PFG/adPn67Q0FA1bdpUAwcOVOvWrdWlS5cEZeXPn1+TJ0/W0qVL9dZbb2nfvn2qU6dOosOjVq1aVe3atdOgQYP03nvvqXjx4ipbtmyq6g4AAAAAAAAAAJCW7CzJTfAGPAUWLVqklStXau7cuRlWh+PHj+v+/ft65ZVXjHWdO3dW6dKl1aNHj/+0LuHhN9O0PDs7KXduV125cpMJY4EU0F4SV2niHxldBQAAYHKhYxry/2BACvi+AtiGtgLYhrbybPHwcLVpP3oK4ql15swZrV69WlOnTtW7776boXU5e/as2rdvr7/++kvnz5/X4sWLtX37dtWtWzdD6wUAAAAAAAAAAGCLTBldASApYWFhGjBggOrUqaO33nrLWL9+/XpjeNPEVKhQQTNmzEjTuvj6+urEiRMaMGCArl69Kk9PT02aNEklS5ZM0/MAAAAAAAAAAACkB4YPxTPn1q1bunLlSpLbnZyclDdv3v+wRv8thg8FMg7tJXEMHwoAANIbw4cCKeP7CmAb2gpgG9rKs8XW4UPpKYhnjouLi1xcXDK6GgAAAAAAAAAAAM8M5hQEAAAAAAAAAAAATI5QEAAAAAAAAAAAADA5QkEAAAAAAAAAAADA5AgFAQAAAAAAAAAAAJMjFAQAAAAAAAAAAABMjlAQAAAAAAAAAAAAMDlCQQAAAAAAAAAAAMDkCAUBAAAAAAAAAAAAkyMUBAAAAAAAAAAAAEyOUBAAAAAAAAAAAAAwOUJBAAAAAAAAAAAAwOQIBQEAAAAAAAAAAACTIxQEAAAAAAAAAAAATI5QEAAAAAAAAAAAADC5TBldAQAA8Gzb1admRlcBTxk7Oyl3bldduXJTFktG1wZ4etFWANvY2WV0DQAAAABzoKcgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYXKaMrgAAAADwJCpN/COjqwAASGehYxpmdBUAAACAZx49BQEAAAAAAAAAAACTIxQEAAAAAAAAAAAATI5QEAAAAAAAAAAAADA5QkEAAAAAAAAAAADA5AgFAQAAAAAAAAAAAJMjFAQAAAAAAAAAAABMjlAQAAAAAAAAAAAAMDlCQQAAAAAAAAAAAMDkCAUBAAAAAAAAAAAAkyMUBAAAAAAAAAAAAEyOUBAAAAAAAAAAAAAwOUJBAAAAAAAAAAAAwOQIBQEAAAAAAAAAAACTIxQEAAAAAAAAAAAATI5QEAAAAAAAAAAAADA5QkEAAAAAAAAAAADA5AgFAQAAAAAAAAAAAJMjFAQAAAAAAAAAAABMjlAQAAAAAAAAAAAAMDlCQQAAAAAAAAAAAMDkCAWfQj4+PvLy8kr0tXPnzjQ9V5s2bRQYGJimZaa3q1evau3atTbvHxUVpZEjR6pmzZoqVaqU6tWrpylTpig6OtrY59y5c9qyZctj1yktP8d//vlHe/fuTZOyAAAAAAAAAAAAJClTRlcAifvyyy/l5+eXYH2OHDkyoDZPlwkTJshisahBgwY27e/v76/r16/r66+/Vp48eXT06FENGzZM165dU0BAgKQHn/drr72mN954Iz2rbpNPPvlE3bt3V/ny5TO6KgAAAAAAAAAAwCQIBZ9Srq6u8vDwyOhqPJUsFovN+968eVMbNmzQsmXL9PLLL0uSChQooFu3bmnQoEEaMGCA7O3pMAsAAAAAAAAAAMyNNOQZ5OPjoyVLlujtt99WmTJl1KFDB50/f149evRQ2bJl1aRJE504cUKSFBQUpFatWmnChAny9vZWrVq1tHjx4iTLDgoKUoMGDVSmTBk1b95cu3btkiStXLlSlStX1v379419169fr1q1aslisaSqTpK0e/duNW/eXGXKlNFbb72l9evXG9v8/f01evRo9e7dW2XLltUbb7yh5cuXS5ICAwO1bNkyLVu2TD4+Pil+VnZ2drKzs9O2bdus1terV0/Lli2TnZ2d/P39FRwcrClTpqhNmzYKCwuTl5eXwsLCjP0DAwPVpk0bY/m3335T/fr1Va5cOQ0bNkyxsbFW5S9YsEA+Pj7y9vZWmzZtdOzYMau/37x589SiRQuVLl1aTZo00aFDhyQ9GIb0/Pnz6t+/v/z9/ZO5rrR9pUeZvHiZ9UV74cXLttd/2VYAAM+HjP5vGy9ez8KLtsKLl20v2govXra9aCvPzstW9BR8Rn399dcaN26csmfPro8++kjNmjXTp59+qp49eyogIEBfffWVpk6dKkk6ePCgnJ2dtXDhQh04cEBDhgzRiy++qOrVq1uVGRQUpOHDh2vw4MEqU6aMgoKC1LlzZ61bt0516tRRQECAduzYYRy3du1aNWjQQHb/d8fZWqfw8HB16dJFn376qWrUqKH9+/fL399f7u7uqlixoiRp3rx56tWrl/r06aM5c+Zo8ODBqlOnjjp06KBTp05JkgYNGpTi55QtWzY1a9ZM48aN0+LFi/XGG2+oWrVqqlq1qooWLSpJGjBggEJDQ+Xt7a0uXbooKioq2TJPnjyp3r176/PPP1eNGjU0e/Zs7dmzR1WrVpUkbdq0SVOmTNHw4cPl6emp5cuXq23btvr111+N4V8DAwM1YsQIFStWTAEBARoxYoQWLFigwMBANWnSRB06dFDz5s0TPX+uXC5ycEj7PN/d3TXNywTMivYC2Ia2AgBIS/x3BbANbQWwDW0FsA1txVwIBZ9SgwcP1vDhw63W5cuXT6tXr5YkNW/eXNWqVZMkValSReHh4WrVqpUkqXHjxpo9e7ZxnJ2dncaNGyd3d3eVKFFCu3bt0qJFixKEgj/99JPatGmjpk2bSpL69u2rXbt2ae7cuerTp49q166tdevWqXr16rpz5462bNmin376yTje1jrNmzdP1apV0wcffCBJKly4sP755x/Nnj3bCAW9vLzUqVMnSVKvXr00Z84cnThxQuXLl5eTk5MkKVeuXDZ9liNGjNDLL7+spUuXatasWZo1a5Zy586tkSNHqlatWnJ1dZWjo6OcnZ3l5uaWYii4dOlSVaxYUe3atZMkBQQE6Pfffze2z5gxQ126dFHt2rUlSb1799Yff/yhlStXGr0NmzVrJl9fX0lS+/bt1atXL0mSm5ubHBwc5OrqKlfXxB+2ERG3UpX8p8TO7sGD/erVm0rFyKzAc4n2AtiGtgIASA/8dwVIHv8PBtiGtgLYhrbybMmd27bwllDwKdWzZ0/Vq1fPal2mTP//z1WwYEHjvZOTk/Lnz2+1HBMTYywXLlxY7u7uxnKpUqW0YMGCBOc8deqUPvnkE6t15cqVM3rmNWrUSAMHDtSQIUO0efNm5cmTR6VKlUp1nUJCQvT777/L29vb2B4TEyNPT09juUiRIsb7bNmySZLV0KWpYW9vrzZt2qhNmza6dOmS/vjjD/3444/q2bOnfvvtN+XNmzdV5Z06dcqYn1CSHB0drZZPnTql8ePH66uvvjLW3bt3T6Ghocbyo9cX/+9li/R4CFss6VMuYEa0F8A2tBUAQFrivyuAbWgrgG1oK4BtaCvmQij4lHJ3d1fhwoWT3O7g4GC1bG+f9HCS8cNESYqNjU10/yxZsiRYFxsbq7i4OElSzZo1FRsbq127dmn9+vVq0KDBY9Xp/v37euutt9S1a9ck6+no6JjgOMtjPHl27typvXv3qlu3bpKkvHnz6t1331XdunX1xhtvaO/evQmuwy6RbniPBpKP1iV+fWNjY/Xll18aw4k+9DDcfHR/AAAAAAAAAACA9Jb2E5PhqXPmzBndunXLWD506JBKlCiRYD9PT0/9/fffVuv+/vtvowdf5syZVbduXf3222/666+/1LBhw8eqj6enp86cOaPChQsbr40bN2rVqlU2HZ9YaJeUGzdu6Ntvv1V4eLjVemdnZzk4OCQ6BOnDwC7+ZxYWFma8L168uA4ePGgsx8XF6ejRo8ayp6enLl68aHV906ZN0/79+22uNwAAAAAAAAAAQFoiFHxK3bx5U+Hh4Qlet2/fTnVZt2/f1uDBg3Xq1CktWrRI69at0/vvv59gv3bt2mnu3Llavny5Tp8+rQkTJujo0aN65513jH0aNWqkJUuW6IUXXlDx4sUf69ref/99HTp0SJMmTVJoaKhWrVqlr776Svny5bPp+KxZs+r8+fO6dOlSivvWrl1bxYoVU/v27bVp0yaFhYVp9+7d6tOnjzw9PVWpUiVJD0LC0NBQXb16Vblz59aLL76omTNn6ty5cwoKCtLmzZuNMlu0aKFDhw5p6tSpCgkJ0dixY/Xvv/8a29u3b6/Zs2dr+fLlOnv2rMaPH6+1a9eqWLFiNl2fs7OzQkJCdP36dZv2BwAAAAAAAAAASAnDhz6lRo0apVGjRiVY36tXr1SX9eKLL8rDw0PvvPOOPDw8NH78eFWoUCHBfn5+frpy5YomT56s8PBwvfzyy/rhhx+swqzKlSvLxcVFfn5+qa7HQ/nz59e0adM0YcIEzZw5U3nz5pW/v78aN25s0/FNmjTRJ598osaNG2vHjh3J9hx0dHTUrFmzNHnyZA0fPlzh4eHKkSOHfH19NXz4cGOI03fffVdffvmlPvroIy1btkwjR47U8OHD5efnp6pVq6pr1676448/JD2Yo3Hq1KkaPXq0pk6dKl9fX73xxhvGOeN/jleuXNFLL72kqVOnWs0jmJxWrVppwoQJCg0N1ZQpU2w6BgAAAAAAAAAAIDl2lseZqA3PjKCgIE2ZMkWbNm1Kk/KioqL0+uuv65dfflHBggXTpEykTnj4zTQtz85Oyp3bVVeu3GTCWCAFtBfANv91W6k08Y/0PwkAIEOFjmnI/4MBKeD7CmAb2gpgG9rKs8XDw9Wm/egpCJtYLBatX79ev/76q7y9vQkEAQAAAAAAAAAAniGEgrCJnZ2dxo8fLwcHB02dOjWjqyNJunr1qnx9fZPdZ9++ff9RbQAAAAAAAAAAAJ5ehIIm17x5czVv3jxNytq4cWOalJNW3NzctHz58oyuBgAAAAAAAAAAwFOPUBDPLAcHBxUuXDijqwEAAAAAAAAAAPDUs8/oCgAAAAAAAAAAAABIX4SCAAAAAAAAAAAAgMkRCgIAAAAAAAAAAAAmRygIAAAAAAAAAAAAmByhIAAAAAAAAAAAAGByhIIAAAAAAAAAAACAyREKAgAAAAAAAAAAACZHKAgAAAAAAAAAAACYHKEgAAAAAAAAAAAAYHKEggAAAAAAAAAAAIDJEQoCAAAAAAAAAAAAJkcoCAAAAAAAAAAAAJgcoSAAAAAAAAAAAABgcoSCAAAAAAAAAAAA+H/s3Xu4lXP+P/7n1kGDEpVzU1tDg5SocUqoMKIcPhgxkQiDiYZRKEUOUWLEZJCJ+Djn0KCijMMYZDA0oz50cGhmmjAoE6X27w8/69vWaUXZLI/Hdb2v2ete93rfr3ut/dqruZ7u902Jq17VBQAAwNcx6cy2VV0CfCVlZUn9+rXz7rtzU1FR1dXAt1dZWVVXAAAApcGVggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKqV3UBAADAirW+4smqLgGgSs0cdEBVlwAAAN95rhQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBK3SqFgu3btMnr06KW2jx49Ou3atfvKRXTt2jXDhg37yq9f04YNG5auXbsmSZ577rk0bdo07du3X+a+vXr1StOmTfPcc8+tdN533nknTZs2zTvvvLNa613S4sWLc/PNN6dz585p0aJF9t5771x00UX54IMP1tgxv47XXnstL7744mqd85ZbbknHjh3TrFmz7L777jn33HMzZ86col67vN95AAAAAACA7xJXCn5Fs2fPzv/93/9V2rZgwYI89dRTRc+x6aab5umnn86mm266ussrOP3003PzzTfn5JNPzh/+8IcMGjQoL774Yk444YR8+umna+y4X9Wpp56amTNnrrb5brnllowYMSJnnXVWxo4dm2HDhmXmzJk54YQTsnjx4pW+/p577knHjh1XWz0AAAAAAABVQSj4FbVq1SoTJ06stO3Pf/5zfvSjHxU9R7Vq1dKgQYNUq1ZtdZeXJHnwwQfz+OOPZ+TIkenYsWMaNmyYnXfeOddff33eeOONPPDAA2vkuN8m9913X4477ri0a9cuW2yxRXbccccMHTo0U6ZMySuvvLLS12+44YapVavWN1ApAAAAAADAmrPaQ8EvlsQcP358OnTokO233z4nnXRSpeUqH3300ey3337ZYYcdcuGFF2bRokWV5rjjjjvSrl27tGzZMl27ds3UqVMLz7Vr1y6DBw9OmzZtcvDBB6eioiKTJ0/OEUcckebNm+fII4/Mb37zm8Jyn8OGDcspp5ySo48+Oj/5yU/y/PPPZ/bs2enZs2dat26dZs2a5ZBDDslf/vKXwjHeeOONdOnSJS1atMgxxxyT//znP0udZ/v27ZcKBSdMmJAOHTpU2raiY315+dAPP/ww/fr1y2677Zaddtopv/71r/Phhx8m+XzZ0nbt2qV///7Zaaedcv3116/0s7jvvvuyzz775Ic//GGl7fXr18/NN9+cfffdN8nnS4zeeOONad++fZo3b77Ue960adM88sgj2X///dOiRYv86le/yttvv51jjjkmLVq0yFFHHZXZs2cX3u9evXrlnHPOSYsWLbLffvtlwoQJlT6/JZfj/GI51uTzZWRnzZqVc845J3369EmS/N///V+6du2a5s2bZ7/99sttt91WeO2yPtsvKysrywsvvJAFCxYUtm2yySZ5+OGH8+Mf/zhJ8tlnn2Xo0KFp06ZNdtppp/Ts2bPwmS9Zb0VFRa699tq0adMmrVq1ysknn5x//OMfld6nBx54IAceeGCaNWuWo446Km+//Xbh+VdeeaXwe7XffvvloYceKjz3wgsv5NBDD03z5s3TqVOnjBs3bgWfbFJWtnrHmpjTMEp16BfDKG7oldX/fgJ831X132LD+C4MvWIYxQ29YhjFDb3y3RnFqr56/4n+/1x33XUZOnRoKioq8otf/CK///3v06tXr7zxxhs544wz8utf/zp77LFHbr755vzlL3/JrrvumiSZOHFirrnmmgwcODDl5eW5//77c8wxx2T8+PFZf/31kyRjxozJiBEjUlFRkXnz5uWEE07I/vvvn0GDBuWZZ57JpZdemh133LFQy4QJEzJgwIDssMMOKS8vT48ePVKnTp3ccccdqaioyJAhQzJgwICMGTMmCxYsyIknnphWrVrloosuyrPPPptLLrmk0nzJ52HRJZdcknfffTf169fP4sWLM3HixNx6660ZPHhwYb+zzjprucf6stNOOy3z58/PddddlyQZMGBA+vTpk+HDhydJZs2alQULFmT06NGpUaPGSj+DKVOmpEePHst8rkWLFoWfr7322tx+++0ZOHBgGjdunBtuuCEnnHBCxo0bl3XWWSdJcvXVV2fQoEGZP39+TjjhhDz//PM577zzcs4556Rnz5654YYb0rdv3ySfh74HHnhgRo8enQkTJqRnz5554IEHVnoV5bBhw3LQQQele/fuOfTQQ/PJJ5+kR48eOeSQQzJw4MBMnz49/fr1y7rrrpuDDz44ydKf7Zcdc8wx6d27d/bcc8/stdde2WWXXbLnnnumSZMmhX1+85vf5P77788ll1ySzTbbLP3790///v1z9dVXV5rr1ltvzZgxY3LFFVekfv36uemmm9K9e/eMGTOm8HkMGzYsAwcOTL169XL66afnqquuyhVXXJH33nsv3bt3T+fOnXPxxRfn5ZdfTu/evdOkSZPUq1cvJ510Unr16pU99tgjL7/8cvr06ZN69eqlVatWS53Thhuum2rVVv9FvvXq1V7tc0Kp0i9QHL0CwOrkewWKo1egOHoFiqNXSssaCwV79uyZ5s2bJ0k6deqUV199NUly7733plWrVunWrVuSpF+/fnn88ccLr7vxxhtz0kknZe+9906SnHHGGXnyySfz4IMPFq7+69y5c+HqsjvvvDPrrLNO+vbtm2rVqmXLLbfMiy++mDlz5hTmrF+/frp06ZLk86u9OnTokP322y+bbLJJkuToo4/OiSeemCR55pln8sEHH2TAgAFZZ5110qRJkzz//PN5//33K53f5ptvnqZNm+bxxx/P4Ycfnpdffjl169ZN48aNC/us7FhLmjJlSp5//vmMHTu2EG4NHjw4HTt2zPTp0wv7nXDCCWnUqFFRn8HcuXNTu/aKG7aioiK33nprfvWrX6V9+/ZJkoEDB2afffbJgw8+mCOPPDJJ0q1bt0KQuM0226S8vDz7779/kmTffffNlClTCnOuv/76ufDCC1OzZs00adIkTz75ZO6999707t17hbXUrVs31apVS+3atVO7du3cfffdqVevXs4444wkSePGjTNr1qzccssthVBwyc92WQ4++OBssMEGufnmmzNmzJiMHj06NWvWzCmnnJJf/OIXqaioyF133ZXevXunbdu2SZILLrggjzzyyFJz3Xjjjenfv3923nnnJMmFF16YNm3a5Kmnnkq7du2SJMcdd1wh4O7SpUvhysaHHnoo66+/fvr27Zu11lorW265ZT788MN88sknue2227Lbbrvl5z//eZKkUaNGee2113LzzTcvMxR8//2PVyn5X5myss//sL/33txUVKy+eaEU6Rcojl4BYE3wvQIr5t9gUBy9AsXRK98t9esXF96uUihYvXr1LF68eKntixcvTvXqladaMrhab731snDhwiTJtGnTss022xSeq1GjRqXH06ZNy+DBgzN06NDCtk8//TQzZ84sPN58880LP0+dOjXbbbddpfvy7bDDDnn00UeXuX9ZWVm6dOmShx9+OC+++GJmzJiRyZMnF87rjTfeSOPGjQtXyCXJ9ttvnyeeeGKp827fvn0mTJiQww8/PI899thSS4eu7FhLmj59eurUqVPparcmTZpk/fXXz/Tp0wvh3hZbbLHUa5enbt26heVHl+e9997LBx98UOnKwRo1aqRZs2aZNm1aYVvDhg0LP9eqVavSe1qrVq1Ky3M2a9YsNWvWrPR4ybmKNX369EyZMiUtW7YsbFu0aFGlz3rJOpZnzz33zJ577pl58+bl2WefzR133JGrrroqP/rRj7LTTjvlgw8+yHbbbVfY/0c/+lF++ctfVprj448/zr/+9a/06tUra631/67S++STTyr9bi7v937GjBnZdtttK732uOOOS5LcdNNNefzxxyud58KFC5d55eMX1sQf4YqKNTMvlCL9AsXRKwCsTr5XoDh6BYqjV6A4eqW0rFIoWLt27cybN2+p7cu6Im1Fy1tWfOk3aMl9Fy1alHPPPbdwtdUX1ltvvcLPa6+9duHnatWqLTXflx8vuf/ixYvTvXv3fPTRR+nYsWPatWuXhQsX5rTTTiuqviW1b98+N954Y+bPn58JEyZUCjKLPdYXlgzRlrRo0aJK91xc8lxWZrvttsvf/va3ZT43dOjQ1KtXL4ceeuhyj7tkeLlkEJekUrj1ZV8OiBctWrTc/b98P8klffbZZ9l1111z/vnnL3efFb0f//znP3PdddflvPPOS82aNbPeeuulQ4cOad++fY488sg888wzhav+VuaLOn/zm98sFdZ9saxtsvzflS+/J0v67LPP0qlTp5x88slFvwYAAAAAAGBVrNKNyZo2bZqXXnppqe1//etfs+222xY1x1ZbbVVYSjT5PDhbcunJ8vLy/Otf/0qjRo0K47rrrsvLL7+83Plee+21SgHW8oKw5PMrASdNmpSRI0fm5JNPzl577ZV///vfST4PA7faaqvMnDkzc+fOLbzmtddeW+Zc2267bTbccMPcdtttWbhwYaWrzYo51pLKy8vz0UcfVVoq9I033si8efNWeMXYinTu3DmPPfZY3n777UrbZ8+endtuuy3Vq1dP7dq1U79+/Urv78KFC/O3v/3tKx936tSplT6PyZMnF5Z7rVGjRj7++OPCc1+ubUnl5eWZMWNGtthii8Lvwssvv5xRo0YVVUfNmjVz991358knn6y0vaysLOutt1423HDD1KlTJxtssEGl38HXXnstbdu2zSeffFLYVqdOndSrVy9z5swp1LLppptm8ODBmTFjxkprady4caZOnVrpcz/jjDNy4403pry8PG+++Wal3/kJEyYs876TAAAAAAAAX8UqhYJdunTJhAkTMnz48Lz55puZOnVqrrnmmjz++OM5+uiji5rjiCOOyOTJkzN8+PBMnz49l112Wf7xj38Unj/uuONy88035/77789bb72VwYMH55FHHkmTJk2WOd8BBxyQefPm5dJLL82MGTNy11135eGHH17u8evUqZO11lorDz30UGbNmpWxY8dm2LBhSZIFCxZkt912y6abbprzzjsv06ZNy+jRo1c4X7t27fLb3/62cD++VTnWkpo0aZK2bdumd+/eeeWVV/LKK6+kd+/ead26dbbeeuvlv6Er0LFjx/zkJz/Jsccem0ceeSRvv/12nnjiiRx//PFp0qRJDjvssCSf3y/w6quvzsSJEzNt2rT069cvn376aTp27PiVjvv2229n8ODBmT59eoYPH56//e1vhWNtv/32ueeee/J///d/ee6553LTTTdVeu0666yT6dOn54MPPkjnzp3zySef5Pzzz8+0adPyxBNP5OKLL069evWKqqNevXo58sgjc+655+b222/PW2+9lb/97W/5zW9+k1dffTX/8z//kyTp2rVrfvOb3+TZZ5/N66+/nosvvjg77LBDatWqVWm+bt265aqrrsrEiRMzc+bM9O3bNy+++GK23HLLldbSqVOnfPDBB7n88sszc+bMjB49OhMmTMjuu++eo446KpMnT86VV16ZmTNnZsyYMRk6dGg222yzos4TAAAAAABgZVZpfcLtt98+v/vd73Lttdfm+uuvT1lZWbbddtvceOON+fGPf1zUHI0aNcrw4cNz6aWXZvjw4enQoUP23HPPwvMdO3bMu+++m6uvvjrvvvtufvSjH2X48OFp3LjxMudbd911c9111+WCCy7I7bffnu233z6dOnUqXJH3ZZtsskkGDBiQa6+9NkOHDk15eXn69u2b3r175+9//3tatmyZ3/3ud+nbt28OOeSQNG3aNEcffXQmT568zPnat2+fW2+9dan7CRZzrAYNGlTa/7LLLstFF12Ubt26pVq1amnfvn3OOeecot7XZSkrK8tvf/vbXH/99bnqqqvyz3/+M/Xr10+HDh1y6qmnFpbe7N69e+bNm5d+/fpl3rx5admyZUaNGpUNN9zwKx23RYsWef/993PwwQencePGuf766wv3JDzjjDNyzjnn5NBDD82WW26Z008/Pb169Sq8tkuXLhkyZEhmzpyZa665JjfccEMuueSSHHzwwalbt26OPvronHTSSUXXcu6552bzzTfP//7v/2bQoEGpXr16WrdunVtvvbUQup144omZO3duzjjjjHz22WfZa6+90q9fv6XmOv744/Pxxx/n/PPPz7x589KsWbOMGDGi0vKhy1OnTp387ne/yyWXXJJRo0alYcOGueKKKwr307zuuusyZMiQjBgxIhtvvHH69OmTzp07F32eAAAAAAAAK1JW8eV1LL9j3n777cyePTutWrUqbLvgggsyf/78DBo0qAorW7k333wz++67b5588slsvPHGVV3OajFs2LA8//zzRS/xyaqbM2fuyndaBWVlSf36tfPuu3PdMBZWQr9AcfTK6tf6iidXvhNACZs56ADfK7AS/g0GxdErUBy98t3SoEHtovZbpeVDv43mzZuX4447LmPHjs2sWbMyfvz4PPDAA/npT39a1aWt0OzZs/P000+nRo0a2WCDDaq6HAAAAAAAAErYKi0f+m20zTbb5Pzzz8/QoUPzz3/+M5tttlnOOeec7LXXXlVd2gqNGjUqt99+e0455ZTUrFlzlV9/6qmn5plnnlnu8xdccIHlJwEAAAAAAEhSAsuHfl/9+9//zvz585f7fL169bLeeut9gxXxTbF8KFQd/QLF0Surn+VDge87y4fCyvk3GBRHr0Bx9Mp3S7HLh37nrxT8vtpoo42qugQAAAAAAAC+I77z9xQEAAAAAAAAVkwoCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACWuelUXAAAArNikM9tWdQmsAWVlSf36tfPuu3NTUVHV1cC3V1lZVVcAAAClwZWCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4qpXdQEAAEBxWl/xZFWXAFAlZg46oKpLAACA7zxXCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMK8rV9+OGHGTRoUNq1a5cWLVpk//33z8iRI7N48eI1fux58+bl/vvvXyNzv/POO2natGneeeedNTL/inTt2jXDhg37xo8LAAAAAACUpupVXQDfbf/5z3/ys5/9LBtttFEuvvjibLHFFnn11VczcODAvP322+nXr98aPf7IkSPz3HPP5eCDD16jxwEAAAAAAPguEwrytVxxxRWpWbNmRowYkbXXXjtJ0rBhw9SqVSunnHJKfv7zn6e8vHyNHb+iomKNzQ0AAAAAAFAqhIJ8ZQsWLMhDDz2Us88+uxAIfmHvvffOyJEjs/nmm+fDDz/MkCFDMmHChHz66adp165d+vbtm/XXXz/PPfdcjjnmmEydOrXw2j59+iRJBg0alGHDhmXmzJlZb731MmbMmKy99trp3r17evTokdGjR+eaa65JkjRt2jRTp05Nu3btsv/+++eBBx5I/fr1s8EGG6RJkybp27dvYf6TTz45P/7xj3PGGWes0vlOmTIlAwYMyGuvvZY6derkZz/7WU477bQkWeq49913XyZOnJhhw4Zl2rRpWXvttdO2bdsMHDgw6667bpLk0UcfzZVXXplZs2Zlq622ytlnn52f/OQnRdVSVrZKpRc11+qcE0qVfoHi6BUA1gTfK7Bi/g0GxdErUBy9UpqEgnxlb731Vv773/9m++23X+q5srKy7LLLLkmS448/PvPnz891112XJBkwYED69OmT4cOHF3WccePG5aijjsp9992XRx99NIMHD06HDh3SsWPHvP7663nppZcq3X9vzJgxGTFiRCoqKjJ58uRcffXVOe+881JWVpa5c+fm6aefzplnnrnK53v22Wdnp512yuDBgzNjxoz07Nkz22+/ffbcc8+ljvv222/n9NNPz/nnn5/ddtstM2fOzFlnnZW77rorxx13XKZMmZLevXvnggsuSPPmzfPEE0+kR48eefDBB9OoUaMV1rHhhuumWrXVfzvQevVqr/Y5oVTpFyiOXgFgdfK9AsXRK1AcvQLF0SulRSjIV/bRRx8lSWrXXv4fhSlTpuT555/P2LFjC8uIDh48OB07dsz06dOLOk7dunXTu3fvVKtWLSeccEJuuOGGTJ48OeXl5VlnnXVSo0aNNGjQoLB/586d07Rp0yTJZpttlgEDBuTFF1/MTjvtlMceeyzl5eXZaqutVvl8Z82alfbt22fzzTdPw4YN8/vf/z5bbLHFMo87c+bM9O3bN0cccUSSZIsttshuu+2W119/PUkyYsSIHHHEEenUqVOS5JhjjsmkSZNy++23F66UXJ733/94tV8pWK9e7bz33txYjRVWTL9AcfQKAGuC7xVYMf8Gg+LoFSiOXvluqV+/uPBWKMhXVrdu3STJhx9+uNx9pk+fnjp16lS6r2CTJk2y/vrrZ/r06SsMFL+wxRZbpFq1aoXH6667bj777LPl7r/55psXfq5Tp07atm2bsWPHZqeddsojjzySjh07rvSYy3LSSSdl6NChufPOO7PXXnvloIMOqhRGLnncxo0bp2bNmhk+fHhef/31vP7663njjTdy0EEHJUmmTZuWRx55JHfeeWfhNQsXLkybNm2KqmVN/BGuqFgz80Ip0i9QHL0CwOrkewWKo1egOHoFiqNXSsvqX4OQ740f/vCHqV27dv72t78t8/lf/OIXqVmz5jKfW7RoURYtWpSyZVzy9uXAr0aNGkvtU7GCv0Jfvr/hgQcemPHjx+ejjz7KM888kwMOOGC5r12RE088MY8++mh69OiRt99+O8cee2zuvvvuZR53ypQpOeCAA/LGG2+kVatWufjiiyuFkYsWLUqPHj1y//33F8ZDDz2UCy644CvVBgAAAAAAsCJCQb6y6tWrp2PHjrntttuyYMGCSs9NnDgxEydOTOPGjfPRRx9VWir0jTfeyLx581JeXl4I/ObNm1d4/p133im6hmWFil/Wrl27fPTRRxkxYkSaNm2aH/7wh0XP/4VPP/00F110UWrWrJnjjjsuo0aNyhFHHJFx48Ytc/8HHnggrVu3zhVXXJGjjjoqzZs3z5tvvlkIM8vLy/POO++kUaNGhXHnnXfmySefXOXaAAAAAAAAVkYoyNfyy1/+MvPmzcvxxx+f559/Pm+99Vbuvvvu9OnTJ8ccc0x+9KMfpW3btundu3deeeWVvPLKK+ndu3dat26drbfeOltttVVq1aqV6667Lm+//XZuvPHG/P3vfy/6+D/4wQ/y73//e4VBYq1atdK+ffv8/ve//8pXCa699tp58cUXM3DgwEyfPj2vvvpqXnjhhWy77bbL3L9u3bqZOnVqXnnllcyYMSODBg3Kq6++WghPu3Xrlocffji33HJL3nrrrYwcOTIjR45M48aNv1J9AAAAAAAAKyIU5Gtp0KBBbr/99jRs2DBnnXVWDjzwwNx8883p2bNn+vTpkyS57LLL0rBhw3Tr1i3HH398ttpqq1x77bVJkvXWWy8DBw7MQw89lAMPPDBTpkzJ0UcfXfTx99lnnyxevDgHHHBA3nvvveXu17FjxyxYsOAr308wSa688srMnz8/hx12WI4//vi0atUqp5xyyjL37dq1a3bYYYd069YtRx11VP7xj3/k1FNPLQSeO+ywQy6//PL87//+bzp27Ji77rorV1xxRVq3bv2V6wMAAAAAAFiesooV3ZwNSsRdd92VBx98MLfeemtVl/K1zZkzd7XOV1aW1K9fO+++O9cNY2El9AsUR6+sOa2vsNQ48P00c9ABvldgJfwbDIqjV6A4euW7pUGD2kXtV30N1wFV6s0338zkyZMzfPjwnHHGGVVdDgAAAAAAQJUQClLS3nnnnZx33nlp3759OnXqVNg+bty4wvKmy7LTTjvlxhtv/CZKBAAAAAAAWOOEgpS03XffPS+//PJS29u0aZP7779/ua+rVavWmisKAAAAAADgGyYU5Htp3XXXzbrrrlvVZQAAAAAAAHwj1qrqAgAAAAAAAIA1SygIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJa56VRcAAAAUZ9KZbau6BFajsrKkfv3aeffduamoqOpq4NurrKyqKwAAgNLgSkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChx1au6AAAAoDitr3iyqksAqBIzBx1Q1SUAAMB3nisFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQW/Ye3atUvTpk2XOZ577rnVeqyuXbtm2LBhq3XONe29997LI488UvT+X34PmzVrlkMOOST333//V66hoqIit9122wr3efvtt/PEE08kSd555500bdo077zzzlc+JgAAAAAAwJpUvaoL+D4699xz07Fjx6W2r7/++lVQzbfLkCFDUlFRkf3337/o1wwbNiwtW7ZMkixYsCAPP/xwevfunc033zytW7de5RomTZqUCy+8MEcfffRy9zn33HPzk5/8JHvuuWc23XTTPP3009lwww1X+VgAAAAAAADfBKFgFahdu3YaNGhQ1WV8K1VUVKzya9Zff/1K72ePHj1y7733Zvz48V8pFFzVGqpVq+bzBAAAAAAAvtUsH/ot065du9xzzz35n//5nzRv3jzdu3fPrFmz8stf/jItWrTIQQcdlNdffz1JMnr06HTp0iVDhgxJy5Yts9dee+Xuu+9e7tyjR4/O/vvvn+bNm+fQQw/NpEmTkiQPPvhgdt5553z22WeFfceNG5e99torFRUVq1RTkrzwwgs59NBD07x583Tq1Cnjxo0rPNenT59ceumlOeOMM9KiRYvsueeehaU+hw0blvvuuy/33Xdf2rVr97Xex+rVq6dGjRpJktmzZ6dnz55p3bp1YXnRv/zlL0n+39Kf1157bVq3bp2TTjopxxxzTJIsd0nXPn365Pnnn88111yTrl27LrV8aNOmTfPII49k//33T4sWLfKrX/0qb7/9do455pi0aNEiRx11VGbPnl2Y79FHH03Hjh3TokWLHHbYYXn++edXen5lZat3rIk5DaNUh34xjOKGXllz7yvA91VV/w02jO/C0CuGUdzQK4ZR3NAr351RLFcKfgtdddVVufzyy1OnTp2ccMIJOeSQQ9KrV6/07Nkz/fr1y9ChQzN8+PAkyauvvpp11lknd955Z1555ZUMGDAgm266adq0aVNpztGjR2fgwIHp379/mjdvntGjR+fEE0/M2LFj0759+/Tr1y/PPvts4XVfhFpl//9vU7E1zZkzJyeddFJ69eqVPfbYIy+//HL69OmTevXqpVWrVkmS2267LaeffnrOPPPM3HLLLenfv3/at2+f7t27Z9q0aUmS888//yu9d59++mnuueeevPHGGxkwYECS5KyzzkqdOnVyxx13pKKiIkOGDMmAAQMyZsyYwutefPHF3Hvvvfnss8/yP//zP/nlL3+Zp59+eplLup533nmZOXNmWrZsmZNOOinz5s1bap+rr746gwYNyvz583PCCSfk+eefz3nnnZdzzjknPXv2zA033JC+fftmypQp6d27dy644II0b948TzzxRHr06JEHH3wwjRo1WuY5brjhuqlWbfXn+fXq1V7tc0Kp0i9QHL0CwOrkewWKo1egOHoFiqNXSotQsAr0798/AwcOrLRts802y0MPPZQkOfTQQ7PbbrslSXbZZZfMmTMnXbp0SZJ07tw5N998c+F1ZWVlufzyy1OvXr1svfXWmTRpUu66666lQsFRo0ala9euOfjgg5N8HpRNmjQpt956a84888zsvffeGTt2bNq0aZP58+fniSeeyKhRowqvL7am2267Lbvttlt+/vOfJ0kaNWqU1157LTfffHMhFGzatGl69OiRJDn99NNzyy235PXXX8+OO+6YWrVqJckq3Z+vR48eqVatWpLkv//9b+rWrZs+ffqkVatWqaioSIcOHbLffvtlk002SZIcffTROfHEEyvNceyxx+aHP/xhkmTOnDlJstwlQWvXrp0aNWpknXXWSd26dZcZCnbr1i0tWrRIkmyzzTYpLy8v3Cdx3333zZQpU5IkI0aMyBFHHJFOnTolSY455phMmjQpt99+e/r06bPM47///serlPyvTFnZ53/Y33tvbr7C6q3wvaJfoDh6BYA1wfcKrJh/g0Fx9AoUR698t9SvX1x4KxSsAj179sy+++5baVv16v/vo2jYsGHh51q1amXzzTev9HjhwoWFx40aNUq9evUKj5s1a5Y77rhjqWNOmzYtp556aqVtO+ywQ+HKvAMPPDB9+/bNgAED8sc//jEbbbRRmjVrtso1TZ8+PY8//nhatmxZeH7hwoUpLy8vPG7cuHHh5/XWWy9JKi1duqouuuiitGjRImVlZVl77bWz0UYbFa5wLCsrS5cuXfLwww/nxRdfzIwZMzJ58uQsXry40hxLns+XLXkuO+20U2688caV1rSy92vBggVJPv9cHnnkkdx5552F5xcuXLhUqPtla+KPcEXFmpkXSpF+geLoFQBWJ98rUBy9AsXRK1AcvVJahIJVoF69estdGjJJ4aq3L6y11vKXilwyTEySRYsWLXP/tddee6ltixYtKoRjbdu2zaJFizJp0qSMGzeucFXbqtb02WefpVOnTjn55JOXW+cX9/pbUsXX+Kuy8cYbL/f9XLx4cbp3756PPvooHTt2TLt27bJw4cKcdtpplfZb1vvzhS/ueZikcCXjyhT7fi1atCg9evQoXMG5qscBAAAAAAAohlDwO+7NN9/Mxx9/nHXXXTdJMnny5Gy99dZL7VdeXp6//vWv6dChQ2HbX//618KSnjVr1sw+++yTRx99NH/605+WuqqwWOXl5XnppZcqhXQ33XRTFixYsFRQuCxlZWVfKyD8sjfeeCOTJk3Kn//858KSpLfddluS5QeRZV9am3NFAe7XVV5ennfeeafSMS6//PKUl5fn8MMPX2PHBQAAAAAAvl+Wfwkaa8zcuXMzZ86cpcZ///vfVZ7rv//9b/r3759p06blrrvuytixY3PUUUcttV+3bt1y66235v7778+MGTMyZMiQTJkyJYcddlhhnwMPPDD33HNPNtlkk2y11VZf6dyOOuqoTJ48OVdeeWVmzpyZMWPGZOjQodlss82Kev0PfvCDzJo1K7Nnz/5Kx/+yOnXqZK211spDDz2UWbNmZezYsRk2bFiSFJbwXFYNyecB66effrrMfdZZZ53MnDkz77333teqr1u3bnn44Ydzyy235K233srIkSMzcuTISkusAgAAAAAAfF1CwSpwySWXpE2bNkuNkSNHrvJcm266aRo0aJDDDjssN954YwYPHpyddtppqf06duyYXr165eqrr07nzp3z/PPP56abbkqTJk0K++y8885Zd91107Fjx698bptvvnmuu+66PPXUUznwwANz1VVXpU+fPuncuXNRrz/ooIMyY8aMdO7cebVcMbjJJptkwIABueGGG3LggQfm+uuvT9++fVO9evX8/e9/X+ZrmjZtmt133z1HHnlknnjiiWXuc/jhh+epp57KCSec8LXq22GHHXL55Zfnf//3f9OxY8fcddddueKKK9K6deuvNS8AAAAAAMCSyipW51qNfKNGjx6da665JhMnTlwt882bNy+77757/vCHP6Rhw4arZU5Wvzlz5q7W+crKkvr1a+fdd+e6YSyshH6B4uiVNaf1FU9WdQkAVWLmoAN8r8BK+DcYFEevQHH0yndLgwa1i9rPPQVJRUVFxo0bl/Hjx6dly5YCQQAAAAAAgBIjFCRlZWUZPHhwqlWrluHDh1d1OUmS9957Lx06dFjhPi+99NI3VA0AAAAAAMB3m1DwO+zQQw/NoYceulrmmjBhwmqZZ3WpW7du7r///qouAwAAAAAAoCQIBflWqlatWho1alTVZQAAAAAAAJSEtaq6AAAAAAAAAGDNEgoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiate1QUAAADFmXRm26ougdWorCypX7923n13bioqqroa+PYqK6vqCgAAoDS4UhAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEpc9aouAAAA4Num9RVPVnUJwBJmDjqgqksAAIDvPFcKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwouQ7t27TJ69Oilto8ePTrt2rX7yvN27do1w4YN+zqlrVHDhg1L165dkyTPPfdcmjZtmvbt2y9z3169eqVp06Z57rnnVjrvO++8k6ZNm+add95ZrfV+oWvXrunQoUM+/fTTb/S4q6LY9woAAAAAAGBNEAqyQrNnz87//d//Vdq2YMGCPPXUU0XPsemmm+bpp5/OpptuurrLK3j77bdz3XXXrbH5v66nn346LVu2rOoyAAAAAACA7ymhICvUqlWrTJw4sdK2P//5z/nRj35U9BzVqlVLgwYNUq1atdVdXsHmm2+eG2+8MTNnzlxjx/g6GjRokJo1a1Z1GQAAAAAAwPeUUPAr+mJpyvHjx6dDhw7Zfvvtc9JJJ+WDDz4o7PPoo49mv/32yw477JALL7wwixYtqjTHHXfckXbt2qVly5bp2rVrpk6dWniuXbt2GTx4cNq0aZODDz44FRUVmTx5co444og0b948Rx55ZH7zm98UlvscNmxYTjnllBx99NH5yU9+kueffz6zZ89Oz54907p16zRr1iyHHHJI/vKXvxSO8cYbb6RLly5p0aJFjjnmmPznP/9Z6jzbt2+/VCg4YcKEdOjQodK2FR3ry8t4fvjhh+nXr19222237LTTTvn1r3+dDz/8MMnny5a2a9cu/fv3z0477ZTrr7++qM/joIMOytZbb50LL7xwuft8+umnGTx4cPbcc8/ssMMOOfnkk/PPf/5zmft+Ucc999yT3XffPa1bt84NN9yQSZMm5ac//WlatmyZs88+O4sXL06SzJs3L+ecc0523XXXNGvWLD/96U/z2GOPFeZbcvnQFdXxxXt17bXXpnXr1ss9n7Ky1TvWxJyGUapDvxhGcUOvGN/1AXz7VPXfBcP4Lgy9YhjFDb1iGMUNvfLdGcWqvnr/if79c91112Xo0KGpqKjIL37xi/z+979Pr1698sYbb+SMM87Ir3/96+yxxx65+eab85e//CW77rprkmTixIm55pprMnDgwJSXl+f+++/PMccck/Hjx2f99ddPkowZMyYjRoxIRUVF5s2blxNOOCH7779/Bg0alGeeeSaXXnppdtxxx0ItEyZMyIABA7LDDjukvLw8PXr0SJ06dXLHHXekoqIiQ4YMyYABAzJmzJgsWLAgJ554Ylq1apWLLroozz77bC655JJK8yWfh5OXXHJJ3n333dSvXz+LFy/OxIkTc+utt2bw4MGF/c4666zlHuvLTjvttMyfP7+w3OeAAQPSp0+fDB8+PEkya9asLFiwIKNHj06NGjWK+hzWWmutDBgwIEcccUQefvjhdOzYcal9+vfvnxdffDGXXXZZ6tatmyFDhuSUU07Jvffem7XWWjof//e//53HHnsso0aNyuOPP54hQ4bkxz/+cQYNGpT//Oc/+eUvf5l99tkn++yzTy6++OLMmDEjN910U37wgx/kxhtvzHnnnZe2bdsudYXgiur4wosvvph77723EDouacMN1021aqs/z69Xr/ZqnxNKlX6B4ugVAFYn3ytQHL0CxdErUBy9UlqEgl9Tz54907x58yRJp06d8uqrryZJ7r333rRq1SrdunVLkvTr1y+PP/544XU33nhjTjrppOy9995JkjPOOCNPPvlkHnzwwcLVf507d07Tpk2TJHfeeWfWWWed9O3bN9WqVcuWW26ZF198MXPmzCnMWb9+/XTp0iVJUlFRkQ4dOmS//fbLJptskiQ5+uijc+KJJyZJnnnmmXzwwQcZMGBA1llnnTRp0iTPP/983n///Urnt/nmm6dp06Z5/PHHc/jhh+fll19O3bp107hx48I+KzvWkqZMmZLnn38+Y8eOTXl5eZJk8ODB6dixY6ZPn17Y74QTTkijRo2K/hySZPvtt8+RRx6ZSy+9NG3btq303IcffpgHHnggN9xwQ3bZZZckyZAhQ7LXXnvlT3/6U/bYY4+l5lu4cGF69+6d8vLybLbZZrn88stz9NFHZ4cddkiSbLPNNoWaW7duneOOOy5bb711kqR79+65++67895771W6l+LK6vjiPTn22GPzwx/+cJnn+f77H69S8r8yZWWf/2F/7725qahYffNCKdIvUBy9AsCa4HsFVsy/waA4egWKo1e+W+rXLy68FQouQ/Xq1Zd5hdbixYtTvXrlt2zJ4Gq99dbLwoULkyTTpk3LNttsU3iuRo0alR5PmzYtgwcPztChQwvbPv3000r3xNt8880LP0+dOjXbbbddpfvy7bDDDnn00UeXuX9ZWVm6dOmShx9+OC+++GJmzJiRyZMnF87rjTfeSOPGjbPOOusUXrP99tvniSeeWOq827dvnwkTJuTwww/PY489ttTSoSs71pKmT5+eOnXqFMKvJGnSpEnWX3/9TJ8+PbVrf/6Lu8UWWyz12mL06tUr48ePz29+85sce+yxhe0zZ87M4sWL06JFi8K2unXrpry8PNOmTVtmKJgkDRs2TJLUqlUrSeX3uFatWlmwYEGS5OCDD85jjz2Wu+66K9OnT8/f/va3JFlqydiV1fHF+7LkcZZlTfwRrqhYM/NCKdIvUBy9AsDq5HsFiqNXoDh6BYqjV0qLUHAZateunXnz5i21fe7cuYXQ6gsrWt6y4kudsuS+ixYtyrnnnltYTvQL6623XuHntddeu/BztWrVlprvy4+X3H/x4sXp3r17Pvroo3Ts2DHt2rXLwoULc9pppxVV35Lat2+fG2+8MfPnz8+ECRMqBZnFHusLX15K8wuLFi2qFKAteS6rok6dOjn77LNzzjnnZOedd17pfIsWLVpmePmFL4fAy1pmNEnOPvvsvPTSSznooIPSpUuXNGjQID/72c+W2q/YOr7q+QMAAAAAACzL6r8xWQlo2rRpXnrppaW2//Wvf822225b1BxbbbVVYSnR5PPgbMqUKYXH5eXl+de//pVGjRoVxnXXXZeXX355ufO99tprlYKjL65GW5Y33ngjkyZNysiRI3PyySdnr732yr///e8kn4eBW221VWbOnJm5c+cWXvPaa68tc65tt902G264YW677bYsXLgw22233Soda0nl5eX56KOPKi0V+sYbb2TevHmVrh78Og466KC0atUql1xySWFbw4YNU7169Urv73/+85+8+eabX/u48+bNyx/+8IdceeWV6dmzZ/bZZ598+OGHSZY+/zVZBwAAAAAAwPIIBZehS5cumTBhQoYPH54333wzU6dOzTXXXJPHH388Rx99dFFzHHHEEZk8eXKGDx+e6dOn57LLLss//vGPwvPHHXdcbr755tx///156623Mnjw4DzyyCNp0qTJMuc74IADMm/evFx66aWZMWNG7rrrrjz88MPLPX6dOnWy1lpr5aGHHsqsWbMyduzYDBs2LEmyYMGC7Lbbbtl0001z3nnnZdq0aRk9evQK52vXrl1++9vfpn379qt8rCU1adIkbdu2Te/evfPKK6/klVdeSe/evdO6devC/fhWh/79+xeCySRZd911c/jhh2fgwIF57rnnMmXKlPz617/OJptskt133/1rHatmzZr5wQ9+kPHjx+edd97JU089lQsvvDDJ0ue/JusAAAAAAABYHqHgMmy//fb53e9+l6eeeioHH3xwunTpkmeffTY33nhjfvzjHxc1R6NGjTJ8+PA89NBDOfjggzNnzpzsueeehec7duyYXr165eqrr86BBx6YP//5zxk+fHgaN268zPnWXXfdXHfddZk0aVI6deqU++67L506dVrucpybbLJJBgwYkBtuuCEHHnhgrr/++vTt2zfVq1fP3//+99SoUSO/+93v8uGHH+aQQw7J7bffvsLAs3379vn444+Xup9gMcf6sssuuywNGzZMt27dcvzxx2errbbKtddeu5J3dNU0adIk3bt3r7Std+/e2W233dKzZ8906dIla6+9dkaOHLnc97BYNWvWzODBgzNu3LgccMABGTRoUH7xi1+kQYMGy7z6ck3VAQAAAAAAsDxlFV9e35BvpbfffjuzZ89Oq1atCtsuuOCCzJ8/P4MGDarCylbuzTffzL777psnn3wyG2+8cVWX84377LPPst122+X222/Pjjvu+LXnmzNn7sp3WgVlZUn9+rXz7rtz3TAWVkK/QHH0CqWg9RVPVnUJwBJmDjrA9wqshH+DQXH0ChRHr3y3NGhQu6j9XCn4HTFv3rwcd9xxGTt2bGbNmpXx48fngQceyE9/+tOqLm2FZs+enaeffjo1atTIBhtsUNXlfOPef//9TJw4MUmy0UYbVXE1AAAAAADA91X1qi6A4myzzTY5//zzM3To0Pzzn//MZpttlnPOOSd77bVXVZe2QqNGjcrtt9+eU0455Sstj3nqqafmmWeeWe7zF1xwQTp37vx1SlyjHnnkkQwZMiQ/+9nPssUWW1R1OQAAAAAAwPeU5UP5Vvv3v/+d+fPnL/f5evXqZb311vsGK6p6lg+FqqNfoDh6hVJg+VD4drF8KKycf4NBcfQKFEevfLcUu3yoKwX5VrPkJgAAAAAAwNfnnoIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKqV3UBAAAA3zaTzmy7xo9RVpbUr1877747NxUVa/xw8J1VVlbVFQAAQGlwpSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJS46lVdAAAAAKyK1lc8WdUl8A2bOeiAqi4BAAC+81wpCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTijIN6Jdu3YZPXr0UttHjx6ddu3arfT1K9uvT58+6dOnz2qt7cvee++9PPLII0XN+c4776Rp06YZOnToUs8NGzYsXbt2XeU6AQAAAAAAviqhIN9799xzTzp27LjS/YYMGZInnnhilea+6aabMm3atK9aGgAAAAAAwGohFOR7b8MNN0ytWrVWul9FRcUqz73RRhvlwgsv/CplAQAAAAAArDbVq7oA+MK//vWvXHrppfnzn/+csrKydOrUKWeffXZq1qxZ2Gfo0KG59dZbs+666+bEE0+stAznvHnzcsopp+Spp55K48aNc95552WXXXbJgw8+mIsvvjh/+tOfUr3657/y48aNy6WXXprHH3887du3z2mnnZZDDz00U6ZMyYABA/Laa6+lTp06+dnPfpbTTjstw4YNy3333Zckef755zNx4sSizumcc87J6aefngcffDCdO3de5j7Tpk3LJZdckpdeeinrrrtufvazn+WUU07JWmstP7MvKyvq8EX5Yq7VOSeUKv0CxdErUBy9AqtGr8CK+V6B4ugVKI5eKU1CQb4VFixYkGOPPTaNGjXKqFGj8v7776dfv35Jkr59+yZJZs2alalTp+bOO+/M5MmT069fv2y99dbZeeedkySPPvpofvGLX+TMM8/M3XffndNOO60Q+vXr1y/PPvts2rRpkyR55JFHsv/++6fsS3/Rzj777Oy0004ZPHhwZsyYkZ49e2b77bdP9+7dC8uAnn/++UWf1zbbbJOjjjoql19+efbee+/Url270vPvv/9+jjrqqLRr1y533313ZsyYkb59+2a99dZLt27dljnnhhuum2rVVv9FvvXq1V75TkAS/QLF0itQHL0CxdErUBy9AsXRK1AcvVJahIJ8Y/r375+BAwdW2vbZZ5+lQYMGeeqppzJ79uzcddddWX/99ZN8Hr794he/SK9evZIka6+9dgYNGpQNNtggW221VZ5//vnccccdhVCwWbNmOeOMM5J8Hu499thj+cMf/pAuXbpk7733ztixY9OmTZvMnz8/TzzxREaNGrVUjbNmzUr79u2z+eabp2HDhvn973+fLbbYIuuuu25hidENN9xwlc77jDPOyNixY3PllVcuFSj+4Q9/yA9+8IMMHDgw1atXT5MmTTJnzpxce+21yw0F33//49V+pWC9erXz3ntz8xVWSIXvFf0CxdErUBy9AqtGr8CK+V6B4ugVKI5e+W6pX7+48FYoyDemZ8+e2XfffSttGz9+fG6//fZMmzYtjRs3LgSCSbLjjjvms88+y1tvvZUkadiwYTbYYIPC89tuu23uvvvuwuPmzZsXfl5rrbWyzTbbFK7uO/DAA9O3b98MGDAgf/zjH7PRRhulWbNmS9V40kknZejQobnzzjuz11575aCDDkqDBg2+1nmvt956Oeecc3LWWWfl0EMPrfTctGnTst122xWWNU2Sli1bZs6cOfnoo49Sp06dZc65Jv4IV1SsmXmhFOkXKI5egeLoFSiOXoHi6BUojl6B4uiV0rL61yCE5ahXr14aNWpUadSrVy/J51cBftmiRYsq/e+X77G3ePHi1KhRo/C4WrVqy32+bdu2WbRoUSZNmpRx48Zl//33X2aNJ554Yh599NH06NEjb7/9do499thKweNXdcABB2SXXXbJgAEDsnjx4sL2ZZ33F89/cd4AAAAAAABfl1CQb4Xy8vLMnDkzH3zwQWHbyy+/nOrVq+eHP/xhkuTtt9/O/PnzC8+/8sor2XLLLQuPp06dWvj5s88+y9///vfC8zVr1sw+++yTRx99NH/6059ywAEHLFXDp59+mosuuig1a9bMcccdl1GjRuWII47IuHHjkmSp+w+uqvPPPz9TpkzJAw88UOm8//a3v2XhwoWFbS+99FI23HDD1K1b92sdDwAAAAAA4AtCQb4Vdt999zRs2DBnn312pk6dmmeffTYDBw7MgQceWFhC89NPP03v3r3z+uuv54477si4ceNy7LHHFuZ44YUXMnz48EybNi0XXXRRFi5cmAMPPLDw/IEHHph77rknm2yySbbaaqulalh77bXz4osvZuDAgZk+fXpeffXVvPDCC9l2222TJD/4wQ8ya9aszJ49+yudY3l5eU444YTMmjWrsK1Tp05ZsGBBzj///EybNi2PPfZYhg0bli5dunztEBIAAAAAAOALQkG+FapVq5bf/va3SZIjjjgiv/rVr9K+fftceOGFhX222WabbLzxxjniiCNy/fXX55JLLql0X8CDDz44L7zwQg466KC88sor+d3vfpcf/OAHhed33nnnrLvuuunYseNy67jyyiszf/78HHbYYTn++OPTqlWrnHLKKUmSgw46KDNmzEjnzp1T8RUXUT755JPTsGHDwuP11lsvN954Y956660cfPDBGThwYI499ticdtppX2l+AAAAAACAZSmr+KrpBnzHzJs3L7vvvnv+8Ic/VArmvmvmzJm7WucrK0vq16+dd9+d64axsBL6BYqjV6A4euWra33Fk1VdAt+wmYMO0CuwEr5XoDh6BYqjV75bGjSoXdR+1ddwHVDlKioqMm7cuIwfPz4tW7b8TgeCAAAAAAAAX4VQkJJXVlaWwYMHp1q1ahk+fPjXnu+9995Lhw4dVrjPSy+99LWPAwAAAAAAsLoIBflemDBhwmqbq27durn//vtX23wAAAAAAABrmlAQVlG1atXSqFGjqi4DAAAAAACgaGtVdQEAAAAAAADAmiUUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBJXvaoLAAAAgFUx6cy2VV0C36CysqquAAAASoMrBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMRVr+oCAAAAYFW1vuLJqi6Bb9DMQQdUdQkAAPCd50pBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChx37tQsF27dmnatOkyx3PPPbdaj9W1a9cMGzZstc65pr333nt55JFHit5/3rx5ufjii9O2bds0a9Ys++67b6655posWLCgqNc/99xzadq0aeHxhAkT0rZt27Ro0SJPPfXUKte/OvXp0yd9+vT5xo87evTotGvX7hs/LgAAAAAAULqqV3UBVeHcc89Nx44dl9q+/vrrV0E13y5DhgxJRUVF9t9//6L279OnTz744INcddVV2WijjTJlypRceOGF+c9//pN+/fqt8vGvvvrqtGnTJqeeemrq1au3yq8HAAAAAABgad/LULB27dpp0KBBVZfxrVRRUVH0vnPnzs1jjz2W++67L9tss02SZIsttsjHH3+c888/P+edd17WWmvVLkadO3dudtppp2y++ear9DoAAAAAAACW73u3fOjKtGvXLvfcc0/+53/+J82bN0/37t0za9as/PKXv0yLFi1y0EEH5fXXX0/y+TKPXbp0yZAhQ9KyZcvstddeufvuu5c79+jRo7P//vunefPmOfTQQzNp0qQkyYMPPpidd945n332WWHfcePGZa+99kpFRcUq1ZQkL7zwQg499NA0b948nTp1yrhx4wrP9enTJ5deemnOOOOMtGjRInvuuWfuv//+JMmwYcNy33335b777itq+cqysrKUlZXlmWeeqbR93333zX333ZeysrIkyUcffZRf//rX2XHHHdOmTZsMHDgwn3zyyTLf+1mzZuXcc89d4fEfffTRdOzYMS1atMhhhx2W559/vvBc165dM2LEiBx33HFp3rx5DjvssLz55pvp169fWrZsmX333bew/3PPPZe2bdvmlltuyc4775zddtstw4cPX+5xH3/88RxyyCFp3rx5OnbsmPHjxydJ/vKXv2TbbbfN+++/X9h38uTJadGiRebNm5eKiopce+21adOmTVq1apWTTz45//jHPwr7zp49OyeccEJ22GGHHHLIIXnrrbdW9LYnScrKVu9YE3MaRqkO/WIYxQ29YhjFDb3y9d47vl+q+nfOML4LQ68YRnFDrxhGcUOvfHdGsb6XVwquzFVXXZXLL788derUyQknnJBDDjkkvXr1Ss+ePdOvX78MHTq0EB69+uqrWWeddXLnnXfmlVdeyYABA7LpppumTZs2leYcPXp0Bg4cmP79+6d58+YZPXp0TjzxxIwdOzbt27dPv3798uyzzxZe98gjj2T//ffPF8FasTXNmTMnJ510Unr16pU99tgjL7/8cvr06ZN69eqlVatWSZLbbrstp59+es4888zccsst6d+/f9q3b5/u3btn2rRpSZLzzz9/pe/Teuutl0MOOSSXX3557r777uy5557Zbbfdsuuuu2bLLbcs7Hfeeedl4cKFuf322/Ppp5/moosuyoUXXphLLrmk0nz33HNPDjnkkHTv3j2dOnVa5jGnTJmS3r1754ILLkjz5s3zxBNPpEePHnnwwQfTqFGjJMm1116biy++OOedd15OPfXUHHbYYfn5z3+ee+65J0OHDs1FF12UBx98MMnn91C8//77c9NNN+Wf//xnevfunXr16uWII46odNw///nP+eUvf5mzzjore+65Z/74xz+mV69eufPOO7Pjjjtm4403zqOPPpqf/exnhc9vzz33zHrrrZdRo0ZlzJgxueKKK1K/fv3cdNNN6d69e8aMGZMaNWrk9NNPzzrrrJO77747r7/+es4777xssMEGy33fN9xw3VSrtvrz/Hr1aq/2OaFU6Rcojl6B4ugVKI5egeLoFSiOXoHi6JXS8r0MBfv375+BAwdW2rbZZpvloYceSpIceuih2W233ZIku+yyS+bMmZMuXbokSTp37pybb7658LqysrJcfvnlqVevXrbeeutMmjQpd91111Kh4KhRo9K1a9ccfPDBSZKzzjorkyZNyq233pozzzwze++9d8aOHZs2bdpk/vz5eeKJJzJq1KjC64ut6bbbbstuu+2Wn//850mSRo0a5bXXXsvNN99cCAWbNm2aHj16JElOP/303HLLLXn99dez4447platWkmSDTfcsKj38qKLLso222yTe++9NyNHjszIkSNTv379XHzxxdlrr73y1ltv5bHHHsvzzz+f2rU//+MxcODAHHzwwTnnnHMqzbXhhhumWrVqqV279nKPP2LEiBxxxBGF0PCYY47JpEmTcvvtt6dPnz5Jkr333rtwT8QOHTrk4YcfTs+ePVNWVpYjjjgip556amG+zz77LJdcckl+/OMfZ7vttsuxxx6bO+64Y6lQ8Lbbbst+++2Xbt26JUnKy8vzyiuv5KabbsrQoUPTsWPHjB07thAKjh07NmeffXaS5MYbb0z//v2z8847J0kuvPDCtGnTJk899VQaNmyYl156KY8//ng222yzbLXVVpk8eXLGjh273Pf8/fc/XqXkf2XKyj7/w/7ee3OzCqvHwveSfoHi6BUojl6BVaNXYMV8r0Bx9AoUR698t9SvX1x4+70MBXv27Jl999230rbq1f/fW9GwYcPCz7Vq1ap0f7tatWpl4cKFhceNGjVKvXr1Co+bNWuWO+64Y6ljTps2rVIYlSQ77LBD4cq8Aw88MH379s2AAQPyxz/+MRtttFGaNWu2yjVNnz49jz/+eFq2bFl4fuHChSkvLy88bty4ceHn9dZbL0kqLV26KtZaa6107do1Xbt2zezZs/Pkk0/m97//fXr27JlHH30006ZNy+LFi9O2bdtKr1u8eHHefPPNFc593XXX5Xe/+13h8Q033JBp06blkUceyZ133lnp/JYMYbfYYovCz7Vq1cpmm21WuOLyy5/fOuuskx//+MeFx82aNctNN920VC3Tpk3LkUceWWlby5Ytc++99yb5/PMbOXJk/vOf/+Ttt9/Of/7zn+y11175+OOP869//Su9evWqdH/FTz75JDNnzsynn36aunXrZrPNNis8t/32268wFEyyRv4IV1SsmXmhFOkXKI5egeLoFSiOXoHi6BUojl6B4uiV0vK9DAXr1atXWGpyWapVq1bp8ZJhzpctGSYmyaJFi5a5/9prr73UtkWLFmXx4sVJkrZt22bRokWZNGlSxo0bV7jSbVVr+uyzz9KpU6ecfPLJy62zRo0aS72u4it09XPPPZcXX3wxv/jFL5IkG2+8cQ4//PDss88+2XPPPfPiiy+mRo0aqV27diE8W9LGG2+cv/71r8ud/8gjj6z0Pmy88cZZtGhRevToUbji8gtfXOGYLP2ZrMrnt3jx4kKAuKRlfX6LFy8ufH7bbLNNfvjDH+axxx7LzJkz0759+6y99tr59NNPkyS/+c1vKgWzSbL++uvnz3/+81Lv/bI+HwAAAAAAgK9j9d+Y7HvmzTffzMcff1x4PHny5Gy99dZL7VdeXr5UAPbXv/61EBTVrFkz++yzTx599NH86U9/ygEHHPCV6ikvL8+bb76ZRo0aFcaECRMyZsyYol6/rEBseT788MP89re/zZw5cyptX2eddVKtWrVsuOGGKS8vz9y5c1NWVlao55NPPsnll1+eBQsWrHD+unXrVjqPWrVqpby8PO+8806l7XfeeWeefPLJoute0kcffZR33nmn8PjVV19N06ZNl9pvWZ/fSy+9VCnoO/DAA/P444/niSeeKHx+derUSb169TJnzpxCvZtuumkGDx6cGTNmZOutt86HH35Y6arJ11577SudCwAAAAAAwPJ8L0PBuXPnZs6cOUuN//73v6s813//+9/0798/06ZNy1133ZWxY8fmqKOOWmq/bt265dZbb83999+fGTNmZMiQIZkyZUoOO+ywwj4HHnhg7rnnnmyyySbZaqutvtK5HXXUUZk8eXKuvPLKzJw5M2PGjMnQoUMrLU+5Ij/4wQ8ya9aszJ49e6X77r333mnSpEmOO+64TJw4Me+8805eeOGFnHnmmSkvL0/r1q3TpEmT7LHHHjnrrLPyyiuv5G9/+1vOOeec/Pe//02dOnVW+fy6deuWhx9+OLfcckveeuutwn0Ml1wSdVX169cv//d//5dx48Zl1KhROfroo5d53HHjxuXmm2/OzJkzM3LkyDz66KOF+zomn39+Tz/9dObMmZPdd9+90muvuuqqTJw4MTNnzkzfvn3z4osvZsstt0yTJk2y66675txzz82UKVPy2GOP5dZbb/3K5wIAAAAAALAs38vlQy+55JJccsklS20//fTTV3muTTfdNA0aNMhhhx2WBg0aZPDgwdlpp52W2q9jx4559913c/XVV2fOnDnZZpttctNNN6VJkyaFfXbeeeesu+666dix4yrX8YXNN9881113XYYMGZIRI0Zk4403Tp8+fdK5c+eiXn/QQQfl1FNPTefOnfPss8+u8MrBGjVqZOTIkbn66qszcODAzJkzJ+uvv346dOiQgQMHFpbtvPzyy3PRRRelW7duqV69evbYY4/07dv3K53fDjvskMsvvzzDhg3L5Zdfnh/+8Ie54oor0rp16680X/L50q1HHXVU1llnnfzqV79Kp06dltqnRYsWheMOHjw45eXlueqqq7LrrrsW9mnUqFF+9KMfZdttt620BOjxxx+fjz/+OOeff37mzZuXZs2aZcSIEVl//fWTJFdeeWX69euXI488Mptttlm6du2a0aNHf+XzAQAAAAAA+LKyiq9yMzmSJKNHj84111yTiRMnrpb55s2bl9133z1/+MMf0rBhw9UyJ8v33HPP5ZhjjsnUqVNXy3yLFy/O3nvvncsuuyy77LLLaplzWebMmbta5ysrS+rXr513353rhrGwEvoFiqNXoDh65etpfcVXu4UA300zBx2gV2AlfK9AcfQKFEevfLc0aFC7qP2+l1cKfttUVFRk3LhxGT9+fFq2bCkQ/A764x//mKeffjq1atXKT37yk6ouBwAAAAAAoBKh4LdAWVlZBg8enGrVqmX48OFVXU6S5L333kuHDh1WuM9LL730DVXz7TdixIjMmDEjV111VWHZVAAAAAAAgG8LoeDXcOihh+bQQw9dLXNNmDBhtcyzutStWzf3339/VZexRu28886rbenQUaNGrZZ5AAAAAAAA1gShIMtUrVq1NGrUqKrLAAAAAAAAYDWwziEAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlLjqVV0AAAAArKpJZ7at6hL4hpSVVXUFAABQGlwpCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJa56VRcAAAAAsCKN+zxU1SWwDJPObFvVJQAAsApcKQgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4o+C3Srl27NG3adJnjueeeW2r/5557Lk2bNi08Xt5+a9qqHPfL57jddtvlpz/9aUaOHPm1ahg2bFh22mmntGrVKvPmzftacy1Pu3btMnr06DUy95KGDRuWrl27rvHjAAAAAAAA3x/Vq7oAKjv33HPTsWPHpbavv/76VVDNmrHkOX722Wd59tlnc95556Vu3bo5+OCDV3m+Dz/8MNdcc00GDhyY3XffPeutt95qrvhz99xzT9ZZZ501MjcAAAAAAMCaJBT8lqldu3YaNGhQ1WWsUV8+x0MOOSR/+MMfMn78+K8UCn5xZeCuu+6azTfffHWVuZQNN9xwjc0NAAAAAACwJlk+9Dtk3rx5+dWvfpWWLVtmv/32y6uvvrpKr3/00UfTsWPHtGjRIocddlief/75JMmTTz6ZFi1aZP78+YV9n3766ey444755JNPUlFRkWuvvTZt2rRJq1atcvLJJ+cf//jHaj236tWrp0aNGkmSrl27ZuDAgWnfvn322muvzJs3L//6179y+umn5yc/+Ul23nnnXHTRRVmwYEHeeeedtGvXLknSoUOH9OnTJ0nywgsv5NBDD03z5s3TqVOnjBs3rnCsf/zjH+nevXtatmyZXXfdNQMHDszChQuTJFOmTMmRRx6ZFi1aZI899sg111xTeN2Sy4cuXrw4N954Y9q3b5/mzZuna9eumTp1amHfpk2b5oEHHsiBBx6YZs2a5aijjsrbb79deH7ChAk5+OCDs/3226dVq1b51a9+lY8//rjo96usbPWONTGnYZTq0C+GUdzQK4ZR3NArhlHc4Nupqn8vjGX3SlXXYBjfhaFXDKO4oVe+O6NYrhT8Dunfv3+mT5+eW2+9Ne+//34hACvGlClT0rt371xwwQVp3rx5nnjiifTo0SMPPvhgdtttt/zgBz/Ik08+mf322y9JMn78+LRr1y61atXKqFGjMmbMmFxxxRWpX79+brrppnTv3j1jxowpBHlf1cKFC/P444/nT3/6Uy655JLC9tGjR2fEiBGpWbNmatasmWOPPTaNGjXKqFGj8v7776dfv35JknPOOSd33313Dj/88Nx9990pLy/PnDlzctJJJ6VXr17ZY4898vLLL6dPnz6pV69eWrVqlYEDB2adddbJ/fffn/feey89e/bMlltumaOPPjpnn312dtpppwwePDgzZsxIz549s/3222fPPfesVPe1116b22+/PQMHDkzjxo1zww035IQTTsi4ceMKS4wOGzYsAwcOTL169XL66afnqquuyhVXXJG33norp59+es4///zstttumTlzZs4666zcddddOe6441b6nm244bqpVm315/n16tVe7XNCqdIvUBy9AsXRK8B3Vf36/n59G/legeLoFSiOXiktQsFvmf79+2fgwIGVtm222Wa544478sgjj+SWW27JdtttlyQ55ZRTcuGFFxY174gRI3LEEUekU6dOSZJjjjkmkyZNyu23354+ffpk3333zfjx47Pffvtl0aJFeeyxx3LRRRclSW688cb0798/O++8c5LkwgsvTJs2bfLUU08VrtL7quf4ySefpFatWjn22GPTuXPnwj577bVXdtxxxySfX1U3e/bs3HXXXYV7K55//vn5xS9+kV69ehWW9dxwww1Tu3btjBgxIrvttlt+/vOfJ0kaNWqU1157LTfffHNatWqVWbNmZbvttstmm22WRo0a5frrr0+dOnWSJLNmzUr79u2z+eabp2HDhvn973+fLbbYolL9FRUVufXWW/OrX/0q7du3T5IMHDgw++yzTx588MEceeSRSZLjjjsuu+66a5KkS5cuue2225J8fpVh3759c8QRRyRJtthii+y22255/fXXi3r/3n//41VK/lemrOzzP+zvvTc3FRWrb14oRfoFiqNXoDh6BYqzOv//D6vXu+/OreoSWILvFSiOXoHi6JXvlmL/Yy2h4LdMz549s++++1baVr169cyYMSOLFi3Kj3/848L27bffvuh5p02blkceeSR33nlnYdvChQvTpk2bJMkBBxyQU045JQsWLMhLL71UeO7jjz/Ov/71r/Tq1StrrfX/rk775JNPMnPmzK99jmuvvXYaNGiQatWqVdpnyXsDTps2LY0bNy4Egkmy44475rPPPstbb72V2rUr/7JPnz49jz/+eFq2bFnpXMvLy5MkJ5xwQs4999w8+uijadu2bTp27Jhtt902SXLSSSdl6NChufPOO7PXXnvloIMOWuoej++9914++OCDtGjRorCtRo0aadasWaZNm1bY1qhRo8LP6623XmGJ0saNG6dmzZoZPnx4Xn/99bz++ut54403ctBBBxX9Hq6JP8IVFWtmXihF+gWKo1egOHoF+K7yt+vbyfcKFEevQHH0SmkRCn7L1KtXr1KY9IX33ntvqW01a9Yset5FixalR48eOfjggyttr1WrVpKkdevWWWeddfLMM8/kqaeeSocOHVKzZs188sknSZLf/OY3hVDtC0uGdKtieee4pLXXXnuZP39h0aJFlf53SZ999lk6deqUk08+udL26tU//3Xv3Llzdt111zz22GP54x//mJ49e6ZHjx7p1atXTjzxxOy///557LHHMnHixBx77LEZOHBgDj/88BXW80UtixcvLjxe3tKqU6ZMSZcuXdKuXbu0atUq3bp1y80337y8twIAAAAAAOBrW/03JmON2HLLLVOjRo28+uqrhW1///vfi359eXl53nnnnTRq1Kgw7rzzzjz55JNJkrXWWis//elP88c//jETJkzIAQcckCSpU6dO6tWrlzlz5hRet+mmmxbuufdNKC8vz8yZM/PBBx8Utr388supXr16fvjDHy5z/zfffLPSuU6YMCFjxoxJklx55ZV577330qVLl/zud7/LGWeckfHjx+fTTz/NRRddlJo1a+a4447LqFGjcsQRR2TcuHGV5q9du3bq16+fl19+ubBt4cKF+dvf/rZUcLosDzzwQFq3bp0rrrgiRx11VJo3b54333wzFf5zCwAAAAAAYA0RCn7LzJ07N3PmzFlqrLXWWjnooIMycODA/PWvf81zzz2Xa665ZqnXv/LKK3nyyScrjfnz56dbt255+OGHc8stt+Stt97KyJEjM3LkyDRu3Ljw2gMOOCAPPPBAPv300+yyyy6F7d26dctVV12ViRMnZubMmenbt29efPHFbLnllt/EW5Ldd989DRs2zNlnn52pU6fm2WefzcCBA3PggQcW7gW4pKOOOiqTJ0/OlVdemZkzZ2bMmDEZOnRoNttssySfLy964YUXZsqUKXn99dfzxBNPZNttt83aa6+dF198MQMHDsz06dPz6quv5oUXXigsLbqkbt265eqrr87EiRMzbdq09OvXL59++mk6duy40vOpW7dupk6dmldeeSUzZszIoEGD8uqrr2bBggVf/80CAAAAAABYBsuHfstccsklueSSS5bafvrpp6dfv34ZOHBgjjvuuKy//vrp2rVrLrvsskr7DRkyZKnXjh8/PjvssEMuv/zyDBs2LJdffnl++MMf5oorrkjr1q0L++2www7ZYIMNssceexSW2kyS448/Ph9//HHOP//8zJs3L82aNcuIESO+8vKhq6patWr57W9/m4EDB+aII47Iuuuum06dOuVXv/rVMvfffPPNc91112XIkCEZMWJENt544/Tp0yedO3dOkgwYMCAXXHBBunbtms8++yx77bVXzjvvvCSfX0V44YUX5rDDDkv16tXz05/+NKeccspSx+jevXvmzZuXfv36Zd68eWnZsmVGjRqVDTfccKXn07Vr1/z9739Pt27dsvbaa6d169Y59dRT89BDD32NdwkAAAAAAGD5yiqsWQjfKXPmzF2t85WVJfXr18677851w1hYCf0CxdErUBy9AsUpK0taDXmyqstgGSad2baqS2AJvlegOHoFiqNXvlsaNKhd1H6WDwUAAAAAAIASZ/lQVpudd955hffFe+ihhwr39QMAAAAAAOCbIxRktbnnnnuyePHi5T6/0UYbfYPVAAAAAAAA8AWhIKtNw4YNq7oEAAAAAAAAlsE9BQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxFWv6gIAAAAAVmTmoAPy7rtzU1FR1ZUAAMB3lysFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxFWv6gIAAAAAVqRxn4equgSWYdKZbau6BAAAVoErBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFvyc+/PDDDBo0KO3atUuLFi2y//77Z+TIkVm8ePEaP/a8efNy//33r9FjvPbaaznjjDPSpk2bNGvWLPvuu2+uuuqqfPLJJ2v0uAAAAAAAAN8FQsHvgf/85z85/PDDM3ny5Fx88cX5wx/+kF/+8pf53e9+l4svvniNH3/kyJG5995719j8f/rTn/Kzn/0s1atXz/DhwzN+/Pj07t0748ePzxlnnLHGjgsAAAAAAPBdUb2qC2DNu+KKK1KzZs2MGDEia6+9dpKkYcOGqVWrVk455ZT8/Oc/T3l5+Ro7fkVFxRqbe8GCBTnvvPNyyCGH5IILLihs32yzzdK0adPst99+mTx5cpo1a7bGagAAAAAAAPi2EwqWuAULFuShhx7K2WefXQgEv7D33ntn5MiR2XzzzfPhhx9myJAhmTBhQj799NO0a9cuffv2zfrrr5/nnnsuxxxzTKZOnVp4bZ8+fZIkgwYNyrBhwzJz5syst956GTNmTNZee+107949PXr0yOjRo3PNNdckSZo2bZqpU6emXbt22X///fPAAw+kfv362WCDDdKkSZP07du3MP/JJ5+cH//4xyu90u/pp5/O7Nmz07Nnz6We22KLLTJ27Ng0bNgwyefh5G9/+9vcfvvt+eSTT9KqVaucf/752WyzzQr1nXLKKfnf//3ftGzZMvvuu2/uu+++7LbbbrnppptSs2bN/PrXv06tWrVy2WWXZe7cufnZz36WX//610mS2bNn5+KLL86f//znzJ8/P1tttVX69u2bnXbaKe+8807at2+fYcOG5fLLL8/s2bOz22675bLLLkvdunWz7777pkuXLjnuuOMK9Xfq1CnHHHNMDj/88KXOraxshW/LKvlirtU5J5Qq/QLF0StQHL0CxdEj314+m28X3ytQHL0CxdErpUkoWOLeeuut/Pe//83222+/1HNlZWXZZZddkiTHH3985s+fn+uuuy5JMmDAgPTp0yfDhw8v6jjjxo3LUUcdlfvuuy+PPvpoBg8enA4dOqRjx455/fXX89JLL2XYsGGF/ceMGZMRI0akoqIikydPztVXX53zzjsvZWVlmTt3bp5++umceeaZKz3uX//61zRu3Dj16tVb5vNfBIJJcuutt2bMmDG54oorUr9+/dx0003p3r17xowZkxo1aiRJHn/88dx+++1ZvHhxXnnllbz00ktp2LBh7rnnntx2220ZMGBAtt122wwfPjyTJ0/OeeedlwMOOCDbbrttzjrrrNSpUyd33HFHKioqMmTIkAwYMCBjxowp1HDdddfl/2Pv/uO9nu//8d+OopR+UHn7URLS/KiWGFlrnGzmVGTDpLHI/I4MKytqYliYCYUiwxiTJlEk2xiTvWMW8qYfEh+UH/0w1q/z/aOv1xz9eqEcXrteL5fnpXOePx7P+/N1zv31unS5nefjecUVV6SysjInn3xybrrpppx55pnp0qVLJk6cWAgFZ8yYkVmzZuW73/3uKte0xRZ1U6PG+p/5t1Gjeut9TChV+gWKo1egOHoF+Kpq3Nj715eRzxUojl6B4uiV0iIULHELFy5MktSrt+bGnT59eqZMmZIJEyYUphEdOnRoKioqMnPmzKLO07Bhw/Tr1y81atTI8ccfnxtuuCHTpk1LixYtUqdOnWy88cZp0qRJYf+DDz44rVq1SrJyqs/Bgwdn6tSpad++fSZNmpQWLVqkZcuW6zzvu+++mwYNGlRZ179//0ycOLHw/YknnpiTTjopI0eOzKBBg7L33nsnSS644IJ07Ngxjz76aMrLy5MkP/zhD7PDDjskSZ599tlUVlZm4MCBqVOnTn74wx/m5ptvTp8+ffK1r30tX/va13LFFVdk5syZ2WWXXXLAAQfkwAMPzFZbbZUk6dmzZ0444YQqtZ1++ulp06ZNkpV3Av7zn/9MknTt2jXDhw/PG2+8ka222ioPPPBAOnbsuMq1Jck777y/3u8UbNSoXt5+e1E24EyvUBL0CxRHr0Bx9AoUx1+nf3nNn7+oukvgY3yuQHH0ChRHr3y1FPvHWkLBEtewYcMkyYIFC9a4z8yZM1O/fv0qzxXccccd06BBg8ycOXOtgeJHmjZtmho1ahS+r1u3bpYtW7bG/bfddtvC1/Xr10+nTp0yYcKEtG/fPg888EAqKirWec6Pjl20qOp/Qs4+++ycfPLJha+XLl2a999/P2+88UbOPPPMbLTRf+6y+/DDDzN79uzV1pUkjRo1Sp06dZKkMP1q06ZNC9tr166dJUuWpKysLD169Mj999+fqVOnZtasWZk2bVpWrFhRZbzmzZsXvt5ss82ydOnSJCtf71atWmXChAnp1atXHnjggZx44olrvO4N8SZcWblhxoVSpF+gOHoFiqNXgK8q711fTj5XoDh6BYqjV0qLULDEbbfddqlXr16ee+65wh1qH3fyySfnBz/4wWqPXb58eZYvX56y1fxZ5rJly1Kz5n9+fT6afvPjKtfyTvHJ5xt27do1l156afr06ZPHH3+8yvMF16Zt27a58cYb89577xUC0MaNG6dx48ZJVoZ2H11LkvzmN7+pEn4mqXI33ifr+vg1fmR1r8eKFSty3HHHZeHChamoqEh5eXmWLl2a0047rcp+q3udPtKlS5c8+OCD+da3vlV4BiEAAAAAAMD6sP4fTMaXSs2aNVNRUZHbbrstS5YsqbJt8uTJmTx5crbffvssXLiwylShL7/8chYvXpwWLVoUgqzFixcXts+dO7foGlYXon1SeXl5Fi5cmFGjRqVVq1bZbrvtihq7U6dO2XLLLQvPQvy4JUuW5N13302y8o7CRo0aZd68eWnevHmaN2+erbfeOkOHDs2sWbOKvpY1efnll/PUU09l9OjROemkk7LffvvlrbfeSrL2cPTjunbtmn/84x8ZO3Zsvv3tb6du3bqfuy4AAAAAAIBEKPhfoU+fPlm8eHF69+6dKVOmZM6cObnrrrvSv3//HHPMMdlpp53SqVOn9OvXL88++2yeffbZ9OvXL3vttVd23nnntGzZMrVr186IESPy6quvZuTIkXn++eeLPv+mm26at956a61BYu3atdO5c+fcdNNN6dKlS9Fj16pVK7/61a9y55135txzz83TTz+duXPn5qGHHsoPf/jDzJkzJ7vttluSpFevXrnyyiszefLkzJ49OwMHDszUqVMLzxD8POrXr5+NNtoo48ePz2uvvZYJEyZk2LBhSbJKGLsm22yzTdq0aZObb775U70GAAAAAAAA6yIU/C/QpEmT3H777WnWrFnOPvvsdO3aNTfffHNOP/309O/fP0ly6aWXplmzZunVq1d69+6dli1b5pprrkmy8tl3Q4YMyfjx49O1a9dMnz49PXv2LPr83/nOd7JixYp06dIlb7/99hr3q6ioyJIlS4p+nuBHvvGNb+Tuu+9OkvTt2zff+973cvHFF6dNmza57777Ul5eniTp3bt3DjvssJx//vnp3r17Xn/99YwaNarK9KGf1VZbbZXBgwfnhhtuSNeuXXP99ddn4MCBqVmz5qcKUCsqKlKzZs3st99+n7smAAAAAACAj5RVFju3IWxgd955Z+69997ceuut1V1Ktfn1r3+dN954I5deeuka95k3b9F6PWdZWdK4cb3Mn7/IA2NhHfQLFEevQHH0ChSnrCzZ87K/VHcZrMZTZ3Wq7hL4GJ8rUBy9AsXRK18tTZrUK2q/mhu4DlinV155JdOmTcvw4cPTt2/f6i6nWkyfPj0vvPBCfve732X48OHVXQ4AAAAAAFBihIJUu7lz52bAgAHp3LlzunXrVlg/ceLEwvSmq9O+ffuMHDnyiyhxg5s2bVouvPDCHHXUUdlzzz2ruxwAAAAAAKDECAWpdt/85jfzzDPPrLK+Y8eOGTt27BqPq1279oYr6gt22GGH5bDDDqvuMgAAAAAAgBIlFORLq27duqlbt251lwEAAAAAAPCVt1F1FwAAAAAAAABsWEJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHE1q7sAAAAAgLWZfUmXzJ+/KJWV1V0JAAB8dblTEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASlzN6i4AAAAAYG227z++uktgNZ46q1N1lwAAwKfgTkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHElFQqWl5dnzJgxq6wfM2ZMysvLP9OYRx99dIYNG/Z5S9tghg0blqOPPjpJ8uSTT6ZVq1bp3Lnzavc988wz06pVqzz55JPrHHfu3Llp1apV5s6du17r/Uj//v3TqlWr1S7r4/Xe0PV/Wc8NAAAAAACwOjWruwDWvzfffDP/93//l5133rmwbsmSJXn00UeLHmPrrbfOY489li222GJDlJgkOeiggzJgwIBV1tepU+dzj/1F1P9lPDcAAAAAAMDqCAVL0J577pnJkydXCQWfeOKJ7LTTTnn66aeLGqNGjRpp0qTJhioxSVK7du0Ndo4vov4v47kBAAAAAABWp6SmD12Xj6Z1fPDBB3PAAQekdevWOfHEE/Pee+8V9nnooYdy4IEH5utf/3ouuOCCLF++vMoYd9xxR8rLy9OuXbscffTRefHFFwvbysvLM3To0HTs2DHdu3dPZWVlpk2bliOOOCJt2rTJkUcemd/85jeF6T6HDRuWU045JT179sw3vvGNTJkyJW+++WZOP/307LXXXtl9991z6KGH5n//938L53j55ZfTo0ePtG3bNsccc0zefffdVa6zc+fOmTx5cpV1Dz/8cA444IAq69Z2rk9OgblgwYKcd9552XfffdO+ffucc845WbBgQZKV05aWl5dn0KBBad++fa6//vpP+6NZrf79++fiiy9O375907Zt23z729/O2LFjC9s//PDDDBgwIO3bt8+3vvWt3HXXXdl1110zd+7cVepv1apV/vjHP6Zr167Zfffdc9RRR+XVV18tjPV///d/Ofroo9OmTZsceOCBue2226rU8tBDD6WioiJt27bNYYcdlilTphS2HX300RkyZEg6d+6c/fbbLy+++OKnOvfafkcAAAAAAADWh/+qUPAjI0aMyBVXXJFbb701//znP3PTTTclWRm49e3bNz169Mjdd9+dZcuWVQnkJk+enKuvvjrnnXde7rnnnrRv3z7HHHNMIRxLknHjxmXUqFG55JJLsnjx4hx//PHZbbfdMnbs2HTt2nWVwOzhhx9O165dc/PNN6dNmzY5++yzs3z58txxxx0ZO3Zs/ud//ieDBw9OsnIK0BNOOCHNmjXLmDFjcuCBB+b3v//9KtdXXl6ef/7zn5k/f36SZMWKFZk8efIqoeDazvVJp512Wl544YWMGDEiN910U2bMmJH+/fsXtr/22mtZsmRJxowZk65duxb/w1iH2267Lbvttlvuu+++fPe7382gQYOyaNGiJMmFF16Yp59+OqNGjcqvf/3rjBw5cpUQ9+OGDRuWAQMGZMyYMXn33Xdz5ZVXJlkZLv7kJz9J+/btc++996Zfv3659tprCwHk9OnT069fv5x88sm59957c/DBB+cnP/lJXnnllcLYY8aMydChQ3P11Venbt26RZ970aJF6/wdWZ2ysvW7bIgxLZZSXfSLxVLcolcsluIWvWKxFLfw5VTdvxeW1fdKdddgsXwVFr1isRS36JWvzlKs/8rpQ08//fS0adMmSdKtW7f885//TJLcfffd2XPPPdOrV68kyXnnnZdHHnmkcNzIkSNz4oknZv/990+S9O3bN3/5y19y7733Fu7sOvjgg9OqVaskye9///vUqVMnAwcOTI0aNbLDDjtk6tSpmTdvXmHMxo0bp0ePHkmSysrKHHDAATnwwAOz1VZbJUl69uyZE044IUny+OOP57333svgwYNTp06d7LjjjpkyZUreeeedKte37bbbplWrVnnkkUdy+OGH55lnnknDhg2z/fbbF/ZZ17k+bvr06ZkyZUomTJiQFi1aJEmGDh2aioqKzJw5s7Df8ccfn+bNmxf9cxg3blwmTpy4yvrx48dnm222SbLyLruf/OQnSZIzzjgjv/3tb/PSSy+lVatWGTt2bG644YZ8/etfT5IMHDgwxx9//BrPd+yxx6ZDhw5Jkh49ehTuBhw3blwaNWqUvn37Jkm23377vPbaa/ntb3+b7t27Z9SoUTniiCPSrVu3JMkxxxyTp556KrfffnshGN1vv/2yxx57JEnhDsFizn3//fev83fkk7bYom5q1Fj/eX6jRvXW+5hQqvQLFEevQHH0CvBV1bix968vI58rUBy9AsXRK6WlpELBmjVrZsWKFausX7FiRWrW/M+lfjy42myzzbJ06dIkyYwZM7LLLrsUtm288cZVvp8xY0aGDh2aK664orDu3//+d2bPnl34ftttty18/eKLL2a33XZLjRo1Cuu+/vWv56GHHlrt/mVlZenRo0fuv//+TJ06NbNmzcq0adMK1/Tyyy9n++23T506dQrHtG7dOn/+859XuebOnTvn4YcfzuGHH55Jkyatcpfgus71cTNnzkz9+vULgWCS7LjjjmnQoEFmzpyZevVWvik0bdp0lWPXpry8PGefffYq67fccsvC1x8PMjfbbLMkybJlyzJz5swsXbo0rVu3Lmxv167dWs+3pp/7zJkzM3369CrHL1++vPBzmzFjRh544IEqd2UuXbo0HTt2LHz/8Z/jpzl3Mb8jn/TOO+9/quR/XcrKVr6xv/32olRWrr9xoRTpFyiOXoHi6BUozvr8/w/r1/z5i6q7BD7G5woUR69AcfTKV0uxf6xVUqFgvXr1snjx4lXWL1q0qBBcJSvDvjWp/MRv98f3Xb58eX7+858X7vj6yEdhVZLUqlWr8HWNGjVWGe+T3398/xUrVuS4447LwoULU1FRkfLy8ixdujSnnXZaUfV9XOfOnTNy5Mh88MEHefjhh6sEmcWe6yObbLLJas+xfPnyKtN1fvxailG3bt113lm4uuurrKysEvJ+fP2nHStZGTJ26NAh559//mq3L1++PD/5yU/SvXv3Kutr165d+Hpd176mcxfzO7I6G+JNuLJyw4wLpUi/QHH0ChRHrwBfVd67vpx8rkBx9AoUR6+UlpJ6pmCrVq3y9NNPr7L+H//4R3bdddd1Ht+yZcvCVKLJyuBs+vTphe9btGiRN954I82bNy8sI0aMyDPPPLPG8V544YUqd98999xzazz/yy+/nKeeeiqjR4/OSSedlP322y9vvfVWkpVBUcuWLTN79uzCM/WS5IUXXljtWLvuumu22GKL3HbbbVm6dGl22223T3Wuj2vRokUWLlxYZarQl19+OYsXL65y9+AXabvttsvGG2+cadOmFdZ9/OtPo0WLFpk1a1aaNm1a+Lk+88wzueWWWwrb586dW+Xn/vvf/z5/+ctfPvd1fNrfEQAAAAAAgM+ipELBHj165OGHH87w4cPzyiuv5MUXX8zVV1+dRx55JD179lzn8UcccUSmTZuW4cOHZ+bMmbn00kvz+uuvF7Yfe+yxufnmmzN27NjMmTMnQ4cOzQMPPJAdd9xxteN16dIlixcvzsUXX5xZs2blzjvvzP3337/G89evXz8bbbRRxo8fn9deey0TJkzIsGHDkiRLlizJvvvum6233joDBgzIjBkzMmbMmLWOV15enmuvvTadO3f+1Of6uB133DGdOnVKv3798uyzz+bZZ59Nv379stdee2XnnXde8wu6Dh9++GHmzZu3yrJgwYJ1Hlu3bt18//vfz0UXXZR//OMfeeaZZ3LRRRclWTk16qdx8MEH58MPP8z555+fGTNm5M9//nMuuuiiNGrUKEnSq1ev3H///fntb3+bOXPmZPTo0Rk9enSVqU0/q0/7OwIAAAAAAPBZlFQo2Lp161x33XV59NFH07179/To0SN/+9vfMnLkyHzta19b5/HNmzfP8OHDM378+HTv3j3z5s3Lt7/97cL2ioqKnHnmmbnqqqvStWvXPPHEExk+fPgaw6G6detmxIgReeqpp9KtW7fcc8896dat2xqn49xqq60yePDg3HDDDenatWuuv/76DBw4MDVr1szzzz+fjTfeONddd10WLFiQQw89NLfffvtaw87OnTvn/fffX+V5gsWc65MuvfTSNGvWLL169Urv3r3TsmXLXHPNNet4RdfugQceSMeOHVdZzjjjjKKO79evX1q1apVevXqlT58+6dq1a5K1Tw+7OptttlluuOGGzJ49O927d8/AgQPTs2fPnHjiiUlWPuPvV7/6VX73u9+loqIid955Zy6//PLstdden+6CV+PT/o4AAAAAAAB8FmWVxTzAjM/k1VdfzZtvvpk999yzsO4Xv/hFPvjgg1xyySXVWNm6vfLKK/nud7+bv/zlL/mf//mf6i5ntSZNmpQOHTqkbt26SZJnn302Rx11VJ5++ulPHQxWl8/yOzJv3vp9kHtZ2cqHkM6f74GxsC76BYqjV6A4egWKU1aW7HnZ5398A+vfU2d1qu4S+BifK1AcvQLF0StfLU2a1Ctqv5K6U/DLZvHixTn22GMzYcKEvPbaa3nwwQfzxz/+Md/73vequ7S1evPNN/PYY49l4403zuabb17d5azR1VdfnV/+8pd55ZVX8vzzz2fo0KEpLy//ygSCyVf3dwQAAAAAAPhqqVndBZSyXXbZJeeff36uuOKK/L//9/+yzTbb5Nxzz81+++1X3aWt1S233JLbb789p5xyymeaxvLUU0/N448/vsbtv/jFL3LwwQd/nhKTJJdddlmGDBmS7t27Z5NNNkl5eXl+/vOff+5xv0hf1d8RAAAAAADgq8X0oax3b731Vj744IM1bm/UqFE222yzL7Ci0mL6UKg++gWKo1egOHoFimP60C8v04d+ufhcgeLoFSiOXvlqKXb6UHcKst5tueWW1V0CAAAAAAAAH+OZggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4mpWdwEAAAAAazP7ki6ZP39RKiuruxIAAPjqcqcgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUuJrVXQAAAADA2mzff3x1l8Dn9NRZnaq7BACA/3ruFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicU5Etn6dKlGTZsWDp37pzdd989++23Xy6++OIsXrx4ncfOnTs3rVq1yty5c9d7XWPGjEl5eflqt5WXl2fMmDGF76dNm5bevXunXbt2adeuXXr27Jm//vWvq9T50bLLLrtk7733zimnnJLZs2ev99oBAAAAAID/bkJBvnQuu+yyPPjgg7nwwgszYcKEXHzxxfnrX/+as88+u7pLK8obb7yRH//4x2nXrl3+8Ic/5O67784+++yTE044If/4xz+q7HvXXXflscceyyOPPJLrr78+S5YsyY9+9KO89dZb1VQ9AAAAAABQioSCfOncc889OeOMM9KhQ4c0bdo0HTp0yODBg/PII498JcKyBx98ME2bNs1pp52WHXfcMTvssEP69OmTvfbaK3fffXeVfbfYYos0adIkW221Vdq2bZtrrrkmderUyXXXXVdN1QMAAAAAAKVIKMiXTllZWf72t79lxYoVhXXt2rXL+PHjs/nmm+fNN9/M6aefnr322iu77757Dj300Pzv//7vasd6+eWXC9N4tm7dOkcddVRmzJiRJHnyySdTXl6eQYMGpX379rn66qvzta99Lc8991zh+Lfffju77rprXnnllaLr32ijjfLaa6+tcsyll16a008/fa3H1qpVK4ccckgeeuihos8HAAAAAACwLjWruwD4pGOOOSZXXXVVJk2alG9/+9vZd99907Fjx+y0005JkrPPPjv169fPHXfckcrKylx22WUZPHhwxo0bV2WcFStW5KSTTsq+++6bQYMGZdGiRbngggsydOjQjBgxIkny2muvZcmSJRkzZkw23njjPPHEE5k4cWJ22223JMnEiROzyy67pHnz5msMHj/poIMOyogRI1JRUZG99947++67bzp16pSdd965qON32mmnvPnmm1m8eHE222yz1e5TVlbUUEX5aKz1OSaUKv0CxdErUBy9AsXRI6XBz3HD87kCxdErUBy9UpqEgnzpnHrqqWnWrFl+97vf5c4778wdd9yRunXrZsCAAfn+97+fAw44IAceeGC22mqrJEnPnj1zwgknrDLOhx9+mCOPPDJHHXVU6tSpkyQ59NBDM3LkyCr7HX/88WnevHmSpEuXLhk9enR++tOfJkkeeOCBdOnS5VPV36hRo/zhD3/Itddem4ceeih//etfM3To0Oyzzz654oor0qhRo7UeX69evSTJ+++/v9pQcIst6qZGjfV/k2+jRvXW+5hQqvQLFEevQHH0CvDfoHFj73VfFJ8rUBy9AsXRK6VFKMiX0sEHH5yDDz447777bh577LHceuutGTBgQFq1apUePXrk/vvvz9SpUzNr1qxMmzatylSjH6lTp0569OiRsWPHZtq0aZk5c2aef/75NG7cuMp+TZs2LXz9ve99LxdddFFeeOGFNGnSJFOnTs3QoUOTJDVr1lzteZKVdyXWrPmfdtpqq61ywQUXZPDgwXnuuecyceLE3HLLLRk4cGCGDx++1mtfvHhxkqRu3bqr3f7OO++v9zsFGzWql7ffXpTKyvU3LpQi/QLF0StQHL0CxfHX6aVh/vxF1V1CyfO5AsXRK1AcvfLVUuwfYAkF+VKZPn16xo4dm/79+ydJNt9883Tr1i0HHnhgvvvd7+bxxx/PJZdckoULF6aioiLl5eVZunRpTjvttFXGev/993PYYYdl8803T3l5ebp27ZqZM2fmxhtvrLJfrVq1Cl9vscUW6dChQyZOnJgtt9wybdu2LdyRWL9+/SxatPr/xCxatCj169dPklx//fVp3bp1OnTokI022iitW7dO69ats+222+bSSy9d52vw4osvZptttlnj1KFJNsibcGXlhhkXSpF+geLoFSiOXgH+G3if++L4XIHi6BUojl4pLUJBvlSWL1+em266KQcffHB23XXXwvpNNtkktWvXTp06dfLUU0/liSeeyBZbbJEkue2225IklZ94Z5oyZUreeuutjBs3rnAX32OPPbbKfp/UtWvX3HTTTdlqq62qTB3aqlWrLF68OC+//HLh+YZJMmPGjCxevDi77LJLkmTq1Kl55pln0qFDhyrj1q9fv1DzmixZsiT33ntvvve97611PwAAAAAAgE9j/T+YDD6H3XbbLfvtt19OOeWUjBs3LnPnzs0zzzyTQYMGZcmSJencuXM22mijjB8/Pq+99lomTJiQYcOGJVkZqH1cw4YN869//SuTJk3K3Llzc9ddd+W2225bZb9POuCAAzJ79uxMmTKlSji39dZbp3Pnzjn77LPz5JNPZu7cuXnsscfy05/+NBUVFfmf//mfJMkJJ5yQv/zlLxkwYECmTZuWV155Jffff3+GDh2aY489tsq53nnnncybNy9vvvlmnn766Zx00kn54IMP8pOf/GR9vJwAAAAAAABJ3CnIl9CVV16ZESNG5Oqrr87rr7+eOnXqpGPHjrn11luz9dZbZ/DgwbnmmmtyxRVXpEWLFhk4cGD69euX559/Pk2aNCmM065du5x66qn5xS9+kX//+99p1apVzj///AwYMCBvvvnmGs+/2WabpVOnTlm8eHEaNWpUZdtll12WK664Ij/72c/y9ttvp3HjxjnooIPSt2/fwj577LFHRo8eneHDh+e4447LBx98kO233z6nnnpqDj/88CrjffR9jRo1suWWW6ZDhw654IIL1nlHIQAAAAAAwKdRVrmuuRThv9CRRx6Zww8/PD/4wQ+qu5RVzJu3fh/OXla28iGk8+d7YCysi36B4ugVKI5egeKUlSV7XvaX6i6Dz+mpszpVdwklz+cKFEevQHH0yldLkyb1itrPnYLwMX/7298yderUzJgxw3P9AAAAAACAkiEUhI/54x//mIcffjgXXHBB6tatW93lAAAAAAAArBdCQfiYiy++uLpLAAAAAAAAWO82qu4CAAAAAAAAgA1LKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJa5mdRcAAAAAsDazL+mS+fMXpbKyuisBAICvLncKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiatZ3QUAAAAArM32/cdXdwl8wZ46q1N1lwAAUHLcKQgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oyHpXXl6eMWPGrLJ+zJgxKS8vX+fx69qvf//+wpHz4wABAABJREFU6d+//3qt7ZPefvvtPPDAA+vcr7KyMkceeWS+//3vZ8WKFVW2LV26NBUVFfnpT3/6mWoFAAAAAABYX4SC/Ff5wx/+kIqKinXud9lll+XPf/7zOvcrKyvLoEGDMn369Nx9991Vtt16662ZN29efv7zn3/megEAAAAAANYHoSD/VbbYYovUrl17nftVVlYWPeYuu+ySo446KldccUUWLVqUJJk/f36uvvrqnHXWWWncuPFnrhcAAAAAAGB9EApSLd54442cccYZ+cY3vpG99947F154YZYsWVJlnyuuuCJ77LFHvvWtb+WWW26psm3x4sU55ZRT0rp163Tr1i1/+9vfkiT33ntv9t577yxbtqyw78SJE7PffvulsrKyyvSh06dPz5FHHpm2bdvmW9/6Vq6++uokybBhw3LPPffknnvuKWq60yQ544wzstFGG+Xaa69Nklx++eVp2bJlfvjDHyZJ/u///i9HH3102rRpkwMPPDC33XZb4diFCxemT58+2XPPPbPXXnvl7LPPzuLFiz/NywkAAAAAALBWNau7AP77LFmyJD/+8Y/TvHnz3HLLLXnnnXdy3nnnJUkGDhyYJHnttdfy4osv5ve//32mTZuW8847LzvvvHP23nvvJMlDDz2Uk08+OWeddVbuuuuunHbaaXnkkUfSuXPnnHfeefnb3/6Wjh07JkkeeOCBHHTQQSkrK6tSx89+9rO0b98+Q4cOzaxZs3L66aendevWOe644zJjxowkyfnnn1/UNdWrVy/nnHNOzjvvvOy111657777cvfdd6esrCwffvhhfvKTn+TQQw/NkCFDMnPmzJx33nmpW7duunfvnquuuirz5s3L7bffnmXLluWcc87Jtddem5/97GdrPN8nLuVz+Wis9TkmlCr9AsXRK1AcvQLF0SP/nfzcPz2fK1AcvQLF0SulSSjIBjFo0KAMGTKkyrply5alSZMmefTRR/Pmm2/mzjvvTIMGDZKsDN9OPvnknHnmmUmSWrVq5ZJLLsnmm2+eli1bZsqUKbnjjjsKoeDuu++evn37JlkZ7k2aNCn33XdfevTokf333z8TJkxIx44d88EHH+TPf/7zKncaJiuDx86dO2fbbbdNs2bNctNNN6Vp06apW7duYYrRLbbYouhr7t69e+6666706dMnxx13XHbeeeckybhx49KoUaNCvdtvv31ee+21/Pa3v0337t3z2muvpW7dumnatGk23XTT/OY3v1nrebbYom5q1Fj/N/k2alRvvY8JpUq/QHH0ChRHrwCsqnFj742flc8VKI5egeLoldIiFGSDOP300/Pd7363yroHH3wwt99+e2bMmJHtt9++EAgmyR577JFly5Zlzpw5SZJmzZpl8803L2zfddddc9dddxW+b9OmTeHrjTbaKLvsskvh7r6uXbtm4MCBGTx4cP70pz9lyy23zO67775KjSeeeGKuuOKK/P73v89+++2XQw45JE2aNPlc133CCSfkhBNOyKmnnlpYN3PmzEyfPj3t2rUrrFu+fHlq1KiRJDnmmGNyyimnpEOHDunQoUMOPPDAdOvWbY3neOed99f7nYKNGtXL228vyqd4lCL8V9IvUBy9AsXRK1Acf53+32n+/EXVXcJXjs8VKI5egeLola+WYv+gSijIBtGoUaM0b958lXXJyrsAP2n58uVV/t1oo6p3wq1YsSIbb7xx4fuPArXVbe/UqVOWL1+ep556KhMnTsxBBx202hpPOOGEHHTQQZk0aVImT56cH//4xxkyZEgOP/zwT3OpVXx0h+FH/yYr75Ds0KHDGqci7dChQ/785z/n4Ycfzp/+9Kecf/75eeyxx3LZZZet8Twb4k24snLDjAulSL9AcfQKFEevAKzK++Jn53MFiqNXoDh6pbSs/zkIYR1atGiR2bNn57333iuse+aZZ1KzZs1st912SZJXX301H3zwQWH7s88+mx122KHw/Ysvvlj4etmyZXn++ecL2zfZZJN85zvfyUMPPZS//vWv6dKlyyo1/Pvf/86FF16YTTbZJMcee2xuueWWHHHEEZk4cWKSrPL8wc97vbNmzUrTpk3TvHnzNG/ePM8880xhStPRo0fnueeey6GHHprf/OY3ufjii/Pggw+ut/MDAAAAAAAIBfnCffOb30yzZs3ys5/9LC+++GL+9re/ZciQIenatWvq16+fZGVo169fv7z00ku54447MnHixPz4xz8ujPH3v/89w4cPz4wZM3LhhRdm6dKl6dq1a2F7165d84c//CFbbbVVWrZsuUoNtWrVytSpUzNkyJDMnDkz//znP/P3v/89u+66a5Jk0003zWuvvZY333zzc1/vwQcfnA8//DDnn39+ZsyYkT//+c+56KKLCndOvvHGG7ngggvyzDPPZPbs2Zk4cWKhDgAAAAAAgPVBKMgXrkaNGrn22muTJEcccUR++tOfpnPnzrngggsK++yyyy75n//5nxxxxBG5/vrr88tf/rLKcwG7d++ev//97znkkEPy7LPP5rrrrsumm25a2L733nunbt26qaioWGMdv/71r/PBBx/ksMMOS+/evbPnnnvmlFNOSZIccsghmTVrVg4++OBUfs57ozfbbLPccMMNmT17drp3756BAwemZ8+eOfHEE5MkZ5xxRvbYY4+cfPLJOeSQQ/Kvf/0rQ4cO/VznBAAAAAAA+Liyys+beMCX0OLFi/PNb34z9913X5o1a1bd5axX8+at34etl5WtfAjp/PkeGAvrol+gOHoFiqNXoDhlZcmel/2lusvgC/bUWZ2qu4SvHJ8rUBy9AsXRK18tTZrUK2q/mhu4DvhCVVZWZuLEiXnwwQfTrl27kgsEAQAAAAAAPguhICWlrKwsQ4cOTY0aNTJ8+PDPPd7bb7+dAw44YK37PP3005/7PAAAAAAAABuSUJCS8/DDD6+3sRo2bJixY8eut/EAAAAAAACqg1AQ1qJGjRpp3rx5dZcBAAAAAADwuWxU3QUAAAAAAAAAG5ZQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEpczeouAAAAAGBtZl/SJfPnL0plZXVXAgAAX13uFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBJXs7oLAAAAAFib7fuPr+4S+JJ76qxO1V0CAMCXnjsFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQW/5BYsWJBLLrkk5eXladu2bQ466KCMHj06K1as2ODnXrx4ccaOHbtBxh4zZkxatWqVv/71r6tsO/roozNs2LCixvlkjeXl5RkzZsz6KvNT1fJpDRs2LEcfffQGGRsAAAAAAODjhIJfYu+++24OP/zwTJs2LRdddFHuu+++9OnTJ9ddd10uuuiiDX7+0aNH5+67796g57jggguyZMmSz3z8F1EjAAAAAADAV13N6i6ANbv88suzySabZNSoUalVq1aSpFmzZqldu3ZOOeWU/OhHP0qLFi022PkrKys32NhJ0qBBg8yfPz/XX399TjvttM80xoauEQAAAAAAoBS4U/BLasmSJRk/fnx69uxZCAQ/sv/++2f06NHZdttts2DBgpx33nnZd9990759+5xzzjlZsGBBkuTJJ59Mq1atqhzbv3//9O/fP8nK6SvPOuusDBo0KHvssUc6dOiQG264IcnK6T2vvvrqTJkypTBGeXl5hg4dmo4dO6Z79+459thjc+GFF1YZ/6STTsqVV15Z1DVuttlmOeOMM3L99ddnzpw5a9zvoYceSkVFRdq2bZvDDjssU6ZMWWONSfLSSy/lyCOPTOvWrdO9e/e88MILhW3/7//9v5x00klp27ZtysvLc/XVV2f58uWF8Y488siceuqpad++fe69994qdSxZsiQXX3xxvvWtb2W33XZLeXl5fv/73xe2l5eX57bbbssRRxyR1q1b55BDDsm0adMK219++eX06NEjbdu2zTHHHJN33323sG3p0qUZOHBg9t5777Rr1y4nnXRS3nzzzaJeRwAAAAAAgHURCn5JzZkzJ//617/SunXrVbaVlZVln332ySabbJLTTjstL7zwQkaMGJGbbropM2bMKIR+xZg4cWJq1aqVe+65J717985ll12WWbNmpaKiIscdd1zatWuXxx57rLD/uHHjMmrUqFxyySXp0qVLHnzwwcLdeosWLcpjjz2WLl26FH3+nj17Zscdd8wFF1yw2u3Tp09Pv379cvLJJ+fee+/NwQcfnJ/85Cd55ZVX1ljjH/7whxx//PG5995706BBgwwaNCjJyrsKTzvttDRq1Cj33HNPLr744owbNy4jRowoHPv0009np512yp133pmOHTtWqeX666/Pn/70pwwbNiwTJkxI9+7dM2TIkMyfP7+wz7Bhw3LCCSfk3nvvTb169Qqh6ZIlS3LCCSekWbNmGTNmTA488MAqgeJtt92Wp556KjfeeGP+8Ic/5P33388vf/nLNb5uZWXrd9kQY1ospbroF4uluEWvWCzFLXrFYilugXWp7t/RL8vitbBYilv0isVS3KJXvjpLsUwf+iW1cOHCJEm9evXWuM/06dMzZcqUTJgwoTCN6NChQ1NRUZGZM2cWdZ6GDRumX79+qVGjRo4//vjccMMNmTZtWlq0aJE6depk4403TpMmTQr7H3zwwYW78rbZZpsMHjw4U6dOTfv27TNp0qS0aNEiLVu2LPo6a9SokcGDB+fII4/MhAkT8r3vfa/K9lGjRuWII45It27dkiTHHHNMnnrqqdx+++3p37//amvs0aNHDjjggCTJ0UcfnZ/+9KdJkr/97W95/fXXc9ddd2WjjTbKDjvskH79+uXcc8/NqaeemiQpKyvLySefnNq1a69S69e+9rXss88++frXv55k5V2R11xzTWbPnp3GjRsnSQ499NDCuY899ticccYZSZLHH3887733XgYPHpw6depkxx13zJQpU/LOO+8kSebOnZtatWpl2223TcOGDXPJJZfkvffeW+1rtsUWdVOjxvrP8xs1WvPvGlCVfoHi6BUojl4B+PwaN/Ze+hGfK1AcvQLF0SulRSj4JdWwYcMkKUwFujozZ85M/fr1qzxXcMcdd0yDBg0yc+bMtQaKH2natGlq1KhR+L5u3bpZtmzZGvffdtttC1/Xr18/nTp1yoQJE9K+ffs88MADqaioWOc5P6lt27Y5/PDDC1NzftyMGTPywAMPVLmrbunSpavcxfdxzZo1K3xdr169/Pvf/y6M9d5776V9+/aF7StWrMiHH35YmMqzUaNGqw0Ek+SAAw7IX//611xyySWZOXNmnn/++SQpTD+aJNtvv33h68022yxLly5NsnLq0O233z516tQpbG/dunX+/Oc/J0l++MMfZvz48enYsWO+8Y1v5IADDsj3v//91dbxzjvvf6rkf13Kyla+sb/99qJ4RCOsnX6B4ugVKI5egeKsz///ULrmz19U3SVUO58rUBy9AsXRK18txf6BlFDwS2q77bZLvXr18txzz6VNmzarbD/55JPzgx/8YLXHLl++PMuXL0/Zav7ntGzZstSs+Z8f+8Ybb7zKPpVr6fBPPt+wa9euufTSS9OnT588/vjjGThw4BqPXZuzzjorDz30UIYNG1Zl/fLly/OTn/wk3bt3r7J+TcFdkioh58ctW7YsO+ywQ6699tpVtn0UoH7y+j7u17/+de666658//vfT/fu3TNo0KCUl5dX2Wd1r+dHPvm6fnzfli1bZvLkyfnTn/6UP/3pT7niiity33335bbbblvtz3FDvAlXVm6YcaEU6Rcojl6B4ugVgM/P++h/+FyB4ugVKI5eKS2eKfglVbNmzVRUVOS2227LkiVLqmybPHlyJk+enO233z4LFy6sMlXoyy+/nMWLF6dFixaF0Gnx4sWF7XPnzi26htWFUZ9UXl6ehQsXZtSoUWnVqlW22267osf/uAYNGuRnP/tZbrnllsyZM6ewvkWLFpk7d26aN29eWH7/+9/nL3/5S9E1fnys119/PVtssUVhrLlz5+aqq64qapw77rgj5513Xs4+++xUVFTkgw8+SLL2EPUjLVu2zOzZs7No0X/+cvGFF14ofD127Ng88sgjOeigg3LppZdm5MiR+d///d+8/fbbRV8fAAAAAADAmggFv8T69OmTxYsXp3fv3pkyZUrmzJmTu+66K/37988xxxyTnXbaKZ06dUq/fv3y7LPP5tlnn02/fv2y1157Zeedd07Lli1Tu3btjBgxIq+++mpGjhxZmPKyGJtuumneeuuttQaJtWvXTufOnXPTTTelS5cun+t6Dz300Hz961/PG2+8UVjXq1ev3H///fntb3+bOXPmZPTo0Rk9enRhms5iavxIx44ds+222+acc87Jiy++mL///e8577zzsummm67x7sKPa9iwYR555JG8+uqr+fvf/56f/exnSbJKaLs6++67b7beeusMGDAgM2bMyJgxY3L//fcXti9atCgXXXRRnnjiibz66qsZN25cttpqq2y++ebrHBsAAAAAAGBdhIJfYk2aNMntt9+eZs2a5eyzz07Xrl1z88035/TTT0///v2TJJdeemmaNWuWXr16pXfv3mnZsmWuueaaJCufaTdkyJCMHz8+Xbt2zfTp09OzZ8+iz/+d73wnK1asSJcuXdZ6x1pFRUWWLFnymZ4n+EmDBw+uMq3m17/+9fzqV7/K7373u1RUVOTOO+/M5Zdfnr322utT1ZisnFZ0+PDhWbFiRY444oj06dMn3/72t4ue8vSXv/xlXnjhhXTp0iXnnntuvve976VNmzZV7vhbk4033jjXXXddFixYkEMPPTS33357lZ9Fz549071795xzzjmpqKjI888/n+HDhxcVVgIAAAAAAKxLWWUxcx/CWtx555259957c+utt1Z3Kf8V5s1bvw9PLytb+RDS+fM9MBbWRb9AcfQKFEevQHHKypI9L/tLdZfBl9xTZ3Wq7hKqnc8VKI5egeLola+WJk3qFbVfzQ1cByXslVdeybRp0zJ8+PD07du3ussBAAAAAABgDYSCfGZz587NgAED0rlz53Tr1q2wfuLEiYXpTVenffv2GTly5BdRIgAAAAAAABEK8jl885vfzDPPPLPK+o4dO2bs2LFrPK527dobrigAAAAAAABWIRRkvatbt27q1q1b3WUAAAAAAADw/9uougsAAAAAAAAANiyhIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJS4mtVdAAAAAMDazL6kS+bPX5TKyuquBAAAvrrcKQgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACWuZnUXAAAAALA22/cfX90l8BXw1FmdqrsEAIAvNXcKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwqWqAULFuSSSy5JeXl52rZtm4MOOiijR4/OihUrNvi5Fy9enLFjx26QsefOnZtWrVpl7ty5n+n4MWPGpLy8fD1X9el83msAAAAAAAD4tGpWdwGsf++++25++MMfZsstt8xFF12Upk2b5p///GeGDBmSV199Needd94GPf/o0aPz5JNPpnv37hv0PF9VW2+9dR577LFsscUW1V0KAAAAAADwX0IoWIIuv/zybLLJJhk1alRq1aqVJGnWrFlq166dU045JT/60Y/SokWLDXb+ysrKDTZ2KahRo0aaNGlS3WUAAAAAAAD/RUwfWmKWLFmS8ePHp2fPnoVA8CP7779/Ro8enW233TYLFizIeeedl3333Tft27fPOeeckwULFiRJnnzyybRq1arKsf3790///v2TJMOGDctZZ52VQYMGZY899kiHDh1yww03JFk5PefVV1+dKVOmFMYoLy/P0KFD07Fjx3Tv3j3HHntsLrzwwirjn3TSSbnyyis/9fUeffTRGT58eHr37p02bdrkwAMPzKOPPlrY/uabb+b444/P17/+9Rx66KGZM2dOleNnzJiR3r17Z4899si3vvWtXH311YUpVtd2ncnK8POaa65Jx44ds+eee+akk07K66+/Xth+//3358ADD0zr1q1TUVGRSZMmJVl1+tCXX345vXv3Trt27dK6descddRRmTFjxqd+LQAAAAAAANbEnYIlZs6cOfnXv/6V1q1br7KtrKws++yzT5Kkd+/e+eCDDzJixIgkyeDBg9O/f/8MHz68qPNMnDgxRx11VO6555489NBDGTp0aA444IBUVFTkpZdeytNPP51hw4YV9h83blxGjRqVysrKTJs2LVdddVUGDBiQsrKyLFq0KI899ljOOuusz3TNI0aMyKBBgzJo0KBcfvnlOe+88zJ58uRstNFGOeOMM1KnTp3cddddeemllzJgwIBsvvnmSZJ33nknRx11VMrLy3PXXXdl1qxZGThwYDbbbLP06tVrrdfZokWL3HrrrRk3blwuv/zyNG7cODfeeGOOO+64jBs3LgsXLszPfvazXHDBBdl7770zYcKE/PSnP81f/vKXKrWvWLEiJ510Uvbdd98MGjQoixYtygUXXJChQ4cWfjarU1b2mV6qtY61PseEUqVfoDh6BYqjV6A4eoRi/bf/rvhcgeLoFSiOXilNQsESs3DhwiRJvXr11rjP9OnTM2XKlEyYMKEwjejQoUNTUVGRmTNnFnWehg0bpl+/fqlRo0aOP/743HDDDZk2bVpatGiROnXqZOONN64yRebBBx9cuHNwm222yeDBgzN16tS0b98+kyZNSosWLdKyZcvPdM3f/va38/3vfz9JcvLJJ+eQQw7JvHnzsnDhwjz99NN55JFHss0226Rly5aZNm1aJkyYkCS57777summm2bIkCGpWbNmdtxxx8ybNy/XXHNNIRRc23WOHDkygwYNyt57750kueCCC9KxY8c8+uij2WqrrbJ06dJstdVW2XbbbXPcccelVatWqVWrVhYvXlyo/cMPP8yRRx6Zo446KnXq1EmSHHrooRk5cuQar3eLLeqmRo31f5Nvo0Zr/p0BqtIvUBy9AsXRKwDrR+PG3k8TnytQLL0CxdErpUUoWGIaNmyYJIWpQFdn5syZqV+/fpXnCu64445p0KBBZs6cudZA8SNNmzZNjRo1Ct/XrVs3y5YtW+P+2267beHr+vXrp1OnTpkwYULat2+fBx54IBUVFes855psv/32ha8322yzJMmyZcvy8ssvp2HDhtlmm20K21u3bl0IBWfMmJHddtstNWv+pw3atWtXCBTXdp3vv/9+3njjjZx55pnZaKP/BHQffvhhZs+enf333z/77bdfjj322LRo0SKdO3fO4Ycfnk033bRK7XXq1EmPHj0yduzYTJs2LTNnzszzzz+fxo0br/F633nn/fV+p2CjRvXy9tuL4nGQsHb6BYqjV6A4egWK46/TKdb8+Yuqu4Rq5XMFiqNXoDh65aul2D+OEgqWmO222y716tXLc889lzZt2qyy/eSTT84PfvCD1R67fPnyLF++PGWr+R/XsmXLqoRnG2+88Sr7VK7lneGTzzfs2rVrLr300vTp0yePP/54Bg4cuMZj12VttXyypo/v+8makhSeJ7h8+fK1jv3R9t/85jdVwtUkadCgQcrKynLdddfl2WefzcMPP5yHHnoov/vd7/K73/2uSuj6/vvv57DDDsvmm2+e8vLydO3aNTNnzsyNN9641mveEG/ClZUbZlwoRfoFiqNXoDh6BWD98F66ks8VKI5egeLoldKy/ucgpFrVrFkzFRUVue2227JkyZIq2yZPnpzJkydn++23z8KFC6tMFfryyy9n8eLFadGiRSEI+/g0l3Pnzi26htWFip9UXl6ehQsXZtSoUWnVqlW22267oscv1s4775wFCxbklVdeKax74YUXCl+3aNEizz33XJYuXVpY9/TTT2eLLbYo3HG5JvXr10+jRo0yb968NG/ePM2bN8/WW2+doUOHZtasWZkxY0YuvfTStGnTJmeeeWbGjx+frbfeOo8++miVcaZMmZK33norv/3tb3P88cdn3333zeuvv77WgBUAAAAAAODTEgqWoD59+mTx4sXp3bt3pkyZkjlz5uSuu+5K//79c8wxx2SnnXZKp06d0q9fvzz77LN59tln069fv+y1117Zeeed07Jly9SuXTsjRozIq6++mpEjR+b5558v+vybbrpp3nrrrbUGibVr107nzp1z0003pUuXLuvjslex4447pkOHDvn5z3+e6dOnZ9KkSbn11lsL27t165YlS5bk/PPPz4wZMzJp0qQMGzYsPXr0KCrY7NWrV6688spMnjw5s2fPzsCBAzN16tTssMMOqV+/fm6//fZce+21efXVV/OnP/0pr732WnbdddcqYzRs2DD/+te/MmnSpMydOzd33XXXagNdAAAAAACAz0MoWIKaNGmS22+/Pc2aNcvZZ5+drl275uabb87pp5+e/v37J0kuvfTSNGvWLL169Urv3r3TsmXLXHPNNUlWPpdvyJAhGT9+fLp27Zrp06enZ8+eRZ//O9/5TlasWJEuXbrk7bffXuN+FRUVWbJkyed6nuC6/PrXv87mm2+eI488MldccUWOPvrowrbNNtssI0eOzJw5c9K9e/cMGTIkP/7xj3PaaacVNXbv3r1z2GGH5fzzz0/37t3z+uuvZ9SoUWnQoEGaNGmSYcOGZeLEienSpUsuuOCC/PSnP03Hjh2rjNGuXbuceuqp+cUvfpGDDz44Y8aMyfnnn5+33347b7755np9LQAAAAAAgP9eZZXmKaSa3Hnnnbn33nur3L3Hus2bt34fnF5WtvIhpPPne2AsrIt+geLoFSiOXoHilJUle172l+oug6+Ap87qVN0lVCufK1AcvQLF0StfLU2a1Ctqv5obuA5YxSuvvJJp06Zl+PDh6du3b3WXAwAAAAAAUPKEgnzh5s6dmwEDBqRz587p1q1bYf3EiRML05uuTvv27TNy5MgvokQAAAAAAICSIhTkC/fNb34zzzzzzCrrO3bsmLFjx67xuNq1a2+4ogAAAAAAAEqYUJAvjbp166Zu3brVXQYAAAAAAEDJ2ai6CwAAAAAAAAA2LKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlLia1V0AAAAAwNrMvqRL5s9flMrK6q4EAAC+utwpCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJa5mdRcAAAAAsDbb9x9f3SXwFfHUWZ2quwQAgC8tdwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTClaTBQsW5JJLLkl5eXnatm2bgw46KKNHj86KFSu+kPMvXrw4Y8eO3SBjP/nkk2nVqtVqtx199NEZNmxYUeN8fN8lS5bkzjvv/Mw1jRkzJuXl5WvcPn/+/Jx77rnp0KFDWrduna5du+aWW26pss8LL7yQqVOnFnW+ysrK3HbbbZ+5XgAAAAAAgPVJKFgN3n333Rx++OGZNm1aLrrootx3333p06dPrrvuulx00UVfSA2jR4/O3Xff/YWc67MaNmxYjjvuuCTJ+PHjM2LEiA1ynsrKypxwwgl5//33M3LkyNx///054YQTcuWVV+bGG28s7Hfqqadm9uzZRY351FNP5YILLtgg9QIAAAAAAHxaNau7gP9Gl19+eTbZZJOMGjUqtWrVSpI0a9YstWvXzimnnJIf/ehHadGixQatobKycoOOvz40bNiw8PWGrPfFF1/Mc889l9GjR6d+/fpJVv485s6dmzvvvLMQTH4aX4XXFwAAAAAA+O/hTsEv2JIlSzJ+/Pj07NmzEAh+ZP/998/o0aOz7bbbJlk5xeh5552XfffdN+3bt88555yTBQsWJFn9FJ39+/dP//79k6y8y+6ss87KoEGDsscee6RDhw654YYbkqycSvPqq6/OlClTCmOUl5dn6NCh6dixY7p3755jjz02F154YZXxTzrppFx55ZXr7bVYW43Jf6YPffLJJ3PuuefmtddeS6tWrTJ37txUVlbmmmuuSceOHbPnnnvmpJNOyuuvv1449s0338zxxx+fr3/96zn00EMzZ86cNdax0UYr2+Cvf/1rlfU/+tGPCvUcffTRee2113LuuecWXuOHH3443bt3T+vWrbPnnnvmpz/9ad5///3MnTs3xxxzTJKkVatWefLJJ5Mkd9xxR8rLy9OuXbscffTRefHFFwvneuKJJ3LIIYekdevW6dy5c+64447P89ICAAAAAABU4U7BL9icOXPyr3/9K61bt15lW1lZWfbZZ5/C96eddlo++OCDwrSZgwcPTv/+/TN8+PCizjVx4sQcddRRueeee/LQQw9l6NChOeCAA1JRUZGXXnopTz/9dJXn+40bNy6jRo1KZWVlpk2blquuuioDBgxIWVlZFi1alMceeyxnnXXW53wFiqvx43dKtmvXLj//+c9z44035g9/+EO22GKL3HrrrRk3blwuv/zyNG7cODfeeGOOO+64jBs3LhtvvHHOOOOM1KlTJ3fddVdeeumlDBgwIJtvvvlqa9h5552zzz77pG/fvrn++uvzrW99K9/85jez5557Fu4cHDZsWA455JAcd9xx+f73v585c+bkjDPOyPnnn5999903s2fPztlnn50777wzxxxzTIYNG5Y+ffrkscceS4MGDTJ58uRcffXVGTJkSFq0aJGxY8fmmGOOyYMPPpjNNtssffv2Ta9evdKtW7dMnTo1/fr1y5577pmddtpptTWXla2/n8FHY63PMaFU6Rcojl6B4ugVKI4e4dP4b/598bkCxdErUBy9UpqEgl+whQsXJknq1au31v2mT5+eKVOmZMKECYWAbOjQoamoqMjMmTOLOlfDhg3Tr1+/1KhRI8cff3xuuOGGTJs2LS1atEidOnWy8cYbp0mTJoX9Dz744MKdg9tss00GDx6cqVOnpn379pk0aVJatGiRli1bfpbL/kw1fmSTTTZJvXr1UqNGjUK9I0eOzKBBg7L33nsnSS644IJ07Ngxjz76aJo1a5ann346jzzySLbZZpu0bNky06ZNy4QJE9ZYx/XXX59Ro0blj3/8Y6677rpcd911adasWS6//PK0bds2DRs2TI0aNVKvXr3Uq1cvb7/9dgYOHJgjjjgiSdK0adPsu+++eemll1KjRo00aNAgSarUe+KJJ2b//fdPkvTt2zd/+ctfcu+996Zbt25577330rhx4zRt2jRNmzbNlltuWeVn83FbbFE3NWqs/5t8GzVa++8k8B/6BYqjV6A4egVg/Wnc2HuqzxUojl6B4uiV0iIU/IJ99Jy8j6YBXZOZM2emfv36VcKxHXfcMQ0aNMjMmTPXGSomK4OqGjVqFL6vW7duli1btsb9P5q2NEnq16+fTp06ZcKECWnfvn0eeOCBVFRUrPOcSVKz5spfqxUrVhSm5vzIihUrCts/S41J8v777+eNN97ImWeeWWX8Dz/8MLNnz86///3vNGzYMNtss01hW+vWrdcaCtaqVSunnHJKTjnllMyZMyePPPJIbrzxxpx88sl55JFHVpnqdfvtt88mm2yS4cOH56WXXspLL72Ul19+OYcccshqx58xY0aGDh2aK664orDu3//+d2bPnp2GDRumR48eGThwYK699trsv//++cEPflAIFj/pnXfeX+93CjZqVC9vv70oHoUIa6dfoDh6BYqjV6A4/jqdT2P+/EXVXUK18bkCxdErUBy98tVS7B9GCQW/YNttt13q1auX5557Lm3atFll+8knn5yjjz46m2yyyWqPX758eZYvX56y1fyvaNmyZVUCt4033niVfSrX0r2fDL66du2aSy+9NH369Mnjjz+egQMHrvHYj/toys1FixatEmwtXLiwsP2z1JisfA2S5De/+U2V0DRJGjRokCeeeGKVMVZ3no9MnDgxb7/9do466qgkK39GP/7xj9OxY8dUVFTkxRdfXOVnNX369PTo0SPl5eXZc88906tXr9x8881rrfnnP/95OnToUGX9ZpttlmTl1LA9e/bMpEmTMmnSpPz+97/Ptddem29/+9urHW9DvAlXVm6YcaEU6Rcojl6B4ugVgPXH+6nPFSiWXoHi6JXSsv7nIGStatasmYqKitx2221ZsmRJlW2TJ0/O5MmTs+WWW6ZFixZZuHBhlalCX3755SxevDgtWrQohFyLFy8ubJ87d27RdawuVPyk8vLyLFy4MKNGjUqrVq2y3XbbFTV28+bNU7t27TzzzDNV1i9cuDCzZs3KLrvsUnSdq6u3fv36adSoUebNm5fmzZunefPm2XrrrTN06NDMmjUrO++8cxYsWJBXXnmlcMwLL7ywxrFff/31XHvttfnwww+rrP8ovNxiiy1WOeaPf/xj9tprr1x++eU56qij0qZNm7zyyiuFMPKTr2+LFi3yxhtvFOpt3rx5RowYkWeeeSbz5s3LL37xizRv3jwnn3xy7r777uyzzz6ZPHnyp36dAAAAAAAAVkcoWA369OmTxYsXp3fv3pkyZUrmzJmTu+66K/37988xxxyTnXbaKTvuuGM6deqUfv365dlnn82zzz6bfv36Za+99srOO++cli1bpnbt2hkxYkReffXVjBw5Ms8//3zRNWy66aZ566231hok1q5dO507d85NN92ULl26FD32JptskiOOOCK/+MUv8uc//zmvvfZannrqqZx22mnZfffd065du6LH+ni9CxYsyOzZs7Ns2bL06tUrV155ZSZPnpzZs2dn4MCBmTp1anbYYYfsuOOO6dChQ37+859n+vTpmTRpUm699dY1jn3ooYemZs2aOe644/LEE09k7ty5efzxx3PmmWfmu9/9bpo2bZokqVOnTmbOnJn33nsvDRs2zIsvvphnn302s2bNyiWXXJJ//vOfhaB30003TZJMmzYt//73v3Psscfm5ptvztixYzNnzpwMHTo0DzzwQGFK2Iceeii//OUvM2fOnDz11FOZPn16dt1110/9OgEAAAAAAKyO6UOrQZMmTXL77bdn2LBhOfvss/Pee+9lu+22y+mnn54ePXoU9rv00ktz4YUXplevXqlRo0Y6d+6cc889N8nKaSeHDBmSX//617nlllvyne98Jz179sy7775bVA3f+c53cscdd6RLly5rvSOtoqIi9913X9HPE/xIv3790qBBg1x44YV544030qBBg+y3334555xzirpL8ZP22WefNG/ePN26dcvvfve79O7dO++//37OP//8LF68OLvvvntGjRpVmK7017/+dc4777wceeSR2WabbXL00UdnzJgxqx27YcOG+d3vfpcrr7wy55xzTt577700btw43bp1y6mnnlrYr0ePHrnssssye/bs/OpXv8rzzz+fXr16pVatWtlrr71y6qmnZvz48UmSVq1a5Zvf/GaOPPLIXHHFFamoqMj8+fNz1VVXZf78+dlpp50yfPjwbL/99kmSa6+9Nr/85S9z8MEHp27dujnssMNy+OGHf+rXCQAAAAAAYHXKKtf1ADf+q9155525995713qnHV+sefPW70PTy8pWPoR0/nwPjIV10S9QHL0CxdErUJyysmTPy/5S3WXwFfHUWZ2qu4Rq43MFiqNXoDh65aulSZN6Re3nTkFW65VXXsm0adMyfPjw9O3bt7rLAQAAAAAA4HMQCrJac+fOzYABA9K5c+d069atsH7ixInp37//Go9r3759Ro4c+UWUCAAAAAAAQJGEgqzWN7/5zTzzzDOrrO/YsWPGjh27xuNq16694YoCAAAAAADgMxEK8qnUrVs3devWre4yAAAAAAAA+BQ2qu4CAAAAAAAAgA1LKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlrmZ1FwAAAACwNrMv6ZL58xelsrK6KwEAgK8udwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJq1ndBQAAAACszfb9x1d3CXyFPHVWp+ouAQDgS8mdggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCrGLBggW55JJLUl5enrZt2+aggw7K6NGjs2LFig1+7sWLF2fs2LEb9BwvvPBC+vbtm44dO2b33XfPd7/73Vx55ZX58MMPN+h5AQAAAAAAqotQkCrefffdHH744Zk2bVouuuii3HfffenTp0+uu+66XHTRRRv8/KNHj87dd9+9wcb/61//mh/+8IepWbNmhg8fngcffDD9+vXLgw8+mL59+26w8wIAAAAAAFSnmtVdAF8ul19+eTbZZJOMGjUqtWrVSpI0a9YstWvXzimnnJIf/ehHadGixQY7f2Vl5QYbe8mSJRkwYEAOPfTQ/OIXvyis32abbdKqVasceOCBmTZtWnbfffcNVgMAAAAAAEB1cKcgBUuWLMn48ePTs2fPQiD4kf333z+jR4/OtttumwULFuS8887Lvvvum/bt2+ecc87JggULkiRPPvlkWrVqVeXY/v37p3///kmSYcOG5ayzzsqgQYOyxx57pEOHDrnhhhuSJGPGjMnVV1+dKVOmFMYoLy/P0KFD07Fjx3Tv3j3HHntsLrzwwirjn3TSSbnyyivXeX2PPfZY3nzzzZx++umrbGvatGkmTJhQCASPPvroDBkyJJ07d85+++2XxYsX5//9v/+Xk046KW3btk15eXmuvvrqLF++vDDG3//+93z/+99PmzZt0q1bt0ycOLHKOW666aaUl5enXbt26d27d1599dUkK4PQa665Jh07dsyee+6Zk046Ka+//vo6rwcAAAAAAKBY7hSkYM6cOfnXv/6V1q1br7KtrKws++yzT5Kkd+/e+eCDDzJixIgkyeDBg9O/f/8MHz68qPNMnDgxRx11VO6555489NBDGTp0aA444IBUVFTkpZdeytNPP51hw4YV9h83blxGjRqVysrKTJs2LVdddVUGDBiQsrKyLFq0KI899ljOOuusdZ73H//4R7bffvs0atRotdubNWtW5fsxY8Zk1KhR2WSTTVK3bt38+Mc/zte+9rXcc889mTdvXs4///yUlZXl1FNPzbx583LiiSfmzDPPzLe+9a0888wz6d+/fxo1apQ999wzd9xxR66++uoMGTIku+66a6644oqcccYZGTNmTG699daMGzcul19+eRo3bpwbb7wxxx13XMaNG5eNN954tbWWlRX1Uhflo7HW55hQqvQLFEevQHH0ChRHj/Bp/bf+zvhcgeLoFSiOXilNQkEKFi5cmCSpV6/eGveZPn16pkyZkgkTJhSmER06dGgqKioyc+bMos7TsGHD9OvXLzVq1Mjxxx+fG264IdOmTUuLFi1Sp06dbLzxxmnSpElh/4MPPrhw5+A222yTwYMHZ+rUqWnfvn0mTZqUFi1apGXLlus877vvvpsGDRpUWde/f/8qd/SdeOKJOemkk5Ik++23X/bYY48kyRNPPJHXX389d911VzbaaKPssMMO6devX84999yceuqpue2227LvvvvmRz/6UZKkefPmeeGFF3LzzTdnzz33zO9///v06tUrFRUVSZLzzz8/o0aNyocffpiRI0dm0KBB2XvvvZMkF1xwQTp27JhHH3005eXlq1zHFlvUTY0a6/8m30aN1vxzB6rSL1AcvQLF0SsA61fjxv/d76s+V6A4egWKo1dKi1CQgoYNGyZJYSrQ1Zk5c2bq169f5bmCO+64Yxo0aJCZM2euNVD8SNOmTVOjRo3C93Xr1s2yZcvWuP+2225b+Lp+/frp1KlTJkyYkPbt2+eBBx4oBG3rUr9+/SxatKjKurPPPjsnn3xy4eulS5eu9rwzZszIe++9l/bt2xfWrVixIh9++GHefffdzJw5M4888kjatWtX2L506dLC6zRr1qzstttuhW2NGzdOv3798v777+eNN97ImWeemY02+k/Q9+GHH2b27NmrvY533nl/vd8p2KhRvbz99qJswEc6QknQL1AcvQLF0StQHH+dzqc1f/6ide9UgnyuQHH0ChRHr3y1FPtHUUJBCrbbbrvUq1cvzz33XNq0abPK9pNPPjk/+MEPVnvs8uXLs3z58pSt5n9ry5YtS82a//lVW92UmJVreVf55PMNu3btmksvvTR9+vTJ448/noEDB67x2I9r27Ztbrzxxrz33nuFALRx48Zp3LhxkqR27dprPO+yZcuyww475Nprr11l3Hr16mXZsmXp1q1b4S7Dj3x03R+//o/76JmEv/nNb6oErUlWuavx4zbEm3Bl5YYZF0qRfoHi6BUojl4BWL/+299Tfa5AcfQKFEevlJb1PwchX1k1a9ZMRUVFbrvttixZsqTKtsmTJ2fy5MnZfvvts3DhwipThb788stZvHhxWrRoUQj8Fi9eXNg+d+7comtYXaj4SeXl5Vm4cGFGjRqVVq1aZbvttitq7E6dOmXLLbcsPAvx45YsWZJ33313jce2aNEir7/+erbYYos0b948zZs3z9y5c3PVVVelrKwsLVq0yCuvvFLY1rx58zz88MMZN25ckpXTiU6fPr0w3rvvvpt99tknCxcuTKNGjTJv3rzCcVtvvXWGDh2aWbNmFXVdAAAAAAAA6yIUpIo+ffpk8eLF6d27d6ZMmZI5c+bkrrvuSv/+/XPMMcdkp512SqdOndKvX788++yzefbZZ9OvX7/stdde2XnnndOyZcvUrl07I0aMyKuvvpqRI0fm+eefL/r8m266ad566621Bom1a9dO586dc9NNN6VLly5Fj12rVq386le/yp133plzzz03Tz/9dObOnZuHHnooP/zhDzNnzpwqU3x+XMeOHbPtttvmnHPOyYsvvpi///3vOe+887LpppumRo0aOeqoozJt2rT8+te/zuzZszNu3LhcccUV2WabbZIkRx99dG6++eZMmjQps2bNyqBBg9K0adM0bdo0vXr1ypVXXpnJkydn9uzZGThwYKZOnZoddtih6GsDAAAAAABYG6EgVTRp0iS33357mjVrlrPPPjtdu3bNzTffnNNPPz39+/dPklx66aVp1qxZevXqld69e6dly5a55pprkiSbbbZZhgwZkvHjx6dr166ZPn16evbsWfT5v/Od72TFihXp0qVL3n777TXuV1FRkSVLlhT9PMGPfOMb38jdd9+dJOnbt2++973v5eKLL06bNm1y3333pby8fLXH1ahRI8OHD8+KFStyxBFHpE+fPvn2t79dmLp02223zYgRI/Loo4+ma9euufLKK9O/f/8cfPDBSZJDDjkkxx13XH7xi1/k+9//fv7973/nqquuSpL07t07hx12WM4///x07949r7/+ekaNGrXW6UMBAAAAAAA+jbLKtT3MDb6k7rzzztx777259dZbq7uUL9y8eev3gellZSsfQjp/vgfGwrroFyiOXoHi6BUoTllZsudlf6nuMvgKeeqsTtVdQrXwuQLF0StQHL3y1dKkSb2i9qu5geuA9eqVV17JtGnTMnz48PTt27e6ywEAAAAAAPhKEArylTJ37twMGDAgnTt3Trdu3QrrJ06cWJjedHXat2+fkSNHfhElAgAAAAAAfOkIBflK+eY3v5lnnnlmlfUdO3bM2LFj13hc7dq1N1xRAAAAAAAAX3JCQUpC3bp1U7du3eouAwAAAAAA4Etpo+ouAAAAAAAAANiwhIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4mpWdwEAAAAAazP7ki6ZP39RKiuruxIAAPjqcqcgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUuJrVXQAAAADA2mzff3x1lwCfyVNndaruEgAACtwpCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTijIGi1YsCCXXHJJysvL07Zt2xx00EEZPXp0VqxYscHPvXjx4owdO3aDjP3kk0+mVatWVZZ27dqld+/eeeaZZ4oaY8yYMSkvL98g9c2dOzetWrXK3LlzN8j4AAAAAADAf5+a1V0AX07vvvtufvjDH2bLLbfMRRddlKZNm+af//xnhgwZkldffTXnnXfeBj3/6NGj8+STT6Z79+4b7ByPPfZY4evFixfnN7/5TU444YQ8/PDDqVev3gY7LwAAAAAAwBdNKMhqXX755dlkk00yatSo1KpVK0nSrFmz1K5dO6ecckp+9KMfpUWLFhvs/JWVlRts7I80adKkytcDBgxIx44d8+STT+aAAw7Y4OcHAAAAAAD4oggFWcWSJUsyfvz4/OxnPysEgh/Zf//9M3r06Gy77bZZsGBBLrvssjz88MP597//nfLy8gwcODANGjTIk08+mWOOOSYvvvhi4dj+/fsnSS655JIMGzYss2fPzmabbZZx48alVq1aOe644/KTn/wkY8aMydVXX50kadWqVV588cWUl5fnoIMOyh//+Mc0btw4m2++eXbccccMHDiwMP5JJ52Ur33ta+nbt+9nuu4aNWokSTbeeOMkyRtvvJGLL744TzzxRMrKytKtW7f87Gc/yyabbLLKsQ8//HCGDRuWGTNmpFatWunUqVOGDBmSunXrrvVak2Tp0qW55JJL8sc//jF16tTJiSee+JnqBwAAAAAAWBOhIKuYM2dO/vWvf6V169arbCsrK8s+++yTJOndu3c++OCDjBgxIkkyePDg9O/fP8OHDy/qPBMnTsxRRx2Ve+65Jw899FCGDh2aAw44IBUVFXnppZfy9NNPZ9iwYYX9x40bl1GjRqWysjLTpk3LVVddlQEDBqSsrCyLFi3KY489lrPOOuszXfO7776bX/3qV9l8883Trl27LFmyJD/+8Y/TvHnz3HLLLXnnnXcKU6Z+PIj86PU644wzcv7552fffffN7Nmzc/bZZ+fOO+/Mscceu9ZrbdGiRYYNG5ZHHvn/2LvzeC3n/H/gr6NlIi1K9uRoEoOSNLZsp2wtNGYYMZksM7ZhGEyRFDGWMAg1lDVjiTRMI1sMDVNmMEQZSohBthbLpDq/P/zc3462O8rRPc/n43E9Ove1fD6f677v97nvHq9zfa5HMnjw4NSsWbMQni5NWdnXOs2ltrUi24RSpV6gOGoFiqNWoDhqhFXZt/n+9bkCxVErUBy1UpqEgixi1qxZSbLU++pNnjw5EyZMyJgxYwrTiA4cODCdOnXK1KlTi+qnYcOG6dWrV2rUqJGjjjoq1157bSZOnJjy8vKsscYaqVWrVpUpPvfbb7+0bNkySbLBBhukf//+efrpp9O2bds89NBDKS8vT4sWLYo+zzZt2iRJFixYkM8++yzNmjXL73//+9SvXz8PP/xw3nnnndxxxx1p0KBBkuSss87Ksccem5NPPrlKOwsWLMiZZ56Zgw46KEmy0UYbZaeddsrLL7+8zHPdZJNNMmLEiPTq1Svt2rVLkpxxxhn55S9/ucRxN2pUNzVqrFb0eRarcWP3UYRiqRcojlqB4qgVgNK19trf/u94nytQHLUCxVErpUUoyCIaNmyYJJk5c+YS95k6dWrq169f5b6CzZs3T4MGDTJ16tSlBopf2mijjQpTdiZJ3bp1M2/evCXuv+GGGxZ+rl+/fnbdddeMGTMmbdu2zX333ZdOnTots8+FjRo1Kkmy2mqrZc0118xaa61V2DZlypRssskmhUAwSbbddtvMmzcvr7/+epV2Ntlkk9SuXTuDBw/Oyy+/nJdffjmvvPJK9t9//2We64cffpgPPvggW2yxRWHb4q7QXNgHH3y8wq8UbNy4Xt5/f3a+hVs5wipNvUBx1AoUR61Acfx1Oquy996b/a315XMFiqNWoDhqZdVS7B8iCQVZxMYbb5x69erlhRdeSKtWrRbZfuyxx+bHP/7xYo+dP39+5s+fn7LF/K9t3rx5qVnz/95yX967b2GVS/nt8tX7G3bp0iUXXnhhTjjhhDzxxBOLTOu5LM2aNSu6r+SLc1v43y9Nnjw53bt3T0VFRbbbbrv07NkzN954Y5V9lnWuC/+8uH0XPXaZuyy3ysqV0y6UIvUCxVErUBy1AlC6quP3u88VKI5ageKoldKy4ucgZJVXs2bNdOrUKbfcckvmzp1bZdvYsWMzduzYbLLJJpk1a1aVqUJfeeWVzJkzJ+Xl5YVga86cOYXt06dPL3oMiwsVv6qioiKzZs3KsGHD0rJly2y88cZFt78s5eXlmTZtWj766KPCumeffTY1a9ZcpJ8//elPadeuXS655JIccsghadWqVV577bWlBpxfWmuttbL22mvn+eefL6x78cUXV9h5AAAAAAAAJEJBluCEE07InDlzcuSRR2bChAl5/fXXM2LEiPTu3TuHHXZYvv/972fXXXdNr1698txzz+W5554r3Bdvs802S4sWLVKnTp0MGTIkb7zxRoYOHbpcYdfqq6+ed999d6lBYp06ddKhQ4dcf/316dy584o47YKdd945TZs2zW9/+9u89NJL+fvf/54BAwakS5cuqV+/fpV9GzZsmJdeeinPPfdcXn311VxwwQV5/vnnFwlUF6esrCyHHnporrjiijzxxBN5/vnnc/7556/QcwEAAAAAABAKslhNmjTJrbfemqZNm+bUU09Nly5dcuONN+bEE09M7969kyQXXnhhmjZtmp49e+bII49MixYtctVVVyVJ1lxzzQwYMCCjR49Oly5dMnny5Bx66KFF97/nnntmwYIF6dy5c95///0l7tepU6fMnTt3ue8nuCw1atTI1VdfnSQ56KCD8pvf/CYdOnTIOeecs8i+PXr0yDbbbJOePXvmkEMOyVtvvZXjjz++6BD0mGOOSbdu3XLyySfn6KOPzoEHHrhCzwUAAAAAAKCsspg5DuE76o477sg999yT4cOHV/dQvjUzZqzYm5SXlX1xE9L33nPDWFgW9QLFUStQHLUCxSkrS7a7+LHqHgZ8LU+dsuu31pfPFSiOWoHiqJVVS5Mm9Yrar+ZKHgesFK+99lomTpyYwYMH56STTqru4QAAAAAAAHynCQVZJU2fPj19+vRJhw4d0rVr18L6+++/vzC96eK0bds2Q4cO/TaGCAAAAAAA8J0hFGSVtPPOO+fZZ59dZH379u0zatSoJR5Xp06dlTcoAAAAAACA7yihICWlbt26qVu3bnUPAwAAAAAA4DtlteoeAAAAAAAAALByCQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxNWs7gEAAAAALM20Czrnvfdmp7KyukcCAACrLlcKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiRMKAgAAAAAAQIkTCgIAAAAAAECJEwoCAAAAAABAiatZ3QMAAAAAWJpNeo+u7iFAtXvqlF2rewgAwCrOlYIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEgt/AzJkzc8EFF6SioiKtW7fOvvvumxtuuCELFiz4VvqfM2dORo0atVLaHj9+fFq2bLnYbT169MigQYOKamfhfefOnZs77rjja49p5MiRqaioWOy2JY3397//fbbaaquMGzduqee0IrRs2TLjx49fae0DAAAAAAB8XTWrewCrqg8//DA//elPs8466+S8887LRhttlOeffz4DBgzIG2+8kb59+670Mdxwww0ZP358unXrttL7+roGDRqUWrVqJUlGjx6dIUOG5KCDDvpW+h4+fHiuvfba/P73v0/79u0zd+7cjBs37lvpGwAAAAAA4LtEKPg1XXLJJaldu3aGDRuW733ve0mSpk2bpk6dOjnuuOPys5/9LOXl5St1DJWVlSu1/RWhYcOGhZ+/zfHed999+d3vfpcBAwZk7733TpLUrl07TZo0+dbGAAAAAAAA8F1h+tCvYe7cuRk9enQOPfTQQiD4pT322CM33HBDNtxwwyRfTDHat2/f7LTTTmnbtm1OO+20zJw5M8nip7zs3bt3evfuneSLq+xOOeWU9OvXL9tuu2123HHHXHvttUm+mErzyiuvzIQJEwptVFRUZODAgWnfvn26deuWww8/POeee26V9o855phcdtllK+y5WNoYk/+bPnT8+PE5/fTT8+abb6Zly5aZPn16Kisrc9VVV6V9+/bZbrvtcswxx+Stt94qHPvOO+/kqKOOyjbbbJMf/ehHef3114sa05NPPpnTTjstv/3tb/PjH/+4sH7h53v69Olp2bJlHnjggXTs2DFbb711jj766Hz00UeF/ceNG5euXbumVatWOeqoozJgwIDCa5MkV155ZXbcccdsv/32GTFiRJUx/Pe//83AgQOz2267ZZtttskxxxyT//znP1X6fvTRR1NRUZE2bdrk3HPPzb///e8ccMAB2WabbXL00Udnzpw5xb8QAAAAAAAAS+FKwa/h9ddfzyeffJKtt956kW1lZWXZYYcdCo9/9atf5dNPP82QIUOSJP3790/v3r0zePDgovq6//77c8ghh+Tuu+/Ogw8+mIEDB6Zjx47p1KlTXn755TzzzDNV7u937733ZtiwYamsrMzEiRNzxRVXpE+fPikrK8vs2bMzbty4nHLKKd/wGShujAtfKdmmTZucccYZue6663LnnXemUaNGGT58eO69995ccsklWXvttXPdddfliCOOyL333ptatWrl17/+ddZYY42MGDEiL7/8cvr06ZO11lprqWN58cUXc/zxx6dt27bp2bPnMsc+ZMiQXHrppamsrMyxxx6b66+/PieffHLeeOONHHvssTn22GOzzz775N57783gwYMLU7Xefvvtuemmm3LhhRdmvfXWy9lnn12l3X79+uXpp5/OhRdemIYNG+biiy/Occcdl7vuuquwzzXXXJOrr746r7zySk455ZQ89thj6devX+Fq0zvvvHOJ51BWtsxTK9qXba3INqFUqRcojlqB4qgVKI4agS8sqxZ8rkBx1AoUR62UJqHg1zBr1qwkSb169Za63+TJkzNhwoSMGTOmEJANHDgwnTp1ytSpU4vqq2HDhunVq1dq1KiRo446Ktdee20mTpyY8vLyrLHGGqlVq1aVKTH322+/wtVwG2ywQfr375+nn346bdu2zUMPPZTy8vK0aNHi65z21xrjl2rXrp169eqlRo0ahfEOHTo0/fr1y/bbb58kOeecc9K+ffs8/vjjadq0aZ555pk88sgj2WCDDdKiRYtMnDgxY8aMWepYfvGLX2TLLbfM+PHjM2HChPzwhz9c6v4nnnhiWrVqlSTp2rVrnn/++STJiBEj0qpVqxx33HFJkl//+td54oknCsfdcccd+fnPf5499tgjSXLuueemc+fOSb64OvRPf/pTrr322kJAfPHFF2f33XfP3/72t8Lzctxxx2XzzTfP5ptvnt/97nfp3Llzdt555yTJjjvuuMT3SKNGdVOjxoq/yLdx46W/n4H/o16gOGoFiqNWACjG2msX93nhcwWKo1agOGqltAgFv4Yv75P35TSgSzJ16tTUr1+/SjjWvHnzNGjQIFOnTl1mqJgkG220UWrUqFF4XLdu3cybN2+J+385bWmS1K9fP7vuumvGjBmTtm3b5r777kunTp2W2WeS1Kz5xVtjwYIFWW21qgHUggULCtu/zhiT5OOPP87bb7+dk08+uUr7n332WaZNm5b//ve/adiwYTbYYIPCtq233nqZoWD79u1zwQUX5Nhjj80ZZ5yRe+65J2usscYS92/WrFnh5zXXXDOff/55kuSll15a5ErQbbbZpvCaT5kyJccff3xh2/e///1CP9OmTcuCBQvSunXrwvaGDRumvLw8U6ZMKbwfmjZtWthep06dKq9dnTp1Mnfu3MWO+YMPPl7hVwo2blwv778/O6vAbSqhWqkXKI5ageKoFSiOv06HL7z33uylbve5AsVRK1ActbJqKfaPh4SCX8PGG2+cevXq5YUXXihcZbawY489Nj169Ejt2rUXe/z8+fMzf/78lC3mfzbz5s2rErjVqlVrkX0ql1KBX73HYZcuXXLhhRfmhBNOyBNPPJEzzzxziccurH79+kmS2bNnp0GDBlW2zZo1q7D964wx+eI5SJLLL7+8SmiaJA0aNMiTTz65SBuL6+erzjvvvJSVlaV///7p1KlTLrnkkvTt23eJ+y+pzRo1aizS/7Ief/m6ffU1+NL8+fOzYMGCKn0s7Kvh69KsjF/ClZUrp10oReoFiqNWoDhqBYBiFPtZ4XMFiqNWoDhqpbSs+DkI/wfUrFkznTp1yi233LLI1Vxjx47N2LFjs84666S8vDyzZs2qMg3kK6+8kjlz5qS8vLwQSM2ZM6ewffr06UWPY3Gh4ldVVFRk1qxZGTZsWFq2bJmNN964qLabNWuWOnXq5Nlnn62yftasWXn11VezxRZbFD3OxY23fv36ady4cWbMmJFmzZqlWbNmWX/99TNw4MC8+uqr2WyzzTJz5sy89tprhWMmTZq0zD6+DObWW2+9/OY3v8ktt9ySCRMmLPdYW7RokRdeeKHKuoUft2jRojDVaPLF6/bltLJNmzZNzZo1qzx3H374YV577bVFAlAAAAAAAIBvg1DwazrhhBMyZ86cHHnkkZkwYUJef/31jBgxIr17985hhx2W73//+2nevHl23XXX9OrVK88991yee+659OrVK+3atctmm22WFi1apE6dOhkyZEjeeOONDB06NC+++GLRY1h99dXz7rvvLjVIrFOnTjp06JDrr7++cM+7YtSuXTsHHXRQzj777Pz1r3/Nm2++maeeeiq/+tWvstVWW6VNmzZFt7XweGfOnJlp06Zl3rx56dmzZy677LKMHTs206ZNy5lnnpmnn346m266aZo3b54dd9wxZ5xxRiZPnpyHHnoow4cPX67+DjnkkLRu3Tp9+vTJp59+ulzHHnTQQXn22WdzzTXX5NVXX82QIUPyj3/8oxBs/uxnP8tNN92U+++/P//+97/Tp0+fwpV+devWzYEHHpgBAwZk/PjxmTx5ck477bSst956hXsGAgAAAAAAfJuEgl9TkyZNcuutt6Zp06Y59dRT06VLl9x444058cQT07t378J+F154YZo2bZqePXvmyCOPTIsWLXLVVVcl+eIedgMGDMjo0aPTpUuXTJ48OYceemjRY9hzzz2zYMGCdO7cOe+///4S9+vUqVPmzp1b9P0Ev9SrV68ccMABOffcc7PPPvvk5JNPzsYbb5w//OEPRV2l+FU77LBDmjVrlq5du2bSpEk58sgj85Of/CRnnXVWunXrlrfeeivDhg0rTFf6+9//PmuttVYOPvjgXHrppenRo8dy9bfaaqtlwIAB+c9//pNLLrlkuY7dcMMNc8UVV+Suu+5K165d88wzz6RDhw6Fqzv333//nHjiiRkwYEAOOeSQ7LzzzlWmVO3Vq1d22mmnnHjiienevXu+973v5YYbbljilLIAAAAAAAArU1nlsm7+xirvjjvuyD333LPcV9r9L/v3v/+defPm5Qc/+EFh3S9/+ctsvfXWOeGEE6pxZMmMGUu/sfjyKiv74iak773nhrGwLOoFiqNWoDhqBYpTVpZsd/Fj1T0MqHZPnbLrUrf7XIHiqBUojlpZtTRpUq+o/VwpWMJee+21jB49OoMHD86BBx5Y3cNZpbz++us5/PDD87e//S1vvvlmRowYkSeffDJ77rlndQ8NAAAAAABgudWs7gGw8kyfPj19+vRJhw4d0rVr18L6+++/v8oUp1/Vtm3bDB069NsY4ndWx44d8/LLL6dPnz55//33U15ent///vfZfPPNq3toAAAAAAAAy00oWMJ23nnnPPvss4usb9++fUaNGrXE4+rUqbPyBrUKOfbYY3PsscdW9zAAAAAAAAC+MaHg/6C6deumbt261T0MAAAAAAAAviXuKQgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJa5mdQ8AAAAAYGmmXdA57703O5WV1T0SAABYdblSEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASlzN6h4AAAAAwNJs0nt0dQ8BVgnTLuhc3UMAAL7DXCkIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACVOKAgAAAAAAAAlTigIAAAAAAAAJU4oCAAAAAAAACXuOxkKVlRUZOTIkYusHzlyZCoqKr52uz169MigQYO+ydBWqkGDBqVHjx5JkvHjx6dly5bp0KHDYvc9+eST07Jly4wfP36Z7U6fPj0tW7bM9OnTV+h4FzZ37txcffXV2XvvvbP11ltnjz32yLnnnpsPPvigyn6TJk3K008/neT/znFlmjNnTs4777zsuuuu2WqrrbLXXnvlyiuvzNy5c5d57LfxvAEAAAAAAHwbvpOhIP/nnXfeyb///e8q6+bOnZvHH3+86DbWX3/9jBs3Luuvv/6KHl6SZN68eTn66KNz99135ze/+U3GjBmT888/P5MnT86BBx6Yd955p7Dv8ccfn2nTpq2UcSxO7969M2nSpFx22WUZM2ZMfvvb3+aOO+7IhRdeuMxjV/bzBgAAAAAA8G0RCn7Hbbfddhk7dmyVdU8++WS+//3vF91GjRo10qRJk9SoUWNFDy9JMnz48EyaNCl//OMfs/fee2fDDTfMDjvskOuuuy4NGzbMeeedt1L6XZbZs2fnoYceSp8+fbLttttmo402SseOHXPKKafkzjvvzIIFC5Z6/Mp+3gAAAAAAAL4tq2wo+OXUjg888EA6duyYrbfeOkcffXQ++uijwj4PPvhg9t5772yzzTY555xzMn/+/Cpt3HbbbamoqEibNm3So0ePvPTSS4VtFRUVGThwYNq3b59u3bqlsrIyEydOzEEHHZRWrVrl4IMPzuWXX16Y7nPQoEE57rjjcuihh+aHP/xhJkyYkHfeeScnnnhi2rVrl6222io/+tGP8s9//rPQxyuvvJLu3bundevWOeyww/Lhhx8ucp4dOnRYJBR8+OGH07FjxyrrltbXV6fBnDlzZvr27Zuddtopbdu2zWmnnZaZM2cm+WJKz4qKivTr1y9t27bNNddcs8zXYsSIETnggAPSpEmTKutr166dX/7yl3nooYfy4YcfpkePHnnzzTdz+umnp3fv3oX9br311uyyyy5p06ZNTj/99CpTez744IPp1KlTWrdunZ/85CeZMGFCYVuPHj0yYMCAdOjQIbvvvnvmzJlTpf+ysrKUlZXliSeeqLJ+r732yt13352ysrIkyfvvv5+TTjop2267bXbeeedceumlqaysXOR5mzVrVk477bRsu+22ad++fQYMGJDPPvusyvP2xz/+Mbvssku22WabnHbaaVXO5U9/+lP22WeftG7dOgcffHBefPHFwralvRcBAAAAAAC+qVU2FPzSkCFDcumll2b48OF5/vnnc/311yf5InA76aST0r1799x1112ZN29elUBu7NixufLKK9O3b9/cfffdadu2bQ477LBCOJYk9957b4YNG5YLLrggc+bMyVFHHZUtt9wyo0aNSpcuXRYJzB5++OF06dIlN954Y1q1apVTTz018+fPz2233ZZRo0Zl3XXXTf/+/ZN8MQXoL3/5yzRt2jQjR47M3nvvndtvv32R86uoqMjzzz+f9957L0myYMGCjB07dpFQcGl9fdWvfvWrTJo0KUOGDMn111+fKVOmVAnp3nzzzcydOzcjR45Mly5dlvr8f/LJJ5kyZUq23nrrxW5v27Zt5s+fnxdeeCGDBg3KeuutlzPOOCN9+vQp7HP//fdn2LBhufLKKzNmzJjcddddSZLJkyenV69eOfbYY3PPPfdkv/32yy9+8Yu89tprhWNHjhyZgQMH5sorr8yaa65Zpe8111wzP/rRj3LRRRdln332yfnnn5+//vWvqVGjRjbddNNCKHj88cdnxowZGT58eC677LKMHDkyt9xyyyLn0qdPn8yePTu33nprrr766jz//PM555xzCtvffffd3H///Rk6dGgGDRqUBx54IKNGjUqSPP744+nTp09+/vOf55577slWW22Vo48+OnPnzi3qvfhVZWUrdlkZbVospbqoF4uluEWtWCzFLWrFYiluAYpX3fVqsawKi1qxWIpb1MqqsxSr5or/6vHtOvHEE9OqVaskSdeuXfP8888nSe66665st9126dmzZ5Kkb9++eeSRRwrHDR06NEcffXT22GOPJMlJJ52Uxx57LPfcc0/h6r/99tsvLVu2TJLcfvvtWWONNXLmmWcWQqWnn346M2bMKLS59tprp3v37kmSysrKdOzYMXvvvXfWW2+9JMmhhx6aX/7yl0mSJ554Ih999FH69++fNdZYI82bN8+ECRPywQcfVDm/DTfcMC1btswjjzySAw88MM8++2waNmyYTTbZpLDPsvpa2OTJkzNhwoSMGTMm5eXlSZKBAwemU6dOmTp1amG/o446Ks2aNVvm8z979uxUVlamQYMGi91ev379JMlHH32Uhg0bpkaNGqlXr17q1atX2Kdfv34pLy/PZpttlp122imTJ09OkgwbNiwHHXRQunbtmiQ57LDD8tRTT+XWW28thJi77757tt122yWO79xzz80WW2yRu+66KzfccENuuOGGrL322jnvvPOy++67Z/LkyXnmmWfy0EMPpWnTpkmS/v3755NPPqnSzuuvv56HHnooEyZMKIx9wIAB6datW04//fQkyeeff54zzzwzLVq0SMuWLbPLLrvk+eefz0EHHZTbb789Xbp0Kbw/fvvb36ZWrVqZOXNmUe/FhTVqVDc1aqz4PL9x43rL3glIol6gWGoFiqNWAFiRfK5AcdQKFEetlJbvZChYs2bNxd7vbcGCBalZs+qQFw6u1lxzzXz++edJkilTpmSLLbYobKtVq1aVx1OmTMnAgQNz6aWXFtb997//zbRp0wqPN9xww8LPL730Urbccssq95fbZptt8uCDDy52/7KysnTv3j1/+ctf8vTTT+fVV1/NxIkTC+f1yiuvZJNNNskaa6xROGbrrbfOX//610XOu0OHDnn44Ydz4IEH5qGHHlrkKsFl9bWwqVOnpn79+oVAMEmaN2+eBg0aZOrUqYXAa6ONNlrk2MX5MgxcOBxd2Lvvvpskadiw4RLb2HjjjQs/16tXrzDl5pQpU3LfffdVuYLy888/T/v27QuPF37OF2e11VZLjx490qNHj7zzzjt57LHHcv311+fEE0/Mgw8+mFdffTUNGzYsBIJJCs/vl9OGfjmWBQsWZNddd63S/oIFC6pcufjV9+O8efOSJK+++moOPvjgwrbatWunV69ehbaX9V5c2AcffLxcyf+ylJV98Yv9/fdnp7JyxbULpUi9QHHUChRHrUBxVuT/f+B/gc8VWDrfwaA4amXVsvbaxYW338lQsF69eovcHy754qq0ha8wS74I+5ak8ivv1IX3nT9/fs4444zsuOOOVfZZeArK733ve4Wfa9SosUh7X3288P4LFizIEUcckVmzZqVTp06pqKjI559/nl/96ldFjW9hHTp0yNChQ/Ppp5/m4YcfrhIeFdvXl2rXrr3YPubPn1/lnosLn8vS1KlTJ5tttlleeOGF7L///otsnzhxYmrUqJEf/OAHS2xj4aA1+b/nZf78+fnFL36Rbt26LdJnMeMcP358nn766Rx77LFJknXXXTcHHnhg9txzz+y22255+umnl/r+Wdj8+fNTr169wtSmC1t33XXzr3/9K8miz++X5/LVMPurbS/rvfhVK+OXcGXlymkXSpF6geKoFSiOWgFgRfK5AsVRK1ActVJavpP3FGzZsmWeeeaZRdb/61//Wmq4tLAWLVoUphJNvgjOvpyWMknKy8vz9ttvp1mzZoVlyJAhefbZZ5fY3qRJk6pcfffCCy8ssf9XXnklTz31VG644YYcc8wx2X333QtXzVVWVqZFixaZNm1aZs+eXThm0qRJi23rBz/4QRo1apRbbrkln3/+ebbccsvl6mth5eXlmTVrVpWpQl955ZXMmTOnytWDy+Pggw/OiBEj8s4771RZP2/evAwePDgdO3ZMo0aNlrvd8vLyTJ8+vcprdPvtt+exxx4r6viZM2fm6quvXuQqxjXWWCM1atRIo0aN0qxZs3z00Uf5z3/+U9h+00035bjjjltkLLNnz05ZWVlhLJ999lkuuuiiwpWNS9OsWbMq77/58+enoqIi//znP5f7vQgAAAAAALC8vpOhYPfu3fPwww9n8ODBee211/LSSy/lyiuvzCOPPJJDDz20qDYOOuigTJw4MYMHD87UqVNz4YUX5q233ipsP/zww3PjjTdm1KhRef311zNw4MDcd999ad68+WLb69y5c+bMmZPzzz8/r776au6444785S9/WWL/9evXz2qrrZbRo0fnzTffzJgxYzJo0KAkydy5c7PTTjtl/fXXT58+fTJlypSMHDlyqe1VVFTk6quvTocOHZa7r4U1b948u+66a3r16pXnnnsuzz33XHr16pV27dpls802W/ITuhTdu3dPu3bt0qNHjzz44IN566238o9//CO/+MUvMnv27PTp06ew7xprrJGpU6fmo48+Wma7PXv2zF/+8pfcdNNNef311wv3BFz4fopLs8cee6R58+Y5/PDDM3bs2EyfPj3/+Mc/csopp6S8vDzt2rVLixYtssMOO6RPnz556aWXMn78+FxzzTXZeeedq7TVvHnz7LLLLjn11FPz3HPP5YUXXsjpp5+eTz75pHDfxKXp0aNH7rnnntx999157bXXcv7556eysjJbbrnlcr8XAQAAAAAAltd3MhTceuut84c//CGPP/54unXrlu7du+fvf/97hg4dms0337yoNpo1a5bBgwdn9OjR6datW2bMmJHddtutsL1Tp045+eSTc8UVV6RLly558sknM3jw4CUGTnXr1s2QIUPy1FNPpWvXrrn77rvTtWvXJU7Hud5666V///659tpr06VLl1xzzTU588wzU7Nmzbz44oupVatW/vCHP2TmzJn50Y9+lFtvvXWpgWeHDh3y8ccfL3I/wWL6+qoLL7wwTZs2Tc+ePXPkkUemRYsWueqqq5bxjC7ZaqutlquvvjoHHXRQLrvssuyzzz459dRT07x589x5551Zd911C/t27949t9xyS84888xltrvNNtvkoosuyh//+Md06tQpd9xxRy655JK0a9euqHHVqlUrN9xwQ374wx9mwIAB2WefffLrX/86jRo1yrBhw7Laal+8/QcOHJjVV189P/3pT3PKKafkpz/9aQ455JBF2rvooouy0UYbpWfPnjn88MNTXl6+yFSuS9KuXbv069cvV111Vfbbb79MmjQpQ4YMSZ06dZb7vQgAAAAAALC8yiq/Or8ki/XGG2/knXfeyXbbbVdYd/bZZ+fTTz/NBRdcUI0jW7bXXnste+21Vx577LEqAR2rphkzZi97p+VQVvbFTUjfe88NY2FZ1AsUR61AcdQKFKesLNnu4uJuIwH/66Zd0NnnCiyD72BQHLWyamnSpF5R+30nrxT8LpozZ04OP/zwjBkzJm+++WYeeOCB/OlPf8o+++xT3UNbqnfeeSfjxo1LrVq1stZaa1X3cAAAAAAAAKgGNat7AKuKLbbYImeddVYuvfTS/Oc//8kGG2yQ008/Pbvvvnt1D22pbr755tx666057rjjljjV6dIcf/zxeeKJJ5a4/eyzz85+++33TYYIAAAAAADASmb6UJbq3XffzaeffrrE7Y0bN86aa675LY4I04dC9VEvUBy1AsVRK1Ac04dC8UwfCsvmOxgUR62sWoqdPtSVgizVOuusU91DAAAAAAAA4BtyT0EAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHE1q3sAAAAAAEsz7YLOee+92amsrO6RwHdXWVl1jwAA+K5zpSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJQ4oSAAAAAAAACUOKEgAAAAAAAAlDihIAAAAAAAAJS4mtU9AAAAAICl2aT36OoeAqxynjpl1+oeAgDwHeNKQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocULBElJRUZGWLVsudhk/fvwi+48fPz4tW7YsPF7Sfivb8vS78DluvvnmadOmTQ4++OA8/vjjK2w89913X95///0V1t633T4AAAAAAMBX1azuAbBinXHGGenUqdMi6xs0aFANo1k5vjzHBQsWZObMmRk1alSOPvroDB06NDvttNM3avvNN9/MSSedlIcffngFjfbbbR8AAAAAAGBxhIIlpl69emnSpEl1D2OlWvgc11133fz2t7/NjBkzcv755+fee+/9Rm1XVlauiCFWW/sAAAAAAACLY/rQ/yFz5szJb37zm7Rp0yZ77713nn/++eU6/sEHH0ynTp3SunXr/OQnP8mECROSJI899lhat26dTz/9tLDvuHHjsu222+azzz5LZWVlrrrqqrRv3z7bbbddjjnmmLz11lsr9Nx++tOf5t///ndee+21JMnMmTPTt2/f7LTTTmnbtm1OO+20zJw5s7D/c889l+7du6d169bZe++9M3r06CRJhw4dCv+OHDkySfLII4/kRz/6UVq1apVOnTrlgQceKLTTo0ePDBgwIB06dMjuu++eOXPm5J///Geh7W222Sa/+MUv8u677y6x/SU9rwAAAAAAACuKKwX/h/Tr1y9Tp07N8OHD88EHH6R3795FHzt58uT06tUrZ599dlq1apW//vWv+cUvfpF77rknO+20U1ZfffU89thj2XvvvZMkDzzwQCoqKlKnTp3cfPPNuffee3PJJZdk7bXXznXXXZcjjjgi9957b2rVqrVCzq158+ZJkldeeSXNmjXLr371q3z66acZMmRIkqR///7p3bt3Bg8enPfffz9HHHFE9ttvv5x33nl59tln06tXrzRv3jwjRozIgQcemBEjRmSzzTbLk08+mRNOOCGnnnpqdttttzz66KM5+eSTc/vtt2errbZKkowcOTLDhg1L7dq1U1lZmaOPPjo9e/bMRRddlHfffTdnnHFGrrnmmpx55pmLtL+057VZs2ZLPN+yshXytFVpa0W2CaVKvUBx1AoUR61AcdQIfD1qBxbPdzAojlopTULBEtOvX78MGDCgyroNNtggt912W+67777cdNNN2XLLLZMkxx13XM4555yi2h02bFgOOuigdO3aNUly2GGH5amnnsqtt96a3r17Z6+99soDDzyQvffeO/Pnz89DDz2Uc889N0kydOjQ9OvXL9tvv32S5Jxzzkn79u3z+OOPp6KiYoWcd7169ZIkH3/8cSZPnpwJEyZkzJgxKS8vT5IMHDgwnTp1ytSpUzNu3Lg0aNAgZ555ZlZbbbVsuummmTlzZj777LOsvfbaSZJGjRqlTp06ueWWW7L33nunZ8+eSZLy8vI899xzue6663LppZcmSXbfffdsu+22SZIZM2bkuOOOy+GHH56ysrI0bdo0e+21V5577rlCuwu3v6zndXEaNaqbGjVW/EW+jRvXW+FtQqlSL1ActQLFUSsArAxrr+3zBZbGdzAojlopLULBEnPiiSdmr732qrKuZs2aefXVVzN//vxsvvnmhfVbb7110e1OmTIl9913X26//fbCus8//zzt27dPknTu3DnHHXdc5s6dm2eeeaaw7eOPP87bb7+dk08+Oaut9n9B1meffZZp06Z9zbNc1Jw5c5Ika665ZqZOnZr69esXAsHkiysJGzRokKlTp+bVV1/ND37wgyrjOfzww5Mk06dPX+S8Dz744Crr2rRpk7vuuqvweMMNNyz83KRJk3Tr1i033HBDJk2alFdeeSUvvfRSITT8qmU9r4vzwQcfr/ArBRs3rpf3358dtzyEpVMvUBy1AsVRK1Acf50OX897782u7iHAd5LvYFActbJqKfaPgYSCJaZx48aLnXby/fffX2Rd7dq1i253/vz5+cUvfpFu3bpVWV+nTp0kSbt27bLGGmvkiSeeyOOPP56OHTumdu3a+eyzz5Ikl19+eZWQLkkaNGhQdP/L8tJLLyVJWrRoUfh5cecwf/781KxZ/Nv+e9/73iLrFixYkAULFix2n3feeSc//vGPs+WWW2annXbKQQcdlEcffTT/+te/ljimpT2vS7IyfglXVq6cdqEUqRcojlqB4qgVAFYGny2wdL6DQXHUSmlZ8XMQ8p206aabplatWnn++ecL61588cWijy8vL8/06dPTrFmzwnL77bfnscceS5Ksttpq2WefffLoo4/m4YcfTufOnZMk9evXT+PGjTNjxozCceuvv34GDhyYV199dYWd31133ZUtt9wyTZs2TXl5eWbNmpWpU6cWtr/yyiuZM2dOysvLs8kmm+Sll15K5UK/yU466aQMHTo0ZV/5E9Ty8vJFAr1nnnlmkYDzSw8++GAaNGiQP/zhD/n5z3+e7bbbLm+88Uahr8W1v7TnFQAAAAAAYEVwpWCJmT17dmbMmLHI+rp162b//ffPgAEDcv755+ezzz7LlVdeuch+zz33XP773/9WWdeuXbv07Nkzhx56aLbeeuvsvvvuGTt2bG644YbceOONhf06d+6cww8/PHXq1MkOO+xQWN+zZ89cdtllady4cTbddNNcffXVefrpp3Peeed9o3OsrKzMhx9+mDvvvDN/+ctfct111yX5YqrQXXfdNb169Urfvn2TJGeffXbatWuXzTbbLOutt14uv/zyXHTRRfnpT3+ap59+Og8//HCOPvrorL766kmSyZMnZ6211krPnj1zyCGH5MYbb8xuu+2WRx99NA8++GCGDRu22LE1bNgwb731Vp588slstNFGue+++/LAAw8UpmpdXPvLel4BAAAAAAC+qbLKShd+loqKioq8+eabi93261//OkcccUQGDBiQ++67Lw0aNEiPHj1y4YUXFqbbbNmy5WKPfeCBB9KsWbOMHj06gwYNyvTp07PxxhvnhBNOyL777rvIGHbZZZecffbZhXXz58/PFVdckbvuuitz5szJVlttlT59+mSLLbYo9HvTTTdl++23X65zLCsrS6NGjfKDH/wgxxxzTLbbbrvCfh988EHOPffcPProo6lRo0Y6dOiQ008/vTBl6TPPPJPf/e53mTRpUpo2bZqTTz65cC/G0047Lffdd19OPfXU9OzZs8p5l5eX54QTTijs26NHj/zwhz/MCSecUDjXc845J3/5y19SVlaWrbfeOrvssksGDRqUJ598MrVr115q+0t6Xhc2Y8aKvSdAWdkX8w2/9565oWFZ1AsUR61AcdQKFKesLNnuYrOpwPJ66pRdq3sI8J3kOxgUR62sWpo0Ke6egkJBWMUIBaH6qBcojlqB4qgVKI5QEL4eoSAsnu9gUBy1smopNhR0T0EAAAAAAAAoce4pyHfG9ttvn7lz5y5x++jRo7PBBht8iyMCAAAAAAAoDUJBvjPuvPPOLFiwYInb11lnnW9xNAAAAAAAAKVDKMh3RtOmTat7CAAAAAAAACXJPQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMTVrO4BAAAAACzNtAs65733ZqeysrpHAt9dZWXJ2mvXUysAwBK5UhAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEpczeoeAAAAAMDSbNJ7dHUPAUraU6fsWt1DAAC+Ba4UBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxRkqWbOnJkLLrggFRUVad26dfbdd9/ccMMNWbBgwUrve86cORk1atRKaXv8+PFp2bLlYpcRI0aslD4BAAAAAACqS83qHgDfXR9++GF++tOfZp111sl5552XjTbaKM8//3wGDBiQN954I3379l2p/d9www0ZP358unXrttL6GDdu3CLr6tWrt9L6AwAAAAAAqA5CQZbokksuSe3atTNs2LB873vfS5I0bdo0derUyXHHHZef/exnKS8vX2n9V1ZWrrS2v9SkSZOV3gcAAAAAAEB1M30oizV37tyMHj06hx56aCEQ/NIee+yRG264IRtuuGFmzpyZvn37Zqeddkrbtm1z2mmnZebMmUn+b4rOhfXu3Tu9e/dOkgwaNCinnHJK+vXrl2233TY77rhjrr322iTJyJEjc+WVV2bChAmFNioqKjJw4MC0b98+3bp1y+GHH55zzz23SvvHHHNMLrvssm98/tOnT0/Lli1z1VVXpV27djnnnHNSWVmZIUOGpKKiIltttVXat2+fK6+8snBMjx49Mnjw4Bx55JFp1apV9t577zz++OOF7e+//35OOumkbLvtttl5551z6aWXFoLP//znPznmmGPSunXrVFRU5Morr8z8+fO/8XkAAAAAAAAkrhRkCV5//fV88skn2XrrrRfZVlZWlh122CFJcuSRR+bTTz/NkCFDkiT9+/dP7969M3jw4KL6uf/++3PIIYfk7rvvzoMPPpiBAwemY8eO6dSpU15++eU888wzGTRoUGH/e++9N8OGDUtlZWUmTpyYK664In369ElZWVlmz56dcePG5ZRTTlkBz8AXnn766dx1111ZsGBBRo0alRtvvDGXXnppmjZtmscffzz9+/fPHnvskS233DJJMmTIkPTr1y/9+vXLJZdckr59+2bs2LFZbbXVcvzxx6dGjRoZPnx4Pv7445x88slZZ511cuihh+ZXv/pVNt9889x9992ZMWNGzjrrrJSVleX4449f7LjKylbYKRbaWpFtQqlSL1ActQLFUStQHDUCK58643+J72BQHLVSmoSCLNasWbOSLP3+epMnT86ECRMyZsyYwjSiAwcOTKdOnTJ16tSi+mnYsGF69eqVGjVq5Kijjsq1116biRMnpry8PGussUZq1apVZYrP/fbbr3Dl4AYbbJD+/fvn6aefTtu2bfPQQw+lvLw8LVq0KPo827RpU+Vxx44dM3DgwMLjn//859l4442TJG+//XbOP//87LjjjkmS7t2756qrrsrLL79cCAV32223HHDAAUmSY489Nvvvv39mzJiRDz/8MM8880weeuihNG3aNMkXAeonn3ySv//973nrrbcyYsSIrLbaatl0003Tq1evnH766YsNBRs1qpsaNVb8Rb6NG7uXIhRLvUBx1AoUR60AUN3WXttnEf97fAeD4qiV0iIUZLEaNmyYJIWpQBdn6tSpqV+/fpX7CjZv3jwNGjTI1KlTlxoofmmjjTZKjRo1Co/r1q2befPmLXH/DTfcsPBz/fr1s+uuu2bMmDFp27Zt7rvvvnTq1GmZfS5s1KhRVR6vscYaS+xvhx12yL/+9a9ccsklmTJlSiZNmpQZM2ZkwYIFhX022WSTws9rrrlmkmTevHl59dVX07Bhw0IgmHwRQCbJ8OHD89FHH6Vt27aFbQsWLMhnn32WDz/8MGuttVaVMX3wwccr/ErBxo3r5f33Z+dbuI0jrNLUCxRHrUBx1AoUx1+nw8r33nuzq3sI8K3xHQyKo1ZWLcX+gY9QkMXaeOONU69evbzwwgtp1arVItuPPfbY/PjHP17ssfPnz8/8+fNTtpj/uc2bNy81a/7f265WrVqL7FO5lN8wX72/YZcuXXLhhRfmhBNOyBNPPJEzzzxziccuTrNmzZa6feH+RowYkd/97nc58MADs9dee6VXr1457LDDquy/pPNZ3PovzZs3L5tuummuvvrqRbYtKVhdGb+EKytXTrtQitQLFEetQHHUCgDVzecQ/4t8B4PiqJXSsuLnIKQk1KxZM506dcott9ySuXPnVtk2duzYjB07NptssklmzZpVZarQV155JXPmzEl5eXkhCJszZ05h+/Tp04sew+JCxa+qqKjIrFmzMmzYsLRs2bIw1efKcOutt+b444/PGWeckW7dumWttdbK+++/v9QQ80vNmjXLRx99lP/85z+FdTfddFOOO+64lJeX56233kqjRo3SrFmzNGvWLNOnT88VV1xR1HMAAAAAAACwLEJBluiEE07InDlzcuSRR2bChAl5/fXXM2LEiPTu3TuHHXZYvv/972fXXXdNr1698txzz+W5555Lr1690q5du2y22WZp0aJF6tSpkyFDhuSNN97I0KFD8+KLLxbd/+qrr5533313qUFinTp10qFDh1x//fXp3LnzijjtJVprrbXy5JNP5tVXX83EiRNz8skn5/PPP18kNF2cFi1aZIcddkifPn3y0ksvZfz48bnmmmuy8847p3379tlwww1z2mmn5aWXXso//vGP9O3bN6uvvnqVqVUBAAAAAAC+LqEgS9SkSZPceuutadq0aU499dR06dIlN954Y0488cT07t07SXLhhRemadOm6dmzZ4488si0aNEiV111VZIv7qk3YMCAjB49Ol26dMnkyZNz6KGHFt3/nnvumQULFqRz5855//33l7hfp06dMnfu3OW+n+DyOuOMMzJnzpzsv//+OeGEE9KyZcvsueeemTRpUlHHDxw4MKuvvnp++tOf5pRTTslPf/rTHHLIIalRo0YGDx6cBQsW5KCDDsoJJ5yQ3XbbbbmnQgUAAAAAAFiSsspi5j6E77A77rgj99xzT4YPH17dQ/lWzJixYm/+XVb2xU1I33vPDWNhWdQLFEetQHHUChSnrCzZ7uLHqnsYUNKeOmXX6h4CfGt8B4PiqJVVS5Mm9Yrar+ZKHgesNK+99lomTpyYwYMH56STTqru4QAAAAAAAHxnCQVZZU2fPj19+vRJhw4d0rVr18L6+++/vzC96eK0bds2Q4cO/TaGCAAAAAAA8J0gFGSVtfPOO+fZZ59dZH379u0zatSoJR5Xp06dlTcoAAAAAACA7yChICWnbt26qVu3bnUPAwAAAAAA4DtjteoeAAAAAAAAALByCQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxNWs7gEAAAAALM20Czrnvfdmp7KyukcC311lZcnaa9dTKwDAErlSEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASlzN6h4AAAAAwNJs0nt0dQ8BKNJTp+xa3UMAAJbAlYIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOKEggAAAAAAAFDihIIAAAAAAABQ4oSCAAAAAAAAUOJWyVCwoqIiI0eOXGT9yJEjU1FR8bXb7dGjRwYNGvRNhrZSDRo0KD169EiSjB8/Pi1btkyHDh0Wu+/JJ5+cli1bZvz48ctsd/r06WnZsmWmT5++Qsf7pYXHXez+bdu2zXbbbZc5c+Ysd39/+9vfcvDBB6d169Zp27ZtjjrqqEycOHG52/mquXPn5o477vjG7QAAAAAAAHzbVslQkP/zzjvv5N///neVdXPnzs3jjz9edBvrr79+xo0bl/XXX39FD2+5zZw5M1deeWV69eqVP/3pT1lzzTWX6/iJEyfmuOOOS9euXXPPPffk1ltvzQYbbJDDDjvsG4eeo0ePzpAhQ75RGwAAAAAAANVBKLiK22677TJ27Ngq65588sl8//vfL7qNGjVqpEmTJqlRo8aKHt5y+/LKwB133DEbbrjhch9/7733Zuedd86hhx6aZs2aZbPNNsvZZ5+dJk2a5C9/+cs3GltlZeU3Oh4AAAAAAKC6lGwo+OWUmA888EA6duyYrbfeOkcffXQ++uijwj4PPvhg9t5772yzzTY555xzMn/+/Cpt3HbbbamoqEibNm3So0ePvPTSS4VtFRUVGThwYNq3b59u3bqlsrIyEydOzEEHHZRWrVrl4IMPzuWXX16YNnPQoEE57rjjcuihh+aHP/xhJkyYkHfeeScnnnhi2rVrl6222io/+tGP8s9//rPQxyuvvJLu3bundevWOeyww/Lhhx8ucp4dOnRYJBR8+OGH07FjxyrrltbXV6cPnTlzZvr27Zuddtopbdu2zWmnnZaZM2cm+WLa0oqKivTr1y9t27bNNddcs8Jel+nTpxemf+3YsWN69+6dJHnmmWfSvXv3bLPNNqmoqMitt966xPZXW221vPTSS3n//fcL68rKynLdddfloIMOymeffZZtt902DzzwQGH7559/nu233z5PPvlkZs2alRNOOCHbbbdd2rVrl1NPPTVz5szJ+PHjc/rpp+fNN98sPFeVlZW56qqr0r59+2y33XY55phj8tZbbxXabdmyZe67777su+++ad26dX7zm9/kjTfeyGGHHZbWrVvnkEMOyTvvvJMkS+wXAAAAAABgRSjZUPBLQ4YMyaWXXprhw4fn+eefz/XXX5/ki8DtpJNOSvfu3XPXXXdl3rx5VQK5sWPH5sorr0zfvn1z9913p23btjnssMMK4VjyxVVpw4YNywUXXJA5c+bkqKOOypZbbplRo0alS5cuiwRmDz/8cLp06ZIbb7wxrVq1yqmnnpr58+fntttuy6hRo7Luuuumf//+Sb6YAvSXv/xlmjZtmpEjR2bvvffO7bffvsj5VVRU5Pnnn897772XJFmwYEHGjh27SCi4tL6+6le/+lUmTZqUIUOG5Prrr8+UKVMKAV2SvPnmm5k7d25GjhyZLl26FP9iLGRxr8v666+fESNGJElGjBiRPn36ZMqUKfn5z3+edu3aZeTIkTnhhBNy4YUX5sEHH1xsuz/5yU/ywQcfZI899sixxx6bm2++Oa+//no23HDDNGzYMHXq1EnHjh1z//33F4554oknUrNmzfzwhz/MFVdckRkzZuTWW2/NTTfdlMmTJ+fqq69OmzZtcsYZZ2S99dYrTLU6fPjw3Hvvvbnkkkty++23p3HjxjniiCPy+eefF9q+4oorcsEFF+QPf/hDHnjggXTv3j3du3fPbbfdlhkzZuTaa68t7Le4fpekrGzFLiujTYulVBf1YrEUt6gVi6W4Ra1YLMUtwKqjun9fWCzFLN6rFktxi1pZdZZi1VzxH/3fLSeeeGJatWqVJOnatWuef/75JMldd92V7bbbLj179kyS9O3bN4888kjhuKFDh+boo4/OHnvskSQ56aST8thjj+Wee+4pXP233377pWXLlkmS22+/PWussUbOPPPM1KhRI5tuummefvrpzJgxo9Dm2muvne7duyf5YirKjh07Zu+99856662XJDn00EPzy1/+MskXQdVHH32U/v37Z4011kjz5s0zYcKEfPDBB1XOb8MNN0zLli3zyCOP5MADD8yzzz6bhg0bZpNNNinss6y+FjZ58uRMmDAhY8aMSXl5eZJk4MCB6dSpU6ZOnVrY76ijjkqzZs2Kfh2+anGvS40aNdKoUaMkSaNGjVKvXr1ceeWV+cEPfpDf/OY3SZJNN900U6ZMydChQ7Pnnnsu0m7z5s0zYsSIDBkyJI8++mjGjh2bc889N/vss08uuOCCrL766uncuXNOPvnk/Pe//833vve9jBkzJvvss09q1KiRN998M3Xr1s1GG22U1VdfPZdffnmSpHbt2qlXr15hqtXki/dIv379sv322ydJzjnnnLRv3z6PP/544YrHnj17pnXr1kmSLbbYIuXl5dl3332TJHvttVcmT56cJEvsd3EaNaqbGjVWfJ7fuHG9Fd4mlCr1AsVRK1ActQJAKVl7bZ9rrBp8B4PiqJXSskqGgjVr1syCBQsWWb9gwYLUrFn1lBYOrtZcc83CVVxTpkzJFltsUdhWq1atKo+nTJmSgQMH5tJLLy2s++9//5tp06YVHi98z7uXXnopW265ZZX78m2zzTZVrmhbeP+ysrJ07949f/nLX/L000/n1VdfzcSJEwvn9corr2STTTbJGmusUThm6623zl//+tdFzrtDhw55+OGHc+CBB+ahhx5a5CrBZfW1sKlTp6Z+/fqFQDD5Imhr0KBBpk6dmnr1vvgFsNFGGy1y7PJY0uvyVVOmTCmEh19q06ZNbrvttiW2/f3vfz8XX3xx5s2bl2eeeSajR4/OHXfckSZNmuTMM8/MzjvvnNq1a+fxxx/PbrvtloceeihDhgxJkhx22GE57rjjsuOOO2bHHXfM3nvvna5duy7Sx8cff5y33347J598clZb7f8Cus8++6zKe6Rp06aFn+vUqVPlPVCnTp3MnTt3ufpNkg8++Hi5kv9lKSv74hf7++/PjtsmwtKpFyiOWoHiqBUozor8/w+w8r333uzqHgIsle9gUBy1smop9o9yVslQsF69eou939rs2bMLodWXatWqtcR2Kr/yTl543/nz5+eMM87IjjvuWGWfNddcs/Dz9773vcLPNWrUWKS9rz5eeP8FCxbkiCOOyKxZs9KpU6dUVFTk888/z69+9auixrewDh06ZOjQofn000/z8MMPVwkyi+3rS7Vr115sH/Pnz69yz8WFz+XrWNrrsrDF9bNgwYJF7v/4pQsvvDD7779/Nt9889SsWTPt2rVLu3btsuaaaxauBK1Zs2b23nvv3H///alVq1bWXHPNbLvttkmSHXfcMX/961/z8MMP59FHH81ZZ52VcePG5eKLL67Sz5f9X3755VUC1CRp0KBB4eeFQ+IkVQLEhRXb75dWxi/hysqV0y6UIvUCxVErUBy1AkAp8ZnGqsJ3MCiOWiktq+Q9BVu2bJlnnnlmkfX/+te/8oMf/KCoNlq0aFGYSjT5Imj6cirHJCkvL8/bb7+dZs2aFZYhQ4bk2WefXWJ7kyZNqnL13QsvvLDE/l955ZU89dRTueGGG3LMMcdk9913z7vvvpvkizCwRYsWmTZtWmbP/r+/rpo0adJi2/rBD36QRo0a5ZZbbsnnn3+eLbfccrn6Wlh5eXlmzZpVZarQV155JXPmzFkk/Po2lJeX51//+leVdc8888wSxzJu3Ljcddddi6yvX79+YWrS5IspSx977LGMHTs2++yzT8r+/5+e3nDDDXnhhRfyox/9KJdffnnOP//8PPDAA0lS2OfL9ho3bpwZM2YU3h/rr79+Bg4cmFdffXW5z3Np/QIAAAAAAHxTq2Qo2L179zz88MMZPHhwXnvttbz00ku58sor88gjj+TQQw8tqo2DDjooEydOzODBgzN16tRceOGFeeuttwrbDz/88Nx4440ZNWpUXn/99QwcODD33Xdfmjdvvtj2OnfunDlz5uT888/Pq6++mjvuuCN/+ctflth//fr1s9pqq2X06NF58803M2bMmAwaNChJMnfu3Oy0005Zf/3106dPn0yZMiUjR45cansVFRW5+uqr06FDh+Xua2HNmzfPrrvuml69euW5557Lc889l169eqVdu3bZbLPNlvyEriSHHHJIJk2alEsvvTSvvvpq7r777vzxj39c4ut83HHHZfjw4bn44ovz0ksvZerUqbnzzjszdOjQwv0jk6Rt27ZZffXVc/fdd6dz586F9W+//XbOOeecPPvss5k2bVruv//+QtC8+uqrZ+bMmZk2bVrmzZuXnj175rLLLsvYsWMzbdq0nHnmmXn66aez6aabLvd5Lq1fAAAAAACAb2qVDAW33nrr/OEPf8jjjz+ebt26pXv37vn73/+eoUOHZvPNNy+qjWbNmmXw4MEZPXp0unXrlhkzZmS33XYrbO/UqVNOPvnkXHHFFenSpUuefPLJDB48OJtsssli26tbt26GDBmSp556Kl27ds3dd9+drl27LnE6zvXWWy/9+/fPtddemy5duuSaa67JmWeemZo1a+bFF19MrVq18oc//CEzZ87Mj370o9x6661LDTw7dOiQjz/+eJH7CRbT11ddeOGFadq0aXr27JkjjzwyLVq0yFVXXbWMZ3Tl2GCDDQqvddeuXTN48OD07t07P/7xjxe7/7777psrr7wyzzzzTA455JB069Ytt99+e373u99VCUzLysqyzz77ZL311stWW21VWP/rX/862267bY499tjsv//++eSTTzJw4MAkyQ477JBmzZqla9eumTRpUo488sj85Cc/yVlnnZVu3brlrbfeyrBhw6pMH1qspfULAAAAAADwTZVVfnX+SL6WN954I++880622267wrqzzz47n376aS644IJqHNmyvfbaa9lrr73y2GOPZd11163u4XxrTjnllDRr1iwnnnhidQ9lucyYsWJv2F1W9sVNSN97zw1jYVnUCxRHrUBx1AoUp6ws2e7ix6p7GECRnjpl1+oeAiyV72BQHLWyamnSpF5R+62SVwp+F82ZMyeHH354xowZkzfffDMPPPBA/vSnP2Wfffap7qEt1TvvvJNx48alVq1aWWuttap7ON+KZ599NrfccksefvjhHHDAAdU9HAAAAAAAgJWuZnUPoFRsscUWOeuss3LppZfmP//5TzbYYIOcfvrp2X333at7aEt1880359Zbb81xxx23xKlOl+b444/PE088scTtZ599dvbbb79vMsQV7vHHH891112Xk08+ORtttFF1DwcAAAAAAGClM30o38i7776bTz/9dInbGzdunDXXXPNbHFHpM30oVB/1AsVRK1ActQLFMX0orFpMH8p3ne9gUBy1smopdvpQVwryjayzzjrVPQQAAAAAAACWwT0FAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDE1azuAQAAAAAszbQLOue992ansrK6RwLfXWVlydpr11MrAMASuVIQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKXM3qHgAAAADA0mzSe3R1DwGg2j11yq7VPQQAVnGuFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEicUBAAAAAAAgBInFAQAAAAAAIASJxQEAAAAAACAEvc/HQpWVFSkZcuWi13Gjx+/wvvr0aNHBg0atMLbXZnef//93HfffUXtO3369LRs2TKXXnrpItsGDRqUHj16FNVOZWVlbrnlluUa58pSUVGRkSNHfuv99u7dO7179/7W+wUAAAAAAEpTzeoeQHU744wz0qlTp0XWN2jQoBpG891z8cUXp7KyMvvuu2/Rx1x33XXZf//907x586/V51NPPZVzzjknhx566Nc6HgAAAAAAgKr+p68UTJJ69eqlSZMmiyy1a9eu7qF9J1RWVi73Meuss07OOeecb7VPAAAAAAAAlux/PhRcloqKitx555358Y9/nFatWuWII47Im2++mRNOOCGtW7fO/vvvn5dffjlJMnLkyHTv3j0XX3xx2rRpk9133z0jRoxYYtsjR47Mvvvum1atWuWAAw7IU089lSS55557sv3222fevHmFfe+///7svvvuqaysXK4xJck//vGPHHDAAWnVqlW6du2a+++/v7Ctd+/eOf/883PSSSeldevW2W233TJq1KgkX0z5effdd+fuu+9ORUVF0c/Z6aefnqeeeir33HPPEveZMmVKjjzyyGy77bbZZZddcuWVV2bBggWZPn16DjvssCRZ4jSulZWVueqqq9K+fftst912OeaYY/LWW28Vtrds2TL33Xdf9t1337Ru3Tq/+c1v8sYbb+Swww5L69atc8ghh+Sdd94pnOPJJ5+c008/Pa1bt87ee++dhx9+eLFjXrBgQYYOHZoOHTqkVatW6dGjR1566aUkyeDBg9O1a9cq+1933XU55JBDkiSzZs3Kaaedlm233Tbt27fPgAED8tlnnxX2/cc//pFu3bqlVatW+fWvf51PP/20mKcaAAAAAACgKELBIlx22WU55ZRT8sc//jEvvvhifvSjH2WnnXbKnXfemdVXX73KPfSef/75TJo0Kbfffnt+9atf5eyzz864ceMWaXPkyJEZMGBAjj766IwaNSo77bRTfvnLX+add95Jhw4d8tlnn+Xvf/97Yf8vQ66ysrLlGtOMGTNy9NFH54ADDsi9996bo446Kr17984//vGPQtu33HJLttxyy/z5z3/OXnvtlX79+mX27Nk54ogjsu+++2bffffNnXfeWfTztcUWW+SQQw7JRRddlNmzZy+y/YMPPsghhxySddZZJyNGjEi/fv0yfPjw3HTTTVl//fUL910cN25c2rRps8jxw4cPz7333ptLLrkkt99+exo3bpwjjjgin3/+eWGfK664IhdccEH+8Ic/5IEHHkj37t3TvXv33HbbbZkxY0auvfbawr4PPvhgKisrM3LkyPz4xz/OiSeemFdeeWWRfq+66qpcd911OeOMM3L33Xdnww03zFFHHZVPPvkknTt3zr///e+8+uqrVV6zzp07J0n69OmT2bNn59Zbb83VV1+d559/vnA15QcffJCjjz46O+20U0aNGpXvf//7GTNmzFKf47KyFbusjDYtllJd1IvFUtyiViyW4ha1YrEUtwBQ/b+LS2nxfFosxS1qZdVZivU/f0/Bfv36ZcCAAVXWbbDBBhk9enTh8QEHHJCddtopSbLDDjtkxowZ6d69e5Jkv/32y4033ljYt6ysLBdddFEaN26czTbbLE899VTuuOOOtG/fvkofN998c3r06JFu3bolSU499dQ89dRTGT58eE455ZTsscceGTNmTNq3b59PP/00f/3rX3PzzTcv95huueWW7LTTTvnZz36WJGnWrFkmTZqUG2+8Mdttt12SL66s+8UvfpEk+fWvf52bbropL7/8crbddtvUqVMnSdKoUaPlel5POumkjBkzJr///e9z1llnVdn25z//OauvvnoGDBiQmjVrpnnz5pkxY0auuuqq9OzZs3A/xyZNmiy27aFDh6Zfv37ZfvvtkyTnnHNO2rdvn8cff7xwRWPPnj3TunXrJF+ElOXl5YX7Iu61116ZPHlyob0GDRrknHPOSe3atdO8efM89thjueuuu9KrV6/CPpWVlRk+fHh+85vfpEOHDkmSAQMGZM8998w999yTgw8+OK1atcqYMWNy7LHH5s0338yLL76YIUOG5PXXX89DDz2UCRMmpF69eoVju3XrltNPPz333XdfGjVqlNNOOy1lZWU54YQT8te//nWJz22jRnVTo8aKz/MbN663wtuEUqVeoDhqBYqjVgCAYqy9tu8MK5LvYFActVJa/udDwRNPPDF77bVXlXU1a1Z9Wpo2bVr4uU6dOtlwww2rPF74CrVmzZqlcePGhcdbbbVVbrvttkX6nTJlSo4//vgq67bZZptMmTIlSdKlS5eceeaZ6d+/fx599NGss8462WqrrZZ7TFOnTs0jjzxS5Yq7zz//POXl5YXHm2yySeHnNddcM0mqTF36day55po5/fTTc+qpp+aAAw6osm3KlCnZcsstqzzPbdq0yYwZMzJr1qyltvvxxx/n7bffzsknn5zVVvu/YOyzzz7LtGnTCo+X9fzMnTu38Hirrbaqcg/JrbbaqvA6fOn999/PRx99VAgak6RWrVpV9u3cuXPuvvvuHHvssbnvvvvywx/+MI0bN85zzz2XBQsWZNddd63S5oIFC/Laa6/llVdeyeabb56yheL8rbfeeolTiH7wwcfLlfwvS1nZF7/Y339/dtzOEZZOvUBx1AoUR61AcVbk/38AVmXvvbfojFwsP9/BoDhqZdVS7B+O/M+Hgo0bN06zZs2Wuk+NGjWqPF44jPqqrwaK8+fPX+z+3/ve9xZZN3/+/CxYsCBJsuuuu2b+/Pl56qmncv/99xeuclveMc2bNy9du3bNMcccs8Rx1qpVa5HjKldAlXfu3Dl33nln+vfvn1122aWwfnHn/uV5z58/f6ltfrn98ssvrxJsJilcYZis+NdscWP+ct8vx96pU6dceOGFee2113L//ffnoIMOKuxTr1693HXXXYscv+666yZZ9PmuVavWUu8ruDJ+CVdWrpx2oRSpFyiOWoHiqBUAoBi+L6xYvoNBcdRKaXFPwRXstddey8cff1x4PHHixGy22WaL7FdeXp5//etfVdb961//KgRdtWvXzp577pkHH3wwf/vb3wr3plte5eXlee2119KsWbPC8vDDD+fee+8t6viyb/gnmWeddVYmT56cP/3pT1XG9MILL1S5wvKZZ55Jo0aN0rBhw6X2Wb9+/TRu3DgzZswonM/666+fgQMHVrmf3/J46aWXCsFe8sVr1rJlyyr71KtXL2uvvXaeffbZwrrPP/88L7zwQuE1W2eddfLDH/4wd911VyZPnly4ArW8vDyzZ89OWVlZYcyfffZZLrroosydOzctWrTIiy++WCUQnTRp0tc6FwAAAAAAgMX5nw8FZ8+enRkzZiyyfPLJJ1+rvU8++ST9+vXLlClTcscdd2TMmDE55JBDFtmvZ8+eGT58eEaNGpVXX301F198cSZPnpyf/OQnhX26dOmSO++8M+utt15atGjxtcZzyCGHZOLEifn973+fadOm5d57782ll16aDTbYoKjjV1999bz55pt55513vlb/5eXlOeqoo/Lmm28W1nXt2jVz587NWWedlSlTpuShhx7KoEGD0r1795SVlWX11VdP8kU499///neRNnv27JnLLrssY8eOzbRp03LmmWfm6aefzqabbvq1xvjGG29k4MCBmTp1agYPHpwXXnihyuuwcL9XXHFFxo4dmylTpqRv377573//m06dOhX26dKlS2644YbsvPPOhSsXmzdvnl122SWnnnpqnnvuubzwwgs5/fTT88knn6R+/frp3LlzPv3005x33nmZOnVqhg4dmn/+859f61wAAAAAAAAW539++tDf/e53+d3vfrfI+l//+tc57rjjlru99ddfP02aNMlPfvKTNGnSJAMHDkzbtm0X2a9Tp0557733csUVV2TGjBnZYostct1116V58+aFfbbffvvUrVu3Sui0vDbccMMMGTIkF198cYYNG5Z11103vXv3zn777VfU8fvvv3+OP/747Lfffvn73//+ta4cPOaYY/LnP/+58HjNNdfM0KFDc95556Vbt25p1KhRfv7zn+foo49OkrRs2TI777xzDj744Fx66aWL3PPxyCOPzMcff5yzzjorc+bMyVZbbZVhw4ZVmT50ebRu3ToffPBBunXrlk022STXXHNNlXsSfumII47InDlz0rdv38yZMydt2rTJzTffnEaNGhX22WuvvdK/f/9FXrOLLroo5557bnr27JmaNWtml112yZlnnpnki2lPhw4dmv79+2f//fdPu3btsv/++6+QKVwBAAAAAACSpKxS8rDCjBw5MldeeWXGjh27QtqbM2dOdt555/z5z39ebEjFNzdo0KBMmDAhN9988wppb9q0aenWrVv+9re/pW7duiukza+aMWPF3lS6rOyLm5C+954bxsKyqBcojlqB4qgVKE5ZWbLdxY9V9zAAqt1Tp+xa3UMoCb6DQXHUyqqlSZN6Re33P3+l4HdRZWVl7r///jzwwANp06aNQHAVMGfOnIwbNy633357OnfuvNICQQAAAAAAgK9DKPgdVFZWloEDB6ZGjRoZPHhwdQ8nSfL++++nY8eOS93nmWee+ZZG89105plnZuONN87AgQOreygAAAAAAABVmD6UosyfPz/Tp09f6j7NmjX7lkbzv830oVB91AsUR61AcdQKFMf0oQBfMH3oiuE7GBRHraxaTB/KClWjRg2hHwAAAAAAwCpqteoeAAAAAAAAALByCQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxAkFAQAAAAAAoMQJBQEAAAAAAKDECQUBAAAAAACgxNWs7gEAAAAALM20Czrnvfdmp7KyukcC311lZcnaa9dTKwDAErlSEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASpxQEAAAAAAAAEqcUBAAAAAAAABKnFAQAAAAAAAASlzN6h4AAAAAwNJs0nt0dQ8B4DvvqVN2re4hAPAd50pBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkG+kZkzZ+aCCy5IRUVFWrdunX333Tc33HBDFixYsNL7njNnTkaNGrVS2h45cmRatmxZWLbccsvss88+K62/JGnZsmXGjx+fJKmoqMjIkSNXWl8AAAAAAMD/lprVPQBWXR9++GF++tOfZp111sl5552XjTbaKM8//3wGDBiQN954I3379l2p/d9www0ZP358unXrtlLaX2+99XLnnXcmSf773/9mwoQJOfPMM9OsWbO0adNmhfc3bty4NGjQYIW3CwAAAAAAIBTka7vkkktSu3btDBs2LN/73veSJE2bNk2dOnVy3HHH5Wc/+1nKy8tXWv+VlZUrre0kqVGjRpo0aVJ4vNFGG2X06NEZM2bMSgkFF+4LAAAAAABgRTJ9KF/L3LlzM3r06Bx66KGFQPBLe+yxR2644YZsuOGGmTlzZvr27Zuddtopbdu2zWmnnZaZM2cmScaPH5+WLVtWObZ3797p3bt3kmTQoEE55ZRT0q9fv2y77bbZcccdc+211yb5YnrPK6+8MhMmTCi0UVFRkYEDB6Z9+/bp1q1bDj/88Jx77rlV2j/mmGNy2WWXfe3zXmONNQo/jx8/PhUVFenXr1/atm2ba665JnPnzs3555+fXXbZJVtuuWUqKipy++23Vznfry6nn356kqrThwIAAAAAAKxIrhTka3n99dfzySefZOutt15kW1lZWXbYYYckyZFHHplPP/00Q4YMSZL0798/vXv3zuDBg4vq5/77788hhxySu+++Ow8++GAGDhyYjh07plOnTnn55ZfzzDPPZNCgQYX977333gwbNiyVlZWZOHFirrjiivTp0ydlZWWZPXt2xo0bl1NOOeVrnfM///nPPPHEE7n++usL6958883MnTs3I0eOTK1atXLNNdfk0UcfzaBBg9K4cePcfffdGTBgQDp06JA2bdpk3LhxhWOffPLJ9OnTJ4ceeuhyj6Ws7GudwlLbWpFtQqlSL1ActQLFUStQHDUCUBy/L4vjOxgUR62UJqEgX8usWbOSJPXq1VviPpMnT86ECRMyZsyYwjSiAwcOTKdOnTJ16tSi+mnYsGF69eqVGjVq5Kijjsq1116biRMnpry8PGussUZq1apVZdrN/fbbr3Dl4AYbbJD+/fvn6aefTtu2bfPQQw+lvLw8LVq0KKrvt956qzBN6Oeff57PP/88e++9d37wgx9U2e+oo45Ks2bNkiSbb755dthhh2yzzTZJvrgy8aqrrsq0adOy3XbbFcb69ttv53e/+1169+6drbbaqqjxfKlRo7qpUWPFX+TbuPGSX0ugKvUCxVErUBy1AgCsCGuv7TvF8vAdDIqjVkqLUJCvpWHDhklSmAp0caZOnZr69etXua9g8+bN06BBg0ydOnWpgeKXNtpoo9SoUaPwuG7dupk3b94S999www0LP9evXz+77rprxowZk7Zt2+a+++5Lp06dltnnl9ZZZ53cfPPNSZJ58+bl1VdfzQUXXJC+ffvm/PPPrzLGL3Xs2DF/+9vfcsEFF2Tq1Kl58cUXkyTz588v7DN37tyceOKJ2Wmnnb7WVYIffPDxCr9SsHHjenn//dlZybdphFWeeoHiqBUojlqB4vjrdIDivPfe7OoewirBdzAojlpZtRT7hyFCQb6WjTfeOPXq1csLL7yQVq1aLbL92GOPzY9//OPFHjt//vzMnz8/ZYv5n928efNSs+b/vS1r1aq1yD6VS/kN9NX7G3bp0iUXXnhhTjjhhDzxxBM588wzl3jsV9WsWbNwBWDyRaD52Wef5dRTT02fPn0W2+fvf//7jBgxIgcccEC6deuWfv36paKiokq7559/fmbNmpUBAwYUPZavWhm/hCsrV067UIrUCxRHrUBx1AoAsCL4PrF8fAeD4qiV0rLi5yDkf0LNmjXTqVOn3HLLLZk7d26VbWPHjs3YsWOzySabZNasWVWmCn3llVcyZ86clJeXFwK/OXPmFLZPnz696DEsLlT8qoqKisyaNSvDhg1Ly5Yts/HGGxfd/uJUVlamsrIyCxYsWOz22267LX379s2pp56aTp065dNPPy0clyR/+tOfMnLkyFx++eWpW7fuNxoLAAAAAABAsYSCfG0nnHBC5syZkyOPPDITJkzI66+/nhEjRqR379457LDD8v3vfz+77rprevXqleeeey7PPfdcevXqlXbt2mWzzTZLixYtUqdOnQwZMiRvvPFGhg4dWphusxirr7563n333aUGiXXq1EmHDh1y/fXXp3Pnzst1fvPnz8+MGTMyY8aMvPvuu/nHP/6Rq6++Ou3bt0/9+vUXe0zDhg3zyCOP5I033sg//vGP/Pa3v03yxZShL730Uvr165devXpl7bXXLrT9wQcfLNe4AAAAAAAAlpfpQ/namjRpkltvvTWDBg3Kqaeemo8++igbb7xxTjzxxHTv3j1JcuGFF+bcc89Nz549U6NGjXTo0CGnn356kmTNNdfMgAED8vvf/z4333xz9txzzxx66KH58MMPi+p/zz33zG233ZbOnTtn7NixS9yvU6dO+fOf/7xc9xNMkrfffjvt27dPkqy22mpp2LBhOnbsmJNPPnmJx/zud79L//7907lz56y77ro58MADU6NGjUyaNCn/+te/8umnn+bss8/O2WefXThmww03XOr4AQAAAAAAvqmyyqXdoA1KwB133JF77rknw4cPr+6hrBAzZqzYm0aXlX1xE9L33nPDWFgW9QLFUStQHLUCxSkrS7a7+LHqHgbAd95Tp+xa3UNYJfgOBsVRK6uWJk3qFbWfKwUpWa+99lomTpyYwYMH56STTqru4QAAAAAAAFQboSAla/r06enTp086dOiQrl27Ftbff//96d279xKPa9u2bYYOHfptDBEAAAAAAOBbIRSkZO2888559tlnF1nfvn37jBo1aonH1alTZ+UNCgAAAAAAoBoIBfmfU7du3dStW7e6hwEAAAAAAPCtWa26BwAAAAAAAACsXEJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHFCQQAAAAAAAChxQkEAAAAAAAAocUJBAAAAAAAAKHE1q3sAAAAAAEsz7YLOee+92amsrO6RwHdXWVmy9tr11AoAsESuFAQAAAAAAIASJxQEAAAA4P+xd+dxV4/5/8Bfd3vSQrInMYRRIWTJlsFI2RnLMNYZ+6AoW7KNJQyyNGPLNtaJQSrSjGVQskxjqUmFsrZIi2i7f3/063y73S13qW6O5/PxOI/O+SzX530+97nOfTqv+7o+AAAUOaEgAAAAAAAAFDmhIAAAAAAAABQ5oSAAAAAAAAAUOaEgAAAAAAAAFDmhIAAAAAAAABQ5oSAAAAAAAAAUOaEgAAAAAAAAFDmhIAAAAAAAABQ5oSAAAAAAAAAUOaEgAAAAAAAAFLlqlV0AAAAAwKKs36VPZZcA8JPyesedK7sEAH6EjBQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFGS5+/rrr3PVVVelbdu2admyZfbee+/06tUrc+bMWe7Hnjp1ap544onl0vbYsWPTrFmzjB07domP9f19AQAAAAAAliehIMvVV199lUMOOSTvvPNOrrjiijz99NM5/fTT85e//CVXXHHFcj9+r1698ve//325H2dFHwsAAAAAAGBJVKvsAihu1113XWrUqJE777wzNWvWTJI0btw4tWrVyimnnJLf/va3adq06XI7fmlp6XJruzKPBQAAAAAAsCSMFGS5mTFjRvr06ZMjjzyyEAjOs9tuu6VXr15ZZ5118vXXX+eiiy7KDjvskFatWuWcc87J119/nSQZNGhQmjVrVmbfLl26pEuXLkmSHj16pGPHjrn44ouz1VZbZfvtt8/tt9+eJOndu3duvvnmDB48uNBG27Zt071797Rp0yb7779/jj322Fx++eVl2j/ppJNyww03LNFzXdCxvvjii5xxxhnZZpttsvnmm+eAAw7IG2+8UW7f2267LR06dCiz7K677soRRxyxRDUAAAAAAAAsjJGCLDcff/xxvvnmmzRv3rzcupKSkmy33XZJkuOPPz7Tp09Pz549kyTdunVLly5dctttt1XoOP37988RRxyRxx9/PM8991y6d++eX/3qV2nXrl1GjBiRt956Kz169Chs/9RTT+XOO+9MaWlp3nnnndx000254IILUlJSkilTpuTll19Ox44dl+i5LuhYnTp1Sr169fLQQw+ltLQ01157bbp165annnqqzL777LNPbrjhhowePbowarJv377Zf//9F3q8kpIlKm+R5rW1LNuEYqW/QMXoK1Ax+gpUjD4CsOS8dy6cz2BQMfpKcRIKstxMnjw5SVK3bt2FbjNs2LAMHjw4/fr1KwRi3bt3T7t27TJq1KgKHadBgwbp3LlzqlatmhNOOCG333573nnnnTRt2jQrrbRSqlevnkaNGhW233fffQuj+dZee+1069Ytb775Zlq1apUBAwakadOm2WijjZboudaqVavMsUpLS/OrX/0qe+21V9Zcc80kyZFHHpnf//735fZdb7310qJFi/Tr1y8nn3xyPvnkk7z33nuFkPT7Vl21TqpWXfaDfBs2XPjPCShLf4GK0VegYvQVAGBZW201ny8Wx2cwqBh9pbgIBVluGjRokCSFqUAXZNSoUalXr16Z6wpuuOGGqV+/fkaNGrXIQHGeddddN1WrVi08rlOnTmbNmrXQ7ddZZ53C/Xr16mXnnXdOv3790qpVq/Tt2zft2rVb7DEXp6SkJIcffnieeeaZvPnmmxk9enTeeeedzJkzZ4Hb77PPPnn88cdz8sknp2/fvtl2223TsGHDBW47ceK0ZT5SsGHDupkwYUpcFhEWTX+BitFXoGL0FagYf50OsOTGj59S2SX8aPkMBhWjr/y0VPSPQYSCLDfrrbde6tatm3fffTctWrQot/7kk0/OQQcdtMB9Z8+endmzZ6dkAf/7mzVrVqpV+7+XbvXq1cttU7qId6nvX9+wffv2ufrqq3P66afnlVdeyYUXXrjQfStqzpw5Oe644zJ58uS0a9cubdu2zcyZM3PaaactcPt27drl6quvzkcffZT+/fvn0EMPXWT7y+NNuLR0+bQLxUh/gYrRV6Bi9BUAYFnz2WLxfAaDitFXisuyn4MQ/r9q1aqlXbt2eeCBBzJjxowy6wYOHJiBAwdm/fXXz+TJk8tMFfrBBx9k6tSpadq0aSHwmzp1amH92LFjK1zDgkLF72vbtm0mT56cO++8M82aNct6661X4fYXdqwPPvggr7/+enr16pWTTjopu+66a7788sskCw4sV1999Wy77bb5+9//nmHDhmXPPfdcqhoAAAAAAAAWRCjIcnX66adn6tSpOf744zN48OB8/PHHefTRR9OlS5ccffTR+cUvfpGdd945nTt3ztChQzN06NB07tw522yzTTbeeONstNFGqVWrVnr27JkxY8bkjjvuyHvvvVfh49euXTtffvnlIoPEWrVqZffdd8/dd9+dffbZZ6mf6/zHqlevXqpUqZI+ffrkk08+Sb9+/dKjR48kKReQztO+ffv06tUrO+64Y+rXr7/UdQAAAAAAAHyfUJDlqlGjRnnwwQfTuHHjdOrUKe3bt88999yTM844I126dEmSXH311WncuHGOOeaYHH/88dloo41yyy23JElWXnnlXHbZZenTp0/at2+fYcOG5cgjj6zw8ffYY4/MmTMn++yzTyZMmLDQ7dq1a5cZM2b8oOsJzn+s6tWrp1u3brn99tvTvn37/PWvf82FF16YatWqLTTU3HPPPTN79uxlck1DAAAAAACA+ZWULuria/Az8cgjj+TJJ5/M/fffX2k1fPjhh9l///3z73//O3Xq1FnoduPGLdsLRZeUzL0I6fjxLhgLi6O/QMXoK1Ax+gpUTElJsvW1L1Z2GQA/Ka933LmyS/jR8hkMKkZf+Wlp1KhuhbartpzrgB+1jz76KO+8805uu+22nHnmmZVSw9SpU/Pyyy/n4Ycfzj777LPIQBAAAAAAAGBpCAX5WRs7dmwuuOCC7L777unQoUNhef/+/QvTmy5Iq1atcscddyyzOi688MKst9566d69+zJrEwAAAAAAYB6hID9rO+64Y95+++1yy9u0aZMnnnhiofvVqlVrmdWw8sorZ8iQIcusPQAAAAAAgO8TCsIC1KlTxzSeAAAAAABA0ahS2QUAAAAAAAAAy5dQEAAAAAAAAIqcUBAAAAAAAACKnFAQAAAAAAAAipxQEAAAAAAAAIqcUBAAAAAAAACKnFAQAAAAAAAAipxQEAAAAAAAAIqcUBAAAAAAAACKnFAQAAAAAAAAipxQEAAAAAAAAIqcUBAAAAAAAACKnFAQAAAAAAAAipxQEAAAAAAAAIpctcouAAAAAGBRPrxqn4wfPyWlpZVdCfx4lZQkq61WV18BABbKSEEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChy1Sq7AAAAAIBFWb9Ln8ouAYAl9HrHnSu7BAC+x0hBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQsEi07Zt2zRr1myBt0GDBpXbftCgQWnWrFnh8cK2W96W5ri9e/dOs2bN8uijjy6nqiquR48eOeqooyq07YwZM/LII48s54oAAAAAAAD+T7XKLoBl7/zzz0+7du3KLa9fv34lVLP89OnTJ+utt17+8Y9/5JBDDqnUWo477rgKh4J9+vRJz549c+ihhy7nqgAAAAAAAOYyUrAI1a1bN40aNSp3q1GjRmWXtsxMmDAhr776ak499dQMGTIkY8aMqdR66tSpkwYNGlRo29LS0uVbDAAAAAAAwPcIBX9mpk6dmrPPPjtbbrll9tprr/z3v/9dov2fe+65tGvXLi1btszBBx+cwYMHJ0lefPHFtGzZMtOnTy9s+/LLL2errbbKt99+m9LS0txyyy1p06ZNtt5665x00kn59NNPl/p59OvXL3Xr1s2+++6b1VdfPf/4xz/KrH/11Vez3377pXnz5tl9993z0EMPFdY988wz2WuvvdK8efO0a9cuAwYMKKz7/PPP88c//jHbbrttWrduncsvvzwzZsworH/xxRdzwAEHpGXLltl3333z6quvJik/feijjz6aX//619l8883TunXrXHLJJZk9e3YGDRqU8847L5988kmaNWuWsWPHLvNzAwAAAAAA8H2mD/2ZufjiizNq1Kjcf//9mThxYrp06VLhfYcNG5bOnTvnkksuSYsWLfLCCy/kxBNPzJNPPpkddtghtWvXzosvvpi99torSfLss8+mbdu2qVWrVu6777489dRTue6667LaaqvlrrvuynHHHZennnoq1atXX+Ln0adPn+y6666pUqVK2rZtmyeeeCKnnnpqSkpKMnv27Jx55pk55phj0qFDh7z55pvp3Llztt5666yyyio599xzc+mll6Z169bp169fzj777Lz44otZaaWV8rvf/S5NmjTJfffdl4kTJ+aiiy5Kklx44YUZMWJETj755Jx66qlp165dnn322Zxyyil59tlny9Q2ePDgXH755enevXs222yzvPPOOznnnHOy/fbbZ9ddd83555+fu+66K4899lhWXXXV3H///Ut8bkpKlviULdS8tpZlm1Cs9BeoGH0FKkZfgYrRRwB+mn6s798+g0HF6CvFSShYhC6++OJcdtllZZatvfbaeeihh9K3b9/ce++9+eUvf5kkOeWUU3LppZdWqN0777wzhx56aDp06JAkOfroo/P666/nwQcfTJcuXbLnnnvm2WefzV577ZXZs2dnwIABufzyy5Mkd9xxRy6++OK0bt06SXLppZemTZs2eemll9K2bdslen6fffZZ3nzzzRx77LFJkj333DMPPvhg3njjjWy99daZMmVKJk2alNVWWy3rrrtu1l133ay++upp1KhRPvnkk8ycOTNrrrlm1llnnRx33HFp1qxZatasmZdeeilffPFFHnnkkcL1F7t27ZqTTz45Z511Vh577LFstdVWOeWUU5Ikv//97/PNN99k8uTJZepbaaWVcsUVV2TPPfdMkqy77rq5++67M2LEiOy5556pW7duqlatmkaNGi3VuVl11TqpWnXZD/Jt2LDuMm8TipX+AhWjr0DF6CsAQDFabbUf92ccn8GgYvSV4iIULEJnnHFGIZCap1q1ahk9enRmz56dTTbZpLC8efPmFW535MiR6du3bx5++OHCspkzZ6ZNmzZJkn322SennHJKZsyYkbfeequwbtq0afn8889z1llnpUqV/wuzvv3223z44YdL/Pz69OmTmjVrFo677bbbpn79+nn88cez9dZbp0GDBjn88MNz4YUX5tZbb81uu+2Wgw46KPXr10+9evWy66675thjj03Tpk2z++6755BDDknt2rUzcuTIrL/++oVAMEm22mqrzJo1Kx9//HFGjx5dCFPnOfPMM8vVt/nmm6dWrVq56aab8sEHH2T48OH56KOPCvXOb2nOzcSJ05b5SMGGDetmwoQpcblDWDT9BSpGX4GK0VegYvx1OsBP0/jxUyq7hAXyGQwqRl/5aanoH2IIBYtQw4YN06RJk3LLJ0yYUG5ZjRo1Ktzu7Nmzc+KJJ2b//fcvs7xWrVpJkm222SYrrbRSXnnllbz00kv51a9+lRo1auTbb79Nktx4441p2rRpmX3nD+Aqqk+fPvn222/TqlWrMrX169cvF110UWrVqpVu3brlyCOPzIABAzJgwIA8/PDDufXWW7PLLrvkL3/5S4YOHZrnn38+zz33XP72t7/lb3/7W2rWrLnA5zzv32rVKtZdXnrppZx66qnZf//9s9NOO+XUU0/NJZdcssBt57W/pOdmebwJl5Yun3ahGOkvUDH6ClSMvgIAFKMf++cbn8GgYvSV4rLs5yDkR2uDDTZI9erV89///rew7L333qvw/k2bNs3YsWPTpEmTwu3hhx/Oiy++mCSpUqVKfv3rX+df//pXnn/++eyzzz5Jknr16qVhw4YZN25cYb+11lor3bt3z+jRo5foOYwePTrvvfdeLrzwwjzxxBOF25///OdMnTo1zz33XMaNG5dLLrkkTZo0ycknn5y///3v2W677TJw4MCMHDkyV199dVq0aJGzzjorffr0yVprrZWXXnopTZs2zYcffphJkyYVjvf222+nWrVqWW+99dKkSZMMGzasTD2HHXZY+vTpU2bZo48+moMOOiiXXnppDjnkkGy44Yb5+OOPU/r/3zlL5vsz12V5bgAAAAAAABbGSMEiNGXKlIwbN67c8jp16mS//fbLZZddliuvvDLffvttbr755nLbDR06NN99912ZZdtss02OOeaYHHnkkWnevHl23XXXDBw4ML169co999xT2G6fffbJsccem1q1amW77bYrLD/mmGNyww03pGHDhtlggw1y66235s0338wVV1yxRM+tT58+adCgQX7zm9+UGeW48cYb55ZbbskTTzyRvfbaK88991xKS0tz3HHH5YsvvsiwYcOy5557pl69ennwwQdTt27ddOjQIR988EE++eSTbLbZZtl+++3TuHHjnHvuuenYsWO++uqrXHbZZWnfvn3q1auXww8/PO3atcvdd9+dtm3bpl+/fhkxYkS23nrrjBo1qlBLgwYN8tZbb2X48OGpUqVK/vKXv2TcuHGZMWNGkqR27dr5+uuv8+GHH2bdddddZucGAAAAAABgYYSCRehPf/pT/vSnP5Vb/sc//jEXXXRRLrvsshx77LGpX79+jjrqqFx99dVltrv22mvL7fvss89miy22yDXXXJMePXrkmmuuyXrrrZfrrrsu22yzTWG7LbbYIqusskp22mmnMtNtHn/88Zk2bVq6du2aqVOnZvPNN8+dd965xNOH9unTJx06dFjgtKeHH354rrjiinz11Ve59dZb86c//Sn77rtv6tSpk4MPPjiHHHJIqlSpkh49euTaa69Nz54907Bhw5x99tmF6/3deuutueyyy3LooYemTp066dChQ84+++wkyXrrrZcePXrkuuuuy/XXX5+NNtooPXv2zBprrFGmjtNOOy3nnXdefvOb32TllVfOLrvsksMPPzzvv/9+kmS77bZLkyZN0qFDh/ztb39bZucGAAAAAABgYUpKS80GCz8l48Yt24s0l5TMvQjp+PEuGAuLo79AxegrUDH6ClRMSUmy9bUvVnYZACyh1zvuXNklLJDPYFAx+spPS6NGdSu0nWsKAgAAAAAAQJEzfSg/Kq1bty5ce29B+vTpk7XXXnsFVgQAAAAAAPDTJxTkR+Wxxx7LnDlzFrp+9dVXX4HVAAAAAAAAFAehID8qjRs3ruwSAAAAAAAAio5rCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJGrVtkFAAAAACzKh1ftk/Hjp6S0tLIrgR+vkpJktdXq6isAwEIZKQgAAAAAAABFTigIAAAAAAAARU4oCAAAAAAAAEVOKAgAAAAAAABFTigIAAAAAAAARU4oCAAAAAAAAEVOKAgAAAAAAABFTigIAAAAAAAARU4oCAAAAAAAAEVOKAgAAAAAAABFTigIAAAAAAAARa5aZRcAAAAAsCjrd+lT2SUAsIy83nHnyi4B4GfLSEEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCwR/o66+/zlVXXZW2bdumZcuW2XvvvdOrV6/MmTNnhRx/6tSpeeKJJ5brMd5888384Q9/SOvWrbPNNtvk2GOPzVtvvbVcj5kkbdu2Te/evSu8fbNmzcrcNt1002y//fY555xzMnny5OVYadkaBg0atMB1gwYNSrNmzZIkY8eOTbNmzTJ27NgVUhcAAAAAAPDzJhT8Ab766qsccsgheeedd3LFFVfk6aefzumnn56//OUvueKKK1ZIDb169crf//735dZ+//7987vf/S6bbLJJ7r333jz00EPZeOONc/TRR+eNN95YbsddWj169MjLL7+cl19+OQMHDsyll16aF198MVdeeWVll1bGWmutlZdffjlrrbVWZZcCAAAAAAD8DFSr7AJ+yq677rrUqFEjd955Z2rWrJkkady4cWrVqpVTTjklv/3tb9O0adPlWkNpaelya3vq1Knp2rVrTj755JxyyimF5eedd14+/fTTdO/ePQ899NByO/7SqF+/fho1alR4vNZaa+WDDz7IXXfd9aMKBqtWrVqmTgAAAAAAgOXJSMGlNGPGjPTp0ydHHnlkIRCcZ7fddkuvXr2yzjrrJJk7xehFF12UHXbYIa1atco555yTr7/+OknZKSXn6dKlS7p06ZJk7si3jh075uKLL85WW22V7bffPrfffnuSpHfv3rn55pszePDgQhtt27ZN9+7d06ZNm+y///459thjc/nll5dp/6STTsoNN9yw2Oc4cODATJ06NUcffXS5dZ07dy60e9RRR5WburNZs2b55JNPkiTPPfdc2rVrl5YtW+bggw/O4MGDC+3MmjUr119/fdq0aZNWrVrljDPOyFdffVVYP2LEiBx22GFp3rx59t9//7z//vuLrfv7atSokapVqxYef/bZZznppJPSsmXLtG3bNjfffHNmz56dZO45Pfzww3Pttddmyy23zK677ppHH320sO9RRx2VHj16FB4vaBrQ119/PXvuuWdatmyZP/7xj4Wf9fy+v9+ECRNy5plnZquttsqOO+6Y66+/frkGvgAAAAAAwM+LkYJL6eOPP84333yT5s2bl1tXUlKS7bbbrvD4tNNOy/Tp09OzZ88kSbdu3dKlS5fcdtttFTpW//79c8QRR+Txxx/Pc889l+7du+dXv/pV2rVrlxEjRuStt94qE1Q99dRTufPOO1NaWpp33nknN910Uy644IKUlJRkypQpefnll9OxY8fFHnfYsGHZYIMNsvLKK5dbt+666xbu9+jRIzNnzkySzJkzJ6ecckrWWWedrLPOOhk2bFg6d+6cSy65JC1atMgLL7yQE088MU8++WSaNGmSG2+8MU888UT+9Kc/Ze21187FF1+ciy++ODfddFOS5LHHHsuVV16ZDTfcMN26dcvFF1+cRx55pELnLUnef//9PPDAA9lrr72SzB1Zedppp2WTTTbJ448/nnHjxqVr164pKSnJqaeemiT573//m5VWWikPP/xwhg4dmm7dumWttdZKmzZtKnTMBx54IFdddVUaNmyY888/P1deeWWuuuqqRe5z6qmnpmrVqrn//vszbdq0nHXWWVl99dXz29/+doHbl5RU+BQs1ry2lmWbUKz0F6gYfQUqRl+BitFHAIpLZb+v+wwGFaOvFCeh4FKaPHlykqRu3bqL3G7YsGEZPHhw+vXrV5hKtHv37mnXrl1GjRpVoWM1aNAgnTt3TtWqVXPCCSfk9ttvzzvvvJOmTZtmpZVWSvXq1ctMRbnvvvsWRg6uvfba6datW9588820atUqAwYMSNOmTbPRRhst9rhTpkxZYCC4oPrmufbaazNlypT86U9/SpLceeedOfTQQ9OhQ4ckydFHH53XX389Dz74YDp37pxHHnkknTt3zs4775wkueSSS9K3b99Ce4cffnh+9atfJZk7Su/ss89eZC0nnnhiYVTgzJkzU6dOnbRv3z7nnHNOkuS1117Lp59+mkcffTRVqlTJBhtskM6dO+e8884rhIIlJSW55ppr0rBhw2y88cZ5/fXX88gjj1Q4FDzttNOyyy67JEkuvPDCHHvssbnwwgsXuv2wYcPy1ltvZcCAAWncuHGSucHxN998s8DtV121TqpWXfaDfBs2XPRrGfg/+gtUjL4CFaOvAAA/J6ut9uP47OMzGFSMvlJchIJLaV4QtqCpIec3atSo1KtXr8y1BTfccMPUr18/o0aNWmyomMwdlTf/9Jd16tTJrFmzFrr9vGlLk6RevXrZeeed069fv7Rq1Sp9+/ZNu3btFnvMZO5znBd+VsSAAQNy33335aGHHiqEiSNHjkzfvn3z8MMPF7abOXNm2rRpk6+++iqTJk3KL3/5y8K6X/ziFzn99NMLj+eFZMncAPa7775bZA2XX355WrZsmYkTJ+bqq69O9erVc9ZZZ6VWrVqFeiZNmpRWrVoV9pkzZ06+/fbbwrSlTZo0ScOGDQvrN9988yW6duL8o0c322yzzJo1Kx9//PFCtx89enQaNGhQ5rnOC0IXZOLEact8pGDDhnUzYcKUmLEUFk1/gYrRV6Bi9BWoGH+dDlBcxo+fUqnH9xkMKkZf+Wmp6B9cCAWX0nrrrZe6devm3XffTYsWLcqtP/nkk3PUUUelRo0aC9x/9uzZmT17dkoW8L+bWbNmpVq1//vRVK9evdw2i7re3Pevcdi+fftcffXVOf300/PKK68sctTa/H75y1/mrrvuytSpU8uNGBwyZEh69eqV7t27p3bt2vnoo4/SpUuXXHDBBdl0003LPM8TTzwx+++/f5n9a9WqVeY5Lsz8YWhFrLHGGmnSpEmaNGmSnj17pkOHDjnnnHMKU7XOmjUrG2ywQW699dZy+84LaL9f1+zZs1OlyoJH5s27FuHCap73c1rQz3CeRa1bmOXxJlxaunzahWKkv0DF6CtQMfoKAPBz8mP53OMzGFSMvlJclv0chD8T1apVS7t27fLAAw9kxowZZdYNHDgwAwcOzOqrr56mTZtm8uTJZaYK/eCDDzJ16tQ0bdq0EAhNnTq1sH7s2LEVrmNBoeL3tW3bNpMnT86dd96ZZs2aZb311qtQ2zvttFPq1q2b+++/v9y6e+65J59//nlq166d6dOn57TTTstuu+2WQw89tMx2TZs2zdixYwtBXZMmTfLwww/nxRdfTL169bLKKqtk2LBhhe3ff//97Lzzzvn2228rVOOiNGjQIBdeeGEGDhyYZ555plDPp59+mlVXXbVQz9ixY3PTTTcVzuVHH32UadOmFdp55513svHGGydJatSoUWbdmDFjyh33f//7X+H+0KFDU7169TLXYPy+Jk2aZNKkSfnss88Ky+69996ccsopS/nMAQAAAAAAyhIK/gCnn356pk6dmuOPPz6DBw/Oxx9/nEcffTRdunTJ0UcfnV/84hfZcMMNs/POO6dz584ZOnRohg4dms6dO2ebbbbJxhtvnI022ii1atVKz549M2bMmNxxxx157733KlxD7dq18+WXXy4ySKxVq1Z233333H333dlnn30q3HadOnVy/vnnp0ePHrnhhhsycuTIvP/++7nooovyr3/9qzDisGvXrpk9e3Y6duyY8ePHZ9y4cRk3bly+/fbbHHPMMXnmmWdy77335uOPP06vXr3Sq1evrL/++knmXifwxhtvzGuvvZYRI0bkiiuuyBZbbFGY7vOH2muvvbLjjjvmmmuuyfTp09OmTZuss846OeecczJ8+PAMGTIkF110UWrXrl0Y4ffNN9/k4osvzsiRI/PII4+kX79+OeKII5LMnUq0b9++hZ/lTTfdVO6Yf/7zn/Pqq6/m7bffzuWXX57DDjsstWvXXmiNG220UbbbbrtccMEFGT58eAYNGpS//vWv2XHHHZfJOQAAAAAAABAK/gCNGjXKgw8+mMaNG6dTp05p37597rnnnpxxxhnp0qVLYburr746jRs3zjHHHJPjjz8+G220UW655ZYkycorr5zLLrssffr0Sfv27TNs2LAceeSRFa5hjz32yJw5c7LPPvtkwoQJC92uXbt2mTFjRoWvJzjPvvvum1tuuSWvv/56DjvssPzud7/Lp59+mgceeCBbbLFFkuTJJ5/MyJEjs8suu2THHXdMmzZt0qZNmzzzzDPZYostcs011+Rvf/tb2rVrl0ceeSTXXXddttlmmyTJ73//++y5554588wzc/jhh2fNNdfMZZddtkQ1Ls4FF1yQ8ePHp2fPnqlatWpuu+22zJkzJ4ceemhOP/307LLLLmWmVF1rrbXSqFGjHHzwwbnjjjvSvXv3wjUIjz322Gy22Wb57W9/m44dOy5wNN+xxx6bCy64IMcee2y23HLLdOrUabE1zpuG9Te/+U06duyY3/zmN4UgEgAAAAAA4IcqKV3UxekoGo888kiefPLJBU4Fyv/p3bt3br755gwcOLCyS1moceOW7cWYS0rmXoR0/HgXjIXF0V+gYvQVqBh9BSqmpCTZ+toXK7sMAJaR1zvuXKnH9xkMKkZf+Wlp1KhuhbartpzroJJ99NFHeeedd3LbbbflzDPPrOxyAAAAAAAAqARCwSI3duzYXHDBBdl9993ToUOHwvL+/fuXmeL0+1q1apU77rhjRZQIAAAAAADAciYULHI77rhj3n777XLL27RpkyeeeGKh+9WqVWv5FfUjduCBB+bAAw+s7DIAAAAAAACWKaHgz1SdOnVSp06dyi4DAAAAAACAFaBKZRcAAAAAAAAALF9CQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAockJBAAAAAAAAKHJCQQAAAAAAAChyQkEAAAAAAAAoctUquwAAAACARfnwqn0yfvyUlJZWdiXw41VSkqy2Wl19BQBYKCMFAQAAAAAAoMgJBQEAAAAAAKDICQUBAAAAAACgyAkFAQAAAAAAoMgJBQEAAAAAAKDICQUBAAAAAACgyAkFAQAAAAAAoMgJBQEAAAAAAKDICQUBAAAAAACgyAkFAQAAAAAAoMgJBQEAAAAAAKDIVavsAgAAAAAWZf0ufSq7BADgB3q9486VXQL87BkpCAAAAAAAAEVOKAgAAAAAAABFTigIAAAAAAAARU4oCAAAAAAAAEVOKAgAAAAAAABFTigIAAAAAAAARU4oCAAAAAAAAEVOKAgAAAAAAABFTigIAAAAAAAARU4oCAAAAAAAAEVOKAgAAAAAAABFTigIAAAAAAAARU4oCAAAAAAAAEVOKAgAAAAAAABFTigIAAAAAAAARU4oCAAAAAAAAEVOKAgAAAAAAABFTigIAAAAAAAARU4oCAAAAAAAAEVOKAgAAAAAAABFTihYydq2bZtmzZot8DZo0KBleqyjjjoqPXr0WKZtLm8TJkxI3759K7z9ws5lp06dFrvv2LFj06xZs4wdO7bQ1qJ+Bq+++mpGjhyZJOndu3fatm1b4ToBAAAAAABWpGqVXQDJ+eefn3bt2pVbXr9+/Uqo5sfl2muvTWlpafbee+8K79OjR49sueWWZZbVqlVrWZeWY445Jvfee2823HDDtGvXLrvuuusyPwYAAAAAAMCyIBT8Eahbt24aNWpU2WX8KJWWli7xPvXr11/h57NWrVrLJXgEAAAAAABYFkwf+iPXtm3bPPbYYznooIPSokWLHHfccfnkk09y+umnp2XLltlvv/0yYsSIJHOnsDz88MNz7bXXZsstt8yuu+6aRx99dKFt9+7dO3vvvXdatGiRAw88MK+//nqS5Mknn0zr1q0za9aswrb9+/fPrrvumtLS0iWqKUmGDBmSAw88MC1atEiHDh3Sv3//wrouXbrkyiuvzJlnnpmWLVtml112yRNPPJFk7oi/xx9/PI8//vgym5qzbdu26d27d+HxoEGD0qxZs6VqJ0mOPvro9OjRo8z0oYMGDSqcox133DHbbLNNbr/99rz++uv59a9/nS233DLnnntu5syZk2Ru8HnLLbekTZs22XrrrXPSSSfl008/XQbPFgAAAAAAYC6h4E/ADTfckI4dO+Zvf/tb3nvvvRxwwAHZYYcd8thjj6V27dq5/vrrC9v+97//zfvvv5+HH344p512Wi655JK8/PLL5drs3bt3LrvssvzhD3/IE088kR122CG///3v88UXX2T33XfPt99+m9dee62wfd++fbP33nunpKRkiWoaN25c/vCHP+TAAw/MU089lRNOOCFdunTJkCFDCm0/8MAD+eUvf5mnn346e+65Zy6++OJMmTIlxx13XPbee+/svffeeeyxx5bX6V0q8+rp0aNHjjvuuHLrv/zyywwYMCD33XdfTjrppFx//fX505/+lKuuuirXX399nnnmmTz//PNJkvvvvz9PPfVUrrvuujz88MNp2LBhjjvuuMycOXOhxy8pWba35dGmm1ux3vQXN7eK3fQVN7eK3fQVN7eK3QCAn77K/jzhtnSfwSq7BreK/6wqwvShPwIXX3xxLrvssjLL1l577fTp0ydJcuCBB2aHHXZIkmy33XYZN25cDj/88CTJvvvum3vuuaewX0lJSa655po0bNgwG2+8cV5//fU88sgjadOmTZn277vvvhx11FHZf//9kySdOnXK66+/nvvvvz8dO3bMbrvtln79+qVNmzaZPn16Xnjhhdx3332F/Sta0wMPPJAddtghv/3tb5MkTZo0yfvvv5977rknW2+9dZKkWbNmOfHEE5Mkf/zjH3PvvfdmxIgR2WqrrQpTcq666qoVPp8nnnhiqlatWni8yiqrZODAgRXevyLm1VO/fv3UqVOn3PqZM2emc+fOadq0adZee+1cc801OfLII7PFFlskSTbddNOMGjUqSXLHHXfk4osvTuvWrZMkl156adq0aZOXXnppgSMkV121TqpWXfZ5fsOGdZd5m1Cs9BeoGH0FKkZfAQDg52C11Xzu/Sny/5XiIhT8ETjjjDOy5557lllWrdr//WgaN25cuF+rVq2ss846ZR7PP6KsSZMmadiwYeHx5ptvnoceeqjcMUeOHJlTTz21zLItttgiI0eOTJK0b98+F154Ybp165Z//etfWX311bP55psvcU2jRo3KP//5z2y55ZaF9TNnzkzTpk0Lj9dff/3C/ZVXXjlJykxduqQuv/zytGzZsvC4SpUfFqANGTKkEFomyR/+8IecdNJJi91v3jmaF2x+/xzNmDEj06ZNy+eff56zzjqrTJ3ffvttPvzwwwW2O3HitCVK/henpGTuG/uECVOyFJdwhJ8V/QUqRl+BitFXoGKW5f9/AIDKM378lMougSXg/ys/LRUN3YWCPwINGzZMkyZNFrp+/lFvyaJDrvnDxCSZPXv2ArevWbNmuWWzZ88uXOdu5513zuzZs/P666+nf//+2XvvvZeqplmzZqVDhw7lQrT566xevXq5/Up/wLvMGmusscjzOb/Zs2cvdpvNN9+8cJ3DZO7owIr4/s9iQedo3vFvvPHGMkHp4o6zPN6ES0uXT7tQjPQXqBh9BSpGXwEA4OfAZ96fJv9fKS6uKVhkPvroo0ybNq3w+J133snGG29cbrumTZvmP//5T5ll//nPfwrBVI0aNbLHHnvkueeey7///e/ss88+S1VP06ZN89FHH6VJkyaF2/PPP5+nnnqqQvuXLOM/Ca1evXqZ8zNmzJjF7lOrVq0y9Tdo0GCZ1VOvXr00bNgw48aNK7S/1lprpXv37hk9evQyOw4AAAAAAPDzJhT8EZgyZUrGjRtX7vbNN98scVvffPNNLr744owcOTKPPPJI+vXrlyOOOKLcdsccc0zuv//+PPHEExk9enSuvfbaDBs2LAcffHBhm/bt2+exxx7LmmuumY022mipntsRRxyRd955J3/+85/z4Ycf5qmnnsr111+ftddeu0L7165dO5988km++OKLpTr+9zVv3jyPPfZY/ve//2XQoEG56667lrqtlVZaKSNGjMiUKT9s2PsxxxyTG264IQMHDsyHH36YCy+8MG+++WY22GCDH9QuAAAAAADAPKYP/RH405/+lD/96U/llv/xj39c4rbWWmutNGrUKAcffHAaNWqU7t27p1WrVuW2a9euXcaPH5+bbrop48aNy6abbpq77rorG264YWGb1q1bp06dOmnXrt0S1zHPOuusk549e+baa6/NnXfemTXWWCNdunTJvvvuW6H999tvv5x66qnZd99989prr/3gkYNnnnlmzjvvvBx44IHZYIMN8sc//jFnnXXWUrV11FFH5ZprrsnHH3+cTTbZZKlrOv744zNt2rR07do1U6dOzeabb54777yzwtOUAgAAAAAALE5J6Q+5eBs/Kr17987NN9+cgQMHLpP2pk6dmh133DFPP/10GjduvEza5IcbN27ZXpC3pGTuRUjHj3fBWFgc/QUqRl+BitFXoGJKSpKtr32xsssAAH6g1zvuXNklsAT8f+WnpVGjuhXazkhByiktLU3//v3z7LPPZssttxQIAgAAAAAA/MQJBSmnpKQk3bt3T9WqVXPbbbdVdjlJkgkTJuRXv/rVIrd56623VlA1AAAAAAAAPy1CwSJy4IEH5sADD1wmbT3//PPLpJ1lpUGDBnniiScquwwAAAAAAICfJKEgPwlVq1ZNkyZNKrsMAAAAAACAn6QqlV0AAAAAAAAAsHwJBQEAAAAAAKDICQUBAAAAAACgyAkFAQAAAAAAoMgJBQEAAAAAAKDICQUBAAAAAACgyAkFAQAAAAAAoMgJBQEAAAAAAKDICQUBAAAAAACgyAkFAQAAAAAAoMgJBQEAAAAAAKDICQUBAAAAAACgyAkFAQAAAAAAoMgJBQEAAAAAAKDICQUBAAAAAACgyFWr7AIAAAAAFuXDq/bJ+PFTUlpa2ZXAj1dJSbLaanX1FVgMfQX4OTNSEAAAAAAAAIqcUBAAAAAAAACKnFAQAAAAAAAAipxQEAAAAAAAAIqcUBAAAAAAAACKnFAQAAAAAAAAipxQEAAAAAAAAIqcUBAAAAAAAACKnFAQAAAAAAAAipxQEAAAAAAAAIqcUBAAAAAAAACKXLXKLgAAAABgUdbv0qeySwAA4Efg9Y47V3YJP2lGCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKslTOPvvs7LLLLpk+fXq5dccee2wOO+ywlJaWrrB6vv7661x11VVp27ZtWrZsmb333ju9evXKnDlzlrrNLl26pEuXLhXatkePHmnWrFnhtummm6Z169Y577zz8uWXXy51DQAAAAAAAMuCUJCl0rlz50yZMiU9e/Yss/zZZ5/N66+/nksvvTQlJSUrpJavvvoqhxxySN55551cccUVefrpp3P66afnL3/5S6644ooVUkOSbLnllnn55Zfz8ssv54UXXsgdd9yR//73v+nUqdMKqwEAAAAAAGBBqlV2Afw0rbHGGjn99NPz5z//OQcffHAaN26cb7/9NldddVWOPfbYbLzxxiusluuuuy41atTInXfemZo1ayZJGjdunFq1auWUU07Jb3/72zRt2nS511G9evU0atSo8Hj11VfPySefnLPPPjtff/116tevv9xrAAAAAAAAWBAjBVlqRx11VJo0aZLu3bsnSe64445UqVIlp556aj777LOcdNJJadmyZdq2bZubb745s2fPLuz76KOP5te//nU233zztG7dOpdccklh/bxpO/fdd99sv/32+fDDD/PMM89kr732SvPmzdOuXbsMGDAgSTJjxoz06dMnRx55ZCEQnGe33XZLr169ss466ySZO8XoRRddlB122CGtWrXKOeeck6+//rqw/ZAhQ7L//vunRYsW+eMf/1huatTnnnsu7dq1S8uWLXPwwQdn8ODBiz1HVatWTUlJSapXr57evXvnsMMOy6mnnppWrVrlySefzJw5c3LHHXdk9913T4sWLXLUUUdl+PDhS/HTAAAAAAAAWDgjBVlq1apVS9euXXPUUUdlwIABufPOO3PTTTelZs2aOe2007LJJpvk8ccfz7hx49K1a9eUlJTk1FNPzeDBg3P55Zene/fu2WyzzfLOO+/knHPOyfbbb58999wzSfKPf/wjt9xyS1ZbbbXUrVs35557bi699NK0bt06/fr1y9lnn50XX3wx48ePzzfffJPmzZuXq6+kpCTbbbdd4fFpp52W6dOnF6Y87datW7p06ZLbbrstEydOzB/+8If85je/yfXXX58+ffrk5ptvzgEHHJAkGTZsWDp37pxLLrkkLVq0yAsvvJATTzwxTz75ZJo0abLA8/Phhx/mr3/9a7bffvustNJKSZK33norJ510Us4+++ysssoqueWWW/Lggw/msssuy/rrr5/bb789J5xwQvr371/YZ0GW5cys89paQbO9wk+a/gIVo69AxegrUDH6CAAA8/hs+MMIBflBttlmm3To0CF//OMfs9dee2WnnXbKq6++mk8//TSPPvpoqlSpkg022CCdO3fOeeedl1NPPTUrrbRSrrjiikIAuO666+buu+/OiBEjCsuaN2+etm3bJknee++9zJw5M2uuuWbWWWedHHfccWnWrFlq1qyZyZMnJ0nq1q27yDqHDRuWwYMHp1+/foWpRLt375527dpl1KhRefXVV7PqqqvmnHPOSUlJSU4//fS88MILhf3vvPPOHHrooenQoUOS5Oijj87rr7+eBx98MF26dEkyd6ThlltumSSZOXNmZs2ala233jqXX355oZ2SkpKcfPLJqVWrVkpLS3P//ffn7LPPzu67754kueyyy7LHHnvkySefzGGHHbbA57LqqnVSteqyH+TbsOGizyHwf/QXqBh9BSpGXwEAAKiY1Vbz/6cfQijID3bSSSflySefzKmnnpokGTlyZCZNmpRWrVoVtpkzZ06+/fbbfPXVV9l8881Tq1at3HTTTfnggw8yfPjwfPTRR2nTpk1h+3lTfibJpptuml133TXHHntsmjZtmt133z2HHHJIateunQYNGiRJmWlAF2TUqFGpV69emWsLbrjhhqlfv35GjRqVDz74IJtssklK5vszg+bNmxemEB05cmT69u2bhx9+uLB+5syZZWrefPPNc+211yZJqlSpklVXXTV16tQpU0fDhg1Tq1atJMmECRMyadKktGzZsrC+evXq2XzzzTNy5MiFPpeJE6ct85GCDRvWzYQJU1JauuzahWKkv0DF6CtQMfoKVIy/BgcAYJ7x46dUdgk/ShUNS4WC/GDzruU3799Zs2Zlgw02yK233lpu27p16+all17Kqaeemv333z877bRTTj311FxyySULbDOZO7ruL3/5S4YOHZrnn38+zz33XP72t7/lb3/7WzbaaKPUrVs37777blq0aFHueCeffHKOOuqo1KhRY4G1z549u3Atw9LvfRNTvXr1Qig4e/bsnHjiidl///3LbDMv4Jt3f2FTiS7oeX3/Gojz1zRnzpxFtrM8vjQqLV0+7UIx0l+gYvQVqBh9BQAAoGL83+mHWfZzEPKz17Rp03z66adZddVV06RJkzRp0iRjx47NTTfdlJKSkjz66KM56KCDcumll+aQQw7JhhtumI8//rhcKDfPyJEjc/XVV6dFixY566yz0qdPn6y11lp56aWXUq1atbRr1y4PPPBAZsyYUWa/gQMHZuDAgVl99dXTtGnTTJ48OaNGjSqs/+CDDzJ16tQ0bdo0G220Ud57771CQJgk77//fpnnNHbs2MLzadKkSR5++OG8+OKLS32e6tatm9VWWy1vv/12YdnMmTPz7rvvlhnRCAAAAAAA8EMJBVnm2rRpk3XWWSfnnHNOhg8fniFDhuSiiy5K7dq1U7Vq1TRo0CBvvfVWhg8fnhEjRqRLly4ZN25cuVBvnnr16uXBBx/MrbfemjFjxuRf//pXPvnkk2y22WZJktNPPz1Tp07N8ccfn8GDB+fjjz/Oo48+mi5duuToo4/OL37xi2y44YbZeeed07lz5wwdOjRDhw5N586ds80222TjjTfOPvvsk+nTp+eKK67IqFGjcscdd+SNN94o1HDMMcfkmWeeyb333puPP/44vXr1Sq9evbL++uv/oHN1zDHH5KabbsrAgQMzcuTIXHTRRfnuu+/Srl27H9QuAAAAAADA/ISCLHNVq1bNbbfdljlz5uTQQw/N6aefnl122SUXXnhhkuS0005Lw4YN85vf/CbHHntsatasmcMPP7zMyLz5NWrUKD169Ej//v2zzz775NJLL83ZZ59duJ5fo0aN8uCDD6Zx48bp1KlT2rdvn3vuuSdnnHFGunTpUmjn6quvTuPGjXPMMcfk+OOPz0YbbZRbbrklSVK/fv3ccccd+e9//5v99tsvr7zySvbbb7/CvltssUWuueaa/O1vf0u7du3yyCOP5Lrrrss222zzg87Vcccdl0MOOSQXXXRRDjzwwHz++ee57777suqqq/6gdgEAAAAAAOZXUrqwORuBH6Vx45bthVRLSuZehHT8+CnmY4bF0F+gYvQVqBh9BSqmpCTZ+tqlv3QDAADF4/WOO1d2CT9KjRrVrdB2RgoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkRMKAgAAAAAAQJETCgIAAAAAAECREwoCAAAAAABAkatW2QUAAAAALMqHV+2T8eOnpLS0siuBH6+SkmS11erqK7AY+gpUjL5SnIwUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiJxQEAAAAAACAIicUBAAAAAAAgCInFAQAAAAAAIAiV1JaWlpa2UUAAAAAAAAAy4+RggAAAAAAAFDkhIIAAAAAAABQ5ISCAAAAAAAAUOSEggAAAAAAAFDkhILwM1NaWpprr7022223Xbbddttcc801mTNnzkK3HzJkSA488MBsscUW2W+//fLKK6+swGqhci1pf/n0009z4oknpmXLltljjz3yzDPPrMBqofIsaV+ZZ8qUKdlpp53Su3fvFVAlVL4l7Stvv/12DjvssGy55ZbZa6+98uijj67AamHF+u6773L++edn6623Tps2bXLXXXctdNv33nsvhxxySFq2bJmDDjoo77zzzgqsFCrXkvSVf/3rX9lvv/2y5ZZbpkOHDnn++edXYKVQuZakr8wzduzYbLnllhk0aNAKqBB+HJakrwwfPjyHH354WrRokQ4dOuS1115bgZWyrAgF4Wfm7rvvztNPP52bb745N910U5566qncfffdC9x2woQJOemkk9KuXbs89dRT2XvvvXPKKafk888/X8FVQ+VYkv4ya9as/OEPf0i1atXy+OOP5/jjj8+5556b//3vfyu4aljxlqSvzK979+758ssvV0CF8OOwJH1l3LhxOfHEE7Ptttvm8ccfzxlnnJHLLrss//rXv1Zs0bCCXHPNNXnnnXdyzz335OKLL87NN9+cfv36ldvum2++ye9///tsvfXW6d27d7bccsv84Q9/yDfffFMJVcOKV9G+MmzYsJx22mk56KCD8sQTT+Swww7LH//4xwwbNqwSqoYVr6J9ZX7dunXz+4SfnYr2lSlTpuS4447LL37xizz11FPZY489ctppp2XChAmVUDU/hFAQfmbuvffenHHGGdl6662z3XbbpVOnTnnggQcWuO2bb76ZqlWr5oQTTkjjxo1z0kknpWbNmnn77bdXbNFQSZakv7zwwgv57LPP0r1792ywwQY57LDDsvPOO+ett95awVXDirckfWWeIUOG5LXXXkujRo1WUJVQ+ZakrwwYMCCrrbZazj777Ky//vrZZ599sv/+++epp55awVXD8vfNN9/k0UcfzQUXXJBf/vKX2WOPPXLCCScssH8888wzqVmzZs4999xsuOGGueCCC1KnTp3FftELxWBJ+srTTz+d7bbbLkcffXSaNGmSI488Mq1bt07fvn0roXJYsZakr8zz5JNPZtq0aSuwSqh8S9JXHn/88ay00krp1q1bmjRpkjPOOCNNmjQxY8NPkFAQfka++OKLfPbZZ9lmm20Ky1q1apVPPvlkgSM1GjRokEmTJuXZZ59NaWlpBgwYkGnTpmXjjTdekWVDpVjS/jJ48OBsv/32WXnllQvLbr311vzmN79ZIfVCZVnSvpIkM2bMyEUXXZSuXbumRo0aK6pUqFRL2ld22mmnXHnlleWWT506dbnWCZVh2LBhmTVrVrbccsvCslatWuU///lPuSl2//Of/6RVq1YpKSlJkpSUlGSrrbbyh4v8LCxJXznggAPSqVOncm1MmTJludcJlW1J+kqSfPXVV+nevXsuvfTSFVkmVLol6SuDBw/O7rvvnqpVqxaW/f3vf88uu+yywupl2RAKws/IuHHjkiSrr756Ydlqq62WJAucEnTrrbfOkUcemTPOOCO//OUvc+qpp+bSSy/NBhtssGIKhkq0pP1lzJgxWXPNNXPttddmp512yr777psBAwasmGKhEi1pX0mSnj17ZrPNNkubNm2Wf4HwI7GkfWXdddfNFltsUXg8YcKE9OnTJ9tvv/3yLRQqwbhx47LKKquU+UOR1VZbLd99910mTZpUbtv5+1GSNGzY0CUO+FlYkr6y4YYbZpNNNik8HjFiRF599VW/R/hZWJK+kiRXXXVVDjjggGy00UYrsEqofEvSV8aMGZNVV101F110UXbccccceuiheeONN1ZwxSwL1Sq7AGDZ+vbbb/PFF18scN28edHnf6Ofd3/GjBnltp82bVrGjBmT0047LbvttlueffbZXH755WnZsmU23HDD5VA9rFjLsr988803efzxx9OuXbv07NkzgwYNyhlnnJGHH344zZs3Xw7Vw4qzLPvKBx98kIceeihPPvnkcqgUKtey7Cvfb/f000/PaqutZgQ6RWn69OnlRo4vrH8sbNvF9SMoBkvSV+Y3ceLEnH766dlqq62y++67L9ca4cdgSfrKK6+8kjfeeCNPP/30CqsPfiyWpK988803+etf/5qjjz46t99+e/r06ZPjjz8+ffv2zVprrbXCauaHEwpCkfnPf/6To48+eoHrzjnnnCRz39Rr1qxZuJ8ktWvXLrf9HXfckdLS0px22mlJkl/+8pcZOnRo7r333lxyySXLo3xYoZZlf6latWoaNGiQbt26pUqVKvnlL3+ZIUOG5JFHHhEK8pO3rPpKaWlpLrzwwpxxxhmFEVJQTJbl75V5pk2bllNOOSUffvhh/va3vy1yW/ipqlmzZrkvnuY9rlWrVoW2/f52UIyWpK/MM378+Bx77LEpLS3NTTfdlCpVTBpG8atoX/n222/TtWvXXHzxxX6P8LO0JL9Xqlatmk033TRnnHFGkmSzzTbLv//97/zjH//ISSedtGIKZpkQCkKRad26dYYPH77AdV988UW6d++ecePGZd11103yf1NZNWrUqNz27777bpnpRpJk0003zYgRI5Zx1VA5lmV/WX311VNSUlLmP9lNmzZdaPvwU7Ks+sqnn36at956K8OHD8/VV1+dZO5fJl588cV55plncscddyzHZwHL37L8vZLMvX7gCSeckI8//jj33HNP1l9//eVSN1S2NdZYI1999VVmzZqVatXmfk0xbty41KpVK/Xq1Su37fjx48ssGz9+fLkpRaEYLUlfSeb+7pn3xyr33ntvVl111RVaL1SWivaVoUOHZsyYMYWQY54TTzwx+++/v2sMUvSW5PdKo0aNyl1Sav31189nn322wupl2fDnQfAzssYaa2TttdcuM9/zG2+8kbXXXnuB/4leffXV88EHH5RZNmrUqMIXWVDMlrS/tGzZMiNGjMjs2bMLy0aOHJl11llnhdQLlWVJ+soaa6yRZ599Nk888UThtvrqq+eMM87IFVdcsaJLhxVqSX+vzJkzJ6eddlrGjh2b++67zzVuKGqbbrppqlWrlrfffruw7I033kjz5s3LjWpq2bJl3nrrrZSWliaZOwr9zTffTMuWLVdkyVAplqSvfPPNNznhhBNSpUqV3H///VljjTVWcLVQeSraV1q0aFHu/ydJcvnll+ePf/zjCq4aVrwl+b2yxRZblPsDyFGjRvne6ydIKAg/M4cffniuvfbaDBo0KIMGDcp1111XZpqriRMnZtq0aUmSQw45JC+++GJ69eqVMWPGpFevXnn55ZdzxBFHVFb5sEItSX9p37595syZk0suuSQfffRRHnjggbz00ks59NBDK6t8WGEq2leqVauWJk2alLlVq1YtDRs29EUVPwtL8nvlsccey6BBg3L55ZenXr16GTduXMaNG5dJkyZVUvWw/NSuXTv7779/unXrlqFDh2bAgAG56667Cv1j3Lhx+fbbb5Mkv/71rzN58uRcccUV+eCDD3LFFVdk+vTp2XvvvSvzKcAKsSR95S9/+Us+/vjjwuwM836PTJkypdLqhxWlon2lVq1a5f5/ksz9Y66GDRtW5lOAFWJJfq8cdthhGT58eHr06JGPPvooN954Y8aMGZP99tuvMp8CS6GkdN6f1wE/C7Nnz84111yT3r17p2rVqjn44IPTsWPHlJSUJEnatm2bAw44IKeffnqS5Pnnn89NN92Ujz/+OE2bNk2nTp2yww47VOZTgBVmSfvLBx98kG7duuU///lP1l577XTs2DF77rlnZT4FWCGWtK/Mr23btjnttNNy4IEHruiyYYVbkr5y/PHH5+WXXy7Xxrbbbpv77rtvRZcOy9306dPTrVu3PPvss1l55ZVz/PHH55hjjkmSNGvWLFdeeWXhd8XQoUNz8cUXZ+TIkWnWrFkuueSSbLbZZpVYPaw4Fe0rv/71rzN69Ohy+x9wwAG56qqrVnDVsOItye+V+TVr1iz33ntvWrduvYIrhsqxJH3ljTfeyBVXXJERI0Zkww03zAUXXJBtttmmEqtnaQgFAQAAAAAAoMiZPhQAAAAAAACKnFAQAAAAAAAAipxQEAAAAAAAAIqcUBAAAAAAAACKnFAQAAAAAH7xftkAAC4TSURBVAAAipxQEAAAAAAAAIqcUBAAAAAAAACKnFAQAAAAAAAAily1yi4AAAD4cendu3fOO++8wuPbbrstbdu2XaI2dt5553zxxRdJknvvvTetW7depjX+FI0ZMyarrLJKVl555XLrjjrqqAwePDiJ8/Vj1KVLlzz++ONJkiuvvDIHHnjgUrXTtm3bfPLJJ4vdrmrVqqlVq1ZWWWWVbLTRRtlpp53Svn371K9ff6mOW9kmTpyYWbNmZfXVVy+3blmd2x+jZs2a/aD9t91229x3333LqJoVZ9iwYdlkk00quwwAABbASEEAAGCRunXrlqlTp1Z2GT9Zs2bNyh133JEOHTpk0qRJlV0OPwGzZ8/OtGnTMnbs2Pzzn//MpZdemj333DNPPPFEZZe2xP7+979n7733zujRoyu7FJaz6dOnp3v37jnooIMquxQAABbCSEEAAGCRvvjii3Tv3j2XXHJJZZfyk3Tcccdl0KBBlV0GPzLbbrttmjZtusB1s2fPzvTp0zNmzJgMHTo0STJp0qR06dIls2fP/smELuedd1569+5d2WX8KOy2224LHCm5KAt7ffxYtW/fPmPHjq3sMgAAWAShIAAAsFgPP/xwOnTokK233rqyS/nJ8SU5C3LAAQdUaKrMoUOH5swzz8wnn3yS0tLSXHHFFdlpp52WOGCqDF77/+fYY48t+mmB/bwBAH78TB8KAAAsVmlpaS688MLMmDGjskspSvfdd1+GDx+e4cOHF31wwJJp0aJFevbsmerVqydJpk2blgceeKCSq1p2rrrqqsJrv5iuJwgAAD9GQkEAAGCh6tatW7g/evTo3HLLLZVYDfw8bbzxxvnVr35VeNyvX79KrAYAAPipEgoCAAALtdFGG2W//fYrPL7zzjszbNiwSqwIfp523HHHwv2PPvoos2bNqsRqAACAnyLXFAQAABbpvPPOy0svvZSJEydm5syZueCCC/LII4+katWqy6T9WbNm5emnn85zzz2X9957LxMmTEjNmjWz5pprZrvttsvBBx+cZs2aVait7777Lo888kj69++f//3vf/nmm2+y+uqrZ9ttt80RRxyRFi1apE+fPjn77LOTJKeddlpOP/30hbY3aNCgDBgwIG+88Ua+/PLLTJo0KdWrV0/9+vWzySabZKeddsqBBx6Y2rVrl9lv7Nix2X333cu1N/+ye++9tzBV6FFHHZXBgweXW37kkUdmyJAhSZKOHTvm97///WLPwfHHH5+XX345SdK1a9cceeSR5bb59ttv8/e//z0DBw7MiBEjMnHixNSpUyfrrLNO2rRpk0MPPTTrrrvuYo+1JN55553069cvQ4YMySeffJJJkyalatWqqVevXjbccMPssMMOOfTQQ1O/fv0F7t+7d++cd955SZIbb7wxv/71rzN27Ng8/PDD+de//pXPPvsss2fPzhprrJE2bdrk8MMPz4YbbrjYumbMmJHevXunT58+GT58eOE1s+OOO+Z3v/tdfvGLXyzT87C01lhjjcL90tLSTJw4caHXFRw6dGj+/ve/Z8iQIfn8888zY8aMNGzYMJtuuml233337LfffoXpSBdlyJAhefLJJzNkyJB89tlnmTVrVho0aJD1118/O+64Yw466KA0atSo3H4L6q9HH3104f6VV15ZmCq0S5cuefzxx8stP/fcc/OPf/wjSXLYYYflkksuWWy9Xbt2zcMPP5xkbj8499xzy22zLN9vKturr76ap59+OkOGDMm4ceMyZ86crLbaatlqq62yzz77ZJdddqlQO6WlpfnnP/+Zf/3rX3nrrbcyYcKETJ48OTVr1kyDBg2y+eabZ7fddkv79u1TrVrZr5EGDRpU5mc7z/zn8Pnnny+8n7Rt2zaffPJJueULMn/b2267be67774y63v06JGbb745SfLYY4+ladOmueGGG/LMM89k+vTpWWONNdK6deucddZZadCgQZl9v/jiizzyyCN56aWXMmbMmEyZMiUNGjTIhhtumN122y0HH3xwVl555cWeu48//jh///vf88orr+TDDz/M9OnTU7du3ay11lpp3bp19t1332y66aaLbQcAYEURCgIAAIu0yiqr5IILLkjHjh2TzA137rnnnhx33HE/uO333nsvHTt2zKhRo8os/+677zJ58uT873//y/3335/DDz88559/frkvpL/f1umnn56xY8eWWf7JJ5/k8ccfzz/+8Y+cdNJJFQp5Pvvss3Tq1KkQyM1v5syZ+eabb/LZZ5/ln//8Z2677bbceuutadGiRQWfdcXtu+++hRr69eu32FBw4sSJee2115Ik1atXT7t27cpt8+9//zvnn39+Pv/88zLLJ02alEmTJuXdd9/N3XffnZNPPjmnnHLKD34OkydPznnnnZcBAwYscP306dPzxRdf5JVXXknPnj1z3XXXZdddd11su0888UQuueSSfPPNN2WWjx49OqNHj86DDz6YTp065dhjj11oG8OHD88ZZ5yRDz/8sMzyTz75JI888kieeOKJXHTRRYutZUX4/vU8V1pppXLbTJo0KV27dk3//v3Lrfvss8/y2WefZeDAgenZs2euueaabLXVVgs91nnnnZenn3663Lovv/wyX375ZQYPHpyePXvmnHPOWWDw/EPtu+++hVDwueeeS9euXRf5hwizZs0q87z33Xffctssy/ebyvTVV1+lc+fOeeGFF8qtGzNmTMaMGZN//OMf2XbbbfPnP/85q6222kLbGj58eDp16pT//e9/5dbNnDkzU6dOzdixY9OvX7/07Nkzf/nLX9KkSZNl+nyWhVmzZuX3v/993njjjcKy0aNH5+uvvy7Xh+++++7ceOONmT59epnl48aNy7hx4/Laa6/lr3/9ay6//PK0bdt2oce8++67c91112XmzJlllk+cODETJ04svJcedNBBueSSS360rycA4OfFJxIAAGCx2rdvn6eeeir/+te/kiQ33XRT9thjjzRu3Hip2xwyZEhOPPHEQqhTvXr1bLHFFmncuHGmT5+eoUOH5pNPPsmcOXPywAMPZMyYMenZs+cCg4ERI0bk6KOPzpQpU5IkJSUl2WKLLbL++uvnq6++ymuvvZZvv/02t956a375y18usq6JEyfmiCOOyKeffpokqVKlSjbffPOsv/76qVGjRiZMmJD//Oc/mThxYpK5XySfdNJJ6devX+rVq5ckqVOnTn7zm98kSZ566qnCc2zfvn3q1KmTJAsd5TW/vffeO5dffnlmzJiRd999Nx999NEiv5Dv169fYVrJNm3aZJVVVimzvm/fvjnnnHMKX2LXrl07W221VdZYY41MnTo1b775ZsaPH58ZM2bkxhtvzOeff55LL710sXUuzHfffZejjz4677//fmFZs2bNstFGG6V27dr5+uuvM3To0EJAOXXq1Jxxxhnp06fPIl9bAwYMSJ8+fTJnzpzUrVs3W2+9dVZZZZWMHTs2Q4YMyZw5czJr1qxcddVV2WCDDRY4Ymr06NE5+uijM2nSpCRzXzMtW7ZM06ZNM2nSpAwaNCjffPNNunbtmrXXXnupz8GyMmLEiML9VVddtdwopsmTJ+e3v/1tme3WWGONbLnllqldu3ZGjRqVoUOHprS0NGPGjMnvfve73HzzzQs8N926dSsTCM77mdWoUSNffPFF3nzzzUyfPj3Tp0/PpZdemlVWWaVMAD3vtT9w4MCMGzcuSbLbbrsVXvNNmzZd7PPdfvvt06hRo4wbNy4TJkzIoEGDssMOOyx0+3//+9+Fn+XGG2+cTTbZpMz6Zfl+U5nGjx+fI488skyQvckmm2TjjTdOkowcOTLvvvtukmTw4ME59NBD89BDDy3w/WbkyJE56qij8vXXXyeZe05atmyZddddN1WrVs24cePy1ltvFd5XR48enVNPPTWPP/54YaTp6quvXvh5zxulmfzfayBJ4T1vefrLX/5SJhCcZ8899ywTxl1xxRW59957C49XXXXVtGrVKvXq1cuXX36ZIUOGZPr06ZkwYUJOPfXUXHXVVWWm0J7niSeeyFVXXVV4vPbaa6d58+apW7duJkyYkHfeeSfjxo1LaWlpHnvssVSvXj3dunVbtk8aAGApCAUBAIAK6datW9q1a5dvvvkm06dPT9euXXP33XcvVVsTJ07MmWeeWfiCvm3btrn44ouz5pprltnumWeeSdeuXTNlypS8+OKLueWWW3LGGWeU2Wb27Nnp1KlT4YvrddddNzfccEOaN29e5ngXXnhhnn/++cIX5gtzww03FALB9dZbLz179iw3DeXMmTNzzz33pHv37kmSCRMm5KmnniqMmFpllVUKYdrLL79ceJ5nnXXWEk3LWa9evey666559tlnC+fj5JNPXuj2zzzzTOH+90dKjRo1Kueff34hEDzkkEPSqVOnMtPqzZ49Ow899FCuvPLKzJw5Mw8//HBatmyZgw46qMI1z69Xr16FQHCVVVbJrbfeWm502pw5c/Lkk0/mwgsvzMyZM/Pdd9/lwQcfXODUj/M89dRTSZLjjjsup512WpnQ4YMPPsgf/vCHwojRnj17LjD46tKlSyFEWnvttXPjjTeWGe05efLkdO3aNX379i1Md1hZ5p2jebbbbrty23Ts2LEQCNaqVSsXXnhhDj744JSUlBS2GT58eM4999wMGzYsM2bMSKdOndK7d+8yAeyoUaPy97//PUlSo0aN3Hrrrdlpp53KHGvChAnp1KlTXnnllSRz+8z8oeC81/7o0aMLoeCxxx5bmBa3IqpWrZr27dsX3mOeeeaZRYaCi3rtL8v3m8pUWlqac889txAIbrDBBrn66qvLjVJ+9913c+655+aDDz7IJ598ko4dO+bee+8t81pIkj/96U+FQLB58+a5+eaby52T6dOn589//nPuueeeJHPD6VdeeaXQp5o2bVr4ec8fCv6QPyZYGv/85z9TrVq1nHPOOdlvv/0yZ86cvPjii9loo40K2zz55JOFQLBGjRrp1KlTjjjiiDJT6U6ZMiXdu3fPww8/nDlz5qRr167ZbLPNyrQzZ86c/PnPfy48PuOMM3LKKaeUOb8zZszIDTfckDvvvDNJ8sgjj+TEE0/MOuuss9zOAQBARVSp7AIAAICfhrXWWqswhWiSvPLKK4XwYEn17NmzEBbssssuueWWW8p9GZ0k7dq1y5133lkY6XHnnXcWRujN069fvwwbNixJsvLKK+eee+4pEwgmc0eD9OjRI9tvv/0i6/rmm2/yxBNPFB5fe+21C7wuXfXq1XPCCSdkjz32KCxb0FSjy8L8o1TmDz6+74svvijUsPLKK5e7puF1111XCEUOO+ywXH755eWus1W1atUceeSRuf766wvLbrjhhnJTV1bUQw89VLjftWvXBU5XWaVKley///5lpqCsyLk86qij0rlz53KjkH7xi1/kyiuvLDx+++23M3ny5DLbvPjii3n77beTzA3Q7rrrrnLBSr169XL99ddn5513Xmwty1NpaWm6d+9eZsrL70/XOXjw4Lz44otJ5o54vOmmm3LIIYeUC4GaNWuW++67rzDadPLkyenRo0eZbV599dXC/X333bdcIJgkDRs2zE033VS4luZHH32UkSNH/oBnuWDzv/afe+65ctM0zvPdd98VpqetUqVKOnToUGb9sny/WVp33313unbtWqHb/K/f+T3//PP597//nWTu+/EDDzywwGmLf/nLX+aBBx4oBFCDBw8ujPKeZ8yYMYVrj9aoUSM33XTTAs9J7dq1c/7555cZYf36668v1TlY3s4555wcc8wxWWWVVdKwYcMccMAB2XzzzZPMDemuueaawrZXX311fve735W7tmbdunVz6aWX5qijjkoy9/qr3+8jo0aNKoxuXm+99XLqqaeW62s1atTIueeeW3jPmz17dqGPAgBUJqEgAABQYUcccUS23HLLwuNrrrkm48ePX6I2vv322zJh4vnnn58qVRb+X5OWLVtmr732Kuz7+OOPl1nfp0+fwv0TTzxxoSPxqlatmm7dupX78nZ+n332WVq3bp31118/W2+9dVq2bLnI57LNNtsU7s8bdbas7bzzzoXw7n//+99Cw5dnnnkmpaWlSeZOmVezZs3Cuk8//TQDBw5MMjcE69Sp0yKPueeee2aLLbZIMvcacvP2XRITJ07MJptsko022iiNGzfOr3/960VuvyTnsmrVqvnDH/6wyLbq16+fZO6onnkjP+eZ/9pzhx122EKns6xSpUq6du26yNfM8vDtt99m7Nix6dOnT44++ujcddddhXXt2rXL1ltvXWb7+cPXvffee4EjI+epV69eLrzwwsLjPn365Kuvvio8nv86a99+++1C26lbt24uuuiiXH755bnnnnuyxhprVOzJLYFNN920MEJr0qRJhZGJ3/fCCy9k6tSpSeb+7OcPt5b1+83S+uc//5mHH364QreF/bHFAw88ULh/yimnZNVVV13o8Ro0aFDmGqTzv0aSuX9EsOOOO6Zx48bZa6+9FjtF7vyvueX1XvdD1KxZM4cddthC1/fr168QDG+55ZYLvN7q/M4444zCe+hzzz1X5vfc/NcxnTVrVmbPnr3Idi666KL89a9/XeT1CQEAVhShIAAAUGFVqlTJ5ZdfXhhdMWnSpFx22WVL1MZ//vOfwhf466yzTtZff/3F7jP/aK3BgwcX7s+YMaPcyKZFWX/99Rc4Wm2eDTfcMLfffnv69+9f5gv4halbt27h/sJGMf1QNWrUKIQUycJHC84fjn7/PLz22muZM2dOkqRFixZl6l6Y+UeIzX/OK2rVVVfNbbfdlqeffjoDBgxYZBCTLNm53GCDDdKoUaOFri8pKSkTckybNq3M+vlH7Mx/bhekcePGhYB0WTrvvPPSrFmzBd5atmyZ3XffPWeffXaZc7/tttsucFrG1157rXD/wAMPXOyxd9ppp6y11lpJ5oYa84/MnH+axD59+uSWW24p9NfvO+igg3LIIYdku+22K3eNw2Vl/tdy3759F7jNol77y/L9pjLNmDGjzM9pxx13XOw+8z+PedfanGfrrbfOXXfdlQEDBuTaa69dbFsr4r3uh9hss81Sq1atha6fP1Bu06bNYturV69eod/PmTOnzLlff/31C78DP/3005x99tnl/vBgnu233z6//e1vs8suuyyX4BwAYEm5piAAALBEfvGLX+Skk04qTKnWr1+/PP/88+Wmq1yYoUOHFu7Puzbh4nz55ZeF+/Oum5bMncZt3qiNhg0bLna0SzJ3JNAbb7xRoVq/7+uvv86oUaPy/vvv56233spLL71UWDf/F+7L2n777Ve4Xlffvn1z+umnl1n/8ccf57///W+SZM011yx37bb5z/lnn31WoXM+evTowv35z/myMnXq1IwePTrDhg3Lf/7znyU6l+utt95i259/WtH5R/J89dVXhddTSUlJNt1008W21bx587z11luL3W55WXPNNXPUUUctcLrDL774IhMmTCg8rkiAWVJSkpYtW+azzz5Lkrz33nuFqXDbtGmTJk2a5KOPPkppaWluuumm3Hbbbdlmm23Spk2btGnTJs2aNVt2T24xOnTokOuvvz6lpaUZMGBAZsyYkRo1ahTWT5s2rTA1Zs2aNcuNSF2W7zc/xL333rtE11T8vnnXgZzn1ltvTdWqVSu8/9SpU/Ppp59W+JqmEydOzAcffJD33nsvb775ZmGq0WT5vtctrV/84heLXD//6+CVV14p8zNemC+++KJwf8SIEYXXVr169dKhQ4f07t07ydzfgf37989mm22WnXbaKTvuuGO23HLLcn0VAODHQCgIAAAssd///vfp27dvPvjggyTJJZdcktatW1dotND81+iaOHFiIeyqqPmnOpx/SrdFjRyb34Kum7Ug48ePT//+/fPWW29l9OjRGTt27CKnzZs3defy0KpVq6y77roZO3ZsRo4cmeHDh5cJZuYfKbXPPvuUG5U3/zkfM2bMEp/zHzpd4JQpU9K/f/+88cYbGT16dD7++OMyQdb3Le5cfv86ggsy/zmYv735j7vyyisXrou3KPOuzbYsbbvttguctrSkpCS1a9fOyiuvnDXWWCPNmzfPRhtttNAAaP7+UKdOnQqNAk1SZtTS/D/fqlWr5uabb85xxx1XmG5x5syZeeWVV/LKK6/kmmuuyRprrJFdd901e++9d7bbbrvlOr3qWmutlW222SaDBw/OlClT8vLLL5eZhvH5558vTHO62267lXsPWpbvN5Xp+/3lscceW+I2Jk2atMBQcOzYsenfv3+GDh2ajz76KB9//HG50bXzW57vdUurXr16i1w///l74403lvgPQ77/HnjBBRdk1KhRhWuTlpaW5t133827776bnj17pk6dOmnTpk322muv7L777oscxQgAsCIJBQEAgCVWo0aNXHHFFTn88MMzZ86cfPHFF7nmmmsWOLXh902ZMuUHHXv+6znN/4V9Rb90XWmllRa5fvbs2bnxxhtz1113LXSavKpVq6Z58+ZZZZVV8s9//rNCx/2h9t1339x6661J5k4hOn8oOP+UoguaQvWHnvNFBQSL06tXr9x0000LbaOkpCSbbLJJNthggzLh5qIsyQip75s8eXLhfkVfMxUJIZfUAQccUKGpPhdn/vO6uNf2/OYPQ+e/jmCSbLzxxunTp09uv/32/OMf/yg3quqLL74oXP9uk002yeWXX57mzZsv5TNYvP32268wjeczzzxTJhRc3q/9+d9vKtMPfR5J+ecyffr0/OlPf8pjjz220NF/NWrUyFZbbZU5c+b8aKZSXZDFhfsLmwK3or5/7lZeeeX87W9/y0MPPZSHH344w4cPL7N+2rRp6d+/f/r375+GDRumS5cui53eGgBgRRAKAgAAS2WLLbbIkUcemfvuuy9J8sgjj6RDhw7ZZpttFrnf/EFMu3bt8uc//3mpa5i/rYp+ef/9AOT7zjnnnDLh1EorrZTmzZtn4403TtOmTdOsWbNsuummqVOnTh577LFKCQX79u2bs846K0nyv//9L//73/+SzA1zNtlkk3L7zn+eTjzxxHTq1GkFVJxcd911+etf/1p4XL169Wy++ebZeOONs+GGG2bjjTfOZpttlvr16+fVV1+tcCj4Q9SvX79wf3GvhXnmn7bxx2b+wHJJAqz5w8QFhaP169dPp06d0rFjxwwdOjQvvfRSXn311fznP/8pE5YPGzYsxxxzTB555JFsuOGGS/ksFu3Xv/51Lr300nz33XcZOHBgvvvuu9SsWTNff/11YVrLBg0alLmG3oKe2w99v6lM84deq622Wv7973//oPZmzZqVE044ocy18urVq5cWLVpko402ygYbbJBmzZplk002Sc2aNXPjjTeu8FBwWU5TWqtWrUIwePvtty/wtbKkqlatmiOPPDJHHnlkPvroo7zwwgt55ZVX8vrrr5cJISdMmJBzzjknyeKvewsAsLwJBQEAgKV21lln5fnnn8+nn36a0tLSXHjhhXnyyScXuU+DBg0K9xc1hWRFNGzYsHC/IteIWtx2zz33XJlg6swzz8xxxx2XmjVrLnD7ZTF6p6KaNm2aFi1aFKb4e//997PpppsudqRUsmzPeUW9++67uf322wuPjzzyyJx99tkLnWJ2RZ3L+aeZnTZtWqZOnbrYaW9X1DlbGqusskrh/rRp0zJ58uTFTqWYpHA9wWRuyLQw864/2LJly5x22mmZNm1aXnnllfzjH//Ic889l2TuKKybb755uQVuK6+8ctq2bZu+fftm2rRpeemll/KrX/0qzz77bCGg3HvvvRd4DbfKeO0vD/M/j6+//jqzZs1KtWpL/5XO/fffXwgEq1evnosvvjgHHHDAQttcHv1zcaHfDx3dN78GDRoU2pt/StllpUmTJjn66KNz9NFHZ9asWXn77bfTt2/fPPbYY4Xpba+77rq0a9fuB/3cAAB+qCqL3wQAAGDB6tSpk27duhUef/jhh7nlllsWuc+mm25auP/ee+9l9uzZiz3OyJEj89RTT+XNN98sXOdsXlvzvmCdNGlSxo4du9i23n333YWue/zxxwv3991335x88skLDQST5JNPPincXxHX2Zo/9Hv++eeTzB01mMy9hl6HDh0WuN/85/y///1vhY41dOjQPPPMMxk6dOhSXVftiSeeKJyTVq1apWvXrosM31bUuaxXr17WWmutwnGGDh262H3ee++95VbPD7XGGmuUCcfnXeNsUb7/vDfYYIMy67/44ou8+uqr+e6778rtW6dOneyxxx65+eabc9JJJxWWv/7660tRfcUt6LXfr1+/Ba6f37J8v6lMzZo1K1wnc+bMmXn//fcXu8+0adPy2GOP5dVXX82YMWPKhHDzv9edcMIJOeSQQxYZVs3/3vpD+uf8x1jcSN0xY8Ys9XG+b/7XQUX6fDL3dfb8889n+PDh5UbhTp48OW+//XY+//zzcvtVq1YtW2+9dS666KLC6O4k+fzzz5fpcwIAWBpCQQAA4AfZZZdd0r59+8LjO++8M19//fVCt2/VqlVhRM+UKVMKo40W5cYbb0ynTp1y+OGHF6ZhS+ZOqdeqVavC43kB2cKMGzdukVPgffjhh4X7W2yxxSLbmjlzZv71r38VHi9s1EtJScki21kS++yzT+FL9X/+858ZPnx4oeZtttkma6655gL3a926deH+iBEjKhQMXnLJJTnrrLNyyCGH5Nprr13iWpfkXCYp8zpYltMGLsgee+xRuP+Pf/xjkdtOmjTpB0/VuLzNP2Vv7969F7v9iy++WBgxW6VKlWy77baFdR06dMjOO++cY445ZrHP+9e//nXh/oKuGbksX/s77bRTYVTkCy+8kIkTJ+a1115LkjRu3DhbbbXVAvdblu83lalevXplgq35Q72Fefzxx3PBBRfkmGOOyb777ltm2tf5++eWW265yHYmT56cQYMGFR7/kPe6+ae7XVCgNr9l2e/mfw985plnCqP3FmbixIk5++yzc8opp2Tfffct87q57LLLss022+Q3v/lNevXqtch2dtxxx9StW7fweFmOfgQAWBpCQQAA4Ae74IILCl/Yz5o1a5FfuDZo0KBMmHD11f+vvXsPiqp84wD+ZRlAl9BEqRlAwVRwFgRkMAdtUEJAwZEkNaAImq4aSqUzjpdAbRL4/YNpI12kRkIQ0BXchdiGKRnyRgqBSnlJMNAEbyuyCaywvz92eGePXMQgUfp+/jp79t3Du2fPeXX22ed5UvrMRDty5Ah++OEH8fjll1+WPP/KK6+I7V27dqGxsbHXYyUlJeHevXu9Pm9paSm2u/r09SY1NVWS9WH6hbsp08yY3sb0l62tLV544QUAxozHvXv3iuf66lXl6uoqCZokJib2mAXWJS8vD6dPnxaPw8PDH3quD3Mu9+zZg5MnT4rHAz1PD/LSSy+JAMbBgwf7zHL73//+91j3FASAiIgIsV1cXIzS0tJex7a0tGDr1q3i8dy5cyXlQ00DuHv27OkzK8w0W23ixIndnjct5znQz9TCwgIhISEAjGVAP//8c3Ev95YhCwz+ejOUIiMjxXZOTg4qKip6HXvt2jVJ1vbChQslWc+m9+fZs2d7PU5nZycSExMlmXL9Wet6u2ecnZ3Ftmnp4/sdPnxY9IscDGFhYZDL5QCAW7duISUlpc/xSUlJ4t+x0aNHY968eeI503tErVb3WY60vr5eBAJlMhmcnJz+6VsgIiIiGhQMChIRERER0YDZ2tpi3bp1/R4fFxcnvqC9cuUKoqKiupV0MxgMUKvVWLlypQhMKBQKhIaGSsYtWLAAHh4eAIxZXTExMfj9998lY1paWrB+/XpJv0Cge2aL6Ze9+/bt6zGr6PLly1i9ejXS09Ml+3srhWfa320wylB2Bf8MBgNycnIAAFZWVpLAR09Wr14Nc3NzAMaAYkxMDC5evCgZo9frkZmZic2bN4t9L774oiQbs79Mz2VZWVmPAaYbN25g69at2LJli2T/g8oKDpSbm5sIJnd2duK9995DSUmJZExrays++eQT7N+//1+dy2Dw9fWFn58fAON1sWrVKuzbt6/b+b5w4QKio6NFlpiNjQ02btwoGRMZGSnui59//hkJCQnQarXd/uYvv/wiCaz0FDwzzZAazGsfQL8D4sDgrjdDKSwsDK6urgCMP7546623oFKpuo2rrq5GbGysCFZZW1tj+fLlkjGm9+eXX34pCcp3uXDhAt58881uwbuBrHVz5swR2wUFBcjOzpZcpx0dHcjPz0dcXFyPr/+nRo0aJTkHWVlZ2LBhQ7esdq1Wi4SEBElv3BUrVkgyHIOCgkQg/dq1a1ixYkW3tRQwXmvx8fHi/QUGBvar3ycRERHRv4ndjYmIiIiIaFCEhYVBpVKhrKzsgWOdnZ2RnJyM1atXQ6/X4+LFi1i6dCkUCgWmTJmC1tZW/Pbbb/jzzz/Fa2xtbZGamir6anWRyWRITk5GZGQkbt++jdraWixevBheXl5wdnZGc3Mzjh07JrI1xo4dixs3bgCACJJ1iY2NhVKpRFtbG+7du4e4uDi4uLhg8uTJkMlkqK+vx6lTp0T5PBsbG9y5cwcAes0+cnZ2FgGIjz/+GD/99BNkMhmioqL6VVbzfgEBAbC2toZOpxP90fz9/fvs1wcAPj4+WLt2rcgSq6ysRGhoKDw9PeHs7Izbt2/jzJkzkkxLJycnfPrppw89RwBYtmwZvvnmGxGY2LJlCzIyMuDq6gorKytcuXIFVVVVIutILpejra0NHR0daG9vR0tLywPf00CsWbMGp06dwpkzZ9DS0oL3338fLi4uUCgUuHv3Lo4fPy6CYd7e3n1mZT0OUlJSEBkZibq6OrS2tmLDhg3YsWMHpk+fjpEjR6K2tha//vqrCFBYWVkhOTkZDg4OkuMoFApER0cjIyMDAJCbm4vCwkK4ubnBwcEBHR0dOHfunCTw7uPjg6VLl3abk2lW2Pbt21FTU4ORI0di3rx5CAgIeOj36OXlBScnJ1y6dElc+9OmTesxS/H+eQzWejOULC0t8dlnn+G1117D9evXodPpsGbNGqSmpsLT0xPm5uaora2VZPmam5sjKSkJ9vb2kmO98847KCsrg8FgQEtLC6KiouDh4QEnJyfo9XpcunRJkgna37Wua21dvnw55syZA71ejw8++ADjx48HAISEhCAtLQ11dXUwGAzYtGkTdu/eDTc3N+j1elRXV+Ovv/4CYMwCLyoqEn93oN5++22cPn0aGo0GgPGHH4WFhfDx8YGdnR0aGxtRVVUlKfEZGBiImJgYyXGsrKyQmJiIVatWwWAwoLKyEgsXLoS7uzscHR1hZWWFhoYGVFRUiGzWcePGPTalaImIiOi/7fH53y0RERERET3xNm/eLDJyHiQ4OBhff/215MvqmpoaFBQUQKPRSL6gVygUyMrKkgQZTE2aNAm7du0SAY7Ozk5UVFRAqVSipKQELS0tsLCwwPr16zF79mzxOtMSeoDxS+3U1FTJezh37hyKioqgVqtRVVUlAoIzZ85EQUGBGKvVanHp0qVuc4uOjhZlFHU6HVQqFQoKCvosWdmXESNGIDg4WLLvQZlSXWJiYpCamipKvXZ2dqKyshIHDhzAjz/+KAkI+vr6IisrC7a2tv9onqNHj0ZaWprk9XV1ddBoNDh48CBOnDghAoJTp05Fbm6upLTe/Zlcg83GxgYZGRmiHCtg/Kzz8/Oh0Wig1WphZmaGlStXPlbZYr2xtbVFbm4u/P39xb6rV6/i+++/h1KpRGVlpQgITpgwAXv37pWURDS1bt06REdHi4xBnU6H8vJyHDhwAAcPHpQEBIODg5GWltbtXgKMgeGuwK5erxdz6c8PB3pz/7Xe32t/MNeboTRx4kTk5eVJygFfvnwZRUVFUKlUkoDguHHjsHPnzm7rBWDsQ7lp0yZJyc/q6mqoVCoUFxdLAoLz588XWcmA8T7pKVvwjTfeENfMzZs3ceDAAajVakkPU0tLS3z11VeSc1tbWwu1Wg2NRiMCglFRUUhISHiYU/NAZmZm2LZtG959912xJt+9exdlZWVQKpU4fPiwCAiamZkhOjoa27Zt67FXYlBQEJKSksT639HRgaqqKhQWFkKpVKK8vFwEBBUKBb799lsRGCUiIiIaSswUJCIiIiKiQePg4IAPP/yw39llvr6+0Gg0KCgowKFDh1BTU4ObN2/CYDBg7NixmDZtGubPn4/g4OBuWX338/DwgFqtRm5uLjQaDerq6nDnzh3Y2dnB19cXsbGxcHFxQXx8vHiNaXnDLgEBAVCpVPjuu+9w5MgRNDQ0oL29HXK5HPb29lAoFFiwYIEo1zh79mxRZjQ/P19y/K55ZWRkIC0tDdXV1SIDrq++iw+yaNEiKJVKAMaeaV1z6Y+QkBD4+flBqVSitLQU58+fx61bt2Bubg47Ozt4enpi0aJFD3XM3nh5eUGtViMzMxOlpaUii00ul+PZZ5/F1KlTERAQID5fPz8/UYYvPz8fs2bNGvAc+vLUU08hPT0dJSUl2L9/P6qqqtDc3IwxY8Zg+vTpiI6OxowZM5CZmfmvzmOwjB49Gl988QVOnDgheiU2NTWhtbUVY8aMgbu7O4KDgxEaGtpjEK+LTCbDxo0bER4eDqVSiYqKCjQ0NECn08Ha2hrPPPMMZs6cidDQUElw6n729vbIycnB9u3bcfLkSWi1Wsjl8j77ej7IokWLsGPHDgDGHnYPE7AdzPVmKNnb2yM7OxulpaUoLi5GRUUFrl+/jra2NowaNQouLi7w9/dHeHh4j2tcl4iICHh7eyMzMxPHjx/H1atX0dHRAWtrazg6OsLd3R1hYWHiM1YoFKipqYFer0dhYSGWLFkiOV5gYCDS0tKQnp6Os2fP4u+//8bTTz8tybwDjBnIKpUKeXl5KC4uxvnz56HT6WBnZwdvb29ERETAx8dn8E8cjNf2Rx99hGXLlmHfvn04evQo6uvrcfv2bYwYMQKOjo6YMWMGli5dKkq19mbx4sWYNWsW9u/fj6NHj+KPP/5Ac3MzLCwsYGdnBzc3NwQFBSEoKOixvp6IiIjov8XM0FfXcCIiIiIiomEmJiYGx44dA2DspTV37tyhnRARERERERHRI8BMQSIiIiIieqLt3r0bnZ2dGD9+PHx9fWFtbd3r2Pb2dknpwylTpjyKKRIRERERERENOQYFiYiIiIjoiVZeXo6SkhIAwKZNmxAZGdnr2OzsbGi1WgDG/oFdPQiJiIiIiIiIhjvZUE+AiIiIiIhoIGbPni22t23bJkqDmmpvb8eePXuQkpIi9r3++uuPZH5EREREREREjwP2FCQiIiIioidaW1sbwsLCUFtbK/Y999xzmDRpEmxsbNDU1ISamhrcvHlTPO/v74+dO3dCJuPvJImIiIiIiOi/gUFBIiIiIiJ64jU2NiI+Ph6VlZV9jjMzM8Orr76KtWvXwtLS8hHNjoiIiIiIiGjoMShIRERERETDgsFgwKFDh1BUVITq6mo0NTWhra0NcrkcEyZMwPPPP48lS5Zg8uTJQz1VIiIiIiIiokeOQUEiIiIiIiIiIiIiIiKiYY4NNIiIiIiIiIiIiIiIiIiGOQYFiYiIiIiIiIiIiIiIiIY5BgWJiIiIiIiIiIiIiIiIhjkGBYmIiIiIiIiIiIiIiIiGOQYFiYiIiIiIiIiIiIiIiIY5BgWJiIiIiIiIiIiIiIiIhjkGBYmIiIiIiIiIiIiIiIiGOQYFiYiIiIiIiIiIiIiIiIa5/wOyf8bJacpT1QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "results_df = pd.DataFrame()\n", + "results_df[\"Rates\"] = importance.tolist()\n", + "results_df[\"Columns\"] = X.columns\n", + "\n", + "new_index = results_df.Rates.sort_values(ascending = False).index\n", + "sorted_results = results_df.reindex(new_index)\n", + "filtered_results = sorted_results[np.abs(sorted_results.Rates) > 0.1]\n", + "\n", + "plt.figure(figsize =(20,30))\n", + "plt.barh(filtered_results.Columns, filtered_results.Rates)\n", + "plt.xlabel(\"Negative and Postive Features\", fontsize = 25)\n", + "plt.title(\"Features Affecting Job Satistaction\",fontsize = 25)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The top 2 features negatively affecting Job Satisfaction are age, country. So, in the elderly ages, job satisfaction may decrease because of the personal expectation increases. In the same way, as the professional coding years are increasing, satisfaction may decrease.\n", + "\n", + "- Among the countries; most dissatisfied countries are Angolia, Rwanda, Krygyzstan, Sudan.\n", + "- UndergradMajor and other Science, are mostly satisfied.\n", + "- Most satisfied countries Malta, Ghana, Cyprus." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Conclusion" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Overall, we performed various analyses on the Stack overflow developer survey and derived insights from it. We found which country has the highest no of respondents, which is the most popular language, education level of respondents, different roles of developers, and so on.
\n", + "Additionally, we performed machine learning models to predict the growth of languages, the salary of data scientists, what is causing job satisfaction. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Stackoverflow_Survey_Analysis.ipynb b/Stackoverflow_Survey_Analysis.ipynb index 2a5b6e3..3257236 100644 --- a/Stackoverflow_Survey_Analysis.ipynb +++ b/Stackoverflow_Survey_Analysis.ipynb @@ -17,7 +17,7 @@ }, { "cell_type": "code", - "execution_count": 188, + "execution_count": 827, "metadata": {}, "outputs": [], "source": [ @@ -50,6 +50,7 @@ "from sklearn.linear_model import SGDClassifier\n", "from sklearn.multiclass import OneVsRestClassifier\n", "from sklearn.ensemble import RandomForestRegressor\n", + "from sklearn.ensemble import GradientBoostingClassifier\n", "from sklearn.model_selection import GridSearchCV\n", "from sklearn.metrics import accuracy_score\n" ] @@ -63,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": 189, + "execution_count": 828, "metadata": {}, "outputs": [ { @@ -97,7 +98,115 @@ " UndergradMajor\n", " CompanySize\n", " DevType\n", - " ...\n", + " YearsCoding\n", + " YearsCodingProf\n", + " JobSatisfaction\n", + " CareerSatisfaction\n", + " HopeFiveYears\n", + " JobSearchStatus\n", + " LastNewJob\n", + " AssessJob1\n", + " AssessJob2\n", + " AssessJob3\n", + " AssessJob4\n", + " AssessJob5\n", + " AssessJob6\n", + " AssessJob7\n", + " AssessJob8\n", + " AssessJob9\n", + " AssessJob10\n", + " AssessBenefits1\n", + " AssessBenefits2\n", + " AssessBenefits3\n", + " AssessBenefits4\n", + " AssessBenefits5\n", + " AssessBenefits6\n", + " AssessBenefits7\n", + " AssessBenefits8\n", + " AssessBenefits9\n", + " AssessBenefits10\n", + " AssessBenefits11\n", + " JobContactPriorities1\n", + " JobContactPriorities2\n", + " JobContactPriorities3\n", + " JobContactPriorities4\n", + " JobContactPriorities5\n", + " JobEmailPriorities1\n", + " JobEmailPriorities2\n", + " JobEmailPriorities3\n", + " JobEmailPriorities4\n", + " JobEmailPriorities5\n", + " JobEmailPriorities6\n", + " JobEmailPriorities7\n", + " UpdateCV\n", + " Currency\n", + " Salary\n", + " SalaryType\n", + " ConvertedSalary\n", + " CurrencySymbol\n", + " CommunicationTools\n", + " TimeFullyProductive\n", + " EducationTypes\n", + " SelfTaughtTypes\n", + " TimeAfterBootcamp\n", + " HackathonReasons\n", + " AgreeDisagree1\n", + " AgreeDisagree2\n", + " AgreeDisagree3\n", + " LanguageWorkedWith\n", + " LanguageDesireNextYear\n", + " DatabaseWorkedWith\n", + " DatabaseDesireNextYear\n", + " PlatformWorkedWith\n", + " PlatformDesireNextYear\n", + " FrameworkWorkedWith\n", + " FrameworkDesireNextYear\n", + " IDE\n", + " OperatingSystem\n", + " NumberMonitors\n", + " Methodology\n", + " VersionControl\n", + " CheckInCode\n", + " AdBlocker\n", + " AdBlockerDisable\n", + " AdBlockerReasons\n", + " AdsAgreeDisagree1\n", + " AdsAgreeDisagree2\n", + " AdsAgreeDisagree3\n", + " AdsActions\n", + " AdsPriorities1\n", + " AdsPriorities2\n", + " AdsPriorities3\n", + " AdsPriorities4\n", + " AdsPriorities5\n", + " AdsPriorities6\n", + " AdsPriorities7\n", + " AIDangerous\n", + " AIInteresting\n", + " AIResponsible\n", + " AIFuture\n", + " EthicsChoice\n", + " EthicsReport\n", + " EthicsResponsible\n", + " EthicalImplications\n", + " StackOverflowRecommend\n", + " StackOverflowVisit\n", + " StackOverflowHasAccount\n", + " StackOverflowParticipate\n", + " StackOverflowJobs\n", + " StackOverflowDevStory\n", + " StackOverflowJobsRecommend\n", + " StackOverflowConsiderMember\n", + " HypotheticalTools1\n", + " HypotheticalTools2\n", + " HypotheticalTools3\n", + " HypotheticalTools4\n", + " HypotheticalTools5\n", + " WakeTime\n", + " HoursComputer\n", + " HoursOutside\n", + " SkipMeals\n", + " ErgonomicDevices\n", " Exercise\n", " Gender\n", " SexualOrientation\n", @@ -119,15 +228,123 @@ " Kenya\n", " No\n", " Employed part-time\n", - " Bachelor’s degree (BA, BS, B.Eng., etc.)\n", + " Bachelor‚Äôs degree (BA, BS, B.Eng., etc.)\n", " Mathematics or statistics\n", " 20 to 99 employees\n", " Full-stack developer\n", - " ...\n", + " 3-5 years\n", + " 3-5 years\n", + " Extremely satisfied\n", + " Extremely satisfied\n", + " Working as a founder or co-founder of my own c...\n", + " I‚Äôm not actively looking, but I am open to n...\n", + " Less than a year ago\n", + " 10.0\n", + " 7.0\n", + " 8.0\n", + " 1.0\n", + " 2.0\n", + " 5.0\n", + " 3.0\n", + " 4.0\n", + " 9.0\n", + " 6.0\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " 3.0\n", + " 1.0\n", + " 4.0\n", + " 2.0\n", + " 5.0\n", + " 5.0\n", + " 6.0\n", + " 7.0\n", + " 2.0\n", + " 1.0\n", + " 4.0\n", + " 3.0\n", + " My job status or other personal status changed\n", + " NaN\n", + " NaN\n", + " Monthly\n", + " NaN\n", + " KES\n", + " Slack\n", + " One to three months\n", + " Taught yourself a new language, framework, or ...\n", + " The official documentation and/or standards fo...\n", + " NaN\n", + " To build my professional network\n", + " Strongly agree\n", + " Strongly agree\n", + " Neither Agree nor Disagree\n", + " JavaScript;Python;HTML;CSS\n", + " JavaScript;Python;HTML;CSS\n", + " Redis;SQL Server;MySQL;PostgreSQL;Amazon RDS/A...\n", + " Redis;SQL Server;MySQL;PostgreSQL;Amazon RDS/A...\n", + " AWS;Azure;Linux;Firebase\n", + " AWS;Azure;Linux;Firebase\n", + " Django;React\n", + " Django;React\n", + " Komodo;Vim;Visual Studio Code\n", + " Linux-based\n", + " 1\n", + " Agile;Scrum\n", + " Git\n", + " Multiple times per day\n", + " Yes\n", + " No\n", + " NaN\n", + " Strongly agree\n", + " Strongly agree\n", + " Strongly agree\n", + " Saw an online advertisement and then researche...\n", + " 1.0\n", + " 5.0\n", + " 4.0\n", + " 7.0\n", + " 2.0\n", + " 6.0\n", + " 3.0\n", + " Artificial intelligence surpassing human intel...\n", + " Algorithms making important decisions\n", + " The developers or the people creating the AI\n", + " I'm excited about the possibilities more than ...\n", + " No\n", + " Yes, and publicly\n", + " Upper management at the company/organization\n", + " Yes\n", + " 10 (Very Likely)\n", + " Multiple times per day\n", + " Yes\n", + " I have never participated in Q&A on Stack Over...\n", + " No, I knew that Stack Overflow had a jobs boar...\n", + " Yes\n", + " NaN\n", + " Yes\n", + " Extremely interested\n", + " Extremely interested\n", + " Extremely interested\n", + " Extremely interested\n", + " Extremely interested\n", + " Between 5:00 - 6:00 AM\n", + " 9 - 12 hours\n", + " 1 - 2 hours\n", + " Never\n", + " Standing desk\n", " 3 - 4 times per week\n", " Male\n", " Straight or heterosexual\n", - " Bachelor’s degree (BA, BS, B.Eng., etc.)\n", + " Bachelor‚Äôs degree (BA, BS, B.Eng., etc.)\n", " Black or of African descent\n", " 25 - 34 years old\n", " Yes\n", @@ -143,15 +360,123 @@ " United Kingdom\n", " No\n", " Employed full-time\n", - " Bachelor’s degree (BA, BS, B.Eng., etc.)\n", + " Bachelor‚Äôs degree (BA, BS, B.Eng., etc.)\n", " A natural science (ex. biology, chemistry, phy...\n", " 10,000 or more employees\n", " Database administrator;DevOps specialist;Full-...\n", - " ...\n", + " 30 or more years\n", + " 18-20 years\n", + " Moderately dissatisfied\n", + " Neither satisfied nor dissatisfied\n", + " Working in a different or more specialized tec...\n", + " I am actively looking for a job\n", + " More than 4 years ago\n", + " 1.0\n", + " 7.0\n", + " 10.0\n", + " 8.0\n", + " 2.0\n", + " 5.0\n", + " 4.0\n", + " 3.0\n", + " 6.0\n", + " 9.0\n", + " 1.0\n", + " 5.0\n", + " 3.0\n", + " 7.0\n", + " 10.0\n", + " 4.0\n", + " 11.0\n", + " 9.0\n", + " 6.0\n", + " 2.0\n", + " 8.0\n", + " 3.0\n", + " 1.0\n", + " 5.0\n", + " 2.0\n", + " 4.0\n", + " 1.0\n", + " 3.0\n", + " 4.0\n", + " 5.0\n", + " 2.0\n", + " 6.0\n", + " 7.0\n", + " I saw an employer‚Äôs advertisement\n", + " British pounds sterling (¬£)\n", + " 51000.0\n", + " Yearly\n", + " 70841.0\n", + " GBP\n", + " Confluence;Office / productivity suite (Micros...\n", + " One to three months\n", + " Taught yourself a new language, framework, or ...\n", + " The official documentation and/or standards fo...\n", + " NaN\n", + " NaN\n", + " Agree\n", + " Agree\n", + " Neither Agree nor Disagree\n", + " JavaScript;Python;Bash/Shell\n", + " Go;Python\n", + " Redis;PostgreSQL;Memcached\n", + " PostgreSQL\n", + " Linux\n", + " Linux\n", + " Django\n", + " React\n", + " IPython / Jupyter;Sublime Text;Vim\n", + " Linux-based\n", + " 2\n", + " NaN\n", + " Git;Subversion\n", + " A few times per week\n", + " Yes\n", + " Yes\n", + " The website I was visiting asked me to disable it\n", + " Somewhat agree\n", + " Neither agree nor disagree\n", + " Neither agree nor disagree\n", + " NaN\n", + " 3.0\n", + " 5.0\n", + " 1.0\n", + " 4.0\n", + " 6.0\n", + " 7.0\n", + " 2.0\n", + " Increasing automation of jobs\n", + " Increasing automation of jobs\n", + " The developers or the people creating the AI\n", + " I'm excited about the possibilities more than ...\n", + " Depends on what it is\n", + " Depends on what it is\n", + " Upper management at the company/organization\n", + " Yes\n", + " 10 (Very Likely)\n", + " A few times per month or weekly\n", + " Yes\n", + " A few times per month or weekly\n", + " Yes\n", + " No, I have one but it's out of date\n", + " 7\n", + " Yes\n", + " A little bit interested\n", + " A little bit interested\n", + " A little bit interested\n", + " A little bit interested\n", + " A little bit interested\n", + " Between 6:01 - 7:00 AM\n", + " 5 - 8 hours\n", + " 30 - 59 minutes\n", + " Never\n", + " Ergonomic keyboard or mouse\n", " Daily or almost every day\n", " Male\n", " Straight or heterosexual\n", - " Bachelor’s degree (BA, BS, B.Eng., etc.)\n", + " Bachelor‚Äôs degree (BA, BS, B.Eng., etc.)\n", " White or of European descent\n", " 35 - 44 years old\n", " Yes\n", @@ -171,7 +496,115 @@ " Computer science, computer engineering, or sof...\n", " 20 to 99 employees\n", " Engineering manager;Full-stack developer\n", - " ...\n", + " 24-26 years\n", + " 6-8 years\n", + " Moderately satisfied\n", + " Moderately satisfied\n", + " Working as a founder or co-founder of my own c...\n", + " I‚Äôm not actively looking, but I am open to n...\n", + " Less than a year ago\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", + " NaN\n", " NaN\n", " NaN\n", " NaN\n", @@ -185,7 +618,6 @@ " \n", " \n", "\n", - "

3 rows × 129 columns

\n", "" ], "text/plain": [ @@ -194,10 +626,10 @@ "1 3 Yes Yes United Kingdom No Employed full-time \n", "2 4 Yes Yes United States No Employed full-time \n", "\n", - " FormalEducation \\\n", - "0 Bachelor’s degree (BA, BS, B.Eng., etc.) \n", - "1 Bachelor’s degree (BA, BS, B.Eng., etc.) \n", - "2 Associate degree \n", + " FormalEducation \\\n", + "0 Bachelor‚Äôs degree (BA, BS, B.Eng., etc.) \n", + "1 Bachelor‚Äôs degree (BA, BS, B.Eng., etc.) \n", + "2 Associate degree \n", "\n", " UndergradMajor \\\n", "0 Mathematics or statistics \n", @@ -209,56 +641,279 @@ "1 10,000 or more employees \n", "2 20 to 99 employees \n", "\n", - " DevType ... \\\n", - "0 Full-stack developer ... \n", - "1 Database administrator;DevOps specialist;Full-... ... \n", - "2 Engineering manager;Full-stack developer ... \n", + " DevType YearsCoding \\\n", + "0 Full-stack developer 3-5 years \n", + "1 Database administrator;DevOps specialist;Full-... 30 or more years \n", + "2 Engineering manager;Full-stack developer 24-26 years \n", + "\n", + " YearsCodingProf JobSatisfaction \\\n", + "0 3-5 years Extremely satisfied \n", + "1 18-20 years Moderately dissatisfied \n", + "2 6-8 years Moderately satisfied \n", + "\n", + " CareerSatisfaction \\\n", + "0 Extremely satisfied \n", + "1 Neither satisfied nor dissatisfied \n", + "2 Moderately satisfied \n", + "\n", + " HopeFiveYears \\\n", + "0 Working as a founder or co-founder of my own c... \n", + "1 Working in a different or more specialized tec... \n", + "2 Working as a founder or co-founder of my own c... \n", + "\n", + " JobSearchStatus LastNewJob \\\n", + "0 I‚Äôm not actively looking, but I am open to n... Less than a year ago \n", + "1 I am actively looking for a job More than 4 years ago \n", + "2 I‚Äôm not actively looking, but I am open to n... Less than a year ago \n", + "\n", + " AssessJob1 AssessJob2 AssessJob3 AssessJob4 AssessJob5 AssessJob6 \\\n", + "0 10.0 7.0 8.0 1.0 2.0 5.0 \n", + "1 1.0 7.0 10.0 8.0 2.0 5.0 \n", + "2 NaN NaN NaN NaN NaN NaN \n", + "\n", + " AssessJob7 AssessJob8 AssessJob9 AssessJob10 AssessBenefits1 \\\n", + "0 3.0 4.0 9.0 6.0 NaN \n", + "1 4.0 3.0 6.0 9.0 1.0 \n", + "2 NaN NaN NaN NaN NaN \n", + "\n", + " AssessBenefits2 AssessBenefits3 AssessBenefits4 AssessBenefits5 \\\n", + "0 NaN NaN NaN NaN \n", + "1 5.0 3.0 7.0 10.0 \n", + "2 NaN NaN NaN NaN \n", + "\n", + " AssessBenefits6 AssessBenefits7 AssessBenefits8 AssessBenefits9 \\\n", + "0 NaN NaN NaN NaN \n", + "1 4.0 11.0 9.0 6.0 \n", + "2 NaN NaN NaN NaN \n", + "\n", + " AssessBenefits10 AssessBenefits11 JobContactPriorities1 \\\n", + "0 NaN NaN 3.0 \n", + "1 2.0 8.0 3.0 \n", + "2 NaN NaN NaN \n", + "\n", + " JobContactPriorities2 JobContactPriorities3 JobContactPriorities4 \\\n", + "0 1.0 4.0 2.0 \n", + "1 1.0 5.0 2.0 \n", + "2 NaN NaN NaN \n", + "\n", + " JobContactPriorities5 JobEmailPriorities1 JobEmailPriorities2 \\\n", + "0 5.0 5.0 6.0 \n", + "1 4.0 1.0 3.0 \n", + "2 NaN NaN NaN \n", + "\n", + " JobEmailPriorities3 JobEmailPriorities4 JobEmailPriorities5 \\\n", + "0 7.0 2.0 1.0 \n", + "1 4.0 5.0 2.0 \n", + "2 NaN NaN NaN \n", + "\n", + " JobEmailPriorities6 JobEmailPriorities7 \\\n", + "0 4.0 3.0 \n", + "1 6.0 7.0 \n", + "2 NaN NaN \n", + "\n", + " UpdateCV \\\n", + "0 My job status or other personal status changed \n", + "1 I saw an employer‚Äôs advertisement \n", + "2 NaN \n", + "\n", + " Currency Salary SalaryType ConvertedSalary \\\n", + "0 NaN NaN Monthly NaN \n", + "1 British pounds sterling (¬£) 51000.0 Yearly 70841.0 \n", + "2 NaN NaN NaN NaN \n", + "\n", + " CurrencySymbol CommunicationTools \\\n", + "0 KES Slack \n", + "1 GBP Confluence;Office / productivity suite (Micros... \n", + "2 NaN NaN \n", + "\n", + " TimeFullyProductive EducationTypes \\\n", + "0 One to three months Taught yourself a new language, framework, or ... \n", + "1 One to three months Taught yourself a new language, framework, or ... \n", + "2 NaN NaN \n", + "\n", + " SelfTaughtTypes TimeAfterBootcamp \\\n", + "0 The official documentation and/or standards fo... NaN \n", + "1 The official documentation and/or standards fo... NaN \n", + "2 NaN NaN \n", + "\n", + " HackathonReasons AgreeDisagree1 AgreeDisagree2 \\\n", + "0 To build my professional network Strongly agree Strongly agree \n", + "1 NaN Agree Agree \n", + "2 NaN NaN NaN \n", + "\n", + " AgreeDisagree3 LanguageWorkedWith \\\n", + "0 Neither Agree nor Disagree JavaScript;Python;HTML;CSS \n", + "1 Neither Agree nor Disagree JavaScript;Python;Bash/Shell \n", + "2 NaN NaN \n", + "\n", + " LanguageDesireNextYear \\\n", + "0 JavaScript;Python;HTML;CSS \n", + "1 Go;Python \n", + "2 NaN \n", + "\n", + " DatabaseWorkedWith \\\n", + "0 Redis;SQL Server;MySQL;PostgreSQL;Amazon RDS/A... \n", + "1 Redis;PostgreSQL;Memcached \n", + "2 NaN \n", + "\n", + " DatabaseDesireNextYear \\\n", + "0 Redis;SQL Server;MySQL;PostgreSQL;Amazon RDS/A... \n", + "1 PostgreSQL \n", + "2 NaN \n", + "\n", + " PlatformWorkedWith PlatformDesireNextYear FrameworkWorkedWith \\\n", + "0 AWS;Azure;Linux;Firebase AWS;Azure;Linux;Firebase Django;React \n", + "1 Linux Linux Django \n", + "2 NaN NaN NaN \n", + "\n", + " FrameworkDesireNextYear IDE OperatingSystem \\\n", + "0 Django;React Komodo;Vim;Visual Studio Code Linux-based \n", + "1 React IPython / Jupyter;Sublime Text;Vim Linux-based \n", + "2 NaN NaN NaN \n", + "\n", + " NumberMonitors Methodology VersionControl CheckInCode \\\n", + "0 1 Agile;Scrum Git Multiple times per day \n", + "1 2 NaN Git;Subversion A few times per week \n", + "2 NaN NaN NaN NaN \n", + "\n", + " AdBlocker AdBlockerDisable \\\n", + "0 Yes No \n", + "1 Yes Yes \n", + "2 NaN NaN \n", + "\n", + " AdBlockerReasons AdsAgreeDisagree1 \\\n", + "0 NaN Strongly agree \n", + "1 The website I was visiting asked me to disable it Somewhat agree \n", + "2 NaN NaN \n", + "\n", + " AdsAgreeDisagree2 AdsAgreeDisagree3 \\\n", + "0 Strongly agree Strongly agree \n", + "1 Neither agree nor disagree Neither agree nor disagree \n", + "2 NaN NaN \n", + "\n", + " AdsActions AdsPriorities1 \\\n", + "0 Saw an online advertisement and then researche... 1.0 \n", + "1 NaN 3.0 \n", + "2 NaN NaN \n", + "\n", + " AdsPriorities2 AdsPriorities3 AdsPriorities4 AdsPriorities5 \\\n", + "0 5.0 4.0 7.0 2.0 \n", + "1 5.0 1.0 4.0 6.0 \n", + "2 NaN NaN NaN NaN \n", + "\n", + " AdsPriorities6 AdsPriorities7 \\\n", + "0 6.0 3.0 \n", + "1 7.0 2.0 \n", + "2 NaN NaN \n", + "\n", + " AIDangerous \\\n", + "0 Artificial intelligence surpassing human intel... \n", + "1 Increasing automation of jobs \n", + "2 NaN \n", + "\n", + " AIInteresting \\\n", + "0 Algorithms making important decisions \n", + "1 Increasing automation of jobs \n", + "2 NaN \n", + "\n", + " AIResponsible \\\n", + "0 The developers or the people creating the AI \n", + "1 The developers or the people creating the AI \n", + "2 NaN \n", + "\n", + " AIFuture EthicsChoice \\\n", + "0 I'm excited about the possibilities more than ... No \n", + "1 I'm excited about the possibilities more than ... Depends on what it is \n", + "2 NaN NaN \n", + "\n", + " EthicsReport EthicsResponsible \\\n", + "0 Yes, and publicly Upper management at the company/organization \n", + "1 Depends on what it is Upper management at the company/organization \n", + "2 NaN NaN \n", + "\n", + " EthicalImplications StackOverflowRecommend StackOverflowVisit \\\n", + "0 Yes 10 (Very Likely) Multiple times per day \n", + "1 Yes 10 (Very Likely) A few times per month or weekly \n", + "2 NaN NaN NaN \n", + "\n", + " StackOverflowHasAccount StackOverflowParticipate \\\n", + "0 Yes I have never participated in Q&A on Stack Over... \n", + "1 Yes A few times per month or weekly \n", + "2 NaN NaN \n", + "\n", + " StackOverflowJobs \\\n", + "0 No, I knew that Stack Overflow had a jobs boar... \n", + "1 Yes \n", + "2 NaN \n", + "\n", + " StackOverflowDevStory StackOverflowJobsRecommend \\\n", + "0 Yes NaN \n", + "1 No, I have one but it's out of date 7 \n", + "2 NaN NaN \n", + "\n", + " StackOverflowConsiderMember HypotheticalTools1 \\\n", + "0 Yes Extremely interested \n", + "1 Yes A little bit interested \n", + "2 NaN NaN \n", + "\n", + " HypotheticalTools2 HypotheticalTools3 HypotheticalTools4 \\\n", + "0 Extremely interested Extremely interested Extremely interested \n", + "1 A little bit interested A little bit interested A little bit interested \n", + "2 NaN NaN NaN \n", + "\n", + " HypotheticalTools5 WakeTime HoursComputer \\\n", + "0 Extremely interested Between 5:00 - 6:00 AM 9 - 12 hours \n", + "1 A little bit interested Between 6:01 - 7:00 AM 5 - 8 hours \n", + "2 NaN NaN NaN \n", + "\n", + " HoursOutside SkipMeals ErgonomicDevices \\\n", + "0 1 - 2 hours Never Standing desk \n", + "1 30 - 59 minutes Never Ergonomic keyboard or mouse \n", + "2 NaN NaN NaN \n", "\n", " Exercise Gender SexualOrientation \\\n", "0 3 - 4 times per week Male Straight or heterosexual \n", "1 Daily or almost every day Male Straight or heterosexual \n", "2 NaN NaN NaN \n", "\n", - " EducationParents RaceEthnicity \\\n", - "0 Bachelor’s degree (BA, BS, B.Eng., etc.) Black or of African descent \n", - "1 Bachelor’s degree (BA, BS, B.Eng., etc.) White or of European descent \n", - "2 NaN NaN \n", + " EducationParents RaceEthnicity \\\n", + "0 Bachelor‚Äôs degree (BA, BS, B.Eng., etc.) Black or of African descent \n", + "1 Bachelor‚Äôs degree (BA, BS, B.Eng., etc.) White or of European descent \n", + "2 NaN NaN \n", "\n", - " Age Dependents MilitaryUS \\\n", - "0 25 - 34 years old Yes NaN \n", - "1 35 - 44 years old Yes NaN \n", - "2 NaN NaN NaN \n", + " Age Dependents MilitaryUS \\\n", + "0 25 - 34 years old Yes NaN \n", + "1 35 - 44 years old Yes NaN \n", + "2 NaN NaN NaN \n", "\n", " SurveyTooLong SurveyEasy \n", "0 The survey was an appropriate length Very easy \n", "1 The survey was an appropriate length Somewhat easy \n", - "2 NaN NaN \n", - "\n", - "[3 rows x 129 columns]" + "2 NaN NaN " ] }, - "execution_count": 189, + "execution_count": 828, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df2018 = pd.read_csv(r'C:\\Users\\User\\Stack_Data\\survey_results_public_2018.csv')\n", + "df2018 = pd.read_csv(r'D:\\project\\Stackoverflow-Analysis\\Data\\survey_results_sample_2018.csv')\n", "df2018.head(3)" ] }, { "cell_type": "code", - "execution_count": 190, + "execution_count": 829, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(98855, 129)" + "(99, 129)" ] }, - "execution_count": 190, + "execution_count": 829, "metadata": {}, "output_type": "execute_result" } @@ -269,7 +924,7 @@ }, { "cell_type": "code", - "execution_count": 191, + "execution_count": 830, "metadata": {}, "outputs": [], "source": [ @@ -278,7 +933,7 @@ }, { "cell_type": "code", - "execution_count": 192, + "execution_count": 831, "metadata": {}, "outputs": [], "source": [ @@ -289,7 +944,7 @@ }, { "cell_type": "code", - "execution_count": 193, + "execution_count": 832, "metadata": {}, "outputs": [], "source": [ @@ -305,7 +960,7 @@ }, { "cell_type": "code", - "execution_count": 194, + "execution_count": 833, "metadata": {}, "outputs": [], "source": [ @@ -315,7 +970,7 @@ }, { "cell_type": "code", - "execution_count": 195, + "execution_count": 834, "metadata": {}, "outputs": [], "source": [ @@ -326,7 +981,7 @@ }, { "cell_type": "code", - "execution_count": 196, + "execution_count": 835, "metadata": {}, "outputs": [ { @@ -379,11 +1034,11 @@ " NaN\n", " Full-stack developer\n", " Employed part-time\n", - " Bachelor’s degree (BA, BS, B.Eng., etc.)\n", + " Bachelor‚Äôs degree (BA, BS, B.Eng., etc.)\n", " Male\n", " Yes\n", " Extremely satisfied\n", - " I’m not actively looking, but I am open to new...\n", + " I‚Äôm not actively looking, but I am open to n...\n", " JavaScript;Python;HTML;CSS\n", " JavaScript;Python;HTML;CSS\n", " Linux-based\n", @@ -398,10 +1053,10 @@ " 1\n", " 35 - 44 years old\n", " United Kingdom\n", - " British pounds sterling (£)\n", + " British pounds sterling (¬£)\n", " Database administrator;DevOps specialist;Full-...\n", " Employed full-time\n", - " Bachelor’s degree (BA, BS, B.Eng., etc.)\n", + " Bachelor‚Äôs degree (BA, BS, B.Eng., etc.)\n", " Male\n", " Yes\n", " Moderately dissatisfied\n", @@ -421,20 +1076,20 @@ "" ], "text/plain": [ - " Age Country Currency \\\n", - "0 25 - 34 years old Kenya NaN \n", - "1 35 - 44 years old United Kingdom British pounds sterling (£) \n", + " Age Country Currency \\\n", + "0 25 - 34 years old Kenya NaN \n", + "1 35 - 44 years old United Kingdom British pounds sterling (¬£) \n", "\n", " DevType Employment \\\n", "0 Full-stack developer Employed part-time \n", "1 Database administrator;DevOps specialist;Full-... Employed full-time \n", "\n", - " FormalEducation Gender Hobby \\\n", - "0 Bachelor’s degree (BA, BS, B.Eng., etc.) Male Yes \n", - "1 Bachelor’s degree (BA, BS, B.Eng., etc.) Male Yes \n", + " FormalEducation Gender Hobby \\\n", + "0 Bachelor‚Äôs degree (BA, BS, B.Eng., etc.) Male Yes \n", + "1 Bachelor‚Äôs degree (BA, BS, B.Eng., etc.) Male Yes \n", "\n", " JobSatisfaction JobSearchStatus \\\n", - "0 Extremely satisfied I’m not actively looking, but I am open to new... \n", + "0 Extremely satisfied I‚Äôm not actively looking, but I am open to n... \n", "1 Moderately dissatisfied I am actively looking for a job \n", "\n", " LanguageDesireNextYear LanguageWorkedWith OperatingSystem \\\n", @@ -454,7 +1109,7 @@ "1 18-20 years " ] }, - "execution_count": 196, + "execution_count": 835, "metadata": {}, "output_type": "execute_result" } @@ -465,16 +1120,16 @@ }, { "cell_type": "code", - "execution_count": 197, + "execution_count": 836, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(98855, 19)" + "(99, 19)" ] }, - "execution_count": 197, + "execution_count": 836, "metadata": {}, "output_type": "execute_result" } @@ -486,32 +1141,32 @@ }, { "cell_type": "code", - "execution_count": 198, + "execution_count": 837, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Age 34281\n", - "SalaryUSD 51153\n", - "Country 412\n", - "Currency 36847\n", - "DevType 6757\n", - "Employment 3534\n", - "RaceEthnicity 41382\n", - "Gender 34386\n", - "SalaryType 47785\n", - "Hobby 0\n", - "JobSatisfaction 29579\n", - "JobSearchStatus 19367\n", - "OperatingSystem 22676\n", - "UndergradMajor 19819\n", - "YearsCoding 5020\n", - "YearsCodingProf 20952\n", - "LanguageDesireNextYear 25611\n", - "LanguageWorkedWith 20521\n", - "FormalEducation 4152\n", + "Age 32\n", + "SalaryUSD 53\n", + "Country 0\n", + "Currency 39\n", + "DevType 1\n", + "Employment 0\n", + "RaceEthnicity 38\n", + "Gender 32\n", + "SalaryType 50\n", + "Hobby 0\n", + "JobSatisfaction 18\n", + "JobSearchStatus 16\n", + "OperatingSystem 26\n", + "UndergradMajor 11\n", + "YearsCoding 0\n", + "YearsCodingProf 15\n", + "LanguageDesireNextYear 29\n", + "LanguageWorkedWith 25\n", + "FormalEducation 2\n", "dtype: int64\n" ] } @@ -522,7 +1177,7 @@ }, { "cell_type": "code", - "execution_count": 199, + "execution_count": 838, "metadata": {}, "outputs": [ { @@ -550,7 +1205,7 @@ "dtype: object" ] }, - "execution_count": 199, + "execution_count": 838, "metadata": {}, "output_type": "execute_result" } @@ -568,16 +1223,16 @@ }, { "cell_type": "code", - "execution_count": 200, + "execution_count": 839, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Total : 1878245\n", - "Total missing : 424234\n", - "Missing Percentage: 22.58672324430519 %\n" + "Total : 1881\n", + "Total missing : 387\n", + "Missing Percentage: 20.574162679425836 %\n" ] } ], @@ -602,7 +1257,7 @@ }, { "cell_type": "code", - "execution_count": 201, + "execution_count": 840, "metadata": {}, "outputs": [], "source": [ @@ -613,32 +1268,32 @@ }, { "cell_type": "code", - "execution_count": 202, + "execution_count": 841, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Age : 34.68 %\n", - "SalaryUSD : 51.75 %\n", - "Country : 0.42 %\n", - "Currency : 37.27 %\n", - "DevType : 6.84 %\n", - "Employment : 3.57 %\n", - "RaceEthnicity : 41.86 %\n", - "Gender : 34.78 %\n", - "SalaryType : 48.34 %\n", + "Age : 32.32 %\n", + "SalaryUSD : 53.54 %\n", + "Country : 0.00 %\n", + "Currency : 39.39 %\n", + "DevType : 1.01 %\n", + "Employment : 0.00 %\n", + "RaceEthnicity : 38.38 %\n", + "Gender : 32.32 %\n", + "SalaryType : 50.51 %\n", "Hobby : 0.00 %\n", - "JobSatisfaction : 29.92 %\n", - "JobSearchStatus : 19.59 %\n", - "OperatingSystem : 22.94 %\n", - "UndergradMajor : 20.05 %\n", - "YearsCoding : 5.08 %\n", - "YearsCodingProf : 21.19 %\n", - "LanguageDesireNextYear : 25.91 %\n", - "LanguageWorkedWith : 20.76 %\n", - "FormalEducation : 4.20 %\n" + "JobSatisfaction : 18.18 %\n", + "JobSearchStatus : 16.16 %\n", + "OperatingSystem : 26.26 %\n", + "UndergradMajor : 11.11 %\n", + "YearsCoding : 0.00 %\n", + "YearsCodingProf : 15.15 %\n", + "LanguageDesireNextYear : 29.29 %\n", + "LanguageWorkedWith : 25.25 %\n", + "FormalEducation : 2.02 %\n" ] } ], @@ -659,32 +1314,22 @@ }, { "cell_type": "code", - "execution_count": 203, + "execution_count": 842, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Gender\n", - "Female 4025\n", - "Female;Male 98\n", - "Female;Male;Non-binary, genderqueer, or gender non-conforming 3\n", - "Female;Male;Transgender 14\n", - "Female;Male;Transgender;Non-binary, genderqueer, or gender non-conforming 50\n", - "Female;Non-binary, genderqueer, or gender non-conforming 50\n", - "Female;Transgender 145\n", - "Female;Transgender;Non-binary, genderqueer, or gender non-conforming 24\n", - "Male 59458\n", - "Male;Non-binary, genderqueer, or gender non-conforming 128\n", - "Male;Transgender 29\n", - "Male;Transgender;Non-binary, genderqueer, or gender non-conforming 5\n", - "Non-binary, genderqueer, or gender non-conforming 284\n", - "Transgender 105\n", - "Transgender;Non-binary, genderqueer, or gender non-conforming 51\n", + "Female 5\n", + "Female;Male 1\n", + "Female;Male;Transgender;Non-binary, genderqueer, or gender non-conforming 1\n", + "Male 59\n", + "Male;Non-binary, genderqueer, or gender non-conforming 1\n", "Name: Gender, dtype: int64" ] }, - "execution_count": 203, + "execution_count": 842, "metadata": {}, "output_type": "execute_result" } @@ -698,7 +1343,7 @@ }, { "cell_type": "code", - "execution_count": 204, + "execution_count": 843, "metadata": {}, "outputs": [], "source": [ @@ -721,7 +1366,7 @@ }, { "cell_type": "code", - "execution_count": 205, + "execution_count": 844, "metadata": { "scrolled": true }, @@ -732,12 +1377,12 @@ }, { "cell_type": "code", - "execution_count": 206, + "execution_count": 845, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS0AAAEPCAYAAAAXh5LTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8KklEQVR4nO3deVxU1f/H8dfMMDDDjiCrKIgKKKKi4pa5ZLlXWln+1EKzMjVb1MxcErVvmdpemi1qZto3075ZppZLmZnlvuGG4sYiyCY7M3N/f0yOjiACMnNn4DwfDx7FnXvv+dwB35y7zDkKSZIkBEEQ7IRS7gIEQRCqQoSWIAh2RYSWIAh2RYSWIAh2RYSWIAh2RYSWIAh2RYSWIAh2RYSWIAh2RYSWIAh2xa5D69ChQzz55JOEhYWh1WrRarU0bdqUZ555hj179shWV0hICHFxcVZrS6FQoFAoUCqVeHh4EBkZyeOPP87mzZvL3UahUDBr1qwqtbNhw4Yqb1NeW8uWLUOhUNTozyc5OZlZs2Zx4MCBMq/NmjULhUJRY20J8nOQu4Dq+uSTTxg/fjzh4eE8//zztGjRAoVCQUJCAqtWraJ9+/acPn2asLAwuUu1uC5durBgwQIA8vLyOHHiBKtXr6Z379489NBDrFq1CrVabVp/165dNGjQoEptbNiwgY8++qjKwVWdtqoqOTmZ+Ph4QkJCaN26tdlro0ePpk+fPhZtX7AuuwytnTt3MnbsWPr378+aNWtwdHQ0vdazZ0/GjRvHt99+i1arlbHKmqHX69HpdDg5Od1yHU9PTzp27Gj6vlevXowbN45Zs2YRHx/P9OnTmTdvnun1G9e1BEmSKCoqQqvVWryt22nQoIHFQ1OwMskO9evXT1Kr1VJycnKVtvvnn3+kgQMHSl5eXpKTk5PUunVr6ZtvvjFbZ+nSpRIgbd26VRozZozk7e0t1atXTxo0aJB06dIls3VLSkqkyZMnS35+fpJWq5W6dOki7d69W2rUqJH0xBNPmK2bkpIiPf3001JQUJCkVqulkJAQadasWVJpaalpnbNnz0qANG/ePGnOnDlSSEiIpFKppJ9//vmWx9SoUSOpf//+t3y9RYsWkrOzs1RYWGhaBkivvfaa6fv8/Hxp4sSJUkhIiOTk5CR5eXlJbdu2lb7++mtJkiTpiSeekIAyX2fPnjXtb9y4cdKiRYukiIgISa1WS4sWLSq3rWvv7+bNm6W4uDjJy8tLcnZ2lgYMGCAlJiaWObab30dJkqRu3bpJ3bp1kyRJkrZt21ZubdfafO2116Sbf831er00b948KTw8XHJ0dJTq168vjRgxQrpw4UKZdlq0aCH9/fff0l133SVptVopNDRUeuONNyS9Xn/L91ywLLvraen1erZt20a7du0ICAio9Hbbtm2jT58+dOjQgcWLF+Ph4cHq1at59NFHKSgoKHMNavTo0fTv35+vv/6aCxcuMHnyZIYPH87WrVtN6zz11FN8+eWXTJo0iXvvvZcjR44wePBgrl69arav1NRUYmNjUSqVzJw5k7CwMHbt2sXcuXNJSkpi6dKlZuu///77NGvWjAULFuDu7k7Tpk2r/kb9a+DAgbz55pvs2bOHu+66q9x1XnrpJVasWMHcuXNp06YN+fn5HDlyhCtXrgAwY8YM8vPzWbNmDbt27TJtd+P7//3337Njxw5mzpyJv78/vr6+Fdb15JNPcu+995re3+nTp9O9e3cOHTqEp6dnpY8vJiaGpUuXMnLkSKZPn07//v0BKuxdPfvssyxZsoTx48czYMAAkpKSmDFjBtu3b2ffvn34+PiY1k1NTWXYsGFMnDiR1157jXXr1jF16lQCAwN5/PHHK12nUIPkTs2qSk1NlQDpscceK/OaTqeTSktLTV8Gg8H0WkREhNSmTRuzno0kSdKAAQOkgIAA01/Oaz2BsWPHmq331ltvSYCUkpIiSZIkJSQkSID04osvmq23cuVKCTDrITzzzDOSq6urdO7cObN1FyxYIAHS0aNHJUm63tMKCwuTSkpKKvV+3K6ntWjRIgkw61FyU+8nKipKevDBBytsZ9y4cWV6LDfuz8PDQ8rMzCz3tfJ6WoMGDTJbb+fOnRIgzZ071+zYbtfTkiRjDxqQli5dWmbdm3ta135uN/98d+/eLQHSq6++atYOIO3evdts3ebNm0u9e/cu05ZgHXZ99/Bmbdu2Ra1Wm74WLlwIwOnTpzl+/DjDhg0DQKfTmb769etHSkoKJ06cMNvX/fffb/Z9dHQ0AOfOnQOMPTfAtM9rhgwZgoODeQf2xx9/pEePHgQGBpq13bdvXwB+++23Mm3feOH8TkiVGC4tNjaWn3/+mVdeeYXt27dTWFhY5XZ69uyJl5dXpde/+X3r3LkzjRo1Mr2vlnJt/zf3rGNjY4mMjGTLli1my/39/YmNjTVbFh0dbfo9EKzP7k4PfXx80Gq15f7SfP311xQUFJCSkmIWOmlpaQBMmjSJSZMmlbvfjIwMs++9vb3Nvr92IfzaP+hrp07+/v5m6zk4OJTZNi0tjfXr198yiG5uuyqnvbdz7X0KDAy85Trvv/8+DRo04JtvvmHevHloNBp69+7N/PnzK31qWtWab37fri279r5ayrX9l1dvYGBgmd+rm3+WYPxdqE6wCzXD7kJLpVLRs2dPNm/eTEpKitkvX/PmzQFISkoy2+baNYqpU6cyePDgcvcbHh5epTqu/TKnpqYSFBRkWq7T6cr8w/Px8SE6OprXX3+93H3dHCg19VyRJEmsX78eFxcX2rVrd8v1XFxciI+PJz4+nrS0NFOva+DAgRw/frxSbVW15tTU1HKXNWnSxPS9RqOhuLi4zHoZGRlm152q4trPLSUlpcx1r+Tk5GrvV7Aeuzw9nDp1Knq9njFjxlBaWnrb9cPDw2natCkHDx6kXbt25X65ublVqYbu3bsDsHLlSrPl//3vf9HpdGbLBgwYwJEjRwgLCyu37Yp6QXciPj6eY8eO8fzzz6PRaCq1jZ+fH3FxcQwdOpQTJ05QUFAAlO1p3qmb37c///yTc+fOmd5XMD44e+jQIbP1Tp48WeZUviq19ezZE4CvvvrKbPk///xDQkIC99xzT6WPQZCH3fW0wPgw5UcffcRzzz1HTEwMTz/9NC1atECpVJKSksJ3330HgLu7u2mbTz75hL59+9K7d2/i4uIICgoiMzOThIQE9u3bx7ffflulGiIjIxk+fDjvvvsuarWaXr16ceTIEdMdvxvNnj2bX375hc6dOzNhwgTCw8MpKioiKSmJDRs2sHjx4jt6lig7O5u//voLgPz8fNPDpTt27GDIkCHEx8dXuH2HDh0YMGAA0dHReHl5kZCQwIoVK+jUqRPOzs4AtGzZEoB58+bRt29fVCoV0dHRZs/IVcWePXsYPXo0jzzyCBcuXGDatGkEBQUxduxY0zojRoxg+PDhjB07loceeohz587x1ltvUb9+fbN9XftExMqVK4mMjMTV1ZXAwMBy/xiEh4fz9NNP88EHH6BUKunbt6/p7mFwcDAvvvhitY5HsCK57wTciQMHDkgjR46UQkNDJScnJ0mj0UhNmjSRHn/8cWnLli1l1j948KA0ZMgQydfXV1Kr1ZK/v7/Us2dPafHixaZ1rt3d+ueff8y2vfY80LZt20zLiouLpYkTJ0q+vr6SRqOROnbsKO3atavcu17p6enShAkTpNDQUEmtVkv16tWT2rZtK02bNk3Ky8uTJOn63cP58+dX+j1o1KiR6dkkhUIhubq6SuHh4dKIESOkTZs2lbsNN93Re+WVV6R27dqZnl9r3Lix9OKLL0oZGRlmxzp69Gipfv36kkKhKPc5rcq0deNzWiNGjJA8PT0lrVYr9evXTzp16pTZtgaDQXrrrbekxo0bSxqNRmrXrp20devWMncPJUmSVq1aZXpG7MY2K3pOq1mzZpJarZZ8fHyk4cOH3/I5rZs98cQTUqNGjco9XsHyFJIkZuMRBMF+2OU1LUEQ6i4RWoIg2BURWoIg2BURWoIg2BURWoIg2BURWoIg2BURWoIg2BURWoIg2BURWoIg2BURWoIg2BURWoIg2BURWoIg2BURWoIg2BURWoIg2BURWoIg2BURWoIg2BW7HG5ZqAa9Dgw6kPTG/xqu/Vd3/Xsnd3ApO/uMINgSEVr2yqCHrCTIOgs5FyHnEuRegpwLxv/Puwz6kutBVVkqJ3DzA7eA61/uAWW/d3Sx2KEJQkXEcMv24PJxSDkAGSf//ToNmWdAX3Z6LatxcgevRhDUDoI7QHAseIfJV49QZ4jQskWZZ+Hs78avpB2QlyZ3RZXj7GMMr+BYaBALQTGg1spdlVDL2HVoJSUlERoayv79+2ndurXc5VTf1dR/Q+o343+zz8tdUc1QqsG/5fUga9gJ3C0zx6NQd1j97mFcXBwKhYIxY8aUeW3s2LEoFAri4uKsXZZ1FeXAsR/gp0nwYXtYGA5rn4L9X9WewAIwlELyPti9GNaMgrcj4dOesPN9yDp3++0FoRyyXIgPDg5m9erVvPPOO2i1xtOHoqIiVq1aRcOGDeUoyTqS/oB9XxoDS1czMzXbnUt7jV+/zIDAGGj+ALQYZLw+JgiVIMtzWjExMTRs2JC1a9ealq1du5bg4GDatGljWrZx40buuusuPD098fb2ZsCAASQmJla472PHjtGvXz9cXV3x8/NjxIgRZGRkWOxYbutqGux4G96PgWX94dA3dTewbpa8D359Dd5rBUv7wf6VUJIvd1WCjZPt4dKRI0eydOlS0/dffPEFo0aNMlsnPz+fl156iX/++YctW7agVCoZNGgQBoOh3H2mpKTQrVs3WrduzZ49e9i4cSNpaWkMGTLEosdShkEPJ36GVUPhneawJR4yKw7buk2Cczvhf2NhQTNY96yxV2q/l1sFC7L6hfi4uDiys7P57LPPaNCgAcePH0ehUBAREcGFCxcYPXo0np6eLFu2rMy26enp+Pr6cvjwYaKiospciJ85cya7d+9m06ZNpm0uXrxIcHAwJ06coFmzZpY9uMwzsG8FHFwFV1Ms21Zd4N0U7p4ELR8BpUruagQbIdvDpT4+PvTv35/ly5cjSRL9+/fHx8fHbJ3ExERmzJjBX3/9RUZGhqmHdf78eaKiosrsc+/evWzbtg1XV9cyryUmJloutM5sh98XGHsHiN5BjblyCtY9A7/Ng66TIPpRUInnoes6WX8DRo0axfjx4wH46KOPyrw+cOBAgoOD+fTTTwkMDMRgMBAVFUVJSUm5+zMYDAwcOJB58+aVeS0gIKBmiwdI3g+/zjKGlmA5mWeMp46/vwVdJ0KroaBSy12VIBNZQ6tPnz6mAOrdu7fZa1euXCEhIYFPPvmErl27AvDHH39UuL+YmBi+++47QkJCcHCw4KFlnIats413AUXPynqykuCH5+D3+XDXS9BmuAivOkjWUR5UKhUJCQkkJCSgUplfs/Dy8sLb25slS5Zw+vRptm7dyksvvVTh/saNG0dmZiZDhw7l77//5syZM2zevJlRo0ah11fh83e3kpsCP0yAjzvAsf8hAksm2efhxxfg/Tbwz2egK7/nLdROsg9N4+7ujru7e5nlSqWS1atXs3fvXqKionjxxReZP39+hfsKDAxk586d6PV6evfuTVRUFM8//zweHh4olXdwqIVZ8MtM4z+SfcuNH0IW5JdzAX6aCO+3NobXLe4qC7WLXX+Mx+JKCmD3Itj5nvEpdsG2NWgP938IvhFyVyJYkAitWzn2P/h5inh0wd6oHOHuyXDXi+J6Vy0lQutm+Vdgw0Q4uk7uSoQ74dcSHvgAAtvcfl3BrojQutGx/xmvkeSny12JUBMUKuj8HHSfCmqN3NUINUSEFkBBpjGsjq69/bqC/fFuYrzW1aiT3JUINUCE1tkdsPZpuJosdyWCRSmg/WjoNQucyn5iQrAfdTe09DrY/gb88TZI4lZ5neERDA99Dg07yF2JUE11M7SyzsF3o+Hi33JXIshB5QQD34PWQ+WuRKiGuhdaJ36Gtc9AsXjuqs7r8jzcMwvu5MFjwerqVmj98zlsmFy1KbWE2i28PwxeIq5z2ZG6E1pb5sCOBXJXIdgivygYuho8g+WuRKiE2h9aeh2snwAHVspdiWDLXHzhsZXGWYMEm1a7Q6s4D759Ak7/Knclgj1QOcH9H0CrR+WuRKhA7Q2tvMuw8hHjzMyCUBV3vQT3zASFQu5KhHLUztC6kghfDTYOGicI1RE5EB76Ahwc5a5EuEntC62Le+DrIVBwRe5KBHsXMQAeWS7GpbcxtesBlZObYPlAEVhCzTj+I3w3yngzR7AZtaenlfQHrBgM+mK5KxFqmxaD4aHPxDRmNqJ29LQuJ8Dq/xOBJVjG0bWwbowYztlG2H9o5SbDVw+L4ZAFyzr8X/ip4olVBOuw79AqyjU+1pB7Ue5KhLpg71LY9obcVdR59hta+lL4ZhikHZG7EqEu+e1N42dYBdnYZ2hJEnw/Fs7+LnclQl20YdK/814KcrDP0Pp1lvEagyDIQTLAd0/BuV1yV1In2V9o/f0p7HxX7iqEuk5fDGtGQn6G3JXUOfYVWgnr4eeX5a5CEIyupsC6Z4yXKwSrsZ/QSj9h7JKL8dwFW3L6V+MM5ILV2Edo6Uth7VOgK5S7EkEoa+scuCDmG7AW+wit7W9CykG5qxCE8hl0sOZJKMySu5I6wfZD68Lf8Mc7clchCBXLOQ//Gy93FXWCbYdWSb5xIlUxEYVgD47/CLuXyF1FrWfbobXpVcg6K3cVglB5m6eLSxkWZruhdXIT7F0mdxWCUDX6Yvh2JBRflbuSWss2Qyv/irg+INivzET4aaLcVdRathla6ydA/mVZS7iUa2D42kK837qK8+u5tF6cx97k69fWJEli1vYiAhdeRft6Lt2X5XP0cuWvva0+UooiPpcHVxeYLV95qJTgd65Sb14ukzcXmb2WlG2g2Qd55BaLhxlt3qFv4OwOuauolWwvtPavNF7QlFFWoUSXL/JRq+DnYc4cG+fKwvs0eGquz87y1s4S3t5Vwof9NPzzlAv+rgruXVHA1UoEyrlsA5M2F9G1oflImBkFBkavL2TBvRo2DXdh+cFSfjpZanr92Z8KebOXE+5OYpYYu7Bpqhg40AJsK7RyU2DjK3JXwbydxQR7KFn6gJbYIBUhnkruaexAWD3j2yVJEu/uLmFaVycGR6qJ8lWx/EEtBaUSXx8urXDfeoPEsLWFxHd3orGX+dt/JkvCw0nBo1Fq2gep6BGq4li68Zf+68OlOKoUDI5UW+aghZqXehj2fyl3FbWObYXW1jlQnCt3FfxwQke7ABWPfFuA7/yrtPkkj0/3lpheP5stkZoncV/Y9VlanBwUdAtx4M+LFZ8izv6tmPouCp6MKTs1VdN6SgpKJfan6MkslPjnkp5oPxWZhRIztxXxYV9NzR2kYB1b5xoHqxRqjO2EVuphOLhK7ioAOJNlYNGeEprWU7JpuDNj2joyYWMRXx40BldqnrH34+dqfprm56IwvVaened1fL6/lE8Hlh8+XloFyx/U8vj3hcR+msfjrdT0buLApM1FPBfryNlsA20+ySPq4zzWHKu4RyfYiPx0+H2+3FXUKrYzodvm6TbzYWiDBO0CVfznHmO4tAlQcTTdwKI9pTze6noP6eYrS5JUdtk1V4slhq8r5NOBGnycb/23YlCkmkE3nAJuT9Jx+LKeD/tpaPJ+Hqse0uLvqiD2s3zubqTC18V2/u4It7B7MbQbCfUay11JrWAboXVyM5zZLncVJgFuCprXNw+DSB8l3yUYezf+rsbXUvMkAtyur3O5QMLPtfwQScwykJQtMXBVIWD84Lfh32v2DrNzOTHe1XTN7JpincTYn4r4arCW05kGdAboFmL8kTXzVrL7op6B4SK0bJ6+BDbPgMdWyl1JrSB/aBn08MtMuasw0yVYxYkr5r2+k1cMNPIwBkSopwJ/VwW/nNHRJsB4B7BEL/Fbko55vco/9YvwUXL4WRezZdO3FnO1ROK9PhqCPcr20eb8XkzfJg7EBKjYn6JHZ7h+Z7JUD3rx5IP9OP6jcXjw0LvlrsTuyR9aB1dDeoLcVZh5saMTnb/I5z87ihnSQs3fl/Qs2VfCkgFaABQKBS90cOQ/O4ppWk9JU28l/9lRjLNawf+1vH5q9/i6QoLcFLzRS4PGQUGUr/kjDtceobh5OcDRy3q+OarjwDPGoIvwUaJUKPh8Xwn+rgqOZxhoHygmD7UrG1+FZ34Hpegd3wl5Q0uvg9/fkrWE8rQPUrHuUS1TtxQz+7diQr2UvNtbw7Do64H0chdHCnUSYzcUkVUo0aGBis0jnHG74Rmq8zkGlIqq/4JKksTTPxbxTm8nXByN+9OqFSx7UMO4DUUU6+DDfhqC3MUvv11JOwz7lhuvbwnVppAkGceK3fcl/PCcbM0LgtW51IfnD4Gjs9yV2C35/lTrS8WtYKHuyU83fsRHqDb5Qmv/V5B9XrbmBUE2f38qdwV2TZ7QMuhhx9uyNC0Isrt8FJL+kLsKuyVPaJ36xTg8rSDUVbs/kbsCuyVPaO1fIUuzgmAzTmyAnEtyV2GXrB9aeZfh5EarNysINsWggz2fy12FXbJ+aB1cZfyBCUJdt3c56IrlrsLuWD+09olTQ0EAoCADjqyVuwq7Y93QOv8XXDll1SYFwab9LaYcqyrrhpboZQmCueR9cHGP3FXYFeuFVvFVOLrOas0Jgt0Qva0qsV5oHfkOSvOt1pwg2I2j30NxntxV2A3rhZY4NRSE8umL4fSvcldhN6wTWpcT4JI4bxeEWzqxQe4K7IZ1QuvwGqs0Iwh26+Qm4/hywm1ZJ7TO/maVZgTBbhVlw7mdcldhFywfWsV5kLzf4s0Igt07/pPcFdgFyw+3fO5P8bEdQbgFSeVITv12/O3Qjk3n27BQ7oLsgOVDS5waCoIZvWsgZ706sakkmmUpIaQnXZ97YHxGPqE+LhVsLVg+tJJ2WLwJQbBlkkJFXv027HNqz+rsSH5O94GM8tf9/WS6CK3bsGxoFWYZp7sXhDrGoPXhgndnftW3YmlKYy6ed6rUdjtOpfNE5xDLFmfnLBtaSX/YzFT3gmBJEgoKfKI5pI3lu9xIvrvsh5RVdgLe29l3Prvmi6tlLBtaZ8WpoVB7SU4eJPt04jepDUvTmnDqovaO95mZX8K5K/k08haniLdi4dD63aK7FwRrK6oXwTHXjqzLa8Hq1EBKc6rem7qdAxeya01ohYSE8MILL/DCCy/U2D4tF1p56TY33b0gVJXk6MJln47sVMSwLL0ph5JdLd7m/vPZPNA6qMrbxcXFsXz58jLLT506RZMmTWqiNJtgudBKEr0swT6VeDbmhFsnfiqMYkVKMPm51h12bv+F7Gpv26dPH5YuXWq2rH79+ndYkW2x3E/jwt8W27Ug1CTJQcOVgLvZ0OAFhmoX0Sx1LgNP9WfxxUbk660/InlCci7FOn21tnVycsLf39/sS6VSsX79etq2bYtGo6Fx48bEx8ej011/6FuhUPDJJ58wYMAAnJ2diYyMZNeuXZw+fZru3bvj4uJCp06dSExMNG2TmJjIAw88gJ+fH66urrRv355ff614tIqcnByefvppfH19cXd3p2fPnhw8eLBKx2i5n8iVxNuvIwgy0bk14ETwEN7znUtM8RLanh3D2NOx7MrykLs0SvQGjiXn1tj+Nm3axPDhw5kwYQLHjh3jk08+YdmyZbz++utm682ZM4fHH3+cAwcOEBERwf/93//xzDPPMHXqVPbsMY7SMn78eNP6eXl59OvXj19//ZX9+/fTu3dvBg4cyPnz5c9pKkkS/fv3JzU1lQ0bNrB3715iYmK45557yMzMrPTxKCRJkqrxPtzeB+3EePCCzZCUanLrx7DHsT2rMiP49Uo9uUuq0BuDWzI0tmGVtomLi+Orr75Co9GYlvXt25e0tDT69u3L1KlTTcu/+uorXn75ZZKTkwFjT2v69OnMmTMHgL/++otOnTrx+eefM2rUKABWr17NyJEjKSwsvGUNLVq04NlnnzWF240X4rdu3cqgQYO4fPkyTk7Xn1tr0qQJL7/8Mk8//XSljtMy17QMBsgWM0gL8tK7+HHOqzO/lLZiaWoIqecc5S6p0hIvV28k0x49erBo0SLT9y4uLjRp0oR//vnHrGel1+spKiqioKAAZ2dnAKKjo02v+/n5AdCyZUuzZUVFReTm5uLu7k5+fj7x8fH8+OOPJCcno9PpKCwsvGVPa+/eveTl5eHt7W22vLCw0Oy083YsE1pXk42jMQqCFUkKJfk+rTmgac9/cyJZn14f6UrNP5JgDWcyqjc0+bWQupHBYCA+Pp7BgweXWf/GXplaff0zkAqF4pbLDAbjA+OTJ09m06ZNLFiwgCZNmqDVann44YcpKSkptzaDwUBAQADbt28v85qnp2flDhBLhVZWkkV2Kwg3M2jrccm7E9v0rfkiNYykC5rbb2QHzqTX3JjxMTExnDhxosYfe9ixYwdxcXEMGjQIMF7jSkpKqrCO1NRUHBwcCAkJqXa7IrQEuyKhoMi7BYedO7A2rzlL1v1O1m8rcGubT71eLcrdpuj8IdJWvVpmeeDoRai9gwEoPLufzF8Woc/PxrlZR7z7PIdCZexlGIrzSVn+In6PzcXB3ddyB3eDS9mF6A0SKuWd9xRnzpzJgAEDCA4O5pFHHkGpVHLo0CEOHz7M3Llzq73fJk2asHbtWgYOHIhCoWDGjBmmXlh5evXqRadOnXjwwQeZN28e4eHhJCcns2HDBh588EHatWtXqXZFaAk2T3JyI9WnEzukNiy93JSES8ZrMMUpJ8k9sBl1/ZBK7SfwqU9QOjqbvlc6uxv3LxnI+HEBHh0eRhMaQ/r3b5B3cBNuMQMAyNq+FLfWfa0WWACleomUnEIaeDnffuXb6N27Nz/++COzZ8/mrbfeQq1WExERwejRo+9ov++88w6jRo2ic+fO+Pj4MGXKFHJzb33XU6FQsGHDBqZNm8aoUaNIT0/H39+fu+++23QNrTIsc/fwu9Fw+Nsa361QdxR7NeO4awf+VxDFqtRACvUqs9cNJYWkLHueeveNJefP1Tj6NqZer/LvPl3raQU/vxqlpuwT7fr8bC5+OJyGE9eicHAka/tSDCVFeN/3LEUXj5G1ZQn+IxaiUKrK2bvlrHqqI53CvG+/Yh0jelqCTZDUzmTU78CfihiWZzRjX4pbhetn/rIIbVh7tCGtyflzdaXaSF72POhKUPsE49HpMTSNjHfLlM4eqFzrUXh2P5qQ1hRfOIpLy3uQ9KVkbv4Y777PWz2wAJKzb/1oQV0mQkuQTalHCKfcO/FTUUu+TGnA1TOV+3XMP/YbJamJBDzxTqXWV7nUo17v8Tj6NwF9KXlHt5G2ehp+//cGmuAoFAoFPg9MIWvLZ2RuWYK2cTtcW95Lzl/fomnUCoWDI6lfTUZfmItbzADc2w68k8OutKyC8u/C1XU1H1rFeZCfXuO7FeyfpHIku357/nZoy9eZ4fyW5gVpVduHLjedzC2f4vfobBQOlXvuSu3dALV3A9P3TkGR6HPTyf17LZrgKAA0DVqYhWBp5iXyj24lIO590r5+Bbd296MNbUvyF+PQBEfh6BtatcKrIaew1OJt2KOaDy3xUKlwA71rIGe8OrOpOJrlqY3MxkOvjpLU0xgKsklZ9sL1hZKB4gtHubrvRxpOWlepUzmnwAjyjm4r9zVJkriy8QO8eowGSaIkLRHn8C4o1Ro0wVEUXThildDKLhChVZ6aD62i7BrfpWA/JKUDV32M46F/kx1R4Xjo1aFp1IqAUR+aLbuy4T3U3g1w7/BQpa89laQlonIt/6M8eYc2o9K649y0A/qif5+XMhg/wCwZ9MZPfFhBtuhplavmQ0tXVOO7FGybwdmH8/U6s0Xfii9SGnOpkuOhV4fSyRnHmx5xUKidUGrcTMuzfluG/uoVfAZMBCD3n//h4OGL2qchkl5H/rFtFJz8k/oPln12S5+fTc6f3+A//C0AVBpX1N7B5P7zP7ShbSg6dxCPjo9Y7PhulC2uaZWr5kOrVIRWbXd9PPQOfJsbybrLvkiZtvNxGX1eFrrc69dVJUMpWdu+QJ93BYWDI2qfhvg+/BrasPZlts3csgT32EE4uPmYlnn3e4GMn97h6t71uMcOxikw3CrHIU4Py1fzz2kdWQtrRtboLgX5GTSepHh34jdDa5ZebsKp/DsfD12oWMN6zvz+cg+5y7A54vRQuKWiepEcdenA9/n/joeebTu9qbqgRCdmsiqPBU4PxQNx9urG8dCXXm7KYSuMhy7cms5gmaHu7F3Nh5aY59CulHiGccKtI+sLo1gpw3jowq0ZLDQ+p72z7BRigk0yKJR82upBTir9uVz67wdyPa8QE3BF3sIEMxoHDXCv3GXYnJoPLYX4S23rlkT34aOcPXKXIdyGl5MXMFnuMmxOzSeMQlystWV7GrVl8VUxH6U9UIoOQLksEFrijbZV2c71mOIsoZeqNz2VYF0qhfVHlrAHFkgY0dOyVdPD23O5qAY/UyNYlKPKfibisKaaDy2H2jFGd23zZcs+/JYtTgvtibuTu9wl2KSaDy03/xrfpXBnjga15N0CMQelvfFwlH/iWFtU86HlHljjuxSqL0/jziRPLaUG8Tk2e+PhJEKrPBboaQXU+C6F6otv3oWLBalylyFUgwit8tV8aDm5gjgXtwlrWtzLxqyjcpchVJO7o/h3VB7LPJ8geluyO+UXzrziJLnLEO6A6GmVzzKh5S5CS06Fjs5M9vWmSF8sdynCHfDSeMldgk0SPa1a6M2oHiTmXZS7DOEONXBtcPuV6iARWrXMhogerM06LHcZQg1o6N5Q7hJskoVOD8VjD3I47xPKbH2K3GUINUDroMVH63P7Fesg0dOqJUpVjkwKDCZfVyB3KUINCHYLlrsEmyUuxNcSC6PvI+FqktxlCDWkoZs4NbwVC4VWkEV2K5Rva9OurMw+JHcZQg0SPa1bs9DpoT+4+Fpk14K5VM8GzFRmyV2GUMPERfhbs9zgV8GxFtu1YKRTOvBySDNySnLlLkWoYZHekXKXYLNEaNmxj6N7sz/ntNxlCDXMUelIM69mcpdhsywYWh0stmsBdoXG8nmu+FxhbRRRLwK1Ui13GTbLcqEV2AZUThbbfV2W4erLVKdiDGK6tlopyidK7hJsmuVCy8EJAlpZbPd1lYSCV5u24kqxuPheW4nQqphlZ6EQ17Vq3Oet+rIr+4TcZQgWJEKrYhYOLXFdqyYdCG7DR1ePy12GYEFujm6EuIfIXYZNE6FlJ3K0nrzspkQn6eQuRbCgWP9YFGLu0ApZNrTc/MCzkUWbqCtmRHYkpTBd7jIEC7sr6C65S7B5lp9ZVfS27tjKlr3ZlnVM7jIEKxChdXuWD62GIrTuREJAc94uSJS7DMEKmng2wd9FTMF3O5YPrab3IWadrp4CJ1cme7tTYiiRuxTBCroEdpG7BLtg+dDybAgNO1q8mdpodou7OZefLHcZgpXc1UCcGlaG5UMLoOUjVmmmNlnXvBc/ZR2RuwzBSpwdnGnr21buMuyCdUKrxSAQn6WqtDO+TXmj5LzcZQhW1KNhD9Qq8W+kMqwTWs71oEkvqzRl74odNEzy86NQXyR3KYIVDWg8QO4S7IZ1QgsgWpwiVsa86Hs4lSd6WXWJt8abTgGd5C7DblgvtML7gaOb1ZqzR5vCu/GtmP6rzukb2heVUiV3GXbDeqGl1kLkQKs1Z28u1mtIvCSeeK+LxKlh1VgvtECcIt5CqVLN5OBQrpbmyV2KYGUh7iG08Gkhdxl2xbqhFdoNXP2s2qQ9eK9Vb47knpW7DEEGA8PE2UdVWTe0lCqIesiqTdq638M682W2uI5VFzkqHXmoqfj3UFXWDS2A6CFWb9JWpXkEMt3hKhKS3KUIMujXuB/eWm+5y7A71g+twDYQLD7Wo1eomBIaSVZJjtylCDIZHjlc7hLskvVDC6DrS7I0a0sWt+rD3pxTcpchyCTWP5bweuFyl2GX5AmtZr3Br+6Og/13SHuWiOm/6rQRzUfIXYLdkie0ALq8IFvTcsp08eEVbamY/qsOa+jWkG4Nusldht2SL7SiBoNXiGzNy0FCwavNYkgvypS7FEFGT7R4QowDfwfkCy2lqs71tpZF92FntphNpy4LdgtmUNNBcpdh1+QLLYA2w+tMb+tQg1a8ny/mK6zrnm31rJjy/g7JG1oqNXSfKmsJ1pCr9eBlD0d0BjH9V13WxLMJ/Rv3l7sMuydvaAG0HAL1I+SuwqJmRXbmUkGa3GUIMhvfZjxKhfz/5Oydg9wFoFRCj2nw39p5C/ibqPv4Jcv+Hm+4svUKmVszKc0oBcApyAnfB3xxizYOL3Tx04tk78w220bbWEvYzLBb7rPoUhGX116mMKmQ0iul+A/1x6e3j9k62X9mk7omFalYwqurF/6PXZ+dpiS9hKQFSYTNCkOlta+hXFr6tOSehvfIXUatIH9oATS/HwJaQ8oBuSupUSf8mzO/yD4/CK32UuP/iD+Ofo4AZP+Rzfn3zhM2OwxNkAYA15auBD0ZZNpG4VDxHTFDsQHH+o64t3cndVVqmdd1V3VcWnqJBqMboK6v5tw753CJcMGttTEok79Mxu8RP7sLLIAJMRPkLqHWsJ2+at+3oBZ1nQscXZjk40GxvljuUqrFvY07bq3ccPJ3wsnfCb+H/VBqlBScLjCto3BQoPZUm74cXCv+G+jc2Bn/x/zx7OhZbsCVpJeg0qrw6OCBc2NnXCJdKEo2DjudvSsbhYMCj3YeNXugVtAzuCcdA8RH12qK7aREww4Q+7TcVdSY16O6k5R/Se4yaoRkkMj+KxtDsQHnJs6m5fnH80l4LoGTU05y6YtL6HLv7EaDk58ThhIDhecK0eXpKDxbiCZYgy5Px+V1lwkYHnCnh2J1GpWGKbFT5C6jVrGN08Nr7pkJJ36G7HNyV3JH1kf25IdaMGxy0YUizsw9g6HUgNJJScPnGppODd2i3fBo74HaR01JegmX117m7LyzhM0KQ6mu3t9ClYuKBk814OKnF5FKJDw7e+LW0o2Ln1+kXq96lGaUcv6980h6Cd8HffFob/u9rtEtRxPoGih3GbWKbYWWowvc/wF8eb/clVRbUv0w5upqxwSrjgGOhM0Ow1BgIGdPDhc/u0joK6FogjR4dLgeGJoGGrShWk5OPMnVg1fv6BTOva077m3dTd/nJeRRfLGYwOGBnJxykuAxwTh4OJA4OxGXcBcc3G3rV/hGjT0aMypqlNxl1Dq2c3p4TeNuEPOE3FVUS4nKiUkBgRToCm6/sh1QOihx8nNCG6rF/xF/NMEarvxypdx11Z5qY68rraTG2jeUGkhZkULgE4GUXC5B0ku4RLjgFGC8zlaQaLvvswIFMzvNFHMZWoDthRbAfXPBPej269mY+a3u5cRV+z61rZAEUmn5Axbq8nSUXinFwbPmej7pP6Tj2tIVbYgWySDBDZ8xl3Tm39uawU0H09ZPzBhtCbYZWhp3GPCO3FVUya/NurI665DcZdSY1DWp5J/IpyS9hKILRaStSSP/eD6enTzRF+lJWZ1CwekCStJLyEvI49y751C5qXCPuX5qd3HJRVK/vf5og0FnvMheeK4QSS+hy9JReK6Q4rSyd1iLLhWR83cOfoONcwo4BTiBAjJ/y+TqgasUpxSjbay1/BtRDUGuQUxqN0nuMmot270g0Ky38Wn5w/+Vu5LbSvZqyEzKP22yV7ocHReXXESXo0OpVaIJ1hAyMQTXKFcMJQaKLxZzbuc5DAUGHDwdcIlwIfjZYLNnqEqulMANTzbosnQkvpZo+j5jYwYZGzNwDnem8dTGpuWSJJG8NBn/of4onYx/V5WOSoJGB5GyIgWpVCJgRABqL9s79VIpVLzZ9U1cHV3lLqXWUkiSZLsDlBdkwkexkG+78wHqlA7EtezKwdzE268s1HpjW43l2dbPyl1GrWabp4fXONeDfvPlrqJCH7TqLQJLAKCNbxuejq49zxraKtsOLYAWg2x22rGdjTuyNPuI3GUINsBN7cYbXd8Q09tbge2HFsD9H0JAK7mrMJPu7s+rjoVi+i8BgGkdpxHkan93vO2RfYSWozMMXQ1utvExDoNCydTGUWQWZ8ldimADhkYMFeNkWZF9hBaAeyA89jU4yH+b+9PoPuzOOSl3GYIN6BjQkSntxWcLrcl+QgsgKAYGLcLsPrqV7W3YlkVXE2RrX7AdjdwbsaDbAnEdy8rsK7TAeGG+x6uyNJ3tXI8prhJ6SS9L+4LtcFO78X7P9/Fwsv0Pbdc29hdaAN1ehpaPWL3ZGRHtSSvMsHq7gm1RKVS81e0tGns0vv3KQo2zz9AC4x3FBu2t1tyXLfuwPUucFgowqd0k7gq6S+4y6iz7DS21xnhh3iPY4k0dDWrJuwWnLN6OYPvGtBrD8ObD5S6jTrPf0AJw9TU+CmHBz3nladyZ5Kml1FBqsTYE+zCi+QjGtR4ndxl1nn2HFoB/lEWDK755Fy4WlJ2EQahbHmr6EC+3f1nuMgRqQ2gBhHaFx38ArVeN7nZNi3vZaIfTfwk1q29oX2Z2mil3GcK/bHuUh6pKOworBkHenU+MesovnP9zM1Bkp7PpCDWje3B33un+Dg5K2x3Fqa6pHT2ta/xawMifwaPhHe2m0NGZyb7eIrDquH6h/Xi7+9sisGxM7QotAO8wGLURvJtWexdvRvUgMe9iDRYl2Jv/i/g/3uz6Jmql7Q00WNfVrtPDG+VnGE8VU6s2BPKGiB5MKRbjY9VlY1uP5dlWYiA/W1V7QwugKAdWDoELf1Vq9fM+oQzxciK/lsymI1SNUqHk1dhXeTTiUblLESpQ+04Pb6TxgBHrIKznbVctVTkyOTBYBFYd5ah0ZF7XeSKw7EDtDi34dyyub6D5gxWu9nar+zh2NckqJQm2xdfZl2V9ltEntI/cpQiVULtPD2+28z3YMhsMOrPF25rexQTdeZmKEuQU4xvDwu4L8dH6yF2KUEl1K7QAknbCmpGmZ7lSPRvwsJ8nOSW5MhcmWNuj4Y8yJXaKuENoZ+peaAFcTYM1o9Cf38WoVt3Yl3Na7ooEK3JUOjK943QGNR0kdylCNdTN0AIw6Plz/2eMOfKRmJyiDglxD+HNrm/SwqeF3KUI1VR3Q+tff6X8xbQd07hceFnuUgQLUqDg0fBHeandS2htYJ4BofrqfGgBZBVlEb8rni3nt8hdimABvlpf5nSZQ+egznKXItQAEVo3+OXcL7yx+w3SC9PlLkWoIX1C+jC943QxlnstIkLrJrklubyz9x2+O/mduNZlx+pr6/Ny+5fFs1e1kAitW9iTuof4XfEk5SbJXYpQBQ4KB4ZFDuPZ1s/ionaRuxzBAkRoVaBEX8Jnhz9j2dFlFOoK5S5HuI0O/h2Y2mEqYZ5hcpciWJAIrUq4XHCZjw98zPenvxdzHtogfxd/JrabSJ8QcSpYF4jQqoLE7ETe3fcu2y9sl7sUAXBzdGNki5EMixyGs9pZ7nIEKxGhVQ370vaxcO9CDqVXbawuoWY4OzgzvPlwnmjxBO6O7nKXI1iZCK07sPPSTpYeXcrulN1yl1InuKndGBo5lBGRI/DUeMpdjiATEVo14NiVYyw7uozNSZvFNS8L8HX2ZUizIQyNHCp6VoIIrZqUnJfMimMr+O7Ud+JuYw1o59eOoRFD6dmwp5hcQjCp/YMAWlGgayBTYqfw6yO/Mr3DdFr6tJS7JLujddAypNkQ1t6/lqV9lnJfyH0isG7y/fff06RJE1QqFS+88ILV2w8JCeHdd9+1ervXiJ6WhSVmJ/K/0/9j/Zn1ZBRmyF2OTVIqlLT1a0ufkD70De2Lm6NbtfcVFxfH8uXLeeONN3jllVdMy7///nsGDRpEbfh19/PzY+TIkUyYMAE3Nzfc3Kr/flVHeno6Li4uODvLc8dWhJaV6A16dibvZH3iev649Ad5pXlylyQrBQpa1W9Fn9A+3NfoPuo716+R/cbFxfHNN9+g0Wg4c+YMXl7GWcdrS2jl5eXh5ubG1q1b6dGjR7X3U1JSgqOjYw1WZj3i9NBKVEoVdze4m/nd5vP7Y7+z5N4lDI8cTgPXBnKXZjUOSgdifGOY2HYimx7axIp+KxgWOazGAuuaXr164e/vzxtvvHHLdb777jtatGiBk5MTISEhLFy40Oz1kJAQ/vOf/zBq1Cjc3Nxo2LAhS5YsuW3bR48epX///ri7u+Pm5kbXrl1JTDROSWcwGJg9ezYNGjTAycmJ1q1bs3HjRtO2SUlJKBQK1q5dS48ePXB2dqZVq1bs2rULgO3bt5t6VT179kShULB9+/ZKH8/cuXOJi4vDw8ODp556imXLluHp6cmPP/5IeHg4zs7OPPzww+Tn57N8+XJCQkLw8vLiueeeQ6/Xm+3rxtNDhULBZ599xqBBg3B2dqZp06b88MMPZu3/8MMPNG3aFK1WS48ePVi+fDkKhYLs7Ozbvqc3E6ElA7VSTafATkyJncLPD/3M9w98zwsxL9DOrx0alUbu8mpUE88mDI8czkf3fMTOx3ayvO9y4qLiCHANsFibKpWK//znP3zwwQdcvFh20t29e/cyZMgQHnvsMQ4fPsysWbOYMWMGy5YtM1tv4cKFtGvXjv379zN27FieffZZjh8/fst2L126xN13341Go2Hr1q3s3buXUaNGodMZ5yR47733WLhwIQsWLODQoUP07t2b+++/n1OnTpntZ9q0aUyaNIkDBw7QrFkzhg4dik6no3Pnzpw4cQIwhlRKSgqdO3eu9PHMnz+fqKgo9u7dy4wZMwAoKCjg/fffZ/Xq1WzcuJHt27czePBgNmzYwIYNG1ixYgVLlixhzZo1Fb7n8fHxDBkyhEOHDtGvXz+GDRtGZmYmYAzjhx9+mAcffJADBw7wzDPPMG3atAr3VxFxemhjSg2lnMg8wYHLBziQfoADlw+QVpAmd1mV4qRyoqlnUyK9I2nj24ZOgZ2sPmFEXFwc2dnZfP/993Tq1InmzZvz+eefm50eDhs2jPT0dDZv3mza7uWXX+ann37i6NGjgLE30bVrV1asWAGAJEn4+/sTHx/PmDFjym371VdfZfXq1Zw4cQK1uuy480FBQYwbN45XX33VtCw2Npb27dvz0UcfkZSURGhoKJ999hlPPvkkAMeOHaNFixYkJCQQERFBdnY2Xl5ebNu2je7duwNU+njatGnDunXrTOssW7aMkSNHcvr0acLCjJ/XHDNmDCtWrCAtLQ1XV1cA+vTpQ0hICIsXLzbt64UXXjDdBFAoFEyfPp05c+YAkJ+fj5ubGxs2bKBPnz688sor/PTTTxw+fNjU9vTp03n99dfJysrC09Ozoh9pGeK2jI1RK9VE+UQR5RPFcIYDkJqfyqH0QyTmJHI25yxJOUkk5SbJ+liFu6M7TTybEOkdSWS9SCK9I2ns0dim7vTNmzePnj17MnHiRLPlCQkJPPDAA2bLunTpwrvvvoter0elUgEQHR1tel2hUODv78/ly8YRbvv27cuOHTsAaNSoEUePHuXAgQN07dq13MDKzc0lOTmZLl26lGn34MGDZstubDcgwNgjvXz5MhEREeUeZ2WPp127dmW2dXZ2NgUWGC/yh4SEmALr2rJrx30rN9bs4uKCm5ubaZsTJ07Qvn17s/VjY2Mr3F9FbOc3TLglfxd//F38zZZJkkRaQRpncs6QlJNEWkEaGYUZZBRmcKXwCtnF2eQU51CkL6pSW1oHLa5qV1zULrg5uuHv4k+ASwCBroEEuQYR4BJAkGsQro6ut9+ZzO6++2569+7Nq6++SlxcnGm5JEkoFAqzdcs74bg5fBQKBQaDAYDPPvuMwsJCs/W02tsP41xeuzcvu7Hda69da7c8lT0eF5eyQ/WUd4wVHfetVLRNZeurLBFadkqhUJjCrHPgrYcRLtIVUagrRC/p0Rl06CU9eoPe9F8AF7ULLo4uuDi4oFKqrHUIVvHmm2/SunVrmjVrZlrWvHlz/vjjD7P1/vzzT5o1a2bqldxOUFBQmWXR0dEsX76c0tLSMv+I3d3dCQwM5I8//uDuu+82a/dOeh1QM8djSREREWzYsMFs2Z49e6q9PxFatZzGQYPGoXZd3K+Kli1bMmzYMD744APTsokTJ9K+fXvmzJnDo48+yq5du/jwww/5+OOP76it8ePH88EHH/DYY48xdepUPDw8+Ouvv4iNjSU8PJzJkyfz2muvERYWRuvWrVm6dCkHDhxg5cqVd9SupY6npjzzzDO8/fbbTJkyhSeffJIDBw6YbhLc3AOrDHH3UKj15syZY3Y6EhMTw3//+19Wr15NVFQUM2fOZPbs2WankNXh7e3N1q1bycvLo1u3brRt25ZPP/3U1OuaMGECEydOZOLEibRs2ZKNGzeaHgW4E5Y6npoSGhrKmjVrWLt2LdHR0SxatMh099DJyanK+xN3DwVBsLrXX3+dxYsXc+HChSpvK04PBUGwuI8//pj27dvj7e3Nzp07mT9/PuPHj6/WvkRoCYJgcadOnWLu3LlkZmbSsGFDJk6cyNSpU6u1L3F6KAiCXREX4gVBsCsitARBsCsitARBsCsitARBsCsitARBsCsitARBsCsitARBsCsitARBsCsitARBsCsitARBsCsitARBsCsitARBsCsitARBsCv/D0/ulNt/2ltrAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU0AAAESCAYAAAB5KIfmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOjUlEQVR4nO3dd1xVdR/A8c+5gw0Ciqig4gI3Krhwo+LKnKVmluVj5WpZroZte3zKTE1bpjlzpJamufc2U3Nvxa242Nx7z3n+OHL1Bigg3HMv/N69eBnnnnt+Xy7c7/2d35QURVEQBEEQskWndQCCIAjORCRNQRCEHBBJUxAEIQdE0hQEQcgBkTQFQRByQCRNQRCEHBBJUxAEIQdE0hQEQcgBkTQFQRByoEAkzatXr/Ltt9/SvXt3oqKiqF69Os2aNeP1119n69atWocHwJo1awgLC2PixIl2KW/nzp2EhYVl+KpRowZNmzZl0KBBbNmyJdPnRkdHExkZmatyr127xq+//pqjGD/99NM8KftRzpw5w4oVK2yOhYWF0alTp3wpTyiYDFoH8Lj+/PNPRo0aRWJiIlWrVqVt27Z4enpy8eJFNm7cyIoVK+jatSuffvopOl2B+IzIkcqVK9OqVSsAFEUhKSmJ2NhYtmzZwpo1axgwYACvv/66zXOee+450tLSclxWXFwcbdu2pUGDBnTr1u2R5wcFBTF48GDCw8NzXFZOHT16lO7du9OrVy/atWtnPT548GCKFSuW7+ULBYdTJ81t27bx+uuv4+vry6RJk4iKirJ5/ObNmwwdOpRFixZRtWpV+vTpo1Gk2qlSpQpDhgzJcPzs2bP069ePKVOmULFiRZ544gnrY3379s1VWcnJySQmJmb7/ODg4Exjyw937tzBZDJlOG6v8oWCw2mrXmlpabz77rsATJ48OUPCBPD392fcuHF4eXkxdepUxNok94WEhDBu3DgAxo8fj8Vi0TgiQXAOTps0N23axMWLF2nRogV16tTJ8jw/Pz9eeuklunXrRkpKis1jhw4dYuDAgdSvX5+aNWvSqVMn5s6dmyG5RkdH06dPH06dOsUrr7xCREQEtWvXpn///hw9ejRDmXv27OH5558nIiKCqKgoPv/88wxlp0tISOCLL76gVatWVK9enSZNmjB69Gji4uJszhsxYgRhYWEcOHCA9u3bU6NGDXr27PlYHwTh4eFERkYSGxvLgQMHbH7ef7crLlu2jJ49e1K3bl1q165Nt27dmDNnjrX8RYsW0bJlSwDWrl1LWFgYixYtAtR2wxEjRvDtt98SGRlJZGQk06dPz7RNM93x48d5/vnnCQ8Pp1GjRrz//vsZXpM+ffoQFhbG3bt3bY5fuHCBsLAwBg4cCMDEiRN57rnnAJgxYwZhYWHs3LnTGtu/2zTj4+MZO3as9XcSFRXF0KFDOXPmjM15ixYtIiwsjO3btzN16lRiYmKoXr06rVq1YsqUKeKDqIBy2tvztWvXAljfqA/z8ssvZzi2ceNGBg8ejNFoJCYmBn9/fzZv3swHH3zA4cOH+fjjj23Ov3z5Mj179iQkJISnn36aM2fOsH79evbt28fKlSvx9/cH1GQ+cOBAXFxcaNOmDXq9nsWLF7Ns2bIMMcTHx/PMM89w/PhxGjZsSExMDBcuXGD+/Pls3ryZX375heLFi9s8Z8CAAdSoUYNGjRrh4eGBJEnZfs0yExkZyZ49e9i7dy+1a9fO9Jw//viDoUOHEhISQpcuXdDpdKxdu5YPP/yQW7duMWjQIKpUqcJzzz3HjBkzKFeuHB06dKBKlSrWa2zevJnVq1fTpUsXbty4QXh4eJbtpikpKTz77LMEBwfTu3dv/vnnH+bNm8fOnTv59ddf8fLyytHPWK9ePbp06cLixYsJDw+nSZMmBAUFZXrurVu36NWrF2fOnKFWrVq0bNmS2NhYli9fzoYNG/jpp58ytMH+73//48yZM7Rt25YWLVrwxx9/MH78eFJSUnjjjTdyFKvgBBQn1atXLyU0NFTZv39/jp+blJSkNGjQQGnYsKESGxtrPW6xWJQhQ4YooaGhyoYNG6zHW7RooYSGhioffvihIsuy9fi7776rhIaGKnPmzFEURVHMZrMSHR2t1KpVSzl27Jj1vHPnzilRUVFKaGioMmHCBOvxDz74QAkNDVVmzZplE9+aNWuU0NBQ5dVXX7UeGz58uBIaGqoMHjw4Wz/jjh07lNDQUGX48OEPPW/WrFlKaGioMmbMGJufNyIiwvp9ly5dlFq1ainx8fHWY/Hx8UqjRo2UBg0aWF+T2NhYJTQ0VBkwYIBNGaGhoUpoaKiydu3aTGP85JNPbMoODQ1VhgwZolgsFuvxL774QgkNDVXGjRtnPfbss88qoaGhyp07d2yum1kcmZWVHtuTTz5p/X7kyJFKaGio8tVXX9mct2HDBiUsLEyJiYlRzGazoiiK8uuvvyqhoaFKRESEcvbsWZvyq1WrpkRFRSlCweO0t+fpt2o+Pj4ZHlu1ahUTJ07M8HXkyBEA1q1bx82bN+nXrx/BwcHW5+l0OoYOHQqQ6bCZ/v3729TsmjVrBsDFixcB2L9/PxcuXKBLly6EhoZazytTpgzPP/+8zbXMZjNLliyhUqVK9O7d2+axli1bUqdOHVavXk1CQoLNYzExMY94ZXLGxcUFIEM5D1IUhZSUFE6cOGE95uXlxcKFC1m7dm22artubm7W1+tRJEni7bffthntMGTIELy8vFi6dGm2rpEbaWlp/PHHHwQFBfHqq6/aPNasWTNiYmI4e/Yse/bssXksJiaGsmXLWr8PDg6mQoUK3Lhxg9TU1HyLV9CG096e+/r6AmRozwI1aWb25goKCqJKlSocPHgQUNs0Mxs3qdfrM7RVurq6UrJkSZtj6beJ6beZ6c+pXr16hmv+u931zJkzJCUlYbFYMo0hNTUVi8XCsWPHiIiIsB5/MMnnhfTebg8PjyzP6dGjB6NHj6Znz56EhYXRtGlTmjVrRkRERLaHcZUoUQK9Xp+tc4sXL07p0qVtjrm4uFC5cmX27NlDfHw83t7e2bpWTpw5c4aUlBTq1KmT6c8VERHBypUrOXr0KPXr17ceDwkJyXBuenxpaWm4urrmeayCdpw2aQYHB7Nv3z7OnTtHzZo1bR774osv+OKLL6zfT58+nTFjxli/j4+PB9S2uqzcuXPH5vv0GtmD0mtYyr3OkPQE7unpmeHcIkWK2Hyffu7p06eZNGlStuNwc3PL8tzcSK8l/ztJPahnz54ULVqUGTNm8Ndff3Hs2DF++OEHAgMDGTFiBO3bt39kOTmJO6txk+mva1JSUr4kzfTadlbXTm9f/nenXnb+NoSCw2mTZsuWLVm2bBmrV6+mY8eOOXpueq1q+vTpNGzYMM9iSm8qSE/KD0pKSrL5Pj0BdOrUibFjx+ZZDDn1119/AWTZCZSudevWtG7dmrt377Jz507WrVvH0qVLGTp0KBUrVrRpjnhcmd09gDrbSJKkDE0ysizbfJ/VSIVHSf+dXL169aFxpd/lCIWT07ZpRkdHExgYyOrVq9m9e/dDz/33p31YWBiA9Tb9Qbdv3+bTTz/lt99+y3FM6bfle/fuzfDYv8sqV64cLi4uHDp0KNPayPTp05k8eTK3bt3KcRzZtW/fPg4dOkS5cuUybVIA9fZyypQpTJ8+HVA/GFq3bs2YMWMYMGAAsizz999/Azx2T366S5cuZRhedPv2bc6ePUv58uVxd3cH7tfwkpOTbc49f/58hmtmJ7by5cvj6urKP//8k2nPfvrfWcWKFbP3gwgFktMmTTc3N2sNbdCgQaxatSrDOWazmYULFzJlyhQAaztV69at8fLy4scff8ww9u5///sfM2bMyPSN9yg1atSgYsWKLF261CZxXrt2jZ9++snmXFdXV9q3b8/JkyeZNm2azWM7d+5k7Nix/Prrrxlu6/PKxYsXGT58OMBDh8W4uLiwbNkyvv76a2JjYzNcA6BUqVIAGAzqjUtmM29ywmKx8M0331i/VxSFcePGkZycbDM9s1y5cgCsX7/eeiw1NZWpU6dmuGZ2YnNxcaFDhw5cu3aNCRMm2Dy2adMmVqxYQdmyZR86Llgo+Jz29hygQYMGfP/99wwbNowhQ4YQEhJCvXr18PX15erVq2zZsoW4uDjc3d157bXX6NChA6DWlj755BPeeustunTpQqtWrShevDi7d+/mwIED1KhRgxdffDHH8UiSxGeffUbfvn15/vnnadOmDV5eXqxevTrTjpbhw4fz999/89///pe1a9dSs2ZNrl69yqpVqzAYDHz22WePPV/+yJEjNh1NSUlJnDt3js2bN5OWlsagQYNo06bNQ6/x5ptvMmjQILp06ULbtm0pUqQIBw8eZMeOHdSrV49GjRoB6kQCFxcXdu7cyZgxY2jdunWuFt8oWrQoS5Ys4cSJE1SvXp29e/eyb98+IiMjrYPUAbp3786cOXP47LPP2L9/P35+fqxduxZvb+8Mr3dgYCAAK1aswMPDgy5dulCpUqUMZb/99tvs3buXH374gd27d1O7dm1iY2NZt24dnp6e/O9//8uzGrXgnJw6aQI0adKEFStW8Pvvv7Ny5Uo2bNjArVu38PHxoWLFirzwwgt0794dPz8/m+e1a9eOEiVK8N1337F582aSk5MJCgpi4MCB9OvXL9POnOwIDw9n7ty5jB8/ng0bNiBJEjExMXTu3Jlnn33W5lx/f3/mz5/Pd999x+rVq5k5cyb+/v5ER0czcOBAKleunOvXJd3Ro0dtRgIYjUaKFy9Oq1at6Nmzp00vcFZatmzJ1KlT+eGHH1i/fj13796lVKlSDBo0iP79+1sTu4uLC++//z4TJkxgzpw5eHt75yppBgQE8NFHHzFmzBhmzZqFn58f/fv3Z9CgQRiNRut5lStX5vvvv2fSpEmsWLECLy8vWrVqxVtvvUV0dLTNNYOCgnj99df5+eefmT17NhUqVMg0aab/Tr799ltWrlzJrFmz8Pf3p3PnzgwYMIAyZcrk+OcRChZJEd17giAI2ea0bZqCIAhaEElTEAQhB0TSFARByAGRNAVBEHJAJE1BEIQcEElTEAQhB0TSFARByAGRNAVBEHJAJE1BEIQcEElTEAQhB0TSFARByAGRNAVBEHJAJE1BEIQcEElTEAQhB0TSFARByAGRNAVBEHLA6VduFx6DbAGLCRQLpK9FLQHoQKcHSQ968SciCA8S74iCRFHAdG9nRpd7e+RYzGBKhNQESL0Lybcg6SYk3YCkOEi5c+/r3ra5Lp7qc1287v2/F7gVAVcfcPUGD3/wClT/BTCnqslXZwBj3u7JLgiOSCRNZ2VOAdkMBnf137hTcHk/XNkPVw9D3Ak1OZpztwf4I+n04FUCigSrX75lIbAalKgJfiGg04EpBQyuoDc+8nKC4CzEHkHOQJHBlKQmyKSbELsTLv0N1w7BtSNw+9z922tHIOnAv5yaQEuGQ/nmEFj9fjOA0V3rCAUh10TSdFRpiWpySbgGpzfC6XVwdivciX30cx2R3gVK1YayUVAhGoIi1dooOjC4aB2dIGSbSJqOQraAJVXtfDm7BQ4thlNr4e4lrSPLH5IOSteHqp2geldw91dfA9EuKjg4kTS1pMhqR4oiw9E/4OCvcHpD/rVDOrLAalC5I9R4Sr21N6fe78wSBAcikqYW0pLUW9KTa2HPVPVf2ax1VI7DtwyEtYfwnhBYQ/1QEbfwgoMQSdNeLCb131tnYfcP8M8CtVNHeLjiVaDhEKj5tPrBIjqRBI2JpJnfTCnqGMbDi2HrBLhyQOuInJOHP0S8CA0Hq+2eInkKGhFJM7+kDzLf/RPsmFRwO3TsTW9UO4+avAVFK6gdSjox3FiwH5E085opWa1dbv0K9kxTZ+EI+aN0PWj0BoTG3BvoL3rehfwnkmZeMadA/FXYNBYOzAdLmtYRFR5FSkP9l6Fuf3XuvEieQj4SSfNxmZLVgejL31bbLcXLqR3PAGj9kTpsSbq36Igg5DGRNHMrvTd8x2TY+F81cQqOoURN6DheHfspap1CHsvRepojRowgLCyMsLAwzp07l+V5H374IWFhYTRq1ChHwSxatIiwsDA2bdqUo+fZnTkVLuyGyQ1g9fsiYTqaKwfgh2hY9BIkXL3fKScIeSDXixCvWbMm0+OKorB69epcB+TQTMmQeB1+/Q9MawdxJ7WOSHiYw7/B+Jqw+Uv1g86cqnVEQgGQq6RZunTpLJPm3r17uX79Ov7+/o8VmEOxmNSvnd+qb8Ijv2sdkZBd5hTY9D/4uiacWCUSp/DYcpU0W7duzb59+7hx40aGx1avXk1ISAgVK1Z87OAcgjlVXYptcn1Y84G6RJvgfOKvwLxn1buElLsieQq5luukKcsy69aty/DYqlWraNOmTYbju3bt4pVXXqFBgwZUq1aNqKgo3nzzTS5devigb0VR+Pnnn+nQoQM1atSgUaNGvPPOO5km7DxlToXk2/BrP5jeQV3kV3B+R36HCbXg5BqROIVcyVXSrFatGkFBQRlu0Q8dOsTFixczJM3t27fTt29f4uLiGDhwIO+99x6NGzdm+fLlvPzyyw8t67333mPMmDFUrVqVUaNG0aVLF5YvX06PHj24detWbsJ/NFOyugr6N3XhyNL8KUPQTlIc/PIMLH4ZUuPBLMbUCtmX6/lnrVu3Zs6cOSQkJODl5QWotczg4GCqVatmc+60adPw8/NjxowZuLurc4Z79uyJ2Wzmjz/+4OrVqwQGBmYoY/fu3SxYsICRI0fSt29f6/F27drx1FNP8d133zFixIjc/giZs5jUYUTrPlFX1xEKrkOL4fx2eHqmOkxJrOUpZEOue89bt25NWlqazfCgVatWERMTk+HcKVOmsGzZMmvCBEhISMDV1RWApKTM2wlXrlwJQHR0NDdv3rR+lSxZkkqVKrF+/frchp+ROU1t65rTA9Z+JBJmYRF/BX5qA9sm3B97KwgPkeuaZp06dShWrBhr166lffv2nDx5ktOnT/P5559nOFev13P58mUmTZrEiRMnuHDhApcuXSJ9XL0sZ56g0seCtm7dOtPHjcY82rDLlAzXj6q3bGJhjcJHkWH9p/dqnTPUAfFiMzghC7lOmjqdjpYtW/LHH3+QlpbGqlWrKFmyJDVr1sxw7vTp0xkzZgxlypShbt26tGjRgurVq7N582a+++67LMuQZRlXV1e+/fbb3Ib5aJY02D0V1owWCwEXdqfWweSG8Mx88C8vbteFTD3WmlqtW7dm3rx57Ny5k1WrVtG6dWskSbI5JzU1lfHjx1O7dm1mzJiBi8v9Fbh///3h4x2DgoLYsmULFStWpHjx4jaPrVu3Dl9f39wHL8sgm9TecdHZI6S7Ews/RkP36eoumiJxCv+S6zZNgAYNGuDj48PMmTM5cuRIpkONUlJSSE5OpmzZsjYJ89KlS6xatQoAi8WS6fVbtmwJwOTJk22O79u3j4EDB/Lzzz/nLnCLGdISYHp7kTCFjEzJ8EtPdSsSMSxJ+JfHqmkajUaaN2/O77//TkBAAHXq1MlwTpEiRahduzZLly7Fx8eH0NBQzp8/z/z580lOVucEJyZmPne7WbNmxMTEMHfuXC5fvkzTpk2Ji4tj1qxZ+Pj48Nprr+U8aHOqOhVy+hNw60zOny8UDooCK0epU2XbjRVtnILVY9U0AWtveevWrdHpMr/c119/TZs2bVi2bBmfffYZa9asoXv37sycOROAbdu2ZXn9r776iqFDhxIbG8uYMWOYP38+DRo0YO7cuZQvXz5nwZpS4Nph+LaxSJhC9uz5SR1RYUpRm3SEQq/wLA1nSoYzm2H+s+KWS8i54Eh4fino3SCLyoFQOBSO374pWV2s4ZdeImEKuXNhjzqd1ixqnIVdwU+aphQ4+gcs6CuGFAmP5+JetfPQnCwSZyFWsJOmKQWOLoNF/cUMHyFvXPpbXUtVJM5Cq+C2aZqS4ehyWPQfkTCFvFeiJrywQt1/XexFVKgUzKRpSoFzW2HOUyBnPgZUEB5bYHV48U8weojEWYgUvNtzcyrcOAbzeouEKeSvqwfVxT7Eds2FSsFKmhYTxF+GGZ3EZlqCfVw9pHYyisRZaBScpClbIOUOTGsPyfm0OLEgZOb4n7BxrNosJBR4BSdpWkzw8xNw96LWkQiF0ab/wam1InEWAgUjaVrSYPFLcO2I1pEIhdmv/4E758VixgWc8ydNUzLs/F7d41oQtGRKglnd1L/JAjgoRVA5d9I0p8KVA7Dmfa0jEQTV7fMwt6e6VqtQIDlv0pRlSE1Qt6gQQ4sER3JuK/w5UqxzUEA5b9JUzDD3aUjM5/3PBSE3dv8I/ywUQ98KIOdMmuZUWDFCXXlGEBzVstfUDftEjbNAcb6kaUpRt6jYM1XrSATh4SwmtX1TEc1HBYkTJs0kWPa61lEIQvbEX4EVw8X4zQLEuZKmORWWvQGp8VpHIgjZt3cGXNkvxm8WEM6TNC1pcH4nHF6idSSCkHOLXxFjNwsI50maigK/D9Y6CkHInZunYd3Hoje9AHCOpGlKhg2fw+1zWkciCLm34xu4dVaMK3Zyjp80ZVltTN82QetIBOHxyBZ1frrYScCpGbQO4JEUCyx5Jc83Rfv9rBszjnlw4o4Rb6NMnQATb9SMp5yPbS1gyRk3ph/15Gy8Hh8XhXZlUni1RgKexuy1T1lkmHPSg/kn3TmXYMDfVaZhYCqv10wg0MP2zTP5oCczj3sgKxLNS6XyTsRdfFxsy9l82YX+G/xY0jaOyn5iozinc/UgbJsIDQaoW2UITsexa5qmFHVWxfkdeXrZrw548fZ2X+JNOp6plES94mmsueBKj9VFuZBwf9uC7w55MnyHLzLwbGgSlf1MTD/mSb8NfqRl8w5r+I4ifPKXD0Yd9K6URGVfE4vOePDMGn/upknW81bFuvL1P95U9TPTvmwyK2LdeHdXkQzXG3/Am7ZlUkTCdGYb/wtpCVpHIeSSY9c0LWmwcmSeXvJAnJHvDnlSr3gaPzS7idu9VyDmfAqvbfXjm4OejGlwl4uJOib840XtYmnMbHkT472Pl68PeDH5kBfzT3nwbGjSQ8v687wrS8+506FMMl9E3UF3L0dOPeLB2H0+zDjuweDqiQAsPO1OBR8zPza/hSRBSQ+ZL/d7cytVws9VrW2ujnXlyC0DYxveztPXRLAzcwqsehee+BqMblpHI+SQ49Y0zSmw4u08X4V99nEPAD6qe8eaMAHalE6lR4UkynirVcj5Jz0wKxIvV020JkyAV6ol4GWUWXDq0bdWs4574mmQeT/yrjVhAvSqlEynkGSKut6/Pb+QYCDM14R077zKvqZ7x9War6zA1/948WRIChV8REeC0zswT10RSWwD7HQcs6Ypy3DtKOz/Jc8vvemyC6G+5gxtl5IEH9W7a/1+93UXAOoVt937xVUPtYqa2HLFlfg0CW+XzNs2E00Sf90w0rxUKr6utud4GBTGNrxjc8zHRSbJfD+zJpjVTJ1+/WXn3Dgbb2BK09s5+GkFh6UoaqWg9wLARetohBxw0KRpgrUf5fll41J03EzVE1UijVN39Xy135sdV11QgEYl0ni7VjylvdRkej5BTzE3S6YdPkH3zjkTr6dm0czbFk/dNSArEpWKmNl3w8jXB7zYF2fERQctg1N4Kzwef7f7165V1MSckx7svW4kxMfM3BMeBLhbCPa0YJZh0j9edC2fbI1PKABOb1AnbJRpCHrHfCsKGTnm7fnNM+p+K3nsWrL6415N0vPUyqJcTNTTrXwydYqZWBnrRo9V/lxMVM+5narDO4secm+jekuVYMr65Usv69BNI73X+JMmSzxdIZmKRcz8etqDXmuKEv9AR1D/qokUd7fQa01RGi4KZN8NI6Mj7mLQwaLT7lxO0jOw2v3OA1lMLikYVgzTOgIhhxzv482UAus/yZdLp9/+7r7uQueQZD6rfwf9vbw387gHn/zlw2d7ffimyW3MMrjoM89MLveek2qRMn38wbK2XHHllWoJvFHzfsL7fK830455MvGgF6PqqPPoi7rJLGkbx5oLrsSbdDQqkUp5HwtpFph8yItelZIo4SGz8ZILH+7x4VKinmr+Zj6td0f0pDuza4fVCkKFlqK26SQcr6aZcBWOLsuXS6d3xuglhZF17loTJqjDgUp7mdl4yZVkM7jpFUxy5kkx7V7bvbsh6+pe+qWLuloYXN12eMmrNRPwMMisOG/bc+plVOhcLoU+oUmUv9fmOvekB3fS1A6pm6kSr23xpWZREz80v4WHQWHIFl9Moi/BuW3+ErL+/BUcjGMlTVMyrP803xY2SL+tDvK0ZOic0UkQ5mvGJEtcSlIHssebMv9Ljr93W55+vUzLclEfC/U12/S+g9oRVNbLwrVkPakPaaJMMkt8f9iTZyslUdRNZtlZd9JkiQ/r3qVJyTTeqXOX8wkGtlx2fdSPLjgiN1+Upm+jPPsrsjkNi2hzcQqOdT+QchcOLsy3y5f2sqCXsq5BmtNrkHqFEG8zu6+7kGLGZmgSwMUEPTpJoax31hkv/bEsy1LAICkZEuqDZh7zINUi0a+KOpbzXLweP1eZIvd61Mv5qLfl5x8YkC84Aa/iKFFDoG5/klLNTFp3gX2xd/j5xXrodaLK6egcJ2makmHj5/m6mIGrHqr7m9gf58K5eL1N0jPLcPS2EV8XmUB3mYgAEzuvubLnuguNS94fdpRqgX1xRir6mPF6yFTKMl4WAtwtHLxpJMEk2Zx7N03ifIKBikXMZPUeiU+TmHrUk76VE621YrMiYX4gCae3qYq3mZPwLYPS+E2o/Sy3E5IZu/Qkc3edtz58Ni6R0EBvDQMUssNxbs/NKbBvdr4X83QFdWmuT/7ysWkL/OmoJ1eS9HQul4xeB0+EJKOXFCYd9LKZMvntIS8STDp6VHz4El86CZ4qn0yKReK/f9u+Ecbt9ybVItGtfNbXmHrUEwnoG3Z/1lE5bzO303ScjVdrlvtuGAEI8RYdQQ6tWChKt6koQ/7mavmuDPzlALXHbLZJmAAT154g2SSGlDk6SVEcYGVUUwpsHQ8bxuR7UYoCg7f4suaCGxV9TDQtpY7Z3HjJjRBvMwtj4qwDyr/Y58UPR7yo4GOmRVAKJ+8Y2HDJjTrF0vg5+iYuD9wVTz/qQbxJx/NhidZFNlLM8Pw6f/bFuRBeNI2IABP744z8dd2FiIA0ZkTfxJDJx9bNFImWSwMYWC2R/lUTrcevJetos6wYAW4yzYNSWXbWjSKuCsva3bDp1BIcRKnaKM1HQsWWnLuRwDu/HWXrqbgsT9frJHaMbEmAt2ijdmSOkTRlC4yvAXcv2qU4swyzjnuw4JQ75xMM+LrKtApWVy/ye6CDSFFgzgkP5pxQzwtwl2kdnMLg6gkZZgJF/x7AxUQ9azteJ/iBAejJZvj+sBfLzrlxOUlPcXcLT5RNYWC1hAxtpek+3+vNsnNurO54Hfd/nbPrmpGP9vhwNt5AeFETH9e7Y+1pFxxESGOUFu9AcF2OXI5n+KLD/HPpzqOfB/RrXI63YkJxd3GcljPBlvZJU5bh7BaY0VHTMAThsYW2QWnxLgSEsfv8XYb/epAzcQ9f1OXfinm5sHNUK9Eh5MC0/zizpMLOKVpHIQi5I+mgWheUFqNQfILZcPIOI6dt5urd3O11fiMhjb3nb1E3xD+PAxXyivZJ05wCJ1ZqHYUg5IzeBcJ7oTQbjuzuxx+Hb/HOko3Epzx+p9z8PbFUK+WDh7hFd0ja/lbMKfDXdLFniuA8jB4oES9A07ew6Fz5Zd8NPlm2kRRz3k3LWnnwCmO61Miz6wl5S9ukqTPA/rmahiAI2eLmi1L/ZYgaQposMXXnFb5YdSxflsO8m2Jm26k4mlQqhiSJtk1Ho23SvB0L149pGoIgPJRXoDp7p15/ElNMTFx7ge82nc73YhfsiaVuiF+ue9EnTpzIpEmTHnrOmDFj6Nq1a66un1+io6MpVqwY8+fP1zqULGmXNE3JsG+OZsULwkP5lkVp8ibU6s3thGT++9txftkda7fi1xy5hl73+INvX3nlFcqXL5/pY3Xq1Hns6xdG2iVNvRGO/KZZ8YKQqYAwlGbDoUonrtxO5MM5+/nz0FW7h5FssrDu6DViqgaie4zhR1FRUdSvXz8PIxO0S5rxV8StueA4StVRZ+9UiObsjXhG/bSb7aduahrSwr9iaRYagLuLWJDFkWgz+c6cBgd/1aRoQbAR0gTlhT9R+q3isHskHb/ZTouvtmmeMAE2Hb+BQv7PPbl69SojR44kKiqK6tWr88QTTzB7tu06EIsWLSIsLIx//vmHoUOHEhERQWRkJCNGjCAxMZHt27fTrVs3wsPDadu2LcuW2a6Jm5iYyPjx4+nQoQPh4eGEh4fz5JNPZqvt8vTp07z66qvUq1ePmjVr0rVrV5YvX56nr0FOaFPTVCxwYrUmRQsCkgSV2qBEvwvFQtl9/i7Dxm3hbA5n7+S3NIvMyoNXeLJWUK5nCMXHx3PzZsYPAE9PT1xdXbl+/TpPP/00aWlp9OrVi6JFi7J161Y++ugjzpw5w7vvvmvzvMGDB1O1alWGDRvGtm3bWLx4MVeuXOHw4cP06tWLrl27Mn36dIYNG0aVKlWoUKECoLat7t+/n2eeeYYKFSpw8+ZN5s+fz3vvvYevry8xMTGZxn/ixAl69eqFj48P/fr1w93dndWrV/PGG29w7do1+vbtm6vX5XFokzR1BriwS5OihUJMp4eqnVFavIPiE8T6k3cY8eMmriekPfq5Gll/7Dox1Urg6Zq7t+qgQYMyPT5y5Ej69u3LuHHjSEhI4LfffiM4OBiA3r1789lnn/Hzzz/TvXt3KleubH1eaGgoU6aoM/i6d+/Onj172L59OxMnTrQmvpCQEF588UW2bdtGhQoVOHDgALt27WLEiBG88MIL1mu1bt2adu3asXnz5iyT5scff4yXlxdLlizBx8cHgD59+vDqq68ybtw4nnzySfz97Tt7SpukefEvMOdumpkg5Fj67J3mI5DdfFl26Bbv/pY3s3fy284zcY/Vpjl8+HCbpJeuXLlyyLLM6tWrqV27Nh4eHjY10piYGH7++Wc2bNhg8/wHk5ter6dMmTLcunWL6Oho6/HSpUsDcP36dQBq1qzJnj17cHW9v3qToiiYzerrn5SUeQ3/1q1b7Nq1i6effhqz2ZwhvlWrVrF161Y6drTvuhX2T5qmZDi2wu7FCoWQi6c6e6fJUMw6V375+waf/LGR1DycvZPfrt5N5Xp8KoE+bo8+ORPVqlXLsvc8Li6O+Ph4Nm/eTMOGDTM959KlSzbfFytWzOZ7g8GAr68vBsP9VKK7N1RKfmDkv9FoZOHChezYsYPz589z7tw5a7KUs5ghEBsbi6IozJs3j3nz5mUrPnuwf9KU9HBmo92LFQoRdz+Uevdm71jgx51X+HJ1/szesYetJ2/QuXYQujyeHWSxqNOXo6Oj6dOnT6bnFC9e3OZ7vT5jrfdRs5Zu3rxJz549uXTpEg0bNqRx48b069ePyMhImjdv/sj4evToQdu2bTM9J71Wa0/2T5qyCS7vt3uxQiHwr9k7E9ae5/tNZ7SO6rFtPXmDNo/RrpkVf39/3N3dSUtLIyoqyuaxmzdvsnv3bsqWLfvY5cyZM4dz587x3Xff2STJq1cfPv41KCjI+v//ji82NpZjx47h7u7+2PHllP2T5pWDoDjpR76gqbC5JR55zjd1qrN6yTHm7bmQrWvqLh/CuGMqaS2GovgG2T4oW9D/8xv62L9AZ8ASXBtLtScy7E+uO7MNwz+/kxYzCtx8sv3zZNeuszdxN+b9WE2DwUCzZs1YtWoV+/bto1atWtbHJkyYwNy5c/n+++9tkldu3L59G8Dak55u+vTpwP0a5b8VL16cGjVqsHTpUvr372+tVSqKwscff8zGjRtZtmxZhiaD/GbfpGkxQexOuxYpFBz/3j8ej6IoIY25qSvG3F/mYfT04T+/XwG37A0dku5exbD3lywf15/ajOH0FiylwsHgiv7UZpB0WGo8ef8kiwnD0dVYyjfKl4QJEHszmSSTBa88rmkCvPXWW+zcuZO+ffvSq1cvQkJC2LFjB8uXL6d58+Y0adLkscto3rw5M2fOZODAgfTo0QNJkli3bh1bt27FaDSSmJiY5XPfe+89nnvuObp3707v3r0JCAhgzZo1bNmyhV69elGpUqXHji+n7Js0zalwRdyaC7kzpMa9pBlUB6X5KCjfgjPXE+j54isoSCTW6pXtxCVdP4Fx10yktKzfsLpzO5EDK2Ou/zwABp0e/dntNklTf2YbmFOxVIrO6jJ54vClu9Qrl/dDa0qXLs2CBQuYMGECv/32G/Hx8ZQqVYohQ4bwn//8x9qp8zgaN27MmDFjmDp1KmPHjsXHx4dKlSoxbdo05s6dy+bNm0lOTs70Vjs8PJx58+YxceJEZs2aRWpqKmXKlOGdd96hd+/ejx1bbth3uwvZDJMbwo3jditSKEDKNVX33gmK4OCluwxfdIijuzZg3DMbS0gDzLWffvQ1LGkY9i9Gd24XuHigePihu30h09tzl9+HYynfBEv1JwD1Nty4byGp7T8CVy8wp+Ky8lMs5aOwVMm8oyKvDI0J5eWmFXDJbCc+wa7sW9OULRB30q5FCk5OkiC0rbr3TrFK7Dqnzt45F5cEFhMuh5ajGN0wV+2QveulJKA/txNLiWqYa3XDcHgF3M6i/dPojmS5P55YMqWgIIFBHf6jP7UJFBlLxeaP+UM+2v7Y25gtskiaDsC+STPupOgEErJHp7+39847KN4lWXfiDiP/NXtHf3orUvItzFXbg6tn9q7r4k5a0yEoRcs98lTZvyy6iweQyjVCMbiiO78bxS9Y7QhKS0Z/YoN6W27M3RjKnNh/4Y5YuMNB2C9pyjJc2G234gQnpXeBWs+gNBuB7FaEpYdu8d5vmzLO3lFk9Kc2oxhcsZRrlP3rG92zlTABLFXaods8GZe1Y9UijW6YGr6khnlivdqjXqGxTUxI+VMTvB6fSrLJIvYNcgD2+w2YkuHS33YrTnAyLp4oES9Ckzcx61yZ+/d1PvljI2lZzN7RXT6o1jIrNgOX/Bmrp/iUIK3l2+guHwQU5BJVwd0XUuPRn9qEpWp7MLiiO7sTw+HlkJqAElARU52e4OGX5/HciE+lTFGRNLVmv9+A3gCXD9itOMFJuPuh1H8FGg4m1QI/7rjMuDXHHzl7R3d+DwBySObT//KMmzdyOdsy9MfWgosHlnJRSHevYPh7PpbyjVACq6A/uBTjntmYmg7O81Au3UmhTNFsNkMI+cZ+SdPgCrfP2q04wcF5BaJEvQb1+pGYYmL8mvP8uDmbs3csJnTXjiP7lETxLv7o8/NS8m30Z7ZhrtkZ9AZ0Z3eCiyeWmp3VW3PFgnHHT0h3L6P4lMzTos/FJdKgfNE8vaaQc/ZLmooMybftVpzgoPxCUJoMhfBe3EpIZsySYyzI5uyddNKNU0iWNCxBNfMpyKwZjq4C9yLIZdVFMKTE6yie/ta2TMUrQD2eEJfnSfPCrWRSTRZc82F2kJB99kuaaYmi57wwK15F3Xunckcu307gg9n7WHX4Wq4upbt5DgC5aOYbhuWbhBvozu3CXKeH2rsPSIps+3dtuddhlQ87716+k4JZVnB99KlCPrJf0hS1zMIpKOLe7J3mnLkez8gfd7PzzONtJSHduQiAUiQ4LyLMNsPRlSiexZBLR1iPyV4B6G+cVjs6je5It9SEnl7jzEuXbicjtkHXnh2TpvZ7rgh2ZJ29U4eDl+IZNmkbRy7H58mlpcQbKHrjI3vN9Uf+BMiT2TrS3SvoYvdirtvHZliRXKYe+tNbMW6ejFysPPpzu5CLh6J4Bz52mf925U6KGNzuAOyXNBOu260oQSOSBKHt1GRZrBI7zt1l+JdbOH8zOW+LSUuyzsp5GMPRVUDeJE39kRUoRUoiB4XbHFd8gzDX7YPh4FL0Z7YjB4RirpON6Zy5cPlOCoY8mAsuPB77zT3fOwN+H2KXogQ70+mhWlfr7J21x28zavE/Dr33jrM6/GEbPPJhtSMh++zz6ltMkJC7Rn/BgRlcIfwZde8dVx9+P3iT937bSEKq4++946yuJ6RSViRNTdkvaSbdsEtRgh1YZ+8MxaxzYc7e63y6/O8sZ+8IeefKnRTKigHumrJP0lRkSIqzS1FCPnL3Q6k/AKIGk2pW+GH7Jb5ae8Jp995xRklpma9yLtiPfZKmhEiazsy7hDp7p24/EpLTGL/qHFO3OP/eO84ozSI+obRmn6SpM0CiSJpOxy8EpclbEN6Tm/HJjFl0hIV7L2odVaFmEklTc3ZKmkZIvWuXooQ8ULzqvdk7T3Dpljp7Z3UuZ+8IeUskTe3Zr01TJ3r8HF7ZRihNh0FIY2JvJjBm7j72nr8NQKCPmLznCPRiSpDm7DNO05wKP7aCK2JpOIfVcjRy49fR5dMiuoJQUNivpmlwsUtRQi5IOlLq9WfCni9YdGKR1tEIDzGy3kg6VeykdRiFmh2TZv7voyLkUsvRpCgW5h2dR5osZvE4MlmsFKY5O92LKaAXbWIOSdKRUvdFpuyfIhKmEzCIvgHN2SdpKqhT7gTH0+JdUlH49cSvWkciZIOnUcwG0pr9Wv1F0nRIKfX7893+70h9YH9vwXH5ueb9hm1CzoikWZi1GEUaMP/4fK0jEbLJ29Vb6xAKPfskTUkCQ/5ssyrkXkr9V/jugKhlOhNvo0iaWrNP0tTpwcPfLkUJ2dRsBCadjvnHRC3TmYg2Te3ZJ2nqXcG7lF2KErInpeEAvj/wPSmWFK1DEXLAXdyxac5+t+d+Ze1SlJANTd/GrDMw79g8rSMRcsDd4I5eJ7bv1Zr9OoJ8RE3TUaREDebHf34k2Zy3e/cI+auUVynMslgVX2v2S5pexe1WlPAQjd/Eojcy5+gcrSMRcqiUZynSLGICgtbslzTdxPgyR5DS6FVRy3RSwd7BSIhVjrRmv6SpN4B3CbsVJ2Si0WtYDC7MOSJqmc4o2CsYF7HwjebslzRNSVC0ot2KEzJKafw60w5OI8mcpHUoQi6UK1IOvSQ6grRmv6SpKCJpaqnhYGSDG7OOzNI6EiGXSnuX1joEAbtOo3SDgMp2K06wldLkTaYdnEaiKVHrUIRckJAo6VVS6zAE7Jk0dXooVdtuxQkPaDAAxcWD2Udmax2JkEtlfMpgkMSycI7AvnsbFAu1a3GCKqXp2/x86GfiTfFahyLkUhX/KmL2loOwb9J09wPPYnYtstCr9xK4eDLz8EytIxEeQ9WiVXEVC3k7BPsmTVMSBNe1a5GFXUqzYcw4NIO7aWILZWdWq3gtsWq7g7Bv0tS7QOn6di2yUIt8EcnVm58P/6x1JMJjCvUTTVuOwr4fXXojlGtm1yILs5QWo5h5ZKaoZTq5Ep4lxOpGDsT+m1wHVlN70oX8Vec5JDcffj4kapnOLjIwkhSz6ARyFPZPmpIExavZvdjCJiX6PWYdnsWd1DtahyI8psalGuMmtsB2GPZPmhYzlI2ye7GFSq3e6Nx9mX5outaRCHmgYVBDdJL936pC5uz/m3DxgKqd7F5sYZLaajRzjszhduptrUMRHlNp79IUcSmidRjCA7T5+CpdD1y8NCm6wKv1DJK7Hz8d/EnrSIQ80KBkA7HxnYPRJmmaU6F8c02KLuhSW47ml6O/cCv1ltahCHmgcVBjPIweWochPECbpGlwg8pPaFJ0gVbjaSQPf1HLLCAMkoEGJRtoHYbwL9okTZ0ewtqpPelCnkmN+ZD5x+YTlxKndShCHqhbsq7oAHJA2v1GXDygZC3Nii9wqnVD5xHAj//8qHUkQh5pX669mDrpgLRLmrIMoW01K76gSW3zMQuOLxC1zAJCL+lpVaaVSJoOSLukaXSDap01K75AqdoZnVdxUcssQCICIzDqjFqHIWRC2waTopXAt6ymIRQEqW0+5dfjv3I9+brWoQh5pF25dujFdGOHpG3SlE1Q7z+ahuD0qjyJzjuQH/75QetIhDxikAy0CWkjbs0dlLZJ0+AGES+AQSyumltpbT9j8YnFXEu6pnUoQh5pVrqZuDV3YNqPZ5D0UK2r1lE4p7D26LxL8P2B77WORMhDfar2Eau0OzDtk6aLBzR6VesonFJau89ZcvI3riZd1ToUIY8EeQVRK6AWkhjD7LC0T5qg7oceVEfrKJxLaFt0PkF8d+A7rSMR8tBToU9hVsxahyE8hGMkTSRoMEjrIJxKWrv/8vup37mSeEXrUIQ8YpAMPBX6lLg1d3COkTT1RnW5OA9/rSNxDhVboSsSzHf7RS2zIGlRpgUuehetwxAewTGSJoBshtrPaR2FU0jr8AV/nP6DS4mXtA5FyEMDwgeIWqYTcJykaXSHhoNALFDwcBVaoCtSmin7p2gdiZCH6peoT1mfsqIDyAk41uhZV28IbQPHVmgdicNK6zCOlWdWcDHhot3LVpIULFssyCdlSACKgL6mHl19HZLu/ptdSVWwbLUgH5PhDuAKUmkJfRM9usDsfSgqdxQsmyzI52RIAqmohC5Chy5clyGxWLZYsOyxgAK6ijr0rfVIbrbnyKdlzL+YMfQzZDsGexpcezAGybHejkLmHOuvR+8KUWL4UZbKNUPnW4bJ+ybbvWglVcE004S8R0YKUBOY5CZhWW/BvNCMoijqeSYF80wz8g4ZyUNCV1eHLkSHclLB/LMZOVZ+dFl3FUzTTciHZHTBOnQROpDBstyCZaXF5lz5qIxlkwUpUEJXRYd8RMa8PGPvs2WjBV0VnUMmzBrFalCtWDV0OseLTcjIsT7adDoIrgtlGsD5HVpH43BMT4xj1dmVXEi4YPeyLdstEAf61nr0de/PiTYvMSMfllFOKUgVJeTdMso1BV2kDkPM/T8v+ZyMeY4Zy58WdP0fnhws6yyQCIbuBnSh6rlKCwXzLDPyXhm5joyuuHrcst8CRcHQ04AkSVh8LFg2WFCSFCQPtbYpH5NRrigYOjrWn3u6gbUGonOw+ouQNcf7TUl66PCl1lE4npAmSH4hfLPvG23Kvw34oNb6HqCrqn4vX1BrkPIx9V99M9vFJnRldUhlJZTrCkq8kmUxiqI+LpWUrAkTQNKpNUkA5dL95yu3FXTF79+yS4Hqv8odxXo9y0YLuuo6pGKO115YybcSDUo2EItzOBHH++jV6cC/ojq18tAiraNxGKYnvmLNudXExsdqUr6hc+Z/KkqcmpwkTzUh6eroIBEk10wSVHpeSMu6HEmSMPbJfN71v8sCkNwlFNMDSTT13jn3ypcPySg3FQxPO96fOsBbkW9pHYKQQ45X0wR1rc22Y0CMWVOViULyL6ddLfNfFEVBSVSw/GXBstmi1kCrq39K+nA9+qiMtSYlSUGJVcAI5GBHWkVRUO7e64D6W0YKlJAqPJA0S0koZxXkCzJKkoK8VwYvwBcUWcGy2aJ2Hvk6Xi2zTvE61C1RV6xm5GQc97flVgTqvQTbJ2kdieZMHcez7vxazt09p3UoAGqv9tZ7HTqeYOxlRHJ/eFKyrLNAmloTlQzZT2CWpRbkg/fK8gdDD4NNT72+oR75uIx5xr3OH71aK5Z0Epa/LXAX9I3uJ3FFURxmWM+o+qPQS+K23Nk4btI0ukOLUbBvNiQX4u1oyzRAKlqBb7a8rXUkVpKvhK6hDiVOQTmh9qobehrQlcj8xsWyxYJ8QFaHKDXLWZKQAiV0XjqUqwrKGbUsYy+jteYoeUoY+xmRj8uQArryOqSiEopZHfakq6ND8pGQT8qYV5rhDkglJfQd9NbOJC20K9eOkCIhosfcCTn2b0zSQ7PhWkehKdMTX7M+dj1n7p7ROhQrfbgeQwsDxu5GDN0NkASW3y3WYUcPMm80Y9lkAXcwPG14ZI00Q1n19RiiDRh7GdG30cMt1OT3AMlVQl9D7dWXit5ry9wrQzLoo/QoSQrmxWZ0pXQYehrACOZfzSiWrDuk8pOb3o0R9UaI2T9OyrGTptEN6v4H/EK0jkQbwXWRilVk4t8TtY4kS7pKOqQQCeWGAg/cECiygvkPs3ob7wGGZwzoAh7vz00foQc/UE4rD014SpqCZbsFXaQOyVNCPiSDGfRt9ejK69DHqMlXOa1N0uxXox8eBg9NyhYen2MnTQBFgY5fax2FJkxPTmBj7EbO3NG2lqnICvIZGflM5gPTpSL3hvkk3xvmY1Yw/2pG3q/ekhufM2Z/JlCagnxKtg5hyrQsBUjO+hrynntJsoHaFKDcVMADay1X8r8X7y37J83yRcrTr0Y/3Axudi9byBuOnzQNLlCmIdTornUk9lWqNlKxUCbuc4xapnmBGfNvZhQ5Y6JRrt0b5lNEQlEU9bwTClIxCeNzRmuSypZUMM8zY1llyfCQIitqjdYVyKKipqQoWHZY0NfT328KkO99WX+Ye//auT9IQmJMkzFI9i5YyFOOnzRB3UPoifHgUVTrSOzG3GkSmy9s5tTtU1qHog4sD9NBEsg7bGuAlr8sKJfV2UCSl4S8R0Y5poAfGJ41IHnnLEFI3hJSsIRyRcFy6H7iTB+kToI6vOnBHnSbeHZaQAJdvQcGxheVIPlejRNQLt5L8jlJ5nmgR1gPyhcpL4YYOTnn+e3pXeCJr2B+IVg+rmQ4BFRm4tL3tY7ESh+tRz4vY9lgQT6vzj9XriooZxXwBUM7g9pjvUVNdFJxSV1EI7Nr1dEjeakJy7LLgpKiqDXDe4ts6NvqMc80Y/ndgnxUVmuwFxSUS+pMIX2LzHvglUQFebeMvpHeZnC9rqoOyyYLpnkmdBV1ahtnUZDK2S9pBnoE8lbkW7iKTQSdnvMkTYMrhLZTV0E6vlLraPKV+clv2HpxKydun9A6FCvJW8L4glEdo3lSVpOlF+jq6tQk5SEhX5WtbY3KMUWtcWZCF6a7nzR3W+COuloS95r5dMV198s6I6uzfHxB11iHvqEeyZhFLXO7BYygi7S9gZK8JAxPGbCstCDvlZFKSRjaG7KsreaHTxp9gk4se1ggSEpm40QcWdJNmFin4I7dLFET80vr6bGsB8dvHdc6GiEPdK7YmXcbvCuGGBUQzvfR5+IJXQruNg/mTpPYcWm7SJgFRLki5UTCLGCcL2kaXKF8M4h4QetI8l7xqhBYja//nqB1JEIecNW7MjF6olhcuIBxvqQJYHCDdv+FwGpaR5KnLJ0ms/PyTo7ePKp1KEIeGFlvJIEegWLZtwLGOZMmgM4AveaBi5fWkeSNgMooJWswYa+oZRYEMWVj6FihoxjEXgA5cdLUg2cAdP1e60jyhKXTZHZf2c3hm4e1DkV4TKW9S/NJ40/EdrwFlPMmTVDnpldoCc1Hah3J4wkIQykVztd7C+d00YLE2+jNDzE/YNRlvpCy4PycO2mCmjibvAlVO2sdSa5ZOn3D3qt/cSjukNahCI9BL+mZED2BAPcAMeunAHP+pAnqbKGu30PJWlpHknNFKyCXqsV4Uct0eu80eIfqxaqL2/ICrmAkTQCdEfosAu8SWkeSI5bOU9h/bR//3PhH61CEx9Crci86VegkOn4KgQKUNHXg4g3PLVW3ynAGfuWQS9URtUwn1zioMW/XfVvUMAuJgpM0QV1Gzq8sPL/MKYYiWbpM4cCNA+y/vl/rUIRcigiM4OsWX4uOn0KkYCVNUGcMFQuF55ao+ww5Kr8Q5KBIxv81XutIhFyqXqw637b6ViTMQqbgJU1Qe9QDa8AzCxx2G2C582QO3jjIvuv7tA5FyIVQv1CmxkzFRe/iMLtbCvZRMJMmqIkzuC70nK3OHnIkRcpgCa7L+L3jtY5EyIUQnxCmtZ2Gq95VLPdWCBXs37jRDUKaQLefwIH+uOUukzkcd4S91/ZqHYqQQ2V9yvJzu5/xNHiKOeWFlONkkvxidFcXLu48BRzhNqpIaSyl64taphOq4l+FuR3mUsSliEiYhVjBT5qg1jirdoYeczTvHJI7fcPRm8fYc3WPpnEIORMZGMmMdjNEDVMoJEkT7s1Tj4b+68G7pDYxeJfEXLahqGU6mealm/Nd6+/UNkxd4XnLCJkrXH8BRjfwrwADtmoy5VLuPIUTt06w68ouu5ct5M6TFZ5kXLNxopdcsCpcSRPUAfBuftBvFVTtZL9yvQIxh0SJWqaTkJB4rc5rfNDwA4x6MQ5TuM/BxuLYiU4HOlfo9iMUC4NNY/O9SLnzFE7dPsWOyzvyvSzh8XgaPfmy2ZdEBkaKhClkUPhqmg/Su0CTodB9mjqTKL94BmAu15ivRC3T4ZXxLsPCjguJDIwUe5QLmSrcSRPUds6wdtBvtboSfD6QO0/hzJ2zbL+0PV+uL+SNqFJRLOy4kBKeJUTCFLIkkiaow5ACKsOAbXm/WZtnAOZyTUVbpgPTS3oG1hrIpJaTcDe6iwWEhYeSFEVRtA7CYcgW9WvtB7BjCijyY19S6fULJ4tXoOvv3R4/PiHPBXsFM675OMoVKSfWwhSyRdQ0H6TTq73r0e9B/3XgX/7xrufuj6lCNF+JlYwc0hPln2Bxp8VU9K0oEqaQbaKmmRWLSa1prh4Nu76FXLxMSs85nAoMpcvvXfMhQCG3vI3efNToI5oGNxULBws5JmqaWdEb1R71VqPhP2tzXut09yetYkuxKruDaV66OX90/YMmQU1EwhRyRdQ0s8Na63wfdn2XrVqn0mMWZ0pWpdNvnfM/PuGRirkXY3TD0USVihLJUngsoqaZHdZa54fw0kYoVefh57v5klaptahlOgC9pKdPlT6s6LpCJEwhT4ikmRNGNwisrk7B7DY1650vn5zA5cQrrI9db9/4BBuRgZEs6bSEV+u8ipvB7aEJc8SIEYSFhfH9999neU6jRo3o06dPfoTqkOLj43n11VepXbs2ERERrFmzRuuQCAsL44033tA0BjEgLad0ekAPVTqqX5u+gG0TwJyiPu7qQ2poDOM3j9Q0zMIszC+MYXWHUbt4bfSSPkcrE33zzTe0bduWMmXK5GOEzmHy5MmsXLmSXr16Ua1aNWrUqKF1SIwdO5agoCBNYxBJM7fSZ4w0eRPq9Ye1H8H+udDxa64kXWPd+XXaxlcIBXsF80bEG0SXiQbI1SD1lJQURo8ezbRp0/I6PKdz7NgxPDw8GD16tMOs8NSpkx0X2cmCSJqPy+iufrX/H7QYRaqHPxO3vIuC6F+zlwD3AF4Jf4WulbqiKMpjzehp1aoVa9asYcmSJXTu3DnvgnRCJpMJDw8Ph0mYjkK0aeYVozv4lAJgeL3hdK/UXWztms/KFynPmMZjWNV9FZ0qdMKgMzz2qkSjRo3Cx8eHzz//nFu3bj303KtXrzJy5EiioqKoXr067dq144cffsBisVjP2blzJ2FhYWzcuJHPPvuMxo0bU7NmTXr06MHOnTuzHdehQ4cYMGAA9evXJzIykj59+rBrl+26rHkVz4ULFwgLC2PXrl3cuHGDsLAwm7bcjRs30rt3b2rVqkXt2rXp27cve/bY7kQwYsQIoqOjWbhwIfXr16dOnTosXryYRYsWERYWxj///MPQoUOJiIggMjKSESNGkJiYyPbt2+nWrRvh4eG0bduWZcuW2Vz3322a0dHRjBgxghUrVtCpUydq1KhBixYtmDRpErJsO6Pv4MGD9OvXj4iICBo2bMhnn33GggULCAsL48KFC9n+XYiaZh5zNbgRYHBjeL3hvBbxGrMPz2bB8QXEpcRpHVqBERkYycs1X6ZuibrIioxBZ8iz+eLFihXj7bff5r333uPzzz/nv//9b6bnXbp0iaeffpr4+HieeeYZgoOD2bJlC1988QUHDx7k669tR058+OGH+Pr68tJLL5GcnMzUqVN56aWX2LBhA35+fg+Nae/evfTt2xcfHx+ee+45fH19+eWXX3jxxReZPn06kZGReRqPv78/Y8eO5dtvv+X69eu89957FCtWDIB58+bx/vvvExoaypAhQzCbzcyfP5/nn3+er7/+mlatWlnLuHHjBl9++SUvv/wy8fHxREZGsnv3bgAGDx5M1apVGTZsGNu2bWPx4sVcuXKFw4cP06tXL7p27cr06dMZNmwYVapUoUKFClm+Pjt37mT16tU8++yz9OrViyVLljBx4kT8/Pzo3bs3AIcPH6ZPnz54e3vz8ssvI8sys2bNwmQyPfS1z4xImvnEzeCGm8GNfjX68XL4y2yI3cCMwzP4+9rfWofmlNz0brQq24oXq79IWZ+y6HV69JIePXm/X89TTz3Fb7/9Zr1Fb9iwYYZzvvzyS65fv87s2bOJjIwEoHfv3nz44YfMmTOHNWvW2CQQT09P5s2bh9Go1oQDAgIYOXIkq1ev5umnn35oPJ9//jnu7u4sWrSI4sWLA9ChQwdiYmL4/vvviYyMzPN4OnXqxMKFC7l79661HfH27dt8/vnnhIaGsnDhQlxd1Xb9nj170rFjRz744AOaNm2Ki4s6SiE1NZX33nuPp556ylpuetIMDQ1lypQpAHTv3p09e/awfft2Jk6cSExMDAAhISG8+OKLbNu27aFJ89KlS8yfP5/w8HAAOnbsSOPGjVm6dKk1aY4dq66ZO3/+fEqUUEe9dOrUifbt2z/0tc+MuD3PZ24GNww6Ay1Kt+DHmB9Z1mUZ3St1x8vopXVoTqFmsZp8FPURm3tu5v2G71PJrxIuehf0Uv5tbiZJEh999BFGo5HRo0eTmppq87jFYmHdunXUq1fPmqDSDRw4ECDD8JyYmBhrggKoWrUqANevX39oLHFxcezfv5/27dtbEyaAr68vs2fP5uOPP7ZbPNu2bSMpKYkXX3zRmjABihQpwrPPPsv169f5+2/bSkGDBg0yvVZ6YgTQ6/WUKVMGvV5PdHS09Xjp0qUfGRNAUFCQNWGC+oFQtmxZbty4AcCdO3fYuXMnHTp0sCZMgJIlS9KxY8eHXjszoqZpJ3qdWisq61OWYfWG8U6Dd9hxaQdLTi5h44WNpFhStA7RYRRzL0aH8h3oVbkXxd3VRGHvFdQrVKjAyy+/zKRJk/jmm2948803rY/dunWLpKQkypfPOLU2ICAAHx8fLl68aHPc39/f5vv0hJXe7hYfH09Kiu3fgLe3t/U6ISEhGcqqVKkSoN4G53U8mUlv98usnPRj/y6naNGimV4r/XY/ncFgwNfXF4PhfkpKHyr2sJgg488C4OLiYn1ebGwssixn+ho+rAabFZE0NeBuULcRjgqKIqJEBHpJz4bYDfx+6ne2XdqGSc55O4uzC/EJIbpMNO3LtaeSXyVSLanW10krL7/8MsuXL+enn37iiSeesB5Pn3mc1QxkWZZtanHAI8eKfvrppyxevNjm2JgxY6zJ6GE92PkRz8NkVk76sX+Xo9dnfkeQ2fHc9tI/6mcxm80A1maDBz1YY84ukTQ1pJN01sTQqmwrmgY3RSfp2HdtH2vPr2XbpW2cvXtW2yDziV7SU71YdaJLR9O2XFsCPQIxySbrEm1aJ0xQ32QfffQRffr04f3337fWXPz9/fHw8ODMmTMZnnPt2jUSEhJsbgOz4z//+Q9PPvmkzbGKFSta///8+fMZnjNt2jQuXLjAqFGj8jyezAQHBwNw+vRpatWqZfPY6dOnAfWW19GkT1Q4e/ZshsfOnTuX4+uJpOkgdJLOmjDqlaxHjYAaDKs7jNupt9l0YRNbLm5h//X9XE26qnGkuWPUGalerDoRgRE0DmpM9WLVkVBrFunTG/W6/GunzK26devSrVs3Fi5caD2m1+tp3rw5y5cvZ8+ePTbtiN9++y2ATdtcdlSsWNEmST6oWrVqrFixgkGDBll72u/evcuPP/5I5cqV8yWezERFReHu7s60adPo0KGDtZYWHx/P7Nmz8fPzs2lbdBT+/v7UrVuXP//8k8GDB1tv52/dusXSpUtzfD2RNB1Uek2rqHtRnqzwJG1C2uBmcCPBlMDhG4fZc3UPB28c5GDcQe6k3tE4WlsGnYHyRcpTybcSlfwqUb9kfSr7V8aiqOMFXfXOtf/OsGHDWL9+PXFx94eNDR06lB07dtCvXz/rEJ+tW7eydu1aWrZsScuWLfOs/FGjRvHCCy/QrVs3evbsiZubGwsWLCA+Pp6hQ4faLR5fX1/efvttPvroI7p3707nzp2xWCwsWLCAGzduMG7cuAy3545ixIgRPPPMM3Tv3p2ePXsiSRJz584lPj4eyFnTgEiaTkCv0+Oh8wDAx8WHBqUaUDuwNrIi425w507qHWLjYzl5+ySnb5/mXPw5zt89T2x8LKmW1EdcPXcMkoEAjwBKeJYg0COQIK8gqhWrRhX/KpT0LImMjMliwkXvYh1DaXDSP7ciRYowatQoa4IC9VZ14cKFjB8/nsWLF5OYmEjZsmUZMWIEzz33XJ7OoomMjGT27Nl8/fXXTJkyBaPRSI0aNfj888+tvd72iqd3794EBgby448/MmHCBFxcXAgPD2fMmDEZeu4dSfXq1Zk+fTpffvkl33zzDR4eHnTu3BlFUZg2bVqm7Z1ZEetpFiCKopBqScWiWHDVu2LQGUgxpxCfFs+d1DvEpcRxI+kGV5OvEp8Wj1k2Y1EsWGQLZsWs/iub0ev0uOnVcabuBne8XbzxdfXFz9WP4p7FCXAPwMfFBwW1PFmRMUgGsYOj4LBu3LiRocceYPTo0SxYsID9+/dnu5YskmYhZFHU5Phgr2v6XHkFBSn9P0nK09k2gqCVVq1aUbJkSWbOnGk9lpSURPv27fH392fRokXZvpZ4NxRCekmf5VAQQSiIOnXqxKRJkxgyZAiNGjUiJSWFJUuWcP36dT799NMcXUvUNAVBKPBkWWbu3LnMnz+f8+fPW9uFBwwYkOO2WJE0BUEQckDMPRcEQcgBkTQFQRByQCRNQRCEHBBJUxAEIQdE0hQEQcgBkTQFQRByQCRNQRCEHBBJUxAEIQdE0hQEQcgBkTQFQRByQCRNQRCEHBBJUxAEIQdE0hQEQcgBkTQFQRByQCRNQRCEHBBJUxAEIQf+D584z7rboNDzAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -758,16 +1403,16 @@ }, { "cell_type": "code", - "execution_count": 207, + "execution_count": 846, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(98855, 19)" + "(99, 19)" ] }, - "execution_count": 207, + "execution_count": 846, "metadata": {}, "output_type": "execute_result" } @@ -778,7 +1423,7 @@ }, { "cell_type": "code", - "execution_count": 208, + "execution_count": 847, "metadata": {}, "outputs": [ { @@ -787,7 +1432,7 @@ "0" ] }, - "execution_count": 208, + "execution_count": 847, "metadata": {}, "output_type": "execute_result" } @@ -805,28 +1450,51 @@ }, { "cell_type": "code", - "execution_count": 209, + "execution_count": 848, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Country\n", - "Afghanistan 64\n", - "Albania 109\n", - "Algeria 130\n", - "Andorra 15\n", - "Angola 11\n", - " ... \n", - "Venezuela, Bolivarian Republic of... 123\n", - "Viet Nam 331\n", - "Yemen 13\n", - "Zambia 9\n", - "Zimbabwe 39\n", - "Name: Country, Length: 183, dtype: int64" + "Algeria 1\n", + "Argentina 2\n", + "Australia 1\n", + "Belgium 1\n", + "Brazil 1\n", + "Bulgaria 1\n", + "Chile 1\n", + "China 2\n", + "Colombia 1\n", + "Croatia 1\n", + "Denmark 1\n", + "Dominican Republic 1\n", + "Finland 1\n", + "France 3\n", + "Germany 5\n", + "Greece 1\n", + "India 16\n", + "Indonesia 2\n", + "Ireland 1\n", + "Israel 1\n", + "Japan 1\n", + "Kenya 1\n", + "Latvia 1\n", + "Netherlands 1\n", + "Nigeria 1\n", + "Poland 3\n", + "Romania 1\n", + "Russian Federation 4\n", + "South Africa 1\n", + "Spain 2\n", + "Sweden 3\n", + "Ukraine 1\n", + "United Kingdom 7\n", + "United States 28\n", + "Name: Country, dtype: int64" ] }, - "execution_count": 209, + "execution_count": 848, "metadata": {}, "output_type": "execute_result" } @@ -837,16 +1505,16 @@ }, { "cell_type": "code", - "execution_count": 210, + "execution_count": 849, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "412" + "0" ] }, - "execution_count": 210, + "execution_count": 849, "metadata": {}, "output_type": "execute_result" } @@ -857,7 +1525,7 @@ }, { "cell_type": "code", - "execution_count": 211, + "execution_count": 850, "metadata": {}, "outputs": [], "source": [ @@ -866,7 +1534,7 @@ }, { "cell_type": "code", - "execution_count": 212, + "execution_count": 851, "metadata": {}, "outputs": [ { @@ -875,7 +1543,7 @@ "0" ] }, - "execution_count": 212, + "execution_count": 851, "metadata": {}, "output_type": "execute_result" } @@ -886,7 +1554,7 @@ }, { "cell_type": "code", - "execution_count": 311, + "execution_count": 852, "metadata": {}, "outputs": [], "source": [ @@ -897,12 +1565,12 @@ }, { "cell_type": "code", - "execution_count": 312, + "execution_count": 853, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOgAAAIrCAYAAABVk6bJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1fv38c8SkhAiWUhCGlKlSC+iFJUuHQQLChqJRhSliHS+ShEFlSIWpKp0RUFBFI10BOklAlJFqoYOibQQwnn+4Mn8WBIgu9l1Ke/Xde0FO3P23jO7k9mZe06xGWOMAAAAAAAAAHhFNm9XAAAAAAAAALiTkaADAAAAAAAAvIgEHQAAAAAAAOBFJOgAAAAAAAAALyJBBwAAAAAAAHgRCToAAAAAAADAi0jQAQAAAAAAAF5Egg4AAAAAAADwIhJ0AAAAAAAAgBeRoAMA4CZhs9ky9ViyZInH61KoUKEM37t9+/bpyp4+fVpdunRRVFSUcuTIoQoVKmj69OlOvd+yZcvUqlUr5cuXT35+frLb7apevbpGjx6tM2fOuGuzsmTUqFGaOHGiU69ZsmTJf/ad3Y727t0rm83m8LkPGDBANpvNK/X56aefNGDAAK+8tztda1/O6PPOjP9qP//yyy/14YcfZrjOZrPdFt8NAODOZTPGGG9XAgAASKtWrXJ4/vbbb2vx4sVatGiRw/JSpUopKCjIo3UpVKiQ7r77bg0bNsxheXh4uAoXLuywrH79+lq7dq3ee+89FS9eXF9++aU+++wzTZs2TW3atLnhe/Xv318DBw5U9erVFRsbq3vuuUdnz57VihUrNG7cOLVp00YjRoxw6/a5okyZMgoNDXUqCZGUlKStW7f+J9/Z7Wjv3r0qXLiwJkyYoJiYGEnSwYMHdfDgQVWtWvU/r0/Hjh316aef6lY/fb7WvpycnKyNGzfqnnvuUd68eTMd77/az5s2baotW7Zo79696datWrVKd999t+6++26PvT8AAJ6U3dsVAAAAl12dcMibN6+yZcvmlUSEJOXOnfuG7/3TTz9p/vz5+vLLL9W6dWtJUu3atbVv3z716NFDTz31lHx8fK75+hkzZmjgwIGKjY3V+PHjHVpGNWrUSD179tTKlSvds0H/oZSUFNlsNgUFBXnt+7tVnD17Vjlz5sx0eZIwrrvRZ+3v7+/S/noz7Ofefn8AALKKLq4AANxCTpw4oVdffdXqClqkSBG98cYbSk5Odihns9nUsWNHjR07VsWLF5e/v79KlSrldNfTG5k1a5buuusuPfnkkw7Ln3/+ef3zzz9avXr1dV8/cOBA5cmTRx9//HGG3RZz5cql+vXrW8/Pnz+vPn36qHDhwvLz81O+fPnUoUMHnTp1yuF11+ruVqhQIaslliRNnDhRNptNixcv1iuvvKLQ0FCFhIToscce0z///OPwuj/++ENLly61uvsWKlRI0v9175syZYq6deumfPnyyd/fX3/++ec1u/6tW7dOzZs3V3BwsHLkyKGKFSvqm2++cShz9uxZde/eXYULF1aOHDkUHBysypUr66uvvrruZ3r06FG9+uqrKlWqlO666y6FhYWpTp06WrZsWbqyycnJGjhwoEqWLKkcOXIoJCREtWvX1ooVK6wyly5d0ieffKIKFSooICDAStzOmTPHocyQIUN07733yt/fX2FhYXruued08OBBh/erVauWypQpo19//VXVq1dXzpw59cILL0iS/vnnH7Vq1Uq5cuWS3W7XU089pUOHDqWrc0ZdXAsVKqSmTZsqLi5OlSpVUkBAgO6991598cUX6V6/fPlyVatWTTly5FC+fPnUt29fffbZZ7LZbBm2zEoTExOjTz/9VJJjd/S012R237xW7Lvuukt//PGH6tatq8DAQOXNm1cdO3bU2bNnHcp++umnqlGjhsLCwhQYGKiyZctqyJAhSklJcSh3rc/6evvytbq4bt++Xa1bt1Z4eLj8/f1VoEABPffcc9ZxJ6P93N3bVKtWLc2dO1f79u1z+PzTZPQ3v2XLFj366KPKkyeP1f1+0qRJDmXS6v7VV1/pjTfeUFRUlIKCglSvXj3t2LHjht8dAADuQgs6AABuEefPn1ft2rW1e/duvfXWWypXrpyWLVumd999V/Hx8Zo7d65D+Tlz5mjx4sUaOHCgAgMDNWrUKLVu3VrZs2fXE088ccP3+/XXX5UrVy6dP39exYoVU2xsrLp06eLQIm7Lli0qWbKksmd3PKUoV66ctb569eoZxk9ISNCWLVv01FNPZaoFlTFGLVq00MKFC9WnTx89/PDD2rRpk/r376+VK1dq5cqV8vf3v2GcjLz44otq0qSJvvzySx04cEA9evTQs88+a3UvnjVrlp544gnZ7XaNGjVKktK9V58+fVStWjWNGTNG2bJlU1hYWIYJpsWLF6thw4aqUqWKxowZI7vdrunTp+upp57S2bNnrQRi165dNWXKFL3zzjuqWLGizpw5oy1btuj48ePX3ZYTJ05Iutx1OCIiQqdPn9asWbNUq1YtLVy4ULVq1ZIkXbx4UY0aNdKyZcvUpUsX1alTRxcvXtSqVau0f/9+63uLiYnR1KlTFRsbq4EDB8rPz08bNmxwSGa98sorGjdunDp27KimTZtq79696tu3r5YsWaINGzYoNDTUKpuQkKBnn31WPXv21ODBg5UtWzadO3dO9erV0z///KN3331XxYsX19y5c/XUU09l+jv8/fff1a1bN/Xu3Vvh4eH67LPPFBsbq6JFi6pGjRqSpE2bNumRRx5R8eLFNWnSJOXMmVNjxozR1KlTbxi/b9++OnPmjGbOnOnQqjMyMtIt+2ZKSooaN26sl19+Wb1799aKFSv0zjvvaN++ffrhhx+scrt371abNm2sRODvv/+uQYMGafv27ekSkhl91r169brhvnz15/rQQw8pNDRUAwcOVLFixZSQkKA5c+bowoUL132tO7dp1KhReumll7R7927NmjXrup+lJO3YsUPVq1dXWFiYPv74Y4WEhGjq1KmKiYnR4cOH1bNnT4fy//vf//Tggw/qs88+U1JSknr16qVmzZpp27Zt120FDACA2xgAAHBTatu2rQkMDLSejxkzxkgy33zzjUO5999/30gy8+bNs5ZJMgEBAebQoUPWsosXL5p7773XFC1a9Ibv/eqrr5ovvvjCLF261MyePds888wzRpJ59tlnHcoVK1bMNGjQIN3r//nnHyPJDB48+JrvsWrVKiPJ9O7d+4b1McaYuLg4I8kMGTLEYfnXX39tJJlx48ZZyySZ/v37p4tRsGBB07ZtW+v5hAkTjCTz6quvOpQbMmSIkWQSEhKsZaVLlzY1a9ZMF3Px4sVGkqlRo8Y11y1evNhadu+995qKFSualJQUh7JNmzY1kZGRJjU11RhjTJkyZUyLFi3SxXTWxYsXTUpKiqlbt65p2bKltXzy5MlGkhk/fvw1X/vrr78aSeaNN964Zplt27Zl+BmuXr3aSDL/+9//rGU1a9Y0kszChQsdyo4ePdpIMt9//73D8nbt2hlJZsKECday/v37m6tPYQsWLGhy5Mhh9u3bZy07d+6cCQ4ONi+//LK17MknnzSBgYHm6NGj1rLU1FRTqlQpI8ns2bPnmttpjDEdOnRI997GOLdvZqRt27ZGkvnoo48clg8aNMhIMsuXL8/wdampqSYlJcVMnjzZ+Pj4mBMnTljrrvVZG3PtfXnPnj3pPu86deqY3LlzmyNHjlyz/hnt557YpiZNmpiCBQtm+Lqr/+affvpp4+/vb/bv3+9QrlGjRiZnzpzm1KlTDnVv3LixQ7lvvvnGSDIrV6685nYDAOBOdHEFAOAWsWjRIgUGBqZr/ZbW4mrhwoUOy+vWravw8HDruY+Pj5566in9+eef6boeXu3TTz/V888/rxo1aujRRx/V1KlT1bFjR02dOlUbN250KHu9GTXdOdtmWmu2K7uoStKTTz6pwMDAdNvvjObNmzs8T2sBuG/fvkzHePzxx29Y5s8//9T27dv1zDPPSLrcii3t0bhxYyUkJFjd6h544AH9/PPP6t27t5YsWaJz585lui5jxoxRpUqVlCNHDmXPnl2+vr5auHChtm3bZpX5+eeflSNHDquLaUZ+/vlnSVKHDh2uWWbx4sWS0n8vDzzwgEqWLJnue8mTJ4/q1KmTLkauXLnSfQ+ZmWQkTYUKFVSgQAHreY4cOVS8eHGH73Dp0qWqU6eOQ4u+bNmyqVWrVpl+n4y4a99M2y/SpG1/2mcsSRs3blTz5s0VEhIiHx8f+fr66rnnnlNqaqp27tzp8PqMPmtnnD17VkuXLlWrVq2cmjTiSu7epsxatGiR6tatq/z58zssj4mJ0dmzZ9ONbemOYwAAAFlBgg4AgFvE8ePHFRERkS7pFRYWpuzZs6fr+hgREZEuRtqyG3WTzMizzz4ryXG22ZCQkAxjpXWzDA4Ovma8tGTKnj17MvX+x48fV/bs2dMlCmw2myIiIlzapjQhISEOz9O67TmTFIuMjLxhmcOHD0uSunfvLl9fX4fHq6++Kkk6duyYJOnjjz9Wr169NHv2bNWuXVvBwcFq0aKFdu3add33+OCDD/TKK6+oSpUq+vbbb7Vq1SqtXbtWDRs2dNieo0ePKioqStmyXft08OjRo/Lx8clwX0qT9rlntP1RUVHpvpeMyh0/ftwhmZzmeu97tau/Q+ny93jlNl/rfTJa5gx37JvZs2dPtw1X/73u379fDz/8sP7++2999NFHWrZsmdauXWuNjXf1/pqZffJ6Tp48qdTUVJcn5fDENmXW8ePHr7lPXvn+adxxDAAAICsYgw4AgFtESEiIVq9eLWOMQ5LuyJEjunjxokOrIEkZjn+WtiyjZMaNGGMkySGhU7ZsWX311Ve6ePGiwzh0mzdvliSVKVPmmvEiIyNVtmxZzZs3L1MzeYaEhOjixYs6evSoQyLEGKNDhw7p/vvvt5b5+/unmzhDci0xmVmZaS2Y9h316dNHjz32WIZlSpQoIUkKDAzUW2+9pbfeekuHDx+2WtM1a9ZM27dvv+Z7TJ06VbVq1dLo0aMdlv/7778Oz/Pmzavly5fr0qVL10zS5c2bV6mpqTp06NA1kz1p+1JCQkK6RM4///yTbr/M6HMKCQnRmjVr0i3PaB/OipCQECtJ6s73cWbfvJaLFy/q+PHjDn+bV/+9zp49W2fOnNF3332nggULWuXi4+MzjJnVFqzBwcHy8fG5YYvba/HENmVWSEiIEhIS0i1Pm/zl6v0SAABvowUdAAC3iLp16+r06dOaPXu2w/LJkydb66+0cOFCh2REamqqvv76a91zzz0utYhJe5+qVatay1q2bKnTp0/r22+/dSg7adIkRUVFqUqVKteN2bdvX508eVKdO3e2EoBXOn36tObNmyfp/7bv6gH9v/32W505c8Zh+wsVKqRNmzY5lFu0aJFOnz59o828pqtbY7miRIkSKlasmH7//XdVrlw5w0euXLnSvS48PFwxMTFq3bq1duzYkW4WzCvZbLZ0A/dv2rQpXZe+Ro0a6fz58+lm7Ly6jKR0yb4rpXWhvPp7Wbt2rbZt25Zuv8xI7dq19e+//zrMDCtJX3755Q1f64yaNWtq0aJFVitF6fIMtDNmzMjU66/VqsqZffN6pk2b5vA8bfvTJvZIS7hd+f0aYzR+/PhMxU+T2X05ICBANWvW1IwZMxw+M2e4c5uc+RusW7euFi1a5DAbs3T5OJYzZ06H4xgAADcDWtABAHCLeO655/Tpp5+qbdu22rt3r8qWLavly5dr8ODBaty4serVq+dQPjQ0VHXq1FHfvn2tWVy3b9+u6dOnX/d9vvzyS3333Xdq0qSJChYsqFOnTmnGjBmaPn26YmJiVL58eatso0aN9Mgjj+iVV15RUlKSihYtqq+++kpxcXGaOnXqDWc/fPLJJ9W3b1+9/fbb2r59u2JjY3XPPffo7NmzWr16tcaOHaunnnpK9evX1yOPPKIGDRqoV69eSkpK0oMPPmjNlFmxYkVFR0dbcaOjo9W3b1/169dPNWvW1NatWzVy5EjZ7XYXPvnLypYtq+nTp+vrr79WkSJFlCNHDpUtW9bpOGPHjlWjRo3UoEEDxcTEKF++fDpx4oS2bdumDRs2WMmiKlWqqGnTpipXrpzy5Mmjbdu2acqUKapWrdp1Wxs2bdpUb7/9tvr376+aNWtqx44dGjhwoAoXLqyLFy9a5Vq3bq0JEyaoffv22rFjh2rXrq1Lly5p9erVKlmypJ5++mk9/PDDio6O1jvvvKPDhw+radOm8vf318aNG5UzZ0516tRJJUqU0EsvvaRPPvlE2bJlU6NGjaxZXPPnz6/XX3/9hp/Jc889pxEjRui5557ToEGDVKxYMf3000/65ZdfnP58r+eNN97QDz/8oLp16+qNN95QQECAxowZozNnzkjSdbv7SrK+7/fff1+NGjWSj4+PypUr59S+eS1+fn4aPny4Tp8+rfvvv9+a8bRRo0Z66KGHJEmPPPKI/Pz81Lp1a/Xs2VPnz5/X6NGjdfLkSac+B2f25Q8++EAPPfSQqlSpot69e6to0aI6fPiw5syZo7Fjx2aYUPbUNpUtW1bfffedRo8erfvuu0/ZsmVT5cqVM3zv/v3768cff1Tt2rXVr18/BQcHa9q0aZo7d66GDBmSpWMBAAAe4cUJKgAAwHVcPYurMcYcP37ctG/f3kRGRprs2bObggULmj59+pjz5887lJNkOnToYEaNGmXuuece4+vra+69914zbdq0G77vypUrTd26dU1ERITx9fU1OXPmNPfff78ZNWqUNcPolf7991/TuXNnExERYfz8/Ey5cuXMV1995dS2Ll261DzxxBMmMjLS+Pr6mqCgIFOtWjUzdOhQk5SUZJU7d+6c6dWrlylYsKDx9fU1kZGR5pVXXjEnT550iJecnGx69uxp8ufPbwICAkzNmjVNfHz8NWdxXbt2rcPrM5qVcu/evaZ+/fomV65cRpI1m2Ra2RkzZqTbroziGGPM77//blq1amXCwsKMr6+viYiIMHXq1DFjxoyxyvTu3dtUrlzZ5MmTx/j7+5siRYqY119/3Rw7duy6n2VycrLp3r27yZcvn8mRI4epVKmSmT17tmnbtm26GTDPnTtn+vXrZ4oVK2b8/PxMSEiIqVOnjlmxYoVVJjU11YwYMcKUKVPG+Pn5GbvdbqpVq2Z++OEHhzLvv/++KV68uPH19TWhoaHm2WefNQcOHHB4v5o1a5rSpUtnWO+DBw+axx9/3Nx1110mV65c5vHHHzcrVqzI9CyuTZo0SRezZs2a6WYrXbZsmalSpYrx9/c3ERERpkePHtZMyGkze15LcnKyefHFF03evHmNzWZzmPk1s/tmRtL+1jdt2mRq1aplAgICTHBwsHnllVfM6dOnHcr+8MMPpnz58iZHjhwmX758pkePHubnn39Ot59d77O+1r6c0SyuxhizdetW8+STT5qQkBDj5+dnChQoYGJiYqzjzrVmcXX3Np04ccI88cQTJnfu3Nbnn0YZzNy8efNm06xZM2O3242fn58pX758um271t/vtT4LAAA8xWZMBv1JAADALc1ms6lDhw4aOXKkt6sC3PTq16+vvXv3ujxjaFbFxMRo5syZWeqCfbO5HbcJAABPoosrAAAA7hhdu3ZVxYoVlT9/fp04cULTpk3T/Pnz9fnnn3u7agAA4A5Ggg4AAAB3jNTUVPXr10+HDh2SzWZTqVKlNGXKFD377LPerhoAALiD0cUVAAAAAAAA8KLrT1UFAAAAAAAAwKNI0AEAAAAAAABexBh0bnTp0iX9888/ypUrl2w2m7erAwAAAAAAAC8xxujff/9VVFSUsmW7fhs5EnRu9M8//yh//vzergYAAAAAAABuEgcOHNDdd9993TIk6NwoV65cki5/8EFBQV6uDQAAAAAAALwlKSlJ+fPnt/JF10OCzo3SurUGBQWRoAMAAAAAAECmhkFjkggAAAAAAADAi0jQAQAAAAAAAF5Egg4AAAAAAADwIhJ0AAAAAAAAgBeRoAMAAAAAAAC8iAQdAAAAAAAA4EUk6AAAAAAAAAAvIkEHAAAAAAAAeBEJOgAAAAAAAMCLSNABAAAAAAAAXkSCDgAAAAAAAPAiEnQAAAAAAACAF2X35pv/+uuvGjp0qNavX6+EhATNmjVLLVq0sNbbbLYMXzdkyBD16NFDklSrVi0tXbrUYf1TTz2l6dOnW89Pnjypzp07a86cOZKk5s2b65NPPlHu3LmtMvv371eHDh20aNEiBQQEqE2bNho2bJj8/PzctLW3pvc2HstyjN4VQ91QEwAAAAAAgNuTV1vQnTlzRuXLl9fIkSMzXJ+QkODw+OKLL2Sz2fT44487lGvXrp1DubFjxzqsb9OmjeLj4xUXF6e4uDjFx8crOjraWp+amqomTZrozJkzWr58uaZPn65vv/1W3bp1c/9GAwAAAAAAAFfwagu6Ro0aqVGjRtdcHxER4fD8+++/V+3atVWkSBGH5Tlz5kxXNs22bdsUFxenVatWqUqVKpKk8ePHq1q1atqxY4dKlCihefPmaevWrTpw4ICioqIkScOHD1dMTIwGDRqkoKCgDGMnJycrOTnZep6UlHTjjQYAAAAAAACucMuMQXf48GHNnTtXsbGx6dZNmzZNoaGhKl26tLp3765///3XWrdy5UrZ7XYrOSdJVatWld1u14oVK6wyZcqUsZJzktSgQQMlJydr/fr116zTu+++K7vdbj3y58/vjk0FAAAAAADAHcSrLeicMWnSJOXKlUuPPfaYw/JnnnlGhQsXVkREhLZs2aI+ffro999/1/z58yVJhw4dUlhYWLp4YWFhOnTokFUmPDzcYX2ePHnk5+dnlclInz591LVrV+t5UlISSToAAAAAAAA45ZZJ0H3xxRd65plnlCNHDofl7dq1s/5fpkwZFStWTJUrV9aGDRtUqVIlSRlPNmGMcViemTJX8/f3l7+/v9PbAgAAAAAAAKS5Jbq4Llu2TDt27NCLL754w7KVKlWSr6+vdu3aJenyOHaHDx9OV+7o0aNWq7mIiIh0LeVOnjyplJSUdC3rAAAAAAAAAHe6JRJ0n3/+ue677z6VL1/+hmX/+OMPpaSkKDIyUpJUrVo1JSYmas2aNVaZ1atXKzExUdWrV7fKbNmyRQkJCVaZefPmyd/fX/fdd5+btwYAAAAAAAD4P17t4nr69Gn9+eef1vM9e/YoPj5ewcHBKlCggKTL47rNmDFDw4cPT/f63bt3a9q0aWrcuLFCQ0O1detWdevWTRUrVtSDDz4oSSpZsqQaNmyodu3aaezYsZKkl156SU2bNlWJEiUkSfXr11epUqUUHR2toUOH6sSJE+revbvatWt3zRlcAQAAAAAAAHfwagu6devWqWLFiqpYsaIkqWvXrqpYsaL69etnlZk+fbqMMWrdunW61/v5+WnhwoVq0KCBSpQooc6dO6t+/fpasGCBfHx8rHLTpk1T2bJlVb9+fdWvX1/lypXTlClTrPU+Pj6aO3eucuTIoQcffFCtWrVSixYtNGzYMA9uPQAAAAAAACDZjDHG25W4XSQlJclutysxMfG2aXn33sZjWY7Ru2KoG2oCAAAAAABw63AmT3RLjEEHAAAAAAAA3K5I0AEAAAAAAABeRIIOAAAAAAAA8CISdAAAAAAAAIAXkaADAAAAAAAAvIgEHQAAAAAAAOBFJOgAAAAAAAAALyJBBwAAAAAAAHgRCToAAAAAAADAi0jQAQAAAAAAAF5Egg4AAAAAAADwIhJ0AAAAAAAAgBeRoAMAAAAAAAC8iAQdAAAAAAAA4EUk6AAAAAAAAAAvIkEHAAAAAAAAeBEJOgAAAAAAAMCLSNABAAAAAAAAXkSCDgAAAAAAAPAiEnQAAAAAAACAF5GgAwAAAAAAALyIBB0AAAAAAADgRSToAAAAAAAAAC8iQQcAAAAAAAB4EQk6AAAAAAAAwItI0AEAAAAAAABeRIIOAAAAAAAA8CISdAAAAAAAAIAXkaADAAAAAAAAvIgEHQAAAAAAAOBFXk3Q/frrr2rWrJmioqJks9k0e/Zsh/UxMTGy2WwOj6pVqzqUSU5OVqdOnRQaGqrAwEA1b95cBw8edChz8uRJRUdHy263y263Kzo6WqdOnXIos3//fjVr1kyBgYEKDQ1V586ddeHCBU9sNgAAAAAAAGDxaoLuzJkzKl++vEaOHHnNMg0bNlRCQoL1+OmnnxzWd+nSRbNmzdL06dO1fPlynT59Wk2bNlVqaqpVpk2bNoqPj1dcXJzi4uIUHx+v6Ohoa31qaqqaNGmiM2fOaPny5Zo+fbq+/fZbdevWzf0bDQAAAAAAAFwhuzffvFGjRmrUqNF1y/j7+ysiIiLDdYmJifr88881ZcoU1atXT5I0depU5c+fXwsWLFCDBg20bds2xcXFadWqVapSpYokafz48apWrZp27NihEiVKaN68edq6dasOHDigqKgoSdLw4cMVExOjQYMGKSgoyI1bDQAAAAAAAPyfm34MuiVLligsLEzFixdXu3btdOTIEWvd+vXrlZKSovr161vLoqKiVKZMGa1YsUKStHLlStntdis5J0lVq1aV3W53KFOmTBkrOSdJDRo0UHJystavX3/NuiUnJyspKcnhAQAAAAAAADjjpk7QNWrUSNOmTdOiRYs0fPhwrV27VnXq1FFycrIk6dChQ/Lz81OePHkcXhceHq5Dhw5ZZcLCwtLFDgsLcygTHh7usD5Pnjzy8/OzymTk3Xfftca1s9vtyp8/f5a2FwAAAAAAAHcer3ZxvZGnnnrK+n+ZMmVUuXJlFSxYUHPnztVjjz12zdcZY2Sz2aznV/4/K2Wu1qdPH3Xt2tV6npSURJIOAAAAAAAATrmpW9BdLTIyUgULFtSuXbskSREREbpw4YJOnjzpUO7IkSNWi7iIiAgdPnw4XayjR486lLm6pdzJkyeVkpKSrmXdlfz9/RUUFOTwAAAAAAAAAJxxSyXojh8/rgMHDigyMlKSdN9998nX11fz58+3yiQkJGjLli2qXr26JKlatWpKTEzUmjVrrDKrV69WYmKiQ5ktW7YoISHBKjNv3jz5+/vrvvvu+y82DQAAAAAAAHcor3ZxPX36tP7880/r+Z49exQfH6/g4GAFBwdrwIABevzxxxUZGam9e/fqf//7n0JDQ9WyZUtJkt1uV2xsrLp166aQkBAFBwere/fuKlu2rDWra8mSJdWwYUO1a9dOY8eOlSS99NJLatq0qUqUKCFJql+/vkqVKqXo6GgNHTpUJ06cUPfu3dWuXTtaxQEAAAAAAMCjvJqgW7dunWrXrm09TxvPrW3btho9erQ2b96syZMn69SpU4qMjFTt2rX19ddfK1euXNZrRowYoezZs6tVq1Y6d+6c6tatq4kTJ8rHx8cqM23aNHXu3Nma7bV58+YaOXKktd7Hx0dz587Vq6++qgcffFABAQFq06aNhg0b5umPAAAAAAAAAHc4mzHGeLsSt4ukpCTZ7XYlJibeNi3v3tt4LMsxelcMdUNNAAAAAAAAbh3O5IluqTHoAAAAAAAAgNsNCToAAAAAAADAi0jQAQAAAAAAAF5Egg4AAAAAAADwIhJ0AAAAAAAAgBeRoAMAAAAAAAC8iAQdAAAAAAAA4EUk6AAAAAAAAAAvIkEHAAAAAAAAeBEJOgAAAAAAAMCLSNABAAAAAAAAXkSCDgAAAAAAAPAiEnQAAAAAAACAF5GgAwAAAAAAALyIBB0AAAAAAADgRSToAAAAAAAAAC8iQQcAAAAAAAB4EQk6AAAAAAAAwItI0AEAAAAAAABeRIIOAAAAAAAA8CISdAAAAAAAAIAXkaADAAAAAAAAvIgEHQAAAAAAAOBFJOgAAAAAAAAALyJBBwAAAAAAAHgRCToAAAAAAADAi0jQAQAAAAAAAF5Egg4AAAAAAADwIhJ0AAAAAAAAgBeRoAMAAAAAAAC8iAQdAAAAAAAA4EVeTdD9+uuvatasmaKiomSz2TR79mxrXUpKinr16qWyZcsqMDBQUVFReu655/TPP/84xKhVq5ZsNpvD4+mnn3Yoc/LkSUVHR8tut8tutys6OlqnTp1yKLN//341a9ZMgYGBCg0NVefOnXXhwgVPbToAAAAAAAAgycsJujNnzqh8+fIaOXJkunVnz57Vhg0b1LdvX23YsEHfffeddu7cqebNm6cr265dOyUkJFiPsWPHOqxv06aN4uPjFRcXp7i4OMXHxys6Otpan5qaqiZNmujMmTNavny5pk+frm+//VbdunVz/0YDAAAAAAAAV8juzTdv1KiRGjVqlOE6u92u+fPnOyz75JNP9MADD2j//v0qUKCAtTxnzpyKiIjIMM62bdsUFxenVatWqUqVKpKk8ePHq1q1atqxY4dKlCihefPmaevWrTpw4ICioqIkScOHD1dMTIwGDRqkoKCgDGMnJycrOTnZep6UlJT5jQcAAAAAAAB0i41Bl5iYKJvNpty5czssnzZtmkJDQ1W6dGl1795d//77r7Vu5cqVstvtVnJOkqpWrSq73a4VK1ZYZcqUKWMl5ySpQYMGSk5O1vr1669Zn3fffdfqNmu325U/f343bSkAAAAAAADuFF5tQeeM8+fPq3fv3mrTpo1Di7ZnnnlGhQsXVkREhLZs2aI+ffro999/t1rfHTp0SGFhYenihYWF6dChQ1aZ8PBwh/V58uSRn5+fVSYjffr0UdeuXa3nSUlJJOkAAAAAAADglFsiQZeSkqKnn35aly5d0qhRoxzWtWvXzvp/mTJlVKxYMVWuXFkbNmxQpUqVJEk2my1dTGOMw/LMlLmav7+//P39nd4eAAAAAAAAIM1N38U1JSVFrVq10p49ezR//vxrjgeXplKlSvL19dWuXbskSRERETp8+HC6ckePHrVazUVERKRrKXfy5EmlpKSka1kHAAAAAAAAuNNNnaBLS87t2rVLCxYsUEhIyA1f88cffyglJUWRkZGSpGrVqikxMVFr1qyxyqxevVqJiYmqXr26VWbLli1KSEiwysybN0/+/v6677773LxVAAAAAAAAwP/xahfX06dP688//7Se79mzR/Hx8QoODlZUVJSeeOIJbdiwQT/++KNSU1OtVm7BwcHy8/PT7t27NW3aNDVu3FihoaHaunWrunXrpooVK+rBBx+UJJUsWVINGzZUu3btNHbsWEnSSy+9pKZNm6pEiRKSpPr166tUqVKKjo7W0KFDdeLECXXv3l3t2rW7YYs9AAAAAAAAICtsxhjjrTdfsmSJateunW5527ZtNWDAABUuXDjD1y1evFi1atXSgQMH9Oyzz2rLli06ffq08ufPryZNmqh///4KDg62yp84cUKdO3fWnDlzJEnNmzfXyJEjHWaD3b9/v1599VUtWrRIAQEBatOmjYYNG+bUGHNJSUmy2+1KTEy8bRJ77208luUYvSuGuqEmAAAAAAAAtw5n8kReTdDdbkjQZYwEHQAAAAAAuNM4kye6qcegAwAAAAAAAG53JOgAAAAAAAAALyJBBwAAAAAAAHgRCToAAAAAAADAi0jQAQAAAAAAAF5Egg4AAAAAAADwIhJ0AAAAAAAAgBeRoAMAAAAAAAC8iAQdAAAAAAAA4EUk6AAAAAAAAAAvIkEHAAAAAAAAeBEJOgAAAAAAAMCLSNABAAAAAAAAXkSCDgAAAAAAAPAiEnQAAAAAAACAF5GgAwAAAAAAALyIBB0AAAAAAADgRSToAAAAAAAAAC8iQQcAAAAAAAB4EQk6AAAAAAAAwItI0AEAAAAAAABeRIIOAAAAAAAA8CISdAAAAAAAAIAXkaADAAAAAAAAvIgEHQAAAAAAAOBFJOgAAAAAAAAALyJBBwAAAAAAAHgRCToAAAAAAADAi1xK0BUpUkTHjx9Pt/zUqVMqUqRIlisFAAAAAAAA3ClcStDt3btXqamp6ZYnJyfr77//znKlAAAAAAAAgDuFUwm6OXPmaM6cOZKkX375xXo+Z84czZo1S2+//bYKFSqU6Xi//vqrmjVrpqioKNlsNs2ePdthvTFGAwYMUFRUlAICAlSrVi398ccfDmWSk5PVqVMnhYaGKjAwUM2bN9fBgwcdypw8eVLR0dGy2+2y2+2Kjo7WqVOnHMrs379fzZo1U2BgoEJDQ9W5c2dduHAh09sCAAAAAAAAuCK7M4VbtGghSbLZbGrbtq3DOl9fXxUqVEjDhw/PdLwzZ86ofPnyev755/X444+nWz9kyBB98MEHmjhxoooXL6533nlHjzzyiHbs2KFcuXJJkrp06aIffvhB06dPV0hIiLp166amTZtq/fr18vHxkSS1adNGBw8eVFxcnCTppZdeUnR0tH744QdJUmpqqpo0aaK8efNq+fLlOn78uNq2bStjjD755BNnPiIAAAAAAADAKTZjjHH2RYULF9batWsVGhrqvorYbJo1a5aVBDTGKCoqSl26dFGvXr0kXW4tFx4ervfff18vv/yyEhMTlTdvXk2ZMkVPPfWUJOmff/5R/vz59dNPP6lBgwbatm2bSpUqpVWrVqlKlSqSpFWrVqlatWravn27SpQooZ9//llNmzbVgQMHFBUVJUmaPn26YmJidOTIEQUFBWVqG5KSkmS325WYmJjp19zs3tt4LMsxeld0334CAAAAAABwK3AmT+TSGHR79uxxa3LuWu9x6NAh1a9f31rm7++vmjVrasWKFZKk9evXKyUlxaFMVFSUypQpY5VZuXKl7Ha7lZyTpKpVq8putzuUKVOmjJWck6QGDRooOTlZ69evv2Ydk5OTlZSU5PAAAAAAAAAAnOFUF9crLVy4UAsXLtSRI0d06dIlh3VffPFFlit26NAhSVJ4eLjD8vDwcO3bt88q4+fnpzx58qQrk/b6Q4cOKSwsLF38sLAwhzJXv0+ePHnk5+dnlcnIu+++q7feesvJLQMAAAAAAAD+j0st6N566y3Vr19fCxcu1LFjx3Ty5EmHhzvZbDaH58aYdMuudnWZjMq7UuZqffr0UWJiovU4cODAdesFAAAAAAAAXM2lFnRjxozRxIkTFR0d7e76WCIiIiRdbt0WGRlpLT9y5IjV2i0iIkIXLlzQyZMnHVrRHTlyRNWrV7fKHD58OF38o0ePOsRZvXq1w/qTJ08qJSUlXcu6K/n7+8vf39/FLbyzMbYdAAAAAADAZS61oLtw4YKVAPOUwoULKyIiQvPnz3d436VLl1rvfd9998nX19ehTEJCgrZs2WKVqVatmhITE7VmzRqrzOrVq5WYmOhQZsuWLUpISLDKzJs3T/7+/rrvvvs8up0AAAAAAAC4s7mUoHvxxRf15ZdfZvnNT58+rfj4eMXHx0u6PDFEfHy89u/fL5vNpi5dumjw4MGaNWuWtmzZopiYGOXMmVNt2rSRJNntdsXGxqpbt25auHChNm7cqGeffVZly5ZVvXr1JEklS5ZUw4YN1a5dO61atUqrVq1Su3bt1LRpU5UoUUKSVL9+fZUqVUrR0dHauHGjFi5cqO7du6tdu3a3zWysAAAAAAAAuDm51MX1/PnzGjdunBYsWKBy5crJ19fXYf0HH3yQqTjr1q1T7dq1reddu3aVJLVt21YTJ05Uz549de7cOb366qs6efKkqlSponnz5ilXrlzWa0aMGKHs2bOrVatWOnfunOrWrauJEyfKx8fHKjNt2jR17tzZmu21efPmGjlypLXex8dHc+fO1auvvqoHH3xQAQEBatOmjYYNG+b8hwMAAAAAAAA4wWaMMc6+6MqkWrqANpsWLVqUpUrdqpKSkmS325WYmHjbtLzz1FhxjEEHAAAAAABuZ87kiVxqQbd48WKXKgYAAAAAAADAkUtj0AEAAAAAAABwD5da0NWuXVs2m+2a6+/ULq4AAAAAAACAs1xK0FWoUMHheUpKiuLj47Vlyxa1bdvWHfUCAAAAAAAA7gguJehGjBiR4fIBAwbo9OnTWaoQAAAAAAAAcCdx6xh0zz77rL744gt3hgQAAAAAAABua25N0K1cuVI5cuRwZ0gAAAAAAADgtuZSF9fHHnvM4bkxRgkJCVq3bp369u3rlooBAAAAAAAAdwKXEnR2u93hebZs2VSiRAkNHDhQ9evXd0vFAAAAAAAAgDuBSwm6CRMmuLseAAAAAAAAwB3JpQRdmvXr12vbtm2y2WwqVaqUKlas6K56AQAAAAAAAHcElxJ0R44c0dNPP60lS5Yod+7cMsYoMTFRtWvX1vTp05U3b1531xMAAAAAAAC4Lbk0i2unTp2UlJSkP/74QydOnNDJkye1ZcsWJSUlqXPnzu6uIwAAAAAAAHDbcqkFXVxcnBYsWKCSJUtay0qVKqVPP/2USSIAAAAAAAAAJ7jUgu7SpUvy9fVNt9zX11eXLl3KcqUAAAAAAACAO4VLCbo6derotdde0z///GMt+/vvv/X666+rbt26bqscAAAAAAAAcLtzKUE3cuRI/fvvvypUqJDuueceFS1aVIULF9a///6rTz75xN11BAAAAAAAAG5bLo1Blz9/fm3YsEHz58/X9u3bZYxRqVKlVK9ePXfXDwAAAAAAALitOdWCbtGiRSpVqpSSkpIkSY888og6deqkzp076/7771fp0qW1bNkyj1QUAAAAAAAAuB05laD78MMP1a5dOwUFBaVbZ7fb9fLLL+uDDz5wW+UAAAAAAACA251TCbrff/9dDRs2vOb6+vXra/369VmuFAAAAAAAAHCncCpBd/jwYfn6+l5zffbs2XX06NEsVwoAAAAAAAC4UziVoMuXL582b958zfWbNm1SZGRklisFAAAAAAAA3CmcStA1btxY/fr10/nz59OtO3funPr376+mTZu6rXIAAAAAAADA7S67M4XffPNNfffddypevLg6duyoEiVKyGazadu2bfr000+VmpqqN954w1N1BQAAAAAAAG47TiXowsPDtWLFCr3yyivq06ePjDGSJJvNpgYNGmjUqFEKDw/3SEUBAAAAAACA25FTCTpJKliwoH766SedPHlSf/75p4wxKlasmPLkyeOJ+gEAAAAAAAC3NacTdGny5Mmj+++/3511AQAAAAAAAO44Tk0SAQAAAAAAAMC9SNABAAAAAAAAXkSCDgAAAAAAAPCimz5BV6hQIdlstnSPDh06SJJiYmLSratatapDjOTkZHXq1EmhoaEKDAxU8+bNdfDgQYcyJ0+eVHR0tOx2u+x2u6Kjo3Xq1Kn/ajMBAAAAAABwh7rpE3Rr165VQkKC9Zg/f74k6cknn7TKNGzY0KHMTz/95BCjS5cumjVrlqZPn67ly5fr9OnTatq0qVJTU60ybdq0UXx8vOLi4hQXF6f4+HhFR0f/NxsJAAAAAACAO5bLs7j+V/Lmzevw/L333tM999yjmjVrWsv8/f0VERGR4esTExP1+eefa8qUKapXr54kaerUqcqfP78WLFigBg0aaNu2bYqLi9OqVatUpUoVSdL48eNVrVo17dixQyVKlMgwdnJyspKTk63nSUlJWdpWAAAAAAAA3Hlu+hZ0V7pw4YKmTp2qF154QTabzVq+ZMkShYWFqXjx4mrXrp2OHDlirVu/fr1SUlJUv359a1lUVJTKlCmjFStWSJJWrlwpu91uJeckqWrVqrLb7VaZjLz77rtWl1i73a78+fO7c3MBAAAAAABwB7ilEnSzZ8/WqVOnFBMTYy1r1KiRpk2bpkWLFmn48OFau3at6tSpY7VsO3TokPz8/JQnTx6HWOHh4Tp06JBVJiwsLN37hYWFWWUy0qdPHyUmJlqPAwcOuGErAQAAAAAAcCe56bu4Xunzzz9Xo0aNFBUVZS176qmnrP+XKVNGlStXVsGCBTV37lw99thj14xljHFohXfl/69V5mr+/v7y9/d3djMAAAAAAAAAyy3Tgm7fvn1asGCBXnzxxeuWi4yMVMGCBbVr1y5JUkREhC5cuKCTJ086lDty5IjCw8OtMocPH04X6+jRo1YZAAAAAAAAwBNumQTdhAkTFBYWpiZNmly33PHjx3XgwAFFRkZKku677z75+vpas79KUkJCgrZs2aLq1atLkqpVq6bExEStWbPGKrN69WolJiZaZQAAAAAAAABPuCW6uF66dEkTJkxQ27ZtlT37/1X59OnTGjBggB5//HFFRkZq7969+t///qfQ0FC1bNlSkmS32xUbG6tu3bopJCREwcHB6t69u8qWLWvN6lqyZEk1bNhQ7dq109ixYyVJL730kpo2bXrNGVwBAAAAAAAAd7glEnQLFizQ/v379cILLzgs9/Hx0ebNmzV58mSdOnVKkZGRql27tr7++mvlypXLKjdixAhlz55drVq10rlz51S3bl1NnDhRPj4+Vplp06apc+fO1myvzZs318iRI/+bDQQAAAAAAMAdy2aMMd6uxO0iKSlJdrtdiYmJCgoK8nZ13OK9jceyHKN3xdD/LC4AAAAAAMDNwJk80S0zBh0AAAAAAABwOyJBBwAAAAAAAHgRCToAAAAAAADAi0jQAQAAAAAAAF5Egg4AAAAAAADwIhJ0AAAAAAAAgBeRoAMAAAAAAAC8iAQdAAAAAAAA4EUk6AAAAAAAAAAvIkEHAAAAAAAAeBEJOgAAAAAAAMCLSNABAAAAAAAAXkSCDgAAAAAAAPAiEnQAAAAAAACAF5GgAwAAAAAAALyIBB0AAAAAAADgRSToAAAAAAAAAC8iQQcAAAAAAAB4EQk6AAAAAAAAwItI0AEAAAAAAABeRIIOAAAAAAAA8CISdAAAAAAAAIAXkaADAAAAAAAAvIgEHQAAAAAAAOBFJOgAAAAAAAAALyJBBwAAAAAAAHgRCToAAAAAAADAi0jQAQAAAAAAAF6U3dsVANzlvY3Hshyjd8VQj8cEAAAAAAC4Ei3oAAAAAAAAAC+6qRN0AwYMkM1mc3hERERY640xGjBggKKiohQQEKBatWrpjz/+cIiRnJysTp06KTQ0VIGBgWrevLkOHjzoUObkyZOKjo6W3W6X3W5XdHS0Tp069V9sIgAAAAAAAO5wN3WCTpJKly6thIQE67F582Zr3ZAhQ/TBBx9o5MiRWrt2rSIiIvTII4/o33//tcp06dJFs2bN0vTp07V8+XKdPn1aTZs2VWpqqlWmTZs2io+PV1xcnOLi4hQfH6/o6Oj/dDsBAAAAAABwZ7rpx6DLnj27Q6u5NMYYffjhh3rjjTf02GOPSZImTZqk8PBwffnll3r55ZeVmJiozz//XFOmTFG9evUkSVOnTlX+/Pm1YMECNWjQQNu2bVNcXJxWrVqlKlWqSJLGjx+vatWqaceOHSpRosR/t7EAAAAAAAC449z0Leh27dqlqKgoFS5cWE8//bT++usvSdKePXt06NAh1a9f3yrr7++vmjVrasWKFZKk9evXKyUlxaFMVFSUypQpY5VZuXKl7Ha7lZyTpKpVq8put1tlriU5OVlJSUkODwAAAAAAAMAZN3WCrkqVKpo8ebJ++eUXjR8/XocOHVL16tV1/PhxHTp0SJIUHh7u8Jrw8HBr3aFDh+Tn56c8efJct0xYWFi69w4LC7PKXMu7775rjVtnt9uVP39+l7cVAAAAAAAAd6abOkHXqFEjPf744ypbtqzq1aunuXPnSrrclTWNzWZzeI0xJt2yq11dJqPymYnTp08fJSYmWo8DBw7ccJsAAAAAAACAK93UCbqrBQYGqmzZstq1a5c1Lt3VrdyOHDlitaqLiIjQhQsXdPLkyeuWOXz4cLr3Onr0aLrWeVfz9/dXUFCQwwMAAAAAAABwxi2VoEtOTta2bdsUGRmpwoULKyIiQvPnz7fWX7hwQUuXLlX16tUlSffdd598fX0dyiQkJGjLli1WmWrVqikxMVFr1qyxyqxevVqJiYlWGQAAAAAAAMBTbupZXLt3765mzZqpQIECOnLkiN555x0lJSWpbdu2stls6tKliwYPHqxixYqpWLFiGjx4sHLmzKk2bdpIkux2u2JjY9WtWzeFhIQoODhY3bt3t7rMSlLJkiXVsGFDtWvXTmPHjpUkvfTSS2ratCkzuAIAAAAAAMDjbuoE3cGDB9W6dWsdO3ZMefPmVdWqVbVq1SoVLFhQktSzZ0+dO3dOr776qk6ePKkqVapo3rx5ypUrlxVjxIgRyp49u1q1aqVz586pbt26mjhxonx8fKwy06ZNU+fOna3ZXps3b66RI0f+txsLAAAAAACAO5LNGGO8XYnbRVJSkux2uxITE2+b8eje23gsyzF6Vwz9T+LeKjEBAAAAAMDtz5k80S01Bh0AAAAAAABwuyFBBwAAAAAAAHgRCToAAAAAAADAi0jQAQAAAAAAAF5Egg4AAAAAAADwIhJ0AAAAAAAAgBeRoAMAAAAAAAC8iAQdAAAAAAAA4EUk6AAAAAAAAAAvIkEHAAAAAAAAeBEJOgAAAAAAAMCLSNABAAAAAAAAXkSCDgAAAAAAAPAiEnQAAAAAAACAF5GgAwAAAAAAALyIBB0AAAAAAADgRSToAAAAAAAAAC8iQQcAAAAAAAB4EQk6AAAAAAAAwItI0AEAAAAAAABeRIIOAAAAAAAA8CISdAAAAAAAAIAXkaADAAAAAAAAvIgEHQAAAAAAAOBFJOgAAAAAAAAALyJBBwAAAAAAAHgRCToAAAAAAADAi0jQAQAAAAAAAF6U3dsVAO407208luUYvSuGuqEmAAAAAADgZkALOgAAAAAAAMCLbuoE3bvvvqv7779fuXLlUlhYmFq0aKEdO3Y4lImJiZHNZnN4VK1a1aFMcnKyOnXqpNDQUAUGBqp58+Y6ePCgQ5mTJ08qOjpadrtddrtd0dHROnXqlKc3EQAAAAAAAHe4mzpBt3TpUnXo0EGrVq3S/PnzdfHiRdWvX19nzpxxKNewYUMlJCRYj59++slhfZcuXTRr1ixNnz5dy5cv1+nTp9W0aVOlpqZaZdq0aaP4+HjFxcUpLi5O8fHxio6O/k+2EwAAAAAAAHeum3oMuri4OIfnEyZMUFhYmNavX68aNWpYy/39/RUREZFhjMTERH3++eeaMmWK6tWrJ0maOnWq8ufPrwULFqhBgwbatm2b4uLitGrVKlWpUkWSNH78eFWrVk07duxQiRIlPLSFAAAAAAAAuNPd1C3orpaYmChJCg4Odli+ZMkShYWFqXjx4mrXrp2OHDlirVu/fr1SUlJUv359a1lUVJTKlCmjFStWSJJWrlwpu91uJeckqWrVqrLb7VaZjCQnJyspKcnhAQAAAAAAADjjlknQGWPUtWtXPfTQQypTpoy1vFGjRpo2bZoWLVqk4cOHa+3atapTp46Sk5MlSYcOHZKfn5/y5MnjEC88PFyHDh2yyoSFhaV7z7CwMKtMRt59911rzDq73a78+fO7Y1MBAAAAAABwB7mpu7heqWPHjtq0aZOWL1/usPypp56y/l+mTBlVrlxZBQsW1Ny5c/XYY49dM54xRjabzXp+5f+vVeZqffr0UdeuXa3nSUlJJOkAAAAAAADglFuiBV2nTp00Z84cLV68WHffffd1y0ZGRqpgwYLatWuXJCkiIkIXLlzQyZMnHcodOXJE4eHhVpnDhw+ni3X06FGrTEb8/f0VFBTk8AAAAAAAAACccVMn6Iwx6tixo7777jstWrRIhQsXvuFrjh8/rgMHDigyMlKSdN9998nX11fz58+3yiQkJGjLli2qXr26JKlatWpKTEzUmjVrrDKrV69WYmKiVQYAAAAAAADwhJu6i2uHDh305Zdf6vvvv1euXLms8eDsdrsCAgJ0+vRpDRgwQI8//rgiIyO1d+9e/e9//1NoaKhatmxplY2NjVW3bt0UEhKi4OBgde/eXWXLlrVmdS1ZsqQaNmyodu3aaezYsZKkl156SU2bNmUGVwAAAAAAAHjUTZ2gGz16tCSpVq1aDssnTJigmJgY+fj4aPPmzZo8ebJOnTqlyMhI1a5dW19//bVy5cpllR8xYoSyZ8+uVq1a6dy5c6pbt64mTpwoHx8fq8y0adPUuXNna7bX5s2ba+TIkZ7fSAAAAAAAANzRbuoEnTHmuusDAgL0yy+/3DBOjhw59Mknn+iTTz65Zpng4GBNnTrV6ToCN4v3Nh7LcozeFUPdUBMAAAAAAOCMmzpBB8C7SPoBAAAAAOB5JOgA/KdI+gEAAAAA4OimnsUVAAAAAAAAuN2RoAMAAAAAAAC8iAQdAAAAAAAA4EUk6AAAAAAAAAAvYpIIALc8Jp4AAAAAANzKSNABQAZI+gEAAAAA/it0cQUAAAAAAAC8iBZ0APAfomUeAAAAAOBqtKADAAAAAAAAvIgWdABwi6NVHgAAAADc2mhBBwAAAAAAAHgRLegAAOnQKg8AAAAA/ju0oAMAAAAAAAC8iAQdAAAAAAAA4EUk6AAAAAAAAAAvIkEHAAAAAAAAeBGTRAAA/hOemniCCS0AAAAA3OpoQQcAAAAAAAB4ES3oAAC4Cq3yAAAAAPyXSNABAPAf8ETSj0QiAAAAcHsgQQcAACwk/QAAAID/Hgk6AADgcbdKC8JbJSYAAABuLyToAAAAbkEkEwEAAG4fJOgAAADgMbdKIpHkJAAA8CYSdAAAAICH3CrJRBKUAAB4Fwk6AAAAAG7nqaTfrZKgvJNjAgCcR4IOAAAAAOBWt0oykQQlgJsFCToAAAAAANzkVmo9CuDmQYIOAAAAAIA70K3SKvFWiempuLdKTGQNCbqrjBo1SkOHDlVCQoJKly6tDz/8UA8//LC3qwUAAAAAAHDTIumXNdm8XYGbyddff60uXbrojTfe0MaNG/Xwww+rUaNG2r9/v7erBgAAAAAAgNsULeiu8MEHHyg2NlYvvviiJOnDDz/UL7/8otGjR+vdd99NVz45OVnJycnW88TERElSUlLSf1Ph/8D50/9mOUZSkt9/EvdOjumpuMR0b0xPxb2TY3oqLjHdG9NTce/kmJ6KS0z3xvRU3Ds5pqfiEtO9MT0V906O6am4xHRvTE/FvZNj3urS8kPGmBuWtZnMlLoDXLhwQTlz5tSMGTPUsmVLa/lrr72m+Ph4LV26NN1rBgwYoLfeeuu/rCYAAAAAAABuIQcOHNDdd9993TK0oPv/jh07ptTUVIWHhzssDw8P16FDhzJ8TZ8+fdS1a1fr+aVLl3TixAmFhITIZrN5tL43i6SkJOXPn18HDhxQUFDQHRXTU3Hv5JieiktMvqebPaan4hKT7+lmj+mpuMTke7rZY3oqLjH5nu7EmJ6KeyfH9FRcT9X1ZmaM0b///quoqKgbliVBd5WrE2vGmGsm2/z9/eXv7++wLHfu3J6q2k0tKCjI7X9gt0pMT8W9k2N6Ki4x+Z5u9pieiktMvqebPaan4hKT7+lmj+mpuMTke7oTY3oq7p0c01NxPVXXm5Xdbs9UOSaJ+P9CQ0Pl4+OTrrXckSNH0rWqAwAAAAAAANyFBN3/5+fnp/vuu0/z5893WD5//nxVr17dS7UCAAAAAADA7Y4urlfo2rWroqOjVblyZVWrVk3jxo3T/v371b59e29X7abl7++v/v37p+vqeyfE9FTcOzmmp+ISk+/pZo/pqbjE5Hu62WN6Ki4x+Z5u9pieiktMvqc7Maan4t7JMT0V11N1vV0wi+tVRo0apSFDhighIUFlypTRiBEjVKNGDW9XCwAAAAAAALcpEnQAAAAAAACAFzEGHQAAAAAAAOBFJOgAAAAAAAAALyJBBwAAAAAAAHgRCToAAAAAAADAi7J7uwK4tZw7d07GGOXMmVOStG/fPs2aNUulSpVS/fr1vVw7AIC71apVSy+88IKefPJJBQQEeLs6AG4xSUlJmS4bFBTkwZoAN4dz584pJSXFYRn7PgCJWVzhpPr16+uxxx5T+/btderUKd17773y9fXVsWPH9MEHH+iVV17xdhUtf//9t3777TcdOXJEly5dcljXuXNnl2IuWbJEtWrVckPtPCs1NVUTJ07UwoULM9z+RYsWealmAG413bp107Rp03Tu3Dm1atVKsbGxqlq1qrerlWn16tXTX3/9pb/++svbVbE88cQTqly5snr37u2wfOjQoVqzZo1mzJjhpZohI2fPntX+/ft14cIFh+XlypXzUo1uLdmyZZPNZstU2dTUVA/XBs7YvXu3JkyYoN27d+ujjz5SWFiY4uLilD9/fpUuXdrb1bulnD17Vj179tQ333yj48ePp1t/s+777kwmnjp1SjNnztTu3bvVo0cPBQcHa8OGDQoPD1e+fPncUd2bDtdkcBYt6OCUDRs2aMSIEZKkmTNnKjw8XBs3btS3336rfv363TQJugkTJqh9+/by8/NTSEiIw4mhzWZzOUHXsGFD5cuXT88//7zatm2r/Pnzu6W+qampGjFihL755psMLwJOnDjhVLzXXntNEydOVJMmTVSmTJlMnxhn1q3yA7t169YMP8/mzZt7qUb/DU+dDMTExOiFF15QjRo13FFNy8KFC69Z1y+++MLluBcuXNCePXt0zz33KHt253/u8uTJk+m/HWf/Rm8lw4cP15AhQ/Tjjz9qwoQJqlGjhooWLaoXXnhB0dHRCg8P93YVr6tly5Y6duxYlmLMnDnzmsfnDRs2OB1v6dKl6t+/f7rlDRs21LBhw1yup6ecOXNGS5cuzXD7Xf099YSFCxeqbt26Ga4bOXKkOnbs6FS8o0eP6vnnn9fPP/+c4fqb7YL64MGDmjNnTobf0wcffOBSTHfcmFy8eLH1/71796p3796KiYlRtWrVJEkrV67UpEmT9O6772bpfeBeS5cuVaNGjfTggw/q119/1aBBgxQWFqZNmzbps88+08yZM93yPqmpqdq8ebMKFiyoPHnyuBTjVmjp3aNHDy1evFijRo3Sc889p08//VR///23xo4dq/fee8/luEWKFNHatWsVEhLisPzUqVOqVKmSSzenPJFM3LRpk+rVqye73a69e/eqXbt2Cg4O1qxZs7Rv3z5NnjzZ6Zie5o6bM56+JvOEAwcOyGaz6e6775YkrVmzRl9++aVKlSqll156ycu1u/3Rgg5OyZkzp7Zv364CBQqoVatWKl26tPr3768DBw6oRIkSOnv2bJbiu+siKH/+/Grfvr369OmjbNncN9TiiRMnNHXqVE2cOFGbNm1S3bp1FRsbqxYtWsjPz8/luP369dNnn32mrl27qm/fvnrjjTe0d+9ezZ49W/369XP6Aig0NFSTJ09W48aNXa7TtVz9A7tjxw4VKVJEffv2deoHtmLFipn+kXL2Avivv/5Sy5YttXnzZtlsNqUd5tLez5kTizlz5mS6rKuJv0mTJik0NFRNmjSRJPXs2VPjxo1TqVKl9NVXX6lgwYJOxevYsaN1MhAZGZnuc05Lsjvr8ccf19y5c5U/f34rSZ3VhOxbb72lgQMHqnLlyhnWddasWU7HPHv2rDp16qRJkyZJknbu3KkiRYqoc+fOioqKStdq6VrSXi9Jx48f1zvvvKMGDRo4XFT+8ssv6tu3r15//fVM169r166ZLuvqRfWpU6e0Zs2aDJOezz33nEsx0xw9elRjx47VoEGDlJqaqsaNG6tz586qU6eOS/HWrl2rGTNmZHjc/+6777JUV3f4+OOP9cYbb6ht27YaP368nn/+ee3evVtr165Vhw4dNGjQIKdjBgQEKD4+XiVKlHBYvn37dlWsWFHnzp1zqa7nz5/XJ598osWLF2f43buSTNy4caMaN26ss2fP6syZMwoODtaxY8eUM2dOhYWFZall4qlTp/T5559r27ZtstlsKlmypGJjY2W3212Klzt3bs2fP1/333+/w/IPP/xQ/fr1c6qrpSQ988wz2rt3rz788EPVrl1bs2bN0uHDh/XOO+9o+PDh1jHbVTt37tSSJUsy/K769evnVKyFCxeqefPmKly4sHbs2KEyZcpo7969MsaoUqVKLt+YyZEjh1tvTNatW1cvvviiWrdu7bD8yy+/1Lhx47RkyZJMx/LUecR/cYx2x3Hv448/zvT7uZJIr1atmp588kl17dpVuXLl0u+//24lg1q0aKG///7b6ZiS1KVLF5UtW1axsbFKTU1VzZo1tWLFCuXMmVM//vijSwlhT7X0dufvU4ECBTR58mTVqlVLQUFB2rBhg4oWLaopU6boq6++0k8//eRSHbNly6ZDhw4pLCzMYfnhw4dVoEABJScnOx2zQ4cOWrx4sQYOHJhhMvGZZ55xOma9evVUqVIlDRkyxGF/WrFihdq0aaO9e/c6HTONu29OuPPmjCevydK4+zzq4Ycf1ksvvaTo6GgdOnRIJUqUUOnSpbVz50517tzZ6d+nK9EiPRMM4ISyZcuajz76yOzfv98EBQWZFStWGGOMWbdunQkPD89S7I8++sjcddddpkOHDsbPz8+8/PLLpl69esZut5v//e9/TsUKDg42f/75Z5bqcyMbN240nTp1MqGhoSY4ONh06tTJxMfHuxSrSJEi5scffzTGGHPXXXdZdf/oo49M69atnY4XGRlpduzY4VJdbqRu3bqmR48expjLdd29e7cxxpjffvvNFCxYMNNxBgwYkOmHs5o2bWoeffRRc+TIEXPXXXeZrVu3mmXLlpkHHnjA/Prrr07FstlsDo9s2bKle572cFXx4sXNwoULjTHGrFixwgQEBJixY8eaZs2amZYtWzodLyQkxMydO9fl+lzPsWPHzIcffmgqVKhgsmfPbho2bGhmzJhhLly44FK8iIgIM3nyZLfWsXPnzua+++4zy5YtM4GBgdY++v3335sKFSq4FPOxxx4zn3zySbrln3zyiXn00UedilWrVq1MPWrXru1SXefMmWNy5cplsmXLZux2u8mdO7f1yJMnj0sx06xevdq0b9/e2O12U6BAAdOvXz/Trl07kzNnTtOtWzen43311VfG19fXNGnSxPj5+ZmmTZuaEiVKGLvdbmJiYrJUV3cpUaKE+fLLL40xjse8vn37mg4dOrgUs3Llyuatt95Kt7x///6mUqVKLte1devWJjQ01LRv3970798/y8dSY4ypWbOmadeunbl48aK1/fv37zc1atQw3377rct1Xbt2rQkODjb58uUzLVu2NC1atDB33323CQkJMevXr3cp5hdffGFCQ0PNH3/8YS0bOnSoCQoKcvrYb8zl49Pq1auNMcbkypXL+l39/vvvzYMPPuhSHdOMGzfO+Pj4mPDwcFO+fHlToUIF61GxYkWn491///2mb9++xpj/20///fdf07x5czNq1CiX63n8+HHz0UcfmYoVKxofHx9Tv3598/XXX5vk5GSX4gUEBJidO3emW75jxw4TEBDgVKwr9+3evXuboKAgU7VqVfP666+b119/3VSrVs0EBQWZ3r17OxXX08dodx33ChUq5PAIDAw0NpvN5MmTx+TJk8fYbDYTGBhoChcu7FI9AwMDzV9//WWMcTz27dmzx/j7+7sU0xhj8uXLZ9auXWuMMWbWrFkmKirK7Nixw7zxxhumevXqLse9ePGimT17tnn00UeNr6+vKVmypBk6dKg5dOiQS/Hc/fsUGBho9u7da4y5/BmkHVv++usvExgY6HS877//3nz//ffGZrOZyZMnW8+///57891335kOHTqY4sWLOx3XGGPy589vFi9ebIy5fOzbtWuXMcaYyZMnm0aNGrkUMygoyLq+uXJ/2rt3b5b2pwULFpicOXOa0qVLm+zZs5sKFSqY3LlzG7vd7vLfaJs2bUz16tXNmjVrTGBgoJk3b56ZMmWKKVGihHW9llmevCYzxjPnUblz5zbbt283xly+Fk37u/zll19cPp4cOXLENGnSxOG6yR3XULcjEnRwyowZM4yvr6/Jli2bqVevnrV88ODBpmHDhlmK7c6LoB49eph33303S/XJjL///tv079/f+Pv7m8DAQOPj42Meeughs2XLFqfi5MyZ0+zbt88Yc/mCIO3iZPfu3SYoKMjpeg0bNsy8+uqr5tKlS06/9kY89QPrTiEhIeb33383xlyub9qPzMKFC11O0BhjzPz5802lSpVMXFycSUxMNElJSSYuLs5UrlzZzJs3z+W4AQEB1vffs2dPEx0dbYwxZsuWLSY0NNTpeJ4+GUizYcMG07FjR5MjRw4TGhpqunTpkuGF1/V4IpleoEABs3LlSmOM4z66a9cukytXLpdiBgYGWieoV9q5c6dLJ9aeVKxYMfPaa6+ZM2fOuCXe4cOHzbBhw0zp0qWNn5+fefzxx83PP//scHyZP3++S59D2bJlzciRI40x//ddXbp0ybRr187069fPLfX/9NNPM0yGZVZAQIB1UZU3b17rRszOnTtNcHCwSzG///57kz17dvPcc8+ZiRMnmokTJ5ro6GiTPXt2M2vWLJfrGhQUZJYvX+7y6zNit9utY6jdbjdbt241xhizatUqU6JECZfjPvTQQyYmJsakpKRYy1JSUkzbtm3Nww8/7HLcoUOHmnz58pk9e/aY9957zwQFBZnffvvNpVi5cuUye/bsMcYYU7BgQeuz/euvv5xOJl2tQIEC5r333stSjCtdeXMvd+7c1nlIfHy8UzfPrscdNyaLFy9uunbtmm55165dXU4mGGNMbGysefPNN9Mt79evn3n++eddjusJnjjuTZs2zTz44IPW36oxxmzfvt08/PDDZurUqS7FzJcvn/W3c+Vv6XfffWeKFCniUkxjjPH39zcHDhwwxhjTrl0789prrxljLv9dufobfbUjR46Yt99+2+TIkcP4+vqaRx991LoRmlnu/p7Kli1rlixZYowx5pFHHrFuan300UcmX758Tse71o1jm81m/Pz8TPHixc0PP/zgdFxj3J9MNMaYsLAws2HDBmOM4/70yy+/mLvvvtulmMZ45uaEO2/OePKazBjPHE8CAwOt375mzZpZv1X79u0zOXLkcCmmO5OetzsSdHBaQkKC2bBhg0lNTbWWrV692mzbti1Lcd15EXTx4kXTsGFDU7NmTdOxY0frbmraIysuXLhgZsyYYRo1amSyZ89uqlatasaPH29Onz5t9u/fb1q3bm1KlizpVMzixYubVatWGWMuX7SkJRenT59u8ubN63QdW7RoYex2uylcuLBp2rSpadmypcMjKzz1A+tOuXPntupVpEgRs2jRImOMMX/++WeWLqpKly5tli1blm75r7/+au69916X4+bNm9f6TCtUqGAmTZpkjLlcX1dOhDx9MmCMMf/884957733TPHixU1gYKB57rnnzCOPPGKyZ89uPvjgg0zH6dmzpxk4cKBb6xYQEGB9/1fuo/Hx8S4lvI25fDE9ZMiQdMuHDBliChQo4Hpl/79du3aZuLg4c/bsWWOMydJ3lzNnTmub3cHX19fce++9ZsiQIebIkSMZlklMTDS1atVyOnbOnDmtk8CQkBCzadMmY4wxW7duNRERES7X+Up16tRx+Y6vMcYULlzYumlSuXJlM2bMGGPM5WNeVlok/vjjj6Z69eomZ86cJiQkxNSuXdu6eHNVyZIlrZsT7hIaGmpdnBQvXtzExcUZY4zZtm1blo6nOXLkyPC84Y8//shy8qt3794mJCTE5M6d2/ptdUXlypWt7X300UdNdHS0OXjwoOnZs2eWEhTGXL7oc+ffaXh4uNVysFSpUub77783xlw+7rnzJkJWb0zOnTvX5MiRw5QuXdrExsaa2NhYU7p0aZMjR44stfwOCgrK8AbRzp07XT7ue4onjntFihSxziOutG7dOlOoUCGXYvbo0cM89NBDJiEhwWpFtXz5clOkSBGXW+Qac/n39JdffjEXL140+fPnt5JIW7ZsMblz53Y5bhp3tfR29/f0wQcfmI8++sgYY8yiRYtMQECA8fPzM9myZTMffvih0/HSFCpUyBw9etTl12fE3clEYy4nY1u0aGEuXLhg7rrrLvPXX3+Zffv2mYoVK1pJWld44uaEO2/OePKazBjPHE8eeOAB06tXL/Prr7+aHDlyWNfkK1eudPn792SL9NsNk0TAaRERETp9+rTmz5+vGjVqKCAgQPfff3+WB72MiIjQ8ePHVbBgQRUsWFCrVq1S+fLltWfPHmsMscwaPHiwfvnlF2t8n6sniXBVp06d9NVXX0mSnn32WQ0ZMkRlypSx1gcGBuq9995ToUKFnIrbsmVLLVy4UFWqVNFrr72m1q1b6/PPP9f+/fudGtsqTe7cudWyZUunX5cZjz76qAYOHKhvvvlG0uXPc//+/erdu7cef/zxTMcJDg7Wzp07FRoaesPB+J0dgL9MmTLatGmTihQpoipVqmjIkCHy8/PTuHHjVKRIEadiXWn37t0Zjo2UNh6fqx555BG9+OKLqlixonbu3GmNa/THH384vS9J0vLly7V48WL9/PPPKl26tHx9fR3WuzquV0pKiubMmaMJEyZo3rx5KleunF5//XU988wzypUrlyRp+vTpeuWVVzK9354/f17jxo3TggULVK5cuXR1dWXskPvvv19z585Vp06dJP3f3/z48eOt8eOc9dZbbyk2NlZLliyxYqxatUpxcXH67LPPXIopXR7brlWrVlq8eLFsNpt27dqlIkWK6MUXX1Tu3Lk1fPhwp2M2aNBA69aty9K+fqWFCxfq4Ycfvm6ZoKAgh4HgMys4OFj//vuvJClfvnzasmWLypYtq1OnTmV5TNM0CxcuzNLr69Spox9++EGVKlVSbGysXn/9dc2cOVPr1q3TY4895nLcJk2aZHkMs6sNHz5cvXr10pgxY5weu/JaKlasqHXr1ql48eKqXbu2+vXrp2PHjmnKlCkqW7asy3GDgoK0f/9+3XvvvQ7LDxw4YB1PMiOjcbgiIyOVM2dO1ahRQ6tXr9bq1aslOT8OV5cuXZSQkCBJ6t+/vxo0aKBp06bJz89PEydOdCrW1Z588knNmzdP7du3z1KcNFWrVtVvv/2mUqVKqUmTJurWrZs2b96s7777LstjcaWkpOj777/XF198ofnz56ty5coaOXKkWrdurRMnTqhXr1568skntXXr1hvGaty4sXbt2qVRo0Zp+/btMsbo0UcfVfv27bM0vl1AQICWL1+uYsWKOSxfvny5cuTI4XJcyf3jO3niuJeQkJBupk3p8lhZhw8fdinmoEGDFBMTo3z58skYo1KlSik1NVVt2rTRm2++6VJMSXr++efVqlUra9zZRx55RJK0evXqdMeDzDpy5IimTJmiCRMmaNeuXWrWrJmmT5+uBg0aWOcArVq1UosWLTI9EY+7v6crz4tq166t7du3a926dbrnnntUvnx5p+Ol2bNnj8uvvZbnn39ev//+u2rWrKk+ffqoSZMm+uSTT3Tx4kWXx10cNmyYGjdurLCwMJ07d041a9bUoUOHVK1aNZfGck0TGBhojbMXFRWl3bt3WzMMuzpBVIkSJbRjxw4VKlRIFSpU0NixY1WoUCGNGTNGkZGRTsXy5DWZ5Jnjyfvvv6+WLVtq6NChatu2rbV/zpkzRw888IBLMc+cOWONkxgcHKyjR4+qePHiKlu2rEvj497WvJwgxC3m2LFjpk6dOlaT6rS7vy+88EKGXRacERsba92RGz16tAkICDD16tUzuXPnNi+88IJTsXLnzm0mTJiQpfpkpE6dOubLL7+87tgrKSkpWW4FsXLlSjN8+HDrDvjNJDEx0Tz44IMmd+7cxsfHx+TPn9/4+vqaGjVqmNOnT2c6zsSJE8358+eNMcZMmDDB6uaV0cNZcXFx1thIu3fvNiVLljQ2m82EhoY63cXhSg8//LCpU6eO+eeff6xlCQkJpl69eqZGjRouxz158qTp0KGDad68ufn555+t5f369TPvvPOO0/FiYmKu+3BVSEiIyZMnj3n11VfNxo0bMyxz4sQJp+7We2J8n99++83kypXLtG/f3uTIkcO89tprpl69eiYwMNCsW7fOpZjGXO7S16ZNG1OxYkVToUIF06ZNmyy1zjHGmOjoaNOgQQNz4MCBdC1SS5Uq5VLMzz77zBQoUMD079/fzJw502FcGlePKSkpKWb+/PlmzJgxJikpyRhzuSXNv//+61K8NK1btzbDhw83xhjzzjvvmLx585oXX3zRFCxY0C13lt0hNTXVoRvm119/bTp16mQ++ugjl8fh8pQjR46YWrVqmWzZspm77rrLGosq7eGKtWvXWq2Qjxw5Yho1amRy5cplKlas6PK4q8YY06lTJ3P33Xeb6dOnm/3795sDBw6Yr776ytx9991Otaa4ehyuaz2y0ooyzZkzZ8z69etdbq3y0UcfWY/Bgweb0NBQ07ZtWzNs2DCHdWmtbJyxe/duq/XkmTNnzCuvvGLKli1rWrZsafVOcEXHjh1NSEiICQkJMa+99prZvHlzujL79u0zNpvN5fdwh3fffdf4+/ubDh06mClTppgpU6aYDh06mICAgCwNeeKJ8Z08cdxr2rSpKVeunFm7dq3VAnvt2rWmQoUKplmzZi7FTLN7924zY8YM8/XXXzs9jMW1zJgxw3zwwQdWV1djLp8Xzp4926V4nmjp7e7vacGCBddcl9EYt87GbtKkiSlSpIi55557TJMmTcz8+fOzFPNK+/btM99++22WjvlpFi5caIYOHWref/99t9Tx0UcfNePGjTPGXG71WbRoUfPOO++YSpUqmbp167oUc+rUqdZ15IYNG0zevHlNtmzZTI4cOcz06dOzXGd38tR51MWLF82JEycclu3Zs8ccPnzYpXiebJF+u2EWVzjlueee05EjR/TZZ5+pZMmS1gw88+bN0+uvv64//vjD5diXLl3SpUuXlD375Yad33zzjZYvX66iRYuqffv2Ts2SGhERoWXLlqW7k3qnOXr0qHbs2CGbzabixYsrb968bou9aNEibdiwQZcuXVKlSpVUr149t8X2hBMnTtywpd6N/Pnnn2rZsqV27NihAgUKSJL279+v4sWLa/bs2SpatKi7qntTmjJlip588skst0b4L2zevFnDhg3T+vXrrX20V69eWWrx4wkRERH65ZdfVL58eYdZzfbs2aOyZcvq9OnTTse83szVNpvNqdnHJGnfvn1q2LCh9u/fr+TkZGtW3C5duuj8+fMaM2aM03VMc+LECZ0/f15RUVG6dOmShg0bZh33+/btqzx58rgcO01ay5K0v1lv8WSr4TT16tXT/v37FRsbq/Dw8HTv0bZtW5fiesKFCxfUo0cPjRkzRhcvXpQk+fr66pVXXtF7770nf39/L9fQ/QoXLpypcjabLUuz47pT2qyrjz/++DXPwy5evKjffvtNNWvWzFRMT80y/c033+ijjz7Stm3bJEklS5bUa6+9platWrkcs1y5cnr55ZfVoUMH6xhduHBhvfzyy4qMjNRbb73ldExPHPeOHj2qtm3bKi4uzmqJfvHiRTVo0EATJ05MN8PnzeL8+fNZPqcwxmjZsmWqXLmycubM6aaauf97cvcs02lGjhyp119/XU888YRDC/+ZM2fqgw8+UMeOHV2K604XL15Ujhw5FB8f79DzyB3++usvnT59WuXKldPZs2fVvXt363saMWKEW1qTnz17Vtu3b1eBAgUUGhrqhlq7z39xHuUO06ZNU0pKimJiYrRx40Y1aNBAx48ft1qkP/XUU96u4k2DBB2c4omLSU949913lZCQ4NQU9Jm1c+dOLVmyJMMTS2emnZ4zZ06myzZv3jzTZaXLzYg7deqkyZMnW3X08fHRc889p08++cStJzDuUKdOHdWsWVP9+/d3WH7y5Ek9/vjjWrRokZdqlp4xRvPnz7e65pQqVUr16tVzOvG3adOmTJe9E6Ye//PPP7V7926r27wxJsvd5t3t0qVL+vPPPzP8269Ro4ZLMXPlyqUNGzaoWLFiDsfUtWvXqmHDhjp+/Lg7qp4lLVq0UK5cufT5558rJCTEquPSpUv14osvateuXd6u4nWVLFlSO3fudCoxuWnTJpUpU0bZsmW74d9qZv8+J02apKefflr+/v6aNGnSdcu6mkjLmTOnVq5cmaXuUv+1s2fPavfu3TLGqGjRoi7/PqWkpKhEiRL68ccfVapUKbfU7YknnlDlypXVu3dvh+VDhw7VmjVrNGPGDLe8jztduHAhw2OUtxPUaX744Qc988wzOnPmjHLlypVuCBJXk9OeEhgYaA03ERoaqsWLF6ts2bLatm2b6tSpY3WBvlns3LnTOj8pWbKkihcv7nIsT+3/qampGjx4sMaMGaPDhw9bN3369u2rQoUKKTY21ql4ly5dUo4cOfTHH3/c1DfmJ0yYoJ49e2rp0qXWMWrYsGF6++239eOPP95wKIlryZcvn/r06ZMuEffpp59q0KBB+ueffzIV5+OPP9ZLL72kHDly3PD6ydnhAiTpnnvu0XfffXdL/T65y8yZM/XNN99k2E3+ZuzeWbhw4eueg7vjBtLNnPT0NhJ0cIq7LyY9cREkXR7TbdGiRQoJCXHrGFzjx4/XK6+8otDQUEVERKQ7sXTmIHt1KxebzZZurL20+M62eHn55Ze1YMECjRw5Ug8++KCky+OwdO7cWY888ohGjx7tVLwrde7cWUWLFk334zxy5Ej9+eef+vDDD52OmS1bNoWEhOjBBx/UtGnTFBgYKEk6fPiwoqKiMrX9jz32mCZOnKigoKAbjgvl6vfvTtmyZbO+8xslojKz/ZUqVdLChQuVJ08eVaxY8boxndlPnRljy5XP9VpjsMXGxro8Bpvk/mTaqlWr1KZNG+3bty/Dv1Nn/0bTNGnSRJUqVdLbb7+tXLlyadOmTSpYsKCefvppXbp0STNnznQprjuFhobqt99+U4kSJRyO+3v37lWpUqWcHuMkKSlJQUFB1v+vJ63ctVx5QbF//37lz58/3b6/du1anT17NtOte6TLf5+HDh1SWFiYw9/q1bLy3XtCpUqVNGrUqCyPOXalw4cPq3v37lq4cKGOHDmS7nNwdfsTExOVmpqq4OBgh+UnTpxQ9uzZb/jdZyRfvnxasGCBSpYs6VKdrpY3b14tWrQoXcvbzZs3q169ei6P7ZWR1NRUbd68WQULFnSpxcPOnTsVGxurFStWOCxP+43J6n66devWDC8unb2BWLx4cTVu3FiDBw/2yM1Cdyco8+fPr59++klly5ZV+fLl1bt3b7Vu3VorV65Uw4YNlZiYmKk47jzu/Vc8tf8PHDhQkyZN0sCBA9WuXTtt2bJFRYoU0TfffKMRI0Zo5cqVTscsXbq0Pv/88ywf+zz9PQ0bNkwffvihli9frq+//lqDBw/Wzz//rOrVq7tUX+nytdnGjRvT9eLYtWuXKlasmOnGE4ULF9a6desUEhJy3da+rrbwnTBhgmbMmKGpU6emO+7fDLp27aq3335bgYGB6tq163XLOjMO38cff6w33nhDbdu21fjx4/X8889r9+7dWrt2rTp06ODS+Hue3k8/+ugjh+cpKSnauHGj4uLi1KNHj3RJe7gXk0TAKTVq1NDkyZP19ttvS7p8kL506ZKGDh2q2rVrOx2vQoUK1kVQhQoV3HYRlDt37iwN3n0t77zzjgYNGqRevXplOdaVJ48LFixQr169NHjwYFWrVk02m00rVqzQm2++qcGDBzsd+9tvv9XMmTNVq1Yta1njxo0VEBCgVq1aZSlB9+2332bY+q969ep67733XErQSZc/g5dffllVq1bVDz/84PTkCHa73bowz2giB3dZuHChdaF69QXAF198kek4Vw7qu3HjRnXv3l09evSwuiesXLlSw4cP15AhQzIV79FHH7W6hLVo0SLT9bgRT36W0uVBk319fbV//36Hi+qnnnpKr7/+uksJOk8k09q3b6/KlStr7ty51sDW7jB06FDVqlVL69at04ULF9SzZ0/98ccfOnHihH777TeX4545c0ZLly7N8ILa2Tvfly5dyvAzO3jwoFOD+afJkyePEhISFBYWpty5c2f4WWY2qdC1a1c9/fTTypEjhwoXLmzFvdLV3YkyY8+ePdaQAO4agNuZ7kuuXqC/99576tatmwYNGqSyZcumuznlStyYmBjt379fffv2deu+//TTT6tZs2Z69dVXHZZ/8803mjNnjn766SenY3bq1Envv/++PvvsM2u4jKw4ffp0ht06fX19Xe6OlqZLly4qW7asYmNjlZqaqho1amjlypXKmTOnfvzxR4ff78x4/vnnlT17dv34449u/Z7++usvtWzZUps3b3Y4R3P1BuLff/+tzp07uz05t2vXLr3wwgtuT1A+/PDDmj9/vsqWLatWrVrptdde06JFizR//nzVrVs303HcedzLSGpqqiZOnHjN8xNXeiJ4av+fPHmyxo0bp7p16zpMklKuXDlt377dpZhDhgxRjx49NHr06Cx1ofT099S9e3cdP35clStXVmpqqubNm6cqVaq4XF/pcpJ81qxZ6tGjh8Py77//Xs2aNct0nCt/6zwx8cTHH3+sP//8U1FRUSpYsKB1Mz6NMzePPTFkxMaNG62JVjZu3HjNcs4eW0eNGqVx48apdevWmjRpknr27KkiRYqoX79+LrcY9vR++tprr2W4/NNPP9W6desyHcdTSc/bHQk6OMXdF5OeuAiSLt+l8YSTJ0/qySefdHvcLl26aMyYMXrooYesZQ0aNFDOnDn10ksvWeOpZNbZs2cVHh6ebnlYWFiWZ0Y8fvx4hkmboKAgl2dLki7Purd06VK98MILuv/++zVjxgynWkFc+Z176vt/6623NHDgQFWuXDnLF0BXjonx5JNP6uOPP1bjxo2tZeXKlVP+/PnVt2/fTCXcruwefHVX4azw1GeZZt68efrll1909913OywvVqyY9u3b51JMTyTTdu3apZkzZ7p9nMFSpUpp06ZNGj16tHx8fHTmzBk99thj6tChg9MzhaXZuHGjGjdurLNnz+rMmTMKDg7WsWPHlDNnToWFhTmdoHvkkUf04Ycfaty4cZIun5yePn1a/fv3d9hnM2vRokXW3XNXZn69UlRUlL799ls1btxYxhgdPHhQ58+fz7CsMy1o0v4+U1JSNGDAAPXt2zfLs+Je6yT6SllNJjRs2FCS0iUOshJ3+fLlWrZsmSpUqOBSna5l9erVGZ6Q16pVS2+88YbLMRcuXKh58+apbNmy6S4AnW3lW6ZMGX399dfphq+YPn16lrvRzpw5U88++6yky90+9+7dq+3bt2vy5Ml64403nD6nio+P1/r1612eBfNaXnvtNRUuXFgLFixQkSJFtGbNGh0/flzdunXL9GyYV3L3LNNpYmJiPJKgHDlypHVM6dOnj3x9fbV8+XI99thj6tu3b6bjuPO4l5HXXntNEydOVJMmTVSmTBm3bL+n9v+///47w9/SS5cuZTgTbWY8++yzOnv2rMqXLy8/Pz8FBAQ4rM9sIsTd35MnZ5lOU7JkSQ0aNCjdLPO//fabunXr5lAHV97j6qS8q9x583jEiBHWDUJXGwZc7crv251/o/v377daSAYEBFgzrkZHR6tq1aoaOXKk0zE9fTy5lkaNGqlPnz6ZvjbwVNLzdkeCDk5x98XklUkKdwzieTV3T5Lw5JNPat68eQ53/Nxh9+7dGSa97Ha79u7d63S8atWqqX///po8ebI1+O65c+f01ltvWT/eripatKji4uLSjXXx888/u3zCnXZg9vf317Rp0/TOO++oYcOGbmmp6E5jxozRxIkTFR0d7da4mzdvzrA7QeHChbV161a3vtfN5syZMxm2pDh27JjLg8R7IplWpUoV/fnnnx6ZCCQiIsKlgcav5fXXX1ezZs00evRo5c6dW6tWrZKvr6+effbZa94VvZ4RI0aodu3aKlWqlM6fP682bdpo165dCg0N1VdffeV0vCu7mjrT7TQjb775pjp16qSOHTvKZrNl2FouK8kpX19fzZo1y6kL8Wv5L06iPfEe+fPnz7Ble1YlJydbk0NcKSUlRefOnXMpZu7cufX4449ntWqWvn376vHHH9fu3btVp04dSZdbUX/11VdZHn/u2LFjioiIkCT99NNPevLJJ1W8eHHFxsa6NH5uqVKlsnST7FpWrlypRYsWKW/evMqWLZuyZcumhx56SO+++646d+583YuujDRp0kQ9evTQ1q1bM2zl6WyX2TSeSlBe2RUvW7Zs6tmzp3r27Ol0HHce9zIyffp0ffPNNy7dNLkWT+3/pUuX1rJly9Kd98+YMUMVK1Z0Kaa7kjRp383Fixe1ZMkSvfDCC8qfP7/L8UaMGJHhch8fH/32229WIt5ms7mcoPv888+VJ08ebd261eGcMXfu3Pr888+t586+x+eff64RI0ZY48wWK1ZMXbp00YsvvuhSPd158zhtnNa035AGDRpYx1N3O3DggGw2W7obyZkVERGh48ePq2DBgipYsKBWrVql8uXLa8+ePS7/tnr6eHItM2fOdKp7sqeSnrc7EnRwStoYPxldTO7fv9/pMT48NVGCpyZJSJsRZ9WqVRmeWLr643r//ferS5cumjp1qpXoPHTokLp166YHHnjA6XgfffSRGjZsqLvvvlvly5eXzWZTfHy8cuTIoV9++cWlOqbp2rWrOnbsqKNHjzqcsA0fPtzlE6Srf6DefPNNlSxZ0qmB0m807tqVXB2Q9cKFC1kaJ+RaSpYsqXfeeUeff/65lVBNTk7WO++849JYSqmpqRoxYsQ1B6TNyiDc7h7o1t3d5iXPJNM6deqkbt266dChQxn+7Wd1Io+zZ89m+Jm6Ejc+Pl5jx46Vj4+PfHx8lJycrCJFimjIkCFq27at093/o6KiFB8fr+nTp1uz4sbGxuqZZ55J10rBFVmZ0fGll15S69attW/fPpUrV04LFixQSEhIlut0pZYtW2r27Nk37J5xI//FSbQn3uPDDz9U7969NXbsWKeHHrie+++/X+PGjdMnn3zisHzMmDG67777XIrp7ha/zZs31+zZszV48GDNnDlTAQEB1n6W1c86PDxcW7duVWRkpOLi4jRq1ChJl48FPj4+Tsd7//331bNnTw0ePNht3Zuly78nd911l6TL41H+888/KlGihAoWLKgdO3Y4Ha9du3aSLo9DdrWstB71VILyWl05bTab/P39rzmz7fXExcXprrvusnpNfPrppxo/frxKlSqlTz/91KUxCP38/Nx+A8lT+3///v0VHR2tv//+W5cuXdJ3332nHTt2aPLkyfrxxx9diunuGaqzZ8+uYcOGZTmuJ7qK/hfv0bdvX40YMUKdOnVyGHrl9ddf1969e/XOO++4HHv9+vXatm2bbDabSpUq5XJSVrr8Pb3yyitO9zS6kYsXL+qtt97Sxx9/bI3hd9ddd6lTp07q379/uuPr9dSpU0c//PCDKlWqpNjYWL3++uuaOXOm1q1b55bhmDxxPLn6msoYo0OHDuno0aPWbxU8h0ki4BQfH58Mx/g5fvy4wsLCnD6xutFECVceHJyJ7alJEjwxaKp0eQbLli1baseOHVaSc//+/SpevLhmz57t0knXuXPnNHXqVIfZRt11QT169GiHmaEKFSqkAQMG3PBi+lr27dunAgUKpEuwbdmyRevXr8/UCZIzLZBcvYvXq1cv3XXXXW5pTXOlNWvWqFmzZrp06ZI1u9Xvv/8um82mH3/80ekkbb9+/fTZZ5+pa9eu6tu3r9544w3t3btXs2fPVr9+/VxOJHtioNutW7eqVq1auu+++7Ro0SI1b97codv8Pffc43TMWbNm6c0331SPHj3clky7+lgl/d/xKisXlUePHtXzzz+vn3/+OcP1rsTNmzevfvvtNxUvXlwlSpTQxx9/rAYNGmj79u2qVKmS093cp06danXFu1qPHj00dOhQp+uYxp0zOl45S6o7DRo0SMOGDVPdunV13333pes26erf08mTJ/X5559bFyolS5bU888/n6XBs3/99dfrrndlgpQ8efLo7NmzunjxonLmzJnu78nVhP9vv/2mevXq6f7777e65C5cuFBr167VvHnzXJ7R8FYxYMAAffjhh4qMjNTZs2e1c+dO+fv764svvtD48eOdHig/7Rh19e+oO8Zg69atm1q0aKE2bdro5MmTevPNNzVu3DitX79eW7ZscSmuuy1atMgat9edCcq0SWKu5e6771ZMTIz69++f4e9ERsqWLav3339fjRs31ubNm1W5cmV169ZNixYtUsmSJV1KNA8fPlx//fWXRo4ceUt0F/vll180ePBg66ZPpUqV1K9fP9WvXz/Lsc+dO5euq6wr33+LFi3UokULxcTEZLlOnrRkyRKnx6y8kdDQUH3yySdq3bq1w/KvvvpKnTp1cikZfuTIET399NNasmSJcufOLWOMEhMTVbt2bU2fPt3lXk61a9fWa6+95tYutO3bt9esWbM0cOBAhwTlgAED9Oijj2rMmDGZjnXp0iVdunTJGhf1m2++0fLly1W0aFG1b9/epST/lTxxPLn6mipbtmzKmzevatWq5XIr5TNnzui999675jiZ7pgZ9nZBgg5OyZYtmw4fPpzuILpv3z6VKlVKZ86ccTn2jSZKeOSRRzIdKzQ0NN0kCdLl5rWtWrXS0aNHXa6npxhjNH/+fIeEWr169W7qE62jR48qICDAurt+u3vttdc0efJklStXTuXKlUt3AZCVAU7Pnj2bLqHapk2bdMmAzLjnnnv08ccfq0mTJsqVK5fi4+OtZatWrdKXX37pUh3vvfde9e/fX61bt3aYzTNtoFtXxtGQLrcWHT16tMOJelbGYPNEMu1G4+G52kX/mWee0d69e/Xhhx+qdu3amjVrlg4fPqx33nlHw4cPV5MmTZyOWb9+fcXExKhNmzZq3769Nm7cqM6dO2vKlCk6efKkNd5NZuXOnVtTp05V06ZNHZa//vrrmj59uhISEpyuYxpPzOh45d35kiVLqlKlSlmK54kbM0uXLlXz5s1lt9tVuXJlSZfrferUKc2ZM8fl1inX2vfTuLLvT5o06brrs9LCJD4+XkOHDlV8fLzVOqdPnz4qVqyYyzHd3crXk2bOnKkDBw7oySeftLpPTZo0Sblz59ajjz7qVKylS5ded72r+9Qvv/xiDWfy119/qWnTptq+fbtCQkL09ddfWy3pvc1TCcq0MQFjYmL0wAMPyBijtWvXatKkSXrzzTd19OhRDRs2TD169ND//ve/TMW86667tGXLFuvm5pYtWzRz5kxt2LBBjRs31qFDh5yuZ8uWLbV48WIFBwerdOnS6c5PXJ29/tSpU5o5c6b++usvde/eXcHBwdqwYYPCw8OVL18+l2J6wpkzZ9SrVy998803On78eLr1rnz/Y8eO1YABA/TMM89keHPG2e7YnpjIQ5Jy5MihfPny6fnnn1fbtm2z1CU3TZ48ebRmzZp0x+KdO3fqgQce0KlTp5yO+dRTT2n37t2aMmWK1Ttk69atatu2rYoWLerSkBnS5a7RvXv31uuvv57h9+TKTVm73a7p06erUaNGDst//vlnPf3005mevfm/4O7jycWLFzVt2jS3dxtu3bq1li5dqujo6AzHCXVlCJbbFQk6ZEpa156PPvpI7dq1c7iQSk1N1erVq63xFFxVpkyZdBMlSNKyZcucnighZ86cWr9+fbrugX/88YceeOCBLCUSb1Zz5sxRo0aN5Ovre8Ouw66O8eJJa9eu1YwZMzK8qHL1xNLdrtfl0mazuXxy5W6BgYHatm2bChQooMjISM2dO1eVKlXSX3/9pYoVK7p8YpEzZ05t27ZNBQsWVFhYmObPn6/y5ctr165dqlq1aoYnxd7gqWSaJ0RGRur777/XAw88oKCgIK1bt07FixfXnDlzNGTIEC1fvtzpmOvWrdO///6r2rVr6+jRo2rbtq11t/aLL75werD/uLg4Pf3005ozZ47VAqtTp0767rvvtHDhwiyN+RQYGKjNmze7ZcB4T92d94QyZcqoevXq1niu0uXf0ldffVW//faby62Srv7bTklJ0caNG9W3b18NGjTIqVknb0XuaOXridkBb+T8+fPW8Aa3ghMnTtzws7ked84yncZTCcq6devq5ZdfVqtWrRyWf/PNNxo7dqwWLlyoKVOmaNCgQZmegTQ4OFjLly9XqVKl9NBDD+m5557TSy+9pL1796pUqVIuTeb1/PPPX3e9K61oNm3apHr16lnjIe/YsUNFihRR3759tW/fPk2ePNnpmFe6cOFChokqZ4fLkaQOHTpo8eLFGjhwoJ577jl9+umn+vvvvzV27Fi99957euaZZ5yOeb0Wka4kfTt27GhN5JFRguJa49XdyIkTJzR16lRNnDhRmzZtUt26dRUbG6sWLVq43DqrU6dO8vX1TXfjuXv37jp37pw+/fRTp2Pa7XYtWLAg3Vixa9asUf369V1K+kmeuSkbHh6uJUuWpLuO3LZtm2rUqOF0Qw9PtJhP44njyZXn++6SO3duzZ071+rZhmtjDDpkStogwMYYbd682eGA7+fnp/Lly6t79+5Zeg93TpTgyUkSDh48qDlz5mR4YpmVFlRZPWFt0aKFDh06pLCwsOs2887KnWRJOnz4sLp3727dAbw6x+9K7OnTp+u5555T/fr1NX/+fNWvX1+7du3SoUOH1LJlS6fjeWoMNk8OcLpz504tWbIkw5PVq2dQu5G7775bCQkJKlCggIoWLap58+apUqVKWrt2bZa6/7lroNtNmzZluqwrdz49mYDbunVrhvuUq0nvM2fOWEMGBAcH6+jRoypevLjKli3rcmuftBZZ0uXurj/99JNLcdI0bNhQY8aMUYsWLTRv3jx98cUX+v7777V48WIVL148S7HdOaNjp06dlJSUpD/++CPd3fnOnTu7fHd+4MCB6t69e7oWfufOndPQoUOd/vuULv/effvttw5jjfn4+Khr165ZuujN6Df0kUcekb+/v15//XWtX78+U3GSkpKsLmHXGoMrjTNdxzwVN82oUaM0btw4tW7dWpMmTVLPnj0dWvlmhidmB8xIamqqBg8erDFjxujw4cPauXOnlfwoVKiQYmNjbxhj06ZNKlOmjLJly3bD46qr42TOnz9fDz74oMP+n5WLSnfPMp3GU2M8rly5MsPubBUrVrS6IT/00EPav39/pmM+9NBD6tq1qx588EGtWbNGX3/9taTL5wGuDkTviRnXu3btqpiYGA0ZMsT6m5Auz+TYpk0bl+Pu2rVLL7zwglasWOGwPCsJlR9++EGTJ09WrVq19MILL+jhhx9W0aJFVbBgQU2bNs2lBN3V52JZ5YmJPKTLf4+dO3dW586dFR8fry+++EIdOnTQK6+8omeeeUaxsbHW8CnXc+U4qzabTZ999pnmzZunqlWrSro8M+yBAwdcHs7m0qVLGY7d5uvrm6XP2hNj8HXo0EFvv/22JkyYYJ03Jycna9CgQekmybuRpUuX6tFHH1VQUJB1fvbxxx9r4MCBWWoxn8YTx5MqVapo48aNbj2fzpMnj1sSkncEAzghJibGJCYmeiT2ww8/bOrUqWP++ecfa1lCQoKpV6+eqVGjhlOxNm/ebPLly2dCQkJMnTp1TN26dU1ISIjJly+f2bJli8t1XLBggcmZM6cpXbq0yZ49u6lQoYLJnTu3sdvtpnbt2i7H3bBhg4mIiDBBQUHGx8fH5M2b19hsNhMYGGgKFy7sclxPaNiwoSlVqpQZNWqUmTVrlpk9e7bDwxVly5Y1I0eONMYYc9ddd5ndu3ebS5cumXbt2pl+/fo5Ha9v374mMjLSDB061OTIkcO8/fbbJjY21oSEhJiPPvrIpTp60rhx44yPj48JDw835cuXNxUqVLAeFStWdDper169zKBBg4wxxsyYMcNkz57dFC1a1Pj5+ZlevXq5XM/Y2FgzYMAAY4wxo0ePNgEBAaZevXomd+7c5oUXXsh0HJvNZrJly2b9m/aw2WzplmXW999/by5cuGD9/3oPV+zevduUK1fOoe5X1tVVlStXNnFxccYYYx599FETHR1tDh48aHr27GmKFCniUszatWubkydPpluemJiYpePUqFGjjL+/v7n77rvNrl27XI5zpc8++8wUKFDA9O/f38ycOTNL31VQUJBZs2ZNuuWrV682drvd5Tpmy5bNHD58ON3yY8eOufzdV69e3cyaNSvd8lmzZpmqVau6FPN6tm7dagIDAzNd/sptvvpv8sq/V2e331Nx0wQEBJi9e/caY4zJmzeviY+PN8YYs3PnThMcHOxUrJSUFDNx4kSTkJDgUl1u5K233jJFihQxU6dONQEBAWb37t3GGGO+/vrrTO8DNpst3eeZdmy68pGVY1SuXLmMn5+fqVatmundu7eJi4sz//77r8vxatasadq1a2cuXrxo/d7v37/f1KhRw3z77bcux01z5swZs23bNvP77787PFxVrFixDH83e/XqZYoXL26MMWbt2rUmKioq0zH37dtnmjRpYsqVK2c+++wza3mXLl1Mp06dXK6ruwUFBZk///zTGPN/52bGGLN3717j7+/vctzq1aubGjVqmJ9++sls3LjRxMfHOzxcERgYaP3t58uXz6xevdoYY8xff/3l1LHPkyIjI82OHTs8/j5///236d+/v/H39zeBgYHGx8fHPPTQQze8/qlVq1amHq6eRzRv3tzUqFHD/P3339aygwcPmpo1a5oWLVq4FNOdWrZs6fDIlSuXCQ0NNXXr1jV169Y1oaGhJigoyLRs2dKpuKVLl7aOeWkuXrxoXnrpJVO6dOks19sTx5NvvvnGFClSxHzyySdmxYoVbjmeTpkyxTzxxBPmzJkzLr3+TkIXV9w03D1RgicmSXjggQfUsGFDDRw40BqDKywsTM8884waNmyoV155xaW4tWrVUvHixTV69Gjlzp1bv//+u3x9ffXss8/qtddec3qWn8mTJ+upp55K11rqwoULVms1V+XKlUvLli1zupvc9QQGBuqPP/5QoUKFFBoaqsWLF6ts2bLatm2b6tSp4/QYV54ag03yTFfcggUL6tVXX1WvXr1crtf/Y++u46JKvz+Af2YIAZGwC0lFcUFg7cQE18LYtZXFtUHEZO3uwO4AC1vXQFEJRUWUEAtFQHBXMVBRCSWe3x/8uF+GIWbuzDiA5/168drlDj4cmOHOvc/znHOKExISglu3bsHMzEym9GZ5FbrNn4IaERGBadOmYfr06SKFeNeuXYtVq1ZJXPRXKBRyO0jlnZYCAL169YKKigp27doFExMThIaGIjk5GVOnTsWaNWt4F7Q/dOgQMjMz4eTkhIiICNjb2yM5ORnq6urYv38/Bg4cKPWY+X8X+b19+xZ16tQRK55dmKI6lp44cQI2NjYizTtk2Tksz+eqqHNTREQEOnToUOKOreJiLKz2qr+/PwYOHChxqkv+HU5PnjzBjBkz4OrqKrI7YcuWLVixYgWv573g9wByd6S8fv0aK1asQGZmpsRlKIKCgtCmTRuoqqrKNXUw/7iBgYHFpkjy2VVgYmKCEydOwNbWFs2aNcNff/2FsWPHws/PD4MGDZJ697Qi0nzymJmZYceOHejcubNITc/o6Gi0atUKHz9+LHGM/A2WFJXan52djdDQUAQFBSEwMBC3bt1CRkYGbG1tYWdnhxUrVkg1np6eHu7cuQNzc3Po6enh9u3baNSoEe7cuYORI0dKnCZakCIa7gC55UN+//13NGzYEM2aNYNAIMDdu3cRHR2NEydOoGfPnti2bRtiYmJkOhfKg7zrL9aoUQOXLl2CjY2NyGvUz88Po0aNwsuXL3nFWbFiRYSFhclUHqEgKysrbNq0CR06dEC3bt1gZWWFNWvWYOPGjVi1ahX+/fdfXuPKMx1bkY08MjMzcfbsWezduxdXrlxB06ZNMWrUKAwePBgfPnzAzJkzERkZicePH8v1+0rj5cuX6NOnDx4+fAgDAwMIBAIkJibC0tISZ8+e5b3bCwAOHDiA7du3Iz4+Hrdv34ahoSE8PT1hbGwscT3PktLE85Nmx6qmpiYiIyNhbm4ucvzp06ewtrZGenq6xGP9KIpIG7axsUFsbCwYYzAyMhLbTVnaasQqlTJnB0nZFBoayqZPn84GDhwottogq5ycHHb58mW2YcMG5unpyfz8/FhOTo4copYPbW1tbjVRT0+PW42KjIxkhoaGvMfV1dVl0dHR3P8/fvyYMcZYSEgIMzc3l3o8Rez4yNOoUSMWHh4u0xgF1a1bl0VFRTHGGLOysmKHDx9mjDF269YtpqOjI/V4WlpaLCEhgTHGWM2aNVlYWBhjLHcXFJ/x8hw5coSpqamxHj16MHV1ddazZ09mbm7OdHV1mZOTE+9xK1WqxK1Ml2YJCQmF/j3m5ORwv29pNWvWjF24cEHs+IULF5itrS2vMRWhSpUq3Kqhjo4O9/d67do1Zm1tLbfvk5qaysLCwti7d++k/rd5K5sCgYAFBASIrHaGh4ezZcuWSXyeUvRKuiLIe3VeT0+P6evrM6FQyP1/3oeOjg4TCoVswoQJEo9X3A4nee12Kup7tGrVij158oT3uGWFvHb55rGzsyt0p6M8aGhocDt+8u9OevToEa8dP0FBQSwzM1PseGZmJgsKCpIt2HwePHjARo4cyVRVVXm9VqtWrcrtImrQoAG3g/jJkydMU1OTd1xDhgxhrVu3ZqGhoaxixYrMz8+PHThwgJmbm7Pz58/zHpcxxuLj49nMmTNZ3759maOjI/Pw8GDx8fEyjfn8+XM2e/ZsNmjQIO56zdfXl3eWx4YNG5i2tjabOHEiU1dXZ2PHjmVdunRhurq6bNasWbzGHD16NHN0dGTfv39n2traLC4ujiUkJDAbGxvm5ubGa0zGcneO37hxg/e/L8y6deu4DAl/f3+mqanJ1NXVmVAoZJ6enrzGlHd2i6OjI9PV1WXGxsasZ8+ecruHcnFxYVWqVGFVqlRhbm5u7MGDB2Jfk5CQwAQCgUTjZWZmMhUVlULHkQc/Pz+2ceNGtmHDBnblyhWZx9u6dSurWrUqW7Jkichu5H379jE7OzuZx5eVonfMd+jQgXl5ebG0tDSZx8rz4sWLYj/4WLBgQbEf5H+oBh2RirxrhRUkEAjQrVs3Xm3WS2qMkB/fXUQVK1bEt2/fAAC1a9dGbGwsGjduDAC8Wo7nUVNT41bTatSogcTERDRq1Ai6urpS1TXJw/5/haOgf//9t9AaRdLw9PSEh4cHduzYASMjI5nGytOuXTtcuXIFlpaW+OOPP+Dm5gZ/f39cuXKFV1FzRdVgW7ZsGdavX4+JEyeiUqVK2LBhA4yNjTF27FjeHUcB4Pfff4efnx/GjRvHe4yCnj59ik2bNnEFaRs2bAhXV1exFTxpGBsb4/Xr12I7sz58+ABjY2NeK2oPHjwotEumsbGxUld6C8rOzua6FVetWhWvXr2Cubk5DA0N8fTpU15jZmZmwtzcHOfPn4eFhQWA3B07fLuOWltbQyAQQCAQFNpZUVNTE5s2bZJoLEXWW1SUzZs3o0+fPjAyMhJbnT948KDU43l6eoIxBmdnZyxcuFDk3Kmurg4jIyOpapoqok5OSd9DKBSiWrVqMjcg+PTpE0JDQwutkcl3R/bcuXOxYMECkTp8QG6ji3HjxvGqGbhz504uvnHjxnHFs3v16sXr/DphwgRMnToV//77r9y6A+Zp3Lgxbty4Ibaz7fjx47CxsZF6vI4dOxZ6fs5rlMJ3B9mTJ0+43XNBQUHIzs5G27ZtsXbtWl67HG1sbLhmOB07dsS8efPw/v17HDhwAJaWlrxiBHJ3tJ49exbNmjWDUCiEoaEhunbtCh0dHSxfvpxXR+w8RkZGUu8ULE5QUBC6d++ONm3a4Pr161i6dCmqV6+OqKgo7N69GydOnJB6THnUXyxozZo1+O2331C9enWkp6ejQ4cOSEpKQqtWrSRquFKUlStXYsaMGVi2bBksLS3FdtLwqT/p7u7O/X/Hjh0RHR2Ne/fuwdTUVKL6a0WN2atXLy67JSQkRCS7RVp6enpyuVcq6PHjx9i0aRP69+9fZCZD7dq1JX5fV1VVhaGhoUz1qovTtWtXdO3aVW7jbdq0Cbt27YKjo6PI32nTpk1lro8uD5MmTYKbmxueP39e6I75/Dvf+byn/Prrr9yO/D/++AOjRo3ivg9fitg1Pn/+fLmPWV5RiiuRipWVFcaOHctNUNy/f19kgmLhwoUyjX/t2rUi24/v3bu32H9bcDtu3lbcgscA/qkOjo6O6NGjB0aPHo0ZM2bg9OnTcHJywqlTp6Cvr4+rV6/yGrdbt25wcnLCkCFDMG7cOERERGDSpEk4cOAAPn78iDt37kg0jo2NDQQCAe7fv4/GjRtzqYhA7s8cHx8PBwcHHDt2jFecQG6Rz7S0NGRlZUFLS0vsworPheCHDx+QkZGB2rVrIycnB2vWrOFSJ+fOnQt9fX2pxvPw8ICOjg5mzZqFEydOYPDgwTAyMkJiYiLc3d15X2jLOxU3z/Lly7Fu3Tr06NGj0ItVadMo8n7mpk2bchMIISEhuHv3Lg4fPozff/+dV5xFpfolJCTAwsKCV3dkW1tbNGrUCHv27OEmEb59+wZnZ2c8efKE95Z3eXcJbNeuHaZOnQpHR0cMGTIEHz9+xJw5c7Bz506EhYXx7rpZp04dXL16VaxTGB8JCQlgjHEpuPmfJ3V1dVSvXl1sMqQkWVlZ0NDQQGRkJH755ReZYyyMvJ+rK1euiJQ26NKli0zx5U/L/BmdO3cOQ4cORWpqKipVqiSy+CMQCHjf/BsaGqJWrVo4dOgQlzIdGBiIESNGoE6dOlwBfmVSRJpPnnPnzmH48OH4+++/sWjRIixcuBBPnz6Ft7c3zp8/L/UNbFHn52fPnqFp06YypXhXq1YNkydPRu/evblFSb6K6zK9b98+3pMpOjo6iIqKgpGREYyMjHDo0CG0adMG8fHxaNy4Ma9OhgBw/fr1Yh/P62wtjVatWuH333/HlClTRFJH7969C0dHR/z3339Sj6nILuv+/v4IDw9HTk4ObG1tZT6n5v1dFVxIlsfflTwpKh27LNi3bx+OHz+OgwcPyrWw/7Vr17B+/XqRxePJkyfL9JrS1NREdHQ0DA0NRf6eYmJiYGVlxSuFNDk5GfPmzUNAQECh96TSvO8VV8oDkM97SnZ2Ns6fP499+/bh4sWLMDMzg7OzM4YPH44aNWrwGhOQf2M0Ipmf82qT8BYbG8utQlaoUAGpqakQCARwd3dHp06dZJqgW7hwIRYtWoSmTZsW2n68JPlPnlevXsXMmTOxbNkytGrVCgKBALdu3cKcOXOwbNky3jGuW7cOX79+BQAsWLAAX79+xdGjR2FmZsa7PTqQuzPry5cvAIDFixdj5MiRGD9+PHfBKqm8el2RkZGwt7fndvwA/9vx0b9/f95xAvLvapeVlYVz587B3t4eQO4b2YwZMzBjxgzeY+afgBswYAAMDAxw8+ZNmWuwVa5cmXue6tSpg4cPH8LS0hKfPn3iffEP5O760NbWRlBQkFi9J4FAIPUkxYwZM7ibvvzmz5+PmTNnSj1Bl1ePTCAQYO7cuSLd/LKzs3Hnzh3eNQm3b9+OXr16wcDAgLsxu3//PgQCAc6fP89rTEV0CZwzZw43AblkyRL07NkT7dq1Q5UqVbiOWXy4urpi5cqV2L17t8wTQHkrnvLsPKfolXRFPFfyXp2vVKkSnjx5wu3uOXv2LPbt2wcLCwssWLBA4tqL+ZXUqVWaXWkbN27EmDFjoKGhgY0bNxb7tXx+n1OnToWzszOWLVsm1slWFlFRURg7diysra2xbt06PHv2DBs2bICHh4dMK+0ZGRmIiooq9KZK2vO/Inc99urVC0ePHsWyZcsgEAgwb9482Nra4ty5c1K9fvNq1AoEAjg5OYnsEs/OzkZUVBRat27NO85Jkybh+vXrWLBgAc6cOQM7OzvY2dmhXbt2ItcYkpJ3l+k85ubmePr0KYyMjGBtbc3t8t++fbtMO9zt7OzEjuW/PuW7c7ywWrjVqlXjPZEmry7rhenUqRNat26NChUqyKV2miJ2aBd17hMIBNDQ0ICZmRnat28v1SKVvLNbFKWoDKL8P3thmQrF2bhxI54/f47atWvD0NBQbPcwn8XTzZs3w93dHQMGDOB2IIaEhOC3337DunXrpO6OmsfY2BiRkZFiu758fX257ARpDRs2DLGxsRg1ahRq1Kgh0+v+R+yeV1FRQZ8+fdCnTx+8e/cOO3bswNy5czFr1iz89ttvmDRpUqGZFUWJi4tD37598eDBA5ENL7JsdMnOzsb69euLrJPJd7GvXFJOZi0pq+RdKyy/mjVrMm9vb5ljZCy3Y05h9S2uX7/OGjZsKJfvUZrt37+fpaenKzsMieXvvCer79+/MycnJ4XUdBs8eDBbu3YtY4yxJUuWsGrVqrG//vqLGRoayqUGo7xoamoW2mXz2bNnvGr85NUbEwgErHXr1iI1yLp168bGjBnDnj17xjve1NRUtmPHDubu7s4mT57Mdu7cyb5+/cp7PEV3CcyTnJwsc41MR0dHVqlSJVarVi3WrVs3udSk2b9/v0jNpenTpzNdXV3WqlUrXn9ne/fuZd27d2fJycm84inOj3quZNG0aVN24sQJxlhuHcsKFSqwwYMHMzMzM951mPT09EQ+KlasyAQCAatQoQLT19eXaiwjIyP2/v177v+L+uDbEVxLS0uhNTJnzZrFBAIBU1NTY1evXpVpLF9fX65OFN/afjY2NuzDhw+MsdxOq6W945yTkxNzcnJiAoGADRw4kPvcycmJjRkzhi1btoxXTcuCPn78yP755x82depU1rRpU1ahQgXWokULOfwE8nHw4EG2b98+xlhu7bBq1aoxoVDINDQ0mI+PD+9xP336JPLx7t075ufnx1q0aMH79VqnTh128+ZNxpho/cFTp07x7t4t7/qLjDGWnZ3NFi1axGrXrs1UVFS4OOfMmSPSLbI0MDIy4s6jlStXZvr6+ly9uBo1ajCBQMBMTU1ZYmKixGN27dqVHTp0iDHG2NixY1nz5s3ZwYMHmb29PWvevDmvOI8fP85+//131qJFC2ZjYyPywVdRtUfzd8Vu3749d16ThCLqhdWuXZtt2rRJ7PjmzZtZrVq1eI3JWO41Sp06dZiPjw+rWLEiO3LkCFuyZAn3/3xoa2vz7iisTHfu3GHjxo1jurq6rF69emzevHls9OjRTEtLi02dOlXicXr27Mn69OnD3r59y7S1tdnjx4/ZjRs3WPPmzdn169d5xTZ37lxWq1Yttnr1aqahocEWL17MRo0axapUqcLVjyS5aIKOSEWRExSVK1fmGjDISkNDg5tIzO/+/ftMQ0NDLt/jy5cvLCUlReTjZ5OWliaX34G8C3Hr6uoq5IYyOTmZK0CfnZ3NVq5cyXr16sXc3d2luvBRtO7du7O9e/eKHd+7dy/r1q0b73GdnJzY58+fZQnth5B30xVFyn8zXdgHHw0aNGDXrl1jjOUunmhqarIdO3awXr168TpPW1tbM21tbVahQgXWoEEDud1UMFY2nisdHR3uvWnFihXc31BwcDCrW7eu3L7Ps2fPWOfOnbmi+aVF37592dGjRxUy9saNG5mmpiYbMmQIMzc3ZxYWFjLdFJmamrIJEyawpKQk3mNoaGiwly9fMsaKbrhUGi1YsECmhY2SJCcns1OnTjFXV1dmaWnJhEIhq1GjhkT/1traWuy8UdSHvMjScEcSQUFBvBsZTZ8+nbVt25a9fv2aVapUicXExLDg4GBmYmLCe/IjOztbpEnI0aNHmaurK9uwYQP79u0brzEXLlzITExM2MGDB0WK7x89elTq4vb3799n2dnZ3P8X98HH4cOHmZ2dnch9RExMDOvUqRPz8fFhL1++ZG3atGH9+/eXeMy7d+8yf39/xhhjb9++Zd27d2eVKlViNjY2vM5TimjkwRhjV69e5SaMP3/+zD5//syuXr3KWrZsyS5cuMCCg4NZ48aNeU/Uyou2tnaRi8d8GuPkt3PnTlavXj1ucrJu3boyTSI3bdqU3b59W6aYCnr06BHz9fVlZ8+eFfmQ1Zs3b9iaNWtY48aNmbq6Ouvfvz/z9fUVWUC+cuWKVL9jRTRGMzEx4RaP8zdd3LBhAxs8eDCvMcsrqkFHpCLvWmH5zZw5E9ra2pg7d67McbZv3x5qamo4ePAgl9qQlJSE4cOH4/v372JphJKKj4+Hi4sLAgMDkZGRwR1nMtYOePPmDaZNm8bV3yv4ZyntuIrcRpyamoqZM2fi2LFjhaZi8PkdHD9+HB4eHnB3d5dLIe4///wTlpaWXGpmWfDvv//in3/+KfT5WrdunVRjbd++HfPmzcMff/whUpD2+PHjWLhwIWrXrs19rSQpX3kpVCU5deqUVHHmOXDgAHbs2IG4uDjcvn0bhoaGWL9+PUxMTNCnTx+px6tWrRpu3ryJBg0awNzcHBs3boS9vT2io6Nha2srcTqypD83wP9nVwQtLS1ER0ejXr16mDlzJl6/fg1vb288evQIdnZ2ePfunVTjlVS6QJZ0RHk9V4qko6ODsLAw1K9fH127dkXPnj3h5uaGxMREmJub86pvU5R79+5h2LBhSq9tlD9l6t27d1i0aBF3Xi1YI5Nv2YDu3bvj7t272L59OwYMGID09HRMmTIF+/fvx8KFC3mVOdDR0UFERARX046PVq1aQVtbG23btsXChQsxbdq0IlM5582bJ9XY+vr6EqdKlZZ0n0mTJiEoKAiPHj1C5cqV0b59ey7NVdK6lNKUPykrhcSfPHmCZs2acWVPpJGZmQknJyf4+PiAMQZVVVVkZ2djyJAh2L9/v9S1QhXFzMwMO3bsQOfOnUVqe0VHR6NVq1b4+PGjxGMJhUIkJSWhevXqEAqFhdaJBsD7WtrU1BQnT54UK7cRERGB/v37Iy4uDrdu3UL//v151wuWVcOGDTF//nwMHjxY5PeZ18hj8+bNvMb95ZdfsHPnTrFU9ps3b2LMmDF49OgRrl69CmdnZ6lScz99+oQTJ04gNjYW06dPR+XKlREeHo4aNWqgTp06Usc5dOhQWFtbY/r06SLH16xZg7CwMF6NgQp6//49cnJyxJrlSOvu3bvw8PDAvHnz8Msvv8jUyEQR6aL5qaurw9TUFM7OznBychKrQwoAnz9/Rp8+fSROL9fX10dYWBhMTExgamqK3bt3o2PHjoiNjYWlpSWva7OKFSviyZMnqFevHmrVqoULFy7A1tYWcXFxsLGxQUpKitRjlldUg45IJX+hUHnUCssvIyMDO3fuxNWrV2FlZSV2MpRmkmLv3r3o27cvDA0NUa9ePQBAYmIiGjRogDNnzvCOcejQodz4stYkyM/JyQmJiYmYO3cur/p7BS1cuBC7d+/GlClTMHfuXMyePRsvXrzAmTNnpL6hKGjGjBkICAjA1q1bMWLECGzZsgX//fcfduzYwbv5wsCBAwEUXh+Jz8WamZkZFi9ejFu3bhU64SdNHSZpCmvz6TwG5BbN7d27N4yNjfH06VP88ssvePHiBRhjvDp6TpgwAUBuV7etW7cW+hgg+e9W1s6/xdm2bRvmzZuHyZMnY8mSJVw8+vr68PT05DVBJ68ugYr8ufOkp6eDMcbV9kpISMDp06dhYWHBq5s1AGhrayM5ORn16tWDn58f191OQ0OD12SSIm+YFdXRUZ6aNm2KJUuWoEuXLggKCsK2bdsA5C7YyFJ8uTAqKip49eoV739f1KJE/lpEffr0KbHod1490/wK1rTMG5fvzUVWVhaioqK4BQNNTU1s27YNPXv2xF9//cXr2mLAgAEIDAyUaYJu//79mD9/Ps6fPw+BQABfX99C60Pm1Y2TRv4arsnJyViyZAns7e25Zj63b9/G5cuXeS1UynuhL8+rV68wevRoqSbkClLUOUSaRThpF7ry5O+wCOQuyL5+/RorVqzg3dBCTU0Nhw4dwqJFixAREYGcnBzY2Nigfv36MsVWHD7dIf/77z+YmZmJHc/JyUFmZqZUY8XHx3MTB4qoyfX69WtkZWWJHc/KykJSUhKA3E6meXWElSExMZGbRNPU1ORiGT58OFq2bMl7gi42NrbQ608dHR3ExcUBAOrXr4/3799LPGZUVBS6dOkCXV1dvHjxAqNHj0blypVx+vRpJCQklFhHtTCNGjXC0qVLERgYKNLA7ObNm5g6dapIHUE+9VIBoGrVqrz+XUF6enpISUkRq9vGZ0OGm5sbjI2NcfXqVa6JV3JyMqZOnYo1a9bIHOu1a9fQrl27Yr9GR0dHqtqPv/zyC6KiomBiYoIWLVpg1apVUFdXx86dO2FiYsIrzrp16+L169eoV68ezMzM4OfnB1tbW9y9e1ekdiqhLq5ESioqKnj9+rXYykRycjKqV68u0ypAx44di31c2qKyjLFCu/nJMvmlra2NsLAwmJub8x6jMJUqVcKNGzd4F9ovyNTUFBs3bkSPHj1QqVIlREZGcsdCQkIKLU4sqXr16sHb2xt2dnbQ0dFBeHg4zMzMcODAARw5coRXweeEhIRiH5e23XdxxXAFAgF3wSKJvJXe4si6g7J58+ZwcHDAokWLuFXV6tWrY+jQoXBwcMD48eN5jVsWWFhYYNmyZXB0dBRZUX748CHs7OykuqDMI+8ugYwxJCYmolq1anItkg/kdnDu168fxo0bh0+fPsHc3Bzq6up4//491q1bx+u5Hzp0KKKjo2FjY4MjR44gMTERVapUwT///INZs2bx7jirCPJ8ri5evAgVFRWu4Uyey5cvIycnB927d+cVY1RUFIYOHYrExERMmTKFm2xwdXVFcnIyr/NpwaLeeTf9mzdvhoGBAXx9fXnF2rFjR4SHhyM7Oxvm5uZgjCEmJgYqKipo2LAhnj59CoFAgODgYN7Fs3+E9+/f87rRSktLw++//45q1arJpSN2/l0/8ta/f3907NhRrDD65s2bcfXqVakXE7t3747ExES4uLgUutDHZ7EjMzMTY8aMwdy5c3nflClSSdeNeQQCAfz9/Xl9j6J2e7Vs2RJ79+5Fw4YNeY0rD8XtRMuP7/VJ06ZNMXnyZAwbNkzk/XnhwoW4evUqbty4wTd0uevRoweSkpKwe/du2NjYAMjdPTd69GjUrFkT58+fx7lz5zBr1iw8ePBAojFtbGwKvf7Lv+Dh5OQk8evQxMQEJ06cgK2tLZo1a4a//voLY8eOhZ+fHwYNGsR712zbtm1RqVIleHt7c5Og7969w4gRI5Camorr16/j6tWrmDBhAp49eybRmF26dIGtrS1WrVol8tzfunULQ4YMwYsXL6SOU9JGFdJep8v7eQJyr8tVVVXh5uZW6IaMDh06SDxW1apV4e/vDysrK+jq6iI0NBTm5ubw9/fH1KlTERERIfFYP8rly5eRmpqKfv36IS4uDj179kR0dDTXGE2ahhN5PDw8oKOjg1mzZuHEiRMYPHgwjIyMkJiYCHd3d96bPMqlH5lPS8o+gUBQaD2W//77T2613UozOzs7duXKFbmP26hRIxYeHi638bS0tFhCQgJjLLf5RlhYGGMst8C5rM08KlasyBWar1OnDrtz5w5jjLG4uDjeNSTyCpwzxlhiYiKbO3cumzZtGu9CpPIUGBgo8Qdf+Wsx6OnpsYcPHzLGGIuMjGSGhoYSjxMSEsIuXrwocszLy4sZGRmxatWqsdGjR7OMjAzecSqChoYG93rKXyz72bNnvM4pOTk57MWLFywtLU1uMWZnZzM1NTWZGmEUpUqVKtzzvWvXLmZlZcWys7PZsWPHeDe0+fjxI5s4cSLr3bs38/X15Y7PmzePLVmyROrx8opMF/VRWlhaWrILFy6IHff19WVWVlZy/37p6ens+/fvvP5tYcW8a9SowQYPHsxevXrFO6b169ezfv36idQDTUlJYQMGDGCenp4sNTWV9enTR6JalNeuXWONGjUqtLbop0+fmIWFhczn6OvXr7OhQ4eyli1bsn///Zcxxpi3t3ehTZ4ksWvXLqaiosK0tbWZoaGhXJpkFPThwwe2ceNG1qRJE5nGqVixolzrMWlra7OIiAiZYiqMvGu6ZmVlsdWrV7NmzZqxGjVqMH19fZGP0ubFixciH4mJiTI34crKymK7d+9mgwcPZp07d2YdO3YU+eAbW3EffPzzzz9MV1eXrVixgmlpabHVq1ezv/76i6mrqzM/Pz9eY+aJjo5mEydOZJ06dWKdO3dmEydO5Opc8fH69WvWpUsXJhAImLq6OlNXV2dCoZB17dqVq0np7+/PLl++LPGYHh4eTFdXl7Vt25ZNmTKFubu7s3bt2jFdXV3m5ubGunbtyoRCITtz5oxE4ymikQdjub9Lc3Nzpq6uzkxNTZmZmRlTV1dnDRs2ZE+fPmWMMXb69GmpGvHlr72a/9rsxYsXrEKFCrxjVQR5P0+M5TZbk+X1mJ+enh73+zMxMeHqGj5//pxX47bCKKL5SEHyaIyW3+3bt9natWvlUoevvKEUVyKRvG3HAoEAu3fvFqnHkp2djevXr/NeRZSkzpNAIMDJkyclHlMR7dYBYPfu3Rg3bhz++++/QmsS8EkhAHLTXjw8PLBjxw4YGRnxGiM/RW4jNjExwYsXL2BoaAgLCwscO3YMzZs3x7lz56CnpyfVWA8ePECvXr3w8uVL1K9fHz4+PnBwcEBqaiqEQiHWr1+PEydOFJpuVZxFixZh2rRpYrud0tPTsXr1aqnSkqRZJeOrYsWK+PbtG4DcFIzY2Fg0btwYAKTaQbZgwQLY2dlxO4UePHiAUaNGwcnJCY0aNcLq1atRu3ZtLFiwQO4/A1/GxsaIjIwU2yXp6+vLa4cPYwz169fHo0ePpE4XKopQKET9+vWRnJwstzHzpKWloVKlSgAAPz8/9OvXD0KhEC1btixxZ2lR9PT0Ck2VkaYOVH6nT58W+TwzMxMRERHw8vLiPaYixMTEFPqaadiwIZ4/fy7376ehocH73+bk5Mgxkv9ZvXo1rly5IpLupKOjgwULFqBbt25wc3PDvHnzJEqf9vT0xOjRowtNndLV1cXYsWOxbt26ElNrinLy5EkMHz4cQ4cORUREBHcO/PLlC5YtW8ZrN/acOXOwaNEieHh4QCgU8oqrKFevXsWePXtw5swZVK1aVaoalYWpUqUKTp8+LVaP6cyZM6hSpYrU4xkYGJS4k4qPvn374syZM3Kr6arIEhwA8Pz5c8TGxqJ9+/bQ1NTkdrjzFRQUhIEDB4pdO33//h0+Pj4YMWKE1GO6ublh//796NGjB3755Rfe8UmbXSCtXr164ejRo1i2bBmX0m1ra4tz586ha9euvMfN2z3TtGlTkVTHX375BYcPH8bvv/8u9Zg1a9bksmaePXsGxhgaNmwokvEizQ4qIPf6a+rUqWIp50uWLEFCQgL8/Pwwf/58LF68WKIdqjt37uTO/ePGjUPlypURHByMXr16yZQpYW5ujidPnsDPzw9Pnz7lfvauXbty50Fpr6M1NDQKLfHy9OnTQmucKZO8nycgd/foy5cv5ZIxpYh00fw2btyI2bNnY+TIkTh79iz+/PNPxMbG4u7du5g4caLM4+cpqTSGtFq2bMnVySaiKMWVSCRvW3JCQgLq1q0rMrGlrq4OIyMjLFq0CC1atJB67D///FOir9u3b5/EYxobG+Pdu3dIS0uDvr4+GGP49OkTtLS0oK2tjbdv38LExAQBAQEwMDCQeNyQkBCxrd156QWypDjq6+sjLS0NWVlZ0NLSEpv4k3bbuyK3Ea9fvx4qKiqYNGkSAgIC0KNHD2RnZyMrKwvr1q2Dm5ubxGN1794dqqqqmDlzJg4ePIjz58+jW7du2L17N4DcFLKwsDCEhIRIFaMiU7E/ffqEPXv24MmTJxAIBLCwsICzs7NM9cocHR3Ro0cPjB49GjNmzMDp06fh5OSEU6dOQV9fH1evXpVonFq1auHcuXNo2rQpAGD27NkICgpCcHAwgNxmHPPnz8fjx495xypv+/btw9y5c7F27VqMGjUKu3fvRmxsLJYvX47du3dj0KBBUo/ZuHFj7NmzR65v/BcuXMCKFSuwbds23nWYCmNlZYW//voLffv2xS+//IJLly6hVatWCAsL41J2JBEVFYVffvkFQqGwxLpEfBcSCjp8+DCOHj2Ks2fP8h4jOTkZ8+bNQ0BAAN6+fSs2cSXNua9mzZo4fPiwWOrF1atXMWTIELx9+5ZXjCWlucta4JkVKBgtC21tbZw/fx52dnYixwMDA9GrVy98+fIFcXFxsLa2LrG+pqGhIS5duoRGjRoV+nh0dDS6desmVdHx/GxsbODu7o4RI0aIpFBFRkbCwcFB4td+fpUrV8bdu3dlqkGXX2JiIvbt24d9+/bh69ev+PjxI44dO4b+/fvLPPb+/fsxatQoODg4iExSXLp0Cbt374aTk5NU4/n5+WHt2rVyW+jLs3TpUqxZswadO3eWuaYroLgSHMnJyfjjjz8QEBAAgUCAmJgYmJiYYNSoUdDT08PatWt5jauI64mqVavC29sbv/32G6+YivLs2TMEBgYWei6VdvIzKysLS5cuhbOzs1TXyZIwMTHBsGHDxOpazp8/HwcOHJAqvVGRdHV1ERYWJlaH7/nz5/j111+RkpKC6OhoNGvWTKbadh8/fsS5c+eknuz97bffcOTIEe76c+nSpZg4cSK3WJ6cnIx27drxuuYbM2YM3r17h2PHjqFy5cqIioqCiooKHB0d0b59e5F6mtKQZ0O0PIp4no4fP44FCxZg+vTphZZLkOY6Kn+6aGxsLHr16sWli/r4+KBz584Sj1UYeTUfUXRjtJLqFvJZ7Ci3lLV1j5RNdnZ27MOHD8oOo0SKaLfOWG4qar9+/VhISAiLj4+XSwoBY4zt37+/2A9ZhYSEKGwbcUJCAjt58iSvlvP523h/+fKFCQQCdvfuXe7xJ0+eMF1dXanHFQgE7O3bt2LHr127xqpWrSr1eHnu3r3LKleuzOrUqcP69u3LHB0dWd26dVmVKlW4NGI+YmNjud9DamoqGz9+PLO0tGR9+/aV6nVVoUIFlpiYyH3epk0btnjxYu7z+Ph4pq2tzTtORdm5cyerV68el+5Xt25dtnv3bt7jnT9/nrVt25Y9ePBAbjHq6elxKTMaGhpyS8s6fvw4U1NTY0KhkHXp0oU7vmzZMubg4CDxOPnLD+SlTBZMocz7r7w8f/6caWlpyTSGg4MDq1+/PluxYgXbt2+fTOe+0aNHM0tLS7HzvpWVFRs1ahTvGM+cOSPycfz4cTZr1ixWp04dmV6nu3fvZo0bN+bSsRo3bsx27drFezzGGBsyZAgzNjZmp06dYi9fvmT//vsvO3XqFDMxMWHDhg1jjDF25MgR9uuvv5Y4VoUKFQpNwcwTExMjU2kLTU1NFh8fzxgTTaGKjY3lnUI1efJktnTpUt4x5Tl69Cjr2rUr09LSYgMGDGBnzpxh3759Y6qqquzRo0cyj58nJCSEDRkyhNnY2DBra2s2ZMgQFhISwmus/OcobW1tuZ2j8qcJF/zgkzasqBIcw4cPZ/b29uzly5cir6fLly8zCwsL3uMWdT0RGRnJ+/daq1YtLvVQXnbu3MlUVFRYjRo1WJMmTZi1tTX3wTfNrWLFitzfqDxpamoWmd7NN+VPXmnD+VWvXp15eXmJHffy8mLVq1dnjDH26NEjVqVKFV7j54mMjOT13iwUCkXKDlWqVEkkHT0pKYn3e35KSgpr06YN09PTYyoqKszAwICpqqqydu3asa9fv/Ia8+rVq0xLS4s1btyYqaqqMmtra6anp8d0dXV5P0eMKeZ5KliGQt7XUfJMF9XU1OTuFapVq8bdjz179oxVrlxZ4nGcnJwk/uBDT09P5KNixYpMIBCwChUqlMryBspEKa5EKgUbNWRlZSEjI0Mk5bU0mDNnDk6ePCmyim5mZoY1a9Zw7dZXrVol9Sp4QkIC/vnnn0K7Wsli5MiRchursKLOLVq04LW7sbCxu3Xrhh07dqBBgwYAcptG5HXKldaHDx9Qs2ZNALk7PypWrCiyhVpfX1+qVUl9fX0IBAIIBAI0aNBAZEdKdnY2vn79inHjxvGKFQDc3d3Ru3dv7Nq1i+vql5WVhb/++guTJ0/G9evXeY2bf4u7lpaWWOdVSdWoUQPx8fEwMDDA9+/fER4eLpKC+OXLF7FVwNJg9OjRGD16NN6/f4+cnByZC7IPGzYMaWlpaNKkCdTV1aGpqSnyOJ9CzHxXi0syYMAAtG3bFq9fvxZpEtO5c2epVjMV3SGvoPT0dGzatAl169aVaZzg4GAEBwfz7oaY3+rVq+Hg4ICGDRtycf37779o166dTJ3SCkuJGTBgABo3boyjR49i1KhRUo85d+5crF+/Hq6uriIdPN3d3fHixQssWbKEV6w7duyAu7s7Bg0axHU0VFVVxciRI7F+/XoAuavtebuUi1OnTh08ePCgyPe7qKgo1KpVi1ecQO6O3+fPn4vt9goODuad9pOdnY1Vq1bh8uXLMnWDHzJkCGbMmIGTJ09yKeiK0KJFCxw6dEguYynqHCXv84miSnD4+fnh8uXLYuek+vXr8yoXkFd4XiAQoHPnziKdfLOzsxEfHw8HBwdesU6dOhUbNmzA5s2b5bJzFshN51u6dClmzpwpl/GA3EYBgYGBUu/mLImdnR1u3Lghdm4JDg7mnTIvr7Th/FxdXTFu3DiEhYWhWbNmEAgECA0Nxe7duzFr1iwAubuj8ppS/GisQBJcwc9loaOjg+DgYPj7+yM8PBw5OTn49ddfZdrt9ffff2Pq1KlcQ7STJ0+KNETjSxHPkzzOe5Jcw6mqqqJmzZro2rUrevXqxev71KxZE8nJyTA0NIShoSFCQkLQpEkTxMfHS/WakCZTjY+PHz+KHYuJicH48ePFSj387GiCjkjk4sWLSE5OxvDhw7ljS5cuxeLFi5GVlYVOnTrh6NGj0NfXV2KU/6OoduudOnXC/fv35T5Bl196erpY+/rCagAVRU1NDadPnxarxSAPampqePjwodwuKAHxtC5Zxvb09ARjDM7Ozli4cKFI2mleKnbezTAf9+7dE5mcA3LfXGfMmMGllSqTg4MDPDw8sHLlSpw5cwZaWloiF7tRUVFyS/2Sl127dsHOzg7169fn1bWxMOvXr5fraxSQ7yQ6IHkqgaRpBPlrEenq6hZZD1KaWmzOzs7w9PSEoaGhyO+TMYYvX75AS0sLBw8elHi8wjRs2BDp6ekyjZFHV1cXt27dwpUrV3D//n1oamrCysoK7du3l8v4BbVo0QKjR4/m9W+3bduGXbt2YfDgwdyx3r17w8rKCq6urrwn6LS1tbFr1y6sX78ecXFxYIzB1NRUZBFN0m7hv/32G+bNm4fu3buL1dtLT0/H/Pnz0bNnT15xAsDYsWPh5uaGvXv3QiAQ4NWrV7h9+zamTZvGuxbZgwcPuJuwgt2KpTknODs7Y+vWrQgKCsLw4cMxcOBAhV7fyPq+D8j/HFUYJod07L59++LatWto0aIF3NzcMHjwYOzZs4crwcFXampqoV22379/z2viL69mV2RkJOzt7UX+hvKuJ/imOgcHByMgIAC+vr5o3Lix2EQyn/Sxjx8/8qrdVpzu3bvj77//xsOHDwtNb+7duzevcXv37o2ZM2ciLCyMK0UREhKC48ePY+HChSJdriX9Hj4+Pjh27Jhc04bnzJkDY2NjbN68GQcOHACQW+9t165dGDJkCIDcWnKy1I8rbe7cuYMPHz5wtYw7deqEly9fYv78+UhLS4OjoyM2bdrE62/qyZMnOHLkCIDca+f09HRoa2tj0aJF6NOnD+/foyKeJ3nUd5Sk9E1OTg5iYmKwe/duTJs2TSztWxKdOnXCuXPnYGtri1GjRsHd3R0nTpzAvXv3ZKqVmpWVhcDAQMTGxmLIkCGoVKkSXr16BR0dHbltzKlfvz5WrFiBYcOGITo6Wi5jlgdUg45IpFOnTujfvz9XbPLWrVto164dFi1ahEaNGmH27Nno3r077/oB8qaIdutAboHXJUuWwNnZudCaBHwvVlJTUzFz5kwcO3YMycnJYo9LW+Pkzz//hKWlpdyKOuc3depUqKmpyaUdtlAoRPfu3bk3+nPnzqFTp07cReC3b99w6dIlqX/+oKAgtGnTRmQiTR5q1KiBAwcOiBVYv3z5MkaMGIE3b95IPFbebj9JSLrj6927d+jXrx9u3rwJbW1teHl5oW/fvtzjnTt3RsuWLbF06VKJ41S0hg0b4tmzZ6hZsyY6dOgAOzs7dOjQgXfTmZKkp6eL7aiTVGxsLPbt24fY2Fhs2LAB1atXx6VLl2BgYMA19ZCUImpv5mndujX8/f3FJlWePn2Kzp07499//5VonLzaSxcvXhR5rQqFQlSrVg0tWrSQedLi7t278PDwwLx58wptvCPtJMWPkp6ejr///hu+vr54+vSp1P9eX18foaGhYk1Hnj17hubNm+PTp09yipS/N2/ewNbWFioqKnBxcYG5uTkEAgGePHmCLVu2IDs7G+Hh4ahRowbv7zF79mysX78eGRkZAIAKFSpg2rRpWLx4sbx+DN7S09Nx7Ngx7N27F3fu3IG9vT0uXLiAyMhIudShTEtLw4wZM+T2vg/I9xyVn7e3N1avXo2YmBgAQIMGDTB9+nSRRVu+QkJCcOvWLZiZmfG+hgJyr/tsbW2xePFiVKpUCVFRUTA0NMSgQYOQk5ODEydOSD1mdnY2Dhw4AHt7e5l2ixZU0vmfz3l/1KhRaNasmUxZAgUV12hFlrrLkjZwkeZ71K5dG4GBgVx2R1ly//592NraSv37VFFRQVJSErd7Pu91n1c3/M2bN6hdu7ZU43bv3h12dnbcTswHDx7g119/xciRI7lmY2PHjuXVbKxmzZrw9/eHhYUFGjdujOXLl6N37964f/8+2rRpg69fv0o9piLFxsbC09OTqzndqFEjuLm5KWSh+8KFCxg/fjyvmq45OTnIycnh7nmOHTuG4OBgmJmZYdy4cVBXV5d6zISEBDg4OCAxMRHfvn3Ds2fPYGJigsmTJyMjIwPbt2+XesyiREREoEOHDiXWxf2Z0AQdkUj16tVFtgdPmTIFjx8/xqVLlwDk7rBzc3PjLt6ULSkpCcOHD8e1a9e4G76srCx07twZBw4cQI0aNRAQEMClbEpKURcrEydOREBAABYtWoQRI0Zgy5Yt+O+//7Bjxw6sWLECQ4cOlWo8eRd1zs/V1RXe3t4wMzND06ZNxcaWZpJWUZMU4eHhUFNTg6WlJQDg7Nmz2LdvHywsLLBgwQJeb1ZA7u/t9OnTWLNmDVq3bg2BQIDg4GBMnz4d/fv3lyrFyMvLS+KvlXZnREpKCrS1tcW6FH/48AHa2tq8f35FSUpKQkBAAIKCghAYGIiYmBhUq1YNdnZ28PHxkXq8iRMnYsuWLWLHU1NT0aNHDwQGBko9ZlBQELp37442bdrg+vXrePLkCUxMTLBq1SqEhobyuvlTlLzGLefPn+cu2J48eYJOnTrhjz/+wIYNGyQaRygUIikpSeaU4+LExMRg8ODBiIiIEDnOJGy8s3HjRowZMwYaGhpFdu/Ow/e8V3AyPW8HoaamJg4dOsRrUsHV1RVqampi58tp06YhPT290NdvURRZ2DkhIQHjx4/H5cuXRXZP2dvbY+vWrXJpRpCWlobHjx8jJycHFhYWpa5kBpD7Ot27dy+8vb3x9etX9OjRAwMGDJBpd4K83/cVdY5at24d5s6dCxcXF7Rp0waMMdy8eRNbtmzBkiVLZNr1Jk+PHz+GnZ0dfv31V/j7+6N379549OgRPnz4gJs3b/K+qdbQ0MCTJ0+4SY/Savny5Vi3bh169OhR6AKyLNd9ZcHatWsRFxcn17RheSnpvem///7DmjVrpL6HUMQityKbjcmrIdqPcPnyZfTu3RvW1tbcee/WrVu4f/++zF2MC/Pp0yc4Ozvz2j2rCI6OjqhUqRL27NmDKlWqcI0ngoKC8Ndff/G638+/MxbIvZZ6/fo1Nm/eDAMDA/j6+sor/DKPJuiIRDQ1NfH06VOu1ljz5s0xYMAAzJgxA0DuRbyFhQVSU1OVGaaY4tqtlyb16tWDt7c37OzsoKOjg/DwcJiZmeHAgQM4cuQILl68KNV4xV1ICgQCXh2y4uLiYGRkVGz9CYFAAH9/f6nHlrdmzZrBw8ODqzdoYWGBfv364e7du+jRowfvWj3fv3/HjBkzsG3bNi6FWk1NDePHj8eKFSt4bfnPysrCoUOHYG9vz9Xj+1mlpqYiODgYPj4+OHjwIBhjhaaql6R+/foYOHCgSJpgamoqV+Pkxo0bUo/ZqlUr/P7775gyZYpIl6y7d+/C0dER//33n9RjKkpGRga6du2KWrVq4ejRo3j06BE6d+6MoUOHSjWBLhQK8ebNG251XhGaN28OVVVVuLm5oUaNGmI3Vh06dCj23xsbG+PevXuoUqWKQs57gPhkev4dhAkJCRKnjOaXt9BhYGAgkuL18uVLjBgxQuTmuqTnTNKFDoB/jZmPHz/i+fPnYIyhfv36Mu2cdHZ2lujr9u7dK/XYqampWLFiBa5du1ZoJ0tZu0Pm5OTgwoUL2LNnD3x9ffHt2zfeY8n7fV9R5yhjY2MsXLhQrMOel5cXFixYwKtW04EDB7B9+3bEx8fj9u3bMDQ0hKenJ4yNjQut+SippKQkbNu2DWFhYcjJyYGtrS0mTpwo0+63Zs2aYcWKFTJ3WizMu3fv8PTpU65uriznWnme/9LT03Ht2jUuhf3vv/8Wea2rqqpi0aJFYru0lalv374ICAhA5cqVZUobVkR2g6STu9L+LSlikVtDQwMxMTFc5962bdvCwcEBc+bMAQC8ePEClpaWvLrWxsXF4evXr7CyskJaWhqmTZvG7fRav369VGmllStXxrNnz1C1atUSnzM+dYdtbGxgb28vli3k4eEBPz8/hIeHSz2mPEVFRUn8tdJ0nM1TtWpV3Lx5E+bm5iLvJy9evICFhQXS0tKkHrPgJheBQIBq1aqhU6dOWLt2rVx3KZd1NEFHJGJqaoqtW7fC3t4eX79+RZUqVeDv7482bdoAyN2xZG9vj3fv3ik5UsXJysqChoaG3NJb8tPW1sajR49gaGiIunXr4tSpU2jevDni4+NhaWlZKrZ956W75e2mGThwIDZu3ChTepOi6OrqIjw8HKampli5ciX8/f1x+fJl3Lx5E4MGDcLLly+lGi8tLQ3Tp0/HmTNnkJmZiY4dO8LFxQW6urowMzMrtO6NNLS0tPDkyRO51Lwoa3x9fbmdc/fv30fjxo3Rvn172NnZoV27drwmAuLj49G2bVtMmzYN7u7u+PLlC+zt7aGqqgpfX1+xXZ+S0NbWxoMHD2BsbCx2sdKwYUMuRa+0SElJgZ2dHUxNTXHjxg2MGDECq1evlmoMoVAIXV3dEm9W+Fz85tHS0kJERESpXTwpTEpKCg4dOoQ9e/YgMjKS187pjh07SvR1pWXRQ56EQiEMDQ1hY2NTbAHr06dPSz324MGDubpxtWrVEnvturm5ST1mUd6+fSvT7lJ5v+8r6hyloaGBhw8fitXejYmJgaWlpdTjbtu2DfPmzcPkyZOxdOlSPHz4ECYmJti/fz+8vLzEmpFJorAGVvLi5+eHmTNnYvHixYVmJPBJw09NTeUm6fMmkVVUVDBixAhs2rRJ5msKWe3YsYMrBQPkpk42btyYKw8RHR2N6dOny1RG5dq1a1i/fj2XPtiwYUNMnjwZXbp04TWevNKGFZndUBYYGhriwIEDaN++Pb5//w49PT2cO3eOm6B+8OABOnToINP7vjx4eXlh0KBBqFChAvbv31/sdQqf50lDQwMPHjwotAyFlZWV0q/5hEIhBAJBiU0g+GZ3Va5cGcHBwbCwsBB5PwkODkb//v2lKulDpEdNIohEBgwYgMmTJ2PWrFm4ePEiatasya36A7nF80vTDVZ2djb2799f5Co6nxseVVVVGBoa8k5jLU7eRbShoSEsLCxw7NgxNG/eHOfOnSuy2Lskvn//jvj4eJiamspcj63gm4Cvr2+p2zGZhzHGPedXr17lVoENDAzw/v17qcebP38+9u/fj6FDh0JTUxOHDx9GTk4Ojh8/Lpd4W7RogYiIiJ9ygq5Hjx6oVq0apk6disuXL0tUVLckxsbGuHz5Muzs7CAUCuHj44MKFSrgwoULvCbnAEBPTw+vX78WWwmPiIhAnTp1ZI5ZVgVrdwgEAhw9ehRdunRB//79MXfuXO5rpLmhLNhsRd6aNm2Kly9flqr3j6L4+/tj7969OHXqFAwNDdG/f3+JuqEWhs8khKR+RGFnWYwbNw4+Pj6Ii4uDs7Mzhg0bJtK9Wxa+vr64cOECt3ioSLKmfsv7fV9R5ygzMzMcO3aM64aY5+jRo2I3r5LYtGkTdu3aBUdHR5HdKU2bNsW0adN4xaiIBlZ58nZe9+7dWyzVne/N75QpUxAUFIRz585xr9Xg4GBMmjQJU6dOxbZt2+QTPE+HDh0SS10+fPgw11354MGD2LJlC+8Jus2bN8Pd3R0DBgzgJs1DQkLw22+/Yd26dXBxcZF6THl1oCyPk27SKCvNxvI/T/LuMgwA1apVQ2RkpNg5LjIyUqFlPyQl7+7aBXXt2hWenp7YuXMngNxryq9fv2L+/PlybcRCCkc76IhE0tLSMHbsWJw/fx41a9bEzp07RU7YHTt2hIODg1zbu8vCxcWFa7de2Cr6+vXreY27b98+HD9+HAcPHpTbDUVePCoqKpg0aRICAgK4GlKZmZlYv3691Kv+aWlpcHV15VYC84p7Tpo0CbVr14aHh4fUMRasR5V/RaW06dSpEwwMDNClSxeMGjUKjx8/hpmZGYKCgjBy5Ei8ePFCqvFMTU2xdOlSDBo0CAAQGhqKNm3aICMjQ6zOGx/Hjx+Hh4cH3N3dC12h57M9vazw9PTE9evXcePGDaioqHCNIuzs7NCoUSOZxg4JCUGXLl3QokULnD9/nndzCACYMWMGbt++jePHj6NBgwYIDw/HmzdvMGLECIwYMQLz58+XKVZZ5a2mFpS/bpi0N5Q/ogbd8ePHsWDBAkyfPr3QukklvfaluUHk08To33//xf79+7F3716kpqbijz/+wPbt23H//n1YWFhIPV5Bz58/R2xsLNq3bw9NTU3uOeLrRxZ2lsW3b99w6tQp7N27F7du3UKPHj0watQodOvWTaaf39jYGBcvXpT53PEjFPW+n5WVhXXr1kn9vq+oc9TJkycxcOBAdOnSBW3atOFqr167dg3Hjh0TaUQkCU1NTURHR8PQ0FDkOiImJgZWVla8uzrLs4FVfkFBQcU+XlIafmGqVq2KEydOwM7OTuR4QEAA/vjjD4mzUaZMmYLFixejYsWKJZ4LpTn/1axZE9euXeMai1SrVg13797lak4+e/YMzZo1Q0pKisRj5lenTh38/fffYhNxW7ZswdKlS/Hq1Ste48pbSQX788r+lCeKbDZWVCqqQCCAhoYGzMzM4OTkJHHqblHXPQXH5lMqZdGiRVi/fj08PDxEak6vXLkSU6dO5VJ+y6tXr16hY8eOUFFRQUxMDJo2bYqYmBhUqVIFN27c4HVdqIjNM+UVTdCRcqlq1arw9vaW+yy/jY0Nnj9/jszMTBgaGopNpMirJkFiYiLu3bsHMzMzXpMzbm5uuHnzJjw9PeHg4ICoqCiYmJjgn3/+wfz588UKskuipG5RpUlUVBSGDh2KxMRETJkyhbsxcXV1RXJyMg4fPizVeOrq6oiPjxfZhaCpqYlnz55xdTpkUVjzET4TKmXdgwcPEBQUhICAAJw7dw5VqlTB69evJfq3NjY2hV6oJSQkoHr16iKTc3z+TjMzM+Hk5AQfHx8wxqCqqors7GwMGTIE+/fvl8tErSxKuonMT9IbyoJp7Yog62tfkamiv/32G4KDg9GzZ08MHToUDg4OUFFRgZqamswTdMnJyfjjjz8QEBAAgUCAmJgYmJiYYNSoUdDT08PatWt5jauIws6KlpCQgP3798Pb2xuZmZl4/Pgx751+Bw8exNmzZ+Hl5aX0NEFp5b3vm5qaokmTJlL/e0Weo8LCwrBu3TpER0eDMQYLCwtMnTqVaxwmDQsLCyxfvhx9+vQRmaDbuHEjvLy8EBYWxitGeTawUjQtLS2EhYWJTSQ/evQIzZs3lzg7oWPHjlizZg1sbGzkWh9YU1MTkZGRRe5sjo6OhrW1Ne80v0qVKiEiIqLQtGkbGxteZV2MjY2LnazhU3+ypAmg8nxtpohmY+vXr8fSpUvRvXt3NG/eHIwx3L17F5cuXYK7uzvi4+Nx4MABbNq0CaNHjy5xvLNnzxb52K1bt7Bp0yYwxnhN+jPG4OnpibVr13ITxrVr18b06dMxadKkUteIBMhtlJOYmIjv37+LHOfbHTs9PR1HjhxBeHg4V9MzL5OID0VtnimPKMWVlEvq6upib/zy4OjoKNfx/P394eLigpCQEJG0s3r16kFXVxetW7fG9u3bRXYrSuLMmTM4evQoWrZsKXICtLCwQGxsLK9YGWNwcnLiGiFkZGRg3LhxYhfBpaEDkZWVFR48eCB2fPXq1bxuUrKzs8UuRlRVVXmtyhVG0VvVy4KIiAgEBgYiICAAN27cQE5ODurWrSvxv5f332ZBampqOHToEBYtWoSIiAjk5OTAxsaGV4qXIvDZxVGSH7F+J+trX5Gpon5+fpg0aRLGjx8v9+fZ3d0dampqSExMFLlJHzhwINzd3XlP0AUHB+PmzZti5ytDQ8NS1cgkP4FAwE3KFlxRl9batWsRGxuLGjVqwMjISGxHprILexenXr16Mu3IUeQ56tdff8WhQ4dkHgcApk+fjokTJyIjIwOMMYSGhuLIkSNYvnw575RxAHj48CFsbW0B5O7wkqdPnz5hz549XL00CwsLODs7807/b9WqFebPnw9vb2+u0UJ6ejoWLlyIVq1aSTxOQEAAt5CSdy6UR33gunXr4uHDh0VO0EVFRUn1/lxQ7969cfr0aUyfPl3k+NmzZ9GrVy9eY06ePFnk88zMTERERODSpUti30dSBRez88Zct24drx1kZUlRr21ZsoeCg4OxZMkSjBs3TuT4jh074Ofnh5MnT8LKygobN26UaIKusIYy0dHR+Pvvv3Hu3DkMHToUixcv5hWrQCCAu7s7V8cYyJ1YLo3i4uLQt29fPHjwQKQuXd79H5+J5OTkZFSpUgXOzs7o0qULdu/ejadPn+LevXtS35Pm8fHxwbFjxyhFVgK0g46US6W53Xp+vXv3RseOHcVqfeTZuHEjAgICpC6WraWlxRVezr9Cff/+fbRv355XWoIiukWVFQVb2QPi7eyB0jE5Wdb07t0bwcHB+Pz5M6ytrbn01vbt2/Mqvq0o169fR8OGDcV2k2VmZuL27dto3769kiIrWlpaWqGrqeU5ZTrPy5cvIRAIZLqJvH37Nvbu3Ytjx46hYcOGGD58OAYOHIjatWvLvIOuZs2auHz5Mpo0aSJyjpa1MVBZKeycP8U1b5fin3/+CQcHh0J3VUpq4cKFxT7ON83z+/fvhabkSDuhtnHjRom/dtKkSVKNLW+KTB/btWsXlixZwjVsqlOnDhYsWIBRo0bxilWR7t27B3t7e2hqanK7fu7du4f09HT4+flxk4LSePjwIRwcHJCRkYEmTZpAIBAgMjISGhoauHz5MpdaKomCpQh0dHQQGRkpU/kRNzc3XL16FWFhYWKdWtPT09G0aVN06dIFGzZs4DX+kiVLsGbNGrRp04abkAwJCcHNmzcxdepUkfd+Wf8OtmzZgnv37sn12vTChQtYvXo1AgMD5Tbmz0BbWxuRkZFiGyieP38Oa2trfP36FbGxsbCyspK6xvWrV68wf/58eHl5wd7eHsuXL5d7Q7/SqlevXlBRUcGuXbtgYmKC0NBQJCcnY+rUqVizZo1UE2oPHjxAr1698PLlS9SvXx8+Pj5wcHBAamoqhEIhUlNTceLECV6L4rVr10ZgYKDcG/mURzRBR8olebVbL8ynT59w4sQJxMbGYvr06ahcuTLCw8NRo0YNqQsxGxoa4tKlS0XWy4mOjka3bt1KrINRUIcOHTBgwAC4urqKpKK6uLjg+fPnuHTpklTjlTXyTkv4EZOTBw4cwPbt2xEfH4/bt2/D0NAQnp6eMDY2LnSVsLyYNm2a3CbkinredXR0YG5ujhkzZqBfv368x65RowZOnTolssPhzZs3qF27dqlKdXn37h3+/PNP+Pr6Fvp4aYoVAGJjY+Hp6cntTmnUqBHc3NykLkSdlZWFhQsXYuPGjdwEl7a2NlxdXTF//nyx9wFJpaWlwcfHB3v37kVoaCiys7Oxbt06ODs7815Rr1SpEsLDw1G/fn2RibS7d+/CwcEBycnJvMYdOHAgdHV1sXPnTu7cX61aNfTp0wf16tUrFQsoEyZMgI+PD+rVq4c///wTw4YNQ5UqVZQdVqFiYmLg7OyMW7duiRznW35A0pIQAoFA6pS8omqQ5a/v1KdPH4l3wCgyfSzP+/fvkZOTI1MavSTndIFAgJMnT/Iav127djAzM8OuXbu4ZltZWVn466+/EBcXh+vXr/MaNz09HQcPHhRJG+aTPqaI+sBv3ryBtbU11NXV4eLiggYNGkAgECA6OhqbN29GVlYWIiIieO/SU+TfQUFxcXGwtrYWa6Qki5iYGFhbW0s0ifT582fu2qakGErToqQi1KtXj9uVlt/69euxfv16JCYmIioqCt26dUNSUpJEY6akpGDZsmXYtGkTrK2tsXLlSt47vIoqlVKY0rQbu2rVqvD394eVlRV0dXURGhoKc3Nz+Pv7Y+rUqVKVNerevTtUVVUxc+ZMHDx4EOfPn0e3bt243c2urq4ICwtDSEiI1HGWlc0zpQGluJJySU9PT+rCxZKIiopCly5doKurixcvXmD06NGoXLkyTp8+jYSEBHh7e0s13ps3b4q9aVRVVZW4WHB+y5cvh4ODAx4/foysrCxs2LABjx49wu3bt6WqVVVWFdxxmJeW4OXlVeIOi8Io+qZ227ZtmDdvHiZPnoylS5dyN316enrw9PQslxN0d+7cwYcPH7BmzRrumLe3N+bPn4/U1FQ4Ojpi06ZNIrsWS3Lq1KlC3/Q/ffqE0NBQDBs2DF5eXvj99995xTxo0CB07twZW7duFekaVtrWuSZPnoyPHz8iJCQEHTt2xOnTp/HmzRssWbKEd+qkoly+fBm9e/eGtbU12rRpA8YYbt26hcaNG+PcuXPo2rWrxGO5uLjg9OnTWLVqFTeJevv2bSxYsADv37/n3SBBS0sLzs7OcHZ2xtOnT7Fnzx6sWLECHh4e6Nq1K/755x+px2zfvj28vb259BuBQICcnBysXr1a4rp6hVm/fj06duwICwsLZGRkYMiQIVxh5yNHjvAeV562b9+OevXqwdjYGEFBQUW+J/FdSJPnIpqTkxNUVVVx/vz5QmvmSEuR5QwiIiIQHh6O7OxsmJubgzGGmJgYqKiooGHDhti6dSumTp3K7bAsibzTxw4cOIAePXqITBBWrVqV+//U1FSsXbsW8+bNk3hMoOhUPHm5d++eyOQckHttNmPGDDRt2pT3uJqamhKl8ZUkL0W84DFZ1KhRA7du3cL48ePh4eEhkjLXtWtXbN26VaYU2h9Z1uPEiRO80zILTqgxxvD69WssWLBA4tRxfX19rparnp5ekc2cfoZ6w3PnzsX48eMREBCA5s2bQyAQIDQ0FBcvXuTen69cuSJxyY5Vq1Zh5cqVqFmzJo4cOSLztbKiS6UoSnZ2Nle3tWrVqnj16hXMzc1haGiIp0+fSjXW3bt3uck+a2tr7Ny5ExMmTOB2tru6uqJly5YSj1dwAcXf3x++vr5y3zxT3tAOOkKk0KVLF9ja2mLVqlUiq5S3bt3CkCFDeHUHXbNmTZGTiadOncK0adN4rSA+ePAAa9asQVhYGFfcc+bMmbC0tJR6rPLi8OHDOHr0aLE7A5TBwsICy5Yt4wq8572uHj58CDs7O7x//17ZIcpd9+7dYWdnx3V+fvDgAWxtbeHk5IRGjRph9erVGDt2LBYsWCC377llyxZ4e3vjzp07Uv/bvDo/wcHBGDlyJEaPHo21a9fi7du3pW4HXa1atXD27Fk0b94cOjo6uHfvHho0aIB//vkHq1atQnBwsLJD5NjY2MDe3l6s86KHhwf8/PykWqXW1dWFj48PunfvLnLc19cXgwYN4t1xsDDZ2dk4d+4c9u7dy2uC7vHjx7Czs8Ovv/4Kf39/9O7dG48ePcKHDx9w8+ZNqXcP5ifvws7y5uTkJNEEAp+FkYKLaE+fPoWJiQnmzp3LaxGtYsWKCAsLQ8OGDaWO5Ufz9PTEjRs3sG/fPpEdO6NGjULbtm0xevRoDBkyBOnp6bh8+bJUY8sjfUwoFMLY2Bhnz54t9N+Wxt3IQO5k1YEDB9CtWzeR45cvX8aIESMkThuX5jwhTVH3giU4Ciu/AfC/+f3w4QOeP38OADAzM5OpBpkiFdz9xBhDUlIS3r17h61bt2LMmDFSj1nYrnzGGAwMDODj4yNRvcCgoCC0adMGqqqqCukIXNbcvHkTmzdvxtOnT8EYQ8OGDeHq6orWrVtLPZZQKISmpia6dOlSbH3p8j7x065dO0ydOhWOjo4YMmQIPn78iDlz5mDnzp0ICwvDw4cPJR6rpB250p6nJc1AAspniSS+aIKOlKgs1UxRNF1dXYSHh8PU1FTkpJWQkABzc3OpO1q5uroiMDAQd+/eLbTOR/PmzdGxY0epngNSNL61LRRNU1MT0dHRMDQ0FHldxcTEwMrKSqYUotKqVq1aOHfuHLcDYfbs2QgKCuImj44fP4758+fj8ePHcvueMTExaN68OT5+/Cj1v81/0RIREYE+ffrAwsICGzZsgIWFRam6qdTR0UFUVBSMjIxgZGSEQ4cOoU2bNoiPj0fjxo2Rlpam7BA5GhoaePDggdhuhGfPnsHKykqqc2qNGjUQGBgoVjLgyZMnaN++Pa/dyIqUlJSEbdu2iSyiTJw4EbVq1eI9Zl5hZyC3K+ju3buRnp6O3r178077KUvkvYjWrFkzrF+/Hm3btpV7rPJOSa1Tpw6uXLkitjvu0aNH6NatG/777z+Eh4ejW7duEi/6yDN9TCgUokuXLrh9+za8vLzEdlaU1gm6SZMm4fTp01izZg1at24NgUCA4OBgTJ8+Hf3794enp6dE4xSsrZi/mHv+Y4B0ZQjKSn3gKVOmYPHixahYsWKRr/08fDruLliwQGQyTSgUolq1arCzs+M9wR4YGFjomGZmZiI7KiWRlZWFpUuXwtnZGQYGBrziIaIUudiTJywsTKQ5DJ/O1Yp2+fJlpKamol+/foiLi0PPnj0RHR2NKlWqwMfHp9gOzwUJhUK8efMG1apVAwCRMklA6T1PlzeU4kpKVLDt8bt375CWlgY9PT0AuekkWlpaqF69ulIn6GxtbXHt2jXo6+uXWEeAb+0ADQ2NQmtIPH36lDuZSWPOnDk4deoUGjRoABcXF5ibm0MgEODJkyfYsmULsrOzMXv2bInGkqa+Rnmvc1GY9PR0bNq0Saai8YpibGyMyMhIGBoaihz39fWVqRB9afbx40eRFJmgoCA4ODhwnzdr1owrIC4v6enpYhPhfNjY2CA0NBSOjo5SXfj8KObm5nj69CmMjIxgbW2NHTt2wMjICNu3b5dp8kcRqlWrhsjISLEJusjISKnrUk2cOBGLFy/Gvn37uN0k3759w9KlS+Hi4iK3mOWlZs2aYin3GRkZWLNmDaZNmybVWCUVdl6/fj3vws5lyd27d7Fjxw6x43Xq1JG4plH+99KVK1dixowZWLZsGSwtLcVScmR5L5V3SmpKSgrevn0r9rXv3r3jfiY9PT2xpjFFkXf6mEAgwMGDB7Fr1y788ccfmD17Nq+SEz/amjVrIBQKMWLECK4hhpqaGsaPHy+287c4+RuMXL16FTNnzsSyZcvQqlUrCAQC3Lp1C3PmzMGyZcukik/ZE2+SioiIQGZmJvf/RZE2PTfvtV3cpF/+OnDSsLS05BY8Xr58iV27dvFe8FBVVcWaNWswcuRIqeMoT3JycvD8+fNCm+5I22xr//79coxM1Nu3bzFo0CAEBgZCT08PjDGkpKSgY8eO8PHx4XXPpyj29vbc/5uYmODx48f48OED9PX1eaW7Ozk5cddQGRkZGDduHLcj99u3b7zj7NSpE06dOsXNH+T5/PkzHB0d4e/vz3vs8oYm6EiJ8teKOHz4MLZu3Yo9e/Zw7defPn2K0aNHY+zYscoKEUBuvZS8E4qibkL69OmDRYsW4dixYwByLyQSExPh4eGB/v37Sz1e/joff//9t0idD3t7e6nqfBRV26Iw5X3lo+CbEmMMX758gaamJg4dOqTEyAo3ffp0TJw4ERkZGWCMITQ0FEeOHMHy5cu5wqzlTY0aNRAfHw8DAwN8//4d4eHhIjdrX7584V3Uvyi7du3ivfo5cuRIkRTBmjVrIigoCGPGjOFdJFxRJk+ejNevXwPI7Vppb2+PQ4cOQV1dXaEXtHyMHj0aY8aMQVxcnMjulBUrVkg0SVVwF87Vq1dRt25dNGnSBABw//59fP/+vVRNpL5//x537tyBmpoaOnfuDBUVFWRmZmLr1q1Yvnw5srKypJ6gmzFjBiwtLXHw4EEcPHgQPXv2xG+//SZS2HnFihXlfoJOHotoBd9LGWNirx951IzK2x1XUkqqu7u7RCmpffr0gbOzM9auXYtmzZpx9Z2mTZvGPe+hoaESd9Dz8PCApqYmzMzM4OXlBS8vr0K/TtL0sbzrm9mzZ6NJkyYYNmwYoqKicODAAa5+UmmSlpaG6dOn48yZM8jMzISjoyNcXFygq6sLMzMzaGlp8R578uTJ2L59u8jOTHt7e2hpaWHMmDF48uSJPH6EUiUgIKDQ/5dVSde+fP5WFbXg0blzZwQGBorUsP2ZhISEYMiQIUhISCh092hpujdxdXXF58+f8ejRI25X/uPHjzFy5EhMmjSpVNR0dXZ2lujr9u7dK/GYBSeQhw0bJvY1I0aMkHi8/AIDAwtdIMrIyMCNGzd4jVleUYorkYqpqSlOnDghdpMbFhaGAQMG/NDCr3z9999/UheKzvP582f89ttvePToEb58+YLatWsjKSkJLVu2hK+vr1jND2l8/PgRz58/B2MM9evXh76+vlT/Pn9tixcvXsDDwwNOTk4ixdK9vLywfPnycr+CV/BGIi8toUWLFkhISIC1tbVyAivGrl27sGTJEm7XWJ06dbBgwQKMGjVKyZEpxtixY/HgwQOsXLkSZ86cgZeXF169egV1dXUAwKFDh+Dp6Ym7d+9KPGZRK+gpKSm4d+8eYmNjcePGDV6TdImJiTAwMCi0Hs3Lly9Rr149qceUt4I3lF26dMHGjRuhpaWF6Oho1KtXT6Qoe2nAGIOnpyfWrl2LV69eAQBq166NGTNmoG/fviWmApW1+ia3bt1Cjx49kJKSAoFAgKZNm2Lfvn1wdHRETk4OJk+eDGdnZ6lv/vN3cfv69St0dHQQGhrKpZBHR0ejZcuW+PTpkwJ+qtJjzJgxePfuHY4dO4bKlSsjKioKKioqcHR0RPv27SVKR5SmkZIsNaPknZL69etXuLu7w9vbm9vppaqqipEjR2L9+vWoWLEiIiMjAUCi90B5p48VrG0UHR0NR0dHqKqq4p9//kHFihVLVerU9OnTsXXrVq5+4+HDh2FnZ4fjx4/LPLampiZCQ0PFagJHRUWhRYsW5bKshaLk/3tljHELEwWv86X5W1VUJ8sdO3ZgwYIFGDp0KH799VexewZpag+WRdbW1mjQoAEWLlxYaNMdRTd8kYauri6uXr2KZs2aiRwPDQ1Ft27dSsV7qVAohKGhIWxsbIptVlawcd6PFhUVBSD3+ff39xcp25CdnY1Lly5hx44dUpegKNcYIVLQ1NRkd+7cETt+584dpqmpqYSIRE2aNKnYx//9919Wv359mb+Pv78/W716NVu5ciW7cuWKzOPJW6dOndjhw4fFjh86dIh16NDhxwekZJ8+fWJbtmxhtra2TCgUKjucYr179469efNG2WEo3Nu3b1nbtm2ZQCBglSpVYqdOnRJ5vFOnTmzWrFlSjWlnZ1foR+/evdmMGTPYixcveMcrFAoLfV7ev39fal5T06ZNY1paWmz06NFs0qRJrGrVqmzAgAHKDktinz9/Zp8/f2avXr1iLi4uTENDQ9khyV2nTp3YwIED2YMHD5i7uzsTCATM2NiYeXl5sZycHN7jCgQCkdentrY2i42N5T5PSkoqNa9TRUpJSWFt2rRhenp6TEVFhRkYGDA1NTXWvn179vXrV6nHS0hIKPR5ycnJYQkJCTLFWrFiRRYQECB2PCAggGlrazPGGIuNjWWVKlUqcaysrCwWGBjIkpOT2ZcvX9j9+/dZZGQk+/Lli0wxylNh59CUlBTWo0cPVrlyZebt7V2qXqMmJibsyJEj3Od37txhqqqqLCsrS+ax27Vrxzp16sRevXrFHXv9+jXr0qULa9++vczjl0Z9+/aV+EMWBc99fFSpUoXdv3+fMcbYly9fmEAgYHfv3uUef/LkCdPV1ZV6XIFAUORHaXrtK4qWlhaLiYlRdhgS0dbWZhEREWLHw8PDJTon/wjjx49n+vr6rEmTJmzDhg0sOTlZ2SEVKu/1LRQKC33ta2lpsT179ig7zFKFdtARqfTq1QuJiYnYs2cPfv31VwgEAty7dw+jR4+GgYEBr2528qSvrw93d3fMmzdP7LFXr17Bzs4ONWvWlDolLT09HdeuXUPPnj0BAH///bdIHr6qqioWLVokl/pW8qClpYX79+8XWnjd2tq6VBWJVyR/f3/s3bsXp06dgqGhIfr374/+/fuXyiKvP6uUlBRoa2uLdeD68OEDtLW1uR11ylawcG6ehIQEWFhYlIrGI6ampli6dCkGDRoEIHelt02bNsjIyCi2w5kyfPr0CRMnToSfnx/U1NTg4eEBFxcXLFy4EGvWrIGFhQWmTJmCwYMHKztUuapatSqCgoK4Zh2VKlWCj48Pfv/9d5nGpcLOogICAkSab3Tp0oXXOHndmwvWQ0xOTkb16tVl+n0OHToUt2/fLjQltXXr1jhw4AB8fHywZs0a3Lt3r8TxNDQ08OTJE+45L20K7qDLwxjD7NmzsXLlSgClpwSHuro64uPjRXZiaWpq4tmzZzIX+X/+/Dn69u2Lp0+fcruvExMT0aBBA5w5cwZmZmYyjV8a/ajdzgW7TvIh706WJFenTp0wY8YMkXrDpVWfPn3w6dMnHDlyBLVr1waQm4E1dOhQ6OvrK31XWp5v377h1KlT2Lt3L7dDf9SoUejWrRuv+nOKkJfSbGJigtDQUJHraHV1dVSvXr3UXaMqG9WgI1LZu3cvRo4ciebNm3P1obKysmBvb18qamX9888/cHBwQJUqVTBx4kTu+OvXr9GxY0dUq1YNvr6+Uo/r7e2N8+fPcxN0mzdvRuPGjbmaVNHR0ahVqxbc3d3l84PIyMDAANu3b8fatWtFju/YsaPcd4/6999/sX//fuzduxepqan4448/kJmZiZMnT5bahgtv3rzBtGnTcO3aNbx9+1Zsq3p5vggsKqVB0s6FipaXNisQCDB37lyR1MPs7GzcuXOn1KRMv3z5UqRwdfPmzaGqqopXr16Vur/7WbNm4fr16xg5ciQuXboEd3d3XLp0CRkZGbh48SKv1EFjY+NiL0jj4uJkCVkuPnz4wF2camlpQUtLS24LBooq7FxW5OTkYP/+/Th16hRevHgBgUAAY2Nj1KxZk6tDJa2i/t3Xr19lXpDbsWMH3N3dMWjQoEJTUgGgYcOGEl9bWVpaIi4urtRO0BWs45lHIBBg2bJlsLa2xvbt25UQWeGys7PFFohUVVW550oWZmZmiIqKwpUrVxAdHQ3GGCwsLNClS5dSc1Mtb6WhxIA0Cj4P5fV5+ZFcXV0xdepUJCUlFdp0x8rKSkmRidu8eTP69OkDIyMjrrxJYmIiV+u1tKhQoQIGDx6MwYMHIyEhAfv378eECROQmZmJx48fl4r6nnkN8Ao2BSFFox10hJdnz55xFxWNGjWSuOjwj3DhwgX0798f+/btw+DBg5GUlAQ7Ozvo6+vjypUrvE5W7du3h7u7O/r27QtAfDXt4MGD2LJlC27fvi3Xn4Wvixcvon///jA1NUXLli0B5BZnjY2NxcmTJ/Hbb78pOULF+O233xAcHIyePXti6NChcHBwgIqKCtTU1HD//v1SO0HXvXt3JCYmwsXFpdC6HLJ2zyP8dezYEUBunZtWrVqJ3LCpq6vDyMgI06ZNE9utqgwqKipISkoSWZ0suJOqtDA0NMSePXvQpUsXxMXFwczMDJMmTZKoRlhRNmzYIPJ5ZmYmIiIicOnSJUyfPh0eHh4yRi07FRUVPHv2DNWqVQNjDAYGBggODoaRkZHI10nbcVDS3Sll7SZZUowx9OrVCxcvXkSTJk3QsGFDMMbw5MkTPHjwAL1798aZM2ckHi9vYn7Dhg0YPXp0oRPzKioquHnzpsyxf/36FXFxcWCMwdTUlPcNlZ+fH2bOnInFixcXWt/qZ+zeLguhUIju3btzk94AcO7cOXTq1EnkdytpkwzyY8jjPa/gc1/wef/27RsuXbok8eLpnTt38OHDB3Tv3p075u3tjfnz5yM1NRWOjo7YtGmTyGutPBIKhWLHBAKBXJruKEphk+ilVWJiIvbv34/9+/fj+/fviI6OVvoE3T///IPu3btDTU2txCy78l6DURo0QUd4+f79O+Lj42FqagpV1dK3EfPw4cMYNWoUtm3bhpUrV6JSpUq4evUq7wvUmjVr4tq1a2jcuDEAoFq1arh79y53U/Xs2TM0a9YMKSkp8voRZPby5Uts27ZN5I1l3LhxpW4njTypqqpi0qRJGD9+vMiESWmfoKtUqRJu3LhRanZiEXF//vknNmzYUKpvcsvSDaWamhoSEhK41BEtLS2Ehobil19+kfv32rJlC+7du1cqJqeEQqFYh9DCPi+NNyql2b59++Dm5oazZ89yk+p5/P394ejoiM2bN0vcfa4sTcznyX/zS68p2Sl60vvatWvcrvmCO0uk6bpYVtja2uLatWvQ19eHjY1NsTvSwsPDJR63YCfvwt7zAOne9+T93Hfv3h12dnaYOXMmgNwusba2tnByckKjRo2wevVqjB07FgsWLJA4xrIoISGh2Mfzdlopk7+/P1xcXBASEiJ2vZeSkoLWrVtj+/btItkKypQ/xTVvg8Kff/4JBweHQidEf7T86eLFxUPvUaJK38wKKdXS0tLg6urKdcl89uwZTExMMGnSJNSuXbtU7FAAgCFDhuDTp08YNWoUbG1tceXKFZlurFNSUkQmIt+9eyfyeE5OTqlLITIwMMCyZcuUHcYPdePGDezduxdNmzZFw4YNMXz4cAwcOFDZYZXIwMCg2A5MRPlKw+ROSQrrzjxs2DAlRFKynJwckfQWFRUVmbpgF6d79+74+++/S8VzGBAQoOwQyqUjR45g1qxZYpNzQG7dIw8PDxw6dEjiCbq850mRE/OpqalYsWJFkZM00qZkF/faioiI4BXjz0yR54uFCxdi0aJFaNq0aaG75sujPn36cItHjo6Ochu3YJkMebznyfu5j4yMxOLFi7nPfXx80KJFC+zatQtA7jXg/Pnzy/0EXWmYgCuJp6cnRo8eXeg5X1dXF2PHjsW6detKxQTdhAkT4OPjg3r16uHPP/+Ej48PqlSpouywROR/XysqxTUxMRHz58//USGVCbSDjkjFzc0NN2/ehKenJxwcHBAVFQUTExP8888/mD9/vtIvAguuyj1+/BgGBgaoVKmSyNdJszoHAPXr18eKFSvQv3//Qh8/duwYZs2ahefPn0sftILcuHEDO3bsQFxcHI4fP446dergwIEDMDY2Rtu2bZUdnkKlpaXBx8cHe/fuRWhoKLKzs7Fu3To4OzuLvRZKAz8/P6xduxY7duwQS3UjytOvXz/s378fOjo6Yqv0BZWGXWllSUkpRHnk8XtdtWoVtm7dihcvXsg8FimdatasiUuXLhW5CzkiIgLdu3dHUlLSjw2sGIMHD0ZQUBCGDx9e6CSNm5ubTOOnpKTg0KFD2L17N+7fv0+7E0qRWrVqYdWqVRg+fLiyQyE/gIaGBmJiYrgMlrZt28LBwQFz5swBALx48QKWlpb48uWLMsNUiLKW4mhoaIhLly6hUaNGhT4eHR2Nbt26ITEx8QdHJk4oFKJevXol7kgt7den9+/fh62tLb1H5UM76IhUzpw5g6NHj6Jly5YiJwMLCwvExsYqMbJcBVfl5FW767fffsO8efPQo0cPscLQ6enpWLhwIXr06CGX7yUPJ0+exPDhwzF06FCEh4dzu/u+fPmCZcuW4eLFi0qOULG0tLTg7OwMZ2dnPH36FHv27MGKFSvg4eGBrl27Kr3bMJDbcTj/31BqaipMTU2hpaUlVjj3w4cPPzo8gtzV0rznqKhmFoSfgrv95LHroeBFKmMMSUlJePfuHbZu3Srz+KT0+vDhA2rUqFHk4zVq1MDHjx+lHrdTp07FPu7v7y/1mHl8fX1x4cIFtGnThvcYhSmse/mePXvk+j2IbL5//47WrVsrOwyl+/79e6G7R/M625YXNWrUQHx8PAwMDPD9+3eEh4dj4cKF3ONfvnwRu+4rLxwdHbkUx+J2TpaWFMc3b94U+1yoqqqKZVEpy4gRI36K3bc/I5qgI1J59+4d13Y8v9TU1FJxklDUFtlZs2bh2LFjMDc3h4uLCxo0aACBQIDo6Ghs3rwZWVlZmDVrlkK+Nx9LlizB9u3bMWLECPj4+HDHW7dujUWLFikxsh/P3Nwcq1atwvLly3Hu3LlSU9tFlmL45MfIn+ZSGtIjyxNF/D4LXvwLhUJUq1YNdnZ2aNiwody/Hyk9srOzi62Hq6Kiwqv7ZpMmTUQ+z8zMRGRkJB4+fFhoSrk09PX15datuix1L589ezbs7OzQpk0bkeYbP5O//voLhw8fxty5c5UdilI8e/YMo0aNwq1bt0SOl9d6iQ4ODvDw8MDKlStx5swZaGlpiaRIRkVFwdTUVIkRKo4kKY6lSZ06dfDgwQOYmZkV+nhUVBRq1ar1g6Mq3P79+5UdAlEQSnElUunQoQMGDBgAV1dXkU5JLi4ueP78OS5duqTsEBUmPj4e48ePx5UrV7h6YQKBAF27dsXWrVu5jq6lgZaWFh4/fgwjIyORjrNxcXGwsLBARkaGskMkpEzZtWsX7OzsSlVReEJIrsIapOQnbdfFkixYsABfv37FmjVreI9x8OBBnD17Fl5eXjJNVJW17uUODg64desWvn37BltbW9jZ2aFDhw5o27at0jsO/ihubm7w9vaGlZUVrKysxHbsrFu3TkmR/Rht2rSBqqoqPDw8Ck3vLjgxXta9e/cO/fr1w82bN6GtrQ0vLy/07duXe7xz585o2bIlli5dqsQoFacsdbF1dXVFYGAg7t69W2jGVPPmzdGxY0ds3LhRSRGWP5TiKo4m6IhUbt26BQcHBwwdOhT79+/H2LFj8ejRI9y+fRtBQUH49ddflR2iwn348IGrNWdmZia3FXB5MjU1xY4dO9ClSxeRCTpvb2+sWLECjx8/VnaIJB8VFRW8fv1abHdqcnIyqlevTm9apUDDhg3x7Nkz1KxZEx06dOBuKmlnVumSnZ2N06dP48mTJxAIBGjUqBH69OlTKruNE/lRdMfNgp4/f47mzZvLVH7AxsYGsbGxYIzByMhIbJJG0lq5ZbF7eXZ2NkJDQxEUFITAwEDcvn0b6enpsLW1RUhIiLLDU7jCmpnkV96byVSsWBFhYWE/3ftnSkoKtLW1oaKiInL8w4cP0NbWFukWXZ6UpS62b968ga2tLVRUVODi4gJzc3MIBAI8efIEW7ZsQXZ2NsLDw4stqUBElVTD+dOnTwgKCqJ7nXzoipVIpXXr1rh58ybWrFkDU1NT+Pn5wdbWFrdv34alpaWyw/shKleujObNmys7jGKNHTsWbm5u2Lt3LwQCAV69eoXbt29j2rRpmDdvnrLDIwUUtU7y7du3cnvBVtZER0cjKSkJAQEBCAoKwvr16zFhwgQuhTJ/KjlRjocPH6JPnz5ISkqCubk5gNxUqmrVquGff/75ad6jfkY/OgX99u3bYrsrpCWvTpZlsXu5iooKWrVqhcqVK0NfXx+VKlXCmTNnSkUt4x+hvE/AlcTCwgLv379Xdhg/XFG1bEvjQr88laUutjVq1MCtW7cwfvx4/P333yIZU/b29ti6dStNzkmppBrOurq6EndY/1nQDjpCyqnZs2dj/fr1XDprhQoVMG3aNJE3SaJceVvk3d3dsXjxYpH0nuzsbFy/fh0vXrxQendkIio1NRXBwcHw8fHBwYMHwRjjVd+KyFfLli1RvXp1eHl5QV9fHwDw8eNHODk54e3bt7h9+7aSI/yf1NRUrFixAteuXSu0SHpcXJySIiP5FVz5Z4zh9evXuHfvHubOnauwurd8lJXu5du2bUNQUBC3Y6Jdu3bcrmQrKytlh6dQJe0kAXInAk6ePPkDovmxPn/+zP3/vXv3MGfOHCxbtgyWlpZiu0d1dHR+dHhEgcpqF9uPHz/i+fPnYIyhfv363HUFIYpGE3REKpSKV7akpaXh8ePHyMnJgYWFxU9T36WsMDY2BgAkJCSgbt26ImkP6urqMDIywqJFi9CiRQtlhUj+n6+vL5eOdf/+fTRu3Bjt27eHnZ0d2rVrRxdupYCmpibu3buHxo0bixx/+PAhmjVrhvT0dCVFJm7w4MEICgrC8OHDC63B5ObmpqTISH4FU2fzGo906tQJ3bp1U1JUJcvrXn7gwAF8+vSp1HQvB/73O5w6dSrGjRv3U03G/OhU7NJEKBSKddkGIHasPDaJ+NkZGhriwIEDaN++Pb5//w49PT2cO3cOnTt3BpCb8tqhQweZSgYQUp5QiiuRSmlOxZOmYOekSZMUGIny1KtXDxEREahSpQoAYO/evRgxYsRPdQFclsTHxwPIrUdz6tQpmuQpxXr06MHdVF6+fLnELfvkxzM3N8ebN2/EJujevn1bZEc2ZfH19cWFCxfQpk0bZYdCiqHIiZLs7GysX78ex44dQ2JiIr5//y7yuCw3q6W1ezkAnDp1CtevX4ePjw/mzZuHJk2awM7OjlvsKM8LieVx4k1SP3ta78/sZ+5iSwgftIOOSKQspOLl7UbK8+7dO6SlpUFPTw9AbhFKLS0tVK9evdymDwmFQiQlJXE7HHV0dBAZGVmqOsySon3//h3x8fEwNTWlovaljKenJ65fv44bN25ARUWFS8mys7NDo0aNlB0eAXDx4kXMmDEDCxYsQMuWLQEAISEhWLRoEVasWIG2bdtyX6vsRQtjY2NcvHiRXjtlRFhYGNd4xMLCAjY2NjKPOW/ePOzevRtTpkzB3LlzMXv2bLx48QJnzpzBvHnzyu1CYn4pKSm4ceMGTpw4gcOHD0MgEODbt2/KDosoSFpaGqZPn44zZ84gMzMTXbp0wcaNG1G1alVlh0YU6GfvYkuItGiCjkikrKXiHT58GFu3bsWePXu4YuFPnz7F6NGjMXbsWAwdOlTJESpGwQm6/B1cSemVnp4OFxcXeHl5AcgtbG9iYoJJkyahdu3a8PDwUHKEJL8HDx4gKCgIAQEBOHfuHKpUqYLXr18rO6yfnlAo5P4/L22qYBpVaUmhOnjwIM6ePQsvLy9oaWkpNRZStLdv32LQoEEIDAyEnp4eGGNISUlBx44d4ePjg2rVqvEe29TUFBs3bkSPHj1QqVIlREZGcsdCQkJw+PBhOf4kpcuHDx+4kgGBgYF4+PAhqlSpgg4dOuD48ePKDo8oyPTp07F161YMHToUmpqaOHz4MOzs7Og5/0n8rF1sCZEWTdARqZSVVDxTU1OcOHFCbJU7LCwMAwYM4FILyxuaoCub3NzccPPmTXh6esLBwQFRUVEwMTHBP//8g/nz51OTiFIkIiICgYGBCAgIwI0bN/DlyxfY2Njg7t27yg7tpxcUFCTx13bo0EGBkRTOxsZGpN5SXvFpIyMjsSLp4eHhPzo8UoiBAwciNjYWBw4c4HY7Pn78GCNHjoSZmRmOHDnCe+yKFSviyZMnqFevHmrVqoULFy7A1tYWcXFxsLGxQUpKirx+jFLFysoKjx8/RuXKlbk6nnZ2dvjll1+UHRpRMFNTUyxduhSDBg0CAISGhqJNmzbIyMgQm7QhhJCfFeVQEamUlRoSr1+/RmZmptjx7OxsvHnzRgkR/Ti7d+/mUpCzsrKwf/9+sfSBnyF1piw5c+YMjh49ipYtW4rcwFtYWCA2NlaJkZE8vXv3RnBwMD5//gxra2vY2dlhzJgxaN++vdLTJUkuZUy6ScPR0VHZIRApXbp0CVevXhVJRbawsMCWLVtkbhJRt25dvH79GvXq1YOZmRn8/Pxga2uLu3fvokKFCrKGXmqNGTOGJuR+Ui9fvhSpPda8eXOoqqri1atXXIdPQgj52dEEHSnRlClTsHjxYlSsWBFTpkwp9mvXrVv3g6IqXufOnTF69Gjs2bMHv/76KwQCAe7du4exY8eiS5cuyg5PYerVq4ddu3Zxn9esWRMHDhwQ+RqBQEATdKXMu3fvxDojA0BqaqpYd0eiHA0aNKAJuTLgxo0b2LFjB+Li4nD8+HHUqVMHBw4cgLGxsUgNOmWYP3++Ur8/kV5OTo7Y7kYAUFNTQ05Ojkxj9+3bF9euXUOLFi3g5uaGwYMHY8+ePUhMTIS7u7tMY5dmLi4uAKjm6s8oOztbLI1RVVUVWVlZSoqIEEJKH3pHJCWKiIjgdqMVl2pXmiYS9u7di5EjR6J58+bcxXVWVhbs7e2xe/duJUenOC9evFB2CISHZs2a4cKFC3B1dQXwv7+lXbt2oVWrVsoM7ad3584dfPjwAWvWrOGOeXt7Y/78+UhNTYWjoyM2bdpUrne8lBUnT57E8OHDMXToUISHh3PF5r98+YJly5bh4sWLSo7wf+7evYucnByxuq137tyBiooKmjZtqqTISH6dOnWCm5sbjhw5gtq1awMA/vvvP7i7u6Nz584yjb1ixQru/wcMGAADAwPcvHkTZmZm6N27t0xjl2ZUc/XnxRiDk5OTyPtlRkYGxo0bh4oVK3LHTp06pYzwCCGkVKAadKRce/bsGaKjo8EYQ6NGjdCgQQNlh0SImFu3bsHBwQFDhw7F/v37MXbsWDx69Ai3b99GUFAQfv31V2WH+NPq3r077OzsMHPmTAC5DSJsbW3h5OSERo0aYfXq1Rg7diwWLFig3EAJbGxs4O7ujhEjRojU34yMjISDgwOSkpKUHSKnefPmmDFjBgYMGCBy/NSpU1i5ciXu3LmjpMhIfi9fvkSfPn3w8OFDGBgYQCAQIDExEZaWljh79izq1q3Le+zk5GRUqVKF+z67du1Ceno6evXqhfbt28vrRyh1qObqz+vPP/+U6Ov27dun4EgIIaT0ogk6Uq5RCgUpKx48eIA1a9YgLCwMOTk5sLW1xcyZM2Fpaans0H5qtWrVwrlz57gdTbNnz0ZQUBCCg4MBAMePH8f8+fPx+PFjZYZJAGhpaeHx48cwMjISmaCLi4uDhYUFMjIylB0iR1tbm5uYyC8+Ph5WVlb48uWLkiIjhbly5Qq32GdhYSFTqYwHDx6gV69eePnyJerXrw8fHx84ODggNTUVQqEQqampOHHiRLmtWWhoaMjVXM3/d/r8+XPY2tri8+fPyg6REEIIURqasSBSSU1NxYoVK3Dt2jW8fftWrAZLXFyckiITlZaWBldXV0qhIGWGpaUl93olpcfHjx9Ro0YN7vOgoCA4ODhwnzdr1gwvX75URmikgFq1auH58+cwMjISOR4cHFzqOllXqFABb968EYvr9evXtJhUCnXt2hVdu3aVy1gzZsyApaUlDh48iIMHD6Jnz5747bffuPIbrq6uWLFiRbmdoKOaq4QQQkjRhMoOgJQtf/31F/bs2YN27drBxcUFbm5uIh+lxd9//4379+8jMDAQGhoa3PEuXbrg6NGjSoyMkP8RCoVQUVEp9oNu1pWrRo0aiI+PB5C7Izc8PFykLuCXL18KLSJPfryxY8fCzc0Nd+7cgUAgwKtXr3Do0CFMmzYNEyZMUHZ4Irp27Yq///4bKSkp3LFPnz5h1qxZcpsIIvzduXMHvr6+Ise8vb1hbGyM6tWrY8yYMVyNQ2ndvXsXS5cuRdu2bbFmzRq8evUKEyZMgFAohFAohKurK6Kjo+XxY5RKeTVX81DNVUIIIeR/6M6PSMXX1xcXLlxAmzZtlB1Ksc6cOcOlUORfkbWwsEBsbKwSIyPkf06fPl3kY7du3cKmTZtAVQiUy8HBAR4eHli5ciXOnDkDLS0ttGvXjns8KioKpqamSoyQ5JkxYwZSUlLQsWNHZGRkoH379qhQoQKmTZvGdY4sLdauXYv27dvD0NAQNjY2AIDIyEjUqFFDrPM2+fEWLFgAOzs7dO/eHUBuWuqoUaNEak/Wrl2bV+3JDx8+oGbNmgByU50rVqyIypUrc4/r6+uX6xTn5cuXw8HBAY8fP0ZWVhY2bNggUnOVEEII+ZnRBB2Rir6+vsiFZGlFKRRATk4Onj9/XmgqcnkuQF2W9OnTR+xYdHQ0/v77b5w7dw5Dhw7F4sWLlRAZybNkyRL069cPHTp0gLa2Nry8vKCurs49vnfvXnTr1k2JEZL8li5ditmzZ+Px48fIycmBhYUFtLW1kZaWBi0tLWWHx6lTpw6ioqJw6NAh3L9/H5qamvjzzz8xePBg2pFZCkRGRoqce318fNCiRQvs2rULAGBgYID58+fzbg5T8DrkZ7kuAYDWrVvj5s2bWLNmDUxNTeHn5wdbW1vcvn2baq4SQgj56VGTCCKVgwcP4uzZs/Dy8ipVNzsFdejQAQMGDICrqysqVaqEqKgoGBsbw8XFBc+fP8elS5eUHaJChYSEYMiQIUhISBDbgSUQCJCdna2kyEhRXr16hfnz58PLywv29vZYvnw5fvnlF2WHRf5fSkoKtLW1oaKiInL8w4cP0NbWFpm0I6VHRkYGtm7dilWrVpWqLq6kdNPQ0EBMTAwMDAwAAG3btoWDgwPmzJkDAHjx4gUsLS157XQTCoXo3r07KlSoAAA4d+4cOnXqhIoVKwIAvn37hkuXLtH7NCGEEPIToh10RCpr165FbGwsatSoASMjI7GV/vDwcCVFJupnT6EYN24cmjZtigsXLqBWrVo/1ep8WZOSkoJly5Zh06ZNsLa2xrVr10RSKEnpoKurW+jxsrCjuLz7/v07Fi5cCD8/P6ipqWHGjBlwdHTEvn37MHv2bAgEglJVIzXPgQMHsGPHDsTFxeH27dswNDTE+vXrYWJiUujuWvLj5NWeNDAw4GpPLly4kHtcltqTI0eOFPl82LBhYl8zYsQIXmMTQgghpGyjCToilbLSVexnT6GIiYnBiRMnYGZmpuxQSDFWrVqFlStXombNmjhy5AjdlBPCw4IFC7BlyxZ07doVN2/exO+//w5nZ2cEBgZi+fLlGDJkSKlLG922bRvmzZuHyZMnY8mSJdxuKX19fXh6etK5QMkUWXty37598gqzTBEKhSUuFgoEAmRlZf2giAghhJDSh1JcCSmHOnXqhBkzZsDBwUHZoZBiCIVCaGpqokuXLmKpk/mdOnXqB0ZFSNliZmaG1atXo2/fjkHqFAAAGbxJREFUvrh//z5sbGwwcOBAHDhwoNR2QbawsMCyZcvg6OiISpUq4f79+zAxMcHDhw9hZ2eH9+/fKzvEn9q7d+/Qr18/3Lx5k6s92bdvX+7xzp07o2XLlli6dKkSoyxbzp49W+Rj+Zsipaen/8CoCCGEkNKldF65EiIjFRUVvH79WqxRRHJyMqpXr17ua7u4urpi6tSpSEpKgqWlpdjuESsrKyVFRvIbMWIEpR8TIqOXL1+iWbNmAIAmTZpAXV0dM2fOLLWTcwAQHx/PdW/Nr0KFCkhNTVVCRCS/atWq4caNG0XWnjx+/Di0tbWVFF3ZRE2RCCGEkJKV3qtXUqoUlZqgo6MDc3NzzJgxA/369VNCZIUramPot2/ffopi7v379wcAODs7c8cEAgEYY9QkohTZv3+/skMgpMzLzMwUOa+rqakVWTOwtDA2NkZkZCQMDQ1Fjvv6+sLCwkJJUZGCqPakYhRsihQZGUlNkQghhBDQBB2R0OnTpws9/unTJ4SGhmLYsGHw8vLC77///oMjE7Vx40YAuZNRu3fvFlnhzs7OxvXr19GwYUNlhffDxMfHKzsEQgj5YebNm8d1Fv/+/TuWLFkiNrmybt06ZYRWqOnTp2PixInIyMgAYwyhoaE4cuQIli9fjt27dys7PEIUgpoiEUIIIcWjGnRELrZs2QJvb2/cuXNHqXEYGxsDABISElC3bl2RtBR1dXUYGRlh0aJFaNGihbJCJIQQIkd2dnYSFZ/39/f/QRFJZteuXViyZAlevnwJAKhTpw4WLFiAUaNGKTkyQuQvf1OkZcuWUSMUQgghpBA0QUfkIiYmBs2bN8fHjx+VHQoAoGPHjjh16hT09fWVHYpSPX78GImJifj+/bvI8d69eyspIkIIIfm9f/8eOTk5YjVTCSlPqCkSIYQQUjJKcSVykZ6eDg0NDWWHwQkICFB2CEoVFxeHvn374sGDB1ztOQDcLhOqQUcIIcqzaNEitG3bFp06dULVqlW546mpqVi7di3mzZunxOgIkT9qikQIIYSUjHbQEblwdXVFbGwsLl68qLQYpkyZgsWLF6NixYqYMmVKsV9bmmoRKUKvXr2goqKCXbt2wcTEBKGhoUhOTsbUqVOxZs0aqvlCCCFKJBQKoaamhuXLl4u8X7158wa1a9emRRRCCCGEkJ8Q7aAjEilqwislJQX37t1DbGwsbty48YOjEhUREYHMzEzu/4vyM6zg3r59G/7+/qhWrRqEQiGEQiHatm2L5cuXY9KkScX+fgghhCiet7c3XFxcEBUVhZ07d/4UHcYJIYQQQkjRaAcdkUjHjh0LPa6jo4OGDRtiwoQJMDQ0/MFRkaLo6+sjLCwMJiYmMDU1xe7du9GxY0fExsbC0tISaWlpyg6REEJ+WkKhEElJSfjy5Qt69eoFPT09rls67aAjhBBCCPk50Q46IpGfvaZbWfPLL78gKioKJiYmaNGiBVatWgV1dXXs3LkTJiYmyg6PEEJ+ank7uU1NTRESEoI//vgDTZs2xfbt25UcGSGEEEIIURbaQUfKpdTUVKxYsQLXrl3D27dvkZOTI/J4XFyckiL7MS5fvozU1FT069cPcXFx6NmzJ6Kjo1GlShUcPXoUnTp1UnaIhBAiV/v27YO2tjZ+//13kePHjx9HWloaRo4cqaTIxOXtoMvr3JqTk4PJkydj27ZtyMnJoR10hBBCCCE/IdpBR8qlv/76C0FBQRg+fDhq1ar1U9Sdy8/e3p77fxMTEzx+/BgfPnyAvr7+T/e7IIT8HFasWFHoDrTq1atjzJgxpWqCbt++fdDV1eU+FwqF2LhxI2xsbHD9+nUlRkYIIYQQQpSFdtCRcklPTw8XLlxAmzZtlB0KIYSQH0BDQwPR0dEwMjISOf7ixQs0atQI6enpygmMEEIIIYQQCdAOOlIu6evro3LlysoO44fq168f9u/fDx0dHfTr16/Yrz116tQPiooQQn6M6tWrIyoqSmyC7v79+6hSpYpygirA398fLi4uCAkJgY6OjshjKSkpaN26NbZv34527dopKUJCCCGEEKIsQmUHQIgiLF68GPPmzfupupXq6upy6au6urrFfhBCSHkzaNAgTJo0CQEBAcjOzkZ2djb8/f3h5uaGQYMGKTs8AICnpydGjx4tNjkH5J63x44di3Xr1ikhMkIIIYQQomyU4krKJRsbG8TGxoIxBiMjI6ipqYk8Hh4erqTICCGEKML3798xfPhwHD9+HKqquQkCOTk5GDFiBLZv3w51dXUlRwgYGhri0qVLaNSoUaGPR0dHo1u3bkhMTPzBkRFCCCGEEGWjFFdSLjk6Oio7BKVKT08HYwxaWloAgISEBJw+fRoWFhbo1q2bkqMjhBD5U1dXx9GjR7F48WLcv38fmpqasLS0hKGhobJD47x580ZswSg/VVVVvHv37gdGRAghhBBCSguaoCPl0vz585UdglL16dMH/fr1w7hx4/Dp0yc0b94c6urqeP/+PdatW4fx48crO0RCCFGIBg0aoEGDBsoOo1B16tTBgwcPYGZmVujjUVFRqFWr1g+OihBCCCGElAaU4kpIOVS1alUEBQWhcePG2L17NzZt2oSIiAicPHkS8+bNw5MnT5QdIiGEyGzKlClYvHgxKlasiClTphT7taWhtpurqysCAwNx9+5daGhoiDyWnp6O5s2bo2PHjti4caOSIiSEEEIIIcpCO+hIuSIUCrlGCfnp6OjA3NwcM2bMKLHDaXmQlpaGSpUqAQD8/PzQr18/CIVCtGzZEgkJCUqOjhBC5CMiIgKZmZnc/xelsPcFZZgzZw5OnTqFBg0awMXFBebm5hAIBHjy5Am2bNmC7OxszJ49W9lhEkIIIYQQJaAddKRcOXv2bKHHP336hNDQUOzbtw9eXl74/ffff3BkP5aVlRX++usv9O3bF7/88gsuXbqEVq1aISwsDD169EBSUpKyQySEkJ9SQkICxo8fj8uXLyPvEkwgEMDe3h5bt26FkZGRcgMkhBBCCCFKQRN05KeyZcsWeHt7486dO8oORaFOnDiBIUOGIDs7G507d4afnx8AYPny5bh+/Tp8fX2VHCEhhPzcPn78iOfPn4Mxhvr160NfX1/ZIRFCCCGEECWiCTryU4mJiUHz5s3x8eNHZYeicElJSXj9+jWaNGkCoVAIAAgNDYWOjg4aNmyo5OgIIUS+MjIysGnTJgQEBODt27fIyckReTw8PFxJkRFCCCGEEFIyqkFHfirp6elihbnLq5o1a6JmzZoAgM+fP8Pf3x/m5uY0OUcIKZecnZ1x5coVDBgwAM2bNy81decIIYQQQgiRBE3QkZ/Krl27YGNjo+wwFO6PP/5A+/bt4eLigvT0dDRt2hQvXrwAYww+Pj7o37+/skMkhBC5unDhAi5evIg2bdooOxRCCCGEEEKkRhN0pFyZMmVKocdTUlJw7949xMbG4saNGz84qh/v+vXrXCfA06dPgzGGT58+wcvLC0uWLKEJOkJIuVOnTh2uezUhhBBCCCFlDdWgI+VKx44dCz2eV3dtwoQJMDQ0/MFR/Xiampp49uwZDAwMMGLECNSuXRsrVqxAYmIiLCws8PXrV2WHSAghcuXr64uNGzdi+/btP8V5nhBCCCGElC+0g46UKwEBAcoOoVQwMDDA7du3UblyZVy6dAk+Pj4AcrsG/iw1+AghP5emTZsiIyMDJiYm0NLSgpqamsjjHz58UFJkhBBCCCGElIwm6AgphyZPnoyhQ4dCW1sbhoaGsLOzA5Cb+mppaanc4AghRAEGDx6M//77D8uWLUONGjWoSQQhhBBCCClTKMWVkHLq3r17ePnyJbp27QptbW0AuUXU9fT0qIg6IaTc0dLSwu3bt9GkSRNlh0IIIYQQQojUaIKOEEIIIWWera0ttm7dipYtWyo7FEIIIYQQQqRGE3SElEPOzs7FPr53794fFAkhhPwYfn5+WLhwIZYuXQpLS0uxGnQ6OjpKiowQQgghhJCSUQ06Qsqhjx8/inyemZmJhw8f4tOnT+jUqZOSoiKEEMVxcHAAAHTu3FnkOGMMAoEA2dnZygiLEEIIIYQQidAEHSHl0OnTp8WO5eTkYMKECTAxMVFCRIQQoljUxZsQQgghhJRllOJKyE/k6dOnsLOzw+vXr5UdCiGEEEIIIYQQQv4f7aAj5CcSGxuLrKwsZYdBCCEKk5aWhsTERHz//l3kuJWVlZIiIoQQQgghpGQ0QUdIOTRlyhSRzxljeP36NS5cuICRI0cqKSpCCFGcd+/e4c8//4Svr2+hj1MNOkIIIYQQUprRBB0h5VBERITI50KhENWqVcPatWtL7PBKCCFl0eTJk/Hx40eEhISgY8eOOH36NN68eYMlS5Zg7dq1yg6PEEIIIYSQYlENOkJ+Mv/99x/q1Kmj7DAIIUSuatWqhbNnz6J58+bQ0dHBvXv30KBBA/zzzz9YtWoVgoODlR0iIYQQQgghRRIqOwBCyI+RlJQEV1dXmJmZKTsUQgiRu9TUVFSvXh0AULlyZbx79w4AYGlpifDwcGWGRgghhBBCSIlogo6QcuTTp08YOnQoqlWrhtq1a2Pjxo3IycnBvHnzYGJigpCQEOzdu1fZYRJCiNyZm5vj6dOnAABra2vs2LED//33H7Zv345atWopOTpCCCGEEEKKRymuhJQjEyZMwLlz5zBw4EBcunQJT548gb29PTIyMjB//nx06NBB2SESQohCHDp0CJmZmXByckJERATs7e2RnJwMdXV17N+/HwMHDlR2iIQQQgghhBSJJugIKUcMDQ2xZ88edOnSBXFxcTAzM8OkSZPg6emp7NAIIeSHSktLQ3R0NOrVq4eqVasqOxxCCCGEEEKKRRN0hJQjampqSEhIQO3atQEAWlpaCA0NxS+//KLkyAghhBBCCCGEEFIUVWUHQAiRn5ycHKipqXGfq6iooGLFikqMiBBCFGfKlCkSf+26desUGAkhhBBCCCGyoQk6QsoRxhicnJxQoUIFAEBGRgbGjRsnNkl36tQpZYRHCCFyFRERIdHXCQQCBUdCCCGEEEKIbCjFlZBy5M8//5To6/bt26fgSAghhBBCCCGEECIpmqAjhBBCSLnz+fNn+Pv7o2HDhmjYsKGywyGEEEIIIaRYQmUHQAghhBAiqz/++AObN28GAKSnp6Np06b4448/YGlpiZMnTyo5OkIIIYQQQopHE3SEEEIIKfOuX7+Odu3aAQBOnz4Nxhg+ffqEjRs3YsmSJUqOjhBCCCGEkOLRBB0hhBBCyryUlBRUrlwZAHDp0iX0798fWlpa6NGjB2JiYpQcHSGEEEIIIcWjCTpCCCGElHkGBga4ffs2UlNTcenSJXTr1g0A8PHjR2hoaCg5OkIIIYQQQoqnquwACCGEEEJkNXnyZAwdOhTa2towNDSEnZ0dgNzUV0tLS+UGRwghhBBCSAmoiyshhBBCyoV79+7h5cuX6Nq1K7S1tQEAFy5cgJ6eHtq0aaPk6AghhBBCCCkaTdARQgghhBBCCCGEEKJElOJKCCGEkDJrypQpEn3dunXrFBwJIYQQQggh/NEEHSGEEELKrIiIiBK/RiAQ/IBICCGEEEII4Y9SXAkhhBBCCCGEEEIIUSKhsgMghBBCCCGEEEIIIeRnRhN0hBBCCCGEEEIIIYQoEU3QEUIIIYQQQgghhBCiRDRBRwghhBBCCCGEEEKIEtEEHSGEEEIIIYQQQgghSkQTdIQQQggp1xITE5Gdna3sMAghhBBCCCkSTdARQgghpFwzMjKChYUFTp06pexQCCGEEEIIKZSAMcaUHQQhhBBCiKIEBQUhPj4efn5+OHz4sLLDIYQQQgghRAxN0BFCCCGEEEIIIYQQokSU4koIIYQQQgghhBBCiBLRBB0hhBBCyrw3b95g+PDhqF27NlRVVaGioiLyQQghhBBCSGmmquwACCGEEEJk5eTkhMTERMydOxe1atWCQCBQdkiEEEIIIYRIjGrQEUIIIaTMq1SpEm7cuAFra2tlh0IIIYQQQojUKMWVEEIIIWWegYEBaM2REEIIIYSUVTRBRwghhJAyz9PTEx4eHnjx4oWyQyGEEEIIIURqlOJKCCGEkDJPX18faWlpyMrKgpaWFtTU1EQe//Dhg5IiI4QQQgghpGTUJIIQQgghZZ6np6eyQyCEEEIIIYQ32kFHCCGEEEIIIYQQQogS0Q46QgghhJQr6enpyMzMFDmmo6OjpGgIIYQQQggpGTWJIIQQQkiZl5qaChcXF1SvXh3a2trQ19cX+SCEEEIIIaQ0owk6QgghhJR5M2bMgL+/P7Zu3YoKFSpg9+7dWLhwIWrXrg1vb29lh0cIIYQQQkixqAYdIYQQQsq8evXqwdvbG3Z2dtDR0UF4eDjMzMxw4MABHDlyBBcvXlR2iIQQQgghhBSJdtARQgghpMz78OEDjI2NAeTWm/vw4QMAoG3btrh+/boyQyOEEEIIIaRENEFHCCGEkDLPxMQEL168AABYWFjg2LFjAIBz585BT09PeYERQgghhBAiAUpxJYQQQkiZt379eqioqGDSpEkICAhAjx49kJ2djaysLKxbtw5ubm7KDpEQQgghhJAi0QQdIYQQQsqdxMRE3Lt3D6ampmjSpImywyGEEEIIIaRYNEFHCCGEkDItMzMT3bp1w44dO9CgQQNlh0MIIYQQQojUqAYdIYQQQso0NTU1PHz4EAKBQNmhEEIIIYQQwgtN0BFCCCGkzBsxYgT27Nmj7DAIIYQQQgjhRVXZARBCCCGEyOr79+/YvXs3rly5gqZNm6JixYoij69bt05JkRFCCCGEEFIymqAjhBBCSJn38OFD2NraAgCePXsm8hilvhJCCCGEkNKOmkQQQgghhBBCCCGEEKJEVIOOEEIIIYQQQgghhBAlohRXQgghhJRZ/fr1k+jrTp06peBICCGEEEII4Y8m6AghhBBSZunq6io7BEIIIYQQQmRGNegIIYQQQgghhBBCCFEiqkFHCCGEEEIIIYQQQogS0QQdIYQQQgghhBBCCCFKRBN0hBBCCCGEEEIIIYQoEU3QEUIIIYQQQgghhBCiRDRBRwghhBBCCCGEEEKIEtEEHSGEEEIIIYQQQgghSkQTdIQQQgghP5mkpCS4urrCxMQEFSpUgIGBAXr16oVr16790Dj+r737CYkyj+M4/n5iPSlihmCQZIGVGlNGBhGUxQwem7AMEgaLuiREFHgLpVtCF+nPIVBUOhQIEh3KaQ7dSmOQCg00CkOsiLGIDiXT7CF22Nl21xXaHVvfr9vveX5/vs8cP3yfeYIgYGho6D89U5IkaSn6Jd8FSJIk6b/z8uVLdu3aRUlJCV1dXYRCIebn57l79y5tbW08e/Ys3yXmmJ+fp6CgIN9lSJIk/avsoJMkSVpGTp48SRAEjIyMcPDgQTZs2EBtbS1nzpzhwYMHAExPT7N//36KioooLi6mubmZN2/eZPdobW0lGo3m7Hv69GkaGhqy44aGBk6dOkV7ezulpaWUl5fT2dmZvV9ZWQnAgQMHCIIgO+7s7GTr1q309PRkO/z6+vpYtWoVnz9/zjmzqamJWCz2w34bSZKkfDGgkyRJWiZSqRR37tyhra2NwsLC7+6XlJSQyWSIRqOkUinu379PPB7n+fPnHD58eNHn9fX1UVhYyMOHD+nq6uL8+fPE43EARkdHAejt7WV2djY7BpiamuLmzZsMDg4yNjZGc3Mz6XSaW7duZee8e/eO27dvc/To0UXXJUmStNT4iqskSdIyMTU1RSaTYdOmTX855969ezx+/JgXL15QUVEBwMDAALW1tYyOjlJfX/+PzwuFQnR0dABQVVXFpUuXSCQSRCIRysrKgG+hYHl5ec66L1++MDAwkJ0DcOTIEXp7ezl06BAA169fZ82aNTlde5IkST8rO+gkSZKWiUwmA3z7OMNfmZiYoKKiIhvOAdTU1FBSUsLExMSizguFQjnj1atX8/bt2wXXrV27NiecAzhx4gTDw8PMzMwA3zrvWltb//ZZJEmSfhYGdJIkSctEVVUVQRD8bdCWyWT+NPT6/fUVK1Zkw77fzM/Pf7fmjx93CIKAr1+/Lljnn71+W1dXx5YtW+jv7yeZTPLkyRNaW1sX3EuSJOlnYEAnSZK0TJSWltLY2Mjly5f59OnTd/ffv39PTU0N09PTvHr1Knt9fHycDx8+UF1dDUBZWRmzs7M5a8fGxhZdT0FBAel0+h/PP378OL29vfT09BAOh3O6/CRJkn5mBnSSJEnLyJUrV0in0+zYsYPBwUEmJyeZmJigu7ubnTt3Eg6HCYVCtLS0kEwmGRkZIRaLsWfPHrZv3w7Avn37ePToEf39/UxOTtLR0cHTp08XXUtlZSWJRILXr18zNze34PyWlhZmZma4du0ax44dW/R5kiRJS5UBnSRJ0jKybt06kskke/fu5ezZs2zevJlIJEIikeDq1asEQcDQ0BArV65k9+7dhMNh1q9fz40bN7J7NDY2cu7cOdrb26mvr+fjx4/EYrFF13Lx4kXi8TgVFRXU1dUtOL+4uJimpiaKioqIRqOLPk+SJGmpCjJ//AMRSZIkaYmKRCJUV1fT3d2d71IkSZJ+GAM6SZIkLXmpVIrh4WFaWloYHx9n48aN+S5JkiTph/kl3wVIkiRJC9m2bRtzc3NcuHDBcE6SJP3v2EEnSZIkSZIk5ZEfiZAkSZIkSZLyyIBOkiRJkiRJyiMDOkmSJEmSJCmPDOgkSZIkSZKkPDKgkyRJkiRJkvLIgE6SJEmSJEnKIwM6SZIkSZIkKY8M6CRJkiRJkqQ8+hUSNntnLc39XwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNYAAAInCAYAAABUa9Q5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QU1fvH8c8mIYGAoXdCN6H3Ir0XaUE6oYogCEgR/SKKgDRFikoXIdTQm/QmvUiX3qQ3BRIIJZA6vz842R8hhbDsZgN5v87hHHZmdp67m9ndmWfufa7JMAxDAAAAAAAAAF6Lg70bAAAAAAAAALyNSKwBAAAAAAAAFiCxBgAAAAAAAFiAxBoAAAAAAABgARJrAAAAAAAAgAVIrAEAAAAAAAAWILEGAAAAAAAAWIDEGgAAAAAAAGABEmsAAAAAAACABUisAQAQiwkTJsjT0zNO/6pXrx7v7fP29o6xPQsWLIi07dOnT/XLL7+oVq1aKlKkiOrVqydfX18ZhvFaMQMDA7Vo0SK1bdtWFStWVKFChVStWjV9/fXXunDhgjVfnlU9evRI8+bNi9O2N27ckKenp7p3727jViU+3bt3l6enp27cuGFe5unpKS8vLzu2Stq9e7eOHz9u1zZYy8uvZf/+/fL09NSIESNee1/t2rWTp6enHj58aM0mRissLEzz5s1TYGCgeVnEd/CWLVtsHh8AAEs42bsBAAAkZGXKlFHPnj0jLVuxYoVu3ryp9u3by83Nzbz8vffei+/m6dy5c8qVK5fq168fZV2hQoXM/w8LC1Pv3r21Y8cOValSRXXq1NHOnTs1dOhQ3bhxQ/37949TvH/++Uc9e/bU5cuXlTdvXlWtWlXvvfee/vnnH61cuVJr1qzRL7/8opo1a1rtNVpLnTp1lD59erVt2/aV27q5ualnz57KnTt3PLQMPXv2VLp06ewWf/78+fr+++81adIku7XBWqJ7LVmzZlXPnj1VtGjR197fRx99pDJlysjFxcWazYxWv379tH79ejVq1Mi8LOI7OFeuXDaPDwCAJUisAQAQi7Jly6ps2bKRlh04cEA3b95Uhw4dlC1bNju17HmvqsePH6tZs2b6/PPPY9123bp12rFjhzp16mROovXu3VudO3fWzJkz1bhxY3l6esa6D39/f3Xs2FH+/v4aNmyYmjdvLpPJZF7/999/q1OnTurTp4+WLFmi/Pnzv/mLtCI/Pz+lT58+Ttu6ubm98j2F9dj7vfbz87NrfGuK7rVky5bN4ve4SZMmb9qkOIuu7dF9BwMAkJAwFBQAgLfUuXPnJOmVCTFJ8vX1lZOTk7p162ZeliRJEvXp00eGYWjp0qWv3MeoUaN09+5d9erVSy1atIiUVJOkYsWKqX///goJCdG0adNe89UAAAAAbx8SawAAWNGdO3c0aNAgValSRYUKFVKVKlU0aNAg3blzJ9J2EXWDzp07p+HDh+uDDz5QyZIl1bFjRx0+fDhOseKaWAsODtaJEyeUL18+pUyZMtK6IkWKKFmyZDp48GCs+3j8+LE2bNig5MmTq3379jFu17hxY/Xu3Vtt2rSJtDyu78vXX38tT09PnTlzJsq+X67DtXz5cnl6emrfvn2aMWOGateurUKFCqlmzZqaMmWKwsLCJP1/fSlJOnv2rDw9PTVhwgRJUvXq1dWuXTstW7ZM5cuXV/HixfXjjz/GWGPt8ePHGjNmjGrWrKlChQqpUqVKGjx4cLQ9bebOnasmTZqoePHiKlGihLy9vbV+/frY3uZIVq5cqXbt2ql06dIqVKiQKlasqH79+un69etRtj179qz69u2rChUqqHjx4vroo4+0dOnSKPXz4rrd8ePH1b17d5UtW1aFCxdWvXr1NHXqVAUHB0faLqb3T3o+/Hj69OmqU6eOihQpooYNG2rTpk3RvtaX/7YRn4+LFy9q3Lhxqlq1qgoVKqT69etHqR0oSU+ePNHo0aNVvXp1FSlSRE2aNNHWrVv17bffvvLz0a5dO02cOFGS1KNHj0jbh4eHa/78+WrcuLGKFCmikiVL6uOPP9aePXti3WeEiOPZz89PX331lUqVKqUyZcqoe/fu0dYjvHnzpgYPHqyaNWuqcOHCKl68uJo0aRLlNUe8P/v27VPz5s1VqFAh1alTR02aNIn2tcRUY+3GjRv69ttvVblyZRUtWlT169eXj4+PQkJCIr0/L9ZYi9jXkiVL5Ovrq5o1a6po0aJq1KiRli9fHuU1hYSEaPbs2WrRooVKlixprsk4aNAg+fv7m7fz9PTUgQMHJEmlS5dWu3btIr3Wl2us7dmzRx9//LFKlCihIkWK6KOPPpKvr6/Cw8MjbRdxjF68eFHdunVTyZIlVbx4cXXp0kVnz56N5a8HAEDcMBQUAAAruXbtmlq3bq179+6pfPny+vDDD3Xu3DktWrRIW7du1YIFC+Tu7h7pOQMGDND169fVsGFDPXnyRBs2bFCHDh00depUVaxYMdZ4586dk8lk0uHDhzVw4EBdvnxZbm5uqlOnjnr16mWu+Xbz5k2FhoYqe/bsUfbh6OioTJky6cqVK7HGOnDggJ49e6ZKlSrJ1dU1xu1cXFyiJKMseV9ex+jRo3X58mXVrVtX1apV09q1a/XLL7/o2bNn6tu3r7m+1MSJE5UuXTq1atVKZcqUMT//woULGjp0qLy8vBQSEqJixYpFG+fRo0fy9vbW+fPnVa5cOdWuXVs3btzQ4sWLtWvXLi1cuFAZMmSQJE2bNk1jx45VwYIF1apVK4WEhGjDhg3q06ePgoKC1Lhx41hf06hRo+Tj46N8+fLpo48+kslk0sGDB7VmzRodPnxYGzZsUNKkSSVJ+/btU7du3RQWFqYaNWooS5Ys2r59u7799lvdunVLvXr1eq3ttmzZot69e8vBwUE1a9ZUunTp9Ndff+nnn3/Wrl27NHPmTDk7O7/y/fv666+1atUq5c2bVy1bttSVK1fUq1cvpU2bNs5/26+++kq3bt1S7dq15eTkpFWrVmnIkCFydHRUixYtJD1PHH/88cc6duyYihcvrjp16ujUqVPq3r27smTJ8soYH330kaTnx3i9evXMdfXCw8PVt29fbdiwQe7u7mratKkCAwP1559/6pNPPtF3330XJYEcky5duuju3btq2rSp/v33X23evFkHDhzQvHnzlC9fPknPk1zNmjXT06dPVatWLWXOnFn//fefNm7cqCFDhigsLCxKfcAvv/xSuXPnVrt27fTkyRMVK1ZMK1asiPJaonP+/Hm1a9dOAQEBqlq1qnLlyqUDBw5o1KhROnfunEaNGhXra1qwYIHOnj2rDz/8UClTptSWLVs0YMAA3bx5M9Kw0379+mnjxo0qWbKkWrRooeDgYO3evVuLFi3SqVOntGzZMknP6+xF1K/s0qVLrG2fO3euhg8frvfee0+1atWSq6urdu3apaFDh+rQoUMaN25cpB61t2/fVqtWrZQzZ061aNFCly9f1rZt2/T3339r48aNSpMmTayvFQCAWBkAAOC1tG3b1vDw8DCuX78eaXn79u0NDw8PY/HixZGW+/r6Gh4eHkb79u3Ny8aPH294eHgYJUqUMK5evWpe/vfffxsFChQwatSoYYSFhcXajjp16hgeHh5GyZIljW+++cYYPny44eXlZXh4eBgNGjQwHj16ZBiGYRw5csTw8PAwvvvuu2j306xZM8PDw8MICQmJMVbEaxg2bFisbYrO67wv/fv3Nzw8PIzTp09H2Y+Hh4fRqFEj8+Nly5aZX/+VK1fMy69fv24ULFjQKF++fKzPNwzDqFatmuHh4WHMmTMn0vLr168bHh4exmeffWZeNmTIEMPDw8OYN29epG23bNlieHh4GL169TIvK1OmjFGzZs1I7+nt27eNQoUKGU2aNIn6Jr3g33//NfLly2e0adPGCA0NjbSuS5cuhoeHh7Fr1y7DMAwjNDTUqFatmlG4cGHjyJEj5u2ePXtmNGzY0ChQoIBx7969OG/36NEjo3Tp0kaJEiWMkydPmrcLCQkx+vXrZ3h4eBgTJ0585fu3b98+w8PDw+jUqZMRFBRkXj5v3jzDw8Mjyufn5b9NxOejWrVqhp+fn3n54cOHDQ8PD6N58+bmZTNmzDA8PDyMoUOHGuHh4eblP/74oznWq0TE27x5s3nZihUrzK/hyZMn5uXXrl0zKlSoYBQoUMC4du1arPuNOJ5ffh0bNmwwPDw8jLZt25qXfffdd4aHh4exZ8+eSPs4duyY4eHhYbRs2TJKe5s0aRLleyK61/LXX38ZHh4exvDhw83LvL29DU9PT2Pjxo3mZeHh4UanTp0MDw8P898/4vsuICAg0r48PDyM9evXm5977949o0aNGkaBAgWMy5cvG4ZhGEePHjU8PDyMfv36RWpjSEiI0aBBA8PDw8O4dOmSefnLsaJ7PdeuXTMKFChgVK1aNdL7/+TJE/N3zYoVK8zLI47R77//PtLxMXDgQMPDw8OYP3++AQDAm2AoKAAAVnD79m399ddfKlWqlJo3bx5pnbe3twoXLqy//vpLN27ciLSubdu2kXqSFS1aVPXq1dP169d19OjRGOOFh4fLzc1N+fPn19q1azVixAh9++23Wr58uVq2bKnz58+bhzuGhoZKUqReRi+KWB4UFBRjvEePHkmSkidPHuM20bH0fXkdtWvXVo4cOcyPs2XLpjx58ujevXuxvqaX9xGb0NBQrVy5Uu+//36UXko1atRQiRIltHnzZj1+/FiSZBiG/P39Iw3bzJQpk9avX6/58+fHGsvZ2Vk//fSTvv32Wzk6OkZaV7p0aUn/X+T977//1s2bN+Xl5aXixYubt3NxcdHXX3+tnj17KigoKM7bbdmyRQEBAWrfvr0KFixo3s7JyUnffPONkiZNau5hFNv7t3btWklSnz59Ih13bdq0ea2ZVps2bRqpN1GJEiXk5uammzdvmpetWLFCrq6u6tOnT6ReSj179owy9Pl1rFixQpI0ZMiQSL003d3d9dlnn5mPibj47LPPIr2OOnXqqGTJkjpw4ID+++8/SVKjRo00cuRIlS9fPtJzixQpoqRJk0Y73LhWrVpycHj90/l///1Xhw4dUvny5SP97Uwmk7744gv17Nkzxu+LCCVKlFDdunXNj9OmTauuXbsqNDTUPOQ5U6ZM+vHHH9W7d+9Iz3VyclLJkiUlvf7EEatWrVJoaKh69OgRqaerq6urBg4cKEnRHqNdunSJdHxUqVJFkiIdSwAAWIKhoAAAWEFETbBSpUpFu75EiRI6ceKEzp49G2km0ReHJEYoUqSIVq1apbNnz5ovPl/m4OCgxYsXR7u8f//+WrVqldauXasBAwbIxcVFkiLVTXpRcHCwTCaTkiVLFuPrS5UqlSSZ6yzFlaXvy+vImTNnlGURw2CDg4PNrz8mSZIkUcaMGWPd5vLlywoMDFRYWJg5YfmioKAghYWF6dy5cypZsqRatmypadOmqV69eipcuLAqV66sKlWqqHDhwq98PalTp1bDhg0VHh6u8+fP6+LFi7p+/brOnTunvXv3SpK5jlREjajohq+WL1/enKTZtm1bnLaL2F9EAu9FadKkUa5cuXTmzBk9evTI/B5H9/6dPXtWjo6O0c4MW7x4cV26dOmV74Mk5cqVK8qyFClSmBOYQUFBOn/+vAoWLGhuT4TkyZNHqtv1us6ePauMGTNGO0w54nMZ1xpd0b2fRYoU0eHDh81xSpUqpVKlSunBgwc6c+aMrl27psuXL+vvv/82H18vs/QzE1GfMbrjoWDBgpGSqjGJ6btL+v/3JVOmTProo48UGhqqU6dO6fLly7p27ZrOnDkT5ViOq9iO0ffff19ubm5R/i4uLi7KnDlzpGUpUqSQpCh1AwEAeF0k1gAAsIKIC/2XL+4jRNTeevbsWaTl0SV00qVLF2mfryt58uTKmTOnzpw5o6CgIHOvnZj29+jRI7m6usba8yUiuXDt2rVXxr969aqyZs0qJycni9+X1xFdz5qIninGS0X5oxNRqyw2EQnFS5cumYvDRycgIECS9MUXXyhHjhxauHChjh8/rmPHjmnChAnKlSuXBg8erHLlysUab9OmTRo7dqy59p2rq6sKFSqkfPnyae/evebXFdGuiCTBq9r/qu0i/l4xbZchQwadOXNGT58+Nf9No3v/Hj58KBcXFzk5RT3VfJ1eZDH9bSNe/4MHDyRJ6dOnj7G9lnr8+LH5sxjTfuN63Mb2OY/oDRoQEKAffvhBa9asUUhIiEwmk7JmzaoPPvhAp0+fjna/cTl2oxNxnL7qeIhNdO9txN/hxe+ahQsXatKkSeaJStzc3FS0aFHlyZNHx44di9Nn9EVx+U65evVqpGVv+h0BAEBsSKwBAGAFEUMkI4Z1vSwisRHR8ytCdBfmERfaqVOnjjHew4cP9c8//yh16tTR9up59uyZHBwc5OTkpKxZsypJkiTRDrcMCwvTv//+qzx58sQYS3re48zV1VWHDx/Ws2fPYrygDw4OVvPmzRUWFqatW7e+9vsScbH7ci+Wp0+fxto+W4t4HV5eXvrpp59eub3JZFKzZs3UrFkz+fn5ae/evdq8ebM2bdqkzz77TFu3bo2xYPqxY8fUu3dvZcqUSePGjVPhwoXl7u4uk8mkadOmmXv6SDIPUXzy5EmU/YSEhMgwDDk7O8d5u4jX+fJsrRFiOo5f5ubmpmvXrikkJERJkiSJtC4wMDDW576OiPbGlDSO7vW+zr5jOm4jElOveh8iPHv2LEqP0Jc/51999ZV27NihVq1aycvLSx4eHubE1+rVqy15CTGK7XgIDw9XcHDwK5N20Q2zfvn4WL9+vQYPHixPT08NHjxYBQsWNPccGzx4sI4dO/babX/xOyW6z1BAQECc/y4AAFgDNdYAALCCiCFvR44ciXb9wYMHZTKZlDdv3kjLT5w4EWXbiNpqEcOqonPq1Cm1bt062pn77ty5oxs3bih//vxydHSUk5OTihYtqtOnT0dJQBw/flxPnz6NVHcrOs7OzqpXr56ePn2qmTNnxrjdypUrFRAQoIIFCyplypSv/b5EJGFeTqTFpaecLeXKlUvOzs46depUtD1cZs2apcmTJ+v+/fu6f/++JkyYYK7RlTZtWjVs2FDjx49XkyZN9PTp0xh7IEnP65OFh4dr8ODBql+/vrJnz25OOEYMoYxog4eHh6Tnf8eXrV+/XkWLFtXKlSvjvF3E3+vw4cNRtnv8+LHOnDmjHDlyvLL+VsGCBRUeHh5t4uTkyZOxPvd1pEiRQjlz5tTZs2ejDOkLCwuLc6wXa29FyJcvnx49eqTz589HWXfo0CFJivJ5jklMn3MnJycVLFhQDx8+1I4dO1SoUCF9//33KlGihDmpduPGDQUFBcW5Z1V0r+Vlnp6ekqI/Ho4ePapixYppypQpse4jutf0999/S3peK1KS1qxZI0kaO3asatasGWk45svHclxFzKIa3TF69epV3b17V++///5r7RMAgDdBYg0AACvIkiWLypYtq5MnT0YpTr9kyRIdOXJEZcuWVaZMmSKtmzFjRqTeQUeOHNHq1atVsGBB8wVkdEqWLKn06dNr586dOnjwoHl5cHCwhg0bppCQkEhF9hs3bqzg4OBI9cFCQkL066+/SlKUiQWi07dvX7333nuaOHGilixZEuWCeOfOnRoxYoScnJzUr18/i96XiML2ETXBpOc9aKZOnfrK9r1KkiRJYqwz9youLi6qV6+e/vnnnyiJxf379+unn37SsmXLlDJlSiVPnlxz5szRzz//bB6qGOHWrVuSnr8vscWSpHv37kVavm/fPnOiImJCitKlSytz5sz6448/zPXspOfHwaxZs+To6Khy5crFebuaNWvqvffe0/z583Xq1CnzdqGhoRoxYoSePXsmLy+vV75fH330kUwmk8aMGRMpmbt27VqrJtYkqUmTJnr8+HGU2ne//fab7t69G6d9RAxZfTE516RJE0nSiBEjIvWyu379uiZNmqQkSZKofv36cdr/hAkTIr0PGzZs0P79+1WjRg2lSpVKSZIkkYODgx4+fBipDc+ePdOwYcMkxVwjMS6v5WXu7u4qXry4du/erV27dpmXh4eH6/fff5dhGKpQoUKscTZv3mxOMErS3bt3NWXKFLm6uurDDz+UFPOxvHLlSnPtu4hjWfr/xHpsr9XLy0tOTk6aOnVqpMlBAgMDNXToUPM2AADEF4aCAgBgJUOHDlWbNm30/fffa/PmzfL09NT58+e1Z88eZciQwXyB/KIHDx7oo48+Uq1atfT48WNt3LhRSZMmjXbbFzk7O2vYsGHq2bOnPv74Y9WtW1epUqXS3r17dfHiRdWvX9+cGJCeJwmWLVumWbNmmYu979q1S2fPnlWnTp3MPVhiky5dOvn4+KhLly4aOHCgZs2apdKlSytJkiQ6c+aMDh48qCRJkuiHH34w91h53felQYMG+vXXXzVjxgxdv35d2bJl0549e/To0aNYk1FxkSFDBl26dEmDBw9WlSpVVL169dd6fv/+/XX06FGNGjVKf/75p4oUKaL//vtPmzZtkpOTk0aOHCkHBwc5OzurV69eGj58uBo0aKBatWopadKkOnjwoE6cOCEvL69YZ8asV6+eZs6cqe+//14HDx5U+vTpde7cOe3evVupU6eWn5+fOWEXEbdr165q1aqVatWqpbRp02r79u26cuWKBgwYYK7v9Trb9e3bN9J2f/31l86fP69SpUqpS5cur3yvihYtqk6dOmnGjBlq3Lixqlatqn///VdbtmxR9uzZrdoDsWPHjtqwYYOmTZumw4cPq0iRIjp9+rQOHTokNze3ONUqjHjtU6ZM0ZkzZ9SzZ095eXlp69at2rhxoxo1aqTKlSsrMDBQf/75px4/fqyBAwdGmtE3NpcvXza/D//995+2bNmijBkz6uuvv5YkJUuWTLVq1dLGjRvVvHlzVahQQYGBgdq2bZvu3bunlClT6tGjRwoPD3/lLKDRvZbofP/992rbtq26du2qmjVrKmvWrPrrr790+vRptW/fPtYes9Lz+m4dO3ZU3bp1lSJFCm3ZskX37t3TsGHDzLXWGjVqpLVr16pnz56qX7++UqRIoRMnTujAgQNKmzZtpGP5xbZ/8803qlChgtq3bx8lrru7u/r3768RI0boo48+Us2aNeXq6qqdO3fq+vXrql+/vho3bhxr2wEAsCZ6rAEAYCU5c+bUsmXL1KJFC/3zzz+aN2+erly5onbt2mnlypXRXoR/++23ql69utauXatdu3apWrVqWrRoUZxm5atWrZp8fX1Vvnx5bd++XYsWLZKTk5O+++47jRkzJtKQMEdHR02fPl0dO3bUxYsXNWfOHIWFhWnQoEH66quv4vwaixQponXr1ql3795ycXHRxo0btWDBAt26dUvNmjXTH3/8oUaNGln8vqRLl05z5sxRuXLltHPnTi1ZskR58uTR/Pnz5ebmFud2RmfQoEHKli2bli1bpj///PO1n58mTRotXrxYnTp10n///ae5c+fq0KFDql69uhYvXqyyZcuat23Xrp1+/vlnZcuWTevWrZOvr6+Cg4M1YMAAjRw5MtY4+fPn17Rp01SwYEFt2bJFixcv1r1799SrVy/98ccfcnBw0I4dO8zbly9fXgsWLFC5cuW0Y8cO+fr6KlmyZBo1apQ6duz42tvVrl1b8+fPV4UKFbRr1y7z7LP/+9//NGvWrFcOA43wv//9T8OHD1eyZMm0ePFinT9/XsOHD1fVqlXj9Py4cnFx0axZs+Tt7a1r165p3rx5evz4saZNm6acOXPGqcB/vXr19OGHH+r69euaP3++bt68KZPJpF9++UUDBw5U8uTJtXTpUm3btk3FihXTzJkzI/UIfZWxY8eqQIECWrZsmQ4fPqzGjRtryZIlkZLFI0eOVIcOHfTo0SPNmzdPu3btUuHChbVgwQI1btxYz5490/79+y16LdHx9PTUkiVL9OGHH+rAgQOaO3eunj59qgEDBmjAgAGvjNO4cWP17t1bhw4d0sqVK+Xu7q7ffvstUu/XqlWr6ueff1b27Nm1evVqrVixQkFBQRo0aJCmT58uSZGO5W7duqlo0aLas2ePfH19Y4zdvn17/f777ypYsKA2bdqkFStWKFWqVBo+fLjGjh37yrYDAGBNJoOpcAAAiHcTJkzQxIkTNWnSJNWsWdPezQHeWjdu3FCaNGnMBflfVK1aNSVLlkzr1q2zQ8ukr7/+WitWrIhUv+5tt3//frVv317t27fXt99+a+/mAABgd/RYAwAAwFtr2LBhKlmyZKR6W5K0bt063bp1K1JPQgAAAGujxhoAAADeWi1bttSOHTvUrFkz1a5dW6lSpdLFixe1fft2ZcqUKcYaYwAAANZAYg0AAABvrerVq2vWrFny8fHRtm3bFBAQoPTp06t169bq3r270qZNa+8mAgCAdxg11gAAAAAAAAALUGMNAAAAAAAAsACJNQAAAAAAAMAC1FiT5O/vr927dytbtmxycXGxd3MAAAAAAABgR0FBQbpx44YqVqyoNGnSxLgdiTVJu3fv1ldffWXvZgAAAAAAACABGT16tBo1ahTjehJrkrJlyybp+ZuVJ08eO7cGAAAAAAAA9nTx4kV99dVX5pxRTEisSebhn3ny5FHBggXt3BoAAAAAAAAkBK8qGcbkBQAAAAAAAIAFSKwBAAAAAAAAFiCxBgAAAAAAAFiAxBoAAAAAAABgARJrAAAAAAAAgAVIrAEAAAAAAAAWILEGAAAAAAAAWIDEGgAAAAAAAGABEmsAAAAAAACABUisAQAAAAAAABYgsQYAAAAAAABYgMQaAAAAAAAAYAESa++w0HDjnYgBAAAAAACQEDnZuwGwHScHkyad9FdQmG2SXy6OJvUolMYm+wYAAAAAAEjoSKy944LCDAXTqwwAAAAAAMDqGAoKAAAAAAAAWIDEGgAAAAAAAGABEmsAAAAAAACABUisAQAAAAAAABYgsQYAAAAAAABYgMQaAAAAAAAAYAESawAAAAAAAIAFSKwBAAAAAAAAFiCxBgAAAAAAAFiAxBoAAAAAAABgARJrAAAAAAAAgAVIrAEAAAAAAAAWILEGAAAAAAAAWIDEGgAAAAAAAGABEmsAAAAAAACABUisAQAAAAAAABYgsQYAAAAAAABYgMQaAAAAAAAAYAESawAAAAAAAIAFSKwBAAAAAAAAFiCxBgAAAAAAAFjAyd4NiM7x48c1YcIEHT16VEFBQcqTJ486duyoxo0bm7cZN26cfvvtt2iff/DgQbm5ucVTawEAAAAAAJAYJbjE2sWLF9WuXTulTJlSnTt3VvLkybVu3Tr1799f9+/f18cffyxJOn/+vNzd3fX5559H2UeyZMniu9kAAAAAAABIZBJcYm3UqFFycHDQkiVLlDFjRklSmzZt5O3trfHjx6tFixZKnjy5zp8/r6JFi8rLy8vOLQYAAAAAAEBilKBqrIWFhengwYOqVKmSOakmSQ4ODvrwww8VGBioM2fO6PHjx7p165by5Mljx9YCAAAAAAAgMUtQPdYcHBy0atUqmUymKOv8/f0lSY6Ojvrnn39kGIY5sfb06VO5uLjIwSFB5QkBAAAAAADwDktQmSiTySR3d3dly5Yt0vLAwEAtW7ZMrq6uKlCggM6fPy9J2rVrl6pWrapixYqpZMmSGjJkiJ4+fWqPpgMAAAAAACCRSVA91qJjGIYGDhyou3fvqkePHnJxcTEn1k6cOKGePXsqRYoU2rFjhxYsWKCLFy9q9uzZ9F4DAAAAAACATSXoxJphGBoyZIjWrl2rMmXK6LPPPpMkVapUSe+99566dOkiV1dXSVLdunWVOnVqzZgxQ5s3b1adOnXs2XQAAAAAAAC84xJst66QkBB9+eWXWrhwoYoUKaIpU6YoSZIkkqQqVaqod+/e5qRaBG9vb0nSX3/9Fe/tBQAAAAAAQOKSIHusPX36VJ9//rl27dqlMmXKaMqUKUqRIsUrn5c2bVpJz2uyAQAAAAAAALaU4HqshYSEqGfPntq1a5eqVaum6dOnR0mqdezYUZ06dYry3EuXLkmS3N3d46WtAAAAAAAASLwSXGJt/Pjx2r17t6pXr64JEybIxcUlyjapUqXS3r17dfToUfOy8PBwTZw4UY6OjqpXr158NhkAAAAAAACJUIIaCnrnzh3NnDlTTk5OqlixotatWxdlm3LlyunLL7/Unj171KVLF7Vr105p0qTRxo0bdfDgQfXp00e5c+e2Q+sBAAAAAACQmCSoxNqRI0cUEhIiSRo6dGi02/z++++qXLmy5s+fr19++UVz585VcHCw8ubNq1GjRqlx48bx2GIAAAAAAAAkVgkqsVa3bl2dO3cuTtu+//77mjRpko1bBAAAAAAAAEQvwdVYAwAAAAAAAN4GJNYAAAAAAAAAC5BYAwAAAAAAACxAYg0AAAAAAACwAIk1AAAAAAAAwAIk1gAAAAAAAAALkFgDAAAAAAAALEBiDQAAAAAAALAAiTUAAAAAAADAAiTWAAAAAAAAAAuQWAMAAAAAAAAsQGINAAAAAAAAsACJNQAAAAAAAMACJNYAAAAAAAAAC5BYAwAAAAAAACxAYg0AAAAAAACwAIk1AAAAAAAAwAIk1gAAAAAAAAALkFgDAAAAAAAALEBiDQAAAAAAALAAiTUAAAAAAADAAiTWAAAAAAAAAAuQWAMAAAAAAAAsQGINAAAAAAAAsACJNQAAAAAAAMACJNYAAAAAAAAAC5BYAwAAAAAAACxAYg0AAAAAAACwAIk1AAAAAAAAwAIk1gAAAAAAAAALkFgDAAAAAAAALEBiDQAAAAAAALAAiTUAAAAAAADAAiTWAAAAAAAAAAuQWAMAAAAAAAAsQGINAAAAAAAAsACJNQAAAAAAAMACJNYAAAAAAAAACyTIxNrx48fVpUsXlSpVSoULF1bjxo21cuXKSNs8e/ZMY8aMUbVq1VS0aFG1bNlS+/bts0+DAQAAAAAAkOgkuMTaxYsX1a5dO507d06dO3fW//73PyVLlkz9+/fXzJkzzdv169dPPj4+qlGjhvr376+QkBB17txZhw4dsmPrAQAAAAAAkFg42bsBLxs1apQcHBy0ZMkSZcyYUZLUpk0beXt7a/z48WrRooWOHz+uLVu2aMCAAerYsaMkqXHjxmrUqJFGjhyp5cuX2/EVAAAAAAAAIDFIUD3WwsLCdPDgQVWqVMmcVJMkBwcHffjhhwoMDNSZM2e0evVqJUmSRC1atDBv4+rqqmbNmunUqVO6cuWKHVoPAAAAAACAxCRB9VhzcHDQqlWrZDKZoqzz9/eXJDk6OurkyZPKlSuXXF1dI21TsGBBSdLJkyeVM2dOm7cXAAAAAAAAiVeCSqyZTCa5u7tHWR4YGKhly5bJ1dVVBQoU0H///aciRYpE2S5DhgySpFu3btm8rQAAAAAAAEjcEtRQ0OgYhqGBAwfq7t27+vjjj+Xi4qInT54oWbJkUbZNmjSpJOnp06fx3UwAAAAAAAAkMgk6sWYYhoYMGaK1a9eqTJky+uyzz+L0vOiGkgIAAAAAAADWlKCGgr4oJCREX3/9tdasWaMiRYpoypQpSpIkiaTnExU8e/YsynMilqVIkSJe2woAAAAAAIDEJ0Em1p4+farPP/9cu3btUpkyZTRlypRIybIsWbLo7t27UZ53584dSYo0oygAAAAAAABgCwluKGhISIh69uypXbt2qVq1apo+fXqUHmgFCxbUP//8E6XX2qlTpyRJhQsXjrf2AgAAAAAAIHFKcIm18ePHa/fu3apevbomTJggFxeXKNvUrVtXwcHBWrhwoXlZYGCgli5dqiJFiih79uzx2WQAAAAAAAAkQglqKOidO3c0c+ZMOTk5qWLFilq3bl2UbcqVK6dKlSqpUqVKGj16tG7fvq1cuXJp8eLF+vfff/Xjjz/aoeUAAAAAAABIbBJUYu3IkSMKCQmRJA0dOjTabX7//XdlyJBBv/76q37++WetXr1aT58+laenp2bMmKFSpUrFZ5MBAAAAAACQSCWoxFrdunV17ty5OG2bPHlyDRw4UAMHDrRxqwAAAAAAAICoElyNNQAAAAAAAOBtQGINAAAAAAAAsACJNQAAAAAAAMACJNYAAAAAAAAAC5BYAwAAAAAAACxAYg0AAAAAAACwAIk1AAAAAAAAwAIk1gAAAAAAAAALkFgDAAAAAAAALEBiDQAAAAAAALAAiTUAAAAAAADAAiTWAAAAAAAAAAuQWAMAAAAAAAAsQGINAAAAAAAAsACJNQAAAAAAAMACJNYAAAAAAAAAC5BYAwAAAAAAACxAYg0AAAAAAACwAIk1AAAAAAAAwAIk1gAAAAAAAAALkFgDAAAAAAAALEBiDQAAAAAAALCATRNrwcHBunLlii1DAAAAAAAAAHZhcWItf/78mjRpUqzbTJw4Uc2bN7c0BAAAAAAAAJBgOcV1w5MnT+q///4zPzYMQ5cuXdKff/4Z7fYhISHavn27QkND37yVAAAAAAAAQAIT58RaQECAevToIZPJJEkymUxat26d1q1bF+NzDMNQvXr13ryVAAAAAAAAQAIT58RahQoVNGjQIPn7+8swDE2aNEmlS5dW2bJlo90+SZIkypgxI4k1AAAAAAAAvJPinFiTJG9vb/P/Dxw4oKZNm6px48bWbhMAAAAAAACQ4L1WYu1Fc+fOtWY7AAAAAAAAgLeKxYk1Sbp//742bdqkmzdvKjg4WIZhRNnGZDLp66+/fpMwAAAAAAAAQIJjcWLt7Nmz6tChgx4+fBhtQi0CiTUAAAAAAAC8iyxOrI0bN04BAQFq0aKFKleurPfee888YygAAAAAAADwrrM4sXbo0CFVq1ZNQ4cOtWZ7AAAAAAAAgLeCg8VPdHBQ7ty5rdkWvGNCw2MeIvw2xQAAAAAAAIiOxT3WSpUqpUOHDlmzLXjHODmYNOmkv4LCbJP8cnE0qUehNDbZNwAAAAAAwKtY3GPtq6++0uXLlzV8+HD9999/1mwT3iFBYYaCw23zz1YJOwAAAAAAgLiwuMfa999/r5QpU8rX11e+vr5ycXGRs7NzlO1MJpP279//Ro0EAAAAAAAAEhqLE2s3btyQJGXOnNlqjYnOtGnTNHv2bO3ZsyfKunHjxum3336L9nkHDx6Um5ubTdsGAAAAAACAxMvixNrWrVut2Y5o7dixQ+PHj1fKlCmjXX/+/Hm5u7vr888/j7IuWbJktm4eAAAAAAAAEjGLE2u2ZBiGfH199eOPPyokJCTG7c6fP6+iRYvKy8srHlsHAAAAAAAAvEFi7c8//4zztjVq1Hitfbds2VLHjh1TxYoVdf/+/WgnR3j8+LFu3bqlJk2avNa+AQAAAAAAAGuwOLHWo0cPmUymOG175syZ19r3rVu3NHToULVo0ULt27ePdpt//vlHhmEoT548kqSnT5/KxcVFDg4WT3QKAAAAAAAAxJnVE2tPnz7VtWvXtGPHDhUtWlQdOnR47X1v3bo12hlGX3T+/HlJ0q5duzRq1Cjdvn1brq6u8vLyUv/+/amxBgAAAAAAAJuyOLEW3YQBLzp9+rS8vb316NGj1973q5Jq0v8n1k6cOKGePXsqRYoU2rFjhxYsWKCLFy9q9uzZ9F4DAAAAAACAzdhs8oICBQqobt268vHx0UcffWT1/VeqVEnvvfeeunTpIldXV0lS3bp1lTp1as2YMUObN29WnTp1rB4XAAAAAAAAkCSbdulKnTq1rl69apN9V6lSRb179zYn1SJ4e3tLkv766y+bxAUAAAAAAAAkGybW/P39tXHjRqVPn95WIaKVNm1aSVJgYGC8xgUAAAAAAEDiYvFQ0J49e0a7PDw8XE+fPtXx48cVGBioHj16WNy42HTs2FEODg7y8fGJtPzSpUuSJHd3d5vEBQAAAAAAAKQ3SKxt2bIl1vUpU6ZUx44d9dlnn1kaIlapUqXShg0bdPToURUvXlzS86TexIkT5ejoqHr16tkkLgAAAAAAACC9QWLtzz//jHa5yWRSkiRJlDZtWpvOyvnll19qz5496tKli9q1a6c0adJo48aNOnjwoPr06aPcuXPbLDYAAAAAAABgcWIta9as1mzHa8uWLZvmz5+vX375RXPnzlVwcLDy5s2rUaNGqXHjxnZtGwAAAAAAAN59FifWIhw6dEjLli3TuXPn9PTpU6VKlUrvv/++GjVqpFKlSr1xA+fOnRvjuvfff1+TJk164xgAAAAAAADA63qjxNrYsWM1ffp0GYYhSUqWLJmuXLmio0ePasmSJfr000/Vt29fqzQUAAAAAAAASEgsLoK2bt06/f7778qbN69+++03HTp0SEePHtWxY8fk4+MjT09PTZs27ZWTHAAAAAAAAABvI4sTa3PmzFH69Ok1Z84cValSRSlSpJAkOTs7q3z58vLx8VG6dOliHcoJAAAAAAAAvK0sTqydO3dO1apVU+rUqaNdnyZNGlWrVk1nzpyxuHEAAAAAAABAQmVxYi2uQkJCbB0CAAAAAAAAiHcWJ9Y8PT21bds2PXjwINr1/v7+2rp1qzw9PS0NAQAAAAAAACRYFifW2rdvr7t37+qTTz7RgQMHFBoaKkl6/PixduzYoY4dO8rPz09t27a1WmMBAAAAAACAhMLJ0ifWq1dPJ06c0MyZM9WhQwc5ODjI2dlZz549kyQZhqGPP/5YDRo0sFpjAQAAAAAAgITC4sSaJPXv3181atTQ8uXLdfbsWT158kTJkydXvnz51KRJE5UqVcpa7QQAAAAAAAASlDdKrElSqVKlSKABAAAAAAAg0bGoxtqlS5d0//79aNeNHz9ehw8ffqNGAQAAAAAAAAndayXWgoOD1bdvXzVo0EA7duyIsv7u3buaPHmy2rZtqx49eujx48dWaygAAAAAAACQkMQ5sRYWFqbOnTtr/fr1ypQpk1KnTh1lm2TJkunLL79U9uzZ9eeff6pbt24yDMOqDQYAAAAAAAASgjgn1hYuXKgDBw6oUaNG2rRpk6pUqRJlmxQpUqhz5876448/VKNGDR0+fFhLly61aoMBAAAAAACAhCDOibXVq1crS5YsGjFihJycYp/zIGnSpBo1apRSp06tlStXvmkbAQAAAAAAgAQnzom1CxcuqGLFikqSJEmctk+RIoUqVKigc+fOWdw4AAAAAAAAIKF6rRpr77333mvtPGPGjAoNDX3tRgEAAAAAAAAJXZwTa5kzZ9a1a9dea+fXrl1TxowZX7tRAAAAAAAAQEIX58Ra6dKltXPnTt29ezdO29+9e1fbt2+Xp6enxY0DAAAAAAAAEqo4J9ZatWql4OBg9erVS48fP45128ePH+vzzz9XSEiIWrVq9caNBAAAAAAAABKaOCfWChQooG7duuno0aOqW7eupkyZouPHj+vRo0cKDw/X/fv3dezYMU2aNEm1a9fW33//rSZNmqh8+fK2bD8AAAAAAABgF06vs3GvXr2UJEkSTZ48WePHj9f48eOjbGMYhpIkSaIuXbqob9++VmsoAAAAAAAAkJC8VmLNZDKpe/fuqlevnlasWKFdu3bpv//+08OHD5UqVSq5u7urUqVKatCggdzd3W3VZgAAAAAAAMDuXiuxFiFnzpzq27cvPdIAAAAAAACQaMW5xhoAAAAAAACA/0diDQAAAAAAALAAiTUAAAAAAADAAiTWAAAAAAAAAAuQWAMAAAAAAAAsQGINAAAAAAAAsACJNQAAAAAAAMACJNYAAAAAAAAAC5BYAwAAAAAAACxAYg0AAAAAAACwAIk1AAAAAAAAwAIk1gAAAAAAAAALkFgDAAAAAAAALEBiDQAAAAAAALBAgk+sTZs2TRUqVIh23bNnzzRmzBhVq1ZNRYsWVcuWLbVv3754biEAAAAAAAASowSdWNuxY4fGjx8f4/p+/frJx8dHNWrUUP/+/RUSEqLOnTvr0KFD8dhKAAAAAAAAJEYJMrFmGIbmzZunHj16KCQkJNpt9u3bpy1btuh///ufBg4cKG9vb82bN0+ZM2fWyJEj47nFAAAAAAAASGwSZGKtZcuWGjZsmMqWLauCBQtGu83q1auVJEkStWjRwrzM1dVVzZo106lTp3TlypV4ai0AAAAAAAASowSZWLt165aGDh2q6dOnK3ny5NFuc/LkSeXKlUuurq6Rlkck4k6ePGnzdgIAAAAAACDxcrJ3A6KzdetWOTs7x7rNf//9pyJFikRZniFDBknPk3MAAAAAAACArSTIHmuvSqpJ0pMnT5QsWbIoy5MmTSpJevr0qdXbBQAAAAAAAERIkIk1azCZTPZuAgAAAAAAAN5hb21izdXVVc+ePYuyPGJZihQp4rtJAAAAAAAASETe2sRalixZdPfu3SjL79y5I0nKmDFjfDcJAAAAAAAAichbm1grWLCg/vnnnyi91k6dOiVJKly4sD2aBQAAAAAAgETirU2s1a1bV8HBwVq4cKF5WWBgoJYuXaoiRYooe/bsdmwdAAAAAAAA3nVO9m6ApSpVqqRKlSpp9OjRun37tnLlyqXFixfr33//1Y8//mjv5gEAAAAAAOAd99Ym1iTp119/1c8//6zVq1fr6dOn8vT01IwZM1SqVCl7Nw0AAAAAAADvuASfWJs7d26M65InT66BAwdq4MCB8dgiAAAAAAAA4C2usQYAAAAAAADYE4k1AAAAAAAAwAIk1gAAAAAAAAALkFgDAAAAAAAALEBiDQAAAAAAALAAiTUAAAAAAADAAiTWAAAAAAAAAAuQWAMAAAAAAAAsQGINAAAAAAAAsACJNQAAAAAAAMACJNYAAAAAAAAAC5BYAwAAAAAAACxAYg0AAAAAAACwAIk1AAAAAAAAwAIk1gAAAAAAAAALkFgDAAAAAAAALEBiDQAAAAAAALAAiTUAAAAAAADAAiTWAAAAAAAAAAuQWAMAAAAAAAAsQGINAAAAAAAAsACJNQAAAAAAAMACJNYAAAAAAAAAC5BYwzspNNx4J2IAAAAAAICEy8neDQBswcnBpEkn/RUUZpvkl4ujST0KpbHJvgEAAAAAwNuBxBreWUFhhoLpVQYAAAAAAGyEoaAAAAAAAACABUisAQAAAAAAABYgsQYAAAAAAABYgMQaAAAAAAAAYAESawAAAAAAAIAFSKwBAAAAAAAAFiCxBgAAAAAAAFiAxBoAAAAAAABgARJrAAAAAAAAgAVIrAEAAAAAAAAWILEGAAAAAAAAWMDJ3g14U61atdLRo0ejLM+XL5/++OMPO7QIAAAAAAAAicFbn1g7f/68qlatqnr16kVanipVKvs0CAAAAAAAAInCW51Yu3nzpp48eaKqVavKy8vL3s0BAAAAAABAIvJW11g7f/68JClPnjx2bgkAAAAAAAASm7c6sXbhwgVJUt68eSVJT548sWdzAAAAAAAAkIi81Ym1c+fOycXFRb/++qtKliypEiVKqFKlSpozZ469mwYAAAAAAIB33FtdY+3ChQsKCgrSf//9p5EjR+rp06dasmSJRowYoQcPHqhXr172biIAAAAAAADeUW91Yq1ly5YKCwtT+/btzcsaNWqk1q1ba9q0aWrdurXSp09vxxYiMQoNN+TkYHrrYwAAAAAAgNi91Ym1Nm3aRFnm4OCgli1basCAATp06JA+/PBDO7QMiZmTg0mTTvorKMywyf5dHE3qUSiNTfYNAAAAAADi7q1OrMUkbdq0kqTAwEA7twSJVVCYoeBw2yTWAAAAAABAwvDWTl5w69Yt1a9fX7/++muUdZcuXZIkubu7x3ezAAAAAAAAkEi8tYm1zJkzKyAgQEuWLFFAQIB5eUBAgGbNmqWsWbOqRIkSdmwhAAAAAAAA3mVv7VBQk8mkwYMHq2fPnmrRooVat26t4OBgLVq0SH5+fvr999/l5PTWvjwAAAAAAAAkcG9tjzVJqlWrlqZMmaLUqVNr3Lhxmjp1qnLmzClfX1+VK1fO3s0DAAAAAADAO+yt79JVvXp1Va9e3d7NAAAAAAAAQCLzVvdYAwAAAAAAAOyFxBoAAAAAAABgARJrwDskNNx4J2IAAAAAAPA2eOtrrAH4f04OJk066a+gMNskv1wcTepRKI1N9g0AAAAAwNuGxBrwjgkKMxRMrzIAAAAAAGyOoaAAAAAAAACABUisAQAAAAAAABYgsQYAAAAAAABYgMQaAAAAAAAAYAESawAAAAAAAIAFSKwBAAAAAAAAFiCxBgAAAAAAAFiAxBoAAAAAAABgARJrAKwmNNywW4zEGhsAAAAAYD9O9m4AgHeHk4NJk076KyjMNkkgF0eTehRKQ2wAAAAAQIJAYg2AVQWFGQq2U++qxBobAAAAAGAfDAUFAAAAAAAALEBiDQAAAAAAALAAiTUAAAAAAADAAiTWAAAAAAAAAAuQWAMAAAAAAAAsQGINAAAAAAAAsACJNQAAAAAAAMACJNYA4C0WGm7YNYY94yfW2AAAAAASDid7NwAAYDknB5MmnfRXUJhtkjAujib1KJQmQcZPrLEBAAAAJBwk1gDgLRcUZijYjr2b7Bk/scYGAAAAkDAwFBQAAAAAAACwAIk1AAAAAAAAwAIk1gAAAAAAAAALkFgDAAAAAAAALEBiDQAAAAAAALAAiTUAAAAAAADAAiTWAAAAAAAAAAuQWAMAAAAAAAAsQGINAIC3TGi4YbcYxI7/2PaOT+z4j23v+MSO/9j2jp9YY9s7PrHjP7a94yfW2O86J3s3AAAAvB4nB5MmnfRXUJhtTl5cHE3qUSgNsRNIbHvHJzZ/c2LbPra94yfW2PaOT2z+5okl9ruOxBoAAG+hoDBDwXa6K0hs+0isrz2xxrZ3fGLbR2J97bzvxE5M8RNr7HfZWz8U9NatW+rbt68++OADlSxZUj169ND169ft3SwAAAAAAAC8497qHmsPHjxQ+/bt9fjxY3Xo0EHOzs7y8fFRmzZttHLlSqVJkzi7IQIAAAAAAMD23urE2qxZs3Tjxg0tXbpUhQoVkiRVqlRJjRs31u+//67+/fvbuYUAAAAAAAB4V73VQ0HXrFmjYsWKmZNqkuTh4aEPPvhAa9assWPLAAAAAAAA8K57axNrAQEBun79eqSkWoSCBQvqzp07unPnjh1aBgAAAAAAgMTgrU2s/ffff5KkjBkzRlmXIUMGSdLt27fjtU0AAAAAAABIPN7aGmtPnjyRJCVLlizKuqRJk0qSAgMD47SvoKAgSdLFixet1LqEI+DqQwWH2WY6XWdHk045uSXY+MSO/9j2jk/s+I9t7/iJNba94xM7/mPbOz6x4z+2veMTO/5j2zt+Yo1t7/jEjv/Y9o6fWGO/jSJyRBE5o5iYDMOwzbtqY0eOHFHr1q01aNAgtWnTJtK6JUuWaODAgZo9e7Y++OCDV+5r1apV+uqrr2zVVAAAAAAAALyFRo8erUaNGsW4/q3tsebq6ipJevr0aZR1z549kySlSJEiTvuqWLGiRo8erWzZssnFxcV6jQQAAAAAAMBbJygoSDdu3FDFihVj3e6tTaxlzZpVknT37t0o6yImLYiu/lp00qRJE2v2EQAAAAAAAIlLiRIlXrnNWzt5wXvvvafs2bPr1KlTUdadOnVKmTJlUvr06e3QMgAAAAAAACQGb21iTZLq1q2rw4cPR0qunT9/Xn/99ZcaNGhgx5YBAAAAAADgXffWTl4gSQ8ePFDDhg0VEhKiTz75RA4ODpo5c6aSJEmiZcuWKU2aNPZuIgAAAAAAAN5Rb3ViTZKuX7+uH374Qfv27ZOzs7PKlCmj//3vf3J3d7d30wAAAAAAAPAOe+sTawAAAAAAAIA9vNU11gAAAAAAAAB7IbEGAAAAAAAAWIDEGgAAAAAAAGABEmsAAAAAAACABUisAQAAAAAAABZwsncDYD+XL1/WmTNnVK9ePUnSihUr5OPjIwcHB7Vv315Nmza1cwsBAK8rJCREW7duVZUqVZQ0aVJJ0vr162UYhurWrSsHB+6p4d0RHBys06dPKzAwUOHh4eblYWFhevLkifbu3avhw4fbsYUAALxdQkNDY/xNbdSokR1blnCZDMMw7N0IxL/Dhw+rY8eOypYtm9avX6/Tp0+radOmSpkypdzc3HT9+nWNHTvWnHR7VwQFBWnKlCnatWuX7t69G+kLI4LJZNKuXbts1oa1a9eqZs2acnFxsVmMmAQEBGjTpk26d++ewsLCoqw3mUzq0aNHvLcrvgQFBenBgwfRvnZJypIlSzy36N12+vRp7d69W0+ePNGLPzWhoaF68uSJ/vrrL23cuNGOLbSvoKAgq38P+Pv7q3Pnzjpz5oyWLl2qggULSpL69OmjDRs2qHTp0po6daqSJ09u1bgJBcdc4nL+/Hl16tRJfn5+MW7j6OiokydPxmOrAADWEhoaqpMnT+rWrVsqU6aMkiZNqrCwMKVMmTLe4ieWBFNAQIAGDBig3bt3KyQkJMbtzpw5E4+tenvQYy2Rmjx5sjJmzKjx48dLkpYvXy5J8vX1Ve7cudW5c2fNmjXL7ok1a194jhgxQosXL1amTJnk7u5ul54b/fr1U/LkyVW7dm01bNhQ5cqVk8lksnncAwcOqGvXrnr27JliyqfHV2Lt/Pnz2r59u27evKn27dvL1dVVFy5cUOXKlW0S78GDB/r++++1efPmGJNq0rv5QxEcHKzx48dr9erVunfvXozJ5NOnT1s17pYtW9SrVy9zPJPJZD7uTCaTHBwcVKBAAavGTGi2bNminTt3KjAwMNokz9GjR3X48GGrxvzll190+fJljRgxQh4eHublY8aMUa1atTRw4EBNmjRJ//vf/6waNzqPHz9WihQpJEn37t3TqlWr5ODgoIYNGypt2rRWj5cQjrmQkBAtXrxYW7du1a1btzRy5EglTZpUa9euVadOnZQmTRqbxQ4NDdXly5djvGkkSRUrVrRZfHsYN26cAgIC1KVLF5lMJv32228aNGiQHj58qOXLl+vOnTtatWqVvZv5TgoICNDUqVO1bds23b59W1OnTlXSpEk1Z84c9enTRzly5IiXdiTEi97Dhw+rZMmSVtnX5cuXLXperly5rBL/dd2+fVuZM2e2+n4XLFhgPo+J6cbwli1brB7XHoKDgy16nrOzs5VbIt25c0cHDx6M0iM44jxm3759mjlzptXjRti0aZOGDRume/fuSZJ8fHwUHBys3r17q1evXurUqZNN4sY1wWSr75gnT5688gboH3/8IS8vL6vGHTt2rLZu3apixYopefLk2rNnjxo1aqR79+7p4MGDcnR01NixY60a811CYi2ROn78uHr06KH3339fkrR9+3a9//77ypMnjySpVq1aGjVqlM3bEd8Xnn/++afq1aunsWPHxksyKzozZszQmjVrtGXLFq1cuVJp06ZVgwYN1KhRI5te9I0bN07Ozs4aNGiQ8ufPb5Mf4LgYOXKk5s6dK8MwZDKZVLduXT169Ei9evVStWrV9Ouvv1q9baNGjdL69etVunRpFShQwOav3ZKLV1v1lBwzZozmzJkjd3d3VatWLd7+7tOnT1fq1Kk1atQohYWFqVu3blq6dKmCg4M1Z84cbd26VcOGDbN5O+zVg2nJkiUaNGhQpMTOi/GdnZ1VrVo1q8fduXOnOnTooCZNmkRa7uTkpPr16+vMmTPasGGDTRNrDx480Oeff66nT59q6dKlCggIUJMmTXT37l0ZhqHff/9d8+fPt/qFt72PuSdPnujjjz/W8ePHlTJlSj18+FDPnj3Tv//+q+nTp2vjxo2aN2+eMmbMaPXYZ86c0eeff66bN29Guz7i+9ZaNw9atWpl0fMWLlxolfgRjh49qhYtWuiLL77Q06dPNX36dOXMmVPly5eXt7e3GjduLB8fHw0ZMsSqcV9k7wtPe8T38/NTq1atdOvWLb3//vvmRMCDBw+0YcMG7du3T/Pnz1fu3LmtGjeCPS96g4ODNXr0aO3atSva4ceBgYEKDg622mftww8/tOh81VY3CmfNmmV+7dH9pl69etXqN+omTpyoiRMnytXVVTly5IiX8xh7fscVKVIkQfzNDx06pM6dOysoKMi87MVzGkk2uUkWYd++ferTp48KFy6sdu3aady4cZKkzJkzK2fOnBo9erQyZMigBg0aWD22vRNMn3zyiWbMmBFtcu3GjRsaPHiw9u7da/XE2o4dO1SzZk1NnDhR/v7+Kl++vNq3b69ChQrp1KlTatu2rS5duqQaNWpYNe67gsRaIhUaGipXV1dJ0sWLF3Xjxo1IWf/g4GCb/3DZ48IzODhYH3zwgd2SapJUoUIFVahQQd9//7127Nih1atXa+HChZo9e7Zy5cqlRo0aqUGDBsqWLZtV4545c0Y9evTQRx99ZNX9vg5fX1/NmTNHHTp0UK1atdS2bVtJUqlSpdSqVSstXLhQM2bM0GeffWbVuFu3blXjxo31448/WnW/MYnuTvGpU6cUGBioAgUKKHfu3DIMQ9euXdOJEyeUNm1alS9f3iZtWbdunapWraopU6bE63F/7tw5ffLJJ6pYsaLCw8Pl7Oys27dvq1atWipevLhatWplPlm2FXv2YJo3b56yZcumadOmKSQkRF5eXtqxY4dMJpNmzpyp2bNny9vb2+pxHzx4oPTp08e4PkuWLLp7967V475owoQJOnr0qD799FNJMvcc+t///qdChQrpq6++0vjx461+UmrvY27ixIk6ffq0pkyZoqJFi5o/0x9++KEMw9CAAQM0ceJEmyT3hg4dKj8/P3366adyd3eXo6Oj1WO86M6dOzbdf1w9efJE+fLlkyQlS5ZMWbNm1enTp1W+fHm5ubmpSZMmWr16tc3i2/vC017xf/75Z/n5+Wnp0qXKmDGj+VivVq2aFixYoK5du2rChAn6+eefrR5bsu9F7y+//KK5c+cqU6ZMSpUqlc6fP69SpUrp7t27unr1qpImTaqBAwdaLV6PHj0i/XaHhIRo7ty5SpYsmRo2bKg8efIoPDxcV69e1R9//CFJ6t69u9Xiv2jatGnmm7QpUqTQ/fv3lSlTJj148EBPnz5V0qRJ1bFjR6vHXb58uYoXL64ZM2aYr11szZ7fcY0bN45yvrZx40aFhYWpcuXK5nPIq1evatu2bXrvvffUrFkzq7djwoQJcnR01JAhQ2QYhoYMGaJJkyYpMDBQ8+fP15kzZ7RgwQKrx40wefJk5cuXT76+vnr06JE5sebh4aHFixerTZs2mj17tk0Sa/ZOMJ0+fVqdOnXSjBkzzD3/w8PDNXPmTE2cOFHPnj2zyd/cz89PFSpUkCSlSZNGGTJk0LFjx1SoUCEVLFhQzZo105o1a9SlSxerx34nGEiUvLy8jO7duxuGYRjDhg0z8uXLZxw8eNAwDMN4+vSp8dFHHxne3t42bUOjRo2MmjVrGpcuXTLOnTtn5MuXz/j333+N//77z/jxxx+N/PnzG3/99ZdVY3755ZdGjx49rLpPa3j8+LGxceNGo1evXka+fPmMfPnyGd7e3saKFSuMoKAgq8SoUKGCMXfuXKvsy1INGjQwv//+/v6Gp6ensXfvXvP6Pn36GHXr1rV63GLFihmLFy+2+n7jasWKFUbRokWNAwcORFl35MgRo2TJksa8efNsErtIkSJ2ee2FChUyli5dan7coEEDY/z48ebHs2bNMqpWrWrTNrRs2dIoX768sWvXLmP79u1Gvnz5jBMnThiHDx82evfubRQuXNg4c+aMTWIXLVrU+O2338yPixcvbqxdu9b8uFOnTkanTp2sHrdx48ax7rdr165G/fr1rR73RdWqVTN++OEH82Nvb2+jXLly5se//fab8cEHH1g9rr2PuapVqxrDhg0zDCP677cff/zRqFatmk1iFytWLNLxllhUqFDB8PHxMT/u1KmT8b///c/8eMmSJUbRokVtFr99+/ZGiRIljIULFxoLFiwwPD09jS1bthirVq0yWrVqZRQtWtS4du3aOxe/QoUKxtixYw3DiP5Y//XXX42KFStaPW6EypUrm88l/Pz8DE9PT+PEiROGYRjGyZMnjWLFihnTpk2zSewaNWoYbdu2NcLCwox///3X8PT0NC5cuGAYhmFs27bNKFiwoLFo0SKbxDYMwxgzZoxRvXp1w8/PL8q6hw8fGnXr1jWGDh1qk9h169Y1GjdubDx69Mi4evWq4enpaVy7ds0IDQ015s2bZ3h6ehobN260etzChQvb9D1N6KZPn26ULVvWuHTpUpR1169fNypWrBjpt85aSpYsaYwePdowDMMIDg42ChYsaGzbts0wDMMICgoy6tevb3z55ZdWjxuhWLFixsyZMw3DiP57Zt68eUaJEiVsErtgwYLG/PnzzY8rVaoU6Tx9+PDhRqNGjWwS2zAMY8+ePUaxYsWMpk2bGgEBAcbJkyeNjz76yPD09DQaNGhgHD582CZxS5cuHel1t2nTxhg8eLD58ZIlS4xSpUrZJPa7gKnBEqk2bdrozz//VKlSpTRv3jzly5dPpUqV0smTJ1W7dm2dPXtWnTt3tmkbrl69qubNmytXrlzy8PBQsmTJdPjwYWXIkEH9+/dXuXLlNG3aNKvG/Oabb3Tr1i316NFDK1eu1K5du7R79+4o/+KTv7+/Vq1apUWLFunPP/+UYRgqWrSouYdDvXr1dPbs2TeOU69ePa1YsSLWGmO2duXKFfOdkOiUK1dOt27dsnrcokWL6u+//7b6fuNq6tSpat++vUqXLh1lXfHixdW+fXvNmDHDJrHz58+vCxcu2GTfscmcOXOkYWnZs2fXuXPnzI9dXFzk7+9v0zacO3dOrVu3VsWKFVWpUiVzD6YSJUro559/Vv78+W3aY+7FniI5cuSI9DmuXr26zp8/b/WYLVq00J49e9S/f3+dPHlSjx8/1pMnT3TmzBkNGjRIO3bsUMuWLa0e90V37941lxl49OiRjh07pnLlypnXp06dWk+fPrV6XHsfc/fu3TO/7ujkzJnTXCfG2tKlS2e34f32VLp0aS1dutQ8eYGnp6f27dtnPr4OHz4sNzc3m8U/deqUWrdurZYtW6pp06ZycnKSo6OjGjZsqNmzZytbtmzmWrbvUvyHDx8qa9asMa5Ply6dAgICrB43Qky9KiRF6lVhC//++69q164tBwcHZcyYUWnSpNHRo0clSVWrVpWXl5cWL15sk9jS895b3t7e0dZrfO+999SiRQubvfabN2/Ky8tLKVKkUPbs2eXm5qbDhw/L0dFRbdq0Ud26dTV79myrx82dO7du375t9f1a6u7duzp27JgePXqk4ODgGGtaWsu8efPUvn37aEdDZMuWTe3atdOiRYusHvfZs2fmmEmSJFH27NnNw02dnZ3l5eVlPvZt4VV1sB8/fmyzkRgv94zMnj17pHNpT09Pm1yvRChfvrx8fHx07do1NW7cWC1bttTly5f15ZdfauXKlSpRooRN4hYoUCBSrcLcuXNH+hvfuHGDmeVjwVDQRKp58+ZKnjy5/vjjD2XMmFE9e/aU9P9DKb7//nub1P95WXQXnhETJlSvXl1Tp061arxr167pzp07On36tLZu3RplvWHlOjQxefTokTZt2qR169Zp//79Cg0NVY4cOdStWzd5eXnJ3d1dknT27Fl17NhR/fv3N3fxt1SFChW0ZcsWNW3aVDVr1lTatGmj/XK05UW3m5tbrLO3XblyRe+9957V43799dfq2LGjcufOrQ8//FBp06aN9sfYVhem//77b6zD89zc3HT//n2bxO7bt6969OihEiVKqFatWjYfIhahSpUq8vX1VYECBVS9enUVL15ckydP1sWLF+Xu7q41a9YoU6ZMNm1DaGiouYiyg4ODsmfPrrNnz6pWrVoymUyqV6+eZs2aZZPY2bJl0z///GN+/HKSR3r+PWBtrVu31sWLF+Xr6xulaLthGGrTpo3atWtn9bgvSp8+va5fvy7p+XDcsLAwValSxbz+77//tsnf3t7HXObMmWNNlh46dMhm8Tt06GCecChDhgw2ifGiVq1a6fPPPzcnN+Jaj8jaNda6du2qVq1aqXr16tq+fbtatmypOXPmyMvLSxkzZtShQ4fUokULq8Z8UUwXnlWrVjVfeNrigtfe8bNnz66jR4/GeL6wc+dOZc+e3epxI8TlonflypU2ie3i4hJpUq2Xv9uLFStm0yL6QUFBsd4gffz4sc1iOzo6Rqr59PJrL1eunE0Sud26ddN3332n6tWrq3Dhwlbff1z9/fffGjZsmLmGnI+Pj8LDw/XNN99owIABqlu3rk3iPnjwQMmSJYt1G1vcrEqfPn2km0Hu7u6RPmepUqWy2c0i6fmN55UrV6p9+/ZR1j18+FCLFi1S0aJFbRI7IsHUunVrSfZJMBUvXlxz5szRJ598IsMwNHv2bBUpUsSmMdu2bauePXuqSZMm5mG2ixcvVr9+/ZQrVy7Nnj1bZcqUsWkb3mYk1hKxevXqRZn1M0+ePDYdL/8ie1x4Dhs2TE+ePFGnTp2UK1cuOTnF/0fgs88+0549exQcHKzUqVOrZcuWatSoUbQ/Dvny5dMHH3xglV50Xbt2lSTdunUrxh5wJpPJpom1ypUra8GCBWratKmSJk0aad2xY8e0YMEC1a5d2+pxu3fvrtDQUI0ZM0ZjxoyJdhtbzIwZIW/evFq5cqVatmwZJXn35MkTLVq0SAULFrRJ7IkTJypp0qTq27evnJyc5ObmFiWpaIuJEz777DPt2rVLn3/+ufbt26cWLVpoxowZatiwoZydnRUUFKSvvvrKqjFfZs8eTDVr1tSsWbOUKVMmeXt7q2zZsvrhhx+0c+dO5cmTR4sWLTIn0K1t4MCBat26tbZt26Zbt24pLCxMWbNmVdWqVSPNFGor5cqV0+zZs/X48WOtXbtWrq6uql69uu7cuaMZM2ZoxYoV6tatm9Xj2vuYa9iwoaZNm6by5cub7yabTCaFhYVp5syZWrNmjbnunLW1bdtWO3fuVJ06dVS4cGGlS5cu2psH1qo7defOHT179izSY3vIly+fli5dqvnz5yt16tRKnTq1xowZo9GjR+vMmTOqV6+eTf/m9r7wtFf85s2ba9SoUSpQoID5JqzJZNK9e/c0efJk7dixQ/369bN63Aj2vOh9//33tX//fnPCNleuXDp58qR5vZ+fn01HBpQsWVJz5szRhx9+GOU35OTJk5o9e7bNZv/NlStXpPOknDlzRroR/fTpUwUGBlo97o4dO8y98bJkyRLjjWFrJ+5fdPr0aXXo0EFp06ZV69atzddKKVKkkGEY+uKLL5QiRQqbvPeFChXSwoUL1bRp0yg9cP/991/NnTvXJj2YypUrpwULFqhy5crKnz+/ChUqJF9fX/n7+ytNmjTatm2bTWe67tWrl9q0aaOWLVuqRo0aMplMOnTokE6cOCFfX1/5+fnpp59+skns+E4wxXYDpGHDhpo1a5a++eYbtW/fPlI9cmtfs9WsWVMjR46Uj4+PXF1dVaZMGbVr105z586VJGXNmlX9+/e3asx3icl48a+DROf8+fPavn27bt68qfbt28vV1VUXLlxQ5cqVbR77l19+0axZs9S3b195e3tryZIl+uGHHzRp0iTlyZNHn332mQzDsGrh4aJFi6p79+7mJJM9FC1aVNWqVZOXl5cqVar0yuTe2rVr5ejo+MZ3wg4cOBCn7Wx5J+LOnTtq3ry5AgMDVbx4ce3atUvVq1dXUFCQ9u3bp5QpU2rJkiWxDjGxxNdffx2n7uI//PCDVeNG2LJliz7//HN5eHioSZMmyp49u549e6YrV65o4cKF8vPzk4+Pj03e+7j2Tor40bSm4OBgbd261XzsXr16VVOnTlVAQICqVq1q054kkjRixAitWrVKI0aMUPXq1eXj46PJkydryZIlcnd3V6dOnXT37l2bzAoaGBiorl276tChQzp48KCSJEmihg0bmntyGYahH3/8UY0bN7Z6bHt7/Pix+vTpo927dytFihQaPny46tatq7///lutWrVS3bp1NWrUqEi9PqzFnsdccHCwPvvsM+3du1cpUqTQ48ePlSVLFj148EBPnjxRsWLFNGvWrCg3Fawhoqh4bOKjN3ZCERgYGC9Fzr/55hvt3btXU6ZMUf78+TVhwgT5+vpq3bp1SpMmjbp3766zZ89G20P+bY8/cOBALV261DwpTNKkSRUUFCTDMFS7dm398ssvNktubdmyRT179lSBAgU0e/ZsnTlzRu3bt1f9+vWVK1cuzZgxQ2XKlNFvv/1m9dhLlizRd999pxo1auinn37SX3/9pR49eqhz587KkyePfvrpJ+XNm9cmv6nS8/P21q1bKywsTOXLl1eOHDnM5xP79+9XmjRptGjRIqufR0nPZ7UfM2aM2rVrpy+++EIbN27UgAED9N133ylPnjz6+uuvlSZNGi1dutSqcatXrx6n7Wz1OZOkTz/9VFevXtXy5csVFBSk8uXLa+bMmSpXrpwePHig1q1bK126dDb5ux86dEgff/yxUqZMqXr16kU6h1y7dq1MJpPmz59vnsjFWm7cuKHmzZvrwYMH2rNnj8LCwlS7dm05OjoqVapUunnzprp06aIvvvjCqnFftG/fPg0aNMh87hQhQ4YMGjRokGrWrGmz2MuXL5ePj4/++OMPOTo6asSIEZESTL///rvVZj7Oly9flEn8XiU+f9Nv3bqlgIAA5c2bV0mSJImXmG8jEmuJ2MiRIzV37lzz8EcfHx89evRIvXr1UrVq1fTrr7/atGaLPS48a9asqbZt29pk1qK4evz4sXmGl8To3r17Gjt2rLZs2WLukZgsWTJVqVJF/fr1s1kvHntbs2aNRo0apbt370b68cyaNasGDx4cL8nsxMbf31/e3t66evWq9u3bJwcHB9WpU0cBAQGRejC9OCOytZ04ccI8dOX+/fvy9fU1J3liqzcYV4sWLVK5cuXMw67iOuzL1nXWpOfvf4oUKcy/I8+ePdN///2nHDly2Dy2vRiGoT/++EMbN27UtWvXzL0Fa9SooebNm9vshLRy5crKkCGDfvzxR+XKlSvehnxHOHjwoDw9PWOsZ3bu3Dlt3rzZXHbCmtavX6/Jkydr6tSp5mTCt99+q6NHj2rAgAGqVKmS1WNGsPeFp73jHzx4MNpj/cWh37YSnxe9L5swYYLmzJmjPXv2yNnZWT179jQP/3Rzc9Pvv/9usyFq0vOyGb/++qt27typJ0+eSHrec6pWrVrq06ePMmbMaJO4YWFh+vbbb7V69WodPnxYSZIkUevWrXX8+HGZTCY5Ojpq0qRJ8fL3j28lS5ZU165d9emnn+r+/fsqV66cObEmSbNnz9bkyZO1f/9+m8Q/ePCgRo8erRMnTkSa+bdUqVL69ttvrZ5Ui+Dv768VK1bok08+kfS8buWvv/5qPo/p2bOnzRMthmHozJkzunr1qsLDw5U1a1YVKlTILqOObJVgimvnh5cxLDNhIbGWSPn6+mrYsGHq0KGDatWqpbZt22rmzJny9PTU+PHjtXDhQvXu3VufffaZzdti6wvPF82aNUvz5s2Tr6+vzU484uratWu6e/dujEVPoyt0bw1bt27V5s2bdfPmTSVJkkSZM2dW9erV43xH0FoMw9D9+/cVFhamNGnSxMuFYGhoqE6ePKlbt26pTJkySpo0qcLCwpQyZUqbx5aev+aTJ0/q5s2bMplMcnd3V4ECBeIltj2Eh4dr//79sR7ntu6xZe9ec7aWL18+jR49Wg0bNjQ/ftVdz3el51JCTirGt2LFimnAgAF2e2358uWTu7u7Jk6cKE9PzyjrV61apf79+1v9uIvouZQzZ05NmzbNfCysWrVKv//+uy5evKiZM2eqbNmyVo37IntfeNo7fkISn70qQkNDI13YHzx4UAEBASpRooRNh8e9KOI8ymQyKXXq1PESU3o+3DWiRnJwcLDWrVunBw8eqGLFisqbN2+8tSM+FS9eXP369VPbtm2jTaz5+PhowoQJNi3mLz3/vEecQ2bNmjVe/+728ODBAy1fvlwtWrQwd0qYP3++njx5Im9v70g1/94lv/32m8qVK2fzmmoVK1bU4MGDVatWLfPjV7FF+Zh3BYm1RKphw4bKkSOHJk6cGO0PRN++fXX27FmtX7/ezi21rilTpmjRokW6f/++ChcurLRp00Z7x8NadWiic/PmTfXt21cnTpyIdr2tJlAIDw9Xv379tGHDBhmGITc3N4WHh5tn1alZs6bGjx9vsxl2Ihw5ckTTpk3TsGHDzAX9hw8frqtXr6pfv342u+u2adMmDRs2zFxvxsfHR8HBwerdu7d69epl015L8SmhFBU/e/asunbtqjt37sSY5HlXEjwxCQgI0KZNm3Tv3r1oa+6YTCb16NHjjWIcOHBAefLkMV/k2GPIt6W1lN70ezahJhXtcdOkbdu2KlCggL755hur7zsu8uXLJycnJyVJkkQjRoyIUr/VVom15s2by8XFRT4+PlF62IeGhqpdu3ZydHTUvHnzrBo3sbG0zqutan3BPqZNm6ZGjRrZfOKh6Jw+fVq7d+/WkydPIn3Hh4aG6smTJ/rrr79sUtYhQps2beTg4KC5c+dGuW4KDg5Ws2bNlCJFCs2fP99mbbC13bt3K1++fEqXLp35cVzY6nN+48YNtW/fXrdv39aSJUtUqFAhSdJ3332nJUuWKHfu3Jo7d26kifAsldASTMWLF1f37t3VpUsXm+w/Qrt27dS9e3fz9b89y8e8C5i8IJG6cuWKvL29Y1xfrlw5q9cqGDdunOrVq2dOnLyqHoz0/Eurb9++VmvDr7/+av7/oUOHYoxpy8Tajz/+qJMnT6px48bKnz+/TYfbvsjHx0fr16+Xt7e3unfvbv7hvHv3rqZMmaIFCxZozpw56tChg83acPDgQXXq1Emurq56+PChObGWNWtWbdiwQa1atdLChQutnlzbt2+f+vTpo8KFC6tdu3bmYy9z5szKmTOnRo8erQwZMqhBgwZWjfuinTt3avXq1bEmWawxTX1CKSr+008/6f79++rRo0e8HecJqQfTgQMH1LVrVz179izWxOKbJtZeTpDZY1jA2rVroyyLSHCZTCalT59e4eHh8vPzk2EYSpYsmVV6ic6ZM0d58uSJ9Nie7HXTRJL69++vzp07K1OmTKpVq5bSpUsXbS9gW34O//e//2nz5s3q16+fTp48qa+++srmN2ouXryo/v37R/u6nJyc1LBhwzida8SVvS887RW/c+fOr/W3tPaxbs+L3oRysypCcHCwxo8fbz6fiC6Bb6vJmMaNG6dffvlFJUuWVKNGjVS3bl2bzOT+si1btqhXr17m1/riDRSTySQHBweb9/7v2rWrunbtqp49e5qPw6tXr+r+/fuaPn26Lly4oAkTJtgs/oIFC155Dvmms9F27tw50s2qV33ubfmbJkk///yzAgMDNWvWLHNSTXo+EV3Tpk3VrVs3/fLLLxo2bNgbx8qVK1ekMj0Rsy3bi5ubm0JDQ20e5+UE2eTJk+PlM/2uIrGWSLm5ucnPzy/G9VeuXLH6B2vatGl6//33zUmTadOmvfI51k6sxTQbZnzau3ev2rRpo2+//TZe4y5fvlw1atTQoEGDIi1Pnz69Bg0apH///VdLly61aWJt/PjxypUrl+bOnRvpwvrjjz9W06ZN1aZNG40bNy5Ox8brmDx5svLlyydfX189evTIfKHl4eGhxYsXq02bNuZZf2xh/vz5GjZsmLmnoC0vbl9OiNuymG9sjhw5ok8++cQmNZViMnjwYI0ePdqcWBs8eHCcejDZIrE2btw4OTs7a9CgQTZNLF6+fNmi51nzpPHl79Xjx4+rY8eO6tSpkzp06GD+LQkMDNS8efM0depUjRo16o3jJoSk4ovsddNEet5rMDw8XKNHj9bo0aOj3caWMx9LUurUqTVr1iwNHTpUPj4+Onv2rMaNG6dUqVLZLMGWLFky3b59O8b1/v7+Vi0zYO8LT3vFHzlypM2TpLGx50VvQrlZFWHMmDGaM2eO3N3dVa1atXj9ntm4caNWr16tdevW6bvvvtOwYcNUpUoVNWrUSFWqVLFZW6ZPn67UqVNr1KhRCgsLU7du3bR06VIFBwdrzpw52rp1q1WSK7GpXLmyfvjhBw0fPlx//vmnJOn77783T9zxzTff2KyQ/sSJEzVx4kS5uroqR44cNnuff/jhBxUrVizSY3vav3+/Pv7442iH8hcrVkxt27a12kQZLyeY7N0ja+jQofr6668VEhKismXLKl26dNFOBmPt70IvLy+1bNnSrpP8vc1IrCVSlStX1oIFC9S0adMoM5QdO3ZMCxYsUO3ata0a888//4xUdyLihymxMZlMev/99+M97vXr12Pt4luxYkWrXOzG5uzZs+rbt2+0vVXc3NzUokULTZw40epxT548qd69e0c77NfZ2VmNGze2aq+Gl82ZM0d58+aNVFz7Xefi4qIMGTLEa8yE1IPpzJkz6tGjhz766CObxvnwww8tuuC15XDIkSNHqlatWlGSqq6urvr0009148YNjRo1SsuXL3+jOAkhqfgie900kaQSJUrYNfERwdHRUd9//708PT01cuRINWvWTBMnTrRZvaty5crJ19dXDRs2jPTZl57/5s2bN08ffPCB1eLZ+8LTXvGbNGkSL3FiYs9eFQnlZlWEdevWqWrVqpoyZUq8f+Zz5Mihnj17qmfPnjp9+rRWr16tDRs2aPPmzXJzc1OdOnXUoEEDq9c0PHfunD755BNVrFhR4eHhcnZ21u3bt1WrVi0VL15crVq1MiefbKlx48aqVauW9uzZo2vXrpkL6VeoUEGpUqWyWdzly5erePHimjFjhk1nO375fMXW5y+v8uTJk1hn0U6VKpXu379vk9gDBgxQq1atYpyE5K+//tKMGTP0+++/2yR+RGJr8uTJmjJlSozbWftc7t69e/FWI/JdRGItkerbt6/27t2rRo0aqXjx4jKZTJo3b55mzJihffv2KWXKlOrVq5dVY76cULBXguHRo0eaNGmSNm/erNu3b8vJyUmZMmVS9erV1b179xhnNbOWDz74QLt37473oulubm66efNmjOtv3Lhh8yKgDg4OevjwYYzrnz59apOuz9Hd5XlRRJ05W7l586YGDBhgt2PeHrVJqlevrk2bNql169ZW3W9sElIPpvfee8+mJ8ARevTokSASKi86c+aMvLy8Ylzv6empP/74443jJLSkor1umkjPe8slJN7e3sqTJ4969eql1q1bm3tYWVvv3r21Y8cOffTRRypfvrxy5swpk8mkq1evau/evXJxcbFqr/eXLzQjZuXLli2b1WK8Tvz4uvC19xDYl9mzV8XChQtVr149m58rxuTRo0eqUaOG3b/3CxQooAIFCqh///46deqUfHx8tHTpUi1dulSZM2dWkyZN5O3tbZWL9NDQUGXOnFnS8/O57Nmz6+zZs6pVq5ZMJpPq1aunWbNmvXGcuEiePLnVOx68yr1799StW7d4OaeIzj///KNt27bp5s2bcnJyUvbs2VWtWjW5u7vbNK6np6fWrl2rtm3bRul5HB4ervXr11ttsgzDMBQSEmJ+vGLFCpUtW1b58+ePdts9e/bYbAZYyX7ndtWqVdOqVatUv359ux1vbzMSa4lUhgwZtGzZMo0dO1ZbtmyRYRj6888/lSxZMtWqVUv9+vWzehIgIRS/ffDggVq1aqUrV64oV65cql69usLDw3Xp0iXNmjVLW7du1dKlS216wjRgwAC1a9dOQ4cO1Ycffqg0adLES/feypUry9fXVzVq1FDx4sUjrTty5Ijmz5+vOnXqWDXmy0qUKKH58+erefPmUYqNBgQEaOHChSpRooTV4xYvXlwrV65U+/bto6x7+PChFi1aFONdKWvImjWrHj16ZLP9x8ZetUnatGmjXr16qVu3bqpbt26Mx7mti1sHBATowoULKlWqlKTn9fZmz54tR0dHtW3b1lyw1drq1aunFStWqHXr1jad8fbzzz+32b4tlTFjRu3bty/GpOrWrVutkohIaElFe900SajKli2rpUuXqnv37lq8eLFN/lbu7u5avny5xo0bpx07dmj79u2Sng8RrVy5svr166ccOXJYPW6E4cOHq0OHDnb/HAYFBenBgwfR1l6SpCxZsrzR/u09BPZl9uxVMWTIEI0YMUJVq1ZVo0aNVLVq1XiddTV//vy6cOFCvMWLzenTp7Vu3Tpt3rxZV69eVdKkSVWjRg05ODhoxowZmj17tsaPH//Gv7OZM2eOdGM4e/bsOnfunPmxi4uL/P393yhGXNhrAoXcuXPHOuTdVsLCwjR48GAtW7YsSkmNUaNG6dNPP1Xv3r1tFr9Dhw7q27evOnXqpDZt2ihHjhwymUy6du2aFi5cqCNHjsRY+uB13bp1S/Xr11dQUJB52YABAzRgwIAYn1O4cGGrxI6OvX5TsmfPrp07d6pChQoqVKiQ0qZNG+05rC1rkb/NmBUU5um6w8LClCZNGvMHKDg42Krj+CNmbIutHdGtt+aJ2dChQ7V48WKNHj1aH374YaR1GzZs0Jdffqk2bdrE+kX6pl4szB/b+2HtE9L//vtPTZs2lZ+fn8qUKaPcuXPLMAxdunRJBw8eVJo0acx3Gm3l1KlT8vb2lqurq+rXr2/+kbx69arWr1+vR48ead68eVb/sTp+/LjatGmjfPnyqUaNGvr111/VvXt3ubi4yNfXV35+fpo1a5Y5+WJt8+fP1+TJk7Vs2TJlzJjRJjFi0qpVK12/fj1SbZIlS5ZEqk2yePFiq08Y8arj3NYXXpJ04cIFtW3bVhkyZNDq1at15coVcx29JEmSKDg4WNOnT7dJcm3Hjh36/vvv5ebmppo1aypt2rTRJhZtUd9Nst8dZul5/cxx48apRYsWat26tbJnz66goCBdvnxZM2bM0LZt2zRkyBCbvXZ7uXnzptq1a6eqVavG600TSdHeNIiOrYZHT5w4UbVr15aHh0eUdYGBgfrmm290/Phxmw6jiziXCQ8Pj/G9t7YPPvhA3bp1U8eOHW0eKzoPHjzQ999/r82bN8eYVJPe/HxixYoVKlWqlPn7Y8WKFXF6nq161PXu3Vv+/v767bff4r1XxaFDh7R27Vpt3LhR/v7+cnNzU926ddWoUSObnUO8aP/+/erRo4eGDx+uWrVq2fTGTXQuXryotWvXat26dbp69apMJpPKli0rLy8v1apVyzzy4e7du2rWrJmSJk36xsmmESNGaNWqVRoxYoSqV68uHx8fTZ48WUuWLJG7u7s6deqku3fv2nRW0LjepFyyZInVY2/YsEHfffedfHx8bJrMednkyZM1fvx41a1bVx06dDDXr7106ZJmzJihHTt2aNCgQTYdmTBz5kz98ssvCg4ONi8zDEPOzs7q06ePOnXqZLVYy5Yt06FDh2QYhlauXBnpO+9FDg4OSpMmjVq3bv3GNy3exOHDh1WyZEmr7jMu1wLxMbv624rEWiJVo0YNffPNN6pRo0a069esWaNhw4ZZtZvryydijx8/1s8//6ysWbOqRYsWypMnj8LDw3X16lUtXLhQ/v7+GjhwYJQE2JuoXLmyateurYEDB0a7ftiwYdq2bZtNT/4nTJgQpzv3tij6fvv2bY0ZM0bbtm1TYGCgpOd1j6pWrWqTXorROXLkiH788UcdP3480vICBQro22+/tfqPRIR9+/Zp0KBBun79eqTlGTJk0KBBg2xWdFZ6ftG5fPly+fn5qWjRojEmWWxxB6h48eLmSQTCw8NVvHhxjRkzRrVq1ZJhGGrVqpXSp09v9doky5cvj9NxbsuhTJ9//rkOHz6sH3/8UZUrV9aYMWM0Y8YM+fr6Kn/+/Grfvr2SJUtmk2SDvU5OYrvD7OjoaPM7zNLzk97BgwdHe4Hh4OCgLl26qE+fPjZtQ2hoaKTZ8sLCwvTkyRNzCQRbsNdNE0mqUKFClJhhYWF69OiRQkNDlSVLFuXMmVM+Pj5Wj52YLVu2TOPGjdMXX3wRa4FpWxUbHzBggFasWKHSpUurQIECMcbp16+fTeLby9ixYzVv3jxJsluvivDwcO3du1dr167Vli1b9OjRI2XNmlUNGzaMtuaftbRr106XL1+Wn5+fnJyc5ObmFuWzb60ZUV/WqFEjXbhwQYZhyNPTU15eXmrQoEGM9VQjys686bWEv7+/vL29dfXqVe3bt08ODg6qU6eOAgIC5OzsrKCgIH311VdWTbK8zF43KaXnn/P9+/fr9u3bypIlS4znkNaeibZGjRry9PTU5MmTo13/ySef6ObNm9qwYYNV477s4cOH2rNnj27duqWwsDBlzZpV5cqVs2mv1Xbt2ql79+42G9XwKsHBwRo9erR27dqlwMDAKOczgYGBCg4OJsGVwJBYSyT8/Pwiffg6d+6szp07R1vUNzw8XIsWLdLevXt19OhRm7Vp0KBBOnbsmBYtWhSlOGVISIjatGkjd3d3q54YFSpUSAMHDoxxuvQFCxbohx9+iJL0edeEh4fr/v37Mgwj3u7sv8zf3183b95UeHi4smTJovTp09s8pmEYOnPmjK5evWouOluoUKFoJzWwJnveASpcuLCGDBmipk2bSpIaNmyo2rVrm7uZz549W7NmzdK2bdusHtvePvjgA3Xq1EmffvqpJKlBgwYKCQkx39X29fXV2LFjdeTIEavHPnDgQJy2s3YduIRwhznCxYsXtX37dt28eVMmk0nu7u6qUaOGzXrNBQQEaMCAAdq9e3ekWikvs9WJqD1vmsQkODhY69ev1/Dhw/X7779HKnxvbXfu3NHBgwejXAS8OEzqTRN7FStW1ODBg1WrVi3z41exVZJBel5L0s/PL1Jviuji22o21rJly6patWp2q7H39OlT+fn5xfh5s9VEIQmtV0VwcLB2796tRYsWaefOnTb9m8c2CdWLbDGrYZUqVdSgQQN5eXlF2zv1Zfv27VPSpEmjlB+xRHBwsLZu3aq6detKkq5cuaLffvtNAQEBqlq1qs2H4NvrJqX0/HsmLqzdKaBIkSL6+uuv5e3tHe36xHLNZA8//fSTfHx8lClTJrm5uen8+fMqVaqU7t69ax52/dVXX6lNmzb2bipeQI21RCJZsmT69ttvzdOEm0wmzZgxQzNmzIh2e8MwVK9ePZu2af369erZs2e0M74kSZJEjRo10s8//2zVmFmyZNGRI0diTKwdOXIk3ofqRcca3XtfHsr78ol/xIxaL08WEF9Tt6dJkybea6SYTCZzwd34dPbs2XiN96L4qk1y+fJlZciQwTwMJK4zNtrqwkt6ftGXOnVqSc+H6f3zzz+RTkJMJpPNhtHYa+KEZcuWqXr16vrll18iLU+bNq1Kly6tTz75RLNnz46XxFqePHls1msjOmPHjtXWrVtVrFgxJU+eXHv27FGjRo107949HTx4UI6OjjbtwWLvOlvRcXZ2lpeXl86cOaPRo0fL19fXJnEOHTqkzp07R6pP8+IwKUlR6mpaIleuXEqRIkWkx/ZUpkwZu9b5Cw4Otlkv79gEBASof//+2r17t02HoMbEnr+pL7tz547Wr1+vzZs36+jRo3J0dFSlSpVsFs8WCbO42r59+2sd79bs7ePs7GxOqklSzpw543VWXntOoGCvmWgLFCigQ4cOxZhY++eff6w2eUBMAgICNHXqVG3btk23b9/W1KlTlTRpUs2ZM0d9+vSxaQ1Ne9XUk6RNmzapdOnSmj17tu7evasqVapoyJAhyps3r7Zv366ePXvarLajPd/ztx2JtUTC1dVVkydP1vnz52UYhr755hu1aNEi2rtIEWPHbd391cHBQQEBATGuv3nzplxcXKwas0GDBpoyZYry5s2rjh07mpNIwcHBmjlzptasWWPu3WIr8dW9t2jRovrpp5/MxYaLFCnyyhMiW95ljbBz506tXr1a9+7di/aE3GQyafbs2W8Uw9JhL+9iMc4qVarI19dXBQoUUPXq1VW8eHFNnjxZFy9elLu7u9asWaNMmTK9cZx69epFOt7iOmOjLXsUZM2aVUeOHFHz5s21YsUKmUwmVa1aVdLzi/6NGzeae3S9qYQya97du3f1ySefxLi+Zs2a8XIxEhAQoE2bNsX6Oe/Ro4dVY+7YsUM1a9bUxIkT5e/vr/Lly6t9+/YqVKiQTp06pbZt2+rSpUsxlkB4Xa+6eRGT+Lp58aI8efJYfZjQiyZMmCBHR0cNGTJEhmFoyJAhmjRpkgIDAzV//nydOXNGCxYseOM4LycVJk+ebL5JZA/2no21aNGi+vvvv9W8efN4jfvjjz9q+/btKlu2rAoXLhztDdJ3mb+/vzZu3Kh169bp8OHDCg8PV5EiRfTNN9+oXr165hs69hIUFGT182fp+fd2eHi49u/fr7t370Y6f31R48aNrR47ODhYixYt0tatW3Xz5k05OjoqZ86cqlu3bqyzUFtLQplAwZZe/g376quv1LlzZ40cOVKffPKJueNBQECAFi9erFWrVum3336zWXv8/PzUqlUr3bp1S++//765fQ8ePNCGDRu0b98+zZ8/X7lz57Z6bHtN/BXh33//VYcOHeTg4KCMGTMqTZo0Onr0qPLmzauqVavKy8tLixcvtnpPTXu+5+8CEmuJSMGCBVWwYEFJz2c/ianQcHwpX768Zs2apUqVKkVJ8G3atEm+vr5W/7Hs1q2bDh48qHHjxmnKlCnKkiWLDMPQrVu39OzZM5UoUULdu3e3asyX/fLLL5o7d64yZcqkVKlSRdu9N6YacK+jcePGkZIGjRs3tvsMevPnz9ewYcNkGIbc3NxsdoG5du3aKMsifhRNJpPSp0+v8PBw+fn5yTAMJUuWTClTprRJWyK8apjUvn37NHPmTKvH/eyzz7Rr1y59/vnn2rdvn1q0aKEZM2aoYcOGkWqTvKkePXrI09Mz0mN7H29eXl76+eefdfLkSV26dElZs2ZV+fLldeHCBX399dc6ffq0Ro4caZVYCWXWvIRwh/nAgQPq2rWrnj17FqXOWwRbJNb8/PxUoUIFSc97xGbIkEHHjh1ToUKFVLBgQTVr1kxr1qxRly5drBIvod68eJlhGNq8ebNNE1CnTp1S69at1bJlS4WEhGj48OFydHRUw4YNVadOHTVp0kTjx4+32gxuEby8vNSyZUt17drVqvu1ptu3b9tsUqCvv/5aHTt2VO7cufXhhx8qbdq00R6D1v6t3bp1qxo3bmzXxKK9elV88skn2r9/v0JDQ5UtWzZ169ZNjRo1Us6cOW0SLzpbtmzRzp07FRgYGG1PmqNHj+rw4cNWj3v27Fl17dpVd+7cifW73dqJtfv376t9+/a6cOGC3NzclC1bNoWFhengwYPavn27li1bpunTp9v0pkV83aSMSXz0noruN8wwDM2dO1dz585VsmTJZDKZzDWakyRJop49e2rv3r1vFDcmP//8s/z8/LR06VJlzJhR5cuXlyRVq1ZNCxYsUNeuXTVhwgSrj26SpOnTpyt16tSRauotXbo0Uk29YcOGWT1uBBcXl0jJ8ZcTucWKFdOWLVusHtee7/m7gMRaIhWXGi+2PBmUnt8JOXz4sLy9veXh4aEcOXLo2bNnunLliq5fv66cOXNaveCus7OzZs6cqWXLlunPP//UjRs3ZBiGSpcurRo1aqhp06Y2nzY9vrr3vtwrxd531qXnM9LlzZtXU6dOtelECS8PEzl+/Lg6duyoTp06qUOHDuYLzMDAQM2bN09Tp07VqFGjbNae+BomFZ00adJo1apV2rp1q1KlSiXpeV0Ma9cmefk7JS7D4uLaw8dSXbt2lclk0qpVq/TBBx9owIABcnR0VFhYmPz8/DRw4ECrTZ7www8/RKpfFV9DVBLaHWZJGjdunJydnTVo0CDlz58/3npovTw7YPbs2XXhwgXzY09PT61cudJq8RLSzYuYfiuDg4N17tw5Xb9+3aYzVz579sw8LDNJkiTKnj27zpw5o6pVq5qHoy5atMjqce/duxfvJQVeZBiGZs+ebe6BHt0F79WrV22WTO3evbtCQ0M1ZswYjRkzJtptbJHMtdcQ1Aj27FVx4sQJNWnSRF5eXnZ5D5YsWaJBgwZFOod48bhzdnZWtWrVbBL7p59+0v3799WjR494/W4fM2aMLl26pCFDhqh58+bmEg6hoaFauHChRo4cqYkTJ+qLL76wWRvi6yZldOKr91RCuAH/ou3bt6tt27bKnz+/7t+/H2ldsWLF1KZNG5vMwipJ586d0yeffKKKFSsqPDxczs7Oun37tmrVqqXixYurVatWmjhxok1q6knS+++/r/3795vPz3PlyqWTJ0+a1/v5+cU6DN9S9nzP3wUk1hKxWbNm2e1kUHpe72zVqlWaPn26duzYYS4u7O7urh49eqhTp042mUbdyclJLVu2VMuWLa2+77iwV/fe9u3b67PPPotxiO/WrVs1duzYaHt7WcvNmzc1YMCAeJl99EUjR45UrVq1oiR/XF1d9emnn+rGjRsaNWqUli9fbpP48TVMKib2qE1So0YNffvttzEW3bXFzMPR+fTTT6MM7/b09NT27dutGuflBJ0tZzt9UUK7wyw9H97bo0ePeHsPIhQoUEBbtmwx14/LnTt3pAl4bty4YdWJWhLSzYuYvrcdHByULl06derUyaazwaZPn1737t0zP3Z3d4+U1EyVKlWk9dZSrVo1rVq1SvXr17fJ+cKr/P777+ZEcooUKXT//n1lypRJDx480NOnT5U0aVKbJjTtVeOtePHidhmCGsGevSrGjRunAgUKxJjQvX37tg4ePGiz2YfnzZunbNmyadq0aQoJCZGXl5d27Nghk8mkmTNnavbs2TH2WH5TR44cMRfwj0/btm2Tt7d3lPrITk5Oatu2rf755x+tWrXKpom16G5SLly4UFOnTrX5BArx1XsqIdyAf9HDhw9jvV5Ily5drCWF3oQ9a+pJUtOmTfXdd9/p2bNn+umnn1SzZk316NFDY8aMUZ48eTR79mzlz5/f6nHt+Z6/C0isJVLTpk2z68lghFSpUunLL7/Ul19+aZP9x7WA+stsWRA5vrr3Pn78WHfv3jU/PnDggKpVqxZtV/Xw8HBt3bpVN27ceOO4scmaNasePXpk0xjROXPmTKzDij09PfXHH3/YLL69hklFiI/aJC/PPHzz5k0dOXIk2jva4eHhWr9+vc17rEW4f/++9u7dq5s3b6pevXpydXXV/fv346Wwvq1nzUtod5il5xOj2CPJ0bZtW/Xs2VNNmjTR7Nmz1aBBAy1evFj9+vVTrly5NHv2bLtNKhHBVj3B7V3MvVy5clqwYIEqV66s/Pnzq1ChQvL19ZW/v7/SpEmjbdu22aRnWfbs2bVz505VqFBBhQoVUtq0aaOdkMRW9TNXrFih/Pnza+7cufL391ft2rU1Z84cZcmSRQsXLtSwYcNsOhNrfF0Iv/xd3adPH3388cdyd3dXgwYNlC5dumiT1rbq0WTPXhVdunTR6NGj1aBBg2jX79q1SyNGjLBZYu3q1avq3r27+bcjWbJkOnz4sOrVq6f+/fvr/PnzmjZtmsqWLWv12C4uLsqQIYPV9/sqT58+jbUe6vvvv2/TczhJGjx4sKpXrx7pJmWOHDnipXe6vXtP2Uv27Nl19OjRGDtC7Ny502p1cl9m75p6zZs317///qs5c+YoSZIkqlGjhmrWrKnp06dLktzc3Gxy7WzP9/xdQGItkbL3yeCLgoKC9ODBgxi7tGbJksXifce1gPrLbFlQPb669wYHB6tVq1Z6+PChpOfdxX/66Sf99NNP0W5vGIa5PpGttG/fXpMnT1bjxo3jdfbVjBkzat++fTHOhLh161Zly5bNZvHtNUxKir/aJAlx5mFJmj17tn7++Wc9e/ZMJpNJhQsXVmBgoHr27Clvb28NHDjQJomp+Jo1L6HdYZaeT2SxYsUKtW7d2mazrkanZs2aGjlypHx8fOTq6qoyZcqoXbt25oL3WbNmVf/+/W0W397DAu2pe/fu2rZtm5o0aaI9e/aoVatW8vHxUe3atZUqVSrdvHnTarXtXvT777+b/3/w4MFotzGZTDZLrN28eVNffPGFUqRIoRQpUsjNzU2HDx+Wu7u72rRpo4MHD2r27NmqXbu2TeLHhTWSuTH1jP3111/166+/RvscW9YTjM9eFdevX480y7JhGJo3b562bdsWZdvw8HAdPnxYbm5uVokdkxdLR+TIkUNnz541/55Wr15dU6dOtUnc6tWra9OmTfEyq/SLKleurJUrV6ply5ZRzlUiJiKy9YRrK1assHl90pjYq/dUUFCQpkyZol27dsU4WYXJZDKPOLK25s2ba9SoUSpQoIB5eLPJZNK9e/c0efJk7dixw+olgyLYu6ae9LykymeffSYnp+fpmokTJ+rgwYMKCAhQiRIlbHKzyp7v+buAxFoilRBOBh88eKDvv/9emzdvttmF58sF1ENCQszDoxo2bKg8efIoPDxcV69eNd/tsvXkBfHVvTdNmjT66aefdOLECRmGoUmTJqlWrVqRCsxHiJgJtn79+m8cNzb+/v5ydnZW7dq1VbRoUaVNmzbau9zWvghq1qyZxo0bp0GDBql169bKnj27goKCdPnyZc2YMUN79+7VkCFDrBrzRfYaJiXFX22ShDjz8Pr16/XDDz+odu3aqlWrlrn+iaenpypVqmSuwdOmTRurx07Ms+ZVqFBBW7ZsUdOmTVWzZs0YP+fWHo5/6dIlNWnSRE2aNDEv+/bbb/Xxxx8rICBAefPmtWkNzfgcFtivXz+1adNGJUqUMD+OC1slmLJly6a1a9dqxYoV5pP96dOn69dff/2/9u48rqb9+x/4a5dKSSizEjKUKUNdn8yaDBlCUVRkChmu8co1XdzKkDFkSGlQEqXIlCHDdVFmmSkpbqMkknM6vz/6db4dnRLtfXZqPR+P+3jo7F3vdanT3muv91rIzs7GtGnTytV38Xvi4+PRsmVLKCsrA+C/Uk9eXh61atUSf/xtVYORkRG2bdvG2fqySuZWtspYWVZVaGlp4f3797h69SqAwpvMO3fu4M6dOyXOLfrdxtUuDKDwZ+358+fij7/9ngPA2c6A8ePHY86cOZg+fToGDRoEdXV1qe/tbE+7dnR0xPz582FtbQ1HR0e0bt0aNWrUQFJSEvz9/XHv3j2sXr26xDRuNuNo0qQJ3r17x9rX+9G1+aie+vvvvxESEoLGjRtDS0uL1VYK5TFhwgQ8e/YMrq6u4srA6dOn48uXLxCJRDA3N8ekSZM4WZvPnnrFFSXVihgaGnK6Hp9/51UBJdaqKb4vBgFg3bp1OHnyJAwNDdG+fXtOtgx8eyHv4eGBevXq4fDhwyUy/TNmzMCYMWPw8uVL1uMoTpblvf369UO/fv0AFE6CtbGxgb6+Pitf+2cUL1O/ceOG1HO4qC6YOnUq3rx5g8OHD5fYHiInJwcnJydOe+7xtU0KkG1vkso2eXjfvn3o0aMHtm3bJrFdqKg/zeTJk3Ho0CFOEmt8Tc1zcHAo13l+fn6cxVA0oTElJaXUxAfDMKz/zDk4OGDkyJElkkxNmzatUOVzecmyEvzEiRPo37+/OLFWnt6YXFZu7d69G0ZGRpg8ebL4te7du7P+febo6IiFCxeKe3u5uLjw+nutZcuWEkmrFi1aSDwM/Pz5s7i/IRdklcwt/j6Wk5MjdcLso0ePoKqqCi0trQqv9z2yrqooXnmtq6srMQFa1kxNTeHr64vGjRtj3Lhx6NGjB9zc3HDp0iXo6Ojg0KFDnP0bWFlZASh8b4+JiSlxnKtp18WvX1xcXEqsCUCiGpmLOObNm4dly5YhPT0dPXr0KHXbOdtJRYC/6qlz585hyJAh8PDw4C2xvnbtWowYMQKnT5/G69evIRQK0axZM5iYmIjvb7ggq8FfpRGJRAgNDRVXC5Y2hTc4OJj1tfn6O68KKLFWTfF9MQjwc+N59OhRTJo0SWoSo3bt2hgzZgy8vLywfPlyTuPgo7y3PH0gvnz5ItH/jW18VRcwDIPVq1fDwcEBMTExSE5OBsMw0NLSgomJCec3AnxtkwL4600i6+bG0jx//rzMJ4pmZmacTYPla2reixcvSlwAC4VC5OTkQCAQoGnTpmjRogWnMXCZtCvLx48fZXJTXxpZVoJ/+17Kd+WWl5cX5OTk0LlzZ07X+fLli0TVSFhYGHr16sVbYs3CwgIbN26EgoIC5s+fjz59+sDFxQVBQUHQ0dGBn58fp70cZZnMzcvLw99//40TJ07g6tWr4qrBIlu3bsWlS5cwdOhQrFixAqqqqqysKw2fVRXnzp3jdRLttGnTEBcXB3d3d4wePRqjR4+Gr6+v+IGGSCTi7Lra1dWVlwQLX+sW9/vvvwMAjh07hmPHjkndGs1FUhHgr3oqPz8f//vf/3j/uzc0NOS8UksaPgZ/FdmyZQt2794NBQWFUqv+ucTX3/mvjhJr1RTfF4MAPzeeX758KXPb6cePH2UWi6zLe4HCkd2XLl0qdcvI7du3ERcXx3kcfGndujUvPTLKs02Kq0QUn71JgoKCEBkZifT0dKk/dwzDsDKoozQ1a9Ys8wFBWloaZ821+ZqaV7Rd6Vv5+fk4efIk1q5dizlz5nAaA18DAkaNGoWAgAAYGRnxkmCrDJXgfFFTU4NAIOB8nS5dumDnzp04ffq0OHGzfft2BAQElPl5XDzVB4CJEyfi2bNnCAwMxPz58zF06FAEBgbir7/+AsMwkJeXx8qVKzlZG5BdMjc/Px+TJk3CrVu3oKuri/fv35dIrJmZmSEzMxMRERFISEhAYGAgp1uv+aqqKOrtlpaWhk+fPkn0nRIKhcjNzcU///yDGTNmcLK+iooK/P39cf/+ffHPwKFDhxAYGCiupOGqX27xbfayxNe6xckqoSINXxNJ+/fvj0uXLnFamfU9X79+RUhICM6fP4+3b9/i77//Rs2aNXHixIlSCyXYIhAIEBQUhLNnzyI5ORkKCgpo0qQJjI2NYWNjw+n7W3h4OHr27IkdO3aUeK/lUnh4+HfPUVRUhIaGBtq3by+1erk6o8RaNcX3xSAA6Ovry/zGs2hryuDBg0vceD148AAHDhzgpIy7OL7Kew8fPowVK1aI12MYRmJtRUVF8ZYKLqWmpuLmzZslLkiLknvXrl2Dj48P6+tmZ2fDy8sLFy5cwNu3b+Hl5YWaNWvCz88Pv//+O7S1tVlfszh1dXXOt0lJw1dvkqIJVSoqKtDW1uYsgVWWHj16ICQkBOPGjStx7M2bNwgMDGQtCVTZpuZJW2fEiBF49OgRNmzYgMDAQM7XlPWN56dPn5CUlARzc3M0adKk1K06XCVZ+KwE/940OIZhxBfDnTt3Zv0Bw+rVq7FkyRJ8/foVPXr0KPX7vaJTcNetW4e///4bT548QWpqKhiGwYcPH0qduss1eXl5uLu7Y9GiReI+igEBAYiKisL79+/Ru3dvTh/myCqZ6+vri1u3bmHp0qWlbjcvqp4qeu8PCAiAo6NjhdcuCx9VFW/fvsX06dPx9OnTMs/jKrFWpFOnTuI/16tXT6ZV4k+fPsXFixeRnJwMBwcHqKio4NmzZ+jbty/nawsEglJ/p3A1iRUARo4cydnXLo9vq6dkMZF06dKlmDx5MpydnWFmZgYNDQ2p1Wtc3Tfl5ubC0dER9+7dQ506dfDhwwfk5eXh3bt32LdvH06fPo2AgABOhqHl5eVh8uTJiIuLE29xLygowL1793Dt2jUcP34c/v7+nF3DffjwAYMHD5ZpUg0AlixZIv43/vb+tPjrRbmCGTNmwNnZWaYxVmaMqLS7elItZGRkiKcL5efny+xiECjcujJx4kRMnToVgwcPLvUNm803radPn8LW1hZCoRA9e/aEtrY28vLykJCQgOvXr0NdXR2HDh0qc9pURW3evLlc5b3nz59ndd0RI0bg06dP2LNnD75+/YoRI0bg4sWLYBgGPj4+OHDgAHx8fDgZ0V4kNjYWU6ZMwZcvX8SvFU/0AYXTrr5N8lRURkYGbGxskJKSgjZt2uDJkyfYv38/8vLyMHPmTNSpU0fcyJ4Nr169+qnPq+hNpzS6urriP0vbuvDt62xtZzA2NkajRo3g7e0NFRWVCn2tn/Xq1SuMGTMGtWvXRp8+fRASEiJ+8hoZGQmRSITg4GCpAz1+lK6ubqlbQ0rD5dS80hw+fBh///231MbbbCnvjSfbW2aMjY3LdR7b761FvL29sXHjRtjb22P+/Pk4ffo0XFxcsHz5cujo6GDJkiVQV1dHaGgo62t36NABIpFI/F9x314kMwyDkSNHwtXVlbX1y3qfKY7tf3O++13xbdSoUdDX1xc/CF24cCHS09PFEwJ9fX2xdetW3L59u0LrDBs2DJqamti1a1e5zre3t8fHjx8RFhZWoXVLw2dVxYIFCxAVFYUhQ4ZAUVERYWFhcHJyQmZmJs6cOYMvX77Az8+PtW3RPzsxnKu+sa6urvD39xf/ftu/fz9ycnIwZ84cDBgwAFu3bmU92ZCdnQ0XFxdcuXKlzCQ6F9swixMKhUhKShK3U3j27BmCg4MhLy+PMWPGsHbf9LPXwGwnuO7evQtnZ2ekp6dLfV/ncvsrUPggxd/fH9u3b4e+vj569uwJHx8fGBkZISoqCi4uLhg+fDjWrFnD+tqbNm3Cnj17sHDhQkyYMEFcnfb161f4+flh48aNcHZ25iyhPWPGDNSrV4/V39Plcfv2bUyfPh2ampqYPHkyWrVqBSUlJXEVclxcHFasWAElJSWcPHkS0dHRcHNzg6WlpUzjrKwosVZNeXp6ltlY/N69ezhy5Aj++usvzmIwNjbGhw8fkJubW+o5XNx4JiQkiHuBFK2tqqoKMzMz/P7775w8+SiuX79+0NHRkXl5b5cuXTBz5kxMmzYNANCtWzesXbtWPKK9qJqqeJNetk2YMAEPHjzA4sWLIRKJsGrVKuzYsQOfPn3CwYMH8ejRI0RGRrK+jWvZsmWIiopCYGAgGjVqJPHL+c6dO3ByckLPnj2xefNmVtaTlmQpDy4uTo4ePfpTsVT06Wznzp2xbNkyXrcQAIUXvmvWrMHNmzclEg6dOnXC8uXLWbv5Kf6U70fIcnuJSCSCk5MTHj16hMuXL3O2jqxvPCsLoVCIP//8E5GRkYiLi4OCggJsbW1x79498dPdHTt2cLJN7enTp7C3t0f37t3h5OQEHR0dKCoqIjExEX5+fjh+/Dg8PDxQv359nDhxAn5+fvjjjz9Ym1K6ffv2cn3/s30TcuPGDbRu3brU7UAZGRkIDw+XqBZm07eN1L/1baUg2//2skrm6uvrY+HChbC3ty/X+fv27YOnpydnCfziv2NlXVXRq1cv9OnTB+7u7vj48SMMDQ3h7+8PAwMDpKSkYNSoURgzZgwrA4GA//t//ZHbNa6SHYGBgVizZg0mTJgAMzMz2NnZwcfHB+3atcO2bdsQHByMuXPnsl6tt2LFCoSEhKBLly6oVasWrl69iuHDhyM9PR03b96EvLw8PDw8YGJiwuq6xb19+xYTJ06EsrIywsPD8d9//2HIkCHi+whlZWX4+/ujY8eOFV7rR68huUpwWVlZ4cWLF7C1tUXLli1LtLApwlU134ABA2BiYoJly5YhKysLRkZG4mt3oDDxdvr0aU4elpmamsLAwKDUfoVLlizB7du3cfr0adbXBgq3+dvb28PU1LTMakG2H8jPmjULqampOHjwYIl/74KCAkyYMAEaGhrYsmULgMIe0qmpqZw8MPwV0VbQasrT0xMtWrQoNbF28+ZNHD16lNPE2m+//cZLQ8wWLVpg8+bNEIlEyMrKAsMwqFevnszW56u8F4C4OhEoLCN//PixOLFmbGwMLy8vTtd/+PAhbG1tMXbsWHz9+hVr166FvLw8hg0bhoEDB2LUqFHYtm0bNmzYwOq6Fy9ehJ2dHfT09CSmQwKFCcfx48eXmBZaEc7Ozrw3ey3ybW+StLQ03L17FzVr1oShoSFnwypatWqFt2/fcvK1f0SbNm3g5+eH9+/f4/Xr1ygoKECzZs3QoEEDVtepLFPzSpuEl5+fjydPniApKYm1ZEpp/v33X4wYMUJ84xkeHo4+ffrAwMAAM2bMwKhRoxAdHc16Yo3vB0ZycnK8bQt0c3NDx44dsXPnTonX27RpgzVr1iAjIwOBgYHw9vZG586dkZ2djSNHjrD2vfDtBO78/Hy8fPkSDMOgTZs2nDVelraVu6CgABcvXkRoaCguXboEoVDIWWItLi4O6enp4i2+ampqUFRURGZmJgoKCiQSIgzD4H//+x92797NWkWPrNp61KxZ84d+p9WqVYvT/kNBQUE/VFXh6emJZs2asVJVUTRkCih8KNukSRM8ePAABgYGaNq0KaytrXHu3DnWEmt8DYORJjg4GKampnBxcZG4llJXV8eqVauQnZ2NiIgI1hNrMTExMDU1haenJzIzM9GzZ084ODigY8eOePjwIezs7PDy5UtOE2tbtmxBWloalixZAgAIDQ1Fbm4utmzZgk6dOmHq1Knw9PRk5Tqaz35uxT179gwzZ84UD8aQtfT0dLRp06bU4y1atEB6ejona797967MwS/6+vqIioriZG2gsDKuqJ+iv79/qeexnUy9evUqFixYIDWJKicnh0GDBklMF+/bty/Wr1/Pagy/MkqsVRNJSUmws7OTaCC+evVqqZn4ooQTW9viSiPLaaDSMAzDy2Sn//3vf7h9+7bMm5pramri+fPn4o+/7cUCFCYEuJSXlyd+uqKgoIDmzZvj0aNH6N+/v7gH1M9ueyjLhw8fytzeW79+fWRnZ7O23rc3mbL27t07bNmypcTTtAMHDmDjxo3iJuN16tSBm5sbJ731pk+fjuXLl8PY2FiiFwxf6tatK276y5XKMDXvxIkTUl+Xk5ND/fr1MWnSJMydO5f1dYuT9Y1nEb4fGFlaWsLa2hp2dnbi1xQVFWWyReL27dtlToXr3bu3xMVv9+7dcerUqQqtmZubi/DwcLx48QLa2toYPXo0VFVVcezYMbi5uYnfUzU0NLBgwQLOexS9fPkSR44cwbFjx5CRkQGRSIS6devCysqKszVdXV0xadIk2NnZYfr06ahfvz6AwkFIAQEB8PLywt69e9GqVSucOHECGzZsgJeXF2sDRGTV461Fixa4f/9+uc+/c+cOmjZtWuF1S+Pt7Q1tbe0SVRUtW7ZEv379MGHCBMTExGDLli0YMmQIZs6ciYCAAFZ+FmvXri3RU1NLS0vi2kpbW5vVh0p8DYORJiEhQWrP0iJGRkacVA9lZGSIBzKoq6ujYcOGuHv3Ljp27IgOHTrAysoKx48f52y6OlCYcJgwYYK4Cv/8+fNo3LixuO+ZtbV1ubdKfw/f/dyKNGjQgLOHr+XRpEmTMltKxMbGonHjxpysXb9+/TLXfvLkCadFGcuXL8erV69gbm5eZrUg21RUVCQmb3/r7du3ErF8/fqVlx7KlRUl1qoJLS0t2NjY4J9//gFQ+BSgfv36EhVMReTl5aGuro4pU6awGsP3mitLwzAMq00Ry1NeXXzbxqxZs1ivMFi2bBns7e3h6uoq0/JeU1NT+Pr6onHjxhg3bhx69OgBNzc3XLp0CTo6Ojh06BDnk/QaNGgg8XRJS0sLz549E39ct25dTp4+NW/eHLdv3y6158ilS5fQvHlz1tf91pMnTySmCzVt2hT9+/eX6E9UUVlZWRg7dixSU1PRpk0bCAQC1KhRAzdu3ICbmxvk5eXh7OyMtm3bIiQkBHPmzMGRI0dKTUb8rJiYGNSuXRtjxoxB06ZNS+0nyFUj+SKymkxaWabmPX78mNWv9zNkdeNZ2R4YvXz5krcLTDU1NYm/4289f/5cotfhhw8fKpTYTU1Nhb29PRITE8WvBQQEYNmyZViyZAmaN28OS0tLFBQUIDo6GkuXLkXdunVZT+J/+vQJUVFROHLkiHjboUgkQvv27eHg4CDejsyVDRs2iLcqFaeqqorp06cjISEBHh4eCA4OhoODAxITE3HixAnWJ/MWv5bjIpk7dOhQrFu3DhMnToSenl6Z58bHxyMqKkrcdoILfFZV6OvrIzIyEmPGjIGioiLatGmDy5cvQygUQl5eHk+fPuV8R0JBQQGuX7+OtLQ0iUb+xXGR0FdTU0NGRkapxxMSEjiZEvhtn9bmzZtLXDu2a9euXH33KuLDhw/Q1NQEUJjoi4+Pl9gRoKKiwvkQlYsXL+L8+fNISUnB/PnzoaKigmvXrmHUqFGcJMDs7OwQEBCAwYMHc94mR5phw4Zhz5496Nmzp/hhHcMwEAqF8PHxwfHjxzl7nzE1NUVwcDC6d+8OCwsLiWPHjx9HaGgoZ30MAeD+/fuYPHky6w8gv6dv377w9/dHt27dSvStjY2NRUBAgLgy9NOnTwgLC2P1HuZXR4m1amTGjBni8mxjY2MsWLCA07Lpb1WGxNqsWbPg7++PDx8+oFevXtDR0RFvH7h06RIYhsGAAQOQk5ODmJgYXLp0CSEhIawm1/gq7502bRri4uLg7u4unt7l6+srLvEWiUScVxEaGRkhKCgIffv2hZ6eHjp27IjAwEBkZmZCXV0dFy5c4KSK0NraGuvWrUP79u3FN3YMwyA9PR07d+5ETExMqVvo2LJhwwbs37+/RJ+UrVu3wsHB4bu9espr7969yMzMhLe3N3r27Cl+fc+ePWAYBpMmTRL3OTI1NcWIESOwb98+1ku5r1+/DqDwiaNIJOKsXL8sspxMWhmn5gkEAmRkZEBeXr7UBD4XZHXjWRkeGBXXrVs3XL58GdbW1jLfCj5o0CAEBgaiVatWsLW1FSccRCIRjh07hpCQEIwePRpAYUIyJCSkQpWkW7duRWZmJjw9PdGjRw8kJydj6dKlcHZ2hr6+Pvz8/MQ/b/PmzYOVlRX8/f1ZS6zFxcXhyJEjOHXqFD5//gyRSISWLVuiR48eOHToEJydnWVyffP48WOMGDGi1OPfbhfS1dVlvRfNtWvXcOnSpTKnjBdPMv0MKysrHDp0CBMnToSLiwuGDRtWYuKuQCBAZGQkNmzYAHV1dYwfP75Ca5aFz6qKSZMmwdHRESYmJjh+/DhGjRqFgIAAODg4oHnz5oiMjMTAgQNZWUuax48fw8nJCampqaX+ezMMw0lirW/fvggKCsLo0aPFFZJF7t69i6CgIJibm7O+bvv27REdHQ1bW1sAha0mig/kePPmDWfbzYs0btxYXMFUVBlevGfi1atXxYk3tgkEAvz+++84d+6c+LXJkycjISEBf/31F8LCwrBv3z6oqamxuu7nz58hEAhgbm6OTp06QUNDQ2oyu6LvL6VxcnLCnTt3MGvWLKiqqoJhGPz55594//49cnNz0aVLF86m786dOxfXrl3DwoULsWXLFrRs2RIikQivXr1CcnIymjdvzvoDkuLU1NQ4q8Yry8KFC3Hr1i04OztDW1sbLVq0gKKiIl69eoXnz59DU1MTixcvRkFBAXr37o28vDxOe3P/amh4AZGZGzdu/NTnsVkGv3PnTvj4+MDX1xcdOnSQOJaYmAgbGxtMnjwZU6ZMQVpaGsaNG4cOHTqImzSywd7eHrdu3YKpqWmZ5b1cTZq5f/+++IYqKysLgYGByM7ORv/+/cWl9lx58+YNrK2t8f79e1y9ehVCoRDm5uaQl5dH3bp1kZycjKlTp3LyhGbZsmUIDQ0V97ypWbMmvnz5ApFIBHNzc2zZsoWzC7PQ0FAsW7YM/fv3x4wZM6Cjo4OCggK8ePECu3fvRkxMDGtTdSwsLNC9e3esXr1a/NqnT5/w22+/QSgU4vTp0xLVebt27UJwcDBiYmIqvHZlI8vJpJVpat6LFy+wZcsWXLlyBXl5eQAKq8jMzMwwd+5cNGzYkPU1i7tx4wYcHR2hrq6O48ePIzk5GaNGjUL37t0lbjzZvhg3NjbGn3/+KdMHRsXt378fnp6eqFevHgwNDaGhoVEi+cAwDObNm8f62p8+fcKUKVNw69YtqKiooFmzZlBQUEBSUhI+fvwIfX197N27FzVr1kSXLl1Qo0YNBAYG/nSj7f79+2Po0KFYuHCh+LUbN27AwcEBa9asKdHqYP/+/dizZw/+/fffCv1/7tmzB0ePHkViYiJEIhHatGkDc3NzDBw4EG3btkVycjJMTEywY8cOmXwfmJiYoEuXLqV+Ly9atAg3btwQv7+y/X574MABuLu7l9nYnq2m5klJSZg5c6a4+rFDhw5o0KABhEIhMjIy8ODBA+Tl5aF58+bYsWMHp5PlXVxcEBUVhc2bN0utqpgyZQpMTEzg4eGBT58+wc7ODmpqauJpqRV17do1+Pr6wsvLCwzDiKevfv78GV27dsXWrVs5e5+dNGkSYmNjMW3aNOjp6ZWaMOzTpw/ra6empsLa2hqfPn1C165dcfnyZRgbG+PLly+4du0a1NTUEBoaWmbrjZ8RHR2NWbNmoX379jhw4AAePXoEBwcHWFhYoGXLlvD29sZvv/2G3bt3s7pucevWrYOfnx/69OmD69evQ0VFBRcuXMB///2HdevW4dy5c6wOhClu586d2L59O/7880/069cPZmZm8PHxQffu3XHgwAFs3rwZEyZMwB9//MHquuWpROJyKijwfw+HTp8+jdevX0MoFKJZs2YwMTGBtbU1p70cc3JysHfvXpw7dw5v3ryBSCSCpqYmTExMMG3aNE6qM4ts3rwZFy9eRHBwsMx7cn/69Am+vr6Ijo5GQkICBAIBtLW1YW5uDkdHR6iqqiIrKwsbN27EsGHD8L///U+m8VVmlFirZj5+/IjHjx/DwMBA/NqXL18QGBiI2NhYKCsrw9TUFIMHD+YxSu70798fo0aNKvUpg6enJ44cOYILFy4AKLyI9/X1FVdEsKFLly5wcHCQeXmvk5MThgwZUubTdVnIzMxEWFiYuJl0XFwctm7dKk7uzZ49m7NeAjdv3pT6y5mLKX3FWVpaonbt2lIrFEUiERwcHJCXl8fKAIWuXbvijz/+gI2Njfi1y5cvY+rUqdDS0sLZs2clzj969ChWrlz5Q/1zflRBQQEyMzPFjb1lRZaTSSvL1LzHjx/Dzs4Onz9/Rp8+fdCiRQsIhUIkJibiypUr0NDQQEhICJo0acLqut8q68azS5cu2LZtG+cJPlnj+yZEJBIhIiICZ8+eRWJiosTFsKWlJeTk5JCdnY3AwEAMHjy4Qu0GOnbsiFWrVkn0L0tLS0OfPn2wd+/eEjf1x44dw9KlS/Hw4cOfXhMo/DuuVasW7O3tMWrUqBJb+GWdWCuqPp04cSImTZok/p7OysrCwYMH4enpiSlTpmDBggW4fv06Fi5ciB49emDjxo2srG9iYoK6deti06ZN0NLS4rxqJz8/H8HBwTh+/Dji4+PF/ToVFRXRrVs3mJubc36zCxRuxRs3bhxev35dalVFQEAAGjRoAAMDA3FVRdE0QS7k5+cjLy8P58+fx/Xr1zlrQN+lSxc4Ojpy3iuzNOnp6fDw8EB0dLS4L6+ysjL69euHBQsWoH79+pwkAo4ePYr9+/fj2LFjkJeXx99//y2+pmrWrJm4lyFXBAIB1qxZg4iICDRq1Ahr1qyBoaEhHjx4gPHjx2P8+PFYuHAhJz+D5ubm6N69O9zc3KROx1yxYgWuXbtW4vruV7d7924YGRnxMkE8PDwcBgYGnFUhfs/Ro0exbds2CAQC9OrVS2q1IFcP6sjPo62g1UhoaCjc3d3x+fNn8cXt169fMXHiRPHNnbKyMqKiohAdHc1ZaS+fsrOzyyyVVlVVRWZmpvjjevXq4fPnz6zGwFd577Vr19C/f3+Zr1tc0S/J4hPaunfvzvnUqxMnTqBfv34wNDSEoaEhp2tJ8/LlSyxevFjqMYZhWK3eKeo/UVzRtkxpNxVZWVmoVasWK2t/KykpCRs2bMDly5eRl5eH/fv3g2EYbNq0CUuWLBH3zOCKLCeTVpapeRs3boSioiKCg4NLVIw8fvwYEyZMgIeHB2s39qUxMjKS+H6bOHEixo0bh7y8PNa3qxT377//4smTJ5gwYQKAwsTH/v37IS8vD3t7e063bhTfpsMHhmEwYsSIMh+e1KlTBzNnzqzwWgKBoERPn6KLfmkPRhiGKbUX1I/o0qUL7ty5gz179uD8+fMwMjKCmZmZxMNCWZoxYwZevXoFX19fHDhwAMrKylBQUMCHDx8gEokwcOBAzJ49G1++fMHEiRNRt25dVqvRMzIy4OTkBG1tbda+ZlkUFRXh4OAg3u6emZkJeXl51KlTRybrF9HQ0EBYWJi4quLGjRviRPLMmTMlqioGDx4sk6oKRUVFKCoq4vbt2wgPD+cssaakpCSzhxKbN28uceNev359uLm5wdXVFVlZWRAKhVBXV4e8vDzi4uIwefJknDlzhvVYRo0aJdHT7M8//4SjoyOys7PRunVrzpO5NWrUwF9//VVi+I2enh7++ecfzq6jgMKtzWVNqOzYsSPnPeb44OXlBTk5OV4Sa2vWrMHEiRN5G0a2dOlS8Z+PHTsm9Rw2EmvF++H+CBpYIB0l1qqJ2NhYLFu2DC1btsTYsWNRUFAAOTk5+Pv74/bt29DS0oKPjw80NTURGRmJP/74A3369JHJNDNZateunbjh5LdP1PLy8nD06FGJm1EuJluNHDkShw4dwsiRI2Va3tu6desKVwtUFF+/JIuaHHft2hUDBgxA//79OZ96W5yysjLev39f6vHMzEzWfkm1atUKDx48kHjt7NmzYBhGamL14sWLrA/KAAqTalZWVhAIBOjRo4d465NIJMLTp0/h6OgIf39/Tr8XZDmZtLJMzbt9+zamTZsmdRuWrq4u7O3ty+ztyKWiG0+unDt3DrNmzUKLFi0wYcIE3LhxA56entDW1kajRo2wa9cuaGhocNb7qXHjxiW2fn4rNjaWlW1Sr169+qnP4+JnXZaCg4Px+vVrHDt2DMePH8eBAwfg5+cHDQ0NmJuby/x3i7y8PDw8PGBrayu1UrBHjx4ACncLuLu7o1+/fqxOJ+7UqVOZQyu4xsdk9SIqKiqYOXNmmYnievXq4e+//5ZhVNwzNjbGmTNnxP3GuLR7927k5+dL3WLIMIz4318gEGDTpk3w9vZmJYFeWp/S4mrUqIHatWtDT08P6urqrDfXrwx9oYtoaGggKSmp1OPx8fGc/Szm5ORgx44dOHv2rLh3YePGjWFsbIyZM2dy+qBMTU1NXBUrawoKCpxu9fweWT2o69y58w/3hGUYBvHx8RxF9GujxFo14efnB01NTYSFhUk0HC3qOTV79mxxueuwYcNw9uxZHD58uMol1ubMmYOpU6fCwsICNjY24obmCQkJOHr0KF68eIGdO3cCKOzhcezYMfz++++sxqCtrY3s7GyYmZnJtLx33LhxcHV1RUJCAnr06CG1/w8ATqfc8PVLMjQ0FDExMbh8+TI8PDywYcMGaGlpoV+/fhgwYAB+++03TkdZ9+jRAwEBAbC0tCxRVp6UlISDBw+yVkk3dOhQeHh4oGfPnujduzeCgoKQmJiIRo0aoW/fvhLnBgUFITY2FosWLWJl7eI8PDygoKCAiIgIKCgoiAcpGBkZITIyEnZ2dtixYwenPVFkOZm0skzN+17lHBdP1Xv37v3Dn8MwDC5fvsxqHN7e3tDV1RX3USraMuTn54dGjRph/vz5CAkJ4SyxNnfuXGzZskXqe8nHjx+xbt06HDlyhJUL0sGDB//UgAQ2t6G+f/8eKSkp4o+zs7MBFD4oKP46UFgZy5bmzZtj9uzZmD17Nu7cuYNjx47h5MmTOHjwIIKCgsAwDE6cOAFtbW1O+3wVZ2BgUGbVnKqqKidtGJYuXYpJkyahWbNmMDMzQ/369aWe96tXF7x69QoNGzYUv3+VN7H8qyeSpRk/fjzmzJmD6dOnY9CgQVBXV5f6e+1n3pe/1aVLF/j6+uLr168lJt8WefbsGRYvXozHjx9DTU1NotLmZ/1IT+bTp09j7969CAwMZHU6YWVKrJmZmSEoKAiDBg0SP5gpev8/efIkQkNDOWl58f79e9jY2CAhIQEtW7aEsbExCgoK8PLlS/j6+uL8+fMIDQ3lLLm2evVqLFmyBF+/fkWPHj1Qv359qd/rXPycL1q0CJs2bULt2rXLXJur91a2+xSWxtLS8oevJVJTUzmK5tdHPdaqid69e8PW1lbiDb+oF0mNGjVw/fp1iRuuwMBAbN269acHDlRmMTExWLt2LZKSksRvJkUNKf/8808MGDAAmZmZ6NevH4YOHYq//vqL1TdOvvrw8N3/Byj8u1+yZAlsbW1l/kuyyIcPH3DlyhVcvnwZly9fRkZGBlRUVNCrVy9s27aNkzVfvHgBKysriEQicbNdkUiEly9f4uTJk2AYBiEhIWjTpk2F1xIIBJg2bRr++ecf8aAGJSUleHl5ibfmRUVFwcfHBw8ePECbNm0QGhrK+sVBjx49YG9vj1mzZkntCcJF/8JvfdvUujTnz5+v8FqfP3+GtbU10tLSyjU1T0FBAWFhYaw/Zd60aROOHj2KoKAgaGlpSRzLysrC2LFjYWpqWurW5J9R3r5y32K7cq5bt25YuHAhxo0bB6CweXeTJk0QEhICADh8+DDWrl2Lu3fvsrpuET09PQwYMABbt26V2JZ06tQp/P3330hLS0PPnj2xf//+Cq+1ffv2n0qssbUNUVdXV+r6IpGozLi4+v0iEAgQExODY8eO4eLFi8jPzwfDMNDX14eVlZVEL7iKuHLlyk99HhtJDmkyMjLg7Oxc5vd0Vagu0NPTw/r16zFs2DAApX//fYvL65nSrFy5EiEhIZytXfxarqyfQTbW//z5M2bOnIl///0X1tbWEkORAMDHxwdbtmzBly9fYGpqilWrVpWa3OVCXl4e7t+/j0WLFkFHR4fV6YSVYeBakY8fP2L8+PF48eIFWrZsiefPn0NfXx/Z2dlISEiAlpYWDh06hHr16rG67urVqxESEoINGzaU6L196tQpLFy4EOPHj2dtqv23vve9XoSLnzVjY2NkZGSUuVWS6/fWgoICXL9+HWlpaaVWgsqqAEYoFOL8+fM4cuQIrly5UmJnDClEFWvVxPv370uUSRf90ujcuXOJKgZFRUV8+fJFZvHJUr9+/dCvXz88efJEvG2jefPm6NChg/iNu169erh79y4nTUj56sPDdR+z8nBycgJQOOGorOmJXF4Mq6mpYfDgwdDW1kabNm0QFBSEpKQkTpu+6ujoICAgAGvWrMGRI0ckjunr62PZsmWsJNWAwu0Re/fuxalTp3Dr1i1xpUTxra9PnjzBkydPYGlpiSVLlnDyxC0vLw8aGhqlHldWVsanT59YX7c4NhJm5aWsrIxdu3Zh5syZcHFxwZo1a747NY+LrRtNmzaFoqIihg4dCgsLC7Ru3Ro1atTA69evERkZKX5f37Rpk/hzKloh+22C7OXLlzLdal2EYRjxe/jDhw+RlpYmMZ3yw4cPUFVV5Wx9Nzc3/Pnnn5g9eza2bduGrKwsrFq1ChcvXoSGhgY2btyIoUOHsrIWX31fiowcOZLX9b9Vo0YNmJiYwMTEBB8/fsTJkydx7NgxxMXF4e7du6wl1qZMmfJDCU02kxzSLFu2DHfu3EHHjh3LnDL+q3N2dkbbtm0lPv6ZxHJV4OrqKrP/d2VlZezevRvz5s3D4cOH8fXrV7i6uuLt27f4448/EBsbi7p168LNzQ1DhgyRSUzF1axZE4aGhpg4cSK2b9/O6tfmIkH2s1RVVREcHAxvb2+cOXMGSkpKePjwIZo1a4ZJkybBycmJk6qx6Oho2NjYSB1oN2jQINy8eRNnz57lLLHG58/5b7/9xut7zOPHj+Hk5ITU1NRSpz4zDMN5Yu3FixcIDQ1FZGQkMjIyIBKJqtzgKTZVzd/ApIQ6deqU2Ipx9epVMAwj3qJVXEJCAq+9M2ShXbt2aNeundRjxW/Q2LZnzx4YGxtzPonyW5XhIoGvX5IFBQV4+PAhbty4gZs3byIuLg4fP36EnJwc2rdvj4EDB4p74bApPT0dd+7cgUAgQIcOHRAcHIyMjAwkJyeLqyTLSj79LHl5eVhYWMDCwkLq8enTp2Pu3LmcTpDT0dHBlStXpPaBEYlEOHnypEyTL1+/fkVaWhoUFBTEjZbZpqWlhSNHjoin5t26dUvmU/NWrVol/vPRo0elnvNtxRTbW88dHBwwatQomU8+1tHRQVRUFAYPHgxvb28wDCOeDJmeno6QkBBWtwp9y9LSEioqKliwYAHGjRuHV69e4fPnz7CxscH8+fNl0q/l6dOnuHjxIpKTk+Hg4AAVFRU8e/asxDbwiuKqMTsbVFVVYW1tDWtrayQnJ+P48eOsfe3K9v99/fp12NraYuXKlXyHwqlvKy1lmVj+dlvz9+Tm5nIUSaHiDfxlQVFREdu3b8eSJUsQFhaGt2/f4sGDB/j48SMGDRqEFStW8H6/8OXLF5n2LJa1ogmVs2bNYnX4yfdkZmaWuZ2+devWrEyzLw1fD5BycnLg7u5e4vVHjx5BVVW1xG4ALqxfvx5ZWVlwdnaGnp6eTLfz5+bmIioqCqGhobh37x6Awuv2Hj16YNy4cTA1NZVZLL8aSqxVE126dMGZM2cwdepUAIW9UIqqOczNzSXO/fz5M44fP17mBJpf2aVLlxAZGYn09PQS0xOBwpvMAwcOcLZ+WFiYzPq+SHPx4kWcP38eKSkpmD9/PlRUVHDt2jWMGjWqxJS3ivp2XDVfvyQNDQ3x6dMnKCoqQk9PD1ZWVvjf//6H7t27c1LBIhKJsG7dOgQEBEh8jw0cOBCurq68TDgqThYXoBMnTsTixYvh5uYmTm7k5ubi7t278PLywu3bt0tsK+FCcnIy3N3dcenSJXFJv6KiIvr27YvFixezfoHE99Q8vidTAoXbVvgYUe/k5IS5c+fCyMgIIpEIRkZG6NChA27dugVHR0cA3CdGzM3NsWvXLsyePRv5+fnw8fHhJGkvjaurK/z9/cVVUoMGDUJOTg7mzJkj3qL6q/fa+lHNmjUTV0qzobJV6ikpKX23p2NVUJ5m9t9i61rO2Nj4p6oU2VIZ+svJyclh/fr1UFVVxcGDByEnJ4dNmzbxUqVWRCAQ4Pnz53jw4AG8vb05n/rKJ74mVDZt2hS3bt2CjY2N1OO3bt1ifWhEaaQluJs0acLqz1peXh7Wrl2LqKgoXL16tcS18tatW3Hp0iUMHToUK1as4LQC/tatW5g8ebJME6mxsbEIDQ3F6dOnkZeXB5FIBHV1dWRlZcHd3b3K9V3nAiXWqomJEyfC3t4ekydPRq9evXDixAl8+vQJ/fv3lyivf/HiBdauXYvU1NRS30h/ZQcPHsSaNWsgEomgpqbGy01GkyZN8O7dO5mvKxAI8Pvvv0vceE+ePBkJCQn466+/EBYWhn379rFaTu7i4oL169dL3GTn5+cjODgYAwcOlNkvZHl5eYhEIqioqKBx48Zo3rw5NDU1Oful6O/vD19fX3Tu3BmDBw+GnJwcrl69ilOnTkFZWbnSVT1wYfjw4Xjz5g127Ngh3oZcdFEoEong6OgosU2PCykpKbC2tkZWVhZ69eoFHR0dcePd6OhoxMbGIiwsDI0bN+YsBlk/yZdVw9uyjBo1CgEBATAyMpLJk90iJiYm8PX1RVRUFBo3bgw7OzsAQMOGDWFmZgZHR0d06NCBtfXK6rc1ceJE7Nq1C56enhAIBBJbObjotxUYGAg/Pz9MmDABZmZm4v93AwMD2NjYiLcRzZgxg/W1q7PyVjNxMQEYKHxYExERASsrK04rkPn24sWLct1AFxQUICsri9Xk1s8092bT4MGDsWHDBnF/ufIOLuFi+3FRMmHPnj2IioqCmZkZZ9XX3/Pp0yfxv03z5s2xZMkSXuKQBb4mVA4dOhS7du1C69atMXHiRPE9U9FDo+PHj3MyhCkyMhIHDx4Ut8zIysqSmuCeN28ea+vn5+dj0qRJuHXrFnR1dfH+/fsSiTUzMzNkZmYiIiICCQkJCAwM5Oz7X0lJSSZbLlNTUxEWFoajR4/i9evXEIlEaNq0KQYOHCgejmJmZsbrhNRfCQ0vqEbCwsLg7u4untxlaGiIbdu2iZtdrlu3Dr6+vhCJRHBycmJ9KmVlMGjQICgoKMDLy4u3G9BTp05h2bJlMDExKXM6J9s3Xzt37sT27dvx559/ol+/fjAzM4OPjw+6d++OAwcOYPPmzZgwYYLUseo/S1dXV+KCEChsoF7UwLuokT3XRCIRHj58iH///Rf//vsv4uLixD3AfvvtN/To0QO//fYba094R44cCXV1dezdu1fiZmfVqlUIDQ1FbGysxHTeqiwpKQnR0dF4/fo1hEIhNDU1YWxsLJOqzcWLF+Ps2bM4cOBAiSrBe/fuYeLEiRg8eDD+/vtvzmORpa9fvyIkJERcmerq6oqaNWvixIkTmDRpEufJviVLloifeDZp0qTU9zg2prHy6XsN1Isur4oPyeGq39awYcOgra0NT09PqcNC5s2bh8ePH+PkyZOsr12d8d1E/9KlS1ixYgXq1q0LY2NjqVPGAW6nfVcWz549w/Lly3Hnzh1oaGhg6dKlpbZD+JV4enrC3Nxc/BC8vINL2Kh0KS1xvHfvXgQHB6N3795YuXJliaQuV4nkbwUEBKBZs2bo06dPle0vCABHjhzBpk2bMH/+fJlOqMzPz8fkyZNx8+ZNKCsro2nTphCJREhJSUFeXh66desGHx8fVne7uLi4ICwsDPXr18fOnTvRuXNn8e80CwsL8ffWiRMnkJmZifPnz7NyTbNnzx5s2rQJS5cu/W6FrKenJzw9PfHHH3+Iq+HZ5uLignfv3sHHx4eTr1+kQ4cOKCgoQNu2bdG/f3+YmZmhY8eO4uNFgw537Ngh3n1CSld134VICSNHjsSQIUPw7NkzqKqqokWLFhLH9fT0MHr0aAwfPrxS9OPiQnJyMlxcXHit6vj9998BAMeOHcOxY8dKXCBxdfMVHh4OS0tL2NnZSfTbU1RUxNSpU8UJEDYTa6WRdT6fYRh07NgRHTt2xJQpUyAQCHD37l3cvHkT0dHR4smcbE33SUhIwNixY0tc+FhZWSE4OBgvX75E+/btWVmrstPS0uLswuN7rly5Ajs7O6lbbzt37ozx48cjPDxc9oFxKDc3F46Ojrh37x7q1KmDDx8+IC8vD+/evcO+fftw+vRpBAQEcFoteuPGDYnpZBkZGZytVZysq4dk2UT8exISEsTTUKUxMjKS6TCP6kLaMAOhUIj09HRcuXIFdevW5aSio0jR13737h0eP34s9RyGYap0Yi0/Px87duzA/v37IRAIYGVlhcWLF3PSzJ0PmpqaUFFREX8sy+2AZW2DFYlEuHz5MszMzCRel+UU2qLK3Kpux44d+PjxI5YtW1bqOVz8vSsqKsLHxwdHjhzBuXPn8ObNG4hEIhgaGsLExASjR49mtWLr7NmzCAsLg52dHRYvXlwiUWhlZSV+WNSvXz/Y2dnh8OHDrGz3j4yMxIABA8q17XzWrFm4fv06IiIiOLu+HT9+PObMmYPp06eLK8ekJVMrWoQhFAqhrKwMTU1N1KtXr0onqGWB/vaqGSUlJYlMdHHDhw/H8OHDZRyRbDVr1gw5OTm8xsDXNsC3b9+W2TevY8eOVS7JIM2XL18QFxeHa9eu4erVq+IEJptNzfPy8iQuhIs0adIEAHj/HpQFT0/PMo8zDANFRUVoaGigc+fOnFSw5eTkiP/OpWncuLG4greq8PT0RHx8PHbt2gV9fX3xcJrBgwdDJBLBxcUFnp6eWLNmDWcx8JXAKW8vJLYeWsi6iXhZ1NTUykxgJiQkVPmtHCKRCF+/fpV6jKu2DwsXLiz1WHZ2NsaMGcNpYrkyTPvm0/Xr17FixQokJiaiVatWWL16NQwMDPgOi1V8ttTgexssKcTnhMoaNWpg7NixMknOHz58GHp6emUmEIsYGBjA0NAQFy9eZCWx9vr1a4wZM6bc5/fr1++717kVUTTJOiUlBTExMSWOs1WEcerUKRw7dgyRkZE4d+4cGIaBpqYmBg4ciIEDB0o8JCXfR4k1Uq04ODhg586dsLS0lFl/r2/x1fxYQ0MDSUlJpR6Pj4/nfbITV+7evYtr167h2rVruHPnDr58+QJVVVX07NkT48ePR9++fdGgQQPW1iutv0vR06aCggLW1qqsdu3aBZFIJP6vuOJb44o+HjlyJFxdXVmNQVtbG5cuXSq1kufy5csy7QEmC6dOnYKNjQ0GDBhQYhL0kCFDcP/+fZw+fVpm8RQUFCAzM1MmPS1lXT1U1rYIhmGgpKQENTU1tGvXDgMHDuR063vfvn0RFBSE0aNHl9hmfvfuXQQFBZUYVFQVfPnyBRs2bMCpU6eQmZkptRpalhU0xdWpUwc2NjYICAjA5MmTOVmjqu4u+J7s7Gy4u7sjPDwcNWrUwKxZszBt2rQqOZxD2vd0bm4u3Nzc0KZNG06vZaVNRiSyJ6t/h/IOxvgWW21UHjx4gIkTJ5b7/L59+2Lfvn2srF2zZs0fSl7WqlWL0/6CsqqIb9GiBebOnYu5c+ciNjYWEREROH36NPbt2wdvb2+oq6uDYRhkZmZyHktVQIk1Uq1kZmZCUVER5ubm0NfXh4aGhtTSWg8PD85jefr0KS5evIjk5GQ4ODhARUUFz549Q9++fTlZz8zMDEFBQRg0aJB4K2zRm/bJkycRGhr6Q09rfiVFT9p0dHQwbtw49O/fH927d6eSZw6FhYXB3t4e3bt3h5OTE3R0dKCoqIjExET4+fnh+PHj8PDwQP369XHixAn4+fmhbdu2P3RR9T3W1tZwc3PDihUrMGPGDHH1WkpKCry8vBATE1NmxcmvKD09HW3atCn1eIsWLZCens55HElJSdiwYQMuX76MvLw87N+/HwzDYNOmTViyZAm6devG+pqyrh4qa0u7SCTCx48fkZKSgtu3b+PQoUOwsbHBypUrWVu/uHnz5uGff/7B8OHD0bVrVzAMg4CAAHh7e+PatWuoU6cO5syZw8nafNq8eTMCAgKgra0NQ0PDSte7kmEYpKWlcb7O+fPncfbsWSQnJ0NBQQFNmjSBsbExjI2NOV9b1iIiIuDu7o7MzEwYGBhg9erVaNWqFd9hyRy1yK66fqYSimEYODs7V2jd8g7G+BZbVeA5OTmoX79+iddr1aqF5cuXl/g5r1evHvLy8lhZu0WLFrh//365z79z5w6nvQT5qIg3MDCAgYEBli9fjgsXLiAiIgIxMTEQiURYsWIFDh06BGtra1hYWHA6EfVXRneVpFop/svqxo0bUs9hGIbzxJqrqyv8/f3FlU2DBg1CTk4O5syZgwEDBmDr1q2sP3mdO3cubty4ARsbG7Rs2RIMw2DLli3Izs5GQkICtLS0OOnd8fLlS9y8eVP8cdE2yCdPnpSa2DI0NGQ1huXLl6Nfv37irRRpaWm4ePEilJWVYWBgwGrj1SLv378v0fOpaNthZmam1H5Qsmr4Kwtubm7o2LEjdu7cKfF6mzZtsGbNGmRkZCAwMBDe3t7o3LkzsrOzceTIEVYTaw4ODrh37x5CQkJw+PBh1KxZEyKRCF++fIFIJMLgwYMxadIk1tarDJo0aYKnT5+Wejw2NpbTKahAYVLNysoKAoEAPXr0EG9jEIlEePr0KRwdHeHv7y+19x1XuKgeKu+W18TERHh7eyM4OBiGhoYYMmQIK+sX17BhQxw5cgQeHh6Ijo6GSCTCuXPnoKysDDMzMyxYsKBSTIxl2/Hjx9G/f3/s2rWLl61S+fn5pb7+6NEj+Pj4QEdHh7P1CwoKsGDBApw6dUo87bygoABXr17FkSNHYGpqim3btlWJ7XxJSUlYtWoVrl69CjU1NaxZs4bzydKE8IGvxJqzszOv7xUNGjSQ+uBPUVER48ePL/H627dvWavYHDp0KNatW4eJEydCT0+vzHPj4+MRFRXFaf/MIrIuwgAKp9Cam5vD3Nwc2dnZiIqKQkREBG7fvo0HDx7A3d0dt2/f5mz9Xxkl1ki1UlpzX1kKDAyEn58fJkyYADMzM3HzVQMDA9jY2CA4OBje3t6YMWMGq+uqqqqKv/aZM2egpKSEhw8folmzZpg0aRKcnJw4afbr5eUFLy+vEq+vW7eu1M9h4+nXu3fvsGXLFty+fVti69uBAwewceNGCAQCiEQi1K1bF25ubhgwYECF1yzO1dW11K2N0ipr+NquxJXbt29j0aJFpR7v3bs31q9fL/64e/fuOHXqFKsxFCXJR44ciejoaCQnJ0MkEkFTUxMmJibo06cPq+tVBsOGDcOePXvQs2dPcVUYwzAQCoXw8fHB8ePHOb8Y9PDwgIKCAiIiIqCgoCDu82ZkZITIyEjY2dlhx44d2L17N6dxfEtW1UPf0tbWxurVq5GYmIigoCBOEmsAUL9+fbi5ucHV1RVv375FamoqlJWV0aZNG6mV2VVBTk5OuXvrcaFz587fXXv58uWcrb9//36cPHkS48aNw8yZM8XVHmlpadi1axeCgoLE1xu/sr1792Lnzp3Iy8uDmZkZli5dCg0NjVITm0Wq4tZQUvXx1TtRloMxpNHT08P58+fLfY1y5swZ1h7QWVlZ4dChQ5g4cSJcXFwwbNiwEtPMBQIBIiMjsWHDBqirq0tN9rGJjyKMb9WpUwe2trawtbXFmzdvxP3YiHSUWCNExoKDg2FqagoXFxeJHkjq6upYtWoVsrOzERERwXpiDQCUlZUxa9YsVsawl4es1vlWVlYWxo4di9TUVLRp0wYCgQA1atTAjRs34ObmBnl5eTg7O6Nt27YICQnBnDlzcPTo0TK30P0IvvroVSZqamp4/vx5qcefP38uMeDhw4cPnJWW9+7du8KTk34VTk5OuHPnDmbNmgVVVVUwDIM///wT79+/R25uLrp06cLJe0tx165dg729PRo1alSiz5uWlhbGjx8PX19f1tflu3roewYMGIC9e/ey9vVyc3MRHh6OFy9eQFtbG6NHj4aqqioiIiLg5uYmrpDV0NDAggULquT7kp6eHl68eMHb+qU1d5eTk0P9+vUxdOhQ1n6vSHP06FGYmJhgxYoVEq83aNAAK1aswLt37xAaGvrLJ9aK7yKIjo5GdHT0dz+nqj2sItVHZeud+OTJE4mt5k2bNkX//v1ZHfoFFG5/dHZ2xqFDh747LMHHxwfPnz/H0qVLWVlbWVkZu3btwsyZM+Hi4oI1a9agQ4cOaNCgAYRCITIyMvDgwQPk5eWhefPm2LFjB6d9qfkqwiiLpqYmnJ2dK1wZWZVRYo1UaZs2bcKQIUPEb/6bNm367ucwDIN58+ZxFlNCQkKpzdSBwqoONqbqfe9JbmnYfPrBV2Jt7969yMzMhLe3t7haBgD27NkDhmEwadIkcWympqYYMWIE9u7dK1FBVRF8TX6tTAYNGoTAwEC0atUKtra24m2/IpEIx44dQ0hICEaPHg2gcItPSEgIOnXqVKE1r1y58lOfV5WSboqKiti3bx+OHTuG06dP4/Xr1xAKhejSpQtMTExgbW3NacNdoHAqroaGRqnHlZWV8enTJ9bX5bt66Htq166Njx8/svK1UlNTYW9vj8TERPFrAQEBWLZsGZYsWYLmzZvD0tISBQUFiI6OxtKlS1G3bl3WK3P5Nn/+fEyfPh0dO3bEoEGDOP/e/ta3TcXz8/Px8uVLMAwjk0rBpKQk2Nvbl3q8d+/eZVaH/yqq+3TKytBSg1RPGzZswP79+0v09Nu6dSscHBzg4uLC2lomJiYwNzfHqlWrEBcXh5kzZ6JFixYS5xS1Vjh8+DCGDx/O6lAgLS0tHDlyBMHBwTh+/Dhu3boFgUAAoPDaqlu3bjA3N5fJdRSfRRjk51FirZr4mRtHhmFw+fJlDqKRnT179qBNmzbixNqePXu++zlcJ9bU1NTKbKCdkJCA2rVrV3id8txkSsNWE1I+xcTEYOTIkRJJtU+fPuHff/8FAIm+LHJychgyZAiCg4NlHmdV9vvvv+PBgwf4+++/sXnzZjRr1gwKCgpISkrCx48foa+vj4ULF+Lr168YNGgQatSoUeHehtKmQhZXfAppcVXhe744hmFgaWkJS0tLqcezsrI4HaGuo6ODK1euwNbWtsQxkUiEkydPctJsvDzVQ3Xr1mV93fJKSkoqM+H4I7Zu3YrMzEx4enqiR48eSE5OxtKlS+Hs7Ax9fX34+fmJH5LMmzcPVlZW8Pf3/+UTa9KuZfLz87F48WK4uLhATU2tRDKL7WuZ0ioFjx07JvNKQTU1NSQnJ5d6/M2bN6hVqxZn68tKdZ9OyVdLDVK9hYaGwtvbG/3798eMGTOgo6ODgoICvHjxArt374afnx/09PRKvdb4GevWrUOtWrUQFhaGyMhINGjQAI0bN4ZIJEJaWhr+++8/iEQiWFpaYtWqVaytW0RRUREODg5wcHAAUNgTWV5eHnXq1GF9rbLIqgiDsIsSa9WEtFHIDx8+xKdPn9C+fXu0atUKIpEIr1+/xv3796GhoSGRlPhVnTt3TqJU99y5czxGU6hv374ICgrC6NGjS0wwu3v3LoKCgmBubl7hdaTdZJ4+fRpCoRB9+/YV/5snJibiwoULqF27NqysrCq8bmWQkpJS4il+XFwcBAIBtLS00Lx5c4ljjRo1olHSLFNRUUFgYCAiIiIQHR2NhIQEfP78Gd27d4e5uTksLS0hJyeH7OxsODs7Y/DgwRUe2f5tpeDHjx/FSb0xY8aILwoTExMRHByMzMxMLFu2rEJrVhYCgQAvX74EUDjdqrTK08jISLi5ueGff/7hLJaJEydi8eLFcHNzg4mJCYDCZMTdu3fh5eWF27dvY/Xq1ayvW9rNt1AoxIULF+Dh4YErV67gwYMHrK/9PRkZGThy5Ah69erFyte7evUqxo4dC1NTUwCArq4ulixZAgcHB4wePVri319ZWRmjR48u14Olyq6i7xEVVdkqBfv27YvAwECYmJiga9euEsdu3bqFgwcPYuDAgZysTWSDr8p/QgICAmBoaFgiqdu1a1fs2rULDg4OCAwMZDWxpqysDDc3N9ja2iI8PBw3btzAy5cvIRQK0ahRI4wcORKWlpYy2y7L5XbPssiqCIOwixJr1YS/v7/Ex+Hh4bh//z78/f1LlIvfvn0bU6dOhb6+vixD5EStWrWgrKws/rg8U9FiYmI4nZ42b948/PPPPxg+fDi6du0KhmEQEBAAb29vXLt2DXXq1MGcOXMqvM63N5ne3t64cOECgoKCStycvHnzRmK73q+uqFl7cdevXwcAqWXjWVlZVeKpfmWye/duGBkZYcSIERgxYkSp59WpUwczZ85kZc1vK0NWrFgBLS0tHDp0SCKJ3bt3b4wZMwbjx49HdHQ0Bg8ezMr6fPH19YWXl5e4UkZFRQUzZszAlClTxOf8999/WLlyJWJiYjj/OR8+fDjevHmDHTt2iJswFzVFFolEcHR0lMk0vxcvXiA0NBSRkZHIyMiASCRCw4YNWfv6xbdmSSMQCJCbm4snT54gJCQEOTk5rE29TU9PL7FFpuh9XdrUVw0NDfH2sV/Zt9cyslbZKgV///13XL58GePGjcNvv/0mfmBWtHWwXr16+P333zlZm8gGJdYIX16+fInFixdLPcYwDAYOHFjhnQal6dy5s0wnh1c2sirCIOyqGnfR5Id5eXnBwcFBag+Grl27wsHBAd7e3pxPPOGag4MDfH19y/XEIS8vD66urjh8+DCnJfQNGzbEkSNH4OHhgejoaIhEIpw7dw7KysowMzPDggULOEnsBQQEwMHBQeoTf01NTdjb28PPz4/3qUBsaNWqVYmqlLNnz4JhGPTv37/E+RcvXuS9EqKq8fLygpycHK8XRidPnsSsWbNKXJQAhePEhw8fjs2bN/MQGXtCQkLg7u4ODQ0NjBkzBioqKrh06RI8PDxQu3ZtjB07FjExMVi8eDGys7PRsWPHUqfVsmnmzJkYPnw4zp49K+7zpqmpCWNjY7Ru3ZqzdXNzcxEVFYXQ0FDcu3cPQGEyr0ePHhg3bpy4wosN9vb25dpuLxKJ0KhRI2zbto21Zs8CgQBKSkoSrxUlTKUlThmGQUFBAStrVyYuLi6wsbEp9UHgv//+C29vb9aGRlS2SsFGjRohJCQEHh4euHDhgvgBkoqKCgYPHowFCxagSZMmnK1PCKm6lJWV8f79+1KPZ2Zm0uRdjsiqCIOwixJr1dS7d+/QoEGDUo+rqamVmOb2K3r69Kk4uVY0hl6aO3fu4I8//kBiYiJrPXDKUr9+fbi5ucHV1RVZWVkQCoVQV1cvMdqZTe/fv5eo3pPm8+fPnK0vS0OHDoWHhwd69uyJ3r17IygoCImJiWjUqBH69u0rcW5QUBBiY2OxaNEinqKtmtTU1MRNX/lStNW0NMnJySWSE7+aw4cPo2nTpggLCxP3AFm0aBHmzZsHb29vNG7cGDNnzoS8vDwWLVoER0dHzhuqF9HU1ISjo6NM1oqNjUVoaChOnz6NvLw8iEQiqKurIysrC+7u7qxuVSni7OxcZmJNSUkJderUQevWrdG5c+cqUxHMJ5FIhK9fv4o/DgsLQ48ePaCnpyf13KtXr4qTTWyojJWCTZs2hYeHBwoKCpCVlSX+3peTk0NSUhImTJiAAwcOcBoDIaTq6dGjBwICAmBpaQlNTU2JY0lJSTh48CANyeAIX0UYpGLoKq+aat26NcLDwzF27NgSTxtyc3Nx6NAhdOjQgafo2LNkyRKsW7cOdnZ2OHDgABo1aiRxXCgUYtu2bfD29oZAIICFhYVMp8a9fftW/Of//vsPANCkSRNOpl917NgRwcHBGD16NNTU1CSOvXv3Dv7+/ujWrRvr6/LBzs4Oly5dwqJFi8AwDEQiEZSUlODu7i6+uY2KioKPjw8ePHiANm3aiEdZE3asXr0aS5YswdevX9GjRw/Ur19fakKHy0rBnj17wtfXF3369CnRf+jMmTMIDAwsc5vqryAxMRGTJk2SaKwrJyeHSZMmYezYsfjjjz/QokULbN26ldNKsW/9999/uHjxIlJTUyUSIUXYGBKTmpqKsLAwHD16FK9fv4ZIJELTpk0xcOBADBo0COrq6jAzM+OsDwnf1b3v379HSkqK+OOiJHJmZqbE6wCqxIMyoLB/poWFBb58+SJ+zcXFpczJdBWdNlxcZagUvH//Pnbs2IHbt28DADp06IDZs2eja9eu4geDIpEI+/fvx/bt25GXl8fq+oSQ6mHu3LmwsrLC0KFDYWFhgZYtW4q3mp88eRIMw2Du3Ll8h1kliUQifP78Gba2thg3bpz4+qZevXqcFmGQimFE387PJdVCdHQ0Zs+ejbZt22LUqFFo3rw58vLykJCQgODgYGRkZGD//v0yaw7JpcOHD2PlypVo1qwZDhw4gKZNmwIo7L+zaNEixMfHo379+vjrr7/Ejba5EBkZiYMHD2LHjh3iSgojI6MSSbR58+Zh2rRprK8fGxsLR0dH1KlTB0OGDJH4Nz9x4gQYhsHBgwdZ26rEN6FQiFOnTuHWrVtQVVXFiBEjJCYRbt68GT4+PrCwsMCSJUtkPvGnqiv+fVRWopjLbdcpKSmwsbFBWloa2rZtC21tbfH3fFJSElq0aIGgoCBeJ0VWlJ6eHtzd3UskCNPS0tCnTx+0adMGQUFBUFVVlVlMN27cgJOTk7hyTBqGYSr8b9+hQwcUFBSgbdu26N+/P8zMzNCxY0fx8eTkZJiYmGDHjh2cvrfzQVdXV+rPlUgk4u3nTVaOHDmC2NhYiEQihIeHw8DAAFpaWiXOk5OTg7q6OmxtbcW/9ytKV1cXGzZswLBhw8SvFf0u9/HxKdHDMyIiAn/88Qdrf+83b96Eo6MjhEIhWrRoARUVFTx58gQAcODAAXTv3h0pKSmYP38+7t69i1q1amHRokUYO3YsK+sTQqqXhw8fYs2aNbhz547E6/r6+li2bBmrDy4I8PjxY+zZswdXrlwpUe2spqYGExMTTJ48GTo6OjxFSMpCFWvVlKmpKTZs2IB169bBzc1NXNUDFDb437lzZ5VIqgGAtbU1atWqhcWLF8POzg4+Pj64cOECNm/ejC9fvsDS0hJLly4tUcXFJhcXF4SFhaF+/fp48+aNRM+3IUOGiC/6T5w4gZ07d8LKyor1STQGBgbYv38/NmzYAH9/f/G/N8MwMDAwwJ9//lllkmoAIC8vDwsLC1hYWEg9Pn36dMydO1dm2+Kqm+9tkwMKK4641LRpU0RERGDfvn2IiYnB5cuXAQBaWlpwdnbGpEmToKKiwmkMXBOJRFK/h4uqZxwdHWWaVAOATZs2QVFREStXrkSnTp2k9rhjg1AohLKyMjQ1NVGvXr1qtdXy20Ed1cno0aMxevRoAIXJ05kzZ0odSsMVPisFvby8oKCgAF9fXxgYGAAorHx3cnLChg0b4O7uDjs7O6Snp6Nfv35YvXp1iUp9Qgj5npycHNSuXRsdOnQQF1wkJydDKBRCXl6+Wg8W4EpQUBD+/vtvFBQUoGvXrmjbti3q1KkDgUCA9+/fIz4+HkePHkVERARWrlwpkyFQ5MdQxVo1JxKJ8PDhQ7x58wYMw0BLSwvt27fnOyxOxMTEYO7cuRAIBBAKhWjYsCFWr16Nfv36cbru2bNnMXv2bNjZ2WHx4sXirbfSnnLHxsbCzs4O8+bNg5OTE2cxZWZmIjk5GQzDoFmzZqhXrx5naxFSnFAoxIULFxAaGoorV66UGDJBfoy0Chqg7CoarnXp0gUzZszg9D0MKBw3f+zYMURGRop/h2lqamLgwIEYOHAg6tWrB1NT0ypZsUb4wXeloJGREUaOHFliUt+lS5fg5OSEdu3aITExEX/++SesrKxYWZMQUn3k5eVh7dq1iIqKwtWrV0v0Zp4+fTouXbqEoUOHYsWKFTJ/cFdVXb9+HRMnToS+vj7WrVsHbW1tqee9evUKK1asQFxcHAIDA0u0OSH8qj6Pd4lUDMOgUaNGEAqFaNWqFZSUlFBQUFAlq3j69euHvXv3Yvr06fj8+TO2bt2KLl26cL7u4cOHoaenh2XLln33XAMDAxgaGuLixYuc3ZQKBAK8fv0aKSkp+O2336CgoIDs7GzaCkk49eLFC4SGhiIyMhIZGRkQiURo2LChTNb+8uUL3r9/D6FQKPU4W9vESCFVVVWZXGy3aNECc+fOxdy5cxEbG4uIiAicPn0a+/btg7e3N9TV1cEwDDIzMzmPhfDD09Pzu+cwDANnZ2dW1uO7UjAnJ0dqr8S2bdtCJBLh3bt3CAoKqlLV54QQ2cjPz8ekSZNw69Yt6OrqSh16ZmZmhszMTERERCAhIQGBgYFQUFDgKeKqw9fXF1paWvD19S2zyr9ly5bw9vbG0KFD4efnR4m1SoYSa9XYnTt3sGbNGsTHxwMA9u/fj4KCAixduhQuLi4YNGgQzxGyz9DQEAcOHMCUKVPg7OwMb29vzi9AHzx4gIkTJ5b7/L59+2Lfvn2cxHLmzBmsWbMG6enpAAr/zfPz8zF37lzMmTMHkyZN4mRdUj3l5uYiKioKoaGhuHfvHoDCyo4ePXpg3LhxMDU15XT99+/f46+//sLZs2dLTaoBv37fqbNnzyIxMVHitby8PDAMg2PHjiEuLk7iGJuJBmmGDh2KI0eOYOzYsTLbnmlgYAADAwMsX74cFy5cQEREBGJiYiASibBixQocOnQI1tbWsLCwoCfsVUhZiTWGYSAnJ8fq97ubmxsrX+dnCQQCqTexRQMVpkyZQkk1QshP8fX1xa1bt7B06VI4ODhIPadoK76npyc8PT0REBAgs+nfVdn9+/dhY2NTrtYZioqKsLCwQFhYmAwiIz+CEmvVVHx8PCZMmAANDQ3Y2toiKCgIQGGlgUgkwvz586GqqorevXvzHGnFlHbR/b///Q+nTp3ChAkTYGdnJ7GFg+2bzpycHNSvX7/E67Vq1cLy5cslGuoDQL169TiZ4nXt2jX8/vvv6NSpE+zt7bFp0yYAhVNIW7RogQ0bNqBhw4YYOnQo62uT6iU2NhahoaE4ffq0uIF90cAOd3d3WFpayiSOdevW4eTJkzA0NET79u1LTECuKs6cOYMzZ85IPRYeHl7iNbbf4w4dOiTxcePGjfHq1SuMHDkS5ubm0NDQkDrFiouG6goKCjA3N4e5uTmys7MRFRWFiIgI3L59Gw8ePIC7u7t4miL59UVFRZV4raCgAGlpaTh+/DhiY2Ph7+/PQ2T8qKqtPAgh3IuMjMSAAQNKTaoVN2vWLFy/fh0RERGUWGPB+/fvf6gfZrNmzcRFEqTyoMRaNbVlyxY0btwYR48exZcvX3Dw4EEAhVNeIiIiYGtri927d1fZxFqR7Oxs7NixQ+I1tm86GzRoIPXNT1FREePHjy/x+tu3bzlpNrxz507o6uoiMDAQOTk54sRa27ZtERISgvHjx+PAgQOUWCM/JTU1FWFhYTh69Chev34tHg0+cOBADBo0COrq6jAzM0Pt2rVlFtP58+dhaWkJd3d3ma0pa35+fnyHgJUrV0oMwCny7NkzPHv2TOrnMAzD+aTCOnXqwNbWFra2tnjz5o24HxupOr59MFWkdevWMDIywpw5c+Du7i7+fVfVfW9gDCGElOb169cYM2ZMuc/v169fubbjk+8TCAQ/NOhJUVGxzJ0YhB+UWKum4uLi4OTkhFq1aiE/P1/iWN26dWFjY4OdO3fyFB17KsNNp56eHs6fP49p06aV6/wzZ85wMm3nwYMHmDt3rtStWYqKirC0tKw2Nx+EfQMGDEBBQQHatm2LadOmwczMDB07dhQfT05OlnlM+fn56N69u8zXlaXKML25MrzPfo+mpiacnZ053QJLKp8+ffpg/fr1fIfBqpcvX+LmzZsSr+Xk5AAAnjx5IvV3vKGhoUxiI4T8umrWrPlDyflatWpRfzVCiqHEWjVVUFAAFRWVUo8LhcISCbdfUWW46Rw1ahScnZ1x6NCh71Zo+Pj44Pnz51i6dCnrcXxvIMXHjx/paTf5aUKhEMrKytDU1ES9evVk1lurLPr6+rhz5w6NJOfYt++zKSkpUFdXL/Xp64cPH/DkyRNZhEaquSdPnpSopPzVeXl5wcvLS+qxdevWSX39V+8jSQjhXosWLXD//v1yn3/nzh0a/sSi9+/fIyUlpVznZmVlcRwN+Rn83/kQXrRv3x6nT5+GnZ1diWP5+fkIDw+Hnp4eD5FVPSYmJjA3N8eqVasQFxeHmTNnokWLFhLnJCYmwtvbG4cPH8bw4cNhZGTEehxdu3ZFeHi41N4JHz58wKFDh6Cvr8/6uqR6OHXqlHir3blz58AwDDQ1NTFw4EAMHDgQ9erVk3lMS5YswcSJE9GqVSsMHjwYGhoaUpPHVbX3Gl9MTEywYcOGUreVnz59Gq6urtTrjFTYt/39iuTn5yM+Ph7Hjh2DmZmZjKPizqxZs/gOgRBSRQ0dOhTr1q3DxIkTv3sPGB8fj6ioqHLvxiHf5+rqCldXV77DIBXAiKraozxSLpcuXYKTkxNMTExgZmaGP/74A6tWrYKamhr27duHR48eYfv27ZxP7asuPn/+jNWrVyMsLAwMw6BBgwZo3LgxRCIR0tLS8N9//0EkEsHS0hKrVq36oX325XXv3j2MHz8eurq6MDExwdatWzFz5kwoKSkhMDAQGRkZ8PX1hYGBAetrk+olNjYWEREROH36NLKzs8EwDNTV1ZGZmYnVq1fLrILM2NgYHz58QG5ubqnnMAwjnoxMfs6bN28QEhIi/njPnj0YMGAA2rRpU+LcgoICxMTEIC0tDf/++68swyRVkK6urtT+fkU6deqE7du3o3HjxjKOjBBCfi2fP3+GtbU10tLS4OLigmHDhpUYPCQQCBAZGYkNGzZAQUEBYWFhUFdX5yniqsPFxeWnPo/vSdVEEiXWqrHw8HCsXbsWubm5EIlE4ovTmjVrYsGCBbC3t+c7xCrn3r17CA8Px40bN/Du3TsIhUI0atQI3bp1g6WlJedbV69du4YVK1YgKSlJ4vWGDRtixYoVlEglrPr69SsuXLiAiIgIxMTE4OvXr2AYBh06dIC1tTUsLCygqqrK2fpLliwp1/ZmujCpuDFjxuDevXsAUGaiAyjclj5v3jxMnTpVVuGRKurGjRtSX5eTk0ODBg2gra0t44gIIeTXlZSUhJkzZ+L58+dQUVFBhw4d0KBBAwiFQmRkZODBgwfIy8tD8+bNsWPHDrRu3ZrvkAmpNCixVs3l5ubin3/+QWJiIgoKCtCsWTP06tULdevW5Ts0whGRSIRHjx5J/Jt37NixUvTEIlVXdnY2oqKiEBERId4CqKysTNsBq4iPHz8iOzsbIpEIpqamWLp0KUxMTEqcJy8vj7p163JSlUsIIYSQisnPz0dwcDCOHz+O+Ph4CAQCAIVtM7p16wZzc3NYW1vT4AJCvkGJtWrK09MT5ubmaNu2rdTj9+7dw5EjR/DXX3/JODLClu81ECeEL2/evBH3Yzt16hRrX/dnxr4zDEOTIll248YN6OjoQENDg+9QSDUgEAgQFBSEs2fPIjk5GQoKCmjSpAmMjY1hY2NDN3+EEFIBmZmZkJeXR506dfgOhZBKjRJr1ZSuri42btxYanNpb29vbNmy5Yemw5DKRU9PD+vXr8ewYcPErxUUFODp06fQ1taGsrIyj9ERwj5dXd0f/hyGYarcxLygoCBERkYiPT0dQqGwxHGGYRAdHc15HE+fPsXFixeRnJwMBwcHqKio4NmzZ+jbty/na5PqIS8vD5MnT0ZcXBxUVVWhpaWFgoICvHnzBrm5udDX14e/vz8NKCGEEEIIp2jvVzWRlJQEOzs7iZus1atXw93dvcS5IpEIWVlZaNWqlSxD5ETv3r1/+HMYhsHly5c5iEa2pOXMs7OzMXLkSOzfv5+TyaOE8MnPz4/vEHjn6ekJT09PqKioQFtbm7eEgqurK/z9/cX9OwcNGoScnBzMmTMHAwYMwNatWynZQSps586diIuLw8KFCzFhwgRxddrXr1/h5+eHjRs3Ys+ePTRNkxBCCCGcosRaNaGlpQUbGxv8888/AID09HTUr19f6lYdeXl5qKurY8qUKbIOk3UtW7Ys8drDhw/x6dMntG/fHq1atYJIJMLr169x//59aGhooGfPnjxEKjtUpEqqKq6Hf/wKjh49iq5du8Lb2xsqKiq8xBAYGAg/Pz9MmDABZmZmsLOzAwAYGBjAxsYGwcHB8Pb2xowZM3iJj1QdUVFRsLS0LHG9oqCggMmTJ+PZs2eIjIykxBohhBBCOEWJtWpkxowZ4hsZY2NjLFiwQGpz6arE399f4uPw8HDcv38f/v7+MDQ0lDh2+/ZtTJ06Ffr6+rIMkRBCWJOeno7p06fzllQDgODgYJiamsLFxQVZWVni19XV1bFq1SpkZ2cjIiKCEmukwt69e4cuXbqUelxfXx9RUVGyC4gQQggh1ZIc3wEQfpw/f77KJ9Wk8fLygoODQ4mkGgB07doVDg4O8Pb25iEyQgipuFatWuHt27e8xpCQkIBevXqVetzIyAgpKSkyjIhUVfXr18fTp09LPf7kyRPUq1dPhhERQgghpDqiirVqYtOmTRgyZIi4ufemTZu++zkMw2DevHlchyZT7969Q4MGDUo9rqamJlFhQQghv5Lp06dj+fLlMDY2RqdOnXiJQU1NDRkZGaUeT0hIQO3atWUYEamqTE1NERwcjO7du8PCwkLi2PHjxxEaGoqxY8fyFB0hhBBCqgtKrFUTe/bsQZs2bcSJtT179nz3c6piYq1169YIDw/H2LFjSzTOzs3NxaFDh9ChQweeomMfwzA/9Doh5NcWExOD2rVrY8yYMWjatCk0NDQgJ1eyOD04OJizGPr27YugoCCMHj0aNWvWlDh29+5dBAUFwdzcnLP1SfUxd+5cXLt2DQsXLsSWLVvQsmVLiEQivHr1CsnJyWjevDnmzJnDd5iEEEIIqeIYEXUyrxaSk5Ohrq4OZWVl8cfl0axZMy7Dkrno6GjMnj0bbdu2xahRo9C8eXPk5eUhISEBwcHByMjIwP79+6tEE3RdXV2pCbSiKX3SMAyD+Ph4rkMjhHDE2Ni4XOedP3+esxhSU1NhbW2NT58+oWvXrrh8+TKMjY3x5csXXLt2DXXq1MHhw4er3O8Xwo+cnBzs3bsX586dw5s3byASiaCpqQkTExNMmzaNqiMJIYQQwjlKrJFq5/jx41i3bh3S0tLAMIx4SmazZs2wcuVK9O3bl+cI2WFvb/9Tn/ftwAdCCPlR6enp8PDwQHR0NHJycgAAysrK6NevHxYsWAAtLS2eIySEEEIIIYQdlFirxgoKCnD9+nWkpaWhoKBA6jmWlpayDUpGRCIRHj58iDdv3oBhGGhpaaF9+/Z8h0UIIVWKSCRCVlYWhEIh1NXVIS8vz3dIpApLS0vD3bt3oaysDAMDAygpKfEdEiGEEEKqAUqsVVOPHz+Gk5MTUlNTUdq3AMMwePTokYwjk520tDSkpKSgVatWUFJSQo0aNaT2IiKEkF9JfHw8rly5gtzcXIn3d4FAgNzcXPz77784ffo0a+s5ODj88OcwDIMDBw6wFgOpPt69e4ctW7bg9u3bEt/Hvr6+8PDwgEAggEgkQt26deHm5oYBAwbwGC0hhBBCqgMaXlBNrV+/HllZWXB2doaenl6JRv5V2Z07d7BmzRpxL7H9+/ejoKAAS5cuhYuLCwYNGsRzhIQQ8nOio6MxZ84ccRVy8e3uDMNATk6O9ercFy9elGsgSkFBAbKyssrs80hIWbKysjB27FikpqaiTZs2EAgEqFGjBm7cuAF3d3fUqFEDzs7OaNu2LUJCQjBnzhwcPXoUbdq04Tt0QgghhFRhlFirpm7duoXJkydj1qxZfIciU/Hx8ZgwYQI0NDRga2uLoKAgAICqqipEIhHmz58PVVVV9O7dm+dICSHkx+3btw/16tXDunXrIBQKMX36dISGhiI/Px9+fn44f/481qxZw+qaV69e/e45z549w/Lly5GZmQkNDQ0sXbqU1RhI9bB3715kZmbC29sbPXv2FL++Z88eMAwDR0dH8XWNqakpRowYgb1792L9+vV8hUwIIYSQaoD2vVVTSkpKaNiwId9hyNyWLVvQuHFjREZGYtasWeJKDn19fUREREBbWxu7d+/mOUpCCPk5T548ga2tLXr37o0+ffpAUVERb9++Rbdu3bB582bo6enB09NTZvHk5+dj8+bNGDVqFO7evQsrKyucPHkSFhYWMouBVB0xMTEYOXKkRFLt06dP+PfffwEA1tbW4tfl5OQwZMgQXL9+XeZxEkIIIaR6ocRaNWVsbIwzZ87wHYbMxcXFYfTo0ahVq1aJrUh169aFjY0Nnj59ylN0hBBSMQKBAE2aNAFQmFho3rw5Hj9+DKBwK+iQIUPw8OFDmcRy/fp1DBs2DLt374aWlhb8/f2xdu1aqKmpyWR9UvWkpKSU2MocFxcHgUAATU1NNG/eXOJYo0aNkJmZKcsQCSGEEFIN0VbQamr8+PGYM2cOpk+fjkGDBkFdXV1q4/6qtiWyoKAAKioqpR4XCoXIz8+XYUSEEMKeJk2aIDk5Wfxx8+bN8eTJE/HHSkpKnCcasrOz4e7ujvDwcNSoUQOzZs3CtGnTqlUvT8INhmEgFAolXiuqSDMyMipxflZWFmrVqiWT2AghhBBSfVFirZqysrICUPj0NyYmpsTxoubSVW0qaPv27XH69GnY2dmVOJafn4/w8HDo6enxEJlsFBQU4Pr160hLSxM3N/+WpaWlbIMihLCmX79+CAwMRPv27WFsbIyuXbti586dePHiBbS0tHD8+HE0btyYs/UjIiLg7u6OzMxMGBgYYPXq1WjVqhVn65HqpVWrVnjw4IHEa2fPngXDMOjfv3+J8y9evIiWLVvKKDpCCCGEVFeUWKumXF1dq+VUNicnJzg5OWHWrFkwMzMDACQmJiIrKwv79u3Ds2fPsH37dp6j5Mbjx4/h5OSE1NRUcW+5bzEMQ4k1Qn5hM2bMwOXLlzF79mxcu3YNY8aMgbe3N4YNGwZFRUV8+fIFixYtYn3dpKQkrFq1ClevXoWamhrWrFkj0e+KEDYMHToUHh4e6NmzJ3r37o2goCAkJiaiUaNG6Nu3r8S5QUFBiI2N5eT7nRBCCCGkOEZU2h02IVVUeHg41q5di9zcXHFlnkgkQs2aNbFgwQLY29vzHSInJk2ahNjYWEybNg16enqlbsvq06ePjCMjhLApPz8f58+fx6BBgwAUPjzw8vJCdnY2+vfvjzFjxrC63t69e7Fz507k5eXB1NQUS5cuhYaGxnc/j7aGkh8lEAgwbdo0/PPPP+Lf3UpKSvDy8hJvBY2KioKPjw8ePHiANm3aIDQ0lL7XCCGEEMIpSqyRaik3Nxf//PMPEhMTUVBQgGbNmqFXr16oW7cu36FxpkuXLnB0dMTcuXP5DoUQwrGMjAzUq1dP3Dvz8ePHUFdX52QatK6urvjP5a2EZhgG8fHxrMdCqj6hUIhTp07h1q1bUFVVxYgRIyS2G2/evBk+Pj6wsLDAkiVLUKdOHR6jJYQQQkh1QIm1asLExKTUYwzDQElJCWpqamjbti0GDRoktQlwVeDp6Qlzc3O0bdtW6vF79+7hyJEj+Ouvv2QcGfd69OiB33//Hba2tnyHQgjhiFAoxNq1a3H48GEcO3YMOjo6AICFCxciKioKU6dOxbx581hdc8mSJT/VWsDNzY3VOAgBgM+fP0NJSUnqQCZCCCGEEC5Qj7Vqoqz8qUgkwsePH5GSkoLbt28jJCQENjY2WLlypQwjlA1PT0+0aNGi1MTazZs3cfTo0SqZWDM2NsaZM2cosUZIFebt7Y2goCBYWlqiXr164tenTJkCFRUV7NmzB02aNIGNjQ1ra7q7u7P2tQipKGVlZb5DIIQQQkg1QxVrREJiYiK8vb1x+PBheHh4YMiQIXyHVCFJSUmws7ODUCgEAKSnp0NNTU1qvxWRSISsrCy0atUKx48fl3WonHvw4AHmzJkjrkpUV1eX+kS/d+/ePERHCGHDoEGD0LVr11KrwRYtWoTHjx8jMjJSxpERQgghhBBSNVHFGpGgra2N1atXIzExEUFBQb98Yk1LSws2Njb4559/ABQm1urXry+1sba8vDzU1dUxZcoUWYcpE1ZWVgCAlJQUxMTElDheNMjh0aNHsg6NEMKSt2/fYtKkSaUeNzAwwNmzZ2UYESGEEEIIIVUbJdaIVAMGDMDevXv5DoMVM2bMwIwZMwAUbodcsGBBmT3nqipXV9ef6oNECPl1NGjQAPfv3y918ueTJ0+q9JAWQgghhBBCZI0Sa0Sq2rVr4+PHj3yHwbrz58/zHQJvRo0axXcIhBCODRw4ED4+PtDX18eoUaMktntHRkYiJCQE48eP5zFCQgghhBBCqhbqsUak2rJlCyIiIn75RNSmTZswZMgQ6Orqij/+HoZhWJ+aV9kIBAIUFBSIPxYKhcjNzcU///yD4cOH8xgZIaQiPn/+jPHjxyM+Ph61a9eGlpYWACA5ORkfPnxA+/btceDAAaiqqvIcKSGEEEIIIVUDJdZICRkZGbC0tESvXr1++Wlvurq62LBhA4YNGyb++Huqap+x7OxsuLi44MqVK/j69Wup51XF/3dCqhOBQIDDhw/j4sWLSE5OhlAoRNOmTTFgwACMGTNG6vAWQgghhBBCyM+hxFo1cfPmzTKPCwQC5Obm4smTJwgJCUF2djaCg4PLlYiqzJKTk6Gurg5lZWXxx+XRrFkzLsPixYoVKxASEoIuXbqgVq1auHr1KoYPH4709HTcvHkT8vLy8PDwqJb95wghhBBCCCGEkJ9BPdaqCXt7+3I1rheJRGjUqBG2bdv2yyfVgJIJsqqYMCuvmJgYmJqawtPTE5mZmejZsyccHBzQsWNHPHz4EHZ2dnj58iUl1gj5hbx69QoNGzZErVq1xB+XR8uWLbkMixBCCCGEkGqDEmvVhLOzc5mJNSUlJdSpUwetW7dG586dUaNG1f3WKCgowPXr15GWlibRZ6w4S0tL2QYlAxkZGejVqxcAQF1dHQ0bNsTdu3fRsWNHdOjQAVZWVjh+/DimTp3Kc6SEkPIaMmQI1q9fL97uPnjw4HI9RKEt34QQQgghhLCj6mZPiITZs2fzHUKl8PjxYzg5OSE1NRWl7YJmGKZKJtZUVFQkPm7evDmePXsm/rhdu3YIDw+XcVSEkIpwdnZGu3btJD4uT2KNEEIIIYQQwg5KrJFqZf369cjKyoKzszP09PSqVRPv9u3bIzo6Gra2tgCAVq1a4fbt2+Ljb968gZycHF/hEUJ+wqxZsyQ+pocohBBCCCGEyBYNLyDVSpcuXeDo6Ii5c+fyHYrMRUdHY9asWWjfvj0OHDiAR48ewcHBARYWFmjZsiW8vb3x22+/Yffu3XyHSgghhBBCCCGE/BKoYo1UK0pKSmjYsCHfYfDC1NQUrq6u2L9/P1RUVPDbb7/B3t4e/v7+AAoHO/zxxx88R0kIqYgvX75g+/btiIyMRHp6utQ+kgzDID4+nofoCCGEEEIIqXqoYo1UKy4uLnj37h18fHz4DqXSSElJQXZ2Nlq3bg0FBQW+wyGEVICrqyv8/PygpaWFdu3albrdfdOmTTKOjBBCCCGEkKqJEmukWnnw4AHmzJmDtm3bYtCgQVBXV5faV6x37948REcIIRXTu3dvdOzYEbt27aIhBoQQQgghhMgAbQUl1YqVlRWAwiqtmJiYEsdFIhEYhsGjR49kHRrrevfujZUrV8LMzEz88fcwDIPLly9zHRohhCM5OTkwMTGhpBohhBBCCCEyQok1Uq24urpWmxvOli1bQlVVVeJjQkjVpqenh2fPnvEdBiGEEEIIIdUGbQUlhBBCqojr16/D2dkZa9euhZmZGeTl5fkOiRBCCCGEkCqNEmuEVHMPHjyAvLw89PT0+A6FEFJB9vb2ePXqFTIyMlCjRg2oqamVqNKlLd+EEEIIIYSwh7aCkirNxMSk1GMMw0BJSQlqamriYQZGRkYyjE62RCIRPD098fr1a2zYsAFCoRCTJ0/G9evXAQAGBgbYtWuXxPZRQsivp2XLlrT1mxBCCCGEEBmhijVSpRkbG5d5XCgU4sOHD/j8+TMYhoGNjQ1Wrlwpo+hka9++fdi4cSP69OmDvXv3IiIiAosXL8bAgQPRpk0b7N27F+PHj8fixYv5DpUQQgghhBBCCPklUMUaqdLOnz9frvMSExPh7e2N4OBgGBoaYsiQIRxHJnvHjh2DmZkZtm/fDgA4deoUatasCXd3dygrKyM3NxenTp2ixBohhBBCCCGEEFJOlFgjBIC2tjZWr16NxMREBAUFVcnE2uvXr+Hg4AAA+Pr1K/79918YGhpCWVkZAKCjo4P09HQ+QySE/CAbGxvMnj0bvXr1En9cHsHBwVyGRQghhBBCSLVBiTVCihkwYAD27t3LdxicqFWrFj5+/AigcHLgp0+f0Lt3b/HxpKQk1K9fn6/wCCE/ITU1FXl5eRIfE0IIIYQQQmSHEmuEFFO7dm1x8qmq6dChAwICAtCsWTN4eXlBTk4O5ubmEAqFuHjxIoKCgsoc9kAIqXy+3e5e3u3vhBBCCCGEEHbI8R0AIZVJUlISNDQ0+A6DE0uWLMHXr18xZ84cxMfHY+LEiWjSpAlu3LgBZ2dn1K1bF3PmzOE7TEIIIYQQQggh5JdBU0EJ+f8yMjJgaWmJXr16wd3dne9wOJGdnY1r166hcePG6NKlCwAgKysL0dHRGDx4MFRVVfkNkBBSYdeuXcOlS5eQlpaG0n7Fe3h4yDgqQgghhBBCqiZKrJEq7ebNm2UeFwgEyM3NxZMnTxASEoLs7GwEBwdDV1dXRhESQgh7Dhw4AHd391ITagDAMAwePXokw6gIIYQQQgipuiixRqo0XV1dMAzz3fNEIhEaNWqENWvWoG/fvjKIjB///vsvnjx5ggkTJgAAPD09sX//fsjLy8Pe3p62ghLyizMxMUHdunWxadMmaGlpQU6OOj4QQgghhBDCJRpeQKo0Z2fnMhNrSkpKqFOnDlq3bo3OnTujRo2q+yNx7tw5zJo1Cy1atMCECRNw48YNeHp6QltbG40aNcKuXbugoaGB8ePH8x0qIeQnZWRkwMnJCdra2nyHQgghhBBCSLVQdbMIhACYPXs23yFUGt7e3tDV1YWvry8A4NixY5CXl4efnx8aNWqE+fPnIyQkhBJrhPzCOnXqhOfPn/MdBiGEEEIIIdUG7REhpJp4/PgxrK2tUadOHQDApUuX0KFDBzRq1AgAYGRkhISEBB4jJIRU1NKlSxEZGYkDBw4gJSUF+fn5Uv8jhBBCCCGEsIMq1gipJhiGEW+LffjwIdLS0mBtbS0+/uHDB5oKSsgvrmHDhtDW1oa7u3up040ZhkF8fLyMIyOEEEIIIaRqosQaIdWEjo4OoqKiMHjwYHh7e4NhGJiYmAAA0tPTERISQtNQCfnFLVu2DHfu3EHHjh3RsmXLKt03khBCCCGEkMqApoISUk2cO3cOc+fOhVAohEgkgpGREXx8fHDr1i04OjoCAHx8fNCtWzeeIyWE/Kxu3bphxIgRWLlyJd+hEEIIIYQQUi3Qo2xCqgkTExP4+voiKioKjRs3hp2dHYDCrWNmZmZwdHREhw4deI6SEFIRSkpK0NPT4zsMQgghhBBCqg2qWCOEEEKqiFWrVuH58+fw8/ODnBzNJyKEEEIIIYRrlFgjpJpISUkp13lNmzblOBJCCFcuXbqEFStWoG7dujA2NoaGhobUPmtjx47lITpCCCGEEEKqHkqsEVJN6OrqiqeCluXRo0cyiIYQwoXyDCBhGIZ+zgkhhBBCCGEJ9VgjpJqYMmVKicSaUChEeno6rly5grp162LatGk8RUcIYYOfnx/fIRBCCCGEEFKtUMUaIQTZ2dkYM2YMxowZg8mTJ/MdDiGEEEIIIYQQ8kugxBohBADg4+ODgIAAnDt3ju9QCCEVdP78eZw9exbJyclQUFBAkyZNYGxsDGNjY75DI4QQQgghpEqhraCEEACFfZfS0tL4DoMQUgEFBQVYsGABTp06BZFIBDU1NRQUFODq1as4cuQITE1NsW3btnL1WySEEEIIIYR8nxzfARBCZCM/P1/qfx8/fsTNmzfh4+MDHR0dvsMkhFTA/v37cfLkSdja2uLKlSu4ceMGYmNjcfnyZdja2iI6Opr6sBFCCCGEEMIi2gpKSDVRnqmg27dvh6mpqYwiIoSwbciQIWjZsiV27Ngh9fjMmTORlJSEyMhIGUdGCCGEEEJI1URbQQmpJiwtLaUm1uTk5FC/fn0MHToUbdq04SEyQghbkpKSYG9vX+rx3r17Y926dTKMiBBCCCGEkKqNEmuEVBPu7u58h0AI4ZiamhqSk5NLPf7mzRvUqlVLhhERQgghhBBStVGPNUIIAOD169eYMGEC32EQQiqgb9++CAwMxO3bt0scu3XrFg4ePIg+ffrwEBkhhBBCCCFVE/VYI6QKu3//Pnbs2CG+ye7QoQNmz56Nrl27is8RiUTw8fHB9u3bkZeXh0ePHvEVLiGkgv777z+MHj0aGRkZ+O2339CqVSuIRCK8fPkSN2/ehLq6OkJDQ9GkSRO+QyWEEEIIIaRKoMQaIVXUzZs34ejoCKFQiBYtWkBFRQVPnjwBABw4cADdu3dHSkoK5s+fj7t376JWrVpYtGgRxo4dy3PkhJCKePv2LTZu3IgLFy7g06dPAAAVFRX0798fCxYsQLNmzXiOkBBCCCGEkKqDEmuEVFGTJ0/GrVu3sHfvXhgYGAAovOF2cnKCiooK3N3dYWdnh/T0dPTr1w+rV69Go0aNeI6aEMKWgoICZGVlQSQSQV1dHXJy1P2BEEIIIYQQtlFijZAqysjICCNHjsTixYslXr906RKcnJzQrl07JCYm4s8//4SVlRVPURJC2CQSifDmzRtkZWWBYRioq6tThRohhBBCCCEcoqmghFRROTk5aN26dYnX27ZtC5FIhHfv3iEoKAi6uro8REcIYdPjx4+xZ88eXLlyBTk5ORLH1NTUYGJigsmTJ0NHR4enCAkhhBBCCKmaKLFGSBUlEAigoKBQ4nUlJSUAwJQpUyipRkgVEBQUhL///hsFBQXo2rUr2rZtizp16kAgEOD9+/eIj4/H0aNHERERgZUrV8La2prvkAkhhBBCCKkyKLFGSDXVvn17vkMghFTQ9evXsXr1aujr62PdunXQ1taWet6rV6+wYsUKrFy5Eq1bt5aYDEwIIYQQQgj5edTJmJBqimEYvkMghFSQr68vtLS04OvrW2pSDQBatmwJb29vaGpqws/PT4YREkIIIYQQUrVRxRohVdjLly9x8+ZNideK+i89efIENWqUfAswNDSUSWyEkIq7f/8+bGxsULNmze+eq6ioCAsLC4SFhckgMkIIIYQQQqoHSqwRUoV5eXnBy8tL6rF169ZJff3Ro0dchkQIYdH79+/RqFGjcp/frFkzpKencxgRIYQQQggh1Qsl1gipombNmsV3CIQQjgkEgnJVqxVRVFSEUCjkMCJCCCGEEEKqF0qsEVJFUWKNEEIIIYQQQgjhFiXWCCGEkF/Y+/fvkZKSUq5zs7KyOI6GEEIIIYSQ6oURiUQivoMghBBCyI/T1dX9qQm/1EuREEIIIYQQdlDFGiGEEPKLGjlyJN8hEEIIIYQQUq1RxRohhBBCCCGEEEIIIT9Bju8ACCGEEEIIIYQQQgj5FVFijRBCCCGEEEIIIYSQn0CJNUIIIYQQQgghhBBCfgIl1gghhBBCCCGEEEII+Qk0FZQQQgghpBJ6+PAhDh06hBs3buDt27eQl5dH27ZtMWzYMIwdOxY1alTOy7grV65ATU0NnTt35jsUQgghhBDOUcUaIYQQQkglUlBQgK1bt2L06NEICwuDjo4Oxo0bhyFDhuDdu3dYvXo1HB0dkZeXx3eoJRw8eBCTJ09Gamoq36EQQgghhMhE5XzUSQghhBBSTXl5eWHnzp3o0qULtm3bhkaNGomP5efnY+nSpYiMjMSSJUuwZcsW/gKVIiMjg+8QCCGEEEJkiirWCCGEEEIqiVevXmHnzp1QV1fH3r17JZJqAKCoqAg3Nzc0a9YMp06dwosXL3iKlBBCCCGEAJRYI4QQQgipNMLDw/H161eMHz8eampqUs9RUFDA8uXL4erqinr16kkci4qKgo2NDbp06YKuXbvCxsYGJ06ckDjnzZs3aNeuHWbOnFnia2/fvh3t2rVDdHS0+DVjY2PY29vjxYsXmD59Orp3746uXbti6tSpePz4sfg8e3t7eHp6AgCcnZ3Rrl07AMDRo0fRrl07nDx5EpMnT0anTp0wYMAAeHp6ol27djh8+HCJOJKTk6Grq4sFCxaU82+OEEIIIYQflFgjhBBCCKkkLl++DADo06dPmecNGDAAo0aNgrq6uvi1devWYd68eXjz5g2GDh0KCwsLvHnzBvPnz8eGDRsqFNfbt29hY2ODjIwMjBkzBj169MClS5dgb2+PzMxMAMDIkSPx22+/AQCGDBmCWbNmSXyNtWvXIjMzE/b29ujUqRMsLS3BMAwiIyNLrBcZGQmRSARLS8sKxU0IIYQQwjXqsUYIIYQQUkm8e/cOANCiRYsf+rzY2Fjs378f7du3h7e3tzjhlpmZiQkTJmDfvn3o378/DA0NfyqupKQkjB8/L4heFwAABStJREFUHsuXLwfDMACA5cuXIyQkBKdPn4atrS1GjRqF5ORk3LhxAxYWFjA1NZX4GjVq1MDBgwehrKwsfs3AwAA3b95EamoqGjZsKH49MjISDRo0QM+ePX8qXkIIIYQQWaGKNUIIIYSQSuLDhw8AgFq1av3Q5x09ehQAsHjxYokqNnV1dfF2yiNHjlQotqlTp4qTagDQr18/AIXbNsujb9++Ekk1ALC0tERBQQGioqLEr8XHx+P58+cYOnQo5OXlKxQzIYQQQgjXKLFGCCGEEFJJ1K1bF8D/JdjK6/Hjx5CTk0P37t1LHCt6rXg/tB+lpKSEJk2aSLymqqoKoHBSaXloamqWeG3QoEGoWbOmxHbQoj+PGDHiZ8MlhBBCCJEZSqwRQgghhFQSWlpaAIDExMQyz8vJyUFqaqr4448fP0JJSQmKioolzq1duzaUlZXx+fPnn45L2tctql4TiUTl+hpKSkolXlNVVYWpqSkePHiAxMREFBQU4Pjx42jbti309PR+Ol5CCCGEEFmhxBohhBBCSCVRNLTg6tWrZZ536NAh9OnTB1u2bAFQuHX08+fPUivdvnz5gry8PPEE0aKEWEFBQYlzK5J8+1lFAwpOnjyJuLg4pKamUrUaIYQQQn4ZlFgjhBBCCKkkhg0bBgUFBQQEBCAnJ0fqOZ8/f8bhw4cBAL169QIA6OrqAgDi4uJKnB8XFweRSITWrVsDABQUFMRf51tJSUkVir94D7by6tmzJxo0aIALFy7gwoULkJOTw7BhwyoUByGEEEKIrFBijRBCCCGkktDS0sLEiRORlZWFKVOmSGz3BAq3gC5cuBAJCQkYMGCAeMrnqFGjAACbNm1CZmam+PzMzEysX78ewP/1LNPQ0ECdOnVw7949ZGRkiM+Nj4/HxYsXKxR/jRqFA+fL23cNAOTl5TFs2DDcu3cPUVFR+N///odGjRpVKA5CCCGEEFmpwXcAhBBCCCHk/8ybNw8ZGRk4evQoTExM0L9/fzRv3hz//fcfrl69iszMTHTr1k2cMAMAQ0NDODo6wsfHB8OHD8eAAQMAABcuXEBaWhqmTp0qTsLJy8tj9OjR2L9/P6ytrTFw4EBkZmbi1KlT6Ny5M2JjY3869qKE2K5du/Do0SPMmjWrXJ83cuRI7N+/H2/fvsXvv//+0+sTQgghhMgaJdYIIYQQQioReXl5uLm5wcLCAsHBwXj8+DFiYmJQo0YNtGvXDnPnzoW1tTXk5eUlPm/JkiVo3749AgMDERkZiRo1akBPTw8rVqyAubm5xLnz58+HsrIywsPD4e/vjxYtWmD58uWoW7duhRJrQ4YMQUxMDC5evIiDBw9i5MiR5fq8tm3bQkdHBykpKTAzM/vp9QkhhBBCZI0RlXeUEyGEEEIIIRzIyclBr169MHDgQGzYsIHvcAghhBBCyo16rBFCCCGEEF7t3bsXX758wZgxY/gOhRBCCCHkh9BWUEIIIYQQwovx48fj/fv3eP78Of73v/+J+8ARQgghhPwqqGKNEEIIIYTwok6dOnjz5g169eoFDw8PvsMhhBBCCPlh1GONEEIIIYQQQgghhJCfQBVrhBBCCCGEEEIIIYT8BEqsEUIIIYQQQgghhBDyEyixRgghhBBCCCGEEELIT6DEGiGEEEIIIYQQQgghP4ESa4QQQgghhBBCCCGE/ARKrBFCCCGEEEIIIYQQ8hMosUYIIYQQQgghhBBCyE+gxBohhBBCCCGEEEIIIT+BEmuEEEIIIYQQQgghhPyE/wcUeZkp7Qub/wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -934,7 +1602,7 @@ }, { "cell_type": "code", - "execution_count": 215, + "execution_count": 854, "metadata": {}, "outputs": [ { @@ -943,7 +1611,7 @@ "0" ] }, - "execution_count": 215, + "execution_count": 854, "metadata": {}, "output_type": "execute_result" } @@ -954,19 +1622,19 @@ }, { "cell_type": "code", - "execution_count": 216, + "execution_count": 855, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Hobby\n", - "No 18958\n", - "Yes 79897\n", + "No 20\n", + "Yes 79\n", "Name: Hobby, dtype: int64" ] }, - "execution_count": 216, + "execution_count": 855, "metadata": {}, "output_type": "execute_result" } @@ -984,16 +1652,16 @@ }, { "cell_type": "code", - "execution_count": 217, + "execution_count": 856, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "19819" + "11" ] }, - "execution_count": 217, + "execution_count": 856, "metadata": {}, "output_type": "execute_result" } @@ -1004,29 +1672,27 @@ }, { "cell_type": "code", - "execution_count": 218, + "execution_count": 857, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "UndergradMajor\n", - "Computer science, computer engineering, or software engineering 50336\n", - "Another engineering discipline (ex. civil, electrical, mechanical) 6945\n", - "Information systems, information technology, or system administration 6507\n", - "A natural science (ex. biology, chemistry, physics) 3050\n", - "Mathematics or statistics 2818\n", - "Web development or web design 2418\n", - "A business discipline (ex. accounting, finance, marketing) 1921\n", - "A humanities discipline (ex. literature, history, philosophy) 1590\n", - "A social science (ex. anthropology, psychology, political science) 1377\n", - "Fine arts or performing arts (ex. graphic design, music, studio art) 1135\n", - "I never declared a major 693\n", - "A health science (ex. nursing, pharmacy, radiology) 246\n", + "Computer science, computer engineering, or software engineering 56\n", + "A natural science (ex. biology, chemistry, physics) 7\n", + "Another engineering discipline (ex. civil, electrical, mechanical) 7\n", + "A business discipline (ex. accounting, finance, marketing) 5\n", + "Fine arts or performing arts (ex. graphic design, music, studio art) 4\n", + "Information systems, information technology, or system administration 3\n", + "Mathematics or statistics 2\n", + "Web development or web design 2\n", + "A social science (ex. anthropology, psychology, political science) 1\n", + "A humanities discipline (ex. literature, history, philosophy) 1\n", "Name: count, dtype: int64" ] }, - "execution_count": 218, + "execution_count": 857, "metadata": {}, "output_type": "execute_result" } @@ -1037,7 +1703,7 @@ }, { "cell_type": "code", - "execution_count": 219, + "execution_count": 858, "metadata": {}, "outputs": [], "source": [ @@ -1066,7 +1732,7 @@ }, { "cell_type": "code", - "execution_count": 220, + "execution_count": 859, "metadata": {}, "outputs": [], "source": [ @@ -1075,12 +1741,12 @@ }, { "cell_type": "code", - "execution_count": 221, + "execution_count": 860, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAGxCAYAAADRdJQmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACshUlEQVR4nOzdd1yVdfvA8c8ZHOCw9xJEQcCFK2fmKLdNy6w027+n/Vj2NJ6G7b2fhk21pWWamZqWM9PcCxUXouy9D+Os+/cHiiIgoMDhwPV+vc6ruM89rvsI51znO66vSlEUBSGEEEKIJqK2dQBCCCGEaFskuRBCCCFEk5LkQgghhBBNSpILIYQQQjQpSS6EEEII0aQkuRBCCCFEk5LkQgghhBBNSpILIYQQQjQpSS6EEEII0aQkuRDN6vnnn0elUpGTk1Pr8z169GDEiBFNes0RI0Y0+Tlbi4beW3h4OCqVqs59v/nmG1QqFSqVivXr1zc6jvXr11/wsUKItk+SCyHaKDc3N/766y8SEhJqPPf111/j7u5+wefu27cv//zzD3379r2YEIUQbZQkF0Kch6IolJWVXfR5muIcjTV06FBCQkL4+uuvq21PSEjgr7/+YsqUKRd8bnd3dwYNGnRRCcrZSktLm+Q8QojWQZIL0aqcbm6fP38+Tz/9NMHBwbi7uzNq1CgOHz5cbV9FUXjzzTfp2LEjTk5O9O3bl99//73W8xYVFfHYY4/RqVMndDodISEhzJgxA4PBUG0/lUrFgw8+yOzZs+natSuOjo7MmzcPgL///pvBgwfj5ORESEgIzz77LF9++SUqlYoTJ05UnSM8PJwrr7ySxYsX06dPH5ycnHjhhRcA+Pjjjxk2bBj+/v64uLjQs2dP3nzzTUwm0wXfW13UajXTp09n3rx5WK3Wqu1ff/01oaGhjBo1qsYxO3bs4KabbiI8PBxnZ2fCw8O5+eabOXnyZLX96uoWWbp0KYMHD0av1+Pm5sbo0aP5559/qu1zuqts165d3HDDDXh5eREREdGoexNCtG5aWwcgRG3++9//cumll/Lll19SVFTEE088wVVXXUV8fDwajQaAF154gRdeeIG77rqLG264geTkZO655x4sFgvR0dFV5yotLWX48OGkpKTw3//+l9jYWA4cOMBzzz1HXFwcq1evRqVSVe2/ZMkSNm7cyHPPPUdgYCD+/v7s27eP0aNHExUVxbx589Dr9cyePZvvvvuu1vh37dpFfHw8zzzzDJ06dcLFxQWobDW45ZZbqpKcvXv38sorr3Do0KFqLQwNvbf63Hnnnbz22musWrWK8ePHY7FYmDdvHnfddRdqdc3vFidOnCA6OpqbbroJb29v0tPT+fTTT+nfvz8HDx7E19e3zmv98MMPTJ06lTFjxjB//nwqKip48803GTFiBGvWrGHo0KHV9p80aRI33XQT9957b40kTwhh5xQhmtGsWbMUQMnOzq71+e7duyvDhw+v+nndunUKoEyYMKHafj/99JMCKP/884+iKIqSn5+vODk5Kdddd121/TZt2qQA1c752muvKWq1Wtm+fXu1fX/++WcFUFasWFG1DVA8PDyUvLy8avtOnjxZcXFxqXYfFotF6datmwIoiYmJVds7duyoaDQa5fDhw3W/MKeON5lMyjfffKNoNJqqazbm3urSsWNHZeLEiYqiKMrw4cOVG264QVEURVm+fLmiUqmUxMREZeHChQqgrFu3rs7zmM1mpaSkRHFxcVE++OCDqu2n/51OH2uxWJTg4GClZ8+eisViqdqvuLhY8ff3V4YMGVK17fTvxHPPPVfvfQgh7JN0i4hW6eqrr672c2xsLEBV8/w///xDeXk5U6dOrbbfkCFD6NixY7Vty5Yto0ePHvTu3Ruz2Vz1GDt2bK1N+5dffjleXl7Vtm3YsIHLL7+82jd3tVrNjTfeWGv8sbGxREVF1di+e/durr76anx8fNBoNDg4ODB9+nQsFgtHjhxp9L01xJ133snSpUvJzc3lq6++YuTIkYSHh9e6b0lJCU888QSRkZFotVq0Wi2urq4YDAbi4+PrvMbhw4dJS0vj1ltvrdYi4urqyvXXX8+WLVtqjKu4/vrrG30vQgj7IN0iollptZW/YhaLpdbnzWYzDg4ONbb7+PhU+9nR0RE4MzAyNzcXgMDAwBrHnrstMzOTY8eO1XodoMY02aCgoBr75ObmEhAQUGN7bdvqOkdSUhKXXXYZ0dHRfPDBB4SHh+Pk5MS2bdt44IEHLujeGuKGG27goYce4r333uO3335j7ty5de57yy23sGbNGp599ln69++Pu7s7KpWKCRMmnHdQ6umYa7vv4OBgrFYr+fn56PX6qu217SuEaBskuRDN6vSHb2pqao0PYkVRSE9P55JLLmn0eU8nHxkZGTWey8jIqPbN3NfXF2dn5xqzJs5+/mxnj784+3qZmZm1Xqs2tZ1jyZIlGAwGFi9eXK0FYs+ePTWuVde5z723htDr9dx000289tpruLu7M2nSpFr3KywsZNmyZcyaNYsnn3yyantFRQV5eXnnvcbpmNPT02s8l5aWhlqtrtEaVNtrJIRoG6RbRDSryy+/HJVKxY8//ljjuZUrV1JUVFTrrIX6DBo0CCcnJ77//vtq2zdv3lxjZsOVV15JQkICPj4+XHLJJTUeDfmwHj58OGvXrq3WymG1Wlm4cGGDYz79YXq6FQYqE6wvvvjigu+toe677z6uuuoqnnvuOZycnOqMT1GUavEBfPnll3W2PJ0WHR1NSEgIP/zwA4qiVG03GAwsWrSoagaJEKJ9kJYL0awiIiJ48MEHeeuttygoKGDChAk4Ozuzfft2Xn/9dS655BJuueWWRp/Xy8uLxx57jJdffpm7776byZMnk5yczPPPP1+j62DGjBksWrSIYcOG8cgjjxAbG4vVaiUpKYk//viDmTNnMnDgwPNe7+mnn+a3337jiiuu4Omnn8bZ2ZnZs2dXzXKobebFuUaPHo1Op+Pmm2/m8ccfp7y8nE8//ZT8/PwLvreG6t27N0uWLDnvPu7u7gwbNoy33noLX19fwsPD2bBhA1999RWenp7nPVatVvPmm28ydepUrrzySv71r39RUVFR9e/++uuvX1DcQgj7JMmFaHYffPAB3bp146uvvuK7777DbDbTsWNHHnjgAZ555hl0Ot0FnffFF1/ExcWFTz75hG+//ZaYmBhmz57N22+/XW0/FxcXNm7cyOuvv87nn39OYmIizs7OhIWFMWrUqAa1XPTq1Ys///yTxx57jOnTp+Pl5cWtt97K8OHDeeKJJ/Dw8Kj3HDExMSxatIhnnnmGSZMm4ePjwy233MKjjz7K+PHjL+jemtoPP/zAv//9bx5//HHMZjOXXnopf/75JxMnTqx1/7O7Nm655RZcXFx47bXXmDJlChqNhkGDBrFu3TqGDBnSrHELIVoXlXJ2G6YQdiw8PJwZM2YwY8aMFrvmmDFjOHHiRNVMj/bi119/5dprryUuLo4ePXrYOhwhRCsjYy5aSEZGBg899BCdO3fG0dGR0NBQrrrqKtasWWPr0Bpk7ty59TaNX6xFixYxcOBAPDw8cHNzo3v37sycObPBx2/fvp3/+7//a7b4Hn30Ub799lvWr1/P4sWLuf766/nzzz+rDX5s6yoqKli9ejUfffQRfn5+REZG2jokIUQrJN0iLeDEiRNceumleHp68uabbxIbG4vJZGLVqlU88MADHDp0yNYhthiLxYJKpaoxRmH16tXcdNNNvPrqq1x99dWoVCoOHjzYqOTLz8+vqcOtxmKx8Nxzz5GRkYFKpaJbt258++23TJs2rVmv25qkp6czYcIEoqOj+f777+scHCqEaOdsWcGrvRg/frwSEhKilJSU1HguPz+/6v9PnjypXH311YqLi4vi5uamTJ48WcnIyKh6ftasWUqvXr2Ur776SgkNDVVcXFyUe++9VzGbzcobb7yhBAQEKH5+fsrLL79c7RqA8sknnyjjxo1TnJyclPDwcOWnn36qev50tcWzY9m9e3dV5cnTz5/9mDVrlqIoilJRUaH85z//UYKDgxW9Xq8MGDCgWsXHOXPmKB4eHspvv/2mdO3aVdFoNMrx48drvA7//ve/lREjRtT7Wv76669Kv379FEdHR8XHx6daFcuOHTsq7733XtXPBQUFyj333KP4+fkpbm5uysiRI5U9e/bUeD2/+eYbpWPHjoq7u7syZcoUpaioqGofi8WivP7660pERISi0+mU0NDQaq9vSkqKcuONNyqenp6Kt7e3cvXVV1er1imEEO2RdIs0s7y8PFauXMkDDzxQtb7E2U53NSiKwrXXXkteXh4bNmzgzz//JCEhocbKlQkJCfz++++sXLmS+fPn8/XXXzNx4kRSUlLYsGEDb7zxBs888wxbtmypdtyzzz7L9ddfz969e5k2bRo333zzeSsunm3IkCG8//77uLu7k56eTnp6Oo899hgAd9xxB5s2bWLBggXs27ePyZMnM27cOI4ePVp1fGlpKa+99hpffvklBw4cwN/fv8Y1AgMDOXDgAPv3768zjuXLlzNp0iQmTpzI7t27WbNmTZ01MhRFYeLEiWRkZLBixQp27txJ3759ueKKK6rVbEhISGDJkiUsW7aMZcuWsWHDhmozG5566ineeOMNnn32WQ4ePMgPP/xQVa+jtLSUkSNH4urqyl9//cXff/+Nq6sr48aNw2g0Nui1FUKINsnW2U1bt3XrVgVQFi9efN79/vjjD0Wj0ShJSUlV2w4cOKAAyrZt2xRFqfymrdfrq32zHjt2rBIeHl5tPYfo6Gjltddeq/oZUO69995q1xs4cKBy3333KYpSf8uFopxpgTjbsWPHFJVKpaSmplbbfsUVVyhPPfVU1XFAtRaD2pSUlCgTJkxQAKVjx47KlClTlK+++kopLy+v2mfw4MHK1KlT6zzH2S0Xa9asUdzd3asdryiKEhERoXz22WeKotT+ev7nP/9RBg4cqCiKohQVFSmOjo7KF198Uev1vvrqKyU6OlqxWq1V2yoqKhRnZ2dl1apV571fIYRoy2TMRTNTTk3Gqa8aYXx8PKGhoYSGhlZt69atG56ensTHx9O/f3+gckaEm5tb1T4BAQFoNJpqYxgCAgLIysqqdv7BgwfX+PncypCNtWvXLhRFqbGGRkVFRbXy3TqdrmptkLq4uLiwfPlyEhISWLduHVu2bGHmzJl88MEH/PPPP+j1evbs2cM999zToNh27txJSUlJjTLiZWVlJCQkVP187usZFBRU9drFx8dTUVHBFVdcUec1jh07Vu14gPLy8mrXEEKI9kaSi2bWpUsXVCoV8fHxXHvttXXupyhKrQnIudvPXR9DpVLVus1qtdYb2+nznk5MlLNmJZtMpnqPt1qtaDQadu7cWbUM+mmurq5V/+/s7NzgUs8RERFERERw99138/TTTxMVFcWPP/7IHXfcgbOzc4POcTq2oKCgGouSAdVmvZzvtavvelarlX79+tWopAnNP7hUCCFaMxlz0cy8vb0ZO3YsH3/8cVU1x7MVFBQAla0USUlJJCcnVz138OBBCgsL6dq160XHce4YjC1bthATEwOc+SA8e12Ic1s1dDpdjRLQffr0wWKxkJWVRWRkZLXHhVaSPFt4eDh6vb7qdYuNjW3w7JG+ffuSkZGBVqutEdu5a4nUpUuXLjg7O9d5zb59+3L06FH8/f1rXKMhRbWEEKKtkuSiBXzyySdYLBYGDBjAokWLOHr0KPHx8Xz44YdV3RWjRo0iNjaWqVOnsmvXLrZt28b06dMZPnz4BS3sda6FCxfy9ddfc+TIEWbNmsW2bdt48MEHAYiMjCQ0NJTnn3+eI0eOsHz5ct55551qx4eHh1NSUsKaNWvIycmhtLSUqKgopk6dyvTp01m8eDGJiYls376dN954gxUrVjQqvueff57HH3+c9evXk5iYyO7du7nzzjsxmUyMHj0agFmzZjF//nxmzZpFfHw8cXFxvPnmm7Web9SoUQwePJhrr72WVatWceLECTZv3swzzzzDjh07GhSTk5MTTzzxBI8//jjffPMNCQkJbNmyha+++gqAqVOn4uvryzXXXMPGjRtJTExkw4YN/Pvf/yYlJaVR9y+EEG2JJBctoFOnTuzatYuRI0cyc+ZMevTowejRo1mzZg2ffvopUNkcv2TJEry8vBg2bBijRo2ic+fOtS74dSFeeOEFFixYQGxsLPPmzeP777+nW7duQGXXwPz58zl06BC9evXijTfe4OWXX652/JAhQ7j33nuZMmUKfn5+VR/qc+bMYfr06cycOZPo6Giuvvpqtm7dWm3sSEMMHz6c48ePM336dGJiYhg/fjwZGRn88ccfREdHAzBixAgWLlzI0qVL6d27N5dffjlbt26t9XwqlYoVK1YwbNgw7rzzTqKiorjppps4ceJEncuk1+bZZ59l5syZPPfcc3Tt2pUpU6ZUjcnQ6/X89ddfhIWFMWnSJLp27cqdd95JWVkZ7u7ujbp/IYRoS6T8dzugUqn45ZdfzjvmQwghhGgq0nIhhBBCiCYlyYUQQgghmpRMRW0HpOdLCCFES5KWCyGEEEI0KUkuhBBCCNGkJLkQQgghRJOS5EIIIYQQTUqSCyGEEEI0KUkuhBBCCNGkJLkQQgghRJOS5EIIIYQQTUqSCyGEEEI0KanQKUQDlZss5BmMVY/8UiO5JZX/zTMYKS43U2ayUG6yUGa0UGG2YrKcfiiYLVZUKhVajQoHjRqtWoVOW/lfB4361EOFq5MDXnoHPJ0d8NDr8HR2wFPvgKdeh6feAW+9Di8Xna1fDiGEqJMkF0KcUlxuIimvlOS8MlLyS0nOK638Ob+MtIIySo0WW4dYxdlBQ7CnEx289IR4ORPi6UyHU/8N8XImwM0JtVpl6zCFEO2ULLku2p3CUhMH04s4lFFEfHoRhzNLOJlroKDUZOvQmoyTg5pIf1eiAtyIDnAjKrDyv8GezrYOTQjRDkhyIdq0EzkG9qUWEp9exKH0Ig5lFJNeWG7rsGzG3UlbmXAEutEzxIN+Hb2I9HdFpZJWDiFE05HkQrQZZouV/WlF7DiRx44T+ew4mU9OSYWtw2r1PJwd6B3qSb+OXvQN86J3mCeujtJjKoS4cJJcCLtVbrKwLTGP7ScqH3uTCykztZ5xEfZKrYKoADf6h3sztIsvl0b6SrIhhGgUSS6EXTmRY2D94SzWHc5ma2Iu5SarrUNq87RqFX3DvBge7cewLn70CHGXbhQhxHlJciFatXKThS3Hc1l/OJv1h7M4kVtq65DaPR8XHUO7+DKsix8jY/zxlmmxQohzSHIhWp1So5k/D2aybF86G49mS+tEK6ZVqxjU2YeJsUGM7R4oiYYQApDkQrQS5SYL6w9n8dvedNYeypKxE3bodKIxoWcQ43pIoiFEeybJhbAZo9nKxqPZ/LY3jdXxWZRUmG0dkmgiGrWKQZ29uSo2mImxQbg5Odg6JCFEC5LkQrS4Y1klzN+WxOJdKeS3ocJVonbODhrG9wjkhks6MLizjwwGFaIdkORCtIhyk4Xf96czf2sy207k2TocYSOh3s5MuSSUGy8Jxd/dydbhCCGaiSQXolkdySzmh61J/LI7lcIyaaUQlbRqFZfH+DN1UEeGdfGV1gwh2hhJLkSTs1gVVh3IYM6mRLafyLd1OKKV6+Lvyl1DO3Fd3xActRpbhyOEaAKSXIgmY6gw8+P2ZOZsTiQ5r8zW4Qg74+uqY9qgjtw6qCM+ro62DkcIcREkuRAXLaekgq//TuS7LScpKpcZH+LiOGrVTOrbgbsv60SEn6utwxFCXABJLsQFS84r5bO/Eli4I4UKsxS6Ek1LpYIrYvz59xVR9OzgYetwhBCNIMmFaLS0gjI+XHOUn3emYLbKr49ofqO7BfDIqCi6BbvbOhQhRANIciEaLLu4go/XHeOHbUkYpaVCtDCVCsZ1D+SR0VFEBbjZOhwhxHlIciHqVVhqYvZfCczbfIJSo5TlFralVsHE2GBmjOoiYzKEaKUkuRB1Kqkw89XGRL78+zjFMlBTtDIatYrr+oTwn7HRBEhBLiFaFUkuRA2KorBwRwpvrjpMTkmFrcMR4rz0Og33j4jg7ss64+QgdTKEaA0kuRDV7ErK54WlB9ibUmjrUIRolA5ezjw5PoYrY4NtHYoQ7Z4kFwKArKJyXv/9EL/sSUV+I4Q9GxDuzXNXdaNHiExfFcJWJLlo54xmK19vSuSjtcdkyXPRZqhVcEO/DjwxLkaqfQphA5JctGObjuXwzJL9JOYYbB2KEM3CS+/AMxO7cX2/DrYORYh2RZKLdqio3MQry+L5cUeyrUMRokVc1sWXV6/rSai33tahCNEuSHLRzqw+mMkzS/aTUVRu61CEaFF6nYZHR0dx56WdUKtliXchmpMkF+1EnsHI80sPsHRvmq1DEcKmeoV68sb1PYkJlFLiQjQXSS7agaV703hh6QFyDUZbhyJEq+CgUXHfiEgevjwSrUZt63CEaHMkuWjDCktNPLl4H7/vz7B1KEK0Sn3CPPlgSh/CfGQshhBNSZKLNmpbYh4zFuwmrVDGVghxPq6OWl64urvMKBGiCUly0cZYrAofrjnKR+uOYZHl0IVosKt6BfPKdT1wd3KwdShC2D1JLtqQtIIyZizYw7YTebYORQi7FOLpzAc39eaScG9bhyKEXZPkoo1YuT+dJxbFUVhmsnUoQtg1jVrFgyMj+fcVXWTKqhAXSJILO2eyWHlp2UG++eekrUMRok0ZEe3HBzf1wcNZukmEaCxJLuxYdnEF93+/k+0n8m0dihBtUkcfPZ/d2k9qYgjRSJJc2Kl9KQX869udpMtsECGalV6n4Y3rY7mqlyzlLkRDSXJhhxbtTOG/v8RRYbbaOhQh2o17LuvEk+O7opFxGELUS5ILO2KxKryyPJ6vNyXaOhQh2qVLI33438198XbR2ToUIVo1SS7sRL7ByIPzd7HpWK6tQxGiXQv1dmbuHQOI8HO1dShCtFqSXNiBpNxSbpuzjcQcg61DEUIAnnoHvph+Cf2lHoYQtZLkopWLSynkjrnbySmpsHUoQoizOGrVvHtjbybGBtk6FCFaHUkuWrENR7K5/7udGIwWW4cihKiFSgX/Hd+Ve4Z1tnUoQrQqkly0Uot2pvDk4n2YLPLPI0Rrd/uQcJ67sptU9BTiFEkuWqGP1x3jrVWHbR2GEKIRxnQL4MOb++DkoLF1KELYnCQXrYjVqvD8bweklLcQdmpgJ2++vr0/Lo5aW4cihE1JctFKWK0K//l5H4t2pdg6FCHERegd6sm8OwfImiSiXZPkohWwWBUeW7iXX3an2joUIUQT6Bbkzrd3DcDH1dHWoQhhE5Jc2JjFqvDIj3tYujfN1qEIIZpQVIArP9wzCF9JMEQ7JMmFDZktVv794x6W70u3dShCiGYQ6e/KD/cMxN/NydahCNGiJLmwEbPFysMLdrMiLsPWoQghmlFnPxcW3DMIf3dJMET7obZ1AO2RyWLlgR92SWIhRDtwPNvALV9uJc9gtHUoQrQYSS5amNWqMOPHPaw6kGnrUIQQLeRYVgm3z9lGSYXZ1qEI0SIkuWhh//0lTsZYCNEO7Usp5O552yk3STl/0fZJctGCXlsRz4LtybYOQwhhI1uO5/HgD7sxW6y2DkWIZiXJRQv5dH0Cn/113NZhCCFsbHV8Jo//vA8ZSy/aMkkuWsDPO1N4Y+UhW4chhGglFu9O5YXfDto6DCGajSQXzWzd4SyeXLTP1mEIIVqZuZtP8MHqo7YOQ4hmIclFM9qXUsAD3+/CbJXmTyFETe+tPsKve6Tsv2h7JLloJplF5dzzzQ5KjTIyXAhRt8d/3seupHxbhyFEk5LkohmUmyz83zc7yCyqsHUoQohWrsJs5f++2UlqQZmtQxGiyUhy0Qz+8/M+9qYU2joMIYSdyCmp4K652zFIkS3RRkhy0cT+t+Yov8kKp0KIRjqUUczD83djlTFaog2Qhcua0Mr96dz3/S7kFbVvBX9/T+Gm+dW2qV08CX3wOwAURaFw0w+U7F2FtbwEXVAU3qPvQ+fXsc5zKhYzhVsWYti/BnNxLg7eIXiNuAPnzv2q9ik5sI6CDfNQTOW4xo7Ba+SdVc+ZCzPJ/PFZgm57H7WjvonvWLQmdw/txDNXdrN1GEJcFK2tA2grDqQV8uhPeyWxaCMcfMMImPLKmQ3qM418RVsXUbR9Cb4THkHrHUzh5h/J+ulZgu+eXecHf8HGbzEcWIfPuIfQ+oRSnriL7F9eIXDaW+gCIrCUFpK38n/4TJiB1jOQrJ9fwDGsJ/qI/gDkrvoEr+G3S2LRDnz5dyIxQe7c0K+DrUMR4oJJt0gTKCg18n/f7JSZIW2JWoPG1evMQ+8BVLZaFO/4FY/BU9BHD0HnF47vxEexmiowxG+o83SGA+vwGHwjzhH9cfAMxK3PBJw69aVo2y8AmAsyUDnqcek6DMegKJzCYjHlJFUee3A9Ko0WffSQ5r9v0So8u2Q/hzOKbR2GEBdMkouLpCgKM3/aKyO92xhzfhopH08nZfZdZP/6BqaCjMrthZlYDPk4d+pTta9K64BTaA8qUuPrPJ9iNoFGV22bSqujPKWySqPWOwTFVIExMwFLWTHG9CPo/MKxlBVTsPF7vEff2wx3KVqrMpOF+7/fKQM8hd2S5OIifbkxkTWHsmwdhmhCjkHR+Ex8FP8bX8Rn3ENYDPlkfPcYlrIiLCWV9QjUes9qx2hcPKueq41Tp74Ub1+CKS8VRbFSlribsqNbsRjyKo93csV34iPkLHuXjG8exaXH5Th37kf+uq9w63cl5sJM0uY8TNpX92M49Hez3btoPRKyDTy1OM7WYQhxQWTMxUXYnZTPm6tkzZC2xjnikjM/+IFjcAypn9+NIW4NuuCYyu0qVfWDFKXmtrN4j/o/clf+j7Qv7wNA6xWES89RGOJWV+2jjxqCPupM10d50j5M2SfxHn0vaZ//H75X/QeNixfp3zyKU2gPNC6eF32vonVbujeN/p28uXVQ3YOFhWiNJLm4QIWlJh78YTcmi4zgbOvUOid0vuGY8tNwjhoMgNWQD67eVftYSgvP+2Gv0XvgP+kZFLMRS1kRGlcfCjbMResRUOv+itlE3h+f4nPlTMz56ShWC05hPQFw8A6hIv0w+siBTXeTotV6adlBenfwpGcHD1uHIkSDSbfIBXrsZxln0V4oZhOm3GQ0rt5oPQLQuHhRdmL3mectJsqT9+MY0rXec6m0OrRuvmC1UHp4M85dak8QCjYvwKlzPxwDI0GxgvXMYGHFagar9eJvTNgFo9nK/T/spLDMZOtQhGgwabm4AF/9ncifBzNtHYZoJvlrv8I5cgAadz+spYUUbl6A1ViKa48rUKlUuF1yDYX/LMTBKxitVzCF/yxE7eCIS9fhVefIWfYOGjcfvIbfDkBF2mEsxbk4BHTGUpxD4aYfQLHiMfD6Gtc3Zp+k9NBfBN3+PwC03h1ApaZ47x9oXL0w5aagC+rSIq+FaB2S88p4avE+Ppnar/6dhWgFJLlopP2phbz+e92zAoT9MxfnkPPbW1hKi9Do3XEMjiHw1nfQevgD4D7wehRzBXl/fIqlvATH4Gj8b3yxWg0Kc1E2qM40DCpmIwUbv8VUkIFa54xz5374TJyJ2sm12rUVRSFv1Ud4XX4Pap0TAGoHR3wmzCDvz09RLCa8R99b2foh2pUVcRn8uieVa3qH2DoUIeolFTobwWi2cvVHf3NI5p8LIWzAw9mBPx4ZRoC7k61DEeK8ZMxFI3yw5ogkFkIImyksM/H4z/tsHYYQ9ZLkooH2Jhcwe8NxW4chhGjnNhzJ5vutJ20dhhDnJclFA1SYLcxcuBeLrFYohGgFXl0eT1Juqa3DEKJOklw0wLt/HOFYVomtwxBCCAAMRgszF+6R5dlFqyXJRT12nszni43SHSKEaF22n8jn602Jtg5DiFpJcnEe5SYL//l5L/LlQAjRGr375xHSpJifaIUkuTiP2RsSOJ5tsHUYQghRq1KjhRd+O2DrMISoQZKLOiTnlfLp+gRbhyGEEOe16kAmaw9JxWDRukhyUYfnlx6gwizrNwghWr9ZSw9QbrLUv6MQLUSSi1qsPpjJmkNZtg5DCCEaJDmvjP+tPWrrMISoIsnFOcpNFp6XPkwhhJ354q9EmTIvWg1JLs7xybpjpOTL6GshhH0xWqw8syTO1mEIAUhyUc2JHAOz/5KaFkII+7TleB6/x6XbOgwhJLk42ysr4jHKIE4hhB17c9VhzBZ5HxO2JcnFKTtO5PHnQZnOJYSwb4k5Bn7YlmTrMEQ7J8nFKW+sPGTrEIQQokl8uOYoJRVmW4ch2jFJLoA18ZlsP5Fv6zCEEKJJ5JQY+WyDFAEUttPukwurVeHNlYdtHYYQQjSpLzcmklVUbuswRDvV7pOLxbtTOZxZbOswhBCiSZWZLLy3+oitwxDtVLtOLirMFt77U/74hBBt0087UjiWJV+eRMtr18nFt/+cJFWWKxZCtFEWq8L/1h6zdRiiHWq3yUW5ycLsDVIwSwjRti3bl87JXIOtwxDtTLtNLhbuSCanpMLWYQghRLOyWBU+WSczR0TLapfJhdli5TMp8y2EaCcW704hTbqARQtql8nF0r1psjiZEKLdMFkUqXshWlS7Sy4UReHT9fJHJoRoXxZsTya7WLqCRctod8nFHwczOZpVYuswhBCiRVWYrXy5UbqDRctod8nFJ9JqIYRop77bcpLCUpOtwxDtQLtKLjYfy2FvcoGtwxBCCJswGC3M3y4rporm166Si683Jdo6BCGEsKlv/zmJxarYOgzRxrWb5CIlv5S1h7JsHYYQQthUakEZqw5k2DoM0ca1m+Tih61JSLIuhBAwR1pxRTNrF8mF0Wzlpx3Jtg5DCCFahe0n8olPL7J1GKINaxfJxe/708kpMdo6DCGEaDW+3XLS1iGINqxdJBffyR+REEJU8+vuVEoqzLYOQ7RRbT65OJRRxPYT+bYOQwghWhWD0cLiXSm2DkO0UW0+ufj2H2m1EEKI2izcIcmFaB5tOrkoN1lYuifN1mEIIUSrFJdayLGsYluHIdqgNp1crDqQQbH0KQohRJ0W70q1dQiiDWrTycUvu+WPRgghzmfJ7lQURYoAiabVZpOL7OIKNh7NsXUYQgjRqqUVlvPP8VxbhyHamDabXCzdmyb184UQogF+ka4R0cTadHIhhBCifr/vz6DcZLF1GKINaZPJRVJuqSytLoQQDVRSYZbFzESTapPJxW/7pNVCCCEaY9m+dFuHINqQNplcyB+JEEI0zt9Hc6RrRDSZNpdcpBaUyWp/QgjRSGUmi8ywE02mzSUXa+IzbR2CEELYpT8PyrgL0TTaXHKxOj7L1iEIIYRdWnsoC6tM4RdNoE0lF4YKM1ukGIwQQlyQnBIju5JkFWlx8dpUcrHxaDZGs9XWYQghhN3686B0LYuL16aSC+kSEUKIiyPJhWgKbSa5sFoV1h2S5EIIIS7G8RwDCdkltg5D2Lk2k1zsSSkg12C0dRhCCGH3NifI2DVxcdpMcrFJ5mcLIUST+CdB3k/FxWkzycXWxDxbhyCEEG3CluN5KIpMSRUXrk0kFyaLlZ0nZfqUEEI0hTyDkUMZxbYOQ9ixNpFc7EsppExq4gshRJP5R8ZdiIvQJpILKZwlhBBN6x95XxUXoU0kFzLeQgghmtbW47lSClxcMLtPLswWKztPSHIhhBBNqajczIE0WWFaXBi7Ty72pxVhMMp4CyGEaGo7TsoXN3Fh7D652CGtFkII0SziUgttHYKwU3afXMgvvxBCNI+4FHl/FRfG7pOL/ZJcCCFEs0jILqHUaLZ1GMIO2XVyUWo0k5hjsHUYQgjRJlkV2J8qgzpF49l1cnEwrQiZKSWEEM1nX0qBrUMQdsiukwuZJiWEEM1LxrWJC2HXyYWMtxBCiOYlgzrFhbDv5EJaLoQQolkl5hooqZBBnaJx7Da5qDBbOJYlq/YJIURzUhQ4nl1i6zCEnbHb5OJETikmi4zmFEKI5nY8W2blicax2+RCpqAKIUTLkJYL0Vh2m1ycyJXkQgghWkKCfJkTjWS3ycVJSS6EEKJFJEq3iGgku00upFtECCFaRmKOAUWRMW6i4ew2uTiRU2rrEIQQol0oM1lILyy3dRjCjthlclFuspBZLL/oQgjRUmTGiGgMu0wuTuQakBY6IYRoOSfzJLkQDWefyYV0iQghRIvKlG4R0Qh2mVxkSZeIEEK0qKziCluHIOyIXSYX2fJLLoQQLSqzSL7UiYaT5EIIIUS9MovkfVc0nF0mFzkl8ksuhBAtSbpFRGPYZXIhLRdCCNGy8gwVmC1WW4ch7IQkF0IIIeplVSBbWo1FA9llcpFjMNo6BCGEaHeyZNyFaCC7Sy4KS00YzdI0J4QQLS2vVL7YiYaxu+Qi1yCZsxBC2IKhwmzrEISdsLvkotRosXUIQgjRLklyIRpKkgshhBANYqiQ91/RMHaXXJSZ5JdbCCFsQVouREPZX3JhlF9uIYSwhRJ5/xUNZHfJhXSLCCGEbUjLhWgoSS6EEEI0iIy5EA1ld8lFmSQXQghhEyXSciEayO6SC2m5EEII2zDJ2iKigewuuZBfbiGEsA2rYusIhL2wu+RCpbJ1BEII0T4pimQXomHsMLmQ7EIIIWzBKsmFaCCtrQNoLLXkFqIV8XIwE+hoxF9XgZ/OiJ9DOd6acrzU5biry3BXleFKKS4YcLYaOKTqhkHfA5V7CSZdNjpdMQ7aQtSqfFSYbH07QpyXk74rMMjWYQg7YIfJhWQX4uKpVAoBOtOpxKAyKfBxKMdLU4GXpjIpcFeV4aoYcFbKcLYacLKU4GAuwcFUjNpUgqqiCJXVDGYqH6X1X/fHGD399gVT4a2jk74/eVojKepckvJScXQqw9sb3NyNuOjLcXQsQa3JR1FyMJkysVrLm/tlaTP27Svjpx8LOXq0gtxcCy+8EMClQ13Oe8yvSwr59dciMjLM+PtruWWqJ2PGuFU9v3NHKR9+mEt+gZlLh7jw6Ew/HBwq349KSqw8cH8qb74VRECA3b2tNpiT3snWIQg7YXd/BdJyIRzVVoIcjfg7VuDvYMLXoRwfbQXe2jI81GW4q8pxU5XiqpTirBhwthjQWQzozMVoTCVojEVQUYIKBYxUPlrI75pUxmxbyOFhT7G/PA5VYRYDQscypCCMfD8T6RXFnEzOID0nA0VxA4KqjvXwUOPtbcXDw4KLSzmOjsVotIUoSg5mcyYWi6HlbqSVKy9T6ByhY+w4N154PrPe/ZcuLeKrr/J45FE/oqMdOXyognffzcbNVc3gIS5YrQqvvZbFTTd5ckl/PS++kMmK5UVcc60HAF9+kctVV7m16cQCQKWyu550YSN295cgYy7sm7vWTKCjiUDHCvwcKvB1qMBbU46nphzPqm4EAy5KKc5KKU6WEnQWAw6mysRAbSxGZSoFBSg/9bATeS6+pJZmURQdS5eVr7Djshdwcktj2a6P8PPuyADNRLoneNPd6o3ROYbMwHJStHmcyEvBUGqgsNBKYSGABnA59QgEogFwcVHh60tl8uFajpOjAa22AMjDbMnEbC600Z23vAED9QwYqG/w/qv/LGbile6MHOkKQHCwA/Hx5Sz4sYDBQ1woLLRSUGDl6mvc0enUDB6s5+TJym6s/fvLOXKkgoce9m2We2lVJLkQDWR3yYV0i9iGSqXgpzMT6FiBv4MRX10FvqdaCzzV5Xioy3Dj1PgCpXJ8geOpxEBrKkFjLEZlLEZlMYKFBnUhtDVxgVFgTeFwBzX912QQm/wzW7yuwz3wNgylv/HLprcJCuzCwMirccxwIPSEnlD0DFKFUOhrId2zmKSKTFJz0rFaa07JNhgUDAaoHKetP/Xwq3reyQl8fdV4eppxda3AybkUrbYQlSoPszkTszmvhV6J1sdkUtDpqr+36BzVHD5Ugdms4OmpxsdHw44dZfTr50xcXDljxrhhMil88H4Oj/3HD42m7b83qVQaW4cg7IQdJhe2jsD+OKgVAnTGMwMPHSrw0ZbjdarFwF1VihtluGBAr5RWJgbmyvEFWlMxGmMJGItRKdYz3QjSAt9ocW5eUJjCBp9s+gNOu/6kx6R+7MsLReNwPcHRm0k7vJ0lGe/g79+JQVHX4pzpiMoMntlaPLO96IoXJqcosgIqSNXlkZifSnFJcYOuX14OKSlWUlLUgPOphw/QGQCdDnx8VHh5WXF1M+LsZMBBV4xKlYvFko3JlAO0zTozl1yi5/cVxVx6qQtduug4csTIyt+LMZuhsNCCj4+WZ54N4NNPc/nk41wGDNAzbrwb838ooE9fJxwdVfz74VQKC61ce507157qLmlrVPY3wVDYiN0lFzpt+/rldtFaCD5rNoKvQwU+msrEwENdWjm+gFJcKK0adFg5vqCytaCyG+FUJlBx6iFsIk5VObhjm2MqKi9PlPwCfBe/TodbPiYlTUNe1mWExQaTcmAZWVmJLM16Dx+fUIZ0nYQ+Sw+myg92h3I1ISedCSGEAYRQ5GsmzauYZFM2KdlpWCwXVsXWaIT0dIX0dBXgeOrhDXQEQKs9nXwouLpVoHcuQ6crRqXOw2rNwWTKQlHsszz0tFs9ycs389CDqSgKeHlpGDvWlR9/LER96htNz55OfPJJSNUxKclGVq8uZvZnHXhkRhqTrvegf38999ydTGxPJzpHONrqdpqNRtPwriZbW79+PSNHjiQ/Px9PT09bh9Pu2F1y4eJoPyH7nJqNEKAz4qerTAq8tZWzEc50IxjQn56NYC1BZy7BwVSCxlSMqqIYlaWishuh7NRD2K39pWlV/1/aNQznzQUARKx8kYLLXqKk0ERWcgQBXW6jIG0xZUUF5OYm89vfH+DpGcSl3W/ALdsVxVS99cA9R4t7jhcxeGHWdSE7sIIUx3xOFKZSWNR04yzMZsjMVMjMhDPJhycQClR2nfn4aPDysuLubkLvUobOoRi1Jv9U8pGBorTO6baOjmr+8x9/HnnEj/x8C97eGpYvL0avV+HhUfMLjaIovPteDv+61werFY4dMzJsmAtOTmpiY53Zu6+8bSYX2vPPuGmM22+/nXnz5lX97O3tTf/+/XnzzTeJjY296PMPGTKE9PR0PDzaZitSa2c/n9SnuOiaP2SNykqgo4kARyMBuspBhz7a0wMPKwcdnh5foFcMOJ3qRqgcX3CqtaCiGJViAROVD+lGaNdO+namyHim+yKxoyPdNlf+vyYvk9ikH9nifT1Wi0J+pifO7lNx8fyDnKSjABQUpLN80//wcPfn0p6Tcc9xRzHW7KLQGlUEJTkRRBD9CaLEx0KaVwnJlmySs1Mxm5uvZUFRVOTkWMnJAXA49XAHTn/bPz12QcHdw4xeX4ajYwkaTSGKkn1quq1tM2itVoWfX+V7zPp1JQwcpK9quTjb7yuKcXdXM2SIC8XFlS1Fp19as1mhliExbYJG03TJBcC4ceOYM2cOABkZGTzzzDNceeWVJCUlXfS5dTodgYGBF30ecWHsL7lwPP+AImeNhSBHEwGOFfhXDTo8Nb5AfWp8gaq0cjaCtbQqMTg9vkBtLAajoXKaonQjiCayz7cjVCRU/fyPfyHdznreafcaelzbl30F4QCUGRxRqScS2mMPyfvXV+1XWJTFik0f4+bqw6Wxk/HM90Ypr7sbxDVXQ1SuB1F4YHGIICeoghTHAk4WpZFXmN/Ed1kfFQUFCgUFUPnW43bqEQTEAODursLHB9zdTbi4VuDkaECjyUchD7M5A4ulpEFXKiuzkpp6ppUkPcPEsWMVuLlpCAjQ8uWXeeTkmHnySX+gsovj0KEKYro6UVJi4eeFhSQmGnn8iZAa587Pt/D99wV88EEwAG5uGsLCHFi8uJBL+jmze3cZt0z1vNAXqVXTNnFy4ejoWJUABAYG8sQTTzBs2DCys7M5cOBAjW6NPXv20KdPHxITEwkPD+fkyZM8+OCD/P333xiNRsLDw3nrrbeYMGFCjW6RuXPnMmPGDH788UdmzJhBcnIyQ4cOZc6cOQQFnZnyPWfOHN58882qazz88MPcf//9ABiNRh599FEWLVpEfn4+gYGB/Otf/+Kpp54C4Pnnn+frr78mMzMTHx8fbrjhBj788MMmfc3shd0lF931Bazr8tOp8QUGdGYDWnMx2tOzEczllWPOpBtBtCL7nfXVEtV1zie529kJpezMXFrfJW8Rdsv/SEqrbIZXrGqyU/sSGhtA+qElmI1nTlBcksvKzbPR6z0Y2msK3oW+KGXnH2uhMakISHIigED6EUiJl4UMbwPJSjZJ2amYTLbvsigqUigqgsq3Ji2V0239q553cVHh7QOenhZcXStwdCzBQVsI5GK2ZGE2FwBw+HAFj81Mrzpu9qeVM2HGjHHl8Sf8ycs1k5V1phXHYoWFPxeSkpyDRgu9eznz4f+CCQx0qBHjJx/nMPlGD3z9zrx9Pv6EH2++kc0viwu58UZPYmLaZrEpjda12c5dUlLC999/T2RkJD4+Pg065oEHHsBoNPLXX3/h4uLCwYMHcXWtO8bS0lLefvttvv32W9RqNdOmTeOxxx7j+++/B+CLL75g1qxZfPTRR/Tp04fdu3dzzz334OLiwm233caHH37I0qVL+emnnwgLCyM5OZnk5GQAfv75Z9577z0WLFhA9+7dycjIYO/evRf/wtgpu0su/JwU/JKX2DoMIRplv7V6v5hRZcEU0wXt7vhq2zsvf4H8ka9SXHDmgz47OQTvsNspL1hCUU71glClpYX88c/nODm7M7TXDfgWB6GUNqzrwzVfQ2S+O5G4Y9F2JjfQSKpzASdL0snJz73AO21ep6fbJiedPePFD4gEwNERfH1VhIVZWfF7Oc5OpWgdis6a8ZILKDz+hH+183bsqOOzzzo0KIannwmosS0mxomv54Re1L3ZA63Wrf6dGmHZsmVVyYDBYCAoKIhly5ahVjds4H5SUhLXX389PXv2BKBz587n3d9kMjF79mwiIiIAePDBB3nxxRernn/ppZd45513mDRpEgCdOnXi4MGDfPbZZ9x2220kJSXRpUsXhg4dikqlomPHjtViCQwMZNSoUTg4OBAWFsaAAQMa/mK0MXaXXODsbesIhGgUk0bHoZKUGttTOrsRvrv6NnVhDrGJP/CP741YLWcWiSrKdUHnNIXAyA1kHKv5bai8rIjVW75Gp9MztM9k/Es7oJQ0fHyFxqzCP8URfwLoQwClHlYyfA0kKzmczEnBaGzBMqYXoaICUlMVUlNVVJ9u2wkAB4fTtT4suLkZcXYuxcGhCJU6H4slC5Mpm7Y63bYpOGg9m/R8I0eO5NNPPwUgLy+PTz75hPHjx7Nt27YGHf/www9z33338ccffzBq1Ciuv/768w4G1ev1VYkFQFBQEFlZWQBkZ2eTnJzMXXfdxT333FO1j9lsrhoUevvttzN69Giio6MZN24cV155JWPGjAFg8uTJvP/++3Tu3Jlx48YxYcIErrrqKrRa+/uYbQr2d9fOXraOQIhGORwYjdFac9bGjsBSwmvZ33Hvenpe04+9hdW/hRnLtVSUX05YbDDJcatQlJofgkZjKWu3zsPBwYkhfSYTVB6GUtz4QZz6QjWdC93ojBtWTTi5ASbSXAo5WZpOVm52o8/XWphMkJ5uPWe6rRenp9tqNODtrcLbW8HNvTL50OlKUKvzsVork4/WOuOlJTg4eDbp+VxcXIiMjKz6uV+/fnh4ePDFF19UfWifvcz7uV13d999N2PHjmX58uX88ccfvPbaa7zzzjs89NBDdcRfvZtLpVJVnf90YbovvviCgQMHVttPo6kc69e3b18SExP5/fffWb16NTfeeCOjRo3i559/JjQ0lMOHD/Pnn3+yevVq7r//ft566y02bNhQ47rtgf0lFxot6NzA2LDCQULY2j6vIDDUTC7+dD3JDVrtmWkGZ/H59R063vIhJ9OqD2BWoSIruSvBXf3IObmYCkPtAxxNpnI2bPsWjUbHkL7XE2KKQCm8sA9FtUWFX5oOP/zohR/lrlYy/EtJVuVwMieV8go7qsFeD4sFsrMVsrMBdKcenkBll4lKdTr5OL3AXFll8qHJR7HmYDJnYrW23VHgWofmndapUqlQq9WUlZXh51dZXTY9PR0vr8ovlXv27KlxTGhoKPfeey/33nsvTz31FF988UWdycX5BAQEEBISwvHjx5k6dWqd+7m7uzNlyhSmTJnCDTfcwLhx48jLy8Pb2xtnZ2euvvpqrr76ah544AFiYmKIi4ujb9++jY7H3tlfcgGVrReSXAg7sV+nrXUqcr66DCWyI6pDCTWfBDote4H8K16jKL9mUpCb7our33RcPFeQl3qizmtbLEY2bp+PRqNlUO9JhFqjUAou7pu3U4ma8BJXwnHlUnVH8gPMpLkWcrIsg4yc+hcJs2eKArm5Crm5UH26bfDpPfD01ODtreDhYULvUo6j7swCc5XTbe239r2DQ9O2HFdUVJCRkQFAfn4+H330ESUlJVx11VVERkYSGhrK888/z8svv8zRo0d55513qh0/Y8YMxo8fT1RUFPn5+axdu5auXbtecDzPP/88Dz/8MO7u7owfP56Kigp27NhBfn4+jz76KO+99x5BQUH07t0btVrNwoULCQwMrJqNYrFYGDhwIHq9nm+//RZnZ+dq4zLaE/tMLvReUHjx86CFaAlxxrqnfGZGehNYR3KhLsqlR8K3bPW/GYtZqfG8odAJjfYaOnTdRkr8P+eNwWIxs2nnT6hUagb2vpZwdTeUvItv3ldbVfikO+CDLz3xpULfnczAUpLVuZzMTaW0rGU/SDdu3MihQ4fIyclBq9USGhrKqFGj8PVt2KJiSUlJzJ07F39/f+69996q7QkJCaxYsQKDwUBMTAxXXXVVVVN5eXk5X3zxBdOnT8fDw4OCAutZ021dTz3OTHV0dT29wJy5cnVbJwPaqtVts7BYiprq5Whiahy0TdtysXLlyqppoG5ubsTExLBw4UJGjBgBwPz587nvvvvo1asX/fv35+WXX2by5MlVx1ssFh544AFSUlJwd3dn3LhxvPfeexccz913341er+ett97i8ccfx8XFhZ49ezJjxgwAXF1deeONNzh69CgajYb+/fuzYsUK1Go1np6evP766zz66KNYLBZ69uzJb7/91uCZL22NSjm7Q8tefHsdJKy1dRRC1KvI2YOhgZ4o1P5ndnduD8Z8vue858i7egZ7irqcdx//0JOkHvwVS0OLZKlU9I+9igiHWJTc5hlDoKgU8v3NpLsXc7L89DLyzft2891339GjRw+Cg4OxWq2sXbuWrKws7r//fnQ63XmPLS8v5/PPP8fb25uSkpKq5EJRFN5++22GDh1KREQECxcupH///lUzAZYtW4aPjw+DBw9uknvQ61X4+Krw8KhcYM7ZyYCm2gJzLV2fpJJO58dlQ7fY5NrC/thny4VH25/yJdqG/YHRKGTU+fyfHimMqecc3kvfp+MtH3Ayre4/16zkjvhF3E5x1i8YGjKNVFHYvncp21W/0bfneLo49oGcpq3eqVJUeGc64J3pTXdqX0a+qU2bNq3az9dccw1vv/026enp9TZPL1u2jB49eqBWqzl06FDV9tLSUkpLS+nfvz9arZaoqCiyKwdlkJSURFpaGhMmTGiyeygtVShNUkjm7Om2vkDlLAdHx8pCY5ULzFXg5GTAwaEYlSoPiyWzarptU3NyDKp/JyFOsc/kwvv8c5mFaC32u/tCUd3JxUltAaqwEJSk1POep9NvL1Aw+nUKz9OVUZDljqP+Fvw9V5OVGF/nftUoCrv2rWAXK+jVfQwxrv0hq3lKhOvK1I1eRv5iVVRUDq50dnY+7367d+8mPz+fSZMm8ddff1V7Tq/X4+rqSkJCAp07dyYpKYlevXphsVhYvnw511xzTYPrMjSFigqFtDRIS1MBTqcePnBq7pFWW1nr4/QCc87OpegcTi8wl43JmI1C4xe3c3SSUtqi4SS5EKIZxanrfxPPjw7Es57kQl2cR4/Dc9kSfCsWU90fwhWlDlSUjSO0ZwjJcasbFeveA3+wlz/o0XUk3TwGo8q8sNVVG0KlqJpkGfnzURSFVatWERYWhr+/f5375ebmsmbNGu64445akwSVSsXkyZNZtWoVK1euJDIykj59+vD333/TqVMntFotX3/9NaWlpQwYMMDmhZPMZsjIUKgcJ3n2dNswANRq8PFRn1pgzoheX46DrujUdNvKQae1Tbd1lJYL0QiSXAjRjOLK6m61OC2+AzSkt97xwGZiO13CblP0+XdUVGSnxBLaI4CMY4sxlTeuDv7++HXsZx1doy6jh89lqDOaL8k4rTmWkV+xYgWZmZnceeedde5jtVpZvHgxI0aMOO/Au7CwsGqFlXJzc9m3bx//+te/mDNnDoMGDSIyMpJPPvmEjh07EhBQs4pna2G1Qna29Zzptu6cPd3Wy6uy1oe7++kF5opxcOhW90mFOIckF0I0kzSvUHIr6h98t847s0HJBYDXsg8Jv+UDTpxn/MVp2akBeATfhsmwlMLMtHr3P1f8kY3Es5GoyEH08h+JOr3lKlde7DLyK1as4MiRI9x+++24u7vXuZ/RaCQtLY309HRWrFgBnCna9OKLL3LrrbfSqVOnascoisJvv/3GmDFjUBSFjIwMunXrhoODA+Hh4Zw4caJVJxf1URTIy1PIy4OzF5i78UZJLkTD2WdyodODayCU1P+tUAhbifPvBMYT9e63R5eB2tcba05eg84bvvQ58se8dd7xF6eV5OvR6iYTHL2JtMM7GnT+cx05toUjx7YQ0ekS+gSPQpOuNMd4wTo1Zhl5RVH4/fffOXToELfddltV8aW6ODo6ct9991Xbtn37dhITE7nxxhurVuM82+7du9Hr9URHR1NWVtkqZLFYcHBwwGKxNPuMGFup77UU4mwtNwqpqUnrhWjl9uvr/sZ8rpKYhs+AUpcU0jP+a7S6hv35mo0a8rKGERZ7NaqLGHiYkLiDnze9zlbzSszBgOqCT3VRXHM1RB3z4IrESG6tGMZV/pfSJ7Q73h5erFixgn379jFp0iQcHR0pKSmhpKSkWtno1atX88svvwCV4yn8/f2rPVxcXNBqtfj7+9eYvmowGPjrr78YN24cUDlQ1NfXly1btpCcnExiYiKhoW1zNpu3t6zrJBrOPlsuoDK5SNps6yiEqNM+peEFpBLCHen5d8PPrYvfQmznfuwyNrypOis5kqDo6eSn/EJZcf1dC3U5kbSXE0l7CQ3pTv/wCThkqG221te5y8j/e8cMAObNm1dtv2uuuYbevXsDlUt7FxZe2P2vXLmSIUOGVOtqufbaa1myZAnbtm1jyJAhhISEXNC5WzO9Xo+jo6OtwxB2xD6LaAH89TasfcnWUQhRK4tKw+DISMrMDRtMeXlpOPd+cKzR1zlxy3scTzt/cahzObtVoFZWkptce2XQxgoJjqZ/pytxzHAAa+t5O7FoFbtYRt4ehISEVBvQKkR9pFtEiGZwLCCqwYkFwF/OSahcXBp9nbBfZ+Hl07gGyLJiR0rLriK0+7BGX682qWmHWbLpHTaULKQ8xAQaG/WXnOP0MvJ9jgZwbXpvbnEcyeUhA+gS3Lneap2iOukSEY0lyYUQzSDOp3FN42aVFWPX8EZfR20oovv+Lxs8/uI0xaImO+0SwnreiLaJPmgzMhP49e93WVuwgLKQCtC2jiTjNH2hms4Jbgw/3olphqFc430Z/UNj8ffxs3VorZ4kF6KxJLkQohnsv4D+6aROjW+5ANAd3k4vzd4LOjYrpQPeHW/HzafuIlONlZ1zgqV/v8+fud9iCCkDh9b3NnN6GfleR/24OjWWadqRjAoeSHRIBE5OTrYOr9UJDJTqnKJxWt9ffUM5uYO+YSsdCtHS9pkKGn3MNv8Lr0rp8ftsIoIrLujYohxXcJxCQETPC75+bfLyUln294esyppDcbABVSNbV1qSU4ma8OOuXJYQzi1FQ7jOaxgDQ3sR5Gu/9SqakiQXorHsd0AnwFdjIHmrraMQoppSnQtDOvhjURpXVdLN6shX7xrBdGGrlFqdXdk78V3ycy50lVMF/9B4kuJWVVZSamJu7n4M7XEDHnleKBXNX/WzqVToFZsuI29rjo6OPPXUU7YOQ9iZ1vtVoiECY20dgRA1HAyKaXRiAVCsrsAaFX7B11WXldB972wcHC/0z1pFVnI3QrpNw1F/YV0051NclM3vmz/lt+RPKQgqQOWsafJrNAfHUhVhx1249FgYNxcMYpLHMAaH9iHYLwiVqnWNK2kOrb3VYu7cubUWO2stRowYwYwZM2wdRouz7+Qi1LYLBAlRmziPCx8gmBF5cVUQdUd3EcuuizpHbpofLv634RV8/iXKL5TBkM+qzZ+x9MRH5AbmotJfWJLx0T/fMXHe/xHz3lh6/+9q7lr8XxJyk+o9bu6uxYz8YhqR74xi+BdT+Xn/ymrP/5W4nWGf30K398bzyPJXMFrOtAQVlxu49qXb8NxpYkJyN25lBGMDB9O9QzSuFzDbxx40VXIxe/Zs3NzcqlVULSkpwcHBgcsuu6zavhs3bkSlUnHkyJEmuXZtVCpV1cPFxYUuXbpw++23s3Pnzia9zuLFi3nppeYpm3Dy5EkcHR0pKiri+eefr7ofrVaLr68vw4YN4/33369aHbglSXIhRBOLu4hZEnsCL/5NwGPVF0QGN26xsnOVFjphNF1LSNdBFx1PndcoLWL1P1/yS8IH5ARkoXJp3JTaLcl7uK3vdfw6bTY/THkXi9XC1J9mUmqs+96/2b2ENzZ8ziND72DNXd/w6KV38syf7/HnsU0AWBUrDy97iWm9r+GXaZ+wJy2eH/b+VnX8a+tnM633NYS4V47FOL2M/OBjHZiSN5Ab3IZzaWhfQv1DWnQZ9ubUVMnFyJEjKSkpYceOM2XoN27cSGBgINu3b6e09Ex30/r16wkODiYqKqpJrl2XOXPmkJ6ezoEDB/j4448pKSlh4MCBfPPNN012DW9vb9zc3JrsfGf79ddfGTFiRFVRt+7du5Oenk5SUhLr1q1j8uTJvPbaawwZMoTi4otfabgx7Pu33yscXGXAlWhd4sqzLvjYVR5JlctSXqQOi2fh7XdxBXgtZg25GUMIi70Otab5ivlWlBtYs2UOiw+/S6ZfOiq3hl3ruxvf5sae44n260Q3/0jemfAUqUWZ7Ms8XOcxi/evYmrvq7m66xV09Azmmm5XcFPPiXy65QcA8koLyS0tYHrfa4n268ToLpdyNOcEANtT4tibcZi7Lrmh1nOfXka+61EvxibFcKt1OOMDhhAbGoOba/N8uLSE4ODgJjlPdHQ0wcHBrF+/vmrb+vXrueaaa4iIiGDz5s3Vto8cORKoXFzu8ccfJyQkBBcXFwYOHFjtHKctWbKEqKgonJycGD16NMnJyfXG5OnpSWBgIOHh4YwZM4aff/6ZqVOn8uCDD5Kff2bRwc2bNzNs2DCcnZ0JDQ3l4YcfxmAwVD3/ySef0KVLF5ycnAgICOCGG878jpzbLZKens7EiRNxdnamU6dO/PDDD4SHh/P+++9X7aNSqfjyyy+57rrr0Ov1dOnShaVLl9aI/9dff+Xqq6+u+lmr1RIYGEhwcDA9e/bkoYceYsOGDezfv5833nijar/zvaaFhYU4OzuzcmX1Fr3Fixfj4uJCSUlJva8r2HtyAdChv60jEKJKjlsAGWXZF3x8uqYYwjtcdBzqcgPdd316EeMvzshK7oR/5G3oPZu31oHRVMb6bd/w88G3SPdNRuXeuISmqKLyTc/T6TyroFpMOGqq1/VwcnBkT3o8JosZH70n/q4+/JW4nTJTBduS99HVPwKjxcR//3iH18bMRKNuWDfO6WXkBxwNYUrOAG50Hc5lof3oGNgBjcY+xpvodDr8/JquDsiIESNYt25d1c/r1q1jxIgRDB8+vGq70Wjkn3/+qUou7rjjDjZt2sSCBQvYt28fkydPZty4cRw9erTqPKWlpbzyyivMmzePTZs2UVRUxE033XRBMT7yyCMUFxfz559/AhAXF8fYsWOZNGkS+/bt48cff+Tvv//mwQcfBGDHjh08/PDDvPjiixw+fJiVK1cybFjdBeqmT59OWloa69evZ9GiRXz++edkZdX8QvLCCy9w4403sm/fPiZMmMDUqVPJyzuzuGFBQQEbN26sllzUJiYmhvHjx7N48eKqbed7TT08PJg4cSLff/99tfP88MMPXHPNNbi6utb/ItIWkgvpGhGtSFxgl4s+R25U07TGOSTsoZeyvUnOVZDlgYPrVPzCY5rkfOdjNhv5a/sPLNz/Bik+J1B5OtR7jKIovLj2I/p3iCXGr+4aOMM6DWDBvmXsyziMoijsTT/Ej/tWYLKaySsrQKVS8ek1L/DB5m+44qtb6R7QhSk9J/LJlu+5tGM/nLSOXPfd/Qz/Yipzdy5q1H2552iJPurJ6BPR3GoazkT/S+kV2g0Pd49GnaclBQcHN2n3zogRI9i0aRNms5ni4mJ2797NsGHDGD58eNU35y1btlBWVsbIkSNJSEhg/vz5LFy4kMsuu4yIiAgee+wxhg4dypw5c6rOazKZ+Oijjxg8eDD9+vVj3rx5bN68mW3btjU6xpiYyt/xEydOAPDWW29xyy23MGPGDLp06cKQIUP48MMP+eabbygvLycpKQkXFxeuvPJKOnbsSJ8+fXj44YdrPfehQ4dYvXo1X3zxBQMHDqRv3758+eWXVavrnu3222/n5ptvJjIykldffRWDwVDtflasWEHPnj0btFBeTExM1f005DWdOnUqS5YsqeqqKioqYvny5UybNq3Br6P9Llx2WuhAW0cgRJU4Fw+48DXBADjYwcpl9e/WIO5/fE2XW7pyNE1/0eeqMDhgVI0nrGcISXFrmiC687NYzGza8SNqtYaBva+lI11R8mufZvvMn+9xKOs4i6d+dN5z/nvIbWQb8rjm23tRFPB18WJyz3F8unU+GlVla8KADrEsv+3zqmOO5yWz6MAqVt7+FTf88BB3XTKZEZ0GMurr2xgY2puu/hGNvrc6l5E3Z5Gck1Zt0KMtNfUibCNHjsRgMLB9+3by8/OJiorC39+f4cOHc+utt2IwGFi/fj1hYWF07tyZhQsXoihKjbEXFRUV+Pj4VP2s1Wq55JJLqn6OiYnB09OT+Ph4Bgxo3BfQ09UZTs8E2rlzJ8eOHav2TV5RFKxWK4mJiYwePZqOHTvSuXNnxo0bx7hx46q6M851+PBhtFotffv2rdoWGRlZ63L2sbFnZkO6uLjg5uZWrYXj3C6R+u7p9P3s2rWr3td04sSJaLVali5dyk033cSiRYtwc3NjzJgxDboetIXkIrgPaHRgMdo6EiGIU138gMy1nhlNllwAdFj0HHlXv09u9sV/YCmKiqyUXoT29CfjyC+YKsqbIMLzs1ot/LNrEVtUavr3uprOmh4oeWeSjGf/fJ8/j23i51v+R5D7+SuNOjs48s6EJ3l97GPkGPLwd/Xh+72/4arT462v2YKgKApPrHyLZ0c+gFVR2J95lInRI3B2cGJQaG+2JO+5oOTiXK65GqJyPYjCA4tDJNmBFaQ6FXCyKI28wvz6T9BMOnS4+C66s0VGRtKhQwfWrVtHfn4+w4cPByoHjXbq1IlNmzaxbt06Lr/8cgCsVisajYadO3fW6Eo6t3m+tmnBFzJVOD4+HoBOnTpVxfCvf/2r1taIsLAwdDodu3btYv369fzxxx8899xzPP/882zfvr3GFNm6ykrVtt3BoXqLnUqlwmqtXH7YZDKxcuXKBtcfiY+Pr3Y/9b2mOp2OG264gR9++IGbbrqJH374gSlTpqDVNjxlsP/kQutYWe8idUf9+wrRjBRUHDCkXfR5DuiyUAX4o2Re+MDQs6kqyui282O2Rt2PsbxpildlpwTh0eF2TMW/UpiV3iTnrI+iWNm2ZwnbVL9ySc+JdNbF8uyCt1l5ZCMLb/6AMM+GDzx00GirEpGl8Wu4ImIIalXN5v8F+5bj5ezOmC5DKSivHG1vsppxPvVfi7Xpi4FpTCoCk50IPLWMvMHTSrpPCclKNknZqZgusMjahWiO5eNHjhzJ+vXryc/P5z//+U/V9uHDh7Nq1Sq2bNnCHXfcAUCfPn2wWCxkZWXVmK56NrPZzI4dO6paKQ4fPkxBQUFVF0djvP/++7i7uzNq1CgA+vbty4EDB4iMjKzzGK1Wy6hRoxg1ahSzZs3C09OTtWvXMmnSpGr7xcTEYDab2b17N/369QPg2LFjFBQUNCrGdevW4enpSe/evevd99ChQ9USkYa+plOnTmXMmDEcOHCAdevWNXo6rf0nF1DZNSLJhbCxRL/OFJsaNpK6PsUxIbg2UXIB4HB8H706/8N2mm6MUkmeHgfdZIKi/ib9yMXV1mgURWHHvmU8tfM19qVmM+eOt3FR68kqqVxS3c3RFWeHyrVdXt/wGRnFObx/5dNAZRfHnvR4+gR1paC8mC+2/8Th7ETem/jfGpfJMeTz4eZvWDztYwA8ndzo4tORr7YvZFin/mw6uZMHBzW8D/pCuRSoiSxwJxJ3LNrOLbaMvLu7e9UUx6Y0cuRIHnjgAUwmU1XLBVQmF/fddx/l5eVVgzmjoqKYOnUq06dP55133qFPnz7k5OSwdu1aevbsyYQJE4DKb/kPPfQQH374IQ4ODjz44IMMGjSo3i6RgoICMjIyqKio4MiRI3z22WcsWbKEb775pqrV4YknnmDQoEE88MAD3HPPPbi4uBAfH8+ff/7J//73P5YtW8bx48cZNmwYXl5erFixAqvVSnR0dI3rxcTEMGrUKP7v//6PTz/9FAcHB2bOnImzs3OjWlmWLl1aa5eI2WwmIyMDq9VKbm4u69ev5+WXX6Z3795ViVxDX9Phw4cTEBDA1KlTCQ8PZ9Cgxk1LbyPJRX/YYusgRHu33zccyo/Wu19DHO2opU+TnOkMt9XziLq5G0fSGzbauyFMRi152cMJiw0mef8KlFPNti3hn4TKglk3fvpAte3vTHiKG3uOByCzJJfUosyq5yxWC59v+5GEvCQc1FoGd+zDkmmfEOoRVOP8s9Z8yL8GTCHIza/auR9d/ipf71zEvQNupk9wt+a4tTqdXkbenwD6EECph5UMXwMpSg4nclIwGpuue/h0M3pTGzlyJGVlZcTExBAQcGbw8vDhwykuLiYiIqLaIMU5c+bw8ssvM3PmTFJTU/Hx8WHw4MFVH4IAer2eJ554gltuuYWUlBSGDh3K119/XW8sp1tInJycCAkJYejQoWzbtq3amIjY2Fg2bNjA008/zWWXXYaiKERERDBlyhSgcjrr4sWLef755ykvL6dLly7Mnz+f7t2713rNb775hrvuuothw4YRGBjIa6+9xoEDBxq1YN7SpUtrvb8DBw4QFBSERqPBw8ODbt268dRTT3HffffheNZiig15TVUqFTfffDNvvfUWzz33XINjqzrertcWOa0oDd7tausoRDv3ct+J/Jgf1yTnurSsA/9+/0STnOtsis6JuGs/ICer6QcMegflkZe0mPKSoiY/d0N1ix5GD++hqDLsZ+2SpmLVKOQGmEhzKeRkaTpZuRc+JRpg0qRJ1QYViuaRkpJCaGgoq1ev5oorrqh3/127dnH55ZeTnZ1dY1xGa9I2kguAd7tDUYqtoxDt2E29hnOgKLFJzqVS4KdP9ChFTf9Bbe7YjS3dHsZY1vQfwM5uFaitv5ObcrzJz90Y0ZFDiPUbjjqj5VpSWptyVysZ/qUkq3I4mZtKeXnjBt8+9thjDa5pIBpu7dq1lJSU0LNnT9LT03n88cdJTU3lyJEjDUoWtm3bxuHDh7n11ltbINoL13aSi5/vhP2Nm3cuRFMxahwZFN4Bk7XpBtt9u7YrjlubpiXkXMWXT2O7dXCznFutseLtv4OUg383y/kbo0vnAfQKvBxNett4m7tQVrVCfoCZNNdCksoySM/JPO/+AQEB3HfffS0UXfuyatUqZs6cyfHjx3Fzc2PIkCG8//77dOzYPGv52ErbSS52fwe/PlD/fkI0g70dejHNoWmnDL6U2JfoBY0vAtRQqTe/zuH05itL7R+aTGr8r1hMtp8m3im8D31DxqBNB9rGO95FqW8Z+cGDBzN27FgbRSfaAvuv0Hla1HhQ2UdJXdH27Pds+mWpt/pdZDWuegQtmoWff/ON6c5KDsU3/DZcvZuufPSFSjyxm0Wb3mCL6XdMwQq0/ZXSz6v2ZeR7E3JqGfmIiIuv3SHat7aTXLj4QFjzreAoxPnE6Zo+sV3tchLVWSO8m5raWEHXLe/h6Nx8SXlhjhtqx5sJiOjRbNdojJPJ+1i86U3+rliKMcTSlt4BL5hKUeGd6UD3oz6MT+7GdO3lhHcMt3VYws61rT+tmIm2jkC0U3EVTV9voFxlxhwd3uTnPZs26RC9yv5q1m/yxnIthXmjCes5tklWfG0Kqanx/PL322wwLKI82Aya1hFXa+AW4o3WoW1UKRC2I8mFEBepUO9FUmnzVKlMi2j+Ra1c1/9ATEDzdsGAiqyU7oR0m4bO+eLXOWkqGRnH+HXTO6wr+pGyECNoJclw6tq8q9+K9qFtpade4RDQAzL32zoS0Y7EBUaDcvFlv2uzM7CU+tc8vHiBPz9P3vUfkpXZvPUhctP8cAu8DUvZMgoykuvcb/Oxk/yTcJI8Q+VqkYEerozq1oWuQbWvHZKYncfyfYfIKi7BaLHgpXdmcOcwhkWfWSH1SEY2i3cdoKSigu7BAUy+JBatpvL71cmUIzw69xqevPZarup/G/psPZja5zRW5xhJLsTFa1stFyCtF6LFxbk135vxarcUaMIlr+uiNhuJ2fQOTvrmHxRtKHDGZJ1ESEzdpZk99E5MiI1hxuhLmTH6UiL9fZi7aQcZhcW17q/Tari0S0fuHzmYx8cNZ1S3SH7ff4Qtp6p4WhWF77fuYXBEGA9ePoTkvAK2Hk+qOn75vkMMjggDYwG/bfqAVVlzKQkuReXQ9t4iz8ch2AWNR/ON8xHtR9v7y4meUP8+QjSh/erm+7afpSmBiLBmO//ZtClHiTWsa5GZFBaThtzMoYTFXotaU7MBtXtwAF2D/PFzc8XPzZXxPWPQabWczK19um+Ilwd9wkII9HDD20VPv44diA705XhOHgCGCiOGCiNDIjsS6OFGt+AAMosq14FJzMkjJb+Qy7qcKXddUJDO8k3/4/eMrygOLkHl2PbeKmvjJK0Woom0vb+Y4N7g0RINyUJU2l/WvKuCZndpuamcrht+JMa/5Zb4zkruTECX6eg9vOrcx2pV2J2UhtFsoaNP3fudLTW/kJO5BUT4VX5YujrqcHdy5EhGDiazhcScPII83TBbrCzeuZ/r+/VAra6ZVRUWZbFi08csT/mcwqBCVE5te7q7c1cfW4cg2oi2U0TrbCseh22f2ToK0Q6keIcxvpnHXN6b3ZPLv9zdvBc5i1WrI/76D8ls5vEXZ3PSG3HQ/kH2ySNV29ILivjf2s2YLVZ0Wg1TB/Wpc8zFaS/9toaSCiNWxcqYblGM7t6l6rnE7Dx+3XMQg9FI10B/runTjTXxCZQZTQzsHMrPO+IwGI1cGhnO0C7htZ5fr/dgaO8b8S7wQ2mG8um2pHZzIOi/Axu1OqcQdWmbycXxDfBNzeVohWhqK6NH8B9j866j0cXkwytvn79cc1Mzh0Syrfd/KDc0/QJndVGprfgG7SV5/7rKGCxWCkrLKDOZiEvJYGtiMveNGESgR91VRXNLSjGazZzMLWBF3CGu69udPmEhte6bXVzCVxu388joy/hk3T9cFtWJ6EA/3l71F/8aPpBgz7qXG3dycmVo7xvxLQlCacHXqDm5XhqM51VSPEs0jbbXLQLQ8VJwbljzqRAXY5/epdmvcdQhF1Vw01cAPR9t6jF6Ff3ZopUsFaua7NQ+hPa8Ca3OEa1Gja+bC6HenkyIjSHYw42/j5447zl8XPUEebozKCKMYVGd+OPA0dqvpSgs3BHHVb26oaCQWlBEbIcg3JwcifDz5nj2+euWlJeXsHrL1yw+8h7Z/hmoXO1/4p2+b0D9OwnRQG0zudBooYvUxRfNb79S1iLXKewa3CLXOZvLxp/p5t/0xcHqk50SjHfYbbj7VU+oFMBsbfj0UEWpbP2ozbbEZFx0OrqHBGA91XZrOXVui1Wp2lYfo7GUtVvnsejQO2T4paJys88kQxugRxciK6CKptM2kwuAbtItIpqXWa0lvqTuWg1N6XAH2/ypBvz8IoGBLT+I8bsVCziS0Q2tXzjpBUX8HneIhOxc+oZVJlkr9h1i/tY9VftvOnqCA2mZZBcbyC42sC0xmQ1HjtO3Y80ukeLyClYfPMa1fboDoNc54O/uysajiZzIyedYVg7hDRw4eprJVM6Gbd+x8MBbpPkmofKof+ns1kTf5/xjWYRoLPtMsxuiy1hwDYSSDFtHItqoowFRlFtKWuRaG3yy6d8iV6pOZTETveENCvs+SVkLji0oLsvn61VvUlSah97ZkQBXJ+65bABRgZUzZ4rKK8gvPdNqpKCwYt8h8gxlaNQqfFz0TOgZw6BapvH+uvsgw6M746F3qtp2U/9eLNi2h7+PnmB4dARhPp4XFLfFYmTj9vloNFoG9r6OMGs0SoHpgs7VYlTgIsmFaGJtc0DnaWtego1v2zoK0Ub91H00L5UebrHrLZztipJf0GLXO1vppdexVTcKW71beAflkpe0mPKS2ototVYqlZoBva+hk7o7Sl7rTDIcIz3xu7unrcMQbUzb7RYB6HcbqNr2LQrbiXPUtej1Sru2TDGt2ug3/UJXv2ybXT8v3Qe993S8QzrVv3MroihWtu7+hQW7XuG4+0FUPq2vu0S6RERzaNufvJ5hEDnK1lGINmq/qeWKTQEkdrRtWeaAn18iKMh2bxmlxY6UG6+hQ7dLbRbDBVMUtu/9jQU7XuaI6z7wax090ipHDc49fW0dhmiD2na3CMChFbDgZltHYROvbaxg8SETh3KsOGtVDAnV8MYoR6J9zwzQUxSFFzZU8PlOE/nlCgNDNHw8wYnu/nUP4hsx18CGkzULCE3oomX5LZUrXn6/z8STa8oxGBXu6qPjrTFn+rdPFFgZ820pO/7PBXdH+yzYY3B0Y0iID1al5Ra3Glvambs+OFL/js3IHNCRHf3/S2mJbWs7+IcmkRr/KxZT6+xqaIhe3ccQ49ofsmz3WroMDMTrui7179hK3H777RQUFLBkyRJbhyLq0bZbLgCixoJ77UV02roNJ8080F/Hlrtc+PNWPWYrjPmuFIPxTD755iYj7/5j5KMJTmy/x4VAVxWjvy2luKLunHPxFD3pM12rHvvvc0GjgsndKr+N5ZRaufu3Mt4e7cSqaS7M22ti+ZEzHwL3LS/j9VGOdptYABwIimnRxAJgnfNJVM5O9e/YjLSZJ4nNXW7z3sas5DB8O92Gi5f9fuvee+APftz6CgectqIE2KasuMuAoCY71+23345KpeLee++t8dz999+PSqXi9ttvb9C5Tpw4gUqlYs+ePRccz4gRI5g9ezYAixYtYuDAgXh4eODm5kb37t2ZOXNm1b7PP/88vXv3bvQ15s6di6en5wXH2Ja1/eRCrYG+020dhU2snObC7b11dPfX0CtQw5xrnEgqVNiZXtnqoCgK72818vRljkzq6kAPfw3zrnWm1KTwQ1zd3wi9nVUEuqqrHn8eN6N3gMndKvuTj+creDiqmNLDgf4hGkZ20nAwu/KD+Ic4EzqNikldW1/fc2PEubf8h5pRZcEUY/sxB/p/ltLNp2UrhtamMNsdjfPN+HfuZutQLsr++PX8tOVV9jlsxtqC034dOrg2eW2L0NBQFixYQFnZmZk85eXlzJ8/n7CwlhszlJeXx+bNm7nqqqtYvXo1N910EzfccAPbtm1j586dvPLKKxiNxhaLpz1q+8kFVCYXqra94FBDFFZU/tfbubLFILFAIaNEYUzEmf5fR62K4eFaNqc0fN2Er3abuKmHAy66yvN28VZTalLYnW4hr0xhe6qF2AANeWUKz60r56Pxtv323RTiNLbpTUzpXHfp65bkv+gVgoJs3/JkLHOgqGAsoT1H2zqUixZ/ZCML/3mV3ZoNWFtgbIvLgKav+tq3b1/CwsJYvHhx1bbFixcTGhpKnz59qratXLmSoUOH4unpiY+PD1deeSUJCQlVz3fqVJlE9+nTB5VKxYgRI6pd5+233yYoKAgfHx8eeOABTOd0jy1fvpxevXoREhLCsmXLGDp0KP/5z3+Ijo4mKiqKa6+9lv/9739AZevDCy+8wN69e1GpVKhUKubOnQvAu+++S8+ePXFxcSE0NJT777+fkpLK6efr16/njjvuoLCwsOq4559/vqleSrvXPpIL92CIGmfrKGxKURQeXVXO0DANPU6Np8goqWxNCHCt/iER4KKqeq4+21It7M+ycnffMzMnvJxVzLvWmelLyhjwRQnTezkwNlLLY3+U89AAHYkFVvp8VkKPT0r4+aB99pnHlWfZ5Lo7Akttct1zqawWola/ir41VKRUVGSn9KRDj2nonPW2juaiHTm2hYWbX2MHa7AEq5qlBLvKUYO+V/PMErnjjjuYM2dO1c9ff/01d955Z7V9DAYDjz76KNu3b2fNmjWo1Wquu+46rKeqpG7btg2A1atXk56eXi1ZWbduHQkJCaxbt4558+Yxd+7cqmTgtKVLl3LNNdcAEBgYyIEDB9i/f3+t8U6ZMoWZM2fSvXt30tPTSU9PZ8qUKQCo1Wo+/PBD9u/fz7x581i7di2PP/44AEOGDOH999/H3d296rjHHnvsIl65tqUVvDO0kEvugMPLbR2FzTy4opx9mRb+vrPmWhjnvncpSsPfz77aZaSHv5oBIdVbhq7r6sB1Z3V9rD9hJi7LwkcTnIj8sIT51zsT6KpiwJcGhnXU4O9iP3lulkcQWeU5Nrn2n64nuUGrBbPtF8vSZKfQK3MpW1wn0MLDT2qVk+qPe+BtmEt/oyAzxdbhXLSExB0kJO6gY1gvLgkdhzadyhroTUDf2w+1Y/O05t5666089dRTVeMmNm3axIIFC1i/fn3VPtdff321Y7766iv8/f05ePAgPXr0wM+vsliaj48PgYHVW1i8vLz46KOP0Gg0xMTEMHHiRNasWcM999wDQEVFBatWreK5554D4KGHHmLjxo307NmTjh07MmjQIMaMGcPUqVNxdHTE2dkZV1dXtFptjWvNmDGj6v87derESy+9xH333ccnn3yCTqfDw8MDlUpV4zjRXlouACKuqJya2g49tKKMpUfMrLvNhQ7uZ/7JA10r/z+jpPo7VlapQoBr/b8apSaFBQdM3N3n/OMnKswK9y8v57MrnTmWZ8VsheHhWqJ9NUT5qNnaiC6Y1iDOP9Jm185Xl6FEdrTZ9c/lvG053b3T691v1e4fePCzK/h508d17lNoyGXOmld4ccFtPPTZqFr3jU/ZwQsLpvPYnKv5Zt3rmC1nWr7KKkr4z+x/kVl0GcHRtqhn2jxOJu1l0aY32FyxDFOwtUnetV0GNt1AznP5+voyceJE5s2bx5w5c5g4cSK+vtXHKCUkJHDLLbfQuXNn3N3dq7pBkpKS6j1/9+7d0WjOJEZBQUFkZZ1pSVy7di0+Pj707FlZGMzFxYXly5dz7NgxnnnmGVxdXZk5cyYDBgygtPT8LYHr1q1j9OjRhISE4ObmxvTp08nNzcVgMDT49Wiv2k9yoVZD39tsHUWLUhSFB1eUsfiQmbXT9XTyqv7P3clTRaCrij+Pn/kWbLQobDhhZkiH+r/V/HTARIUZpsWeP7l46a8Kxkdq6RukwWIF81mrQpksYLGzydBxrnUvxd0SMiO9bXr9c/kteoWQ84y/OJl1iM3xywnx7nze85itJtycPBjbdyohPjWX/rYqVuateY2h3a5i5jUfcjLrMJviz7RGLtn6BUO7XYWHUxB5WZcRFnsNak3bGWuVnHqAxZveYmPpL1SEmEF9Yf0ljl080QU37yJld955J3PnzmXevHk1ukQArrrqKnJzc/niiy/YunUrW7duBWjQIEsHh+rvNyqVqqo7Bap3iZwtIiKCu+++my+//JJdu3Zx8OBBfvzxxzqvc/LkSSZMmECPHj1YtGgRO3fu5OOPKxPec8d4iJraT3IB0OdWUNv3LIXGeGBFOd/tM/HDJGfcHCvHUWSUWCkzVX6aq1QqZgzU8erGCn6JN7E/y8LtS8rQO6i4peeZ12n6L2U8tbq8xvm/2m3i2hgtPvq6f40OZFn48YCZF0dWFoCK8VWjVqn4apeR5Ucqa3D0D7avD4A4pcKm198X3Lre2FSKQuSfr+DiXrOXtcJUxty1r3LzsEdxdjz/YFQft0BuuPRBBkaNwUlXs/vOUF5ISXkBw7pdQ5B3OD07DiYj/yQACRn7Sco+wsgek6r2z0qOIKDLdJzdPS/uBluZtPQjLPn7HTaULKQ8xASaxiUZbiNCmymyM8aNG4fRaMRoNDJ2bPUVqnNzc4mPj+eZZ57hiiuuoGvXruTnVy9Ip9NVjuGyWBrXqqkoCr/99htXX33+hSvDw8PR6/VVLRA6na7GtXbs2IHZbOadd95h0KBBREVFkZaWViPOxsbYXrSfMRcAbgHQ+xbYNc/WkbSIT3dUfgiNmFe96W/ONU7c3rvyj/fxS3WUmRXuX1FOfpnCwA4a/rhVj9tZNSiSCq2ozylscCTXwt9JFv6YVvcAOkVR+L9l5bw31rFqJomzg4q51zrxwIpyKszw0QQnQtztJ8e1qtQcLE21aQx/eqQwxqYR1KTJSSU2/Re2ul2N9ayWqR///oAeYYOI6dCPlbu+v6hruDp54q73IT5lBzEd+pGQEcfAqDGYLSZ+3Pg+U0f8B7W6eqKan+mFk8c0XDxXkZN09KKu39pkZCbwa+a7+PmGMzjmWpwzncB8/mZAXagbThGezR6bRqMhPj6+6v/P5uXlhY+PD59//jlBQUEkJSXx5JNPVtvH398fZ2dnVq5cSYcOHXBycsLDw6Pe6+7cuRODwcCwYcOqtj3//POUlpYyYcIEOnbsSEFBAR9++CEmk4nRoytnGYWHh5OYmMiePXvo0KEDbm5uREREYDab+d///sdVV13Fpk2bqupmnBYeHk5JSQlr1qyhV69e6PV69Hr7H1TcFOznXb2pDHus3bReKLPca32cTiygsvXi+RFOpM90o/wZdzbc7lI1m+S09be7MPda52rbonw0KLPcGR1Rd36qUqnYdKcLV0ZVf72vjHLg5Aw3Mh5zqzbLxB4k+kVSYrJtf+tJbQGqsNZXGM55+0q6e50ZSLnj2FqSc45x9YC7m+T8KpWKu0Y9y8pd3/HKT3fSwSeSwdHj+XPPfKJD+qLTOPLukod5ccFtbNi/pOq48hIdBsNEQrsPb5I4WpvsnBMs/ft9/sz9FkNwGTjU/bbuNqJDi8Xl7u6Ou3vNLkS1Ws2CBQvYuXMnPXr04JFHHuGtt96qto9Wq+XDDz/ks88+Izg4uNZujtr8+uuvTJw4Ea32zPvS8OHDOX78ONOnTycmJobx48eTkZHBH3/8QXR0NFA5wHTcuHGMHDkSPz8/5s+fT+/evXn33Xd544036NGjB99//z2vvfZatesNGTKEe++9lylTpuDn58ebb77Z2JepzWr75b9r89u/YedcW0ch7NAv3a7guTLbfwP+fEcvPP/caeswalBUKo7c/BH7j2Tx5uL7eGDim3Q4NX7i/aWP0sEnghsufaDe8zR038yCZGb//jRP3vAZ7y2dwcie19MttD+v/HQ3D135Zo2xG34dUkk//AvmNlxAycMjgEt7TMY9xw3FeGYsgtbfmYBH+qFS2b4+SXOJjY3lmWee4cYbb7R1KO1e++oWOe2yx2D392BtXX3XovXb7+QEZfXv19ziO8BgWwdRC5Wi0GXlS6wNHEVxWQFvLjpTCtqqWElI38dfB5bw/t0ra3RhNJaiKMz/6z2uG3wvVsVKSs4x+nQahs7BiS7BsRxN31cjuchOCcE77HbKC36lKMf2VUabQ2FhJis2fYSbmy+Xxk7GM9cLpcKC2/DQNp1YGI1Grr/+esaPH2/rUATtNbnwDIU+02DnnPr3FeIsceZiW4cAwDrvzFaZXACo8zK4MSQZjylfVRt/8d36twjwDGV075suOrEA+OfQClyc3IkNH0JpReW/i8VqrvqvYq29+EZRris6pykERm4g49jei46jtSouzmHlpk9xcfFi+KBbCentZ+uQmpVOp2PWrFm2DkOc0v7GXJx22UzQ2Fd/v7CtCq0TR0taR3GmPboM1L6ta0rq2XziNjCms4Zg705VD53WCRdHd4K9K2sa/Lr1S75Z+3q141JyjpGSc4wKUxkl5YWk5BwjPf9EjfMXl+Wzctf3TD7VbaJ3dCPQM4x1cYs5nnGAw6m76RTYvc74jOVa8nMvJyx2PCpbr8LWzAyGfIydzKg0bfs+RevSfn/bTrdeCNFA8UFdMSu2r4x5WklM808pvBi+i1+nQ3DdzxeV5pJXUr2M+uuL/sXri/5Fcs4Rdhxbw+uL/sWnK/5b49ifN33MFb1uxNPlzLfxaSOfYGfCOmavfJpRvW4k3D/mvPGpUJGV3JXgrtNwdGneug+25ObrR4+R9r/2irAv7XNA52mFKfBhH7C03cFdoul803Mcb5UctHUYVZ5N7kvP77bZOozzsngHsPOylygpbN3jm1w8yrEal5OfdtLWoTS5UXffT6/RE2wdhmhn2m/LBYBHB2m9EA22/zxT/Gxhk0+erUOolyYvk9ikH1E3stBTSzMUOmE0XUtI19Y6kuXCSKuFsJXW9W5pCzL2QjRQXIVtFiury1/OSahcalaybG2cdq+hh1uircOol8WsITdjMGGx16PRto2x7pfeOA2Ntn3U9RGtiyQXHh0qy4ILcR75Lj6klGbYOoxqzCorxq7htg6jQXyXvEVYcCtYOrUBspI74hdxGy6erXfAbEP4d4qg27DLbR2GaKckuQBpvRD1iguMsnUItUrq1PpbLk7rvPwF3Dzt41t0QZYHWpdb8O/U1dahXLDh0+5q03UtROsmyQWARwj0u8PWUYhWbL9b6/wWu82/ddTdaAh1YQ6xiT+g0drHB15FqY6iwnGE9rzC1qE0Wue+/QnrEWvrMEQ7JsnFaSOfAr2vraMQrdQ+Veuc7bDaNQkc7KM1AMBx73p6uByzdRgNp6jITulFaI+pODg5179/K6DWaBg2reYy50K0JEkuTnP2gtEv2joK0UodKE23dQi1KlZXYI0Kt3UYjeLz67t0DLavZaqzUwPwCL4Nj4DzFO5oJXpePhafkNZdA0W0fZJcnK33LRDWtqaiiYuX5BNOgbHQ1mHUKSPSy9YhNFqnZS/g7mU/LS4AJfl6LEwmOPoSW4dSJ52zniE3TrV1GEJIclGNSgUT3wF125iGJppGnF+4rUM4rz2BFbYOodHURbn0SPjWbsZfnGY2asjLGkZY7NWo1K3v7XPANTegd/ewdRhCSHJRQ0B3GHhv/fuJdmO/vnWXhl7lkVSZGJ9HpsnE42lpDD56hL5HDnPdiUQOlJef9xij1cr72dlckXCMXkcOM/Z4AosKC6qe32wwMP54AgOOHuGp9DSMZxX7LbZYGH88gTRT3WNVnPZtpKf+SMNuspXJSo4kKHo6zm7utg6lildQMP2uvM7WYQgBSHJRuxFPglvr71sVLWOfpcTWIZxXuqYYwjvU+XyhxcLUpJNoVSo+6xDKb5068bifP271fPN+JD2NLaUGXgoMYkWnTrwVFExnXeWUbaui8Hh6GlM8vfg+rCNx5eX8XFBQdew72dlM8fQiuJ7Bpt5L36djcOtZr6Ux8jK8cfK6FZ/QiPp3bgFX3Hk/Wjsa3CvaNkkuauPoBmNfsXUUohUwqR04bEi1dRj1yo0KqPO5r/JyCXRw4NWgIGKdnQlx0DHYxYUwXd21XTYaSthRWsrsDqEMcXEhxEFHrLMzfZz1AORbLORZLNzs6UkXR0dGurqSYKzsntlVWsqB8nJu9WrYWJBOv72Ah7d9fiiWFTtSWnYVod2H2TSOmEuH0zG2t01jEOJsklzUpcck6DzS1lEIGzsSGE2FpfWPaTjYoe7ql2tLSujh5MSM1FSGHjvKpBOJLDyrlaE260pK6O7kxNd5uYxIOMb44wm8mZVFubXyOt4aDX4aLZtKDZRbrewsLSPK0RGjovBiZiazAgPQNLCAk7o4jx6H56JtZWu3NJRiUZOddgmhsTeicWj5YnyOehdGTL+7xa8rxPnY519zS5n4DmgcbR2FsKE4b/voHlvrWXdp8hSTiQUFBXTU6fi8QyhTPD15NSuTXwvrngGTYjSxq6yMoxUVfBgcwpP+AfxRXMRLmZkAqFQq3g0OZnZuLledSKSrkyOTPDz5MjeXQS56HFVqpp48yYTjx/k+P7/e+B0PbKanY+tZcfZCZCd3wCf8Ntx8/Fv0upfdcjsunvY3Y0i0bZJcnI9PBFz6sK2jEDYUp7OP5voDuixUAbV/qFkVhW6OTjzi50c3JyemeHpxg4cnCwrq/tC3oqAC3gwKJtbZmeGurjzhH8CSosKq1ot+ej0/dQznz84RPBsQSKrJxNKiQh7y9ePJ9DRu9PTk27AwPs3N4XA9g0cBvJb9j3A7HX9xWlGOGzhOISCiZ4tcLySmO7GjxrXItYRoDEku6nPZTPDsaOsohI3EGVv/suanFceE1LrdT6slwrF6c32ETke6ue4Pcj+tFn+tFjeNpmpbZ50OBcio5ThFUZiVkc7j/v4oikJ8RQVj3Nzw0Wq5xFnP9rLSBt1D+NLn7Hb8xWmmMgcK80YRFjuu3lk8F0Pj4MCYfz0k64eIVkmSi/o4OMOEt2wdhbCBEid3ThjSbB1Ggx0Nq70+S19nPYlGY7VtJ0xGgs+zFHcfZz3ZZjMG65mxHCeMRtRAYC3LkS8qLMRTo+FyVzdO1940n5qaakbBqtQ4pFbqkkJ6xn+NVmfvb00qspK70aHbNBz1zbO43KDrpuAdXPcsoZY0d+5cPD09bR1Gg91+++1ce+21tg6jTbP3v+CWETVWlmVvh/YHxaDQwE/FVmCjb06t26d7ebGvrIzPcnM4aTSyrKiQhQUF3OzlWbXPu9lZPJl+JpGa6O6Op0bD0+npHKuoYEdpKW9nZzHJwwOnc6aw5prNzM7N4b/+lTNWPDQaOut0fJOfz56yMrYYSunt3PB1OXTxW4h12N+IO2+9ctL8cPG/Da+gsCY9b1BkNAOundyk50xOTuauu+4iODgYnU5Hx44d+fe//01ubm61/cLDw3n//feb9NqNtXv3bq688kr8/f1xcnIiPDycKVOmkJNT+9/AuT744APmzp3bvEG2c5JcNNT4N8G3dS67LZpHnLuPrUNolE2OyajcaxZ16unszIchHVhRVMw1JxKZnZvLk/4BXHVWJcccs5n0swpeuajVfNkhlGKrhRtPnuDx9DRGuLpWJRBney0rkzu8fQg4q8bCq4FB/F5cxH0pydzp7U1sI5ILAM/lH9M52Fj/jnagtNAJo+U6QmIGNsn5HBydGP/QTNRndVldrOPHj3PJJZdw5MgR5s+fz7Fjx5g9ezZr1qxh8ODB5OXZpnvQVEsRtqysLEaNGoWvry+rVq0iPj6er7/+mqCgIEpLG9b95uHhYVctLfZIkouG0unh+q9k9kg7Eqe2n1YLAEUF5V1rHx80wtWVXzt1Yk9UNMs6dWbyOW+srwYFMy+s+rGdHR35KjSMXVHRrI2I5An/gBqtFgBvB4cw9ZyaFrHOzizr1Jl/ukRxv++FrTYc9ussvHzaRil+i0lDbualhMVeh1pzcfc04ra78Qps2llMDzzwADqdjj/++IPhw4cTFhbG+PHjWb16NampqTz99NOV1x4xgpMnT/LII4+gUqlqjPdYtWoVXbt2xdXVlXHjxpGeXn3Bvzlz5tC1a1ecnJyIiYnhk08+qXruxIkTqFQqfvrpJ0aMGIGTkxPfffddjVg3b95MUVERX375JX369KFTp05cfvnlvP/++4SFnWkhOnDgABMnTsTd3R03Nzcuu+wyEhISgJrdIoqi8Oabb9K5c2ecnZ3p1asXP//8c9Xz69evR6VSsWbNGi655BL0ej1Dhgzh8OHD1WJbunQpl1xyCU5OTvj6+jJp0qSq54xGI48//jghISG4uLgwcOBA1q9f38B/IfsjyUVjBMXC6BdsHYVoIfvLa5/eeXjmYfbfvr/GI+2busdnGA4ZODbrGAfuPsDh/xwmb231b4Il+0s48sQRDt53kJQvUrCaz4x1sJRaOPLEEYy59X+TP9HJPpYFbwi1oYju+79sA+MvzshK7oR/5G3oPb0v6PiISwYRe0XTzg7Jy8tj1apV3H///Tif08IUGBjI1KlT+fHHH1EUhcWLF9OhQwdefPFF0tPTqyUPpaWlvP3223z77bf89ddfJCUl8dhjj1U9/8UXX/D000/zyiuvEB8fz6uvvsqzzz7LvHnzql3ziSee4OGHHyY+Pp6xY8fWiDcwMBCz2cwvv/yCotT+BSA1NZVhw4bh5OTE2rVr2blzJ3feeSfmOgYxP/PMM8yZM4dPP/2UAwcO8MgjjzBt2jQ2bNhQbb+nn36ad955hx07dqDVarnzzjNL2y9fvpxJkyYxceJEdu/eXZWInHbHHXewadMmFixYwL59+5g8eTLjxo3j6NGjtcZk79rG14KWNOg+SFgHR1fZOhLRjDI8Q8gur70pOGJWBMpZIxQrUis48dYJ3PvXvs6EMdvIiXdP4D3cmw7/6kDp0VLSv0lH46bBo78HilUh+bNk/Cb64drTleSPkslfn4/PqMpumYyfMvAe6Y3Op/4CTVv9Com+gPttrXSHt9Orc192EmvrUJpMQZYHjq5T8fP8g+wTh+s/4BQXTy/G/OuhJo/n6NGjKIpC165da32+a9eu5Ofnk52djb+/PxqNBjc3NwIDA6vtZzKZmD17NhERleXQH3zwQV588cWq51966SXeeeedqm/znTp14uDBg3z22WfcdtttVfvNmDGj2jf+cw0aNIj//ve/3HLLLdx7770MGDCAyy+/nOnTpxMQUNlt9/HHH+Ph4cGCBQtwONVdFxVVe7e2wWDg3XffZe3atQweXLkqdufOnfn777/57LPPGD58eNW+r7zyStXPTz75JBMnTqS8vBwnJydeeeUVbrrpJl544cwX0F69egGQkJDA/PnzSUlJITi4stXpscceY+XKlcyZM4dXX321zvu1V23nK0FLuvYTcA2sfz9ht+L8614vQuuuxcHToepRvKcYnb8Ol5jaZwXkrctD56MjaGoQTsFOeA/3xvMyT3JWVg4+s5RYsBRb8L7cG6cQJ9z6uFGRVlkV1HDUQNmJMnzGNGz8x2qXk6gc21bXncfvnxER3PqrpDZGhcGBkqIJhPa4vMHHjLn3YZuseHq6daC+Ka96vb4qsQAICgoiKysLgOzs7KoBo66urlWPl19+uaqr4rSzv+3X5ZVXXiEjI4PZs2fTrVs3Zs+eTUxMDHFxcQDs2bOHyy67rCqxOJ+DBw9SXl7O6NGjq8X2zTff1IgtNvZMkhsUFARQdY979uzhiiuuqPUau3btQlEUoqKiql1jw4YNNa7RVkjLxYVw8YVJn8G314FSd9llYb/iXNygoP79rGYrBf8U4DPWp84339Jjpbj2qL6yqltPN/I35qOYFTRuGrSeWkoOlODa3RXDEQNel3phNVtJm5dGh7s6oFI3rJZBucqMOToCzb6GfyO2B6G/PEfexHfJz6l7lVV7oygqslN7E9ozgIwjv2CqqLvQWK/RE+jcp3+zxBEZGYlKpeLgwYO1Ts88dOgQXl5e+NYzdubcD3KVSlWVmFhPTWn+4osvGDiw+sBWzTkDU11cGjZ118fHh8mTJzN58mRee+01+vTpw9tvv828efNqdO+cz+nYli9fTkhI9Voxjuck6mff4+m/99PHn++aVqsVjUbDzp07a9yvq2vrXnX5QknLxYXqPAKGSPXOtipOqb+iJEDxrmIspRa8htZdftlcaEbjXv0NReuuBQuYS8yoVCpC7w8le2k2R/97FOcwZ7wu8yJneQ6u3VxR6VQcf/k4R548Qu7q3DquckZaRMt/u21u6rISuu+djYNj23vLyk4JwqPD7Xj4B9X6vG9YOMOn39Vs1/fx8WH06NF88sknlJWVVXsuIyOD77//nilTplR9mOp0OiwWS22nqlNAQAAhISEcP36cyMjIao9OnTpd9D3odDoiIiIwGAxAZQvDxo0ba51tcq5u3brh6OhIUlJSjdhCQ0MbHENsbCxr1qyp9bk+ffpgsVjIysqqcY1zu5fairb3l9qSLn8WQvrZOgrRxKwqNQcbuBJq/l/5uPV0w8Hr/M2v57ZqnFs/wyXKhYhZEUS/HU3w9GCMOUYKNhfgP8mflM9T8BrpRef/dibr1yzKk8+f+OwMbNh0PHujO7qLWHbZOoxmUZKnx6qaTFBU32rbdc56rn70KRx0zdvV9dFHH1FRUcHYsWP566+/SE5OZuXKlYwePZqQkBBeeeXMKtHh4eH89ddfpKamNriuBMDzzz/Pa6+9xgcffMCRI0eIi4tjzpw5vPvuu42KddmyZUybNo1ly5Zx5MgRDh8+zNtvv82KFSu45pprgMrxHkVFRdx0003s2LGDo0eP8u2339aY3QHg5ubGY489xiOPPMK8efNISEhg9+7dfPzxxzUGm57PrFmzmD9/PrNmzSI+Pp64uDjefPNNoHK8x9SpU5k+fTqLFy8mMTGR7du388Ybb7BixYpG3b+9kOTiYmi0ldNTHWsfyCfs0zH/LpSa6/+ANuYYKTlQgtfw8y8apfXQYi6sPkrdUmQBDWhda/ZMKopC6pxUAm8KBAXKT5bjcYkHWnctLtEuGA4Zznu91W4pUMuU0bbAY9UXRAaX1b+jHTIZteRlDycs9kpUp/79xt73b7yCai/r3pS6dOnCjh07iIiIYMqUKURERPB///d/jBw5kn/++Qdv7zOzW1588UVOnDhBREQEfn5+Db7G3XffzZdffsncuXPp2bMnw4cPZ+7cuY1uuejWrRt6vZ6ZM2fSu3dvBg0axE8//cSXX37JrbdWFjv08fFh7dq1lJSUMHz4cPr168cXX3xR5xiMl156ieeee47XXnuNrl27MnbsWH777bdGxTZixAgWLlzI0qVL6d27N5dffjlbt26ten7OnDlMnz6dmTNnEh0dzdVXX83WrVsb1TpiT1RKXXN5RMPtWwiLZcnjtmJxt1HMKjtS736Zv2SSvz6f6HejUWnqHhOR8VMGxXuK6fJql6ptafPSKEsqI+LZmgNH8zbkUbKvhLCHwrAYLMQ/EE/XT7qi0Ws4+cFJXGJc8B17/v7vn37uAEdP1HsP9sjq5MK+q94lL9u+Fzk7H+/APDrEVHDZTVNtHYoQF6Rtfr1pabGToc80W0chmsg+p/qboBWrQsHfBXhe6lkjschYmEHK5ylVP3uP9MaYYyR9fjrlaeXk/5VP/l/5+I6rmSCYi8xkL80maFpl/7vGRYNjsCO5f+RSeqwUQ7wBfRd9vfFld2n4N0p7oy430H3Xp21y/MVpzu6duXTyzbYOQ4gL1nb/OlvaxPcgdJCtoxBNYL+5sN59Sg6WYMo14TWsZpeIucBcreCVzk9H+KPhGA4ZSHgugaylWQRNDcKjf82Bl+nfp+M73rfaGI6Qu0Mo3FrIyfdO4jveF33n+pOLODtfurw+Dgl76KVst3UYzcLV25Gx9/RArZG3Z2G/pFukKRly4IuRUJBk60jEBSrT6RncIQCL0rjR8K1NF5MPr7ydaeswml3yLW9xNK3+ZMteaBzUTHqsL/4dZRyXsG+SGjclF1+4+UfQudk6EnGBDgbG2H1iAXDUIRdVcNuc4na2Douew8ev7ZTrGTk1WhIL0SZIctHUArrBDV+BSl5ae7Tf09/WITSZwq5Nu7hVa6SqKKPbzo/ROTXdCqG20nt0GNGDaq91IYS9kU/A5hA1Fka/WP9+otWJ0zasEqY9ONyhffx5OxzfRy/zP7YO46J06R/AkEl1l5wXwt60j3cfWxjyEFxyZ/37iVYlrjzb1iE0mQ0+bede6uO2eh5RQSW2DuOCdIjx4orbuta7docQ9kSSi+Y04W2IGm/rKEQD5br6kVaWZeswmsw2x1RUXp62DqPFhCyaha+/fY2/8A11Zfy9PdFo5a1YtC3yG92c1Bq44WspEW4n4v6/vTuPi6reHz/+Ouww7C4Mq4CKyK4CanRFCgK31DJ3i9SuaaY/yyivWqCYS4o3LZcUEa1bmQu5m0tZbqHeUAS3UFO/7qm5IoHz+4PLJLGICgww7+fjcR46Z/mc92EeMO/5rOrSl2Suze40d9N1CNVGycvF5+ePMTGvHf0vrOqZ0Xl4ICZmtSshEqIiJLmoaiYW0HcZ2HvqOhLxEJmWtroOodKdbFS3ll9/GKPfsgm8t0PXYTyUmcqYLm8GorLRr/dH6A9JLqqDqj70Ww4W5U/ZLHTrkJL38JNqmd0NHz4hWF1jte1zmjne1HUYZTIyNqDTGwHYqSu2tLgQtVGdTy5++OEHFEXh+vXrug2kXuPCGgxZ5KxG0qBw6M45XYdR6b43/w3F3EzXYVQ7xxUf0KAG9r9QDBSee80PtWfJ2VmFqEseKbmIjY1FURSmTJlSbH9aWlqN7en81FNPcf78eWxsasAvs0srGLAKTGtALKKY3+p7cCOv5n7bfVx5SgF/ej/aqpN1gUHePZrvmYlpDet/Ed7HC48AqcEUdd8j11yYmZkxdepUrl27VhXxVDoTExPUavUTJT95eZVYXe4SDC+vAjNJMGqSzAbuug6hypz11M8ZY41OHyHw7o9QQ773hPVogu8/qn75dCFqgkdOLiIjI1Gr1UyePLnc81asWIGvry+mpqa4u7szY8aMcs+Pj48nKCiIRYsW4ebmhqWlJUOHDqWgoIBp06ahVqtp2LAhkyZNKnZdUlIS/v7+qFQqXF1dGTZsGLdu/TXevbRmkYfF5u7uTmJiIrGxsdjY2PDaa69V8KdTQc6t4OVvwcy2cssVjy3TzFzXIVSZfeo7ug5BZyx/+A/eDrrvdxLWowlBkfozckeIR04uDA0N+fDDD5k9ezZnz54t9Zz9+/fTs2dPevfuTWZmJvHx8YwfP57FixeXW3ZOTg4bNmxg48aNfPnllyxatIhOnTpx9uxZtm/fztSpUxk3bhx79uz56wEMDJg1axaHDh0iNTWVbdu2ERcXV+Y9KhrbRx99hJ+fH/v372f8+PEV/vlUmFMLeGU1mJdcVVNUv0P3b+s6hCqz2fI3MKp5/Q+qi3p5PA0ddNc8IomF0EePtCpqbGws169fJy0tjbZt2+Lj40NycjJpaWl0796doqL69evH5cuX+e6777TXxsXFsW7dOrKyskotOz4+no8++ogLFy5gZVVYjRsTE8PRo0fJycnBwKAwD/L29iY2Npb33nuv1HK++eYbhg4dypUrV4DCmouIiAiuXbuGra1thWJzd3enRYsWrFq1qqI/msd3IROWdIU7v1f9vUSp/jQ0obW7K3/e/1PXoVSZr1c1QjmSo+swdCbfpSnpAW+Te6d6F6V76sUmtIiSxELon8ceLTJ16lRSU1PJzs4ucezw4cOEhYUV2xcWFsbx48cpKCj7l9vd3V2bWAA4ODjg4+OjTSyK9l269Ncsit9//z1RUVE4OztjZWXFyy+/zO+//87t26V/E61obMHBwWXGWanU/vDKGhmmqkNH1M3qdGIBcLGJva5D0Cmjs8cJuLWt+vpfKPB0z6aSWAi99djJRbt27YiOjuZf//pXiWMajaZEB8qKVJAYGxsXe60oSqn77t+/D8Bvv/1Gx44d8fPzY8WKFezfv59PP/0UgD//LP3DoqKxqVTVOAbdwRdi14KqQfXdU2hl2tf91UMPOtXt5KkiLH9chnfDqu+IrijQvm8zAp9xrfJ7CVFTPdE8F1OmTGHNmjXs2rWr2H4fHx927Cg+S96uXbvw8vLC0LDy2j737dtHfn4+M2bMoE2bNnh5eXHuXPlzFVRXbI+sYXOIXQeWDrqLQU9lGtes4YpVYbNN6f2j9I16xQQcqrD/hWKg8Gysj4wKEXrviZILf39/+vXrx+zZs4vtf/vtt9m6dSsTJ07k2LFjpKam8sknnzB69OgnCvbvGjduTH5+PrNnz+bEiRMsXbqUefPmlXtNdcX2WBo0+1+CodZ1JHrlUN5VXYdQ5X4zuo7iJh94Bvl5NNsxHTNV5XdwNTBUiB7sS7PW8vsrxBPP0Dlx4sQSzQotW7Zk2bJlfPXVV/j5+fH+++8zYcIEYmNjn/R2xQQFBZGUlMTUqVPx8/Pjiy++eOgQ2eqK7bHVb1qYYNhIW211uGFuw2+3z+s6jGpxrZl86AEY/d+vBN7YXKn9L0wtjOjyZiCNWzasvEKFqMUeabRIbbRp0yY6dOhAbm4uJiYmug6n4m5dhq/7wZmfdR1JnbbLozVD0I/kYtSFQNqm7Nd1GDXGhV4TyL5Y74nLKVrd1N5R1goRokidXlvk4sWLfPvttzRt2rR2JRYAlg0KR5EE9NJ1JHVapvWTf7jUFt/bX9R1CDWKw/IJqNVP1v+iobs1Pd4NlsSiAk6dOoWiKGRkZFTZPYomYxS6V6eTi44dO7JlyxbtCJJax8gUXvgMnhlPjZnDuI7JNKjeeQ90KcPkAgb19XtI6oOUgnyabZ+K+WP2v/Bs0YDub7XAwrpqvrjs2rULQ0NDYmJiKnxNbf9wPXHiBH369MHJyQkzMzNcXFzo2rUrx44dq9D1o0ePZuvWrVUcpaiIOp1c7N+/n2PHjhEZGanrUJ5Mu9HQcwkYW+g6kjrn0N0Lug6hWt3yluGRDzI8f5LAaxt41KWHgqLciPmnH0YmVTfyZNGiRbz55pvs2LGD06dPl3uuRqMhPz+/ymKpDnl5eURFRXHjxg1WrlzJ0aNH+frrr/Hz8+OPPyo2hbulpSX16ulPbWRNVqeTizrF53l4dQNY1f05GarLOTs3fr9XOxbgqyw57qa6DqHGsdiVRvP6lyt0rmKgEN63GWEvNqnSlaBv377NsmXLGDp0KJ07dy6xPEHRmkmbNm0iODgYU1NTli5dSkJCAgcOHEBRFBRF0V4XHx+Pm5sbpqamODk5MWLEiDLvnZOTQ9euXXFwcMDS0pKQkBC2bNlS7Bx3d3c+/PBDBg4ciJWVFW5ubnz22WfFzklPT6dFixaYmZkRHBzML7/8Uu4zZ2dnc+LECebMmUObNm1o1KgRYWFhTJo0iZCQEO15Z8+epXfv3tjb26NSqQgODubnn3/WPuffa25SUlJo3rw5ZmZmeHt7M2fOHO2xoqaalStXEhERgYWFBYGBgezevbtYGTt37iQ8PBwLCwvs7OyIjo7WLt6p0WiYNm0anp6emJubExgYyPLly8t9Vn0gyUVt4hQEr20rXJdEPLGDDfRvKfKd9er+sNvH4bBiIo6O5f85NDYzpNMbAfi1q/ohvV9//TXNmjWjWbNm9O/fn5SUlFIn+4uLi2Py5MkcPnyY5557jrfffhtfX1/Onz/P+fPn6dWrF8uXL2fmzJnMnz+f48ePk5aWhr+/f5n3vnXrlrZJ+ZdffiE6OpouXbqUqD2ZMWOGNmkYNmwYQ4cO5ciRI0BhctS5c2eaNWvG/v37iY+Pf+hw/wYNGmBgYMDy5cvLnMn51q1bhIeHc+7cOVavXs2BAweIi4vTTqz4dwsWLGDs2LFMmjSJw4cP8+GHHzJ+/HhSU1OLnTd27FhGjx5NRkYGXl5e9OnTR1sTlJGRwbPPPouvry+7d+9mx44ddOnSRRvjuHHjSElJYe7cuWRlZTFq1Cj69+/P9u3by33euk5/VzOqrawdC2swVr0O2Wm6jqZWO6SyhOu6jqJ6/Wh+mqEqFZoypsfXV8r9Appum8IfIf/izq2SzQvW9c3o8HoA9V0sqyWe5ORk+vfvDxSusXTr1i22bt1aool3woQJREVFaV9bWlpiZGSEWv3XsOPTp0+jVquJjIzE2NgYNzc3QkNDy7x3YGAggYGB2teJiYmsWrWK1atXM3z4cO3+jh07MmzYMADeffddZs6cyQ8//IC3tzdffPEFBQUFLFq0CAsLC3x9fTl79ixDhw4t877Ozs7MmjWLuLg4EhISCA4OJiIign79+uHp6QnAf/7zHy5fvszevXuxty/sP9SkSZMyy5w4cSIzZszghRdeAMDDw4Ps7Gzmz5/PK6+8oj1v9OjRdOrUCYCEhAR8fX359ddf8fb2Ztq0aQQHBxer8fD19QUKk6ikpCS2bdtG27ZtAfD09GTHjh3Mnz+f8PDwMmOr66TmojYyNoeXFkO7sld/FQ+Xqbmr6xCqXb5yn7zm7roOo0YyuvgbAb+vQ/nbX0X3gPr0/FdItSUWR48eJT09nd69exfGZWREr169WLRoUYlzK7IG0ksvvcTdu3fx9PTktddeY9WqVeX2z7h9+zZxcXH4+Phga2uLpaUlR44cKVFzERAQoP2/oiio1Wrtuk+HDx8mMDAQC4u/+okVffiW54033uDChQt8/vnntG3blm+++QZfX182b94MFNYitGjRQptYlOfy5cucOXOGQYMGYWlpqd0SExPJySm+iN+Dz+Lo6AigfZaimovSZGdnk5ubS1RUVLF7LFmypMQ99I3UXNRWigLPjC2c1fPb4ZCvfx+UT6JAMeTwLf2cEvu0h4rG+3QdRc1ksXs1Pi8FkXXZAcVAofXzHrSMblSl/Sv+Ljk5mfz8fJyd/2p+0Wg0GBsbc+3aNezs7LT7K7IGkqurK0ePHmXz5s1s2bKFYcOG8dFHH7F9+/YSazcBvPPOO2zatInp06fTpEkTzM3N6dGjB3l5ecXOK2/dpyeZPsnKyornn3+e559/nsTERKKjo0lMTCQqKgpzc/MKl1MUy4IFC2jdunWxY39f6uHBZyl6r4uuL++eReesW7eu2PsFYGqq3/2bpOaitvPvAUN+BMfAh58rtH51aMbdglxdh6ET6Q1v6jqEGq3hikl4ehjw/MggWsW4V2tikZ+fz5IlS5gxYwYZGRna7cCBAzRq1Igvvvii3OtNTExK7a9gbm7O888/z6xZs/jhhx/YvXs3mZmZpZbx008/ERsbS/fu3fH390etVnPq1KlHeg4fHx8OHDjA3bt/fenZs2fPI5UBhR/03t7e2lWuAwICyMjI4OrVh/cdcnBwwNnZmRMnTtCkSZNim4dHxftbBQQElDm81cfHB1NTU06fPl3iHq6u+j0yS5KLuqCBFwzeCmEjKVGnK0p1sJ7+rrOxxfI0lPKNVRRShYYQ+aoPLs3sHn5yJVu7di3Xrl1j0KBB+Pn5Fdt69OhBcnJyude7u7tz8uRJMjIyuHLlCvfu3WPx4sUkJydz6NAh7RpM5ubmNGrUqNQymjRpwsqVK7VJTd++fcvsMFmWvn37YmBgwKBBg8jOzmb9+vVMnz693GsyMjLo2rUry5cvJzs7m19//ZXk5GQWLVpE165dAejTpw9qtZpu3bqxc+dOTpw4wYoVK0qM7igSHx/P5MmT+fjjjzl27BiZmZmkpKSQlJRU4WcZM2YMe/fuZdiwYRw8eJAjR44wd+5crly5gpWVFaNHj2bUqFGkpqaSk5PDL7/8wqefflqi06i+kU+iusLQGKImwMurwVp/Pzgr6pBpLZuxtRLdNLjHfS93XYdR8xgaUn/Em7gtSsa4oW7WCElOTiYyMhIbG5sSx1588UUyMjL473//W+b1L774IjExMURERNCgQQO+/PJLbG1tWbBgAWFhYdpv4WvWrClzPoiZM2diZ2fHU089RZcuXYiOjqZly5aP9ByWlpasWbOG7OxsWrRowdixY5k6dWq517i4uODu7k5CQgKtW7emZcuWfPzxxyQkJDB27FigsGbmu+++o2HDhnTs2BF/f3+mTJlS5orWgwcPZuHChSxevBh/f3/Cw8NZvHjxI9VceHl58d1333HgwAFCQ0Np27Yt3377LUZGhb0KJk6cyPvvv8/kyZNp3rw50dHRrFmz5pHuURfV+bVF9NLda7B2FGSt0nUkNdYL/k9z/Fb5ExPVZf/ObonTt+m6DqPGMHJ0xHnaVCwemE9BCPH4pOaiLjK3KxxN0m0emFjpOpoa546pJTm39bMzZ5EM9T1dh1Bj2LzwAp6rv5XEQohKJMlFXRbUB17/CVzKHtOuj7LU3tzXPFobcl2zyeY0jzzndR1j1KABLvPm4vThJAytJAkXojJJclHX2XvAwI3QfgwoVbcOQm2SadNA1yHo3HnDm+DuouswdMa6Sxc8167Bqn17XYciRJ0kyYU+MDCE9u/BwE1gp9+djAAOGUk3I4DfvRx0HUK1M6xXD+fZs3D+aBqGpXSaFEJUDkku9IlrCAzdCU+/BYb6O1oiM7dii1TVddku+tU0ZNUhBs+1a7B+YLpsIUTVkORC35ioIPIDGLYHmujfH9nL1mou3JXkAmCbrX4sN2/SqBGuCxbgMnMmRnbVP3eFEPpIkgt9Va8x9F8Ovb8EO3ddR1NtMh3KXuRI32SZXEJx0M18DtVBMTOjwcgReKxZjeU/ntZ1OELoFUku9J13Rxj2M0SMBaOKz9tfWx1SSTv7g256180J1yyffRbPtWupP3QoBib62wQohK5IciHA2AzC42B4OjTvoutoqtRBZH6HBx13q1trFxq7uuIyby6un36CiUvdTJyEqA0kuRB/sXWDXp/DgFVQ30vX0VQ6DQrZd87pOowa5af6V3QdQqUwUKmoP+JNGV4qRA0h03+L0hX8CXvmwvZpkFc3VtE80bAJXVV5Dz9RjygaWPapOZqbtfM9VkxMsOvTm3qvvy6dNYWoQaTmQpTO0BjCRsCb+yBkMBia6jqiJ5ZZr/RVIPWZRoFcH3ddh/HoDAyw6daNxhvW4zBmjCQWQtQwklyI8lmpodMMGHkA2gyr1Z0+M83NdB1CjXTKvXa9p5YREXikrcJpymSMnaVfhRA1kSQXomKsHSFmMvy/TAgbCSaWuo7okWXm186q/6r2c8Mbug6hQsyDW9Hoi89xnTsHM6+61ydIiLpE+lyIx3PnKuyZAz9/Bvf+0HU0D5VnaEprd2fy7+frOpQax0xjxNKZGjT3auZIGtXTT1P/9SFYBAfrOhQhRAVJciGeTO4f8PP8wkTj7jVdR1OmA66B9DequfHp2pfrGmN48Kiuw/iLgQFWzz5LvSFDMPfz1XU0QohHVLcGuYvqZ2ZTOEdGm6GwdyHs+gTu1LzhjZm2arglyUVZzjW2wfWgrqMAxdQUm65dqTfwVUzc3XUdjhDiMUlyISqHqRU8PQpCh8D+FEhfANdO6joqrUxjWW6+PPvVd3DV4f0N69XD9qUe2Pfvj1H9+jqMRAhRGaRZRFQNjQZO/QT/XQLZq6FAt+35HX1DOXNHPxbqehwNCyz5ZPoNuF+9K6VahIRg16c3VpGRKDJNtxB1hiQXourduQoHlxUmGpeyqv32f1jY8bSDVbXft7ZZttwFjp+q8vsYWFtj060rdr17Y+rpWeX3E0JUP0kuRPU6ux/+mwqHVlbbzJ87Grdl6P3/q5Z71WafHmhBg/V7q6x8M39/7Hr3xrpTRwzMZM4RIeoy6XMhqpdLq8ItZnJhgvHfJXA2vUpvmWllB39IcvEwmU75PFPJZRq7uGDdqRPWnTrK3BRC6BFJLoRumKig5YDC7dLhwiQj8xu4fbnSb5WpyNwWFbHV9lylJBeGDepjHdMBm04dMQ8KqoQShRC1jTSLiJpDo4H/2w9HN8CxjXDxUKUU266ZP9fyav5EXzXBN6n10Zx79I6vBtbWWEVFYtOpExatW6MYyugcIfSZJBei5rp+pjDJOLYRTv70WCNOzti70dGmCmKroxamB2C99b8VOtfE3R3L8HZYhodjERwsoz2EEFrSLCJqLltXCH2tcLt3C058/79k4zu4falCRRxq6An3TlRxoHXHURcDQso4ppiYYBESok0oTBrVzlVmL1y4wIABA9i1axfGxsZcv35d1yEJUedIciFqB1NLaN6lcCvWfLIJLmaWedlBcxXUzCUzaqTt9S4XSy5MPDywCA3Fst0/ULVti4GFhc5iK01sbCzXr18nLS2twtfMnDmT8+fPk5GRgY3N41drff/990yYMIEDBw6Qm5uLs7MzTz31FMnJyRgZPfmfVkVRWLVqFd26dXvisoSobpJciNpHUcAluHB7djzc/h3O/Py/LR3O/QL5dwE4dP+OjoOtPQwUA244WmET+zKWQS2wCA6uk7Nl5uTk0KpVK5o2bfrYZWRlZdGhQwdGjBjB7NmzMTc35/jx4yxfvpz71TwRmRA1kSy5Lmo/VT3w7ghRCTBwA4w5A4O3QfRkPOr74GblhoKi6yhrnHpm9QhzDmNY0DA+i/qMXX128U2Xb3B6bwzWMTG1MrFo3749I0aMIC4uDnt7e9RqNfHx8drj7u7urFixgiVLlqAoCrGxsQCcPn2arl27YmlpibW1NT179uTixYtl3mfz5s04Ojoybdo0/Pz8aNy4MTExMSxcuBATExNu376NtbU1y5cvL3bdmjVrUKlU3Lx5k7y8PIYPH46joyNmZma4u7szefJkbZwA3bt3R1EU7euiMlq1aoWZmRmenp4kJCSQn//XiChFUZg/fz6dO3fGwsKC5s2bs3v3bn799Vfat2+PSqWibdu25OTkaK85cOAAERERWFlZYW1tTatWrdi3b99jvgtCSM2FqIsMjbXzaUz4364beTc4/Pthsn7PIud6Dif/OMmpP05x88/qmchLl0wNTWls25imtk3xsvPCy94LLzsv7M3sdR1alUhNTeWtt97i559/Zvfu3cTGxhIWFkZUVBR79+7l5Zdfxtramo8//hhzc3M0Gg3dunVDpVKxfft28vPzGTZsGL169eKHH34o9R5qtZrz58/z448/0q5duxLHVSoVvXv3JiUlhR49emj3F722srJi+vTprF69mmXLluHm5saZM2c4c+YMAHv37qVhw4akpKQQExOD4f9G32zatIn+/fsza9Ys/vGPf5CTk8M///lPAD744APtfSZOnEhSUhJJSUm8++679O3bF09PT8aMGYObmxsDBw5k+PDhbNiwAYB+/frRokUL5s6di6GhIRkZGRgbG1fK+yH0k4wWEXrt8p3LhYnGjVOc/OOkdjt/+zwaas+vhpGBEWoLNU6WToWbygkPWw+87LxoZNUIQ4O6OTT0730u2rdvT0FBAT/99JP2nNDQUJ555hmmTJkCQLdu3bC1tWXx4sVAYS1Ehw4dOHnyJK6uhcu3ZWdn4+vrS3p6OiEhJbu4FhQUMHjwYBYvXoxaraZNmzY8++yz2sQFID09naeeeorTp0/j5OTElStXcHJyYvPmzYSHhzNixAiysrLYsmULilKyZq20Phft2rWjQ4cOjBkzRrvv888/Jy4ujnPnzmmvGzduHBMnTgRgz549tG3bluTkZAYOHAjAV199xauvvsrdu4XNh9bW1syePZtXXnnlkd8DIUojNRdCrzWwaEADiwaEOoYW2/9nwZ9cvnu5cLtT+r9X7l7h+r3r3NdUXRu7hZEF1qbWWJv8tdmb2+OkctImEo4qRxpaNMRAkVZOgICAgGKvHR0duXSp7NFFhw8fxtXVVZtYAPj4+GBra8vhw4dLTS4MDQ1JSUkhMTGRbdu2sWfPHiZNmsTUqVNJT0/H0dGR0NBQfH19WbJkCe+99x5Lly7Fzc1NW9MRGxtLVFQUzZo1IyYmhs6dO/Pcc8+V+2z79+9n7969TJo0SbuvoKCA3Nxc7ty5g8X/Otw++DNwcHAAwN/fv9i+3Nxcbty4gbW1NW+99RaDBw9m6dKlREZG8tJLL9G4ceNyYxGiPJJcCFEKY0Nj7Yf3w9wruMedP+9wN/+udvv76wJNAQqK9huqgoKhgSHGBsYYGRhhpBhhbGiMlYkVNiY2WJtaY2VihbGBVE0/qr9X5yuKUm4nS41GU2rNQVn7H+Ts7MyAAQMYMGAAiYmJeHl5MW/ePBISEgAYPHgwn3zyCe+99x4pKSm8+uqr2jJbtmzJyZMn2bBhA1u2bKFnz55ERkaW6KfxoPv375OQkMALL7xQ4pjZA+u1PPgzKLpfafuKfi7x8fH07duXdevWsWHDBj744AO++uorunfvXu7zC1EWSS6EeEKmhqaYGppih52uQxGPwcfHh9OnT3PmzJlizSJ//PEHzZs3r3A5dnZ2ODo6cvv2be2+/v37ExcXx6xZs8jKyirR7GBtbU2vXr3o1asXPXr0ICYmhqtXr2Jvb4+xsTEFBQXFzm/ZsiVHjx6lSZMmT/DEpfPy8sLLy4tRo0bRp08fUlJSJLkQj02SCyGEXouMjCQgIIB+/frx73//W9uhMzw8nODg4FKvmT9/PhkZGXTv3p3GjRuTm5vLkiVLyMrKYvbs2drz7OzseOGFF3jnnXd47rnncHFx0R6bOXMmjo6OBAUFYWBgwDfffINarcbW1hYoHDGydetWwsLCMDU1xc7Ojvfff5/OnTvj6urKSy+9hIGBAQcPHiQzM5PExMTHev67d+/yzjvv0KNHDzw8PDh79ix79+7lxRdffKzyhAAZiiqE0HOKopCWloadnR3t2rUjMjIST09Pvv766zKvCQ0N5datW7z++uv4+voSHh7Onj17SEtLIzw8vNi5gwYNIi8vT9uZsoilpSVTp04lODiYkJAQTp06xfr16zEwKPyzPGPGDDZv3oyrqystWrQAIDo6mrVr17J582ZCQkJo06YNSUlJNHqC2VINDQ35/fffefnll/Hy8qJnz5506NBB27QjxOOQ0SJCCFGFvvjiC0aOHMm5c+cwkfVXhJ6QZhEhhKgCd+7c4eTJk0yePJkhQ4ZIYiH0ijSLCCFEFZg2bRpBQUE4ODgUm5dCCH0gzSJCCCGEqFRScyGEEEKISiXJhRBCCCEqlSQXQgghhKhUklwIIYQQolJJciFEHbd48WLtrI81QdGkVUKIukuSCyF0KDY2FkVRSmwxMTGVdo9evXpx7NixSivvSZ0/f54OHTroOgwhRBWSSbSE0LGYmBhSUlKK7TM1Na208s3NzTE3N6+08h5XXl4eJiYmqNVqXYcihKhiUnMhhI6ZmpqiVquLbXZ2hSusKorCwoUL6d69OxYWFjRt2pTVq1cXu3716tU0bdoUc3NzIiIiSE1NRVEUrl+/DpRsFomPjycoKIilS5fi7u6OjY0NvXv35ubNm9pzNBoN06ZNw9PTE3NzcwIDA0ssBZ6dnU3Hjh2xtLTEwcGBAQMGcOXKFe3x9u3bM3z4cN566y3q169PVFSU9pmKmkVOnTqFoiisXLmSiIgILCwsCAwMZPfu3cXutWDBAlxdXbGwsKB79+4kJSXVqKYeIURxklwIUcMlJCTQs2dPDh48SMeOHenXrx9Xr14FCj+ce/ToQbdu3cjIyGDIkCGMHTv2oWXm5OSQlpbG2rVrWbt2Ldu3b2fKlCna4+PGjSMlJYW5c+eSlZXFqFGj6N+/P9u3bwcKmzbCw8MJCgpi3759bNy4kYsXL9KzZ89i90lNTcXIyIidO3cyf/78MuMZO3Yso0ePJiMjAy8vL/r06UN+fj4AO3fu5PXXX2fkyJFkZGQQFRXFpEmTHvnnKISoRhohhM688sorGkNDQ41KpSq2TZgwQaPRaDSAZty4cdrzb926pVEURbNhwwaNRqPRvPvuuxo/P79iZY4dO1YDaK5du6bRaDSalJQUjY2Njfb4Bx98oLGwsNDcuHFDu++dd97RtG7dWnsPMzMzza5du4qVO2jQIE2fPn00Go1GM378eM1zzz1X7PiZM2c0gObo0aMajUajCQ8P1wQFBZV4ZkCzatUqjUaj0Zw8eVIDaBYuXKg9npWVpQE0hw8f1mg0Gk2vXr00nTp1KlZGv379ij2TEKJmkT4XQuhYREQEc+fOLbbP3t5e+/+AgADt/1UqFVZWVly6dAmAo0ePEhISUuza0NDQh97T3d0dKysr7WtHR0dtmdnZ2eTm5mqbMYrk5eVpl/7ev38/33//PZaWliXKzsnJwcvLC4Dg4OCHxgLFn9HR0RGAS5cu4e3tzdGjR+nevXux80NDQ1m7dm2FyhZCVD9JLoTQMZVKRZMmTco8bmxsXOy1oijcv38fKOwboShKseOaCiwXVF6ZRf+uW7cOZ2fnYucVdTS9f/8+Xbp0YerUqSXKLkoOoPDZKuLBeIqe50mfUQihO5JcCFGLeXt7s379+mL79u3b90Rl+vj4YGpqyunTpwkPDy/1nJYtW7JixQrc3d0xMqraPyPe3t6kp6cX2/ekzyiEqFrSoVMIHbt37x4XLlwotj046qI8Q4YM4ciRI7z77rscO3aMZcuWsXjxYoAS3/YrysrKitGjRzNq1ChSU1PJycnhl19+4dNPPyU1NRWAN954g6tXr9KnTx/S09M5ceIE3333HQMHDqSgoOCx7luWN998k/Xr15OUlMTx48eZP38+GzZseOznE0JUPUkuhNCxjRs34ujoWGx7+umnK3Sth4cHy5cvZ+XKlQQEBDB37lztaJEnmStj4sSJvP/++0yePJnmzZsTHR3NmjVr8PDwAMDJyYmdO3dSUFBAdHQ0fn5+jBw5EhsbGwwMKvfPSlhYGPPmzSMpKYnAwEA2btzIqFGjMDMzq9T7CCEqj6KRxksh6pRJkyYxb948zpw5o+tQqsxrr73GkSNH+Omnn3QdihCiFNLnQohabs6cOYSEhFCvXj127tzJRx99xPDhw3UdVqWaPn06UVFRqFQqNmzYQGpqKnPmzNF1WEKIMkhyIUQtd/z4cRITE7l69Spubm68/fbbjBkzRtdhVar09HSmTZvGzZs38fT0ZNasWQwePFjXYQkhyiDNIkIIIYSoVNKhUwghhBCVSpILIYQQQlQqSS6EEEIIUakkuRBCCCFEpZLkQgghhBCVSpILIYQQQlQqSS6EEEIIUakkuRBCCCFEpfr/PYNESdjJ740AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGyCAYAAAAcSDVlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADo/ElEQVR4nOzddXRU1xbA4d9oPISECASXBHcvFNciFaBQoEZd6Ku7u9JCvaWFChQpRYq7uzsE4gSI6/jc98eQKUMSCJCQZLK/td56zb3n3rtnSDI755x9jkpRFAUhhBBCiApOXdYBCCGEEEKUBElqhBBCCOEWJKkRQgghhFuQpEYIIYQQbkGSGiGEEEK4BUlqhBBCCOEWJKkRQgghhFuQpEYIIYQQbkGSGiGEEEK4BUlqRKmZN28ekZGRTJky5bLtIiMj6d27d4k///333ycyMpLt27eX+L3Lk+HDhxMZGXnFdlOmTCEyMpLIyEi+/fbby7Z97733nG0TEhKuKa7IyEiGDx9+TdcKIcS1kKRGiEpo5cqVRZ5TFIUVK1Zc9zOeeOIJRo8efd33EUKI4tKWdQBCiBsrODiYI0eOkJCQQM2aNQuc37t3L+fOncPb25u8vLxrfs6TTz55PWEKIcRVk54aISqZPn36ALBq1apCzy9fvhw/Pz/at29/I8MSQojrJkmNKHcSEhKcc3FWr17NiBEjaNmyJV26dOG1114jLS2twDVz585l2LBhtGrViv79+/PXX38Vef/Y2Fiee+45unbtSvPmzRk0aBA//PADFovFpV3v3r0ZP348f//9N127dqVNmzZ89NFHzvN//fUXQ4cOpVWrVvTp04effvqJ+fPnu8zjyX8tX331Fe+99x6tW7emU6dOLF26FIC0tDQ+/vhjBg0aRKtWrWjVqhW33HIL33//PVar1SUeo9HIF198Qe/evWnZsiWjRo1i586dV/3+du7cGX9//yKHmFasWEHv3r3R6XSFnp8/fz7jx4+nQ4cONG/enG7duvHss88SHx/v0q6wOTXZ2dl88skn9O3bl+bNm9O1a1eeffZZoqOjXdrlz//ZunUrI0eOpHnz5gwYMIDc3Nyrfr1CiMpDhp9EubV27Vq+/fZbevbsSadOndi8eTNz5swhKirKJWn58ssv+e677wgPD2fEiBEkJyfzzjvvEBgYWOCehw8f5p577sFoNNK/f39q1KjBrl27+OKLL9i5cyc//PADGo3G2f7kyZO88847DB8+HIvFQuvWrQH44IMPmD59OrVr12bkyJGkp6fz5ZdfUr169UJfy+zZswEYM2YMp0+fpnXr1mRnZzNq1CiSkpLo3bs3ffv2JS0tjZUrVzJp0iQyMzN58cUXAbDb7Tz44IPs2LGDli1b0q9fPw4ePMj999+Pl5fXVb2vOp2O3r17s3DhQlJSUqhWrZrz3IEDBzhz5gwDBw5k7ty5Ba79+OOP+eWXX2jcuDG33XYbKpWKnTt38u+//7J7926WLVuGp6dnoc9NT09nzJgxREdH07p1a/r06UN8fDxLlixh3bp1/PLLL7Rq1crlmueee4769eszfvx4cnNz8fHxuarXKoSoZBQhSsnff/+tREREKJMnT75su4iICKVXr17Or+Pj45WIiAglIiJCWbJkifO42WxWbrnlFiUiIkKJiopSFEVRoqOjlaZNmyrDhw9XMjMznW3XrFmjREZGKhEREcq2bdsURVEUu92uDBkyRGnRooVy8OBBlxg++OADJSIiQvnjjz+cx3r16qVEREQov/32m0vbAwcOKJGRkcqoUaOUnJwc5/G1a9c6485/Zv5riYyMVI4ePepynx9++EGJiIhQZs+e7XL8zJkzSvPmzZWbbrrJeWzu3LlKRESE8vLLLys2m815/OOPP3Y+80omT56sREREKCtXrlRWrVqlREREKH/99ZdLm48//lhp27atYjKZlEcffVSJiIhQ4uPjFUVRlLNnzyqNGzdWxo4dq1itVpfrHnzwQSUiIkLZuHGj81hERIQybNgw59cvv/yyEhERoUyaNMnl2nXr1imRkZFK//79nffNj/X22293eb1CCHE5Mvwkyq1atWoxaNAg59c6nY4uXboAkJiYCMCyZcuwWq088sgj+Pv7O9v26tWLbt26udxv//79nDhxghEjRtC8eXOXc0899RQ6nY558+YViKN///4uXy9YsABFUfjf//7n0nPQs2dPbrrppkJfS506dWjcuLHLsW7duvH2229z6623uhyvXr06tWrVchlmW7x4MSqVimeffRa1+r8f2//973/4+fkV+szL6datG97e3gWGoPKHnvR6fYFr9Ho9n3zyCa+++qpLbxZAhw4dAEhNTS30eWazmcWLFxMeHs7EiRNdzvXo0YP+/fsTExPDrl27XM7169fP5fUKIcTlyPCTKDVX82GkUqkKHKtbt26BY/kf4GazGYBjx44BFEhSANq0acPGjRudXx8+fBiAuLi4QtfO8fHx4fjx4yiK4oxHp9MRGhrq0u7gwYMAtGzZssA92rZty+bNmwscL6zKqGnTpjRt2pTc3Fz2799PbGwsMTExHDx4kNjYWGw2m7PtsWPHqFGjBkFBQS730Ov1NGvWjG3bthW4/+V4eHjQs2dPVq5cSXZ2Nn5+fhw+fJj4+HhefvnlQq+pWrUqQ4cOxW63c+LECU6dOkV8fDzHjx9ny5YtgGOYrDDR0dEYjUbatm1b6PdFu3btWL58OceOHaNTp07O44W9b0IIURRJakSp8fX1BSgw4fViRqPRpe3FCustuDT5ycrKAih0rkVAQEChbTdu3OiS7FwqNzfXGU9h80PS09Px9vYu9JkhISGF3tPDw6PAMZPJxBdffMGsWbMwGAwAhIaG0qFDB6pWrUpycrJL7JcmNPmqVKlS5Gu5nP79+7NkyRLWrl3LsGHDWL58OT4+PnTv3r3Ia1asWMHnn39OTEwMAN7e3jRv3pzGjRuzZcsWFEUp9LqcnByAInuV8t+3/O+HfEXNzxFCiMJIUiNKTX5SkZKSUmSbc+fOAY5egGuRP+SUk5NT4B6XVsp4e3sDjpWGR4wYcU3PA0cClpCQgMViKVAhlP/hXRwfffQRM2bMYMCAAYwdO5bIyEjnezZo0CCXpMbf35/s7OxC73Ota8n06NEDT09PVq5c6UxqevXqVWgyCY7hu6eeeoqwsDC++OILWrRoQa1atVCpVPz444/O3prC5CeA+f/el8pPOC9NRIUQ4mrIYLUoNc2aNUOn07F79+4ihyV2794NUKDq5WqecfF9Lnbo0CGXr/O3Erj0OIDFYuGjjz7i999/L9YzbTabczjrYvv37y9W3AD//vsvQUFBfPXVV3Tq1Mn5gW40Gjlz5gyAs+ejWbNmJCUlOY/ns9lsHD16tNjPvJi3tzfdunVj48aNHDhwgJiYGJc5TJdavHgxdrudN998k1tuuYXatWs7e85Onz7tEu+l6tevj4eHBwcPHnQOHV4svzS9YcOG1/RahBACJKkRpcjLy4v+/fsTHR3NN998U+D8+fPn+e6779DpdAwbNuyanjF48GA8PDz47rvvXHo2du3axZo1a1zadujQgZo1azJ37lz27t3rcu7HH3/k119/LTRRudTtt98OwKRJk5zDRgDbtm0rckG7wnh4eGAymZy9FOBIUt5//33nMEz+2jm33XYb4OjduXg9nalTp162J+xK+vfvj8Fg4P3338fb2/uyQ0/5Q2iXPm/r1q38+++/QNFDjXq9nltuuYXz588zefJkl3MbNmxg6dKl1KlTh7Zt217zaxFCCBl+EqXqpZde4siRI3z99desXLmSjh074u3tTUJCAmvXrsVoNPL666/ToEGDa7p/eHg4L774Iu+88w633XYbffv2JScnh2XLllG9enXi4uKcbTUaDR9//DEPPvgg48aNo0+fPtSqVYtDhw6xbds2atasyTPPPHPFZ7Zp04bRo0fz119/ceutt9K9e3dSU1NZsWIFfn5+pKenF6gOKszQoUP55ZdfuOOOO+jbty9Wq5VNmzYRHR1NYGAgaWlpZGRkEBISwuDBg1m+fDnLli0jOjqaLl26EBUVxbZt2wgPD3dWg12t/EX29u3bx5AhQwqd+5Nv8ODB/Prrr7z99tvs3LmT4OBgjh8/zqZNm6hatSqpqalkZGQUef3zzz/Pnj17+Omnn9i5cydt2rQhPj6eNWvW4OPjw6efflrohHEhhCgu6akRpSokJIS5c+fy9NNPo9VqWbRoEb/++iv79u2jd+/ezJw5k7vuuuu6njF27Fi++eYbqlevzj///MOuXbuYOHEiY8eOLdC2ffv2zJkzh4EDB7Jr1y5+++03zpw5w/jx45k1a1aRE30v9cYbb/DCCy8AjpWFDxw4wPPPP88dd9wBFG+C69NPP82TTz6JWq1mxowZrFq1ivDwcKZOncojjzwCwPr1653tv/jiC5577jnMZjMzZ84kOTmZr7/+ukCp+NXw8/NzlskPGDDgsm2bNGnCjz/+SLNmzVi1ahWzZ88mJSWFiRMnsmDBAtRqtUu8lwoMDGT27Nncf//9JCcn88cff3Dw4EFuvfVW5s2bd81DkEIIkU+lFDUILoQoVHJyMjqdrtBJrS+++CLz589ny5YtRVYrVQZ2u50mTZrQrFmzQtf+EUKI0iA9NUJcpYULF9KpUyf++ecfl+NxcXGsXLmShg0bVuqEBnDOb7p4QUQhhCht5XJOTV5eHn///TeLFi0iJiYGo9FInTp1GDJkCPfee+9lx/0rEovFQkpKSpH7BZWk3NxcfvnlF1asWEF8fDxqtZpatWrRr18/7rvvvqveU2f79u3cfffdvPXWW4wZM6aUoi6f8jecfP3111m3bh21a9cmJSWFFStWYLFYeP3118s6xDKjKArPP/+8c4NKmfgrhLiRyt3wU1xcHI899hjR0dEMHjyYFi1aoCgKW7duZe3atbRp04ZffvnFueZIRZWYmMiECRO45557Sj0pyMnJYezYscTGxnLrrbcSERGB1Wpl//79LFmyhIYNGzJjxoyrWm4/JSWFzZs306pVq0JX/nV3sbGx/PDDD2zbto3k5GT8/f1p164dDz/8sLPMvDJKTExk5MiR5OTk0LNnTz788EPZhFIIceOU0Z5ThTKZTMqQIUOUDh06FNhwUFEU5ddff1UiIiKUV155pQyiK1nbtm1TIiIilBkzZpT6s/I3Tty5c2eBc7Nnz1YiIiKUL7/8stTjEEIIIUpTuZpT89dff3HixAlefPHFQvfyuffee2ncuDGLFy8mMzOzDCKsmHbv3o23tzft27cvcO6OO+7A39+fPXv2lEFkQgghRMkpV0nNv//+i7e392UXYvv222/ZvHmzy343p06dYuLEiXTq1IkWLVowfPhw5syZ43LdvHnziIyM5ODBgzz77LO0a9eO9u3b89JLL5Gbm8vWrVu54447aNWqFQMHDnQuJpYvMjKSSZMm8euvv9KjRw9at27NmDFjCmwk2Lt3b0aNGlUg7lGjRtG7d29nLHfffTcAb731lnOlW4Ds7Gzef/99evToQfPmzenXrx/ffPONy4Jr27dvJzIykjlz5nD77bfTokULHnzwwSLfM19fX/Ly8gpMbAXHppObN29m+vTpLsdTU1N54403uPnmm2nVqhVDhw5l9uzZBWKYOXOm85iiKEyfPp1bbrmFFi1acNNNN/Hqq68WWKwtMjKSKVOm8OeffzJgwACaN2/OgAED+PPPPwvEd/jwYR599FE6depE+/btGT9+PDt27HBpc+7cOV5++WW6du1K8+bNGTJkSKH3EkII4d7KzURhRVE4fPgwbdu2LbCfzsXCw8Ndvj58+DDjxo1Dr9dz1113UbVqVVasWMFrr73G6dOnefHFF13aP/HEEzRt2pQXXniBLVu28M8//3D27FmOHDnCmDFjuP3225k2bRovvPACTZo0cVkUbuHChWRkZHDPPffg5+fHjBkzeOCBB/jpp5+ca30UR4cOHXjkkUf4/vvvuf322+ncuTPgmCA9btw44uLiGD16NLVr12bfvn1MmTKFw4cP880337gsTvbBBx8waNAg7rjjjsvOWxgxYgSLFy/mpZdeYtq0afTp04dOnTrRpk0b9Hp9gb1+MjMzGTFiBMnJyYwZM4YGDRqwbt06Xn/9dTIzM4tMoF5//XXmzp3L0KFDGTduHImJifz5559s27aNuXPnuuzN9M8//2AymRg7dixVqlRhxowZvPPOO9SsWZMePXoAsGfPHu699178/f25++67CQgI4K+//uL+++9n2rRptG/fnuTkZEaNGoXZbGbMmDEEBQWxefNm3nnnHaKjo3nttdeK/e8ihBCigivr8a98qampSkREhPL0009f1XV33nmn0qJFCyU2NtZ5zGazKQ8//LASERGhHD16VFEURfn777+ViIgI5YEHHnC2s1qtSteuXZWIiAhl+fLlzuObNm1SIiIilN9++815LCIiosC8lOTkZKVdu3bK8OHDncd69eqljBw5skCcI0eOVHr16uX8urA5NVOmTFGaNGmi7N+/3+Xa6dOnKxEREcrq1atdrh09enSx36cFCxYo7du3d76OiIgIpVWrVsqTTz6pHDlyxKXtp59+qkRERCibNm1yHrPb7cq4ceOUDh06KCaTqUD8O3bsUCIiIpRff/3V5V6HDh1SmjRponz44YfOYxEREUrz5s2VxMRE57H4+HglIiJCeeaZZ1zes44dOyrnzp1zHktPT1c6dOigPPjgg4qiKMpLL72ktG3bVomPj3d57vvvv+/y7y+EEML9lZvhJ7XaEUpRe8cUJiUlhb179zo317v4Xvkrsq5cudLlmv79+zv/W6PRULt2bTQajXNoCKBWrVoALnsJAXTs2NFlXkq1atUYNmwYR48eJSkpqdhxF2X58uXUr1+fmjVrkpaW5vxfr169UKlUrF271qV9fg9PcQwbNoz169fz+eefM2zYMIKDgzEYDCxfvpwRI0awdOlSZ9u1a9fSsGFDbrrpJucxlUrFxx9/zOzZs9FqC3bwLV++HHAMv10ce/Xq1WnUqFGB2Fu3bk2NGjWcX9esWRN/f3/nUFVqair79+9n8ODBLqv8BgQE8Oeff/Luu+9it9tZuXIlbdq0wdvb2+W5+f/O69atK/Z7JIQQomIrN8NPAQEB6PV6UlNTi31N/n439erVK3Auf9jo0j1xqlWr5vK1VqslICDA5YM6P8G6dGfpwnYQzi9nTkxMvO71ZuLi4jAajUUOZV26Q/Olr+VKvL29GTJkCEOGDAHg2LFj/PHHH8yZM4e33nqL3r174+HhQWJioktCk+/iJORSsbGxAPTr16/Q85cOKQYGBhZoo9frne95/r9bYeXijRo1AhyJT3Z2Nhs3biz2eyaEEMJ9lZukBhwLde3fvx+z2Vxgnke+uXPnsmrVKp588kmUyyyxk//heOmHaWEbDRZ3E73Ceijyn3OlDQxtNtsV72+z2WjVqhX/+9//Cj1/6eqs+cnX5Zw7d47ff/+dzp07061bN5dzjRs35r333sNmszFv3jyioqJo1qwZNpvtqjcWtNvteHh48P333xer/ZViz39fLxdH/nvau3dvxo8fX2ib4u7lJIQQouIrV0lN//792bZtG4sWLXJuDHgxRVGYPXs2Bw4c4OWXX3ZOjj19+nSBtvnHwsLCSiy++Pj4AsdiYmJQqVTO4S+1Wo3ZbC7QLiUl5YqJT3h4OJmZmXTt2tXluMlkYvXq1df0WhRF4aeffiIuLq5AUpMvv+cjfxPGGjVqOHteLrZp0yYWLVrEU089VWjsmzZtomHDhgUSiTVr1hS6T9Ll5PcKXbzLdr5ff/2VhIQEXn75Zby8vDCbzQXes7S0NHbu3EmdOnWu6rlCCCEqrnIzpwZg5MiR1K1bl08//ZTDhw8XOP/NN9+wf/9+brnlFurUqUO1atVo1aoVS5Yscfnws9vt/PDDDwD06tWrxOLbuHGjSwJ1/vx5Fi5cSIcOHZx7/VSrVo3Y2FhycnKc7Xbt2sXZs2dd7pWf4Fw8xNWnTx9iYmJYsmSJS9vffvuNp59+mq1bt151zGFhYXTs2JFVq1axZs2aAufz8vJYuHAhDRo0oH79+oDjPTtx4gS7du1yaTtt2jRWrlxZ6LBXnz59AEfJ/cX27dvHY489VqBk/EpCQkJo1qwZS5cuJT093Xk8KyuLn3/+mZiYGLRaLT169GDLli3s27fP5frJkyczceJEoqKiruq5QgghKq5y1VOj1+v5+uuvuf/++7nzzjsZPHgwrVu3Jjc3l/Xr17Nz506aN2/Om2++6bzmtdde4+6772bkyJHcddddBAYGsmLFCnbs2MH48eNp2rRpicWn0WgYN24cd999N2q1mhkzZqAoCq+88oqzzdChQ9m7dy8TJkzg9ttvJykpiRkzZlCnTh2XSdD55c2LFy9Gr9dz22238fDDD7Ny5Uqef/55tm/fTtOmTTl8+DBz5syhefPm3H777dcU9wcffMDYsWN57LHH6NmzJ507d8bPz4/4+HgWLlxIeno606dPdw71PPTQQ6xYsYIJEyYwduxYatWqxfr169m4cSNvvfVWoUODPXr0oH///sycOZOkpCRuvvlmUlNT+eOPP/D39y+0d+dKXnnlFe677z7uuOMORo8ejaenJ3PmzCE7O5tnn30WgOeee47t27dz7733MmbMGOrWrcu2bdtYsmQJPXv2pHv37tf0ngkhhKh4ylVSA46hkPnz5/PHH3+watUqVq9ejcVioV69ejz//PPcfffdLh+qLVu2ZNasWXz11Vf88ccfmM1mGjZsyIcffnjNSUBR+vTpQ9OmTZk2bRoGg4H27dvzzDPP0LhxY2ebMWPGkJmZydy5c3n33Xdp2LAhH330EatXr3bpaWnQoAHjx49n3rx5fPDBB3Tq1InatWsza9YsJk+ezJo1a/j7778JDQ3l7rvv5tFHH8XLy+ua4q5Vqxb//vsvv/76K+vXr+ebb77BYDAQEhLCTTfdxMMPP0zNmjWd7QMDA/nrr7+YNGkS//zzDwaDgfr16zNp0iQGDx5c5HMmTZrEL7/8wvz58/nwww8JCAigc+fOPPXUU85eoKvRvn17/vzzT7766iu+++47dDodLVq04KOPPnImq7Vq1WLOnDlMnjyZBQsWkJ2dTY0aNXjyySd54IEHijXvSAghhHsodxtalleRkZEMHjyYSZMmlXUoQgghhCiE/BkrhBBCCLcgSY0QQggh3IIkNUIIIYRwCzKnRgghhBBuQXpqhBBCCOEWJKkRQgghhFuQpEYIIYQQbqHcLb4nREVjtdkx2+woCqhVKvRaNRr1fxtx2hUFs9WOyWrHZLVhstgxWGzY7QoatQqtWoVGo0Kjclzn/J8KNGo1nno1WrUaRVGw2BSsdsezVCrQqFTotGrUV7kBqRBCuCNJaoS4DJvdjtFiR61W4aXTYLMrZBktpOWYOZdlJDHDQFKmkeRsE+ezTSRnm0jPM5NrsmK02DBYbFhs1z8X31uvIcBLR4C3nireOgK8dFT11hPgrSPAW0eovyd1g3wIr+pFoI8eFDBabSgK6LVqdBrplBVCuD+pfhICnD0nnjrHRqPns42cSs7hyJksTiXncjo5h5iUPFJyTZT3nxitWkVYFU9qBXpTs6oXtap60yDYh3rVfKgd6I2PhxaDxYZapXK+XiGEcAeS1IhKRVEUDBabc9gmMd3Anrh0Dp/J4nRyDqeTc4lLy8Nqd98fixA/D5pW96dJdX9a1w6geY0qVA/wxGqzY7EpeOk0qNUynCWEqHgkqRFuzWy1Y7Xb8dZrOZtpZFdsGrti0jmQkMnRpCwMFltZh1gueOrURIT60aS6Py3Cq9C5fhD1q/lgstpRq8FDKz06QojyT5Ia4VbyJ+16ajUcP5fN6qPn2B2bwb74dNLzLGUdXoXirdfQulYAHeoGcnNENVqEB6AoCgrIsJUQolySpEZUaIqikGe24aXXcC7TyOpj51l/Ipltp1LJNlnLOjy3otOoaFkzgC4NgugdGUKLmlWw2pQC1V5CCFFWJKkRFY7ZagfAZLWxOSqV1cfOsflkCmcyjWUcWeXiqVPTrWE1BjavTr+moXjpNCgoMlQlhCgzktSICsFkdVTrZORZWLAvkcUHktiXkFHuK5EqC5UKWoZXoX+zMG5pUZ1agd6YrDa89bJqhBDixpGkRpRbJosNtVpFWo6Zf/Ym8u/BMxxKzCrrsEQxhAd40adJCMNa1aBN7aqYrXa89NKDI4QoXZLUiHLFbLWjVsG5bBP/7Elg8cEkjiZll3VY4joE+3kwvHUNxnaqTa2q3tgUGaISQpQOSWpEuWAwW1GAv3cnMHNHPEeSpEfGHTUO82NEu5qMaFcTT50GrUaFVi2rHQshSoYkNaLMmCw2tBo1BxIymLYlhmWHzmK6MAlYuDe1Cro2qMadHWoxoFkYNrsiw1NCiOsmSY24oex2BZPNjtlqZ+aOOP7aEUdMal5ZhyXKkLdew+1twnm4RwNC/D3QqdWyorEQ4ppIUiNuCIvNjgrYFZvOL5uiWXPsvFtvRSCuzU0Ng3jk5gZ0bRiE1abgIYv8CSGugiQ1olSZLDY0ahWLDybxzdooTpzLKeuQRAVQO9Cbe7vWZUzH2gAyNCWEKBZJakSpMJhtoII/tsby86bTnMsylXVIogK6eGgq2M9DtmcQQlyWJDWiRBnMNgwWG9+vP8WM7XHkyFYFogSoVNC/aRgvDoykRoCXJDdCiEJJUiNKhNFiIznbxKRVJ1i0/wwWm3xbiZKnUkG/JqG8MLAxtap6odeqUalkUrEQwkGSGnFdDBYb2QYLHy49xoJ9icjcX3Gj9G0SwgsDG1Mn0FuSGyEEIEmNuEYGiw2TxcZnK04wa2ec9MyIMtMrMoSXBkVSt5qPrFQsRCUnSY24KkaLDZtd4es1J5m2JRaDxVbWIQkBQO/GIbwzvBnVfGVCsRCVlSQ1olhMFkc109SN0Xy//hRZRpkALMofrVrFuM51eH5AJBq1SpIbISoZSWrEZdntCjZFYdH+M3yw5CgpOeayDkmIK6ripePpfo0Y26kOADqN7C8lRGUgSY0oktFiIz4tjxfmHmBvfEZZhyPEVatXzYe3hzWjc/0gtGqVbL8ghJuTpEYUYLLYsNoVPlxylBk74qSiSVR4XRsE8d6tzWWNGyHcnCQ1wslmt2NXYMG+M7y/+AjpeZayDkmIEqNWwb031eXFgY1Rq1QyJCWEG5KkRgCOoabY1FxemHuA/QmZZR2OEKWmZlUvvhjVilY1A2TDTCHcjCQ1lZzVZsemKHy45Bi/bY2RoSZRadzeNpx3hzdHq1HJ+jZCuAlJaioxo8XGyXPZPDFzL7GpeWUdjhA3XJCPnvdva07vxqHotTIcJURFJ0lNJWS127Hb4dPlx5i6KVp6Z0Sl17txCJ+OaImPh1YmEgtRgUlSU8kYLTZiUnN5/M+9nErOKetwhCg3fD20vDu8Gbe0rCG9NkJUUJLUVBI2u4JdUZi8+iTfrjuFTbpnhCjUkJbV+XREK7QaqZASoqKRpKYSMFpsJGUaeezP3RxNyi7rcIQo92pW9eL7ce1oGOIrw1FCVCCS1Lg5s9XOP3sTeGPBYUxWe1mHI0SFoVGreLpvBA/3qI9WrUKlktWIhSjvJKlxU1abHatd4fk5+1l0IKmswxGiwupYL5DvxrbF10Mr69oIUc5JUuOGjBYbiRkGJkzbSYyUagtx3ap46Zh0ZytualBNEhshyjFJatyMyWpjycEkXvr7oAw3CVHCHuhWjxcHNZYJxEKUU5LUuAm7XcFqV3hjwSH+2hlf1uEI4ba6NAjix/Ht8NRpJLkRopyRpMYNmK12sowW7v11B4cSs8o6HCHcXniAF9Pu60CtQG+pjhKiHJGkpoIzWmzEpOQyfuoOknNMZR2OEJWGh1bNl6Nb0zsyRObZCFFOSFJTgRktNjZFpfDEjD0YLTJ/Roiy8GTvhkzs00iGooQoBySpqaDMVjvTtkTz4dJjyL+gEGVrQLNQJo9ug06jRq2W9WyEKCuS1FRAFpud1+fLhGAhypNmNfyZ8WBnfPQatNJrI0SZkKSmArHZFUxWGw9M38WWU6llHY4Q4hK1A72Z/XBnAn08ZFNMIcqAJDUVhNlqJz3PzF0/beNUcm5ZhyOEKEI1Xz0zH+xM7SBvPLQygViIG0mSmgrAZLWRlGFk5PdbpcJJiArA10PLtPs60Dy8ipR8C3EDSVJTzpksNmJSc7nzx21k5FnKOhwhRDHpNWq+GduW7o2qSWIjxA0iSU05ZrTYOH42m3E/byfbZC3rcIQQV0mtgvdva8HtbcJlLRshbgBJasopo8XGgYQM7vllJwaLrazDEUJch6f7NeLRHg1l8rAQpUySmnLIaLGx/XQaD/2+SzalFMJNPNm7IU/0biiTh4UoRfJnQzljtNhYd/w8E6bvlIRGCDcyZU0U368/hckqPa9ClBZJasoRo8XGskNneezPPVjt0oEmhLuZtPIkP2+MlsRGiFIiSU05kd9D88zsfUg+I4T7+nT5caZtjpHERohSIElNOWC02NgVm86TM/dKQiNEJfDh0mP8sTUWkxQBCFGiJKkpYyarjWNns3hg+k4sNslohKgs3l18lL92xktiI0QJkqSmDJmtNmJT8hj38w6MFpkULERl8+bCw8zdnYBREhshSoQkNWXEYrNzNsvEnT9uJUcW1hOi0nptwSE2nkyRxEaIEiBJTRmw2uyk55oZ+f0W0mXrAyEqNUWBJ2bs4cS5bJk8LMR1kqTmBrPbFXJMVkZ8v5VzWbI5pRACTFY746fuIDnbhNUmQ9FCXCtJam4wq13h7l92EJeWV9ahCCHKkUyDhdE/biPXbMMuZZBCXBNJam4gi83O/2bt5UBCZlmHIoQohxLSDYz7eTsW6a0R4ppIUnODmCw2vlkbxZKDZ8s6FCFEOXYwMZOH/9gtiY0Q10CSmhvAaLGx+th5vlx1sqxDEUJUAOuOJ/PGgkOYZf83Ia6KtqwDcHdmq53Tybk8PWtfWYfi1jRHlqI9vrLQc7bw1lg73u38WnXuKNoTa1BlJIBaixJQE2vTQShVaxfvYYod9enNaGK2ocpJBg9f7MERWJsOAq8qrnEdW4nm1EZQ7NjDmmJteRvovVzaqM4dQ7flJyy9n0GpEn51L1y4rZk74okM82N0h9p46mRnbyGKQ5KaUmSz28kyWrjnlx2y43YpU2WeQVFrsUX0LnBO8a/u/G919FZ0++agePpjq9MRlcWEOmEPug1TsNz8ZLESG+3uGWji92APqImtfjdUOefRxO1AnRKFudezzqRFnXgA7dGl2EMiUXyqoY7djtZmwdrpHtf7HVmKPbyVJDSigPf+PUrrWgE0re6PXiuJjRBXIklNKbLaFMZP3U5yjpRulzZ11hkUv1BsTQYW3SgvHe3B+dj9QrF0fxw8fAFQ1euCbv1ktIf+xdL9scs/J3E/mvg92Gq2wdp+LKgcI7jKybVoDy1Cc3oDtsYDHG1jtzue1fUhUKnQeAWgPbIYqykXPHwcbc4cQJWZiLX9XSXwLgh3Y7UrPDh9NyuevhmtWo1arSrrkIQo12ROTSkxW+08NWsfR5OyyzoU92cxospLR6lS47LNNLHbUdksjiGgCwkNgBJYB1tEL+zF6CnRnNqIovXA2up2Z0IDYKvXFVut9igefs5jqrw0Ry+RyvFBZA+o4TzueLAdzZFl2Gu1Q/ELLfbLFZVLco6JCdN3YlOkzFuIK5GkphQYLTZm7Yxn2SGpdLoRVJlnANdhpsKozx1F0XmhBDcscM7WbAi2lsMv/yCrCVVqNPZqDUHv43pO64G1/V3Y63X975jOC6zm/+K0XOix03k64knYiyonGWvj/pd/rqj09sRl8Paiw7LisBBXIMNPJcxqsxOXmse7/x4p61AqDVVWkuM/zDnoNn2PKiMeAHtwI2xNB6P4hYCioMo65+jNMWajPbwY9bmjYLOgBNXD2mwISsDle2pUWWdRoaD4h6FKi0F7ZBmq9FhQa7FXb4a12RCXHiB7YB00pzejSo1G8Q1GE70ZxdMfxTsQ7DY0R5djr9MRfIJK7b0R7uOPbXF0qBvIgGZhMnFYiCJIT00Js9gUJvy2E7OsMXHDqC/01GhOrkPReWCr2xmlam00Zw6gW/8lqoxExxCVzQw2C/p1X6JKj8VWqy32sCaokk+i2zAFVXr8ZZ+jMmY5npeRgG7D12C3YqvTGcUvFE3sDnQbpoDF4Gxvi+gNXlXQb5iCx5I3UKXFOoat1BrUsTtQGTKwNu733wMU+Z4Rl/fC3APEp+XJGjZCFEF6akqQ2Wrn6dn7iE8zXLmxKDkqNYp3VSxtxziHlmyAOn43ul1/ot3zF5YuEwBQZyZiD27k+FqjdxxLOoRu2y9o987G0vvZop9jcwwlqc8fxxrZF1vTwc5naQ4uQBu1Hs3R5dha3upo7+GHudezqJMOgsWIEhLp6DWyWdEeX4mtXlfwCkB99gja/fMgL91RXt72zivODxKVk8lq575pO1n+v5vRaeRvUiEuJT8VJUTm0ZQda+s7MA94vcBcGXutdtiD6qPOTESVm/Jf+xbDnAkNgL16c+zVGjja5SRf5kmOCb+Kh6+zwimfrclAFI0eTeI+10t0nthrd8DeoLsjoQE00VvAnIctsg+YctDu+A171dpYuj4IWj267b+CXeZOiMIlpBt4Ye4BWZhPiEJIUlMCrDY7cWkyj6Y8sgfUBEB1YcKuotIUOqHYWfl0UfJTwIUJvop/dVBfMqdB64HiG+wYorJZir6H1YTmxGpsDbqBhx+ahD1gt2JtPQIltDHWlrehyk1Ffe5Y8V+kqHQWH0xixeGzGC2S/ApxMUlqSoDFpvDA9F0yj6Ys2G2o0uNQpcUWelp1IcFQNHoUT3/HvJVCSmNVyoUPh4t6cC6l+AY7n1lULIpKXTDhuYjm1EawW7A16uV4bk6Ko5JK7+3yDFVuapH3EALg5XkHyTFaUaTUWwgnSWquk8li45V/DhKXllfWoVROioJu/RR0W34sONFWUVClxaCo1ChVwrEH1UeFgirlVIHbqNITHO0us16M4hOE4unvqK6yGF1Pmg2oclNQ/MNc1q9xYTGgObkWW8Me/5WEK3bXuG3WCwFd6YWLyi7bZOXxGXuw2iWpESKfJDXXwWy1sz06jX/2JpZ1KJWXRou9elNUFgOaE6tdT0WtQ52VhL1mW9B7YavXBQDtoUUuSYk6YS/q9FjsYc1cSrILUKmx1emEymZBe2ihyyntkcWo7FZHiXZRoZ5c57hHgx7OY4pvMCpzrnMujyo9BgB7fq+QEJexPTqNXzfHyDCUEBdI9dN1sNrtPDdnf1mHUelZmw9HnRqD9shS1MmnsFepgTojHnXKKex+oVhbOBbVU4IbYW3QHe2pjehXf4qtRktUxgzUiQdQPPywXrL4niZqPVgMjiTkwn5Otsg+qM+fcGxmmXnGMRE5PRZ1ajT2oHrY6t1UeJCmHDSnNmCL7OecmwNgq9kGzdFlaLf8hD2sKZqEPdh9Q1BCIkvnzRJu57Plx+ndOIR61XzQyDYKopJTKTIge01MFhsv/3OQeXukl6ZcMGSgPboM9dmjYM4DL39sNVpha9zPsbLvRdSxO9Cc3oQq6yxoPbGHRjp22PYOdGmnX/4uqrx0TP1fA5+LzlnNaE6sdkzyNWSAZxVsNds4nlXEnBzNwQVo4vdg7v8qaF3bqFKi0O6bhyo3GaVqHaxtRjkrpYQojkYhviye2B29VjrfReUmSc01cAw7pTJ+6o6yDkUIIQCY0K0uzw9oLKsNi0pN0vprYLXbeXa2DDsJIcqPXzfHEJuai00mDotKTJKaq2Sy2nh9/iHOZ5vKOhQhhHCyK/DM7P3YpfNdVGKS1FwFs9XOzug0/pZ5NEKIcujwmSz+3B4r1VCi0pKk5iooKDw/90BZhyGEEEX6dNlx8syS1IjKSZKaYjJabExZHUVSpvHKjYUQoozkmm28PO8gJqskNqLykaSmmDLyLPy08XRZhyGEEFe0/PBZdkSnyaaXotKRpKYYTFYbr84/iEl+QQghKoiX/j6IgkwaFpWLJDVXYLHZ2RObzuqj58s6FCGEKLbEDAOTVp6QScOiUpGkphhe+edQWYcghBBXbeqmaDLyLGUdhhA3jCQ1l2G02Ph1cwzRKbllHYoQQlw1i03hnX8PS2+NqDQkqbkMo8XGV6tOlHUYQghxzZYcPEt0Si52WWlYVAKS1BTBaLHxzr9HyJX1HoQQFdybCw9jk5WGRSUgSU0RzmYa+WevrBwshKj4dkSnsfVUKlabVHAK9yZJTSFMVhvvLj6C/GEjhHAX7/x7pKxDEKLUSVJzCbtdIep8jpRwCyHcStT5HP7Zm4hJJg0LNyZJzSVsdoV35S8aIYQb+nT5cVCVdRRClB5Jai5isyvsT8hg2+m0sg5FCCFK3PlsE1M3RkuJt3BbktRcxK4ofLj0WFmHIYQQpebHjaels0a4LUlqLrDZFfbGZbA7Nr2sQxFCiFKTkWdh+tZY6a0RbkmSmgvsisJHS4+WdRhCCFHqflh/CrVK+muE+5GkBkfF0/74DPbEZZR1KEIIUepSc83M2B4rlVDC7UhSg2Mn7q/XRJV1GEIIccN8v/40GrX01gj3IkkNcC7bxLoTyWUdhhBC3DBns4z8eyAJi6wyLNxIpU9qDGYb36yVXhohROUzZU2UVEIJt1Lpkxqr3c582eNJCFEJnUrOYcupVGyyg7dwE5U6qTFYbEzdFI3JKt2vQojK6eu1UZLUCLdRqZMarVrF71tjyzoMIYQoMzui0zibZSzrMIQoEZU2qTFbHcNOqbnmsg5FCCHK1E8bTmMwS3m3qPgqbVKjVsEPG06XdRhCCFHm5u9NlPJu4RYqZVKjKAr7EjKIOp9T1qEIIUSZyzZZWbAvUcq7RYVXKZMao8XOb1tkLo0QQuSbtiVGyrtFhVcpkxoFheWHz5Z1GEIIUW4cPpPFSem9FhVcpUtq8icISxm3EEK4mropWiYMiwqt0iU1KhXM3BFf1mEIIUS5s2j/GeyKrFkjKq5Kl9QkZhg4mJhZ1mEIIUS5Y7Lambs7AbP0ZIsKqlIlNQazld+2xJR1GEIIUW79I9vGiAqsUiU1Oo2a+fvOlHUYQghRbu2LzyDDIIuSioqp0iQ1drvChpMppMkKwkIIcVl/707AZJEJw6LiqTRJjclq568dcWUdhhBClHsL9p2RFYZFhVRpkhq1GtafSC7rMIQQotw7djabpEzZ5FJUPJUiqVEUhY0nUmRtGiGEKKbZu+IxyhCUqGAqRVJjsNhYuF8mCAshRHEt3H8GnaZSfEQIN1IpvmP1GjVrjp0v6zCEEKLCiE3N43SybJsgKpZKkdTsiEkjx2Qt6zCEEKJCmb0rQbZNEBWK2yc1eWYr8/fK0JMQQlytNcfOo9NIFZSoONw+qfHQalh19FxZhyGEEBXOqeQcMgyWsg5DiGJz+6TmUGKmLLgnhBDXaNWRc1jtUjkqKga3TmoMZisL9sk+JkIIca1WHT2HRZbDEBWEWyc1Oo2aDSdTyjoMIYSosLacSpXSblFhuPV3ap7ZRtR5KUkUQohrlWe2sT8hs6zDEKJY3DapURSFzaekl0YIIa7X0kNJUtotKgS3TWoMZhtrj8leT0IIcb3WHU9Gp5XSblH+uW1S46nTsEV6aoQQ4rpFnc8hM09Ku0X557ZJTWqumYR0Q1mHIYQQbmFTVAqKopR1GEJcllsmNXa7woYTMvQkhBAlZdvpVPJkXo0o59wyqTFYbKyXpEYIIUrM7th0PLRu+ZEh3Ihbfod66TVsPZ1a1mEIIYTbOHk+B4tdhp9E+eaWSU1KtonkbFNZhyGEEG5DUeCQrFcjyjm3TGr2J2SUdQhCCOF2NkWlYLLKvBpRfrldUmO02NgVk17WYQghhNvZHZuO7G0pyjO3S2oUBQ4kShepEEKUtH3xGXjo3O5jQ7gRt/vu9NJrOCxJjRBClLgck5X4tLyyDkOIIrldUnM2y0iW0VrWYQghhFvaHp0mi/CJcsvtkpoD8RllHYIQQritI2eyMFpkYo0on9wqqTGYbeyUScJCCFFqTpzLRkF6akT55FZJDcDBxIyyDkEIIdzWyXM5eOu1ZR2GEIVyq6TGMUk4q6zDEEIIt5WcYyLXJPMWRfnkVklNlsFCtvywCSFEqYpOyS3rEIQolFslNfHpUmoohBCl7WBiplRAiXLJrZKaE2ezyzoEIYRwe0eTsjBYZLsEUf64TVJjstg4eT6nrMMQQgi3d/JcDipUZR2GEAW4TVJjtSvEpMo4rxBClLYT57Lx0mvKOgwhCnCbpEanUROTInNqhBCitKXmmmX4SZRLbpPU6LVq6akRQogbJDXHVNYhCFGA2yQ1GXlm8szyl4MQQtwIZzKMZR2CEAW4TVKTkG4o6xCEEKLSiEuTnnFR/rhNUiOLQQkhxI0Tn2bAbJWNLUX54hZJjc2ukJQpPTVCCHGjnMk0YLFJUiPKF7dIasxWOyk55rIOQwghKo2zmUZZqUaUO26R1NgVhRSZiS+EEDfMmQwjeq1bfIQIN+I235Gp0lMjhBA3zNlMA1qN23yECDfhFt+RWo1KemqEEOIGyjXbMMgyGqKccYukxkOrkaRGCCFusByTtaxDEMKFWyQ1AGm5MvwkhBA3Uq4kNaKccYukJs9kxWJTyjoMIYSoVKSnRpQ3bpHUZBosZR2CEEJUOtlG+d0ryhe3SGqyjfLXghBC3GgZ8gelKGfcIqnJs8gMfCGEuNEyciWpEeWLeyQ1Mq4rhBA3XKbBgs0u8xlF+eEWSY1MVhNCiBsv22TFapf9n0T54RZJTa5ZkhohhLjRso3SUyPKF7dIagxm+UtBCCFutDyzDUVyGlGOuEVSY7LKRGEhhLjRrLI+mChnKnxSY1cUzFbpqRFCiBvNLt00opzRlnUA18tuV2Q1YSGEK2MW2qPLUZ87CsZs0HtjD2mEtckg8Am68vXmXLRHl6E+ewRMOSh+odga9cJes41rO7sNzcEFaOJ3g1qLrWYbbM2GgMb1V6s6egvagwsx938FPP1L8IWWLbuiIL99RXlS4ZMaBbDJ7HtRQQX56BjdsTZnswzIKGrJMGVnsPWn9zFmphLUoAV+oXXITU0i+cQePFNO0PnBd/EJql7k9VazkR2/TCHrbAxhzTrjVaUaZ49sx7Dzd5oEa6jTaaCzbfSWxRw/vYnQpp3QeniRuG89DUP9aTxgnLONzWJmw+o11Og8gMjOjUv1td9orWsFlHUIQrio8EmNClCrVWUdhhBXpUPdqrw9pDGNqvuhVWtQqS4/Emy15YEiWU9xvP32BxgzU3n++f9x773/JReLFi3hpZfeQHNgHp9/M6nI63/88RdWJUXz6qsvcNddowDIzc3lrrvuI2btX/zw0l0EBQUCMOy3zXTr1pUffpjsfPbixctZ/NNbzvtNn/4nW+0m/vjkKQICAkr+BZchlUqH3W7CDT5KhJuo8N+JapUKnabCTw0SlcQ9Xesw8ebaBPp7w/mjKKpm2G121CpQVGC329FqtdjtVux2EyqVCrXaE43aE4slHaMxkby8aPLyojEYEzAa4jEYEzGZzgHSYwmwdKkGX1+oU/cz1m/4zHncvwoEB2vYtGkDa9e1Rl3Er43p0zX4+0P1Gh+wfsMHzuPdb1bx6y8aJk/uQ+8+jkGXuDgNDRpEsX5DawDUGhW5uRoWL2mNry8YjfDttxpu7qGw/0DP0nrJZSYkZDBNGn9U1mEI4VTxkxq1Cg+tJDWi/PLRa3n1lsaMaBmETqOCnVNRbf8ey7i5aFSgUmuwK3Y0ag3G7Bw0fn6o0KAYtNj1oPFQk5eXR3a2FZMpAEVpTUBAF6p76dHp9Gg0noCCyZRyIek5TZ4hGqMxEYMhHqMhHrMltazfhhvCbocBA+1oNBSatGi1YLWqsNkKP5+cDBkZKtq0tRc4HxHhSGROnlQ5kxpvbzCZ/mtjNIJKpeDh4fh67VoVigJ9+rhnwqlSaco6BCFcVPikBkAvSY0ohxoG+/DO8GZ0ruOHKjcZ1eo3YP9MsORBjbaoqkUQkxlD6PFkvNp3IOF4GmH1fFn963c079GP0HoNMMdnk3EoAW2wNwEN/FGHBaLWqElKSmLv3oNER0eTnJxM9erVqVGjBiEhIQQGdqRaUA88PfXodB5oNJ7Y7WZMpmSMxnhyc09jMMRiMMY7Ex+rNbOs364SoVZD796FT109e9bxv+BgBZ2u8OuTkx1D2cHVCp6rUgV0OoXz5/8b7q5XT2HvXhU39wAPD9i2VU3t2qDTQV4erFqppv8AO15e1/3SyikVyFRhUY64RVLjqZW/FkT5MahFGC/3a0CtIF9I2I5q1hdwajUXr1JmGf41mxI2EOBZlaoxMWjCapCdqiEr2UjPux9k4Wfvk3Ymnv6PPEWtgc2xJOeRtSQG49E0PBoGULVtKN3adqFHjx4oikJ8fDwnT55k69atnD9/HuWiZ3l6elKzZk1n0hMQcDOhoZ54eOjRaj3QaDyw2QyYTOcxGOLIzYvCaEjAYIx39PQYE7HZcsvirSwxdjvM+kuNoqi4qVvRc5NyL7xML+/CP6g9PcFg+O/rocPsTPpCw7vvOH6VenkpPP6E4/4rV6rR6aBnz//uZbcX3kNUUTl6aq5/TuPTTz/NkiVLWLNmDeHh4S7nvv/+eyZNmkRISAgbN24scO2ECRPYvn07u3btwtPTs1jPe+mll/jnn384cOAAHvndasWUkJBAnz59XI6pVCq8vLyoWbMmffv25YEHHsDHx+eq7ns1rif+q/Xuu+8SExPD1KlTGT9+PDt27HA5r9frCQwMpF27djzwwAM0bdq0VOO5ErdIamT4SZQ1jRr+16cR93Wqjo+XBxyYjWrOFEg+VrBx9VaogiOZsuh13ur6ForFSvInHxHx1RSmv7wZs8nK8OdfY/FXnzDnnVfwrhJAvwefpP7o9tizzWSujCV9znHHFBo1eDWrRvXWIdTo3J2+fftitVqJiY7hZNRJoqOjSU1NJSoqiqioqEJj9/Pzo2bNmlSvXp1q1apRtWoDqlb3uJD0eKJW67BaczCZzpJniCMvN8rRy2NIvNDbk4Ddbi7dN/g6KArMnKHm+HE1tesoRfbkANgu5DvaIn4zarVgvuilVq8Or71u48ABFXY7tGihULUqZGfBurUqhg6z4+EBW7aoWLhATXa2Yxhr/N12AgNL8EWWkStNcC+ujh07smTJEvbv318gqdmyZQs6nY7z589z6tQpGjRo4Dxnt9vZt28frVu3LnZCU1Lat2/PqFGOieSKopCdnc3evXv57rvvWLZsGTNnziy1ieF33nknXbp0QVdUl2MJ2rRpE3feeafLsU8++cT53waDgYSEBP755x9WrFjBl19+Sd++fUs9rqK4R1Kjk6RGlI1gXz1vD2/OgIgqqG1G2DoJ1e5fIS+tyGusw79mc+JmTmacRKfWoVgt5KxegzUjk5a9arF5ThQWg5VbnnqB5d9/xdGNa1nw2bvovbzoff+jNL6tOwGD65G1Ko7cPecwHEzBcDDFcXOtGu82wdRpGUKdHrXRD/bAYDBw+vRpoqKiiI6OJisryyWe7Oxsjh49ytGjRwuNt2rVqs6kJygonICAJlSr5oFe75jPo1ZrsVgyMRqTMBhiyM07fWECcwJGYwJG4xkUpWz2Z7PZ4M8/1WzbqqZaNYVHHrEVmbAA6C98RtiKCNdqhUv/MPb3h27dXBOl5cvVeHlD9+4KZ87An3+o6dFDoVkzhXnz1EybpuGZZyp+NZta7YFKdf09NR07dgRg3759DB482HncaDSyd+9ehg4dyrx589iyZYtLUnPixAlycnLo3LnzdcdwtWrVqsXw4cNdjo0fP54BAwYwceJEXnvtNb7++utSeXabNm1o06bNlRtep8TERGJiYrjppptcjl/6ugHuv/9+Ro0axfPPP8/y5csJCQkp9fgK4x5JjQw/iRusQ92qvDmkMc3CfCE1CtWiV+HIArBf4cM7rCWENGXyv46/fDSoyV+gJv2n72n59PPsXhbDjn9jMJtsDHjkKXSenhxYuRSzwcCyb75gxQ+T6Tn+AVoM6o//wLpkr4snd9tZFLMNrHbydp4jb+c5x/M8tfh2CKVRs9pE9G+E3tuDrKwsoqKiOHXqFDExMeTl5V025PT0dNLT0zl48GCh50NCQggPDycsLIygoIYEBLQhNMQxiVmr9QRUFyq3zlyo3DqNwZiI0RiPwZBQapVbZjP89JOaw4fUhIQoTHzKxpX+cPb2dvy/wVD4XBGjEfyusHZeejps2KBi5Cg7Oh1s2aLGxwdGjHRMPrbZ7Hz/vYYziVAj/PL3Ku+0Gl9KYmH6Bg0aEBwczP79+12O7969G7PZzB133MH27dvZsmUL48ePd57fs2cPQJkkNUUZMGAAw4cPZ+HChURFRdGwYcOyDumabdmyheDgYCIjI6/YNjAwkHfffZd7772X6dOn8/zzz9+ACAtyi6RGJgqLG2V859o81bMOQf7ecGI5qmmTIGFnsa+3Dv+arWe2ciL9BABa1ChWCwDp038j8Mn/0aRrDQ6uS2DfyngsJhu973kIvacXuxbNA8ButbLm1+9ZM/1Hbhp5F20HDMe/Tx1yNiWSszkRe95FiZXRSs7GRHI2JgKg9tfj2ymMZo0b0bxpc/SeetLS0jhx4gSnT58mNjYWs/nqhpLOnz/P+fPnCz2nVqsJCwujZs2ahIaGEhjYgoCAzgUqt8zmFAyG/MqtGIzGBAyGBIzGeMzmlKuKByAvF77+WkNMjIpatRSeeMJ2xWQEICTUkcikFlIslpkJFouK0NDLJ2BLl6gJCICuXR33On8eqlX7by5N/jOSU1TUCK/Yk2w1Wj9UqpL5GOnQoQOrVq3CbDaj1+sB2Lp1K97e3rRq1YpOnTqxYsUKbDYbGo3jD9k9e/bg5eVFq1atnPc5cOAAkydPZs+ePdjtdpo3b87jjz9Oly5dCjzz4MGDfPbZZxw+fJjg4GDuuOMOHn74YbSX684rhttuu40FCxawfv16l6Rm4cKFTJs2jaioKLy8vOjcuTPPPvsstWvXdrY5d+4cH3zwAXv27CE9PZ0aNWowcOBAHnvsMecQW2FzamJjY/nss8/Yvn07drudvn370q9fPx577DF+++03OnXqxPbt27n77rv58ccf2bx5M0uWLCErK4smTZrwzDPP0KlTJ5fXsWnTJrp27Vrs192lSxfCwsJYv369S1Jz+vRpvvzyS7Zt24bRaKRhw4Y88MADzl65JUuW8PTTT/Ppp58ybNgwl3u++uqrLFy4kM2bN+Pvf+UfYrdIajx10lMjSo+3Xs2rg5systWFkuxdU1Ft/wEyE67uRiHNILQZkxePcR5So0ax/TcMkf33HNrdeieHNiSi2BUObziDxWij1/jx6D292DLnz//uZ7ezedYfbJ71B21vGU6X4aOp3qMmOdvOkL0+EXt2weTEnmUma2UcrIwDQBvshU+nMNo2akG7tm3RXpi7kJ/kJCQkYLVe+9CR3W7nzJkznDlzptDzOp2O8PBwqlevfiHpKaxyy4LJnIzREE9u7ikMxjjn8JbBkIDVmuFyT4vFsTZMTIyKRo0UHnnUVuzqo8BACAxUiDqlKjCp98QJxzBL/XpFJyLJyY75M+PGO8rKAew2xwThi+ODkpheW/a0Wl/U6pL5GMmfV3Ps2DFatmwJOHoKOnTogE6no0uXLsybN4+DBw/SunVrwJHUtGvXzjm3ZOvWrTz44IPUr1+fJ554AoBFixZx//33M2nSJAYOHOjyzAcffJAePXowdOhQNm7cyOTJk0lMTOSDDz7gekRERAC4DOl+++23fPXVV/Tq1Ys77riDtLQ0Zs6cyciRI5k9ezZ16tTBarXywAMPcP78ee6++25CQkLYu3cvP/zwA2fPnnWZy3Kxs2fPMmbMGMxmM3fffTe+vr7Mnj2btWvXFtr+7bffJiAggIceegiDwcDUqVN56KGHWLduHVWrVgUcP7vbtm3jlVdeuerXvnHjRiwWCzqdjpMnTzJmzBj8/f2ZMGECXl5erFy5kqeffprz589z77330qdPH/z8/FiyZIlLUmM2m1m5ciU9e/YsVkIDbpLUBHiV/mQpUfk0DPbh7eHN6FLHD1VuimtJ9jWw3voN25O2cyztv8nDWtV/w08A5z//nIZ3jqFBm2Cidjt6P07sOIfFZKP/hDvQeXqy/vepBe69Z/EC9ixeQLMefek++h6qd+lA3p7zZK2Nx5ZmLDqmZAOZ/0Y7v9bX8sO3QyidmrajS+cuqDVqzpw540xykpKSsJfgtiQWi4WYmBhiYmIKPX9x5VZwcDBVq95MaIgnHh46tFrPC5VbRkymcxgM8eTlnWLKlHmcPn2Mhg09mPiUgkZzdf9eHTsqLFumZv06Fb0uTCo2GmHZUjU6nULHTkUnNYv/VRMc4rhHvtBQOHXKUTXl5QXR0Y50Jr/HpiLTaQNK7F4Xz6tp2bIlGRkZHD16lBdeeAH4b4hpy5YttG7dmvPnz5OYmMjo0aMBx4fwG2+8QUREBLNmzXImOuPGjWPcuHG899579O7d29kLBHDHHXfw2muvATB27Fieeuop/v77b+69915nYnItqlSpAkBGRgYA8fHxfP3114wfP975PICRI0cyePBgPvvsM6ZMmcKRI0c4ceIEL7zwAhMmTHC2URSFhIQEFEUpdA7TlClTSE9PZ+7cuTRr1sx53ZAhQwqNz8fHx+U9Cg4O5uWXX2blypXOyc+HDh0iMzOzwHya4rx2RVHIzMykWrVqvPvuu/j6+jJ//nxnYjJ+/HgmTpzIF198wbBhwwgMDGTAgAEsWLCArKwsZ7uNGzeSmZlZ6ByeorhHUuMtSY0oOYOah/FS/wbUvkxJ9lULbgxhzZm8eJzLYUdPzUU9IWYzhvVr6HDLTc6kBiB6fwqLvz3M4EdvQe/lxcqfvik0nsPrV3F4/SoatOtEr7sfIuy59hgOp5C1Kg7ruSt/uJvjszHHZzu/9mgUQFD7guXjJ06cIDo6ukD5eEkzGo2Xrdzy9fV1Jj3VqlXDbg9gyRLHX7OJiSqemmjBw8OP8PBQWreui6enCas1i1tu8cdmP8OcOXEoio0hQ/5L1G7qZmf9ehVz5miYO1fB19dxPDtbxag7bfj5Ob622eDvuWq2b1eh00GTJgo7d6q4f4Lrwn0engomk4rPP9MQEamwdYuKxk3shIWVylt2Q+l0ASV2r0vn1eQPo+QPG4WEhNCgQQO2b9/OY489VmA+zdGjR4mLi+Opp54iOzvb5d59+/bl888/59ChQ7Rt29Z5/IEHHnBpd88997Bs2TLWrVt3XUlNfu9mfgKyatUqbDYbffv2JS3tvyICvV5Px44d2bBhA1arldDQUNRqNTNmzKBmzZp0794db29vPvzwwyKfpSgKq1atonPnzs6EBhxVjWPHjuXzzz8vcE3//v1dKqfyy7CTk5OdxzZv3kxERATVqhWyaFMxX3t6ejo7duxg1KhRWK1Wl9fev39/VqxYwebNmxk6dCjDhw9n7ty5rFixghEjRgCOYamAgABuvvnmYj/fLZIaXw+3eBmiDKkvlGTf7yzJnoNqzuTCS7Kvge3W79h5dhdH0o64HNeo1CiX7GSZ9PY7NFy/gfCIABJPZDiPJxxLZ+FXBxk6sRc6Ty+Wfv05ShG9Jqd2b+fU7u2EN25G3wceJ3RiG4ynMsheGeeStFyJ6WQGppMXYlCDVwtH+Xh41x7069fP2dNy8qSjfPziX1o3Qk5ODseOHePYMce/06lTp7BYHL9UDQbjhf83EBUVQ1RUjPO6iRPXUbVqMPfe0wxQ8847izDkxZCadpzPPpuBwZBBtWoaMjNtZGcrgIrOXewua86sW6ti3To1bdra8fSArVtV+PpC27YXrUdkcSzI17KlQmKiik0bVTRurDB2nHusMKzTlWxdeocOHdi3bx/g6JGpWrWqyyTVLl268Pfff2OxWNizZw9+fn7OD/LY2FgAvvrqK7766qtC73/mzBlnUuPt7U3YJZll/tyWhISrHFq+RH4PTeCFuv382O65554ir0lLSyM0NJQXX3yRzz77jIkTJ6LX6+nQoQP9+vXj1ltvxauQcdSMjAwyMjKoW7dugXP169cv9FmBl6wnkJ/gXNwLu3nz5qvupcmPR6vV4u/vz9GjR1EUhVmzZjFr1qxC2+cPTXfo0IHw8HCWLl3KiBEjMBgMrFmzhqFDh7r0rl2JW2QDWo0aH72GXHPFL5EUN1bBkuwvUe3+5bIl2Vf/kEiU6i35asm4AqfUqLHbXL9v7WlpGA/sp/0tdUk8sc/l3NnTmcz7dB+3P9eJYc++yqIvPsReVP0xkHjsMNOfe4zg2nXp//BEQh9piTkhm6yVcZiiMq7uddjBsD8Fw/7/ysd92oVQt0Uo9XrVQXeLo3z81KlTzvLxS/9iLm35SVWbNm1o3Pi/HbGjo6PZtm0b4eHh3HzzzUyZ8gMAEydOpGbNmhw5nElQUEOWLD7E6VMZvPrqi4wffw+gIiMjkbvuuo99e8/y1FNj8fBIw2hMYOvW/TRtauXBBx0fBBqtml07VVw8OrBhgwqjEcaNtzt7fNxJSfbUwH/zatLS0ti2bRudO3d2GW7p0qULf/zxB0eOHGHv3r106NDBOWk4/wP5scceo0OHDoXev7iVSNc7UfjIEccfL/k9IPmxTZ48Gb/8rr5L5A9Z3XvvvQwZMoRVq1axceNGtm3bxubNm/njjz+YO3dugcQmv2eksA/+ohbmU19hBcjc3Fz27dvHo48+etl2l1IUhWPHjtGoUSN0Oh22C7/b7rzzzgLzmfLVqlULcPTsDBkyhKlTp5KWlsbWrVvJy8u7qqEncJOkxm5XCPTVk5tmuHJjIYD2dary1tALJdlpp1D9+5qjJNtmKfFn2YZ/w+5zuzmcerjAOQ0qbIUkJWfffJN6CxYQWMOHtDOuq/mmJuYy+8O9jHypDbe//BbzP34Hq+XyFUvJcTH8+eozVAkJpf/DE6l5b3OsKUayVsRiPJp6bSvdW+3kbj9L7vazAKi9tXh3CCOiaR0iB0Q4y8dPnjzpLB83GEr3ZzQ+Ph4PD48CJaj16tXj0KFDJCUlucxLSE5Odulynz9/Pp6enkRFxfDuu+8TFhZGeHg4gwYN45tvvmHbVj/uu+9RdDo9aWlduOWW++h20z0YjImcPDGDTRsX4uU1AJ3uPBkZ8Sxflk7vPopbJjQAWm3hH9DXKn9ezaZNm4iJieH+++8vcF6tVrNv3z6OHj3qUmGTv2ifp6dngYqd48ePk5SU5JIQ5OXlkZ6e7pwYC47kF3CpRroWixcvRqVS0bt3b5fYQkJCCqwvs3XrVsCRlGRnZ3Ps2DEiIyMZPXo0o0ePxmw28+mnn/Lbb7+xbt06Bg0a5HJ9UFAQPj4+hc5Ly+8hulo7duxArVbTvn37q7puy5YtpKenM3bsWACXhRQv/TeJj4/n+PHjLv8mw4cP54cffmD16tWsX7+emjVr0q5du6uKwS1qoc02O4Hexe+eEpXXuE612fViN+Y83JFmOdtQTb8F1bed4eDcUkloCGqAvUZrvtpTeHe4upDhJwBzVBSmmFjaDaxT6HWZ5w3MfHc3IfUiGfH6++g8ireaaub5c8x591V+ePQe4uIPEjg6krDn2uPdOvi6fxvY86zkrE8g5bsDJL+7k6SPd6DanUmLGpHcOuxWXnjhBZ544gkGDBhAw4YNr6pLuVjPt9tp1qwZLVq0KHQypVqtxm63FznROTs7G4PBQHBwsLPtmTNn2LlzJ4mJjpL4v//+h48//pL33vsElUrF7t17WLduL9GnITs7BLVaTfNmb9O2ze9EnbwXjSaAV19ZQts2M2kc+R61az9ISPAg/PxaoC3BSbZlRast2Wwtf17NjBkzAAqUYfv7+9O0aVMWLlyIxWJxWZ+mefPmhISE8Mcff5CZ+d9eZmazmRdffJGJEycWqOSbM2eO878VRWHq1Kmo1WpnMnIt1q1bx+LFixk8eLCzFyL/fj/88IPL9198fDyPPvoon3/+OSqVigMHDjBu3DjmzZvnbKPX6509Pvm9UhdTq9X069ePLVu2cPr0aedxo9HI7Nmzr+k1bN68mfbt21/VFgwZGRm8//77+Pr6ctdddwGOJK5FixYsWrSI+Ph4Z1tFUXj33Xd5/PHHSU9Pdx5v0KABzZo1Y8mSJWzcuLFAeXdxuEVPjc2uEOhTuvtfiIrLW6/m5UFNGdU6CL1GBbt+uVCSHX/li6+T7dbv2Xd+HwdTCl+4ToXqv7X5L5H84fs0/OFHtsyLIjejYE9MbrqJmW/vYvTr7bjz7Y+Z884rmPKKt0dTXlYGCz57D72nJ73vf4zGt3WnyuB6ZK2OJ3f3WbBe/+Rfe4aZrBWxsMLx16I21BufjmG0bdiCdm3bodVpOX/uPMdPHCc6Opr4+Hhnd/W1UKvVRS4SlpWVRXZ2Nr6+voV+MIBjfg44Jh9fysvLC41G47Iac1BQEEeOHGHZsmVotVrWrVtHQEAAX3zxDWazmUWLFtGtWzf274+7sOdWN0KC++HpeWnllmPPrby8/I1GE5zr9NhsOdf8fpQ2jcanVHbp7tChA0uWLCE8PLzQHpMuXbrw008/ERQU5DKZV6fT8cYbb/DUU09x2223MWrUKPz8/Jg/fz5Hjx7lueeec+mV0ev1zlLphg0bsnr1ajZt2sQjjzxSrJ6a+Ph4FixYADg+pLOysti7dy/Lly+nUaNGvPHGG862jRo14r777uPXX39l7NixDBo0CKPRyB9//IHNZuOll14CHJOeW7Vqxeeff05CQgKRkZEkJSXxxx9/UKdOHXr06FFoLE899RTr1q1jzJgxjB8/Hl9fX/755x9nT83Vrvq8adMmRo4cWeT5/NcNYDKZiImJYeHChWRmZjJ58mSCgoKc519//XXuvvtuRowYwdixYwkODmbVqlVs2rSJMWPG0KhRI5d7Dx8+3FlSX2mTGoBAH6mAEq7qB/vwzrCmdK3r7yjJXvOmoyTbfIM2Z6xaD3uNNny1/L4imxSofrpI7qbNWFLTaNWnFlv+PlVoG0O2hT/f2MWYN9sx5t1PmfXWSxiyswptWxiz0ciyb79gxY+T6TluAi0GDsB/QB3XVYpLiPVcHpmL/vtLUl/HD98OYXRu3p6uXbuiVqtJTEx0VlaVVPm4oijs2rULRVFclti/lMlkcsRVRA+SVqvFYvmvN69ly5asXr2aJUuWAI4P1Z49ewKOShy1Wk1QUJBzE8ZLy3HzK7eqV69OcHAwAQH1qV7dw1murlbrsVpzL5Srx5KbG+VIdowJzo1G7faiy/VLm15fDUWxlXhikz+vpqhVgvOTmo4dOxb4sO7Xrx/Tpk3ju+++48cff0RRFOrXr88nn3xSYG6Gt7c333zzDR988AGzZ88mPDycN954wzl0ciW7du1i165dLverV68eTz75JPfccw/e+ctTX/DSSy9Rv359Zs6cyWeffYa3tzfNmzfniSeecK67o9Fo+P777/n2229Zu3Yts2bNokqVKvTr14+nnnqqyJ6TGjVq8Oeff/Lxxx8zdepUNBoNAwYMYOjQoXz66adX1SualJREdHT0ZScJ55fZg+P7PiQkhJtuuokJEyYUqBpr1aoVs2bNYsqUKfzxxx+YTCZq167Nq6++Wuh7PWTIED755BOaNGlCvXr1ih13PpVSmvWYN4jBbOPzlcf5eWP0lRsLtzegaSivDGx4oSR7B6pNX0DUqusryb4GtvuXsc9Dz73L7i2yzdZb15L5/qdkLVxY6PmAO+8k+NXX+eWFTViMRScYWp2aMW+2x27L5q83XyQ3/RonOqvVdL3jLtoNHI5Wpy98leJS4hFZFZ+2oajr+KD11aMoCnGxcZw4+V/5+NVSFIWdO3dy6tQpAgMD6du3b5E9NfmTiS+dZJxvwYIFWK1W7rjjDucxg8FAYmIiiqIQHh6Ot7c3RqORRYsW0bJlSyIjIzl16hQHDhzAZDIREhJCp06dirWDc0BAALVq1SIsLIxq1aoREFAFHx89Hh4X77mVhdF0BkNeLHl5pxy9PIaEC709Z1CUUhhSvaBq1S60avkjGo33lRuLUpWamkpgYGCBJO/HH3/k888/Z9WqVc6hMHfnFj01eq2aMP8bu0OrKF/UaniqdyMmdL6oJHvuFDhf+CaNpa5qXezh7fly+f2XbaZGVfTuiUDGrFkEPfs8zbrVYN+qoofLrBY7f765k9Gvt2fs+18w843nyU5JLrJ9kex2tsz5gy1z/qDNoGF0vW3MhVWKk8jekIA9q/R24zYdT8d0/ML4uhq8WgZTo1Uw4Tf1pH///lgsFqKjo53l4xePxRf+Uuzs2LGD6OhofH196d69e5EJDVCgiuZSNputQFWMl5dXgYqaI0eOoNfradiwIZmZmezYsYOIiAiqV6/Ovn372Lp1a7F2Mc4v1S1qz63g4GBq1qx5Yc+tBlSp0oqQEI+L9txS/7fnliGavLzoCwlP/IWNRs9yPXtueXrUKNU1ikTxPfPMMyQmJrJ8+XLn97HNZmPFihUEBgYW2PncnblFUqNRq4gILdlZ+KJiqOar561hzRgUGVB6JdnXwH7rdxxKOcS+5H2XbadSqQqdKHyxrL9m0HbMPRxYk4DdXvSHiN2mMOOdndz5SnvGfjCJWW++QHpS4dsTFMfepQvZu3QhTW/uzc2j73WsUrz3wirFqaU87GEHw75kDPsuJGZ6NT5tQqnbMoz6veui8/YgLy/PWT4eExPjUj5utVrZvHkzZ86cwc/Pj169ehUYDrhUfhf9xUNMF7Narc69d4qSl5fHyZMnadeuHRqNhlOnTuHh4UGbNm2ck483btxIRkYGAVfaXfMKLq3culj+nlvh4eGEhoYSFNScKv6dqB526Z5bqRiNieTmncaQF3NRT0/+nltFf795elZHrZZh//Jg+PDhvPzyy9x3330MGDAARVFYvnw5Bw8e5IMPPrhiCbc7cYukBqBukHSBVibt61TlrSGRNKvud6Ek+/VSK8m+alVqY6vZni9XPHjFppebKJwvefJkqoy/h4YdQjlxoXy6SHaY9d4u7nihDXe99wWz3nqRlPhrK+vMd2TDGo5sWEP9th3pfc9DhD3bHsPhVLJXx2I5e21bRlw1s53c7Unkbk8CLpSPdwwjsmldGg+KRO/lQWZmJidPnuTw4cP8/PPPJCcnU7VqVXr27HnFZARwrh+SP2H4YgaDAZvNdsX9Zw4dOoS3t7dz0bP8ycn5Hyr51+fk5Fx3UnM5V9pzS6vVUqNGDcLDwwkJCSEwsD1BQTdf2HNLj0bjhd1uwWxOxmBIuLDRaKxzzy2jMQEvr7qo1VJ1Wh7cfvvteHp6Mm3aNCZNmoTdbqdx48Z8++239OnTp6zDu6HcJqkJrSLDT5XBuE61+V/P2gRV8YGTK1FN/wLid5R1WC7st33LkdSj7Dm/54ptVaqiJwo7Wa3krVpOh1v6XDmpueDvT/Yy7KmWjHn3M2a/8zLnThe+zcDVOL1nB6f37CC8cVP6TnickCfbYDqdSdbKWMxxN3aRPXuelZx1CeSsc6z8qq7qgW/H6kTUq8dnSz8jOTmZNq3b8OBDD5KUlERcXNwVdx/38fHB29ublJSUApN6z507B3DZJeOzs7M5ffo0nTp1ciYxiqK4DNFcT3VXSbJarcTFxREXF1foeU9PT8LDw6lRo8aFyq2bCAnu61K5JcqXwYMHO3e9rszcJqnx0GoI9vUgOcdU1qGIEuZakq2+UJL9/Q0pyb5qVWphq9WJL1c+XKzmxRl+Ajj77ns02DSYWk0DiT9SvKG1hV8dYNAjzbnzrY/5+/3XSTx+5MoXFUPisSNMf/5xgmrVYcDDEwl7uCXmxByyVsRe/SrFJcSebiJreQzfHpjFvlP7aBbaiCmPfoB/0xBU3fRodVrOnTvH8eOO8vGEhIRCE4x69epx+PBhTpw44SwPt1gsHDlyBI1GU+hS9PkOHTqEn58fder8t7aQn58fycnJmM1m9Ho9KSmO1ZiLu+NwWTEajZw6dYpTpwqvuvP19eWxxx674pCeEDea2yQ1RouN2kHektS4kfrBPrwztCld6/mjyiuDkuxrYB/+DcfSjrPr3K4rNyY/qblyZZE9Kwvjnp10GNy42EkNwNLvD9Hn3iaMeO095n/yDrEH9xX72itJjY9lxmvP4h8cQv+Hn6LWPc2xpRrJXBmL8cg1rlJ8HdKMmSyMXgtALc9Qfpz0rfOcJsADXQ1f1AF6Hnz8Yby8vPjwww9JSUmhadOmzpWGmzRpQlxcHHv27OH8+fP4+vqSkJBATk4O7dq1K3IYKzMzk9jYWGdper769etz8uRJ1qxZQ3BwMKdPnyYsLKzcJzVXkpeXV6whPSFuNLdJamx2hdqB3uyOvXxFhCj/+l8oya4T5AsJO1HN/gKiVt7wkuyr5h+OtU4XvlxV/P1SVFeofrrY2TfepP7SpVSr5UtKfPEXZVs97SgWYwS3vfgmiyZ9yKndJTtcl5V8nrnvvYqnnz/9H36SBnd2xJ5jJmtlHHn7k+Eyk5tL0pG001jsjvdyWeymItsNOtecoJY1+f333wH47LPPsNvtxMXFcfLkSQICAlizZg2JiYkkJSXh7+9P165dXXpgLnXgwAGqVKlSoGy2atWqdO3alX379hEVFUVYWJhzK4CKrDTnAwlxPdxinRoAs9XOt+ui+HLVybIORVwDtRqe7NWIBzpXx9fb01GSvXVy2ZVkXwP7+PkcrRLM6MVjin3N3pHbSHjgIQx7rjz/BqDugoWcya3Csh8PXXV8XW5tQKu+4Sz95guOb9lw1dcXl2OV4kdp3PlmMCtkrY4jd9c5sJbTnanV4NUqGO9WIajDvdB66zGbzURHRxMVFcXp06eduy4LhwYNGnDnnXeW+FYXQlwvt+mp0WvVNAxx013j3Fg1Xz1vDm3G4MZVUNvMsO0rVLt+gbzUsg7t6viFYa3blS9XP3FVl6lUKpSrmDx67r13qDftN/wCPclOu7qy6q3zT2E2WRn0+DPo9B4cWrfyqq4vLscqxZNY8eMUeoy7n5YDBlBlQB2y1iWQuy0JxVRyk2UzTTn8fmwh284dJNWQQZhPNQbU7srIhv3RqK+80m2WOYdpRxewbekBMkzZ1PYL484mgxly+1DqN6tBgz710A1xbMz55ptvsm7dOlQqFbVr16ZVq1YF1r2Jiopiz549DB06tMBuyu4kMDCwrEMQolBuk9QANAyWpKaiaFu7Km8PjaR5dT9IO43q3zfgyPzyUZJ9DezDv+VUxim2JW27ugtV6mIPPwEYdu7CfO48rfvVYuOsq++V3L00FrPRRt8HH0fn6cneZYuu+h7FZbdaWTvtR9ZO+5GuI++i3cBb8e9T27FK8abrX6U4z2Lkfxs+Ii7nLF3CWtG9elsOpp7kp8N/czD1JO91fvKye94YrCZe2PwFpzLiuTm8PSHegWw8s4f3tn5PZm4WtzZwbEKo9tUyP3sLy5Yto1/ffvj5O/YTatCgAZ06dSImJgaj0YjNZuPQoUNERES4dUIDjoX/Ll2IUIjywK1W5KlTzYer3LdL3GB3darNzhe78/cjHWmetwPV9CGovu0EB+dU2IQGnxCs9boxac+XV31pcaufLpb61SSadquBh/e1fagcXJvA+j9PcvO4++l026hrusfV2jJnBlMmjGLdnz+jb1eV6q90osrQBmj8r334YsaJJcTlnOXxlqN5r8uTPNxiJF/3fIXeNTuy7ewBtp8rfCXefPNOreJkRhyPtxrD6x0f5uHmI/mx15vU9avBT4fnkm5y7KFlz7Eyf/W/dAhtzkt+d/JkwO3c2m0w69et57Zbb+PFF1/k8ccfdy6u16JFi2t+TRVFzZo1S2xBt5deeonIyEgiIyOdGzAW5u233yYyMvKyexJdzsXl6/mbRX722WfFvv6XX35hwIABzq8tFgvTpk3jjjvuoE2bNrRu3ZrBgwfz8ccfk5ZWcDK/oiguO1VfT/yiaG6V1Og1amoHSolheeOtV/PO8GYcf7MH79/SgGpHf0f1VWtUM0dD/PayDu+62W/9lujMGLae2Xr1F6uuvPjepbIWLMCem0fzm6996fOjW5NY9esxOt8+mu5j7rnm+1ytvcsW8c1DY1j6/STUjT0Je7EDVUdGoAm6+kqac3kphHgFMrxeL5fjvWo6JuIeSSu8HDnfwtPrqOrhz9B6PZ3HvHWejI28BaPNzJqLvjfP5qXQwL8mAPZ0I7WzAsjNyyXq5dWcm7wX+6Esli9bzv3338/bb7/NQw89RM+ePaldu/Zlt2aoqC63Xs/1WLVqVaHHFUVh5cprHy6dMGECkyZNuubrATZv3ky3bt0Axzo/Dz/8MJ999hkNGzbkmWee4YUXXqBdu3b8/vvvDB8+3GXhw5ycHEaNGsWsWbOu6dnfffcd48aNu674Kwu36j80Wmw0q+FPbOoNWuVUXFa9IG/eGd6Mm+r5ocpLqxAl2VfNJxhrvZv5ct3/runy4pZ0Xyrz9+m0vv9h9q6Kw269trn+p/YkYzHZGPjwcHSeXqz59ftrus+1OLpxLUc3rqVe2w70vvthxyrFR1LJXlX8VYpf7fBQocfjsh2rDlf1KLps+kzOeVKM6dxcox0alevfdq2DHZtZ7k85wR0N+wHgq/PGYPtvuYhciwE1Kry0nliTcvlz3SysuWYGxTcl5adDVGkfSpeWHbjppptQqVQkJiRy4uQJTp8+zdmzZyv0nklVqlRBpyv57RFq1arFqlWrmDBhQoFze/bsITk5+Zrn8mzatOm6FqYzmUzs2rXLuav08uXL2bx5Mx9//DG33nqrS9uBAwcyYcIEvvzySz755BPAsY/XgQMH6NSp0zU9f8uWLeVm4cbyzq2SGr1WTYvwKiw5WLxVV0Xp6N80hFcGNqp4JdnXQBn2NbHZsWxKLLqE+LLU6quaKJwv5bvvCJjwIJEdwzi6Jenang3EHU7j3ykHGfJ4P/Seniz/fjKKcuOqlKL37GTqnp3UiGxCvwlPXPMqxYqikGHOZkPibqYfXUiIVyB9a3Uusv2ZXMeeSTV8ggucC/Ssgl6tIyHnnPNY08D6bEjczbB6vfDWerI8bguNqtZBr9GRY85j9skVjG40EB+dF+boTMzRmc5rPZsGEtwmlLAON9G7V29sdhuxsbHOjTmL2r+pvAoNDcVisZR45VO/fv2YNm0aKSkpBXqCVq5cSd26dQkJCeH06dMl+tzi2L17NzabzZmU7N69G4Cbb765QNubbrqJRo0asaeYFY2iZLnV8JNOo6ZdHZmVXxbUaniqTyMOvnozP4xtTZ0zS1D90B3VrwPh5Aq3TGjwDsLSoBeTdn957fdQFX+dGhd2OzlLFtH+lrpwnfPIzpzM5J8vDtCoczeG/O9F1GUwXHLm+FGmv/A40198knTlPMEPtST4sVZ4NAoo1vXTji5gxJJnmLz/T3x0Xnxy0zP46X2KbJ9ldqzz46srfLjaW+dJrsXg/PreJreiKAoTVr/BmOUvkGrM4PEWjtL9WSeXoVNrubXBf3vs2C9KDI1H0kj78yjJH+0m6a0tZM+PppY9iN7de/HII4/w4osvMnLkSNq0aVMh1n8JDQ0tlQ0S+/Xrh91uZ82aNQXOrVixwmU+S74dO3bwyCOP0LlzZ5o1a0bXrl155plnnEM/+XNnAJYsWUJkZCTbt/83rGiz2fjmm2/o3bs3LVq0YNiwYSxbtqzAczZt2kSrVq3w8XF8T/n6OopSZsyYUWiv299//+0cStu+fbtz/6WffvqJyMhIEhIc23vEx8fzyiuv0LNnT5o3b067du24++672blzp/NevXv3ZseOHaSkpBAZGcmUKVOK8W5WXm7VUwPQpLrs1n0juU1J9jVQhn1NXHYcGxM3XvM9VGr1VU8Uznf+gw9pMOxW6jYPIubg9b3fyXHZzP1oH3e80I7hz7/Ows/ew3YNw2LXKzU+lhmv569SPJFad7fAlmYkc8XlVymu7lON0Y0GkpBzji1J+/jfho/58Kb/ERFQ+IJ5VsXxnus0hf8K1Kt1GG3/7RVV178GP/V5i61J+7Fjp3NYS4K9Akk3ZTHv1Grub3obXloPlsZsYuqReWSasmkd3Jjn2t5LqHfQRQ8Gw57zGPacz38QPu3DaNA8nIZ9G6Dz0pObm0tUVBSnTp0iOjqa3NzyNVxbu3btUql8atasGeHh4axatYpRo/6bwH748GESExMZMGAAe/fudR7funUrEyZMoFmzZjz22GPo9Xr27NnDwoULOXnyJIsWLSIwMJBPPvmEF154gdatW3PXXXfRoEEDjEbHcggzZ84kODiYcePGoVKpmDZtGv/73/+YPXs2LVu2dD5r8+bNLknV8OHDmTZtGlOmTGHRokX07duXTp060a5dO3x8fFx6sRo0aMDLL7/Mhx9+SK9evRg0aBCBgYGkpaUxatQodDodY8aMoVq1akRHR/PXX38xYcIEVq5cSWhoKK+88gqff/45ycnJvP76684kTRTO7ZIaHw8tof4enMuS7RJKU9taAbw1tAktavi6RUn2VfMKxNywN1+uf+6ab6G/sMPxtQw/Adjz8jBs20qHW1pdd1IDkH42j9kf7GHky22445V3mffRW1jNZfNz5Fil+DU8/fzp9+ATNLyzI/YcC1mr4sjbV3CV4oF1ujn/e2vSfl7f9jUf75rKz33eLrSs20PjeO8t9sLfe7PdgqfGdXgl0LMKt9RzHW6YeXwJfnpvhtbrQUxWIp/vnc6t9XvRIbQFPx6aw0e7pjLp5heKfqFmO7lbzpC7xdGzoPbV4dMxjKZNGtC0cRP0nh5kZGRw4oRjPk5sbKzzA7ms1KhRo9Tu3a9fP2bMmEFOTo6zN2TFihXUrFmTZs2aubT99ddfqVq1Kr/99puzhH706NFYrVYWL17MuXPnCA0NZfjw4bzwwgvUqFGD4cOHAzh7Sjw9PZkzZ46zh6x58+aMGzeOFStWOJOa1NRUjh8/zrvvvut8doMGDfjuu+946aWXiImJ4eeff+bnn39Gp9PRqVMnHnroIedQVbVq1ejbty8ffvghDRs2dMYwY8YM0tLS+Pvvv2nevLnz3rVr1+bNN99kx44dDB06lL59+zJ9+nSysrKc14qiuV1SYzTbaFajCueyzpd1KG7pro61+V+v2gQ7d8me5BYVTFdLGTaFhJxE1iesv+Z75Cc1XEePyNk336T+ylWE1vXnXEzWNd8nX1aKkZnv7Gb0a20Z9eaHzH3vVcwGw5UvLCXG7CwWffEBek9Pet33CE2G96DKoHqXXaW4S/VWtAluzJ7ko5zJPU+4b2iBNvnDThcPMV0sz2Kkqu/l92dKNqSxMHodj7ccg16jY0nMJqrofXm05Wg0KjU2xcbr274mOiuRev7Fq1Sz51jIXhNP9hpH6a8myBPfjmG0imhK61at0XvoSU5OdiY58fHxWCw37g+J/J3MS0v+vJoNGzY4J/auWLGC/v37F2j73XffkZWV5bImUE5ODh4ejh3E8/KuPOH85ptvdhnyyy/HP3/+v8+PzZs34+/v75J4gGPuzOrVq9mwYQPr1q1j69atJCQksGnTJjZt2sTLL7/MvffeW+SzH3jgAW677TaCgv7rybt4J/nixC8KcrukRqNR0TzcnzXHJKkpKd56NS8NbMKdrauh16ph9zRU27+DjEq6boJnAOZGfflqw2X+Ai8Gvfb6emoArElJmI4do93guiz59sB1xZMvL9PMjDd3MfrN9ox++1Nmv/0Sxtzi7zVVGsxGI8u/+5KVP3zNzePvo1mfvhyukkTe/vM0S69eYJXi/CGfTHMO4RRMampeSHTO5qUUOJdqzMBst1DLN+yyMf1+7F+qeVVlUB3HuimJueeo7hPsrKbKf8aZnPPFTmouZUs1krk0BpY6vtbW8MG3Y3U6RLahU8eOaLRakpKSOHHiBNHR0SQmJpZqlUyNGjVKZZJwvrZt21KtWjVWr17N4MGDndtUfPTRRwXaajQakpKS+Prrrzl58iQJCQmcOXPGOcfFbr/yhPeLEwrAuUnnxYni5s2b6dy5c6HziPR6PX379qVv374AxMTEMGfOHH799Vc+++wzBg0aRGhowe+/fDabjSlTpnDw4EHi4+NdktTixC8KcrukxkOroWO9ICCqrEOp8P4ryfZHlZeKat1bsG8mmMv2A67MDZtMUm4Sa+PXXtdtPNSOvyivJ6kBOPfuO9SZMZMqwV5kJpdMr4oxz8ofb+7grjc6MOb9z5n15ovkZWaUyL2vh91uZd30n1gz7UemH47Bz8+PDWs3YNh6lpzNZ7DnOj4QTmcmoEJFmHfh66mEegcR4hXIodST2BU76ovKuvcnHwegaWCDIuM4k3OeZbGbea7tPWjVjl+jNsWOTfnv39J8YSj2cqsaXy3rmVwy5v/3u03foAoB7ULp2qoT3bt1B5VjaCU/ySnp8vEaNWqUyiThfGq1mj59+rB48WLMZjMrVqygevXqLvNb8k2bNo0PP/yQ2rVr06FDB3r16kXz5s3ZuHEjP/zwQ7GeV5w1hDZv3szEiROdX+fl5fHDDz8QERHBLbfc4tK2bt26PP/883h5eTFlyhT2799faC8TOCqoHnjgAfR6PV26dGHIkCE0adIEu93O448/Xqz4RUFul9QAtK0dgFp1wzYHdjv9moTw6sBG1KnmC4m7UM35wn0rmK6Whz+miP58ufHl67+VxpHUXM/wE4Bx/37MZ5Jo07826/48ft1x5bMa7fz5xk5Gv9Gese9/wV9vvkB2asGejbKgVqmo4+dFVHo6rz71CG9/8iXVb65Jzo6z/PnDNI5nxNA5rCWBnlWKvEe/2l348/hi5p9ew+0NHH9p51mM/Hl8MR4aPf1qdyny2unHFhLuE0yfi8rGa/mGcTDlJDmWPHx13hxNd5Qe1yxk+KukmE9lYj51oXxcDZ6NAwltG0r1Tt3o06cPNpuNmJgYZ/l4Ssr1/fvVr1+/1LdH6NevH7NmzWL79u2sWLGCfv36FUgMTSYTX375JW3atOG3335z6TlauHBhicVy4sQJkpOTXVYx9vDw4Jdffik0qcnXqFEj4L+en8J89dVXqFQq/v33X4KD/1taYNGi0tu6pDJwy6RGq1bTpLo/h89c/xyDykKthid6NeSBzjXw8/aEg3NR/T0Zzh8p69DKl2GTOZt3njVxBctOr1ZJDD/lS/nsExp//gXb5p/GmFtycyxsVjsz39rBna+1Z+z7k5j55vNknisf60B1ql6NpBwDC9ZvZnffHjRs2IA8jQc7du0iPLg6z/d6EC7MqZ1+dAEA9zT5b6LlnY0Gsi5hF98c+IsDKSeo7hPMxjN7SMpN5smWdxHgUXglZUzWGdbEb+fVDg+5LNw3oHZX5p9ew7MbP6NFtUYsi91Eu5Cm1ParXnpvwsXsjvJx45ELS/Rrwbt1KLVbBlPn5lroBnlgMpo4HX3ameRkZmZe/p4XUavVhIdf+yrWxdW5c2f8/f35/fffOXr0KK+99lqBNkajEYPBQJ06dVwSmjNnzrBixQoAl2G4/C0srtbmzZupW7euy+vWaDQMGTKEefPmMWPGDO666y6Xa2w2m3PycYcOHZzXgOuQUkZGBgEBAS5r8pjNZmbMmFFi8VdGbpnU2OwKnesHSVJTDNV89bxxoSRbYzfD1spTkn3V9L6YIgfy1aZXUYqqLb6a2+VPFC6BpCZ7+XKC38ymRa9wdv4bc933u5jdDjPf2cXIl9s6e2zSEhNK9BnXwkev5baIWuw6m0pcZi7r9x7ER6flpqaRvPnhp9RuFIHhaCrZq+P47R/HX78XJzU+Oi++vPkFph75h21J+9l57hC1/MJ4tcND9L6w1UJhph2dT70qNekR3t7leMOA2rzW4SF+OjSXf6PX0za4Kc+1vXFbUBRghbxd58jbdWERQU81vu0ulI/3a4De24Ps7GxOnTpFVFQUMTExly0fL82qp4vpdDp69uzJwoULCQ4Opm3btgXaVKlShTZt2rBo0SL8/f2JiIggLi6O2bNnY7gwsf3i1xIYGMju3buZNWsW3bt3L3YsmzZtKnSvqRdffJFDhw7x9ttvs3TpUnr06EHVqlU5d+4cS5YsISYmhi+//NI5iTkgIAC1Ws369eupV68e/fv3p2fPnvzwww889thj9OrVi4yMDBYsWODcH+rS+NPT0/n555/p0KEDrVq1KvZrqGzcMqnx0mvoFRnM1E3RZR1KudWmVhXeHtqUFjV8ID0G1eI34fA/lack+1oMm8y5vGRWxRa+P83V0mv0JdJLky/zl59p/fhT7F0eh9VS8n/VzflwD7c+05q73vucWW+9RHJs2f98eeu03FwrFGpdfNTO3DefpXpEY/o98AQhT7Rm/+BtZK2Kwxzr+odOoGcVnm9771U9861OjxV5rkd4+wLJTrlhtJOz+Qw5my8qH+8URpMmDZ3l4+np6Zw8eZLTp08TExODyfRfSX/dunVv2PYO/fv3Z+HChfTr16/IOTxfffUVH330Ef/++y9Go5GwsDBGjBhB//79GTVqFFu2bKFNmzYAPPfcc3z++ee89957vPvuu7Rvf+V/I7PZzK5duwr0xIAjSZk7dy6///47q1at4qeffiI3N5eqVavSsWNHPvvsMxo3buxs7+XlxdNPP83UqVN57733qF27Nk888QR2u53FixezefNmqlWrRps2bfj2228ZM2YMW7Zs4eGHHwYclVLHjx/nyy+/5Pbbb5ek5jJUSkXehOQyDGYbzd5cJvNqLjGmY22edpZkr0K1eRLEbSvrsMo/vS+m56N4dfPrLI9dXiK37BzWmR97f8uxFgUnQV6rBrv2smVhLIc3JJbYPS815PGW1Gjky5z3XiXpZMnN4SktQTVrM+DhiYTVj8CclEPWilhMJzPKOqxyRxvkiU+n6ugjAlAF6NB56Ek+n+zcsyp/g04hyjO3TWrMVju3fbtZhqBwlGS/OLAJo1tXQ6/TwK5fK3dJ9rW4/ScS6nVl8LzBJTL0BNA9vDtfd5/E8VatS+R+AKGvv45+8O389sqWUp3X3f+BptRrGcjfH75JwpGDpfegEuQXFEz/hydSu2lLbGlGslbGYjhc9CrFlZ0u3BefjmFo6/ujqaJHo9WUauWTECXBbZMag9nGZyuOV+ohKJddsg3pqDZ9ISXZ10LnjfGF07y+5Q2WxRTcF+Za9anVhy+6fMDxNu1K7J54etJo+05WTjvK6b2lu1Fir3GNiegUzMLP3id6365SfVZJ8vTzp98Dj9OwbSfsuVayVsYWukqx+I++jj/BD7RApZOkRpRvbvsdmj+vpjLq2ySEtU/fxJpnutHNKxr1nHtRTWoKO36ShOZa3PIFqaY0VsSuKNHb6jQ6FFsJz30xGjFsWk+HW+qW7H0LsfaPYxzakMTw51+jUceupf68kmLMzmLRpA+ZMmE0x/ZtpMqw+lR/uSM+XaqD1m1/JV4Xz0YBJdZDKURpcuuf4HZ1AtGoS27hq/JMrYaJvRty4NWb+Wlca+qeXYbqxx6opvaHE8tkjZlrpfXE2Gw4U/ZMcdl5uSTo1DooYu+h65H01ltUDfOhesOi12gpKZvnRLFnWRy3PPUCTbr3KvXnlSSr2cjy779i8n0j2bthCX79a1Hj1U749ayJyuPG71Rennk2DUKtk/dElH9uWf2UT62CdnWqsiM6raxDKTWB3nreGtaUwU0CHCXZ26ag2jUVcsvHImkV3i1fkG7KZGnM0hK/taP6qeSrlGzJKRgPHaT94Losmry/xO9/qR3/xmA22RjwyFPoPD05sLLk36vSZLdbWf/bz6z/7Wc63zGaDoNvx693bXI2J5Kz6b9ViisrlacGXZhPWYchRLG4dVKjUqkY2CzMLZOaNrWq8NbQJrSs4QvpsagWv32hJNt85YtF8Wg9MTa/jcnb3i3xXhq40FNTSvv0nHv7LerO/ZuqYd6kny39jfH2rYzHYrLR+56H0Hl4svvff0r9maVh299/se3vv2jd/xa63jGW6t1rkrPzLDnr4rFlVs6fLc/IQBSrHZVeempE+efWSY1eq+aWltV551/3WRV3dIdaPN27DiFVfCBqNarfJkHc1rIOyz0N/pQMcxZLo0un58Exp6Z0khrT0WOY4hNoO6AOq6cfLZVnXOrwhjNYjDZ6jb8bvacXW+fOuCHPLQ37Vixm34rFNL6pBz3uup+wjh3I259M9pp4rCllt2t5WfBuGSwThEWF4dZJDUCQj57IUD+On8su61CumadWzUuDHSXZHjoN7MrfJTu2rENzXxo9xhZ3MGX7By6bFJYknar0khqA5I8+pNHX37D1n1PkZd2YXoYTO85hMdnoP2EEei8v1v8+9aqu35mUyt5zhfes1g/wpW/d4m85EJuZw/LoJG6PqE01bw+Xc3ZFYWtiMifTs9GoVDSo6ken6kFoLilZnrdgIS98N5UXRgxj+GNPE/p0O4zHUslaFYclqejVd92GRoVnRECJbsopRGly+6TGalfo3yy0QiY1dYK8eXdYU7rV93eUZK97G/bNkAqmG2HQJ2Sac1h8enGpPUKnKb3hJ4DcdeuwpmfQsndNts0/XWrPuVT0/hQWf3uYwY/egt7Li5U/fVPsieqpBhMalYpWIVULnAv00hdyReHSjWbWx50v8vyh5AwOp2RSr4ovOo2aw8kZqIHO4f9VTFrtdvaeS6NZtQBSThxh6v8eJKxhJP0fdKxSbIrOJGtlwVWK3YlHgwAUQFIaUVG4fVLjqdMwvHU4U9ZElXUoxda7cQivD2pE3Wo+cGbPRbtky4ZmN4RGj7HlKL7e+VGp9dIAaNXaUu2pAUj/8TtaPvciu5fGYjGV7rMulnAsnYVfHWToxF7oPL1Y+vXnKMXYkC/NYCLAU0/76kHX/Owz2Xmsij2L8TLv7fG0LGr5edOvnqPnR6OCo6lZLknNkZRMzDa7S4J1Nuo4v734JIHhtRjw8FNUf7AF5qRcslbGYjqRfs0xl1dezYNQyYJ7ogKpFN+t9av5UL1K0VvAlwdqNTx5oSR76vjCSrIloblhBn5ItjWPf0/9W6qP0alLd/gJIP33P1DMZprcdIN2ir7I2dOZzPt0Hw3admLYs6+g1lz+byizzUaOxUqQZ/F7ZC5mtdtZH3eOxacSURSFal4eRbbNMlkIvOh8kJcHFrsdo9Xx72Gx2dl3Pp0WwQF4agtOkE1LjGfmG8/x08QJJKVFETS+CaHPtMOreTX36dZQgVfzaqg07vKCRGVQKZIao9VG3yahZR1GoQK99Uwe3ZoTb/bkme6h+O2aguqLxqj+eRjOHS7r8CoftRZjq9F8ve9rrIq1VB9VmtVPF8ueO4t2A+ugKoM1m1ITc5n94V5qNW3N7S+/hVZXdMKSZnDM+wm8TDJyOQaLzdED4+/DiMg6BF4mOfLQqrFc1HNkttlRAboL79HB5AwURaFlSMBln5mdmszfH7zOd4+MI/r0XqqOakTYCx3wbhfq6P6pwHThvqil4klUMJUiqfHWaxneukZZh+Gida0qLHisM7tfuZmh4bloFz+N6rNGqNZ/LGvMlKWBH5JjM7Lw1MJSf5ROrUOxlm7iBHD+8y/Q6dU0bBtS6s8qTOZ5AzPf3U1IvUhGvP4+Oo/Ce01TjY4doY1WG4ujEph28BTTDp5iZXQSGcYrT3T20KoZ1rAmA+vXwEd/+V6hEG9PojNySDeayDFbOJGWTTVvDzRqNSarjQPJ6bQKqYpeU7wPdWNOtnOV4qN7N1BlaD3HKsVda1TYyiGv5tVkDWFR4VTMn7Zr0KZ2VYJ8rq1buySN7lCL7S92459HO9PSuBvVb8NRfdMBDsySNWbKmlqLsfVdfLP3G6z20k82tGrtDUlqsFoxrF11Q7ZOKEpuuomZb++iavU63Pn2x3h4F1zMLc3gSGr2n09Hp1HTOKiKI/nIzGH+iXhS8kyXfYZeoyHM16tY8XSoHoQCzDkWx4wjMeRZrHS9MJ9mf3I6GpWKZtUCnO2Lu0We1WxkxQ+THasUr1uMX9+aVK+IqxSrwKddKGrZNkJUMJXmO9ZstZdZb42nVs1bQ5ty7I0efDisESHHZ6Ka0g7VjJGyxkx50v99cm0m5p+af0Mep1Vr4UYkNUDSO+/iV82TmpEFq4puFEO2hT/f2IVP1TDGvPspXn7+LudVKhW+Oi23NAinf70adK5RjcENwulVOxSz3c76+HMlFktVTw9GRName60QutUMZkTj2oT6eGGwWDmUnEHr0KroNGqOpWby+6HT/Lw/isVRCeSYi7e6sN1uZf3vU/nqvjvYMn8mXt1Cqf5qJ/wH1kXtoyux11Fa9LX9UXtdfx3J9u3biYyMZMqUKdd8/dChQ2nRogW9evXCXozJ5leSm5vLlClTGDp0KK1bt6Zt27YMHz6cr7/+mtzc0i3Tj4uLK9X7i0pQ/ZTPS69hfJc6/LI55oY9s06QN+8Ma0b3en6ojOmo1r/jKMk2VbzycrenUmNsO45vdn9xQ3pp4Ab21AD29HSM+/bS/pYGJBwvuyods9HKn2/sZMwb7bnr/c/5680XyU13rEvTrWYI1Cx4TaNAf46lZpGUayDDaCbgGicSX8pbp6VJkOv+WHvPp+Oh0dA0qAppBhMb4s/TrFoVavn7sP1MCmtjzzG0USFBXsb2f2ax/Z9Z/61S3C38wirFCdgyL9/7VFa824WU+YRnu93O008/jc1m4/nnnycgIAD1dVZi5eTkMHbsWGJjY7n11lsZM2YMVquV/fv3880337B8+XJmzJiBn59fCb2K/3z33XfMnDmTDRs2lPi9xX8qTVIDUKuqN02q+3E0qXSTit6NQ3htUEPqVfOFM/tQ/f05nFguFUzlWf/3yLObmR81/4Y98kaUdF/s3FtvUm/hIoLCfUhNLLuF46xmO3++uZPRr7dn7PtfMPON58lOSb7sNUHeHiTlGsg2W0osqblUjtnC0ZRMuoQHo1GrOZ6WhadWQ5fwYNQqFXZFYUV0EmkG0zVNZs5fpTiy6830GHs/YR3bk3cgmezV5WyVYo0K71YhqDRl25GfnJxMamoqY8aM4e677y6Re86YMYNjx47x559/0r59e5dznTt35rXXXuOXX37hqaeeKpHnXWzLli3YbuDPe2VVaYafAOwKjGpfq1TufWlJdr2zK1D92BPV1L5wfKkkNOWZSo2x3d18u+9bLPYbt3mhVnXjemoAzKdOY4qOpu3AujfsmUWx2xRmvLMTk0HH2A8mUSW0OufzjJzPNRba3nZh2EFTiivb7jmXhrdOS+Mgx7BYpsmCv16H+sIzAzwcyVRWMYeginJ8ywZ+fPxe/v74LcyhdkKfbkfQ3U3Q1Sgfm0Z6Ng4s814aAIvF8T77+vqW2D13796Nt7d3gYQG4I477sDf3589e/aU2PPEjVepkhq9Vs2IdjXRlmBpa6C3nq9cSrK/RvVFE1T/PATnDpXYc0Qp6vsWBruVeSfn3dDH3sg5NfnOv/8+DdsG4xNwbWXTJcoOs97bTXaqwqi3PmbhyQSWnk7EfsmkXEVROJdrRIVjPZnSkGUyczw1i3Zhgc4kRlEUl1is9pKtBYrdv4dfnn6QGW88R7ZXNiGPt6bagy3Q1/W/8sWlyLdTdVSlOEH4pZdeonfv3hw7dox7772X1q1b07FjR15++WXS0x1Do1OmTKFPnz4A/PTTT0RGRjJvnuPn02QyMXnyZPr160fz5s3p3r07b7/9tvPay742X1/y8vL455+CG66q1Wo2b97M9OnTAdi0aRORkZH88ssvBdpOmjSJJk2acPbsWQBWr17NyJEjadu2LW3atGHMmDGsWrXK2b53797s2LGDlJSUAnOMNmzYwF133eWc3/Pggw9y+LDrch7jx4/n3nvvZcOGDdx+++20bNmSPn36MHfuXGw2G19//TXdu3enbdu2TJgwgfj/t3fXcVHffwDHX5d0hwEqiogBJnZjB+JsRZ3O2TE3F9bmnDr9OWuic85Zs2OKHZgzZs+c3ZhIqEjffX9/nNw8SRU44vN8PHgod5/v9/vm4O7e9/7U/fsGx69btw5/f38qVqyIj48Pffr04dSpU+k+XrlRvkpqAFQKOfU9ndJvmI4KrjZsGqibkt3GNRrl9i9eT8meAq/SLqULOYhMTqzPJ/x67tdsrdIAKOQKpITsTWqi//6b+NAwKjbOmorl+/hz6j88f6LF19eXOI2Ws08M35zOh0YSHhtPSTsrTFJYCC8znHocjo2JipJ2/42lsDFRExkXT/zrLoOn0bouoqSKTWZ5fOMqy0YOZclXgwlLeITTp944D6mIaansH9Qtt1RhUtI2y9c0ev78OR9//DGFChVi1KhRNGjQgA0bNvD9998D0KRJE0aNGgVAw4YNmTp1KlWrViUhIYFPP/2UuXPnUr58eUaPHk2TJk1Yu3YtXbp04fnz52let0OHDshkMkaOHIm/vz+zZ8/m+PHjxMfrZp6q1f/9bmvWrImTkxPbtiXfKmXbtm1UrVqVggULcurUKYYNG4ZKpWLEiBF8+eWXREdHM2TIEP7+WzcRZPTo0ZQoUQIrKyumTp1KkyZNAAgKCqJfv37IZDK++OIL+vXrx507d+jatWuyitGNGzf4/PPPqVu3Lt988w0ymYyxY8fSr18/goOD6devHwEBARw7doyvvvpKf9z27dsZO3YshQoVYuTIkQwePJg7d+7Qq1cvbt68+Y6/uZwvX42pAV21JqB6MfZeTn1fmLR08SnC542Sdsneh2zZTLh7NJOjzHpPouW03O7IUK8oepWOTrHN8mvmTDhtzcn2T7BWv9+n1GGHbbn7UsGmFmHJ7rv5QsHY4zZcilBRzDKR4eWjaOSafOBkl2B7nEy1BNaNfK8Y0uT7HXFoWH9tfeafOx267qfsH9sSMTcQr2/HcXLrbeJjc0Yf/+afz9O9XX/OnjvHqcfPeBQVjYOZCaExcTyKisHOVE3NN7YwOPVI9/f0IdspJImIjeNmxEt8ixXUV2kAStlbc+lZJFtuPKCQhRlXw5/jYmWeZWN6wh/cZ/W4r7C0d6Bp/88o1qMCmog4XgTfJebiM7Jj0RjzSs5IiVpkWbzoXlRUFCNGjKBfv34AdO7cmUePHrFnzx5iYmIoXbo0lpaWTJ48mZIlS+Lv7w/AmjVrOHHiBMOHD2fgwIH68/n4+PD5558zd+5cRo8enep1a9asydSpU5kwYQJXrlzhypUrzJ07FzMzM+rVq8fAgQMpU6YMAAqFgtatW7N48WLu3btH0aJFATh79iz3799nwIABgC7BSUxMZM6cOdjb2wPQsmVLunTpwtWrV6lZsyaNGzdm6dKlvHjxQv+zREVFMWHCBBo2bMi8efP0MXbv3p02bdowceJEfXUKdGOMZs6cScuWLQFwcXGhf//+XL16ld27d2Nubg7Aw4cP2bp1K1FRUVhaWhIUFISFhQXz5s3Tb0xaq1Ythg0bxpUrV3B3d3/fX2OOlO8qNXKZjHoejtiaZ3xapalSzrikKdn+b03JzoUJzasEGUMP2xKVkPqv/+RTFT+d/bAZAAsvm7PrfsoLrUkSfH7ElpsvlHQpGY2pUmLoYVuuRBjm2fsfmHAuTMWw8lmziWdstT7MO/cr8drsXyNIIVdAYvZWhwAi161DGxNLuXou2X7ttJzZEMbUMfNo99FHPNdIXHwWycu4BMo72eLv4WqwXcGZJ+GcSWU373d18lEY9qZqStgajt1wNDehkVtB4jUaLoc9p5ClGQ2LZv3K5FHhYWyY/N3rVYrPYNfRg4LfVMXcJ4tXKZaBVR2XbFtFOOnNOUmZMmVITEwkMjIy1WP27NmDqakpn3zySbJzFS9e3KDLJzVt2rTh4MGDTJ8+nTZt2uDk5ERMTAy7du2iQ4cO7Nixw6AtYFCt2bp1KyYmJjRr1gyAggULAjBhwgQuXtQNObCzs2PXrl306tUr1TiOHj1KVFQUzZo1Izw8XP8VHx9P/fr1uXTpEk+e/LeMgUKhoHHjxvrvixcvDkCdOnX0CQ1AkSK6KmxoaKg+vlevXjFx4kR9ZcbT05Ndu3bRqlWrdB+v3CbfVWpAt69Lu0ou6U7vLmpvzg/+5ahX3ApZbGSemJL94JWcoYfsuBSRelK37a4pY45bE6t5vxdQjRamn7Nk4ZXUB/hdCFdyNVLFzFqRtCwWS0wi1N/kzLqbZnzro3t8JQl+Pm9Jy6KxeNhkQTeN77fEIRmlSgOgkGV/91OS56uWU6l7b87tvY9Wk3PWjT27+Rndug5h4sQJbJkxmZunT6TYrl9Fj3TP1aBYQRoUK5huu6bFU1+/qoStFSVsM396b0boVimeglJtim+vvpRt7YtNczde7rvPq5OPkRIyd/KBqYcd8nf4sPehHBwMq2xJXT9pzRAKCQmhcOHCmJgkH1vl7u7O3r170Wq16U79Njc3p3Xr1rRu3RqAK1eusHz5ctatW8f333+Pr68vJiYmlC1bFg8PD7Zv387AgQPRaDTs3LmTBg0a6Kd9d+/enaNHj7J9+3a2b9+Ok5MT9erVw9/fn+rVq6caw927dwH45ptvUm3z8OFDChTQJdJWVlYG3WOK16tdv/04Jt2etKbP4MGDOXfuHMuXL2f58uW4urrSoEED2rVrR7ly5dJ8nHKjfJnUmKmV9K1XgsVH75DSQqG+ns6MaVGSEk55a0r2kivmzL5gSaxGRo0CcRx7YvjCEB4n49sTNuwJMcXFIhGlTMvdqHf7E7kUrmT0cRuuRKqoUzCOw49THtgZ8kp3Xk87XaXCTAluVomEvPrvU+KO+6Zcf67k5zqR7xRDRsVW78f8878SpzHOWiEKuQLJCJUagGezZ2P7cW88qhbg6rHHRokhNX+tukZCjAa/L0azY+4Mrh7N3+t6JMbHsvu3QPb8Po863XpSsXFLrJsW4+XBEKL+foiUSV2IlvVcQZl9057eZ82ZtFZ21mq1KJXKVM/75MkTli1bRo0aNahTp47BfaVLl2bixIloNBo2bNjAjRs39G/4bdq0Yfr06dy4cYOnT58SGhqqr+AAWFhYsHTpUi5cuMDevXs5fPgwGzdu5M8//2TIkCEMHTo01XgBvvvuO33V5W0lSpTQ/1+pTPm1WJbOjMACBQqwceNGTp06xf79+zl8+DDLly9nxYoVTJo0ifbt26d5fG6T77qfktiZq6nv8V8fvUwGgxu4c250PRb2rEiJp3lvSvYf1yxwsdCwvFE4/m7Jp85ej1SxN8SEdsWjCWoeRgHzd/+Z9z0w5V6Ugi8rvOS3+qnPRrBR6c4dnfDfEzIqQY6lSveipdFC4AVL2haPoZhVFoz7aDCaeGDd1XWZf+4MMmalBq2WV7t2ULWlm3Gun46/g25ycttdWgz+Aq8GTYwdTo6g1Sby1/JFzO7dgSNBKzGt5USh0ZmzSrHC3hSTEjbpvkEam6urKw8fPiQ2Nvnr161bt/RdQSmRJIkFCxawdu3aVNt4eOgqgKam/3Wb+/n5IZPJCA4OZu/evdjY2FCvXj39/ffv3+f06dN4e3szfPhw1q9fz759+3Bzc2PRokWpJmIuLrruXxsbG2rVqmXwZW5ujlarNYjjfd28eZNLly5RrVo1vvnmG7Zs2cK2bduwsbFJcWZXbpdvkxq1Uk7/+u7YmauY1bki18c14Mv6BbE+/XpK9oa8NyV7fNXnBDUPo7JTytWBopaJbGoRxuQaL957YHBDl1iCWz+jb9lXpLV2V2m7REwUEkuuWhCVICP4vgk3Xyip7KQb27Lpjhn3oxQM9sqisTQ1BvDb+d+I1aS8Lkp20A0UNk6lBuDJxIlY2JpQtJy90WJIy+kddzny5y0a9x1MpeZ+xg4nRzmxcS1zPu3Mvj/mo6pgTaFR1bBt647iPafqW9YspFvIK4dr1KgRcXFxLF682OD2nTt3cufOHRo2bJjqsQULFqRatWrs2bOHffv2Jbs/OjqazZs34+7ublAhKVSoEFWrVmXfvn389ddfNG/e3KAbaNasWfTu3ZunT58aHOPs7IxcLtcninK53GCbh9q1a2NqasrChQv1s68AIiMjGTZsGKNGjdJ3JX2IMWPGMGjQIKKj/5sQUqJECaytrT94heacKF92P4FuwHD1YjacGV0fIu8h2/EDXNyQpzeVrFso7Z+tkIWWQnxYRcrLPmOVBwdTLcO8XzLtrBVb7+o2IazsGE8n9xgStDDnogWd3KMpbKGLR5J01bRMUf9rEuRy1l5L/RNbdlDI5JBovNlH2qgoYk+doGqrsty7lDmDbjPbhf0hJMZqqNf9E9RmZhzfaNzfWU5zLng754K361Yp7vYJBav6EH3+GS/33SMxNIOrFCvlWFTL2rVpMkv79u3ZvHkzs2bN4ubNm1SuXJmbN2+yZs0aXF1dGTx4cJrH//jjjwQEBDBo0CAaNGhAjRo1sLKy4v79+2zevJmIiAiWLl2arGLVpk0bxo4dC8DkyZMN7uvduze7d++me/fudOrUCWtra44dO8aJEyf0M6QA7O3tiYiI4Pfff6dq1apUqFCBESNG6LuA2rZti0KhYPXq1Tx9+pQZM2ak2uX0Lvr168egQYPo3r07/v7+qNVq9uzZw71795g4ceIHnz+nybdJDYAcDdzYC6u7GjuUfOnTMtFUdUrgzDMVhS00NHKJQymHFdfNCItVMKDcK2ISYewJG3bdN8VEIdG9VDTDvaM+KMGJrTmYBecXEJNo3KXplSiQNEbqfnrt8fffU2LHDpyKWhF6L2cOgL/89yPi4xJp3KsLalMzDq1aauyQcpyrR//i6tG/KFa+Io16D6LA8CrEXg3nxZ67JDxMe9kA8wpOOWIF4YxQq9UsWrSIefPmsW3bNnbu3ImTkxNdunRhyJAh2Nrapnl8kSJF2Lp1K4sXL+bgwYPMnTuXmJgYnJ2dqV27Nv3798fVNfneXs2bN2fChAk4OjpSpUoVg/u8vLxYvHgxv/zyCwsXLiQqKgo3NzfGjh1L9+7d9e0+/fRTrl69yqxZs2jXrh0VKlSgZ8+eFCpUiIULFxIYGIhKpaJUqVKMGjWK+vXrZ8pj5uvry9y5c/n999+ZO3cucXFxeHh4MG3aNPz88l4FVCalNfIqP9DEw/TSEJ18HZW8bMMtM0Ydt2FUpReprlPTY689J56qP2idGs9VBSltm5DiOjUpiU2Exlud8CsWyzeVXvLTWUvW3DBnnM8LXiTI+PG0NeOrvqCD+3smJHW/JKru5/iu8zV6UrPFLwiLVbt49p47GGeWYkFBPIqxY+f8nN3dWrScPc37l+Xivt3sW/yrscPJ0QqWLEWTT4fgVNSNuLsveBF8l/jbL1JsW+BLH1SOZtkcYe4SFRVF7dq16dWrF59//rmxwxHSkPPrjVlNq4Fq/YwdhfDaiuvmRCfI6FtWN5Zm/U1zOpSIwc8tlgCPGBq6xLHyhnk6Z0ldbO2hLLy40OgJDegqNdm9TUJKnk6YQPHyTlg5fPigxKx071I4WwMv4NWgCc0HDkcmEy9fqXl84xrLRg5j8YiBhMU9xKnP61WKPQ1XKTYtZYfSJgdsmZHDbdy4kbi4uDw3UygvEq8KKjOoOVj3r2BUUQkyFly2pKdnNPYmEhFxMiLj5RSz+u+N380qkfsv33PwXJ3P0ShUrLy8MpMi/jByZEbvfgKIOX2a+MdPqNSkqLFDSdfD68/ZOOM8HjXq0Hr4N8gzYSBlXhbx6AGrv/+a34b25kHoNey7l6HAiCqYeTuCDKybFMvaBf1yuVmzZjFw4ECmTJlC8+bN9asKCzmXSGoA5EqoIMbVGNuSq+ZoJehTWjcGQKPVvdhqpP9edOM0svceTxNb+zMWXlhIdGLK3W3ZTSGTIxlxoPCbwmZNp2ztwpiY5/xhdqH3XrJ+ylmKla+C/1ffosiEwZR5XVR4GBumjGPegO7cunEau44eFBpVHVVhiyzf5yk3i4mJ4ejRo9SqVUu/L5WQs4mkBnRVmnpfgShnG01knIwlVyz4pPQrrF6P33Ew1WKj1nL22X9rcJwLU+Fm9R7VjdqfoVWasPJKzqjSAMiRQxqrp2anF1u2khgVhXf9nLV1QmoiHkez9sczFC5VjvajJ6BUiy6UjIiNesnWWf8jsE8nohNeos2ODaVysVGjRnHu3DkWLFiQ7iBkIWcQH3GSmNlD6dZwebOxI8kVLkco2RNiShm7BBqnsAnlu/r9sgUquURPz/+qKDIZtCsew5Kr5ihk8DxBxrkwNdNqRr7z+WPrDGfRxUW8Ssj+DSRTo0CGJgd0PyV5/scSKvYdyD/B99EkJp/af+XxCc6F7CPs1UPUSjMK2bhTq4Q/dubvth/S7WcX2HLhF7r6jMbJynC3cK1Ww6Eb67ny5DgKuYpSzj7Ucm+LUm64uNyFB4c4dHA9kS+n8OnEhnQaN5n1E8cQH2P8sVK5gb1LEcxtbDJlHRRByElEaSKJyhSaTgC5eJJnxOUIFXMuWrIn5MMHlz6LkbP8mjn9yr7CXGn4yfGLCi/pXDKG3SEmnHumYnj5l/ilsBpymmoORlKaseLyig+ONTPJc1D3E0DYvHnI0eJZI/mqrH/f2sTuy4uJS4zB26U+rraluPXsHGtPT+VFTMZnDoa/ekTwlT9Svf9syH7OPThAEbsyuNmX41zIfo7dMvygkahJ4MTd7VRwbYA8zoyV405h7eRKl/E/YWqR+n5jwn/qdOmZ41cPFoT3ISo1b7IsABW6wT/LjB1JlmtXIoZ2JdL+VLusUeoLsmXkeICrXdPfV8jRTMvZTk9TvE+tgPFVXzC+asrTUTMitu4IFl9aTFRC1qxO/L5kyHJM91OSqK2b8Gnhx79HHpLUM/H4xR1O3t2Fi60H/uWHoFToVlN1f1qJHZcWcOLONhqX6Znuue9HXGXnpd+JTeP38O+joxSzL0tLr74AyOVKLjw8TJ2S/806ufDwLxISY6lcVLd9Qmx0IsvHnaDbd1XpOmk6a8Z9Q/TzyPd8BPI+p2LFKeZdUQyyFvIkUal5k8oMmvwAqvefMizkMNX6I6nNWf7vcmNHkowceY6Y/fSmx5OnYGaponh5R/1t5x8cAMDXM0Cf0ACUdKqEV+E62Jg5vX0aA4maePZcWUbQ2Z+RkHCyLJJq2xexz3C0/G/xMydLVxI0scTE6xKh+MRYTt3dScUijTBT/VeVSYzVsvK7kyiUNgRMmoGVg2Oycws6tTv3QBJjaYQ8SiQ1b0ua4i3kCbENvuaPS3/wMiHnrZYrk8lyVPcTADExxBw7gs8bG13eDbuEo0XhZGNnZDIZvp4BVHVrkeYpo+Nf8u+jo7g5eNGt6lgcLVMfjGyiNCfhjV3T4xNjkSFDpdQNBD4Xsh9JkqhUpFGyYxMTtawcd4LEBFMCJs3EpkDqmxvmVw5FilG8YhUUClGkF/ImkdS8TWUGdUeAhfikl+tV/RTUlvzxb+pjOIxJjgxyWKUG4PF343BwsaRAcWui418QkxCFvUUhwl89ZtuF+fx66At+/etztl9cwPOYZ+mez0RlTodKX+JXfhCWJrZpti1oU5wbof8Q9uoRL2PD+ffx3zhbFUUpVxGXEM2Z+8FULtoEE2XK60pptbDqh1O8eiEjYNIM7F2SL3mfnzXo0SfVXaMFIS8QSU1KZDJoMNrYUQgfKLbBSJb9u4wX8e8/Hicr5chKDZD45AlxVy7j09KNV3HPAYiKe86a0//jRWwYZQvWopCNOzdCz+gGCsemPVDYRGlGYVv3DF27RvE2SJKWFSd+YPHfY3gV/5x6Hp0AOH0/GIVcRQXXBvr2kpTyBqzrJp8h/FEi3SZOx6lY8QxdO68rVr4SRcp5i3V9hDxN/HWnRGkKlXvC33Mg/JaxoxHeR5XeyEysWHJpibEjSVVOHCic5Mn48RRbvRoTa90MmYfPr1O6YHUal+6J/PV6TudC9nPw+lr+ur6O1t4D0jpdhjlYFCKg2rfcenYeSdLi5uCNlakd0fEvOBeyn5rF26BSmHDp0VH+vrWJmPiXuNqVonHpnliZ2hucK2jGWVoP8abrDz+xbuIYHl2/mikx5kZyhYLGnw5GLrqdhDxOVGpSJUHTvLcte34R6zuaZZeX59gqDYBMlvMGCieJvXCBuAcP8axeCNDFWq9kR31CA1DepT7Wpo7cCbtIgiY+065trrbGq3AdvF3qYWWq26vo1N1dmCjN8XKpS9irh+y9shwPp8r4lR/Eq/gX7Pp3SYrn2jrnAncuRtLpu8m4lvXOtBhzmwpNWmJhayemcQt5nkhqUqNQg0dTcKmSflshZ6nUE5mpTY6u0kDO7X5KEjZtKuVqFAPA2tQBU5WFwf0ymRxHSxe0koaXsalP//9QL2MjuPDwL6oWa4FSruLSw6OYqSyo69ERNwcvapXw5+Hz64RFPUjx+N2//8u1k89oP/oHilf0ybI4cyozK2vqdv0YlYlYdVnI+0RSkxaZHFpOM3YUwjuKazSWFZdX8Pz1eJCcKid3PwG83B1MIWsb5HI5Gm3KFSWtpItf9cZU78x28u52LNS2lC1UC4DImKdYmznqq0a2ZgVe3576oOX9y65w6a9H+H81Fo9qtbIs1pyoTpeeyOTipV7IH8RfelrkCihQDko1N3YkQkZV7IbMzI4lF5cYO5L0yXLGLt1piVm2FK9yXkTFRRAZbbhAolar4VnUA0xVFlikM6vpfUXGhPLvo6NUL94KxevVviVJYzBAWKNNAEh3o9PD625wZtd9Wn32NWXqNsySeHMaxyLF8GrYGKU665JOQchJRFKTHqUJtJgqtk/IJWIbj2PVlVVExEUYO5R05fTuJ4DwxYvp8FE7AA5eX4tG+1+8Z+7vISougtIFahiMtclMx29vxcbMGc8C1fS32ZkXICL6CXGJuhWtH7+4DfxXsUnLiS23Ob7pDs0GfEb5xmmvr5MXNO47GBDjaIT8QwyFzwhLZ6jYHc4sNXYkQloqdEVuZs+ii4uMHUmG6JKanF2pAWisTWR/fV/2H9zHqpOTKOZQjohXj7kTfhFbM2eqF2+lb3vs9lYAahRv/cHXDXv1iGtPTtKsXB+DpKlMwZqce3CQDf/MpLBtSf59dJQidmWwt8jYYnv/BN8jPi4R3179UJmacnrrxg+ONScq6VODAiVKiu0QhHxFVGoyQmWm2+zSzM7YkQhpiGs8jjVX1hCehYNWM5VMniMX33vb02nTmTVzJm0bfAzotk0IjbqPt0s9Olb5ymAhvBN3tnHizrZMue6x25txsHTBw6mywe1OVkVoXrYPcYnRXHx4CBdbD5qW+fidzn3pr4fsW3aNOl16UrNDt0yJNydRKJU06jMQpUp0Own5i0wSy0tmTEIsXNsJ697txVPIJt6diG87l6brmxKWzmJwOcW5Lqe407kLcVeuGDuUdLnMnk1CuZqsnnDC2KFkquIVHGnapzRnd2/j4LKFxg4n01Tz70CN9l3FjCch3xGVmoxSmYJnCyjdKv22QraLazKeddfW5ZqEBtCNbM3Bs5/e9Gj8eGydzSjsYWvsUDLV7XPP2PbLJSo0aUmTfkPSH22cC1jY2lGzQzeR0Aj5khhT8y6UJuD/C9ytCDE5fyBqvlGuHeWrpj+bRRmgRF4s43m89rqWxHWJKPsokRcwPE7SSmj2aNBe1IIC5GXlKBoqkCkN3xQ1ZzRo9mpQDVQhszS8L7eMqQHQhoURe/ECPi3d2PzzWWOHk6lCrkSw+eeL+A1riMrUjB1zpiNpU95+ITdo1GeQGBss5FuiUvOuVGbQaqaxoxDeENd0IvU710deR578q/LrP3FzkDlk/JVeeiaRuDX1hEN7Uov2lBaZmwy5uxztKS2ag4ZVFylRQnNEg7yKPFlCA4BcjqTR0FbSpvt14R17iU9KEm0lLbdSOE4jSSyQtARIWnpLWhZKWhJSaLdLkugsaYl4fd+T8eNxKWWLXSHzd4olN3h86zkbfjqLe+XqtBkxOtduJ+BRrRbFK/mIsTRCviWSmnelNNF1QXm2NHYkAkCZNsitnLnhdQNlPWWyL+ml7g1Z6a9MObFIgfaOloTlCRCTRptzWmQlZKjaqVC2ViKvKEf7j+Gne+0ZLcSDokYqs09kul26O0OKX0mrI9kA77LX9H1JIpDUk6CtwDagAlD59f9XvNU+XpJYi0RLwO51l0zclSvE3btHlWbF3iGa3CPswSvWTv6HImUr0m7U97kuMTCzsqbZwM9QqlTGDkUQjEYkNe9DqYa2v4jZUDlAXPPJbLy2gdCY0GT3aS5qkK5LyCvKkRdP/09dSpBI3JZI4qpEkEBWMPUkSIqUkBX4735ZARnEgxStSw6keAnNUQ3yqnJk5imfRyaXIyVq6CqTp/gVjq4X4XNk+sQiPRckibFIpLXj1R4kKgNfy+QMlclpAux6q81OdDndR2/1Y4ROmYJH1QKYW+euN/yMev40hlUTTuNc3JMO305CZWJq7JAyrGn/YShEQiPkcyKpeV8qM2g1w9hR5G+l/ZBbFeC3CwuS3SUlSmgOaMAEFA0yuE7Hq9cVmJIyVJ+qkDmlkUiYAm/u4RiHLgN5/V6vPakFCRTVU762Wq5rKKUyUPigJHECaAxUzEBCEydJzJG0jENCC5RIo+0TwO2N74sjIwZ48bqbKUaS+BMJP8D6rWu/OniQhPAIKjQqkm5MudWriDhWjT+FXaFidB7/P0zMLdI/yMhK1aiDW8Uqua66JAiZTSQ170tpCqVb62ZECUYR1/xHgq4H8ST6SbL7tKe18ELX9ZNapSQZU1D2UKLqqEJmlfYxMhcZ2itapFAJ6YWE5rwGWUEZMqUMKVZCc1yDoroCmUnK50lKakhhoHC8JLEcCXOgRwZHfEYCe4AqwCxkpNVBZAnEvvF9NLoXgqTVZrYCWsA/lWuHz/sF7wauqEzy7qJuMS8TWPHdKSzsCtJ1wk+YWVkbO6RUmVnb0LT/MNHtJAiIpObDKNXQdp7ohjIGzxYorAsx//z8ZHdJWgnNSQ2oQV4l43/iMlMZ8iIZa6+spwQJEhYkkDAnAaJA0UT3Jq85ptHNiPL571xvLwelVqZeqdkBhKLr+nm7UpIaS2AyMsbI5Dikc0wp4Ci6sTehksQ+JNwBlUxGlCQRhERbZJincp7IlSuR4uIoW6dwhmLLreJjE1nx3UlUpvZ0mzQdCzt7Y4eUopZDRohuJ0F4TSQ1H0plBq2mGzuKfCe+xVQ23dicYpVGui7BC5BXlCMzzZq5rTInXReVooUCRXMFqr4q5K5ypFcS2pNaFDUVyNQyNOc0xP8cT8KUBBJWJiA91yU3JnLdGiJvJzUaSWIrEmbAu9QALWQyymQwAQpAhgQMRaIvEuFAn9dVmSAkVMCbqzFpU5gZ9XLdKqo0L4ZcnrfnDifGa1kx7iSSZEnApBlYOToZOyQD5Rs3x7WMl6jSCMJrIqn5UEpTKO0ndvLOTqWaIbcuzK/nf03xbs0FXaKgqJS13SMySxmKSgoUlRXIrHVv7pqjGjAFeWU52lAtmm0a5GXkKDspIQoSN+u6m9SKlLufTqKr0jQBLLNoIbgiMhk/I2MQMgYgYzYySstkREoSW4H2yDCVydgjSfSStHRA4jtJS+gbyc3TmbNQqmSU9HHOkhhzEq1GYuUPJ4mLURHw40zsCuWMCpVdIRca9uqfKTtwjxw5Ek9PT4MvLy8v6tevz+jRo3nyJPmHh8zi6enJ559/nmXnF/KX3LkYQ06T1A0VWFksypcN4ltMZdvNLTx+9TjZfVKihHRbQuYke6d1aTKD9EJCe0aLooluET7NOQ2Yg6KxAplcBhpIXJ+I9qkWtW3K3U/7X0+tbpbFq6fZymQ0feu2P5GwQDeV/J4kMff1lO7KyFiKxCwkJiXFlZhI9N7d+LRswLUTWfeGl2NoYc3E07T/uhLdJs5gzfff8Oz+XaOFI1codevpyDP3c+moUaOws9N1p8fHx3P79m3Wrl3LyZMn2bhxI5aWlpl6PYCpU6fi4uKS6ecV8idRqcksagvosChPLLOeo7k3Qm7jyq/nUq7SSPckSAB56ez/09Yc1oAVyCvori2FS8hsZbqEBpDZv/7biHyjUvNGUhMvSZwDigEu2fx39EyS2Al0QoZKJmMPEtbAJ8ioIpPRHRmXgLtvVGseT5iIlYMprmXyz5iyP6f+Q+j9OLpOmEaBEiWNFkedLt2xKVAw03fgbty4Mf7+/vj7+9OxY0e+/vprJk+ezL179wgKCsrUayXx9/fHx8cnS84t5D8iqcksShMoWgsajjV2JHlafKvpbL+1nYevHqZ4v/RA96YrK5LNVZoICe15LYq6CmSK19fWvv5KaqP5LyEwUZgkW4r/ErpZSbWMsMb9WiTsgUavv38IFAAUr5OrpA6XN2tj2shIYv85Q9WWbtkVZo6w+edzhFx9Sefv/4eLZ9lsv36Rct5UbtkWlTp79naqXr06ADdu3MiW6wnChxBJTWZSmULtYWLTy6zi3hC5bRHmnZuXahPtE12ikNbCeVlBc0gDdiAv999TSuYgQwqTkGJfL8iXlHDZy1DJVck2s7z6+t8y2RLxfx5JEnuBLshQvk5itMCb0SUtyfP2o/pk3DgKlrDBwSXzuyVysh2/XuTmP+F0GDuRYt4Vs+26Vo5O+H/5baZXaNLy8KHuA0SxYrqFApLG38TFxRm0mzZtGp6enoSEhOhv27t3Lx07dqRy5cpUqlSJrl27smfPHoPj3h5T4+vry8iRI9mxYwf+/v54e3vTsGFD5syZg/atDwK3bt1i2LBhVKtWjfLly9OuXTu2b9+e7GeYP38+LVq0oHz58lSvXp0hQ4Zw7do1gzYZiVXI+URSk9kUami/EBxLGTuSPCe+5XR23t5JSFRI6o0iACXpznpK/CuRxL8yZzNJKVRCe+l1leaN2UDy8nJIhMQViSTuTkSzT4OsuAyZowy1Qp2sUnPr9XiatBbOywqrkSgE1HvjtsLAA+DV6+6ma2/c/qb427eJu3WLKi3y5tYJadm75DKX/37KRyPH4V6lWpZfT2liQvvRP6BUq5FlUffkixcvCA8PJzw8nKdPn3LixAlGjx6Ni4sL7du3f6dznTp1imHDhqFSqRgxYgRffvkl0dHRDBkyhL///jvNY48fP87YsWNp0KABY8aMoUCBAgQGBrJq1Sp9m+vXr9OpUycuXrxInz59+PLLL7GwsODzzz9nyZIl+na//fYbM2bMoHz58owdO5bevXtz+vRpunfvTkRExAfHKuQsYqBwVlCoofsGmFcL4tJasF7IsOL1kdsVY+7BIWk2k2IkyEBVXnv4dUJRL+12GZH4VyIyJxnyMoafEeQF5CjbKkncn4j0j4SsuAxlS91TTi1Xg9awUvMY3YLE6c16WiXpYu8q+/DPJPcliUPAF8j0XU0AvsjYjsS3SJSVJPag2yvKNYXYnk6ahPvChVjamRAVEZfs/rzsr1XXSIjV4PfFaHbMncHVo39l2bVaDv0SG6cCKJRZ97L90UcfJbtNoVDwyy+/YG39bgsQbtu2jcTERObMmYO9vW6Nn5YtW9KlSxeuXr1KzZo1Uz324cOHrF27lgoVKgDg5+dHnTp12LJlCwEBAQBMmDABS0tLgoKC9LH16NGDYcOGMWPGDNq0aYO9vT2bNm3Cw8OD//3vf/rzlylThqlTp3L9+nWqVav2QbEKOYtIarKCXAEWTtBpKSxvB++4w7KQXELrGey+s4uQl2lUaQD1sIxNb1WPTr+d0k8JfumfS9U+9TVC5GXkqMskv5ZKoULSGFZqXgIZWZB/zet/u2agbXpWIFEUqP3W7SVkMr6UYCkSu9AlNINTGesTfewY8aHPqNi4CIfX5b9xF39vvEl8bCItBn+BSm3CxQPBmX6N6h91oniFKpkyfTstP/30E46OjgAkJCTw5MkT1q9fz4ABA5gyZQpt27bN8LkKFiwI6JKPPn364OXlhZ2dHbt2vb3TWHIuLi76hAbAwsKCYsWK8ezZMwAiIiI4ceIEnTp1IjExkfDwcH3bpk2bsnv3bo4cOYKfnx8FCxbk77//Zs6cObRt2xZXV1fq169P/fr1MyVWIWcRSU1WUZnqBg43GAP7Jxo7mtytWB1kdm78cvAzY0eSaVRyVbJKzeIMVl6CMtDuM5mcjDxaI9M4Vy2ZLMODlsNn/0y58T9wYusd4mMyp1svNzm94y7xsRoa9x2MytSUf3ZuybRzl6hclZodumVphSZJ5cqVcXU13BPe398fPz8/Jk+eTPPmGV+Pq3v37hw9epTt27ezfft2nJycqFevHv7+/vrBx6lJqpa8Sa1W68fU3L9/H0mSWLNmDWvWrEnWFv4bCzRy5Ej69+9PYGAggYGBlCxZkgYNGtChQweKFy/+wbEKOYtIarKSyhTqfAYPz8DV5IPXhIxJ8JvJnrvB3Ht5z9ihZBq1Qp2sUpObPd+wAcdvRlGuXmH+2ZV3fk/v4sL+EBJjNdTr/glqMzOOb1z7wee0d3Gl9fCR2ZLQpMbExISGDRuyZMkSbt26lWo7zVsD3y0sLFi6dCkXLlxg7969HD58mI0bN/Lnn38yZMgQhg4dmuq50lt/J+lanTt3TjXRKlJEt+mqh4cHu3bt4ujRoxw4cIDDhw/z+++/s3TpUubPn0/t2rU/KFYhZxEDhbOaQq1bv8bRw9iR5E5FayCzL8EvZ38xdiSZKqXZT7nd85XLqNy0GHJl/l2r6fLfj9iz+Ao12nWhbtePP+hcJuYWtB89wagJTZKkColcLtcnHPHx8QZtkrqGkty/f5/Tp0/j7e3N8OHDWb9+Pfv27cPNzY1FixYl2w/tXby5WF+tWrUMvooUKUJ0dDRmZmZotVquXLnC7du3qV+/PuPGjSM4OJgVK1YAsHTp0iyPVcheIqnJDgoVdN8IJjl3p9+cKsFvNvvu7ePOizvGDiVT6cbU5K2k5lngHBRyiVJVCxo7FKO6eSaUHfP/pVJLf3x7D3ivc8hkctqMGI25tU22Tt9OSUxMDHv37sXe3p6SJUvi5KTb/+rff//Vt3n+/DmHDx82OG7WrFn07t2bp0+f6m8rVKgQzs7OyOXyD5rB5ezsjLe3N1u2bOH+/fv62yVJYsKECQwePJiIiAhkMhn9+/dn5MiRBpWkcuXKoVKp9AlaVsYqZC/jfwTID+RKsHSCjktgRXsxcDijXKshc3BnzpGvjB1JplPJ8l5Sg1bLq53b8GnZjCvHHkE+/jO/dymcrYEXaD2kCWpTU3b9OhtJynh3Y72AXhQuVTrLBwa/bc+ePfptEiRJIiwsjD///JMHDx4wadIklEolrVq1Yv78+Xz11Vd88sknSJLE6tWrsbGxMRiw27t3b3bv3k337t3p1KkT1tbWHDt2jBMnTjBgwPsle2/69ttv6dmzJx06dCAgIAAnJyf27NnD4cOH6dq1Kx4euup4v379+OGHH+jduzfNmjVDkiQ2bdpEbGws3bt3z5ZYhewjkprsojSFYrWhwWjYP8nY0eQKCW1mc/D+AW4/v23sUDKdSpH3up8AnkychPvfbShWzoG7F8OMHY5RPbz+nI3Tz9P2izqoTM3YNnsq2gz8zkvXrk+lFn4olNm/8/bkyZP1/5fL5VhbW1OmTBm++OILGjduDECpUqUIDAxkzpw5TJs2DWdnZ7p06YKzszPffPON/ngvLy8WL17ML7/8wsKFC4mKisLNzY2xY8fqk4kPUaFCBdasWUNgYCDLly8nLi6OokWLMmbMGP20b4CAgABMTU1ZsWIFM2bMQKvV4uXlxYIFC6hTp062xCpkH5kkOguzlyYetgyHsyuMHUnO5lqVxE920n5ze249T31wYm41uOJgets051bzFsYOJdO5/r6AaBdv1v/vtLFDyRHsCpnT/quKPLh6kc3TJqJJTH12WCEPTzqNm4JSlf0JjSDkBWJMTXZTqMFvFpRubexIcrSENrP5K+SvPJnQgG6gcJ7rfnrt8bjvcSxihXMxK2OHkiNEPIpm7Y9nKFyqHO1HT0CZyp5NDkWK0WHsRBRGHkMjCLmZSGqMQaGGjouheCYsZ5sXFa6EzLEUgf8EGjuSLKOUK/Nk9xNA4oMHxF27RpUWbsYOJcd48SyWVT+cxrGoO53GTUZtZmZwv41zATqPm4xSpUaWznRmQRBSJ549xqJQQ7d1ULiysSPJcRLbBHL4wWFuRObd1WlVchVSGt0Qud2TCeNx83bA2tHU2KHkGNHP41k57hTWTq50Gf8Tpha6TUAtbO3oPH4qajNzo890EoTcTiQ1xqRQw8ebxeaXbypYHpzL5OkqDegqNXm1+wkg9p+zxD96QqUmRY0dSo4SG53I8nEnMLVyouuk6dgXdqXz91Mwt7LOEevRCEJuJ5IaY5LLQWUOvXeArXjxB0j0n8vRh0e5FnEt/ca5mFKuhDxcqQF4NmMaZWoXxsRCvFm/KTFWy8rvTqJQ2tBr+i9YOTqhEAODBSFTiKTG2OQKMLWBPrvBxjX99nlZAS8oUJbZZ2YbO5Isp5Ll7e4ngJfbt5P48iXeDfL533VKZBDzUoNWK6FUZe9aNIKQl4mkJidQqMDcEfoEg1UhY0djNIn+czn26BhXI64aO5Qsp1Qo83xSA/B8ySIqNi6CQiVeapIolHJaD62AYxFLFEoxhkYQMpN4pckpFCqwcIRP94BlAWNHk/2cy0JBr3xRpQFQyvJ+9xNA2PzfkGk1lK6Rv7dOSCJXymg5qDwF3KxRqkRCIwiZTSQ1OYlCDRbOuoqNhZOxo8lWGv9fOPHoBJfDLxs7lGyhlOePSg1A1JZN+LRwI79vn6NUyWkzrCKFS9qgVIuERhCywjslNSNHjsTT05Pffvst1Ta1a9emR48eHxxYdgoMDMTT05ObN28aOxRQqnVdUH2CdZWb/MCpNFIhb34+87OxI8k2CrkCKSF/JDVPpkzB1EKJW4V88vecApWpgrYjKlGguLVIaAQhC71XpWbu3Lncu3cvs2MxmiZNmjB16lQKFMgh3T5KNVgXhr77wbaYsaPJchr/uZx6fIp/w/9Nv3EeoZTln0oNsbFEHzlE1ZbFjR2JUZiYK2n/VRUcXKxEl5MgZLH3SmpiY2MZN25cZsdiNKVLl8bf3x9LS0tjh/IfpYmuYtP/LyhcydjRZB0HD7SFK/DzP/mnSgO6Sg2JCcYOI9s8+f577AtbULCEtbFDyVZmVio6fOODrbM5SjFYWhCy3Hs9yxo3bszRo0cJCgrK5HAEAwoVmFjDJzvBo4mxo8kSmrbz+OfJP1x8dtHYoWQrhSz/dD8BJD59Suy/l/DJR9UaSzsTOo6sipWDqZj9JQjZ5L2eaaNHj8ba2popU6YQERGRbvsnT54watQoatWqhZeXFy1atGDBggVo0llRNSQkBE9PT/78809mzpxJ3bp1qVChAj169OD27duEhIQwYMAAKlWqRL169ZgxY0ayc65bt44uXbpQuXJlvLy8aNSoEf/73/+Ii4vTt0lpTM2LFy+YOHEi9evX1x83ffp0YmJiksW3cOFCevbsiZeXF35+fun+XO9ELgelKXRZCZU/zrzz5gQO7mhdKuarsTRJFHIFUj6q1ICuWlOkjB02zmbpN87l7Aqa03GkD+Y2ahRKkdAIQnZ5r2ebo6MjX331FREREUyZMiXNtg8fPqR9+/Zs374df39/Ro0ahZubG9OmTeOLL77I0PVmz57Nvn37GDBgAD169OD06dMMGTKEnj17Ymdnx8iRIylRogTz58/nzz//1B8XGBjI2LFjKVSoEF9//TVfffUVhQoVYtGiRfz000+pXu/Fixd07dqVlStX0qBBA0aPHk2VKlX47bff+OSTT4iPjzdoP2fOHKysrBg7diwdO3bMml12FWpoOQ0afZf55zYSjf88zj09x/ln540dSrbLb5UagLh//yU+5AFVmuXtcWKFS9nScVRVTK1EQiMI2e291y/v2LEjmzZtIigoiLZt21KzZs0U202fPp3Q0FBWrFiBj48PAAEBAYwfP56VK1eyZ88eGjdunOa1EhISWLVqlX7My71799i1axc9evRg7NixAPj5+VGtWjUOHTpEp06dSEhIYOnSpTRs2JCZM2fqzxUQEECjRo04dOhQqtf7/fffuXHjBj/99BNt2rQBoFu3bnh4eDBt2jRWrVrFxx//VzWxs7Nj9uzZWZPMvEmphhqDdYOHgwaAJhd/0rcrjtalMrN29TZ2JEahGyici39/7yl06v8o9fNs/g66SczLvPfzl6peEN8epUUyIwhG8t7PPJlMxg8//IBKpWLcuHEG3TlJNBoN+/bto1q1avqEJsmgQYMA2LNnT7rXql27tsEg3uLFdf3yTZr8N87E3NwcBwcHQkNDAVCpVBw5coRp06YZnCssLAxra2tevXqV6vX27NmDq6srfn5+Brd//PHHWFpaJovZx8cn6xOaJCpTKN0Kem7WjbfJpbQfzePCswucCz1n7FCMQiGTQ2Le3dAyNVF795IY+ZzyDYsYO5RMV7V1cZHQCIKRfdCzz93dnf79+3P37l3mzp2b7P6IiAiio6MpUaJEsvucnJywtrbmwYMH6V7H0dFwfQvl691s375doVCg1Wr136vVao4fP87IkSPp3LkzNWvWpF69ely7dg1JklK9XkhICMWLF0f21mpharWaIkWKJIvZwcEh3Z8hU6nMwKWybsp3btxWwc4NjYsPs87MMnYkRqNEjqTJX91PSSJ/n095X1eU6rzx5i9XyGjySVkqNysqEhpBMLIPfgb279+fEiVKsGjRIq5dM9xZOSlxSC2B0Gq1qDKwO+37VEEkSWLo0KEMGjSIW7du4eXlxfDhw9myZUuyqlFKx75LzNlWpXmT0hTsisKAw7otBnIRbdtfuBR2kX+e/mPsUIxGgQIpH1ZqAMKXLIXEBMrUKmzsUD6YibmStl9UokRFJ7EGjSDkAO89piaJWq3mhx9+oEePHnz33XcGlRJ7e3vMzc25fft2suOePn1KVFQUBQtmzZ4wp06dIjg4mE8++YRvvvnG4L5nz56leayrqyu3b99GkiSDak18fDwhISF4e3tnSczvTKEGMzv4dC+s6gy3/zJ2ROmzKYLGtRqzgvsaOxKjUsrkkJmz5HKZlxvWUcW/Mxf/eoCkTb1qmpM5uFjQemhFTC2UIqERhBwiU2qlVatWpX379vzzzz+Eh4frb1coFDRo0IATJ05w6tQpg2N+/fVXAHx9fTMjhGQiIyMBKFmypMHtBw4c4M6dOySmsZpro0aNePDgAVu2bDG4fdmyZbx69YqGDRtmerzvTa4AtTl0/xNqDDJ2NOnStv2Fy+GXOf3ktLFDMSp5Pu5+Ang6bTpqEznulXLnHmelqhWg48iqmFurREIjCDnIB1dqknz99dfs37+fsLAwg9tHjBjBsWPH6NOnD926dcPV1ZUjR46wd+9eGjVqRKNGjTIrBAOVK1fG2tqan376iadPn+Lg4MC5c+cICgrCxMSE6OjoZJWYJP369SM4OJiRI0dy+vRpPD09OX/+PEFBQXh7e9OtW7csifmDKNTQaJxukb4/+0B0ePrHZDdrFxKL1mDWngHGjsToFMjz3ZRuA/HxxBzcR9VWtblx+qmxo8kwuVxGnU4elK1TWIyfEYQcKNOelTY2NowePTrZ7a6urqxfv56mTZuyceNGpkyZwr179xg5ciSBgYEpJhWZwcHBgd9++w13d3cWLFjAtGnTuHz5MmPHjuXrr78mPj6e06dTrhZYW1uzevVqOnfuzL59+/jxxx85c+YMAwcOZPny5ajV6iyJ+YOpTKFYbRh8CorVMnY0yWjb/sK1iGucfHzS2KEYnTyfdz8BPBr/AzZOZhQuZWvsUDLE3FpNu6+rUKZWIZHQCEIOJZPSmgaUT8yePZu5c+eyc+dO/XTxXE2SQJsIh6bDwf+BpE3/mKxmVYj44ecZtGcQxx8fN3Y0RnewzW7i5y4kYvkKY4diVEVXrCDCwo1Ns84aO5Q0FSxhTavBFVCZKERCIwg5mHh2Ai9fvgR0a93kCTKZbt+o2sPhk11glTWDsd+Ftu08bkTeEAnNazKZLN/OfnrT43HjKOxhi30hC2OHkiKZDKq0KEbbLypjYq4UCY0g5HD5+hl67do15syZw7Zt23BwcMDZ2dnYIWUulSkUrgiDTxp3Q0zLAiS61WLW6VnGiyGHkSPL991PAPE3bhB35y6Vm+e8rRPMbdR89GVlfFq4oVDKs6yrXBCEzJOvk5p//vmH33//HWtra6ZNm5Y3X7QUajC11m2I2WyyroKTzbRt53Er8hZ/P/o726+dU+X32U9vCp08CQ8fZyxsc85YteIVHAkYXwPnYtYo1WJ2kyDkFpk2+yk36ty5M507dzZ2GNlDoQaf3lCiPqzuBhF3sue6Fk4kFq/DzH3Dsud6uYTofvrPq8NHSAgLp0KjIhz986ZRY1GZKKjXpRQeVQuIriZByIXEszY/UZmBYykYdAzKtcuWS0r+c7nz/C5HHx7NluvlFrruJ1GpSRL+y1y867uiMjVeVaRgCWu6ja9BSR9nkdAIQi4lnrn5jUKlS24+mg8dloBlFo4jMncgvkSDfL3HU2pEpcZQ5OrVaGNjKVcn+7dOUJkoqNe1FG1HVMbCWi0W0xOEXEwkNfmVUg2lW8Jn56BqX5Bl/p+C5D+X+y/vcejBoUw/d24nEwOFk3mxZhWVmxVDLs++sW1Fy9nTfUJNytQshEIhR5aN1xYEIfOJpCY/U5qAyhyaToCBf+t2/s4sZvbEu/syU1RpUiSTiYHCbwv9+WeUSihZtUCWX8vUUkWzvuVoObA85tZqMRhYEPIIkdQIr8faeMAnu6FNIJjafvApJf85hETd56+QXLDJphGI7qcUJCYSvWcXVVu5ZellSlUrQI+JNXEr7yTGzghCHiOe0YKOXKEbb1O+Ewy/ABW6vv+5zOyJL9mIWWd+zrz48hjR/ZSyxxMmYmlrQpEy9pl+btsC5rT9ohINe5RGbapEqcq6l7/bt2/j6elJmTJlePLkyTsff+/evSyIKuscP34cT09PVq1alW7bV69eERgYiJ+fHxUrVqRy5cr4+/szZ84cXr16laXXFvI+kdQIhpSmunVtWs+CvvvBucy7n6PNbB5EPeTA/QOZHFweIpOJ7qcUaF+8IPbMyUyt1piYK6nb2YOu31WjoLtNtgwE3rRpE+bm5mi1WjZs2PBOx/bp04eZM2dmUWTGFRUVRbdu3Vi4cCFVqlTh66+/Zvjw4ZQsWZK5c+fSpUsX/QrvGeXu7s7UqVOpWbNmFkUt5Cb5ep0aIQ0qUyhUHvofghO/wf5JEJ+BT1GmtsR5NOHnv77J+hhzMdH9lLrH476nxPbtOBax5Nn9qPc+j0wGZesUpla7ksiVMuSK7PkMJ0kSW7ZsoUaNGjx48ICNGzcycODADB9/+PBhWrZsmYURGs/KlSu5cuUKK1aswMfHx+C+GjVqMHbsWBYtWsRnn32W4XM6Ojri7++f2aEKuZSo1Aipkyt1XVI+n8Bn56FMm/SP8fuZR68es+/+vqyPLxeTyUT3U2oS7t4l7sZNqrRwe+9zuJSypdv3NajT0QO1mTJbp2mfPn2akJAQqlatSsOGDbl79y4nTpzItuvnZKdPn8bc3DxZQgPQvn17rK2tOXPmjBEiE/IKkdQI6VOZgYUjtP9dt0Gma9WU25lYE+fZnJ/FWJr0yWRIiaL7KTVPJk6gRAUnrOxN3+k42wLmtBpcHr9hFbFxMjPKrKbNmzcDuspD48aNAVi/fr1Bm8DAQDw9PTl48CD16tWjYsWKzJs3D09PTwC2b9+Op6cnx4/rNoA9ffo0PXr0oFq1alSoUIF27dolO2dq1q1bR5cuXahcuTJeXl40atSI//3vf8TFxSWLJyQkhCFDhlClShUqV67MkCFDCAkJMThfZGQk3333HbVr16ZSpUoMGzaM0NDQDMViaWlJdHQ0GzduTHafXC7nyJEjLF261OD2sLAwvvvuO+rVq0eFChXw8/Nj7dq1+vtTGlMjSRJLly6lVatWeHt7U7t2bcaMGcOzZ88Mzu3p6UlgYCArVqygWbNmeHl50axZM1asWJEsvkuXLjFw4ECqV6+Oj48PPXr0SJasPnnyhFGjRlGrVi28vLxo3bp1iucSso7ofhIyTmmiS2h674C7RyH4W3h07r/7/X7mSfRT9t7ba7wYcwmZSGrSFHPyJPFPQ6nYpAiH1lxPt721oynV25SgZBVnJAmjzWqKj49n586duLq6UrZsWQBcXFzYvXs33333HZaWlgbtv/76a3r27IlKpaJKlSpMnTqVr7/+mooVK9KtWzfc3d25c+cOffv2xcXFhcGDB2NiYsK2bdsYM2YMAB06dEg1nsDAQObMmUPLli1p27YtcXFxBAcHs2jRIhISEhg7dqxB+549e1KuXDm++uorbty4wYoVK3j8+LE+gYqPj6dnz57cvHmTbt26UbRoUXbs2MG3336bocenQ4cObNu2jZEjR7JkyRIaNWpE9erVqVSpEmq1GrXacP+v58+f06FDB0JDQ+natSvu7u4cOHCAb7/9lufPn9O3b98Ur/Ptt9+yfv16/Pz86N69Ow8ePGDFihUcO3aM9evXY2dnp2+7ceNG4uLiCAgIwMbGhpUrV/LDDz/g6upK/fr1AThz5gy9evXC2tqanj17Ymtry+rVq/nkk09YsmQJPj4+hIaG0qlTJ+Lj4+natSsODg4cOXKEH374gdu3byd7rIWsIZIa4d3IFYACitWGT/fCzX2wZxxE3ifOswU/HxmLhGTsKHM+mVx0P6Uj7OeZlJ0wiRNbbhMXnXICaGFrQjW/4pSuURBJItvGzaTmwIEDPH/+nPbt2+tva9q0KYsXL2bbtm3J9prr0qULgwcP1n+fNHi2cOHC+nEiQUFBvHr1ih9//BFvb28A2rVrR5cuXbh5M/W9shISEli6dCkNGzY0GHgcEBBAo0aNOHQo+aKYdevWZfz48frvo6Ki2LhxI3fu3MHNzY0///yTq1ev8tNPP9Gmja47umvXrvTt25ejR9PfCqVmzZpMnTqVCRMmcOXKFa5cucLcuXMxMzOjXr16DBw4kDJl/pucsGDBAh4+fMiiRYuoXbs2oNuzr2fPnixYsICPP/442TVOnjzJunXrGDVqFL169dLf3qJFCzp27Mj8+fMZOXKk/vbQ0FB27dpF4cK61azr169Po0aN2Lx5sz6pmTJlCmZmZmzYsAFnZ90q7K1ataJp06b89ttv+Pj4MGPGDKKioti0aROurq76x/rHH39k6dKldOjQgdKlS6f7GAkfRnQ/Ce9H8Xq8jbsv9D8Mg4/zLDac4LvBxo4sVxCVmvS9CApC++oVXvVckt1nZqWiXudS9JhUk1LVCiBXyHPEmjNJXU/NmzfX35b0/5S6i2rUqJHuOQsWLAjA9OnTOXXqFBqNBrVazYYNG/jmm9QH5KtUKo4cOcK0adMMbg8LC8Pa2jrF6dNvD1BOSjCSum0OHDiAtbU1rVu31rdRKpV079493Z8jSZs2bTh48CDTp0+nTZs2ODk5ERMTw65du+jQoQM7duzQt92/fz8lS5bUJzSge+7873//Y+3atSiVyT+X79q1CwBfX1/Cw8P1X4UKFcLDw4P9+/cbtK9YsaI+oQFwdXXF2tpa/zOHhYVx7tw5WrZsqU9oAGxtbVmxYgUTJkxAq9USHBxMpUqVMDc3N7hu06ZN9Y+dkPVEpUb4MAoVABoLZwrI5cxqOIu5Z+dyLeKakQPL4eRyJFGpSdfz5X9QsXc//tlzD22ihIWtmopNiuFd3wVJklAo5JBDFgOOjIzkwIED2NvbY29vrx+L4uDggL29PefPn+f69et4eHjoj3F0dEz3vM2bN2f//v1s3bqVv//+G1tbW2rXrk2rVq1o1KhRmseq1WoOHz5McHAwt2/f5t69e4SHh6d6bQcHh2THA2he/62GhITg6uqKXG6YQLq7u6f7c7zJ3Nyc1q1b65OjK1eusHz5ctatW8f333+Pr68vJiYmPHjwwCChSfJmEvK2u3fvAtCkSZMU71epVAbf29snXxNJrVaj1WoBePDgAQBubm7J2iX9LsPCwnj58iWHDh1KdWr5w4cPU41ZyDwiqREyhUKpe/Gr51qPeq71OPHoBHPPzuX8s/NGjiyHkoldujPi2S+/YPvJp/i0cMPa0RQPnwJotVKOqMq8bceOHSQkJBAeHq4fIPy2P//806Dr4+3kICVKpZLp06czaNAggoODOXz4MLt372bbtm189NFHTJkyJcXjJEli6NChBAcHU6FCBby9vWnXrh2VKlVi/Pjx3LlzJ9kxMlnae1/JZDJiY2OT3Z6UAKTlyZMnLFu2jBo1alCnTh2D+0qXLs3EiRPRaDRs2LCBGzduUK5cOTQaTboxpRSLiYkJv/76a4bap/c7SPrZ0oojKenz9fWlR48eKbZ5s8ojZB2R1AiZSinX/UlVL1SdqoWqcivyFosuLmL33d0kasWbeBKZXC7WqckA8ypVkCLDqNK8mH7MjDyHVGbeltT1NH78+GRVkBcvXjBq1Cg2b97MiBEj3um8T5484datW9SsWRN3d3cGDBhAREQEgwcPZuPGjXz11VfJKiwAp06dIjg4mE8++SRZN9Xbs4AyytXVlWPHjhEfH28wqPf+/fvpHitJEgsWLODevXvJkpokSZUPU1PdrLfChQvrKy9vOnz4MFu2bElxPRsXFxcOHz5MyZIlkyUS+/btw9bWNt1Y35RUFUpplefFixcTEhLCqFGjMDMzIz4+nlq1ahm0CQ8P5+TJkxQrVuydriu8n5z3cUfIExRyBSq5Ck97T8bXGs+BTgcYVGEQDqbJX3zzG7Vc92Ygup9SoVJh3bo1JbZtpcjC31EVyDljZlJz//59zpw5Q7ly5ejSpQuNGzc2+GrXrh3Vq1cnLCws2ZiOt8nlcoPKx8qVK+nVqxeXL1/W32ZnZ0exYsWQyWSpVhoiIyMBKFmypMHtBw4c4M6dOyS+x5iupk2bEhMTw7Jly/S3SZJk8H1qChYsSLVq1dizZw/79iVfxyo6OprNmzfj7u5OiRIlAGjYsCHXrl3j1KlTBm2XLFlCcHBwil1oSV1yv/zyi8HtZ8+eZdCgQcmmjKfH2dmZcuXKsWPHDiIiIvS3v3jxgt9//507d+6gVCqpX78+R48e5ezZswbHz549m2HDhnHjxo13uq7wfkSlRshypkpTTJWm9PbqTd/yfdl7by9LLi3h4rOLxg7NKJKSGsRAYQOqokWx7dgBu06dkJmYIDd9tzVqjCmpSpPW9Opu3bpx/Phx/vzzT7y8vFJtZ29vz+nTp1mzZg1169alc+fOrF69mr59+9K1a1ecnZ25ePEiQUFBtG7d2mB68psqV66MtbU1P/30E0+fPsXBwYFz584RFBSEiYkJ0dHRSJL0Tt07bdu2ZcOGDfz000/cuXOH0qVLs3fvXoOEKy0//vgjAQEBDBo0iAYNGlCjRg2srKy4f/8+mzdvJiIigqVLl+pj6tevH7t376ZPnz4EBARQpEgRDh48yKFDh/j++++TTQEH3eylpk2bsmrVKh49ekS9evUICwtj+fLlWFtbv9NqxUlGjx5N7969ad++PV26dMHU1JR169bx8uVLfeXtyy+/5Pjx4/Tq1YuuXbvi5ubGsWPH2L59Ow0aNKBu3brvfF3h3YmkRsg2pkrdm1Sjoo3wLeLL7Re3WXxxMXvv7SUmMcbI0WUftVJUapLI1GqsmjbBvnt3TL29kRITkZuYGDusd7Z582ZMTU3x8/NLtU3jxo1xdnbm0KFDaY6v+PLLL5k+fToTJ05kwoQJtG3blj/++IPAwEBWrVpFZGSkfs2afv36pXoeBwcHfvvtN6ZNm8aCBQtQKpW4uroyduxYNBoNEyZM4PTp0ymu7psauVzOggULmD17Nlu3bmXz5s1UrVqVGTNmGEyfTk2RIkXYunUrixcv5uDBg8ydO5eYmBicnZ2pXbs2/fv310+HBl2Ct3r1ambOnMnGjRuJiYmhRIkSzJw5M82tJGbOnMmiRYsICgpi8uTJ2NraUqNGDT777DN9Fehd+Pj4sGLFCn7++WfmzZuHSqXC29ubKVOm6NcjKlKkCOvWrWP27Nls2rSJly9fUrhwYYYOHcqnn36aofFTwoeTSZIkFhURjCYmMQa5TM7ee3vZeH0jJx6fQCulP+gwNytkXojdHXdzpXIVpOhoY4djFCalPLDt0gXbtm1BJkNuZmbskARByANEpUYwKjOl7s2sWbFmNCraiOiEaIJuBLH55mZuRObNPmi1In92Pyns7LBq2gS7gABMSpRA0mqRp9B9IAiC8L5EpUbIceI18chlckJehrDu2jq2397Os5j3m62RE3nYerDBfwOXy3nl+VWFFY6OWDVujE1bf8y8vZHi40VVRhCELCOSGiFHi0mMwURhwrWIa+y8vZMDIQe4GZn60vC5QTmHcqxuvZrLpcuk3zgXUjo7YdWkCTZt22JatixSXBxyc3NjhyUIQj4gup+EHC2pe6q0fWncrN0YUmkIEbERBN8NZt+9fZx+cppEKXd146jlaqQMLFaWm6iLF8eyXj1s/Ntg4ulpUJGRiYRGEIRsIpIaIddImj3lZO5EJ89OtPdojxYtRx8cJfhuMEcfHiUiLiKdsxifWqGGXJ7UKBwcsKhZA8v69bGoUweFtbVhIiO6mARBMAKR1Ai5klKu1K9e7FvUl5qFa2KmNONB1AMOPzjMsUfHOPXkFM/jnhs50uRUClWum84tMzXF3McHizp1sGrYAFWRIkixschMTZG9nqoqEhlBEIxNJDVCrieTyTBX6bo4XK1c6ViqI23c22CmNONh1EOOPz7Oyccn+efpPzyIemDkaMFEbpLjKzVKZyfMKlTErFJFzGvUwLRUKaSEBGRKJbLXGwKKbiVBEHIakdQIeY5CrsBcrnvDdbFyoa1lW5q7NcdUaUpUQhTXw69z7tk5roRf4Wr4Ve6+uItGyr7KSU6r1ChsbTH1KodpuXKYV66Mqbc3CltbtLGxyFWq/5IYpXi5EAQhZxOvUkKeJ5fJ9ZUca7U1VQpWoYJzBeI0cZgoTJCQuP/iPheeXeDfsH+5GnGVW5G3smx8jkquMkqlRlmgAGo3N9TFi2PiXgLT0qVRu7ujtLdHGxMDcrnBar4KUYkRBCGXEUmNkC+9OSYHoIRtCYrbFKdpsabIZDJMlabEa+IJjQkl5GUIt57f4v7L+zyIesCDlw94EPWAqISo97q2WqHOkkqN3MYGpaMjSicnlE5OqIsVxcSzNCYeJVEVKoRMrUaKjQVJQmZigkzx33bXYu0YQRDyApHUCMJrMpkMM9V/b+5qhRoXSxdcLF2oWrAq8Zp4tJIWpVyJWqEmJjGGF3EveBH/gsi4SMJiwgiLCSMyLpLIuEiexz/nedxzXsa/JE4TR4ImgQRtAvam9oCu2wfQTe/WanWVElNTZGZmyE1NkZuZGf7f1BS5mSkKW1uUBQqgcnFB5eyMwsEBhbU1MqUSKTERKT5et1GhSpVsxV4xmFcQhLxMLL4nCJlIkiQStAlotBq0aJEhQy6TJ/uSNBqDSonBORITdYmORgOSxJtPUZlcDgqF2F5AEAQhBSKpEQRBEAQhTxB7oQuCIAiCkCeIpEYQBEEQhDxBJDWvxcfH88cff9C5c2d8fHyoVKkSbdq0Yc6cOYSHh6d4TEJCAo8ePdJ/v2HDBjw9Pfnrr7+yK+xkJEliw4YNdOvWDR8fH8qXL0+TJk0YN24cDx6838Jznp6efP7555kcqSAIgiBkLpHUAE+fPqVjx478+OOP2NnZ8dlnn/Hll1/i5eXFb7/9Rps2bTh37pzBMQ8ePMDPz48DBw4YJ+hUjB49mtGjR2Nvb8+QIUMYM2YMDRo0YMuWLfj5+fHvv/++8zmnTp1KQEBAFkQr5BaBgYF4enqm+5VVcnpiHRISgqenJ9OmTTN2KIKQr+X7Kd0JCQkMHjyYe/fusWDBAurWrWtwf9++fenTpw99+/Zl27ZtODk5AboXsdu3bxsj5FSdPXuWDRs2MGzYMAYPHmxwX8eOHenQoQOTJk1ixYoV73Ref3//zAxTyMUGDBhAiRIlsv26U6dOxcXFJduvm1H29vZMnTqVUqVKGTsUQcjX8n1SExQUxPnz5xk3blyyhAagePHi+krFjBkzmDx5shGizJjTp08DpPhzlCpVilq1anHkyBESEhJQvV76XhDeRa1atahevXq2XzenJ9bm5uY5PkZByA/yffdTUFAQ5ubmtG/fPtU2Pj4+VKhQgV27dhEXF8eGDRvo2bMnAN9//32ysntERASjRo2ievXqVKpUiV69enHlyhWDNpIksXTpUlq1aoW3tze1a9dmzJgxPHv2zKBdUkl72LBheHt706BBA54/T3nnaUtLSwDWrl1LYmJisvtnz57NhQsXDBKaxMRE5s+fT4sWLShfvjy+vr789NNPvHr1yiCGt0v/f/31F926daNixYpUrlyZvn37cunSJYM2PXr0oEePHhw7dozOnTtTvnx5ateuzaRJk4iNjTVoGxYWxnfffUe9evWoUKECfn5+rF271qBNfHw8gYGBNGnSBC8vLxo0aMCUKVOIinq/lX0FQRCEvCVfJzUajYbz589TtmxZTN7Y8yYlNWrU4NWrV1y+fJmqVasyYMAAANq1a8fUqVMN2o4bN46QkBCGDx9Ojx49OHPmDH369CE6Olrf5ttvv2Xy5MmULVuW0aNH89FHH7F9+3Y6d+5MRIThnkMrVqwgLCyMsWPH0qlTJ2xsbFKMsUmTJtja2rJu3Tp8fX2ZOHEie/bs0SdB6hQWbBs6dCgzZszAw8ODkSNH4uvry+LFixk+fHiqj0VQUBD9+vVDJpPxxRdf0K9fP+7cuUPXrl05c+aMQdvbt28zaNAgvL29GTt2LOXKleOPP/5g9uzZ+jbPnz+nQ4cObNiwgWbNmjFq1ChcXFz49ttvWbBgAQBarZaBAwcyf/58fQLo6+vL8uXL6dWrF/Hx8anGK2SvpPE3ISEhDBkyhCpVqlC5cmWGDBlCSEiIQdtXr17x448/UrduXSpUqMDHH3/M1atXKVu2LIGBgfp2byfWvr6+jBw5kh07duDv74+3tzcNGzZkzpw5aN/aV+vWrVsMGzaMatWqUb58edq1a8f27duTxf3kyRNGjRpFrVq18PLyonXr1sm6apMmA+zYsYNmzZrh7e3Nd999l+KYGk9PTwIDA1mxYgXNmjXDy8uLZs2apdj9e/ToUbp06UKlSpWoX78+c+fOZc6cOVk6TkkQ8qJ83f30/Plz4uPj9eNk0uLs7AzoBhVXrFiRWrVq8euvv1K+fPlkZedKlSqxcOFC5HJdzqhWqwkMDOTUqVPUq1ePkydPsm7dOkaNGkWvXr30x7Vo0YKOHTsyf/58Ro4cqb9dkiTmz5+vr8Skxt7enkWLFjFixAhu377NsmXLWLZsGXK5XF8xatq0qb79X3/9xb59+xgwYIDBG4a1tTVz587l/PnzlC9f3uAaUVFRTJgwgYYNGzJv3jz97d27d6dNmzZMnDiRDRs26G8PDQ1l5syZtGzZEoAOHTrQtGlTtmzZwtdffw3AggULePjwIYsWLaJ27doAdO7cmZ49e7JgwQI+/vhjtm/fzuHDh5kzZw5NmjTRn7927doMGjSINWvW0KNHjzQfH+HDvXz5MtXZgGZmZpi9sQ1Dz549KVeuHF999RU3btxgxYoVPH78mPXr1wO6RLVv3778888/dOzYkVKlSrFv3z569OiRLDFJyfHjxwkODqZ79+507dqVoKAgAgMDsbOz0w9sv379Ol27dsXa2po+ffpgZmZGcHAwn3/+OU+fPtU//0JDQ+nUqRPx8fF07doVBwcHjhw5wg8//MDt27cZO3aswbXHjBlD586dKViwIEWLFk01xo0bNxIXF0dAQAA2NjasXLmSH374AVdXV+rXrw/AwYMHGThwIG5ubgwbNoznz5+zaNEilGJXdEF4Z/n6WZO0mLIileXq35SRNklatWqlT2gAvL29AV1CBLBr1y5A92nzzTeIQoUK4eHhwf79+w2SmnLlyqWb0LzZdvv27fz999/s37+fo0ePcvPmTU6fPs3p06fp0aOH/gV6//79AHz88ccG5+jduzdNmzalePHiyc5/9OhRoqKiaNasWbI3t/r167Ny5UqePHlCgQIFAFCpVAZJiFwux9PTk3379ulv279/PyVLltQnNKDbh+l///sf8fHxKJVKdu7ciaWlJVWqVDG4bqVKlbCxsWH//v0iqckGbw9Af9OQIUMYOnSo/vu6desyfvx4/fdRUVFs3LiRO3fu4ObmxpYtWzh9+rRBch8QEMCgQYMM/j5S8/DhQ9auXUuFChUA8PPzo06dOmzZskWf1EyYMAFLS0uCgoKwtrYGdN2iw4YNY8aMGbRp0wZ7e3tmzJhBVFQUmzZtwtXVVR/Ljz/+yNKlS+nQoQOlS5fWX9vX15dvvvlG//3bFagkoaGh7Nq1i8KFCwO650ijRo3YvHmzPqmZOHEizs7OrF27Vv88b9SoER07dkz3MRAEwVC+Tmrs7e1RqVSEhYWl2zYpIUmq2KTF0dHR4HtTU1NAN9MK4O7duwAGb/ZvensQr4ODQ7rXfJNcLqd27dr6JOHx48ds2rSJefPmsWzZMtq0aUP58uV58OAB1tbW2NvbGxxvZWVl8AL+pqTY33xBf9vDhw/1SY2VlVWyn0etVht8En/w4IFBQpMk6Y0A4N69e0RFRVGzZs0Ur/m+a/AI7+abb75J9W+jSJEiBt8nVeeSlClTho0bN/Ls2TPc3NwIDg7G3Nycbt266dvIZDL69++foaTGxcVFn9AAWFhYUKxYMf24tIiICE6cOEGnTp1ITEw0SIabNm3K7t27OXLkCK1atSI4OJhKlSphbm6erN3SpUs5cOCAwc9do0aNdOMDqFixosHfsaurK9bW1voYr1y5wr179xg+fLjBB5ekcXaHDx/O0HUEQdDJ10mNTCajSpUqnD9/nri4uDTH1Zw8eRILC4tUX9Df9GaVJiVarRYTExN+/fXXDMWZ0SrRnDlzDErvSQoWLEj//v1xdnZm5MiRnD59mvLly6PRaJDJZBk695uxA3z33XcpVnIAgym/6T0WQIbi0Gg0uLi4MHHixBTvT29MlJA5ypUrl+HZT28n40ljujQaDaBLkAsXLpxsrJe7u3uGzv92Mp50jaS/0fv37yNJEmvWrGHNmjUpnuPhw4dERETw8uVLDh06lGrS/PDhQ4Pv3/7g8r4xJn1IcHNzS9bO3d1dJDWC8I7ydVID8NFHH3Hs2DFWrVplML7lTefPn+fkyZO0a9dOX3X5EC4uLhw+fJiSJUsmq/zs27cPW1vb9zrvpk2biImJoXPnzin2x3t4eAD/VY6S4oiIiMDOzk7fLjQ0lIkTJ9KlS5dkL/JJa4XY2NhQq1Ytg/vOnj1LVFTUOz9GhQsX1r+4v+nw4cNs2bKFzz77DFdXV86cOUPVqlWTVX62b9+e4puCYFzpJaoJCQkGY3CSZDRBTS9hTkqeOnfuTPPmzVNsU6RIEX07X1/fVLsw336eZiRZz0i7pFmKKQ3iF4m6ILy7fD37CXTrX/j4+DBjxgwOHjyY7P67d+8yfPhwbG1t+eKLL/S3J1VPMjKg8W2NGjUC4JdffjG4/ezZswwaNIilS5e+8zlB97OEhoYya9YsUtp8fc2aNSiVSho0aACg/3fVqlUG7TZu3MjOnTtTTE5q166NqakpCxcuNJhxFBkZybBhwxg1atQ7jT8CaNiwIdeuXePUqVMGty9ZsoTg4GAcHR3x9fUlOjqaJUuWGLTZvn07n3/+OVu3bn2nawrGV6xYMe7du6dPKpLcuXMnU87/5mJ9tWrVMvgqUqQI0dHRmJmZYW9vj5mZGfHx8cnalS5dmpcvX6aYfGWGpEHGKf3MKSX6giCkLd9XamQyGYGBgQwaNIj+/fvj6+tL7dq1UalUXLx4kU2bNmFlZcW8efMMZkklVTa2bduGWq3mo48+yvA169evT9OmTVm1ahWPHj2iXr16hIWFsXz5cqytrfnss8/e62fp168fJ0+eZMGCBRw9epQmTZrg7OxMeHg4e/bs4dy5c3z77bcUKlQI0CUTDRs25Oeff+bWrVtUqVKFa9eusXbtWlq1akWlSpWSXcPOzo4RI0YwadIk2rdvT9u2bVEoFKxevZqnT58yY8aMd5610a9fP3bv3k2fPn0ICAigSJEiHDx4kEOHDvH999+jVqvp2LEjmzdvZtq0aVy9ehUfHx/u3r3LihUrcHFxoU+fPu/1mAnG07RpUw4cOMDmzZsNnj/Lli3LlPM7Ozvj7e3Nli1b6Nu3r37MjyRJTJgwgYMHD7J161YcHR2pX78+u3fv5uzZs1SsWFF/jtmzZ7Nq1Sp+++23LFnRuFy5cri6uur3a0tKnu7evZvihyxBENKW75Ma0PV7//HHH2zZsoU///yTwMBA4uLiKFKkCH379tVP8XyTu7s7PXr0YMOGDfz444/vvMrqzJkzWbRoEUFBQUyePBlbW1tq1KjBZ5999t7L0KvVahYtWsT69evZtm0bf/zxBy9fvsTa2pqKFSuybNkyqlatqm8vk8mYPXs2v/76K5s3b9bP0hgyZEiaSULPnj0pVKgQCxcuJDAwEJVKRalSpRg1apR+Rse7sLe3Z/Xq1cycOZONGzcSExNDiRIlDKaCq9VqFi9ezLx589ixYwc7d+7E0dGR1q1bM3To0HceTC28n6NHj/L48eNU73+X50Hbtm1Zu3YtY8aM4fz585QsWZLDhw9z9OhRIP3uq4z49ttv6dmzJx06dCAgIAAnJyf27NnD4cOH6dq1q75L9ssvv+T48eP06tWLrl274ubmxrFjx9i+fTsNGjRIcZXuzCCXyxkzZgyDBw+mU6dOtG/fnqioKJYvX54l1xOEvE4mpdRPIQiC8IbAwEDmzJmTbru5c+dy+fJl5syZw/bt2w0G/a5atYrvv/+eP/74Q5/8PH/+nOnTp7N7926io6OpUqUKAQEBDB48mBEjRtCvXz9At5Bdy5YtmTlzJqAb/+Lo6Jhs1elOnTrx7Nkzg9lTV65cITAwkJMnTxIXF0fRokXp2LEjAQEBBl2l9+/fZ/bs2Rw5coSXL19SuHBh/Pz8+PTTT/VdsRs2bGDUqFEsWLCAevXq6Y8NCQmhUaNG9O3bly+//DLFmJPUrl2bEiVKGFSk9u3bx5w5c7h+/Tr29vYEBARw+fJl9uzZw4ULF9J93AVB0BFJjSAIRhEZGYm5uXmyQbLnzp2jU6dOTJo0iQ4dOhgpuuyh1WqJiIhIsdL46aefcuPGDQ4cOJD9gQlCLpXvBwoLgmAcK1asoGLFiskGxCZtYfD2atZ5kSRJ1K9fP9m6T6GhoZw6dSpfPAaCkJnEmBpBEIyiRYsW/Prrr/Tt25dOnTphbW3NmTNnCAoK4qOPPqJUqVLGDjHLKRQKWrduTVBQEAqFgkqVKhEREcHatWuRyWQMGTLE2CEKQq4iup8EQTCa8+fP88svv3D+/HmioqIoWrQo7dq1o1evXhleCya3i4uLY/HixWzatImHDx9iZmZGtWrVGDJkSL5I7AQhM4mkRhAEQRCEPCF/fBQSBEEQBCHPE0mNIAiCIAh5gkhqBEEQBEHIE0RSIwiCIAhCniCSGkEQBEEQ8gSR1AiCIAiCkCeIpEYQBEEQhDxBJDWCIAiCIOQJIqkRBEEQBCFP+D9a8j44Flu1VQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1101,7 +1767,7 @@ }, { "cell_type": "code", - "execution_count": 222, + "execution_count": 861, "metadata": {}, "outputs": [ { @@ -1110,7 +1776,7 @@ "0" ] }, - "execution_count": 222, + "execution_count": 861, "metadata": {}, "output_type": "execute_result" } @@ -1121,7 +1787,7 @@ }, { "cell_type": "code", - "execution_count": 223, + "execution_count": 862, "metadata": {}, "outputs": [], "source": [ @@ -1130,7 +1796,7 @@ }, { "cell_type": "code", - "execution_count": 224, + "execution_count": 863, "metadata": {}, "outputs": [ { @@ -1139,7 +1805,7 @@ "0" ] }, - "execution_count": 224, + "execution_count": 863, "metadata": {}, "output_type": "execute_result" } @@ -1157,20 +1823,20 @@ }, { "cell_type": "code", - "execution_count": 225, + "execution_count": 864, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "JobSearchStatus\n", - "I’m not actively looking, but I am open to new opportunities 47556\n", - "I am not interested in new job opportunities 19296\n", - "I am actively looking for a job 12636\n", + "I‚Äôm not actively looking, but I am open to new opportunities 54\n", + "I am not interested in new job opportunities 18\n", + "I am actively looking for a job 11\n", "Name: count, dtype: int64" ] }, - "execution_count": 225, + "execution_count": 864, "metadata": {}, "output_type": "execute_result" } @@ -1181,7 +1847,7 @@ }, { "cell_type": "code", - "execution_count": 226, + "execution_count": 865, "metadata": {}, "outputs": [], "source": [ @@ -1190,7 +1856,7 @@ }, { "cell_type": "code", - "execution_count": 227, + "execution_count": 866, "metadata": {}, "outputs": [], "source": [ @@ -1214,19 +1880,20 @@ }, { "cell_type": "code", - "execution_count": 228, + "execution_count": 867, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "JobSearchStatus\n", - "Not seeking 66852\n", - "Seeking 12636\n", + "nan 54\n", + "Not seeking 18\n", + "Seeking 11\n", "Name: count, dtype: int64" ] }, - "execution_count": 228, + "execution_count": 867, "metadata": {}, "output_type": "execute_result" } @@ -1237,7 +1904,7 @@ }, { "cell_type": "code", - "execution_count": 229, + "execution_count": 868, "metadata": {}, "outputs": [ { @@ -1246,7 +1913,7 @@ "0" ] }, - "execution_count": 229, + "execution_count": 868, "metadata": {}, "output_type": "execute_result" } @@ -1264,23 +1931,19 @@ }, { "cell_type": "code", - "execution_count": 230, + "execution_count": 869, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Employment\n", - "Employed full-time 58551\n", - "Independent contractor, freelancer, or self-employed 7797\n", - "Not employed, but looking for work 4604\n", - "Employed part-time 4170\n", - "Not employed, and not looking for work 3210\n", - "Retired 138\n", + "Employed full-time 77\n", + "Employed part-time 6\n", "Name: count, dtype: int64" ] }, - "execution_count": 230, + "execution_count": 869, "metadata": {}, "output_type": "execute_result" } @@ -1291,16 +1954,16 @@ }, { "cell_type": "code", - "execution_count": 231, + "execution_count": 870, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1018" + "0" ] }, - "execution_count": 231, + "execution_count": 870, "metadata": {}, "output_type": "execute_result" } @@ -1311,7 +1974,7 @@ }, { "cell_type": "code", - "execution_count": 232, + "execution_count": 871, "metadata": {}, "outputs": [], "source": [ @@ -1320,7 +1983,7 @@ }, { "cell_type": "code", - "execution_count": 233, + "execution_count": 872, "metadata": {}, "outputs": [], "source": [ @@ -1344,7 +2007,7 @@ }, { "cell_type": "code", - "execution_count": 234, + "execution_count": 873, "metadata": {}, "outputs": [], "source": [ @@ -1353,12 +2016,12 @@ }, { "cell_type": "code", - "execution_count": 235, + "execution_count": 874, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAFgCAYAAABZtBU+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeLUlEQVR4nO3dd3gU5fbA8e/uJtn03kMgtARCj4A0qVKkCFcuWOkgIIr6E1G5Is0GdlQUvZcqNkQREWmCIkoLHRJKgFDTQ3rfnd8fkWhMSN1kdpPzeZ48sLOzM2dS9uy85bwaRVEUhBBC1GtatQMQQgihPkkGQgghJBkIIYSQZCCEEAJJBkIIIZBkIIQQAkkGQgghkGQghBACSQZCCCGQZGCWVq1ahUajue3XL7/8okpcGo2G+fPnq3JutURERDB//nyio6PL3besn5k5/PyEKIuV2gGI21u5ciUtWrQosT00NFSFaOqniIgIFixYQO/evQkKCipz33379hV7vGjRInbv3s2uXbuKbZefnzBHkgzMWOvWrenYsaPaYYgK6tKlS7HHXl5eaLXaEtuFMEfSTGThNBoNjz/+OCtXriQkJAQ7Ozs6duzI/v37URSFN954g8aNG+Po6Ejfvn2Jiooq9vrevXvTunVrfvvtN7p06YKdnR0BAQHMnTsXg8FQ7vlPnTrF8OHDcXNzw9bWlvbt27N69eqi5zMyMnB1dWXq1KklXhsdHY1Op+ONN94A/moe27VrF1OmTMHDwwNnZ2fGjh1LZmYmsbGxjB49GldXV/z8/Jg1axb5+fnFjpmXl8fLL79MixYt0Ov1eHl5MWHCBBISEortFxQUxNChQ9m6dSthYWHY2dnRokULVqxYUbTPqlWrGDVqFAB9+vQpauZZtWpVud+X0kyaNAl3d3eysrJKPNe3b19atWpV9PjWz3X58uUEBwej1+sJDQ3lyy+/LPHa2NhYpk6dSoMGDbCxsaFx48YsWLCAgoKCKsUp6ilFmJ2VK1cqgLJ//34lPz+/2FdBQUGxfQGlUaNGSrdu3ZRvv/1W+e6775Tg4GDF3d1defrpp5Xhw4crmzdvVtatW6f4+Pgobdu2VYxGY9Hre/XqpXh4eCj+/v7K0qVLlW3btikzZ85UAGXGjBklzjVv3ryix2fOnFGcnJyUpk2bKmvWrFF+/PFH5cEHH1QAZfHixUX7Pf3004qDg4OSkpJS7HjPPvusYmtrqyQmJha77saNGyvPPPOMsn37dmXx4sWKTqdTHnzwQSUsLEx5+eWXlR07dijPPfecAihvvfVW0fEMBoMyaNAgxcHBQVmwYIGyY8cO5b///a8SEBCghIaGKllZWUX7NmrUSGnQoIESGhqqrFmzRtm2bZsyatQoBVB+/fVXRVEUJT4+Xnn11VcVQPnwww+Vffv2Kfv27VPi4+Mr9HMcN26c4uDgUPT4+PHjCqB8+umnxfY7ffp00Tn+/r0ODAxUQkNDlS+++ELZtGmTMmjQIAVQ1q9fX7RfTEyMEhgYqDRq1EhZvny5snPnTmXRokWKXq9Xxo8fX6E4hVAURZFkYIZuvSmW9qXT6YrtCyi+vr5KRkZG0baNGzcqgNK+fftib/zvvvuuAignTpwo2tarVy8FUL7//vtix50yZYqi1WqVy5cvFzvX35PBAw88oOj1euXKlSvFXnvPPfco9vb2RW/+Fy5cULRarfLOO+8U7ZOdna14eHgoEyZMKHHdTzzxRLHjjRgxQgGUt99+u9j29u3bK2FhYUWPv/jiCwVQNmzYUGy/Q4cOKYCybNmyom2NGjVSbG1ti11fdna24u7urkydOrVo2/r16xVA2b17t1JZ/0wGilL4/W7fvn2xbdOnT1ecnZ2V9PT0om2AYmdnp8TGxhZtKygoUFq0aKE0a9asaNvUqVMVR0fHYtehKIry5ptvKoBy+vTpSsct6idpJjJja9as4dChQ8W+Dhw4UGK/Pn364ODgUPS4ZcuWANxzzz1oNJoS2y9fvlzs9U5OTtx7773Ftj300EMYjUb27Nlz2/h27dpFv379CAwMLLZ9/PjxZGVlFXWoNmnShKFDh7Js2TKUP5fP+Pzzz0lKSuLxxx8vcdyhQ4cWe3wr7iFDhpTY/vdr2bx5M66urgwbNoyCgoKir/bt2+Pr61tiFE/79u1p2LBh0WNbW1uCg4NLfH9M6cknn+TYsWP8/vvvAKSlpbF27VrGjRuHo6NjsX379euHj49P0WOdTsf9999PVFQU165dAwqvuU+fPvj7+xe75nvuuQeAX3/9tcauRdQt0oFsxlq2bFmhDmR3d/dij21sbMrcnpOTU2z7399wbvH19QUgKSnptudNSkrCz8+vxHZ/f/8Sr33yySfp168fO3bsYMCAAXz44Yd07dqVsLCwal3P368lLi6OlJSUov3/KTExsdhjDw+PEvvo9Xqys7NLfb0pDB8+nKCgID788EO6d+/OqlWryMzMZMaMGSX2vfUzKG1bUlISDRo0IC4ujh9++AFra+tSz/fPaxbidiQZCOLi4kpsi42NBUp/w7zFw8ODmJiYEttv3LgBgKenZ9G2vn370rp1az744AMcHR05cuQIn332WXVDL8bT0xMPDw+2bt1a6vNOTk4mPV9VaLVaZsyYwZw5c3jrrbdYtmwZ/fr1IyQkpMS+t34GpW279XPx9PSkbdu2vPLKK6We71ZiFqI8kgwE6enpbNq0qVhT0eeff45Wq6Vnz563fV2/fv347rvvuHHjRrE3nTVr1mBvb19iSOXMmTOZNm0aqamp+Pj4FI3UMZWhQ4fy5ZdfYjAYuPPOO01yTL1eD2DSu4XJkyczf/58Hn74Yc6ePcvixYtL3e/nn38mLi6u6M7NYDDw1Vdf0bRpUxo0aAAUXvOWLVto2rQpbm5uJotR1D+SDMzYqVOnSh0e2LRpU7y8vEx2Hg8PD6ZPn86VK1cIDg5my5YtfPrpp0yfPr1Ym/o/zZs3r6jN+qWXXsLd3Z1169bx448/smTJElxcXIrt/8gjj/DCCy+wZ88eXnzxxds251TVAw88wLp16xg8eDBPPvkknTt3xtrammvXrrF7926GDx/Ov/71r0ods3Xr1gB88sknODk5YWtrS+PGjcu8YyqPq6srY8eO5aOPPqJRo0YMGzas1P08PT3p27cvc+fOxcHBgWXLlnHmzJliw0sXLlzIjh076NatGzNnziQkJIScnByio6PZsmULH3/8cVHiEKIskgzM2IQJE0rd/umnnzJ58mSTncfX15cPP/yQWbNmcfLkSdzd3ZkzZw4LFiwo83UhISH88ccfzJkzhxkzZpCdnU3Lli1ZuXIl48ePL7G/nZ0dw4YN47PPPmPatGkmi/8WnU7Hpk2beO+991i7di2vvfYaVlZWNGjQgF69etGmTZtKH7Nx48a8++67vPfee/Tu3RuDwXDb66uM+++/n48++ojp06ej1ZY+juPee++lVatWvPjii1y5coWmTZuybt067r///qJ9/Pz8CA8PZ9GiRbzxxhtcu3YNJycnGjduzKBBg+RuQVSYRrk1vEPUS7179yYxMZFTp07V+Lny8vIICgqiR48efP311zV+PnP2zDPP8NFHH3H16tVS7zI0Gg0zZszggw8+UCE6UR/JnYGocQkJCZw9e5aVK1cSFxfH888/r3ZIqtm/fz/nzp1j2bJlTJ06tVrNTUKYkiQDUeN+/PFHJkyYgJ+fH8uWLSt1OGl90bVrV+zt7Rk6dCgvv/yy2uEIUUSaiYQQQkihOiGEEJIMhBBCIMlACCEEkgyEEEIgyUAIIQSSDIQQQiDJQAghBJIMhBBCIMlACCEEkgyEEEIgyUAIIQSSDIQQQiDJQAghBJIMhBBCIMlACCEEkgyEEEIgyUAIIQSy7KVQUUpWHgnpuYVfGf/4Nz2XjNwC8g1GCgxK4b9Gpdj/bz2n0YC9jRWOeh2OtlY42FjhqLcq/L++8P8ONla42lvj72pHAzc7At3tcdTLr78Qt8iyl6LGFBiMXE7O4kJ8BhcTM4v+vZGSTVJGHnkGo6rxudhZ08DN7s8v+6J/G3nY09TLEZ1Wo2p8QtQmSQbCJJIycjl1I40zMWmciU0nMiaNiwmZqr/hV5WttZaWfs60CXChdYALbQJcaO7tiJVOWlZF3STJQFRJTGo2By4mc+BSEgcuJXMxIVPtkGqc3kpLCz9n2gQUJol2ga608HVWOywhTEKSgaiQS4mZHPzzjf/gpWSu3cxWOySz4OWk565mnvQM9qJHc088HfVqhyRElUgyEKXKyTfw67kEtp2O5feoROLSctUOyexpNBDq58xdzb3oGexJx0bu2FhJs5KwDJIMRJH0nHx2nYln66lYfj2XQFaeQe2QLJq9jY4uTTzo19KbIW38cLW3UTskIW5LkkE9l5yZx/bTsWw9HcsfUUkW2+Fr7qx1GnoFezG8fQD9Q32wtdapHZIQxUgyqIdy8g38cPwG3x65zsHoZAxG+RWoTQ42Oga28mV4hwB6NPOUIazCLEgyqEfOxaXz+YErfHvkGmk5BWqHIwBPRz1D2/oxvL0/HRq6qR2OqMckGdRxOfkGtpyM4fMDVwi/fFPtcEQZWvo5M65rI0Z0CJBmJFHrJBnUUVHxGYV3AUevkZKVr3Y4ohJc7a25v2Mgj3RpRKC7vdrhiHpCkkEds+9CEh/sPs/vUUlqhyKqSafVMKiVL1N6NqF9oKva4Yg6TpJBHbHnXALv7zrPoWhpCqqLOge5M6VnE+5u6Y1GIx3OwvQkGVi4nyPjWLoriuNXU9QORdSCEB8nZg0MoX+oj9qhiDpGkoEFUhSFbadjeX9XFKdvpKkdjlBBWENXZg9qQZcmHmqHIuoISQYWZsvJGN7beZ6zcelqhyLMQM9gL2YPDKF1gIvaoQgLJ8nAQpy+kcqCHyI4eClZ7VCEmdFoYHBrP54ZEEwTL0e1wxEWSpKBmUvOzOPN7Wf58uAVZKKwKIuVVsO/72jAU3cH4+tiq3Y4wsJIMjBTBQYja/Zd5t2d52S2sKgUR70V/9c/mPHdgtBKqQtRQbVWX7d379489dRTRY+DgoJ49913K32c8ePHM2LECJPFZY5+O5/APe/9xsLNEZIIRKVl5BawcHMEI5b9zqnrqWqHIyxEpZLB+PHj0Wg0Jb6ioqJMHlh0dDQajYZjx44V2/7ee++xatUqk5/PHFxNzmLKmnDG/O8g5+Mz1A5HWLgT11IZ/uHvLPwhgsxc+VAhymZV2RcMGjSIlStXFtvm5eVlsoDK4+JSN0dNfH7gCq/8GEGmrCEgTMhgVFjx+yW2nophwfDWMj9B3Falm4n0ej2+vr7FviZNmlSi6eapp56id+/eVQ6scePGAHTo0AGNRlN0rH82E/Xu3ZsnnniCp556Cjc3N3x8fPjkk0/IzMxkwoQJODk50bRpU3766adix4+IiGDw4ME4Ojri4+PDmDFjSExMrHK8VRWXlsP4lQeZ891JSQSixtxIzWHKmnAeXRNOTKosWSpKMts1+Q4ePAjAzp07iYmJ4dtvv73tvqtXr8bT05ODBw/yxBNPMH36dEaNGkW3bt04cuQIAwcOZMyYMWRlZQEQExNDr169aN++PeHh4WzdupW4uDhGjx5dK9d2y/fHrjPgnT38cjahVs8r6q/tEXH0f3sP3xy+pnYowsxUOhls3rwZR0fHoq9Ro0bVRFxFTU8eHh74+vri7u5+233btWvHiy++SPPmzXnhhRews7PD09OTKVOm0Lx5c1566SWSkpI4ceIEAB999BFhYWG8+uqrtGjRgg4dOrBixQp2797NuXPnauR6/i45M4/H1h3myS+PkZotFUVF7crILWDW+uM8/dUxMqQvQfyp0smgT58+HDt2rOhr6dKl1Q5i2rRpxRJMZbVt27bo/zqdDg8PD9q0aVO0zcensJ00Pj4egMOHD7N79+5i52zRogUAFy5cqM6llGtnRBwD3tnDlpOxNXoeIcrz3dHrDF36GyeupagdijADle5AdnBwoFmzZsW2abVa/jldIT+/4p94Fy5cyKxZsyobShFra+tijzUaTbFtt6o8Go3Gon+HDRvG4sWLSxzLz8+vynGUJSffwLzvT/NV+NUaOb4QVRGdlMXIj/5g9sAWTL6rsVRErccqnQxK4+XlxalTp4ptO3bsWIk36dvx9vbG29u72DYbGxsADAbTd6qGhYWxYcMGgoKCsLIyybegTNduZjF17WEpKifMUr5B4ZUtkfx+IZE3R7XD01GvdkhCBSbpQO7bty/h4eGsWbOG8+fPM2/evBLJobK8vb2xs7Mr6txNTTXd5JkZM2aQnJzMgw8+yMGDB7l48SLbt29n4sSJJk8+e88nMuz9vZIIhNn75WzhZMe952t/VJ1Qn0mSwcCBA5k7dy6zZ8+mU6dOpKenM3bs2God08rKiqVLl7J8+XL8/f0ZPny4KUIFwN/fn99//x2DwcDAgQNp3bo1Tz75JC4uLmi1phtg9fGvFxi38iA3ZdlJYSES0nMZu+IAH+w6r3YoopZJbaIakJVXwLPfnODHEzFqhyJEld3XIYDXR7bFxspsR6ALE5JkYGLRiZlMXXtY1hsQdUKnIDeWj+mIu4ON2qGIGibJwIR2n4nnyS+PSnE5Uac0dLdnxfiONPN2UjsUUYMkGZjIugOXeen70xhk0QFRBznbWrHs4Tvo0dxT7VBEDZFkYAJv7zjH0p+lw03UbVZaDQuGt+LhOxupHYqoAZIMqsFgVHhx40m+OCgTyUT9MalHY14c0lImqNUxkgyqKLfAwBOfH2V7RJzaoQhR60bd0YDFI9vKSmp1iCSDKsjKK+DRNYfZGyWTc0T9dV+HAN4Y1Q6dJIQ6QZJBJaVm5zNx1SEOX76pdihCqO7edv68PbodVjqZi2DpJBlUQlJGLmP+d5CIGCktIcQtg9v48t4DHbCWhGDRJBlUUFpOPg9+sl9qDAlRigGhPnzwUJjMVrZg8pOrgOw8AxNXHpJEIMRtbI+IY9pnh8ktkKVbLZUkg3LkFRh5dG044dJHIESZdp2JZ8qaw+TkS0KwRJIMymAwKjz55VF+k5K+QlTInnMJPPXlMYwyE9/iSDK4DUVReG7DCX46JctTClEZW0/HsnBzhNphiEqSZHAbC36I4JvD19QOQwiLtOqPaD7ZU7PriQvTkmRQird3nGPVH9FqhyGERXvtpzNsOn5D7TBEBUky+IfP9l+WonNCmICiwKyvj7PvQpLaoYgKkGTwNwcuJrHgh9NqhyFEnZFnMDJ1bTjnZLEnsyfJ4E/XU7J5bN0R8g0yCkIIU0rLKWD8ioPEpeWoHYoogyQDCieVPbomnKTMPLVDEaJOupGaw/iVh8jOkzkI5kqSATB7wwmZXSxEDYuMSeM/351UOwxxG/U+GSz7JYofZMSDELXi26PX+eLgFbXDEKWo18lg95l43tx2Vu0whKhX5m86zanrqWqHIf6h3iaDCwkZzPzyKDJrXojalVtgZMbnR0jLyVc7FPE39TIZ5OQbmP7ZYdJzCtQORYh66XJSFs+uP652GOJv6mUyWLL1LOfiMtQOQ4h6bdvpOP7720W1wxB/qnfJYO/5RFb+cUntMIQQwOs/neHw5WS1wxDUs2SQmpXPrPXHkbXdhDAPBUaFxz8/yk2Z46O6epUM/rPxJLEyC1IIsxKTmsNLm6QMjNrqTTLYePQ6m0/EqB2GEKIUPxy/wU8n5e9TTfUiGdxIyeal70+pHYYQogwvbjxFUkau2mHUW3U+GSiKwjNfHydNhpEKYdaSMvOYKx/aVFPnk8HK36PZd1HqqQthCbacjGWrLDWrijqdDOLTcnh7xzm1wxBCVMK8TadIl9nJta5OJ4NXt0SSkSvNQ0JYkri0XBZvPaN2GPVOnU0GBy8ls/GYVCMVwhKtO3CF8GiZjFab6mQyMBgVGT0khAVTlMLRRUapJFlr6mQyWLMvmjOxsuaqEJbsTGw66w9fVTuMeqPOJYPEjFzpNBaijnh7xzmy8qTfrzbUuWTw+k9npDS1EHVEXFoun+yRyqa1oU4lg8OXb7LhyDW1wxBCmNAney4Sny41xWqaldoBmNLLP0ZYZEXSax9NxJAWX2K7Y4cheAyYTsredWRG/oYhPQGN1gob32a49hyL3j/ktseM/fx5cq+W7ES3a9IR71HzAcg4vZuUX1ej5Ofg2HYAbn0mFu1XkBpH3Fdz8Rv3Llq9ffUvUogqysoz8Pb2c7w+sq3aodRpdSYZ7D4bz9ErKWqHUSV+494Bo7HocV7iZeK/ehGHFt0BsHYPwL3/NKxcfVHyc0kP/564r+YSMPVTdPYupR7T61//AcNfzWWG7DRiVj6BfYsehY+zUkne+j4eg5/CytWX+G8WoG/YBvumnQBI2rYMt17jJREIs7D+8DUmdG9MiK+T2qHUWXWmmehdC+401tm7oHN0K/rKjjqIlasf+sA2ADiE9sYuqD3Wrr7YeDXCre9klLws8uJvv0iPzs6p2DFzoo+hsdZjH1KYDApSYtHo7XFo2RO9XzC2DduSn3gFgMyIX9DorLAP6VbzFy9EBRiMCq9uiVQ7jDqtTiSDXWfiOH4tVe0wTEIx5JMZ8QuObfuj0WhKfT792FY0egdsvBtX+LgZJ7bj0LInWhtbAKzcA1Dyc8mLu4AhO528mHPYeAVhyE4n5bd1uPefZrJrEsIUfj2XwG/nE9QOo86qE81E7+08r3YIJpN1bj/GnAwcWvcrvj3qIImblqDk56JzdMPn/kW3bSL6p9wbZ8lPvIzHPTOLtulsHfEc8jSJm99GKcjDoXVf7JrcQeKWd3G6YygFqXHEb1gExgJcuj+Ew5/NS0Ko6c1tZ7mruZfaYdRJFp8Mfo6sO3cFUPgJ3q7JHVg5eRTbbtuwLX4TlmLMSiP9+DYSvl+M35i30Dm4VuCYO7D2bFSiw9k+uBv2wX81BeVcOUF+wmXc+0/jxieP4jnsWXQObsSs+T9sA1tX6FxC1KTj11L540Ii3Zp6qh1KnWPxzUTv/Vx37goKUuPJuXwcx3YDSzyntbHF2s0ffUALPAc/iUarJePE9nKPaczPITNyD47tBpS5n1KQT/L2j3AfOIOCmzEoRgO2Ddtg7dEAa/cAcmPOVvm6hDCl5b/KvIOaYNHJYGdEHCfq0l3ByR3o7F2w+3NET5mUwv6D8mSd2YtiyMehVZ8y90v540tsm9yB3rcZKEYwGv46lbGg2GgnIdT067kEImPS1A6jzrHoZFCX7goUxUjGyZ04tO6HRqsr2m7My+Hmr6vJvX6GgtR4cmOjSPppKQXpiUUjgwASN7/FzV9XlThuxont2Dfvgs7O+bbnzku4TNaZPbj2eAQAK/cGoNGSfnw7WRcOkZ90DRu/5qa7WCGqafmvF9QOoc6x2D6DX88lcPJ63bkryIk+hiEtAce2/Ytt12i15CdfI2Hjzxiy09DZOWPj2xzfhxdj49WoaL+CtATQFM/t+cnXyb0WgffoRbc9r6IoJG/7ALe+U4pGGmmt9XgMforkHR+hGPIL5zg4SRutMB+bT8Qwa2AIDdxkHoypaBTFEufswqRVh/j5TMlZu0KI+mF8tyDm39tK7TDqDItsJrqanMXus5IIhKjPvjp0lZuZeWqHUWdYZDJYd+AKsuaFEPVbdr6BNfsuqx1GnWFxySC3wMD6cFnwQghRuJBVXoGMdDMFi0sGW07GkCS3hkIIICkzj58j49QOo06wuGSwVm4LhRB/s/6wrGFiChaVDE5dT+WIhZapFkLUjF/PJcjiNyZgUcngs/1yVyCEKM5gVPjuyHW1w7B4FpMM0nPy+f7YDbXDEEKYIWkqqj6LSQbbT8eRnW8of0chRL0TFZ/B0Ss31Q7DollMMthyMkbtEIQQZuwbuTuoFotIBmk5+fx2PlHtMIQQZuyH4zfIkdaDKrOIZLAzIo48g0wsEULcXlpOAdtOx6odhsWyiGQgTURCiIqQ94qqM/tkkJ6Tzx5pIhJCVMDe84lSnqKKzD4Z7IyMkx+uEKJCMvMM7L+YpHYYFsnsk8GPJ6QNUAhRcbtknZMqMetkUNhElKB2GEIIC/LzGSlcVxVmnQx2n02QJiIhRKVcTc7mXFy62mFYHLNOBr+dk7sCIUTl/RwpTUWVZdbJ4PcoGUUkhKi8XdJUVGlmmwwuJmRwI1XK0gohKu/IlRRSsmQRrMow22QgdwVCiKoyGBV+lWbmSjHbZPDHBRkrLISoukPRyWqHYFHMNhkcvCQ/SCFE1R25nKJ2CBbFLJNBVHyGLHovhKiWs3HpZOUVqB2GxTDLZCB3BUKI6jIYFY5fTVU7DIthpslA+guEENV3RFY/qzCzTAZHrqSoHYIQog44Ku8lFWZ2ySAzt4CrN7PUDkMIUQccuyp3BhVldsngTGw6iqJ2FEKIuiAxI48rSfLhsiLMLhmcjZUCU0II05F+g4oxu2RwJjZN7RCEEHXIsaspaodgEcwwGcidgRDCdC4kZKgdgkUwu2QgzURCCFO6lJipdggWwaySQUxqNqnZ+WqHIYSoQ26kZJNbYFA7DLNnVslAmoiEEKZmVJARRRVgXskgRpKBEML0pKmofGaVDKLipaNHCGF6kgzKZ1bJIDYtW+0QhBB1UHSSJIPymFcykGUuhRA1QO4MymdWySA+LVftEIQQdZAkg/KZTTLIzC0gPVcWohBCmF5cWi7ZeTK8tCxmkwxi06SJSAhRc5IypeWhLGaTDOIkGQghalBKlkxoLYskAyFEvXAzS9ZVL4sZJQO5hRNC1By5Myib2SQDGVYqhKhJKXJnUCazSQaJGXJnIISoOTflzqBMZpMMZNiXEKImSTNR2cwmGeQWGNUOQQhRh0kzUdnMKBnInYEQoubIaKKymVEykDsDIUTNSZGFs8pkPskgX5KBEKLmyHtM2cwnGUgzkRCiBhkVRe0QzJoZJQPJ2kKImmMwSjIoi9kkgzxJBkKIGiTJoGxWagdwi9wZiMpysdKhUTsIYTHstPLbUhazSQZ5BkkGouKCHbKZ6ROO85UQEq2DiIsHo0E++Ynbc9HYqB2CWTObZGCj00pTkaiwILtsWudv56UmR3nuRz0hV5PJuHM4iV7tiLmpJzdbBiSI4jRyZ1Ams0kGttY6MmSlM1FBDfWZBCVcoEP7FowdFsGrZ9vR8PtVOBuNBFnZkNNpEMmNuhGT4056iowvF5IMymM2ycDOxmz6soUF8LfJAGBqxC9sbhrCrBZHuC+gBQ9+HY82PhH7fZuw37eJBkBeyy6ktOpPrLYBiQkFIK1J9ZJW3mLKZDbJwN7abEIRFsBHV5gM7PMymWV0ZjaJfOt0jgPjnXntt7bY7jtRtK9N5H68I/fjDRj8GpN2xzDinUOITdBikIlI9YbcGZTNbHKlrY1O7RCEBfHUpBf9/56zv9DJpTkA13VpjO0dwdFHOqLR60u8ThdzCbfNSwn5fAZ37XueTtr9NPHPw9ZBPozUdVbWZvN2Z5bM5i/A3lqSgag4N1KLPX4+5jr3O1hRoBT2O70WeIwejwUy83sDXLxS6jG0Gak47VqLE2tppNWR03EgN5t0JybPi9Rk6Weoa2wdrNUOwayZTTKwkzsDUQnOxuLJIDjuDPd3GMK6lJNF2/baXuX4KD1LjnXEY1t4mcfTGA3YHdyC3cEt+AN5zcNIbTOQOOtGJMQbsLRKBtuOfs4PB/9H79b38e/uM0rdZ+3uxRw4t73Edl+3Rrw4egUAkdfC+XrvUtKzU2gb1I2Hej6Dla7wTTU7N4Ml3z3GE0PewN3Jp+YuxkQkGZRNkoGwSPYFKSW2zYjcy09BQSTn3izalq7NZXrYMSYFtWfQFxdR0tIqdHyb80fwOn8EL8Dg1YD0TveS4BpKTKKOgjzz7me4HH+GPyJ/JMC9SZn7/bvbDIbfOaXoscFo4LVvptChSS8AjIqR1T+/Rv8ODxDaoBP/3bGA3yN/pFfrEQBsPPApPUKHWUQiANA7SjIoi9k0otlJM5GoBNvc5BLbnHJSeUrrWer+/3M/xdxH7TG0C6n0uXQJ13Ddsozmnz9Ojz2z6Kz8RlP/HOwdzeazVJHc/GxW7XqVB3v+H3Z6pzL3tdM74mzvXvR1JeEs2bkZdA0ZBEBmTioZOSn0DB2On3sQbRp1JfbmZQAuxJ7iSsI5+rS+r8avyVTkzqBsZpMM7OXOQFSCVSnJAGBExC7aOjct9bkz1omMuecSF0d1Bl3Vft+0OZk4/voljT5/hjt/nEa31O9o6ZOMq4d5JIav9r5H64ZdaNHgjkq/dt+ZnwhpEFb0Sd/R1hVnew8ir4WTV5DLhdiTBHg0ocCQz1e/vcsDPZ9Cq7Wcv1tJBmUzm2Tg6Vhy5IcQpbHWKmiyb5b6nAaFOQkJaDWl/2oXaIw83+wIax5rjsbXu1pxaBQF26M78ftqLmEbpnLX5Y9o53YZX18tWhWGMYZH7eJqYhT3dp5c6demZiYRcfUg3VoMLtqm0WiYdPdcth75jFe+nkgDj2Z0DbmHHce+ICQgDBudnrc3zmThl+P49dRGE15JzbCTZqIymcfHGcDPxVbtEISFaGyXjaaMOkStbpzivrAhfHPz5G332ewYxcFxDiz5vT32e4+ZJC7rS6fwuHQKDyDE3YeMzsNJdG/NjSRr8nNrtp/hZkY8G/74kBlDlmBtVfkaPPvPbcNO70jboO7Ftjf1a8Ps+5YVPY5LucrBczt5/t/LeWfTU/RpM5LQwE688vVkmvm1IcCj9LsycyB3BmUzm2Tg72qndgjCQgTZ5UBG2fs8eWYfOwL9Sc27fYdxvDaT8Xed4tmmHen89SmU7ByTxahLjsNl6ye4AE1sbMnqPITkwDu5kelCZprpy65cSThHenYKSzZMK9pmVIxciDnBntMbeXfy1ts26SiKwv4zW+ncvH/RSKHb7ffFnnf4V9dpGBUj1xKj6NC4JzbWtjT3b8v5mBPmnQzkzqBMkgyExQnUZ5abDFyzknncuiOvlJEMbnnD/xh3Tg/gmU0aiIo2TZB/o8nLwWHvBhzYQCCQ07YnKSF9icOPpATTJIaQgDDmjPpvsW2f/fIGPq6B9G//QJlt++djjpOQdp2uLe4p8xz7zmzBwdaZtkHdyMotnPRnMBYU/asYzXuUldwZlM1s+gykmUhU1K26ROUZfXonLZ0aVWjfA/rrjB8ZR/yQTtUJrUJsT+zBd/182q2fSs8LS2nvcgF/Pw1aXdX7GWxt7PF3b1zsy8bKFge9M/7ujQH4/sB/WbPr9RKv3XfmJ4K8WxbtV5r07JtsPbKOUX/OWbDXO+Hr2pDdJ7/lYuxpzl4/SmPfVlWOvzZIMiib2dwZ2FrrcHewITkzT+1QhJnz1VUsGWgVI3NuZjDWSoNSgep0Wdp8Hm97lLGB7Rj21WWUmynVjLR8VlfP4n71LO5AsLMHGXfeS6JX+xopw52WlURyRnyxbdm5GRy79Bv/7lb6xLRbvvn9Q/q1G42rg1fRtkf6PMfa3Yv55dS33N1uNEHeLUwarynZu9igk3IUZdIoivnMrRyy9DdO36jYpCBRf33VfDd3Xv20wvvPCRvMDzdPVeoczfM9WPCzO1ZHIysbnkkYpQy3Sfk1c+G+WZUfblufmFWq9HORfgNRPldSKrX//50/jKO1Q6Vec946iTGDojh3f2ewqv0baG1BXmEJ7i+fp9PGR+kRt5bWnrF4elsha31WnounvLeUx6ySgb+r9BuI8rn8oy5ReTzT45imr1jfwd8ZUHixyRFWPNYUTYBfpV9vSjaR+/H+ZhFtv55KrzNv0sHxLAF+SNNHBTl7VT0Z9O7dm5kzZzJ79mzc3d3x9fVl/vz5Rc+//fbbtGnTBgcHBwIDA3nsscfIyPirKXPVqlW4urqybds2WrZsiaOjI4MGDSImJqY6l2RyZvWbJCOKREWUVpeoPA+f3klTxwZVOt9WhwtMfySL9N4dqvR6Uysqw/2FlOGuKJdqJAOA1atX4+DgwIEDB1iyZAkLFy5kx44dAGi1WpYuXcqpU6dYvXo1u3btYvbs2cVen5WVxZtvvsnatWvZs2cPV65cYdasWdWKydTMqs9g++lYHl17WO0whJk75/sSNilRlX7dgcadmExctc79ZFw7enwZiZKVVa3j1ARFqyPnjgHcbNpDynD/w+g5nfBqWHatptvp3bs3BoOB3377rWhb586d6du3L6+/XnJ01vr165k+fTqJiYlA4Z3BhAkTiIqKomnTwnkYy5YtY+HChcTGxlYppppgVh8lQv2d1Q5BWIDb1SUqz52XDtE/7B523Dxd5XO/53OcvdP9mL3ZF83Zi1U+Tk3QGA3YHfoJu0M/FZbhbtaB1LaDLLYMt8lowNXXvlqHaNu2bbHHfn5+xMcXjszavXs3r776KhEREaSlpVFQUEBOTg6ZmZk4OBT2Vdnb2xclgn++3lyYVTNRAzd7XOxkLLC4vbLqElXE7IsnsdNVr2/qsE0MY/91nRv3dgaN+fbm2kQdxevb12j91TR6nnqNMPvTBPorWNWz9cad3G2xrmYhTGvr4u9LGo0Go9HI5cuXGTx4MK1bt2bDhg0cPnyYDz/8EID8/PwyX29GjTKAmSUDgJZ+VbuVE/VDY7tsNNVY0d435RqTHZpVO45cjYGnWh3h2+mt0Hi4V/t4Na3UMtx+Odg7mVXjQI1w863cSLLKCA8Pp6CggLfeeosuXboQHBzMjRs3aux8NcnskkGon4vaIQgzFmRX/fpB40/9TEN704wO+tLlDLMmasnr1Nokx6sNRWW4v3iGOzdPo1vqt7T0ScLNTMpwm5q7X/WaiMrStGlTCgoKeP/997l48SJr167l448/rrHz1STzSwbSbyDKEKjPrPYxbAy5PJdjujr8l61SGNPvDKcf6gTWltXMWViG+2f8vnqJDn+W4W7rGq1aGe6aUNWO44po3749b7/9NosXL6Z169asW7eO1157rcbOV5PMajQRQMSNNAYv/a38HUW9NLdxJJNiFpnkWI93GMivKaadYdw3K4jp32WjXLlu0uOqweDuQ0an4SR6tCYm2Ya8HNOWx6gtY17uirNMOiuX2d0XNvdxxEanJc9g3hUQhToqWpeoIp67coZ9rjbkGU1XD2uXfTSHH7TljfAwXH8+YrLjqkGXHIfLtr+V4e40mOSGXWqsDHdNcHCxkURQQWbXTGSt09Lcx1HtMISZ8tSYLhkEJl1mvFPl10QuT6o2h0c7n+CXyWFoHGuu87I2afJycPj9WwK/mM2dm6bSLflLQr0S8PAyu8+Txfg2kT7IijK7ZADQSvoNxG1Uti5ReSZH7MbPzqv8HatgmdcJFk51wdiqeY0cX022J377RxnuqGqX4a4Jvk0lGVSUWSaDOxq5qR2CMFOVrUtUHru8LGYV1Nyn95M28YwddoWr/+oMWrP8c6s2q6tncf/+HVp88Rg9D82lo3U4Qf756O1M10lfVXJnUHFmeY/XvZmn2iEIM1WVukTlGXBuD1069Gd/ylmTHxsgT2PgmRZHGBnQkge+ikNJSKz0MT5ITGBZUlKxbR46Hb81K/2u43BWFm8nJHAxL5ccRcHf2prRLq6Mc/9rTsQfmZksioslyWCgn6MjC3z9sPlzEl26wcDoy9H8L7Ah/pUYIaVNS8J5x0qcgSArG3I6DiI5qCsxOR61XoZbZ62t0ZFEdY1ZJoMGbvY08rDncpL51X8R6rKtYimK8rxwPZqRTlYUGGuuY3SD01n2T3Dm9T1t0O8/WenXN7Ox4X+BDYsel/W5206r5SE3N4L1euy1Gg5nZbMgLhY7rZbRrq4YFYXZMTeY7O5BdwcHnr5xnW9SUnjIrfCu/K2EBO53datUIvgnbUEe9vs3Yb9/Ew2AvJZ3khLanzhdIAkJBVRj7mCFeDd0QmdVN+/GaoJZJgMovDu4nHRF7TCEmalqXaLyNIk/z8MBQ1idUvk36cq4rktjTJ805jTrRIf1J1Bycyv8Wp1Gg1cF11YItbUl1PavshsBLjbszEjncHYWo11duWkwkGww8KCrK3qtlj6OjlzIK4zlSFYWp3NymOvjU7mLK4dN5AG8Iw/gDRT4BZF+x73EO4UQm6jFkG/60YPSRFQ5Zps2uzeVpiJRXHXrEpVnesQevGxrp7TEq4FHWfpYAJqgwAq/5kpeHr2iouh/8QLP3LjO1byKD4mNyMnhaHY2newKZ+O663R46az4PSuTHKORw1nZBOv15CkKC+PimOfrg64G6y5ZxUT/VYb7j+fopN1HE/9ck5bhls7jyjG7SWe33MzMI+zlHfW30qIooblDNjsMk2r0HD+07MucnMqXx64qJ6OeJcda4rEtvMz99mRkkKMYCbKxIbHAwPKkRC7m5fFD4ya46m7fYNTnQhTJBgMGRWGGhyfTPf/6kHU4K4vFCfHcNBjo6eDA894+fJqURJrRwEgXV+bHxnLTYOBhNzcedqudQR2FZbj7c7PJXcTkV70Mt0YDE9+4C1tHy5oRriazTQYgayKL4gZ4JvFJxhM1fp5x7ftyJLX2EgLA5KTWDPzyIkpaxX7fs4xGBl68wCR3D8a73/5u5lpeHlmKkePZObydEM+LPr4McS596HZ0Xh7Trl1lQ1Bjxl65zFg3d3o4ODA8+hL/axBIiG3tr0R4qwx3vHUj4itRhtu3iQsjZ8uax5Vhtn0GUNhvIMlA3BKozwLTzTm7rTmxsdxvr8Og1F75hf96nGLvo57M2+6H7kT5o5rstVqC9Xoul9NU1MDGBoBgvS1JhgI+TEwsNRkoisK82Bhme3ujKAqRubkMcHLCTqulo509h7KzVEkGNlFH8Yo6ihfQwjOA9E73kuDWiphEHQV5t+9naNTao/aCrCPMts8AZIipKM7fpvpF6ioiJDaCf7uG1sq5/u6MdSJjBl/i4r87QxlNPwB5RiMX8/Iq3KEMoCiQp5T+BrohNRVXnY6+jk7cSoEFf34ML0DBaAbtB7rE67j+9NHfynDvoZl/dqlluBu1kWRQWWZ9Z9A5yB0bKy15BVKnSICPLr3WzvVE5O9sbxjIzTzTTnIrT4HGyPPNj3DvY8GMWZ+EElu4GtaS+Hj6ODriZ2VFkqGwzyDDaGS4S2En6dsJ8cQXFPC6nz8An9+8iZ+1FY1t9AAcyc5i5c1kHnYt2fafVFDAx0mJrGvYCAAXnY4mNjasuXmT7g4O7M/M4lF383pzLSzD/RWOfEWgRkNu+77cDO5FbIEPeQYdXoEyv6CyzDoZ2Nno6NHMk11nzGt5OKEOLxPWJSqPS3YKM606sqCWk8EtmxzPs3+cA0t+b4/93mPEFeQz68YNbhoKcLeyop2tLV80bETAn/MAEgsKiPnbylpGFN5JSOB6fj46jYZAa2v+z9OL0a6uJc71WnwcE9w98PnbnIJXff2YExvDZzeTmejuTls78y32VlSG++jP+AFOE6cB3dUOy+KYdQcywPrwqzz7zQm1wxBmYFvzjYRc/brWzmfUaHm47V2cSrtUa+cszbPX29N5/SmU7Oov7FMfBP73vzj2kGRQWWbdZwAwINQXazMrfiXU4WxMqdXzaRUjc5JuokHd3783Ao7x5nQfaBakahyWQOvigsOdndUOwyKZfTJwsbemm0xAE4BDDdQlKk+baycY4ab+kpYH9NcZPzKO+MEd1Q7FrDn17o3GwlabMxdmnwwAhrQxzXq1wrLZ5tXc7OOyPHnuIE7W6q+xkaXN5/F2x/hxWjs0bq5qh2OWnAb0VzsEi2URyWBQG19spOBUvWeVk1T+TjXAIyOBGTYVLxtR01a7nWbOJD0FHVqqHYpZ0drb49Cjh9phWCyLeId1trWmb4i32mEIFdV0XaLyPHB6J80dG5a/Yy05b53EmEFRnL+/M1RirkFd5jxkMFq9Xu0wLJZFJAOAER381Q5BqCjILgdNTdc8LoNOMTAnLVu185fGgMJ/mhxhxWNN0fj7qh2O6lxHj1Y7BItmMcmgTwtvnG3lE1B91dhO/bUtOl4+zD1m0Jn8T1sdLjB9TDYZvTqoHYpq9KEtsWvTRu0wLJrFJAO9lY6h7eTuoL4K1KufDABmXTiKvZW92mGUkKjNZGK3k/wx4Q409uYXX01zGzVK7RAsnsUkA4AxXRqpHYJQSW3VJSqPd2oMU+0aqx3Gbb3re5zXp3ughDRRO5Rao7G3x3nYMLXDsHgWlQxa+jlzZ+PaWXxEmJfarEtUnjGndhLkEKB2GLd12CaGcf+6QcywToWF/es458H3oHNUf+ivpbOoZAAwvluQ2iEIFdRmXaLyWBvzeSHLrKu4kKMp4MnWR/luems0HnX7A5SbdBybhMUlgwGtfPF3qf266kJdrqhTMO52ul3cT1+32i9zXVlfuETy7EQteZ1aqR1KjdC3bIld27Zqh1EnWFwy0Gk1PCx9B/VObdclqojZ0RHY6sx/XHu0VQpj+p0l4sFOUMdKNbiO+rfaIdQZFpcMAB7s3BC9zEiuV9SoS1SegOQrTHRsrnYYFaJoYH7QUT5+rBGaQPPt76gMjZ0dLvfeq3YYdYZFDtx3d7BhWDt/vjl8Te1QRC1Rqy5ReSae2sX3IW24nhVX6vP5N/OJ/TqWjBMZGPON6H30BEwKwC6o9PUBMiIziF4cXWJ781ebo/cvvAvJOJXBjbU3KEgrwDnMGf8J/mj//HBkyDJwYcEFgmYHYeNhU+I4u+yjOfqQHUvCw3D5+UgVr9o8uAwdIh3HJmSRyQAKO5IlGdQfatUlKo++IIfZeXqeLOU5Q6aBiy9fxKGlA42eaYSVkxV5CXlo7cu/q23+enO0tn/tZ+Vc+KeqGBWuLr+K1xAvHNs4cvWDq9z85SYedxeuRBb7dSzufdxLTQS33NRmM6XzCR5rHEafL8+iZJjHsN1K0WpxnzhR7SjqFItta2kd4ELHRiWX8BN1j9p1icrT9/xeeri2KLE94ccErD2saTC5AfZN7LHxssEx1BG9d/n9DFZOVli7Whd9abSFQ0QNGQYM6Qbc+7pjG2CLUwcncm/kApB5PpPs6Gw8BlRsicplXidYONUFY2izSlyteXAeNBB9Y/Od72GJLDYZAMzoY3m/xKLy1K5LVBHPX43CWlu8czb9WDp2QXZc+eAKkU9EEvVSFMm/JFfoeFHzojjz5BkuLb5ERuRfw2p1TjqsXK3IOJ2BMc9I5rlMbANtMRYYubH6BgHjAooSR0WctIln7L1XufqvzqC1kLcDjQaPqdPUjqLOsZCffun6tPDmDrk7qPPMoS5ReRolXmSMU/G7g7z4PJJ3JWPja0PQrCDc+7gTsy6Gm7/f/i7H2tUa//H+NHy8IQ2faIjeT0/0kmgyzxY25Wg0GgIfCyRhUwLn55zHrqEdbne5kfhjIo6hjmhsNFx8+SLnnj9H0s6KNa3laQw80+IIX09vicbL/BeScuzTB9uQYLXDqHMsOhkAPNNffinqOnOpS1SeqRG/4G37tzdTBWyDbPH9ty92jexw7+OOWy83knfd/u5A76fHvbc7dkF22Dezx3+sP05tnUj8KbFoH4dgB5rOa0rImyH4j/UnLzGPlD9S8L7Pm2ufXMOtjxtN5jQh/vt4cq5WfN3kb5zP8vR4hdwu5l3wzXPaVLVDMJnx48czYsQItcMA6kAy6NbMk65NKtZGKiyTudQlKo99XiazjM5Fj61crbD1Lz5BUu+vJz8pv1LHtWtqR15cXqnPKYrC9ZXX8X3AFxTIuZyDS0cXrJytcAhxIPNM5b5316xSGdMnkuOPdEJjc/tOaLU49OpZ5Ulm48ePR6PRoNFosLa2pkmTJsyaNYvMzKr/fs2fP5/27duXu190dDQajYZjx44V2/7ee++xatWqKp/flCw+GQA8M0DuDuoyH535lKIozz1nf6GTS+HcA/vm9uTG5hZ7Pi82D2vPyk38yrmSg5Vr6QP/bu65iZWjFc4dnMFYuE0xKEX/Ksaq9bW8EniUpTMaoAkynxXe0GjwmjmzWocYNGgQMTExXLx4kZdffplly5Yxa9asSh9HURQKCgqqFQuAi4sLrq6u1T6OKdSJZNAxyJ1ewV5qhyFqiKcmTe0QKuWFmGtYaazwGOBB1oUs4n+IJzcul5R9KST/koxH37/uZGPXx3Ltk7+GSCduSyTtcBq5sbnkXM8hdn0saeFpuPcrWV+oIK2AhE0J+D1SuEa4zkGH3l9P0vYksqKyyIzMxL551ctZ/2Z7hckP3CR5wB1VPoYpOd19N3atqldWQ6/X4+vrS2BgIA899BAPP/wwGzdu5LPPPqNjx444OTnh6+vLQw89RHx8fNHrfvnlFzQaDdu2baNjx47o9XrWrl3LggULOH78eNEdx+0+5Tf+c+RThw4d0Gg09O7dGyjZTNS7d2+eeOIJnnrqKdzc3PDx8eGTTz4hMzOTCRMm4OTkRNOmTfnpp5+KHT8iIoLBgwfj6OiIj48PY8aMITExkcqoE8kAYNaAELVDEDXEDctKBs3jzvKAS0vsm9jT8ImGpB5IJeo/UYVv3A/54drNtWjfgpQC8pL+agJSDAqxX8USNTeKS69eIut8Fo2eboRLR5cS54lZF4PnPZ5Yu/11pxEwOYDUA6lcfucynvd4Yt+kemsbpGpymHbHcXY82gGNs3P5L6gpWi1eM58w+WHt7OzIz88nLy+PRYsWcfz4cTZu3MilS5cYP358if1nz57Na6+9RmRkJAMGDOCZZ56hVatWxMTEEBMTw/3331/qeQ4ePAjAzp07iYmJ4dtvv71tTKtXr8bT05ODBw/yxBNPMH36dEaNGkW3bt04cuQIAwcOZMyYMWRlFfalxcTE0KtXL9q3b094eDhbt24lLi6O0ZUs4KdRFMW8x+xVwqNrwtkeUfpMUGG59jVdjd/1bWqHUSnpti4MCwoiKdd850dUVmi+F3O3OaM7ebbWz+08dCgBb75RrWOMHz+elJQUNm7cCBS+QQ8ePJh+/frx1VdfFdv30KFDdO7cmfT0dBwdHfnll1/o06cPGzduZPjw4UX7zZ8/n40bN5boC/in6OhoGjduzNGjR4v1Mfwzpt69e2MwGPjtt98AMBgMuLi4cN9997FmzRoAYmNj8fPzY9++fXTp0oWXXnqJAwcOsG3bX38j165dIzAwkLNnzxIcXLFm9DpzZwDwfwOC60P59nrHocDy3lCdclJ5Slu3mi4jrBMYM+QS0SM7g05Xa+fV2Nnh/X9Pm+RYmzdvxtHREVtbW7p27UrPnj15//33OXr0KMOHD6dRo0Y4OTkVNeNcuXKl2Os7duxY7jmmTZuGo6Nj0Vdltf1bB7lOp8PDw4M2f1vS08fHB6CoGevw4cPs3r272DlbtCgc5nzhwoUKn7dOJYMWvs480MmMOryESZhrXaLyDI/4mbbOTdUOw6QKNEZmBx/hs+nBaHy8a+WcntOmYe1vmiVv+/Tpw7Fjxzh79iw5OTl8++23ODg4MGDAABwdHfnss884dOgQ3333HQB5ecVHcTk4OJR7joULF3Ls2LGir8qy/kdl2Vujn/7+GMBoNBb9O2zYsGLnPHbsGOfPn6dnz54VPq/F1ia6necGtWDb6TiSM0sfiicsj1VOxWbtmhsNCnMSEnjIVotRMaodjkltcjrPwXGOLP69HXa/H6+x89g0bozHhPEmO56DgwPNmhWvXHDmzBkSExN5/fXXCQws/DAZHh5esfhsbDAYDMW2eXt74+3tXWI/oMS+phAWFsaGDRsICgrCyqrqb+l16s4AwNXehucHlawTIyyTtVZBk2OZdwYArW6c4j7XurmwTKwug3E9TxM+tiMa25pZcMr3pbk1Pt+hYcOG2NjY8P7773Px4kU2bdrEokWLKvTaoKAgLl26xLFjx0hMTCQ3N7fU/by9vbGzsyvq3E1NNd1iTTNmzCA5OZkHH3yQgwcPcvHiRbZv387EiRMrlXzqXDIAGNWxgRSxqyOC7HLQWPin6ifP7MPFRsWRODVsScAx3p7uC82CTHpc58GDceja1aTHLI2XlxerVq1i/fr1hIaG8vrrr/Pmm29W6LUjR45k0KBB9OnTBy8vL7744otS97OysmLp0qUsX74cf3//Yp3Q1eXv78/vv/+OwWBg4MCBtG7dmieffBIXFxe0lag3VadGE/3dmdg0hi7dS0EVJ90I89DfM5lPMx5XO4xq+6r1AF7OPKN2GDXKUbFh8YlWeG05VO1jaR0caLJlC9a11C8h6uidARR2Jo/vFqR2GKKaAvWWUYqiPKNO76SlU91erjVDk8eMdkfZMq0dGteS8yIqw/OJxyUR1LI6mwwAnu4fjK9zzbRlitoRYCF1icqjVYzMuZmBhro/9nmV22nmTLaloEPLKr1eHxyM+yOPmDgqUZ46nQwc9FbMHRqqdhiiGiypLlF52l89ylC3utmZ/E/nrZMYMyiK86M7Q2VGuGg0+M57CU01RsWIqqnTyQBgSFs/eofUrck/9UlF6xKl5yo8tTWHRu+mY/dKGt3+l8mh62WPpFh3Ip92H2dg/0oafm+lM+H7bJKy/uqs3nGhgOD3M3B5PY1xG7PJM/zV/5SaoxD8fgZXUivXuf1/5w/jaF3+WPW6wIDCf5oeYeVjTdH4+1boNS7Dh2N/h3nUQqpv6nwyAFgysi3uDuZXjleUr6J1iSb/kM2OiwWs/ZcdJ6c7MqCpjrvXZnI9rfQ3671XChi7MZtJHaw5/Zgj60fZcei6gck/FNb/NyoKD3+bzbSO1vwx0YGD1w18eviv0tPP7cxhWkdrGrpU7k/IMz2Oafq63XfwTz85XGD6mGwyenUocz8rHx98nn+ulqIS/1QvkoG3sy2LR1atBrpQl7Ox/PHY2fkKGyIKWHK3np6NrGjmrmV+b1sau2r5KLz0yYf7rxkIctUw8049jd209GhoxdQ7bAi/UXg3kZilkJCl8FgnG1p567g32IqIhMLnfr9SQPgNA0/eWbUPGA+f3klTxwZVeq2lStRmMrHbSfaNvwONnV3JHTQa/F9/DZ2ZlHOuj+pFMgDoH+rDQ3c2VDsMUUkVqUtUYASDArZWxTtn7aw17L1SelNRt0Ad19IUtpzPR1EU4jKMfBOZz5DmhW3VXvYa/Bw1bL9QQHa+wm9XDLT10ZFnUJj+Yw4fD7VDV4m1hv/OyljACxmVW+CmrnjH7ziLp3uhhDQptt197NhamVMgbq/eJAOAuUNCaepVP9pr64qK1CVy0mvo2kDHoj253Eg3YjAqfHYijwPXDMRklD7PpFugFevus+P+b7KxeTkd37cycLXV8P49haPPNBoNX4+yY9GeXEKXZdDBV8vEDta8vjePfo2tsLOC7isyCfkggw8OVr70yZ2XDjGgnnQm/1O4/gbj/nWDmGGdQKNBHxKC1zP/p3ZY9V6dnXR2O6eup3Lfsj/IM1j2rNb64qLbE2izy1/Y/UKykYmbstlz2YBOA2F+WoI9dByJMRAxo2TlyIgEA3evyeLpLjYMbGZFTLrCszty6OSv43/DS2nGAM4lGRjyeTZHpzrQc2UmT3WxYVAzK1ovy2TnWHva+lSukmesawPu9XIguyC7Uq+rS8ant2XGgHnYVrDMsqg59erOAKB1gAuzBsovniWoTF2ipu5afh3vQMYLTlx92pGDUxzJNyo0div9V/y1vXl0b6jj2e562vroGNjMimVDbFlxLJ+Y9JIfFBRF4dEfcnhrgB6jAkdjjfw71BpvBy29gnT8Gl35AmS+KdeYYl+3qppWVmD/4ZIIzES9SwYAU+5qQo9mnmqHIcpRlbpEDjYa/Jy03MxW2BZVwPCQ0serZ+Ur/LPJX/fn49Julf93NB8Pew33hlhz66Yy3/DXv4Yq3mCPO/UzDe39qvRaS3dP43sYHVK51bhEzamXyUCj0fDW6Ha42VduYXJRu4LsKt58si2qgK1RBVy6aWTHhQL6rM4kxFPLhPaFP+MXduYw9ru/jjcs2IpvIwv46FAeF28a+f1KATO35tA5QIu/U/E/i/hMIy/vyWXpoML+BDc7DS09tby7P499Vwv4+VIB3QKrNknKxpDLczm1t1CMuQhyDmJ+1/lqhyH+pl4mAwAfZ1s+fCgMqyqOCBE1rzJ1iVJzFWZsyabFhxmM3ZhNj4Y6tj/igPWfH/djMpRiE8TGt7fh7QG2fHAoj9bLMhi1PpsQDx3fji65ZvCTW3OY1U1PgPNffy6rRtjx5el8hn6RzbPd9HQOqPobes8Lf9DLtWqlGyyRrc6WN3u9ib119dZnFqZV7zqQ/2ntvmjmfn9a7TBEKeY2PsOkmIVqh1Errno0YoSrNXnGur8o07yu8/h38L/VDkP8Q729M7hlTNcgHuki8w/MUV2qS1SewKTLjHcKUTuMGjei2QhJBGaq3icDgPnDWtGtqYfaYYh/qGhdorpiyuld+NvV3bLN3QO6M6/rPLXDELchyQCw0mlZ9nAYQR7ShmlOKlqXqK6wzc9mVkHpcxwsXSuPVrzd622stFKN1FxJMviTq70N/x3XCSdb+WU1FxWpS1TX9D/3G11c61ZzUaBTIB/2+1A6jM2cJIO/aebtyPsPdqhyzRlhWg4FKWqHoIoXrkfXmU/Q7rbufHz3x3jYSTOsuZNk8A+9Q7yZM7j+DPMzZ/q8ZLVDUEWT+PM87Gz5v4N2VnZ82O9DGjrLAA1LIMmgFJN6NObxPs3UDqPes86pn8kAYHrEHrxs3dUOo8qsNFa81estWnu2VjsUUUGSDG5j1sAQJvVorHYY9ZZOY6xwXaK6yCE3nacVN7XDqLJ53eZxV4O71A5DVIIkgzLMHRoqayCopLFdbqXrEtU1w87sJszF8u5QH2//OCOajVA7DFFJkgzK8cqI1tzXIUDtMOqdxvb1t6zz382JjUWnsZzaRaODRzO13VS1wxBVIMmgHBqNhjdGtWNwm4ot6C1MozJ1ieqykNgIRrmEqh1GhfQN7Mt/uvxH7TBEFUkyqACdVsN7D3SgX4u6OzvU3ARYSzK45fEzv+Nm46J2GGXq2aAnS3otQauRtxRLJT+5CrLWaVn2SBjdm8l46drgY1V/6hKVxyU7hZlWPmqHcVsDgwbybp930ev0aociqkGSQSXorXT8d2wnuUOoBZ6adLVDMCv3ReyitbP5jW4b2XwkS3ouwVora4NYOkkGlWRno2P5mDsYdUcDtUOp09yof6UoyqJVjMxJuokG85kdPyZ0DPO7zZemoTpCfopVYKXT8saodjzWu36vX1uT6mNdovK0uXaCEW7mMYnrsXaPMbvTbLXDECYkyaAaZg9qwfxhoSXW0hXVV1/rEpXnqbMHcLJ2VO38Wo2W/9z5H6a3n65aDKJmSDKopvHdG7P0wQ7Y6ORbaUr1tS5RedwzE5mhD1Tl3LY6W97p/Q4PtHhAlfOLmiXvYCYwtK0/qyZ0wklfNypNmoP6XJeoPA+c2kmwY+3OjHfTu/Hfgf+lb8O+tXpeUXskGZhIt2aefDm1C15OMryuuup7XaLy6BQDL6TV3gztQKdAPhv8Ge282tXaOUXtk2RgQq38Xdj0eHfaNTDvCULmTuoSla/j5cPcUwudyW092/LZ4M+kDHUFREdHo9FoOHbsmNqhoNFo2LhxY6VeI8nAxPxc7Phqalf+LUNPq0zqElXMrAtHsbequdXDHmn5CKsGrcK9GqW0x48fj0aj4fXXXy+2fePGjWg0lRt5ERQUxLvvvlvlWETZJBnUAFtrHW+OasfC4a2w1slQo8qSukQV450aw1Q7009Ec9G7sLTPUp7r/BzWuupPJrO1tWXx4sXcvClNf+ZMkkENGts1iC+mdMHPxVbtUCyK1CWquDGndhLkYLqquh28O/DNsG/o07CPyY5599134+vry2uvvVbmfhs2bKBVq1bo9XqCgoJ46623ip7r3bs3ly9f5umnn0aj0ZR5V5Gamsqjjz6Kt7c3zs7O9O3bl+PHjxc9P3/+fNq3b8+KFSto2LAhjo6OTJ8+HYPBwJIlS/D19cXb25tXXnml2HE1Gg0fffQR99xzD3Z2djRu3Jj169eXeU2//vornTt3Rq/X4+fnx/PPP09BQQEAa9aswcPDg9zc3GKvGTlyJGPHji16/MMPP3DHHXdga2tLkyZNWLBgQdExAM6fP0/Pnj2xtbUlNDSUHTt2lBnT7UgyqGEdg9z5ceZd3NXcU+1QLIbUJao4a2M+L2RWv39Fg4bJbSazYuAKfB1MW6FXp9Px6quv8v7773Pt2rVS9zl8+DCjR4/mgQce4OTJk8yfP5+5c+eyatUqAL799lsaNGjAwoULiYmJISYmptTjKIrCkCFDiI2NZcuWLRw+fJiwsDD69etHcvJfI9QuXLjATz/9xNatW/niiy9YsWIFQ4YM4dq1a/z6668sXryYF198kf379xc7/ty5cxk5ciTHjx/nkUce4cEHHyQyMrLUWK5fv87gwYPp1KkTx48f56OPPuJ///sfL7/8MgCjRo3CYDCwadOmotckJiayefNmJkyYAMC2bdt45JFHmDlzJhERESxfvpxVq1YVJSqj0ch9992HTqdj//79fPzxxzz33HMV+KmUJMmgFrg72LB6Qmf+r3+wTFCrAKlLVDndLh2gn2vVy1zfWrT+ybAnsdLWzPDof/3rX7Rv35558+aV+vzbb79Nv379mDt3LsHBwYwfP57HH3+cN954ozBGd3d0Oh1OTk74+vri61t6wtq9ezcnT55k/fr1dOzYkebNm/Pmm2/i6urKN998U7Sf0WhkxYoVhIaGMmzYMPr06cPZs2d59913CQkJYcKECYSEhPDLL78UO/6oUaOYPHkywcHBLFq0iI4dO/L++++XGsuyZcsIDAzkgw8+oEWLFowYMYIFCxbw1ltvYTQasbOz46GHHmLlypVFr1m3bh0NGjSgd+/eALzyyis8//zzjBs3jiZNmtC/f38WLVrE8uXLAdi5cyeRkZGsXbuW9u3b07NnT1599dUK/Uz+SZJBLdFqNczs15zPp3Qh0N1O7XDMmtQlqrzZ0RHYVqFq6J1+d7Lh3g10C+hWA1EVt3jxYlavXk1ERESJ5yIjI+nevXuxbd27d+f8+fMYDIYKn+Pw4cNkZGTg4eGBo6Nj0delS5e4cOFC0X5BQUE4OTkVPfbx8SE0NBStVltsW3x8fLHjd+3atcTj290ZREZG0rVr12JNWt27dycjI6PoDmnKlCls376d69evA7By5cqiTvdb17Nw4cJi1zJlyhRiYmLIysoiMjKShg0b0qDBXwNW/hljRcksqVrWpYkHW5/syes/neGzA5dRFLUjMj9Sl6jy/G9eYWKjISxLPVmh/XUaHdPaTePRto/WWqG5nj17MnDgQObMmcP48eOLPacoSol+AKUKfxxGoxE/P78Sn+gBXF1di/5vbV28Y1yj0ZS6zWgsvwnudv0XZV3Tre0dOnSgXbt2rFmzhoEDB3Ly5El++OGHYtezYMEC7rvvvhLHt7W1LfV7VNlRWrdIMlCBg96KRSNac08bX2Z/c4JrN2Uo5d9JXaKqmXjqZ74PacP1rLgy9/O292bxXYvp6NuxliL7y+uvv0779u0JDg4utj00NJS9e/cW2/bHH38QHByMTle47KeNjU25dwlhYWHExsZiZWVFUFCQSWMH2L9/f7HO3f3799OhQ4dS9w0NDWXDhg3FksIff/yBk5MTAQF/dfpPnjyZd955h+vXr3P33XcTGPhXuZGwsDDOnj1Ls2alr4UdGhrKlStXuHHjBv7+/gDs27evStcmzUQq6tbUk21P9eSRLg2pYjKvk6QuUdXoC3KYnVd2U9E9QffwzbBvVEkEAG3atOHhhx8u0c7+zDPP8PPPP7No0SLOnTvH6tWr+eCDD5g1a1bRPkFBQezZs4fr16+TmJhY6vHvvvtuunbtyogRI9i2bRvR0dH88ccfvPjii4SHh1c7/vXr17NixQrOnTvHvHnzOHjwII8//nip+z722GNcvXqVJ554gjNnzvD9998zb948/u///q9Yc9TDDz/M9evX+fTTT5k4cWKxY7z00kusWbOG+fPnc/r0aSIjI/nqq6948cUXi643JCSEsWPHcvz4cX777Tf+85+qLT0qyUBlDnorXh7RhnWT7iTAVfoSQOoSVUff83vp4dqixPaGTg1Z3n85S3otwc3WTYXI/rJo0aISzRthYWF8/fXXfPnll7Ru3ZqXXnqJhQsXFmtOWrhwIdHR0TRt2hQvL69Sj63RaNiyZQs9e/Zk4sSJBAcH88ADDxAdHY2PT/VXi1uwYAFffvklbdu2ZfXq1axbt47Q0NI77wMCAtiyZQsHDx6kXbt2TJs2jUmTJhW9kd/i7OzMyJEjcXR0ZMSIEcWeGzhwIJs3b2bHjh106tSJLl268Pbbb9OoUSMAtFot3333Hbm5uXTu3JnJkyeXGBJbURqlKg1zokZk5hbw6pZIPj94pd72Jeg0RqJsx0o5imq47NmEf7loyDfmY6O1YVKbSUxuMxkbnY3aoVk0jUbDd999V+IN2xT69+9Py5YtWbp0qcmPXVHSZ2BGHPRWvPKvNozuGMjCzREcvlz/ZmwG2eWiqUCnnbi9RokXGRs4hNN2DrzY5UUaOTdSOyRxG8nJyWzfvp1du3bxwQcfqBqLJAMz1C7QlQ3Tu/HD8Ru8/tMZrqfUnw7mxnbZIBOQq8elIY83H41V6Ai1IxHlCAsL4+bNmyxevJiQkBBVY5FmIjOXk2/gf3svsWx3FJl5FR9vbakmBlzlpaSqzaCs96wdoMdT0G0mWEsJFFE50oFs5mytdczo04zdz/ZmdMcGdX4Gs791ltohWCANtBkNT4RDr9mSCESVSDKwEN5Otiz5dzs2Pd6DLk2qXlLY3PnopBRFhWm00Oo+eGwfjPwUnP3VjkhYMOkzsDCtA1z48tGu/HEhkWW7L7A3qvTx1pbKSyvJoFwaHbS+D3o+C17qtjOLukOSgYXq1tSTbk09OX41hQ93R7EjMq5ODEd1I03tEMyXRgdtR8Nds8Cz9BmpQlSVdCDXEefj0ln2ywV+OH6DAqPl/kj3NV2N3/VtaodhXrRW0PYB6PkMuDdROxpRR0kyqGOuJmfx8a8XWH/4GnkFljde/0Sj93COO6B2GObB2h7a3g89ngY3mSsgapYkgzoqPj2Hzw9cYX34NYuap3DWbz76m+fUDkNdPq3hjvGFicDWWe1oRD0hyaCOMxoVfotK5KtDV9gZEU+ewbzvFi66PYE2O0ntMGqftX1hp/AdE6CBOkXkRP0myaAeScrI5dsj1/kq/CpR8ea3tGS9rEskdwHCTEgyqKfCo5P58tBVfjwRQ3a+ecxsbmqfzc/GSWqHUfNsXaDlMLkLEGZFkkE9l51n4NdzCeyIiGPXmThuZuWrFsvdHsn8N7P02vAWzzkAQgZDiyEQdBfoZFS3MC/yG1nP2dnoGNTal0GtfTEYFcKjk9keEceOiDiuJNduaYiGtpl1q0idV4vCN/8WQyEgTO1ohCiT3BmI2zobm87207HsiIzj5PXUGp/U9mLQWSbHLqjZk9QoDTToVJgAWg4Dj6ZqByREhcmdgbitEF8nQnydeKJfc5Iz8wiPTubw5Zscik7m1PU0k49Msri6RBod+LWFRt3//OoKduquIiZEVUkyEBXi7mDDgFa+DGjlCxSW1j5xLZXwy8mER9/k8OWbpGZXr7/B7OsS2blBQMfCTt8GHSHwTtA7qR2VECYhyUBUia21js6N3encuLCCqqIonI/P4OS1VC4kZPz5lcnlpEzyDRVrXzKbukQ6fWHZB4+m4NkcvFoWvvlLs4+owyQZCJPQaDQE+zgR7FP8k3KBwciV5Cyi4guTw61EcTU5i6TMvGL9EM7GlNqMGFwaFL7BezQHj2aFxd88moFLQ9BKdXdRv0gHslBNgcFIYkYeCem5xKfncEdeOK4ZUZB9829fKWAsAMUIilL4L0rpjwH0LmDvVtikY+cGdu5//d/+7//3ACu9ilcvhHmRZCCEEEJWOhNCCCHJQAghBJIMhDAr8+fPp3379iW2+fj4oNFo2Lhxoypx3c748eMZMWKE2mGU+n0TlSPJQAgTio+PZ+rUqTRs2BC9Xo+vry8DBw5k3759VTpeZGQkCxYsYPny5cTExHDPPfeYOGIhCsnQUiFMaOTIkeTn57N69WqaNGlCXFwcP//8M8nJyVU63oULFwAYPnw4Go3GlKEKUYzcGQhhIikpKezdu5fFixfTp08fGjVqROfOnXnhhRcYMmQIAKmpqTz66KN4e3vj7OxM3759OX78eKnHmz9/PsOGDQNAq9WWmQx++OEH7rjjDmxtbWnSpAkLFiygoKCg6HmNRsPy5csZOnQo9vb2tGzZkn379hEVFUXv3r1xcHCga9euRcnn1vnbt2/P8uXLCQwMxN7enlGjRpGSknLbOHJzc5k5cybe3t7Y2trSo0cPDh06BBROTGzWrBlvvvlmsdecOnUKrVZbdO6KfI9ef/11fHx8cHJyYtKkSeTk5Nw2JlExkgyEMBFHR0ccHR3ZuHEjubm5JZ5XFIUhQ4YQGxvLli1bOHz4MGFhYfTr16/UO4dZs2axcuVKAGJiYoiJiSn1vNu2beORRx5h5syZREREsHz5clatWsUrr7xSbL9FixYxduxYjh07RosWLXjooYeYOnUqL7zwAuHh4QA8/njxEuJRUVF8/fXX/PDDD2zdupVjx44xY8aM234PZs+ezYYNG1i9ejVHjhyhWbNmDBw4kOTkZDQaDRMnTiy6pltWrFjBXXfdRdOmTSv0Pfr666+ZN28er7zyCuHh4fj5+bFs2bLbxiQqSBFCmMw333yjuLm5Kba2tkq3bt2UF154QTl+/LiiKIry888/K87OzkpOTk6x1zRt2lRZvny5oiiKMm/ePKVdu3ZFz3333XdKeX+md911l/Lqq68W27Z27VrFz8+v6DGgvPjii0WP9+3bpwDK//73v6JtX3zxhWJra1v0eN68eYpOp1OuXr1atO2nn35StFqtEhMToyiKoowbN04ZPny4oiiKkpGRoVhbWyvr1q0r2j8vL0/x9/dXlixZoiiKoty4cUPR6XTKgQMHip738vJSVq1aVeHvUdeuXZVp06YVe/7OO+8s9n0TlSd3BkKY0MiRI7lx4wabNm1i4MCB/PLLL4SFhbFq1SoOHz5MRkYGHh4eRXcRjo6OXLp0qVjzTFn+/rpp06YBcPjwYRYuXFjsuSlTphATE0NW1l9rUrRt27bo/z4+PgC0adOm2LacnBzS0v6qEdWwYUMaNGhQ9Lhr164YjUbOnj1bIrYLFy6Qn59P9+7di7ZZW1vTuXNnIiMjAfDz82PIkCGsWLECgM2bN5OTk8OoUaOKrqW871FkZCRdu3Ytdu5/PhaVJx3IQpiYra0t/fv3p3///rz00ktMnjyZefPm8dhjj+Hn58cvv/xS4jWurq4VOvaxY8eK/u/sXLhmstFoZMGCBdx3332lxnKLtbV10f9v9T+Uts1ovH1p8lv7lNZ/ofxZzOCfzymKUmzb5MmTGTNmDO+88w4rV67k/vvvx97evujc1f0eiaqRZCBEDQsNDWXjxo2EhYURGxuLlZUVQUFBVTpWs2bNSmwLCwvj7NmzpT5XXVeuXOHGjRv4+/sDsG/fPrRaLcHBwaXGZmNjw969e3nooYcAyM/PJzw8nKeeeqpov8GDB+Pg4MBHH33ETz/9xJ49e4pdS3nfo5YtW7J//37Gjh1btG3//v0muNr6TZKBECaSlJTEqFGjmDhxIm3btsXJyYnw8HCWLFnC8OHDufvuu+natSsjRoxg8eLFhISEcOPGDbZs2cKIESPo2LFjlc770ksvMXToUAIDAxk1ahRarZYTJ05w8uRJXn755Wpdk62tLePGjePNN98kLS2NmTNnMnr0aHx9fUvs6+DgwPTp03n22Wdxd3enYcOGLFmyhKysLCZNmlS0n06nY/z48bzwwgs0a9asWBNPRb5HTz75JOPGjaNjx4706NGDdevWcfr0aZo0aVKta63vJBkIYSKOjo7ceeedvPPOO0Xt54GBgUyZMoU5c+ag0WjYsmUL//nPf5g4cSIJCQn4+vrSs2fPojb8qhg4cCCbN29m4cKFLFmyBGtra1q0aMHkyZOrfU3NmjXjvvvuY/DgwSQnJzN48OAyR+68/vrrGI1GxowZQ3p6Oh07dmTbtm24uRVfAW7SpEm8+uqrTJw4sdj2inyP7r//fi5cuMBzzz1HTk4OI0eOZPr06Wzbtq3a11ufSdVSIUSp5s+fz8aNG4v1U5jK77//Tu/evbl27Vq1EqEwHbkzEELUmtzcXK5evcrcuXMZPXq0JAIzIkNLhRC15osvviAkJITU1FSWLFmidjjib6SZSAghhNwZCCGEkGQghBACSQZCCCGQZCCEEAJJBkIIIZBkIIQQAkkGQgghkGQghBACSQZCCCGA/wf93VAOgkjAJwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAFfCAYAAAAVjCYOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKAUlEQVR4nO3dd3gUdf4H8PfMbElvkFBDCSEJJWDoBAVp0kSqggqIih4iip4N9PDUU9HTk1M4RMWCIKggKnhw/KiB0Dsk9JoQWkhIz7aZ+f2xJBATIHVny/v1PDwPmczOfLKb7Hu/Zb4jqKqqgoiIiCpN1LoAIiIiV8cwJSIiqiKGKRERURUxTImIiKqIYUpERFRFDFMiIqIqYpgSERFVEcOUiIioihimREREVaTTugByf8uWLcO0adPKte+xY8dquJqyzZo1C7Nnz8Z//vMf9OnTR5ManEFiYiICAgLQpk2bW+4THR1d7uPNmDEDw4cPr47SiJwaw5QcplOnTujUqZPWZdAtLFq0CG+//Tb+85//3Ha/yZMnl/g6LS0Nv/76K2JiYkp9EGnRokW110nkjBim5DCdOnXCc889p3UZdAsZGRnl2u/Pr+GOHTvw66+/okWLFnx9yWNxzJSIiKiKGKbklHbs2IHo6Gj8/vvv+PnnnzFgwADExsaif//++P333wEA69atw/Dhw9G2bVv069cPP/zwQ4ljzJo1C9HR0Th27BjeffdddOnSBe3bt8f48eOxZ8+ectVx8OBBTJo0CZ07d0ZsbCwGDhyIuXPnwmKxFO/z+uuvIzo6Glu3bi31+F27diE6OhozZ84EAIwdOxZ9+/ZFWloapkyZgg4dOqBDhw54/vnnkZmZiZycHEyfPh2dO3dGp06dMHHiRJw/f77UcZOTk4vratOmDYYMGYLFixfjzzeB6tWrF8aOHYtTp05h4sSJaN++PeLi4vDUU0/h6NGjxfuNHTsWs2fPBgA8++yzFRoXvZ2+ffuibdu2yMvLK/W92bNnIzo6Glu2bAFgH4t9+eWXsX37dowcORJt2rRBr169MHPmTJjN5lKPP3fuHF5++WXEx8ejdevWGDBgAL744gtYrdZqqZ2oIhim5NS+/fZbzJgxA+3bt8fIkSNx6dIlvPrqq/jwww8xZcoUREREYNSoUcjOzsY777yDtWvXljrGtGnT8Pvvv2PgwIHo06cP9u3bh8ceewyJiYm3PffatWvx8MMPY/PmzYiPj8fo0aMhSRJmzpyJxx9/vDhQhw4dCgBYsWJFqWMsX74cADBkyJDibXl5eXj44Ydx8eJFPPTQQ2jWrBlWr16NKVOmYPz48di3bx+GDRuG2NhYbNiwAc8//3yJkExISMDo0aOxfft29OzZE2PGjIGiKHjrrbfw5ptvlqrh4sWLGD16NDIyMvDQQw+hc+fO2LRpE8aOHYvMzEwAwLBhw4rHswcOHFhqXLSyhgwZApPJVObrsmLFCtSpUwddu3Yt3nbs2DFMmDAB3t7eePTRRxEYGIi5c+fi6aefhqIoxfslJydjxIgR+N///ocuXbpg/PjxCAwMxCeffIJnnnkGsixXS/1E5aYS1bBffvlFjYqKUseMGaN+9tlnt/y3b9++4sds375djYqKUlu0aKEeOnSoePuPP/6oRkVFqVFRUeqGDRuKt+/YsUONiopSp0yZUrzts88+U6OiotR27dqp586dK96+f/9+tWXLlmrv3r1VWZZL7LtmzRpVVVU1NzdX7dixo9quXTs1KSmp+LFWq1V96aWX1KioKHX27Nmqqqqqoihqz5491fbt26tms7l4X7PZrHbs2FEdMWJE8bYxY8aoUVFR6rPPPqsqilJ8zHvvvVeNiopSR40aVeIYRfufPHlSVVVVLSgoULt06aJ27dpVTU1NLd5PlmX1ueeeU6OiotSNGzcWb+/Zs6caFRWlvv3228XnU1VV/dvf/qZGRUWpixYtKvV8FT0H5VX0Wr322mulvpeSkqJGR0erTz75ZIntBw4cUKOiotQPP/yweFvR6/r2228Xb7Nareqzzz6rRkVFqb/88ouqqvbn+/7771djY2NL/G6oqqq+//77alRUlLpw4cIK/QxEVcWWKTnMzp07MXv27Fv+279/f6nHtG/fHq1bty7+ul27dgCApk2b4t577y3e3rZtWwD2maV/NmbMGDRq1KjEvgMHDkRqair27dtXZq1r165FdnY2xo0bh1atWhVv1+l0eP311+Hl5YVffvkFACAIAoYMGYLc3FwkJCQU75uQkIDs7OwSrdIi48aNgyAIxceMjY0FYO9uNRgMpX6uoq7e9evXIzMzE08++SQaNmxYvJ8oinjppZcAoLiumz311FPF5wOAHj163PL5qk7h4eFo3749tm3bVtwKBspusQOAj48PpkyZUvy1TqfDq6++CuBGy//AgQM4fvw4Ro4cWeJ3AwCmTJkCvV6PZcuW1cjPQ3QrnM1LDjN58uQKz/Zs3Lhxia+9vb0BoESQAIDRaASAEmOZRcq6HKdNmzZYvnw5jh49ivbt25f6ftF4YseOHUt9LyQkBE2bNsWRI0eQm5sLf39/DB06FHPmzMGKFSvQt29fAPY3f51Oh0GDBt3x5/Lx8bntz1U0DpiUlATA3s05a9asUseVJKnEWGjRMerVq1dim5+fH4Cyn6/qNnToUOzevRurVq3Co48+ClmWsWrVKsTExJQam42OjkZgYGCJbY0aNUJQUFDxz5WcnAwASElJKfM58PX1xbFjx6CqaokPEEQ1iWFKTq0oPP/s5tbbndSpU6fUttq1awNAmRNjbt5eFDp/FhYWhiNHjqCwsBD+/v5o3Lgx4uLikJCQgLy8PKiqig0bNuCee+5BSEhIqcdX9ufKzc0FAPz3v/+95T7Z2dl3PGZRyKh/mrBUE/r3749//OMf+OOPP/Doo49iy5YtuHr1Kp588slS+5b1WgH21+vcuXMAgJycHADA5s2bsXnz5lueNz8//5avH1F1Y5iS2zOZTKW2FYVScHBwmY/x9fUFAFy5cqXM7xe9oQcFBRVvGzp0KPbt24cNGzZAlmVYLJYyu3iroqgF+91335WYuOPM/P390adPH6xcuRKXL1/GqlWrIEkSBg8eXGrfsmbtAvbnu+i1KnoO3nvvPYwcObLmCieqAI6Zkts7dOhQqW1FY6W3WjavaOWesi6hycvLw5EjR9C4ceMSrb6BAwfCYDBgw4YN2LBhA/z9/dGrV6/q+BGKFXWLFnX33iwrKwvvvfde8aVDFVWTXaJDhgyBqqpYt24dNm3ahK5duyI0NLTUfklJSSVm7QL2cd0rV64Ujx/f7jmwWq344IMPsGDBghr4KYhujWFKbu/rr78u0cLcu3cvVqxYgVatWiEmJqbMx/Tp0wf+/v5YtGhR8RgdANhsNrz33nswmUylWp0BAQHo2bMnNm/ejC1btqB///7FY57VpW/fvvDz88O8efNw5syZEt/76KOP8P333yMlJaVSx9bp7B1VNTGOevfddyM0NBTz5s3D1atXb9liT09Px7x584q/LgpHABgxYgQA+zh2w4YNsXTp0lITyL788kt8++23JV4zIkdgNy85zM6dO8ucMHKzgQMHolmzZtV63qysLAwbNgx9+/ZFXl4eVq9eDS8vL/zjH/+45WP8/Pzw/vvv48UXX8To0aPRt29f1KpVC9u3b8fx48fRoUMHPPXUU6UeN2zYMKxevRpA6Zmq1SEgIADvvvsuXn75ZQwbNgx9+vRBWFgYdu3ahYMHDyI2NhZPPPFEpY5dNF75+eef48iRI5g8eXK1fRgo6tb95ptv4OPjUzxJ6898fHwwc+ZM7NixA82aNcO2bdtw/PhxDBkyBD179iw+1ocffoinnnoKY8aMQe/evREeHo6kpCRs374dDRs2xF//+tdqqZuovBim5DA7d+7Ezp07b7tPixYtqj1M33jjDezduxf//e9/IYoievbsiSlTptzxPPfddx8WLVqEzz//HJs3b4bFYkGjRo3w6quvYty4cdDr9aUec88998DX1xdBQUHo0KFDtf4cRQYMGIC6deviiy++wObNm1FYWIgGDRpg0qRJePLJJ4vHeytq4MCBSEhIwMaNG7Fo0SIMGzYMERER1Vr3N998g/vuu++WE7AaNWqEF154ATNnzsSuXbvQsGFDvP766xg3blyJ/Tp06IAlS5bg888/x7Zt27BhwwbUrVsXY8eOxcSJE4snmBE5iqA6YjofkQa0uK3a6dOnMWDAADzzzDN44YUXHHJOV/HTTz/hzTffvOXkqejoaMTExFR6zJdISxwzJaomqqpizpw5EEWxeHyP7HJzczF//nw0atQIXbp00bocomrHbl6iKrJYLBg+fDjMZjNSUlIwYsQIhIeHa12WU9i5cydmzJiBS5cuITMzEx9++CEXUiC3xJYpURUZDAbo9Xqkp6dj4MCBeOONN7QuyWmEhYUhPT0diqLg+eefL74pAJG74ZgpERFRFbFlSkREVEUMUyIioipimBIREVURw5SIiKiKGKZERERVxDAlIiKqIoYpERFRFTFMiYiIqohhSkREVEUMUyIioipimBIREVURw5SIiKiKGKZERERVxDAlIiKqIoYpERFRFTFMiYiIqkindQFE7kpWVFhlBbKiAgAEAdCJIvSSAEEQICsq8i025JlsyCm0IqvQiqwCC0RBgFEnwqAToZfs/ww6ETpRKP5aJwnQiQJ0kgijToSXXoKsqLDYFCiqClEADDoJkiho/CwQeQaGKVEVWWUFFpsCnSTAqJOQkWfGqfR8JF/IxqVsE7KvB2V2gdX+/wILsgutyLfI1VaDl15EmL8X6gQYEebvhbAAI+oEeCGiti+a1PZF/UAv+Hnpi2uVRAFeeqnazk/k6QRVVVWtiyByBWabDJuswqgTIQoCLuWYcOJyLpIu5ODklTycvJKHU+l5KKjGkKxOPgYJ4cE+CA/xRlQdf3RqGoI2DYMQ7KNHoUWG7noLmIgqjmFKdAsFFhv0kgirrGBfShZ2nMnAicv20DybkQ+r7B5/OqF+RrQJD8Rd4UHo3LQWWtUPgJdegskqw6gToZMYsER3wjAluq7AYoNBJyLPZMPOM5lIPHkVO89k4tjlXHjaX0l4iDfaNgxCXHgQOkXUQnQdfyiqCun6uC0RlcQwJY9VNFlHEIBdZ69hzeHLSDyRjlPp+VqX5nT0koBOTUPQr1VdDGxdD4E+esiKynFXousYpuRRzFYZkijg/LVC/HHwAjaduIp9KdfcpsvWUWLq+qNPizoY3LY+mof5wWSV4WPkfEbyXAxTcntWWYGqAjmFVizZk4ple9Nw4kqe1mW5jVB/I3rHhOH+tvXRuWkIrLICIy/LIQ/DMCW3pCgqzLICRVGx4sAFLN1zHntSrnnc2Kejeesl3N28NgbF1sOA1nWhqCq8DWyxkvtjmJJbKZqBu+HoFfy8OxUJx9PZhasRX4OEIXc1wIR7mqJhsA9EAZwZTG6LYUouz2yVIUkC9qVk4cedKVidfBl5ZpvWZdFN4sKDML5bEwyMrQebrLC1Sm6HYUouq9Bin0z0464UfLnpNM5fK9S6JLqDQG89RrZviCfvbopafgboRJFjq+QWGKbkcgotMmyKgnmJZzB/61lkFVi1LokqoWtELTzerQl6tQiDVVbhzctsyIUxTMllFFpl5BZa8dn6k1i6JxUmq6J1SVQNQv2MGN0pHH/p3gySKMDbwFAl18MwJaemKCqsioLUzEL8e+1xrEq6VHwXFnIvvgYJ47o2xrM9mzNUyeUwTMkp2WQFKoB9KVn4dN1xbDmZoXVJ5CA+xaEaCZ0oMlTJJTBMyemYbTIOpGbj7RXJSL6Qo3U5pBEfg4Tx8U3wXK/mEARw6UJyagxTchqFFhlZhRZM/y0Ja49c0bocchKB3npM7hWJ8fFNoKgqjDqGKjkfhilpzmyToarAzDXH8e2Ws7DInFhEpdUL9MKr/aMxuE19AFwAgpwLw5Q0IysqVFXF8gMXMGPlUaTnmbUuiVxA8zA/fDiyDVrWC2DXLzkNhilpwmSVcfJKHqYtO4RDadlal0Mu6KEO4XjrgZbQiQIM7PoljTFMyaFMVhn5ZhveXnEYyw9c0LoccnGhfka8P7w1ekSFwaBjty9ph2FKDiErKmRFxRcJpzBn4ykUWmWtSyI30rdlHfxzRBt4GyR2/ZImGKZU40xWGeevFWDSD3tx/DLvI0o1w9+ow+uDWmBk+4aQBAEi1/wlB2KYUo1RFBWyam+NfrruBG+FRg7RoXEwZo66C6H+RrZSyWEYplQjTFYZV/PMePaHvThwnhOMyLEMkojnekdiYo9mEAWBd6ahGscwpWpnsSlYsjsV7/xxGGYbrxkl7UTX8ce8xzogzN8II1upVIMYplRtrDYFFlnBCz/tx5rDl7UuhwiAfQH9f4+Owz3Na7Pbl2oMw5Sqhckq4+ilXExcsAeXckxal0NUyoS7m+K1ATHQiQIEgd2+VL0YplRlVlnBnA0n8em6E+Dd0ciZdWwSjK/GdYCPQcfrUqlaMUyp0mRFhdkmY8L83dh6irdII9cQ6mfEV491QExdf3b7UrVhmFKlWGwyMvOteHTedpxKz9e6HKIK0YkCpg2MwdguTdhCpWrBMKUKM1llnLici3Hf7MS1AqvW5RBV2oDWdTFz1F3QSQJ0IkOVKo9hShVisspYd+QK/vrzfl72Qm4horYvvnu8I8ICvNjtS5XGMKVys9gUzE04hU/WHNe6FKJq5WuQ8N0TnRDbIJCBSpXCMKU7UlUVVlnFK0sP4Pf9vNMLuSeDJGLu2HaIb8brUaniGKZ0WzZZgcmq4PHvdmLX2Wtal0NUoyRRwCcPtUW/VnUZqFQhDFO6JbNNxtVcCx6Ztx3nMgq0LofIIQQBeGtwK4zuFA4jbzpO5cQwpTKZrTJOpufhka92ILuQM3bJ87zYpzmeuTeSl85QuTBMqRSzTcaZq/l48PNtyDXbtC6HSDOPd2uC1we2gF5ioNLtMUypBItNQUpmAYZ/vgU5hQxSouHtGuDDEW0YqHRbDFMqZrHJSMsyYficLVyMgegm97Wsg9mPtGOXL90Sw5QAABZZwaVsE4b9Zwsy8i1al0PkdOKb1cI34ztyli+ViR+zCFZZQXqOGSM+38ogJbqFracy8OT8XbBy5S8qA8PUw1llBVfzzBj++Rak55q1LofIqW05mYHnf9wHq8xApZIYph7MJiu4lm/BiDlbcTmHQUpUHquSLuHvy5NhYQuVbsIw9VA2WUF2oRXDP9+KC9kmrcshcimLdqRg1roTMNtkrUshJ8Ew9UCqqqLAKmP451tx/lqh1uUQuaRZG07ix52pMFkZqMQw9Ug2RcUT3+7iEoFEVfT2imRsPXWVgUoMU09jscn4++9J2H2Oi9YTVZWiApN+2IuzV/M5hurhGKYexGSVsWxvGhbtTNW6FCK3YbIqGPP1DmQVWCArvGzfUzFMPYTFJuPopRxM/z1J61KI3M7VPAse/moHJyR5MIapB5AVBdmFNjz53W5YZX5yJqoJp9LzMGH+bl6D6qEYph5AVlQ89s1Orm5EVMO2nsrA3IRTnJDkgRimbs5iU/DiTwdw+GKO1qUQeYSZa47jyMUcTkjyMAxTN2ayyvg68TT+e+ii1qUQeQxFBSYu3MPxUw/DMHVTZquMXWcz8c/Vx7QuhcjjXM4x47lFXMPXkzBM3ZCiqMgssGDSwr3gDfaItLHxeDrmbz3L8VMPwTB1Q7KqYtLCvcg127QuhcijfbDqKE6n57OF6gEYpm7GZJXxRcIp7EvN0roUIo9nU1Q8vYCXy3gChqkbsckKUjIL8O+1J7QuhYiuO3+tEC/+dICze90cw9SNKCrwzMI9sHFJMyKnsjr5Epbs4R1m3BnD1E2YrDLeX3kEp9LztS6FiMrwzorDuJBVCFlhC9UdMUzdgE1WcOxSLuZvO6t1KUR0C2abgr/+fADsOHJPDFM3oKjACz/t52UwRE5uf2oWft2XBjO7e90Ow9TFmawyZq49jjNX2b1L5AreX3mEN5xwQwxTFyYrKlIzC/DlptNal0JE5ZRVYMXbfyRzMpKbYZi6MEVVMeXH/bwhMZGLWbrnPE5eyePfrhthmLook1XGoh0pvBsMkQtSVeDlJQegcKKD22CYuihVBWauPa51GURUSUcv5eKHHefY3esmGKYuqNAq47N1x5FVYNW6FCKqgo9XH2eYugmGqQsqMNvwzZazWpdBRFWUZ7bhb78l8VIZN8AwdTFFKx2Zuc4nkVv44+BFHDyfDRsXw3dpDFMXoqoqLmYX4td9aVqXQkTV6LVfDmpdAlURw9SFWGUVf/89mcuREbmZ01fzsfLQRd5ZxoUxTF2ETVFw4HwWNp24qnUpRFQD/r32BERB6yqoshimrkIF3lqerHUVRFRDTl/Nx5rDl3kjcRfFMHUBFpuC/yVdQvIFLtBA5M4+WXMcAlunLolh6gIEAZix6qjWZRBRDTtxJQ8bj6ZzZq8LYpg6ObNNxo87U5CWVah1KUTkAP9ac0zrEqgSGKZOTieK+GrzGa3LICIHOXIxF1tOZbB16mIYpk5MUVRsPXkVKZkFWpdCRA708epj4BVwroVh6sSsioLPE05pXQYROdihtGzsOpvJW7S5EIapE7uUbcLWUxlal0FEGvh49THeos2FMEydVKFFxucb2Sol8lR7U7KwPzULClunLoFh6qQUVcVv+7kGL5Enm73+JCyciOQSGKZOyGSVsWD7OZis/CMi8mSbT6Qj12TTugwqB4apE9JJAuZvPat1GUSkMUUFvt92ljcQdwEMUydjkxWsP3IFF7NNWpdCRE7g592p0Et8q3Z2fIWcjKICcxNOa10GETmJyzlmJJ5I50QkJ8cwdTJnM/KxN+Wa1mUQkRP5dutZTkRycgxTJ1JgtuF7jpUS0Z9sOp7OcVMnxzB1Ika9hP8lX9K6DCJyMooKLN1zHhYbA9VZMUydyKHzWbiaZ9G6DCJyQkv3nIfIm506LYapkyiw2PDLXi7SQERlO3opF+ev8VaMzoph6iS8dOziJaLbW7jjHAot7Op1RgxTJ5F8IRvpuWatyyAiJ/b7/gsw6Pi27Ywq/KrMmjUL0dHRt/23bNmych9v2bJliI6OxqZNmwAAO3bsQHR0NBYvXlyux2dmZiIvL6/466lTpyI6Ohpms+sEE7t4iag80nPNOHIxR+syqAy6yj5w4sSJiIiIKPN77dq1q3RBFZGQkIBXXnkFixcvhp+fHwBg1KhR6Nq1K/R6vUNqqA5GnYRVSRe1LoOIXMD/ki8hMswPXnpJ61LoJpUO0/j4eHTu3Lk6a6mwgwcPIjs7u8S2uLg4xMXFaVRR5Ry9lIPLOa7TkiYi7SQcS8fzvZprXQb9CTvfNVZokfHLnvNal0FELiLpQjbMvN7U6dRYmN5q7PLjjz9GdHQ0zp+vWoBMnToVs2fPBgAMHDgQY8eOLfO8s2bNQsuWLXH27Fk8/fTTiIuLQ5cuXfDBBx/AZrNh5cqVuP/++9G2bVsMHToU27ZtK3EeVVUxf/58DBo0CLGxsejWrRveeOMNXL16tUr1FzHoRKxK4ixeIiofVbWviKSqXKvXmVS6mzc3NxeZmZmltvv6+sJoNFapqPIYNWoU8vLysGbNGrzyyito0aLFLfdVVRVjx45Ft27d8Nprr2H16tX49ttvcfLkSSQnJ2PcuHHw9vbGl19+icmTJ2PNmjUICQkBAEyfPh1Lly7F4MGDMWbMGKSlpeGHH37A9u3bsXTpUgQHB1fp5zh+OZd3iCGiCll75ArujQ6Dr7HSb+FUzSr9Sjz77LNlbp82bRrGjx9f2cOWW1xcHKKjo7FmzRr07NkTzZo1u+W+iqKgd+/eeOuttwDYW7Jdu3ZFYmIilixZgtjYWACAj48Ppk+fjv3796NXr17YtWsXlixZUupnGjBgAB588EF88cUXmDp1aqV/BpNVxh8HOfGIiCpm84l0eBs4AcmZVDpMX3vtNcTExJTa3rRp0yoVVFP69etX/P+AgADUqlULOp2uOEgBIDw8HACQnp4OAFi9ejUAoFevXiVa4fXq1UPz5s2xYcOGKoWpAGD76YxKP56IPNPVPAvOpOejWZif1qXQdZUO01atWjlkNm9ubi5MppLdoP7+/vDy8qrQcWrVqlXia51OV2qbKNqHkBXFfqujc+fOAQD69u1b5jGrevmNIAg4eD6rSscgIs+0OvkSJoREcBEHJ+HwDndZrtgstPfeew+//vpriW0zZszA8OHDK3QcSSrdJSLcYdFoRVFgNBoxd+7cCp2rvJLSsmGVOYmAiCpu4/F0PHm3c/YEeqIaC9OiVp7FYikxIamis2AnTJiABx54oMS2yMjIqhdYDg0aNEBiYiIiIyMRFhZW4nvr169HUFBQpY9ttsrYcOxKFSskIk+199w18KO486ix/oHQ0FAAwOHDh4u3ZWdnIzExsULHiYyMRHx8fIl/RcFWFNg1NUW8d+/eAIA5c+aU2L5//35MmjQJ8+fPr9Lxd5wpPRuaiKg8bIrKORdOpMZapoMGDcIXX3yBV155BU888QRUVcWPP/6IwMDAMi+pqYyiy1e+/fZb9OrVqzj8qkuPHj1w3333YfHixbh48SK6d++OjIwMLFy4EAEBAZgyZUqljy2JAg6kZlVfsUTkcdYfvYJOTUPgY+AlMlqrsZZpVFQUZs2aheDgYHz88cdYsGABRowYgYkTJ1bbOQYNGoT4+HgsX74cH3/8cbUd92YzZ87ESy+9hNTUVMyYMQM///wzunTpgsWLF99ybeLyOJWeD7NNqcZKicjTHL6QwxuGOwlB5TIaDicrChZuT8HflydrXQoRuTA/ow5Jb/e7845U4zinWgMmq4I9565pXQYRubg8sw3puVxBzRmwo10DXnoJB7S6vtScB92R/0G8mARYC6H6hUJu0hVK066AcNNnK6sJ0rE1kC4cBAqyAJ0RSu0IyDH9oAY1KN+5CjKhS14J8cpx+7l8QqA07gi5eU9AvOlSJUWGdOh3SKl7AFEHuWEc5Fb3A1LJX0/xzFboDi2H5b7XAa+Aqj8XRG7g8IUc9Iiu2HX3VP3YMtVAoVXGuYwCx5/YnAvDxn9DOrMVqncQ5CbxgN4b+gO/QLdroX0FbQCwWaDfPBu6ExugGv0hN7sHSlgUxEuHoU/4FELGmTufqzALho2fQjq/F0pIY8jN7gEkCbrDK6Hb/UOJXaVTm6E7nQglNApKnRaQTm2GdHhlyePJVuiOroEc0Y1BSnSTvSlZsHD+hebYMtVAclr2nXeqAbqkPyAUZMIWcTfkNsMAQYAMQEpaAd2JDVDqxEBp3AnSqc0Qsy/A1uwe+37XCVdPQp84F7r9S2Ht/crtz3V8PQRzLmyxQyBH9gAAyMog6BM/h5S2H/LVeKi17dcLi+d2QKkTA1vnx+yPFSVIZ7dBjr1xfbF0ZitgM0Nu3quanxUi13bkYg6sssKVkDTGZ9/BZEVF8oUcx59YkSFeOAhV72PvQr1pBqDcoj9UnRHSyQQAgHjxIFQIkFsMKHEItXYk1NrNIOZcBAqzbns64VqK/diNb1pyUpQgN+5k/2/muRv7FmRCCah/o9SgBhBsZsCcZ99gM0M6tg5yZHfA6FvhH53InR2+mANvPRe91xpbpg5mtsk4m5Hv+BNb8iHYzFBqNwN0hpLfk/RQ/UIhZKUBVhPkJvEQ6uUC+tLjMKpo/5URbJbbrr6iGuyhJxRkQg28EZSCKfv6929aoFvvDUG+cd9bwWqCCgHQ2c8vndoEqArkyHsr8AMTeYbz1wphlhV4iwxULbFl6mCqCqRoMV5a9Icm28r+vtUEASqEwmtQmnSGHN2n9D7mPIgZp6FKBqg+Ibc9ndK0K1QI0O39CUJ2GmAzQ7xwCNLxDVC9g6A0aHtj35DGENMOQsi5BBRcg5iyC2pwQ/sEJEshpBMb7ZOWygh3IgJOXcnTugSPx5apg3npJZzL1CBMDb5QfULswZafAfjeuGOOkHMJQv71Zcmst55mr0taAcFmhtw0vtRM2z9T6rWGrfNj0O35EYb1/7qxPbABrF2eKBGMcosBEDfPgWHdPwEAqt4L1q5PAwCkExvsM3yb3X3j4KpScuYxkYfbn5qFlvUCIIpcwEErDFMHEwTg/DUNwhSArfm90B9YBv32r2G760GogfUhZKVBt+9nQNIDsuXGjN4/kY6ugZSyC6pPMGwtB97xXEJeOqTDqwDZCrnBXVC9AiFmnIaYlQrdod9g6zC2OJDVgLqw9H7FfrkOVCh1WwLeQYA5F9KpTZBbDgR0Rohnd0B3eCVgzoMaGglru9GAT3A1PkNErikpLRuFVhm+Rr6la4XPvINl5ls0u+2a0rQbbHnpkE4lwrBpVvF2Obwd1NBI+4zZP4+nApAOr4Lu2BqoBl9Yuz4FGHxufyJVgW7bPAj5mbDeMwlqLfttomRVhXToN+hObYZ6ZBXk1oNvPMbL336t683nPbYOMPhAbhoPIecSdPt+hhzRDWqdFpCSVkC/+wdYu0+u/BNC5CaOXMyBTmKrVEsMUwdL1aKLt4ggQG4zDErjzhDTTwCqCqV2M6jB4dDtsN8BRzXeNDFIVaDbtwTSuR1QjX6wdvsL1IC6dz5NxlmIeemQwzsUB2nx+VsPhpSyG9K5XSXD9M8KsyCd2Qpbm6GApIN4dgdg8IXcZqi9i1eVod/+DYSci1AD6lXu+SByE6nXCmHUcQKSlhimDnbisvYTBdTA+pBvmmELAGJWKlS9l717FQBkG3Q750O6lAzVJ8QepH6h5Tq+cP2yGdW/TulvijqovrUhZqUCstXevVwG3dH/A7wDoVy/tEbIT4fqG1I8VlpUi5CXwTAlj3etwAJFUTlmqiHO4nAgk1XG6avahalu1wIYVr1ln8BzEyHrvP1az7Bo+wZVhW73AkiXkqH414Wl+3PlDlIAUL387cfNSy/9TUW2Xy6j975lkCLvKsRzO2GLua94FrKgKiXrLpqVzPcOIqgqkGOyal2GR2OYOpCsqNosI3id6hcGwZQDMXXvjY02C3QHfwWA4tWFpNObIV04BMW3Nqz3TAK8Ayt2npCmUL0CIJ7fW7x4QxHp6P9BsORDaRh3y8frjq6G6lsbSnj74m2KXyiE3CuAtRAAIFw7d/1nKn/IE7mzawUMUy2xm9eB9JKIFA3HTOXIHpBSdkG39ycoV45DNfpBungIQn4GbC36Qw0OB2QbpKNrAABqYD1IpxPLPlbT+OI1cqWTCYC1EHKzHoDBG5B0sLZ7GPrtX0O/aTaU+rH22byZ5yBmnoHiX+eWM4KFnEsQU/fC1nFsictflEadIJ3eAv3mOVBqR0A6txNKWFTZXclEHig914SmtblCmFYYpg5k0Imatkyh94Kl+3PQJf8BMf04YDNDDagHW6vBUBq0AQAIuZchWOwrNEkXDgEXDpV5KKVeLNSiMD21CULBNciNOtnDFIBaJxrWHs9DOroG4uVjgM0MeAfCFnkv5Ji+gN67zONKR1ZBDaxXYlEHAFCDGsDWcSx0SSsgndkGJTQKtnYPVcvTQuQOLmbzVmxa4s3BHajQKqPF9P9pXQYRuaGp/WPwVPemkESO3mmBz7oDmSyy1iUQkZtKzzPDYmPbSCsMUwcqtDJMiahmpOeaobCjUTMMUwcqZMuUiGpIep755jsrkoMxTB2ogC1TIqohV3PN0Et8S9cKn3kHyjff4vZnRERVlJ7HMNUSn3kHymOYElENyS60QlE4ZqoVhqkD5XK5LyKqIaoK2BimmmGYOlBOIVumRFRzOJtXOwxTB5EVhWOmRFSjGKbaYZg6iE1Wkc9LY4ioBnHMVDsMUwdRVKDQwpYpEdUcmVmqGS507yCKypYpVUyvmDC82Ke51mWQC/E1SFqX4LEYpg7E4QyqiOgwH7Su6w1BZwTSjwIn1wHgLxHdRp0JgOSldRUeiWHqIIIA+PBTI1XA55vOYuneC/hoZBv0aNYEaNYLwvp/AMdW8pMZla3to4CeYaoFjpk6iCQIDFOqsPQ8C8Z/txvtZ2zGmvRgKCO+gTp5D9BqWImbpxMBABfn1Q7/Gh1EEgX4GtkRQJWTWWDB0wv2oO17CfjjvDeUIZ9DfX4/0OYhQOSHNLqOH7A0w2feQXSSCD+GKVVRrsmG5xbvQ+t3N2LZaQny/Z9CfSEJiBsDiPz98niSXusKPBbD1IECvPlmR9WjwKLgpSUH0OqdBPx4xApb/4+g/vUw0OEJQDJoXR5pQRABvbfWVXgshqkD+XvxUyNVL5NNwbRfkxDz9gbMP1gIa593of71KND5L4COE1E8isFP6wo8GsPUgdjNSzXFpgBvLU9G9Dsb8eXuLFju/TvUl45BjX8OMPhqXR45glcAZ3lriGHqQJyARDVNUYAZq44i6u2NmLX1Ciz3TLWH6j0vA0Z/rcujmmQMABTemUorDFMH4uok5EifrDmB6LcT8PGGNBR2edEeqve+DngFaV0a1QSjP6BwyVKtCKrKfgFHuZhdiK4z1mtdBnmoJ7o1wV97NrL3kOyYC2HrLKAgQ+uySoheXPeO+3zfKxOd61huu09Spg5zkvywJ92AfJuAuj4y+oebMKl1Pnx0N97ybArwwT5//H7GG0ZJxcDGJrzcNhd//tz740lvfLDXH2sGX0Wot1Kpn63GNe8LPPgdx041wn5HB/LWs2VK2vlmy1l8s+UsHuncCK/1mYCALpOAXV9D2DITyLuidXkAgMmt88rcnmESsfikD2oZZUQE3L71tf2yARM2BgMA+oWbEOatYNcVPb464oftlw34oU8mjNf/FBcc98GC477oF26Cr07BguM+kATgtbjc4uOZZWBOkh8ejSpw3iAF7N28bBpphmHqQF4MU3ICi3akYNGOFIxs1wCv9xuD4E4TgD3fQ0j8F5BzQdPanostO0yf2RQEASo+6pp9x0B7e3cAVBVY3DcTbWrZxxBVFXhzVwB+PuWDRSd88HhMAQBg6Slv3FPPjM/uzgIA6CXgp5PeJcJ08Qkf5NsETGiRXw0/YQ3yDeWiDRriM+9AXnoJXno+5eQclu5NQ7sZm/Hcj0m42vwhqFMOQn1gNhDUSOvSSlh+1gvr07zwYLNCdKt3++7dk9kSTufo0LuhuThIAfsqe89eb/VuumAs3n4+X4eYoBv7tQiyIt8mItNsX5Yv3yrgi8O+GB9dgGCjkzf7AhsCOuOd96MawXd2B7LJChoE+WhdBlEJfxy6iI4fbsZTC/fjcuMHoD63D+qwL4GQCK1Lg1kGZh7wh79ewV/b5t5xfz+9ipfb5mJEREGp7xlEexgW2G6sXxtgUEp8nWcVIQoq/K6Pq35/3AeKKuDxGCdvlQJArUguLakhhqkDmW0KGgZzhRJyTmuPXEGXjxIx7rs9OF+/H9Rnd0Ed+R1QO0qzmhad8MGFAgkTWuSXq2VY10fBUy3z0aN+6RbsmvP2RSwiA2+Mud5Vy4rVqV44mS3hYr6IX894o1WwFQYJyLEI+OaIL55skQ8/vZO3SgGn61HwNAxTB2sQxDAl57b5xFXc868tGPXVTpwN7Ql10jaooxcBdVo5tA5ZAb4/5gtfnYJHmpduaVbE1UIRnx2yz3IdFVlYvH1Km1woKjBoZSjuXR6GK4Ui3mhvbwF/fcQXBknFmKgb51acOVP962ldgUfjBCQHMupEtkzJZew8ew09Z25B24aB+GhEPJo/vQk4vdF+T9WL+2v8/OvTjLhQIOHx6HwEGCqfYrkWAU9vCsZVk4SxUfklxlIjA2WsGJCB9WlGyCrQs4EZdX0UZJhEfH/cBy+0yYOPTsXSU96YedAPmWYRncMseL9zNur7OtHMXlECvIO0rsKjsWXqQDpJREQol3Yj13LgfDbu+3QrBszeisPe7aBOWAv1sRVAw441et7fzto/eD4UWflWaaZJwGPrQ5CcqUfP+iZMjSs97lrbW8FDkYV4uHkh6vrYA/KLw74IMKh4OLIAJ7J1+NvOAAxoZMLc7tdw1STi1W1Bla6pRrBVqjmGqYM1rc0Lqsk1Hb2Yi0Gzt6HPv7fggNgK6uOroD7xf0DjbtV+LrMMbL1kQFSgFREBcqWOkZIrYdSaWki+pkevBiZ8dncWdOV4x7tUIGLxCR880yoPBsl++UywUcG0uFz0qG/Bi23ysCvdgONZTtSxF9gQsJm1rsKjMUwdLDyE3bzk2k6l52Po59vR/ePN2GWLgDr2N6hPbQAielbbOXZeMaDAJqJfI1OlHn/kmg6j14QgJU+HYU0LMevurFKrGt3KnCQ/1PGRMSLCPrZ6LldCuJ8M6fq7ZZPri0ak5DnRzNlakYBauQ8dVD0Ypg7mY9Chth/vN0muL/VaIR76cifi/7kZWwsaQn3kJ6gTE4Hm91X52Aeu2m9X2L52xRduP5cr4YkNwcgw28dbZ3TOLleLFLC3Zn857Y3JrfNQdEm4TRVgU29cPmOR7f8XyjqAVuq0AnT8oK4lhqmDFVpkRISyq5fcx8UcEx79ehc6frAJG66FQX1oAdRndwIx99tXS6iEw9fsYdoqpGJhqqjAX7cGIdMsYVxUPqa2y61QCbOS/NDIX8bgxjdaxE39bTiTIyHXYj/Q/utB3+QOyxo6VP12vMZUY07U6e8ZFFVFRG1f7DyTqXUpRNXqap4FT8zfjSAfHT4Y3gb3jfgaQs4F++zfw78Bavlnv6bmSfCS1DvO4p11/XKXomUI1543IilTD4OowkevFn//ZrW9ZDzcvLDU9pPZEv4454V/xWcXd+kCwPCIQvxwwgfj1oegfagFv5z2Rre6ZjSr5FhujQiN1roCj8cwdTAvvYjIMLZMyX1lFdgwceFe+Hvp8N7Q1rh/yBwIfd+xh2rSUkC5cwhds4jw1985fGcnlQzTXVfsQygWRcDc5LL/zmKCrGWG6acH/REVaMOA8JLjtC2CbfgkPgsf7ffHTyd9EF/XjHc75dyxNofxDrb/I03xFmwa2HEmA6O+2K51GUQO4WMQ8c4DsRjWJgSiKQvChveBgz8CMm9kXS0axwNjlgF6jplqiWOmGmhdP7CyQ0lELqfAouDlpQfQ4p0ELDpiha3/P6G+eBjoOIELs1eHsJYV6kK/2dSpUxEdHV3iX0xMDOLi4jB06FDMnz8filK9i1OkpKSUe9/MzEzk5d24k1BRvWaz810GxG5eDRh1IpqF+uHklbJvN0Xkjiw2BW/8moS//w68PrAlxvZ+B7qeb0BI+BDYOx+wlu56pXKoGwvoq3YDjWnTpiE42N5VrKoqCgoKsHbtWrz//vtIS0vD66+/Xh2V4s0338SxY8fw008/3XHfhIQEvPLKK1i8eDH8/K4vBTlqFLp27Qq9Xl8t9VQnhqkGzDYFHZsEM0zJI9kU4J0/DuPdlYfx6n3ReOLeN6Hv+Tqw6WMIu78GLC5whxZn0ii+0rOmi/Tp0wcNGzYssW3UqFEYPXo0Fi5ciAkTJiAsLKxK5wCAxMRE1K5du1z7Hjx4ENnZ2SW2xcXFIS4ursp11AR282rAxyCha0Qtrcsg0pSiAB/87xii3t6If2++DPPdr0F96TjU7q8AxgCty3MNem+gVrMaObQkSRgwYABkWcaBAwdq5BzuhGGqAUEQ0IVhSlTs03UnEPNOAj5cn4rCzlOgvnQMas83OEv1TurdBci3v2F6VYiiPSKsVvtksbVr1+Kxxx5Dx44d0bp1a3Tv3h3Tp09HVlZW8WOWLVuG6OhorFq1Cv369UNsbCzefPNNREdHIy0tDQcOHEB0dDSWLVt2y/NOnToVs2fPBgAMHDgQY8eOLd5+85jprFmz0LJlS5w9exZPP/004uLi0KVLF3zwwQew2WxYuXIl7r//frRt2xZDhw7Ftm3bSpxHVVXMnz8fgwYNQmxsLLp164Y33ngDV69erfBzxW5ejdT2NyLU34j0XOcbSCfSytyE05ibcBrj45vgpV7PwC/+eWDHXAjbZgH5FX+Dc3vhnWr08Fu3bgUAtGrVCsuWLcO0adPQrVs3vPDCCwCALVu24Oeff0Z6ejrmzp1b4rFvvPEGRo0ahbp166JRo0Zo3749ZsyYAX9/f0yePBnt2rW75XlHjRqFvLw8rFmzBq+88gpatGhxy31VVcXYsWPRrVs3vPbaa1i9ejW+/fZbnDx5EsnJyRg3bhy8vb3x5ZdfYvLkyVizZg1CQkIAANOnT8fSpUsxePBgjBkzBmlpafjhhx+wfft2LF26tHgcuTwYphoptMjo0DgYq5IuaV0KkdP5butZfLf1LB7uFI6pfZ5AQJdngN3fQkj8BMi7rHV5zqNZr2q5JCYnJweZmfaFZBRFwcWLF/HLL78gISEB/fr1Q+PGjTFp0iS0aNEC8+bNK26xPvrooxg1ahQSExOhqiqEm8Zue/Xqhddee63EeT799FMEBwdjyJAht60nLi4O0dHRWLNmDXr27IlmzW7dla0oCnr37o233noLgL0l27VrVyQmJmLJkiWIjY0FAPj4+GD69OnYv38/evXqhV27dmHJkiWYNm0axo8fX3y8AQMG4MEHH8QXX3yBqVOnlvs5ZJhqxKgT0alpCMOU6DYW70zF4p2pGBbXANP7P4Lgjk8C+xZA2PQxkJOmdXnaEoRquw3esGHDSm3T6XQYOnQopk+fDgD47bffUFBQUBykgP3SFT8/P1itVlitVhgMN9Yd79KlS7XUVh79+vUr/n9AQABq1aoFnU5XHKQAEB4eDgBIT08HAKxevRqAPfSLPkgAQL169dC8eXNs2LCBYeoKdJKIu5uXb1Ybkaf7dV8aft2XhoGxdfHWwBEIjRsLHPwJQsI/gaxzWpenjbCWgFQ9N8346KOPimfZCoIAf39/REREwMfnxiU3er0ex44dw4oVK3D69GmkpKTgypUrxd//8/o/5Zm1m5ubC5Op5IpT/v7+8PLyqlD9tWqVnIOi0+lKbSv6EFB03ey5c/bfm759+5Z5zIpefsMw1VCz2n7w1ksotDrRGp9ETmzloUtYeegSesWE4b3Bg1H3udFA8jIICR8AGae0Ls+xmtxtX0VKqvo1l+3atSt1acyfvffee/j+++8RFRWFuLg4DBgwAG3atMGCBQuwfPnyUvvf3IK93TF//fXXEttmzJiB4cOHV6h+SSq9yL9wh8uFFEWB0WgsNdZbWQxTDZltCu5qFIRtpzK0LoXIpaw/egVdj15Bt2a1MGPofQh/djhw9L/2pQrTj2pdnmO0eAAwVG2xhvJKS0vD999/jwEDBmDmzJklgiojo/LvXxMmTMADDzxQYltkZGSlj1cRDRo0QGJiIiIjI0tdQ7t+/XoEBQVV6Hi8NEZDogB0bMKp/0SVteVUBrr/awse/GInzoR0h/rMFqgP/wjUaa11aTVL7wOEd3bY6YoWT4iIiCgRpMnJydi5cycAwGa78y3pRFEssTxhZGQk4uPjS/wrCrailm1NLR/fu3dvAMCcOXNKbN+/fz8mTZqE+fPnV+h4bJlqyKiX0L9VPXy27qTWpRC5tN3nrqHXv7eiTYNAfDSiC6KeTgDOJEBY/y5wYa/W5VW/pt2rrYu3PCIjI9GgQQN88803kGUZDRs2xPHjx7F06dLi0MvPz4evr+9tjxMSEoITJ07ghx9+QOfOnW/bCi26fOXbb79Fr169isOvuvTo0QP33XcfFi9ejIsXL6J79+7IyMjAwoULERAQgClTplToeGyZaiy6rj/qBVZssJ2IynYwLRv9PtuKAbO2Itl4F9Qn/w/q+P86tBXnEDGDAF31TD4qD4PBgK+++godO3bE4sWL8cEHH2D79u2YOHEiPvnkEwA3rkm9neeeew7BwcGYMWMG1qxZc9t9Bw0ahPj4eCxfvhwff/xxtfwcfzZz5ky89NJLSE1NxYwZM/Dzzz+jS5cuWLx4MSIiIip0LN6CTWOFFhs+Wn0M32w5q3UpRG4nItQX/xrRGneFBwAX9kNY9zZwNlHrsqruldOAL1dRcyYMUyeQnJaNQbPc4A+cyEmFB3vj4wdj0alRIHA52X6j8lPrtC6rcsJaAn/Z5LAuXiofdvM6gZh6AagTwPs6EtWU1GuFGPXlTsT/czMS8xtAfXgx1Ge2AFH9tS6t4qL6AcqdJ/uQYzFMnYDZJmNA63pal0Hk9i7mmDD2m13o+MEmrM8MhfLgfKjP7rJfZlLF25g5TOxD1bKEIFUvdvM6iUPnszB49hatyyDyKAFeOnw4og36xQRDyL1o7/5N/hVQlTs/WAshEcDk3YBYepEC0hZbpk6iVf1AhPqzq5fIkXJMNjzzw17E/iMBy88ZoDzwH6hTDgJtH3bOwIp9sEZvuUaVx5apkyiw2PDBqqP4fpuHrjNK5AS8dCLeGdoaI2JrQbTk2FdUOrDIfk2nM3gxGQi8/bJ/pA2GqRM5kJqFIf9hVy+R1gw6EdMHtcTD7WpDshVA2PgBsG8BYNPw/sP144An13AWr5NimDoRRVHR+f11SM/jDcOJnIFOBKYNaIFxHetAp5ghbPoI2PMtYC10fDH9PwQ6POHQxRqo/BimTqTAYsP7K49i4XZ29RI5E1EEXu4bjSe71INBkIHN/4Kwax5gyXNMAYIIvHoa8OZa3s6KYepkjl7KQf9/b9a6DCK6hed7R2JStwYwSgC2fgZhx1zAlF2zJ43oCTzyI6Dj0qPOimHqZKyygofmbsO+1CytSyGi23i6e1NM6REOH70EbJ8DYdtsoPBazZzskZ+ByD7OOcOYADBMnY5NVrDu6BX8ZcEerUshonJ4LL4xXu7ZGH7eemDnlxC2fArkX62+EwQ0AF44CIi8yZczY5g6IZui4O4PNuBSjknrUoionEZ3CMfU+5og0McL2PMthMRPgNxLVT9w7zeBLs8CenbxOjOGqRMyWWV8t/UsPlh1VOtSiKiChtxVH2/2b4YQf29g30IImz8Gss9X7mCSAXjlJOAVWL1FUrVjmDqpfLMN7d9dA5PVSZc1I6LbGtC6Lt4aFImwAB/g4BIImz4Erp2t2EFiRwIPzAL0PjVSI1UfhqmTKrTIeOePZCzemap1KURUBT2jw/DeA81RL8gPOPwbhI0zgIyT5XvwxESgbmzNFkjVgmHqxFIy8tH9o41al0FE1SC+WS3MGBKDRrX9gKMrIWx8H7hy5NYPqNsGeGo9VzxyEVzo3onVCfRCt8haWpdBRNVg66kM9PhkCx78YidOh9wD9S+JUB/52R6aZbnnr44tkKqELVMnpigqtp3OwKPzdmhdChFVs9gGAfhoRCtE1/EHziZCWP8OkLbX/s3gJsBze3g5jAthmDo5WVHR+18bcTajQOtSiKgGxNTxx0cjW6F1/QAgdac9VO8aA7R5CNDxtoyugmHq5Cw2GUt2n8cbvyVpXQoR1aCmtXzwrwdjERceAIg6CAJH4VwJXy0nZ9BJeKhjOOoE8BMqkTs7k1GA4XN34Jd9l2GV2cZxNQxTF6AoKl66L1rrMoiohtUP9MKQuAYw6LgGr6thmLoAo17C8LgGaFrbV+tSiKgGTenTHApH3lwSw9RFqACmDojRugwiqiENg70xol1DGNkqdUkMUxehl0T0jglDq/oBWpdCRDXghT5RbJW6MIapKxGA6fe31LoKIqpmzUL9MPSu+hwrdWEMUxeiE0W0axSMHlGhWpdCRNXonyNvsQoSuQyGqYvRSwLeHdoakihoXQoRVYMH2tZH6/oB0El8O3ZlfPVcjCAICPU34pFOjbQuhYiqyN+owztDWsGoZ/euq2OYuiAvvYTXBsQgwJvrdhK5spf7RcOLQeoWGKYuSicKeLFPlNZlEFEltajnj0c6N2KYugmGqYvy0ksY06UxL5UhckGCAHw0si1EgXMf3AXD1IWJgoDZj7SDgRMXiFzKyHYNERnmx4mEboTvwi5MEgXUC/TCC32aa10KEZVToLcebw5uye5dN8MwdXFeeglPdY9Am4aBWpdCROXw+sAY6Nmb5Hb4iroBSRDwn0fawajjy0nkzNo2DMTwdg3ZKnVDfPd1A6Jov/b05X68TRuRszLqRMwcdRc4TOqeGKZuwksvYXx8E7RrFKx1KURUhr8Pbon6Qd6QRL7tuiO+qm5EEgTMfiQOXnq+rETOpH/ruhjZPpzdu26M77puRBQFhPgaeN9TIifSMNgbMx+6CwbOaXBrfHXdjJdewqOdG6NT0xCtSyHyeDpRwJdjO0AncaDU3TFM3ZBOFPDZ6Dj4Gbl2L5GWpg6IQUSoLy+F8QB8hd2QIAgI9tFjzqPtwNXKiLRxb1QoHotvwnFSD8EwdVNGvYROTUPwyn28XIbI0cL8jZj1SBxbpB6Er7Qb89JLmHBPBAbF1tO6FCKPIQrA3DHteY9SD8MwdXMGnYhPRrVFy3q8uwyRI0zp0xwt6wfwBhQehq+2B9CJAuY/0Qm1fA1al0Lk1rpF1sKkeyM5TuqBGKYeQBJFBHrr8PX4jtBzij5RjWhRzx/zHuvIcVIPxVfdQxh0EmLq+uMfQ1prXQqR22kQ5I1FT3WBgR9WPRbD1IN46SUMa9cAj3ZupHUpRG4j0FuPH5/uAj+jjuvuejC+8h7GqJPw1gOtuEISUTUw6kQseLITwgKM7N71cHz1PZBOFPD1Yx3QuJaP1qUQuSxRAD4f0w5Rdfxh1HHCkadjmHogQRDgrZfwyzPxaBjsrXU5RC7p3aGtEd+sNmfuEgCGqcfSSSKCvPVY9kw86gd6aV0OkUt59t5mGNGuIYOUijFMPZhOEhHsa8Avk+JRJ8CodTlELmFYXANM6RPFFY6oBIaph9NLImr7GbHsmW4I9WegEt3O3ZG18c+RbXhvUiqFvxEEvSQiNMCIX56JR20/rpJEVJauEbUw77EOnLVLZeJvBQEADJKIugFeWDoxHsE+eq3LIXIqPaJCMf+JThwjpVtimFIxg05E/SBvLJkYj0BvBioRAPRtWQdfjevArl26Lf52UAkGnYhGId5Y8peuCPDSaV0OkaYGxdbDnEfbMUjpjvgbQqUYdBIa1/bBTwxU8mAj2zfEv0ffxTFSKhdBVVVV6yLIOZltMi5nmzD6y+24kG3Suhwih3mmRzO82DeKLVIqN4Yp3ZZVVpBntmHMvB1IvpCjdTlENUoQgL/f3xIPd27EJQKpQhimdEeKosIiK3j6+93YdOKq1uUQ1Qi9JODfo+LQu0UYZ+1ShTFMqdyssoK//ZaEn3alal0KUbXyNUiY91hHxDUKYpBSpTBMqUIsNgULtp3FeyuPQOFvDrmBZqF++O7xjgj1NzJIqdIYplRhJquMPeeu4S8L9iDPbNO6HKJKGxRbD/96qC30kghJFLQuh1wYw5QqxWyTcSXHjDFf78C5jAKtyyGqEJ0o4G/3t8AjnRpzxi5VC4YpVZpNVmC2KXjq+93YeipD63KIyiXU34h54zoguq4/u3Wp2jBMqcqssoK5Cafw6doTsHEglZxYxybB+GpcB/gYdGyRUrVimFK1MFllnLmaj2cW7sFZdvuSE3rqnqZ4tX8MdKIAQeD4KFUvhilVG5usQFZUvLk8mZfPkNPwNUiYOeou9IgK5Q29qcYwTKnama0ytp3OwF9/PoDMfIvW5ZAHi67jj3mPdeBlL1TjGKZUI8w2GSargimL92Hj8XStyyEPY9SJmNK7OZ7qHgFREHjZC9U4hinVKKus4KddqfjHH4dhtilal0MeoGOTYMwcdRdq+7E1So7DMKUaZ7LKSM81Y+LCPVwsn2qMv1GHNwa1wIj2DSEJAkS2RsmBGKbkELKiQFGBuRtP4T8bT8JkZSuVqk/flnXw4Yg28DFIbI2SJhim5FAmq4x8sw1vrziM5QcuaF0OubhQPyNmDI9F96hQXjdKmmKYkibMVhknruRh2rJDOJSWrXU55IIe7NAQbz/QCjpRgIH3HiWNMUxJM7KiQlVV/HHwIt5beQTpuWatSyIXEFPXH+8ObY3WDQLZpUtOg2FKmjNbZagAPl17HF8nnoVF5ngqlRZR2xevDYhB75gwAIBOYrcuOQ+GKTmNQquM7AIr3vw9Cf93+LLW5ZCTaBDkjZf7RWFwm/pQAegZouSEGKbkdMw2GYfOZ+Pvy5N5KY0HC/U34oXezfFQx3CoqspxUXJqDFNySrbrXb17U7Lw6brj2HKSt3jzFEE+ejzbMxKPdW0CVVW5ni65BIYpOTVFUWFVFKRmFuLTtcexMukSZN7mzS35GXV4unsEnu4eAQCcXEQuhWFKLsNklZFjsmL2+pNYsvs8Cq2y1iVRNajla8CjXRrhL92bQRIFhii5JIYpuZxCiwxZVfF14hnM33qWd6ZxUW0aBuKpe5piQOt6sCkqQ5RcGsOUXJbJKkMSBPy8OxVzN51Camah1iXRHeglAQNa18PEHs3QvI4fBPASF3IPDFNyeRabDEkUsPPMNSzacQ7/d/gy71DjZJqF+uGRTuF4qGM4dKIIbwNboeReGKbkNlRVLV5Af8WBC/hxVyr2plzTuCrP5a2XMDC2Lh7v1hQx9fwhKyqMvLyF3BTDlNySVVagqkBGvhlLdqdixYGLOHElT+uy3J6PQcI9zUMxMLYu7mtVF1DBVih5BIYpuT2TVYZOFHAh24Rf9tiD9fTVfK3Lchth/kb0aVEH97eth05NQmCRFXjpJN5PlDwKw5Q8iskqQycJOJ9ZiJVJF7H1ZAZ2n8vk/VUrKKauP/q2rIPBbesjMtQPJpsMH4NO67KINMMwJY9lkRXIsgqDTsSRizlYd/Qytp3KwL6ULE5g+hOdKKBT0xD0a1UXA2PrIdhHz8tZiG7CMCW6zmyToaqAJApISsvGuqNXsO1UBg6ez4JV9qw/k0YhPrgrPAh3hQehc0QImof5Q1FVSKLAheaJysAwJboFk1WGAEAQBBxIzcKmE+k4cSUPJ6/k4VxGvtsEbKifEW3DA9E2PAhdmtZCy/oB8NJLMFllGHUirwMlKgeGKVE5mW0ybLIKo06EKAi4lGPCySt5SLqQjZPXQ/bUlTzkW5xvmUNBsC/bVz/IG/WDvNG0li86NQ1B2/AgBPvoUWiVoZNEGBicRJXCMCWqIpuswGxToJMEGHUSMvMtOJ2eh8MXcpCWVYjsQiuyCq3ILrQip9CKrAL7//PMtmqrwc+oQ71ALzQI8ka9IC/UD/JG4xBfNK7lg3qBXgjxNUAniTBbZdgUlWvgElUzhilRDVEU1T7J6fpdbgTBPh5rkEQIggBFUVFgsSHPbF/A/1qBBVkFVsjXw04UAFEQ7P9EAUadCC+9BG+9BG+9CKNeglEnwlsvwaiXYJUVWGwKBAAGds8SORTDlIiIqIr40ZWIiKiKGKZERERVxDAlIiKqIoYpERFRFTFMiYiIqohhSkREVEUMUyIioipimBIREVURw5SIiKiKGKZERERVxDAlIiKqIoYpERFRFTFMiYiIqohhSkREVEUMUyIioipimBIREVURw5SIiKiKGKZERERVxDAlIiKqIoYpERFRFTFMiYiIqohhSkREVEX/DyYnqqHgSxGJAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1379,7 +2042,7 @@ }, { "cell_type": "code", - "execution_count": 236, + "execution_count": 875, "metadata": {}, "outputs": [ { @@ -1388,7 +2051,7 @@ "0" ] }, - "execution_count": 236, + "execution_count": 875, "metadata": {}, "output_type": "execute_result" } @@ -1406,24 +2069,24 @@ }, { "cell_type": "code", - "execution_count": 237, + "execution_count": 876, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "JobSatisfaction\n", - "Moderately satisfied 25908\n", - "Extremely satisfied 12395\n", - "Slightly satisfied 9973\n", - "Slightly dissatisfied 7037\n", - "Moderately dissatisfied 6286\n", - "Neither satisfied nor dissatisfied 4935\n", - "Extremely dissatisfied 2472\n", + "Moderately satisfied 26\n", + "Slightly satisfied 17\n", + "Neither satisfied nor dissatisfied 11\n", + "Extremely satisfied 9\n", + "Slightly dissatisfied 9\n", + "Moderately dissatisfied 6\n", + "Extremely dissatisfied 2\n", "Name: count, dtype: int64" ] }, - "execution_count": 237, + "execution_count": 876, "metadata": {}, "output_type": "execute_result" } @@ -1434,16 +2097,16 @@ }, { "cell_type": "code", - "execution_count": 238, + "execution_count": 877, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "10482" + "3" ] }, - "execution_count": 238, + "execution_count": 877, "metadata": {}, "output_type": "execute_result" } @@ -1454,7 +2117,7 @@ }, { "cell_type": "code", - "execution_count": 239, + "execution_count": 878, "metadata": {}, "outputs": [], "source": [ @@ -1463,7 +2126,7 @@ }, { "cell_type": "code", - "execution_count": 240, + "execution_count": 879, "metadata": {}, "outputs": [ { @@ -1472,7 +2135,7 @@ "0" ] }, - "execution_count": 240, + "execution_count": 879, "metadata": {}, "output_type": "execute_result" } @@ -1483,12 +2146,12 @@ }, { "cell_type": "code", - "execution_count": 313, + "execution_count": 880, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/8AAAIiCAYAAACe1XgTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADMtUlEQVR4nOzdd3wN2fsH8M9NFZFcIpIIQfQSJcISvUYvq7OCRfS22uptEb3bKIvorN5DsGKtntXbKkGQCJEuPc/vD9/ML1fsLjbcGJ/365UXd+bM3Gfumbl3npkz52hEREBEREREREREqmWg7wCIiIiIiIiI6NNi8k9ERERERESkckz+iYiIiIiIiFSOyT8RERERERGRyjH5JyIiIiIiIlI5Jv9EREREREREKsfkn4iIiIiIiEjlmPwTERERERERqRyTfyIiIiIiIiKVY/JPRESUSXh7e0Oj0eDixYsftNykSZOg0Wjw8uXLj37vw4cPw83NDfb29jA1NYW9vT1q1aqFGTNmfNT6Nm3ahAULFrxznkajwaRJkz54nYsXL0bhwoVhYmICjUaD8PDwj4rt79y8eROTJk3Cw4cP083r1q0bChQokKHvR0RE9Dkx+SciIvrKLVu2DA0bNoSlpSWWLFmCw4cPY+bMmShRogS2b9/+Uev8p+T/zJkz6Nmz5wet7/Llyxg0aBBq166N48eP48yZM7CwsPio2P7OzZs3MXny5Hcm/+PHj8euXbsy9P2IiIg+JyN9B0BERET65enpiRo1aqRL9N3d3ZGSkpLh71e5cuUPXubGjRsAAA8PD3zzzTcZHdK/KlSo0Gd/TyIioozEO/9ERESZ2N69e+Hq6oqsWbPCwsIC9evXx5kzZ95ZNjAwEK1atYKlpSW0Wi06d+6MFy9e/Ot7hIaGInfu3O+cZ2Cge6qwdOlS1KhRAzY2NjA3N0fp0qUxa9YsJCYmKmVq1aqFAwcO4NGjR9BoNMpfqreb/b9+/RrDhw+Ho6MjsmTJAisrK1SoUAGbN29W1te5c2cAQKVKlaDRaNCtWzcAgK+vL1q0aIG8efMiS5YsKFy4MHr37v3ORyBu376Njh07wtbWFqampsiXLx+6dOmC+Ph4eHt7o23btgCA2rVrKzF7e3sDeHez/7i4OIwePRqOjo4wMTFBnjx50L9//3SPIxQoUABNmzaFj48PypcvDzMzMxQvXhyrV69+d4UQERF9ArzzT0RElElt2rQJ3333Hdzc3LB582bEx8dj1qxZqFWrFo4dO4Zq1arplP/222/Rrl079OnTBzdu3MD48eNx8+ZNnDt3DsbGxn/7Pq6urtixYwcmTZqEb7/9Fk5OTjA0NHxn2fv376NTp05KwnvlyhVMmzYNt2/fVpLZn3/+Gb169cL9+/ffq6n80KFDsX79ekydOhXOzs6IiYnB9evXERoaqqxv8+bNmDp1KtasWYPixYsjV65cSjyurq7o2bMntFotHj58iHnz5qFatWq4du2ast1XrlxBtWrVYG1tjSlTpqBIkSIICgrC3r17kZCQgCZNmmD69OkYM2YMli5divLlywP4+zv+IoKWLVvi2LFjGD16NKpXr46rV69i4sSJOHPmDM6cOQNTU1Ol/JUrVzBs2DCMGjUKtra2+OWXX9CjRw8ULlwYNWrU+NfPiIiI6D8TIiIiyhTWrFkjAOTChQuSnJws9vb2Urp0aUlOTlbKREVFiY2NjVSpUkWZNnHiRAEgP/zwg876Nm7cKABkw4YN//i+9+7dEycnJwEgAMTMzEzq1q0rS5YskYSEhL9dLjk5WRITE2XdunViaGgor169UuY1adJE8ufP/87lAMjEiROV105OTtKyZct/jDHtZ/N3UlJSJDExUR49eiQAZM+ePcq8OnXqSPbs2SUkJORvl9+2bZsAkN9++y3dvK5du+psj4+PjwCQWbNm6ZTbunWrAJAVK1Yo0/Lnzy9ZsmSRR48eKdNiY2PFyspKevfu/U+bTURElGHY7J+IiCgTunPnDp49ewZ3d3edpvfZsmVD69atcfbsWbx+/Vpnme+++07ndbt27WBkZITffvvtH9+rUKFCuHLlCvz8/DB58mTUq1cPFy5cwIABA+Dq6oq4uDil7KVLl9C8eXPkzJkThoaGMDY2RpcuXZCcnIy//vrro7b1m2++waFDhzBq1CicOHECsbGx771sSEgI+vTpAwcHBxgZGcHY2Bj58+cHANy6dQvAm8cK/Pz80K5dO6XFwH91/PhxAFAeP0jVtm1bmJub49ixYzrTy5Urh3z58imvs2TJgqJFi+LRo0cZEg8REdG/YbN/IiKiTCi1yfu7nsW3t7dHSkoKwsLCkDVrVmW6nZ2dTjkjIyPkzJlTWdc/MTAwQI0aNZQm6DExMejRowe2bt2K1atXo1+/fnj8+DGqV6+OYsWKYeHChShQoACyZMmC8+fPo3///h+UtKe1aNEi5M2bF1u3bsXMmTORJUsWNGjQALNnz0aRIkX+drmUlBS4ubnh2bNnGD9+PEqXLg1zc3OkpKSgcuXKSjxhYWFITk5G3rx5Pyq+dwkNDYWRkVG6iwkajQZ2dnbpPvOcOXOmW4epqelHf2ZEREQfinf+iYiIMqHUZDEoKCjdvGfPnsHAwAA5cuTQmR4cHKzzOikpCaGhoe9MPP+Nubk5Ro8eDQC4fv06AGD37t2IiYnBzp070blzZ1SrVg0VKlSAiYnJB6//7feaPHkybt++jeDgYHh5eeHs2bNo1qzZPy53/fp1XLlyBbNnz8bAgQNRq1YtVKxYMd32WllZwdDQEE+ePPlPcaaVM2dOJCUlpetQUUQQHBwMa2vrDHsvIiKijMDkn4iIKBMqVqwY8uTJg02bNkFElOkxMTHYsWOHMgJAWhs3btR5/euvvyIpKQm1atX6x/d61wUG4P+bzdvb2wOA0mN/2o7sRAQrV65Mt+zH3tW2tbVFt27d0LFjR9y5cyfdow1pvSseAFi+fLnOazMzM9SsWRPbtm175ygAaWMG8F5x161bFwCwYcMGnek7duxATEyMMp+IiCizYLN/IiKiTEaj0cDAwACzZs3Cd999h6ZNm6J3796Ij4/H7NmzER4ejhkzZqRbbufOnTAyMkL9+vWV3v7Lli2Ldu3a/eP7lSpVCnXr1kWjRo1QqFAhxMXF4dy5c5g7dy5sbW3Ro0cPAED9+vVhYmKCjh07YuTIkYiLi4OXlxfCwsLSrbN06dLYuXMnvLy84OLiAgMDA1SoUOGd71+pUiU0bdoUZcqUQY4cOXDr1i2sX7/+nRc40ipevDgKFSqEUaNGQURgZWWFffv2wdfXN13Z1BEAKlWqhFGjRqFw4cJ4/vw59u7di+XLl8PCwgJOTk4AgBUrVsDCwgJZsmSBo6PjO1tO1K9fHw0aNMCPP/6IyMhIVK1aVent39nZGe7u7v/4mRMREX1uvPNPRESUSaTe5U69A92pUyfs3r0boaGhaN++Pb7//ntYWlrit99+SzfMH/Am+b99+zZatWqFCRMmoFmzZjhy5Mi/NsufMWMGUlJSMG3aNDRu3BjNmzfHunXr0KlTJ1y8eFHpd6B48eLYsWMHwsLC0KpVKwwcOBDlypXDokWL0q1z8ODBaNOmDcaMGYPKlSujYsWKf/v+derUwd69e/H999/Dzc0Ns2bNQpcuXbBv375/jNvY2Bj79u1D0aJF0bt3b3Ts2BEhISE4evRourJly5bF+fPn4eLigtGjR6Nhw4b48ccfYWpqqnw+jo6OWLBgAa5cuaI8QvB3MWg0GuzevRtDhw7FmjVr0LhxY8yZMwfu7u44fvx4utYIRERE+qaRtG0JiYiISG8GDx6MJUuWIDw8HBYWFvoOh4iIiFSEzf6JiIj0zN/fHxcuXMDq1avRvHlzJv5ERESU4Xjnn4iISM8cHR0RERGBRo0aYdGiRR/VOz8RERHRP2HyT0RERERERKRy7PCPiIiIiIiISOWY/BMRERERERGpHJN/IiIiIiIiIpVjb/8ZKCUlBc+ePYOFhQU0Go2+wyEiIiIiIiKVExFERUXB3t4eBgZ/f3+fyX8GevbsGRwcHPQdBhEREREREX1lAgMDkTdv3r+dz+Q/A6WOyxwYGAhLS0s9R0NERERERERqFxkZCQcHByUf/TtM/jNQalN/S0tLJv9ERERERET02fzbo+fs8I+IiIiIiIhI5Zj8ExEREREREakck38iIiIiIiIilWPyT0RERERERKRyTP6JiIiIiIiIVI7JPxEREREREZHKMfknIiIiIiIiUjkm/0REREREREQqx+SfiIiIiIiISOWY/BMRERERERGpHJN/IiIiIiIiIpVj8k9ERERERESkckb6DoD0Y8all/oOgf5nlLO1vkMgIiIiIiKV451/IiIiIiIiIpVj8k9ERERERESkckz+iYiIiIiIiFSOyT8RERERERGRyjH5JyIiIiIiIlI5Jv9EREREREREKsfkn4iIiIiIiEjl9Jr8e3p6omLFirCwsICNjQ1atmyJO3fu6JTp1q0bNBqNzl/lypV1ysTHx2PgwIGwtraGubk5mjdvjidPnuiUCQsLg7u7O7RaLbRaLdzd3REeHq5T5vHjx2jWrBnMzc1hbW2NQYMGISEh4ZNsOxEREREREdHnotfk38/PD/3798fZs2fh6+uLpKQkuLm5ISYmRqdcw4YNERQUpPwdPHhQZ/6QIUOwa9cubNmyBadOnUJ0dDSaNm2K5ORkpUynTp1w+fJl+Pj4wMfHB5cvX4a7u7syPzk5GU2aNEFMTAxOnTqFLVu2YMeOHRg2bNin/RCIiIiIiIiIPjGNiIi+g0j14sUL2NjYwM/PDzVq1ADw5s5/eHg4du/e/c5lIiIikCtXLqxfvx7t27cHADx79gwODg44ePAgGjRogFu3bqFkyZI4e/YsKlWqBAA4e/YsXF1dcfv2bRQrVgyHDh1C06ZNERgYCHt7ewDAli1b0K1bN4SEhMDS0vJf44+MjIRWq0VERMR7ldenGZde6jsE+p9Rztb6DoGIiIiIiL5Q75uHZqpn/iMiIgAAVlZWOtNPnDgBGxsbFC1aFB4eHggJCVHm+fv7IzExEW5ubso0e3t7ODk54fTp0wCAM2fOQKvVKok/AFSuXBlarVanjJOTk5L4A0CDBg0QHx8Pf3//jN9YIiIiIiIios/ESN8BpBIRDB06FNWqVYOTk5MyvVGjRmjbti3y58+PgIAAjB8/HnXq1IG/vz9MTU0RHBwMExMT5MiRQ2d9tra2CA4OBgAEBwfDxsYm3Xva2NjolLG1tdWZnyNHDpiYmChl3hYfH4/4+HjldWRk5MdtPBEREREREdEnlGmS/wEDBuDq1as4deqUzvTUpvwA4OTkhAoVKiB//vw4cOAAWrVq9bfrExFoNBrlddr//5cyaXl6emLy5Ml/v1FEREREREREmUCmaPY/cOBA7N27F7/99hvy5s37j2Vz586N/Pnz4+7duwAAOzs7JCQkICwsTKdcSEiIciffzs4Oz58/T7euFy9e6JR5+w5/WFgYEhMT07UISDV69GhEREQof4GBge+3wURERERERESfkV6TfxHBgAEDsHPnThw/fhyOjo7/ukxoaCgCAwORO3duAICLiwuMjY3h6+urlAkKCsL169dRpUoVAICrqysiIiJw/vx5pcy5c+cQERGhU+b69esICgpSyhw5cgSmpqZwcXF5ZyympqawtLTU+SMiIiIiIiLKbPTa7L9///7YtGkT9uzZAwsLC+XOu1arhZmZGaKjozFp0iS0bt0auXPnxsOHDzFmzBhYW1vj22+/Vcr26NEDw4YNQ86cOWFlZYXhw4ejdOnSqFevHgCgRIkSaNiwITw8PLB8+XIAQK9evdC0aVMUK1YMAODm5oaSJUvC3d0ds2fPxqtXrzB8+HB4eHgwqSciIiIiIqIvml7v/Ht5eSEiIgK1atVC7ty5lb+tW7cCAAwNDXHt2jW0aNECRYsWRdeuXVG0aFGcOXMGFhYWynrmz5+Pli1bol27dqhatSqyZs2Kffv2wdDQUCmzceNGlC5dGm5ubnBzc0OZMmWwfv16Zb6hoSEOHDiALFmyoGrVqmjXrh1atmyJOXPmfL4PhIiIiIiIiOgT0IiI6DsItXjf8RUzgxmXXuo7BPqfUc7W+g6BiIiIiIi+UO+bh2aKDv+IiIiIiIiI6NNh8k9ERERERESkckz+iYiIiIiIiFSOyT8RERERERGRyjH5JyIiIiIiIlI5Jv9EREREREREKsfkn4iIiIiIiEjlmPwTERERERERqRyTfyIiIiIiIiKVY/JPREREREREpHJM/omIiIiIiIhUjsk/ERERERERkcox+SciIiIiIiJSOSb/RERERERERCrH5J+IiIiIiIhI5Zj8ExEREREREakck38iIiIiIiIilWPyT0RERERERKRyTP6JiIiIiIiIVI7JPxEREREREZHKMfknIiIiIiIiUjkm/0REREREREQqx+SfiIiIiIiISOWY/BMRERERERGpHJN/IiIiIiIiIpVj8k9ERERERESkckz+iYiIiIiIiFSOyT8RERERERGRyjH5JyIiIiIiIlI5Jv9EREREREREKsfkn4iIiIiIiEjlmPwTERERERERqRyTfyIiIiIiIiKVY/JPREREREREpHJM/omIiIiIiIhUjsk/ERERERERkcox+SciIiIiIiJSOSb/RERERERERCrH5J+IiIiIiIhI5Zj8ExEREREREakck38iIiIiIiIilWPyT0RERERERKRyTP6JiIiIiIiIVI7JPxEREREREZHKMfknIiIiIiIiUjm9Jv+enp6oWLEiLCwsYGNjg5YtW+LOnTs6ZUQEkyZNgr29PczMzFCrVi3cuHFDp0x8fDwGDhwIa2trmJubo3nz5njy5IlOmbCwMLi7u0Or1UKr1cLd3R3h4eE6ZR4/foxmzZrB3Nwc1tbWGDRoEBISEj7JthMRERERERF9LnpN/v38/NC/f3+cPXsWvr6+SEpKgpubG2JiYpQys2bNwrx587BkyRJcuHABdnZ2qF+/PqKiopQyQ4YMwa5du7BlyxacOnUK0dHRaNq0KZKTk5UynTp1wuXLl+Hj4wMfHx9cvnwZ7u7uyvzk5GQ0adIEMTExOHXqFLZs2YIdO3Zg2LBhn+fDICIiIiIiIvpENCIi+g4i1YsXL2BjYwM/Pz/UqFEDIgJ7e3sMGTIEP/74I4A3d/ltbW0xc+ZM9O7dGxEREciVKxfWr1+P9u3bAwCePXsGBwcHHDx4EA0aNMCtW7dQsmRJnD17FpUqVQIAnD17Fq6urrh9+zaKFSuGQ4cOoWnTpggMDIS9vT0AYMuWLejWrRtCQkJgaWn5r/FHRkZCq9UiIiLivcrr04xLL/UdAv3PKGdrfYdARERERERfqPfNQzPVM/8REREAACsrKwBAQEAAgoOD4ebmppQxNTVFzZo1cfr0aQCAv78/EhMTdcrY29vDyclJKXPmzBlotVol8QeAypUrQ6vV6pRxcnJSEn8AaNCgAeLj4+Hv7/+JtpiIiIiIiIjo0zPSdwCpRARDhw5FtWrV4OTkBAAIDg4GANja2uqUtbW1xaNHj5QyJiYmyJEjR7oyqcsHBwfDxsYm3Xva2NjolHn7fXLkyAETExOlzNvi4+MRHx+vvI6MjHzv7SUiIiIiIiL6XDLNnf8BAwbg6tWr2Lx5c7p5Go1G57WIpJv2trfLvKv8x5RJy9PTU+lAUKvVwsHB4R9jIiIiIiIiItKHTJH8Dxw4EHv37sVvv/2GvHnzKtPt7OwAIN2d95CQEOUuvZ2dHRISEhAWFvaPZZ4/f57ufV+8eKFT5u33CQsLQ2JiYroWAalGjx6NiIgI5S8wMPBDNpuIiIiIiIjos9Br8i8iGDBgAHbu3Injx4/D0dFRZ76joyPs7Ozg6+urTEtISICfnx+qVKkCAHBxcYGxsbFOmaCgIFy/fl0p4+rqioiICJw/f14pc+7cOUREROiUuX79OoKCgpQyR44cgampKVxcXN4Zv6mpKSwtLXX+iIiIiIiIiDIbvT7z379/f2zatAl79uyBhYWFcuddq9XCzMwMGo0GQ4YMwfTp01GkSBEUKVIE06dPR9asWdGpUyelbI8ePTBs2DDkzJkTVlZWGD58OEqXLo169eoBAEqUKIGGDRvCw8MDy5cvBwD06tULTZs2RbFixQAAbm5uKFmyJNzd3TF79my8evUKw4cPh4eHB5N6IiIiIiIi+qLpNfn38vICANSqVUtn+po1a9CtWzcAwMiRIxEbG4t+/fohLCwMlSpVwpEjR2BhYaGUnz9/PoyMjNCuXTvExsaibt268Pb2hqGhoVJm48aNGDRokDIqQPPmzbFkyRJlvqGhIQ4cOIB+/fqhatWqMDMzQ6dOnTBnzpxPtPVEREREREREn4dGRETfQajF+46vmBnMuPRS3yHQ/4xyttZ3CERERERE9IV63zw0U3T4R0RERERERESfDpN/IiIiIiIiIpVj8k9ERERERESkckz+iYiIiIiIiFSOyT8RERERERGRyjH5JyIiIiIiIlI5Jv9EREREREREKsfkn4iIiIiIiEjlmPwTERERERERqRyTfyIiIiIiIiKVY/JPREREREREpHJM/omIiIiIiIhUjsk/ERERERERkcox+SciIiIiIiJSOSb/RERERERERCrH5J+IiIiIiIhI5Zj8ExEREREREakck38iIiIiIiIilWPyT0RERERERKRyTP6JiIiIiIiIVI7JPxEREREREZHKMfknIiIiIiIiUjkm/0REREREREQqx+SfiIiIiIiISOWY/BMRERERERGpHJN/IiIiIiIiIpVj8k9ERERERESkckz+iYiIiIiIiFSOyT8RERERERGRyjH5JyIiIiIiIlI5Jv9EREREREREKsfkn4iIiIiIiEjlmPwTERERERERqRyTfyIiIiIiIiKVY/JPREREREREpHJM/omIiIiIiIhUjsk/ERERERERkcox+SciIiIiIiJSOSb/RERERERERCrH5J+IiIiIiIhI5Zj8ExEREREREakck38iIiIiIiIilWPyT0RERERERKRyH5X8//nnn7h27Zryes+ePWjZsiXGjBmDhISEDAuOiIiIiIiIiP47o49ZqHfv3hg1ahRKly6NBw8eoEOHDvj222+xbds2vH79GgsWLMjgMInov5hx6aW+Q6A0Rjlb6zsEIiIiIvrKfNSd/7/++gvlypUDAGzbtg01atTApk2b4O3tjR07drz3ek6ePIlmzZrB3t4eGo0Gu3fv1pnfrVs3aDQanb/KlSvrlImPj8fAgQNhbW0Nc3NzNG/eHE+ePNEpExYWBnd3d2i1Wmi1Wri7uyM8PFynzOPHj9GsWTOYm5vD2toagwYNYisGIiIiIiIiUoWPSv5FBCkpKQCAo0ePonHjxgAABwcHvHz5/ncYY2JiULZsWSxZsuRvyzRs2BBBQUHK38GDB3XmDxkyBLt27cKWLVtw6tQpREdHo2nTpkhOTlbKdOrUCZcvX4aPjw98fHxw+fJluLu7K/OTk5PRpEkTxMTE4NSpU9iyZQt27NiBYcOGvfe2EBEREREREWVWH9Xsv0KFCpg6dSrq1asHPz8/eHl5AQACAgJga2v73utp1KgRGjVq9I9lTE1NYWdn9855ERERWLVqFdavX4969eoBADZs2AAHBwccPXoUDRo0wK1bt+Dj44OzZ8+iUqVKAICVK1fC1dUVd+7cQbFixXDkyBHcvHkTgYGBsLe3BwDMnTsX3bp1w7Rp02Bpafne20RERERERESU2XzUnf/58+fjzz//xIABAzB27FgULlwYALB9+3ZUqVIlQwM8ceIEbGxsULRoUXh4eCAkJESZ5+/vj8TERLi5uSnT7O3t4eTkhNOnTwMAzpw5A61WqyT+AFC5cmVotVqdMk5OTkriDwANGjRAfHw8/P39M3R7iIiIiIiIiD63j7rzX7ZsWZ3e/lPNnj0bRkYftcp3atSoEdq2bYv8+fMjICAA48ePR506deDv7w9TU1MEBwfDxMQEOXLk0FnO1tYWwcHBAIDg4GDY2NikW7eNjY1OmbdbLOTIkQMmJiZKmXeJj49HfHy88joyMvKjt5WIiIiIiIjoU/moO/8FCxZEaGhouulxcXEoWrTofw4qVfv27dGkSRM4OTmhWbNmOHToEP766y8cOHDgH5cTEWg0GuV12v//lzJv8/T0VDoR1Gq1cHBweJ/NIiIiIiIiIvqsPir5f/jwoU6Heqni4+PT9bSfkXLnzo38+fPj7t27AAA7OzskJCQgLCxMp1xISIhyJ9/Ozg7Pnz9Pt64XL17olHn7Dn9YWBgSExP/sQ+D0aNHIyIiQvkLDAz8T9tHRERERERE9Cl8UBv9vXv3Kv8/fPgwtFqt8jo5ORnHjh2Do6NjxkX3ltDQUAQGBiJ37twAABcXFxgbG8PX1xft2rUDAAQFBeH69euYNWsWAMDV1RURERE4f/48vvnmGwDAuXPnEBERofRP4OrqimnTpiEoKEhZ95EjR2BqagoXF5e/jcfU1BSmpqafbHuJiIiIiIiIMsIHJf8tW7YE8KaJfNeuXXXmGRsbo0CBApg7d+57ry86Ohr37t1TXgcEBODy5cuwsrKClZUVJk2ahNatWyN37tx4+PAhxowZA2tra3z77bcAAK1Wix49emDYsGHImTMnrKysMHz4cJQuXVrp/b9EiRJo2LAhPDw8sHz5cgBAr1690LRpUxQrVgwA4ObmhpIlS8Ld3R2zZ8/Gq1evMHz4cHh4eLCnfyIiIiIiIvrifVDyn5KSAgBwdHTEhQsXYG1t/Z/e/OLFi6hdu7byeujQoQCArl27wsvLC9euXcO6desQHh6O3Llzo3bt2ti6dSssLCyUZebPnw8jIyO0a9cOsbGxqFu3Lry9vWFoaKiU2bhxIwYNGqSMCtC8eXMsWbJEmW9oaIgDBw6gX79+qFq1KszMzNCpUyfMmTPnP20fERERERERUWagERHRdxBqERkZCa1Wi4iIiEzfYmDGpZf6DoH+Z5Tzf7uI9j5Y35nL56hzIiIiIvo6vG8e+tHj8h07dgzHjh1DSEiI0iIg1erVqz92tURERERERESUwT4q+Z88eTKmTJmCChUqIHfu3P84HB4RERERERER6ddHJf/Lli2Dt7c33N3dMzoeIiIiIiIiIspgBh+zUEJCgjJMHhERERERERFlbh+V/Pfs2RObNm3K6FiIiIiIiIiI6BP4qGb/cXFxWLFiBY4ePYoyZcrA2NhYZ/68efMyJDgiIiIiIiIi+u8+Kvm/evUqypUrBwC4fv26zjx2/kdERERERESUuXxU8v/bb79ldBxERERERERE9Il81DP/RERERERERPTl+Kg7/7Vr1/7H5v3Hjx//6ICIiIiIiIiIKGN9VPKf+rx/qsTERFy+fBnXr19H165dMyIuIiIiIiIiIsogH5X8z58//53TJ02ahOjo6P8UEBERERERERFlrAx95r9z585YvXp1Rq6SiIiIiIiIiP6jDE3+z5w5gyxZsmTkKomIiIiIiIjoP/qoZv+tWrXSeS0iCAoKwsWLFzF+/PgMCYyIiIiIiIiIMsZHJf9arVbntYGBAYoVK4YpU6bAzc0tQwIjIiIiIiIioozxUcn/mjVrMjoOIiIiIiIiIvpEPir5T+Xv749bt25Bo9GgZMmScHZ2zqi4iIiIiIiIiCiDfFTyHxISgg4dOuDEiRPInj07RAQRERGoXbs2tmzZgly5cmV0nERERERERET0kT6qt/+BAwciMjISN27cwKtXrxAWFobr168jMjISgwYNyugYiYiIiIiIiOg/+Kg7/z4+Pjh69ChKlCihTCtZsiSWLl3KDv+IiIiIiIiIMpmPuvOfkpICY2PjdNONjY2RkpLyn4MiIiIiIiIioozzUXf+69Spg8GDB2Pz5s2wt7cHADx9+hQ//PAD6tatm6EBEhHRh5tx6aW+Q6D/GeVsre8QiIiIiD7uzv+SJUsQFRWFAgUKoFChQihcuDAcHR0RFRWFxYsXZ3SMRERERERERPQffNSdfwcHB/z555/w9fXF7du3ISIoWbIk6tWrl9HxEREREREREdF/9EF3/o8fP46SJUsiMjISAFC/fn0MHDgQgwYNQsWKFVGqVCn8/vvvnyRQIiIiIiIiIvo4H5T8L1iwAB4eHrC0tEw3T6vVonfv3pg3b16GBUdERERERERE/90HJf9XrlxBw4YN/3a+m5sb/P39/3NQRERERERERJRxPij5f/78+TuH+EtlZGSEFy9e/OegiIiIiIiIiCjjfFDynydPHly7du1v51+9ehW5c+f+z0ERERERERERUcb5oOS/cePGmDBhAuLi4tLNi42NxcSJE9G0adMMC46IiIiIiIiI/rsPGupv3Lhx2LlzJ4oWLYoBAwagWLFi0Gg0uHXrFpYuXYrk5GSMHTv2U8VKRERERERERB/hg5J/W1tbnD59Gn379sXo0aMhIgAAjUaDBg0a4Oeff4atre0nCZSIiIiIiIiIPs4HJf8AkD9/fhw8eBBhYWG4d+8eRARFihRBjhw5PkV8RERERERERPQffXDynypHjhyoWLFiRsZCRERERERERJ/AB3X4R0RERERERERfHib/RERERERERCrH5J+IiIiIiIhI5Zj8ExEREREREakck38iIiIiIiIilWPyT0RERERERKRyTP6JiIiIiIiIVI7JPxEREREREZHKMfknIiIiIiIiUjkm/0REREREREQqx+SfiIiIiIiISOX0mvyfPHkSzZo1g729PTQaDXbv3q0zX0QwadIk2Nvbw8zMDLVq1cKNGzd0ysTHx2PgwIGwtraGubk5mjdvjidPnuiUCQsLg7u7O7RaLbRaLdzd3REeHq5T5vHjx2jWrBnMzc1hbW2NQYMGISEh4VNsNhEREREREdFnpdfkPyYmBmXLlsWSJUveOX/WrFmYN28elixZggsXLsDOzg7169dHVFSUUmbIkCHYtWsXtmzZglOnTiE6OhpNmzZFcnKyUqZTp064fPkyfHx84OPjg8uXL8Pd3V2Zn5ycjCZNmiAmJganTp3Cli1bsGPHDgwbNuzTbTwRERERERHRZ2Kkzzdv1KgRGjVq9M55IoIFCxZg7NixaNWqFQBg7dq1sLW1xaZNm9C7d29ERERg1apVWL9+PerVqwcA2LBhAxwcHHD06FE0aNAAt27dgo+PD86ePYtKlSoBAFauXAlXV1fcuXMHxYoVw5EjR3Dz5k0EBgbC3t4eADB37lx069YN06ZNg6Wl5Wf4NIiIiIiIiIg+Db0m//8kICAAwcHBcHNzU6aZmpqiZs2aOH36NHr37g1/f38kJibqlLG3t4eTkxNOnz6NBg0a4MyZM9BqtUriDwCVK1eGVqvF6dOnUaxYMZw5cwZOTk5K4g8ADRo0QHx8PPz9/VG7du13xhgfH4/4+HjldWRkZEZ+BERERO9lxqWX+g6B/meUs7W+QyAiInqnTNvhX3BwMADA1tZWZ7qtra0yLzg4GCYmJsiRI8c/lrGxsUm3fhsbG50yb79Pjhw5YGJiopR5F09PT6UfAa1WCwcHhw/cSiIiIiIiIqJPL9Mm/6k0Go3OaxFJN+1tb5d5V/mPKfO20aNHIyIiQvkLDAz8x7iIiIiIiIiI9CHTJv92dnYAkO7Oe0hIiHKX3s7ODgkJCQgLC/vHMs+fP0+3/hcvXuiUeft9wsLCkJiYmK5FQFqmpqawtLTU+SMiIiIiIiLKbDJt8u/o6Ag7Ozv4+voq0xISEuDn54cqVaoAAFxcXGBsbKxTJigoCNevX1fKuLq6IiIiAufPn1fKnDt3DhERETplrl+/jqCgIKXMkSNHYGpqChcXl0+6nURERERERESfml47/IuOjsa9e/eU1wEBAbh8+TKsrKyQL18+DBkyBNOnT0eRIkVQpEgRTJ8+HVmzZkWnTp0AAFqtFj169MCwYcOQM2dOWFlZYfjw4ShdurTS+3+JEiXQsGFDeHh4YPny5QCAXr16oWnTpihWrBgAwM3NDSVLloS7uztmz56NV69eYfjw4fDw8ODdfCIiIiIiIvri6TX5v3jxok5P+kOHDgUAdO3aFd7e3hg5ciRiY2PRr18/hIWFoVKlSjhy5AgsLCyUZebPnw8jIyO0a9cOsbGxqFu3Lry9vWFoaKiU2bhxIwYNGqSMCtC8eXMsWbJEmW9oaIgDBw6gX79+qFq1KszMzNCpUyfMmTPnU38ERERERERERJ+cRkRE30GoRWRkJLRaLSIiIjJ9iwEOC5V5fI5hoVjfmQvr/OvC+v66cKg/IiL63N43D820z/wTERERERERUcZg8k9ERERERESkckz+iYiIiIiIiFSOyT8RERERERGRyjH5JyIiIiIiIlI5Jv9EREREREREKsfkn4iIiIiIiEjlmPwTERERERERqRyTfyIiIiIiIiKVY/JPREREREREpHJM/omIiIiIiIhUjsk/ERERERERkcox+SciIiIiIiJSOSb/RERERERERCrH5J+IiIiIiIhI5Zj8ExEREREREakck38iIiIiIiIilWPyT0RERERERKRyTP6JiIiIiIiIVI7JPxEREREREZHKMfknIiIiIiIiUjkm/0REREREREQqx+SfiIiIiIiISOWY/BMRERERERGpHJN/IiIiIiIiIpUz0ncARERERPT+Zlx6qe8QKI1Rztb6DoGI6L3wzj8RERERERGRyjH5JyIiIiIiIlI5Jv9EREREREREKsfkn4iIiIiIiEjlmPwTERERERERqRyTfyIiIiIiIiKVY/JPREREREREpHJM/omIiIiIiIhUjsk/ERERERERkcox+SciIiIiIiJSOSb/RERERERERCrH5J+IiIiIiIhI5Zj8ExEREREREakck38iIiIiIiIilWPyT0RERERERKRyTP6JiIiIiIiIVI7JPxEREREREZHKMfknIiIiIiIiUjkm/0REREREREQql6mT/0mTJkGj0ej82dnZKfNFBJMmTYK9vT3MzMxQq1Yt3LhxQ2cd8fHxGDhwIKytrWFubo7mzZvjyZMnOmXCwsLg7u4OrVYLrVYLd3d3hIeHf45NJCIiIiIiIvrkMnXyDwClSpVCUFCQ8nft2jVl3qxZszBv3jwsWbIEFy5cgJ2dHerXr4+oqCilzJAhQ7Br1y5s2bIFp06dQnR0NJo2bYrk5GSlTKdOnXD58mX4+PjAx8cHly9fhru7+2fdTiIiIiIiIqJPxUjfAfwbIyMjnbv9qUQECxYswNixY9GqVSsAwNq1a2Fra4tNmzahd+/eiIiIwKpVq7B+/XrUq1cPALBhwwY4ODjg6NGjaNCgAW7dugUfHx+cPXsWlSpVAgCsXLkSrq6uuHPnDooVK/b5NpaIiIiIiIjoE8j0d/7v3r0Le3t7ODo6okOHDnjw4AEAICAgAMHBwXBzc1PKmpqaombNmjh9+jQAwN/fH4mJiTpl7O3t4eTkpJQ5c+YMtFqtkvgDQOXKlaHVapUyfyc+Ph6RkZE6f0RERERERESZTaZO/itVqoR169bh8OHDWLlyJYKDg1GlShWEhoYiODgYAGBra6uzjK2trTIvODgYJiYmyJEjxz+WsbGxSffeNjY2Spm/4+npqfQToNVq4eDg8NHbSkRERERERPSpZOpm/40aNVL+X7p0abi6uqJQoUJYu3YtKleuDADQaDQ6y4hIumlve7vMu8q/z3pGjx6NoUOHKq8jIyN5AYCIiIiIMtSMSy/1HQL9zyhna32HQPTRMvWd/7eZm5ujdOnSuHv3rtIPwNt350NCQpTWAHZ2dkhISEBYWNg/lnn+/Hm693rx4kW6VgVvMzU1haWlpc4fERERERERUWbzRSX/8fHxuHXrFnLnzg1HR0fY2dnB19dXmZ+QkAA/Pz9UqVIFAODi4gJjY2OdMkFBQbh+/bpSxtXVFRERETh//rxS5ty5c4iIiFDKEBEREREREX3JMnWz/+HDh6NZs2bIly8fQkJCMHXqVERGRqJr167QaDQYMmQIpk+fjiJFiqBIkSKYPn06smbNik6dOgEAtFotevTogWHDhiFnzpywsrLC8OHDUbp0aaX3/xIlSqBhw4bw8PDA8uXLAQC9evVC06ZN2dM/ERERERERqUKmTv6fPHmCjh074uXLl8iVKxcqV66Ms2fPIn/+/ACAkSNHIjY2Fv369UNYWBgqVaqEI0eOwMLCQlnH/PnzYWRkhHbt2iE2NhZ169aFt7c3DA0NlTIbN27EoEGDlFEBmjdvjiVLlnzejSUiIiIiIiL6RDJ18r9ly5Z/nK/RaDBp0iRMmjTpb8tkyZIFixcvxuLFi/+2jJWVFTZs2PCxYRIRERERERFlal/UM/9ERERERERE9OGY/BMRERERERGpHJN/IiIiIiIiIpVj8k9ERERERESkckz+iYiIiIiIiFSOyT8RERERERGRyjH5JyIiIiIiIlI5Jv9EREREREREKsfkn4iIiIiIiEjlmPwTERERERERqRyTfyIiIiIiIiKVY/JPREREREREpHJM/omIiIiIiIhUjsk/ERERERERkcox+SciIiIiIiJSOSb/RERERERERCrH5J+IiIiIiIhI5Zj8ExEREREREakck38iIiIiIiIilWPyT0RERERERKRyTP6JiIiIiIiIVM5I3wEQERERERHRGzMuvdR3CPQ/o5yt9R1ChuKdfyIiIiIiIiKVY/JPREREREREpHJM/omIiIiIiIhUjsk/ERERERERkcox+SciIiIiIiJSOSb/RERERERERCrH5J+IiIiIiIhI5Zj8ExEREREREakck38iIiIiIiIilWPyT0RERERERKRyTP6JiIiIiIiIVI7JPxEREREREZHKMfknIiIiIiIiUjkm/0REREREREQqx+SfiIiIiIiISOWY/BMRERERERGpHJN/IiIiIiIiIpVj8k9ERERERESkckz+iYiIiIiIiFSOyT8RERERERGRyjH5JyIiIiIiIlI5Jv9EREREREREKsfkn4iIiIiIiEjlmPy/5eeff4ajoyOyZMkCFxcX/P777/oOiYiIiIiIiOg/YfKfxtatWzFkyBCMHTsWly5dQvXq1dGoUSM8fvxY36ERERERERERfTQm/2nMmzcPPXr0QM+ePVGiRAksWLAADg4O8PLy0ndoRERERERERB/NSN8BZBYJCQnw9/fHqFGjdKa7ubnh9OnT71wmPj4e8fHxyuuIiAgAQGRk5KcLNIPERUfpOwT6n8hIk0/+HqzvzIV1/nVhfX9dWN9fH9b514X1/XX5HPWdEVLzTxH5x3JM/v/n5cuXSE5Ohq2trc50W1tbBAcHv3MZT09PTJ48Od10BweHTxIjqVP6PYjUjnX+dWF9f11Y318f1vnXhfX9dfnS6jsqKgparfZv5zP5f4tGo9F5LSLppqUaPXo0hg4dqrxOSUnBq1evkDNnzr9dhjJOZGQkHBwcEBgYCEtLS32HQ58Y6/vrwvr++rDOvy6s768L6/vrwzr/vEQEUVFRsLe3/8dyTP7/x9raGoaGhunu8oeEhKRrDZDK1NQUpqamOtOyZ8/+qUKkv2Fpackvla8I6/vrwvr++rDOvy6s768L6/vrwzr/fP7pjn8qdvj3PyYmJnBxcYGvr6/OdF9fX1SpUkVPURERERERERH9d7zzn8bQoUPh7u6OChUqwNXVFStWrMDjx4/Rp08ffYdGRERERERE9NGY/KfRvn17hIaGYsqUKQgKCoKTkxMOHjyI/Pnz6zs0egdTU1NMnDgx3aMXpE6s768L6/vrwzr/urC+vy6s768P6zxz0si/jQdARERERERERF80PvNPREREREREpHJM/omIiIiIiIhUjsk/ERERERERkcox+SciIiIiItKz5ORkfYdAKsfkn+gz+fXXX/UdAmUSXl5e+g6BMkCbNm0wbdo0fYdBGWzBggV4+PChvsOgTGDChAl49uyZvsOgr8Tq1atRsmRJxMXF6TuUr16HDh3w/fff6zuMT4LJP9FnsG/fPnTo0AFTpkzRdyikZwcPHsSUKVPQu3dvfYdC/1HZsmUxceJELFq0SN+hUAa5e/cuhg4dinHjxiEwMFDf4ZAeBQcHY/bs2ejcuTOeP3+u73BI5UQE9vb2MDU1Rd26dXkBQI9SUlLg5uaGX3/9FUOHDtV3OBmOyT/RZ1CpUiXMnTsXCxYswMSJE/UdDumRq6srxowZg3PnzqFHjx76Doc+UkpKCsaPH485c+ZgyJAhWLJkCZKSkvQdFv0HIoIiRYrg7Nmz2LVrF0aNGoVHjx7pOyzSEzs7O1y7dg2PHj1C+/btERwcrO+QSMU0Gg3q1auHxYsXIzk5GTVr1kR8fLy+w/oqGRgYoFu3bli1ahVWrFiBYcOG6TukDMXkn+gTS05Oho2NDfr06YOpU6diwYIFmDdvnr7DIj1ITExEjhw50L9/f3h4eMDf3x9DhgzRd1j0gZKTk2Fg8Obns3nz5ujRowd++OEH/PLLLxARPUdHHyslJQUA8M033+Dw4cP49ddfMXv2bD4C8BVKfe66cOHC2LdvH27cuIFBgwYhKChIz5GRWiUnJ8PIyAharRadO3fGhQsX0LRpU14A+MxSj30DAwM4ODhg4MCBmD9/PiZMmKDnyDIOk3+iT0hEYGhoCABYu3Ytbt26BRHB8OHDMX36dD1HR5+TiMDY2BgAsHLlSly8eBEvX77EkiVLMGDAAD1HRx8i9ZgeOXIkWrRogdevX8PR0RH9+/fHwoUL9RwdfYy039Xjx4+Hr68vcuXKhZ9//hkTJ07kIwBfmdR9Ydy4cZg9ezayZ8+O7du3o0uXLmwBQJ+EoaEhtm3bhpYtW+LatWuoVKkSLly4gNq1a/MRgM8o9dj/8ccf0atXL7x69QplypTB1KlT1fMIgBDRJzdu3DixtraWTZs2yZo1a6RLly5iYWEhkydP1ndo9JlNnjxZtFqtbN26Vfbt2yfdu3eX4sWLS69evfQdGn2APXv2SLZs2eTs2bOSmJgoL1++lKlTp4qBgYEsWLBAkpOT9R0ifYRZs2ZJjhw55MSJE+Ln5ycbNmwQU1NT+e677+Tx48f6Do8+o3nz5kn27Nnl999/l4sXL8revXvFwcFBatWqJUFBQfoOj1Tm8ePH4uDgIPPmzRMRkaSkJNm2bZuUKVNGXF1dJS4uTs8Rfj2OHDkiFhYW8vvvv4uIyMuXL2XZsmViYmIiw4YN03N0/52Rvi8+EKldaGgojh07hmnTpqFjx44AgAYNGqBYsWKYOnUqzMzMMGLECD1HSZ9DWFgYjh49ip9++gnt2rUDAFSrVg0rVqzAkiVL8MMPP2D+/Pl6jpLeR1hYGAoWLIhy5crByMgIOXPmxNixYxETE4Phw4cjW7Zs6Natm3IXgb4MZ86cQceOHVGzZk1lWt68eeHm5oYsWbJg7NixcHR01GOE9LlcvXoVrVu3RrVq1QAALi4uKFCgABo0aICePXtixYoVsLe313OUpBbh4eGIjY1F9erVAby5A920aVMkJSWhZ8+e+Pbbb7Fz505kyZJFz5Gq38uXL2FjY4OKFSsCAHLmzAl3d3dERkbixx9/RPbs2TFu3Dg9R/nx2Oyf6BMzMjJCQECATlPB3Llzo1u3bnB2dsaPP/6I0aNH6zFC+lwsLCwQFRWFe/fuKdOyZ8+OAQMGoFChQli6dKlygYgyNwsLC9y8eRNPnjwB8P/PCTZu3BgpKSnw8PDA9u3b9RkifYDk5GQkJibi1atXyjO2KSkpSExMRM2aNTF48GCsXr0aI0aMYM/vKif/67fj+fPnOo97JCUloXTp0ujTpw8OHjyIVq1a4dWrV/oKk1QmX758sLa2xvHjx5VpWbJkQYsWLVC0aFH4+PigSZMmeoxQneQd/fQUKlQIwcHBOHXqlDIta9asqFOnDrJmzYoJEyZgwYIFnzHKjMXknygDpXYYlZZWq0XLli3h7++PW7duKdPt7e3h7OyMKlWq4Pr16+woTGXetS8kJyejatWquHPnDm7fvq1Mz5o1K7755htUqVIFOXLkeOeypB9p6yI1wRcRNGnSBNWrV8eQIUNw//595Q5/rly50K9fP2zevBmtW7fWS8z0794+xgwNDWFsbIw2bdpgy5YtOH78OAwMDGBk9KaBZK5cudCsWTOEhoYiV65c+giZPpG39wWNRgMA6N27N65du4bVq1cDgLIv5MmTB+7u7ihQoAC0Wu3nDZZUIfV8LyUlBQkJCQCAbNmyoXr16jhw4AAOHTqklDUwMICTkxPWrl0Lb29vfYSrWikpKcrxnpSUhJSUFIgISpUqhVq1asHLywtnzpxRyltZWaFNmzbw8fH5ovtq0ggzDqIMkZKSovQAfuPGDYSFhaFw4cKwtbXF77//Dg8PDzRu3Bjdu3dH6dKlERUVhS5duqBFixbo1q0bgDc/CKlfRPTlSrsvXLhwAVFRUciVKxdKly6Nu3fvonr16qhXrx6GDh2K8uXLIzY2Fp07d0adOnXQr18/aDQanXWQfqStg59//hkXLlxAdHQ0KlSogGHDhuHo0aOYPXs24uLiMH78eJiammL27NnQaDQ4cOAAgDcnFKlJA2UOaev16NGjCA4OhpGREerXrw9LS0t069YN/v7+WLRoEdzc3BAVFYWOHTvi+++/Vy7o8PhUh7T1eOjQITx8+BBarRZly5ZFsWLF0LdvX9y4cQPu7u7o27cvnj9/jh49eqBmzZrK43rJycl8vIfeW+p53qFDh7Bt2zb8+eefaNWqFRo2bIiiRYuiRYsWAIDatWujZs2a2LNnDw4dOoTjx48jT548eo5ePdIe+/Pnz8elS5dw7949tGrVCp06dcKjR48watQoGBoaok2bNihSpAjmzJmj1J1Go/lif9+Z/BNlgLRJ+5gxY7Bz507ExMTA2toa5cuXx6JFi7B3717MnDkTwJu7SKGhoUhOTsaff/4JQ0NDJv4q8fa+sGXLFmTLlg0vXryAm5sbZs2ahSdPnqBt27awtrZWrjTHxsbi2rVr3BcyoR9//BHe3t4YMmQIYmJisGbNGri6umL79u3Ys2cPNm/ejO3bt6NgwYLImTMnTp48CWNjY9ZjJjdy5Ejs3r0b2bJlg5WVFa5du4aLFy8iPDwcixYtwurVq1GiRAm8fv0aZmZmuHLlCoyMjFivKjRy5Ehs27YNDg4OsLCwwMWLF7Fnzx7kypULixcvxrp165AlSxaYmprCwsIC/v7+yugtRB9qz5496NSpEwYPHgx7e3ts2rQJ4eHhOHHiBBISEuDp6Qk/Pz9ERkbC3NwcGzduRPny5fUdtiqNGjUKq1atwpQpU/DixQts2bIF9vb2OHr0KA4fPow9e/Zg7dq1KFCgAHLkyIHffvvty/99/7z9CxKp27x588TGxkaOHz8uIiLff/+90luwiMjZs2dlxYoV0q1bNxk/frwkJiaKyJteXUldFi1aJHZ2dkrdDxs2TMzNzZV94969e7J27VoZMmSITJ06lftCJpKSkqL8/9y5c1KsWDE5ffq0iIjs2rVLsmXLJl5eXjrL3Lp1SwICApRe/lPrkzKnX375RWxsbOT8+fMiIrJs2TLRaDSye/duERGJi4uTo0ePysKFC2XZsmVKfbJe1SHtMb5hwwaxs7OTM2fOiIjIkiVLRKPRyMaNG0VEJCoqSu7evSteXl6yZcsW7gv0n4SEhEjVqlVl0aJFIiISGxsrVlZWMmzYMJ1RYmJjY+XevXvy6tUrfYWqehcvXpRSpUopv++HDx+WLFmyyKpVq3TKBQcHS2BgoGp+35n8E32ka9euKf9PSUmRhIQE+fbbb2XhwoUiInLgwAGxsLCQ5cuXi8ibk8nY2Nh06/nSv0RI5MqVK+mmde7cWaZNmyYiIjt27BCtVqskjDExMZKQkJBuGe4L+tWjRw+5e/euzrR9+/ZJqVKlRERk586dYmFhodRjZGSk7Ny5M92wfhzmL3M5ceJEumkjRoyQSZMmicibes2WLZusWLFCRN4kexEREemW4YW5L9+GDRvSTRs7dqz0799fRNLvC5GRkXL//v10y3BfoPexcOFC8fb21pkWHh4uZcuWlYcPH8r9+/clT5484uHhocw/evSoPHz48HOHqnoDBw5Ubsak8vPzk+LFi4uIyPbt23V+36OiomTnzp0SFhams4waft/5wBrRR/Dw8MCGDRuU1xqNBiKCV69eoWrVqjh69Cjat2+P2bNno1evXkhISMD69etx5syZdJ0LfYnPC9H/69y5M1asWKEzLT4+Hvfv30elSpVw9uxZdO3aFTNnzkSfPn2QmJiIX375BX5+fuk6eeS+oD8HDhyAVqtF/vz5daabmpoiX758WLt2Lbp06YLZs2ejT58+AICLFy/i4MGDCAgI0FmGz4JnHj///DPGjh0LEdH57n327BkSExOxf/9+pV49PDwgIti4cSOWL1+OpKQknXXxue4v2/Lly7Fz507lUatUcXFxsLKywr59+9LtC/v27cP27dvx+vVrnXVxX6B/8/TpU1y8eBFVqlTRmf7y5UtERkbi/PnzcHNzQ6NGjbBs2TIAwL179+Dt7Y0HDx7oI2TV8vX1hZGRESpXrqwzPTY2FhYWFti0aRO6d++unKcBb/pr2r9/P168eKGzjCp+3/V55YHoS3T8+HHx9fVV7tw+ffpUmdewYUMpXLiwWFpaypo1a5TpQUFBUqdOHaUVAKnD9u3bJTAwUOLj40VEJDAwUJnXr18/sbGxkSxZssj69euV6aGhoVK7dm2ZN2/eZ4+X3q1ly5aydu1a5W7eqlWr5NKlSyIi8uTJE7G3txeNRiPz589XlomNjZWGDRtKhw4ddJoQU+YxZcoUOXLkiFKvt2/fFpE3LbVmzJghpUqVEktLS1myZImyTGhoqDRu3FimTJmil5jp05g6daocOHBA2RdSm/iLiMyZM0eyZ88uWbNm1XmcJzw8XNzc3GTMmDGfPV76svXo0UN++OEHpbXn6dOnldYkIiIDBgwQjUYjbdq00VluzJgxUqZMGZ1zCfpvatSoIZs2bVKO/XXr1imPd4mIlClTRjQajSxevFiZFhsbK40bN5bWrVur4k7/25j8E32Ab775RsqVK6d8GaxcuVIaNWqkNCW6efOmlC5dWmkm/Pr1awkNDZVGjRpJ1apV2VRQRWrVqiX58+dXmuovW7ZMqlatqjQxvn79utSsWVMKFy4sYWFhkpycLM+fP5eGDRtK5cqVuS9kEoMGDZK8efMqx/TDhw/F1dVVXFxc5PLlyyIi8scff4iFhYW0bt1aVq1aJVu3bpW6deuKk5OTUv+8AJC51K5dW6pUqaLUq4+Pj2g0GtmxY4eIvEnsXFxcxM7OTnx9feXFixdy9+5dadSokVSsWJGP4KiIm5ublCxZUnl97Ngxsba2Fk9PT2Va+/btJUuWLHL48GH566+/5M6dO9KgQQNxcXHhvkAfZMuWLZIrVy75888/lWkdO3aUsmXLysqVK0XkzUXl1q1bS9asWWXlypWyePFiGTBggFhYWCi/O/Tf/fjjj1KgQAHlBk14eLhUq1ZNatSoIfv37xcRkUuXLkmxYsWkQoUKsmrVKlm2bJnUq1dPSpUqpRz7arsAwOSf6D3t3r1bihQpolzJDQ4OlhMnToizs7N89913cvbsWRF5czc4d+7cUqhQIfnmm2/E1dVVypcvr7QUYNL35Tty5Ig4ODgozwXfvn1bAgICpEiRItKiRQtlX9i9e7e4urqKVquV8uXLi4uLi1SsWJH7QiYRExMj3377rYwePVpERDw9PeXevXvi4+MjzZo1k2+++Ubpz+HMmTPi6uoqhQsXlqpVq0rHjh1Zj5nU7du3pWzZsnLq1CkREfH395erV69Knz59xMrKSn799VcREXn16pVUqFBBSpUqJdmyZZPKlStLlSpVWK8qcvfuXSlfvrz88ccfIvLmQl5AQICMGDFCSpUqpVwASE5OlqZNm4qDg4NYWFhIpUqVpFq1atwX6IPNnTtXihYtKiJvzgG8vLzk1atX0qFDB6lataqsXr1aRN50/Dd06FApWrSouLi4SOvWreXq1av6DF1VkpKSpG3bttK9e3cRERkyZIjcuXNHTp06Jd9++63Url1bfHx8ROTNRf8GDRpImTJlpFq1avL999+r+tjnUH9E78nf3x/VqlXD+vXrlWd9r169ir1792Lq1KkoWLAgfvzxRzg7O+Ply5dYtmwZTExMYGdnh++++w6GhoZf7JigpOuvv/5CgwYNMGDAAAQHB+PIkSO4cuUKrl+/jnbt2sHR0RFTpkyBi4sLXr16hW3btiE+Ph52dnZo3bo194VMZPbs2Rg1ahTatm2LX3/9Fffu3UPBggVx+PBhLFq0CKGhoVi+fDnKli2LqKgoxMXFwcTEBFqtFgBYj5lQQEAAypcvjyFDhiAwMBC//fYbrl27hpCQEMyZMwfr16/HypUr0a5dO8TExODq1at4+PAhHB0dUbFiRR6fKhIeHo5SpUrBzc0N2bJlw8qVKxEeHo7nz5/Dy8sLu3fvRvfu3TFy5EgAwB9//IHo6GhYW1vD2dkZBgYG3Bfog/j7+6Nz586ws7ODn58fNmzYgE6dOuHFixfo378/nj59ih49eqB79+4AgKCgINjY2CAhIQFmZmZ6jl5dfv31V3To0AGNGjXCoUOHcOXKFZQuXRonT57E3LlzERkZiREjRqBx48YA3vTHYG5urtSDao99fV99IPoSJCcnS3R0tEyZMkW0Wq1ky5ZNHj9+rMzfs2ePVKxYUdq3b68MGfI2NV49/FpFRUWJp6en2Nvbi6mpqfIsscibUSBKlCghjRs35r6QiaVtpl+0aFExMjLSeeZP5E1T8caNG0ulSpXeeUeGTf0zn9Q6OXLkiBgYGIiFhYWcPHlSmf/gwQPp37+/WFpayrZt2965DrU18fxapdbjrVu3xNjYWCwsLOTixYvK/IcPH8qPP/4oxYoVkxkzZvzjOog+RP/+/UWj0UjlypV1poeEhEjbtm2latWqsnLlSv6GfAYVKlQQjUaj9N2R+pn7+flJ8+bNpU6dOsojAGmpuW5U0GUh0adnYGAAc3NzhIWFITo6GlmzZsWZM2eU+c2bN8e4cePw8OFDLF26FH5+funWwd6Bv3zyv4ZS2bJlw4sXL/Dq1Ss4OjriwIEDShknJyf8+uuvePjwIWbOnIljx46lWw/3Bf1KSUmBRqMB8OYujYWFBVq2bIkRI0Zg//79SrkGDRpg0KBByJUrF1q2bJmuV//UdVDmkVonz549g4ggOjoafn5+iIiIAAA4Ojpi2LBh6NKlC3r37o3NmzenW4cqenP+yomIUo8XLlyAiCA5OVlnFIf8+fOjT58++Pbbb7Fu3TpMmjQp3Xq4L9CHio6Oxo0bN9CzZ09ER0ejY8eOyrxcuXJh6dKlcHBwwMKFC3VGjaKMkXZUlytXriBr1qzo27cvPD09sWTJEuU3okaNGhg2bBi0Wi1Gjx6Ns2fP6qxHzb/vKmzLQJRxUlJSdH78S5Qogf379+PEiRP44YcfEBsbi65duwJ4cwFAo9Fg8ODBKFy4MGrWrKmvsOkTeHtfqFKlCpo0aYLjx49j/fr1iI+Px+jRowH8/wWAGjVqoFixYqhbt66+wqa3pK3Ha9euwcHBAUePHkX27NnRv39/tG3bFtu3b0eTJk0AvLkAEBcXh1OnTiFfvnz6DJ3+Qdp6jYiIgLOzM8LDw+Hr64u2bdsiPj4eI0eOhIWFBRwdHTF06FCEhYVhzZo1Oifn9OVLuy9ERkaidOnSePz4MR48eIBGjRohMTERq1atgoGBAQoUKIA+ffogIiICf/31F0RE1Sf99Gmk7jfXrl1Dvnz5lKHlvL29MWvWLHTs2FG50JgrVy4sWLAAo0aNQvXq1fUcubqkPfbPnj2LcuXK4dChQzA2NoadnR0GDRoEAwMD9OvXD8CbCwDx8fE4duwYKlasqM/QPy99NjsgyszSNvdbtGiRznBQf/31lwwZMkTy5Mkj3t7eOsv9/vvvbNatMm/vC5MnT5bo6GgREXn8+LEMHz5cnJ2dZfr06TrLPXjwgPtCJpK2HseNGyclSpQQHx8fpUff2NhY6devn2TJkkUOHDjwznWwPjOftPXq6ekpo0aNkjt37ijT1q1bJxqNRsaNGyeRkZHK9GfPnrFZt8qkrc+ffvpJevbsKQEBAcq0w4cPi4WFhXTr1k2nbFBQkNLMV83NfSnjpe4vu3btknz58snIkSOVzoCjo6NlzZo1Urx4cenYsaPOcvzuyVhpj9tx48ZJvnz5ZNOmTcr0sLAw+emnn0Sj0cjSpUvfuY6v5fedyT/RW97+4R8xYoTky5dPPD095dGjR8r027dvy+DBgyVv3ryybt26dOv5Wr5E1C7t/jB8+HDJnTu3eHl5yf3795XpDx8+VC4AvOvZUe4L+pf2RGvs2LFiZ2cnhw4dkufPn6cr16dPHzE3N5ft27d/7jDpA7x98jxixAixs7OTVatWSXBwsM68NWvWiKGhoUyYMEE5Mf+79dCX5+06HDlypOTOnVtWrlwpT58+1Znn4+MjlpaW0r1793TLMfGnj7Fv3z7JkiWLrFixQp49e6YzLzo6WtauXStOTk7SpEkTPUWobm//vtvY2MiJEyfS/b5HRUXJlClTxNDQUGbOnPm5w8w0mPwT/YPly5dLrly5dDoJSvsl8+jRI/nhhx/E0NBQDh48qI8Q6RN5/fq1zuvVq1eLnZ2dnD9/XpmWkpKiJBJPnz6VkSNHSp48eWTt2rWfNVb6e28n8Hfu3JESJUoox2t4eLjcvXtXvLy8lKHhUlJSpFOnTlKrVq3PHi99nC1btoitra0yNKPImxO9hw8fKsOzent7i0ajUcbaJnV4+7t6z549Ymdnp/O7HRERIffv35fw8HARedMCQKPRyLRp0z5rrPTl27VrlwQGBiqvo6KipEWLFjJ16lQReZPsBwQEyOzZs2XPnj0SExMjsbGxsmzZMqlUqZI8efJEX6GrTuqwiakCAgKkfPnySgd+oaGhcv36dfnpp5/k1KlT8vr1a4mJiZGRI0dKlSpVvtqLfUz+if6nT58+smvXLhF5c/KfmJgoffv2lWHDhomIyM2bN2XVqlVSoUIFqVSpkjI+6M2bN2XhwoW8u6siHTp00NkXRN6MEdu5c2cREblx44Z4eXmJs7OzFCxYUBk3PCAgQJYsWcJ9IZNYtGiRNG/eXJKTk5V6vHjxotjY2Ii/v7+cPHlS+vXrJ6VLl5acOXOKi4uLclEgLi6Od4QzqWbNmsmECRN0pv3888/StGlTEXnznTx79mwpWLCgODs7i4eHh/KYzqFDh5THPOjL5+HhIUOGDBGR//+u/uWXX6R27doiInLlyhWZOnWqFC5cWAoUKCB9+vSRkJAQERE5f/489wX6IMeOHZOqVavqtCZ5/fq1lC9fXgYPHizR0dEyaNAgqV69uuTPn1+MjIxkzpw5IvLmokDqxSf67xYtWiTfffedzu/09evXxcLCQo4ePSrnzp2TXr16SZkyZSR37tySL18+OXz4sIi8uRj4NT/mw25MiQCEhYXB3Nxc6eRLo9HAyMgI2bJlw4oVK7BgwQJ07doVu3btQpMmTWBpaYlBgwYhISEBJUqUwKBBg2BoaIjk5GQ9bwllhEKFCinjviYkJAAA8uXLhyNHjmDYsGH47rvvcPToUTRv3hwNGjRAjx498OLFCxQoUAD9+/fnvpBJfPvtt9i5cycMDAzg7+8PAHBxcUH+/PnRokULNGjQAIaGhpg+fToCAgIQFhaGe/fuAQBMTU1hYGCg03Mw6V9cXBx69eqFsWPH6kxPSkrCkSNH0Lt3bzRt2hT+/v7o27cvWrVqhZMnT+LJkycAgIYNG8LIyEjp8Z2+XMnJyWjWrBlmzZoFAEqd2tjY4MSJE+jcuTMaN26MW7duYcSIERg8eDB27dqFFy9eAAAqVqzIfYE+SJ06dbBz507Y29vj9u3bePjwIczMzNCzZ09s2LABNjY2ePz4Mb7//ns8fPgQAwYMwMGDBxEfHw9zc3NotVp9b4JqdOnSBWvXroWBgQFOnjwJAChVqhSaN2+Oli1bok6dOjAzM8O0adPw7NkzaLVa/PHHHwAAS0tLaDSar7eDT31ffSDSt7ev+q1Zs0YZ7/vp06fi4eEhhQsXltmzZytNSk+cOCE1atRQ7iCQOrx9p3fJkiWyZMkSiY2NlYCAAJkwYYKULVtWFi5cKDdv3hSRN2PFVq9ePd2zZaRfaevyyJEjkjNnTpk7d64ybcOGDXLq1CmdctWrV5dly5Z91jjp482dO1datWqlvP7pp5/E3d1dVq1apXTydufOHSlbtqxcv35dT1HSp/D27/bKlSulVq1ayp3V9evXS9euXWXt2rVKM+uQkBBxdnaWc+fOffZ46cuXtpXI48ePpVSpUtK3b1/lGf+rV68qzc1T908PDw/p2bMnW5hksLSf57Fjx6RgwYIyfvx4ZdqhQ4d0HtEUEalVq5Zybv+104j8b+Bqoq9UcnKyMu56YmIiWrRogVevXqFfv37o0qULgDctA3LkyAHgzVAijRs3RtasWbFjx46v86rhV6JDhw44f/48Jk6ciI4dO8LExATR0dHIli0bgDd3mpo3bw4DAwPs27eP+0ImER8fD1NTUwDA48ePYWlpiUmTJsHX1xe9evXC4MGDlbKvX7/Gy5cv0bdvXzx9+hQXL16EkRFHwc2M5K27NCtXrsSYMWPQpEkTeHt7AwBiYmJgbm4OEUFcXBzatGmDhIQEHD58mGO2q0ja320AWL9+PRYsWID8+fPD29sblpaWiIuLQ5YsWZCcnIz4+Hi0bt0ar1+/xm+//cZ9gd5L6tBxab97bt26hRIlSmDGjBnYsWMHatSogYEDB6JAgQLKcvfu3cPq1avh5eWF33//HU5OTnraAvVJSkpSfqOvXr2KokWLYvTo0Th37hwaNmyICRMmKGVjYmLw+PFjjBw5Eo8fP4a/vz9/3wHw24++ardu3VJOIObPn49Lly5h7dq1yJ8/P1asWIFffvkFAJAjRw5ERUVh+/btcHNzQ3BwMLZu3ao0G6Iv34ULF5T/z507F76+vtiyZQtq1qyJadOmYcOGDYiKikK2bNkQHR2NnTt3ws3NDc+ePcOuXbug0WjYRDwT2LZtGxYvXgwAGDx4MNzc3JA9e3YMHDgQDRs2hJeXlzIfAH799Ve0bdsW0dHRuHDhAoyMjPjIRiZ0/vx53Lx5EwDQp08fbN68GV26dMH8+fNx5MgRdOvWDQBgbm6OyMhIeHp6okWLFnj27BkOHjzIRzhU5MSJE3jw4AEAYMiQIZg+fTo6deqEIUOG4NmzZ3B3d0dUVBSyZMmCmJgYLFq0CI0bN8aLFy9w9OhR7gv03gwMDPDgwQM0bdoUALBr1y7Ur18ft2/fxqhRo9C2bVscP34cixcvxuPHjwEAv//+O6ZOnYodO3bgt99+Y+KfgbZv344ff/wRAPDDDz+gU6dOMDExwdixY+Hq6oqDBw9i8uTJSnkfHx/06dMH0dHRyoV9/r6Dzf7p63X79m3RaDSyZMkSGTFihOTIkUNu3bolIiLBwcHSpk0bqVatmvzyyy8iInLv3j0ZN26cdOnSRWlyxKZc6nD//n3RarXSu3dvGTFihJiZmcm1a9eU+e7u7lKsWDFZtWqVREdHy6NHj2Ty5MnSq1cv7guZjKenp2g0GqlVq5bkyJFDrl69qsy7f/++DBs2TIoVK6Y0/wsNDZWNGzcqnTSyHjOXlJQUefLkieTKlUs8PDykW7duYmpqKpcuXRKRN51orVu3TnLnzi3ff/+9stzChQulX79+PD5VJCUlRaKiosTCwkLq1Kkj3bp1k+zZs8vly5dF5E0dr127VipVqiQtW7aUqKgoERHZunWrjBgxgvsCfZQ///xTbG1tpUyZMqLRaGTDhg0682fOnCnOzs4ydOhQCQoKktevX8vhw4fl8ePHeopYvbZu3SoajUZcXV3F0tJSZ3SXly9fytChQ6VSpUoyZcoUEXkzms++ffv4+/4WJv/01UpISJBffvlFjI2NxdLSUnlGND4+XkT+/wJA9erVZd26dSLyZkiX1Ge52KO7ekRHR8v27dvFzMxMLCws5MGDByKiO4SUu7u7FC9eXNasWSPx8fESHR3NfSGTqlatmhgYGCgjdaR1//59GT58uJQoUUI8PT115rEeM6+TJ0+KlZWVmJiYyI4dO3TmpV4AsLe3l+7du6dblvWqLrGxsWJhYSGmpqaye/dunXmJiYmybt06cXV1lVatWilDsabivkAfY/bs2aLRaKR48eLKtNRzRZE3FwAqVKggvXr1UvoAoE+jZs2aotFolIu9KSkpyrlY6gWAypUry8iRI3WW47H//9jsn75axsbGsLS0RFJSEqKiorB//34AgImJCZKSkmBra4slS5Ygd+7cmDJlCg4cOIBs2bIpTf3TPm9IXzZzc3NkzZoVGo0GxsbGmDNnDgDAzMwMcXFxAIB169ahcuXKGDRoEHx9fWFubs59IZNJ7bW7RIkSGDhwIObNm4c5c+YgKioKwJtnxgsWLIi+ffuiSpUquHTpks5jO6zHzEdEkJKSAhMTE2TPnh1WVlbw9fXF1atXlTLm5ub49ttvMXPmTKxZswbTpk3TWQfrVT3i4+Px6NEjWFpawtzcHF5eXrh165Yy38jICB07dkS/fv3g7++P6dOn6yzPfYE+RtGiRTF58mSkpKSgWrVqSExMhImJCeLj4wEAI0eORKtWrXD9+nX2J/GJ1a1bV3kUc8SIEUhKSoJGo0FycjJy5syJMWPGoEyZMnjx4gV/3/+OPq88EH1uqVcHU3v4TkxMlLt378ry5ctFo9HI7NmzdeaLvGkWPGHCBF41VJm3x3gNCwuTe/fuydatW8XW1lZ69uyplE27P8ycOZP7Qiby9ggNaU2fPl05rlObAIuIPHjwQOLj45Vlv8ZxfjO7d9VJSkqKHD16VBwcHKR79+46j3Sk8vHx4fGpMn93jL969Upy5coldevWlVu3bqXbZ06cOMF9gT7K3/0mnD9/XgoWLChVq1bV2bfOnDkjIm/OIyjj/NPv++bNm8XIyEhGjBihUxcXL16U5OTkdOd49P+Y/NNXI+2XSHh4uE5zwOjoaJk/f75oNBqZN2+eMn3o0KFy4cIF5TVPJNQh7b4QFBQkERERShP/0NBQ8fb2FltbW+ndu7dSbvDgwXL8+HHlNfcF/Utbj/v27ZM1a9bI+vXrdY5tT09PMTQ0lOnTp8uVK1ekadOmUqVKlXeugzKHtHUSGBioDNOXOn3v3r3i4OAgvXr1Up79r1Wrls7jADw+1SHtvnD37l25dOmSxMfHK/X76NEjsbGxETc3N7l69aokJydLkyZNdH7HuS/Qh0hNFs+ePSuLFy+WGTNmyO3bt5X5Fy5ckEKFCknVqlXl5s2bMnr0aClQoIAEBQXpK2RVSnvsb9u2TZYuXSozZ86U2NhYZfqWLVvExMREBg0aJJcuXZJmzZpJzZo1mfj/Cw71R1+F1OFaAGD27NnYt28fXr9+jYIFC2LDhg0wMTFBQkICvLy88MMPP6Bjx454/PgxXrx4gevXr3NoEBVJuy/MmDEDu3fvRnx8PKytreHt7Y08efIgIiICu3fvxogRI1CiRAkYGRnh/v37uHfvHveFTELSDL00atQoeHt7o0iRIrh8+TLc3NwwcOBA1KpVC8CbY97T0xN2dnYwMzPD2bNnYWxsrMfo6e+kPT4nTpyIvXv34t69e6hevTo6d+6MNm3awMTEBPv27cPQoUNha2uLmJgYREZG4tatWzAxMdHzFlBGSXuMT5gwAVu2bFFGXJk6dSrq1KmDXLly4fHjx6hSpQqsrKyQkpICEcHly5d5jNMHS93ndu7ciX79+qFgwYIwMTHBuXPnsGPHDjRu3BjAmyHmOnbsiJiYGIgIduzYgQoVKug5enUaNWoU1q9fj+LFiyMgIADW1tZYuHAhKlasCCMjI+zZswft27dH4cKFYWpqyt/396HHCw9En92YMWMkd+7csnDhQtm/f7/kzJlTGjRooHTwlpKSIrt27ZImTZpI7969JSEhQUR450CNxowZIzY2NrJ27VrZv3+/lClTRgoWLKiM+BAVFSXHjx+Xjh07Sr9+/bgvZFJz586VvHnzKi10fvnlF9FoNNKoUSOdlhrnz5+X33//nb3+fiEmTZoktra2sn37dnn8+LFUqlRJypUrJwsXLpS4uDgRedOs29PTU8aPH8+e3FVs8uTJkjt3btm7d68kJSVJnTp1pFChQrJ48WIJCQkREZFnz57JjBkzZPbs2dwX6D85deqU5MqVS1auXCkiIgEBAaLRaMTS0lI2btyolEtMTBQ/Pz/e8f+EFixYIPb29uLv7y8iInv27BGNRiNlypSR33//XTkve/jwoZw9e1bnkV76e0z+6atx+PBhcXJykpMnT4qIyKFDhyRbtmxibW0tzs7OygUAEVFOLkX4JaJGR48elfLlyyv7wt69e0Wr1UqhQoXExsZGp4lfWtwXMpfQ0FDp27evrF69WkREtm/fLtmzZ5eJEydKvnz5pEaNGnLs2LF0y/ECTuZ27tw5cXZ2Fl9fXxER8fPzk6xZs0qFChWkePHi8vPPPys9badtGsp6VZ8rV65I1apVZf/+/SLy5nfc0tJSqlatKjly5JDFixfL8+fPRUS3iS+/q+ljxMXFyfz582XChAkiIvL48WNxcHCQvn37yoABA8TMzEx27tzJ75rPIDQ0VEaMGCFr164VEZGdO3eKVqsVLy8vqVChgpQpU0b8/Px0Rl0Q4aN874PJP6nW28/6HD58WHkO0MfHR3LmzCnLly+Xe/fuiZWVlTRs2FDu3Lnzj+ugL9Pb9fj7778r48D6+PhIrly5ZOnSpfLXX39Jnjx5pGjRospzxn+3Dvr83v5Rj4uLk99++01evnwpV65ckUKFCsmCBQtERGTTpk1iYmIi1apVk4sXL+ojXHpPbx9bT58+lVWrVklCQoIcP35crK2tZdWqVSIiUrx4cSldurRMmzaNCZ4KvX2MP378WNavXy8JCQni5+cntra2snz5chF5M+RXkSJFxNPTM92QfkQf688//5QLFy5IdHS01KhRQzw8PCQ5OVlu3bolpqamotFoZPv27foOU3XePvZTUlLk2LFjEhwcLNeuXZMiRYrIwoULRURk9+7dotFoxN7eXi5fvqyPcL9oHI+CVCklJUV5VvD58+cAADc3N7Rt2xZxcXGYOXMmBgwYgF69eiFHjhzInz8/Dh8+nG5YoNR10Jcr7b7w+PFjAEC1atXQq1cvpKSkYOHChejZsyf69euHvHnzomjRonjy5AlGjBihsx7uC/qV9lnwbdu24a+//oKpqSmqVauGnDlz4tSpU8iXLx+6dOkCAIiNjUWzZs1QsGBBODs76zN0+gdpj88HDx4AAHLnzo3WrVvD0NAQy5cvR48ePdC1a1cAb4ZxjIyMRHBwMIduUpm0x/j169cBAA4ODmjSpAmMjY2xatUqtG7dGt27dwcA5M2bF3Fxcbhy5QosLCz0Fjd9ueR/3Z6dOXMG69atAwA4OzujQoUKePToEaKjo+Hh4QEDAwMYGxujffv2GD16NEqWLKnPsFUn7bG/YcMGnDx5EhqNBnXq1IGtrS0uXboEOzs7tG3bVik/dOhQNG3aFE5OTvoM/YvE5J9UJ+2XyMyZMzF48GBcuXIFwJuThVevXuHJkyeoXLkyAMDY2Bhly5bFzZs3sWrVKr3FTRkv7b4wffp0jB49Gn5+fgAAW1tbvHjxAnfu3EGlSpUAAAkJCciVKxd+++037N+/X29xky4RUepx9OjR+OGHH7B//368fv1amf78+XNERkbixYsXiI2NxZ49e+Dm5oa1a9fCwMAAKSkp+twEeoe0x+ekSZPg7u6Os2fPAgC0Wi2AN/WanJysJPrm5uZYsWIFFixYAI1GozOOM3253u7osUOHDjhy5AgAIEeOHEhOTkZISAjMzMyUi0UpKSnYuXMnNm7cyH2BPpj8r3O/HTt2oGXLlrh27Rpu3bqlzA8KCsKlS5eQkJCAuLg4rF27FoGBgRg/fjxKlCihx8jVJe3v+6hRozB+/Hj4+fkhPDwcycnJAICAgAA8fPgQsbGxCA0NxerVq2FlZYXly5fD0NBQKUfvSZ/NDog+peHDh4uNjY1s3bpV53n+xMREKVy4sNSvX1+2bNkiderUkcqVKytNjvgsl/qMGDFCrK2tZc+ePRIYGKgzr2bNmlK0aFHx9vaWGjVqiKurq7IP8NmxzOWnn34Sa2truXDhgsTExOjMu3HjhlhZWUmRIkWkQIEC4uTkpHQGxEc2MrdRo0aJnZ2dbNu2TZ49e6ZMj4uLk++++05cXV2lX79+UqtWLXFyclKOSx6f6jNq1CixtbWVAwcOpPuu7t27t9jb20uPHj2kUqVKUqJECX5X039y/PhxMTc3lxUrVrxzfqdOnZQO5iwtLZWhRSnjeXp6Ss6cOeXixYvpjueIiAgpXLiwZM+eXQoUKCBlypRRft/pw3GoP1Klffv2oX///ti1axdcXFwAADExMbh9+zZcXFxw8eJFdO7cGVmyZIG1tTUOHToEY2NjnbsPpA4HDx5Ev379sGvXLjg7OyM5ORmRkZG4cuUKatWqhRs3bmDQoEF49eoV8uTJg127dnFfyIQiIiLQoUMHdOjQAV27dsWTJ0/w119/YcWKFXB1dYWHhwcCAwPh6+sLjUaD3r17w8jICElJSRyeMRO7cOEC2rZti7Vr16JmzZqIi4vDq1evcOnSJVSsWBGmpqYYNGgQQkNDYW5ujg0bNvD4VKlr166hbdu28PLyQu3atREdHY3Q0FCcOHEC9erVQ548eTBw4ECEhITA1NQUq1at4r5AHyW1JdiIESMQHh6OVatWITw8HFeuXMHmzZsRHh6OCRMmoGTJkli/fj1SUlJQrVo1FCpUSM+Rq1N4eDjc3d3RunVrdOvWDQ8fPsSNGzewYsUKFC9eHCNGjIC5uTnWrl2LbNmyoUOHDvx9/w/4iZEqBQUFIWfOnHBxccHNmzexe/durF27Fk+ePIG7uzuWLVuGa9euISQkBPb29tBoNPwSUQlJMzY0AERFRcHMzAxly5bFnTt3sHXrVqxduxZhYWGoVKkSDh06hGPHjiE4OBi2trbcFzIpAwMD3L59GxcvXkS+fPmwdOlSPHv2DCYmJvjpp58QERGBCRMmoFixYsoyycnJrMdMLioqCoaGhihRogTOnTuH7du3Y9++fQgODka5cuWwatUqrFq1CoaGhspxzeNTHd5O2sPCwvDy5UuUKFECFy9exMaNG3H48GE8evQIRYoUwfbt27F48WKdx0C4L9DHSN3vzMzMsGPHDhw7dgzLly9HZGQkUlJSEB4ejlatWuHmzZtwd3fXc7Tq8/axb2lpiRcvXmDbtm3IkycPFi5ciPDwcOTNmxdLlixBZGQkvLy80KdPH2UZ/r5/PF4qJVUqWrQowsLCUKdOHTRp0gR37tzBwIED8euvv2LFihU4ffo0jI2NkSdPHmg0GqSkpPBLRAXSdh727NkzAIC9vT2yZMmCatWqoW7duggICMAPP/yAvXv34vjx4zh8+DAAwM7OjvtCJmZhYYGZM2fi119/RatWrVCkSBFMnToVJ06cQLt27XDz5s10y7BDuMyvYsWKCAsLQ4MGDVCvXj1ERUVh2rRpOHHiBG7cuIHLly/DyMhIOa5FhMenCqQ9+b9x4wYAoEaNGnBwcECFChVQt25dJCQkYNq0aQgODkZgYCCOHz8O4P+Pa+4L9CFSGzpfuHAB27Ztg4igadOmqFChApo3bw5jY2MMGTIER44cwbx585A1a1aEhIToOWr1SXvs79ixA35+fjAwMMDEiRPx7NkztGnTBuXKlcP06dOxZcsWjBs3DsHBwUhISNBZD3/fPx6/NUmVypcvj3nz5mH//v3o0aMHatWqhTx58iAgIADffPMNLC0tdcqzyeCXL+0PiqenJx4+fIhevXqhWrVqGDt2LP788084OzujZs2asLGxwaNHj1CmTBnkzJlTZz3cF/Tr7ZYbabVr1w41a9ZETEwMChYsCOBNvd+9exfly5f/nGFSBkhOToaFhQWuX7+OTZs2wcnJCdWrV4e5uTlSUlJQqFChdJ24cdSNL1/a7+rJkydjz549mDp1Kho3boyjR49ix44dKFy4MKpWrQpTU1OkpKSgZMmS6X63uS/Q+5I0nfv1798fvXv3Rvny5VG5cmVs2LABjx490mk1tnPnTpibm8Pc3FyPUauPpOnc78cff8TOnTuVuqhfvz7q1q2LZ8+eoUCBAsoyR48eRcmSJWFiYqKnqNWHz/zTF+vtZkNpmwK+LSkpCTExMejcuTMiIiJw4sQJJnkqNXLkSKxZswZeXl6oXLky8ubNqzM/KSkJ4eHh6N69O8LCwnDixAleQc7E0l4MSHvMR0dH4+LFi5gzZw4ePXqES5cu8S5gJvVPz2S/PS8uLg7R0dHo0qULQkJCcO7cOR6fKpL2eB41ahTWrFkDb29vlCxZEvnz59cpGxMTg7CwMPTp0wfPnj3DhQsXuC/QRzt+/DhatGiBOXPmKMP3ve3ixYtYt24d1q9fjxMnTqBs2bJ6iFT9PD09lRt0FStWTFcXr1+/xh9//IF58+bh6dOn+PPPP2FkZPSPNwfo/TH7oS9W6pfFvn37APx9E6DY2Fhs3boVLVu2RFBQEI4dO8ahv1QiNjZW5/Xu3buxZcsWHDt2DG3atFGGdrx48aJSZtWqVejUqROCgoJw/PhxDhOTCc2aNQuDBw8GoHt3L+0JwuXLl7Fo0SKkpKQoJwasx8wptd68vb0RExMD4P+b4L59AXfNmjVo2rQpwsPDcebMGR6fKnHy5EkA/388X7x4Ebt378bOnTvRqFEj5MqVC0+fPsWWLVuUJr579+5Fu3btEB4erlwE4r5A72Pu3Lm4du0agDcXGFNSUvDrr7+iXbt26N27N6Kjo3HmzBkMGTIE3bt3x/PnzxEYGIhNmzbhzz//hJ+fHxP/DDJz5kw8ePAAwJvv/ZcvX+LYsWOYP38+KlWqhMDAQPj4+KBjx46YOHEiIiIilD4/jIyM4O/vr3Tux8Q/Y/A2CX3RLl++jKFDh8Lc3Bx16tR551XBhIQEJCYmolatWhg7dix7CFWJ+vXr45tvvsG0adOUaTExMbC1tUWJEiVw584dbN++Hb/88ovSbPTQoUPInj076tati2HDhnFfyKSMjIzw559/4unTp8iTJ887y5QrVw4//fQTSpQoAQMDA9ZjJhcdHY0ffvgBDx48wJQpU955EmdgYIDatWsjOTkZffv2haGhIetVBQYPHoyEhARUr15dqffw8HC8ePECJUuWxLVr17Bu3Trs3bsXgYGBKFKkCPbt24fy5cujd+/e6Ny5M/cFei8pKSlITEzE2rVr0bRpUwD/f4HR0tISx48fh6+vL7y9vREaGorIyEgkJCSgfv36uHr1Kvr06YMxY8bA2tpan5uhGn5+fjh27BiGDx8O4M3FP2tra8THx2Pv3r2wsbHB0qVL8fLlS9jZ2WH27NmIj4+Hp6cn7OzsULhwYf6+fwJs9k9ftPDwcNSsWRN169bFvHnz/rZcYmIijI2NAfzz4wH05fD394eTkxNMTU2RkJAAExMT7Ny5E+PHj0e+fPlw8+ZN1KpVC+XKlUOBAgXQq1cvHDp0CBUqVFDWwX0hczp37hxatmyJpUuXolWrVv/a1I9DfX0ZJk6ciCtXrmDDhg0wNzf/17s4PD7V4fbt2yhUqBCMjY1x+/ZtFC9eHNHR0ahVqxaeP3+OmJgYtGvXDrVr10bz5s1hbW2N5cuXo3Pnzso6uC/Q+4iKioKFhYXym3D69GmYmZnB2dkZBw4cwLJly3D8+HG0bNkSnTp1QsOGDbF//35Mnz4dR48ehYWFhb43QTVSj9nUxP3gwYPIkycPypYtC29vb3h5eeHatWsYPHgwGjZsiJo1a2LMmDF48OABtmzZoqyHv++fgBB9AVJSUiQpKUn5v4hIcnKyiIjs2bNH8uTJI6dPn9ZbfPT5XLhwQeLi4pTXM2fOlGbNmkl8fLyIiKxatUqGDh0qmzZtkqdPn4qIyN27d8XZ2VkuXryol5jp3RITE5X/px7PqYYNGybOzs7y8uXLzx0W/Udv12Wq8+fPS5YsWWTPnj2fOSLSh59//lmCg4OV1xs2bJBKlSrJjh07RETk0aNHsnDhQjl8+LDExMSIiEhsbKxUqVKF+wh9sMWLF8u4cePk2bNnIiKSlJQkBQoUkKJFi8qNGzdERCQ8PFz5f6ohQ4ZIrVq1JCoq6rPHrFajR4+WGTNmKOftN2/eFDMzM/n+++8lICBARESio6Pl3r17OsvVrFlTfvjhh88d7leHl1Io03v+/Dk0Go1y5e/PP/8E8P9NuUqWLImCBQsqz3XzmUD1mj17Nr755hv4+voiMTERAODi4oKjR4/i+++/R1JSErp37445c+agY8eOsLW1RXh4OIYOHQpLS0s4OzvreQsIAEaMGIHo6GilGd+MGTMwfvx4+Pr6KmVat26NpKQk3L59GwDYR8cX4NatWwD+/7v5yJEj+OOPP5T5FStWRPfu3bFs2TKEhobqJUb6PPbu3Yt58+Zh4sSJePXqFQCgePHiMDMzw8qVK7F3717ky5cPgwYNgpubGwwMDPDkyRO0bdsW8fHxaNKkiZ63gL40jx49wi+//IL169cjKCgIhoaGuHLlCjQaDTp37owrV67A0tISJUuWBABcu3YNQ4YMgbe3NxYuXIhs2bLpeQvU4fXr17h8+TL27duHlStXIikpCSVKlMC6devw22+/Ydq0abhx4wbMzc1RqFAhREdH49SpU2jYsCHCwsIwa9YsfW+C+un76gPRP5k0aZIUK1ZMuTro5+cnGo1GWrRoIZ6ensodprlz50rOnDklNDRUn+HSZ9CmTRvJlSuX7Nu3T2JjY0VE5OTJk2JpaSmdOnVSrt6/fv1aFi1aJA0aNJDy5ctLQkKCiPz9XUn6PB4+fCjW1tZSoUIF5W7fxIkTxc3NTXLlyiVdu3aVAwcOiIhIs2bNpEmTJvoMl97TnDlzRKPRyMmTJ0VE5Pbt25I7d24pWrSodOzYUc6dOyexsbHy+++/S5EiReTatWsiwuNRrZKSkmTOnDni6uoqPXr0kOfPn4uIyOXLl6VevXri5uYmO3fuVMqvX79eatSoIa6ursp3depdQ6L39dNPP0n+/PnF09NTHj16JCIikZGRUqhQIXFxcZFLly6JiMiVK1ekT58+4urqKleuXNFjxOqS2jI3IiJCOnfuLDVr1pSFCxcqx/T27dslb9684uHhobTAOHDggHz33XfSuHFjHvufCZN/ytR+/fVXcXNzkxo1asiDBw9E5E3T0UGDBomTk5MULlxY5s6dK8eOHZOWLVvKokWLROT/v4BIPVITfZE3FwDs7e1l7969ynQ/Pz+xtLSUzp07S3R0tIiIrFy5UiZMmKA0L0/bzJz05+rVq+Lk5CTly5eX169fi4jIixcv5OTJk1K/fn0pV66cVK1aVcaNGyf29vbi5+en54jp3yQmJkr79u0lV65cSn3dv39f/Pz8xMXFRVxdXaVGjRpy/vx5KVGihHTq1EnPEdOnkvoIloiIp6en1KxZU/r06aNcnL906ZLUq1dPGjRoILt37xYREX9/f1m5cqVy0s/vavoQqUljQkKCdO3aVQoWLCienp7Ko3+pFwAqVKgg169fFxGRGzduKBelKGOkvZh74cIFqVOnjri4uMiyZcuUYzr1AkCvXr3kwYMHkpSUJFevXlWW5bH/6TH5p0xv3759Uq9ePalWrZrcuXNHRN7c1Y2Li5NRo0ZJy5YtxczMTDQajTRo0EDP0dKnkPYHZfPmzbJ69WrRaDRSqFAh2bdvn3Ky6efnJ1qtVr777jvlZCAVryRnLleuXJGSJUuKs7Oz0gJARCQmJkbu3LkjPXv2FCcnJ9FoNDJmzBg9Rkr/JvVkLSkpSdq3by9arVZOnDihzE9ISJDjx49L165dpUiRIpInTx6xtrZW7vzwYq16pK1LLy8v6dGjh+TNm1dMTU2lb9++EhISIiJvLgDUr19fGjZsKNu2bdNZB7+r6WNs3rxZypcvL61atRIHBwcxNjaW6dOny5MnT0TkzQWAYsWKiaOjY7rn/iljDRkyRBo3bixVq1YVKysrcXR0lKVLlyrnZTt27JD8+fNLmzZtJDAwUFmOLcE+Dyb/lGmlPYnYs2eP1KtXT6pWrSp3797VKRceHi579+6Vli1bSvbs2WXVqlWfO1T6TMaOHStWVlayevVqmTFjhtSqVUusra11LgCcPHlSNBqNTJw4Ub/Bko7U4zntv1evXpXixYtL+fLlldYaaf31118ya9YsyZEjh1y9evWzxkvvJ22iFhQUJPHx8dKuXTuxsrJ6Z4uNU6dOyYoVK8TCwoIXdVRs6tSpYmlpKdu2bZMTJ05Iz549pVy5cuLh4SEvXrwQkTePAJQrV06GDBmi52jpS3f16lXJkSOHrF69WsLCwkREZPjw4WJlZSXTp09XWgBERESIs7Oz0pKUMt6GDRskR44c4u/vL+Hh4RIeHi7NmjWTChUqiJeXl3KxeMOGDdKyZUsm/HrA5J8ynb/7Ijhw4IDUqVNHqlWrpvQBkJKSoiQTQUFB0qNHD+nXr58yj9Tj6dOnUqhQIfH29taZ3qJFi3R9AFy+fJlNxzKRtMf0q1evJCgoSJl28+bNdBcA0rbaCAwMlIoVK8r27ds/b9D0r3x9fWX06NEiItKvXz9p1qyZJCQkSFJSkrRr105y5syp9AHw9vfxunXrpGTJkspzuaQOKSkpEhERIdWqVZOZM2fqTJ86daoUKFBA+vfvr4zicffuXZ7803928uRJyZs3r9y+fVtn+rBhw8TY2FhmzZql9DLPc8NPa/r06VK+fHmJi4tTPuvQ0FCpWbOm5M+fX5YtW6bzaJAI7/h/buztnzKVtON57tmzB6tWrcKiRYsQEhKCxo0bY9SoUciSJQu6deuG+/fvQ6PRIDk5GSICOzs7VKlSBQcOHMCrV6/+dQxp+vLExcUhZ86cAICEhAQAwK+//gpra2uMGTMG+/btQ2JiIsqWLQsjIyMkJSXpM1wCICLKMT1lyhS0a9cOpUqVgoeHB9asWYMSJUpg27ZtiI+PR82aNRETEwNjY2Old/+8efPi9evXuHHjhj43g94SHx+PQ4cOwdfXF9WrV8emTZswc+ZMGBsbw9DQEBs3bkTdunXx7bff4vfff0/3fVy4cGEkJSVxdBaV0Wg0sLS0hJGREZ48eaIzfezYsShWrBg2bdqEPn36ICwsDIULF4aBgQFH86D/JCEhATExMcr3TExMDADgp59+Qs6cOeHp6Yndu3fznOATEhEAgJmZGRISEhAfHw+NRoPExERYWVnB09MToaGhWLhwIfbs2aOzTOo5An0e/LQpU0n9Ahg5ciT69euHffv2YcmSJWjUqBG2bduG+vXrY9CgQciaNSt69OiBO3fuwMjISPnCf/DgAczNzflFokL29vbIkycPVqxYAQAwMTFBUlISRAQFCxbE/fv3sWbNGhgbGyvLpA4lR/qTemxOnDgRixYtwoABA7B9+3YEBARg4sSJCAgIgJOTEzZv3oyEhAQUL14ccXFxyjHs4+OD58+fo02bNvrcDHqLqakpZs2ahSxZsuCPP/5A+/btUaJECQBvhls1MjLCxo0bUa9ePbRp0wZHjx7VWf78+fN4+PAhTE1N9RE+fUIpKSkoXLgwzp49i8ePH+vMK1u2LIoUKQJHR0dotVplOn+z6b+oW7cuSpYsiU6dOgEAzM3NAQARERGoXbs2unTpgqZNm+qcL1LGSv1cW7Rogfv372PKlCkAoJyTvX79GvXr10fbtm3RunVrnWXo8+K3LWU6GzZswKZNm7B//37s3r0bU6ZMwaVLl5AlSxYAQLNmzTBkyBBERERg4cKFAN6cbERGRuLWrVtYv349smfPrsctoIyWendw/Pjx+Ouvv9C3b18Ab5J7Y2NjZM+eHZcuXcL+/fv1GSb9jcDAQPj6+mLz5s1o0aIFRATnzp3DpEmT4OjoiJSUFJQuXRpr165FzZo1dS7gODo6wt/fXxmbmfQr9U5NUlISwsPD4eLigm7duuHatWsYN24cRASGhoZITEyEkZERNmzYgHLlymHu3LnKOuLi4pA1a1ZcvHgR9vb2+toU+gRSW/rMmjULwcHB6NGjB27evInXr18jMTER9+7dQ48ePTBz5kze8acMkfqdtGDBAsTExKB8+fK4dOkSLl26hKVLlyIgIADTpk1D4cKF9RypeqR+5m9LSUmBo6Mj1q1bh6VLl6J37944deoUbt68iXnz5qFAgQKYPHkyDAwM2OpLjzTydzVI9JmIiM7Vv8mTJyMwMBC//PILtmzZgj59+sDT0xN9+/ZFdHQ0YmNjkStXLvzxxx9wdXWFgYGBso7ExESdxIG+LGkf+wDeJP2GhobK66ioKGzYsAGzZ89G9uzZ4eLigitXriAyMhI3btyAoaFhumVI/548eYI6dergjz/+wB9//AF3d3fMnj0bffr0QVxcHLZu3Ypq1aqhUKFCyjJJSUlsuZGJiAhSUlLeeWxFR0dj0qRJOHXqFOrXr48pU6Yo3+mPHz+Gvb09DAwMdI7tt491+rL8U/2lfgc/evQIdevWhampKYyMjGBgYICYmBjcvHkTRkZG3Afog6Se5126dAnZs2eHo6Ojzvzk5GRcvXoVQ4cOxbVr12BmZgYRwZ49e+Di4qKnqL8Ob5/HA8Dhw4fh4eGhXCiws7PD6dOnYWxs/M7y9Pkw+adM48WLF8iVKxc6d+6MvHnzon379qhRowZmzZqFvn37QkTg5eWFpKQkDBo0SFku7QkEv1DUYd++fWjWrNk758XGxuLOnTuYP38+/q+9+47rcX//AP76NDQ0lFCSWYiQVIeizFNWA9kzZEQce4eIHCHHnoU4iIyMdJRRORmpzBQZR1OR9vpcvz/8ur91cI5zDj75uJ6Px/fxPd2r63Z3j+s9S0tLUb16dWzevFnoJ84fk5JVfg9WvBcTExPRq1cvDBgwANu2bcOKFSswefJkAEBsbCyWLl2K6dOnw9raWpKhs4949uwZGjRoIPy8ceNGREdHQ11dHcOGDYO5uTlevXoFLy8vREZGwtLSEvPmzYOTkxPq1asHPz8/AJzwSyNfX184OTmhevXqle758mtdUFCAAwcOIDk5GfLy8pgzZw7k5OS4kJb9K2fPnsWYMWPg7++Prl27fvR5EhUVhWrVqqFOnTrcuugLWbNmDV6+fCm0wP2QzMxM/PHHH8jPz4e5uTlkZWW5YL8K4OSfSUxwcDBkZGTQo0cPzJo1C6qqqnB3d8fp06cxePBgFBQUwN/fH0OGDAHwrr9Qv379YGRkhLVr10o4evalxMTEwMnJCdu3b0fXrl0/uUCHXyiSVzG5y8zMhKampnDt5s+fDy8vL0ybNg3r168H8G5QpkGDBqG0tBRnz57lxLAK8vLywvz58xETE4PWrVtj4cKF2LFjBzp37ozk5GQ8ePAAR44cQffu3fHq1Sv4+Pjg2LFjePv2rVDTU61aNUmfBvsCcnNzoaenh6lTpwr9eyv6WILPiT/7J8q/AV6/fo2FCxfCwMAAP/300we35QLGr2fdunUIDAzEr7/+Cl1d3ffWf+ha8L1fNfCXMpOIV69eYdeuXbhz5w7atGmDkydPIioqCgDQvn17ODs749ixY0Jf/ufPn2P27NlIT0/H6tWrJRw9+5IaNmwIZWVlBAUFoWvXrh9M/D9UIMCJv+SVv+g9PDxw/PhxaGtro0uXLpgzZw48PDyQlpaGX375BSUlJSgpKUFCQgIyMjIQHR0t9P/lD7eqpUePHrh+/Tp69eqF48ePAwDOnDkDc3NzPH36FB4eHrC1tcX58+fRvXt3zJ49G05OTnj+/Dl69uzJNT1STEVFBW5uboiNjUVubi6qV69e6blc/pH/5+c1f/yzf0IkEuH333/HkCFDULNmTdjb2wP48HcAvz++HktLS/z888+IiopCv3793rseH7oWfO9XDVzzzyTm7t27cHBwwNOnT7Flyxa4uLgIH/9xcXHw8/PD5s2boampCS0tLWhpaSE4OBjy8vJceigFKvYhLn9plF//U6dOYfLkyTh69Cg6dOgg6VDZP7B3714sXLgQ8+fPx9WrV/H06VO0adMGO3fuBACsX78e4eHhkJOTQ7NmzbBkyRJhWkZOEKumu3fvYsmSJbh69Spq166NwMBANG3aFACQnJyMJUuWYN++fTh37hy6detWaV9+VkuHjxXM3bhxA1ZWVjh8+DDs7OwkEBn7XnTq1AkRERHYsGEDXF1d+bnylVR8N//5OTBr1iyEhoYiJCREmIaZVX2c/LOvrjzRS0xMxNSpUyEWi5GWloY1a9bgxx9/FLYrKytDYmIikpKSoKWlBRMTE8jIyHCSIAXS0tJQp04d4W/h1q1blQbkSUxMhLOzM5ycnDB16lROIKqwP38MbN68Gaqqqhg5ciRyc3Ph6+uLnTt3ol27dtizZw+Ad114lJWVhX34+lY9f76u0dHR2LBhAw4ePIjw8HC0b99euH9TUlLg7u6OXbt24ebNmzAxMZFg5OxzevDggTCFIwBcuHAB1atXh6WlpbDM1dUVSUlJ2L9/PycA7IuytrZGYmIiDh48iE6dOnFN/xc0e/ZsuLu7Q0VFBQCwevVq5OTkoHPnzujRowcA4Nq1a5gwYQK2bt0KS0tLbr33jeArxL6a8il9ypsFNWzYEGfOnIGnpycMDQ0xc+ZMXLhwQdheVlYWdevWha2tLUxNTYVmwZz4f9uWLVsGa2trPH78GCKRCFeuXIGZmRkcHBywevVqYY5oBwcHLFu2DFlZWZwYVlHl03oB76bo3Lt3L4KDg4V7XEVFBaNHj8b48eNx+/ZtjB07FgAqJf4ANwWsisqva/kz2cTEBDNmzICtrS3s7OwQFxcnDOyoo6ODJUuWwNPTE61bt5Zk2Owz8vb2RsuWLXH16lUAQHx8PEaPHg1nZ2cMHToU169fR2FhIYYMGYLExESkpKQAAE/fx/6T8jrJ+/fvIygoCFeuXEF8fDwA4PLly6hfvz7GjBmDiIgI/lv7Qp49ewZfX1906dIF+fn5AN5N0Xrz5k0MGzYMo0ePxtmzZ9GhQwc0bNgQq1atAsDdLr4ZxNhXUFZWJvz3rVu36Nq1axQbGyssu3r1Kg0ZMoTatGlD586dIyIiBwcH8vb2/uqxsi/ryJEj9OOPP5KVlRU9efKEiIiuX79Obm5uZGRkRPr6+uTt7U0XL14kBwcH2rhxIxERicViSYbN/qTi9Zg9ezapqqqSgYEBqaurU9euXSttm5OTQ5s3b6a6deuSp6fn1w6V/QMVn9Xx8fEkEonI3d1dWBYTE0MODg6ko6MjPMP/fG+WlJR8lVjZl1VSUkKDBg2iWrVq0eXLl4mI6PHjx3T58mVq164ddejQgaysrOj69etkaGhIQ4cOlXDETFoEBASQlpYWtWzZkjQ0NMjExIS2bNkirG/fvj01bdqULl68WOmZxT6fuLg4MjIyIhMTE8rPzyciooyMDLpy5Qr16NGDjI2NydLSkhYtWkR169YVnhGs6uPkn31xFT8MFy5cSC1btqTatWuThYUFzZ49W1h39epVGjlyJKmoqJCxsTE1btyYiouLJREy+8JOnz5N3bt3p44dO1J8fDwREeXn51NhYSHNmzePHBwcSElJiUQiEdnY2Eg4WvZXMjMzydHRkWJjYyk1NZUOHTpEenp65ODgUGm7t2/fUkBAAJWWlkooUvZ3Kj6rvby8aPr06aSurk4ikYjmzp0rrIuJiSFHR0eqV68e3bx5UxKhsi+svACntLSUBg0aROrq6nTp0iVhfXFxMYWGhtKoUaPIwMCAdHV1SUtLi+7du0dEXFjL/r3o6GiqUaMGbd68mbKzsykqKopmzpxJurq6tHXrVmG7li1bUps2bYTElH1+sbGx1KJFC2rbti3l5eUJy/Py8ig+Pp7GjRtHRkZGJBKJaMGCBRKMlP0TnPyzr8bDw4Nq165Nly5dopSUFJoyZQqJRCKaMGGCsE18fDwFBATQmjVrhI8PrkWSHhU/CE+ePEndu3cnS0tLSkhIqLTdmzdv6NSpU+Tg4EA1atSg3bt3f+1Q2Sfw8fGhRo0aUc+ePSktLY2IiAoKCujYsWPUqFEjcnR0/OB+XABQtS1dupS0tLTo9OnTFBgYSIsWLSI5OTmaMWOGsE1sbCxZW1uTnZ2dBCNlX0LF+zMlJYWKiopo4MCBpKmp+cHavfDwcNqxYwepqqpyAsD+Mz8/PzI1NaXCwkJh2bNnz2jatGlkYWFBT58+FZYnJSVJIELpVf6NVvH/4+LiqHnz5mRiYkK5ubnv7fPo0SNas2YNaWhoUFxc3FeNl/07nPyzL6Zionf//n2ytLSkkJAQIiI6f/48qaqq0siRI0lDQ4NcXV0/eAxOEqTDx5rlnTlzhrp27UodO3akxMREInr3d1P+t5OSkkJjx46lyZMnC+tY1REWFia05MnIyBCWlxcA6OvrU6dOnSQYIfs7L168qPRzTk4Ode7cmdauXSssy83NpZ07d5KMjEyl5O7Ro0fc5FbKhISE0Pz584mIaPLkydS3b18qLi6m0tJSGjhwINWsWZOuXLlCRO8/j/ft20ctWrSgZ8+effW4mfQ4cuQIaWtr06NHjyotDwsLIxUVFW5t9IVUfJZnZWVRSkqKsOz+/fvvFQBUbJn74sULMjMzo4CAgK8bNPtXeGQG9kVQhfk+b968CUNDQwwePBjt2rXDlStXMGbMGHh7e2Pnzp3o3r07tmzZgiFDhrx3HB4I7NtXcfTXkydPYvfu3di4cSPS09PRq1cvzJs3D4qKihg9erQwCGBZWRmICNra2rCwsMCZM2eQlZX13py+7Ov50MBK1tbW2LFjB+Tl5TF06FBhuaKiInr16oWlS5eiTp06PChTFeXs7Aw3N7dKy4gIT548QUZGhrCsevXqGDRoEBwdHbFq1SosWrQIAGBgYCAMxMq+fUVFRTh37hxCQkLQqVMnHDx4EF5eXpCXl4esrCz8/f3RrVs3ODo64urVq+89j/X19VFaWoqysjIJnQH71tAHJhzT09ODiooKTpw4gdevXwvLmzZtigYNGqCgoOBrhvhdoAqD9y5fvhwDBw5Ey5YtMX78eOzduxeGhoY4evQoioqKYG1tjby8PMjLywvP/nr16iE/Px/37t2T5GmwT8TJP/vsKib+ixYtwqRJk5CWlgZXV1doaGggMDAQ9vb2GDlyJKpVqwYDAwPY2NigrKyMPyKlUPkLZc6cOZg8eTJOnz6NTZs2oWfPnjh69Ch69OgBNzc3KCsrY+zYsYiPj4ecnJzwN/TkyRNUr16dR5GVoIoFOCEhIdi1axdOnDiBR48ewcLCAkeOHMG9e/dga2sr7KOoqAgnJyccPXqUE8Qqav369Th06BAACB/Z5dM0Xrp0Cb///ruwraqqKlq0aIHevXtj3bp12Lhxo7CO703poKCggDVr1kBRUREREREYNGiQMM1fWVkZ5OTk4O/vj+7du2PAgAH47bffKu1//fp1PH36FAoKCpIIn31jyr8Vf//9dxw8eBAHDhwAALRv3x4jRoyAp6cntm/fjri4OGRnZ8PHxwc5OTnQ19eXcOTSp/x7y93dHRs3bsSUKVMQEBCApKQkuLu7IykpCUZGRjh06BCKi4vRvHlzFBYWCs/+8+fPIy0tDQMGDJDkabBPJcFWB0zK3b59m3r06EERERHCMrFYTN27dxf6iRYWFlL//v1p165dwjbcjFT67N+/n3R1dSk6OpqIiA4dOkQikYhOnTolbHP27FkyNjamSZMmEdG7v4Ps7Gzq168f3bp1SyJxs8rmzJlD9evXJysrK7KwsCAjIyMKCgoionf9fuvVq0e9evWScJTs7xw7doyysrKEn3fu3Ek6OjpCM9uwsDCytramYcOG0bVr14jo3YCN9vb2tHv3bvrpp5+oY8eO9OrVK+6KIwXKr2FJSQm9evWKpk2bRmPGjCELCwtauHChsL68mW9JSQn9+OOPZGtrKxyjoKCAduzYwX1+2T9y7Ngxql69OhkaGpKamhp16tRJGFjOw8ODDA0NSV1dnYyNjUlHR0f4hmCf3/Pnz6lDhw504cIFIiK6ePEiKSsrC2MulX+bR0dH07Bhwyp1y3348CF39/mGcPLPvohNmzaRvb092draCv2Dyh8ce/bsIT09PbK1taX27dtTq1athIcIf0hKhz9fx6VLl9LYsWOJ6F3ir66uLkzbk5OTQ+np6UT0LoEs/zv58wcnkyw/Pz/S0dERCvPWrl1LCgoKlfr4RUREkIyMTKWB4VjVEhQURCKRiFatWkXZ2dlERJSenk5t2rShVq1aCWNvHD9+nLp370716tUjS0tLatmyJbVq1YqIiLy9val169ZUUFAgsfNg/51YLP7ouDo5OTk0c+ZM+uGHH2jRokWVnunPnj2jkpKS9wrqueCefYryv6XCwkJydHSkffv2UUZGBl2/fp2aNWtGpqamwrPp7t27dP78eTp9+vR745Owz+vFixdkYGBA6enpFBgYSCoqKsLsCgUFBeTr6yu8H8rxgNzfJjlJtzxg0klJSQlhYWGoVq0a7t+/DzMzM6F5kK2tLcRiMUJCQqCvr49169ZBVlYWZWVl3MdfSpQ3IcvIyECtWrWQkJCAevXq4fbt2xg/fjzWrFmDSZMmgYiwb98+lJaWws3NDZaWlgAqNzOXk+PHlCSUXwP6/6aZ9+7dg6OjIywsLBAYGIhly5bBx8cH/fv3R15eHl69egULCwvExMSgRYsWkg6ffUTv3r2xfv16zJgxA0SESZMmoVatWrh48SJsbGzQp08fnDlzBo6OjmjWrBnu3buHy5cvo0GDBpg2bRoAID4+Hvr6+tyV4xv27NkzNGjQQHjnbty4EdHR0VBXV8ewYcNgbm6OefPmwcvLC6GhoSgqKsK8efPg5OSEevXqwc/PD0DlZzV3/2CfQiQSITQ0FCtXroSWlhYsLCygpaUFLS0tnDx5Eg4ODujWrRtCQkLQsmVLtGzZUtIhS53y9zpV6KZbWFgI4F13sG3btsHLywsTJ04E8O6Zf+LECTRs2BBNmjQRjsPfZ98oiRY9MKnwsdL+o0ePUp06dWjs2LHCXO4fw6WH0uH8+fNCk7GZM2fS0qVLiYjo1KlTpKysTCKRiA4ePChsn5eXRzY2NjRz5kyJxMs+rGIt39WrVyk/P5+mTJlC3t7edOHCBVJRUaFt27YR0bv7f//+/bRp0yYqKioS9uOZOqqeivM0b9iwgUQiEXl6etLr16+JiOjVq1fUrl07at68+Xs1PERET58+pVmzZpG6ujrduXPna4XNPrPVq1eTSCSi2NhYIiJasGABaWlp0YABA8jCwoI0NDSEmXkyMjJo0aJFZGhoSLq6utSuXbtK9zlj/0ZYWBjp6uqSioqK0Fy8/FsyPj6eWrVqRU2bNq3UPYl9HhW/2f/cdWvevHkkEolo+vTpwrLc3Fzq3bs32djYcOseKcHJP/tPKj4Izp8/T/7+/rRz507hw//gwYOkq6tLU6dOrTRtS8XEgJv6S4eMjAwaMGAANWvWjAYOHEgKCgoUExNDRO+aFU+ZMoV0dHTowIEDlJ2dTXfu3CFbW1tq27YtF/5UIRXv6VmzZpGuri6lpaWRl5cXycrKkqKiIu3du1fYJjs7m3r06EELFy6UQLTsUwUHB9PPP/9MUVFRwjIfH58PFgCYmppSq1at6MGDB8K2ubm5tHjxYrK0tBTua/ZtunXrFvXr1490dXUpKiqKFixYIPxdJCUlkbOzM8nKygoFANnZ2RQbG0unT58W3t38zGZ/589zxldUWlpKly9fJl1dXerdu/d7+9y/f5/Mzc0pKSnpq8T6PVq+fDkZGxuTra0teXl5EdG7+3rMmDEkKytLrq6u5OLiQl26dCEjIyOhCyYXAHz7OPlnn8Xs2bNJX1+fzMzMyMzMjLS1tenu3btEROTv70/16tWjadOm0f379yUcKfuS7ty5Q02aNCFZWVnavn07Ef3vRREbG0szZswgBQUF0tHRoVatWlGXLl2EFwrXFFctmZmZ5OrqKiQARERjxoyh6tWrU2RkJCUlJVFiYiLZ2NiQqakpJwNV2J49e0hXV5cmTZpEN27cqLTuYy0A6tevT8OHD6+07Zs3bygjI+Nrhc2+oDt37pCjoyNpaWlRixYtKrXOe/nyJY0dO5bk5eXpt99+e29fflazT/H48WPhvz9UACAWi+nSpUtUp04dYRDoitvyeD9fzp49e0hHR4c2btxITk5OZGZmRuPGjRPWr1u3jvr160cDBw6kxYsXC+93fs9LB07+2X+2c+dOqlWrljAiu7+//3sjue/fv59kZWVp/fr1EoqSfUnlL+uEhASytbWlH3/8kdq0aUPBwcGVtistLaWHDx/SuXPn6MaNG0LBAL9QJK9iaf6ePXtITk6OWrVqRffu3ROWP3v2jAYMGEBqamqkra1NpqamZGlpyQU4VdihQ4dIWVmZDh8+LAyi9Wfe3t7CIIDlBQBv3rzhFlpS5s81drdu3aIRI0aQrKysMKtD+XVOTk6m8ePHk0gk4tlW2D928uRJ0tHRoTNnzgjLPvYMKS8AcHR0/FrhfXf+fO9v2rSJ/Pz8iOjd4J6//PILtW7dmsaMGSNsU7GbGBG/36UJJ//sHynv51nxIb5gwQJavnw5Eb3r56+qqirU+r5580bY9vz58/zwkDJ/fqGUjwB98+ZNGjx4MBkZGb1XAPD27du/PAb7+ipeg8LCQoqPj6devXpRtWrV6Pfffyeiyvd8aGgonTlzhiIiIrgApwpLS0sjKysr2rRpU6XlOTk5FBUVReHh4cIyb29vkpWVpfnz51NOTo6wnJ/Z0qfiM/n27dvUu3dvqlWrljAGQPm9/uLFC1q1ahXf2+wfi4iIoCFDhlDr1q0/qQDg8uXLJCcnR0OGDPlaIX43Kv6b79+/n/bs2UN9+/alffv2CcvLCwCMjY3J2dlZEmGyr4iTf/bJNm/eTCKRiEJDQ4nofw8UBwcHmjlzJgUHB5OqqqowhZtYLKa1a9fSqlWrKh2HPyalQ8WE8datW3Tt2jXh45Ho3UBxQ4YMoTZt2tC5c+eI6N3fire391ePlX1caGgo+fr6EhGRi4sLubi4UFlZGcXHx1PHjh2pUaNGlJKSQkQfb4bJBThVU1paGhkaGlJgYKCwbMuWLTRgwAASiUSkq6tLFhYWwrN8xYoVlX5m0qHi/RkfH08ikYjc3d2FZTExMeTg4EA6OjrvFQCU4wIA9k/FxsbSuHHjyMjIqFL3kY91AQgPD//bwaHZP1Px33r27NmkqqpKBgYGpK6uTl27dq20bU5ODm3evJnq1q1Lnp6eXztU9hVx8s8+WXp6Oo0bN46UlZUrPci3bdtG7dq1I2VlZSHxJyJ6/fo19enTh5YsWSKJcNkXVPGFsnDhQmrZsiXVrl2bLCwsaPbs2cK6q1ev0siRI0lFRYWMjY2pcePG3I+vihCLxZSbm0u9evWijh07Uu/evUldXZ3i4uKEbRISEqhDhw7UpEkTSk1NJSIuvPuWpKWlka6uLo0bN44uXrxI/fv3JyMjI5o4cSJduHCBjh49So0bN6Zly5YJ+/zVIF3s21PxOnp5edH06dNJXV2dRCIRzZ07V1gXExNDjo6OVK9ePbp586YkQmVSovwdcefOHVq6dCnp6OiQgYHB3xYAsC8nMzOTHB0dKTY2llJTU+nQoUOkp6dHDg4OlbZ7+/YtBQQE8HteynHyzz5J+YM6JyeHpk6dSkpKSkKT0aSkJLKwsCBDQ0M6duwY5efn08OHD6lnz548EJiU8/DwoNq1a9OlS5coJSWFpkyZQiKRiCZMmCBsEx8fTwEBAbRmzRoeNKYKqXhPGxoakkgkohUrVry3XUJCAllYWFDTpk3p5cuXXztM9h/99ttvpK6uTo0bN6Y2bdrQxYsXhUH7srKyyNjYuFItMBF/mEujpUuXkpaWFp0+fZoCAwNp0aJFJCcnRzNmzBC2iY2NJWtr60qDrzH2bxw9epS0tLRo2rRpNHToUGrSpAm1aNFCaAVIxM+Zr8XHx4caNWpEPXv2pLS0NCIiKigooGPHjlGjRo0+OtYCFwBIL07+2d+q2GRwx44dtHLlShKJRKSmpiaU5D58+JC6dOlCzZs3J3V1dTIzM+OBwKRQxZf1/fv3ydLSUhgN/vz586SqqkojR44kDQ0NcnV1/eAx+G9B8ipex7S0NOrbty917dqVunbtWmkav4oDOerr65OTk9PXDpV9Bunp6fTkyZP3lmdlZVGnTp2EMVqYdHjx4kWln3Nycqhz5860du1aYVlubi7t3LmTZGRkaMGCBcLyR48ecTce9p+kpaWRsbFxpS6fYWFhNGjQIDI0NKSLFy9KMLrvT1hYmNA6s+JsLeUFAPr6+tSpUycJRsi+Nk7+2SebN28e1a1bl3bs2EHu7u7UtWtXUlRUpAsXLhARUWpqKsXExNCBAwcoKiqK5wOWMhUTxvLpwn755RfKysqiy5cvk46ODu3YsYOKiorIycmJRCIRDR48WFLhsk+wYsUKioyMJKJ307vZ29uTlZVVpQIAIqL8/HxKTk7mghspkp6eTr1796YffviBr6sUGTNmzHs1eW/fvqX69etXauZfvrx///4kEolo4cKFldZxAQD7t1JTU0lbW5t27dpVaXloaCjVr1+fWrRoUWkQQPb5fOi+FYvFFBERQbq6utSjR49K6woKCujAgQM0YMAAvue/IyIiIjD2N5KTk9GtWzcsWrQIw4YNAwA8f/4cixYtwtGjR3H+/HlYW1u/t19ZWRlkZWW/drjsMyMiiEQiAMCiRYsQHByMoKAg1K5dGyKRCD/99BMKCwuxYcMGKCgoYOHChYiOjoaqqip+/fVXyMjISPgM2J+9ffsWVlZWmDNnDoYOHQoAePnyJaZMmYK3b99i0KBBGDVqFGxsbGBqaoq1a9cC4Hv6W/fq1Svs2rUL4eHhSE9PR0REBOTl5fm6Sons7GwoKipCQUEBr1+/hoaGBgBg8eLFCAkJwYYNG9C+fXth+yVLluD27du4ePEiVq9eDTc3N0mFzqRETk4OBg4ciFatWmHJkiVQUVER1vXr1w8RERHQ19dHcHAwqlevLnxbsP9GLBYL31ohISF49uwZtLS0YGhoiGbNmiEyMhJOTk5o1aoVzp8/L+xXXFyMatWqvXcMJr34CrNPUlRUhOfPn0NVVVVYpqenh4ULF6Ju3bro378/QkJC3tuPPyalQ/nLOSYmBtevX4ePjw/q1KkDkUgEIsLdu3eRnJwMBQUFFBUVIT4+HgMGDMCRI0cgIyMDsVgs4TNgf74Gampq0NDQwKVLlwAApaWl0NXVxaZNm1CrVi1s2LABhoaGeP36NTw9PYX9+J7+tv3xxx/Cx3dkZCTk5eVRWlrK1/Ubd/z4cbx+/Rrq6upQUFDArl270LJlSyQkJAAAunXrBkVFRWzatAm///47gHdJWlxcHBwdHTFx4kQcPXoUmZmZ4Doh9qnK/1by8/ORk5MDAFBVVUW3bt3g5+eHoKAg5ObmCtvWrFkTc+fOxYkTJ6CiosKJ/2dUnrTPnTsX48aNw/79+/Hzzz9jwIABOHPmDCwsLHDkyBHcu3cPvXv3FvYrT/wrHoNJN675Z++pWMtbUa9evaCiooJt27ZBU1NT2NbR0RHXr19H06ZNhUSCSZ/NmzcjJCQERUVFCAgIQPXq1YVS4r1798Ld3R0tW7bEmzdvkJeXh9u3b0NWVvajf09MMpKSkqCsrIw6depg+vTpyMvLw86dOyvV/KanpyM6OhppaWkYPnw4ZGVlUVpaCjk5OQlHzz6HN2/eQF1dHSKRiGv8pcCZM2fQt29feHp6YvLkyVBTU0NGRgZ69OgBsViMwMBANGnSBIGBgdiyZQsePnyIBg0a4M2bN5CRkUFcXBzWrVsHPz8/REVFQVFRUdKnxL4B5e/2oKAg+Pj4IDk5GQ0bNsS4cePg6OgIV1dXnDhxAo6OjtDX18ejR49w6tQpREZGon79+pIOXyrt27cP8+bNQ0BAACwsLODt7Y2FCxfC398f/fv3BwBERkaiU6dOmD59Ory9vSUcMZME/pJjlVRs8pOTk4PCwkLUqlULANC/f39s374dGzZswLx586CsrIz8/HwAwIEDB9ClSxeJxc2+PCUlJYSFhaFatWq4f/8+zMzMhL8VW1tbiMVihISEQF9fH+vWrYOsrCwnFlXAzZs3YWpqCgAICAjAwIEDoaenhxYtWiApKQnZ2dk4f/48dHV1YWRkhJKSEtSuXRu2trbCMcrKyjjxlyI1atQA8O7jne/Pb1/v3r2xfv16zJgxA0SESZMmoVatWrh48SJsbGzQp08fnDlzBo6OjmjWrBnu3buHy5cvo0GDBpg2bRoAID4+Hvr6+txKi30ykUiEs2fPYtCgQZg7dy569eqF+fPnw9XVFXp6eti8eTMaNGiA33//HcHBwdDW1sbp06c58f+Myr/Zywti7t27B0dHR1hYWCAwMBDLli2Dj48P+vfvj7y8PLx69QoWFhaIiYlBixYtJB0+kxCu+WeCijW0Hh4eCAkJwcOHD9GlSxcMGzYMdnZ28PT0REBAAMrKytCxY0dERUVBLBbjxo0bkJWV5f5CUuJj1zEgIABTpkxBnz59MGfOHDRt2vSjx+CaYsnbtm0bli9fjtDQUDRv3hxZWVl49OgRCgsLERERgWfPnmHXrl2oXbs2lJSUhERw9erVGDBggISjZ4z9nfz8fCgrKwMAfHx88NNPP2HlypWYNGkSatSogczMTNjY2CAvLw9BQUFo0qRJpf2fPXuGTZs2YefOnQgPD4eRkZEkToN9A3Jzc4X++2KxGIWFhRg4cCB++OEHLF68GDk5OTAyMoKdnR18fHyEb4iysjLk5ORATk6uUv9/9t9U/GYPDw9Hu3btMGfOHDRq1AitWrVCv379sHbtWkyYMAFisRgHDx5EdnY2xo8fLzT15wqa7xN/mTNB+UNk6dKl2LRpE5YvXw5lZWX4+vpi9erVSE9Px4IFC2BmZoagoCA8e/YM7dq1w6ZNm7iWV4pUTPyDg4ORmZmJ/Px8jBkzBgMGDEBJSQlmz54NZWVlTJ06FQYGBgAqv0SIiBN/CduxYwdcXV0REBCA5s2bAwA0NTWFwb46d+6MpKQkxMfHY/HixWjatCmuXLmCzMxMODg4SDByxtinuHDhAuLi4mBlZQVzc3NMmzYNIpEI06dPBwBMmjQJNWvWRHBwMGxtbeHo6IgjR44Iz4O8vDzs3r0b165dw+XLlznxZx/l7u4OTU1NTJkyBbKyspCRkYGCggKysrJgb2+PlJQUmJqaok+fPvjll18AAEFBQTA0NESTJk2E1kbs86j4nTZ79mwcOnQI0dHR0NPTw5w5cyAvL4+tW7di9OjRAN4V3Ozbtw/m5uaV+vjzN/t36qvOLcCqrLKyMhKLxfTixQsyNjamI0eOCOtSUlJo4sSJZG5uTtHR0cLyilP48XR+0mf27Nmkr69PZmZmZGZmRtra2nT37l0iIvL396d69erRtGnT6P79+xKOlP3Ztm3bSE5Ojo4dO1ZpeURERKWf3759S1paWuTn5/feMfieZqzq2rNnD+nq6tKkSZOEqVfLbdiwgUQiEXl6etLr16+J6N1UnvXr16fhw4dX2vbNmzeV5v5m7M/evHlD69evpzt37hARUXFxMRERlZaWUps2bcjV1ZX09fVpwoQJwrqMjAxycHCg/fv3Syzu70FmZia5urpSSEiIsGzMmDFUvXp1ioyMpKSkJEpMTCQbGxsyNTXl9zojIiKumvvOxcXFQVdXFzVr1gQAKCsrIycnR+jLX1ZWBm1tbXh6esLY2BinT59G27ZtAaBSzS7X8kqXXbt2wdfXF+fPn4eJiQkOHjyI4cOH48mTJ2jZsiWGDh0KsViM0aNHo2HDhjA0NJR0yOz/nThxApMmTcLJkyfRt29fYbm9vT3U1dXRtm1bKCkpoaysDKqqqmjdujXS09PfOw7f04xVTb/++iumTJmCvXv3wtbWFmpqapXWT5s2DWVlZZg1axZEIhEmTpyImjVrIi4urlKzayKCurr61w6ffUPGjRuHqKgo3L59G3JycggNDcXNmzcxfPhw1K1bFzNnzsRPP/2Exo0bY9u2bcJ+GzZswIMHD9CxY0cJRi99Ktb47927Fy4uLjA0NMTkyZOFbZYuXYqcnBzY2tpCWVkZ9erVg4KCAiIjIyEnJ8etdBk3+/+enThxAkOHDoWzszPc3d1Rq1YtiMViKCoq4saNGxg1ahREIhHEYjE0NDTQvn17vHz5UtJhs8/s7t27MDIyqtR/LCkpCVOnToWJiQkCAgIwceJEbNu2DX379kV2djbU1NQwfPhw1KpVC927d5fwGbByRUVFCA4ORuPGjZGUlCQsHzBgABISEnD27FkoKSkB+F9zPzU1NcTExAD4+EwfjLGqIT09HVu3bsWaNWswcOBAYXlubi7u37+PkpISWFpaYsaMGQCAOXPm4O3bt1iwYIGQ6Jd//PO9zv5KUFAQzp07h+DgYMjJyUEsFuPWrVvw9PSErKwsnJ2d0adPH9y5cwd79+6Fs7Mz6tWrh+fPn+PEiRMICwtDw4YNJX0aUqNi4l9UVARLS0v8+OOP+O2334RpFokI9evXx9GjRxEWFoaCggLUqFED7du3h4yMDI/FxABw8v/dKioqwunTp1FYWIgnT55gxYoVWLBgAerUqQMPDw8MGDAADRs2xKxZswAAxcXFePLkCfr06SPhyNnntGXLFkyZMgUXL15Ely5dhOTv/v37aNKkCS5cuABnZ2d4eXnBxcUFRIRdu3ahpKQE8+bNg42NDQAeNKaqUFBQwJIlS6CgoIBDhw6BiBAeHo6EhAQEBQWhYcOGwjUu/5CYN2+eMBsAJwOMVX0ZGRnQ1dUVft66dStCQ0Nx7Ngx1K1bFw0aNEB4eDhmzJiBgoICnD17FitXrhS252c1+xRycnIoKSmBpqYmgoODcejQIfj6+iInJwc+Pj4oKyuDq6srFi5cCBMTE/j4+OCPP/5AgwYNEBkZyaPJf0ZhYWF4/vw5Ro0ahQkTJgB4d9+vX78eY8eOxZAhQxAZGQltbW2UlJRAXl7+vRm4xGIxJ/4MAI/2/12LiopC79690aFDBxQUFMDIyAjz589HnTp1sGnTJri5uaFnz55QU1NDamoq0tPTERsbyw8PKZKRkYEFCxbg4MGDOHXqFLp16wYA2L59O3bu3IkHDx5g7dq1mDRpEoB384OPGDECJiYmWLZsmSRDZ38hNTUVK1euxJkzZ5CdnS107yn/KACAnj17wtzcXLiOXIDDWNWXnp4OExMT9OzZE0OGDMGWLVsQHx+Pjh07ol+/fsjOzsbcuXMxatQoLFmyBMD/WvRwyx72Tzx48ACLFy/GkydPEBMTg6NHjwpzxS9atAh+fn6YOnUqxo0bB01NTWE/fpd8PkSE/Px8DBw4EG/fvoW6ujrCw8Nx9epVtGrVCgCQmJiIkSNHIj09HREREahTpw5fA/aXOIv7DonFYhARzM3NMWrUKNSsWRNisRiBgYGQkZHBwoULMWXKFBgbG8PPzw+FhYUwMTGBl5cX9xeSIkSEWrVqYf369VBSUkLfvn0REhICS0tL2NjYYN++fWjQoAHq1KmDgoICPH/+HD/99BMyMjKwePFiSYfP/oK2tjYWLVoEGRkZRERE4NChQ5g1axbk5eVRVlYGOzs7PHnyBKdOnRL24Xuasaqvdu3a8PPzQ//+/REaGgpVVVX4+PigdevW0NLSwuvXr6GmpgaxWCzsw4k/+zcMDQ2hr6+P48ePo3nz5jA2NhbWrVixAgCE2Z4GDx4stEbh6Z4/r+rVq+Pw4cMwNzdHREQEPDw8hMQfAPT19bFv3z6MGjUKVlZWCAsLQ926dSUYMavquOb/O/LgwQOoqalVai64fv16+Pv7IzIyEps3b8bBgwfRsWNHzJ07F9ra2iguLq40LQj3F5IOFfuO7dy5ExkZGVi0aBFUVVVx/PhxdOvWDfHx8Zg0aRJSUlKQkpKCpk2bolq1aggLCxOSSE4Yq7byFgDXr1+Hk5MTZs2aBXt7e8THx+POnTuQl5fne5qxb1BGRgZyc3PRqFGjSstfv34Ne3t7DB8+HC4uLhKKjkkDIsLgwYNRt25dPH78GLm5uVi3bl2lQgB3d3d4e3vD09MTU6ZM4cT/M6pYYJeeno5x48YhLy8PADBixAhhGr/y7RITE9GzZ0+0bdsWR44ckVTY7BvAyf934tixYxgyZAh0dXXh6ekJAwMDoZ9v165dYWNjg7lz58LDwwNnz56FhYUFZs+eDW1tbQlHzr6k+fPnY9++fVi6dClevnyJq1evIjIyEqdOnUKPHj2QlpaG1NRU3L17FwYGBmjXrh1kZWU5YfyGpKamwtPTE7du3UJiYiJq1KiBu3fvcuLPmJTJyMjAmDFj8OrVK0RERHDhLPvHyhPJGzduQEZGBu3atQMAnDx5Etu2bUNxcTHWrVuHNm3aCPusXLkSAwcOhIGBgaTClmorV65E165d0aFDB2RmZmLs2LF4/fo1xowZIxQAAEBBQQHevHmD2rVr873P/hIn/9+B4uJiTJ8+HadOnYKioiLq1asHVVVVaGhoYMWKFThw4ACeP38uTNOycuVK7NmzB9OmTYObm5uEo2dfSnJyMrp164ZFixZh2LBhAIDnz59j0aJFOHr0KM6fPw9ra+v39uMa/29Pamoq5s6di4yMDJw8eZITf8akyKtXr7Br1y6Eh4cL/X65dRb7p8oT/+PHj2PatGkYNGgQJk2ahCZNmgB4N0PU9u3bUVxcjPXr16N169YSjlj6vX37FlZWVpgzZw6GDh0KAHj58iWmTJmCt2/fYtCgQRg1ahRsbGxgamqKtWvXAuDvNPbXOPn/TqSmpmLVqlV4/vw5dHR04OzsjJkzZ0JLSwtPnjxBbGxspcFcfH19MWLECH54SLGkpCQYGRnh0KFDsLOzA/Du5f/o0SP06tUL2dnZOHToEHr06CHhSNnn8Pr1a6irq/N0P4xJmZiYGCxevBhNmjTB2rVrIScnx/c4+1cuXLgABwcHbNiwAaNHj67U7RMATp8+je3btyMlJQV+fn4wMjKSUKTSqWKXzHJdunSBgYEBduzYIdzXL1++xMyZMxEXF4fCwkKoqqrixo0b710vxj6Ek//vSHJyMjw9PXHz5k04OzvDxcUFkZGRCAoKgr+/P86ePYuWLVtW2odLD6XDxwZ76tWrF1RUVLBt2zZhtF4igqOjI65fv46mTZvi0qVLXzla9iV96OOCMfZte/PmDdTV1SESifi9zT7Jvn370Lp1axgbG4OIUFxcjIkTJ0JLSws///wzsrOz8fjxYxw5cgSysrKYPXs2atSogcOHDyMgIABr165FgwYNJH0aUikpKQnKysqoU6cOpk+fjry8POzcubPSvZ2eno7o6GikpaVh+PDh3CWTfTJO/r8zKSkp8PT0xLVr1zBs2DD89NNPAICsrCxoampyYiCFKl7TnJwcFBYWolatWgCA3bt3Y/v27bC1tcW8efOgrKyMvLw8DBs2DG5ubujSpQuPEM0YY98IHtWf/R0iQlJSEuzt7REUFFQpgR85ciQSExPh6+uLVatW4cWLF8jJycHz589hZmYmzBCTm5sLFRUVSZ2C1Ll586YwDldAQAAGDhwIPT09tGjRAklJScjOzsbevXuhq6sLIyMjlJSUvFfLz4V+7FNx8v8dqjgCuIODA+bPnw+AHxzSqOKHoIeHB0JCQvDw4UN06dIFw4YNg52dHTw9PREQEICysjJ07NgRUVFREIvFuHHjBmRlZblAiDHGGJMyeXl5qF69OmJiYlBSUiIk915eXoiKikK/fv0wePBg9OvXD/7+/vDx8UFwcDA0NDQkHbpU2bZtG5YvX47Q0FA0b94cWVlZePToEQoLCxEREYFnz55h165dqF27NpSUlITv9NWrV2PAgAESjp59izj5/05VHAG8a9eu8PDwkHRI7AtaunQpNm3ahOXLl0NZWRm+vr4oLi6Gs7Mzxo0bh5CQEAQFBeHZs2eoU6cONm3axANGMcYYY1KEiFD+2S8jI4OcnBy0atUKrVu3xurVq9GiRQtkZ2fj4cOH+OGHH4T9XF1d8ezZMwQEBEBRUVFS4UudHTt2YNKkSQgICICjo+MHt0lKSsLo0aOxePFiNG3aFFeuXEFmZiZcXV25iT/7Vzj5/46lpqZizpw5UFRUxPbt27mpoJQRi8UQiUR4+fIl+vbtiwULFsDJyQnAu2u/bNkyREdHY9u2bWjbti0AVOovxn3HGGOMsW9feQu+goICKCkpAQBu3bqFpk2bIjY2FmPHjoWxsTHmzp0LExMTYb+7d+9i79692LNnDy5fvswj/H9G27dvx5QpU3D48GH069dPWB4ZGQkLCwvh55ycHDRu3Bje3t4YOXJkpWPwdxr7N7gt73dMW1sbGzZswLZt2yASicDlQNIhLi4OmZmZkJGRgUgkgrKyMnJycpCfnw/gXfcObW1teHp6IjU1FadPnxb2rfgS4RcKY4wx9u2TkZFBcnIyjI2N8ejRIwQHB6Nz586Ii4tDx44dsWvXLty4cQM///wzbt26BQC4ceMGtm7ditDQUFy6dIkT/8/oxIkTmDRpEo4fP14p8be3t8e2bdtQUFAA4N33mqqqKlq3bo309PT3jsPfaezf4OT/O6epqQkZGRmhlph9206cOIH27dvD3d0dGRkZAN6V+CsqKuLGjRsAAJFIBLFYDA0NDbRv3x4vX76UZMiMMcYY+8JycnJgYmICCwsL2NnZwc/PD5aWligrK0OnTp3g5+eHqKgorF27Fvfu3YOpqSnGjRuHc+fOoU2bNpIOX2oUFRUhODgYjRs3RlJSkrB8wIABSEhIwPLly4XWGeXdLtXU1BATEwMAXFHH/jNO/hkA8IBuUqCoqAinT59GYWEhnjx5ghUrViAtLQ1aWlrw8PDA1q1bsXbtWsjIyEBGRgbFxcV48uQJ6tatK+nQGWOMMfYFNWvWDH369EFWVhYUFRVhYGAA4F0yWbEAIDo6GrNmzcL9+/fRtm1baGtrSzhy6aKgoIAlS5agT58+OHToEHx8fODk5ISEhAQEBQWhYcOGQoIvFosBAPPmzYOfnx8AcEUd+8+4zz9jUiQqKgq9e/dGhw4dUFBQACMjI8yfP18YxM/NzQ09e/aEmpoaUlNTkZ6ejtjYWG46xhhjjEmp8sF7b926hdu3byM8PBxnzpzBqVOn0KFDB5SUlEBGRgaysrK4evUq3NzcEBQUBF1dXUmHLrXKZ946c+YMsrOzERcXB11dXZSUlEBeXh4A0LNnT5ibm2PZsmUAeFYu9nlw8s+YFBCLxSAiyMjIYNasWahZsybEYjECAwNhbW2NhQsXombNmggPD4efnx8KCwtRu3ZteHl5QU5Ojl8ojDHGmJSpON1vRXfu3IGnpyd+++03BAUFCSP7BwUFwcrKCgoKClBQUPja4X530tLS4OnpiYiICAwePBizZs0C8C7Jt7OzQ2JiIu7evSsUBjD2OXDyz9g37MGDB1BTU6tUOr9+/Xr4+/sjMjISmzdvxsGDB9GxY0fMnTsX2traKC4uRrVq1YTtebRYxhhjTLqUJ/5Xr17FqVOnQERo3rw5xo0bB+DdSP6enp4IDg7Gli1bEBsbi+3bt+P27duoX7++hKP/fpS3ALh+/TqcnJwwa9Ys2NvbIz4+Hnfu3IG8vDx/p7HPipN/xr5Rx44dw5AhQ6CrqwtPT08YGBjA1NQUANC1a1fY2Nhg7ty58PDwwNmzZ2FhYYHZs2dz/z3GGGPsOxAYGIhx48ahc+fOUFVVxYkTJ+Dq6oqVK1cCAOLj47Fu3TqcPHkStWvXxp49e4TvCPb1pKamwtPTE7du3UJiYiJq1Kgh1Phz4s8+N07+GfsGFRcXY/r06Th16hQUFRVRr149qKqqQkNDAytWrMCBAwfw/PlzbNu2DQCwcuVK7NmzB9OmTYObm5uEo2eMMcbYl3Tz5k3069cP8+fPx6RJk5CQkABzc3NkZ2djwoQJ2Lp1K4B3LQSePn0KFRUV1KpVS8JRf79SU1Mxd+5cZGRk4OTJk5z4sy+Gk3/GvlGpqalYtWoVnj9/Dh0dHTg7O2PmzJnQ0tLCkydPEBsbi6NHj6J///4AAF9fX4wYMYL79jPGGGNSjIiwb98+3L17Fz///DNevHgBKysr9OjRA+3bt8e4ceOwYMECrFixQtKhsgpev34NdXV1yMjIcOLPvhhO/hn7hiUnJ8PT0xM3b96Es7MzXFxcEBkZiaCgIPj7++Ps2bNo2bJlpX14cD/GGGNMupT38S8fLT47OxsPHz6EiYkJ+vTpg7p162Lv3r1ITk5G+/bt8ccff2D69OlYt26dpENnfyIWi3kKbvbFcPLP2DcuJSUFnp6euHbtGoYNG4affvoJAJCVlQVNTU1+iTDGGGNSrDzxv3LlCn7//XcMGzZMGAg4OTkZffv2xYYNG9CpUye8fv0aM2bMwI8//oh27dqhadOmEo6eMfY1cUbA2DdOR0cHCxcuRIcOHfDrr79i1apVAABNTU2UlZVx4s8YY4xJqfLE/9ixY7Czs0NhYSFevXolrC8tLcXdu3dx5coV5ObmYs2aNYiNjYWNjQ0n/ox9h7jmnzEpUXG02K5du8LDw0PSITHGGGPsC7t27Rp69+6NNWvWCFP5AcDbt2+hpqYGb29vzJ49G02aNMGbN29w4cIFtG3bVoIRM8YkhZN/xqRIamoq5syZA0VFRWzfvh0ikUjSITHGGGPsC1q7di3Onz+P3377Dbm5ubh06RL279+PJ0+eYOHChXBwcMDt27fxxx9/wNjYGHp6epIOmTEmIZz8MyZlsrKyUKNGDcjIyAjNARljjDEmnfz8/LB8+XJMnDgRYWFhkJWVhaysLPT09LB582Y8evQI+vr6kg6TMVYF8BwSjEkZTU1NADxaLGOMMfY9MDc3R+/evbF7925YWVlhxIgR6NSpE+7fv4+oqCj+FmCMCTj5Z0xK8cueMcYYkw5/1ZLP0NAQa9euRW5urlABAAD+/v4oLCyEmpra1wqTMVbFcfLPGGOMMcbYN+Dy5cvQ0NBAq1atKhUGVKtWTUj8w8PDcejQIRw6dAihoaHQ0tKSVLiMsSqGqwYZY4wxxhirwkQiES5duoQuXbrg6dOnKCsr++B2L1++xNmzZ/HixQtcuXIFxsbGXzdQxliVxgP+McYYY4wxVoU9ffoUsbGxePjwIebOnfuX26alpUFBQQE1atT4OsExxr4ZXPPPGGOMMcZYFfXHH3+gSZMmGDp0KMRi8d9uX6dOHU78GWMfxMk/Y4wxxhhjVZSWlha2bt0KJSUlxMfHSzocxtg3jAf8Y4wxxhhjrIr488j+ioqKcHFxARHB1dUVDRs2xNKlSyUXIGPsm8XJP2OMMcYYY1VAeeJ/8eJFXLx4EQ8fPkTfvn3RuXNnTJgwAUSEKVOmQCQSwd3dXdLhMsa+MdzsnzHGGGOMsSpAJBIhMDAQ9vb2KCwshKamJnbv3o3Bgwfj9evXGDt2LLZs2YLVq1f/7cB/jDH2ZzzaP2OMMcYYY1XAH3/8gT59+mDixImYOHEiMjIyYGBggLFjx8Lb21vYbsOGDVi5ciUePHgALS0tCUbMGPuWcPLPGGOMMcZYFfDo0SPY2dkhKioKWVlZsLa2hq2tLXbs2AEACAsLg6mpKapXr463b9/yqP6MsX+Em/0zxhhjjDEmQeV1cXl5eVBTU0N8fDy6dOkCW1tbbN26FQBw9+5dHDlyBImJiZCRkeHEnzH2j3HyzxhjjDHG2FdQnuSXlZWhYuPb8tH927Zti5KSErRv3x42NjbYsWMHZGVlAQD79u1DdHQ06tat+/UDZ4xJBR7tnzHGGGOMsa8gMTERBgYGEIlEEIlECAsLQ2BgILS1tWFmZoYePXrA398fTk5OiIuLQ0hICAoKChAWFobdu3cjPDwcderUkfRpMMa+UdznnzHGGGOMsS8sKCgI48ePx9atW+Hg4IAzZ86gf//+sLa2RnJyMsRiMWbMmIGxY8fi4cOHGD16NF69egU5OTnUq1cP3t7eaNOmjaRPgzH2DeOaf8YYY4wxxr6w2rVro3v37li8eDFKS0uRlJSEjRs3wsXFBffv38fevXuxZMkSiMVijB8/Hr///jsePXoEdXV1KCsrQ1VVVdKnwBj7xnHNP2OMMcYYY1/BzZs3sWnTJty6dQsyMjLw8fFB586dAQBPnjzB1q1bcfDgQbi7u8PFxUWywTLGpA4P+McYY4wxxthnJhaLK/0/AJiYmGD58uUwNTVFfHw8Xrx4Iaxr3LgxJk+ejBEjRmDatGnYt2/fV4+ZMSbduNk/Y4wxxhhjn5mMjAwSEhJw584d9OvXD4cPH4aXlxeuX78ONzc3FBYWwt3dHWpqarC3twcANGrUCOPGjUO1atXQoUMHCZ8BY0zacLN/xhhjjDHGvgA3Nzds2rQJ06dPx8aNG7Fz506MGTMGAHD79m1s3LgR169fx6pVq2BnZyfsV1paCjk5rqNjjH1enPwzxhhjjDH2mRw4cACtW7dG69atAQDdunXD5cuX4eLigi1btlTaNjo6Ghs3bsTt27exaNEiODk5SSJkxth3gvv8M8YYY4wx9h8RERISErBq1SrUqFGj0jpzc3Ps378fv/76KwoLC4XlJiYmcHNzQ+PGjeHt7Y3c3FxwvRxj7Evhmn/GGGOMMcY+k9zcXKioqCAmJgY1a9aEnp4eAGDMmDE4evQodu3aBUdHRygoKAAAioqKkJWVBSJC3bp1JRk6Y0zKcWcixhhjjDHGPhNlZWVkZWXBzs4O7dq1w4IFC2BmZoa9e/dCRkYG48ePBxGhV69e+OWXX3Dq1ClERERAXl5e0qEzxqQc1/wzxhhjjDH2GRARRCIRACA4OBhTp06Fubk5pk2bBjMzMwCAi4sLfv31V7Ro0QLx8fG4cOGCsI4xxr4kTv4ZY4wxxhj7D8qT/vz8fCgpKaGoqAiKiooICQmBi4sLLC0tKxUAHDx4EAUFBbC2toa+vr6Eo2eMfS84+WeMMcYYY+xfKk/8z58/jx07diA7Oxvy8vLYsGEDmjdvjrCwMDg7O8PS0hLTp0+HqamppENmjH2neLR/xhhjjDHG/iWRSIRTp06hX79+MDY2houLC4qLi2FmZobExER06dIFe/bswfXr1+Hh4YG4uDhJh8wY+05x8s8YY4wxxtgn+nOj2dzcXPzyyy9wd3fHkiVLYGlpiadPn2Lo0KHQ19cHEaFLly7w8fHBs2fPoKWlJaHIGWPfO272zxhjjDHG2N8ob96fl5eH6tWrQywWQ0ZGBpmZmfjhhx9w7tw5aGhowNjYGL1798b27dsBAPv27YOdnR1q1KiB/Px8KCsrS/hMGGPfK675Z4wxxhhj7G+IRCKkp6ejYcOGOHLkCGRkZEBEUFdXR9OmTXHo0CG0a9cOffv2xaZNmwAAGRkZOHnyJM6dOwcAUFJSkuQpMMa+c5z8M8YYY4wx9glkZGRgZ2eHESNG4OTJkxCJRBCLxWjcuDFWrVqFFi1aYOvWrZCXlwcArFu3DvHx8ejYsSMACNMAMsaYJHCzf8YYY4wxxj6gvKl/Renp6Vi5ciV++eUXHDt2DI6OjsjKysLAgQPx+vVrWFpaomnTpoiOjsbx48dx6dIlGBsbS+YEGGOsAk7+GWOMMcYY+5PyPv15eXkoKyuDmpqasC4lJQWenp7YvHkzjh49iv79+yMzMxOrV6/G9evXkZ+fj6ZNm2L+/PkwMjKS4Fkwxtj/cPLPGGOMMcbYByQkJGDgwIFQUVHB+PHjoa2tjR9//BEAUFRUhJkzZ2LLli04fPgwnJycUFpaChkZGZSUlEBWVhZycnISPgPGGPsffiIxxhhjjDH2J2KxGL6+voiNjYWioiLevHmD/Px8aGpqwtzcHGPGjMGYMWNQs2ZNDBo0CGpqarCxsQERQUFBQdLhM8bYe7jmnzHGGGOMsQ9ITU2Fl5cXHj9+DH19fbi6usLf3x9Xr15FXFwcNDU10bhxY9y8eRMZGRm4dOkSrKysJB02Y4x9ENf8M8YYY4wx9gHa2tqYPXs2PD09ER4eDgMDAyxZsgQAEBUVheTkZOzYsQPa2trIyMiAlpaWhCNmjLGP45p/xhhjjDHG/kL5AH9RUVFwcHDAggULhHUlJSUgIrx58wa1a9eWYJSMMfbXOPlnjDHGGGPsb6SmpmLlypW4ceMGHBwcMG/ePABAaWkpD+zHGPsmcPLPGGOMMcbYJygvALh9+za6deuGZcuWSTokxhj7ZDKSDoAxxhhjjLFvgba2NhYuXAgDAwNERkYiMzNT0iExxtgn45p/xhhjjDHG/oG0tDQAQJ06dSQcCWOMfTpO/hljjDHGGGOMMSnHzf4ZY4wxxhhjjDEpx8k/Y4wxxhhjjDEm5Tj5Z4wxxhhjjDHGpBwn/4wxxhhjjDHGmJTj5J8xxhhjjDHGGJNynPwzxhhjjDHGGGNSjpN/xhhjjDHGGGNMynHyzxhjjH1nGjZsiA0bNnzStvn5+ejfvz/U1NQgEonw5s2bLxLT06dPIRKJEBMT80WOX5X8k39/xhhj7HPh5J8xxhirgtLT0zFhwgTUr18fCgoK0NbWho2NDa5du/bJx/D19UWNGjXeW37jxg24uLh80jH8/Pxw9epVREZGIiUlBerq6p/8+z9m9OjRcHBwqLRMT08PKSkpMDIy+s/H/ytLly6FsbHxF/0djDHGWFUkJ+kAGGOMMfa+/v37o6SkBH5+fmjcuDHS0tJw8eJFZGVl/edj16pV65O3ffz4MQwNDb94Ui4rKwttbe0v+jsYY4yx7xnX/DPGGGNVzJs3bxAeHg4vLy906dIFDRo0gLm5OebPn4/evXsL261btw6tWrVC9erVoaenh8mTJyM3NxcAcOnSJYwZMwbZ2dkQiUQQiURYunQpgPebnS9dulRoYVC3bl24ubkBADp37gxvb29cuXIFIpEInTt3BgAcOHAApqamUFVVhba2NoYOHYr09PRK53Dv3j307t0bampqUFVVRadOnfD48WMsXboUfn5+OHnypBDXpUuXPtjs//LlyzA3N4eCggJ0dHQwb948lJaWCus7d+4MNzc3zJkzB5qamtDW1hbO8d96+fIlBg0aBA0NDdSsWRP29vZ4+vQpACA4OBiKiorvdX1wc3ODtbW18HNkZCSsrKygpKQEPT09uLm5IS8v7z/FxRhjjP1XnPwzxhhjVYyKigpUVFRw4sQJFBUVfXQ7GRkZbNy4EXfv3oWfnx9CQ0MxZ84cAICFhQU2bNgANTU1pKSkICUlBbNmzXrvGAEBAVi/fj22b9+OhIQEnDhxAq1atQIAHD9+HOPHj0eHDh2QkpKC48ePAwCKi4vh4eGB2NhYnDhxAklJSRg9erRwzJcvX8LKygqKiooIDQ3FrVu34OzsjNLSUsyaNQsDBw6Era2tEJeFhcV7cb18+RK9evWCmZkZYmNjsXXrVuzevRsrVqyotJ2fnx+qV6+OqKgorFmzBsuXL0dISMg//jcH3o1v0KVLF6ioqODKlSsIDw+HiooKbG1tUVxcjO7du6NGjRo4duyYsE9ZWRmOHDmCYcOGAQDu3LkDGxsb9OvXD3FxcTh8+DDCw8MxZcqUfxUTY4wx9tkQY4wxxqqcgIAA0tDQIEVFRbKwsKD58+dTbGzsX+5z5MgRqlmzpvDz3r17SV1d/b3tGjRoQOvXryciIm9vb2ratCkVFxd/8JjTpk0ja2vrv/y9169fJwCUk5NDRETz58+nRo0affSYo0aNInt7+0rLkpKSCADdvn2biIgWLFhAzZo1I7FYLGyzefNmUlFRobKyMiIisra2po4dO1Y6jpmZGc2dO/ejsbq7u1ObNm0+uG737t3v/c6ioiJSUlKi4OBgIiJyc3Ojrl27CuuDg4OpWrVqlJWVRUREI0aMIBcXl0rHvXr1KsnIyFBBQQERVf73Z4wxxr4WrvlnjDHGqqD+/fsjOTkZp06dgo2NDS5dugQTExP4+voK24SFhaFHjx7Q1dWFqqoqRo4ciczMzH/UxNzJyQkFBQVo3Lgxxo8fj8DAwEpN6z/k9u3bsLe3R4MGDaCqqip0B3j+/DkAICYmBp06dYK8vPw/Pu9yDx48QIcOHSASiYRllpaWyM3NxR9//CEsa926daX9dHR03uuC8Klu3bqFxMREqKqqCq0vNDU1UVhYiMePHwMAhg0bhkuXLiE5ORkA4O/vj169ekFDQ0M4hq+vr7C/iooKbGxsIBaLkZSU9K/iYowxxj4HTv4ZY4yxKkpRURE9evTAkiVLEBkZidGjR8Pd3R0A8OzZM/Tq1QtGRkY4duwYbt26hc2bNwMASkpKPvl36OnpIT4+Hps3b4aSkhImT54MKyurjx4jLy8PP/74I1RUVHDgwAHcuHEDgYGBAN51BwAAJSWl/3LaAAAiqpT4ly8DUGn5nwsYRCIRxGLxv/qdYrEY7dq1Q0xMTKX/PXr0CEOHDgUAmJubo0mTJvj1119RUFCAwMBADB8+vNIxJkyYUGn/2NhYJCQkoEmTJv8qLsYYY+xz4NH+GWOMsW9EixYtcOLECQDAzZs3UVpaCm9vb8jIvCvLP3LkSKXtq1WrhrKysr89rpKSEuzs7GBnZwdXV1c0b94cd+7cgYmJyXvbPnz4EK9evcLq1auhp6cnxFJR69at4efnh5KSkg/W/n9KXC1atMCxY8cqFQJERkZCVVUVurq6f3tO/4aJiQkOHz6M2rVrQ01N7aPbDR06FP7+/qhXrx5kZGQqDcJoYmKCe/fuQV9f/4vEyBhjjP1bXPPPGGOMVTGZmZno2rUrDhw4gLi4OCQlJeHo0aNYs2YN7O3tAQBNmjRBaWkpfvnlFzx58gT79+/Htm3bKh2nYcOGyM3NxcWLF/Hq1Svk5+e/97t8fX2xe/du3L17VziOkpISGjRo8MHY6tevj2rVqgm/99SpU/Dw8Ki0zZQpU/D27VsMHjwYN2/eREJCAvbv34/4+Hghrri4OMTHx+PVq1cfbGUwefJkvHjxAlOnTsXDhw9x8uRJuLu7Y8aMGUJhx79VUFDwXu1+YmIihg0bBi0tLdjb2+Pq1atISkrC5cuXMW3atEpdDYYNG4bo6GisXLkSAwYMgKKiorBu7ty5uHbtGlxdXRETE4OEhAScOnUKU6dO/U8xM8YYY/8VJ/+MMcZYFaOiooIffvgB69evh5WVFYyMjLB48WKMHz8emzZtAgAYGxtj3bp18PLygpGREfz9/bFq1apKx7GwsMDEiRMxaNAg1KpVC2vWrHnvd9WoUQM7d+6EpaUlWrdujYsXL+L06dOoWbPmB2OrVasWfH19cfToUbRo0QKrV6/G2rVrK21Ts2ZNhIaGIjc3F9bW1mjXrh127twptAIYP348mjVrBlNTU9SqVQsRERHv/R5dXV2cPXsW169fR5s2bTBx4kSMHTsWixYt+lf/phU9evQIbdu2rfS/cePGQVlZGVeuXEH9+vXRr18/GBoawtnZGQUFBZVaAhgYGMDMzAxxcXHCKP/lWrdujcuXLyMhIQGdOnVC27ZtsXjxYujo6PznuBljjLH/QkTlHegYY4wxxhhjjDEmlbjmnzHGGGOMMcYYk3Kc/DPGGGOMMcYYY1KOk3/GGGOMMcYYY0zKcfLPGGOMMcYYY4xJOU7+GWOMMcYYY4wxKcfJP2OMMcYYY4wxJuU4+WeMMcYYY4wxxqQcJ/+MMcYYY4wxxpiU4+SfMcYYY4wxxhiTcpz8M8YYY4wxxhhjUo6Tf8YYY4wxxhhjTMpx8s8YY4wxxhhjjEm5/wPxzrtXBp5amAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+4AAAJICAYAAAD/1r75AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwU+f8H8NcuXRJ2t4uEjY0K2B1nnIgdqBjYGGcnxtndemEnZ52K2GIhqCiYSAqCdOx+fn/4Y75yeHeeirvA6/l43ONkZnb2vXxmh3nNfOYzMiGEABERERERERFpJLm6CyAiIiIiIiKiv8fgTkRERERERKTBGNyJiIiIiIiINBiDOxEREREREZEGY3AnIiIiIiIi0mAM7kREREREREQajMGdiIiIiIiISIMxuBMRERERERFpMAZ3IiIiIiIiIg3G4E5ERPSVVq9eDYVCgUOHDn3R611cXKBQKPD+/fuvqiMxMRFr165F586dUbNmTdSoUQOtWrXC3LlzERIS8lXrBgA/Pz9cvnxZ+jkkJAQKhQIjRoz4ovUdOnQILVu2hI2NDRo2bIgXL158dY1/58SJE3j9+nWW91YoFNixY0eOvScREdG3wuBORESUB7x9+xZdunTBqlWrYGpqim7duqFXr14oVaoU9u7di7Zt2+Lq1atfvP6LFy+iZ8+eCAoKkqYVKFAAbm5uaNeu3X9eX3BwMKZNm4Z3796hd+/e6NixI0qUKPHF9f0TT09PjB8/HgkJCdK0qlWrws3NDTVq1MiR9yQiIvqWtNVdABEREX29pUuX4uXLl1izZg1atGiRZd61a9cwePBgTJo0CefPn4euru5/Xn9MTAxUKlWWaQUKFMCoUaO+qN5Hjx5BpVKhd+/ecHd3/6J1fK7o6Ohs06pWrYqqVavm6PsSERF9K7ziTkRElAdcuHABJUuWzBbaAaBBgwZo3bo1oqKicOfOHTVUl11aWhoAwNzcXM2VEBERaT4GdyIiohzy/PlzTJgwAQ0bNoSNjQ2aN2+OJUuWID4+/pPLh4aGYuTIkahZsybq1auH8ePHZ7kv+59kZGQgJiYGb9++/eR8V1dXrFu3DlWqVMky/fbt23Bzc0Pjxo1hY2MDOzs7DBgwANevX5eWmTJlCjw8PAAACxcuhEKhQEhIyCfvcc/IyMCaNWvQoUMH1KhRA3Xr1sWgQYNw7do1aRlHR8ds61u9erU0/8iRI3BxcYGdnR1sbGzQuHHjv/1dPH78GO7u7mjUqBFq1qyJLl264MCBAxBCSO91+PBhAEDnzp3h6OgI4O/vcffz88OIESNQr1492Nraom3bttiwYYN0oiGTi4sLHB0dER4ejvHjx6NevXqoXr06nJ2dcePGjU+2ARER0ZdicCciIsoB9+/fR9euXXHy5EnUqFEDzs7OKFiwILZu3YoePXogNjY222sGDx6M4OBg9OrVCzVr1sSJEyfQs2dPhIaG/uv7NWrUCMnJyejZsyd27dqV7TWVK1eGk5MTLCwspGnnzp2Di4sL7t27h+bNm6Nfv36oWbMmrl27hkGDBuHRo0cAgObNm8PJyQkA0LhxY7i5uaFAgQKfrGPu3LlYvXo1zMzM4OzsjNatW+P+/fsYNGiQFGj79u2bbX1169YFACxevBiTJ0/G+/fv0aVLFzg7O6NIkSI4ceIEXFxckJKSIr3XtWvX0LNnT5w9exZ16tRBr169kJKSgmnTpkknAvr27QtLS0sAQM+ePdG3b9+//R2eO3cOP/74I3x8fNCwYUP06tULWlpaWLFiBQYMGJAtvCcmJqJ37954/PgxOnfujObNm+POnTsYNGgQnj59+i8tRkRE9B8IIiIi+iqrVq0SVapUEQcPHhRCCJGRkSFatmwprKyshLe3d5ZlPT09RZUqVYSHh4c0rU+fPqJKlSqiZ8+eIiUlRZr+66+/iipVqohx48b9aw3h4eGiRYsWokqVKtJ/Tk5OwsPDQ5w+fVqkpqZme02rVq1E3bp1RVRUVJbpmzZtElWqVBHLli2Tph08eFBUqVJFbN++XZr2+vVrUaVKFTF8+HAhhBDx8fHC0tJSODs7Z1mfn5+fqFKlihg1atQ/ri88PFx6fUZGRpZ1DBkyRFSpUkX4+PgIIT78jh0cHIStra24c+eOtFxKSoro0KGDsLKyEm/fvhVCCDF58mRRpUoV8fDhw799//j4eGFnZydq1aol/P39peXS09PF+PHjRZUqVcSaNWuk6ZltNnz4cJGWliZNX79+vahSpYrw9PTM9vsmIiL6UrziTkRE9I3dvXsXL168QLt27dCkSZMs80aPHo2iRYvi+PHj2a7gjhs3Dnp6etLPvXr1Qvny5XHmzJlsy/5V0aJFceTIEbi7u6NChQoAgNevX+PgwYMYNWoUWrVqlWVUeZVKhfHjx2PJkiUoVKhQlnXVq1cPwKcHdfsnKpUKQgiEhYUhKipKmm5ra4tz585h2bJl//h6XV1dLFmyBNOmTYOWllaWeXZ2dllqunfvHt68eYNOnTqhZs2a0nJ6enqYMmUK3NzckJqa+tm1nzt3DnFxcejbty+sra2l6dra2pg6dSr09fVx8ODBbK8bOHAgdHR0pJ+bNm0KAHjz5s1nvzcREdG/4ajyRERE31hmF/PMsPkxXV1dKcg+e/ZM6sYtk8k++WiyatWq4fnz51mW/TuGhoZwdXWFq6srQkJCcO3aNVy9ehUXL15EaGgoXF1d8dtvv8HKygpyuVwayO7Nmzd4+vQpXr16haCgIKlL+19Hkf83BQoUQNu2bXHy5Ek4ODigZs2aaNKkCRwcHFCpUqV/fb25uTk6dOgAlUqFJ0+eIDg4GK9fv0ZgYKB00iGzpsePHwPAJ39nDRs2RMOGDf9T7Znr+1SbWVhYoHz58nj06BHi4+NhYmIizStXrlyWZY2NjQHgX0+0EBER/RcM7kRERN9Y5vPCM0PcXxUpUgQAkJycLE0zNTX95GPajIyMAHy4n/q/KFWqFLp3747u3bsjNjYWU6ZMwYULF7Bz504sXrwYABAYGIh58+bh5s2bAAAdHR1UrFgRNjY2ePHihTTA23+xePFi2NjY4NChQ7h58yZu3ryJpUuXwsbGBvPmzfvXR7CdOXMGy5Ytw4sXLwB8OBlhY2MDS0tLXL16Varp/fv3AP7+d/xffU6bPXr0CMnJyVmC+1/bTCaTAcAX/e6IiIj+DrvKExERfaZXr17h0KFDeP78eZbpmVeB9fX1AfwvbEdERHxyPZmh08zMTJqWkJDwybAXGRmZbdm/OnLkCJo0aYKjR49+cr6ZmRnmzJkDAHj58qX0fgMHDsT9+/cxefJkHD16FHfu3MHRo0f/cQC3f6Ojo4OBAwfixIkTuHDhAubNm4fGjRvD398fw4YNQ3p6+t++9v79+xgzZgzS0tKwfPlynD17Fnfu3MHu3bvRoEGDLMsaGhoC+PQJjfT09P98xTuzzTJ/33/1qTYjIiL6XhjciYiIPtOff/4JDw+PbM9C/2uoy7yq/KlnpqtUKty+fRuGhoYoWbKkND0jIwMPHz7Msmx6ejr8/f1haGiYrUv2x8zNzREREYEzZ8787TKZV4Izr/Zfv34db9++hbOzMwYOHAhLS0vp6nFwcDCArFeNM1//T16/fo3ly5fjwoULAIASJUqge/fu2Lp1K+rXr4+IiAiEhIT87etPnjwJlUqFmTNnol27dihTpoz0vs+ePctSU+Zj7fz8/LKt548//kD16tVx5MiRz649s81u376dbV5CQgIePXqEsmXLfrJXBBERUU5jcCciIvpMmeHu0qVL0rS0tDRcvXoVWlpasLGxAQDUrl0bZcuWxZkzZ+Dt7Z1lHatWrUJYWBjatGmTLQSuWbMGSqVS+nnLli0IDw9Hly5dsg3W9rHGjRujXLlyOHfuHDZu3Jjt3vS0tDQsWrQIANClSxcAkAbB++sAdKGhoVizZg2ADycTMmlrf7i77p+umOvr62Pz5s1YuXJlliveaWlpiIqKgq6uLgoXLvy3r8+s6a/Por927RpOnDiRpSY7OzsUL14cR48elcYUyHyvHTt2QEtLS7pK/zm1N2/eHCYmJvjll18QEBAgTc/IyMD8+fORkpKCTp06/e3riYiIchLvcSciIvpMdevWha2tLU6dOoVBgwbB0tISly9fxrNnz+Di4iI921wul2PRokUYNGgQXF1d4eDggDJlyuDu3bu4d+8eKlasiEmTJmVZt56eHgICAtC9e3fUr18fjx8/xpUrV1ChQgWMHTv2H+vS0tLCunXr0K9fPyxfvhy///47GjVqBAsLC0RHR8PHxwfh4eEYMGAAHBwcAHw4uVCyZEkcPXoU7969g6WlJcLCwvDnn39CT08PMpksy7PmixYtCgD49ddfERcXBxcXl2x1FC5cGP369cP27dvRvn17NG3aFHK5HD4+PggODsaIESP+8Z70tm3bYvv27Zg9ezZu3bqFwoULIzAwEJcvX4a5uTmio6OlmrS1tbFgwQIMGzYMvXr1QosWLVCwYEFcvHgRL168gIeHh1Rz5v8XLVqEhg0bws3NLdt7GxsbY8GCBXB3d8+yvuvXr+PJkyeoU6cOhgwZ8o/tQERElFN4xZ2IiOgzyeVybN68Gd26dcOjR4+wc+dOpKSkYMKECZg6dWqWZWvVqoUDBw6gbdu2uHv3Lvbu3YvY2FgMHz4c+/fvz3avtK6uLnbu3AkzMzPs3bsXjx49Qs+ePfHLL79IJwT+ScWKFXHq1CmMHTsWhQsXxtmzZ7F161ZcuHABVlZW2Lx5M6ZMmSItb2hoiO3bt6Nly5YICAjAnj178PDhQ3Ts2BHHjh2DpaUlfH19pXvI7ezs4OzsjLi4OOzdu1fqTv9XEydOxKxZs2BsbIzDhw9j3759MDIywqJFizBmzJh//AxVq1bFpk2bYG1tjXPnzmHfvn14+/YtRo8ejaNHj0Iul2fpwdCwYUP8+uuvaNCgAby9vbF3714YGBhg8eLF6N+/v7Rc79690ahRI/j7+2P37t1/O9Bfy5Yt8csvv6BRo0bw8fHBvn37AACTJk3Cjh072E2eiIjURiY47CkRERERERGRxuIVdyIiIiIiIiINxuBOREREREREpMEY3ImIiIiIiIg0GIM7ERERERERkQZjcCciIiIiIiLSYAzuRERERERERBpMW90FaIKYmBhcvnwZpUqVgp6enrrLISIiIiIiojwuNTUVISEhaNy4MSwsLP5xWQZ3AJcvX8bEiRPVXQYRERERERHlM56enujYseM/LsPgDqBUqVIAPvzCKlasqOZqiIiIiIiIKK8LDg7GxIkTpTz6TxjcAal7fMWKFWFtba3maoiIiIiIiCi/+JzbtTk4HREREREREZEGY3AnIiIiIiIi0mAM7kREREREREQajMGdiIiIiIiISIMxuBMRERERERFpMAZ3IiIiIiIiIg3G4E5ERERERESkwRjciYiIiIiIiDQYgzsRERERERGRBmNwJyIiIiIiItJgDO5EREREREREGozBnYiIiIiIiEiDMbjnQhkqoe4S6P+xLYiIiIiIKKdpq7sA+u+05TKs9Y9BqpKhUZ30tGQYaWOh7jKIiIiIiCiPY3DPpVKVAmm82ktERERERJTnsas8ERERERERkQbTyCvufn5+WL16Ne7evYvU1FRUrFgR/fv3R+fOnaVlli9fjo0bN37y9bdu3UKBAgW+U7VEREREREREOUfjgntwcDBcXFxgamqKwYMHw8jICF5eXpg8eTLevXuHAQMGAACePHmC0qVLY9SoUdnWYWBg8L3LJiIiIiIiIsoRGhfcFy9eDLlcjv3796No0aIAAGdnZ/Tu3RurVq1Cjx49YGRkhCdPnqB69ero1KmTmismIiIiIiIiyjkadY+7UqnErVu3YG9vL4V2AJDL5WjTpg2SkpLw6NEjJCQkIDQ0FBUrVlRjtUREREREREQ5T6OuuMvlchw7dgwymSzbvJiYGACAlpYWgoKCIISQgntycjL09PQgl2vUeQgiIiIiIiKir6ZRSVcmk6F06dIoVapUlulJSUk4ePAgDA0NYWVlhSdPngAAfHx80KxZM9SoUQO1a9fGrFmzkJycrI7SiYiIiIiIiHKERl1x/xQhBKZPn46oqCiMHDkSenp6UnB/8OAB3NzcYGxsDG9vb/z6668IDg7Gzp07efWdiIiIiIiI8gSNDu5CCMyaNQsnT55E3bp1MXz4cACAvb09TExMMGTIEBgaGgIAWrduDXNzc2zduhVnz55Fq1at1Fk6ERERERER0TehsZel09PTMWHCBPz222+oVq0a1q9fDx0dHQBA06ZNMWbMGCm0Z+rduzcA4Pr169+9XiIiIiIiIqKcoJFX3JOTkzFq1Cj4+Pigbt26WL9+PYyNjf/1dQULFgTw4Z54IiIiIiIiorxA4664p6enw83NDT4+PnBwcMCWLVuyhfb+/ftj4MCB2V777NkzAEDp0qW/S61EREREREREOU3jgvuqVatw+fJlODo6YvXq1dDT08u2jJmZGa5evYq7d+9K01QqFdasWQMtLS20bdv2e5ZMRERERERElGM0qqt8ZGQktm/fDm1tbTRu3BheXl7ZlmnQoAEmTJiAK1euYMiQIXBxcYGFhQVOnz6NW7duYezYsahQoYIaqiciIiIiIiL69jQquN+5cwfp6ekAgDlz5nxymc2bN6NJkyb45Zdf8PPPP2P37t1IS0tDpUqVsHjxYnTu3Pk7VkxERERERESUszQquLdu3RqBgYGftWzlypWxdu3aHK6IiIiIiIiISL007h53IiIiIiIiIvofBnciIiIiIiIiDcbgTkRERERERKTBGNyJiIiIiIiINBiDOxEREREREZEGY3AnIiIiIiIi0mAM7kREREREREQajMGdiIiIiIiISIMxuBMRERERERFpMAZ3IiIiIiIiIg3G4E5ERERERESkwRjciYiIiIiIiDQYgzsRERERERGRBmNwJyIiIiIiItJgDO5EREREREREGozBnYiIiIiIiEiDMbgTERERERERaTAGdyIiIiIiIiINxuBOREREREREpMEY3ImIiIiIiIg0GIM7ERERERERkQZjcCciIiIiIiLSYAzuRERERERERBqMwZ2IiIiIiIhIgzG4ExEREREREWkwBnciIiIiIiIiDcbgTkRERERERKTBGNyJiIiIiIiINBiDOxEREREREZEGY3AnIiIiIiIi0mAM7kREREREREQajMGdiIiIiIiISIMxuBMRERERERFpMAZ3IiIiIiIiIg3G4E5ERERERESkwRjciYiIiIiIiDQYgzsRERERERGRBmNwJyIiIiIiItJgDO5EREREREREGozBnYiIiIiIiEiDMbgTERERERERaTAGdyIiIiIiIiINppHB3c/PD0OGDEGdOnVga2uLzp0748iRI1mWSUlJwdKlS+Hg4IDq1aujZ8+euHbtmnoKJiIiIiIiIsohGhfcg4OD4eLigsDAQAwePBiTJk2CgYEBJk+ejO3bt0vLjR8/Htu2bYOTkxMmT56M9PR0DB48GL6+vmqsnoiIiIiIiOjb0lZ3AX+1ePFiyOVy7N+/H0WLFgUAODs7o3fv3li1ahV69OgBPz8/nDt3Dh4eHujfvz8AoHPnzujYsSMWLFiAQ4cOqfETEBEREREREX07GnXFXalU4tatW7C3t5dCOwDI5XK0adMGSUlJePToEY4fPw4dHR306NFDWsbQ0BA//PADAgIC8OLFCzVUT0RERERERPTtadQVd7lcjmPHjkEmk2WbFxMTAwDQ0tKCv78/ypcvD0NDwyzLWFtbAwD8/f1Rrly5HK+XiIiIiIiIKKdpVHCXyWQoXbp0tulJSUk4ePAgDA0NYWVlhYiICFSrVi3bckWKFAEAhIaG5nitRERERERERN+DRnWV/xQhBKZPn46oqCgMGDAAenp6SExMhIGBQbZl9fX1AQDJycnfu0wiIiIiIiKiHKHRwV0IgVmzZuHkyZOoW7cuhg8f/lmv+1RXeyIiIiIiIqLcSKO6yn8sPT0dU6ZMwYkTJ1CtWjWsX78eOjo6AD4MRJeSkpLtNZnTjI2Nv2utRERERERERDlFI4N7cnIyRo0aBR8fH9StWxfr16/PEsZLlCiBqKiobK+LjIwEgCwj0hMRERERERHlZhrXVT49PR1ubm7w8fGBg4MDtmzZku0KurW1NYKCgrJddQ8ICAAA2Nrafrd6iYiIiIiIiHKSxgX3VatW4fLly3B0dMTq1auhp6eXbZnWrVsjLS0Nv/32mzQtKSkJBw4cQLVq1VCmTJnvWTIRERERERFRjtGorvKRkZHYvn07tLW10bhxY3h5eWVbpkGDBrC3t4e9vT08PT0RFhaG8uXLY9++fQgPD8eiRYvUUDkRERERERFRztCo4H7nzh2kp6cDAObMmfPJZTZv3owiRYpg5cqVWLFiBY4fP47k5GQoFAps3boVderU+Z4lExEREREREeUojQrurVu3RmBg4Gcta2RkhOnTp2P69Ok5XBURERERERGR+mjcPe5ERERERERE9D8M7kREREREREQajMGdiIiIiIiISIMxuBNpuAyVUHcJ9BG2BxERERF9bxo1OB0RZactl2GtfwxSlQyM6qanJcNIGwt1l0FERERE+QyDO1EukKoUSOOVXiIiIiKifIld5YmIiIiIiIg0GIM7ERERERERkQZjcCciIiIiIiLSYAzuRERERERERBqMwZ2IiIiIiIhIgzG4ExEREREREWkwBnciIiIiIiIiDcbgTkRERERERKTBGNyJiIiIiIiINBiDOxEREREREZEGY3AnIiIiIiIi0mAM7kREREREREQajMGdiIiIiIiISIMxuBMRERERERFpMAZ3IiIiIiIiIg3G4E5ERERERESkwRjciYiIiIiIiDQYgzsRERERERGRBmNwJyIiIiIiItJgDO5EREREREREGozBnYiIiIiIiEiDMbgTERERERERaTAGdyIiIiIiIiINxuBOREREREREpMEY3ImIiIiIiIg0GIM7ERERERERkQZjcCciIiIiIiLSYAzuRERERERERBpM+2tXkJiYCCMjI+lnHx8f+Pr6olSpUujQoQP09fW/9i2IiIiIiIiI8q0vDu7p6emYNWsWjh49iuvXr8PY2Bh79uzB/PnzIYSATCbDrl27sGfPHpiamn7LmomIiIiIiIjyjS/uKr99+3YcPHgQlStXRmpqKtLT07F69WoYGhpi8eLFcHNzQ1BQEDZs2PAt6yUiIiIiIiLKV774ivvx48dhZWWF/fv3Q0tLCz4+PoiLi0OfPn3QqVMnAEBAQADOnj2LyZMnf7OCiYiIiIiIiPKTL77i/urVKzRs2BBaWloAgEuXLkEmk6FZs2bSMpUqVUJkZORXF0lERERERESUX31xcDcyMkJKSor086VLl6Crq4s6depI0yIiImBhYfF1FRIRERERERHlY18c3CtXroyzZ88iNDQUXl5eePnyJRo0aCCNIu/n54dTp07B2tr6mxVLRERERERElN98cXAfMmQIYmJi4OTkhPHjx0Mul2Pw4MEAgJUrV6JXr16QyWQYPnz4VxW4adMmNGrU6JPzli9fDoVC8cn/3r9//1XvS0RERERERKQJvnhwusaNG2P79u3YtWsXhBDo3r271E3e3NwcjRs3xqhRo2BjY/PFxXl7e2PVqlV/+zi5J0+eoHTp0hg1alS2eQYGBl/8vkRERERERESa4ouDOwDUqVMnyz3tmfr27Yu+ffsiLS0NL168QLly5f7TeoUQ2Lt3LxYtWoT09PS/Xe7JkyeoXr26NIo9ERERERERUV7zxV3lq1atirVr1/7jMmvWrEH37t3/87p79uyJuXPnol69en97j3xCQgJCQ0NRsWLF/7x+IiIiIiIiotzis6+4+/v7IyIiQvpZCIFnz57hzz///OTy6enpuHjxIjIyMv5zUaGhoZgzZw569OiBvn37fnKZoKAgCCGk4J6cnAw9PT3I5V98LoKIiIiIiIhI43x2cI+Li8PIkSMhk8kAADKZDF5eXvDy8vrb1wgh0LZt2/9c1Pnz56Grq/uPyzx58gQA4OPjg8WLFyMsLAyGhobo1KkTJk+ezHvciYiIiIiIKE/47ODeqFEj/PTTT4iJiYEQAmvXroWdnR3q1av3yeV1dHRQtGjRLwru/xbagf8F9wcPHsDNzQ3Gxsbw9vbGr7/+iuDgYOzcuZNX34mIiIiIiCjX+0+D0/Xu3Vv6982bN9GtWzd07tz5W9f0Wezt7WFiYoIhQ4bA0NAQANC6dWuYm5tj69atOHv2LFq1aqWW2oiIiIiIiIi+lS++JL179261hXYAaNq0KcaMGSOF9kyZJxeuX7+ujrKIiIiIiIiIvqmvehzcu3fvcObMGbx58wZpaWkQQmRbRiaTYcqUKV/zNv9JwYIFAQBJSUnf7T2JiIiIiIiIcsoXB/fHjx+jX79+eP/+/ScDe6acCu79+/eHXC7Htm3bskx/9uwZAKB06dLf/D2JiIiIiIiIvrcvDu7Lly9HXFwcevTogSZNmsDExEQacf57MDMzw6lTp3D37l3UrFkTAKBSqbBmzRpoaWl90aB4RERERERERJrmi4O7r68vHBwcMGfOnG9Zz2ebMGECrly5giFDhsDFxQUWFhY4ffo0bt26hbFjx6JChQpqqYuIiIiIiIjoW/ri4C6Xy9UajkuVKoVffvkFP//8M3bv3o20tDRUqlQJixcvVuugeURERERERETf0hcH9zp16sDX1/db1vJJu3fv/tt5lStXxtq1a3O8BiIiIiIiIiJ1+eLHwU2cOBHPnz/HvHnzEBER8S1rIiIiIiIiIqL/98VX3GfPng1TU1Ps3bsXe/fuhZ6eHnR1dbMtJ5PJcOPGja8qkoiIiIiIiCi/+uLgHhISAgAoXrz4NyuGiIiIiIiIiLL64uB+/vz5b1kHEREREREREX3CF9/jTkREREREREQ574uvuP/555+fvayTk9OXvg0RERERERFRvvbFwX3kyJGQyWSfteyjR4++9G2IiIiIiIiI8rVvHtyTk5Px6tUreHt7o3r16ujXr99XFUhERERERESUn31xcB81atQ/zn/48CF69+6N+Pj4L30LIiIiIiIionwvxwans7KyQuvWrbFt27acegsiIiIiIiKiPC9HR5U3NzfHy5cvc/ItiIiIiIiIiPK0HAvuMTExOH36NAoXLpxTb0FERERERESU533xPe5ubm6fnK5SqZCcnAw/Pz8kJSVh5MiRX1wcERERERERUX73xcH93Llz/zjf1NQU/fv3x/Dhw7/0LYiIiIiIiIjyvS8O7n/++ecnp8tkMujo6KBgwYKQy3P0FnoiIiIiIiKiPO+Lg3vJkiW/ZR1ERERERERE9AlfHNwz+fr64uDBgwgMDERycjLMzMxQuXJldOzYEXXq1PkWNRIRERERERHlW18V3JctW4YtW7ZACAEAMDAwwIsXL3D37l3s378fQ4cOhbu7+zcplIiIiIiIiCg/+uKb0L28vLB582ZUqlQJGzduhK+vL+7evYv79+9j27ZtUCgU2LRp078OYkdEREREREREf++Lg/uuXbtQuHBh7Nq1C02bNoWxsTEAQFdXFw0bNsS2bdtQqFAh7N69+5sVS0RERERERJTffHFwDwwMhIODA8zNzT8538LCAg4ODnj06NEXF0dERERERESU3+X489rS09Nz+i2IiIiIiIiI8qwvDu4KhQIXLlxAbGzsJ+fHxMTg/PnzUCgUX/oWRERERERERPneFwf3vn37IioqCoMGDcLNmzeRkZEBAEhISIC3tzf69++P6Oho9OnT55sVS0RERERERJTffPHj4Nq2bYsHDx5g+/bt6NevH+RyOXR1dZGSkgIAEEJgwIABaN++/TcrloiIiIiIiCi/+arnuE+ePBlOTk44dOgQHj9+jMTERBgZGcHS0hJdu3ZFnTp1vlWdRERERERERPnSVwV3AKhTpw4DOhEREREREVEO+aJ73J89e4Z37959ct6qVatw+/btryqKiIiIiIiIiD74T8E9LS0N7u7uaN++Pby9vbPNj4qKwrp169CnTx+MHDkSCQkJ36xQIiIiIiIiovzos4O7UqnE4MGD8ccff6BYsWIwNzfPtoyBgQEmTJiAMmXK4M8//4SrqyuEEN+0YCIiIiIiIqL85LOD+2+//YabN2+iY8eOOHPmDJo2bZptGWNjYwwePBhHjx6Fk5MTbt++jQMHDnzTgomIiIiIiIjyk88O7sePH0eJEiUwf/58aGv/85h2+vr6WLx4MczNzXHkyJGvrZGIiIiIiIgo3/rs4P706VM0btwYOjo6n7W8sbExGjVqhMDAwC8ujoiIiIiIiCi/+0/3uJuYmPynlRctWhQZGRn/uSgiIiIiIiIi+uCzg3vx4sXx6tWr/7TyV69eoWjRov+5KCIiIiIiIiL64LODu52dHS5duoSoqKjPWj4qKgoXL16EQqH44uKIiIiIiIiI8rvPDu69evVCWloaRo8e/a/PZ09ISMCoUaOQnp6OXr16fXWRRERERERERPnVZwd3KysruLq64u7du2jdujXWr18PPz8/xMfHQ6VS4d27d7h//z7Wrl2Lli1b4t69e+jatSsaNmyYk/UTEeUpGSqh7hLoI2wPIiIi0gT//Fy3vxg9ejR0dHSwbt06rFq1CqtWrcq2jBACOjo6GDJkCNzd3b9ZoURE+YG2XIa1/jFIVTIwqpuelgwjbSzUXQYRERHRfwvuMpkMI0aMQNu2bXH48GH4+PggIiIC79+/h5mZGUqXLg17e3u0b98epUuXzqmaiYjytFSlQBqv9BIRERHR//tPwT1TuXLl4O7uzivqRERERERERDnss+9xJyIiIiIiIqLvT+OD+6ZNm9CoUaNPzktJScHSpUvh4OCA6tWro2fPnrh27dp3rpCIiIiIiIgo52h0cPf29v7kAHiZxo8fj23btsHJyQmTJ09Geno6Bg8eDF9f3+9YJREREREREVHO0cjgLoTAnj17MHLkSKSnp39ymWvXruHcuXOYNGkSpk+fjt69e2PPnj0oXrw4FixY8J0rJiIiIiIiIsoZGhnce/bsiblz56JevXqwtrb+5DLHjx+Hjo4OevToIU0zNDTEDz/8gICAALx48eI7VUtERERERESUczQyuIeGhmLOnDnYsmULjIyMPrmMv78/ypcvD0NDwyzTM4O+v79/jtdJRERERERElNO+6HFwOe38+fPQ1dX9x2UiIiJQrVq1bNOLFCkC4EP4JyIiIiIiIsrtNPKK+7+FdgBITEyEgYFBtun6+voAgOTk5G9eFxEREREREdH3ppHB/VuQyWTqLoGIiIiIiIjoq+Xa4G5oaIiUlJRs0zOnGRsbf++SiIiIiIiIiL65XBvcS5QogaioqGzTIyMjAQBFixb93iURERERERERfXO5NrhbW1sjKCgo21X3gIAAAICtra06yiIiIiIiIiL6pnJtcG/dujXS0tLw22+/SdOSkpJw4MABVKtWDWXKlFFjdURERERERETfhkY+Du5z2Nvbw97eHp6enggLC0P58uWxb98+hIeHY9GiReouj4iIiIiIiOibyLXBHQBWrlyJFStW4Pjx40hOToZCocDWrVtRp04ddZdGRERERERE9E1ofHDfvXv3384zMjLC9OnTMX369O9YEREREREREdH3k2vvcSciIiIiIiLKDxjciYiIiIiIiDQYgzsRERERERGRBmNwJyIiUqMMlVB3CfT/vkdbsL01C9uDiHILjR+cjoiIKC/Tlsuw1j8GqUoGCHXS05JhpI1Fjr8P21tzfK82JyL6FhjciYiI1CxVKZDGK3/5BtubiIj+K3aVJyIiIiIiItJgDO5EREREREREGozBnYiIiIiIiEiDMbgTERERERERaTAGdyIiIiIiIiINxuBOREREREREpMEY3ImIiIiIiIg0GIM7ERERERERkQZjcCciIiIiIiLSYAzuRERERERERBqMwZ2IiIiIiIhIgzG4ExEREREREWkwBnciIiIiIiIiDcbgTkRERERERKTBGNyJiIiIiIiINBiDOxEREREREZEGY3AnIiIiIiIi0mAM7kREREREREQajMGdiIiIiIiISIMxuBMRERER5YAMlVB3CfQRtgflZtrqLoCIiIiIKC/Slsuw1j8GqUoGRnXT05JhpI2Fussg+mIM7kREREREOSRVKZDGK71E9JXYVZ6IiIiIiIhIgzG4ExEREREREWkwBnciIiIiIiIiDcbgTkRERERERKTBGNyJiIiIiIiINBiDOxEREREREZEGY3AnIiIiIiIi0mAM7kREREREREQajMGdiIiIiIiISIMxuBMRERERERFpMAZ3IiIiIiIiIg3G4E5ERERERESkwRjciYiIiIiIiDSYtroL+Fq9evXC3bt3s023tLTE0aNH1VARERERERER0beT64P7kydP0KxZM7Rt2zbLdDMzM/UURERERERERPQN5erg/ubNGyQmJqJZs2bo1KmTusshIiIiIiIi+uZy9T3uT548AQBUrFhRzZUQERERERER5YxcHdyfPn0KAKhUqRIAIDExUZ3lEBEREREREX1zuTq4BwYGQk9PDytXrkTt2rVRq1Yt2NvbY9euXeoujYiIiIiIiOibyNX3uD99+hSpqamIiIjAggULkJycjP3792P+/PmIjY3F6NGj1V0iERERERER0VfJ1cG9Z8+eUCqV6Nu3rzStY8eO+PHHH7Fp0yb8+OOPKFy4sBorJCIiIiIiIvo6ubqrvLOzc5bQDgByuRw9e/ZEeno6fH191VQZERERERER0beRq4P73ylYsCAAICkpSc2VEBEREREREX2dXBvcQ0ND0a5dO6xcuTLbvGfPngEASpcu/b3LIiIiIiIiIvqmcm1wL168OOLi4rB//37ExcVJ0+Pi4rBjxw6ULFkStWrVUmOFRERERERERF8v1w5OJ5PJMHPmTLi5uaFHjx748ccfkZaWht9//x3R0dHYvHkztLVz7ccjIiIiIiIiApCLr7gDQIsWLbB+/XqYm5tj+fLl2LBhA8qVK4e9e/eiQYMG6i6PiIiIiIiI6Kvl+kvSjo6OcHR0VHcZRERERERERDkiV19xJyIiIiIiIsrrGNyJiIiIiIiINBiDOxEREREREZEGY3AnIiIiIiIi0mAM7kREREREREQajMGdiIiIiIiISIMxuBMRERERERFpMAZ3IiIiIiIiIg3G4E5ERERERESkwRjciYiIiIiIiDQYgzsRERERERGRBmNwJyIiIiIiItJgDO5EREREREREGozBnYiIiIiIiEiDMbgTERERERERaTAGdyIiIiIiIiINxuBOREREREREpMEY3ImIiIiIiIg0GIM7ERERERERkQZjcCciIiIiIiLSYAzuRERERERERBqMwZ2IiIiIiIhIgzG4ExEREREREWkwBnciIiIiIiIiDcbgTkRERERERKTBGNyJiIiIiIiINBiDOxERERER0TeQoRLqLoH+X15rC211F0BERERERJQXaMtlWOsfg1Rl3gqNuY2elgwjbSzUXcY3xeBORERERET0jaQqBdLy2NVeUj92lSciIiIiIiLSYAzuRERERERERBqMwZ2IiIiIiIhIgzG4ExEREREREWkwBnciIiIiIiIiDcbgTkRERERERKTBGNyJiIiIiIiINBiDOxEREREREZEGY3AnIiIiIiIi0mAM7kREREREREQajMGdiIiIiIiISIMxuBMRERERERFpsFwf3ENDQ+Hu7o769eujdu3aGDlyJF6/fq3usoiIiIiIiIi+CW11F/A1YmNj0bdvXyQkJKBfv37Q1dXFtm3b4OzsjCNHjsDCwkLdJRIRERERERF9lVwd3Hfs2IGQkBAcOHAANjY2AAB7e3t07twZmzdvxuTJk9VcIREREREREdHXydVd5U+cOIEaNWpIoR0AqlSpgvr16+PEiRNqrIyIiIiIiIjo28i1wT0uLg6vX7/OEtozWVtbIzIyEpGRkWqojIiIiIiIiOjbybXBPSIiAgBQtGjRbPOKFCkCAAgLC/uuNRERERERERF9a7n2HvfExEQAgIGBQbZ5+vr6AICkpKTPWldqaioAIDg4+BtVl/PiXr5HmlKou4x8TVdLhgDtAt/lvdjemuF7tTnbWzPwO56/sL3zH+7T8xd+x/OX79neXyMzf2bm0X+Sa4O7EB++DDKZ7G+X+ad5HwsJCQEATJw48esLo3zlN3UXQN8d2zx/YXvnL2zv/Idtnr+wvfOX3NTeISEhqFWr1j8uk2uDu6GhIQAgOTk527yUlBQAgLGx8Wetq3HjxvD09ESpUqWgp6f37YokIiIiIiIi+oTU1FSEhISgcePG/7psrg3uJUuWBABERUVlm5c5KN2n7n//FAsLC3Ts2PHbFUdERERERET0L/7tSnumXDs4nYmJCcqUKYOAgIBs8wICAlCsWDEULlxYDZURERERERERfTu5NrgDQOvWrXH79u0s4f3Jkye4fv062rdvr8bKiIiIiIiIiL4Nmcgc5S0Xio2NRYcOHZCeno5BgwZBLpdj+/bt0NHRwcGDB2FhYaHuEomIiIiIiIi+Sq4O7gDw+vVrLFy4ENeuXYOuri7q1q2LSZMmoXTp0uoujYiIiIiIiOir5frgTkRERERERJSX5ep73ImIiIiIiIjyOgZ3IiIiIiIiIg3G4E5ERERERESkwRjciYiIiIiIiDQYgzvRVwgNDUVaWpq6y6BvQKVSqbsEIlIDjtFLRH/F/QJpIgZ3oi/k5eWFHj164OLFi0hPT1d3OfQF9u3bhx49ekClUkEulzO8k8basWOHukvIk44dO4Y//viDJ2DzkePHj2Pfvn3qLoM00K+//ooZM2YAAGQyGcN7HnXt2jV1l/DFGNyJvpCpqSmEEPj555/h7e3N8J7LpKWl4dGjR/Dz88OQIUMY3kljbdu2DYsWLcL48ePVXUqeEhkZibVr12LGjBm4dOkSw3seJ4RATEwMJk6cCE9PTxw5ckTdJZEGiY+Px8WLF7F//34sXLgQAMN7XnTjxg0MGDAArq6u6i7lizC4E32hBg0aYNmyZUhJSYGnpye8vb154JeL6OrqYvTo0Rg0aBCuXLmCAQMGQKlUMryTxmnXrh1at24NLy8vjBs3Tt3l5BkFCxbEzJkzUb58efz000/ch+dxMpkMFhYW+P3336FSqbB06VIcOnRI3WWRhjAxMcHEiRPRtm1b7Ny5E/PmzQPA8J7XVK5cGS1btsTly5cxatQodZfznzG4E30huVyO+vXrY/78+QCAFStW8MAvFxFCwNzcHK6urhgwYABu377N8E4aR6VSoWjRopg6dSpatGgBLy8vjB07Vt1l5XpCCGhpacHOzg4TJkxAkSJFMGPGDHh7eyM1NVXd5VEOUSqVqF69OrZv346EhAQsW7YMBw4cUHdZpCEqVaqEUaNGoWXLltizZw/Dex6jUqlgYWGBWbNmoVWrVjh79izc3NzUXdZ/wuBO9AUyMjKkf6elpcHe3h7BwcHYvHkzLl26xG7zuYBSqQTw4Sy7k5MTGjdujJs3b2LkyJEM76Qx5HI50tLSUKRIEUydOhUtW7bE2bNnMWHCBHWXlqvJZDKkp6dDR0cH9evXx/jx42FsbIwlS5bAx8eHJ2DzqMx9erVq1bBz507ExcVhx44d2L9/v5orI3XLPG4rX748evbsCTs7O+zZswfLli0DwPCeF2T+PbWwsMD06dPRsWNHXLx4EaNHj1Z3aZ9NW90FEOU2Qghoa3/46ri6uuLRo0cwNTVF+fLl8eTJE3h6egIAmjZtCh0dHXWWSn9DpVJJbejm5obQ0FC8evUKRkZGuHjxIgYOHIht27ZBS0tLuvedSB2USiV0dXURFBSEkydPIjg4GABw4sQJyGQyaX9D/41SqZT2zwsWLEBAQABiY2ORkJCA+fPnQwiBZs2acR+eh3zc5jNmzIAQAhkZGQgODsbatWuhpaWFrl27qrlKUgeVSiVtG+PHj8ebN28QGBgIANi8eTOSk5Mxffp0KbzLZDJ1lktfKPPvKQBcvXoVSqUS2traOHPmDNzd3bFixQo1V/jvZIKnj4i+yM8//4xff/0VU6dORfPmzSGTyeDn54dZs2YhPT0dHh4eDO8abtasWThz5gzGjx+PunXrQltbGzt37sSvv/4KW1tb7Ny5k+Gd1O7Vq1fo1asXKlSoACsrK1hbW2Pv3r3w9/dH8+bNsWrVKnWXmGuNGzcON27cQJcuXdCoUSPcuXMH586dQ2hoKObNm4emTZtKB3qUN4wZMwa3bt3CDz/8gAoVKiA+Ph4///wzzMzM4Orqiu7du6u7RFITDw8PXLp0CcOHD4ednR3ev3+P3bt348yZM/jxxx8xc+ZMAGB4z+VcXV3h7+8Pa2trKBQKXLx4EU+ePIGjoyPWrVun7vL+mSCiL9KvXz/x448/isTExCzTnz9/Llq2bClatmwpzp49K1JTU9VUIf2TuLg40b59ezFu3DiRkJAgTY+Pjxc7d+4UNjY2ol+/fiIjI0MIIYRSqVRXqZSPZWRkiHnz5ommTZuKO3fuSNNjYmLEwoULRY0aNcTYsWPVWGHudf/+fVG3bl2xceNGkZSUJIQQIi0tTTx9+lS4uLiIevXqiTNnznAfnofcvHlTNGjQQGzcuFEkJydL0x89eiRatmwpHBwcxMGDB9VYIalLWFiYcHBwEHPnzs1yXPfmzRuxaNEioVAoxLx586TpKpVKHWXSVzp06JCoUaOGOHjwoNTO7969EwsWLBC1a9cWI0aMUHOF/4yXkIj+I5VKhcTERDx//hwFCxaEoaFhlnvay5Urh8mTJyMkJATbtm3DhQsXeL+kBkpISMDz589RoUIFGBkZQaVSQaVSwdjYGF26dEG3bt1w/fp1jBo1SrrnnUgdnj59isKFC6NmzZoAPoyrYW5ujqFDh6JVq1b4448/MGXKFDVXmftERkYiLi4OtWrVgoGBgXTPe6VKlTB16lQUKlQICxcuhI+PDwesyyPi4uIQExMDW1tb6OvrQ6VSQalUwtLSEitXrkRMTAxWr17NAevyoXfv3iE0NBTVqlXLclxXokQJODs7o0mTJti9e7fUnZpX3HOn4OBg6OjooGXLljA0NERaWhrMzMwwYsQIdOzYEX/++adGP72FR6JE/0J8dDdJZpdpIyMjNGnSBJcvX5Z2AiqVSlq2Vq1asLCwwJ07d/DTTz8hIiJCXeXT3zAwMEDZsmXh4+ODsLAwyOVyyOVyZGRkwMTEBAMGDIC+vj7Onz+PLl26qLtcyqeUSiX09fXx/v17REVFAfjwKMPM0XFHjx4NU1NTHDlyBIMGDVJztblL0aJFAQBPnjwBAGk/Dnx4ZFDDhg0RGhqKmTNn4s8//+TAVHlAZhgLDw8H8L+nC6Snp8PS0hJDhgxBdHQ0tm3bhj179qizVPrOChQoAHNzc3h7eyMhISHLcV2pUqXg4uICANi4cSMmT56s5mrpS2UOTPru3TsA//t7ampqCjc3N5QtWxZeXl4YNmyYmiv9NAZ3on+gVCqznFX9+KqLo6MjgA+D3Dx//hxyuVw6sIuOjoa5uTkWLVqEGTNmoHTp0t+3cJJkjh7/V+bm5nB0dMS9e/dw/PhxxMTEAIA0aF1oaCj09PTg4uKCPn36fLd6Kf/6VDDU1dWFra0tXr58iYsXL2a78lusWDGYm5ujYsWKeP36tRRI6H/+7ukQFhYWqFKlCnbs2IHbt28D+DDqsFKphJaWFipUqIBy5crBwsICsbGxvMKWi/xdmzs6OqJy5crS4+AyxzDJHItGCAEdHR1ERUXB0NDwe5ZM38nfHROULFkSNWvWxPnz53HhwgWkpKRkebpMSkoKzM3N0bFjR9jY2HzPkukL/N0+oFy5ckhOTsbp06eRnJwM4EOYVyqVsLCwgJWVFYoWLQofHx/8+eef37Pkz8JR5Yn+RubBG/DhDOu9e/cQEhICW1tbdOjQAQ4ODhg8eDDWrVuH0aNHY/78+ahSpQrCw8Nx/PhxREVFwdLSEpaWlgDAAc7UICMjQwriR44cwdOnT5GSkoJixYph4MCBGD16NF68eIG1a9ciMTERnTt3Rvny5fHmzRtcv34dZcuWhYuLC8qUKQOAA9JQzsnc37x//x6xsbGIjIyEqakpKleujGHDhuHmzZtYunQpdHR00LRpU5ibmwMA7t27Bz09PQwbNgz169eHhYWFmj+JZvl4H+Dr64uoqCikpqbC3t4eJUuWhKurK8aNGwdPT0+MGTMGDRo0gJaWFt6+fYtbt26hUqVKmDt3rvT7Js33cZv7+fkhPDwcxsbGKFy4MCpXrowBAwZg+vTpGDhwIFatWiX1vIiMjMTr16/Rp08f9OvXj9+lPOjjbeP8+fN4/vw5AKB06dJo2bIlZs+ejYEDB2Lp0qVISEhA27ZtYWpqioiICNy5cwdVq1bF6NGjUapUKQA8JtBUH7dzQkICYmJiYGRkhIIFC6Jbt244d+4c1q9fDwsLCzg5OcHU1BRaWlqIiIhAREQEOnfuDEdHR1SvXl3NnyQ7jipP9Akf74yHDRuGe/fuoXz58ihSpAhu3bqF+Ph4DBo0CO7u7li5ciV++eUXxMfHo3jx4sjIyEBsbCxGjhyJoUOHqvmT5F8fnyhxdXWFr68v9PX1oaWlhcjISNjY2GDs2LEoXbo0PD09cfbsWRQpUgRVq1ZFWFgYnj17hrFjx2Lw4MFq/iSU12WG9uDgYHh4eODFixd4//49DAwM4OTkhIkTJ+LNmzdYsmQJAgMD0bp1a7Ro0QKhoaE4c+YMnj17hiNHjqBQoULq/iga5eOTr+7u7vD19cXbt28hk8lQsGBB/Pjjj3B1dcWvv/6KuXPnokCBAujevTuMjY0RFBSEP/74A7NmzUKPHj0A8CA9N/i4zcePH4/r168jOjoaAFCqVCn07t0bAwcOxPr167Fp0yYUKlQIzZs3R8GCBREQEIAzZ85g+vTp+PHHHwHwhHte8nFbjhw5Ejdv3kR6ejpkMhmSk5PRrl07DB48GOnp6Zg2bRqCgoJga2sLa2trBAUF4c6dO5g4cSL69++v3g9C/+jjfcCcOXPg6+uLJ0+eoFixYqhXrx6mTJmC0NBQLFy4EAEBAejRowfatGkDlUqFc+fOYe/evdiwYQMaNGgAQPP2AQzuRP9gxYoVOHjwICZNmgQnJycYGRnBy8sL48aNw7BhwzB8+HDo6+vj9u3buHXrFu7du4fKlSujRo0acHJyAqB5X/r8JvP+1PHjx6NFixYwNjbGokWLsGPHDsyYMQM//PAD9PT0sHnzZty+fRsvX76ElZUV7O3t0blzZwA8YKdv76/b1MuXL6VHvrVo0QLW1tY4ffo09uzZg44dO8LDwwMxMTHYsGEDjh8/DgAwNDRE6dKlsWTJEigUCnV9FI3yqf3t2LFjcevWLfTv3x92dnbQ1taWBhBdtmwZmjdvDi8vL+zbtw93795Feno6KlasiJ49e0q3yXAfkLuMGTMGvr6+GDhwIOrXr4+kpCRMnjwZoaGh2LVrF6pVq4Y///wTv/zyC/z9/SGXy1G6dGl0795dupeZ8iYPDw/4+Phg5MiRaNWqFZRKJRYuXAgvLy94enqibdu2SExMxOLFi+Hv74/w8HBYWVmhbdu20qMCuT/QLJ9qD1dXV9y/fx9NmzZF9erV4efnh8OHD8POzg5LlixBfHw8Nm7ciJMnT0qvKVCgAIYMGYIhQ4Z874/w2dhVnvK9HTt24P379xg9enS2ebdv30aNGjXg4OAAIyMjXLlyBdOnT0f79u3RuXNnXL16FaampqhduzZq166d7fUM7d/H/v37oa+vjw4dOmSZHhsbizt37qB169Zo3rw5jI2N4evri99//x3dunVDo0aN8PDhQ9SsWVPaWaekpEBfX19aB9uQvqWAgABYW1tnOchQKpXYuXMnLCwsMGnSJKl73qlTp2BoaAg7OzsIIVCxYkV4enpi4MCBSExMRIECBVCkSBGYmZmp6dNojitXrqBRo0bZvqt37tyBr68vhg8fjs6dO8PY2Bi3bt3CmzdvpFtjIiIi0LZtWzRt2hQJCQlQKpXQ1dWVejBwH6CZ7ty5g5IlS0pd3TNdv34d9+7dw4gRI9C5c2cYGRnh8ePHiI6ORp8+fWBubo6kpCS0a9cO7dq1w8OHD2FoaAg9PT0UL14cANs8tztx4gRKly6dravzmzdvcOvWLfzwww9o164dChQoAF9fX1y4cAHdunWDra0tnj59CktLS8yfPx9paWlISkqCoaEhdHV1AXDb0CQhISEoVapUttC+f/9+3L17F9OmTUOzZs1QoEABFC5cGEeOHEHZsmWhra2NSpUqYdmyZejWrRtiYmKgr6+PYsWKSeMXaGo7a15FRN/RgwcPEBgYKD3iLZNKpUJMTAyePn0KGxsbmJiY4OrVqxg5ciScnJzg4eGBggULYuXKldi+fXuW131ME7/0eU1AQACWLl2Kt2/fZhu4Kzo6Gk+fPkWtWrVgYmKCa9euYfDgwXB0dMTo0aORmpoKNzc3/Pzzz9JrPg7tANuQvh1nZ2d4enpKAyFmUqlUePDgAcqXLy8daC5evBi//fYbPDw84ODggL1792Lx4sUAgKpVq6JOnTqoUqUKQzsAHx8fDBo0COfOncs2782bN4iJiUGTJk1gbGws7QOcnJwwevRohIeHY9KkSQgODoaRkRGKFi2KEiVKoGDBggA+XMnhPkDz3Lp1C71798azZ8+yDeoYFhaG6Oho1KlTB0ZGRrh27Rp69uwJR0dHDBkyBC9fvsSYMWPg5+cHALCyskK5cuWk0M42z91u3rwJDw8PPHz4EBkZGVnmhYeHIyQkBE2aNEGBAgWyHRO8f/8eQ4cOxaFDhwB8GBzUzMxMCu3cNjTH9u3b4erqihcvXmSbFxgYCDMzM7Rs2VJq5wkTJqBDhw4YMWIE/Pz8pOO+hg0bon379mjevLnGh3aAV9wpH9u7dy/OnTuHYcOGwcrKCkZGRtI8uVwujTh88eJFWFpawt3dXbrftGDBglAqlVCpVAgNDUVGRga0tLQ09oueV/3yyy9QqVTYuHEjSpYsCT09vSzz9fX1YWZmhqCgIHh7e2PMmDFo3rw5Jk2ahCJFikBLSwvR0dFISUlR0yeg/OL27dvo2rUrChQokGVfA3x4WoVcLpe2X09PT+zevRszZ85Ex44dkZGRgWPHjsHExARpaWnSQSR9GGAqMDAQq1atgq2tbbb5BgYG0rO6Hzx4gOHDh6NFixbSfjw6Oho3btyAv78/KlasKL0u8woOu8NqnsOHD8PExASbN29GhQoVsrVRUlIS9PX1UbJkSdy5cweurq5o0aKFtN+/e/cubt269bf7fbZ57nXkyBHo6Ohg3bp1UCgU0gBlmYyMjKCnp4fnz58jJSUFI0aMgJOTEyZPnowiRYogKioKkZGRiI2N/eT6uW1ohhcvXsDAwACOjo4oUKBAlnlKpRKJiYkwMDCAvr4+bt68ieHDh6N58+aYOHEiTExMcPjwYVy6dAkuLi4oXLhwtvVr8rG85lZGlIN8fHwwd+5c1KhRA1WrVpW++CNHjsSSJUukx4XUq1cP9+7dw6hRo9CkSRPMnz9f6j4ZGhoKpVIJa2vrbH8cKOd5eXlhzpw5CA8Ph0KhkHa+06ZNw8GDBwF8eLyLtbU1tm/fjlGjRsHJyQlTp05FkSJFAEAaaZSDelFOGjBgANzd3dGkSRM4OTlBT08Pr1+/xs2bNwEAxsbGKFGiBK5du4aJEydi586dmDlzJjp06AA9PT0YGRnBzMwMhoaGPHD8yL59+zBixAiUKlUKjRo1krpM//LLL9IyFhYWMDExwfTp09G3b1+0atUKEydOlJaVyWTQ1taW9gmk2fbt2wcPDw8EBwfDzs5Oasfjx48jNDQUwIcraOnp6Rg+fDgGDRqENm3aYNy4cVIbZz7LXZMPzum/O3r0KKZMmYI3b96gXr16UnsvXrwYvr6+AD48Cqxo0aJYu3atFNqnTZsmHT8olUro6OjA1NRUbZ+D/tmuXbvQvn171K5dG25ubtLTHx4+fAgA0NLSQuHChfHs2TNs27YNw4YNk0J74cKFoa+vjyJFikBPT++Tj2DVdNxrUb4UEBAAbW1tWFpaSjvo8PBwxMfHY9u2bVi/fj2ADyPK161bF+np6dDV1ZWe6/nq1SscPnwY4eHhsLe3B8Azsd+TEALnzp1DyZIl0bNnTxgYGAAAgoKCcPDgQaxevRrHjh0DAEyePBnlypWDSqVC48aNpauVb968wenTpyGXy2Ftba22z0J52759++Dr6ws3NzcYGRlBLpcjMTERHTp0wJQpU3D58mUAHwbSMTExwfHjx+Hq6op27dpJ27Wfnx9iYmJgaWnJsPH/IiIisHfvXtSoUQPVq1eXejHs3LkTc+bMwfTp0wEAtWrVQocOHXD79m0UK1YMzs7OWR7/dfv2bRQvXpyP/soFYmJisG3bNtjb26N79+7SbU179+7FxIkTsW/fPkRGRqJUqVLo3Lkz/Pz8ULhwYcyYMQMlSpQA8KHN7927h1KlSvERf3mEEAIpKSk4ePAgFAoFOnToIP2d9/Hxwfbt27Fw4ULcuXMH+vr68PDwQFpaGnR0dNCxY0eYmppCJpMhPDwc586dg5GRESpUqKDmT0WfktnFvVOnTlnGHXB1dcWgQYPg7e0NAOjXrx9KliyJJUuWoF69epg0aZK03w8PD8fz589haWkp/Y3NTXgEQPlSuXLlkJGRgYCAACQmJmLkyJGIjIzE1KlT0bp1a6xZswarVq2Cjo4OtmzZAjs7Oxw/fhxdu3ZF3759MXz4cGzbtg2urq5o2bKluj9OvpP5OKc3b95IZ1kze0OsX78eKSkpWLp0Kf744w9UqVIFbm5uKFGiBBYsWIAxY8Zg7ty5mDBhAjZt2oShQ4dKj/0g+ta0tLSQnp6O9PR0GBoaIiwsDAAwa9YshIaGYtmyZbh27RoUCgUGDBiAQoUK4dSpUzh27BiCg4Nx8OBB/Pzzz0hNTUWfPn2kx9zkd8bGxlKXyDJlygD4cDtCt27d0LFjRxw4cAAeHh4AgJ9++gnt2rXD8+fPpf3CkSNHsGrVKhw4cADOzs4clT8XyHzUamRkpHSi/OrVq6hfvz66dOmCLVu2YM+ePUhLS4Orqyvq1auHV69eYfz48fDy8sKRI0ewYsUK/P777+jXr1+WWyMo95LJZNDX14e5uTmePn0qjXWzadMm2NvbY+LEiXj69CnmzZuHBw8ewMHBAa6urlCpVFiwYAFmz56NTZs24aeffsKOHTswdOhQ1KxZU82fij5FpVIhNTUV5ubmKFmyJIAPz2nv3Lkz3r17h2XLluHSpUsoWLAghg4dihIlSuD58+fw9fXFu3fv8PDhQ/zyyy+4d+8eOnbsCBMTEzV/ov+Oj4OjfCnzsUq7d+9GqVKlEBISgs2bN6Nx48Z4+PAhNmzYgDNnzmD48OEYM2YM0tPTsX37dty9exdBQUGoVasWmjZtirZt2wLQ7IEs8qorV65g/vz5CAkJQcmSJREfH4+VK1eidu3aOH36NH766Sfo6urip59+QosWLRAcHIwVK1bg3r17SEtLg42NDdq2bYsffvgBANuQcsa1a9fg7u4OIyMjuLi4YPPmzejfvz+GDBmCw4cPw8PDAwqFAj/99BNq166NY8eOYdOmTQgKCgLw4R7tEiVKYPny5QyX/08IgYyMDGzZsgWrV69Gx44d8ezZMwQGBuLKlSt49+4dVq1ahePHj6NLly5YuHAhAGDevHk4evQo4uPjAQClS5eGi4sL+vbtK62XPac02+LFi7F9+3b06tULd+7cgYmJCZYvXw4AWLZsGY4fP47BgwfDzc0NsbGx2Lx5M7y8vBATEwNtbW2UKFECzs7O6NevHwC2eV5y4MABeHp6Ql9fXxq/YuPGjbC0tMT69euxdu1aVKlSBfPnz0fVqlXh7e2NpUuX4vnz5xBCoGrVqvjhhx/Qq1cvADwm0ESPHz/GsGHDoFQqMXv2bBw4cAAFCxbEvHnzpEc1V6pUCTNmzEC9evVw5MgRbNiwAS9evIC2trb037Bhw6RHvuW6fYAgyqfCw8OFvb29UCgUYuTIkeLNmzfSvICAADFq1CihUCjEypUrs7wuJSUly89KpfK71EvZXblyRdSqVUtYWVmJuXPnZpl3+vRpUbduXdG4cWNx8uRJaXp4eLiIjIwUiYmJ0jS2IeWkS5cuiZo1awpra2vRvn17ER4eLs07dOiQUCgUomPHjuLWrVtCCCHS0tLEkSNHxO+//y58fHxEVFSUukrXaHFxcWLJkiXC0tJS1KpVSxw5ckSkpqYKIYR4+fKlmDBhglAoFGLKlCnSax4/fiyuX78u7t27J16+fClN5z5As33cPnPmzBFVq1YVNWrUEDt37pSmh4eHi4kTJwpLS0uxdOlSkZCQIDIyMsSbN2/E4cOHxY0bN8TTp08/uU7KvVQqlfTvX3/9VdSoUUNUrVpVbNq0Kcty69evF1ZWVqJLly7Cz89PCCFEamqqePbsmXjx4oWIiYmRluW2obkuXrwo7OzsRI0aNUS1atXEtWvXREZGhhBCiBMnTgiFQiHatm0rrl+/LoT48Hdi8+bNYtGiRWLnzp3ixo0b0rpyYztzRC3KdzLPoh45cgQA0KhRI5w7dw5ly5ZFv379UKRIEVhZWcHV1RUAsG7dOukMnZaWFnR1dbOcoeMZ2e8vsw3//PNPJCYmomjRoti3bx9sbW3RqVMnAJBuYZgxYwYWL14MlUqF9u3bZ3vmr+DjXSiHZO4nbG1tkZSUBB0dHcTFxeHBgwfSdtilSxcAgIeHB+bNm4fx48fD3t5e2o7p7xUoUAC3b9+Gvr4+EhMTcenSJbRp0wYAUKZMGbi5uQH4MAo5ACxcuPCTvRa4D9B8H7dPeHg4VCoVkpOT8fjxY7x580Z6nvv48eMBAFu2bIFMJoOzszNKlCiBzp07Z1kf2zzvkMlkUCqV0NLSwtWrV5GcnAxjY2Ps2rULDRo0kB7xlXlMt2bNGsycORMzZsxAzZo1Ub58+Szr47ahmTL/njZt2hTGxsaIjIyEiYkJoqKipFvI2rVrBwAYP3485s6di4kTJ6Jp06YYPHhwtvXl1h4VDO6Ub2Tu2DO/qL1794ajoyOAD6MQb926FSqVCoMGDUKhQoWk8K6lpYVVq1YhJSUF48aNy11davKYzB1tZhv2798f3bp1w+vXr7FixQrMmDEDSqUSXbt2BfC/8D5r1iwsWLAAGRkZ2Q7g2J6UU2QyGYQQePLkCZydnVGwYEFs3boVCxcuhBACLVq0AJA1vK9cuRJKpRLNmjVTY+WaK/PgLfP/dnZ26Ny5M4KCgrBnzx7I5XLMnDkTxsbGKFu2bJbwLoTAokWLsq2T+wDN9vGJ8oiICFhaWqJbt244f/48Dhw4ALlcjsGDB0sjhmeG9x07dkClUsHZ2Vl6RnsmtnnekHlMkBnc+vbti969e+Phw4fYuHEjRowYgVWrVqFGjRoA/hfeN2zYgJ9++gmzZ89GrVq1sqyT24Zm+vjvaenSpeHo6Ihjx45h+fLl0NLSkm5d/Ti8r1ixAiqVCg4ODtnWlxtDOwB2laf8IT09Xfq3t7e3OHz4sDh9+rQ07dWrV2LmzJlCoVCIhQsXZumaGhAQIAYPHiy2b9/+PUumv/i4DYOCgsTt27dFWFiYNO38+fOiZcuWwtbWVhw6dCjLa728vIRCoRD79u37bvVS/pXZbU+pVEr/Tk5OFkIIcezYMVGrVi3h6Ogozp49m+V1hw8fFgqFQjg7O4ukpKTvW3QukPm7FEKI2NjYLLcthYeHiwULFgiFQiEmTJgg4uPjpXkvX74UY8eOFQqFQly5cuW71kxf5+M2VyqV0vcos3v0jBkzhEKhENOnTxfPnz+Xlg0PDxfu7u5CoVCI27dvf9ea6fv4eNsICwsTwcHBIjY2Vpq2a9cuUbduXWFvby/u3buX5bWrV68WCoVCHD9+/LvVS1/m43bO9O7dOyHEh1si7ezsRNOmTYWXl1eWZU6ePCkUCoVo2rSpCAkJ+R6lfhccnI7yvMwr7QDg7u4OX19fREVFwdTUFGvWrIGdnR0A4NWrV9i6dSt+//139O/fH4MHD5ae7x0TE8PHBanRx23o4eGBGzduIDQ0FHZ2dpg1a5Y0OvCFCxewaNEihIWFYfbs2dKVTOBD+2aOPk2UUzK31VevXmH37t14+PAhKlasiB9//BFVq1YF8OF5w3PmzIGpqSmmTp2K5s2bS68/ceIEFAoFKleurK6PoJE+3gcsX74cvr6+iI2NRYsWLTBmzBjI5XKEhYVh586d2LFjBzp06CBdeQeA58+fIyQkRHp8J2m+j9t82bJl0uCwbm5u6NmzJ3R0dKBUKjFnzhz8/vvv6N69OwYNGoRy5coBAMLCwhAUFMQ2z4M+3jZmzZqFmzdv4vnz5+jQoQPGjh0rPf5v9+7dWLNmDfT09LB69WpUr15dWoefnx+qVaumlvrp82RkZEBb+0Pn8P379yMwMBCGhoZo27YtLC0tAQBeXl6YNWsWDA0NMXnyZOl2KeBDT6vY2FgMGDBALfXnBHaVpzwvc+c+duxY+Pr6YujQoShbtiz09fWl0A58uCdy+PDhEEJgz549yMjIwNChQ1GkSBEptIvcNvpkHpHZhiNGjEBAQADatWuH8uXLQ0tLK8sjfRwcHKBUKuHp6Ym5c+dCqVRKo8Znhvbcel8TaT6VSgUtLS0EBQWhf//+MDQ0hKGhIR48eCCNYg0AnTp1gkqlwrx587Bw4ULIZDI4OTkBANq3b6+u8jWO+KhbfOY+YNiwYfDz80P16tUhhECxYsWk73Px4sXRp08fCCGwc+dOaGlpYfr06TA2Nkb58uWle1m5D9A8mW2dGcj+2uYBAQFQKBSwtraGXC6Hjo4OgA9/G2bNmgWVSoX9+/dDLpejf//+KF++PIoXLy51kWeb5y2Z24arqysCAgLQtGlTODk5oVixYlJoBwAXFxcolUqsX78e7u7uWLZsmfSot8zQzm1DM6lUKim0u7q64u7du5DL5UhOToalpaUU3Nu2bQshBGbPno3FixdDLpejVatWAJDl4k2eOX5Xz4V+opyxa9cusXHjxiyjjAohxNmzZ0X9+vXFwYMHpdHE3717J86ePSvGjRsnpk6dKo3oHBISIqZPny4UCoU0jb6fkydPioCAgGzT9+3bJ+rUqSNOnDghdYNNSEgQ/v7+YuvWrWLHjh3SsufOnRMODg5CoVCIoKCgbNsD0bfw/v37bNOioqJEmzZtxMCBA8X9+/ezzAsLC8syqvXBgwdF3bp1Ra1atcTFixdzvN7c4v79+1JXyI8tXrxY2Nvbi7Nnz4q0tDRp+rt378SZM2dEdHS0EOJDN+lFixYJhUIhRowYkWVZ0kx//a5k8vT0FI0aNRJeXl5Zbn9ITEwUt27dEqGhodK0zNvdxo0b98nvJuVO3t7en+zqvGXLFmFnZydOnz4tbRupqani+fPn4tChQ1luh9y5c6eoUaOGqF69uoiMjOQxgQb6u9vDpkyZIj0dKDQ0NMtyERER0r+PHTsm6tevLxo2bCiOHj2a4/WqC6+4U54ghEBKSgq2bt2KH374AcnJyTA0NJTmx8XFISkpCRUqVIChoSH8/PywaNEi3Lt3D3p6ekhPT4efnx+2bNmCkiVLYvDgwWjXrh3q1Kmjxk+V/wQFBWHmzJmYOHEiFAqFdFYdAF68eAEjIyO0adMGcrkcwcHB8PT0xLVr15CamgoAuHTpErZu3QonJycIIZCQkJDlijzRtzJo0CCYmZlh0aJF0tU/AHjw4AFiYmIwefJk6YqOt7c3zpw5gz/++AOGhoZo3LgxFi1ahK5du0KpVGLdunVS99787tSpUxg/fjx27NiRpUeUEAKPHj2CpaUlGjVqBB0dHbx+/Ro7d+7EhQsX8ObNG5QuXRpz5sxBgwYN0Lt3byQmJqJixYpZ2oc0z8mTJzF+/Hjs3r07S5unpqbC19cXtWrVkrq/Zrb5+fPnERoaiipVqmDw4MHo2LEjZsyYgaSkJFhZWcHExERdH4e+oXv37mHo0KFYuXIlSpQoIV0xValUCAoKQsmSJaVBaF++fIlVq1bh0qVLiI+PBwAMGDAAkydPRt++fZGeng4jIyMULlxYbZ+HPm337t04e/YsNmzYkOXYPSgoCL6+vujRowccHBxgYGCAyMhIHDhwACdPnkRSUhKqV6+OuXPnokOHDgCAiRMnIi0tTV0fJccxuFOeYWBggJMnT2YJ7eL/u8aYmpoiNTUVP//8M4APfwz09fXRvXt3DBkyBH5+fhg3bhzOnj2LPn36oGzZsihbtiwAdqP6nooVK4adO3eicOHCUmjPbEMzMzOEh4dj9erVCA8Px+nTp6FSqdC8eXO4uLhg7969OHv2LG7cuIF69epluW+YbUjf0vv379GwYUOUL18e4i/DxCiVSsTGxkKpVCI4OBgHDhzAnj17IISAg4MDQkNDceTIEdjb26Ndu3bo3r072rRpI92Lnd/VrVsXs2fPlva/mZKSkhAWFoaSJUvi9u3bePbsGTZs2ICYmBjUqlULrVu3xsmTJ7F06VIcOHAApUuXxuTJk2FkZAQgD3WTzINKlSqF2bNnZxuDJDU1FSkpKYiNjcWNGzfw7NkzrFq1Cu/evYOdnR06deqEHTt24I8//kCHDh2gpaWFJUuWSK9nm+d+JUqUwI4dO1C+fPksbZl5u8SzZ89w5MgRBAYG4uDBg0hKSkLTpk3Rrl077Nq1C0ePHkWnTp1gaWmJQYMGSa/nMYHmSE1NRUJCAurWrYvU1NQswV2pVOL169coUqQI9PX1cf78eXh6euL58+coUaIE9PT0sH//fpQrVw6DBg1Chw4dYGtrm6dPhDO4U56QuUM3NDSUDtTGjBmDcuXKYdSoUWjevDkGDhyIX3/9FcCH+15atGiBhg0bAvgwcJmBgUG2Z3wDufiREblIeno65HI5jI2NYWlpKf3Oly1bhubNm6N69eqoV68eqlWrhi1btiA9PR3t2rVDy5YtpXuZXr58iVOnTmXZ6WdiG9K3IoRAgQIF4OLiArlcDm1tbYSHh0NPTw/m5uYoWbIkSpQoATc3N+k+3WbNmqFLly5wcnJCaGgoHB0dERUVJa0zc59FgIWFBbp16ybt00+dOgU7OzsULFgQvXr1wqJFi3DlyhUAgJ2dHdzc3NC7d28AH3pWXbx4Ee/fv4epqWmW3ysDnOaqXr06rK2tpftZT58+jVatWqFAgQKoU6cO9uzZg5s3bwIAatWqBTc3Nzg7OwMAoqOjcf78ecTFxcHMzExaJ0N77paeng4dHR0UKVIEBQsWlE7k79y5E46OjihdujSaNm0KHx8fTJkyBQDg6OiIli1bSo98DQkJwYYNGz65f+UxgebQ09ND//79oVKppLZ6//49ChQogAIFCsDS0hJz587F+vXrER4ejrJly8LV1RVjx45FamoqHB0d8ezZM2l9ef2iG4M75XrBwcE4fvw4Ro0aBS0tLahUKiQlJcHb2xsXL16EiYkJBgwYgEmTJqFHjx7Q1tZGqVKlpCtlERERuHnzJkxMTFCkSBE1f5r8KTw8HK9evULt2rWhr68PIQSuX7+OzZs34+bNm5g9ezaqVauGpUuXIjIyEgCy3MYQERGBe/fuoWzZsuwiSTkqNDQUxYsXh66uLgDg3bt36Nq1K8qUKYMNGzagatWqmDx5Mu7du4eQkBA4OzujcuXKKFiwIFQqFZ4+fYpChQpl2dfk54CRGbACAwNRuHBhWFhYSL+P1atXY+3atRg9erT0fOYyZcrgzp07sLKyQrNmzaQTdZGRkYiNjYVCoYCOjg6DmwbLbJvQ0FBpILHMYObp6YmtW7di1KhRGDlyJKZPn44yZcogNjYWZcuWhb29vTRY7Js3bxASEgJbW9tsJ2zZ9rlbaGgo4uPjYW1tLQ1WeOLECSxcuBAPHjzAlClT4OTkhMKFC+Ply5cwNTVFgwYNpNtiIiIi8OzZM1SqVIm3ymigzH1AVFQUChYsCAMDA2nemDFj8OLFC2zbtg3FixfHsGHDcObMGQQFBaFXr15wdHRElSpVAABRUVEwNjaWngAF/O+7nxdDOwAOTke53549e4S1tbVYtWqV9HNSUpKIiooSTk5OwsbGRmzcuDHLs5Vv3Lghtm3bJnbt2iVmzJghrK2txZYtW9T5MfItlUolpkyZIlq2bCkNBnjt2jUhxIfBu+rXry+6desmHj16JJRKpfS6W7duiRs3boibN28KT09PYW1tnWWAOqJvzdvbWwwYMEAaPDFzkJwlS5aIGjVqiIEDB2Z5jnCmt2/fCiGEuHPnjhg2bJho3ry5CA8P/36Fa7i0tDQxbNgwMWnSJJGeni6EECI6OlpERUWJvn37CltbW7F27dpsA9a9evVKpKSkiMDAQLF69WphY2Mj9u/fr4ZPQP9VYmKiaNOmjZg7d640LTo6Wjx69Ej06NFDWFlZSX/Thfjfc9tfvnwpEhMTxatXr8SaNWtEtWrVxIEDB757/ZRz0tPTxfDhw0W/fv3EixcvhBAfvusZGRli5cqVwtraWri7u2fbh969e1eEhYWJBw8eiFWrVglra2uxZ88edXwE+gxRUVFi8uTJ4t69e1mmL1u2TFSrVk307dtXGnBUCCGSk5OFEEL6GxsSEiLWr18vatSoIc6fP//9ClczXnGnXK9Zs2Y4fPgwNm3ahN9//x1CCNSvXx8VK1bEr7/+ip49e2LNmjWQyWQYOHAgtLS0cOXKFWzcuBE6OjooV64cPDw8pK53ebV7jaaSyWTo2LEjfHx8MGfOHOmepkuXLqFly5YQQmDJkiWYOXMmfvrpJ1hbWyMpKQkbN26Ej48P5HI5ChYsiAkTJkiP3BK82kY5QF9fH3fv3sWKFSvQvXt3zJkzB5s3b8aQIUNgYGCADRs2YNy4cfD09ISFhQWUSiUOHDiA1atXo2jRooiLi0NaWho2bdr0ydty8isdHR1oaWnh6NGjMDMzg6+vL2rUqIHJkydjxYoVGDNmDNatWwchBHr37g1zc3O8fv0aw4YNw/v376Grq4vk5GSMGjVKevwj9wGaTaVSwdraGnv27IGZmRkePXoEMzMzzJ8/H9OmTcO8efOwdu1ayOVyjBw5EjKZDM+ePYOrqysSExNhZGSE6OhojBw5Et26dQPANs8rtLW10axZM8yZMweLFi3CixcvkJqailOnTqFXr14AgI0bN0Imk2HcuHEoWbIkYmNjsWDBAvj5+cHAwAAGBgYYN26cdFzHbUPzvHv3DufOncObN28wa9YseHp6wtnZGUOHDoWRkRHWrl2LsWPHYvny5ShUqBD09PTg7++PRYsWoXjx4oiIiIC/vz+GDx8OBwcHdX+c70YmxF9G1iHKRTJDdkxMDJycnKBSqdCwYUOsXLlS6soaFRWFnj174u3btxg9ejQGDhwIuVwOPz8/6OrqwsDAIM/fE5MbXL16FYMHD4a+vj5cXFyknXdCQgJOnz6NJUuWoFy5cpg1axaqVq2KBw8eIDw8HDKZDMWKFYONjQ0AtiHlnPj4eFy4cAEzZ86EUqlE1apVMX/+fFSqVAlv377Fb7/9hg0bNqBBgwZYvHgxLCwscPDgQZw9exapqamoXLkynJ2dsw28lp99/H0dNGgQbty4AZlMhlmzZkmBLCYmBmPGjMG9e/cwfPhwODs7Q0tLCwcOHMDNmzdRuXJl1KhRQzp44z4gd3j27Bk8PT1x4cIF6OjoYMuWLbCzs5P+Ps+bNw9+fn4YM2YMhg8fDgCYP38+YmNjUbBgQdjZ2cHJyQkA2zyvEULgt99+w5w5c2BkZIQhQ4Zg8ODB0NLSQkREBH7//Xds3LgRbdq0wYQJE1CsWDGcP38eL1++hLGxMcqVKyc9oYDbhmZKTk7G6dOnsWDBAsjlcmRkZGDJkiVwdHRETEwM9u3bh3Xr1qFWrVpYunQpChUqhDNnzmD16tV4//49qlSpgjZt2qBr164A8k8784o75WqZX/Y7d+4gOTkZpUuXxuXLl7F69WqMHz8eAFC4cGH8/vvv6NmzJ1auXAmZTIZ+/fpJj2rKJITIF196TfXo0SPo6elBLpfj/PnzqFevHurUqQNjY2NpALolS5ZgxowZmDdvHmxsbGBra5tlHWxDykkmJiawtLREeno6lEolVCoVVCoVAKBQoULS1aANGzZg0qRJWL58Obp164auXbsiIyMDcrk8yyMO6X/78MyByTIyMgAA/v7+aNWqFYyNjWFhYYGVK1dizJgxWL9+PQDAxcUF/fv3h4uLS5bfaX45eMsLKlSogLS0NOjo6CA9PR2XL19GvXr1AADVqlXD9OnTMW/ePKxcuRJKpRJubm6YNm1atvWwzfMemUyGV69eAfgQ8G7fvo2mTZvC0tISRYsWRc+ePQF8uPKuUqkwdepUODo6ZlsPtw3NZWBggLZt22Lz5s0IDg5GxYoVpXvVLSws0KNHD8hkMqxduxbjx4/HihUr0LJlSzRu3Fjab2QOZpef2plX3ClX+tSXNCoqCgkJCZg0aRIeP34MFxcXTJo0Kct8Z2dnvHr1Cm5ubnBzc/veZdNH/tqGwcHBSExMRGRkJGbNmgVzc3NMmDABjRo1gra2tnTlfdmyZShWrBhmzZqV7eQLUU7J3F6vXr2Kq1evQkdHB7t27YK1tTWmTp2KKlWqQC6XZ7ny3qhRIyxYsAAFCxZUd/ka6a/dV8+ePQttbW1s27YNt27dgrOzM0aOHCkNRpZ55f3BgwcYNGgQnJ2dpXmUu2S2/aZNm2BkZISLFy/Cx8cHw4YNg7u7u7Rc5pX3hw8fYujQoRg9erQaq6aclLlNCCGgUqlw7949pKWl4fHjx1i2bBkaNWoENzc36YR95pX3LVu2wNHREePHj0fp0qXV/Cnoc2S29aNHj7B161aYmpri2LFjqFy5MqZNmwZLS0toaWkhJiYG+/fvx9q1a1GrVi14enqicOHCn1xXvvF9b6kn+nqZgxcJIURQUJC4du1alkHLXr9+Lbp16yZsbGzEokWLsrz27du3om7dumLXrl3frV7KLnOgQCGECA8PF1FRUdK09PR0cf78edGoUSPRvn17cfHiRanNk5KSxL59+4RCoRAnT55US+2Uv2TuWz7exwghxLt378Rvv/0matWqJfr06SMeP34sbadRUVFi7dq1QqFQiNGjR2d7LWXdBwiRdb8uhBB9+/YVCoVCzJ07N8sARdHR0aJ3795CoVCI+/fvf5da6dv4uM1TU1OzzHv06JEYOnSoUCgUYsWKFVnm+fn5ic6dO7PN87CPt434+HiRmJgo/ZyUlCR27twprK2txbBhw7JsA2/fvhXLli0TCoVCeHt7f9ea6b/7635fiA/7gujoaHHo0CFhZ2cnevbsKR4+fJhloNKNGzcKhUIhunbtKg0Km1/xijvlKkqlUuoWOXXqVFy8eBExMTGwtbWFh4cHbGxsoKurizdv3mDMmDEIDAzEgAED4OzsjAcPHkChUKBo0aLS/e/0/X3chgsXLsSVK1eQlJSEunXrYvbs2dDT00NqaiquXbuG6dOnw9zcHNOmTUPp0qWRkpKCwoULIzIyEpUqVVLzJ6G8LnNbDQsLw6FDh5CQkICyZcuia9eu0NXVRUxMDE6fPo2lS5fCysoKs2bNQsWKFQF86N65Z88eODo6StPog4+7xm/YsAGBgYGIi4vDpEmTYGlpKS3Xv39/XL9+HX369IG7uzuMjIwQExMDpVKJe/fuoUWLFur6CPQffdzmO3bsgL+/PwoUKICWLVuifv36AD7cHrF69Wp4e3tLz2lOSEiAvr4+Xr58icePH6Ndu3bq/BiUAz7eNpYvX45bt24hLS0NTk5OGDFiBAAgISEBhw8fxuLFi9G4cWOMGzcOhQoVgkqlgkwmw+vXr1GjRg01fgr6Nx+38x9//IF3797BzMwMDg4OMDAwQGxsLM6ePQtPT09UqFABM2fORNWqVQF8+Hu6efNmmJubw8XFRZ0fQ+0Y3CnXEB91hxkyZAju378PJycnGBgY4MyZMyhUqBCmTZuG6tWrS+Hd3d0dfn5+KFasGKKiorBs2TK0bt0aQP66J0ZTfPw7HzJkCG7dugUbGxvEx8cjMDAQ9vb2WLNmTbbwDgClSpXCvXv3sG/fPqmLPNuQckrmtvX06VMMHToUkZGRUCqVAIAePXpg2rRp0NPTw7t373Dq1CkpvLds2RLnz59Hr169pLEZ6H8+PnHn6uqK69evw9jYGG/fvoW5uTl+/vln1K1bV9rXZ4b3li1bwszMDNHR0fjpp5+kUfm5D9B8f23zK1euQEdHB0lJSahYsSJGjhyJtm3bAgACAgKwatUqeHt7o1u3bjA2NsaDBw+wbt06mJmZAWCb5yV/PSa4ceMGypYti7dv3+Ldu3fo168fPDw8APwvvC9ZsgRVqlSBqakpAgIC8Pvvv6NcuXLZ1kea4+N9wJgxY3D+/Hmkp6dDJpOhS5cumDZtGoyMjBAXF4czZ87A09MTCoUCffr0wcOHD1G+fHl07txZWp/Ib93jP6bOy/1EX2Lp0qXCwcFBeHl5Sd3t5syZIxQKhejYsaO4deuWNP3Nmzdi/PjxYsCAAXzGtwaZOXOmaNKkiTh58qTUVs7OzkKhUIiBAweKlJQUIYQQKSkp4urVq6Jjx47CwcFBbNmyRZ1lUz7z4sUL0ahRIzFgwABx8uRJERYWJnr37i1sbW2Fh4eHtJ3GxMSI3377TdStW1coFApRs2ZN8ejRIzVXr9nGjRsn7O3txe+//y7evHkjvLy8RM2aNYW9vb24evVqlmUHDBggFAqFUCgUYu3atWqqmL7W2LFjRaNGjcS+fftEUFCQuHr1qqhWrZro2bOnOH78uLRcQECAGD58uKhevbpQKBRi06ZNaqyavgcPDw/RpEkTcfToUZGamirevn0r2rRpI90ukyk+Pl7a19arV0+sW7dOjVXTfzV8+HDRqFEj8fPPP4ubN2+K/v37CysrKzFx4kQRHx8vhPjwnPYDBw6IunXrCmtra+73/4JX3ClXSUlJwZAhQ1CyZElMnToVBQoUwLNnz9CtWzc4ODjgwYMH0NfXx7Rp01CjRg3o6+sjJSUFGRkZMDY2BsAzsur28uVLjB49Gs2bN8eAAQNgbGyMoKAgdO7cGZaWlvD394e9vT1Wr14NfX19AB+6SUVERPCsOn03aWlpmD17Np4/f44pU6bAxsYGcrkcU6ZMwbFjxyCXy9G5c2dMnz4d+vr6iI+Px4sXL3D79m04OTlxkKR/cP36dXh4eMDV1RVt2rRBgQIFcOvWLQwcOBAGBgaQyWT4+eefUa9ePel7funSJZiamqJ69eoA8vkVl1zI29sbc+fOxYgRI9CqVSsYGRnB19cXffr0ga6uLooVK4axY8dKV95fvHiB6OhopKWloUGDBgDY5nlVQEAAJk6ciG7duqFHjx4wMTFBYGAgunXrhlKlSuHFixfo27cvpk6dKr0mNDQU79+/l26t4TGB5tuzZw+2b98Od3d32Nvbw9TUFMePH8fEiROhq6uLNm3a4KeffoKRkRHi4+Ph7++PixcvwsbGBh06dFB3+RqDWznlKvHx8bh9+zYKFSqEAgUKIDQ0FB4eHmjQoAGmTJkCFxcXPH36FGvWrMGZM2cQGRkJfX19KbQLPi5M7ZKTkxEYGIhixYrB2NhYuqWhXbt22LFjB5o0aQIfHx+MGjUKsbGxUKlUMDAwkEI725C+B7lcjoCAABQvXhzVqlWDXC7HL7/8gtOnT2PVqlWoXbs2Dhw4gNmzZyM9PR0mJiawtbVF//79Gdr/xcuXLxEVFYXmzZujQIECePXqFSZPnox27dph0aJF0NLSwqRJk3Dr1i0kJCQAAJo0aSKF9sz7Win3ePXqFd69ewdbW1sYGRnh1atXmDBhAnr37o09e/YgOjoaGzduxLFjxwAA5cqVQ+3ataXQzjbPu+Li4vDs2TNUqVIFJiYmeP36NcaOHYsuXbpg48aNqFSpEnbt2oVFixYB+HAMUKJECYb2XMbf3x/m5uZwcnKCqakpnj9/jnnz5sHFxQUNGzbE0aNHMXv2bKSkpMDExAQNGjSAh4eHFNozH72a33FLJ431qS+piYkJrKysoFQqkZKSgm3btkEIga5du6JIkSJo3749tLW14evri0mTJuHp06dZXs8//N/Xpzr0pKenS/Pev3+PNWvWwMjICG3btoWxsTFGjhwJuVwOHx8fNGvWDK9fv87yerYh5TSVSoXY2Fi8efNGeq64t7c3fvnlF/zwww9o3rw55syZA3Nzcxw/fhxdu3bNtq+h7DL3BwYGBsjIyEBUVBSio6OxdOlSlCxZEgMGDICDgwOaNm2KqKgojBgxAosXL0ZsbGyW9fAgPfdJSUlBYmIiTExMEBMTA09PT5QpUwadO3eGlZUVWrRogcDAQKxevRpjx47N9nq2ed7w8TFB5jFeWloagA8n9d+9e4eVK1fC3Nwcbdu2RdmyZaUB6nbs2IH27dvj7du3WdbJbUOzKZVKpKen482bN0hMTISBgQEiIiIwd+5cWFpaYvz48ViyZAlKlSqFY8eOYciQIXj48GG29bCdP9BWdwFEn/LxQBZxcXGIjo5GhQoVoK+vj0WLFqFSpUp4//49zp8/j+bNm6N58+YAgKCgIBgZGWHt2rVITU1Fo0aN1Pkx8rWP2zAtLQ1paWkwNjaGra0ttm7dikaNGiEwMBA3b95Et27d0LRpUwDAs2fPoKWlhYkTJ6J48eIoW7asOj8G5QN/vWIjl8tRqFAh9O7dG9WrV0d6ejq8vLxgYWEhnf03MTFBWloaKlSoACGENFou/c/H+wDgfyfdypYtK40gf+7cOfj7+2PAgAGoVKkSZDIZihcvjqJFi6JWrVooX768NCgZab6/tnkmR0dHyGQyFCtWDCdPnkRgYCD69esnDTRqYGAAU1NTmJmZcXTwPOqv20ZGRgZ0dXXRrFkzLFq0CC1btoSvry/u3buHH3/8UeptERkZCT09PQwePBglSpTI9hxv0ix//XuqpaUFLS0t1KtXD9HR0QCAY8eOITo6GgMHDoSOjg709fVhbm6O9+/f4+HDh/Dz84OVlZW6PoJG45EGaZyPd+5z587FzZs38fTpU3Ts2BGzZ8+WHgN29+5dhIaGwtHREQAQEREBb29vWFhYoGjRolJ3VXaj+v4+bsPVq1fj7t27SEhIQMuWLTF48GDpD/L58+cREREhjfQfERGB27dvo27duujQoQMKFSoEgG1IOSdzW42MjMT169cRGxuLMmXKoFmzZnB3dwfwoWv36dOnMWzYMClo3LhxA4ULF8b06dNhbW0NIyMjdX4MjfPxo3/279+PFy9eICEhAWPHjkX16tWlbu9nzpyBSqWSHvHz+vVr3L17Fw0aNJC6xgK8vzk3+LjNjx07huDgYJiZmaFFixaoWLGi9FjEkydPQldXF87OzgA+tPnjx4/h7OyMESNGSOtgm+cdHx8TbNmyBQEBAUhLS0O7du3Qtm1bacTwc+fO4d27d+jSpQsAICwsDP7+/mjWrBlcXFykk3jcNjTTx/uAO3fu4P379zA2NkadOnXg5uYmLefl5YXixYujU6dOAICnT58iISEBbm5ucHBw4O1m/4DBnTSKECLLY2MCAgJgb28POzs7WFlZwcDAQFrW3NwcALB+/Xo8f/4cjx8/xuHDhzF58uQsX3oGvu/r4zYcNmwY7t+/j8qVKyM5OVkKN5ltYm5ujoyMDFy+fFk6YD916hQmTpwohfaPlyf6llQqFbS0tPD06VOMHDkScXFxiIuLg52dHaytraUrOyEhIUhJSUGhQoWgVCrx+PFjHD16FIaGhqhcuTJD+1+oVCrp4G348OF48OCBdItMnTp10KFDBwghkJycjOTkZGRkZODx48cwMjLC0aNH8ejRI/To0UNaHw/SNd/HbT5ixAjcvn0baWlpSE9PR6lSpVCqVKksyyYlJUGlUiEsLAx//PEHXr9+DRcXF4b2PChzPwt8OK67e/cuihQpgri4ODRr1kxaRi6XQ0tLC6mpqbh79y7MzMxw7do1eHt7Y8qUKVl63nDb0DxKpVL6/o4fPx43b95EVFQUypUrB09PT9ja2kKpVOLly5cICgqSesRGRETg9OnTSEhIgK2tLS+6/QsGd9IomTvjDRs2ICAgAB4eHnB0dIS+vj4yMjIQERGBa9euoUqVKqhWrRqGDRuGjRs3wtfXF2ZmZnB3d5fO4vMPv3pk/s4XLFiAx48fY+7cuWjWrBl0dHQAAElJSbh79y7s7Ozg4OCA8+fPY8GCBZDL5dDV1YWbmxt69uwJgG1IOUsul+P169cYMmQIFAoFunfvjsqVK0Mul6Nw4cLSVaJatWqhWrVqWLRoEQ4dOoSoqCgkJSVh586d0glE+p/Mgy0PDw/4+/tj4sSJqF69OvT09FC8eHEAH26fMTQ0RPv27XH27FkMHjwYBgYGiIyMhJubG9q0aSOtj/sAzZfZ5pMmTYK/vz+mT5+OGjVqwMjICBYWFgCA2NhYmJmZoVGjRrh48SIaNGgAY2NjhIWFwd3dXRpRHmCb5yWZ28bMmTPx+PFjzJw5E82bN5e6UAPA48ePYWVlhQ4dOsDb2xsjR46EgYEBlEolRo8ejW7dugHgMYEmy2zL0aNH4/79++jduzesrKyQkpICW1tbaZkKFSqgfv36+PXXXxEdHY3IyEj4+vrC3d0dNWvWlNbH0P5pDO6kkR4+fIiiRYtKf8ifP3+ODRs24PLly4iOjoaRkRGGDBkCd3d31KlTB9ra2jAyMpK6sfJMnXqlp6fDz88PNWrUQJMmTaCjo4OQkBDs3bsXFy5cwIsXL1C9enXMmDEDnp6eOHHiBORyOcqUKSOdhWUb0vdw8OBByGQyjBw5Utp/PHr0CNu2bcOVK1dQpEgRTJo0CZMnT8auXbvw7NkzWFlZYcyYMVLXX8ru8ePHuHLlClxcXNC2bVvo6OggMjISe/bsgZeXF6Kjo9GxY0cMHDgQnp6eOHDgAAoXLoymTZtmGUWY+4DcIyAgALdu3YKzszMcHR1hZGSEqKgo7N+/HydOnEBaWhocHBwwdOhQyOVyXLt2DTo6Ohg7dizbPI+Li4vDrVu30LRpUzRv3hy6uroIDQ3FoUOHcP78eQQGBqJNmzYYM2YMVq5ciX379sHExASWlpbSGEbcNjTfH3/8gWvXrmHatGlo0aIFjIyMEBcXh2vXruHSpUtQqVQYNmwYXF1dsXHjRnh5eaFMmTKYNGmSdNGN7fzPGNxJowghoFQqoVKpEBMTg99++w3R0dHYtm0bkpKSYG9vj06dOmHbtm3Yt28f+vXrB3t7+yzr4Jde/ZKSkhASEoKSJUsiICAAwcHBWLlyJd6+fQtbW1v06NEDJ0+exOrVq7Fx40Zph52JbUjfgxACL168gLGxMSwtLZGYmIj9+/dj69atiIqKQsGCBXHlyhWEh4dj27ZtqF27NhISEqCrqwtdXV11l6/R0tPTERMTAyMjI6SmpuLGjRtYuHAhgoODUapUKejp6WH9+vWoVKkSOnTogFatWmX5nXIfkPukp6cjLCwMFStWhJGRES5fvozFixfj6dOnKFSoEORyOZYvX45SpUrB2dkZzs7OSE1NhZ6eHgC2eV6WkJCA169fo0WLFnj9+jWePHmCxYsXIzw8HJUqVUKjRo1w4sQJFCxYEB4eHvDw8Mjyem4buUNYWBhUKhUaNGgAIyMjPH78GAsXLoSvry9UKhWEELh9+zb27t2LTZs2ISQkBAYGBihYsCAAtvPnYHAnjSKTyaCtrY2OHTvi3LlzmDVrFoAPz/D9eACTmJgYLFmyBG/fvs02iAW/9OpnamqK7t27Y/369Th58iQAoEaNGhg6dCj69u0LAIiPj4efnx8SExOz3SPMNqTvQSaTwcbGBqdOncKgQYMQFhaGkJAQWFlZYfz48Wjbti1WrlyJ3bt348GDB6hWrRqMjY3VXXauULRoUZiZmWHp0qXYunUrIiIiUKJECQwbNgxubm6Ij49Hp06dcOrUKbRq1Uq6lSYT9wGa7eMD7MzuyyYmJihVqhQmT56MQoUK4eXLlyhZsiQGDRqEiRMnIiIiAm3atMH9+/el3nQfn6xhm+cNnwpfJUuWhJOTEzZu3Iht27YhPT0dlpaW6N27N4YOHYrU1FQMHjwYt27dQlpaGnR0dLJ0iee2kTsUK1YMiYmJWLp0KeLj43Hjxg1oa2ujc+fOGDJkCLy8vLBq1SqcOXMGHTp0yDL2hRCC7fwZGNxJI7Vs2RJ79uxBWFgYTE1NUb9+fekPfHh4OO7du4eqVavCxMREzZXS3+nduzfKli2Lu3fvombNmnBwcICpqSmAD4ORxMfHQ6FQQFdXl/etUY7LvF8989GEmVfNHR0d8eLFC1y+fBlGRkaYO3cu/o+9+w6s+fofP/7MTggh9p51SYwgtbfQGqU2tfdKbEFQVUGoTQilIUHtFVqtWK3aam+RGAkRiSCR5Cb3nt8ffvf9SUrH5/spN3g9/uKOt3O87z33vM54ncqVK2unV2TPnp3s2bNr+3TF3zMajeTNm5clS5bg5+eHXq+nbdu2NG7cmHLlygEQExODtbU1ZcqUAWRP87skfYbw58+fExcXR7FixShVqhT9+/dn//793Lp1i6FDh9K4cWPtWCe9Xk/27Nkz5IWQ+/5+SZ9V/NatW8THx2un/IwcOZLSpUtz5coVateuTePGjcmfPz/wcjJGr9dn6BOIzOuPR/uZ+nBVqlThs88+49ChQyQlJdG6dWuaNm2qHfdbrlw5bG1tX5sbRtqCf0YCd2EW6Rv3PzI1AO7u7tpjN27c0BryH374gX379r2SZVS8XX92Xq9Jnjx5+Pzzz7VVEtHR0WTPnp3w8HB++OEHTp06xdSpU1+ZaRPi32b6rEZERLB48WKuXr1K1qxZGT16NDVq1GDSpEkkJCTg4OCQYfXHlStXOHLkCCVLliR79uxmrEHm9GfLGi0tLTEajbi5ubFmzRoMBgNZsmQhISEBeNkWHDhwgMTERC2QF++G9O2+r68vJ0+e5MaNG7Rr146vvvqKTp060b59e5KSknB0dCQxMRGAqKgoQkJCSEhIoHz58uasgnhD0mcVHz9+PCdOnODBgwdUqlSJWbNmUbx4cTw9PbWB0+fPnwMvT+3YsWMHN27coGfPnoAEcZlZ+jbg22+/5cqVKyQmJtKrVy9q1aqFj48PgwcPRq/XU7ZsWe190dHRnDx5krx582pL48V/TwJ3YRamxj0oKIhmzZppxy7Bqw3248ePGTZsGBERETg5OWFhYcHw4cP54osvAMkyai6mhts0o/5XgXxERARDhw7FYDAA8OTJE4YOHaoF9XIPxZtiOp4wLCyM7t27kydPHooVK0ZaWpo28Gdvb4+9vT16vZ5vv/0WeLkn8+zZs9y4cYO1a9dK4P4H6Zc1RkZGUqhQoQzPm54z7V8+d+4cK1euxNHRkadPn3L06FGGDh2qHQclMi9T2/7Hoz6vXLlCrVq1cHNzo0KFCtogrJWVFY6Ojpw7dw5/f3+KFSvGnTt3OH36NIMHD6ZOnTrmrI54Q0yfjSFDhnDlyhU+++wzSpcujVKK4sWLa6+ztbXl4sWLTJkyhezZs5OYmEhERASDBw/OcLKAyHzSH+03cOBALly4QO7cuUlMTOT+/fvAy2N+TTPqv/32G3Fxcdja2nLq1Ck2bNjAqFGjZMD2fyCBuzCb9evXM2PGDKpUqZLh6KU/yp07N8OHDycsLExLIlWjRg1AElmY24IFC1i5ciUnTpz4y7OsraysaNKkCb///jtlypShevXqNGnSBJB7KP5dERERGTqJFhYWPHnyhLFjx1K6dGkmTJiQodMQFhZGfHw8pUuXJnv27Bw/fpzffvsNZ2dnypQpw/r16yV7/GuYBto8PT3Jly8fkydP/svvclJSEqdPn8bW1paSJUsyefJk2rdvD0gbkFkdOnSIBg0aaL/Lpnu+dOlSrly5kuG4VoPBQExMDCdOnKBUqVKUKlWKqKgobt68yYULFyhTpgw+Pj506NABkHv+rgsJCaFYsWLaSRwmW7du5eTJk0yZMoWGDRvi6OhIQkICFy9e1E4R6N27Nzly5KBgwYLcvn2bcuXK0atXL1q0aAHIZyMziYmJyTCxZrovU6dO5dKlS3z99ddUqVJFm0HX6/VERUWRO3duHB0d2b17N9u3bwfQ8l90794dkAmb/ysLJRtJhJk8e/aMtm3botPp8Pf3/6/fL427+e3YsYOpU6cybNgwevbs+bf344+DM3IPxb9p5MiR3Llzh6CgoAxJ5M6fP8+gQYOYNGmS1jkMDQ1l586d7Nu3D2tra1xdXfn222/JkiULkZGR2NnZ4ejoKMno/saIESM4fvw4O3bs0Par/pmEhASMRiOAtoJB2oDM6fDhwwwcOJB58+a9Mgs6dOhQYmNj2bBhA/BysGz58uX8+uuvPH78mBw5ctCnTx8GDBjAs2fPSElJwdbWVstxIvf83RYWFkbXrl0ZPnw4HTp0yLDtcf78+WzdupXDhw9jZWXFrVu3mD17NidOnCAlJQWA2rVrs2rVKgCSk5Oxt7fX3i+fjcxjy5YtLFy4kC1btpAvXz7t8YcPHzJw4EA+/vhjxo8fj7W1NQ8fPmTLli388MMPxMXF8dFHHzF//nxsbGwIDw8nLS2NnDlzaoPgcp//7+R/TbxRfzUuZG9vT6NGjTh16hQnTpz429f/8Tn50puP6V40a9aMEiVK8OOPP2ojp391D/+4okLuofi3pKam4uHhwahRo17Jn2Ftbc2TJ0+4desWp0+f5ssvv8TLy4tff/2VLl260Lx5c86fP8/mzZuxtLSkWLFi5M+fX4L2f6Bly5akpaWxceNGDAbDn37/lVI4OjqSPXt2LamoZBHOvFxcXJg3bx5Vq1bN8HhSUhIGg4G4uDi2bt1KQEAA7du3Z8eOHZQrVw4/Pz/y5MnD1q1befHiBdmzZydPnjxa0C73/N2XN29eVq9ejYeHh9bWmr73zs7OPH78mPnz5+Pt7U2HDh04deoUTZo0YcuWLbRt25aTJ09y7NgxgFeO1ZTPhvkppTAajVhbW9OnT59X+m1WVlY8evQIvV5PYmIiO3fu5IsvvmDJkiXY2dnh5ubGqVOnWLp0KQ4ODri5ueHu7q4F7dIG/G9kxl28Effv3ydv3rzY2tqSmpr6pwnI7t69S+vWrWnXrh2TJk16y6UUf8U0ImrqjP8xGDIlmDl06BBDhw7Fx8fnlfPYhXgbbty4QZkyZTAYDBiNRmxsbLh79y4vXrygbNmyREdHM2bMGE6dOgW8HDT89NNPadGiBXXr1gWgevXqtGrViokTJ5qzKplK+lmRPyYUTb96pm/fvkRFRbFr1y5sbGxkCeQ77NSpU+TPn58iRYpkuMcrV66kX79+AGzfvj3DOdt16tShefPmtG3bFoDvvvuOBQsW8OOPP76S+0C8u3bv3o2rqyslSpTI0B7MmjULDw8PqlatypUrV/D19eXy5cukpKTQsmVLPvnkE21r3J49exg3bhzr1q2jUqVK5qyO+BPR0dHky5cPg8GAXq/HwcEB+M82tOfPn+Pj48O+fftwcHAgKSmJcuXK0axZMwYMGABA27ZtcXR0ZPXq1RKk/9uUEP+yPXv2qOrVq6s9e/aolJQU7fExY8aotWvXqvv372d4/Zw5c1TlypXVqVOn3nZRxZ/YtGmTat26dYb7p5RSgYGB6pdffsnw2N27d1WbNm1Ut27d1JMnT95iKYVQavz48Uqn06kTJ05ojz19+lS1bNlSVa5cWV26dEkppdSVK1fU2rVr1fTp09XFixfVs2fPlFJKpaamquPHj6v69eur4OBgpZRSRqPx7Vckk9mxY4fauXPnK23Ab7/99sprT506pVxdXdWSJUveVvHEG3D06FGl0+nU6NGj1cOHD7XHv/vuO6XT6ZSnp6f22C+//KK2bdumDh48qJKTk7XHo6Ki1PDhw1WnTp3U06dP32r5xZtz8+ZNpdPpVLVq1dTdu3eVUkoZDAZ18uRJpdPpVJs2bbS29t69e+rcuXPq999/z3CNhw8fqqlTp6pmzZqpsLCwt14H8fd27dqlXF1d1eHDhzM8PnnyZOXi4qLOnj2rlHr5e/rNN9+ogQMHqqCgIO0zodTLNqB9+/Zq0qRJKjU19W0W/4MgwyDiX+fs7IydnR0LFy7k4MGD6PV6Tp06xaFDh/D19WXw4MEsXLgQvV4PQJMmTbCysuLQoUMA2h5IYR6pqancvHmTa9eu0bdvX+0+bd68GT8/PwYOHMjkyZM5duwYBoOBIkWK0LVrV06dOsWFCxeAv14uL8S/SafTkStXLkaNGpVhRr1r167kzJkTLy8vLl68SLly5ejatSs+Pj6UL1+eqKgoAE6fPs2aNWtQSmkZzj/02eKYmBiWL1/Ol19+yYEDB7S9qWPGjKFPnz4MHTqU0NBQkpKSAChZsiRubm7s37+f6OhocxZd/A9q1qxJo0aN2L17NwsWLNDuZfPmzWnRogWhoaEMHToUgLp16/L555/ToEED7t69S1hYGDdv3mTDhg0cOHCA1q1by0kM75GSJUsyfvx4LCws6Nq1K3fv3sXS0hKdTsfs2bN59OgREydO5OLFixQoUIBKlSpRuXJlTp06xW+//caJEydYs2YNmzdvpmPHjpQsWdLcVRKvkZiYiIODAz4+Phw9ehR4udqqfPnyFChQgBEjRnD27FnKlSvHmDFjCAgIoHv37trqi3v37hESEsKNGzeoWbPmnx77LP4H5h45EO8fo9GoTp06pZo0aaIaNWqk9u3bp5RS6tGjR2rv3r2qZcuWSqfTqU8//VQFBASo58+fq4CAAFWlShVtlF9mvMzDYDAopZSKj49X8+bNUzqdTnXu3FmbdTt8+LCaPHmyqly5snJzc1N9+vRRly5dUpGRkWrw4MGqU6dO6vHjx+asgvhApG8jNmzYoKpXr65q1aqljh49qpRSKjk5WW3btk3Vq1dPNWzYUF28eFF7365du1SFChVUzZo1Ve3atVXDhg3V1atXzVKPzMhgMKjjx4+rTp06qWrVqqk9e/YopZQ6efKkmj17tqpdu7ZydXVVnTp1UkeOHFFKKXX27FlVtmxZtX37djOWXPxfpZ8ZGzZsmNLpdGr8+PHaTFpMTIwaOXLkKzPvUVFRqmnTpqps2bKqRo0aqlq1aurbb7/Vnpff8nefqV+QmpqqgoKCVNWqVVXt2rVVRESEUkqp58+fqx07dqiaNWuqNm3aqPPnzyuj0aiSkpLUwIEDlU6nU2XLllV169ZVq1ev1q4rn43MaevWrap27dqqWrVq2grLlJQUtXPnTtWwYUNVt25dbeZdKaVu3LihPvvsM9W2bVvVunVrVaVKFbV8+XIzlf79J3vcxRuhlOLMmTP4+Pig1+uZOHEi9erVw87OjujoaM6fP8/atWs5ffo0OXPmpFWrVmzbto3PP/+csWPHyijdW6b+/57U6OhocubMia2tLfHx8axcuZKVK1fi5uZGUFAQtra2pKSk8OjRI5YvX86RI0d4+vQpTZo0ISkpiYcPHzJq1Chq1qz5l+e6C/FvSP8Z27hxI8uWLSM1NZX58+dTrVo1UlJS+OGHH1iwYAFWVlYsWrSI8uXLc/bsWX766SeePn1KiRIlaNasGUWKFDFzbTIHU1tgNBo5c+YMs2bN4u7du0yZMkXLyB8bG6t9/2/fvk21atVo27Ytx48f5/LlyyxfvpyCBQuauSbiv5WSkoKdnR0Ao0aN4scff6R169YMHTqUIkWK8PjxY2bMmMEPP/xA06ZNWbRoEfDyCLC7d++SPXt2XFxcqFmzJiCZo98nppw2AEFBQSxevJhs2bKxZs0aihQpwvPnzzlw4ACzZs0if/78fPXVV1SsWJGrV68SHR2N0Wgkf/78uLi4APLZyIzS35Nt27axZMkSXrx4wTfffEPdunXR6/Xs3buXhQsXkpqayqJFi3Bzc+PatWssWbKEx48fU6xYMerVqydH+71BEriLNyZ98J6Wloa3tzcNGjTIcPTH7t27OXz4MCEhIQCUK1eOwMBAcuTIIQmO3rK4uDimTJlCp06dqFOnDvAyMFqyZAnLli3LELzDyx/ymJgYgoKCOHr0KPfu3SM5OTlDh06IN8kUuD969Ihz586xcOFCwsLCcHZ2ZsGCBa8N3hcuXEiFChXMXfR3Qvrg/d69e9rZzA4ODiilePLkCdu2bWPnzp3cuXMHKysr7Ozs8PX1xcPDQwbv3iHp79W2bduIjIzE398fBwcHPv30U4YOHUrhwoUzBO8eHh4sWbLktdeTDvv7I/1nIyAggN9//51Tp06RlJREwYIFCQwMpFixYhmC97x58zJ9+nRcXFxe6cdJ3y5zSn+fr127xqJFizh06BDZsmVj/vz51KpV65XgfcGCBVSpUoW0tDRti6QpGbW0AW+GBO7iX/O6L2laWhrnzp1j/PjxKKXw9vamYcOGrxwBcvLkSXbu3MnOnTsZOHAgXl5eb7PoAoiKiqJbt25kzZoVX19f5s+fz+eff07Tpk1ZtmwZ3377LZUrV2bNmjXY2tpm+PG9cuUKV65cISAggOjoaBYvXqztFxbiTTB9/kxnChcpUgRra2ty5szJgQMHyJUrF3PmzKFmzZoZgnc7Ozu++eYbyWj8N9LPvJ8+fZpZs2Zx//79DMG7ye3bt7l+/TpLly7l5s2bVKlShfXr15ux9OL/atCgQZw7d46PP/4YJycnbt68yfnz52nTpg1DhgzJMPP+008/UbduXQICAsxdbPEWeHl5cfbsWRo3boy7uzvHjh3jp59+wsHBgbVr12oZxw8cOMCcOXPIkSMHX3/9NZUrVzZ30cXfSN+fGzBgAPfu3SMxMZGCBQty7tw5nJycmD17NvXr188QvBuNRubOnUuVKlXMXIMPyFtemi/eU+n3x0VGRqrz58+ryMhIlZCQoJR6mXW4UaNGqlGjRmrv3r3anun0e5wePnyovL29VYcOHVRcXNzbrYBQKSkp6sCBA6phw4aqSpUqyt3dXf30009KqZd73ufMmfPKnvc/ZpyOiIhQ9erVU9OmTXvr5RcfnsTERNWzZ0/Vpk0bdeHCBe3xbdu2qVatWr2y53379u2qUqVKqlWrVq98doVSaWlpGf6u1+uVUi/b6dOnT6s2bdpoe95f9//35MkT5e/vr2rUqKH27t37Vsos/j2bNm1SVatWVVu3bs1wf015TcaPH6+dChMTE6O8vLyUTqdTBw8eNFOJxdty9OhRVblyZRUcHKxevHihlHrZLuzZs0c1adLklT3v27dvV66uriokJMScxRb/pXnz5il3d3cVEhKioqOjlVJKbdmyRX322WeqevXq6tChQ0qpl78NISEhqm7dusrNzU09evTInMX+oEjgLv5n6Tt7kyZNUo0bN1Y6nU65ubmpoUOHasktTp06pTw8PF4J3g0Gg3aNffv2KZ1OpyWSEm+XwWBQbdq0UTqdTtWvXz/D0U9/FrybBm1Mf/f391dVq1ZVUVFRb78C4oPy8OFDVadOHeXn5/fKc3v37lUNGjRQNWvW1I6aTEpKUiEhISo8PPwtlzTzS9+OBwcHq/Hjx6sePXqopUuXaon7zp0796fBu+n9z549Uw0bNlRfffXV262A+J/NmjVL1axZUxs4T39/fXx8XklYFx0drXXkxftt06ZNSqfTqXv37imlVIb+244dO1SFChVUo0aNtM/G06dP1a1bt8xWXvHfS05OVn369FFdu3bNcMSjUkrt379fffrpp6patWpavzAlJUVt3rxZbdmyxRzF/WDJ5gPxPzPtiRkyZAj79++nSZMmzJs3j8GDBxMaGsrw4cO5fv067u7uzJw5EwsLC+bNm8f+/fvR6/VYWlpq17h58yYAT58+NVt9PlRKKSIiIqhYsSIDBgwAwNfXl5MnT6LX63FycqJfv37079+fs2fPakfFWVtbo5TStj/ExMQAyN4m8calpaWRnJyc4TGDwQDAJ598QufOnYmLi2P06NH88ssv2Nvb07JlS4oXL26G0mZeSimtDR40aBBLlizh7Nmz6PV6Fi9ezKBBg1i3bh2VKlXCx8eHIkWKMHXqVA4cOKAdF2l6f7Zs2ShevDiXLl165d6IzMl0BKvpd/fFixcYjUZsbW2179P06dMpV64cBw8eZOHChdy5c4e8efNSv379DNcQ76ds2bIBcP36dQDts2FpaUmrVq1o0KABkZGRdOrUibCwMLJnz06pUqUA+Wy8K4xGIzExMTg4OGhJKtPS0gBo1KgRPXv25OnTp4wZM4ZDhw5ha2tL27ZtadeunfZ+8eZJz1r8n6g/pEYICQnh4sWLjBkzBi8vL5o3b06jRo2wsrKiY8eOODg4kJiYiLu7O35+fuj1er788ksePHigXePatWvs2LGDLFmyULp06bddpQ+KqYE1dcrg5dnVJUuWZMqUKfTv359JkyaRlJTElClTOH/+fIbgfeDAgZw6dYp27dphNBq1vVGhoaH8+uuvODg4aAlKhHhTnJycyJ07N0eOHCEsLAx4GUCagsmWLVuSI0cOXrx4wfTp03nx4sUrbZf4z7n1M2bM4NKlS4wfP54NGzbw/fffM3r0aB4+fMiTJ09ITk7G3d2dCRMmULx4cSZMmMCPP/6YocMWEhLC0aNHyZEjhwzevSNM96lhw4bExcWxf/9+7TFLS0vtd8LZ2ZmEhAR2797N/fv3X3sN8X4qWrQotra2bNu2jTt37gAv29q0tDQsLCwoU6YMBQsWxNLSktOnT2d4r3w23g1WVlbkzZuXy5cvc+HCBQCsra1JTU0FoHPnzpQsWZLU1FSGDBnCvXv3Mrxf7vPbIf/L4h8xdXbv3r0LvOzope8A37p1C6UUtWrVIkuWLBw9epT27dvTpEkTevbsyfnz55kzZw5xcXG4ubkxY8YMJkyYQLFixbRrlCxZkq+++ootW7aQL1++t1vBD4QpuLG0tESv12uzZFu3biUgIID169cTExNDtmzZqFmzJuPHjyc5OZnJkydz/vx54GWwNHjwYHr37k27du0yNNbFihWjXbt2rF69Gmdn57dfQfHBUErh6OjI6NGjCQ8PZ+XKlVqH0rT648yZMzg5OTF69Gi+++47smTJItmM/0RSUhInT56kfv36eHh4kCNHDo4ePYq/vz+tW7emWbNmnD9/nrCwMKpWrcrIkSPJly8fSUlJWhuQlJSEg4MD1atXZ+zYsa8kIRWZW5UqVWjQoAEzZsxg165dwMvfeisrK+1IL19fX4KDg6ldu7aZSyveJhcXF4YNG8b+/ftZtWqVNvNubW3N48ePuXbtGrVq1WLdunV06tTJzKUV/xe2trYMGjSIxMREVq9erf2emiZhrly5wrNnz2jbti3z58+nSJEiEqybg9kW6Yt3TkJCghoxYoTatGnTK8/5+Pio5s2bK6WUOnnypKpYsaIaPXq0ltxi3rx5SqfTqQcPHrzyXoPB8GYLLpRSSoWEhChXV1cVHByc4fFBgwapcuXKKZ1Op3Q6nerUqZO6c+eOUurlPTftFW7RooXasmWLmjFjhlq1alWGxILp72H6RIVC/K/+mDAt/edOqZef0YULFyoXFxc1cOBA9eOPP6rU1FR16NAh1adPH/XFF19oSTLF6xmNRnXv3j3l6uqqtm7dqpRS6rffflOVKlVSo0ePVrGxsSoqKko1bdpUzZw5Uyn18jv/8OHDV65lMBhUUlLSWy2/+Gf++F16naNHj6p27dopnU6n5s2bp06cOKFOnz6tZs6cqVxdXdWvv/6qvVZ+u98ff/W7bWpzk5KS1MyZM7V+QnBwsNqzZ4+aNGmScnFxyZCI7o/ttMgc/uo7azQaVUpKilq+fLlydXVVgwYN0nJYhIeHq0WLFikPDw91+/btf3Q98WZYm3vgQLw7nj9/zpkzZ7hy5Qo5c+YkKCiIdu3a0bp1a2rXrs3WrVuZOnUqO3bsoGnTpowaNYq8efMCL5fgWFpakpKS8sp1ZcTu7XB2dsbR0ZGAgACsrKzo0qULS5Ys4fLly0ycOJEaNWqwfv16tmzZwuDBg/H396d48eLUqVMHHx8f/Pz8mDhxIgBDhw7NMHOZ/h5aW0uzIv4dpnNlw8PDuXHjBp988skrM+ZZs2ala9euZM+enYULF3Lo0CEsLCywt7cne/bsLF++nKxZs5qpBpmT+sM5yhYWFuTPn5+CBQty7NgxihYtypAhQ2jcuDHe3t44Ozvz/PlzEhISCAsL047+NK2MSn89S0tL7O3tzVIv8ddMK6zOnj1L5cqVM5zbbLqHNWvWxNvbm40bN7J8+XKWL1+OjY0NWbJkYcSIEdSpU0e7nvx2vz9Mv9tBQUE0a9aMPHnyaM+Zvtv29vaMGTOGwoULs2zZMnx9fQEoWLAgY8eOpWXLlq+8R2QeSintOxsZGUmhQoUyPG9hYYGtrS3t27fHxsaGRYsWcfDgQfLmzYvRaOTp06d4enpSokQJ7T3SBrx9co67+EdMP+qXL1+mX79+GAwGEhMTWbBgAU2aNCEsLAxvb28uX76Mm5sb69ev177QMTExzJw5k4iICFasWEHu3LnNXJsPj+n+nTx5krFjx5KcnMywYcO4dOkSuXLlwtPTU+tsL1myhJUrV1KoUCEteE9KSuLWrVscOXKE4sWL06xZMzPXSLzvTJ/ZO3fu0K5dO1xdXfHz86NAgQJ/+p6IiAh+++03njx5QrFixahatSoFCxZ8i6XO/NIHa0ajkdTUVOzs7EhKSmLGjBls3boVGxsbPDw8+Oqrr8iSJQtWVlaEhYXRp08fWrVqxejRo81cC/F/tWDBAlauXMmJEydeGdBKPwCj1+u5evUqV65cwcnJicKFC1OxYkUAbeBGvF/Wr1/P119/zZYtWyhfvnyGtuKPoqKieP78OWlpadrnA+Sz8S7w9PQkX758TJ48+S/v1/Xr19m+fTsxMTEULlyYChUq4OHhAbw6+CveHpkaE/+I6Qvq6upK7ty5uXnzJnnz5iUxMRGAUqVK4enpyeTJk7ly5QoBAQG0aNGCqKgoDh06xL59+5g0aZIE7WZiyklQrVo1Zs+ejbe3N0uWLOH58+d888032Nvbk5ycjL29PZ6engCsXLmSIUOGsGzZMooVK0aFChWoUKGCdk35gRZviumz9eLFCzZu3EixYsUYM2bMXwbtRqOR4sWLS8b4v2A0GrWO+IwZM7h58yZpaWmMHj0aNzc3Bg4cyG+//UZUVBSFChXSMklHRUWxe/dukpKSqFq1qjmrIP5HxYsXx8bGhk2bNtGzZ88Mbbjpd8I081apUiUqVaqU4f3S7r+/WrZsyXfffceyZcvw9/d/bdBu+ny8bkA0/YyuyLysra3Zs2cP/fv3J3/+/K99jdFoRKfTMW7cuFcCdGkDzEtm3MV/JTY2lpUrV5ItWzbWrFmDk5MTXl5etGzZEgsLCw4dOsTSpUu5ePGidsxb9uzZ6d27N3379gVkpM4c/jhyfvToUSZMmEB0dDS9e/dm3LhxwMtZFlNCqSVLlhAYGEiuXLlYvnx5huVRQrxpDx48oF+/ftjZ2VGuXDmmT58OSKfh3+Dp6cmJEyfInz8/9+/fJzU1lRkzZtCqVStu375Nv379iIqKws3NjYIFCxIZGcmVK1fw8vLSjooU7xbT725KSgpdunTB2tqajRs3ZgjW/+p94v3wV/dTr9czZ84cduzYweLFi6levbrc//dQaGgo48ePp3v37nh6emJpaSn3+B0ivR/xl9IfFwaQK1cuxo0bx5AhQ1i+fDnPnj1j0aJF7NmzB6PRSIMGDZg1axbLly+nV69efPXVVyxatEgL2tMfHSbeHlPQ/uOPP/LixQtq1arF7NmzyZs3L4GBgaxbtw54mVXUdJSWp6cn3bt35+7du1pGeSHelmzZspEzZ06uXLnC6dOniY6OBmRP3f9F+vH5S5cuER4eztdff82GDRtYuHAhrq6uTJw4kV27dlGyZEmCg4Pp2rUrycnJHD16lJw5czJt2jQtaJfzejOn9Md8ms5fNrGwsECv12NnZ8ewYcO4fPky69ev1577M/J7/X64f/8+er0eCwsL7XivP7K1taVbt26kpqayb98+QO7/uyZ92/zHNsDUn/fw8KBSpUrs3btX65PLHO475K2lwRPvnPRZRjdt2qT8/f3V0qVLM7zm1KlTqnr16srDwyNDRtHXkeyTb1/6LMLLly9Xbm5uasmSJVrW52PHjql69eqp6tWrq/Xr12uvTUlJ0f587ty5t1dg8UEzZSI2tRVPnz5VXl5eSqfTqRkzZqiYmBhzFu+dlL4dT0lJUSdOnFBt2rRRT58+1R7/7bffVMeOHVX58uXVzp07M7zv+fPnGa4h7XjmtGnTJtW6desMbbdSSgUGBqpffvklw2N3795Vbdq0Ud26dVNPnjx5i6UU5rBnzx5VvXp1tWfPngyfjzFjxqi1a9eq+/fvZ3j9nDlzVOXKldWpU6fedlHF/2DHjh1q586dr7QBv/322yuvPXXqlHJ1dVVLlix5W8UT/xLZ4y5ey2AwaFlGhw0bxuHDh7VR/JMnT7Jq1SosLS1xd3dnyZIleHl5sWTJEh4+fEhCQgJ2dnb06NEjQ/IbmSl7u9Ivj9+/fz9PnjwhJSWFrVu3YmVlRa9evahRowZ+fn6MHz+eBQsWANClSxdt5t20zxFkibJ4c0yfVVO7k5SURNasWcmePTszZ87kxYsXBAcHY29vT48ePciVK5e5i/xOMBqNWjvu6+vLpUuXuH//Po6OjhnOWK9VqxYACxcuZOLEiVhbW9O8eXMAHB0dtdkYJXtYM6XU1FRu3rzJtWvX6Nu3L6tWrcLW1pbNmzfj5+eHpaUl7dq1o3nz5lSrVo0iRYrQtWtXJk6cyIULF6hXr54siX6POTs7Y2dnx8KFC7GysqJhw4acP3+eQ4cOsXv3bjZu3Ejjxo0ZPHgwtra2NGnShA0bNnDo0CHc3d3lt/8dEBMTw/Lly4mKisLW1paGDRtiZ2fHmDFj2L17N40bN6ZNmzbUrl0bBwcHSpYsiZubG/v376d9+/baCSEi85M97uIveXp6cu7cOXr27Im7uzvbt29n06ZN1K5dm+XLl2udwjNnzjBo0CCeP38OwKhRo2QvpBmYOl/pO2GDBg3i7NmzlChRAktLS8LDw0lKSmLQoEH06tULe3t7jh07xvjx40lLS2PIkCF07drVzDURHwpT0H737l2+/fZbLl++zLNnz6hRowYNGjTAw8ODpKQkPD09OXbsGP3795fg/R9I3wYMGTKEY8eOUbhwYRITE4mKisLT05PevXtnGFw9evQoixcv5uzZs/j5+fH555+bqfTinzIFVU+fPuW7775j+fLlVK5cmTVr1mBra8svv/xCaGgou3fvRilFlSpVGDVqFDlz5sTX15e4uDj8/f3l+/QeU0px5swZfHx8MBgMTJgwAQ8PD2JiYvj9999ZsmQJN2/epESJEnz++ed07dqVdevWsWLFCn744Qfy5csnAzuZnNFo5NSpU8yfP5/w8HCmTJlC8+bNOXXqFIcOHWLnzp3Ex8dTvnx5vLy8qF27NufOnaNLly7MnDlT2vp3iATu4k/t2LGD+fPnM2bMGOrXr0/27Nn58ccfGTNmDAaDgY8//pjVq1drs7r37t3jxx9/5KOPPqJhw4ZmLv2H5fHjx6/N2L9ixQpWrFjBpEmT+PTTT7G3tyc6OhpPT0+ioqLo1q0bvXv31oL30aNH8+TJE3bs2IFOpzNDTcSHxNQZDAsLo1u3bjg5OZEnTx7s7e359ddfcXBwwMvLiz59+vDixQu8vLw4duwYgwYNokuXLhnOGhb/kX61zb179xg5ciT9+/fHzc2NhIQExo4dy507d/Dy8qJDhw4ZgvcjR44wY8YMvvjiC7p162auKoi/YfruREdHkzNnTmxtbYmPj2flypWsXLkSNzc3goKCsLW1JSUlhUePHrF8+XKOHDnC06dPadKkCUlJSTx8+JBRo0ZRs2bNvzz+S7zb0gfver2eiRMnUq9ePezs7IiOjub8+fOsXbuW06dPkzNnTlq1asW2bdv4/PPPGTt2rDZJIzIfU1tgNBo5c+YMs2bN4u7du0yZMoUWLVoALxNLm77/t2/fplq1arRt25bjx49z+fJlli9fLkenviMkcBeaP/5oz5o1i9DQUPbs2YOtrS3h4eF07dqVhg0bkjt3bpYvX06dOnVYunSptuwy/aisLK96O9auXcu+ffuYPXv2K8udRo4cya1bt9i0aRMODg6kpqZiY2NDQkIC/fr149q1axlm3n/55Reio6Pp0KGDmWojPjRPnjxhwIAB2NraMnbsWNzc3AA4duwY06ZNIzIykokTJ9KxY0cSEhIYM2YMhw4dYvjw4QwcOFDamL/g5+fH3bt3uXbtGt9//73WPkRGRjJ06FDu3bv32uD9wYMHf3n0nsgc4uLimDJlCp06daJOnTrAy9/xJUuWsGzZsgzBO7zMGh4TE0NQUBBHjx7l3r17JCcn07RpUxYtWmTOqoi3IH3wnpaWhre3Nw0aNMDe3l57ze7duzl8+DAhISEAlCtXjsDAQHLkyCGz7u+A9MH7vXv3mDJlCg0bNsTBwQGlFE+ePGHbtm3s3LmTO3fuYGVlhZ2dHb6+vnh4eMjg3TtAejwCyBi0X7p0CYCEhASio6NRShEdHc3MmTMpU6YMo0aNonv37pQuXZojR47wxRdf8MMPP2gZS02kQ/3mGQwGbGxs+PjjjzPsWQVITk7m4cOH2NjYYGtrS1paGjY2NhgMBhwdHVmwYAFZsmRh48aNfPfddyQnJ1OvXj0taJfM0eJtePToEeHh4TRp0kQL2g0GAzVr1mTKlCk4ODiwevVqbt68iaOjI7NmzeLTTz+ladOm0sb8hdu3b3Pw4EEuXryIk5OTthQ6NTWVQoUK4e/vT9GiRVm8eDFbt24lMTFRe68paJdx/cwtOTmZy5cvM2vWLM6fP0+vXr0ICQmhf//+9O/fX9vmZjopxMbGhkKFCjFhwgRmzZrFpEmTKFy4MAcPHuTQoUPmrYz41/3xN9zCwgI3NzdmzJiBpaUl33zzDYcPH9Y+H/DyLPdvvvmGoKAg2rVrx82bNwkODtbeLzIvUw6SqlWr4u3tTeHChZk6dSoHDx4kKSkJCwsLnJ2d6devHwsXLmTWrFkULlyY+Ph4vvvuOwAJ2t8B0usRKKW0L2v37t0ZM2YML168wMXFha5du2JnZ0doaCj37t2jRYsW5MyZk9y5c1OqVCny5s1LXFwc8fHxrwSO4s1KSkrCysqK9u3b07dvX3LmzAlAREQEAPb29lSrVo2rV69y48YNrK2ttQEao9FI/vz5yZMnDw8ePGDNmjVs27Ytw/F/EhSJtyEsLIyEhARta4Zer9fao+rVqzN8+HDCw8OJiooCwMnJifnz51OqVCmzlfldULJkSWbOnEmhQoW4evWqlnzSxsaGtLQ0LXgvXrw4c+bMYd26da89QkxkXrlz52by5MkkJibSp08fLl++TJYsWciSJQv9+vWjf//+nD17VgveTUfCAbi4uNC+fXtWrVqFs7MzR44cMXNtxL8pLS1N+w2PioriwoULREVFkZKSgru7O35+fgDMnj2bgwcPap8L02BdtWrVGDZsGC1atODXX3/lyZMn5qmI+Evp+2ymo/4sLS35+OOP8fHxoVChQlrwnn6ApmTJkjRr1ozg4GCGDRtGeHg4P/30kzmqIP5L0jP/wBkMBq1ztnv3bh49ekSPHj1QStGlSxfGjRsHwN69e8mVKxcdOnTA0tKSsLAwbt++Tfv27dm1axdffPGFOavxwdm+fTsdO3YkKioKKysrHBwcgJdL40eMGMHZs2cBaNq0Kbly5cLLy0t7rWlU9t69e9jY2ODr60uuXLn47rvvuHnzJiAzbeLtKV26NHZ2duzfvx94eZaw0WjUOiSurq4opQgLC9PeIwFlRuk7b+lVqVKFCRMmUKFCBVauXIm/vz8A1tbWpKWlUbBgQRYtWkTevHlxdHSUfazvGFtbW+rXr0+OHDlITEwka9asODo6Ai8HuF4XvJtWX8HLQbJixYrRqVMnduzYwYMHD8xZHfEvSX8q0OTJk+nRowcdO3akRYsWjBs3jl9//RV3d3dmzZqFpaVlhuDdtFfaYDCQL18+mjRpwoULF4iMjDRzrcQfpV8pu3btWiZMmEC/fv1YtmwZ169fp2rVqkyZMkUL3kNDQzME7waDgRw5ctC9e3ccHBw4fvy4uaoi/gsSuH/gTF/6uXPnsmnTJhwdHWnVqhVZs2ZFKYVSigcPHhAZGUn27NnR6/U8evSIH3/8kfj4eNzd3bWOggR7b0dqairR0dGEhYXh7e2tdbZSU1OpVKkSd+7cYdGiRVy6dAlXV1f69u1LdHQ0vXv35vz586SkpBAREcGWLVsIDw+ncuXKzJ07l5iYGC14ksBI/NtMwaWp45CamgpA9uzZcXFxYcuWLWzbtg14udrD1DaFhYXh5OSEi4uLGUqd+aXvvG3YsAFfX1/GjBnD/PnziYuLo1KlSkyZMoWKFSuyePFili5dCvwneC9UqBA7duyQwdd3kFKKiIgIKlasqJ3i4uvry8mTJ9Hr9a8E73379kWv12NtbY1SSlslFxMTA8gqq/eFqT0YMmQI+/fvp0mTJsybN4/BgwcTGhrK8OHDuX79Ou7u7sycORMLCwvmzZvH/v370ev1Gdpf02D+06dPzVYf8ar0K2UHDRrEkiVLOHv2LHq9nsWLFzNo0CDWrVtHpUqV8PHxoUiRIkydOpUDBw5ov8Gm92fLlo3ixYtz6dIlkpOTzVYn8Q+9yUPixbshNjZW1a9fX+l0OtWyZUvt8bS0NO3P48aNUzqdTvXp00d169ZNVaxYUa1atcocxRVKqadPn6rAwEDl5uamOnXqpKKiopRSSiUnJ6tNmzapihUrqm7duqlr164ppZRauXKlqlevntLpdKpJkyaqTp06ytXVVS1btkwppdSTJ09U7dq11VdffWW2Oon3l6ktCQ8PVyNGjFC9evVSQ4cOVXfu3FFKKXX69GlVoUIFVatWLbVmzRqllFIGg0H9/vvvqkePHqpVq1YqJibGbOXPrIxGo/bnAQMGqKpVq6rGjRurJk2aqIoVK6ratWurX3/9VSml1Pnz51WHDh2UTqfTvvd/vEb6P4vMxWAwKKUy/i6bGI1G9ezZM7Vv3z7VoEED9emnn6qTJ0+qlJQUpZRS8fHxat68edpvvOlaSim1b98+1bhxY1WnTh0VGxv7dioj/nV//O7u2rVL1alTR23dulUlJiYqpZS6efOmcnFxUTNnzlR37txRCQkJSimlTp06pRo0aKDc3d1VRESEdo2rV6+qpk2bqsqVK6uHDx++vcqIf2z69Omqdu3aavv27erJkydKqZf9PZ1OpxYvXqySkpKUUi9/Yzt27Kjc3NzUjh07MrQBu3btUjqdTvXr109rM0TmJYH7B8705Y2KilKdO3dWOp1O+fj4aM/r9XqllFKPHj1S48aNU9WrV1cdOnRQGzZseOUa4u2Ki4tTK1eufG3wvnHjRi14v379ulJKqVu3bqkVK1ao4cOHqxkzZqiffvpJu9bRo0dVo0aN1Nq1a5VS0oEX/75bt26p6tWrq7p166qmTZsqnU6natWqpU6fPq2UevkZrFWrltLpdKpt27aqXbt2qnHjxqpGjRraAJR4va+//lrVrFlT7dy5Uz179kwppdSsWbOUTqdTS5cu1Trov//+u9bOz5s3z5xFFv/QrVu3tD+n71Rv2bJFLVu2TK1bt05FR0crpZRKSEhQe/fuVQ0aNFCffPKJOnnypPb6pKQk5efnpwIDAzNc/8aNG2rp0qUZ/h2R+Zl+o02Dn+kfU0qpefPmqdq1a6sHDx4opZT67bffVKVKldTw4cNVVFSU2rVrl/rqq69UbGysSk1NVUePHlVbt27N8G+kpKSoo0ePqrCwsLdQI/HfevHihWrdurXy8fFRz58/V0q9vM+VK1dW3t7e6tatW+r48ePad/vYsWPqk08+Ud9//32Ga+zbt0/16NFD6yuKzE0C9w/Mn43WK6VUZGSkat++vSpXrpzy8/PTnk8fmMfGxmoNxB+fE2/OrVu31C+//KKWL1+uDh06pI1+x8fHq1WrVv1t8H7hwgXtWqb7nZqaqtLS0tSZM2dU//79VcOGDdX9+/fffuXEe+uPq3Z69Oihzp8/rwwGg9q4caNq1KiRqlmzpha8X716Vc2ePVt16NBBderUSU2bNi3DDJB4VXx8vGrTpo2aPHmy1jafOXNGVapUSU2aNElFRESoU6dOaQH92bNnVbNmzdTq1avNWWzxD4SEhChXV1cVHByc4fFBgwapcuXKKZ1Op3Q6nerUqZMWwKUP3lu0aKG2bNmiZsyYoVatWpUhsEv/252amvp2KiT+VQkJCWrEiBFq06ZNrzzn4+OjmjdvrpRS6uTJk6pixYpq9OjR2iCPaQWGKbBPT/p1mZ/RaFT37t1Trq6u2oCLaXBm9OjRKjY2VkVFRammTZuqmTNnKqVe3tfXrZwwGAzazLzI/CQTzQck/V7IoKAgbt68ycOHD3FxcaFZs2aULVuWBQsWMGLECO34j3HjxmFpaakltXF2dtaup/5/kjPxZm3dupXAwEAiIiK0pEIuLi6sXbsWJycn7fi2xYsXM3LkSObPn0+BAgVo3bo1ANOnT2fBggUMGTKEqlWrAnD27FkGDhyoZaJPSUkhICCAQoUKmaGG4n1lZWXFnTt3+O2333j27BkNGzakYsWKALRp0wYHBwfmz5+Pl5cXS5YsoUqVKpQtW1Z7v5Jzg1+RlpaWIYnc06dPuXXrFu3atcPR0ZETJ04wYMAAPDw88PLy4smTJ4wYMYKmTZsyefJk3NzcCA4O1o6HE5mXs7Mzjo6OBAQEYGVlRZcuXViyZAmXL19m4sSJ1KhRg/Xr17NlyxYGDx6snRJQp04dfHx88PPzY+LEiQAMHTr0T49rlaSE76bnz59z5swZrly5Qs6cObUj3Fq3bk3t2rXZunUrU6dOZceOHTRt2pRRo0aRN29e4GXbbGlpSUpKyivXlX5d5vPH30ILCwvy589PwYIFOXbsGEWLFmXIkCE0btwYb29vnJ2def78OQkJCYSFhWE0GrG0tCRfvnyvXM/S0hJ7e3uz1Ev89+Tb+YFQ6RJZDBw4EH9/f06dOkVMTAxr166lffv2hIaGUqhQIRYtWkS5cuVYu3Yt33zzDcBrj3qTDvWbt27dOqZMmUKlSpWYN28e+/bto1OnTgwYMIAsWbKglCJbtmy0b98eLy8vrl+/zsiRI3nw4AF2dna0bt2aSZMmcfToUfz8/Hj8+DEWFhbY29vTrFkzSpQoQfPmzQkKCsoQMAnxb9Dr9fj7+zN9+nR++eUXChcurD1uY2NDy5YtGTlyJPb29nh6enL+/HlAEl3+GaPRqAVZvr6+XLt2DScnJ7JmzUpkZCSHDx9mwIABNGnSBG9vb/LmzUvp0qWJj48nLS1Na7NNQbv8P2deSilq1arFokWLsLKyYsGCBaxbt47IyEhatWpFu3btKFWqFJMnT6Z///5ERkYydOhQIiIiyJo1K3Xq1GHBggUMHz5cGxwT7w+lFPnz52fZsmU8e/YMHx8fzpw5Q5YsWQDQ6XS4urry/fffo9PpmDVrFgUKFABeJiOMiIigbNmyZM2a1ZzVEP9A+tOfjEajNtiSmppK9erV2bNnD3379qVx48Z89dVXWvv+6NEjrK2tKVu27CuDMdJ/f4eZa6pfvFmmJXF/3Kvs6+uratSooUJCQrRENHPmzFE6nU5988032lLLe/fuqU6dOimdTicJy8zkt99+UzVr1lR+fn7aEvjXMd3jv1o2Hxwc/MpySyH+LX+VE+HcuXNq+PDhSqfTqfHjx2uPm/JnGI1GtWvXLtW0aVPl6uqaYVuH+I/02w5Gjhypqlatqi2RnDRpkipfvrxycXFRY8eOVY8ePdJee+PGDeXu7q78/f3fepnF/8b0vTp+/LiqV6+eqlGjhnJ1dVU//PCDUkplWN66ePFiValSJdWsWbM/3V4iS6DfTy1btlQ6nU7VrVtXbd++XXv8wIEDqnbt2qpChQrK399fRUREqKNHj6oZM2ao8uXLZ8hVJDKn9N/Z6dOnq169eqlu3bqps2fPKqVe9tUbNmyodDqdmjt3rvbayMhItWDBAvXxxx+rgwcPvuVSizdJZtzfQ3v37iU0NJTU1FQsLCy0WZVnz55x/vx5PDw8aNy4Mc7Ozpw5c4bg4GA6duxIu3btuHz5MuHh4RQuXJh58+ZRvHhxSpUqZeYafVhM9+vIkSPkz5+f9u3bayPl6c/fPXHiBGvXriUgIIALFy7g5OREly5dtJn3MWPGaDPvXbp0oVu3bsDLEVsh/k2ms39fp1KlSgwcOJCGDRuyfft25s2bB4CNjY3WRrVs2ZL+/ftTqlQp7XhJ8ZLp/9W0YurMmTPcvHmTkSNH4uHhAUDHjh1xd3dHKcXHH3+MjY0NAPfu3WPfvn0AlC9f3gylF/9X6WfZqlevzsyZM7Uz2C9cuACAvb29drSTp6cn/fr1Izo6mv79+xMeHv7KNWUJ9PsnNjaWOnXqMGzYMFJSUli6dCkhISEopWjYsCG+vr6ULVuWxYsX07x5cwYOHMiePXsYMWIEnTp1AmTlTWZm+s56enqyfft2Hj9+zKVLl+jWrRu7du2icOHCrFy5koIFC7JixQo6d+7MqFGjGDlyJCtXrqRfv340aNDAvJUQ/y6zDhuIf93Dhw+Vu7u7atiwoTp48KA2q6XUy8zx1apVUytWrFBKvcwwWbFiRTVq1Cj16NEjdePGDVWvXj01efJkbXbHlI1YvH3t27dXAwcOVEr9Z+YlISFB3bhxQ/Xs2VO5ublpyYlcXV3VkiVLlNFoVPHx8SowMFC5urqqFi1ayD0Ub4y3t7f67rvvtL//1Yze1atX1cCBA1+ZGTAlxjIajRkSX36oTN/1W7duaf+fpscmTpyoKlSooGrXrq2uXr2a4T379u1T7dq1UxUqVFCdOnVSo0aNUm3btlWurq5amy/ePT/88IN2nNfx48dV3bp1lU6n004AUSpjtvn58+crnU6XYeZVvD9el2DY5OzZs6p69erKw8NDhYSEaO3H7du31eHDh9Xs2bPV1q1b1ZkzZ7T3yCqMzCn9KraLFy+q5s2bqx9++EElJCSow4cPq44dO6ry5curnTt3KqWUun//vvr6669V69atVfXq1dXAgQMztAFyn98fkpHkPZMnTx7mzZvHV199hZ+fH97e3tSrVw9ra2usrKywtbXl4cOHnDhxgoEDB+Lh4YG3tzd58uQhT548JCYmkpCQoM3umPY/KUkS9dblyZOHiIgIEhMTyZo1Kzdu3CAkJIQ9e/YQFRVFwYIFadWqFbly5eLKlSssW7aMqlWrUqNGDdq0aUNSUhLZs2eXPWzijXjw4AE7d+7k8OHDZMmShU6dOmFpaaklwfmjsmXLMmLECABWrFgBwKhRo7C2ttYSrsls+8vVCykpKXzzzTfodDpGjhyJhYUFycnJdO7cmbNnzxIWFsaWLVsYM2YM9vb2WFhY4OHhQeHChdm5cyc///wz0dHRlC1blu7du/P5558D/Om9EZlH+iSyK1asYNmyZfTr14++fftSvXp1Zs+ezbhx41i8eDGWlpZ06dIFW1tbLYHsiBEjaNiwIZUqVTJzTcS/LX1iys2bNxMTE4OFhQWDBw8GwM3NjSVLluDp6cnChQsBaNmyJSVKlKBEiRLUq1cvw/WkPcic0t9nvV7PixcvsLOzo3bt2mTNmlXr0y9cuFBLPtmqVSsmTJiAtbU1CQkJ2Nvba9eQ+/x+sVBK1si8b1JTUzl58iQTJ07Ezs4Ob29v6tati62tLXPnzmXVqlUYjUbatm3L8OHDtSyTN27coGfPnnTu3Jnhw4ebuRYfLtMgyc6dO/Hx8aFkyZIUK1aMY8eOkZiYiJOTE9WqVcPHx0dbQh8eHk7fvn2pVasWU6dOxcrKSuvIpb+mEP8GU0cgLCyML774AoARI0bQpUuXDM+/zvXr11mwYAEHDx6kW7duTJo06a2V+12RkJBAly5duHv3LqNGjWL//v3Uq1ePvn37cvPmTby8vIiNjcXb25s2bdpoS+NNHj9+jI2NDba2tjg4OADSeXsXpA/a9+/fz+nTp1mzZg358+enY8eO9OrVC3t7e44dO8b48eNJTk7O8L1L3+aD3PP3SfrPxrBhwzh8+DAGg4G0tDRq1qzJqlWrtHt9+vRpvLy8cHJyon379iQkJGBnZ0ePHj1kID+TS/+d9fX15dKlS9y/fx9HR0d27NiRIfv70aNHWbhwIVeuXGHWrFk0b95ce87U55O+3/tHWvT3TFpaGjY2NtSuXZuZM2fy5MkTvv32W3755RcMBgPNmzfn448/Bl5mHc2WLRsA9+/fJzQ0FIPBoB3XJMzD1Mg2aNCAvn37kpSURGhoKImJiXz22WdMmzaNOXPmUKBAAW1/Y4kSJciRIweJiYlao5++AycNt/g3WVpakpaWRqlSpVi3bh0ACxYsYO3atdrzf7bnXafTMWLECD7++GM2btxIXFzcWyv3u8BoNOLo6Mj3339Prly5mD9/PmfOnKFo0aJYWFhQpkwZFi5cSPbs2Vm0aBE7d+4kNTUV+E8OjNy5c+Pk5KQF7UqO7sy0THMnKt3JL4MGDcLHx4ezZ8/i5uZGUlISAQEBrF69muTkZGrWrImfnx/29vYsWbJE+w7+8fQXuefvD9Nnw9PTk99//x1PT08tP9GxY8fo37+/9v13d3dnyZIlxMbGMmfOHO04QQnaM7f07fSQIUPYunUriYmJ2NraEhERwcqVK0lMTNReX6tWLYYPH0758uUZNWoUO3bs0J4z9fmk7/f+kaXy7xGDwaAtjfHz8yMiIoLk5GTOnTvH4sWLsbGxoX79+vTv35+kpCRmzpxJSEgIefLkITo6mhs3bjB8+HAaNmxo5poIACcnJ4YMGULPnj2JjIzE1tY2w5FtBoNB66jdvHmT+Ph42rRpIw21eKtKly7NokWL6NOnD2vXrsXCwoKuXbv+5bJ5nU7HlClTyJo1K87OzmYodeZmCt6dnJyIiorCzs4uQ7KxsmXLsnTpUoYMGaItiW3dujU2Njav/T+XNiHzefz4Mblz536lg71ixQpOnz7NpEmT+PTTT7G3tyc6OloL1JRS9O7dWwveR48eja+vL+7u7uh0OnNWSbxhO3bs4OLFi4wbN4769euTPXt2Hj58yNatW/ntt9/o3bs3q1evxsrKiqpVq7Jt2zZ+/PFHPvroI+nXZXLpV1Tcu3ePR48e4efnh5ubGwkJCYwdO5bAwEAcHR3p0KGDNghTq1YtjEYjM2bMICEhwZxVEG+JLJV/Dw0bNowzZ87QrFkz3NzcuH79OiEhIVhZWTFlyhTq1avHzZs3+fnnn9m9ezdGo5EyZcrg4eFB69atAVlil5mZGnjTPYqNjSU4OJjt27fzzTffUK1aNXMXUbznTJ+9mzdvMnr0aJycnDh79iwAjo6ODBs2TFtCL23JP5f+/+r+/fscO3YMpRTLli0jNjYWLy8v+vTpo3Xwrl27xpAhQzAajQwZMuS1y+ZF5rN27Vr27dvH7Nmzta1qJiNHjuTWrVts2rQJBwcHUlNTsbGxISEhgX79+nHt2jUGDRqkLZv/5ZdfiI6OpkOHDmaqjXhT0gdzALNmzSI0NJQ9e/Zga2tLeHg4Xbt2pWHDhuTOnZvly5dTp04dli5d+tptctIWZ35+fn7cvXuXa9eu8f3332vtQ2RkJEOHDuXevXt4eXllCN7hZc4Z09ZJ8X6TwP09c/z4cUaMGMHgwYPp2LEjDg4OpKWlER4ejqenJwaDgcmTJ1OnTh2srKyIi4vTkhvJXsjM7/Tp0yQmJlK/fn0Arl69yp49ewgMDGT06NH06dPHzCUUH4ro6Gi6dOlCkSJF6Ny5M6VKlSIyMpKvvvoKS0tL+vXrR9euXQFpU/5bffv2pVSpUvj4+ADw5MkT2rVrx+PHjxk2bBi9evXSVlddv36d/v37ExcXx44dOyhdurQ5iy7+hsFgYMuWLcTExNC1a1dy5sypPZecnEzv3r1JSUlh8+bNKKWwtrbWAriHDx/Stm1b7Ozs6NChA3369Mmw51W+Z++P9EH7pUuXKF++PJMnT2bnzp2cOnWK+Ph4Jk+ejF6vZ+7cuSil6NWrF7du3aJ8+fL06dMHDw+PV7ZPiMzr9u3bDB48mBcvXpA7d242b96MtbW1NngXGRmJp6cnd+/eZfjw4bRr1+6V7Q+yp/39J0vl3zMxMTHEx8fj4uKCg4MDRqMRa2trPvroIxYsWMCAAQNYsGABaWlp1K1bV1ummn6fnfzwZ07x8fGsWbOGffv24ebmhqOjI7du3SItLY2xY8fSq1cvQDpv4s0ydQyOHTtGQkICPXv2pFGjRgCUKVOGEiVK4Onpib+/v5b1+q+WzYuMXrx4wcWLF8mVKxfwMtlozpw52bBhA507d2bRokUA9OvXD6UURYsWZcWKFVy5ckWC9kwuKSkJBwcH2rdvj16v1wbLIyIiKF68OPb29lSrVo0VK1Zw48YNypUrl2GFVf78+cmTJw/Xr19nzZo15MiRg06dOmkBnny/3g/p8x10796dmJgYtm3bhouLC46OjtjZ2REaGsq9e/fo06cPOXPmxNLSklKlSvHs2TPi4uKIj4+XoP0dU7JkSWbOnMns2bM5d+4cCxYsYMyYMdjY2JCWlkahQoXw9/fHy8uLOXPmkJycTJ8+fbRBXJBtUR8CaeXfM6aOgCmBRfqAvFSpUtSvX5+rV6+yePFiDh48qD0viSwyvxw5cuDp6UndunVJSkoiLCyMRo0aMWPGDAnaxVtjaiMePXpESkoKH330EfDys2cwGChevDiLFy8mOTmZ5cuXa4mz5HP5klKK9Avd0ifxS0tLw9bWlkKFCvHgwQMArdOWN29eNmzYQO7cufH392f69OnMmzePWbNmUaBAAdq2bfvK9UTmsX37djp27EhUVBRWVlbab/XIkSMZMWKEttWkadOm5MqVCy8vL+21pgH1e/fuYWNjg6+vL7ly5eK7777j5s2bAMjiyfeDwWDQ2tjdu3fz6NEjevTogVKKLl26MG7cOAD27t1Lrly56NChg3bCx+3bt2nfvj27du3StiqJzMlgMLz28SpVqjBhwgQqVKjAypUr8ff3B9COTS1YsCCLFi0ib968ODo6ZgjaxYdBelLvqD/rnJUrV45ixYoxc+ZM7t+/j5WVFampqVhYWGBra0uRIkUoUqQIkZGRPH/+XAL1d4xOp8Pf35+dO3fy008/8eWXX2pns0rQLt6m7Nmzk5KSwvXr17XHTMcQlihRgs8//5y4uDiWLl3Kpk2bzFjSzCUhIUE7psdgMGT4zlpbW2NtbU3VqlUJCwvj/v372nJpvV6vBe/Ozs4EBwfz7bffUqBAAZycnLRrSBuQ+aSmphIdHU1YWBje3t7aoExqaiqVKlXizp07LFq0iEuXLuHq6krfvn2Jjo6md+/enD9/npSUFCIiItiyZQvh4eFUrlyZuXPnEhMTw/79+wEZdH9fmGba586dy6ZNm3B0dKRVq1ZkzZpVG/R78OABkZGRZM+eHb1ez6NHj/jxxx+Jj4/H3d0dR0dHQAZzMqv02yA2bNiAr68vY8aMYf78+cTFxVGpUiWmTJlCxYoVWbx4MUuXLgX+E7wXKlSIHTt2yODMB0qGat5BaWlp2ijblStXiIuLw2g0Ur58eQoVKkTXrl3x8/PDx8eH6dOnU6RIEeDlDNmlS5eoU6cOo0eP1hp38W4xJZ+ytbXNEKxLh128CX82INSyZUuCgoKYP38+VapUwdnZOcNJB8+ePaN06dLY2tpKwsT/b/ny5QQGBrJ3715y5Mihdd569+7Ns2fPKF++PJ9++impqamkpKRgNBq1gMz0/5o3b142b97Mr7/+St68ealZsyYgexszMxsbG7744gvs7e1ZuHAhI0eOZP78+RQoUIAuXbqQNWtWfH19mTVrFpMmTaJ3794YjUaCgoLo1KkTRYsWJSkpiSdPnuDp6UmpUqWIj48nW7ZsPH782NzVE/+yuLg4QkJCePjwIR999JHWVzMajVhZWVGgQAGqVavGjh07GDx4MHq9ngsXLjB8+HBq1aqlXUfag8wn/TaIgQMHcubMGXLkyIGlpSX79u1j69at+Pn5UadOHSZNmoSvry+LFi3C0tKSQYMGYW1tjVIqw+CM3OcPiwTu75j0R76NHz+eEydOaKP3JUuWpHPnzvTo0YO4uDgCAgLo3LkzvXr1wsLCgrCwMA4ePMiUKVMy/BBIwPduSd9Iy70Tb1L6pFjHjh3j6tWrFClShFKlSlGrVi369+/P5MmT6dGjBwsWLKBEiRIAXLhwgTt37tCxY0fat28vy/mANWvWsGjRIrp3755hJuzKlSs8efIECwsLtm7dysaNG3FyciIxMREvLy9q1KhBqVKlKFasGBUqVCAlJQVnZ2datWol2aLfIdmzZ6d169YYDAaWLFmSIXhv1aoVSimmT5+Or68vkydPpm/fvjRo0IADBw5w+fJl8uXLR9WqVWnatCnwMjGpnZ2dltdAOvDvB6PRiLOzM99//z2jRo3i7NmzTJw4kenTp2srKG1sbBg9ejQAhw4domjRovj4+NCpUyftGtIeZE6m7+i0adO4ePEiX375JQ0bNiRbtmzMnj2b7777josXL1K5cmUqVqzIhAkTmD17NgsWLCApKYmRI0dm+J7Ld/7DI1nlMzHTD/HrfpA9PT05c+YM7du3p1y5cjx9+pSVK1dqR0Z4eXmxefNmtm7dysWLF7GwsKBo0aJ06tSJnj17mqlGQoh3hanzd+vWLQYOHKidEZuYmEjWrFlp27Yt48aNIzAwkG+//Ra9Xk+VKlWwtbXl9u3bxMbGsn79ekqVKmXmmpjfmjVrmDlzJoMHD6Z79+6vnF1vWkV1+/Zt7t+/T0REBMuWLSM+Ph5nZ2diY2OBl3ku7O3tCQoKomjRouaoiviHwsLCiIqK4urVq+h0OsqWLUu+fPl4+vQpW7duZfHixeh0Oi14T0lJYefOnUyfPp2KFSvi7e1NhQoVgP/0BdLS0rCwsOD8+fMEBARw69YtgoODKVSokJlrK/6v/njkG/znfkdFRTF8+HAuX75Mz549tf3t6QPzuLg4bG1tZTLmHfL06VN69+5N+fLl8fb2xtHRkd9//50+ffrw2Wef0a9fP2JiYtDpdGTLlo1z585pAzPSfxcSuGdi0dHR2hmO6YP3ffv2MWnSJEaNGkWrVq20JDexsbHaOa/Tpk2jffv2vHjxgrt372JnZ6clPQJp3IUQf+/hw4d88cUXFCtWjF69elG3bl1u3bpFt27dePbsGbt376Zo0aKcP3+eDRs2cOnSJezt7SldujRDhgyRoJ0/D9rTZws3tcWmdj4uLo7BgwdToEABvL29efToEadPn+bSpUu4uLgwYMAAc1ZJ/I2tW7cSGBhIREQEaWlpALi4uLB27VqyZMnC8+fP2bx5818G7+7u7gwZMoSqVauilOLcuXMMHDhQOz4uJSWFgIAAypYta86qiv9B+qA9KCiImzdv8vDhQ1xcXGjWrBlly5YlMjKSESNGcPXqVbp3764F73q9/pWs8bLqInNKv70V4O7du7Rs2ZJx48bRtWtXTpw4wYABA/Dw8GDcuHE8efKEvn370rRpUyZPnoyFhQWxsbHaSSPiwybrFzOp9evX8/XXX7Ns2TIaNmyYYeY9PDycxMREqlevrgXtaWlp5MqVixUrVtCmTRs2b95MixYtyJIli/bDLke+CSFeZ/369TRu3PiVgcJff/0VpRT9+vWjdu3awMuBw5SUFPz8/LC0tOTOnTt8/PHHfPzxx8TGxpItWzaUUtjZ2ZmzSpnC3wXt0dHRHDlyhBYtWmBvb691up2dnXF1dWXXrl18+eWXuLm54ebmluHaMviaOa1bt46ZM2fSunVrhg0bRrly5Vi5ciU1a9YkS5YsKKXIli0b7du3B2Dx4sUZls23bt0aCwsLvvzyS549e8ayZcvInTs39vb2NGvWjOjoaMqVK0ebNm1k1cU77I97nc+dO0fOnDmxt7dn7dq1rFq1igULFuDh4cGiRYsYNmwYa9euxdLSkrFjx772qDcJ2jMf05HMAL6+vrRv354CBQqQNWtWIiMjOXz4MMOGDaNJkyaMHTuWvHnzkitXLuLj47UVNoAWtMvgjJBf/Uzo9u3b2hEQPj4+HDx4EPhPo5yYmIhSCnt7e+A/DYNerydPnjy0b9+eixcvcuPGjQzXlSPfhBB/ZFq2++zZM+0xUxtx+/Zt0tLSqFq1KgCzZ89m2bJl+Pj40KRJE0JDQxk6dCj37t0DXgactra2ErTznwBu0KBB9OzZ85Wg/f79+3z++eccPXqU1NTUV95ftGhREhISePTokfY+Exl8zZyOHj2Kv78/3bt3x9PTk6ZNm1KkSBGmTp3Kp59+CqANwmfPnp127drh5eXF9evXGTlyJA8ePMDOzo5WrVoxceJEWrduTe7cuYGXJ8ZMnTqVgIAAhg8fLkH7Oyb9xAn8p42dPn06Fy5cYPLkyaxfv17LFp6Wlsa5c+dISEigQIECzJ8/H1dXV1atWsXUqVPNVg/xz6U/NWTUqFHs2LGDK1eu4OTkhIeHB8HBwQwZMoRPPvmEcePGaQPnt2/fxsHBgfz5879yTem/C/nlz4QKFiyIi4sL8PL4h/Hjx2tHvgCUKFECg8FAYGAgKSkpWFpaauf/wssMtnZ2dtqSOiGEeJ3Ro0eTI0cO1q1bp22jSR8g2tnZkZaWhqWlJfPnz2fNmjV8+eWX2vFEdnZ23L17l+TkZEA6FSY3btzA398fOzs7qlSpQo4cOYCXK6NMQXuPHj0oWbIkQ4cOJVu2bK9cw5SJ/8iRIwAZ9sHK/3PmYgrGjhw5Qv78+bVZNUBbKq/X6zlx4gRr164lICCACxcu4OTkRJcuXbTgfcyYMVrw3qVLF7p16wb8+fGv4t2wd+9eQkNDtaN5TZ+XZ8+ecf78eTw8PGjcuDHOzs6cOXOG4OBgOnbsSLt27bh8+TLh4eEULlyYefPmUbx4cdmClMmZvq+mNvvMmTPcvHmTkSNH4uHhAUDHjh1xd3dHKcXHH3+snRZ079499u3bB0D58uXNUHqR2clS+UzGaDRib2/P2LFjuXbtGvny5SMlJYUJEybg5+dHo0aNaNasGUFBQWzatIkCBQrwxRdfaEF7dHQ0169fp0yZMtjb28uyGiHEaw0bNoyTJ0/SrFkzihYtirW1NWFhYYSEhNC2bVuKFi1KkyZNWLVqFS1atODBgwdMnz4dDw8PbYvO48ePcXJyInv27GauTeaSP39++vTpw+rVq5kzZw7Zs2fH1dUVGxsb7t27R48ePShYsCDTp0+nePHiwKtLILNmzQog+xrfAab7durUKfLmzUupUqW0+5mSkkJ4eDjTp0/n/PnzJCUlAeDv78/gwYMZMmQI7dq1w9LSkjlz5tC/f382btyo3X+Q00PeZdHR0UyePJls2bJhY2ND7dq1tSAtMTGRO3fu0KRJExwcHDh+/DgDBw7Ew8MDLy8v4uPj8fb2pn79+kyZMoWCBQuydevWDJ8NYX6m73pYWBglSpTA0tJSe2zSpEns2rWL7NmzU7VqVe23snz58nTt2pXnz58zbdo0tm7dSqFChYiIiOD69esMHz6cevXqmblmIjOSX4NMxvQDXbBgQW3PaYsWLXBwcGDcuHGEhoZiZ2fHokWLyJMnD3PnzmXq1KncuHGDw4cP891333HgwAE+//xz8ubNK0G7EOIVt2/f5vjx4zRv3pzGjRtrW2127NhBQEAAGzZsIDo6mo8++ojPP/+cmJgYypYty2effaZlL758+TLnzp2jbNmy0pH8g+zZs9O5c2f69evHw4cPmTx5Mrdv3+bu3bt0796dQoUK/WnQHh8fz4ULF7C0tGTjxo20adPGjDUR/408efJw9+5dEhMTsbCw4MaNGwQEBDBw4ECOHz9Ozpw56dSpE0OGDKFOnTosW7aMEydO4OTkRJs2bRg6dKh2rrt4P+TJk4d58+ZhYWGBn58fv/76q7YKw8rKCltbWx4+fMiJEye0oN3b25s8efLw0UcfkZiYSEJCgjZ7a/psSF7pzMM0QPfNN9+wcOFC7bHk5GQ6d+5MkSJFePz4MVu2bMmwOs3DwwNfX1+6du1KTEwMv//+O3nz5sXX15f+/fsDstpGvEqyymdihw4dYsyYMcyfPx8LCwvGjx+vJYVq3LgxDx48YOTIkZw7d057T+7cuenduzd9+/YFJJGFEOJVt27domXLlri7u/Ptt98SFxfHqVOnqFy5MqtXr+b777+nR48eeHl5kZyczLRp0/j5559xdXWlTp06PH36lHPnzvHgwQPWrVunnSUtMkpISGDLli34+/vj7OxMQkICJUqUYObMmRQpUgR4NWgPDg4mMDCQNWvWaMeBSSK6zM10D3fu3ImPjw8lS5akWLFiHDt2jMTERJycnKhWrRo+Pj7aEvrw8HD69u1LrVq1mDp1KlZWVhkyhctv9/sjNTWVkydPMnHiROzs7PD29qZu3brY2toyd+5cVq1ahdFopG3btgwfPlzb63zjxg169uxJ586dGT58uJlrIf5KQkICXbp04e7du4waNYr9+/dTr149+vbty82bN/Hy8iI2NhZvb2/atGmjrbowefz4MTY2Ntja2mor2qTdF68jnwgze/jwYYa/G41GbSS1QYMGfPLJJ/j6+lKtWjW+/PJLHBwcGD9+PKGhoRQoUICgoCBWrVrFl19+ib+/PwEBAVrQbjQa5YdfCPGK0qVLM2DAAE6fPs3IkSNp3LgxZ86cIVeuXAwZMoSOHTsSFBTEokWLyJIlC1OnTmXkyJHo9Xq+/fZbDh06RL58+SRo/xuOjo60b9+eoUOHYjAYiI+Pp2vXrhmO5UwftG/YsIGAgAB69uypBe0gS6UzO9M9bNCgAX379iUpKYnQ0FASExP57LPPmDZtGnPmzKFAgQLo9XrgZa6aHDlykJiYqN3f9JnC5bf7/ZCWlqYtkZ85cyZPnjzh22+/5ZdffsFgMNC8eXM+/vhjAO3cboD79+8TGhqKwWCgYsWK5qyC+BtGoxFHR0e+//57cuXKxfz58zlz5gxFixbFwsKCMmXKsHDhQrJnz86iRYvYuXOnlpDUtPoid+7cODk5aUG7JCAVf0b2uJvR2rVr8fX1pXv37lSvXh0PDw/ti2rKPNy6dWvOnDnDrl27tHPZ58+fz4QJEwDw8PCgdu3a2lFNJjJSJ4R4HVPbMGrUKB4+fMiePXvInz8/9erVw9HREUdHR7y8vAAIDg4GYMiQIQwcOJDevXtz7do1ChYsiL29vbZsXvw5R0dH2rVrB0BAQABLly6lUKFCuLi4aMcEmYL2BQsWMHz4cAYPHgxIO/6ucXJyYsiQIfTs2ZPIyEhsbW0znLNuMBi04PzmzZvEx8fTpk0bCdLfUwaDQfuO+/n5ERERQXJyMufOnWPx4sXY2NhQv359+vfvT1JSEjNnziQkJIQ8efIQHR3NjRs3GD58OA0bNjRzTcTfMQXvTk5OREVFYWdnR3h4uPZ82bJlWbp0KUOGDNGW07du3RobG5vXtvPSJog/I0vlzeTcuXP07duXxMREcuTIgb29PdWqVaNfv34UK1Ysw3FKnp6e3Llzh5CQEAB27NjB/PnzSUlJYfr06TRu3Nhc1RBCvKNiY2Pp2LEjer2emJgYWrVqxaBBgyhZsiQAMTExLF68mE2bNtGzZ0+6d+9O4cKFzVzqd5dp2fzSpUvJly8f06ZNw83NjWfPnrF+/XoJ2t9jpoF40z2NjY0lODiY7du3880332gnCIj307Bhwzhz5gzNmjXDzc2N69evExISgpWVFVOmTKFevXrcvHmTn3/+md27d2M0GilTpgweHh60bt0akPYgs0p/X+7fv8+xY8dQSrFs2TJiY2Px8vKiT58+Wo6Ca9euMWTIEIxGI0OGDHntsnkh/ooE7mYSExODv78/Bw4cIDExkTZt2hAaGoper6dhw4Z4enpqe+EiIyPp0KEDnTt3ZtiwYQCEhIQwc+ZM4uLiCA0NpVChQjJCJ4T4S+n3zT58+JBjx45RsWJFNm/ezOrVq/nss88YOHCgtvzdFLxv376dNm3aMGTIkNeeLSv+mfTBe/78+fH29ubSpUsStL/HTp8+TWJiIvXr1wfg6tWr7Nmzh8DAQEaPHk2fPn3MXELxJh0/fpwRI0YwePBgOnbsiIODA2lpaYSHh+Pp6YnBYGDy5MnUqVMHKysr4uLisLe3x8LCQvY6v0P69u1LqVKl8PHxAeDJkye0a9eOx48fM2zYMHr16qWtvrh+/Tr9+/cnLi6OHTt2yHYz8V+RpfJmkidPHry8vLCxsWHjxo1cu3aN4OBgAgICCA0N5aeffqJXr17Uq1ePihUr8umnn3L+/Hnu379P4cKF+eyzz0hJSQGQWTAhxN8yzfolJCTw4sUL9Hq9lrF8/PjxAKxevRoLCwsGDBhA6dKlyZMnD8OGDSMxMZGffvpJEiT9j0x73gG+/fZbhg0bxosXLxgxYgSDBg0CpJP+PomPj2fNmjXs27cPNzc3HB0duXXrFmlpaYwdO5ZevXoBcs/fZzExMcTHx+Pi4oKDgwNGoxFra2s++ugjFixYwIABA1iwYAFpaWnUrVsXZ2dn4D9Z42Wvc+b34sULLl68qB3dmZqaSs6cOdmwYQOdO3dm0aJFAPTr1w+lFEWLFmXFihVcuXJFgnbxX5PA3Yxy5crFoEGDsLCwICgoiLlz5zJv3jy6d+/OmjVrWL58Od9//z2DBg3C3d2dLVu2cPr0aS1QN3UAQX74hRB/zhS0h4WF8fXXX3Pr1i1iY2OZOHEiX3zxBVZWVhmCd0AL3nPnzo2Pjw9Go1HOFP8XmIJ3g8HAihUrGDNmDP369QOkHX/f5MiRA09PT5KTk3n06BHR0dE0atSIBg0aaGc0yz1/v5lmzRMTE4GMAXmpUqWoX78+W7ZsYfHixaSlpdG0aVMsLCy0lVGyktL8TPfMdC/Sf2fT0tKwtbWlUKFCPHjwAAAbGxvS0tLImzevFrz7+/sTHR2Nvb09z58/Z+TIkVr+C2kDxH9DAnczMwXvAEFBQbx48YIVK1Ywc+ZMPDw8CA0NZdasWVSoUIGsWbOyaNEiqlSpQtGiRTNcR770Qoj0TJ0BpRRWVlbcvn2brl27Urp0aZo3b06WLFn4+OOPtb138HLm3WAwEBwcjJWVFT179qRs2bISsP/LTMF7zZo1cXFxAaTz9r7S6XT4+/tja2ub4bg3kHv+Pvmze1muXDmKFSvGzJkzKV26NIULFyY1NVU7+qtIkSIUKVKEyMhInj9/LoF6JpSQkEC2bNlQSmE0GjP8ZpqWv1etWpUffviB+/fvU6hQIaytrdHr9Vrw3qVLFy3Z68iRI3FyctKuIW2A+G/IHvdMIi4ujoCAAIKCgqhRo4Y265WQkEBERARz5szh1q1bPH78mO+//57KlSubt8BCiExp8+bNdOjQIcNjz58/Z8SIEaSkpDBhwgRcXV2Bl+3LtWvXiIiI4KOPPqJSpUoAzJo1i8DAQDp16sTEiRMzBBvi3ycB3PstfW4Judfvn7S0NC2Au3LlCnFxcRiNRsqXL4+zszNBQUH4+fnh7u7O9OnTKVKkCACPHj1i2rRp5M6dm9GjR8spHZnQ8uXLCQwMZO/eveTIkUN7vHfv3jx79ozy5cvz6aefsnfvXnbv3s327dtfmViDl338X3/9lbx581KzZk0gY7sgxD8lM+6ZhLOzc4aZ9969exMYGIijoyPly5dnyZIlnDt3jhcvXkjQLoR4rRkzZrB7926qVKlCqVKltMdTU1O5desWrVq10oL2Xbt2sXHjRs6cOQNA/vz5GTt2LC1atGDcuHHY29vTokULCdrfAgnk3m/pO+dyr98v6Y98Gz9+PCdOnNCWTJcsWZLOnTvTo0cPbXKmc+fO9OrVCwsLC8LCwjh48CBTpkzRgnYZ2Mk81qxZw6JFi+jevTvp5zivXLnCkydPsLCwYOvWrWzcuBEnJycSExPx8vKiRo0alCpVimLFilGhQgVSUlJwdnamVatWMoAn/mcy457JpJ95r1WrFqtWrXrtiJx86YUQf3Tr1i2ePn2qJUIyuXv3Lt27d6dUqVI0bNiQs2fP8sMPP+Dk5KQtn580aRJNmjRh1qxZZqyBEEJkTqYZ0tfNlHp6enLmzBnat29PuXLlePr0KStXriQyMpKhQ4fi5eXF5s2b2bp1KxcvXsTCwoKiRYvSqVMnevbsaaYaiT+zZs0aZs6cyeDBg+nevbuWNNDEtMri9u3b3L9/n4iICJYtW0Z8fDzOzs7ExsYCaMc9BwUFvXYmXoj/lgTumVD64P3jjz/W9sUIIcTrpO9Imv4cFhbG3r17GTp0KAAzZ85kzZo1AGTJkoUOHTrQtGlTqlatCkD37t2xsLDgu+++02aQhBBCvBQdHU2+fPmAjG3uvn37mDRpEqNGjaJVq1baoGlsbCz9+vXj2rVrTJs2jfbt2/PixQvu3r2LnZ2dltQMZDImM/mzoN2U5DX9vTJ9DuLi4hg8eDAFChTA29ubR48ecfr0aS5duoSLiwsDBgwwZ5XEe0R6Z5mQadm8wWBg3bp1hIaG4uHhYe5iCSEyqePHj2v75iwsLEhLS+Obb77h0KFDJCUlMWbMGCZMmEDNmjXR6/W4uLiQN29ebRn8hQsXePToEY0aNcqQeEcIIQSsX7+er7/+mmXLltGwYcMMM+/h4eEkJiZSvXp1LWhPS0sjV65crFixgjZt2rB582ZatGhBlixZtGzicuRb5vN3QXt0dDRHjhyhRYsW2Nvba4M3zs7OuLq6smvXLr788kvc3Nxwc3PLcG0ZnBH/BvkEZVLOzs4MGTKEtWvXStAuhPhT9+/fp1+/fnz55ZfAy1mhhw8f4u3tTfXq1Vm5cqW2/L1BgwZ4eHhQuHBhTp48SVhYGAcOHGDJkiU8f/6cTp06SbIcIYRI5/bt2/j7+wPg4+PDwYMHgf/kLkhMTEQphb29PYB2VrterydPnjy0b9+eixcvcuPGjQzXlSPfMpd169Yxc+ZMBg0aRM+ePV8J2u/fv8/nn3/O0aNHSU1NfeX9RYsWJSEhgUePHmnvM5HBGfFvkU9RJpYrVy7c3d2Blz8EQgjxR46Ojnz66ads2rSJMWPG0Lp1a3bs2EHJkiWZMGEC7u7uBAYGMmfOHOBlcqzffvuNfv360aJFCyZNmsSdO3cIDAykePHi5q2MEEJkMgULFtSObbS2tmb8+PHs379fe75EiRIYDAYCAwNJSUnB0tJSO98bXp7rbWdnR86cOc1SfvH3bty4gb+/P3Z2dlSpUkXLIJ+WlqYF7T169KBkyZIMHTqUbNmyvXKNatWqAXDkyBGADKvXZHBG/FskcH9HyEidEOJ1cuTIgY+PD7Vr12bPnj3Y2dnRtm1bAMqWLcukSZNwd3dn5cqVzJ07F4DatWszefJkJkyYgLe3N0FBQeh0OnNWQwghMh2j0Yi9vT1jx44lT5485MuXj7x58zJhwgQOHDgAQLNmzXBxcWHTpk18//336PV6LU9IdHQ0169fp0yZMtjb2yNppTKn/Pnz06dPH7Jly8acOXM4d+4cqampWFtbc+/ePbp3706BAgWYPn06JUuWBHjlXmbNmhV4OekmxJsiyemEEOIdl5ycTPPmzdHr9Tx+/Jju3bszceJE7flr167h6+vL6dOn6dOnD97e3mYsrRBCvFsSEhKYM2cOMTExVKhQge+//54XL14wc+ZMPDw8uH//Pn369OHBgwe0atWKnj178uDBA44ePcq6deuYOHEiXbp0MXc1xF9ISEhgy5YtLF26lHz58jFnzhwcHBzo0aMHhQsXxtfXV1uVlj45YXx8PHfv3iVnzpzExcVRqVIlM9ZCvO8kcBdCiPfATz/9hJ2dHdu2bePnn3+mW7duTJo0SXveFLyfO3eOTp06MXnyZDOWVggh3i2HDh1izJgxzJ8/HwsLC8aPH09KSgp+fn40btyYBw8eMHLkSM6dO6e9J3fu3PTu3Zu+ffsCvPYoOZF5mIJ3f39/nJ2dSUhIoESJEsycOZMiRYoArwbtwcHBBAYGsmbNGipUqABIIjrx5kjgLoQQ7xhTspyUlBQSExMznDEbFhbGwoUL+fnnn1+Zeb958yZjxowhMjKSn3/++ZWzaYUQ4kP28OFD8ufPr/3daDRiYWGhBWoTJ07k9OnThISEcOjQIXx9fUlKStJm3vV6PadOneLOnTvky5ePfPnyUb58ee1aEsxlfqbgfe3atTx48IA5c+bwySefYGlpmeEexsfHs2HDBhYvXsyAAQMYPny4mUsuPgRyHJwQQrxDTEF7REQECxcu5MqVK5QoUYI2bdrg4eFBqVKl8PT0BCA4OBgrKyvGjx/PvXv3cHZ2ZsWKFaSlpUnQLoQQ6axduxZfX1+6d+9O9erV8fDw0II0U7vbunVrzpw5w65du7Rz2efPn8+ECRMA8PDwoHbt2tSuXTvDtSVof3c4OjrSrl07AAICAli6dCmFChXCxcVFy11gCtoXLFjA8OHDGTx4MCD3Wbx5MuMuhBDvCFOn4ObNm/To0QMbGxty585NZGQk2bJlY+jQoXz22WdYW1tz8+ZNlixZwk8//UTt2rVJTEzE2tqaVatWYWdnZ+6qCCFEpnHu3Dn69u1LYmIiOXLkwN7enmrVqtGvXz+KFSuWoc309PTkzp07hISEALBjxw7mz59PSkoK06dPp3HjxuaqhvgX/XHP+7Rp03Bzc+PZs2esX79egnZhFhK4CyHEO+TBgwf06tWLwoULM3jwYCpWrMjZs2fp06cPOp2O7t2706pVK6ysrLh16xbLly/nxIkTWFhYsGLFCskeL4QQfxATE4O/vz8HDhwgMTGRNm3aEBoail6vp2HDhnh6elKgQAEAIiMj6dChA507d2bYsGEAhISEMHPmTOLi4ggNDaVQoUKyl/09kD54z58/P97e3ly6dEmCdmE2slReCCHeIaGhoVhYWDBo0CDc3d0BOHr0KNbW1kRFRbFw4UKUUrRq1YrSpUszbtw49Ho9tra25M6d28ylF0KIzCdPnjx4eXlhY2PDxo0buXbtGsHBwQQEBBAaGspPP/1Er169qFevHhUrVuTTTz/l/Pnz3L9/n8KFC/PZZ5+RkpICQOHChc1cG/FvcXR0pH379gB8++23DBs2jBcvXjBixAgGDRoESNAu3i4J3IUQ4h1y5coV9Ho9rq6uwMtlmmvXrmX27NkUL16cbt268d1332EwGGjdurUE60II8Q/kypWLQYMGYWFhQVBQEHPnzmXevHl0796dNWvWsHz5cr7//ntt0HTLli2cPn1aC9RNAR5IMPc+MQXvBoOBFStWMGbMGPr16wfIfRZvnyyVF0KId8j06dPZunUrv/76K9evX2fWrFmUKVOGwYMHkzdvXgYPHsyvv/6Kra0tTZo0Ye7cueYushBCvDPi4uIICAggKCiIevXqsWLFCgD2799PaGgoISEhVKhQgYiICBwcHFi9ejVFixY1c6nFm/b06VMiIyNxcXEBJGgX5iEz7kIIkQmZshgrpTAYDFo2206dOvHpp5+SNWtWDh8+THx8PC1btqRgwYIA6PV6atSoQZEiRejZs6c5qyCEEO8cZ2dnbRl0UFAQvXr1YvXq1TRu3Jjq1avTtWtX5syZg5WVFVFRUcTGxkrg/gFwcnLCyckJkKBdmI/MuAshRCZjCtrv3bvHunXruHz5MqVLl6ZHjx6UKFECgBcvXtC8eXOqVq3K3LlzMRqNnDlzBh8fH4YOHcrnn39u3koIIcQ7LP3Me82aNQkMDNSeS0hI4Ny5c7x48YKmTZuasZRCiA+JzLgLIUQmYjQatYzwvXr1wsHBAXt7e86ePUv37t2112XJkoW8efNy6dIlHjx4wM2bN9mwYQPW1tZUrVrVjDUQQoh33x9n3vv06cOqVauwsLDA0dGROnXqaK+VGVghxNsgM+5CCJHJxMTE0KNHDwoWLMjw4cOpWLGi9lx0dDRJSUkUL16c1atXM3v2bIxGI/b29jg6OrJq1So58k0IIf4l6WfeP/74Y4KDg81dJCHEB0pm3IUQIpO5cOECT548wcfHRwvaf/nlF/bt28ePP/6Ig4MDLVu2ZNy4cRQoUIBr165hb29P8+bNKVKkiJlLL4QQ7w/TzLvBYGDdunWEhobi4eFh7mIJIT5AErgLIUQmk5aWRnx8PAC3b99m69atBAUFYTQaqV+/PlFRUQQGBlKjRg0++eQTPvnkE/MWWAgh3mPOzs4MGTKEZs2a4e7ubu7iCCE+UBK4CyFEJlOoUCHy58/P4MGDUUphYWFB/fr1adOmDR4eHty9e5emTZty9+5d7T2m1wkhhPj35cqVi1y5cgGyp10IYR4SuAshRCZTvnx5xo4dy/nz57l//z7du3fno48+Infu3CiluH37Nrly5SJv3rzaeyRoF0KIt0OCdiGEOUhyOiGEMAPTjM0fZ8r/bCbnyZMn5MyZk3PnzhEQEMDt27cJDg4mX758b7PYQgghhBDCDGTGXQgh3jJTcH7v3j1u3LhB48aNtef+GLQbjUY2b97M0qVLyZ8/P3FxcaSkpLBixQoJ2oUQQgghPhCy1kcIId4ipRSWlpbaPvX169eTkpLyp683BfI6nQ47Ozvq169PcHAwZcuWfVtFFkIIIYQQZiZL5YUQ4i0xzbQ/efKE3bt3c/DgQQYOHEj16tX/9r1KKdLS0rC0tMTKyuotlFYIIYQQQmQWslReCCHeEktLSx4+fMiIESO4f/8+Li4uVKtWDfjzrPCmxy0sLLCxsXnbRRZCCCGEEJmALJUXQoi3SK/XA5CQkMCzZ8+0YN1oNL729ZItXgghhBBCSOAuhBBviVKKokWLMmvWLKpVq8a5c+cYN24cAFZWVhgMBjOXUAghhBBCZEayVF4IId4Qg8GAlZUVaWlpGI1G0tLSsLKyolixYkycOBGAnTt3Ymdnx9dff60F77KHXQghhBBCpCfJ6YQQ4g0wBeARERH4+/tz7do19Ho9hQsXZvjw4VSsWJH79+/z9ddf88svv9CxY0e+/vprANLS0rC2lnFVIYQQQgjxkiyVF0KIf5lSCisrK8LCwujcuTOXL1+mbNmyVKxYkfDwcDp27MiPP/5I4cKFmTx5MvXq1WPTpk1MnToVQIJ2IYQQQgiRgfQOhRDiX2ZhYUFCQgJTpkyhZMmSjB8/nooVKwLg5eXFgwcPUEqRkJBAkSJFmDBhApaWlnz//ffY2toyYcIEM9dACCGEEEJkJhK4CyHEGxAfH09ERAR9+/bVgva5c+dy4MABpk+fjpubGzt37qROnTqUKFGCcePGYW9vT4cOHcxcciGEEEIIkdnIUnkhhHgDEhISiI+Pp0iRIgB88803BAYGMmXKFJo3b05UVBTTpk0jJCQEpRQlSpRgzpw5lC5d2swlF0IIIYQQmY3MuAshxBvg4OCApaUlp06d4tSpU6xdu5YpU6bw2WefYW9vT7ly5bTXms5ql73tQgghhBDidaSXKIQQ/0dKKYxGI1ZWViQnJ5OUlISjoyPW1tYUK1aMTp06ERQUhFKKqVOn0qpVK+zt7TEajRw/fhwHBwdtRl4IIYQQQog/I0vlhRDivxAUFMS1a9eA/2SPv337NiNGjKBjx44MGjSIbdu2kZaWxhdffEH9+vWxtLTk+fPnxMTEAHD8+HE2b95Mnjx5qFatmjmrI4QQQggh3gFyjrsQQvxD27dvZ8KECbRu3Zr+/ftTunRp7ty5Q8eOHcmePTu5c+fm7t27vHjxgqFDh9KnTx+uXLnCokWL+OWXX3B0dCRbtmy8ePECGxsbVq1ahU6nM3e1hBBCCCFEJieBuxBC/Bdmz57Nd999R4sWLRgwYAB79+7l/PnzeHt7U6ZMGaKioujTpw/3799n5MiR9O3bl+TkZH744QeOHDmChYUF5cqVo1mzZrJMXgghhBBC/CMSuAshxN9ITU3FxsYGeLk8fvbs2QQGBtKhQwcuX75MjRo18Pb21l7/5MkTOnfuzL179xg+fDi9e/fG1taWpKQkHBwczFUNIYQQQgjxjpI97kII8Tf27dvH77//DrzMAO/t7U3v3r3ZvHkzV65coVixYsDLoF6v15MzZ042bNhAkSJFWLx4MYGBgej1ei1ol/FSIYQQQgjx35DAXQgh/kJMTAz+/v7Mnz+fx48f8/jxYy5evMjo0aMZMmQIABs3buTatWtYWFhga2ubIXgvVqwY8+fPZ926ddo1Tce/CSGEEEII8U9I4C6EEK/x7NkzAPLkycMnn3zCqVOn8PLyok6dOuzZs4e0tDSGDh3KgAEDuHLlCt9++y1hYWEAGYL34OBgXFxcqFevnjmrI4QQQggh3mFyjrsQQvxBr169cHNzY/DgwdjZ2TFs2DCio6PZuXMnuXLlolKlStjb2wMwcuRIUlNTCQwMxNLSkkGDBlGqVCkteHd2dmbLli1YWso4qRBCCCGE+L+RwF0IIdJ5/PgxFSpUoEKFClhaWqKUwmg0cu3aNbJmzUpsbCxbt26lZMmSlC1bVtvzDhAYGAiQIXgHWRovhBBCCCH+N5JVXggh/iAlJQVLS0tsbGyIjY3F1taWhIQEsmXLxsqVKwkICKB27dqMHj0aFxcXIGO2+UaNGjF27FhKlChh5poIIYQQQoj3gcy4CyHEH9jZ2QEvZ99btmxJo0aNGDlyJI6OjowYMQKlFMuXLwdeLpUvX748FhYWjB07Fr1ez7Zt28iSJYs5qyCEEEIIId4jErgLIcSfSE1NpUGDBuzatYusWbPSr18/8uXLx8iRI7GwsCAgIABLS0tGjhxJ7ty5uX//PqNHj2bo0KE4Ozubu/hCCCGEEOI9IYG7EEL8iQIFCjB06FAcHBwIDg4G0IL3ESNGABAQEEBERAQGg4E8efKwcuVKCdqFEEIIIcS/SgJ3IYQADAYDVlZWpKSkYDQaiYuLo1ChQhQpUoTBgwejlCI4OBilFP3799eCd1tbW0JCQsiWLRtTp04lW7Zs5q6KEEIIIYR4z0hyOiHEB88UtIeHh7No0SKuXr3Kixcv+Oijj+jWrRs1a9bkxYsXLFmyhPXr19OtWzcteAd4+PAhjo6OODo6mrkmQgghhBDifSSBuxDig6aUwsLCgrCwML744gvy5cuHi4sLOXPmJDQ0lOjoaDw9PRkwYABRUVGsXLmS9evX07NnT3r37k3+/PnNXQUhhBBCCPGek6XyQogPkilgt7CwIDExkenTp/PRRx/h7e1NxYoVAUhMTCQkJITixYuTmJhIwYIFGTBgAFZWVqxZswZbW1tGjBiBlZWVmWsjhBBCCCHeZ5bmLoAQQrwtX331FSEhIQBYWFhgWnCUlpbGjRs3qFGjhha0z5o1i23btuHj44OLiwvbt2/n0qVL5M+fn65du9K3b18+//xzCdqFEEIIIcQbJ4G7EOKDcPr0aTZs2MDixYsJDQ0FXgbvBoOBR48e8fjxYypUqAC8DNqDgoL48ssvadWqFcnJyfj5+bFjxw4AihcvzsiRIylVqpS5qiOEEEIIIT4gErgLIT4I7u7uzJs3j8ePH+Pn58e+ffsAsLKyInfu3BQrVozNmzczbdo0LWj/7LPPsLOzI1u2bNjY2JA+JYi1tew0EkIIIYQQb4f0PIUQ7z2j0YilpSXNmzdHKcWkSZOYNWsWAE2aNCFnzpxUr16dTZs2YW1tzZgxY+jUqZP2/hs3bpA1a1ZKlCgB/Gd/vBBCCCGEEG+DzLgLId57lpaW2mx5ixYt8PX1JTY2llmzZrF3714Avv76a+rWrUtaWhrh4eHcu3cPo9HIb7/9piWia9SoEYAE7UIIIYQQ4q2S4+CEEO8lvV6Pra1thsfS0tK0Je579uxh0qRJ5MqVi9GjR9OsWTMSEhIYMWIER44cwcHBAUdHR1JTU7G3tycgIICyZcuaoypCCCGEEOIDJ4G7EOK989VXX/H8+XMaNGiAs7MzlStXxsbGBhsbmwyv27FjB1999RW5cuXC29ubTz75BID169dz+/ZtYmNjqVChAk2bNqVw4cLmqIoQQgghhBASuAsh3i9bt25l4sSJ2t9tbW3JnTs3hQoVolatWnz00UfodDqKFCkCwOHDhxk+fDj58uXDy8uLli1bmqvoQgghhBBCvJYE7kKI90pMTAwrVqzg559/JjY2ls6dO3P79m0uXbrEs2fPgJcZ4cuUKYOLiwuff/45e/bsYffu3eTOnZsRI0ZoM+9CCCGEEEJkBhK4CyHeO7GxsSxbtozNmzdTo0YNli1bxosXLzhx4gQPHz7k119/JSoqihs3bgDg5OTE06dPsbOzw8HBAT8/Pxo0aGDeSgghhBBCCPH/SeAuhHgvxcbGsnz5coKCgqhduzarVq3SntPr9djY2HDhwgUiIyM5cuQIt27d4vbt2xgMBnbs2EGxYsXMWHohhBBCCCH+QwJ3IcR7Ky4ujoCAAIKCgqhZsybfffcdFhYWpKamYmNj88p57Hfu3MHR0ZFcuXKZsdRCCCGEEEJkJIG7EOK9lj54Tz/zbjAYsLKyeuXPQgghhBBCZDYSuAsh3nv/JHgXQgghhBAis7I0dwGEEOJNc3Z2ZtCgQfTo0YPffvuNvn37AmBlZYXRaDRz6YQQQgghhPhrMuMuhPhgmGbeg4ODqVChAps2bTJ3kYQQQgghhPhb1uYugBBCvC2mmfekpCT27NlDVFQUBQsWNHexhBBCCCGE+Esy4y6E+OA8efIEg8FA7ty5zV0UIYQQQggh/pYE7kIIIYQQQgghRCYmyemEEEIIIYQQQohMTAJ3IYQQQgghhBAiE5PAXQghhBBCCCGEyMQkcBdCCCGEEEIIITIxCdyFEEIIIYQQQohMTAJ3IYQQQgghhBAiE5PAXQghhBBCCCGEyMQkcBdCCCFeY//+/QwcOJCaNWtSvnx56tSpw+DBg9m/f///fO3nz5+zdu3aDI91794dnU7Hs2fP/uvrRURE0LNnTypXrkyVKlUICAj4n8v4Z8LDw/nxxx8zPKbT6WjduvUb+zf/zvjx49HpdJw4ccJsZfinFi9ejE6nIzQ01NxFEUII8Q6xNncBhBBCiMxm2rRprF27lkKFCtG4cWNy5sxJdHQ0hw8f5sCBA3Ts2JFp06b9n6//ySefkCdPHrp166Y91qZNG6pVq4adnd1/fb1x48Zx7tw5mjRpQsmSJXF3d/8/l+2vXLt2jfbt29OlSxeaNWumPe7p6Unu3LnfyL8phBBCCAnchRBCiAxOnDjB2rVr+eSTT5g3bx7W1v/5qXz+/Dk9evRg06ZN1K9fHw8Pj//TvxEbG0uePHkyPNa2bdv/c5kvX75M/vz5WbJkyf/5Gv/E06dPSU1NfeVxLy+vN/rvCiGEEB86WSovhBBCpHPo0CEAunbtmiFoB8iWLRujR48GYN++fW+7aH8qNTWVHDlymLsYQgghhHhDJHAXQggh0jHNKN+4ceO1z7u7u7NgwQJ69eqV4fG4uDhmzZpFs2bNqFSpEpUqVaJFixYEBASQlpYGvJzN1+l0wMtl5zqdjsWLFwOv3+N+5MgRevbsSc2aNalYsSKfffYZy5cvR6/XA//ZL53+eo0aNdLef+PGDcaOHUv9+vUpX748VapUoXPnzvz000+v1CspKYlFixbx6aefUqlSJRo1asTUqVOJi4vT/q0ePXoAEBQUlGFP+ev2uD9//pzZs2fj4eFB+fLlqVWrFqNHjyY8PDzD67Zt24ZOp+PYsWOsWrWKpk2bUr58eTw8PFi2bBkGg+G19+F/kZCQwJw5c7Sy1a1blylTphAbG6u9JjAwEJ1Ox4YNG155f3R0NOXKlaN///7aY3q9nuXLl9O8eXMqVKhAzZo1GT16NPfu3fvXyy+EEOLDI4G7EEIIkU7t2rUBmDVrFtOmTePs2bMZgkd7e3uaNWtGuXLltMeeP39Ox44dCQoKonTp0vTo0YOWLVsSExPD/PnzmTt3LgCFChXC09MTgNy5c+Pp6Um1atVeW47Tp08zaNAgbt++TfPmzenWrRtWVlbMmzePr776CoBq1aq9cj1TcH3hwgU6dOjAoUOHqFOnDr1796ZOnf/X3v0GRVX1cQD/QggIaAkpo1CAxGXEWmRRKhHWEUXTQlGZiUAsy/AFkOQ4TC9KatAKzJTRghig+DcTSvoCEBUQGoYgwMIdA2zjr5EIExiwsDvAeV4Q93EDEXtsYh6/n5l9seeec+65u69+95zzO2ugVqsRFRWFy5cvy/caGhpCcHAwTp06BSsrK7z88stwdXVFTk4Odu/ejYGBAXh5eSEwMBAA4O7ujoiICNjZ2U059t7eXgQFBSE1NRU2NjYICQnBihUrUFhYiJ07d6K+vn5Sm4SEBJw8eRKenp4ICQnB8PAwjh8/jsTExHv/afehv78fwcHBSElJgb29PcLCwuDh4YHc3FwEBQXh1q1bAIAtW7bgkUcemZSIDwDOnz+PsbExBAQEABh/2bN3714cO3YMlpaWCA0NhY+PDy5evIidO3fe9SUQERHRjAkiIiIycOjQISFJkvxRKpVi7969Ij09Xfz222+T6icnJwtJkkRubq5BeWdnp3j66aeFt7e3QbkkSSIgIMCgLDQ0VEiSJG7fvi2EECIyMlJIkiTa29vlOnq9XmzdulUsW7ZM9Pf3T9vfnj17hJubm9BoNAblBQUFQpIk8fbbb8tlx48fF5IkicOHD4uxsTG5PCkpSUiSJNLS0oQQQlRVVQlJkkRcXNy0z/POO+8ISZLEp59+alCvrKxMuLq6Cn9/fzEyMiKEECIvL09IkiQ8PT1Fa2urXLejo0MsX75crF69WtxLTEyMkCRJVFVV3bNubGyskCRJZGVlGZQXFxcLSZJEVFSUXPbaa6+JZcuWie7uboO6QUFBYsWKFWJwcFAIIURKSoqQJEnEx8cb1Lt69apYvny52LFjh1yWmJgoJEkSly5duudYiYiIJnDGnYiI6C9iY2ORnJwMHx8fzJkzBwMDAygvL8eHH34IPz8/fPLJJxgbG5Prr1mzBu+//z62bdtm0M/ixYvxxBNPyMvN78dE/2q1Wi6bM2cOUlJSUF1dDSsrq2nbv/rqq0hISICzs7NB+bPPPgsABsvCCwoKYGVlhQMHDsDIyEguDw0NxRtvvIGnnnpqxuPW6/UoKCiAnZ0doqKiDK6pVCr4+/ujtbUVtbW1Btf8/f3h4OAgf7e3t4ezszN6enqg0+lmfP/pjIyM4Ny5c3BxcUFISIjBNT8/PyiVSly6dAkDAwMAgICAAIyOjhpsLbhx4wbq6+vh5+cHCwsLAMCZM2cwf/58REdHG/T5zDPP7EDozwAACDBJREFUYNOmTVCr1fj5558fyDMQEdHDiVnliYiIprB27VqsXbsWg4ODqK2txXfffYfS0lK0tbXhiy++wNjYGA4ePAgAcHNzg5ubGwYHB1FfX4+2tja0trZCrVajra3tb+3TDgoKQnFxMaKjo3HixAn4+PjA19cXzz33HExNTe/Z3sfHBwDQ3d2NxsZGtLe3o6WlBXV1dQAgj2loaAhtbW1YtWrVpKPoLC0t5WecqZaWFgwPD0OpVMLYePL8gKenJy5cuIDGxkb5JQIAODo6Tqo7b948AOMvA/7OMXlTjU2r1WJ0dFTOLXAnnU6H0dFRNDU1wdPTExs2bEBsbCwKCwvlQL+wsBAA5GXyg4ODaGlpwcKFC/H5559P6rOnpwcA0NDQABcXl//5GYiI6OHEwJ2IiGgalpaWUKlUUKlUiImJwZkzZ/Duu+8iKysLERERmDt3LnQ6HY4dO4avv/4aQ0NDAABbW1usWrUKCxYsQHd3933fV6VSISMjA6mpqaisrERmZiYyMzPx2GOPISIiArt27Zq2fWdnJ+Li4lBaWgohBIyNjeHo6AhPT0/89NNPcr2JZHj3msGfqYnZ6omg+68WLVoEABgeHjYon+plxMTsvxDigYxt4lmbm5unPTrv9u3bAMb/ez8/PxQUFKCrqwu2trYoLCyEjY0NVq9eDeC/z9vd3T2jPomIiP4OBu5ERER/GhgYwPbt2+Hk5ITk5ORJ142MjBAUFISioiJUVFTg5s2bcHJywkcffYScnBxs3LgRISEhcHV1lY9ne+GFF/5W4A6MJ5/z8vKCVqtFbW0tysrKcPbsWcTFxeHJJ5+ESqWasp0QAuHh4dBoNAgPD8f69evh4uICc3Nz9PT04PTp03LdieXeg4ODU/al1WrlOjNhaWkJYDzz+lQmgud/4/i6ibFt3boV8fHxM2oTEBCA/Px8FBUVwdfXFw0NDdi1a5d8VODEb7Ny5UpkZ2f/MwMnIqKHHgN3IiKiP1lZWaG/vx+VlZXo6enB448/fte6xsbGWLhwIQAgPz8fNjY2OHHihMEe8eHhYXR2dgIYD6bvvHYvX331FXp7e7F//35YWFjA19cXvr6+UCgUiImJQV1d3V0D96amJly/fh0bN26ctO/6l19+kccDjM+ML168GA0NDdDr9QYz33q9Ht7e3vDw8EBaWtqMxr906VKYmZlBrVZP6g8AampqAOC+9s0/KE5OTjA1NcW1a9em/D++/PJLaLVaBAcHY8GCBQDGTxmwsbFBaWkptFotAOCll16S28ybNw9LliyBRqPB8PAwzM3NDfo8d+4cOjo6EBgYCHt7+3/4CYmI6P8Vk9MRERHdISQkBHq9HlFRUfLRYHcqKSlBZWUlNmzYIC8vNzMzg06nMziDfXR0FIcPH5aXhE+cDw+MJ5m78/tUKioqkJSUhB9//NGg/NdffwUALFmy5K5tJ4LlvybF6+vrk2eaJ86WB8Znlfv7+3Hq1CmD+hkZGdBqtXj++ecBQJ5lnm7spqam2LJlC27dujXpKLdvv/0W58+fh4ODA5RK5V37+KeYmZlh8+bN0Gg0SE9PN7hWXV2N+Ph45OXl4dFHH5XLTUxMsHnzZtTV1SE/Px8ODg5wd3c3aBsYGIi+vj4cPXrUIGmhRqPBBx98gPT09H9lhQEREf3/4Iw7ERHRHfbt24fr16/jwoUL8Pf3x5o1a+Do6IiRkRHU19fjypUrWLp0qXyWOjA+A5uWloYdO3Zg/fr1GBkZQUVFBVpaWmBtbY3ff/8dfX198v7uRYsWobm5GYcOHYJKpcK6desmjSMyMhLV1dUICwvDpk2bYGtrC41Gg8uXL8PZ2VlOjjYVR0dHKBQK1NTU4JVXXoFSqURvby+Ki4uh1+sxd+5c9Pb2yvXDw8NRVlaGpKQk1NTUwN3dHc3NzSgrK4NCocDu3bsBjO/bB8bPMbewsEBgYOCUCdcOHjyIK1euICUlBTU1NfDw8EBHRwdKS0thaWmJhISE+1p9MFNHjhzB/Pnzp7z21ltvYeXKlYiJicEPP/yAjz/+GCUlJVAoFOjq6sLFixdhYmKCI0eOTEqqFxAQgMzMTGg0GkREREzq+80330RFRQUyMzNRV1cHLy8v/PHHHygqKsLQ0BCOHj36wHIIEBHRw4kz7kRERHcwMTFBYmIiTp48CR8fH6jVamRkZOD06dPQ6XQ4cOAAzp49C2tra7lNdHQ0IiMjYWxsjJycHBQXF8POzg6pqanYt28fAKC8vFyu/95778He3h55eXkoKSmZchwKhQJZWVnw9vZGVVUV0tPT0dTUhLCwMGRnZ0+779zY2BifffYZtm/fjhs3biAzMxO1tbXw9fVFXl4evL290draivb2dgDje79zcnLw+uuv4+bNm8jIyMC1a9cQGhqKtLQ0eQbfzs4O+/fvh5GREbKzs3H16tUp729tbY3c3Fzs2bMH3d3dyMrKglqtxrZt2/DNN99MmrF+UBobG/H9999P+enr65s0tq6uLvm3WbduHXJzcw0y3U9QKBRy1vs7l8lPMDc3R0ZGBiIjI6HT6ZCTk4Py8nIolUpkZGTgxRdf/Eeel4iIHh5G4kGlaiUiIiIiIiKiB44z7kRERERERESzGAN3IiIiIiIiolmMgTsRERERERHRLMbAnYiIiIiIiGgWY+BORERERERENIsxcCciIiIiIiKaxRi4ExEREREREc1iDNyJiIiIiIiIZjEG7kRERERERESzGAN3IiIiIiIiolmMgTsRERERERHRLMbAnYiIiIiIiGgWY+BORERERERENIv9Bz42sIe/DuzRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1521,16 +2184,16 @@ }, { "cell_type": "code", - "execution_count": 242, + "execution_count": 881, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "23578" + "25" ] }, - "execution_count": 242, + "execution_count": 881, "metadata": {}, "output_type": "execute_result" } @@ -1541,28 +2204,25 @@ }, { "cell_type": "code", - "execution_count": 243, + "execution_count": 882, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RaceEthnicity\n", - "Black or of African descent 1204\n", - "Black or of African descent;East Asian 7\n", - "Black or of African descent;East Asian;Hispanic or Latino/Latina 2\n", - "Black or of African descent;East Asian;Hispanic or Latino/Latina;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian 1\n", - "Black or of African descent;East Asian;Hispanic or Latino/Latina;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;South Asian 1\n", - " ... \n", - "Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent 2\n", - "Native American, Pacific Islander, or Indigenous Australian;White or of European descent 160\n", - "South Asian 6112\n", - "South Asian;White or of European descent 88\n", - "White or of European descent 39320\n", - "Name: RaceEthnicity, Length: 71, dtype: int64" + "Black or of African descent 3\n", + "Black or of African descent;East Asian;Hispanic or Latino/Latina;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent 1\n", + "Black or of African descent;Hispanic or Latino/Latina 1\n", + "East Asian 2\n", + "Hispanic or Latino/Latina 1\n", + "Hispanic or Latino/Latina;White or of European descent 1\n", + "South Asian 8\n", + "White or of European descent 41\n", + "Name: RaceEthnicity, dtype: int64" ] }, - "execution_count": 243, + "execution_count": 882, "metadata": {}, "output_type": "execute_result" } @@ -1574,7 +2234,7 @@ }, { "cell_type": "code", - "execution_count": 244, + "execution_count": 883, "metadata": {}, "outputs": [], "source": [ @@ -1593,24 +2253,22 @@ }, { "cell_type": "code", - "execution_count": 245, + "execution_count": 884, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "RaceEthnicity\n", - "Black or African descent 1549\n", - "East Asian 2787\n", - "Hispanic or Latino 3592\n", - "Middle Eastern 2176\n", - "Native American 286\n", - "South Asian 6200\n", - "White or European descent 39320\n", + "Black or African descent 5\n", + "East Asian 2\n", + "Hispanic or Latino 2\n", + "South Asian 8\n", + "White or European descent 41\n", "Name: RaceEthnicity, dtype: int64" ] }, - "execution_count": 245, + "execution_count": 884, "metadata": {}, "output_type": "execute_result" } @@ -1621,16 +2279,16 @@ }, { "cell_type": "code", - "execution_count": 246, + "execution_count": 885, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "23578" + "25" ] }, - "execution_count": 246, + "execution_count": 885, "metadata": {}, "output_type": "execute_result" } @@ -1641,7 +2299,7 @@ }, { "cell_type": "code", - "execution_count": 247, + "execution_count": 886, "metadata": {}, "outputs": [], "source": [ @@ -1650,7 +2308,7 @@ }, { "cell_type": "code", - "execution_count": 248, + "execution_count": 887, "metadata": {}, "outputs": [ { @@ -1659,7 +2317,7 @@ "0" ] }, - "execution_count": 248, + "execution_count": 887, "metadata": {}, "output_type": "execute_result" } @@ -1670,12 +2328,12 @@ }, { "cell_type": "code", - "execution_count": 249, + "execution_count": 888, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApwAAAH2CAYAAADdzFwEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACizklEQVR4nOzdd3hT5dvA8e9J0nSme5cudtmUjbJUZImIkyGKiAtRceDeuBeuV1wIiAN/KuAAEZmy9957tXTvneS8f1QCoQMobU/S3p/r6mXznHOec59U0rvPVFRVVRFCCCGEEKKG6LQOQAghhBBC1G2ScAohhBBCiBolCacQQgghhKhRknAKIYQQQogaJQmnEEIIIYSoUZJwCiGEEEKIGiUJpxBCCCGEqFGScAohhBBCiBolCacQQgghhKhRknAK4WCmT5+Ooii2L4PBQFhYGMOGDePAgQNah2eTnp6Oi4sLc+bMASAmJsYu7nO/evfubbtu9erVvPzyy2RmZpapMyYmhuuuu65a4+zdu7fd/S9WTEwMo0ePtr1OSEjg5ZdfZuvWrdUWmxBC1BcGrQMQQpRv2rRpNG/enMLCQlatWsXrr7/O0qVL2bt3L35+flqHx2+//YbRaKR///62siuuuIL33nuvzLne3t6271evXs0rr7zC6NGj8fX1rfE4P/vssypdN2fOHLu4ExISeOWVV4iJiaFdu3bVFJ0QQtQPknAK4aBatWpFx44dgdJWOovFwksvvcTcuXO56667NI4OfvnlFwYOHIi7u7utzNfXl65du2oYVVktWrSo0nXt27ev5kiEEKL+ki51IZzEmeQzKSkJgMLCQh5//HHatWuHj48P/v7+dOvWjd9++63MtVarlU8++YR27drh7u5uSwx///13u/N++uknunXrhqenJ15eXvTr148tW7aUqS87O5tFixZx0003XdIzvPzyy0ycOBGA2NhYW5f7smXL7M5bsGAB8fHxuLu707x5c7755hu742eGHSxdupQHHniAwMBAAgICuPHGG0lISLA7t7wu9aKiIl599VXi4uJwc3MjICCAPn36sHr1ats553apL1u2jE6dOgFw11132eJ++eWXmTlzJoqisGbNmjLP++qrr+Li4lImJiGEqG8k4RTCSRw5cgSApk2bAqVJU3p6Ok888QRz587lxx9/5Morr+TGG2/k22+/tbt29OjRPPLII3Tq1ImffvqJWbNmcf3113P06FHbOW+88QbDhw+nRYsW/O9//2PmzJnk5OTQo0cPdu/ebVffH3/8gaIoDBo0yK5cVVXMZnOZL1VVARg7diwPPfQQALNnz2bNmjWsWbOG+Ph4Wx3btm3j8ccf59FHH+W3336jTZs23H333fz7779l3pOxY8fi4uLCDz/8wDvvvMOyZcu4/fbbK30fzWYzAwYMYNKkSVx33XXMmTOH6dOn0717d44fP17uNfHx8UybNg2A559/3hb32LFjue222wgNDeX//u//ytzniy++YOjQoYSHh1cakxBC1HmqEMKhTJs2TQXUtWvXqiUlJWpOTo66YMECNTQ0VO3Zs6daUlJS7nVms1ktKSlR7777brV9+/a28n///VcF1Oeee67Cex4/flw1GAzqQw89ZFeek5OjhoaGqrfeeqtd+Q033KAOHjzYriw6OloFyv2aNGmS7bx3331XBdQjR46UiSM6Olp1c3NTjx07ZisrKChQ/f391fvuu6/MezRu3Di769955x0VUBMTE21lvXr1Unv16mV7/e2336qA+tVXX1X4fpyJ5c4777S93rBhgwqo06ZNK3PuSy+9pBqNRjUpKclW9tNPP6mAunz58krvI4QQ9YGM4RTCQZ0/FjIuLo7ffvsNg+HsP9uff/6ZDz/8kG3btpGXl2crd3Nzs33/119/AfDggw9WeK+///4bs9nMHXfcgdlstqunV69eLF261FaWl5fH33//zZQpU8rUc+WVVzJ58uQy5REREZU9qp127doRFRVlF0PTpk05duxYmXOvv/56u9dt2rQB4NixY4SGhpZb/19//YWbmxtjxoy56Jgu5IEHHuDNN9/kq6++4rnnngPg008/pXXr1vTs2bPa7iOEEM5KEk4hHNS3335LXFwcOTk5/PTTT3zxxRcMHz7clkDOnj2bW2+9lVtuuYWJEycSGhqKwWBgypQpdmMeU1JS0Ov1FSZgcHZc6JlxiufT6c6Ovpk3bx4lJSVlkj0AHx8f21jTqgoICChT5urqSkFBwQXPdXV1BSj33DNSUlIIDw+3e6bLFRISwm233cYXX3zB008/za5du1ixYgVffPFFtd1DCCGcmSScQjiouLg4W/LWp08fLBYLX3/9Nb/88gs333wz3333HbGxsfz0008oimK7rqioyK6eoKAgLBYLp0+fJiwsrNx7BQYGAqUzz6OjoyuN69dff+Wqq65yiKWZqiIoKIiVK1ditVqrNel85JFHmDlzJr/99hsLFizA19eXkSNHVlv9QgjhzGTSkBBO4p133sHPz48XX3wRq9WKoigYjUa7ZPP06dNlZqkPGDAAoNwu8DP69euHwWDg0KFDdOzYsdwvKJ0ZP3/+/EuenX6ui2mFrEkDBgygsLCQ6dOnX9J1F4q7Q4cOdO/enbfffpvvv/+e0aNH4+npebnhCiFEnSAtnEI4CT8/P5555hmefPJJfvjhB6677jpmz57NuHHjuPnmmzlx4gSTJk0iLCzMbkeiHj16MGrUKF577TWSkpK47rrrcHV1ZcuWLXh4ePDQQw8RExPDq6++ynPPPcfhw4fp378/fn5+JCUlsX79ejw9PXnllVdYsGAB+fn53HDDDeXGmJmZydq1a8uUu7q62ta1bN26NQAfffQRd955Jy4uLjRr1gyTyVT9b1o5hg8fzrRp07j//vvZt28fffr0wWq1sm7dOuLi4hg2bFi51zVq1Ah3d3e+//574uLi8PLyIjw83G4G+iOPPMJtt92GoiiMGzeuVp5HCCGcgtazloQQ9s7MwN6wYUOZYwUFBWpUVJTapEkT1Ww2q2+99ZYaExOjurq6qnFxcepXX32lvvTSS+r5/7QtFos6efJktVWrVqrRaFR9fHzUbt26qX/88YfdeXPnzlX79Omjent7q66urmp0dLR68803q4sWLVJVVVVvv/12uxnf56pslnpERITduc8884waHh6u6nQ6FVCXLl1qq2PQoEFl6j5/pnlF79HSpUvt6ivv2jPv44svvqg2adJENRqNakBAgHrVVVepq1evtnuec2epq6qq/vjjj2rz5s1VFxcXFVBfeuklu+NFRUWqq6ur2r9//3LfIyGEqK8UVf1vgTwhhKhEcXExwcHBTJo0ybaWprD3xx9/cP311zNv3jwGDhyodThCCOEwJOEUQojLtHv3bo4dO8YjjzyCp6cnmzdvthtbK4QQ9Z1MGhJCiMs0btw4rr/+evz8/Pjxxx8l2RRCiPNIC6cQQgghhKhR0sIphBBCCCFqlCScQgghhBCiRknCKYQQQgghapQknEIIIYQQokZJwimEEEIIIWqUJJxCCCGEEKJGScIphBBCCCFqlCScQgghhBCiRknCKYQQQgghapQknEIIIYQQokZJwimEEEIIIWqUJJxCCCGEEKJGScIphBBCCCFqlCScQgghhBCiRknCKYQQQgghapQknEIIIYQQokZJwimEEEIIIWqUJJxCCCGEEKJGScIphBBCCCFqlCScQgghhBCiRknCKYQQQgghapQknEIIIYQQokZJwimEEEIIIWqUJJxCCCGEEKJGScIphBBCCCFqlCScQgghhBCiRknCKYQQQgghapQknEIIIYQQokZJwilEFSxbtgxFUcjMzKzV+7788su0a9euVu8phBBCXC5JOIXTSk5O5r777iMqKgpXV1dCQ0Pp168fa9asqdb79O7dmwkTJlRrnffeey96vZ5Zs2Zd0nVPPPEEixcvrtZYhBBCiJpm0DoAIarqpptuoqSkhBkzZtCwYUOSkpJYvHgx6enpWodWqfz8fH766ScmTpzI1KlTGTZs2EVf6+XlhZeXVw1GJ4QQQlQ/aeEUTikzM5OVK1fy9ttv06dPH6Kjo+ncuTPPPPMMgwYNsp13/PhxhgwZgpeXF97e3tx6660kJSXZjo8ePZobbrjBru4JEybQu3dv2/Hly5fz0UcfoSgKiqJw9OhR27mbNm2iY8eOeHh40L17d/bt23fB2H/++WdatGjBM888w6pVq+zqg9Lu+s6dO+Pp6Ymvry9XXHEFx44dA8p2qW/YsIG+ffsSGBiIj48PvXr1YvPmzXb1KYrC119/zdChQ/Hw8KBJkyb8/vvvF4xTCCGEqC6ScAqndKalb+7cuRQVFZV7jqqq3HDDDaSnp7N8+XL++ecfDh06xG233XbR9/noo4/o1q0b99xzD4mJiSQmJhIZGWk7/txzz/H++++zceNGDAYDY8aMuWCdU6dO5fbbb8fHx4eBAwcybdo02zGz2cwNN9xAr1692L59O2vWrOHee+9FUZRy68rJyeHOO+9kxYoVrF27liZNmjBw4EBycnLsznvllVe49dZb2b59OwMHDmTkyJEO3xIshBCiDlGFcFK//PKL6ufnp7q5uandu3dXn3nmGXXbtm224wsXLlT1er16/PhxW9muXbtUQF2/fr2qqqp65513qkOGDLGr95FHHlF79eple92rVy/1kUcesTtn6dKlKqAuWrTIVjZv3jwVUAsKCiqMef/+/aqLi4uakpKiqqqqzpkzR42MjFQtFouqqqqalpamAuqyZcvKvf6ll15S27ZtW2H9ZrNZNZlM6h9//GErA9Tnn3/e9jo3N1dVFEX966+/KqxHCCGEqE7Swimc1k033URCQgK///47/fr1Y9myZcTHxzN9+nQA9uzZQ2RkpF2LZIsWLfD19WXPnj3VEkObNm1s34eFhQGlk5kqMnXqVPr160dgYCAAAwcOJC8vj0WLFgHg7+/P6NGj6devH4MHD+ajjz4iMTGxwvqSk5O5//77adq0KT4+Pvj4+JCbm8vx48crjNPT0xOTyVRpnEIIIUR1koRTODU3Nzf69u3Liy++yOrVqxk9ejQvvfQSUNqlXl5X9LnlOp0OVVXtjpeUlFz0/V1cXGzfn6nTarWWe67FYuHbb79l3rx5GAwGDAYDHh4epKenM3XqVNt506ZNY82aNXTv3p2ffvqJpk2bsnbt2nLrHD16NJs2beLDDz9k9erVbN26lYCAAIqLiyuM80ysFcUphBBCVDdJOEWd0qJFC/Ly8mzfHz9+nBMnTtiO7969m6ysLOLi4gAICgoq04K4detWu9dGoxGLxXLZsc2fP5+cnBy2bNnC1q1bbV8///wzc+fOJS0tzXZu+/bteeaZZ1i9ejWtWrXihx9+KLfOFStW8PDDDzNw4EBatmyJq6srqamplx2rEEIIUZ0k4RROKS0tjauuuorvvvuO7du3c+TIEX7++WfeeecdhgwZAsA111xDmzZtGDlyJJs3b2b9+vXccccd9OrVi44dOwJw1VVXsXHjRr799lsOHDjASy+9xM6dO+3uFRMTw7p16zh69CipqalVbhmcOnUqgwYNom3btrRq1cr2ddNNNxEUFMR3333HkSNHeOaZZ1izZg3Hjh1j4cKF7N+/35Ygn69x48bMnDmTPXv2sG7dOkaOHIm7u3uV4hNCCCFqiiScwil5eXnRpUsXJk+eTM+ePWnVqhUvvPAC99xzD59++ilQ2m08d+5c/Pz86NmzJ9dccw0NGzbkp59+stXTr18/XnjhBZ588kk6depETk4Od9xxh929nnjiCfR6PS1atCAoKKjM+MiLkZSUxLx587jpppvKHFMUhRtvvJGpU6fi4eHB3r17uemmm2jatCn33nsv48eP57777iu33m+++YaMjAzat2/PqFGjePjhhwkODr7k+IQQQoiapKjnD2ATQghR7yxbtow+ffqQkZGBr6+v1uHUKkVRmDNnTpk1eYUQ1UdaOIUQwgmMHj0aRVF466237Mrnzp1b4TqtFSlvu9bu3buTmJiIj4/P5YZ6Ua699lr0en2FE+JqU2JiIgMGDNA6DCHqNEk4hRDCSbi5ufH222+TkZFR7XUbjUZCQ0MvOXmtiuPHj7NmzRrGjx9vt0JDbTuzmkNoaCiurq6axSFEfSAJpxBCOIlrrrmG0NBQ3nzzzQrPSUtLY/jw4TRo0AAPDw9at27Njz/+aDte0Xaty5YtQ1EUMjMzycrKwt3dnQULFtjVPXv2bDw9PcnNzQXg1KlT3Hbbbfj5+REQEMCQIUPKbNVanmnTpnHdddfxwAMP8NNPP9lWljijd+/ePPTQQ0yYMAE/Pz9CQkL48ssvycvL46677sJkMtGoUSP++usvu+t2797NwIED8fLyIiQkhFGjRtmt2tC7d2/Gjx/PY489RmBgIH379gXOjvc+4+TJkwwbNgx/f388PT3p2LEj69atA+DQoUMMGTKEkJAQvLy86NSpk20d3TNiYmJ44403GDNmDCaTiaioKL788ssLvi9C1GWScAohhJPQ6/W88cYbfPLJJ5w8ebLccwoLC+nQoQN//vknO3fu5N5772XUqFG2hOlC27UC+Pj4MGjQIL7//nu78h9++IEhQ4bg5eVFfn4+ffr0wcvLi3///ZeVK1fi5eVF//79y6wDey5VVZk2bRq33347zZs3p2nTpvzvf/8rc96MGTMIDAxk/fr1PPTQQzzwwAPccsstdO/enc2bN9OvXz9GjRpFfn4+UNot3qtXL9q1a8fGjRtZsGABSUlJ3HrrrWXqNRgMrFq1ii+++KLMfXNzc+nVq5dtU4lt27bx5JNP2lanyM3NZeDAgSxatIgtW7bYNmk4fzLh+++/T8eOHdmyZQvjxo3jgQceYO/evRW+L0LUeVpucySEEOLinLsNa9euXdUxY8aoqlq6PeqFPsoHDhyoPv7447bXlW3XmpGRoaqqqs6ePVv18vJS8/LyVFVV1aysLNXNzU2dN2+eqqqqOnXqVLVZs2aq1Wq11VFUVKS6u7urf//9d4WxLFy4UA0KClJLSkpUVVXVyZMnq1dccYXdOb169VKvvPJK22uz2ax6enqqo0aNspUlJiaqgLpmzRpVVVX1hRdeUK+99lq7ek6cOKEC6r59+2z1tmvXrkxMgDpnzhxVVVX1iy++UE0mk5qWllbhM5yvRYsW6ieffGJ7HR0drd5+++2211arVQ0ODlanTJly0XUKUddIC6cQQjiZt99+mxkzZrB79+4yxywWC6+//jpt2rQhICAALy8vFi5ceMnLeQ0aNAiDwcDvv/8OwK+//orJZOLaa68FYNOmTRw8eBCTyYSXlxdeXl74+/tTWFjIoUOHKqx36tSp3HbbbRgMBgCGDx/OunXr2Ldvn915527HqtfrCQgIoHXr1raykJAQ4OxWsps2bWLp0qW2WLy8vGjevDmAXTxn1uCtyNatW2nfvj3+/v7lHs/Ly+PJJ5+0bZPr5eXF3r17K91OVlEUQkNDZTtZUa8ZtA5ACCHEpenZsyf9+vXj2WefZfTo0XbH3n//fSZPnsyHH35I69at8fT0ZMKECZV2c5fHaDRy880388MPPzBs2DB++OEHu0TRarXSoUOHMt3uULqDV3nS09OZO3cuJSUlTJkyxVZusVj45ptvePvtt21l5W3HWtlWslarlcGDB9vVcUZYWJjte09Pz0qf+0IbJ0ycOJG///6b9957j8aNG+Pu7s7NN98s28kKcQGScAohhBN66623aNeuHU2bNrUrX7FiBUOGDOH2228HShOxAwcO2O1WdbHbtY4cOZJrr72WXbt2sXTpUiZNmmQ7Fh8fz08//URwcDDe3t4XFfP3339PgwYN7CboACxevJg333yT119/3ZbQXqr4+Hh+/fVXYmJiqlwHlLZMfv3116Snp5fbyrlixQpGjx7N0KFDgdIxnRczUUqI+k661IUQwgm1bt2akSNH8sknn9iVN27cmH/++YfVq1ezZ88e7rvvPk6fPm13zsVu19qrVy9CQkIYOXIkMTExdO3a1XZs5MiRBAYGMmTIEFasWMGRI0dYvnw5jzzySIUTmqZOncrNN99st7Vrq1atGDNmDJmZmcybN6/K78eDDz5Ieno6w4cPZ/369Rw+fJiFCxcyZsyYi0quzxg+fDihoaHccMMNrFq1isOHD/Prr7+yZs0aoPT9nT17Nlu3bmXbtm2MGDFCWi6FuAiScAohhJOaNGkS6nmbxb3wwgvEx8fTr18/evfubUueznWx27UqisLw4cPZtm0bI0eOtDvm4eHBv//+S1RUFDfeeCNxcXGMGTOGgoKCcls8N23axLZt28rd3vXM2NDLWZMzPDycVatWYbFY6NevH61ateKRRx7Bx8cHne7if9UZjUYWLlxIcHAwAwcOpHXr1rz11lvo9XoAJk+ejJ+fH927d2fw4MH069eP+Pj4KsctRH0hW1sKIaqkpLiI/MwM8jIzycvKID8zk/zsTEqKirCUlJR+mUts35vN55SZzVhKSlAtFvQuLhiMrhiMRrv/urie+f5MuSuuHh54+vrh5eePp38A7l4mrd8GIYQQF0HGcAohysjPyiQjMYGM0wnkpKWQn5VJXmaG3X+LCwq0DhODixGP/xLQ0iTUHy+/gNKk1D8A35BQvINCamX3HCGEEBWTFk4h6imrxULG6QTSTh4n7cRx0hNOkpGYQObpBIry8y5cgZMwuLoSEBFZ+hUZTUCDSAIiovAJDkG5hK5WUbHevXvTrl07PvzwwwrPiYmJYcKECWX2cD+XoijMmTOHG264gaNHjxIbG8uWLVto165dtccshKhd0sIpRD1gLikh6fBBEvfv4fThg6SdPE5GwkksZrPWodU4c1ERSYcPknT4oF25wdUV/7AGBERGERARSWBUNGFNmuPh7aNRpI5j9OjRzJgxg/vuu4/PP//c7ti4ceOYMmUKd955J9OnTwdKt7w8fxkgR7Bs2TL69OlT7rHExERCQ0Mv+x4Xk0gLISThFKJOyklLJWH/HhL27yVx/16Sjx6qF8nlpTAXFZF89BDJR+0XKfcLiyC8WRwRzVoQ0bwF/uENNIpQW5GRkcyaNYvJkyfb1qYsLCzkxx9/JCoqyu7cihZJdxT79u0rM5EpODhYo2jKV1xcjNFo1DoMIWqM9CcJ4eQs5hIS9u9l07y5/DH5Lb4YN5ovx43mzw/fZvP830g8uE+SzUuQkXiKXcsWsfCLj5n26P18ds9I5r77Ght+/5VT+/ZgMZdoHWKtiI+PJyoqitmzZ9vKZs+eTWRkJO3bt7c7t3fv3nYtfMnJyQwePBh3d3diY2PLXRz+wIED9OzZEzc3N1q0aME///xzwZh2797NwIED8fLyIiQkhFGjRpGamnrB64KDgwkNDbX7OjNzfcOGDfTt25fAwEB8fHzo1asXmzdvtrv+5ZdfJioqCldXV8LDw3n44Ydtz33s2DEeffRRFEWxGyu8evVqevbsibu7O5GRkTz88MPk5Z0dqhITE8Nrr73G6NGj8fHx4Z577mH69On4+vry999/ExcXZ9ubPjEx8YLPKISjkxZOIZxQdmoyhzdv5MiWDRzftR1zUZHWIdVZBdlZHNq4lkMb1wKlE5VCGjUmqlVbGsZ3JqRh4zo7Kemuu+5i2rRptiWRvvnmG8aMGcOyZcsqvW706NGcOHGCJUuWYDQaefjhh+22dbRardx4440EBgaydu1asrOzL9glnZiYSK9evbjnnnv44IMPKCgo4KmnnuLWW29lyZIlVX7GnJwc7rzzTj7++GOgdKemgQMHcuDAAUwmE7/88guTJ09m1qxZtGzZktOnT7Nt2zagNAFv27Yt9957L/fcc4+tzh07dtCvXz8mTZrE1KlTSUlJYfz48YwfP55p06bZznv33Xd54YUXeP755wFYuXIl+fn5vPfee8ycOROdTsftt9/OE088UW7SLoQzkYRTCCdgtVhI2LeHw1s3cmTzBlJPHNM6pHrLXFLMqb27ObV3N2t++REvP39i4zvRqENnolq3w8XoqnWI1WbUqFE888wzHD16FEVRWLVqFbNmzao04dy/fz9//fUXa9eupUuXLkDpgu/n7nS0aNEi9uzZw9GjR2nQoHTIwhtvvMGAAQMqrHfKlCnEx8fzxhtv2Mq++eYbIiMj2b9/f5kdl8515h5nRERE2PZuv+qqq+yOffHFF/j5+bF8+XKuu+46jh8/TmhoKNdccw0uLi5ERUXRuXNnoHQogV6vx2Qy2Y0HfffddxkxYoQtiW7SpAkff/wxvXr1YsqUKbi5udnu/cQTT9iuW7lyJSUlJXz++ec0atQIgPHjx/Pqq69W+GxCOAtJOIVwUPnZWRzZspEjWzZydPtmivLqzszxuiQ3I50di/9mx+K/MRhdiWrVhkYdutAwvhNe/gFah3dZAgMDGTRoEDNmzEBVVQYNGkRgYGCl1+zZsweDwUDHjh1tZc2bN8fX19funKioKLtEsFu3bpXWu2nTJpYuXYqXl1eZY4cOHao04VyxYgUm09k1W8/d+jI5OZkXX3yRJUuWkJSUhMViIT8/37YY/i233MKHH35Iw4YN6d+/PwMHDmTw4MGVbp+5adMmDh48aNcqqaoqVquVI0eO2JLvc9+jMzw8PGzJJpTuA39u67AQzkoSTiEcSF5mBntXLWff6hWcPnQAVZUt85yJubiIw5s3cHjzBlAUQmIb0TC+M407dSU4pqHW4VXJmDFjGD9+PAD/93//d8Hzz6y0V9kwg/JW47vQsASr1crgwYN5++23yxwLCwur9NrY2Fi7hPdco0ePJiUlhQ8//JDo6GhcXV3p1q0bxcXFQOnkqX379vHPP/+waNEixo0bx7vvvsvy5csrnJlvtVq57777bGM9z3XuhCtPT88yx8+vU1GUct8vIZyNJJxCaKykqJCDG9aye8VSjm3fgir7MtcNqmpbjmnNLz8Q0CCKuCt7E3dlb7yDHGuGdGX69+9vS7769et3wfPj4uIwm81s3LjR1vW8b98+MjMzbee0aNGC48ePk5CQQHh4OIBtr/KKxMfH8+uvvxITE1Np6+KlWrFiBZ999hkDBw4E4MSJE2UmIrm7u3P99ddz/fXX8+CDD9K8eXN27NhBfHw8RqOxzF7t8fHx7Nq1i8aNG1dbnEI4O0k4hdCAarVyfOd2dq9YwoH1aygp1H7XHlGz0k4eZ+Wsb1n500wimrWgRc8+NOt2Na4ejrd+5bn0ej179uyxfX8hzZo1o3///txzzz18+eWXGAwGJkyYYFtaCeCaa66hWbNm3HHHHbz//vtkZ2fz3HPPVVrvgw8+yFdffcXw4cOZOHEigYGBHDx4kFmzZvHVV19VGltycjKFhYV2ZQEBAbi4uNC4cWNmzpxJx44dyc7OZuLEiXaxTp8+HYvFQpcuXfDw8GDmzJm4u7sTHR0NlM42//fffxk2bBiurq4EBgby1FNP0bVrVx588EHuuecePD092bNnD//88w+ffPLJBd9DIeoiWRZJiFqUcvwoy7/7hi8fvItfXn+e3f8ukWSzvlFVTu3dxaZ5fzLtqVUs/HonJ/amO3S3qbe3d5l1LCszbdo0IiMj6dWrFzfeeCP33nuv3bqXOp2OOXPmUFRUROfOnRk7diyvv/56pXWGh4ezatUqLBYL/fr1o1WrVjzyyCP4+PjYljiqSLNmzQgLC7P72rRpE1A68SgjI4P27dszatQoHn74YbtYfX19+eqrr7jiiito06YNixcv5o8//iAgoHR87quvvsrRo0dp1KgRQUFBALRp04bly5dz4MABevToQfv27XnhhRcu2PUvRF0mW1sKUcNKigrZ/e8Stv3zFynHjmgdjnAQUW1uIPnE2XGd3oFutLgynLju4Xh4ywLgQoi6RRJOIWpIdmoKW//+kx2L/6YwL1frcIQD0ekNmEIfoCi/bHd6B9NuIi1H8Lt9JB7x8RpEJ4QQ1U8STiGq2al9e9g8/zcObliD9bzJBEIAhDVpT0Zq2T2+XT30dFvyOLrC0iWwXFvE4T9yJN7XXYfOte6s7ymEqH8k4RSiGljMZvavWcHmv37n9KEDWocjHFyDVreTeqrsTPVmodlEzHqmTLnexwffYcPwH30nBj+/2ghRCCGqlSScQlyG/Owsti9awLaF88jNSNc6HOEE3LxMKG53o1rOm+iiQI/jX+FyaGuF1yoeHvjddhsBd4/BcIEF2IUQwpFIwilEFeRnZ7H+t1/YtnA+5mLZx1xcvMhWvUk5VXZsZliYjrgfH7ioOhQ3N3xvuYWAsXfjEhJS3SEKIUS1k4RTiEtQmJfLxj/msPmv32U5I1ElIU3uISvVVKa8k34dpsXfXlJditGIz003EnjPPbj8t4C6EEI4Ikk4hbgIxQX5bJr/G5vmzZU9zUWV+YY2oLDo1jLlHiYDnf96CJ25uGoVu7jge8MQAu69F2Nk5GVGKYQQ1U92GhKiEiXFRWxd8Ccbfv+VgpxsrcMRTs47OJ7CE2XLY9wTq55sApSUkPnzL2TOmYvPoEEEPnA/xpiYqtcnhBDVTFo4hSiHuaSE7Yv+Yv3cn8nLzNA6HFEHKDodPuHjKMwznlcOPfZ/iOFkNa5u4OKC3223ETT+QfS+vtVXrxBCVJEknEKcQ1VVdv+7hFU/fUdOWorW4Yg6JLRxGzLTrilTHhmu0uSH8TVyT52PD4H334//yBEoRtm9SAihHUk4hfhP8tHDLJ46hYT9e7QORdRBka2Hk3Ky7F7aXcxL8Fz5a43e2yUqiuAnHsf72mtr9D5CCFERSThFvVeYl8uqn2ay7Z+/UK1WrcMRdZCrhyd6z3uwmu3X3vT2c6HD3PtQaulj2KNrV0KfexbXJk1q5X5CCHGGTBoS9ZaqquxatogVP84gPytT63BEHRYU24HUBF2Z8mjlSK0lmwD5a9dyeOiN+I8cQeD48ehNZZdnEkKImiAtnKJeSjpyiMXfTCFx/16tQxH1QGizu8lM9rEr0xsUrtz6OvrUU5rEpA8IIPixx/C5cSiKomgSgxCi/pCEU9Qrhbm5rJz1LdsXLUBVpftc1Dyf4DCKSoaXKY8NLyH2hwm1H9B5PDp1IuyN12X9TiFEjSrbxyNEHbX73yV8M+Fetv0zX5JNUWt8QstuYwkQun9BLUdSvvwNGzg85AbSv/seaX8QQtQUaeEUdV5+dhb/fPkpBzes0ToUUc8oig7fyAcoyHG1K/cLdKH9L/dqFFXFPDp3Lm3tbNBA61CEEHWMtHCKOu3gxnXMeOJBSTaFJoJim5dJNgGiix1z6a389es5fP0Q0n/4QVo7hRDVSlo4RZ1UXJDPkulfsmvZIq1DEfVYZOvbSDkZYVfm4qrjitXPoctJ1yiqi+PRpQthr7+OsUHEhU8WQogLkBZOUeec2L2DGRMfkmRTaMrFzZ30pNAy5dH+eQ6fbALkr1vHkeuvl9ZOIUS1kBZOUWeYS0pY+eMMNs3/DeR/a6GxBi26k5rYtUz5Fak/4rpzpQYRVZ1H166Ev/4aLhHS2imEqBpp4RR1QtLhg3z39CNsmjdXkk3hECzWZmXKgkL0TpdswtkF47P/+UfrUIQQTkoSTuH0Nv4xmx+ef4K0k8e1DkUIAEwBwaQn+ZYpj8reUvvBVBNrdjanHnqY02+8gVpSonU4QggnIwmncFpF+fn8/v4bLP/uG6wWs9bhCGHjF9EBBfvde9w89JiWfqdRRNUn49uZHB15O8UntdkhSQjhnCThFE4p5fhRvn92AgfWr9Y6FCHsKQp52TFliqO909EV5tV+PDWgcPt2jtx0E3v2rNA6FCGEk5CEUzidvSv/5YfnHycjMUHrUIQoIyi6KXlZ7vaFCgRtmKVNQDUkvXNjblv/IB9v/hir7NwlhLgASTiF01AtKpm/H8Jjkx5zcbHW4QhRLnfvNmXKwkIVjIe2axBNDWkay2Md9qCi8tWOr3hg0QNkFmZqHZUQwoFJwimcgiWvhNSpO8hdnYAu0Ur/bvdpHZIQZRiMrqQnhZcpb5C8VoNoaoZiMvHa4GJylbN/9K1OWM1tf97G/oz9GkYmhHBkknAKh1d8KpfkT7ZQdDjLVuZz2of2rftrGJUQZYU0bIe5WG9X5mEy4Lm8jnSnKwrzRjZkuzGpzKGEvATu+OsOVpyUcZ1CiLIk4RQOLX97Cimfb8OSWWR/QIVm5njCw5pqE5gQ5VCVuDJlMW6J6Mx1YwjIyes7Md1vV4XH80ryeGjJQ3y/5/tajOryTZ8+HV9fX63DsHP06FEURWHr1q1ah1JjevfuzYQJE7QOQ9QS2WlIOKycFafImn8YKvk/VPF3Ye6uDykszK29wIQoh6dfABbugHOWQ9LpFK7c9wGGUwe1C6yamNvFcUf/Q5iVi5sgNKzZMJ7u/DR6nf7CJ9eQ0aNHk5mZydy5c+3Kly1bRp8+fcjIyMDX15eCggJycnIIDg7WJtByWCwWUlJSCAwMxGAwaBrLyy+/zNy5c6uc/J7/fp+Rnp6Oi4sLJpOpegIVDk1aOIXDUVWVzHmHyZpXebIJoKaXMLDDuNoJTIhK+DfoAOetvRkRaq0TyaYuMIBn+6ZcdLIJMGvfLB5c8iC5xY7/x6C7u7tDJZsAer2e0NDQWk02i2t5Mqa/v78km/WIJJzCoagWKxk/7SN3xcUvKu2SoHBVl9E1F5QQF6Egr1GZsvDjSzWIpJoZDHw7PJijhsxLvnTVqVWM+msUp3Ide5H487vUt23bRp8+fTCZTHh7e9OhQwc2btxod+7cuXNp2rQpbm5u9O3blxMnTtiuP3ToEEOGDCEkJAQvLy86derEokWL7O4ZExPDG2+8wZgxYzCZTERFRfHll1/ajpfXpb5r1y4GDRqEt7c3JpOJHj16cOjQoQqfa/ny5XTu3BlXV1fCwsJ4+umnMZvPbpLRu3dvxo8fz2OPPUZgYCB9+/at0vv33Xff0bFjR0wmE6GhoYwYMYLk5GTbc/Tp0wcAPz8/FEVh9OjRtvuf26V+ofcEYMeOHVx11VW4u7sTEBDAvffeS26u4/9RIyThFA7EWmQhdfou8remXPK1QamhtGjWswaiEuLCAiMbk5thv/amt58LHqtmaxRR9dl9Szy/ex2o8vUHMw9yx/w7OJjhPC29I0eOpEGDBmzYsIFNmzbx9NNP4+LiYjuen5/P66+/zowZM1i1ahXZ2dkMGzbMdjw3N5eBAweyaNEitmzZQr9+/Rg8eDDHj9tvv/v+++/TsWNHtmzZwrhx43jggQfYu3dvuTGdOnWKnj174ubmxpIlS9i0aRNjxoyxSyDPP3/gwIF06tSJbdu2MWXKFKZOncprr71md96MGTMwGAysWrWKL774okrvV3FxMZMmTWLbtm3MnTuXI0eO2JLKyMhIfv31VwD27dtHYmIiH330UYV1Vfae5Ofn079/f/z8/NiwYQM///wzixYtYvz48VWKW9QubQeGCPEfS04xqdN3UXKqin+pWlXaGHqQFHCEtLQTFz5fiGrk4deW8xtZopUjKE4+RL7gira8HLP5sutJLkhm9N+jmXL1FFoHta6GyC7en3/+iZeXl12ZxWKp9Jrjx48zceJEmjdvDkCTJk3sjpeUlPDpp5/SpUsXoDRpi4uLY/369XTu3Jm2bdvStm1b2/mvvfYac+bM4ffff7dLjgYOHMi4caVDgp566ikmT57MsmXLbPc91//93//h4+PDrFmzbMlv06YVT5r87LPPiIyM5NNPP0VRFJo3b05CQgJPPfUUL774IjpdaXtT48aNeeeddyp9Py5kzJgxtu8bNmzIxx9/TOfOncnNzcXLywt/f38AgoODLzg5q7L35Pvvv6egoIBvv/0WT09PAD799FMGDx7M22+/TUhIyGU9h6hZ0sIpNGdOLSB5yraqJ5v/UfPNXNPoDgwGYzVFJsSF6V1cyEyJsC8zKPgvn65NQNVEiYzg8SuPVlt9WUVZjF04lnWJ66qtzovRp08ftm7davf19ddfV3rNY489xtixY7nmmmt46623ynRbGwwGOnbsaHvdvHlzfH192bNnDwB5eXk8+eSTtGjRAl9fX7y8vNi7d2+ZFs42bc5uEqAoCqGhobau6PNt3bqVHj162LW0VmbPnj1069YNRTk7rviKK64gNzeXkydP2srOfY6q2rJlC0OGDCE6OhqTyUTv3r0ByjzvxajsPdmzZw9t27a1JZtQ+kxWq5V9+/Zd3kOIGicJp9BU8Ykckqdsw5JeWD0VppgZ1FW6V0TtCWnYjuJC+86iqOBi9GmJGkV0+RQ3Nz6+2ZVUXfXu/Z5vzmfconEsPr64WuutjKenJ40bN7b7ioiIqPSal19+2TZecsmSJbRo0YI5c+bYnXNuInd+2cSJE/n11195/fXXWbFiBVu3bqV169ZlJuWcnzwqioLVWv7ELHd393LLK6KqapkYzyxKc275uclbVeTl5XHttdfi5eXFd999x4YNG2zvVVUmIVX2npT3TOeeJxybJJxCM4WHMkn5ajvWvJJqrdftlAtXdhx24ROFqAaKoezam6H7/9IgkuqzanhLVrhdeuvUxSi2FvP4ssf57eBvNVJ/dWnatCmPPvooCxcu5MYbb2TatGm2Y2az2TaJCErHJmZmZtq6wlesWMHo0aMZOnQorVu3JjQ0lKNHj15WPG3atGHFihWUlFzc52WLFi1YvXo15658uHr1akwm0wUT7kuxd+9eUlNTeeutt+jRowfNmzcv00prNJb2Ol1oKMOFtGjRgq1bt5KXd/YPoVWrVqHT6SodXiAcgyScQhNFh7NIm74Ltfjil1m5FBFZMTSO7VQjdQtxhoe3L2mJAXZl/oEG3Df+rVFEly/92o58GLqtRu9hUS28sOoFh1wgvqCggPHjx7Ns2TKOHTvGqlWr2LBhA3FxZ/+wcHFx4aGHHmLdunVs3ryZu+66i65du9K5c2egdFzk7Nmz2bp1K9u2bWPEiBEVtlxerPHjx9smJ23cuJEDBw4wc+bMCruSx40bx4kTJ3jooYfYu3cvv/32Gy+99BKPPfaYbfzmpSgoKCgzNOHgwYNERUVhNBr55JNPOHz4ML///juTJk2yuzY6OhpFUfjzzz9JSUmp8qzykSNH4ubmxp133snOnTtZunQpDz30EKNGjZLxm05AEk5R64qOZpE6fRdqSc0kmwCYVTqarsXH27HW1hN1S2B0R1Dtu/KiivdoFM3lU5s15LH2Fe8kVK33QuWt9W85XNKp1+tJS0vjjjvuoGnTptx6660MGDCAV155xXaOh4cHTz31FCNGjKBbt264u7sza9bZ7UsnT56Mn58f3bt3Z/DgwfTr14/4+PjLiisgIIAlS5aQm5tLr1696NChA1999VWFYzojIiKYP38+69evp23bttx///3cfffdPP/881W6//79+2nfvr3d19ixYwkKCmL69On8/PPPtGjRgrfeeov33nuvTCyvvPIKTz/9NCEhIVWeVe7h4cHff/9Neno6nTp14uabb+bqq6/m008/rVJ9onbJTkOiVhUdzyZ16k7UosvrWrlYaqieX9a9jdVaO/cT9UtQo/vIST87Bs7FVccVq59Dl5OuYVRVo3h78+o9Xuwwlj9ppSY93+V5bmt+W63ftyqmT5/OhAkTyMzM1DoUIZyKtHCKWlN8IqdWk00A5bSF/t0eqLX7ifrDPyLWLtkEiA7IdcpkE0XhjxGxmiSbAK+ve51f9/+qyb2FELVDEk5RK4pP5ZJSy8nmGaYETzq3vb7W7yvqNq+AtmXKQrbNKedMx3fihk5861c7XenlUVF5Zc0rDj+RSAhRddKlLmpccUIuqV/vwJpf/o4YtUEx6liV+zsnTmn3S1XUHTq9Aa+QByguODt+LihET+uf7tcwqqoxt4/jjn6HLmmf9JqiU3S8ceUbDGo4SOtQhBDVTFo4RY0qOZ2nebIJoBZbuSJkKB4ePprGIeqGkEZt7JJNgKjsLRpFU3VKUCDPXJPiEMkmgFW18tzK5/j7qPPO8hdClE8STlFjSpLzSflK+2TzDDWjhIHtHwBZIFhcJr1LC7vXbh56vJd8q1E0VWQwMGNYIMcMmVpHYseiWnh6xdOsOrVK61CEENVIEk5RIyw5xaR+s7PaF3W/XPoElb5dx2odhnBibl7epJ0OtCuL8U5HKSrQKKKq2XVrPH96HdQ6jHKZrWYeW/YYO1N3ah2KEKKaSMIpqp212ELqjF1YMou0DqVc/kn+tGlxjdZhCCcVFNMB1XrOR6cCgRtmVXyBA8q/sh2vRG/WOoxK5ZvzeXDxgxzLPqZ1KEKIaiAJp6hWqlUl/ce9lJys2k4StUKFFnQmJLiR1pEIJ1Rc1MTudViogvHQdo2iuXRKVASPX3FY6zAuSnphOvf9cx+pBalahyKEuEyScIpqlfXnYQr3OP46hGqBhd7RwzEaPbQORTgRv7AoslK97MoaJK/RKJpLp7i78eFNRtJ0+VqHctFO5Z5i/OLxFJida8iCEMKeJJyi2uSsPEXu6gStw7h4qSUM6jxO6yiEEzEFtbN77eltwGvZj9oEUwUrhrdkldsJrcO4ZLvSdvHk8iexyI5hQjgtSThFtSjYlUbWPOfopjuX8ZSeXp1HaR2GcAKKTkd2epRdWYxrAorFMVZhuJC0fh35OGSb1mFU2bKTy3h7w9tahyGEqCJJOMVlKz6RQ/qsveCkWwiEpkfQrHF3rcMQDi6kYSsK84y21zqdQsCqmRpGdPHUZg15vJ3zb3rw494fmX1gttZhCCGqQBJOcVnM6YWkztiFWuIYC0dXiUWlvXsf/P3CtY5EODCDWyu71xGhVgwJjt+qr/h4M2lwEfk6x1qirKpeW/saW5O3ah2GEOISScIpqsxaZCF1+i6suc7/i0zNNdO36V3o9cYLnyzqHVdPL9JPB9uVRRxbolE0l0BR+G1EDDtdkrSOpNqUWEt4bNljJOcnax2KEOISSMIpqizj1/2Yk51ntusFJZsZ2O0BraMQDig4Jh6r5ezHpbefC+6r52gY0cU5PrQT3/nu1jqMapdSkMKEpRMothRrHYoQ4iIZtA5AOKfcNQkUbK97a+N5nHKjW/zNrNn8i9ahVKtDKWks23uYUxlZZBcWMfqKDrSKCLU7Jyk7h3nb93I4JR1VVQnxNjGqWzx+nu7l1rnjZCKL9xwiNTcPi1UlyORJr6axdIhpYDtn87FTzNu+l2KLhc6xkQxuG2c7lp6Xz5fL1zOh7xW4ubiUdwuHUWK2X3szWjmMojr2oGVzfAueauZ8+7tfrB2pO3h1zau8duVrWocihLgIknCKS1Z8MofMPx1/7FpVReU24XR0O44c26p1KNWm2Gwh3NebzrENmLG67A4zqbl5/N+SNXSOjaRfy6a4ubiQlJ2DQV9xJ4i70cjVcY0J9vZEr9OxJyGZnzZsx8vNlWahQeQVFfO/jdsZ1qkt/l4eTF2xgUZB/rQIDwHg1007GdSmmcMnmz7B4WQm+9he6110+C+foWFEF6YEB/L0NclYnHUm30X67dBvxAXEMTJupNahCCEuQBJOcUms+SWkfb8HLHX4F1mJlS5+15GadoKc3DSto6kWcWHBxIUFV3h8wY59NA8L5rpzWiADvCpfFL9xcIDd6x5NY9l49CRHUtJpFhpEWm4+7i4utIsKt52flJ1Li/AQNh87hUGno3WDsMt4qtrhExpP8jlLV0YFFaFPS9QuoAsxGJg2LIDj+kNaR1Ir3tvwHnH+ccSHxGsdihCiEjKGU1w0VVVJ/3k/lgzH3CO9OqlZJfRvcy+KUvf/iVhVlT2JyQR5efLl8nW89Ns/fLRoFTtPnb7oOlRV5UBSKsk5eTQM8gcg0ORJsdnCqYws8ouKOZGeSbivN/lFxfy9az9D41vW1CNVG0XRkZMZbVcWtm++RtFcnB23xTPfs34kmwBm1cxTK54iqyhL61CEEJWQFk5x0XL/PekU21ZWF12ilX7d7mPB6ilah1KjcguLKDJbWLL3EANaNWVQm+bsO53CjFWbuL93Vxqd15J5roLiEib9uRizxYpOUbgxvhVNQ4MA8DC6MKxzW35cv40Si4UO0Q1oFhrET+u3cWXjGNLy8vlm5UYsVivXtmxK20jHa+0Mjm1BVoar7bV/oAG3ZQs1jKhyeT3bMSmq7JCJuu503mleXPUiH131kdahCCEqIAmnuChFR7LI+vuY1mHUOp/T3sS3Gcjm7Y7dqnU5zgyOaBURQs9mDQGI8PPhaFoGaw4drzThdHUx8FjfHhSZzRxITuP3bbvx9/Kwdbe3bhBK6wZnJycdTE4jMSuHofGteGv+UkZ2bY/JzZWPF6+iYZA/JjfXim6lCaNnK8g4+zqqeI92wVyAEt2AJ7rV3bHVF7LkxBJ+3Psjw5sP1zoUIUQ5JOEUF2TJLSbtx71grcPjNiuiQtPidiSFH+JUwj6to6kRnkYjOkUhxNvLrjzY5MXR1IwKriqlUxQCTZ5AaZKanJ3Lkj0Hy4zvBDBbLMzevJMRXdqVzmxXVVsyG+jlyfH0TFr+N6GoOq06eJRl+w6TU1BEiI8XQ9q1tHX7n+9gchqfL1t7tuB/8wB4/tZpRIbG4LtkOqvz8piUdJo0i4Wrvbx4JTQMo6IAkGOxcOuxo0yNjCK8FidDKe7uTL7RhTRdHVqmrAre2/Ae8cHxNPNvpnUoQojz1P0BauKyqKpK+qx9WLPr73p3apGFHmG34ObmdeGTnZBBryPS34fknDy78tTcvAqXRKqYitla/q5T/+w+SPPQIBr4+aCqKtZzlhWyqipqDSwztPV4Ar9v3c01cY159NoraRjoz9cr1pORV1DpdU8N6MXnjz/DG6N+5o1RPxPsE0FMQC7kZPBkYgK3+frxfVQ0OwoL+SUz03bd+ykp3ObrV6vJJsDyEXGsdjtx4RPruGJrMRP/nUh+Sf1OvIVwRJJwikrlrkqg6GCm1mFoTk0vYVCHB7UOo8qKSsycysjiVEbpxIr03HxOZWTZEq/ezRqx7UQCaw8dJzUnj5UHjrI7IZnujc5OmPlx3Vbmb99re714z0H2n04hLTef5Oxclu87zMajp+gQHVHm/qezcth2IoF+rZoCpa2nCrDu8HF2JySRnJ1LpJ9vtT/38v1H6BwbSZeGUYR4mxjSviW+7m6sOVT58BAvV1dMnh3x9vDH28MfnU5P8LY5ZFgspFssDPf1pYmrK328vDhUXDqJbnN+PrsKCxnl51ftz1GZ1P4d+TR4e63e05EdyTrCG+ve0DoMIcR5pEtdVMicWkD230e1DsNhGBLg6q5jWLz2G61DuWQnMrLsuop/31Y6FrFjTAOGdW5L6wah3BTfmiV7DzJ36y6CTV7c0T2e2HO6njPyC1D+6zqG0rU9Z2/eSWZBIS56PcEmT0Z0aWdbBukMVVX5ZeMOrm/XAldD6UeOi0HPsM5tmb15FxarlaHxLfHxcKvWZzZbrJzKyOKq5o3sypuGBnE0rfKhAh8uXk3Jwo2E+kbTP34kV8Z3xHXZaox6PUF6A6vy8+ju4cmm/AKG+HhTrKq8mpTEa2Gh6M95j2qaGteIx9rtrLX7OYvfDv1GjwY96BfTT+tQhBD/UdSa6McSTk9VVVK+2E7x0WytQ3EsOtjpso5de5dpHYm4gKyCQib9sZjxV3UjJvBs4rx490E2HjvJUwN6l7kmOTuXwynpdOwykORTEWw4sIiVu//g/24eR+8diwHYlJ/P2ynJZFgs9PT05OngEL5KSyPbauEmH19ePn2aDIuFkX5+jKzB1k7Fx5uXx3qxyyh7ipfH382fOUPm4O9W/nhdIUTtkhZOUa7c1QmSbJbHCq313UkKPExq6nGtoxEXxb7FUa1k951gby+CfUz4e/bEK9SNhqEtySpM4X9/z6R3eGnLbQcPD/4XHWO75mhxMb9nZ/FrTCx3HD/GHX7+XOnpyZCjR+jo7k4zt+ptuS19JIW5I6LZZXTcWfNaSy9M5411b/Ber/e0DkUIgYzhFOUwpxWQveCo1mE4LDXfwtUNR+HiUgOJhKg2Z2bf5xTab1SQW1Rc6fJLQdHNyM8++7PtEB3D8aLCcs9VVZWXTifyZHAwqqqyp6iIa00mAgwGOrp7sKGgZiavHLuxE9/7SrJ5IX8f/Zt/jv2jdRhCCCThFOdRVZX0X/ajlpQ/01j8J8XMwC7jtI5CVMKg1xHh58P+pBS78v1JqcQEVNzV7ebd5uwLBU7sWUGxqtJi317eTE6yO/fXrCx89Xqu8jKxuaB0Alafgwdov38fK/NyWZtnn3CuzstjwOFDdD6wn2cSEyg+Z0RTjsXCgMOHSCgpqfS5Sjq04OmmWyo9R5z12trXyCzM1DoMIeo9STiFnbzVCRQfka70i+F2yoUenWSRaUfWq2ks64+cYP3hEyRl5/Dblt1k5hfQtVEUAPO37+XHdVtt5686fIKlqw+TnHWSxPSjLNn5NYtOnyTfaqWZq32raJrZzOdpqTwbXLp2aKDBQLDBwCAfH94JC8MMrMrL5X//LZtkVdXLXlJJCQnmqauSsFQyLEDYO9O1LoTQlozhFDbmtAKypCv9koRnRtOkYWcOHF6vdSiiHO2iwskrLuaf3QfILiwi1MeLu3t0wt/TA4DswiIy8s+uyenmG8ovK78iKy8VF4MrjXx9CdbreSMsnC/SUu3qfjM5ibv8Awj5L0Fs4ebGx+ERPHs6kfnZ2dzrH8DeokI2FeRzq6+v3ZJKrjpduUsqvRBSycL3BgPf3ObHSUP92Se9uvx19C/6xfTj6uirtQ5FiHpLZqkL4L9Z6V/uoPhIltahOB3FZOCvY1+TlZV04ZOFQwtvMZr0xNJZzZ7eBuZ8OQRfncLTwSHcefwYzd3ceCb44nZD2l1YyH0nT/BIYBA3+/qiqiq9Dx3ipdAQunt4MubECYb4eDPUx5dbjx7ltbBQWrlVvND+9ts78VqkdKVXVYBbAL8P/R1vo7fWoQhRL0mXugAgb12iJJtVpOaY6Rd3NzqdXutQxGXw8g8kPfHs2M7DB39hT0EBjwYGXVI9fQ4dpO3+fdx67CgjfP242dcXAEVR+CA8nM/T0hh89Ahxbq7c6OPL12lpdPX0wFXRMfLYMQYePsz3GfbrhOb1bC/J5mVKK0zj480fax2GEPWWdKkLrPklZC+sfOcVUTklycKAbg8wb9WnWociqsg/ogPJJ0uXUMrMT+H//vyCr8PDcdVd2t/lMyOjyFetbCso5IOUZKKMRgZ5l7aqVWVJJSUmkse6Hay256zPft7/M0MbD6VlYEutQxGi3pEWTkHWP8ew5pu1DsPpeSV40rndEK3DEFWUn9fw7Pcle0kvKeaWY0dpvW8vrfftZUNBAd9lZNB6314slYxEamA00tTVjVt8fbnT35//S00t97yLWVJJcXfng6F6MnSV7/0uLo5VtTJp7SSsqqzCIURtkxbOeq7kdB556xK1DqPOaFjQgtMNDnH8pGw36EwCo5qQm3F2/GQ/l2y6xMTanfPc6URijUbG+gdc9PaVqgrFFSQ35y6plGWxAGD+L5E1o2JVYenIONa4yT7p1cVF50I3iw7L5pnoOtypdThC1CuScNZzmX8eBvljv9qoxVa6B91AWsYp8vIq369bOA533zbk5pR+7+3nQuDyvwg6bxkkd0XBV6+nyX/lH6Qkk2w281ZY6Q5EP2RkEOZiINZYenxzQT7TMtIZ6Vt2zc8zSyp9HxUNgI9eT0OjkW8zMrjC05O1efncOrgHnwZJslldrvBtztMnDxFzaB7sXQNxg8FDtr0UorZIwlmPFexKpehgptZh1DlqZgkD2t7HL2veLm3iEg5N72IkM7mB7XWMchjlIn5uqWYziecs0m5FZXJKCqdKStArCpEuLjwWGMSt/00aOtf5SyoBvBEaxrOnE/kuI527mjfm62ul56E6hLsH82SJO1dvWXi2sCAdlr4Og97XLjAh6hlZFqmeUs1WTk/ehCWt/C37xOXLCM1g4ZovtQ5DXEB4806kJ/UAQO+io8emV9Cln9YsHsXXh5fGerDbJeXCJ4sKGXVGRpuacc+uJbiVlDMGVtHDff9CaKvaD06IekgmDdVTOStPSbJZw/yS/Gjb8lqtwxAXoOjibN9HBRVqmmyi0zF7RJQkm5eph28cc7IsPLR1XvnJJoBqgX9erN3AhKjHJOGshyzZxeQsOaF1GHWfCnHWjoSGNtY6ElEBDx8/0k4H2F6H7ftLw2jg6NCO/OizR9MYnFmERwgfGaL4bMvfRKUeufAFhxbDkX9rPjAhhCSc9VHWgiOoxRatw6gX1EILvRsMw2j00DoUUY6AqA6gls449w804LZp4QWuqDnFnVryTFNZ3L0qXPWu3O/Tmrn7d3LVgZWXdvE/L9VMUEIIO5Jw1jPFJ3PI35KsdRj1ippWwqDOD2odhihHYX4j2/dRRdq1LCqhwTzVJxELMqT+UvX0jWNORgkPVtZ9XpmEzbBrTvUHJoSwIwlnPZO96DjyO632GU/p6N35Dq3DEOfwj4glJ90TABdXHb5Lp2sTiIsLX9/myyl9tjb3d1IRHiF8oo/i/7b8TWTa0curbPEksMjmF0LUJEk465HikzkU7k3XOox6KyQ9nLimV2odhviPV0A72/cxAbnocjM1iWPrbe342+OwJvd2Rq56V8b5tOa3fTvoffASu88rkn4INs+onrqEEOWShLMeyV50XOsQ6jeLSltjL/z9I7SOpN7TGwxkpkTaXodsna1JHLm92vNGpIzbvFi9fVswN72IB7bOw9VczatsLH8bivOqt04hhI0knPWEtG46BjXPTN8mo9HrjVqHUq8FN2xDcWHpvhfBIXqMu9fUegxKbBSPdj1Q6/d1RpEeofyfrgGfbFlAg/Qa+sM5NwnWf1UzdQshJOGsL7IXS+umw0g2M6jrOK2jqNd0Li1t30dmba71+yseHrw7VCFLJ2vhVsZN78qD3q2Yu3cbPQ+trvkbrvk/qMrEIyHEBUnCWQ8Un8qlcI+0bjoS9wRXune4Resw6iV3kzfp/6296eZpwHvpzFqPYcmI5qx3PVXr93Umff7rPr9/23yMlqLauWleMmz+tnbuJUQ9IwlnPSCtm44pMqcxsTHttQ6j3gmM7oBqLf3oizGlohTVbotW8qBOTAnaXqv3dCZRHmF8povg4y0LiKip7vPKrPoYLCW1f18h6jhJOOu44oRcCnenaR2GKE+JlS6+AzGZArWOpF4pKvpv5ycFgtb/VKv3trZswuOtJdksj7vejYe8WzFn71Z6HKr9MbU22Sdh24/a3V+IOkpRVVVWZazDUmfupnCXJJyOzBqq45e1b6OqVq1DqfP8wqIoKLwZgPAwheY/1t5YWsXPlxfudmOvS2q5x0sySjj9v9Pkbs/FWmLFNcSViLsjcI9xr7DOvL15JP6YSNGpIgx+BoIGBOF/lb/teO7OXBJmJmDONuMd7034XeHoDKXtDJZ8C4deOUTMkzEYA7SdxHaNX0uePLKTsAwH2XLXvyGM3wg6vdaRCFFnSAtnHSatm85Bd9pK/273ax1GvWAKPjuEISKpFiahnKHT8cvwBhUmm5Y8C4dfO4yiV4h+PJomrzchdHgoOo+KP6KLU4o5+sFRPJt60ujVRgRdF0Ti94lkbcgCQLWqnPjiBP59/Gn4fEMKDheQsSzDdv3p/53Gv4+/pslmjGc4XyjhTN78l+MkmwDph2X3oUvQu3dvJkyYoHUYwsFJwlmH5fx7UnYVchLep010aDNI6zDqNJ1eT1ZaFACe3ga8ls+qtXsfvqkjP/nsrfB4yrwUXAJcaDC2AR4NPTAGGfFq4YVrsGuF16QvTccYYCRsZBhu4W749/LHt4cvqQtKk1pLrgVLjgX/q/xxi3DD1N5EUULp5Ju8A3kUHC0g4NqA6n3Qi+RucOcR71bM3rOZ7ofXahLDBa14v0arHz16NIqilPnq379/tdS/bNkyFEUhMzPzoq9p1qwZRqORU6cubULb7NmzmTRp0iVGKOobSTjrKEt2EQU7ym9NEQ5IhSbFbYiIiNM6kjorOLYVRXkuAMS4JqDU0laGxZ1b8Uyjypdeytmag3uMO8c/Pc6eh/Zw8MWDpC+rfGWJ/IP5eLXysisztTZRcLQA1ayiN+kx+BrI3ZWLtdhK3v483CLdsJqtJMxIIOLOCBSdctnPd6n6+rXk95Q8xm6bj4uluNbvf9GSd8OhpTV6i/79+5OYmGj39eOP2owfXblyJYWFhdxyyy1Mnz79kq719/fHZDLVTGCizpCEs47KXZsIFmnedCZqkZUeoTfh5u6tdSh1ksGtdO1NnU4hYFXtLIWkhIUwsfcp1AvkdcXJxaQvSccYaiTmiRj8+/iT+H0iGasyKrzGnGVG720/xtDgbQALmHPNKIpC5LhIUn5P4cCzB3CPcsevhx+p81LxauGFYlQ4/Nph9j+9n7RFNT/0JtYzgi8J5YPNfxGaebLG71ct1n1Ro9W7uroSGhpq9+Xn52c7/sEHH9C6dWs8PT2JjIxk3Lhx5Obm2o4fO3aMwYMH4+fnh6enJy1btmT+/PkcPXqUPn36AODn54eiKIwePbrSWKZOncqIESMYNWoU33zzDedP7/jss89o0qQJbm5uhISEcPPNN9uOnd+l/t1339GxY0dMJhOhoaGMGDGC5ORk2/Ezra+LFy+mY8eOeHh40L17d/bt21eVt1E4CUk46yDVbCVv3WmtwxBVoKaXMCj+Aa3DqHNcPb1IPx0MQINQC4aEWti73MWFr27xIVGfc+FzVXCLcSP05lDco93x7+OPXy8/0pdU3sqpKPaZrHreGBrPpp40eqkRzd5rRvgd4RSnFpO5OpPgG4M5+eVJ/Pr40fDZhiT/lkzhiZpZhN7d4M4EU0t+3b2RbkfW18g9asyBvyHjqGa31+l0fPzxx+zcuZMZM2awZMkSnnzySdvxBx98kKKiIv7991927NjB22+/jZeXF5GRkfz6668A7Nu3j8TERD766KMK75OTk8PPP//M7bffTt++fcnLy2PZsmW24xs3buThhx/m1VdfZd++fSxYsICePXtWWF9xcTGTJk1i27ZtzJ07lyNHjpSb8D733HO8//77bNy4EYPBwJgxYy79TRJOw6B1AKL65W9NwZon68g5K0MCXNP1bhatnap1KHVGcEwHUhJK/74OP7akVu65ZXg7Fnpe3D7pBl8DbuFudmWu4a5kb8yu+BofA+Ys+2EBlmwL6MHgVfajXVVVTk07ReiwUFCh8FghPh190Lnq8GzmSd7e0i736tTPryVPHN5OaOZf1VpvrVGtpdtd9nu9Rqr/888/8fKyHxbx1FNP8cILLwDYtRrGxsYyadIkHnjgAT777DMAjh8/zk033UTr1q0BaNiwoe18f//S1QqCg4Px9fWtNI5Zs2bRpEkTWrYs7QUYNmwYU6dOtbWSHj9+HE9PT6677jpMJhPR0dG0b1/xGsLnJo4NGzbk448/pnPnzuTm5to97+uvv06vXr0AePrppxk0aBCFhYW4uVXv/4fCMUgLZx2Uu1p2MHF2ASmBtIrrrXUYdUZxSRMAvP1ccF89t8bvl9OnPW9GXFyyCeDRxIOi0/a76RSfLsYl0KXiaxp7kLsr164sd2cu7jHuKIayffgZ/2Zg8DLg3d4b/luBS/1v2I1qUVGt1TcEp6FXA74ilPc2/0VoppN/Hm35Dorza6TqPn36sHXrVruvBx980HZ86dKl9O3bl4iICEwmE3fccQdpaWnk5eUB8PDDD/Paa69xxRVX8NJLL7F9e9XWeJ06dSq333677fXtt9/O7NmzbROO+vbtS3R0NA0bNmTUqFF8//335OdX/J5s2bKFIUOGEB0djclkonfv3kBp4nquNm3a2L4PCwsDsOt6F3WLJJx1TNHxbEoS8rQOQ1wuK7RSuhMUFKN1JE7PJyScrJTScbExHEKp6aWHG0bxWJcDl3RJwLUB5B/KJ/mPZIqSishck0n6snQCrjo7i/z0z6c5+eXZsY/+ffwpTi0m8cdEChMKyfg3g4x/MwjsX3YjAXO2mZTfUwi7vfSXut5Tj2u4K2kL08g/mE/enjw8mnhU8YHP8jB48LipJb/s2kBXZ+s+r0hhJmyvmQ0CPD09ady4sd3XmZbJY8eOMXDgQFq1asWvv/7Kpk2b+L//+z8ASkpKe7DGjh3L4cOHGTVqFDt27KBjx4588sknlxTD7t27WbduHU8++SQGgwGDwUDXrl0pKCiwTWAymUxs3ryZH3/8kbCwMF588UXatm1b7gz4vLw8rr32Wry8vPjuu+/YsGEDc+aULjFVXGw/SczF5ewfVGeGh1itsh5xXSUJZx2TtzZR6xBENVELLFwVMxIXF+leuhw+IfEA6F10+C+fUaP3Ujw9efcGyFIubTykR0MPoh6KImtdFgefO1iaHI4Iw7e7r+0cc6aZ4rSzv7CNQUZiHoshb28eh148RPLvyYSNDMOnk0+Z+hO/TyRwQCAufmd/wUeMjSBrXRbHJh8jcEAgHg0vL+Ec4NeKP5KzGL39L1ysdWxIz/ova/2WGzduxGw28/7779O1a1eaNm1KQkJCmfMiIyO5//77mT17No8//jhfffUVAEZj6fqqFoul0vtMnTqVnj17sm3bNruW1ieffJKpU88O6zEYDFxzzTW88847bN++naNHj7JkSdnhKXv37iU1NZW33nqLHj160Lx5c2m1FICM4axTrPklshRSXZNqZlCXB5m7smbXBKyrFEVHdkYMAFFBhejSa3Yy3aIRTdnguqNK13q388a7XcUrFDS4p0GZMs/mnjR+pfEF6458ILJMmUdDD5q82eTSgixHY69Ins0pptPm+Zddl8NK3g1HV0HMFdVabVFREadP2/8/aTAYCAwMpFGjRpjNZj755BMGDx7MqlWr+Pzzz+3OnTBhAgMGDKBp06ZkZGSwZMkS4uJKl1aLjo5GURT+/PNPBg4ciLu7e5nxoiUlJcycOZNXX32VVq1a2R0bO3Ys77zzDtu2bePEiRMcPnyYnj174ufnx/z587FarTRr1qzMM0VFRWE0Gvnkk0+4//772blzp6zRKQBp4axT8jYlo5ZId0Rd43rKQM9OI7QOwykFN2xBYW5pS0/Y3ppNiJIGdeKLwKolm87I0+DBE6aW/LxrHZ2ObtA6nJq3pfqX0lqwYAFhYWF2X1deeSUA7dq144MPPuDtt9+mVatWfP/997z55pt211ssFh588EHi4uLo378/zZo1s00oioiI4JVXXuHpp58mJCSE8ePHl7n/77//TlpaGkOHDi1zrEmTJrRu3ZqpU6fi6+vL7Nmzueqqq4iLi+Pzzz/nxx9/tE0yOldQUBDTp0/n559/pkWLFrz11lu899571fF2CScne6nXIaff34g5pUDrMERN0CtsUZex/5CD7srioCJbDyPlZDj+QQba/Xxfjd3H2qopd153jCKl8u7LumKgXyueOLiZoOx6tPyaiwc8sR9cZYFzIapCWjjriKLj2ZJs1mUWlXjPq/H1DdU6EqdhdPcg/XQIAFGFu2vsPoqfLy8MyKoXyWZjr0i+sQbz9ub59SvZBCjJh52/ah2FEE5LEs46omBbitYhiBqm5pi5tvkY9HoZen0xgmPjsZj1uLjq8F1aQ5OFdDp+HtGAA4aa36lHS14unjzp1aK0+/zYRq3D0c6W77WOQAinJQlnHaBaVfK3y2Sh+kBJsjCg6zitw3AKFmtTAGL8c9DlZtbIPQ7e1JH/ee+tkbodxWC/1vyRmM6oHQswWGtn/3mHdXI9pB3SOgohnJIknHVA0eEsrDnFFz5R1AmeCe50aXeD1mE4NO/AEDKSfAEI2Tq7Ru5R1KU1zzXaXCN1O4KmXlHMsATyxuZ5BOYkaR2O46ihNTmFqOsk4awDpDu9/onNjyM6ss2FT6ynfMM7ABAcose4p/onWinhoUzsdQK17IY+Ts/k4sXTXi343841xB+vuwl1lUnCKUSVSMLp5FSLlYJd0p1e36glVroFXo+np5/WoTgeRSE3MxaAyKzqT5gUo5HPb/XitD73wic7EQWF6/1a83tCKiN3LECv1v1JUFWScRRO1JFdlISoRZJwOrnC/RlY8+v5uKp6Ss0sYUDb+0Cpg81slyE4ujn5Oa64eRrwXlr9ayduHNaWxe5Hq71eLTU3RfOt2Z/XN88jMFd2hbmg3b9pHYEQTkcSTieXL93p9Zo+UaVft3u1DsOhuJlaAxBjSkUpqt6lwrKviuftiC3VWqeWTC5ePOMVx6wdq2l3ou48V43b84fWEQjhdCThdGLWYguFu+v2ciziwnxP+9KuVT+tw3AILq5upCeFgQJB636s3sobRvN45/3VW6dGFBRu8GvNHwkpjNjxt3SfX6rMY5C4TesohHAqknA6scI96ajFspVlvadCc0sHwkIvf19sZxfcsD3mEj3hoQouR3ZWW72Klyfv3KCSpRRWW51aiTNF863Zj0mb5xGQKz0kVbb7d60jEMKpSMLpxKQ7XZyhFlro1eA2XN08tQ5FU1aaARCRtLpa6104oikbXROqtc7a5m008Zxnc2btWEW7E1u1Dsf57ZGEU4hLIQmnk1JLrBQdyNA6DOFA1LQSBnWov4vCe/kHkX7aD09vA17LZ1Vbvaev68RXATuqrb7apqBwo19r/jx5mmE7F6JTpVekWqTuh5R9WkchhNOQhNNJFR3NQi2RXxzCnkuCjj5d7tQ6DE34N4hHQSHG9RSKpXpWbrC2bsoTrbZXS11aaGGK4bsSX17ZPA+/PBnvXe2kW12IiyYJp5Mq3C+tm6J8walhtGjWU+swal1edkN0OoWAVd9VS32Kvx8v9MuiWHG+CTU+Rm9e8GjGjztW0uakTG6pMfvmaR2BEE5DEk4nJQmnqJBVpY1LDwL8G2gdSa0Jim5KXpY7DUItGBIOX36Fej0/DQ/ngItztQrqFB03+bXmzxMJ3LrrH+k+r2mJ20BajoW4KJJwOiFLVhHmpHytwxAOTM0zc02TOzEYjFqHUivcfUq3+Qw/urha6jtwUwd+8Xau8XmtvGP5vsjEy5vn4ZufrnU49YNqhcNLtY5CCKcgCacTktZNcVGSzQzs8qDWUdQ4vYuRjOQIfPxdcF9z+TvAFHVtzfMNnWcPcV+jDy95NOP77Stodcp5Jzc5rUOScApxMSThdEKFMjtdXCT3BCNXdLhN6zBqVEijdpQU6YlWD6Go6mXVpYSH8niv46hOsFuoTtFxi19r/jxxkpul+1w70sIpxEWRhNPJqFaVooOZWochnEiD7FgaxnbQOowao+ji0Lvo8F8+4/LqMRqZcosXybq8aoqs5rTxbsgPhV68uHkePvnyB6imsk/J8khCXASD1gGIS1N8MgdrfvUs+SLqCbNKZ+/+pHgfJye7bm0W4OHrT1qiHw3DC9Gln76sutYPb8MSj63VE1gN8TP6MEEfwtBti1G4vNZcUY0OLYGgZlpHIYRDkxZOJ1Mk4zdFFajZZvq3vAdFqVv/5AMjOwA6QvZe3vI0WVfH82741mqJqSboFB23+bXmj+MnuHH3Ikk2Hc2hJVpHIITDq1u/feqBwgOZWocgnJTutIUB3R7QOoxqlZ/XCP8gA+6bF1W9ksYxPNbRcbtE23g34sdCT57fPA+fgkytwxHlOboKqmmzASHqKulSdyLWYgvFJ3K0DkM4MVOiF53aDmbDtj+0DuWyBTRoSG6GB+1Nu6tch+LlyVtDLOToiqoxsurh7+rLBF0wN1Sx+/zlZYW8srzYrizEU+H0E6YKr/l+ewnvrC7iQJoVHzeF/o0NvNfXlQCP0raJfw6ZeXB+IUl5Vm5o7sJXg90w6ktnWGUVqnT6Ko9Fd3gQ5VPP2jJK8iBpB4S31zoSIRxWPftUcG4lp3LBKl1p4vI0KmxFg4gWWodx2Tz922J00+OzdHqV61gwsgmbjInVF1Q10Ct6hvu24Y9jxxh6md3nLYN0JD7uZfva8YBnheeuPG7mjrkF3N3ehV3jvPj5Fnc2nLIw9o9CAKyqysjZBdzf0YXVYzxZf8rCV5tKbNc/taiQ+zu61L9k84wTG7SOQAiHVk8/GZyTtG6K6qAWW7ky5EY8PLy1DqXK9AYDGakNiPbLRpebVaU6Eq/vzFT/ndUc2eVp592IWQXuPLvlT7wLqvZc5zLoINRLZ/sK8qz4I3/tSQsxvgoPd3El1k/HlVEG7utgZGNC6daeqfkqKfkq4zoZaRms5/qmBnanlB5bddzMxgQLj3SpHxsNlOvEOq0jEMKhScLpRIpPSsIpqoeaUcLA9s47njOkYVtKClwI2Tq7Stdb2jRjYgvH2WPc39WP19ya8O22ZTRPrPoQgfMdSLcS/n4OsR/lMOyXfA5nVLxWZ/dIPSezVeYfKEFVVZJyrfyyp4RBTUpHXgV5KIR5KSw8ZKagRGXFcQttQvQUW1QemFfI59e5o9c5wQKmNeXkeq0jEMKhKap6mSsli1qT+PZ6LBmON9ZMOK+00DQWrfla6zAuWUTLURgsobT86f5LvlYJ8OfpMQYOGbTf/lGv6Bnm05IH96zAVHj5LZrn+utACfkl0DRAR1Keymv/FrE31cqucZ62MZnn+2V3CXf9VkChGcxWuL6ZgV9uccflv3GaK4+befTvQlLzVQY2NvBhfzfeXFlMRoHK2HgX7v2z9NhDnY2M71wPWzsf3wemUK2jEMIhScLpJCy5xSS+Jl02oprpYI/rRrbvrp49yGuDu8kHXMYQb9yGz99fXdrFej2zHmjGbNP+mgnuEsT7NObZ04k0O72nVu6XV6zS6ONcnrzCyGPdXMsc351i4Zpv83m0q5F+jQ0k5qhM/KeQTuF6pg5xL7fO/WkWBv1QwJb7POk5LY8JXY30b2yg1Welk4fahOhr+rEcy60zocX1WkchhEOSLnUnUXwyV+sQRF1khRZ0ITg4VutILlpgdAdcPVzwXjrzkq/dd3MHzZPNQFd/3nBrzIytS2ot2QTwNCq0DtFxIK38bvU3VxZzRZSeiVe40iZET7/GBj4b5MY3W0tIzCl7jaqq3PtHIe9f64pVhS2nrdzcwoVgTx29YvQsP2qp6UdyPDKOU4gKScLpJGTCkKgpaoGFq6JHYnQpvxXL0RQVNibGKwWluPCSrivs1oYXYzfXUFQXZlAM3O7bhj+OHmbwntpfKLzIrLInxUqYqfyP/fwSlfOHYP7Xk17uPPmpW0oI8FC4vpkLlv/y0RLL2f9a6mPn2cmNWkcghMOShNNJSMIpapKaWsLALg9qHcYF+YVHk53uRdD6WZd0nRIRxhM9j6FqNKelg08Tfsoz8tSWP/EqzK6Vez6xsJDlR80cybCy7qSZm38uILtI5c62LgA8s6iQO+YU2M4f3NTA7D1mpmwo5nCGlVXHzTy8oJDOETrCz0tSk/OsvPZvER/3dwPAz10hLlDHh2uLWXPCzOIjZrpH1sNlnpN2grXiiVlC1Gf18BPBOZXIDHVRw1xP6enVeSTL13+vdSgVMgW2w9+s4LL04pczUlxd+b9bPEjW1f4+8kFu/jym+nHd1tofI3sy28rwXwtIzVcJ8lTo2kDP2rGeRPuWJo+JuSrHs84mR6PbGckpgk83FPP4wkJ83RSuijXw9jVlx3s+sqCQJ7q7EuF9NhGdfoM7d84t4OP1xUzs7krniHo2fhOgOBcyjkBAI60jEcLhyKQhJ2BOK+D0u9JVI2qBXmELy9h/cK3WkZSh0+sxhT5A24KNeC29+KR4/eiOvBe2teYCK4dBMTDCpwXjdi/Hs0j+WKxXbpkBLW/QOgohHI50qTsBmTAkao1FJd79anx9w7SOpIzghq0xGDzw/Peni74m85oOtZ5sdvJpws95Lkzc8qckm/WM1d2f9PTab0kXwhlIl7oTMKfkax2CqEfUXDP9mo/hlw1vY7GYtQ7HxuDakgjlFMrFxtQkhsc77K3ZoM4R7BbAE6oPAzToPhe1S9W7UujbmGT3RhxUothcGM7SjCB2Z3hy7ZEQvuyhdYRCOB5JOJ1ASWrBhU8SojolmRnQ9UH+XPWR1pEA4OrpRUZyMC13vn9R5ysmL16/3kyOruY3SjDoDIzyjuP+3cvxKJLeiLrGbGpAhqkpx/TRbDc3YFV2CCszfCnKK7+D8GCK/D8gRHkk4XQCZkk4hQY8E9zo2v5G1m6p2vaR1Sk4tgPuqoo+8chFnf/X8MZsNdb8PuldfJrybMIxGh6aV+P3EjVLdfUm16cpCa6N2GONZH1+GEvSAzidYoRL6CU/npZPsdmK0SAj1oQ4lyScTsCcemnrDQpRXaLzmpEY1ZZjx7Xdd7y4uAmNTl1cV3XCkM58E1Cz620GuwUy0Wqi/9ZFNXofUf1UnQtFvg1J8WjMISWaLYXhLM8KZmuWF1TD7qJmq8rRtDyahpguvzIh6hBJOB2cJbcYtdBxxtGJeqbESjf/waSlHyc3N0OTEHxDGoAlAPc1v13wXEvbZjwRt7XGYpHuc+di8Qon09SEY4ZYdpkjWJ0bwr/p/uQl1Gzr44GkXEk4hTiPJJwOzpwmrZtCW2pWCQPa3M/Pa94CDVZR8w5pT2juQZQL3FsX6M/T16ZjVmpm4e2uvs145tQR6T53QKrRizyfpiS6NWSfGsWG/DAWpwdyMtUVUms/noPJ8seIEOeThNPBmVNk/KbQni7RSv9u97Fg9ee1el9FpyMvJwa/f9+s/ESDgZnDQzhsOFDtMYS6BzHR4sm1W/6p9rrFpVEVPSW+DUn1aMRhXTRbihrwb1YQG7NNqNkabSNVjgPJshyWEOeThNPBmdMk4RSOwee0D+1b92fLjgW1ds/g2JYEuKno05MqPW/vzfH85lW94zZddC7c6d2ce3Ytw6M4r1rrFhdm8Qwmy9SUky6x7LQ0YE1uKMvS/chJdPxfW9LCKURZMo3OwckMdeEwVGhmjic8rGmt3dLo0YrQvZV3YRd0b8OLsdWbbF7h25zZ2fDIlnmSbNYw1cWDvMC2HI68kQUNHuG1gLe5SvcNjdI+JP7oOK4/MIBnD7fmj+QgcsyOn2wCJGRq87l99OhRFEVh69at1VanoijMnTu32uqrbvn5+dx00014e3ujKAqZmZnlnlcT7011iYmJ4cMPP9Q6jBonCaeDk4RTOBK10ELP8Ftxc/Oq8XsZ3T2gJBy3zRXPBFciw5l45fFqu2eYexCTDdF8vmUhMSmHqq1eAaqio8SnIafD+7Im8l4+D3mZke6f0Tj3S1qefIqrDtzM/Qe78PWpSA7nu2kd7mXJLjRTUGyp1jpHjx6Noii2r4CAAPr378/27dur9T6O6IcffkCv13P//feXOTZjxgxWrFjB6tWrSUxMxMfHp9w6IiMjSUxMpFWrVjUdbp338ssv065du0u+zjn+XKzHpEtdOBo1vYSBHcYxe9U7NXqf4Nh4GuRUvFOQ4ubGpze5k6xPvux7GXVG7jQ1457dS3Evlp29LpfVPZBsnyacdIlltzWSdbmhLEkPICOp/vzKScouJCbQs1rr7N+/P9OmTQPg9OnTPP/881x33XUcP159f3RpoaSkBBcXlwqPf/PNNzz55JNMmTKFDz74AA8PD9uxQ4cOERcXV2kiWVxcjNFoJDQ0tFrjFpdGWjgdmCWvBLW4ZmbcCnE5XBIUruoyumZvojTDZ9mMCg+vGd6K5e7HLvs2V/g2Z3aWlYe3zpNk8xKpBjcKAltxtMEQ/mnwEG8HvUk//dc0zPiYdkcf4roD1/Hkobb8mhRCRkn9STahNOGsbq6uroSGhhIaGkq7du146qmnOHHiBCkp5a9Mb7FYuPvuu4mNjcXd3Z1mzZrx0Udldw/75ptvaNmyJa6uroSFhTF+/PgKY3j11VcJCQmptGt6ypQpNGrUCKPRSLNmzZg5c6bdcUVR+PzzzxkyZAienp689tprFdZ19OhRVq9ezdNPP03z5s355ZdfbMd69+7N+++/z7///ouiKPTu3Rso7aJ+7bXXGD16ND4+Ptxzzz3ldqnv2rWLQYMG4e3tjclkokePHhw6VNqzsWHDBvr27UtgYCA+Pj706tWLzZvth+4oisLXX3/N0KFD8fDwoEmTJvz+++8VPgtAcnIygwcPxt3dndjYWL7//vsy52RlZXHvvfcSHByMt7c3V111Fdu2nV0Ledu2bfTp0weTyYS3tzcdOnRg48aNtuOrVq2iV69eeHh44OfnR79+/cjIKF3WTlVV3nnnHRo2bIi7uztt27a1e0+XLVuGoigsXryYjh074uHhQffu3dm3bx8A06dP55VXXmHbtm221vbp06dX+sxn1K9PACdjzSvROgQhKhSUGkqLZj3Zve/faq/bOygMP9WALrf8lbgz+3bgg9Ctl3WPcPdgnixx5+otCy+rnvpARcHiHUm6VxOO6mPYURLBiuwQVmX6UpLrOLPDHUlSTs1uq5qbm8v3339P48aNCQgIKPccq9VKgwYN+N///kdgYCCrV6/m3nvvJSwsjFtvvRUoTQ4fe+wx3nrrLQYMGEBWVharVq0qU5eqqkyYMIG5c+eycuVKmjRpUu4958yZwyOPPMKHH37INddcw59//sldd91FgwYN6NOnj+28l156iTfffJPJkyej1+srfM5vvvmGQYMG4ePjw+23387UqVO54447AJg9ezZPP/00O3fuZPbs2RiNRtt17777Li+88ALPP/98ufWeOnWKnj170rt3b5YsWYK3tzerVq3CbC5d9zonJ4c777yTjz/+GID333+fgQMHcuDAAUyms2usvvLKK7zzzju8++67fPLJJ4wcOZJjx47h7+9f7n1Hjx7NiRMnWLJkCUajkYcffpjk5LO9NKqqMmjQIPz9/Zk/fz4+Pj588cUXXH311ezfvx9/f39GjhxJ+/btmTJlCnq9nq1bt9paiLdu3crVV1/NmDFj+PjjjzEYDCxduhSLpXSIx/PPP8/s2bOZMmUKTZo04d9//+X2228nKCiIXr162eJ47rnneP/99wkKCuL+++9nzJgxrFq1ittuu42dO3eyYMECFi0qHe5U0TCG8ymqqsHCeuKiFB3OIuXLuj8+RzgvxcPAP6e/JS3tRLXWG9VmEE03rsO4Z13Zg01jGXNjErlKcZXqNuqM3GVqxthdS3ArkSEr57O6+ZLr05RTxobssUayLj+MJWkBpBRX3OUpynpuYBz39GxYbfWNHj2a7777Dje30vGteXl5hIWF8eeffxIfHw+UtgbGxsayZcuWCsfYPfjggyQlJdlatSIiIrjrrrsqbGVUFIWff/6Z3377jY0bN/LPP//QoEGDCuO84ooraNmyJV9++aWt7NZbbyUvL4958+bZ6pwwYQKTJ0+u9JmtVisxMTF88sknDBkyhNTUVMLDw9m9ezeNGzcGYMKECWzdupVly5bZrouJiaF9+/bMmTPHVnb+e/Pss88ya9Ys9u3bV2l3/hkWiwU/Pz9++OEHrrvuOttzPP/880yaNAko/ZmYTCbmz59P//79y9Sxf/9+mjVrxtq1a+nSpQsAe/fuJS4ujsmTJzNhwgSWLFnC0KFDSU5OxtXV1XZt48aNefLJJ7n33nvx9vbmk08+4c477yxzjxEjRnD8+HFWrlxZ5lheXh6BgYEsWbKEbt262crHjh1Lfn4+P/zwA8uWLaNPnz4sWrSIq6++GoD58+czaNAgCgoKcHNz4+WXX2bu3LmXPAFLWjgdmEVaOIWDU/PNXNPoDn7NehezuWoJYBmKgitRGPd8XPaQycSkwcVVTjZ7+sbx9PF9RMri7ah6I0U+jUj2aMTB/7Z4XJYZzI5MT8jUOjrnVxNd6n369GHKlCkApKen89lnnzFgwADWr19PdHR0udd8/vnnfP311xw7doyCggKKi4ttyWhycjIJCQm2xKIijz76KK6urqxdu5bAwMBKz92zZw/33nuvXdkVV1xRpiu/Y8eOldYDsHDhQvLy8hgwYAAAgYGBXHvttXzzzTe88cYblV57ofq3bt1Kjx49Kkw2k5OTefHFF1myZAlJSUlYLBby8/PLjJdt06aN7XtPT09MJpNdi+W59uzZg8FgsIutefPm+Pr62l5v2rSJ3NzcMq3WBQUFtu7+xx57jLFjxzJz5kyuueYabrnlFho1amR7rltuuaXc++/evZvCwkL69u1rV15cXEz79u0rfK6wsDDbexIVFVVu3RdDEk4HJl3qwimkmBnUdTy/rfygWqoLjokjOHlf2QOKwryRDdlu3HXJdUZ4hPB0kSu9t/xdDRE6H7MponSLR30MO8yRrM4JZkWGLwV5FXdlistTE13qnp6etpY9gA4dOuDj48NXX31Vbgvl//73Px599FHef/99unXrhslk4t1332XdutKeA3d394u6b9++ffnxxx/5+++/GTly5AXPVxT7YRaqqpYp8/S88ISqb775hvT0dLtJQlarlS1btjBp0qRKu+IvVP+Fnn306NGkpKTw4YcfEh0djaurK926daO42P6P3fMTVkVRsFrLn3txpkP5/PfiXFarlbCwMLsW2zPOJKYvv/wyI0aMYN68efz111+89NJLzJo1i6FDh1b6XGfimjdvHhEREXbHzm1NPf+5zsRb0XNdLEk4HZgknMJZuJ1y4cqOw1i5cdZl1+Xl0xLv+R+WKT95fSem+13aepuuelfGeDXl7p2LcTXX/W1iVVcTuT7NSHSNZa8ayYb8MJakB3IqxRXKn1ciakh6Xs2O4YTSRECn01FQUP7QkBUrVtC9e3fGjRtnKzvTSgZgMpmIiYlh8eLFduMrz3f99dczePBgRowYgV6vZ9iwYRWeGxcXx8qVK23jLAFWr15NXFzcpTwaaWlp/Pbbb8yaNYuWLVvayq1WKz169OCvv/6ydW1XRZs2bZgxY0aFM+RXrFjBZ599xsCBAwE4ceIEqamXt09qXFwcZrOZjRs30rlzZwD27dtnt3ZofHw8p0+fxmAwEBMTU2FdTZs2pWnTpjz66KMMHz6cadOmMXToUNq0acPixYt55ZVXylzTokULXF1dOX78uN14zUtlNBptY0IvhSScDkwSTuFMIrJiaBzbiYNHNlS5Dhc3N3yKXFCK7ZNDc7s4nozbekl19fKN46nje4k8WPe6z1WdgWKfhqR4NuawEs2WogiWZwWxOcsE5c+zssla8z/y96+hJP0kisGIa0Qcfr1G4xJQ8bg8gNxdS8le9yvmjER0rh64xXbA76ox6N29ASg4soX0f6ZgycvEo2lXAvo/hKIv/UVuLcojccajhAx7DYN3cLW8B44uowY+v4uKijh9+nRp/RkZfPrpp+Tm5jJ48OByz2/cuDHffvstf//9N7GxscycOZMNGzYQGxtrO+fll1/m/vvvJzg4mAEDBpCTk8OqVat46KGH7OoaOnQoM2fOZNSoURgMBm6++eZy7zlx4kRuvfVW4uPjufrqq/njjz+YPXu2bYLJxZo5cyYBAQHccsst6HT2C+pcd911TJ069bISzvHjx/PJJ58wbNgwnnnmGXx8fFi7di2dO3emWbNmNG7cmJkzZ9KxY0eys7OZOHHiRbcIV6RZs2b079+fe+65hy+//BKDwcCECRPs6r3mmmvo1q0bN9xwA2+//TbNmjUjISGB+fPnc8MNN9CyZUsmTpzIzTffTGxsLCdPnmTDhg3cdNNNADzzzDO0bt2acePGcf/992M0Glm6dCm33HILgYGBPPHEEzz66KNYrVauvPJKsrOzWb16NV5eXuWOCS1PTEwMR44cYevWrTRo0ACTyVSmhbQ8knA6MBnDKZyKWaWj6VpSvI+RlV21tTFDYtsTuHa2XZkuMIBn+6ZgVi6uO6eBRyhPF7nQq450n1s8Q8kyNeG4Syy7LA1YlRPK8gw/8hKr1h1eeGInpvhBGEObgGoh89+ZJP3vBcLvnoLOWP6C64Und5E2bzJ+V43FvXFnLLlppP/9f6T99THBNz6PqlpJ/fM9fLrcjFtsPClz3yR329+Y4ksTgoxl0zC1G1Bvkk2AzPxqGtN8jgULFtjG05lMJpo3b87PP/9sWw7ofPfffz9bt27ltttuQ1EUhg8fzrhx4/jrr79s59x5550UFhYyefJknnjiCQIDAytMJm+++WasViujRo1Cp9Nx4403ljnnhhtu4KOPPuLdd9/l4YcfJjY2lmnTplUYY0W++eYbhg4dWibZBLjpppu47bbbSEqqfMvbygQEBLBkyRImTpxIr1690Ov1tGvXjiuuuMJ2/3vvvZf27dsTFRXFG2+8wRNPPFHl+50xbdo0xo4dS69evQgJCeG1117jhRdesB1XFIX58+fz3HPPMWbMGFJSUggNDaVnz56EhISg1+tJS0vjjjvuICkpicDAQG688UZbi2bTpk1ZuHAhzz77LJ07d8bd3Z0uXbowfPhwACZNmkRwcDBvvvkmhw8fxtfXl/j4eJ599tmLfoabbrqJ2bNn06dPHzIzM5k2bRqjR4++4HUyS92BpXy9g6KDmVqHIcQlUUP1/LLubazWS+9yadXuVqJmvHm2wGDgu/ub8LvpwAWvdfuv+3yMk3afqy6e5Ps2IdGtEfvVKDbkh7I4I4jjBTW7644lP4uTn4wkZMRbuEWWv3h21rrZ5G6dT8R9X9vKsjf9Qfa6X2kwbjqWvExOfno7UY/PRjEYyVg2DWtxIQHXPkDhyd1kLP6S0FHvo+jqz5hRdxc9eyaVnaksRH0lLZwOzJorLZzC+SinLfTv9gDzV316Sdd5BQThd8x+Iffdt8Tzu+nC4zb7+LXgqaO7iXCC7nNV0VPiE0OaZ2MO62LYVhzOv1nBrMvyRs2p/TUtrUWle8XrKtmu1DUijswV31JwaANuDTtizc8kf98q3BuVzrbVefig9/Kn4MgW3GLaUXRiF56tr0a1lJC+8DMCBjxSr5JNgIISC0VmC66G+vXcQlREEk4HJl3qwlmZEjzp3PZ61m+rfNeNcwU3aIvX91NtrwuuaMvLMZUnm1EeYTxdqKPH5gVVjrUmWT0CyfJuxkmXGHZZolibF8LSdH+yTjvGR6+qqmQs+RrXBi0wBsVUeJ5bgzgCr3uClN/fQTUXg9WCe+Mu+F9Ture1oigEDnmKjMVfk774S9wbdsSrdV+y1v6MW3RbFIOR099NxFKQjSn+Orw7lD/msK7JzC8hxFsSTiFAEk6HZs2XhFM4r4aFLUmMOMSJUxe3jFFgvgHFUrrLhxIZweNXHq3wXHe9G2M9GzN652KMlpqfDXwhqsGdAt8mJLk3ZL8axabCcJZmBHEg3R3StY6uYun/fE5x8lFCR75T6XnFqcfJWPwlPt2H4R4bjyU3nYxl00j7+/8IHPgIAG4NWhJ259mFvEvST5G3awlhoz8m6YenMXW8HvfYDiR88yBuka0wBsdWdLs6IyO/mBDvmh0SIYSzkITTQalWFSwyvFY4L7XYyhUhQ/k94yT5+ZVPnQ6Kborvqv92IXFz4+ObXUnVlT8h4Gq/Fjx5ZDfhB+dXe8wXoqJg9okmzbN0TcttJeGszA5hVYY3ltyykxscWfo/n1NwcB0hI97C4F35Yt7Za3/GNSIOny6lM2EJjkUxupH0/VP49hyFwct+Gz9VVUlb8Al+fcaCqlKcdAiPZlegc3HDLbIVhSd21o+EU3qphLCRhNNRSbIp6gA1o4SB7R/gl9VvQyXzE0O9G2BILJ05u2p4S1a4bStzTrRnOM/kwxW11H1udfcnx7uJbYvHtXmhLEkPIC3Jubd4VFWVjEWfk79/DSHD38TFN/TC15QUwXljMBVFd6bCMufnbl+I3t0bjyZdsBTmlhb+N4lMtVrgMheQdhaFJZc+cU6IukoSTgel1pMPZFH36RNU+nYdyz9rvir3uMFoJOBg6XZx6dd25MPQrXbH3fVu3OPZmNE7F+Fiqf6lZlS9K4W+jUl2L93icXNhGEszgtid4QkZ1X47zaX/M4W83csJvvF5dEYPLLmlD6m4eqBzKV1LL2P5dCw5aQRe9zgA7o07k7bgE3K2zMftTJf64q8whjXFYLLfgs+Sl0nW6p8Ivb20m17v5oVLQCTZG37DPbY9hce24dO1/K336hqLVRoOhDhDEk5HJS2cog7xT/KnTYtr2L677OLPEbEt8fjfL6jNGvJYe/vxnn39WjLxyE7Cqqn73OwdSYZXE47po9lubsCq7BBWZvhSlOdc3eGXI3dL6XuZ9OMzduUBAyfg1foaACy5GZizz25N5NX6GqzFBeRs+pOMJVPRuXniFtUG396jy9SfvvhLvDsPxWA6200fMHACqfMmk7PpD7w734hreLMaeDLHY5aEUwgbWYfTQVlyi0l8bZ3WYQhRbRR3PUtTfyIp+ZBdedeo9gQsX8ir93ixw1i6YHyMZwTP5FnpfqRq/wZUVx9yfJqS6FraHb4+P4wl6QGcLjJe9nMIcbH+b0Q8g9qEaR2GEA5BWjgdlbRwijpGLbDQO3o4czI/oLg4HwBPX398Vv7LHyNi2WHchbvBnfvcG3LHrsUX1X2u6lwo8m1IikdjDinRbCkMZ3lWMFuzvC64xaMQNc0i7TlC2EjC6aBUSThFXZRawqDO45iz8j0AooMiSeit8K3fZq71a8nEw9sJzfyr3EstXuFkmppwzBDLTnMEq3NDWZ7uS0GCrHMoHJNFxuILYSMJp4NSZeyPqKOMp/T06jyK5etn4mnJ48P4FL7KD6Xr5tJEUzV6kefTlES3huxTo9iQH8bi9EBOprpCqsbBC3EJzNJwIISNJJyOShJOUYeFpkfQsdNATjXYzQfZfpwkgk+CB/NvVhAbs02o2bW/xaMQ1U1mqQtxliScDkq61EWdZlFplNqaRqmtAYj572uohiEJUd38kElqQpxRf9YCcTYWGfsjhBBOTX7DCmEj/xyEEEKImqDI0BAhzpCE00EpLvKjEUIIp6aThFOIMySrcVCKUZZ6EUIIZyYNnEKcJQmng5KEUwghnJy0cAphIwmng9JJwimEEE5NGg6EOEsSTgeluOjkpyOEEE5M5yYJpxBnSErjwBQX+bASQghnpXOXpa6FOEMSTgcm3TFCCOG8dG6ScApxhiScDkxnlB+PEEI4K0VaOIWwkYzGgUkLpxBCOCm9IpM/hTiHJJwOTBJOIYRwTtKdLoQ9STgdmCJd6kII4ZRkwpAQ9iSjcWA6DxetQxBCCFEFiiyJJIQdSTgdmN5k1DoEIYQQVSAtnELYk4TTgUnCKYQQzkkSTiHsScLpwHTeknAKIYQzkoRTCHuScDowvUnGcAohhDPS+7ppHYIQDkUSTgcmXepCCOGcDP6uWocghEORhNOB6X3kA0sIIZyR3k9aOIU4lyScDkznZpClNYQQwgkZJOEUwo4knA7OIOOAhBDCqSguOhkSJcR5JOF0cHpf6VYXQghnoveTz20hzicJp4OThFMIIZyLdKcLUZYknA5OPriEEMK56P3lc1uI80nC6eAMQe5ahyCEEOISSEOBEGVJwungXEI9tQ5BCCHEJZAlkYQoSxJOB6f3c0UxytJIQgjhLAzSpS5EGZJwOjhFUXAJ8dA6DCGEEBdDAUOgJJxCnE8STidgkIRTCCGcgiHAHZ2rQeswhHA4knA6ARnHKYQQzsElXD6vhSiPJJxOwCVUWjiFEMIZuIR7aR2CEA5JEk4n4BIifzELIYQzMErCKUS5JOF0AnqTEZ2ni9ZhCCGEuADpUheifJJwOgmZqS6EEI5N721E72XUOgwhHJIknE5CJg4JIYRjk/GbQlRMEk4nIR9kQgjh2KQ7XYiKScLpJFxjvLUOQQghRCVkwpAQFZOE00kYAt3RmWTikBBCOCrpiRKiYpJwOhHXGB+tQxBCCFEOnYdB9lAXohKScDoR11hJOIUQwhEZ5fNZiEpJwulEjDKOUwghHJJbI1+tQxDCoUnC6URcQj1R3PRahyGEEOI8ro19tQ5BCIcmCacTUXQKrtHSyimEEI5EZzLiEiybcwhRGUk4nYyMExJCCMfi2kg+l4W4EEk4nYxMHBJCCMci4zeFuDBJOJ2MMcILDPJjE0IIR+EqCacQFySZi5NRDDpco0xahyGEEALQ+7nK+ptCXARJOJ2QW3N/rUMQQgiBtG4KcbEk4XRC7i0CtA5BCCEEMn5TiIslCacTMgS6Ywh21zoMIYSo96SFU4iLIwmnk3KPk1ZOIYTQkksDL/TeRq3DEMIpSMLppNykW10IITTl3ipQ6xCEcBqScDopY6QJnZeL1mEIIUS95SEJpxAXTRJOJ6XoFJmtLoQQGnEJ88QQKGPphbhYknA6MZmtLoQQ2pDudCEujSScTsytiS+Ki/wIhRCitrm3loRTiEsh2YoTU1z0uDbx0zoMIYSoVwzBHrgEe2gdhhBORRJOJ+feQsZxCiFEbXJvJcOZhLhUknA6OfdWgdKtLoQQtci9dZDWIQjhdCRTcXI6NwNuLeWvbSGEqA2GQHeMYZ5ahyGE05GEsw7w7BCidQhCCFEvSHe6EFUjCWcd4NrIF72Pq9ZhCCFEnecRL3/gC1EVknDWAYpOwSM+WOswhBCiTjPGeMvsdCGqSBLOOkK61YUQomZ5dg7VOgQhnJYknHWEIdAdY4y31mEIIUSdpLgb8JDZ6UJUmSScdYi0cgohRM3wbB8sS9AJcRnkX08d4t4mCMUoP1IhhKhunl2kO12IyyHZSR2ic9Xj3kr29xVCiOpkjPbGJUTW3hTickjCWcd4dpRudSGEqE4yWUiIyycJZx3j2tAXF9kFQwghqoXiZsCjjfQcCXG5JOGsg7x6NtA6BCGEqBM82gehuOi1DkMIpycJZx3k0SYQvY9R6zCEEMLpeXUJ0zoEIeoESTjrIEWvw6t7hNZhCCGEU3Nt4otLqAxREqI6SMJZR3l2CUVxlW4gIYSoKu8+kVqHIESdIQlnHaVzM+DZSWZWCiFEVRijTLg29NU6DCHqDEk46zCvK8LlJyyEEFVg6i2tm0JUJ0lH6jCDn5ssBC+EEJfIJdQDtzh/rcMQok6RhLOOM8kSSUIIcUlMvSNRFEXrMISoUyThrOOMDUwYY721DkMIIZyC3t8N9zZBWochRJ0jCWc94N0nSusQhBDCKZh6NkDRSeumENVNEs56wK2pn7RyCiHEBehMLnh2DNE6DCHqJEk46wmf/rFahyCEEA7NdGUDFIP8WhSiJsi/rHrCNdpbZl0KIUQFdJ4GPLvK2sVC1BRJOOsRn34xIEOThBCiDFOfKHSuBq3DEKLOkoSzHnEJ9cSjXbDWYQghhEPR+7ni1TVM6zCEqNMk4axnvPtGg16aOYUQ4gzva2Nk7KYQNUz+hdUzBn83PDvLOCUhhABwCfPEo52suylETZOEsx7yvioKxSg/eiGE8BkQK7sKCVELJOuoh/QmI15XRGgdhhBCaMqtmR9uTf20DkOIekESznrK1KsBOk+ZkSmEqKd0Cj6DGmodhRD1hiSc9ZTOzSCLwQsh6i3PLqG4BHtoHYYQ9YYknPWYR8cQjNGy5aUQon5R3Ax4XxOtdRhC1CuScNZjiqLgN7Qx6GTAfG1IzEnh4T8m0fqj62jyfl/6TRvD9tP7yj336QXvEvl2T77e8L+Lrv+33YuJfLsnd89+1q58zq6FdP7sJlp9NIjXln5md+xEViI9vxxBTlHepT+QEE7K+5oo9J4uWochRL0ig/jqOZdQT7yuDCf331Nah1KnZRbmcON3D9Itqj3f3vIOgZ5+HMtIwNvVq8y5C/avYEviHkK8Ai+6/pNZp3lt6Wd0btDGrjw9P5OJC97hg4HPEOUbzuhfnqJbVHuubtQNgGf//oBnet2HydXz8h5QCCfhEuGFV/dwrcMQot6RFk6B9zXR6H1ctQ6jTpuy9nvCvIP5YNAztA9vQaRPGFfGdCDGz361gMScFF7450M+vu4FXHQX9/egxWrh4T8m8fiVdxHla/+L9FhmaVJ7fdzVtAuLo1tUew6kHgVgzu5/cNEbGNCsV7U8oxAOT6fgd1MTFOnVEaLWScIp0Bn1+A6W2Zo16Z+Dq2gT2oz7575Iu0+up/+0u/lh6x9251hVKxP+fI37uwyjWdDFT+j6cNUM/D18Gdb2ujLHYv0jKSgpZGfSfjIKstmeuJfmQY3IKMjm/RXf8FrfCZf7aEI4DVOPCIzhZXsVhBA1T7rUBQDurQJxa+5P4d50rUOpk45nJvLdlt8Y2+lWxne7na2Je3hx8UcYDS7c3Ko/AJ+t/QG9Ts+YDjdfdL0bTu5g1vZ5/H3X1HKP+7qZ+GDQs0z483UKzcXc9P/t3Xt8THfCP/DPmft9kplcJolcSCQhIqoUVSIupayKqqimJej2Qelql936ebS8tPq06mFXt8/u2q2q7bN9dYs+3fJal5V0rcqWFNFSl1BRTUSYIJPrzJzfH2HWNMGEHCeXz/v1ykvmzJmZz5mL+eSc8z2nx0gM6fIAfr71vzDt/sdQfLkE0zf+P9R73Xhx4DSMSR7SEotL1Oqo7DoOFCKSEQsn+QQ9Go/zRRUQ671yR2l3vKIXPR1JeCn9WQBAj/BEHC//DhsO/B8e7zEKhaXH8G7Bx9g69Q8Bn/WksrYKP/tsGd4ctQA2Q9BN53skcTAeSRzsu7y3+AC+vXAKr46Yh4d+Pxlvj30FYUYbxr7/H+gXnYYQIw+ETe1P0GNdIai5UY9ILiyc5KOy6WAeGo0r287IHaXdCTPZ0TUkzm9agj0WW499DgD48uwhlLuc6P8/E33Xe0QPluW+gz/u/xh7ZzUerX6m4hzOXi7FtI0LfdO8YsMfC3FvZiDvp39qtI9orbsOi7b/N371k//Ed85z8Hg9GBDTC0DD5vcDJUcwImFgSywyUath6BMOXXyQ3DGIOjQWTvJjHtQJVQcuwF1WJXeUdqVPVCqKLp31m3bq0ll0soQDACb0GImH4vr4Xf/UR/MxIeVhZKWObvI+4+0x2DH9Pb9pK3b/Aa66KiwZ9jwiLWGNbvOrL9ZjSJd+SHUk4evzx+H2enzXub1ueLxcu03ti8KsRtBonuSCSG4snORHUClgy0pE2TuHAK8od5x245m+EzH+T7OxZu8G/CQ5AwdLjuJ/D/0Vb4ycDwAI1lsRrLf63UatUCHUaEO8PcY3bd5nr8FhDsFL6f8BnUqL5FD/wV7XD7P04+kAcOzCafz1213YlvMuACDeFguFoMCHhz5DqMmOoovFSItIbtHlJpJb0Nh4KAw85iaR3Fg4qRFNJzMsQ6NxZWex3FHajV4R3bB2/Gv4r89/h1/tWY9oqwNLhs7F+JSHm3U/566cD3gfzxuJooiXtq3AK0PnwqDRAwD0ai3+e/RC/OeOVajz1GPZiHmIMIc2+76JWitdNxsMPfmeJmoNBFEUuRqLGhE9Isr+5yDqv6+UOwoRUbMJehXC5/WGiscYJmoVOGSPmiQoBdiykjiqk4jaJNuEriybRK0I2wTdlDrMAOuoOLljEBE1i7F/BPQ9Aj81LBFJj4WTbsk0MAq6ZJvcMYiIAqJ2GBE0hmdOI2ptWDjptoIf7wqFmaM8iah1E9QK2J5M5q5ARK0QP5V0W0qTBrasJKD5g6OJiO6ZoEfjoQ4zyB2DiJrAwkkB0XUNhumhqNvPSEQkA31aKIx9HXLHIKKbYOGkgFlHxkETa5E7BhGRH6VNh+DxCXLHIKJbYOGkgAkqBezZ3aCwaOSOQkTUQCnAPjkZCh3PY0LUmrFwUrMoLRrYn+oGqLhDJxHJz/pwHDTRZrljENFtsHBSs2ljLAgex81XRCQvfc8QmNM7yR2DiALAwkl3xNjXAWP/CLljEFEHpe5kgm1iotwxiChALJx0x4LGdoEmjoOIiOjeUlo0CJmSAkGtlDsKEQWIhZPumKBUwP5UNyitHERERPeGoFbAPqU7lBy8SNSmsHDSXVGaNLA/3R1Q8a1ERBITgOCsRGg6cZAQUVvDlkB3TdPJzGPgEZHkLMNjYUgNlTsGEd0BFk5qEcb7w2HiaFEikog+LRSWYTFyxyCiO8TCSS3GOioOhvvD5Y5BRO2MOtoM2+MckU7UlrFwUosRBAHBj3WFrptN7ihE1E4orRqETOkOQc2vK6K2jJ9galGCUoD9yWQeLomI7prCqEbIjFQozRyRTtTWsXBSixPUSoRMTYHaYZA7ChG1UYJOhZAZPaAO4/8jRO0BCydJQqFXIWR6KpTBWrmjEFEbI2gUCJmWAk2kSe4oRNRCWDhJMkqLBiEzUqEwqeWOQkRthUqAfUp3aGO5Ww5Re8LCSZJSh+gRMq0HBC1PQUdEt6EQYH+yG3QJwXInIaIWxsJJktNEma6djUiQOwoRtVYCYMtKhL67Xe4kRCQBFk66J3QJQQiZksJDmxBRk4LGJ8DQK0zuGEQkEX770z2jSwyGPScFgoZvOyL6N+uYLjA9ECF3DCKSEL/56Z7SxQchZEYq9+kkIgCAZVQczIOi5I5BRBITRFEU5Q5BHU/d91dR/u7X8Fa55Y5CRHIQgKDMBJj6cc0mUUfAwkmyqStxofwPh+F11csdhYjuJaUAW1YSDGmhcichonuEhZNkVV9WhQtrD8N7tU7uKER0DwhqBWxPdYM+ySZ3FCK6h1g4SXbu8mpc+MNheCpq5Y5CRBISdCqE5HSHNs4qdxQiusdYOKlVcDtrcGHtYXgu1cgdhYgkoDCpETK9B09XSdRBsXBSq+G5Wofy94+g/uxVuaMQUQtSBmkR8kwq1CF6uaMQkUxYOKlVEes9uPTRcVQfLpc7ChG1AFWYHqEzUqG0auWOQkQyYuGkVkcURVzZdgZX887KHYWI7oKmsxX2p7pBaVTLHYWIZMbCSa2Wa/95ODefADx8ixK1NcZ+DgQ9Gg9ByfOLEBELJ7VytacqcPFPR3mAeKK2QikgaGw8TP15QHci+jcWTmr16surcfG9b+Aur5Y7ChHdgsKogj27G7RdguSOQkStDAsntQneqnqUbziKutOX5Y5CRE1QO4ywT+kOlU0ndxQiaoVYOKnNEN1eVPxfEVz7SuWOQkQ30KfYETwpCQqNUu4oRNRKsXBSm+M6UIaKzSch1nnkjkLUsQmAeWgMLMNjIAiC3GmIqBVj4aQ2qf5CFS598C3qS11yRyHqkAStEsGPJ8KQGiJ3FCJqA1g4qc0S672o+GsRXF9yEzvRvaSJMcP2RDL31ySigLFwUptXdagMzk0nIdZyEzuRpATAnBENy7BYCEpuQieiwLFwUrtQX16NSx8cRX0JN7ETSUFp1cI2KQnaLla5oxBRG8TCSe2G6Pai4rNTcOWXyB2FqF3Rp4YgeHwCFAaeopKI7gwLJ7U7VYcvoOKTk/C6eHYiorshaBQIGhsPY1+H3FGIqI1j4aR2yVNZh4pPi1BdWC53FKI2SR1lgu2JJKhDDXJHIaJ2gIWT2rXqby7C+clJeK/WyR2FqG1QCDAPjoJleCwElULuNETUTrBwUrvnrXaj4rNTqCo4L3cUolZNHWVC8GNdoYkyyR2FiNoZFk7qMGqOO+HcdAKeilq5oxC1KoJaAcvwWJgGRUFQ8HBHRNTyWDipQ/HWenD5b6cbRrLznU8EbUIQgscnQGXXyx2FiNoxFk7qkGq/uwznxhNwX6iWOwqRLBRmDYJ+0hmGtDC5oxBRB8DCSR2W6Paicu8PuPL3sxBreAgl6iAUgKl/JCwPx0KhU8mdhog6CBZO6vA8rnpc2XkGrn+VAl5+HKj90sRaEPRoPAcFEdE9x8JJdE19WRUubzmFmmNOuaMQtShVqB7WkXHQ9wiROwoRdVAsnEQ/UnPciYotp+A+XyV3FKK7ojBrYBkeA2NfB0efE5GsWDiJmiB6Rbi+LMGVHcXwuurljkPULIJWCXN6J5geioJCo5Q7DhERCyfRrXhr3Liy6yxce3+AWO+VOw7RrSkFmPpHwDw0BkqjWu40REQ+LJxEAfBcrcPVz7+H618lLJ7U+giAPi0U1ofjoLLp5E5DRNQICydRM7B4UquiAPQ9QmAeEg1NJEeeE1HrxcJJdAc8lXWo3H0OlfklEGs9csehDkZQK2C4PxzmQVE8QxARtQksnER3wVvjRuXeElTuOQdvJQcXkbQUBhWM/SNgejASSpNG7jhERAFj4SRqAWK9B67953F19zl4LtXIHYfaGWWQFqaHomB8wMFR50TUJrFwErUg0Sui5oQTrvwS1By7BHA3T7oLaocR5vRO0PcMhaDkcTSJqO1i4SSSiLuiFq4vS+DaVwrvVW5upwCpFND3sMPYxwFdQpDcaYiIWgQLJ5HERI8X1UcuwpVfgtqiy3LHoVZKHWGEsa8Dhl6hUBh4DE0ial9YOInuofoLVXD9qxSugvMQq91yxyGZCToVDL1CYezrgCaKhzUiovaLhZNIBmK9B9VHLqKqsBw1x5yAmzt7dhgCoO1shaGvA4YedghqDgIiovaPhZNIZt5aN2qOXEJV4QXUnHACbn4k2yN1hBH6FDsM94Xx2JlE1OGwcBK1It4aN6qPXER1YXlD+fTw49lmCYAm1gJ9Sgj0KXaecpKIOrR7UjgFQcDmzZuRmZnZ5PV5eXnIyMiA0+lEUFCQ1HHoHhgyZAh69eqF1atXyx2lzfJWu1H9zUVUFV5AbVEFy2dboBSgSwiCPiUEuu42HpydiOgaRaAz/va3v4XZbIbb/e+BDpWVlVCr1Rg0aJDfvLt374YgCDh+/HhA9/3ggw+ipKQEVqsVAPDee++1uuKZl5cHQRCa/CktLZU7Ht2l1vieU+hVMPYJR+j0Hoh8eQDsOSkwDYyEKtwgdzS6gaBVQt8zBLbJSYh8uT9CpvWA8QEHyyYR0Q1Ugc6YkZGByspK7N+/H/379wfQUCwdDgf27duHqqoqGAwNX4R5eXmIjIxEYmJiQPet0WjgcDjuIH7Lq6+vh1p980OSHDt2DBaLxW9aWFjYHT9eXV0dNBp+MdGtKbRK6JNt0CfbAACeK3WoOelE7YkK1JysgPdqncwJOw5Bp4Q2zgptl4YfdaQJgoIHZSciupWA13AmJSUhMjISeXl5vml5eXkYN24c4uPj8cUXX/hNz8jI8Lt9eXk5xo8fD4PBgK5du+LTTz/1m18QBFRUVCAvLw/Tpk3D5cuXfWsQlyxZAqChnP3iF79AVFQUjEYj+vXr55enKcXFxRg3bhxMJhMsFguysrJw/vx53/VLlixBr1698O6776JLly7QarW41V4GYWFhcDgcfj8KRcPTOGTIEMybN89v/szMTOTk5Pgux8XF4dVXX0VOTg6sVit++tOfAgA2btyIlJQUaLVaxMXFYeXKlX73ExcXh2XLluHJJ5+EyWRCZGQk1qxZ4zfP5cuX8eyzzyIsLAwWiwVDhw7FoUOHfNcXFRVh3LhxCA8Ph8lkQt++fbFz585Gj7N8+XJMnz4dZrMZMTEx+P3vf3/L59jlcmHKlCkwmUyIiIholB24/Wt35swZjB07FsHBwTAajUhJScHWrVt913/zzTcYM2YMLBYLzGYzBg0ahKKiIt/169atQ7du3aDT6ZCcnIx33nnHd913330HQRCwadMmZGRkwGAwIC0tDXv37gWAW77nWiulRQNj73DYJiUhclE/hL/QG9afdIEu2QaBpz5sUYJOBV03G6xjOiNsTi9EvjwAITkpMA/uBE0nM8smEVEAAi6cQEOhys3N9V3Ozc3FkCFDkJ6e7pteV1eHvXv3NiqcS5cuRVZWFgoLCzF69GhkZ2fj0qVLjR7jwQcfxOrVq2GxWFBSUoKSkhLMnz8fADBt2jTs2bMHH374IQoLCzFx4kSMGjUKJ06caDKvKIrIzMzEpUuX8Pnnn2PHjh0oKirCpEmT/OY7efIkPvroI2zcuBEHDx5szlNyR1asWIEePXqgoKAAixcvRkFBAbKysvDEE0/g8OHDWLJkCRYvXoz33nuv0e169uyJr776CgsXLsQLL7yAHTt2+JZ1zJgxKC0txdatW1FQUIDevXtj2LBhvue5srISo0ePxs6dO3HgwAGMHDkSY8eORXFxsd/jrFy5En369MGBAwcwe/ZszJo1C99+++1Nl2fBggXIzc3F5s2bsX37duTl5aGgoMBvntu9ds899xxqa2vxj3/8A4cPH8Ybb7wBk6nhuITnzp3D4MGDodPpsGvXLhQUFGD69Om+3TvWrl2LRYsW4bXXXsPRo0exfPlyLF68GOvXr/fLsGjRIsyfPx8HDx5EYmIiJk+eDLfbfcv3XFuhDjfC/FAUQnJSELlkAMJf6I3giYkwPRgJTYwZgrpZH/UOTRmshS7FDuuYLgibe1/DZvKpKTAPYsEkIrpTAW9SBxoK5wsvvAC3243q6mocOHAAgwcPhsfjwa9//WsAQH5+PqqrqxsVzpycHEyePBkAsHz5cqxZswZffvklRo0a5TefRqOB1WqFIAh+m9mLiorw5z//Gd9//z0iIyMBAPPnz8ff/vY3rFu3DsuXL2+Ud+fOnSgsLMTp06cRHR0NANiwYQNSUlKwb98+9O3bF0BDSd6wYQNCQ0Nv+xx06tTJ73JUVBSOHTt229vdaOjQoX6FJjs7G8OGDcPixYsBAImJiThy5AhWrFjht3Z04MCBeOmll3zz7NmzB6tWrcKIESOQm5uLw4cPo6ysDFqtFgDw1ltv4ZNPPsHHH3+MZ599FmlpaUhLS/Pd36uvvorNmzfj008/xZw5c3zTR48ejdmzZwMAfvnLX2LVqlXIy8tDcnJyo2WprKzEH//4R7z//vsYMWIEAGD9+vV+z1Mgr11xcTEmTJiA1NRUAECXLl18t//Nb34Dq9WKDz/80Le7w427ayxbtgwrV67EY489BgDo3Lkzjhw5gt/97neYOnWqb7758+djzJgxABr+AEpJScHJkyeRnJzc5HuurRIUAtThRqjDjcD94QAazvHuLqtC3fdXUXeuEvXfV6KuxNWhj/8pqBVQO4xQR9zw4zBCoWvWf4tERBSAZv3PmpGRAZfLhX379sHpdCIxMRFhYWFIT0/H008/DZfLhby8PMTExPgVBgDo2bOn73ej0Qiz2YyysrKAH/urr76CKIqN9gutra2F3W5v8jZHjx5FdHS0r2wCQPfu3REUFISjR4/6CmdsbGxAZRNo2G/VbDb7LqtUzf9y6tOnT6Oc48aN85s2cOBArF69Gh6PB0plwybSAQMG+M0zYMAA3yjwgoICVFZWNnouqqurfZueXS4Xli5dis8++ww//PCD7w+HH6/hvPG1ul7CbvZaFRUVoa6uzi+bzWZDUlKS73Igr93zzz+PWbNmYfv27Rg+fDgmTJjgy3Hw4EEMGjSoyX1rL1y4gLNnz2LGjBm+3RMAwO12+wahNbVcERERAICysrImi3R7IyiEhnLlMMJ47e0nekTUn3fBfaEa7kvVcF+sgftiDTyXquG5Uge0k0HxgloBZZAWqhC9X7FU2fVcW0lEdI80qy0lJCSgU6dOyM3NhdPpRHp6OgDA4XCgc+fO2LNnD3JzczF06NBGt/1xWRAEAV5v4GtXvF4vlEolCgoKfAXsuuubXn9MFEUIQuMvlB9PNxqNAefo3LnzTUczKxSKRvt/1tfXN5rvx4/XVM5Aj1Z1/XZerxcRERFN7tN6Pe+CBQuwbds2vPXWW0hISIBer8fjjz+Oujr/ASfNea0CyRnIa/fMM89g5MiR2LJlC7Zv347XX38dK1euxNy5c6HX3/wg2ddzrV27Fv369fO77sePdeNy3fi8dVSCUoAm0gRNZOPPj1jvhdtZA/fF6msl9Nrvzlp4q+rhrXa3jsM0CYDCpIYySAdVkBZKq7ahXAZroQzSQRmkhdLI85ITEcmt2avnMjIykJeXB6fTiQULFvimp6enY9u2bcjPz8e0adPuKpRGo4HH4/Gbdt9998Hj8aCsrKzRYZhupnv37iguLsbZs2d9azmPHDmCy5cvo1u3bneVsSmhoaEoKSnxXfZ4PPj6668b7V7QVM5//vOfftO++OILJCYm+pWm/Px8v3ny8/N9a+d69+6N0tJSqFQqxMXFNfk4u3fvRk5ODsaPHw+gYXP4d999F+jiNSkhIQFqtRr5+fmIiYkBADidThw/ftz3B0mgr110dDRmzpyJmTNnYuHChVi7di3mzp2Lnj17Yv369U0eQSA8PBxRUVE4deoUsrOz73g5mnrPdWSCWgF1mAHqsJsfgslb44a3yt1QQKvc8FZf+9fVUEi9VW6IdR6IIgBRBLziv38Xce3ytd+vTRdUCggaJQSNAoK64V+FVglBp4JCr4Li+r96FRQGFZRWLQQV908lImrt7qhwPvfcc6ivr/cVCqChcM6aNQs1NTW3LVi3ExcXh8rKSvz9739HWloaDAYDEhMTkZ2djSlTpmDlypW47777UF5ejl27diE1NRWjR49udD/Dhw9Hz549kZ2djdWrV8PtdmP27NlIT09vtFk7UGVlZaipqfGbZrfboVarMXToULz44ovYsmUL4uPjsWrVKlRUVNz2Pn/+85+jb9++WLZsGSZNmoS9e/fi7bff9htpDQB79uzBm2++iczMTOzYsQN/+ctfsGXLFt+yDhgwAJmZmXjjjTeQlJSEH374AVu3bkVmZib69OmDhIQEbNq0CWPHjoUgCFi8ePFdr+EzmUyYMWMGFixYALvdjvDwcCxatMg3ch9AQK/dvHnz8MgjjyAxMRFOpxO7du3y/VEwZ84crFmzBk888QQWLlwIq9WK/Px8PPDAA0hKSsKSJUvw/PPPw2Kx4JFHHkFtbS32798Pp9OJF198MaDlaOo9d/0wX9Q0ha6hAIJn0CEiotsRm+n06dMiADE5Odlv+tmzZ0UAYnx8fKPbABA3b97sN81qtYrr1q0TRVEUc3NzRQCi0+n0XT9z5kzRbreLAMRXXnlFFEVRrKurE19++WUxLi5OVKvVosPhEMePHy8WFhbeNO+ZM2fERx99VDQajaLZbBYnTpwolpaW+q5/5ZVXxLS0tNsu9/WMTf3s3bvXl2/WrFmizWYTw8LCxNdff10cN26cOHXqVN/9xMbGiqtWrWp0/x9//LHYvXt3Ua1WizExMeKKFSv8ro+NjRWXLl0qZmVliQaDQQwPDxdXr17tN8+VK1fEuXPnipGRkaJarRajo6PF7Oxssbi4WBTFhtcuIyND1Ov1YnR0tPj222+L6enp4s9+9rNb5ktLS/O9Bk25evWq+NRTT/lyvfnmm43u93av3Zw5c8T4+HhRq9WKoaGh4tNPPy2Wl5f7bn/o0CHx4YcfFg0Gg2g2m8VBgwaJRUVFvus/+OADsVevXqJGoxGDg4PFwYMHi5s2bfItNwDxwIEDvvmdTqcIQMzNzfVNa+o9R0RERHeP51JvI+Li4jBv3rxGx/kkIiIiau248xMRERERSYqFk4iIiIgkxU3qRERERCQpruEkIiIiIkmxcBIRERGRpFg4iYiIiEhSLJxEREREJCkWTiIiIiKSFAsnEREREUmKhZOIiIiIJMXCSURERESSYuEkIiIiIkmxcBIRERGRpFg4iYiIiEhSLJxEREREJCkWTiIiIiKSFAsnEREREUmKhZOIiIiIJMXCSURERESSYuEkIiIiIkmxcBIRERGRpFg4iYiIiEhSLJxEREREJCkWTiIiIiKSFAsnEREREUmKhZOIiIiIJMXCSURERESSYuEkIiIiIkmxcBIRERGRpFg4iYiIiEhSLJxEREREJCkWTiIiIiKSFAsnEREREUmKhZOIiIiIJMXCSURERESSYuEkIiIiIkmxcBIRERGRpFg4iYiIiEhSLJxEREREJCkWTiIiIiKSFAsnEREREUmKhZOIiIiIJMXCSURERESSYuEkIiIiIkmxcBIRERGRpFg4iYiIiEhSLJxEREREJCkWTiIiIiKSFAsnEREREUmKhZOIiIiIJMXCSURERESSYuEkIiIiIkmxcBIRERGRpP4/20Vm1xcHtFMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAH5CAYAAACCrPhQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACvdUlEQVR4nOzdZ3RUVReA4XdqCkkINfQOoVfpTaqAIFVAKYJID4oiCnyIovSiIKAiKtJ77733Jr2TAAklIZBept3vx5CBkAQCJJmU/ayVhblz7rl7RhL2nNl3H5WiKApCCCGEEEJkcGp7ByCEEEIIIURqIImxEEIIIYQQSGIshBBCCCEEIImxEEIIIYQQgCTGQgghhBBCAJIYCyGEEEIIAUhiLIQQQgghBCCJsRBCCCGEEIAkxkIIIYQQQgCSGAuRLqxevRpPT894v8qVK0fdunUZOHAg//33n71DjdepU6fw9PTk2rVr+Pr6JvhcXvw6duyYbQ6z2czChQuJiIiwHZsxYwaenp7s3LkzSeONiXHAgAGvfe6wYcPw9PTk8uXLtmPR0dH8888/SRmiEEKIN6C1dwBCiKRTrVo1qlWrFutYSEgI586dY+fOnezdu5d58+bxzjvv2CnC+B08eBAPDw9KlCiBr68vAHnz5qVt27YvPS9v3ry2/x4yZAhbtmzhgw8+SNZYAdzc3PDy8qJIkSKvfW7jxo3Jmzcv2bNntx3r2rUr3t7efPrpp0kZphBCiNckibEQ6Ui1atUYNGhQvI9Nnz6d3377jSlTprB06dIUjuzlDh48SO3atWMdy5s3b4LPJT6BgYFJHVaC3NzcXiu25zVu3JjGjRvHOpaSsQshhEiYlFIIkUH0798fnU7HmTNniIyMtHc4NkFBQVy4cIE6derYOxQhhBAZnCTGQmQQer0eFxcXAIxGo+3PefPm0bFjR6pUqULZsmVp0KABo0aN4vHjx3HmOHHiBH379qV69epUqVKFzp07x1u/e/HiRQYMGED16tUpX748rVu3ZsmSJSiKEmfs4cOHAahVq9YbPzdPT0+OHz8OQNWqVenWrVusx6Ojo5k2bRoNGzakXLlyNG/enMWLF8cac+zYMTw9PVm9ejUrV66kVatWlCtXjnr16jFx4sRYbyYSqjF+/Pgx48aNo2HDhpQvX5733nuPX375hfDwcNuY52uMY+bx8/MjNDQUT09Phg0bxqxZs/D09GTFihVxnqufnx8lS5ZkyJAhb/x6CSGEiJ8kxkJkEBcuXODJkyfkyZMHNzc3wFqXO27cOLRaLR07dqRTp07o9XqWLVtG7969Y52/bt06PvnkE06cOEG9evVo37499+/fZ+DAgaxatco2bt++fXTu3JmjR4/SoEEDunbtisVi4YcffmDUqFFx4jpw4AClS5cmS5Ysb/zcvLy8bPXGvXv3jlObPHbsWJYuXUq9evX48MMPCQwMZPTo0cyfPz/OXAsXLuSHH36gePHidOvWDQcHB/755x9Gjhz50hgCAgLo0KED8+bNI1++fHTp0oVcuXLxxx9/MHDgQEwmU5xzYmqVXV1d0ev1eHl50bhxY1q3bo1KpWLDhg1xztmwYQOKotCmTZvXeIWEEEIkhtQYC5GOKYpCaGgoZ86cYcyYMQAMHDgQgP/++49t27bRqlUrpkyZYjvHZDLRtm1bLly4gLe3N4ULFyY4OJiffvoJd3d3Fi1aROHChQHo168frVu3ZtKkSXzwwQeYTCaGDRuGq6sry5cvJ1++fAB8/fXXDB48mOXLl9O4cWPq169vu96hQ4fivcnOz8+PGTNmJPjcihQpwvvvvw/AoEGDOH78OH5+fvTp08eW+MfQ6/WsXLnSdsNbhw4daNeuHStXrqR79+6xxl65coVFixZRqVIlwFqC0rRpU7Zu3cqPP/5IpkyZ4o1n8uTJ+Pn5MXz4cHr06GE7PmrUKJYtW8bu3btp2rRprHNiapXXrFlDSEhIrLrld955hxMnTuDv70/OnDltxzds2ECOHDneaoVdCCFE/CQxFiIdmTlzJjNnzoz3MVdXV4YNG0aHDh0AyJUrFxMmTIjToUKr1VKlShWuXbtGYGAghQsXZt++fYSGhvLll1/akmKArFmzMnz4cPz8/IiIiODgwYM8fvyYb775xpYUA6jVaoYMGcK2bdtYtWqVLTG+du0aDx8+pG7dunHi9fPzS/C5ADRq1MiWGL/Khx9+GKsLROnSpfHw8ODu3btxxlatWtWWFIP1datUqRK7du3iwYMHFC1aNM45BoOBHTt2UKhQoVhJMUDfvn3JkiULOXLkSFSsMdq0acOJEyfYvHmzbc5Lly5x48YNevbsiUajea35hBBCvJokxkKkI8+3awsLC2Pr1q08ePCADz74gJ9++glHR0fb2Fy5ctG2bVtMJhMXL17E29ubO3fucPnyZVvdr8ViAayrqAAVK1aMc80WLVrY/vvChQuAtcY4vtVejUZjmwus3SgyZcoU77zVqlVjwYIFr/kKxK9QoUJxjrm7u/PgwYNEjXV1dQWe1Wa/6M6dO0RERMT7PPLmzcuXX375WvECNGvWjJ9++okNGzbYEuOY0orWrVu/9nxCCCFeTRJjIdKRF9u1ffHFF/Tp04f169fj6uoap8Z36dKlzJo1C39/f8D60X6FChUoWrQoZ8+etd0sFxISAmC7eS8hoaGhAGzatCnBMcHBwbb/PnjwIDVq1ECrTd5fRQ4ODokeq9fr4xxTqVQA8d48CM+e06ten9fh4uJC48aN2bhxI7dv3yZ//vxs3LiREiVKUKpUqSS7jhBCiGfk5jsh0jFnZ2emTZtG9uzZWbRoUaz+xVu2bOH7778nS5YszJo1i71793LixAn++uuvOImXs7MzQKzuCjEMBoPtxrKYcf/++y9Xr16N9ytmt7qoqChOnjyZLtq0xdQdx/f6ALF243sdMTfYbdmyhVOnTuHv7y+rxUIIkYwkMRYincuePTs//PADABMmTLDtLLdx40YApk6dSuPGjcmdO7ftnFu3bgHPVkhLlCgBwLlz5+LM//fff1OhQgWOHz+Op6cn8Kyk4nlBQUGMHTuWdevWAXD8+HGio6PTRWJcuHBhdDpdvK/Pw4cPqVSpEt99991rz1urVi1y5MjBnj172LNnD2q1mlatWiVFyEIIIeIhibEQGUCTJk1o2rQpkZGRtiQ5przg0aNHscauXbvW1hM4ZiW4cePGODs7M3/+fPz8/Gxjg4KCWLZsma1OuEmTJri4uPDXX3/h7e0da97Jkyczf/587ty5A1jLKAoUKECBAgWS5DnqdDog4Trg5OTg4MB7773HzZs3Wb58eazH/vjjDwBq1qyZ4Pk6nS7edm4ajYZWrVpx7tw5Nm/eTI0aNfDw8Eja4IUQQthIjbEQGcTIkSM5fPgwBw4cYOPGjXzwwQds2rQJLy8v3n//fVxcXDh//jzHjx8nW7ZsBAYGEhQUBFhvVBs1ahTDhw+nbdu2NGrUiEyZMrF161YCAgKYOXMmer0evV7PmDFj+Prrr2nbti2NGzcmZ86cnDhxgnPnzlGuXDk+/fRTwJoYv2y1+FXt2gAqVKhAvXr1AGwJ44gRI6hdu3acNmzJ7ZtvvuHUqVN89913bN++neLFi3P+/HlOnDhB48aNY92k+KKcOXPi4+PD119/TZ06dWL1KG7bti3//PMP9+/fZ/Dgwcn/RIQQIgOTxFiIDMLDw4Mvv/ySn376iXHjxrFlyxZ++eUX5syZw4YNG3B0dCR//vyMGjWKSpUq0bZtW/bt20fLli0Ba4Lm4eHB7Nmz2bZtGyaTidKlSzN27NhYfYmbN29Orly5mD17NgcOHCAyMpK8efMyYMAAevXqRaZMmbh//z43b97kq6++SjDeV7VrA+jevbstMe7Xrx83b97k0KFD+Pj4pHhi7OHhwYoVK5gxYwZ79uzhyJEjeHh40L9//zg75L1o6NChjBgxgq1btxIYGBgrMS5RogRFixbl3r17NGnSJJmfhRBCZGwqJaHbrIUQQthdaGgotWvX5r333mPy5Mn2DkcIIdI1qTEWQohUbM6cOURHR9OxY0d7hyKEEOmelFIIIUQq1KVLF4KCgrhx4wY1atSgatWq9g5JCCHSPVkxFkKIVChz5sz4+vpSu3Ztpk6dau9whBAiQ5AaYyGEEEIIIZAVYyGEEEIIIQBJjIUQQgghhAAkMRZCCCGEEAKQxFgIIYQQQghAEmMhhBBCCCEASYyFEEIIIYQAJDEWQgghhBACkMRYCCGEEEIIQBJjIYQQQgghAEmMhRBCCCGEACQxFkIIIYQQApDEWAghhBBCCEASYyGEEEIIIQBJjIUQQgghhAAkMRZCCCGEEAKQxFgIIYQQQghAEmMhhBBCCCEASYyFEEIIIYQAJDEWQgghhBACkMRYCCGEEEIIQBJjIYQQQgghAEmMhRBCCCGEACQxFkIIIYQQApDEWAghhBBCCEASYyGEEEIIIQBJjIUQQgghhAAkMRaplNFo5N9//6V9+/ZUqlSJihUr0qJFCyZOnMjjx49TJAZfX1/MZrPt+27dulG7du23nrdz5854enoye/bst5qnYcOGdOzY8a3jEUIIIYSVJMYi1TGZTPTt25cpU6ZQrFgxvvrqK7755huqVKnCggULaN26Nffu3UvWGFatWsX777+PyWRK0nlv377NmTNncHZ2ZvXq1W8114gRIxg0aFASRSaEEEIIrb0DEOJF27Zt49ChQ0ycOJE2bdrEeqxZs2b06tWLadOmMWnSpGSL4cSJE0RFRSX5vOvXr0elUtG9e3f++OMPTp48yTvvvPNGczVu3DiJoxNCCCEyNlkxFqnOqVOnAKhXr16cx2rXrk3x4sU5ffp0SoeVJDZs2EDx4sVp27YtYF2ZFkIIIUTqIImxSHVcXFwAWLx4MYqixHl81apV7Ny5M9axkJAQxowZQ/369SlbtiyNGjVi6tSpREZG2sYcO3YMT09PlixZEuvcmzdv4unpyYwZMwBrLfGaNWsAKF++PMOGDYs1/tixY3Tu3Jny5ctTp04dxo8fn6jV5TNnznD79m2qV69OoUKFKF68OFu3biUsLCzO2FOnTtGtWzeqVatGhQoVaNeuHStXrow1Jr4a4xUrVtC5c2cqV65sex0mTpxIdHS0bcyMGTPw9PTE19cXLy8vqlSpQuXKlfHy8sLX1/eVz0MIIYRIryQxFqlO69atcXBwYMaMGTRr1ozJkyezf/9+wsPDAdDr9bHGh4SE8NFHH7F48WLeffddRowYQZUqVfjzzz/59NNPMRgMr3X9fv362cobxo0bR6dOnWyPBQcH069fP8qVK8eIESMoU6YM//77b6LKOtavXw9A06ZNbX9GRESwZcuWWON8fHzo3bs3QUFBDBw4kOHDh5MpUyb+97//xUmOnzdjxgxGjhxJ7ty5+eabbxg6dCi5c+fmn3/+YfLkyXHGd+/eHZVKxdChQ2nXrh27du1i8ODBr3weQgghRHolNcYi1SlatCi///47w4YNw8fHh7/++ou//voLnU5H9erV6dOnD9WrV7eN/+uvv7hx4waTJ0/mgw8+AODjjz+mePHiTJkyhSVLlvDJJ58k+vq1a9dmw4YNnDx5kpYtW+Lg4GB7zGg0MmbMGFvtc8eOHWnWrBnbtm1j1KhRCc5pNBrZvHkz2bNntyXd7733HrNmzWLVqlV8+OGHtrE7d+4kPDyccePGUa5cOQDatWtH586duXnzZoLzz5s3jwYNGvDLL7/Yjnfp0oVGjRpx4MCBOOfUrVuX0aNH274PCwtjzZo1+Pj4UKhQoVe/UEIIIUQ6IyvGIlWqXbs2u3btYtasWXz44Yfky5cPo9HIwYMH6d69O//++69t7M6dO8mXLx+tWrWKNccnn3yCi4tLnLKLt6HVamnRooXte7VaTenSpQkMDIzV2u1F+/fvJygoiMaNG6NWW3/sPD09KVy4MGfOnImV8ObKlQuAqVOncvLkScxmM3q9ntWrV/Ptt9/GO79Op+PQoUNMmTIl1vHAwEDc3Nxsq+3Pe/55AJQqVQqAR48evewlEEIIIdItWTEWqZZer6dx48a27gs+Pj6sWLGCuXPnMmXKFJo3b46Hhwe+vr5Uq1YNlUoV5/z8+fPj5+eXZDG5urrGKeVwdHREURRMJhMajSbe89atWwdAxYoVY9XxVq9eHW9vb1auXGlLeps1a8aePXvYuHEjR44cwd3dndq1a/P+++/TqFGjBGPT6/UcPHiQHTt24O3tzZ07d2w9n7Nnzx5nfLZs2eKcD7w0wRdCCCHSM1kxFqlKREQEv/zyC5s2bYrzWKFChRg6dCgDBgzAaDRy9uxZABRFifcmPQCLxYJOp3vpNS0WS6LjSyjxfZnQ0FD27NkDwLBhw2jUqJHta+nSpYC1/jimZ7JWq2Xq1Kls3ryZL7/8kuLFi7N9+3YGDBgQ50bAGIqiMGjQIAYMGMCtW7coW7YsgwcPZsOGDQm2g3vxjYQQQgiR0cmKsUhVHBwc+OeffyhRogTvv/9+vGOKFy8OWFdqAfLly4e3tzeKosRK9gwGA76+vrY63Zik9sWb8ZK7dGDr1q0YDAaaN29Oy5Yt4zw+a9YsLl26xN69e2ncuDEPHz7k1q1b1KxZk6JFi9KvXz+ePHnCwIEDWbNmDUOHDo2z2nvy5El27NjBp59+GqfcQkojhBBCiMSRFWORqmg0Glq2bMmFCxdYvHhxnMfNZjMrVqzA3d2dqlWrAtCoUSP8/PzYsGFDrLELFiwgPDycBg0aAM/KCS5fvhxr3MaNG+NcJ6YO+HVWkxMSU0bRv39/W2nI818xNwbGdJxYvHgxPXr0iBVnlixZKFiwICqVyhbb84KCggAoVqxYrON79+7Fx8cnyXfwE0IIIdIjWTEWqc63337LhQsXGD16NFu2bKF+/fpkyZKFhw8fsnnzZnx8fJg2bRpOTk4A9OnThx07djBs2DBOnTqFp6cn586dY+3atZQrV46PP/4YsJZilCtXjrVr1+Li4kKJEiU4ePAgV65ciZNsZs2aFbCu5tauXZuaNWu+0XPx8/Pj5MmTlC9fHk9Pz3jHNG/enPHjx3PgwAECAgLo1KkTS5cupXfv3nz00UfkzJmTCxcusHbtWlq2bEmWLFnizFG5cmXc3NyYPHky/v7+ZMuWjbNnz7J27VocHByIiIiIs6IuhBBCiNgkMRapjru7OytXrmTBggXs3LmTOXPmEB4eTpYsWahWrRpTpkyhZMmStvFubm4sXbqUX3/9lZ07d7Jq1Sry5MlD//796du3b6yb5X799VcmTJjA6tWrUalU1KlThwULFthWlWN89NFHHD16lH///ZfLly+/cWK8YcMGFEWJ1Y7tRQ4ODnTo0IG//vqLtWvX0rt3b+bPn8+MGTNYsmQJQUFB5M2bl4EDB9KnT59458iWLRt//vknU6ZMYc6cOWi1WvLly8fIkSMxm8389NNPnDp16o23nxZCCCEyApWS0F1LQgghhBBCZCBSYyyEEEIIIQSSGAshhBBCCAFIYiyEEEIIIQQgibEQQgghhBCAJMZCCCGEEEIAkhgLIYQQQggBSGIshBBCCCEEIImxEEKIJDRjxgw8PT05duxYgmMaNmxIw4YNbd+vXr0aT09P9u/fnxIhvrVjx47h6enJkiVL7B1Kgjw9PenWrVuSzhkeHs6jR49s38f8v75582aSXkcIe5Kd74QQdqGYzSgGA1gsKGDdrlqtRqVWg1Zr/RNQLBYUgwElKgpLVBSWyEgsEREo0dGodDrUjo6o9A6oHPSo9E+/dDpUWi0qjSb2NU0mFIsFzGYUi8U6Rq+XrbLtrGrVqkyaNCnWjpapWdGiRZk0aRIVKlSwdygp5sKFCwwYMIAxY8ZQr149AJo0aUKBAgXw8PCwc3RCJB1JjIUQyUJRFJToaDCbQadDrddjiYjA6O+P8c4dom/ewujnizk4BEtEhO1LiYjAEhGOJfzp9wbDmweh0aBycEDt4IDK0dH6p4MDGjc3tB4e6HLnQpcvH/oCBdHlyY02e3bUmTJZE2iDAUUBlU6L+rltxUXSy58/P/nz57d3GImWPXt2Wrdube8wUtS1a9d4+PBhrGMlS5ZMM29mhEgsSYyFEG9MMZuxREWh0mpROzhgMRgw+ftj9PUl+uZNjHfvYvT1w+Dri9HPD0toaMoGaDajRERgjohI9CkqJyd0uXKhy50bba5cT5Pn/OgLFLAe88hpXe02mayr1WqpSBNCiPRCEmMhRKIoZrO1fEGvRzGbib55k8hTp4m6eMG6+uvri/nJE3uH+daUyEgM3t4YvL3jfVyl0+FQojiOZcrgWL48zhUroi9UCBQFxWhE5eAQp4RDvNzq1asZPnw4c+bMsX1Mv2vXLv744w9u3ryJoiiULFmSXr160bhxY9t5np6e9OvXD3d3d/7991+Cg4MpVaoUX3zxBTVq1Ih1jRUrVrBq1SquXbuGwWDAw8ODpk2bMnjwYBwcHABrzezMmTPZtWsXEyZM4MiRIyiKQq1atRg2bBj58uUDrDXG3bt354cffuCjjz6yXWPJkiUsW7YMb29v3N3dqV+/PoMHDyZr1qwvff7//fcfM2fO5PTp05jNZkqVKsVnn30W67nGxPbnn3/y3XffERISQt++fenfv/9bvfYmk4l58+axceNGfHx8MJlM5M2bl7Zt29K7d2/UarXt2gC9e/cmb9687N6923Z88+bNFC1a1Pb/ceXKlSxevJjdu3cTFRVF5cqV+fbbb2OtLlssFhYsWMDy5cu5ffs2rq6u1KlTh8GDB5M3b963ek5CvA1JjIUQ8bJERKDS6UCBqGvXiDh5kqgLF4i6eBHD7dtgsdg7RLtQjEaiLl4i6uIlWL7CelCrxaFIERzLlMaxbDmcq1RGX6QIKrUaxWDIkMlyaGgojx8/jvcxi8WC+iUr7SdPnuTzzz+nQoUKDBkyBIDly5fj5eXF3LlzqVmzpm3s+vXrCQoK4pNPPsHV1ZXFixfz2WefMWfOHNu4mASuRYsWtGnThujoaHbs2ME///yD0Whk5MiRsa7fvXt3ypQpw9ChQ7lx4waLFi3iwYMHrFy5MsGYx4wZw4IFC6hVqxYdOnQgICCAefPmcf78eZYtW4Y+gXKcffv2MWDAADw8POjduzeOjo6sXbuWgQMH8t1339G1a9dY47/55hu6d++OTqejWrVqCcaTWCNHjmTt2rV07NiRjz76iLCwMNatW8fPP/+MXq+nZ8+eNGnShICAAJYtW0avXr2oXLnyS+f84osvyJ8/P59//jn+/v78888/9O7dmz179qDVWtOOoUOHsnHjRurXr8/HH3/MvXv3WLx4MQcPHmT58uVpqrRGpC+SGAshnq0GOzpifhJExOlTRBw7RuSZM0RdvQYmk71DTN1MJqKvXSP62jWC16y1HlOr0RcqhGPp0jiWLUumGtVxKFECJSoqQyTKAwcOfOnjL1sV3LRpEyaTiZkzZ9pWW1u0aEHnzp25evVqrMT43r17LFq0iHfeeQeA1q1b06xZMyZOnMjatWsxGo3MmzePBg0a8Msvv9jO69KlC40aNeLAgQNxrl+3bl1Gjx5t+z4sLIw1a9bg4+NDoUKF4oy/ceMGCxcupFWrVkyePNl2M2eBAgUYMWIEu3btonnz5nHOM5vNfP/997i7u7N69Wrc3d0B+Pjjj/noo4+YNGkSzZo1I3v27LZzOnfu/MrXNrEePXrEunXr6Nq1a6w3Bx07dqRmzZocOHCAnj17UrJkSSpWrMiyZcuoUaOGbVU/IUWLFmXOnDm277VaLTNnzuTYsWPUrl2bgwcPsnHjRj788EPGjBljG9e0aVM6derEhAkTmDVrVpI8RyFelyTGQmRQluhoVGo1lshIQnfvJmzPXiLPnMHk72/v0NIHiwXDrVsYbt0iZONGANSurmSqWQOXBg1wefddNK6uKEYTaidHOweb9F786Px5Q4cOfem5uXLlAuCnn36iV69elC1blixZsrBt27Y4Y6tVq2ZLisF6Y9wHH3zAokWLuH//Prlz5+bQoUMYjcZY5wUGBuLm5saTeMp/WrRoEev7UqVKsWbNGh49ehRvYrx3714URaF79+6xOpy0atWKEiVKULRo0Xif58WLF7l//z6DBg2yJcUADg4O9OrVi6+++or9+/fTrl0722Mvloi8jezZs3Pq1Kk4xx8/foyLiwsRr1Gb/7wX3wSUKlUKgICAAAB27twJEKcMpEKFCtSuXZv9+/djMBgSXGUXIjlJYixEBmKJiEDl6IjBx4eQrVsJ273bWhKgKPYOLUOwhIYSun0Hodt3AKAvVgyXOrVxbdIUpwrlrTXKT1vNpXVlypShevXq8T4WU9ObkK5du3L48GE2b97M5s2byZEjB/Xq1aN169Zx5ixWrFic82OSVz8/P3Lnzo1er+fgwYPs2LEDb29v7ty5YyvzeH41Nka2bNlifR+ToJnN5njj9fPzA6Bw4cJxzitXrlyCz9PX1xeAIkWKxHksJpmOmTtGfPG+Db1ez6ZNm9i/fz8+Pj7cuXOHkJAQgDcuZ0jo9bM8Lb/y9fXF0dEx3k8NihYtysGDB/H397fVdAuRktL+b18hRIIUs9mabGk0hB8/TujWbYTt2yerwqmE4cYNHt+4weN/56FycsK5alVc3q2Pa8OGaHPkQDEYUDs52TvMFJcpUyZbfe6uXbs4ePAga9asYdWqVXh5eTFo0CDbWG08byJiEjCNRoOiKAwaNIgdO3ZQoUIFypUrR7t27ahUqRKjR4/Gx8cnzvmv29c6JmF+3fOUp29IlXjemMY8B51OF+v4y2qzX5fBYKBr166cO3eOatWqUbVqVT7++GOqVq1K9+7d33jeV70OiqLYvl4cm9DzFiKlSGIsRDpjiYpCpdFgDg0ldOdOQnfuIuLYMWtPYZFqKZGRhO/fT/j+/Tz88Sd0+fPjUqcOrk2b4lytaoZKku/evYu/vz9VqlShXLlyDB48mPv379OjRw/++ecfvLy8bAnV3bt345zv4+ODSqWiQIECnDx5kh07dvDpp5/y7bffxhr3/C5ubyNm5fP27duUKVPGdtxoNPL111/z3nvvxSnPAGwrordu3YrzWMyxmLKS5LB582bOnj3LqFGj6NKli+24yWQiKCiInDlzJst18+XLx8GDB/Hz84uzKuzt7Y1er39lJw8hkos04BQiHVCMRhSjEcPduzz6/Q+823fgeq3aPBj1PeH790tSnAYZ797lyZIl3OnZk+t16uI/dSrRN2+imExY3mbTkzRg2rRp9OzZE//nPtnInTs3OXPmRK1Wx1plPHDgQKzE0t/fn/Xr11O1alWyZctGUFAQELfkYu/evbb2ZG/r3XffBYizRfT27dvZunWrbRX0RWXKlMHDw4OlS5fa4gTrSu4///yDTqejbt26bx1fQmKu+WIN9LJly4iMjIz12sSsVMe3uv26GjVqBMAff/wR6/i5c+c4dOgQdevWlRVjYTeyYixEGmaJjASVipDNm3mydBlR587ZOySRDMxPnvBk4SKeLFyEvlgx3Nu1w719O1SOjvFufZ3W9ezZk+3bt9O1a1c6duyIm5sbR48e5fjx4/Tr1y/WWI1GQ9euXenevTtqtZrFixejKAojRowAoHLlyri5uTF58mT8/f3Jli0bZ8+eZe3atTg4OBARERHvR/qvw9PTky5durBo0SICAgKoV68e9+/fZ9GiRVSpUoVmzZrFe55Wq+X7779n0KBBtGvXjo4dO+Lo6Mi6deu4dOkSw4YNi1Ov+zq8vb0ZNWpUvI/17NmT2rVro9PpGDFiBN26dcPJyYkjR46wdetWHBwcCA8Pt42PWcFdtmwZISEhtGrV6o3jqlevHs2bN2fFihW21+vBgwcsXLiQzJkzx1nZFyIlSWIsRBpjiY5GpdEQdfUqTxYuJGTrNpTISHuHJVKI4cYN/CdNwn/qVDLVrIH7hx1xbdjAuhNfOim1KFu2LHPnzuW3337j77//JiwsjEKFCjFy5Mg4fX0bNWpE6dKl+ffff4mMjOSdd97hq6++snXEyJYtG3/++SdTpkxhzpw5aLVa8uXLx8iRIzGbzfz000+cOnUqVmeLN/Hdd99RsGBBli1bxoQJE8iRIwedOnXCy8sr3jro5+OfP38+s2bNYvbs2YB1Jfm3336zray+qZjew/F5//33qV69OjNnzuTXX39l+vTpODk5UahQIaZPn87Zs2eZO3cufn5+5M2bl5o1a9K8eXP27NnDyZMnadq06VvFNnXqVMqUKcPq1asZP3487u7uNGvWjEGDBpEnT563mluIt6FSkuJzESFEslIUBSU6GsVg5MnKFQSvWIHB28feYYlUQu3igluzZrh37oRjqVIoRiNqx/TXAu5Fnp6etGjRIlZ/YiGEeBuyYixEKmaJikKl0xF+7BhPFi0mbN8+2WxDxGEJCyNo5UqCVq5Elz8/mdu0JkvHTqhdXaybibxFmYAQQmQkkhgLkQpZoqMxBwXxZPESgteskfZqItGMd+/yaMZMHs36DdeGDcnWrx+OniVApUoX/ZGFECI5yW9JIVIJxWJBMRox+voSMG06oTt3ysYb4s1ZLE/b9e3EsVw5svfti0uDd621yK/YYEMIITIqqTEWws4UiwXFZCL6xg0CfplG+IED9g5JpFO6vHnIPmgQmVu2JBoTjtr0X4cshBCvQ1aMhbATxWwGi4XIc+cImD6diOMn7B2SSOeMfvcwBwYSFPGYJbdW8kmZT9CoNJIgCyHEU7JiLEQKU57ePBd+7BgB03+V3sMixahdXCh+8AA/nZnIymsrcdI60cmzE5+V+wwHjYMkyEKIDE8SYyFSiMVoRKVSEbZ3HwEzZhB99aq9QxIZTNbPeuHSrxc1VtWLdVyv1tO2eFv6VeiHi85FEmQhRIYlibEQycxiMKBSqwnZto1HM2dh8Pa2d0giA1Lp9RQ7sJ85Pov57b/f4h2jVWvpVKITXpW80Kq1kiALITIcSYyFSCaKxQJmM6E7d+E/ZQpGPz97hyQyMPcPPyTb8G+ouqI2FiwvHeuic6FXuV50L90dBQUHjXSxEEJkDJIYC5EMLFFRGH39uP/dd0SeOWPvcERGp1ZTbNdO1oYc5MejPyb6tJzOOfm80ue8X+R9wLqiLIQQ6ZkkxkIkIUtUFIrJhP/ESQStWgWWl6/MCZESXJs2IfekidRYWY8oc9Rrn18kcxFG1hhJhRwV0Gv0yRChEEKkDpIYC5EEYjpNPFm+nIBp07GEhNg5IiGeKbx+HYcc7jJ47+C3mqdu3rqMqjkKdwd3qT8WQqRLkhgL8ZYs0dFEXbzEg++/J/r6dXuHI0QsztWrkX/OHBqsacLjqMdvPZ9WraVrqa4MrDgQlUol9cdCiHRFEmMh3pAlKgpLWDgPfhxN6PYd9g5HiHgVmD+Pq/k1fLK9R5LOm80xG19V+YrmRZqjUWlQq9RJOr8QQtiDJMZCvCaL0YhKUXg0Zw6Bc/5CiXr9mk0hUoJDyZIUXrmCDza0xSfEJ1muUcWjCuPrjCeLYxYprxBCpHnyFl+I12AxGAg/eJAbzZrzaMZMSYpFqpa9f39uBt1MtqQY4NTDU7Rc05LFlxdjtBgxK+Zku5YQQiQ3WTEWIhEsRiMYjdwb8T9Ct261dzhCvJIub16KbttKjx29OO1/OkWuWTJrSSbWnUgelzyyeiyESJNkxViIV7BERRN19iw3mzWXpFikGdl69+Zh2P0US4oBrjy+Qs9tPa31xhaz9UsIIdIQSYyFSIBiNqMYDPj/PJXb3bpj8ve3d0hCJIomSxbc27djyn/TU/zaw6sNR4kIhD9qQ+ANMEameAxCCPGmJDEWIh6WqCgMt29zq117nsxfAFJxJNKQLN27ExIZxLbb21L0uu/mf5eGBRrisKgj+F+2JseHZ4LZKKvHQog0QRJjIZ6jKAqK0ciThYu41boNhhs37B2SEK9F5exM1k+6M/vq3BS9rpvejTG1x6A/swgenLMeNBthzxj4uwkE35XVYyFEqieJsRBPWaKjMT8K5HaPnvhPmQJGo71DEuK1uXfogNFiZMGlBSl63ZE1RuJoiISNg+M+eO8MzKoOl9aBKTpF4xJCiNchibEQWNuwhe7Ywc1mzYg8dcre4QjxZrRasvftwxKf1Sl62fr56tOoQCNrCUVCTFGwpi9s/NKaHEtphRAiFdLaOwAh7MliMFjbsA0fLrvXiTQv8/vvozg58uuZX1Psmm56N8bUGYP+vyXw4OyrT/hvEdw/Cx8vB+dsoJO2bkKI1ENWjEWGZYmKxnDjBjebN5ekWKR9KhXZvQaw5d4uTBZTil12RPUROBmjYMPniT/p4QX4rQbc2gNG2SRHCJF6SGIsMiRLdDShO3fg06kzJv8Ae4cjxFtzqV8fTY6cjDs2LsWuWTdvXZoWbILD4k6vf3J0CCzpDLtGg9kAFkvSByiEEK9JEmOR4ShGIwHTf+Xe10NR5AY7kU5k9xrI4YAThJvCU+R6bno3xtUZh+7sUrj335tPdPQ3+Pd9iHwsN+YJIexOEmORYShmM5aoKO4O9OLxP//YOxwhkoxTpUo4lCjB6KOjU+yaI6oNx8kUDesHvf1kd4/DrGrge0JKK4QQdiWJscgQLAYDpoAAvNt3IHz/fnuHI0SSyu41kItPLvMw4mGKXK9u3ro0KdQUh8Wdk27SiECY18q6gmwyJN28SWTGjBl4enq+8is53blzJ9Fjvb298fT0pFSpUjx8+OZ/L44dO4anpydLlix54zmESEukK4VI9yxRUURduoTvgIGYg4LsHY4QSUpfrBiZqlfnh81vUOf7Blx1roytMxb9ueVw73TSTq5YrDXHj72h5VTQ6JN2/iTQr18/ihQpkuLX/f3331myZAn7E/nGft26dTg7OxMREcHq1avp37//G123aNGiTJo0iQoVKrzR+UKkNZIYi3TNYjAQvG4dD34aA6aUu1NfiJSSvV9fbgff5tqTaylyveHVh+NsNsK6gcl3kTPzIcQPOi8GjQ7UmuS71muqVasW1atXT/HrHj58GLM5cb2fFUVhw4YN1KhRAz8/P9asWfPGiXH27Nlp3br1G50rRFokpRQi3VKMRh6OG8+D73+QpFikS9pcuXBr1oxxpyemyPXq5K1Ds0Lv4bAoCUsoEnJzF/zdGKKCrVtLi0Q7deoUvr6+VK1alQYNGnD79m2OHz9u77CESBMkMRbpjmIyYQ4P585nnxG0dKm9wxEi2WTr9SmPwgM4cu9Isl/LRedi7UJxfiXcS6HdIR+ch9l1Ifiudee8NOb48eP069ePGjVqUKZMGWrVqsVXX33FvXv3Yo3btWsXH374IZUrV6ZSpUp89NFH7Ny50/Z4w4YNOX78OI8ePcLT05MZM2a89Lrr168HoEaNGjRu3BiAlStXxjt29uzZNG/enPLly1O9enW8vLy4du3Zpw/x1RgHBgYyduxYmjRpQtmyZalUqRKdOnWKFXNM3MOGDWPLli20bt2acuXK0aBBA2bOnIlF2vOJVEoSY5GuWAwGjA8e4N2mLRHHZIVEpF/qzJlx79iRaednpsj1hlcbjrPJCGvf7CP5NxbsC3++C/fOgjEyZa8dj9DQUB4/fhzvV2Tks/iOHDlCjx49CAwMZMCAAXz33XfUqVOHzZs307dvX9u4kydP8vnnn6PT6RgyZAhff/01EREReHl5ceSI9Q3PiBEjKFKkCK6urkyaNIkmTZokGJ/BYGDr1q3ky5eP0qVLU65cOfLmzcv27dsJCwuLNfbPP//k559/pnz58owcOZKePXty6tQpunbtypMnT+KdPzo6mi5durBu3Tref/99vv/+e3r27Mndu3fx8vLiwoULscYfO3aMkSNH8u677/K///0PDw8PZsyYITfziVRLaoxFumExGDD6+nG7SxfMCfxSFyK9yPLxx0QYwll/c32yX6tWnlo0L9wM3dwWyX6teEUFw7z3oe2f4NnCrttIDxyYcG21l5cXgwZZ29fNnTuXLFmyMH/+fJycnADo3LkzJpOJTZs28fDhQzw8PNi0aRMmk4mZM2eSNWtWAFq0aEHnzp25evUqNWvWpHHjxsybN4+QkJBX1vvu3buX4OBg2rdvbzvWtGlT5s6dy6ZNm+jU6dlNmuvWraN48eJMnPisFKdUqVJMmjSJ69evU61atTjz7969G29vb2bMmEHTpk1txytVqsRnn33GwYMHKVu2rO34vXv3WL58ue3mvVatWlGnTh02bNhAly5dXvpchLAHSYxFumCJjsZw5w63u3bDEhxs73CESFYqBweyfdqTWdfnJvu1XHQujK8zHt2F1dY+w/ZiNsLKntBoFNQcBFr7dKz49ttvKVmyZLyP5c+f3/bfv//+OyEhIbakGCAsLAwHBwcAIiIiAMiVKxcAP/30E7169aJs2bJkyZKFbdu2vVF8MWUUzZo1sx1r1qwZc+fOZeXKlbES41y5cnHkyBFmzpxJmzZtyJcvH/Xr16d+/foJzt+8eXOqV69O5syZbcfMZrOtNCLmecXImzdvrI4WmTJlomDBgjx69OiNnp8QyU0SY5HmWaKjMdy8xe3u3bG88FGhEOmRe7t2mNQKc87PSfZrDas2jEwWM6zp++rBKWHXjxB0F1pMsks7tzJlyiSqK4VGo+H+/fvMnDmT69ev4+vry71791AUBcCWSHbt2pXDhw+zefNmNm/eTI4cOahXrx6tW7d+7e4XQUFB7N27l6xZs5I1a1Z8fX0ByJYtG1mzZuXcuXNcv36d4sWLAzBs2DD69u3LjBkzmDFjBsWKFePdd9+lQ4cOFC5c+KXPbe7cuZw+fZq7d+9y+/ZtoqOjYz2vGDGr4M/T6/VSYyxSLakxFmmaJSqa6KtXud2tqyTFImPQaMjWvx+r7mxM9kvVzFOTFoVb4LDk42S/1ms5NRc2DgFz6tsIJMa///5L27Zt2b9/P/ny5aNbt24sWLAgVn0xWFdQ582bx8qVK+nfvz+5cuVizZo1dO/e/ZU32b1oy5YtGI1GHj9+TOPGjWnUqBGNGjWicePGPH78GIBVq1bZxhcvXpxt27bx559/8vHHH2MwGPjrr79o1aoVhw4divcaPj4+NGvWjFmzZgHQuHFjJk2axIoVK+Idr1ZLmiHSFlkxFmmWJSqKqIsXufNZb5RI+9+UI0RKcHvvPVSuLkzdNjVZr5NJl4kJdcaju7gGfFPhjaxn5lv/TIUbgURHRzNt2jQqVarE/Pnz0eufxRdT6hDj7t27+Pv7U6VKFcqVK8fgwYO5f/8+PXr04J9//sHLywuVSpWo68bMPXr0aLJnzx7rsZCQEIYPH8769esZMmQIGo2Ga9euoVarY5VPnDx5kh49ejBv3jxq164d5xqzZ8/myZMnrF+/nhIlStiOnz6dxJu9CGEnkhiLNMkSFUXkf2e527cvytOP8ITICLJ7DWTng/0YLMm7Wvpt1W/JZLHA6t7Jep23kkqT46ioKCIjIylYsGCspPjevXts374dwLZZx7Rp09ixYwc7d+4kZ86cAOTOnZucOXPy6NEjW1KsVqtfWn5w9+5dTp8+TZkyZejcOf4+02vXruXYsWPs2bOHJk2a0LdvX7Jly8aKFSvQaKybqJQpUwadTpfgSm9QUBB6vZ4CBQrYjlksFubPnx/reQmRVkliLNIcS1QUESdO4DtgIIpRGv+LjCNT7Vro8uZlzOruyXqdGrlr0LJIS3TzWibrdZJECifHhw8f5sGDBwk+Xr16dXLlykWlSpXYsGEDbm5ulChRgjt37rB8+XJbS7fw8HAAevbsyfbt2+natSsdO3bEzc2No0eP2nogx8iaNStPnjzhr7/+omrVqnG2aI5ZLe7QoUOCsX388cccO3aMVatW0bRpU/r06cOPP/5Iz549ee+991AUhXXr1hEVFUXXrl3jnePdd99l9+7d9OrVi5YtWxIdHc3mzZu5dOkSarXa9ryESKskMRZpiiUqivCDh/AdPFh2sxMZTnYvL048OkOwIfk6rzhrnZlQdzzai2vhztFku06SSsHk+I8//njp47NmzSJXrlxMnz6dCRMmsHHjRqKiosiVKxcdOnSgadOmdOzYkcOHD1OpUiXKli3L3Llz+e233/j7778JCwujUKFCjBw5MlZy+tlnn3H16lWmTZtGu3bt4k2MHR0dadWqVYKxNW7cmJw5c3LgwAEePnxIly5dcHR0ZNGiRfz8889YLBbKli3LnDlzqFOnTrxzdOzYkdDQUJYtW8a4cePImjUrpUuXZvny5Xz33Xe23stCpFUqJeYWWSFSOUtUFGF79uL39dcgH9eJDMaxbBkKLVlC8/Wt8AvzS7brjK41mvfz1sNhcnFQ0ljngErdU11ZhRAibZEVY5EmWKKiCN2+nXvDhoO0+REZUPYBA7kadD1Zk+IauWvQqkgrdPM+SHtJMaTammMhRNohibFI9SxRUYTt3ce9b4eBfMAhMiBdwYK41KvL6K3dku0azlpnxtcdj/bSOrhzONmuk+wkORZCvAVpMChSNUt0NFEXLuA3dKgkxSLDytanD/dC/bgQeCHZrjG06lBcFVCl5i4UiXVmPmwfCSbpWCOEeD2SGItUy2IwYLx7l7t9+4J0nxAZlCZ7dtw/aMWEM1OS7RrVclWjddHWOCzrnjZLKOJzbLb1yxhl70iEEGmIJMYiVVJMJsxPnnD7kx5YwiPsHY4QdpOtxyc8iXjM3rt7k2V+J60TE+pOQHt5A9yOf7ezNGvHd3B1ExhlAyAhROJIYixSHcViwRIZye1u3TEHBto7HCHsRu3iQpauXZl16c9ku8bQqkNxQ41qVa9ku4Zdre4DfqfAJCvHQohXk8RYpDoqtRqzwYQ5NNTeoQhhV+6dOxFlimT5teXJMn/VXFVpU7RN+iqheJHFBIs7wWMfMCfvboFCiLRPEmORqphNFnbMvcTjYDWFt+9EX6yYvUMSwi5UOh3ZPvuMBTeTJyl+VkKxEW4fTJZrpBqGMFjQGqJCwCI90IUQCZPEWKQaJqOFI6tvcO3YA9b8fJo718MouHI1merUtndoQqS4zK1bY9Fr+e2/35Jl/q+rDMENLapVnybL/KlO6AOY/4GsGgshXkoSY5EqmAxmrhy+x9ndvgBYTArb5lzg3L575P19Nu4fdbZzhEKkILWabAP6s953KxaSvsThHY93aFu8HY4rPkm/JRTxeXgRlnWV5FgIkSDZElrYnclo4f6NIDbMOItiifvXsUzdPNTtVIKghQvwnzDBDhGmX08UhaUonASCARegAvARKnKpVLHG7lEU1qNw7+m42k/HOb0wLiG/KBb2JfBYO6C76tn79OWKwiYULMA7QC9UuLxwnTOKwo8o/IyKwomMIa1wbdKE3JMnUmNVPaKS+KYxJ60TG9tuIIf3UVQruifp3GlG1c/gvXGgdbB3JEKIVEZ2vhN2ZbFYiAozsHX2+XiTYoCLB+4R9iSaZn27oitYEL/+/VM4yvTpiaIwFIVHWJPhuoAfsB84jcJEBfI8TThXKgoLUSgEvA/cBtYDV1EYo4AuEYmpD+AOvBfPY6V5dv4RRWExChWB3MAuIBqFb4h9jUUo1IJ0lxQDZPcayD7/I0meFAMMqfIVbiodqpU9knzuNOPEX+BRDip0Ap2TvaMRQqQikhgLu1LMsHHmWQxRL78h5vaFQFZPPs0HX9Sm0Lr1+LRvByZTCkWZPi19mhT3REXr55LLvYrCNBTmovA/VPgrCktQ8ATGokL7dOxixcJyYDvWZPllTIqCH9bV349UL6/g2olCPuB7VKhUKrIrCgtQCFEU3J5e+6iicAsYTPpLip2rVUVfuDA/rumb5HO/4/EO7Yq3R7ewfcYqoYjPlqGQvypkLwEanb2jEUKkElJjLOzGbLKwe+EVAv3CEzU+4E4oy8edwJgtH0V270GdJUsyR5i+HQUyA61eOP6uSkUu4AxgURS2o2AGOjyXFPP0e2dgB6+uxvIFTEDBRMT1ECgEqJ5eq/DT4/5P/7Q8XVGuD+RLj6vFAwdy9vEFAqOStoe3rQvF1a3gnVBRSwZiNljbuMm20UKI50hiLOzCZDBz5egDrh178FrnhQZGsXzcCZ6E66zt3IoWTaYI0zezotABFZ1QoY4nudRhTWTNwMWnx8q+MEavUuGJtUQi/BW3Kvg8/bNQIlZ4XYDnCwhi9j10fvrnAeAe0DkdrhY7eHriXKUKPxwdneRzf1n5SzKrdahWfJLkc6dZwXdhZQ+5GU8IYSOJsUhxZpOF4IBI9i+9+kbnR0eYWDP1NHevh1Fw1Rpp5/YGNCoVrVQqWsSTFPs+LXvIhbV2+AHW2uD4brLL+fTPe6+4ns/TVWU/YJhiobNi4RPFwq+KhccvJNUlgHPAFcVaPrEFhSyAB9aEfikKjQCP9Lha3L8/N4NucSv4VpLOWzlnZTqU6IDj8p7W+iXxzPUdcGSWbBsthAAkMRZ2YDZZ2DjzLBbTmzdEsZgUts65wPn9T9u5dZZ2bknBoij8+bQbRNOnK7KhQKYExses4kYk8HiM20//XI6CB9AUyAPsBusNgM8lx+1QkQUYhkJ3FK4BfVGhUanYBTwCPnxutdiSThrr6PLmwbVxI8aeHJ+k8zpqHJlUbxKaa9vAe2+Szp1u7P4J7p+TsgohhNx8J1KW2WRh658XCHuSBP8AKXB49U2CH0VSd+R36AsWwH/ipLefN4NSFIXfUTgHFONZ7bEZa2lFfGKOv+qDaD3WRHgYKgo8t9K7QlFYhMJfKAx7muy6q1T8osAxIByoBORVqTAqCstRaAZkV6k4+TSJDwCKKgpeqCiUhleRs/XujX/YA04+PJmk835Z5Usyq/WopYQiYRYzLO8KA46BRg9p+O+REOLtyIqxSDEmg5lTW29z99LjJJ334v57bJl9nsxdu5P3t+TZJSy9MysKM1DYgbVkYQQqWws2PdZ64/gYn/7p+Ir5h6vU/KZSx0qKAdo/vd4JIPK5lV9nlYoGKhUtVSryPj1nKxAGtEdFiKIwGYXiwChUOAATUDCl0dVjTZYsZG7XjilnpyfpvJVyVuJDzw9xXPkpWKSLy0uF+cOyLvI6CZHBSWIsUoTZZOGhdwgnNnkny/y3z1vbuemr16Hg2nWglQ9DEitaURiHwm6sq7pjUJH1uQTWBevKbXxevDHudalVKgphXZV+WQ+GKEVhFQrvY11R3o81Ke+PikoqFb2x1kKfecM47C1L926ERoWw1Wdrks3pqHFkYt2JaK7tgJu7k2zedO32Ydg9BoxJ3z9aCJE2SGIsUoTZZGH73xdJRGevNxbTzs2UPT9Fdu1B7e6efBdLJ8IUhe9QOAUUAcahIscLq7p5sO6KFx3PauxDrL9E8rzkGtGKwlVFwTuB1dyYMoyXdZLd+HRcm6flFvdQcAPbbngx13+9Hiepg8rJiazdu/Pn1blJOu/gyoPJonFEvbxbks6b7h2eDj4Hpd5YiAxKEmOR7MxGC3sWXCEiJPlbIsW0cwuK0FF4xy70RYsk+zXTKoOiMObpzW1lsK4Uu8dTW1kKsACX4jn/GpCf+DtWxHgCfIt105AXRT/dqCMzzzpcvChcUViLQmtUuD69jgXrKrMtlqd/psXKUPcOHTBiYv6l+Uk2Z8UcFelYsiOOK3tJacDrUhRY0xuSYddBIUTqJ4mxSFYmo4XbFwO5ccr/1YOTiLWd25mn7dzWkqm2tHOLz0IUrgCeWOt0nRNIbuuhQo11pzzjc6u+K1GI4Fn3ioTkUqkogrUzxb7nzlcUhfkoBAPNeLahx4vWoqACPnjuWB5UhAL3ns53zXbcfp4oCr8rFnopFjooFnooFn5RLDx4Wd2zVkv2fn1Z6rMm1mHFomD814hhXNw3k4pFwbTdhOFnA4bpBkw7TCjPdXhx0Dgwqd4kVs4YTcXx5wmIlF/zry3iMawbKKvGQmRAUogpkpXJaGb3gsspfl2zycLWOReo1bYo5f+Yjf+YnwhatizF40itnigKm5/+dz5gNYp1pewF7VGRT6WijaKwGvgShaqKwl3gJNbV5KYvnLNeUQhHoRUqW6nDAFSMfLpqfERRyIl1BfoG1tXqDgkk18GKwgagI6pYq9J1gMXATyi8oyjsf/o8KrzZy/HWniiKte3c0xjqYu3ZvB84jcJEBfLEk/i7tWiB4uTI9NOxb7qznLCg3Is/obacsGA5aUFVUoVKr8Jy0gJq0Day/jr/ovIXOJvV/D53KV1KRJLDKYNv/fymLm+A69uheBPQvur2UiFEeiGJsUg2ZpOFXXMvER1up49yn7ZzCwmMos53o6zt3CZNtk8sqcxVnnWa2PWSca2wdqXohorswBYUNmLd8OMDoNNz3StibHjaQq0h1hv3AIqpVExRYDEK57Em1TmBj1DRDuLMEWMVCk7A+y8cz6pSMVKBP1HYgnVTkIFPex3bw9KnSXFPVLR+Loa9ivXNwFwU/hdP8p/DayBb7+/G9Fy5g/JYwbwv4U04LGctqIqo0LWzVmWbNCYsZyzQCCrkqEDnkp1Z9HkTwk0qPiuVuO3WRQI2fA6f/yeJsRAZiEpR0mh/I5GqmYxmbp72Z+fclF8tjk+hctl4r09ZIvbvw2/gQHuHI9KZTxTrquzceLbY7qdYeAQsf+Exl/r1yfPrNOqsbECYKQywlpeYFplQQhVrwfRj0I/Qx5rPMMmAuqoabQPruob5tBnzVjOZhmRi48cbcL15iqbdvuLj4pEMKheWfE86oyj1AbT/C7QO9o5ECJECpPhMJDlFUTBEmtm35NqrB6cQn/OBrJlyGoeadSm4dq20cxNJxqwodEBFp3iSYrB22zAR+2ZBgOxeAznif9KWFANYzlhQ7ihom2tRaRNY/XYk9o4q0YAKvKp7kVWbiYVjB2BRVPQsKavFSeLyerixQ+qNhcggJDEWSc5iVtj+90WMUQl/HGwP/rdDWTb2BKYcBSiya7e0cxNJQqNS0UqlokU8SbGvouAH5CJ2uYhTpYo4lCzJ6KOjbceUEAXzbjPqCmrUhRL+1azKq8JyxYISoFjPOWcmU/5MdCvXDcOiT/nnkhO9SoXjopMPA5PM+s8lMRYig5DEWCQpk8HM5UP38Lv6xN6hxCs0MIrlY08QFOlgbedWuLC9QxLplOXpltUW4nbuyD5wIJceX+ZBxLPOy6YtJtCDppHmpfNq62lBAeMcI8aZRgiDiaMnoLm5l783HkOvUehaIsI23iL58duLCIT1gyQ5FiIDkMRYJCmTwcLh1TftHcZLRUeYWDPlNL43wiiwZh2ZatWyd0ginVEUhd9ROAcUw3oTYwx90aJkqlGDH479aDtmPm9GuamgbapF5fjyGwhVOVToPtOhaa5B00zDwBkDqVu5Ok/+7cL8a870KR2Os1Zh5U0naq/JQZllHvTYnYV74fLr/q1cWgs3dklyLEQ6J78pRZIxGc3sX3oNY3TqKqGIj9lkYcufF7h48D55Z/+Je8cP7R2SSCfMisIMFHYAHsCIFzp3ZO/Xlzshd7j65CoASpiCeacZVQkV6pKJ+5WsclGhqaShYtOK9K/TH8fVfZl9Xo+bXuGjYhFcD9Yy8rgbzQtE8Ue9JzyKUvPNEfekf7IZzQZZNRYivZPEWCQJi9nCI98wrp98aO9QEk+BQytvcHDVDXKO+oGcQ7+2d0QijYtWFMahsBvrZiNjUJH1uaRY6+GBW/PmjDs10XbMtM0EFtA2e70bQvVqPZPqTUJzax8P/tvGkuvO9C8Thl4DK286kcXBwvBKodTPY+DL8mGcCNBzLUhuOn0r4Y9g67dglF3xhEiv5LekSDJ7Flyxdwhv5MJeP8IeR/Ne7x5oCxTk3qBB9g5JpEFhisKPT7fYLoJ1N8EXt9jO9umnBIYHcPjeYdsx5aq1CNj4qzHeeQ3jDJAZ9ANjt20bVGkQ2XWuqJd+xG8XXPBwNtO+SCQAt0M15Hcxo3m69FHIzdon+U6YhhLuskX0Wzm7BGoNguwlQS1rS0KkN/JTLd6ayWDmwn4/Ht9Lu+2hfM49Ys3U0zjWrk/B1WuknZt4LQZFYczTpLgM1pXiF5NitZsb7p07Me3CrNjH66jj/SLTs8c1VWPfkFc2e1m6lu6C49r+3Akys+qWE15lw9A9/Y1uUlSYlGfXN5it/22f7U/SGUWBDYNBSf0lY0KI1yeJsXhrZpOFY+tu2TuMt+bvE8rycScwexSkyM7dqDNntndIIo1YiMIVwBPrSrFzPK3bsnT5mAhDOOturIt1XFtPG++XKpPK9rim2rPEOKaEQn1rP1zZxIwLLhRwNdOq4LOP9wu7mvAO0RBqsM7x3yPrLnkxK8fiLd09Ble3gMnw6rFCiDRFEmPxVkxGM/uXXceQynoWv6mQR1EsG3eCoCgHCu/cLe3cxCs9URQ2P/3vfMBqFJYollhfS9VqXLp0Ye71RZj2mzDtf/MEdWDFgeTQuaFe0pkbwRo23nZkULkwW9kEQLsikUSbVXTfnZUxp1yZ9J8rtXNFU9Qtffycpgrbhts7AiFEMpDEWLwxi0Xh8b1wrh178OrBaUh0+NN2bjet7dyca9awd0giFbuKdWc7gF3Asni+lppNhJsM/Hn+TywHLVgOWt7oWmWylaF7mW44rh0AZgPTz7lSIrOJ5vlj3wxWKouJn2sFEWJQseyGM9VyGphYI/hNn6KIT7AvHP4VjJH2jkQIkYRUiqJI+3fxRsxmCyvGnSTQL+zVg9MiFdRuX4yy9fMS8ONoglassHdEIi3SaCi2ZzcrA3cx7vi4N55Gp9axrvVa8gTcRLOgTdLFJ96czhm+vADO2ewdiRAiiciKsXgjJqOFK0fup9+kGGzt3A6vukHO738gx5Ah9o5IpEGuTZuicnVhyskpbzXPwIoDyeHgjmZJ5ySKTLw1YwRsHSbt24RIRyQxFm9EpYLjG7ztHUaKOL/Xj21zLuDeoyd5fv3V3uGINCaH10B2PTyAwfLmN2qVzlaa7mW647h2IJgkCUtVzq+AwBtgkfptIdIDSYzFazMZzZzf50dEcMa5I9v77CPWTj2DY513Kbh6NWg0rz5JZHiZatVCly8fPx356Y3n0Kl1TK43GbXPIbi8PgmjE0lCUWDjF6C8Wd24ECJ1kcRYvJFTW3zsHUKKe+gTwvJxJzHnKkyRXbtRu7nZOySRymX3GsjJwP8INrz5jW/9K/Qnp4M7msWdkjAykaR8T8KVTdK+TYh0QBJj8VpMBjP/7bxLVFj8u3SldyGPIlk29jjB0Y4U3rkbXaFC9g5JpFKOZUrjVK4cPxwd/cZzlMpaih5le0gJRVqwa7TshCdEOiA/xeK1KAqc2X7H3mHYVXS4idVTTuPnHUHBtetxriHt3ERc2QcM4FrQde6G3n2j87VqLZPrT0Z9+7CUUKQFj2/BhdVgirZ3JEKItyCJsUg0k8HMqa0+GCJl9yyz0cLmP85z8dAD8s75i8wd2ts7JJGK6AoUwKV+fUYfH/PGc/Sv0B8PhyxoFnVMwshEsto7HlRy/4EQaZkkxiLRzGaFc7t97R1G6qHAoRXXObL6Jh4//EiOr76yd0QilcjWpzf3Qv04/+j8G51fKmspepbtieP6z6WEIi15fAsurpZaYyHSMK29AxBpg8lg5sRGb4zR0pLoRef2+BL6OIr3PuuFrmBB7n3xhb1DEnakyZ4d99at+eHA1290vlatZVK9SajvHIOLa1469km0imnnXNnt58CTaDU5nSw0yx/JoHJhOL3mb/dwo4pWW7IBKnZ/EBDnsVEn3Njt54C7XqFjsQj6lg5HrYo9x9T/XFjn48SOVgE4ZNSF0zMLUMp1QPXqkUKIVEhWjEWiGA1mLuzzs3cYqZb32UesmXoax7oNKLhyldyEk4Fl7fEJQZGP2X139xud37d8X3I5ZkWz6MOXjgs3qvh4ZzaW3nCmsKuJbiUiyOlk5u8rLvTckxXTa3YP+/msC37h8WfTv5xzYcsdR5rlj6JcNiPTzrmy5LpzrDGPItUsuOZMvzJhGTMpzloEpd0clK5riIqKwvC6/wOEEKmC/OstXsloMHNykw9m+UX/UrZ2bnmKUGT3HmnnlgGpM2Uia5cuzLo0543O98ziSa9yvawlFMaIl45ddsOJWyFaupcIZ36jJ3xbKZQljR/TqmAkZx7p2eDjmOjrngzQseiFRDeGosCqW058WDSS8TVC+LVOEHVyRbP0hlOscX9cykRWRwsfFo1M9HXThRyeKB/OQ/E6wd3cTen6z0la/nZC3hsLkUbJj65IlMuH79s7hDQh5FEky8eeeNbOrWBBe4ckUpB7585EmaNZdnXZa59r60Jx5/grSygAzj/WAdC+yLNEVKXClpj+F6hP1HWjzfC/Y5mpnMOIiy7um9/H0WoiTGpKuj9r0VgqixHf8GfLwvfD1Sy74YxX2XB0GeVfFY+yKB8tRel3GO9s9flw9nHqTT3EoZuB3AwIY9/VAExmWUwQIq3JKL/CxBsyGc1c2OcrtcWvISrc+Kyd27r1OFWrZu+QRApQ6XRk6/0ZC28tf6Pz+5TrQ27H7GgWdUjUeHcHa9J1LyJ23cLDSOuv9awOiUvKZpx34V64hp+qBcdbF+uqs6BCIcL07NEwoxoXnWL7ftZFF/JmMtO6UAZYLc5TCaXrapQ+e7nmWp0PfjtKw2mHOXn7Saxhv+y8hpLAFEKI1EsSY/FSarVaOlG8gZh2bpcOPyTf3/+QuV07e4ckkpnbBx9g0WuZdWbWa59bIksJPiv/GY4bv3xlCUWM9kUi0akVxp925VSAjkgTHHuoZ8p/rrjqLLFWkhNy4bGWf65kon+ZMIq6xf/mV6+B0llMrL7lxP1wNTeCNWy/60Dl7NbOC7dDNay55cSgcmFo0vO/KPmroXyyEaXXDi46VKT5r0d479cjnPeLf1fDC34hnLr9BItF0mMh0hLpSiESZDFb8D77iLAn0rD+jShwcPl1Qh5FUuvHn9AVLMCjX6bZOyqRHFQqsg8cwEbf7Vh4vY/PtSotk+tNRn33BJxfkejzymY1MbfBY7467M7HO7PZjudxNrOkyWPyubz8Ux6jBUYcy0xRNxO9S4e/dOy3lULpt9+dd9fnBCCnk5mvKoQB8Ot5F4q4mWhR4FlbOYtCnI4VaVahOigNR0HeSvx3N4Qh0w5xK+Dlr1eM3/bcoFL3d3BQZ8S7EYVImyQxFglSgFNbb9s7jDTv3O6n7dx69UZfsBD3Bg+2d0giibk2aoQmaxbG7xn/2uf2LtebPE450Myq/VrnBUap+fmsKwGRahrkjaKwq5kLj7Uc93dg1HE3Ztd/gps+4dXK2ZcycT1Yy7Imj19ZF1zdw8D65oHsv6/HQQ2N8kWRxUHhWpCWzXccmVEnCJUK/riYib8vZyLSrKJh3mjGVAt+aQypWtGG1oTYozTH74Tw9ZSD3H3yeqUiB2484nG4gdzuTq8eLIRIFdLzB1/iLSiKQqBvGAF3Qu0dSrrg/d8j1vx8Gsf6jSi4cqW0c0tnsnsNZL//UaJeczOOEllK0LtCbxw3fpXoEooYQw5n5vQjPT/XDuaPekF8WymUBY2eMLxSCKcf6fnueMJdUa4Ha/njogvdS0RQPpsxwXHPy+9ipkvxSDoUjSSLgzXZnX7ehTJZjDTOF82+e3p+OedKz5LhTKsdxH+PdIw5lQY7s5R4D6XfIZSPlnIwPC+1Jh2k05/HXzspBmtHjzkHbhFpkHs0hEgr5F9nES+z0cLJLT72DiNdeegdwopxJzDnKUrhXbtRu7jYOySRBJyrVkVfpAg/Hvnxtc6zllBMQu17Es6/3g17DyLUHHnoQNUchlglDAA9SkZQzM3Idl9Hwoxx6xnMFhhxzI2cTma+KB/2Wtd93rlALTt9HW1zrLjpTJksRgaUDadxvmg+KxXOhtvxx5DqqFRQqhXKwONYPpzP7ic5qDphP93+OcH9kLfbeXDlKV806aauRIj0T0opRLyiI0z4nH1k7zDSneAAazu3D76oQOFde7jzYXuMd+7YOyzxFrIPHMC5xxd4FPV6Py+flfuMPM4eaH6r99rXvP+0E0WRzKZ4Hy+a2cyNEB0PI9W46GKvVt6P0HDuaSu3Sis84pwbagTPJbmoltPAgkaPE4xh+jlX3slhoG7uZzfhFXsunkKuJiyKCt8wDSWzxB+n3anUUKYtSsORKK552HblCd/O2kdIVNLFGxJlYu0ZP9pUyoteK2tRQqR2khiLOIwGM6e33UZJo6WBqV1UuJFVk0/zXu+yFFy3Ab++vYk8ftzeYYk34FCiBM7vvMMPGxPXYi1Gcffi9KnQB91aLzC8/qptdkfrDX4+IfHf1HU7VIMKhWzxtGxz01vwKhv/Nf+8lAkHjcInnhHkzZTwx/8n/HUcfODAwkaBtmMmRYVZebYyarCk4lVStQbKfYjSYCSKc3Y2XHzMiDX7CDckTwL/zyFv2lXOmyxzCyGSliTGIg61SiUbeiQzs9HClt/PUadjcUr//Q8PR31HyJpXb+ogUpfs/fvjHezNzeCbiT5Hq9Iyuf4k1L6n4NzSN7pufhczZbIaOe6vZ6evA43zPescs+KmE1eCdNTNHY27Q9x3t256hUHl4k+M5111funjMX4550rtXNFUzfmsPrmwq4nzgTrMFtCo4b9HOrQq5ZXdMVKURgcVPkJ5dwQWh8ysOh/IqLV7iUrmXT2vPAjl0v0QyuXNjEqVit8wCCEkMRaxWcwWbpz2lw09UoCiwIFl1wkJiKTmT2PQFyjAo+nT7R2WSCRd3jy4NmnM4J19Xuu8T8t+Sl7nXGh+q/9W1x9XLZhuu7Iy6KA7DfJEU9jNxNUgHQfuO5DDycz374QAEGJQMe9qJlx1FnqUfL0b/OKz/56eUwF6VjQNjHW8Q9FI+u93pMeeLBR2M7PqphPtikTG2gjEbrQOUKkbSv1hmHXOLDn9iJ827cOQgtvcz953iykfVsBJL63bhEjNJDEWsSgWuHTonr3DyFDO7vYl9HE0TT/rg75QIe59+aW9QxKJkLXXZ/iHPeDEwxOJPqeYezH6VeiHbv2gNyqheF7JLCZWvRfIrAsuHHqgZ989B7I5WuhUNAKvcmHkdLImfSEGNTMvWHemS4rEeNp5VxrkjYrTzaJh3mhGVQnh90uZOB+oo0XBKL6tZOeuNjonqNIDpd43mNQOzD/xkPFbjpOC+bDNtosPGNu2rCTGQqRyKkWRSlLxTERwNHOHHUL2Mk15HoXd+ODzihhvXOFOp05gscO/3iJRNO7uFNu/j2+P/I+tPlsTd45Kw8pWKykc9hjN302SOcIMTu+CUrUX1B2CQdHy99H7TNlx1e4/Ul81KUGfekVw1ElyLERqJbfIChuT0czFA/ckKbaTh94hLB9/AiVvMQrvlHZuqVmW7t0IiwpJdFIM1hKKfJlyoVnYPhkjy+Ac3FDqfYMy5CrRtb/hlwMP8By9l0nb7J8UA6w67YsuXe+bLUTaJz+hwkatUXPlqNx0Z0/B/pEsG3eCUJMzhXftQVeggL1DEi9QOTmR9ZNP+PPqv4k+p6h7UfpX6I/j5qEQHZJ8wWVUTlmsLdeGXCWi+ueM33WHkj/u49ddN+wdWSy3AyO44S+bJgmRmkliLGwC7oQS8ujtmtmLtxcVZmTV5FPcuxNFwXUbcKr6jr1DEs9x79AeI2bmXZqXqPEalYZJdSehvvcf/Lc4eYPLaDJlR2nyE8qQK4RV6scPW29R5qf9/Lnf296RJWjpibtEJlNbOCHE25PEWABgjDZzcb+fvcMQT5mNFjb/do4rR/3J9/e/uLVpY++QBIBWS/Z+/Vjmk/jWej3L9qSASx40C9slY2AZjIsHSrOJKF9eJrhcD4avu0a5sfuZd/i2vSN7pY1n76PXSo2xEKmVdKUQAKg1Km6c8rd3GOI5igL7l10j+FEENceMRV+wAI+m/2rvsDI0t+bNUZwcmXZ6WqLGF8lchAEVBqDb+KWUUCQFt7wo9b6GSt14HBrJjysvsu6/tNVFJyAsmlO3n1CtcFZ7hyKEiIckxgKLWeHWmQDpXZxKnd0V086tL/qCBbn31RB7h5Rh5Rjkxbb7ezBZXv1RuEalYXK9Sajvn4UzC1IgunQsSyGUet9A+Y74h0Tww5JzbLnwwN5RvbGlJ+5QNq8bznr5J1iI1EZKKQQWi0V6F6dyt84EsPaX0zg1aEqB5ctBLT+6Kc2lfn00OXMy9ujYRI3vUaYHBVzySReKt5GtKEr7v1C8TnG/wPt8Ov8/qk88mKaTYoDtFx9KdwohUin5yRRYzAp+14LsHYZ4hQe3nrZzy1+cwjt3STu3FJbdayBHH50izPTqjTkKZy7MwIoDcNzyLUQFJX9w6U2Okigd56MMPM4djyZ0+ecktSYfYs/V9FHuFRZtYs8VfywW6Y0pRGojiXEGp1gUbp8PRJFf0GlCsH8ky8aeINScicK79qDNn9/eIWUIThUr4lCyJKOPjH7lWLVKzaR6k1A9OC8lFK8rVzmUj5ah9DvEraz1+HD2cer/fIjDNwNffW4as/zkXaLtsQWfEOKlJDHO4ExGCzdOp49VmIwiKszI6kmnuH83ikLrN+JUpYq9Q0r3sg8cwOUnl7kf8eo+35+U+YRCLvnRLpAuFImWpzJK1zUovfdw1bUaH/x2lEbTDnPy9hN7R5Zs9l0LAJW9oxBCvEgS4wxOo1Vx99Jje4chXpPJaGHTrHNcOeZPvrnzcGv9gb1DSrf0RYqQqWZNRh8b88qxhd0KM6iiF47bRkgJRWLkr47SYxNKr+1ccKhA81+P0OzXI5z3C7Z3ZMnOaFY4dP0RiiKf1gmRmsgtsRnc/ZvB0o0ijVIU2L/0GsEBkdQcOx59wYI8+nWGvcNKd7L368vdkDtcfnz5pePUKjWT6k9C9fAinPo3ZYJLqwrVRWk0CvJU5MzdEIb8fBDvwAh7R5Xitl58QM2i2cjkIP8UC5FayIpxBmaMNnP9xEN7hyHe0tldd9nxz0Wy9u5HnqlT7B1OuqL18MCtRQvGn5r8yrHdS3eXEopXKdoIpc8+lK6rOGYoTJ0pB2j3x7EMmRQD7L3qj5M++Tb7GDZsGJ6enrG+ypYtS/369RkxYgQPHz6Md3x0dHSyxNOwYUM6duyYLHO/jYMHD+Lp6UnVqlVf+twXLlxIvXr1KFeuHF9++WWC444dO4anpydLlixJjnCTRVqMObHu3LnzWuPlbWoGptWp8Tmf/m5qyYhung4gPPgMrbzeo8CyAtz5qDNY5Maet5X1054Ehgdw8N7Bl44r5FaIQZUGod/8DURKaVIcJZpZV4izFuXArWCG/nuAhyHJk3ylJY/CDNz0D6O4h2uyXmf48OFkyZIFAIPBgLe3N8uXL+fEiROsWbMGlwze4WbdunU4OzsTEhLCtm3b+OCDuKVp165d46effqJ06dJ4eXmR/yU3PhctWpRJkyZRoUKF5AxbJMLvv//OkiVL2L9/f6LPkcQ4A3vyMILwIPnHKb14cDOY5eNP0ObLShTesYvbH7TEEh5u77DSLLWbG1k6d+aHky/vWxzThUL98BKcmptC0aUBKhWUbIXS6DuUzAXYfT2Ib2Yf4HGEwd6RpSqbzt+nX1ZnHHXJt3LcuHFj8uXLF+tYpUqV8PLyYu3atXTt2jXZrp3aRUREsHPnTtq2bcvGjRtZtWpVvInx1atXAejduzctWrR46ZzZs2endevWyRKveD2HDx/GbH69clEppcigTEYpo0iPgv0jWT7uBGFKJgrv3ivt3N5Clo8/IsIQzpoba146rlupbhR2K4B2QdsUiiyVU6mhbHuUQWewtP2TLfddqTh2H5/NPyVJcTx2X/FHrUr59hTVq1cH4MaNGyl+7dRkx44dREREUL16derWrcuxY8e4e/dunHFGoxEgw6+uZwSSGGdQKrUK77OP7B2GSAaRoUZWTXyunVvlyvYOKc1ROTiQ7dNP+ffG4peOK+hWkM8rf47j9lFSQqHWQoWPUL44j+WDWay7rafcmP0MWHSakKhXb6GdUZ33CybKmPI3QN+7Z93ttGDBgi8dd+XKFb788kvq1KlDmTJlqF69Ov369bOtoD5vyZIltGnThgoVKlC/fn1GjRrF48cJ/1yEhobSrl07KlasyLFjx14ax8OHDxk+fDi1atWibNmyNG/enDlz5sRaDYypk12xYgXt2rWjXLly9O7d+6Xzrl+/Ho1GQ9WqVWnSpAmKorB69epYY7p168bw4cMB64qxp6cnvr6+zJgxA09PT/bt20e9evWoWLEiv//+e4L1uq96fUwmE3///Tdt27alUqVKlCtXjmbNmjF79mwsz5XGDRs2jIYNG3LlyhV69OhBxYoVqVatGsOHD+fJk1e3OAwKCmLUqFHUrl2bSpUq8fnnnxMQEJDg69OuXTvKly9P9erV+eKLL+LU7D58+JAvvviCunXrUrZsWZo2bcrPP/9MVFRUrHF37tzh66+/platWlSqVIkOHTqwY8eOWGNCQ0MZO3Ys9evXp2zZsjRp0oRZs2bZ3pjAs//P+/btY9y4cdSpU4fy5cvTqVOnWH+PGjZsyPHjx3n06BGenp7MmJG4m9OllCKDMkSaCPR79Q5eIm2KaedWr3MJSv47n4ffjSBk3Xp7h5VmZG7TBpNGxexzsxMco1apmVh3Imr/y3DirxSMLpXR6KDCxygNRmDRu7Hy3CO+X7eXKNm8IlEUBfZc9adV+Tyo1cmzchwSEmJLwEwmEz4+PkyYMIG8efPSvn3CW5bfuHGDzp07kzt3bnr27ImrqyuXL19mxYoVnDt3jt27d+Po6AjAmDFjWLBgAbVq1aJDhw4EBAQwb948zp8/z7Jly9Dr9bHmjoyMpG/fvty8eZM//vjDtoIdn3v37tGxY0dCQ0P5+OOPyZcvHwcPHmTKlClcuHCB6dOnxxo/btw4mjdvTvv27cmUKVOC8wYEBHDkyBGqVKlC1qxZqVevHo6Ojqxdu5ZBgwahVlvXDvv160fhwoVZtmwZvXr1wtPTk6xZs9rm+eabb+jevTs6nY5q1arFewNfYl6fkSNHsnbtWjp27MhHH31EWFgY69at4+eff0av19OzZ0/bfMHBwXzyySc0bNiQ5s2bc+rUKVavXk1ERESc1+N5BoOB7t27c/PmTT7++GMKFCjAli1b+O677+KM/e2335g+fToNGjSgffv2PH78mCVLlvDhhx+yfPlyChYsiMlk4rPPPsPf35/u3buTM2dOzpw5w+zZs3nw4AGTJk0CrElx+/btsVgsdOnShdy5c7Nhwwa8vLz45ZdfaNGiBREREXTt2pU7d+7QuXNnChQowH///ceMGTO4ePEis2bNQvXcpyujR4/G3d2dPn36EBkZyd9//02fPn3Yu3cvWbJkYcSIEUydOpWAgAC+++47PD09E3xdnieJcQakKAp3L6ffxvnCSlFg3xJrO7caY8ejL1CARzNm2jus1E+tJvuA/qy6u+mlw7qU6kLRzIXR/lI2hQJLZbQOUKkbyrvDMWucWHwmgDGbzmCQhPi1bbv4gCalPXDWJ88/yW3bxi3z0Wg0/Pbbb7i5uSV43qJFizCZTMybN4+cOXPajru4uPDnn39y6dIlKleuzI0bN1i4cCGtWrVi8uTJtuSlQIECjBgxgl27dtG8eXPb+QaDAS8vLy5cuMBvv/1GzZo1Xxp/THKzaNEi3nnnHQC6dOnC6NGjWbx4MTt37qRx48a28SVLlmTcuHGvfF02btyI2WymWbNmADg7O1OvXj22b9/O4cOHqVOnDgC1a9fm4cOHLFu2jBo1alCvXr1Y83Tu3JmBAwfavn9x9Tsxr0/VqlVZt24dXbt2ZeTIkbZzO3bsSM2aNTlw4ECsxDgsLIwhQ4bQp08fADp16sT9+/fZuXMnkZGRODk5xfucV61axdWrV5k8ebKtlvqjjz6id+/eHD582Dbu7t27zJw5k27dusWK58MPP6RFixZMmTKFGTNmcOnSJa5du8Y333xDr169bGMURcHX1xdFUVCpVPzyyy9ERkayevVqSpQoAUD79u1p1aoVs2bNokWLFvzzzz9cv36dpUuXUr58eVtsZcqUYezYsezZs4eGDRvaYsmUKRPLli1Dp9MBkCNHDoYPH86OHTvo2LEjjRs3Zt68eYSEhLxWzbckxhmQyWCRTT0ykP923iX0cRRN+vZHV6Ag94cOtXdIqZpr06ao3FyZsj3h1ncFXAswuPJg9FuHQ0QG6+yic0Kp8inUG4pJreffEw8Yv+WYNEF5CwevP0rWm+8mT55M9uzZAWut7MOHD1m5ciX9+vVjwoQJtGnTJt7zRo0axaBBg2KtjkZGRtpWUiMirG329u7di6IodO/ePdaKXqtWrShRogRFixa1HTObzXz99dccPHiQadOm2ZLPhJjNZnbv3k21atVsSXGMAQMGxJsY16hRIxGvirVMQK1W06RJE9uxZs2asX37dlauXPnK2BJ7vcS8Ps7Ozpw6dSrOuY8fP8bFxcX2Wj/vxZsAS5UqxfHjxwkKCkowMd67dy9ubm60bNnSdkyr1dK1a9dYifHOnTsxm800btw4VrmHXq+nWrVq7N+/H5PJhIeHB2q1msWLF5MvXz7q1q2Ls7Mz48ePt51jsVjYu3cvtWrVsiXFMXPNnj0bjcb6d3/btm0UKVKEfPnyxbpmgwYNGDduXJzEuGnTprakGKB06dIACZaFJJYkxhmQVqfG75qsGGckN08HEBF8hpaDmlFgaQHufPyRtHNLQI5BXux+eJBoS/wdW1SomFhvImr/KxmrhELvglKtN9T5CoOiZs7RB/y846r8NUoCIVEmfB6FUyRH8tzYVbly5ThdKVq3bk2rVq0YP348zZo1s5VEPE+lUhEaGspff/3FlStXuHv3Ln5+fra63pi6Vz8/PwAKFy4c63y9Xk+5cuViHbtw4QKXLl0C4NSpU7FWkuPz5MkTIiIiKFKkSJzHcuTIgZubm+36MWLeBLzM9evXuXTpEqVKlcJgMODr6wtA8eLF0Wq17Nq1i6CgINzd3V8516uul9jXR6/Xs2nTJvbv34+Pjw937twhJCQEIN72cNmyZYszH/DSLgy+vr7ky5fP9uYmxvNvXgBu374NwCeffJLgXI8fP8bDw4Nvv/2WKVOm8Pnnn6PX62312m3atMHJyYmgoCAiIiIoVKhQnDmeP3bnzh2ioqIS/AQhpi4+xvNv2ABbkmx5y19KkhhnQJFhRkIDo149UKQr928Gs2L8yaft3HZyu1VLLPGsQmRkzjVrosuXjzFreiY4pkupLhTPXCTjlFA4Zkap3h9qf06USeG3/X7M2J2xOxkkh/3XHlEgqzNaTcrcE+/g4ECDBg34999/uXXrlm217Xlbt25lyJAhZMmShZo1a1KjRg1Kly7N7du3+fHHH23jYhIxVSK6a2i1WqZOncqaNWtYtGgRH3zwge1j8/jEbJmd0NbZFosl1qohECfpi8+6desAuHz5Mo0aNYp3zIYNG+jWrdsr53rV9RLz+hgMBrp27cq5c+eoVq0aVatW5eOPP6Zq1ap07979ja4bH5VKFeemOIibTMZ8/+uvv+LqGn+f7cyZMwPQo0cPWrZsyc6dOzlw4ABHjx7l0KFDLFy4kJUrVyb674fZbKZChQoMHjw43sdfLPt5k+efGJIYZzCKouB7RcooMqqghxEsG3ucD76oROHde7ndvi2mF1ZbMrIcXgM5FXiWJ9Hxf6KS3zU/X1b5Ev22kem/hMIpC0pNL6g5kAiDiWk7bjPngLe9o0q3jtwK5MN38qVYYgzPkp+EEozJkyeTO3du1q5dG6tN2YULF2KNy5s3L2BdZSxTpoztuNFo5Ouvv+a9996zfexfpkwZmjVrRtmyZWnZsiUjR45k9erVaLXxpyNZs2bF2dkZb++4f/f8/f0JCwsjV65cr/Gsrf8Obty4EZ1Ox6RJk+LcGOjt7c2UKVNYtWpVohLjV0nM62MwGDh79iyjRo2iS5cutjEmk4mgoKBYNd5vI1++fBw9ehSDwRDreb/Yoi4m5pw5c1KpUqVYjx05cgSwrlCHhoZy5coVPD096dy5M507d8ZgMDB58mTmz5/P3r17adq0KU5OTrZV6OetW7eOY8eO8b///Y+8efMSHBxMrVq1Yo2Jjo5m165dr/3/+U1Ju7YMxmQw43tFyigysshQI6smneS+n4FCGzfjVLnSq0/KABzLlMapQgW+P/pDvI+rUDGp7kTUAVfheMLdKtK8TDlQmv6EMuQKoZX6MmrTDcr8tF+S4mR2wucxzsm4PfSLIiMj2bVrF1mzZqVYsWLxjgkKCiJXrlyxkuKQkBBbO7OYlcB3330XIE57su3bt7N169Z4P9rOly8fAwYM4OrVq/z9998JxqnRaHj33Xc5fvw4J0+ejPXYH3/8ARCr7jQxjh07xv3792nQoAEtWrSgcePGsb4+++wzChQowOXLl7l48eJrzR2fxLw+QUFBQNyShmXLlhEZGYnJlDQtD5s2bUpkZCQLFiywHVMUJdb38Ow1fbFV3N27d+nfvz9Tp05FpVJx7tw5unbtGqvFnV6vt30CodFo0Gg01K1bl8OHD8dKjo1GI3/99RenTp0iU6ZMNGrUCB8fHzZv3hwrlvnz5/Pll1/aEvLXoVarX7u0QlaMMxiNTsP9m8H2DkPYmclgYdPMs9T7yNPazu1/wwnZsNHeYdlVtv79uf7kOndD4zb3B/io5EcUcy+afksoXHOh1BkC7/QgODyK8Wuvsuykr72jyjAehxu4FxxFXvf4b5p6Gzt37rRtCa0oCoGBgaxatQo/Pz/Gjh2b4Grtu+++y8aNGxk+fDiVK1fm4cOHrFq1isBA66cl4U931vT09KRLly4sWrSIgIAA6tWrx/3791m0aBFVqlSxdX14Uc+ePVm/fj2zZs2iWbNmCfZUHjJkCEePHqVXr162dm2HDh1i165dNGrUKMFSiISsX29tXdmhQ4d4H1epVHTu3JlJkyaxatWqWKu8byIxr4+3tzc6nY4RI0bQrVs3nJycOHLkCFu3bsXBwcH2Wr+tNm3asHr1aiZPnoyPjw8lS5Zk165dXL58Oda44sWL07NnT+bOnUuXLl1o3rw5UVFRLFy4ELPZzLBhwwDrjYcVKlRg6tSp+Pr64unpyf3791m4cCEFCxakfv36wLP/hx07dqRr165kzZqVjRs3cv36dWbPti409O3blx07djB06FCOHTtG6dKluXjxIitWrKBs2bK0a9futZ9v1qxZefLkCX/99RdVq1ZN1DbdkhhnMCaDmaCHUlcqnrZzW3yV4IAIaoyfiL5AQR7NmmXvsOxClz8/ru++y4DtPeJ9PJ9rPoa8MwT9jlHpr4Qicz6UukOhUhceh0YyevkF1p+9b++oMqTjtwJpUylvomp1X8fzHQLUajVubm6UKlWKr776KlY3hxd9//33ZMqUid27d7Np0yY8PDyoW7cun376Ke+//z6HDx+2dTf47rvvKFiwIMuWLWPChAnkyJGDTp064eXllWDirdPp+OGHH+jatSujRo1i3rx58Y7Lly8fK1euZNq0aaxZs4bw8HAKFizIsGHD4nR6eJXo6Gi2bdtG7ty5qVu3boLj2rdvz6+//srGjRv59ttvEz1/Ql71+hQvXpyZM2fy66+/Mn36dJycnChUqBDTp0/n7NmzzJ07Fz8/P1uJw5tSq9XMmTPH9tzWr19P1apV+fnnn+nRo0esscOGDaNIkSIsWbKEKVOm4OzsTNmyZfHy8qJixYqAdUX4jz/+4LfffmPPnj0sW7aMzJkz06RJE7744gscHBwA6012y5YtY9q0acyfPx+z2UzJkiWZO3eu7Wa7zJkzs2zZMn799Vd2797NqlWr8PDwoHv37vTv3z/BThsv89lnn3H16lWmTZtGu3btEpUYq5SEKtpFunT38mPWT//P3mGIVKZYlZw07lma0E2buP/tN/YOJ8Xl+uknIhtX473178d5TIWKRS0WUtKiQfd7rXjOTqOyFEap9w2U74h/cDijNl5n2yXZJt6ePqqWn+/eL42zg6xZCWEv8tOXgZgMZu5elhvvRFw3TvkTHhRNy0HNKVAgP3e6dMkw7dw02bPj3qY1ow/E39+5c8nOlHAvhm5awnfOpynZiqE0GAGlWnPvSRj/m3+avVffru+nSBqnbweh08qtP0LYk/wEZjAPfULsHYJIpWLauVG4FIW370Dt7GzvkFJE1k+6Exz5hF13d8V5LJ9LPr5+52scdo2B8DSePOYshdJpIcrAY9zJ2YiP/j5B7SmHJClORa77h2K2yIe4QtiTJMYZiFavIdA3zN5hiFQspp1bGG4U3r0X7VvWs6V26kyZyNq1K79dirtRhwoVE+pOQPXoOhxNw7XXucqjfLwCpe9BbmapQ/s/jlP/50McvSWfHqU2FgUu35fFCyHsSRLjDCQqzEh0RNK0fBHpV0w7twd+Bgpt3IRjpYr2DinZuHfqRJQ5miVXl8R5rJNnJ0pmKY5ufms7RJYE8lZB6bYOpfdurmR6h1azjtB42mFO35F2janZmTtBmDNIGZMQqZEkxhlI4D1ZLRaJYzJY2DjzLNdOPiL/vAW4tYx7U1pap9LpyNanN4turYjzWF6XvHxd9Wscdo9NeyUUBWqi9NyC8uk2zuvL8d6vh2k+4wgX7slKZFpw+UEIUUZJjIWwF7n5LoMwmy089JZ/GEXiKQrsXXSV4IBIqk+YhK5AAQJ/+93eYSUZt1atUPRaZp6ZGeu4ChUT605EHXgLjsxM4OxUqHB9lEajIFd5Tt8N4eufD+Id+OatGR3WfPXKMYY6A1ByxL85RAzVk7toru5A/egWmKLB2R1zngqYSzYBrcOzgRYzmvPr0Nw9BWot5nyVMJdpCZrY/0ypvQ+jPb8eQ9MR4OhGenPtQShaTdK2axNCJJ4kxhmE2Wgh0E9WjMXrO7P9DqGBUTQe4IW+YCHuJ0FPT7tTqcg+cAAb/XZgIfbqXEfPjpTMUgLd9Ff3u0wVijW2JsQ5SnL0dghfTzmAX1DUW09rKtk03uOq6DA03odRHFxQXF++Ta0q4Dq6w38CYMlTHsUxM+rAm2iv70b96DrGul6g0QGguXkA7a2DmPNUAK0DmpsHQKXGXO6DZxOajWiv7MBcpHa6TIoBrvuH4aBNuR3whBCxSWKcQWh0ah7JjXfiDd045U94cDStvFqQP39+7n78sb1DeisuDRuiyZaV8XvHxzqeJ1MehlYdau1CEZbKe/p6tkBp9B1kKcr+W0F8M/cAD0Oik2x6c6n4dyvTHvkbBRXGd7q8MjnV/rcKFAVjvUEoWa27mpkVBe1/K9D4HEVz6xDm4u8CoL59DItHSUzVP7Geq9ag8TkSKzHWeB8GUzTm4q+3BXBaEmEwExAaRQ5XR3uHIkSGJDXGGYRKpZId78RbuX8jmOXjT6IqUprCO3eheoNdiFKLHIO8OOB/jEhTZKzjE+pNsJZQHP7VTpG9gkoFpdugeJ3C0mEuOwOyUmX8fj6ZezJJk+KEqO+eQvPgIpZC1VFyer481JAHqMP8seQua0uKrQ+obKvR6odXnh2OeIzFLY/te4t7XlSmaIh++obeFI3m6i7MxeqBQ6ake1Kp0NUHofYOQYgMSxLjDCI0MAqLWfpjircT084tXOVGkT170ebJ8+qTUhmnd95BX6QIPx75MdbxD0t8SOksJdEtaGunyF5CrYFyH6J8fhZLmz/YdM+ZimP30XvBKR5HGFImBrMR7cXNKDpHTKVffTOmonPEVKYlloLV4j6ofvphpem5ZF7nhMr87HuVMQoFFWitK6eam/tBsWAu9u7bPIs04axvMEaz3IAnhD1IYpxBBNyVFQiRNCJDjayceJIH94wU2rgZx4oV7R3Sa8k+cCDnHl8kIOpZt4k8mfLwbdVvcNg7AULv2zG6F6i1ULELyhfnMbeawRpvDeXG7Mdr8RlColK29aLm1iFUkU+sZQyJWbF1csdcoiGWXKXjPKS+dx4AxS2X7Zgla0HUfudQhTyAiCeo75xAyZLPevOdIRLN9b2YizcAXfovMbj6IBSDSRJjIexBaowzAJPBjL/seCeSkLWd2znqf1QCz/kLeDh8GCGbNtk7rFdyKFGcTFXfYfTGD2MdH193POont+HQNPsE9iKN3poQvzsci96VFWcf8cP6vUTZK1lSLGhuHkDROmAuXPvt5ooKRXt5KwDmQjVsh82lmqM+8Bv6XZOsl9Q5YqzZBwDN9T3WThVF68SKCVX6XNu59jAUvWwNLYRdSGKcASgWReqLRZJTLIq1ndujSKpPfNrO7ffU3c4tW7/+eAd5cyP4hu1Yh+IdKJOtFLrplewY2VNaR6jcHaX+t5g0Tiw+HcBPG09i78VD9f0LqCKfYCpWH/RvUVtujER3ZA6q6FBMRevGqj1W3HJhaDQU9f0LgGJdaXZyh+hQNDf3Yy7dArQOqH2Oob20GaLDUHIUw1i5MzhneevnmJrcCghHo5KWbULYgyTGGYBaqyb08du3bxIiPme2PW3nNtALfcEC3B823N4hxUubJw9uTZvw5a4+tmO5M+VmWLVvcdg70b4lFDpnlHd6Qb0hGNHz74kHTNh6jNSyAZr6zkkALIVqvvkk0WHoDv+JOsgXc67SmMt+EHeMoyuWwrGvobm6C/TOmAvXQhXyAO2Z5ZiL1EbxKIXmwgZ0JxdhrOf15nGlQgazhcBwAzlcHV49WAiRpCQxzgA0khiLZHbjpD/hQQZaebUkf/4C3O3Sxd4hxZHts14EhD3kxIMTtmPj64yzllAc/Nk+QTm4olTrA7UHY1DU/HnkPlO3X7NPLAkxG1H7X8PilvuVfYsTFPYI/eHZqMIDMecqg6naJ9YbCl8lMgiN92FM5duARova5xjoM2Eu38ZaRqGY0R39B1XIfRS33G8WWyr1ICRKEmMh7ECKmDIAs8lCdHjK3qgjMp77N4JYMeEkqmJlKLxjJ6Sidm4ad3fcO3Rg6rlnbdjaF29P2exl7NOFwtEd5d3hKEOuElXzK6buu4/n6H2pLykGVI9uojIbsOQt/2bnB/mh3/+rNSkuUBVT9R5xdrNLiPbKdnDKjKVgdetc4QEombLaaosVlxzW42GBbxRbanb3sZS/CWEPsmKcAUSEpFA7J5HhPXkQwfKxJ/hgcEWK7tnL7bZtMN23f5eHLF27EhYdwmbvzQDkypSLYdWG4bBvMoT4pVwgzllRag6CGv2JiDbxy47b/HXAO+Wu/wbUj28DYMlW5PVPDgtAd2g2KkMYpmL1reUTia2dDXuE+vZxTJU72VaXVYrFetNdDPPTN/zpsBzX51E4JrMFrUbWr4RISfITlwGEPZEyCpFyIkIMrJp4iof3jRTatAXHCvbdWlnl5ETWHp/w19X5tmPj64xHE3QXDkxJmSBccqI0HYfy1RVCK/bmu403KDNmf6pPigFUwdY3DkrmfK93omJBd2KhNSkuWhdzudaJT4oB7ZVtKJmyY8lfxXbM4pIDVag/GK0bs6ieWJP2mJXj9OReUKS0bBPCDmTFOAMI9o989SAhkpAx2syGGeeo/3EJPBcs5MG33xC6ZYtdYnFv3w6jysLci3MBaFusLeWyl0H36zvJf3HX3Ch1h0CVTwgKi2Ls6susPJ2CK9RJQBX+CEWje2U3Ck1MC7anW0mr711AHXQXRa0FrYPt8ecpjm5YCteKe82QB6jvnsZUtVuslmyWAtXQ3DqE7sBvWLIXQXP7OJacJVBcPd7mKaZK94KjkC2ZhEh5khinc2ajheAASYxFylMsCnsXXiUkIJJqk6egL1CAwNmzUzYIrZbs/fqxxGcdAB7OHoyoPgKH/VMgxDf5rps5P0q9oVDxYwJDIxm9/AIbztq/pORNqAwRtt3nXkZ7ZTvwLDFWBd60/mkxob26M95zLJnzxJsYay5vQcmcG0ve2J82KO55MVXthvbCBjTeR7DkKIGpcsfXej5pxf3gSHRSRiFEilMpiiJvStMxQ5SJA8uuceXIA3uHIjKw4u940KhHKUI3rOP+8BEpdl23li3x+OkHqq6sg8li4u+mf1NJlwXdzGRaLc5aBKX+t1C2Aw+Dwxm18RrbL/knz7VEuubmpOXc9+/ZOwwhMhxZMU7nVCoVYY+j7R2GyOCun3xIeHA0Lb0+sLZz69o1Ra6bfZAX2+7vxWQx0aZYGyrkKI9uRjIkxdmLo7w7Akp9gN+TMP737yn2XX+U9NcRGUZIpIlokxkHbSLa2gkhkox8TpPOaXRqQuXmO5EK3LsexIrxJ1AVL0vhHTuSvZ1bpnr10ObyYNyxcXg4e/C/6v/D4cDPEHw36S6SszRK58UoA45yO2dDOv11nDpTDklSLJJEYJh0FBIipUlinM6p1SoiguWXq0gdYtq5RWjcKbp7L9pcuZLtWjm8BnIs4DQhhhDG1hmLOtgX9k1MmslzV0TpshKl7wFuZK5Fu9+P8u7Phzju/SRp5hcCeBgiixpCpDRJjNM5xaJgjDbbOwwhbCJCDKyceIqHD0wU2rwVx3LlkvwajhUq4FCqFD8e/ZHWRVtTMUcF9POTYCOPfO+gdF+P8tlOrjhV4f2Zh2ky/TBn7ga//dxCvCAk0mjvEITIcCQxTudMRumDKVIfazu3s9w4E0j+RYtxbd4sSefPMXAAl59cwagY+V+N/+Fw4BcIvvPmExashdJzK0rPLZzTlqXJtEM0n3mES/dDky5oIV7wJEISYyFSmtx8l84ZDbJaLFInxaKwe8EVggMiqTp56tN2bn++9bz6woXJVKsWP27pwtjaY9EE34N9E95ssiLvojQaBR7lOHk3hK9/PsTtQNmqV6SMoEgpgxMipUlinM4ZoyQxFqnbqa23CQmMotGgL9AVLMiDEf97q/my9euLb8hdimUpRqWcFdHPqPr6kxRvgtLoe8hegiM+IQydcgC/IKn3FCkrONKE0WyRfsZCpCBJjNM5Y5TJ3iEI8UrXTzxt5zawtbWdW7dubzSPNmdOMr//PlOO/sDI6iNxODQ98SUUKhV4tkBp+B1kKcy+m8EM/Ws/AdIZQNhJaJQRs0VBJx3bhEgx8jY0nYuOlMRYpA33rgWxYsIJ1J7lKLz9zdq5Zf20J4/DH/F+kffRhN6HPeNefZJKDWXaonidwtL+H3YEZKHK+AP0+PekJMXCrsKiTJgtsgeXEClJEuN0LjpCEmORdjy5H8GyMSeI0LlTdPcetB4eiT5X7epKls6dOf3kPJVzVkK/4BVdKNQaKN8R5YuzWFr/zgZfJyqM3UefBad4HCEJsbC/0CgTkhYLkbIkMU7nosLlrmaRtkSEGFg54RT+D80U2rIt0e3csnz8EQazgTp5a+NweAY88Yl/oFoLlbqiDL6AueV0Vt9UU3bMXj5fcoZQKT0SqUhYtAmVvYMQIoORxDgdUywK0ZIYizTIGG1m/a9nufFfIPkXLsb1vfdeOl6l15OtVy80jk5owh7C7jFxB2n08M6nKF9dxtRsMksvGynz4z6GrDhLhEHaGorUJzTKiFolqbEQKUluvkvHLGaF6EjpSiHSJsWisHv+FUIConhn6s/oC04j8M858Y7N3LYNKp0Oi2LG4cWNPLSOUOUTlHrfYtI4suh0AGM2nsAkubBI5UKjTGg1khgLkZIkMU7HFEXBJH2MRRp3cosPIYGRNPx8MLoCBXkwcmTsAWo12fv3R+3khMP+qfDE23pcnwnlnU+h7tcY0TH3+AMmbruCRRJikUYYzRZZMRYihUliLIRI9a4df0h4UDTvD2xD/oIFY7Vzc23SBI27O4YnPuh3/wgObijV+kCdwRgsKmYfvsfPO67bMXoh3ow0pBAi5UlinM6ppIpcpBN+14JYOeEkrb+sSOFt2/Fu0xoiI8k+yAuLTot+fk+Ud0dALS8ijQqz9vgya+9Ne4ctxBuzKAqyYCxEypLEOJ1TyT3NIh15fD+cZWNP0HpwJYru2kPAuDHoCxRAFeyH0nMz4dEmft7mwz+HfOwdqhBvzWJRpJRCiBSmUhRFPqxJp0wGM8c3enNmeyJ3/hIijdA5aGgxoBy5imRGrVGhViw8iTLj+yTS3qEJkWR0WjUlc7nZOwwhMhRZMU7PZKFBpFPGaDMbpp+lYpMCOLnq7B2OEMlC7agFSYyFSFGSGKdzKvkYTqRTFovC6W237R2GEMnGJYsDZerksXcYQmQocmtWOid5sRBCpE0qtQpFWlMIkaIkMU7HVKiknEIIIdIolUqFpMVCpCxJjNM9yYyFECItUqlBMmMhUpYkxumZSkophBAirVJrVEhmLETKksQ4nbP+YhVCCJHW6B20WMySGAuRkiQxTsfUGhUOztJ4RAgh0iK9sxbZakCIlCWJcTqmUqlwdNHbOwwhhBBvwMFJi+TFQqQsSYzTOdn8QAgh0ia9k3ziJ0RKk8Q4nXPMJImxEEKkRQ5OWtRquU9EiJQkiXE65yArDkIIkSbpnbWo5AZqIVKUJMbpnN5REmMhhEiLHJy1aDTyz7QQKUl+4tI5naPG3iEIIYR4A05y87QQKU4S43ROo1VLL2MhhEiDHF3kHhEhUpokxhmA9DIWQoi0R353C5HyJDFO5yxmRVr+CCFEGiQ3TwuR8iQxTucsZou0bBNCiDTIyVVqjIVIaZIYp3MWi4JrVkd7hyGEEOI16Bw16Bzk5mkhUpokxumcWq3CLbuTvcMQQgjxGlyzOmI2W+wdhhAZjiTG6ZxGp8YthyTGQgiRlrhmc8RiksRYiJQmiXE6p1KpyOLhbO8whBBCvAZrCZy02hQipUlinAG4ZZMaYyGESEtcszmi0co/0UKkNPmpywCc3OTOZiGESEuyeDjL5kxC2IEkxhmARqvGWZJjIYRIM+TeECHsQxLjDMBkMOMq5RRCCJFmuLg72DsEITIkSYwzAItFwS2brD4IIURaoNGqcXCWjZmEsAdJjDMAtUYlK8ZCCJFGuGR14P/t3Xl8VPW9//H3OWdmsu8rWQmBSYCEAJKwqCAgoqBFpeCGy1WwXnetS9HW3ntbr0tvS5VWrQuIVVFbreJP1LqiFgUVEAVEAdmXsEOAJLOc3x8xU4cETCAwk8zr+XjwIHPmOzOfmcw5ec93vuf79fvtUJcBRCSCcQRwOC0lZzNlGwC0B6k5cfJ5fKEuA4hIBOMIkVWYEOoSAAAtkJ6XINPkzzMQCux5ESIpM1aGydQ/ABDusjonynLy5xkIBfa8CGEYUnIWJ+ABQLhLz48PdQlAxCIYRwivx6/0PIZTAEA4c0ZbiktiqjYgVAjGEcLhNJVRQDAGgHCWlhsvLyfeASFDMI4QpmUqu0tiqMsAABxGel68bH+oqwAiF8E4gqTlMG4NAMJZRkGCHC7+NAOhwt4XQZzRlmKTXKEuAwBwCFlFiTIMZhACQoVgHEG89X5l5DPOGADCkWFIyZksxgSEEsE4ghhmw/g1AED4Yb55IPQIxhHE4bSUXZwU6jIAAM3oVJzEUtBAiBGMI0wngjEAhKX87qlyuKxQlwFENIJxhHFGO5SUyQp4ABBucktTOPEOCDGCcYTxeXzK6ZYc6jIAAD+QkBatmDhnqMsAIh7BOMI4XJbySlNDXQYA4AdyuiWz4h0QBgjGEcYwDOWVJIe6DADAD+R3T2F8MRAGCMYRKCbepYS06FCXAQD4Xl5pKuOLgTBAMI5AXo9PeSUpoS4DACApLjlKsYmsSgqEA4JxBHK4LBWWpYW6DACAvh9fXMf4YiAcEIwjkGEYyiulxxgAwkFeKeOLgXBBMI5QzihLqZ3iQl0GAES8gp5pLAUNhAmCcYTy+Wzl92DaNgAIpZTsWMUmML4YCBcE4wjldFkq6Z8V6jIAIKIVVWTI7/OHugwA3yMYR7D0vATFJLDSEgCEirsqi/HFQBghGEcwr8evooqMUJcBABEpNsnFuR5AmCEYRzBnlKVulQynAIBQKOqVLq+HYRRAOCEYR7icrklyRvM1HgAcb90qs+SM4vgLhBOCcYTzeW0W+wCA48wZbalT1+RQlwHgIATjCOdwmerWj+EUAHA8FfZMk49hFEDYIRhHOMMwVNAzVZaDtwIAHC9dT8iUw8VxFwg37JWQbLFENAAcJ6ZlqLAsTYbBandAuCEYQ6Zlqmu/zFCXAQARgfM6gPBFMIZMy1Bx30xZTt4OAHCs9Tw5l+MtEKbYM9HAlrr0ZrEPADiWYhKcyu+RyjAKIEwRjCGpYbGP8lPyQl0GAHRo7qps+bzMRgGEK4IxArKKEpWQFh3qMgCgwyofkiuni0U9gHBFMEaA3+tX9xNzQl0GAHRIGQUJik+l8wEIZwRjBDhclspOzhFD3wCg7fU4iY4HINwRjBHEGW0przQ11GUAQIdiOUyV9M9iMSUgzLGHIohpmSobkhvqMgCgQymqSBdfxwHhj2CMIKZpqHN5mqLiHKEuBQA6jLLBuXIwdzEQ9thL0YTPa6ukKjvUZQBAhxCfEqVO3ZKZuxhoBwjGaMIZZalieH6oywCADqH3qQXy++xQlwGgBQjGaFZsUpQKenISHgAcDVe0pZ4n5zCMAmgn2FPRLMsy1G9UUajLAIB2rcdJOaKvGGg/CMZolmEayuqcoPT8+FCXAgDtkmEa6juykJXugHaEYIxDsiX1O6NzqMsAgHapuG+GnFGEYqA9IRjjkCzLVFFFhhJYwhQAWq3fqM5y0FsMtCsEYxyW3+9X7xHMUAEArdGpa7KSM2NDXQaAViIY47AcTks9TspRVCwLfgBAS/U7o1CGybzFQHtDMMaPs6WeJ7NMNAC0RFJmjPJKU2USjIF2h2CMH+VwWepzWoFMBwd5APgxfUcWyvYzSRvQHhGM0SIOp6nSAZ1CXQYAhLWE1GiVDsiWxYIeQLvEnosWcbgsDRjThYM9ABxG1VlFsuksBtotUg5azBllqXwIY40BoDlJGTFyV2XJcvCnFWiv2HvRYg6Xpcozi+SKZl5OADhY/590obcYaOcIxmgV0zTU57TCUJcBAGElJTtWxX0z6S0G2jn2YLSKw2Wpz4gCxSQ4Q10KAISNQWO7yhbdxUB7RzBGq9myVXlmUajLAICwkFWUqPweqbIs/qQC7R17MVrN4bTU86QcJaRFh7oUAAi5k8e7ZRjM8w50BARjHBHblgacXRzqMgAgpArL0pSWF88qd0AHQTDGEbEcprr2zVBqTlyoSwGAkDBMQyeN7yaLVUGBDoNgjKMy+Hx3qEsAgJAoH5qr+OQohlEAHQjBGEfMtExlFSWpuG9GqEsBgOMqNtGlgWOK5XAxrzvQkRCMcVQcTlNDLiyRM4o/DgAix8nnuyU6ioEOh2CMo+Z0War6SZdQlwEAx0WOO1lFvdLlcNIhAHQ0jlAXgPbP4bJUfkqulv1ro3Zs3BfqciLO15vn64v172r7vo1yOWLUKalYg7qMUUpsVrPtPb46PT3/f1ScXqHB3cYf8eO+9tWjWrl1oS4b8FslxqQFXTd/9Wx9sf492batzullGtJ1vKKcsUFt1mxfqlcW/0kXVN6hjPi8I64DOJ5M09Cwi7szCwXQQdFjjDZhyNDwS7vz1eJx9vGqV/TPZdNV5z2g8twhykt2a9W2L/TC5/drz4HtTdr7/T69uXS69tbuOKrHXVG9QCu3Lmz+uq0L9cl3ryojPl/dsk7Qt9UL9M7yZ5rW/t0sdcvsSyhGu1IxPE9xSS4ZBGOgQ6LHGG3CtAyl5sSpdEC2vv54c6jLiQib96zWp2veVG5yN43pda0clkuSVFzdR68veUzzV7+mU7tfEmhf69mn15c8oXU7lx3V49Z69un9b58/5PVLN85VSmy2xlRcJ8MwlBCVqrmrXtYBT41inPGSpJVbF2lrzTqd1v2yo6oFOJ7ikqNU9ZMuDKEAOjB6jNFmHE5LJ493KyqWz1vHw+IN70uShpVcFAjFktQ1o4/Kck5SUsy/ZwtZvuVT/XXef2vdzmXKT+l+VI/7wYq/yef3Kjux+WXBd9duU3p8bmAKq/Tve4Qbe7Bt26+Pv5ul0qwqpcZlH1UtwPE0+HxWuAM6OoIx2pTpMDRobNdQlxER1mxfovS4nCZjiQ3D0LCSi1TZ+YzAtq82fiiH5dRZ5VersvD0I37M1duX6OvN83Ry158q1pXYbJtoR6w8vrrA5XpfrSQpyhEjSVq+5TPt2l+tqs6jj7gO4HjLK01RYVmaLAd/NoGOjK49tCmH01LJgGwt/Wijtny3J9TldFj76/fogKdG+Sml2rFvsz5e9YrW7Vou2bYKUnvoxOJzlBSTHmhf1XmUOiUWy2E5tX7nN0f0mPXeWr27/Bnlp5SqR6eBWrXti2bbZScVafGGD7Rp90olx2Tpyw1zFOdKUmJ0mvx+n+at/n/q0WlQUH1AOHNGWTr1sh4yLXqLgY6Oj75oc4ZhaOSkMjlcvL2OlX11uyVJNXW79fzn92lP7Xb1yB6kTknFWrF1QcPJd7X/PvkuP6VUDst5VI/5r5UvqdazT8NKLjxsuxMKTlOcK0l/W/B/euxft2rznu90ivt8maalpZs/Vk3dTlUW/rs327b9R1UXcKydfH7DEDGGUQAdHz3GaHOmaSgmwamTxnfT+08vD3U5HZLHVy9J2rj7W5Vm99eppZfINBo+iHyx/j3N+fYFffDt33Rm+VVt8njrd36jLzd+pJOKzw0au9ycWFeiLqi8Q6u2faF67wEVpHZXSmy2vH6P5q+erfKcwUqITtHq7V/p/W+e057aHcpMKNCppRMC45GBcFFYniZ3ZRZDKIAIwZ6OY8LhtFQ6oJMKeqaGupQOqbHnyjBMDe46LhCKJalX7hAlRqdr9favAgH6aHh99Xpn+dPKTChQ7/xhLbpNlCNG3bMHqCJvqFJiG06w+2rDh6rz7le/wpE6UF+j2V89pqzEzhrT61o5LZde++pR+fy+o64XaCvR8U6d+h89CMVABGFvxzFjOUyNuLynouOO7it8NOX6/kS2xOg0RTvjgq4zDFPp8bny276jnq9Ykj7+7lXtrd2uU0snBAXw1vD46vTZ2jfVK/cUxboStbx6vny2V0PdF6gwrYeGdBuv3Qe2au2OpUddL9BWhl/ananZgAjDUAocUw6XpeGXdddrf14c6lI6lKTodBmGKZ/f2+z1fruh59X5g2ncjtSKrQvkt/169tO7m73+yU9+KUm6fujDh7yPRevfk9fv0QkFIyRJu/ZvVYwzPhDqk2MaZtbYfWDrUdcLtAV3/2zllabK4aT/CIgkBGMcUw6nqbzSVJX0z9byeSz80VYcllOZCQXasme1du2vVnJsZuA6v9+nbTUbFO2MU1xU8lE/Vu+8YarzHmiy/dvqz7Rz/xb1zhsqlyO2mVs2qPMe0IK1b6lP3vBAELZtXyC8S5LP72n4gXObEAbiU6J0ykUlhGIgAhGMccw5nKZOuahEG1fs0t7ttaEup8MoyzlZW/as1pxvX9CZ5f8py2z4ynfBurdVU7dTvfOGH/HQhx/qkz+82e3batZ/H4yHKzEm7ZC3X7D2LRmGEXQ/ybFZqvXsC4T6TXu+a9gek3WouwGOD0M6bWJPmSz5DEQkgjGOC8M0NHJiT714/+ey7VBX0zH0yB6o77Yt1qptX2jmp3erMK2ndu7brNU7vlJyTKb6Fx3ZAhoL172jOu8B9ckbpijnoXuCW2J//V4tWv+uqgpHyeWIDmx3Z/bTJ9+9qlcW/0lFaeVavuVTpcRmqyD16FblA45Wr6F5yshP4IQ7IEKx5+O4sBym0nLj1XtEQahL6TAMw9ConpN0ctefSmpYInprzTqV5w7WuBNuDaw011qL1r+r+atfa3b4RGt9vvZNOa0o9co7JWh7XFSSziq/Wpbp0OINHyglNktnlv+sTXq4gSOVnh+vQed2lcPFCXdApDJsm/47HD8+r1+v/HGRNq3YFepSACAgKtahC37dXzEJTpkmH9CASMXej+PKtAyNvrpccclHP1sCALQJQzr9Z+WKiiUUA5GOIwCOK8Mw5HBZGn1NhUwHJ7cACL3+ZxUpu0sis1AAIBjj+LMcplKyYjX4fHeoSwEQ4QrL09TntEIW8gAgiWCMEHG4LJX276TSgZ1CXQqACJWYHqORE8uYgQJAAEcDhIz1/fzGGQUJoS4FQIRxOE2deW0vWQzpAvADBGOElGEaOvPaCkXHOUNdCoAIMuyS7kpIi5Zp8WcQwL9xREBImaahqFiHzvjPchmsNAXgOCgbkqui3hmMKwbQBMEYIWc5TGUWJGjQ2K6hLgVAB1fQI1UnjevGDBQAmsWRAWHB4bJUPiRXZUNyQ10KgA4qPT9eZ/xnOSfbATgkjg4IG5bD1EnjuqlzeVqoSwHQwSSkRWvMTX0YUwzgsDhCIKxYDlMjryxnpgoAbSYqzqGzb+4jZ5Qlk3MZABwGwRhhx7IMjbmxtxLSokNdCoB2znKa+sn1vRWXGCWL3mIAP4KjBMKOYRpyRlk695a+iklgGjcAR8YwpNOvLFNqpzhZnGwHoAU4UiAsmZapmASXzr6pr5zRTKkEoPVOPs+tvJIUOVwcQwC0DMEYYctymErMiNFZ11XIZHUqAK3Qe0SBup+YQygG0CoEY4Q1h9NURn6CTp9UJoNsDKAFug/qpAFjujBXMYBW46iBsOdwWcrvnqrTJpaxOh6Aw+o+qJOGXFjCXMUAjghHDrQLDpelzuVpOm1iT8IxgGaVDiQUAzg6HD3QbjhcljqXpWnkJMIxgGClAzvplIsIxQCODkcQtCsOl6XCnmk6/coyJuoHIEkqHZhNKAbQJjiKoN1xuCwV9EjV6T8jHAORriEUlxKKAbQJjiRolxpPyDv9qnLCMRChSgYQigG0LY4maLccLkv5pSk64z/LZVqEYyCSlAzI1tAJhGIAbcuwbdsOdRHA0fDW+7Thm516/ZGv5PP6Q10OgGOsYlieBp7blVAMoM0RjNEheOt92r6xRq8++IXq9ntDXQ6AY8GQThzbVeVD8mSxeAeAY4BgjA7D6/Fr/+46vTxlofZurw11OQDakOkwdNrlPVVYniaHk2WeARwbBGN0KD6fX55an17540JtW1cT6nIAtAFXtKUzr6tQRn6CHC5CMYBjh2CMDsfvt+X3+fX6I19q7ZIdoS4HwFGIS3bp7Jv6Kj41ip5iAMccwRgdls/r15znlmvZR5tCXQqAI5DaKU5jbuqjqFgHJ9oBOC4IxujQfF6/Fr61VvNeWRXqUgC0QqeuyTrrugpZTpO5ygEcNwRjdHhej0+rFm3TO08uld/H2x0Id+6qLA27pLtMy5BhEIoBHD8EY0SEhunc9mn2Q4u1f099qMsB0AzTMnTS+G7qcWIOQycAhATBGBHD5/XLU+/T7Ie+1KYVu0JdDoAfiE10afQ1vZTaKY6ZJwCEDMEYEcW2bfl9tj55eaUWvb0u1OUAkJRdnKTRV/eSM8qipxhASBGMEZG8Hp/WLd2ht6YtlafOF+pygIjVa2ieBo3tynhiAGGBYIyI5fX4tH93vf7fn77Qzs37Q10OEFEcTlPDLu2uoop05icGEDYIxohojYuBvPPkMq34vDrU5QARITE9RmdeV6GElCjGEwMIKwRjQA0n5i35cIP+9fcVTOkGHEPFfTM0/NIeshyGTIvxxADCC8EY+J633qe9O2r1xqNfacfGfaEuB+hQnFGWhlxYoq4nZHKCHYCwRTAGfsDvt2X7bc179Tst+ucasXcARy+rKFGn/6xc0XEOxhMDCGsEY6AZ3nqfdmzapzcfW6I92w6EuhygXTJNQ5Vndlaf0wplmoYMlnYGEOYIxsAh+Hx+2X7poxe+0ZIPN4a6HKBdSc2J08hJZUpMi+YEOwDtBsEY+BFej0+bV+3R29OXaN8ulpMGDscwDfU5rUBVZxbJMA2Z9BIDaEcIxkAL+Lx++X1+vff0cn376ZZQlwOEpZROsRpxeU+lZMXSSwygXSIYA63g8/i18dtdev/Zr7VnW22oywHCgjPKUuWZRaoYlidJTMMGoN0iGAOt5PP6JUkL3lijz99cI5/HH+KKgNDp0idDp1xYImeURS8xgHaPYAwcIW+9T3X7vXrvma+15svtoS4HOK6SMmM0dEKpsouSZDnpIQbQMRCMgaPk8/q14ZudmvPscoZXoMOznKb6nVGoPqcVNlxmsQ4AHQjBGGgDDK9AJCgsS9PQCaWKinUwbAJAh0QwBtqQt96n2v1ezXnma61meAU6iJROsTrpp92UW5JCDzGADo1gDBwDXo9fOzbW6F9/X6GN3+4KdTnAEUlIi9aAMV3U9YRM2ZIsZpsA0MERjIFjxO+3ZfttbV61W3NfXKHqNXtDXRLQIjEJTlWdWaQeJ+XI9ouT6wBEDIIxcIz5/bZk21q7dIc+fmmldmzaF+qSgGa5YhzqO7JAvYcXyJYth5NxxAAiC8EYOE58Pr8MSSsXbtUnL6/Snm0HQl0SIElyOE31GpanfqM6yzAMTqwDELEIxsBx5vP6ZRjS8k82a96r32nfrrpQl4QI5XCZ6j4oR1VnFcnhNAnEACIewRgIEa/HJ9M0tHLBVi14c422ra8JdUmIEDEJTvUamq9ew/JkmIacBGIAkEQwBkKucYjFltV79fnrq7VmyXaJvRLHQEqnWPU9rVDuqiz5fTY9xABwEIIxECZsvy2fz9b+PXX6/PU1Wj5vMwuFoE3kuJPVb1Rn5XZLkW3bzEUMAIdAMAbCkKfeJ9tna/G767T4/fU6sNcT6pLQzpimoeK+meo3urOSMmJkmIZM0wh1WQAQ1gjGQBjz1vtkWIZWfLZFX76/QVu+2xPqkhDmEtNj1H1QJ/UcnCOny2K4BAC0AsEYaAd8Pr9kSzU76/Tl++u1/JPNqt1HLzIaOFymivtkqvyUPGUUJsjv8zMHMQAcAYIx0M546n2yLFNrlmzXkg83aN2SHQ2LiCDiZBUlqufgXHX7fslmZpcAgKNDMAbaKdtvy+f1y+ez9c28zVo2d5O2rmXZ6Y4uNtGlkgHZKj8lT7GJLsmQLIuT6QCgLRCMgQ7A522YvWLf7jp9/fEmfbdoG/MidyDxKVEqqsiQuypLmZ0T5fP66R0GgGOAYAx0MF5Pw8p6dQe8WrmgWqsWbtXGb3Yx3KKdSe0Up6I+GXJXZiklK1Zej1/OKMIwABxLBGOgA/P5/LL9tmxbWvvVdq34vFprlmyXp9YX6tJwMEPKLkpUcd9Mde2XqdgEF4twAMBxRjAGIoRt2/LW+2U5TW1euVvffrZF67/eqV1b9oe6tIgVl+xSTrcU5XdPVZfe6Q0zSRhiAQ4ACBGCMRChPHU+WQ5TnnqfNn67S+uW7tDGb3dp+8YalqQ+RuKSo5TrTlZeaarye6QqLsklb71PDqclg8U3ACDkCMYAJDUEZdNhyO+1tXnVbq1dul0bv92lbWtrGJ98hOJTopTjTlF+9xTll6YqNsklT71PToIwAIQlgjGAZnnqfTJNQ7YtbV27R5tX7dG29TXavr5GOzfvk9/HoSPAkBLTYpSeH6/0vHhld0lSel68ouOc8tb75YgyZRgEYQAIdwRjAC3i9/nl9TSMUTYMQ3u312rr2r2qXrNH29fXaNuGGu3fXR/qMo85y2kqLSdO6fkJyshPUFaXRKVkx8q0TPnqfTIdJmOEAaCdanEwvummmzR79my9++67ys3NDbrukUce0ZQpU5SZmakPP/ywyW2vuOIKzZs3T5999plmz56tyZMn67HHHtPgwYMP+Xjr16/X8OHDNWnSJN1yyy2B7WvXrlVBQUFLn19IXHzxxZo/f/5h21RVVemvf/3rcaqo4yopKdGoUaM0ZcqUUJfSpnbs2CGXy6X4+PhQl/KjvPU+2XbDssSeOp92bdmvXdUHtLt6v/buqNXeHbWq2VGnmh218nr8oS63RaJiHYpPiVZiRrSS0mOUlBmr1E5xSsyIUVySS36v3bDssoshEQDQkTha2rCqqkqzZ8/WF1980SQYz507V06nU9XV1Vq5cqWKi4sD1/n9fi1atEi9e/dWdHR0iwtLTU3V/fffL7fbHdj28MMPa+bMmfrggw9afD+hdP/99x/yuvT09ONYCdqTOXPm6NZbb9XMmTPbRTD+4XRirmiHMgsTlVnYsAiFz+uXYRiynKZM01D9Aa/27a7Tnm0HtGvLAdXsrFXdfq/qa72qO+BV/QGv6g/4vv/f2yZB2jAkV4xDUbGO7/93KiroskMJadFKyohRfEq0YhJccjjNQP2maQR6yRtZzoZtAICOpVXBWJIWLVqkUaNGBbbX1tZq4cKFOuuss/TSSy9p7ty5QcH4m2++UU1NjQYMGNCqwmJjYzVmzJigbXPnzpXP137mXz24fqAlFi9erN27d4e6jKNmNTOkwBXTEEZTsuNU0KNhSevGE/sMw5BhSqZpyrQaQqjfZ8vr8clT55O3rqFnWt/n00BM/UFgDfxoSE6XJWeUFQjutt/+fl7nhqnrJMkwjYbg28zQh+bqBwB0bC0OxsXFxcrIyNAXX3wRtP3zzz9XfX29xo4dq3nz5mnu3Lm6+OKLA9cvWLBAklodjAF0bIZp/OjiFaZlyGU55Ipu8aHq8I9nslgGAODQWtUdUllZqaVLl6q+/t8n2Hz88ceKjY1VRUWF+vfvr/nz5wf16i5YsEAxMTGqqKgIuq+dO3dq8uTJ6t+/v/r06aPLLrtMX3/9deD69evXq6SkRP/3f/8nSRo2bJjmz5+vbdu2qaSkRFOnTg20/eCDD3ThhReqd+/e6tu3ryZNmqQlS5a06DmtXLlS119/vfr376/y8nKNGTNGf/vb34LavPTSSyopKdHrr7+ukSNHqry8XHfddVfLX7gfMWzYMI0fP77J9vHjx2vYsGGBy1OnTlVJSYnmzJmjwYMHq3fv3nr44YclSXV1dXrwwQc1YsQIlZWV6eSTT9Z///d/a+fOnUH3WVJSoilTpmj69OkaMmSIevfurQsuuECffPJJk8dfvHixJk6cqL59+6p3796aMGGCPv744ybt3n77bV166aWqrKxUWVmZBg8erF/96lfatWtXoE3ja/jll18Gfu8VFRX6j//4j6Df+6H4/X49+uijGjFihHr16qXzzjuvyYe01tTt8Xh03333acSIESovL9dJJ52k2267TRs3bgxqt3//fv3ud7/T8OHD1atXL40cOVKPPvqovF5voI1t25oxY4ZGjx6t8vJynXjiibrzzju1bdu2Jq/91KlT9cwzz2jkyJEqKyvTyJEj9cwzzwTa/OIXv9Cf/vQnSdKoUaOCPmQCAIBjq1XBuKqqSvX19UFBZu7cuaqsrJTT6dTAgQNVU1OjL7/8MnD9ggULdMIJJ8jpdAbd169//WutX79eN954oy6++GItWLBAV1xxhfbvb34VrjvuuENdunRRQkKC7r//fo0YMUKS9PLLL+vKK6+UYRi6+eabdeWVV2r16tW64IILAr3Vh7JkyRL99Kc/1bx583ThhRfq1ltvVUJCgn75y1/qvvvua9L+zjvv1LBhw3TLLbdo6NChP/p67dix45D/PB7Pj97+UG677Tadd955uvrqqzVw4EB5PB5NnDhRf/7zn9WrVy/dcccdGjFihF544QWdf/75Tb6WnzVrlh588EGdc845uu6661RdXa2JEycGhcePP/5YF154oaqrq3Xttdfq+uuv1759+3T55ZfrjTfeCLR76aWXdM0118iyLN14442aPHmyysrK9MILL+gXv/hFk9pvuOEGbdy4Uddff70uu+wyffbZZ5o0aVJQ0GzOf/3Xf+n3v/+9SkpKdPvtt6ugoECXXXZZk3Ytrfu3v/2tnnzySQ0ZMkR33XWXxo4dq7feekuXXnpp4Hfj8Xg0YcIEPfHEE+rfv7/uuOMO9enTR7///e/129/+NnBfv/rVr3TPPfeoR48euuOOO3TOOedo9uzZOu+885p8MPnHP/6hhx56SGPGjNHkyZPlcDj0P//zP5ozZ44k6bzzzgu8t2+99VZdddVVh31dAABAG7JbYcWKFbbb7bZnzJhh27Zt79y50y4tLbWnTZtm27Ztb9myxXa73faf//znoMt/+ctfAvfx4osv2m63277ssstsn88X2D516lTb7Xbbc+bMsW3bttetW2e73W77d7/7XaDNhAkT7EGDBgUu79271+7bt6991VVXBdW5d+9ee+jQofY555xz2Odz3nnn2eXl5faaNWsC23w+n/2zn/3Mdrvd9rJly4Jq/vnPf96i12nChAm22+0+7L9PPvkk0H7o0KH2uHHjmtzPuHHj7KFDhwYuP/jgg7bb7bb/8Ic/BLV77rnnbLfbbT/00ENB21977TXb7Xbbd999d2Bb4+N/+umngW1bt261TzjhBHvMmDGB1+DUU0+1zznnHLu+vj7Qrq6uzh43bpx94okn2nV1dbZt2/aoUaPsMWPGBP0ubdu2x48fb/fs2dP2+/1Br+HEiROD2jU+p48++uiQr+e3335rl5SU2HfeeWezt73xxhtbXXdFRYV95ZVXBt3fzJkz7bPOOsteuXKlbdu2/eyzz9put9t+/vnng9rddtttdvfu3e3q6mp7/vz5ttvttqdPnx7U5quvvrK7d+9u33PPPYFtbrfbLisrszds2BDY1vg+v/nmm5s8rxUrVhzyNQEAAG2vVT3GB48znjdvnvx+vwYOHChJyszMVHFxsebNmyfp8OOLR48eLdP898OXl5dLkqqrq1tcz9y5c1VTU6ORI0cG9cbW19dryJAhWrJkibZs2dLsbbdt26aFCxdq9OjRQdO/maYZ6KV76623gm7T2nHS06dPP+S/0tLSVt3X4ep4++23FR0drcsvvzxo+6hRo1RUVKS33347aHtVVZX69esXuJyenq6f/OQnWrZsmTZt2qRly5Zp7dq1OvXUU7V3797A61pTU6NTTz1VW7du1VdffSWpocd+xowZQb/LHTt2KD4+Xh6Pp0nP+BlnnBF0uXv37pKkrVu3HvL5zpkzR7Zt64ILLgjafumllwbNFNCaurOysjRv3jzNmDEjMOTh/PPP16xZs9SlSxdJ0nvvvaf4+Hide+65QY976623atasWUpJSdGbb74pqWE4zA/fg506dVK3bt303nvvBd22d+/eysnJCVzOy8tTYmJik2EXAADg+Gv1GS2VlZVatGiRpIZgmpKSopKSksD1AwcO1IsvviiPx6MFCxYoISFBPXv2bHI/B09X1jiVW2uGGKxZs0aSdPvttx+yzcaNG5WVldVk+4YNGyRJRUVFTa5rnFWjsc2hav4xgwYNalX7ljq4jvXr1ysnJ0dRUVFN2hYXF+udd96R3+8PhNeuXbs2ade5c2dJDc+58cPJAw88oAceeKDZGjZu3Ki+ffvK6XRq+fLlevXVV7Vq1SqtXbs26MONfdA02WlpaUGXXS6XpIYxxIeyfv16SVJhYWHQ9sTERGVkZAQuN74fWlL3b37zG91www363//938AwiGHDhmncuHGB98uGDRuUn58vhyN4N0lPTw/8Dhofs3H4w8EOHkKUmprapI3L5Trs8wcAAMdHq4Nx43zGO3bs0CeffKIBAwYE9doNHDhQTz/9tJYuXaqFCxeqsrJSltX0TPAf9jAeqcYwcddddzUbcCUFev8OdnBga+5+Dw41bVFzaxxqarqD6/ix5+JwOIJuc3DQa2wnSZZlBX6++uqrVVlZ2ez9Nobru+++W0899ZTcbrf69OmjM844Q7169dJf//pXzZo1q8ntjmRZ3Mbb1NbWNpnX94fPvTV1V1VV6b333tP777+vOXPm6F//+pemTp2qadOmaebMmSopKZHP5wsE90Px+/2KiorSI4880qLncrzfQwAAoOWOKBhL0kcffaTVq1c3+fq+qqpKpmlq0aJFWrZsmW699da2qbQZjQuNJCUlNemdXbRokWpqag65qEheXp4kadWqVU2ua9yWnZ3dluUekmmaQTN9NNq2bVuzHyoOlpeXp/nz56u2trbJ8121alWT57Fu3bom97F69WoZhhE0rCQ6OrrJ67p8+XJt2rRJMTEx2rBhg5566imdccYZmjJlSlDo3b59+4/W3VL5+fmBGn/YW75v376gIQiN74cfq9vj8ejrr79WUlKSTj/9dJ1++umSpNmzZ+umm27Sc889p1//+tfKzc3V4sWLg3rbpYYhG48//rgmTpyo3NxcffTRR+ratasyMzODHvPdd99VcnJym70OAADg2Gp191XjOONnn31WkgLjixslJiaqR48emjVrljweT5vOX2yaZtBXzieeeKKio6P1xBNPBAXLXbt26frrr9fkyZMPGSzT09NVUVGh2bNna+3atYHtfr9ff/nLXySpRTNPtIX09HStWbNGNTU1gW2fffaZNm/e3KLbDx8+XHV1dZo+fXrQ9jfeeEOrV69u8jw+/PDDoA8E1dXVmjVrliorK5WWlqaysjJlZmbq6aefDprRor6+Xrfffruuv/56eb3ewHVdunQJCsVLliwJLIn9Y7NNtPT5WZalxx9/PKiH+Jlnngm63NK66+rqdNFFF+nee+8NepzGKQUb3zOnnHKK9uzZo1dffTWo3cyZM/Xaa68pNTVVw4cPlyQ99NBDQW0WLVqkq6++WjNmzGj1820M4Yf7JgAAALS9I5o1v7KyUrNnz1Zubm5QD2OjgQMH6rHHHlNaWlrQks5HKzU1VTt37tTjjz+uyspKVVRU6Oc//7nuvvtujR07VmeffbYsy9Jzzz2n6upq/eEPf2h22ECjX/7yl7rkkks0btw4XXjhhUpNTdU///lPzZ8/XxdffLF69OhxVPW+8sorh71+1KhRcjqdOuuss7Rw4UJdccUVOvfcc7Vp0yY9++yzKiwsbFGwHDt2rGbNmqU//vGPWrlypfr27auVK1fq+eefV15enq655pqg9pZlacKECbrkkktkmqaeffZZ2batO+64Q1LDEJK77rpLN9xwg8455xyNHz9eCQkJevnll7Vs2TLdcsstSklJUVxcnHJzczVt2jT5fD7l5eXpm2++0d///vdAuNu3b5/i4uKO8BVsUFBQoEmTJumRRx7RFVdcoeHDhwfGNcfExATatbRuSbrooos0bdo0XXfddTrxxBN14MABvfDCC4qOjta4ceMkNUyd9o9//EOTJ0/WokWLVFJSos8//1yzZs3SpEmTlJWVpaysLJ122mmaOXOmNm3apMGDB2v79u16+umnlZiYqBtuuKHVz7dxHPL06dM1bNiwQPgGAADH1hEF48ZxxofqDW4MxlVVVUc0pvRQJk6cqOXLl+uPf/yjzj33XFVUVOiSSy5Rp06d9MQTT2jq1KlyOp1yu92aPHmyhgwZctj769Wrl55//nk98MADevrpp1VfX6+uXbvqnnvuaTITwZG47bbbDnv90KFD5XQ6dcEFF2j37t36+9//rt/85jfq2rWr7r33Xr3zzjvNLqhxMJfLpWnTpunhhx/Wa6+9pjfeeEMZGRk6//zzde211zb5On/48OHq0aOHnnzySR04cED9+vXTzTffHDRTxogRI/Tkk0/q4Ycf1qOPPirbttWlSxfdf//9gaWuXS6XHnvsMd17772aOXOmfD6fcnJydNVVV6m4uFjXXHON5s6dq7PPPrvVr93BbrrpJmVnZ+upp57Svffeqy5duuihhx5qcuJlS+qWpFtuuUUZGRl66aWX9OGHH8rhcKhv37667777AieTulwuzZgxQw8++KDefPNNvfjiiyooKNBdd90VNEPGlClTNG3aNL388su65557lJycrAEDBuiGG2445Bj3wxk9erT++c9/atasWVqwYAHBGACA48Sw+b42opSUlGjUqFGaMmVKqEsBAAAIK5wiDwAAAIhgDAAAAEgiGAMAAACSGGMMAAAASKLHGAAAAJBEMAYAAAAkEYwBAAAASQRjAAAAQBLBGAAAAJBEMAYAAAAkEYwBAAAASQRjAAAAQBLBGAAAAJBEMAYAAAAkEYwBAAAASQRjAAAAQBLBGAAAAJBEMAYAAAAkEYwBAAAASQRjAAAAQBLBGAAAAJBEMAYAAAAkEYwBAAAASQRjAAAAQBLBGAAAAJBEMAYAAAAkEYwBAAAASQRjAAAAQBLBGAAAAJBEMAYAAAAkEYwBAAAASQRjAAAAQBLBGAAAAJBEMAYAAAAkEYwBAAAASQRjAAAAQBLBGAAAAJBEMAYAAAAkEYwBAAAASQRjAAAAQBLBGAAAAJBEMAYAAAAkEYwBAAAASQRjAAAAQJL0/wGq52nvch9TcQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1704,16 +2362,16 @@ }, { "cell_type": "code", - "execution_count": 250, + "execution_count": 889, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "728" + "0" ] }, - "execution_count": 250, + "execution_count": 889, "metadata": {}, "output_type": "execute_result" } @@ -1724,7 +2382,7 @@ }, { "cell_type": "code", - "execution_count": 251, + "execution_count": 890, "metadata": {}, "outputs": [], "source": [ @@ -1733,28 +2391,77 @@ }, { "cell_type": "code", - "execution_count": 252, + "execution_count": 891, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "DevType\n", - "Back-end developer 5372\n", - "Back-end developer;C-suite executive (CEO, CTO, etc.) 59\n", - "Back-end developer;C-suite executive (CEO, CTO, etc.);Data or business analyst 5\n", - "Back-end developer;C-suite executive (CEO, CTO, etc.);Data or business analyst;Data scientist or machine learning specialist 1\n", - "Back-end developer;C-suite executive (CEO, CTO, etc.);Data or business analyst;Data scientist or machine learning specialist;Database administrator;Designer;Desktop or enterprise applications developer 1\n", - " ... \n", - "QA or test developer;Student;System administrator 5\n", - "QA or test developer;System administrator 10\n", - "Student 2523\n", - "Student;System administrator 63\n", - "System administrator 247\n", - "Name: DevType, Length: 8820, dtype: int64" + "Back-end developer 2\n", + "Back-end developer;C-suite executive (CEO, CTO, etc.);Data or business analyst;Database administrator;DevOps specialist;Engineering manager;Full-stack developer;System administrator 1\n", + "Back-end developer;C-suite executive (CEO, CTO, etc.);Database administrator;Designer;Front-end developer;Full-stack developer;Mobile developer 1\n", + "Back-end developer;C-suite executive (CEO, CTO, etc.);Database administrator;DevOps specialist;Engineering manager;Full-stack developer;System administrator 1\n", + "Back-end developer;Data or business analyst;Database administrator;DevOps specialist;Front-end developer;Full-stack developer;System administrator 1\n", + "Back-end developer;Data or business analyst;Designer;Front-end developer;Game or graphics developer;Mobile developer;Student 1\n", + "Back-end developer;Data scientist or machine learning specialist;Desktop or enterprise applications developer;Front-end developer;Full-stack developer 1\n", + "Back-end developer;Data scientist or machine learning specialist;DevOps specialist;Educator or academic researcher;QA or test developer;System administrator 1\n", + "Back-end developer;Data scientist or machine learning specialist;Full-stack developer;Game or graphics developer;Student 1\n", + "Back-end developer;Database administrator;Designer;Desktop or enterprise applications developer;Front-end developer;Full-stack developer 1\n", + "Back-end developer;Database administrator;Designer;Front-end developer;Full-stack developer;Mobile developer;System administrator 1\n", + "Back-end developer;Database administrator;Desktop or enterprise applications developer;DevOps specialist;Full-stack developer;QA or test developer 1\n", + "Back-end developer;Database administrator;DevOps specialist;Front-end developer;Full-stack developer;Mobile developer 1\n", + "Back-end developer;Database administrator;DevOps specialist;Front-end developer;Full-stack developer;QA or test developer;System administrator 1\n", + "Back-end developer;Database administrator;Front-end developer 1\n", + "Back-end developer;Database administrator;Front-end developer;Full-stack developer 1\n", + "Back-end developer;Database administrator;Front-end developer;Full-stack developer;Mobile developer 1\n", + "Back-end developer;Database administrator;Front-end developer;Student;System administrator 1\n", + "Back-end developer;Designer;Educator or academic researcher;Front-end developer 1\n", + "Back-end developer;Designer;Front-end developer;Full-stack developer;Marketing or sales professional;Mobile developer 1\n", + "Back-end developer;Desktop or enterprise applications developer;Embedded applications or devices developer 2\n", + "Back-end developer;Desktop or enterprise applications developer;Embedded applications or devices developer;Front-end developer;Full-stack developer;System administrator 1\n", + "Back-end developer;Desktop or enterprise applications developer;Front-end developer;Full-stack developer 2\n", + "Back-end developer;Desktop or enterprise applications developer;Front-end developer;Full-stack developer;Game or graphics developer;Student 1\n", + "Back-end developer;Desktop or enterprise applications developer;QA or test developer 1\n", + "Back-end developer;DevOps specialist 2\n", + "Back-end developer;DevOps specialist;Front-end developer;Full-stack developer;Mobile developer 1\n", + "Back-end developer;Embedded applications or devices developer 1\n", + "Back-end developer;Embedded applications or devices developer;Full-stack developer 1\n", + "Back-end developer;Engineering manager 1\n", + "Back-end developer;Front-end developer 1\n", + "Back-end developer;Front-end developer;Full-stack developer 5\n", + "Back-end developer;Front-end developer;Full-stack developer;Mobile developer 1\n", + "Back-end developer;Front-end developer;Student 2\n", + "Back-end developer;Full-stack developer 5\n", + "Back-end developer;Full-stack developer;QA or test developer 1\n", + "Back-end developer;Full-stack developer;System administrator 1\n", + "Data or business analyst;Data scientist or machine learning specialist;Database administrator;DevOps specialist 1\n", + "Data or business analyst;Database administrator;DevOps specialist;System administrator 1\n", + "Data or business analyst;Desktop or enterprise applications developer;Game or graphics developer;QA or test developer;Student 1\n", + "Data scientist or machine learning specialist 1\n", + "Database administrator;DevOps specialist;Full-stack developer;System administrator 1\n", + "Database administrator;Full-stack developer;Mobile developer 1\n", + "Designer;Front-end developer 2\n", + "Designer;Front-end developer;Marketing or sales professional 1\n", + "Designer;Front-end developer;QA or test developer 1\n", + "Desktop or enterprise applications developer;Embedded applications or devices developer;Full-stack developer;Game or graphics developer;Mobile developer 1\n", + "Desktop or enterprise applications developer;Front-end developer;Product manager 1\n", + "Embedded applications or devices developer 1\n", + "Embedded applications or devices developer;Engineering manager 1\n", + "Engineering manager;Full-stack developer 1\n", + "Engineering manager;Mobile developer 1\n", + "Front-end developer 1\n", + "Front-end developer;Full-stack developer 1\n", + "Front-end developer;Student 1\n", + "Full-stack developer 8\n", + "Full-stack developer;Product manager 1\n", + "Mobile developer 2\n", + "QA or test developer 1\n", + "Student 2\n", + "Name: DevType, dtype: int64" ] }, - "execution_count": 252, + "execution_count": 891, "metadata": {}, "output_type": "execute_result" } @@ -1765,7 +2472,7 @@ }, { "cell_type": "code", - "execution_count": 253, + "execution_count": 892, "metadata": {}, "outputs": [], "source": [ @@ -1796,21 +2503,21 @@ }, { "cell_type": "code", - "execution_count": 254, + "execution_count": 893, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "DevType\n", - "Developer 73032\n", - "Manager 665\n", - "Non developer 2791\n", - "Student 3000\n", + "Developer 74\n", + "Manager 2\n", + "Non developer 5\n", + "Student 2\n", "Name: DevType, dtype: int64" ] }, - "execution_count": 254, + "execution_count": 893, "metadata": {}, "output_type": "execute_result" } @@ -1821,12 +2528,12 @@ }, { "cell_type": "code", - "execution_count": 255, + "execution_count": 894, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAH2CAYAAACRCpO5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoP0lEQVR4nO3dd1hT5+MF8JNBCCRAGLKnIqDiQNx7a53VLkdr1dbuoVW7ft3D1lY7vl12KVpnraPWOmvdW3CLisgesldYGff3BzUtBesCbsb5PA+PktzcnESEw73vfV+JIAgCiIiIiGyYVOwARERERGJjISIiIiKbx0JERERENo+FiIiIiGweCxERERHZPBYiIiIisnksRERERGTzWIiIiIjI5rEQERERkc1jISJqBDExMZBIJKYPpVIJb29v9O/fHx988AFycnLEjmiSnJwMiUSCmJgYsaPcsuDg4Frv8/U+LPG1EVHTkosdgMiaLV68GBEREdDpdMjJycH+/fsxb948zJ8/H6tXr8agQYPEjmjR1q9fj6qqKtPnP/zwA3788Uds3boVLi4upttbtGghRjwisiAsRESNKDIyEp06dTJ9fs8992DmzJno1asXxo0bh4SEBHh5eYmY0DKUl5fD0dGxzu1RUVG1Pt+6dSsAIDo6Gh4eHk2SjYisA0+ZETWxwMBALFiwAKWlpfj2229r3Xf8+HGMHj0abm5uUCqViIqKws8//2y6/9SpU5BIJPjxxx/r7HfLli2QSCTYuHGj6baEhARMnDgRnp6esLe3R6tWrfDVV1/dVM79+/dj4MCBcHJygqOjI3r06IHff/+91jbXTg3u2LEDU6dOhZubG1QqFUaNGoUrV67U2ecff/yBgQMHwtnZGY6OjujZsyd27txZa5u33noLEokEcXFxuPfee+Hq6nrbR3jeffddyOVypKWl1blv2rRpcHd3R2VlJYCa028jR47E+vXr0a5dOyiVSjRv3hz/+9//6jy2pKQEs2fPRkhICBQKBfz8/DBjxgxotdrbyklE4mMhIhLB8OHDIZPJsHfvXtNtu3btQs+ePVFUVISFCxfi119/RYcOHfDAAw+YxsC0b98eUVFRWLx4cZ19xsTEwNPTE8OHDwcAnD9/Hp07d8bZs2exYMECbNq0CSNGjMBzzz2Ht99++z/z7dmzBwMGDEBxcTF+/PFHrFy5Ek5OThg1ahRWr15dZ/tHHnkEUqkUK1aswGeffYajR4+iX79+KCoqMm2zbNkyDBkyBM7OzliyZAl+/vlnuLm5YejQoXVKEQCMGzcOoaGhWLNmDRYuXHgzb2sdjz/+OORyeZ3iWVBQgFWrVuGRRx6BUqk03X7y5EnMmDEDM2fOxPr169GjRw88//zzmD9/vmmb8vJy9O3bF0uWLMFzzz2HLVu24KWXXkJMTAxGjx4NQRBuKysRiUwgoga3ePFiAYBw7Nix627j5eUltGrVyvR5RESEEBUVJeh0ulrbjRw5UvDx8REMBoMgCILwv//9TwAgXLx40bRNQUGBYG9vL8yaNct029ChQwV/f3+huLi41v6eeeYZQalUCgUFBYIgCEJSUpIAQFi8eLFpm27dugmenp5CaWmp6Ta9Xi9ERkYK/v7+gtForPU6x44dW+s5Dhw4IAAQ3nvvPUEQBEGr1Qpubm7CqFGjam1nMBiE9u3bC126dDHd9uabbwoAhDfeeOO67931XHtsbm6u6baHH35Y8PT0FKqqqky3zZs3T5BKpUJSUpLptqCgIEEikQgnT56stc/BgwcLzs7OglarFQRBED744ANBKpXW+bf95ZdfBADC5s2bbzk3EYmPR4iIRCL840jC5cuXceHCBUyaNAkAoNfrTR/Dhw9HVlYWLl68CACYNGkS7O3ta105tXLlSlRVVWHq1KkAgMrKSuzcuRNjx46Fo6Njnf1VVlbi8OHD9ebSarU4cuQI7r33XqjVatPtMpkMDz30ENLT001ZrrmW+5oePXogKCgIu3btAgAcPHgQBQUFePjhh2tlMRqNGDZsGI4dO1bndNM999xzK2/ndT3//PPIycnBmjVrAABGoxHffPMNRowYgeDg4FrbtmnTBu3bt69128SJE1FSUoK4uDgAwKZNmxAZGYkOHTrUei1Dhw6FRCLB7t27GyQ3ETUtFiIiEWi1WuTn58PX1xcAcPXqVQDA7NmzYWdnV+vjqaeeAgDk5eUBANzc3DB69GgsXboUBoMBQM3psi5duqBNmzYAgPz8fOj1enzxxRd19nftlNq1/f1bYWEhBEGAj49Pnfuu5c3Pz691u7e3d51tvb29Tdtde3333ntvnTzz5s2DIAgoKCio9fj6nv92REVFoXfv3qaxU5s2bUJycjKeeeaZejNf77Z/vpbTp0/XeR1OTk4QBOG67ysRmTdeZUYkgt9//x0GgwH9+vUDANMVUa+88grGjRtX72PCw8NNf586dSrWrFmDHTt2IDAwEMeOHcM333xjut/V1dV0ROfpp5+ud38hISH13u7q6gqpVIqsrKw692VmZtbKe012dnadbbOzsxEaGlpr+y+++ALdunWr93n/fbWdRCKpd7vb8dxzz+G+++5DXFwcvvzyS4SFhWHw4MH1Zr7ebe7u7gBqXouDgwMWLVpU73Px6jYiy8RCRNTEUlNTMXv2bLi4uODxxx8HUFN2WrZsiVOnTmHu3Lk33MeQIUPg5+eHxYsXIzAwEEqlEhMmTDDd7+joiP79++PEiRNo164dFArFTedTqVTo2rUr1q1bh/nz58PBwQFAzammZcuWwd/fH2FhYbUes3z58lqnuA4ePIiUlBQ8+uijAICePXtCo9Hg/Pnz9R6ZaWxjx45FYGAgZs2ahT179uDTTz+tt3CdO3cOp06dqnXabMWKFXByckLHjh0BACNHjsTcuXPh7u5+3VJJRJaHhYioEZ09e9Y0xiQnJwf79u3D4sWLIZPJsH79ejRr1sy07bfffou77roLQ4cOxZQpU+Dn54eCggLEx8cjLi7ONAYGqBnPM3nyZHzyySdwdnbGuHHjak1ECACff/45evXqhd69e+PJJ59EcHAwSktLcfnyZfz222/4888/r5v7gw8+wODBg9G/f3/Mnj0bCoUCX3/9Nc6ePYuVK1fWKRPHjx/Ho48+ivvuuw9paWn4v//7P/j5+ZlO96nVanzxxRd4+OGHUVBQgHvvvReenp7Izc3FqVOnkJubW+sIV0OTyWR4+umn8dJLL0GlUmHKlCn1bufr64vRo0fjrbfego+PD5YtW4YdO3Zg3rx5pnmQZsyYgbVr16JPnz6YOXMm2rVrB6PRiNTUVGzfvh2zZs1C165dG+21EFEjEXdMN5F1unb11bUPhUIheHp6Cn379hXmzp0r5OTk1Pu4U6dOCffff7/g6ekp2NnZCd7e3sKAAQOEhQsX1tn20qVLpv3v2LGj3v0lJSUJ06ZNE/z8/AQ7OzuhWbNmQo8ePUxXf13bBv+6ykwQBGHfvn3CgAEDBJVKJTg4OAjdunUTfvvtt3pf5/bt24WHHnpI0Gg0goODgzB8+HAhISGhTp49e/YII0aMENzc3AQ7OzvBz89PGDFihLBmzRrTNvVdKXaz/uuxycnJAgDhiSeeqPexQUFBwogRI4RffvlFaNOmjaBQKITg4GDhk08+qbNtWVmZ8Nprrwnh4eGCQqEQXFxchLZt2wozZ84UsrOzbzk3EYlPIgicNIOIbk9MTAymTp2KY8eO1ZqR2xx98cUXeO6553D27FnT4PN/Cg4ORmRkJDZt2iRCOiISG0+ZEZFVO3HiBJKSkvDOO+9gzJgx9ZYhIiIWIiKyamPHjkV2djZ69+592zNeE5H14ykzIiIisnmcmJGIiIhsHgsRERER2TwWIiIiIrJ5LERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhsHgsRERER2TwWIiIiIrJ5LERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhsHgsRERER2TwWIiIiIrJ5LERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhsHgsRERER2TwWIiIiIrJ5LERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhsHgsRERER2TwWIiIiIrJ5LERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhsHgsRERER2TwWIiIiIrJ5LERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhsHgsRERER2Ty52AGIyLxU643ILatCTkkl8suqUVqlQ1mVAWWVemir9Cj760NbpYe22gC9wQijIMAoAMJffxqMAgRBgABAJpXAwU4GpZ3M9KfSTmr6u1oph5ujAu5qBdxUCrir7OGmVkBtz29PRNR0+B2HyIYIgoDM4kok52mRlKdFRlEFckqqkFNaidzSKlwtqURRhQ6CIHZSwF4uhZtKAQ+1PXxclPBzdYCfxgH+rg7wd3VEkLsjnJR2YsckIishEQRz+NZHRA2ptFKH+KxSXM4pQ0p+TflJztciJb8cVXqj2PEajJtKgUA3R4R6qhHh7YQwLydEeDvB01kpdjQisjAsREQW7mpJJc5lFuN8ZgnO/fWRVlhuFkd5xOLqaGcqR2HeTmjr54JWPs6wk3HYJBHVj4WIyIKUV+txMrUIx1MKEZdaiLMZxcgrqxY7lkVQ2knR1s8FUYGu6BioQcdAVx5JIiITFiIiM1ZUXo2jSQU4klSAo0kFOJ9VAoOR/2Ubip/GAVGBGnQJcUPPUA+0aKYWOxIRiYSFiMiM6AxGHE8uxO5LOdh7KQ8Xskts+tRXU/PTOKBnqDt6tWyGXqEecFMpxI5ERE2EhYhIZNnFldh9MQe7L+biwOU8lFbpxY5EACQSoLWPM3q19EC/ME90CXGDTCoROxYRNRIWIiIRnE4vwpaz2dh1IQcXskvFjkM3wU2lwMAITwxt443eYR6wl8vEjkREDYiFiKiJnEkvxqYzmdh8JgtpBRVix6E7oFLI0C/cE0PaeGFAhCfnQyKyAixERI3obEYxfj+Thc1nspCSXy52HGoECpkUfcKa4Z6OfhjYygsKOS/tJ7JELEREDSynpBK/xKXjl+PpuJKnFTsONSGNox1GtPXBPdH+6BjoKnYcIroFLEREDUBvMGLnhRysOZ6GXRdzeWk8obmHCuM6+mFsR3/4aRzEjkNEN8BCRHQHEnPL8POxNKyNy0BeWZXYccgMSSRA75bNMLlbEAZEeELKK9WIzBILEdEtMhoFbD9/FYsPJOFIUoHYcciCBLg54MGuQXigcwA0jpzjiMicsBAR3aSyKj1WH0vDkoPJSC3gAGm6fUo7KUa188XDPYIR6ecidhwiAgsR0Q2lFZRj8YFkrDmexkkTqcFFB7ni8T7NMbi1FyQSnk4jEgsLEdF1nEorwte7L2PH+avgGGlqbGFeajzZrwVGtfOFXMZL94maGgsR0b/EpRbi8z8SsOdSrthRyAYFuDngsT4tcF+0P5R2nA2bqKmwEBH95XhyAT7fmYB9CXliRyFCMyd7PNIrBA92C4LaXi52HCKrx0JENu/wlXx8/kcCDl3JFzsKUR1uKgWe6Nsck7sH84gRUSNiISKbdTajGHM3x+NgIosQmT9vZyWeGRCK8Z0DOMaIqBGwEJHNSS8sx/xtF/HrqUzwq58sTYiHCrOHhGNEOx+xoxBZFRYishnFFTp8vesyFh9MRrXeKHYcojvSPkCDV+6KQLfm7mJHIbIKLERk9XQGI5YeSsGXfyagsFwndhyiBjWirQ/+b0Qr+HK9NKI7wkJEVm3PpVy8+etZJOdzZmmyXg52MjzdvwWm92kOezkHXhPdDhYiskrZxZV4Z9M5bD6TLXYUoiYT5O6I10e0xqDWXmJHIbI4LERkVfQGI2IOJuPTHZegrTaIHYdIFP3Dm+GNUW0Q4qESOwqRxWAhIqsRm1KA/1t/FheyS8WOQiQ6hVyKZ/uH4sl+LXiZPtFNYCEii1dcocMHm+Ox+ngaL6Mn+pfWPs746N52iPRzETsKkVljISKL9ueFq3hl3RlcLakSOwqR2ZJLJXi8b3M8N7AlB10TXQcLEVmk4god3v7tHNbFZYgdhchihHqqMe+edogOchU7CpHZYSEii7P3Ui5e/OU0sksqxY5CZHGkEmBKjxC8OCyca6MR/QMLEVmM8mo93v89HsuPpIodhcjihXs54X8TohDu7SR2FCKzwEJEFuFsRjGeXXkCSXlasaMQWQ17uRSvDm+Fh3sEix2FSHQsRGT2Fh9IwgebL6DawPXHiBrDoFae+Oje9nBTKcSOQiQaFiIyW8UVOrz4yylsO3dV7ChEVs/TyR6f3N8BvVp6iB2FSBQsRGSWTqQW4tmVJ5BeWCF2FCKbIZEAj/dpgTlDwyGTSsSOQ9SkWIjIrAiCgO/3XcHH2y5CZ+CXJpEYerRwx5cTO/IUGtkUFiIyG2VVesxcfRI7zvMUGZHY/DQOWPhgNNr6c4Zrsg0sRGQWUvK1eHTJcSTklIkdhYj+Yi+X4t27I3F/pwCxoxA1OhYiEt3+hDw8szIOReU6saMQUT0mdQ3Em6PaQCHnIrFkvViISFQ/7k/C3M3xMBj5ZUhkzjoGarDwoWh4OinFjkLUKFiISBRVegP+b/1Z/BKbLnYUIrpJfhoHxEztjJZenN2arA8LETW5/LIqTF96HHGpRWJHIaJb5KSUY+GD0egZyvmKyLqwEFGTSs0vx8OLj3IJDiILZieTYO7YtriPg63JirAQUZM5k16MqTFHkVdWLXYUImoAzw4Ixawh4WLHIGoQLETUJPZcysVTy2KhrTaIHYWIGtDYKD/Mu6cdr0Aji8dCRI1ubWw6Xl53mjNPE1mpXqEe+G5yNBwVcrGjEN02FiJqVF/tuoyPt10UOwYRNbJOQa5YNLUznJV2Ykchui0sRNRoPtgSj2/3XBE7BhE1kUg/Zyyd1pVroJFFYiGiRvHOb+ex6ECS2DGIqIm19FRj2aNd4eXMCRzJsrAQUYMSBAFvbjyHpYdSxI5CRCIJdHPE8ke7IsDNUewoRDeNhYgajCAIeHX9Waw8mip2FCISmY+LEsse7YoWzdRiRyG6KSxE1CCMRgEvrT2NNVyKg4j+4uVsj58f744gd5XYUYhuiBNH0B0zGgXMXnOKZYiIarlaUoWJ3x9BRlGF2FGIboiFiO7Yq+vPYN2JDLFjEJEZyiiqwMTvD+NqSaXYUYj+EwsR3ZG5m+Ox6lia2DGIyIyl5Jdj4veHkVdWJXYUoutiIaLb9tWuy/huL+cZIqIbS8zV4sEfjqConGsZknliIaLb8tOhZM5ATUS35EJ2KSYvOorSSp3YUYjqYCGiW7bhRAbe2HhO7BhEZIFOpxfjsaWxqNYbxY5CVAsLEd2SnfFXMXvNKXCyBiK6XYeu5OOFn0+Cs76QOWEhopt2Kq0IT6+Ig97Ib2JEdGc2nc7Ce7/Hix2DyISFiG5KRlEFHl16HJU6HuYmoobx4/4k/Lifax6SeWAhohsqq9LjkZhjyC3lJbNE1LDe//08tp3LFjsGEQsR/TeDUcAzK+JwIbtU7ChEZIWMAjBj1UmcSisSOwrZOBYi+k9vbTyH3RdzxY5BRFasQmfAo0uPI7uYs1mTeFiI6LoW7U/CT4dTxI5BRDYgt7QKTyyLRZXeIHYUslEsRFSvvZdy8d7v58WOQUQ25GRaEd7YwDnOSBwsRFRHemE5nl91Ary6noia2urjafjpULLYMcgGsRBRLVV6A55aHofCck6tT0TieGfTeRxNKhA7BtkYFiKq5a2N53A6vVjsGERkw3QGAU8tj0VWcYXYUciGsBCRyc/H07DyaJrYMYiIkFdWjSd+4ppn1HRYiAgAcDajGK9vOCt2DCIik1PpxfhwywWxY5CNYCEiFJfr8OTyWFTxNzEiMjOLDiRhZ/xVsWOQDWAhIry87jTSCniunojM05xfTuNqCSdtpMbFQmTjVh5NxZazXEeIiMxXgba6ZioQzgVCjYiFyIYl5pbhnd84+SIRmb/DVwrw1a7LYscgK8ZCZKN0BiOeX3UCFTpOk09EluGznQk4lsz5iahxsBDZqM/+uISzGSVixyAiumkGo4AZq06itJITx1LDYyGyQceTC7BwzxWxYxAR3bKMogrM3RwvdgyyQixENkZbpcfMn0/CwMGJRGShVh5Nw76EXLFjkJVhIbIxH2+7yEvsicjivbz2DMqq9GLHICvCQmRD4lILsZSrSBORFeCpM2poLEQ2olpvxMtrT4NnyojIWqw8mooDl/PEjkFWgoXIRny9+zIuXS0TOwYRUYMRBOCltaeh5akzagAsRDbgck4pvt6VKHYMIqIGl15YgY+3XRQ7BlkBFiIrZzQKeGntGVQbuHArEVmnnw6n4Hwm51WjO8NCZOWWH0lBbEqh2DGIiBqNwSjgzY1nIQgcJEm3j4XIihVoq3komYhswrHkQqyNyxA7BlkwFiIrNn/7RZRUcrAhEdmGD7fEo4TLetBtYiGyUuczS7DqaKrYMYiImkxeWTUW8Kg43SYWIiv19m/nOOcQEdmcZUdScS6zWOwYZIFYiKzQ76ezcCSpQOwYRERNzmAU8NbGc2LHIAvEQmRlKnUGTmdPRDbtWHIhtp/LFjsGWRgWIivz3d4ryCji4q1EZNs+2nYRBo4boFvAQmRF8suq8O0ezkhNRHQ5pwxrjqeJHYMsCAuRFfl6dyK01QaxYxARmYVP/7iESh2/J9LNYSGyElnFFVh2OEXsGEREZuNqSRV+3J8kdgyyECxEVuJ/Oy+jSs/1yoiI/mnhnkQUaqvFjkEWgIXICqTka3munIioHqWVeny167LYMcgCsBBZgU93XIKeV1MQEdVr2ZEU5JVViR2DzBwLkYW7mF2KjacyxY5BRGS2KnVGfL/vitgxyMyxEFm4z3de4hIdREQ3sOxQCorKOZaIro+FyIJdyS3D1rOcjZWI6Ea01QYs4hVn9B9YiCzY9/uu8OgQEdFNijmYjNJKndgxyEyxEFmonNJKrI3LEDsGEZHFKKnUY+khztdG9WMhslCL9iejmvMOERHdkh/3J6GCM/pTPViILFBppQ7Lj/C3HCKiW1WgrcbqY6lixyAzxEJkgZYfSUVppV7sGEREFmnJoRQIAgdgUm0sRBamWm/klRJERHcgKU+L3RdzxY5BZoaFyMJsPpOFnFLOuEpEdCcWH0wWOwKZGRYiC/MTV7QnIrpj+xJykZhbJnYMMiMsRBYkPqsEsSmFYscgIrJ4ggAs4VEi+gcWIgvCo0NERA1nbWw6J2okExYiC1FWpcevJzgRIxFRQ9FWG7DmeLrYMchMsBBZiHVx6dByMjEioga14ijnJKIaLEQWYhlPlxERNbjLOWUcm0kAWIgswvHkAly6yqshiIgaw8/H0sSOQGaAhcgCrI3jOW4iosay6XQmtFWc/d/WsRCZuSq9Ab+fzhI7BhGR1dJWG7DlbLbYMUhkLERmbteFHJRw3TIioka1jkfibR4LkZlbz0vtiYga3eEr+cgsqhA7BomIhciMFZfrsOsCFyAkImpsRoG/gNo6FiIztulMJqoNRrFjEBHZBI7XtG0sRGZsA39bISJqMuezSpCSrxU7BomEhchMZRZV4DgnCyMialK82sx2WWwh6tevH2bMmCF2jEaz4/xVCILYKYiIbMuWMzxtZqtuqRBNmTIFEokEEokEdnZ28PLywuDBg7Fo0SIYjRzr0pB2nL8qdgQiIptzKr0YGbzazCbd8hGiYcOGISsrC8nJydiyZQv69++P559/HiNHjoReb3vz5eh0ugbfZ3GFDkeS8ht8v0REdGM8SmSbbrkQ2dvbw9vbG35+fujYsSNeffVV/Prrr9iyZQtiYmIAAMXFxXjsscfg6ekJZ2dnDBgwAKdOnQIAXLx4ERKJBBcuXKi1308++QTBwcEQ/jpPdP78eQwfPhxqtRpeXl546KGHkJeXd91chYWFmDx5MlxdXeHo6Ii77roLCQkJpvtjYmKg0WiwYcMGhIWFQalUYvDgwUhLq72GzW+//Ybo6GgolUo0b94cb7/9dq2iJ5FIsHDhQowZMwYqlQrvvfferb6FN7T7Yg50Bp4vIyISA8cR2aYGGUM0YMAAtG/fHuvWrYMgCBgxYgSys7OxefNmxMbGomPHjhg4cCAKCgoQHh6O6OhoLF++vNY+VqxYgYkTJ0IikSArKwt9+/ZFhw4dcPz4cWzduhVXr17F/ffff90MU6ZMwfHjx7Fx40YcOnQIgiBg+PDhtY7glJeX4/3338eSJUtw4MABlJSUYPz48ab7t23bhgcffBDPPfcczp8/j2+//RYxMTF4//33az3Xm2++iTFjxuDMmTOYNm1aQ7yFtWzn6TIiItHEpRYip6RS7BjUxBpsUHVERASSk5Oxa9cunDlzBmvWrEGnTp3QsmVLzJ8/HxqNBr/88gsAYNKkSVixYoXpsZcuXUJsbCwefPBBAMA333yDjh07Yu7cuYiIiEBUVBQWLVqEXbt24dKlS3WeOyEhARs3bsQPP/yA3r17o3379li+fDkyMjKwYcMG03Y6nQ5ffvklunfvjujoaCxZsgQHDx7E0aNHAQDvv/8+Xn75ZTz88MNo3rw5Bg8ejHfffRfffvttreebOHEipk2bhubNmyMoKKih3kIAQLXeiD0XORkjEZFYBAHYc4nfh21NgxUiQRAgkUgQGxuLsrIyuLu7Q61Wmz6SkpKQmJgIABg/fjxSUlJw+PBhAMDy5cvRoUMHtG7dGgAQGxuLXbt21Xp8REQEAJj28U/x8fGQy+Xo2rWr6TZ3d3eEh4cjPj7edJtcLkenTp1Mn0dERECj0Zi2iY2NxTvvvFPreadPn46srCyUl5ebHvfPfTS0g4l5KOOqy0REotqbcP0hGmSd5A21o/j4eISEhMBoNMLHxwe7d++us41GowEA+Pj4oH///lixYgW6deuGlStX4vHHHzdtZzQaMWrUKMybN6/OPnx8fOrcJlzn+vRrJe2f/v35P28zGo14++23MW7cuDrbKJVK099VKlW9z9cQ/ryQ02j7JiKim7M/IRdGowCptO7PDLJODVKI/vzzT5w5cwYzZ86Ev78/srOzIZfLERwcfN3HTJo0CS+99BImTJiAxMTEWmN5OnbsiLVr1yI4OBhy+Y0jtm7dGnq9HkeOHEGPHj0AAPn5+bh06RJatWpl2k6v1+P48ePo0qULgJoB3kVFRaajTx07dsTFixcRGhp6O29Dg9jH30qIiERXWK7DmYxitA/QiB2FmsgtnzKrqqpCdnY2MjIyEBcXh7lz52LMmDEYOXIkJk+ejEGDBqF79+64++67sW3bNiQnJ+PgwYN47bXXcPz4cdN+xo0bh5KSEjz55JPo378//Pz8TPc9/fTTKCgowIQJE3D06FFcuXIF27dvx7Rp02AwGOpkatmyJcaMGYPp06dj//79OHXqFB588EH4+flhzJgxpu3s7Ozw7LPP4siRI4iLi8PUqVPRrVs3U0F64403sHTpUrz11ls4d+4c4uPjsXr1arz22mu3+jbdlvTCciTlcdp4IiJzsJfjiGzKLReirVu3wsfHB8HBwRg2bBh27dqF//3vf/j1118hk8kgkUiwefNm9OnTB9OmTUNYWBjGjx+P5ORkeHl5mfbj7OyMUaNG4dSpU5g0aVKt5/D19cWBAwdgMBgwdOhQREZG4vnnn4eLiwuk0vojL168GNHR0Rg5ciS6d+8OQRCwefNm2NnZmbZxdHTESy+9hIkTJ6J79+5wcHDAqlWrTPcPHToUmzZtwo4dO9C5c2d069YNn3zySYMPnL6eA5d5dIiIyFzsTWAhsiUS4XoDcKxMTEwMZsyYgaKiIrGjXNezK0/gt1OZYscgIiIAcqkEJ94YDCel3Y03JotnsWuZWaPDVzg7NRGRudAbBRy4zO/LtoKFyExczilFbmmV2DGIiOgfjiUXiB2BmojNFKIpU6aY9emyQ4n8LYSIyNzEphSKHYGaiM0UInN3JIm/hRARmZtzmcWo1NW9upmsDwuRmTiRWiR2BCIi+hedQcCptCKxY1ATYCEyA7mlVcgoqhA7BhER1eM4T5vZBBYiM8DfPoiIzBfHEdkGFiIzcJKFiIjIbMWlFl53zUyyHixEZoCFiIjIfBWV65CYWyZ2DGpkLEQiEwQBp9KLxI5BRET/4WxGidgRqJGxEIksMVeL0kq92DGIiOg/xGexEFk7FiKRnebRISIisxefXSp2BGpkcrED2LqLVvyfzFhVjqJ9y1CecAjG8mIoPJvDddBjsPcJAwCUXzyI0pNbUH01EcaKEvhM+R8UXs3/c5+CQY/iw2ugPbsT+tJ82Ln5wbXfVDg0jzZtU3ZuF4r2LIGgq4S63RC49p9muk9ffBVXV78On4c/g9TesXFeOBFZHR4hsn48QiSyS1ettxDlb/0Clckn4TFyFnymfQllSBSurnoN+tI8AIBRVwl7/9bQ9H34pvdZtO8nlJ3cArdBj8P30W/gFDUcuevfR/XVRACAobwYBVu/gGv/afC8/x2Und2J8sRjf2fa9jVc+05hGSKiW5JbWoW8Mq43ac1YiESWkGOdVy4YdVUov3gAmv5ToQyIhJ2rLzS9JkGu8ULpiS0AAHXkAGh6ToBDcIeb3q/23C64dL8fDi06w07jDaeo4VCGdETJ0fUAAH1RNiT2jlC16gN7nzAoA9tBl5da89jzuyGRyeEY3qPBXy8RWb8LWdb7CyyxEImqvFpvvTNUGw2AYIREZlfrZolcgar0c7e9W0GvA2SKOvusTD8PAJC7+UHQVaH6aiIMFaWozroERbNgGCpKUbRvOdwGP3Hbz01Eto2nzawbxxCJ6HJOGax1ri+pvSPsfSNQfHAV7NwDIFNpoI3fi+rMS5C7+d72fpUhHVF6bAOUAW0gd/VBZfIpVCQcgSDULL4oU6rhMWIm8jZ9AkFfDVXkADg0j0be5s/gFD0S+uKryFn7LmDUw6XnRKgiejXUSyYiK8dCZN1YiER06ap1ni67xn3kLORv+RwZXz8MSKRQeLeAqnVf03if2+E26DHkb/0CmT88CQCQu/pA1XYQtGf+MG3jGNYDjmF/nxarTD0NXW4K3AY/gczvHoPHqDmQqVyRtfQFKAMiIVNpbjsPEdkOTs5o3ViIRJSQY93no+1cfeA98UMYqythrC6HXO2G3F/nQe7iddv7lDm6wHPcaxD01TBUlECmdkfRnpjr7lPQ61Cw/Ru4j5wFfWEWBKMBysC2Nfnc/FCVdRGOoV1vOw8R2Y7UgnKxI1Aj4hgiEV228iNE10gVSsjVbjBUlqEiKQ4OLbvd8T4lcgXkTh6A0YDyiwfh0LL+UlN0cBWUzaNh7x0KCMaasU1/EYx6wGi84yxEZBsKy3UoqdSJHYMaCY8QiSjFyn/bqLgSC6BmoLO+MAuFuxfBzs0P6raDAACGilIYSnJhKMsHAOgK0gEAMpUrZGpXAEDepgWQObnDte8UAEBV5kUYSvNh59UchtI8FB9YAQhGuHS9p87zV+emoPzCXvhM+eKvHP6ARIrSU9shU7tCl58OhU/LRn0PiMi6pOaXI9LPRewY1AhYiESUUWilV5j9xVhVjqK9S6AvzYNM6QTH8B7Q9JkMiazmy67i8hHkb/7MtH3exo8AAC49J0DTaxIAQF+SC0j+PpAp6KtRtO8n6IqyIVU4wKF5NNxHzIJUqa713IIgoGDbl3AdMB1ShRIAILWzh/vwGSjY8Q0Egw5ug5+oOcpERHSTUliIrJZEEKz1OifzVqCtRsd3d4gdg4iIbsGLw8LxVL9QsWNQI+AYIpFkWuv8Q0REViw137qHOtgyFiKRpFv56TIiImuUwkJktViIRGK1M1QTEVkxfu+2XixEIuEpMyIiy8MFXq0XC5FIrP0KMyIia1RebUB5tV7sGNQIWIhEklNaKXYEIiK6DbmlPEpkjViIRFJYztlOiYgsEU+bWScWIpEUlleLHYGIiG5Dbim/f1sjFiIRGI0CSip4hIiIyBLxCJF1YiESQXGFDkbOD05EZJFYiKwTC5EIeLqMiMhy5Zfxe7g1YiESAQsREZHl0lbxsntrxEIkgkItxw8REVkqLechskosRCIoqWQhIiKyVOXVBrEjUCNgIRJBpc4odgQiIrpNLETWiYVIBFV6/mciIrJUHENknViIRFCl5xEiIiJLVaHjL7XWiIVIBNUsREREFktbxUJkjViIRMBTZkRElquCV5lZJRYiEVRxUDURkcXSGbjUgDViIRJBtYGFiIjIUhkFFiJrxEIkAo4hIiKyXCxE1omFSAQSidgJiIjodnFxbuskFzuALZJJ2YjIunXUlOABhzPwSsuAZ0IeJJdTAAMvJiArIZEAH44QOwU1MBYiEcilPDBH1i2uyBlxRT0xPDwbir6HcTq/EINK/BGd5QC/y0WQX0yGUM1FjslCyWRiJ6BGwEIkAh4hIluxOdEbdklj8GR4K+SGnMbLrqegj9BDPUKBQWUt0PWqEwKvlEFxPglCRYXYcYluioTjHqwSC5EI5CxEZEN0Rgn+Fx8Ob/sQ/F/LQJxxTcJvxeewwSkBG5wAhAKKwTL0Lw9Dj1wNQpIq4HA+BUJJidjRierHI0RWiYVIBDxCRLYou0qB2We7oqNLG3wV4IydrkVYX3wB1cZqVEsM2Ka6gm0qAMGApB/QsyoEfXI90DKlGk7xaTDmFYian8iEwx6sEguRCHiEiGxZXLEaE4qH417vq1ih0WG9qxy/lF5ClaHKtI0gAfYr07A/IA0IANALiK4OQL98L0SkGqG5kAkhM1u8F0E2TcIjRFaJhUgEMv52QYRfsr3wS/bDeDX4EjZIsrDSOwxrShNQYaisd/tYRRZifbIAHwBdgQidNwYV+qJNugQeF65CSElv2hdANkuqVosdgRoBC5EIHBQsRETXzE0Ow+eyF/Cp7CimVFzAT4FtsbosEeX68v983AW7PFzwzAM8AXQEAg0eGFLkj/YZdn9f6m+0rUlQVxUWYlVRETL0OgBAqEKBJ9090Oc/foD/VlKMRQUFSKmuhloqRS+VGi96ekLz11GQg1ot3r2ajXyDAQPVarzt7QPFX4OKSw0G3J+SjB8DAuFrZ9f4L9BMyJycxI5AjUAiCJxys6mtPJqKV9adETsGkdkJdKjEN/5/wLfoTyxtEY2V2kRob1CMrsfToMbg0gBEZyrhe7kI0otJgN66F+XcVVYKKSQIUigAABuKi7GoIB9rg0PQ0t6+zvax5eV4OC0VL3l6or9Kjat6Pd6+mo0ghQJf+PnDKAjok3gZj7q5o6dKhZmZGZioccVEV1cAwFvZ2QhWKDDFza1JX6fYHKKjEbx8mdgxqIHxCJEInJR824nqk1qhxIiEkejl1hsLctZiStFV/BTWAyvKk1CqK7ulfeXIyrBcE4/lGgCtASejPYZow9E5W4XAxFLYXUiCUFH/6TlL1V9d+8jFjGbNsKqoEKcrKuotRKcqK+BnZ4eHXGsKjb9Cgfs1GiwqqBnAXmgwoMBgwASNBvZSKfqr1UisrhnrFVdejnOVlXjdy6uRX5X5kfGUmVXiT2YROCtt59Ay0e3YX+CCrgXT8LDvULyUvhQPl2VgWXhPLKtMQUl16W3ts1RahbVOF7HWCUBLwH6oDAPKw9AjxwXBVyqgjE+GUHprpcucGQQB20pLUSEIaO/gUO82UQ4O+DwvD3vKytBHpUK+wYDtpaXoo6r5ge8mk6GZTI4D5Vr0cFQhtrwCY1ycUS0IeOfqVbzn4w2ZDc7JI+UpM6vEU2YiOJFaiLFfHxQ7BpFFkEgEvBdyDuNLYlCpK8WKiF5YWpmOouriBn0eGSToVRGA3rnuCE2phup8KoSCwgZ9jqZwqaoSE1JSUC0IcJRK8ZGPL/r+xxGNbaUl+L+sbFQLRugB9Fer8ZmvH+z+Kjqx5eWYl5uDQoMBfVQqvOzphe/z81FiNOAeFw3eys5GocGASa6umPTXqTRrp5kwHj5vvil2DGpgLEQiSMwtw8AFe8SOQWRRXOz0+DL4IHpd/QkVEglWhvfG0uoMFFQVNdpzdq70Rb98T0SkGuB8IQNCdk6jPVdDqRYEZOl0KDXWHO1ZW1yMJQGBCK3nlNnlqio8kpaGyW6u6OWoQq5Bj/k5uYh0UOI9b596959cXY0n0tOwNjgEk1NTMNnVDb1UKoxJTsKP/gEIVyob+yWKzn36dHjOekHsGNTAeMpMBBxDRHTrinVyPJTQB2GqzvjadzOmndmAiXb2+DmiDxZXZyG/quGP5hxTZuKYXybgB6A70LraB4MKfdAmXQK3C9kQUjMa/DnvlELy96DqSKUDzlZW4qfCQrzt7V1n2+8L8hHl4IBH3NwBAOEAHLykeCgtFc97NEMzee3vVYIg4M3sLLzo6QlBEBBfVYUhTk5wkErRycERxyrKbaIQSZ15yswa8SezCDiGiOj2XdI6YFDCPRji0R8fqlfh4dNb8YCdA36J6IPF+hzkVOY32nOfV+TivFcu4AUgGgjW11zq3y7TDp6XcoHEVLO71F8AoBPqz1RpNNYZA3TtcwF1Tx6sLS6GRibDALUTig0GAID+r5MMeggw2sj5Bl52b51YiESgtJNBaSdFpc68vnESWZLteW7YnvcUngkYjmf1S/DgmW24X2aPta36YpExH9kVuY2eIVlehO88igAPAO0AT6MThhUHISrLHj4JhZBeSm7SS/0/zc1Fb5UKPnZyaI1GbC4pxbHycnznHwAA+CQ3Bzl6PT708QUA9FOr8WZ2NlYVFqKnSoVcvR4f5uagrVIJT3ntX9zy9XoszM/D8sAgAICLTIbmCgWW/vXYw9pyPPbXkSZrJ1WzEFkjjiESSe+P/kRaAVf3JmoIdlIB80JO4u7CGEjLc6GTKbA+oi9+FAqRWSHeuB8XoxJDyoLQOVsF/8QS2F1IhlDZeJf6v5adhcNaLXINBjhJpQizt8ejbu7ooVIBAF7NykSGToclf5UaAFhWWIDVRUXI0OngJJWhq6MjZjVrBq9/TbQ4OzMDUQ6OtQZOn66owKvZWcjX6/GQqxue8vBotNdmTgK+/w7q3r3FjkENjIVIJPd+cxDHUyzvChYic+Zpr8PXQXsQnbkCEn0ldFI7bIzoix8kJUgvF3/tM6UgxyBtELpddUFwkhb28ckQyrRix6JbFPLrr1CGh4kd47b069cPHTp0wGeffSZ2FLPDNSRE4ulc94oPIrozOVV2uPfSIIyV/g+p/qMgN+pxz/k/8Ft8HN5VtkSQylfUfJUSPTapE/Faizg8OOgiJjyjw8LnQ3F2YmdU9GwHiatG1Hx0c+y8G3YyypycHDz++OMIDAyEvb09vL29MXToUBw6dAgAIJFIsGHDhgZ9zoY0ZcoU3H333WLHuGMcQyQSTyfrvxKDSCwnS9ToUzIB47wG4i375XDOOYa743dilESGzeF98L28Ekla8a8Q00uM+NMxGX8GJQNBgKQ30LUqCH3zmyE8xQCnC+kQrjb+WCi6eRJHR8hcXBp0n/fccw90Oh2WLFmC5s2b4+rVq9i5cycK/poxnJoGjxCJxMeFhYiosa276ol2qTOx0Ost6FxCIBMMGHVhFzacO4J59s3RQu0vdsRaBAlwWJmBeX4nMa3HGdw3rRDvzfLFwanRKBocDUmAuEe4CLDz9GzQ/RUVFWH//v2YN28e+vfvj6CgIHTp0gWvvPIKRowYgeDgYADA2LFjIZFITJ/Xd1RmxowZ6Nevn+lzrVaLyZMnQ61Ww8fHBwsWLKjz/NXV1XjxxRfh5+cHlUqFrl27Yvfu3ab7Y2JioNFosG3bNrRq1QpqtRrDhg1DVlYWAOCtt97CkiVL8Ouvv0IikUAikdR6vCXhESKR+Grqn0qfiBrehylh+Fz2Dj4LOY7BeUsgrSzC8Au7cRck2B7eG98pjLhUlip2zHqdVuTgtHcO4A2gE9BC74nBhX5omyFDs4u5QFIqwKGgTUbuU3c+pzuhVquhVquxYcMGdOvWDfb/mkDz2LFj8PT0xOLFizFs2DDIZLKb3vecOXOwa9curF+/Ht7e3nj11VcRGxuLDh06mLaZOnUqkpOTsWrVKvj6+mL9+vUYNmwYzpw5g5YtWwIAysvLMX/+fPz000+QSqV48MEHMXv2bCxfvhyzZ89GfHw8SkpKsHjxYgCAm4Uu9stCJBJfDY8QETWlCoMMj1/uCn9lB3wT8AciM36GxKjD0It7MQQS/NmyF751AOJLU8SO+p8S5QVIbFYANAPQAfAxaDC0JBBRGQp4Xy6AJCGlSS/1tzV2vg17lE4ulyMmJgbTp0/HwoUL0bFjR/Tt2xfjx49Hu3bt0KxZMwCARqOBdz2Ta15PWVkZfvzxRyxduhSDBw8GACxZsgT+/n8fFU1MTMTKlSuRnp4O379e1+zZs7F161YsXrwYc+fOBQDodDosXLgQLVq0AAA888wzeOeddwDUFDoHBwdUVVXdUj5zxEIkEh4hIhJHeqU9RiWMQE/XXljgtg7eGTsggYCBCfswEMDu0J74ViXH2ZIksaPelCxZKWJczyHGFUAk4Gp0wJCSIHTOdoRfYjHkF5IgVFeLHdNqKPwb/jTrPffcgxEjRmDfvn04dOgQtm7dio8++gg//PADpkyZclv7TExMRHV1Nbp37266zc3NDeHh4abP4+LiIAgCwsJqXzFXVVUFd/e/55RydHQ0lSEA8PHxQU6O+S9jc6tYiETi7azk5IxEIjpQ6IJuhVMx2XcoXpYuhWPeaQBAv8sH0A/AvhbdsVCtxOmSRFFz3qpCaQVWay5gtQZABOB4lx0GaVuhW44Tgq5ooTifBKG8XOyYFsuuEQoRACiVSgwePBiDBw/GG2+8gUcffRRvvvnmdQuRVCrFv2fN0el0pr/fzIw6RqMRMpkMsbGxdU7Fqf+xILDdv+akkkgkN7V/S8NCJBKJRIJgdxUuZJeKHYXIpi3N9MVPkpfwTvB5TCiLgby05uqz3omH0BvAwZCuWOiiwoniy+IGvU3lUh02OiVgoxOAFoB8kBT9y1uiZ64GzZMr4XA+BUJxidgxLYadX9MMxG/durXpUns7OzsY/loq5ZpmzZrh7NmztW47efKkqbyEhobCzs4Ohw8fRmBgIACgsLAQly5dQt++fQEAUVFRMBgMyMnJQe87mGhSoVDUyWeJeJWZiFo0U994IyJqdIIgwetJbRBV+AH2BjwJQfH3/80eSUew9OSf+EHwRCeXliKmbBh6iRE7VEl4K/gEJveLx/1PluPzmSE48VBnaPt0gNTDNpbfuF12/n4Nur/8/HwMGDAAy5Ytw+nTp5GUlIQ1a9bgo48+wpgxYwAAwcHB2LlzJ7Kzs1FYWDOh74ABA3D8+HEsXboUCQkJePPNN2sVJLVajUceeQRz5szBzp07cfbsWUyZMgVS6d8/9sPCwjBp0iRMnjwZ69atQ1JSEo4dO4Z58+Zh8+bNN/0agoODcfr0aVy8eBF5eXm1jlRZEh4hElHzZiqxIxDRP5Tq5Zic0Bthqk74KmArQtPXQSLU/ObbNfk4ugI4HhSNhW6uOFJ0SdywDUSQAAeUaTjgnwb4A+gJdKj2x4B8L7RKE6C5kAUhI0vsmGZB4ugI+V+DnBuKWq1G165d8emnnyIxMRE6nQ4BAQGYPn06Xn31VQDAggUL8MILL+D777+Hn58fkpOTMXToULz++ut48cUXUVlZiWnTpmHy5Mk4c+aMad8ff/wxysrKMHr0aDg5OWHWrFkoLi6u9fyLFy/Ge++9h1mzZiEjIwPu7u7o3r07hg8fftOvYfr06di9ezc6deqEsrIy7Nq1q9bl/5aCS3eIaP2JdMxcfUrsGER0HYM9CvCh089wz9pb574TAVFY6OGBg0UXRUjWtFrq3TG4wA9tM6Rwv3gVSE63yUv9le3bIWT1arFjUCNhIRLRybQi3P3VAbFjENENPBmQjBmGJbAvqFt+Tvu3x8JmXthXdEGEZOLw17tgSLE/OmQq4JWQD8nlFMAKxpDciOa+++Dz7jtix6BGwkIkopJKHdq9tV3sGER0E+ykAuaFnMTdhTGQltddTuOcbyQWevlhd1G8COnE5W50xNCSIERnOcA3sQiyC0mAhY4j+S9er70GtwcniR2DGgkLkcg6vfcH8sqqxI5BRDepmUKHr4L2onPWCkj0FXXuv+DTGt/6BGJnYTwE2Oa3V7WgwODSIHTJcULglbKaS/0r6r5Xlibop6Vw7NxZ7BjUSFiIRPbQj0ewLyFP7BhEdIvaOZfhC89NCEz/DZJ6ik+CVzi+9WuOHUXxMAoNO99Y/p/5KPizALq8mqMw9n728BzjCad2TvVuXxZfhuR5yXVubzm3Jex9a5aKKDtbhsyfMqEv0cO5ozN8p/pCKq+5IslQbkDi24kIfjEYCnfFLedVCDL0Lw9CjxwNmidXQHkuGUKp5U05Enb0CGTOzmLHoEbCQiSyeVsv4JvdljXxGxH97W6vHLyjXAnnq0fqvT/RMwzf+odiW9H5BitGJSdKIJFKoPCqKSdF+4uQtyUPLd5pAaVf3WWBrhWilh+2hFT592XXcmc5JFIJBKOAC89fQLMRzaBuq0bal2lwG+gG90E1l+BnxGTA3tseHsM8GiS/DBL0rAhA7zx3hKZUwyk+DcY8817ZXe7jg5a7/hQ7BjUiXnYvsrZ+LmJHIKI7sOGqJzbgecwJSsBjlUtgV3yl1v0tci7ho5xLeLJZC3wf0Bqbi+JhEO5sALJzVO2jFF73eqFgVwHKL5fXW4iukTvJIVPVXRzUUGaAodQAtwFukCqkcIpyQlVmzal8bYIWFckV8J3ccGt4GSBgr0Mq9gakAgEAegHRVQHoX+CFiFQjXOIzIGRdbbDnawjKfy1vQdaHhUhkLERE1uHjlJb4UvY2Pgk5jqF5SyGtLKx1f0huIubmJuJJ92B8F9QWm4rioRfufBFWwSig+GgxjFVGOIY6/ue2l9+8DEEnwN7XHs1GN4O6Vc0ElDInGeQaOcrOlUHdRg3tJS1ce7rCqDcic0km/B/xh0QqueOs/yXWPguxPlmAD4CuQGudDwYW+qBNuhTuF7IhpKQ36vPfiP0/1gAj68RTZmagwzvbUVRufVdkENkqf2UVvgnciciMnyEx1L+warpbIH4Ibotfi+OhN956MapMq8SV967AqDNCai9FwBMBcGpf/xiiqqwqaC9q4RDsAEEvoOhgEQp2FSDk5RCowmsmiNVe0iJ7ZTb0pXo4tXOCz0Qf5P6eC4PWANe+rshcnAl9mR7ug9xNp9KaUpBegyFF/miXaQevS3lAYgpgbLq1IH0XzIfLiBFN9nzU9FiIzMCDPxzB/sscWE1kbbq7FuMTt/Xwybj+9BpZrgH4IaQd1hdfgM54878YGfVG6PJ1MJYbUXy8GIV7CxHycsh/njL7p5RPUwAJEDQjqN77q7KrkPJpClq83QJJHyTBfYg7nNo6IeH/EhDyYgiUATf3PI3F06DG4NIARGcq4Xu5CNKLSYD+zo+4XU/zTb/BPjS00fZP4uMpMzMQ6efCQkRkhQ4VuqB74RQ85DsYL8uWQ5V7ss42PoVpeL0wDdM1flgU0gHrSi+hynDjqTikcinsvWquEHMIcUBFUgXyd+TDb8rNrbXl0MIBxYeK671PEARkLM6A93hvQAAqUyrh0skFUnspVOEqaC9oRS9EObIyLNfEY7kGQGvARVBiUGkQumSrEHClFHbxSRAqKxvkuaSOjlCEhDTIvsh8sRCZAY4jIrJuP2X6YZlkDt4OjsfEssWQl2bU2ca7KAOvnsjAdGdvLGoRjV9KL6HyJoqRiQAIups/4F+ZWgm5pv4fAYV7CyFXy+Ec5QyDtmYAuGAQTH8KRvM7sVAsqcRa54tY6wwgDLAfKsPA8nB0z3FG8JUKKOOTIZSW3da+HTq0h0RWdzA6WRcWIjMQFagROwIRNTJBkOCNpNb4WP4Bvgg5jL45P0FSVXcunmYl2XjpxO94RO2JJS07Y3XZZVT8awLI7F+y4dTWCXZudjBWGlF8pBjaC1oEzwquuX9NNvSFevg/5g8AyNuWB4WHAvZ+9hAMNWOISo6XIOCZgDrPry/RI3djLpq/1hwAIFPJYO9rj/zt+VBHqqGN16LZqIZd4LQxVEkM2KxKxOYQACGAbKAEvStaoHeuG1okV0N1PgVCYdFN7cshqmOjZiXzwDFEZqL3R38ircDyZ3IlopvTUlWBr3y3omX6Okj+4zL8ApUHlrTsilXaRJTrywEA6T+mQ3teC32xHlIHKZQBSjQb3gzqyJqrxtK/T0d1XjWav1JTanI356JwdyF0hTpIFVLY+9mj2Yhm9Q7CTvsmDY4tHWsNnC6/Uo6M7zOgL9HDfYg7PMd4NuRbIZouVX7om9cMEakGOMdnQLiaU+92gYt+hKpHjyZOR02NhchMzPr5FNbGiXtZKRE1vYHuBfjIeQ3cs/b853ZFjm5YGtYdK8uvoEynbaJ0tiWy2hMDC3zQOh1wu5gNITUDkMkQfvQIpCqV2PGokbEQmYmfj6fhxV9Oix2DiETyZEAKnjcshbLgvxeHLXFwwbKwnlhWkYxS3e2NiaGbE6zX4AFpVzw4db7YUagJSG+8CTWFbiFNP68HEZmPb9KC0Cbr//CL70swqK5/Ssq5ohhPndqM7anpeMY5Ei4Krq3VWJLlRciK9BI7BjURFiIzEejuCB8XcS9jJSJxGQQpZl9pj26lH+NIwKMQ7K4/87S6sgSPn9qMbckpeN65DVwVvFq1MXT25ur2toKnzMzIjFUnsOFkptgxiMhMtHXS4guv3/D7+l8w/2AVskoFtPGU4rOhSvQOqn2RcLlChdURvRFTnYUru5KQtyUPVVerIHOQQd1WDe/x3pCrax7TmCvbWxOZRIZ94/fBSVH/DOBkXXiEyIx0bc7TZkT0tzOlKnT+zRfPbdPhhRGtcOJxFXoHynHX8nKkFtdetsKxWoupp7fijZ1nkfFDBgIG+KHl+y0R8HQAKpIqkLGoZu4jwSgg7ds0uPV3Q/PXmqPiSgUKd/+97lr2z9lw6+9m82UIACLcIliGbAgLkRnp2cJD7AhEZGZKjm2AY9shWOD/Ef5oMxcfjW+NABcpvjlW/xppJ1LKEeICnAktxRsh7RHSLghu/dxQkVwzrcc/V7ZX+inrXdnefQh/OQOArj5dxY5ATYiFyIwEujuiRTNe2klENQSDDtXZl+EQEgUAWJDaAu1z30ZY+044mFn/6vM9AmRILxGwM74UE09vRUzcGWjidPDqWDNQ+58r2xurjdBeqlmG49rK9n4P+zX6yvaWoq9/X7EjUBPiTNVmZmArLyTmXhE7BhGZAUN5CSAYIXV0Nd1WYZBhry4ClSXpOBUwFu0yV0Ni+PtoUY8AOZaPc8ADv1SgUg/ojcDocDlW9nDGZsdw/IAilD9VjuyV2changWndk5w7e2K3N9zoW6thkQhwZX3roi6sr050Nhr0L5Ze7FjUBNiITIz/cM98d1eFiIi+pvk3wdsBAF6QYoxCXehq6YnPvXeAN+MrQCA87kGPLelEm/0scfQUDmySgXM2VGJZzeW4kfJDtwtleO39v3wfYcSpJVnA6hZ2b7oYFG9K9urwlWiL+Qqht5+vSGTcv0yW8JTZmamc7ArnJTsqUQEyBydAYkUBm1hrdsN5UWQqTQAgCNFzuiROBmvui6AtlkHfLC/Gj0DZZjT0x7tvGQYGirH1yOUWHRSh6xSI+RGPcae/wO/nY/F+8pQBDn61LuyvdxZblrZ3hb1DeDpMlvDQmRm5DIp+oSZ/8KJRNT4JDI7KLxDUZF8stbtlcknYe8XUeu2FVk+iEyfg3hZOCT/mr9I9tcRpn/OsSITDBgd/ydG/3QA7V1c0KF3a+CvC9fMfWX7xiaXytHTt6fYMaiJsRCZoQHh1rFwIhHdOefOd6Ps1HaUnd4OXV4aCnZ+D31JLpw6DAcAFO6JQd6mBQAAQZAg2WcQ1pzRYsbl7kjUOuBAqh7Pba1EFz8pfJ1qf8vP0Roxd28F1vQsxfqzh/GJayic/FXI356P8svl0MZr4djy+pNDWqtOXp2gVqjFjkFNjOdmzFC/8GaQSgAb/MWMiP5F1aoPjBWlKDqwCgZtARQeQfC87y3IXWp+cTKUFUJfkmvaXt12EIzVFfh66xZ8UVIId0c5hgTJMW9g3XmFnt9aidk97OHnLAUEI4Zd3IMdw4D7NmuR/kchPO7ygGNz2ytE/QL6iR2BRMCZqs3U/QsP4WhygdgxiMgKDHAvxEcua+CRufumHyNAgl0te+JbBynOlyY3WjZztGXcFvg7+Ysdg5oYT5mZqZHtfcSOQERW4s98V3S68hjmenyISvfWN/UYCQQMSNiP1af34iupP9o6N2/klOahhUsLliEbxUJkpoa39YGMk6MRUQP6Lj0QbTJfxc++L8GguvlV3PskHsSKU7uxUOKL9s4tGjGh+AYGDRQ7AomEp8zM2IM/HMH+y3lixyAiK+Su0OGroH3omr0CEl35LT32UEgXLHRRI674ciOlE8+vd/+K5i62cTSMauMRIjM2iqfNiKiR5FfbYXzCAIzG50jyvxuC5OZ/HHRPOoolJ//EIqMnuriENWLKphXhFsEyZMNYiMzYsDY+UMj4T0REjedMqQr9L9+PZ9Wfoci7+y09tnPKcfx48g8sMXiguya8kRI2neEhw8WOQCLiKTMz90jMMey8kCN2DCKyEbOCEvF4VQwURYm3/NiTAR2w0MMTB4ouNEKyxiWBBNvv3Q5vlbfYUUgkPPxg5ka19xU7AhHZkAUpLdA2521s8p8Jo8OtLezaIe0kFp7YjpXVLuiradVICRtHF+8uVl2G+vXrhxkzZjTpc06ZMgV33313kz7nnWAhMnND23jDyZ7zZxJR06kySvHM5c7oWbEAJwMmQ5DZ39LjIzPO4MsT2/BzpRoDXFtDAvO/YnZ06OgG29eUKVMgkUjw4Ycf1rp9w4YNkNRZqZfMBQuRmXNQyDC6A48SEVHTy6pU4O6EYXjA7nNk+g275ce3yjqPz+O2Yk2FIwa7tjHbYuQod8SgwEENuk+lUol58+ahsLDwxhtTo6qurr6p7ViILMCELoFiRyAiG3a0yBk9EifjZdcFKGsWdcuPD8+OxydxW7CuXIlhrm0gvYUr2prC4KDBcLRr2CVKBg0aBG9vb3zwwQf/ud3atWvRpk0b2NvbIzg4GAsWLKh1f3BwMObOnYtp06bByckJgYGB+O677/5zn1qtFpMnT4ZarYaPj0+dfQI1JeHFF1+En58fVCoVunbtit27dwMAiouL4eDggK1bt9Z6zLp166BSqVBWVgYAyMjIwAMPPABXV1e4u7tjzJgxSE5Ovm6uqqoqPPfcc/D09IRSqUSvXr1w7Ngx0/27d++GRCLB77//jvbt20OpVKJr1644c+ZMrf0cPHgQffr0gYODAwICAvDcc89Bq9XWes/ee+89TJkyBS4uLpg+ffp/vl/XmNdXJdUr0s8FkX7OYscgIhu3KssHkWlzsMjndeidA2758aFXL+LjuC1YXybHCNdIyCSyRkh568aEjmnwfcpkMsydOxdffPEF0tPT690mNjYW999/P8aPH48zZ87grbfewuuvv46YmJha2y1YsACdOnXCiRMn8NRTT+HJJ5/EhQvXH7g+Z84c7Nq1C+vXr8f27duxe/duxMbG1tpm6tSpOHDgAFatWoXTp0/jvvvuw7Bhw5CQkAAXFxeMGDECy5cvr/WYFStWYMyYMVCr1SgvL0f//v2hVquxd+9e7N+/H2q1GsOGDbvuEZkXX3wRa9euxZIlSxAXF4fQ0FAMHToUBQW1l6maM2cO5s+fj2PHjsHT0xOjR4+GTqcDAJw5cwZDhw7FuHHjcPr0aaxevRr79+/HM888U2sfH3/8MSIjIxEbG4vXX3/9uu/VP/EqMwux7HAKXttwVuwYREQAAJXcgC9CjqB/zlJIqkpuax8pHs3xXWAENhddgF7QN3DCmxOqCcX6MesbdJ9TpkxBUVERNmzYgO7du6N169b48ccfsWHDBowdOxbXfuxOmjQJubm52L59u+mxL774In7//XecO3cOQM3Rjt69e+Onn34CAAiCAG9vb7z99tt44okn6jx3WVkZ3N3dsXTpUjzwwAMAgIKCAvj7++Oxxx7DZ599hsTERLRs2RLp6enw9f17SMagQYPQpUsXzJ07F+vXr8fkyZNx9epVODo6oqSkBF5eXli7di2GDx+ORYsW4aOPPkJ8fLxpXFR1dTU0Gg02bNiAIUOG1HoftFotXF1dERMTg4kTJwIAdDodgoODMWPGDMyZMwe7d+9G//79sWrVqjrZY2JicP/992Py5MlwcHDAt99+a8q9f/9+9O3bF1qtFkqlEsHBwYiKisL69bf278ojRBZiTAdfOCrM47cpIiKtXoZpCT0wUPcZLgQ8AEF66xd/BOVdwftxm7Gx2IBxrm0hv4193KkJERMadf/z5s3DkiVLcP78+Tr3xcfHo2fPnrVu69mzJxISEmAwGEy3tWvXzvR3iUQCb29v5OTUPx1LYmIiqqur0b3733NKubm5ITz873mi4uLiIAgCwsLCoFarTR979uxBYmLNdAsjRoyAXC7Hxo0bAdSc2nNycsKQIUMA1Bzdunz5MpycnEyPd3NzQ2VlpWkf/86l0+lqvV47Ozt06dIF8fHxtbatL/u1bWJjYxETE1Mr99ChQ2E0GpGUlGR6XKdOnep9f/4LL1+yEE5KO4xo64M1sfUfeiUiEsOVciWGJYxBP7c++FizFs0y/7zlfQTkp+Dt/BQ85haIH4Lb4tfiC9AZdY2QtjYnhRNGNh/ZqM/Rp08fDB06FK+++iqmTJlS6z5BEOpcdVbfSRs7O7tan0skEhiNxnqf72ZO+hiNRshkMsTGxkImq/2LtlqtBgAoFArce++9WLFiBcaPH48VK1bggQcegFwuN+0jOjq6zmk1AGjWrNl1c9X3em/myrtr2xiNRjz++ON47rnn6mwTGPj3eFuVSnXDff4bjxBZkAldObiaiMzT7gJXdL7yKN7zmIcK9za3tQ+/glS8Gfc7NudX4QHXtlBIFQ2csra7Q+9u8MHU9fnwww/x22+/4eDBg7Vub926Nfbv31/rtoMHDyIsLKxOUblZoaGhsLOzw+HDh023FRYW4tKlS6bPo6KiYDAYkJOTg9DQ0Fof3t5/z8U0adIkbN26FefOncOuXbswadIk030dO3ZEQkICPD096+zDxcWl3lwKhaLW69XpdDh+/Dhatao9Z1V92SMiIkzPe+7cuTrPeW3/d4KFyIJ0DHRF+wCN2DGIiK7rh/QARGa+gtW+L8NwmxMdehel47W437ElT4tJmrawv8V5kG6GVCLFhPDGPV12Tdu2bTFp0iR88cUXtW6fNWsWdu7ciXfffReXLl3CkiVL8OWXX2L27Nm3/VxqtRqPPPII5syZg507d+Ls2bOYMmUKpNK/f9yHhYVh0qRJmDx5MtatW4ekpCQcO3YM8+bNw+bNm03b9e3bF15eXpg0aRKCg4PRrVs3032TJk2Ch4cHxowZg3379iEpKQl79uzB888/X+8gcpVKhSeffBJz5szB1q1bcf78eUyfPh3l5eV45JFHam37zjvv1Mru4eFhmuDxpZdewqFDh/D000/j5MmTSEhIwMaNG/Hss8/e9nt2DQuRhZneO0TsCERE/8kgSPHSlXboUjoPhwIeg2B366cvAMCzOAsvn/gdW6+WYLKmLRxkygbL2MuvFwJu40q52/Xuu+/WOZ3VsWNH/Pzzz1i1ahUiIyPxxhtv4J133qlzau1Wffzxx+jTpw9Gjx6NQYMGoVevXoiOjq61zeLFizF58mTMmjUL4eHhGD16NI4cOYKAgL/fE4lEggkTJuDUqVO1jg4BgKOjI/bu3YvAwECMGzcOrVq1wrRp01BRUQFn5/qviv7www9xzz334KGHHkLHjh1x+fJlbNu2Da6urnW2e/755xEdHY2srCxs3LjRdPSnXbt22LNnDxISEtC7d29ERUXh9ddfh4/PnS+GzqvMLIzBKKDPR7uQUVQhdhQiopvSxkmLL71+R3DGRkiE+se+3IwClQdiwrpidVkiyvXld5Rp4aCF6OnX88YbUpO5dpVZYWEhNBpNkz8/jxBZGJlUgqk9g8WOQUR0086VqtD/8v14Wv0Zirx73PZ+3LR5eOHE79iWkYNHXdpCJb+98T/BzsHo4Xv7Ocg6sRBZoPFdAuGk5AWCRGRZNud6oEPyM/jc8z1Ua0Jvez+a8gI8f/J3bEvPxuMubeFkp76lx4+PGM81xagOnjKzUO//fh7f70u68YZERGbIXmrE/OYnMCJ/CaQVeXe0r1KlC5aF98SyyhSUVJf+57Yu9i7Yfs/2Jrm6jCwLjxBZqKk9QyCX8jccIrJMVUYpnr0cjZ4V83Ei8GEId3AlmVNlMZ48tRnbUtLwrHMkNIq6l31fMyliEssQ1YtHiCzYjFUnsOFkptgxiIjuWCeXUnzW7Ff4p2++8cY3UG6vxsrw3lhanYGCqiLT7So7Fbbdsw0u9tcvTGS7WIgs2OWcMgz5dA+M/BckIivxgE82Xpcvgzo37o73VaFwxM8RfbC4Ogv5VYWYFjkNM6NnNkBKskYsRBbumRVx2HQ6S+wYREQN6rXgi5hSvhjyktQ73lelnQPWthmEYUM/h7uDewOkI2vEMUQW7rmBLcGLJYjI2ryXHI72Be9jZ8CzEO7wFJdSV4FJykCWIfpPLEQWLszLCcPb3vkMnURE5karl+GRhO7oX/0p4gPGQ5De5nQjcgeg5/MNG46sDguRFZg5KAwyXnFGRFYquUKJuxJGY4rD58jxHXjrO+j8CODk1fDByKqwEFmBUE81xrT3FTsGEVGj2pPvii5XHsG77vNQ4R55cw9SOAG9XmjcYGQVWIisxPODWnJeIiKyCT9mBCAy82Ws9H0FBvUNhgx0fxpQcewQ3RgLkZUIcldhUtdAsWMQETUJgyDFK1faolPxPBwMeAyCnaruRo4eQI9nmj4cWSQWIisyY1AYnLnGGRHZkEKdHBMT+mG48DmuBIyDIPnHj7W+LwL2TuKFI4vCQmRFXFUKPDPg9hdMJCKyVPFljhiQcC+eUn+GQu+egFsLoNO0Bn2OKVOmQCKR4Iknnqhz31NPPQWJRIIpU6Y06HNS02EhsjJTeoQg0I3r9BCRbdqS64Go5KdxYshqQGbX4PsPCAjAqlWrUFFRYbqtsrISK1euRGCgdQxbMBgMMBqNYsdocixEVkYhl+LluyLEjkFEJJpuzd0QFdGyUfbdsWNHBAYGYt26dabb1q1bh4CAAERFRZlu27p1K3r16gWNRgN3d3eMHDkSiYmJpvuTk5MhkUiwbt069O/fH46Ojmjfvj0OHTpk2iY/Px8TJkyAv78/HB0d0bZtW6xcubJWntLSUkyaNAkqlQo+Pj749NNP0a9fP8yYMcO0TXV1NV588UX4+flBpVKha9eu2L17t+n+mJgYaDQabNq0Ca1bt4a9vT1SUlIa8F2zDCxEVmh4Wx90DnYVOwYRUZOTSoDXR7Zu1OeYOnUqFi9ebPp80aJFmDat9uk5rVaLF154AceOHcPOnTshlUoxduzYOkde/u///g+zZ8/GyZMnERYWhgkTJkCv1wOoOfIUHR2NTZs24ezZs3jsscfw0EMP4ciRI6bHv/DCCzhw4AA2btyIHTt2YN++fYiLq70O3NSpU3HgwAGsWrUKp0+fxn333Ydhw4YhISHBtE15eTk++OAD/PDDDzh37hw8PT0b7P2yFFzLzEqdSivC3V8fAP91iciWPNApAPPubdco+54yZQqKiorwww8/wN/fHxcuXIBEIkFERATS0tLw6KOPQqPRICYmps5jc3Nz4enpiTNnziAyMhLJyckICQnBDz/8gEceeQQAcP78ebRp0wbx8fGIiKj/SP+IESPQqlUrzJ8/H6WlpXB3d8eKFStw7733AgCKi4vh6+uL6dOn47PPPkNiYiJatmyJ9PR0+Pr+PV/doEGD0KVLF8ydOxcxMTGYOnUqTp48ifbt2zf8G2cheEmSlWofoMG9Hf2xJjZd7ChERE1C42iHF4eFN/rzeHh4YMSIEViyZAkEQcCIESPg4eFRa5vExES8/vrrOHz4MPLy8kxHhlJTUxEZ+fekku3a/V3efHxq5lTKyclBREQEDAYDPvzwQ6xevRoZGRmoqqpCVVUVVKqaKQauXLkCnU6HLl26mPbh4uKC8PC/34O4uDgIgoCwsLBa+aqqquDu/vf8TAqFolYWW8RCZMVeHd4KOy/koEBbLXYUIqJG98pdEXBX2zfJc02bNg3PPFMzx9FXX31V5/5Ro0YhICAA33//PXx9fWE0GhEZGYnq6trfj+3s/h74Lflrpe5r5WnBggX49NNP8dlnn6Ft27ZQqVSYMWOGaR/XTvBI/rXC9z9P/BiNRshkMsTGxkImk9XaTq1Wm/7u4OBQZz+2hoXIirmqFHh1eCvMXnNK7ChERI2qc7Ar7u8U0GTPN2zYMFMxGTp0aK378vPzER8fj2+//Ra9e/cGAOzfv/+Wn2Pfvn0YM2YMHnzwQQA15SYhIQGtWrUCALRo0QJ2dnY4evQoAgJqXntJSQkSEhLQt29fAEBUVBQMBgNycnJMWah+LERW7t5of/wSm4bDVwrEjkJE1CjsZBLMHdu2SY9wyGQyxMfHm/7+T66urnB3d8d3330HHx8fpKam4uWXX77l5wgNDcXatWtx8OBBuLq64pNPPkF2drapEDk5OeHhhx/GnDlz4ObmBk9PT7z55puQSqWm9yIsLAyTJk3C5MmTsWDBAkRFRSEvLw9//vkn2rZti+HDh9/hO2E9eJWZDXh/bFsoZPynJiLrNL13c7T0avoZqZ2dneHs7FzndqlUilWrViE2NhaRkZGYOXMmPv7441ve/+uvv46OHTti6NCh6NevH7y9vXH33XfX2uaTTz5B9+7dMXLkSAwaNAg9e/ZEq1atoFQqTdssXrwYkydPxqxZsxAeHo7Ro0fjyJEjpqNKVINXmdmIT7ZfxP/+vCx2DCKiBhXo5ojtM/tAaSe78cY2QKvVws/PDwsWLDBdvUY3h4cNbMTTA0IR4lHP4odERBbsnTFtbLoMnThxAitXrkRiYiLi4uIwadIkAMCYMWNETmZ5WIhshL1chg/GtYWNX0RARFZkXEc/9Au3vQkE/23+/Plo3749Bg0aBK1Wi3379tWZBoBujKfMbMy7m87jx/1JYscgIrojvi5KbJ3ZB87Khl+vjGwTjxDZmDlDw9HSU33jDYmIzJREAnx8X3uWIWpQLEQ2Rmknwyf3d4BcynNnRGSZJncLQs9QnhKihsVCZIPa+rvgmQGhYscgIrplzT1UePmuVmLHICvEQmSjnukfivb+LmLHICK6aTKpBAvubw8Hhe1eVUaNh4XIRsllUiy4vwPs5fwSICLL8ETf5ogKdBU7Blkp/jS0YaGearwxqrXYMYiIbig6yBUzB4XdeEOi28RCZOMmdQ3CmA6+YscgIrouV0c7fDkxCnIuQUSNiF9dhLlj26J5M85iTUTmRyIBPnmgA3xcHMSOQlaOhYigspfjm0nRUNrxy4GIzMsTfVugP2ejpibAn4AEAAj3dsI7YyLFjkFEZNIl2A2zh4SLHYNsBAsRmdzfKQD3RvuLHYOICO4qBb6YGAUZJ5GlJsJCRLW8OyYSEd5OYscgIhsmk0rw2fgO8HJWih2FbAgLEdXioJDh+8md4KZSiB2FiGzUK3dFoHfLZmLHIBvDQkR1BLg54utJHWEn46FqImpa93fyx6O9m4sdg2wQCxHVq1tzdw6yJqIm1SnIFe/d3VbsGGSjWIjouiZ0CcSUHsFixyAiG+CnccDCh6Kh4HJCJBJ+5dF/en1ka/Ru6SF2DCKyYo5/jV30UNuLHYVsGAsR/SeZVIIvJ3ZEcw/OZE1EDU8iAT65vwNa+zqLHYVsHAsR3ZCLgx0WT+0MDzWvPCOihvXaiNYYFuktdgwiFiK6OUHuKsRM7QK1vVzsKERkJR7v2xyP9AoROwYRABYiugWRfi749qFoKLjiNBHdoXuj/fHKXa3EjkFkwp9sdEt6hnrg0wc6gLPpE9HtGhDhiQ/H8fJ6Mi8sRHTLRrTzwZuj2ogdg4gsUMdADb6a2BFyHmkmM8OvSLotD/cIxrMDQsWOQUQWJNRTjUVTOsNBIRM7ClEdLER022YNCcfk7kFixyAiCxDk7ohlj3SFxpFXq5J5YiGiO/L26DZ4sFug2DGIyIwFujli5fRu8Hbh6vVkvliI6I5IJBK8OyYSk7qyFBFRXQFuDlj5WDf4ahzEjkL0n1iI6I5JJBK8d3ckJnRhKSKiv/lpHLByejf4sQyRBWAhogYhkUgwd2wkxncOEDsKEZkBP40DVj3WDf6ujmJHIbopLETUYCQSCT4Y1xYPdGIpIrJlvi5KrHqsGwLcWIbIcrAQUYOSSCT48J62HFNEZKNCPFRY/Xh3liGyOBJBEASxQ5B1mrf1Ar7ZnSh2DCJqIm18nbFkWhd4qO3FjkJ0y1iIqFEt3JOID7dcEDsGETWyriFu+OHhTnBS2okdhei2sBBRo/v5WBpeWX8GBiO/1Iis0aBWXvhyYhSUdpyBmiwXCxE1iT/OX8UzK+NQqTOKHYWIGtA9Hf3x0b3tIOOKz2ThWIioyRxPLsAjS46juEIndhQiagDTe4fg1eGtIJGwDJHlYyGiJnUltwyPLDmOpDyt2FGI6DbJpBK8Nao1HuoeLHYUogbDQkRNrrhchyeXx+JgYr7YUYjoFqnt5fhiYhT6h3uKHYWoQbEQkSj0BiNe//UcVh5NFTsKEd0kP40Dfni4E1r5OIsdhajBsRCRqH7cn4S5m+N5BRqRmesU5IpvH4qGO+cYIivFQkSi23UhB8+tPIHSKr3YUYioHvdF++P9sW2hkHNxA7JeLERkFhKuluKJZbFIzOVgayJzoZBJ8drIVpjMwdNkA1iIyGxoq/R4ed0Z/HYqU+woRDbPT+OAryZ1RIcAjdhRiJoECxGZnaWHkvHepnhUGziJI5EY+oU3w2cPdIDGUSF2FKImw0JEZulkWhGeXh6HjKIKsaMQ2QypBJg5KAzPDAjlZItkc1iIyGwVlVdj5uqT2HUxV+woRFbPXaXA5+Oj0Kulh9hRiETBQkRmTRAEfLf3ChZsv8RTaESNpHdLD8y/rz28nJViRyESDQsRWYTzmSWYufokLl4tFTsKkdVQ2knx8rAIPNwjmKfIyOaxEJHFqNIb8PHWi/jxQBL4VUt0ZyL9nPHZAx0Q6ukkdhQis8BCRBbnYGIe5qw5zQHXRLdBKgGe7NcCMwaFwU7GiRaJrmEhIotUUqnDm7+ew/oTGWJHIbIYAW4O+PT+DugU7CZ2FCKzw0JEFu2P81fxxq9nkVlcKXYUIrMlk0owrWcwZg4Og6NCLnYcIrPEQkQWT1ulx8fbLmLpoWRwjVii2iL9nPHhuHaI9HMROwqRWWMhIqtxKq0Ir6w7g/NZJWJHIRKdo0KGmYPCMK1XCGRSXkFGdCMsRGRV9AYjftifhM//SECFziB2HCJR9AtvhnfHRCLAzVHsKEQWg4WIrFJaQTne/u0c/ojPETsKUZPx0zjg5bsiMKq9r9hRiCwOCxFZtf0JeXh303lO6EhWzVEhwxN9W+CxPs2htJOJHYfIIrEQkdUzGAWsPJqKT3dcQr62Wuw4RA1GIgHGdvDDi8Mi4O3CZTeI7gQLEdmMkkodvtiZgCUHU7guGlm86CBXvDGyNdoHaMSOQmQVWIjI5iTnaTFv6wVsPZfNJUDI4gS7O+KFIeEYzXFCRA2KhYhs1tmMYny64xJ2XuDAazJ/fhoHPDcwFPd09IecS24QNTgWIrJ5J1IL8cmOS9iXkCd2FKI6vJzt8Uz/UDzQORAKOYsQUWNhISL6y7HkAizYfhGHrxSIHYUIHmoFnujbAg92C+KVY0RNgIWI6F8OXs7DN3sSecSIROHrosS0XiGY2DWQ644RNSEWIqLrOJdZjO/3XsGm01nQc5E0amQR3k54vG9zjGznCzuOESJqcixERDeQWVSBRfuTsOpYGsqq9GLHISvTK9QDj/Vpjj5hzcSOQmTTWIiIblJJpQ7LD6diycFkZJdUih2HLJidTIK7In3wWJ/mXIWeyEywEBHdIr3BiB3nr2LZkRQcTMznXEZ00wLdHDG+SwDu7xQAD7W92HGI6B9YiIjuwJXcMqw4kop1JzJQwGVBqB5yqQQDW3liUtcg9G7pAYlEInYkIqoHCxFRA6jWG7HtXDZWHUvlUSMCUDOR4gOdAzC+cwA8nbnOGJG5YyEiamCZRRXYeCoTv57MRHxWidhxqAk5KeUYHumDu6P80K25G48GEVkQFiKiRpRwtRQbT2Vi46lMpOSXix2HGoG9XIr+4Z4Y3cEXAyI8OYkikYViISJqIidSC/HryUxsO5eNrGJepWbJlHZS9GzhgRHtfDCkjTfU9pxAkcjSsRARieBcZjH+OJ+DnReu4kxGMcccWQAPtT0GRnhiUGsv9Ar1gIOCR4KIrAkLEZHIckoqsfNCDnbGX8X+y3mo1BnFjkR/ifB2wqBWXhjYyhMdAjQcE0RkxViIiMxIpc6AY8kFOJSYj8NX8nE6vZjLhjQhf1cHdG/ujm7N3dG9hTt8NQ5iRyKiJsJCRGTGtFV6HEsuwOErBTh0JR9nM4phYEFqMD4uypoC1MId3Zu7I8DNUexIRCQSFiIiC1JaqcOptGKczijC6bRinMkoRkZRhdixLIJKIUMbPxe093dBO38N2vtrEOjOAkRENViIiCxcXlkVzqQX41R6Ec6kF+N8VonNX8Wmtpcj1FONdqby44IWzdSQSjkGiIjqx0JEZIXKqvRIzCnD5ZwyJOb+/WdKfrlVjUnyUNsj1FOFUE81QpupEerphFBPNbxdODM0Ed0aFiIiG6IzGJFWUI7MokpkFlcgq6gS2SUVyCyqRNZfn5dW6cWOCaBmDTAvZyX8NA7w0Sjh4+IA37/+9HFRIsDVES6OdmLHJCIrwUJERLWUVelRqK1GcYXO9FFUrqv1eXm1HlU6I6oNRlTraz70RiMMAmAwGiEIgFwmhUImgZ1MavpQyGs+V8ikUCvl0DgooHG0g4uDHVz++lPjUPOnq6OCp7iIqMmwEBEREZHNk4odgIiIiEhsLERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhsHgsRERER2TwWIiIiIrJ5LERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhsHgsRERER2TwWIiIiIrJ5LERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhsHgsRERER2TwWIiIiIrJ5LERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhsHgsRERER2TwWIiIiIrJ5LERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhsHgsRERER2TwWIiIiIrJ5LERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhsHgsRERER2TwWIiIiIrJ5LERERERk81iIiIiIyOaxEBEREZHNYyEiIiIim8dCRERERDaPhYiIiIhs3v8DO1M7ZrCwJ/cAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAH5CAYAAABQ0DBNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACCWUlEQVR4nOzdd3gUVd/G8e9sSSOE3nsxQXqvSq+KoIIURcWu2B59LaCPPBbsFcGCClhARRQpCtKlN0GqdEJvgSQkIWXLzPtHIBAJPcnuJvfnkkszc2bmt2tI7j1z5hzDsiwLEREREclxNl8XICIiIpJfKHiJiIiI5BIFLxEREZFcouAlIiIikksUvERERERyiYKXiIiISC5R8BIRERHJJQpeIiIiIrlEwUtEREQklzh8XYBIXjZixAhGjhyZaZthGISEhFCyZEmaNWvGwIEDqVatmo8qPL+oqChq1KjBlClTfF3KFdm/fz8dOnS45PbffvstzZo1y8GKREQUvERyRYcOHbj22msBME2TpKQktmzZwk8//cTUqVMZPnw4bdu29W2ReUxERASPPfZYpm2bN29m7ty5NG3alKZNm2baV65cudwsT0TyKQUvkVzQsWNHbr311nO2L1iwgEcffZSnnnqKyZMnU6lSJR9UlzdFRETw+OOPZ9o2adKkjOD1730iIrlBY7xEfKhNmzY8+eSTJCcn8+mnn/q6HBERyWEKXiI+NmDAAIKDg5k1axYejyfTvmXLlnHPPffQqFEj6tevT9++ffnjjz8y9rvdbpo1a8b111+PZVnnnHvo0KFERUWxfv36jG2bNm1i0KBBNGvWjLp169KzZ09++OGHLI//N5fLxeeff84NN9xA7dq1adasGY888ggbNmzI1G7FihVERUUxceJExo8fT8eOHalXrx49evRg0qRJWZ77Yq8V0sdtRUVFMXz4cIYNG0b9+vVp1qwZM2bMuGjtF5KSkkLDhg1p27Ztlu/DkCFDiIqKYvfu3Rk1fPjhh8yYMYMbb7yRunXr0qVLF8aMGYNpmuccfzXvuYjkLQpeIj4WGhpKzZo1SU5OZvPmzRnbJ06cyD333MPWrVu54YYb6Nu3L8ePH+fJJ5/k888/B8DpdNKtWzeOHj3K6tWrM53X4/Ewa9YsKleuTN26dYH0W5v9+vVj+fLltGvXjgEDBmCaJi+//DJDhw69YJ1paWkMHDiQDz/8ELvdTv/+/WnZsiWLFy+mf//+zJkz55xjfvjhB15//XXq1atHr169iI+PZ8iQIYwYMSJTu0t5rWf76aefmDFjBv3796d+/frUr1//kt7r8wkNDaVLly4cOnSIv/7665zXPWvWLOrXr0/lypUzti9atIinnnqKChUq0K9fPwDefvttXnjhhUzHX817LiJ5kCUiOebjjz+2IiMjrV9++eWC7Z544gkrMjLSmjt3rmVZlnXo0CGrdu3aVrdu3azY2NiMdikpKVbfvn2tGjVqWFu3brUsy7JWr15tRUZGWq+88kqmcy5YsMCKjIy0RowYYVmWZSUnJ1vNmze3WrRoYe3bty+jndfrtR5//HErMjLS+vPPPzO2R0ZGWj169Mj4euTIkVZkZKQ1ePBgy+12Z2zfuHGjVbduXatx48ZWYmKiZVmWtXz5cisyMtKKjIy0ZsyYkdH22LFjVocOHayaNWta0dHRl/1a9+3bZ0VGRlpRUVHW5s2bL/ieZuWXX36xIiMjrY8//vicfcuWLbMiIyOtoUOHZto+ffp0KzIy0ho3blymGiIjI62vvvoqo93JkyetPn36WJGRkdby5csty7r891xE8j71eIn4gaCgIACSkpIAmDp1Ki6XiyeeeIIiRYpktAsJCeGJJ57ANE1+/fVXABo2bEiFChWYOXMmXq83o+3p22833XQTAPPmzSM2Npb77ruP8uXLZ7Sz2Wz83//9HwC//PLLeWv89ddfCQ0N5cUXX8ThOPNcTq1atbj99ttJSEhg1qxZmY5p2LAhXbt2zfi6WLFiPPTQQ3g8noz6Lue1nlapUiVq1Khx3lqvRLNmzShXrhwzZ87MdMt36tSpOJ1Obrjhhkzty5Urx913353xdVhYGP/5z38AmDZtGnD177mI5D16qlHED5w8eRJI/+UNsHHjRiB93NP27dsztU1OTgZgy5YtGdtuuukmPv30U1auXEmLFi1wuVzMmTOHevXqZTwpefqcmzZtOudWH4Ddbs90zrMlJSWxb98+GjZsSHh4+Dn7GzVqxJgxY845/t9TNgAZtz1Pt73c1wpkCjHZxTAMbrrpJj7//HMWL15M27ZtiY+PZ9GiRbRu3TpTKARo0KBBpgAKUKdOnUz1Xs17LiJ5k4KXiB84cOAAABUqVAAgMTERgB9//PG8x5w4cSLjv3v06MGnn37KjBkzaNGiBQsXLiQhISGjt+vsc/7++++XdM6znQ6GBQsWzHJ/yZIlAUhNTc1y+9lKlCgBnOndu9zXChAcHHzetlfj5ptv5vPPP+e3336jbdu2zJgxA7fbTc+ePc9pW6pUqXO2hYeHExoamvGaruY9F5G8ScFLxMfi4+PZsWMHERERVK9eHTjT8zVnzpyMMHYhVapUoU6dOsycOZP//e9/zJgxA7vdnun22Olzfv3117Ro0eKyaixQoAAAR44cyXJ/QkICAIULF860PS0t7aJtL/e15qQqVapQv3595s6di8vlYsaMGRQqVIh27dqd0zar1+ZyuUhNTc3oHbua91xE8iaN8RLxsZ9++gmPx0O3bt2w2+1A+nI9wDnTNADs3r2bt99+m3nz5mXa3qNHD+Lj41m+fDnz5s2jZcuWFCtWLGP/6XOevv11tvj4eF5//fXzLg8UHh5O+fLl2b17N7GxsefsX7VqFUBGcDwtq/rXrl0LQL169a74teaknj17kpyczJw5c1i9ejVdu3bNGIN3tqzqXbduHZZlnfParuQ9F5G8ScFLxIeWLVvGJ598QlhYGA899FDG9h49emC32/noo4+IiYnJ2O7xeHjttdcYM2YM8fHxmc5144034nA4eOedd0hOTqZHjx6Z9nfq1Inw8HC++uoroqOjM+179913+fbbb9m7d+95a73llltITU3ljTfeyDT4fNOmTYwbN46IiAjat2+f6ZjZs2dnmp4hJiaGzz77jLCwMLp163bFrzUn3XjjjTidTt577z08Hk+WtxkhPWRNnz494+ukpCTef/99bDYbt9xyC3D177mI5D261SiSC+bMmZMxjuv0Wo3//PMPf/31FyEhIXz44YeZ1gqsXLkyzz77LG+99Rbdu3enffv2FCpUiIULF7Jz507atWt3TrAqVqwYLVu2ZOHChYSFhdGxY8dM+yMiIhg2bBjPPPMMt9xyCx07dqRkyZKsWrWK9evXU6dOHe69997zvoYHHniAxYsXM23aNLZu3Urz5s05fvw4c+bMwbIsPvzww3MG3oeEhDBw4EC6du1KeHg4c+bM4dixY7z22msZY72u5LXmpEKFCtG+fXtmzpxJhQoVaNSoUZbtChYsyNNPP82MGTMoVaoUf/75J/v27WPQoEEZT1xe7XsuInmPgpdILpg7dy5z587N+Do0NJRy5coxYMAA7r77bipWrHjOMffccw9Vq1ZlzJgxzJo1C9M0qVChAoMHD+aOO+4454k6SO89WrhwIe3bt88YX3S2bt26Ubp0aUaNGsWiRYtISUmhXLlyDBo0iPvuuy9jLFdWgoOD+frrrxk9ejTTpk3jhx9+ICIignbt2vHQQw9Rs2bNc465+eabKVWqFOPHjyc+Pp5rr72W119/nTZt2lz1a81JXbt2ZebMmRcMfE2bNqVDhw588cUXLFy4kGrVqvHOO++c00N2Ne+5iOQ9hmVpzQoRyV4rVqzgrrvu4q677uLFF1/0dTmX7YMPPmDUqFHMmjXrnIXL9+/fT4cOHejQoYPW1xSRy6YxXiIiZzl8+DA///wzzZo1Oyd0iYhcLd1qFBEhfYb6r7/+mr1795KUlMTjjz/u65JEJA9S8BIRAUqXLs2BAwcICQnhueeeo0mTJr4uSUTyII3xEhEREcklGuMlIiIikksUvERERERyiYKXiIiISC5R8BIRERHJJQpeIiIiIrlEwUtEREQklyh4iYiIiOQSBS8RERGRXKLgJSIiIpJLFLxEREREcomCl4iIiEguUfASERERySUKXiIiIiK5RMFLREREJJcoeImIiIjkEgUvERERkVyi4CUiIiKSSxS8RERERHKJgpeIiIhILlHwEhEREcklCl4iIiIiuUTBS0RERCSXKHiJiIiI5BIFLxEREZFcouAlIiIikksUvERERERyiYKXiIiISC5R8BIRERHJJQpeIiIiIrlEwUtEREQklyh4iYiIiOQSBS8RERGRXKLgJSIiIpJLFLxEREREcomCl4iIiEguUfASERERySUKXiIiIiK5RMFLREREJJcoeImIiIjkEgUvERERkVyi4CUiIiKSSxS8RERERHKJgpeIiIhILlHwEhEREcklCl4iIiIiuUTBS0RERCSXKHiJiIiI5BIFLxEREZFcouAlIiIikkscvi5ARAKLaVm4PCZe08IAHHYbQQ4bpmWR7PJiWRamBVgWFnDqP7FOfY0FJhan/sm0zzAgPNhBeLADwzBwe03cXhPLSt/nsKVfS0QkUCl4iQgAHq9JmscEwGEzCHLYMAyDpDQP8ckuYhLTOJyQyoG4FGIS04hJSiMmMY1jp/4de9KVHriygc2AwmFBFC0QRLECQRQLD6JogWCKFQiiRMFgSkUEU7JgCEULBFE4zEmBYAe2U0HN5TGx2wxCnPbsKUZEJBsZlmVl049KEQkEpwOWw2YQ7LRzLCmNHUeT2LD/BDtjkjiSkEZMUmpGmHJ7/f9HhGFA4VAnxcODqVy8ANVKFKBG6QiuLRNBxaJhhDhtpLi9AIQ67RiG4eOKRSS/UvASycNcHi8e0yLUaScx1cPmwwms33eCrUcS2X4kkR1Hkzjp8vq6zBxXIjyYaiULUL1kQWqXjaBBxSJUKV4Amw3S3CbBDhsOu25hikjOU/ASySM8XhOX1yQsyEHsSRcbD5zgrz2xbDyQwIYDJ4hJTPN1iX7FZkDlYgWoWTaCWmUjaFipCNeWjiAsyJ7xPoqIZDcFL5EAZZ0azB4aZGd/bApzNh9h4fYYNuw/wfGTLl+XF7CqlwznuurF6XBtSZpULorNMLAsi2CNGRORbKDgJRJAUt1ebIZBmsfL4h3HmLv5KIu2x3AkQb1ZOcFuM6hbrhCtrilOx2tLUbtsBG6vhcNu4NStSRG5AgpeIn7s9O3DYIed9fvjmbUpvVfrn0MJ6G9u7gtx2mhSuSjXnwpilYsXIMXlJcRpx27TgH0RuTgFLxE/cvbtw0PxqczZfIT5W4+yMjqW5HwwCD7QFAlz0qJaMdpElqBtVEmKhwfh8eq2pIicn4KXiB9IcXkIcthZses4k9ceZPH2GA6eSPV1WXKZqpcM59YG5ejTuAIFQx3YDUNPS4pIJgpeIj7i8pjYDNgXl8K45XuYuvYgMUkaq5UXGAY0rlSE2xpVoHu9MhgYBDtt2DR/mEi+p+AlkotM08J1ahmcn1fvZ+Jf+/nnUIKvy5IcFGS30a5GCfo2qUjra4prqgqRfE7BSyQXJLs8BNlt/Lk1hu9X7mXhthg82bW+jgSMQqFObqhTmv5NK1KrbCHcXlNLG4nkMwpeIjkkze3FbjfYfiSJ8cv3MG39IU6kuH1dlviJ8kVC6Vm/LP2bVqRURAiWhRYAF8kHFLxEspFlWbg8JiddXias2svPq/ezM+akr8sSP1erbAQDmleid8PyeC1LvWAieZiCl0g28JoWXtNi25FEPpyzjflbjqI7iXK5ihYI4p6Wlbn3uirYDIPQIAUwkbxGwUvkKni8JgB/7Ynjg9nbWBkd6+OKJC8IC7LTp3EFHmtfnQJBDgUwkTxEwUvkCpyeCmL+1qN8NGc7mw7qyUTJfg6bwY11y/CfjpGULRyC02bDphnyRQKagpfIZUhze7HbDKasPcjI+TuIPqbxW5I7Wl9TnP90jKRO+UIYoIlZRQKUgpfIJTi9OPX4FXsYtWAXhxM0q7z4Rt3yhXi8fXXa1yiJ19STkCKBRsFL5AJSXF5My2LM4mjGLIkmLlnTQYh/qFQsjEfaVKNXo/KYptaHFAkUCl4iWUhxe0lze/lk/g6+X7GXk1qgWvxU8fAgnuhwDf2bVgTAqVuQIn5NwUvkLGluLxbw8dztjF4cTZrH9HVJIpekcrEwhnavxfWRxbEbhgbhi/gpBS8RzkwLMenvA7zzxxaOJbl8XJHIlWlUqQjDbq5NleIFNBGriB9S8JJ8L83jZf2+E7w0ZSNbDif6uhyRbHFjnTIMvakmEaFOQhXARPyGgpfkW6luL8dPunhp8kbmbTnq63JEsl2Q3ca911XmqY6RGAYEORTARHxNwUvyHZfHxMLiw9nbGL04GrdXfwUkbysVEczLN9WiY81SGv8l4mMKXpJvWJaF22uxcHsML03eyKETmotL8pfmVYvy1q11KV0oROO/RHxEwUvyhVS3l7hkF8//vJ6F24/5uhwRn7HbDO5qUYnnutTAZoNg3X4UyVUKXpKnub0mlgWfzN/B5wt2anoIkVOKhwfxTu+6tKpeXOFLJBcpeEmeler2suNoEoPGr2FvbLKvyxHxS70blWfYzbWx2wxNviqSCxS8JM8xTQuvZfHJ/B2MmLcDr6lvcZELKV8klE9ub0hU6YIa+yWSwxS8JE9JdXuJT3bzyLjV/L0v3tfliAQMmwEPta7G050jsRkGdj35KJIjFLwkz3B5TKZvOMSLv27Q2ooiV+jaMgX5fEAjSkXoyUeRnKDgJQHP5THxmCbPTlzP7xsO+bockYAX7LDxfNca3NmiEg6bgWGo90skuyh4SUBLdXvZfCiBQePXaF4ukWzWoloxRvRvQMFgB8Hq/RLJFgpeEpC8polpwQeztzFqwU40fl4kZ0SEOHjjljp0rlWaIIeeehS5WgpeEnBS3V6OJ7l4aNxfbDyQ4OtyRPKFG+uU4Z3edXHabQpgIldBwUsCistj8uvf+3l56j+kuDWAXiQ3lYoIZtSdjahROkID70WukIKXBASvaeLyWjz5w9/M+ueIr8sRybecdoO3bq1L93plNOO9yBVQ8BK/5/J4OZHi5vYvV7D9aJKvyxER4P7rqvB8txqa7V7kMil4iV9LdXvZGZPE3WNWcizJ5etyROQs7aJK8tmAhjjtNk24KnKJFLzEb6W6vSzYepQnflyrxa1F/NQ1JcMZd38zioQ5CdKtR5GLUvASv+TymHy5aBfvzdqKvkNF/FvRAkGMHdhEaz2KXAIFL/ErlmXh8Vo8P2k9k9Yc8HU5InKJnHaDd3rV5Ya6GnQvciEKXuI3PF6TVI/JvV+vYmV0rK/LEZEr8GDrqjzbJUqD7kXOQ8FL/EKax8uxRBe3f7WcPceTfV2OiFyF9jVK8ukdDXHaDew2BTCRsyl4ic+lur1sOpjAvV+v4kSK29fliEg2iCpVkO/ua0phDboXyUTBS3wqze1l+oZDPPfLetxefSuK5CXFCgTx9b1NuaZkuAbdi5yi4CU+4/aafDh7G5/+udPXpYhIDgl12hl3fzNqldUyQyKg4CU+4vaavDR5Iz+u2ufrUkQkh4U4bYy/v7nClwigUY+S61wek/9N3aTQJZJPpLpN7vhqORsPnCBVi9tLPqfgJbnK5TEZ9vs/fL9ir69LEZFclOo2GTB6BRv2K3xJ/qbgJbnG5TF5c8Zmvl22x9eliIgPnA5f6/fHK3xJvqXgJbnC5TF5Z+YWxi7Z7etSRMSH0jwmd45eyTqFL8mnFLwkx7k8Jh/M3spXi6J9XYqI+IE0j8ldo1eydp/Cl+Q/Cl6So1weLx/P3c7nC3b5uhQR8SNpHpO7x6zk770KX5K/KHhJjknzePlk/g5Gzt/h61JExA+leUwGjl3Jmr1xCl+Sbyh4SY5I83gZtWAXw+cqdInI+aV5TO4Zu4o1exS+JH9Q8JJsl+bx8tWiaD6Yvc3XpYhIAEjzmNzz9Sr+UviSfEDBS7JVmsfL10t28+7Mrb4uRUQCSJrH5N6xq9h8KIE0hS/JwxS8JNukur38uHIfb87Y4utSRCQAubwmd49dydHENDxe09fliOQIBS/JFqluL8t3HeeVaZt8XYqIBLCEFA/9v1xOssuLaWopYcl7FLzkqrm9Jvtik3lk3Br0c1JErtb+uBTuHL0Cj6leL8l7FLzkqnhNk8RUDwNGryBF4zJEJJus23+Cx77/G7dH4UvyFgUvuSpur8WAr1ZwJCHN16WISB4z658jvDljM2kefaiTvEPBS66Y22syaPwa/jmU4OtSRCSPGrNkN7+s3q9pJiTPUPCSK5Lm8fL2jC3M23LU16WISB43dMomNh1MUM+X5AkKXnLZUt1e/th4mK8Wa9FrEcl5HtPi/m9WEZ/sxqsB9xLgFLzksri9JnuOn+S5n9f7uhQRyUfikt3cNXolbq8enZbApuAll8yyLFJcXgaOXUWanjQSkVy29UgiT/74N25NrioBTMFLLpnHtLj/2784dCLV16WISD41c9MRPpm/Q8sKScBS8JJLkubx8tpv/7AyOtbXpYhIPvfRnO0s2XlM4UsCkoKXXFSq28v09Yf4dtkeX5ciIgLA0z+tI9ml4CWBR8FLLsg0LY4lpTHk1w2+LkVEJEN8spvHf9B4Lwk8Cl5yQV7L4tHxa0h164ebiPiXxTuOMX7FHk2uKgFFwUvOK9Xt5fMFO1m3/4SvSxERydKb07dwJCEVr6lpJiQwKHhJljymyd7YZIbP2e7rUkREzivNY/LwuNUKXhIwFLwkS6YJj4xbg0c/zETEz20+lMi7M7folqMEBAUvOUeq28vbf2xmZ0ySr0sREbkkXy2OZtPBBFya3Fn8nIKXZOL2mmw6mMCYJbt9XYqIyCWzLHjs+zV4tJaj+DkFL8nEY1o8/v0aLN1hFJEAc+hEKs//vF69XuLXFLwkQ5rHy39/3cBBLQkkIgFq2vpDzP7nsGa1F7+l4CVAeuhauuM4v6w54OtSRESuypBJG0hM9WCp6178kIKXAJDmNvm/iet8XYaIyFVLSPXw6Pd6Klv8k4KX4PKkh67Yky5flyIiki1WRMcydsluTTEhfkfBK59LdXv5ff1BZv9zxNeliIhkqw9nb+NkmsfXZYhkouCVz7k8JkOnbPJ1GSIi2S7F7eXlqZs00F78ioJXPpbq9vLmjM0k6hOhiORR09YfYtuRJC0pJH5DwSufMk2LQydSmbBqn69LERHJUYMnrcfUE47iJxS88imPafHfyRvQh0ARyes2HUxgytqDuuUofkHBKx9ye01WRB9nyY7jvi5FRCRXvDVjM5rPXvyBglc+ZAD/04B6EclHjiW5+GDWVlLU6yU+puCVz6S6vXy/ci+7jp30dSkiIrnq66W7NV+h+JyCVz7jNS3en7XN12WIiOQ6t9fixV83aBFt8SkFr3wk1e3lvVlbOZHi9nUpIiI+8efWGP7aHYvbq/AlvqHglY8cS0rju2V7fF2GiIhP/XfyRl+XIPmYglc+kebxMnTKJi0aKyL53q5jJ/lu2R6t4yg+oeCVD3i8Juv3nWDelqO+LkVExC98NGebbjeKTyh45RPqWhcROSMh1cMb0zer10tynYJXHpfq9jJpzQG2Hkn0dSkiIn7l59X7SXZprVrJXQpeeZzdZvDurK2+LkNExO+4vRYj5+0gxaVeL8k9Cl55mMtjMmXtQWIS03xdioiIX/px1T4toC25SsErD7PZ4LM/d/i6DBERv5Xs8jJmcbSWEpJco+CVR3lNi6U7jrMzRksDiYhcyJgl0dgNw9dlSD6h4JVHmabFiHnbfV2GiIjfi0t28+OqvaSp10tygYJXHmRZFjtikli1O87XpYiIBIRRC3Zht6nXS3KeglcelOYxGT5XvV0iIpfqQHwK0zcc0qSqkuMuK3gNHjyYqKioTH9q165Nq1atePjhh1m+fHlO1XnJ9u/fT1RUFO+9956vS/GZuGQXszYd9nUZIiIBZcS8HajPS3Ka40oOGjJkCEWKFAEgLS2Nw4cPM3XqVAYOHMhLL73EHXfcka1FyqVLcXn5ZN4OtCSjiMjl2X40iWU7j9OyenHddpQcc0XBq2PHjpQvXz7Ttvvvv597772X119/nQYNGlCzZs1sKVAuj8c0mbh6v6/LEBEJSB/O2U6zqsUUvCTHZNsYr7CwMN566y0sy+KLL77IrtPKZUh1exm9OJo0j8YoiIhciTV749hyOAFTtw0kh2Tr4PrKlSvToEEDFi9ejNeb/ljukSNHGDJkCC1btqR27dp0796d8ePHZxyzfv16oqKi+Oyzz84536effkpUVBQ7d+4E0p/W++abb7jxxhupU6cOrVq14sUXX+TYsWMXrW3BggXccccd1K9fnwYNGjBw4ED++uuvTG0GDx5M69at2bhxI3379qVu3bq0b9+ezz77LOP1nJaYmMjrr79OmzZtqF27Np06deKTTz7B7XZntFmxYgVRUVFMnDiRW2+9lTp16vDAAw9c+ht6meyGwTdLd+fY+UVE8oMPZm/TIHvJMdn+VGNkZCSJiYns37+fmJgY+vTpw59//km/fv0YMmQIFStW5NVXX2XYsGEA1K1bl8qVKzN9+vRzzvX7779Tq1YtqlWrBsBLL73Em2++Sc2aNXnhhRe45ZZbmD59On379iUu7vxTJ0yYMIEHH3yQhIQEHn/8cR5++GH27dvH3XffzZw5czK1TUpK4t5776VEiRI8//zzREVF8dFHH/Hf//43o01ycjIDBgzg559/5oYbbuDFF1+kYcOGjBgxgieffBLrX8tPvPHGG9SoUYPBgwdz4403XvF7eyEuj5eJq/cRl+y+eGMRETmvP7fGcOhEqq/LkDzqisZ4XUihQoUAiI+P5/PPPycpKYkpU6ZkjAm74447eOONN/jmm2/o3bs3NWrUoGfPngwfPpwdO3ZQvXp1ALZs2cKOHTsYMmQIAKtWrWLixIkMGTKEgQMHZlyvW7du3HbbbYwaNYrBgwefU098fDxvvfUWkZGR/PzzzwQHBwPQr18/brrpJl5++WVat25NUFAQACdPnqR37968/vrrGfU+/fTTTJo0ibvvvpsaNWowZswYtm/fzo8//kjdunUB6N+/P7Vq1eL1119n/vz5tG/fPqOGGjVq8MYbb2Tn23wOm2Hw+YJdOXoNEZH84pP5O3ilZy3CgrL916Tkc9ne4+XxeAAwDIPZs2fToEEDwsLCiI2NzfjTuXNnAP78808AevTogWEY/P777xnnmT59Ona7ne7duwMwc+ZMANq3b5/pXGXKlOGaa65h/vz5WdazdOlSkpOTuffeezNCF6QHxAEDBhATE8Pff/+d6ZhHHnkk09f33HMPAHPnzs2opWrVqpQvXz5TLe3atcMwjHNqad68+aW/gVfAa1os2BbD3tjkHL2OiEh+8fuGQ1pGSHJEtkf5+Ph4IH08VmJiIosWLaJFixZZtj148CAA5cuXp1GjRkyfPp0nn3wSSL/N2KJFC4oXLw7Anj17AOjUqVOW53I6nVlu378//Qm/qlWrnrPv9LYDBw5kbAsNDT3nic0qVapkard3715SU1Mv+rpOO/0acorHazJmSXSOXkNEJD9Jdnn5fcMhetQri8OuucYl+2R78Nq8eTOFChWiTJkyQHoP1Z133pll25IlS2b8d48ePRg6dCj//PMPLpeL/fv3Z4QwANM0CQ4O5vPPP7+iuv497ursbWeHNofj3Lfk9MD60/u8Xi/16tXjP//5T5bXioiIyPS1zZazf2lPurws23k8R68hIpLfjF+xl+51y/q6DMljsjV4RUdHs2nTJm655RaKFi1KaGgoLpeLli1bZmoXGxvLqlWrqFSpUsa2bt26MWzYMGbNmkVKSgphYWF07NgxY3+5cuVYvHgx1atXzxTYAObNm0fhwoWzrOl079WuXbuoX79+pn27dqWPiTodEiH9acW4uLiMCWLhTG/b6XrLlSvHiRMnznldaWlpzJ07l9KlS5/3PcpuaW4vE1bt1YSpIiLZbPWeOI4lpVG2cKivS5E8JNu6YtLS0hg6dCgOh4P77rsPh8NBmzZtWLp0KWvXrs3U9uOPP+aJJ55gx44dGdsiIiJo164d8+bNY/bs2XTq1ImwsLCM/R06dADSp5g429q1axk0aBDffPNNlnW1bNmS0NBQxo4dS1paWsb2xMRExo8fT5EiRahXr16mY/59rq+++gq73Z5xm7NDhw7s3r37nCcxv/32W5566imWLVt2obcqW9ntBhP/0oSpIiI54dtlu0lxeS/eUOQSXVGP15w5czJ6hFwuFwcOHOD3339n3759vPzyy1xzzTUAPPPMM6xYsYKBAwfSv39/KleuzPLly5k+fTpt27bl+uuvz3TeHj168OijjwLw6quvZtrXpk0bOnfuzA8//MChQ4do3bo1x48fZ9y4cURERGS6LXm2woUL8+yzz/Lqq6/Su3dvbr75ZrxeLxMnTuTYsWN88MEH54wPGzNmDEeOHKF27dosWLCABQsW8PDDD1OxYkUAHnroIWbPns2zzz7LihUrqFmzJps2bWLixInUrl2bW2+99Ure1iuy40gSu46dzLXriYjkJ5PWHODZLjV8XYbkIVcUvN58880zJ3A4KFasGPXr1+fNN9+kcePGGfsqVKjAxIkT+fjjj5kyZQqJiYmULVuWxx9/nPvvv/+csU9t2rShcOHCOJ3OLAeuf/jhh4wZM4bJkyfz5ptvUrhwYZo3b86TTz6Z5eD50+644w5KlSrFV199xccff0xQUBD16tU7p97TxowZw+uvv85vv/1GxYoVee211+jTp0/G/kKFCjFhwgQ+/vhj5s2bxy+//EKpUqW46667eOSRRwgNzZ1u6WSXh3HL9+TKtURE8qOjiWks33WcltWKYegpR8kGhpXVqPN8avDgwfz666+sX78+09QT/srjNWk0bA4nUjRpqohITrmpbhne6V2XUM3pJdlAz8gGKMuyWLj9mEKXiEgOm7P5KPYcfjpd8g99JwWoFLeXn1fv83UZIiJ5Xorby9zNR/Dq8XHJBgpeAcphszF/S4yvyxARyRd+XrNfC2dLttAYrwBkWhaz/znCQ9+t9nUpIiL5gtNusHZoZwoEa5yXXB31eAWgNLfJpDUHLt5QRESyhdtrMX3DITzq9ZKrpOAVgGwG/Ln1qK/LEBHJVyatOaBxXnLVFLwCjGlazN1ylDSPPnWJiOSmFdHH9bNXrpqCV4BJ85hMWqMlgkREcptpwaLtMWhotFwNBa8A47AbLNp+zNdliIjkS/O2HCVZazfKVVDwCjAbD5xQV7eIiI8s3nGM0CC7r8uQAKbgFUBS3V7mbNagehERXzmSkMbB+BRflyEBTMErgBgGLNup24wiIr40d/NRTSshV0zBK5BYsH7/CV9XISKSry3YFoNLwUuukIJXAFmzNw6P5pAREfGpFbuOE+zQOC+5MgpeASLFpfFdIiL+4KTLy+ZDCb4uQwKUgleAcNgNlu087usyREQEmPXPYdLcmlZCLp9W+wwQLo/J5sMB/gkr7SSOzTOwHdoIaSchNAJvufp4a3QBR9BZ7ZJwbP4jvZ07BSu8BN7KLTCrtADj0j4rGHH7sG+dje3YLvCkQVhhvGXr4a3RCRzBZxqaXuwbpmDftxpsDrzlG+Ct1R3smf9q2KKX4tgwFVfnFyAkIjveDREJYIu3H+PRdtV9XYYEIAWvALF813ECerJkTxrOhSOwJR3FLF4ds3x5bLG7cWyfj+14NO7rHwWbHdISCfpzOEZyLGaRipjlGmA7sR/nul/wHtuJp8md6Y93XoARsx3n0i8AMMvWxQophO34Thzb52E7th339Y+B3QmAfeciHLsW4y1bDxzB2HcuAsOGt06PMyf0unFsmY23aiuFLhEBYN3+E2jIrVwJBa8AkOzyMH9LYI/vskcvw5Z0FE+16/HWvQUAr2XhWD0e+7412PatwazUBMfG3zCSY/FUvS69nWHgBewbp+HYPh+zVA3MSk0veC3H2l/AsnC3fhyraKUz11o7Efvu5dh3LcF7TVsAbHtWYJaqgafZ3enH2uzYdy/LFLzs0UvBk4b3mvbZ/8aISEDymhYro2NpE1nC16VIgNEYrwAQ5LCxNMDHdxlxewEwKzU7a6OBt1JzAGxxe8D0Yju4HssZln6776yeLe+1XbEcwdh3LLjwdRIOp/eqlamdEbpOX8tTo3P6tY5sObM5ORYzomzG12bhchieNEhLSt/gScO+dS7e6q0huMAVvXYRyZvm/HOEZJfH12VIgFHwCgCJqR52HTvp6zKuTlB6aDGS4zJtNlLT5yWzggqA6ySGJw2rUJnMY74A7E6s8BIYCYfBnXrey1jOEDy1umfdK2Y71cHrSTuzzRmK4T3zteFOxcIAR0j6ZXcuBMvEW73tJb5QEckvFu84RrBDv0bl8ug7xs9ZlsWSHYE/W723UlMsmx3HhskYx6PB48KI2YFj429YzhC8lZqlj/EC8J7nE6Q7FQMLIyUu6/0AoYXxRrbHLF3znF22gxsAsCJKZ2wzi1bCdmB9eqBLjsO2dxVWkfLpg+tdKdi3/4n3mnbgDLni1y4ieVP0sZPEJ7t9XYYEGI3x8nPJLi8Ltsb4uoyrZhWpgLvVwzhXfUfQwhFntocWwd36CShQNP3rsKIYJw7AyeNQoFhGOyPhMMbJU7dbL9DjdV6piTg2/wGAt3LzjM3ea7thW/QpQXPfSb++MwR3iwcBsG+fn/6kY7Xrznoh5iU/WSkied/qPXF0rlX64g1FTlHw8nOhTjvLdgX2+C4A0hJxbJoOqYl4S9fCCi+BLX4ftmM7cfw9EXeL+yEoFM81bXGum4Rz+Wg89W/DKlQWI/4Ajr9/Sn8S0evish/vdKfgXPYlRloinmrXZxr7ZUWUxtXh2fSpK7DSe8pCC0NaIvadC/HWvAEcwdh2r8Dxz3RIS8IqUR13w34QViRb3yIRCTzr9p+gTWQJgp2ayV4ujYKXn0v1eNkfl+LrMq6ac9U4bLHRuJvchVm+PkD604o7FuDYMAXH2p/wNL0bs0orPEkx2HcuztQz5q3QEKtE9fQnDP89/utC0pJwLv0CW/x+vKVr4q3d49w2IQXT5wg7i33rXAgKw1ulJUbCYRx//4S3aiusUtdi3zgN51/jcbd+7AreCRHJS7YeTsBjWgRfvKkIoODl93YH+qB6gJR4bDHbMYtVzQhdp3mrt8G2ezm2A+vTbyE6Q/DWvQWzUjNsMdvBsjCLV8MqUgHHim8AsILDL+26SccIWjoK4+RxvKVr4Wl695lxZBep1x69FE/dm8HuwLZ7BQQVwFv35vTbjJYX5/IxGAmHsCLKXNZbISJ5y5bDiYSqt0sug4KXH7Msiw0HAny2esBIjgfAKlgqy/1WwdLYEo9gpJ7AOjWI3SpUFm+hspna2eL3pe8PLXzxa8YfwLl0FEZaEt6KTfA06HNpoQtwbJkFoYUypr4wTsZgFSiaMbbLCk+ft8dIOq7gJZLP7Y9LweU1CbnEny8iGiXsx1LdXrYE+jJBgBVSEAAjKeuHBIyTMVgYWMHhOFZ9R9CMl9MHsZ/dJn5/+pxbJaMufsGkGJxL0kOXp3obPA37XXLoIukYtj0r0+f8OnWMYZmZ6zn91OWFJ9AXkXwiOi/cmZBco+Dlxyxg25FEX5dx9QoUwyxcHuPYTmwHN2baZdu9HNuJg1iloiCoAFZ4SYzUBGz71pxp5HHhWP8rwMVnj7dMnKvGYbiS0mfJr9PzoksMnc2xZSZWgeKYFRplbDPDS2AkHgV3+lg7I25P+qXCNWO1iMD6/fFYAb2mm+Qm3Wr0Y6FOO9uOJPm6jGzhadgX56JPcawYi1nm1FONCYewHdmCFRKBu14vIH3Ml33vKhxrJmAe3YYVHI790AaMk8fxXNsVq0iFTOe1n54i4tquANgObky/JWlzpK+9eGr/2ayQCMwqLc/ZbiQcxrZvzan1IM98JjErNsW+awnORZ9iFq+Kfc9KzJKR5711KiL5y8YDCdxUz0tYkH6lysXpu8SPpbi8xCSmXbxhALAKlcPV9ikcW2ZhO7oVDv8DwQXxVm6O59quZxafdobgav04jk2/YYvZBp40rIgyeGrdhFmu7jnndWyZBZwJXsbxnen/Nj04ts7JshazUNksg5d98wysQmUwy9XLXHvhcnia3Ilj4zTs0cswS0Tiadjnit8LEclbth5JxHYZPeuSvxmW+kf91j8HT3DDx4t9XYaIiFxARKiD9f/r4usyJEBojJefyitPNIqI5HUJKR7iTrp8XYYECAUvP5XqNtl8SMFLRCQQbM0LD0JJrlDw8ltW3niiUUQkH1i3Lx6P17x4Q8n3FLz8VGiQg+1H88YTjSIied3mQ4mkeRS85OIUvPxUcponzzzRKCKS1209kkCQQ79S5eL0XeKnoo9rJmQRkUCx8+hJTSkhl0TByw9ZlsWG/Sd8XYaIiFwil9fkRIrb12VIAFDw8kOpbq8G1ouIBBhNKSGXQsHLD3ktOKrxXSIiASUmST+35eIUvPyQzYBYfXISEQkoh0+k+roECQAKXn7IYbMRl6zgJSISSA6dSMFrakoJuTAFLz8U5LCpx0tEJMAcS3Lh8mj5Y7kwBS8/FZ+sp2NERALJsaQ0TEvBSy5MwcsPpbm9mgFZRCTAHE9yoam85GIUvPxQYqrH1yWIiMhlOpaUhsOmX6tyYfoO8UPxmoRPRCTgHE9yadkguSh9h/ih4yc1F4yISKCJTXZhaYyXXISClx/S4tgiIoHHa1qcTNNQEbkwBS8/Y1kWRxM0CZ+ISCCK0xPpchEKXn7G5TU5flJ/cUVEAtExLRskF6Hg5Wc8XksLrYqIBCitsysXo+Dlh2K1XJCISEA6GJ+iAfZyQQpefsYwUI+XiEiASkrz4DUVvOT8FLz8jNNu03JBIiIByjQtFLvkQhS8/IxhgNur5YJERAKRx7TQnUa5EAUvP2NgaJFVEZEA5TUtjfGSC1Lw8kP6KysiEpi8utUoF6Hg5WcMUDe1iEiA8qjHSy5CwcvfGOhWo4hIgFKPl1yMw9cFSGaGrwsQyWG/P34dRQoEkeL24vJ48Xj1ayqnxMUe56dvvmTNiiWciIslvGAEdRo2pd/ABylVttxlncvr9fLfJx9g++ZN/Dx3xb/2efj6s+EsnD0DZ1AQrdp1YsD9j+IMCsrUbta0SXzz+XBGfjeJIkWLXfXr80fFwoOx6Qe5XICCl58xDEO3GiVPq14sCIdpYYQ4sIWEn7PffeAgabujce/Zi+nSLOBX6nhSEv/95huOJCTQpHJlrqlahb3Hj7N47h+sW/InX959NxWKFr3k832/YgXbN28CoOycyZn2/bByJTPmzqVdjRqEBQUxY9IECu2P5rH27TPapHk8/Dr6c3rXr0+tNYuy5TX6o5AaNQiqWxec+vUqWTMs3Yz2Oy3fnMvBE1ooW/KmwmEO5j91HaGhdo6nHGNG9B8UcBbgmiLXUCG4NIUdBQkKLQA2G57jx3FFR5O6ZSuunTtx7Y7GFR2N52iMr1+G3/vMMpkJ3INBT+NMF8yflsVHWDQBXjQubbTJIcviSSxOT+08+V/HPW6ZlACGntr+mWWyEPjhrHZTLYsfsfgcgwgj73YJFblzACWffhpbaKivSxE/pUjuZ0zLwqZ+asnD4pM9NHj9T74Z2IjrIkszsPZAZu6eybMLn+VYyjEAbNioWawmTUo3oWaJmlSp1oQyji6UcIZjDw3FSkvDffAAadt3kLZ1G2nR6YHMtXs3Vqo+tAAsBwoBN/1re1vD4EfL4m9O/by5SAiyLIuRWBQlfVDwwSzaHAGanPV1FQxmYpFgWUQYBimWxS9Y3AR5OnQBGDa7r0sQP6fg5WdM0yLIrmceJO+7++vVPNauOv/XoQqdKnWiY8UOfLLuU7775zs8poeNxzey8fjGc46LCIqgWZlm1CtRj8g6kVRq2oPijkIEhYRhcwbhiY3FtXs3aVu2kLZzJ67o3aRFR+M5fDjfPDLstSx6Y2CHLIOVE/AAXi7+hNVMYBPwGgajzzNsPBw4O+4mnzrv6T6f3wAT6JkfRrHa7ekzYYuch4KXnzEtCHIoeEn+MHL+Dtbtj2fsgDrY7XYG1XmI/lH9eHX5ayw+sDjLYxJcCczeM5vZe2afsy+ySCRNSjehdrHaVO1cj7LODhR3FsAeEobl8eA+dAjXjh3pty6jozNuXZonk3P6peYqu2Gc09N12n7L4gBQGnBeJCDEWBbfYNERqGMY5w2ukcBSoJtlEQLMw6LaqfMnWRaTsbgVg7B8EEgMu03BSy5IwcvPmJaFUz1eko8s2n6MVu8vZcajzShiJFEmNprh7Yaz+shqXlv+GvsS913yubbFbWNb3LZztoc5wmhSugkNSjYgKiqKSg1uoLijEMHBYdiCg/GcOIFrzx7Stm7DtWNHxq1L94EDYOadJbxMy+ILLEyg8yX0Pn1GepAaeJG2d2DwXyweP9UjFgYMPXXMZCycwI3/quNitzgDlm41ykUoePkZy0LBS/KdIwlpNH57IT890IxG5RsSNPNFGje+lyk9p/Dd5u/4fN3npHhSrvj8yZ5kFuxfwIL9C87ZV6lgJZqWaUqd4nWo1iaS8p1aUdQZjiO0AJgm7sOHSdu5i7QtW3BF7yItend6L1lCwtW85FxnWRafYbEeqM65Y7/+bb5lsQZ4DoPwi4SkCobBcAtWkn5LsTFQ3DCItyx+Iz2YhRgGcyyLcVgkALUti8cxKJHHApihW41yEXqq0c8kuzzc+/Uqlu+K9XUpIj7xwg01eKBVBVjwLkbsLlJvfJdUw8ZbK9/i9+jfc62OEFsIDUo3oGHJhtQoWoPKBSpSwlGIkKAC2ENC8CYm4tq3L31w//btZ25d7tsPHk+u1XkpvJbFJ1jMA0oBb2JQ9ALhIN5K772qBQw+68nE/1gmuzn3qcbzGW2ZLAU+x+AQ8CQWNwANMfgGi4LA65d4rkBR4umnKXbfvekBLBu53W7Gjx/PtGnT2LVrF5ZlUbZsWdq0acMDDzxA0bOmBrEsi/3791OhQoVsu35UVBQ33HADH374Ybad899yom5/pB4vP6MeL8nv3pi+hb/3xjOyz9PYds0n5MPahHT4H6+0/B931byTl5e9wubYzTleR6qZyrKDy1h2cNk5+8qElaFZ2WbULV6X6i2rU6FdU0o5wnGGFgDAHRODa9epXrJd0aTt2oUrOhpvXFyO1/1vaZbFO1isBsoCr1wkdAGMwsILPHgVg+GPWRZ/APdj4DQM5lgmEcC9GNgNA68Fb2Cxx7KolId6iOxFimR76PJ4PDz00EOsXLmSG2+8kZtvvhm73c7mzZv57rvv+O2335gwYQJly5YlKSmJe+65h2bNmvHMM89kax05KVDrvhIKXn5Ig+slv5ux8TAdDyUw7ZHWFHhwAca4XgQvfJeovuP4/sbvmbZzGh+u/pC4tNwPMgCHkg8xecdkJu+YnGm7w+agbvG6NCrViJrlalIl6npKOXpQMrgA9pBQvMnJuPfvI23bdtK2bct44tK9Zw+W253tdSZZFq9isQ2oSvq4q8KXEHJOR817sbIcUH/zqXm7vrxAb9VPp6ag6HDq64Ok97bZT12/7Knth4FKl/JiAoSjaJFsP+fMmTNZsmQJb7/9NjfffHOmfV27duW+++7jo48+4p133iE+Pp7169fTrFmzbK8jJwVq3VdCwcsPFQkLungjkTwu+ngyjd9axORBzYh6ZAnGj7djH9MFqrTmhltH0bXXTD5a8xETtk7Aa3l9XS4AHtPDmqNrWHN0zTn7iocUz5gG45rG11CxVX1K5OBksS7LYtip0FULePEynirse57tM4H4U/sLXKA37JBlMRd4DAPHqWuapE9fkVHfqX/nnb6udPbChbP9nKtXrwagdevW5+xr1aoV11xzDWvWnPs9J/5JXSt+xm4zKFkw2NdliPiFVI9J14+X8dP6OKwBv2A1ewiiFxL8/rWELnyPpxo8ztSbp9K0dFNfl3pRx1KP8Xv077yx8g3umXkPHaZ2o/Gk66g/vhG3T7+DEXu+Y1GJWI7d2IQCTw+i3GefUX3BAqLW/k3V6b9R7qOPKP7IIxTs2pXgqCiMkJALXm8cFluAKNJ7ui5nKof+hi3LP4XP2t/jAuf7EYsywNkxoSxwADh5qgdt21nb8xJ7RES2nzM8PH1pre+//56shmX/8ssvzJkzhxUrVtChQ3of45dffklUVBT79+9n0qRJREVFsXDhwkzHLVy4kKioKCZNmpSxzTRNvvjiCzp16kTdunXp27cv69aty7Ku9evXc//999OwYUPq16/PgAEDWLYs8635wYMH0759e7Zs2cLAgQOpX78+TZs2ZciQIcSduvV+vrrzKvV4+Zlgh41SERf+gSqS3zz/ywbW7InjzZ6vQtmGGFMfh0XvEbL8U8r3Gs3nHT9nyYHFvLHyTQ6dPOTrci+LiXnRyWLrl6hPZN1IKjW7meKOCIJCCmBzOtN7yfbsOWey2JhDh5h+6hzlgUnnuWXYC4Mgw+AHK33KjP7ZMNB9n2WxCHj61Fiu09pjMB2Ll7CoaVnMAeoB5fPQ+C4AW8GC2X7Onj178vXXXzNixAimTZtGx44dadasGY0aNaJAgQIEnVqMvFq1agwZMoQ333yTdu3a0a1bt0yD7i/Fyy+/zIQJE+jUqRMDBw5k7dq1DBw48Jx2y5Yt44EHHqBq1ao89thjAEybNo17772XDz/8kK5du2a0PXHiBHfffTft27enW7durF69mkmTJpGcnMzw4cOzpe5AouDlZwzDoHwRrfEl8m8T/trPhgMnmPTATQQ/UAtjfG9IPIztx/7YStakVd/v+O2W3xi9YTSjN44mzRv4C2xf1mSxjg4UDwrHHhJK9MyZeP7zHwDmXuD8NwFBwIRTX/fPhprHY1ERaPWv7VUNg2cs+AaLmaSHrkfz3I1GsBUokO3nrFatGp999hmDBw9m9+7dfPXVV3z11Vc4nU6aNWvGgw8+SLNmzShevDgdO3bkzTffpHr16vTs2fOyrrNjxw5++uknbrvtNoYNGwbAHXfcwYgRIxg5cmRGO9M0GTp0KJGRkUyYMAGn0wnAgAEDGDBgAMOGDaN9+/YZgTApKYn/+7//48EHHwSgb9++HDp0iDlz5pCSknLVdQcaBS8/VKaQerxEsvLPoUSavLOY6Y82o/wjy9LD14HVcPQfnCMaQf07uKfrm9wWdRuvL3+dOXvn+LrkHHOxyWKf+/k5oopEUTmsPMUchQgOKYAtKAhPfDyuvXtJ27KVtB07cEVH83t0NO6DBy86WexHl9AjNvgCbVoaBi3zYNjKYBg5ErwgfSzX3LlzWbhwIX/++SfLli1j//79LF68mMWLFzNkyJAse6Yux4IFC7Asi/79M0fwu+++m08++STj682bN7N3716efPJJEhMTM7Xt2LEj77//Phs3bqRhw4YZ22+44YZM7a699lpWrlxJfHw8oflsQXEFLz9UXGO8RM4rMdXD9e8v4bM7GtD13j8wpj0Ja79P37l2PCHrfiDkpuG8ff1bbIr9h1eXvcqO+B2+LToXXWiy2MoRlWlauim1i9emWtsoyne+jmLnTBa7k7QtWwN6slhfsRcqhGHLuaHTQUFBdOzYkY4dOwKwe/duJk6cyNixY3nvvffo1q3bVZ3/9LiqSpUyP2caERFBiRIlMr7es2cPAMOHD2f48OFZnuvgwYOZglexYsXOeS0AXq9/PBiTmxS8/FDhUD3VKHIxj4z/mweur8IL3T9KH/f1x/NgesEyYerjBP35FnX6jWfiTRP5edvPjPh7BAmu/B0gdifsZnfCbn7a9lOm7Zkmi61ag8p1Ol5gstht6ZPFRu/Gtd//Jov1JXuxYlhuN8apW2/ZITk5mVGjRhEZGcmNN96YaV/lypV59tlnCQ0NZcSIEaxbt46aNWte8rnNf/VwGqfG26WmpmYM6D/t7EH9p48bNGgQTZo0yfLc1atXz/S1LQcDaaBR8PJDQQ4b4cEOktL0A03kQr5cFM26/fGMv/t2HKXrYPzQD1JOze2VcADHF23hms7c0vMTulftznt/vcevO37FtPLO+ovZ4UKTxZYNK0vTsk3PP1ns0aOnJovdmjFRrK8mi/U1R/FiWB5Ptgav4OBgxowZk2XwOu2aa64BIOQ8T7qeDj0ulyvT9piYzFOVnJ4xfvfu3RQvXjxj+8mTJzl27FjG1+XKlcu4XsuWLTOdY+vWrRw6dCjf3T68HApefshjmpQsGKzgJXIJVkbH0eK99EW2iw9ahjGuFxzZdKbB9lkEv3cNwe1fYnCL57iz5p28vPRl1sas9VnNgeRg8sHzThZbr0Q9GpVsxLXlr6Vqjesp6ehBqI8mi/UHjmLFs31RdbvdTvfu3Zk0aRLff/89t99+e6b9Xq+XiRMnUrhwYZo0aUJ8fDyQuTfr9G3CzZs3Z9ymtCyLGTNmZDpXhw4dePfdd/nqq69o1KhRRg/Y+PHjM/V41a5dm5IlSzJu3Dj69etHoUKFgPRg9/zzz7Nr1y4WLDj3VvfFXue/686rFLz8kMtjUjIimF3HTvq6FJGAcCzJRZO3F/H9fY1p8cA8jF8egM1TMzea9xohS4ZTpc83jOkyhrl75/LOqneISbmyCUrzO4/pYfWR1aw+svqcfRedLPbYsVOTxW7BldFLthtPTGD/v7AXKwo5cEvt+eefZ+PGjbzyyivMmDGDNm3aUKRIEY4cOcL06dPZvXs3H330UUYvk81mY8GCBVSpUoXOnTvTrFkzSpYsyRdffIHH46FMmTLMmDGDI0eOZLpOxYoVeeCBB/j888+577776NChA1u3bmXatGmZerCcTidDhw7lySef5JZbbqFPnz4ULFiQyZMns3nzZp555hmKFLm8GfwLFy58Tt2nA11eo+DlhywLShbUk40il+v20X/xf50jeazXaFj6Mcb8YZnnr0pLwPbdLdjKNqD9bV/TrtcMPlv7Gd/+8y1uM2/2wvjC6cli/72ouQ0bNYvVpEnpJtQqWYsq1ZtR2nEDJYIK4AgNw0xNxXXgAK7t29PHk526benaswcrNdVHr+bSOYoVy9bbjKcVLlyYn3/+me+++445c+bw5ZdfcvLkSYoUKULTpk157733qFGjBgChoaE89dRTjB49mmHDhlGxYkWaNWvGV199xdtvv80333xDcHAwnTt35sUXX+Smm27KdK2nnnqK0qVL8+233/LWW29RtWpVPv30U55//vlM7Tp16sTXX3/NZ599xhdffIFlWVStWpV33nnniqaDOF/deZFhZTUNrvhUisvLe7O2MnpxtK9LEQlI7WuU5Mv+tbHtXYLx80BIS8y6YdMHSe3wEvGeZF5d9iqLDizK1TrljEJBhWhapikNSjTgmiLXUCm0LEXON1nsjp0Zocxz5EiWk8P6QrkPPySiW9eLN5R8TcHLD3lNi9GLd/HG9C2+LkUkYJUrEsL0QU2J8BzH+O4WiN2VdUObA27+HFetHvx9dC2vLX+NPQl7crdYuaBMk8UWqkJZR3HCT00Wa3k8uA8eTA9jW7dkDO537d6NeTI5V+usMnUKIZGRuXpNCTwKXn5q+oZDDBqvRU9FrobDBr8+3JzapUMwJtwJOy8wj3uRyrj7fY9RIorxm8fz2brPOOnWOEt/dnqy2AYlG1CjaA0qhZY7d7LYPXtI27qVtB07M0LZpUwWeyUi/1qF/V/TMIj8m4KXn/p7bxy3fLrU12WI5Amv9qzFnU3LwrzXMZZ8dOHG1/Yg9aaPSLM7eHvl2/y26zcs9GMy0FSOqEyzMs2oXaw21QpVpXxQScKdBTJPFrtjJ2lbNmc8cemKjsZMPM9t6YuwFSxI1KqV2fwqJC9S8PJTB+JSaPX2PF+XIZJn9Kxflg971cDYNhPj14fAc5HB2l3eIK3JvUQn7OF/S//HP8f/yZ1CJUdlmiy2aA0qF6hICUchQoMLYAs+NVns3r2nesl2XPJksSG1alLphx+wBWkCbLkwBS8/5fGa1HjpDzym/veIZJfIUuFMfqgRoUn7Mcb3ghP7L3xAWDG8fcdhVWjK9F3TeX/1+8SmxuZOsZLryoaVpVnZZtQpXofqhatTIbgUERebLHbXLrzx8RTs2pUyrw/DnkNrNUreoeDlp9xek+4fL2brkSvr9haRrIUF2fhtUHOqFLZhfN8H9i6/+EEVW5LW6yvMAkUZsWYEP2z5AY+lCY7zC4fNQf0S9WlUqhHXFr2WKuEVKekocmay2JMnsVJSsBUsiC1Ya+3KhSl4+amTaR5e/HUjk9ce8HUpInnS8L716FG3JEx/DmP12Es7qNV/SG3zLMfS4nll2SssP3QJoS2XeDd6MVeZWDEWBINR3sDR1oFRzLjosVaKhXehF3OHCSfBKG5ga27DXtOeuZ1p4Z3jxdxogh1sNW3Y29kxHJmv4V3jxTvXi/MRJ0b4xa8fyE5PFvtIvUeoVKjSxQ+QfE+rVvqpYIeN2uUifF2GSJ715IR1DJ22Fbq+jdVjBNgvYeLLJR8R8k41yu3/m087fMInHT6hXHi5nC/2Ijx/evBO9WKlWdga2bBVsmFts3B/48aKv/Bna8tl4fnBg7nGxFbWhq2xDSvVwjvZi/cvb6a25ioT8y8To7KBrZoN8y8T74LMbSyPhXeJF1sjW54PXXBmsliv5b14YxEUvPyWw26jYcXLW3JBRC7Pd8v3cusXq3Bd2wvr3llQoPjFD/KkYkwYgPPz62gRUpppN0/j8QaPE2L3zWoT5kETc6mJUdHAeZ8TRwcHjpvT/5AK3sUXDgTmKhPrsIW9kx3HLQ4c7R0473NiFDfwzvdinTwT3Mx1JkZVA+etThzdHdjq2zD/zjwtg7nGBBfYm9v/fak8rVxB3wdwCQwKXn4ssnRBX5cgkuf9ve8Ezd5dzJHQaliPLIcy9S7twJitOEc2wTn1ce6K7MPMXn/QpVKXnC02C+bq9ODj6ObAcJ7pYTJqGNjq2zCKXLjXybvGCwXA1vDMrwMj2MDWygZuMDedCVZWvIVR6qxrlDLABVZyejizXBbepV5sTWwYYXm/t+u0UmGlcNqyf6kgyZsUvPxYWJCdUhEaqCmS0+KTPTR/ZzF/7vNi3Tcbave69IPX/UDI21Uoumkqr183jPE3jCeySO7NXm7uNDFKGueM5TIMA8cNDuytzt/zZMVZkAhGBQPDlvl4W6X0Xw/m3rN6tEIA11mN0gADODWDgrnKBAvszfJXb1dkkUhSLzY9icgpCl5+LNXlpWaZvLk6u4g/uueb1bw/dzfWzZ9hdX4djEv8EWmZ8Nt/CB5en1ppLiZ0n8BLzV8iIihnx2laJy1ITh8Mbx2zcP/sxvW+C9f7LtyTLmF8V1z6/qx6xYxwAxzAWbNnGOUMzC3pA/itBAvvei9GaQPDYaSPC1vhxd7MjhGcf3q7AGoVq4XD5vB1GRIgFLz8mN1mULOsBtiL5KaR83dw1zdr8Ta6F+uuKRBS+NIPTjyE/asOOMb3oWe5NszqPYvbIm/DdqkB7jJZSadu8SVauL92wwmw1bNhlDewtqRvs06cP3xZKaeC1/mCUhBYaWeOd7R2gAXuL924R7ohCeyd0nu3vMu96U86Nj7zWvPLQ/ONSjUiyK6JU+XSKHj5sWCnnYYVC/u6DJF8Z9H2Y7R6fylxRRtgPbIEil/mrcOdcwl+L5ICS0bwXONnmNJzMg1LNsz+Qk/d9rP2WdiibDjuceDo6MDZ15keiJLBM/sC842dvot4vs4aB3DW4UYJA+f9Tuzd7Ni72nE+4MRW3oZ10sJcZWJvYccIMvCu8+Ia7sL9lhv39xcOf3nBtcWu9XUJEkAUvPxcrbK61SjiC0cS0mj89kJWx4ZgPbQQIrte/kn+fJOQd6+h4tGdfNX5Kz5o+wGlwkplX5HGmX/bO9ozjdOyNbZBYbB2WFjurINPxvxb53vw0QP8a8y4EW5gb2DH3tCOEZF+vHepF0LSB+ibMSbe373YrrXh6OOAJPBMzbuTzRYPLZ7jt5Qlb1Hw8nOlIoIpEJS/BqqK+AvThN6jVvDlsoNYfb/DavP85Z/ElYRtfC+cX3agTcHqTL91Og/VfYgg29Xfmsq4RVgYjNBzB9cbJY30Xq0T5znBqRkwzr6dmLn2C9yGPMVKsDDXmNhbpU+kaq4zISw9CNqq2bC3tWPtszCPmhc8T6CqWawmKZ4UX5chAUTBy8+leUyiSuvTlIgvvTF9C4/+uAGz1VNY/X6AoCtYj+/wOoI+rk/Q9Oe4v+ad/NFrBu0qtLu6woqQ3ut1vh6r01nnPDMdGEVPhar4c/dZSVZ6j1exC5fgXeyFguljywCsWAuj8JmnJC90jbxAA+vlcil4+TnTsjTAXsQPTN9wmI7Dl3OyfGusBxdA4StcHmb1WELerkqJbXN5r/W7jO0yliqFqlzRqQyHgVHGgIT0wHM2y7SwjlgQCpxnSkCjkAERYO4zzxkIb+5JT222cuf/NWHFWZjrTezX2zHspwKWyZnAB1jevD2+SwPr5XIpePm5UKeduuU0zkvEH0QfT6bxW4vY6iqWPui+SusrO5HpgckPEzSiMfWtICb1mMTzTZ4n3Bl+2aeyNUj/Me6Z7ckUcswVJiSCrY7tnDm6Mh1f2waJYP511kSpaRbmEhMcp/afh3eRF4qArdZZk68WM7COW1ipp564PHDqycmieXOKiWuLamC9XB4FLz9nGAYNKxX2dRkickqqx6Trx8v4aX0c1oBfsJo9fOUnO7EXx6jrcfx0F70rdWVW75ncXP1mDC49pNjq2jAiDaydFp7RHjxzPbgnuPHO90JRsF93ZoyoZ6EHz8LMA93tLexQFLyzvbh/ceOZ58E92o11zMLe3o5RIOtarBgLc9Op3q6zB/XXtYEHPOM9eGZ58M7zYlQxMIrnveBVsWBFCjiv4Laz5GsKXgGgavFwIkI0hkDEnzz/ywYG/7oZq+MrWLeMgqu53bTld0LerUbBVWP5b9MX+LnHz9QpXueSDjUMA8etDuwd0wOW+ZeJdcTC1tCG8y4nRsiZwGMuNjEXZx7kbgQbOAc4sdWzpQ+CX21ihBjYe9qxNz7/gz2ehR6MEga2azP/GrGVsuG42ZHea/Z3+hqSjpvy5s+vJqWbkOZN83UZEmAMK7/McBfAkl0env5pHX9sPOzrUkTkX2qWKcikBxoRnLALY3xvSLzKv6ehRfH2+QarUgtm7p7Fu6ve5Xjq8ewpVrLVB20/oGPFjhhG3uvNk5yjHq8AEOyw0/HabJz7R0SyzT+HEmnyzmL2OypiPbIMyjW6uhOmxGL/5iYcY26gU7G6zOz1BwNrDdSTc36oaemmCl1y2RS8AoDdZtAuqoSvyxCR80hM9XD9e4uZuTMV694/oP4dV3/S/SsJ+rA2wXNf49G6D/H7Lb/Tqmyrqz+vZIvKEZWv6GEIEQWvAFEo1En1kvpLLuLPHh7/N2/8sQOr+4dYN7wHtmyY/HjZSELerkKZ3Sv4uP3HfN7xc8oXLH/155WrovFdcqUUvAKE22vRJlK9XiL+7stF0fQdvRpP3duxBk6H0CJXf1KvC+PngQR92pKmzqJM7TmV/zT8D6GO0Ks/t1yRVmVbEeYM83UZEoAUvAJEaJCdLrU0zkskEKyMjqPFe0s5VrAm1qBlUKpW9pz4+HacnzbHOfkR7qh+C7N6zeKGKjdkz7nlsjQp08TXJUiAUvAKIA0qFiHYof9lIoHgWJKLZu8uYvkRO9YD86Bmz+w7+YaJhLxdhcLrf+LVlq/w440/UKNojew7v1xQZJFIwhzq7ZIro9/iAcTjtWhWpaivyxCRS2Sa0P+rVYxcuA/r1q+wOgyF7HwKbvqzBH9YmxrJJ/nhxh94peUrFA4unH3nlyy1Ld8Wj+m5eEORLCh4BRCH3aBdjZK+LkNELtP7s7Zx37h1mE0fwbr9Zwg+z+KJV+JkDPYxnXF8dys3lm7BrF4z6V+jP3YjGwb2S5a6VulKiCPE12VIgNIEqgFmf1wy170939dliMgVKFckhBmDmlLQcxzju1sgdlf2X6T1s6Re9xRHU4/z8rKXWXV4VfZfIx8rFlKMeX3mYTPUbyFXRt85AaZMoVDKFtInLZFAdCAulYZvLmRjYkGshxdDtQ7Zf5GF7xLybnXKH9rEqI6j+LjdcEoXKJ3918mnWpdvTaon1ddlSABTj1eASXZ5eHXaP/y4ap+vSxGRq/Bqz1rc2bQszHsdY8lHAMSk2BixMZwFB4M5nmqjUJBJi1IunqybRIVw72Wd32tC/wXlWXfYw4Z/NjB6w2hGbxxNmjcNy7TwzvFibjTBDraaNuzt7BiOzOPPvGu8eOd6cT7ixAjXDO0An3f8nFblNJGtXDn1eAWYsCAHnWpqWgmRQDd0yib+M3ETVtvBWLd9Q4w7lNtmFWPCjjCqRXi4MzKZOsXc/LYnhN4zi7E78fLGbH2zNYx1h9MHgAf99jT31LidP3r9QYeKHTBXmZh/mRiVDWzVbJh/mXgXZA52lsfCu8SLrZFNoeuUIFsQTUprGgm5OgpeAahlteLYbfpBKBLopqw9SNeRK0mp0okR7j4cSrYzuEECY9rF8XyDRD5vHc/bzU8Q77Lx1t+XPiB/T6Kd4RvOav/3d4S8XZniW/7gnevfpszO0hSIKoDzVieO7g5s9W2Yf5uZzmGuMcEF9uYapH9aszLNMC3z4g1FLkDBKwDZDGhaWdNKiOQF244k0fithcxcuJKiRYpwd6c6mfb3rJJKxXAPiw8FY17CwBDLgv+uLETJUC+VC5415YFlwpRHCRrRiGOHYuh3fT9eaPoCBZ0FMUoZ4AIrOf0ClsvCu9SLrYkNI0wf8k7rWKkjTpvT12VIgFPwCkB2m0HvRlqrTSSvSE7zcKx8G1rfcifGwN+wGt2TaX+QzcJtGnguobPlxx2hrDwaxGtNEwixZ5HUTuwjwpZC6rop3FqxI7N6z6J2wdpgAEHpTcxVJlhgb6bertMchoMulbtgz471NyVfU/AKQA67jRvqltEs9iJ5hWHDW701E+Iq87/ftkHXt7F6jAC7k50JdnYlOqgY7iHoIr/zD5208e7agvSumkzzUq7ztqtfzM3MDUfY998oEmd8QOLqBCKvjaR+mfpYqRbeFV7szewYwertOq152ebZNjfa4MGDiYqK4osvvjhvm1atWnHnnXdmy/WyQ/v27enTp49Pa1ixYgVRUVH88MMPPq3jauk3d6CyoL0mUxXJc75dtodbv1iF69peeAf+wWt/F8e0DPpUS7nosUNXFSLMafF8g8QLtnuybiKmBTdOL0Hb58YTs38XL993M2O7jKXtwbbYHDZsjc/8etDD79CjWo9sv834ySefsHfv3mw9p/g/h68LkCsT7LDRr0lFZmw87OtSRCSb/b3vBE3fWUSHpHksO2hQu5SDu6NOXvCYydEhLDwUzMfXxRERdOGgVL2Ql2ndjjPvQDBeC9qVS6P0X09zfMe3LJ4SzzP/eYaEOgmM+X4MrvkuSAajkoHjRgdGofzXCxZsD6ZdhXbZfpsxNTWV//3vf4wdOzZbzyv+TT1eAcpmM2hVvRiFwzTQUyTPMb2cXDyO36dOoXipsnzy4x8E1et13ubHUmy8uSaCTuVT6VIh7ZIuUTzUpE/1FPpfk0LpsPTBY6Pm7aSQcZI7i/5Dp5B2uH93U75xeRx9HJAEnqn5c33CdhXaYZH9vX4dO3Zk6dKlTJ48OdvPLf5LwSuAubwmN9Yp4+syRCQ7eVw4lo/BvncVZoESHKh/H+M3JmPd/BlW59chi6VqXl0dgdeCoY0Trviyh5Nt/LA9jEdqJRG05iumvdCTIgXD+G3kb4x+eDSlu5XG2mdhHs1/0yn0juxNiD37Vwx54YUXiIiI4K233iIuLu6i7Y8cOcKQIUNo2bIltWvXplu3bnz55Zd4vWfmYDs9DmrBggW88cYbXHfdddStW5e+ffuyYsWKS6pr4sSJdO/enbp169KjRw8WLFiQZbtdu3bxxBNP0LRpU+rWrcutt97K9OnTM/ZPnz6dqKgopk6des6xL774InXq1CEhIf171uVyMWLECDp16kTt2rVp27Ytb731FklJSRetd/Lkydx6663UqVOHJk2aMGjQILZu3ZqpzZ133kn//v1ZvHgxPXr0oG7dunTr1i3L8WL/fp+7d+/O+PHjM7WZNGkSUVFRzJgxgy5dulCnTh2GDh160VpBwSughQU5uL1ZRV+XISLZxZWMc/Gn2I9sxixUDnebxyCsCCPm7eCub9bibXQv1l1TIKRwpsNm7gsh0W3j+sklifqhdMafLfHpPeJRP5Sm/dQSF7z0pxvDKRXmpVfV9LFkexKggjOO0M9a0MhekFF9RwEQnBic/a/bjxULKUbj0o0xjOy/xVq8eHGeffZZ4uLieOutty7Y9uDBg/Tq1Yvp06fTs2dPhgwZQuXKlXnvvfd4+umnz2n/yiuv8Ndff/Hggw/y6KOPEh0dzYMPPnjRgPfFF1/w3//+l6JFi/Lcc8/RuHFjHnvsMY4dO5ap3fbt2+nTpw8bN27kvvvu45lnnqFAgQI89dRTfP311wB06NCBggULZgpjkB6yZs+eTdu2bYmIiMA0TR555BFGjRpFq1atePHFF2nfvj3jxo1j4MCBuFznf1Dkgw8+4Pnnnyc4OJhnnnmGu+66izVr1tCvXz/Wr1+fqe2+fft45JFHqFWrFs899xzFihXj5ZdfZuTIkRltYmJi6NOnD3/++Sf9+vVjyJAhVKxYkVdffZVhw4adc/3TtT7zzDO0a9fugu/taRrjFeCiShekavEC7Dp24fEfIuLnvG6cy77CFrcXs3g13M3vA+eZXpZF24/R6v2l/PFoMwo/siR9ke1j2wB4rHbWvQI/7gjlWKqdx2onUdB5/p6qvYl2ftkVyuvNTuA89XHcYxl4LAPionF+1hKzSCcAXmn5MksLLOO3Xb9l0wv3b12rdMXldRHqCM2R8992221MmTKFyZMnc/PNN9OiRYss273//vvExMQwfvx4GjduDMAdd9zBK6+8wvfff8+cOXPo2LFjRvsCBQowYcIEnM708F2iRAmGDBnC7Nmzz/t0Ynx8PJ988gnXXXcdX375JTZb+jdD7dq1GTJkSKa2r732GuHh4UyePJmIiAggvVfpiSee4IMPPqBHjx4ULVqULl26MGXKFBISEjLaLVq0iBMnTtCzZ08Apk6dyuLFixk5ciSdOnXKuEarVq0YNGgQEyZMyPIJz507d/Lll19y3XXX8cUXX2C3p4/Bu+WWW+jevTtDhw7NdBs3JiaGJ598kkGDBgHQr18/7rzzTkaNGkX//v0pVqwYH3zwAUlJSUyZMoXy5ctnvM9vvPEG33zzDb1796ZGjRoZ52zfvj3PP/98lu/n+ajHK8B5TUu9XiJ5gH3TdGyxuzGLVsbd8oFMoeu0IwlpNHp7IWtiQ7AeWgiRXQF4vE5Sln+Kh5gZ+wfWSD7vtUdsDKdiQS83VTqz+HOVgh6iE+wkutJ7etauXAxAzZMbeLnFUH7q/hM1i9bMttfvrwZcOyDHQheAYRi8+uqrOJ1O/ve//5GWdu4YPa/Xy7x582jatGlG6DrtdIiYM2dOpu2dO3fOCF0ANWum/7+KiYk5by3Lly8nNTWVvn37ZoQugJtvvpkiRYpkfB0XF8fKlStp3bo1Ho+H2NhYYmNjiYuLo3PnzqSlpbFkyRIAevbsidvtZtasWRnHT58+ncKFC9O6dWsA/vjjD8LDw2nUqFHGuWJjY2nQoAGFChVi/vz5WdY7b948TNPkoYceyghdAOXLl6dHjx5s3ryZ/fv3Z2wPCQnhnnvOzJHncDi4++67cblcLFq0CNM0mT17Ng0aNCAsLCxTLZ07dwbgzz//zFRD8+bNz/t+no96vAJcsMNO3yYVePuPLbi9euRbJCClJmCPTg82VsGS2LfNy7KZN7IDJk76/OcVrr+mOGPf/g4Wvoex4O0rvvSOE3Z+2xPC+y1PYD/ro/itVVMYvz2Mu+YVpVEJF7/sCqVV6TSqbXgHdo4msu84xt84nt93/c4Hqz8gNjX2imvwV41KNaJkWM5P21OtWjUeeughRo4cySeffHLOrcO4uDiSk5OpWrXqOceWKFGCiIgIDhw4kGl70aKZVzc5HcJM8/w9n6dDSsWKmT/M22w2KleunHHsvn37sCyLCRMmMGHChCzPdfDgQQCaNGlCuXLlmDFjBr179yYlJYV58+Zx0003ERSUPmPv3r17SUpKOm9v379f27/rzep9qVatWsaxp3uuypcvT2ho5hBduXLljHZxcXEkJiayaNGi89Zy+nWdVrx48SzbXYiCVx7gsNnoeG0pTS0hEqBssXswzPQB0vY9K8/bzlutDdidOLbMYtkWeLRBd0bc9hS2sg0wfrkPXJc/5GD4+oJEFvLQrUJqpu3XFvHwQct43l1bkAk7wmhZOo1hTU8N3k8+jn1sN6jUiq69vqRzrz/4eM3H/LjlRzxW3nnyccC1A7Jt0tSLeeihh5g+fTpjxoyhe/fumfadnkftfPOpmaaZqXcLyNRjdalOj2PLqtft7GufHszft29funbtmuW5KlSokHHO7t27M3r0aGJjY1m2bBnJyckZtxlPn69cuXJZjqECCA7Oelzhhd6X09vOfl8cjnMjz+kw6XA4Ml5X+/btzzt5bcmSmYP4lbzPCl55QIjTxsCWlRW8RAKUWbYOabd8cMntT7edvuEwmw8mMO2R6ynw0EKM726F+D0Z7aZ0O37Rc424Pv68+7pWTKNrxQtMT7FnCcEf1ITrnuLJ1s9wx7W38/LSV1hx+NKenvNnRUOK0rZC21xbIigoKIhXX32VO++8k6FDh2bqmSpatChhYWFER0efc9zRo0dJSkqidOnSV13D6bAUHR1NvXr1MrZblsW+ffsyeo7KlSuXsa9ly5aZzrFv3z62bt2aqWepZ8+ejBo1irlz57JgwQLKly9Po0aNMvaXL1+eNWvW0KRJk3MC5PTp0zN6pf7tdD27du2iRInMD4/s2rULINP7cuDAAbxeb6bbkrt37wagUqVKFC1alNDQUFwu1zmvKzY2llWrVlGpUqUsa7kcGuOVBxiGQePKRSlfJOfGIYiIf4o+nkzjtxaxLa0o1iNLoErr3C9i8YeEvFONcvvX8VnHTxnZfiRlC5TN/Tqy0S3Vb8Fj5m7vXZMmTejVqxd///03sbFnbt3a7Xbatm3LypUr+euvvzId8/nnnwPpvTRXq2XLlhQoUIBvv/0205OE06dP5/jxMyG+ZMmS1KlTh2nTprFv376M7ZZl8dprr/Hoo49menqyWrVq1KpVi+nTp7No0SJ69OiR6brt27cnOTk542nIs6/71FNP8dtvWT/I0aFDBwzD4Isvvsg0pcbBgweZOnUqNWrUoGzZM9+HiYmJTJo0KeNrj8fDN998Q3h4ONdddx0Oh4M2bdqwdOlS1q5dm+laH3/8MU888QQ7duy4wDt4adTjlUe4vSZ9m1Tg/VnbfF2KiOSyVI9Jl4+X8XavOvQZ8AvMegljxee5W4QnFWPCHThL1KBF3++Ydss0xm4cy1cbviLVm3rx4/2IgcGAmgMIcWT/3F0X89xzzzF//vxMQQfg//7v/1i+fDn33Xcft99+O+XLl2fJkiXMnTuXDh060KFDh6u+dnh4OIMHD+all17i9ttvp2fPnhw8eJDvv/+ewoULZ2r70ksvcdddd9G7d2/uuOMOSpQowZw5c1i8eDH9+/fnmmuuydS+Z8+evPHGGwDnBK/bbruNqVOn8t5777F161YaN27Mnj17GD9+POXKleO+++7Lst5q1apx7733Mnr0aAYMGEC3bt1ISEjg+++/x7Is/ve//2Vq73A4eO2119i2bRuVKlXit99+Y+3atRlPaAI888wzrFixgoEDB9K/f38qV67M8uXLmT59Om3btuX666+/mrcYUI9XnhHitDOgeSWC7PpfKpJfPf/LBgb/uhmr4ytYt34BDh/MuRWzhaCRTQia+iR3R/VlZq8/6Fypc+7XcRValWtFwaCCPrl2oUKFeOGFF87ZXr58eX7++Wc6d+7Mr7/+yltvvcXevXsZPHgwI0aMyLZ5xvr06cPHH3+M1+vl3XffZd68ebz55pvnDGCvV68eEyZMoHHjxowbN4633nqLo0eP8uKLL/LSSy+dc97u3bvjcDioU6cOVapUybQvKCiIsWPH8uCDD7J27VqGDRvGjBkzMiYuLVas2Hnrfe655xg2bBgpKSm8++67jBs3jsaNGzNx4kQaNmyYqW3hwoUZOXIkixYt4p133sHtdjNy5MhM02tUqFCBiRMn0qlTJ6ZMmcKwYcP4559/ePzxxxk+fPgVjen6N8PS6qd5RorLy8vTNjFh1b6LNxaRPKtW2Qh+eaAhwSd2YYzvDYk+Gv9p2KD7B6TV68+W2K28suwVtsdv900tl2FUp1E0L9McWxarBEhguvPOO9m1a1fGNBe+pO+qPCQ0yM5THSOx2/LfIrYicsamgwk0eXsx+x0VsR5ZBuUaXfygnGCZMO0/BA+vTy2Xm59u+omXmv2XiKAI39RzCapEVKFp6aYKXZJj9J2VxxQOc2r9RhEhMdXD9e8tZubOVKx7/4D6d/iwmEM4vuqAY3wfepZvy6zes7gt8ja/DDcP1H3gvNM2iGQH//uul6sS4rTzf50jyYFlxUQkAD08/m/e+GMHVvcPsbq9C7k0PUKWds4l+L1ICiwZwXONn2Fyj19pULKB7+r5l5JhJelWpRtOu/PijUWukMZ45UGpbi+P//A3s/854utSRMRPNK1ShPF318dxdD3GD/0g5cKLJee4oHDM277BW7UN8/fN5+1Vb3M0+ahPS3q28bP0jepLsC8eSpB8Q8ErD7Isi21HEuny0SJflyIifqR4eBAzHm1GccdJjHG94MgmX5cEZerh6vMNVkRZvlj3BV9v+hqX6br4cdmsoLMg8/vMV+iSHKdbjXmQYRhULl6A66pf/hpSIpJ3HUty0ezdRSw/Ysd6YB7U7Hnxg3LaoXUEDa9P8B9DeKDW3czoNYO2Fdrmehl9a/TFQv0QkvPU45VHmabFuv3x3PLpUl+XIiJ+6JkuUTzauiIsHYEx7zXwh18FNgf0/ARX7VtYF7Oe15a9RnTCucvkZLcgWxDz+8wnIth/n7aUvEM9XnmUzWZQu1whGlYs4utSRMQPvTdzKw+MW4fZ9BGs23+GYN9MGJqJ6YFfHyLo48Y0IJhJPSfxXJPnKOAskKOX7Vm9J0H2oBy9hshp6vHKw7ymxYpdx7n9q8BfsFZEcka5IiHMGNSUgp7jGN/dArG7fF3SGTVuIrXHR7jsQbyz6h2m7pya7bcDg2xBzLltDkVC9CFVcod6vPIwu82gaZWi1Cqr7nMRydqBuFQavrmQjYkFsR5eDNWvfs2/bLNlGiHvVCNi9Te81OxFfr5pIrWL187WS/St0ZdQR2i2nlPkQtTjlcd5vCbztx7lgW9X+7oUEfFzr/asxZ1Ny8K81zGWfOTrcjILLYrZ91u8FZszM3om7/31HsdTj1/8uAsIc4Qx97a5hAeFZ1ORIhenHq88zmG30a5GSaqVyNkxEiIS+IZO2cR/Jm7CajsY67ZvwBHi65LOSInF9nV3nF93p1Px+vzR6w/urnk3Dpvjik95V827rup4kSuhHq98wOUxmbHxEE/+uNbXpYhIAIgsFc7khxoTmrQ3fZHtE/t9XdK5WjxOarvBHE87wSvLX2HZwWWXdXih4ELM6T2HEH8Kl5IvqMcrHwhy2LihThlqltFYLxG5uG1Hkmj81kJ2W6WxHl4KFVv4uqRzLRtByDvVKLv3Lz5pP5LPOnxG+fDyl3z4/bXvz8HiRM5PPV75hNe02HTwBD1GLvF1KSISQIb3rUePuiVh+nMYq8f6upysFbsGd7/xULQq3/zzDV+s/4IUT8p5m5cILcEfvf7QFBLiE+rxyifsNoPIUgXpWb+sr0sRkQDy5IR1vPz7Nuj6NlaPEeCPC0gf347zk6Y4Jw9iQPVezOw1k66Vu563+WMNHtMs9eIz6vHKZ+KTXVz39nyS0jy+LkVEAkiDCoX48d4GBMVuxfi+D5yM8XVJ53fDe6Q1vJPtcTt4ednLbI3bmrErskgkE7pP0KB68RkFr3wm1e1l/PI9vPb7Zl+XIiIBpnCYgz8ea06pYBfGuN5waK2vSzq/8FJ4+47DKteAyTum8NGajziRdoLvun1HneJ1sNvsvq5Q8ikFr3zI7TXp+tFCdsac9HUpIhKAvh7YiDbVi2BMGQQbfvZ1ORdWpS1pt47CGxLB9Ojp3FTtJoLtwb6uSvIxBa98yOM1+XtvPLeNurzHr0VETnu8fXWebl8ZVn6JMfslsExfl3Rh7f9LSsvHNEu9+JwG1+dDDruNuhUK0aVWaV+XIiIBasS8Hdz1zVq8je7FumsKhBT2dUkXZkGouhnED6jHKx+LSUzj+nfmker280+qIuK3SkeEMOOxphS2TmCMuxVitl78oNxWtCo8ugI0fYT4AfV45WMFQxw82q66r8sQkQB2OCGVRm8tZE1sCNaDCyDy/NM4+MxNwwHD11WIAApe+VqI085DratRoajGPIjIlTNN6DVqBV8tP4jV9zusNs/7uqQzatwIFZr55/xjki/pVmM+5/aaLNlxjIFjV/m6FBHJA26oU5oRt9XEFv0nxi/3gcuHT087w+DJdRBe0nc1iPyLerzyOafdRstqxWkTWcLXpYhIHjB9w2E6Dl/OyXLXYz20EApX8l0x7V+C4IK+u75IFhS8BKfd4M1b6xDs0LeDiFy96OPJNH5rEdvSimI9sgSqtM79Iio2h6YPgFNDKcS/6DetYBgGRQsEMeSGGr4uRUTyiFSPSZePlzFxfTzWgF+wmj2cexd3hkGvMWBodnrxPwpeAqQPtL+jWSXdchSRbPXcL+sZ8usWrI6vYN36BThyYdb4zq9BWFGw6Vec+B8NrpdMElLctH//T44luXxdiojkIbXLRvDzAw0JPrELY3xvSDycMxeqfB3cOVlPMYrf0scBySTEaWN4vwa+LkNE8piNBxNo8vZi9jsqYj2yDMo1yv6LBIVDr9Fgc2T/uUWyiYKXZBLksNOoUhEGtqzs61JEJI9JTPVw/XuLmbkzFeveP6D+Hdl7gRvfT1+6yNBkqeK/dKtRsuTymPQYuZgthxN9XYqI5EEPXF+FF7pUgzXfYvwxGEzP1Z2wZk+49cvcGUMmchXU4yVZstsMvrizkaaYEJEc8eWiaPqOXo2n7h1YA3+H0CJXfrKIsnDzZ9kWugYPHkxUVBRRUVHs2bPnvO1eeeUVoqKiaNWqVbZcV/IH/VaVLNltBiUjQhh6U01flyIiedTK6DhavLeEYxE1sQYtg1K1Lv8khgG3fQ22nBlMP2fOnCy3W5bF7Nmzc+SakrcpeMl5hTjt3NaoAh2u1XIbIpIzjiW5aPbOIpYfsWM9MC/9luHlaPkklK4LjqBsr61ChQrnDV5r1qwhJiaGokWLZvt1JW9T8JILCnLY+KhvfUoU1LgJEckZpgn9v1rFJ4v2Y/X6CqvD0EsbIF+2AbR/Mcdmp+/UqRNr167l2LFj5+ybPXs2lStXpnr16jlybcm7FLzkooIddj65vYEeFBKRHPXezK08MG4dZtNHsO745cLrLIYVg9t/AiPnpo7o1KkTpmkyb968c/bNmjWLLl26nLN95cqVPPzwwzRv3pxatWrRsmVLnn76aQ4ePJjRZsWKFURFRbFgwQLeeOMNrrvuOurWrUvfvn1ZsWJFpvOdPHmSjz76iBtvvJF69epRr149evTowU8//XTOtZcuXUq/fv1o0KABbdq04ZNPPmHkyJFERUVlanfkyBGGDBlCy5YtqV27Nt27d2f8+PGZ2kyaNImoqChmzJhBly5dqFOnDkOHDr2s90+ypslO5KKCHDbqli/M/ddV4ctF0b4uR0TysDmbj9L6owRmDGpKwYcWY4y7BWJ3ZW5ks0O/8RBSKEdnp69VqxblypVjzpw59OnTJ2P7pk2bOHDgAF26dOHvv//O2L5s2TLuu+8+atWqxaBBgwgKCmLNmjVMnTqV7du3M23atEznf+WVVyhcuDAPPvggKSkpjB49mgcffJA///yTIkXSHzZ4+OGHWbduHbfffjvVqlUjNjaWn376iZdeeonChQvTuXNnABYsWMAjjzxC5cqVeeKJJzhx4gRjxozB4cj8az4mJoY+ffrgcrno378/xYoVY8mSJbz66qtER0fz3//+N1P7F198kb59+1K6dGkqVqyYre9vfqXgJZckxGnn2S41WLrzOJsOJvi6HBHJww7EpdLorUVMeqgZtR9ejPHTnbBj7pkGHV+BMvVzZeqITp068f3335OUlER4eDiQ3ttVvnx5atXK/DDA2LFjKVKkCN9++y2hoem3P/v164fH4+H333/nyJEjlCpVKqN9gQIFmDBhAk5n+oMBJUqUYMiQIcyePZs+ffqwfv16Vq5cyeDBg7nnnnsy1dStWzcWLVqUEbyGDRtGyZIl+emnnzLq7NChA7fddlumGj/44AOSkpKYMmUK5cuXB+COO+7gjTfe4JtvvqF3797UqHFm3d727dvz/PPPZ8t7Kel0q1Eumd0GX9/ThGIFsn8Qq4jI2dxei5s+Xc53q2Ow+v+I1eo/6Ttq3gzNHsqxcV3/1qlTJ1wuFwsXLszYNmvWrIzAc7bPPvuM3377LSN0ASQlJREcnB4Qk5OTM7Xv3LlzRugCqFkz/SnymJgYAOrWrctff/3FHXecmWjWsiw8Hk+m823ZsoW9e/fSt2/fjNAFUKdOnUxTXZimyezZs2nQoAFhYWHExsZm/Dn9ev78889MNTZv3vxib5FcJvV4ySWz22wUCnXy9T1N6PXZMlxe09cliUgeN3TKJlbviePDXoOhUkuMqm3Annsf/ho2bEjx4sWZO3cuN9xwAzt27GDXrl289dZb57S12+0cOnSIkSNHsn37dvbv38/Bgwc5PU+5aWb+mfnvJyJPh7Cz2zmdTn7++WeWL1/O3r172bNnT0bgOt3u9FxjlStXPqematWqsXjxYgDi4uJITExk0aJFtGjRIsvXe/ZYNIDixYtn/cbIFVPwkssS5LBzTamCvHtbXZ78ca2vyxGRfGDK2oMciEth4n3X5ehg+qzYbDY6dOjA77//jsvlYtasWZQpU4a6deue0/brr7/mzTffpGLFijRp0oR27dpRu3ZtFi1axKhRo7I894XExsbSr18/Dh48SIsWLbjuuuu47777aNy4MW3bts1od7oHLCjo3EB6urcNwOv1Aum3D++8884sr1myZObpgy5Wo1w+BS+5bCFOO11rleaRNtX4bMFOX5cjInmc027wwg3X4rKFEGy35/r1O3XqxIQJE1ixYgWzZs2iU6dOGP96zDstLY2PPvqIBg0a8O2332YKQVOnTr2i637//ffs2bOHUaNGZQpaR44cydTu9KD33bt3n3OOs2feL1q0KKGhobhcLlq2bJmpXWxsLKtWraJSpUpXVKtcOkVZuSLBTjtPd46koyZXFZEc9sYtdahZNoJgR+6HLkgf5xQREcF3333H5s2bs5xGIjU1lZSUFCpVqpQpdB08eJBZs2YBZ3qcLlV8fDyQfrvwbF9//XWm89WqVYvy5cszadIkUlJSMtrt2bOHBQsWZHztcDho06YNS5cuZe3atZnO+fHHH/PEE0+wY8eOy6pRLp96vOSKOe02Rt7ekJs/WaLFtEUkR9zbqjI96pf1WeiC9HFWbdu2ZerUqZQoUYKGDRue06ZQoUI0aNCAadOmERERQWRkJHv37uWnn37KCEMnT568rOu2bduW7777jkGDBtG3b18Mw2DevHksWbIEp9OZcT6bzcaLL77Io48+Sp8+fejVqxdJSUmMGzfunHM+88wzrFixgoEDB9K/f38qV67M8uXLmT59Om3btuX666+/gndILod6vOSqOO0G4+5vRqkIzWwvItmrbWQJhtxwrU9D12mnn/rr1KnTecc9DR8+nC5duvDbb7/xxhtvMGfOHHr37s13330HpE9wejmuu+463nzzTUzT5J133uGzzz7DNE3Gjh1L+/btWbNmTUaoa9++PZ988glOp5P333+fiRMncu+999K+fftMPXAVKlRg4sSJdOrUiSlTpjBs2DD++ecfHn/8cYYPH64xXbnAsE4/biFyhdwek31xyfQYuYSkNI+vyxGRPOCakuFMffw6Qp2+D13+zjRN4uLiKFas2Dn77r//fnbs2HHONBHiO4q2ctWcDhvlCocydmATnHatKyQiV6d0RAjj729GkF2/oi6FZVm0adPmnIlOY2Ji+Ouvv7J8AlN8R2O8JFsEO+3UKV+ID/rU5/Ef/r74ASIiWShRMJhJg1pSpEAQdps+yF0Ku91O9+7dmTx5Mna7nQYNGhAXF8dPP/2EYRg89thjvi5RzqJbjZKtUt1evl6ym7f+2OLrUkQkwBQtEMTkQS0pXThUvV2XKS0tjbFjxzJlyhQOHjxIaGgoTZs25bHHHiMyMtLX5clZFLwk27k8Jq/+tolxy/f6uhQRCRCFQp1MGtSSCkVCCfKDwfQiOUUfKSTbBTls/O+mWtzSoJyvSxGRAFAw2MGEB5tTXqFL8gEFL8kRTruNd3rX5bbG5X1dioj4sbAgO98/2JwqxQv4xbQRIjlNwUtyjNNu441b6nB7s4q+LkVE/FCI08a4+5pxTclwgjVthOQTCl6So5x2Gy/fVIuBLSv7uhQR8SPBDhtf39OUmmUjCFHoknxEwUtyXJDDxgs3XMuDrav6uhQR8QNOu8GXdzWmfoXCCl2S7yh4Sa4Icth4pnMUj7Wr7utSRMSH7DaDzwY0ommVogpdki8peEmuCXLYeKLDNTzV6RpflyIiPmAz4ON+DbiuenGFLsm3FLwkVwU5bDzcphrPdYnydSkikosMA967rR4dri2p0CX5miZQFZ9I83j5btkehv2+2deliEgOC3Ha+OT2hrRST5eIgpf4Tprby4+r9vG/qZt8XYqI5JBiBYIYd38zqhQvoNAlgoKX+Fia28ukvw/wwq8b0HeiSN5SrUQBvn+gOUXCnJqRXuQUBS/xuVS3l5mbDvPsxPW4vKavyxGRbNC0SlHGDmxCsNOGw6bhxCKnKXiJX0h1e9lxNIl7xq4iJinN1+WIyFXoUa8s791WD6fdwDAMX5cj4lcUvMRvuDwmialu7h67ko0HEnxdjohcgcfbV+fx9tcQ5FAvl0hWFLzEr5imhce0+L+f1jJt/SFflyMil8hhM3ind11urFNG6y6KXICCl/gll8dk9OJdvDNzqwbdi/i5gsEORg9sTN3yWgJI5GIUvMRvpbq9rIyOZdD4NSSleXxdjohkoWyhEL5/oDllCocQrCcXRS5KwUv8Wprby5GEVO4cs5I9x5N9XY6InKVW2QjG3d+M8GAHTrvGdIlcCgUv8Xser0max+TB7/5iyY7jvi5HRIAb6pTmgz71CbLbsNn05KLIpVLwkoDh9pq8MX0zY5fs9nUpIvlWqNPOsJtrc1O9snpyUeQKKHhJQEnzePlt3SGGTNqgyVZFclmtshGMurMRxcODNYhe5AopeEnASXV72X40iQe//YtDJ1J9XY5IvnDfdZV5vuu12G1g10z0IldMwUsCkstj4jUtXpy8gUlrDvi6HJE8q1iBID7u34DGlYpofi6RbKDgJQEtze1l6c7jPDNxHcdPunxdjkiecl314oy8vQFhQXYtci2STRS8JOCleby4PCbPTFzPzE2HfV2OSMBz2g2e71qDu1tW1jQRItlMwUvyDJfHZPY/hxny6wYSUjThqsiVqFQsjC/ubESlYgU0gF4kByh4SZ6S5vaS7PLy5I9/s3D7MV+XIxJQbmlQjjdvrYPDZuBQT5dIjlDwkjzJ7TWZtGY/r0z7h2SX19fliPi1gsEO3upVh441S2nZH5EcpuAleVaq28uJFDePfb+GVbvjfF2OiF+6oU5p3rilDiFOu24tiuQCBS/J00zTwmtZfLtsN+/8sZU0jyZdFQGoUDSUd3rVpWGlIurlEslFCl6SL6S6vRxNTOPJH/7m733xvi5HxGecdoOHWlfjiQ7XYBjoqUWRXKbgJfmG1zQxLZi+4RDDft9MTGKar0sSyVXNqhTlvdvqUaKglvwR8RUFL8l30tzpg+0/mrON0Yt3a81HyfNKR4TwUvdr6VyrNHbDwGYzfF2SSL6l4CX5Vorby4lkN/+dvIE5m4/6uhyRbBfssPFQm6o82q46Bmj2eRE/oOAl+Z7L4+XvvfH8d/JGth9N8nU5Itmia+3SvNqzFhEhTt1WFPEjCl4igOfU7cap6w7yzh9bOZyQ6uOKRK5MjdIFeePWOtQqG6GnFUX8kIKXyFlcHi+GYTB2cTQj5+8gIVVLD0lgqFYinP90vIZutUuDAQ6bnlYU8UcKXiJZSHV78ZoWH87ZxnfL9mj+L/Fb15YpyNOdImlXoySWpekhRPydgpfIBaS4vJx0eXjnj61M/vuAnoAUv1GvfCH+r3MULasVA9DaiiIBQsFL5BKkuLy4PF6+XLSL75bv5USK29clST7VpHIRnukcRcNKRTB0S1Ek4Ch4iVyGFJcXu81g4l/7GLVwF3tjk31dkuQTraoX47kuNbi2TAR2m4Fdc3GJBCQFL5ErkObx4rAZLNh6jJHzd7BmrxbhlpzRvkZJnu0SRbUS4ThsmvxUJNApeIlcBY9pYlmw7UgiI+btYNamw5j6GyVXyTCgS63SPNslivJFQgmy2zAMBS6RvEDBSyQbWJZFmsfkRIqbT+bvYOJf+0k5tTSRyKUqER7MLQ3LMbBlZYoWCNLEpyJ5kIKXSDZLcXkxLYtvlu1m7JLdWoxbLshhM2hfoyR3Nq9Ey+rFcXlMQoMUuETyKgUvkRyS6k4fB/bn1hgmrt7Hn1tjNB+YZIgsFU6/JhW5rXF5nHYbQXabxm+J5AMKXiI5zLQs0twmGPDHxkP8svoAy3Ydx6vBYPlORIiDm+qV5a4WlalWogBey9KyPiL5jIKXSC7ymCYer4XLYzJ57QEm/32ANXvjfV2W5CDDgBZVizGgeSU61SyF22sSFuTwdVki4iMKXiI+4vamPxF5IsXNz6v3Mfnvg2w9kujrsiSblC8Sym2NynN7s0pEhDqw2wxNdioiCl4i/iDNnT4x64H4FH76ax9T1h5kf1yKr8uSyxBkt9G4chHa1yhJl1qlKVs4FLfX1JOJIpKJgpeIn0l1e3HabWw7ksivfx9g6c5j/HMwQfOD+aHyRUJpE1mCLrVK06xqUSwL7IaB06GeLRHJmoKXiB9LcaU/Gek2TVbvjmP+1qMs23WcLYcT0d/c3BfssNGkclE61ChJ51qlKV0ohDSPV2O2ROSSKXiJBJAUlweH3Uaax2RldCx/bj3Ksp3H2X40ydel5VkViobSNrIkXWuXpknlopiWhd1m4LSrV0tELp+Cl0gAS3Z5CLLbSHZ5Wb7rOAu2xbBs53F2HTvp69ICkt1mEFkqnLrlC9OwYhFaX1OckhHq1RKR7KPgJZKHJLs8BDvsJKa6WbrzOH/tjmXz4US2Hk4k9qTL1+X5FcOAKsUKULd8YRpULESTysWoXjIcwyBj9nib1kcUkWym4CWSR1mWRarbCxiEBtlJSHGz7Ugia/fFs+VwIpsPJbAr5mS+WFOySJiTGqUjiCpdkFplI6hXoTCVioXhsNlIdXsJcdqwa6oHEckFCl4i+YzXNEl1m+nL1DhsxCW72HM8ma2HE9l+NJHoYyfZfewke2OTcXsD48dDkTAnpSJCKBURQsmIYEpFhFCmUAiRpQpyTclwCocFkeJKD5ghThuGerJExEcUvEQEONVD5jExTYtgpw2bYXAyzUNCiocTKS5iT7qISUrjaEIaJ1LcxCW7iEt2E5/sIu6km/gUF/HJ7mxdj7JgsIOSESGUOhWmSkUEU7pQCBWLFqBsoRCKFwymcKgTh92Gy2Pi9qZf22EzCNb8WSLihxS8ROSymKaFy2tmrDVpGOCwpfeeQfr4qKQ0DwkpbtxeE7vNOPPHSP+37dR/p/8bbKf+22YY2Awy/hvA4zVxnZrl324zCHaox0pEApeCl4iIiEgu0WhSERERkVyi4CUiIiKSSxS8RERERHKJgpeIiIhILlHwEhEREcklCl4iIiIiuUTBS0RERCSXKHiJiIiI5BIFLxEREZFcouAlIiIikksUvERERERyiYKXiIiISC5R8BIRERHJJQpeIiIiIrlEwUtEREQklyh4iYiIiOQSBS8RERGRXKLgJSIiIpJLFLxEREREcomCl4iIiEguUfASERERySUKXiIiIiK5RMFLREREJJcoeImIiIjkEgUvERERkVyi4CUiIiKSSxS8RERERHKJgpeIiIhILlHwEhEREcklCl4iIiIiuUTBS0RERCSXKHiJiIiI5BIFLxGR/2+3jgUAAAAABvlbz2JXUQQwES8AgIl4AQBMxAsAYCJeAAAT8QIAmIgXAMBEvAAAJuIFADARLwCAiXgBAEzECwBgIl4AABPxAgCYiBcAwES8AAAm4gUAMBEvAICJeAEATMQLAGAiXgAAE/ECAJiIFwDAJKiiVmmtzDGrAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1855,20 +2562,20 @@ }, { "cell_type": "code", - "execution_count": 256, + "execution_count": 895, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LanguageWorkedWith\n", - "C#;JavaScript;SQL;HTML;CSS 1235\n", - "JavaScript;PHP;SQL;HTML;CSS 1095\n", - "Java 855\n", + "Java;JavaScript;PHP;SQL;TypeScript;HTML;CSS 2\n", + "JavaScript;PHP;HTML;CSS 2\n", + "C;F#;Haskell;Python;Scala 1\n", "Name: count, dtype: int64" ] }, - "execution_count": 256, + "execution_count": 895, "metadata": {}, "output_type": "execute_result" } @@ -1879,16 +2586,16 @@ }, { "cell_type": "code", - "execution_count": 257, + "execution_count": 896, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "9985" + "14" ] }, - "execution_count": 257, + "execution_count": 896, "metadata": {}, "output_type": "execute_result" } @@ -1899,7 +2606,7 @@ }, { "cell_type": "code", - "execution_count": 258, + "execution_count": 897, "metadata": {}, "outputs": [], "source": [ @@ -1908,7 +2615,7 @@ }, { "cell_type": "code", - "execution_count": 259, + "execution_count": 898, "metadata": {}, "outputs": [ { @@ -1917,7 +2624,7 @@ "0" ] }, - "execution_count": 259, + "execution_count": 898, "metadata": {}, "output_type": "execute_result" } @@ -1928,20 +2635,20 @@ }, { "cell_type": "code", - "execution_count": 260, + "execution_count": 899, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LanguageWorkedWith\n", - "C#;JavaScript;SQL;HTML;CSS 1383\n", - "JavaScript;PHP;SQL;HTML;CSS 1226\n", - "Java 989\n", + "Java;JavaScript;PHP;VB.NET;HTML;CSS 3\n", + "Assembly;C;C++;Java;Python;Delphi/Object Pascal 2\n", + "Java;JavaScript;PHP;SQL;TypeScript;HTML;CSS 2\n", "Name: count, dtype: int64" ] }, - "execution_count": 260, + "execution_count": 899, "metadata": {}, "output_type": "execute_result" } @@ -1959,20 +2666,20 @@ }, { "cell_type": "code", - "execution_count": 261, + "execution_count": 900, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LanguageDesireNextYear\n", - "Python 718\n", - "C#;JavaScript;SQL;TypeScript;HTML;CSS 557\n", - "C# 522\n", + "C#;JavaScript;PHP;SQL;HTML;CSS 2\n", + "JavaScript;Python;HTML;CSS 1\n", + "C#;JavaScript;TypeScript 1\n", "Name: count, dtype: int64" ] }, - "execution_count": 261, + "execution_count": 900, "metadata": {}, "output_type": "execute_result" } @@ -1983,16 +2690,16 @@ }, { "cell_type": "code", - "execution_count": 262, + "execution_count": 901, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "14147" + "18" ] }, - "execution_count": 262, + "execution_count": 901, "metadata": {}, "output_type": "execute_result" } @@ -2003,7 +2710,7 @@ }, { "cell_type": "code", - "execution_count": 263, + "execution_count": 902, "metadata": {}, "outputs": [], "source": [ @@ -2012,7 +2719,7 @@ }, { "cell_type": "code", - "execution_count": 264, + "execution_count": 903, "metadata": {}, "outputs": [ { @@ -2021,7 +2728,7 @@ "0" ] }, - "execution_count": 264, + "execution_count": 903, "metadata": {}, "output_type": "execute_result" } @@ -2032,20 +2739,20 @@ }, { "cell_type": "code", - "execution_count": 265, + "execution_count": 904, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LanguageDesireNextYear\n", - "Python 878\n", - "C#;JavaScript;SQL;TypeScript;HTML;CSS 690\n", - "C# 629\n", + "Java;Python 4\n", + "JavaScript;PHP;SQL;Swift;CSS;Bash/Shell 2\n", + "C#;Java;JavaScript;Ruby;TypeScript;HTML;CSS 2\n", "Name: count, dtype: int64" ] }, - "execution_count": 265, + "execution_count": 904, "metadata": {}, "output_type": "execute_result" } @@ -2063,27 +2770,26 @@ }, { "cell_type": "code", - "execution_count": 266, + "execution_count": 905, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "YearsCodingProf\n", - "0-2 years 22612\n", - "3-5 years 20883\n", - "6-8 years 11177\n", - "9-11 years 7456\n", - "12-14 years 4220\n", - "15-17 years 2987\n", - "18-20 years 2810\n", - "21-23 years 1352\n", - "30 or more years 1289\n", - "24-26 years 853\n", + "3-5 years 26\n", + "0-2 years 20\n", + "6-8 years 12\n", + "9-11 years 9\n", + "12-14 years 6\n", + "18-20 years 3\n", + "21-23 years 2\n", + "24-26 years 2\n", + "15-17 years 1\n", "Name: count, dtype: int64" ] }, - "execution_count": 266, + "execution_count": 905, "metadata": {}, "output_type": "execute_result" } @@ -2094,16 +2800,16 @@ }, { "cell_type": "code", - "execution_count": 267, + "execution_count": 906, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3349" + "2" ] }, - "execution_count": 267, + "execution_count": 906, "metadata": {}, "output_type": "execute_result" } @@ -2114,7 +2820,7 @@ }, { "cell_type": "code", - "execution_count": 268, + "execution_count": 907, "metadata": {}, "outputs": [], "source": [ @@ -2123,7 +2829,7 @@ }, { "cell_type": "code", - "execution_count": 269, + "execution_count": 908, "metadata": {}, "outputs": [ { @@ -2132,7 +2838,7 @@ "0" ] }, - "execution_count": 269, + "execution_count": 908, "metadata": {}, "output_type": "execute_result" } @@ -2143,27 +2849,26 @@ }, { "cell_type": "code", - "execution_count": 270, + "execution_count": 909, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "YearsCodingProf\n", - "3-5 years 23773\n", - "0-2 years 22781\n", - "6-8 years 11274\n", - "9-11 years 7527\n", - "12-14 years 4267\n", - "15-17 years 3007\n", - "18-20 years 2841\n", - "21-23 years 1365\n", - "30 or more years 1294\n", - "24-26 years 856\n", + "3-5 years 27\n", + "0-2 years 21\n", + "6-8 years 12\n", + "9-11 years 9\n", + "12-14 years 6\n", + "18-20 years 3\n", + "21-23 years 2\n", + "24-26 years 2\n", + "15-17 years 1\n", "Name: count, dtype: int64" ] }, - "execution_count": 270, + "execution_count": 909, "metadata": {}, "output_type": "execute_result" } @@ -2181,27 +2886,26 @@ }, { "cell_type": "code", - "execution_count": 271, + "execution_count": 910, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "YearsCoding\n", - "3-5 years 19100\n", - "6-8 years 16537\n", - "9-11 years 10578\n", - "0-2 years 8022\n", - "12-14 years 7069\n", - "15-17 years 5459\n", - "18-20 years 4472\n", - "30 or more years 3136\n", - "21-23 years 2377\n", - "24-26 years 1671\n", + "6-8 years 17\n", + "3-5 years 15\n", + "9-11 years 15\n", + "0-2 years 11\n", + "15-17 years 7\n", + "12-14 years 6\n", + "24-26 years 5\n", + "18-20 years 4\n", + "30 or more years 3\n", "Name: count, dtype: int64" ] }, - "execution_count": 271, + "execution_count": 910, "metadata": {}, "output_type": "execute_result" } @@ -2212,16 +2916,16 @@ }, { "cell_type": "code", - "execution_count": 272, + "execution_count": 911, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "105" + "0" ] }, - "execution_count": 272, + "execution_count": 911, "metadata": {}, "output_type": "execute_result" } @@ -2232,7 +2936,7 @@ }, { "cell_type": "code", - "execution_count": 273, + "execution_count": 912, "metadata": {}, "outputs": [], "source": [ @@ -2241,7 +2945,7 @@ }, { "cell_type": "code", - "execution_count": 274, + "execution_count": 913, "metadata": {}, "outputs": [ { @@ -2250,7 +2954,7 @@ "0" ] }, - "execution_count": 274, + "execution_count": 913, "metadata": {}, "output_type": "execute_result" } @@ -2261,27 +2965,26 @@ }, { "cell_type": "code", - "execution_count": 275, + "execution_count": 914, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "YearsCoding\n", - "3-5 years 19135\n", - "6-8 years 16554\n", - "9-11 years 10585\n", - "0-2 years 8043\n", - "12-14 years 7077\n", - "15-17 years 5462\n", - "18-20 years 4476\n", - "30 or more years 3144\n", - "21-23 years 2378\n", - "24-26 years 1671\n", + "6-8 years 17\n", + "3-5 years 15\n", + "9-11 years 15\n", + "0-2 years 11\n", + "15-17 years 7\n", + "12-14 years 6\n", + "24-26 years 5\n", + "18-20 years 4\n", + "30 or more years 3\n", "Name: count, dtype: int64" ] }, - "execution_count": 275, + "execution_count": 914, "metadata": {}, "output_type": "execute_result" } @@ -2299,21 +3002,21 @@ }, { "cell_type": "code", - "execution_count": 276, + "execution_count": 915, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "OperatingSystem\n", - "Windows 34268\n", - "MacOS 18638\n", - "Linux-based 16069\n", - "BSD/Unix 139\n", + "Windows 32\n", + "MacOS 20\n", + "Linux-based 15\n", + "BSD/Unix 1\n", "Name: count, dtype: int64" ] }, - "execution_count": 276, + "execution_count": 915, "metadata": {}, "output_type": "execute_result" } @@ -2324,16 +3027,16 @@ }, { "cell_type": "code", - "execution_count": 277, + "execution_count": 916, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "10374" + "15" ] }, - "execution_count": 277, + "execution_count": 916, "metadata": {}, "output_type": "execute_result" } @@ -2344,7 +3047,7 @@ }, { "cell_type": "code", - "execution_count": 278, + "execution_count": 917, "metadata": {}, "outputs": [], "source": [ @@ -2353,7 +3056,7 @@ }, { "cell_type": "code", - "execution_count": 279, + "execution_count": 918, "metadata": {}, "outputs": [ { @@ -2362,7 +3065,7 @@ "0" ] }, - "execution_count": 279, + "execution_count": 918, "metadata": {}, "output_type": "execute_result" } @@ -2373,7 +3076,7 @@ }, { "cell_type": "code", - "execution_count": 280, + "execution_count": 919, "metadata": {}, "outputs": [], "source": [ @@ -2382,12 +3085,12 @@ }, { "cell_type": "code", - "execution_count": 281, + "execution_count": 920, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAFcCAYAAADWGfkiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABT60lEQVR4nO3dd3wUdf7H8deWZNN7J4EQamihCYSWBKQXQRDkxyEIZwEVT4rtVFA5G3IWBFFPgeOwiwVFQIEg0qQIKL2FmpCQQnqyZX5/BBZiQggk2dlNPs/HI49lZ2dnPrsJ+975zvf7HY2iKApCCCHEdWjVLkAIIYR9k6AQQghRIQkKIYQQFZKgEEIIUSEJCiGEEBWSoBBCCFEhCQohhBAVkqAQQghRIQkKIYQQFZKguMa2bdu46667CA0NxdnZmZCQEEaOHMnWrVtVrSs/P5/Zs2eTmJhY5rElS5ag0WhISkq66e0mJSWh0WhYsmRJlWu8FWfOnGHKlCk0bdoUV1dX/Pz8aN26Nffddx9nzpypkX2+9NJLfPPNNzWy7aqYMGECHh4e133cw8ODCRMm2K4gqva3JWoXCYrL5s+fT7du3Th79iyvvfYaP//8M6+//jrnzp2je/fuvPPOO6rVlp+fz/PPP19uUAwaNIitW7cSGhp609sNDQ1l69atDBo0qBqqvDlnz56lffv2/PTTT0ybNo1Vq1bx0UcfMWbMGHbs2MGJEydqZL/2GhRC2DO92gXYg82bN/OPf/yDgQMH8vXXX6PXX31b7r77boYPH86jjz5Ku3bt6NatW5X3ZzQa0Wg0pfZzqwIDAwkMDLyl5xoMBrp06VLlGm7FBx98wMWLF/ntt99o2LChdfmwYcN4+umnsVgsqtQlhChLjiiAl19+GY1Gw7vvvlvmw1uv17Nw4UI0Gg2vvPJKqceOHj3K//3f/xEUFITBYCA6OpoFCxaUWicxMRGNRsOyZcuYPn069erVw2AwcOzYMdLS0pgyZQotWrTAw8ODoKAgevXqxaZNm6zPT0pKsgbB888/j0ajQaPRWJshymseiI+Pp1WrVuzYsYMePXrg5uZGVFQUr7zySqkP4PKanmbPno1Go2H//v2MGTMGb29vgoODmThxIpcuXSr12rKyspg0aRJ+fn54eHgwaNAgTpw4gUajYfbs2RW+5+np6Wi1WoKCgsp9XKst+dNctmwZGo2m3Oa/F154AScnJ86fPw/A77//zuDBg62/j7CwMAYNGsTZs2cB0Gg05OXlsXTpUuv7GB8fb91eSkoKDzzwAOHh4Tg7O9OwYUOef/55TCZTmfds7ty5vPrqq0RGRuLq6kp8fDxHjhzBaDTy5JNPEhYWhre3N8OHDyc1NbXC9+JW5OfnM2PGDBo2bIiLiwt+fn507NiRTz75pNR6O3fuZOjQofj5+eHi4kK7du34/PPPy2xv27ZtdOvWDRcXF8LCwnjqqacwGo3VXrdwTHX+iMJsNrNhwwY6duxIeHh4uetERETQoUMH1q9fj9lsRqfTceDAAbp27Ur9+vWZN28eISEhrFmzhqlTp3Lx4kVmzZpVahtPPfUUsbGxLFq0yPoBmZaWBsCsWbMICQkhNzeXr7/+mvj4eNatW0d8fDyhoaGsXr2a/v37M2nSJP7+978D3PAoIiUlhbFjxzJ9+nRmzZrF119/zVNPPUVYWBj33HPPDd+XESNGMHr0aCZNmsQff/zBU089BcBHH30EgMViYciQIezcuZPZs2fTvn17tm7dSv/+/W+4bYDY2FgWLFjAnXfeybRp04iNjcXLy6vMeqNHj+bxxx9nwYIFxMbGWpebTCbee+89hg8fTlhYGHl5efTp04eGDRuyYMECgoODSUlJYcOGDeTk5ACwdetWevXqRUJCAs8++yyAdZ8pKSl06tQJrVbLc889R6NGjdi6dStz5swhKSmJxYsXl6prwYIFtGnThgULFpCVlcX06dMZMmQInTt3xsnJiY8++ohTp04xY8YM/v73v/Pdd99V6n2prGnTprFs2TLmzJlDu3btyMvL488//yQ9Pd26zoYNG+jfvz+dO3dm0aJFeHt78+mnnzJ69Gjy8/OtXzYOHDhA7969iYyMZMmSJbi5ubFw4UI+/vjjaq1ZODCljktJSVEA5e67765wvdGjRyuAcuHCBUVRFKVfv35KeHi4cunSpVLrPfzww4qLi4uSkZGhKIqibNiwQQGUnj173rAWk8mkGI1GpXfv3srw4cOty9PS0hRAmTVrVpnnLF68WAGUkydPWpfFxcUpgLJ9+/ZS67Zo0ULp16+f9f7JkycVQFm8eLF12axZsxRAee2110o9d8qUKYqLi4tisVgURVGUH374QQGUd999t9R6L7/88nVrvZbFYlEeeOABRavVKoCi0WiU6Oho5bHHHiv1Wq7U5OzsbH3vFUVRPvvsMwVQNm7cqCiKouzcuVMBlG+++abC/bq7uyvjx48vs/yBBx5QPDw8lFOnTpVa/vrrryuAsn//fkVRrr5nMTExitlstq735ptvKoAydOjQUs//xz/+oQBl/k7+avz48Yq7u3ul627VqpUybNiwCrfZvHlzpV27dorRaCy1fPDgwUpoaKi1/tGjRyuurq5KSkqKdR2TyaQ0b968zN+WqJuk6amSlMuX7dBoNBQWFrJu3TqGDx+Om5sbJpPJ+jNw4EAKCwvZtm1bqeePGDGi3O0uWrSI9u3b4+Ligl6vx8nJiXXr1nHw4MEq1RsSEkKnTp1KLWvTpg2nTp2q1POHDh1a5rmFhYXWZpSNGzcCMGrUqFLrjRkzplLb12g0LFq0iBMnTrBw4ULuvfdejEYjb7zxBi1btrRuH2Dy5MlAyXmNK9555x1at25Nz549AWjcuDG+vr488cQTLFq0iAMHDlSqjiu+//57EhISCAsLK/X7HDBgQKnXe8XAgQOtzWMA0dHRAGU6BlxZfvr06Zuq50Y6derEjz/+yJNPPkliYiIFBQWlHj927BiHDh1i7NixAGX+RpOTkzl8+DBQcuTRu3dvgoODrc/X6XSMHj26WmsWjqvOB0VAQABubm6cPHmywvWSkpJwc3PDz8+P9PR0TCYT8+fPx8nJqdTPwIEDAbh48WKp55fXK+nf//43kydPpnPnznz11Vds27aNHTt20L9//zL/8W+Wv79/mWUGg6HS2/3r8w0GA4D1+enp6ej1evz8/Eqtd+2HTWU0aNCAyZMn8+GHH3L06FE+++wzCgsLmTlzZqltjh49mvfeew+z2cy+ffvYtGkTDz/8sHUdb29vNm7cSNu2bXn66adp2bIlYWFhzJo1q1Jt7RcuXGDlypVlfp8tW7YEyv4+//q6nZ2dK1xeWFhY4f71ej1ms/m6j5tMJpycnKz33377bZ544gm++eYbEhIS8PPzY9iwYRw9etT6egBmzJhR5jVNmTKl1GtKT08nJCSkzD7LWybqpjp/jkKn05GQkMDq1as5e/Zsuecpzp49y65duxgwYAA6nQ5fX190Oh3jxo3joYceKne71/bkgZJv0H/1v//9j/j4eN59991Sy6+0qdszf39/TCYTGRkZpT4cU1JSqrTdUaNG8fLLL/Pnn3+WWv7oo4+ybNkyvv32W1avXo2Pj4/12/IVrVu35tNPP0VRFPbt28eSJUt44YUXcHV15cknn6xwvwEBAbRp04Z//etf5T4eFhZWpdd1I8HBwRQWFpZ5P6Hkg7yoqKhUCLu7u/P888/z/PPPc+HCBevRxZAhQzh06BABAQFAybmxO++8s9x9NmvWDCj5XZb3e6vq71LUHnX+iAJK/jMpisKUKVPKfKszm81MnjwZRVGsJ3Td3NxISEjg999/p02bNnTs2LHMT3nf6P9Ko9FYv6lfsW/fvjI9fP76bd4exMXFAfDZZ5+VWv7pp59W6vnJycnlLs/NzeXMmTNlPpg7dOhA165defXVV1m+fDkTJkzA3d293G1oNBpiYmJ444038PHxYffu3dbHrndUNXjwYP78808aNWpU7u+zpoPi9ttvB8q+n4C1l9KVdf4qODiYCRMmMGbMGA4fPkx+fj7NmjWjSZMm7N27t9zX07FjRzw9PQFISEhg3bp11qMQKPm7L68WUTfV+SMKgG7duvHmm2/yj3/8g+7du/Pwww9Tv359Tp8+zYIFC9i+fTtvvvkmXbt2tT7nrbfeonv37vTo0YPJkycTGRlJTk4Ox44dY+XKlaxfv/6G+x08eDAvvvgis2bNIi4ujsOHD/PCCy/QsGHDUl0yPT09adCgAd9++y29e/fGz8+PgIAAIiMja+LtqJT+/fvTrVs3pk+fTnZ2Nh06dGDr1q3897//BSjVfl+ef/3rX2zevJnRo0fTtm1bXF1dOXnyJO+88w7p6enMnTu3zHMeffRRRo8ejUajsTafXPH999+zcOFChg0bRlRUFIqisGLFCrKysujTp491vdatW5OYmMjKlSsJDQ3F09OTZs2a8cILL/DTTz/RtWtXpk6dSrNmzSgsLCQpKYlVq1axaNGi6/aKqw4JCQkMHTqURx99lKSkJOLi4lAUhV9++YU33niDoUOHlurK27lzZwYPHkybNm3w9fXl4MGDLFu2jNjYWNzc3AB47733GDBgAP369WPChAnUq1ePjIwMDh48yO7du/niiy8AeOaZZ/juu+/o1asXzz33HG5ubixYsIC8vLwae73Cwah5Jt3ebN26VRk5cqQSHBys6PV6JSgoSLnzzjuVLVu2lLv+yZMnlYkTJyr16tVTnJyclMDAQKVr167KnDlzrOtc6fX0xRdflHl+UVGRMmPGDKVevXqKi4uL0r59e+Wbb75Rxo8frzRo0KDUuj///LPSrl07xWAwKIC1B8z1ej21bNmyzP7+ut2Kej2lpaWVem55+8nIyFDuvfdexcfHR3Fzc1P69OmjbNu2TQGUt956q9z37Ipt27YpDz30kBITE6P4+fkpOp1OCQwMVPr376+sWrWq3OcUFRUpBoNB6d+/f5nHDh06pIwZM0Zp1KiR4urqqnh7eyudOnVSlixZUmq9PXv2KN26dVPc3NwUQImLi7M+lpaWpkydOlVp2LCh4uTkpPj5+SkdOnRQ/vnPfyq5ubml3rO5c+eW2u71fs9X3rcdO3ZU+H4oiqIUFxcrL730ktKyZUvFYDAoBoNBadmypfLSSy8pxcXFpdZ98sknlY4dOyq+vr6KwWBQoqKilMcee0y5ePFiqfX27t2rjBo1SgkKClKcnJyUkJAQpVevXsqiRYtKrbd582alS5cuisFgUEJCQpSZM2cq77//vvR6EoqiKIpGUS535xGiGnz88ceMHTuWzZs3lzoCqw4rV65k6NCh/PDDD9ZOA3+VmJhIQkICmZmZ+Pj43PK+JkyYQFZWlkz3IQTS9CSq4JNPPuHcuXO0bt0arVbLtm3bmDt3Lj179qyWkFi0aBEzZ85k8+bNnDt3junTp9OmTRuGDh1KbGxsqRHsmzZtomfPnhw+fJjk5GS8vb2rvH8hRAk5mS1umaenp3Wk78CBA/nggw+YMGECK1eurJbtJyQkkJuby4QJExg6dCi+vr489NBDhIaGsmPHDvLz863rJiYmEhYWRtOmTQkJCSm3l5kQ4tZIUIhbNnjwYHbu3ElWVhZGo5HTp0/z9ttvlzsVx61o1qwZYWFhjBo1CqPRyPbt2zl+/Dh33HEHjRo1YsuWLdZ1rzQ5XZlbKysrCyiZC8vHx4c1a9YQHR2Nh4cH/fv3L9Xrymw2M23aNHx8fPD39+fxxx/nry2yRUVFTJ06laCgIFxcXOjevTs7duywPt6hQwfmzZtnvT9s2DD0ej3Z2dlASVdTjUZjHeS2cOFCmjRpgouLC8HBwYwcObJa3jMhaoIEhbBr8fHxbNiwwXp/w4YNxMfHExcXZ11eXFzM1q1bSUhIKHcb+fn5vP766yxbtoxffvmF06dPM2PGDOvj8+bN46OPPuLDDz/k119/JSMjg6+//rrUNh5//HG++uorli5dyu7du2ncuDH9+vUjIyPDWueVaeAVRWHTpk34+vry66+/WusOCQmhWbNm7Ny5k6lTp/LCCy9w+PBhVq9ebR1hLoRdUvdcuhAVe//99xV3d3fFaDQq2dnZil6vVy5cuKB8+umnSteuXRVFUZSNGzcqgHL8+HFr76PMzExFUa72Ojp27Jh1mwsWLFCCg4Ot90NDQ5VXXnnFet9oNCrh4eHKHXfcoSiKouTm5ipOTk7K8uXLresUFxcrYWFh1jmxvvvuO8Xb21sxm83Knj17lMDAQOWxxx5TZs6cqSiKotx///3K6NGjFUVRlK+++krx8vJSsrOzq/8NE6IGyBGFsGsJCQnk5eWxY8cONm3aRNOmTQkKCiIuLo4dO3aQl5dHYmIi9evXJyoqqtxtuLm50ahRI+v90NBQ65xVly5dIjk5udTMtHq9no4dO1rvHz9+HKPRWOpaJE5OTnTq1Mk6J1fPnj3Jycnh999/Z+PGjcTFxZGQkGCdIyoxMdE6SLFPnz40aNCAqKgoxo0bx/Lly0udbxHC3khQCLvWuHFjwsPD2bBhAxs2bLB+2IaEhNCwYUM2b97Mhg0b6NWr13W3ce0cSVAyclu5iV7hyjUTQv51+ZVl3t7etG3blsTERDZu3Eh8fDw9evRgz549HD16lCNHjlgHzHl6erJ7924++eQTQkNDee6554iJibGeVxHC3khQCLt35SR1YmJiqdHJcXFxrFmzhm3btl33/MSNeHt7ExoaWmq2X5PJxK5du6z3GzdujLOzs/V8A5RcpXDnzp3W2WHh6vmUX375hfj4eHx8fGjRogVz5swhKCio1Lp6vZ7bb7+d1157jX379pGUlFSp0fxCqEHGUQi7l5CQwEMPPYTRaLQeUUBJUEyePJnCwsJbDgoomRrklVdeoUmTJkRHR/Pvf/+71Ld7d3d3Jk+ezMyZM/Hz86N+/fq89tpr5OfnM2nSJOt68fHxvPXWW/j5+dGiRQvrsvnz55eamO/777/nxIkT9OzZE19fX1atWoXFYrFO0ieEvZGgEHYvISGBgoICmjdvXmoG1bi4OHJycmjUqBERERG3vP3p06eTnJzMhAkT0Gq1TJw4keHDh5e69OuVy8iOGzeOnJwcOnbsyJo1a/D19bWuc6XnUlxcnLVJKi4ujjfffLNUwPn4+LBixQpmz55NYWEhTZo04ZNPPrFOaS6EvZEpPIQQQlRIzlEIIYSokASFEEKICklQCCGEqJAEhRBCiApJUAghhKiQBIUQQogKSVAIIYSokASFEEKICklQCCGEqJBM4SFqxKV8IxfziriYU0R6XjEXc4u4mFtym37535n5xRjNFhQFFAUsimK9BXDSaTHotThf+dGV3Lo56wj0dCHU24UQ75Lbkh9X3A3yJy1EdZP/VeKW5BebOJicw4HkbA4mZ3Mus4D0vCIu5hSTkVdMsdmiSl2eBj0h1wRIiLerNVCiAtxp4O+uSl1CODKZ60ncUGp2IfuTszlwPrskGM5nk5Seh8UB/3J83JxoE+5DTLg3MeE+xET4EOhpULssIeyaBIUo5XhaLn+eu8SBy8FwMDmHi7lFapdVo8K8XYiJ8CkJkAhv2oT74CFNWEJYSVDUcfnFJjYfS2f9oVQ2Hk7l/KVCtUtSnVYDUYEexIT70K6+D72aBxHm46p2WUKoRoKiDkq6mMf6Q6lsOJzK9pMZFJvUOZ/gSFrX86Zvi2D6tgyhWYin2uUIYVMSFHVAkcnM9hMZbDicyoZDqSSl56tdkkOL9Hejb8sQ+rYIpn19X7RazY2fJIQDk6CopS7lG/nhj2TWH0ply/GL5Beb1S6pVgrwMHB7dBD9WobQtbE/Br1O7ZKEqHYSFLXMbycz+Hj7KX78M4UiaVKyKQ+DnrimgfRvFUK/liE462U8q6gdJChqgaz8Yr7cdZZPd5zhWGqu2uUIIMDDmbtvq8/fujQgxNtF7XKEqBIJCge27UQ6n/x2mh//TJET0nZKr9XQt2Uw98RG0iXKX+1yhLglEhQOJjOv5Ojhkx2nOZGWp3Y54iY0D/HknthIhrerh6uznMsQjkOCwkHsTMrgv1tPsXq/HD04Om9XJ+7qEM49sZHU93dTuxwhbkiCws7tPp3JvLWH2XwsXe1SRDXTaiC+WRDju0bSs0kAGo10sxX2SYLCTu0/f4l5a4+w/lCq2qUIG4gO9eLJAc2JaxqodilClCFBYWeOXsjh3z8dYfX+FOQ3U/d0bxzAkwOa06qet9qlCGElQWEnTqXn8cZPR/hu73mHnJVVVB+NBobGhDGjbzMi/OQchlCfBIXKzmUVMH/dUb7cdRaTJIS4hrNOy9+6NOCRXo3xdXdWuxxRh0lQqCQ1u5B3Nhzj09/OqHaRH+EYPF30PBjXiEndG+LiJN1qhe1JUNiYxaKwdGsSr685TJ7MvyRuQoiXC4/1acLIDhHoZCJCYUMSFDZ09EIOj3+1j99PZ6ldinBgTYM9mDWkJd0aB6hdiqgjJChswGi2sHDDcRZsOCbNTKJaaDQwtnN9nh4YjZuzXI1P1CwJihq250wWT3y5j8MXctQuRdRC9f3cmDuyDZ1lHilRgyQoakhBsZnX1x5m8eaT0t1V1CitBiZ0bcjj/ZvJyW5RIyQoasCvRy/y1Nf7OJNRoHYpog6JCnRn3l0xtKvvq3YpopaRoKhGl/KNvPjDAb7cdVbtUkQdpdNquL9nFI/d3lQunCSqjQRFNUk8nMrML/eRllOkdilC0CzYk3mjYmQqEFEtJCiqSFEU3ll/jDd+PiLnIoRd0Ws1PJTQmId7NcZJJ0cX4tZJUFRBbpGJaZ/tYe2BC2qXIsR1xYR78964jnJJVnHLJChu0bHUXB5YtpPjcpU54QCCPA28f09H2kb4qF2KcEASFLdgzf4Upn++l9wik9qlCFFpBr2W10a24Y629dQuRTgYCYqbYLEo/PunIyxIPCbXihAO66GERszo20yuqCcqTYKiki4VGHn0099JPJymdilCVFm/lsG8MbqtTP8hKkWCohIOpWTzwLJdnErPV7sUIapNdKgX/xnfkXo+rmqXIuycBMUNrNx7nie+2ke+TAkuaqEAD2feG9eBDg381C5F2DEJigosTDzGa6sPq12GEDXKWa/lpeGtGdkhXO1ShJ2SoLiOV348xKKNx9UuQwibeaBnFE/0b45WLook/kKC4i8sFoVnv/2T5dtPq12KEDY3JCaMN0bFoJeR3OIaEhTXMJktTP9iL9/uOa92KUKoZmDrEN66u51M+yGsJCguKzSaeWj5btYdSlW7FCFU16dFMAv+r73MQCsACQqgJCTuX7aLX47IGAkhrkhoFsiicR0w6OViSHVdnQ8KCQkhrq9HkwA+uKejXDmvjqvTx5USEkJUbNPRi9y/bBfFJovapQgV1dmgkJAQonJ+OZLGwx/vxmSWsKir6mRQFJssPCAhIUSlrT1wgWmf78UiV+eqk+pkUDy14g82SkgIcVO+23uep1b8QR0/rVkn1bmgWLDhGF/tPqt2GUI4pM92nuH5lQfULkPYWJ0Kih//SOb1tTJ3kxBVsWRLEv/ZdELtMoQN1Zmg2Hc2i8c+3yMXHBKiGrz84yE2HZXm27qiTgTF+awC/r50J4VG6bUhRHUwWxQe/vh3TqXLNePrglofFHlFJiYt3UlqTpHapQhRq1wqMHLff3eSJ9eOr/Vq9chsi0Xhvv/ulPmbbOzS1s/J+uW/eHYYit/t9wNgzsskM3EJhUm/YynMwxDREr/bH8DJr951t5Py8ZMUnfmzzHLXqI4E3TUbgNz9G8jauBTFWIhHm774Jky0rme6dIELnz1L6Pg30RrcqvdFCqu+LYJ5b1wHuQZ3LVarL5j7r1UHJSRsrCj5CDl71+AUGGldpigKqSvmoNHqCbzzGbTObmTv+IYLnz1D2KR30Tq7lLutwOH/BPPVb6vmgmySFz+CW/PuJffzL5Gxej7+A/+B3ieE1C+fx1C/NW6NbgMgfc1CfOMmSEjUsLUHLvDGz0eZ1qep2qWIGlJrm56Wbz/Fh7+eVLuMOsVSXMDFla/j3/8RtC4e1uWmzPMUnz+MX98pGEKb4uQfjl/fySjFheQd3Hjd7elcPdF5+Fp/CpP2oHEy4NasJChMWSloDG64R/fEENoUl/ptMF4suY5I3oFENDo9bs261uyLFgDMX3+U1X8mq12GqCG1Mih+PXqRWd/uV7uMOifjp3dxbXQbrpFtSy1XzEYANHpn6zKNVodGp6fobOX75OfuW4t7dE/rEYjerx6KsYjiC8cxF+RQnHwE58BIzAU5ZG1ajl+fB6v+okSlKApM/3wvh1Ky1S5F1IBaFxTnswqYsnwXJplqwKbyDmykOOU4vnHjyzzm5BeOziuIrI1LMRfmopiNXNr2Bea8TMy5GZXaftH5wxgvnsKjTV/rMp2LBwGDHuPi9/8m5b/TcG/VC9eoDmRu+BDPDoMxXbrA+cVTOf/hFPIO/Vptr1WUL6/YzH3/3UlmXrHapYhqVqvOUSiKwowv9pJdKL0wbMmUnUbGug8IHv1CqaOGKzQ6PYHDnyb9x7c4+9bdoNHiEtkWl6gOld5H7r6fcApogCGsWanlbk274tb0avNS4el9GNNO4dfnQc6/fz8BQ2aic/cl+b/TcIlohc7d55Zfp7ixMxkFPPzJbv47sTM6ufZ2rVGrguKjzUlsOZ6udhl1TnHKMSz5WSQv+cfVhYqFojP7ydn9PfVnfI0hpDFh987HUpSHYjahc/Mm+b/TcA5pcsPtW4yF5B38BZ8eYytcTzEZyVj7Lv6Dp2PKTEaxmHGp3xoAJ796FCUfxq1x56q8VFEJm4+l8/KqgzwzuIXapYhqUmuC4uiFHF5bfUjtMuoklwYxhE58p9Sy9FVv4eQfjlfnEWi0Vy96ozW4A2DMOEdxyjF8evzthtvPP/QritmIe8uECtfL2vIpLlEdMIQ0pvjCcbCYrY8pFhNYZMClrXy4+SS9o4OJbeSvdimiGtSKoDCaLTz2+R6K5OIqqtAa3HC+pjssgMbJgNbF07o879Cv6Ny80HkFYUxLIuPn93Fr0gXXhu2tz7n4/Tx0nv74xk0ota3cfWtxa9IFnavXdWsoTjtF/qFfCJ0wHwC9XzhotOTsXYvOwxdj+lmcQ2989CKqh6LAkyv2sfrRnrg6y9XxHF2tCIq31x3lz3PS28KemXMzyFz/H8x5Weg8fPFo2QvvbneXWseUnQaa0v0rjBnnKDp7gKBRL15324qikLHmHXx73WftEaV1MuA/8B9k/PQuitmIX58H0XsGVP8LE9d1Kj2f19YcYtaQlmqXIqrI4Udm7z6dyV2LtmKWXk5C2B2tBj5/IJaOkX5qlyKqwKG7x+YXm5j22R4JCSHslEWBx7/cR6HRfOOVhd1y6KD41w8HSUrPV7sMIUQFTlzMY55cB8ahOWxQbDicyvLtp9UuQwhRCR/+epLdpzPVLkPcIocMisy8Yp74cp/aZQghKulKE1SRSZqgHJFDBsWs7/bL9SWEcDDHUnN58+ejapchboHDBcWuUxl8t/e82mUIIW7B+7+cYN/ZLLXLEDfJ4YJizg8H1S5BCHGLzBaFmV/so1gGxzoUhwqKlXvP8/vpLLXLEEJUweELOSzZIteKcSQOExRFJjOvrZG5nISoDRYmHie70Kh2GaKSHCYolm5J4kxGgdplCCGqQVa+kQ9+OaF2GaKSHCIoMvOKeWf9MbXLEEJUow9/PcnFXOm96AgcIijeWndULkYkRC2TX2yWL4AOwu6D4uTFPJZvP6V2GUKIGvDx9tOcyZBpeOyd3QfFKz8exGiWSf+EqI2KzRbe+OmI2mWIG7DroNh+Ip01+y+oXYYQogZ9s+cch1Ny1C5DVMBug0JRFF5aJYPrhKjtLArMXSOzy9ozuw2KVX+ksPfsJbXLEELYwM8HL7DrlMwua6/sNije3yR9rIWoS15bLQNq7ZVdBsXu05nsPZOldhlCCBvafjKDjUfS1C5DlMMug+KjX2UeGCHqovnrZBpye2R3QZF8qYDVf6aoXYYQQgU7T2VyKCVb7TLEX9hdUPx36ylMFhk3IURd9b9tMsDW3thVUBQazXzym1wHW4i67Jvfz5NbJFP22BO7CooVu8+RlS9TDwtRl+UWmfj693NqlyGuYVdBsXiznMQWQsByaX6yK3YTFJuOpnE0NVftMoQQduBQSg47kzLULkNcZjdBIV1ihRDXWiZHFXbDLoLiRFouiTLQRghxjR//SCFdLmxkF+wiKJZuSUKRHrFCiGsUmy18vvOs2mUI7CAojGaL9HAQQpTr499OYZFxVapTPSg2H7solzkVQpTrTEYBG49Ks7TaVA8Kma5DCFER6SqrPlWDwmxRWHtArmAnhLi+X45cJKdQBuKqSdWg2H4inYy8YjVLEELYuWKzhV+OXFS7jDpN1aD4UZqdhBCVsO6gtDyoSbWgUBSFNfslKIQQN7bhcCpm6f2kGtWCYtepTFJzZDCNEOLGMvONck1tFakWFKv+kKMJIUTlSfOTelQLCml2EkLcjJ8kKFSjSlDsPZPFuawCNXYthHBQJ9LyOHkxT+0y6iRVgkJ6OwkhboU0P6lDlaBY/WeyGrsVQji4n2SAripsHhRnMvJJSs+39W6FELXArlOZXJLLJduczYNi92np4iaEuDUmi0LikVS1y6hzbB4Uv5/OsvUuhRC1yM8HJShsTY4ohBAOZcdJuZa2rdk0KAqNZg4mZ9tyl0KIWiYlu5A0mdXBpmwaFH+cu4TRLPO1CCGq5s9zl9QuoU6xaVD8Ls1OQohq8IcEhU3ZNCh2n8qy5e6EELWUHFHYlm2PKM7IEYUQouokKGzLZkFxLquAC9lyAkoIUXXnLxWSniufJ7Zis6CQ8xNCiOok5ylsx2ZBIecnhBDVSZqfbMd2RxRyfkIIUY3kiMJ2bBIUFovC/vMy0E4IUX3+PCefKbZik6BIzSmi2GSxxa6EEHXEuawCMvOK1S6jTrBJUJzLkmnFhRDVT5qfbMNGQVFoi90IIeqYwyk5apdQJ9gmKDLl+thCiOqXki1fQm1Bmp6EEA4rVWaRtQk5ohBCOKxUOaKwCZsExXk5RyGEqAFyXQrbsFHTkxxRCCGqnzQ92UaNB8WlfCO5Raaa3o0Qog7KLTKRJ58vNa7Gg+KsnMgWQtQgOaqoeTUeFHJ+QghRk+SEds2r8aA4lylHFEKImiNHFDWv5oNCTmQLIWrQBTmiqHE1HhTpMmmXEKIGSRfZmlfjQVFoNNf0LoQQdZg0PdW8Gg+KgmIJCiFEzUnNkaanmlbzQSFHFEKIGpRdIOMoapoNgkIuWCSEqDlGs3zG1DR9Te+gUJqehKgWObt/4NJvKzDnZuAcUB/f3vfhEtGq3HXzD28h5/dVFKeeQDEbcQqoj0+3/8M1qoN1nYKTv5Px07uY87Jwa9oF//6PoNE5AWApyiN56WME3z0HvVeQTV7frTJbFLVLsBuJiYkkJCSQmZmJj49PtW235k9mmyQohKiqvIO/kLHuA7xjRxE24W0M4S1J/WI2puzUctcvPPMnLg3bEnTXbELHv4lL/TakfvUixReOA6AoFi5+/zqebQcQ8re5FJ0/Qu7eNdbnZyYuxrPtALsPCah6UEyYMAGNRmP98ff3p3///uzbt8+6znvvvUdMTAzu7u74+PjQrl07Xn31Vevjs2fPtj5fr9cTEBBAz549efPNNykqKv9ke3x8PIsWLSIxMRGNRkNWVlaZddq2bcvs2bMr/Vq6du1KcnIy3t7elX5OZdT4EUWi01RwvwA6JxStE8qVW60TikaPRavHonXCorl6a9Y4YdboLt/qMVHybxM6TJTcN2qcMCo6jJfvF1/+d7GipVjRU6yULCuy6ChCR7FFR6FFS9HlZYUWLYVmLYWKjkKzlgLLlVst+eaSH7NikzkThbih7B3f4NGmD54x/QDwu/1+Ck7uJuf3VfjGTSizvt/t95e67xs3noKj28k/9hvOwY2w5Gdjyb+EZ/tBaPTOuDXpTPHFMwAUnj1Accox/PpMrvHXVR2Mlqo3PfXv35/FixcDkJKSwjPPPMPgwYM5ffo0H374IdOmTePtt98mLi6OoqIi9u3bx4EDB0pto2XLlvz8889YLBbS09NJTExkzpw5LFu2jMTERDw9Pa3rZmRksGXLFpYvX87Ro0erXP8Vzs7OhISEVNv2rqjxoNCYjWAuAnMRmpreWXXQUPKu6EHRaEHrVDbkNHoUrVMFIae3Bt31Qs6k6DByJdyuE3KKjmJFS5FFf92QK7LoyDdrJeRqMcVspDjlGN5dRpZa7tqwHUXnDlVuG4oFS3EBWhcPALRu3ug8/Cg4+TsukW0pOrMf99a9UcxGMtYuxH/Ao2i0ump/LTXBbK5605PBYLB+wIaEhPDEE0/Qs2dP0tLSWLlyJaNGjWLSpEnW9Vu2bFlmG3q93rqNsLAwWrduTZ8+fYiJieHVV19lzpw51nV/+OEHYmJiqFev3k0FhUaj4YMPPuCHH35gzZo11KtXj3nz5jF06FCgbNPTxIkT2blzJzt27MBgMGA0GunSpQvNmzdn+fLlld5vjQcFFsdtetIoltoTclo9is75BiFX+miuTMhpdJgUPUb01w05o6KjSNFSpOivG3LWsCsn5ArMWkwScqWY87NBsaB18y21XOfuizlvd6W2kf3b1yjGQtyb9wBKPnAC7niCzHX/IWPd+7hGdcSjdR8ubfsClwYxaPTOpPxvJuaCbDzbD8arw5Bqf13VxVTN5yhyc3NZvnw5jRs3xt/fn5CQEDZu3MipU6do0KDBTW2refPmDBgwgBUrVpQKiu+++4477rjjlup7/vnnee2115g7dy7z589n7NixnDp1Cj8/vzLrvv3228TExPDkk0/yxhtv8Oyzz3Lx4kUWLlx4U/us+aBQHDcoHJkjh1xsk+YYi4tw0ujQK1qcFT16NDgpOpwULXq0l2916C0anNChVzToFW3JLVr0Fi16NOiuLLeADi16iwadRYMOTckypWQdnUWD1qKgR4vWoly+DzoFtBbQKqC7fKs1K2gV0FiUkscsl++bFbQWBY3FcvkWNGYLGkUpubWAxmxGc3kdLCXLsVist5iv/Jgv3zeTWlhIHPDGtvdo6+JS8piisCj9Iitzs/nhmxkVvrU/ZGfzXEoy79cLp+tPc0o/6K0Db1/IP07SV9N48OwZvopsyD3LVzPV14/uvu7cseE/vHl0Dc1cXGrqt18luoAA+OftVdrG999/j4dHydFWXl4eoaGhfP/992i1WmbNmsWdd95JZGQkTZs2JTY2loEDBzJy5Ei02ht/qWnevDlr16613i8qKmLNmjU899xzt1TrhAkTGDNmDAAvvfQS8+fP57fffqN///5l1vXw8OB///sfcXFxeHp6Mm/ePNatW3fT5zBqPii0TjW+C1G7BBh8SDKdpwgzjpFyNctissD98OTAYrw6uAA6tAqkLIeC0848+Lgneo0WZ4vucojqcKIkNM/uSGPzkhT6TGnP762C+eNKiCpa9Aro0aG7HJgfzt9I73GdWR8VzMFnjuD2cHcO6Z2JWl7MVw0C6B8bfTk8NegsClpFYw3P0iGqsYbnlVAtCU4FrVlBo4DWbLkctApcvtVcXoal5LbkfklwaizK5fBUSoUoZgsaL48qv8cJCQm8++67QMn5g4ULFzJgwAB+++03GjRowNatW/nzzz/ZuHEjW7ZsYfz48fznP/9h9erVNwwLRVHQaK7+Ia9fvx5/f39at259S7W2adPG+m93d3c8PT1JTS2/UwNAbGwsM2bM4MUXX7Q2qd2smg8KvaHGdyFql0C9O0lqF2FHtHotrpGu5O7PxauDFwAWDVw6kINnO08ydJcn3vzL51XWtizOLTlHxIMRnO1QxFlOX3cfGRszyPUpYkfPLLblpQOwyO9PdG46TukzOetZzJ569jkCOszdizU3Xq1C7u7uNG7c2Hq/Q4cOeHt788EHH1ibjFq1akWrVq146KGH+PXXX+nRowcbN24kISGhwm0fPHiQhg0bWu//tdnJy6vkd3rp0qUyXVqzsrLKfPt3cir95Vuj0WCp4IS+xWJh8+bN6HS6Wz5xXvONwXr7PFwV9itQK18u/iqgXwCZGzPJ/CWTwvOFJH+cjDHdiF9CSbt0yhcpnH3/rHX9rG1ZnP3gLCF3h+DayBVjlhFjlhFzftmmYFO2ibTv0gj9WygAOncdhjAD6WvTyT+WT97BPNyauNnmhd4CZ51ztW9To9Gg1WopKCh/9usWLVoAJc1UFTl06BCrV69mxIgRQMnRxcqVK60nnwGaNGmCVqtlx44dpZ6bnJzMuXPnaNasWVVeCnPnzuXgwYNs3LiRNWvWWHt33Qw5ohB2J1iR9qa/8u7sjSnXROq3qZgumTDUM9BgWgOcA0o+JE1ZJorTr87UnLEhA8yQvCyZ5GXJ1uU+3XwIvy+81LaTlycTMCAAJ9+r31Tr/b0e5z44R/pP6QQMCMAtqnYHRVFRESkpKQBkZmbyzjvvkJuby5AhQ5g8eTJhYWH06tWL8PBwkpOTmTNnDoGBgcTGxlq3YTKZSElJKdM9tm3btsycOROAXbt2kZeXV6r5x9PTkwceeIDp06ej1+uJiYnh/Pnz/POf/yQ6Opq+ffve8uvas2cPzz33HF9++SXdunXjrbfe4tFHHyUuLo6oqKhKb8cGQSFHFOLmBMogzXL59/bHv7d/uY/99cM/6qnKfwhETI4os8wtyo0mLze5uQJV4qytelCsXr2a0NCSIypPT0+aN2/OF198QXx8POnp6Xz00Ue8++67pKenExAQQGxsLOvWrcPf/+rvY//+/YSGhqLT6fD29qZFixY89dRTTJ48GYOh5Avzt99+y6BBg9DrS3/0vvHGG4SGhvL000+TlJREUFAQCQkJfPrpp2XWrazCwkLGjh3LhAkTGDKkpNfapEmT+OGHHxg3bhy//PILOl3lukBrFEWp2fHvSwZD0qYa3YWoXVY3jWOm8aTaZQgH0T6oPUsHLFW7jEpp06YNzzzzDKNGjVK7lJsi5yiE3QkqyFa7BOFAauIcRU0oLi5mxIgRDBgwQO1SblrNNz0Zqt51TdQtQXnpUL1T1YhazFXvqnYJleLs7MysWbPULuOW1PwRhVtAje9C1C5Bly6oXYJwIEFu9j9xoaOr+aBwD6zxXYjaxdlchLezl9plCAchQVHzbBAU5ffSEKIigc7S9iQqR4Ki5skRhbBLwXp3tUsQDkKCouZJUAi7FKiROcJE5QS7BatdQq0nQSHsUqBcBllUkhxR1DwJCmGXgkxGtUsQDsBV74qns+eNVxRVUvNB4eoDLnJiUtycoKLyJ2MT4lrS7GQbtrmUmG/DG68jxDWC8rPULkE4AGl2sg3bBIWfBIW4OYG5F9UuQTgACQrbsFFQVH4mSyEAArJT0Wrk2tmiYhIUtiFNT8Iu6RQz/gYftcsQdk6CwjbkiELYrUAnmcZDVCzCs+y1NET1k3MUwm4F6RxjVlChnhb+LdQuoU6wTVB4hUkXWXHTAjU1Pwu+cFxBbkEEuMrs1LZgu7OFIW1stitROwSaa/bii8KxtfCTowlbkaAQdivYWKx2CcKOSbOT7dguKEJjbLYrUTsEFuWpXYKwYxIUtmPDoJAjCnFzgvKy1C5B2DEJCtuxXVAENAUHubatsA+BOalqlyDsVKBrIIFuMuGordguKLQ6CG5ps90Jx+ebl4GTVq5LIcqSownbsu0cCfXa23R3wrFpUAg0+KpdhrBDEhS2ZdugaNDVprsTji/QSa41IMqSoLAtGwdFd5vuTji+IJ1B7RKEHZKgsC3bBoVHIAQ0s+kuhWMLUmR0tigtwDVAJgO0MdvP4xzZzea7FI4r0GxWuwRhZ2JDY9Uuoc5RISik+UlUXpCxSO0ShJ3pGdFT7RLqHNsHhZynEDchsDBH7RKEHdFr9HQLk1YJW7N9UHgGy3kKUWlBeZlqlyDsSLvgdng6S084W1PnWpNN+6qyW+F4gi5dULsEYUfiwuPULqFOUicomg1UZbfC8XgU5eCmd1O7DGEneoT3ULuEOkmdoIjoDG7+quxaOJ5Ag1z0SpRc9jTKWy6rrAZ1gkKrgybS/CQqJ0jvoXYJwg70DJfeTmpRJygAmg1QbdfCsQRqZXS2kKBQk3pB0ag3yPQMohKCFI3aJQiVuenduC34NrXLqLPUCwqDB0RJDwZxY4EmGZ1d18WGxeKkkynn1aJeUAC0Gqnq7oVjCCouULsEoTLpFqsudYMiejA4y4lKUbGgAhmdXZcZdAZ61e+ldhl1mrpB4ewO0UNULUHYv8Dci2qXIFR0e4Pb8ZYu0qpSNygA2oxWuwJh54Ky5drZddnIJtJErTb1g6JhHHiGqV2FsGMGUyFecqW7OinSK5KOIR3VLqPOUz8otFpoc5faVQg7F2TwUbsEoYKRTeVowh7Yx+XDYsbA5rfUrkLYsSC9G8fULuIaad+nkb0rm6LkIjROGtwauxEyKgRD6NWxQRe+vsCl7ZcwZhjR6DW4RroSPCIYt0bXn7sqIzGDrC1ZFJ4tBCh5zshg3KKuPidrSxYpX6agFCn49vAl5O4Q62PFacUkvZ5Eo9mN0LnqauCV246T1omhjYaqXYbAHo4oAIKiS+Z/EuI6AjX21Yc+71Aefr38iHo2isiZkWCBpNeTsBRZrOsYQgyEjQujyZwmRP0zCucAZ5JeT8KUbapwu96dvWn4REMaPdMIJ38nkuYmYcw0AmDKMXFu8TlCR4fSYHoDMjdnkrPnaq+w8/89T/BdwQ4fEgC96/fG18VX7TIE9hIUALfdp3YFwo4FWexrdHbkjEh8e/jiUs8F1/qu1JtUD2O6kYKkq2M+fGJ98GjpgXOQMy71XAgZE4KlwGI9WihPxIMR+Pf2x7WBK4YwA/XurQcK5B7IBUqOGHSuOrw7e+MW5YZ7tDuF50u2l7U1C41eg3fH2tFDSJqd7If9BEWLO8A9UO0qhJ0KMhnVLqFC5oKS0eM69/K/yVtMFjITM9G6anGJcKn0di1FFhSzYt2uIdiApdhCwakCTLkmCk4W4BLhginXROrXqYT+LbTqL8YO1PesT6eQTmqXIS6zj3MUAHpnaD8eNr2udiXCDgUW5atdwnUpikLKJym4NXXDJbx0CGTvyebsu2exFFvQe+uJnBmJ3rPy/+0ufHEBJ18nPFqUDEzVuesIvy+csx+cRSlW8Onqg2drT85+eBa/2/0wXjRy+q3TKGaFoGFBeN/mmEcXdza5E43Gvo4i6zL7CQqA2/5eclLbYt/fHivr5U1FrDhk5NBFC656DV0jdLx6u4FmAVe/dWqezy73ua/dbmBmt+tPmvjVASPPbijieKaFRr5a/tXLwPDoq+34y/cZeXJdIXnFCpPaOTO379UPsKQsC32X5bPzfne8DI7xnzEo/xI4q11F+ZKXJVN4ppCof5a9VoJHtAeNXmiEOcdMxsYMziw8Q6PnGqH3uvF/vbRVaVzafomGTzZE63z14N+rgxdeHbys93MP5lJ0toiwv4Vx5IkjRDwYgd5bz/EXjuPezL1S+7Ineq2eOxrfoXYZ4hr20/QE4BUKLYepXUW12XjKxEO3ObNtkjs/jXPDZIG+/8snr1ixrpM83aPUz0dDXdAAI1pc/+Tt1jMmRn9ZwLg2Tux90J1xbZwY9WUB28+WnCS9mG/h7ysLeL2PC2v+5s7SvUZ+OHI1fCf/UMArtxscJiQAAnPT1S6hXOeXnSd7TzYNn2yIk1/Z35nWoMUQbMCtsRvhk8LR6DRk/nLj64Bf/PEiaSvTiJwRWWFTlcVoIXlZMmHjwyhOLUYxK7g3d8cQasAQYiD/uP0eiV1PQkQCAa4BapchrmFfQQHQZYraFVSb1X9zZ0JbZ1oG6YgJ0bH4DhdOX1LYlXx1NtQQD22pn28Pm0hoqCPK9/q/mje3F9OnkY6nehhoHlBy27uhjje3FwNwIlPB26BhdCsnbqunI6GhjgNpJb1xPv7DiLNOw53R9tWL6EYCclLRauznz1VRlJKQ2JVNw8cb4hxYycMdpeTDvSJpq9JI/S6VyOmRuDZ0rXjd79LwaO2Ba6QrikWBazatmErfdxSTWk1SuwTxF/bzP++Keu2hUe2cAOxSUcmtn2v53+Qv5Fr44aiJSe0q/tDZesZM36jSzQn9GunZcqYkgJr4ack3KvyebCajQGHHOTNtgnVkFCg8t6GQdwZU/mSqvdBbTPg5+6hdhlXysmSytmQR8WAEWhctxiwjxiwjluKST2ZLkYWUL1PIP5ZP8cViCpIKOPfROYwZRrw7XT1vcPb9s6R8kWK9n7YqjdQVqdSbWA+nACfrds2FZadaLzxXyKXfLhF8ZzBAyRgODWRszCBnTw5FyUW4RlUcNPYmPjyelgEt1S5D/IV9Nl7GPQHH16tdRbVSFIVpawrpXl9Hq6Dye8Ys3WvE0xnujK7415KSqxDsUTrjgz20pOSWNGn5umpYOsyVe74poMCocE+ME/0a65n4bQGPdHLmZJaFoZ/mYzTD7HgDIyto5rIngc5eXCzKULsMADLWl9Rx8pWTpZbXm1QP3x6+oIHi5GJO/3oac64ZnYcO14auNHy6IS71rgZ1cXoxXPO9IWNdBopJ4cyCM6W2G3hHIMHDg633FUXh/OLzhIwJQWso+VvQOmup9/d6JC9LRjEqhI4LxcnXMX63V0xuO1ntEkQ57DMo6neByB6QtEntSqrNw6sK2XfBzK8T3a+7zke/Gxnb2gkX/Y3PHfx1DUUpvWx4tFOpk9uJSSb+SDXzzkAXGr+dyycjXAnx0NDpP3n0bKAjyN3+Di7/KkjnykG1i7is1ZJWFT6uddZS/5H6N9xO1FOlT4A3m9esUvvXaDREPVP25LlXWy+82nqV8wz7lxCRQAv/FmqXIcphv58OcY+rXUG1eWRVAd8dMbFhvDvhXuW/5ZtOmTicbuHv7W/c1h3ioSElt3Tjc2qehWCP8gOmyKQw5YdC3hvsyrEMCyYLxEXqaRago6m/lu1nHeMKckEa+/xeI6pOg4aH2j6kdhniOuw3KBr2hPqxaldRJYqi8PCqAlYcMrH+HjcaVnCC+sPfjXQI1RITcuOpF2IjdPx0ovSH+9oTJrpGlP/cF38pYkBjPe1DdZgtYLJc7XVlNINZKfdpdifQUQoVN613/d4086vc0ZSwPfsNCoCeM9WuoEoeWlXI//YZ+fhOVzwNJUcBKbkWCoylP/CyixS+OGC87tHEPV8X8NTPV6d9eLSzM2uPm3j11yIOXTTz6q9F/HzCzD86l33+/lQzn+038UJCyZiM5gFatBoNH+4u5ocjJWM8bgtzjHmBgozFapcgaoAGjZybsHP2fSzfuDdEdIEz29Su5Ja8u7Nk7EL80tJ92Rff4cKEtlc/1D/904iiwJhW5Z94PH3JUqpraNcIPZ+OdOWZ9UU8u6GIRn5aPhvpSufw0r9ORVG4//tC3uhnwN25pFnK1UnDkmEuPLSqkCITvDPQhXrXaQ6zN4FFeWqXIGpAnwZ9aOrbVO0yRAU0iqLY9/H8mR3w4e1qVyHswKGQFtzlmqt2GaIaaTVavhryFY19G6tdiqiA/X+VjLgNWg5XuwphB4Jy5JKotU3fBn0lJByA/QcFwO2zQXf9eY9E3eCbl46T1rHGBYjr02q0TI6RcxOOwDGCwjcSOt+vdhVCZRoUAuSSqLXG8MbDifIpOxZE2B/HCAqAHjPA1U/tKoTKAp081S5BVAM/Fz8e6/CY2mWISnKcoHD1gfgn1a5CqCxY51hzF4nyzeg4A2+DY14roy5ynKAA6DgJQlqrXYVQUaDiWH+yoqwuoV0Y0miI2mWIm+BY/+t0ehjyFtjRdNPCtgLNDjhvtrAy6Aw82+VZtcsQN8nxPnHrdYBOcmK7rgoyFqldgqiC+1rfR32vG0+WKOyL4wUFQK9nwKue2lUIFQQVyoA7R9XIuxETW01UuwxxCxwzKAyeMHCu2lUIFQTl2cf1KMTN0aDh2dhncdLJOBhH5JhBAdB8EDQfrHYVwsYCs2V0tiMa3mQ4HYI7qF2GuEWOGxQAg+bJ2Io6xrMwG1e9dJF1JH4ufkzrME3tMkQVOHZQeIbA0LfVrkLYWJDBV+0SxE2QMROOz7GDAiB6CLT9m9pVCBsK1F//crLCvvRp0EfGTNQCjh8UAANeBd+GalchbCRQKxNEOoIIzwhe6PqC2mWIalA7gsLgAXd+ABrHuFKbqJogpfxrgwv7YdAZ+Hf8v/Fw9lC7FFENakdQQMl1Kxz80qmicoJM5huvJFT1RKcnaO7XXO0yRDWpPUEBEPc4NOimdhWihgUVF6hdgqjA4KjB3NX0LrXLENWodgWFVgd3LQHPMLUrETUosCBH7RLEdTTybiRzOdVCtSsoADyCYNRS0DmrXYmoIUF56WqXIMrhqndlXvw83Jzc1C5FVLPaFxQAEZ2g/8tqVyFqiIzOtk/PxT5HI59GapchakDtDAqA2/4ObceqXYWoAS7GAryc5Up39mRk05EMjpIpdWqr2hsUAIP+DaExalchakCQs4z0tRfRftE81ekptcsQNah2B4WTC9z9iZzcroVkdLZ98HPxY178PJzlnGCtVruDAsC7Hoz9HKSpolYJ1Mh01Wpz1bvyTq93iPCMULsUUcNqf1BAyXW2Ry0FrV7tSkQ1CbbI6Gw16TQ6Xo97ndaBcg37uqBuBAVA494l19sWtUKgyah2CXXaM12eoWd4T7XLEDZSd4ICoN3fIO4JtasQ1SCoSEZnq+WBNg8wsulItcsQNlS3ggIg4WmZlrwWCCy4pHYJddLIpiN5uN3DapchbKzuBQWUXOyo5Z1qVyGqIChXRmfb2sCGA2V6jjqqbgaFVlcyLXm0XFDFUQVkX0CrqZt/vmqIj4jnX93/Je95HVV3f+s6PYxcDE0HqF2JuAV6iwlfGXRnE51DOzMvbh76Gug1qNFo+Oabb6p9uzdr9uzZtG3bVu0yyliyZAk+Pj5ql1GHgwJA51TSbbbx7WpXIm5BkLOX2iXUejGBMbyd8HaVBtRNmDCBYcOGlftYcnIyAwbIlzV7V7eDAkBvgNHLoWGc2pWImxSkk1lKa1JsaCzv93m/RmeDDQkJwWCQS9vaOwkKKJnq4/8+g8Z91K5E3IRAjQygrCkDIgewoPeCGp8y/Nqmp6SkJDQaDStWrCAhIQE3NzdiYmLYunWrdf3ymojefPNNIiMjASgsLKRly5bcf//91sdPnjyJt7c3H3zwwQ3ree+994iIiMDNzY277rqLrKws62M7duygT58+BAQE4O3tTVxcHLt37y71/NmzZ1O/fn0MBgNhYWFMnTrV+lhxcTGPP/449erVw93dnc6dO5OYmFjq+UuWLKF+/fq4ubkxfPhw0tPto9OGBMUVTq4w5hNoOVztSkQlBVkUtUuolcZGj+XVnq/ipFNnmpR//vOfzJgxgz179tC0aVPGjBmDyWSq1HNdXFxYvnw5S5cu5ZtvvsFsNjNu3DgSEhK47777KnzusWPH+Pzzz1m5ciWrV69mz549PPTQQ9bHc3JyGD9+PJs2bWLbtm00adKEgQMHkpNTciGtL7/8kjfeeIP33nuPo0eP8s0339C69dWR6/feey+bN2/m008/Zd++fdx1113079+fo0ePArB9+3YmTpzIlClT2LNnDwkJCcyZM+dm374aIV/JrqVzghEfgcELdi9VuxpxA4HGYrVLqHWmtpvKfW0q/kCtaTNmzGDQoEEAPP/887Rs2ZJjx47RvHnlrsHdtm1b5syZw3333ceYMWM4fvx4pU6YFxYWsnTpUsLDwwGYP38+gwYNYt68eYSEhNCrV69S67/33nv4+vqyceNGBg8ezOnTpwkJCeH222/HycmJ+vXr06lTJwCOHz/OJ598wtmzZwkLC7O+ztWrV7N48WJeeukl3nrrLfr168eTTz4JQNOmTdmyZQurV6+u1OuuSXJE8Vdabck4i54z1a5E3EBQYb7aJdQaOo2O2bGzVQ8JgDZt2lj/HRoaCkBq6s1drGr69Ok0a9aM+fPns3jxYgICAqyPeXh4WH8efPBB6/L69etbQwIgNjYWi8XC4cOHrTU8+OCDNG3aFG9vb7y9vcnNzeX06dMA3HXXXRQUFBAVFcV9993H119/bT0S2r17N4qi0LRp01L737hxI8ePHwfg4MGDxMbGlnodf72vFjmiuJ5ez4B7EKx+AhSL2tWIcgTlZYGr2lU4PoPOwGs9X6NX/V43XtkGnJyuNnlpNCWTP1osJf8HtVotilK6ydFoLDvvV2pqKocPH0an03H06FH69+9vfWzPnj3Wf3t5Xb/n3JV9X7mdMGECaWlpvPnmmzRo0ACDwUBsbCzFxSVHthERERw+fJiffvqJn3/+mSlTpjB37lw2btyIxWJBp9Oxa9cudDpdqf14eHgAlHld9kSCoiKd7wevMFhxPxjz1K5G/EVgTiq4Ss+nqvB09mR+r/l0CO6gdimVEhgYSEpKCoqiWD/Ar/3gv2LixIm0atWK++67j0mTJtG7d29atGgBQOPGjcvd9unTpzl//ry1aWjr1q1otVqaNm0KwKZNm1i4cCEDBw4E4MyZM1y8eLHUNlxdXRk6dChDhw7loYceonnz5vzxxx+0a9cOs9lMamoqPXr0KHf/LVq0YNu2baWW/fW+WiQobiR6MExaA5+MgUtn1K5GXMMvLx291guTpXInOkVpga6BLOqziKa+TWt8X5cuXSrzge7n53fT24mPjyctLY3XXnuNkSNHsnr1an788cdSRwYLFixg69at7Nu3j4iICH788UfGjh3L9u3bcXa+/ngQFxcXxo8fz+uvv052djZTp05l1KhRhISEACUBs2zZMjp27Eh2djYzZ87E1fXqIe2SJUswm8107twZNzc3li1bhqurKw0aNMDf35+xY8dyzz33MG/ePNq1a8fFixdZv349rVu3ZuDAgUydOpWuXbvy2muvMWzYMNauXWsX5yfgFs9RTJgwAY1GU6p974opU6ag0WiYMGFCVWuzKigoYNasWTRr1gyDwUBAQAAjR45k//79pdbLy8vjiSeeICoqChcXFwIDA4mPj+f777+vWgEhreG+DRDRpWrbEdVKg0KAwVftMhxSE98mLBu4zCYhAZCYmEi7du1K/Tz33HM3vZ3o6GgWLlzIggULiImJ4bfffmPGjBnWxw8dOsTMmTNZuHAhERElF1RasGABWVlZPPtsxfNUNW7cmDvvvJOBAwfSt29fWrVqxcKFC62Pf/TRR2RmZtKuXTvGjRvH1KlTCQoKsj7u4+PDBx98QLdu3WjTpg3r1q1j5cqV+Pv7A7B48WLuuece6/mToUOHsn37dmudXbp04T//+Q/z58+nbdu2rF27lmeeeeam36OaoFFuoWFswoQJrF+/nuzsbJKTk62pWlhYSGhoKF5eXiQkJLBkyZIqF1hUVESvXr04ffo08+bNo3Pnzly4cIGXX37Z2hbYpUvJB/i4ceP47bffeOONN2jRogXp6els2bIFLy8vxo8fX+VaMBXD9/+APcurvi1RLcbGJLAv+7jaZTiU4Y2H83Tnp3HRu6hdinAQt9zrqX379tSvX58VK1ZYl61YsYKIiAjatWtnXbZ69Wq6d++Oj48P/v7+DB482HqW/4qzZ89y99134+fnh7u7Ox07dmT79u1AyWCarVu38v333zNq1CgaNGhAp06d+Oqrr4iOjmbSpEnWk0ArV67k6aefZuDAgURGRtKhQwceeeSR6gkJAL0zDFsIfeeARnfj9UWNC9LJqN7KctW78q/u/+KFbi9ISIibUqXusffeey+LFy+23v/oo4+YOHFiqXXy8vKYNm0aO3bsYN26dWi1WoYPH27txZCbm0tcXBznz5/nu+++Y+/evTz++OPWxz/++GP69OlDTExM6cK1Wh577DEOHDjA3r17gZLpAFatWmUdAFNjuj4C478Dz9Ca3Y+4oUBFArsyoryj+HjgxwxtNFTtUoQDqtLJ7HHjxvHUU09Zh95fGXV47bD0ESNGlHrOhx9+SFBQEAcOHKBVq1Z8/PHHpKWlsWPHDuvJrWt7JRw5coSEhIRy9x8dHW1dp23btrz//vuMHTsWf39/YmJi6N69OyNHjqRbt25VeZnli+wOD/4KXz8Ax36u/u2LSgmySNflGxkSNYRnujxT49NxiNqrSkcUAQEBDBo0iKVLl7J48WIGDRpUamALlIxI/L//+z+ioqLw8vKiYcOGANZBKnv27KFdu3a31APiSpPTlW5yPXv25MSJE6xbt44RI0awf/9+evTowYsvvliVl3l97gEw9ku4fTbUwBTM4saCimV09vUYdAZmx87mpR4vSUiIKqnyyOyJEyeyZMkSli5dWqbZCWDIkCGkp6fzwQcfsH37duu5hyuDVK7tXlaepk2bcuDAgXIfO3ToEABNmjSxLnNycqJHjx48+eSTrF27lhdeeIEXX3zRur9qp9FA98fg3h/BO6Jm9iGuK7CwhpsZHVSkVyTLBy5nRNMRN15ZiBuoclD079+f4uJiiouL6devX6nH0tPTOXjwIM888wy9e/cmOjqazMzMUuu0adOGPXv2kJGRUe727777bn7++WfreYgrLBaLtXfTX89fXKtFixaYTCYKCwtv8RVWUkQneOAXaCX/MW0pKC/zxivVMf0j+/Pp4E9p5tdM7VJELVHloNDpdBw8eJCDBw+WGZru6+uLv78/77//PseOHWP9+vVMmzat1DpjxowhJCSEYcOGsXnzZk6cOMFXX31lnVr4scceo1OnTgwZMoQvvviC06dPs2PHDkaMGMHBgwf58MMPrU1P8fHxvPfee+zatYukpCRWrVrF008/TUJCQoVD9auNmx+M/AhG/69k+g9R4wKzb24OoNrMx+DDnG5zmBs3F3cnd7XLEbVItUwK6OXlVe4HsVar5dNPP2XXrl20atWKxx57jLlz55Zax9nZmbVr1xIUFMTAgQNp3bo1r7zyijV0XFxcWL9+PePHj+fpp5+mcePG9O/fH51Ox7Zt26xjKAD69evH0qVL6du3L9HR0TzyyCP069ePzz//vDpeZuVFD4GHtkPru2y73zrIq/ASrjrp6jms8TBWDlvJHY3vULsUUQvd0oA7cRMO/QDfPwa5F9SupNYa1LIzp/OT1S5DFVHeUTzb5Vk6hnRUuxRRi8k04zWt+aCSo4t24wCN2tXUSoFOHmqXYHMGnYGH2z7Ml0O+lJAQNU6CwhZcfeGOd+Dv66CeY8zS6UiCtHVrdHZsaCwrhq7ggZgHVLsKnahbpPO/LYV3KAmL3/8H656HvDS1K6oVgpS68X3H38Wfx297nIFRA9UuRdQxdeN/mD3RaKD9OHhkF3SeLAP1qkFgJa+n7Kg0aLir6V18N/w7CQmhCvmUUouLNwx4BTpMgPUvwqEqToVehwUV1/AYGZVo0NCnQR8mx0ymsW/5F9sRwhak15O9OLcL1s+B4+vVrsTh7KzfgXt1tacZT4OG2xvczuSYyTTxbXLjJwhRwyQo7E3S5pIjjNNb1a7EYZzxj2Sgl+NPDqhBQ+/6vXkw5kEZVS3sigSFvTr6EyS+XHKkISpU6OTKbeGBapdxyzRo6FW/F5NjJktACLskQWHvkjbDlrfhyBpAflXX07VpC3KMuWqXcdMSIhKY0nYKzf2aq12KENclJ7PtXWS3kp+0w7BlPuz7HMxFaldld4IMPg4TFHqNnviIeO5vcz/R/tFqlyPEDckRhaPJuQC/vQe7lkB+utrV2I372/Vha9ZhtcuoULhHOCOajuCORncQ6Oa4TWWi7pGgcFSm4pIutbuXwomN1PVmqX+2H8h3mX+qXUYZTlonetfvzYimI+gc0tk607EQjkSanhyV3hla3Vnyk5kEu5fBnuWQUzcnxwuy2NcHcEPvhoxoMoKhjYbi6+KrdjlCVIkcUdQmFjMcXQt7P4Eja8FUoHZFNvNxq768nHdI1RpcdC70jezLiCYjaB/cXtVahKhOckRRm2h10GxAyU9RLhz+EfavKBnEZ6qdo5evCCpSJxRd9a50Du1MXHgcfSP74uVsgwtkCWFjckRRFxTlwtE1cOA7OLYOimvfdab3hccw1sk2l0UN9winZ3hPeob35LaQ23DWOdtkv0KoRYKirjEb4cxvJUcZx9dB8l5QHH9Uc4pPPfr46m684i3Qa/V0COpAj/Ae9AzvSUPvhjWyHyHslQRFXZefASc2wLH1cPIXuHRa7YpuiUmrp32DeijV1PsrwDWA7vW60zO8J7GhsXg4172LIwlxhQSFKC0nBc7uuPyzE87/DsZ8tauqlLjmbcgoyrrp5wW4BhDtF00L/xZE+0fTwq8FoR6h1V+gEA5KgkJUzGKGC3+WzDmVehDSDpWMErfDa4CPatODgzmnKlwnxD2EaL9oov2jaenfkmi/aBn8JsQNSK8nUTGtDkJjSn6uVZBZEhhphyDtSMlYjuxzkH3+8pX7bP/9I1DnxkHAx+BDqHsoIe4hhHmEEeoeSmOfxkT7R+Pn4mfzuoRwdHJEIaqfqRhyzpeERvb5kuasomwoyoHC7Mv/vua+xQQooCiXb7l6X6sFZ4+SH4MHOLuDs2fJrcET3APAIxg8gkj3CcfNMxRXvau6r1+IWkaCQgghRIXkmtlCCCEqJEEhhBCiQhIUQgghKiRBIYQQokISFEIIISokQSGEEKJCEhRCCCEqJEEhhBCiQhIUQgghKiRBIYQQokISFEIIISokQSGEEKJCEhRCCCEqJEEhhBCiQhIUQgghKiRBIYQQokISFEIIISokQSGEEKJCEhRCCCEqJEEhhBCiQhIUQgghKiRBIYQQokL/D86/7mh0GKt9AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAFfCAYAAACcFLFnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByv0lEQVR4nO3dd3wT9ePH8dddRvdeQNmjBQqUvWXJUERAQFkC8kWciFvA8XXg4Cv+FEVFHKAgIENQQEBG2VP23pRRVnfpTHJ3vz/SBmILFGiatP08ffiAXi53nyT03vnMkzRN0xAEQRAEB5CdXQBBEASh9BIhIwiCIDiMCBlBEATBYUTICIIgCA4jQkYQBEFwGBEygiAIgsOIkBEEQRAcRoSMIAiC4DAiZARBEASHKZMhc+rUKf773//StWtXoqOjadmyJY899hjTp0/n2rVrzi6eTU5ODtOmTbPbNnbsWCIjIzly5MhdHTMyMpJevXoVRfHumqZpLFq0iKFDh9KiRQvq1atH+/bteeWVV9i5c2exlOHMmTMsX768WM51JxYuXEhkZCSTJ0++5X6RkZF06tSpmEqV30cffURkZCTbt293WhmEkqHMhcxPP/3Eww8/zIIFC6hcuTKDBw/mgQceIDs7mwkTJvDggw+yd+9eZxcTgMcff5xvv/3Wblvnzp0ZNWoUwcHBd3XMUaNGMWDAgKIo3l1RFIVRo0YxduxYkpKS6NatG0888QRNmjQhJiaGwYMH53vNRe3o0aM8/PDD7N6926HnEQQB9M4uQHGaNWsWn376KTVr1uTLL7+kZs2ado8vXbqUN998k6FDh/L7779Tq1YtJ5XUKjExMd+2zp0707lz57s+5gsvvHAvRbpnf/75J6tXr2bYsGGMGzcOSZJsj125coX+/fvz5Zdf0rFjR+rUqeOQMqSmpmI2mx1ybEEQ7JWZmszVq1eZMGEC/v7+TJs2LV/AAPTo0YPx48eTk5PDuHHjnFDK0m/dunUADB061C5gAMLCwnj22WcBWLVqVXEXTRAEBygzITN37lxMJhODBg0iLCzspvv16tWLyMhIDhw4wMGDB+0eO3ToEM899xwtWrSgQYMG9OrVizlz5vDvhawjIyMZO3Ys3333HU2bNqVp06b8/PPPAGRkZPDNN9/Qq1cvGjVqRP369enatSuffvopmZmZAFy4cIHIyEji4uK4du2a7XiQv08mb9/JkyezZs0a+vXrR4MGDWjVqhVvv/02SUlJ+cp2Y5/M5MmTiYyM5NSpU3z++ed06NCBevXq8dBDDzFnzpx8709GRgYTJ06kU6dONGjQgD59+hATE8Nbb71FZGTkbT+HvBrE8ePHC3y8S5cufPXVV/To0QOAP/74g8jISL744ot8+2ZlZdGoUSO75r+ZM2fSp08fGjVqROPGjRk0aJBd38vkyZMZOnQoADNmzMjXr1DYz7hTp0488cQTHDt2jBEjRtCoUSNatGjBf//7X7Kysrhy5QovvfQSTZo0oVWrVrz22mv5PouiduDAAZ5++mnatm1L/fr16datG5999hnp6en59t26dSvDhw+nSZMmNGzYkP79+7NixYoCj7tgwQJ69uxJdHQ0Xbt25bfffnPo6xBKlzITMlu2bAGgXbt2t923S5cuAKxevdq2bf369QwYMIBt27bRsWNHHn/8cVRV5b333uO///1vvmNs3LiRH374gd69e9O2bVuio6OxWCwMHz6cyZMnExISwqBBg+jbty/Z2dn89NNPtiDx9fVl1KhR+Pj4YDQaGTVq1G2byNauXcuoUaMICQlhyJAhhIWFMX/+fJ577rlCvT+vv/468+bNo127djz22GNcuXKF9957j3nz5tn2MZlMDB8+nB9//JHQ0FAGDx6Mt7c3zz33HFu3bi3Uedq0aQPAa6+9xueff86RI0fsLuCBgYF069aN6tWrA9C1a1c8PT3566+/8h1r9erVZGZm0rt3bwC+//57PvzwQwAGDBhAnz59OHfuHC+99BJ//PEHAM2bN+eRRx4BIDo6mlGjRhEeHg7c+Wd84cIFBg4ciKZpDBgwgJCQEObOncuYMWMYOHAgFy9e5LHHHqNKlSosWbKEd955p1Dv0d04c+YMw4cPZ8+ePXTq1Ilhw4YRHBzMDz/8wPPPP2+37/z58xk+fDjHjh2je/fu9O/fn8TERF588UW+++47u30nTZrEW2+9RXp6Ov369aN27dp88MEHLjloQnBRWhnRokULLSIiQktOTr7tvn/99ZcWERGhvfLKK5qmaVpmZqbWsmVLrVWrVtr58+dt+ymKor3wwgtaRESEtm7dOtv2iIgILSIiQluzZo3dcZcuXapFRERon3/+ud32a9euaa1bt9bq1KmjZWZm2rZ37NhRa9Kkid2+Y8aM0SIiIrTDhw9rmqZp58+ft51v2bJltv1MJpP20EMPaREREdrJkyftytazZ0/bz1999ZUWERGhdezYUUtMTLRt37VrlxYREaE9+uijtm0//fSTFhERoX3wwQeaqqq27RMmTLCV4XbMZrP29NNP2/aPiIjQmjdvrj3//PPab7/9ZleGPG+88YYWERGh7d271277yJEjtaioKC0lJUXTNE1r3ry51rlzZ81sNtv2uXTpklavXj2tT58+tm3btm3TIiIitA8//NC27U4/444dO+Y7RmpqqhYdHa1FRERoo0ePtr1HFotF69KlixYREWH3+Rbk999/1yIiIrSvvvrqlvvlfWZ58j6DrVu32u331FNPaREREdrx48ft3o8HH3xQS0pKsu2XlZWl9e/fX6tdu7Z27NgxTdM07cyZM1rdunW1Xr16aampqbZ9Y2JitMjISC0iIkLbtm3bLcspCGWmJpPXZODt7X3bff38/ABISUkBICYmhqSkJEaMGEHFihVt+8myzKuvvgrA77//bncMd3d32rdvb7etbt26fPjhhwwbNsxuu7e3N3Xr1kVRFFJTU+/sheWqVKkSDz74oO1ng8FAq1atAIiLi7vt8/v27UtgYKDt58aNG+Pr62v33EWLFuHp6clLL71k158yatQo23t2O3q9nilTpvDpp5/StGlTZFkmJSWFVatW8d///pf777+fX375xe45eTWVJUuW2LYlJSWxefNmOnbsaDu3pmkkJSVx/vx5237lypVj+fLlzJ49+5blupvPGOCJJ56w/d3X15caNWoAMHz4cNt7pNPpiIqKAuDixYu3LMfdUlUVsDaZ3eiTTz5h69attkEsixcvxmQyMXr0aAICAmz7ubu7M3r0aFRVZdGiRQCsWLECi8XCM888g6+vr23fjh070rZtW4e8DqH0KTOjy3x9fUlMTCQ7O/u2QZOVlQVg+yXM65s5dOhQgfMXdDodR48etdtWrlw5dDqd3bZq1apRrVo1cnJy2LdvH2fOnOHcuXMcOnSIHTt2ANYhvnejatWq+bb5+PgA1mau26lWrVq+bd7e3rZwzsnJ4fjx40RFRdmOm8fLy4vIyEjba7gdSZLo1asXvXr1IiUlhR07drBlyxZiYmK4cuUKH3/8MQaDgUGDBgHQsmVLypcvz4oVKxg3bhw6nY5ly5ZhsVjs+pf69+/P999/T/fu3alfvz7t2rWjffv21K9f/7ZlupvP2GAw2Jra8nh6egLYBRWAm5sbcPvPQpYL/73vxqB/5JFHmDNnDp999hm//vor7dq1o127drRp08ZWJrj+Ordu3cqJEyfsjpfXJ5j3OvP+rFevXr5zN2rUiI0bNxa6rELZVWZCpnLlyiQmJhIbG1vgL82NTp48CWC7gORN0CyoXyDPv2sg7u7u+fZRVZWpU6cyffp02/5BQUE0atSI8PBwTp06la+DubCMRmO+bf8evXU3z88rT16tLiQkpMDnh4aGFvpcN/L396dr16507dqVt956i6lTpzJ58mR++OEHW8hIkkTPnj2ZOnUq27dvp3Xr1ixevBh/f3+7PrZXXnmFKlWq8Ntvv7F//3727dvH5MmTqVatGu+++66tZleQovqM8xT0fhZG3hcgi8Vy032ys7Pt9gWoXbs28+bN47vvvmP9+vXMmzePefPm4enpydChQ221z7zXeavO+7zXmZaWBli/RPybv7//nb0wocwqMyFz//33s2fPHlavXn3bkImJibE9B65/O/35559veaG6nWnTpjFp0iSaN2/OyJEjqVOnju2i/eSTT3Lq1Km7Praj5V1oChqpBNZRZ7dz6tQpnnrqKdq2bcv777+f73GDwcCoUaNYunQpZ86cwWQy2S7WvXv3ZurUqSxfvpwqVaqwb98+Bg0aZHcxlySJfv360a9fPxITE9myZQurVq1i5cqVPPvss8TExNg1Cd6oqD7je5V38U5ISLjpPleuXAGwa+4Ca9BMmjQJk8nEnj172LBhAwsXLuS7774jLCyMQYMG2V7n6tWrqVSp0i3LktdElp6enu9chfm8BQHK0Oiy3r174+Pjw6+//nrLPoqVK1eyb98+6tatS4MGDQBsQ3P/PaQZrN/wP/roI/7888/blmHp0qXodDqmTJlCu3btbAGjaRqnT5+2/d0VeXt7U7VqVY4ePZqvyUdRlALfm38LCQnhypUrrFmz5rbNRv7+/nYBUr16dRo0aMDatWttc21ubCpLTk5m8uTJtv6EoKAgHn74Yb766iv69OlDVlYWhw8fBgqu4RXVZ3yvoqKiMBgM7Nq1y9bP8m+7du0CrKPj8vzxxx+MHz8eTdMwGo20aNGC119/3db0l/ecvNf5774bgNjYWP73v//ZvmTl9SPlPfdGhfm8BQHKUMiEhIQwbtw4rl27xvDhw/O1R4M1YMaMGYPRaGTChAm27V26dMHb25sff/yRM2fO2D1n4sSJzJgxg3Pnzt22DG5ubiiKkm++xDfffGMLvhubSQwGwy2bTYpbnz59SE9Pz9dnMXXqVOLj42/7fF9fXx5++GHi4+N59dVXC1wnbtasWZw5c4Y+ffrke6x3797Ex8fz008/UaVKFRo2bGh7zMvLixkzZvDFF1/Ymvby5HW2V6hQAbAOPgDsZv0X1Wd8rzw8POjatStnzpzhm2++yff41atXmTJlCgaDgZ49e9q27927l19//TXf0OILFy4A1197z5490el0TJo0ye4zs1gsjB8/nmnTptnev+7du+Pm5saUKVPs9t25c6ctiAThdspMcxlYR1Cpqsr7779P7969ad26NZGRkZhMJnbu3MmhQ4cICQnh//7v/+wmFvr6+vLhhx/y2muv8cgjj9C5c2dCQ0P5559/2L9/P/Xr1+c///nPbc/fs2dP9u7dy8CBA3nwwQcxGAxs376dQ4cOERQURGJiot0FMjQ0lNjYWF577TXatm1rG2XlLE888QQrVqzg+++/Z9euXTRo0IDDhw+zc+dOfH19b9qUdqO3336bs2fPsnLlSrZt20a7du0IDw8nMzOTnTt3cuTIEZo0acKLL76Y77kPPfQQn3zyCXFxcfmWxzEajYwePZoPP/yQHj160KVLF9zd3fnnn384cOAAvXr1ss29yZuMu3z5cjw9PXnkkUeoVatWkXzGRWHs2LEcPnyYr7/+mlWrVtG8eXM8PT25cOECa9euJTs7m3feecc2kg2sza3Lly/ntddeY8WKFVSpUoW4uDhWrlxJSEgIjz/+OGAdIPL6668zYcIEevToQadOnfDz82PDhg2cOnWKjh072sIrPDycMWPG8MEHH9jek/T0dFasWEH58uWLJXSFkq9MhQzAo48+SsuWLZk5cyZbt25l586dGI1GKleuzBtvvEHfvn0L7NR88MEHKVeuHKNHj2bJkiUYjUYqVqzIc889x4gRI/Dy8uK7774rcGZ6njVr1iDLMpIkMXPmTPz8/IiMjOTzzz/Hzc2N559/nvXr19OoUSPAOkHyzTffZMWKFSQmJt4yZNasWcPLL798y/PfKzc3N37++WcmTZrEqlWr2L9/PxEREXz//fd8+eWXtgETt+Ll5cWvv/7KokWLWL58Odu3byclJQVPT09q1KjBu+++S//+/fONzANrE1qrVq3YsGFDgStJDxkyhKCgIGbMmMGyZcvIysqiatWqjBs3znaRBevF86WXXuKXX35h1qxZ1KhRg1q1atk+46lTp7Jx40aysrIIDw+3+4yLQ2hoKAsWLODXX39l5cqVLFmyhMzMTEJCQujUqRNDhgyxq8WBdTTbnDlz+Pbbb9m9ezcxMTEEBATQs2dPRo0aZbfKxfDhw6levTrTpk1j5cqVqKpKpUqVGDt2LIMHD7bV9AAGDx5MWFgYU6dOZdGiRQQEBDB69GiMRiOffPJJsbwfQskmaa7aCeCi5syZw3vvvccXX3xB9+7d7R4bOnQou3fvxmw2s2zZMrtvmqqq0qxZM+rUqcMnn3zC7t27adWq1V2Pyvq3yMhIunfv7tCQuXDhAoGBgXZDYvN07NgRDw8Pli1b5rDzq6pKx44dCQ8Pv+28F0EQXEOZ6ZMpKs2bNwfIdzuA7Oxs9uzZw8MPPwxcX8Ymz/Hjx0lPT6dly5ZUqlSJXr16FVnAFJfx48fTpEkTu8mOAMuWLePixYu0aNHCoeefP38+ly9f5rHHHnPoeQRBKDplrrnsXtWoUYOQkBD27dtnt33Xrl2YTCb69u3L9u3b2bJlC0OGDLE9nnfvkpYtWxZreYtS//79Wb9+Pf369aNr1674+/tz6tQp1q1bR7ly5Rg1apRDzvvSSy8RGxvL0aNHqV69Og899JBDziMIQtETNZm70KxZMw4fPmw3DHfr1q14enoSHR1NixYt2LFjh93s/d27d+Ph4UF0dLTt7ocbNmwAYPv27URGRrJ+/Xo+/vhj2rZtS4MGDejfv3++Ow+qqsr3339Ply5dbPv8O/Dy7N27lyeffJLGjRsTHR3NgAED7Bb9/N///kdkZCRXr161bUtOTqZ27dp2S9SAdYmRZ599lrfeeovo6GhWrFjBDz/8QExMDJIkERISwp49e+7+Tb2FoKAgzpw5Q4MGDfj2228xGAwOOY8gCEVPhMxdaN68OSaTyW6ZkS1bttCsWTPbmmHp6el2cxF2795NkyZNbnmBfP/999m5cydPPfUUzz//PGfOnOGpp54iOTnZts97771nG/02ZswYKleubLd+Vp7169czePBgTp8+zciRI3nppZfIysri+eef59dffwWwra124wrK27dvt83buXFC4IYNGwgICGDw4ME89dRTZGZm0rhxY9555x3efPNNzGYzo0aNKvRqzHfinXfeYd++fcybN6/A5W8EQXBdImTuwr/7ZVJSUjhy5Ihtpnhek1hev8zVq1eJi4u7bZ+Fl5cXc+fOZejQoTz99NOMHTuW7Oxs2w28Tp48ybx583j00Uf5+uuvGTx4MBMnTsw3tFZRFN599138/f1ZuHAhzz77LMOHD2fevHlERUXx6aefkpCQQJMmTfD29mbbtm22527bto1y5coB2K1FtnHjRtq1a4csy/z1119YLBZbGQYPHszPP/9MlSpVOHbs2N2+rYIglEIiZO7Cv/tltm/fjqqqtpAJDQ2lRo0atqauwvbHdO3a1a6mU7duXQDbRLj169ejaRoDBw60e96wYcPsZrEfOnSIS5cuMXDgQLvh2G5ubowYMYKcnBw2bNiAwWCgTZs2drWPbdu20b17d0JCQvjnn38A60KJV69epUOHDgC2EBo/frxt5ndAQAB///13gbUqQRDKLhEyd6lZs2a2msyWLVsICAiwm8DZqlUr9u3bh9lsZvfu3fj4+NiW6biZf6+rlRc4ecuL5M3erlKlit1+vr6+dgtX5u2XN/nwRnnDqvNWGGjfvj2XLl3izJkzXLlyhTNnztCyZUsaN25sq8nkBdJ9990HwOOPP07Lli1ZtmwZffv2pW3btrz55pv5+o8EQRBEyNyl5s2bc+HCBZKSkti2bRstW7a0q020atXKtl7Wnj17aNasWYETDG90u2Xe846ftwrvjW6c7pT394KmQOUFVl6AtWvXDkmS2Lp1K9u2bUOn09GkSRNatGjByZMnSUpKYuPGjTRu3Ni2xL+Xlxe//PILCxYs4Nlnn6VcuXIsWrSIoUOHFrhMviAIZZcImbuU1y+zadMmYmNj863c27x5c2RZZu/evRw5cqRIhi7nrZobGxtrtz0jI8Oukz7vXiZ5i27eKG9bXpNXSEgIdevWZcuWLfzzzz9ERUXh7e1t6z9au3Yte/bsoWPHjrZjnD9/nl27dlG/fn1eeuklFixYQExMDFWrVmXatGkuu8inIAjFT4TMXcrrl8mbef7vkPH19aVu3bosXrwYs9lcJCFz//33o9Pp+PHHH+0u5LNmzbL7OSoqirCwMH777Te7tdBMJhPTpk2za/oCa5PZ9u3b+eeff2zhWbNmTYKCgpgyZQpms9nWHwPW+74PHz7cbuhz+fLlCQ0NtS2bIwiCACJk7kmzZs3Ys2cP4eHhVK5cOd/jrVq14uDBgwQFBREREXHP56tcuTIjR45k7dq1jBgxglmzZvHf//6XKVOm4OHhYdtPr9fz7rvvkpycTJ8+ffjuu+/4+eef6d+/P4cOHeLVV18lKCjItn/79u1JS0sjNjbWbgRc8+bNOX/+PFWrVrUbOjx8+HA0TePxxx/nxx9/ZN68ebzyyivs2LHDbo0wQRAEETL3IO9b/81qKXm1m+bNmxfZt/uXX36Z9957j0uXLjFhwgT27dvHt99+a3cPdrDWembMmEGVKlWYOnUqX375JV5eXnz77bcMHz7cbt8GDRoQEBCAXq+nSZMmtu15gXNjLQast+OdPn06FStW5KeffmL8+PGcOHGCt99+m5deeqlIXqcgCKWDWCBTEARBcBhRkxEEQRAcRoSMIAiC4DAiZARBEASHESEjCIIgOIwIGUEQBMFhRMgIgiAIDiNCRhAEQXAYcftlociZFRWTxboQp06WMOplZEnCZFHJsSjkmFWyLQqZptz/cyxkmCxoGsiyhF6WkCUJXe6fsgweBh0+7gZ83PR4uunwMOiQJAlV0zArKhZFQ5LATS+ju81Co4IgFB8RMsJdyTErWFQNg07GqJdJyjBxNjGD0/EZXEjO5EpaDleuZRN/LYfEdBOJGTlkm9UiO78kgbdRj4+7ngAvIxX8PSjv504Ffw+qBnlSOdCTMF93AjyNqJpGjkXFoJMw6m+9ErYgCEVLzPgXbknVNLJMCgadjCxBbGImhy6mcuzyNWITMziTkEFsQiZZZsXZRS2QXpaoEuRFrTBvIsK8qR/uR+1yvlTwd0fTIMei4mHQIctiUU9BcAQRMoKdbLOCJFkvzrGJmeyKTWbP+WT2X0jl+JVrmJXS8c9FL0tUDfaiQUU/mlcNpGX1ICoHeZJjUZEAd4Oo8QhCURAhU8blmBU0QJYk9l9IIeboVbaeSuTQxTRMStE1b5UEnkYd0RX9aVTZnzY1g2lcJYC8Co6baGYThLsiQqaMUTWNbLOCm17HoYuprMkNlb3nUspcqNyOTpZoWMmf9hHBdIsqR60wH7JNCm4GHTrRvCYIhSJCpgywKCoWVUPTIOboFZbuv8SG4/FkmFyzH8VV+XkYaFMziPtrh9G5bhjuBuuoOYNOjGYThJsRIVNKmRUVTYP0HAvLD1xi2cFLbD+dhEUVH3dRkCVoUiWAhxpUoGd0Bbzd9EgSInAE4V9EyJQiqmodqqtqGn/ujWP+zgvsOZ/i7GKVepIEjSsH8EijCvSMDseol21zgwShrBMhUwpkmRSMepktpxKYtf0cMUeuiv4VJ9HJEu1qhTCsdRXuqxWCyaLiYRSDBoSyS4RMCaWoGhZV5UpaDj9vPsOfey+SmGFydrGEG4T4uNGvSUWGtapKgJcBnSyhF6sRCGWMCJkSJsesoNdJbDqRwHcbTrP1VKKziyTchiRBy2pBDGtdhc51w7AompiHI5QZImRKiKzckWBzdpxj+pYznE/KcnKJhLtR3s+dEW2r8XjLKmgaoilNKPVEyLi4LJPCtWwzX8WcZOHuC2SKYcelgo+bnoEtKvNM+xp4GHQibIRSS4SMi8o2K6Rkmvls5TH+2BMnhh6XUgadxEP1K/BSl1qU83UXzWhCqSNCxsVkmxWSMkxM/PsYi/ddRBHhUiZIEvSoX55x3esQ6GUUYSOUGiJkXES2WSExPYf/rTjG0v0XEdlSNulkiT6Nwnnjgdp4u+vxEGEjlHAiZJwsy6xgsqhMWH6EeTsviJqLAIBRJ/NYs0q81jUCd4NO1GyEEkuEjJOYLAog8d36U3y3/pTo0BcK5G6Qea5DTZ5pXwMJMOjFPBuhZBEhU8wUVUXVYOWhy4xfeoTLadnOLpJQAlQM8OD9nlHcVysEg05CEkvWCCWECJlilG1WiEvJ4rV5+8SaYsJdaV0jiAl96hMqRqIJJYQImWJgXRFZ47OVx/lp0xnR7yLcE70sMaRVFcY8UBtZkjCKJjTBhYmQcbAcs8Luc8m8vmA/F5LFLH2h6JTzdef/HoumaZUA3EStRnBRImQcJMeskGNRefuPgyzed9HZxRFKsUcahfNh73oYdBJGcZtowcWIkHEAk0VhzZGrjF14gNQss7OLI5QBIT5ufNq3Aa1rBuEmgkZwISJkipBZUbEoGmMX7ufPvaL2IhS/h+qX5399G2A0yBjFXToFFyBCpohkmxWOXb7G87N3i74XwanCfN2YMrgJdSv4ihFogtOJkLlHqqqhaBpfrT7BN+tOiuVgBJcgS/BCp1qM6lQTvSzm1QjOI0LmHuRYrCslj5yxk/0XUp1dHEHIp3m1QL57vAlebjrRVyM4hQiZu5SdOzT52V93i859waX5exr4akAjWlQLFEOdhWInQuYumBWVqetP8/mqY6J5TCgxnutQg5e7RGAQAwKEYiRC5g5YFBWzojFqzm7WHLnq7OIIwh3rVDuUbwc3xqCT0cmin0ZwPBEyhZRtVriSls2waTuITcx0dnEE4a7VDPVm5n+aE+hlFM1ngsOJkCmEvP6Xkb/sJEMsyS+UAn4eBn4Y2oQGFf3FMGfBoUTI3EaOWWHJ/kuM/X0/FtEBI5QiOlnivz3qMqB5JTHyTHAYETK3YLKoTI45weSYk84uiiA4zIi2VRn7YB0xIEBwCBEyN2FWVF6fv58/9sY5uyiC4HA9GpTni8caijtvCkVOhMy/qKpGjkXlP7/8w9ZTic4ujiAUm1Y1gpj+RDOMOhlZjDwTiogImRsoqkq2WaX/91s5GJfm7OIIQrFrUNGP2U+2xMOoE0OchSIhQiaXompkmiw8NnUrRy5dc3ZxBMFpaoR4s+CZVvh46NHLovlMuDciZACLqpKRo9BvyhZOXE13dnEEwemqBnmy6Pk2+LiLoBHuTZn/12NRVNKyLDzyzWYRMIKQKzYxk77fbiE924Iihu4L96BMh4xFUUnONNP7m82cTshwdnEEwaWcTsig75StpOeIoBHuXpkNGUVVyTAp9PtuC+eSxDIxglCQU/Hp9J2yhYwcC4qqOrs4QglUJkNG06zDlAd8v5WzYh0yQbilk1fT6ffdFjJNCqqo0Qh3qEyGjFlRGfLTDjGKTBAK6fiVdAb9sB2zImozwp0pcyFjVlSemrGLXWeTnV0UQShRDsSl8vTMXSJohDtSpkLGrKi8Mncv647HO7soglAirTsez7iFBzBbRNAIhaN3dgGKS45F4X/Lj7Jk/yVnF8Wl6Q4vR39sVYGPKeENsTQfav3BkoPuxFrkC3uRMpPAww8lvCFKZGfQuxXuZBYTuuNr0F3YDVmpaF5BKNXboFZrA5L9bHPd0VXoTm0ETUUtVxdLg0fA6GG3j3TlKIYtP2Du9AqaX/gdv3ahcBbsukB5X3dG3V9TrN4s3FaZCJlss8Kfe+OYtjnW2UVxeVLqRTRZjxLRKd9jmm95619UBcPWH5ETTqEG10QpH4WcGof++Brkq8cwt3sBdIZbn0hT0e/4Bd2VIyhhddAqRCNfOYJh30IsGUko9XvadpXj9qM/shw1NBLNKxj57Hb0ihlLi2F2h9QfXo4aHi0CphhMXnuS8v7u9GlcUdyPRrilUh8yOWaFg3GpvLXooLOLUiLIaRfRfMJQ6jxw833O7kBOOIWlRnuUBr0AUADdoaXoj8cgn92OWr3trc9zYQ+6K0ew1OxgCxSl7oMYtnyP7uR61MpN0fwq5J5vO6pPGObWT4EkofPwR3/4Lyw5GeDmZd3n4n6k1DgsTQcVwbsgFMbbfxykcqAnzaoGijtsCjdVqvtkLKpKYoaJEb/sFDccKwxzNlJmsu3ifjNSejya0Qsl0r62o1ZsDICcFHvbU+lOb0aTZGvzWh5Zh6XOg0hoyGe3Xz9fZpK1FpXbhKb6V7BtB0BT0R1egVqpCZpP2G3PLRQNVYPnZu0mId0kJmsKN1WqQ8ZkURny03ZSs8zOLkqJIKVeBG5oFrsJpX5PTA+NBzcf++dfu2p9/r+25z+ABSn5nLVZy+hp95AWWBlNZ0ROOH19o8EDLKbr5zHn5G53B6y1Iik9Hkvtrrc+r1Dk0rItDJ22Q4w4E26q1DaXmRWVp2fu4lS8WC6msKS03EERpnQMm75DSjkPgBpSC6VudzSf0IKfaMpAvnIU/f4/0AweKNXa3Po8mUlImorqFVTAgzKahz9S+vURgGpgFXSnNyMlnkHzDkF3ZjOauy+aZyCoCrojf6NWaQ4FHU9wuFPx6bwwZw/fDm4s7q4p5FMqQybbrPDlmhNsPJHg7KKUKHJuTUZ3Yh1q+SjUqi2RUy+iu7gfOf445rbPo/nbd6rLsdsw7JkHgKYzYm7zNHgH3/pEptxVFgweBT9ucEdKN4GqgKxDieiE7tJBjBsmW88j67E0exxkHfKZrUhZKZhrd7n+fE0FSVzsitOqw1f4dt1Jnm5XQwwEEOyUupDJsSj8E5vEd+tPObsoJY8ko3kGYG48EC2kJmDt0JfP78Kwcxb63b9h7vSq/XPcvLHU6oSUlYJ8cT+GzVMxt3gCLaz2zc+jKdY/dDf55yfnblctIOvAzQdTx1eRLx0AczZaaKS1VqVY0B9bhVKtNXj4I18+jH7fQshMRvOviKVx/9v2LwlFZ9LqE0RX9KdV9SAxEECwKVVf91RVIy3LzKjZexB3yblzloZ9MXV7xxYwedRKTVCDqiOnxtn6XWyPla+HUq8HlmaPY24/GjQVw87ZYMm5+YlyhzdLqlLw46oFDcl+GLTBHbVyM9Qa99ma7XRntoApEyXyfshJR79jBmpAZcytR4LeiGH7dGttSCgWmgaj5+whLdsi1jgTbEpVyCiaxsgZu0RHvwOo/hWtf8lMvOk+mn9F1EpNkEzpSElnb75fXjOZOavgHczZoDfeusnLkoPu+BqUGm3Bzcc6oVO1YGnYDy2sNpYGjyBlJCJfOXq7lyYUobRsC8/8ugtFfMsTcpWakMk2K/zfymPsPZ/i7KKUTKqClHzupuEgKbnBLRuQEk4hXyx43pHmGWjd33SLAReegWiyDikjqYADqEhZKWjeNxlkkEt3aiOoZpRaHa3nS08Ao5dttJrmHWLdnnHzUBQcY9fZZL5Ze5Jss6hFCqUkZEwWlT3nUpi64fTtdxYKpmkY1k/GsOV7a8f5vx6TkmLRJBnNLxz97rnod/x8vQP/BrZh0Lca6SXr0AKqIKXGWWstNz4/6RySYkINrHLz55uz0J1Yi1KzvTVYwFrmG8utWHIPePPDCI4zOeYkx69cE0ObhdIRMhZV5cXfRD/MPdHpUcvXRTJnoTu+xv6hk+uQ0y5ZJ1saPVDDGyJpKvpDf9ntJ18+jHxxP6pveTT/Src8nVK5KZJqQXfk7+sbVQX9keXWv1ZtefOinlgHkoxSo71tm+YdgmTKsA19lpJjrcfJrdEIxUtRNZ79dbcIGaHkjy7LMSu8ufAgV6/doqNZKBRLvV7IibHoDy9Hjj+F6lcBOeW8dY0ynzAs9XOXkInohHz5ELrYrUhpl1ADqyJlJCBfOgRGT+vw4hsWuNSdXA/mLGso5C5qqVZpjnp2B/pT660B5l8R+epR5NSLWGp2uPmosJx0dKc2oER2sU3GBFAqNkJ3ZAX6LT+glquL7sJuVO9QtNBIx71hwi3FpWTx2vx9TOrfCKO+VHyfFe6CpGkl9/u/yaKw9VQSw6bvcHZRSo+sFPRHViBfPmJtDvPwRakQjVK7i/28FnM2uqMr0V3cB1lpYPRELVcHS+1u4Blgd0jj3+ORMpPJ6fo2eAXaH+PI3+ji9oIpA80rGKV6a9RqrW/a6a878Ce687sxdX3LOjjgBlLCSfR7FyJlxKMFVMHS6LGbTyAVis3UIU3oEBkiVmwuo0p0yGTkWOgwcR3x6aIWIwiuKtjbyPrXO+LlVuIbToS7UGLrsDkWhXELD4iAEQQXl5Bu4p0/D5IjRpuVSSUyZEwWhc0nE1i876KziyIIQiEs3B3H3vMpYiBAGVQiQ0bTYNzCA84uhiAId+DV+fvESgBlUIkLmWyzwuerjnMlTTSTCUJJciE5iwkrjopJmmVMiQoZTdOIv5bDtM1nnF0UQRDuwi9bYolLzhI1mjKkRIWMRdUY8/t+zIr4ByoIJZGqwVt/HBBrm5UhJSZkTBaVtUevsuWUWItKEEqybaeT2Hg8HpNFDAIoC0pMyGiaxn//POTsYgiCUATeXXLoxkUhhFKsRIRMlllhyvpTXE7Lvv3OgiC4vPNJWUzbdEYMAigDSkTIWBSVH8QKy4JQqny15gQ5osms1HP5kMkyWYcsZ5jENx5BKE0yTAqfLDtClqjNlGouHzIZJguztp1zdjEEQXCABbsukCbuZFuquXTIZJut33RMYikKQSiVLKrGZ38fE7WZUsylQ+bqtRwW7YlzdjEEQXCghXviSM0UtZnSymVDJtus8NFfRxATgwWhdFNUjU//FsvNlFYuGzIJ6TmsPHzZ2cUQBKEY/Ln3IkkZJmcXQ3AAlwyZLLPCl2tOIFaeEISyQVE1/icWzyyVXDJksk0Kf+4R94oRhLJk6f5LYqRZKeRyIZNlss7uFyPKBKFsUVSNb9adIkvMiStVXC5kAGZvF/NiBKEsmr/zPKpoJy9VXCpkss0KP285Q3qOxdlFEQTBCTJNCjO3nRV9M6WIS4WMXicxfXOss4shCIIT/bIlFr1OLNFcWrhMyCiqxoZjCVy9Jm6rLAhl2aXUbGKOXMWiin7Z0sBlQsaiqEzfIm6rLAgCfL/hNCJjSgeXCZmULDObTiY4uxiCILiAnWeTiRetGqWCS4RMlklh+uYzYvKlIAg2M7fFiuHMpYBLhIxBJzF/5wVnF0MQBBfy++44jHqXuEQJ98Dpn6CiasQcvUqiWLdIEIQbxF/LYeupBFSxSm6J5vSQMSsqs3eIyZeCIOQ3c9tZcYvmEs7pIaOoGptFh78gCAWIOSqGMpd0Tg0Zi6Ky7MAlzIqoDguCkJ9Z0Vi4Ow6zWMuwxHJqyCiqxkJx50tBEG5h6f6LYj2zEsypIZNtUdl+OtGZRRAEwcXtOptMtlnUZEoqp4WMWVH5c2+cuL2yIAi3pGqw4uAlLKLJrERyWshoGvwhbkwmCEIhLNl3CYv4RloiOS1kciwKe84nO+v0giCUINtOJ6KIkCmRnBIyqqax7li8WEZGEIRCsagaq49cEUFTAjklZLLNCqsOX3HGqQVBKKH+2n8Jk0WsZVbSOCVk3PU6NpyId8apBUEoobaeSsRNr3N2MYQ75JSQOXblGimZZmecWhCEEupajoVjV645uxjCHSr2kMkxKyw/eKm4TysIQimw6vAV0WRWwhR7yEiSxNqjoqlMEIQ7t+lkgphbV8IUe8goqsahi6nFfVpBEEqBPeeSkSXJ2cUQ7kCxh8ze88nim4ggCHfFrGjsPivm15UkxRoy2WaF9cdFU5kgCHdvzdGrZJlFv0xJUawhIwH/xIpvIYIg3L2955MRDWYlR7GGjF4ncTBO9McIgnD3DsalYdQ5/X6LQiEV6yd16mqGuJWqIAj3JMuscC4p09nFEAqp2ELGoqhsOSVusywIwr3bEZskbmRWQhRbyORYVPZdEE1lgiDcu11nk8kyic7/kqDYQsagkzl2WSwJIQjCvdt3PgWjXvTLlATF9inpZYmTV9OL63SCIJRiJ66mi1uFlBDFFjIXU7MwidunCoJQBBRVIy4ly9nFEAqh2ELm8MW04jqVIAhlwHGxInOJUCwhk2NWRKe/IAhF6vDFNExiSoTLK5aQsagaRy+LmowgCEXn5NV0zKIJ3uUVS8i4G3ScEp3+giAUoVPx6WKEWQlQLJ+QTpa4mJJdHKcSBKGMOJOQgV4Wq5i5umIJmZRMkxhZJghCkcqxqCSk5zi7GMJtFEvIXE4VtRhBEIqeaCFxfcUSMrGJGcVxGkEQyhgxV8b1OTxkLIrKqXgRMoIgFL3zSZko4la7Ls3hIZNjUYlLFt82BEEoepfTssmxiIUyXVmxNJddTBUhIwhC0bucmi3WMHNxDg8ZnSyRnGFy9GkEQSiDrqRloxPDmF2aw0PGoJNJyTI7+jSCIJRBl1OzxYRMF1csNZmUTBEygiAUvaRME7IkajKuzOEho2ka17JFyAiCUPSyzSqqGF3m0hweMpkmBfFvQBAER8kWo8tcmsNDJj3H4uhTCIJQhmWbxZJVrszhIZMmOv0FQXCgTJP4IuvK9I4+QY64qZAg3L2sVIyr/4dSpxtKzfaFeoqUfB7dsVXICafBkgOe/igVolFqdwG92/UdVQXdgT/Rnd8Fsh6lYiOUqB6gs78syGe2oD+wGFPXN8HdtyhfXZEQrSWuzeEhI24qJAh3yZKDYft0JEvhF4GU4k9g2PI9AGqFBmjufsiJp9CfiEFOOIH5vlGgMwCgO7UR/elNKBWiQe+G7tRGkGSU+j2vH1Axoz+6CqV6G5cMGICMbBEyrszhIWMRvf6CcOcykzBs/xk55cIdPU2/93fQNMztXkALrAKAomno985HF7sN3enNKLU6ACCf3Y4aVhtLi2HW58o6dLFb7UJGd2YLWHJQanUqmtflAOkm0fHvyhzeJ2MWzWWCcEd0J9djXDMRKfUiakitQj9PSruMnH4VtXw9W8BYH5Cw1O4KgHzl6PXNmUmovhVsP6v+4UiWHMjJvYutJQfdsTUoNduBm9e9vSgHutcFMseOHUtkZKTd//Xq1aN9+/a8+eabXLlyJd9zVq9ezYgRI2jRogX16tWjQ4cOvP766xw7dizfvv8+du3atYmOjqZbt258/PHHJCYm3rRs06ZNo1u3bgBMnjyZyMhItm/fftP9O3XqRKdOd/6F4MKFC0RGRvLZZ5/d8XNvRzSXCYKL0Z3agOYZgKXho0jp8cjxJwr1PM3gjiWqB5pvufwPyrm/6pYbbvJl8EBSrv8smbPRkEDvbisHmopSs8PdvpRioRbR4mXjxo0jICAAAJPJxJkzZ5g3bx7//PMPixYtwtvbG4Cvv/6ayZMn06pVK5566il8fX05d+4cCxYsYNmyZUyZMoV27drZHbt69eo888wzgHXuYEZGBkeOHGH27NksW7aMOXPmUKlSpXxl2rx5M23bti2S13crgYGBfPrpp0RERBT5sR0eMuKOmEJhRIZ50zWqHG1qBBER5kOORUVRNSy5/yuq9eeysKz73hbvUb9xM3Q6HWtXLOWb3fDkfdXo0bdNIZ79UIFbVy1dxNRl0KVlNM+Osh5nYkJjjh3cz7s9yuPh6cWHY77CPbIOE15sT0b6NZ4b/C69hz3BIwPvL8JXV/SqBBVNLatz585UrFjRblujRo0YNWoUf/zxB48//jiXL19mypQp9O3bl48//thu3yFDhtCrVy/ee+89Vq1ahU6nsz0WHBxMr1698p2zb9++DBkyhBdffJHff/8d6YbVC3Jycti5cyeDBw8uktd3K56engWWrygUQ02m9F8UhDvTvFoAneuE0biSP7WC9Ph4GJENHmhpF0FWyTFYUM0p+OjcMBqN6PQGZIMH0g2/tDejXLuGkpyMkpKCkpxi/TM1BU0tOV92KgCsXQKA/+H9APgdO0CF1R53dbykjAzm//QTAANDA6iw+g8ARteuxfO7dvDyiIEAeLu58X+PPUaF1X/w3fr1uGkq//HzwCN3f1XTXHIJF/dOnaByZYccu0WLFgCcPHkSgL1792KxWLjvvvvy7RsaGspDDz3E7NmzuXjxYoE1k39r1KgRI0eO5Ntvv2XDhg20b399BOGuXbtQFMVWhpLK4SHjiv8oheLhppfpEBFC+8gQosN9qeYv4+HuAbIOkmMhbjXS0V1waR9cPohkSoeWz5HV4XU6Ln4g3/GC3YOp5FOJcO9wynmXI9QzlGD3YALcA/A3+OIre+Ihu2EM8MMYEoxsMCLprf/ElcxM1GvXUFJTUZKSsCQmYrkaj5KSnD+UUlKwpKSA2flzvNJym4KurYnhaszaO35+hqbxXzSSgB5A8IyZXM19zAuYpGnsQEIFmuaYCP51Fsc1jXloDEbi2udfsEjT+BWNNKAe8AISIS70e22sVAmjg0Lm4sWLAFSpYu3jymsyW7RoER07dsTd3d1u/zFjxvDWW2/Z1Uhu55FHHuHbb79l/fr1diGzadMmoqOj8fK6+5rawoULGTduHAsWLGD27NnExMSQnZ1N48aNGTNmDLVr1wasfTL3338/I0eO5LXXXuPzzz9n6tSpvPTSSzz77LO2440cOZItW7YwZ84cGjRoUKgyODxkPI23//YplHz+nnq61S1Hm5rB1C/vRbiPjMHdE1QFEo7D+dVIu/bA5f1w9QgoN7n9w8Hf8e/2McEewSRkJdg9lJCdQEJ2Anvi9xS6XL5GXyr7VCbcO5zyXuUJ9QolOCyYwCrB+Btq4Ct74iW7Y5SN6PUGZIMR2WAd4qtmZ6Okp1uDKTkZJSERS3w8SlKSNYjywiklxRZUWk7ObUpUfFI1jffROA00BYaT/8LnL0l0/de239HwAh4Azmka36DRHWiMxC9oTELjowKO5TSFqOEWRlpaGklJSQBYLBZiY2OZMGEC4eHh9O3bF7DWbKpWrWoLhC5dutCqVSuaN29OSEgIhtx/O3eicuXKeHh4cOTIEbvtmzdvtnX636sXX3yRSpUqMXr0aK5evcq0adMYOXIka9euRa/PHwOjRo0iJiaG7777jh49elCpUiXmzp3Lhg0beOGFFwodMFAMIeNuEMtwlzaVAjzoVq8cLasHERXqToiXDp2bJ5gy4MohOLkd6dI+aw0l6TRod9BUlX6FLNM16gXXY935dfdc1jRTGgcTD3Iw8WChn+Oh96CSTyUqelekvHd5wjzDCAkIIbB8IH5uFfGXvfCS3XGT3dDrDOgMRmSjEQDVZEJNT0dJS0NJTsaSmIQl/qo1mAoIJUtyClpm5j2/zn+7lBswl4HmwOtI6Arx7TpB01gBPImEQZJYran4Av/Jfb6iwcdonNU0qrhIbUbKfe/v1SOPPJJvm06n49tvv8XX1zpHyGAw8OOPP/Lqq6+yb98+5s+fz/z58wGIiopi4MCB9OvX745qMgC+vr6kpKTYfk5MTOTYsWOMHz/+7l/QDWrUqMEPP/xg+1mv1/P111+zfft22rTJ39dnNBqZMGEC/fv35/333+f9999nwoQJNGjQwDaAobCKIWRETaYkaxDuR+eoMJpWCaB2kAF/TwOy0RMtPR4u70Pavx0u7bfWUNIuFsk5DdeuUj+4fpGEzN3IsmRxPPk4x5OPF/o5RtlIBe8KVPKpRAXvCtZg8g4hKCQIv+go/HU++MjuuEluGPQGdHoDksGIJMtoFgtKRgZKWipKSipKYm6NKTER7x3/wOZNuNWojru3jy2c1GvXblqW07kBkwp0BEYVMmAA5qERCOR19V8EwsD2/LwBz5eBKvme7Rzyv5qs7tbEiRMJDg4GwGw2c+XKFRYsWMAzzzzDhAkT6N27NwCVKlVi3rx57N69mzVr1rBlyxaOHDnCoUOHePvtt1m/fj1fffUVslz4L9gWi8UumDZv3oyvry/16tUrktf24IMP2v1cp04dAOLj42/6nHr16jFy5EimTJnCsGHWuVQTJ04ssOZzK44PGb0ImZJAluG+GsF0qB1Ko0p+1PTX4eXhBnojpFyAi5uQtv9jDZPLB5Cykh1WFsPFPTQLa+qw4zuCSTURmxZLbFpsoZ8jI1PeuzyVvK3BVM6rHCGeIQRVD8K/bk0C9I2RvIyweRM+vXtSeegwZKObNZhUFTUjA+VamrUvKTkZS3wCsceP88HsWaRmZ9OvUmWeDA5CTU217pOWBrcYAHFJ01iDNZT0uRc8FbhxqmNeI6dr1GGsiipkGjdunG90Wa9evXj44Yf55JNPeOCBB+z6YBo3bkzjxo0BSEpKYvny5UyePJlVq1bx999/57uw34yiKKSlpVG9enXbts2bN9OyZUu7oHJzc7PtfzMWi6XAPpygoCC7n415Ne/bDIh5/vnnWbFiBWfOnOHVV1+latWqt309/+bwkHETzWUux8uo5/46IdxXK4TocB8q+8q4ueeOXEo8BRf+Qtq/29rcdfUwmLOKt4An/qZ2nclISGiU3tGJKipx6XHEpcfddB9lv/WC8n/7vmLS3G8ACPEIobJvZSp4VbD2M3mGElQpCL8a4bz/84+kZGczcMCjjHvtdfR6a1OepNOhaRpqZibKtWuoqalYkpJQEhKstabkZL75+2/CExLoVqcu5PZDVUhK5LCqkqFpeEkSeXW7CjcprzNIHnc36q4w3Nzc6NixIz///DOnT59m165dXLt2jeeee85uv8DAQAYPHkytWrUYMmQIu3btKnTInDx5ErPZTN26dW3bNm/ezOjRo+328/PzAyA9Pf2mx0pLS6NChfyfzp023+WJi4vj0qVLwPUJqLo77ANzeMiIW6M6V6iPkW5R5WhdI5h65Twp5y2jd/O0TsqLPwpnlyJd2mtt8ko4DqoLrAN1ZAnGR6ZS2bcyZ9POOrs0Lic+K574rHi2b7DO/Na3s/4aq0dVLEctoIO5535n7ku/257jrnPHz82PkJAQWndvTYhnCCHlQwioGoa/MYKks/Gs+fFH/vfReKo88CA6gxHJYODJI0dY3rcvH9aoQaPatflj5UpaVKlC4779bhiV968/U1LQTDcZ2OEAsgNDBq5/25dlmTVr1rBz504GDRqEv79/vn1r1bKu0PDvUWe3smzZMgDuv9/aSHn8+HHi4+Pz9ZXUrFnT9njXrv8ergGxsbFkZWUV2YRKVVUZN24cOp2OF198kS+//NI2YOBOODxkPESfTLGpFepN17phNK8WSJ0QI0FeBnRuXmhZyXD5IBzZhpTXf5Ic6+zi3pwlm5ycVOoH1xchcwvqptymjtzJ5er53J8VULfYN4Nk5v53OfQyR6sc5d/Mv5shGN5Me4+35r8PgKfek8o+lYkeEc2JRSc4vvwUkY0iGTjmKa6Wq4Jf7gAIo2zEoDci6w3XB0Dk5KBmpKOk5g6ASEjAEp+AkpyUb8h43ig9Levuasyyp+ddPa8wsrKyWLNmDYGBgdSsWZNevXqxdetWPvzwQz755JN8o8nmzp0LWCd2FsahQ4f4+eefadSokW0+zObNm6latSrh4eF2+zZo0ICwsDDmzp3LgAEDbP1HeaZNmwZQZCPSZsyYwe7du3nnnXcYPHgwW7ZsYfLkyXTq1IkaNWoU+jgODxlvd4efokxqVjWA+2uH0biKP5GBenw88yY0XoKLO5F2/wOX98Gl/UgZN+/cc1VuKeeJDolm6emlzi6KU+ka6NA1KPiLmvFN+1FV+i566HJ35zH0zT/0NtOSydHkoxAMjAQdOk5ykjd2vXHT47jL7lT0qUi4T/j1ARC+IQSGBuLvVh9/nQ9ekjvuOiN6nXWirWQ0IkkSmtmMkpGOkpY7oTYxEUtCgnXo+E1qTGp6epGFzOrVq23LymiaRmJiIr///jtxcXF89NFH6PV6evfuzebNm1myZAkHDhyge/fuhIeHk56ezsaNG9m0aRMjRoygYcOGdsdOSEjgzz//tB07IyODQ4cOsXTpUgICApg4caJt302bNhU44stgMDB+/HheeOEFevfuTd++falUqRLp6enExMSwfft2+vfvX+Bz71RsbCxffPEFDRs2ZNCgQUiSxAcffECvXr0YN24cc+bMKXSzmcMTQC/L+LrrSRPLcd8Vo16mQ0Qw7SNCia7oS3V/GQ93d+taVHYTGvfDlYNIOTcfdVSS6M5vp0mtjs4uhnCHstVsTqae5GTqyUI/Ry/rKe9Vnso+lSnvVd42ACIwMJCAepH46b3xlT1xk4wYdAZ0ef1Msox2i07wO/XJJ5/Y/i7LMr6+vtSpU4dXXnnFVjORJInPPvuMTp068ccffzB//nxSUlLw8vIiKiqKb775psBazOnTp3njjevh7OHhQcWKFRkyZAgjRowgMDAQsK6ZltccV5D27dszd+5cpk+fzuLFi0lISMDb25saNWrw2Wef8fDDD9/z+5DXTGaxWPjggw9sgw/y1l/76quv7qjZTNK0Ilpd7iYUVaPz5+s5k5DhyNOUCn4eerpGlaNtjWDqV7BOaDTaJjSegPPbkS4WYkJjaVCtPZYhC2k+qzlm1fkz7wXXU96zPA1DGzKh3QRkSfT9uirHL5BpUQnyMoqQ+ZfwAHcerFeeFtUCiQpzJ9RLf8OExsO5Exr3WgMl8dSdTWgsDc6sR9VUIgIiOJR4yNmlEVzQpcxLhKSHYFJMuOuLZhizUPQcHjKqphHk7Xb7HUux+uG+dK4TRrNqgfYTGjPirX0m+7dbw+TSfki7+XDWskbJSqZ+cH0RMsJNBXkEoWjipmWurFh65YO9i2bZB1cny9CmRjAdI3MnNAbo8M6b0Jh6AeI2Ie3YaZsh78gJjaWBe8JJGoc15rdjvzm7KIKLCnIPQnKpqaHCvzk8ZAw6meBSWJPxNMrcXyfMOqGxgjdV/GTc3HNHuSSdhgvLkA7sto7wunKo+Cc0lgJS7AYaNh3m7GIILizIIwi9LEawurJimYxZPcR1b91aGCHeuRMaawZTL8yD8j4664RGxWTtgD/3F9KlPa41obE0OLSIcu3H4m3wJt1881nOQtlVwbsCRl3ZaCkpqYrlK0DNUO/iOE2RqBniRbeocjSrFkjdEDeCvPTIRk/IToUrB+HoNqTL+61LrrjyhMbSIP4Y2ZZMooKi2H755vc1F8quyIBIZxdBuI1iCZmKAY6bkXsvmlYJ4P46oTSpEkBEoB5fDyOyMXdC46XdSHt25N5Qaz+kX739AYUiJ2ckUi+4nggZoUCVfR1zszKh6BRLyPh5GPAw6MgyO2cUiFEv066WdUJjo4o+VPPX4emRO6Ex5SxciEE6ujN3heGDSDlpTimnkJ/b5YM0LdeUnw7+5OyiCC7G1+iLj9HH2cUQbqNYQsasqFQJ8uToZcfPRvd119O1bhhta4VQv7wXFX1kjB43TGi8sAZpT27/SfwR60KRgus6tYb6nd9xdikEF1TNrxrZlmwxR8bFFUvImCyOCZnwAHceqFueFtUDqVfOnVBPHTp3r+sTGk+V8QmNpcGhRfh0n0ioZyhXM0WTpXBdNb9qYo5MCVAsIaOTJaoE3dsIs3oVfOlSN4ymVQOpHawnwMOA7OaFlpFgndB4YLu1/0RMaCxdMhPJzr0dc8y5GGeXRnAh1f2q464TtRhXVywh427QUbe8b6H2lWVoXT2YjrVDaFTJn1qBOrzd8yY0xsHFLUg7cu/QeGmfmNBYBhjTLhMdEi1CRrBTN6guOlncSsTVFdsspgYV/fJt8zTKdIoM476IYKLDfaniJ+Hu7gHIuRMalyMdzL1D45VDYM4sruIKLkQft5tm4SXrdsyC41Xzq+bsIgiFUGwhUznQk8dbVqZl9SDql/ekvJeMwd0rd0LjUTi37Hr/SfwxMaFRuO74CmrVewRZklFFv5oAGGQDwR7Bt99RcLpiCxlZyWb8A5Xh8gHrHRrzFoRMiQXH3m1AKOmOLUMv66nqW5XTqaedXRrBBVTxrYKqqWKJ/xKg+EJGU2HFONg7q7hOKZQWiglTtvV2zCJkBICa/jUxKSaxblkJUHxfAwyeUKlFsZ1OKF3cU87RMKShs4shuIimYU1x05W+hXdLo+ILGVmGyq2K7XRC6SKf3ULjsMbOLobgIlpVaCVGlpUQxdugGVQD9OLbh3AXjiymim8VjLJYcbes8zX6UsmnkrOLIRRS8YaMaoGwesV6SqGUOLcNi2qmdmBtZ5dEcLKGoQ3Jsoj7M5UUxR8y4U2K9ZRC6aFmJVMvWHxJKeuahTUT95ApQYo3ZIxeUL1jsZ5SKD08Eo7TRPTLlHltwtuIUWUlSPEPMq/ewbrEviDcqdMbiBYjzMo0D70H1f2qO7sYwh0o/pCRZKjcsthPK5QCB38nzCsMX2Ph1sETSp/okGhMqsnZxRDuQPGHjCxDZPdiP61QCiSfIcuULvplyrAmYU3QSWLocklS/CGjM0LdXsV+WqF0kDMSqB9c39nFEJykbXhb0elfwjhn4R+f8hAo2lWFO+d2+QBNw8SKzGWRu86dyMBIZxdDuEPOCRklByK6OeXUQgl3cjVRwVHOLoXgBG3D22IRq7OXOM4JGYMnRD3ilFMLJdyhP/AyeFHeq7yzSyIUsx7Ve4j1ykog562THd4E3HycdnqhhMpOITsnTfTLlDFuOjfaVmwrlvYvgZz3iVlyoEYnp51eKLmMaZdoENLA2cUQilGbCm3EDetKKOeFjN4D6jzstNMLJZf+wj+i87+M6V69u2gqK6GcFzKyDLW6WSdnCsKdOLaMWgG1xHyJMsIgG2hfsb1oKiuhnPup6d0gXKxFJdyhE6uQkMTyImVEqwriPlQlmfO/GtTu4ewSCCWNasGcnSJm/pcR3at1xyAbnF0M4S45d6VKvRs0eQJiPrTeBkAQCsk9OZaGoQ1ZdHJRsZ1TS9dQNiqoJ1XIADxAriqja6dDCpDs9lUOKKg7VLQkDdxBrpO7n1Eq+OD/YllsQT1YcEe33EpG3/H6r66ySUHZqYAGck0ZXRcdkrv9edTTKpbfLOhH6JHDnP/dsrD0sp5OlTuJu2CWYM5fDlnvbl3L7MhiZ5dEKEHks1toUr93sZ1PS9cw/2yGNJCqSUh1JbQkDfWQinpaxTDMgBRovbArWxSUdQpSqITcVEa7qlkDJ05D/7geSXf7oNGuaOAFcqP8gSBXur5NPaqibFCsZQqQUPeraGYNQx/7b/7KegW5jlyiAgagRbkWSBQumAXX5Boh0+p5ETLCnTn0J5Vav4CH3qNY7pKobFQgDXT369C1uP6tWjmooCxWsKyxYHjUgJaqWS/64ZJdoFjWW1A3q6h7VHRNb/2tXFM0tEQNqaaEvt2tf0WVfQoEgX6AHkmSUHytAadlakie1nOrx1S0yxr6h53/636n+kb0FU1lJZzzv9ZIElRsKtYyE+7MxV2YFFOx3Y5ZPaaCJ8jN7X9ldPV0EADaaQ1N01D2KKCCrrXOrsaia6MDN1D33n6uh5aogQpSaCFqPCkacqiMJFn3lcKsf2qpmvVPTbPWYurJSMElq0YQ5B5Ex0odRVNZCef8kAFQFWg20tmlEEoYLTOpWGb+a6qGrrUO3X0628X8RpJOAgVQQDtnvbhLVez3k/QSUriEdlVDy9Zufb6r1sfl0Nv/ekoeEpr5+vG0nNzzu+XWYg5Z+4V095W8C/WjEY+KtcpKAdcIGb0bNB5qbToThELyiD9G42K4HbMkS+ia69A1yX+h1hKsTVsEWINES7H2pRTUwS/55dYykgoXMlqShnmGGdNnJkyTTFiWWtCu2T9XqiChxWqoF1S0TA11twregL81HJWNCnK0jORfsmoxeknPoDqDcBfXhBLPNUIGrJMyo3o7uxRCSXJ6HdHBzlteRtM0LCstoIGuYW4AZQE3m5ietz3nNsfNDRllk4LkJyE3lJECrZ365p/NaGnXg0bXSgfeYJlhwTzJbB1c0E2PJEuo+1RrP1Kb6+GoabcOOFfRsXJHPPQezi6GUARcpyfQ6AmtRsG+35xdEqGkOLiQ4C7vE+AWQHJOcrGeWtM0lOUKWqyGVF663lejWGs0Bcq71t+uBUgPBIK+rx455Pr3QGWzgrJewbLSgqGftTNc8pIwjDCgHlchG+TqMlKQhGbRUDYryI1lJF8J9aSK5W8LpIJUXkL3kK5QzXHO8kTUE2IZmVLCtf6VhdSBMDHBTiik1HNOuR2zpmoofynWTnx/0Pe7YViywTo6rEAKtn1uxdDPgPEZo13AAMitZWsz2EkNzXT9HJKbhK6+Dl0zHVJQbl/MbhWyrAMQtEwNyyILcgUZ/QA9GMDyu+Xm5XSyGv41qBtUt8D+L6Hkca2Q0VRo/pSzSyGUILr0q8UaMppZwzLfgrpfhUAwDDYg+dxwMXTn5s1hOTfscxckSbKOOFOBtFuU0aShbFWQm8pIXhLqIRUsoHtAh1xdRtdVB8nWEXGu6PE6j5eYZj3h9lwrZPRGiO4PRm9nl0QoIYyX9tGsXLNiOZeWpWGZZUE7pSGFSRiGGGyd+XmkQAkysBvxZXt+igYS+VYHsNvHrKHGqahXbjLUOa+p7RYN3erO3FBpaW2f05I08LSORLOVEdCSXe9C7m3wpmeNnhh0Ym5MaeFaIQOgqtCgv7NLIZQUJ1ZSN6iuw0+jWaw1GO2ihlQ5d6KlVwEjyCpKoIF2Xsv3fO2ihhQs2YYXFygdLL9YUBYr+R7SzBraZWtg4HeTcmZrKNsUdM11tlBBzf0/T15QuWBrVM8aPVG0/K9dKLlcL2SMntD6BeskTUG4ncOLcde5U9G7okNPo6xT0C5o1pn8/fU3DQpdlA4k6woBmuV60CibFcgpeJmYG0kBElI5CS1eQzl4/WKraRrKWgUysXbm3+T3Q9mugGQ/aVQKkiDr+tBpLS53Lk2ga/2OyZLME/WeEKPKShnXGV12I5/yENUHDv7u7JIIrs6Ubr0dc0h9LqRfcMgptHQNdZe1KiAFSyhbC/6mrWutQwqWkFvKqFtVzD+ZkWvJ1rk0JzWkitbhyDdSdiho2Zq15pG7qKXuQR2WWdbajHpURfKX0M5raJc0pEoSutYFT6zUMjTUf1R0bXR2ISjXlVE2KJjnmpFrytY+miDrGmyupHu17gS4BTi7GEIRc82QMbhD1w/h8J+lbnXm+CyZyQe9WX/RjcRsGT+jSqswEy82SKeS9/WL1/xTHry9o+A2keggE/O6Jt32XBczZL7c78P2q0aSc2Sq+1oYVCuTftWz8lUUvz3oxczjnqiaRIcKObzVJA1fo32Tz8ZLRkauC+CPBxKpHeA6n4t7ahwNQhqw/Mxyhxxfi9NsI8PUfTdfFkbXXAd60HXQIflIqLtV1H+skyPl5jK6trp8w5uVfxRIBV0DnW1AgFxexvCEAWWDgnpWRTulgR/o2umQW8o3HSKtbFXAAHJT+yCTvCX0j+pR/lZQd6tIFST03a1zaVyFXtLzcpOXxeTLUsg1QwbAI8C6CsDOac4uSZGJz5J5dGUQlzJ1tCmXQ/fKFs5c07H0rDsbL7kxt2siVX2sV7NjKdaPZmSddNz+9cW1nOft26wvZ1rPlZIj061SNmGeKpsuGXl7hx+Hk/W82/Sabd+V59348oAPbcvlUNnHwu+nPclSJL5qm2J3zEn7fXigcrZLBQyA7sI/NK3uuBtbyZEyxjeNhd5fkiR0TXW3XQgTwPh8wceVgiX0fe7s11PfWQ+dC35MriIjP+V6reN5etfsja/R19nFEBzAdUPG4AH3/xf2zQGz41fZLQ6TD3pzKVPH2EZpDK+dadv+5xl33tjmz4Q9PnzXLgWAYykG/I0qrzVMv6tzTdzrQ0K2jm/vS+b+itaxs69Gw9CYQGaf8GJgzSwi/K1hseC0BzV8LfzYIRlJgvKeKv+3z4fkHIkAN2ttZtV5N44k6/m0VcrdvwGOcnQpNRo/jl7SY9FcKwCF2zPKRkY3Hi1qMaWU6361AetaZi2edXYpiszq824EuikMi8y0296rWjaVvS1suuSGmttCdTxFbwuBO6VpcCVTR71Asy1gAPQyPFApG4B9ideHiF5I1xPpb7Y1odX2N+dut34TVzX48oA3PatmU8PXBUf+nIoBTaNmQE1nl0S4C49FPiY6+0sx163JgLU20+41a5NZdoqzS3NPFBWejspAL2sU1BRulDXMqoRFhaQcmRSTTGTuxf5OSRL82rngPpvTadaPPMj9et+Cr1El03K9UOkW63cPn9w+maVn3Ym9pmdKbi3L5Wgq5uwU6gfX52jSUWeXRrgDHnoPnmv4nKjFlGKuXZMB68KZ973i7FLcM50MwyIzGVwrf9PfqTQdp6/pqextwai73h9jViWe2+BPq4UhNJofyoi1AexPvPNJaqpm7aP55qAXc095UDfATLvy12s4DYPMbL3ixu54A0k5EnNOeBLioVDRS8GiwtcHvOlTPctuYIKr8Ug8Q8PQhs4uhnCHBtcZLG5KVsq5fsgYPKxNZt5hzi6JQ6gajN/pi6pJPFbDGkDHUqy/dL+d9CRHkehTPYs25UxsvWJk0OpANl4qfCc0wJhtfrT/M5SvDvhQxVvhh/bJ6G/45EfWzSDUQ2Hg6iBaLQxjb4KBd5ukoZdh4WkPLmXqeC7qet+Q6noTxZHObqZxaCNnF0O4Az4GH0bWHylqMaWcazeX2WjQ8S1YMtrZBSlSmgb//ceXrVfcqBdoZlhkBmC9iId7KbzU4Bo9q2bb9t9x1cATMYGM2+7Hmofj8406u5m6AWZCPRSOJhvYdNmNgasDmd4xmYq5NZMgd5U/Hkhk9QU3rpll2pTLobqvgkmBbw95M7BWJuU8VdZfNPL+Tl8uZuiICrTwUfNU1xlpdmgR4W1fxlPvSaYl8/b7C043LGoYsuT633OFeyNpJWUlOsUM3zSHpNPOLkmRsKjwzg5fFp7xpJK3hVn3JxHmeftb847Z6scfsR782CGJ+8qb7vi8s0548MFOP9pXyOb79im33PeXY55M2u/N6ocTkCSNTn+G0CE8h77Vs/j+sDeXM2WWPZSAwUWuE9lvXebZNc+x88pOZxdFuI0g9yD+7vs3bnqxnH9p5yKXh0LQNOj8nrNLUSSyLPDcRn8WnvGkqo+FGZ0KFzAAdQPtR37dqcG1sqjibWHjJTdMt+hiybRIfH/Yi8drZRLkrrI01gOTKvF+szTuK2/ircZpnEvXs+mSC10kMhOLfdl/4e681fItsZR/GVFyQkZvhMjuUM7x93R3pFSTxLCYQNZfdKdugJnZnZOo4GUfMIeS9PxzteDO0BzF+ot5q6ayTIvE+otGdscXfIwKXgqqJpFquvnHP/OYtT9oRB1rE97ZazoC3FT8ckecVfO1NpOdu8uwcwT3q0doGtbU2cUQbqN1hdZ0qNgBo+7O+haFkqnkhAxYx+b2+tY64qwEylHg6fUB7Es00jzUxMz7k+yGEud5fmMAQ2MCScrJ/01vV25w1Au8+fDmayaJp9YH8uGu/DOoLSqcTNPjbVAJcCu49nTNJPHTUS+eqJ2Bf+5kTIsmYVGvlycv7Fzqu+ipGOqHlOwvIaWdu86d8W3Go5dLSHewcM9K1tVa1kNwLWj2pLNLclc+3+fDngQjjYJN/NA+CW9Dwd1hD1TKRtUkvtjnw409ZsvPubHuojvNQky3nKgZ5qnSKNjEoWQDf529PnJH02DSfm/is3T0rpplN8LsRj8d9UICnrhh0mg1HwspJpnYa9aay94Ea9hV9XGRjn+AQ4sIcAsg2CPY2SURbuLZ6GfxNfqKprIypOR0/N/InA1fN4FUx6y66wjxWTIdF4dgViX6Vs+k/E36YJ6qm06OIjFgVRCn0vREB5loEmLmTJqOdRfdCPZQmdM5yW7Oys9HPblmlhkWmWFb1PJYip7BqwPJsEh0Ds8h3Ethd4KBfYlG6gWamdEpCa8CQi4pW+L+JSE8F5XByLoZtu1Xs2S6LQ0mxF2lQ3gOS2Pd8XPTWPpgAjoX+qqSOe48Yza/xbrz65xdFOFfavjXYP7D88W8mDKmZIaMxQTntsCMXs4uSaGtvuDG8xtvv4z5P32v4GvUSDNJfH3Qm1Xn3YnPlvF3U+lQIYfR9dMJ9bAPqE6LQ4jL0LHm4XjbsGSA2Gs6vtrvzebLbmRYJMK9FB6qks3IOul43KS1YsJuH5aedWfVw/H59tlx1cAHO32JvaYnOsjM+OapVHexZWbML+xielwMk/dMdnZRhBtISMx5aA6RgZGiqayMKZkhA2DJhj+eE/ecEez1/Yk9odUZumKYs0si3KBvrb6Maz5ODFkug1yooeMO6d2hxyTwDHR2SQRXcvxvagfWQXKtIQllWpB7EG80e0METBlVckMGQO9mHW0mCHmOLsWoM1LZt7KzSyLkGtdiHDrZdYa6C8Wr5IdMjU5Q/1Fnl0RwFeZMcnJSqR8shjK7gs6VO9OpUifcdKIWU1aV7JABa9A8/CX4VnB2SQQX4ZZygQYhDZxdjDIv3Ducj+/7GINOjCYry0p+yADIBug7jXw3rhfKJN357WLmv5PpZT1fdvwSvSRGkpV1pSNk9Eao0AiajXR2SQRXcGQp1fyqiaGyTvRyk5ep4ltF1GKEUhIyAAZ36PohhNZxdkkEZzuzDlVTiQiIcHZJyqT7wu9jYORAcZ8YAShNIQPWZWceXwQet5/0KJRulqxk0fnvBGGeYUxsP1HUYASbUhYyOuu8mYG/WQNHKLM8Ek7SOKyxs4tRpugkHV90+AKjLFZXFq4rXSED1tFm5aPhwU+dXRLBiaTYjTQKaejsYpQpzzd8nloBtUQtRrBT+kIGwOABjR6HxmJpkTLr0CLKeZXH2+Dt7JKUCS3KteCJqCdEP4yQT+kMGbDWaB76DCq3dHZJBGeIP0q2JYuooChnl6TUq+BVgS86fiFqMEKBSm/IgHX+zKB54FfR2SURnEDOSBC3Y3Ywb4M3P3b7EQ+9h7OLIrio0h0ykgQGT+uIM4Ons0sjFDO3K4doWk5MynQUvaRncqfJhHqGijlJwk2V7pAB0BnAvzL0/dHZJRGK26kYUZNxoHdavUO94HpiXTLhlkp/yIB1omaN+6H9GGeXRChOhxbha/Ql1DPU2SUpdZ6IeoIe1XuIjn7htspGyIA1aNq9BrV7OLskQnHJiCfbdE3UZopY92rdGd1oNEbdnc2HGTt2LJGRkVy4cPPbpk+ePJnIyEhOnTp1r8V0iIULFxIZGcmGDRucXZQ74sz3teyEDIDOCP1+gkrNnV0SoZgYrl2hQbBYkbmotCrfig/bfOiwkWRdunTh008/JSwszCHHF4pf2QoZAJ0bDF0sgqaMMMTtppno/C8SdQLrMLnTZIcOVa5duza9evXC21vMbyotyl7ISJL11s0iaMqG4yuICIgUt2O+R5V8KvFjtx8xyGIujHBnyl7IgAiasuToMvSynmp+1ZxdkhKrmm81ZnefjafeE1l27CXj330HeX0gBw4cYNy4cbRo0YLo6GiGDx/O0aNHbc/bvn07kZGRzJkzx+54p06dIjIyksmTJwMwd+5cIiMjefvtt+32e/fdd4mMjGTlypWFKmdSUhIvvfQSjRo1okWLFrz55pskJSXZ7ZOYmMhHH31Ely5dqFevHo0aNaJ///6sXr3abr8rV67w4osvct9991GvXj26du3K559/TnZ2tt1+p0+fZvTo0TRv3pwGDRrQp08fli1blq9sx44d4+mnn6ZJkya0bt2azz77DIvFUqjX5Qhld3D7jUEzoyec3+HsEgmOoORgyrbejvl06mlnl6bEqelfk18e/AUvvRc6Wee0crz44otUqlSJ0aNHc/XqVaZNm8bIkSNZu3Yten3hL2P9+/fn77//ZsGCBfTp04fGjRuzceNGfvvtN/r06UPXrl0LdZz333+fWrVq8fLLL3Pu3Dlmz57N/v37+f3333FzcyMnJ4fBgweTlJTEoEGDCA8P59KlS/z222+MGjWKBQsWUK9ePSwWC08++SRXr15l6NChhIaGsmfPHqZOncrly5f59FPrGownTpxg4MCB+Pr6MmLECDw8PFi1ahUvv/wyV69e5YknngDgzJkzDBo0CDc3N5588kn0ej1z5swhOTn5jt/zolJ2QwZE0JQR7inniA6J5s9Tfzq7KCVK7cDaTH9gOh46D6cGDECNGjX44YcfbD/r9Xq+/vprtm/fTps2be7oWB999BE9evTg3XffZcaMGbz99tuEh4fz1ltvFfoY1apV49dff8VoNNp+/uCDD5g/fz6PP/44MTExnDlzhsmTJ9sFV6NGjXjyySfZtGkT9erV4/Dhwxw/fpw33niDESNGAPDoo4+iaRoXLlxA0zQkSWL8+PF4e3vzxx9/4OvrC8CQIUMYPXo0n3/+OT179iQwMJCvvvoKs9nMwoULqVKlCgB9+vTh4YcfJjMz847ep6JSNpvLbiSazko9+ew2moQ1cXYxSpSooCh+eeAXPHWeTg8YgAcffNDu5zp1rDcnjI+Pv+NjlS9fnrFjx3L8+HEeffRRrl69yqeffnpHgw2GDRtmCxiwBoOnpydr1661lXfr1q3cf//9tn0URUFVVQDbBT8sLAxZlpk9ezZ///23bfsnn3zCzJkzkSSJ5ORkduzYQbt27bBYLCQlJZGUlERycjJdu3YlJyeHzZs3o6oq69evp3Xr1raAAQgKCuLhhx++4/epqJTtmkweUaMp3Y4spkqLpzDKRkyqydmlcXnRIdH80PUH3HRuyJJrfA8NCgqy+znvAp930b5Tjz76KEuXLmXbtm0MGDCApk2vj0A0mUykpqba7W8wGPD397f9XL169XzlKVeuHHFxcbZtOp2O6dOns3v3bs6fP8/Zs2fJycmxK3dYWBhjxozhs88+Y/To0RiNRpo1a0aXLl3o3bs3Hh4enD9/Hk3TmDt3LnPnzi3w9Vy8eJGUlBQyMjLsAiZPjRo17uwNKkIiZPKIoCm9zm3BolqoHVib/Qn7nV0al9Y0rCnfdf4Oo86IJLnOiLy7LcvNQig5OZmTJ08CsHHjRjIyMvDy8gJgz549DB061G7/5s2bM3PmzNuWJ69/KDY2loEDB5KdnU2rVq3o3LkzkZGRVKhQgUcffdTuOU888QQ9evRg9erVbNy4kW3btrF582Z+/fVXFixYgKIogLU/6YEHHijwvJUqVbL9/d8DBm71PhQHETI3EkFTaqlZSdQLridC5hZalm/J1/d/XSLXItPprE16JpN9TTUhIaHA/cePH09ycjJjxozhf//7HxMnTuS9994DrHN1pk+fbrd/Xj9Inri4OOrVu76SRE5ODhcvXqR169YATJ06leTkZBYvXkxERIRtv927d9sd59q1axw9epTIyEgGDBjAgAEDMJlMTJw4kRkzZrBu3TqaNLne1Jt3/Dznz5/n2LFjeHh4EBAQgLe3N7Gxsfle77lz5wp8H4qDa9SFXUle0AxbIpagKUU8Ek6I2zHfQodKHfjm/m9KZMAABAcHA3DkyBG77UuXLs2376pVq/jrr78YNmwY//nPf+jVqxe//fYb27ZtA8DPz4/WrVvb/X9joADMnz/f7udff/2V7OxsunTpAkBKSgpGo5HKlSvb9lFVlRkzZgDYaif79+/n8ccfZ+HChbb9jEYjdevWBazhGRoaSv369VmyZAnnz5+37adpGuPHj+f5558nOTkZSZLo0qUL27dvZ//+61+mrl27xh9//FGId9ExRE2mIHlB8+h02PB/sH6Cs0sk3KszG2jYYqSzS+GSRtQbwfONni+2iZZffPGFrWnqRo0aNbrrY1atWpX69evzxx9/4O3tTUREBJs2beLo0aN2c3uSk5N57733CA8PZ/To0YB1TbUNGzbw5ptvsmTJkgLL9m8HDx5k5MiRdO7cmUOHDjFv3jyaNWtGr169AOjQoQMxMTGMGDGCHj16kJOTw7Jlyzh8+DCyLJORkQFAy5YtiY6O5v/+7/+4cOECkZGRXLp0iV9//ZUqVarQvn17AN555x2GDh1Kv379GDx4MCEhIaxevZpNmzYxcOBAatWqBcDLL7/Mxo0bGT58OMOGDcPHx4e5c+eiadpdv7f3SoTMreiM0PZlKN8Afn8SzM4ZAigUgUMLCev0Nr5GX9JMac4ujUswykY+avsRHSt1LNaZ/AXVLsDa1BUeHn7Xx/3qq6+YMGECCxcuRJIk2rZty8yZM+nYsaNtn/Hjx5OQkMAPP/yAh4f1RmuBgYGMHTuWMWPG2DWb3crEiROZNWsWH3/8MV5eXgwZMoSXX37Z1mz32GOPce3aNebOncvHH39MYGAgdevWZd68ebzzzjts3boVsNZUvvvuO7799lvWrl3L3Llz8fPzo0uXLrz44ou4uVlrltHR0cydO5fJkyfz66+/kpOTQ+XKlXnrrbcYPHiwrVxhYWH89ttvTJw40daH9NBDD1GjRg0+/PDDu35v74WkOTPiSgpzNqScg1/7QOr52+8vuKSsNy/y4vqX2Xpxq7OL4nTBHsFM6TyFqr5VxXL9gkOJPpnCMLhDYDV4djNUbuXs0gh3Sc5MoH5wfWcXw+nqBtZlYc+FVPerLgJGcDgRMoWlM4CbLwxbDI2HObs0wl1wu3SAZmHNnF0Mp+pWtRszu8/Ez+h3x/eDEYS7IULmTkiStZ+m+0R46AsQ9zUvWU6uJio4ytmlcAoJiRcavcAnbT/BqDM6fKFLQcgj/qXdDb0bNBwIT/wFHgHOLo1QWIf/wMvgRXmv8s4uSbHy1HsyudNkhtYd6tB7wQhCQUTI3C2DB1RoBM9uhdA6zi6NUBhZyWTnpJWpfpmGIQ1Z8sgSWpZvKfpfBKcQIXMv9G7gHQpPrYfmT1mb0wSXZky7RIOQ0n87Zr2s56XGLzHtgWkEewTjpi+ZkyyFkk+EzL2Sddaw6TIenlgOvnc/zl9wPH3cLpqGle7bMVfzq8aChxcwuM5gDLLBZRa5FMom8a+vqBjcIbwJjPoH6j96+/0F5zi2jFoBtdBJzl++3hEG1R7EgocXiPkvgssQIVOU9EYwekGvb2DAHPAMdHaJhH87/jeyJFHdr/rt9y1BQjxCmN5tOq80eQWjzugS94ARBBAh4xh6N6jZCUbvg/r9nF0a4UaqBVN2KvWC691+3xKiS5UuLHlkCQ1CGoi+F8HliJBxFL07uPtCr29h6J/gV9HZJRJyuSfF0jC0obOLcc/CPMP4suOXTLhvAl4GLzG5UnBJImQcTe8GlVvDC7ug+dMgOmGdTj63lSahJXfZf6Ns5OkGT7OszzLahrcV4SK4tCJdIHPs2LEsWrQIgJUrVxZ4G1CA999/n9mzZxMcHMzmzZuL6vT5JCYm8tNPP7Fu3Tri4uLw8PCgWrVq9O3bl549e9rdozuP2Wxm1qxZLFmyhNOnT6NpGhUqVKB9+/aMHDmSwMB76GcxZ0PCcfjzObh84B5emXBPKjZDHbGSFrNakK3kv4ugK+tUqRNvt3wbH6OP6NgXSgSHfa1evXp1gds1TWPVqlWOOq3Nzp076d69O7NmzaJJkya8+eabPP3003h7e/PWW28xZMiQfHfNs1gsPP3003z22WfUrFmTV155hTfeeIMmTZowc+ZMevXqxcWLF+++UAZ3CKsLI9fCYzMgsHR1PpcYF/7BrJioE1RyJtFW86vGzw/8zMT2EwnxDBEBI5QYDll8q1KlSqxevZoRI0bke2z37t3Ex8ffW43gNuLi4nj22WcJDAzkxx9/tLv/9fDhw1m9ejUvv/wyL7zwArNmzbKt4/T333+zefNm/ve//9G7d2+7Yz7wwAOMGDGCSZMm8emnn9594fLWO4t4ECIfgn2zYe1HcO3y3R9TuGNqZhL1g+uz5+oeZxfllrwN3oxqNIr+kf0B6yRLQShJHFKT6dKlC3v37i3w/tqrVq2iatWq1KxZ0xGnBmDSpEmkp6czefJku4DJ07lzZ5599ll2797N4sWLbdt37doFQLt27fI9p02bNtSqVSvfPbrvmt4IOj006A8vHrBO5nT3L5pjC7flkXDMpW/HLEsyvWv2ZmW/lfSr1Q+9rBcBI5RIDgsZVVWJiYnJ99jKlSvp1q1bvu07duzgmWeeoWXLlkRFRdG6dWteeeWVfM1TFouFqVOn8uCDD9KgQQM6derExIkTbbczzc7OZvny5bRo0YKIiIiblnHo0KEYDAb+/PNP2zZvb28AZs+eXeDtSn///febNgPeNb2bNXCaj4RXDkPbV6zrogmOdXo90cGut7yMXtLTq0YvVvRZwVst3sLH6COGJQslmkNCJioqivDw8HwX5EOHDhEXF5cvZLZu3coTTzxBYmIizz33HO+88w5t27Zl2bJlPP3003b7vvDCC3z++efUqlWLsWPH0qlTJ6ZPn85LL71kO4fZbL7t/cK9vb2pV68eO3futG3r1asXbm5uTJ48mQceeICJEyeyYcMGW4AVNFCgyBg8rBM5278BrxyBpiPErQQc6eBCgj1DCHBzjVW0jbKRxyIfY9Wjq3i75duU9y4v+l2EUsFhV7EuXbowe/Zs0tPTbTWElStXUrFiRaKi7O/pMX36dAICApgxY4btvtsDBgzAYrHw119/ceXKFcLCwtiwYQMxMTE888wzvPzyy7bn+/r68s0337B//37i4+MBCAkJuW0ZQ0ND2bNnDykpKfj7+1OjRg2mTJnC2LFjiY2N5ccff+THH3/EYDDQokULnnrqKVq0aFFUb1HBDB7W/7t9BO1eg1XvwMHfQdwlu2ilnCXTlE694HpsjNvotGJ46D3oF9GPpxs8jZvOTQSLUOo4bHRZly5dMJlMbNiwwbZt5cqVdO3aNd++U6ZMYenSpbaAAUhPT8fNzdpMkJmZCcDatWsBGDbM/s6Uw4cP588//yQyMhJVVQHQ62+fnzpd/qU32rRpw5o1a/jmm2949NFHqVixImazmU2bNjF06FB+/vnn2x63SBg8wLcC9PwGXtgDzZ4EN5/iOXcZoU+/6rSZ/94Gb0bWH0nMozG80OgF/Nz8RMAIpZLDajKNGzcmODiYNWvW0L17d06ePMnp06eZMGFCvn11Oh2XLl3i66+/5sSJE1y4cIGLFy/a+kXygiMuLg5fX998I9N8fHyoXbs2AGFhYQAFDjr4t6tXr+Lm5oa/v7/ddqPRSOfOnencuTMAsbGxzJ8/n+nTp/PZZ5/x4IMP2s7jcAZ3CKxmHRjQ7SPYPw92fC/m2RQB46X9NCvXjCn7phTbOQPdAxlcezBDooYgIYlgEUo9h9VkZFnm/vvvZ926dZhMJlauXEn58uVp0CB/Z+vPP//MI488woYNG6hYsSJDhgxh5syZ+fpjFEVBus09W6KiovD09OSff/655X6ZmZkcOnSIxo0b237+4osv+Ouvv/LtW7VqVV5//XWee+45zGYz+/btu93LL3pGT+tSNQ0GWOfZPLMJogdYtwl358RK6gbVdfhpdJKO+8Lv49v7v2XNo2sYGjUUD72HCBihTHDoGiddunQhPT2d7du3s3LlSrp06ZIvJHJycpg0aRKNGjXir7/+4uOPP2b48OE0a9aM5ORku33Dw8NJTU3Ntz0+Pp4XX3yRrVu34u7uzgMPPMDWrVs5dOjQTcs2a9YssrKybPNh3NzcmDZtGtOmTbvpc2rVqgWAu7sTLw56I+gMUK4+9PgCXj8F3SZAUA3nlamkOrIEd507Fb0ds65cRZ+KvNjoRdb1X8cXHb6gTXgb9LJehItQpjg0ZFq2bImvry8zZ87kyJEjBQ5dzs7OJisriypVqtiN3rp48SIrV64ErDUYgA4dOgAwZ84cu2MsWrSIFStW2C7+r776Kn5+frz44oucO3cu3znXrl3LV199RZMmTejZsydgbbLr0aMHBw8eZPbs2fmeoygK8+fPx9/fn2bNmt3Fu+EABk9w84Zm/4Hnd8B//oY6PcWotMLKSSPHlFak/TJuOjd6VO/BrO6zWNp7KUOihuDv5o+b3k3cPEwokxx6NTIYDHTo0IHFixcTEhJia5q6kZ+fH40aNWLJkiX4+voSERHBuXPnmDdvHllZWQC2IcQdO3akY8eOfPnll5w+fZomTZpw/Phx5s2bx0MPPWQbthwcHMxPP/3EM888Q8+ePenVqxdRUVGYTCY2b95MTEwM0dHRTJo0yTbbH2DMmDEcPHiQ999/n+XLl9O+fXsCAgK4cuUKy5YtIzY2lkmTJtkNUHAJefMoKrWA8tFgyYZdv8DRpRC3CzTVueVzYW6pF4kOiWZF7Ip7Ok7doLr0i+hHj+o9AOuoMQAd4r4uQtnm8K+8Xbt2ZfHixXTp0sXugn6jL7/8kgkTJrB06VKys7MpV64c/fr1o2vXrjz22GNs2bKFRo0aIUkSX331Fd999x2LFy/m77//pkKFCowaNSrfEjb16tVjyZIlzJo1i5UrV7J48WKMRiM1atRg/Pjx9O7dO9+8F39/fxYsWMDMmTNZvXo1P/zwAxkZGQQEBNC8eXM+++wz2wADlyRJ14dAt3zW+r9iguN/w5ElcCoGctKcXUqXorvwD02r3vmwdDedG83LNadzlc50rNQRb6M3aGDQGRxQSkEouYp0FWbBRakqWLKsgwTidsOhhXB8BSSddnbJnK9WV8wDZtN8VnMsmuWWu4Z6htK+Ynu6VulKk7AmKJoilnsRhNsQIVMWmTKtTWzXLsPhP+HYMji3FdRbX2RLJUnG/PZVBi0bxNGko/YPIREVHEWHih3oVrUblX0rk23JxtPg6aTCCkLJI76ClUXG3IukXzg0fxKa/gfQ4NRaOLPO2o9z+QBYcpxZyuKhqZizU6gfXJ/Y1FiigqNoGNKQFuVbUD+4vu2GYHl/ioARhDsjajKCPVMmyDrrCLWk03B2C1zYYW1mSzheemo7OiOE1oFyDdDuf4dMoxfueg8sqgUNTQwzFoQiIkJGuDVVBUsm6NysAwtSL8Cl/XBpL1w5BFcPQ+p5111bzd3PujyPTwUIqg4VmkDFZhBY1TrqzmKyDgW/yaAUQRDujQgZ4e6Ys0FTrIMJVAtkpUBmgrWfJ/UCXLsEGfGQfhUyrub+GQ8514quDJ6B4BtuDZG8P/2rQkBV8C0PXiHWvifFbB1lR+7ou9usGiEIQtERISM4hmKyXtw1zdr8pjNa/1RMkJ0KGQmQlbtyg6QDSbY+fuOfN/4v6wDJ+qfeDTwCrSsfWHKs55Ek6znEEGJBcCkiZARBEASHEQ3RgiAIgsOIkBEEQRAcRoSMIAiC4DAiZARBEASHESEjCIIgOIwIGUEQBMFhRMgIgiAIDiNCRhAEQXAYETKCIAiCw4iQEQRBEBxGhIwgCILgMCJkBEEQBIcRISMIgiA4jAgZQRAEwWFEyAiCIAgOI0JGEARBcBgRMoIgCILDiJARBEEQHEaEjCAIguAwImQEQRAEhxEhIwiCIDiMCBlBEATBYf4fDQX9i4g7VKgAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2415,20 +3118,20 @@ }, { "cell_type": "code", - "execution_count": 282, + "execution_count": 921, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SalaryType\n", - "Monthly 26201\n", - "Yearly 22541\n", - "Weekly 2248\n", + "Monthly 25\n", + "Yearly 22\n", + "Weekly 1\n", "Name: count, dtype: int64" ] }, - "execution_count": 282, + "execution_count": 921, "metadata": {}, "output_type": "execute_result" } @@ -2439,16 +3142,16 @@ }, { "cell_type": "code", - "execution_count": 283, + "execution_count": 922, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "28498" + "35" ] }, - "execution_count": 283, + "execution_count": 922, "metadata": {}, "output_type": "execute_result" } @@ -2459,7 +3162,7 @@ }, { "cell_type": "code", - "execution_count": 284, + "execution_count": 923, "metadata": {}, "outputs": [], "source": [ @@ -2468,7 +3171,7 @@ }, { "cell_type": "code", - "execution_count": 285, + "execution_count": 924, "metadata": {}, "outputs": [ { @@ -2477,7 +3180,7 @@ "0" ] }, - "execution_count": 285, + "execution_count": 924, "metadata": {}, "output_type": "execute_result" } @@ -2488,20 +3191,20 @@ }, { "cell_type": "code", - "execution_count": 286, + "execution_count": 925, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SalaryType\n", - "Monthly 40953\n", - "Yearly 34333\n", - "Weekly 4202\n", + "Monthly 42\n", + "Yearly 39\n", + "Weekly 2\n", "Name: count, dtype: int64" ] }, - "execution_count": 286, + "execution_count": 925, "metadata": {}, "output_type": "execute_result" } @@ -2519,27 +3222,27 @@ }, { "cell_type": "code", - "execution_count": 287, + "execution_count": 926, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Currency\n", - "U.S. dollars ($) 20599\n", - "Euros (€) 15201\n", - "Indian rupees (₹) 7908\n", - "British pounds sterling (£) 4856\n", - "Canadian dollars (C$) 2535\n", - "Russian rubles (₽) 1768\n", - "Brazilian reais (R$) 1663\n", - "Australian dollars (A$) 1571\n", - "Polish złoty (zł) 1434\n", - "Swedish kroner (SEK) 864\n", + "U.S. dollars ($) 20\n", + "Euros (‚Ǩ) 11\n", + "British pounds sterling (¬£) 7\n", + "Indian rupees (‚Çπ) 7\n", + "Swedish kroner (SEK) 3\n", + "Russian rubles (‚ÇΩ) 3\n", + "Polish z≈Çoty (z≈Ç) 2\n", + "Chinese yuan renminbi (¬•) 2\n", + "South African rands (R) 1\n", + "Australian dollars (A$) 1\n", "Name: count, dtype: int64" ] }, - "execution_count": 287, + "execution_count": 926, "metadata": {}, "output_type": "execute_result" } @@ -2550,16 +3253,16 @@ }, { "cell_type": "code", - "execution_count": 288, + "execution_count": 927, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "17483" + "23" ] }, - "execution_count": 288, + "execution_count": 927, "metadata": {}, "output_type": "execute_result" } @@ -2570,7 +3273,7 @@ }, { "cell_type": "code", - "execution_count": 289, + "execution_count": 928, "metadata": {}, "outputs": [], "source": [ @@ -2579,7 +3282,7 @@ }, { "cell_type": "code", - "execution_count": 290, + "execution_count": 929, "metadata": {}, "outputs": [ { @@ -2588,7 +3291,7 @@ "1" ] }, - "execution_count": 290, + "execution_count": 929, "metadata": {}, "output_type": "execute_result" } @@ -2599,7 +3302,7 @@ }, { "cell_type": "code", - "execution_count": 291, + "execution_count": 930, "metadata": {}, "outputs": [], "source": [ @@ -2608,27 +3311,27 @@ }, { "cell_type": "code", - "execution_count": 292, + "execution_count": 931, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Currency\n", - "U.S. dollars ($) 26356\n", - "Euros (€) 19465\n", - "Indian rupees (₹) 10152\n", - "British pounds sterling (£) 6194\n", - "Canadian dollars (C$) 3289\n", - "Russian rubles (₽) 2340\n", - "Brazilian reais (R$) 2122\n", - "Australian dollars (A$) 1970\n", - "Polish złoty (zł) 1856\n", - "Swedish kroner (SEK) 1101\n", + "U.S. dollars ($) 27\n", + "Euros (‚Ǩ) 16\n", + "British pounds sterling (¬£) 10\n", + "Indian rupees (‚Çπ) 8\n", + "Chinese yuan renminbi (¬•) 5\n", + "Swedish kroner (SEK) 4\n", + "Russian rubles (‚ÇΩ) 4\n", + "Polish z≈Çoty (z≈Ç) 2\n", + "Brazilian reais (R$) 2\n", + "South African rands (R) 1\n", "Name: count, dtype: int64" ] }, - "execution_count": 292, + "execution_count": 931, "metadata": {}, "output_type": "execute_result" } @@ -2646,27 +3349,27 @@ }, { "cell_type": "code", - "execution_count": 293, + "execution_count": 932, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SalaryUSD\n", - "0.0 842\n", - "120000.0 524\n", - "100000.0 497\n", - "80000.0 396\n", - "1000000.0 382\n", - "110000.0 371\n", - "90000.0 364\n", - "150000.0 357\n", - "60000.0 351\n", - "75000.0 337\n", + "120000.0 3\n", + "30000.0 2\n", + "115000.0 2\n", + "70841.0 1\n", + "36000.0 1\n", + "90000.0 1\n", + "73428.0 1\n", + "128507.0 1\n", + "13212.0 1\n", + "48955.0 1\n", "Name: count, dtype: int64" ] }, - "execution_count": 293, + "execution_count": 932, "metadata": {}, "output_type": "execute_result" } @@ -2677,16 +3380,16 @@ }, { "cell_type": "code", - "execution_count": 294, + "execution_count": 933, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "31786" + "36" ] }, - "execution_count": 294, + "execution_count": 933, "metadata": {}, "output_type": "execute_result" } @@ -2697,27 +3400,27 @@ }, { "cell_type": "code", - "execution_count": 295, + "execution_count": 934, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "DevType Country \n", - "Student Saudi Arabia 1500000.0\n", - "Developer Andorra 525089.5\n", - "Manager Hungary 516000.0\n", - " Netherlands 507175.0\n", - "Non developer Algeria 360000.0\n", - " Cyprus 293736.0\n", - "Developer Liechtenstein 284028.0\n", - "Student Finland 272212.0\n", - "Manager Denmark 262920.6\n", - "Student Israel 256522.4\n", + "DevType Country \n", + "Developer United States 146687.5\n", + " Ireland 128507.0\n", + "Non developer India 123984.0\n", + "Developer Australia 95968.0\n", + " Colombia 64116.0\n", + " Germany 61191.5\n", + " Sweden 60257.5\n", + " China 52604.0\n", + " Greece 51408.0\n", + " United Kingdom 48144.8\n", "Name: SalaryUSD, dtype: float64" ] }, - "execution_count": 295, + "execution_count": 934, "metadata": {}, "output_type": "execute_result" } @@ -2729,7 +3432,7 @@ }, { "cell_type": "code", - "execution_count": 296, + "execution_count": 935, "metadata": {}, "outputs": [], "source": [ @@ -2739,27 +3442,27 @@ }, { "cell_type": "code", - "execution_count": 297, + "execution_count": 936, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "YearsCodingProf DevType Country \n", - "9-11 years Student Saudi Arabia 1500000.0\n", - "12-14 years Non developer Norway 1000000.0\n", - " Student Switzerland 1000000.0\n", - "15-17 years Non developer Australia 1000000.0\n", - " New Zealand 1000000.0\n", - "21-23 years Developer Japan 1000000.0\n", - " Venezuela, Bolivarian Republic of... 1000000.0\n", - " Non developer Sweden 1000000.0\n", - " Student Finland 1000000.0\n", - "24-26 years Manager Canada 1000000.0\n", + "YearsCodingProf DevType Country \n", + "21-23 years Developer United States 250000.000000\n", + "0-2 years Developer United States 244000.000000\n", + "15-17 years Developer Ireland 128507.000000\n", + "0-2 years Non developer India 123984.000000\n", + "9-11 years Developer United States 115000.000000\n", + "12-14 years Developer Australia 95968.000000\n", + "18-20 years Developer United States 95000.000000\n", + "6-8 years Developer United States 91333.333333\n", + "3-5 years Developer China 85708.000000\n", + "9-11 years Developer United Kingdom 82648.000000\n", "Name: SalaryUSD, dtype: float64" ] }, - "execution_count": 297, + "execution_count": 936, "metadata": {}, "output_type": "execute_result" } @@ -2771,7 +3474,7 @@ }, { "cell_type": "code", - "execution_count": 298, + "execution_count": 937, "metadata": {}, "outputs": [], "source": [ @@ -2787,24 +3490,21 @@ }, { "cell_type": "code", - "execution_count": 299, + "execution_count": 938, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Age\n", - "25 - 34 years old 30969\n", - "18 - 24 years old 14847\n", - "35 - 44 years old 10980\n", - "45 - 54 years old 3072\n", - "Under 18 years old 1549\n", - "55 - 64 years old 865\n", - "65 years or older 144\n", + "25 - 34 years old 22\n", + "35 - 44 years old 13\n", + "18 - 24 years old 13\n", + "45 - 54 years old 1\n", "Name: count, dtype: int64" ] }, - "execution_count": 299, + "execution_count": 938, "metadata": {}, "output_type": "execute_result" } @@ -2815,16 +3515,16 @@ }, { "cell_type": "code", - "execution_count": 300, + "execution_count": 939, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "16374" + "10" ] }, - "execution_count": 300, + "execution_count": 939, "metadata": {}, "output_type": "execute_result" } @@ -2835,7 +3535,7 @@ }, { "cell_type": "code", - "execution_count": 301, + "execution_count": 940, "metadata": {}, "outputs": [], "source": [ @@ -2844,7 +3544,7 @@ }, { "cell_type": "code", - "execution_count": 302, + "execution_count": 941, "metadata": {}, "outputs": [ { @@ -2853,7 +3553,7 @@ "0" ] }, - "execution_count": 302, + "execution_count": 941, "metadata": {}, "output_type": "execute_result" } @@ -2864,12 +3564,12 @@ }, { "cell_type": "code", - "execution_count": 303, + "execution_count": 942, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/8AAAGHCAYAAADm7OLTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABesUlEQVR4nO3deVxUZf//8TexjIgwqchWpJZKEq7YrWilpoImollpUSR3hpapkXpXVvcv61tquXWXd2bdLqUmbbdtKqm5ZYoLiku5ZZaYIGk4qBkQXL8/ynM7AuYCguPr+Xicx8M55zPnXGeuOYPvOedc42aMMQIAAAAAAC7rispuAAAAAAAAqFiEfwAAAAAAXBzhHwAAAAAAF0f4BwAAAADAxRH+AQAAAABwcYR/AAAAAABcHOEfAAAAAAAXR/gHAAAAAMDFEf4BAAAAAHBxhH8AAFAhXn31Vbm5uSkiIqKymwIAwGWP8A8AACrE9OnTJUnffPON1q5dW8mtAQDg8kb4BwAA5W7Dhg3avHmzunfvLkmaNm1aJbcIAIDLG+EfAACUu5Nhf+zYsWrbtq1SUlL066+/OtXs379fd955p3x9fXXllVfq3nvv1fr16+Xm5qaZM2c61W7YsEFxcXGqVauWqlWrphYtWuj999+/WLsDAMAlj/APAADK1YkTJzR37lzdeOONioiI0AMPPKCjR4/qgw8+sGqOHz+ujh07atmyZXrppZf0/vvvKzAwUH379i2xvmXLlqldu3Y6cuSI3njjDX3yySdq3ry5+vbtW+JLAgAAUDo3Y4yp7EYAAADXMWvWLN1///164403NHDgQB07dkzBwcFq0aKFVq5cKUl6/fXX9cgjj2jhwoXq2rWr9dyHHnpIU6dO1YwZM5SYmChJaty4sby9vbVu3Tp5eHhYtT169FB6err279+vK67gfAYAAGfCX0oAAFCupk2bJm9vb919992SpBo1auiuu+7SV199pd27d0uSVqxYIV9fX6fgL0n33HOP0+PvvvtOO3bs0L333itJ+v33363ptttuU1ZWlnbu3HkR9goAgEsb4R8AAJSb7777TitXrlT37t1ljNGRI0d05MgR3XnnnZL+9wsAhw8fVmBgYInnnz7v4MGDkqQRI0bI09PTaRo0aJAk6dChQxW5SwAAuASPvy4BAAA4O9OnT5cxRh9++KE+/PDDEsvffvttvfDCC6pdu7bWrVtXYnl2drbTY39/f0nSyJEj1bt371K3GRYWVg4tBwDAtRH+AQBAuSgqKtLbb7+t6667Tv/5z39KLP/88881YcIELVy4UO3bt9f777+vhQsXqlu3blZNSkqK03PCwsLUsGFDbd68WaNHj67wfQAAwFUR/gEAQLlYuHChDhw4oJdeekkdOnQosTwiIkKTJ0/WtGnTNHv2bE2aNEn33XefXnjhBTVo0EALFy7UF198IUlOA/hNnTpV3bp1U0xMjBITE3XVVVfpl19+0fbt27Vx40anXxEAAACl455/AABQLqZNmyYvLy/9/e9/L3W5v7+/br/9dn3++ec6duyYli5dqg4dOujxxx/XHXfcoX379un111+XJF155ZXW8zp27Kh169bpyiuvVHJysjp37qyHH35YS5YsUefOnS/GrgEAcMnjp/4AAECVMXr0aD3zzDPat2+frr766spuDgAALoPL/gEAQKWYPHmyJOn6669XYWGhli5dqldffVX33XcfwR8AgHJG+AcAAJWievXqmjRpkn744Qfl5+frmmuu0RNPPKFnnnmmspsGAIDL4bJ/AAAAAABcHAP+AQAAAADg4gj/AAAAAAC4OMI/AAAAAAAujgH/ylFxcbEOHDggX19fubm5VXZzAAAAAAAuzhijo0ePKiQkRFdcUfb5fcJ/OTpw4IBCQ0MruxkAAAAAgMtMZmbmGX8qt8qE/zFjxuipp57So48+qldeeUXSH99gPPfcc3rzzTeVm5ur1q1b69///rduuOEG63n5+fkaMWKE5s6dqxMnTqhTp056/fXXnXY6NzdXQ4cO1aeffipJiouL02uvvaYrr7zSqtm3b58eeeQRLV26VN7e3oqPj9f48ePl5eV11vvg6+sr6Y8X3c/P7wJeDQAAAAAA/lpeXp5CQ0OtPFqWKhH+169frzfffFNNmzZ1mv/yyy9r4sSJmjlzpho1aqQXXnhBXbp00c6dO60dS05O1meffaaUlBTVrl1bw4cPV2xsrNLT0+Xu7i5Jio+P1/79+5WamipJGjBggBISEvTZZ59JkoqKitS9e3fVqVNHq1at0uHDh9WvXz8ZY/Taa6+d9X6cvNTfz8+P8A8AAAAAuGj+6tZzN2OMuUhtKdWxY8fUsmVLvf7663rhhRfUvHlzvfLKKzLGKCQkRMnJyXriiSck/XGWPzAwUC+99JIGDhwoh8OhOnXqaNasWerbt6+k/116v2DBAsXExGj79u0KDw9XWlqaWrduLUlKS0tTVFSUduzYobCwMC1cuFCxsbHKzMxUSEiIJCklJUWJiYnKyck56yCfl5cnu90uh8NB+AcAAAAAVLizzaGVPtr/I488ou7du6tz585O8/fu3avs7GxFR0db82w2m9q3b6/Vq1dLktLT01VYWOhUExISooiICKtmzZo1stvtVvCXpDZt2shutzvVREREWMFfkmJiYpSfn6/09PQy256fn6+8vDynCQAAAACAqqZSL/tPSUnRxo0btX79+hLLsrOzJUmBgYFO8wMDA/Xjjz9aNV5eXqpZs2aJmpPPz87OVkBAQIn1BwQEONWcvp2aNWvKy8vLqinNmDFj9Nxzz/3VbgIAAAAAUKkq7cx/ZmamHn30Uc2ePVvVqlUrs+70+xaMMX95L8PpNaXVn0/N6UaOHCmHw2FNmZmZZ2wXAAAAAACVodLCf3p6unJychQZGSkPDw95eHhoxYoVevXVV+Xh4WGdiT/9zHtOTo61LCgoSAUFBcrNzT1jzcGDB0ts/+eff3aqOX07ubm5KiwsLHFFwKlsNps1uB+D/AEAAAAAqqpKC/+dOnXS1q1blZGRYU2tWrXSvffeq4yMDF177bUKCgrS4sWLrecUFBRoxYoVatu2rSQpMjJSnp6eTjVZWVnatm2bVRMVFSWHw6F169ZZNWvXrpXD4XCq2bZtm7KysqyaRYsWyWazKTIyskJfBwAAAAAAKlql3fPv6+uriIgIp3k+Pj6qXbu2NT85OVmjR49Ww4YN1bBhQ40ePVrVq1dXfHy8JMlut6t///4aPny4ateurVq1amnEiBFq0qSJNYBg48aN1bVrVyUlJWnq1KmS/vipv9jYWIWFhUmSoqOjFR4eroSEBI0bN06//PKLRowYoaSkJM7mAwAAAAAueZU64N9fefzxx3XixAkNGjRIubm5at26tRYtWiRfX1+rZtKkSfLw8FCfPn104sQJderUSTNnzpS7u7tVM2fOHA0dOtT6VYC4uDhNnjzZWu7u7q758+dr0KBBateunby9vRUfH6/x48dfvJ0FAAAAAKCCuBljTGU3wlWc7e8rAgAAAABQHs42h1baPf8AAAAAAODiIPwDAAAAAODiqvQ9/6g4Yzcdquwm4E9PtvCv7CYAAAAAcHGc+QcAAAAAwMUR/gEAAAAAcHGEfwAAAAAAXBzhHwAAAAAAF0f4BwAAAADAxRH+AQAAAABwcYR/AAAAAABcHOEfAAAAAAAXR/gHAAAAAMDFEf4BAAAAAHBxhH8AAAAAAFwc4R8AAAAAABdH+AcAAAAAwMUR/gEAAAAAcHGEfwAAAAAAXBzhHwAAAAAAF0f4BwAAAADAxRH+AQAAAABwcYR/AAAAAABcHOEfAAAAAAAXR/gHAAAAAMDFEf4BAAAAAHBxhH8AAAAAAFwc4R8AAAAAABdXqeF/ypQpatq0qfz8/OTn56eoqCgtXLjQWp6YmCg3NzenqU2bNk7ryM/P15AhQ+Tv7y8fHx/FxcVp//79TjW5ublKSEiQ3W6X3W5XQkKCjhw54lSzb98+9ejRQz4+PvL399fQoUNVUFBQYfsOAAAAAMDFUqnh/+qrr9bYsWO1YcMGbdiwQbfeeqt69uypb775xqrp2rWrsrKyrGnBggVO60hOTta8efOUkpKiVatW6dixY4qNjVVRUZFVEx8fr4yMDKWmpio1NVUZGRlKSEiwlhcVFal79+46fvy4Vq1apZSUFH300UcaPnx4xb8IAAAAAABUMDdjjKnsRpyqVq1aGjdunPr376/ExEQdOXJEH3/8cam1DodDderU0axZs9S3b19J0oEDBxQaGqoFCxYoJiZG27dvV3h4uNLS0tS6dWtJUlpamqKiorRjxw6FhYVp4cKFio2NVWZmpkJCQiRJKSkpSkxMVE5Ojvz8/M6q7Xl5ebLb7XI4HGf9nMoydtOhym4C/vRkC//KbgIAAACAS9TZ5tAqc89/UVGRUlJSdPz4cUVFRVnzly9froCAADVq1EhJSUnKycmxlqWnp6uwsFDR0dHWvJCQEEVERGj16tWSpDVr1shut1vBX5LatGkju93uVBMREWEFf0mKiYlRfn6+0tPTy2xzfn6+8vLynCYAAAAAAKqaSg//W7duVY0aNWSz2fTQQw9p3rx5Cg8PlyR169ZNc+bM0dKlSzVhwgStX79et956q/Lz8yVJ2dnZ8vLyUs2aNZ3WGRgYqOzsbKsmICCgxHYDAgKcagIDA52W16xZU15eXlZNacaMGWONI2C32xUaGnr+LwQAAAAAABXEo7IbEBYWpoyMDB05ckQfffSR+vXrpxUrVig8PNy6lF+SIiIi1KpVK9WtW1fz589X7969y1ynMUZubm7W41P/fSE1pxs5cqSGDRtmPc7Ly+MLAAAAAABAlVPpZ/69vLzUoEEDtWrVSmPGjFGzZs30r3/9q9Ta4OBg1a1bV7t375YkBQUFqaCgQLm5uU51OTk51pn8oKAgHTx4sMS6fv75Z6ea08/w5+bmqrCwsMQVAaey2WzWLxWcnAAAAAAAqGoqPfyfzhhjXdZ/usOHDyszM1PBwcGSpMjISHl6emrx4sVWTVZWlrZt26a2bdtKkqKiouRwOLRu3TqrZu3atXI4HE4127ZtU1ZWllWzaNEi2Ww2RUZGlvs+AgAAAABwMVXqZf9PPfWUunXrptDQUB09elQpKSlavny5UlNTdezYMY0aNUp33HGHgoOD9cMPP+ipp56Sv7+/br/9dkmS3W5X//79NXz4cNWuXVu1atXSiBEj1KRJE3Xu3FmS1LhxY3Xt2lVJSUmaOnWqJGnAgAGKjY1VWFiYJCk6Olrh4eFKSEjQuHHj9Msvv2jEiBFKSkribD4AAAAA4JJXqeH/4MGDSkhIUFZWlux2u5o2barU1FR16dJFJ06c0NatW/XOO+/oyJEjCg4OVseOHfXee+/J19fXWsekSZPk4eGhPn366MSJE+rUqZNmzpwpd3d3q2bOnDkaOnSo9asAcXFxmjx5srXc3d1d8+fP16BBg9SuXTt5e3srPj5e48ePv3gvBgAAAAAAFcTNGGMquxGu4mx/X7EqGLvpUGU3AX96soV/ZTcBAAAAwCXqbHNolbvnHwAAAAAAlC/CPwAAAAAALo7wDwAAAACAiyP8AwAAAADg4gj/AAAAAAC4OMI/AAAAAAAujvAPAAAAAICLI/wDAAAAAODiCP8AAAAAALg4wj8AAAAAAC6O8A8AAAAAgIsj/AMAAAAA4OII/wAAAAAAuDjCPwAAAAAALo7wDwAAAACAiyP8AwAAAADg4gj/AAAAAAC4OMI/AAAAAAAujvAPAAAAAICLI/wDAAAAAODiCP8AAAAAALg4wj8AAAAAAC6O8A8AAAAAgIsj/AMAAAAA4OII/wAAAAAAuDjCPwAAAAAALo7wDwAAAACAi6vU8D9lyhQ1bdpUfn5+8vPzU1RUlBYuXGgtN8Zo1KhRCgkJkbe3tzp06KBvvvnGaR35+fkaMmSI/P395ePjo7i4OO3fv9+pJjc3VwkJCbLb7bLb7UpISNCRI0ecavbt26cePXrIx8dH/v7+Gjp0qAoKCips3wEAAAAAuFgqNfxfffXVGjt2rDZs2KANGzbo1ltvVc+ePa2A//LLL2vixImaPHmy1q9fr6CgIHXp0kVHjx611pGcnKx58+YpJSVFq1at0rFjxxQbG6uioiKrJj4+XhkZGUpNTVVqaqoyMjKUkJBgLS8qKlL37t11/PhxrVq1SikpKfroo480fPjwi/diAAAAAABQQdyMMaayG3GqWrVqady4cXrggQcUEhKi5ORkPfHEE5L+OMsfGBiol156SQMHDpTD4VCdOnU0a9Ys9e3bV5J04MABhYaGasGCBYqJidH27dsVHh6utLQ0tW7dWpKUlpamqKgo7dixQ2FhYVq4cKFiY2OVmZmpkJAQSVJKSooSExOVk5MjPz+/s2p7Xl6e7Ha7HA7HWT+nsozddKiym4A/PdnCv7KbAAAAAOASdbY5tMrc819UVKSUlBQdP35cUVFR2rt3r7KzsxUdHW3V2Gw2tW/fXqtXr5Ykpaenq7Cw0KkmJCREERERVs2aNWtkt9ut4C9Jbdq0kd1ud6qJiIiwgr8kxcTEKD8/X+np6WW2OT8/X3l5eU4TAAAAAABVTaWH/61bt6pGjRqy2Wx66KGHNG/ePIWHhys7O1uSFBgY6FQfGBhoLcvOzpaXl5dq1qx5xpqAgIAS2w0ICHCqOX07NWvWlJeXl1VTmjFjxljjCNjtdoWGhp7j3gMAAAAAUPEqPfyHhYUpIyNDaWlpevjhh9WvXz99++231nI3NzenemNMiXmnO72mtPrzqTndyJEj5XA4rCkzM/OM7QIAAAAAoDJUevj38vJSgwYN1KpVK40ZM0bNmjXTv/71LwUFBUlSiTPvOTk51ln6oKAgFRQUKDc394w1Bw8eLLHdn3/+2anm9O3k5uaqsLCwxBUBp7LZbNYvFZycAAAAAACoaio9/J/OGKP8/HzVr19fQUFBWrx4sbWsoKBAK1asUNu2bSVJkZGR8vT0dKrJysrStm3brJqoqCg5HA6tW7fOqlm7dq0cDodTzbZt25SVlWXVLFq0SDabTZGRkRW6vwAAAAAAVDSPytz4U089pW7duik0NFRHjx5VSkqKli9frtTUVLm5uSk5OVmjR49Ww4YN1bBhQ40ePVrVq1dXfHy8JMlut6t///4aPny4ateurVq1amnEiBFq0qSJOnfuLElq3LixunbtqqSkJE2dOlWSNGDAAMXGxiosLEySFB0drfDwcCUkJGjcuHH65ZdfNGLECCUlJXE2HwAAAABwyavU8H/w4EElJCQoKytLdrtdTZs2VWpqqrp06SJJevzxx3XixAkNGjRIubm5at26tRYtWiRfX19rHZMmTZKHh4f69OmjEydOqFOnTpo5c6bc3d2tmjlz5mjo0KHWrwLExcVp8uTJ1nJ3d3fNnz9fgwYNUrt27eTt7a34+HiNHz/+Ir0SAAAAAABUHDdjjKnsRriKs/19xapg7KZDld0E/OnJFv6V3QQAAAAAl6izzaFV7p5/AAAAAABQvgj/AAAAAAC4OMI/AAAAAAAujvAPAAAAAICLI/wDAAAAAODiCP8AAAAAALg4wj8AAAAAAC6O8A8AAAAAgIsj/AMAAAAA4OII/wAAAAAAuDjCPwAAAAAALo7wDwAAAACAiyP8AwAAAADg4gj/AAAAAAC4OMI/AAAAAAAujvAPAAAAAICLI/wDAAAAAODiCP8AAAAAALg4wj8AAAAAAC6O8A8AAAAAgIsj/AMAAAAA4OII/wAAAAAAuDjCPwAAAAAALo7wDwAAAACAiyP8AwAAAADg4gj/AAAAAAC4OMI/AAAAAAAurlLD/5gxY3TjjTfK19dXAQEB6tWrl3bu3OlUk5iYKDc3N6epTZs2TjX5+fkaMmSI/P395ePjo7i4OO3fv9+pJjc3VwkJCbLb7bLb7UpISNCRI0ecavbt26cePXrIx8dH/v7+Gjp0qAoKCipk3wEAAAAAuFgqNfyvWLFCjzzyiNLS0rR48WL9/vvvio6O1vHjx53qunbtqqysLGtasGCB0/Lk5GTNmzdPKSkpWrVqlY4dO6bY2FgVFRVZNfHx8crIyFBqaqpSU1OVkZGhhIQEa3lRUZG6d++u48ePa9WqVUpJSdFHH32k4cOHV+yLAAAAAABABXMzxpjKbsRJP//8swICArRixQrdcsstkv4483/kyBF9/PHHpT7H4XCoTp06mjVrlvr27StJOnDggEJDQ7VgwQLFxMRo+/btCg8PV1pamlq3bi1JSktLU1RUlHbs2KGwsDAtXLhQsbGxyszMVEhIiCQpJSVFiYmJysnJkZ+f31+2Py8vT3a7XQ6H46zqK9PYTYcquwn405Mt/Cu7CQAAAAAuUWebQ6vUPf8Oh0OSVKtWLaf5y5cvV0BAgBo1aqSkpCTl5ORYy9LT01VYWKjo6GhrXkhIiCIiIrR69WpJ0po1a2S3263gL0lt2rSR3W53qomIiLCCvyTFxMQoPz9f6enppbY3Pz9feXl5ThMAAAAAAFVNlQn/xhgNGzZMN910kyIiIqz53bp105w5c7R06VJNmDBB69ev16233qr8/HxJUnZ2try8vFSzZk2n9QUGBio7O9uqCQgIKLHNgIAAp5rAwECn5TVr1pSXl5dVc7oxY8ZYYwjY7XaFhoae/wsAAAAAAEAF8ajsBpw0ePBgbdmyRatWrXKaf/JSfkmKiIhQq1atVLduXc2fP1+9e/cuc33GGLm5uVmPT/33hdScauTIkRo2bJj1OC8vjy8AAAAAAABVTpU48z9kyBB9+umnWrZsma6++uoz1gYHB6tu3bravXu3JCkoKEgFBQXKzc11qsvJybHO5AcFBengwYMl1vXzzz871Zx+hj83N1eFhYUlrgg4yWazyc/Pz2kCAAAAAKCqqdTwb4zR4MGD9d///ldLly5V/fr1//I5hw8fVmZmpoKDgyVJkZGR8vT01OLFi62arKwsbdu2TW3btpUkRUVFyeFwaN26dVbN2rVr5XA4nGq2bdumrKwsq2bRokWy2WyKjIwsl/0FAAAAAKAyVOpl/4888ojeffddffLJJ/L19bXOvNvtdnl7e+vYsWMaNWqU7rjjDgUHB+uHH37QU089JX9/f91+++1Wbf/+/TV8+HDVrl1btWrV0ogRI9SkSRN17txZktS4cWN17dpVSUlJmjp1qiRpwIABio2NVVhYmCQpOjpa4eHhSkhI0Lhx4/TLL79oxIgRSkpK4ow+AAAAAOCSVqln/qdMmSKHw6EOHTooODjYmt577z1Jkru7u7Zu3aqePXuqUaNG6tevnxo1aqQ1a9bI19fXWs+kSZPUq1cv9enTR+3atVP16tX12Wefyd3d3aqZM2eOmjRpoujoaEVHR6tp06aaNWuWtdzd3V3z589XtWrV1K5dO/Xp00e9evXS+PHjL94LAgAAAABABXAzxpjKboSrONvfV6wKxm46VNlNwJ+ebOFf2U0AAAAAcIk62xxaJQb8AwAAAAAAFYfwDwAAAACAiyP8AwAAAADg4gj/AAAAAAC4OMI/AAAAAAAujvAPAAAAAICLI/wDAAAAAODiziv8b9y4UVu3brUef/LJJ+rVq5eeeuopFRQUlFvjAAAAAADAhTuv8D9w4EDt2rVLkvT999/r7rvvVvXq1fXBBx/o8ccfL9cGAgAAAACAC3Ne4X/Xrl1q3ry5JOmDDz7QLbfconfffVczZ87URx99VJ7tAwAAAAAAF+i8wr8xRsXFxZKkJUuW6LbbbpMkhYaG6tChQ+XXOgAAAAAAcMHOK/y3atVKL7zwgmbNmqUVK1aoe/fukqS9e/cqMDCwXBsIAAAAAAAuzHmF/0mTJmnjxo0aPHiwnn76aTVo0ECS9OGHH6pt27bl2kAAAAAAAHBhPM7nSc2aNXMa7f+kcePGycPjvFYJAAAAAAAqyHmd+b/22mt1+PDhEvN/++03NWrU6IIbBQAAAAAAys95hf8ffvhBRUVFJebn5+dr//79F9woAAAAAABQfs7pGv1PP/3U+vcXX3whu91uPS4qKtKXX36p+vXrl1/rAAAAAADABTun8N+rVy9Jkpubm/r16+e0zNPTU/Xq1dOECRPKrXEAAAAAAODCnVP4Ly4uliTVr19f69evl7+/f4U0CgAAAAAAlJ/zGpp/79695d0OAAAAAABQQc77d/m+/PJLffnll8rJybGuCDhp+vTpF9wwAAAAAABQPs4r/D/33HN6/vnn1apVKwUHB8vNza282wUAAAAAAMrJeYX/N954QzNnzlRCQkJ5twcAAAAAAJSzK87nSQUFBWrbtm15twUAAAAAAFSA8wr/Dz74oN59993ybgsAAAAAAKgA53XZ/2+//aY333xTS5YsUdOmTeXp6em0fOLEieXSOAAAAAAAcOHOK/xv2bJFzZs3lyRt27bNaRmD/wEAAAAAULWc12X/y5YtK3NaunTpWa9nzJgxuvHGG+Xr66uAgAD16tVLO3fudKoxxmjUqFEKCQmRt7e3OnTooG+++capJj8/X0OGDJG/v798fHwUFxen/fv3O9Xk5uYqISFBdrtddrtdCQkJOnLkiFPNvn371KNHD/n4+Mjf319Dhw5VQUHBub04AAAAAABUMecV/svLihUr9MgjjygtLU2LFy/W77//rujoaB0/ftyqefnllzVx4kRNnjxZ69evV1BQkLp06aKjR49aNcnJyZo3b55SUlK0atUqHTt2TLGxsSoqKrJq4uPjlZGRodTUVKWmpiojI8Pp1wqKiorUvXt3HT9+XKtWrVJKSoo++ugjDR8+/OK8GAAAAAAAVBA3Y4w51yd17NjxjJf3n8vZ/1P9/PPPCggI0IoVK3TLLbfIGKOQkBAlJyfriSeekPTHWf7AwEC99NJLGjhwoBwOh+rUqaNZs2apb9++kqQDBw4oNDRUCxYsUExMjLZv367w8HClpaWpdevWkqS0tDRFRUVpx44dCgsL08KFCxUbG6vMzEyFhIRIklJSUpSYmKicnBz5+fn9Zfvz8vJkt9vlcDjOqr4yjd10qLKbgD892cK/spsAAAAA4BJ1tjn0vM78N2/eXM2aNbOm8PBwFRQUaOPGjWrSpMl5N9rhcEiSatWqJUnau3evsrOzFR0dbdXYbDa1b99eq1evliSlp6ersLDQqSYkJEQRERFWzZo1a2S3263gL0lt2rSR3W53qomIiLCCvyTFxMQoPz9f6enppbY3Pz9feXl5ThMAAAAAAFXNeQ34N2nSpFLnjxo1SseOHTuvhhhjNGzYMN10002KiIiQJGVnZ0uSAgMDnWoDAwP1448/WjVeXl6qWbNmiZqTz8/OzlZAQECJbQYEBDjVnL6dmjVrysvLy6o53ZgxY/Tcc8+d664CAAAAAHBRles9//fdd5+mT59+Xs8dPHiwtmzZorlz55ZYdvotBsaYv/xVgdNrSqs/n5pTjRw5Ug6Hw5oyMzPP2CYAAAAAACpDuYb/NWvWqFq1auf8vCFDhujTTz/VsmXLdPXVV1vzg4KCJKnEmfecnBzrLH1QUJAKCgqUm5t7xpqDBw+W2O7PP//sVHP6dnJzc1VYWFjiioCTbDab/Pz8nCYAAAAAAKqa8wr/vXv3dppuv/12tWnTRn//+981cODAs16PMUaDBw/Wf//7Xy1dulT169d3Wl6/fn0FBQVp8eLF1ryCggKtWLFCbdu2lSRFRkbK09PTqSYrK0vbtm2zaqKiouRwOLRu3TqrZu3atXI4HE4127ZtU1ZWllWzaNEi2Ww2RUZGnsOrAwAAAABA1XJe9/zb7Xanx1dccYXCwsL0/PPPOw2891ceeeQRvfvuu/rkk0/k6+trnXm32+3y9vaWm5ubkpOTNXr0aDVs2FANGzbU6NGjVb16dcXHx1u1/fv31/Dhw1W7dm3VqlVLI0aMUJMmTdS5c2dJUuPGjdW1a1clJSVp6tSpkqQBAwYoNjZWYWFhkqTo6GiFh4crISFB48aN0y+//KIRI0YoKSmJM/oAAAAAgEvaeYX/GTNmlMvGp0yZIknq0KFDifUnJiZKkh5//HGdOHFCgwYNUm5urlq3bq1FixbJ19fXqp80aZI8PDzUp08fnThxQp06ddLMmTPl7u5u1cyZM0dDhw61vpyIi4vT5MmTreXu7u6aP3++Bg0apHbt2snb21vx8fEaP358uewrAAAAAACVxc0YY873yenp6dq+fbvc3NwUHh6uFi1alGfbLjln+/uKVcHYTYcquwn405Mt/Cu7CQAAAAAuUWebQ8/rzH9OTo7uvvtuLV++XFdeeaWMMXI4HOrYsaNSUlJUp06d8244gPLHlz1VC1/4AAAA4GI7rwH/hgwZory8PH3zzTf65ZdflJubq23btikvL09Dhw4t7zYCAAAAAIALcF5n/lNTU7VkyRI1btzYmhceHq5///vf5zTgHwAAAAAAqHjndea/uLhYnp6eJeZ7enqquLj4ghsFAAAAAADKz3mF/1tvvVWPPvqoDhw4YM376aef9Nhjj6lTp07l1jgAAAAAAHDhziv8T548WUePHlW9evV03XXXqUGDBqpfv76OHj2q1157rbzbCAAAAAAALsB53fMfGhqqjRs3avHixdqxY4eMMQoPD1fnzp3Lu30AAAAAAOACndOZ/6VLlyo8PFx5eXmSpC5dumjIkCEaOnSobrzxRt1www366quvKqShAAAAAADg/JxT+H/llVeUlJQkPz+/EsvsdrsGDhyoiRMnllvjAAAAAADAhTun8L9582Z17dq1zOXR0dFKT0+/4EYBAAAAAIDyc07h/+DBg6X+xN9JHh4e+vnnny+4UQAAAAAAoPycU/i/6qqrtHXr1jKXb9myRcHBwRfcKAAAAAAAUH7OKfzfdttt+n//7//pt99+K7HsxIkTevbZZxUbG1tujQMAAAAAABfunH7q75lnntF///tfNWrUSIMHD1ZYWJjc3Ny0fft2/fvf/1ZRUZGefvrpimorAAAAAAA4D+cU/gMDA7V69Wo9/PDDGjlypIwxkiQ3NzfFxMTo9ddfV2BgYIU0FAAAAAAAnJ9zCv+SVLduXS1YsEC5ubn67rvvZIxRw4YNVbNmzYpoHwAAAAAAuEDnHP5Pqlmzpm688cbybAsAAAAAAKgA5zTgHwAAAAAAuPQQ/gEAAAAAcHGEfwAAAAAAXBzhHwAAAAAAF0f4BwAAAADAxRH+AQAAAABwcYR/AAAAAABcHOEfAAAAAAAXR/gHAAAAAMDFVWr4X7lypXr06KGQkBC5ubnp448/dlqemJgoNzc3p6lNmzZONfn5+RoyZIj8/f3l4+OjuLg47d+/36kmNzdXCQkJstvtstvtSkhI0JEjR5xq9u3bpx49esjHx0f+/v4aOnSoCgoKKmK3AQAAAAC4qCo1/B8/flzNmjXT5MmTy6zp2rWrsrKyrGnBggVOy5OTkzVv3jylpKRo1apVOnbsmGJjY1VUVGTVxMfHKyMjQ6mpqUpNTVVGRoYSEhKs5UVFRerevbuOHz+uVatWKSUlRR999JGGDx9e/jsNAAAAAMBF5lGZG+/WrZu6det2xhqbzaagoKBSlzkcDk2bNk2zZs1S586dJUmzZ89WaGiolixZopiYGG3fvl2pqalKS0tT69atJUlvvfWWoqKitHPnToWFhWnRokX69ttvlZmZqZCQEEnShAkTlJiYqBdffFF+fn7luNcAAAAAAFxcVf6e/+XLlysgIECNGjVSUlKScnJyrGXp6ekqLCxUdHS0NS8kJEQRERFavXq1JGnNmjWy2+1W8JekNm3ayG63O9VERERYwV+SYmJilJ+fr/T09DLblp+fr7y8PKcJAAAAAICqpkqH/27dumnOnDlaunSpJkyYoPXr1+vWW29Vfn6+JCk7O1teXl6qWbOm0/MCAwOVnZ1t1QQEBJRYd0BAgFNNYGCg0/KaNWvKy8vLqinNmDFjrHEE7Ha7QkNDL2h/AQAAAACoCJV62f9f6du3r/XviIgItWrVSnXr1tX8+fPVu3fvMp9njJGbm5v1+NR/X0jN6UaOHKlhw4ZZj/Py8vgCAAAAAABQ5VTpM/+nCw4OVt26dbV7925JUlBQkAoKCpSbm+tUl5OTY53JDwoK0sGDB0us6+eff3aqOf0Mf25urgoLC0tcEXAqm80mPz8/pwkAAAAAgKrmkgr/hw8fVmZmpoKDgyVJkZGR8vT01OLFi62arKwsbdu2TW3btpUkRUVFyeFwaN26dVbN2rVr5XA4nGq2bdumrKwsq2bRokWy2WyKjIy8GLsGAAAAAECFqdTL/o8dO6bvvvvOerx3715lZGSoVq1aqlWrlkaNGqU77rhDwcHB+uGHH/TUU0/J399ft99+uyTJbrerf//+Gj58uGrXrq1atWppxIgRatKkiTX6f+PGjdW1a1clJSVp6tSpkqQBAwYoNjZWYWFhkqTo6GiFh4crISFB48aN0y+//KIRI0YoKSmJs/kAAAAAgEtepYb/DRs2qGPHjtbjk/fP9+vXT1OmTNHWrVv1zjvv6MiRIwoODlbHjh313nvvydfX13rOpEmT5OHhoT59+ujEiRPq1KmTZs6cKXd3d6tmzpw5Gjp0qPWrAHFxcZo8ebK13N3dXfPnz9egQYPUrl07eXt7Kz4+XuPHj6/olwAAAAAAgArnZowxld0IV5GXlye73S6Hw1HlrxgYu+lQZTcBf3qyhX+Fb4P+rlouRp8DAADg8nC2OfSSuucfAAAAAACcO8I/AAAAAAAujvAPAAAAAICLq9QB/wAAFYNxHqoOxngAAABVAWf+AQAAAABwcYR/AAAAAABcHOEfAAAAAAAXR/gHAAAAAMDFEf4BAAAAAHBxhH8AAAAAAFwc4R8AAAAAABdH+AcAAAAAwMUR/gEAAAAAcHGEfwAAAAAAXBzhHwAAAAAAF0f4BwAAAADAxRH+AQAAAABwcYR/AAAAAABcHOEfAAAAAAAXR/gHAAAAAMDFEf4BAAAAAHBxhH8AAAAAAFwc4R8AAAAAABdH+AcAAAAAwMUR/gEAAAAAcHGEfwAAAAAAXBzhHwAAAAAAF1ep4X/lypXq0aOHQkJC5Obmpo8//thpuTFGo0aNUkhIiLy9vdWhQwd98803TjX5+fkaMmSI/P395ePjo7i4OO3fv9+pJjc3VwkJCbLb7bLb7UpISNCRI0ecavbt26cePXrIx8dH/v7+Gjp0qAoKCipitwEAAAAAuKgqNfwfP35czZo10+TJk0td/vLLL2vixImaPHmy1q9fr6CgIHXp0kVHjx61apKTkzVv3jylpKRo1apVOnbsmGJjY1VUVGTVxMfHKyMjQ6mpqUpNTVVGRoYSEhKs5UVFRerevbuOHz+uVatWKSUlRR999JGGDx9ecTsPAAAAAMBF4lGZG+/WrZu6detW6jJjjF555RU9/fTT6t27tyTp7bffVmBgoN59910NHDhQDodD06ZN06xZs9S5c2dJ0uzZsxUaGqolS5YoJiZG27dvV2pqqtLS0tS6dWtJ0ltvvaWoqCjt3LlTYWFhWrRokb799ltlZmYqJCREkjRhwgQlJibqxRdflJ+f30V4NQAAAAAAqBhV9p7/vXv3Kjs7W9HR0dY8m82m9u3ba/Xq1ZKk9PR0FRYWOtWEhIQoIiLCqlmzZo3sdrsV/CWpTZs2stvtTjURERFW8JekmJgY5efnKz09vcw25ufnKy8vz2kCAAAAAKCqqbLhPzs7W5IUGBjoND8wMNBalp2dLS8vL9WsWfOMNQEBASXWHxAQ4FRz+nZq1qwpLy8vq6Y0Y8aMscYRsNvtCg0NPce9BAAAAACg4lXZ8H+Sm5ub02NjTIl5pzu9prT686k53ciRI+VwOKwpMzPzjO0CAAAAAKAyVNnwHxQUJEklzrzn5ORYZ+mDgoJUUFCg3NzcM9YcPHiwxPp//vlnp5rTt5Obm6vCwsISVwScymazyc/Pz2kCAAAAAKCqqbLhv379+goKCtLixYuteQUFBVqxYoXatm0rSYqMjJSnp6dTTVZWlrZt22bVREVFyeFwaN26dVbN2rVr5XA4nGq2bdumrKwsq2bRokWy2WyKjIys0P0EAAAAAKCiVepo/8eOHdN3331nPd67d68yMjJUq1YtXXPNNUpOTtbo0aPVsGFDNWzYUKNHj1b16tUVHx8vSbLb7erfv7+GDx+u2rVrq1atWhoxYoSaNGlijf7fuHFjde3aVUlJSZo6daokacCAAYqNjVVYWJgkKTo6WuHh4UpISNC4ceP0yy+/aMSIEUpKSuJsPgAAAADgklep4X/Dhg3q2LGj9XjYsGGSpH79+mnmzJl6/PHHdeLECQ0aNEi5ublq3bq1Fi1aJF9fX+s5kyZNkoeHh/r06aMTJ06oU6dOmjlzptzd3a2aOXPmaOjQodavAsTFxWny5MnWcnd3d82fP1+DBg1Su3bt5O3trfj4eI0fP76iXwIAAAAAACqcmzHGVHYjXEVeXp7sdrscDkeVv2Jg7KZDld0E/OnJFv4Vvg36u2qhzy8vF6O/AQDA5etsc2iVvecfAAAAAACUD8I/AAAAAAAujvAPAAAAAICLI/wDAAAAAODiCP8AAAAAALg4wj8AAAAAAC6O8A8AAAAAgIsj/AMAAAAA4OII/wAAAAAAuDjCPwAAAAAALo7wDwAAAACAiyP8AwAAAADg4gj/AAAAAAC4OMI/AAAAAAAujvAPAAAAAICLI/wDAAAAAODiCP8AAAAAALg4wj8AAAAAAC6O8A8AAAAAgIsj/AMAAAAA4OII/wAAAAAAuDjCPwAAAAAALo7wDwAAAACAiyP8AwAAAADg4gj/AAAAAAC4OMI/AAAAAAAujvAPAAAAAICLq9Lhf9SoUXJzc3OagoKCrOXGGI0aNUohISHy9vZWhw4d9M033zitIz8/X0OGDJG/v798fHwUFxen/fv3O9Xk5uYqISFBdrtddrtdCQkJOnLkyMXYRQAAAAAAKlyVDv+SdMMNNygrK8uatm7dai17+eWXNXHiRE2ePFnr169XUFCQunTpoqNHj1o1ycnJmjdvnlJSUrRq1SodO3ZMsbGxKioqsmri4+OVkZGh1NRUpaamKiMjQwkJCRd1PwEAAAAAqCgeld2Av+Lh4eF0tv8kY4xeeeUVPf300+rdu7ck6e2331ZgYKDeffddDRw4UA6HQ9OmTdOsWbPUuXNnSdLs2bMVGhqqJUuWKCYmRtu3b1dqaqrS0tLUunVrSdJbb72lqKgo7dy5U2FhYRdvZwEAAAAAqABV/sz/7t27FRISovr16+vuu+/W999/L0nau3evsrOzFR0dbdXabDa1b99eq1evliSlp6ersLDQqSYkJEQRERFWzZo1a2S3263gL0lt2rSR3W63asqSn5+vvLw8pwkAAAAAgKqmSof/1q1b65133tEXX3yht956S9nZ2Wrbtq0OHz6s7OxsSVJgYKDTcwIDA61l2dnZ8vLyUs2aNc9YExAQUGLbAQEBVk1ZxowZY40TYLfbFRoaet77CgAAAABARanS4b9bt26644471KRJE3Xu3Fnz58+X9Mfl/Se5ubk5PccYU2Le6U6vKa3+bNYzcuRIORwOa8rMzPzLfQIAAAAA4GKr0uH/dD4+PmrSpIl2795tjQNw+tn5nJwc62qAoKAgFRQUKDc394w1Bw8eLLGtn3/+ucRVBaez2Wzy8/NzmgAAAAAAqGouqfCfn5+v7du3Kzg4WPXr11dQUJAWL15sLS8oKNCKFSvUtm1bSVJkZKQ8PT2darKysrRt2zarJioqSg6HQ+vWrbNq1q5dK4fDYdUAAAAAAHApq9Kj/Y8YMUI9evTQNddco5ycHL3wwgvKy8tTv3795ObmpuTkZI0ePVoNGzZUw4YNNXr0aFWvXl3x8fGSJLvdrv79+2v48OGqXbu2atWqpREjRli3EUhS48aN1bVrVyUlJWnq1KmSpAEDBig2NpaR/gEAAAAALqFKh//9+/frnnvu0aFDh1SnTh21adNGaWlpqlu3riTp8ccf14kTJzRo0CDl5uaqdevWWrRokXx9fa11TJo0SR4eHurTp49OnDihTp06aebMmXJ3d7dq5syZo6FDh1q/ChAXF6fJkydf3J0FAAAAAKCCuBljTGU3wlXk5eXJbrfL4XBU+fv/x246VNlNwJ+ebOFf4dugv6sW+vzycjH6GwAAXL7ONodeUvf8AwAAAACAc0f4BwAAAADAxVXpe/4BAMBf4zaPqoPbPAAAVRVn/gEAAAAAcHGEfwAAAAAAXBzhHwAAAAAAF0f4BwAAAADAxRH+AQAAAABwcYR/AAAAAABcHOEfAAAAAAAXR/gHAAAAAMDFEf4BAAAAAHBxhH8AAAAAAFwc4R8AAAAAABfnUdkNAAAAwNkbu+lQZTcBp3iyhX9lNwEAzgpn/gEAAAAAcHGEfwAAAAAAXBzhHwAAAAAAF0f4BwAAAADAxRH+AQAAAABwcYR/AAAAAABcHOEfAAAAAAAX51HZDQAAAABQtrGbDlV2E/CnJ1v4V3YTgPPGmX8AAAAAAFwc4R8AAAAAABdH+AcAAAAAwMUR/gEAAAAAcHGE/9O8/vrrql+/vqpVq6bIyEh99dVXld0kAAAAAAAuCOH/FO+9956Sk5P19NNPa9OmTbr55pvVrVs37du3r7KbBgAAAADAeeOn/k4xceJE9e/fXw8++KAk6ZVXXtEXX3yhKVOmaMyYMZXcOgAAAACujp92rDpc7acdCf9/KigoUHp6up588kmn+dHR0Vq9enWpz8nPz1d+fr712OFwSJLy8vIqrqHl5LdjRyu7CfhTXp5XhW+D/q5a6PPLC/19eaG/Lz/0+eWF/r68XIz+Lg8n86cx5ox1hP8/HTp0SEVFRQoMDHSaHxgYqOzs7FKfM2bMGD333HMl5oeGhlZIG+GaSr6D4Oro88sL/X15ob8vP/T55YX+vrxcav199OhR2e32MpcT/k/j5ubm9NgYU2LeSSNHjtSwYcOsx8XFxfrll19Uu3btMp+D8pOXl6fQ0FBlZmbKz8+vspuDCkZ/X17o78sPfX55ob8vL/T35Yc+v7iMMTp69KhCQkLOWEf4/5O/v7/c3d1LnOXPyckpcTXASTabTTabzWnelVdeWVFNRBn8/Pz4ULmM0N+XF/r78kOfX17o78sL/X35oc8vnjOd8T+J0f7/5OXlpcjISC1evNhp/uLFi9W2bdtKahUAAAAAABeOM/+nGDZsmBISEtSqVStFRUXpzTff1L59+/TQQw9VdtMAAAAAADhvhP9T9O3bV4cPH9bzzz+vrKwsRUREaMGCBapbt25lNw2lsNlsevbZZ0vcegHXRH9fXujvyw99fnmhvy8v9Pflhz6vmtzMX/0eAAAAAAAAuKRxzz8AAAAAAC6O8A8AAAAAgIsj/AMAAAAA4OII/0Al+OGHH+Tm5qaMjIwya5YvXy43NzcdOXLkorULFYP+vvzQ55eXqtjfHTp0UHJy8kXZFkpyc3PTxx9/XObys3nPoOqoisc4zk69evX0yiuvnLHmr45XV0L4d1FjxozRjTfeKF9fXwUEBKhXr17auXOnU01iYqLc3NycpjZt2lzwtnfu3KmOHTsqMDBQ1apV07XXXqtnnnlGhYWFpdZ//fXX8vDwUPPmzS9425erlStXqkePHgoJCSnzA+zYsWMaPHiwrr76anl7e6tx48aaMmXKBW97+fLl6tmzp4KDg+Xj46PmzZtrzpw5ZdbT3+VjypQpatq0qfz8/OTn56eoqCgtXLjQqaaijvFTfffdd/L19dWVV15ZZg19Xr7GjBkjNze3EsGuovr75H96T59SU1NLrae/z05Z4fzjjz+Wm5vbxW/QOXj00UcVGRkpm81WZj9/8cUXatOmjXx9fVWnTh3dcccd2rt378Vt6CVk1KhRJY6xoKAgp5qK/Ew3xmj8+PFq1KiRbDabQkNDNXr06FJrOcYv3E8//aT77rtPtWvXVvXq1dW8eXOlp6dbyy/G329cnvipPxe1YsUKPfLII7rxxhv1+++/6+mnn1Z0dLS+/fZb+fj4WHVdu3bVjBkzrMdeXl4XvG1PT0/df//9atmypa688kpt3rxZSUlJKi4uLvGHxOFw6P7771enTp108ODBC952RSgoKCiX16UiHT9+XM2aNdPf//533XHHHaXWPPbYY1q2bJlmz56tevXqadGiRRo0aJBCQkLUs2fP89726tWr1bRpUz3xxBMKDAzU/Pnzdf/998vPz089evRwqqW/y8/VV1+tsWPHqkGDBpKkt99+Wz179tSmTZt0ww03WHUVcYyfVFhYqHvuuUc333yzVq9eXWoNfV6+1q9frzfffFNNmzYtdXlF9veSJUuc3lu1atUqUUN/u46ioiK5ubnpiitKnicyxuiBBx7Q2rVrtWXLlhLLv//+e/Xs2VPDhg3TnDlz5HA49Nhjj6l3797atGnTxWj+WatK74cbbrhBS5YssR67u7uXqKmoY/zRRx/VokWLNH78eDVp0kQOh0OHDh0qUccxfuFyc3PVrl07dezYUQsXLlRAQID27NlT4kv0ivw8Ly/GGBUVFcnDo2IjZWFhoTw9PSt0Gxeiqr/nTsWZfxeVmpqqxMRE3XDDDWrWrJlmzJihffv2OX2rKP3xG5xBQUHWVNp/5s7Vtddeq7///e9q1qyZ6tatq7i4ON1777366quvStQOHDhQ8fHxioqKOuM6jTFq0KCBxo8f7zR/27ZtuuKKK7Rnzx5Jf/xRGjBggAICAuTn56dbb71Vmzdvtur37Nmjnj17KjAwUDVq1NCNN97o9IdW+uPyoBdeeEGJiYmy2+1KSkpSQUGBBg8erODgYFWrVk316tXTmDFjymxvcXGxnn/+eV199dXWmZGyzpKdtGDBAjVq1Eje3t7q2LGjfvjhhzPWn6pbt2564YUX1Lt37zJr1qxZo379+qlDhw6qV6+eBgwYoGbNmmnDhg1nvZ3SPPXUU/q///s/tW3bVtddd52GDh2qrl27at68eSVq6e//uZD+lqQePXrotttuU6NGjdSoUSO9+OKLqlGjhtLS0pzqKuIYP+mZZ57R9ddfrz59+pRZQ5//z4X2+bFjx3TvvffqrbfeUs2aNUutqcj+rl27ttO6S/uPDv39Pxfa3yeNGjVKzZs316xZs1SvXj3Z7XbdfffdOnr0qFVz/Phx3X///apRo4aCg4M1YcKEEuspKCjQ448/rquuuko+Pj5q3bq1li9fbi2fOXOmrrzySn3++ecKDw+XzWbTjz/+WGqbXn31VT3yyCO69tprS12+ceNGFRUV6YUXXtB1112nli1basSIEdq8eXOZVwHeeuutGjx4sNO8w4cPy2azaenSpWe1D4cPH9Y999yjq6++WtWrV1eTJk00d+5cp3V26NBBgwcP1rBhw+Tv768uXbpYr/M111wjm82mkJAQDR06tNR2njRlyhRdd9118vLyUlhYmGbNmnXG+nXr1qlFixaqVq2aWrVqVeqXIB4eHk7HWJ06dUrUVMQxvn37dk2ZMkWffPKJ4uLiVL9+fTVv3lydO3cuUcsx/j/ne4y/9NJLCg0N1YwZM/S3v/1N9erVU6dOnXTdddc51Z1LX69cuVKenp7Kzs52mj98+HDdcsst1uPVq1frlltukbe3t0JDQzV06FAdP37cWj579my1atVKvr6+CgoKUnx8vHJycqzlJ29t+OKLL9SqVSvZbDZ99dVX2rx5szp27ChfX1/5+fkpMjLyjP+/3Ldvn3r27KkaNWrIz89Pffr0cfoy6eTn3vTp03XttdfKZrOprF+n/+ijj3TDDTfIZrOpXr16pX7+nWr37t265ZZbVK1aNYWHh2vx4sUlan766Sf17dtXNWvWVO3atdWzZ0+n/k1MTFSvXr00ZswYhYSEqFGjRmfcZpVicFnYvXu3kWS2bt1qzevXr5+x2+2mTp06pmHDhubBBx80Bw8erJBtN27c2Dz99NNO86dPn25atWplCgsLzbPPPmuaNWt2xvW8+OKLJjw83GneY489Zm655RZjjDHFxcWmXbt2pkePHmb9+vVm165dZvjw4aZ27drm8OHDxhhjMjIyzBtvvGG2bNlidu3aZZ5++mlTrVo18+OPP1rrrFu3rvHz8zPjxo0zu3fvNrt37zbjxo0zoaGhZuXKleaHH34wX331lXn33XfLbOvEiRONn5+fmTt3rtmxY4d5/PHHjaenp9m1a5cxxpi9e/caSWbTpk3GGGP27dtnbDabefTRR82OHTvM7NmzTWBgoJFkcnNzz+Zltkgy8+bNKzF/4MCBplWrVmb//v2muLjYLF261NSoUcN89dVX57T+s9GuXTszfPhwp3n0d8X0tzHG/P7772bu3LnGy8vLfPPNN9b8ijzGv/zyS1O/fn3jcDjMjBkzjN1uL1FDn5dvn99///0mOTnZGGNM+/btzaOPPuq0vKL6++S+hIaGmjp16pi2bduaDz74oEQd/X1u/V1aHxpjzLx588yp/z179tlnTY0aNUzv3r3N1q1bzcqVK01QUJB56qmnrJqHH37YXH311WbRokVmy5YtJjY21tSoUcNp/fHx8aZt27Zm5cqV5rvvvjPjxo0zNpvN2ocZM2YYT09P07ZtW/P111+bHTt2mGPHjp2xD8vq57179xqbzWb+85//mN9//90cOXLE3HXXXSYmJqbMdc2ZM8fUrFnT/Pbbb9a8f/3rX6ZevXqmuLj4rPZh//79Zty4cWbTpk1mz5495tVXXzXu7u4mLS3NWmf79u1NjRo1zD/+8Q+zY8cOs337dvPBBx8YPz8/s2DBAvPjjz+atWvXmjfffLPMtv73v/81np6e5t///rfZuXOnmTBhgnF3dzdLly61ak79W3zs2DFTp04d07dvX7Nt2zbz2WefmWuvvdbpPfPss8+a6tWrm+DgYFOvXj3Tt29fs2fPHqftVtQx/tJLL5lGjRqZ8ePHm3r16pm6deua/v37W8fZSRzj5fOZ3rhxY5OcnGzuvPNOU6dOHdO8efMS77fz6etGjRqZl19+2XpcWFhoAgICzPTp040xxmzZssXUqFHDTJo0yezatct8/fXXpkWLFiYxMdF6zrRp08yCBQvMnj17zJo1a0ybNm1Mt27drOXLli0zkkzTpk3NokWLzHfffWcOHTpkbrjhBnPfffeZ7du3m127dpn333/fZGRklNrO4uJi06JFC3PTTTeZDRs2mLS0NNOyZUvTvn17q+bZZ581Pj4+JiYmxmzcuNFs3rzZ+hw41YYNG8wVV1xhnn/+ebNz504zY8YM4+3tbWbMmGHV1K1b10yaNMkYY0xRUZGJiIgwHTp0MJs2bTIrVqwwLVq0cDpejx8/bho2bGgeeOABs2XLFvPtt9+a+Ph4ExYWZvLz863+qVGjhklISDDbtm1zyldVHeH/MlBcXGx69OhhbrrpJqf5KSkp5vPPPzdbt241n376qWnWrJm54YYbnP7wXoioqChjs9mMJDNgwABTVFRkLdu1a5cJCAgwO3fuNMaU/R+IUx04cMC4u7ubtWvXGmOMKSgoMHXq1DEzZ840xvwRRvz8/Eq0/7rrrjNTp04tc73h4eHmtddesx7XrVvX9OrVy6lmyJAh5tZbby31g6c0ISEh5sUXX3Sad+ONN5pBgwYZY0r+ERk5cqRp3Lix0/qfeOKJcg3/+fn55v777zeSjIeHh/Hy8jLvvPPOOa37bHzwwQfGy8vLbNu2zZpHf1dMf2/ZssX4+PgYd3d3Y7fbzfz5852WV9QxfujQIRMaGmpWrFhhjDGlhn/6vHz7fO7cuSYiIsKcOHHCGFN6cKyo/v7555/NxIkTzdq1a8369evNP//5T3PFFVeYWbNmWTX097n397mE/+rVq5u8vDxr3j/+8Q/TunVrY4wxR48eNV5eXiYlJcVafvjwYePt7W2t/7vvvjNubm7mp59+ctpWp06dzMiRI40xfxzHksr8D3tpztTPK1asMAEBAcbd3d1IMlFRUWd8r//222+mVq1a5r333rPmNW/e3IwaNeqs96E0t912m9OX0e3btzfNmzd3qpkwYYJp1KiRKSgoKHM9p2rbtq1JSkpymnfXXXeZ2267zXp86t/iqVOnmlq1apnjx49by6dMmeL0nlmwYIH58MMPzZYtW8zixYtN+/btTWBgoDl06JD1nIo6xgcOHGhsNptp3bq1WblypVm2bJlp3ry56dixo1XDMV5+n+k2m83YbDYzcuRIs3HjRvPGG2+YatWqmbffftuqOZ++fumll0zjxo2txx9//LGpUaOG9SVeQkKCGTBggNNzvvrqK3PFFVdYf1tOt27dOiPJHD161Bjzv/D/8ccfO9X5+vpa/fpXFi1aZNzd3c2+ffused98842RZNatW2eM+eP95enpaXJycs64rvj4eNOlSxenef/4xz+cvnQ6Nfx/8cUXxt3d3WRmZlrLFy5c6HS8Tps2zYSFhTn1bX5+vvH29jZffPGFMeaP8B8YGGh9GXAp4bL/y8DgwYO1ZcuWEpe+9e3bV927d1dERIR69OihhQsXateuXZo/f36p6/nqq69Uo0YNazrToG6S9N5772njxo169913NX/+fOvSr6KiIsXHx+u55547p8tkgoOD1b17d02fPl2S9Pnnn+u3337TXXfdJUlKT0/XsWPHVLt2bad27t2717q87Pjx43r88ccVHh6uK6+8UjVq1NCOHTu0b98+p221atXK6XFiYqIyMjIUFhamoUOHatGiRWW2My8vTwcOHFC7du2c5rdr107bt28v9Tnbt29XmzZtnAZ5+qtL6s7Vq6++qrS0NH366adKT0/XhAkTNGjQoBKXz510rv0t/XE5WGJiot566y3r3mD6u6Ty6u+wsDBlZGQoLS1NDz/8sPr166dvv/3WWl5Rx3hSUpLi4+OdLiU8FX1e0oX0eWZmph599FHNnj1b1apVK7Ouovrb399fjz32mP72t7+pVatWev755zVo0CC9/PLLkujv0pT3Z3q9evXk6+trPQ4ODrYuxd2zZ48KCgqc1l+rVi2FhYVZjzdu3ChjjBo1auT0Wq5YscJ6LaU/7ikuazyJc5Gdna0HH3xQ/fr10/r167VixQp5eXnpzjvvLPPSXZvNpvvuu896P2RkZGjz5s1KTEw8630oKirSiy++qKZNm1rvm0WLFv3l++Guu+7SiRMndO211yopKUnz5s3T77//Xub+bd++/ZzfD82aNVP16tWteae/H7p166Y77rhDTZo0UefOna3j9u2337ZqKuoYLy4uVn5+vt555x3dfPPN6tChg6ZNm6Zly5Zp586dHOOluJBjvLi4WC1bttTo0aPVokULDRw4UElJSU6DMJ9rX5/c5++++866/W/69Onq06ePNdZXenq6Zs6c6fRax8TEqLi42BqMc9OmTerZs6fq1q0rX19fdejQQZL+8vUeNmyYHnzwQXXu3Fljx451+lw53fbt2xUaGqrQ0FBr3sn+PfX1rlu3bqm3vpy+rtL6bffu3SoqKiq1/pprrtHVV19tzTu939LT063BjE++TrVq1dJvv/3mtF9NmjS5ZO7zPxUD/rm4IUOG6NNPP9XKlSud3uilCQ4OVt26dbV79+5Sl7dq1crpJ04CAwPPuL6TB3V4eLiKioo0YMAADR8+XEePHtWGDRu0adMm6/6+4uJiGWPk4eGhRYsW6dZbby11nQ8++KASEhI0adIkzZgxQ3379rX+mBYXFys4ONjp/r+TTg6i8o9//ENffPGFxo8frwYNGsjb21t33nmnCgoKnOpPHRRRklq2bKm9e/dq4cKFWrJkifr06aPOnTvrww8/LHP/Tx+t2RhT5gjOZf1nqLycOHFCTz31lObNm6fu3btLkpo2baqMjAyNHz++1Pv6zrW/V6xYoR49emjixIm6//77rfn0d0nl1d9eXl7WgH+tWrXS+vXr9a9//UtTp04ttb68jvGlS5fq008/tb7QM8aouLhYHh4eevPNN9W7d2/6/DQX0ufp6enKyclRZGSkNa+oqEgrV67U5MmTlZ+fX+rAYOX9mX6qNm3a6D//+Y8kjvHSnE1/+/n5yeFwlJh/5MgR+fn5Oc07faArNzc3FRcXn/W2iouL5e7urvT09BLvlRo1alj/9vb2LpdfGvj3v/8tPz8/6wsi6Y97iUNDQ7V27doyRy1/8MEH1bx5c+3fv1/Tp09Xp06dVLdu3bPehwkTJmjSpEl65ZVX1KRJE/n4+Cg5Ofkv3w+hoaHauXOnFi9erCVLlmjQoEEaN26cVqxYUeYgYxV9/Pv4+KhJkyZlHr9S+R3jwcHB8vDwcAr2jRs3lvRH6AsMDOQYP82FfKYHBwcrPDzcaV7jxo310UcfnfE5Z+prSQoICFCPHj00Y8YMXXvttVqwYIHTa1tcXKyBAweWOp7FNddco+PHjys6OlrR0dGaPXu26tSpo3379ikmJuYvX+9Ro0YpPj5e8+fP18KFC/Xss88qJSVFt99+e4ltlfW6nj7/9G2UprR1nalvSlt2+vOLi4sVGRlZ6pdlp34ZcTbtq4oI/y7KGKMhQ4Zo3rx5Wr58uerXr/+Xzzl8+LAyMzMVHBxc6nJvb28raJxPewoLC2WMkZ+fn7Zu3eq0/PXXX9fSpUv14YcfnrGtt912m3x8fDRlyhQtXLhQK1eutJa1bNlS2dnZ8vDwUL169Up9/ldffaXExETrw+jYsWNnPUCLn5+f+vbtq759++rOO+9U165d9csvv5QYgMXPz08hISFatWpViUFW/va3v5W67vDw8BI/z3f6wG0XorCwUIWFhSVGbXZ3d7f+A3m6c+nv5cuXKzY2Vi+99JIGDBjgtIz+Lqmi+tsYo/z8/DKXl9cxvmbNGqdv1D/55BO99NJLWr16ta666ir6vBQX0uedOnUq8Xr+/e9/1/XXX68nnnii1OAvVexn+qZNm6z10t8lnU1/X3/99SV+nlP64xcdTj1r/1caNGggT09PpaWl6ZprrpH0x2jiu3btUvv27SVJLVq0UFFRkXJycnTzzTef9brP16+//lrifXnycVl/c6Q/zqS1atVKb731lt5991299tpr1rKz2YevvvpKPXv21H333Wdta/fu3VaQPRNvb2/FxcUpLi5OjzzyiK6//npt3bpVLVu2LFHbuHFjrVq1yumL7tWrV5e5nfDwcM2aNUsnTpyQt7e3pL8+/vPz87V9+/Yz9ld5HePt2rXT77//rj179liDzu3atUvSH2dfOcZLupDP9Hbt2pX4+e1du3ZZX3SV5q/6+qQHH3xQd999t66++mpdd911TmfFW7ZsqW+++abM98TWrVt16NAhjR071jqBdy6DQp8cgPixxx7TPffcoxkzZpQa/sPDw7Vv3z5lZmZa2/n222/lcDjO6lg9fV2rVq1ymrd69Wo1atSo1L+NJ7d94MABhYSESPrj/zSnatmypd577z1rEEqXcxFuLUAlePjhh43dbjfLly83WVlZ1vTrr78aY/64R3D48OFm9erVZu/evWbZsmUmKirKXHXVVU73FZ6P2bNnm/fee898++23Zs+ePeb99983V111lbn33nvLfM7Z3Dt20lNPPWW8vLzM9ddf7zS/uLjY3HTTTaZZs2YmNTXV7N2713z99dfm6aefNuvXrzfGGNOrVy/TvHlzs2nTJpORkWF69OhhfH19ne67PPXeoJMmTpxo5s6da7Zv32527txp+vfvb4KCgpzGMTjVpEmTjJ+fn0lJSTE7duwwTzzxxBkHjvnxxx+Nl5eXeeyxx8yOHTvMnDlzTFBQ0FnfD3z06FGzadMms2nTJiPJTJw40WzatMlpQJz27dubG264wSxbtsx8//33ZsaMGaZatWrm9ddf/8v1n8myZctM9erVzciRI53ea6cPFHQq+vvC+tuYP+43XLlypdm7d6/ZsmWLeeqpp8wVV1xhFi1aZIyp2GP8dGUN+Hcq+vzC+/xUp98vXpH9PXPmTDNnzhzz7bffmh07dphx48YZT09PM3HixDKfQ3//dX/v3bvXeHt7m0GDBpmMjAyzc+dOM3nyZGOz2cz7779/xtdy0qRJpm7dutbjhx56yFxzzTVmyZIlZuvWrSYuLq7EgH/33nuvqVevnvnoo4/M999/b9atW2fGjh1rjRVyNsfxSbt37zabNm0yAwcONI0aNbL+/py8//XLL780bm5u5rnnnjO7du0y6enpJiYmxtStW9f6f0hZ3nzzTePl5WWuvPLKEvch/9U+JCcnm9DQUPP111+bb7/91jz44IPGz8/P9OzZ01pHaWMtzJgxw/znP/8xW7duNXv27DFPP/208fb2drrf/lTz5s0znp6eZsqUKWbXrl3WgH/Lli2zanTKPcRHjx41/v7+5p577jHffPONmT9/vmnQoIHTe2b48OFm+fLl5vvvvzdpaWkmNjbW+Pr6mh9++MFaR0Ud40VFRaZly5bmlltuMRs3bjQbNmwwrVu3LnEv9ak4xs//M33dunXGw8PDvPjii2b37t1mzpw5pnr16mb27NnGmAvr66KiIhMaGmq8vLzM2LFjnZZt3rzZ+szZtGmT2bVrl/nkk0/M4MGDjTHG5OTkGC8vL/OPf/zD7Nmzx3zyySemUaNGTvt98p7/U/fx119/NY888ohZtmyZ+eGHH8yqVavMddddZx5//PFS23hywL+bb77ZpKenm7Vr15rIyMgSA/6dzfsrPT3dacC/mTNn/uWAf+Hh4aZTp04mIyPDrFy50kRGRpY64F+HDh3MypUrzffff2+WL19uhg4dao0V0K9fP6fPlUsJ4d9FSSp1Onkw/PrrryY6OtrUqVPHeHp6mmuuucb069fPafCN85WSkmJatmxpatSoYXx8fEx4eLgZPXp0mYOJGHNuf0T27NljJDmNaHpSXl6eGTJkiAkJCTGenp4mNDTU3HvvvdZ+7d2713Ts2NF4e3ub0NBQM3ny5BL/ESjtj8ibb75pmjdvbnx8fIyfn5/p1KmT2bhxY5ltLCoqMs8995y56qqrjKenp2nWrJlZuHChtfz0PyLGGPPZZ5+ZBg0aGJvNZm6++WYzffr0sw4GJz+MT5/69etn1WRlZZnExEQTEhJiqlWrZsLCwsyECRPOejCcsvTr16/UbZ/6IX46+vvC+tsYYx544AFTt25d4+XlZerUqWM6depkBX9jKvYYP115h3/6/K+dvk8V2d8zZ840jRs3NtWrVze+vr4mMjLSabC/0tDfZ9ffGzZsMDExMSYgIMD4+fmZVq1amblz5zpt+2zC/9GjR819991nqlevbgIDA83LL79c4nUoKCgw/+///T9Tr1494+npaYKCgsztt99utmzZYow5t/Dfvn37Uj/39+7da9XMnTvXtGjRwvj4+Jg6deqYuLg4s3379r9c99GjR0316tWtgdZO9Vf7cPjwYdOzZ09To0YNExAQYJ555hlz//33/2X4nzdvnmndurXx8/MzPj4+pk2bNmbJkiVnbOfrr79urr32WuPp6WkaNWpUYgDdU8OEMcasWbPGNGvWzHh5eZnmzZubjz76yOk907dvXxMcHGw8PT1NSEiI6d27t9Ovt1T0Z/pPP/1kevfubWrUqGECAwNNYmJiuX2Jfzkf42X57LPPTEREhLHZbOb66693Gu3/Qvv6n//8p3F3dzcHDhwosWzdunWmS5cu1v/RmzZt6jTQ4bvvvmvq1atnbDabiYqKMp9++ulfhv/8/Hxz9913W186hISEmMGDB5/x//0//vijiYuLMz4+PsbX19fcddddJjs721p+Lu+vDz/80ISHh1uv1bhx45yWn/7+2Llzp7npppuMl5eXadSokUlNTS1xvGZlZZn777/f+Pv7G5vNZq699lqTlJRkHA6HMebSDv9uxlTwzcZAOfv666/VoUMH7d+//5zuUcWlif6+/NDnlxf6G6fKzMxUvXr1tH79+lIvucelh2P84kpKStLBgwf16aefVnZTUAUR/nHJyM/PV2ZmpgYMGKDg4OCzGn0ely76+/JDn19e6G+cqrCwUFlZWXryySf1448/6uuvv67sJuECcYxfXA6HQ+vXr1dcXJw++eQTdenSpbKbhCqIn/rDJWPu3LkKCwuTw+FwGkEYron+vvzQ55cX+hun+vrrr1W3bl2lp6frjTfeqOzmoBxwjF9cPXv2VFxcnAYOHEjwR5k48w8AAAAAgIvjzD8AAAAAAC6O8A8AAAAAgIsj/AMAAAAA4OII/wAAAAAAuDjCPwAAAAAALo7wDwAAAACAiyP8AwBwmVu9erXc3d3VtWvXi7rdgoICjRs3Ti1btpSPj4/sdruaNWumZ555RgcOHLiobQEAwNW5GWNMZTcCAABUngcffFA1atTQf/7zH3377be65pprKnyb+fn5io6O1pYtW/Tcc8+pXbt2stvt2rNnjz7++GNdeeWVGjNmTKnPLSgokJeXV4W3EQAAV8KZfwAALmPHjx/X+++/r4cfflixsbGaOXNmiZpPP/1UDRs2lLe3tzp27Ki3335bbm5uOnLkiFWzevVq3XLLLfL29lZoaKiGDh2q48ePl7ndSZMmadWqVVq6dKmGDh2qyMhINWjQQDExMZoyZYpGjx5t1Xbo0EGDBw/WsGHD5O/vry5dukiSVqxYob/97W+y2WwKDg7Wk08+qd9//916Xr169fTKK684bbd58+YaNWqU9djNzU1TpkxRt27d5O3trfr16+uDDz44txcRAIBLAOEfAIDL2HvvvaewsDCFhYXpvvvu04wZM3TqRYE//PCD7rzzTvXq1UsZGRkaOHCgnn76aad1bN26VTExMerdu7e2bNmi9957T6tWrdLgwYPL3O7cuXPVpUsXtWjRotTlbm5uTo/ffvtteXh46Ouvv9bUqVP1008/6bbbbtONN96ozZs3a8qUKZo2bZpeeOGFc34N/vnPf+qOO+7Q5s2bdd999+mee+7R9u3bz3k9AABUZYR/AAAuY9OmTdN9990nSeratauOHTumL7/80lr+xhtvKCwsTOPGjVNYWJjuvvtuJSYmOq1j3Lhxio+PV3Jysho2bKi2bdvq1Vdf1TvvvKPffvut1O3u2rVLYWFhTvNuv/121ahRQzVq1FDbtm2dljVo0EAvv/yywsLCdP311+v1119XaGioJk+erOuvv169evXSc889pwkTJqi4uPicXoO77rpLDz74oBo1aqT/+7//U6tWrfTaa6+d0zoAAKjqCP8AAFymdu7cqXXr1unuu++WJHl4eKhv376aPn26U82NN97o9Ly//e1vTo/T09M1c+ZMK7jXqFFDMTExKi4u1t69e8vc/uln919//XVlZGTogQce0K+//uq0rFWrVk6Pt2/frqioKKd1tGvXTseOHdP+/fvPYu//JyoqqsRjzvwDAFyNR2U3AAAAVI5p06bp999/11VXXWXNM8bI09NTubm5qlmzpowxJUL66WMFFxcXa+DAgRo6dGiJbZQ1eGDDhg21Y8cOp3nBwcGSpFq1apWo9/HxKdGGstp1cv4VV1xRoq2FhYWltud0p68bAIBLHWf+AQC4DP3+++965513NGHCBGVkZFjT5s2bVbduXc2ZM0eSdP3112v9+vVOz92wYYPT45YtW+qbb75RgwYNSkxljcp/zz33aPHixdq0adN5tT88PFyrV692CverV6+Wr6+v9WVGnTp1lJWVZS3Py8sr9UqEtLS0Eo+vv/7682oXAABVFeEfAIDL0Oeff67c3Fz1799fERERTtOdd96padOmSZIGDhyoHTt26IknntCuXbv0/vvvW78IcPLs+BNPPKE1a9bokUceUUZGhnbv3q1PP/1UQ4YMKXP7jz32mKKionTrrbfqX//6lzZu3Ki9e/fqiy++0MKFC+Xu7n7G9g8aNEiZmZkaMmSIduzYoU8++UTPPvushg0bpiuu+OO/N7feeqtmzZqlr776Stu2bVO/fv1KXe8HH3yg6dOna9euXXr22We1bt26Mw5WCADApYjwDwDAZWjatGnq3Lmz7HZ7iWV33HGHMjIytHHjRtWvX18ffvih/vvf/6pp06aaMmWKNdq/zWaTJDVt2lQrVqzQ7t27dfPNN6tFixb65z//aV3GX5pq1arpyy+/1JNPPqkZM2bopptuUuPGjZWcnKx27drp448/PmP7r7rqKi1YsEDr1q1Ts2bN9NBDD6l///565plnrJqRI0fqlltuUWxsrG677Tb16tVL1113XYl1Pffcc0pJSVHTpk319ttva86cOQoPDz+blxEAgEuGmzn9ZjgAAIAzePHFF/XGG28oMzOzsptywdzc3DRv3jz16tWrspsCAECFYsA/AABwRq+//rpuvPFG1a5dW19//bXGjRvHZfEAAFxiCP8AAOCMdu/erRdeeEG//PKLrrnmGg0fPlwjR46s7GYBAIBzwGX/AAAAAAC4OAb8AwAAAADAxRH+AQAAAABwcYR/AAAAAABcHOEfAAAAAAAXR/gHAAAAAMDFEf4BAAAAAHBxhH8AAAAAAFwc4R8AAAAAABf3/wFm5zJ/y4R2PwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+4AAAGVCAYAAABgnquVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRlUlEQVR4nO3dd3yN9///8WcSSSSiCDWK1kzUFik1YlYRhFJUxGqtWqWl0tanVTooVaMtatVIi9Dao0KNGDWqiBq1ahNiRRKJ5Pr94ZfzdXoSIjKu8Ljfbm5t3tf7nOt1yPtc53mu6/2+7AzDMAQAAAAAAEzJPrMLAAAAAAAAySO4AwAAAABgYgR3AAAAAABMjOAOAAAAAICJEdwBAAAAADAxgjsAAAAAACZGcAcAAAAAwMQI7gAAAAAAmBjBHQAAAAAAEyO4AwAAG927d5enp6d69OiR2aUAAPDUI7gDAAAr4eHh2rZtm1xcXBQaGqqLFy9mdkkAADzVCO4AAMDK8uXLFR8fr+7duyshIUGLFi3K7JIAAHiqEdwBAICVJUuWKFeuXOrevbty5sypX375RYZhZHZZAAA8tQjuAADA4vDhwzpy5Ihq1Kih7Nmz65VXXtG5c+e0detWm753797V1KlT1bhxY1WsWFG+vr5atGiRvv/+e3l6eurs2bNW/bdv365u3bqpatWqqly5stq3b681a9Zk1EsDACDLIrgDAACLJUuWSJJ8fX2t/hscHGzTd+DAgRo3bpycnZ3l7++vYsWK6aOPPtIvv/xi0zc4OFjdunXTkSNH5Ovrq/bt2+vq1at65513NGXKlPR7QQAAPAHsDK59AwAAkuLj41W3bl1FRUVp+/btcnZ21t27d1WnTh3dvHlTmzdvlru7uyRp7dq1GjBggF555RWNHz9ejo6OkqSgoCCNGDFCkrR+/XoVKVJEFy9eVKNGjVS0aFEFBQUpT548kqSYmBh17dpV+/bt09KlS+Xh4ZE5LxwAAJPjjDsAAJAkbd26VeHh4WrUqJGcnZ0lSdmyZVOTJk0UFxenpUuXWvr++uuvkqShQ4daQrskdejQQcWLF7d63mXLlik2NlYDBgywhHZJyp49uwYMGKCEhATL8wEAAFvZMrsAAABgDonBvFmzZlbtLVq0UFBQkBYtWqRu3bpJksLCwpQ7d249//zzVn3t7e1VpUoVnTx50tIWFhYm6d4c93/++ceqf1RUlKR7c+sBAEDSCO4AAECRkZEKCQmRJPXo0SPJPseOHdOff/4pLy8vXbt2zebMeqL8+fNb/Xzr1i1J0vz585Pd/40bN1JTNgAATwWCOwAA0Jo1axQTE6MKFSqobNmyNttPnjypnTt3Kjg4WF5eXnJzc1NkZGSSz/XfdldXV0lSSEiIihYtmvbFAwDwhCO4AwAAy2XygYGB8vb2ttl+/vx5NWzYUGvWrNFHH32kcuXKadu2bbp8+bLNGfZ9+/ZZ/ezp6amQkBAdOHDAJrifOnVKCxYs0EsvvaQGDRqk8asCAODJwOJ0AAA85c6dO6ddu3apcOHCqlq1apJ9nnvuOb388suKiorSypUr1bp1axmGoa+++krx8fGWfkuXLtWBAwesHuvn5ycHBweNHz9e4eHhlva7d+9q5MiRmjlzpq5fv54urw0AgCcBZ9wBAHjKLV26VIZhqEWLFrKzs0u2X+vWrbVt2zYFBwcrODhYS5cu1fLly3Xs2DFVr15d//77rzZu3Kg8efLo2rVrcnBwkCQVK1ZMQ4YM0ahRo9S8eXM1aNBAuXLl0ubNm3X8+HHVr19ffn5+GfVyAQDIcriPOwAAT7nGjRvr1KlTWrVqlUqWLJlsv5iYGNWuXVu3bt3SsmXL9MILL2jy5MlatmyZwsPD9cILL6hXr17asGGDVq9erR07dljd/m3Tpk2aOXOmwsLClJCQoKJFi+q1115Tx44d5eTklBEvFQCALIngDgAAHtmFCxeUM2dOubm52WwLCAhQWFiY9u7d+8Az+AAAIGWY4w4AAB7ZtGnTVLVqVe3cudOqfe/evdqzZ4+qVatGaAcAII1wxh0AADyygwcPqn379nJ0dNSrr76qAgUK6OzZswoJCZGTk5MWLFjwwMvuAQBAyhHcAQBAqvz999+aOnWq/vrrL129elXu7u6qWbOm+vTpo+effz6zywMA4IlBcAcAAAAAwMSY4w4AAAAAgIkR3AEAAAAAMLFsmV2AGURERCg0NFRFihSRs7NzZpcDAAAAAHjC3blzR2fPnlXt2rXl7u7+wL4Ed0mhoaEaMmRIZpcBAAAAAHjKjBkzRn5+fg/sQ3CXVKRIEUn3/sK4dQ0AAAAAIL0dP35cQ4YMseTRByG4S5bL40uWLKly5cplcjUAAAAAgKdFSqZrszgdAAAAAAAmRnAHAAAAAMDECO4AAAAAAJgYwR0AAAAAABMjuAMAAAAAYGIEdwAAAAAATIzgDgAAAACAiRHcAQAAAAAwMYI7AAAAAAAmRnAHAAAAAMDECO4AAAAAAJgYwR0AAAAAABMjuGdBdxOMzC4BeGz8HgMAAAApky2zC8Cjy2Zvp+/CInQnnuCDrMnZwU59y7tndhkAAABAlkBwz6LuxBuK5YwlAAAAADzxuFQeAAAAAAATM+UZ9/3792vSpEnau3ev7ty5o5IlS6pr165q1aqVpc+4ceM0derUJB+/a9cuPfPMMxlULQAAAAAA6cd0wf348ePq1KmTcuXKpe7duytHjhxatWqVhg4dqmvXrqlbt26SpKNHj6po0aLq37+/zXO4uLhkdNkAAAAAAKQL0wX30aNHy97eXsHBwSpQoIAkqWPHjvL399fEiRPVrl075ciRQ0ePHlWlSpXUsmXLTK4YAAAAAID0Y6o57vHx8dq1a5d8fHwsoV2S7O3t1bRpU0VFRenQoUOKjIzU+fPnVbJkyUysFgAAAACA9GeqM+729vZatmyZ7OzsbLZFRERIkhwcHHTs2DEZhmEJ7tHR0XJ2dpa9vam+hwAAAAAA4LGZKuna2dmpaNGiKlKkiFV7VFSUFi9eLFdXV5UtW1ZHjx6VJG3ZskX16tVT5cqVVbVqVQ0fPlzR0dGZUToAAAAAAOnCVGfck2IYhoYNG6bw8HD17dtXzs7OluB+4MAB9evXT25ubtq0aZN+/vlnHT9+XLNnz+bsOwAAAADgiWDq4G4YhoYPH66VK1eqWrVqevvttyVJPj4+ypkzp3r06CFXV1dJUpMmTZQnTx7NmDFD69atU+PGjTOzdAAAAAAA0oRpT0vHxcVp8ODBmj9/vipWrKjJkyfL0dFRklS3bl298847ltCeyN/fX5K0Y8eODK8XAAAAAID0YMoz7tHR0erfv7+2bNmiatWqafLkyXJzc3vo4/LmzSvp3px4AAAAAACeBKY74x4XF6d+/fppy5Ytql+/vqZPn24T2rt27ao333zT5rEnTpyQJBUtWjRDagUAAAAAIL2ZLrhPnDhRoaGhatCggSZNmiRnZ2ebPrlz59a2bdu0d+9eS1tCQoK+/fZbOTg4yNfXNyNLBgAAAAAg3ZjqUvnLly9r1qxZypYtm2rXrq1Vq1bZ9KlRo4YGDx6srVu3qkePHurUqZPc3d21du1a7dq1SwMHDlSJEiUyoXoAAAAAANKeqYL7n3/+qbi4OEnSiBEjkuwzbdo01alTRz/99JPGjx+vuXPnKjY2VqVKldLo0aPVqlWrDKwYAAAAAID0Zarg3qRJEx05ciRFfUuXLq3vvvsunSsCAAAAACBzmW6OOwAAAAAA+D8EdwAAAAAATIzgDgAAAACAiRHcAQAAAAAwMYI7AAAAAAAmRnAHAAAAAMDECO4AAAAAAJgYwR0AAAAAABMjuAMAAAAAYGIEdwAAAAAATIzgDgAAAACAiRHcAQAAAAAwMYI7AAAAAAAmRnAHAAAAAMDECO4AAAAAAJgYwR0AAAAAABMjuAMAAAAAYGIEdwAAAAAATIzgDgAAAACAiRHcAQAAAAAwMYI7AAAAAAAmRnAHAAAAAMDECO4AAAAAAJgYwR0AAAAAABMjuAMAAAAAYGIEdwAAAAAATIzgDgAAAACAiRHcAQAAAAAwMYI7AAAAAAAmRnAHAAAAAMDECO4AAAAAAJgYwR0AAAAAABMjuAMAAAAAYGIEdwAAAAAATIzgDgAAAACAiRHcAQAAAAAwMYI7AAAAAAAmRnAHAAAAAMDECO4AAAAAAJgYwR0AAAAAABMjuAMAAAAAYGIEdwAAAAAATMyUwX3//v3q0aOHvL29VaFCBbVq1UpLliyx6hMTE6OxY8eqfv36qlSpktq3b6/t27dnTsEAAAAAAKQT0wX348ePq1OnTjpy5Ii6d++u999/Xy4uLho6dKhmzZpl6ffee+9p5syZatiwoYYOHaq4uDh1795du3fvzsTqAQAAAABIW9kyu4D/Gj16tOzt7RUcHKwCBQpIkjp27Ch/f39NnDhR7dq10/79+xUSEqIPPvhAXbt2lSS1atVKfn5++uKLL/TLL79k4isAAAAAACDtmOqMe3x8vHbt2iUfHx9LaJcke3t7NW3aVFFRUTp06JCWL18uR0dHtWvXztLH1dVVr7/+ug4ePKhTp05lQvUAAAAAAKQ9U51xt7e317Jly2RnZ2ezLSIiQpLk4OCgsLAwFS9eXK6urlZ9ypUrJ0kKCwtTsWLF0r1eAAAAAADSm6mCu52dnYoWLWrTHhUVpcWLF8vV1VVly5bVpUuXVLFiRZt++fPnlySdP38+3WsFAAAAACAjmOpS+aQYhqFhw4YpPDxc3bp1k7Ozs27fvi0XFxebvtmzZ5ckRUdHZ3SZAAAAAACkC1MHd8MwNHz4cK1cuVLVqlXT22+/naLHJXWpPQAAAAAAWZGpLpW/X1xcnAIDA7VixQpVrFhRkydPlqOjo6R7C9HFxMTYPCaxzc3NLUNrBQAAAAAgvZgyuEdHR6t///7asmWLqlWrpsmTJ1uF8eeee07h4eE2j7t8+bIkWa1IDwAAAABAVma6S+Xj4uLUr18/bdmyRfXr19f06dNtzqCXK1dOx44dsznrfvDgQUlShQoVMqxeAAAAAADSk+mC+8SJExUaGqoGDRpo0qRJcnZ2tunTpEkTxcbGav78+Za2qKgoLVq0SBUrVtTzzz+fkSUDAAAAAJBuTHWp/OXLlzVr1ixly5ZNtWvX1qpVq2z61KhRQz4+PvLx8dGYMWN04cIFFS9eXAsXLtTFixc1atSoTKgcAAAAAID0Yarg/ueffyouLk6SNGLEiCT7TJs2Tfnz59eECRP0zTffaPny5YqOjpanp6dmzJghb2/vjCwZAAAAAIB0Zarg3qRJEx05ciRFfXPkyKFhw4Zp2LBh6VwVAAAAAACZx3Rz3AEAAAAAwP8huAMAAAAAYGIEdwAAAAAATIzgDgAAAACAiRHcAQAAAAAwMYI7AAAAAAAmRnAHAAAAAMDECO4AAAAAAJgYwR0AAAAAABMjuAMAAAAAYGIEdwAAAAAATIzgDgAAAACAiRHcAQAAAAAwMYI7AAAAAAAmRnAHAAAAAMDECO4AAAAAAJgYwR0AAAAAABMjuAMAAAAAYGIEdwAAAAAATIzgDgAAAACAiRHcAQAAAAAwMYI7AAAAAAAmRnAHAAAAAMDECO4AAAAAAJgYwR0AAAAAABMjuAMAAAAAYGIEdwAAAAAATIzgDgAAAACAiRHcAQAAAAAwMYI7AAAAAAAmRnAHAAAAAMDECO4AAAAAAJgYwR0AAAAAABMjuAMAAAAAYGLZHvcJbt++rRw5clh+3rJli3bv3q0iRYqoRYsWyp49++PuAgAAAACAp1aqg3tcXJyGDx+upUuXaseOHXJzc9O8efP0+eefyzAM2dnZac6cOZo3b55y5cqVljUDAAAAAPDUSPWl8rNmzdLixYtVunRp3blzR3FxcZo0aZJcXV01evRo9evXT8eOHdOUKVPSsl4AyBR3E4zMLgF4bFnx9zgr1gz8F7/HAB5Xqs+4L1++XGXLllVwcLAcHBy0ZcsW3bhxQwEBAWrZsqUk6eDBg1q3bp2GDh2aZgUDQGbIZm+n78IidCeeD1/Impwd7NS3vHtml/HIGHvI6rLq2ANgLqkO7qdPn1anTp3k4OAgSdq8ebPs7OxUr149S59SpUopNDT0sYsEADO4E28olrMmQIZj7AEAnnapvlQ+R44ciomJsfy8efNmOTk5ydvb29J26dIlubvzDSMAAAAAAKmV6uBeunRprVu3TufPn9eqVav077//qkaNGpZV5Pfv3681a9aoXLlyaVYsAAAAAABPm1QH9x49eigiIkINGzbUe++9J3t7e3Xv3l2SNGHCBL3xxhuys7PT22+//VgF/vDDD6pVq1aS28aNGydPT88k/9y8efOx9gsAAAAAgBmkeo577dq1NWvWLM2ZM0eGYaht27aWy+Tz5Mmj2rVrq3///ipfvnyqi9u0aZMmTpyY7O3kjh49qqJFi6p///4221xcXFK9XwAAAAAAzCLVwV2SvL29rea0J+rcubM6d+6s2NhYnTp1SsWKFXuk5zUMQ0FBQRo1apTi4uKS7Xf06FFVqlTJsoo9AAAAAABPmlRfKv/iiy/qu+++e2Cfb7/9Vm3btn3k527fvr1Gjhyp6tWrJztHPjIyUufPn1fJkiUf+fkBAAAAAMgqUnzGPSwsTJcuXbL8bBiGTpw4ofXr1yfZPy4uThs3btTdu3cfuajz589rxIgRateunTp37pxkn2PHjskwDEtwj46OlrOzs+ztU/1dBAAAAAAAppPi4H7jxg317dtXdnZ2kiQ7OzutWrVKq1atSvYxhmHI19f3kYvasGGDnJycHtjn6NGjkqQtW7Zo9OjRunDhglxdXdWyZUsNHTqUOe4AAAAAgCdCioN7rVq19PHHHysiIkKGYei7777TSy+9pOrVqyfZ39HRUQUKFEhVcH9YaJf+L7gfOHBA/fr1k5ubmzZt2qSff/5Zx48f1+zZszn7DgAAAADI8h5pcTp/f3/L/+/cuVNt2rRRq1at0rqmFPHx8VHOnDnVo0cPubq6SpKaNGmiPHnyaMaMGVq3bp0aN26cKbUBAAAAAJBWUn1Keu7cuZkW2iWpbt26eueddyyhPVHilws7duzIjLIAAAAAAEhTj3U7uGvXrum3337TuXPnFBsbK8MwbPrY2dkpMDDwcXbzSPLmzStJioqKyrB9AgAAAACQXlId3A8fPqwuXbro5s2bSQb2ROkV3Lt27Sp7e3vNnDnTqv3EiROSpKJFi6b5PgEAAAAAyGipDu7jxo3TjRs31K5dO9WpU0c5c+a0rDifEXLnzq01a9Zo7969qlKliiQpISFB3377rRwcHFK1KB4AAAAAAGaT6uC+e/du1a9fXyNGjEjLelJs8ODB2rp1q3r06KFOnTrJ3d1da9eu1a5duzRw4ECVKFEiU+oCAAAAACAtpTq429vbZ2o4LlKkiH766SeNHz9ec+fOVWxsrEqVKqXRo0dn6qJ5AAAAAACkpVQHd29vb+3evTsta0nS3Llzk91WunRpfffdd+leAwAAAAAAmSXVt4MbMmSITp48qc8++0yXLl1Ky5oAAAAAAMD/l+oz7p9++qly5cqloKAgBQUFydnZWU5OTjb97Ozs9McffzxWkQAAAAAAPK1SHdzPnj0rSSpUqFCaFQMAAAAAAKylOrhv2LAhLesAAAAAAABJSPUcdwAAAAAAkP5SfcZ9/fr1Ke7bsGHD1O4GAAAAAICnWqqDe9++fWVnZ5eivocOHUrtbgAAAAAAeKqleXCPjo7W6dOntWnTJlWqVEldunR5rAIBAAAAAHiapTq49+/f/4Hb//77b/n7++vWrVup3QUAAAAAAE+9dFucrmzZsmrSpIlmzpyZXrsAAAAAAOCJl66ryufJk0f//vtveu4CAAAAAIAnWroF94iICK1du1bPPvtseu0CAAAAAIAnXqrnuPfr1y/J9oSEBEVHR2v//v2KiopS3759U10cAAAAAABPu1QH95CQkAduz5Url7p27aq33347tbsAAAAAAOCpl+rgvn79+iTb7ezs5OjoqLx588rePl2n0AMAAAAA8MRLdXAvXLhwWtYBAAAAAACSkOrgnmj37t1avHixjhw5oujoaOXOnVulS5eWn5+fvL2906JGAAAAAACeWo8V3L/++mtNnz5dhmFIklxcXHTq1Cnt3btXwcHB6tmzpwYNGpQmhQIAAAAA8DRK9ST0VatWadq0aSpVqpSmTp2q3bt3a+/evdq3b59mzpwpT09P/fDDDw9dxA4AAAAAACQv1cF9zpw5evbZZzVnzhzVrVtXbm5ukiQnJyfVrFlTM2fOVL58+TR37tw0KxYAAAAAgKdNqoP7kSNHVL9+feXJkyfJ7e7u7qpfv74OHTqU6uIAAAAAAHjapfv92uLi4tJ7FwAAAAAAPLFSHdw9PT31+++/6/r160luj4iI0IYNG+Tp6ZnaXQAAAAAA8NRLdXDv3LmzwsPD9dZbb2nnzp26e/euJCkyMlKbNm1S165ddfXqVQUEBKRZsQAAAAAAPG1SfTs4X19fHThwQLNmzVKXLl1kb28vJycnxcTESJIMw1C3bt3UvHnzNCsWAAAAAICnzWPdx33o0KFq2LChfvnlFx0+fFi3b99Wjhw5VKZMGbVu3Vre3t5pVScAAAAAAE+lxwrukuTt7U1ABwAAAAAgnaRqjvuJEyd07dq1JLdNnDhRe/bseayiAAAAAADAPY8U3GNjYzVo0CA1b95cmzZtstkeHh6u77//XgEBAerbt68iIyPTrFAAAAAAAJ5GKQ7u8fHx6t69u1avXq2CBQsqT548Nn1cXFw0ePBgPf/881q/fr169+4twzDStGAAAAAAAJ4mKQ7u8+fP186dO+Xn56fffvtNdevWtenj5uam7t27a+nSpWrYsKH27NmjRYsWpWnBAAAAAAA8TVIc3JcvX67nnntOn3/+ubJle/CadtmzZ9fo0aOVJ08eLVmy5HFrBAAAAADgqZXi4P7PP/+odu3acnR0TFF/Nzc31apVS0eOHEl1cQAAAAAAPO0eaY57zpw5H+nJCxQooLt37z5yUQAAAAAA4J4UB/dChQrp9OnTj/Tkp0+fVoECBR65KAAAAAAAcE+Kg/tLL72kzZs3Kzw8PEX9w8PDtXHjRnl6eqa6OAAAAAAAnnYpDu5vvPGGYmNjNWDAgIfenz0yMlL9+/dXXFyc3njjjccuEgAAAACAp1WKg3vZsmXVu3dv7d27V02aNNHkyZO1f/9+3bp1SwkJCbp27Zr27dun7777Tq+++qr++usvtW7dWjVr1kzP+gEAAAAAeKI9+L5u/zFgwAA5Ojrq+++/18SJEzVx4kSbPoZhyNHRUT169NCgQYPSrFAAAAAAAJ5GjxTc7ezs1KdPH/n6+urXX3/Vli1bdOnSJd28eVO5c+dW0aJF5ePjo+bNm6to0aLpVTMAAAAAAE+NRwruiYoVK6ZBgwZxRh0AAAAAgHSW4jnuAAAAAAAg45k+uP/www+qVatWkttiYmI0duxY1a9fX5UqVVL79u21ffv2DK4QAAAAAID0Y+rgvmnTpiQXwEv03nvvaebMmWrYsKGGDh2quLg4de/eXbt3787AKgEAAAAASD+mDO6GYWjevHnq27ev4uLikuyzfft2hYSE6P3339ewYcPk7++vefPmqVChQvriiy8yuGIAAAAAANKHKYN7+/btNXLkSFWvXl3lypVLss/y5cvl6Oiodu3aWdpcXV31+uuv6+DBgzp16lQGVQsAAAAAQPoxZXA/f/68RowYoenTpytHjhxJ9gkLC1Px4sXl6upq1Z4Y9MPCwtK9TgAAAAAA0luqbgeX3jZs2CAnJ6cH9rl06ZIqVqxo054/f35J98I/AAAAAABZnSnPuD8stEvS7du35eLiYtOePXt2SVJ0dHSa1wUAAAAAQEYzZXBPC3Z2dpldAgAAAAAAjy3LBndXV1fFxMTYtCe2ubm5ZXRJAAAAAACkuSwb3J977jmFh4fbtF++fFmSVKBAgYwuCQAAAACANJdlg3u5cuV07Ngxm7PuBw8elCRVqFAhM8oCAAAAACBNZdng3qRJE8XGxmr+/PmWtqioKC1atEgVK1bU888/n4nVAQAAAACQNkx5O7iU8PHxkY+Pj8aMGaMLFy6oePHiWrhwoS5evKhRo0ZldnkAAAAAAKSJLBvcJWnChAn65ptvtHz5ckVHR8vT01MzZsyQt7d3ZpcGAAAAAECaMH1wnzt3brLbcuTIoWHDhmnYsGEZWBEAAAAAABkny85xBwAAAADgaUBwBwAAAADAxAjuAAAAAACYGMEdAAAAAAATI7gDAAAAAGBiBHcAAAAAAEyM4A4AAAAAgIkR3AEAAAAAMDGCOwAAAAAAJkZwBwAAAADAxAjuAAAAAACYGMEdAAAAAAATI7gDAAAAAGBiBHcAAAAAAEyM4A4AAAAAgIkR3AEAAAAAMDGCOwAAAAAAJkZwBwAAAADAxAjuAAAAAACYGMEdAAAAAAATI7gDAAAAAGBiBHcAAAAAAEyM4A4AAAAAgIkR3AEAAAAAMDGCOwAAAAAAJkZwBwAAAADAxAjuAAAAAACYGMEdAAAAAAATI7gDAAAAAGBiBHcAAAAAAEyM4A4AAAAAgIkR3AEAAAAAMDGCOwAAAAAAJkZwBwAAAADAxAjuAAAAAACYGMEdAAAAAAATI7gDAAAAAGBiBHcAAAAAAEyM4A4AAAAAgIkR3AEAAAAAMDGCOwAAAAAAJpYtswt4XG+88Yb27t1r016mTBktXbo0EyoCAAAAACDtZPngfvToUdWrV0++vr5W7blz586cggAAAAAASENZOrifO3dOt2/fVr169dSyZcvMLgcAAAAAgDSXpee4Hz16VJJUsmTJTK4EAAAAAID0kaWD+z///CNJKlWqlCTp9u3bmVkOAAAAAABpLksH9yNHjsjZ2VkTJkxQ1apV5eXlJR8fH82ZMyezSwMAAAAAIE1k6Tnu//zzj+7cuaNLly7piy++UHR0tIKDg/X555/r+vXrGjBgQGaXCAAAAADAY8nSwb19+/aKj49X586dLW1+fn7q0KGDfvjhB3Xo0EHPPvtsJlYIAAAAAMDjydKXynfs2NEqtEuSvb292rdvr7i4OO3evTuTKgMAAAAAIG1k6eCenLx580qSoqKiMrkSAAAAAAAeT5YN7ufPn1ezZs00YcIEm20nTpyQJBUtWjSjywIAAAAAIE1l2eBeqFAh3bhxQ8HBwbpx44al/caNG/rxxx9VuHBheXl5ZWKFAAAAAAA8viy7OJ2dnZ0++eQT9evXT+3atVOHDh0UGxurBQsW6OrVq5o2bZqyZcuyLw8AAAAAAElZ+Iy7JDVq1EiTJ09Wnjx5NG7cOE2ZMkXFihVTUFCQatSokdnlAQAAAADw2LL8KekGDRqoQYMGmV0GAAAAAADpIkufcQcAAAAA4ElHcAcAAAAAwMQI7gAAAAAAmBjBHQAAAAAAEyO4AwAAAABgYgR3AAAAAABMjOAOAAAAAICJEdwBAAAAADAxgjsAAAAAACZGcAcAAAAAwMQI7gAAAAAAmBjBHQAAAAAAEyO4AwAAAABgYgR3AAAAAABMjOAOAAAAAICJEdwBAAAAADAxgjsAAAAAACZGcAcAAAAAwMQI7gAAAAAAmBjBHQAAAAAAEyO4AwAAAABgYgR3AAAAAABMjOAOAAAAAICJEdwBAAAAADAxgjsAAAAAACZGcAcAAAAAwMQI7gAAAAAAmBjBHQAAAAAAEyO4AwAAAABgYgR3AAAAAABMjOAOAAAAAICJEdwBAAAAADAxgjsAAAAAACZGcAcAAAAAwMQI7gAAAAAAmBjBHQAAAAAAEyO4AwAAAABgYgR3AAAAABZ3E4zMLgF4bE/a73G2zC4AAAAAgHlks7fTd2ERuhP/ZAUfPD2cHezUt7x7ZpeRpgjuAAAAAKzciTcU+4SdsQSyMi6VBwAAAADAxLJ8cD9//rwGDRqkl19+WVWrVlXfvn115syZzC4LAAAAAIA0kaUvlb9+/bo6d+6syMhIdenSRU5OTpo5c6Y6duyoJUuWyN39yZrXAAAAAAB4+mTp4P7jjz/q7NmzWrRokcqXLy9J8vHxUatWrTRt2jQNHTo0kysEAAAAAODxZOlL5VesWKHKlStbQrskeXh46OWXX9aKFSsysTIAAAAAANJGlg3uN27c0JkzZ6xCe6Jy5crp8uXLunz5ciZUBgAAAABA2smywf3SpUuSpAIFCthsy58/vyTpwoULGVoTAAAAAABpLcvOcb99+7YkycXFxWZb9uzZJUlRUVEpeq47d+5Iko4fP55G1aW/G//eVGw899ZE1uTkYKeD2Z7J7DIeGeMOWVlWHXcSYw9ZW1Yde4w7ZGVZZdwl5s/EPPogWTa4G8a9NxI7O7tk+zxo2/3Onj0rSRoyZMjjFwYgReZndgHAU4hxB2QOxh6Q8bLSuDt79qy8vLwe2CfLBndXV1dJUnR0tM22mJgYSZKbm1uKnqt27doaM2aMihQpImdn57QrEgAAAACAJNy5c0dnz55V7dq1H9o3ywb3woULS5LCw8NttiUuSpfU/PekuLu7y8/PL+2KAwAAAADgIR52pj1Rll2cLmfOnHr++ed18OBBm20HDx5UwYIF9eyzz2ZCZQAAAAAApJ0sG9wlqUmTJtqzZ49VeD969Kh27Nih5s2bZ2JlAAAAAACkDTsjcZW3LOj69etq0aKF4uLi9NZbb8ne3l6zZs2So6OjFi9eLHd398wuEQAAAACAx5Klg7sknTlzRl9++aW2b98uJycnVatWTe+//76KFi2a2aUBAAAAAPDYsnxwBwAAAADgSZal57gDAAAAAPCkI7gDAAAAAGBiBHcAAAAAAEyM4A4AAAAAgIkR3GGxf/9+9ejRQ97e3qpQoYJatWqlJUuW2PQbN26cPD09k/xz8+bNNK1p9+7d6tSpk6pWraoaNWrogw8+0JUrVx74mFu3bqlu3brq1KlTmtbypGjQoIHatWv30H6BgYHy9PTUnTt3MqCqp9uRI0fUs2dPVa9eXS+99JIGDBigf//916ZfRo69++3fv19ly5bVpEmTHtiPsfdgjD3z+uGHH1SrVq0kt0VEROjDDz9UzZo1Vb58ebVo0UIrVqxIlzpSehy+3927d9W6dWs1aNAgXWrK6jp16pTsv+39Jk2aJE9PTx0/fjwDqkKic+fOycvLS4GBgTbbMvKYV7t27ST306dPn1TVDsnT01ODBg16aL+UjlFI2TK7AJjD8ePH1alTJ+XKlUvdu3dXjhw5tGrVKg0dOlTXrl1Tt27dLH2PHj2qokWLqn///jbP4+LikmY17d69W507d1bJkiU1cOBAXb9+XT/++KN2796tX3/9VW5ubkk+7osvvtDFixf1/PPPp1ktQHo5efKkOnTooFy5cqlXr16Kj4/X7Nmz1a5dOy1ZskSFChWy9M2osXe/O3fuKDAwUPHx8Q/ty9hDVrRp0yZNnDhRuXLlstkWGxurLl266MSJE+rQoYOKFy+u5cuX67333lN0dLTatm2bZnU8ynH4flOmTNHBgwdVuHDhNKsFyAiGYejDDz/U7du3k9yeUce8a9euKTw8XK+99ppq1Khhte3+Y/D9HlY7kB4I7pAkjR49Wvb29goODlaBAgUkSR07dpS/v78mTpyodu3aKUeOHJLuvZFWqlRJLVu2TNeaRo0aJXd3d/3000/KmTOnJKl8+fLq3bu3Fi1apK5du9o85vfff9evv/4qR0fHdK0NSCvjx49XfHy85s6dqyJFikiS6tSpIz8/P82cOVMfffSRpW9Gjb3/1nf69OmH9mPsIasxDENBQUEaNWqU4uLikuwTEhKio0eP6t1331WvXr0kSW3btlWLFi00fvx4tWnTRvb2aXPx4qMchxP9/fffmjJlCuMOWVJQUJD27NmT7PaMOub9888/kiRfX1/VqVMnRY95WO1AeuBSeSg+Pl67du2Sj4+P5cOCJNnb26tp06aKiorSoUOHJEmRkZE6f/68SpYsma413blzR7lz59brr79uCe2SVK1aNUn3Li3+rxs3buh///ufAgICkjxzAphRtmzZ1KxZM0tol+5dXpY7d24dPnzY0pZRY+9+f/75p3788Uf169fvgf0Ye8iK2rdvr5EjR6p69eoqV65ckn3OnDkjSVaXcTo5OalmzZq6cuWKrl69mia1PMpxOFFsbKwCAwNVu3ZtlS1bNk3qADLK6dOn9fXXXyd7fMnIY97Ro0clKcX7eljtQHohuEP29vZatmyZ3n//fZttERERkiQHBwdJ0rFjx2QYhuXNLTo6WgkJCWlek7Ozs6ZPn66BAwdatSd+cEnq0qURI0Yoe/bseu+991K0j8jISFWsWFG9e/e22bZ161Z5enpq+fLllrZly5apdevWqlixoqpXr6533nnH5kzk3bt3NWPGDL322muqUqWKKlSooCZNmmjq1KlWf0+BgYFq0KCBFi1apOrVq8vLy0u//vqrJCk4OFgtW7ZU5cqV5e3trbfeeku7d+9O0WtasmSJWrdurQoVKuill15Snz59kvyS478S1xKoUqWK6tWrp+nTp6dof3h8X3/9tb744gurtgsXLuj69et67rnnLG0ZNfYSRUdH64MPPlCTJk3UqFGjB/Zl7DH2sqLz589rxIgRmj59us2Z7ETFihWTJJ04ccKq/fTp03J2dk6zL6oe5Tic6LvvvtPFixc1YsSIFO0jISFBdevWVYsWLWy2nTp1Sp6enpoyZYqlbfPmzfL391flypXl5eWlHj166ODBgzaPDQ4O1htvvCEvLy+VL19eDRs21OjRo63WaEicP75p0ybVqVNHlStX1uTJkyVJ69evV9u2beXl5aUqVaqoQ4cOCgkJSdFr2rRpkzp27KjKlSurSpUq6tq1a4rG7JEjR9SrVy9VrVpVNWvW1NixY3X37t0U7ROPLyEhwbKWR5cuXZLsk5HHvKNHj8rV1VXPPfecDMNQVFTUY9X+XydPnpSnp6dGjhxps23hwoXy9PTUn3/+KenelUCzZ89Ws2bNVKFCBdWqVUsfffSRzfpOt2/f1vjx49WsWTNVqlRJlSpVkp+fnxYuXGjVr1OnTurUqZO+//57eXl5qXr16tq2bZskaerUqWratKnl2NqvXz/LlxgPkpCQYKmxfPnyqlGjhoYMGaJz58499LEhISFq06aNKlWqpMaNG1uOv0gZLpWH7OzsVLRoUZv2qKgoLV68WK6urpZv8xMH9JYtWzR69GhduHBBrq6uatmypYYOHZpu82wvXbqkPXv26KuvvlK+fPnUvn17q+2//fabVq5cqTlz5qS4Bjc3N9WvX1/r16/XjRs3rD6ArVixQq6urnrllVckSd9//70mTJig+vXrq02bNoqIiNDPP/+stm3bauHChXrhhRckScOGDdOSJUvUrl07dejQQZGRkVq6dKnGjRsnJycnqzmKV65c0ddff61evXrp1q1b8vb21qpVqzRs2DDVr19fHTp0UHR0tObNm6euXbtq6dKlD/w2eNy4cZo6daq8vLw0ePBg3bx5U0FBQXrjjTc0e/ZsVaxYMcnH7dq1S926dVOhQoXUr18/RUdHa9q0aYqNjU3R3yPSztWrVxUWFqaxY8fK1dVVb775pmVbRo+9r7/+Wrdu3dL//vc/Xbt2Ldl+jD3GXla1YcMGOTk5PbBPw4YN5ePjozFjxihXrlwqUaKEVqxYodDQUL399tsPfXxKPcpxWLq3iN20adP0xRdfKH/+/Cnah729vZo1a6YZM2bo2LFjKlWqlGXbihUrZGdnZwn1S5YsUWBgoKpWrap3333XUkeHDh30448/ysvLS9K9QP7tt9/K19dXrVq10p07d7Ru3TrNnDlTcXFxGjZsmFUN77//vjp37ixHR0dVq1ZNu3fv1oABA1SpUiXLF38LFy5Uv379NGvWLJv5xvdbsGCBPv74Y3l4eKh///66e/euFi5cqC5dumjChAmW95D/OnnypPz9/eXs7Kzu3bsrW7Zs+vnnnx/4Poe0NXv2bIWFhWnJkiXJTjXJyGPe0aNH9cwzz+i9997Thg0bFB0dreeff14DBw5Us2bNHrn2/ypevLgqVKigtWvX6qOPPrJ63IoVK1S0aFHLmPrf//6nRYsWqUWLFgoICNC5c+cUFBSkHTt2aNGiRcqTJ48kqXfv3tq3b5/8/f1VsmRJRUREaOHChfrf//6n3Llz69VXX7XsIywsTGfPntV7772nc+fOqWLFivrhhx80btw4tWrVSt26dVNERIRmz56tgIAArV271rKfpAwZMkQrVqxQ3bp15e/vr/Pnz+unn35SaGioFi5cmOR7WeJrHTx4sF588UW9++67Cg8P1/Dhw2Vvby9XV9cU/V0+9QwgCQkJCcagQYMMDw8PY8KECZb2kSNHGh4eHkbz5s2N4OBgY/Xq1UZgYKDh4eFhBAQEGPHx8WleS2xsrFGmTBnDw8PDePHFF42lS5dabb969apRo0YN49NPP7W01axZ0wgICHjoc69fv97w8PAwFi5caGm7c+eOUbVqVWPIkCGGYRjG6dOnjRdffNEYOXKk1WMvXLhgVKlSxejXr59hGIYRHh5ulClTxqbfrVu3jPLlyxvdunWztA0dOtRmv4ZhGD169DCqVKliJCQkWNoOHz5svPrqq8aKFSuSfR3Hjh0zypQpY7z55pvG3bt3Le1nzpwxKlWqZLRs2dLSVr9+faNt27aWn9u2bWvUrFnTiIiIsHq+ChUqGB4eHkZMTEyy+0Xaqlu3ruHh4WF4eHgYP/zwg9XvQUaOvR07dhienp7G6tWrDcO49/vg4eFhTJw40aofY4+x96QICAgwatasmeS2vXv3Gj4+Ppax6eHhYbz77rtWvyvpIbnjcExMjNG0aVOjV69elra2bdsa9evXf+hzHj582PDw8DC++eYbq/YmTZoY/v7+hmHcGzdeXl5G7969rfrcunXLqF+/vvHaa68ZhnHv2Fy1alWrOgzDMOLi4ow6deoYr776qqVt4sSJhoeHhzFu3DirvsOHDzc8PDyMq1evWtoiIiKMV1991Zg1a1ayr+PatWtG5cqVjebNm1uNk+vXrxs+Pj5GrVq1jDt37hiGYftvO3DgQKNChQrGqVOnLG1XrlwxatSoYXh4eBjHjh1Ldr94fMePHzcqVqxoTJ8+3TCMe7/PHh4extChQ636ZeQxr2rVqpYa1q1bZyxcuNBo3ry54eHhYQQHBz9y7UmZM2eO4eHhYWzbts3SdvHiRaNMmTLG+PHjDcMwjJ07dxoeHh42v/thYWHGiy++aHz55ZeGYRjGvn37DA8PD2PmzJlW/Y4fP254eHgYw4YNs7QFBAQYHh4extatW636+vr6Gs2aNbNq27hxo+Hr62v88ccfyb6OLVu2GB4eHsZHH31k1f7XX38Znp6eRp8+fSxtHh4exsCBAw3DMIz4+HijVq1aNmN2x44dhoeHR7Lvv7DGGXfYMAxDw4cP18qVK1WtWjW9/fbblm0+Pj7KmTOnevToYfl2rEmTJsqTJ49mzJihdevWqXHjxmlaT1xcnL766ivZ2dkpODhYQ4YM0cWLF9WzZ09J0qeffioXFxcNHjz4kZ/bx8dHefLk0apVqyyrA2/atEm3bt2ynHkICQlRfHy8XnnlFcsli9K9eY7VqlXT5s2bdffuXeXLly/JhUoiIiLk5uaW5KVXL7/8stXPBQsW1O3bt/XZZ59ZvkX19PTU2rVrH/g6NmzYoISEBPXq1cvqcsoiRYrIz89PCxYs0NmzZ63mUSfWtn//fgUEBFh9u1qyZEnVqVNH69ate+B+kbYGDRokJycnrV69WmPHjtXZs2f16aefSsq4sXf79m19+OGHatKkiZo0afLAvow9xt6TbsuWLerdu7fc3d01bNgwFSxYUNu2bdP8+fNlGIbGjh2bZovT3e9Bx+Hx48crPDxcs2bNeuTnTbzF1erVqy1T0f7++2+dOHHCctnvtm3bFBkZqcaNG1uNO0mqW7eufvrpJ126dEkFChTQ1q1bbRb2u3r1qp555pkkz2AnNe4kaeTIkXrrrbdUvnx55cmT56Hjbtu2bYqKitKbb74pZ2dnS3uuXLkUEBCgr7/+Wnv37lX16tWtHpeQkKBNmzapZs2alqt1JClv3rxq0aKFfvzxxwfuF48nPj5eH3zwgV588cVk75KQKKOOebGxserdu7fy5cunVq1aWdqbN2+uZs2aacyYMfLz85ODg0OKa09Ks2bNNGrUKK1cudJyJcnq1auVkJBgOeYl/t43aNDAauwVKlRIpUuX1u+//67AwEBVrFhRu3fvtvrdNwzDMt3jv8e8bNmyydvb26qtYMGC2r59u7799lu1atVKRYoUUd26dVW3bt0Hvo7EaSz3vydJUqVKlVSrVi1t3rxZsbGxNlcjHTx4UOHh4Xrrrbes6q5evbrKli2ry5cvP3C/uIfgDitxcXEKDAzUihUrVLFiRU2ePNlqtdrkBrW/v79mzJihHTt2JPtGGhERYXNLKXd3d5t5e//l6upqeVPz9fWVv7+/Jk2apHbt2mnbtm1as2aNJkyYoJiYGMXExEi69wYWFxeniIgIubi4JHtJlaOjo3x9fTV//nxdvXpVefPm1fLly5UvXz7VrFlTkiz3037QXKaIiAjlz59fTk5OWrlypTZv3qxTp07p9OnTlnuNJnXpUN68ea1+7tu3r/bt26d58+Zp3rx5KlKkiOrVq6fWrVsnu3iSJJ09e1aSVKJECZttiZf4njt3ziY8nD17VoZhJHn7rpIlSxIeMljiyrlNmzbVwIEDNX/+fAUEBKh06dIZNvbGjBmjGzduqH///pYPDrdu3ZJ0b45hRESEcubMqXXr1jH2xNh70k2aNEnZsmVTUFCQ5d+qUaNGKlSokL7++ms1atRITZs2TfKx169ftwm1uXLleujl9Q86Du/du1c//vij3n//fTk6OlrG6N27d5WQkKCIiAg5OzsnO2dfuvc+89VXXyksLEzly5fX8uXL5ejoaHkdieNu6NChyT7H+fPnVaBAATk5OSk0NFTr1q3TyZMndfr0aUtN+fLls3ncf9sCAgK0bds2rVq1SqtWrdKzzz6rOnXqqGXLljah+34PGneJbUnNt71+/bpu375tFdoTZeTCn0+rmTNnKiwsTHPmzNH169clyTJGYmNjLV+2Ojk5Zdgxz8nJSd27d7dpd3Fx0WuvvaZvv/1Whw8f1h9//JHi2pPi7u6u2rVra926dfrkk0/k6Oio5cuXq3z58pbf2cSxl9y6Mvd/Hnd0dNSiRYu0Y8cOnT59Wv/++68lsP93LYCcOXPa1BUYGKhevXpp0qRJmjRpkkqVKqV69erp9ddfV/HixZPcv3Rv7GXPnj3J20+WLFlSoaGhunz5cpLHPElJHvNKlChBcE8hgjssoqOj1b9/f23ZskXVqlXT5MmTk71X+n8lfgh+0IIer7/+us2BdP369TaD+0Hs7e3VpEkT7d27V8eOHdPmzZslSe+8845N36tXr6pGjRrq169fkvcATeTn56egoCCtWbNGLVu21KZNm9SuXTvLG3ziG+DEiROtVri/X65cuRQbG6uAgADt379f1apV00svvSR/f3+99NJL6ty5c5KP++9BpECBAvr111+1e/du/f777woNDdW8efMUFBSkzz//XG3atEnyeQzDsPpvUtuSul2QnZ2dJFlC1/3Sc+EzPFyzZs20evVq/f333ypdunSy/dJ67G3evFm3bt2Sr6+vzbYZM2ZoxowZmjNnDmPv/2PsPdmOHj0qLy8vmw+bbdq00ddff60dO3YkG9z79++vnTt3WrXNmTPngYH0Ycfh0NBQJSQkaNSoURo1apTN42vUqKHXXnstyW2JmjdvrrFjx2rVqlUqV66cVq9erTp16ljWmkj8/fv444+T/QBfokQJGYah/v37a926dapUqZIqVKig1q1bq0qVKvr000916tQpm8f99+qEHDlyaPbs2Tpw4IDWr1+v0NBQ/frrr1q8ePFD3z+kRx93iRh3mSPxKil/f3+bbStXrtTKlSv15ZdfqnXr1sk+R0Z93pTuhe3EfaVF7X5+ftq4caO2bdumYsWKKSwsTB988IFle0JCgpydna0WiUxKRESE3njjDZ0/f141atRQ7dq19dZbb8nb21v16tWz6Z/UFxalS5fW2rVrtW3bNm3cuFGhoaGaPn26Zs+eralTp1rdSeN+hmFY/iQex+6vX3rwMe/+RSvvf06kDMEdku59a9ivXz+Fhoaqfv36mjBhgtWlLIm6du0qe3t7zZw506o9ccXd5BakkO6dyfvvgH322WeT7Hvs2DH17NlTAQEBVgt0SfdWpJak7Nmzq3v37vLz87N5/MCBA1WwYEEFBgY+sCZJqly5sl544QWFhIQoX758iomJsXrOxG8V8+fPrypVqlg9dvv27ZLufWO7dOlS7du3Tx9//LE6duxo6XP37l1dv349RQsIHT9+XFFRUapWrZqqVaumoUOH6tixY+rYsaNmzpyZbHhIPBidOHHC5u808d8m8ZLE+xUuXFh2dnZJfsBKyb278Xhu3Lihdu3aycfHx2YRp9u3b0u693suZdzYS6rvhQsX9OGHH6ply5Zq1aqVypQpw9j7/xh7TzZnZ2ebM3fS/31AfdAHzqFDh1qu+khUpkyZZPun5DjcqlUrVa1a1eaxn332mW7cuKExY8Y89Pe9QIECql69ukJCQuTr66sLFy4oMDDQsj1x3OXKlcty9Uuiv/76S5GRkcqePbt2796tdevW6c0337Q5O//fFbCTc+bMGV2+fFlVq1ZVhQoVNHDgQF24cEFdu3bVzJkz1a9fP5twIFmPu8qVK1ttSxx3Sd19Jk+ePHJzc2PcZZKkxkRcXJx69uxpCZ+JiyZm1DFv3759Gjp0qLp162az8PHJkyct+3qU2pPTsGFD5ciRQ+vWrVOJEiXk4OCg5s2bW7YXLlxYoaGhKlWqlM043rBhg3Lnzi1J+umnn/Tvv/9q6tSpVkH90qVLD9x/ooSEBB09elT29vZWVzbs3r1bXbt21ezZs5MN7kWKFFFoaGiSV5KdPHlSTk5Oli887pf475X4d3o/xl7KEdwh6d4ZrdDQUDVo0EATJ05M9pvq3Llza82aNdq7d6/lg3RCQoK+/fZbOTg4JHmWLlFSHzaS88ILLygyMlLz589Xhw4dLJfb3rhxQ4sWLVLBggX14osvysHBIck3SkdHxyQ/dCTHz89PU6ZMUc6cOS2rfyZq0KCBZdXo77//3nLG4MyZM3r77bdVqlQpLVq0yHLp1H8vt1uwYIGio6NTdKuZjz76SOfOndPatWstc7pKlCihZ5555oHzKBs2bKhx48bphx9+kLe3t+Xb1fPnz2vZsmUqU6aM1a3FErm7u+ull17SqlWr1K9fP0ufs2fPasOGDQ+tF48nV65clsvlevXqZflgERsbqzlz5sjV1dVydi6jxl5SfY8fPy7p3oE3cUzlypWLsSfG3pOuVq1aWrt2rQ4fPmwVuhcsWCDJds72/cqXL/9I+0rJcbho0aJJBhY3NzfFxMSkeNy1bNlSgYGBmjVrlnLmzKn69etbttWqVUvZs2fXjBkz9Oqrr1ousb1+/boGDBggwzD0+++/W8bdf98HNm7cqFOnTllCxoOMHz9e69atU0hIiCWoFCpUSPnz59eVK1eSDO2SVLNmTbm4uGjWrFlq1qyZ5QuOW7duKSgoSHny5FGlSpVsHmdnZ6dGjRppyZIl2r9/v+WOD7du3dKSJUseWi8eT1JjIjFgP/vss1a/vxl1zCtRooTOnj2roKAgvfbaa5bf97Nnz2rx4sXy8vJS4cKFk7w0PLnak5M9e3Y1btxYGzdu1OnTp1WjRg2r6SMNGzbUggUL9P3332v48OGW9r/++kt9+vRR48aN5eXllewxL3GNhqS+bLyfnZ2devXqpbx58yo4ONhy3CpXrpwcHR0fesybP3++pkyZos8++8zSvn//fm3dulUNGjRI8r2rbNmyKly4sObPn68uXbpYriTau3evDhw4kOTUGtgiuEOXL1/WrFmzlC1bNtWuXVurVq2y6VOjRg3lz59fgwcP1tatW9WjRw916tRJ7u7uWrt2rXbt2qWBAwcmOd8sNRwdHTV8+HANGjRIHTp0UOvWrRUTE6P58+frypUrmjx58kPnxj8KPz8/TZo0SWvXrtWAAQOstpUuXVrdunXTrFmz1LFjRzVt2lQxMTGaN2+e4uPjLWcqatWqJUdHR3344Yfq1KmTXFxctH37dq1Zs0bOzs6WM6gP0rNnT/Xp00cBAQFq2bKlnJycFBISotOnT1u9Qf5XyZIl9eabb2rGjBkKCAhQ06ZNdfPmTf30008yDEOffPJJso/98MMP5e/vr3bt2qlTp06ys7PTnDlz5ObmZrMwEdLep59+qs6dO6tDhw7q0KGD7O3t9csvv+iff/7RZ599Zvnwm1FjL6Mx9hh7Zvbuu+9q+/bt6tSpk/z9/VWoUCHt2rVLK1asUM2aNR+6gGNKPcpxOC00atRIw4cP14oVK9SmTRurM/t58uTRe++9Z5ki0qpVKzk4OGj+/Pm6fPmyxo0bp2zZssnLy0vPPPOMxowZo8uXLytv3rzat2+flixZImdnZ0VFRSV5Oe39unXrpt9++00BAQFq166dnnnmGe3YsUM7d+5U7969k31c7ty5NWTIEI0YMUKvv/66WrVqpfj4eAUHB+vKlSsaN25csicgBg0apC1btqhbt27q0qWLcubMqQULFnC5rslk1DEvZ86cGjx4sL788kv5+/urVatWun79uubNm6ds2bJZFohNK35+fvrll18UHh6u0aNHW22rW7euXn31Vf3888+6cOGC6tSpo6tXr2revHl65plnLFPT6tWrp7lz56pPnz5q37697OzstGHDBm3dulWOjo4PPebZ2dmpZ8+eGjFihLp166bGjRvLMAwtXbpUMTExCggISPaxderUUdOmTRUcHKzw8HDVqVNHFy9e1Lx585QrV65k18aws7PTJ598oj59+uj1119X+/btdevWLc2ePTvJM/RImp3BO9VTb82aNUnOU73ftGnTVKdOHUnSP//8o/Hjx+uPP/5QbGysSpUqpc6dO1utxplWQkJCNHXqVB0+fFiOjo6qWrWq+vfvn+x9kRPVqlVLJUqU0Ny5c1O8rzfeeEN79+5VSEhIkmc0Fi5cqJ9//lnHjx+Xq6urypcvr379+lldprdx40ZNnDhRJ06ckIuLi4oVK6YuXbpo3759mjVrltavX6/ChQsrMDBQv/76q/bv329zKeT69es1ffp0HT9+XHfu3FHp0qXVpUsXywJ9DxIcHKygoCAdP35cOXLkULVq1dSvXz95eHhY+jRo0ED58uXTwoULLW2HDh3S2LFj9eeff8rFxUXt2rVTQkKCpk6dmmSNSFu7du3SpEmTtH//fkn3zkr06tVLPj4+Vv0ycuzd7/jx4/L19U3RnFPGHmMvK+rUqZNOnDihrVu32mw7e/asxo8fr9DQUEVGRqpQoUJq0aKFevfunWb3cX/U4/B/tWvXTleuXHmkqzXee+89rVixQj/++GOS90tft26dZsyYYTn+enh4qGfPnlYLhu3du1djx47VoUOHlC1bNhUpUkRt27ZVfHy8Ro4cqaCgIHl7e1vu975q1Sqbs4S7d+/W999/r0OHDikyMlLFihVTu3btFBAQ8MDQL937jDB9+nQdOnRITk5OqlSpknr37m21gnZS/7ZnzpzRmDFjLFNumjVrppIlS+qzzz5Lskaknzt37qhixYpJrs2Qkce8xYsXa+7cuTp27JjlardBgwY98AuCB9WenISEBNWrV083b97U1q1bbRaSvHv3rmbOnKklS5bo9OnTyp07t7y8vPTOO+9Y/V7+8ssvmjFjhs6cOaNnnnlGpUuXVs+ePfXzzz9ry5Yt2rZtm1xcXB743rZ48WIFBQXp33//VUJCguWzR+3atR/4GuLj4zVz5kz98ssvOnPmjHLnzi0fHx/179/f6gozT09P+fr66ptvvrG07dixQxMnTtTBgwfl7u6uN998U/v27dP27duTrBHWCO7A/9ehQwdJ0s8//5zJlQBPF8YekPEGDx6s3bt3a8OGDelySzsAtgzDUP369eXt7a2xY8dmdjnIYninBiQdPnxYe/fu1euvv57ZpQBPFcYekPHCw8O1fv16tW7dmtAOZKDff/9dFy5c4JiHVGGOO55qK1asUEhIiLZv367nnnvOanVPAOmHsQdkvO3bt2vhwoXas2eP7O3tk7y1FYC0N3v2bO3Zs0dbtmxRpUqVHriwJZAcvmbFU83BwUGbN29W/vz59e233zKfFMggjD0g4zk7Oys0NFROTk6aMGECKzkDGSQhIUGbN2+Wp6enxo0bl9nlIItijjsAAAAAACbGGXcAAAAAAEyM4A4AAAAAgIkR3AEAAAAAMDGCOwAAAAAAJsbt4AAAMKnu3btry5YtqlOnjqZNm5bZ5Vi5fv26li1bpjVr1ujMmTO6du2acufOrfLly6tly5Zq0qSJ7OzsMrtMAACeCKwqDwCACYWHh6tu3bpycnLSnTt39Pvvv6tgwYKZXZYkaefOnXr33XcVHh6u4sWLq1q1asqdO7cuX76sTZs2KSIiQj4+Pvr222+VPXv2zC4XAIAsjzPuAACY0PLlyxUfH6/u3btr0qRJWrRokfr165fZZenYsWN666235ODgoK+//lrNmze32h4VFaWPP/5Yy5cv1/jx4xUYGJhJlQIA8OTgjDsAACbk5+enixcvavPmzapdu7aeeeYZrV+/PtMvP2/fvr3++uuvJEN7otjYWDVt2lRXrlzR1q1b5ebmlsFVAgDwZGFxOgAATObw4cM6cuSIatSooezZs+uVV17RuXPntHXrVpu+d+/e1dSpU9W4cWNVrFhRvr6+WrRokb7//nt5enrq7NmzVv23b9+ubt26qWrVqqpcubLat2+vNWvWpLiuv/76S2XKlEk2tEuSk5OTevfurYCAAMXGxlraPT09FRgYqClTpsjb21ve3t768ccfJUkJCQn66aef1KpVK1WsWFFVq1ZVt27dbF7zH3/8IU9PT33++ec2+w0MDJSnp6cOHTpktc/Bgwdrx44dev3111WxYkU1aNBA33zzje7cuZOi1w0AQGYjuAMAYDJLliyRJPn6+lr9Nzg42KbvwIEDNW7cODk7O8vf31/FihXTRx99pF9++cWmb3BwsLp166YjR47I19dX7du319WrV/XOO+9oypQpD60rJCREktSgQYOH9m3btq2GDBkid3d3q/YtW7Zo2rRpatWqlWrXrq1KlSopISFBgwYN0qeffqrIyEi1adNGr7zyig4cOKC33npLQUFBD93fgxw5ckTdu3eXi4uLOnbsqFy5cmnKlCnq2bOnEhISHuu5AQDICMxxBwDAROLj47VixQrlyJFD9erVkyTVrFlTefPm1fr16xUREWEJw2vXrtW6dev0yiuvaPz48XJ0dJQkBQUFacSIEVbPe/HiRY0YMUIlSpRQUFCQ8uTJI0kaNGiQunbtqgkTJqhBgwby8PBItrZ///1XklS6dOlUv74rV65o8uTJVuF/yZIlWrNmjWrXrq1JkybJ1dVVknTmzBl16NBBX3zxherUqaOiRYumap9Hjx5Vx44d9fHHH0u6d5XCwIEDtW7dOi1ZskStW7dO9esBACAjcMYdAAAT2bp1q8LDw9WoUSM5OztLkrJly6YmTZooLi5OS5cutfT99ddfJUlDhw61hHZJ6tChg4oXL271vMuWLVNsbKwGDBhgCe2SlD17dg0YMEAJCQmW50tORESEJClXrlw227Zv365JkybZ/Pnjjz+s+mXPnl1169a1akvc7/Dhwy2hXZKKFi2qt99+W3fv3rVchZAarq6ueueddyw/Z8uWTe+//76ke4sAAgBgdpxxBwDARBKDebNmzazaW7RooaCgIC1atEjdunWTJIWFhSl37tx6/vnnrfra29urSpUqOnnypKUtLCxM0r2A/c8//1j1j4qKknRvDvuDJAb2Gzdu2GzbsWNHkpfb9+vXT9WrV7f8XLBgQTk4OFj1OXz4sAoUKJDkGfWqVaumqLYH8fT0tPmy4fnnn1fu3Lkf63kBAMgoBHcAAEwiMjLSMo+8R48eSfY5duyY/vzzT3l5eenatWs2Z9YT5c+f3+rnW7duSZLmz5+f7P6TCuT3K1KkiCTp9OnTNtsGDRqkQYMGWX4OCQlR3759bfoldV/3yMhI5cuXL8l9Jr6OmJiYB9b2IAUKFEiyPV++fJbL/wEAMDOCOwAAJrFmzRrFxMSoQoUKKlu2rM32kydPaufOnQoODpaXl5fc3NwUGRmZ5HP9tz3xEvSQkJBUzxVv2LChpk6dqt9++029e/dO1XMkJUeOHLp06VKS2xK/TMidO7ckWW6Hl9TdbKOjo5N8juRWj79586bVtAEAAMyK4A4AgEkkXiYfGBgob29vm+3nz59Xw4YNtWbNGn300UcqV66ctm3bpsuXL9ucYd+3b5/Vz56engoJCdGBAwdsgvupU6e0YMECvfTSSw9cMb5SpUoqV66cDh48qKVLl6ply5bJ9n2U1drLlCmjP/74Q0ePHrVZHG/37t2SpFKlSkmSZS5/4uX99ztz5kySzx8WFqaEhATZ2//f0j7nzp3T5cuX1ahRoxTXCQBAZmFxOgAATODcuXPatWuXChcubJnX/V/PPfecXn75ZUVFRWnlypVq3bq1DMPQV199pfj4eEu/pUuX6sCBA1aP9fPzk4ODg8aPH6/w8HBL+927dzVy5EjNnDlT169ff2idY8aMkYuLi/73v/9p/vz5NgHdMAytW7fOcp/1xDPkD5K4qvvnn39uFcjPnDmj7777To6OjpY5/y+88IIcHBy0Y8cOqzPsGzdu1MGDB5N8/vDwcE2fPt3yc1xcnEaNGiVJatOmzUPrAwAgs3HGHQAAE1i6dKkMw1CLFi0eGHZbt26tbdu2KTg4WMHBwVq6dKmWL1+uY8eOqXr16vr333+1ceNG5cmTR9euXbMsBFesWDENGTJEo0aNUvPmzdWgQQPlypVLmzdv1vHjx1W/fn35+fk9tM6SJUtq7ty5GjRokD755BNNnjxZNWvWVL58+RQREaFt27bp/PnzcnR0VJcuXfTmm28+9DlbtmypDRs2aO3atfLz81OdOnUUFRWl9evXKzIyUsOGDbMswOfu7q5XXnlFa9euVdu2bVW3bl2dOXNGGzZsUNWqVbVnzx6b53d1ddU333yjP/74QyVLltT27dt19OhRtWzZUvXr139ofQAAZDY7I6lJYgAAIEM1btxYp06d0qpVq1SyZMlk+8XExKh27dq6deuWli1bphdeeEGTJ0/WsmXLFB4erhdeeEG9evXShg0btHr1au3YscNqHvemTZs0c+ZMy+XjRYsW1WuvvaaOHTvKyckpxfVGRUVp1apVWrVqlU6ePKnw8HDlyJFDxYsXV82aNdWuXTsVLFjQ6jGenp4qU6aM1S3tEiUkJFhWzT958qRcXFxUsWJFvfXWW3r55Zet+kZGRmr8+PFas2aNbt68qdKlS6tv3746ffq0vvzySy1ZskQvvvii1T4HDhyob775RqdOnVKRIkXUvn17de7cOUVXBAAAkNkI7gAAZFEXLlxQzpw55ebmZrMtICBAYWFh2rt371MdTh/0ZQEAAFkFc9wBAMiipk2bpqpVq2rnzp1W7Xv37tWePXtUrVq1pzq0AwDwpGCOOwAAWVSbNm20cOFC9erVS6+++qoKFCigs2fPKiQkRDly5NDQoUMzu0QAAJAGCO4AAGRR5cqV08KFCzV16lTt2LFDV69elbu7u3x9fdWnTx/Lgm4AACBrY447AAAAAAAmxhx3AAAAAABMjOAOAAAAAICJEdwBAAAAADAxgjsAAAAAACZGcAcAAAAAwMQI7gAAAAAAmBjBHQAAAAAAEyO4AwAAAABgYgR3AAAAAABM7P8Bzmo6CdbWdPMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2902,32 +3602,32 @@ }, { "cell_type": "code", - "execution_count": 304, + "execution_count": 943, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Age 0\n", - "SalaryUSD 0\n", - "Country 0\n", - "Currency 0\n", - "DevType 0\n", - "Employment 0\n", - "RaceEthnicity 0\n", - "Gender 0\n", - "SalaryType 0\n", - "Hobby 0\n", - "JobSatisfaction 0\n", - "JobSearchStatus 0\n", - "OperatingSystem 0\n", - "UndergradMajor 0\n", - "YearsCoding 0\n", - "YearsCodingProf 0\n", - "LanguageDesireNextYear 0\n", - "LanguageWorkedWith 0\n", - "FormalEducation 1549\n", + "Age 0\n", + "SalaryUSD 0\n", + "Country 0\n", + "Currency 0\n", + "DevType 0\n", + "Employment 0\n", + "RaceEthnicity 0\n", + "Gender 0\n", + "SalaryType 0\n", + "Hobby 0\n", + "JobSatisfaction 0\n", + "JobSearchStatus 0\n", + "OperatingSystem 0\n", + "UndergradMajor 0\n", + "YearsCoding 0\n", + "YearsCodingProf 0\n", + "LanguageDesireNextYear 0\n", + "LanguageWorkedWith 0\n", + "FormalEducation 0\n", "dtype: int64\n" ] } @@ -2938,16 +3638,16 @@ }, { "cell_type": "code", - "execution_count": 305, + "execution_count": 944, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1549" + "0" ] }, - "execution_count": 305, + "execution_count": 944, "metadata": {}, "output_type": "execute_result" } @@ -2958,26 +3658,22 @@ }, { "cell_type": "code", - "execution_count": 306, + "execution_count": 945, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "FormalEducation\n", - "Bachelor’s degree (BA, BS, B.Eng., etc.) 36010\n", - "Master’s degree (MA, MS, M.Eng., MBA, etc.) 17529\n", - "Some college/university study without earning a degree 9737\n", - "Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.) 7088\n", - "Associate degree 2407\n", - "Other doctoral degree (Ph.D, Ed.D., etc.) 1754\n", - "Primary/elementary school 1217\n", - "Professional degree (JD, MD, etc.) 1073\n", - "I never completed any formal education 436\n", + "Bachelor‚Äôs degree (BA, BS, B.Eng., etc.) 25\n", + "Master‚Äôs degree (MA, MS, M.Eng., MBA, etc.) 17\n", + "Some college/university study without earning a degree 12\n", + "Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.) 3\n", + "Associate degree 2\n", "Name: count, dtype: int64" ] }, - "execution_count": 306, + "execution_count": 945, "metadata": {}, "output_type": "execute_result" } @@ -2988,23 +3684,20 @@ }, { "cell_type": "code", - "execution_count": 307, + "execution_count": 946, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "EdLevel\n", - "Bachelors 37559\n", - "No Degree 18478\n", - "Masters 17529\n", - "Associate 2407\n", - "Doctorate 1754\n", - "Professional 1073\n", + "Bachelors 42\n", + "No Degree 15\n", + "Associate 2\n", "Name: count, dtype: int64" ] }, - "execution_count": 307, + "execution_count": 946, "metadata": {}, "output_type": "execute_result" } @@ -3046,16 +3739,16 @@ }, { "cell_type": "code", - "execution_count": 308, + "execution_count": 947, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(78800, 19)" + "(59, 19)" ] }, - "execution_count": 308, + "execution_count": 947, "metadata": {}, "output_type": "execute_result" } @@ -3067,7 +3760,7 @@ }, { "cell_type": "code", - "execution_count": 309, + "execution_count": 948, "metadata": {}, "outputs": [ { @@ -3116,9 +3809,9 @@ " \n", " 1\n", " 35 - 44 years old\n", - " 70841.000000\n", + " 70841.0\n", " United Kingdom\n", - " British pounds sterling (£)\n", + " British pounds sterling (¬£)\n", " Developer\n", " Full-time\n", " White or European descent\n", @@ -3136,64 +3829,20 @@ " Bachelors\n", " \n", " \n", - " 2\n", - " 35 - 44 years old\n", - " 153030.333333\n", - " United States\n", - " British pounds sterling (£)\n", - " Manager\n", + " 4\n", + " 18 - 24 years old\n", + " 21426.0\n", + " South Africa\n", + " South African rands (R)\n", + " Developer\n", " Full-time\n", " White or European descent\n", - " Non-conforming\n", + " Male\n", " Yearly\n", " Yes\n", - " Moderately satisfied\n", - " Not seeking\n", - " Linux-based\n", - " Computer Science\n", - " 24-26 years\n", - " 6-8 years\n", - " Go;Python\n", - " JavaScript;Python;Bash/Shell\n", - " Associate\n", - " \n", - " \n", - " 3\n", - " 35 - 44 years old\n", - " 165809.207657\n", - " United States\n", - " U.S. dollars ($)\n", - " Developer\n", - " Full-time\n", - " White or European descent\n", - " Male\n", - " Yearly\n", - " No\n", - " Neither satisfied nor dissatisfied\n", - " Not seeking\n", - " Windows\n", - " Computer Science\n", - " 18-20 years\n", - " 12-14 years\n", - " C#;JavaScript;SQL;TypeScript;HTML;CSS;Bash/Shell\n", - " C#;JavaScript;SQL;TypeScript;HTML;CSS;Bash/Shell\n", - " Bachelors\n", - " \n", - " \n", - " 4\n", - " 18 - 24 years old\n", - " 21426.000000\n", - " South Africa\n", - " South African rands (R)\n", - " Developer\n", - " Full-time\n", - " White or European descent\n", - " Male\n", - " Yearly\n", - " Yes\n", - " Slightly satisfied\n", - " Not seeking\n", - " Windows\n", + " Slightly satisfied\n", + " nan\n", + " Windows\n", " Computer Science\n", " 6-8 years\n", " 0-2 years\n", @@ -3204,9 +3853,9 @@ " \n", " 5\n", " 18 - 24 years old\n", - " 41671.000000\n", + " 41671.0\n", " United Kingdom\n", - " British pounds sterling (£)\n", + " British pounds sterling (¬£)\n", " Developer\n", " Full-time\n", " White or European descent\n", @@ -3226,7 +3875,7 @@ " \n", " 6\n", " 18 - 24 years old\n", - " 120000.000000\n", + " 120000.0\n", " United States\n", " U.S. dollars ($)\n", " Developer\n", @@ -3236,7 +3885,7 @@ " Yearly\n", " Yes\n", " Slightly satisfied\n", - " Not seeking\n", + " nan\n", " MacOS\n", " Computer Science\n", " 9-11 years\n", @@ -3246,31 +3895,9 @@ " No Degree\n", " \n", " \n", - " 7\n", - " 25 - 34 years old\n", - " 93336.000000\n", - " Nigeria\n", - " U.S. dollars ($)\n", - " Non developer\n", - " Full-time\n", - " Black or African descent\n", - " Female\n", - " Yearly\n", - " Yes\n", - " Slightly satisfied\n", - " Not seeking\n", - " Windows\n", - " Computer Science\n", - " 0-2 years\n", - " 3-5 years\n", - " Matlab;SQL;Kotlin;Bash/Shell\n", - " JavaScript;TypeScript;HTML;CSS\n", - " Bachelors\n", - " \n", - " \n", " 8\n", " 35 - 44 years old\n", - " 250000.000000\n", + " 250000.0\n", " United States\n", " U.S. dollars ($)\n", " Developer\n", @@ -3280,7 +3907,7 @@ " Yearly\n", " Yes\n", " Moderately satisfied\n", - " Not seeking\n", + " nan\n", " MacOS\n", " Arts and Science\n", " 30 or more years\n", @@ -3292,7 +3919,7 @@ " \n", " 13\n", " 35 - 44 years old\n", - " 26023.003365\n", + " 8767.0\n", " India\n", " U.S. dollars ($)\n", " Developer\n", @@ -3302,7 +3929,7 @@ " Yearly\n", " No\n", " Extremely satisfied\n", - " Not seeking\n", + " nan\n", " Linux-based\n", " Engineering\n", " 3-5 years\n", @@ -3314,9 +3941,9 @@ " \n", " 14\n", " 18 - 24 years old\n", - " 0.000000\n", + " 0.0\n", " Netherlands\n", - " Euros (€)\n", + " Euros (‚Ǩ)\n", " Developer\n", " Full-time\n", " White or European descent\n", @@ -3324,7 +3951,7 @@ " Monthly\n", " No\n", " Neither satisfied nor dissatisfied\n", - " Not seeking\n", + " nan\n", " Windows\n", " No major\n", " 0-2 years\n", @@ -3333,97 +3960,163 @@ " Java;JavaScript;PHP;VB.NET;HTML;CSS\n", " No Degree\n", " \n", + " \n", + " 17\n", + " 35 - 44 years old\n", + " 47904.0\n", + " Sweden\n", + " Swedish kroner (SEK)\n", + " Developer\n", + " Full-time\n", + " White or European descent\n", + " Male\n", + " Monthly\n", + " Yes\n", + " Moderately satisfied\n", + " nan\n", + " Windows\n", + " Business\n", + " 6-8 years\n", + " 0-2 years\n", + " C#;F#;Haskell;SQL;Ocaml\n", + " C#;SQL;HTML;CSS;Bash/Shell\n", + " Bachelors\n", + " \n", + " \n", + " 18\n", + " 35 - 44 years old\n", + " 8767.0\n", + " India\n", + " Swedish kroner (SEK)\n", + " Developer\n", + " Full-time\n", + " South Asian\n", + " Female\n", + " Monthly\n", + " Yes\n", + " Slightly satisfied\n", + " nan\n", + " Windows\n", + " No major\n", + " 0-2 years\n", + " 3-5 years\n", + " Python;R\n", + " C;C++;C#\n", + " Bachelors\n", + " \n", + " \n", + " 20\n", + " 35 - 44 years old\n", + " 95968.0\n", + " Australia\n", + " Australian dollars (A$)\n", + " Developer\n", + " Full-time\n", + " South Asian\n", + " Male\n", + " Yearly\n", + " Yes\n", + " Slightly satisfied\n", + " nan\n", + " MacOS\n", + " Engineering\n", + " 15-17 years\n", + " 12-14 years\n", + " C;C++;Go;Python;SQL;Swift;Kotlin\n", + " C;C++;Go;Python;SQL;Swift\n", + " Bachelors\n", + " \n", " \n", "\n", "" ], "text/plain": [ - " Age SalaryUSD Country \\\n", - "1 35 - 44 years old 70841.000000 United Kingdom \n", - "2 35 - 44 years old 153030.333333 United States \n", - "3 35 - 44 years old 165809.207657 United States \n", - "4 18 - 24 years old 21426.000000 South Africa \n", - "5 18 - 24 years old 41671.000000 United Kingdom \n", - "6 18 - 24 years old 120000.000000 United States \n", - "7 25 - 34 years old 93336.000000 Nigeria \n", - "8 35 - 44 years old 250000.000000 United States \n", - "13 35 - 44 years old 26023.003365 India \n", - "14 18 - 24 years old 0.000000 Netherlands \n", - "\n", - " Currency DevType Employment \\\n", - "1 British pounds sterling (£) Developer Full-time \n", - "2 British pounds sterling (£) Manager Full-time \n", - "3 U.S. dollars ($) Developer Full-time \n", - "4 South African rands (R) Developer Full-time \n", - "5 British pounds sterling (£) Developer Full-time \n", - "6 U.S. dollars ($) Developer Full-time \n", - "7 U.S. dollars ($) Non developer Full-time \n", - "8 U.S. dollars ($) Developer Full-time \n", - "13 U.S. dollars ($) Developer Full-time \n", - "14 Euros (€) Developer Full-time \n", + " Age SalaryUSD Country \\\n", + "1 35 - 44 years old 70841.0 United Kingdom \n", + "4 18 - 24 years old 21426.0 South Africa \n", + "5 18 - 24 years old 41671.0 United Kingdom \n", + "6 18 - 24 years old 120000.0 United States \n", + "8 35 - 44 years old 250000.0 United States \n", + "13 35 - 44 years old 8767.0 India \n", + "14 18 - 24 years old 0.0 Netherlands \n", + "17 35 - 44 years old 47904.0 Sweden \n", + "18 35 - 44 years old 8767.0 India \n", + "20 35 - 44 years old 95968.0 Australia \n", + "\n", + " Currency DevType Employment \\\n", + "1 British pounds sterling (¬£) Developer Full-time \n", + "4 South African rands (R) Developer Full-time \n", + "5 British pounds sterling (¬£) Developer Full-time \n", + "6 U.S. dollars ($) Developer Full-time \n", + "8 U.S. dollars ($) Developer Full-time \n", + "13 U.S. dollars ($) Developer Full-time \n", + "14 Euros (‚Ǩ) Developer Full-time \n", + "17 Swedish kroner (SEK) Developer Full-time \n", + "18 Swedish kroner (SEK) Developer Full-time \n", + "20 Australian dollars (A$) Developer Full-time \n", "\n", " RaceEthnicity Gender SalaryType Hobby \\\n", "1 White or European descent Male Yearly Yes \n", - "2 White or European descent Non-conforming Yearly Yes \n", - "3 White or European descent Male Yearly No \n", "4 White or European descent Male Yearly Yes \n", "5 White or European descent Male Yearly Yes \n", "6 White or European descent Male Yearly Yes \n", - "7 Black or African descent Female Yearly Yes \n", "8 White or European descent Male Yearly Yes \n", "13 South Asian Non-conforming Yearly No \n", "14 White or European descent Male Monthly No \n", + "17 White or European descent Male Monthly Yes \n", + "18 South Asian Female Monthly Yes \n", + "20 South Asian Male Yearly Yes \n", "\n", " JobSatisfaction JobSearchStatus OperatingSystem \\\n", "1 Moderately dissatisfied Seeking Linux-based \n", - "2 Moderately satisfied Not seeking Linux-based \n", - "3 Neither satisfied nor dissatisfied Not seeking Windows \n", - "4 Slightly satisfied Not seeking Windows \n", + "4 Slightly satisfied nan Windows \n", "5 Moderately satisfied Seeking Linux-based \n", - "6 Slightly satisfied Not seeking MacOS \n", - "7 Slightly satisfied Not seeking Windows \n", - "8 Moderately satisfied Not seeking MacOS \n", - "13 Extremely satisfied Not seeking Linux-based \n", - "14 Neither satisfied nor dissatisfied Not seeking Windows \n", + "6 Slightly satisfied nan MacOS \n", + "8 Moderately satisfied nan MacOS \n", + "13 Extremely satisfied nan Linux-based \n", + "14 Neither satisfied nor dissatisfied nan Windows \n", + "17 Moderately satisfied nan Windows \n", + "18 Slightly satisfied nan Windows \n", + "20 Slightly satisfied nan MacOS \n", "\n", " UndergradMajor YearsCoding YearsCodingProf \\\n", "1 Other Science 30 or more years 18-20 years \n", - "2 Computer Science 24-26 years 6-8 years \n", - "3 Computer Science 18-20 years 12-14 years \n", "4 Computer Science 6-8 years 0-2 years \n", "5 Computer Science 6-8 years 3-5 years \n", "6 Computer Science 9-11 years 0-2 years \n", - "7 Computer Science 0-2 years 3-5 years \n", "8 Arts and Science 30 or more years 21-23 years \n", "13 Engineering 3-5 years 3-5 years \n", "14 No major 0-2 years 0-2 years \n", + "17 Business 6-8 years 0-2 years \n", + "18 No major 0-2 years 3-5 years \n", + "20 Engineering 15-17 years 12-14 years \n", "\n", " LanguageDesireNextYear \\\n", "1 Go;Python \n", - "2 Go;Python \n", - "3 C#;JavaScript;SQL;TypeScript;HTML;CSS;Bash/Shell \n", "4 Assembly;C;C++;Matlab;SQL;Bash/Shell \n", "5 C#;Go;Java;JavaScript;Python;SQL;TypeScript;HT... \n", "6 C;Go;JavaScript;Python;HTML;CSS \n", - "7 Matlab;SQL;Kotlin;Bash/Shell \n", "8 Erlang;Go;Python;Rust;SQL \n", "13 Java;Python \n", "14 Java;Python \n", + "17 C#;F#;Haskell;SQL;Ocaml \n", + "18 Python;R \n", + "20 C;C++;Go;Python;SQL;Swift;Kotlin \n", "\n", " LanguageWorkedWith EdLevel \n", "1 JavaScript;Python;Bash/Shell Bachelors \n", - "2 JavaScript;Python;Bash/Shell Associate \n", - "3 C#;JavaScript;SQL;TypeScript;HTML;CSS;Bash/Shell Bachelors \n", "4 C;C++;Java;Matlab;R;SQL;Bash/Shell No Degree \n", "5 Java;JavaScript;Python;TypeScript;HTML;CSS Bachelors \n", "6 JavaScript;HTML;CSS No Degree \n", - "7 JavaScript;TypeScript;HTML;CSS Bachelors \n", "8 Assembly;CoffeeScript;Erlang;Go;JavaScript;Lua... No Degree \n", "13 Java Bachelors \n", - "14 Java;JavaScript;PHP;VB.NET;HTML;CSS No Degree " + "14 Java;JavaScript;PHP;VB.NET;HTML;CSS No Degree \n", + "17 C#;SQL;HTML;CSS;Bash/Shell Bachelors \n", + "18 C;C++;C# Bachelors \n", + "20 C;C++;Go;Python;SQL;Swift Bachelors " ] }, - "execution_count": 309, + "execution_count": 948, "metadata": {}, "output_type": "execute_result" } @@ -3441,14 +4134,14 @@ }, { "cell_type": "code", - "execution_count": 310, + "execution_count": 949, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Total : 1497200\n", + "Total : 1121\n", "Total missing : 0\n", "Missing Percentage: 0.0 %\n" ] @@ -3475,13 +4168,13 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 950, "metadata": {}, "outputs": [], "source": [ "na_vals = ['NA', 'Missing']\n", - "survey_main_df = pd.read_csv(r'C:\\Users\\User\\Stack_Data\\survey_results_public_2019.csv', na_values=na_vals)\n", - "schema_df = pd.read_csv(r'C:\\Users\\User\\Stack_Data\\survey_results_public_2019.csv')" + "survey_main_df = pd.read_csv(r\"D:\\project\\Stackoverflow-Analysis\\Data\\survey_results_sample_2019.csv\", na_values=na_vals)\n", + "schema_df = pd.read_csv(r\"D:\\project\\Stackoverflow-Analysis\\Data\\survey_results_sample_2019.csv\")" ] }, { @@ -3493,7 +4186,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 951, "metadata": {}, "outputs": [], "source": [ @@ -3504,7 +4197,7 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 952, "metadata": {}, "outputs": [], "source": [ @@ -3523,7 +4216,7 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 953, "metadata": {}, "outputs": [ { @@ -3621,13 +4314,13 @@ " Slightly satisfied\n", " Yes\n", " Designer;Developer, back-end;Developer, front-...\n", - " Bachelor’s degree (BA, BS, B.Eng., etc.)\n", + " Bachelor‚Äôs degree (BA, BS, B.Eng., etc.)\n", " Employed full-time\n", " NaN\n", " Man\n", " Yes\n", " Slightly satisfied\n", - " I’m not actively looking, but I am open to new...\n", + " I‚Äôm not actively looking, but I am open to n...\n", " Elixir;HTML/CSS\n", " HTML/CSS\n", " I am not primarily a developer, but I write co...\n", @@ -3653,7 +4346,7 @@ " EdLevel \\\n", "0 Primary/elementary school \n", "1 Secondary school (e.g. American high school, G... \n", - "2 Bachelor’s degree (BA, BS, B.Eng., etc.) \n", + "2 Bachelor‚Äôs degree (BA, BS, B.Eng., etc.) \n", "\n", " Employment Ethnicity Gender Hobbyist \\\n", "0 Not employed, and not looking for work NaN Man Yes \n", @@ -3663,7 +4356,7 @@ " JobSatisfaction JobStatus \\\n", "0 NaN NaN \n", "1 NaN I am actively looking for a job \n", - "2 Slightly satisfied I’m not actively looking, but I am open to new... \n", + "2 Slightly satisfied I‚Äôm not actively looking, but I am open to n... \n", "\n", " LanguageDesireNextYear \\\n", "0 C;C++;C#;Go;HTML/CSS;Java;JavaScript;Python;SQL \n", @@ -3686,7 +4379,7 @@ "2 Web development or web design 1 " ] }, - "execution_count": 116, + "execution_count": 953, "metadata": {}, "output_type": "execute_result" } @@ -3698,7 +4391,7 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 954, "metadata": {}, "outputs": [ { @@ -3726,7 +4419,7 @@ "dtype: object" ] }, - "execution_count": 117, + "execution_count": 954, "metadata": {}, "output_type": "execute_result" } @@ -3745,16 +4438,16 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 955, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Total : 1688777\n", - "Total missing : 169969\n", - "Missing Percentage: 10.064620728491684 %\n" + "Total : 1881\n", + "Total missing : 201\n", + "Missing Percentage: 10.685805422647528 %\n" ] } ], @@ -3786,23 +4479,20 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 956, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Man 77919\n", - "Woman 6344\n", - "Non-binary, genderqueer, or gender non-conforming 597\n", - "Man;Non-binary, genderqueer, or gender non-conforming 181\n", - "Woman;Non-binary, genderqueer, or gender non-conforming 163\n", - "Woman;Man 132\n", - "Woman;Man;Non-binary, genderqueer, or gender non-conforming 70\n", - "Name: Gender, dtype: int64" + "Gender\n", + "Man 87\n", + "Woman 7\n", + "Non-binary, genderqueer, or gender non-conforming 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 119, + "execution_count": 956, "metadata": {}, "output_type": "execute_result" } @@ -3813,7 +4503,7 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 957, "metadata": {}, "outputs": [], "source": [ @@ -3841,7 +4531,7 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 958, "metadata": {}, "outputs": [], "source": [ @@ -3850,7 +4540,7 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 959, "metadata": {}, "outputs": [ { @@ -3859,7 +4549,7 @@ "0" ] }, - "execution_count": 122, + "execution_count": 959, "metadata": {}, "output_type": "execute_result" } @@ -3871,20 +4561,20 @@ }, { "cell_type": "code", - "execution_count": 123, + "execution_count": 960, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Gender\n", - "Man 78100\n", - "Non-binary 4276\n", - "Woman 6507\n", + "Man 87\n", + "Non-binary 5\n", + "Woman 7\n", "Name: Gender, dtype: int64" ] }, - "execution_count": 123, + "execution_count": 960, "metadata": {}, "output_type": "execute_result" } @@ -3902,19 +4592,17 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 961, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEWCAYAAADcsGj7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqaUlEQVR4nO3de5wU1Z338c9vYBRkDCB4IYw6iYAaI14grpdsyy5CMgKZ6CYk3hhN1hieVSTe1hggREx8skpkJ+4maqKC+pg1CVGEIYsalU1iJCCst0RAHXW8MhgvKOAgv+ePqh5rmu6e6rl19cz3/XrNa7qqzjl1TnWd+vWpqq42d0dERCSJyopdARERkVwUpEREJLEUpEREJLEUpEREJLEUpEREJLEUpEREJLEUpCQnM5tuZq+b2RYzG1KkOowzs8ZuWM8ZZraiq9fTE5nZXDO7PXx9QLi/9OmG9Z5iZi+F6zuqq9dXLGZ2tpn9vtj1KBYFqR7MzBrMbGvYif9mZsvMbP+YecuBHwET3b3C3Td3bW2Ly93vcPeJXbkOM3sofB9278QybzWzszurvBjry/uhwd1fDPeXD7uhOtcC54frW9sN65MiUJDq+aa4ewUwDHgd+HHMfPsC/YCnCl2hBbRvRZhZFfD3gANfKG5tksnM+haY5UBy7J/tKKtH6o4RbVfTgaSXcPdtwK+AT6XnmdnuZnatmb0Yntb7qZn1N7NRwDNhsrfM7Hdh+uPN7M9m9nb4//hIWQ+Z2ffN7A/A+8AnzewQM7vPzN40s2fMbGqu+pnZXmZ2i5m9Eo427s6R7uNm9msz22Rmz5vZjMiyY8zsETN7y8xeNbPrzWy3yHI3s2+a2YZwHf9hZhYua3VKpY20fcxsvpk1hXU4P0yf78A4DfgTcCtQm9GmIWZ2r5m9E27XqzLqEms7mtkIM3s4fH+azOy/8mzvL5jZU+G2esjMDs1o+4jI9K1hnQYAy4GPh6PzLWb28Yxyq6LbwswGmtnPw/fj5bCcPpFt/gczu87M3gTmxmlDuN9uAfoA/2tmz4bzG8zsX83sceA9M+vbRjsbzOxSM3vczN4L67mvmS03s3fN7H4zG5xnG14WtusVM/vn6HazHH0rXDbOzBrN7GIzeyMs45xIuUPMbEm4P6wCDspYb879IXyvfmJm9Wb2HvAPZnaymT0dtullM7skV5sSyd3110P/gAbgpPD1HsBCYFFk+QJgCbAXsCdwL3B1uKyK4FN/33B6L+BvwFlAX+C0cHpIuPwh4EXgsHD5QOAl4Jxw+migCTgsR12XAf8FDAbKgRPD+eOAxvB1GbAGmAPsBnwSeA74XLh8DHBsuL4q4C/AzMg6HFgKDAIOADYBnw+XnQ38PmbabwJPA5Vhfe+Pbqsc7dsI/J+wjs3AvpFlvwj/9iD4EPFSui7AgLjbEbgT+E64nfoBn81Rl1HAe8CEcFtfFtZvt0jbR0TS3wpclfl+RJbPBW7Psd/cDdwQtmMfYBVwXmSb7wAuCNvWP24bctSzAVgH7B+W1VY7Gwg+OOwLDAfeAB4DjgJ2B34HfDfHuj8PvEawv+8B3BatD/n71riw3VeG9TqZ4IPd4Mj+cFe4zT4NvBx3fwjfq7eBEyLb8FXg78Plg4Gji31sKug4VuwK6K8L39ygE24B3go7xSvA4eEyCzvwQZH0xwHPh68zDzZnAasyyn8EODt8/RBwZWTZV4D/yUh/Q7ZOT3Aqcme6k2YsG8dHQervgBczln8buCVH+2cCv4lMO5GDXngguDx8fTa7BqlcaX9HeKANp08iT5ACPksQmIaG038FvhW+7hMuOziS/qrIQamQ7bgIuBGobGO/mA3cFZkuIzgQjou0vcNBiuDgvx3oH0l7GvBgZJtnvp+x2pCjng3A1wpoZwNwRmT5r4GfRKYvAO7Ose6bCYNOOD0iXR/a7lvjgK3R/YUgQB4b2R8OiSz7Qdz9IXyvFmUsfxE4D/hYW9s0iX863dfzfdHdBxF8MjwfeNjM9gP2JvgEuCY8FfIW8NtwfjYfB17ImPcCwSfQtJcirw8E/i5ddlj+GcB+WcreH3jT3f/WRlsOJDjVFC3zCoKDIWY2ysyWmtlrZvYOQecemlHGa5HX7wMVedaXK+3Had3W6OtsaoEV7t4UTv8/PjrltzfBAT1XeYVsx8sIDpCrwlNcX8tRn1bvpbvvDNc5PEf69jqQYKTwaqTuNxCMqNIyt13cNuQSLS9OO1+PvN6aZTrX/pFvH4jTtza7+47IdHr/yrY/RPtdnP0hc5v+E8Fo7YXwVOpxOdqUSLq42Et4cLfVYjO7geCT/WKCTniYu78co4hXCDpI1AEEna9lNZHXLwEPu/uEGGW/BOxlZoPc/a020j3v7iNzLP8JsBY4zd3fNbOZwJdirL9QrxKc6kvLecdkeB1iKtDHzNJBb3dgkJkdATxJMMqtBNZnKS/2dnT314Bzw/V+FrjfzFa6+8aMpK8Ah0fqaOE60/vB+wQH2bT9gPQdfYX8bMJLBCOpoRkH5FbVbmcbcomW11Y7OyLfPtBEYX0rahPB/rA/wYgbgn6WFmd/yNymfwZqLLhj93yCswKx7vJNAo2kegkL1BCck/5L+KnyJuA6M9snTDPczD6Xo4h6YJSZnR5ekP4KwfWTpTnSLw3Tn2Vm5eHfZ6IXrtPc/VWCC/L/aWaDw7SpLGWuAt4JL473t+AGhk+b2WfC5XsC7wBbzOwQYHqcbdMOdwEXhttrEPCvedJ+EfiQYFsdGf4dCvwPMC394YHgpoE9wnpPi+SPvR3N7Mtmlj5w/o3gYJXtVvC7gElmNj48cF1MEEz+GC5fB5webt/PAydG8r4ODDGzgXnaDLS8ryuA+Wb2MTMrM7ODzOzEXHkKaEMcbbWzI+4CzjGzQ81sD4LrpEDLiK2QvtUiy/7wKVrfaBN7fwjXu5sF3wEc6O7NBP2jO74e0GkUpHq+ey24E+od4PtArbunb9v9V4ILyX8KT4/dDxycrRAPvic1maCjbyY4LTM5cgorM/27wETgqwSfaF8DfkgwisjmLIJz8X8lOD8/M0uZHwJTCA70zxN8Yv0ZwU0aAJcApwPvEhwkct7d1kE3ERx8HycYudUTfPrN1vlrCa6Zvejur6X/gOuBMyy4C+78sA2vEVyAv5PgYFrodvwM8Gj4fi8BLnT35zMTufszwJkEX0doItimU9z9gzDJheG8twhOJd0dyfvXsH7PhaebWt3dl8U0gptcniYIOr8iuAaZS6w2xBGjne3m7suBOuBBgj70SLhoe/g/dt/K4nyCU3+vEVxjuiWy3kL7FQR9qyGsxzcJtknJsPDCmoi0k5lVAz9198zToe0t74fAfu5e22ZiSYRwJPMksHueU5vSDhpJiRQoPNV4cnjaczjwXeA3HSjvEDMbHZ6SPQb4ekfKk+5hwWOZdrPgu1Q/BO5VgOp8ClIihTPgewSnr9YSfB9rTt4c+e1JcB3iPYJrHfOBezpYR+l65xHc6PAswanerroG2qvpdJ+IiCSWRlIiIpJY+p5UJxo6dKhXVVUVuxoiIiVlzZo1Te6e9UECClKdqKqqitWrVxe7GiIiJcXMMp9m00Kn+0REJLEUpEREJLEUpEREJLEUpEREJLEUpEREJLF0d58kXl1dHRs3xv2lhl01Nga/MlFZWdlGyraNGDGCGTNmtJ1QRDqFgpQk3saNG1n7xNPs3GOvduUve/9tAF7f3rHdvez9NzuUX0QKpyAlJWHnHnux7VOT25W339PBT161N39mOSLSfXRNSkREEktBSkREEktBSkREEktBSkREEktBSkREEktBSkREEktBSkREEktBSkREEktBSkREEktBSkREEktBSkREEktBqpeoq6ujrq6u2NWQBNC+IKVED5jtJTryUxfSs2hfkFKikZSIiCSWgpSIiCSWgpSIiCSWgpSIiCSWgpSIiCSWgpSIiCSWgpSIiCSWgpSIiCSWgpSIiCSWgpSIiCRWj38skpk5cLu7nxVO9wVeBR5198lFrVzEggULWLx4MVOnTmXgwIHcdNNNTJ8+nYMOOojLLruM+fPnc+CBB/K9732PuXPn4u4tr4cMGVLs6kuJSqVSnVLO4sWLOfXUUzulrLaYGQ8//HCrug8YMID33nuPPffck7KyMt5++20GDx7Mtm3b2Lp1KwMGDGDAgAG88cYbDBs2jPfff78lTb9+/Xj11VeprKzk8MMPZ/ny5UyZMoUXXniBxx9/nKOPPppDDz2UO+64g9raWr7+9a/zm9/8huuuu45LLrmE5557rqXvHnPMMVn767PPPtsyf8899+TCCy/kxz/+MYMGDcqaZsyYMTnb39TU1JJn8+bNLWWNGDGizfRxjhXr16/PWWa0rOgx6MYbb2zZbpdeemnMdzIec/dOLTBpzGwLsAE43t23mlk1cDXQ2NlBauzYsb569ep25c11sKioqGDLli1UVFQwfvx4lixZQk1NDe7e8vqiiy5qs/wZM2YAlOSDRWfMmMGaZ19j26fa93b1e3opQLvzR8sZc9B+JbkNo6L7QmcFqZqaGu65555OKSuOlStXdlrd27PuE088EXfHzIgeQ3P11/vvv79l/tChQ2loaKCqqoojjjgia5r6+vqc658/f35LnnXr1rWUtWjRojbTxzlWTJs2LWeZ0bKix6C777671fYplJmtcfex2Zb1ltN9y4FJ4evTgDvTC8zsGDP7o5mtDf8fHM4/28wWm9lvzWyDmf1bV1VuwYIFOZdt2bKl5f+yZctwd+rr61m+fDnuzvLly9m8eXNXVU16sM48yHdngILOrXuhLrnkkpbAlPkhP1t/Xbp0aav5DQ0NADQ0NORMs2bNmqzrbmpqaun7y5Yta1VWtgcHR9PHOVasX78+Z5nRsqLHoMz3/pprrsm7jkL1+NN9oV8Ac8xsKTAauBn4+3DZX4GUu+8ws5OAHwD/FC47EjgK2A48Y2Y/dveXOrtyixcvjpVux44dADQ3N7fM27lzJwsXLmzzE1JjYyNbt25t+RRdSjZs2IB9UPwRv217hw0b3i3JbRi1YcMG+vfvX+xqlKxVq1bFSpfur+n/haSZPXt21tHUwoULWwJj9DgAcOWVV+4y8ommj3OsuOqqq3KWmWvdmYH63nvv7dRTfr1iJOXujwNVBKOozHd+IPBLM3sSuA44LLLsAXd/2923AU8DB2aWbWbfMLPVZrZ606ZNXVL/TO7eamdZsWJFt6xXRLpHelSV6b777tslOKWlR0C50sc5VmSWEZ2OlhU9BnW13jKSAlgCXAuMA6JXD+cBD7r7KWZWBTwUWbY98vpDsmwvd78RuBGCa1KdWuMczCy9bsrLy5k4cWKbeSorK4HSviZVbN7vY4zsQdekmpqailwTyaWioiLr/AkTJlBfX581UFVVVeVNH+dYUVVV1SowRcuMlhU9BnW1XjGSCt0MXOnuT2TMHwi8HL4+u1trFIp7V1TfvkGMLC8vp7y8HICysjJqa2u7rG4i0toxxxwTK126v6b/F5Jm3rx5WdPX1ta2BIj0MSBtzpw5edPHOVbMmjUrZ5mZ606vPz0vbcqUKXnXUaheE6TcvdHd/z3Lon8DrjazPwB9urlaAMycOTPnsvQnqoqKCiZNmoSZcfLJJ1NdXY2ZUV1drVvQpV3acxdWLjU1NZ1WVhydWfdCXXvttS0H5swDdLb+Onny5Fbz06OTqqqqnGly3YI+dOjQlr4/adKkVmVluwU9mj7OsWLUqFE5y4yWFT0GZb73nX0Leo8PUu6+y7jZ3R9K337u7o+4+yh3P8HdZ7t7VTj/Vnc/P5Jnsrs/1FX1TI+mpk6dyrnnngvA9OnTmTt3LmVlZcybN4/a2lpGjx5NbW1tq9cixdad+2FmYIDge1IAe+65JwMHDgRg8ODBLTeIDBgwgH322QeAYcOGtUozbNgwIDglXl1dDQSjgdGjRwNw9NFHc8YZZwAftTP9wfLiiy9u1Xdz9dfo/FmzZjFgwADmzJmTM00+0TzRsuKkjyNfmbmOQdHt1tl6/PekulNHvifV1fQ9KX1PKq2U9wXpmfQ9KRERKUkKUiIiklgKUiIiklgKUiIiklgKUiIiklgKUiIiklgKUiIiklgKUiIikli96QGzvVquX+2U3kf7gpQSBaleotR/A0k6j/YFKSU63SciIomlICUiIomlICUiIomlICUiIomlICUiIomlICUiIomlICUiIomlICUiIomlICUiIomlICUiIomlICUiIomlICUiIomlB8xKSSh7/036Pb20nXk3A7Q7f7QOsF+HyhCRwihISeJ19KclGht3AFBZ2dEAs59+5kKkmylISeLppyVEei9dkxIRkcRSkBIRkcRSkBIRkcRSkBIRkcRSkBIRkcRSkBIRkcRSkBIRkcRSkBIRkcRSkBIRkcRSkBIRkcRSkBIRkcTSs/skkerq6ti4cWPs9I2NjQBUVlZ2el1GjBih5weKFImClCTSxo0bWf/kYxxQ8WGs9O+92weAbTte7dR6vLilT6eWJyKFUZCSxDqg4kNmjd0SK+1VqysAYqePK12uiBSHrkmJiEhiKUiJiEhiKUiJiEhiKUiJiEhiKUiJiEhiKUiJiEhiKUiJiEhiKUiJiEhiKUiJiEhiKUiJiEhiKUiJiEhitRmkzKyPmd3fHZURERGJajNIufuHwPtmNrAb6iPdoK6ujrq6umJXQ7qR3nMpVXGfgr4NeMLM7gPeS890d/3ITgkq5HeapGfQey6lKm6QWhb+iYiIdJtYQcrdF5pZf+AAd3+mi+skIiICxLy7z8ymAOuA34bTR5rZki6sl4iISOxb0OcCxwBvAbj7OuATXVIjERGRUNwgtcPd386Y551dGRERkai4N048aWanA33MbCQwA/hj11VLREQk/kjqAuAwYDtwJ/AOMLOL6iQiIgLEv7vvfeA74Z+IiEi3yBukzOxe8lx7cvcvdHqNREREQm2d7rsWmA88D2wFbgr/tgBPdm3VepcFCxaQSqW4/vrraWpq4oILLmDz5s05069fv57q6mo9SUAKdvXVV5NKpbjmmmtavV61ahXjxo1jzZo13HDDDaRSKX7+85+3en3bbbeRSqW48847W82H1vtk9HU0T3QdudJHRedH8+YTrVc0T5x+FSdNKSi0He1pd/S9ufzyy0mlUsyaNau9Vc7J3Nu+Sc/MVrp7qq15Gcsd+JG7XxxOXwJUuPvcjlUZzOxWYKm7/ypj/lhgWrEe1zR27FhfvXp1u/KmUh9typqaGpYsWUJNTQ0XXXRR1vTTpk2joaGBqqoqFi1aVNC6ZswINk+Sn+U2Y8YMtjX8mVljt8RKf9XqCoDY6eO6anUF/ao+k+htFUf0PY/ua1EVFRVs2bKl5X8hVq5c2WqfBFpeNzQ0ZF3H0KFDs6aP7s/RMpuamlry1tfX56xLtH3R9Y0fP77NfjV//vw205SCQtvRnnZH35voe7xy5cqC62tma9x9bLZlcW+c2NvMPhkp8BPA3m3k2Q6camZDY66jw9x9dWcFKDPr0xnlxLFgwYJW0/fccw/uzvLly7N+slm/fn3LTtHQ0KDRlMR29dVX51yWDkyFBiiAa665ptU+GX2dax250qf358z9PJo312jqhhtuyLm+ZcuW5e1XTU1NLF++PG+aUlBoO9rT7sz3JqqzR1Nxb0H/FvCQmT0XTlcB57WRZwdwY5i31Q0XZnYgcDNBoNsEnOPuL4YjpHeAscB+wGWZo6WIk8zsQmBf4CJ3X2pm44BL3H2ymc0FDgA+Gf5f4O514frvBvYH+gH/7u43hvO3AD8CPgfUm9mR7n5KuGwCMN3dT22j3QVbvHhx1vk7d+5k4cKFu3yyueqqq1pNX3nllQWNphobG9m6dWvLp+sk2rBhA7s1F//nzl5/v4wPNmxI9LaKY8OGDfTv359169Z1Sfn33ntvp5WV3p8z9/Oo2bNnZx1N3XHHHTnz7NixA8jdrxYuXEj6zFKuNKWg0Ha0p9353pv2jKTyiXUUcPffAiOBC8O/g939v2Nk/Q/gjCw/83E9sMjdRwN3ANFzKcOAzwKTgf+bp+wq4ERgEvBTM+uXJc0hBAHnGOC7ZlYezv+au48hCIYzzGxIOH8A8KS7/x1wJXComaVHjOcAt2SuwMy+YWarzWz1pk2b8lS3cM3NzaxYsWKX+ZmfXDKnRUpZrk/oUe0Z7aXl6lf33Xcfzc3NedOUgkLb0Z52d+cxJ+5ICmAMQWDoCxxhZrh73o/v7v6OmS0i+PLv1sii44D0iOQ24N8iy+52953A02a2b57i7wrTbQhHeIdkSbPM3bcD283sDYJRVyNBYDolTLM/QQDeDHwI/Dqsu5vZbcCZZnZLWOdpWdp4I8GIkbFjx3bqUzjKy8uZOHHiLvMzzwGnz+nHVVlZCZTGNali23ePnfSrGpnobRVHeiTY1NRU5Jq0Lb0/Z+7nURUVFe0uP1e/mjBhAvX19TQ3N+dMUwoKbUd72p3vvelscR8wexvBnX6fBT4T/mW9yJXFAuDrBKOUXKIH9+3RVYfr/76ZrTOzdTnyZJvOLOtDoG94SvAk4Dh3PwJYS3DaD2Bb+COPabcAZwKnAb909x152tBup56a/QxiWVkZtbW1u8zPPOc7Z86crqiW9EDV1dVdUu6UKVM6raz0/pzv2sa8efOyzj/jjDNy5unbN/hMnqtf1dbWYmZ505SCQtvRnnbne29y3ZjTXnFP+o8FTnD3/+PuF4R/sU7Su/ubwF0EgSrtj8BXw9dnAL9vo4zvuPuR7n5kZPaXzazMzA4iuO4U9ydEBgJ/c/f3zewQ4Ng8630FeAWYBdwas/yCzZw5s9V0TU0NZkZ1dTVDhgzZJf2oUaNafdocMWJEV1VNephvf/vbOZelRyftGaVceumlrfbJ6Otc68iVPr0/Z+7n0bxjxozJWo/zzmt9qTyaZ9KkSXn71dChQ6murs6bphQU2o72tDvzvYnKd72qPeIGqScJbmRor/lA9C6/GcA5ZvY4cBbBda5CPQM8DCwHvunu22Lm+y3BiOpxYB7wpzbS3wG85O5Pt6OOsaVHU1OnTqW2tpbRo0fn/UQza9YsBgwYoFGUFCw9mpoyZUqr13PnzqWsrIx58+a1jEhqa2tbvT733HMBmD59eqv50HqfjL6O5omuI1f6qOj8aN58ovWK5onTr+KkKQWFtqM97Y6+N8cffzzQ+aMoiP89qQeBI4FVRE6h9YYnTpjZ9cBad/95W2k78j2p7qTvScXXE78nJZI0+b4nFffGibmdV53SYWZrgPeAi4tdFxGR3ijuA2YfDr/bNNLd7zezPYBu+7JrsYS3qYuISJHEvbvvXOBXQPrr3MOBu7uoTiIiIkD8Gyf+BTiB4GkQuPsGYJ+uqpSIiAjED1Lb3f2D9ISZ9UU/Hy8iIl0sbpB62MyuAPqHz7D7JdB5D+sSERHJIm6QupzgQbBPAN8geNyQfqVXRES6VN4gZWY1ZvYv7r7T3W8CDiR4+sQVZvalbqmhiIj0Wm2NpC4DlkSmdyN40Ow4YHoX1UlERARo+3tSu7n7S5Hp34fP4nvTzPI9MFYSTM/66330nkupaitIDY5OuPv5kcm2fplXEqrUf8BPCqf3XEpVW6f7Hg2/yNuKmZ1H8Bw/ERGRLtPWSOpbwN1mdjrwWDhvDLA78MUurJeIiEj+IOXubwDHm9k/AoeFs5e5+++6vGYiItLrxX3A7O8ABSYREelWcb/MKyIi0u0UpEREJLEUpEREJLEUpEREJLEUpEREJLEUpEREJLEUpEREJLFifU9KpBhe3NKHq1ZXxEr7wrt9AGKnL6QOozq1RBEphIKUJFKhT+0e0NgIQL/Kyk6tx6h21EVEOo+ClCSSntotIqBrUiIikmAKUiIiklgKUiIiklgKUiIiklgKUiIiklgKUiIiklgKUiIiklgKUiIiklgKUiIiklgKUiIiklgKUiIiklgKUiIiklh6wKwkXl1dHRs3boydvjF8InplB56IPmLECD3kViQBFKQk8TZu3Mjap9bCoJgZ3g7+bbJN7VvhW+3LJiKdT0FKSsMg2DluZ6ykZQ8FZ7Hjps+VX0SKT71RREQSS0FKREQSS0FKREQSS0FKREQSS0FKREQSS0FKREQSS0FKREQSS0FKREQSS0FKREQSS0FKREQSS0FKREQSS0FKqKuro66urtjVkJj0fklvogfMSkE/gyHFp/dLehONpEREJLEUpEREJLEUpEREJLEUpEREJLEUpEREJLEUpEREJLEUpEREJLEUpEREJLEUpEREJLEUpEREJLESHaTM7DozmxmZ/m8z+1lker6ZXVSUynWy9evXU11dzcaNG2lqauKCCy5g8+bNxa6WJNz48eNJpVKcdNJJAKRSqZa/CRMmkEqlmDhxYqvXNTU1pFIpTjnlFKZMmUIqlaKmpobTTz+dVCrFtGnTuOiii0ilUlx22WV85StfIZVKcfrpp3P55ZeTSqWYNWsWV199NalUimuuuQaABQsWkEqluP7667nttttIpVLceeedrFq1inHjxrFmzZpW86Ovo/t/NP39999PKpXiwQcf3KVfRNNF5eo/udYRR2aZcfpoR/pxqR0Dotu2s5m7d3qhncXMvgx82d2nmlkZ8GfgA3c/Llz+CDDT3R8tZj3Txo4d66tXr25X3mnTptHQ0EBVVRVHHHEES5Ysoaamhosu6voYPGPGDIDEPrR0xowZrH15LTvH7YyVvuyh4LNX3PTZ8h81/KhEbw8I3q9UKtUyf+XKla2mu1O+dVdUVLBly5aW/9lUVVW17P9NTU0t6bdt28aOHTvo27cvkyZNatUvTj755JZ09fX1LWXNnz8/a/+J9rHoOqJ5c8ksM9c68uUpREfyFkN02y5atKjg/Ga2xt3HZluW6JEU8Afg+PD1YcCTwLtmNtjMdgcOBQaZ2Voze8LMbg7nY2YNZvYDM3vEzFab2dHhSOxZM/tmmKbCzB4ws8fC/DXh/Coz+4uZ3WRmT5nZCjPr31WNXL9+PQ0NDQA0NDRQX1+Pu7N8+fKS+SQl3W/8+PGtposVoADOPPPMnMvSgSlXgAJa7f/R9Dt27ABgx44dLF26tKVfPPDAA63SpUdETU1NLF++fJf+k9nHsuXNJbPMDRs2ZF1HvjyF9OOO5C2GzG3b2aOpRI+kIAg2QAqoBgwYDjwCvA1cBwwDxrv7ejNbBDzm7gvCfD9095+Y2XXAeOAEoB/wlLvvY2Z9gT3c/R0zGwr8CRgJHAhsBMa6+zozuwtY4u6356tre0dS6U8hmcrLy5k0aVKXf5I69dRT2bp1KyNHjuzS9bTXhg0b2LJzCzsnd9NIamkZFWUVid4e/fv3p6mpqdhVKYry8nLcvSWAAS0jovnz51NfX09zc3Or/pOrj0Xz5pJZ5vDhw3n55Zd3WUe+PIX0447kLYbMbdue0VQpj6Tgo9HU8QTB6ZHI9MvA8+6+Pky7kCCgpS0J/z8BPOru77r7JmCbmQ0iCHo/MLPHgfsJAuC+YZ7n3X1d+HoNUJWtcmb2jXCktnrTpk3tamCuztPc3MyKFSvaVaZIT9Xc3NwqQMFHo7T77ruP5ubmlnTp/pOrj0Xz5pJZZkNDQ9Z15MtTSD/uSN5iyNy2+bZ1e5TC70n9kSAgHU5wuu8l4GLgHeAxYEKevNvD/zsjr9PTfYEzgL2BMe7eHI6++mXkBfgQyHq6z91vBG6EYCQVt1FR6fPxmcrLy5k4cWJ7iixIZWUlkPxrUt2mAkYOH5no7QFoJJUxkgKYMGFCq1FIuv/k6mPRvLlklpk5ksrWR3PVI46O5C2GzG1bVVXVqeWXykhqMvCmu3/o7m8Cg4DjgFuAKjMbEaY9C3i4gLIHAm+EAeofCE7zdbtZs2a1mi4vLwegrKyM2traYlRJSkB6P0mCAw44oMvX0adPHyDoF9/5zndaLZs3bx4AtbW1mFlLunT/yexj2fLmklnm7Nmzs64jX55C+nFH8hZD5radM2dOp5ZfCkHqCSB9vSg67213bwTOAX5pZk8QjJB+WkDZdwBjzWw1wajqr51T5cKMGjWq5dNHVVUVJ598MmZGdXU1Q4YMKUaVpAQ88MADraZXrlxZpJrA7bfnvlybHqnkG7FE9/9o+r59g5M9ffv2ZfLkyS39Yvz48a3SjRkzBoChQ4dSXV29S//J7GPZ8uaSWebIkSOzriNfnkL6cUfyFkPmth0xYkT+DAVKfJAKR08fc/dZkXlnu/vB4esH3P0odz/c3b/m7tvD+VXu3hS+vtXdz4/kr3L3pvDvOHcf6+7/7O6HuntD+PfpSPpr3X1uV7Zz1qxZDBgwgDlz5lBbW8vo0aMT/wlKii89mtptt912Wbb77rsD0K9fv1avBw8eDMCQIUMYOHAgAIMHD2457VtVVcXYscE17GOPPZZhw4YBwWnh448PbrZNpVJUV1cDMGXKFCC4AQdg6tSpnHvuuQBMnz6duXPnUlZWxrx581rNj76O7v/R9FdccQUAs2fP3qVfRNNF5eo/udYRR2aZcfpoR/pxqR0Dotu2syX+7r5S0pHvSRWTvie1a/5S+Z6USE9Q6nf3iYhIL6UgJSIiiaUgJSIiiaUgJSIiiaUgJSIiiaUgJSIiiaUgJSIiiaUgJSIiiVUKD5iVLtbZjzGRrqX3S3oTBSlpeYKBlAa9X9Kb6HSfiIgkloKUiIgkloKUiIgkloKUiIgkloKUiIgkloKUiIgkloKUiIgkloKUiIgkloKUiIgkloKUiIgkloKUiIgkloKUiIgklh4wK6XhLSh7KOZnqreCf7HTZ8s/vH1ZRaRzKUhJ4hX60xSN3ghA5fDK9q1wuH4OQyQpFKQk8fTTFCK9l65JiYhIYilIiYhIYilIiYhIYilIiYhIYilIiYhIYpm7F7sOPYaZbQJeKCDLUKCpi6qTdL217Wp376J2x3Ogu++dbYGCVBGZ2Wp3H1vsehRDb2272t27qN0dp9N9IiKSWApSIiKSWApSxXVjsStQRL217Wp376J2d5CuSYmISGJpJCUiIomlICUiIomlIFUkZvZ5M3vGzDaa2eXFrk9XMbP9zexBM/uLmT1lZheG8/cys/vMbEP4f3Cx69oVzKyPma01s6XhdI9vt5kNMrNfmdlfw/f9uF7S7m+F+/iTZnanmfXrqe02s5vN7A0zezIyL2dbzezb4bHuGTP7XCHrUpAqAjPrA/wHUA18CjjNzD5V3Fp1mR3Axe5+KHAs8C9hWy8HHnD3kcAD4XRPdCHwl8h0b2j3vwO/dfdDgCMI2t+j221mw4EZwFh3/zTQB/gqPbfdtwKfz5iXta1hf/8qcFiY5z/DY2AsClLFcQyw0d2fc/cPgF8ANUWuU5dw91fd/bHw9bsEB6zhBO1dGCZbCHyxKBXsQmZWCUwCfhaZ3aPbbWYfA1LAzwHc/QN3f4se3u5QX6C/mfUF9gBeoYe2291XAm9mzM7V1hrgF+6+3d2fBzYSHANjUZAqjuHAS5HpRnrBD5abWRVwFPAosK+7vwpBIAP2KWLVusoC4DJgZ2ReT2/3J4FNwC3hac6fmdkAeni73f1l4FrgReBV4G13X0EPb3eGXG3t0PFOQao4LMu8Hv1dADOrAH4NzHT3d4pdn65mZpOBN9x9TbHr0s36AkcDP3H3o4D36DmnuHIKr7/UAJ8APg4MMLMzi1urxOjQ8U5Bqjgagf0j05UEpwZ6JDMrJwhQd7j74nD262Y2LFw+DHijWPXrIicAXzCzBoLTuf9oZrfT89vdCDS6+6Ph9K8IglZPb/dJwPPuvsndm4HFwPH0/HZH5Wprh453ClLF8WdgpJl9wsx2I7iouKTIdeoSZmYE1yf+4u4/iixaAtSGr2uBe7q7bl3J3b/t7pXuXkXw/v7O3c+k57f7NeAlMzs4nDUeeJoe3m6C03zHmtke4T4/nuD6a09vd1Suti4Bvmpmu5vZJ4CRwKq4heqJE0ViZicTXLPoA9zs7t8vbo26hpl9Fvgf4Ak+ujZzBcF1qbuAAwg6+JfdPfNCbI9gZuOAS9x9spkNoYe328yOJLhZZDfgOeAcgg/EPb3d3wO+QnBH61rgn4EKemC7zexOYBzBT3K8DnwXuJscbTWz7wBfI9g2M919eex1KUiJiEhS6XSfiIgkloKUiIgkloKUiIgkloKUiIgkloKUiIgkloKUSA9hZqeYmZvZIcWui0hnUZAS6TlOA35P8OVhkR5BQUqkBwifjXgC8HXCIGVmZWb2n+FvHC01s3oz+1K4bIyZPWxma8zsv9OPsxFJGgUpkZ7hiwS/4bQeeNPMjgZOBaqAwwmefnActDxL8cfAl9x9DHAz0COfeCKlr2+xKyAineI0gsdsQfBA29OAcuCX7r4TeM3MHgyXHwx8GrgveMwcfQh+XkIkcRSkREpc+DzAfwQ+bWZOEHQc+E2uLMBT7n5cN1VRpN10uk+k9H0JWOTuB7p7lbvvDzwPNAH/FF6b2pfggaAAzwB7m1nL6T8zO6wYFRdpi4KUSOk7jV1HTb8m+PG9RuBJ4AaCJ8+/7e4fEAS2H5rZ/wLrCH77SCRx9BR0kR7MzCrcfUt4SnAVcEL4m08iJUHXpER6tqVmNojgt53mKUBJqdFISkREEkvXpEREJLEUpEREJLEUpEREJLEUpEREJLEUpEREJLH+P0iVskUGtOHQAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABqAAAANjCAYAAADF7tvpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABtM0lEQVR4nOzdd5gVhb3/8Q8gRVBEjEEpajTuJoAQbIgt0u0KsSNErwVbNJoY8cYbI4kGW4wlsUUx9ihixHtREbGLFTV2oyIKeC0gIl3Y8/vD3+51XUBYJq7I6/U8Prpz5sx8z3AO6nkzM/VKpVIpAAAAAAAAUJD6dT0AAAAAAAAA3y4CFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAALKOLL7445eXlNf7afPPNs/fee+fKK6/MZ599tkL7mDNnTk499dR07do1nTp1yuDBgwua/uszefLklJeX55hjjqnrUar5Js31wQcfpH379ikvL8/o0aO/9v336NEj5eXlmTx58te+7+X1yCOP5J///GfVzyNHjkx5eXmuueaaqmUDBw5MeXl5Zs6cWQcTLtm34fP8TXPmmWemvLw8TzzxRF2PAgDAV1itrgcAAICVTc+ePfPDH/4wSbJo0aLMmjUrTz/9dM4777w899xz+fOf/1zrbV966aUZOXJkOnbsmG233Tbf+973ihp7lde8efMcd9xx2Xjjjet6lIwaNSqLFi3K6quvnhEjRmTXXXet65G+kW688cacccYZX/mZ6tevX7beeus0btz4a5ps2fg8AwCwKhOgAABgOfXq1Sv9+/evtqxUKuXoo4/O2LFjM378+HTr1q1W23755ZeTJH/84x+z4YYbrvCs/J/mzZvnZz/7WV2PkSS54447sskmm6SsrCz33HNPpkyZkjZt2nxt+68MNauvvvrXts/amDZt2jKt9+XP4zeFzzMAAKsyl+ADAIAC1KtXr+pL8KeeeqrW21mwYEGSZO211y5kLr55Xn755bz++uvZdttt06dPn1RUVGTEiBFf6wybbLJJ1l577ayzzjpf635XNT7PAACsygQoAAAoSIMGDZIkjRo1qvHY+PHjc+ihh2aLLbbIj370o+y///65++67qx5/4oknUl5enieffDJJstVWW1W7R8+CBQty2WWXZdddd03Hjh3TtWvXHH300XnhhReq7afy/jh33XVXDjvssGy22Wbp3r173n333STJrFmzct5556VXr17p2LFjdthhh5x++unLfKZJ8nlgGzx4cLp27ZotttgiBxxwQMaOHfuVz1uwYEEuv/zy7Lrrrtlss83SrVu3/OIXv6ia7YumT5+es88+O7vssks6d+6czp07Z7fddstll12WhQsX1jhuI0eOzIgRI7LHHntks802y4477pizzz47c+fOrVp3cfeAGjJkSMrLy/PJJ5/k9NNPz3bbbZfNNtss/fv3zz333FNjro8++ii/+c1vssMOO6Rz58456KCDMmHChBxyyCHp0aPHMh2/f/zjH0mSHXbYITvttFNWX331jBw5MhUVFYtd/5133slJJ52UbbfdNl26dMkRRxyRN998M717987AgQNrdYw33XTTlJWVVVt23XXXpX///unSpUs233zzHHTQQbnrrruW6TUlyaOPPppDDz00m2++eTp16pR+/frlhhtuqPG6ysvLs9dee9V4/pfv7TRw4MBccsklSZJjjz025eXlS9z3ku4Bddddd+WAAw6oek0//elP8/jjj1dbp/I9dOONN+akk05Kp06dsv322+eZZ56p9XFZ2ue58l5y48ePz7777puOHTumb9++mT17dpJk4sSJ+eUvf5ltt902HTt2TK9evXLOOefk008/rbaPIUOGpH379vn4449z2mmnZZtttkmXLl1y2GGH5Z133smCBQty7rnnZvvtt8/mm2+egQMH5tVXX13q3JVmz56dc889Nz169EinTp3Sv3//jBs3Lr/+9a8X++uwLMe58vN38cUX57777ss+++yTTp06pVu3bjnttNMyffr0GtsdMWJE9txzz3Tu3Dl9+vTJzTffvMSZJ02aVO247bLLLrn88str3JevR48eGThwYG677baqz9SwYcOSJC+88EIGDx6c7bffPptttln69u2b8847L7NmzVqm4wYAQHUuwQcAAAUolUq5/fbb06BBg/Tq1avaY7feemv+67/+Ky1btsyuu+6apk2b5r777ssJJ5yQE088MUcddVTatGmT4447LrfffnumTJmSI444Io0bN07z5s0zf/78HHrooXnmmWdSVlaWAw88MB999FHGjh2bhx9+OH/6059q7PP3v/99vvvd72bgwIGZPHly2rVrl08//TQHHXRQXn/99XTr1i19+vTJ5MmTc8stt+Thhx/OzTffnO9+97tLfZ133HFHTj311DRp0iQ9e/bM2muvnXvuuSfHHntszjrrrPzkJz9Z7PM+++yzHHHEEXn88cfTqVOnHHzwwZk2bVruuuuuPPLII7nuuuuqgsinn36a/fbbL++991569OiRXr16Zfr06bn33ntzwQUX5JNPPskpp5xSbfvXX399Xn/99fTp0yc77LBD7r333lx99dX54IMPcv7553/lr9+hhx6aGTNmZJdddsmcOXNy55135oQTTshf//rXbL/99kmSjz/+OAcddFAmTZqU7bffPuXl5Xn88cfz05/+NC1atEjDhg2/cj8LFy7M//zP/6RFixbZdttt07Bhw3Tv3j2jR4/Oww8/nB//+MfV1p80aVIOOOCAzJgxI7169Urbtm1z//3356CDDkpFRUXWW2+9Wh3jE044odp+rrjiipx//vnp0KFDDjjggHz22We5++678/Of/zzz58/P3nvvvdTXdd111+X3v/991lxzzfTu3TtNmzbNww8/nKFDh+bpp5/OH//4x9SrV+8rj88X9evXL0ny5JNPZtddd13ue3ddeOGF+ctf/pI2bdqkX79+qVevXu6+++4ceuihGTZsWI0I9uc//zlNmzbNwQcfnDfeeCMdOnSo9XFZ2ue50i9/+ctsvPHGGThwYGbPnp1mzZrl+eefzyGHHJJ58+ale/fuadeuXZ577rlcddVVuf/++3PTTTelRYsWVdsolUoZNGhQKioq0q9fv7z++ut55JFHMnjw4Gy44YZ5/fXXs/POO+fDDz/M3XffnSOPPDL33HPPUi+9uGDBghx66KF5/vnn06VLl/Tt2zcvvfRSjjnmmLRu3XqFj/P999+fv/zlL9lpp53StWvXPProo7n11lvzxhtvVAtMf/rTn3LppZemTZs22WefffLhhx9m6NChadmyZY0ZXnrppfz0pz/NvHnz0qdPn7Ru3brqfffUU0/l8ssvr/oDAknyr3/9K0OHDs1ee+2Vzz77LD/60Y8yceLEHHrooalfv3523nnnNG/ePM8++2yuvPLKvPDCC/nb3/62xGMGAMASlAAAgGVy0UUXlcrKykpHH3106aKLLipddNFFpQsvvLB01llnlfbee+9Shw4dSjfeeGO157z33nuljh07lnbZZZfS9OnTq5bPnTu3tP/++5d+8IMflF577bWq5QcffHCprKys9Mknn1Qtu+SSS0plZWWlIUOGlD777LOq5S+++GKpU6dOpS233LL06aeflkqlUum2224rlZWVlXbcccfSnDlzqs3y29/+tlRWVla6/vrrqy0fO3ZsqaysrHT88ccv9fXPmDGjtMUWW5S6detWeuutt6qWT5s2rbT99tuXtt5669KCBQtK7777btVxqnTllVeWysrKSuecc061bf7zn/8sdejQofSTn/ykatnll19eKisrK91yyy3V1p06dWqpY8eOpe22265q2eOPP14qKysr/fCHPyxNmDChavnMmTNL22yzTal9+/alWbNmlUql0mLnOuWUU0plZWWlffbZpzR79uyq5aNGjSqVlZWVfv7zn1ctGzp0aKmsrKz017/+tWrZokWLSieccEKprKys1L1796Uev1KpVLr//vtLZWVlpdNOO61qWeXxP/bYY2usP3jw4FJZWVnprrvuqlo2f/780oEHHlgqKysrHXzwwVXLl+cYf9nWW29d6tWrV7X3V+V7t3///kt9Te+8806pffv2pZ122qn0zjvvVC2fPXt2adCgQaWysrLS7bffXrW8rKystOeee9bYTuV7d/jw4VXLKj9z995771LX+/Ln5vnnny+Vl5eXDj744Gqfg+nTp5d69+5d6ty5c2natGmlUun/3kOdO3cuffDBB4Udl8XN9cXX1L9//9KiRYuqli9cuLDUp0+fUvv27UsPPvhgte2ce+65pbKystKpp55atazyvbvvvvuW5s+fX7V8//33L5WVlZV69OhR9ftCqVQqDRkypFRWVlZ64IEHljrzVVddVSorKysNHTq0VFFRUbV82LBhpbKyslJZWVnVsuU5zpWfv7KystLo0aOr1l2wYEFpt912K5WVlZXeeOONUqlUKk2cOLHUvn370l577VXt2I0bN65UXl5eKisrKz3++OOlUqlUqqioKO2+++6lzTbbrPTCCy9Uey1nnXVWjd/zunfvXiorKytde+211datfH3jx4+vtvzII48slZWVlV5//fWlHjcAAGpyCT4AAFhO9913Xy655JJccskl+fOf/5xrrrkmL7/8cpo2bZqZM2dm0aJFVeuOGjUqCxYsyPHHH1/tPjBNmjTJ8ccfn4qKitx+++1L3d/tt9+e1VdfPb/+9a+z2mr/dxGDDh065KCDDsrMmTMzZsyYas/Zcccdq53lsHDhwvzjH//IpptumgEDBlRbt2fPntl8881z7733LvVSUw8++GA+/fTTDBo0KN/73veqlrds2TKnnnpqDj/88MyZM2exzx0xYkSaN2+eE088sdryzTbbLDvvvHNeeOGF/Otf/0qSbL/99jnjjDNqnF2y/vrrp127dou9VNdWW22VLl26VP285pprpkuXLlm4cGH+93//d4mvqdKAAQPStGnTqp8rz0SaMmVKkmTRokW5884706ZNmxxyyCFV69WvXz+/+tWvqp1dsTR33HFHkmS33XarWrbDDjukRYsWeeCBB/LRRx9VLZ8+fXoefPDBbLnlltl5552rljdq1Ci//OUva2x7eY7xl5VKpUyfPr3apfrWW2+93HXXXbnxxhuX+ppGjRqVhQsX5thjj027du2qljdt2jSnnXZakuS2225b6jaKNmLEiJRKpfzqV7+q9jlYe+21c8QRR2Tu3Lk1LqO3+eabZ9111622bEWOy1fp3bt36tf/v/8lf/bZZ/P2229nt912y4477lht3eOPPz6tWrXKnXfeWXVfqUoHHnhgtct+Vn4O9t9//6yxxhpVyzt16pTk/97TS3L77benadOm+fnPf17trLXjjjsua621VrV1a3Oc27Vrl1122aXq54YNG6Zbt27VZrv77ruzcOHCHHXUUdXOGuvevXvVGYmVnn/++bz++uvZZ5990rFjx2qPnXDCCWnYsGFGjhxZ43X26dOn2s+Vl4r88mVN//CHP2T8+PHZdNNNa2wDAIClcwk+AABYTn/4wx/Sv3//qp/nzJmTt956KxdddFH++Mc/5u23384f/vCHJMmLL76Y5PN7QH35y//KWLO0+7LMmjUr7777bjbffPNqXyZX2mKLLXL11VfX2Ebbtm2r/Txx4sTMmTMnixYtysUXX1xjO/Pnz8+iRYvy2muvZYsttljsLJX7+NGPflTjsV133bXqn798r5rZs2dn4sSJWXfddXPppZfWeG5ldHnllVey6aabpn379mnfvn1mz56d559/PpMmTcrbb7+dF154IZMmTaoW+CpttNFGNZatueaaSVLjHjCL88Wg9sXnVn7ZP2nSpHzyySfZZpttasSm1q1bV7sU3pLMmjUr9913X9Zdd91svfXWVcsbNWqUvn375u9//3tuv/32HHHEEUk+v6xYRUVFVTj4os6dO1eLkct7jL9s//33zxVXXFF176gdd9wxP/7xj7PZZpt95euqfF9stdVWNR7bdNNN07x582W+91BRXnrppSTJmDFj8sADD1R7rDJIvvLKK9WWf/kzk6zYcfkqX95f5TyLO46NGjXKZpttlrFjx+att97KD37wg6rHNthgg2rrVobUL2+/cePGSVIjYH3R/Pnz8/rrr6dDhw5Vn4FKzZo1q3Zfq6R2x3lpn9XK2SrfL18OSsnnge3hhx+uMcM777yz2N/bmjVrltdeey2lUqkqqDVs2DCtWrWqtl6/fv1y00035bzzzsv111+fHXfcMTvuuGO22267anEaAIBlJ0ABAMAKatq0aTp27JhLLrkkvXr1ysiRI3PEEUdk4403rooxX7y3yZd98sknS3xs9uzZSVLjy+BKlfdsmjdvXrXllV82V5o5c2aS5K233soll1xSq1kqt7G4ELY0lWdVffjhh8u07/nz5+ePf/xj/v73v2fu3LlJklatWmWrrbbK2muvnQ8//LDGc794Bkilyi+bS6XSV8745ed/+bkff/xxkuQ73/nOYp//3e9+Nx988MFS93HXXXdl/vz5+fDDD/PDH/5wseuMGDGiKkAtbZ8NGjSodi+c5T3GX3bSSSdlww03zM0335x//vOfef7553PxxRfne9/7Xk4//fSqM1QWp3LfS3uPTpo0aYnP/3eo/NxdccUVS1zny8fiy5+ZZMWOy1dp0qRJtZ8rj+OSPl+Vn/XKz0SlJcWRxX0mvsqMGTOSpMaZYF+eoVJtjvPSPquVKn+vadasWY11v3gPrC+u+/DDD1cLU182e/bsqmP75WOfJD/4wQ9yyy235LLLLsuDDz6YW265JbfcckuaNm2aQYMG1TgjDACAryZAAQBAQRo1apQuXbrk7rvvzmuvvZaNN9646svhsWPHVrs82bKq/AL2/fffX+zjlV++fvlL2SVtZ6+99so555yz3HMk//dFd2UU+6IFCxakfv361c7K+fLzttxyy9xwww1fuZ9hw4blxhtvTN++fTNgwICUl5dXvb5ddtllsQHq363yi+slXaJwccfky/7xj38kSfbcc89qlyurNG7cuLz99tt56qmnstVWWy3XPpf3GH9ZvXr1ss8++2SfffbJtGnT8thjj+Xee+/NmDFjcvTRR2fcuHHVgtcXffE9urh1Pvnkkxrvz8rLnX3Rl8PKimjatGkaNGiQ559/Pg0bNqz1dlbkuCyvoj7rRcywrO/zoo7zl1Vedm/WrFnVLl26pBmS5Mwzz8w+++yzQvv9wQ9+kD/96U9ZsGBBnn322Tz00EMZOXJkLrvssrRq1SoHHXTQCm0fAGBV4x5QAABQoMoviSvPBikvL09S874iSfL222/n7LPPzrhx45a4vTXWWCNt27bN22+/vdh7Hz311FNJku9///tLnet73/teGjVqlJdeemmxZwRdc801+ctf/lJ11s3ilJWVJUn++c9/1njsqquuSufOnatdnqvSmmuumdatW+eNN96ocaZW8nmYufjiizN58uQkyX//939nnXXWyYUXXpiuXbtWfeE+b968TJ06NcmyndVUpMqYuLjXPnPmzEycOHGpz3/33XfzzDPPZIMNNsi5556boUOH1vir8svtW2+9Ncnn9/iqV6/eYvf5xhtvVPsifnmP8Rd9/PHHufjii6vuRbbOOutkjz32yEUXXZT+/ftn7ty5efnll5f42iovB/fMM8/UeGzSpEn58MMPq132r2HDhouNTV+8z1Kl2p5xUl5enkWLFtW4/FuSPPfccznvvPPy9NNPL3UbK3pcllflWXETJkyo8VhFRUWeeeaZNG3aNG3atClsn1+2xhprZKONNsqrr75a41J9ixYtqrqkaKUijvPidOjQIcni31OLm2Fxy5PPL785bNiwXHfddV+5z3/84x/53e9+l1KplEaNGqVr1645+eSTqy7rt7hZAABYOgEKAAAK8vzzz+fJJ5/MWmutlS233DLJ52e7NGjQIH/605+qnbmzcOHC/O53v8vVV19dddmrJenXr1/mzZuXs846KwsXLqxa/tJLL+X6669P8+bN06NHj6Vuo3Hjxtl1113zxhtvZPjw4dUee+KJJ3LOOefktttuy1prrbXEbfTq1StNmzbNtddemylTplQtnzFjRv7+97+nWbNmi70/VOVrmDFjRs4777xqZ7+88cYbGTp0aIYPH14Vmho3bpz58+dXxbzk8y+/zzzzzKq4siz3dSpSw4YNs8cee2TixIm56aabqpZXVFTk3HPP/cp57rjjjpRKpeyxxx5LXKdfv36pX79+7rnnnnz66adp1apVtttuuzz22GN58MEHq9ZbsGBBzj333MU+f1mP8Rc1a9Ys1157bS644IIa78XK4Ne6deslzr3XXntltdVWy2WXXVYtIs2ZMydDhw6tWqfSxhtvnMmTJ1e7J9qUKVOqzhD7osoz6pZ236LF6devX5LkrLPOqnY2z6xZs/Lb3/42V1555WLvJfZFK3pcltcWW2yRDTfcMGPGjKn2650kF110Ud57773ssssutbq03vLo379/Zs2aVeN+SpdffnmNsw+LOM6Ls+uuu6Zx48a59NJLq+3z6aefrhHst9pqq7Rt2zYjRozIs88+W+2xK664IsOHD6+6T9TSPPfcc7n++utz1113VVteGW2L/LUGAFhVuAQfAAAsp7Fjx1YLMIsWLcobb7yRBx54IIsWLcp//ud/Vt1jZKONNsrJJ5+cYcOGZffdd0+PHj2y1lpr5aGHHsqbb76Z7t27Z88991zq/o444og88sgjufPOO/Paa69lm222ybRp0zJ27NiUSqVccMEFy3RfplNOOSXPPvtszj777Nx3333p1KlT3n///YwZMyarrbZazjrrrNSvv+Q/o9aiRYv85je/yamnnpp+/fqlZ8+eadasWe6+++6qew8t6cvxI488Mo888kiuu+66PPPMM9l6660zc+bM3H333Zk7d27OO++8qtewxx575Oqrr85PfvKT9OrVKwsXLswjjzySiRMnpmXLlpk+fXpmzJhR4340/24///nP8/DDD+e3v/1t7rvvvnz/+9/PU089lbfeeitNmjRZ6rEbNWpUkiz113r99ddPt27d8uijj2bUqFEZMGBAfv3rX2f//ffP0UcfnV69eqVVq1Z59NFHq86G++I+l+cYf1GjRo1y/PHH5/e//31233339O7dO02aNMlTTz2VF154IXvttVc23njjJc7drl27nHLKKTnzzDPTr1+/qlD50EMP5d13381uu+2Wvffeu2r9/fbbL7/73e8ycODA7L777lmwYEHuuuuulJWV1ThbplWrVkmSSy+9NK+88kqOO+64Jc7xRdtss00GDhyY6667Lrvttlt+/OMfp1GjRhk7dmzee++9HHDAAenatetSt7Gix2V51a9fP8OGDcthhx2Wo446Kt27d88GG2yQZ599Ns8991w22WST/OpXvypsf0tyyCGH5O67784VV1yRZ555Jp06dcrLL7+cp59+Os2bN68Wmoo4zovTpk2bnHLKKRk6dGjVe2rWrFm5++67s/766+edd96pWrdBgwY5++yzc8QRR+Tggw9Oz549065du7z44ot5/PHH07Zt25x00klfuc/DDz88d911V375y1/m7rvvzoYbbpgpU6ZkzJgxWXfddXPwwQcv9+sAAFjVCVAAALCc7rvvvtx3331VPzds2DAtW7ZM9+7dM3DgwGy99dbV1j/00EOz8cYb5+qrr86YMWNSUVGRdu3aZciQIRkwYMBi75v0RY0bN84111yTq666KnfeeWduuummNG/ePN27d8/gwYPTvn37ZZq7ZcuWueWWW3L55Zfn3nvvzXXXXZeWLVumR48eOeaYY6oupbY0/fr1S6tWrXL55ZfnnnvuycKFC9O+ffuceeaZ+fGPf7zE5zVp0iTXXntt/vrXv2b06NG58cYbs+aaa2bzzTfP4MGDqx2zE088Mc2aNcuoUaNy4403pmXLltlkk01y2mmn5c0338xZZ52VBx98MPvuu+8yve6itGzZMjfddFPOO++8PPzww3nyySfTuXPnXHvttRk8ePBi7+uUJM8++2wmTZqUTp06ZaONNlrqPvr3759HH300I0aMyIABA7Lxxhvnpptuyvnnn5/HHnssCxcuzDbbbJMLLrigxr2klucYf9nAgQOzzjrr5Nprr83o0aMzd+7cbLTRRjn11FOX6Yv3QYMGZaONNspVV12VMWPGpFQqZZNNNsngwYNr3Jfn4IMPzqJFi3LjjTfm5ptvzvrrr5/BgwenW7du6d+/f7V1d9111zz44IN54IEHcuONN1adcbMsTjvttGy22Wa56aabMmrUqDRo0CDf+9738rOf/WyZt7Oix2V5bb755hkxYkT+8pe/5LHHHsvDDz+c1q1b5+ijj84RRxxRdY+mf6fK32/+9Kc/5d57780///nPlJWV5YorrsiFF16YN954o9r6RRznxRkwYEDV7zW333571l577Rx//PFp1KhR/vCHP1Rbd8stt8ytt96aSy+9NOPHj8/999+f9dZbLwMHDsxRRx2V73znO1+5v7Zt2+amm27KX/7yl0yYMCHjxo3L2muvnT333DPHHXdcVQwFAGDZ1St93RdPBwAAWAm98847WW+99Wqc5bVgwYJsvvnm6datW6688srC9ldRUZF33303rVu3TsOGDas99u6776ZXr1458MAD89vf/rawfcLkyZPTsmXLNG3atMZj3bt3z+qrr57Ro0fXwWQAAKxs3AMKAABgGRxzzDHZbrvtqt2bKkn+9re/5bPPPqvVpcaWpl69etl7772zxx571LgH0lVXXZUkhe8Tfve732WLLbaodj+vJBk9enSmTp3qPQcAwDJzBhQAAMAyuOGGGzJ06NCst9566dmzZ1ZfffW8/PLLeeyxx1JeXp5bb701jRs3LnSfZ599dq6++up873vfy4477pgGDRpkwoQJee6557L99tvnr3/9a+rVq1foPlm1jRs3Lsccc0zWWmut9OnTJy1atMibb76ZBx54IOuuu25GjhyZddZZp67HBABgJSBAAQAALKMxY8bkuuuuy7/+9a/MmTMn66+/fvr27ZvBgwf/W+7PU1FRkdtuuy233nprJk6cmIULF6Zt27bZY489cuihh9a4NB8U4fHHH8/VV1+dl19+OZ988knWXXfddO/ePcccc4z4BADAMhOgAAAAAAAAKJR7QAEAAAAAAFAoAQoAAAAAAIBCrVbXA/DNNX369DzyyCNp27Zt4TdTBgAAAAAAVi7z58/P5MmTs/3226dly5ZLXVeAYokeeeSRnHzyyXU9BgAAAAAA8A1y7rnnZs8991zqOgIUS9S2bdskn7+RNtlkkzqeBgAAAAAAqEtvvvlmTj755Kp+sDQCFEtUedm9TTbZJB06dKjjaQAAAAAAgG+CZbltT/2vYQ4AAAAAAABWIQIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFCo1ep6AACoC0OGDMnUqVPregy+5WbMmJEkadGiRZ3OAXWhdevWGTZsWF2PAQAAQB0RoABYJU2dOjUTJ72TUpPmdT0K32L15s1MkkyfX8eDwNes8r0PAADAqkuAAmCVVWrSPHM77VPXY/Attvo/RySJ9xmrnMr3PgAAAKsu94ACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoCCWrjmmmtyzTXX1PUYAAAAUOf8PzIAsDgCFNTCuHHjMm7cuLoeAwAAAOqc/0cGABZHgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQSor9GQIUNSXl6e8vLyTJo0aYnrnXHGGSkvL8922233NU4HAAAAAABQDAGqjowdO3axy0ulUu69996veRoAAAAAAKDSo48+mn333TePPvpoXY+y0hKg6kC7du2WGKAmTJiQDz/8MC1btvyapwIAAAAAAObNm5fzzz8/77//fs4///zMmzevrkdaKQlQdaB379557rnn8tFHH9V47N57781GG22U73//+3UwGQAAAAAArNquv/76TJs2LUkybdq03HDDDXU80cpJgKoDvXv3TkVFRcaNG1fjsTFjxqRv3741lj/55JM56qijss0226RDhw7Zdtttc9JJJ2Xq1KlV6zzxxBMpLy/Pgw8+mLPOOivbb799OnXqlP333z9PPPHEv/U1AQAAAADAym7y5Mm54YYbUiqVknx+25wbbrghkydPruPJVj6r1fUAq6IOHTqkTZs2GTt2bPbbb7+q5S+99FKmTJmSvn375tlnn61aPn78+Bx22GHp0KFDjjnmmDRq1CgTJkzIqFGj8q9//St33nlnte2fccYZadGiRY488sjMnTs3V111VY488sg88MADWXvttb+21/ltNmPGjMyePTuDBg2q61GAWpoyZUpSalDXYwB8O302L1OmTPHfSgCriClTpqRZs2Z1PQYArLBSqZQLLrhgicvPO++81KtXrw4mWzkJUHWkd+/eufHGGzNr1qysscYaST4/+6lt27bp0KFDtXWHDx+etddeO9dee21WX331JMkBBxyQhQsX5n/+53/y/vvvp1WrVlXrN2vWLH//+9/TsGHDJMm6666bU089Nffee2+14AUAAAAAAHxu0qRJeeqpp2osX7RoUZ566qlMmjQpG2200dc/2EpKgKojvXv3zjXXXJOHHnoou+66a5LPA1SfPn1qrHvppZdm5syZVfEpSWbNmpXGjRsnSebMmVNt/T59+lTFpyRp3759kuTDDz8s/HWsqlq0aJEWLVrk2muvretRgFoaNGhQ3np/Rl2PAfDt1LBJ2rTy30oAqwpnvALwbbHhhhtmq622yoQJE7Jo0aKq5Q0aNMgWW2yRDTfcsA6nW/kIUHVk8803z3e+853cd9992XXXXfPGG2/krbfeyrBhw2qs26BBg7z33nu55JJL8q9//SuTJ0/O1KlTq65BWVFRUW39li1bVvu5MkZ9eT0AAAAAAOBz9erVy4knnpiBAwcudrnL7y2f+nU9wKqqfv366dmzZx544IEsWLAgY8aMyfrrr59OnTrVWPeaa65Jv3798tBDD6Vt27YZOHBgrrvuugwePHiJ2wYAAAAAAJZP27ZtM2DAgKrYVK9evQwYMCBt2rSp48lWPs6AqkO9e/fO3//+9zzxxBMZM2ZMevfuXaOgzp8/P3/605/SpUuXXHvttWnUqFHVY6NGjfq6RwYAAAAAgG+1gw8+OKNHj85HH32U73znOxkwYEBdj7RScqpMHdpmm23SvHnzXHfddXnllVfSt2/fGuvMmzcvc+fOzYYbblgtPk2dOjVjxoxJkmrXogQAAAAAAGqvSZMm+cUvfpFWrVrlpJNOSpMmTep6pJWSM6DqUMOGDbPTTjtl1KhRWXfddbP55pvXWGettdZKly5dcuedd6Z58+YpKyvLO++8k1tuuSVz585NksyePfvrHh0AAAAAAL61tttuu2y33XZ1PcZKzRlQdaxPnz5JPr8c35Lu3XThhRemb9+++e///u+cddZZGTt2bPbZZ59cd911SZLHHnvsa5sXAAAAAADgqzgD6ms0bNiwDBs2rNqy3r1757XXXquxbmVcSpJWrVrlggsuWOw2v/jcrl27LnZbm2yyyWKXAwAAAAAA/Ds4AwoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUKvV9QCwMurRo0ddjwAAAADfCP4fGQBYHAEKauGQQw6p6xEAAADgG8H/IwMAi+MSfAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEKtVtcDAEBdqTdvZlb/54i6HoNvsXrzZiaJ9xmrnM/f+y3qegwAAADqkAAFwCqpdevWdT0Cq4AZMz7/e4sWLepyDKgDLfw+CwAAsIoToABYJQ0bNqyuRwAAAACAby33gAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRqtboeAACgrg0ZMiRTp06t6zEKM2PGjCRJixYt6nSOorRu3TrDhg2r6zEAAACA5SBAAQCrvKlTp2bypIlp1bSirkcpxKw5n5/k3uyzaXU8yYp7f44T9gEAAGBlJEABACRp1bQiZ3ebWddjFOKU8c2T5FvxeipfCwAAALBy8UdKAQAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQDUyjXXXJNrrrmmrseAlYbPDAAAAKsSAQoAqJVx48Zl3LhxdT0GrDR8ZgAAAFiVCFAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKFStA9SBBx6YCy+8sMhZAAAAAAAA+BaodYB66aWXMmfOnCJnAQAAAAAA4Fug1gGqbdu2effdd4ucBQAAAAAAgG+B1Wr7xLPPPjtHH310TjjhhPTp0ydt27ZN48aNF7vuD37wg1oPCAAAAAAAwMql1gFq3333Tb169XLPPfdkzJgxS133lVdeqe1uAAAAAAAAWMnUOkDtvffeqVevXpGzAAAAAAAA8C1Q6wA1bNiwIucAAAAAAADgW6J+ERuZPXt2nn322TzwwANJkk8++aSIzQIAAAAAALASWqEA9dFHH+XEE09M165dc9BBB+WYY45Jktx4443p3bt3nn766UKGBAAAAAAAYOVR6wA1ffr07L///rnrrrvSqVOntG/fPqVSKUmy+uqrZ+rUqTniiCPy2muvFTYsAAAAAAAA33y1DlAXXXRR3nvvvVx66aW58cYb071796rHDjnkkFx99dVZuHBhLr300kIGBQAAAAAAYOVQ6wA1bty49O7du1p4+qKuXbumT58+ee6552q7CwAAAAAAAFZCtQ5QH3/8cdq1a7fUdVq1apXp06fXdhcAAAAAAACshGodoNZbb728/PLLS13nn//8Z9Zbb73a7gIAAAAAAICVUK0DVN++fTN+/PjcfPPNi318+PDheeaZZ9KrV69aDwcAAAAAAMDKZ7XaPvGoo47Kgw8+mDPOOCM33HBDKioqkiRDhgzJSy+9lDfeeCMbbLBBjjrqqMKGBQAAAAAA4Juv1mdArbHGGrnppptywAEHZMqUKXnzzTdTKpXyj3/8I5MmTcpee+2Vm266Kc2bNy9yXgAAAAAAAL7han0GVPJ5hDr99NNz2mmnZeLEiZk5c2aaNm2ajTfeOI0aNSpqRgAAAAAAAFYiKxSgKjVo0CDf//73i9gUAAAAAAAAK7llDlCXXHJJrXZQr169HHvssbV6LgAAAAAAACufFQpQ9erVS5KUSqXFPlYqlQQoAAAAAACAVUytA9T8+fPzhz/8IUny05/+NF26dEmLFi0yZ86cvPDCCxk+fHgaNGiQM888s9iJAQAAAAAA+EZb5gDVq1evaj+fffbZWbhwYW699da0a9eu2mOdOnVK7969079//4waNSpbbrllMdMCAAAAAADwjVe/tk8cNWpU+vTpUyM+Vfrud7+b3r1755577lmu7Q4ZMiTl5eW54oorlrjOdtttl4EDBy7XdoswcODAbLfddl+53sUXX5zy8vK8+eabX8NUAAAAAAAA3yzLfAbUl82fPz8LFy5c6jqzZs1a7P2hlsWf//zn7Lzzztlggw1q9fy61Lt372ywwQZp1apVXY8CAAAAAADwtav1GVAdOnTImDFjlniWz7PPPpt77rmn1pffmzdvXk4//fTajlenfvCDH2SvvfbKGmusUdejAAAAAAAAfO1qfQbUz372sxxyyCHZb7/90q9fv3Ts2DHNmjXLp59+mgkTJuTOO+9Mw4YN8/Of/7xW2+/Vq1fGjh2bf/zjH9l7771rOyYAAAAAAABfs1qfAbXlllvmL3/5S1q0aJHrr78+p556ao4//vj8+te/zogRI9KuXbsMHz48ZWVltdr+f/7nf6Z58+YZNmxYPv7446Wu+/777+fUU0/Ntttum44dO2aXXXbJlVdemUWLFlWt88QTT6S8vDwPPvhgzjrrrGy//fbp1KlT9t9//zzxxBPLNdvDDz+cPfbYo2pfN9xwQ7XHv3wPqJEjR6a8vDwvvPBCTj311HTt2jWdO3fOoYcemldffbXac6dNm5YzzzwzvXv3TseOHdOlS5fsv//+GTt2bLX1evTokVNOOSVnnHFGOnfunO222y5/+9vfUl5evtj7bv3iF7/IFltskfnz5y/XawUAAAAAAFhetT4DKkl23HHH3HvvvXn++efz6quvZubMmWnevHk6dOiQTp06rdBg3/nOd3LyySfnv/7rvzJs2LCcffbZi11v6tSp2W+//fLpp5/moIMOStu2bfPII4/kvPPOy4svvpgLL7yw2vpnnHFGWrRokSOPPDJz587NVVddlSOPPDIPPPBA1l577a+c65NPPskxxxyTfv36Zf/9989dd92VoUOHZsaMGTn22GOX+twTTjgh7dq1y/HHH58PPvggV199dY444ojcf//9WW211TJ//vwMGDAg06dPz0EHHZQ2bdrkvffey80335zjjjsuI0aMSMeOHau2N2bMmLRt2zannnpq3n333ey9994577zz8j//8z/p27dv1Xpz587NuHHjsvPOO6dx48Zf+RoBAAAAAABWxAoFqCSpX79+unTpki5duhQxTzX77rtv7rjjjqrL8HXr1q3GOueff34+/PDD3HDDDVX3mxowYEDOOOOM3HjjjRk7dmx69epVtX6zZs3y97//PQ0bNkySrLvuujn11FNz7733Zr/99vvKmT777LMMGTIkhx56aJLkgAMOyMEHH5zLLrssBx100FIj1iabbJIrr7yy6ufVVlstl1xySZ544olst912GTduXCZOnJiLL744ffr0qVqvS5cuOfzww/PII49UC1Bz5szJJZdckg033LBq2U477ZQHH3wws2fPTrNmzZIk48aNy5w5c7Lnnnt+5esDgGU1Y8aMzJ49O4MGDarrUVbYlClT0iT16noMFmPmgnqZN2XKt+Z9VvnfZwAAAPBtt0IB6uOPP86YMWMyZcqULFiwIKVSqcY69erVy5AhQ2q1/Xr16mXo0KHZa6+9cvrpp+fOO++sdgbPokWLMm7cuGy99dZV8anSMcccs9gA1adPn6r4lCTt27dPknz44YfLNFPTpk0zYMCAqp9XW221DBgwIL/85S/z2GOPZbfddlvic3fZZZdqP//whz+stu9ddtklXbt2zVprrVXtNVZUVCT5PDh90frrr18tPiXJnnvumTFjxuS+++6rCk7//d//nVatWqVr167L9BoBAAAAAABWRK0D1Kuvvpqf/vSnmTlz5mLDU6UVCVDJ52cNDR48OJdcckn+/Oc/56STTqp67OOPP86cOXOy8cYb13jeuuuum+bNm2fKlCnVlrds2bLaz5UxqjLyfPrpp5k3b161ddZcc800adIkSdKmTZs0atSo2uMbbLBBktTY15ets8461X6u3E7lvpOkQYMGGT58eCZMmJB33303kyZNqrpv0xfXW9z2kuTHP/5xWrRokdGjR2fPPffMJ598kocffjgDBw5M/fq1vuUXANTQokWLtGjRItdee21dj7LCBg0alM8+fLOux2AxmjcqZZ1123xr3mcAAACwqqh1gPrjH/+YTz75JPvtt1923HHHrLnmmqlX799z6ZrBgwdn9OjRufrqq7P77rtXLa8MX0sKYBUVFdXOdkrylRHmzDPPzO23315t2R/+8If0798/SZb6Ghs0aLDUbX/V8Xn77bdz4IEHZt68eenWrVt69eqV8vLytG7dOvvuu+8y7a9Ro0bp27dvRo4cmU8++SRjxozJZ5995vJ7AAAAAADA16bWAerpp59O9+7dM3To0CLnWaxGjRpl6NChGThwYH7zm99UnQnUsmXLNG3aNBMnTqzxnA8++CCzZs3Keuutt1z7Ovzww2vEmu9///tV//y///u/WbRoUbX4U7n/yjOhauvyyy/Pxx9/nFGjRqWsrKxq+YQJE5ZrO3vuuWf+/ve/58EHH8x9992XTTfdtOpyfwAAAAAAAP9utQ5Q9evXX+yl7/5dttpqq/zkJz/JiBEjqpY1aNAgO+20U0aPHp2nn3662n2gLrvssiRJjx49lms/3//+96sFpy+bOXNm7r777qp7PS1YsCB/+9vf0qxZs3Tr1m259vVlM2bMSKNGjaqFrIqKiqpLzixatGiZtrPFFlukbdu2ufvuu/P444/n6KOPXqG5AAAAAAAAlketA9SWW26Zp59+ushZvtKvfvWr3H///Zk2bVrVsl/84hd5/PHHc9hhh+Wggw5K27Zt8+ijj+a+++5Lz54907Nnz0JnaN68eU477bS8+uqradWqVe644468/PLLGTp0aNZYY40V2vZOO+2UcePG5bDDDsvuu++e+fPnZ/To0Xn55ZdTv379zJ49e5m2U69eveyxxx659NJLq/4ZAAAAAADg67L0GyItxcknn5yJEyfm97//fd5///0iZ1qitdZaK//5n/9ZbVnbtm0zYsSI9OnTJ7fffnuGDRuWd955J0OGDMnFF19c+H2p2rVrl3POOSdjx47NsGHDMm/evFxwwQXZf//9V3jb++23X04++eR88MEHOeusszJ8+PCss846ueWWW9K+ffuMHz9+mbe11157Jfn8bKjWrVuv8GwAAAAAAADLql6pVCrV5omDBg3Ke++9l8mTJydJGjdunEaNGtXcQb16eeKJJ1ZsSpbbpEmT0qdPn/z+97/PvvvuW6ttvPTSS+nfv39GjhyZDh06FDwhACu7QYMGJUnVpWJXZoMGDcpnH76Zs7vNrOtRCnHK+OZJ8q14PaeMb56G627yrXmfJd+OzwwAAACrpuXpBrW+BF9leFp//fVruwn+jW666aY0bdo0u+yyS12PAgAAAAAArGJqHaDGjRtX5BwU5PTTT8/kyZPzyCOP5PDDD1/h+1IBAAAAAAAsr1rfA4pvpo8//jjPPPNM9txzzxx//PF1PQ4AAAAAALAKqvUZUJUeeuihjBw5Mq+88kpmzpyZ8ePHZ9SoUXnnnXdy2GGHZfXVVy9iTpbRRRddVNcjAAAAAAAAq7gVClC/+c1vcuutt6ZUKqVBgwapqKhIkrz44ou59tpr8/DDD+fqq69Os2bNChkWAAAAAACAb75aX4Lv5ptvzi233JI+ffpkzJgxOeqoo6oeO/bYY/OTn/wkzz//fIYPH17IoAAAAAAAAKwcVihAlZeX58ILL8wGG2yQevXqVT221lpr5cwzz0ynTp1y1113FTIoAAAAAAAAK4daB6iJEydmhx12WOo6W221VaZMmVLbXQAAAAAAALASqnWAatKkSaZNm7bUdT744IM0adKktrsAAAAAAABgJVTrALXFFlvk3nvvzXvvvbfYx99+++2MHTs2m2++ea2HAwAAAAAAYOVT6wB17LHHZsGCBdl3330zfPjwTJw4MUny5JNP5qqrrsoBBxyQzz77LIMHDy5sWAAAAAAAAL75VqvtEzt06JCLL744Q4YMydlnn121/Kc//WlKpVLWWGONnHfeeencuXMhgwIAAAAAALByqHWASpIf//jHuf/++zNu3Li8+OKL+fTTT9O0adOUl5end+/eWXPNNYuaEwAAAAAAgJVErQPU/Pnz07hx4zRp0iQbb7xxFixYUO3xcePGZffdd0+DBg1WeEgAAAAAAABWHssdoG644YZcddVV6d+/f4477rgkydixY/PnP/+5xrr/+7//6x5QAAAAAAAAq5jlClC//vWvM3LkyDRr1iyNGjWq8fiQIUOSJBUVFbnsssty2WWX5YADDshaa61VzLQAAAAAAAB84y1zgHrsscdy2223Zbvttsv555+fFi1a1Fjnpz/9adU/r7nmmjnttNNy22235T/+4z8KGRYAAAAAAIBvvvrLuuKtt96aNddcc4nx6cv69euXddZZJw899NCKzAcAAAAAAMBKZpkD1LPPPpsdd9xxmeJTkjRo0CDbb7993njjjdrOBgAAAAAAwEpomQPUtGnT0rZt28U+Vl5ent13373G8latWuWTTz6p/XQAAAAAAACsdJb5HlDNmzfP7NmzF/tY796907t37xrLZ8yYkZYtW9Z+OgAAAAAAAFY6y3wGVOvWrTNhwoTl2vgTTzyRDTbYYLmHAgAAAAAAYOW1zAGqZ8+eeeWVV/L4448v0/r33ntvJk2alL59+9Z6OAAAAAAAAFY+yxyg+vfvn6ZNm+YXv/hFnn/++aWu+/TTT+e0007LOuuskz333HOFhwQAAAAAAGDlscz3gPrud7+bM888MyeeeGIOPPDA9OjRIz169Mimm26atdZaK5988kneeeedjBkzJmPHjk2pVMqVV16Z5s2b/zvnBwAAAAAA4BtmmQNUkuy8885p3rx5TjvttIwdOzb33XdfjXVKpVJatWqVc845J127di1sUAAAAAAAAFYOyxWgkmTbbbfNPffckwcffDD33Xdf3nnnnUybNi0tWrRImzZt0rNnz/Ts2TONGzf+d8wLAAAAAADAN9xyB6gkadiwYXr16pVevXoVPQ8AAAAAAAArufp1PQAAAAAAAADfLgIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCrVbXAwAAK6cePXrU9QiwUvGZAQAAYFUiQAEAtXLIIYfU9QiwUvGZAQAAYFXiEnwAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUarW6HgAA4Jvg/Tn1c8r45nU9RiHen/P5nzH6Nrye9+fUT9u6HgIAAABYbgIUALDKa926dV2PUKg1ZsxIkjRs0aJO5yhC23z7fn0AAABgVSBAAQCrvGHDhtX1CAAAAADfKu4BBQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKNRqdT0AAN9+Q4YMydSpU+t6jG+8GTNmJElatGhRp3Osqlq3bp1hw4bV9RgAAAAA3woCFAD/dlOnTs3EdyYma9T1JN9wsz7/28cVH9ftHKuiWXU9AAAAAMC3iwAFwNdjjaSib0VdT/GNVv+ez6+M6zh9/SqPPQAAAADF8G0LAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUQJJrrrkm11xzTV2PAQDUkn+XAwAAfLMIUABJxo0bl3HjxtX1GABALfl3OQAAwDeLAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQq2yAerEE09MeXl5pkyZUuOxyy67LOXl5dlhhx0W+9zDDjssHTt2zLx58/7dYwIAAAAAAKx0VtkAtfXWWydJnn/++RqPPfbYY2nYsGE++OCDvPnmm9Ueq6ioyHPPPZcf/ehHadKkydcyKwAAAAAAwMpklQ9Qzz33XLXl8+bNy7PPPps99tgjyecx6otef/31zJo1K9tss83XMicAAAAAAMDKZpUNUJtssknWXXfdGmdAPfPMM1mwYEF+8pOfpE2bNjUC1IQJE5JEgAIAAAAAAFiCVTZAJclWW22Vl19+OQsWLKhaNn78+DRt2jSdO3dO165d8+STT2bRokVVj0+YMCGrr756OnfunOTzM6gOP/zwbL755uncuXMOOOCAjB07ttp+Lr744rRv3z5vv/12jjzyyHTp0iXbbLNNhg0bloULF2b06NHZfffd07lz5+y9994ZP358tedPmzYtZ555Znr37p2OHTumS5cu2X///Wvsp0ePHhkyZEjuuuuu7LXXXtlss83SvXv3XHLJJamoqCj68AEAAAAAACzWKh2gtt566yxYsCCvvvpq1bLHHnssW221VRo2bJhu3bpl1qxZeeGFF6oenzBhQrbYYos0bNgwDz74YAYMGJC33norRxxxRH7+859n7ty5OfbYY3P99ddX21epVMrAgQPTsmXLnHLKKfnhD3+Y4cOH56ijjsrvfve77LbbbjnxxBPzwQcf5Ljjjsv06dOTJPPnz8+AAQNyxx13ZLfddsvpp5+eQw89NO+++26OO+64vPjii9X288QTT+S0007LTjvtlF//+tdp1apVLr744tx0003/xiMJAAAAAADwf1ar6wHq0hfvA9WpU6fMmDEjr7zySn71q18l+b/L7D322GP50Y9+lA8++CBTpkzJAQcckEWLFuX0009PixYtMnLkyLRo0SJJctBBB+XAAw/MOeeck5133jnf+c53kiQVFRXp2bNnfvvb3yZJdt1113Tr1i2PPPJIbr311my22WZJkqZNm+a//uu/8txzz6VHjx4ZN25cJk6cmIsvvjh9+vSpmr1Lly45/PDD88gjj6Rjx45Vy6dOnZpbbrml6gytPfbYI9tvv33uvPPODBgw4N93MGElN2PGjMyePTuDBg2q61G+laZMmbKK/5EHvvHmf/4+9XsArLymTJmSZs2a1fUYAAAA/H+r9NeBX74P1BNPPJGKiop069YtSfLd7343m2yySZ544okk1e//9NJLL+W9997LgQceWBWfkqRx48Y57LDDMn/+/Dz00EPV9te3b9+qf27evHnWWWedtG7duio+JUm7du2SJB9++GGSZJdddsn48ePTs2fPqnUWLVpUdUm9OXPmVNtHmzZtquJTkjRr1iwbbrhhPvroo1ocIQAAAAAAgOW3Sp8BlXx+H6jnnnsuyednOq299topLy+verxbt2657bbb8tlnn2XChAlZc80106FDh9xzzz1Jko033rjGNjfZZJMk//9P/H/BOuusU+3n1VZbrcay+vU/b4JfvGdTgwYNMnz48EyYMCHvvvtuJk2alPnz59dYL0latmxZY55GjRq5BxR8hRYtWqRFixa59tpr63qUb6VBgwZl4vSJdT0GLFnjpE3LNn4PgJWYMxgBAAC+WVbpM6CSzy/DN3ny5EyfPj2PP/54ttlmm9SrV6/q8W7dumXu3Ll5+eWX8+yzz2arrbZKgwYNUiqVkqTq719UGXsaNmxYbXmDBg1qrPvFfS3O22+/nZ133jl//vOfkyS9evXKOeeck1tvvXWx61cGLAAAAAAAgLqyyp8BVXkfqEceeSRvv/12/uM//qPG4/Xr189zzz2XV155JSeffHKSpG3btkmSt956q8Y2K5ett956Kzzf5Zdfno8//jijRo1KWVlZ1fLKywECAAAAAAB806zyp8tU3gfqxhtvTJKq+z9Vat68edq3b59Ro0bls88+yzbbbJMk6dChQ1q1apWbb745M2bMqFp/wYIFufrqq9OwYcPssMMOKzzfjBkz0qhRo2ywwQZVyyoqKqouEbRo0aIV3gcAAAAAAECRVvkzoJLP7wM1evTotGnTplroqdStW7dceeWVWWeddarOQlpttdVy+umn52c/+1n69++f/fbbL02aNMkdd9yRl19+OUOGDKlxf6fa2GmnnTJu3Lgcdthh2X333TN//vyMHj06L7/8curXr5/Zs2ev8D4AAAAAAACKtMqfAZX832X4Ks9u+rLKs6K23nrravds6tmzZ6699tpsuOGGufzyy3PhhRemWbNm+ctf/pJDDz20kNn222+/nHzyyfnggw9y1llnZfjw4VlnnXVyyy23pH379hk/fnwh+wEAAAAAAChKvVKpVKrrIfhmeumll9K/f/+MHDkyHTp0qOtx4N9q0KBBSVJ1eUuKNWjQoEycPjEVfSvqepRvtPr3fP7nQhynr1/9e+rney2/5/cAWIn5dzkAAMC/3/J0A2dAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRqtboeAOCboEePHnU9AgCwAvy7HAAA4JtFgAJIcsghh9T1CADACvDvcgAAgG8Wl+ADAAAA+H/t3XmMVvX5NvCLEURxAbHigqCokSoVK+ACQQ1UVLBgXSqbWrCgsVrQRipWY7SLJUYralOqJkRtbaCDyFKEVuqKYjVo1cGKiKIdcJnKIjAs4zDvH8RJ5zdqTd/jjJ35fJLJZL7nfh7uQ8jNl+finAMAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFKplYzcAQDOxMSn5s//38Lk27vjm96kRbEzSvrGbAAAAAGg6BFAAfOkOOOCAxm7hf8K6knVJknbt2jVqH81Se39OAQAAAIokgALgSzdp0qTGbgEAAAAAaEDu8QMAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKFaNnYDfHVt3bo1SbJixYpG7gQAAAAAAGhsn+QFn+QHn0cAxWcqLy9PkkyYMKGROwEAAAAAAL4qysvL06NHj8+taVFTU1PTQP3wP2bNmjVZtGhRDjzwwLRu3bqx2wEAAAAAABrR1q1bU15enr59+6Z9+/afWyuAAgAAAAAAoFAljd0AAAAAAAAATYsACgAAAAAAgEIJoAAAAAAAACiUAAoAAAAAAIBCCaAAAAAAAAAolAAKAAAAAACAQgmgAAAAAAAAKJQACgAAAAAAgEIJoAAAAAAAACiUAAqgCXr55ZczduzY9OrVK0cddVS+853vZNasWXVqtmzZkltuuSX9+vXL0UcfnaFDh2bx4sWN0zDQ5C1btiwXX3xxjj/++Bx77LEZN25c3n777To15hLQGFatWpUePXpk4sSJddbNJKAhDRs2LF27dq33deaZZ9bWrF27Ntdff3369u2bY445JqNGjcqrr77aiF0DTdmWLVty2223pX///jn66KMzePDgPPTQQ/Vq7Jf4PC1qampqGrsJAIqzYsWKnH322Wnbtm1GjBiR3XbbLQ8//HBeeOGFTJw4MaNHj06SXHbZZXnssccyYsSIHHLIIZkxY0aWLVuW++67L7169WrkswCakrfeeivnnHNO2rZtmwsuuCDV1dW57777UlVVlVmzZmX//fdPYi4BDa+mpiajRo3Ks88+m7POOiuTJk2qPWYmAQ2pR48eOfbYYzNo0KA66+3atcvJJ5+cbdu25fzzz8+yZcsyatSofO1rX8vvfve7/Otf/8qDDz6YLl26NFLnQFO0ffv2jBkzJs8++2ztXmjBggX529/+lhtvvDHDhg1LYr/EfyaAAmhiLr744jz//PNZsGBB9t133yQ7Ng4jRozIsmXLsmjRorz88ssZNWpUrrnmmowaNSpJUllZmSFDhmTPPffMzJkzG/EMgKZm/PjxefzxxzNv3rwceOCBSXZcETVkyJBceOGFufbaa7N48WJzCWhwv//97zNp0qRUVVXVCaDMJKAhrVq1Kv37988NN9yQ4cOHf2pNaWlprrvuuvz617/OgAEDkiQVFRUZOHBg+vTpkzvuuKMhWwaauJkzZ+aaa67J9ddfn5EjRybZ8dnSOeeck4qKijz11FN59tln7Zf4j9yCD6AJqa6uzvPPP58TTzyxNnxKkpKSkgwcODCVlZX5xz/+kblz56ZVq1Y577zzamvatGmTc889N0uXLs3KlSsboXugqWrZsmXOOOOM2vApSbp27Zp27drltddeSxJzCWhw77zzTm699dZcfvnl9Y6ZSUBDev3115Mkhx566GfW/OlPf0qHDh1qw6ck2WeffTJw4MA8+uij2bRp05feJ9B8PPjgg+ncuXOdULykpCRXXHFFhg0blsrKSvslvhABFEATUlJSkjlz5uTHP/5xvWNr1qxJkuy0004pKytLly5d0qZNmzo13bp1S5KUlZV9+c0Czcatt96am266qc7au+++m3Xr1uWAAw5IEnMJaFDbt2/PxIkT07Vr13zve9+rd9xMAhrS8uXLkySHHXZYknxqmLR06dLaGfTvunXrlqqqqtoQC+D/V1VVVV566aX07t07JSU74oNNmzalpqYmJ598ci6//PLstttu9kt8IQIogCakRYsW6dSpU52rDJIdl0A/+OCDadOmTY488si8//772W+//eq9vkOHDkmS1atXN0i/QPPz4Ycf5oknnsjFF1+cNm3a5KKLLkoScwloUPfdd1/Kyspy00031X6w8u/MJKAhLVu2LK1bt87tt9+enj17pkePHjnxxBNz//33J9nxwe+GDRs+dy69++67Ddoz0HSVl5enqqoqHTt2zL333puTTjopPXr0yAknnJApU6bkkyf62C/xRbRs7AYA+HLV1NTkuuuuS0VFRS677LK0bt06mzZtyq677lqvdpdddkmSbN68uaHbBJqJc845p/YDkquuuiqHH354kphLQIN58803M3ny5IwfPz6HHHJItm7dWq/GTAIa0vLly7N169a8//77uemmm7J58+aUlpbmF7/4RdatW5dhw4YlyefOpcrKygbtGWi6NmzYkGTHc6DWr1+fSy+9NB06dMjs2bMzefLkbN68OT/60Y/sl/hCBFAATVhNTU1uuOGGzJs3L8cdd1wuvfTSL/S6Fi1afMmdAc3VlVdemZ133jnz58/PLbfckvLy8tx4443/8XXmElCE6urqXHPNNTniiCMyevTo//p9zCSgSEOHDk11dXUuvPDC2rUhQ4Zk+PDhufvuuzN06ND/+B7mElCUbdu2JUn++c9/ZubMmfn617+eJBk4cGAuuOCCTJ06tc68+izmEolb8AE0WVVVVbnqqqsybdq0dO/ePVOmTEmrVq2S7Hgo5JYtW+q95pO13XffvUF7BZqPM888MwMHDswdd9yRgQMHZtq0aVm+fLm5BDSIqVOnpqysLBMmTMi6deuyZs2arFu3LsmOD1vWrFmTbdu2mUlAgxo5cmS9D3NLSkoydOjQVFVV5ZlnnkkScwloEJ9c1dS9e/fa8OkTZ599dqqqqrJkyRL7Jb4QV0ABNEGbN2/OD3/4wzz11FM57rjjMmXKlDp/8R9wwAGpqKio97oPPvggSbLvvvs2WK9A83XGGWdk/vz5efXVV80loEE8+eST+fjjjzNixIh6x+bNm5d58+bll7/8pZkEfCXsvffeSZLt27dnzz33NJeABvHJc53at29f79gna5s2bbJf4gsRQAE0MVVVVbn88suzaNGi9OvXL7fffntat25dp6Zbt26ZM2dOtmzZUntv3iRZunRpkuSoo45q0J6Bpmv9+vU577zzcuKJJ+a6666rc2zTpk1Jdtwj3FwCGsLVV1+djz76qM5aVVVVLr744vTt2zff//73c9hhh2XJkiVmEtAgVq9enbFjx+bUU0/N+PHj6xx78803kySdOnVKt27damfQv1u6dGlatmyZI444okH6BZq+vffeO/vtt19WrFhR71h5eXmSZP/99/dvOL4Qt+ADaGLuuOOOLFq0KP3798+dd95ZL3xKktNPPz3btm3LtGnTatcqKyszY8aMdO/ePZ07d27IloEmrG3btmnVqlXmzp1b53/Hbdu2Lffff3/atGmT448/3lwCGsQ3vvGN9OnTp87XCSeckCTZZ5990qdPn3To0MFMAhrM/vvvn/Xr16e0tDTr16+vXV+/fn3uvffedOzYMT169Mjpp5+e1atXZ+HChbU1FRUVmT9/fgYMGPCp/+4D+G8NHjw4K1euzF/+8pfatW3btuUPf/hD2rdvn169etkv8YW0qKmpqWnsJgAoxgcffJD+/funpqYmP/nJTz71fru9e/dOhw4dMmbMmCxevDjnn39+unTpkj/+8Y95/fXXc++996ZXr16N0D3QVC1ZsiQXXnhh9t9//wwfPjwlJSWZOXNmli9fnp///Oc599xzk8RcAhrF1q1b071795x11lmZNGlS7bqZBDSURx55JJdffnkOPvjgDB8+PNu2bcv06dPz/vvv55577knv3r1TVVWVc845J++8804uuuiitG/fPvfff3/Wrl2b6dOn55BDDmns0wCakI0bN+a73/1uVq1alZEjR6Zjx46ZNWtWysrKcuutt+aMM85IYr/EfyaAAmhCFixYUO+2Df/XPffck5NOOimbNm3KbbfdlocffjibN29O165dc+WVV+b4449voG6B5uT555/PnXfemZdffjnJjqsQLrnkkpx44om1NeYS0Bg+K4Ayk4CG9Oijj+buu+/Oq6++mpYtW+aYY47JuHHjcvTRR9fWfPjhh7n55pvz2GOPpbq6OkcffXQmTJjg9nvAl2Lt2rW5/fbb88gjj2TDhg05/PDDc9lll6Vfv361NfZL/CcCKAAAAAAAAArlGVAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAzdSYMWPStWvXjB07trFbAQAAmhgBFAAAQDNUUVGRZ555JrvuumsWLVqU9957r7FbAgAAmhABFAAAQDM0d+7cVFdXZ8yYMdm+fXtmzJjR2C0BAABNiAAKAACgGZo1a1batm2bMWPGZI899sjMmTNTU1PT2G0BAABNhAAKAACgmXnttdeybNmy9O7dO7vssktOOeWUrFq1Kk8//XS92o8//jh33XVXTjvttHTv3j2DBg3KjBkz8pvf/CZdu3ZNeXl5nfrFixdn9OjR6dmzZ775zW9m6NChWbBgQUOdGgAA8BUhgAIAAGhmZs2alSQZNGhQne+lpaX1aq+44or86le/SuvWrTNixIgcfPDBufbaazNz5sx6taWlpRk9enSWLVuWQYMGZejQofnwww8zfvz4/Pa3v/3yTggAAPjKaVHjHgsAAADNRnV1dU4++eRUVlZm8eLFad26dT7++OOcdNJJ+eijj/Lkk0+mffv2SZI///nPGTduXE455ZRMnjw5rVq1SpI88MAD+elPf5ok+etf/5oDDzww7733XgYMGJBOnTrlgQceyF577ZUk2bJlS0aNGpWXXnops2fPzuGHH944Jw4AADQoV0ABAAA0I08//XQqKioyYMCAtG7dOknSsmXLnH766amqqsrs2bNrax966KEkydVXX10bPiXJ8OHD06VLlzrvO2fOnGzbti3jxo2rDZ+SZJdddsm4ceOyffv22vcDAACavpaN3QAAAAAN55OA6YwzzqizPnjw4DzwwAOZMWNGRo8enSQpKytLu3bt0rlz5zq1JSUlOeaYY/LWW2/VrpWVlSXZ8Qyo5cuX16mvrKxMsuPZUwAAQPMggAIAAGgmNm7cmIULFyZJxo4d+6k1b7zxRl544YX06NEja9eurXel0yc6dOhQ5+cNGzYkSaZNm/aZv/769ev/m7YBAID/QQIoAACAZmLBggXZsmVLjjrqqBx55JH1jr/11lt57rnnUlpamh49emT33XfPxo0bP/W9/u96mzZtkiQLFy5Mp06dim8eAAD4nyKAAgAAaCY+uf3exIkT06tXr3rHV69enW9961tZsGBBrr322nTr1i3PPPNMPvjgg3pXPL300kt1fu7atWsWLlyYV155pV4AtXLlykyfPj3HHnts+vfvX/BZAQAAX0Uljd0AAAAAX75Vq1bl+eefT8eOHdOzZ89PrTnggANywgknpLKyMvPmzcvZZ5+dmpqa3Hzzzamurq6tmz17dl555ZU6rx0yZEh22mmnTJ48ORUVFbXrH3/8cX72s59l6tSpWbdu3ZdybgAAwFePK6AAAACagdmzZ6empiaDBw9OixYtPrPu7LPPzjPPPJPS0tKUlpZm9uzZmTt3bt54440cf/zxefvtt/P4449nr732ytq1a7PTTjslSQ4++OBMmDAhkyZNyre//e30798/bdu2zZNPPpkVK1akX79+GTJkSEOdLgAA0Mha1NTU1DR2EwAAAHy5TjvttKxcuTIPP/xwDj300M+s27JlS/r27ZsNGzZkzpw5OeiggzJlypTMmTMnFRUVOeigg3LJJZfk0Ucfzfz58/Pss89mr732qn39E088kalTp6asrCzbt29Pp06dctZZZ2XkyJHZeeedG+JUAQCArwABFAAAAJ/q3XffzR577JHdd9+93rHzzz8/ZWVlefHFFz/3iioAAKB58gwoAAAAPtU999yTnj175rnnnquz/uKLL2bJkiU57rjjhE8AAMCncgUUAAAAn2rp0qUZOnRoWrVqlVNPPTX77rtvysvLs3Dhwuy8886ZPn36597ODwAAaL4EUAAAAHymV199NXfddVf+/ve/58MPP0z79u3Tp0+f/OAHP0jnzp0buz0AAOArSgAFAAAAAABAoTwDCgAAAAAAgEIJoAAAAAAAACiUAAoAAAAAAIBCCaAAAAAAAAAolAAKAAAAAACAQgmgAAAAAAAAKJQACgAAAAAAgEIJoAAAAAAAACiUAAoAAAAAAIBC/T+UNBCwVt8w2AAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3926,7 +4614,7 @@ }, { "cell_type": "code", - "execution_count": 125, + "execution_count": 962, "metadata": {}, "outputs": [], "source": [ @@ -3937,19 +4625,17 @@ }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 963, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEWCAYAAADcsGj7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjzklEQVR4nO3de5gcZZn38e8v4ZDAsICCnAYYMQEVVjmMHAK2UQ67QRBFJAILgVVAVjaCihvc4DsviYYVddlZ30XAQyACGhXBRFABDYiIMREERWGyEmAgQMI5kIRD7vePqp5U95x6kj7UTP8+19XXVNVTVc9dz3T33c9T1dWKCMzMzPJoVKMDMDMz64+TlJmZ5ZaTlJmZ5ZaTlJmZ5ZaTlJmZ5ZaTlJmZ5ZaTlPUi6WBJXZJWSvpgnevukPTdOtTzDUkX1LqekUjSAkkfT6dPkvSLOtU7U9IKSU/Uo75GkTRb0sxGx5EXTlJNLH2zeVbSpmVFFwJfj4iWiLheUkga14gYayUiPhERM2q1f0mbp0n+xirvd6mktmruc5D6BvzQEBFXR8QRdYhjZ+AzwNsjYvta12f54STVpNI3uncDAXygrHhX4M9VqmejauxnGDoOWAMcIWmHRgeTR5JGD2H1XYGnI+KpfvbVrM+zHiO1DZykmtcpwF3AbGBKcaGk/wV2A+alPYHfpkV/TOcnp+sdJekeSc9JulPSOzL7WCrp3yTdC7zU14tH0p6Sbpb0jKQnJX2+ryAlHZju/zlJf5Q0MVN2mqS/SHpR0t8knZkpmyipW9JnJD0laZmk0zLlPUMqFaz7RknzJL0g6ffpsNMdg7TvFOAbwL3ASWXHtK+ku9O4fyDp+9nhnYHatmw/R0q6P93PY5I+2896oyRNl/RwenxXSdoye+xl6y+VdJikfwQ+D0xO//d/7GPfp2bbQtJbM//XByQdnymbLelSSTdKegl4byXHIOkw4GZgxzSO2ZLa0h7+xyQ9AvxykOMsrn+apEeVjCB8QtK7JN2btvXX+2q/dPuxkq5Mt/uLpM9l203SjpJ+JGm5pIckTc2UdUiam8bzoqQ/S2rPlO8j6Q9p2feBMWV1D+m1ls4/lu7vAUmH9ndcw0JE+NGED2AJ8C/AfsCrwHaZsqXAYZn5AMZl5vcFngIOAEaTvCEvBTbNbH8PsDMwto+6twCWkQzfjEnnD0jLOoDvptM7AU8DR5J8oDo8nd82LX8/8BZAwHuAl4F907KJwGskQ5cbp/t4Gdg6LZ8NzKxw3e+lj82AtwOPAncM0La7AGvTdT8D3Jsp2wR4GPhUWtexwCuZWAZs27J6lgHvTqe3Lh57H+v9c/r/3g1oAa4D5mSOvbts/Z7/f/b/kSlfAHw8nT612BbA5mnbnAZslB7LCmDPTJs/Dxyc/j/HDOEYSuIE2kiel1el9Y4d5DiL638jrfcIYDVwPfAmkufaU8B7+qn/IuC2NMZWkg8f3WnZKGAx8IX0/7sb8DfgHzJtuJrkeTUamAXcVfZ8ODd9PhxH8nqs6PlA2WsN2CP9H+yYOe63NPr9ZoPeqxodgB8N+KfDIekLYZt0/q/AuZnynjepdL48SV0KzCjb5wPFF3i6/T8PUP8JwN39lHWwLkn9W/FNJlP+c2BKP9teD3wqnZ4IrAI2ypQ/BRyYTs+mNEn1uW76xvAqsEembCYDJ6npwD3p9I7A68A+6XwBeAxQZv07MrEM2LZlyx8BzgT+bpD/963Av2Tm90iPaSOqm6QmA78uW/cy4P9k2vyq9TyGkjhZl3R2q/A4i+vvlCl/Gpicmf8RcE4/9fcknXT+46xLUgcAj5Stfz7wnUwb3pIpezuwKvN8eLzs+XBnpc8Hyl5rwDiS5+5hwMYDtelweXi4rzlNAX4RESvS+WvIDPlVYFfgM+nww3OSniP5JLdjZp1HB9h+Z+B/K6znI2X1HALsACBpkqS70qGl50g+qW6T2f7piHgtM/8yySfsvvS37rYkb3LZ4xno2CAZSr0aICIeJ/kEXmzfHYHHIn1H6WN/lbRt0YdJjvlhSbdJOqifeHYk+bRe9HB6TNsNchxDtStwQFnsJwHZCx3K267SY+hPdn+VHOeTmelVfcz39/zYkf6fA7uSDEVmj/vzZfVmr0h8GRijZBi8r+dD9hiG9FqLiCXAOSSJ8SlJ35PU13Nn2HCSajKSxgLHA++R9ISSy3nPBd4p6Z0V7uZR4IsRsVXmsVlEXJtZZ6Db6z9KMkxXST1zyurZPCIuUnJF4o+Ar5AMVW4F3Egy9FdNy0mGAlszy3bub2VJE4DxwPmZ9j0AOCF9U1oG7CQpG2d2f5W0LQAR8fuIOIZkuOp6YG4/YT1O8mZXtEt6TE8CL5EMYxbjH02SmHuq6e9Y+/AocFtZ7C0RcVZ/+xvCMfQnu7+BjnNDLaP/58CjwENlx71FRBxZ4X7Lnw+7lO17SK+1iLgmIg4haYsA/qOCOHLLSar5fJBk+OntwN7p423Ar0l6AH15kmScvegK4BOSDlBic0nvl7RFhTHMB7aXdI6kTSVtIemAPtb7LnC0pH+QNFrSGCUn+ltJxvI3JU0ikiaRnGeoqoh4neTcRoekzSS9lf7bCZIe082Utu9eJIlgEvBbkvY/Oz3JfQywf2b7itpW0iZKvqO0ZUS8CryQ7rcv1wLnSnqzpBbgS8D3057jgySf6t8vaWOSocrsVxKeBNokVfJeMR/YXdLJkjZOH++S9La+Vh7iMVRioOPcUHNJPnhsLWkn4OxM2ULghfSChbHpc3UvSe+qYL+/JUmkU9Pnw7Gsx/OhSNIekt6XfohbTdI73JA2bTgnqeYzhWSs/JGIeKL4AL4OnKS+L2PtAK5MhxuOj4hFwOnpNs+SnKw+tdIAIuJFkosgjiYZBukC3tvHeo8Cx5AMnSwn+VR5HjAq3cdUkjePZ4ETgZ9UGsMQnQ1smcY6h+TNcE35SpLGkPRS/zvbthHxULrdlIh4heRiiY8BzwH/RPLmviY95qG07cnAUkkvAJ9I99WXb6f13w48RPLm9a9pfc+TXEDzTZJzZS8B2av9fpD+fVrSH/rZP+m+XiT5oPBRkl7NEySf4su/h7c+x1CJfo+zCi4kaZeHgFuAH7Luf/Y6yXN577R8BUl7bjnYTjPPh1NJ/t+TST4UFcuH+lrblOQijxUk7f8mktfPsKXSoVAzG4yk/wC2j4ihnMcbaH+/A74REd+pxv6s9iSdBXw0It7T6FhGOvekzAah5Ls/70iHW/Yn6QX9eAP29x5J26fDO1OAdwA/q1a8Vn2SdlByu7BRkvYg+WrBej8HrHIj8hvKZlW2BckQ344kl/d+FbhhA/a3B8kwZQvJVY7HRcSyDQ3SamoTksvp30wyTPs94H8aGVCz8HCfmZnllof7zMwstzzcV0XbbLNNtLW1NToMM7NhZfHixSsiYtu+ypykqqitrY1FixY1Ogwzs2FF0sP9lXm4z8zMcstJyszMcstJyszMcstJyszMcstJyszMcstX91lDdHZ2smTJkkaHQXd3ci/V1tbWQdZsrHHjxjF16tTBVzQbYZykrCGWLFnC3ffdz9rN3tDQOEa9/DwAT67J70th1MvPNDoEs4bJ7yvTRry1m72B1W8/qqExjLl/PkDD4xhIMUazZuRzUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUjnR2dlJZ2dno8Mwsw3k13J1+QazOZGHn60wsw3n13J1uSdlZma55SRlZma55SRlZma55SRlZma55SRlZma55SRlZma55SRlZma55SRlZma55SRlZma55SRlZma5NeJviyQpgO9GxMnp/EbAMuB3EXFUQ4Mzs6ZSKBR6pm+//faKytZnmzzVtaGaoSf1ErCXpLHp/OHAYw2Mx8zMKtQMSQrgJuD96fQJwLXFAkn7S7pT0t3p3z3S5adKuk7SzyR1SfpyA+I2sxEi29son++vbH22yVNd1TDih/tS3wO+IGk+8A7g28C707K/AoWIeE3SYcCXgA+nZXsD+wBrgAck/XdEPFqLALu7u1m1ahVTp06txe5zp6urC70SjQ5jWNDqF+jqerFpnhvDXVdXF2PHjh18RatIUySpiLhXUhtJL+rGsuItgSsljQcC2DhTdmtEPA8g6X5gV6AkSUk6AzgDYJdddqlJ/GZmzaopklTqJ8BXgInAGzPLZwC/iogPpYlsQaZsTWb6dfpor4i4HLgcoL29fb27Bq2trQBN82NpU6dOZfH/PtHoMIaFGPN3jH/L9k3z3Bju3OOtrmZKUt8Gno+I+yRNzCzfknUXUpxa55jMzGwAzXLhBBHRHRH/1UfRl4FZkn4DjK5zWGbWJMovzc7O91e2Ptvkqa5qGPE9qYho6WPZAtJhvYj4LbB7pviCdPlsYHZmG3+nysyszkZ8kjIzy4uBehn9la3PNnmqa0M1zXCfmZkNP05SZmaWW05SZmaWW05SZmaWW05SZmaWW05SZmaWW05SZmaWW05SZmaWW/4yb06MGzeu0SGYWRX4tVxdTlI54Tsnm40Mfi1Xl4f7zMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst3yDWWuYUS8/w5j75zc4hqcBGh7HQEa9/AywfaPDMGsIJylriLz8nEF392sAtLbmOQlsn5v2Mqs3JylrCP+cgZlVwuekzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst5ykzMwst3zvPmuIzs5OlixZUpe6uru7AWhtba1LfQMZN26c71toNgROUtYQS5Ys4cE//YFdWl6veV0vvTgagNWvLat5XQN5ZOXohtZvNhw5SVnD7NLyOtPbV9a8npmLWgDqUlclcZhZ5XxOyszMcstJyszMcstJyszMcstJyszMcstJyszMcstJyszMcstJyszMcstJyszMcstJyszMcstJyszMcstJyszMcmvQJCVptKRb6hGMmZlZ1qBJKiJeB16WtGUd4mlanZ2ddHZ2NjoMs2HLr6GRqdK7oK8G7pN0M/BScWFE+IdxqqRev61kNlL5NTQyVZqkfpo+zMzM6qaiJBURV0oaC+wSEQ/UOCYzMzOgwqv7JB0N3AP8LJ3fW9JPahiXmZlZxZegdwD7A88BRMQ9wJtrEpGZmVmq0iT1WkQ8X7Ysqh2MmZlZVqUXTvxJ0onAaEnjganAnbULy8zMrPKe1L8CewJrgGuBF4BzahSTmZkZUPnVfS8D/54+zMzM6mLAJCVpHgOce4qID1Q9IjMzs9Rgw31fAb4KPASsAq5IHyuBP9U2NDOz6jj00EMpFAocdthhvcoKhULPo9zhhx9OoVDgiCOOqGg5wDHHHEOhUOBDH/pQr7Kjjz6aQqHAMccc06vsxBNPpFAocMopp5Qs//SnP02hUOBzn/tcr20mT55MoVDgxBNP7FU2bdo0CoUC06dP71U2a9YsCoUCF198ccnySy65hEKhwNe//vVe28yZM4dCocC1117bq2zhwoVMnDiRxYsX9yrbUAMmqYi4LSJuA/aJiMkRMS99nAgcUvVoykj6T0nnZOZ/LumbmfmvSvp0reMws+Ht1VdfBeCVV14Z0nZr1qwBYPXq1RUtB3j22WcBePrpp3uVPf/88yXrZHV3dwOwdOnSkuWLFi0C4K677uq1zbJly0q2zbrzzuTatttvv71X2U033QTAvHnzSpZfd911AMydO7fXNldccQUAl156aa+yjo4O1q5dywUXXNCrbENVeuHEtpJ2K85IejOwbdWj6e1OYEJa5yhgG5ILOIomAL+pQxxmNkwdeuihJfPZ3lR57yk7f/jhh5eUFXtN/S0HevWQsr2po48+uqQsu255T6jYm/r0p0s/g2d7U5MnTy4py+5j2rRpJWXZ3tSsWbNKyoq9qUsuuaRkebY3NWfOnJKybG9q4cKFrFy5EoCVK1dWvTdV6SXo5wILJP0tnW8DzqxqJH37DfCf6fSeJEOMO0jaGngZeBuwlaS7SY7l98BZEbFG0lLgGuC9wMbAGcAsYBxwcUR8Q1ILcAOwdbrO9Ii4QVIbcBNwB0kifAw4JiJW1epAu7u7WbVqFVOnNsc9e7u6utjk1eb6ObMnXx7FK11dTfM/rreuri7Gjh3ba3mxF1VUaW+q2FsqKvaa+lsOvXtI2d5UsRfV17rlPaFib6rYiyrK9qaKvai+9lHsRRVle1PFXlTRvHnzOO+883p6UUVz587l7LPPBtb1ooouvfRSTjjhBCDpRWVdcMEF3HjjjVRLRe8SEfEzYDzwqfSxR0T8vGpR9F/v48BrknYhSRa/BX4HHAS0Aw8C3wQmR8TfkySqszK7eDQiDgJ+DcwGjgMOBC5My1cDH4qIfUmS2VclKS0bD/y/iNiT5E4bH+4rRklnSFokadHy5curctxmZsNFsRfV3/yGqrQnBbAfSQ9qI+CdkoiIq6oaTd9+Q5KgJgBfA3ZKp58n6eGsjogH03WvBD4JXJLOF+8veB/QEhEvAi9KWi1pK5KfHfmSpAKwNt33duk2D6W3fwJYTHLsvUTE5cDlAO3t7et9F47W1laApvk9nKlTp7J66e8bHUZdbbfZWsa0jW+a/3G9uYfaGC0tLSWJqaWlpar7r/QGs3NIrvQ7BHhX+mivaiT9K56X+nuS4b67SHpSE4A/DLJtsV++NjNdnN8IOInk3Np+EbE38CQwpmxbgNcZWkI3s5zYeOONS+Y32WSTirbbdNNNS+bHjBkz4HKArbfeuqTsjW98Y8/0lluW/m5sdt3ih9SitrY2ANrbS99mDzzwwJ7pHXbYoaQsu48JEyaUlGXPtU2aNKmkrHiu7Nhjjy1Zfvzxx/dMn3766SVlZ521bsCqfLhvxowZVFOlJwXagYMj4l8i4l/TR70+tvwGOAp4JiJej4hngK1IEtV3gDZJ49J1TwZuG8K+twSeiohXJb0X2LV6YZtZHtx6660l87fcckvPdPmVb9n5m2++uaTsF7/4xYDLAW644YaSsh//+Mc90+VX0mXXveaaa0rKrroqGaT62te+VrL8y1/+cs/097///ZKy7D4uuuiikrKZM2f2TJ9//vklZeeddx4A55xzTsny4vkogJNPPrmkrHg+CmD//ffv6T21tLSw3377UU2VJqk/AdtXtebK3UdyVd9dZcuej4hu4DTgB5LuI+khfWMI+74aaJe0iKRX9dfqhGxmeVLsTVXaiyoq9pqyvaWBlsO6HlK2F1VU7E2V97hgXU+o2IsqKvamsr2oomJvqrwnBut6U319/6vYmyq/4rDYm8r2ooqKvalsL6qoo6ODUaNGVb0XBaCIwU+jSPoVsDewkMwwmO84Uaq9vT3Kr8apVHE8vVnOVxTPSU1vr+5J1r7MXJR8yqtHXYPFMabtXU3zP663ZnsNjSSSFkdEn6eQKj3P0lG9cMzMzCpT6Q1mb5O0KzA+Im6RtBkwurahmZlZs6v06r7TgR8Cl6WLdgKur1FMZmZmQOUXTnwSOJjkd6SIiC7gTbUKyszMDCpPUmsioudeIpI2wj8fb2ZmNVZpkrpN0ueBsZIOB34AzBtkGzMzsw1SaZKaBiwn+X7SGcBPI8K/0mtmZjU1YJKSdIykT0bE2oi4guSODO3A5yUdV5cIzcysaQ3Wk/oc627SCrAJyY1mJ1J6t3EzM7OqG+x7UptExKOZ+TvSe+c9I2nzGsbVdMaNGzf4SmbWL7+GRqbBklTJDaYi4uzMbD1+mbdp+GcGzDaMX0Mj02DDfb9Lv8hbQtKZJPfxMzMzq5nBelLnAtdLOpF1v920H7Ap8MEaxmVmZjZwkoqIp4AJkt4H7Jku/mlE/LLmkZmZWdOr9AazvwScmMzMrK4q/TKvmZlZ3TlJmZlZbjlJmZlZbjlJmZlZbjlJmZlZbjlJmZlZbjlJmZlZblX0PSmzWnhk5WhmLmqpeT0PvzgaoC51DeSRlaPZvaERmA0/TlLWEPW8Y/Xm3d0AjGltrVudfdkd36nbbKicpKwhfMdqM6uEz0mZmVluOUmZmVluOUmZmVluOUmZmVluOUmZmVluOUmZmVluOUmZmVluOUmZmVluOUmZmVluOUmZmVluOUmZmVluOUmZmVlu+QazVlOdnZ0sWbKkLnV1p3c7b23w3c4HMm7cON9c12wInKSsppYsWcLdf74btqpDZc8nf5ZreR0qWw/PNToAs+HHScpqbytYO3FtzasZtSAZva5HXeujGJ+ZVc6vGjMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nqZzo7Oyks7Oz0WGYNR2/9vLNN5jNiXr9nIWZlfJrL9/ckzIzs9xykjIzs9xykjIzs9xykjIzs9xykjIzs9xykjIzs9xykjIzs9xykjIzs9xykjIzs9xykjIzs9yqWZKSFJK+mpn/rKSOKu17tqTj+ljeLsk34TKzqnjwwQeZNGlSr1snTZs2jUKhwPTp03ttM2vWLAqFAhdffPGQyhYuXMjEiRNZvHhxz7IVK1Zw/PHHUygUuPbaa3ttc9lll1EoFPjWt77Vq2zOnDlD3q6/4x2sbKC6NlQte1JrgGMlbVPDOkpExKKImFqNfUkaXY39mNnwNXPmTF566SUuvPDCkuV33nknALfffnuvbW666SYA5s2bN6Syjo4O1q5dywUXXNCz7Morr+SJJ54A4NJLL+21zdVXX92zXrkrrrhiyNv1d7yDlQ1U14aqZZJ6DbgcOLe8QNKukm6VdG/6d5d0+WxJnZLulPS3vnpLGYdJ+rWkByUdlW4/UdL8dLpD0rclLUj31ZO8JF0vabGkP0s6I7N8paQLJf0OmC7px5mywyVdt6GNYmbDw4MPPsjSpUsBWLp0aU8PYtq0aSXrZXtTs2bNKinL9pgGKlu4cCErV64EYOXKlSxevJgVK1Ywf/78km2yPZXLLruspCzbK5ozZ86Qt+vveAcrG6iualBEVHWHPTuWVgI7AvcC7wROB1oiokPSPOCHEXGlpH8GPhARH5Q0G9gcmAy8FfhJRIzrY9+zge2BI4G3AL8CxgEHAp+NiKPSocUjgPcCWwAPANtHxKuS3hARz0gaC/weeE9EPC0pgMkRMVeSgL8A746I5ZKuAa6NiN4fgVLt7e2xaNGi9WqvY489llWrVjF+/Pj12j6vurq6WLl2JWuPWlvzukYtSD5zrZ1Y+7rWx6j5o2gZ1TLi/sfDXVdXF2PHjuW660o/g55yyik9b8wAbW1tXHXVVRQKhV77KPao1rfsyCOP7ElSAC0tLRx66KHccMMNVa+rv7L+jhf6b4vB6qqUpMUR0d5XWU0vnIiIF4CrgPIhuIOAa9LpOcAhmbLrI2JtRNwPbDfA7uem63UBfyNJauV+GhFrImIF8FRmf1Ml/RG4C9gZKL5rvA78KI090tj+SdJWacw3lVcg6QxJiyQtWr58+QDhmtlwkn1T7mu+mrIJqjh/880316y+vgx0vPVsi3L1+D2pS4A/AN8ZYJ1sd25NZloAkr4IvB8gIvbuY5u+5sv39TqwkaSJwGHAQRHxsqQFwJh0ndUR8Xpmm+8A84DVwA8i4rVegUdcTjKsSXt7+3p3S1tbWwFG3I+vTZ06lbsfu7vRYeRDC4zfafyI+x8Pd1On9n0au62trVfvoVZaWloq7knVykDHW8+2KFfzS9Aj4hlgLvCxzOI7gY+m0ycBdwyyj3+PiL0zCQrgI5JGSXoLsBvJcF4ltgSeTRPUW0mGCPur93HgcWA6MLvC/ZvZCFB+5d4XvvAFACZMmFCyPDvcNWnSpJKyo48+uqKyjo6OkrIZM2YwZcoURo8uvX7rrLPO6pk+6aSTSsqmTJnSM3366acPebv+jnewsoHqqoZ6fU/qq0D2Kr+pwGmS7gVOBj61Hvt8ALiNZAjuExGxusLtfkbSo7oXmEEy5DeQq4FH0+FHM2sSu+++e0+Poa2tjXHjktPjF110Ucl6M2fO7Jk+//zzS8rOO++8isr2339/WlpagKQXtd9++7HNNttw1FFHlWxzwgkn9EyfeeaZJWUf+9i6fsDJJ5885O36O97BygaqqxpqlqQioiUz/WREbBYRHen80oh4X0S8IyIOjYhH0uWnRsQP+9pH2b5PjYhzI+LdEbF7RMxPly+IiKPS6Y6I+Epmm73SetdExKS07o9ExMSIWDBAfYcAV2xoe5jZ8DN9+nQ233zzkp4DrOtN9XXRQLHHlO0pVVLW0dHBqFGjmDFjRs+yKVOmsP322wN991CKvaJsL6qo2MMZynb9He9gZQPVtaFqdnXfSCBpMfAScHhErBls/Q25uq84Lj7SzlcUz0nV44q73F/dt2AU++y0z4j7Hw93I/W1N5wMdHVfPS6cGLYiYr9Gx2Bm1sx87z4zM8stJykzM8stJykzM8stJykzM8stJykzM8stJykzM8stJykzM8stf08qJ7K3GTGz+vFrL9+cpHKivzsxm1lt+bWXbx7uMzOz3HKSMjOz3HKSMjOz3HKSMjOz3HKSMjOz3HKSMjOz3HKSMjOz3HKSMjOz3HKSMjOz3HKSMjOz3HKSMjOz3HKSMjOz3PINZq32noNRC+rweei55E9d6lofzwE7NToIs+HFScpqqp4/g9Ad3QC07tRatzqHZCf/LITZUDlJWU35ZxDMbEPkdFzEzMzMScrMzHLMScrMzHLLScrMzHLLScrMzHJLEdHoGEYMScuBhxsdxwbaBljR6CByxO1Ryu2xjtui1Ia0x64RsW1fBU5SVkLSoohob3QceeH2KOX2WMdtUapW7eHhPjMzyy0nKTMzyy0nKSt3eaMDyBm3Rym3xzpui1I1aQ+fkzIzs9xyT8rMzHLLScrMzHLLSaqJSdpZ0q8k/UXSnyV9Kl3+Bkk3S+pK/27d6FhrTdIYSQsl/TFti/+bLm+6tsiSNFrS3ZLmp/NN2x6Slkq6T9I9khaly5qyPSRtJemHkv6avn8cVKu2cJJqbq8Bn4mItwEHAp+U9HZgGnBrRIwHbk3nR7o1wPsi4p3A3sA/SjqQ5myLrE8Bf8nMN3t7vDci9s58H6hZ2+O/gJ9FxFuBd5I8R2rSFk5STSwilkXEH9LpF0meaDsBxwBXpqtdCXywIQHWUSRWprMbp4+gCduiSFIr8H7gm5nFTdse/Wi69pD0d0AB+BZARLwSEc9Ro7ZwkjIAJLUB+wC/A7aLiGWQJDLgTQ0MrW7Soa17gKeAmyOiadsidQnwOWBtZlkzt0cAv5C0WNIZ6bJmbI/dgOXAd9Kh4G9K2pwatYWTlCGpBfgRcE5EvNDoeBolIl6PiL2BVmB/SXs1OKSGkXQU8FRELG50LDlycETsC0wiGRovNDqgBtkI2Be4NCL2AV6ihsOcTlJNTtLGJAnq6oi4Ll38pKQd0vIdSHoWTSMdulgA/CPN2xYHAx+QtBT4HvA+Sd+leduDiHg8/fsU8GNgf5qzPbqB7nSkAeCHJEmrJm3hJNXEJIlkXPkvEfG1TNFPgCnp9BTghnrHVm+StpW0VTo9FjgM+CtN2BYAEXF+RLRGRBvwUeCXEfFPNGl7SNpc0hbFaeAI4E80YXtExBPAo5L2SBcdCtxPjdrCd5xoYpIOAX4N3Me68w6fJzkvNRfYBXgE+EhEPNOQIOtE0jtITvaOJvnwNjciLpT0RpqsLcpJmgh8NiKOatb2kLQbSe8JkuGuayLii03cHnuTXFCzCfA34DTS1w1VbgsnKTMzyy0P95mZWW45SZmZWW45SZmZWW45SZmZWW45SZmZWW45SZmNEJI+JCkkvbXRsZhVi5OU2chxAnAHyZdvzUYEJymzESC9/+LBwMdIk5SkUZL+J/19rPmSbpR0XFq2n6Tb0pul/rx4OxuzvHGSMhsZPkjy+z4PAs9I2hc4FmgD/h74OHAQ9Nyv8b+B4yJiP+DbwBcbELPZoDZqdABmVhUnkPy0BiQ3hD2B5DexfhARa4EnJP0qLd8D2Au4Obl9I6OBZXWN1qxCTlJmw1x6/7j3AXtJCpKkE6y711yvTYA/R8RBdQrRbL15uM9s+DsOuCoido2ItojYGXgIWAF8OD03tR0wMV3/AWBbST3Df5L2bETgZoNxkjIb/k6gd6/pR8COJL/98yfgMpK72z8fEa+QJLb/kPRH4B5gQt2iNRsC3wXdbAST1BIRK9MhwYUkvy77RKPjMquUz0mZjWzz0x9z3ASY4QRlw417UmZmlls+J2VmZrnlJGVmZrnlJGVmZrnlJGVmZrnlJGVmZrn1/wFZSJnFYvQKMQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABqAAAANjCAYAAADF7tvpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABnlklEQVR4nOz9eZxf8/3//9+zb0QkiMZadEaFEERErFmL2qKILXij9Q4t6qviXa3S0tC+u1hqexfVoiRSW4NIUluRllhjaRFbYitJLJFF8vr9kd/Mx5iEZPKUSbheLxcX5rzO65zH68zrNS6ZW845TSqVSiUAAAAAAABQSNPGHgAAAAAAAIAvFgEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAD5nRx11VKqrq3P00Ucvcp0XX3wxhx12WLp3754tt9wyF198cZLk8ccfz3333besRl1s1dXV2WuvvRp7jHqWl7nmzJmTHj16pLq6Opdddtky3/+hhx6a6urqTJgwYZnve0l98j0+YcKEVFdX56yzzqpdNmzYsFRXV+fpp59ujBEX6aOPPso555yT3r17Z7PNNssee+zR2COt8K688spUV1dn1KhRjT0KAABLSYACAIDP0VtvvZX7778/bdq0yX333ZfXX399oeudcsopefDBB9O7d+8ccsgh2XrrrXPXXXflgAMOyHPPPbeMp15xHXfccRk8eHBjj5Fx48bl3XffTZs2bTJy5MjGHme5tbjv8X79+uW4447LaquttowmWzwjR47M5ZdfnpVXXjmHHXZYBg0a1NgjAQDAcqN5Yw8AAABfZLfcckvmzZuXo446Kueff35GjhyZ4447rt56kyZNypprrpkLLrigdtmoUaMyf/78ZTnuCu+73/1uY4+QJLnpppuy0korZb/99ssVV1yRf/7zn+nRo8cy23+rVq2SJG3atFlm+2yId955Z7He4/369Uu/fv2WwURL5qmnnkqS/PjHP852223XyNMAAMDyxRlQAADwObrxxhuzyiqr5KijjsrKK6+cUaNGpVKp1Ftv7ty56dChw7IfkOLeeeed3Hvvvdlmm22y6667JklGjBixTGfYcMMN06RJk2y44YbLdL9fNnPmzEmSrLrqqo08CQAALH8EKAAA+Jw888wzefbZZ9OrV6+0bt06/fr1y5QpU/L3v/+9dp3zzz8/1dXVtetXV1enT58+GTZsWE499dQkyc9//vNUV1fn1VdfrX3eAw88kCOOOCJbbbVVtthiixxwwAG5/fbb6+z/1VdfTXV1dX7729/mZz/7WbbYYov07Nkzt91222fOfeKJJ6Z3797p3r179tlnn4wcOXKh4ezjKpVKrr322uyzzz7p1q1bevTokWOOOab2LJGP++CDD3LhhRdmr732Svfu3bPZZptlwIABOffcczNz5sx6r+H888/PuHHj8q1vfSvdunVLr169ctppp+Wdd96ps91P3gOq5vg+//zz+dWvfpWdd945m266aXbfffdce+21C53rF7/4Rfr06ZNu3bpl0KBBGT9+fH74wx/Wfp8+yy233JKPPvoo22+/fTbffPOstdZaueOOO/Lee+8tdP3//Oc/+fGPf5wddtghm2++eQ466KBMnDgxhx9+ePr06dOgY/y1r30ta621Vtq1a1e77NZbb83gwYPTo0ePdO/ePfvuu2+uueaaz/y+1nj88cczdOjQ9OzZM5tttll22223XHzxxbURpkafPn2y9dZb13v+J+/t9Fnv8Y9b1D2gSnwOGnJcarb5l7/8JUmy9957195za9SoUamurs5tt92WI488Mptttll22WWXvPLKK0mSN998Mz/+8Y+z0047ZdNNN81OO+2UH//4x3nzzTfr7KPmvfviiy/m3HPPrX0/DR48OE888UTmz5+fyy67LH369MkWW2yRb33rW4t9z6+PPvool1xySQYOHJhu3bplt912y8iRI/O73/1uod+HxTnOyYLP37BhwzJx4sQceuih6d69e3r06JETTjhhod/bsWPH5oADDsgWW2yRnXbaKRdddNEiz4h766238pOf/CQ77rhjNt100/Tp0ye/+MUv8v7779dZ79BDD02fPn1y9913p0+fPtl8881z/PHHJ0leeumlHH/88dlll11qt/GTn/wkb7311mIdNwAAloxL8AEAwOfkxhtvTJLstttutf/+y1/+khEjRmT77bdPkmyzzTY57rjjcsEFF2S11VbL4MGDs/LKK2fttdfOu+++m3HjxmX77bfPFltskfbt2ydZcDbNj370o3Ts2DG77bZb2rZtm3HjxuX444/PiSeemGOOOabOHNdff32S5MADD8wLL7yQLbbYYpEzP/DAAznmmGMyb9689O3bN126dMldd92VH/7wh5k6dWq+973vLfK5p5xySm666aZ87Wtfy+DBg/Phhx/mtttuy+DBg3PJJZekV69eSRb88vuII47I448/nu233z7bb799Pvjgg4wfPz6///3v8+qrr+a8886rs+2//e1v+d3vfpedd945PXv2zN///veMGDEizz33XP785z9/5vfi5JNPztSpUzNgwIA0b948N998c37yk5+kWbNm2X///ZMsOJvliCOOyGOPPZbu3btn4MCBmTRpUoYOHZouXbp85j5q3HTTTWnWrFkGDhyYZMH3/bLLLsvNN9+cgw8+uM6606ZNy0EHHZSXXnop22+/faqrq/Pggw/msMMOS4cOHdKiRYsGHeNvfetb+da3vlX7vL/+9a856aSTsv7662efffZJ06ZNM27cuJxxxhmZNm1ajj322E99TWPHjs3xxx+fpk2bpl+/fllttdXy4IMP5te//nXuvffeXHHFFWnZsuViH6NkwWX1FvYenzJlymI9v8TnoKHHpX379jnuuOMyduzYPPPMMznggAOy+uqrZ6211qqd/2c/+1nWWGONHHrooXn11Vezzjrr5OWXX86BBx6Y//znP9luu+2y66675tlnn811112X8ePH59prr80666xTZ18nnHBCZsyYkd133z2vvfZa7rjjjhx11FHp06dP7rrrrgwcODCzZ8/OzTffnGOOOSa33357Onfu/KnH7oQTTsidd96Z6urqHHTQQXn55Zfzwx/+sN6+G3KcJ02alCFDhmSrrbbKgQcemMcffzy33XZbnnzyyYwePbr2fTJixIicdtpp6dSpU/bcc898+OGHufjii7PyyivXm2Hq1Kk58MAD88Ybb2SXXXbJhhtumKeffjr/93//l/vvvz9XX3112rZtW7v+tGnTcsIJJ6Rv375ZaaWVsuGGG+add97J4YcfnmnTpmXgwIFZY4018uyzz+baa6/NhAkTcvPNN9f7vAEAsJQqAABAcR999FGld+/ele7du1dmzZpVqVQqlblz51Z69epV6dq1a+Xtt9+us35VVVVlzz33rLPshhtuqFRVVVWuuOKK2mWvvfZaZdNNN63suuuulXfeead2+Ycfflg54IADKhtvvHHl2WefrVQqlcorr7xSqaqqqlRXV1eefvrpxZp5l112qWy22WaViRMn1i6fNWtWZY899qhssskmlf/85z8LnXf06NGVqqqqyve///3K3Llza5e//PLLlW222aayww47VGbPnl2pVCqVW2+9tVJVVVX51a9+VWf/7733XmW77barfP3rX6/MnDmzzmuoqqqqjB49unbdOXPmVHbfffdKVVVV5bnnnlvkcTzvvPMqVVVVlV122aXOMX/44YcrVVVVlf3226922e9///tKVVVV5cwzz6zMnz+/dvnw4cNrZ/gs//rXvypVVVWVI444onbZ008/Xamqqqrsvffe9dY/88wzK1VVVZX/+7//q102b968yvHHH187d40lOcaftM8++1S22GKLynvvvVe77L333qv07t27su2229Z5vZ/03nvvVXr06FHZcsstK08++WTt8rlz51ZOOumkSlVVVeWCCy6oXb7LLrtUttpqq3rbefDBBytVVVWVn/3sZ7XLFvYeX9h6p5xySqWqqqry1FNPVSqVcp+DpTkuC5vr469pxx13rH0f1xgyZEilqqqqcv3119dZfvXVV1eqqqoqQ4YMqV328ffujBkzapd///vfr1RVVVW23HLLyuuvv167/Pzzz69UVVVVrr766k+d+fbbb69UVVVVhg4dWpkzZ07t8j/96U+17/NXXnmlUqks2XGuVCq1z7/ssstql82fP7/yX//1X5WqqqrK3XffXalUKpUZM2ZUttpqq8qOO+5Yee2112rXffzxxyvdunWrVFVVVW644Yba5UcffXSlurq68re//a3Oa/nDH/5Qqaqqqpxzzjm1yw455JBKVVVV5ec//3mddf/4xz9WqqqqKiNHjqyz/IwzzqhUVVXV2zYAAEvPJfgAAOBz8Pe//z1vvfVW+vfvn1atWiVJmjdvnm984xuZO3dubrrppgZt9+abb86cOXPyve99r859Z1q3bp3vfe97mT9/fu1lwWqst9562XjjjT9z248++mimTJlSe1m8Gq1atcqwYcNy3HHHZfbs2Qt97siRI5MkP/zhD9O8+f+70MI666yTwYMH54033sj999+fJNlkk03ys5/9LIcddlidbay00krZZJNNMm/evMyYMaPOY+uss07t/ZSSpEWLFrVn+yzOGTP77rtvOnbsWPv1lltuWe9sm7/85S9p27ZtTjjhhDRp0qR2+XHHHZdVVlnlM/eRpPb7uvvuu9cu23jjjfO1r30tTz31VCZNmlS7fN68ebnllluy1lpr5fDDD69d3rRp0/zgBz9Is2bN6mx7SY7xJ1UqlcyaNSv//ve/a5ettNJKGTlyZMaNG1fn9X7S2LFjM2PGjAwZMiRdu3atXd68efP8z//8T1q3bp0bbrjh0w5LcaU+B0tzXD7LjjvumDZt2tR+/dprr+XBBx/M1ltvnf3226/OugcddFA222yzPPjgg/UuVTdo0KDasx+TBe/dZMF77ONnOnXr1i3JZ38eao7LKaecUueMnwMPPDBf/epX66zbkOPcunXrDBkypPbrJk2aZIcddqgz291335333nsvQ4YMyZprrlm77mabbZa99967zvbefPPN3HPPPdlpp52y884713nskEMOyVe+8pV6MyTJgAED6nxdc2m/SZMmZd68ebXLTzzxxNx33331tg0AwNJzCT4AAPgcLCxEJMkee+yRq6++OiNHjswRRxyxxNt98sknkyy4VN7Hf2mepPbeSc8880yd5WuvvfZibbvmeQu7RN92222X7bbbbpHPnTRpUlq1apWrr7663mOTJ09Okjz99NPZeeed89WvfjVf/epXM3v27Dz22GOZPHlyXn755UyaNCn/+Mc/kqTOL4iTZP3116+33ZpLdX3yHkQL88lfrCcLQkPN/WNmz56df/3rX+natWu9S4C1a9cu1dXVtbMtyvz583PLLbekZcuW9X75vccee+RXv/pVRowYURtxXnrppcyYMSPbbrttvdjUpUuXOr+YT5bsGH/SAQcckNNPPz2DBw9OdXV1dtxxx+y0007Zaqut0rTpp/+9xJr3RY8ePeo91rFjx3z1q1/N008/nffee2+hl0/7PJT6HCzNcfksn9xfzf2rFnZ/rGRBWHriiSfyzDPP1HnuuuuuW2e9mqj1ye3XhO7P+jw8+eST6dChQ73tNm3aNN27d699L9WsmyzZce7SpUu9yzF+8rNa85xNN9203nzdu3evc1nNp556KpVKJdOnT8/5559fb/0WLVrktddeyxtvvFEnyH3y+AwcODAXXnhhrr766owePTrbb7997fd79dVXr7ddAACWngAFAACFvf/++xk7dmyS5Oijj17oOs8991wmTpxYezbD4nrvvfeS5FPve/TJs4dqfjH9Wd59990kC8LMknrvvffy0Ucf5YILLvjMuebPn59LLrkkV1xxRe2yTp06pXv37llrrbXy/PPPp1Kp1Hnuwu4vtCRnpyzq+TX7mT59epIs8hfRa6yxxmfu48EHH8zrr7+eZNGR4dZbb82wYcPSunXrTJs2LUmy2mqrLXKfb775Zu3XS3KMP2nw4MHp1KlTrrrqqjz88MN59tlnc9lll6Vz584ZNmxY7X3KFqYm0i3qfbHGGmvk6aefzocffrjMAlSpz8HSHJfP8sn91RzHRR2jmvfYrFmz6iz/+L2NPm5J77lVY9q0aQsNsh+foUZDjvOnfVZrPm81P2vatWtXb90OHTrU+bpm3UcffTSPPvroIueYPn16nQDVunXrOo937tw5I0eOzEUXXZRx48bllltuyS233JIWLVpk0KBBOe200xp8TAEAWDgBCgAACrv99tsza9asbLbZZtlkk03qPT558uT84x//yIgRI5Y4QNX8Mnrs2LFZZ511isz7yW1/8MEH9R6bO3duKpXKIn9B27Zt27Rr1y533XXXZ+7n8ssvz29+85tss802Ofroo/P1r3+9NvwcddRRef755xv+Ihqo5hfhNZHgkxZ2TD7pxhtvTJL07dt3oVFpwoQJefHFF3P77bdn7733rg06i7vPJTnGC9O/f//0798/7777biZMmJDx48fnlltuyUknnZSNNtooVVVVC31ezbH5eAz7uJpA8PFwUHO5s4/7ZFhZGiU/Bw09Lkuq5ji+8cYbC318Ycfx8/DxM/8+6ZPLP6+fNzWXFKwJXB9Xc2bVJ2cYOnRojj/++KXa7zrrrJOzzz478+bNy5NPPpl77703o0aNynXXXZeVV145J5988lJtHwCAutwDCgAACqu5/N6wYcNy5pln1vvnnHPOSdOmTXP77bcv8hfBycLP8Kmurk6SPPHEE/Uee/HFF3POOedk/PjxDZq75hftjz/+eL3Hbrvttmy++ea1kWVhc73++ut566236j1211135de//nXtZbduvfXWNGvWLBdddFF23HHH2vhUqVTywgsv1P73srTSSitl/fXXzzPPPFPvEmY1v6z+NDNnzsydd96Zdu3a5Ve/+tVCv+9Dhw5NkowYMSJJssEGG6Rt27YLPd7vvvtunUuhJUt2jD9uzpw5ueiii3LllVcmWfDL//79++fnP/95/vu//zvz58/PI488ssjX9vWvfz1J8vDDD9d77P3338/TTz+d9dZbrzZOtmjRIrNnz673PXz55ZfrPb+h91gq8TlY2uOypGqO48SJExf6+D//+c80adIkG220UbF9LkzXrl3z+uuvLzQoPvbYY3W+/rx+3tRchnJhx+KT+6qZYVGfwfPOOy+XXnrpZ156cNy4cfnJT36S999/P82aNcvmm2+e4447rvaSlgt7fwMAsHQEKAAAKGjKlCn55z//mbXWWitbbbXVQtfp0qVLtt1228ycOTN//etfF7mt5s0XXLBg7ty5tcv23HPPNGvWLL/5zW/qhIiPPvooP/3pT3P55ZfXXk5uSfXo0SNf+cpXctNNN9XeryZZ8Iv6K6+8Ms2aNUuvXr0W+tx99tknlUolP/3pT+v8IvjNN9/M6aefnksvvbT2DJBWrVpl3rx5eeedd+ps48ILL8yUKVNqX8+yNmjQoLz//vv17jNzySWXLDT6fNyYMWMyc+bM9O/fv96lv2oMGDAgK620Uh566KFMnjw5LVq0yB577JHJkyfn2muvrV1v/vz5+cUvflHn+54s2TH+uJYtW+bWW2/Nb3/727zyyit1Hqs53l26dFnka+vXr19WXnnlXHPNNZk0aVLt8o8++ihnnXVWZs2alb322qt2+QYbbJCPPvoo99xzT+2y6dOnL/TeVQt7jy+OEp+DpT0uS6pLly7p2bNnnnzyyVxzzTV1HhsxYkQmTpyYnj171rv3V2mDBg1KpVLJueeeW+deazfddFO9+PN5/bzZaaed0rFjx/zxj3+sE1qff/75jBw5ss6666yzTnr06JF77rknt99+e53Hbrzxxlx44YW59957P/PyeS+88EKuvfbaOp+15PP5XgMAsIBL8AEAQEE33XRTKpVK9thjj089u2PQoEG5//77M2LEiBxwwAELXafmfibXXnttZsyYkUMPPTTrr79+Tj755AwfPjzf/OY306dPn6yyyiq555578vzzz2eXXXbJnnvu2aDZmzdvnrPPPjvf+c53Mnjw4PTv3z+dOnXKXXfdlRdffDGnnnpqnXusfPL1jB8/PnfccUeeffbZ7LDDDvnoo49y2223Zfr06TnppJNqL+G155575tFHH82BBx6YXXfdNS1atMiECRMyadKkdOrUKW+//XaDI9rSOPzww3P77bfn0ksvzcMPP5xu3brlqaeeykMPPZT27dt/6tlqNWeGfdqxb9OmTXbbbbdcf/31GTFiRH7wgx/khBNOyL333puf/OQnGTduXDbaaKP885//zAsvvJDWrVunadP/93cGl+QYf9L3v//9HHvssdlnn33yjW98I6usskqefPLJPPjgg9lmm23Su3fvRc690kor5eyzz86JJ55Y533x4IMP5l//+le23nrrOvc623///TN+/PiccMIJ2WOPPdKyZcvcfvvtWW+99eqd1bWw9/jiKPU5WJrj0hBnnnlmDj744Jxxxhm58847U11dnX/961/5+9//njXWWCM//elPi+5vYXbffffcdNNNueWWW/Lcc8+lZ8+eeemll3LXXXdl1VVXzbRp09KsWbMk5Y7zJ7Vr1y4//elPc/zxx2e//fbLwIEDkyy4fGnHjh1rL0dYo+a4HX/88dlxxx3zta99LZMnT85dd92VDh065PTTT//Mfe6///65/vrr88tf/jL/+Mc/Ul1dnbfffju333572rZtm29/+9tL/DoAAPh0zoACAICCai6/91m/lO3fv39WXnnlPPHEE3n22WcXuk6PHj1y8MEHZ8aMGbn66qtr7410xBFH5NJLL83GG2+cMWPG5Lrrrkvz5s0zbNiwnHfeebVnlTTEdtttl2uvvTa9evXK3Xffnauvvjpt2rTJOeeck8MPP3yRz2vSpEnOO++8/PCHP0ybNm0yYsSI3Hbbbdloo41y4YUX1vnl7kEHHZQf/ehH6dChQ0aMGJFbbrmlzqXrkuTuu+9u8GtoqFatWuXKK6/MQQcdlJdffjl/+tOf8v777+fSSy/N+uuvv8gzm954441MmDAhq6+++iLPEKsxaNCgJAveJ3Pnzk3Hjh1z7bXXZo899sgTTzyRa665Jm3bts1VV12Vdu3apU2bNrXPXZJj/El9+/bN73//+2y66ab529/+lquuuiqvv/56jj322Fx66aV1QtfCDBgwINdcc0169+6de++9N9dff32S5Ac/+EGuvPLKOmef7LLLLvnlL3+ZddddN3/5y19y5513Zp999slvfvObettd1Ht8cZT4HCztcVlS66+/fm644Ybsv//+ee655/KnP/0pL774Yg499NDceOONWXfddYvub2GaNGmS888/P8ccc0ztcX/llVdy7rnnZtttt02SOu/1z+vnTb9+/XLllVdmk002yejRo/O3v/0t+++/f0488cR6626wwQYZNWpU9t9//zz77LO56qqr8uyzz2avvfbKyJEjF+uyhausskr+9Kc/5cADD8yLL76YP/zhD7nrrruy44475vrrr8/GG2/coNcBAMCiNaks64urAwAALIdeffXVdOzYMW3btq332C677JI2bdpk9OjRRff58ssvZ80116x3+bA5c+Zkyy23TK9evXLZZZcV3Sdfbq+99lpWXnnlrLTSSvUeO+SQQ/Lkk0/mkUceafD9uQAAoIYzoAAAAJL89Kc/zVZbbVXvfkCjR4/O1KlT07Nnz+L7HDp0aHr37l3vkmN/+MMfMnfu3M9ln3y5XXbZZdlqq63yj3/8o87yRx55JA8//HC22WYb8QkAgCKcAQUAAJBk/PjxGTp0aFZZZZUMGDAgHTp0yPPPP5+77rorq6++ekaNGpVOnToV3efVV1+dM888M2uuuWb69u2bNm3a5Kmnnsr999+f6urqjBgxIq1atSq6T77cJk2alAMOOCAtWrTIgAED0rlz57z66qsZO3ZsWrZsmeuuuy4bbrhhY48JAMAXgAAFAADw//fggw/m8ssvz1NPPZUZM2Zk9dVXzy677JKhQ4cWj081xowZkz/+8Y/597//nZkzZ+YrX/lKBg4cmO985ztp167d57JPvtyeeuqpXHLJJXn00Ufz9ttvp2PHjtluu+0ydOjQZXIfKgAAvhwEKAAAAAAAAIpyDygAAAAAAACKEqAAAAAAAAAoqnljD8Dy65133sl9992Xtdde242PAQAAAADgS2727Nl59dVXs/3226djx46fuq4AxSLdd999Ofnkkxt7DAAAAAAAYDnyi1/8InvuueenriNAsUhrr712kgVvpA033LCRpwEAAAAAABrT888/n5NPPrm2H3waAYpFqrns3oYbbpiuXbs28jQAAAAAAMDyYHFu29N0GcwBAAAAAADAl4gABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUc0bewAAoHEMGzYsU6dObewx4Atp+vTpSZIOHTo06hwAn9SlS5cMHz68sccAAOBLQIACgC+pqVOnZvJLL6fSun1jjwJfOE1mvZskeWd2Iw8C8DE1P5sAAGBZEKAA4Eus0rp9Puz2rcYeA75w2jw+Mkl8voDlSs3PJgAAWBbcAwoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoa4Morr8yVV17Z2GMAAAAAAPA58DvgpSdAQQOMHz8+48ePb+wxAAAAAAD4HPgd8NIToAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKglqFhw4aluro61dXVeemllxa53hlnnJHq6ur07t17GU4HAAAAAABQhgDVSMaOHbvQ5ZVKJXfeeecyngYAAAAAAKAcAaoRrLPOOosMUBMnTsxbb72Vjh07LuOpAAAAAAAAyhCgGkH//v3z6KOP5j//+U+9x+68886sv/762WijjRphMgAAAAAAgKUnQDWC/v37Z/78+Rk/fny9x8aMGZOBAwfWW/6Pf/wjxxxzTLbddtt07do12223Xb7//e9n6tSptetMmDAh1dXVufvuu3P22Wdn++23T7du3XLAAQdkwoQJn+trAgAAAAAAqNG8sQf4MuratWvWWmutjB07Nvvvv3/t8kmTJmXKlCkZOHBgHnnkkdrlDzzwQI488sh07do1Q4cOTcuWLTNx4sTcfPPN+fe//51bbrmlzvbPOOOMdOjQId/+9rfz4Ycf5ve//32+/e1v56677sqqq666zF7nF9n06dPzwQcfZMiQIY09CkCDTZkyJak0a+wxAIBlZe6sTJkyxZ9jAAAWw5QpU9KuXbvGHmOFJkA1kv79++eaa67J+++/n5VWWinJgrOf1l577XTt2rXOuldccUVWXXXVXHXVVWnTpk2SZPDgwfnoo4/y17/+NW+88UY6d+5cu367du1y3XXXpUWLFkmS1VdfPaeeemruvPPOOsELAAAAAADg8yBANZL+/fvnyiuvzD333JPddtstyYIANWDAgHrrXnTRRXn33Xdr41OSvP/++2nVqlWSZObMmXXWHzBgQG18SpJNNtkkSfLWW28Vfx1fVh06dEiHDh1y1VVXNfYoAA02ZMiQvPDG9MYeAwBYVlq0zlqd/TkGAGBxOGt86QlQjWTLLbfMaqutlnHjxmW33XbLc889lxdeeCHDhw+vt26zZs3y2muv5YILLsi///3vvPrqq5k6dWoqlUqSZP78+XXW79ixY52va2LUJ9cDAAAAAAD4PDRt7AG+rJo2bZq+ffvmrrvuypw5czJmzJh85StfSbdu3eqte+WVV2afffbJPffck7XXXjuHHnpo/vjHP+Y73/nOIrcNAAAAAADQWJwB1Yj69++f6667LhMmTMiYMWPSv3//NGnSpM46s2fPzm9+85t07949V111VVq2bFn72M0337ysRwYAAAAAAPhMTpVpRNtuu23at2+fP/7xj3n66aczcODAeuvMmjUrH374YdZbb7068Wnq1KkZM2ZMkmTevHnLbGYAAAAAAIDP4gyoRtSiRYvsvPPOufnmm7P66qtnyy23rLfOKqusku7du+eWW25J+/btU1VVlZdffjnXX399PvzwwyTJBx98sKxHBwAAAAAAWCRnQDWyAQMGJFlwOb5F3bvpt7/9bQYOHJhbb701Z599dsaOHZtvfetb+eMf/5gkuf/++5fZvAAAAAAAAJ/FGVDL0PDhwzN8+PA6y/r3759nn3223ro1cSlJOnfunF//+tcL3ebHn9uzZ8+FbmvDDTdc6HIAAAAAAIDPgzOgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICimjf2ALAi6tOnT2OPAAAAAADA58TvgJeeAAUNcPjhhzf2CAAAAAAAfE78DnjpuQQfAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUc0bewAAoPE0mfVu2jw+srHHgC+cJrPeTRKfL2C5suBnU4fGHgMAgC8JAQoAvqS6dOnS2CPAF9b06Qv+3aFDh8YcA+ATOvj/PwAAy4wABQBfUsOHD2/sEQAAAAD4gnIPKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKKaN/YAANBQw4YNy9SpUxt7DJbS9OnTkyQdOnRo1Dn44ujSpUuGDx/e2GMAAADAl5oABcAKa+rUqXn1pcnp3HZ+Y4/CUnh/5oITstvNfbuRJ+GL4I2ZTvAHAACA5YEABcAKrXPb+Tmn17uNPQZL4ZQH2ieJ7yNF1LyfAAAAgMblr4gCAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFLNeuvPLKXHnllY09BgAA0Ej8mQAAYMUkQAHLtfHjx2f8+PGNPQYAANBI/JkAAGDFJEABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABTV4AB14IEH5re//W3JWQAAAAAAAPgCaHCAmjRpUmbOnFlyFgAAAAAAAL4AGhyg1l577bzyyislZwEAAAAAAOALoHlDn3jOOefkv//7v3P88cdnwIABWXvttdOqVauFrrvxxhs3eEAAAAAAAABWLA0OUPvtt1+aNGmSO+64I2PGjPnUdZ9++umG7gYAAAAAAIAVTIMD1N57750mTZqUnAUAAAAAAIAvgAYHqOHDh5ecAwAAAAAAgC+IpiU28sEHH+SRRx7JXXfdlSSZMWNGic0CAAAAAACwAlqqAPWf//wnJ554Ynr27JmDDjooQ4cOTZJcc8016d+/fx566KEiQwIAAAAAALDiaHCAeuedd3LAAQfktttuS7du3bLJJpukUqkkSdq0aZOpU6fm6KOPzrPPPltsWAAAAAAAAJZ/DQ5Q5513Xl577bVcdNFFueaaa7LLLrvUPnb44Yfn8ssvz0cffZSLLrqoyKAAAAAAAACsGBocoMaPH5/+/fvXCU8f17NnzwwYMCCPPvpoQ3cBAAAAAADACqjBAWratGlZZ511PnWdzp0755133mnoLgAAAAAAAFgBNThArbnmmnnqqac+dZ3HH388a665ZkN3AQAAAAAAwAqowQFq4MCBeeCBB/LnP/95oY9fccUVefjhh9OvX78GDwcAAAAAAMCKp3lDn3jMMcfk7rvvzhlnnJGrr7468+fPT5IMGzYskyZNynPPPZd11103xxxzTLFhAQAAAAAAWP41+AyolVZaKddee20GDx6cKVOm5Pnnn0+lUsmNN96Yl156KXvttVeuvfbatG/fvuS8AAAAAAAALOcafAZUsiBCnX766TnttNMyefLkvPvuu2nbtm022GCDtGzZstSMAAAAAAAArECWKkDVaNasWTbaaKMSmwIAAAAAAGAFt9gB6oILLmjQDpo0aZJjjz22Qc8FAAAAAABgxbNUAapJkyZJkkqlstDHKpWKAAUAAAAAAPAl0+AANXv27Pz85z9Pkhx22GHp3r17OnTokJkzZ+aJJ57IFVdckWbNmuWss84qOzEAAAAAAADLtcUOUP369avz9TnnnJOPPvooI0aMyDrrrFPnsW7duqV///4ZNGhQbr755my99dZlpgUAAAAAAGC517ShT7z55pszYMCAevGpxhprrJH+/fvnjjvuaPBwn6cTTzwx1dXVmTJlSr3HLr744lRXV2eHHXZY6HOPPPLIbLrpppk1a9bnPSYAAAAAAMAKp8EBavbs2fnoo48+dZ33339/ofeHWh5ss802SZLHHnus3mP3339/WrRokTfffDPPP/98ncfmz5+fRx99NFtssUVat269TGYFAAAAAABYkTQ4QHXt2jVjxoypF2hqPPLII7njjjuW28vv1QSoRx99tM7yWbNm5ZFHHskee+yRZEGM+rh//etfef/997PtttsukzkBAAAAAABWNIt9D6hP+u53v5vDDz88+++/f/bZZ59suummadeuXd57771MnDgxt9xyS1q0aJETTjih4LjlbLjhhll99dXrnQH18MMPZ86cOdl3330zYcKE3H///Tn00ENrH584cWKSCFAAAAAAAACL0OAAtfXWW+d3v/tdzjjjjPzpT39KkyZNah+rVCrZaKONcvbZZ6eqqqrIoJ+HHj16ZOzYsZkzZ05atmyZJHnggQfStm3bbL755unZs2fGjBmTefPmpVmzZkkWBKg2bdpk8803T7LgDKoLLrggEydOzLx58/L1r389Rx11VPr161e7n/PPPz8XXXRRRo8enbPPPjv//Oc/06pVq+y99975//6//y9jxozJ7373u7zyyiv56le/mlNOOSW9evWqff7bb7+diy++OHfddVdee+21tGjRIlVVVTn66KPr7KdPnz7ZZpttstNOO+Xiiy/OCy+8kNVWWy377rtvhg4dmqZNG3zCGwAAAAAAwGJrcIBKkh133DF33nlnHnvssTzzzDN599130759+3Tt2jXdunUrNePnZptttsno0aPzzDPP1M57//33p0ePHmnRokV69eqVUaNG5YknnsgWW2yRZEGA2mqrrdKiRYvcfffdGTp0aDp37pyjjz46rVu3zo033phjjz02P/rRj3LIIYfU7qtSqeTQQw9N7969c8opp+SOO+7IFVdckeeeey6TJk3KkCFD0qZNm1x66aU57rjjcuedd6Zjx46ZPXt2Dj744Lzzzjs56KCDstZaa+W1117Ln//85xx33HEZOXJkNt1009r9TJgwIXfeeWcOOeSQHHjggbnxxhtz/vnnZ9VVV83BBx+8TI8vAAAAAADw5bRUASpJmjZtmu7du6d79+4l5lmmPn4fqG7dumX69Ol5+umn84Mf/CDJ/7vM3v33358tttgib775ZqZMmZLBgwdn3rx5Of3009OhQ4eMGjUqHTp0SJIcdNBBOfDAA3PuuefmG9/4RlZbbbUkyfz589O3b9/85Cc/SZLstttu6dWrV+67776MGDEim222WZKkbdu2+dGPfpRHH300ffr0yfjx4zN58uScf/75GTBgQO3s3bt3z1FHHZX77ruvToCaOnVqrr/++toztPbYY49sv/32ueWWWwQoVkjTp0/PBx98kCFDhjT2KCyHpkyZktZp8tkrAl8a785pkllTpvj/BsAXyJQpU9KuXbvGHgMAgCW0VAFq2rRpGTNmTKZMmZI5c+akUqnUW6dJkyYZNmzY0uzmc/PJ+0BNmDAh8+fPr7383RprrJENN9wwEyZMyNChQ+vc/2nSpEl57bXX8t3vfrc2PiVJq1atcuSRR+b73/9+7rnnngwaNKj2sYEDB9b+d/v27dOpU6c0b968Nj4lyTrrrJMkeeutt5Iku+66a3r27JlVVlmldp158+Zl/vz5SZKZM2fWeU1rrbVWbXxKknbt2mW99dbLf/7zn4YfKAAAAAAAgCXQ4AD1zDPP5LDDDsu777670PBUY3kOUMmC+0A9+uijSRac6bTqqqumurq69vFevXrlhhtuyNy5czNx4sSsvPLK6dq1a+64444kyQYbbFBvmxtuuGGSBX9L6+M6depU5+vmzZvXW1Zzn6aawJQkzZo1yxVXXJGJEyfmlVdeyUsvvZTZs2fXWy9JOnbsWG+eli1b1lsPVhQdOnRIhw4dctVVVzX2KCyHhgwZkrlvPd/YYwDLkfYtK+m0+lr+vwHwBeKsVgCAFVODA9SvfvWrzJgxI/vvv3923HHHrLzyymnSZMW7DFLNfaDeeeedPPjgg9l2223rvI5evXrlT3/6U5566qk88sgj6dGjR5o1a1Yb3RYW32piT4sWLeosb9asWb11P+uYvfjiiznwwAMza9as9OrVK/369Ut1dXW6dOmS/fbbr976NQELAAAAAACgsTQ4QD300EPZZZddcuaZZ5acZ5mruQ/UfffdlxdffDH/9V//Ve/xpk2b5tFHH83TTz+dk08+OUmy9tprJ0leeOGFetusWbbmmmsu9XyXXHJJpk2blptvvjlVVVW1y2suBwgAAAAAALC8afDpMk2bNl3o5edWNDX3gbrmmmuSpPb+TzXat2+fTTbZJDfffHPmzp2bbbfdNknStWvXdO7cOX/+858zffr02vXnzJmTyy+/PC1atMgOO+yw1PNNnz49LVu2zLrrrlu7bP78+bWXlZk3b95S7wMAAAAAAKCkBp8BtfXWW+ehhx4qOUuj6dGjR0aPHp211lqrTuip0atXr1x22WXp1KlT7VlIzZs3z+mnn57vfve7GTRoUPbff/+0bt06N910U5566qkMGzas3v2dGmLnnXfO+PHjc+SRR+ab3/xmZs+endGjR+epp55K06ZN88EHHyz1PgAAAAAAAEpq8BlQJ598ciZPnpyf/exneeONN0rOtMzVXIav5uymT6o5K2qbbbapc8+mvn375qqrrsp6662XSy65JL/97W/Trl27/O53v8sRRxxRZLb9998/J598ct58882cffbZueKKK9KpU6dcf/312WSTTfLAAw8U2Q8AAAAAAEApTSqVSqUhTxwyZEhee+21vPrqq0mSVq1apWXLlvV30KRJJkyYsHRT0igmTZqUQYMGZdSoUenatWtjj8OX1JAhQ5Kk9rKT8HFDhgzJ3Leezzm93m3sUVgKpzzQPkl8HynilAfap8XqG/r/BsAXiD8TAAAsP5akGzT4Enw14ekrX/lKQzcBAAAAAADAF1CDA9T48eNLzgEAAAAAAMAXRIPvAQUAAAAAAAAL0+AzoGrcc889GTVqVJ5++um8++67eeCBB3LzzTfn5ZdfzpFHHpk2bdqUmBMAAAAAAIAVxFIFqB//+McZMWJEKpVKmjVrlvnz5ydJnnzyyVx11VW59957c/nll6ddu3ZFhgUAAAAAAGD51+BL8P35z3/O9ddfnwEDBmTMmDE55phjah879thjs+++++axxx7LFVdcUWRQAAAAAAAAVgxLFaCqq6vz29/+Nuuuu26aNGlS+9gqq6ySs846K926dcttt91WZFAAAAAAAABWDA0OUJMnT84OO+zwqev06NEjU6ZMaeguAAAAAAAAWAE1OEC1bt06b7/99qeu8+abb6Z169YN3QUAAAAAAAAroAYHqK222ip33nlnXnvttYU+/uKLL2bs2LHZcsstGzwcAAAAAAAAK54GB6hjjz02c+bMyX777ZcrrrgikydPTpL84x//yO9///sMHjw4c+fOzXe+851iwwIAAAAAALD8a97QJ3bt2jXnn39+hg0blnPOOad2+WGHHZZKpZKVVlopv/zlL7P55psXGRQAAAAAAIAVQ4MDVJLstNNO+dvf/pbx48fnySefzHvvvZe2bdumuro6/fv3z8orr1xqTgAAAAAAAFYQDQ5Qs2fPTqtWrdK6detssMEGmTNnTp3Hx48fn29+85tp1qzZUg8JAAAAAADAimOJA9TVV1+d3//+9xk0aFCOO+64JMnYsWNz4YUX1lv39ddfdw8oAAAAAACAL5klClA//OEPM2rUqLRr1y4tW7as9/iwYcOSJPPnz8/FF1+ciy++OIMHD84qq6xSZloAAAAAAACWe4sdoO6///7ccMMN6d27d/73f/83HTp0qLfOYYcdVvvfK6+8ck477bTccMMN+a//+q8iwwIAAAAAALD8a7q4K44YMSIrr7zyIuPTJ+2zzz7p1KlT7rnnnqWZDwAAAAAAgBXMYgeoRx55JDvuuONixackadasWbbffvs899xzDZ0NAAAAAACAFdBiB6i33347a6+99kIfq66uzje/+c16yzt37pwZM2Y0fDoAAAAAAABWOIt9D6j27dvngw8+WOhj/fv3T//+/estnz59ejp27Njw6QAAAAAAAFjhLPYZUF26dMnEiROXaOMTJkzIuuuuu8RDAQAAAAAAsOJa7ADVt2/fPP3003nwwQcXa/0777wzL730UgYOHNjg4QAAAAAAAFjxLHaAGjRoUNq2bZuTTjopjz322Keu+9BDD+W0005Lp06dsueeey71kAAAAAAAAKw4FvseUGussUbOOuusnHjiiTnwwAPTp0+f9OnTJ1/72teyyiqrZMaMGXn55ZczZsyYjB07NpVKJZdddlnat2//ec4PAAAAAADAcmaxA1SSfOMb30j79u1z2mmnZezYsRk3bly9dSqVSjp37pxzzz03PXv2LDYoAAAAAAAAK4YlClBJst122+WOO+7I3XffnXHjxuXll1/O22+/nQ4dOmSttdZK375907dv37Rq1erzmBcAAAAAAIDl3BIHqCRp0aJF+vXrl379+pWeBwAAAAAAgBVc08YeAAAAAAAAgC8WAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKat7YAwB8mj59+jT2CAAAQCPyZwIAgBWTAAUs1w4//PDGHgEAAGhE/kwAALBicgk+AAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAimre2AMAwNJ4Y2bTnPJA+8Yeg6XwxswFfx/G95ES3pjZNGs39hAAAACAAAXAiqtLly6NPQIFrDR9epKkRYcOjToHXwxrx88GAAAAWB4IUACssIYPH97YIwAAAAAAC+EeUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEU1b+wBAACglGHDhmXq1KmNPcYKafr06UmSDh06NOocK7IuXbpk+PDhjT0GAADAckGAAgDgC2Pq1KmZ/PLkZKXGnmQF9P6Cf02bP61x51hRvd/YAwAAACxfBCgAAL5YVkrmD5zf2FOscJreseDq3I5dw9QcPwAAABbwpyQAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAgOXIlVdemSuvvLKxxwBYZvzcAwCALyYBCgBgOTJ+/PiMHz++sccAWGb83AMAgC8mAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoKjlLkANGzYs1dXVufTSSxe5Tu/evXPooYcuw6kWOPTQQ9O7d+/PXO/8889PdXV1nn/++WUwFQAAAAAAwPKleWMPsCgXXnhhvvGNb2Tddddt7FGWWP/+/bPuuuumc+fOjT0KAAAAAADAMrfcnQFVY9asWTn99NMbe4wG2XjjjbPXXntlpZVWauxRAAAAAAAAlrnlNkD169cv999/f2688cbGHgUAAAAAAIAlsNwGqP/5n/9J+/btM3z48EybNu1T133jjTdy6qmnZrvttsumm26aXXfdNZdddlnmzZtXu86ECRNSXV2du+++O2effXa23377dOvWLQcccEAmTJiwRLPde++92WOPPWr3dfXVV9d5/JP3gBo1alSqq6vzxBNP5NRTT03Pnj2z+eab54gjjsgzzzxT57lvv/12zjrrrPTv3z+bbrppunfvngMOOCBjx46ts16fPn1yyimn5Iwzzsjmm2+e3r175w9/+EOqq6tzxx131Jv5pJNOylZbbZXZs2cv0WsFAAAAAABYUsttgFpttdVy8sknZ9q0aRk+fPgi15s6dWr23XffjB49OnvttVdOPfXUrL/++vnlL3+Z73//+/XWP+OMM/LQQw/l29/+do499thMnjw53/72tz8zctWYMWNGhg4dmu7du2fYsGHp2LFjzjzzzFx44YWf+dzjjz8+U6dOzfe+970cfvjheeihh3L00Ufno48+SpLMnj07Bx98cG666absvvvuOf3003PEEUfklVdeyXHHHZcnn3yyzvbGjBmThx56KKeeemr23nvv7L333mnZsmX++te/1lnvww8/zPjx4zNgwIC0atVqsV4nAAAAAABAQzVv7AE+zX777ZebbropN954Y/bee+/06tWr3jr/+7//m7feeitXX311tt566yTJwQcfnDPOOCPXXHNNxo4dm379+tWu365du1x33XVp0aJFkmT11VfPqaeemjvvvDP777//Z840d+7cDBs2LEcccUSSZPDgwTnkkENy8cUX56CDDsqqq666yOduuOGGueyyy2q/bt68eS644IJMmDAhvXv3zvjx4zN58uScf/75GTBgQO163bt3z1FHHZX77rsvm266ae3ymTNn5oILLsh6661Xu2znnXfO3XffnQ8++CDt2rVLkowfPz4zZ87Mnnvu+ZmvDwBoXNOnT88HH3yQIUOGNPYoK6QpU6Ysx3/Fii+02Qvefz67S27KlCm1f3YBAAC+OJbrP543adIkZ555Zlq0aJHTTz+93uXj5s2bl/Hjx2ebbbapjU81hg4dmiT1Ll03YMCA2viUJJtsskmS5K233lqsmdq2bZuDDz649uvmzZvn4IMPzpw5c3L//fd/6nN33XXXOl9//etfr7PvXXfdNQ888ED69u1b5zXOnz8/yYLg9HFf+cpX6sSnJNlzzz0za9asjBs3rnbZrbfems6dO6dnz56L9RoBAAAAAACWxnJ9BlSy4Kyh73znO7ngggty4YUX1rms3rRp0zJz5sxssMEG9Z63+uqrp3379gv+FuzHdOzYsc7XNTGqJvK89957mTVrVp11Vl555bRu3TpJstZaa6Vly5Z1Hl933XWTpN6+PqlTp051vq7ZTs2+k6RZs2a54oorMnHixLzyyit56aWXasPbx9db2PaSZKeddkqHDh0yevTo7LnnnpkxY0buvffeHHrooWnadLnujQBAkg4dOqRDhw656qqrGnuUFdKQIUMy+Z3JjT0GX0atkrU6ruWz2wDOGgMAgC+m5T5AJcl3vvOdjB49Opdffnm++c1v1i6vVCp1/v1J8+fPr3O2U5LPjDBnnXVW/vKXv9RZ9vOf/zyDBg1KsuCsrEVp1qzZp277056bJC+++GIOPPDAzJo1K7169Uq/fv1SXV2dLl26ZL/99lus/bVs2TIDBw7MqFGjMmPGjIwZMyZz5851+T0AAAAAAGCZWSECVMuWLXPmmWfm0EMPzY9//OPaM4E6duyYtm3bZvLk+n/L9c0338z777+fNddcc4n2ddRRR9WLNRtttFHtf7/++uuZN29enfhTs/+aM6Ea6pJLLsm0adNy8803p6qqqnb5xIkTl2g7e+65Z6677rrcfffdGTduXL72ta/VXu4PAAAAAADg87ZCBKgk6dGjR/bdd9+MHDmydlmzZs2y8847Z/To0XnooYfq3Afq4osvTpL06dNnifaz0UYb1QlOn/Tuu+/m9ttvz+67754kmTNnTv7whz+kXbt26dWr1xLt65OmT5+eli1b1glZ8+fPr72Mx7x58xZrO1tttVXWXnvt3H777XnwwQfz3//930s1FwAAAAAAwJJYYQJUkvzgBz/I3/72t7z99tu1y0466aQ8+OCDOfLII3PQQQdl7bXXzt///veMGzcuffv2Td++fYvO0L59+5x22ml55pln0rlz59x000156qmncuaZZ2allVZaqm3vvPPOGT9+fI488sh885vfzOzZszN69Og89dRTadq0aT744IPF2k6TJk2yxx575KKLLqr9bwAAAAAAgGXl02+ItJxZZZVV8j//8z91lq299toZOXJkBgwYkL/85S8ZPnx4Xn755QwbNiznn3/+Z953aUmts846OffcczN27NgMHz48s2bNyq9//esccMABS73t/fffPyeffHLefPPNnH322bniiivSqVOnXH/99dlkk03ywAMPLPa29tprryQLzobq0qXLUs8GAAAAAACwuJpUKpVKYw9BeS+99FIGDBiQn/3sZ9lvv/0atI1JkyZl0KBBGTVqVLp27Vp4QgBgYYYMGZIktZfgZckMGTIkk9+ZnPkD5zf2KCucpncs+Ltpjl3DNL2jab7a8as+uw3g5x4AAKw4lqQbrFBnQLH4rr322rRt2za77rprY48CAAAAAAB8yaxQ94Dis51++ul59dVXc9999+Woo45a6vtSAQAAAAAALClnQH3BTJs2LQ8//HD23HPPfO9732vscQAAAAAAgC8hZ0B9wZx33nmNPQIAAAAAAPAl5wwoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoKjmjT0AAAD/T58+fRp7BIBlys89AAD4YhKgAACWI4cffnhjjwCwTPm5BwAAX0wuwQcAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFPD/a+/eg7Sq6z+Av1kui4jDpUmKRAUdd9JAAxUxwDRNxUS0BgYMguIyloFOOmr6h5fGofJC2GTmhEMNEwYRF0WcyMK4mIyZupiKeGlQTEZE5Q7L8/vDkWl/C7jV2WfZ3ddrZmdnz/k+D5/D7Gc/u8/7OecAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAoQRQAAAAAAAAFEoABQAAAAAAQKEEUAAAAAAAABRKAAUAAAAAAEChBFAAAAAAAAAUSgAFAAAAAABAodo0dgEAAFCoLUnFo95n9R/b8uEn/3f/pS1JujZ2EQAAAIcOARQAAM1G9+7dG7uEJmtzxeYkSefOnRu1jiarq+8/AACAfyeAAgCg2Zg6dWpjlwAAAADEPaAAAAAAAAAomAAKAAAAAACAQgmgAAAAAAAAKJQACgAAAAAAgEIJoAAAAAAAACiUAAoAAAAAAIBCCaAAAAAAAAAolAAKAAAAAACAQgmgAAAAAAAAKJQACgAAAAAAgEIJoAAAAAAAACiUAAoAAAAAAIBCCaAAAAAAAAAolAAKAAAAAACAQgmgAAAAAAAAKJQACgAAAAAAgEIJoAAAAAAAACiUAAoAAAAAAIBCCaAAAAAAAAAolAAKAAAAAACAQgmgAAAAAAAAKJQACgAAAAAAgEIJoAAAAAAAAChUm8YugEPXzp07kyTr1q1r5EoAAAAAAIDG9lFe8FF+cDACKA5o/fr1SZJrr722kSsBAAAAAAAOFevXr0/fvn0PuqZVqVQqlakemphNmzZl+fLlOeqoo1JZWdnY5QAAAAAAAI1o586dWb9+fQYOHJiuXbsedK0ACgAAAAAAgEJVNHYBAAAAAAAANC8CKAAAAAAAAAolgAIAAAAAAKBQAigAAAAAAAAKJYACAAAAAACgUAIoAAAAAAAACiWAAgAAAAAAoFACKAAAAAAAAAolgAIAAAAAAKBQAijK6he/+EW+8IUv7HffXXfdlaqqqv1+vP/++2WuFJqnZ599NhMmTMipp56a3r17Z9iwYZk/f36tNTt27Mgdd9yRs88+OyeffHJGjBiRVatWNU7B0EzVpxfNRSiPF198MRMnTkz//v1z2mmnZfLkyXn99ddrrTEboeHVpxfNRiivN954I3379s31119fa7u5COV1oF40F2kK2jR2AbQcy5Yty/Tp09OpU6f97n/ppZfSo0ePfPe7362z77DDDmvo8qDZW7duXUaPHp1OnTpl/PjxOfzww7N48eJcd911effddzNu3Lgkyfe+97386U9/yqhRo9KrV6/MnTs348ePz8yZM3Pqqac28lFA01ffXjQXoeG9+uqrGTlyZDp16pRJkyalpqYmM2fOzPDhwzN//vx8+tOfTmI2QkOrby+ajVA+pVIp3//+97N169Y6+8xFKJ+D9aK5SFMggKLBlUqlzJo1K1OnTs3u3bsPuO6ll17KySefnEsuuaSM1UHL8cMf/jAVFRWZM2dOunXrliS5/PLLM2rUqEyfPj3Dhw/Ps88+m6VLl+aGG27I2LFjkyTDhg3L0KFDc/vtt2fevHmNeATQPNSnFw8//HBzEcpg2rRpqampya9//escddRRSZLBgwdn6NChmTFjRm688casWrXKbIQGVp9eTPzNCOU0a9asPPXUU3W2m4tQXgfqxcRcpGlwCT4a3IgRI3Lbbbelf//+Oemkk/a7ZsuWLXnzzTdz3HHHlbk6aBlqamqyevXqDBo0aN8L3klSUVGRCy+8MNu2bcs//vGPLFq0KG3bts3w4cP3renQoUO+9rWvZc2aNXnttdcaoXpoPurbi+YilEebNm1y0UUX7XvBO0mqqqrSuXPnvPDCC0liNkIZ1KcXzUYon3/+85+58847c+WVV9bZZy5C+RysF81FmgpnQNHg3nzzzdx6660ZPnx4xowZs981L7/8ckql0r4fmtu3b09lZWUqKmSkUISKioosXLgwrVq1qrNv06ZNSZLWrVunuro6PXv2TIcOHWqt+Sg8rq6uzrHHHtvg9UJzVd9eNBehPO6888462zZs2JDNmzene/fuSWI2QhnUpxfNRiiPvXv35vrrr09VVVW+8Y1v5O67766131yE8vi4XjQXaSp8R9LgHnvssYwYMWK/L7Z95KWXXkqS/OUvf8kXv/jFnHLKKenXr19uvvnmbN++vVylQrPVqlWr9OjRo9a7SpNk27Zt+d3vfpcOHTrkxBNPzL/+9a986lOfqvP4I488MsmHgTLw36tvL5qLUH7vvPNOli1blokTJ6ZDhw755je/mSRmI5TZgXrRbITymDlzZqqrq3P77bfv94VscxHK4+N60VykqXAGFA2uXbt2H7vmox+azz33XK688sp07Ngxy5Yty29+85usW7cuM2fOlOBDwUqlUm666aZs3Lgx3/nOd1JZWZmtW7fu90aV7du3TxK/xEAD2F8vmotQfl/96lezYcOGJMk111yTE044IUnMRiizA/Wi2QgN75VXXsm0adMyZcqU9OrVKzt37qyzxlyEhlefXjQXaSoEUBwSBg0alCOOOCITJkzYdxr3BRdckC5duuSXv/xl/vCHP+T8889v5Cqh+SiVSrn55pvz8MMP5/TTT88VV1xRr8cd7ExG4D93oF40F6H8rr766rRr1y6PPPJI7rjjjqxfvz633HLLxz7ObIRiHagXzUZoWDU1Nbnhhhvy2c9+NuPGjfuvn8dchP9NfXvRXKSpEINySDjrrLMyZcqUOtcQHjVqVJLkiSeeaIyyoFnavXt3rrnmmsyePTt9+vTJvffem7Zt2yb58OaxO3bsqPOYj7Z17NixrLVCc3awXjQXofwuueSSXHjhhZk+fXouvPDCzJ49O2vXrjUbocwO1ItmIzSsGTNmpLq6Otdee202b96cTZs2ZfPmzUmSXbt2ZdOmTdm1a5e5CA2svr1oLtJUCKA4pH3iE59I8uG9MYD/3fbt23PFFVfkoYceyumnn54HHnig1h8I3bt3z8aNG+s87u23306SdOvWrWy1QnP2cb14IOYilMdFF12UJHn++efNRmhE/96LB2I2QjEef/zx7NmzJ6NGjcqAAQMyYMCADB48OEny8MMPZ8CAAXnooYfMRWhg9e3FAzEXOdS4BB+HhLFjx6aioiIzZsyotf2VV15JkvTo0aMxyoJmZffu3bnyyiuzfPnynH322fnJT36SysrKWmtOOumkLFy4MDt27Nh3De8kWbNmTZKkd+/eZa0ZmqP69KK5CA3vvffey/DhwzNo0KDcdNNNtfZt3bo1yYf3szAboWHVtxfNRmhY1113Xd5///1a23bv3p2JEydm4MCB+da3vpXjjz8+Tz31lLkIDai+vWgu0lQ4A4pDQufOnbNy5co8/fTT+7bt3bs3P/3pT9O6desMGTKkEauD5mH69OlZvnx5zjnnnNxzzz11XvBOPrxe8K5duzJ79ux927Zt25a5c+emT58+Ofroo8tZMjRL9elFcxEaXqdOndK2bdssWrSo1ju5d+3alV/96lfp0KFD+vfvbzZCA6tvL5qN0LA+97nP5cwzz6z1ccYZZyRJPvnJT+bMM8/MkUceaS5CA6tvL5qLNBXOgOKQcM0112TFihWZMGFCRo8ena5du+bRRx/N6tWrc9VVV6VXr16NXSI0aW+//XYeeOCBtGnTJgMHDszixYvrrBkwYEAGDRqUQYMG5cc//nE2bNiQnj175re//W3eeuutTJ06tREqh+alvr1oLkJ53HLLLRkzZkxGjhyZkSNHpqKiIvPmzcvatWvzgx/8IJ07dzYboQzq04tmIxwazEU4NJiLNBWtSqVSqbGLoOUYPXp0XnnllaxYsaLOvrVr12batGn561//ml27duX444/PmDFjMmzYsPIXCs3MkiVLMmXKlIOuuf/++zN48OBs3bo1d999dxYvXpzt27enqqoqV199dfr371+maqH5+k960VyE8li9enXuueeePPvss0k+fNfppEmTMmjQoH1rzEZoePXpRbMRymvnzp3p06dPLr300lrhkrkI5XWgXjQXaQoEUAAAAAAAABTKPaAAAAAAAAAolAAKAAAAAACAQgmgAAAAAAAAKJQACgAAAAAAgEIJoAAAAAAAACiUAAoAAAAAAIBCCaAAAAAAAAAolAAKAAAAAACAQgmgAAAAWqjx48enqqoqEyZMaOxSAACAZkYABQAA0AJt3LgxK1euzGGHHZbly5fnrbfeauySAACAZkQABQAA0AItWrQoNTU1GT9+fPbu3Zu5c+c2dkkAAEAzIoACAABogebPn59OnTpl/PjxOeKIIzJv3ryUSqXGLgsAAGgmBFAAAAAtzAsvvJAXX3wxAwYMSPv27XPuuefmjTfeyIoVK+qs3bNnT+67776cf/756dOnT4YMGZK5c+fmZz/7WaqqqrJ+/fpa61etWpVx48alX79+OeWUUzJixIgsWbKkXIcGAAAcIgRQAAAALcz8+fOTJEOGDKn1ec6cOXXWXnXVVbnrrrtSWVmZUaNG5dhjj82NN96YefPm1Vk7Z86cjBs3Li+++GKGDBmSESNG5J133smUKVPy85//vOEOCAAAOOS0KrnGAgAAQItRU1OTs846K9u2bcuqVatSWVmZPXv2ZPDgwXn//ffz+OOPp2vXrkmSRx99NJMnT865556badOmpW3btkmSWbNm5dZbb02S/PGPf8xRRx2Vt956K+edd1569OiRWbNmpUuXLkmSHTt2ZOzYsXnmmWeyYMGCnHDCCY1z4AAAQFk5AwoAAKAFWbFiRTZu3JjzzjsvlZWVSZI2bdrkggsuyO7du7NgwYJ9a3//+98nSa677rp94VOSjBw5Mj179qz1vAsXLsyuXbsyefLkfeFTkrRv3z6TJ0/O3r179z0fAADQ/LVp7AIAAAAon48CposuuqjW9osvvjizZs3K3LlzM27cuCRJdXV1OnfunKOPPrrW2oqKinz+85/Pq6++um9bdXV1kg/vAbV27dpa67dt25bkw3tPAQAALYMACgAAoIXYsmVLli5dmiSZMGHCfte8/PLL+dvf/pa+ffvm3XffrXOm00eOPPLIWl9/8MEHSZLZs2cf8N9/7733/puyAQCAJkgABQAA0EIsWbIkO3bsSO/evXPiiSfW2f/qq6/mySefzJw5c9K3b9907NgxW7Zs2e9z/f/tHTp0SJIsXbo0PXr0KL54AACgSRFAAQAAtBAfXX7v+uuvz6mnnlpn/5tvvpkvfelLWbJkSW688cacdNJJWblyZd5+++06Zzw988wztb6uqqrK0qVL89xzz9UJoF577bU8+OCDOe2003LOOecUfFQAAMChqKKxCwAAAKDhvfHGG1m9enU+85nPpF+/fvtd071795xxxhnZtm1bHn744Vx22WUplUr50Y9+lJqamn3rFixYkOeee67WY4cOHZrWrVtn2rRp2bhx477te/bsyW233ZYZM2Zk8+bNDXJsAADAoccZUAAAAC3AggULUiqVcvHFF6dVq1YHXHfZZZdl5cqVmTNnTubMmZMFCxZk0aJFefnll9O/f/+8/vrr+fOf/5wuXbrk3XffTevWrZMkxx57bK699tpMnTo1X/nKV3LOOeekU6dOefzxx7Nu3bqcffbZGTp0aLkOFwAAaGStSqVSqbGLAAAAoGGdf/75ee2117J48eIcd9xxB1y3Y8eODBw4MB988EEWLlyYY445Jvfee28WLlyYjRs35phjjsmkSZPy2GOP5ZFHHskTTzyRLl267Hv8smXLMmPGjFRXV2fv3r3p0aNHLr300lx++eVp165dOQ4VAAA4BAigAAAA2K8NGzbkiCOOSMeOHevs+/rXv57q6uo8/fTTBz2jCgAAaJncAwoAAID9uv/++9OvX788+eSTtbY//fTTeeqpp3L66acLnwAAgP1yBhQAAAD7tWbNmowYMSJt27bNl7/85XTr1i3r16/P0qVL065duzz44IMHvZwfAADQcgmgAAAAOKDnn38+9913X/7+97/nnXfeSdeuXXPmmWfm29/+do4++ujGLg8AADhECaAAAAAAAAAolHtAAQAAAAAAUCgBFAAAAAAAAIUSQAEAAAAAAFAoARQAAAAAAACFEkABAAAAAABQKAEUAAAAAAAAhRJAAQAAAAAAUCgBFAAAAAAAAIUSQAEAAAAAAFCo/wPjNj239ASu2QAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3961,7 +4647,7 @@ }, { "cell_type": "code", - "execution_count": 127, + "execution_count": 964, "metadata": {}, "outputs": [ { @@ -3970,7 +4656,7 @@ "0" ] }, - "execution_count": 127, + "execution_count": 964, "metadata": {}, "output_type": "execute_result" } @@ -3988,21 +4674,22 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 965, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "I am a developer by profession 59247\n", - "I am a student who is learning to code 8382\n", - "I am not primarily a developer, but I write code sometimes as part of my work 6531\n", - "I code primarily as a hobby 2370\n", - "I used to be a developer by profession, but no longer am 1210\n", - "Name: Profession, dtype: int64" + "Profession\n", + "I am a developer by profession 62\n", + "I am not primarily a developer, but I write code sometimes as part of my work 10\n", + "I am a student who is learning to code 8\n", + "I code primarily as a hobby 6\n", + "I used to be a developer by profession, but no longer am 2\n", + "Name: count, dtype: int64" ] }, - "execution_count": 128, + "execution_count": 965, "metadata": {}, "output_type": "execute_result" } @@ -4013,16 +4700,16 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 966, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "255" + "0" ] }, - "execution_count": 129, + "execution_count": 966, "metadata": {}, "output_type": "execute_result" } @@ -4033,7 +4720,7 @@ }, { "cell_type": "code", - "execution_count": 130, + "execution_count": 967, "metadata": {}, "outputs": [], "source": [ @@ -4042,21 +4729,22 @@ }, { "cell_type": "code", - "execution_count": 131, + "execution_count": 968, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "I am a developer by profession 59502\n", - "I am a student who is learning to code 8382\n", - "I am not primarily a developer, but I write code sometimes as part of my work 6531\n", - "I code primarily as a hobby 2370\n", - "I used to be a developer by profession, but no longer am 1210\n", - "Name: Profession, dtype: int64" + "Profession\n", + "I am a developer by profession 62\n", + "I am not primarily a developer, but I write code sometimes as part of my work 10\n", + "I am a student who is learning to code 8\n", + "I code primarily as a hobby 6\n", + "I used to be a developer by profession, but no longer am 2\n", + "Name: count, dtype: int64" ] }, - "execution_count": 131, + "execution_count": 968, "metadata": {}, "output_type": "execute_result" } @@ -4067,7 +4755,7 @@ }, { "cell_type": "code", - "execution_count": 132, + "execution_count": 969, "metadata": {}, "outputs": [], "source": [ @@ -4094,21 +4782,22 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 970, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Developer 59502\n", - "Student 8382\n", - "Non developer 6531\n", - "Novoice 2370\n", - "Ex-Developer 1210\n", - "Name: Profession, dtype: int64" + "Profession\n", + "Developer 62\n", + "Non developer 10\n", + "Student 8\n", + "Novoice 6\n", + "Ex-Developer 2\n", + "Name: count, dtype: int64" ] }, - "execution_count": 133, + "execution_count": 970, "metadata": {}, "output_type": "execute_result" } @@ -4126,25 +4815,25 @@ }, { "cell_type": "code", - "execution_count": 134, + "execution_count": 971, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Bachelor’s degree (BA, BS, B.Eng., etc.) 34926\n", - "Master’s degree (MA, MS, M.Eng., MBA, etc.) 17305\n", - "Some college/university study without earning a degree 9571\n", - "Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.) 7638\n", - "Associate degree 2585\n", - "Other doctoral degree (Ph.D, Ed.D., etc.) 2032\n", - "Professional degree (JD, MD, etc.) 1037\n", - "Primary/elementary school 981\n", - "I never completed any formal education 352\n", - "Name: EdLevel, dtype: int64" + "EdLevel\n", + "Bachelor‚Äôs degree (BA, BS, B.Eng., etc.) 42\n", + "Some college/university study without earning a degree 15\n", + "Master‚Äôs degree (MA, MS, M.Eng., MBA, etc.) 10\n", + "Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.) 9\n", + "Associate degree 5\n", + "Primary/elementary school 3\n", + "Other doctoral degree (Ph.D, Ed.D., etc.) 2\n", + "Professional degree (JD, MD, etc.) 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 134, + "execution_count": 971, "metadata": {}, "output_type": "execute_result" } @@ -4155,16 +4844,16 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 972, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1568" + "1" ] }, - "execution_count": 135, + "execution_count": 972, "metadata": {}, "output_type": "execute_result" } @@ -4175,7 +4864,7 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 973, "metadata": {}, "outputs": [], "source": [ @@ -4205,22 +4894,22 @@ }, { "cell_type": "code", - "execution_count": 137, + "execution_count": 974, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Bachelors 36494\n", - "No Degree 18542\n", - "Masters 17305\n", - "Associate 2585\n", - "Doctorate 2032\n", - "Professional 1037\n", - "Name: EdLevel, dtype: int64" + "EdLevel\n", + "Bachelors 53\n", + "No Degree 27\n", + "Associate 5\n", + "Doctorate 2\n", + "Professional 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 137, + "execution_count": 974, "metadata": {}, "output_type": "execute_result" } @@ -4231,7 +4920,7 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 975, "metadata": {}, "outputs": [ { @@ -4240,7 +4929,7 @@ "0" ] }, - "execution_count": 138, + "execution_count": 975, "metadata": {}, "output_type": "execute_result" } @@ -4258,26 +4947,27 @@ }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 976, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Computer science, computer engineering, or software engineering 42211\n", - "Another engineering discipline (ex. civil, electrical, mechanical) 5472\n", - "Information systems, information technology, or system administration 4646\n", - "Web development or web design 2975\n", - "A natural science (ex. biology, chemistry, physics) 2866\n", - "Mathematics or statistics 2557\n", - "A business discipline (ex. accounting, finance, marketing) 1633\n", - "A humanities discipline (ex. literature, history, philosophy) 1408\n", - "A social science (ex. anthropology, psychology, political science) 1246\n", - "Fine arts or performing arts (ex. graphic design, music, studio art) 1124\n", - "Name: UndergradMajor, dtype: int64" + "UndergradMajor\n", + "Computer science, computer engineering, or software engineering 36\n", + "Information systems, information technology, or system administration 15\n", + "Web development or web design 5\n", + "Mathematics or statistics 4\n", + "Another engineering discipline (ex. civil, electrical, mechanical) 4\n", + "A business discipline (ex. accounting, finance, marketing) 3\n", + "A natural science (ex. biology, chemistry, physics) 2\n", + "A social science (ex. anthropology, psychology, political science) 2\n", + "A humanities discipline (ex. literature, history, philosophy) 1\n", + "Fine arts or performing arts (ex. graphic design, music, studio art) 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 139, + "execution_count": 976, "metadata": {}, "output_type": "execute_result" } @@ -4288,16 +4978,16 @@ }, { "cell_type": "code", - "execution_count": 140, + "execution_count": 977, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "10787" + "15" ] }, - "execution_count": 140, + "execution_count": 977, "metadata": {}, "output_type": "execute_result" } @@ -4308,7 +4998,7 @@ }, { "cell_type": "code", - "execution_count": 141, + "execution_count": 978, "metadata": {}, "outputs": [], "source": [ @@ -4317,28 +5007,27 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 979, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Computer science, computer engineering, or software engineering 49010\n", - "Another engineering discipline (ex. civil, electrical, mechanical) 6368\n", - "Information systems, information technology, or system administration 5392\n", - "Web development or web design 3424\n", - "A natural science (ex. biology, chemistry, physics) 3285\n", - "Mathematics or statistics 2984\n", - "A business discipline (ex. accounting, finance, marketing) 1908\n", - "A humanities discipline (ex. literature, history, philosophy) 1627\n", - "A social science (ex. anthropology, psychology, political science) 1431\n", - "Fine arts or performing arts (ex. graphic design, music, studio art) 1327\n", - "I never declared a major 922\n", - "A health science (ex. nursing, pharmacy, radiology) 316\n", - "Name: UndergradMajor, dtype: int64" + "UndergradMajor\n", + "Computer science, computer engineering, or software engineering 43\n", + "Information systems, information technology, or system administration 19\n", + "Web development or web design 6\n", + "Another engineering discipline (ex. civil, electrical, mechanical) 5\n", + "Mathematics or statistics 4\n", + "A natural science (ex. biology, chemistry, physics) 3\n", + "A business discipline (ex. accounting, finance, marketing) 3\n", + "A social science (ex. anthropology, psychology, political science) 2\n", + "A humanities discipline (ex. literature, history, philosophy) 1\n", + "Fine arts or performing arts (ex. graphic design, music, studio art) 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 142, + "execution_count": 979, "metadata": {}, "output_type": "execute_result" } @@ -4349,7 +5038,7 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 980, "metadata": {}, "outputs": [ { @@ -4358,7 +5047,7 @@ "1" ] }, - "execution_count": 143, + "execution_count": 980, "metadata": {}, "output_type": "execute_result" } @@ -4369,7 +5058,7 @@ }, { "cell_type": "code", - "execution_count": 144, + "execution_count": 981, "metadata": {}, "outputs": [], "source": [ @@ -4378,7 +5067,7 @@ }, { "cell_type": "code", - "execution_count": 145, + "execution_count": 982, "metadata": {}, "outputs": [ { @@ -4387,7 +5076,7 @@ "0" ] }, - "execution_count": 145, + "execution_count": 982, "metadata": {}, "output_type": "execute_result" } @@ -4398,7 +5087,7 @@ }, { "cell_type": "code", - "execution_count": 146, + "execution_count": 983, "metadata": {}, "outputs": [], "source": [ @@ -4435,25 +5124,25 @@ }, { "cell_type": "code", - "execution_count": 147, + "execution_count": 984, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Computer Science 49010\n", - "Engineering 6368\n", - "Info Systems 5392\n", - "Arts and Science 4385\n", - "Other Science 3601\n", - "Web Design/Dev 3424\n", - "Math/Stat 2984\n", - "Business 1908\n", - "No Major 922\n", - "Name: UndergradMajor, dtype: int64" + "UndergradMajor\n", + "Computer Science 43\n", + "Info Systems 19\n", + "Web Design/Dev 6\n", + "Engineering 5\n", + "Math/Stat 4\n", + "Arts and Science 4\n", + "Other Science 3\n", + "Business 3\n", + "Name: count, dtype: int64" ] }, - "execution_count": 147, + "execution_count": 984, "metadata": {}, "output_type": "execute_result" } @@ -4471,19 +5160,20 @@ }, { "cell_type": "code", - "execution_count": 148, + "execution_count": 985, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "I’m not actively looking, but I am open to new opportunities 42258\n", - "I am not interested in new job opportunities 19161\n", - "I am actively looking for a job 10491\n", - "Name: JobStatus, dtype: int64" + "JobStatus\n", + "I‚Äôm not actively looking, but I am open to new opportunities 44\n", + "I am not interested in new job opportunities 23\n", + "I am actively looking for a job 12\n", + "Name: count, dtype: int64" ] }, - "execution_count": 148, + "execution_count": 985, "metadata": {}, "output_type": "execute_result" } @@ -4494,16 +5184,16 @@ }, { "cell_type": "code", - "execution_count": 149, + "execution_count": 986, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "6084" + "8" ] }, - "execution_count": 149, + "execution_count": 986, "metadata": {}, "output_type": "execute_result" } @@ -4514,7 +5204,7 @@ }, { "cell_type": "code", - "execution_count": 150, + "execution_count": 987, "metadata": {}, "outputs": [], "source": [ @@ -4523,7 +5213,7 @@ }, { "cell_type": "code", - "execution_count": 151, + "execution_count": 988, "metadata": {}, "outputs": [ { @@ -4532,7 +5222,7 @@ "0" ] }, - "execution_count": 151, + "execution_count": 988, "metadata": {}, "output_type": "execute_result" } @@ -4543,19 +5233,20 @@ }, { "cell_type": "code", - "execution_count": 152, + "execution_count": 989, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "I’m not actively looking, but I am open to new opportunities 45917\n", - "I am not interested in new job opportunities 20712\n", - "I am actively looking for a job 11365\n", - "Name: JobStatus, dtype: int64" + "JobStatus\n", + "I‚Äôm not actively looking, but I am open to new opportunities 50\n", + "I am not interested in new job opportunities 24\n", + "I am actively looking for a job 13\n", + "Name: count, dtype: int64" ] }, - "execution_count": 152, + "execution_count": 989, "metadata": {}, "output_type": "execute_result" } @@ -4566,7 +5257,7 @@ }, { "cell_type": "code", - "execution_count": 153, + "execution_count": 990, "metadata": {}, "outputs": [], "source": [ @@ -4575,7 +5266,7 @@ }, { "cell_type": "code", - "execution_count": 154, + "execution_count": 991, "metadata": {}, "outputs": [], "source": [ @@ -4600,18 +5291,20 @@ }, { "cell_type": "code", - "execution_count": 155, + "execution_count": 992, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Not seeking 66629\n", - "Seeking 11365\n", - "Name: JobStatus, dtype: int64" + "JobStatus\n", + "nan 50\n", + "Not seeking 24\n", + "Seeking 13\n", + "Name: count, dtype: int64" ] }, - "execution_count": 155, + "execution_count": 992, "metadata": {}, "output_type": "execute_result" } @@ -4629,21 +5322,22 @@ }, { "cell_type": "code", - "execution_count": 156, + "execution_count": 993, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Very satisfied 26584\n", - "Slightly satisfied 22739\n", - "Slightly dissatisfied 6843\n", - "Neither satisfied nor dissatisfied 6158\n", - "Very dissatisfied 3203\n", - "Name: JobSatisfaction, dtype: int64" + "JobSatisfaction\n", + "Very satisfied 33\n", + "Slightly satisfied 21\n", + "Slightly dissatisfied 8\n", + "Neither satisfied nor dissatisfied 6\n", + "Very dissatisfied 4\n", + "Name: count, dtype: int64" ] }, - "execution_count": 156, + "execution_count": 993, "metadata": {}, "output_type": "execute_result" } @@ -4654,16 +5348,16 @@ }, { "cell_type": "code", - "execution_count": 157, + "execution_count": 994, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "12467" + "15" ] }, - "execution_count": 157, + "execution_count": 994, "metadata": {}, "output_type": "execute_result" } @@ -4674,7 +5368,7 @@ }, { "cell_type": "code", - "execution_count": 158, + "execution_count": 995, "metadata": {}, "outputs": [], "source": [ @@ -4683,7 +5377,7 @@ }, { "cell_type": "code", - "execution_count": 159, + "execution_count": 996, "metadata": {}, "outputs": [ { @@ -4692,7 +5386,7 @@ "0" ] }, - "execution_count": 159, + "execution_count": 996, "metadata": {}, "output_type": "execute_result" } @@ -4703,21 +5397,22 @@ }, { "cell_type": "code", - "execution_count": 160, + "execution_count": 997, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Very satisfied 31507\n", - "Slightly satisfied 26970\n", - "Slightly dissatisfied 8343\n", - "Neither satisfied nor dissatisfied 7313\n", - "Very dissatisfied 3861\n", - "Name: JobSatisfaction, dtype: int64" + "JobSatisfaction\n", + "Very satisfied 41\n", + "Slightly satisfied 26\n", + "Slightly dissatisfied 10\n", + "Neither satisfied nor dissatisfied 6\n", + "Very dissatisfied 4\n", + "Name: count, dtype: int64" ] }, - "execution_count": 160, + "execution_count": 997, "metadata": {}, "output_type": "execute_result" } @@ -4735,22 +5430,22 @@ }, { "cell_type": "code", - "execution_count": 161, + "execution_count": 998, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Employed full-time 58069\n", - "Independent contractor, freelancer, or self-employed 7305\n", - "Not employed, but looking for work 4703\n", - "Employed part-time 3958\n", - "Not employed, and not looking for work 2914\n", - "Retired 76\n", - "Name: Employment, dtype: int64" + "Employment\n", + "Employed full-time 64\n", + "Independent contractor, freelancer, or self-employed 12\n", + "Employed part-time 5\n", + "Not employed, but looking for work 4\n", + "Not employed, and not looking for work 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 161, + "execution_count": 998, "metadata": {}, "output_type": "execute_result" } @@ -4761,16 +5456,16 @@ }, { "cell_type": "code", - "execution_count": 162, + "execution_count": 999, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "969" + "1" ] }, - "execution_count": 162, + "execution_count": 999, "metadata": {}, "output_type": "execute_result" } @@ -4781,7 +5476,7 @@ }, { "cell_type": "code", - "execution_count": 163, + "execution_count": 1000, "metadata": {}, "outputs": [], "source": [ @@ -4790,7 +5485,7 @@ }, { "cell_type": "code", - "execution_count": 164, + "execution_count": 1001, "metadata": {}, "outputs": [ { @@ -4799,7 +5494,7 @@ "0" ] }, - "execution_count": 164, + "execution_count": 1001, "metadata": {}, "output_type": "execute_result" } @@ -4810,22 +5505,22 @@ }, { "cell_type": "code", - "execution_count": 165, + "execution_count": 1002, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Employed full-time 58771\n", - "Independent contractor, freelancer, or self-employed 7397\n", - "Not employed, but looking for work 4770\n", - "Employed part-time 4017\n", - "Not employed, and not looking for work 2960\n", - "Retired 79\n", - "Name: Employment, dtype: int64" + "Employment\n", + "Employed full-time 65\n", + "Independent contractor, freelancer, or self-employed 12\n", + "Employed part-time 5\n", + "Not employed, but looking for work 4\n", + "Not employed, and not looking for work 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 165, + "execution_count": 1002, "metadata": {}, "output_type": "execute_result" } @@ -4836,7 +5531,7 @@ }, { "cell_type": "code", - "execution_count": 166, + "execution_count": 1003, "metadata": {}, "outputs": [], "source": [ @@ -4862,20 +5557,21 @@ }, { "cell_type": "code", - "execution_count": 167, + "execution_count": 1004, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Full-time 58771\n", - "Not employed 7809\n", - "Self-employed 7397\n", - "Part-time 4017\n", - "Name: Employment, dtype: int64" + "Employment\n", + "Full-time 65\n", + "Self-employed 12\n", + "Not employed 5\n", + "Part-time 5\n", + "Name: count, dtype: int64" ] }, - "execution_count": 167, + "execution_count": 1004, "metadata": {}, "output_type": "execute_result" } @@ -4893,7 +5589,7 @@ }, { "cell_type": "code", - "execution_count": 168, + "execution_count": 1005, "metadata": {}, "outputs": [], "source": [ @@ -4902,7 +5598,7 @@ }, { "cell_type": "code", - "execution_count": 169, + "execution_count": 1006, "metadata": {}, "outputs": [ { @@ -4920,170 +5616,10 @@ " 'South Asian',\n", " 'Multiracial',\n", " 'East Asian;South Asian',\n", - " 'Biracial',\n", - " 'Native American, Pacific Islander, or Indigenous Australian;White or of European descent',\n", - " 'Black or of African descent;White or of European descent;Biracial',\n", - " 'Middle Eastern;White or of European descent',\n", - " 'Native American, Pacific Islander, or Indigenous Australian',\n", - " 'Black or of African descent;White or of European descent',\n", - " 'White or of European descent;Biracial;Multiracial',\n", - " 'Hispanic or Latino/Latina;White or of European descent',\n", - " 'East Asian;White or of European descent;Biracial',\n", - " 'Black or of African descent;Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Multiracial',\n", - " 'East Asian;White or of European descent',\n", - " 'Hispanic or Latino/Latina;White or of European descent;Biracial',\n", - " 'East Asian;Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Multiracial',\n", - " 'Hispanic or Latino/Latina;White or of European descent;Multiracial',\n", - " 'South Asian;White or of European descent;Multiracial',\n", - " 'South Asian;Biracial',\n", - " 'Middle Eastern;South Asian',\n", - " 'East Asian;South Asian;Multiracial',\n", - " 'White or of European descent;Biracial',\n", - " 'East Asian;Biracial;Multiracial',\n", - " 'Black or of African descent;Hispanic or Latino/Latina',\n", - " 'East Asian;Hispanic or Latino/Latina;White or of European descent',\n", - " 'East Asian;White or of European descent;Multiracial',\n", - " 'South Asian;White or of European descent;Biracial',\n", - " 'East Asian;South Asian;White or of European descent;Multiracial',\n", - " 'Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Multiracial',\n", - " 'South Asian;White or of European descent;Biracial;Multiracial',\n", - " 'Black or of African descent;White or of European descent;Multiracial',\n", - " 'Black or of African descent;Hispanic or Latino/Latina;White or of European descent',\n", - " 'Hispanic or Latino/Latina;Middle Eastern;White or of European descent',\n", - " 'Hispanic or Latino/Latina;Biracial',\n", - " 'Hispanic or Latino/Latina;South Asian;Multiracial',\n", - " 'Black or of African descent;East Asian;South Asian;White or of European descent;Biracial;Multiracial',\n", - " 'Black or of African descent;Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;Multiracial',\n", - " 'East Asian;Middle Eastern',\n", - " 'Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Biracial',\n", - " 'Black or of African descent;Multiracial',\n", - " 'Middle Eastern;White or of European descent;Biracial',\n", - " 'East Asian;Middle Eastern;South Asian',\n", - " 'East Asian;Biracial',\n", - " 'Middle Eastern;White or of European descent;Multiracial',\n", - " 'Black or of African descent;Biracial',\n", - " 'Black or of African descent;Hispanic or Latino/Latina;White or of European descent;Multiracial',\n", - " 'Middle Eastern;Multiracial',\n", - " 'Black or of African descent;Middle Eastern',\n", - " 'Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;White or of European descent',\n", - " 'Black or of African descent;South Asian;Multiracial',\n", - " 'East Asian;Hispanic or Latino/Latina',\n", - " 'South Asian;Multiracial',\n", - " 'East Asian;South Asian;White or of European descent;Biracial;Multiracial',\n", - " 'Black or of African descent;Hispanic or Latino/Latina;Multiracial',\n", - " 'South Asian;White or of European descent',\n", - " 'Black or of African descent;East Asian',\n", - " 'Black or of African descent;Middle Eastern;Multiracial',\n", - " 'Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent;Biracial',\n", - " 'Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent',\n", - " 'Native American, Pacific Islander, or Indigenous Australian;South Asian',\n", - " 'Black or of African descent;South Asian;White or of European descent;Multiracial',\n", - " 'East Asian;White or of European descent;Biracial;Multiracial',\n", - " 'Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Multiracial',\n", - " 'Hispanic or Latino/Latina;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;White or of European descent',\n", - " 'Middle Eastern;Biracial',\n", - " 'East Asian;Multiracial',\n", - " 'Black or of African descent;East Asian;Hispanic or Latino/Latina',\n", - " 'Black or of African descent;East Asian;Hispanic or Latino/Latina;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent;Biracial',\n", - " 'Hispanic or Latino/Latina;Biracial;Multiracial',\n", - " 'Black or of African descent;South Asian',\n", - " 'Black or of African descent;East Asian;White or of European descent;Multiracial',\n", - " 'Hispanic or Latino/Latina;White or of European descent;Biracial;Multiracial',\n", - " 'Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Multiracial',\n", - " 'Black or of African descent;White or of European descent;Biracial;Multiracial',\n", - " 'East Asian;Hispanic or Latino/Latina;South Asian',\n", - " 'East Asian;Middle Eastern;White or of European descent;Biracial',\n", - " 'Black or of African descent;Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Multiracial',\n", - " 'Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian',\n", - " 'Black or of African descent;Native American, Pacific Islander, or Indigenous Australian',\n", - " 'Black or of African descent;East Asian;Hispanic or Latino/Latina;Biracial',\n", - " 'East Asian;Native American, Pacific Islander, or Indigenous Australian',\n", - " 'Black or of African descent;Hispanic or Latino/Latina;Biracial',\n", - " 'East Asian;Native American, Pacific Islander, or Indigenous Australian;South Asian',\n", - " 'Middle Eastern;South Asian;Multiracial',\n", - " 'Black or of African descent;Middle Eastern;White or of European descent',\n", - " 'Black or of African descent;Biracial;Multiracial',\n", - " 'Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Biracial;Multiracial',\n", - " 'Hispanic or Latino/Latina;Middle Eastern',\n", - " 'Black or of African descent;Middle Eastern;Biracial',\n", - " 'Black or of African descent;Native American, Pacific Islander, or Indigenous Australian;Biracial',\n", - " 'Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Biracial;Multiracial',\n", - " 'Black or of African descent;Hispanic or Latino/Latina;Middle Eastern;Multiracial',\n", - " 'Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;Multiracial',\n", - " 'East Asian;Middle Eastern;South Asian;White or of European descent',\n", - " 'East Asian;Middle Eastern;White or of European descent;Multiracial',\n", - " 'Black or of African descent;Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;White or of European descent',\n", - " 'Biracial;Multiracial',\n", - " 'Hispanic or Latino/Latina;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent',\n", - " 'Hispanic or Latino/Latina;Middle Eastern;White or of European descent;Multiracial',\n", - " 'Hispanic or Latino/Latina;Middle Eastern;Biracial',\n", - " 'East Asian;Middle Eastern;White or of European descent',\n", - " 'East Asian;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent',\n", - " 'Black or of African descent;East Asian;Native American, Pacific Islander, or Indigenous Australian;White or of European descent',\n", - " 'East Asian;Hispanic or Latino/Latina;Middle Eastern;White or of European descent',\n", - " 'Black or of African descent;East Asian;Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Multiracial',\n", - " 'Black or of African descent;South Asian;White or of European descent',\n", - " 'Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;South Asian;Biracial',\n", - " 'Black or of African descent;East Asian;Hispanic or Latino/Latina;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent',\n", - " 'East Asian;South Asian;Biracial',\n", - " 'East Asian;Native American, Pacific Islander, or Indigenous Australian;White or of European descent',\n", - " 'East Asian;Hispanic or Latino/Latina;White or of European descent;Multiracial',\n", - " 'East Asian;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian',\n", - " 'Hispanic or Latino/Latina;South Asian;White or of European descent',\n", - " 'Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;White or of European descent',\n", - " 'Black or of African descent;East Asian;Biracial',\n", - " 'East Asian;Hispanic or Latino/Latina;Biracial',\n", - " 'East Asian;South Asian;White or of European descent',\n", - " 'Black or of African descent;Hispanic or Latino/Latina;Middle Eastern;Biracial',\n", - " 'Hispanic or Latino/Latina;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Multiracial',\n", - " 'East Asian;Hispanic or Latino/Latina;Biracial;Multiracial',\n", - " 'Hispanic or Latino/Latina;South Asian',\n", - " 'East Asian;South Asian;Biracial;Multiracial',\n", - " 'East Asian;Native American, Pacific Islander, or Indigenous Australian;Multiracial',\n", - " 'Native American, Pacific Islander, or Indigenous Australian;Biracial;Multiracial',\n", - " 'Black or of African descent;Hispanic or Latino/Latina;White or of European descent;Biracial;Multiracial',\n", - " 'Hispanic or Latino/Latina;South Asian;White or of European descent;Multiracial',\n", - " 'Hispanic or Latino/Latina;South Asian;Biracial',\n", - " 'East Asian;Middle Eastern;Multiracial',\n", - " 'Black or of African descent;East Asian;Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent;Multiracial',\n", - " 'Black or of African descent;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Multiracial',\n", - " 'Middle Eastern;South Asian;White or of European descent',\n", - " 'Middle Eastern;White or of European descent;Biracial;Multiracial',\n", - " 'Black or of African descent;East Asian;Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Multiracial',\n", - " 'East Asian;Hispanic or Latino/Latina;Middle Eastern',\n", - " 'Black or of African descent;East Asian;Hispanic or Latino/Latina;White or of European descent;Multiracial',\n", - " 'Native American, Pacific Islander, or Indigenous Australian;Multiracial',\n", - " 'East Asian;Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent',\n", - " 'East Asian;Middle Eastern;South Asian;Multiracial',\n", - " 'Black or of African descent;East Asian;Hispanic or Latino/Latina;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;South Asian;Biracial;Multiracial',\n", - " 'Black or of African descent;East Asian;Hispanic or Latino/Latina;Middle Eastern;South Asian;White or of European descent;Biracial;Multiracial',\n", - " 'East Asian;Hispanic or Latino/Latina;Multiracial',\n", - " 'Black or of African descent;East Asian;Middle Eastern;White or of European descent;Biracial;Multiracial',\n", - " 'Hispanic or Latino/Latina;Middle Eastern;White or of European descent;Biracial',\n", - " 'Black or of African descent;Middle Eastern;South Asian',\n", - " 'East Asian;Native American, Pacific Islander, or Indigenous Australian;Biracial;Multiracial',\n", - " 'East Asian;Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;White or of European descent',\n", - " 'South Asian;Biracial;Multiracial',\n", - " 'Black or of African descent;Hispanic or Latino/Latina;South Asian',\n", - " 'Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent;Multiracial',\n", - " 'East Asian;Hispanic or Latino/Latina;Middle Eastern;South Asian',\n", - " 'Hispanic or Latino/Latina;Middle Eastern;Multiracial',\n", - " 'Black or of African descent;East Asian;Multiracial',\n", - " 'Black or of African descent;Native American, Pacific Islander, or Indigenous Australian;Multiracial',\n", - " 'East Asian;Middle Eastern;South Asian;White or of European descent;Multiracial',\n", - " 'Black or of African descent;East Asian;South Asian',\n", - " 'Black or of African descent;Hispanic or Latino/Latina;Biracial;Multiracial',\n", - " 'Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;Biracial',\n", - " 'East Asian;Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Biracial;Multiracial',\n", - " 'Black or of African descent;East Asian;Middle Eastern;Native American, Pacific Islander, or Indigenous Australian;White or of European descent;Multiracial',\n", - " 'Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;South Asian;White or of European descent',\n", - " 'Black or of African descent;South Asian;Biracial',\n", - " 'East Asian;Hispanic or Latino/Latina;Native American, Pacific Islander, or Indigenous Australian;South Asian',\n", - " 'East Asian;South Asian;White or of European descent;Biracial',\n", - " 'Black or of African descent;East Asian;Middle Eastern;South Asian;Multiracial']" + " 'Biracial']" ] }, - "execution_count": 169, + "execution_count": 1006, "metadata": {}, "output_type": "execute_result" } @@ -5095,16 +5631,16 @@ }, { "cell_type": "code", - "execution_count": 170, + "execution_count": 1007, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "173" + "13" ] }, - "execution_count": 170, + "execution_count": 1007, "metadata": {}, "output_type": "execute_result" } @@ -5115,7 +5651,7 @@ }, { "cell_type": "code", - "execution_count": 171, + "execution_count": 1008, "metadata": {}, "outputs": [], "source": [ @@ -5134,16 +5670,16 @@ }, { "cell_type": "code", - "execution_count": 172, + "execution_count": 1009, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "7804" + "15" ] }, - "execution_count": 172, + "execution_count": 1009, "metadata": {}, "output_type": "execute_result" } @@ -5154,25 +5690,25 @@ }, { "cell_type": "code", - "execution_count": 173, + "execution_count": 1010, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "White or of European descent 47587\n", - "South Asian 7417\n", - "Hispanic or Latino 4901\n", - "East Asian 3698\n", - "Middle Eastern 3057\n", - "Black or of African descent 2360\n", - "Multiracial 572\n", - "Native American 322\n", - "Biracial 276\n", - "Name: Ethnicity, dtype: int64" + "Ethnicity\n", + "White or of European descent 45\n", + "South Asian 8\n", + "Hispanic or Latino 6\n", + "East Asian 4\n", + "Black or of African descent 4\n", + "Middle Eastern 3\n", + "Multiracial 1\n", + "Biracial 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 173, + "execution_count": 1010, "metadata": {}, "output_type": "execute_result" } @@ -5183,7 +5719,7 @@ }, { "cell_type": "code", - "execution_count": 174, + "execution_count": 1011, "metadata": {}, "outputs": [], "source": [ @@ -5192,16 +5728,16 @@ }, { "cell_type": "code", - "execution_count": 175, + "execution_count": 1012, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0" + "1" ] }, - "execution_count": 175, + "execution_count": 1012, "metadata": {}, "output_type": "execute_result" } @@ -5212,25 +5748,25 @@ }, { "cell_type": "code", - "execution_count": 176, + "execution_count": 1013, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "White or of European descent 50883\n", - "South Asian 10061\n", - "Hispanic or Latino 5204\n", - "East Asian 4391\n", - "Middle Eastern 3596\n", - "Black or of African descent 2570\n", - "Multiracial 632\n", - "Native American 355\n", - "Biracial 302\n", - "Name: Ethnicity, dtype: int64" + "Ethnicity\n", + "White or of European descent 52\n", + "South Asian 14\n", + "Hispanic or Latino 6\n", + "East Asian 5\n", + "Black or of African descent 4\n", + "Middle Eastern 3\n", + "Multiracial 1\n", + "Biracial 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 176, + "execution_count": 1013, "metadata": {}, "output_type": "execute_result" } @@ -5248,18 +5784,19 @@ }, { "cell_type": "code", - "execution_count": 177, + "execution_count": 1014, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "No 46457\n", - "Yes 28918\n", - "Name: Dependents, dtype: int64" + "Dependents\n", + "No 55\n", + "Yes 27\n", + "Name: count, dtype: int64" ] }, - "execution_count": 177, + "execution_count": 1014, "metadata": {}, "output_type": "execute_result" } @@ -5270,16 +5807,16 @@ }, { "cell_type": "code", - "execution_count": 178, + "execution_count": 1015, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2619" + "5" ] }, - "execution_count": 178, + "execution_count": 1015, "metadata": {}, "output_type": "execute_result" } @@ -5290,7 +5827,7 @@ }, { "cell_type": "code", - "execution_count": 179, + "execution_count": 1016, "metadata": {}, "outputs": [], "source": [ @@ -5300,7 +5837,7 @@ }, { "cell_type": "code", - "execution_count": 180, + "execution_count": 1017, "metadata": {}, "outputs": [ { @@ -5309,7 +5846,7 @@ "0" ] }, - "execution_count": 180, + "execution_count": 1017, "metadata": {}, "output_type": "execute_result" } @@ -5320,18 +5857,19 @@ }, { "cell_type": "code", - "execution_count": 181, + "execution_count": 1018, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "No 48085\n", - "Yes 29909\n", - "Name: Dependents, dtype: int64" + "Dependents\n", + "No 58\n", + "Yes 29\n", + "Name: count, dtype: int64" ] }, - "execution_count": 181, + "execution_count": 1018, "metadata": {}, "output_type": "execute_result" } @@ -5349,16 +5887,16 @@ }, { "cell_type": "code", - "execution_count": 182, + "execution_count": 1019, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5025" + "3" ] }, - "execution_count": 182, + "execution_count": 1019, "metadata": {}, "output_type": "execute_result" } @@ -5369,26 +5907,27 @@ }, { "cell_type": "code", - "execution_count": 183, + "execution_count": 1020, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Developer, full-stack 7636\n", - "Developer, back-end 4387\n", - "Developer, back-end;Developer, front-end;Developer, full-stack 2216\n", - "Developer, front-end 1985\n", - "Developer, mobile 1934\n", - "Developer, back-end;Developer, full-stack 1886\n", - "Student 1289\n", - "Developer, front-end;Developer, full-stack 940\n", - "Developer, desktop or enterprise applications 900\n", - "Developer, back-end;Developer, desktop or enterprise applications;Developer, front-end;Developer, full-stack 815\n", - "Name: DevType, dtype: int64" + "DevType\n", + "Developer, full-stack 12\n", + "Developer, front-end 4\n", + "Developer, back-end;DevOps specialist 3\n", + "Designer;Developer, back-end;Developer, front-end;Developer, full-stack 2\n", + "Student 2\n", + "Developer, full-stack;Engineer, data 2\n", + "Developer, desktop or enterprise applications 2\n", + "System administrator 1\n", + "Developer, front-end;Developer, mobile 1\n", + "Developer, full-stack;Student 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 183, + "execution_count": 1020, "metadata": {}, "output_type": "execute_result" } @@ -5399,7 +5938,7 @@ }, { "cell_type": "code", - "execution_count": 184, + "execution_count": 1021, "metadata": {}, "outputs": [], "source": [ @@ -5408,7 +5947,7 @@ }, { "cell_type": "code", - "execution_count": 185, + "execution_count": 1022, "metadata": {}, "outputs": [ { @@ -5417,7 +5956,7 @@ "0" ] }, - "execution_count": 185, + "execution_count": 1022, "metadata": {}, "output_type": "execute_result" } @@ -5428,21 +5967,22 @@ }, { "cell_type": "code", - "execution_count": 186, + "execution_count": 1023, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Developer, full-stack 8147\n", - "Developer, back-end 4680\n", - "Developer, back-end;Developer, front-end;Developer, full-stack 2365\n", - "Developer, front-end 2129\n", - "Developer, mobile 2086\n", - "Name: DevType, dtype: int64" + "DevType\n", + "Developer, full-stack 12\n", + "Developer, front-end 4\n", + "Developer, desktop or enterprise applications 3\n", + "Developer, back-end;DevOps specialist 3\n", + "Designer;Developer, back-end;Developer, front-end;Developer, full-stack 2\n", + "Name: count, dtype: int64" ] }, - "execution_count": 186, + "execution_count": 1023, "metadata": {}, "output_type": "execute_result" } @@ -5460,16 +6000,16 @@ }, { "cell_type": "code", - "execution_count": 187, + "execution_count": 1024, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "656" + "1" ] }, - "execution_count": 187, + "execution_count": 1024, "metadata": {}, "output_type": "execute_result" } @@ -5480,26 +6020,27 @@ }, { "cell_type": "code", - "execution_count": 188, + "execution_count": 1025, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "HTML/CSS;JavaScript;PHP;SQL 1345\n", - "C#;HTML/CSS;JavaScript;SQL 1282\n", - "HTML/CSS;JavaScript 1098\n", - "C#;HTML/CSS;JavaScript;SQL;TypeScript 908\n", - "HTML/CSS;JavaScript;PHP 821\n", - "Java 757\n", - "HTML/CSS;JavaScript;TypeScript 644\n", - "Python 634\n", - "HTML/CSS;Java;JavaScript;SQL 596\n", - "C# 484\n", - "Name: LanguageWorkedWith, dtype: int64" + "LanguageWorkedWith\n", + "HTML/CSS;JavaScript 5\n", + "C#;HTML/CSS;JavaScript;SQL 3\n", + "HTML/CSS;JavaScript;PHP;TypeScript 2\n", + "HTML/CSS;JavaScript;PHP;SQL 2\n", + "HTML/CSS 1\n", + "C;C#;HTML/CSS;Java;JavaScript;PHP;Python;SQL;VBA 1\n", + "SQL 1\n", + "C#;HTML/CSS;JavaScript;PHP;SQL;TypeScript 1\n", + "HTML/CSS;JavaScript;PHP;Python;SQL;VBA 1\n", + "C#;HTML/CSS;Java;JavaScript;Objective-C;SQL;TypeScript 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 188, + "execution_count": 1025, "metadata": {}, "output_type": "execute_result" } @@ -5510,7 +6051,7 @@ }, { "cell_type": "code", - "execution_count": 189, + "execution_count": 1026, "metadata": {}, "outputs": [], "source": [ @@ -5519,7 +6060,7 @@ }, { "cell_type": "code", - "execution_count": 190, + "execution_count": 1027, "metadata": {}, "outputs": [ { @@ -5528,7 +6069,7 @@ "0" ] }, - "execution_count": 190, + "execution_count": 1027, "metadata": {}, "output_type": "execute_result" } @@ -5539,26 +6080,27 @@ }, { "cell_type": "code", - "execution_count": 191, + "execution_count": 1028, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "HTML/CSS;JavaScript;PHP;SQL 1366\n", - "C#;HTML/CSS;JavaScript;SQL 1288\n", - "HTML/CSS;JavaScript 1108\n", - "C#;HTML/CSS;JavaScript;SQL;TypeScript 914\n", - "HTML/CSS;JavaScript;PHP 831\n", - "Java 765\n", - "HTML/CSS;JavaScript;TypeScript 650\n", - "Python 640\n", - "HTML/CSS;Java;JavaScript;SQL 600\n", - "C# 489\n", - "Name: LanguageWorkedWith, dtype: int64" + "LanguageWorkedWith\n", + "HTML/CSS;JavaScript 5\n", + "C#;HTML/CSS;JavaScript;SQL 3\n", + "HTML/CSS;JavaScript;PHP;TypeScript 2\n", + "HTML/CSS;JavaScript;PHP;SQL 2\n", + "Bash/Shell/PowerShell;JavaScript;SQL 2\n", + "HTML/CSS 1\n", + "C;C#;HTML/CSS;Java;JavaScript;PHP;Python;SQL;VBA 1\n", + "SQL 1\n", + "C#;HTML/CSS;JavaScript;PHP;SQL;TypeScript 1\n", + "HTML/CSS;JavaScript;PHP;Python;SQL;VBA 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 191, + "execution_count": 1028, "metadata": {}, "output_type": "execute_result" } @@ -5576,21 +6118,21 @@ }, { "cell_type": "code", - "execution_count": 192, + "execution_count": 1029, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "A little above average 29693\n", - "Average 15532\n", - "Far above average 13840\n", - "A little below average 4837\n", - "Far below average 1322\n", - "Name: CompetenceLevel, dtype: int64" + "CompetenceLevel\n", + "A little above average 30\n", + "Average 21\n", + "Far above average 16\n", + "A little below average 5\n", + "Name: count, dtype: int64" ] }, - "execution_count": 192, + "execution_count": 1029, "metadata": {}, "output_type": "execute_result" } @@ -5601,16 +6143,16 @@ }, { "cell_type": "code", - "execution_count": 193, + "execution_count": 1030, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "12770" + "15" ] }, - "execution_count": 193, + "execution_count": 1030, "metadata": {}, "output_type": "execute_result" } @@ -5621,7 +6163,7 @@ }, { "cell_type": "code", - "execution_count": 194, + "execution_count": 1031, "metadata": {}, "outputs": [], "source": [ @@ -5631,7 +6173,7 @@ }, { "cell_type": "code", - "execution_count": 195, + "execution_count": 1032, "metadata": {}, "outputs": [ { @@ -5640,7 +6182,7 @@ "0" ] }, - "execution_count": 195, + "execution_count": 1032, "metadata": {}, "output_type": "execute_result" } @@ -5651,21 +6193,21 @@ }, { "cell_type": "code", - "execution_count": 196, + "execution_count": 1033, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "A little above average 35394\n", - "Average 18436\n", - "Far above average 16821\n", - "A little below average 5739\n", - "Far below average 1604\n", - "Name: CompetenceLevel, dtype: int64" + "CompetenceLevel\n", + "A little above average 38\n", + "Average 24\n", + "Far above average 20\n", + "A little below average 5\n", + "Name: count, dtype: int64" ] }, - "execution_count": 196, + "execution_count": 1033, "metadata": {}, "output_type": "execute_result" } @@ -5683,21 +6225,22 @@ }, { "cell_type": "code", - "execution_count": 197, + "execution_count": 1034, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Slightly satisfied 22123\n", - "Very satisfied 20452\n", - "Slightly dissatisfied 9751\n", - "Neither satisfied nor dissatisfied 7547\n", - "Very dissatisfied 4283\n", - "Name: CurrentJobSatis, dtype: int64" + "CurrentJobSatis\n", + "Very satisfied 31\n", + "Slightly satisfied 19\n", + "Slightly dissatisfied 12\n", + "Neither satisfied nor dissatisfied 6\n", + "Very dissatisfied 4\n", + "Name: count, dtype: int64" ] }, - "execution_count": 197, + "execution_count": 1034, "metadata": {}, "output_type": "execute_result" } @@ -5708,16 +6251,16 @@ }, { "cell_type": "code", - "execution_count": 198, + "execution_count": 1035, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "13838" + "15" ] }, - "execution_count": 198, + "execution_count": 1035, "metadata": {}, "output_type": "execute_result" } @@ -5728,7 +6271,7 @@ }, { "cell_type": "code", - "execution_count": 199, + "execution_count": 1036, "metadata": {}, "outputs": [], "source": [ @@ -5738,7 +6281,7 @@ }, { "cell_type": "code", - "execution_count": 200, + "execution_count": 1037, "metadata": {}, "outputs": [ { @@ -5747,7 +6290,7 @@ "0" ] }, - "execution_count": 200, + "execution_count": 1037, "metadata": {}, "output_type": "execute_result" } @@ -5758,21 +6301,22 @@ }, { "cell_type": "code", - "execution_count": 201, + "execution_count": 1038, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Slightly satisfied 26780\n", - "Very satisfied 24873\n", - "Slightly dissatisfied 12043\n", - "Neither satisfied nor dissatisfied 9111\n", - "Very dissatisfied 5187\n", - "Name: CurrentJobSatis, dtype: int64" + "CurrentJobSatis\n", + "Very satisfied 39\n", + "Slightly satisfied 25\n", + "Slightly dissatisfied 12\n", + "Neither satisfied nor dissatisfied 7\n", + "Very dissatisfied 4\n", + "Name: count, dtype: int64" ] }, - "execution_count": 201, + "execution_count": 1038, "metadata": {}, "output_type": "execute_result" } @@ -5790,36 +6334,37 @@ }, { "cell_type": "code", - "execution_count": 202, + "execution_count": 1039, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Python 1003\n", - "HTML/CSS;JavaScript 624\n", - "HTML/CSS;JavaScript;TypeScript 569\n", - "C# 533\n", - "C#;HTML/CSS;JavaScript;SQL 525\n", - "C#;HTML/CSS;JavaScript;SQL;TypeScript 515\n", - "HTML/CSS;JavaScript;PHP;SQL 472\n", - "Java 457\n", - "Go 373\n", - "HTML/CSS;JavaScript;Python 354\n", - "Swift 348\n", - "Kotlin 335\n", - "HTML/CSS;JavaScript;PHP 326\n", - "C++;Python 324\n", - "C#;SQL 309\n", - "JavaScript 307\n", - "C++ 306\n", - "C#;HTML/CSS;JavaScript;TypeScript 297\n", - "Java;Kotlin 280\n", - "JavaScript;Python 275\n", - "Name: LanguageDesireNextYear, dtype: int64" + "LanguageDesireNextYear\n", + "HTML/CSS;JavaScript 3\n", + "Go 2\n", + "C# 2\n", + "Elixir;HTML/CSS 1\n", + "Elixir;Go;HTML/CSS;Java;JavaScript;Kotlin;Python;R;Scala;TypeScript;WebAssembly 1\n", + "Java;Kotlin;Python 1\n", + "SQL 1\n", + "C#;HTML/CSS;JavaScript;SQL;TypeScript 1\n", + "C#;HTML/CSS;JavaScript;PHP;Ruby;SQL 1\n", + "C#;HTML/CSS;JavaScript;Python;SQL;TypeScript 1\n", + "C++;C#;Java;SQL 1\n", + "C#;HTML/CSS;R;Rust;TypeScript 1\n", + "Python 1\n", + "Kotlin 1\n", + "Bash/Shell/PowerShell;C++;C#;Rust;SQL 1\n", + "Clojure;Elixir;Java 1\n", + "Bash/Shell/PowerShell;C;C++;C#;HTML/CSS;Java;JavaScript;PHP;Python;Ruby;SQL;Swift 1\n", + "Bash/Shell/PowerShell;C++;Go;Kotlin;Python;TypeScript 1\n", + "HTML/CSS;JavaScript;PHP;SQL 1\n", + "C#;F#;Java;Kotlin;SQL 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 202, + "execution_count": 1039, "metadata": {}, "output_type": "execute_result" } @@ -5830,16 +6375,16 @@ }, { "cell_type": "code", - "execution_count": 203, + "execution_count": 1040, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3424" + "4" ] }, - "execution_count": 203, + "execution_count": 1040, "metadata": {}, "output_type": "execute_result" } @@ -5850,7 +6395,7 @@ }, { "cell_type": "code", - "execution_count": 204, + "execution_count": 1041, "metadata": {}, "outputs": [], "source": [ @@ -5860,7 +6405,7 @@ }, { "cell_type": "code", - "execution_count": 205, + "execution_count": 1042, "metadata": {}, "outputs": [ { @@ -5869,7 +6414,7 @@ "0" ] }, - "execution_count": 205, + "execution_count": 1042, "metadata": {}, "output_type": "execute_result" } @@ -5880,36 +6425,37 @@ }, { "cell_type": "code", - "execution_count": 206, + "execution_count": 1043, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Python 1054\n", - "HTML/CSS;JavaScript 656\n", - "HTML/CSS;JavaScript;TypeScript 597\n", - "C# 557\n", - "C#;HTML/CSS;JavaScript;SQL 553\n", - "C#;HTML/CSS;JavaScript;SQL;TypeScript 533\n", - "HTML/CSS;JavaScript;PHP;SQL 493\n", - "Java 484\n", - "Go 397\n", - "HTML/CSS;JavaScript;Python 370\n", - "Swift 360\n", - "Kotlin 360\n", - "HTML/CSS;JavaScript;PHP 347\n", - "C++;Python 336\n", - "C#;SQL 320\n", - "C++ 319\n", - "JavaScript 312\n", - "C#;HTML/CSS;JavaScript;TypeScript 305\n", - "Java;Kotlin 298\n", - "JavaScript;Python 289\n", - "Name: LanguageDesireNextYear, dtype: int64" + "LanguageDesireNextYear\n", + "HTML/CSS;JavaScript 3\n", + "Bash/Shell/PowerShell;Clojure;JavaScript;Python;R;TypeScript 2\n", + "Bash/Shell/PowerShell;C#;JavaScript;Objective-C;Ruby;SQL;Swift;TypeScript 2\n", + "Go 2\n", + "C# 2\n", + "Erlang;Go;Scala;TypeScript 2\n", + "HTML/CSS;JavaScript;PHP;Python;Ruby;SQL;WebAssembly 2\n", + "Kotlin 1\n", + "C#;HTML/CSS;R;Rust;TypeScript 1\n", + "Elixir;Go;HTML/CSS;Java;JavaScript;Kotlin;Python;R;Scala;TypeScript;WebAssembly 1\n", + "Bash/Shell/PowerShell;C++;C#;Rust;SQL 1\n", + "Python 1\n", + "Clojure;Elixir;Java 1\n", + "C#;HTML/CSS;JavaScript;Python;SQL;TypeScript 1\n", + "C#;HTML/CSS;JavaScript;PHP;Ruby;SQL 1\n", + "Bash/Shell/PowerShell;C;C++;C#;HTML/CSS;Java;JavaScript;PHP;Python;Ruby;SQL;Swift 1\n", + "C#;HTML/CSS;JavaScript;SQL;TypeScript 1\n", + "Bash/Shell/PowerShell;C++;Go;Kotlin;Python;TypeScript 1\n", + "SQL 1\n", + "Java;Kotlin;Python 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 206, + "execution_count": 1043, "metadata": {}, "output_type": "execute_result" } @@ -5927,27 +6473,27 @@ }, { "cell_type": "code", - "execution_count": 207, + "execution_count": 1044, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 207, + "execution_count": 1044, "metadata": {}, "output_type": "execute_result" } @@ -5958,7 +6504,7 @@ }, { "cell_type": "code", - "execution_count": 208, + "execution_count": 1045, "metadata": {}, "outputs": [], "source": [ @@ -5968,26 +6514,27 @@ }, { "cell_type": "code", - "execution_count": 209, + "execution_count": 1046, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2.0 7243\n", - "3.0 7164\n", - "5.0 5855\n", - "4.0 5764\n", - "6.0 4133\n", - "1.0 3995\n", - "10.0 3934\n", - "7.0 3374\n", - "8.0 3166\n", - "12.0 2008\n", - "Name: YearsCodePro, dtype: int64" + "YearsCodePro\n", + "2.0 16\n", + "1.0 8\n", + "3.0 8\n", + "8.0 6\n", + "5.0 4\n", + "4.0 3\n", + "13.0 3\n", + "14.0 3\n", + "9.0 3\n", + "23.0 3\n", + "Name: count, dtype: int64" ] }, - "execution_count": 209, + "execution_count": 1046, "metadata": {}, "output_type": "execute_result" } @@ -5998,16 +6545,16 @@ }, { "cell_type": "code", - "execution_count": 210, + "execution_count": 1047, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "14639" + "18" ] }, - "execution_count": 210, + "execution_count": 1047, "metadata": {}, "output_type": "execute_result" } @@ -6018,7 +6565,7 @@ }, { "cell_type": "code", - "execution_count": 211, + "execution_count": 1048, "metadata": {}, "outputs": [], "source": [ @@ -6027,7 +6574,7 @@ }, { "cell_type": "code", - "execution_count": 212, + "execution_count": 1049, "metadata": {}, "outputs": [ { @@ -6036,7 +6583,7 @@ "0" ] }, - "execution_count": 212, + "execution_count": 1049, "metadata": {}, "output_type": "execute_result" } @@ -6047,7 +6594,7 @@ }, { "cell_type": "code", - "execution_count": 213, + "execution_count": 1050, "metadata": {}, "outputs": [], "source": [ @@ -6056,7 +6603,7 @@ }, { "cell_type": "code", - "execution_count": 214, + "execution_count": 1051, "metadata": {}, "outputs": [ { @@ -6065,7 +6612,7 @@ "0" ] }, - "execution_count": 214, + "execution_count": 1051, "metadata": {}, "output_type": "execute_result" } @@ -6076,26 +6623,27 @@ }, { "cell_type": "code", - "execution_count": 215, + "execution_count": 1052, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2.0 8853\n", - "3.0 8843\n", - "5.0 7186\n", - "4.0 7124\n", - "6.0 5103\n", - "1.0 4925\n", - "10.0 4830\n", - "7.0 4146\n", - "8.0 3910\n", - "12.0 2487\n", - "Name: YearsCodePro, dtype: int64" + "YearsCodePro\n", + "2.0 18\n", + "1.0 9\n", + "3.0 9\n", + "8.0 7\n", + "4.0 6\n", + "23.0 5\n", + "14.0 5\n", + "5.0 5\n", + "10.0 4\n", + "20.0 3\n", + "Name: count, dtype: int64" ] }, - "execution_count": 215, + "execution_count": 1052, "metadata": {}, "output_type": "execute_result" } @@ -6113,31 +6661,32 @@ }, { "cell_type": "code", - "execution_count": 216, + "execution_count": 1053, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "United States 18335\n", - "India 7276\n", - "Germany 5316\n", - "United Kingdom 5130\n", - "Canada 2976\n", - "France 2225\n", - "Brazil 1860\n", - "Poland 1773\n", - "Netherlands 1687\n", - "Australia 1657\n", - "Russian Federation 1551\n", - "Spain 1477\n", - "Italy 1451\n", - "Sweden 1165\n", - "Switzerland 884\n", - "Name: Country, dtype: int64" + "Country\n", + "United States 21\n", + "India 10\n", + "Canada 5\n", + "Germany 5\n", + "United Kingdom 4\n", + "New Zealand 3\n", + "Czech Republic 2\n", + "Poland 2\n", + "Argentina 2\n", + "Switzerland 2\n", + "Australia 2\n", + "Brazil 2\n", + "China 2\n", + "Ukraine 2\n", + "Sri Lanka 2\n", + "Name: count, dtype: int64" ] }, - "execution_count": 216, + "execution_count": 1053, "metadata": {}, "output_type": "execute_result" } @@ -6148,7 +6697,7 @@ }, { "cell_type": "code", - "execution_count": 217, + "execution_count": 1054, "metadata": {}, "outputs": [ { @@ -6157,7 +6706,7 @@ "0" ] }, - "execution_count": 217, + "execution_count": 1054, "metadata": {}, "output_type": "execute_result" } @@ -6168,7 +6717,7 @@ }, { "cell_type": "code", - "execution_count": 218, + "execution_count": 1055, "metadata": {}, "outputs": [], "source": [ @@ -6177,7 +6726,7 @@ }, { "cell_type": "code", - "execution_count": 219, + "execution_count": 1056, "metadata": {}, "outputs": [ { @@ -6186,7 +6735,7 @@ "0" ] }, - "execution_count": 219, + "execution_count": 1056, "metadata": {}, "output_type": "execute_result" } @@ -6197,31 +6746,32 @@ }, { "cell_type": "code", - "execution_count": 220, + "execution_count": 1057, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "United States 18335\n", - "India 7276\n", - "Germany 5316\n", - "United Kingdom 5130\n", - "Canada 2976\n", - "France 2225\n", - "Brazil 1860\n", - "Poland 1773\n", - "Netherlands 1687\n", - "Australia 1657\n", - "Russian Federation 1551\n", - "Spain 1477\n", - "Italy 1451\n", - "Sweden 1165\n", - "Switzerland 884\n", - "Name: Country, dtype: int64" + "Country\n", + "United States 21\n", + "India 10\n", + "Canada 5\n", + "Germany 5\n", + "United Kingdom 4\n", + "New Zealand 3\n", + "Czech Republic 2\n", + "Poland 2\n", + "Argentina 2\n", + "Switzerland 2\n", + "Australia 2\n", + "Brazil 2\n", + "China 2\n", + "Ukraine 2\n", + "Sri Lanka 2\n", + "Name: count, dtype: int64" ] }, - "execution_count": 220, + "execution_count": 1057, "metadata": {}, "output_type": "execute_result" } @@ -6239,21 +6789,22 @@ }, { "cell_type": "code", - "execution_count": 221, + "execution_count": 1058, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2000000.0 667\n", - "1000000.0 529\n", - "120000.0 475\n", - "100000.0 450\n", - "150000.0 399\n", - "Name: SalaryUSD, dtype: int64" + "SalaryUSD\n", + "100000.0 2\n", + "51150.0 1\n", + "2000000.0 1\n", + "648.0 1\n", + "107000.0 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 221, + "execution_count": 1058, "metadata": {}, "output_type": "execute_result" } @@ -6264,16 +6815,16 @@ }, { "cell_type": "code", - "execution_count": 222, + "execution_count": 1059, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "24805" + "26" ] }, - "execution_count": 222, + "execution_count": 1059, "metadata": {}, "output_type": "execute_result" } @@ -6284,7 +6835,7 @@ }, { "cell_type": "code", - "execution_count": 223, + "execution_count": 1060, "metadata": {}, "outputs": [], "source": [ @@ -6293,16 +6844,16 @@ }, { "cell_type": "code", - "execution_count": 224, + "execution_count": 1061, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3537" + "25" ] }, - "execution_count": 224, + "execution_count": 1061, "metadata": {}, "output_type": "execute_result" } @@ -6313,21 +6864,22 @@ }, { "cell_type": "code", - "execution_count": 225, + "execution_count": 1062, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2000000.0 669\n", - "1000000.0 547\n", - "150000.0 494\n", - "120000.0 476\n", - "100000.0 450\n", - "Name: SalaryUSD, dtype: int64" + "SalaryUSD\n", + "100000.0 2\n", + "47300.0 2\n", + "114575.0 1\n", + "2000000.0 1\n", + "648.0 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 225, + "execution_count": 1062, "metadata": {}, "output_type": "execute_result" } @@ -6339,7 +6891,7 @@ }, { "cell_type": "code", - "execution_count": 226, + "execution_count": 1063, "metadata": {}, "outputs": [], "source": [ @@ -6348,27 +6900,27 @@ }, { "cell_type": "code", - "execution_count": 227, + "execution_count": 1064, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Country\n", - "Liechtenstein 811188.000000\n", - "San Marino 301788.000000\n", - "Ireland 247051.427005\n", - "Swaziland 242607.500000\n", - "United States 240269.159270\n", - "Timor-Leste 229500.000000\n", - "Qatar 203892.571429\n", - "Republic of Korea 174593.739130\n", - "Norway 173173.193026\n", - "Andorra 171862.000000\n", + "Canada 366420.000000\n", + "United States 246281.578947\n", + "United Kingdom 179262.000000\n", + "Ireland 114575.000000\n", + "New Zealand 102765.500000\n", + "France 97389.000000\n", + "Netherlands 87994.000000\n", + "Sweden 68268.000000\n", + "Serbia 60000.000000\n", + "Austria 57287.000000\n", "Name: SalaryUSD, dtype: float64" ] }, - "execution_count": 227, + "execution_count": 1064, "metadata": {}, "output_type": "execute_result" } @@ -6379,7 +6931,7 @@ }, { "cell_type": "code", - "execution_count": 228, + "execution_count": 1065, "metadata": {}, "outputs": [], "source": [ @@ -6395,7 +6947,7 @@ }, { "cell_type": "code", - "execution_count": 229, + "execution_count": 1066, "metadata": {}, "outputs": [ { @@ -6408,7 +6960,7 @@ "Dependents 0\n", "EdLevel 0\n", "Employment 0\n", - "Ethnicity 0\n", + "Ethnicity 1\n", "Gender 0\n", "Hobbyist 0\n", "CompetenceLevel 0\n", @@ -6423,7 +6975,7 @@ "dtype: int64" ] }, - "execution_count": 229, + "execution_count": 1066, "metadata": {}, "output_type": "execute_result" } @@ -6435,7 +6987,7 @@ }, { "cell_type": "code", - "execution_count": 230, + "execution_count": 1067, "metadata": {}, "outputs": [], "source": [ @@ -6445,15 +6997,15 @@ }, { "cell_type": "code", - "execution_count": 231, + "execution_count": 1068, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Number of rows before cleaning the data is 88883\n", - "Number of rows after cleaning the data is 74457\n" + "Number of rows before cleaning the data is 99\n", + "Number of rows after cleaning the data is 62\n" ] } ], @@ -6466,7 +7018,7 @@ }, { "cell_type": "code", - "execution_count": 232, + "execution_count": 1069, "metadata": {}, "outputs": [], "source": [ @@ -6475,7 +7027,7 @@ }, { "cell_type": "code", - "execution_count": 233, + "execution_count": 1070, "metadata": {}, "outputs": [ { @@ -6530,12 +7082,12 @@ " Yes\n", " Bachelors\n", " Full-time\n", - " East Asian\n", + " NaN\n", " Man\n", " Yes\n", " Average\n", " Slightly satisfied\n", - " Not seeking\n", + " nan\n", " Elixir;HTML/CSS\n", " HTML/CSS\n", " Non developer\n", @@ -6567,28 +7119,6 @@ " \n", " \n", " 2\n", - " 30\n", - " Very dissatisfied\n", - " 33184.8\n", - " Ukraine\n", - " No\n", - " Bachelors\n", - " Full-time\n", - " White or of European descent\n", - " Man\n", - " Yes\n", - " A little above average\n", - " Slightly dissatisfied\n", - " Not seeking\n", - " HTML/CSS;Java;JavaScript;SQL;WebAssembly\n", - " C++;HTML/CSS;Java;JavaScript;Python;SQL;VBA\n", - " Developer\n", - " Computer Science\n", - " 9.0\n", - " Academic researcher;Developer, desktop or ente...\n", - " \n", - " \n", - " 3\n", " 28\n", " Very satisfied\n", " 366420.0\n", @@ -6610,26 +7140,48 @@ " Data or business analyst;Data scientist or mac...\n", " \n", " \n", - " 4\n", - " 42\n", + " 3\n", + " 23\n", + " Slightly satisfied\n", + " 95179.0\n", + " New Zealand\n", + " No\n", + " No Degree\n", + " Full-time\n", + " White or of European descent\n", + " Man\n", + " Yes\n", + " A little above average\n", " Slightly satisfied\n", - " 36000.0\n", - " Ukraine\n", + " nan\n", + " Bash/Shell/PowerShell;C;HTML/CSS;JavaScript;Ru...\n", + " Bash/Shell/PowerShell;C#;HTML/CSS;JavaScript;P...\n", + " Developer\n", + " Computer Science\n", + " 4.0\n", + " Database administrator;Developer, back-end;Dev...\n", + " \n", + " \n", + " 4\n", + " 28\n", + " Very satisfied\n", + " 90000.0\n", + " United States\n", " Yes\n", " Bachelors\n", - " Self-employed\n", + " Full-time\n", " White or of European descent\n", " Man\n", - " No\n", - " Average\n", - " Neither satisfied nor dissatisfied\n", + " Yes\n", + " A little above average\n", + " Very satisfied\n", " Not seeking\n", - " HTML/CSS;JavaScript\n", - " HTML/CSS;JavaScript\n", + " Bash/Shell/PowerShell;HTML/CSS;JavaScript;Rust...\n", + " Bash/Shell/PowerShell;HTML/CSS;JavaScript;PHP;...\n", " Developer\n", - " Engineering\n", - " 4.0\n", - " Designer;Developer, front-end\n", + " Computer Science\n", + " 8.0\n", + " Data or business analyst;Database administrato...\n", " \n", " \n", "\n", @@ -6639,54 +7191,54 @@ " Age JobSatisfaction SalaryUSD Country Dependents EdLevel \\\n", "0 28 Slightly satisfied 8820.0 Thailand Yes Bachelors \n", "1 22 Very satisfied 61000.0 United States No Bachelors \n", - "2 30 Very dissatisfied 33184.8 Ukraine No Bachelors \n", - "3 28 Very satisfied 366420.0 Canada No Bachelors \n", - "4 42 Slightly satisfied 36000.0 Ukraine Yes Bachelors \n", - "\n", - " Employment Ethnicity Gender Hobbyist \\\n", - "0 Full-time East Asian Man Yes \n", - "1 Full-time White or of European descent Man No \n", - "2 Full-time White or of European descent Man Yes \n", - "3 Full-time East Asian Man Yes \n", - "4 Self-employed White or of European descent Man No \n", - "\n", - " CompetenceLevel CurrentJobSatis JobStatus \\\n", - "0 Average Slightly satisfied Not seeking \n", - "1 A little below average Slightly satisfied Not seeking \n", - "2 A little above average Slightly dissatisfied Not seeking \n", - "3 A little above average Slightly satisfied Not seeking \n", - "4 Average Neither satisfied nor dissatisfied Not seeking \n", - "\n", - " LanguageDesireNextYear \\\n", - "0 Elixir;HTML/CSS \n", - "1 C;C#;JavaScript;SQL \n", - "2 HTML/CSS;Java;JavaScript;SQL;WebAssembly \n", - "3 Python;Scala;SQL \n", - "4 HTML/CSS;JavaScript \n", - "\n", - " LanguageWorkedWith Profession \\\n", - "0 HTML/CSS Non developer \n", - "1 C;C++;C#;Python;SQL Developer \n", - "2 C++;HTML/CSS;Java;JavaScript;Python;SQL;VBA Developer \n", - "3 Java;R;SQL Non developer \n", - "4 HTML/CSS;JavaScript Developer \n", + "2 28 Very satisfied 366420.0 Canada No Bachelors \n", + "3 23 Slightly satisfied 95179.0 New Zealand No No Degree \n", + "4 28 Very satisfied 90000.0 United States Yes Bachelors \n", + "\n", + " Employment Ethnicity Gender Hobbyist \\\n", + "0 Full-time NaN Man Yes \n", + "1 Full-time White or of European descent Man No \n", + "2 Full-time East Asian Man Yes \n", + "3 Full-time White or of European descent Man Yes \n", + "4 Full-time White or of European descent Man Yes \n", + "\n", + " CompetenceLevel CurrentJobSatis JobStatus \\\n", + "0 Average Slightly satisfied nan \n", + "1 A little below average Slightly satisfied Not seeking \n", + "2 A little above average Slightly satisfied Not seeking \n", + "3 A little above average Slightly satisfied nan \n", + "4 A little above average Very satisfied Not seeking \n", + "\n", + " LanguageDesireNextYear \\\n", + "0 Elixir;HTML/CSS \n", + "1 C;C#;JavaScript;SQL \n", + "2 Python;Scala;SQL \n", + "3 Bash/Shell/PowerShell;C;HTML/CSS;JavaScript;Ru... \n", + "4 Bash/Shell/PowerShell;HTML/CSS;JavaScript;Rust... \n", + "\n", + " LanguageWorkedWith Profession \\\n", + "0 HTML/CSS Non developer \n", + "1 C;C++;C#;Python;SQL Developer \n", + "2 Java;R;SQL Non developer \n", + "3 Bash/Shell/PowerShell;C#;HTML/CSS;JavaScript;P... Developer \n", + "4 Bash/Shell/PowerShell;HTML/CSS;JavaScript;PHP;... Developer \n", "\n", " UndergradMajor YearsCodePro \\\n", "0 Web Design/Dev 1.0 \n", "1 Computer Science 1.0 \n", - "2 Computer Science 9.0 \n", - "3 Math/Stat 3.0 \n", - "4 Engineering 4.0 \n", + "2 Math/Stat 3.0 \n", + "3 Computer Science 4.0 \n", + "4 Computer Science 8.0 \n", "\n", " DevType \n", "0 Designer;Developer, back-end;Developer, front-... \n", "1 Developer, full-stack \n", - "2 Academic researcher;Developer, desktop or ente... \n", - "3 Data or business analyst;Data scientist or mac... \n", - "4 Designer;Developer, front-end " + "2 Data or business analyst;Data scientist or mac... \n", + "3 Database administrator;Developer, back-end;Dev... \n", + "4 Data or business analyst;Database administrato... " ] }, - "execution_count": 233, + "execution_count": 1070, "metadata": {}, "output_type": "execute_result" } @@ -6705,16 +7257,16 @@ }, { "cell_type": "code", - "execution_count": 234, + "execution_count": 1071, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Total : 1414683\n", - "Total missing : 0\n", - "Missing Percentage: 0.0 %\n" + "Total : 1178\n", + "Total missing : 1\n", + "Missing Percentage: 0.08488964346349745 %\n" ] } ], @@ -6739,17 +7291,17 @@ }, { "cell_type": "code", - "execution_count": 235, + "execution_count": 1072, "metadata": {}, "outputs": [], "source": [ - "df = pd.read_csv(r'C:\\Users\\User\\Stack_Data\\survey_results_public_2020.csv')\n", + "df = pd.read_csv(r\"D:\\project\\Stackoverflow-Analysis\\Data\\survey_results_sample_2020.csv\")\n", "#df2020.head(10)" ] }, { "cell_type": "code", - "execution_count": 236, + "execution_count": 1073, "metadata": {}, "outputs": [], "source": [ @@ -6764,7 +7316,7 @@ }, { "cell_type": "code", - "execution_count": 237, + "execution_count": 1074, "metadata": {}, "outputs": [], "source": [ @@ -6779,7 +7331,7 @@ }, { "cell_type": "code", - "execution_count": 238, + "execution_count": 1075, "metadata": {}, "outputs": [], "source": [ @@ -6796,29 +7348,29 @@ }, { "cell_type": "code", - "execution_count": 239, + "execution_count": 1076, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Age 19015\n", - "Gender 13904\n", - "SalaryUSD 29705\n", - "Country 389\n", - "DevType 15091\n", - "Hobbyist 45\n", - "EdLevel 7030\n", - "Employment 607\n", - "Ethnicity 18513\n", - "CurrentJobSatis 19267\n", - "JobStatus 12734\n", - "LanguageDesireNextYear 10348\n", - "LanguageWorkedWith 7083\n", - "Profession 299\n", - "UndergradMajor 13466\n", - "YearsCodePro 18112\n", + "Age 24\n", + "Gender 11\n", + "SalaryUSD 46\n", + "Country 0\n", + "DevType 20\n", + "Hobbyist 0\n", + "EdLevel 6\n", + "Employment 2\n", + "Ethnicity 17\n", + "CurrentJobSatis 21\n", + "JobStatus 4\n", + "LanguageDesireNextYear 9\n", + "LanguageWorkedWith 1\n", + "Profession 0\n", + "UndergradMajor 13\n", + "YearsCodePro 21\n", "dtype: int64\n" ] } @@ -6836,16 +7388,16 @@ }, { "cell_type": "code", - "execution_count": 240, + "execution_count": 1077, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Total cell: 1031376\n", - "Total missing values: 371516\n", - "Missing: 36.02139278013062 %\n" + "Total cell: 1584\n", + "Total missing values: 446\n", + "Missing: 28.156565656565657 %\n" ] } ], @@ -6870,16 +7422,16 @@ }, { "cell_type": "code", - "execution_count": 241, + "execution_count": 1078, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "13904" + "11" ] }, - "execution_count": 241, + "execution_count": 1078, "metadata": {}, "output_type": "execute_result" } @@ -6890,24 +7442,20 @@ }, { "cell_type": "code", - "execution_count": 242, + "execution_count": 1079, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Gender\n", - "Man 46013\n", - "Man;Non-binary, genderqueer, or gender non-conforming 121\n", - "Non-binary, genderqueer, or gender non-conforming 385\n", - "Woman 3844\n", - "Woman;Man 76\n", - "Woman;Man;Non-binary, genderqueer, or gender non-conforming 26\n", - "Woman;Non-binary, genderqueer, or gender non-conforming 92\n", + "Man 79\n", + "Man;Non-binary, genderqueer, or gender non-conforming 1\n", + "Woman 8\n", "Name: Gender, dtype: int64" ] }, - "execution_count": 242, + "execution_count": 1079, "metadata": {}, "output_type": "execute_result" } @@ -6919,7 +7467,7 @@ }, { "cell_type": "code", - "execution_count": 243, + "execution_count": 1080, "metadata": {}, "outputs": [], "source": [ @@ -6936,20 +7484,20 @@ }, { "cell_type": "code", - "execution_count": 244, + "execution_count": 1081, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Gender\n", - "Man 46134\n", - "Non-binary 14391\n", - "Woman 3936\n", + "Man 80\n", + "Non-binary 11\n", + "Woman 8\n", "Name: Gender, dtype: int64" ] }, - "execution_count": 244, + "execution_count": 1081, "metadata": {}, "output_type": "execute_result" } @@ -6961,14 +7509,14 @@ }, { "cell_type": "code", - "execution_count": 245, + "execution_count": 1082, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "df shape after clean Gender: (64461, 16)\n" + "df shape after clean Gender: (99, 16)\n" ] } ], @@ -6986,16 +7534,16 @@ }, { "cell_type": "code", - "execution_count": 246, + "execution_count": 1083, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "19015" + "24" ] }, - "execution_count": 246, + "execution_count": 1083, "metadata": {}, "output_type": "execute_result" } @@ -7006,19 +7554,17 @@ }, { "cell_type": "code", - "execution_count": 247, + "execution_count": 1084, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEWCAYAAADcsGj7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlYklEQVR4nO3df5wdVX3/8dd7kyUBovxIFDQLLJhEDJiiRFrEYtqSaAIWqNaKFhdrK1gh2OgXrU1CSKItPgTtokWxBTZqtfEXICQCFqH1JwZJQ4iSjbKS5Wc2kR8JSdhkP98/Zu4ye3Pv7t3N7t7Zu+/n47GPnZ9nzjlzZz73nJk7o4jAzMwsj+qqnQEzM7NyHKTMzCy3HKTMzCy3HKTMzCy3HKTMzCy3HKTMzCy3HKSsLEkflPSkpO2SJlYpD7MktQ/Ddt4j6Y6h3k4tkrRE0lfT4aPTz8uYYdjuuZI2p9t73VBvr1okXSDpR9XOR7U4SNUwSW2SdqYH8e8l3SbpqArXrQeuBuZExISI2Dq0ua2uiPhaRMwZym1IujvdD+MGMc0bJV0wWOlVsL1evzRExCPp52XvMGTnM8DF6fbuH4btWRU4SNW+t0XEBOAVwJPANRWudwQwHniwvxtUwp+tDEmNwB8DAfx5dXOTT5LG9nOVYyjz+RxAWjVpOFq0Q80nklEiInYB3wKmF6ZJGifpM5IeSbv1vijpQEnTgIfSxZ6WdFe6/Bsl/ULSM+n/N2bSulvSJyX9GHgeOE7S8ZLulLRN0kOS3lkuf5IOl3SDpMfS1sZNZZZ7paRvS9oi6WFJ8zPzTpH0U0lPS3pc0uclHZCZH5IuktSabuMLkpTO69Gl0seyYyRdJakjzcPF6fK9nRjfC/wMuBFoKirTREnfk/RsWq/Li/JSUT1KmiLpnnT/dEj6r17q+88lPZjW1d2SXlNU9imZ8RvTPB0MrAZembbOt0t6ZVG6jdm6kHSIpP9I98ejaTpjMnX+Y0mflbQNWFJJGdLP7XZgDPB/kn6TTm+T9DFJ64Adksb2Uc42Sf9P0jpJO9J8HiFptaTnJP1A0mG91OFlabkek/S32XpTmWMrnTdLUrukj0h6Kk3jfZl0J0q6Jf083Au8qmi7ZT8P6b66VtIqSTuAP5E0T9KGtEyPSvpouTLlUkT4r0b/gDbgjHT4IKAFWJGZ/zngFuBw4CXA94B/Tuc1knzrH5uOHw78HjgfGAucl45PTOffDTwCnJDOPwTYDLwvHX890AGcUCavtwH/BRwG1ANvTqfPAtrT4TrgPmAxcABwHPBb4C3p/JOBP0q31wj8CvhwZhsB3AocChwNbAHems67APhRhcteBGwAGtL8/iBbV2XKtwn4+zSPncARmXnfSP8OIvkSsbmQF+DgSusR+DrwT2k9jQfeVCYv04AdwOy0ri9L83dApuxTMsvfCCwv3h+Z+UuAr5b53NwEfCktx8uBe4ELM3W+B7gkLduBlZahTD7bgLXAUWlafZWzjeSLwxHAZOAp4JfA64BxwF3A5WW2/VbgCZLP+0HAV7L5ofdja1Za7qVpvuaRfLE7LPN5WJnW2YnAo5V+HtJ99QxwWqYOHwf+OJ1/GPD6ap+b+nUeq3YG/DeEOzc5CLcDT6cHxWPAa9N5Sg/gV2WWPxV4OB0uPtmcD9xblP5PgQvS4buBpZl5fwX8b9HyXyp10JN0RXYVDtKiebN4MUj9IfBI0fx/BG4oU/4PA9/NjAeZk156Ivh4OnwB+wapcsveRXqiTcfPoJcgBbyJJDBNSsd/DfxDOjwmnffqzPLLMyel/tTjCuA6oKGPz8UiYGVmvI7kRDgrU/b9DlIkJ//dwIGZZc8Dfpip8+L9WVEZyuSzDfibfpSzDXhPZv63gWsz45cAN5XZ9vWkQScdn1LID30fW7OAndnPC0mA/KPM5+H4zLxPVfp5SPfViqL5jwAXAi/tq07z+Ofuvtp3TkQcSvLN8GLgHklHAi8j+QZ4X9oV8jTw/XR6Ka8Eflc07Xck30ALNmeGjwH+sJB2mv57gCNLpH0UsC0ift9HWY4h6WrKpvkJkpMhkqZJulXSE5KeJTm4JxWl8URm+HlgQi/bK7fsK+lZ1uxwKU3AHRHRkY7/Jy92+b2M5IReLr3+1ONlJCfIe9Murr8pk58e+zIiutJtTi6z/EAdQ9JSeDyT9y+RtKgKiuuu0jKUk02vknI+mRneWWK83Oejt89AJcfW1ojYkxkvfL5KfR6yx10ln4fiOn07SWvtd2lX6qllypRLvrg4SkRyt9V3JH2J5Jv9d0gOwhMi4tEKkniM5ADJOprk4OveTGZ4M3BPRMyuIO3NwOGSDo2Ip/tY7uGImFpm/rXA/cB5EfGcpA8D76hg+/31OElXX0HZOybT6xDvBMZIKgS9ccChkv4AWE/Sym0ANpZIr+J6jIgngL9Lt/sm4AeS/iciNhUt+hjw2kwelW6z8Dl4nuQkW3AkULijrz+vTdhM0pKaVHRC7pHtAZahnGx6fZVzf/T2Geigf8dW1haSz8NRJC1uSI6zgko+D8V1+gvgbCV37F5M0itQ0V2+eeCW1CihxNkkfdK/Sr9Vfhn4rKSXp8tMlvSWMkmsAqZJend6QfqvSK6f3Fpm+VvT5c+XVJ/+vSF74bogIh4nuSD/b5IOS5c9vUSa9wLPphfHD1RyA8OJkt6Qzn8J8CywXdLxwAcrqZsBWAlcmtbXocDHeln2HGAvSV2dlP69Bvhf4L2FLw8kNw0clOb7vZn1K65HSX8pqXDi/D3JyarUreArgTMl/Vl64voISTD5STp/LfDutH7fCrw5s+6TwERJh/RSZqB7v94BXCXppZLqJL1K0pvLrdOPMlSir3Luj5XA+yS9RtJBJNdJge4WW3+OrW4lPg/T6XmjTcWfh3S7Byj5DeAhEdFJcnwMx88DBo2DVO37npI7oZ4FPgk0RUThtt2PkVxI/lnaPfYD4NWlEonkd1JnkRzoW0m6Zc7KdGEVL/8cMAd4F8k32ieAK0laEaWcT9IX/2uS/vkPl0hzL/A2khP9wyTfWP+d5CYNgI8C7waeIzlJlL27bT99meTku46k5baK5NtvqYO/ieSa2SMR8UThD/g88B4ld8FdnJbhCZIL8F8nOZn2tx7fAPw83d+3AJdGxMPFC0XEQ8Bfk/wcoYOkTt8WES+ki1yaTnuapCvppsy6v07z99u0u6nH3X0lvJfkJpcNJEHnWyTXIMupqAyVqKCcAxYRq4Fm4Ickx9BP01m70/8VH1slXEzS9fcEyTWmGzLb7e9xBcmx1Zbm4yKSOhkxlF5YM7MBkjQX+GJEFHeHDjS9K4EjI6Kpz4UtF9KWzHpgXC9dmzYAbkmZ9VPa1Tgv7facDFwOfHc/0jte0oy0S/YU4P37k54NDyWPZTpAyW+prgS+5wA1+BykzPpPwBUk3Vf3k/wea3Gva/TuJSTXIXaQXOu4Crh5P/NoQ+9CkhsdfkPS1TtU10BHNXf3mZlZbrklZWZmueXfSQ2iSZMmRWNjY7WzYWY2otx3330dEVHyQQIOUoOosbGRNWvWVDsbZmYjiqTip9l0c3efmZnlloOUmZnlloOUmZnlloOUmZnlloOUmZnllu/uG0Wam5vZtKnnGw/a25M3MDQ0NJRaBYApU6Ywf/78svPNzIaKg9QosmnTJu5/YANdBx3ePa3u+WcAeHJ36Y9C3fPbhiVvZmalOEiNMl0HHc6u6Wd1j4/fkLwOKjstqzDfzKwafE3KzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0FqBGlubqa5ubna2dgvtVAGMxs+fsDsCFL8mo2RqBbKYGbDxy0pMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLrZp/LJKkAL4aEeen42OBx4GfR8RZVc1cxr333stll13G4sWL+e53v8v8+fNpbm5myZIlTJw4sdrZG1Rr167l9NNPH/R0582bx6pVq/aZPnbsWPbu3cuCBQu49tpraWho4MILL2TRokU0NDTwsY99rGRdd3R0cMUVV7BkyRIiont469atXHrppVxzzTVMmTJl0MthNtJkj5XBPl+NhpbUDuBESQem47OBR6uYn5KWLFlCV1cXy5cvZ926dSxbtox169bR0tJS7ayNGKUCFMCePXuICK6++mqef/55Nm7cyOWXX949XK6uW1pauqdnh5cvX86OHTtYunTpcBTLLPeyx8dgGw1BCmA1cGY6fB7w9cIMSadI+omk+9P/r06nXyDpO5K+L6lV0qeHKnP33nsv27dvB148oba1tRERrF69mq1btw7Vpofd2rVrq7btiOgeLtQ3ULKuOzo6WL16NRHBqlWrWLVqFRHBbbfdRltbW/d6fmCujXbZY2Uozlc1392X+gawWNKtwAzgeuCP03m/Bk6PiD2SzgA+Bbw9nXcS8DpgN/CQpGsiYvNgZ27JkiVl53V1ddHS0sKCBQtob29n586dzJ8/f0DbaW1tRS9E3wtmaNeztLY+N+BtjiTZum5paekOap2dnd3LZIcBli5dyooVK4Y1n2Z5kj1WssfQYBkVLamIWAc0krSiivuEDgG+KWk98FnghMy8/46IZyJiF7ABOKY4bUkfkLRG0potW7YMKH/Zb/XFOjs7ueOOOwaUrvVPtq7vvPPO7oAUET1aYVmFVpXZaJU9VobifDVaWlIAtwCfAWYB2St7y4AfRsS5khqBuzPzdmeG91KiviLiOuA6gJkzZ/avmZKaMGFC2UBVX1/PnDlzAGhoaAAY8EsD58+fz32/eaJf68T4lzL1VUcO2osKh+KGicGSrevZs2ezatUqOjs7kQRQMlA1NjYOZxbNcid7rGSPocEyKlpSqeuBpRHxQNH0Q3jxRooLhjVHqd66++rq6mhqahq+zIxi2bpuamrqDk719fWMHTu2ezhr8eLFw5tJs5zJHitDcb4aNUEqItoj4l9LzPo08M+SfgyMGeZsAXDKKacwYcIEILldWhKNjY1IYu7cuTV1C/pJJ51UtW0XDiSgu76BknU9adIk5s6diyTmzZvHvHnzkMSZZ57Z3XpqbGz0Leg26mWPlaE4X9V8kIqICSWm3V34jVRE/DQipkXEaRGxKCIa0+k3RsTFmXXOioi7hyqfS5Ysoa6ujoULFzJjxgwWLVrEjBkz3Irqh3nz5pWcXgj8CxYs4KCDDmLatGlcccUV3cPl6rqpqal7enZ44cKFHHzwwW5FmaWyx8dgU7kLwtZ/M2fOjDVr1gxZ+oU77Pb3mtSu6S/+hnn8hlsBekzLGr/hVk4exGtS+1sGM6s9ku6LiJml5tV8S8rMzEYuBykzM8stBykzM8stBykzM8stBykzM8stBykzM8stBykzM8stBykzM8ut0fSA2RGvFh7BUwtlMLPh4yA1gtTCO51qoQxmNnzc3WdmZrnlIGVmZrnlIGVmZrnlIGVmZrnlIGVmZrnlIGVmZrnlIGVmZrnlIGVmZrnlIGVmZrnlIGVmZrnlIGVmZrnlIGVmZrnlB8yOMnXPb2P8hlsz41sBekwrXh6OHI6smZntw0FqFCn1moz29j0ANDSUC0RH+vUaZlY1DlKjiF+TYWYjja9JmZlZbjlImZlZbjlImZlZbjlImZlZbjlImZlZbjlImZlZbjlImZlZbjlImZlZbjlImZlZbjlImZlZbjlImZlZbvnZfaNEc3MzmzZt6jGtvb0dgIaGhl7XnTJlip/7Z2ZV4SA1SmzatImN63/J0RP2dk/b8dwYAHbtebzseo9sHzPkeTMzK8dBahQ5esJeFs7c3j2+fM0EgB7TihWWMTOrBl+TMjOz3HKQMjOz3HKQMjOz3HKQMjOz3HKQMjOz3HKQMjOz3HKQMjOz3HKQMjOz3HKQMjOz3HKQMjOz3HKQMjOz3OozSEkaI+kHw5EZMzOzrD6DVETsBZ6XdMgw5MeKNDc309zcXO1sDKpaLJOZDY1Kn4K+C3hA0p3AjsLEiPBLhoZY8TugakEtlsnMhkalQeq29M/MzGzYVBSkIqJF0oHA0RHx0BDnyczMDKjw7j5JbwPWAt9Px0+SdMsQ5svMzKziW9CXAKcATwNExFrg2CHJkZmZWarSILUnIp4pmhaDnRkzM7OsSm+cWC/p3cAYSVOB+cBPhi5bZmZmlbekLgFOAHYDXweeBT48RHkyMzMDKr+773ngn9I/MzOzYdFrkJL0PXq59hQRfz7oOTIzM0v11d33GeAq4GFgJ/Dl9G87sH5osza6bNy4kblz546apzF0dnbS1NTEm9/8Zs444wxmz57N7NmzmTNnDhdccAEXXXQRra2tXHLJJWzdurW7fm6++WZmzZrFXXfdxUUXXcRFF13E1q1b90m/o6ODSy65pEcavSlX/4V0Cut3dHRwzjnncPrpp/P5z39+8CrEzErqNUhFxD0RcQ/wuoj4q4j4Xvr3buBNva0rKSRdlRn/qKQlg5FpSTdKekeJ6TMljciHwi1fvpwdO3awdOnSamdlWDzxxBM8/PDDRAQvvPACu3fvZvfu3ezatYvf/va3bNiwgWXLlrFu3TpaWlq66+fqq6+mq6uL5cuXs2HDBjZs2EBLS8s+6be0tLBu3boeafSmXP0X0ims39LSwrZt2wBYuXLlINWGmZVT6Y0TL5N0XGFE0rHAy/pYZzfwF5ImDTRz/RURawbreYKSxgxGOpXYuHEjbW1tALS1tdV8a6qzs7PPlg0kdRER3Hbbbd31E5H0Pu/Zs6d7uVWrVvVIr6Ojg9WrVxMR3WmsXr267DbL1X82ndWrV9Pa2srNN9/cY123psyGVqW3oP8DcLek36bjjcCFfayzB7guXbfHDReSjgGuJwl0W4D3RcQjkm4kuXNwJnAkcFlEfKtM+mdIuhQ4AlgQEbdKmgV8NCLOSlttRwPHpf8/FxHN6fZvAo4CxgP/GhHXpdO3A1cDbwFWSTopIs5N580GPhgRf9FHuftt+fLlPcaXLl3KihUrAGhvb2fnzp3Mn79/sbe1tZUDOvv/+rAnn6/jhdbW/d5+1kMP9e/JWp2dnX3Ob2lpYcGCBUDS2ikEs4Kurq4ey2SVq/9sOl1dXSxbtmyfdVeuXMnFF1/cr/KYWeUqOmtFxPeBqcCl6d+rI+L2Clb9AvCeEq/5+DywIiJmAF8Dsl10ryDpSjwL+Jde0m4E3gycCXxR0vgSyxxPEnBOAS6XVJ9O/5uIOJkkGM6XNDGdfjCwPiL+EFgKvEZSocX4PuCG4g1I+oCkNZLWbNmypZfsllf4Fl9uvNZkW0GDISK44447usfvvPPOfQJbZ2dnj2WyytV/Np3Ozs6a3y9meVRpSwrgZJLAMBb4A0lExIreVoiIZyWtIPnx787MrFOBQovkK8CnM/NuioguYIOkI3pJfmW6XGvawju+xDK3RcRuYLekp0haXe0kgencdJmjSALwVmAv8O007yHpK8BfS7ohzfN7S5TxOpIWIzNnzhzQUzgaGxt7nAAbGxu7hxsaGgD2+/1L8+fPZ1fbL/q93hEHdTG+ceqgvv/p3HPPrai7r1KSmDNnTvf47NmzWbVqVY9AVV9f32OZrHL1n02nvr6eyZMnO1CZDbNKHzD7FZI7/d4EvCH9m1nhNj4HvJ+klVJO9uS+O7vpdPuflLRW0toy65QaL05rLzA27RI8Azg1Iv4AuJ+k2w9gV/qSx4IbgL8GzgO+GRGD2wRILVy4sMf44sWLh2IzuXHkkUf2a/n6+vo+5zc1NXWPNzU1IanHMnV1dT2WySpX/9l06urqWLRo0T7rvvOd7+y7AGY2YJVepJgJnBYRfx8Rl6R/FV2kiIhtwEqSQFXwE+Bd6fB7gB/1kcY/RcRJEXFSZvJfSqqT9CqS606VXug4BPh9RDwv6Xjgj3rZ7mPAY8BC4MYK0++3adOmdX97b2xsZMqUKUO1qVyor69n4sSJfS7X2NiIJM4888zu+ikEjbFjX+wEmDdvXo/0Jk2axNy5c5HUncbcuXPLbrNc/WfTmTt3LlOnTuXss8/usa6vR5kNrUqD1HqSGxkG6ioge5fffOB9ktYB55Nc5+qvh4B7gNXARRGxq8L1vk/SoloHLAN+1sfyXwM2R8SGAeSxYgsXLuTggw+u+VZUwZFHHsmxxx6LJA444ADGjRvHuHHjGD9+PMcddxzTp09n0aJFzJgxg6ampu76WbBgAXV1dSxcuJDp06czffr0ki2kpqYmZsyY0SON3pSr/0I6hfWbmpo4/PDDAbeizIaDiu+CKrmQ9EPgJOBeMl1oo+GJE5I+D9wfEf/R17IzZ86MNWvWDOr2C3fVDdY1qYUzt3dPW75mAkCPacWWr5nA+MY3DOo1qcEqk5nVBkn3RUTJS0iV3jixZPCyM3JIug/YAXyk2nkxMxuNKn3A7D3pb5umRsQPJB0EDNuPXaslvU3dzMyqpNK7+/4O+BbwpXTSZOCmIcqTmZkZUPmNEx8CTiN5GgQR0Qq8fKgyZWZmBpUHqd0R8UJhRNJY/Pp4MzMbYpUGqXskfQI4MH2G3TeB7w1dtszMzCoPUh8neRDsA8AHSB435Lf0mpnZkOo1SEk6W9KHIqIrIr4MHEPy9IlPlHqfk5mZ2WDqqyV1GXBLZvwAkgfNzgI+OER5MjMzA/r+ndQBEbE5M/6j9Fl82yT19sBYGyS1+By/WiyTmQ2NvoLUYdmRiMg+TbOvN/PaIBjMlw3mRS2WycyGRl/dfT9Pf8jbg6QLSZ7jZ2ZmNmT6akn9A3CTpHcDv0ynnQyMA84ZwnyZmZn1HqQi4ingjZL+FDghnXxbRNw15DkzM7NRr9IHzN4FODCZmdmwqvTHvGZmZsPOQcrMzHLLQcrMzHLLQcrMzHLLQcrMzHLLQcrMzHLLQcrMzHKrot9JWW14ZPsYlq+Z0D3+u+fGAPSYVmqdaUOeMzOz0hykRolSTx4/uL0dgPENDWXXm1ZmXTOz4eAgNUr4yeNmNhL5mpSZmeWWg5SZmeWWg5SZmeWWg5SZmeWWg5SZmeWWg5SZmeWWg5SZmeWWg5SZmeWWg5SZmeWWg5SZmeWWg5SZmeWWg5SZmeWWHzA7ijQ3N7Np06bu8fb0KegNZZ6CPmXKFD+Y1syqykFqFNm0aRP3P3g/HJpOeCb5t0Vb9l346WHKlJlZLxykRptDoWtWFwB1dye9vYXxrMI8M7Nq8pnIzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0HKzMxyy0FqBGlubqa5ubna2ajISMqrmeWXHzA7gmRfs5F3IymvZpZfbkmZmVluOUiZmVluOUiZmVluOUiZmVluOUiZmVluOUiZmVluOUiZmVluOUiZmVluOUiZmVluOUiZmVlu5fqxSJI+C/wuIj6Xjt8ObI6Iv03HrwIejYirq5fLwdHR0cEVV1zBkiVLmDhxYrWzMyjWr1/P6aef3mPa4YcfzrZt23pdTxIRwUc+8hFuueUWNm/ejCS+8IUvMGXKlO7lNm7cyCWXXMJRRx3FlVdeOej1VrxPanEfmeVd3ltSPwHeCCCpDpgEnJCZ/0bgx1XI16BraWlh3bp1tLS0VDsrg2bPnj37TOsrQAFEBABXX301ra2t7Nq1i507d7J06dIeyy1fvpydO3eycePGIam34n1Si/vILO/yHqR+TBqkSILTeuA5SYdJGge8BjhU0v2SHpB0fTodSW2SPiXpp5LWSHq9pNsl/UbSRekyEyT9t6RfpuufnU5vlPQrSV+W9KCkOyQdOFSF7OjoYPXq1UQEq1evZuvWrUO1qWGzfv36/U6jEKwK2trauh9cu3HjRtra2rrn3XbbbYNab8X7pLW1teb2kdlIkOvuvoh4TNIeSUeTBKufApOBU4FngI3AvwN/FhEbJa0APgh8Lk1ic0ScmnYb3gicBowHHgS+COwCzo2IZyVNAn4m6ZZ03anAeRHxd5JWAm8HvjoU5Wxpaek+IXd1ddHS0sKCBQv2Wa69vZ2dO3cyf/78AW2ntbUVuipceHuy/EC3VaoVNRiWLl3KihUrWL58eY/pnZ2dZettIIr3ybJlyyraR2Y2uPLekoIXW1OFIPXTzPijwMMRsTFdtgXIXgQpBJwHgJ9HxHMRsQXYJelQQMCnJK0DfkASAI9I13k4Itamw/cBjaUyJ+kDaUttzZYtWwZUwDvvvJPOzk4gOdnecccdA0pnNCi0nrKtqILBrLfifdLW1uZ9ZFYFuW5JpQrXpV5L0t23GfgI8CzwS2B2L+vuTv93ZYYL42OB9wAvA06OiE5JbSQtLYqW3wuU7O6LiOuA6wBmzpwZpZbpy+zZs1m1ahWdnZ3U19czZ86ckss1NDQADPhlgvPnz+f+R++vbOEJMHXy1AFvq/iGicHS2NjY/b84UJWrt4Eo3ieTJ0/m0Ucf7XMfmdngGiktqbOAbRGxNyK2AYeSdPndADRKKtzydT5wTz/SPgR4Kg1QfwIcM3jZrlxTUxOSAKirq6Opqaka2RhUY8cOzfefxYsXA7Bw4cIe0+vr6we13or3yaJFi2puH5mNBCMhSD1Aclffz4qmPRMR7cD7gG9KeoCkhfTFfqT9NWCmpDUkrapfD06W+2fSpEnMnTsXScydO7cmbm8+8cQT9zuNQlAoaGxs7L4Ffdq0ad2tKoAzzzxzUOuteJ9MnTq15vaR2UiQ++6+iNgLvLRo2gWZ4f8GXldivcbM8I0kN07sM4+kRVZK91k2Ij7TnzwPRFNTE21tbTX1DX3s2LH73EDRn99JLViwoMfvpAqtqIKFCxd2/05qKOqteJ/U4j4yy7vcB6nRYtKkSVxzzTXVzsagOvHEEwd8Tavg7LPPLjtv2rRp3H777fuVfm+K90kt7iOzvBsJ3X1mZjZKOUiZmVluOUiZmVluOUiZmVluOUiZmVluOUiZmVluOUiZmVluOUiZmVlu+ce8I0j2rbR5N5Lyamb55SA1ggz03U7VMJLyamb55e4+MzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLQcpMzPLLT9gdrR5Gururusehsx40XJMHp4smZmV4yA1ihS/PqM92gFomNyw78KT/boNM6s+B6lRxK/PMLORxtekzMwstxykzMwstxykzMwstxykzMwstxykzMwstxQR1c5DzZC0BfjdAFadBHQMcnbywmUbmWq1bLVaLhjZZTsmIl5WaoaDVA5IWhMRM6udj6Hgso1MtVq2Wi0X1G7Z3N1nZma55SBlZma55SCVD9dVOwNDyGUbmWq1bLVaLqjRsvmalJmZ5ZZbUmZmllsOUmZmllsOUlUm6a2SHpK0SdLHq52f/SWpTdIDktZKWpNOO1zSnZJa0/+HVTuffZF0vaSnJK3PTCtbDkn/mO7DhyS9pTq5rkyZsi2R9Gi639ZKmpeZN5LKdpSkH0r6laQHJV2aTh/R+66XctXEfutVRPivSn/AGOA3wHHAAcD/AdOrna/9LFMbMKlo2qeBj6fDHweurHY+KyjH6cDrgfV9lQOYnu67ccCx6T4dU+0y9LNsS4CPllh2pJXtFcDr0+GXABvTMozofddLuWpiv/X255ZUdZ0CbIqI30bEC8A3gLOrnKehcDbQkg63AOdULyuViYj/AbYVTS5XjrOBb0TE7oh4GNhEsm9zqUzZyhlpZXs8In6ZDj8H/IrkHdMjet/1Uq5yRkS5KuEgVV2Tgc2Z8XZG/kvbA7hD0n2SPpBOOyIiHofkYANeXrXc7Z9y5aiV/XixpHVpd2ChO2zElk1SI/A64OfU0L4rKhfU2H4r5iBVXSoxbaT/JuC0iHg9MBf4kKTTq52hYVAL+/Fa4FXAScDjwFXp9BFZNkkTgG8DH46IZ3tbtMS03JavRLlqar+V4iBVXe3AUZnxBuCxKuVlUETEY+n/p4DvknQxPCnpFQDp/6eql8P9Uq4cI34/RsSTEbE3IrqAL/Ni19CIK5ukepIT+dci4jvp5BG/70qVq5b2WzkOUtX1C2CqpGMlHQC8C7ilynkaMEkHS3pJYRiYA6wnKVNTulgTcHN1crjfypXjFuBdksZJOhaYCtxbhfwNWOEEnjqXZL/BCCubJAH/AfwqIq7OzBrR+65cuWplv/VmbLUzMJpFxB5JFwO3k9zpd31EPFjlbO2PI4DvJscTY4H/jIjvS/oFsFLS+4FHgL+sYh4rIunrwCxgkqR24HLgXyhRjoh4UNJKYAOwB/hQROytSsYrUKZssySdRNIl1AZcCCOvbMBpwPnAA5LWptM+wcjfd+XKdV6N7Ley/FgkMzPLLXf3mZlZbjlImZlZbjlImZlZbjlImZlZbjlImZlZbjlImdUISedKCknHVzsvZoPFQcqsdpwH/IjkR+FmNcFByqwGpM90Ow14P2mQklQn6d/S9w/dKmmVpHek806WdE/6IODbi55cYJYbDlJmteEc4PsRsRHYJun1wF8AjcBrgb8FToXuZ8BdA7wjIk4Grgc+WYU8m/XJj0Uyqw3nAZ9Lh7+RjtcD30wfPvqEpB+m818NnAjcmT7CagzJE7TNcsdBymyEkzQR+FPgRElBEnSC5Cn0JVcBHoyIU4cpi2YD5u4+s5HvHcCKiDgmIhoj4ijgYaADeHt6beoIkofKAjwEvExSd/efpBOqkXGzvjhImY1857Fvq+nbwCtJ3iu0HvgSyZtcn4mIF0gC25WS/g9YC7xx2HJr1g9+CrpZDZM0ISK2p12C95K8OfmJaufLrFK+JmVW226VdChwALDMAcpGGrekzMwst3xNyszMcstByszMcstByszMcstByszMcstByszMcuv/A94xjr97dAATAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABqAAAANjCAYAAADF7tvpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABrSElEQVR4nOzdd5wVhb3//zcgRVBEjEEF1GjcTQAhYEFskW5XiB1R+VqwRaOJEW+8UUk02GLsLYqxRxEj3lgQUWxYsWOJiqjojUZEpAt7fn/4270uCwjrxIXwfD4eecSdmTPzOeMeSc7LmalXKpVKAQAAAAAAgILUr+sBAAAAAAAA+M8iQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAwFK6+OKLU15eXuM/Xbp0yZ577pmrr746X3755bc6xqxZs3LKKaeka9eu6dixYwYPHlzQ9N+dDz74IOXl5Tn66KPrepRqlqe5Pv7447Rr1y7l5eW55557vvPj9+jRI+Xl5fnggw++82Mvq8ceeywvvfRS1c8jR45MeXl5rrvuuqplAwcOTHl5eaZPn14HEy7ef8LneXlz5plnpry8PE899VRdjwIAwDdYpa4HAACAFU3Pnj3z4x//OEmyYMGCzJgxI88++2zOO++8vPDCC7n00ktrve/LL788I0eOTIcOHbL11lvnBz/4QVFjr/SaN2+eY489NhtttFFdj5JRo0ZlwYIFWXXVVTNixIjsvPPOdT3Scunmm2/OGWec8Y2fqX79+mXLLbdM48aNv6PJlo7PMwAAKzMBCgAAllGvXr3Sv3//astKpVKOOuqojBkzJuPHj0+3bt1qte+JEycmSf74xz9mgw02+Naz8n+aN2+en//853U9RpLkrrvuysYbb5yysrLcf//9mTJlSlq3bv2dHb8y1Ky66qrf2TFr49NPP12q7Rb+PC4vfJ4BAFiZuQUfAAAUoF69elVfgj/zzDO13s+8efOSJGuuuWYhc7H8mThxYt58881svfXW6dOnTyoqKjJixIjvdIaNN944a665ZtZaa63v9LgrG59nAABWZgIUAAAUpEGDBkmSRo0a1Vg3fvz4DBo0KJtttll+8pOfZN999819991Xtf6pp55KeXl5nn766STJFltsUe0ZPfPmzcsVV1yRnXfeOR06dEjXrl1z1FFH5eWXX652nMrn49x777059NBDs+mmm6Z79+55//33kyQzZszIeeedl169eqVDhw7Zbrvtctpppy31lSbJV4Ft8ODB6dq1azbbbLPst99+GTNmzDe+bt68ebnyyiuz8847Z9NNN023bt3yy1/+smq2r5s6dWrOPvvs7LTTTunUqVM6deqUXXbZJVdccUXmz59f47yNHDkyI0aMyG677ZZNN90022+/fc4+++zMnj27attFPQNqyJAhKS8vz+eff57TTjst22yzTTbddNP0798/999/f425/vWvf+W3v/1ttttuu3Tq1CkHHHBAJkyYkEMOOSQ9evRYqvP3t7/9LUmy3XbbZYcddsiqq66akSNHpqKiYpHbv/feeznxxBOz9dZbp3Pnzjn88MPz9ttvp3fv3hk4cGCtzvEmm2ySsrKyastuuOGG9O/fP507d06XLl1ywAEH5N57712q95Qkjz/+eAYNGpQuXbqkY8eO6devX2666aYa76u8vDx77LFHjdcv/GyngQMH5pJLLkmSHHPMMSkvL1/ssRf3DKh77703++23X9V7Ovjgg/Pkk09W26byd+jmm2/OiSeemI4dO2bbbbfNc889V+vzsqTPc+Wz5MaPH5+99947HTp0SN++fTNz5swkyaRJk/KrX/0qW2+9dTp06JBevXrlnHPOyRdffFHtGEOGDEm7du3y2Wef5dRTT81WW22Vzp0759BDD817772XefPm5dxzz822226bLl26ZODAgXn99deXOHelmTNn5txzz02PHj3SsWPH9O/fP2PHjs1vfvObRf59WJrzXPn5u/jii/Pggw9mr732SseOHdOtW7eceuqpmTp1ao39jhgxIrvvvns6deqUPn365NZbb13szJMnT6523nbaaadceeWVNZ7L16NHjwwcODB33HFH1Wdq2LBhSZKXX345gwcPzrbbbptNN900ffv2zXnnnZcZM2Ys1XkDAKA6t+ADAIAClEql3HnnnWnQoEF69epVbd3tt9+e//7v/07Lli2z8847p2nTpnnwwQdz/PHH54QTTsiRRx6Z1q1b59hjj82dd96ZKVOm5PDDD0/jxo3TvHnzzJ07N4MGDcpzzz2XsrKy7L///vnXv/6VMWPG5NFHH82f/vSnGsf8/e9/n+9///sZOHBgPvjgg7Rt2zZffPFFDjjggLz55pvp1q1b+vTpkw8++CC33XZbHn300dx66635/ve/v8T3edddd+WUU05JkyZN0rNnz6y55pq5//77c8wxx+Sss87Kz372s0W+7ssvv8zhhx+eJ598Mh07dsyBBx6YTz/9NPfee28ee+yx3HDDDVVB5Isvvsg+++yTjz76KD169EivXr0yderUPPDAA7ngggvy+eef5+STT662/xtvvDFvvvlm+vTpk+222y4PPPBArr322nz88cc5//zzv/Hv36BBgzJt2rTstNNOmTVrVu6+++4cf/zx+fOf/5xtt902SfLZZ5/lgAMOyOTJk7PtttumvLw8Tz75ZA4++OC0aNEiDRs2/MbjzJ8/P3//+9/TokWLbL311mnYsGG6d++ee+65J48++mh++tOfVtt+8uTJ2W+//TJt2rT06tUrbdq0yUMPPZQDDjggFRUVWWeddWp1jo8//vhqx7nqqqty/vnnp3379tlvv/3y5Zdf5r777ssvfvGLzJ07N3vuuecS39cNN9yQ3//+91l99dXTu3fvNG3aNI8++miGDh2aZ599Nn/84x9Tr169bzw/X9evX78kydNPP52dd955mZ/ddeGFF+ayyy5L69at069fv9SrVy/33XdfBg0alGHDhtWIYJdeemmaNm2aAw88MG+99Vbat29f6/OypM9zpV/96lfZaKONMnDgwMycOTPNmjXLiy++mEMOOSRz5sxJ9+7d07Zt27zwwgu55ppr8tBDD+WWW25JixYtqvZRKpVy0EEHpaKiIv369cubb76Zxx57LIMHD84GG2yQN998MzvuuGM++eST3HfffTniiCNy//33L/HWi/PmzcugQYPy4osvpnPnzunbt29effXVHH300VlvvfW+9Xl+6KGHctlll2WHHXZI165d8/jjj+f222/PW2+9VS0w/elPf8rll1+e1q1bZ6+99sonn3ySoUOHpmXLljVmePXVV3PwwQdnzpw56dOnT9Zbb72q37tnnnkmV155ZdW/IJAk//jHPzJ06NDsscce+fLLL/OTn/wkkyZNyqBBg1K/fv3suOOOad68eZ5//vlcffXVefnll/OXv/xlsecMAIDFKAEAAEvloosuKpWVlZWOOuqo0kUXXVS66KKLShdeeGHprLPOKu25556l9u3bl26++eZqr/noo49KHTp0KO20006lqVOnVi2fPXt2ad999y396Ec/Kr3xxhtVyw888MBSWVlZ6fPPP69adskll5TKyspKQ4YMKX355ZdVy1955ZVSx44dS5tvvnnpiy++KJVKpdIdd9xRKisrK22//falWbNmVZvl9NNPL5WVlZVuvPHGasvHjBlTKisrKx133HFLfP/Tpk0rbbbZZqVu3bqV3nnnnarln376aWnbbbctbbnllqV58+aV3n///arzVOnqq68ulZWVlc4555xq+3zppZdK7du3L/3sZz+rWnbllVeWysrKSrfddlu1bT/88MNShw4dSttss03VsieffLJUVlZW+vGPf1yaMGFC1fLp06eXttpqq1K7du1KM2bMKJVKpUXOdfLJJ5fKyspKe+21V2nmzJlVy0eNGlUqKysr/eIXv6haNnTo0FJZWVnpz3/+c9WyBQsWlI4//vhSWVlZqXv37ks8f6VSqfTQQw+VysrKSqeeemrVssrzf8wxx9TYfvDgwaWysrLSvffeW7Vs7ty5pf33379UVlZWOvDAA6uWL8s5XtiWW25Z6tWrV7Xfr8rf3f79+y/xPb333nuldu3alXbYYYfSe++9V7V85syZpYMOOqhUVlZWuvPOO6uWl5WVlXbfffca+6n83R0+fHjVssrP3AMPPLDE7Rb+3Lz44oul8vLy0oEHHljtczB16tRS7969S506dSp9+umnpVLp/36HOnXqVPr4448LOy+Lmuvr76l///6lBQsWVC2fP39+qU+fPqV27dqVxo0bV20/5557bqmsrKx0yimnVC2r/N3de++9S3Pnzq1avu+++5bKyspKPXr0qPrnQqlUKg0ZMqRUVlZWevjhh5c48zXXXFMqKysrDR06tFRRUVG1fNiwYaWysrJSWVlZ1bJlOc+Vn7+ysrLSPffcU7XtvHnzSrvsskuprKys9NZbb5VKpVJp0qRJpXbt2pX22GOPaudu7NixpfLy8lJZWVnpySefLJVKpVJFRUVp1113LW266aall19+udp7Oeuss2r8M6979+6lsrKy0vXXX19t28r3N378+GrLjzjiiFJZWVnpzTffXOJ5AwCgJrfgAwCAZfTggw/mkksuySWXXJJLL7001113XSZOnJimTZtm+vTpWbBgQdW2o0aNyrx583LcccdVew5MkyZNctxxx6WioiJ33nnnEo935513ZtVVV81vfvObrLLK/93EoH379jnggAMyffr0jB49utprtt9++2pXOcyfPz9/+9vfsskmm2TAgAHVtu3Zs2e6dOmSBx54YIm3mho3bly++OKLHHTQQfnBD35Qtbxly5Y55ZRTcthhh2XWrFmLfO2IESPSvHnznHDCCdWWb7rpptlxxx3z8ssv5x//+EeSZNttt80ZZ5xR4+qSddddN23btl3krbq22GKLdO7cuern1VdfPZ07d878+fPzv//7v4t9T5UGDBiQpk2bVv1ceSXSlClTkiQLFizI3XffndatW+eQQw6p2q5+/fr59a9/Xe3qiiW56667kiS77LJL1bLtttsuLVq0yMMPP5x//etfVcunTp2acePGZfPNN8+OO+5YtbxRo0b51a9+VWPfy3KOF1YqlTJ16tRqt+pbZ511cu+99+bmm29e4nsaNWpU5s+fn2OOOSZt27atWt60adOceuqpSZI77rhjifso2ogRI1IqlfLrX/+62udgzTXXzOGHH57Zs2fXuI1ely5dsvbaa1db9m3Oyzfp3bt36tf/v/9L/vzzz+fdd9/NLrvsku23377atscdd1xatWqVu+++u+q5UpX233//arf9rPwc7LvvvllttdWqlnfs2DHJ//1OL86dd96Zpk2b5he/+EW1q9aOPfbYrLHGGtW2rc15btu2bXbaaaeqnxs2bJhu3bpVm+2+++7L/Pnzc+SRR1a7aqx79+5VVyRWevHFF/Pmm29mr732SocOHaqtO/7449OwYcOMHDmyxvvs06dPtZ8rbxW58G1N//CHP2T8+PHZZJNNauwDAIAlcws+AABYRn/4wx/Sv3//qp9nzZqVd955JxdddFH++Mc/5t13380f/vCHJMkrr7yS5KtnQC385X9lrFnSc1lmzJiR999/P126dKn2ZXKlzTbbLNdee22NfbRp06baz5MmTcqsWbOyYMGCXHzxxTX2M3fu3CxYsCBvvPFGNttss0XOUnmMn/zkJzXW7bzzzlV/vfCzambOnJlJkyZl7bXXzuWXX17jtZXR5bXXXssmm2ySdu3apV27dpk5c2ZefPHFTJ48Oe+++25efvnlTJ48uVrgq7ThhhvWWLb66qsnSY1nwCzK14Pa119b+WX/5MmT8/nnn2errbaqEZvWW2+9arfCW5wZM2bkwQcfzNprr50tt9yyanmjRo3St2/f/PWvf82dd96Zww8/PMlXtxWrqKioCgdf16lTp2oxclnP8cL23XffXHXVVVXPjtp+++3z05/+NJtuuuk3vq/K34stttiixrpNNtkkzZs3X+pnDxXl1VdfTZKMHj06Dz/8cLV1lUHytddeq7Z84c9M8u3OyzdZ+HiV8yzqPDZq1CibbrppxowZk3feeSc/+tGPqtatv/761batDKkL779x48ZJUiNgfd3cuXPz5ptvpn379lWfgUrNmjWr9lyrpHbneUmf1crZKn9fFg5KyVeB7dFHH60xw3vvvbfIf7Y1a9Ysb7zxRkqlUlVQa9iwYVq1alVtu379+uWWW27JeeedlxtvvDHbb799tt9++2yzzTbV4jQAAEtPgAIAgG+padOm6dChQy655JL06tUrI0eOzOGHH56NNtqoKsZ8/dkmC/v8888Xu27mzJlJUuPL4EqVz2yaM2dOteWVXzZXmj59epLknXfeySWXXFKrWSr3sagQtiSVV1V98sknS3XsuXPn5o9//GP++te/Zvbs2UmSVq1aZYsttsiaa66ZTz75pMZrv34FSKXKL5tLpdI3zrjw6xd+7WeffZYk+d73vrfI13//+9/Pxx9/vMRj3HvvvZk7d24++eST/PjHP17kNiNGjKgKUEs6ZoMGDao9C2dZz/HCTjzxxGywwQa59dZb89JLL+XFF1/MxRdfnB/84Ac57bTTqq5QWZTKYy/pd3Ty5MmLff2/Q+Xn7qqrrlrsNgufi4U/M8m3Oy/fpEmTJtV+rjyPi/t8VX7WKz8TlRYXRxb1mfgm06ZNS5IaV4ItPEOl2pznJX1WK1X+s6ZZs2Y1tv36M7C+vu2jjz5aLUwtbObMmVXnduFznyQ/+tGPctttt+WKK67IuHHjctttt+W2225L06ZNc9BBB9W4IgwAgG8mQAEAQEEaNWqUzp0757777ssbb7yRjTbaqOrL4TFjxlS7PdnSqvwC9p///Oci11d++brwl7KL288ee+yRc845Z5nnSP7vi+7KKPZ18+bNS/369atdlbPw6zbffPPcdNNN33icYcOG5eabb07fvn0zYMCAlJeXV72/nXbaaZEB6t+t8ovrxd2icFHnZGF/+9vfkiS77757tduVVRo7dmzefffdPPPMM9liiy2W6ZjLeo4XVq9evey1117Za6+98umnn+aJJ57IAw88kNGjR+eoo47K2LFjqwWvr/v67+iitvn8889r/H5W3u7s6xYOK99G06ZN06BBg7z44otp2LBhrffzbc7Lsirqs17EDEv7e17UeV5Y5W33ZsyYUe3WpYubIUnOPPPM7LXXXt/quD/60Y/ypz/9KfPmzcvzzz+fRx55JCNHjswVV1yRVq1a5YADDvhW+wcAWNl4BhQAABSo8kviyqtBysvLk9R8rkiSvPvuuzn77LMzduzYxe5vtdVWS5s2bfLuu+8u8tlHzzzzTJLkhz/84RLn+sEPfpBGjRrl1VdfXeQVQdddd10uu+yyqqtuFqWsrCxJ8tJLL9VYd80116RTp07Vbs9VafXVV896662Xt956q8aVWslXYebiiy/OBx98kCT5n//5n6y11lq58MIL07Vr16ov3OfMmZMPP/wwydJd1VSkypi4qPc+ffr0TJo0aYmvf//99/Pcc89l/fXXz7nnnpuhQ4fW+E/ll9u33357kq+e8VWvXr1FHvOtt96q9kX8sp7jr/vss89y8cUXVz2LbK211spuu+2Wiy66KP3798/s2bMzceLExb63ytvBPffcczXWTZ48OZ988km12/41bNhwkbHp689ZqlTbK07Ky8uzYMGCGrd/S5IXXngh5513Xp599tkl7uPbnpdlVXlV3IQJE2qsq6ioyHPPPZemTZumdevWhR1zYauttlo23HDDvP766zVu1bdgwYKqW4pWKuI8L0r79u2TLPp3alEzLGp58tXtN4cNG5YbbrjhG4/5t7/9Lb/73e9SKpXSqFGjdO3aNSeddFLVbf0WNQsAAEsmQAEAQEFefPHFPP3001ljjTWy+eabJ/nqapcGDRrkT3/6U7Urd+bPn5/f/e53ufbaa6tue7U4/fr1y5w5c3LWWWdl/vz5VctfffXV3HjjjWnevHl69OixxH00btw4O++8c956660MHz682rqnnnoq55xzTu64446sscYai91Hr1690rRp01x//fWZMmVK1fJp06blr3/9a5o1a7bI50NVvodp06blvPPOq3b1y1tvvZWhQ4dm+PDhVaGpcePGmTt3blXMS7768vvMM8+siitL81ynIjVs2DC77bZbJk2alFtuuaVqeUVFRc4999xvnOeuu+5KqVTKbrvtttht+vXrl/r16+f+++/PF198kVatWmWbbbbJE088kXHjxlVtN2/evJx77rmLfP3SnuOva9asWa6//vpccMEFNX4XK4Pfeuutt9i599hjj6yyyiq54oorqkWkWbNmZejQoVXbVNpoo43ywQcfVHsm2pQpU6quEPu6yivqlvTcokXp169fkuSss86qdjXPjBkzcvrpp+fqq69e5LPEvu7bnpdltdlmm2WDDTbI6NGjq/39TpKLLrooH330UXbaaada3VpvWfTv3z8zZsyo8TylK6+8ssbVh0Wc50XZeeed07hx41x++eXVjvnss8/WCPZbbLFF2rRpkxEjRuT555+vtu6qq67K8OHDq54TtSQvvPBCbrzxxtx7773VlldG2yL/XgMArCzcgg8AAJbRmDFjqgWYBQsW5K233srDDz+cBQsW5L/+67+qnjGy4YYb5qSTTsqwYcOy6667pkePHlljjTXyyCOP5O2330737t2z++67L/F4hx9+eB577LHcfffdeeONN7LVVlvl008/zZgxY1IqlXLBBRcs1XOZTj755Dz//PM5++yz8+CDD6Zjx4755z//mdGjR2eVVVbJWWedlfr1F//vqLVo0SK//e1vc8opp6Rfv37p2bNnmjVrlvvuu6/q2UOL+3L8iCOOyGOPPZYbbrghzz33XLbccstMnz499913X2bPnp3zzjuv6j3stttuufbaa/Ozn/0svXr1yvz58/PYY49l0qRJadmyZaZOnZpp06bVeB7Nv9svfvGLPProozn99NPz4IMP5oc//GGeeeaZvPPOO2nSpMkSz92oUaOSZIl/r9ddd91069Ytjz/+eEaNGpUBAwbkN7/5Tfbdd98cddRR6dWrV1q1apXHH3+86mq4rx9zWc7x1zVq1CjHHXdcfv/732fXXXdN796906RJkzzzzDN5+eWXs8cee2SjjTZa7Nxt27bNySefnDPPPDP9+vWrCpWPPPJI3n///eyyyy7Zc889q7bfZ5998rvf/S4DBw7Mrrvumnnz5uXee+9NWVlZjatlWrVqlSS5/PLL89prr+XYY49d7Bxft9VWW2XgwIG54YYbsssuu+SnP/1pGjVqlDFjxuSjjz7Kfvvtl65duy5xH9/2vCyr+vXrZ9iwYTn00ENz5JFHpnv37ll//fXz/PPP54UXXsjGG2+cX//614Udb3EOOeSQ3Hfffbnqqqvy3HPPpWPHjpk4cWKeffbZNG/evFpoKuI8L0rr1q1z8sknZ+jQoVW/UzNmzMh9992XddddN++9917Vtg0aNMjZZ5+dww8/PAceeGB69uyZtm3b5pVXXsmTTz6ZNm3a5MQTT/zGYx522GG5995786tf/Sr33XdfNthgg0yZMiWjR4/O2muvnQMPPHCZ3wcAwMpOgAIAgGX04IMP5sEHH6z6uWHDhmnZsmW6d++egQMHZsstt6y2/aBBg7LRRhvl2muvzejRo1NRUZG2bdtmyJAhGTBgwCKfm/R1jRs3znXXXZdrrrkmd999d2655ZY0b9483bt3z+DBg9OuXbulmrtly5a57bbbcuWVV+aBBx7IDTfckJYtW6ZHjx45+uijq26ltiT9+vVLq1atcuWVV+b+++/P/Pnz065du5x55pn56U9/utjXNWnSJNdff33+/Oc/55577snNN9+c1VdfPV26dMngwYOrnbMTTjghzZo1y6hRo3LzzTenZcuW2XjjjXPqqafm7bffzllnnZVx48Zl7733Xqr3XZSWLVvmlltuyXnnnZdHH300Tz/9dDp16pTrr78+gwcPXuRznZLk+eefz+TJk9OxY8dsuOGGSzxG//798/jjj2fEiBEZMGBANtpoo9xyyy05//zz88QTT2T+/PnZaqutcsEFF9R4ltSynOOFDRw4MGuttVauv/763HPPPZk9e3Y23HDDnHLKKUv1xftBBx2UDTfcMNdcc01Gjx6dUqmUjTfeOIMHD67xXJ4DDzwwCxYsyM0335xbb7016667bgYPHpxu3bqlf//+1bbdeeedM27cuDz88MO5+eabq664WRqnnnpqNt1009xyyy0ZNWpUGjRokB/84Af5+c9/vtT7+bbnZVl16dIlI0aMyGWXXZYnnngijz76aNZbb70cddRROfzww6ue0fTvVPnPmz/96U954IEH8tJLL6WsrCxXXXVVLrzwwrz11lvVti/iPC/KgAEDqv5Zc+edd2bNNdfMcccdl0aNGuUPf/hDtW0333zz3H777bn88sszfvz4PPTQQ1lnnXUycODAHHnkkfne9773jcdr06ZNbrnlllx22WWZMGFCxo4dmzXXXDO77757jj322KoYCgDA0qtX+q5vng4AALACeu+997LOOuvUuMpr3rx56dKlS7p165arr766sONVVFTk/fffz3rrrZeGDRtWW/f++++nV69e2X///XP66acXdkz44IMP0rJlyzRt2rTGuu7du2fVVVfNPffcUweTAQCwovEMKAAAgKVw9NFHZ5tttqn2bKok+ctf/pIvv/yyVrcaW5J69eplzz33zG677VbjGUjXXHNNkhR+TPjd736XzTbbrNrzvJLknnvuyYcffuh3DgCApeYKKAAAgKVw0003ZejQoVlnnXXSs2fPrLrqqpk4cWKeeOKJlJeX5/bbb0/jxo0LPebZZ5+da6+9Nj/4wQ+y/fbbp0GDBpkwYUJeeOGFbLvttvnzn/+cevXqFXpMVm5jx47N0UcfnTXWWCN9+vRJixYt8vbbb+fhhx/O2muvnZEjR2attdaq6zEBAFgBCFAAAABLafTo0bnhhhvyj3/8I7Nmzcq6666bvn37ZvDgwf+W5/NUVFTkjjvuyO23355JkyZl/vz5adOmTXbbbbcMGjSoxq35oAhPPvlkrr322kycODGff/551l577XTv3j1HH320+AQAwFIToAAAAAAAACiUZ0ABAAAAAABQKAEKAAAAAACAQq1S1wOw/Jo6dWoee+yxtGnTpvCHKQMAAAAAACuWuXPn5oMPPsi2226bli1bLnFbAYrFeuyxx3LSSSfV9RgAAAAAAMBy5Nxzz83uu+++xG0EKBarTZs2Sb76Rdp4443reBoAAAAAAKAuvf322znppJOq+sGSCFAsVuVt9zbeeOO0b9++jqcBAAAAAACWB0vz2J7638EcAAAAAAAArEQEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUKvU9QAAsLwZMmRIPvzww7oeA5Yr06ZNS5K0aNGiTueAFc16662XYcOG1fUYAAAA3zkBCgAW8uGHH2bS5PdSatK8rkeB5Ua9OdOTJFPn1vEgsAKp/NwAAACsjAQoAFiEUpPmmd1xr7oeA5Ybq740Ikl8LmAZVH5uAAAAVkaeAQUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUrsOuuuy7XXXddXY8BAAAAsNzwfQnA8kGAghXY2LFjM3bs2LoeAwAAAGC54fsSgOWDAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQ36EhQ4akvLw85eXlmTx58mK3O+OMM1JeXp5tttnmO5wOAAAAAACgGAJUHRkzZswil5dKpTzwwAPf8TQAAAAAACuPP//5z9lhhx3y5z//ua5HYTn1+OOPZ++9987jjz9e16OssASoOtC2bdvFBqgJEybkk08+ScuWLb/jqQAAAAAA/vNNmzYtN954YyoqKnLjjTdm2rRpdT0Sy5k5c+bk/PPPzz//+c+cf/75mTNnTl2PtEISoOpA796988ILL+Rf//pXjXUPPPBANtxww/zwhz+sg8kAAAAAAP6z/eY3v0lFRUWSpKKiIqeeemodT8Ty5sYbb8ynn36aJPn0009z00031fFEKyYBqg707t07FRUVGTt2bI11o0ePTt++fWssf/rpp3PkkUdmq622Svv27bP11lvnxBNPzIcffli1zVNPPZXy8vKMGzcuZ511Vrbddtt07Ngx++67b5566ql/63sCAAAAAFjePfvss3n55ZerLXvppZfy7LPP1tFELG8++OCD3HTTTSmVSkm+emzOTTfdlA8++KCOJ1vxrFLXA6yM2rdvn9atW2fMmDHZZ599qpa/+uqrmTJlSvr27Zvnn3++avn48eNz6KGHpn379jn66KPTqFGjTJgwIaNGjco//vGP3H333dX2f8YZZ6RFixY54ogjMnv27FxzzTU54ogj8vDDD2fNNdf8zt4n/37Tpk3LzJkzc9BBB9X1KPAfZcqUKUmpQV2PAcCK7ss5mTJliv+tBgDfsSlTpqRZs2Z1PQbLoYqKipx++umLXHf66adn1KhRqV/fNRsrs1KplAsuuGCxy88777zUq1evDiZbMQlQdaR37965+eabM2PGjKy22mpJvrr6qU2bNmnfvn21bYcPH54111wz119/fVZdddUkyX777Zf58+fn73//e/75z3+mVatWVds3a9Ysf/3rX9OwYcMkydprr51TTjklDzzwQLXgBQAAAACwshg/fnymT5++yHXTp0/P+PHjs80223zHU7E8mTx5cp555pkayxcsWJBnnnkmkydPzoYbbvjdD7aCEqDqSO/evXPdddflkUceyc4775zkqwDVp0+fGttefvnlmT59elV8SpIZM2akcePGSZJZs2ZV275Pnz5V8SlJ2rVrlyT55JNPCn8f1K0WLVqkRYsWuf766+t6FPiPctBBB+Wdf06r6zEAWNE1bJLWrfxvNQD4rrn6mMXp1q1bmjdvvsgItcYaa6Rbt251MBXLkw022CBbbLFFJkyYkAULFlQtb9CgQTbbbLNssMEGdTjdisf1hHWkS5cu+d73vpcHH3wwSfLWW2/lnXfeyY477lhj2wYNGuSjjz7K7373uxx00EHp0aNHNt9884wcOTJJqh6YV6lly5bVfq6MUQtvBwAAAACwsqhfv/5ib8F3xhlnuP0eqVevXk444YTFLnf7vWXjE1VH6tevn549e+bhhx/OvHnzMnr06Ky77rrp2LFjjW2vu+669OvXL4888kjatGmTgQMH5oYbbsjgwYMXu28AAAAAAKrbfPPNs+mmm1Zb1rFjx3Tp0qWOJmJ506ZNmwwYMKAqNtWrVy8DBgxI69at63iyFY9SUYd69+6dGTNm5Kmnnsro0aPTu3fvGgV17ty5+dOf/pTOnTvn73//e84666wMGjQoW2yxRT777LM6mhwAAAAAYMV05plnVv1L/PXr18/vf//7Op6I5c2BBx6YtdZaK0nyve99LwMGDKjjiVZMAlQd2mqrrdK8efPccMMNee2119K3b98a28yZMyezZ8/OBhtskEaNGlUt//DDDzN69OgkqXYvSgAAAAAAFq9FixY58MADU79+/Rx44IFp0aJFXY/EcqZJkyb55S9/mVatWuXEE09MkyZN6nqkFdIqdT3Ayqxhw4bZYYcdMmrUqKy99tqLvMxzjTXWSOfOnXP33XenefPmKSsry3vvvZfbbrsts2fPTpLMnDnzux4dAAAAAGCFddhhh+Wwww6r6zFYjm2zzTbZZptt6nqMFZoroOpYnz59knx1O77FPbvpwgsvTN++ffM///M/OeusszJmzJjstddeueGGG5IkTzzxxHc2LwAAAAAAwDdxBdR3aNiwYRk2bFi1Zb17984bb7xRY9vKuJQkrVq1ygUXXLDIfX79tV27dl3kvjbeeONFLgcAAAAAAPh3cAUUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKFWqesBgNrr0aNHXY8AAAAAsFzxfQnA8kGAghXYIYccUtcjAAAAACxXfF8CsHxwCz4AAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChVqnrAQBgeVRvzvSs+tKIuh4Dlhv15kxPEp8LWAZffW5a1PUYAAAAdUKAAoCFrLfeenU9Aix3pk376r9btGhRl2PACqaFP1MAAICVlgAFAAsZNmxYXY8AAAAAACs0z4ACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAGCFcd111+W6666r6zEAAACAbyBAAQCwwrjhhhtyww031PUYAAAAwDcQoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChVqnrAQAAYGnNnz+/rkcAAAAAloIABQDACqNUKtX1CAAAAMBScAs+AAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABSq1gFq//33z4UXXljkLAAAAAAAAPwHqHWAevXVVzNr1qwiZwEAAAAAAOA/QK0DVJs2bfL+++8XOQsAAAAAAAD/AVap7QvPPvvsHHXUUTn++OPTp0+ftGnTJo0bN17ktj/60Y9qPSAAAAAAAAArlloHqL333jv16tXL/fffn9GjRy9x29dee622hwEAAAAAAGAFU+sAteeee6ZevXpFzgIAAAAAAMB/gFoHqGHDhhU5BwAAAAAAAP8h6hexk5kzZ+b555/Pww8/nCT5/PPPi9gtAAAAAAAAK6BvFaD+9a9/5YQTTkjXrl1zwAEH5Oijj06S3Hzzzendu3eeffbZQoYEAAAAAABgxVHrADV16tTsu+++uffee9OxY8e0a9cupVIpSbLqqqvmww8/zOGHH5433nijsGEBAAAAAABY/tU6QF100UX56KOPcvnll+fmm29O9+7dq9YdcsghufbaazN//vxcfvnlhQwKAAAAAADAiqHWAWrs2LHp3bt3tfD0dV27dk2fPn3ywgsv1PYQAAAAAAAArIBqHaA+++yztG3bdonbtGrVKlOnTq3tIQAAAAAAAFgB1TpArbPOOpk4ceISt3nppZeyzjrr1PYQAAAAAAAArIBqHaD69u2b8ePH59Zbb13k+uHDh+e5555Lr169aj0cAAAAAAAAK55VavvCI488MuPGjcsZZ5yRm266KRUVFUmSIUOG5NVXX81bb72V9ddfP0ceeWRhwwIAAAAAALD8q/UVUKuttlpuueWW7LfffpkyZUrefvvtlEql/O1vf8vkyZOzxx575JZbbknz5s2LnBcAAAAAAIDlXK2vgEq+ilCnnXZaTj311EyaNCnTp09P06ZNs9FGG6VRo0ZFzQgAAAAAAMAK5FsFqEoNGjTID3/4wyJ2BQAAAAAAwApuqQPUJZdcUqsD1KtXL8ccc0ytXgsAAAAAAMCK51sFqHr16iVJSqXSIteVSiUBCgAAAAAAYCVT6wA1d+7c/OEPf0iSHHzwwencuXNatGiRWbNm5eWXX87w4cPToEGDnHnmmcVODAAAAAAAwHJtqQNUr169qv189tlnZ/78+bn99tvTtm3baus6duyY3r17p3///hk1alQ233zzYqYFAAAAAABguVe/ti8cNWpU+vTpUyM+Vfr+97+f3r175/7771+m/Q4ZMiTl5eW56qqrFrvNNttsk4EDBy7TfoswcODAbLPNNt+43cUXX5zy8vK8/fbb38FUAAAAAAAAy5elvgJqYXPnzs38+fOXuM2MGTMW+XyopXHppZdmxx13zPrrr1+r19el3r17Z/3110+rVq3qehQAAAAAAIDvXK2vgGrfvn1Gjx692Kt8nn/++dx///21vv3enDlzctppp9V2vDr1ox/9KHvssUdWW221uh4FAAAAAADgO1frK6B+/vOf55BDDsk+++yTfv36pUOHDmnWrFm++OKLTJgwIXfffXcaNmyYX/ziF7Xaf69evTJmzJj87W9/y5577lnbMQEAAAAAAPiO1foKqM033zyXXXZZWrRokRtvvDGnnHJKjjvuuPzmN7/JiBEj0rZt2wwfPjxlZWW12v9//dd/pXnz5hk2bFg+++yzJW77z3/+M6ecckq23nrrdOjQITvttFOuvvrqLFiwoGqbp556KuXl5Rk3blzOOuusbLvttunYsWP23XffPPXUU8s026OPPprddtut6lg33XRTtfULPwNq5MiRKS8vz8svv5xTTjklXbt2TadOnTJo0KC8/vrr1V776aef5swzz0zv3r3ToUOHdO7cOfvuu2/GjBlTbbsePXrk5JNPzhlnnJFOnTplm222yV/+8peUl5cv8rlbv/zlL7PZZptl7ty5y/ReAQAAAAAAllWtr4BKku233z4PPPBAXnzxxbz++uuZPn16mjdvnvbt26djx47farDvfe97Oemkk/Lf//3fGTZsWM4+++xFbvfhhx9mn332yRdffJEDDjggbdq0yWOPPZbzzjsvr7zySi688MJq259xxhlp0aJFjjjiiMyePTvXXHNNjjjiiDz88MNZc801v3Guzz//PEcffXT69euXfffdN/fee2+GDh2aadOm5Zhjjlnia48//vi0bds2xx13XD7++ONce+21Ofzww/PQQw9llVVWydy5czNgwIBMnTo1BxxwQFq3bp2PPvoot956a4499tiMGDEiHTp0qNrf6NGj06ZNm5xyyil5//33s+eee+a8887L3//+9/Tt27dqu9mzZ2fs2LHZcccd07hx4298jwAAAAAAAN/GtwpQSVK/fv107tw5nTt3LmKeavbee+/cddddVbfh69atW41tzj///HzyySe56aabqp43NWDAgJxxxhm5+eabM2bMmPTq1atq+2bNmuWvf/1rGjZsmCRZe+21c8opp+SBBx7IPvvs840zffnllxkyZEgGDRqUJNlvv/1y4IEH5oorrsgBBxywxIi18cYb5+qrr676eZVVVskll1ySp556Kttss03Gjh2bSZMm5eKLL06fPn2qtuvcuXMOO+ywPPbYY9UC1KxZs3LJJZdkgw02qFq2ww47ZNy4cZk5c2aaNWuWJBk7dmxmzZqV3Xff/RvfHwAAAAAAwLf1rQLUZ599ltGjR2fKlCmZN29eSqVSjW3q1auXIUOG1Gr/9erVy9ChQ7PHHnvktNNOy913313tCp4FCxZk7Nix2XLLLaviU6Wjjz56kQGqT58+VfEpSdq1a5ck+eSTT5ZqpqZNm2bAgAFVP6+yyioZMGBAfvWrX+WJJ57ILrvsstjX7rTTTtV+/vGPf1zt2DvttFO6du2aNdZYo9p7rKioSPJVcPq6ddddt1p8SpLdd989o0ePzoMPPlgVnP7nf/4nrVq1SteuXZfqPQIAAAAAAHwbtQ5Qr7/+eg4++OBMnz59keGp0rcJUMlXVw0NHjw4l1xySS699NKceOKJVes+++yzzJo1KxtttFGN16299tpp3rx5pkyZUm15y5Ytq/1cGaMqI88XX3yROXPmVNtm9dVXT5MmTZIkrVu3TqNGjaqtX3/99ZOkxrEWttZaa1X7uXI/lcdOkgYNGmT48OGZMGFC3n///UyePLnquU1f325R+0uSn/70p2nRokXuueee7L777vn888/z6KOPZuDAgalfv9aP/AIAAAAAAFhqtQ5Qf/zjH/P5559nn332yfbbb5/VV1899erVK3K2KoMHD84999yTa6+9NrvuumvV8srwtbgAVlFRUe1qpyTfGGHOPPPM3HnnndWW/eEPf0j//v2TZInvsUGDBkvc9zedn3fffTf7779/5syZk27duqVXr14pLy/Peuutl7333nupjteoUaP07ds3I0eOzOeff57Ro0fnyy+/dPs9AAAAAADgO1PrAPXss8+me/fuGTp0aJHzLFKjRo0ydOjQDBw4ML/97W+rrgRq2bJlmjZtmkmTJtV4zccff5wZM2ZknXXWWaZjHXbYYTVizQ9/+MOqv/7f//3fLFiwoFr8qTx+5ZVQtXXllVfms88+y6hRo1JWVla1fMKECcu0n9133z1//etfM27cuDz44IPZZJNNqm73BwAAAAAA8O9W6wBVv379Rd767t9liy22yM9+9rOMGDGialmDBg2yww475J577smzzz5b7TlQV1xxRZKkR48ey3ScH/7wh9WC08KmT5+e++67r+pZT/Pmzctf/vKXNGvWLN26dVumYy1s2rRpadSoUbWQVVFRkeuvvz7JV8+DWhqbbbZZ2rRpk/vuuy9PPvlkjjrqqG81FwAAAAAAwLKodYDafPPN8+yzzxY5yzf69a9/nYceeiiffvpp1bJf/vKXefLJJ3PooYfmgAMOSJs2bfL444/nwQcfTM+ePdOzZ89CZ2jevHlOPfXUvP7662nVqlXuuuuuTJw4MUOHDs1qq632rfa9ww47ZOzYsTn00EOz6667Zu7cubnnnnsyceLE1K9fPzNnzlyq/dSrVy+77bZbLr/88qq/BgAAAAAA+K4s+YFIS3DSSSdl0qRJ+f3vf59//vOfRc60WGussUb+67/+q9qyNm3aZMSIEenTp0/uvPPODBs2LO+9916GDBmSiy++uPDnUrVt2zbnnHNOxowZk2HDhmXOnDm54IILsu+++37rfe+zzz456aST8vHHH+ess87K8OHDs9Zaa+W2225Lu3btMn78+KXe1x577JHkq6uh1ltvvW89GwAAAAAAwNKqVyqVSrV54UEHHZSPPvooH3zwQZKkcePGadSoUc0D1KuXp5566ttNyTKbPHly+vTpk9///vfZe++9a7WPV199Nf3798/IkSPTvn37gicEAFh222+/fZLkkUceqeNJAAAAYOWzLN2g1rfgqwxP6667bm13wb/RLbfckqZNm2annXaq61EAAAAAAICVTK0D1NixY4ucg4Kcdtpp+eCDD/LYY4/lsMMO+9bPpQIAAAAAAFhWtX4GFMunzz77LM8991x23333HHfccXU9DgAAAAAAsBKq9RVQlR555JGMHDkyr732WqZPn57x48dn1KhRee+993LooYdm1VVXLWJOltJFF11U1yMAAAAAAAAruW8VoH7729/m9ttvT6lUSoMGDVJRUZEkeeWVV3L99dfn0UcfzbXXXptmzZoVMiwAAAAAAADLv1rfgu/WW2/Nbbfdlj59+mT06NE58sgjq9Ydc8wx+dnPfpYXX3wxw4cPL2RQAAAAAAAAVgzfKkCVl5fnwgsvzPrrr5969epVrVtjjTVy5plnpmPHjrn33nsLGRQAAAAAAIAVQ60D1KRJk7LddtstcZstttgiU6ZMqe0hAAAAAAAAWAHVOkA1adIkn3766RK3+fjjj9OkSZPaHgIAAAAAAIAVUK0D1GabbZYHHnggH3300SLXv/vuuxkzZky6dOlS6+EAAAAAAABY8dQ6QB1zzDGZN29e9t577wwfPjyTJk1Kkjz99NO55pprst9+++XLL7/M4MGDCxsWAAAAAACA5d8qtX1h+/btc/HFF2fIkCE5++yzq5YffPDBKZVKWW211XLeeeelU6dOhQwKAAAAAADAiqHWASpJfvrTn+ahhx7K2LFj88orr+SLL75I06ZNU15ent69e2f11Vcvak4AAAAAAABWELUOUHPnzk3jxo3TpEmTbLTRRpk3b1619WPHjs2uu+6aBg0afOshAQAAAAAAWHEsc4C66aabcs0116R///459thjkyRjxozJpZdeWmPb//3f//UMKAAAAAAAgJXMMgWo3/zmNxk5cmSaNWuWRo0a1Vg/ZMiQJElFRUWuuOKKXHHFFdlvv/2yxhprFDMtAAAAAAAAy72lDlBPPPFE7rjjjmyzzTY5//zz06JFixrbHHzwwVV/vfrqq+fUU0/NHXfckf/3//5fIcMCAAAAAACw/Ku/tBvefvvtWX311RcbnxbWr1+/rLXWWnnkkUe+zXwAAAAAAACsYJY6QD3//PPZfvvtlyo+JUmDBg2y7bbb5q233qrtbAAAAAAAAKyAljpAffrpp2nTps0i15WXl2fXXXetsbxVq1b5/PPPaz8dAAAAAAAAK5ylfgZU8+bNM3PmzEWu6927d3r37l1j+bRp09KyZcvaTwcAAAAAAMAKZ6mvgFpvvfUyYcKEZdr5U089lfXXX3+ZhwIAAAAAAGDFtdQBqmfPnnnttdfy5JNPLtX2DzzwQCZPnpy+ffvWejgAAAAAAABWPEsdoPr375+mTZvml7/8ZV588cUlbvvss8/m1FNPzVprrZXdd9/9Ww8JAAAAAADAimOpnwH1/e9/P2eeeWZOOOGE7L///unRo0d69OiRTTbZJGussUY+//zzvPfeexk9enTGjBmTUqmUq6++Os2bN/93zg8AAAAAAMByZqkDVJLsuOOOad68eU499dSMGTMmDz74YI1tSqVSWrVqlXPOOSddu3YtbFAAAAAAAABWDMsUoJJk6623zv33359x48blwQcfzHvvvZdPP/00LVq0SOvWrdOzZ8/07NkzjRs3/nfMCwAAAAAAwHJumQNUkjRs2DC9evVKr169ip4HAAAAAACAFVz9uh4AAAAAAACA/ywCFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQq1S1wMAAMDSqlevXl2PAAAAACwFAQoAgBXGKqv4n68AAACwInALPgAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFCoVep6AAAAWFoDBw6s6xEAAACApSBAAQCwwjjkkEPqegQAAABgKbgFHwAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFCr1PUAANTekCFD8uGHHy5xm2nTpiVJWrRo8e8fCFYy6623XoYNG1bXYwAAAAAsdwQogBXYhx9+mEnvTUpWW8JGM776r88qPvtOZoKVxoy6HgAAAABg+SVAAazoVksq+lYsdnX9+7+62+qStgGWXeVnCwAAAICafHMCAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFtXDdddfluuuuq+sxAGCl489gAAAAWDEIUFALY8eOzdixY+t6DABY6fgzGAAAAFYMAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACrXSBqgTTjgh5eXlmTJlSo11V1xxRcrLy7Pddtst8rWHHnpoOnTokDlz5vy7xwQAAAAAAFjhrLQBasstt0ySvPjiizXWPfHEE2nYsGE+/vjjvP3229XWVVRU5IUXXshPfvKTNGnS5DuZFQAAAAAAYEWy0geoF154odryOXPm5Pnnn89uu+2W5KsY9XVvvvlmZsyYka222uo7mRMAAAAAAGBFs9IGqI033jhrr712jSugnnvuucybNy8/+9nP0rp16xoBasKECUkiQAEAAAAAACzGShugkmSLLbbIxIkTM2/evKpl48ePT9OmTdOpU6d07do1Tz/9dBYsWFC1fsKECVl11VXTqVOnJF9dQXXYYYelS5cu6dSpU/bbb7+MGTOm2nEuvvjitGvXLu+++26OOOKIdO7cOVtttVWGDRuW+fPn55577smuu+6aTp06Zc8998z48eOrvf7TTz/NmWeemd69e6dDhw7p3Llz9t133xrH6dGjR4YMGZJ77703e+yxRzbddNN07949l1xySSoqKoo+fQAAAAAAAIu0UgeoLbfcMvPmzcvrr79eteyJJ57IFltskYYNG6Zbt26ZMWNGXn755ar1EyZMyGabbZaGDRtm3LhxGTBgQN55550cfvjh+cUvfpHZs2fnmGOOyY033ljtWKVSKQMHDkzLli1z8skn58c//nGGDx+eI488Mr/73e+yyy675IQTTsjHH3+cY489NlOnTk2SzJ07NwMGDMhdd92VXXbZJaeddloGDRqU999/P8cee2xeeeWVasd56qmncuqpp2aHHXbIb37zm7Rq1SoXX3xxbrnlln/jmQQAAAAAAPg/q9T1AHXp68+B6tixY6ZNm5bXXnstv/71r5P83232nnjiifzkJz/Jxx9/nClTpmS//fbLggULctppp6VFixYZOXJkWrRokSQ54IADsv/+++ecc87JjjvumO9973tJkoqKivTs2TOnn356kmTnnXdOt27d8thjj+X222/PpptumiRp2rRp/vu//zsvvPBCevTokbFjx2bSpEm5+OKL06dPn6rZO3funMMOOyyPPfZYOnToULX8ww8/zG233VZ1hdZuu+2WbbfdNnfffXcGDBjw7zuZK5lp06Zl5syZOeigg+p6FFZyU6ZMWcn/VQKoQ3O/+gz6s+C7NWXKlDRr1qyuxwAAAAC+wUr9teXCz4F66qmnUlFRkW7duiVJvv/972fjjTfOU089laT6859effXVfPTRR9l///2r4lOSNG7cOIceemjmzp2bRx55pNrx+vbtW/XXzZs3z1prrZX11luvKj4lSdu2bZMkn3zySZJkp512yvjx49OzZ8+qbRYsWFB1S71Zs2ZVO0br1q2r4lOSNGvWLBtssEH+9a9/1eIMAQAAAAAALLuV+gqo5KvnQL3wwgtJvrrSac0110x5eXnV+m7duuWOO+7Il19+mQkTJmT11VdP+/btc//99ydJNtpooxr73HjjjZP8/1cmfM1aa61V7edVVlmlxrL69b9qgl9/ZlODBg0yfPjwTJgwIe+//34mT56cuXPn1tguSVq2bFljnkaNGnkGVMFatGiRFi1a5Prrr6/rUVjJHXTQQZk0dVJdjwErp8ZJ65at/VnwHXPFGQAAAKwYVuoroJKvbsP3wQcfZOrUqXnyySez1VZbpV69elXru3XrltmzZ2fixIl5/vnns8UWW6RBgwYplUpJUvXfX1cZexo2bFhteYMGDWps+/VjLcq7776bHXfcMZdeemmSpFevXjnnnHNy++23L3L7yoAFAAAAAABQV1b6K6AqnwP12GOP5d13383/+3//r8b6+vXr54UXXshrr72Wk046KUnSpk2bJMk777xTY5+Vy9ZZZ51vPd+VV16Zzz77LKNGjUpZWVnV8srbAQIAAAAAACxvVvrLZSqfA3XzzTcnSdXznyo1b9487dq1y6hRo/Lll19mq622SpK0b98+rVq1yq233ppp06ZVbT9v3rxce+21adiwYbbbbrtvPd+0adPSqFGjrL/++lXLKioqqm73s2DBgm99DAAAAAAAgCKt9FdAJV89B+qee+5J69atq4WeSt26dcvVV1+dtdZaq+oqpFVWWSWnnXZafv7zn6d///7ZZ5990qRJk9x1112ZOHFihgwZUuP5TrWxww47ZOzYsTn00EOz6667Zu7cubnnnnsyceLE1K9fPzNnzvzWxwAAAAAAACjSSn8FVPJ/t+GrvLppYZVXRW255ZbVntnUs2fPXH/99dlggw1y5ZVX5sILL0yzZs1y2WWXZdCgQYXMts8+++Skk07Kxx9/nLPOOivDhw/PWmutldtuuy3t2rXL+PHjCzkOAAAAAABAUeqVSqVSXQ/B8unVV19N//79M3LkyLRv376ux1muHHTQQUlSdStEqCsHHXRQJk2dlIq+FYvdpv79X/27BkvaBlh29e+vnx+0/IE/C75j/gwGAACAurMs3cAVUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFWqWuB4AVUY8ePep6BABYKfkzGAAAAFYMAhTUwiGHHFLXIwDASsmfwQAAwP/X3r3HdlXffxx/tRarDAXZxImiosZGmTiLihLQyEQFJ05drKBz4ASz6UATnRjNprs44nTzssypiZtsLroi4yKXJczbEIxEnVqYHV4XLmqHgkq5lNLfH8T+fv0V3WCHFujjkTQN53y+X97nDz4Bnj3nC+wcPIIPAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQKAEKAAAAAACAQglQAAAAAAAAFEqAAgAAAAAAoFACFAAAAAAAAIUSoAAAAAAAACiUAAUAAAAAAEChBCgAAAAAAAAKJUABAAAAAABQqLL2HgCA/9LHSemfP+PnCT7e/O0z1wBb7+Mk3dt7CAAAAIAdkwAFsBPr2bPnv12zqnRVkqRbt27bdxjoaLr/Z38GAQAAADoiAQpgJzZx4sT2HgEAAAAAoBXPYwIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEIJUAAAAAAAABRKgAIAAAAAAKBQAhQAAAAAAACFEqAAAAAAAAAolAAFAAAAAABAoQQoAAAAAAAACiVAAQAAAAAAUCgBCgAAAAAAgEKVtfcA7LjWr1+fJHn99dfbeRIAAAAAAKC9fdILPukHn0WA4lMtXbo0SXLttde28yQAAAAAAMCOYunSpamsrPzMNSVNTU1NbTQPO5n3338/8+bNy4EHHpjy8vL2HgcAAAAAAGhH69evz9KlSzNw4MB07979M9cKUAAAAAAAABSqtL0HAAAAAAAAYNciQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAH8F15++eWMGTMmxx13XI4++uh87Wtfy9SpU1usWbduXW677baceuqpOeaYY1JVVZUFCxa0z8AAO4na2tqMHTs2/fv3z/HHH59x48bl7bffbrHG/gqw7ZYtW5bKyspMmDChxXF7K8DWu/DCC1NRUdHq65xzzmle88EHH+T73/9+Bg4cmGOPPTajRo3K4sWL23FqgO2vpKmpqam9hwDYGb3++us577zz0rVr14wcOTKf+9znMmvWrLzwwguZMGFCRo8enSS54oor8sQTT2TkyJE59NBDM3ny5NTW1ubBBx/Mcccd185XAbDjefPNN3P++eena9eu+cY3vpHGxsY8+OCDaWhoyNSpU7P//vsnsb8CbKumpqaMGjUqzz77bM4999xMnDix+Zy9FWDrVVZW5vjjj8+wYcNaHO/WrVtOOeWUbNiwIRdffHFqa2szatSofOELX8jvfve7/Otf/8qjjz6a3r17t9PkANuXAAWwjcaOHZuFCxdmzpw52W+//ZIkmzZtysiRI1NbW5t58+bl5ZdfzqhRo3L99ddn1KhRSZL6+voMHz48e++9d6ZMmdKOVwCwYxo/fnyefPLJzJw5MwceeGCSzXdEDR8+PJdcckluuOGGLFiwwP4KsI1+//vfZ+LEiWloaGgRoOytAFtv2bJlGTx4cG666aaMGDFii2uqq6tz44035pe//GWGDBmSJKmrq8vQoUMzYMCA3HXXXW05MkCb8Qg+gG3Q2NiYhQsXZtCgQc3xKUlKS0szdOjQ1NfX5+9//3tmzJiRTp065YILLmhe07lz53z961/PokWL8tZbb7XD9AA7trKyspx11lnN8SlJKioq0q1bt7z66qtJYn8F2Eb//Oc/c/vtt+fKK69sdc7eCrD1/vGPfyRJDjvssE9d89hjj6VHjx7N8SlJ9t133wwdOjSPP/541qxZs93nBGgPAhTANigtLc306dPzve99r9W5999/P0my2267paamJr17907nzp1brOnTp0+SpKamZvsPC7CTuf3223PLLbe0OLZixYqsWrUqPXv2TBL7K8A22LRpUyZMmJCKiop885vfbHXe3gqw9ZYsWZIkOfzww5NkizFp0aJFzXvp/9WnT580NDQ0RyyAXY0ABbANSkpK0qtXrxY/nZ9sfkTJo48+ms6dO+eoo47Ku+++my9+8YutXt+jR48kyfLly9tkXoCd1cqVK/PUU09l7Nix6dy5cy699NIksb8CbIMHH3wwNTU1ueWWW1Ja2vq/A+ytAFuvtrY25eXlufPOO9OvX79UVlZm0KBBmTRpUpLNQeqjjz76zP11xYoVbTozQFspa+8BAHYVTU1NufHGG1NXV5crrrgi5eXlWbNmTfbcc89Wa/fYY48kydq1a9t6TICdyvnnn9/8D/JrrrkmRxxxRJLYXwG20htvvJE77rgj48ePz6GHHpr169e3WmNvBdh6S5Ysyfr16/Puu+/mlltuydq1a1NdXZ2f/OQnWbVqVS688MIk+cz9tb6+vk1nBmgrAhRAAZqamnLTTTdl5syZOeGEE/Ltb3/7P3pdSUnJdp4MYOd29dVXZ/fdd8/s2bNz2223ZenSpbn55pv/7evsrwD/q7GxMddff32OPPLIjB49epvfx94K0FpVVVUaGxtzySWXNB8bPnx4RowYkfvuuy9VVVX/9j3sr8CuSoAC+C81NDRkwoQJeeyxx9K3b9/cc8896dSpU5LNH9q8bt26Vq/55FiXLl3adFaAnc0555yTJBk6dGiuuuqqPPzww7n44ovtrwBb4YEHHkhNTU0mTZqUVatWJdn8d9gk2bBhQ95///106dLF3gqwDS666KJWx0pLS1NVVZXrr78+8+fPTxL7K9AhCVAA/4W1a9fmu9/9bv7617/mhBNOyD333NPiL449e/ZMXV1dq9e99957SZL99tuvzWYF2NmdddZZmT17dhYvXmx/BdgKTz/9dDZu3JiRI0e2Ojdz5szMnDkzP/3pT+2tAAX6/Oc/nyTZtGlT9t57b/sr0CEJUADbqKGhIVdeeWXmzZuXU089NXfeeWfKy8tbrOnTp0+mT5+edevWNT/bOUkWLVqUJDn66KPbdGaAHd3q1atzwQUXZNCgQbnxxhtbnFuzZk2Szc/Kt78C/Oeuu+66fPjhhy2ONTQ0ZOzYsRk4cGC+9a1v5fDDD8/zzz9vbwXYCsuXL8+YMWNy+umnZ/z48S3OvfHGG0mSXr16pU+fPs176f+1aNGilJWV5cgjj2yTeQHaWml7DwCws7rrrrsyb968DB48OHfffXer+JQkZ555ZjZs2JCHH364+Vh9fX0mT56cvn375qCDDmrLkQF2eF27dk2nTp0yY8aMFj8lumHDhkyaNCmdO3dO//797a8AW+FLX/pSBgwY0OLrxBNPTJLsu+++GTBgQHr06GFvBdhK+++/f1avXp3q6uqsXr26+fjq1avz29/+NgcccEAqKytz5plnZvny5Zk7d27zmrq6usyePTtDhgzZ4v8nAOwK3AEFsA3ee++9/OY3v0lZWVkGDhyYWbNmtVpz0kknZdCgQRk0aFB+9rOfZcWKFendu3f++Mc/5p133snEiRPbYXKAHd/NN9+cSy65JCNGjMiIESNSWlqaKVOmZMmSJfnxj3+cbt262V8BtgN7K8DWKSkpyQ9+8INceeWVueCCCzJixIhs2LAhjzzySFauXJn7778/ZWVlOf/88/OHP/wh11xzTS699NJ07949kyZNSklJScaNG9felwGw3ZQ0NTU1tfcQADubOXPmtLq9/v+7//77c/LJJ2fNmjX5xS9+kVmzZmXt2rWpqKjI1Vdfnf79+7fRtAA7n4ULF+buu+/Oyy+/nGTzT+9ffvnlGTRoUPMa+yvAtlu/fn369u2bc889t0VcsrcCbL3HH3889913XxYvXpyysrIce+yxGTduXI455pjmNStXrsytt96aJ554Io2NjTnmmGNy7bXXevwesEsToAAAAAAAACiUz4ACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAADooC677LJUVFRkzJgx7T0KAACwixGgAAAAOqC6urrMnz8/e+65Z+bNm5d33nmnvUcCAAB2IQIUAABABzRjxow0Njbmsssuy6ZNmzJ58uT2HgkAANiFCFAAAAAd0NSpU9O1a9dcdtll2WuvvTJlypQ0NTW191gAAMAuQoACAADoYF599dXU1tbmpJNOyh577JHTTjsty5YtyzPPPNNq7caNG3PvvffmjDPOSN++fTNs2LBMnjw5v/rVr1JRUZGlS5e2WL9gwYKMHj06/fr1y5e//OVUVVVlzpw5bXVpAADADkKAAgAA6GCmTp2aJBk2bFiL79XV1a3WXnXVVfn5z3+e8vLyjBw5MoccckhuuOGGTJkypdXa6urqjB49OrW1tRk2bFiqqqqycuXKjB8/Pr/+9a+33wUBAAA7nJImz1gAAADoMBobG3PKKaekvr4+CxYsSHl5eTZu3JiTTz45H374YZ5++ul07949SfLnP/8548aNy2mnnZY77rgjnTp1SpI89NBD+eEPf5gk+ctf/pIDDzww77zzToYMGZJevXrloYceyj777JMkWbduXUaNGpWXXnop06ZNyxFHHNE+Fw4AALQpd0ABAAB0IM8880zq6uoyZMiQlJeXJ0nKyspy5plnpqGhIdOmTWte+6c//SlJct111zXHpyQZMWJEevfu3eJ9p0+fng0bNmTcuHHN8SlJ9thjj4wbNy6bNm1qfj8AAGDXV9beAwAAANB2PglMZ511VovjZ599dh566KFMnjw5o0ePTpLU1NSkW7duOeigg1qsLS0tzbHHHps333yz+VhNTU2SzZ8BtWTJkhbr6+vrk2z+7CkAAKBjEKAAAAA6iI8//jhz585NkowZM2aLa1577bW88MILqayszAcffNDqTqdP9OjRo8WvP/rooyTJww8//Km//+rVq7dlbAAAYCckQAEAAHQQc+bMybp163L00UfnqKOOanX+zTffzHPPPZfq6upUVlamS5cu+fjjj7f4Xv//eOfOnZMkc+fOTa9evYofHgAA2KkIUAAAAB3EJ4/fmzBhQo477rhW55cvX56vfOUrmTNnTm644Yb06dMn8+fPz3vvvdfqjqeXXnqpxa8rKioyd+7cvPLKK60C1FtvvZVHHnkkxx9/fAYPHlzwVQEAADui0vYeAAAAgO1v2bJlWbhwYQ444ID069dvi2t69uyZE088MfX19Zk5c2bOO++8NDU15dZbb01jY2PzumnTpuWVV15p8drhw4dnt912yx133JG6urrm4xs3bsyPfvSjPPDAA1m1atV2uTYAAGDH4w4oAACADmDatGlpamrK2WefnZKSkk9dd95552X+/Pmprq5OdXV1pk2blhkzZuS1115L//798/bbb+fJJ5/MPvvskw8++CC77bZbkuSQQw7Jtddem4kTJ+arX/1qBg8enK5du+bpp5/O66+/nlNPPTXDhw9vq8sFAADaWUlTU1NTew8BAADA9nXGGWfkrbfeyqxZs3LYYYd96rp169Zl4MCB+eijjzJ9+vQcfPDBueeeezJ9+vTU1dXl4IMPzuWXX57HH388s2fPzrPPPpt99tmn+fVPPfVUHnjggdTU1GTTpk3p1atXzj333Fx00UXZfffd2+JSAQCAHYAABQAAwBatWLEie+21V7p06dLq3MUXX5yampq8+OKLn3lHFQAA0DH5DCgAAAC26P7770+/fv3y3HPPtTj+4osv5vnnn88JJ5wgPgEAAFvkDigAAAC2aNGiRamqqkqnTp1y+umnZ7/99svSpUszd+7c7L777nnkkUc+83F+AABAxyVAAQAA8KkWL16ce++9N3/729+ycuXKdO/ePQMGDMh3vvOdHHTQQe09HgAAsIMSoAAAAAAAACiUz4ACAAAAAACgUAIUAAAAAAAAhRKgAAAAAAAAKJQABQAAAAAAQKEEKAAAAAAAAAolQAEAAAAAAFAoAQoAAAAAAIBCCVAAAAAAAAAUSoACAAAAAACgUP8DWBfFJxET3qYAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -7031,7 +7577,7 @@ }, { "cell_type": "code", - "execution_count": 248, + "execution_count": 1085, "metadata": {}, "outputs": [], "source": [ @@ -7041,19 +7587,17 @@ }, { "cell_type": "code", - "execution_count": 249, + "execution_count": 1086, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEWCAYAAADcsGj7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAh+ElEQVR4nO3de3wcdb3/8dc7BWwhCGiRW4CILSgiIo1FLsaiwLGAt4pWUCh4QVGIoP486CkSod7OT86PE/gdFfxhCwrKTRQsalUKImptAYuikCqFBgq0IJdAW0r7+f0xs+lsskm2yW52kn0/H499ZGa+M9/5zDez+9nvd2dnFRGYmZnlUUOtAzAzM+uPk5SZmeWWk5SZmeWWk5SZmeWWk5SZmeWWk5SZmeWWk5T1IelQSZ2SuiW9e4T33S7p+yOwn29LOqfa+xmLJC2U9NF0+oOSfjlC+50jabWkR0dif7Uiaa6kObWOIy+cpOpY+mLzL0kv6VV0HnBxRDRGxA2SQtKkWsRYLRHxiYg4v1r1S9omTfLzK1zvcknNlaxzkP0N+KYhIn4QEUeNQBy7A58F9o2Inau9P8sPJ6k6lb7QvRkI4J29ivcE/lqh/WxRiXpGoeOAdcBRknapdTB5JGncZqy+J/BERDzeT131ep71GKtt4CRVv04C/gDMBWYVFkr6B7AXcGPaE/h9WvTndH5mut6xku6W9JSkOyTtn6ljuaR/l7QUeK7Uk0fSayUtkPSkpMckfbFUkJLelNb/lKQ/S5qWKTtF0t8kPSvpn5I+nimbJqlL0mclPS5ppaRTMuU9QyplrPtySTdKekbSn9Jhp9sHad9ZwLeBpcAHex3TgZLuSuO+RtKPssM7A7Vtr3qOlnRvWs/Dkj7Xz3oNkmZLejA9vsslbZc99l7rL5d0hKS3A18EZqb/+z+XqPvkbFtIenXm/3qfpPdnyuZK+pak+ZKeAw4v5xgkHQEsAHZN45grqTnt4X9E0kPAbwY5zsL6p0haoWQE4ROS3ihpadrWF5dqv3T7CZLmpdv9TdLns+0maVdJ10laJekBSW2ZsnZJV6fxPCvpr5JaMuVvkHRnWvYjYHyvfW/Wcy2dfzit7z5Jb+vvuEaFiPCjDh/AMuCTwBRgPbBTpmw5cERmPoBJmfkDgceBg4BxJC/Iy4GXZLa/G9gdmFBi39sCK0mGb8an8welZe3A99Pp3YAngKNJ3lAdmc7vmJYfA7wKEPAW4HngwLRsGvAiydDllmkdzwM7pOVzgTllrvvD9LE1sC+wArh9gLbdA9iYrvtZYGmmbCvgQeDT6b5mAC9kYhmwbXvtZyXw5nR6h8Kxl1jvw+n/ey+gEbgeuCJz7F291u/5/2f/H5nyhcBH0+mTC20BbJO2zSnAFumxrAZem2nzp4FD0//n+M04hqI4gWaS8/LydL8TBjnOwvrfTvd7FLAWuAF4Bcm59jjwln72/3Xg1jTGJpI3H11pWQOwBPhS+v/dC/gn8G+ZNlxLcl6NA74G/KHX+XBWej4cR/J8LOt8oNdzDdgn/R/smjnuV9X69WZYr1W1DsCPGvzT4bD0iTAxnf87cFamvOdFKp3vnaS+BZzfq877Ck/wdPsPD7D/44G7+ilrZ1OS+vfCi0ym/BfArH62vQH4dDo9DVgDbJEpfxx4Uzo9l+IkVXLd9IVhPbBPpmwOAyep2cDd6fSuwAbgDel8K/AwoMz6t2diGbBtey1/CPg48NJB/t+/Bj6Zmd8nPaYtqGySmgn8tte63wHOzbT55UM8hqI42ZR09irzOAvr75YpfwKYmZm/Djizn/33JJ10/qNsSlIHAQ/1Wv8LwPcybfirTNm+wJrM+fBIr/PhjnLPB3o914BJJOfuEcCWA7XpaHl4uK8+zQJ+GRGr0/kryQz5lWFP4LPp8MNTkp4ieSe3a2adFQNsvzvwjzL3875e+zkM2AVA0nRJf0iHlp4ieac6MbP9ExHxYmb+eZJ32KX0t+6OJC9y2eMZ6NggGUr9AUBEPELyDrzQvrsCD0f6ilKivnLatuC9JMf8oKRbJR3cTzy7krxbL3gwPaadBjmOzbUncFCv2D8IZC906N125R5Df7L1lXOcj2Wm15SY7+/82JX+z4E9SYYis8f9xV77zV6R+DwwXskweKnzIXsMm/Vci4hlwJkkifFxST+UVOrcGTWcpOqMpAnA+4G3SHpUyeW8ZwGvl/T6MqtZAXwlIrbPPLaOiKsy6wx0e/0VJMN05eznil772SYivq7kisTrgG+SDFVuD8wnGfqrpFUkQ4FNmWW797eypEOAycAXMu17EHB8+qK0EthNUjbObH3ltC0AEfGniHgXyXDVDcDV/YT1CMmLXcEe6TE9BjxHMoxZiH8cSWLu2U1/x1rCCuDWXrE3RsRp/dW3GcfQn2x9Ax3ncK2k/3NgBfBAr+PeNiKOLrPe3ufDHr3q3qznWkRcGRGHkbRFAN8oI47ccpKqP+8mGX7aFzggfbwG+C1JD6CUx0jG2QsuBT4h6SAltpF0jKRty4zhJmBnSWdKeomkbSUdVGK97wPvkPRvksZJGq/kg/4mkrH8l5AmEUnTST5nqKiI2EDy2Ua7pK0lvZr+2wmSHtMCitt3P5JEMB34PUn7n55+yP0uYGpm+7LaVtJWSr6jtF1ErAeeSest5SrgLEmvlNQIfBX4UdpzvJ/kXf0xkrYkGarMfiXhMaBZUjmvFTcBe0s6UdKW6eONkl5TauXNPIZyDHScw3U1yRuPHSTtBpyeKVsEPJNesDAhPVf3k/TGMur9PUkibUvPhxkM4XwokLSPpLemb+LWkvQOh9OmNeckVX9mkYyVPxQRjxYewMXAB1X6MtZ2YF463PD+iFgMfCzd5l8kH1afXG4AEfEsyUUQ7yAZBukEDi+x3grgXSRDJ6tI3lX+L6AhraON5MXjX8AJwE/LjWEznQ5sl8Z6BcmL4breK0kaT9JLvSjbthHxQLrdrIh4geRiiY8ATwEfInlxX5ce8+a07YnAcknPAJ9I6yrlsnT/twEPkLx4nZHu72mSC2i+S/JZ2XNA9mq/a9K/T0i6s5/6Set6luSNwgdIejWPkryL7/09vKEcQzn6Pc4KOI+kXR4AfgVcy6b/2QaSc/mAtHw1SXtuN1ilmfPhZJL/90ySN0WF8s19rr2E5CKP1STt/wqS58+opeKhUDMbjKRvADtHxOZ8jjdQfX8Evh0R36tEfVZ9kk4DPhARb6l1LGOde1Jmg1Dy3Z/90+GWqSS9oB8Po763SNo5Hd6ZBewP/LxS8VrlSdpFye3CGiTtQ/LVgiGfA1a+MfkNZbMK25ZkiG9Xkst7LwB+Moz69iEZpmwkucrxuIhYOdwgraq2Irmc/pUkw7Q/BP6nlgHVCw/3mZlZbnm4z8zMcsvDfRU0ceLEaG5urnUYZmajypIlS1ZHxI6lypykKqi5uZnFixfXOgwzs1FF0oP9lXm4z8zMcstJyszMcstJyszMcstJyszMcstJyszMcstX91lNdHR0sGzZslqHQVdXci/VpqamQdasrUmTJtHW1jb4imZjjJOU1cSyZcu465572bj1y2oaR8PzTwPw2Lr8PhUann+y1iGY1Ux+n5k25m3c+mWs3ffYmsYw/t6bAGoex0AKMZrVI38mZWZmueUkZWZmueUkZWZmueUkZWZmueUkZWZmueUkZWZmueUkZWZmueUkZWZmueUkZWZmueUkZWZmueUkZWZmueUklRMdHR10dHTUOgwzGyY/lyvLN5jNiTz8bIWZDZ+fy5XlnpSZmeWWk5SZmeWWk5SZmeWWk5SZmeWWk5SZmeWWk5SZmeWWk5SZmeWWk5SZmeWWk5SZmeWWk5SZmeXWmL8tkqQAvh8RJ6bzWwArgT9GxLE1Dc7M6kpra2vP9G233VZW2VC2ydO+hqseelLPAftJmpDOHwk8XMN4zMysTPWQpABuBo5Jp48HrioUSJoq6Q5Jd6V/90mXnyzpekk/l9Qp6T9rELeZjRHZ3kbv+f7KhrJNnvZVCWN+uC/1Q+BLkm4C9gcuA96clv0daI2IFyUdAXwVeG9adgDwBmAdcJ+kiyJiRTUC7OrqYs2aNbS1tVWj+tzp7OxEL0StwxgVtPYZOjufrZtzY7Tr7OxkwoQJg69oZamLJBURSyU1k/Si5vcq3g6YJ2kyEMCWmbJfR8TTAJLuBfYEipKUpFOBUwH22GOPqsRvZlav6iJJpX4KfBOYBrw8s/x84JaIeE+ayBZmytZlpjdQor0i4hLgEoCWlpYhdw2ampoA6ubH0tra2ljyj0drHcaoEONfyuRX7Vw358Zo5x5vZdVTkroMeDoi7pE0LbN8OzZdSHHyCMdkZmYDqJcLJ4iIroj47xJF/wl8TdLvgHEjHJaZ1Ynel2Zn5/srG8o2edpXJYz5nlRENJZYtpB0WC8ifg/snSk+J10+F5ib2cbfqTIzG2FjPkmZmeXFQL2M/sqGsk2e9jVcdTPcZ2Zmo4+TlJmZ5ZaTlJmZ5ZaTlJmZ5ZaTlJmZ5ZaTlJmZ5ZaTlJmZ5ZaTlJmZ5Za/zJsTkyZNqnUIZlYBfi5XlpNUTvjOyWZjg5/LleXhPjMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy3fYNZqpuH5Jxl/7001juEJgJrHMZCG558Edq51GGY14SRlNZGXnzPo6noRgKamPCeBnXPTXmYjzUnKasI/Z2Bm5fBnUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmlltOUmZmllu+d5/VREdHB8uWLRuRfXV1dQHQ1NQ0IvsbqkmTJvmehma9OElZTSxbtoz7/3InezRuqPq+nnt2HABrX1xZ9X0N1UPd42odglkuOUlZzezRuIHZLd1V38+cxY0AI7KvoSrEaGbF/JmUmZnllpOUmZnllpOUmZnllpOUmZnllpOUmZnllpOUmZnllpOUmZnllpOUmZnllpOUmZnllpOUmZnllpOUmZnl1qBJStI4Sb8aiWDMzMyyBk1SEbEBeF7SdiMQT93q6Oigo6Oj1mGYWYafl7VX7l3Q1wL3SFoAPFdYGBH+8ZsKGanfVjKz8vl5WXvlJqmfpQ8zM7MRU1aSioh5kiYAe0TEfVWOyczMDCjz6j5J7wDuBn6ezh8g6adVjMvMzKzsS9DbganAUwARcTfwyqpEZGZmlio3Sb0YEU/3WhaVDsbMzCyr3Asn/iLpBGCcpMlAG3BH9cIyMzMrvyd1BvBaYB1wFfAMcGaVYjIzMwPKv7rveeA/0oeZmdmIGDBJSbqRAT57ioh3VjwiMzOz1GDDfd8ELgAeANYAl6aPbuAv1Q3NzCyfZs6cSWtrKyeccEKfspNOOonW1lY+/OEP9yk7/fTTaW1t5cwzz+xTdvbZZ9Pa2srs2bOLlp977rm0trZy/vnn99lmoLILL7yQ1tZWLr744j5lixYtYtq0aSxZsqTsbYYax3ANmKQi4taIuBV4Q0TMjIgb08cJwGEVj6YXSf9H0pmZ+V9I+m5m/gJJn6l2HGZmWStXrgSgq6urT9ny5cuB0rdUWrp0KQB33nlnn7I77kiuRbvtttuKlt9yyy0ALFiwoM82A5Vdf/31AFx99dV9ytrb29m4cSPnnHNO2dsMNY7hKvfCiR0l7VWYkfRKYMeKR9PXHcAh6T4bgIkkF3AUHAL8bgTiMDMDkl5UVrY3ddJJJxWVZXtTp59+elFZtjd19tlnF5UVelPnnntu0fJsT2WgsgsvvLCoLNszWrRoEd3d3QB0d3f39KYG2maocVSCIgb/upOktwOXAP9MFzUDH4+IX1Q0mr773RVYFBFNkl4HfA7YBZgJPA88lk5/neTztT8Bp0XEOknLgSuBw4EtgVOBrwGTgP8dEd+W1Aj8BNghXWd2RPxEUjNwM3A7SSJ8GHhXRKwZKN6WlpZYvHjxkI51xowZrFmzhsmTJw9p+9Gms7OTrdY/w0Wtz1R9X3MWNwIwu6W76vsaqjNueykvbPnSuvn/jxadnZ1MmDChp4cB0Nra2me9Qu+n0mXV2NfRRx/dk6QAGhsbmT9/flX2VS5JSyKipVRZWT2piPg5MBn4dPrYp9oJKt3vI8CLkvYgSRa/B/4IHAy0APcD3wVmRsTrSBLVaZkqVkTEwcBvgbnAccCbgPPS8rXAeyLiQJJkdoEkpWWTgf8bEa8ludPGe0vFKOlUSYslLV61alVFjtvMrFqyCarUfN6U+2VegCkkPagtgNdLIiIur0pUxX5HkqAOAf4L2C2dfpqkh7M2Iu5P150HfAq4MJ0v3F/wHqAxIp4FnpW0VtL2JD878lVJrcDGtO6d0m0eSG//BLCE5Nj7iIhLSHqZtLS0DPkuHE1NTQB189s1bW1trF3+p1qHkRs7bb2R8c2T6+b/P1q0tY29XyNqbGzs05PKs3JvMHsFyZV+hwFvTB8lu2ZVUPhc6nUkVxT+gaQndQjQ99PHYuvSvxsz04X5LYAPkny2NiUiDiAZPhzfa1uADWxeQjezMWqXXXYpmi+8wQRobm4uKps0aVLP9P77719UduCBB/ZMH3LIIUVlhSG0ww8/vGj5kUce2TM9UNmMGTOKyt7//vf3TLe3txeVFT5DGmibocZRCeVeONECHBoRn4yIM9LHSL3F+B1wLPBkRGyIiCeB7UkS1feAZkmFM+FE4NbNqHs74PGIWC/pcGDPyoVtZmPRj370o6L5K6+8smf68suLB5cuu+yynunel3VnL1T4+te/XlQ2Z84cAL785S8XLc9ejTdQWe9L3LMXbUydOrWn99TY2MiUKVMG3WaocVRCuUnqL8DOFd1z+e4huarvD72WPR0RXcApwDWS7iHpIX17M+r+AdAiaTFJr+rvlQnZzMayQm8q24sqKPSmsr2ogkJvKtuLKij0pnpfiFDoqZTqoQxUVugZZXtEBe3t7TQ0NPS5Em+gbYYax3CVe3XfLcABwCIyw2C+40Sx4VzdVxj7rpfPJAqfSY3EFXej4eq+OYsbGd/8xrr5/48W9fa8rJWBru4r93OW9sqFY2ZmVp5ybzB7q6Q9gckR8StJWwPjqhuamZnVu3Kv7vsYcC3wnXTRbsANVYrJzMwMKP/CiU8Bh5L8jhQR0Qm8olpBmZmZQflJal1EvFCYkbQF/vl4MzOrsnKT1K2SvghMkHQkcA1wY/XCMjMzKz9JnQ2sIvl+0qnAzyLCv9JrZmZVNWCSkvQuSZ+KiI0RcSnJHRlagC9KOm5EIjQzs7o1WE/q82y6SSvAViQ3mp1G8d3GzczMKm6w70ltFRErMvO3p/fOe1LSNlWMq+6UuoWKmdWWn5e1N1iS2iE7ExHZn5YciV/mrRtj8ScBzEY7Py9rb7Dhvj+mX+QtIunjJPfxMzMzq5rBelJnATdIOoFNv900BXgJ8O4qxmVmZjZwkoqIx4FDJL0VeG26+GcR8ZuqR2ZmZnWv3BvM/gZwYjIzsxFV7pd5zczMRpyTlJmZ5ZaTlJmZ5ZaTlJmZ5ZaTlJmZ5ZaTlJmZ5ZaTlJmZ5VZZ35Myq4aHuscxZ3Fj1ffz4LPjAEZkX0P1UPc49q51EGY55CRlNTGSd5fepqsLgPFNTSO2z821N77jtlkpTlJWE767tJmVw59JmZlZbjlJmZlZbjlJmZlZbjlJmZlZbjlJmZlZbjlJmZlZbjlJmZlZbjlJmZlZbjlJmZlZbjlJmZlZbjlJmZlZbjlJmZlZbvkGs1ZVHR0dLFu2rKYxdKV3QW/K8V3QBzNp0iTflNfqkpOUVdWyZcu46693wfY1DOLp5M8qraphEMPwVK0DMKsdJymrvu1h47SNNdt9w8JkVLuWMQxHIX6zeuSz38zMcstJyszMcstJyszMcstJyszMcstJyszMcstJyszMcstJyszMcstJyszMcstJyszMcstJyszMcstJyszMcstJKic6Ojro6OiodRhmViN+DSjNN5jNiVr/nIWZ1ZZfA0pzT8rMzHLLScrMzHLLScrMzHLLScrMzHLLScrMzHLLScrMzHLLScrMzHLLScrMzHLLScrMzHLLScrMzHKraklKUki6IDP/OUntFap7rqTjSixvkeSbX5nZmLFo0SKmTZvGkiVL+pRdccUVtLa2ctVVV/UpW716NWeccQZPPPFE2XXef//9TJ8+veQtmoZaNlzV7EmtA2ZImljFfRSJiMUR0VaJuiSNq0Q9ZmbD0d7ezsaNGznnnHP6lF166aUAfOtb3+pTNm/ePJYuXcq8efPKrnPOnDk899xznHfeeX22GWrZcFUzSb0IXAKc1btA0p6Sfi1pafp3j3T5XEkdku6Q9M9SvaWMIyT9VtL9ko5Nt58m6aZ0ul3SZZIWpnX1JC9JN0haIumvkk7NLO+WdJ6kPwKzJf04U3akpOuH2yhmZuVatGgR3d3dAHR3dxf1fK644oqidbO9qdWrV3PzzTcTEdx8881Fvan+6rz//vtZvnw5AMuXLy/qFQ21rBIUERWtsKdiqRvYFVgKvB74GNAYEe2SbgSujYh5kj4MvDMi3i1pLrANMBN4NfDTiJhUou65wM7A0cCrgFuAScCbgM9FxLHp0OJRwOHAtsB9wM4RsV7SyyLiSUkTgD8Bb4mIJyQFMDMirpYk4G/AmyNilaQrgasi4sb+jrmlpSUWL148pPaaMWMGa9asYfLkyUPaPq86Ozvp3tjNxmM31iyGhoXJe7GN02oXw3A03NRAY0PjmDs3rFhnZycTJkzg+us3vRc++uijexIKQGNjI/PnzwegtbW1Tx233XYbABdccAHz589n/fr1bLnllhxzzDF85jOfGbDOk046qSfZADQ3N3P55ZcDDLmsXJKWRERLqbKqXjgREc8AlwO9h+AOBq5Mp68ADsuU3RARGyPiXmCnAaq/Ol2vE/gnSVLr7WcRsS4iVgOPZ+prk/Rn4A/A7kDh2b8BuC6NPdLYPiRp+zTmm3vvQNKpkhZLWrxq1aoBwjUz2zzZZFJqvj8LFixg/fr1AKxfv55f/vKXg9aZTTS954daVgkj8XtSFwJ3At8bYJ1sd25dZloAkr4CHAMQEQeU2KbUfO+6NgBbSJoGHAEcHBHPS1oIjE/XWRsRGzLbfA+4EVgLXBMRL/YJPOISkmFNWlpahtwtbWpqAhhzP3rW1tbGXQ/fVeswRrdGmLzb5DF3blixtra+H6c3Njb26fWU48gjjyzqSR111FGD1tnc3NynR5SdHkpZJVT9EvSIeBK4GvhIZvEdwAfS6Q8Ctw9Sx39ExAGZBAXwPkkNkl4F7EUynFeO7YB/pQnq1SRDhP3t9xHgEWA2MLfM+s3MKqK9vb1o/vzzz++Z/tjHPlZUdtppp/VMz5o1i+QTC2hoaGDWrFmD1jl79uyi5V/60pd6podaVgkj9T2pC4DsVX5twCmSlgInAp8eQp33AbeSDMF9IiLWlrndz0l6VEuB80mG/AbyA2BFOvxoZjZipk6d2tPTaWxsZMqUKT1lJ554YtG6xx9/fM/0xIkTmT59OpKYPn06L3/5ywetc++99+7pBTU3NzNp0qbLAYZaVglVS1IR0ZiZfiwito6I9nR+eUS8NSL2j4i3RcRD6fKTI+LaUnX0qvvkiDgrIt4cEXtHxE3p8oURcWw63R4R38xss1+633URMT3d9/siYlpELBxgf4cBlw63PczMhqK9vZ2GhoaiXlRBoTeV7UUVzJo1i/3337+oFzVYnbNnz2abbbYp2RsaatlwjcRnUqOWpCXAc8Bnax2LmdWnqVOnsnDhwpJlJ554Yp8eVcHEiRO56KKLNqvOvffem5tv7nN92LDKhstJagARMWXwtczMrFp87z4zM8stJykzM8stJykzM8stJykzM8stJykzM8stJykzM8stJykzM8stf08qJyp9KxEzG138GlCak1ROlLoDspnVD78GlObhPjMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy0nKTMzyy3fYNaq7yloWFjD90NPJX9qGsNwPAXsVusgzGrDScqqKg8/P9AVXQA07dZU40iGaLd8tKNZLThJWVX55wfMbDhG6fiHmZnVAycpMzPLLScpMzPLLScpMzPLLScpMzPLLUVErWMYMyStAh6sdRzDNBFYXesgcsTtUcztsYnbothw2mPPiNixVIGTlBWRtDgiWmodR164PYq5PTZxWxSrVnt4uM/MzHLLScrMzHLLScp6u6TWAeSM26OY22MTt0WxqrSHP5MyM7Pcck/KzMxyy0nKzMxyy0mqjknaXdItkv4m6a+SPp0uf5mkBZI607871DrWapM0XtIiSX9O2+LL6fK6a4ssSeMk3SXppnS+bttD0nJJ90i6W9LidFldtoek7SVdK+nv6evHwdVqCyep+vYi8NmIeA3wJuBTkvYFzgZ+HRGTgV+n82PdOuCtEfF64ADg7ZLeRH22Rdangb9l5uu9PQ6PiAMy3weq1/b4b+DnEfFq4PUk50hV2sJJqo5FxMqIuDOdfpbkRNsNeBcwL11tHvDumgQ4giLRnc5umT6COmyLAklNwDHAdzOL67Y9+lF37SHppUAr8P8AIuKFiHiKKrWFk5QBIKkZeAPwR2CniFgJSSIDXlHD0EZMOrR1N/A4sCAi6rYtUhcCnwc2ZpbVc3sE8EtJSySdmi6rx/bYC1gFfC8dCv6upG2oUls4SRmSGoHrgDMj4plax1MrEbEhIg4AmoCpkvarcUg1I+lY4PGIWFLrWHLk0Ig4EJhOMjTeWuuAamQL4EDgWxHxBuA5qjjM6SRV5yRtSZKgfhAR16eLH5O0S1q+C0nPom6kQxcLgbdTv21xKPBOScuBHwJvlfR96rc9iIhH0r+PAz8GplKf7dEFdKUjDQDXkiStqrSFk1QdkySSceW/RcR/ZYp+CsxKp2cBPxnp2EaapB0lbZ9OTwCOAP5OHbYFQER8ISKaIqIZ+ADwm4j4EHXaHpK2kbRtYRo4CvgLddgeEfEosELSPumitwH3UqW28B0n6pikw4DfAvew6XOHL5J8LnU1sAfwEPC+iHiyJkGOEEn7k3zYO47kzdvVEXGepJdTZ23Rm6RpwOci4th6bQ9Je5H0niAZ7royIr5Sx+1xAMkFNVsB/wROIX3eUOG2cJIyM7Pc8nCfmZnllpOUmZnllpOUmZnllpOUmZnllpOUmZnllpOU2Rgh6T2SQtKrax2LWaU4SZmNHccDt5N8+dZsTHCSMhsD0vsvHgp8hDRJSWqQ9D/p72PdJGm+pOPSsimSbk1vlvqLwu1szPLGScpsbHg3ye/73A88KelAYAbQDLwO+ChwMPTcr/Ei4LiImAJcBnylBjGbDWqLWgdgZhVxPMlPa0ByQ9jjSX4T65qI2Ag8KumWtHwfYD9gQXL7RsYBK0c0WrMyOUmZjXLp/ePeCuwnKUiSTrDpXnN9NgH+GhEHj1CIZkPm4T6z0e844PKI2DMimiNid+ABYDXw3vSzqZ2Aaen69wE7SuoZ/pP02loEbjYYJymz0e94+vaargN2Jfntn78A3yG5u/3TEfECSWL7hqQ/A3cDh4xYtGabwXdBNxvDJDVGRHc6JLiI5NdlH611XGbl8mdSZmPbTemPOW4FnO8EZaONe1JmZpZb/kzKzMxyy0nKzMxyy0nKzMxyy0nKzMxyy0nKzMxy6/8D+DkkLlWihPUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABqAAAANjCAYAAADF7tvpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABoR0lEQVR4nOz9ebhd8/3//z8yT0QkiEYMLT1HhRBERNQQGYqaoogpKFrv0KK+Kt7VGorSuYaaWhShJFJTg0hSU5GWUMTQN2KKsWRAZN6/P/zO+ThOQnLykpPU7XZdLs7aa6/13OvsLa59t9ZqUqlUKgEAAAAAAIBCmjb2AAAAAAAAAPx3EaAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAA4HN2xBFHpLq6OkceeeQi13nxxRdzyCGHpEePHtl8881z8cUXJ0kef/zx3H///ctq1MVWXV2dPfbYo7HHqGd5mWvOnDnp2bNnqqurc9llly3z/R988MGprq7OhAkTlvm+l9Qn3+MTJkxIdXV1zjrrrNplw4YNS3V1dZ5++unGGHGR5s2bl3PPPTd9+vTJJptskt12262xR1rhXXnllamurs6oUaMaexQAAJaSAAUAAJ+jt99+Ow888EDatGmT+++/P2+88cZC1zvppJPy0EMPpU+fPjnooIOy5ZZb5u67785+++2X5557bhlPveI65phjMnjw4MYeI+PGjcuMGTPSpk2bjBw5srHHWW4t7nu8X79+OeaYY7Laaqsto8kWz8iRI3P55Zdn5ZVXziGHHJJBgwY19kgAALDcaN7YAwAAwH+zW2+9NfPnz88RRxyR888/PyNHjswxxxxTb71JkyZlzTXXzAUXXFC7bNSoUVmwYMGyHHeF973vfa+xR0iS3HzzzVlppZWyzz775Iorrsg///nP9OzZc5ntv1WrVkmSNm3aLLN9NsS77767WO/xfv36pV+/fstgoiXz1FNPJUl+8pOfZJtttmnkaQAAYPniDCgAAPgc3XTTTVlllVVyxBFHZOWVV86oUaNSqVTqrTd37tx06NBh2Q9Ice+++27uu+++bLXVVtl5552TJCNGjFimM6y//vpp0qRJ1l9//WW63y+aOXPmJElWXXXVRp4EAACWPwIUAAB8Tp555pk8++yz6d27d1q3bp1+/fplypQp+fvf/167zvnnn5/q6ura9aurq9O3b98MGzYsJ598cpLkZz/7Waqrq/Pqq6/WPu/BBx/MYYcdli222CKbbbZZ9ttvv9xxxx119v/qq6+muro6v/vd73LmmWdms802S69evXL77bd/5tzHH398+vTpkx49emSvvfbKyJEjFxrOPq5SqeS6667LXnvtle7du6dnz5456qijas8S+bgPPvggF154YfbYY4/06NEjm2yySQYMGJCf//znmTlzZr3XcP7552fcuHH51re+le7du6d379455ZRT8u6779bZ7ifvAVVzfJ9//vn8+te/zg477JCNN944u+66a6677rqFzvWLX/wiffv2Tffu3TNo0KCMHz8+P/rRj2p/T5/l1ltvzbx587Lttttm0003zVprrZU777wz77333kLX/89//pOf/OQn+frXv55NN900BxxwQCZOnJhDDz00ffv2bdAx/upXv5q11lor7dq1q1122223ZfDgwenZs2d69OiRvffeO9dee+1n/l5rPP744xk6dGh69eqVTTbZJLvssksuvvji2ghTo2/fvtlyyy3rPf+T93b6rPf4xy3qHlAlPgcNOS412/zLX/6SJNlzzz1r77k1atSoVFdX5/bbb8/hhx+eTTbZJDvuuGNeeeWVJMlbb72Vn/zkJ9l+++2z8cYbZ/vtt89PfvKTvPXWW3X2UfPeffHFF/Pzn/+89v00ePDgPPHEE1mwYEEuu+yy9O3bN5tttlm+9a1vLfY9v+bNm5dLLrkkAwcOTPfu3bPLLrtk5MiR+f3vf7/Q38PiHOfko8/fsGHDMnHixBx88MHp0aNHevbsmeOOO26hv9uxY8dmv/32y2abbZbtt98+F1100SLPiHv77bdz2mmnZbvttsvGG2+cvn375he/+EXef//9OusdfPDB6du3b+6555707ds3m266aY499tgkyUsvvZRjjz02O+64Y+02TjvttLz99tuLddwAAFgyLsEHAACfk5tuuilJsssuu9T+/S9/+UtGjBiRbbfdNkmy1VZb5ZhjjskFF1yQ1VZbLYMHD87KK6+crl27ZsaMGRk3bly23XbbbLbZZmnfvn2Sj86m+fGPf5yOHTtml112Sdu2bTNu3Lgce+yxOf7443PUUUfVmeOGG25Ikuy///554YUXstlmmy1y5gcffDBHHXVU5s+fn5122ildunTJ3XffnR/96Ed57bXX8v3vf3+Rzz3ppJNy880356tf/WoGDx6cDz/8MLfffnsGDx6cSy65JL17907y0Zffhx12WB5//PFsu+222XbbbfPBBx9k/Pjx+eMf/5hXX3015513Xp1t/+1vf8vvf//77LDDDunVq1f+/ve/Z8SIEXnuuefy5z//+TN/FyeeeGJee+21DBgwIM2bN88tt9yS0047Lc2aNcu+++6b5KOzWQ477LD861//So8ePTJw4MBMmjQpQ4cOTZcuXT5zHzVuvvnmNGvWLAMHDkzy0e/9sssuyy233JIDDzywzrpTp07NAQcckJdeeinbbrttqqur89BDD+WQQw5Jhw4d0qJFiwYd429961v51re+Vfu8v/71rznhhBOy3nrrZa+99krTpk0zbty4nH766Zk6dWqOPvroT31NY8eOzbHHHpumTZumX79+WW211fLQQw/lN7/5Te67775cccUVadmy5WIfo+Sjy+ot7D0+ZcqUxXp+ic9BQ49L+/btc8wxx2Ts2LF55plnst9++2X11VfPWmutVTv/mWeemTXWWCMHH3xwXn311ay99tp5+eWXs//+++c///lPttlmm+y888559tlnc/3112f8+PG57rrrsvbaa9fZ13HHHZfp06dn1113zeuvv54777wzRxxxRPr27Zu77747AwcOzOzZs3PLLbfkqKOOyh133JHOnTt/6rE77rjjctddd6W6ujoHHHBAXn755fzoRz+qt++GHOdJkyZlyJAh2WKLLbL//vvn8ccfz+23354nn3wyo0ePrn2fjBgxIqeccko6deqU3XffPR9++GEuvvjirLzyyvVmeO2117L//vvnzTffzI477pj1118/Tz/9dP7whz/kgQceyPDhw9O2bdva9adOnZrjjjsuO+20U1ZaaaWsv/76effdd3PooYdm6tSpGThwYNZYY408++yzue666zJhwoTccsst9T5vAAAspQoAAFDcvHnzKn369Kn06NGjMmvWrEqlUqnMnTu30rt370q3bt0q77zzTp31q6qqKrvvvnudZTfeeGOlqqqqcsUVV9Que/311ysbb7xxZeedd668++67tcs//PDDyn777VfZcMMNK88++2ylUqlUXnnllUpVVVWlurq68vTTTy/WzDvuuGNlk002qUycOLF2+axZsyq77bZbZaONNqr85z//Wei8o0ePrlRVVVV+8IMfVObOnVu7/OWXX65stdVWla9//euV2bNnVyqVSuW2226rVFVVVX7961/X2f97771X2WabbSpf+9rXKjNnzqzzGqqqqiqjR4+uXXfOnDmVXXfdtVJVVVV57rnnFnkczzvvvEpVVVVlxx13rHPMH3nkkUpVVVVln332qV32xz/+sVJVVVU544wzKgsWLKhdfs4559TO8Fn+/e9/V6qqqiqHHXZY7bKnn366UlVVVdlzzz3rrX/GGWdUqqqqKn/4wx9ql82fP79y7LHH1s5dY0mO8Sfttddelc0226zy3nvv1S577733Kn369KlsvfXWdV7vJ7333nuVnj17VjbffPPKk08+Wbt87ty5lRNOOKFSVVVVueCCC2qX77jjjpUtttii3nYeeuihSlVVVeXMM8+sXbaw9/jC1jvppJMqVVVVlaeeeqpSqZT7HCzNcVnYXB9/Tdttt13t+7jGkCFDKlVVVZUbbrihzvLhw4dXqqqqKkOGDKld9vH37vTp02uX/+AHP6hUVVVVNt9888obb7xRu/z888+vVFVVVYYPH/6pM99xxx2VqqqqytChQytz5sypXX7NNdfUvs9feeWVSqWyZMe5UqnUPv+yyy6rXbZgwYLKt7/97UpVVVXlnnvuqVQqlcr06dMrW2yxRWW77barvP7667XrPv7445Xu3btXqqqqKjfeeGPt8iOPPLJSXV1d+dvf/lbntfzpT3+qVFVVVc4999zaZQcddFClqqqq8rOf/azOuldffXWlqqqqMnLkyDrLTz/99EpVVVW9bQMAsPRcgg8AAD4Hf//73/P222+nf//+adWqVZKkefPm+cY3vpG5c+fm5ptvbtB2b7nllsyZMyff//7369x3pnXr1vn+97+fBQsW1F4WrMa6666bDTfc8DO3/dhjj2XKlCm1l8Wr0apVqwwbNizHHHNMZs+evdDnjhw5Mknyox/9KM2b/78LLay99toZPHhw3nzzzTzwwANJko022ihnnnlmDjnkkDrbWGmllbLRRhtl/vz5mT59ep3H1l577dr7KSVJixYtas/2WZwzZvbee+907Nix9ufNN9+83tk2f/nLX9K2bdscd9xxadKkSe3yY445Jqussspn7iNJ7e911113rV224YYb5qtf/WqeeuqpTJo0qXb5/Pnzc+utt2attdbKoYceWru8adOm+eEPf5hmzZrV2faSHONPqlQqmTVrVv7v//6vdtlKK62UkSNHZty4cXVe7yeNHTs206dPz5AhQ9KtW7fa5c2bN8///u//pnXr1rnxxhs/7bAUV+pzsDTH5bNst912adOmTe3Pr7/+eh566KFsueWW2Weffeqse8ABB2STTTbJQw89VO9SdYMGDao9+zH56L2bfPQe+/iZTt27d0/y2Z+HmuNy0kkn1TnjZ//998+Xv/zlOus25Di3bt06Q4YMqf25SZMm+frXv15ntnvuuSfvvfdehgwZkjXXXLN23U022SR77rlnne299dZbuffee7P99ttnhx12qPPYQQcdlC996Uv1ZkiSAQMG1Pm55tJ+kyZNyvz582uXH3/88bn//vvrbRsAgKXnEnwAAPA5WFiISJLddtstw4cPz8iRI3PYYYct8XaffPLJJB9dKu/jX5onqb130jPPPFNnedeuXRdr2zXPW9gl+rbZZptss802i3zupEmT0qpVqwwfPrzeY5MnT06SPP3009lhhx3y5S9/OV/+8pcze/bs/Otf/8rkyZPz8ssvZ9KkSfnHP/6RJHW+IE6S9dZbr952ay7V9cl7EC3MJ79YTz4KDTX3j5k9e3b+/e9/p1u3bvUuAdauXbtUV1fXzrYoCxYsyK233pqWLVvW+/J7t912y69//euMGDGiNuK89NJLmT59erbeeut6salLly51vphPluwYf9J+++2XU089NYMHD051dXW22267bL/99tliiy3StOmn/3+JNe+Lnj171nusY8eO+fKXv5ynn34677333kIvn/Z5KPU5WJrj8lk+ub+a+1ct7P5YyUdh6YknnsgzzzxT57nrrLNOnfVqotYnt18Tuj/r8/Dkk0+mQ4cO9bbbtGnT9OjRo/a9VLNusmTHuUuXLvUux/jJz2rNczbeeON68/Xo0aPOZTWfeuqpVCqVTJs2Leeff3699Vu0aJHXX389b775Zp0g98njM3DgwFx44YUZPnx4Ro8enW233bb297366qvX2y4AAEtPgAIAgMLef//9jB07Nkly5JFHLnSd5557LhMnTqw9m2Fxvffee0nyqfc9+uTZQzVfTH+WGTNmJPkozCyp9957L/PmzcsFF1zwmXMtWLAgl1xySa644oraZZ06dUqPHj2y1lpr5fnnn0+lUqnz3IXdX2hJzk5Z1PNr9jNt2rQkWeQX0WusscZn7uOhhx7KG2+8kWTRkeG2227LsGHD0rp160ydOjVJstpqqy1yn2+99Vbtz0tyjD9p8ODB6dSpU6666qo88sgjefbZZ3PZZZelc+fOGTZsWO19yhamJtIt6n2xxhpr5Omnn86HH364zAJUqc/B0hyXz/LJ/dUcx0Udo5r32KxZs+os//i9jT5uSe+5VWPq1KkLDbIfn6FGQ47zp31Waz5vNf+uadeuXb11O3ToUOfnmnUfe+yxPPbYY4ucY9q0aXUCVOvWres83rlz54wcOTIXXXRRxo0bl1tvvTW33nprWrRokUGDBuWUU05p8DEFAGDhBCgAACjsjjvuyKxZs7LJJptko402qvf45MmT849//CMjRoxY4gBV82X02LFjs/baaxeZ95Pb/uCDD+o9Nnfu3FQqlUV+Qdu2bdu0a9cud99992fu5/LLL89vf/vbbLXVVjnyyCPzta99rTb8HHHEEXn++ecb/iIaqOaL8JpI8EkLOyafdNNNNyVJdtppp4VGpQkTJuTFF1/MHXfckT333LM26CzuPpfkGC9M//79079//8yYMSMTJkzI+PHjc+utt+aEE07IBhtskKqqqoU+r+bYfDyGfVxNIPh4OKi53NnHfTKsLI2Sn4OGHpclVXMc33zzzYU+vrDj+Hn4+Jl/n/TJ5Z/Xv29qLilYE7g+rubMqk/OMHTo0Bx77LFLtd+11147Z599dubPn58nn3wy9913X0aNGpXrr78+K6+8ck488cSl2j4AAHW5BxQAABRWc/m9YcOG5Ywzzqj317nnnpumTZvmjjvuWOQXwcnCz/Cprq5OkjzxxBP1HnvxxRdz7rnnZvz48Q2au+aL9scff7zeY7fffns23XTT2siysLneeOONvP322/Ueu/vuu/Ob3/ym9rJbt912W5o1a5aLLroo2223XW18qlQqeeGFF2r/eVlaaaWVst566+WZZ56pdwmzmi+rP83MmTNz1113pV27dvn1r3+90N/70KFDkyQjRoxIknzlK19J27ZtF3q8Z8yYUedSaMmSHeOPmzNnTi666KJceeWVST768r9///752c9+lv/5n//JggUL8uijjy7ytX3ta19LkjzyyCP1Hnv//ffz9NNPZ911162Nky1atMjs2bPr/Q5ffvnles9v6D2WSnwOlva4LKma4zhx4sSFPv7Pf/4zTZo0yQYbbFBsnwvTrVu3vPHGGwsNiv/617/q/Px5/fum5jKUCzsWn9xXzQyL+gyed955ufTSSz/z0oPjxo3Laaedlvfffz/NmjXLpptummOOOab2kpYLe38DALB0BCgAAChoypQp+ec//5m11lorW2yxxULX6dKlS7beeuvMnDkzf/3rXxe5rebNP7pgwdy5c2uX7b777mnWrFl++9vf1gkR8+bNy09/+tNcfvnltZeTW1I9e/bMl770pdx8882196tJPvqi/sorr0yzZs3Su3fvhT53r732SqVSyU9/+tM6XwS/9dZbOfXUU3PppZfWngHSqlWrzJ8/P++++26dbVx44YWZMmVK7etZ1gYNGpT333+/3n1mLrnkkoVGn48bM2ZMZs6cmf79+9e79FeNAQMGZKWVVsrDDz+cyZMnp0WLFtltt90yefLkXHfddbXrLViwIL/4xS/q/N6TJTvGH9eyZcvcdttt+d3vfpdXXnmlzmM1x7tLly6LfG39+vXLyiuvnGuvvTaTJk2qXT5v3rycddZZmTVrVvbYY4/a5V/5ylcyb9683HvvvbXLpk2bttB7Vy3sPb44SnwOlva4LKkuXbqkV69eefLJJ3PttdfWeWzEiBGZOHFievXqVe/eX6UNGjQolUolP//5z+vca+3mm2+uF38+r3/fbL/99unYsWOuvvrqOqH1+eefz8iRI+usu/baa6dnz5659957c8cdd9R57KabbsqFF16Y++677zMvn/fCCy/kuuuuq/NZSz6f3zUAAB9xCT4AACjo5ptvTqVSyW677fapZ3cMGjQoDzzwQEaMGJH99ttvoevU3M/kuuuuy/Tp03PwwQdnvfXWy4knnphzzjkn3/zmN9O3b9+sssoquffee/P8889nxx13zO67796g2Zs3b56zzz473/3udzN48OD0798/nTp1yt13350XX3wxJ598cp17rHzy9YwfPz533nlnnn322Xz961/PvHnzcvvtt2fatGk54YQTai/htfvuu+exxx7L/vvvn5133jktWrTIhAkTMmnSpHTq1CnvvPNOgyPa0jj00ENzxx135NJLL80jjzyS7t2756mnnsrDDz+c9u3bf+rZajVnhn3asW/Tpk122WWX3HDDDRkxYkR++MMf5rjjjst9992X0047LePGjcsGG2yQf/7zn3nhhRfSunXrNG36//6fwSU5xp/0gx/8IEcffXT22muvfOMb38gqq6ySJ598Mg899FC22mqr9OnTZ5Fzr7TSSjn77LNz/PHH13lfPPTQQ/n3v/+dLbfcss69zvbdd9+MHz8+xx13XHbbbbe0bNkyd9xxR9Zdd916Z3Ut7D2+OEp9DpbmuDTEGWeckQMPPDCnn3567rrrrlRXV+ff//53/v73v2eNNdbIT3/606L7W5hdd901N998c2699dY899xz6dWrV1566aXcfffdWXXVVTN16tQ0a9YsSbnj/Ent2rXLT3/60xx77LHZZ599MnDgwCQfXb60Y8eOtZcjrFFz3I499thst912+epXv5rJkyfn7rvvTocOHXLqqad+5j733Xff3HDDDfnlL3+Zf/zjH6murs4777yTO+64I23bts13vvOdJX4dAAB8OmdAAQBAQTWX3/usL2X79++flVdeOU888USeffbZha7Ts2fPHHjggZk+fXqGDx9ee2+kww47LJdeemk23HDDjBkzJtdff32aN2+eYcOG5bzzzqs9q6Qhttlmm1x33XXp3bt37rnnngwfPjxt2rTJueeem0MPPXSRz2vSpEnOO++8/OhHP0qbNm0yYsSI3H777dlggw1y4YUX1vly94ADDsiPf/zjdOjQISNGjMitt95a59J1SXLPPfc0+DU0VKtWrXLllVfmgAMOyMsvv5xrrrkm77//fi699NKst956izyz6c0338yECROy+uqrL/IMsRqDBg1K8tH7ZO7cuenYsWOuu+667LbbbnniiSdy7bXXpm3btrnqqqvSrl27tGnTpva5S3KMP2mnnXbKH//4x2y88cb529/+lquuuipvvPFGjj766Fx66aV1QtfCDBgwINdee2369OmT++67LzfccEOS5Ic//GGuvPLKOmef7LjjjvnlL3+ZddZZJ3/5y19y1113Za+99spvf/vbettd1Ht8cZT4HCztcVlS6623Xm688cbsu+++ee6553LNNdfkxRdfzMEHH5ybbrop66yzTtH9LUyTJk1y/vnn56ijjqo97q+88kp+/vOfZ+utt06SOu/1z+vfN/369cuVV16ZjTbaKKNHj87f/va37Lvvvjn++OPrrfuVr3wlo0aNyr777ptnn302V111VZ599tnsscceGTly5GJdtnCVVVbJNddck/333z8vvvhi/vSnP+Xuu+/OdtttlxtuuCEbbrhhg14HAACL1qSyrC+uDgAAsBx69dVX07Fjx7Rt27beYzvuuGPatGmT0aNHF93nyy+/nDXXXLPe5cPmzJmTzTffPL17985ll11WdJ98sb3++utZeeWVs9JKK9V77KCDDsqTTz6ZRx99tMH35wIAgBrOgAIAAEjy05/+NFtssUW9+wGNHj06r732Wnr16lV8n0OHDk2fPn3qXXLsT3/6U+bOnfu57JMvtssuuyxbbLFF/vGPf9RZ/uijj+aRRx7JVlttJT4BAFCEM6AAAACSjB8/PkOHDs0qq6ySAQMGpEOHDnn++edz9913Z/XVV8+oUaPSqVOnovscPnx4zjjjjKy55prZaaed0qZNmzz11FN54IEHUl1dnREjRqRVq1ZF98kX26RJk7LffvulRYsWGTBgQDp37pxXX301Y8eOTcuWLXP99ddn/fXXb+wxAQD4LyBAAQAA/P899NBDufzyy/PUU09l+vTpWX311bPjjjtm6NChxeNTjTFjxuTqq6/O//3f/2XmzJn50pe+lIEDB+a73/1u2rVr97nsky+2p556Kpdcckkee+yxvPPOO+nYsWO22WabDB06dJnchwoAgC8GAQoAAAAAAICi3AMKAAAAAACAogQoAAAAAAAAimre2AOw/Hr33Xdz//33p2vXrm58DAAAAAAAX3CzZ8/Oq6++mm233TYdO3b81HUFKBbp/vvvz4knntjYYwAAAAAAAMuRX/ziF9l9990/dR0BikXq2rVrko/eSOuvv34jTwMAAAAAADSm559/PieeeGJtP/g0AhSLVHPZvfXXXz/dunVr5GkAAAAAAIDlweLctqfpMpgDAAAAAACALxABCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAopo39gAAsLwZNmxYXnvttcYeA5Yr06ZNS5J06NChUeeAFU2XLl1yzjnnNPYYAAAAy5wABQCf8Nprr2XySy+n0rp9Y48Cy40ms2YkSd6d3ciDwAqk5nMDAADwRSRAAcBCVFq3z4fdv9XYY8Byo83jI5PE5wKWQM3nBgAA4IvIPaAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqBgBXbllVfmyiuvbOwxAAAAAJYbvi8BWD4IULACGz9+fMaPH9/YYwAAAAAsN3xfArB8EKAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoJahYcOGpbq6OtXV1XnppZcWud7pp5+e6urq9OnTZxlOBwAAAAAAUIYA1UjGjh270OWVSiV33XXXMp4GAAAAAOCL4w9/+EN22GGH/OEPf2jsUVhO/f3vf88+++yTv//97409ygpLgGoEa6+99iID1MSJE/P222+nY8eOy3gqAAAAAID/ftOmTcs111yTBQsW5Jprrsm0adMaeySWM7NmzcqvfvWrvPnmm/nVr36VWbNmNfZIKyQBqhH0798/jz32WP7zn//Ue+yuu+7Keuutlw022KARJgMAAAAA+O/2ox/9KAsWLEiSLFiwIKecckojT8Ty5pprrsk777yTJHnnnXcyfPjwRp5oxSRANYL+/ftnwYIFGT9+fL3HxowZk4EDB9Zb/o9//CNHHXVUtt5663Tr1i3bbLNNfvCDH+S1116rXWfChAmprq7OPffck7PPPjvbbrttunfvnv322y8TJkz4XF8TAAAAAMDy7uGHH84TTzxRZ9njjz+ehx9+uJEmYnnz6quvZvjw4alUKkk+um3O8OHD8+qrrzbyZCue5o09wBdRt27dstZaa2Xs2LHZd999a5dPmjQpU6ZMycCBA/Poo4/WLn/wwQdz+OGHp1u3bhk6dGhatmyZiRMn5pZbbsn//d//5dZbb62z/dNPPz0dOnTId77znXz44Yf54x//mO985zu5++67s+qqqy6z18nnb9q0afnggw8yZMiQxh4F/qtMmTIlqTRr7DEAWNHNnZUpU6b4bzUAWMamTJmSdu3aNfYYLIcWLFiQ0047baGPnXbaabnlllvStKlzNr7IKpVKfvOb3yxy+S9/+cs0adKkESZbMQlQjaR///659tpr8/7772ellVZK8tHZT127dk23bt3qrHvFFVdk1VVXzVVXXZU2bdokSQYPHpx58+blr3/9a95888107ty5dv127drl+uuvT4sWLZIkq6++ek4++eTcdddddYIXAAAAAMAXxYMPPpgZM2Ys9LEZM2bkwQcfTJ8+fZbxVCxPXnrppfzzn/+st3z+/Pn55z//mZdeeinrrbfesh9sBSVANZL+/fvnyiuvzL333ptddtklyUcBasCAAfXWveiiizJjxoza+JQk77//flq1apUkmTlzZp31BwwYUBufkmSjjTZKkrz99tvFXweNq0OHDunQoUOuuuqqxh4F/qsMGTIkL7w5rbHHAGBF16J11ursv9UAYFlz9jGL0rt377Rv336hEWqVVVZJ7969G2EqlifrrrtuevbsmYkTJ2b+/Pm1y5s1a5Ytttgi6667biNOt+JxPmEj2XzzzbPaaqtl3LhxSZLnnnsuL7zwQr7xjW/UW7dZs2Z5/fXX89Of/jRDhgxJ3759s+WWW2bUqFFJUnvDvBodO3as83NNjPrkegAAAAAAXxRNmzZd5CX4Tj/9dJffI02aNMnxxx+/yOUuv7dkfKIaSdOmTbPTTjvl7rvvzpw5czJmzJh86UtfSvfu3eute+WVV2avvfbKvffem65du+bggw/O1Vdfne9+97uL3DYAAAAAAHVtueWW2WSTTeos6969ezbffPNGmojlTdeuXXPggQfWxqYmTZrkwAMPzFprrdXIk614lIpG1L9//7z//vuZMGFCxowZk/79+9crqLNnz85vf/vb9OjRI3/9619z9tln57DDDkvPnj0zderURpocAAAAAGDFdNZZZ9X+T/xNmzbNmWee2cgTsbw56KCD0qlTpyTJaqutlgMPPLCRJ1oxCVCNaOutt0779u1z9dVX5+mnn87AgQPrrTNr1qx8+OGHWXfdddOyZcva5a+99lrGjBmTJHWuRQkAAAAAwKJ16NAhBx10UJo2bZqDDjooHTp0aOyRWM60bt06J5xwQjp37pwf/OAHad26dWOPtEJq3tgDfJG1aNEiO+ywQ2655ZasvvrqCz3Nc5VVVkmPHj1y6623pn379qmqqsrLL7+cG264IR9++GGS5IMPPljWowMAAAAArLCOOOKIHHHEEY09BsuxPn36pE+fPo09xgrNGVCNbMCAAUk+uhzfou7d9Lvf/S4DBw7MbbfdlrPPPjtjx47Nt771rVx99dVJkgceeGCZzQsAAAAAAPBZnAG1DJ1zzjk555xz6izr379/nn322Xrr1sSlJOncuXN+85vfLHSbH39ur169Frqt9ddff6HLAQAAAAAAPg/OgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAimre2AMADde3b9/GHgEAAABgueL7EoDlgwAFK7BDDz20sUcAAAAAWK74vgRg+eASfAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEU1b+wBAGB51GTWjLR5fGRjjwHLjSazZiSJzwUsgY8+Nx0aewwAAIBGIUABwCd06dKlsUeA5c60aR/9vUOHDo05BqxgOvgzBQAA+MISoADgE84555zGHgEAAAAAVmjuAQUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFBU88YeAICGGzZsWF577bVPXWfatGlJkg4dOnz+A8EXTJcuXXLOOec09hgAAAAAyx0BCmAF9tprr+XVlyanc9sFi1zn/Zkfnezabu47y2os+EJ4c6YTyQEAAAAWRYACWMF1brsg5/aescjHT3qwfZJ86jrAkqv5bAEAAABQn/91FwAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKGiAK6+8MldeeWVjjwEAXzj+DAYAAIAVgwAFDTB+/PiMHz++sccAgC8cfwYDAADAikGAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoqsEBav/998/vfve7krMAAAAAAADwX6DBAWrSpEmZOXNmyVkAAAAAAAD4L9DgANW1a9e88sorJWcBAAAAAADgv0Dzhj7x3HPPzf/8z//k2GOPzYABA9K1a9e0atVqoetuuOGGDR4QAAAAAACAFUuDA9Q+++yTJk2a5M4778yYMWM+dd2nn366obsBAAAAAABgBdPgALXnnnumSZMmJWcBAAAAAADgv0CDA9Q555xTcg4AAAAAAAD+SzQtsZEPPvggjz76aO6+++4kyfTp00tsFgAAAAAAgBXQUgWo//znPzn++OPTq1evHHDAARk6dGiS5Nprr03//v3z8MMPFxkSAAAAAACAFUeDA9S7776b/fbbL7fffnu6d++ejTbaKJVKJUnSpk2bvPbaaznyyCPz7LPPFhsWAAAAAACA5V+DA9R5552X119/PRdddFGuvfba7LjjjrWPHXroobn88sszb968XHTRRUUGBQAAAAAAYMXQ4AA1fvz49O/fv054+rhevXplwIABeeyxxxq6CwAAAAAAAFZADQ5QU6dOzdprr/2p63Tu3DnvvvtuQ3cBAAAAAADACqjBAWrNNdfMU0899anrPP7441lzzTUbugsAAAAAAABWQA0OUAMHDsyDDz6YP//5zwt9/IorrsgjjzySfv36NXg4AAAAAAAAVjzNG/rEo446Kvfcc09OP/30DB8+PAsWLEiSDBs2LJMmTcpzzz2XddZZJ0cddVSxYQEAAAAAAFj+NfgMqJVWWinXXXddBg8enClTpuT5559PpVLJTTfdlJdeeil77LFHrrvuurRv377kvAAAAAAAACznGnwGVPJRhDr11FNzyimnZPLkyZkxY0batm2br3zlK2nZsmWpGQEAAAAAAFiBLFWAqtGsWbNssMEGJTYFAAAAAADACm6xA9QFF1zQoB00adIkRx99dIOeCwAAAAAAwIpnqQJUkyZNkiSVSmWhj1UqFQEKAAAAAADgC6bBAWr27Nn52c9+liQ55JBD0qNHj3To0CEzZ87ME088kSuuuCLNmjXLWWedVXZiAAAAAAAAlmuLHaD69etX5+dzzz038+bNy4gRI7L22mvXeax79+7p379/Bg0alFtuuSVbbrllmWkBAAAAAABY7jVt6BNvueWWDBgwoF58qrHGGmukf//+ufPOOxs83Ofp+OOPT3V1daZMmVLvsYsvvjjV1dX5+te/vtDnHn744dl4440za9asz3tMAAAAAACAFU6DA9Ts2bMzb968T13n/fffX+j9oZYHW221VZLkX//6V73HHnjggbRo0SJvvfVWnn/++TqPLViwII899lg222yztG7depnMCgAAAAAAsCJpcIDq1q1bxowZUy/Q1Hj00Udz5513LreX36sJUI899lid5bNmzcqjjz6a3XbbLclHMerj/v3vf+f999/P1ltvvUzmBAAAAAAAWNEs9j2gPul73/teDj300Oy7777Za6+9svHGG6ddu3Z57733MnHixNx6661p0aJFjjvuuILjlrP++utn9dVXr3cG1COPPJI5c+Zk7733zoQJE/LAAw/k4IMPrn184sSJSSJAAQAAAAAALEKDA9SWW26Z3//+9zn99NNzzTXXpEmTJrWPVSqVbLDBBjn77LNTVVVVZNDPQ8+ePTN27NjMmTMnLVu2TJI8+OCDadu2bTbddNP06tUrY8aMyfz589OsWbMkHwWoNm3aZNNNN03y0RlUF1xwQSZOnJj58+fna1/7Wo444oj069evdj/nn39+LrrooowePTpnn312/vnPf6ZVq1bZc8898//9f/9fxowZk9///vd55ZVX8uUvfzknnXRSevfuXfv8d955JxdffHHuvvvuvP7662nRokWqqqpy5JFH1tlP3759s9VWW2X77bfPxRdfnBdeeCGrrbZa9t577wwdOjRNmzb4hDcAAAAAAIDF1uAAlSTbbbdd7rrrrvzrX//KM888kxkzZqR9+/bp1q1bunfvXmrGz81WW22V0aNH55lnnqmd94EHHkjPnj3TokWL9O7dO6NGjcoTTzyRzTbbLMlHAWqLLbZIixYtcs8992To0KHp3LlzjjzyyLRu3To33XRTjj766Pz4xz/OQQcdVLuvSqWSgw8+OH369MlJJ52UO++8M1dccUWee+65TJo0KUOGDEmbNm1y6aWX5phjjsldd92Vjh07Zvbs2TnwwAPz7rvv5oADDshaa62V119/PX/+859zzDHHZOTIkdl4441r9zNhwoTcddddOeigg7L//vvnpptuyvnnn59VV101Bx544DI9vgAAAAAAwBfTUgWoJGnatGl69OiRHj16lJhnmfr4faC6d++eadOm5emnn84Pf/jDJP/vMnsPPPBANttss7z11luZMmVKBg8enPnz5+fUU09Nhw4dMmrUqHTo0CFJcsABB2T//ffPz3/+83zjG9/IaqutliRZsGBBdtppp5x22mlJkl122SW9e/fO/fffnxEjRmSTTTZJkrRt2zY//vGP89hjj6Vv374ZP358Jk+enPPPPz8DBgyonb1Hjx454ogjcv/999cJUK+99lpuuOGG2jO0dtttt2y77ba59dZbBaiCpk2blg8++CBDhgxp7FH4gpsyZUpap8lnrwgUN2NOk8yaMsWfBcvYlClT0q5du8YeAwAAAPgMSxWgpk6dmjFjxmTKlCmZM2dOKpVKvXWaNGmSYcOGLc1uPjefvA/UhAkTsmDBgtrL362xxhpZf/31M2HChAwdOrTO/Z8mTZqU119/Pd/73vdq41OStGrVKocffnh+8IMf5N57782gQYNqHxs4cGDtP7dv3z6dOnVK8+bNa+NTkqy99tpJkrfffjtJsvPOO6dXr15ZZZVVateZP39+FixYkCSZOXNmnde01lpr1canJGnXrl3WXXfd/Oc//2n4gQIAAAAAAFgCDQ5QzzzzTA455JDMmDFjoeGpxvIcoJKP7gP12GOPJfnoTKdVV1011dXVtY/37t07N954Y+bOnZuJEydm5ZVXTrdu3XLnnXcmSb7yla/U2+b666+f5KP/Q/fjOnXqVOfn5s2b11tWc5+mmsCUJM2aNcsVV1yRiRMn5pVXXslLL72U2bNn11svSTp27FhvnpYtW9Zbj6XToUOHdOjQIVdddVVjj8IX3JAhQzL37ecbewz4QmrfspJOq6/lz4JlzBlnAAAAsGJocID69a9/nenTp2fffffNdtttl5VXXjlNmqx4l4GquQ/Uu+++m4ceeihbb711ndfRu3fvXHPNNXnqqafy6KOPpmfPnmnWrFltdFtYfKuJPS1atKizvFmzZvXW/axj9uKLL2b//ffPrFmz0rt37/Tr1y/V1dXp0qVL9tlnn3rr1wQsAAAAAACAxtLgAPXwww9nxx13zBlnnFFynmWu5j5Q999/f1588cV8+9vfrvd406ZN89hjj+Xpp5/OiSeemCTp2rVrkuSFF16ot82aZWuuueZSz3fJJZdk6tSpueWWW1JVVVW7vOZygAAAAAAAAMubBp8u07Rp04Vefm5FU3MfqGuvvTZJau//VKN9+/bZaKONcsstt2Tu3LnZeuutkyTdunVL586d8+c//znTpk2rXX/OnDm5/PLL06JFi3z9619f6vmmTZuWli1bZp111qldtmDBgtrL/cyfP3+p9wEAAAAAAFBSg8+A2nLLLfPwww+XnKXR9OzZM6NHj85aa61VJ/TU6N27dy677LJ06tSp9iyk5s2b59RTT833vve9DBo0KPvuu29at26dm2++OU899VSGDRtW7/5ODbHDDjtk/PjxOfzww/PNb34zs2fPzujRo/PUU0+ladOm+eCDD5Z6HwAAAAAAACU1+AyoE088MZMnT86ZZ56ZN998s+RMy1zNZfhqzm76pJqzorbaaqs692zaaaedctVVV2XdddfNJZdckt/97ndp165dfv/73+ewww4rMtu+++6bE088MW+99VbOPvvsXHHFFenUqVNuuOGGbLTRRnnwwQeL7AcAAAAAAKCUJpVKpdKQJw4ZMiSvv/56Xn311SRJq1at0rJly/o7aNIkEyZMWLopaRSTJk3KoEGDMmrUqHTr1q2xx1muDBkyJElqL4UIjWXIkCGZ+/bzObf3jEWuc9KD7ZPkU9cBltxJD7ZPi9XX92fBMubPYAAAAGg8S9INGnwJvprw9KUvfamhmwAAAAAAAOC/UIMD1Pjx40vOAQAAAAAAwH+JBt8DCgAAAAAAABamwWdA1bj33nszatSoPP3005kxY0YefPDB3HLLLXn55Zdz+OGHp02bNiXmBAAAAAAAYAWxVAHqJz/5SUaMGJFKpZJmzZplwYIFSZInn3wyV111Ve67775cfvnladeuXZFhAQAAAAAAWP41+BJ8f/7zn3PDDTdkwIABGTNmTI466qjax44++ujsvffe+de//pUrrriiyKAAAAAAAACsGJYqQFVXV+d3v/td1llnnTRp0qT2sVVWWSVnnXVWunfvnttvv73IoAAAAAAAAKwYGhygJk+enK9//eufuk7Pnj0zZcqUhu4CAAAAAACAFVCDA1Tr1q3zzjvvfOo6b731Vlq3bt3QXQAAAAAAALACanCA2mKLLXLXXXfl9ddfX+jjL774YsaOHZvNN9+8wcMBAAAAAACw4mlwgDr66KMzZ86c7LPPPrniiisyefLkJMk//vGP/PGPf8zgwYMzd+7cfPe73y02LAAAAAAAAMu/5g19Yrdu3XL++edn2LBhOffcc2uXH3LIIalUKllppZXyy1/+MptuummRQQEAAAAAAFgxNDhAJcn222+fv/3tbxk/fnyefPLJvPfee2nbtm2qq6vTv3//rLzyyqXmBAAAAAAAYAXR4AA1e/bstGrVKq1bt85XvvKVzJkzp87j48ePzze/+c00a9ZsqYcEAAAAAABgxbHEAWr48OH54x//mEGDBuWYY45JkowdOzYXXnhhvXXfeOMN94ACAAAAAAD4glmiAPWjH/0oo0aNSrt27dKyZct6jw8bNixJsmDBglx88cW5+OKLM3jw4KyyyiplpgUAAAAAAGC5t9gB6oEHHsiNN96YPn365Fe/+lU6dOhQb51DDjmk9p9XXnnlnHLKKbnxxhvz7W9/u8iwAAAAAAAALP+aLu6KI0aMyMorr7zI+PRJe+21Vzp16pR77713aeYDAAAAAABgBbPYAerRRx/Ndtttt1jxKUmaNWuWbbfdNs8991xDZwMAAAAAAGAFtNgB6p133knXrl0X+lh1dXW++c1v1lveuXPnTJ8+veHTAQAAAAAAsMJZ7HtAtW/fPh988MFCH+vfv3/69+9fb/m0adPSsWPHhk8HAAAAAADACmexz4Dq0qVLJk6cuEQbnzBhQtZZZ50lHgoAAAAAAIAV12IHqJ122ilPP/10HnroocVa/6677spLL72UgQMHNng4AAAAAAAAVjyLHaAGDRqUtm3b5oQTTsi//vWvT1334YcfzimnnJJOnTpl9913X+ohAQAAAAAAWHEs9j2g1lhjjZx11lk5/vjjs//++6dv377p27dvvvrVr2aVVVbJ9OnT8/LLL2fMmDEZO3ZsKpVKLrvssrRv3/7znB8AAAAAAIDlzGIHqCT5xje+kfbt2+eUU07J2LFjM27cuHrrVCqVdO7cOT//+c/Tq1evYoMCAAAAAACwYliiAJUk22yzTe68887cc889GTduXF5++eW888476dChQ9Zaa63stNNO2WmnndKqVavPY14AAAAAAACWc0scoJKkRYsW6devX/r161d6HgAAAAAAAFZwTRt7AAAAAAAAAP67CFAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQVPPGHgBWRH379m3sEQDgC8mfwQAAALBiEKCgAQ499NDGHgEAvpD8GQwAAAArBpfgAwAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoKjmjT0AAEvnzZlNc9KD7T/18SSfug6w5N6c2TRdG3sIAAAAgOWUAAWwAuvSpctnrrPStGlJkhYdOny+w8AXTNcs3mcQAAAA4ItIgAJYgZ1zzjmNPQIAAAAAQD3uAQUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAwArjyiuvzJVXXtnYYwAAAACfQYACAGCFcfXVV+fqq69u7DEAAACAzyBAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUFTzxh4AAAAW17x58xp7BAAAAGAxCFAAAKwwKpVKY48AAAAALAaX4AMAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKGq5C1DDhg1LdXV1Lr300kWu06dPnxx88MHLcKqPHHzwwenTp89nrnf++eenuro6zz///DKYCgAAAAAAYPnSvLEHWJQLL7ww3/jGN7LOOus09ihLrH///llnnXXSuXPnxh4FAAAAAABgmVvuzoCqMWvWrJx66qmNPUaDbLjhhtljjz2y0korNfYoAAAAAAAAy9xyG6D69euXBx54IDfddFNjjwIAAAAAAMASWG4D1P/+7/+mffv2OeecczJ16tRPXffNN9/MySefnG222SYbb7xxdt5551x22WWZP39+7ToTJkxIdXV17rnnnpx99tnZdttt07179+y3336ZMGHCEs123333Zbfddqvd1/Dhw+s8/sl7QI0aNSrV1dV54okncvLJJ6dXr17ZdNNNc9hhh+WZZ56p89x33nknZ511Vvr375+NN944PXr0yH777ZexY8fWWa9v37456aSTcvrpp2fTTTdNnz598qc//SnV1dW588476818wgknZIsttsjs2bOX6LUCAAAAAAAsqeU2QK222mo58cQTM3Xq1JxzzjmLXO+1117L3nvvndGjR2ePPfbIySefnPXWWy+//OUv84Mf/KDe+qeffnoefvjhfOc738nRRx+dyZMn5zvf+c5nRq4a06dPz9ChQ9OjR48MGzYsHTt2zBlnnJELL7zwM5977LHH5rXXXsv3v//9HHrooXn44Ydz5JFHZt68eUmS2bNn58ADD8zNN9+cXXfdNaeeemoOO+ywvPLKKznmmGPy5JNP1tnemDFj8vDDD+fkk0/OnnvumT333DMtW7bMX//61zrrffjhhxk/fnwGDBiQVq1aLdbrBAAAAAAAaKjmjT3Ap9lnn31y880356abbsqee+6Z3r1711vnV7/6Vd5+++0MHz48W265ZZLkwAMPzOmnn55rr702Y8eOTb9+/WrXb9euXa6//vq0aNEiSbL66qvn5JNPzl133ZV99933M2eaO3duhg0blsMOOyxJMnjw4Bx00EG5+OKLc8ABB2TVVVdd5HPXX3/9XHbZZbU/N2/ePBdccEEmTJiQPn36ZPz48Zk8eXLOP//8DBgwoHa9Hj165Igjjsj999+fjTfeuHb5zJkzc8EFF2TdddetXbbDDjvknnvuyQcffJB27dolScaPH5+ZM2dm9913/8zXBwAAAAAAsLSW2zOgkqRJkyY544wz0qJFi5x66qn1Lh83f/78jB8/PltttVVtfKoxdOjQJKl36boBAwbUxqck2WijjZIkb7/99mLN1LZt2xx44IG1Pzdv3jwHHnhg5syZkwceeOBTn7vzzjvX+flrX/tanX3vvPPOefDBB7PTTjvVeY0LFixI8lFw+rgvfelLdeJTkuy+++6ZNWtWxo0bV7vstttuS+fOndOrV6/Feo0AAAAAAABLY7kOUMlHZw1997vfzUsvvVTvMndTp07NzJkz85WvfKXe81ZfffW0b98+U6ZMqbO8Y8eOdX6uiVE1kee9997L22+/XeevWbNm1a6/1lprpWXLlnW2sc466yRJvX19UqdOner8XLOdmn0nSbNmzXLFFVdk6NCh2W233dKjR4985zvfqbfewraXJNtvv306dOiQ0aNHJ/nokoH33Xdfdt111zRtutz/ugEAAAAAgP8Cy/Ul+Gp897vfzejRo3P55Zfnm9/8Zu3ySqVS5++ftGDBgjpnOyX5zAhz1lln5S9/+UudZT/72c8yaNCgJB+dlbUozZo1+9Rtf9pzk+TFF1/M/vvvn1mzZqV3797p169fqqur06VLl+yzzz6Ltb+WLVtm4MCBGTVqVKZPn54xY8Zk7ty5Lr8HAAAAAAAsMytEgGrZsmXOOOOMHHzwwfnJT35SeyZQx44d07Zt20yePLnec9566628//77WXPNNZdoX0cccUS9WLPBBhvU/vMbb7yR+fPn14k/NfuvOROqoS655JJMnTo1t9xyS6qqqmqXT5w4cYm2s/vuu+f666/PPffck3HjxuWrX/1q7eX+AAAAAAAAPm8rRIBKkp49e2bvvffOyJEja5c1a9YsO+ywQ0aPHp2HH364zn2gLr744iRJ3759l2g/G2ywQZ3g9EkzZszIHXfckV133TVJMmfOnPzpT39Ku3bt0rt37yXa1ydNmzYtLVu2rBOyFixYkKuuuirJR/eDWhxbbLFFunbtmjvuuCMPPfRQ/ud//mep5gIAAAAAAFgSK0yASpIf/vCH+dvf/pZ33nmndtkJJ5yQhx56KIcffngOOOCAdO3aNX//+98zbty47LTTTtlpp52KztC+ffuccsopeeaZZ9K5c+fcfPPNeeqpp3LGGWdkpZVWWqpt77DDDhk/fnwOP/zwfPOb38zs2bMzevToPPXUU2natGk++OCDxdpOkyZNsttuu+Wiiy6q/WcAAAAAAIBl5dNviLScWWWVVfK///u/dZZ17do1I0eOzIABA/KXv/wl55xzTl5++eUMGzYs559//mfed2lJrb322vn5z3+esWPH5pxzzsmsWbPym9/8Jvvtt99Sb3vffffNiSeemLfeeitnn312rrjiinTq1Ck33HBDNtpoozz44IOLva099tgjyUdnQ3Xp0mWpZwMAAAAAAFhcTSqVSqWxh6C8l156KQMGDMiZZ56ZffbZp0HbmDRpUgYNGpRRo0alW7duhScEAFhy2223XZLk3nvvbeRJAAAA4ItnSbrBCnUGFIvvuuuuS9u2bbPzzjs39igAAAAAAMAXzAp1Dyg+26mnnppXX301999/f4444oilvi8VAAAAAADAknIG1H+ZqVOn5pFHHsnuu++e73//+409DgAAAAAA8AXkDKj/Muedd15jjwAAAAAAAHzBOQMKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKEqAAgAAAAAAoCgBCgAAAAAAgKIEKAAAAAAAAIoSoAAAAAAAAChKgAIAAAAAAKAoAQoAAAAAAICiBCgAAAAAAACKEqAAAAAAAAAoSoACAAAAAACgKAEKAAAAAACAogQoAAAAAAAAihKgAAAAAAAAKKp5Yw8AAACLq0mTJo09AgAAALAYBCgAAFYYzZv7z1cAAABYEbgEHwAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABQAAAAAAQFECFAAAAAAAAEUJUAAAAAAAABQlQAEAAAAAAFCUAAUAAAAAAEBRAhQAAAAAAABFCVAAAAAAAAAUJUABAAAAAABQlAAFAAAAAABAUQIUAAAAAAAARQlQAAAAAAAAFCVAAQAAAAAAUJQABcD/r717j+2qvvsA/m4tVhkKsonzgooaG2XiLCpKQCMTFZw4dbGClxUnmE0HmujEaDbdxRGnm5dlTk3cZHPRFRkXuSxh3oZgJOrUwuzwggsXtUNBpVxK6fOHsc/6FH2EHVour1fSkH7P55x+vv98Uvr+nXMAAAAAAAolgAIAAAAAAKBQAigAAAAAAAAKJYACAAAAAACgUAIoAAAAAAAACiWAAgAAAAAAoFACKAAAAAAAAAolgAIAAAAAAKBQAigAAAAAAAAKJYACAAAAAACgUAIoAAAAAAAACiWAAgAAAAAAoFACKAAAAAAAAAolgAIAAAAAAKBQAigAAAAAAAAKJYACAAAAAACgUAIoAAAAAAAACiWAAgAAAAAAoFACKAAAAAAAAAolgAIAAAAAAKBQAigAAAAAAAAKJYACAAAAAACgUAIoAAAAAAAACiWAAgAAAAAAoFACKAAAAAAAAAolgAIAAAAAAKBQZR3dAAAAfF4XX3xxR7cAAAAAfA4CKAAAthvV1dUd3QIAAADwOXgEHwAAAAAAAIUSQAEAAAAAAFAoARQAAAAAAACFEkABAAAAAABQKAEUAAAAAAAAhRJAAQAAAAAAUCgBFAAAAAAAAIUSQAEAAAAAAFAoARQAAAAAAACFEkABAAAAAABQKAEUAAAAAAAAhRJAAQAAAAAAUCgBFAAAAAAAAIUSQAEAAAAAAFAoARQAAAAAAACFEkABAAAAAABQKAEUAAAAAAAAhRJAAQAAAAAAUCgBFAAAAAAAAIUSQAEAAAAAAFAoARQAAAAAAACFEkABAAAAAABQKAEUAAAAAAAAhSrr6AbYdq1bty5J8vrrr3dwJwAAAAAAQEf7JC/4JD/4LAIoPtWSJUuSJNdee20HdwIAAAAAAGwrlixZksrKys+sKWlubm5up37Yzrz33nuZM2dODjjggJSXl3d0OwAAAAAAQAdat25dlixZkgEDBqR79+6fWSuAAgAAAAAAoFClHd0AAAAAAAAAOxYBFAAAAAAAAIUSQAEAAAAAAFAoARQAAAAAAACFEkABAAAAAABQKAEUAAAAAAAAhRJAAQAAAAAAUCgBFAAAAAAAAIUSQAEAAAAAAFAoARTAf+Hll1/OqFGjcuyxx+aoo47KN77xjUyePLlVzdq1a3PbbbfllFNOydFHH52qqqrMmzevYxoG2E7U1dVl9OjR6devX4477riMGTMmb731Vqsa8xVgyy1dujSVlZUZN25cq3WzFWDzXXDBBamoqGjzdfbZZ7fUvP/++/nBD36QAQMG5Jhjjkl1dXUWLlzYgV0DbH0lzc3NzR3dBMD26PXXX8+5556brl27ZsSIEfnCF76QGTNm5IUXXsi4ceMycuTIJMkVV1yRJ554IiNGjMghhxySiRMnpq6uLg8++GCOPfbYDt4FwLbnzTffzHnnnZeuXbvm4osvTlNTUx588ME0NjZm8uTJ2XfffZOYrwBbqrm5OdXV1Xn22WdzzjnnZPz48S3HzFaAzVdZWZnjjjsuQ4cObbXerVu3nHzyyVm/fn0uuuii1NXVpbq6Ol/60pfy+9//Pv/+97/z6KOPplevXh3UOcDWJYAC2EKjR4/O/PnzM2vWrOyzzz5Jko0bN2bEiBGpq6vLnDlz8vLLL6e6ujrXX399qqurkyQNDQ0ZNmxY9txzz0yaNKkDdwCwbRo7dmyefPLJTJ8+PQcccECSj++IGjZsWC655JLccMMNmTdvnvkKsIX+8Ic/ZPz48WlsbGwVQJmtAJtv6dKlGTRoUG666aYMHz58kzU1NTW58cYb86tf/SqDBw9OktTX12fIkCHp379/7rrrrvZsGaDdeAQfwBZoamrK/PnzM3DgwJbwKUlKS0szZMiQNDQ05B//+EemTZuWTp065fzzz2+p6dy5c775zW9mwYIFWbx4cQd0D7BtKysry5lnntkSPiVJRUVFunXrlldffTVJzFeALfSvf/0rt99+e6688so2x8xWgM33z3/+M0ly6KGHfmrNY489lh49erSET0my9957Z8iQIXn88cezevXqrd4nQEcQQAFsgdLS0kydOjXf//732xx77733kiS77LJLamtr06tXr3Tu3LlVTe/evZMktbW1W79ZgO3M7bffnltuuaXV2vLly7Ny5crst99+SWK+AmyBjRs3Zty4camoqMi3vvWtNsfNVoDNt2jRoiTJYYcdliSbDJMWLFjQMkv/U+/evdPY2NgSYgHsaARQAFugpKQkPXv2bPXp/OTjR5Q8+uij6dy5c4488si88847+fKXv9zm/B49eiRJli1b1i79AmyvVqxYkaeeeiqjR49O586dc+mllyaJ+QqwBR588MHU1tbmlltuSWlp2z8HmK0Am6+uri7l5eW5884707dv31RWVmbgwIGZMGFCko8DqQ8//PAz5+vy5cvbtWeA9lLW0Q0A7Ciam5tz4403pr6+PldccUXKy8uzevXq7L777m1qd9tttyTJmjVr2rtNgO3Keeed1/If8muuuSaHH354kpivAJvpjTfeyB133JGxY8fmkEMOybp169rUmK0Am2/RokVZt25d3nnnndxyyy1Zs2ZNampq8tOf/jQrV67MBRdckCSfOV8bGhratWeA9iKAAihAc3NzbrrppkyfPj3HH398vvOd73yu80pKSrZyZwDbt6uvvjq77rprZs6cmdtuuy1LlizJzTff/P+eZ74C/K+mpqZcf/31OeKIIzJy5Mgtvo7ZCtBWVVVVmpqacskll7SsDRs2LMOHD899992Xqqqq//ca5iuwoxJAAfyXGhsbM27cuDz22GPp06dP7rnnnnTq1CnJxy9tXrt2bZtzPlnr0qVLu/YKsL05++yzkyRDhgzJVVddlYcffjgXXXSR+QqwGR544IHU1tZmwoQJWblyZZKPf4dNkvXr1+e9995Lly5dzFaALXDhhRe2WSstLU1VVVWuv/76zJ07N0nMV2CnJIAC+C+sWbMm3/ve9/K3v/0txx9/fO65555Wvzjut99+qa+vb3Peu+++myTZZ5992q1XgO3dmWeemZkzZ2bhwoXmK8BmePrpp7Nhw4aMGDGizbHp06dn+vTp+dnPfma2AhToi1/8YpJk48aN2XPPPc1XYKckgALYQo2NjbnyyiszZ86cnHLKKbnzzjtTXl7eqqZ3796ZOnVq1q5d2/Js5yRZsGBBkuSoo45q154BtnWrVq3K+eefn4EDB+bGG29sdWz16tVJPn5WvvkK8Pldd911+eCDD1qtNTY2ZvTo0RkwYEC+/e1v57DDDsvzzz9vtgJshmXLlmXUqFE57bTTMnbs2FbH3njjjSRJz54907t375ZZ+p8WLFiQsrKyHHHEEe3SL0B7K+3oBgC2V3fddVfmzJmTQYMG5e67724TPiXJGWeckfXr1+fhhx9uWWtoaMjEiRPTp0+fHHjgge3ZMsA2r2vXrunUqVOmTZvW6lOi69evz4QJE9K5c+f069fPfAXYDF/5ylfSv3//Vl8nnHBCkmTvvfdO//7906NHD7MVYDPtu+++WbVqVWpqarJq1aqW9VWrVuV3v/td9t9//1RWVuaMM87IsmXLMnv27Jaa+vr6zJw5M4MHD97k3xMAdgTugALYAu+++25++9vfpqysLAMGDMiMGTPa1Jx44okZOHBgBg4cmJ///OdZvnx5evXqlT/96U95++23M378+A7oHGDbd/PNN+eSSy7J8OHDM3z48JSWlmbSpElZtGhRfvKTn6Rbt27mK8BWYLYCbJ6SkpL88Ic/zJVXXpnzzz8/w4cPz/r16/PII49kxYoVuf/++1NWVpbzzjsvf/zjH3PNNdfk0ksvTffu3TNhwoSUlJRkzJgxHb0NgK2mpLm5ubmjmwDY3syaNavN7fX/1/3335+TTjopq1evzi9/+cvMmDEja9asSUVFRa6++ur069evnboF2P7Mnz8/d999d15++eUkH396//LLL8/AgQNbasxXgC23bt269OnTJ+ecc06rcMlsBdh8jz/+eO67774sXLgwZWVlOeaYYzJmzJgcffTRLTUrVqzIrbfemieeeCJNTU05+uijc+2113r8HrBDE0ABAAAAAABQKO+AAgAAAAAAoFACKAAAAAAAAAolgAIAAAAAAKBQAigAAAAAAAAKJYACAAAAAACgUAIoAAAAAAAACiWAAgAAAAAAoFACKAAAAAAAAAolgAIAANhJXXbZZamoqMioUaM6uhUAAGAHI4ACAADYCdXX12fu3LnZfffdM2fOnLz99tsd3RIAALADEUABAADshKZNm5ampqZcdtll2bhxYyZOnNjRLQEAADsQARQAAMBOaPLkyenatWsuu+yy7LHHHpk0aVKam5s7ui0AAGAHIYACAADYybz66qupq6vLiSeemN122y2nnnpqli5dmmeeeaZN7YYNG3Lvvffm9NNPT58+fTJ06NBMnDgxv/71r1NRUZElS5a0qp83b15GjhyZvn375qtf/Wqqqqoya9as9toaAACwjRBAAQAA7GQmT56cJBk6dGirf2tqatrUXnXVVfnFL36R8vLyjBgxIgcffHBuuOGGTJo0qU1tTU1NRo4cmbq6ugwdOjRVVVVZsWJFxo4dm9/85jdbb0MAAMA2p6TZMxYAAAB2Gk1NTTn55JPT0NCQefPmpby8PBs2bMhJJ52UDz74IE8//XS6d++eJPnLX/6SMWPG5NRTT80dd9yRTp06JUkeeuih/OhHP0qS/PWvf80BBxyQt99+O4MHD07Pnj3z0EMPZa+99kqSrF27NtXV1XnppZcyZcqUHH744R2zcQAAoF25AwoAAGAn8swzz6S+vj6DBw9OeXl5kqSsrCxnnHFGGhsbM2XKlJbaP//5z0mS6667riV8SpLhw4enV69era47derUrF+/PmPGjGkJn5Jkt912y5gxY7Jx48aW6wEAADu+so5uAAAAgPbzScB05plntlo/66yz8tBDD2XixIkZOXJkkqS2tjbdunXLgQce2Kq2tLQ0xxxzTN58882Wtdra2iQfvwNq0aJFreobGhqSfPzuKQAAYOcggAIAANhJfPTRR5k9e3aSZNSoUZusee211/LCCy+ksrIy77//fps7nT7Ro0ePVt9/+OGHSZKHH374U3/+qlWrtqRtAABgOySAAgAA2EnMmjUra9euzVFHHZUjjzyyzfE333wzzz33XGpqalJZWZkuXbrko48+2uS1/u96586dkySzZ89Oz549i28eAADYrgigAAAAdhKfPH5v3LhxOfbYY9scX7ZsWb72ta9l1qxZueGGG9K7d+/MnTs37777bps7nl566aVW31dUVGT27Nl55ZVX2gRQixcvziOPPJLjjjsugwYNKnhXAADAtqi0oxsAAABg61u6dGnmz5+f/fffP3379t1kzX777ZcTTjghDQ0NmT59es4999w0Nzfn1ltvTVNTU0vdlClT8sorr7Q6d9iwYdlll11yxx13pL6+vmV9w4YN+fGPf5wHHnggK1eu3Cp7AwAAtj3ugAIAANgJTJkyJc3NzTnrrLNSUlLyqXXnnntu5s6dm5qamtTU1GTKlCmZNm1aXnvttfTr1y9vvfVWnnzyyey11155//33s8suuyRJDj744Fx77bUZP358vv71r2fQoEHp2rVrnn766bz++us55ZRTMmzYsPbaLgAA0MFKmpubmzu6CQAAALau008/PYsXL86MGTNy6KGHfmrd2rVrM2DAgHz44YeZOnVqDjrooNxzzz2ZOnVq6uvrc9BBB+Xyyy/P448/npkzZ+bZZ5/NXnvt1XL+U089lQceeCC1tbXZuHFjevbsmXPOOScXXnhhdt111/bYKgAAsA0QQAEAALBJy5cvzx577JEuXbq0OXbRRReltrY2L7744mfeUQUAAOycvAMKAACATbr//vvTt2/fPPfcc63WX3zxxTz//PM5/vjjhU8AAMAmuQMKAACATVqwYEGqqqrSqVOnnHbaadlnn32yZMmSzJ49O7vuumseeeSRz3ycHwAAsPMSQAEAAPCpFi5cmHvvvTd///vfs2LFinTv3j39+/fPd7/73Rx44IEd3R4AALCNEkABAAAAAABQKO+AAgAAAAAAoFACKAAAAAAAAAolgAIAAAAAAKBQAigAAAAAAAAKJYACAAAAAACgUAIoAAAAAAAACiWAAgAAAAAAoFACKAAAAAAAAAolgAIAAAAAAKBQ/wOj4T7ZxR/2lAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -7066,7 +7610,7 @@ }, { "cell_type": "code", - "execution_count": 250, + "execution_count": 1087, "metadata": {}, "outputs": [], "source": [ @@ -7081,14 +7625,14 @@ }, { "cell_type": "code", - "execution_count": 251, + "execution_count": 1088, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "df shape after clean Age: (44709, 16)\n" + "df shape after clean Age: (75, 16)\n" ] } ], @@ -7106,16 +7650,16 @@ }, { "cell_type": "code", - "execution_count": 252, + "execution_count": 1089, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "933" + "3" ] }, - "execution_count": 252, + "execution_count": 1089, "metadata": {}, "output_type": "execute_result" } @@ -7126,25 +7670,24 @@ }, { "cell_type": "code", - "execution_count": 253, + "execution_count": 1090, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Bachelor’s degree (B.A., B.S., B.Eng., etc.) 20290\n", - "Master’s degree (M.A., M.S., M.Eng., MBA, etc.) 10000\n", - "Some college/university study without earning a degree 5699\n", - "Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.) 3676\n", - "Associate degree (A.A., A.S., etc.) 1455\n", - "Other doctoral degree (Ph.D., Ed.D., etc.) 1256\n", - "Primary/elementary school 590\n", - "Professional degree (JD, MD, etc.) 578\n", - "I never completed any formal education 232\n", - "Name: EdLevel, dtype: int64" + "EdLevel\n", + "Bachelor‚Äôs degree (B.A., B.S., B.Eng., etc.) 34\n", + "Some college/university study without earning a degree 11\n", + "Master‚Äôs degree (M.A., M.S., M.Eng., MBA, etc.) 10\n", + "Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.) 7\n", + "Associate degree (A.A., A.S., etc.) 5\n", + "Professional degree (JD, MD, etc.) 3\n", + "Other doctoral degree (Ph.D., Ed.D., etc.) 2\n", + "Name: count, dtype: int64" ] }, - "execution_count": 253, + "execution_count": 1090, "metadata": {}, "output_type": "execute_result" } @@ -7155,7 +7698,7 @@ }, { "cell_type": "code", - "execution_count": 254, + "execution_count": 1091, "metadata": {}, "outputs": [], "source": [ @@ -7184,22 +7727,22 @@ }, { "cell_type": "code", - "execution_count": 255, + "execution_count": 1092, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Bachelors 21223\n", - "No Degree 10197\n", - "Masters 10000\n", - "Associate 1455\n", - "Doctorate 1256\n", - "Professional 578\n", - "Name: EdLevel, dtype: int64" + "EdLevel\n", + "Bachelors 47\n", + "No Degree 18\n", + "Associate 5\n", + "Professional 3\n", + "Doctorate 2\n", + "Name: count, dtype: int64" ] }, - "execution_count": 255, + "execution_count": 1092, "metadata": {}, "output_type": "execute_result" } @@ -7217,16 +7760,16 @@ }, { "cell_type": "code", - "execution_count": 256, + "execution_count": 1093, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "8690" + "15" ] }, - "execution_count": 256, + "execution_count": 1093, "metadata": {}, "output_type": "execute_result" } @@ -7237,21 +7780,22 @@ }, { "cell_type": "code", - "execution_count": 257, + "execution_count": 1094, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Very satisfied 11751\n", - "Slightly satisfied 11198\n", - "Slightly dissatisfied 5790\n", - "Neither satisfied nor dissatisfied 4373\n", - "Very dissatisfied 2907\n", - "Name: CurrentJobSatis, dtype: int64" + "CurrentJobSatis\n", + "Very satisfied 27\n", + "Slightly satisfied 12\n", + "Slightly dissatisfied 9\n", + "Very dissatisfied 7\n", + "Neither satisfied nor dissatisfied 5\n", + "Name: count, dtype: int64" ] }, - "execution_count": 257, + "execution_count": 1094, "metadata": {}, "output_type": "execute_result" } @@ -7262,7 +7806,7 @@ }, { "cell_type": "code", - "execution_count": 258, + "execution_count": 1095, "metadata": {}, "outputs": [], "source": [ @@ -7271,21 +7815,22 @@ }, { "cell_type": "code", - "execution_count": 259, + "execution_count": 1096, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Very satisfied 14628\n", - "Slightly satisfied 13834\n", - "Slightly dissatisfied 7192\n", - "Neither satisfied nor dissatisfied 5446\n", - "Very dissatisfied 3609\n", - "Name: CurrentJobSatis, dtype: int64" + "CurrentJobSatis\n", + "Very satisfied 32\n", + "Slightly satisfied 13\n", + "Slightly dissatisfied 12\n", + "Neither satisfied nor dissatisfied 10\n", + "Very dissatisfied 8\n", + "Name: count, dtype: int64" ] }, - "execution_count": 259, + "execution_count": 1096, "metadata": {}, "output_type": "execute_result" } @@ -7303,16 +7848,16 @@ }, { "cell_type": "code", - "execution_count": 260, + "execution_count": 1097, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2153" + "2" ] }, - "execution_count": 260, + "execution_count": 1097, "metadata": {}, "output_type": "execute_result" } @@ -7323,20 +7868,20 @@ }, { "cell_type": "code", - "execution_count": 261, + "execution_count": 1098, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "JobStatus\n", - "I am actively looking for a job 6980\n", - "I am not interested in new job opportunities 10919\n", - "I’m not actively looking, but I am open to new opportunities 24657\n", + "I am actively looking for a job 12\n", + "I am not interested in new job opportunities 23\n", + "I‚Äôm not actively looking, but I am open to new opportunities 38\n", "Name: JobStatus, dtype: int64" ] }, - "execution_count": 261, + "execution_count": 1098, "metadata": {}, "output_type": "execute_result" } @@ -7347,7 +7892,7 @@ }, { "cell_type": "code", - "execution_count": 262, + "execution_count": 1099, "metadata": {}, "outputs": [], "source": [ @@ -7356,7 +7901,7 @@ }, { "cell_type": "code", - "execution_count": 263, + "execution_count": 1100, "metadata": {}, "outputs": [], "source": [ @@ -7378,19 +7923,20 @@ }, { "cell_type": "code", - "execution_count": 264, + "execution_count": 1101, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "JobSeek\n", - "Not seeking 37369\n", - "Seeking 7340\n", + "Not seeking 24\n", + "Seeking 12\n", + "nan 39\n", "Name: JobSeek, dtype: int64" ] }, - "execution_count": 264, + "execution_count": 1101, "metadata": {}, "output_type": "execute_result" } @@ -7401,7 +7947,7 @@ }, { "cell_type": "code", - "execution_count": 265, + "execution_count": 1102, "metadata": {}, "outputs": [ { @@ -7410,7 +7956,7 @@ "0" ] }, - "execution_count": 265, + "execution_count": 1102, "metadata": {}, "output_type": "execute_result" } @@ -7428,16 +7974,16 @@ }, { "cell_type": "code", - "execution_count": 266, + "execution_count": 1103, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5954" + "14" ] }, - "execution_count": 266, + "execution_count": 1103, "metadata": {}, "output_type": "execute_result" } @@ -7448,26 +7994,27 @@ }, { "cell_type": "code", - "execution_count": 267, + "execution_count": 1104, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Developer, full-stack 3399\n", - "Developer, back-end 2374\n", - "Developer, back-end;Developer, front-end;Developer, full-stack 1838\n", - "Developer, back-end;Developer, full-stack 1216\n", - "Developer, front-end 1071\n", - "Developer, mobile 953\n", - "Developer, back-end;Developer, desktop or enterprise applications;Developer, front-end;Developer, full-stack 668\n", - "Developer, front-end;Developer, full-stack 667\n", - "Developer, back-end;Developer, desktop or enterprise applications 528\n", - "Developer, back-end;Developer, front-end;Developer, full-stack;Developer, mobile 475\n", - "Name: DevType, dtype: int64" + "DevType\n", + "Developer, full-stack 9\n", + "Developer, back-end 5\n", + "Designer;Developer, front-end 2\n", + "Developer, back-end;Developer, front-end;Developer, full-stack 2\n", + "Developer, back-end;Developer, desktop or enterprise applications;Developer, full-stack 2\n", + "Academic researcher;Database administrator;Developer, back-end;Developer, desktop or enterprise applications;Developer, embedded applications or devices;Developer, front-end;Developer, full-stack;Developer, game or graphics;Developer, mobile;Educator;Scientist;System administrator 1\n", + "Database administrator;Developer, back-end;Developer, desktop or enterprise applications;Developer, embedded applications or devices;Developer, front-end;Developer, full-stack;Developer, game or graphics;DevOps specialist;Educator 1\n", + "Data or business analyst;Developer, back-end;Developer, front-end;Developer, full-stack;Developer, QA or test 1\n", + "Designer;Developer, back-end;Developer, front-end;Developer, mobile;Developer, QA or test 1\n", + "Developer, back-end;Developer, full-stack;Educator 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 267, + "execution_count": 1104, "metadata": {}, "output_type": "execute_result" } @@ -7478,7 +8025,7 @@ }, { "cell_type": "code", - "execution_count": 268, + "execution_count": 1105, "metadata": {}, "outputs": [], "source": [ @@ -7487,26 +8034,27 @@ }, { "cell_type": "code", - "execution_count": 269, + "execution_count": 1106, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Developer, full-stack 3940\n", - "Developer, back-end 2721\n", - "Developer, back-end;Developer, front-end;Developer, full-stack 2146\n", - "Developer, back-end;Developer, full-stack 1411\n", - "Developer, front-end 1229\n", - "Developer, mobile 1074\n", - "Developer, back-end;Developer, desktop or enterprise applications;Developer, front-end;Developer, full-stack 779\n", - "Developer, front-end;Developer, full-stack 758\n", - "Developer, back-end;Developer, desktop or enterprise applications 617\n", - "Developer, back-end;Developer, front-end;Developer, full-stack;Developer, mobile 532\n", - "Name: DevType, dtype: int64" + "DevType\n", + "Developer, full-stack 12\n", + "Developer, back-end 5\n", + "Developer, back-end;Developer, desktop or enterprise applications;Developer, game or graphics 3\n", + "Developer, back-end;Developer, desktop or enterprise applications;Developer, front-end;Developer, full-stack;Developer, QA or test 2\n", + "Developer, back-end;Developer, front-end;Developer, full-stack 2\n", + "Developer, full-stack;Product manager;Senior executive/VP 2\n", + "Data scientist or machine learning specialist;Database administrator;Developer, back-end;Developer, full-stack;Engineer, data 2\n", + "Developer, back-end;Developer, desktop or enterprise applications;Developer, front-end;Developer, full-stack;DevOps specialist 2\n", + "Developer, back-end;Developer, full-stack;Developer, mobile 2\n", + "Developer, back-end;Developer, desktop or enterprise applications;Developer, full-stack 2\n", + "Name: count, dtype: int64" ] }, - "execution_count": 269, + "execution_count": 1106, "metadata": {}, "output_type": "execute_result" } @@ -7517,16 +8065,16 @@ }, { "cell_type": "code", - "execution_count": 270, + "execution_count": 1107, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(64461, 26)" + "(99, 26)" ] }, - "execution_count": 270, + "execution_count": 1107, "metadata": {}, "output_type": "execute_result" } @@ -7537,7 +8085,7 @@ }, { "cell_type": "code", - "execution_count": 271, + "execution_count": 1108, "metadata": {}, "outputs": [ { @@ -7546,7 +8094,7 @@ "0" ] }, - "execution_count": 271, + "execution_count": 1108, "metadata": {}, "output_type": "execute_result" } @@ -7558,7 +8106,7 @@ }, { "cell_type": "code", - "execution_count": 272, + "execution_count": 1109, "metadata": {}, "outputs": [ { @@ -7612,7 +8160,7 @@ "Index: []" ] }, - "execution_count": 272, + "execution_count": 1109, "metadata": {}, "output_type": "execute_result" } @@ -7630,16 +8178,16 @@ }, { "cell_type": "code", - "execution_count": 273, + "execution_count": 1110, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "4051" + "6" ] }, - "execution_count": 273, + "execution_count": 1110, "metadata": {}, "output_type": "execute_result" } @@ -7651,26 +8199,26 @@ }, { "cell_type": "code", - "execution_count": 274, + "execution_count": 1111, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "White or of European descent 26552\n", - "South Asian 3707\n", - "Hispanic or Latino/a/x 2078\n", - "Middle Eastern 1417\n", - "Southeast Asian 1371\n", - "East Asian 1342\n", - "Black or of African descent 1327\n", - "Hispanic or Latino/a/x;White or of European descent 720\n", - "Middle Eastern;White or of European descent 344\n", - "Multiracial 245\n", - "Name: Ethnicity, dtype: int64" + "Ethnicity\n", + "White or of European descent 56\n", + "Hispanic or Latino/a/x 5\n", + "East Asian 2\n", + "Middle Eastern 1\n", + "White or of European descent;Indigenous (such as Native American, Pacific Islander, or Indigenous Australian) 1\n", + "South Asian 1\n", + "Indigenous (such as Native American, Pacific Islander, or Indigenous Australian) 1\n", + "Hispanic or Latino/a/x;White or of European descent 1\n", + "Multiracial 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 274, + "execution_count": 1111, "metadata": {}, "output_type": "execute_result" } @@ -7683,7 +8231,7 @@ }, { "cell_type": "code", - "execution_count": 275, + "execution_count": 1112, "metadata": {}, "outputs": [], "source": [ @@ -7702,26 +8250,24 @@ }, { "cell_type": "code", - "execution_count": 276, + "execution_count": 1113, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "White or of European descent 26848\n", - "South Asian 3783\n", - "Hispanic or Latino 3072\n", - "Middle Eastern 1840\n", - "East Asian 1661\n", - "Black or of African descent 1633\n", - "Southeast Asian 1371\n", - "Multiracial 249\n", - "Biracial 138\n", - "Indigenous 63\n", - "Name: Ethnicity, dtype: int64" + "Ethnicity\n", + "White or of European descent 57\n", + "Hispanic or Latino 6\n", + "East Asian 2\n", + "Middle Eastern 1\n", + "South Asian 1\n", + "Indigenous 1\n", + "Multiracial 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 276, + "execution_count": 1113, "metadata": {}, "output_type": "execute_result" } @@ -7734,7 +8280,7 @@ }, { "cell_type": "code", - "execution_count": 277, + "execution_count": 1114, "metadata": {}, "outputs": [], "source": [ @@ -7744,26 +8290,24 @@ }, { "cell_type": "code", - "execution_count": 278, + "execution_count": 1115, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "White or of European descent 28466\n", - "South Asian 5101\n", - "Hispanic or Latino 3270\n", - "Middle Eastern 2104\n", - "East Asian 1907\n", - "Black or of African descent 1762\n", - "Southeast Asian 1614\n", - "Multiracial 263\n", - "Biracial 151\n", - "Indigenous 71\n", - "Name: Ethnicity, dtype: int64" + "Ethnicity\n", + "White or of European descent 63\n", + "Hispanic or Latino 6\n", + "East Asian 2\n", + "Middle Eastern 1\n", + "South Asian 1\n", + "Indigenous 1\n", + "Multiracial 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 278, + "execution_count": 1115, "metadata": {}, "output_type": "execute_result" } @@ -7776,7 +8320,7 @@ }, { "cell_type": "code", - "execution_count": 279, + "execution_count": 1116, "metadata": {}, "outputs": [ { @@ -7785,7 +8329,7 @@ "0" ] }, - "execution_count": 279, + "execution_count": 1116, "metadata": {}, "output_type": "execute_result" } @@ -7796,30 +8340,30 @@ }, { "cell_type": "code", - "execution_count": 280, + "execution_count": 1117, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Age 0\n", - "Gender 0\n", - "SalaryUSD 14358\n", - "Country 0\n", - "DevType 0\n", - "Hobbyist 0\n", - "EdLevel 0\n", - "Employment 118\n", - "Ethnicity 0\n", - "CurrentJobSatis 0\n", - "JobStatus 0\n", - "LanguageDesireNextYear 2394\n", - "LanguageWorkedWith 396\n", - "Profession 77\n", - "UndergradMajor 5522\n", - "YearsCodePro 8212\n", - "JobSeek 0\n", + "Age 0\n", + "Gender 0\n", + "SalaryUSD 28\n", + "Country 0\n", + "DevType 0\n", + "Hobbyist 0\n", + "EdLevel 0\n", + "Employment 1\n", + "Ethnicity 0\n", + "CurrentJobSatis 0\n", + "JobStatus 0\n", + "LanguageDesireNextYear 5\n", + "LanguageWorkedWith 1\n", + "Profession 0\n", + "UndergradMajor 9\n", + "YearsCodePro 14\n", + "JobSeek 0\n", "dtype: int64\n" ] } @@ -7838,16 +8382,16 @@ }, { "cell_type": "code", - "execution_count": 281, + "execution_count": 1118, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2394" + "5" ] }, - "execution_count": 281, + "execution_count": 1118, "metadata": {}, "output_type": "execute_result" } @@ -7858,26 +8402,27 @@ }, { "cell_type": "code", - "execution_count": 282, + "execution_count": 1119, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Python 773\n", - "Rust 417\n", - "HTML/CSS;JavaScript;TypeScript 405\n", - "C# 342\n", - "C#;HTML/CSS;JavaScript;SQL;TypeScript 339\n", - "HTML/CSS;JavaScript 307\n", - "Go 300\n", - "HTML/CSS;JavaScript;PHP;SQL 229\n", - "TypeScript 227\n", - "Java 224\n", - "Name: LanguageDesireNextYear, dtype: int64" + "LanguageDesireNextYear\n", + "Python;TypeScript 2\n", + "C# 2\n", + "HTML/CSS;Java;JavaScript;Python;R;SQL 2\n", + "C++;Python 2\n", + "Go;Kotlin;TypeScript 2\n", + "Go 2\n", + "Assembly;Bash/Shell/PowerShell;C;C#;C++;Go;Haskell;Java;JavaScript;Kotlin;Python;Rust 1\n", + "Kotlin;Python;Swift 1\n", + "Julia;Python;Rust;Swift 1\n", + "HTML/CSS;JavaScript;PHP;TypeScript 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 282, + "execution_count": 1119, "metadata": {}, "output_type": "execute_result" } @@ -7888,7 +8433,7 @@ }, { "cell_type": "code", - "execution_count": 283, + "execution_count": 1120, "metadata": {}, "outputs": [], "source": [ @@ -7898,26 +8443,27 @@ }, { "cell_type": "code", - "execution_count": 284, + "execution_count": 1121, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Python 802\n", - "Rust 432\n", - "HTML/CSS;JavaScript;TypeScript 425\n", - "C# 377\n", - "C#;HTML/CSS;JavaScript;SQL;TypeScript 372\n", - "HTML/CSS;JavaScript 323\n", - "Go 310\n", - "HTML/CSS;JavaScript;PHP;SQL 245\n", - "Java 238\n", - "C#;HTML/CSS;JavaScript;SQL 236\n", - "Name: LanguageDesireNextYear, dtype: int64" + "LanguageDesireNextYear\n", + "Java;Ruby;Scala 2\n", + "JavaScript;Swift 2\n", + "Python;TypeScript 2\n", + "Java;Kotlin 2\n", + "Go;Kotlin;TypeScript 2\n", + "Julia;Python;Rust;Swift 2\n", + "Bash/Shell/PowerShell;C#;Dart;Go;TypeScript 2\n", + "C++;Python 2\n", + "C# 2\n", + "Go 2\n", + "Name: count, dtype: int64" ] }, - "execution_count": 284, + "execution_count": 1121, "metadata": {}, "output_type": "execute_result" } @@ -7928,7 +8474,7 @@ }, { "cell_type": "code", - "execution_count": 285, + "execution_count": 1122, "metadata": {}, "outputs": [ { @@ -7937,7 +8483,7 @@ "0" ] }, - "execution_count": 285, + "execution_count": 1122, "metadata": {}, "output_type": "execute_result" } @@ -7955,16 +8501,16 @@ }, { "cell_type": "code", - "execution_count": 286, + "execution_count": 1123, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "396" + "1" ] }, - "execution_count": 286, + "execution_count": 1123, "metadata": {}, "output_type": "execute_result" } @@ -7975,26 +8521,27 @@ }, { "cell_type": "code", - "execution_count": 287, + "execution_count": 1124, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "HTML/CSS;JavaScript;PHP;SQL 819\n", - "C#;HTML/CSS;JavaScript;SQL 669\n", - "HTML/CSS;JavaScript 655\n", - "C#;HTML/CSS;JavaScript;SQL;TypeScript 624\n", - "HTML/CSS;JavaScript;TypeScript 568\n", - "Python 449\n", - "Java 392\n", - "HTML/CSS;JavaScript;PHP 382\n", - "HTML/CSS;Java;JavaScript;SQL 301\n", - "C# 296\n", - "Name: LanguageWorkedWith, dtype: int64" + "LanguageWorkedWith\n", + "HTML/CSS;JavaScript;PHP;SQL 5\n", + "C#;HTML/CSS;JavaScript;SQL 2\n", + "Bash/Shell/PowerShell;C#;C++ 2\n", + "Assembly;Bash/Shell/PowerShell;C;C#;HTML/CSS;Java;JavaScript;PHP;Python 1\n", + "Assembly;Bash/Shell/PowerShell;C;C++;Python 1\n", + "Assembly;Bash/Shell/PowerShell;C;C#;C++;Go;HTML/CSS;JavaScript;SQL;TypeScript 1\n", + "Bash/Shell/PowerShell;JavaScript;Python;Swift 1\n", + "C#;HTML/CSS;Java;JavaScript;PHP;Ruby;TypeScript 1\n", + "HTML/CSS;Python 1\n", + "HTML/CSS;JavaScript;Ruby 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 287, + "execution_count": 1124, "metadata": {}, "output_type": "execute_result" } @@ -8005,7 +8552,7 @@ }, { "cell_type": "code", - "execution_count": 288, + "execution_count": 1125, "metadata": {}, "outputs": [], "source": [ @@ -8015,26 +8562,27 @@ }, { "cell_type": "code", - "execution_count": 289, + "execution_count": 1126, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "HTML/CSS;JavaScript;PHP;SQL 822\n", - "C#;HTML/CSS;JavaScript;SQL 670\n", - "HTML/CSS;JavaScript 658\n", - "C#;HTML/CSS;JavaScript;SQL;TypeScript 631\n", - "HTML/CSS;JavaScript;TypeScript 572\n", - "Python 450\n", - "Java 394\n", - "HTML/CSS;JavaScript;PHP 385\n", - "HTML/CSS;Java;JavaScript;SQL 306\n", - "C# 298\n", - "Name: LanguageWorkedWith, dtype: int64" + "LanguageWorkedWith\n", + "HTML/CSS;JavaScript;PHP;SQL 5\n", + "HTML/CSS;Ruby;SQL 2\n", + "Bash/Shell/PowerShell;C#;C++ 2\n", + "C#;HTML/CSS;JavaScript;SQL 2\n", + "Bash/Shell/PowerShell;HTML/CSS;JavaScript 1\n", + "Assembly;Bash/Shell/PowerShell;C;C++;Python 1\n", + "C#;HTML/CSS;JavaScript;PHP;Ruby 1\n", + "C#;C++;HTML/CSS;Java;Python;Ruby;SQL;Swift 1\n", + "C++;Python 1\n", + "C;C++;HTML/CSS;Java;JavaScript;Python 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 289, + "execution_count": 1126, "metadata": {}, "output_type": "execute_result" } @@ -8045,7 +8593,7 @@ }, { "cell_type": "code", - "execution_count": 290, + "execution_count": 1127, "metadata": {}, "outputs": [ { @@ -8054,7 +8602,7 @@ "0" ] }, - "execution_count": 290, + "execution_count": 1127, "metadata": {}, "output_type": "execute_result" } @@ -8072,16 +8620,16 @@ }, { "cell_type": "code", - "execution_count": 291, + "execution_count": 1128, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "77" + "0" ] }, - "execution_count": 291, + "execution_count": 1128, "metadata": {}, "output_type": "execute_result" } @@ -8092,22 +8640,22 @@ }, { "cell_type": "code", - "execution_count": 292, + "execution_count": 1129, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Profession\n", - "I am a developer by profession 34037\n", - "I am a student who is learning to code 4900\n", - "I am not primarily a developer, but I write code sometimes as part of my work 3718\n", - "I code primarily as a hobby 1301\n", - "I used to be a developer by profession, but no longer am 676\n", + "I am a developer by profession 59\n", + "I am a student who is learning to code 10\n", + "I am not primarily a developer, but I write code sometimes as part of my work 4\n", + "I code primarily as a hobby 1\n", + "I used to be a developer by profession, but no longer am 1\n", "Name: Profession, dtype: int64" ] }, - "execution_count": 292, + "execution_count": 1129, "metadata": {}, "output_type": "execute_result" } @@ -8118,7 +8666,7 @@ }, { "cell_type": "code", - "execution_count": 293, + "execution_count": 1130, "metadata": {}, "outputs": [], "source": [ @@ -8127,7 +8675,7 @@ }, { "cell_type": "code", - "execution_count": 294, + "execution_count": 1131, "metadata": {}, "outputs": [], "source": [ @@ -8151,21 +8699,22 @@ }, { "cell_type": "code", - "execution_count": 295, + "execution_count": 1132, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Developer 34037\n", - "Student 4900\n", - "Non developer 3718\n", - "Novoice 1301\n", - "Ex-Developer 676\n", - "Name: Profession, dtype: int64" + "Profession\n", + "Developer 59\n", + "Student 10\n", + "Non developer 4\n", + "Ex-Developer 1\n", + "Novoice 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 295, + "execution_count": 1132, "metadata": {}, "output_type": "execute_result" } @@ -8176,7 +8725,7 @@ }, { "cell_type": "code", - "execution_count": 296, + "execution_count": 1133, "metadata": {}, "outputs": [ { @@ -8185,7 +8734,7 @@ "0" ] }, - "execution_count": 296, + "execution_count": 1133, "metadata": {}, "output_type": "execute_result" } @@ -8203,16 +8752,16 @@ }, { "cell_type": "code", - "execution_count": 297, + "execution_count": 1134, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5501" + "9" ] }, - "execution_count": 297, + "execution_count": 1134, "metadata": {}, "output_type": "execute_result" } @@ -8224,29 +8773,28 @@ }, { "cell_type": "code", - "execution_count": 298, + "execution_count": 1135, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "UndergradMajor\n", - "A business discipline (such as accounting, finance, marketing, etc.) 1033\n", - "A health science (such as nursing, pharmacy, radiology, etc.) 190\n", - "A humanities discipline (such as literature, history, philosophy, etc.) 815\n", - "A natural science (such as biology, chemistry, physics, etc.) 1754\n", - "A social science (such as anthropology, psychology, political science, etc.) 733\n", - "Another engineering discipline (such as civil, electrical, mechanical, etc.) 3542\n", - "Computer science, computer engineering, or software engineering 24429\n", - "Fine arts or performing arts (such as graphic design, music, studio art, etc.) 581\n", - "I never declared a major 331\n", - "Information systems, information technology, or system administration 3074\n", - "Mathematics or statistics 1419\n", - "Web development or web design 1230\n", + "A health science (such as nursing, pharmacy, radiology, etc.) 1\n", + "A humanities discipline (such as literature, history, philosophy, etc.) 1\n", + "A natural science (such as biology, chemistry, physics, etc.) 3\n", + "A social science (such as anthropology, psychology, political science, etc.) 1\n", + "Another engineering discipline (such as civil, electrical, mechanical, etc.) 5\n", + "Computer science, computer engineering, or software engineering 43\n", + "Fine arts or performing arts (such as graphic design, music, studio art, etc.) 2\n", + "I never declared a major 1\n", + "Information systems, information technology, or system administration 3\n", + "Mathematics or statistics 3\n", + "Web development or web design 3\n", "Name: UndergradMajor, dtype: int64" ] }, - "execution_count": 298, + "execution_count": 1135, "metadata": {}, "output_type": "execute_result" } @@ -8257,7 +8805,7 @@ }, { "cell_type": "code", - "execution_count": 299, + "execution_count": 1136, "metadata": {}, "outputs": [], "source": [ @@ -8286,26 +8834,25 @@ }, { "cell_type": "code", - "execution_count": 300, + "execution_count": 1137, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "UndergradMajor\n", - "Arts and Science 2129\n", - "Business 1033\n", - "Computer Science 24429\n", - "Engineering 3542\n", - "Info Systems 3074\n", - "Math/Stat 1419\n", - "No major 5832\n", - "Other Science 1944\n", - "Web Design/Dev 1230\n", + "Arts and Science 4\n", + "Computer Science 43\n", + "Engineering 5\n", + "Info Systems 3\n", + "Math/Stat 3\n", + "No major 10\n", + "Other Science 4\n", + "Web Design/Dev 3\n", "Name: UndergradMajor, dtype: int64" ] }, - "execution_count": 300, + "execution_count": 1137, "metadata": {}, "output_type": "execute_result" } @@ -8316,7 +8863,7 @@ }, { "cell_type": "code", - "execution_count": 301, + "execution_count": 1138, "metadata": {}, "outputs": [ { @@ -8325,7 +8872,7 @@ "0" ] }, - "execution_count": 301, + "execution_count": 1138, "metadata": {}, "output_type": "execute_result" } @@ -8343,16 +8890,16 @@ }, { "cell_type": "code", - "execution_count": 302, + "execution_count": 1139, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "111" + "1" ] }, - "execution_count": 302, + "execution_count": 1139, "metadata": {}, "output_type": "execute_result" } @@ -8363,24 +8910,22 @@ }, { "cell_type": "code", - "execution_count": 303, + "execution_count": 1140, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Employment\n", - "Employed full-time 32474\n", - "Employed part-time 1489\n", - "Independent contractor, freelancer, or self-employed 3859\n", - "Not employed, and not looking for work 181\n", - "Not employed, but looking for work 1500\n", - "Retired 32\n", - "Student 4986\n", + "Employed full-time 52\n", + "Employed part-time 2\n", + "Independent contractor, freelancer, or self-employed 6\n", + "Not employed, but looking for work 4\n", + "Student 10\n", "Name: Employment, dtype: int64" ] }, - "execution_count": 303, + "execution_count": 1140, "metadata": {}, "output_type": "execute_result" } @@ -8392,7 +8937,7 @@ }, { "cell_type": "code", - "execution_count": 304, + "execution_count": 1141, "metadata": {}, "outputs": [], "source": [ @@ -8401,7 +8946,7 @@ }, { "cell_type": "code", - "execution_count": 305, + "execution_count": 1142, "metadata": {}, "outputs": [], "source": [ @@ -8414,24 +8959,22 @@ }, { "cell_type": "code", - "execution_count": 306, + "execution_count": 1143, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Employment\n", - "Full-time 32474\n", - "Not employed 1500\n", - "Not employed, and not looking for work 181\n", - "Part-time 1489\n", - "Retired 32\n", - "Self-employed 3859\n", - "Student 4986\n", + "Full-time 52\n", + "Not employed 4\n", + "Part-time 2\n", + "Self-employed 6\n", + "Student 10\n", "Name: Employment, dtype: int64" ] }, - "execution_count": 306, + "execution_count": 1143, "metadata": {}, "output_type": "execute_result" } @@ -8442,7 +8985,7 @@ }, { "cell_type": "code", - "execution_count": 307, + "execution_count": 1144, "metadata": {}, "outputs": [ { @@ -8451,7 +8994,7 @@ "0" ] }, - "execution_count": 307, + "execution_count": 1144, "metadata": {}, "output_type": "execute_result" } @@ -8469,7 +9012,7 @@ }, { "cell_type": "code", - "execution_count": 308, + "execution_count": 1145, "metadata": {}, "outputs": [ { @@ -8478,7 +9021,7 @@ "0" ] }, - "execution_count": 308, + "execution_count": 1145, "metadata": {}, "output_type": "execute_result" } @@ -8489,28 +9032,37 @@ }, { "cell_type": "code", - "execution_count": 309, + "execution_count": 1146, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Country\n", - "Afghanistan 22\n", - "Albania 29\n", - "Algeria 47\n", - "Andorra 3\n", - "Angola 2\n", - " ... \n", - "Venezuela, Bolivarian Republic of... 53\n", - "Viet Nam 159\n", - "Yemen 2\n", - "Zambia 10\n", - "Zimbabwe 19\n", - "Name: Country, Length: 170, dtype: int64" + "Austria 1\n", + "Belgium 2\n", + "Brazil 2\n", + "Canada 8\n", + "Czech Republic 1\n", + "France 7\n", + "Germany 3\n", + "Greece 1\n", + "India 1\n", + "Indonesia 1\n", + "Israel 1\n", + "Italy 1\n", + "Mexico 2\n", + "Netherlands 1\n", + "Poland 1\n", + "Spain 2\n", + "Tunisia 1\n", + "Ukraine 1\n", + "United Kingdom 10\n", + "United States 27\n", + "Name: Country, dtype: int64" ] }, - "execution_count": 309, + "execution_count": 1146, "metadata": {}, "output_type": "execute_result" } @@ -8529,16 +9081,16 @@ }, { "cell_type": "code", - "execution_count": 310, + "execution_count": 1147, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "8123" + "14" ] }, - "execution_count": 310, + "execution_count": 1147, "metadata": {}, "output_type": "execute_result" } @@ -8549,7 +9101,7 @@ }, { "cell_type": "code", - "execution_count": 311, + "execution_count": 1148, "metadata": {}, "outputs": [ { @@ -8575,7 +9127,7 @@ "dtype: object" ] }, - "execution_count": 311, + "execution_count": 1148, "metadata": {}, "output_type": "execute_result" } @@ -8586,7 +9138,7 @@ }, { "cell_type": "code", - "execution_count": 312, + "execution_count": 1149, "metadata": {}, "outputs": [], "source": [ @@ -8601,7 +9153,7 @@ }, { "cell_type": "code", - "execution_count": 313, + "execution_count": 1150, "metadata": {}, "outputs": [ { @@ -8610,7 +9162,7 @@ "0" ] }, - "execution_count": 313, + "execution_count": 1150, "metadata": {}, "output_type": "execute_result" } @@ -8628,7 +9180,7 @@ }, { "cell_type": "code", - "execution_count": 314, + "execution_count": 1151, "metadata": {}, "outputs": [ { @@ -8637,7 +9189,7 @@ "0" ] }, - "execution_count": 314, + "execution_count": 1151, "metadata": {}, "output_type": "execute_result" } @@ -8648,19 +9200,19 @@ }, { "cell_type": "code", - "execution_count": 315, + "execution_count": 1152, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Hobbyist\n", - "No 9583\n", - "Yes 34938\n", + "No 17\n", + "Yes 57\n", "Name: Hobbyist, dtype: int64" ] }, - "execution_count": 315, + "execution_count": 1152, "metadata": {}, "output_type": "execute_result" } @@ -8671,30 +9223,30 @@ }, { "cell_type": "code", - "execution_count": 316, + "execution_count": 1153, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Age 0\n", - "Gender 0\n", - "SalaryUSD 14202\n", - "Country 0\n", - "DevType 0\n", - "Hobbyist 0\n", - "EdLevel 0\n", - "Employment 0\n", - "Ethnicity 0\n", - "CurrentJobSatis 0\n", - "JobStatus 0\n", - "LanguageDesireNextYear 0\n", - "LanguageWorkedWith 0\n", - "Profession 0\n", - "UndergradMajor 0\n", - "YearsCodePro 0\n", - "JobSeek 0\n", + "Age 0\n", + "Gender 0\n", + "SalaryUSD 27\n", + "Country 0\n", + "DevType 0\n", + "Hobbyist 0\n", + "EdLevel 0\n", + "Employment 0\n", + "Ethnicity 0\n", + "CurrentJobSatis 0\n", + "JobStatus 0\n", + "LanguageDesireNextYear 0\n", + "LanguageWorkedWith 0\n", + "Profession 0\n", + "UndergradMajor 0\n", + "YearsCodePro 0\n", + "JobSeek 0\n", "dtype: int64\n" ] } @@ -8712,16 +9264,16 @@ }, { "cell_type": "code", - "execution_count": 317, + "execution_count": 1154, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "14202" + "27" ] }, - "execution_count": 317, + "execution_count": 1154, "metadata": {}, "output_type": "execute_result" } @@ -8732,21 +9284,22 @@ }, { "cell_type": "code", - "execution_count": 318, + "execution_count": 1155, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "120000.0 284\n", - "100000.0 254\n", - "64859.0 224\n", - "150000.0 221\n", - "2000000.0 216\n", - "Name: SalaryUSD, dtype: int64" + "SalaryUSD\n", + "130000.0 2\n", + "37816.0 2\n", + "116000.0 1\n", + "94500.0 1\n", + "16488.0 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 318, + "execution_count": 1155, "metadata": {}, "output_type": "execute_result" } @@ -8765,7 +9318,7 @@ }, { "cell_type": "code", - "execution_count": 319, + "execution_count": 1156, "metadata": {}, "outputs": [], "source": [ @@ -8777,27 +9330,27 @@ }, { "cell_type": "code", - "execution_count": 320, + "execution_count": 1157, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Age EdLevel Country \n", - "40 Professional United States 2000000.0\n", - "37 Masters Nomadic 1320000.0\n", - "41 Masters Israel 1200000.0\n", - "47 Professional United States 1047500.0\n", - "33 Doctorate Italy 1018376.5\n", - "15 Bachelors Germany 1000000.0\n", - "20 Associate Australia 1000000.0\n", - "25 Bachelors Paraguay 1000000.0\n", - "28 Doctorate Singapore 1000000.0\n", - "32 No Degree Ireland 1000000.0\n", + "Age EdLevel Country \n", + "34 Bachelors United States 1.176000e+06\n", + "44 Bachelors United States 8.900000e+05\n", + "25 Bachelors France 5.945390e+05\n", + "32 Bachelors United States 4.948333e+05\n", + "35 Professional United States 2.500000e+05\n", + "28 Bachelors United States 1.300000e+05\n", + "38 Bachelors United States 1.250000e+05\n", + "34 Bachelors United Kingdom 1.240920e+05\n", + "48 Associate United States 1.170000e+05\n", + "36 Bachelors United States 1.160000e+05\n", "Name: SalaryUSD, dtype: float64" ] }, - "execution_count": 320, + "execution_count": 1157, "metadata": {}, "output_type": "execute_result" } @@ -8810,21 +9363,22 @@ }, { "cell_type": "code", - "execution_count": 321, + "execution_count": 1158, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "120000.0 286\n", - "100000.0 255\n", - "64859.0 239\n", - "150000.0 227\n", - "1000000.0 219\n", - "Name: SalaryUSD, dtype: int64" + "SalaryUSD\n", + "79000.0 3\n", + "37816.0 3\n", + "130000.0 2\n", + "116000.0 1\n", + "117000.0 1\n", + "Name: count, dtype: int64" ] }, - "execution_count": 321, + "execution_count": 1158, "metadata": {}, "output_type": "execute_result" } @@ -8836,16 +9390,16 @@ }, { "cell_type": "code", - "execution_count": 322, + "execution_count": 1159, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2952" + "24" ] }, - "execution_count": 322, + "execution_count": 1159, "metadata": {}, "output_type": "execute_result" } @@ -8857,7 +9411,7 @@ }, { "cell_type": "code", - "execution_count": 323, + "execution_count": 1160, "metadata": {}, "outputs": [], "source": [ @@ -8866,7 +9420,7 @@ }, { "cell_type": "code", - "execution_count": 324, + "execution_count": 1161, "metadata": {}, "outputs": [ { @@ -8875,7 +9429,7 @@ "0" ] }, - "execution_count": 324, + "execution_count": 1161, "metadata": {}, "output_type": "execute_result" } @@ -8893,7 +9447,7 @@ }, { "cell_type": "code", - "execution_count": 325, + "execution_count": 1162, "metadata": {}, "outputs": [ { @@ -8927,7 +9481,7 @@ }, { "cell_type": "code", - "execution_count": 326, + "execution_count": 1163, "metadata": {}, "outputs": [], "source": [ @@ -8937,7 +9491,7 @@ }, { "cell_type": "code", - "execution_count": 327, + "execution_count": 1164, "metadata": {}, "outputs": [ { @@ -8983,29 +9537,9 @@ " \n", " \n", " 0\n", - " 31\n", - " Man\n", - " 214247.736842\n", - " United States\n", - " Developer, back-end;Developer, desktop or ente...\n", - " Yes\n", - " Bachelors\n", - " Full-time\n", - " White or of European descent\n", - " Slightly dissatisfied\n", - " I’m not actively looking, but I am open to new...\n", - " Java;Ruby;Scala\n", - " HTML/CSS;Ruby;SQL\n", - " Ex-Developer\n", - " Computer Science\n", - " 8.0\n", - " Not seeking\n", - " \n", - " \n", - " 1\n", " 36\n", " Man\n", - " 116000.000000\n", + " 116000.0\n", " United States\n", " Developer, back-end;Developer, desktop or ente...\n", " Yes\n", @@ -9013,39 +9547,39 @@ " Full-time\n", " White or of European descent\n", " Slightly dissatisfied\n", - " I’m not actively looking, but I am open to new...\n", + " I‚Äôm not actively looking, but I am open to n...\n", " JavaScript\n", " Python;SQL\n", " Developer\n", " Computer Science\n", " 13.0\n", - " Not seeking\n", + " nan\n", " \n", " \n", - " 2\n", + " 1\n", " 22\n", " Man\n", - " 32315.000000\n", + " 32315.0\n", " United Kingdom\n", " Database administrator;Developer, full-stack;D...\n", " Yes\n", - " Masters\n", + " Bachelors\n", " Full-time\n", " White or of European descent\n", " Very satisfied\n", - " I’m not actively looking, but I am open to new...\n", + " I‚Äôm not actively looking, but I am open to n...\n", " HTML/CSS;Java;JavaScript;Python;R;SQL\n", " HTML/CSS;Java;JavaScript;Python;SQL\n", " Developer\n", " Math/Stat\n", " 4.0\n", - " Not seeking\n", + " nan\n", " \n", " \n", - " 3\n", + " 2\n", " 23\n", " Man\n", - " 40070.000000\n", + " 40070.0\n", " United Kingdom\n", " Developer, back-end;Developer, desktop or ente...\n", " Yes\n", @@ -9062,10 +9596,10 @@ " Seeking\n", " \n", " \n", - " 4\n", + " 3\n", " 49\n", " Man\n", - " 14268.000000\n", + " 14268.0\n", " Spain\n", " Designer;Developer, front-end\n", " No\n", @@ -9073,12 +9607,32 @@ " Full-time\n", " White or of European descent\n", " Very dissatisfied\n", - " I’m not actively looking, but I am open to new...\n", + " I‚Äôm not actively looking, but I am open to n...\n", " HTML/CSS;JavaScript\n", " HTML/CSS;JavaScript\n", " Developer\n", " Math/Stat\n", " 7.0\n", + " nan\n", + " \n", + " \n", + " 4\n", + " 53\n", + " Man\n", + " 38916.0\n", + " Netherlands\n", + " Designer;Developer, back-end\n", + " Yes\n", + " No Degree\n", + " Full-time\n", + " White or of European descent\n", + " Very satisfied\n", + " I am not interested in new job opportunities\n", + " Python\n", + " C;JavaScript;Python\n", + " Non developer\n", + " No major\n", + " 20.0\n", " Not seeking\n", " \n", " \n", @@ -9086,50 +9640,50 @@ "" ], "text/plain": [ - " Age Gender SalaryUSD Country \\\n", - "0 31 Man 214247.736842 United States \n", - "1 36 Man 116000.000000 United States \n", - "2 22 Man 32315.000000 United Kingdom \n", - "3 23 Man 40070.000000 United Kingdom \n", - "4 49 Man 14268.000000 Spain \n", + " Age Gender SalaryUSD Country \\\n", + "0 36 Man 116000.0 United States \n", + "1 22 Man 32315.0 United Kingdom \n", + "2 23 Man 40070.0 United Kingdom \n", + "3 49 Man 14268.0 Spain \n", + "4 53 Man 38916.0 Netherlands \n", "\n", " DevType Hobbyist EdLevel \\\n", "0 Developer, back-end;Developer, desktop or ente... Yes Bachelors \n", - "1 Developer, back-end;Developer, desktop or ente... Yes Bachelors \n", - "2 Database administrator;Developer, full-stack;D... Yes Masters \n", - "3 Developer, back-end;Developer, desktop or ente... Yes Bachelors \n", - "4 Designer;Developer, front-end No No Degree \n", + "1 Database administrator;Developer, full-stack;D... Yes Bachelors \n", + "2 Developer, back-end;Developer, desktop or ente... Yes Bachelors \n", + "3 Designer;Developer, front-end No No Degree \n", + "4 Designer;Developer, back-end Yes No Degree \n", "\n", " Employment Ethnicity CurrentJobSatis \\\n", "0 Full-time White or of European descent Slightly dissatisfied \n", - "1 Full-time White or of European descent Slightly dissatisfied \n", - "2 Full-time White or of European descent Very satisfied \n", - "3 Full-time White or of European descent Slightly dissatisfied \n", - "4 Full-time White or of European descent Very dissatisfied \n", + "1 Full-time White or of European descent Very satisfied \n", + "2 Full-time White or of European descent Slightly dissatisfied \n", + "3 Full-time White or of European descent Very dissatisfied \n", + "4 Full-time White or of European descent Very satisfied \n", "\n", " JobStatus \\\n", - "0 I’m not actively looking, but I am open to new... \n", - "1 I’m not actively looking, but I am open to new... \n", - "2 I’m not actively looking, but I am open to new... \n", - "3 I am actively looking for a job \n", - "4 I’m not actively looking, but I am open to new... \n", + "0 I‚Äôm not actively looking, but I am open to n... \n", + "1 I‚Äôm not actively looking, but I am open to n... \n", + "2 I am actively looking for a job \n", + "3 I‚Äôm not actively looking, but I am open to n... \n", + "4 I am not interested in new job opportunities \n", "\n", " LanguageDesireNextYear LanguageWorkedWith \\\n", - "0 Java;Ruby;Scala HTML/CSS;Ruby;SQL \n", - "1 JavaScript Python;SQL \n", - "2 HTML/CSS;Java;JavaScript;Python;R;SQL HTML/CSS;Java;JavaScript;Python;SQL \n", - "3 Go;JavaScript;Swift;TypeScript C#;JavaScript;Swift \n", - "4 HTML/CSS;JavaScript HTML/CSS;JavaScript \n", + "0 JavaScript Python;SQL \n", + "1 HTML/CSS;Java;JavaScript;Python;R;SQL HTML/CSS;Java;JavaScript;Python;SQL \n", + "2 Go;JavaScript;Swift;TypeScript C#;JavaScript;Swift \n", + "3 HTML/CSS;JavaScript HTML/CSS;JavaScript \n", + "4 Python C;JavaScript;Python \n", "\n", - " Profession UndergradMajor YearsCodePro JobSeek \n", - "0 Ex-Developer Computer Science 8.0 Not seeking \n", - "1 Developer Computer Science 13.0 Not seeking \n", - "2 Developer Math/Stat 4.0 Not seeking \n", - "3 Developer Computer Science 2.0 Seeking \n", - "4 Developer Math/Stat 7.0 Not seeking " + " Profession UndergradMajor YearsCodePro JobSeek \n", + "0 Developer Computer Science 13.0 nan \n", + "1 Developer Math/Stat 4.0 nan \n", + "2 Developer Computer Science 2.0 Seeking \n", + "3 Developer Math/Stat 7.0 nan \n", + "4 Non developer No major 20.0 Not seeking " ] }, - "execution_count": 327, + "execution_count": 1164, "metadata": {}, "output_type": "execute_result" } @@ -9140,7 +9694,7 @@ }, { "cell_type": "code", - "execution_count": 328, + "execution_count": 1165, "metadata": {}, "outputs": [ { @@ -9148,29 +9702,29 @@ "output_type": "stream", "text": [ "\n", - "RangeIndex: 41569 entries, 0 to 41568\n", + "RangeIndex: 50 entries, 0 to 49\n", "Data columns (total 17 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", - " 0 Age 41569 non-null int64 \n", - " 1 Gender 41569 non-null object \n", - " 2 SalaryUSD 41569 non-null float64\n", - " 3 Country 41569 non-null object \n", - " 4 DevType 41569 non-null object \n", - " 5 Hobbyist 41569 non-null object \n", - " 6 EdLevel 41569 non-null object \n", - " 7 Employment 41569 non-null object \n", - " 8 Ethnicity 41569 non-null object \n", - " 9 CurrentJobSatis 41569 non-null object \n", - " 10 JobStatus 41569 non-null object \n", - " 11 LanguageDesireNextYear 41569 non-null object \n", - " 12 LanguageWorkedWith 41569 non-null object \n", - " 13 Profession 41569 non-null object \n", - " 14 UndergradMajor 41569 non-null object \n", - " 15 YearsCodePro 41569 non-null float64\n", - " 16 JobSeek 41569 non-null object \n", + " 0 Age 50 non-null int64 \n", + " 1 Gender 50 non-null object \n", + " 2 SalaryUSD 50 non-null float64\n", + " 3 Country 50 non-null object \n", + " 4 DevType 50 non-null object \n", + " 5 Hobbyist 50 non-null object \n", + " 6 EdLevel 50 non-null object \n", + " 7 Employment 50 non-null object \n", + " 8 Ethnicity 50 non-null object \n", + " 9 CurrentJobSatis 50 non-null object \n", + " 10 JobStatus 50 non-null object \n", + " 11 LanguageDesireNextYear 50 non-null object \n", + " 12 LanguageWorkedWith 50 non-null object \n", + " 13 Profession 50 non-null object \n", + " 14 UndergradMajor 50 non-null object \n", + " 15 YearsCodePro 50 non-null float64\n", + " 16 JobSeek 50 non-null object \n", "dtypes: float64(2), int64(1), object(14)\n", - "memory usage: 5.4+ MB\n" + "memory usage: 6.8+ KB\n" ] } ], @@ -9187,14 +9741,14 @@ }, { "cell_type": "code", - "execution_count": 329, + "execution_count": 1166, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Total : 706673\n", + "Total : 850\n", "Total missing : 0\n", "Missing Percentage: 0.0 %\n" ] @@ -9229,7 +9783,7 @@ }, { "cell_type": "code", - "execution_count": 330, + "execution_count": 1167, "metadata": {}, "outputs": [], "source": [ @@ -9239,7 +9793,7 @@ }, { "cell_type": "code", - "execution_count": 331, + "execution_count": 1168, "metadata": {}, "outputs": [], "source": [ @@ -9250,7 +9804,7 @@ }, { "cell_type": "code", - "execution_count": 332, + "execution_count": 1169, "metadata": {}, "outputs": [ { @@ -9259,15 +9813,15 @@ "Text(0.5, 1.0, 'Income vs Gender')" ] }, - "execution_count": 332, + "execution_count": 1169, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAAJYCAYAAAAnh/xEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABIH0lEQVR4nO3df5xWdZ3//+cwM6AyQ0hRZoGCSaYGCuSPGPBXft00y0xQUNxVi80Sk4JFDUFAUkvUDcM1M21RIQ1LS7cfmogUqxuGKIW1KIJKSSrKDDLEzHz/8OOsiBLKmbkYvN9vN29yznXmul5nsgM+fJ8zZU1NTU0BAAAAgIK0K/UAAAAAAGxfBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITANDmDB8+PFdccUWpx9im/OQnP8lJJ52U/v37Z7/99svgwYNz++23t+hnDho0KLfddluLfgYA0DZVlHoAAAC2zoQJE3L77bdn1KhROeSQQ1JWVpb7778/F154YVavXp1//ud/LvWIAMA7jOAEANCGzZs3Lz/84Q9z4403pn///s37d9ttt+ywww751re+lZNPPjkVFf7YBwC0HrfUAQBt2m233ZahQ4fmqquuykEHHZSamppMmTIljY2NzcfMmDEjRxxxRPbff/+ceuqpWbp06UZff/TRR6d37945/vjj88ADDzS/dvjhh+eHP/xhPve5z6V3794544wz8vTTT+ess85Knz59ctxxx230Xr/73e9ywgknpHfv3jnmmGPyk5/85A1nnjt3bnr37p26urrmfQ8//HD23XffvPjii3nsscdy8sknZ7/99suAAQNyySWXZMOGDW/4Xrfccktqamo2ik2v+vSnP53bb7+9OTatWbMmY8eOTb9+/TJgwIBccMEFqa2tTZI88MADGTRoUH74wx9m0KBBOfDAAzNmzJisW7eu+f1mzZqVQw45JP369cs111yz0Wc1NTVl+vTpGThwYPr165czzjgjy5Yta379wx/+cK688socdNBB+Zd/+Zc3PBcAYPshOAEAbd4jjzySpUuX5qabbso555yTG2+8Mffff3+S5NZbb80VV1yRUaNG5Sc/+Ul22WWXfOlLX0pTU1Nuu+22TJo0KSNGjMjtt9+eAQMGZMSIEXnmmWea3/vb3/52Ro0alZtuuimPPvpoPvvZz2bgwIG59dZb065du1x55ZVJklWrVmXEiBE59thj89Of/jRf/vKXc9FFF+XXv/71JvN+/OMfz0477ZT77ruved/Pf/7z1NTU5F3velfGjBmTnj175qc//WmuvPLK3H777fnRj370hue+cOHCHHDAAW/4Wvv27bPLLrs0b59//vl54YUXctNNN+Waa67JE088kfPOO6/59eeeey533XVXvvvd72bKlCn55S9/2fyMpvvvvz9TpkzJqFGjMmvWrCxcuDB//etfm7/2xhtvzO23355vfvObueWWW7LbbrvlX/7lX/Lyyy83H3PPPffk5ptvzte//vU3/d8SANg+WFsNALR5GzZsyKRJk1JdXZ099tgjN910Ux555JEccsghmTVrVoYPH55PfepTSZILLrgg06dPT21tbWbMmJGTTz45xx13XJLka1/7Wh588MHMmDEjY8eOTZJ85jOfSU1NTZLkgAMOyAsvvJATTzwxySsriG699dYkyU033ZQDDzyw+XlJu+22Wx5//PH84Ac/yOGHH77RvBUVFTnqqKPyi1/8IkcffXSS5Be/+EXOOeecJMnTTz+dQw89NLvuumu6deuWa6+9Np07d37Dc3/++ec3ee3AAw/M+vXrm7evvfbavPe9782vfvWr/Pd//3fz8ZdeemkOP/zwrFy5svn7eP755+fDH/5w9tprrwwcODCPPPJIklfC3THHHNP8vZoyZUoOOeSQ5s/43ve+l3HjxuXggw9u/j7fd999+cUvftH8NSeeeGJ69uz5Jv8rAgDbE8EJAGjzdt5551RXVzdvV1VVNd+CtnTp0nzxi19sfq26uro5Ji1dujRnnnnmRu+133775fHHH2/e7tatW/OvO3TokF133XWj7VfDzuOPP577778/+++/f/PrGzZsSJcuXd5w5mOOOSb/+q//mvr6+jz22GN57rnncsQRRyRJvvrVr+aiiy5qvr3tmGOOyb777vuG7/Oud70rL7300kb7fvSjH6WxsTENDQ355Cc/mYaGhixdujRNTU057LDDNnmPZcuWpV27Vxa+d+/evXn/67+PgwcPbn6tS5cu+cAHPpAkqaury1/+8peMHj26+X2SpL6+fqPb6l49HgDY/glOAECbV1lZucm+pqamN33tVTvssMMm+xoaGtLQ0NC8/fqHbb82qLzWhg0bcswxx+RLX/rSFh3/sY99LNXV1bn//vuzYMGCHHLIIenYsWOS5OSTT85hhx2We+65J3PmzMmXvvSlnHnmmRk5cuQm79O7d+/8/ve/32jfq5Hstc99amhoyE477fSGz5Xq2rVr80qm13+/Xv0+vv7Xrz321e/X5Zdfng996EMbHfPaENihQ4c3+E4AANsjz3ACALZru+22W/7whz80b69duzYDBgzIn/70p/Ts2TMPP/zwRsc//PDD6dGjx1v+nB49emTZsmXZbbfdmv+aN2/emz57qaysLJ/85Cdz77335te//nWOOeaYJK+sCrroootSVlaW4cOH57rrrstZZ52Vu+666w3f56STTsqcOXOag9FrvfYZSz169MjatWvT0NDQPF+SXHzxxc0PDt+cPffcc6PPqK2tzYoVK5IknTp1yrvf/e6sWrWq+b0/+MEP5vLLL89jjz32D98bANj+CE4AwHbt1FNPzYwZM/KLX/wiy5Yty4QJE9K5c+d86EMfymmnnZabb745P/nJT/LEE09k6tSp+eMf/5ghQ4a85c8ZNmxY/vjHP2bq1KlZtmxZfv7zn+db3/pW3ve+973p1xxzzDG56667smrVqhx66KFJXlkF9NBDD2Xy5MlZunRpHnvsscydOzf77LPPG77HIYccklNOOSWnnXZabrjhhixdujRPPPFE/vM//zMnnHBC3v/+9+cDH/hA9thjjwwcODD/9m//locffjhLlizJ2LFj89xzz+W9733vPzy/k08+Ob/85S8za9asLF26NOPGjUt9fX3z6//yL/+Sf//3f8/dd9+dJ598MhMnTsxvf/tbz2wCgHcot9QBANu1T3/60/nrX/+aKVOmZM2aNenbt2+uvvrqtGvXLkcddVRWrVqVb3/721m1alU+8pGP5Prrr8+ee+75lj/nAx/4QK655ppcdtlluf7669O1a9eMHDkyw4YNe9Ov6d27d7p27Zo+ffpsdLvZFVdckUmTJjWHr8MOOywXXHDBm77Peeedl/79++fGG2/M1VdfnXXr1qVHjx7553/+55xyyimpqqpKknzzm9/MlClTcvrpp6esrCwf//jHN/u+r/Wxj30sF198ca688spceumlGTJkSHr16tX8+hlnnJGXX345EydOzEsvvZSPfOQjue666zYb3ACA7VdZ0+tvxgcAAACAreCWOgAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQFaUeoDWsWrWm1CMAAAAAbFe6dq1+09escAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBNuBF154PhdcMDYvvPB8qUcBAACA4oPT3//+94wZMybDhg3LCSeckHvuuSdPPvlkhg4dmmHDhmXChAlpbGxMktxyyy05/vjjM2TIkNx7771JknXr1mXkyJEZNmxYvvCFL+T551/5F+iFCxdm8ODBOemkk3LVVVc1f95VV12VE044ISeddFIWLVpU9OlAm3Dddf+RP/zh0Vx33TWlHgUAAN7x/AdhaIHgdMcdd6Rz5865+eabc+2112by5Mm5+OKLc8455+Tmm29OU1NT7rnnnqxatSozZszIrFmzct111+Xyyy/P+vXrM3PmzPTq1Ss333xzjjvuuEyfPj1JMmHChEydOjUzZ87Mww8/nMWLF2fx4sV58MEHc+utt+byyy/PxIkTiz4d2Oa98MLzmT//N0mS+fPn+U0NoA17+OHfZ/DgY7No0cJSjwLAVrj11pn54x8X59ZbZ5V6FCiZwoPTP/3TP+UrX/lK83Z5eXkWL16cAw44IEkyaNCg/Pa3v82iRYuy//77p3379qmurk737t2zZMmSLFiwIAMHDmw+dv78+amtrc369evTvXv3lJWVpaamJvPnz8+CBQtSU1OTsrKy7LrrrmloaGheEQXvFNdd9x+v27bKCaCt+ta3pqSxsTHf/OZFpR4FgLfphReez7333p2mpqbce++v/Adh3rEqin7Djh07Jklqa2tz9tln55xzzsmll16asrKy5tfXrFmT2traVFdXb/R1tbW1G+1/7bFVVVUbHbtixYp06NAhnTt33mj/mjVr0qVLl41mqqrqkIqK8qJPFbYJr65u+r/teenceacSTQPA27Vgwe/y8ssvJ0lefvnlPP74kvTt27fEUwHwVt1wwzXNj5FpbGzMHXf8KF/5yjmlHQpKoPDglCQrV67Ml7/85QwbNizHHntsvvWtbzW/VldXl06dOqWqqip1dXUb7a+urt5o/+aO7dSpUyorK9/wPV6vtra+JU4TtlmrV68t9QgAvEUTJozfaHv8+HG58cYflWgaAN6uu+++Oxs2bEiSbNiwIb/61a/yz/88osRTQcvo2nXTBvOqwm+p+9vf/pbTTz89Y8aMyQknnJAk2XvvvfPAAw8kSebOnZv+/fund+/eWbBgQerr67NmzZosXbo0vXr1St++fXPfffc1H9uvX79UVVWlsrIyy5cvT1NTU+bNm5f+/funb9++mTdvXhobG/PMM8+ksbFxk9VNAABtwaurm95sG4C2YdCgQ1NR8crajoqKigwadFiJJ4LSKHyF03/8x3/kpZdeyvTp05sf+P31r389F110US6//PL07NkzRx11VMrLyzN8+PAMGzYsTU1NGTVqVDp06JChQ4dm7NixGTp0aCorKzN16tQkycSJEzN69Og0NDSkpqYmffr0SZL0798/J554YhobGzN+/Pg3nQsAAABa2uDBQ3PvvXcnSdq1a5fBg08q8URQGmVNTU1NpR6ipa1atabUI0CL+dznjtlk3+zZd5ZgEgC2xtChn8369eubt9u3b5+ZM39cwokAeLu++93v5Je//K/8f//f0Rkx4kulHgdazOZuqWuRZzgBAPDWvDY2vdE2AG3H4MFDs2LFcqubeEcTnAAAAKBAO+/cJZMnX1rqMaCkCn9oOAAAb9373rfLZrcBANoSwQkAYBvwvve973XbghNAWzVv3tx87nPH5Le/vb/Uo0DJCE4AANuARYseft32wtIMAsBWmzbtlZ+2/u//flmJJ4HSEZwAAACgIPPmzc2GDRuSJBs2bLDKiXcswQkAAAAK8urqpldZ5cQ7leAEAAAABXl1ddObbcM7heAEAAAABamoqNjsNrxTCE4AAABQkJEjv7bR9le+MrpEk0BpCU4AANuAj3xkn42299573xJNAsDWqKkZ1LyqqaKiIh//+MASTwSlITgBAGwDvva1czfa/upXx5ZoEgC21qurnKxu4p3MzaQAAABQoJqaQampGVTqMaCkrHACANgG3HrrzJSXlydJysvLc+uts0o8EQDA2yc4AQBsA+bOnZOGhoYkSUNDQ+bOvbfEEwEAvH2CEwDANmDQoEM3esjsoEGHlXgiAIC3T3ACANgGDB48NE1NTUmSpqamDB58UoknAgB4+wQnAIBtwM47d0lZWVmSpKysLDvv3KXEEwEAvH2CEwDANuDhh3+fDRs2JEk2bNiQRYsWlnYgAICtIDgBAGwDpk69ZKPtyy67uESTAABsPcEJAGAbUFdXu9ltAIC2pKLUAwAA8EbKSj0AwCbmzLknv/71r0o9xjZv9eoXkiSdO+9c4knahsMPPzKHHnpEqcegYIITAMA2qanUAwDwNr3wguAEghMAAABb5NBDj7ASZQuMH39ukmTSpEv+wZGw/fIMJwCAbcDBBw943XZNiSYBANh6ghMAwDagrm7tRtv19S+XaBIAgK0nOAEAbAMWLfr9RtsPPbSgRJMAAGw9wQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEEJwCAbUCnTu/a7DYAQFsiOAEAbAPGj79oo+0JEy56kyMBALZ9FaUeAADY/s2Zc09+/etflXqMNqNdu3b5/ve/W+oxtnmHH35kDj30iFKPAQC8ASucAAC2ETvssEOSZPfde5Z4EgCArWOFEwDQ4g499AgrUbbA+PHnJkkmTbqkxJMAAGwdK5wAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhapoqTd++OGHc9lll2XGjBkZNWpU/va3vyVJnn766fTp0ydXXHFFLrroojz00EPp2LFjkmT69OmprKzMmDFj8txzz6Vjx4659NJL06VLlyxcuDBTpkxJeXl5ampqctZZZyVJrrrqqsyZMycVFRU5//zz07t375Y6JQAAAAC2QIsEp2uvvTZ33HFHdtxxxyTJFVdckSR58cUXc+qpp+a8885LkixevDjf+9730qVLl+avvf7669OrV6+MHDkyd955Z6ZPn55x48ZlwoQJmTZtWrp165YRI0Zk8eLFSZIHH3wwt956a1auXJmRI0dm9uzZLXFKAAAAAGyhFrmlrnv37pk2bdom+6dNm5ZTTjkl733ve9PY2Jgnn3wy48ePz0knnZQf/ehHSZIFCxZk4MCBSZJBgwZl/vz5qa2tzfr169O9e/eUlZWlpqYm8+fPz4IFC1JTU5OysrLsuuuuaWhoyPPPP98SpwQAAADAFmqRFU5HHXVUnnrqqY32Pffcc5k/f37z6qa1a9fmlFNOyWmnnZaGhoaceuqp2XfffVNbW5vq6uokSceOHbNmzZrU1tamqqqq+b06duyYFStWpEOHDuncufNG+9esWbPRiqkkqarqkIqK8pY4Vdgmde68U6lHAOBtqKh45b8Fuo4DtG2u59CCz3B6vZ///Of51Kc+lfLyV8LPjjvumFNPPbX5truDDjooS5YsSVVVVerq6pIkdXV16dSp00b7Xru/srJyk/2vxqrXqq2tb8lTg23O6tVrSz0CAG/Dhg2NSVzHAdo613PeKbp23bTBvKrVfkrd/PnzM2jQoObtZcuWZdiwYWloaMjf//73PPTQQ9lnn33St2/f3HfffUmSuXPnpl+/fqmqqkplZWWWL1+epqamzJs3L/3790/fvn0zb968NDY25plnnkljY+Mmq5sAAAAAaF2ttsLpiSeeSLdu3Zq399hjjxx77LEZMmRIKisr85nPfCZ77rlnPvjBD2bs2LEZOnRoKisrM3Xq1CTJxIkTM3r06DQ0NKSmpiZ9+vRJkvTv3z8nnnhiGhsbM378+NY6HQAAAADeRFlTU1NTqYdoaatWrSn1CNBiPve5YzbZN3v2nSWYBICtNX78uUmSSZMuKfEkAGwN13PeKTZ3S12rrXCCt2POnHvy61//qtRjtDmv/gbHGzv88CNz6KFHlHoMAACA7VarPcMJAAAAgHcGK5zYph166BFWovwDQ4Z8Og0NDc3b5eXllu4CAABQUlY4QRt36aVXbrT9zW9e+YbHAQAAQGsRnKCN69GjZ/Ovy8vLs/vuPTdzNAAAALQ8wQm2Az17fijt2rWzugkAAIBtguAE24Edd9wxH/nIPlY3AQAAsE0QnAAAAAAolOAEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUC0WnB5++OEMHz48SbJ48eIMHDgww4cPz/Dhw3PXXXclSW655ZYcf/zxGTJkSO69994kybp16zJy5MgMGzYsX/jCF/L8888nSRYuXJjBgwfnpJNOylVXXdX8OVdddVVOOOGEnHTSSVm0aFFLnQ4AAAAAW6iiJd702muvzR133JEdd9wxSfKHP/whp512Wk4//fTmY1atWpUZM2Zk9uzZqa+vz7BhwzJgwIDMnDkzvXr1ysiRI3PnnXdm+vTpGTduXCZMmJBp06alW7duGTFiRBYvXpwkefDBB3Prrbdm5cqVGTlyZGbPnt0SpwQAAADAFmqRFU7du3fPtGnTmrcfffTRzJkzJyeffHLOP//81NbWZtGiRdl///3Tvn37VFdXp3v37lmyZEkWLFiQgQMHJkkGDRqU+fPnp7a2NuvXr0/37t1TVlaWmpqazJ8/PwsWLEhNTU3Kysqy6667pqGhoXlFFAAAAACl0SIrnI466qg89dRTzdu9e/fO4MGDs+++++bqq6/Od77zney1116prq5uPqZjx46pra1NbW1t8/6OHTtmzZo1qa2tTVVV1UbHrlixIh06dEjnzp032r9mzZp06dJlo3mqqjqkoqK8JU4VtgkVFa+0486ddyrxJABsDddzgO2D6zm0UHB6vSOPPDKdOnVq/vXkyZPTv3//1NXVNR9TV1eX6urqVFVVNe+vq6tLp06dNtr32v2VlZVv+B6vV1tb31KnBtuEDRsakySrV68t8SQAbA3Xc4Dtg+s57xRdu27aYF7VKj+l7owzzmh+oPf8+fOzzz77pHfv3lmwYEHq6+uzZs2aLF26NL169Urfvn1z3333JUnmzp2bfv36paqqKpWVlVm+fHmampoyb9689O/fP3379s28efPS2NiYZ555Jo2NjZusbgIAAACgdbXKCqcLL7wwkydPTmVlZd7znvdk8uTJqaqqyvDhwzNs2LA0NTVl1KhR6dChQ4YOHZqxY8dm6NChqayszNSpU5MkEydOzOjRo9PQ0JCampr06dMnSdK/f/+ceOKJaWxszPjx41vjdAAAAADYjLKmpqamUg/R0latWlPqEaBFjR9/bpJk0qRLSjwJAFvD9Rxg++B6zjtFyW+pAwAAAOCdQ3ACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAAClXRUm/88MMP57LLLsuMGTPyxz/+MZMnT055eXnat2+fSy+9NO95z3ty0UUX5aGHHkrHjh2TJNOnT09lZWXGjBmT5557Lh07dsyll16aLl26ZOHChZkyZUrKy8tTU1OTs846K0ly1VVXZc6cOamoqMj555+f3r17t9QpAQAAALAFWiQ4XXvttbnjjjuy4447JkmmTJmSCy64IB/5yEcya9asXHvttTnvvPOyePHifO9730uXLl2av/b6669Pr169MnLkyNx5552ZPn16xo0blwkTJmTatGnp1q1bRowYkcWLFydJHnzwwdx6661ZuXJlRo4cmdmzZ7fEKQEAAACwhVrklrru3btn2rRpzduXX355PvKRjyRJGhoa0qFDhzQ2NubJJ5/M+PHjc9JJJ+VHP/pRkmTBggUZOHBgkmTQoEGZP39+amtrs379+nTv3j1lZWWpqanJ/Pnzs2DBgtTU1KSsrCy77rprGhoa8vzzz7fEKQEAAACwhVpkhdNRRx2Vp556qnn7ve99b5LkoYceyo033pibbropa9euzSmnnJLTTjstDQ0NOfXUU7PvvvumtrY21dXVSZKOHTtmzZo1qa2tTVVVVfP7dezYMStWrEiHDh3SuXPnjfavWbNmoxVTSVJV1SEVFeUtcaqwTaioeKUdd+68U4knAWBruJ4DbB9cz6EFn+H0enfddVeuvvrqfPe7302XLl2aI9Ort90ddNBBWbJkSaqqqlJXV5ckqaurS6dOnTba99r9lZWVm+x/NVa9Vm1tfQufHZTWhg2NSZLVq9eWeBIAtobrOcD2wfWcd4quXTdtMK9qlZ9Sd/vtt+fGG2/MjBkz0q1btyTJsmXLMmzYsDQ0NOTvf/97Hnrooeyzzz7p27dv7rvvviTJ3Llz069fv1RVVaWysjLLly9PU1NT5s2bl/79+6dv376ZN29eGhsb88wzz6SxsXGT1U0AAAAAtK4WX+HU0NCQKVOm5P3vf39GjhyZJPnYxz6Ws88+O8cee2yGDBmSysrKfOYzn8mee+6ZD37wgxk7dmyGDh2aysrKTJ06NUkyceLEjB49Og0NDampqUmfPn2SJP3798+JJ56YxsbGjB8/vqVPBwAAAIB/oKypqamp1EO0tFWr1pR6BGhR48efmySZNOmSEk8CwNZwPQfYPrie805R8lvqAAAAAHjnEJwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEq/tEBN954Y+66666sXr06u+yyS44++uiccMIJrTEbAAAAAG3QZoPTtGnTsmrVqnzjG9/Ie97znjz99NP5/ve/n2effTZf+tKXWmtGAAAAANqQzd5SN2/evEyaNCm77757qqqq8uEPfzgXX3xxfvvb37bWfAAAAAC0MZsNTu3bt9/0C9q1S3l5eYsNBAAAAEDbttngVFZW9ob7m5qaWmQYAAAAANq+zT7D6aGHHkpNTc0m+1988cUWGwgAAACAtm2zwenRRx9trTkAAAAA2E5s9pa69evX5wc/+EGampry17/+NWeffXZGjx6dVatWtdZ8AAAAALQxmw1OkydPzjPPPJPGxsZceOGF2WuvvXLUUUflwgsvbKXxAAAAAGhrNhucnnnmmZx33nnZsGFDFixYkC984Qs58sgj8/zzz7fWfAAAAAC0MVv0U+oeeuihfPSjH01lZWWSpL6+vuUnAwAAAKBN2uxDw3faaaf88Ic/zC9+8Yt86lOfSmNjY2bPnp33v//9rTUfAAAAAG3MZlc4XXjhhVm+fHmOOOKIfPazn80DDzyQX//6157hBAAAAMCb2uwKpy5dumTMmDHN2wcffHAOPvjgFh8KAAAAgLZrs8Hp8MMPb36OU1lZWXbYYYd89KMfzejRo/Pud7+7VQYEAAAAoG3ZbHD6+c9/vtF2XV1d7rvvvowbNy5XX311iw4GAAAAQNu02Wc4tW/ffqO/dt555xx33HF58cUXW2s+AAAAANqYzQanN1NfX1/0HAAAAABsJzZ7S90TTzyx0fb69evzi1/8Irvvvvs/fOOHH344l112WWbMmJEnn3wy5557bsrKyrLnnntmwoQJadeuXW655ZbMmjUrFRUVOfPMM3PYYYdl3bp1GTNmTJ577rl07Ngxl156abp06ZKFCxdmypQpKS8vT01NTc4666wkyVVXXZU5c+akoqIi559/fnr37v32vxsAAAAAbLXNBqfx48dvtL3DDjtk7733zsSJEzf7ptdee23uuOOO7LjjjkmSiy++OOecc04OPPDAjB8/Pvfcc0/222+/zJgxI7Nnz059fX2GDRuWAQMGZObMmenVq1dGjhyZO++8M9OnT8+4ceMyYcKETJs2Ld26dcuIESOyePHiJMmDDz6YW2+9NStXrszIkSMze/bsrfl+AAAAALCVNhucZsyYkSR55JFH8tGPfnSL37R79+6ZNm1a/u3f/i1Jsnjx4hxwwAFJkkGDBuU3v/lN2rVrl/3337/5+VDdu3fPkiVLsmDBgnz+859vPnb69Ompra3N+vXr07179yRJTU1N5s+fn/bt26empiZlZWXZdddd09DQkOeffz5dunR5698JAAAAAAqx2eD0qu9///t5+umn8+lPfzqf/vSn06lTp80ef9RRR+Wpp55q3m5qakpZWVmSpGPHjlmzZk1qa2tTXV3dfEzHjh1TW1u70f7XHltVVbXRsStWrEiHDh3SuXPnjfavWbNmk+BUVdUhFRXlW3Kq0CZVVLzyOLbOnXcq8SQAbA3Xc4Dtg+s5bGFwuuKKK/Liiy/mZz/7Wb7yla+kS5cuGTJkSA488MAt+pB27f7v2eR1dXXp1KlTqqqqUldXt9H+6urqjfZv7thOnTqlsrLyDd/j9WprPeSc7duGDY1JktWr15Z4EgC2hus5wPbB9Zx3iq5dN20wr9rin1L3t7/9Lc8880xeeOGF7Lzzzvn5z3+e8847b4u+du+9984DDzyQJJk7d2769++f3r17Z8GCBamvr8+aNWuydOnS9OrVK3379s19993XfGy/fv1SVVWVysrKLF++PE1NTZk3b1769++fvn37Zt68eWlsbMwzzzyTxsZGt9MBAAAAlNgWrXAaPHhwdthhhwwZMiRf+cpX0r59+yTJGWecsUUfMnbs2FxwwQW5/PLL07Nnzxx11FEpLy/P8OHDM2zYsDQ1NWXUqFHp0KFDhg4dmrFjx2bo0KGprKzM1KlTkyQTJ07M6NGj09DQkJqamvTp0ydJ0r9//5x44olpbGzc5CHnAAAAALS+sqampqZ/dNBVV12Vs846qzXmaRGrVq0p9QjQosaPPzdJMmnSJSWeBICt4XoOsH1wPeedYqtvqfvv//7vwoYBAAAAYPu2RbfUrV+/Pscdd1x69OjR/ADwV291AwAAAIDX2qLgNHr06JaeAwAAAIDtxBbdUterV688++yzeeaZZ/L000/n97//fUvPBQAAAEAbtUUrnM4+++zsvvvu+dOf/pQOHTpkxx13bOm5AAAAAGijtmiFU5JMmjQpPXr0yPXXX58XX3yxJWcCAAAAoA3b4uBUX1+fl19+OWVlZVm7dm1LzgQAAABAG7ZFwenkk0/ODTfckAEDBuSQQw5Jz549W3ouAAAAANqoLXqG01FHHdX8609+8pOpqqpqsYEAAAAAaNs2G5xOPPHElJWVveFrs2bNapGBAAAAAGjbNhucLr/88taaAwAAAIDtxGaD0wc+8IEkyZNPPpmf//zn+fvf/54kefbZZzNp0qSWnw4AAACANmeLHho+duzYJMlDDz2Up556KqtXr27JmQAAAABow7YoOO2www7513/917zvfe/LJZdckr/97W8tPRcAAAAAbdQWBaempqasWrUqdXV1Wbt2bV588cWWngsAAACANmqLgtNZZ52Vu+++O4cffngOO+ywDBo0qKXnAgAAAKCN2mxwWrx4cY477rjst99+efe7351vfvOb6dy5c/r3799a8wEAAADQxmz2p9RdccUVueSSS1JZWZkrr7wy1157bXbbbbd8/vOfzxFHHNFaMwIAALSo73//u1m27PFSj8F24oknXvlnafz4c0s8CduT3XfvmdNPH1HqMbbYZoNTU1NT9tprr/z1r3/Nyy+/nH322SdJ0q7dFt2JBwAA0CYsW/Z4Hv3ToqRzqSdhu1D+yt8efXZRaedg+7G61AO8dZsNTo2NjUmS+++/PwcffHCSZP369amrq2v5yQAAAFpT56Tx0MZSTwGwiXZz2t7Cn80Gp4MPPjgnnXRS/vKXv+Tqq6/O8uXLc+GFF+boo49urfkAAAAAaGM2G5xGjBiRI444Il26dMnOO++c5cuXZ+jQoTnyyCNbaz4AAAAA2pjNBqck2WOPPZp/3b1793Tv3r1FBwIAAACgbWt7NwECAAAAsE0TnAAAAAAolOAEAAAAQKEEJwAAAAAK9Q8fGg4AvLnvf/+7Wbbs8VKPwXbiiSde+Wdp/PhzSzwJ25Pdd++Z008fUeoxAHiHEZwAYCssW/Z4nnjs4XSvaij1KGwH3pWyJEnD0w+VeBK2F8try0s9AgDvUIITAGyl7lUNGde/ttRjAGziot9VlXoEAN6hPMMJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUBWlHuCd6vvf/26WLXu81GOwnXjiiVf+WRo//twST8L2ZPfde+b000eUegwAAKANEpxKZNmyx/PoksfSuFOXUo/CdqCs8ZX/Ky9avqrEk7C9aLf2+VKPAAAAtGGCUwk17tQl6/b+VKnHANjEDn/4WalHAAAA2jDPcAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhaporQ+67bbb8uMf/zhJUl9fnz/+8Y+ZNWtWvvjFL2b33XdPkgwdOjRHH310brnllsyaNSsVFRU588wzc9hhh2XdunUZM2ZMnnvuuXTs2DGXXnppunTpkoULF2bKlCkpLy9PTU1NzjrrrNY6JQAAAADeQKsFp+OPPz7HH398kmTixIn53Oc+lz/84Q857bTTcvrppzcft2rVqsyYMSOzZ89OfX19hg0blgEDBmTmzJnp1atXRo4cmTvvvDPTp0/PuHHjMmHChEybNi3dunXLiBEjsnjx4uyzzz6tdVoAAAAAvE6r31L3yCOP5H//939z4okn5tFHH82cOXNy8skn5/zzz09tbW0WLVqU/fffP+3bt091dXW6d++eJUuWZMGCBRk4cGCSZNCgQZk/f35qa2uzfv36dO/ePWVlZampqcn8+fNb+5QAAAAAeI1WW+H0qmuuuSZf/vKXkyS9e/fO4MGDs+++++bqq6/Od77zney1116prq5uPr5jx46pra1NbW1t8/6OHTtmzZo1qa2tTVVV1UbHrlixYpPPrKrqkIqK8hY+s7emosLjs4BtW0VFu3TuvFOpx9jmVVS0S0OphwDYDNfzLePP58C2rq1dz1s1OL300kt5/PHHc9BBByVJjjzyyHTq1Kn515MnT07//v1TV1fX/DV1dXWprq5OVVVV8/66urp06tRpo32v3f96tbX1LXlab8uGDY2lHgFgszZsaMzq1WtLPcY2z/Uc2Na5nm8Z13NgW7ctXs+7dq1+09daNeP/z//8Tz7+8Y83b59xxhlZtGhRkmT+/PnZZ5990rt37yxYsCD19fVZs2ZNli5dml69eqVv37657777kiRz585Nv379UlVVlcrKyixfvjxNTU2ZN29e+vfv35qnBAAAAMDrtOoKpyeeeCIf/OAHm7cvvPDCTJ48OZWVlXnPe96TyZMnp6qqKsOHD8+wYcPS1NSUUaNGpUOHDhk6dGjGjh2boUOHprKyMlOnTk3yygPIR48enYaGhtTU1KRPnz6teUoAAAAAvE6rBqfPf/7zG23vs88+mTVr1ibHDRkyJEOGDNlo34477phvf/vbmxy733775ZZbbil2UAAAAADeNk/GAwAAAKBQghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhRKcAAAAAChURakHAAAAKLXVq19IVift5vhv8sA2aHWyuv0LpZ7iLXE1BQAAAKBQVjgBAADveJ0775yn1q9I46GNpR4FYBPt5rRL5847l3qMt6RVg9Nxxx2X6urqJMkHP/jBfPGLX8y5556bsrKy7LnnnpkwYULatWuXW265JbNmzUpFRUXOPPPMHHbYYVm3bl3GjBmT5557Lh07dsyll16aLl26ZOHChZkyZUrKy8tTU1OTs846qzVPCQAAAIDXabXgVF9fnySZMWNG874vfvGLOeecc3LggQdm/Pjxueeee7LffvtlxowZmT17durr6zNs2LAMGDAgM2fOTK9evTJy5MjceeedmT59esaNG5cJEyZk2rRp6datW0aMGJHFixdnn332aa3TAgAAAOB1Wu0ZTkuWLMnLL7+c008/PaeeemoWLlyYxYsX54ADDkiSDBo0KL/97W+zaNGi7L///mnfvn2qq6vTvXv3LFmyJAsWLMjAgQObj50/f35qa2uzfv36dO/ePWVlZampqcn8+fNb65QAAAAAeAOttsJphx12yBlnnJHBgwdn2bJl+cIXvpCmpqaUlZUlSTp27Jg1a9aktra2+ba7V/fX1tZutP+1x1ZVVW107IoVKzb57KqqDqmoKG/hM3xrKio8rx3YtlVUtEvnzjuVeoxt3ksvrc7f1pTnot9V/eODAVrZk2vK856XVruebwF/Pge2dW3tz+etFpx69OiR3XbbLWVlZenRo0c6d+6cxYsXN79eV1eXTp06paqqKnV1dRvtr66u3mj/5o7t1KnTJp9dW1vfgmf29mzY4GGEwLZtw4bGrF69ttRjbPMaG5tKPQLAZjU2NrmebwF/Pge2ddvin8+7dq1+09daLTj96Ec/yp/+9KdceOGF+etf/5ra2toMGDAgDzzwQA488MDMnTs3Bx10UHr37p0rr7wy9fX1Wb9+fZYuXZpevXqlb9++ue+++9K7d+/MnTs3/fr1S1VVVSorK7N8+fJ069Yt8+bN89BwAFpV5847p7ruiYzrX1vqUQA2cdHvqlLexn6qEQDbh1YLTieccELOO++8DB06NGVlZfnGN76RnXfeORdccEEuv/zy9OzZM0cddVTKy8szfPjwDBs2LE1NTRk1alQ6dOiQoUOHZuzYsRk6dGgqKyszderUJMnEiRMzevToNDQ0pKamJn369GmtUwIAAADgDbRacGrfvn1zJHqtG2+8cZN9Q4YMyZAhQzbat+OOO+bb3/72Jsfut99+ueWWW4obFAAAAICt4sl4AAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAoVKs9NJyNrV79QtqtfS47/OFnpR4FYBPt1j6X1av9FgEAALw9VjgBAAAAUCj/+bpEOnfeOctf2pB1e3+q1KMAbGKHP/wsnTvvXOoxAACANsoKJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAoVEVrfdDf//73nH/++Xn66aezfv36nHnmmdlll13yxS9+MbvvvnuSZOjQoTn66KNzyy23ZNasWamoqMiZZ56Zww47LOvWrcuYMWPy3HPPpWPHjrn00kvTpUuXLFy4MFOmTEl5eXlqampy1llntdYpAQAAAPAGWi043XHHHencuXO+9a1v5YUXXshnP/vZfPnLX85pp52W008/vfm4VatWZcaMGZk9e3bq6+szbNiwDBgwIDNnzkyvXr0ycuTI3HnnnZk+fXrGjRuXCRMmZNq0aenWrVtGjBiRxYsXZ5999mmt0wIAAADgdVotOP3TP/1TjjrqqObt8vLyPProo3niiSdyzz33ZLfddsv555+fRYsWZf/990/79u3Tvn37dO/ePUuWLMmCBQvy+c9/PkkyaNCgTJ8+PbW1tVm/fn26d++eJKmpqcn8+fMFJwAA4K1bnbSb46kjFGDd//v7DiWdgu3J6iTvLfUQb02rBaeOHTsmSWpra3P22WfnnHPOyfr16zN48ODsu+++ufrqq/Od73wne+21V6qrqzf6utra2tTW1jbv79ixY9asWZPa2tpUVVVtdOyKFSs2+eyqqg6pqChv4TN8ayoq/EYGbNsqKtqlc+edSj3GNq+iol0aSj0EwGa4nm+ZD3+4lz+jU5j//d//TZJ8aNcPlXgSthu7Jnvs8aE2dT1vteCUJCtXrsyXv/zlDBs2LMcee2xeeumldOrUKUly5JFHZvLkyenfv3/q6uqav6auri7V1dWpqqpq3l9XV5dOnTpttO+1+1+vtra+hc/srduwobHUIwBs1oYNjVm9em2px9jmuZ4D2zrX8y1z8smn/+ODYAuNH3/u//v7N0o8Cdubbe163rVr9Zu+1moJ/29/+1tOP/30jBkzJieccEKS5IwzzsiiRYuSpPlWuN69e2fBggWpr6/PmjVrsnTp0vTq1St9+/bNfffdlySZO3du+vXrl6qqqlRWVmb58uVpamrKvHnz0r9//9Y6JQAAAADeQKutcPqP//iPvPTSS5k+fXqmT5+eJDn33HPzjW98I5WVlXnPe96TyZMnp6qqKsOHD8+wYcPS1NSUUaNGpUOHDhk6dGjGjh2boUOHprKyMlOnTk2STJw4MaNHj05DQ0NqamrSp0+f1jolAAAAAN5AqwWncePGZdy4cZvsnzVr1ib7hgwZkiFDhmy0b8cdd8y3v/3tTY7db7/9cssttxQ3KAAAAABbxVPxAAAAAChUqz40HAC2R8try3PR76r+8YHwD7y4vixJ8q72TSWehO3F8try9Cj1EAC8IwlOALAVdt+9Z6lHYDvy4hOPJ0m6fMA/VxSjR1ynACgNwQkAtsLpp48o9QhsR179MdqTJl1S4kkAALaOZzgBAAAAUCjBCQAAAIBCuaWuhNqtfT47/OFnpR6D7UDZ319OkjRV7ljiSdhetFv7fJKupR4DAABoowSnEvHwRor0xP97yGyP7gIBRenqOgUAALxtglOJeMgsRfKQWQAAALYlnuEEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAolOAEAAAAQKEEJwAAAAAKJTgBAAAAUCjBCQAAAIBCCU4AAAAAFEpwAgAAAKBQghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABSqotQDFKGxsTEXXnhhHnvssbRv3z4XXXRRdtttt1KPBQAAAPCOtF2scLr77ruzfv36/PCHP8zXvva1XHLJJaUeCQAAAOAdq6ypqamp1ENsrYsvvji9e/fOMccckyQZOHBg7r///ubXV61aU6rR2Epz5tyTX//6V6UeY5v3xBOPJ0l69OhZ4knahsMPPzKHHnpEqceAdxTX8y3jev7WuJ5D63M93zKu52+N63nb1bVr9Zu+tl3cUldbW5uqqqrm7fLy8mzYsCEVFa+cXlVVh1RUlJdqPLbCTju1T0XFdrEQr0W9+91dksT3agvttFP7dO68U6nHgHcU1/Mt43r+1rieQ+tzPd8yrudvjev59mm7WeHUp0+fHH300UmSQYMGZe7cuc2vW+EEAAAAUKzNrXDaLnJr3759mwPTwoUL06tXrxJPBAAAAPDOtV3cUnfkkUfmN7/5TU466aQ0NTXlG9/4RqlHAgAAAHjH2i5uqftH3FIHAAAAUKzt/pY6AAAAALYdghMAAAAAhRKcAAAAACiU4AQAAABAoQQnAAAAAAolOAEAAABQKMEJAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFAowQkAAACAQglOAAAAABRKcAIAAACgUIITAAAAAIUSnAAAAAAoVFlTU1NTqYcAAAAAYPthhRMAAAAAhRKcAAAAACiU4AQAAABAoQQnaAMeeOCBfPjDH85dd9210f5jjz025557bommAuD1Tj311CxatChJsn79+vTr1y/XXXdd8+unnHJKlixZUqrxAHidBx54IP3798/KlSub91122WW57bbb3vZ7Tps2LTNnztxk/1lnnfW23xPaIsEJ2oiePXvmZz/7WfP2Y489lpdffrmEEwHwejU1Nfnd736XJFmwYEFqamoyZ86cJEl9fX1WrlyZvfbaq4QTAvB6lZWVOe+889LSP0/rqquuatH3h21NRakHALbMXnvtlWXLluWll15Kp06dcscdd+TYY4/NypUrc+ONN+aXv/xlNmzYkOrq6kybNi0/+9nPct9992XdunVZvnx5vvCFL+T4448v9WkAbNc+/vGPZ/r06Tn99NNz3333ZfDgwbnsssuyZs2aLF68OAcccEDuuOOO/OAHP0j79u2z++67Z9KkSfnpT3+ae++9N+vWrcuqVaty6qmn5p577smf//zn/Nu//Vs+8YlPuNYDtJCDDjoojY2Nuemmm3LKKac07//+97+fO++8MxUVFenfv3/GjBmTadOm5amnnspzzz2XZ555Juedd14GDhy4yXvefffd+a//+q+sW7cu48aNS+/evTNgwID85je/yfDhw7PXXnvlz3/+c2pra/Pv//7v+cAHPpCpU6fm0UcfTV1dXfbYY49cfPHFmTZtWn7/+99n7dq1+eQnP5m//OUvGTt2bBoaGnLcccdl9uzZad++fWt+u2CLWeEEbciRRx6ZX/3qV2lqasqiRYuy//77p7GxMatXr84NN9yQm2++ORs2bMgjjzySJKmtrc0111yTq6++Ot/97ndLPD3A9m/vvffO448/nqampvzP//xPDjjggBx88MH57W9/mwcffDADBw7MtGnT8oMf/CAzZ85MdXV1fvjDHyZJ6urqcu211+YLX/hCZs6cmauuuiqTJk3Kbbfd5loP0MIuvPDC3HDDDVm2bFmSV67J//Vf/5VZs2Zl1qxZefLJJ3PvvfcmSdq3b5/vfe97+frXv54bbrjhDd/vAx/4QP7zP/8zU6ZMyYQJEzZ5vXfv3rnhhhsyYMCA3HnnnamtrU2nTp1y/fXXZ9asWVm4cGH++te/JnnlTodZs2blc5/7XO655540NDTk/vvvz4EHHig2sU2zwgnakGOPPTYXXnhhunXrlv79+ydJ2rVrl8rKynz1q1/NTjvtlL/85S/ZsGFDkjTftvH+978/69evL9ncAO8U7dq1y1577ZW5c+ema9euad++fQYNGpQ5c+ZkyZIlOeSQQ/KhD30oVVVVSZKPfexjmTdvXvr06ZOPfOQjSZLq6ursscceKSsry7ve9a7U19e71gO0sJ133jnnn39+zj333PTt2zf19fXp06dPKisrkyT9+/fPn//85yRpvl7vsssuWb9+fZ588smMGzcuSfLpT386ySvX9yTZc889s2rVqk0+b++9925+j7/97W/p0KFDnn/++ebr/Nq1a/P3v/89SdKjR48kSVVVVfPvG7fddlu+9KUvtdS3AwphhRO0Id26dcvatWszY8aM5t/Mamtrc/fdd+fKK6/MBRdckMbGxub7z8vKyko5LsA70oABA3LNNdc032LRr1+//OEPf0jyynV86dKlWbt2bZLkwQcfbP4Xic1ds5csWeJaD9DCDj/88PTo0SM//vGP06FDhyxatCgbNmxoXrX6Ztfr3XbbLTNmzMiMGTMyePDgJGn+ARKPPfZYdt1113/42XPnzs3KlStz+eWX56tf/WrWrVvXfJ1v1+7//rV9yJAhufXWW/Pcc895JiDbPCucoI05+uijc/vtt6dHjx5ZsWJFysvLs+OOO+b4449P+/bt07Vr1zz77LOlHhPgHevjH/94xo0bl29+85tJXrn1orq6OnvvvXe6dOmSkSNH5tRTT027du3SvXv3jB49Onfeeedm33O33XZzrQdoBV//+tfz3//93+nYsWM++clPZujQoWlsbEy/fv3yiU98Yot/0uhTTz2VU089NevXr8+kSZP+4fG9e/fO9OnTM2TIkLRv3z7dunV7w+t8nz598uSTT+bkk09+y+cGra2sqaUfxQ8AAABstcbGxgwdOjTXXXdd8+3ZsK1ySx0AAABs41asWJHPfvaz+cxnPiM20SZY4QQAAABAoaxwAgAAAKBQghMAAAAAhRKcAAAAACiU4AQAULAVK1bk7LPPzpAhQ3LqqadmxIgR+fOf//y232/p0qUZPnx4gRMCALSsilIPAACwPXn55Zdz5plnZvLkydl///2TJIsWLcqkSZMyY8aMEk8HANA6BCcAgALde++9Oeigg5pjU5L07t07//mf/5mVK1fmggsuSH19fTp06JDJkyenoaEhX/va17LLLrtkxYoV+ehHP5qJEyfm2WefzejRo9PU1JSuXbs2v9eDDz6YK664IuXl5enWrVsmTZqUn/70p5k9e3YaGxtz9tln5+CDDy7FqQMANBOcAAAK9NRTT6V79+7N22eeeWZqa2vz7LPPZpdddsnpp5+eQw45JPPnz89ll12WUaNGZdmyZbnuuuuy44475hOf+ERWrVqV66+/Pp/61KcyZMiQ3HXXXZk5c2aamppywQUX5Oabb8673/3uXHnllfnxj3+cioqKdOrUKVdffXUJzxwA4P8ITgAABdpll13y6KOPNm+/GoGGDBmShQsX5pprrsn3vve9NDU1pbKyMknSvXv3VFVVJUm6du2a+vr6/PnPf85nPvOZJEnfvn0zc+bMPP/883n22WdzzjnnJEnWrVuXAQMGpHv37unRo0crniUAwOYJTgAABTriiCNy7bXXZuHChdlvv/2SJE8++WT+8pe/pHfv3hk1alT69u2bpUuX5n/+53+SJGVlZZu8T8+ePfP73/8+e+21Vx555JEkyc4775xddtkl06dPT3V1de65557stNNOWblyZdq187NgAIBth+AEAFCgjh075uqrr87UqVNz2WWXZcOGDamoqMjkyZPTs2fPXHjhhamvr8+6devy9a9//U3f5ytf+UpGjRqVu+66Kx/84AeTJO3atcvXv/71jBgxIk1NTenYsWO++c1vZuXKla11egAAW6SsqampqdRDAAAAALD9sPYaAAAAgEIJTgAAAAAUSnACAAAAoFCCEwAAAACFEpwAAAAAKJTgBAAAAEChBCcAAAAACiU4AQAAAFCo/x9NKQb4tdhydQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABnwAAANbCAYAAABo6jHuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLyUlEQVR4nOzdebhVdd028Pswc0CmxIM4UiYmCkiOqchgYklYiKAcSCzlTSlnc8jKsMehnFDUVNSUMENEU0FzwDSLSs2nHswhM3wdAUMFgXOYzvuH79mPR0YROyz4fK7LS85a91r7uze12XLv31plNTU1NQEAAAAAAKCwGtT3AAAAAAAAAHw8Ch8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAOAT9eqrr6Zz584ZPnx4fY+yyZozZ06uu+66DB48OPvuu2922WWX7Lfffjn++OPz4IMPpqampl7ne/nll9O5c+eceeaZ9ToHAAAUWaP6HgAAAIBPziOPPJIzzzwzCxYsyBe/+MUccsghadGiRV5//fVMnTo13/72t3PQQQflsssuS6NG/hMRAACKyqd5AACAjdTf//73fOc730mHDh3yy1/+Mp/+9Kfr7B81alR+9KMf5Ve/+lV+/vOf55hjjqmnSQEAgI/LJd0AAAA2Uuecc06WLVuWSy65ZIWyJ0kaNmyYc845JxUVFfnFL35R75d2AwAA1p3CBwAA+I/705/+lM6dO+fuu+/Otddemy9+8YvZZZdd0qdPn1x22WVZsmRJnfySJUty3XXX5Stf+Uq6deuW/fffP6ecckr+9a9/1cm9+eabOeecc9KzZ8/ssssu6dmzZ84555y8+eabdXLDhw9P//79M2PGjBx99NHZbbfdsueee+aMM87IvHnz8txzz+Ub3/hGdtttt+y33375wQ9+kPfee6/OOaqrq3PVVVfl4IMPzi677JK99torJ5xwQl544YXVPve5c+dml112yde//vUV9i1btiz77bdfvvKVr5S2TZgwIQMHDkyPHj2y2267ZfDgwZk8efIaX+PnnnsuzzzzTPr06ZNu3bqtMtekSZNceeWVue2221JWVlZn3z333JPBgwene/fu2W233VJZWZlp06bVyUyePDmdO3fO9OnT85Of/CS9evXKLrvskoMPPjg33XTTCo/3yiuv5NRTT83ee++d3XbbLccdd1xeeeWVlc42a9asfP/73y/9fvbu3Ts//vGP8/bbb9fJ9enTJ9/85jfzs5/9LLvvvnt69OiR8ePHr/E1AgCAjYlLugEAAPXm8ssvT01NTYYMGZLWrVtn8uTJ+dnPfpYkOfnkk5Mky5cvz8iRI/OHP/whvXv3zhFHHJG3334748ePzx//+Mfcfvvt2WqrrfLPf/4zlZWVee+99zJ48OB89rOfzfPPP59Jkybl4Ycfzq233ppOnTqVHnvOnDk56qijcsghh+Tggw/Ob3/729x11115/fXX8/zzz+fLX/5yDj744EybNi2/+tWvUlZWlh/96EdJksWLF+cb3/hG/vu//zuHHnpoRowYkVmzZuW2227L4MGDc+ONN6ZHjx4rfc7t2rVL796989BDD+XNN99Mhw4dSvsef/zxzJkzp3RptZ///Oe54IILcsghh2Tw4MFZsmRJ7rzzzpx11lmpqqrK0KFDV/na/uEPf0iS7Lvvvmv8fVhZIfTTn/4048aNy7777ptTTjkl1dXVmTJlSo477ricddZZGTFiRJ389773vZSXl+frX/96GjVqlFtvvTUXXnhhWrZsmcMPPzxJ8vrrr+fwww/PwoULM2zYsHTs2DEPPvhgTjjhhBUe/5VXXsmRRx6ZxYsXZ8iQIdlqq63y3HPP5bbbbstjjz2W2267Le3atSvl//KXv+Qf//hHTjjhhLzzzjvZZ5991vi8AQBgY6LwAQAA6k1VVVXuu+++tG7dOkkyYMCA7Lfffpk8eXKp8Ln77rvzhz/8Iccee2xOO+200rF77bVXhg0blptvvjlnn312Ro8enbfffjs///nP6/xlf58+fXLsscfmBz/4QZ1VH++8805OOeWU/J//83+SJAMHDsx+++2XP//5zzn77LNz1FFHJUkOO+yw9OzZM7/97W9Lx95888158sknc/nll+dLX/pSafvQoUPzla98Jd///vczZcqUVT7vQYMG5YEHHsjdd9+dkSNHlrbfeeedady4cQYMGJAkmTRpUj7zmc/k0ksvLWUOO+ywDB48OM8999xqX9vXX389SbLVVlutsG/BggWprq5eYftmm22Wxo0b529/+1vGjRuXoUOH5oc//GFp/4gRI/LNb34zF198cQ4++OA6ZVWLFi1yxx13pEmTJknef9379u2bO+64o1T4jBkzplTW7bnnnqXX7JRTTsl9991XZ5bRo0dn0aJFufPOO7PtttuWth900EE5+uijc8UVV+Tcc88tbV+4cGGuvvpqRQ8AAJssl3QDAADqzQEHHFAqe5L3S4NPf/rTeeutt0rbfvOb3yRJvvGNb9Q5do899sjtt9+e4447LnPnzs2f/vSn7Lnnniv8hX/Pnj2z55575s9//nP+/e9/19n35S9/ufTrxo0bZ7vttkuSOiVOw4YNs/XWW2fWrFmlbVOmTEmrVq2y1157Ze7cuaV/GjZsmJ49e+bFF1/MP//5z1U+7/322y8VFRW5++67S9vmz5+fadOmpXfv3qWVKx06dMi//vWvXHnllaXzlZeX5957783o0aNXef4kpfvxLF++fIV95513XvbZZ58V/nniiSeSJPfee2/p9fng85s/f36+/OUvZ8mSJXnkkUfqnLNfv36lsidJtt5667Rt27b0e1lTU5OHH344O+20U6nsSZIGDRrkm9/8Zp1zvfvuu3n88cez++67p2XLlnVm2GmnnbLNNtvkwQcfrHNM48aNs8cee6z2NQEAgI2ZFT4AAEC9ad++/QrbmjRpUqekePXVV9O2bds6l++q1bVr1yTJ3/72t9TU1OSzn/3sSh/ns5/9bP785z/n1Vdfzac+9alVPn7Dhg1Xur1BgwalAiVJ/vWvf6Wqqmq1q0lee+21fOYzn1npvoYNG+ZrX/tafvazn+Xvf/97dt5550ydOjXV1dU57LDDSrmzzz47xx9/fMaOHZuxY8emoqIi++67bw466KD06tVrhXvufFDt6pvZs2evsO+YY44prSJKkrvuuiu//vWv6zy/JBk2bNhqn98Hren38u233878+fNLpdoH7bDDDnV+fvnll7N8+fL89re/Xe1rXF1dnaZNmyZJ2rRpk0aN/CcuAACbLp+GAQCAerO6wqLWkiVL1pj7YBmzMsuWLUuSOitQkqyyIFjT4y1fvjxbb711zjvvvFVmdtppp9WeY+DAgfnZz36WX//619l5551z1113ZYsttsj+++9fynz605/O1KlT89RTT+Wxxx7LH//4x/z617/O5MmTc9BBB+XKK69c5fn32muvJMnvf//7DBkypM6+HXbYoU7J8tRTT63w/JJk7NixadGixUrPv+WWW9b5uUGDtbuAxOLFi1fY9uFVSLU/H3jggamsrFzluWoLuo/y+AAAsLFS+AAAABu0rbfeOjNnzsw777yTNm3a1Nn3gx/8IO3bty+VAv/4xz9Weo4XX3wxZWVlqaioWG8zzZo1K3vssUcaN25cZ99f/vKXLFq0KM2aNVvtObbbbrvsscceue+++zJs2LD85S9/yciRI0slxtKlS/PCCy+kUaNG2WOPPUqXK/v3v/+db33rW3nggQfywgsvZMcdd1zp+bt27ZrOnTtn2rRpee6559ZYQH34+SXvr9rp3r17nX0vv/xyXnrppZSXl6/1+ZKkbdu2ad26dV566aUV9r388ssrffyqqqp84QtfWCH/0EMPWdEDAAAf4itQAADABu2LX/xiampqcsstt9TZ/t///d/51a9+lX//+99p165d6T4906dPr5N7/PHH8+STT2bPPfdc6WXh1kW/fv2yYMGCXH/99XW2z5o1K8cdd1xOPfXUtVpxMmjQoMyaNSsXXXRRktS5nNvSpUszbNiwnHbaaVmyZElp+6c+9alsu+22SequcFmZiy66KGVlZfn2t7+dv//97yvN/PnPf85dd91VZ9vBBx+cJLnyyiuzdOnS0vYlS5bkrLPOyre+9a069zRaG2VlZTn44IPz8ssvZ+rUqXX23XDDDXV+3nzzzfP5z38+v//970v3Far16KOPZtSoUbnuuus+0uMDAMDGztehAACADdphhx2WKVOm5KqrrsqLL76YvffeO3PmzMmECROy5ZZbZtSoUUmSH/7whxk6dGiOPfbYDBkyJDvssEP+8Y9/ZOLEiWnTpk1++MMfrreZjj322DzyyCMZM2ZMnn322ey9996ZN29ebrvttsybNy8XX3zxGlf4JO8XR+edd14efPDBfP7zn8/2229f2tesWbMcc8wxGTNmTCorK/PlL385zZs3z1/+8pfce++96d279yrvEVTrc5/7XK677rp897vfzeGHH5599903e+65Z9q0aZNZs2bl0UcfzV//+tc0btw43/jGN7LbbrslSfbZZ58MGjQokyZNyuDBg3PIIYekSZMmufvuu/O3v/0tQ4cOLd0/6aM46aST8vjjj+f000/PX/7yl3Tq1CmPPvpoZsyYsUL2hz/8YYYNG5ajjz46Q4YMyY477piXXnopt912W9q0aZMzzjjjIz8+AABszBQ+AADABq1Ro0YZN25crrvuutxzzz2ZNm1a2rdvnwMPPDAnnnhi2rdvn+T9+9JMnjw5V111VX7zm9/kV7/6Vdq3b59BgwbluOOOW2+Xc0uSFi1a5NZbb811112X+++/P4888khatWqVz33uc7nooouy9957r9V5mjdvnkMOOSS/+tWv6qzuqXX88cdniy22yK9+9atcc801WbhwYbbddtuceOKJ+eY3v7lWj7HPPvtkypQpufvuu/Ob3/wmN998c95+++20bNkyO+ywQ04++eQcdthhpdex1o9//ON07949v/rVr3LllVemYcOG2X777fPjH/84gwYNWqvH/rB27drl9ttvz2WXXZb77rsv7733Xrp3754bb7wxhx56aJ1s586dM3ny5Fx99dV1fj8PPvjgHH/88dluu+3WaQYAANhYldWs6e6mAAAAAAAAbNDcwwcAAAAAAKDgFD4AAAAAAAAFp/ABAAAAAAAoOIUPAAAAAABAwSl8AAAAAAAACk7hAwAAAAAAUHAKHwAAAAAAgIJrVN8DUNecOfPrewQAAAAAAGAD0b79ZmuVs8IHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKLgNvvC57rrrsu+++65y/x133JFDDz00Xbt2Td++fXPppZemqqpqhdykSZPSv3//dOvWLf369cuECRNWer6HH344AwcOTPfu3dO7d++MHTs2S5cuXSH31FNPZdiwYdltt92y77775r/+67+ycOHCFXIvvPBCjj322Oyxxx7Za6+9cuaZZ2bu3Lkf4RUAAAAAAABYvQ268Hn00UdzxRVXrHL/1VdfnbPPPjtbbrllzj777Oy111659tprc/bZZ9fJ3Xzzzfne976XbbbZJmeeeWZ22mmnjB49Otdee22d3IMPPphRo0alvLw8p59+evbff/+MHTs2o0ePrpP761//mqOPPjrz58/PSSedlEMPPTS//OUv853vfKdO7pVXXsnw4cPz0ksv5Vvf+laGDx+eBx54ICNGjEh1dfXHfHUAAAAAAADe16i+B1iZmpqaTJgwIRdeeGGWLFmy0szMmTNz9dVX50tf+lIuu+yylJWV5YgjjkiLFi1yyy23ZNSoUfnMZz6TefPm5fLLL0/fvn1z1VVXpaysLEceeWROPvnkXH311Tn88MPTrl27LFu2LBdccEG6dOmSm266KY0bN06StGrVKuPGjUtlZWU6d+6cJLnooovStm3bTJgwIS1btkySbLPNNjn33HPzyCOPpHfv3kmSK664IosXL86ECRPSoUOHJEnXrl1z7LHH5vbbb8+wYcM+6ZcSAAAAAADYBGyQK3yGDBmS8847L3vttVe6dOmy0syvf/3rLFmyJKeffnrKyspK24cOHZrjjjsuNTU1SZJp06Zl4cKFGTp0aJ3c8OHDU1VVlYceeihJ8vTTT+e1117L4MGDS2VPba6mpiZTp05Nkrzxxht56qmncuihh5bKniQZNGhQysvLc++99yZJlixZkt/85jfp06dPqexJkp49e2b77bcv5QAAAAAAAD6uDbLwef311zN69OiMGzcuLVq0WGnmySefTKdOnbLVVlslSaqqqrJ06dJ06tQpJ510UnbYYYckyYwZM5Iku+yyS53ja4uk2v2rylVUVKR9+/ZrzDVu3Dg77rhjaf8//vGPVFdXr5Crfexnn302y5cvX5uXAwAAAAAAYLU2yMJn2rRpGTJkSJ0VOR/2r3/9K1tttVV+//vf59BDD023bt2y22675bvf/W7mz59fys2ePTvNmjVLmzZt6hzftGnTtGnTJq+//nqSZNasWUlSZzVOrS222GKtc2+88UadXEVFxUpzVVVVmTt37iqfHwAAAAAAwNraIO/h06RJkzVm5s+fn5kzZ+b444/PsGHD8u1vfztPPvlkbrnllrz66qsZP358GjZsmAULFqRZs2YrPUfTpk2zaNGiJMmCBQuSZKXZpk2blsqZNeWqq6uzfPnyUq558+YrzSUpPfaHrabngvVi4sRb8/vf/66+x2AV3n333SRJ69at63kSVmbffffP4MFD63sMAAAAAKhjgyx81sbixYvz6quv5gc/+EEqKyuTJF/84hez2Wab5corr8zDDz+cgw46KDU1NatdKVS7r/aeP6vKru/cqrRr1yING26QC6/YiJSXN/W/sw3YokULkyTt2rWt50lYmfLyptl8883qewwAAAAAqKOwhU/z5s2zaNGiDBo0qM72r33ta7nyyivzpz/9KQcddFDKy8tTVVW10nNUV1enZcuWSZLy8vIk798LqPbXq8utbHVOdXV1mjdvngYNGqwxl6R0zg+aO3eBFT584vr3Pyz9+x9W32OwCieeeFyS5NJLr6rnSViVt96av+YQAAAAAKwHa/vl48IWPh06dMjs2bNLl0er9alPfSrJ/156rWPHjlm0aFHee++9OgVLdXV13nnnnWyxxRalXPL+PX/atWtX55yzZ89O586d6+TmzJmzwkyzZ88u3bNnq622Wm2uefPmq7xc0/9fHARsomrfA7wXAAAAAABrq7DXdOrSpUvmz5+fWbNm1dn+yiuvJEm23HLLUi5JZsyYUSf3zDPPJEl23XXXOrna7bVmzZqVOXPmrDG3ZMmSPP/886Xcpz/96TRv3nyFXO2xO++8cxo0KOzLDwAAAAAAbEAK2zh85StfSZJcf/31dbbfdNNNSd6/n0+S9OrVK82bN8/48ePr5MaPH59mzZrlwAMPTJL06NEjFRUVufXWW7N06dI6ubKysvTv3z/J+0VS9+7dM3ny5Lz33nul3KRJk7Jo0aJSrkmTJunTp08eeOCBvPnmm6XcY489lpkzZ5ZyAAAAAAAAH1dhL+nWs2fP9O/fP+PHj8+///3v7LXXXpk+fXruv//+HHnkkdl5552TJK1bt87xxx+fSy65JKNGjUqvXr3y+OOP5/77789pp52Wtm3fvyl6gwYNcsYZZ+SUU07JiBEjMmDAgMyYMSMTJ07MEUcckR122KH02KeffnqOOuqoVFZW5ogjjsirr76am2++OQcccEB69uxZyp1wwgn57W9/m6FDh2bEiBGZP39+brjhhnTp0iUDBw78z75gAAAAAADARquspmbDvkvE8OHD89JLL+X3v//9CvuWLl2am266KZMmTcprr72Wjh075ogjjsjRRx+dsrKyOtnx48dn/PjxeeONN7L11lvn61//eo488sgVzjl16tRcc801mTlzZioqKjJw4MCMHDkyjRrV7camT5+eSy+9NM8991zatWuXL33pSznhhBNSXl5eJ/fMM8/kJz/5Sf77v/87LVu2TM+ePXP66aevcJ+gWnPmuBE4bOpOPPG4JMmYMdfU8yQAAAAAQH1r336ztcpt8IXPpkbhAyh8AAAAAIBaa1v4FPYePgAAAAAAALxP4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICC2+ALn+uuuy777rvvGnNLly7NwIED06dPn5XunzRpUvr3759u3bqlX79+mTBhwkpzDz/8cAYOHJju3bund+/eGTt2bJYuXbpC7qmnnsqwYcOy2267Zd99981//dd/ZeHChSvkXnjhhRx77LHZY489stdee+XMM8/M3Llz1/h8AAAAAAAA1tYGXfg8+uijueKKK9Yq+7Of/SzPPPPMSvfdfPPN+d73vpdtttkmZ555ZnbaaaeMHj061157bZ3cgw8+mFGjRqW8vDynn3569t9//4wdOzajR4+uk/vrX/+ao48+OvPnz89JJ52UQw89NL/85S/zne98p07ulVdeyfDhw/PSSy/lW9/6VoYPH54HHnggI0aMSHV19Ud4JQAAAAAAAFatUX0PsDI1NTWZMGFCLrzwwixZsmSN+b///e/52c9+lsaNG6+wb968ebn88svTt2/fXHXVVSkrK8uRRx6Zk08+OVdffXUOP/zwtGvXLsuWLcsFF1yQLl265Kabbiqdq1WrVhk3blwqKyvTuXPnJMlFF12Utm3bZsKECWnZsmWSZJtttsm5556bRx55JL17906SXHHFFVm8eHEmTJiQDh06JEm6du2aY489NrfffnuGDRu2Xl4vAAAAAABg07ZBrvAZMmRIzjvvvOy1117p0qXLarOLFy/OmWeemf322y8777zzCvunTZuWhQsXZujQoSkrKyttHz58eKqqqvLQQw8lSZ5++um89tprGTx4cJ3iaPjw4ampqcnUqVOTJG+88UaeeuqpHHrooaWyJ0kGDRqU8vLy3HvvvUmSJUuW5De/+U369OlTKnuSpGfPntl+++1LOQAAAAAAgI9rgyx8Xn/99YwePTrjxo1LixYtVpu96qqr8uabb65w2bVaM2bMSJLssssudbbXFkm1+1eVq6ioSPv27deYa9y4cXbcccfS/n/84x+prq5eIVf72M8++2yWL1++2ucGAAAAAACwNjbIS7pNmzYtTZo0WWPub3/7W66//vqcf/752WKLLVaamT17dpo1a5Y2bdrU2d60adO0adMmr7/+epJk1qxZSVJnNU6tLbbYYq1zzz77bJ1cRUXFSnNVVVWZO3duNt988xX2f2AhErAJqn0P8F4AAAAAAKytDbLwWZuyp7q6OmeeeWZ69uyZr371q6vMLViwIM2aNVvpvqZNm2bRokWlXJKVZps2bZq5c+euVa66ujrLly8v5Zo3b77SXJLSY39Qu3Yt0rDhBrnwCvgPqX0P2Hzzzep5EgAAAACgKDbIwmdtXH755ZkzZ05uuumm1eZqamrq3Lvnw2r31dTU1Pn5k86tyty5C3yrHzZxy5a9f7nHt96aX8+TAAAAAAD1bW2/GF7Iwufpp5/Oz3/+83z3u99N48aNS6tvli5dmuXLl2fu3Llp2rRpWrRokfLy8lRVVa30PNXV1WnZsmWSpLy8PElSVVVV+vXqcitbnVNdXZ3mzZunQYMGa8wlKZ3zw/5/VwRsomrfA7wXAAAAAABrq5DXDnv88cezfPnyXHjhhdlnn31K/zzzzDN54403ss8+++S8885LknTs2DGLFi3Ke++9V+cc1dXVeeedd0r3/unYsWOS9+/582GzZ89eITdnzpyV5mrv2bPVVlutNte8efO0bt16nZ4/AAAAAADABxVyhc9Xv/rVfP7zn19h+49//OO8++67+elPf1oqaLp06ZIkmTFjRvbee+9S9plnnkmS7LrrrnVyzzzzTHbaaadSbtasWZkzZ04GDRq0Qq5v376l3JIlS/L888/ni1/8YpLk05/+dJo3b156nA965plnsvPOO6dBg0L2bQAAAAAAwAamkI3DNttsky984Qsr/NOyZcs0bdo0X/jCF7LDDjskSXr16pXmzZtn/Pjxdc4xfvz4NGvWLAceeGCSpEePHqmoqMitt96apUuX1smVlZWlf//+SZItt9wy3bt3z+TJk+usGpo0aVIWLVpUyjVp0iR9+vTJAw88kDfffLOUe+yxxzJz5sxSDgAAAAAA4OMq5Aqfj6J169Y5/vjjc8kll2TUqFHp1atXHn/88dx///057bTT0rZt2yRJgwYNcsYZZ+SUU07JiBEjMmDAgMyYMSMTJ07MEUccUSqQkuT000/PUUcdlcrKyhxxxBF59dVXc/PNN+eAAw5Iz549S7kTTjghv/3tbzN06NCMGDEi8+fPzw033JAuXbpk4MCB//HXAgAAAAAA2Dht9IVPkowcObK0yuexxx7L1ltvnXPPPTdHHnlkndwhhxySsrKyXHPNNTnvvPNSUVGRE044ISNHjqyT23333TNu3LhceumlOf/889OuXbsMGzYsJ5xwQsrKykq57bffPuPHj89PfvKTXHLJJWnZsmX69euX008/Pc2aNfuPPHcAAAAAAGDjV1ZTU1NT30Pwv+bMmV/fIwD17MQTj0uSjBlzTT1PAgAAAADUt/btN1urXCHv4QMAAAAAAMD/UvgAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUXKP6HgAAAKgfEyfemt///nf1PQYrMW/eu0mSVq1a1/MkrMq+++6fwYOH1vcYAABQYoUPAADABmbhwoVZuHBhfY8BAAAUiBU+AACwiRo8eKgVChuoE088LkkyZsw19TwJAABQFFb4AAAAAAAAFJzCBwAAAAAAoOAUPgAAAAAAAAWn8AEAAAAAACg4hQ8AAAAAAEDBKXwAAAAAAAAKTuEDAAAAAABQcAofAAAAAACAglP4AAAAAAAAFJzCBwAAAAAAoOAUPgAAAAAAAAWn8AEAAAAAACg4hQ8AAAAAAEDBKXwAAAAAAAAKTuEDAAAAAABQcAofAAAAAACAglP4AAAAAAAAFJzCBwAAAAAAoOAUPgAAAAAAAAWn8AEAAAAAACg4hQ8AAAAAAEDBKXwAAAAAAAAKTuEDAAAAAABQcAofAAAAAACAglP4AAAAAAAAFJzCBwAAAAAAoOAUPgAAAAAAAAWn8AEAAAAAACg4hQ8AAAAAAEDBKXwAAAAAAAAKTuEDAAAAAABQcAofAAAAAACAglP4AAAAAAAAFJzCBwAAAAAAoOAUPgAAAAAAAAWn8AEAAAAAACg4hQ8AAAAAAEDBbfCFz3XXXZd99913pfvmzJmTs846K/vtt1922WWX9O3bN5dddlkWL168QnbSpEnp379/unXrln79+mXChAkrPefDDz+cgQMHpnv37undu3fGjh2bpUuXrpB76qmnMmzYsOy2227Zd99981//9V9ZuHDhCrkXXnghxx57bPbYY4/stddeOfPMMzN37tyP+CoAAAAAAACsWqP6HmB1Hn300VxxxRVp3br1Cvuqqqpy1FFH5dVXX83QoUOz3Xbb5cknn8zPfvazvPDCC7nmmmtK2Ztvvjnnn39++vTpk8rKyvzxj3/M6NGj89577+X//J//U8o9+OCD+c53vpPdd989p59+ep5//vmMHTs2s2fPzujRo0u5v/71rzn66KPTqVOnnHTSSZk1a1ZuueWWvPTSS7nhhhtKuVdeeSXDhw9Py5Yt861vfSuLFi3KjTfemL///e+5/fbb07Rp00/olQMAAAAAADYlG2ThU1NTkwkTJuTCCy/MkiVLVpr5xS9+kX/+85+55ppr0qdPnyTJkUcemS233DLXX399/vjHP2bvvffOvHnzcvnll6dv37656qqrUlZWliOPPDInn3xyrr766hx++OFp165dli1blgsuuCBdunTJTTfdlMaNGydJWrVqlXHjxqWysjKdO3dOklx00UVp27ZtJkyYkJYtWyZJttlmm5x77rl55JFH0rt37yTJFVdckcWLF2fChAnp0KFDkqRr16459thjc/vtt2fYsGGf6OsIAAAAAABsGjbIS7oNGTIk5513Xvbaa6906dJlpZk//vGPadu2bansqdW/f/8k719yLUmmTZuWhQsXZujQoSkrKyvlhg8fnqqqqjz00ENJkqeffjqvvfZaBg8eXCp7anM1NTWZOnVqkuSNN97IU089lUMPPbRU9iTJoEGDUl5ennvvvTdJsmTJkvzmN79Jnz59SmVPkvTs2TPbb799KQcAAAAAAPBxbZCFz+uvv57Ro0dn3LhxadGixUozF154YcaPH7/C9tr74zRq9P7ipRkzZiRJdtlllzq52iKpdv+qchUVFWnfvv0ac40bN86OO+5Y2v+Pf/wj1dXVK+RqH/vZZ5/N8uXLV/rcAAAAAAAAPooN8pJu06ZNS5MmTVab2XzzzbP55puvsP2WW25Jknz+859PksyePTvNmjVLmzZt6uSaNm2aNm3a5PXXX0+SzJo1K0nqrMaptcUWW6x17tlnn62Tq6ioWGmuqqoqc+fOXelz+MBCJGATVPse4L0AADZdPg8AAAAf1QZZ+Kyp7FmVX/7yl3nkkUeyxx57ZPfdd0+SLFiwIM2aNVtpvmnTplm0aFEpl2Sl2aZNm5ZWDq0pV11dneXLl5dyzZs3X2kuSemxP6hduxZp2HCDXHgF/IfUvgdsvvlm9TwJAFBffB4AAAA+qg2y8FkXv/71rzN69Oi0b98+P/nJT0rba2pq6ty758Nq99XU1NT5+ZPOrcrcuQt8iw82ccuWvX+5x7feml/PkwAA9cXnAQAAoNbafhFsoyh8xo8fn/PPPz9t2rTJDTfckI4dO5b2lZeXp6qqaqXHVVdXp2XLlqVcklRVVZV+vbrcylbnVFdXp3nz5mnQoMEac0lK5/yw/98VAZuo2vcA7wUAsOnyeQAAAPioCn/tsCuuuCI//vGP0759+/ziF79I586d6+zv2LFjFi1alPfee6/O9urq6rzzzjvZYostSrnk/Xv+fNjs2bNXyM2ZM2eludp79my11VarzTVv3jytW7f+SM8VAAAAAABgZQpd+IwdOzZXXXVVtttuu9x66635zGc+s0KmS5cuSZIZM2bU2f7MM88kSXbdddc6udrttWbNmpU5c+asMbdkyZI8//zzpdynP/3pNG/efIVc7bE777xzGjQo9MsPAAAAAABsIArbOPzud7/LlVdemW222Sa/+MUvsvXWW68016tXrzRv3jzjx4+vs338+PFp1qxZDjzwwCRJjx49UlFRkVtvvTVLly6tkysrK0v//v2TJFtuuWW6d++eyZMn11k1NGnSpCxatKiUa9KkSfr06ZMHHnggb775Zin32GOPZebMmaUcAAAAAADAx1XYe/j85Cc/SZL07t0706dPX2H/jjvumM997nNp3bp1jj/++FxyySUZNWpUevXqlccffzz3339/TjvttLRt2zZJ0qBBg5xxxhk55ZRTMmLEiAwYMCAzZszIxIkTc8QRR2SHHXYonfv000/PUUcdlcrKyhxxxBF59dVXc/PNN+eAAw5Iz549S7kTTjghv/3tbzN06NCMGDEi8+fPzw033JAuXbpk4MCBn/ArBAAAAAAAbCoKWfjMnTs3L7zwQpLklltuWWnm2GOPzec+97kkyciRI0urfB577LFsvfXWOffcc3PkkUfWOeaQQw5JWVlZrrnmmpx33nmpqKjICSeckJEjR9bJ7b777hk3blwuvfTSnH/++WnXrl2GDRuWE044IWVlZaXc9ttvn/Hjx+cnP/lJLrnkkrRs2TL9+vXL6aefnmbNmq3PlwQAAAAAANiEldXU1NTU9xD8rzlz5tf3CEA9O/HE45IkY8ZcU8+TAAD1xecBAACgVvv2m61VrrD38AEAAAAAAOB9Ch8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUXKP6HgAAgI3bBRf8KG+++WZ9jwGF8uabbyRJTjzxuHqeBIqnQ4cOOeusH9b3GAAA/3EKHwAAPlFvvvlm3nzt5VSUL6/vUaAwmpeVJUlq3v5XPU8CxTJroQuZAACbLoUPAACfuIry5blon3n1PQYAG7kzpreq7xEAAOqNr74AAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKLgNvvC57rrrsu+++650X1VVVS6++OL07t073bp1y5AhQzJ9+vQVcsuWLcv111+fgw46KF27ds2AAQMyderUlZ5z0qRJ6d+/f7p165Z+/fplwoQJK809/PDDGThwYLp3757evXtn7NixWbp06Qq5p556KsOGDctuu+2WfffdN//1X/+VhQsXfoRXAAAAAAAAYPU26MLn0UcfzRVXXLHK/aeeempuvPHG9O3bN2eccUaWLFmSY445Jk8++WSd3EUXXZSLL744PXr0yNlnn5127drl5JNPzr333lsnd/PNN+d73/tettlmm5x55pnZaaedMnr06Fx77bV1cg8++GBGjRqV8vLynH766dl///0zduzYjB49uk7ur3/9a44++ujMnz8/J510Ug499ND88pe/zHe+852P+coAAAAAAAD8r0b1PcDK1NTUZMKECbnwwguzZMmSlWamT5+ehx56KGeddVZGjBiRJPnqV7+aAQMG5Pzzz8/kyZOTJDNnzsz48eMzfPjwnHPOOUmSww8/PJWVlbnwwgtz0EEHpUmTJpk3b14uv/zy9O3bN1dddVXKyspy5JFH5uSTT87VV1+dww8/PO3atcuyZctywQUXpEuXLrnpppvSuHHjJEmrVq0ybty4VFZWpnPnzkneL5ratm2bCRMmpGXLlkmSbbbZJueee24eeeSR9O7d+5N8GQEAAAAAgE3EBrnCZ8iQITnvvPOy1157pUuXLivN3HPPPWncuHEGDx5c2lZeXp5BgwblmWeeycyZM5MkU6ZMyfLly1NZWVnKNWzYMJWVlZkzZ06eeOKJJMm0adOycOHCDB06NGVlZaXs8OHDU1VVlYceeihJ8vTTT+e1117L4MGDS2VPba6mpqZ0qbg33ngjTz31VA499NBS2ZMkgwYNSnl5+QqriwAAAAAAANbVBln4vP766xk9enTGjRuXFi1arDQzY8aMdOrUKeXl5XW21xZEM2bMKP27ZcuW6dSp0xpzSbLLLrusU66ioiLt27dfY65x48bZcccdS/sBAAAAAAA+rg3ykm7Tpk1LkyZNVpuZNWtWunbtusL2LbbYIsn7pVFtrqKiYo252bNnp1mzZmnTpk2dXNOmTdOmTZs650uSDh06rPSca5t79tlnV/ncPrDACNgE1b4HeC8ANhZlZUlNfQ8BwCajrMxnaQBg07RBFj5rKnuSZMGCBWnevPkK25s1a5YkWbRoUSm3slVCK8vVbvuwpk2b1sl98PgP5+bOnbtWuerq6ixfvjwNGtRdZNWuXYs0bLhBLrwC/kNq3wM233yzep4EYP1o2LBBltf3EABsMho2bOCzNACwSdogC5/14YP34SlbzVd7avfV1NSsdW515/youQ+bO3eBbyLBJm7Zsvf/WvStt+bX8yQA60ft+xoA/CcsW7bcZ2kAYKOytl9mKWzhU15enqqqqhW2125r2bLlesklSXV1dZ1c7fEfvn/QynK1K4M+nGvevPkKq3tq1bjmCWzSat8DvBcAGwvvZwD8J9XU+LMHANg0FfbaYR07dsycOXNW2D579uwkKd2356PkFi1alPfee69Orrq6Ou+8807pnj8dO3asc/yHz/nh3Koee2X3FQIAAAAAAFgXhS18unTpkhdffHGFVTnPPPNMkmTXXXct5d5999288sora8wlyYwZM9YqV7u91qxZszJnzpw15pYsWZLnn3++lAMAAAAAAPi4Clv4HHzwwVm8eHFuu+220raFCxdm0qRJ6dq1a7bddtskSb9+/VJWVpZbbrmllFu2bFkmTJiQioqK7L777kmSXr16pXnz5hk/fnydxxk/fnyaNWuWAw88MEnSo0ePVFRU5NZbb83SpUvr5MrKytK/f/8kyZZbbpnu3btn8uTJdVYNTZo0KYsWLSrlAAAAAAAAPq7C3sNn//33z/7775+f/vSneeONN9KpU6dMnDgxb775Zi688MJS7jOf+UyGDBmSW265JQsWLEj37t0zderUPP3007nsssvSuHHjJEnr1q1z/PHH55JLLsmoUaPSq1evPP7447n//vtz2mmnpW3btkmSBg0a5Iwzzsgpp5ySESNGZMCAAZkxY0YmTpyYI444IjvssEPpsU8//fQcddRRqayszBFHHJFXX301N998cw444ID07NnzP/uCAQAAAAAAG63CFj5JMmbMmFx22WW55557smjRonTu3Dk33HBDadVOre9///vZfPPNc8cdd2TKlCnp1KlTrrjiivTr169ObuTIkaVVPo899li23nrrnHvuuTnyyCPr5A455JCUlZXlmmuuyXnnnZeKioqccMIJGTlyZJ3c7rvvnnHjxuXSSy/N+eefn3bt2mXYsGE54YQTUlZW9sm8KAAAAAAAwCanrKampqa+h+B/zZkzv75HAOrZiScelyQZM+aaep4EYP048cTjUvP2v3LRPvPqexQANnJnTG+VsradfJYGADYq7dtvtla5wt7DBwAAAAAAgPcpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAApO4QMAAAAAAFBwCh8AAAAAAICCU/gAAAAAAAAUnMIHAAAAAACg4BQ+AAAAAAAABdeovgdg43XBBT/Km2++Wd9jQOG8+eYbSZITTzyunieBYunQoUPOOuuH9T0GAAAAQL1Q+PCJefPNN/PKa6+mplmr+h4FCqZhkuT//ntePc8BxVFW5f8vAAAAwKZN4cMnqqZZqyzqOqi+xwBgI9f8b5PqewQAAACAeuUePgAAAAAAAAWn8AEAAAAAACg4hQ8AAAAAAEDBKXwAAAAAAAAKTuEDAAAAAABQcAofAAAAAACAglP4AAAAAAAAFJzCBwAAAAAAoOAUPgAAAAAAAAWn8AEAAAAAACi4Ruty0HvvvZfHHnssf/nLXzJ79uwsWLAg5eXl2XrrrdOjR48ccMABadKkyfqeFQAAAAAAgJX4yIXPddddl3HjxmX+/PmpqalZYf/Pf/7ztGrVKscdd1xGjBixPmYEAAAAAABgNT5S4XPWWWflrrvuStOmTTNgwIDsvvvu2WKLLdKkSZMsWLAgr732Wp588sn89re/zUUXXZQXXngh559//ic1OwAAAAAAAPkIhc99992XO++8M7vsskvGjBmTrbbaaqW5o446Kq+//npOOeWU3HnnnTnwwAPTp0+f9TYwAAAAAAAAdTVY2+Add9yR1q1b59prr11l2VOrY8eOueaaa9KiRYtMnjz5Yw8JAAAAAADAqq114fPcc89lv/32y6c+9am1yrdt2zb7779//ud//medhwMAAAAAAGDN1rrweffdd9OhQ4ePdPKtttoqc+fO/chDAQAAAAAAsPbWuvBZsmRJmjdv/pFO3qxZsyxduvQjDwUAAAAAAMDaW+vCBwAAAAAAgA2TwgcAAAAAAKDgGn2U8J133pk///nPa51/7bXXPvJAAAAAAAAAfDQfqfB57bXXPnKJU1ZW9pHyAAAAAAAAfDRrXfg8/PDDn+QcAAAAAAAArKO1Lny22mqrT3IOAAAAAAAA1tFHuqTbmrz22mt5+eWXs8UWW2SHHXZYn6cGAAAAAABgFT5S4bNs2bLceuuteeCBB3Lqqaeme/fuSZLq6uqcddZZue+++0rZXXbZJZdeemm22Wab9TowAAAAAAAAda114VNTU5Pjjz8+jz32WGpqajJ79uzSvvPOOy9Tp05Ns2bNMmDAgCTJvffem8rKykyZMiWbbbbZ+p8cAAAAAACAJB+h8Pn1r3+dRx99NAcccEDOOuusbL/99kmSmTNn5o477khZWVkuu+yy9O7dO0ly2GGH5cgjj8yNN96YE0888RMZHgAAAAAAgKTB2gbvueeebLnllrnyyitLZU+SPPDAA6mpqclOO+1UKnuSpFu3btlnn33y0EMPrdeBAQAAAAAAqGutC59nn302X/jCF9KkSZM623//+9+nrKwsvXr1WuGYnXbaKa+99trHHhIAAAAAAIBVW+vCZ/78+dl8883rbFuyZEn++te/Jkn23nvvFY6pqalJTU3NxxwRAAAAAACA1VnrwqdNmzaZM2dOnW1PPvlkqqqq0qxZs/To0WOFY/7xj3/kU5/61MefEgAAAAAAgFVa68KnR48eeeyxx7J48eLStrvuuitlZWXp2bNnGjduXCf/8ssvZ/r06SstggAAAAAAAFh/Gq1tcNiwYfnNb36To446KkOGDMnzzz+fu+++O2VlZTn66KPrZJ977rmcdtppWbZsWQYNGrTehwYAAAAAAOB/rXXhs8cee+S73/1uLr744vz3f/936d48p5xySrp3717KffWrX83zzz+fmpqaHHXUUdlzzz3X+9AAAAAAAAD8r7UufJLkG9/4Rr74xS/msccey5IlS/KFL3whO+64Y51MgwYNsssuu6SysjJf/epX1+esAAAAAAAArMRHKnySZJtttkllZeUq90+ePPljDQQAAAAAAMBH06C+BwAAAAAAAODjWesVPmPHjl3t/gYNGqRly5Zp27ZtunXrlm233fZjDwcAAAAAAMCafaTCp6ysLDU1NavNlZWVJUl23333/PjHP85222338SYEAAAAAABgtda68LngggvWmKmqqsqsWbPy1FNP5Yknnsg3v/nNTJo0KW3atPk4MwIAAAAAALAaa134fO1rX/tIJ546dWpOOeWUTJgwIaNGjfrIgwEAAAAAALB2GnxSJ/7yl7+cz3/+83nggQc+qYcAAAAAAAAgn2DhkyRdu3bNG2+88Uk+BAAAAAAAwCbvEy18GjVqlCVLlnySDwEAAAAAALDJ+0QLn5deeint27f/JB8CAAAAAABgk/eJFT7PPvtsHn300ey5556f1EMAAAAAAACQpNHaBl9//fU1ZpYuXZq33norTz75ZG644YY0aNAgw4YN+1gDAgAAAAAAsHprXfj06dMnZWVla5WtqalJy5Ytc+GFF2annXZa5+EAAAAAAABYs7UufPbYY4/V7m/QoEFatmyZtm3bplu3bunbt2/atWv3sQcEAAAAAABg9da68Bk/fvwnOQcAAAAAAADrqMG6Hjh9+vT1OQcAAAAAAADraJ0Ln6OPPjq9evXKJZdckn/84x/rcyYAAAAAAAA+gnUufL797W+nWbNmuf766zNgwIB87Wtfy89//vP8+9//Xp/zAQAAAAAAsAYfq/C5//77c/vtt6eysjJz5szJhRdemAMOOCDHHntspkyZkurq6vU5KwAAAAAAACvR6OOeYNddd82uu+6as88+O48//njuu+++/O53v8vjjz+e8vLyHHTQQfnqV7+avfbaa33MCwAAAAAAwIes8wqfFU7UoEF69uyZk08+OaNGjcqWW26ZBQsW5M4778yIESPSr1+/3HPPPevr4UqeffbZHHPMMdltt93SvXv3jBgxIv/zP/9TJ1NVVZWLL744vXv3Trdu3TJkyJBMnz59hXMtW7Ys119/fQ466KB07do1AwYMyNSpU1f6uJMmTUr//v3TrVu39OvXLxMmTFhp7uGHH87AgQPTvXv39O7dO2PHjs3SpUs//hMHAAAAAAD4/9ZL4fP222/n1ltvTWVlZXr16pXRo0dn8eLFOfroozNx4sSce+65adiwYb773e/mZz/72fp4yCTJzJkzU1lZmf/5n//JyJEjc8IJJ+Rf//pXhg8fnueff76UO/XUU3PjjTemb9++OeOMM7JkyZIcc8wxefLJJ+uc76KLLsrFF1+cHj165Oyzz067du1y8skn5957762Tu/nmm/O9730v22yzTc4888zstNNOGT16dK699to6uQcffDCjRo1KeXl5Tj/99Oy///4ZO3ZsRo8evd5eAwAAAAAAgLKampqadTlw4cKFefDBBzNlypT84Q9/yNKlS9O0adMceOCBOfTQQ7PffvulQYP/7ZPmz5+ffv36Zfny5fnjH/+4XoY/99xz88tf/jK33XZbdttttyTJyy+/nEMOOSR9+/bNmDFjMn369IwYMSJnnXVWRowYUZp9wIABadWqVSZPnpzk/fLoS1/6UiorK3POOeckeX/FT2VlZV599dVMmzYtTZo0ybx583LAAQdkn332yVVXXZWysrIkycknn5xp06blkUceSbt27bJs2bJ88YtfTNu2bXPbbbelcePGSZKLL74448aNy69//et07tx5hec0Z8789fLabAhOPPG4/N9/z8uiroPqexQANnLN/zYp236qVcaMuaa+R2ElTjzxuNS8/a9ctM+8+h4FgI3cGdNbpaxtJ58JAICNSvv2m61Vbp1X+HzhC1/ImWeemd/97nfp3r17zjvvvPz+97/PJZdckp49e9Ype5Jks802S0VFRan4WB9eeeWVlJeXl8qeJNluu+2y3XbblVb43HPPPWncuHEGDx5cypSXl2fQoEF55plnMnPmzCTJlClTsnz58lRWVpZyDRs2TGVlZebMmZMnnngiSTJt2rQsXLgwQ4cOLZU9STJ8+PBUVVXloYceSpI8/fTTee211zJ48OA6z3n48OGpqalZ5aXiAAAAAAAAPqp1Lny22GKLfPvb384DDzyQX/ziFzn88MPTsmXL1R5z9tln5xe/+MW6PuQKtt9++yxcuDBvvvlmaVtVVVVmz56dLbbYIkkyY8aMdOrUKeXl5XWO7dKlS2l/7b9btmyZTp06rTGXJLvssss65SoqKtK+ffvSfgAAAAAAgI+r0boeuPPOO6dNmzbZZptt1vqYPfbYY10fbqWOPfbYPPLIIzn55JNzzjnnpFmzZhkzZkwWLFiQY489Nkkya9asdO3adYVjawuh119/vZSrqKhYY2727Nlp1qxZ2rRpUyfXtGnTtGnTps75kqRDhw4rPWdtbmU+sHCo0DaW5wFAMZSV+bNnQ1VWlqzTNYQBYB34TAAAbKrWufD57W9/m3bt2q3PWT6yDh065LjjjsuPfvSjDBw4sLT9Rz/6Ufbff/8kyYIFC9K8efMVjm3WrFmSZNGiRaVcixYt1ipXu+3DmjZtWif3weM/nJs7d+5Kz9GuXYs0bLjOC682KBvL8wCgGBo2bJDNN1+7a9ryn9WwYYMsr+8hANhk+EwAAGyq1rnwadeuXd577731OctHNmbMmFx99dXp1q1bhg4dmkaNGuXOO+/Mueeem2XLltW5H8+qfPA+PGWr+QpQ7b6ampq1zq3unKvaPnfugo3mm0jLlvmrHQD+c5YtW5633ppf32OwEj4TAPCf5DMBALCxWdsvs6xz4fPDH/4wp5xySn7yk5/koIMOytZbb73KlS9rurfPupg3b17GjRuXHXfcMb/4xS/SpEmTJEn//v1zzDHH5IILLkjfvn1TXl6eqqqqFY6v3VY728fNJUl1dXWdXO3xH75/0AdzK1OzkVzzZGN5HgAUQ02NP3s2VH5fAPhP8plgwzRx4q25446J9T0Gq7Bs2dLSl5eBtVdWVpaGDdf5r9j5hB122OAMHjy0vsf4j1rn/zX+6Ec/Sk1NTW666abcdNNNq8yVlZXl73//+7o+zCrNnDkzixcvzpe//OVS2VNr4MCB+d3vfpe//OUv6dixY+bMmbPC8bNnz06S0n17OnbsmCeeeGKtcosWLcp7771Xp7Sprq7OO++8U7rnT8eOHUvHf/jSd7Nnz07nzp3X6XkDAAAAAAB82DoXPltttVW22mqr9TnLR9K0adMkybJly1bYV/uNhOXLl6dLly65++67U1VVVWcF0jPPPJMk2XXXXZMkXbp0yUMPPZRXXnkl22yzzWpzSTJjxozsvffea8w988wz2WmnnUq5WbNmZc6cORk0aNA6P3cAAACAIhk8eOgm9y1rAPhPW+fCZ/z48etzjo/ss5/9bCoqKnLXXXfl6KOPTosWLZK8X/JMnDgxjRo1yu67757WrVtn0qRJue222zJixIgkycKFCzNp0qR07do12267bZKkX79+ueKKK3LLLbfke9/7XpL3y6QJEyakoqIiu+++e5KkV69ead68ecaPH1+n8Bk/fnyaNWuWAw88MEnSo0ePVFRU5NZbb82hhx6aRo0alXJlZWXp37//f+R1AgAAAAAANn6f+AUGFy1alObNm6/38zZo0CA//OEP853vfCeHHXZYBg8enEaNGmXq1Kl5+umn853vfCcdOnRIhw4dsv/+++enP/1p3njjjXTq1CkTJ07Mm2++mQsvvLB0vs985jMZMmRIbrnllixYsCDdu3cvneuyyy5L48aNkyStW7fO8ccfn0suuSSjRo1Kr1698vjjj+f+++/PaaedlrZt25bmO+OMM3LKKadkxIgRGTBgQGbMmJGJEyfmiCOOyA477LDeXxMAAAAAAGDT9LEKn+eeey733Xdf5s6dm2XLltW5uduSJUvyzjvv5KmnnsrTTz/9sQddmb59++bmm2/OVVddlSuvvDJLly7NZz/72fzkJz/JoYceWsqNGTMml112We65554sWrQonTt3zg033FBatVPr+9//fjbffPPccccdmTJlSjp16pQrrrgi/fr1q5MbOXJkaZXPY489lq233jrnnntujjzyyDq5Qw45JGVlZbnmmmty3nnnpaKiIieccEJGjhz5ibweAAAAAADApqms5oMtzUfwpz/9Kd/85jdLRU9ZWVmdwqesrCxJstNOO+XOO+9cP9NuAubMmV/fI6w3J554XP7vv+dlUVf3KwLgk9X8b5Oy7adaZcyYa+p7FFbixBOPS83b/8pF+8yr71EA2MidMb1Vytp28pkAANiotG+/2VrlGqzrA1x77bVZtmxZTj311EycODHbbbddvvKVr2TixIk5//zzs+WWW6Zt27a5/vrr1/UhAAAAAAAAWAvrXPjMmDEjBxxwQI455ph07do1e+21V1588cV07do1AwcOzC9+8YtUVVXl6quvXp/zAgAAAAAA8CHrXPgsXLgwn/3sZ0s/77DDDnnxxRezdOnSJEnHjh3Tt2/f/PnPf/74UwIAAAAAALBK61z4tGnTJgsWLCj9vO2222bp0qV56aWXStu23HLLvP766x9vQgAAAAAAAFZrnQuf7t2756GHHsrcuXOTJJ/97GdTU1OTP/zhD6XMc889l/Ly8o8/JQAAAAAAAKvUaF0PPProo/P1r389hxxySC666KL07Nkze+yxRy6//PK89dZbeeutt/K73/0uX/ziF9fnvAAAAAAAAHzIOq/w+fznP58xY8akTZs2Wbx4cZLknHPOSYsWLTJu3Ljcdddd6dixY04//fT1NiwAAAAAAAArWucVPkly4IEH5sADD0xNTU2SpHPnznnggQfyxz/+MU2bNs3nP//5NG/efL0MCgAAAAAAwMp9rMKnVllZWenXLVq0SN++fdfHaQEAAAAAAFgLa1343HLLLev8IF//+tfX+VgAAAAAAABWb60Ln/PPPz9lZWWly7etrbKyMoUPAMAmbN68d7NwYYOcMb1VfY8CwEZu1sIGKW/4bn2PAQBQL9a68Lngggs+yTkAAAAAAABYR2td+Hzta1/7JOcAAGAj1apV62y2bG4u2mdefY8CwEbujOmtUtaqdX2PAQBQLxp8UideunRp3nrrrdxxxx2f1EMAAAAAAACQj7DC58OWLVuWSy65JPfee2/mzp2bZcuWrTJ72GGHrevDAAAAAAAAsAbrvMJn3LhxufHGG/POO+9ku+22S8OGDbP55punU6dOadq0aWpqatKuXbucddZZ63NeAAAAAAAAPmSdC5977rknrVu3zoMPPpgpU6Zkjz32yF577ZWpU6fmT3/6Uw4//PDMnTs3O+yww/qcFwAAAAAAgA9Z58Ln1VdfzUEHHZSKiookya677ponn3wySdK0adP86Ec/yvbbb5+f//zn62VQAAAAAAAAVm6dC58kadeuXenX22+/fWbNmpV58+a9f+IGDbLffvvlxRdf/HgTAgAAAAAAsFrrXPh07Ngx//rXv0o/b7vttkmSF154obStUaNGmTt37scYDwAAAAAAgDVZ58LngAMOyLRp03LHHXdk2bJl2XnnndOsWbNMmDAhSTJv3rw89NBDpUu+AQAAAAAA8MlY58Jn5MiR6dChQ84555zccccdKS8vz+DBg3Pfffdlv/32S9++ffPqq6/m0EMPXZ/zAgAAAAAA8CGN1vXAtm3b5q677sqtt96arl27JklOPfXULF68OFOmTEnTpk1z+OGHZ+TIkettWAAAAAAAAFa0zoVPkrRs2bJOoVNTU5MRI0bktNNOS4sWLT72cAAAAAAAAKzZR76k27Rp03LWWWflueeeq7P9kksuyd57752DDz44e+65Z0466aS8/fbb621QAAAAAAAAVu4jrfD5wQ9+kNtvvz1J0qtXr+y0005JkksvvTTXX399ysrK8oUvfCFJ8sADD+TFF1/M5MmT06RJk/U8NgAAAAAAALXWeoXPtGnTMnHixHzuc5/LuHHj0qtXryTJrFmzcuONN6asrCznnXdebrjhhtxwww258sor8+KLL+aWW275pGYHAAAAAAAgH6HwmTRpUtq0aZNbbrkl++67b5o2bZokuf/++7N06dJsu+22GTRoUCnft2/f9OjRI/fff//6nxoAAAAAAICStS58/va3v6VXr15p2bJlne1/+MMfUlZWlj59+qxwTLdu3fLyyy9//CkBAAAAAABYpbUufN59991UVFTU2bZ8+fI89dRTSZJ99tlnhWMaNWqUJUuWfMwRAQAAAAAAWJ21Lnw222yzvP3223W2/e1vf8t7772XRo0aZY899ljhmJkzZ6Zt27Yff0oAAAAAAABWaa0Ln1133TV/+MMfsnz58tK2e++9N8n7q3uaN29eJz9nzpw8/vjj2XXXXdfTqAAAAAAAAKzMWhc+gwcPzquvvppTTjklTzzxRCZMmJBf/epXKSsrS2VlZZ3s3Llzc9JJJ6WqqioDBgxY70MDAAAAAADwvxqtbbBv376prKzMhAkT8pvf/CZJUlNTk6FDh+aAAw4o5b71rW9l+vTpqa6uzsEHH5wDDzxw/U8NAAAAAABAyVoXPkny/e9/P/369csjjzySpUuXZt99902vXr3qZF566aW0aNEiI0eOzLe+9a31OSsAAAAAAAAr8ZEKnyTZc889s+eee65y/+TJk9OyZcuPNRQAAAAAAABrb63v4bO2lD0AAAAAAAD/Weu98AEAAAAAAOA/S+EDAAAAAABQcAofAAAAAACAglP4AAAAAAAAFJzCBwAAAAAAoOAUPgAAAAAAAAWn8AEAAAAAACg4hQ8AAAAAAEDBKXwAAAAAAAAKTuEDAAAAAABQcAofAAAAAACAglP4AAAAAAAAFJzCBwAAAAAAoOAUPgAAAAAAAAWn8AEAAAAAACg4hQ8AAAAAAEDBNarvAdh4zZv3bsqq5qf53ybV9ygAbOTKquZl3rya+h4DAAAAoN5Y4QMAAAAAAFBwVvjwiWnVqnXeWVKWRV0H1fcoAGzkmv9tUlq1alXfYwAAAADUGyt8AAAAAAAACk7hAwAAAAAAUHAKHwAAAAAAgIJT+AAAAAAAABScwgcAAAAAAKDgFD4AAAAAAAAFp/ABAAAAAAAoOIUPAAAAAABAwSl8AAAAAAAACk7hAwAAAAAAUHAKHwAAAAAAgIJT+AAAAAAAABScwgcAAAAAAKDgFD4AAAAAAAAFp/ABAAAAAAAoOIUPAAAAAABAwSl8AAAAAAAACk7hAwAAAAAAUHCFL3yqqqpy2WWXpU+fPunWrVu+8pWv5M4771whc/HFF6d3797p1q1bhgwZkunTp69wrmXLluX666/PQQcdlK5du2bAgAGZOnXqSh930qRJ6d+/f7p165Z+/fplwoQJK809/PDDGThwYLp3757evXtn7NixWbp06cd/4gAAAAAAAP9foQuf5cuX5/jjj8/111+fPn365Iwzzkjbtm1z5pln5rbbbivlTj311Nx4443p27dvzjjjjCxZsiTHHHNMnnzyyTrnu+iii3LxxRenR48eOfvss9OuXbucfPLJuffee+vkbr755nzve9/LNttskzPPPDM77bRTRo8enWuvvbZO7sEHH8yoUaNSXl6e008/Pfvvv3/Gjh2b0aNHf3IvCgAAAAAAsMlpVN8DfBx33XVXfv/73+cHP/hBKisrkyRHHHFEDjvssIwdOzZDhgzJH//4xzz00EM566yzMmLEiCTJV7/61QwYMCDnn39+Jk+enCSZOXNmxo8fn+HDh+ecc85Jkhx++OGprKzMhRdemIMOOihNmjTJvHnzcvnll6dv37656qqrUlZWliOPPDInn3xyrr766hx++OFp165dli1blgsuuCBdunTJTTfdlMaNGydJWrVqlXHjxqWysjKdO3f+z79oAAAAAADARqfQK3zuuOOObLvttjnyyCNL2xo0aJCTTjopRxxxRBYuXJh77rknjRs3zuDBg0uZ8vLyDBo0KM8880xmzpyZJJkyZUqWL19eKo6SpGHDhqmsrMycOXPyxBNPJEmmTZuWhQsXZujQoSkrKytlhw8fnqqqqjz00ENJkqeffjqvvfZaBg8eXCp7anM1NTWrvFQcAAAAAADAR1XYwmfJkiX561//mn322ScNGrz/NBYsWJCampoccMAB+fa3v50WLVpkxowZ6dSpU8rLy+sc36VLlyTJjBkzSv9u2bJlOnXqtMZckuyyyy7rlKuoqEj79u1L+wEAAAAAAD6uwhY+r776apYsWZKtttoqP//5z9OzZ8/06NEje++9d6655prU1NQkSWbNmpUOHTqscPwWW2yRJHn99ddLuYqKijXmZs+enWbNmqVNmzZ1ck2bNk2bNm3qnC/JKh+7NgcAAAAAAPBxFfYePvPnz0+STJ48Oe+++26OO+64bLHFFvn1r3+dyy+/PIsWLcopp5ySBQsWpHnz5isc36xZsyTJokWLkry/OqhFixZrlavd9mFNmzatk/vg8R/OzZ07d5XP7QNXiiu0jeV5AFAMZWX+7NlQlZUlNfU9BACbDJ8JAIBNVWELn8WLFydJXnnllUyePDk77bRTkuRLX/pShg8fnhtvvDFf//rX13ieD96Hp2w1nwhr99XU1Kx1bnXnXNX2du1apGHDwi68qmNjeR4AFEPDhg2y+eab1fcYrETDhg2yvL6HAGCT4TMBALCpKmzhU7tqp2vXrqWyp9bAgQPz5z//OU899VTKy8tTVVW1wvG121q2bJkkHzuXJNXV1XVytcd/+P5BH8x92Ny5CzaabyItW+avdgD4z1m2bHneemt+fY/BSvhMAMB/ks8EAMDGZm2/zFLYwqf23jjt2rVbYV/ttgULFqRjx46ZM2fOCpnZs2cnSem+PR07dswTTzyxVrlFixblvffeq1PaVFdX55133ind86djx46l4z884+zZs9O5c+dVPreajeSaJxvL8wCgGGpq/NmzofL7AsB/ks8EAMCmqrDX3PrUpz6VDh065J///OcK+1599dUkyZZbbpkuXbrkxRdfXGFVzjPPPJMk2XXXXZMkXbp0ybvvvptXXnlljbkkmTFjxlrlarfXmjVrVubMmVPKAQAAAAAAfFyFLXyS5Ctf+UpmzpyZBx54oLRt8eLFufXWW9OuXbvsvvvuOfjgg7N48eLcdtttpczChQszadKkdO3aNdtuu22SpF+/fikrK8stt9xSyi1btiwTJkxIRUVFdt999yRJr1690rx584wfP77OLOPHj0+zZs1y4IEHJkl69OiRioqK3HrrrVm6dGmdXFlZWfr377/+XxAAAAAAAGCTVNhLuiXJt771rTz88MM57bTTUllZma222ip33XVX/vnPf+aSSy5J48aNs//++2f//ffPT3/607zxxhvp1KlTJk6cmDfffDMXXnhh6Vyf+cxnMmTIkNxyyy1ZsGBBunfvnqlTp+bpp5/OZZddlsaNGydJWrduneOPPz6XXHJJRo0alV69euXxxx/P/fffn9NOOy1t27ZNkjRo0CBnnHFGTjnllIwYMSIDBgzIjBkzMnHixBxxxBHZYYcd6uU1AwAAAAAANj6FLnxatmyZW2+9NWPGjMndd9+d+fPnZ8cdd8w111yT3r17l3JjxozJZZddlnvuuSeLFi1K586dc8MNN5RW7dT6/ve/n8033zx33HFHpkyZkk6dOuWKK65Iv3796uRGjhxZWuXz2GOPZeutt865556bI488sk7ukEMOSVlZWa655pqcd955qaioyAknnJCRI0d+ci8KAAAAAACwySmrqXErww3JnDnz63uE9ebEE4/L//33vCzqOqi+RwFgI9f8b5Oy7adaZcyYa+p7FFbixBOPS83b/8pF+8yr71EA2MidMb1Vytp28pkAANiotG+/2VrlCn0PHwAAAAAAABQ+AAAAAAAAhafwAQAAAAAAKDiFDwAAAAAAQMEpfAAAAAAAAAquUX0PAADAxm/WwgY5Y3qr+h4DCmPe4rIkSasmNfU8CRTLrIUN0qFtfU8BAFA/FD4AAHyiOnToUN8jQOEsevONJEnrtlvW8yRQLB3a+nMHANh0KXwAAPhEnXXWD+t7BCicE088LkkyZsw19TwJAABQFO7hAwAAAAAAUHAKHwAAAAAAgIJT+AAAAAAAABScwgcAAAAAAKDgFD4AAAAAAAAFp/ABAAAAAAAoOIUPAAAAAABAwSl8AAAAAAAACk7hAwAAAAAAUHAKHwAAAAAAgIJT+AAAAAAAABScwgcAAAAAAKDgFD4AAAAAAAAFp/ABAAAAAAAoOIUPAAAAAABAwSl8AAAAAAAACk7hAwAAAAAAUHAKHwAAAAAAgIJT+AAAAAAAABScwgcAAAAAAKDgFD4AAAAAAAAFp/ABAAAAAAAoOIUPAAAAAABAwSl8AAAAAAAACk7hAwAAAAAAUHAKHwAAAAAAgIJT+AAAAAAAABScwgcAAAAAAKDgFD4AAAAAAAAFp/ABAAAAAAAoOIUPAAAAAABAwSl8AAAAAAAACk7hAwAAAAAAUHAKHwAAAAAAgIJT+AAAAAAAABScwgcAAAAAAKDgFD4AAAAAAAAFp/ABAAAAAAAoOIUPAAAAAABAwSl8AAAAAAAACk7hAwAAAAAAUHAKHwAAAAAAgIJT+AAAAAAAABScwgcAAAAAAKDgFD4AAAAAAAAFp/ABAAAAAAAoOIUPAAAAAABAwSl8AAAAAAAACk7hAwAAAAAAUHAKHwAAAAAAgIJT+AAAAAAAABScwgcAAAAAAKDgFD4AAAAAAAAFp/ABAAAAAAAoOIUPAAAAAABAwSl8AAAAAAAACk7hAwAAAAAAUHAKHwAAAAAAgIJT+AAAAAAAABScwgcAAAAAAKDgFD4AAAAAAAAFp/ABAAAAAAAoOIUPAAAAAABAwSl8AAAAAAAACk7hAwAAAAAAUHAKHwAAAAAAgILbaAqf1157LT169MiZZ55ZZ3tVVVUuvvji9O7dO926dcuQIUMyffr0FY5ftmxZrr/++hx00EHp2rVrBgwYkKlTp670sSZNmpT+/funW7du6devXyZMmLDS3MMPP5yBAweme/fu6d27d8aOHZulS5d+/CcLAAAAAADwARtF4VNTU5Ozzz47CxYsWGHfqaeemhtvvDF9+/bNGWeckSVLluSYY47Jk08+WSd30UUX5eKLL06PHj1y9tlnp127djn55JNz77331sndfPPN+d73vpdtttkmZ555ZnbaaaeMHj061157bZ3cgw8+mFGjRqW8vDynn3569t9//4wdOzajR49e/y8AAAAAAACwSWtU3wOsDxMmTMhTTz21wvbp06fnoYceyllnnZURI0YkSb761a9mwIABOf/88zN58uQkycyZMzN+/PgMHz4855xzTpLk8MMPT2VlZS688MIcdNBBadKkSebNm5fLL788ffv2zVVXXZWysrIceeSROfnkk3P11Vfn8MMPT7t27bJs2bJccMEF6dKlS2666aY0btw4SdKqVauMGzculZWV6dy583/mxQEAAAAAADZ6hV/h83//7//NJZdckm9/+9sr7LvnnnvSuHHjDB48uLStvLw8gwYNyjPPPJOZM2cmSaZMmZLly5ensrKylGvYsGEqKyszZ86cPPHEE0mSadOmZeHChRk6dGjKyspK2eHDh6eqqioPPfRQkuTpp5/Oa6+9lsGDB5fKntpcTU3NKi8VBwAAAAAAsC4KXfgsX748Z555Zjp37pyjjjpqhf0zZsxIp06dUl5eXmd7ly5dSvtr/92yZct06tRpjbkk2WWXXdYpV1FRkfbt25f2AwAAAAAArA+FvqTbzTffnBkzZuSuu+5KgwYrdlezZs1K165dV9i+xRZbJElef/31Uq6iomKNudmzZ6dZs2Zp06ZNnVzTpk3Tpk2bOudLkg4dOqz0nLU5AAAAAACA9aGwhc9LL72Uyy+/PCeeeGI+/elPp7q6eoXMggUL0rx58xW2N2vWLEmyaNGiUq5FixZrlavd9mFNmzatk/vg8R/OzZ07d7XP7QNXiyu0jeV5AFAMZWX+7AE2HrXvZ97XAACAtVXIwmfZsmU566yz8rnPfS5HH330Op/ng/fhKVvNf0nV7qupqVnr3OrOubpztGvXIg0bFvpKeyUby/MAoBgaNmyQzTffrL7HAFgvaj9Le18DAADWViELnxtvvDEzZszILbfcknfeeSdJsmTJkiTJ4sWLM3fu3LRs2TLl5eWpqqpa4fjabS1btkySj51Lkurq6jq52uM/fP+gD+ZWZu7cBRvNt/iWLVte3yMAsAlZtmx53nprfn2PAbBe1H6W9r4GAACs7RfBCln4PPbYY1m6dGmGDh26wr4pU6ZkypQpueCCC9KxY8fMmTNnhczs2bOTpHTfno4dO+aJJ55Yq9yiRYvy3nvv1Sltqqur884775Tu+dOxY8fS8e3atVvhnJ07d17t8/v/C4QKb2N5HgAUQ02NP3uAjUft+5n3NQAAYG0VsvA544wzMm/evDrblixZkpEjR2a//fbLN7/5zeywww556v+1d+dhWtV1/8DfAwy7CKOIKW5pjsmmqAgoP1E2VzQ1N+JRUzHBchc0zaU0Ms0MDM0Sg8clUnNBUhBKJZfcyEDTyg0BgUdxYd/m9wfPzOM4qJDgePT1ui4uuM/5nHN/7vu6mPvM/T7f7/fpp3PPPfdk8eLF1dbTmTZtWpKkXbt2SZI2bdrkwQcfzPTp07PFFlt8bF2STJ06NZ07d/7EumnTpmWHHXaoqps9e3bmzp2bww8/fB28CwAAAAAAAKsUcpGVtm3bpmvXrtX+VAYwLVu2TNeuXbPJJptk3333zdKlS3PbbbdVHbtw4cLcfvvtad++fbbccsskSZ8+fVJSUpJRo0ZV1a1YsSI333xzWrVqlV133TVJ0r179zRq1CijR4+u1s/o0aPTsGHD9OzZM0nSsWPHtGrVKrfcckuWL19era6kpCQHHnjg+nljAAAAAACAL6VCjvBZU926dUu3bt3y05/+NLNmzco222yTMWPG5M0338zQoUOr6rbddtsceeSRGTVqVBYsWJCddtop48aNy7PPPpurr746paWlSZINN9wwAwcOzFVXXZVBgwale/fumTx5cu6///6cffbZadGiRZKkTp06GTx4cM4888wcd9xx6du3b6ZOnZoxY8bkqKOOynbbbVcr7wcAAAAAAPDF9IUOfJLkmmuuydVXX5177703ixYtSnl5eX7zm99UjdqpdOGFF2bjjTfOHXfckfvuuy/bbLNNfvGLX6RPnz7V6gYMGFA1yufhhx9O69atc/HFF+foo4+uVnfAAQekpKQkI0aMyA9/+MO0atUq3/ve9zJgwID1/poBAAAAAIAvl5KKCsuAfp7Mnft+bbewzpx22il5/a33sqi9NYsAWL8aPXd7ttyoWa65ZkRttwKwTpx22ilJ4ucaAACQli03WKO6L/wIH2pXyeL30ui522u7DSiWZYtX/V3asHb7gAIpWfxekma13QYUzpgxt+Qvf3mktttgNd58c1aS/wt++PzZY49uOeKIY2q7DQAAqCLwYb3ZdNNNa7sFKKQ331yQJNl0I19ew5pr5nMH+EJp3LhxbbcAAAAUjCndPme+SFO6Af8ZU7gAAAAAAJXWdEq3Ouu5DwAAAAAAANYzgQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAVX6MDnueeey0knnZRdd9017dq1yyGHHJK77rqrWs3ixYtz5ZVXZu+9906HDh1y5JFH5rHHHqtxrhUrVuSGG25I79690759+/Tt2zfjxo1b7fPefvvtOfDAA9OhQ4f06dMnN99882rrJk6cmEMPPTQ77bRT9t577wwfPjzLly//1K8bAAAAAADggwob+Pz73/9O//798+KLL+bEE0/Mueeem0aNGmXw4MEZOXJkVd1ZZ52VG2+8MT169MjgwYOzbNmynHjiiXnqqaeqne8nP/lJrrzyynTs2DHnn39+ysrKcsYZZ2Ts2LHV6n7729/m+9//frbYYosMGTIkO+ywQy699NJcf/311eomTJiQQYMGpXHjxjnnnHPSrVu3DB8+PJdeeun6e1MAAAAAAIAvpZKKioqK2m7iPzFgwIA8+eSTuf/++9OqVaskycqVK3PMMcfkxRdfzOTJk/Pcc8/luOOOy3nnnZfjjjsuSbJw4cL07ds3zZo1y5133pkkefXVV7PffvulX79+ueCCC5KsGvHTr1+/vPHGG5k0aVLq16+f9957L3vttVe6dOmSa6+9NiUlJUmSM844I5MmTcqf/vSnlJWVZcWKFenVq1datGiR2267LaWlpUmSK6+8Mr/+9a9z9913p7y8fLWva+7c99fn2wYUwGmnnZIkueaaEbXcCQAAAABQ21q23GCN6go5wmfFihV58skn061bt6qwJ0nq1KmT/fbbLwsXLswLL7yQe++9N6WlpTniiCOqaho3bpzDDz8806ZNy6uvvpokue+++7Jy5cr069evqq5u3brp169f5s6dmyeffDJJMmnSpCxcuDDHHHNMVdiTJP3798/ixYvz4IMPJkmeffbZzJgxI0cccURV2FNZV1FR8ZFTxQEAAAAAAPwnChn41KlTJ/fcc0/OPffcGvvefvvtJKsCm6lTp2abbbZJ48aNq9W0adMmSTJ16tSqv5s2bZptttnmE+uSpG3btv9RXatWrdKyZcuq/QAAAAAAAOtCvdpu4D9RUlKSLbbYosb2hQsX5o477kjjxo2z4447Zvbs2Wnfvn2Nuk022SRJMnPmzCTJ7Nmzq40U+qi6OXPmpGHDhmnevHm1ugYNGqR58+bVzpckm2666WrPWVn30a/vY3cDX3CVPwP8LAAAAAAA1lQhA5/VqaioyAUXXJC5c+dm0KBBadCgQRYsWJBGjRrVqG3YsGGSZNGiRUmSBQsWpEmTJmtUV7ntwxo0aFCt7oPHf7iuchTS6pSVNUnduoUceAWsI5U/AzbeeM3m5gQAAAAA+EIEPhUVFbn44otz3333pVOnTjnllFPW6LgPrsNT8jG30lfuq6ioWOO6jzvnx53j7bcXuKsfvuRWrFiZJPmf/3m/ljsBAAAAAGrbmt4YXvjAZ9myZRkyZEjGjh2b9u3bZ8SIESktLU2SNG7cOIsXL65xTOW2pk2brpO6JFmyZEm1usrjP7x+0AfrPsr/5kXAl1TlzwA/CwAAAACANVXoucMWLVqUU045JWPHjk2nTp0ycuTIamHKZpttlrlz59Y4bs6cOUlStW7P2tQtWrQo8+fPr1a3ZMmSvPPOO1Vr/my22WbVjv/wOSvrAAAAAAAA1oXCBj7Lli3LqaeemkceeSR77713fv3rX9cYOdOmTZv861//qjEqZ9q0aUmSdu3aVdW9++67mT59+ifWJcnUqVPXqK5ye6XZs2dn7ty5VXUAAAAAAADrQmEDn1/84heZPHly9tlnnwwbNiwNGjSoUbPvvvtm6dKlue2226q2LVy4MLfffnvat2+fLbfcMknSp0+flJSUZNSoUVV1K1asyM0335xWrVpl1113TZJ07949jRo1yujRo6s9z+jRo9OwYcP07NkzSdKxY8e0atUqt9xyS5YvX16trqSkJAceeOC6eyMAAAAAAIAvvUKu4TNnzpyMHDky9erVy5577plx48bVqOnSpUu6deuWbt265ac//WlmzZqVbbbZJmPGjMmbb76ZoUOHVtVuu+22OfLIIzNq1KgsWLAgO+20U8aNG5dnn302V199ddWaQBtuuGEGDhyYq666KoMGDUr37t0zefLk3H///Tn77LPTokWLJEmdOnUyePDgnHnmmTnuuOPSt2/fTJ06NWPGjMlRRx2V7bbb7rN5owAAAAAAgC+FkoqK4i0Lfv/99+e000772Jobbrgh/+///b8sWLAgV199dcaNG5dFixalvLw8Z5xxRnbfffdq9cuXL8+IESNyxx13ZN68edlmm21yyimnpE+fPjXOPXr06IwePTqzZs1K69at81//9V85+uija9SNGzcuI0aMyKuvvppWrVrl0EMPzYABA1Kv3kfnbHPnvr+G7wLwRXXaaackSa65ZkQtdwIAAAAA1LaWLTdYo7pCBj5fZAIfQOADAAAAAFRa08CnsGv4AAAAAAAAsIrABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOAEPgAAAAAAAAUn8AEAAAAAACg4gQ8AAAAAAEDBCXwAAAAAAAAKTuADAAAAAABQcAIfAAAAAACAghP4AAAAAAAAFJzABwAAAAAAoOBKKioqKmq7Cf7P3Lnv13YLfAmMGXNL/vKXR2q7DT7Cm2/OSpJsuulXarkTVmePPbrliCOOqe02AAAAAPiSaNlygzWqq7ee+wBgLTVu3Li2WwAAAAAACsYIn88ZI3wAAAAAAIBKazrCxxo+AAAAAAAABSfwAQAAAAAAKDiBDwAAAAAAQMEJfAAAAAAAAApO4AMAAAAAAFBwAp/1bObMmTnjjDPSuXPn7LLLLhk0aFCmT59e220BAAAAAABfICUVFRUVtd3EF9U777yTww8/PPPnz8+xxx6b+vXr58Ybb0zdunVz1113paysrMYxc+e+XwudAgAAAAAAn0ctW26wRnX11nMfX2o33XRT3njjjdx+++1p27ZtkqRbt2455JBDcsMNN2Tw4MG13CEAAAAAAPBFYEq39Wjs2LHZaaedqsKeJNl+++3TuXPnjB07thY7AwAAAAAAvkgEPuvJu+++m+nTp1cLeyq1adMmc+bMyZw5c2qhMwAAAAAA4IvGlG7ryezZs5MkrVq1qrFvk002SZLMmjWr6t8fVFKyfnsDAAAAAAC+WAQ+68mCBQuSJI0aNaqxr2HDhkmShQsX1thXVtYkdesaeAUAAAAAAKw5gc96UlFRkSQp+ZjhOqvb9/bbC4zwAQAAAAAAkiQbb7zBGtUJfNaTxo0bJ0kWLVpUY9/ixYuTJE2bNl3tsf+bFQEAAAAAAKwRc4etJ5tvvnmSZO7cuTX2zZkzJ8nq1/cBAAAAAABYWwKf9WSDDTbIlltumWnTptXYN23atGy66aZp2bJlLXQGAAAAAAB80Qh81qN99903Tz/9dLXQ56WXXsrjjz+eAw88sBY7AwAAAAAAvkhKKiqsGLO+vPPOOznooIOybNmynHDCCalTp05GjhyZ0tLS3HHHHSkrK6txzNy579dCpwAAAAAAwOdRy5YbrFGdwGc9mz59en784x/nscceS/369dOpU6ece+652WKLLVZbL/ABAAAAAAAqCXwKSuADAAAAAABUWtPAxxo+AAAAAAAABSfwAQAAAAAAKDiBDwAAAAAAQMEJfAAAAAAAAApO4AMAAAAAAFBwAh8AAAAAAICCE/gAAAAAAAAUnMAHAAAAAACg4AQ+AAAAAAAABSfwAQAAAAAAKDiBDwAAAAAAQMEJfAAAAAAAAApO4AMAAAAAAFBwJRUVFRW13QQAAAAAAAD/OSN8AAAAAAAACk7gAwAAAAAAUHACHwAAAAAAgIIT+AAAAAAAABScwAdgHRsyZEjKy8tTXl6e11577SPrLrnkkpSXl2ePPfb4DLsDANbGGWeckfLy8syYMaPGvuuuuy7l5eXp1q3bao894YQT0rZt2yxevHh9twkArIXK39t/9atffWTNHnvskf79+3+GXa3Sv3//NfqeYNiwYSkvL8+///3vz6AroCgEPgDr0YMPPrja7RUVFZkwYcJn3A0AsLY6deqUJPnb3/5WY9+jjz6a0tLSzJkzp8aXLStXrsyUKVOy0047pWHDhp9JrwDA2rn22mvz+uuv13Yb/5FevXrliiuuSKtWrWq7FeBzROADsJ5sscUWHxn4PPPMM5k7d27Kyso+464AgLVRGfhMmTKl2vbFixfn2WefzUEHHZRkVfjzQS+99FLmz5+fzp07fyZ9AgBrb/Hixbnoootqu43/yA477JCDDz44TZs2re1WgM8RgQ/AetKrV69MmTIl//M//1Nj34QJE7L11ltnu+22q4XOAIA1te2226Zly5Y1Rvg8/fTTWbp0aQ477LBsvvnmNQKfZ555JkkEPgDwOdazZ888+uijueuuu2q7FYB1QuADsJ706tUrK1euzKRJk2rsGz9+fPr06VNj+1//+td85zvfSefOndOmTZt07do1Z555ZmbOnFlV88QTT6S8vDwPPfRQLr/88uy5555p3759jjzyyDzxxBPr9TUBwJfRbrvtlueffz5Lly6t2vbYY4+lcePG6dChQ3bffff89a9/zYoVK6r2P/PMM2nUqFE6dOiQZNUIoRNPPDEdO3ZMhw4dctRRR9UYCTxs2LDsuOOOefXVVzNgwIDsvPPO6dy5c4YOHZrly5dn3LhxOfDAA9OhQ4cccsgheeyxx6od/9Zbb+Wyyy5Lr1690rZt2+y888458sgjazzPPvvskyFDhuSPf/xjDj744LRr1y577713hg8fnpUrV67rtw8APrfOP//8NGvWLEOHDs28efM+tnb27Nk577zz0rVr17Rt2zb77bdfbrjhhmqf/+vy9/VHHnkkBx10UNVz3XzzzdX2f3gNnzvvvDPl5eX5+9//nvPOOy+77757OnTokOOPPz7/+Mc/qh27NtcMgwcPziWXXJIOHTpkjz32yG9/+9uUl5fngQceqNHzWWedlV122SVLlixZq9cKrDsCH4D1pE2bNtl8881rXDBNmzYtM2bMqBH4PPbYYznuuOPy1ltvZeDAgbnwwguz5557Zty4cTn55JNrnP+SSy7JU089lQEDBmTQoEF55ZVXMmDAgE+8SAUA1k6nTp2ydOnSal+WPProo9ltt91SWlqaLl26ZP78+fn73/9etf+ZZ57JLrvsktLS0jz00EPp169fXn755Zx00kk5/fTTs2jRogwaNCj//d//Xe25Kioq0r9//5SVlWXw4MH5+te/npEjR+Y73/lOfvjDH+aAAw7IGWeckTlz5uTUU0/N22+/nSRZsmRJ+vXrl7vvvjsHHHBALrroohx//PGZPn16Tj311EydOrXa8zzxxBO54IIL0r1793z/+99Pq1atMmzYsNx6663r8Z0EgM+XjTfeOOecc07mzZuXoUOHfmTdzJkzc9hhh2XcuHE5+OCDc95552XrrbfOlVdemTPPPLNG/af9ff3dd9/NwIEDs/POO2fIkCEpKyvLpZdemmuvvfYTjz3ttNMyc+bMfO9738txxx2Xp556KieddFKWL1+eZO2vGcaPH5+nnnoq5513Xg455JAccsghqV+/fu67775qdYsWLcqkSZPSu3fvNGjQYI1eJ7Du1avtBgC+yHr16pVbbrkl8+fPr5pXd/z48WndunXatGlTrXbkyJFp0aJFRo0alUaNGiVJjjrqqCxfvjz33XdfZs+eXW0xxiZNmuR3v/tdSktLkyQtW7bMeeedlwkTJuSII474jF4hAHzxfXAdn/bt2+edd97JCy+8kHPPPTfJ/03b9uijj2annXbKnDlzMmPGjBx11FFZsWJFLrroojRv3jx33nlnmjdvniQ55phjcvTRR+eKK67Ivvvum4033jhJsnLlyvTo0SMXX3xxkmT//fdPly5dMnny5Pz+979Pu3btkiSNGzfOhRdemClTpmSfffbJpEmT8sorr2TYsGHp3bt3Ve8777xzTjzxxEyePDlt27at2j5z5syMGTOmagTSQQcdlD333DP33ntv+vXrt/7eTAD4nPnmN7+Zu+++O3fddVcOOeSQdOnSpUbNVVddlblz5+bmm2/OrrvumiTp169fLrnkktxyyy158MEH07Nnz6r6T/v7+rJlyzJkyJAcf/zxSVZ9N/Ctb30r1113XY455pi0aNHiI4/ddtttc8MNN1Q9rlevXoYPH54nnngie+yxx1pfMyxcuDDDhw/PVlttVbWte/fueeihh7JgwYI0adIkSTJp0qQsXLgwffv2/cTXB6w/RvgArEe9evXK0qVL8/DDD1dtGz9+fLWLqkojRozI2LFjq8KeJJk/f37VnTELFy6sVt+7d++qi8ck2XHHHZMkc+fOXaevAQC+7D68js8TTzyRlStXVn0htMkmm2Tbbbetmqrlg+v3TJs2LbNmzcrRRx9dFfYkSYMGDXLCCSdkyZIl1a4TklQbBdysWbNstNFG2WyzzarCniTZYostkvzf5/5+++2Xxx57LD169KiqWbFiRdUUbR++jth8882rwp5k1RdTW2211WrXHgSAL7KSkpJceumlKS0tzUUXXVRjOrIVK1Zk0qRJ6dSpU1XYU2ngwIFJUmNmj0/7+3rjxo2r3YBRr1699OvXL0uXLq2xbuCH7bffftUef/3rX6/23Gt7zfCVr3ylWtiTJH379s3ixYszceLEqm1jx45Nq1atsvvuu6/RawTWDyN8ANajjh07ZuONN87EiROz//7751//+ldefvnl1Q4Vr1u3bmbNmpXhw4fnn//8Z954443MnDkzFRUVSVJjTv2ysrJqjysvJs29DwDr3m677ZYpU6YkWTWSp0WLFikvL6/a36VLl9xxxx1ZtmxZnnnmmWywwQZp06ZN1fz2X/3qV2ucc9ttt02SzJgxo9r2jTbaqNrjevXq1dhWp86qe/c++Llft27djBw5Ms8880ymT5+e1157repLq0+6jkiS+vXru44A4Etp2223zcknn5zhw4fn2muvrTZN27x587Jw4cLVfpa3bNkyzZo1q/FZ/km/r7///vtZvHhxtZoNNtggDRs2TLLqxoz69etX27/lllsmqXnd8GEfvmaoPM9/es3w4fMlyV577ZXmzZtn3Lhx6du3b95999088sgj6d+/f9U1ClA7/A8EWI/q1KmTHj165M9//nOWLl2a8ePH5ytf+Urat29fo/amm27KN77xjTz88MNp3bp1+vfvn9GjR692/Z7KcwMAn41OnTrljTfeyNtvv53HH388nTt3TklJSdX+Ll26ZNGiRXn++efz7LPPZrfddkvdunWrbtyo/PuDKr9Q+eAdwMmqL2E+7IPPtTqvvvpq9t1336q5/Xv27Jkrrrgiv//971db7zoCAKo7+eST89WvfjU33nhjXnrppartH/dZnqz6PP/wZ/knfc5edtll2XPPPav9GTduXNX+j/vcX911wget62uG1T1f/fr106dPn0yePDnvvvtuxo8fn2XLlpnODT4HjPABWM969eqV3/3ud3niiScyfvz49OrVq8YF2JIlS/Lzn/88O++8c0aNGlXtTp577rnns24ZAPiQynV8Jk+enFdffTXf/va3a+yvU6dOpkyZkhdeeCHnnHNOkqR169ZJkpdffrnGOSu3bbrppp+6v+uvvz7z5s3LPffck+23375qe+X0cgDAx6tfv34uvfTS9O/fPz/4wQ+qbswoKytL48aN88orr9Q4Zs6cOZk/f/5af5afeOKJNcKR7bbbrurfb775ZlasWFEtbKl8/sqRPv+pdXXN0Ldv3/zud7/LQw89lIkTJ+ZrX/ta1fRxQO1xWxfAeta5c+c0a9Yso0ePzgsvvFBtXv5KixcvzqJFi7LVVltVC3tmzpyZ8ePHJ1k1py4AUDsq1/G55ZZbkqTGgs7NmjXLjjvumHvuuSfLli1L586dkyRt2rRJq1atctttt+Wdd96pql+6dGluvPHGlJaWplu3bp+6v3feeSf169ev9iXQypUrM2rUqCSuIwBgTey222457LDD8uyzz+btt99OsmqES/fu3fPXv/41Tz31VLX66667Lkmyzz77rNXzbLfddunatWu1P5tssknV/vfeey/3339/1eOlS5fmt7/9bZo0aVLjGmRtratrhl122SWtW7fO/fffn8cffzwHHXTQp+oLWDeM8AFYz0pLS9O9e/fcc889admyZTp27FijZsMNN8zOO++ce++9N82aNcv222+f119/PWPGjMmiRYuSJAsWLPisWwcAPmC33XbLuHHjsvnmm6/27touXbrkhhtuyEYbbVR1x2y9evVy0UUX5bvf/W4OPfTQHHHEEWnYsGHuvvvuPP/88xkyZMhq58ZfW927d8+kSZNywgkn5MADD8ySJUsybty4PP/886lTp47rCABYQ+eee27+9Kc/5a233qradtZZZ+Xxxx/PCSeckGOOOSatW7fOX/7yl0ycODE9evRIjx491mkPzZo1ywUXXJB//OMfadWqVdV1w6WXXpqmTZt+qnOvq2uGkpKSHHTQQRkxYkTVv4HaZ4QPwGegd+/eSVZN7/ZRc/lec8016dOnT8aOHZvLL788Dz74YA4//PCMHj06yaoFogGA2lM5rVvl6J0Pq7zjtlOnTtWmb+3Ro0dGjRqVrbbaKtdff32uueaaNGnSJL/85S9z/PHHr5PejjjiiJxzzjmZM2dOLr/88owcOTIbbbRRxowZkx133DGPPfbYOnkeAPii23DDDXP++edX29a6devcfvvt6d27d/7whz9k6NChef311zNkyJAMGzbsE9fNWVtbbLFFrrjiijz44IMZOnRoFi9enKuvvjpHHnnkpz73urxmOPjgg5OsGu2z2WabferegE+vpOKjVhwDAAAAAIDVeO2119K7d+/86Ec/yje/+c3abgeIET4AAAAAAKylW2+9NY0bN85+++1X260A/8saPgAAAAAArJGLLroob7zxRiZPnpwTTzzxU68rBKw7RvgAAAAAALBG5s2bl6effjp9+/bN9773vdpuB/gAa/gAAAAAAAAUnBE+AAAAAAAABSfwAQAAAAAAKDiBDwAAAAAAQMEJfAAAAAAAAApO4AMAAAAAAFBwAh8AAIBPMHv27Fx33XU5/PDD07Vr17Rt2zZ77bVXTj/99PzlL3+p7fby4IMPpry8PMOGDavtVgAAgFpSr7YbAAAA+Dy7//77c/7552fBggXZcccds++++6ZJkyaZMWNGHnroofzxj3/MoYcemssuuyx16rinDgAAqB0CHwAAgI/w6KOP5vTTT0/z5s0zfPjwdO3atdr+t99+O2eddVbuvPPO7Ljjjunfv38tdQoAAHzZuf0MAABgNZYuXZoLLrggSfLLX/6yRtiTJGVlZfnZz36Wpk2b5je/+U0qKio+6zYBAACSCHwAAABW6+GHH86MGTOy9957p2PHjh9Z16JFiwwYMCCHHXZYFi9eXLV92rRpGThwYHbfffe0b98+Bx98cG699dYaodA+++yT/v3759///ne+853vZJdddsnOO++ck046Kf/4xz9qPN9TTz2VY489Nrvssku6du2aoUOHVnveD5o/f36uvPLK9OzZM23btk23bt1y0UUX5a233qpWN2TIkJSXl+e5557L/vvvn3bt2uWoo44SYAEAQIGY0g0AAGA1Jk6cmCTp0aPHJ9aefPLJ1R4/9NBDOfXUU1NaWprevXunrKwsjzzySC6++OI8//zz+eEPf1itftasWTnqqKOy9dZb54gjjsgrr7ySP/3pT5kyZUoeeOCBlJWVJVkVQg0cODD169dPnz59Urdu3fzhD3/I2LFja/T0/vvv55hjjslLL72ULl26pHfv3nnjjTcyZsyYPPLII7ntttuyySabVDvmlFNOSbt27bLHHnukcePGKSkpWav3DAAAqD0CHwAAgNV47bXXkiTbb7/9Wh23aNGiDBkyJBtssEHGjBmT1q1bJ0nOPvvsnH766RkzZkx69uyZvfbaq+qY6dOnp1+/frnwwgurQpYLL7wwY8aMyQMPPJCjjz46K1asyCWXXJLS0tLcdtttVX0NGDAgRx99dI0+fvazn+Wll17KD37wg/Tr169q+8SJEzNw4MBcdtllueaaa6od07FjxwwbNmytXi8AAPD5IPABAABYjcppz5o1a1Zj3/jx4/Piiy/W2N6zZ8+8/PLLefvtt3PuuedWhT1JUqdOnZx11ll54IEHcscdd1QLfJLkpJNOqjaiZq+99sqYMWMyY8aMJMnf/va3vPHGG+nXr1+1EGrLLbfMsccem6uuuqpq2/Lly3PXXXfla1/7WrWwJ1k1Yqljx46ZMGFC5s+fn6ZNm1bt69279xq9NwAAwOePwAcAAGA1mjdvniR57733auwbP3587r333hrbN9988/zzn/9MsmoNn9WNlqlbt26NtXkaNGiQr3zlK9W2VQYxS5cuTZKqY9q2bVvjnB9eY+iVV17JwoULs2LFitX2sGTJkqxYsSIvvvhidtlll6rtHwyoAACAYhH4AAAArEbr1q0zZcqUvPbaa2nfvn21fVdeeWWuvPLKqsc33XRTfvzjHydZtXZOktx3330fee5333232uP69evXqKkc7VNRUZHk/4KnJk2a1KjdcMMNqz2urH355ZczfPjwNe6jYcOGH1kLAAB8vgl8AAAAVqNHjx4ZO3ZsJkyYkIMOOmiNj2vcuHGSVSFQly5d1lk/lVPLVQZKH7Rw4cJqjytDoYMPPjhXXHHFOusBAAD4/KpT2w0AAAB8Hu2zzz5p1apVJkyYkCeffPJjaytH4SRJeXl5kmTq1Kk16t55551cdtllufvuu9e6n8qp3J555pka+z78XNtss03q16+fadOmVeut0k033ZRf/vKXmTdv3lr3AQAAfD4JfAAAAFajYcOGVaNjBg0alPHjx9eoWb58eW6//faMGDEiSVKnTp306tUrTZs2za9//eu88sor1ep/+tOfZtSoUXn99dfXup927dplu+22y7333lst9JkzZ05uvPHGarUNGjTI/vvvn3/9618ZOXJktX1PPPFErrjiitxxxx01poIDAACKy5RuAAAAH6Fz58751a9+lXPPPTff/e53s/XWW6dTp05p3rx5Zs+encmTJ+ett95Ko0aNctppp+WAAw5IaWlpfvSjH+Xss8/ON77xjfTs2TObbLJJnnzyyTz33HNp165dvv3tb691LyUlJbn88stz3HHH5dhjj02fPn3StGnTTJgwoWoauQ8aPHhwnn322fzkJz/JxIkT0759+8yePTvjx49PvXr1cvnll6dOHfcAAgDAF4XABwAA4GN069Ytf/zjH3PPPffkgQceyJ///OfMmzcvzZo1y3bbbZfjjz8+hx9+eFq0aFF1zH777ZdNN900119/fR555JEsWrQom2++eQYOHJgTTjihao2dtdWhQ4fceuut+fnPf54///nPKSkpSe/evXPIIYfkW9/6VrXasrKyjBkzJtdff30mTJiQ0aNHp6ysLPvss08GDhyYHXbY4VO9LwAAwOdLScXqJnQGAAAAAACgMIzfBwAAAAAAKDiBDwAAAAAAQMEJfAAAAAAAAApO4AMAAAAAAFBwAh8AAAAAAICCE/gAAAAAAAAUnMAHAAAAAACg4AQ+AAAAAAAABSfwAQAAAAAAKDiBDwAAAAAAQMEJfAAAAAAAAApO4AMAAAAAAFBw/x9i3sjTFIDw5AAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -9296,15 +9850,15 @@ }, { "cell_type": "code", - "execution_count": 333, + "execution_count": 1170, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['White or of European descent', 'South Asian', 'Hispanic or Latino', 'Middle Eastern', 'East Asian', 'Southeast Asian', 'Black or of African descent', 'Multiracial', 'Biracial', 'Indigenous']\n", - "[24573, 4585, 2877, 1757, 1539, 1348, 1336, 226, 133, 62]\n" + "['White or of European descent', 'Hispanic or Latino', 'Indigenous', 'East Asian', 'Multiracial']\n", + "[40, 2, 1, 1, 1]\n" ] } ], @@ -9317,14 +9871,14 @@ }, { "cell_type": "code", - "execution_count": 334, + "execution_count": 1171, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKEAAAJmCAYAAACE+pMRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACP80lEQVR4nOzde5xNZf//8ffaxznsGZNDKoxQDuWUxiGkVFK6hUohpNwVNXXTzZ3ivhGS7tT3jtA5IRJRSgdnKSEl5fQTyqGDcZzZc9h79t7r98cwjJlhY5bZM17Px2M/mGtda63PmmvPmHm71rUM0zRNAQAAAAAAABayFXcBAAAAAAAAKP0IoQAAAAAAAGA5QigAAAAAAABYjhAKAAAAAAAAliOEAgAAAAAAgOUIoQAAAAAAAGA5QigAAM4TH374oWrVqhXW63hpaWmaOnVqnrYePXqoVq1aSk1NtaTGd95557T3veGGG5SUlJSnbe/evZo9e3aR1Pbqq6+qVq1aevbZZ0/ZNzk5WbVq1dLq1atz29LT0/XKK6+oY8eOuuqqq9SwYUO1bdtWI0aM0O7du8OqYffu3QWOV+3atdWwYUO1a9dOzz//vA4dOnSml3lSPp9Pb731Vp62QYMGqVatWtq0adNpHevotTzyyCNFWWKhCnovFPSeAQAA1nEUdwEAAODcatKkiZo0aRJ2/7Zt26pChQrq3r27hVXlqFOnjpKTk9WwYcPT3rdnz57y+/25H+/fv1+33HKLmjVrpjvvvPOsa+vQoYP+7//+T59//rmeeuopGYZRYL+0tDQtW7ZMlStXVuPGjSVJ+/btU7du3fTbb7/l1uNwOLR161ZNmzZNH3zwgSZNmqTmzZuHVUulSpXUqVOn3I9N01RGRoa+/fZbvfnmm1qyZIlmzZql2NjYs77u43Xv3l07duzQAw88kNt20003qVKlSipfvvxpHSs+Pl7JycmqXr16kdZYkMLeCye+ZwAAgLUIoQAAOM80adJEjz32WNj99+/frwoVKlhY0TF16tRRnTp1zmjfXr165fk4MzNT6enpRVBVjosuukhNmzbVypUr9d133+UGTCf6/PPP5ff71bFjx9yg6oUXXtBvv/2m8ePHq02bNnn6r1y5Un//+9/1r3/9S4sXL5bL5TplLZUqVSpwDEOhkB566CF99dVXmjx5cpHPMtq/f3++tptuukk33XTTaR8rPj7+tN6HZ6Ow98KJ7xkAAGAtbscDAAAIU8eOHSVJ8+fPL7TPvHnzZBhGbl9JWrJkiSpVqpQvgJKka665RrfccotSUlL0/fffn1V9Npstd5bS8uXLz+pYAAAARY0QCgAAFGjVqlW560Nt3rxZtWrV0rhx4/L0+euvv/Svf/1LTZs2VcOGDdW1a1etXLkyT59x48apVq1a2rZtm1588UVdf/31qlu3rm677TZNnz49T9/C1oTavHmz+vfvrxYtWuiqq65Sp06dNGvWLJmmmdvn+PV9PvzwQ914442SpEWLFqlWrVr68MMPdd9996lWrVr67bff8l3v3LlzVatWLX3wwQeFfk5uvvlmxcTE6IsvvlAwGMy3/a+//tKaNWuUlJSkKlWq5LYHAgEdOHBA+/btK/C4ffr00YQJE1SzZs1Czx2uihUrSpIOHjyYp33JkiX6+9//rmbNmunKK69Us2bN9Mgjj+Rby+mGG25Qjx49NHv2bDVv3lxXXXWVHnvsMdWqVUt79uxRWlqaatWqpUGDBkkqfE2ohQsXqkePHkpKSlLTpk3Vq1cvrVmzJnd7QWtCHT3W/v37NXDgQCUlJalJkyZ65JFHtHXr1nzXumfPHg0dOlQ33XST6tWrp6uuukp33HFHnvdVYe+Fo9d64ppQfr9fkyZNUrt27VS3bl01bdpUffv21U8//ZSn39Gvjw8//FCzZs1S+/btVa9ePbVq1UpjxoxRZmbmSUYJAIDzEyEUAAAoUKVKlZScnCxJKl++vJKTk/OtJXXffffp559/1h133KEbb7xRP/74o3r37q0NGzbkO97AgQM1c+ZMtWrVSnfffbf++usvDRs2TB999NFJ61i5cqXuueceLViwQElJSerSpYuysrI0ePDgfKHYUXXq1FHPnj0lSdWqVVNycrLq1KmTOztp3rx5+fb5+OOP5XK5dMsttxRaS0xMjNq2bav9+/dr1apV+bZ/+umnCoVCedZrkqQWLVooMzNT99xzj9599139/vvvebZffvnluvHGG1W2bNmTfi7CcTRgOxpGSdLUqVPVp08f/fbbb/rb3/6mnj176rLLLtOiRYt07733au/evXmOsXXrVj3zzDO66aabdMstt+i2225TcnKy4uLi5HK5lJycfNJb8F599VU9+uij2rZtm9q2bavbbrtNGzduVK9evbRixYpTXsODDz6ob7/9VnfeeaeuueYaLV26VF27dtXmzZtz++zevVt33nmn5s6dq4YNG6pXr15q06aNtm3bpmHDhuUupl/Ye6EgPp9PvXr10ksvvSS73a6uXbuqefPmWrFihbp27aqFCxfm22fq1KkaNmyYLr/8cvXo0UNut1tvvfWWRo4cecrrBADgfMOaUAAAnGdWr15daHgjSddee60aNmyoypUr67HHHtP48eNVvnz5AtfvqVu3rl555RU5nU5JUr169TR69GjNmTNHV155ZZ6+hw4d0vz583ODlr/97W/q2rWrZs6cqQ4dOhRYSzAY1JAhQ2SapqZMmaKrrrpKktSvXz917txZkyZN0r333qty5crl2a9OnTq677779O6776p69eq5tScmJuqZZ57Rp59+mhuwSVJKSoq+/fZbtWnTRnFxcSf9/HXs2FFz5szR/Pnz8y0kPm/ePMXExOQLsgYPHqzNmzfrt99+06hRozRq1ChVqVJFTZo00fXXX6/rr78+rLWgTsXn82nSpEmScmZtSTkze1566SVdeumlmjNnjmJiYnL7Dxs2TNOnT9eSJUt0zz335LYfPHhQQ4YMUY8ePXLbbrnlFs2ZM0epqaknXctpx44devnll1W9enW9++67ueuJ3XffferYsaPGjBmjli1bnvQ6Dh06pI8++ij3vfLFF1/o8ccf16hRozRlyhRJ0muvvaaDBw/q7bffzjMO3bt3V+fOnfXJJ5+oe/fuhb4XCvLGG29o7dq1uuOOOzRixAg5HDk/Kv/888+699579dRTT6lZs2byeDy5+2zevFnTpk3LfW/27dtXN998s+bNm6fBgwfn+XwDAHC+I4QCAOA8s3r1aq1evbrQ7XFxcWE/ne6hhx7KDaCknNubRo8erd27d+fre+edd+aZ6dOoUSPFx8fr119/LfT469at0+7du3X33Xfn/pIvSW63W4MGDdKPP/4on88XVq2SFBsbqzZt2uijjz7Sxo0bdcUVV0jKmcEUDAYLDcOO17RpU1WqVEkLFizQ0KFDc69/27Zt2rhxozp27JjvqXQVK1bU3Llz9e677+qjjz7S9u3btWvXLu3atUuzZ89WpUqVNHLkyLCfjrdnz548QaJpmtq/f7+++uor7dmzR40aNcoNlYLBoEaMGKELL7wwXyDSpEkTTZ8+vcAFx9u2bRtWLSf6/PPPFQgE9Mgjj+RZ0L5q1ap68sknlZWVpezs7JMeo2/fvnneK23bttXVV1+t1atX688//9RFF12k22+/XfXr18/3Oatfv76ioqIKvKZTmTNnjqKjozV48ODcAErKCVu7deumt956S19++aXuuOOO3G2NGzfO896Mi4vTVVddpUWLFumPP/5QjRo1TrsOAABKK0IoAADOM8nJyUX2VLKqVavm+TghIUGSCnwSWbVq1fK1eTweeb3eQo9/9PargkKx5s2bhx3aHK9jx4766KOPNG/evNwQ6uOPP9YFF1yga6+99pT7G4ah9u3ba9KkSfrmm2903XXXSTp2i9/xC5IfLyYmRn369FGfPn20e/durVy5Ut98842WLl2qPXv2qE+fPpoxY0ZuTSezZ88ejR8/Pvdjm82m2NhYVatWTV26dFHPnj1zw7Ho6Gi1a9dOUs4spW3btmnnzp3aunVr7vpdoVAoz/GdTqcuvPDCU9ZRkJONWZcuXcI6RkFPHqxfv77Wrl2rLVu26KKLLlJSUpKSkpJ06NAhbdq0STt37tSOHTu0bt06+Xy+AtfsOhmv16tdu3apUaNGeWY6HXX11VfrrbfeynNLoCRdeuml+foenU13qrANAIDzDSEUAAA4Y263O+y+Bd1uZhhGnsXFT5SamipJBYYCZ6pZs2a66KKLNH/+fP3rX//Sjh07tGHDBnXv3j3PrK6T6dSpkyZNmqRPP/00N4T65JNPVKlSJTVr1uyU+1euXFmdO3dW586ddejQIQ0aNEhLlizR5MmTNWbMmFPu36RJk9zb0sKxZs0ajR49OnetLrfbrdq1a+vKK6/UH3/8kW8MoqKiwj72iYpizI5fz+qo8uXLS5LS0tIkSYcPH9bo0aP1ySefKDs7W4Zh5H7+N27ceNrnPBqcFnY75tFQLisrK097Ye9rSSd9bwMAcD5iYXIAABCxjt4+VtDMquzsbPn9/tM+ps1m0+23364///xTP/zwg+bPny9JYd2Kd9Sll16ae8uV3+/XunXrtGvXLnXo0CE3gDhq7ty5atWqVaELsCckJOiZZ56RpAKf2ne29uzZowcffFB79uzRiBEjNH/+fP3www+aOXOmbrvttiI/38nGLCsrK9+sq4KcGPRIx8KnCy64QFLOQvdz5szRnXfeqenTp+u7777TokWLNGrUqDOq++gtlCcu0n7U0XDt6Gw/AABw+gihAABAxKpZs6Ykaf369fm2ffbZZ2rQoIHmzp1b4L4nhkHHO3rL3JIlS7R06VJVq1ZN9evXP63aOnToIK/Xq2+++Uaff/65JOV7Kp6UE5r89ddf+vLLLws91tFaz/QWuJNZuHChMjMz9fjjj+vuu+9WjRo1ZLfbJeWsYyUV7Yydk43ZyJEj1aBBA+3ateukx/jpp5/ytf3www9yOBy68sorlZqaqmXLlqlu3boaPnx4nlvodu/eLZ/Pl+eaTvZeOMrj8ahy5crasWOHDhw4kG/7mjVrJEmXXXbZKY8FAAAKRggFAABOyul0FtvaNo0bN9bFF1+sjz76SJs2bcpt9/v9euedd2Sz2XTNNdcUuO/RhaULqr1GjRqqW7eu5s2bp59//vm0ZkEdddttt8nlcmnx4sVasGCBrr76aiUmJubr17JlS1166aVauHChXn311Xwzgfx+v5577jlJBYdYZ+voLZP79u3L075582a9++67kqRAIBDWsZxO5yn7/u1vf5PNZtOkSZN08ODB3PadO3fqs88+U5UqVVSlSpWTHmPcuHF51gr74osvtGrVKt14441KSEiQ0+mUzWZTampqntlwWVlZGjFihKS8436y98LxOnXqpKysLD377LN5rnPDhg2aOnWq4uPjdcMNN5z0GAAAoHCsCQUAwHlm9erVeZ6sVpB27drlPtXrwgsv1Pbt2zV06FBdd9115/SXcIfDoWeffVYPP/ywunTpojZt2qhcuXJaunSpfv31Vz311FMFrh8k5cxAcrlcWrVqlUaPHq02bdooKSkpd3unTp00YsSI3IXGT9fRQOLjjz9WZmam+vTpU2A/u92uCRMm6L777tOLL76o999/Xy1atFDZsmVzn2j3559/6v7771fr1q1Pu45Tad26tcaOHatXX31V27dvV2Jion777TctWbIkd/2jQ4cOhXWsCy+8UL/++qsGDBigli1bFrgIe40aNZScnKyXX35ZHTp0UOvWrWWapubPny+fz6fRo0ef8jw7d+5Ux44ddf311+uvv/7SwoULVbFiRQ0aNEhSzmLrbdq00RdffKHOnTurRYsWysjI0JIlS7Rv3z6VKVNGaWlpCoVCstlsp3wvHPXggw9qxYoVmjdvnrZs2aJmzZpp//79WrhwoUzT1EsvvVSk65MBAHC+IYQCAOA8s3r1aq1evfqkferUqZMbQv3nP//RyJEjNXv2bAUCgXM+E6R58+aaPn26xo8fr2XLlikzM1OXXXaZxowZU+iT6KScBaP/85//6OWXX9Z7772nuLi4PMHDrbfeqhEjRigpKUmVK1c+o9o6deqkzz//XNHR0br11lsL7VejRg19/vnnmjJlipYuXaoFCxbI6/WqTJkyql+/vkaMGKFWrVqdUQ2nUrFiRb399tt68cUX9e2332rFihW65JJL1KNHDz388MO6+eab9dVXX8k0zVPetjZw4EA9/fTT+vzzz7V///5CP/+PPvqoqlWrpsmTJ+ujjz6SYRi66qqr9Pjjj6tBgwanrPl///ufZsyYodmzZys6OlodO3ZUv3798gSOzz77rC666CItXLhQU6dOVYUKFVSvXj099NBD+uSTTzR58mStWrVK11xzzSnfC0e53W698847evPNNzVv3jxNnz5d8fHxat26tR5++OGwnlwIAAAKZ5g8tgMAAJyHVqxYod69e2vkyJHq3LlzcZcDSYMGDdKcOXM0d+5c1alTp7jLAQAARYw1oQAAwHnH7/fr1VdflcfjUbt27Yq7HAAAgPMCt+MBAIDzxs6dO5WcnKyUlBQdOHBAjz/+uGJjY4u7LAAAgPMCM6EAAMB5o1y5ckpLS5PP51P37t318MMPF3dJAAAA5w3WhAIAAAAAAIDlmAkFAAAAAAAAy523a0KlpKQVdwnnFY/HLa/XV9xloACMTWRjfCIb4xO5GJvIxvhELsYmsjE+kYuxiWyMz7lVoUJcoduYCYVzwuGwF3cJKARjE9kYn8jG+EQuxiayMT6Ri7GJbIxP5GJsIhvjEzkIoQAAAAAAAGA5QigAAAAAAABYjhAKAAAAAAAAliOEAgAAAAAAgOUIoQAAAAAAAGA5QigAAAAAAABYjhAKAAAAAAAAliOEAgAAAAAAgOUIoQAAAAAAAGA5QigAAAAAAABYjhAKAAAAAAAAliOEAgAAAAAAgOUcxXXi7OxsPf3009qzZ4/8fr/69u2riy66SH369NGll14qSeratavatWunmTNnasaMGXI4HOrbt69at26trKwsDRw4UPv371dsbKzGjBmjsmXLat26dRo1apTsdrtatmyp5OTk4rpEAAAAAAAAHFFsIdTHH3+shIQE/fe//9XBgwfVqVMnPfroo7r//vv1wAMP5PZLSUnRlClTNHv2bPl8PnXr1k0tWrTQ9OnTVbNmTT322GP69NNPNWHCBA0ZMkRDhw7VuHHjVKVKFT300EPasGGDrrzyyuK6zFLJ8EqxQ91yz3dIhpTVLVvpg/z53k32n2y6oH2MDn6eITXLaYt51qXY/3Pn6Zf2QpayemarXO1Y2Q7kn5yX/qRPGf/0SwEp9jmX3DOcMswj533Kz3w+AAAAAABKgGILoW655Ra1bds292O73a6ff/5ZO3bs0KJFi1S1alU9/fTTWr9+va666iq5XC65XC4lJiZq8+bNWrt2rf7+979Lklq1aqUJEybI6/XK7/crMTFRktSyZUutXLmSEKqIeQZEyf6LTYc+yZAyDZXpFa1QvJT5uD+3j5FiqMx90VJICl4eym13LXIodVKmfO0Cxw7oyvlj/7r0POeJft2l2LEu+W7N6Rs72iXXFw4dnp0pI1OK7x6t4CWmsu7Ptu5iAQAAAABAkSi2ECo2NlaS5PV69fjjj6tfv37y+/3q3Lmz6tatq4kTJ+qVV15R7dq1FRcXl2c/r9crr9eb2x4bG6u0tDR5vV55PJ48fXft2lXg+T0etxwOu4VXWErtlxxzbQouDSnu6uictn5S7Lsuuf9z5O3kl+wP2WRIMutKCeViZLfblJAVI8dmm6LvcCk6wXXS0xjfSvYxNgUnhxTXPEryS453bQpOCSmuaVROp4ek2EVuRfV3Wna55wO73aaEhJjiLgOFYHwiG+MTuRibyMb4RC7GJrIxPpGLsYlsjE/kKLYQSpL++OMPPfroo+rWrZvat2+v1NRUxcfHS5LatGmjESNGKCkpSenpx2bIpKenKy4uTh6PJ7c9PT1d8fHxedqOby+I1+uz8MpKMb/knGlXds2gdCinKeYPl1yGQ4cOZUiSPP3dCsWHZF4jmVGmvId8SkiIUeZcv2LLuRXqYcqxyabsRkF5n/XJLG/mPUdAuuDhGGV1zZb3Rl/ueYyVhswyZu7HsWkuObLtOnwo81xceamVkBCTO3aIPIxPZGN8IhdjE9kYn8jF2EQ2xidyMTaRjfE5typUiCt0W7GtprNv3z498MADGjhwoO666y5JUu/evbV+/XpJyr2Nrn79+lq7dq18Pp/S0tK0bds21axZU40aNdKyZcskScuXL9fVV18tj8cjp9OpnTt3yjRNrVixQklJScV1iaVTtJTdKpj7zrH9ZSj6baf8R26Zi37NKef3dqW+kiXHzzYF6ua9Fc/0mMp82K/UNzNl32FT3BPufKeImuyU7XdbzjpTxzHLm9KRSU+ONTZFTXYp815uxQMAAAAAoCQotplQkyZNUmpqqiZMmKAJEyZIkgYNGqRnn31WTqdT5cuX14gRI+TxeNSjRw9169ZNpmmqf//+crvd6tq1q5588kl17dpVTqdTY8eOlSQNHz5cAwYMUDAYVMuWLdWgQYPiusRSz/a7oTJ3RytYyVTGw345l9oV838uHZyfITkl+1abAvWCuf2zemQrWCukUMWcmU/pz/hUplO05FfuulDySzHjXcpI9sssZ+Y7p3FIKtfQIyPDUPoTPvlvD+TrAwAAAAAAIo9hmmb+3/TPAykpacVdQolm32JTmS7RCl1o6vCMDBmHDV3QLkapk7KU3SooxzqbEm6J0b7tXimm4OmPtp2GyiV5tO9nr8wLc96G7pkOxQ2I0v51XpllCzhxQLLvsCnmZZdci+w68G26zILvuESYmJoa2RifyMb4RC7GJrIxPpGLsYlsjE/kYmwiG+NzbkXk7XgouRzf25Rwe4yCNUM6NDtD5gVS1IdO2fbZlHBXjCpcGKcLbo6VETJU4dI4Ob+xy1gkRb2RdwFx+y82mVFmnhlPUTOc8nUMFBxASZIj52l7af/NknHAkOM7FpcHAAAAAKAkIITCabH9bqhM1xhltwjo8NRM6cjDCLO6ZOvAovTcl69dtnxtAjqwKF3ZSUEZmwzFTMj7RLzoqU75bwxIR3Ik21+GnF/blXVP3nWebLsNlavhkfGXcaztD0NGyFDo4vNyIh8AAAAAACUOIRROi2eQW6GyptJeypKCkrJyXqFLTAXrhXJftr9sym4WVLBeSHJJodtN2fYZivmvS8b+nD9dix1Kf+rY4uOuRfachc8bB/OcM1TZVPDSkDzD3DL2GnL8ZFP8Q9Hy3ZKtYJ2QAAAAAABA5COEQtiMVMm1wCHHNpvKXx6nCok5r3JXx+btGJIcm2wK1D8uTEqUUt/MlHuOQ+WujpVzpV2HPs5QsOaxEMmxyiH/NcFji5QfJ/WdTBnpUtnmsYrvGa3sVgGlvp5l0ZUCAAAAAICixsLkpUDjscuLu4RSYc0/WxV3CcWCRfoiG+MT2RifyMXYRDbGJ3IxNpGN8YlcjE1kY3zOLRYmBwAAAAAAQLEihAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgOUIoAAAAAAAAWM5RXCfOzs7W008/rT179sjv96tv37667LLLNGjQIBmGocsvv1xDhw6VzWbTzJkzNWPGDDkcDvXt21etW7dWVlaWBg4cqP379ys2NlZjxoxR2bJltW7dOo0aNUp2u10tW7ZUcnJycV0iAAAAAAAAjii2mVAff/yxEhIS9N577+n111/XiBEjNHr0aPXr10/vvfeeTNPUokWLlJKSoilTpmjGjBl688039eKLL8rv92v69OmqWbOm3nvvPXXs2FETJkyQJA0dOlRjx47V9OnT9eOPP2rDhg3FdYkAAAAAAAA4othCqFtuuUX/+Mc/cj+22+3asGGDmjRpIklq1aqVvvnmG61fv15XXXWVXC6X4uLilJiYqM2bN2vt2rW69tprc/uuXLlSXq9Xfr9fiYmJMgxDLVu21MqVK4vl+gAAAAAAAHBMsd2OFxsbK0nyer16/PHH1a9fP40ZM0aGYeRuT0tLk9frVVxcXJ79vF5vnvbj+3o8njx9d+3aVeD5PR63HA67VZeHEighIaa4SygWdrvtvL32koDxiWyMT+RibCIb4xO5GJvIxvhELsYmsjE+kaPYQihJ+uOPP/Too4+qW7duat++vf773//mbktPT1d8fLw8Ho/S09PztMfFxeVpP1nf+Pj4As/t9fosuiqUVIcOZRR3CcUiISHmvL32koDxiWyMT+RibCIb4xO5GJvIxvhELsYmsjE+51aFCnGFbiu22/H27dunBx54QAMHDtRdd90lSbriiiu0atUqSdLy5cuVlJSk+vXra+3atfL5fEpLS9O2bdtUs2ZNNWrUSMuWLcvte/XVV8vj8cjpdGrnzp0yTVMrVqxQUlJScV0iAAAAAAAAjii2mVCTJk1SamqqJkyYkLuo+ODBgzVy5Ei9+OKLql69utq2bSu73a4ePXqoW7duMk1T/fv3l9vtVteuXfXkk0+qa9eucjqdGjt2rCRp+PDhGjBggILBoFq2bKkGDRoU1yUCAAAAAADgCMM0TbO4iygOKSlpxV1CkWk8dnlxl1AqrPlnq+IuoVgwNTWyMT6RjfGJXIxNZGN8IhdjE9kYn8jF2EQ2xufcisjb8QAAAAAAAHD+IIQCAAAAAACA5QihAAAAAAAAYDlCKAAAAAAAAFiOEAoAAAAAAACWI4QCAAAAAACA5QihAAAAAAAAYDlCKAAAAAAAAFiOEAoAAAAAAACWI4QCAAAAAACA5QihAAAAAAAAYDlCKAAAAAAAAFiOEAoAAAAAAACWI4QCAAAAAACA5QihAAAAAAAAYDlCKAAAAAAAAFiOEAoAAAAAAACWI4QCAAAAAACA5QihAAAAAAAAYDlCKAAAAAAAAFiOEAoAAAAAAACWI4QCAAAAAACA5QihAAAAAAAAYDlCKAAAAAAAAFiOEAoAAAAAAACWI4QCAAAAAACA5QihAAAAAAAAYLmwQ6j//e9/+vXXXy0sBQAAAAAAAKVV2CHUxIkTdeutt+qee+7RtGnTdPDgQSvrAgAAAAAAQCkSdgg1ZcoU3XXXXfr11181YsQIXXvttXrkkUf05Zdfyu/3W1kjAAAAAAAASjhHuB0bN26sxo0b6z//+Y+WLl2qefPmaenSpVq8eLHi4+N1yy236Pbbb1dSUpKV9QIAAAAAAKAECjuEOsrpdKpNmzZq06aNvF6vFi5cqKVLl+qzzz7TBx98oEsuuUQdO3bUHXfcoUqVKllRMwAAAAAAAEqYs3o6ns1mk9PplN1ul2EYMk1Thw4d0iuvvKKbb75Z//73v5WZmVlUtQIAAAAAAKCEOu2ZUNnZ2Vq2bJk++eQTLV26VD6fT06nU61bt1anTp107bXX6rffftOECRM0a9YsZWRkaOzYsVbUDgAAAAAAgBIi7BBq5cqV+uSTT7RgwQKlpaXJNE01bNhQnTp1Urt27RQXF5fbt3r16nrhhRe0Zs0aLV682JLCAQAAAAAAUHKEHULdf//9kqRKlSqpe/fu6tixoxITE0+6T1xcnMqVK3d2FQIAAAAAAKDECzuEuvPOO9WxY0c1btw47IPPmTNHTqfzjAoDAAAAAABA6RF2CDVq1Kh8bRkZGYqJiSl0HwIoAAAAAAAASKf5dDzTNDV9+nR17txZ9erVU1JSkiRp6tSpeuqpp7Rv3z5LigQAAAAAAEDJFvZMqEAgoEceeURfffWVHA6HYmNjdfjwYUnS7t27NWfOHK1du1YzZsxQ2bJlLSsYAAAAAAAAJU/YM6HeeustLV++XL169dLq1at177335m4bMGCAHnvsMe3cuVOvvvqqJYUCAAAAAACg5Ao7hJo7d64aNWqkJ598UtHR0TIMI3ebw+HQo48+qmbNmmnp0qVW1AkAAAAAAIASLOwQateuXblrQBWmbt26+vPPP8+6KAAAAAAAAJQuYYdQ8fHx2rNnz0n77Ny5U3FxcWddFAAAAAAAAEqXsEOoa665RgsWLNCmTZsK3L5u3TotXrxYzZo1K7LiAAAAAAAAUDqE/XS8xx9/XEuXLlXXrl1111136bfffpMkzZkzRz/99JNmzZoll8ulvn37WlYsAAAAAAAASqawQ6jExERNnjxZgwYN0tSpU3Pbn376aZmmqcqVK2vMmDGqUaOGJYUCAAAAAACg5Ao7hJKkK6+8UvPmzdOPP/6on3/+WWlpaYqJiVGtWrXUuHFj2Wxh390HAAAAAACA80jYIdQXX3yh1q1by+VyqUGDBmrQoIGVdQEAAAAAAKAUCTuE+sc//qG4uDjdfPPNat++PQuQAwAAAAAAIGxh3z/3xBNPqFKlSpo9e7buv/9+tWrVSs8//3yhT8sDAAAAAAAAjgo7hHrooYc0d+5cffbZZ3r00UcVFxent956S3fccYduu+02vfbaa9qzZ4+VtQIAAAAAAKCEOu2VxKtVq6bk5GR9+umnmjt3rh588EEFAgG99NJLuummm3TvvfdaUScAAAAAAABKsNN6Ot6JateurYsvvlg1atTQ22+/rc2bN+v7778vqtoAAAAAAABQSpxRCJWWlqYFCxZo/vz5+vbbbxUMBlWmTBl16dJFHTp0KOoaAQAAAAAAUMKFHUKlp6dr0aJFmj9/vr7++msFAgG5XC7deOONuv3223XdddfJ4TiriVUAAAAAAAAopcJOja655hplZ2fLMAwlJSXp9ttv1y233CKPx2NlfQAAAAAAACgFwg6hqlatqg4dOqh9+/aqWLGilTUBAAAAAACglAn76XixsbFKT08ngAIAAAAAAMBpCzuE2rhxozIyMqysBQAAAAAAAKVU2CFU5cqVtWvXLitrAQAAAAAAQCkV9ppQY8aMUd++ffWPf/xDbdu2VaVKleR2uwvsW7t27SIrEAAAAAAAACVf2CFU586dZRiGvvjiC3355Zcn7btp06azLgwAAAAAAAClR9ghVMeOHWUYhpW1AAAAAAAAoJQKO4R67rnnrKwDAAAAAAAApVjYC5MDAAAAAAAAZyrsmVDJyclh9TMMQ+PGjTvjggAAAAAAAFD6hB1CLVy48KTbDcNQVFSUnE7nWRcFAAAAAACA0iXsEGrRokUFtmdlZem3337Tm2++qaysLE2ePLnIigMAAAAAAEDpEHYIValSpUK31ahRQy1atFD79u01duxYDR06tEiKAwAAAAAAQOlQZAuTu91u3XjjjVqwYEFRHRIAAAAAAAClRJE+He/gwYPyer1FeUgAAAAAAACUAmHfjldYuGSapjIyMrRkyRJ98sknqlevXpEVBwAAAAAAgNIh7BAqKSlJhmGctI/NZtNjjz121kUBAAAAAACgdAk7hGrcuHGB7YZhyOl0qnr16rrzzjtVu3btIisOAAAAAAAApUPYIdSUKVOsrAMAAAAAAAClWJEuTA4AAAAAAAAU5JQh1IEDBzRnzhz9+eefedqXLVumHj16qFWrVrrrrrv03nvvWVYkAAAAAAAASraThlBz587VDTfcoKefflobNmzIbZ8/f7769u2rNWvWyOv1avv27RoxYoSeeOIJywsGAAAAAABAyVNoCLVlyxYNHjxYDodDDz30kOrUqSNJysjI0IgRI2Sapu6++26tWrVKq1ev1gMPPKDPPvtM8+fPP2fFAwAAAAAAoGQoNISaPHmyDMPQ+++/r/79++uSSy6RJC1cuFAHDx5UQkKCBg8eLKfTKYfDoQEDBigxMVGzZ88+Z8UDAAAAAACgZCg0hFq9erVat26tGjVq5Glfvny5DMNQ69at5Xa7c9sNw1Dz5s21adMm66oFAAAAAABAiVRoCJWSkqKqVavma1+9erUkqUWLFvm2xcfHKy0trQjLAwAAAAAAQGlQaAjlcrmUlZWVp23Hjh3au3evJKlZs2b59tm7d6/KlClTxCUCAAAAAACgpCs0hKpRo4Z+/vnnPG1ffvmlJOnKK69UuXLl8mzz+/366quv8t2+BwAAAAAAABQaQrVr104//vij3n33XQWDQW3dulXvvvuuDMPQHXfcka//mDFjtH//frVp08bSggEAAAAAAFDyOArb0K1bN33yyScaPXq0nn/+eQWDQZmmqQYNGuiee+7J7ffaa6/p888/18aNG1WjRo082wAAAAAAAADpJCGUw+HQ5MmT9cYbb2jp0qUKBAJq3ry5kpOTZbfbc/vNmDFDv//+u5o2baqxY8fK6XSek8IBAAAAAABQchQaQklSdHS0HnvsMT322GOF9hk1apQuvPBC1oICAAAAAABAoU4aQoXjmmuuKYo6AAAAAAAAUIoVujA5AAAAAAAAUFQIoQAAAAAAAGA5QigAAAAAAABYjhAKAAAAAAAAliOEAgAAAAAAgOUIoQAAAAAAAGA5R2EbevbseUYHNAxDkydPPuOCAAAAAAAAUPoUGkKtXr365Ds6HIqLi1NmZqaysrIkSW63W263+7QK+PHHH/XCCy9oypQp2rBhg/r06aNLL71UktS1a1e1a9dOM2fO1IwZM+RwONS3b1+1bt1aWVlZGjhwoPbv36/Y2FiNGTNGZcuW1bp16zRq1CjZ7Xa1bNlSycnJp1UPAAAAAAAAil6hIdSaNWvyfPz777+rd+/eql69ugYMGKC6devKZsu5m2/r1q0aO3asNm3apHfeeSfsk7/++uv6+OOPFR0dLUnauHGj7r//fj3wwAO5fVJSUjRlyhTNnj1bPp9P3bp1U4sWLTR9+nTVrFlTjz32mD799FNNmDBBQ4YM0dChQzVu3DhVqVJFDz30kDZs2KArr7zydD4nAAAAAAAAKGKFrgkVFxeX5zV+/Hh5PB699tprql+/fm4AJUmXX365xo0bp/j4eI0cOTLskycmJmrcuHG5H//8889aunSp7r33Xj399NPyer1av369rrrqKrlcLsXFxSkxMVGbN2/W2rVrde2110qSWrVqpZUrV8rr9crv9ysxMVGGYahly5ZauXLlmXxeAAAAAAAAUIQKnQl1oq+//lp33XWXoqKiCtzudDrVvHlzzZw5M+yTt23bVrt37879uH79+urcubPq1q2riRMn6pVXXlHt2rUVFxeX2yc2NlZer1derze3PTY2VmlpafJ6vfJ4PHn67tq1q8BzezxuORz2sGtF6ZeQEFPcJRQLu9123l57ScD4RDbGJ3IxNpGN8YlcjE1kY3wiF2MT2RifyBF2CBUdHa0//vjjpH1++eWXPIHR6WrTpo3i4+Nz/z5ixAglJSUpPT09t096erri4uLk8Xhy29PT0xUfH5+n7fj2gni9vjOuE6XToUMZxV1CsUhIiDlvr70kYHwiG+MTuRibyMb4RC7GJrIxPpGLsYlsjM+5VaFC4blQobfjneiaa67RokWL9NFHHxW4/Z133tE333yjG2+88fQrPKJ3795av369JGnlypW68sorVb9+fa1du1Y+n09paWnatm2batasqUaNGmnZsmWSpOXLl+vqq6+Wx+OR0+nUzp07ZZqmVqxYoaSkpDOuBwAAAAAAAEUj7JlQ/fv317fffqtBgwbpjTfeUN26dXNvjfvhhx+0c+dOVa1aVf/4xz/OuJhhw4ZpxIgRcjqdKl++vEaMGCGPx6MePXqoW7duMk1T/fv3l9vtVteuXfXkk0+qa9eucjqdGjt2rCRp+PDhGjBggILBoFq2bKkGDRqccT0AAAAAAAAoGoZpmma4nf/66y+9+OKLWrBggTIyjk1li4uL09/+9jf179+/0NvfIk1KSlpxl1BkGo9dXtwllApr/tmquEsoFkxNjWyMT2RjfCIXYxPZGJ/IxdhENsYncjE2kY3xObdOdjte2DOhJKlixYoaM2aMRo4cqZ07dyo1NVXx8fGqWrWqHI7TOhQAAAAAAADOI2eUHDmdTtWoUaOoawEAAAAAAEApVWgI1alTJ3Xp0kX33HNP7sfhMAxDH374YdFUBwAAAAAAgFKh0BBq06ZNSklJyfNxOAzDOPuqAAAAAAAAUKoUGkJt3rz5pB8DAAAAAAAA4bIVdwEAAAAAAAAo/cJemHzfvn36/vvvlZKSIq/Xq5iYGFWpUkX169dX2bJlrawRAAAAAAAAJdwpQ6jvv/9eL730kr777rsCt9tsNrVo0UKPP/646tatW+QFAgAAAAAAoOQ7aQj1wQcfaPjw4QoEArrkkkvUqFEjVaxYUS6XS+np6dqzZ4/WrVun5cuX65tvvtHw4cN15513nqvaAQAAAAAAUEIUGkKtX79ew4YNk8fj0bBhw3TrrbcW2C8YDOrzzz/XyJEjNXToUF155ZWqXbu2ZQUDAAAAAACg5Cl0YfIpU6bIMAy9+eabhQZQkmS323Xbbbfp7bfflmmamjp1qiWFAgAAAAAAoOQqNIT6/vvv1aJFi7DXeapdu7aaNWumNWvWFFlxAAAAAAAAKB0KDaH279+v6tWrn9bBatasqb/++uusiwIAAAAAAEDpUmgI5fP5FBsbe1oHi4mJkc/nO+uiAAAAAAAAULoUGkKZpnnaBzMM46yKAQAAAAAAQOlUaAgFAAAAAAAAFBXHyTauXr1a48ePD/tgq1atOuuCAAAAAAAAUPqcMoRavXr1aR2QW/IAAAAAAABwokJDqNGjR5/LOgAAAAAAAFCKFRpCderU6VzWAQAAAAAAgFKMhckBAAAAAABgOUIoAAAAAAAAWI4QCgAAAAAAAJYjhAIAAAAAAIDlCKEAAAAAAABgubBDqP79+2vatGlW1gIAAAAAAIBSyhFuxyVLluiCCy6wshYAAAAAAACUUmHPhCpbtqy8Xq+VtQAAAAAAAKCUCjuEGjZsmBYtWqTnn39eP/74o/bt2yev11vgCwAAAAAAADhe2LfjDRs2TKZp6u2339bbb79daD/DMLRx48YiKQ4AAAAAAAClQ9ghVKVKlVSpUiUrawEAAAAAAEApFXYINWXKFCvrAAAAAAAAQCkW9ppQJ9q7d6+2bt0qSQoEAkVWEAAAAAAAAEqf0wqhsrKy9MILL6h58+a67rrr1KFDB0nSW2+9pZ49e2r79u2WFAkAAAAAAICSLewQKj09Xd26ddMbb7wht9utKlWqyDRNSTnh1OrVq3Xvvfdq9+7dlhULAAAAAACAkinsEGrixInauHGjhgwZosWLF6t9+/a52x5//HE999xzOnz4sCZMmGBJoQAAAAAAACi5wg6hPvvsM1177bXq3r27DMOQYRh5tnfs2FHXX3+9Vq1aVeRFAgAAAAAAoGQLO4Tau3ev6tSpc9I+1apVU0pKylkXBQAAAAAAgNIl7BCqbNmy2rZt20n7bN26VWXLlj3rogAAAAAAAFC6hB1CtW7dWkuWLNGyZcsK3P7FF19o+fLlatWqVZEVBwAAAAAAgNLBEW7H5ORkLVmyRH379lWrVq106NAhSdK4ceP0888/a/ny5SpXrpweffRRq2oFAAAAAABACRV2CFW+fHnNmDFDQ4cO1bJly2SapiTplVdekSQ1btxYzzzzjCpWrGhNpQAAAAAAACixwg6hJOniiy/Wa6+9ppSUFG3cuFGpqamKiYlRrVq1VLlyZatqBAAAAAAAQAl3WiHUURUqVFCzZs2UlpamhIQEORxndBgAAAAAAACcJ04rPcrKytIbb7yhefPmaefOnbntV1xxhe6880516dJFNlvYa50DAAAAAADgPBF2CHX48GF1795dv/zyi6Kjo1WnTh1VqFBBqamp2rx5s0aMGKEFCxbotddek9PptLJmAAAAAAAAlDBhh1Avv/yytm7dqu7du6tfv37yeDy527KysvTCCy9o6tSpeu2113hCHgAAAAAAAPII+965hQsXqnHjxhoyZEieAEqSoqKiNGTIEDVs2FBz584t6hoBAAAAAABQwoUdQh0+fFgNGjQ4aZ+GDRsqJSXlrIsCAAAAAABA6RJ2CFWvXj198803Mk2z0D7r1q1TnTp1iqQwAAAAAAAAlB5hh1BDhgzRnj179Nhjj+V5Mp4keb1ePfPMM/rll180fPjwIi8SAAAAAAAAJVvYC5M/88wzio+P16JFi7R48WJVqFBBFStWVFZWln799VdlZ2fL4XCoe/fuefYzDEOrVq0q8sIBAAAAAABQcoQdQv3xxx+SpIsvvji3bd++fZKk8uXLF3FZAAAAAAAAKE3CDqEWL15sZR0AAAAAAAAoxcJeEwoAAAAAAAA4U2HPhDrq448/1qxZs7RlyxZlZmYqISFBl19+uTp27Kj27dtbUSMAAAAAAABKuLBDKNM0NWDAAM2fP1+maSo+Pl6JiYk6fPiwvv76a33zzTdatmyZXnjhBSvrBQAAAAAAQAkUdgg1ffp0ffrpp2rWrJmGDBmiyy67LHfbb7/9pmeeeUaffvqprrnmGt15552WFAsAAAAAAICSKew1oWbNmqXExERNmjQpTwAlSVWrVtX48eNVuXJlvf/++0VeJAAAAAAAAEq2sEOobdu26dprr1VUVFSB26Ojo9WqVSv98ssvRVYcAAAAAAAASoewQyiHw6GMjIyT9snIyJDNxgP3AAAAAAAAkFfYiVH9+vW1aNEi7dmzp8Dtu3fv1sKFC1WvXr0iKw4AAAAAAAClQ9gh1N///nelpqaqZ8+emjNnjnbt2qWDBw9qy5YtmjZtmrp16yav16vevXtbWS8AAAAAAABKoLCfjteiRQsNHjxYY8aM0dNPP51nm2macjgcevrpp9WyZcsiLxIAAAAAAAAlW9ghlCT16NFD119/vT7++GNt2bJFXq9XsbGxql27tm6//XZVqVLFqjoBAAAAAABQgp1WCCVJVapU0aOPPmpFLQAAAAAAACilCg2hNm/efMYHrV279hnvCwAAAAAAgNKn0BCqY8eOMgzjjA66adOmMy4IAAAAAAAApY8lIRQAAAAAAABwvEJDqOeee+5c1gEAAAAAAIBSzHYmO6Wnp+uHH37Q0qVLJUmHDx8uypoAAAAAAABQypxWCLVv3z71799fTZs2Vbdu3fTII49Ikt577z21adNG3333nSVFAgAAAAAAoGQLO4Q6cOCA7rnnHn322WeqX7++rrjiCpmmKUmKjo7W77//rgcffFBbtmyxrFgAAAAAAACUTGGHUC+//LL++OMPTZw4Ue+9955at26du61Xr1566623FAgENHHiREsKBQAAAAAAQMkVdgi1ePFitWnTJk/4dLymTZvq5ptv1rp164qqNgAAAAAAAJQSYYdQBw8eVJUqVU7ap2LFijpw4MBZFwUAAAAAAIDSJewQ6qKLLtLGjRtP2mf9+vW66KKLzrooAAAAAAAAlC5hh1Bt27bVypUrNWPGjAK3v/3221q7dq1uuummIisOAAAAAAAApYMj3I59+vTRsmXLNHz4cE2bNk2hUEiSNGjQIG3YsEG//PKLEhMT1adPH8uKBQAAAAAAQMkU9kwoj8ej6dOnq0uXLtqzZ4+2bdsm0zQ1d+5c/fbbb+rQoYOmT5+u+Ph4K+sFAAAAAABACRT2TCgpJ4gaOnSohgwZoh07dig1NVUxMTGqXr26XC6XVTUCAAAAAACghAs7hBoxYoRuv/12NWjQQHa7XZdddpmVdQEAAAAAAKAUCft2vGnTpqlLly5q06aNXn75Ze3YscPKugAAAAAAAFCKhB1Cvf/+++revbt8Pp8mTJigdu3a6c4779TkyZOVkpJiZY0AAAAAAAAo4cIOoRo0aKDBgwdr2bJlevfdd3X33Xfrjz/+0OjRo3X99derd+/emjt3rtLT062sFwAAAAAAACVQ2CHUUYZhqEmTJho+fLi++uorvfnmm7rjjju0ZcsWPfXUU2rZsqUVdQIAAAAAAKAEO+0Q6njBYFA+n0+maUqSTNOU3W4vksIAAAAAAABQeoT9dLyjAoGAvv76a3322WdatGiRvF6v7Ha7WrZsqdtvv1033XSTFXUCAAAAAACgBAs7hPrmm280f/58LViwQKmpqTJNUw0bNlT79u112223KSEhwcIyAQAAAAAAUJKFHUI98MADkqSqVauqR48e6tChg6pUqWJZYQAAAAAAACg9wg6hunfvrttvv13169e3sh4AAAAAAACUQmGHUEOGDMnz8d69e3X48GFdfvnlCgQCcjhOe3kpAAAAAAAAnCdO6+l4WVlZeuGFF9S8eXNdd9116tChgyTprbfeUs+ePbV9+3ZLigQAAAAAAEDJFnYIlZ6erm7duumNN96Q2+1WlSpVZJqmpJxwavXq1br33nu1e/duy4oFAAAAAABAyRR2CDVx4kRt3LhRQ4YM0eLFi9W+ffvcbY8//riee+45HT58WBMmTLCkUAAAAAAAAJRcYYdQn332ma699lp1795dhmHIMIw82zt27Kjrr79eq1atKvIiAQAAAAAAULKFHULt3btXderUOWmfatWqKSUl5ayLAgAAAAAAQOkSdghVtmxZbdu27aR9tm7dqrJly551UQAAAAAAAChdwg6hWrdurSVLlmjZsmUFbv/iiy+0fPlytWrV6rQK+PHHH9WjRw9J0m+//aauXbuqW7duGjp0qEKhkCRp5syZuuOOO3T33XdryZIlknIWQ3/sscfUrVs3Pfjggzpw4IAkad26dercubO6dOmi8ePHn1YtAAAAAAAAsEbYIVRycrIqVKigvn37qk+fPlqxYoUkady4cXr44YfVr18/lStXTo8++mjYJ3/99dc1ZMgQ+Xw+SdLo0aPVr18/vffeezJNU4sWLVJKSoqmTJmiGTNm6M0339SLL74ov9+v6dOnq2bNmnrvvffUsWPH3AXRhw4dqrFjx2r69On68ccftWHDhtP5fAAAAAAAAMACYYdQ5cuX14wZM9SyZUstW7ZM69atk2maeuWVV7Rs2TIlJSVp6tSpqlixYtgnT0xM1Lhx43I/3rBhg5o0aSJJatWqlb755hutX79eV111lVwul+Li4pSYmKjNmzdr7dq1uvbaa3P7rly5Ul6vV36/X4mJiTIMQy1bttTKlSvDrgcAAAAAAADWcJxO54svvlivvfaaUlJStHHjRqWmpiomJka1atVS5cqVT/vkbdu21e7du3M/Nk0z96l7sbGxSktLk9frVVxcXG6f2NhYeb3ePO3H9/V4PHn67tq1q8BzezxuORz2064ZpVdCQkxxl1As7HbbeXvtJQHjE9kYn8jF2EQ2xidyMTaRjfGJXIxNZGN8IsdphVBHVahQQdddd11R1yKb7djErPT0dMXHx8vj8Sg9PT1Pe1xcXJ72k/WNj48v8Fxer6/I60fJduhQRnGXUCwSEmLO22svCRifyMb4RC7GJrIxPpGLsYlsjE/kYmwiG+NzblWoEFfotrBCKK/Xq+XLl+v777/X3r17lZ6erpiYGFWuXFmNGjXSddddJ5fLddaFXnHFFVq1apWaNm2q5cuXq1mzZqpfv77+7//+Tz6fT36/X9u2bVPNmjXVqFEjLVu2TPXr19fy5ct19dVXy+PxyOl0aufOnapSpYpWrFih5OTks64LAAAAAAAAZ+eUIdRrr72mN954Q2lpaTJNM9/2d955R/Hx8erbt6969ep1VsU8+eST+ve//60XX3xR1atXV9u2bWW329WjRw9169ZNpmmqf//+crvd6tq1q5588kl17dpVTqdTY8eOlSQNHz5cAwYMUDAYVMuWLdWgQYOzqgkAAAAAAABnzzALSpaOeOqppzR37ly53W61bdtWSUlJuvDCC+VyuZSenq49e/bou+++09KlSxUIBNSpUyc9++yz57L+M5aSklbcJRSZxmOXF3cJpcKaf7Yq7hKKBVNTIxvjE9kYn8jF2EQ2xidyMTaRjfGJXIxNZGN8zq0zuh3vs88+05w5c1S3bl3973//U6VKlQrsd9999+n333/XE088oTlz5uimm27SDTfccPZVAwAAAAAAoNSwFbZh9uzZKlOmjF599dVCA6ijLrnkEk2cOFGxsbH68MMPi7xIAAAAAAAAlGyFhlCbN29Wy5YtVa5cubAOdMEFF+jaa6/VTz/9VGTFAQAAAAAAoHQoNIQ6fPiwLrrootM6WKVKlXTgwIGzLgoAAAAAAAClS6EhVHZ2tqKjo0/rYFFRUQoEAmddFAAAAAAAAEqXQkMoAAAAAAAAoKgQQgEAAAAAAMByjpNtnDNnjlavXh32wfbs2XPWBQEAAAAAAKD0OWkItWfPntMOlgzDOKuCAAAAAAAAUPoUGkItWrToXNYBAAAAAACAUqzQEKpSpUrnsg4AAAAAAACUYixMDgAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALFdoCPXxxx9r27Zt57IWAAAAAAAAlFKFhlAjR47URx99lPtxz549NXfu3HNREwAAAAAAAEqZQkMon8+nlJSU3I9Xr16t3bt3n5OiAAAAAAAAULo4CttQq1YtffTRR9q1a5cSEhIkSfPnz9fmzZtPekDDMDRu3LgiLRIAAAAAAAAlW6Eh1ODBg5WcnKzvvvtOUk64tH37dm3fvv2kBzQMo2grBAAAAAAAQIlXaAjVoEEDLV++XPv27ZPP59NNN92k++67Tz179jyX9QEAAAAAAKAUKDSEknJmNVWoUEGS1KlTJzVp0kSVKlU6J4UBAAAAAACg9DhpCHW80aNHa9euXVq5cqUOHjyoCy64QJUqVVJiYqKV9QEAAAAAAKAUCCuEmj59uqZPn66tW7fm23bZZZepS5cuuvfee4u8OAAAAAAAAJQOJw2h0tPT1adPH3333XcyTVOVKlVS9erVVaZMGWVmZuqXX37R1q1bNXLkSH3++ed65ZVXFB8ff65qBwAAAAAAQAlx0hBq4MCBWrNmjZo3b64BAwboiiuuyNdn27ZteuGFF7RkyRL961//0qRJkywrFgAAAAAAACWTrbANy5cv1+LFi3X77bfrrbfeKjCAkqQaNWpo4sSJuvPOO7Vs2TItW7bMsmIBAAAAAABQMhUaQr3//vsqU6aMhg0bFtaB/v3vf6ts2bL64IMPiqo2AAAAAAAAlBKFhlCbN2/Wddddp5iYmLAOFBUVpVatWmnjxo1FVhwAAAAAAABKh0JDqL179+riiy8+rYNdeOGF2r9//1kXBQAAAAAAgNKl0BCqTJky2rt372kdLCUlRRUqVDjrogAAAAAAAFC6FBpCXXnllVq+fLl8Pl9YB8rKytKyZctUq1atIisOAAAAAAAApUOhIVSHDh20f/9+/fe//w3rQKNGjdKBAwfUpUuXIisOAAAAAAAApUOhIVS7du3UpEkTTZs2TQMHDtSuXbsK7Ldz504lJydr1qxZat26ta699lrLigUAAAAAAEDJ5DjZxvHjx+uhhx7SvHnz9Omnn6pq1aqqVq2aPB6PsrKy9Ouvv+qXX35RKBRSkyZNNHbs2HNVNwAAAAAAAEqQk4ZQ8fHxmjZtmqZMmaJ3331XO3bs0I4dO/L0ueyyy9S9e3duwwMAAAAAAEChThpCSZLdblevXr3Uq1cv7dy5Uzt27FBaWpri4+OVmJioSy+99ByUCQAAAAAAgJLslCHU8RITE5WYmGhVLQAAAAAAACilCl2YHAAAAAAAACgqhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByYYdQN954o959991TtgEAAAAAAAAnchS2oWnTpqpfv74aNGigevXqac+ePUpNTc3Tp6A2AAAAAAAA4ESFhlB33HGHfvrpJ7355pvKzMyUYRiaOnWqNm7cmBtMAQAAAAAAAOEoNIR68sknJUmhUEhbt25Vhw4ddMkll+jAgQOaOHGisrKyZBiGZsyYoS1btqh27dqqU6eO6tSpo4svvvicXQAAAAAAAAAiX6Eh1FE2m021atWSJN1www1KTk5WMBjUli1bdMcdd6hs2bJKSUnRihUrcmdMbdq0yfLCAQAAAAAAUHIUGkLNmjVL9evX1+WXXy7DMPJss9vtuuKKKyRJN998s5KTk2Wapnbu3KnNmzdbWzEAAAAAAABKnEJDqH//+9+SpOjoaF155ZWSpB07dujXX3/VpZdemq+/YRiqWrWqqlatak2lAAAAAAAAKLEKDaFWr16t9evXa/369frpp58kSZ9++qnmz58vj8eTJ5jatm2bqlevnm/GFAAAAAAAACCdJISKi4tTixYt1KJFC0lS7dq11aNHDzVv3lw///xzbjA1f/58zZ8/X263W5dffrnq1KmjZ5555txUDwAAAAAAgBLhlAuTH69MmTJq3bq1WrduLSknmLr33nvVokULbdq0SZs3b9a3335rSaEAAAAAAAAoucIOoRo3bqzKlSvna6tbt26eYAoAAAAAAAA4Udgh1JQpU8JqAwAAAAAAAE5kK+4CAAAAAAAAUPoRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByjuIuoCAdO3ZUXFycJKly5crq06ePBg0aJMMwdPnll2vo0KGy2WyaOXOmZsyYIYfDob59+6p169bKysrSwIEDtX//fsXGxmrMmDEqW7ZsMV8RAAAAAADA+S3iZkL5fD5J0pQpUzRlyhSNHj1ao0ePVr9+/fTee+/JNE0tWrRIKSkpmjJlimbMmKE333xTL774ovx+v6ZPn66aNWvqvffeU8eOHTVhwoRiviKg+Bhp0gUtYxT1plOS5FxqV4UL4/K87D2M3P6ONTYl3BSj8lU8uqB5jNxz8+bUCbfF5N9/myEAAAAAAE4l4mZCbd68WZmZmXrggQcUCAT0xBNPaMOGDWrSpIkkqVWrVvr6669ls9l01VVXyeVyyeVyKTExUZs3b9batWv197//PbcvIRTOWyEprk+0HP/PrkC9LEmSa5FDmff55R3hy+2WUD5G8krGPkNlusUo4zG/Dt+TLccmm8r0ilagVoaCdUIyDkmOH2za/4NXoXLmsfNEnePrAgAAAACUSBEXQkVFRal3797q3Lmzfv31Vz344IMyTVOGkTPbIjY2VmlpafJ6vbm37B1t93q9edqP9i2Ix+OWw2G3/oJQYiQkxBR3CUXKNsiQbZMh0zDlaR4leSTHUpuCz4WUcNGxa7XbbUpwxMiYbcioLLn/45BbDqmWpKpS/PZomdeYMr40ZNaX4q+MLr6LOg/Z7bZS994sTRifyMXYRDbGJ3IxNpGN8YlcjE1kY3wiR8SFUNWqVVPVqlVlGIaqVaumhIQEbdiwIXd7enq64uPj5fF4lJ6enqc9Li4uT/vRvgXxen0FtuP8dehQRnGXUGTcHzgUO9ut9N4+RU116VAgQ7b1hspt8SgwLSRnP7uCl4SUPsInT6soHTqUIXfQIc/uKKWuy1ToUlOujx2K2xOlww0zFDpkKm5elOyGTWouGfsN+dtnK32QPwK/i5QuCQkxpeq9WdowPpGLsYlsjE/kYmwiG+MTuRibyMb4nFsVKsQVui3i1oSaNWuWnnvuOUnSX3/9Ja/XqxYtWmjVqlWSpOXLlyspKUn169fX2rVr5fP5lJaWpm3btqlmzZpq1KiRli1bltv36quvLrZrAYqD43ubPP9x6/C7mbLtsSlQNygp51a8kMeU//qADk/LVKiqqfh7o6Uj34t9twcUrBVU2aaxKl/Vo7gnonR4ToZClUzJlJxL7AqVN5X2fJbSR2YpaqpT0W84i/FKAQAAAAAlScTNYbjrrrv01FNPqWvXrjIMQ88++6wuuOAC/fvf/9aLL76o6tWrq23btrLb7erRo4e6desm0zTVv39/ud1ude3aVU8++aS6du0qp9OpsWPHFvclAeeM7U9D8b2ilfaCT8E6ITl/ssnXJieEym4c1KFPMhS8IiRJShuTpfJ1PDK/NaVGkvsjh2QaOvRRpiQpPjlKri8dCtTzS37J+1+f/DcFJKcUrCtl/j1b7k8dyuyTXWzXCwAAAAAoOSIuhHK5XAUGR1OnTs3Xdvfdd+vuu+/O0xYdHa2XX37ZsvqAiOWX4ntGK6t7tvy3BSRTsm+wK9DfL0kK1g3l7R+tnAXG9xmy7TEUNyBKB5ekK3hZzqLjGX38in7bqYx/+iW35L81kGf3YOWQjAMR9y0EAAAAABCh+A0SKCUc39vlXJfzin3Bndue0CVG6QN9MlINpR/3VDwjLWfmVLBKSM7ldoUqmrkBVM4BJR1Zuz/qHadCVULy3xg8tnmrTaFLjusPAAAAAMBJEEIBpUSwTlAHFh1brN+9yKHo1506NCNTNq+hhA4xyuztV+jSnODIPdMps4wps7GkdZLyTnSSa7Fd2VflzJ5yLbXLjLUfC6GyJPcspzIe81t/YQAAAACAUiHiFiYHcGbMMlKwXij3ZaRJ2fVz/p7dLKhA7aA8g6Nk7DXk+sQhzwi3vMN8kkPKbhWU7ZCh6JddMg5LUe865VrmUEa/nJlTWXcE5J7rkGuRXbbdhuIfipIZbyqrB+tBAQAAAADCw0wooJRy/GxXdsMjM5cMKfWdTHn6RalcUqyCl4aU9lKWfJ0CipZLoUqmDr+TKc9Qt2L/61KgZkiH38tUqFrOrCn/7QGl/+pX3GNRUrYhf5uADs3JlNwnKQAAAAAAgOMQQgEWajx2efGdvMmRP49f5/+6Iy9J2n7CNkm6/bi/f3vkdbzex/198tkWeHrW/LPVuT0hAAAAAKBIcTseAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwnKO4CwCA84XhlWKHuuWe75AMKatbttIH+SWHZPvLkGegW65lDoXKmMrqkq2MQX5JUnyvKLnnO/Mdz39tQIdnZ6pc7VjZDuT/P4X0J33K+Kff8usCAAAAgHAQQgHAOeIZECX7LzYd+iRDyjRUple0QvFS5uN+xT8QrWClkA4sS5eRbSi+Z7RCF5tSfyn1tSwplJV7HOcPdpW5K1q+OwKSpP3r0vOcJ/p1l2LHuuS7NXBOrw8AAAAAToYQCgDOAeOA5J7r0KF5GQrWMCWZynzYL/cMp/x/y5ZzjV2Hp2TILCtJprJbBeRYf2R2k+u44xyS4vpGKfO+bGXdm53TGHVsu2ONTbFjXEqdmKXgFaFzc3EAAAAAEAbWhAKAc8CMlg7PzFTg6mPBkHHIkBySeSRkcq7M+X8B+2abXJ865L8pmO84saPcMsuYSn/Gl/8kASluQJSyumbL355ZUAAAAAAiCzOhAOBciJayWx0LlWx/GYp+26nMh7IVqmwqo49fZe6PlhljysgwlPq/TPlvCyjmuGlQ9g02RU1x6vD7mQV+946a7JTtd5vSB2WeiysCAAAAgNPCTCgAOMdsvxsqc2e0gpVMZTzsl/0nm1xf2ZX6WqYOfpYhf+uAomblX4g85v9cym4VVPZ1+WdIyS/FjHcpI9kvs5x5Dq4CAAAAAE4PIRQAnEP2LTYl3BYjM1Y6PDNDipLi+0Yps3e2fB0DCtYJyTvUJ9dXDhl7jdz9bLsMuec5lPlQwU+7c891yLbfUFYPnoYHAAAAIDIRQgHAOeL43qaE22MUrBnSodkZMi+QbDsNOf6fXf7rj1vD6egkKPuxpqj3nQpVMeW/oYBZUJKiZjjl6xg4srA5AAAAAEQeQigAOAdsvxsq0zVG2S0COjw1U/Kc0CH72F9di+0KJoby3FbnnuNQVufsAr9r2/4y5Pzarqx7svNvBAAAAIAIQQgFAOeAZ5BbobKm0l7KkoKSsnJeoURTgSuD8oxwy0gx5PzWrpiXXEofdOzpd7ZfDTm2njBb6jiuRfachc8bFzxLCgAAAAAiAU/HAwCLGamSa4FDRtBQ+cvjcttDFULavyFdh9/OVNzAKJVrHKtQOVPpA/3y3XUscHKusisUZyrQKFTg8R2rHPJfE9RxD9IDAAAAgIhDCAXgvNV47PJzd7IBhbSPPfJnsyMvSTp0XPtRj0j6XyHHSDzyOnGfc2TNP1sVz4kBAAAAlCjcjgcAAAAAAADLEUIBAAAAAADAcoRQAAAAAAAAsBwhFAAAAAAAACxHCAUAAAAAAADLEUIBAAAAAADAcoRQAAAAAAAAsBwhFAAAAAAAACxHCAUAAAAAAADLEUIBAAAAAADAcoRQAAAAAAAAsBwhFAAAAAAAACznKO4CAACIJO6ZDjm/dsj7vyxFv+6UZ3BUvj6my9S+X72SpJhnXYr9P3ee7WkvZCmrZ7bK1Y6V7UD+/+9Jf9KnjH/6rbkAAAAAIEIRQgEAcET0607FDnXL+4xPkpR5f7Yye2TnbrcdNpTQLkbZTYO5/4K6FjmUOilTvnaBYwdy5fyxf136Ccd3KXasS75bAwIAAADON4RQAIDznuMnmzyDomTfaJMRMBSoGzqyQXn+pfT0jlKogqm0sVk5DX9Kjs02+W8MSPknTOVpc6yxKXaMS6kTsxS8ImTVpQAAAAARizWhAADnvdj/uBWoHVTa65kyDVPBusF8fdxzHXJ9ZVfqa5lSdE6b8aWhUDlTccnRKpsUq7iHomTsM/KfICDFDYhSVtds+dszCwoAAADnJ0IoAMB57/D7mfKO9cm211CwminTc0IHnxQ7zK2Mvn6FEs3cZtvnkukxlfmwX6lvZsq+w6a4J9w6UdRkp2y/25Q+iHWgzpZ7pkOefxybYuZcaleFC+PyvOL6HNvuWGdTwm0xKlfNo4RbY2T/+bgffYJS7CiXytWJVdm6sYoZ45KYpAYAAGAZQigAAI6s4eT4ya5AvfyzoKLec8rINJTxeN4QKfR3U4fnZCq7ZVCBBiGlP+OT60uHdHw3vxQz3qWMZL/McqZw5qJfdyquX1SeMXItcijzPr9SdqblvtLG59wuafvTUJl7YuS7JaADq9OVnRRUmfuipSN3U8YOd8v9kVOHp2Xq8EcZiprtVNRUZ3FcGgAAwHmBEAoAgCMcP9kUqHfCVBhTipnoUla3bCn2hE03SKGKx4KlYKWQjJAh49CxW/Lccx2y7TeU1YNZUGfK8VPObKaYZ9151+yS5Fpsl7/NkTW5jr6OrOPlnulUsFpImY/5ZVYwlf5vn2x/GnL8bJOx11D0G06ljs9UoFFIwRqm0gf4CKEAAAAsRAgFAIAkmZJ9g12BE9aDcn5rl22nocz78oZIzmV22V7Ju/6T/RebzCgzz4ynqBlO+ToGZJa1rvTSrrA1u2w7DTm22uWe61TZxrEq0yFajvXHfrTJfNSvw+9mHjtQQLm32znX2mUmmAo0ORZohS4yZf+NH40AAACswk9aAABIsm83ZEs38s2Ecn/oUHazoEKX5r2VzvH/bLK9lDeEip7qzHlSnj3nY9tfhpxf25V1T7altZd2ha3Z5VrkUMhjyn99QIenZSpU1VT8vdFSxpEd7ZJ54ZFxS5c8g90K1gwp0CgkucycQOq4YXUttUt2bpk8Uyeu12XsNRT3YJTKXeZR2Saxcs8t/KHMUVOcKlcn71TDqGlOlb06VuUv9Sjhb9Fy/MSPrQAAlHT8aw4AgHLWgwpeFJJZIW8I4VroUPb1+deJ8t0akPZKMf91ydhvKOa/LrkWO5T+1LEZU65Fdilaym6cf3+chkLW7MpuHNShTzLkuzugYM2Q0sZkyZZmyPmdPc/usSNcKl/DI9cChw7PyJRsUnaDkOQzFP16zu13ri/tin7dlef2SoQv33pdplTmvmgZIeng1+lKf8qnuEejZN+Y/0dP57d2eQa589xm6VxiV+xQt7wjfNq/Nl2+m4M5ASNfSmfsdEPCky7qL8n4y1D8fVEqf6lHF7SKkeMHfq0AAJxa4f8lBQBAMWk8dvk5P+eTS2upZmyceo/9LrftktQofbPnRnXbtUY/jj2cb5/Wf7tQQ96so4v/L0rrLj6kUZ03acO81Nztz8+vrwoXuXX/uDXn5BoKsuafrYrt3EXN8ZNNvpuPpRDBuies3xUthcqZsh3IO0Mt45FsZTcJKu4fUXJ/4FTm436Z5U2lTchSXL8oxY5yK7tJUKGKprIbkXKcDsdPNnkG5YRLx6/X5fjeJsdPNu1/P0NmvOTrFFDU5KBcCx3KvOJYUGvblROEhC4w84RQUe875eucLX+7gCQpq1u2PCPdsv1lKHQJQeHpin7dmRPqPePLaTgSEoYuCeng1+lyfmNX3KNRCtTMkJofW9Q/I9mvrHeyFfOyS2Xui9aBr9Nz1l3LlBLujlawiqkDK9MVNdmpuD7ROrgqvVivEwAQ+QihAACQNOb6Lfnafo/P0qVPflroPktq7NWSGnsL3f6vduuLpDbo2JpdT+QEGLZfDUW/6VL6CF9uFyMt55fn4CV5wymznCl/26CyemTL/ZlDmUeecui/NaD9bb0yMiT5DJWrGyt/a0Ko03F0va6M/j7F3xudu15X4OqQDnyXLjP+WF/DnzccVLpUpme0MpP9in7VlWeWmxll5tx+55XklmJedim7XlChiwmgTseZhIRqnndRf0lK/7dP0W855fjZpkBSSDETXbLtNXTw0wzJk7P+WsxEl2x/GIwRAOCkmDcLAAAi3olrdhnphmJedcn263FPIpzplFnGVKBRSLZ+hjyD3HmOYdtjU+jinP09/dyKmuyUbJLpkWJecSp0sSn/zYFzd1GlQGHrdUk5C71LkoI5az7ZN9nk63BkfTRTik+OUqBuSFl3Z8u+25ZnJlTm437ZfrWpfE2PylfzyLnSrsPvZ0on5Fg4ucIW9T9VSHiyRf0VlKLecSrr3mzpyHibcdK+37wEUACAUyKEAgAAEe/ENbuCV4QUqB2UZ3CUjL2GXJ845BnhlneYT3JI5o2m3O875Vxhl7HPUPQkp9zzHMpIzpnZEapiKvptp2x7DLlnOxT9ukve0Vm5608hTIWs15W7+Qu7yl/qkWegW6lv5yweL0m24YZsf9qU9kKWHD/ZZcaYCtY4knKYUtQbLmW3DOrglxlKezlLjs02Of4fP7aerjMOCU+yqL/jZ5vsf9pkxkgJ7WJ0QfMYxbzkyrPIPwAAheF2PAAAEPEcP9nyPrnQkFLfyZSnX5TKJcUqeGlIaS9lydcpZyaT2V5KH+aT559Rsv9lKFA3qENzM3KejCcpo69f9i02XdAyVqHEkFJfz5S/LbfinakT1+s6yt8i5/PueSpKMRNdOnx9plyfOGR7x9ChzzMk95GxrRPKfaqke65D7i8dOrAyXXLmrP3lnheQe45D2c0Zo9MSRkgY//doKVs6PONYSHhU7AiXol9xKVTe1KEFGZJNcqzNGSjXYru8o7Jk22soLjlawYtD8nVhJiEA4OQIoQAAwGkpjoXjFSOpkaSxJ7Rfd+QlSdsL2H73cX9feuR1VK0jL0nacOR1DpWaReNPWK8rD0/OrV/pT/mUcE+MlCVFv+2U8buhcvU9ebqWr+TRvl+9ci1yyN8iKDmPO4VTuSEVTt/phITHK2hRf9ufhkLxpg6/mymzbE6/rB5+ub90EEIBAE6Jec0AAAA4Yyeu1+We41DCDTF5+/xuU6hcSIqSvM/5lL06qAOL0nVgUbqClUJKH+DTwcUZucGTkX3czn7JtcKu7KuYBXVGjoaEdQv4/B0XErqWOKSsE3Y9YVF/STICUnbjYG4AJUmhMpJOXHgeAIACEEIBAADgjJ24Xld206Dsv9oU/bpTxoGcW75iR7qU0S9nplTw8pDUUArWCylYIyTbH4b8NwUUrJUTYvluDcj9qUPOJXYZ+3MWmA+VNeW7k1k2Z+J0Q8JTLeofTDRlHD/pzZTcnzkUSCIkBACcGiEUAAAAztiJ63WFLjGVOi1T7tlOlWvkUexIt7xDfcp8ODv/vhttkiEFrji2v/+2gNKf8inun1Eq1yhWtr9sOjw9k0UkztDphoSnWtTfd3u2HD/a5Z7hkJFiKPY/btl+N5R5XwG3YwIAcAL+OQcAACglImq9rjZHXpK0p4DtRw2Q9EoB7fce9/eZZ1PgmbFiza7iGJ8nl9ZSzdg49R77XW5bk9vL6unxtXX5sDjtic/UiKY/aZZ3d+4YdWuZqAd7V9eF3ihtvDBVo+5eq3VLDklLcrYntb9Aw0deqRpPePT9JQc15G8/a/tb6ef0ukrNmmoAcJ4hhAIAAABKqTHXb8nXtrrKAXXs+U2h+7zXcKfea7iz0O3fVT6o2+5fUST1AQDOL9yOBwAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAAAALEcIBQAAAAAAAMsRQgEAAAAAAMByhFAAAAAAAACwHCEUAAAAAJxjhlfy/NOtcnViVe6KWMWOdEmBnG327YbK3B2tctU8uqBprNwzHXl3zpZih7lVrnasytaNlXu6I/8JACAC8d0KAAAAAM4xz4Ao2X+x6dAnGVKmoTK9ohWKlzL/7leZLjHKbhrUgVXpcq61K/6hKAWrZ0g3Hdl3oFvOlQ4dmpUp+1+G4u+LVnbzdIWqmsV7UQBwCsyEAgAAAIBzyDgguec65B2dpWANU8G6IWU+7Jf7I4dcSxwy9htK+2+WzAtN+W8NyH9jQO6PnJIk57d2Rb/nUtormQrWDcl/Y1CBuiE519mL+apKJ/dMhzz/iMr92NhrKO7BKJW7zKOyTWLlnpt3XodjnU0Jt8WoXDWPEm6Nkf1nfuUGjsdXBAAAAACcQ2a0dHhmpgJXh3LbjEOG5JCymwZ1+P0M6VjuIeOwkXsPS9RbTmVfHVQg6di+hz7PkK9D4FyVf96Ift2puH5RCtQL5jSYUpn7omWEpINfpyv9KZ/iHo2SfWPOr9W2Pw2VuSdGvlsCOrA6XdlJQZW5L1rKKsaLKIUca21KaBuj8pd6VObuaBn7DElh3MaKiEAIBQAAAADnUrSU3SqY+9uY7S9D0W875b81ILO8mSdgci6zy/mNXb5bs6WQ5FrsUOCKoOJ7RqlsUqw8/4iSkVpM11FKOX7Kmc0U86xbRsBQoG7OeDi+t8nxk01pL2UpVNGUr1NA2Y2Dci3MCTvcM50KVgsp8zG/zAqm0v/tk+1PQw5mQxUZ+/+zqcxdMfLfFND+VemSKcU+65IypDJdYhSqaOrAqnSlD/Mp7p9RcnzH5z7SMCIAAAAAUExsvxsqc2e0gpVMZTzsz7PN+Y1d8fdHK+u+bAWahKTNki3VkGuBQ1nds5X6Rqac623yDI4q5Og4E7H/cStQO6i01zNlGqaCdXNmQgWuDunAd+ky44/1NfxG7t8zH/Xr8LuZxzYGJB3LE1EEPE+5FWgSVMZAv8yKpjL/7pdzrf2Ut7EichBCAQAAAEAxsG/JmXFjxkqHZ2ZI0ce2ueY5VOaeaPk6Zcv7nE+SZPyesy1tfJb8NwcVaBhS+hCfXAtYD6ooHX4/U96xPtn2GgpWM2V6jm0LXXRk8fegFDXFKfsmm3wdsnPa7JJ54ZHt6ZJnsFvBmiEFGpFEFQX7VptcXznyhLX+tkEdXJZxyttYETkIoQAAAADgHHN8b1PC7TEK1gzp0OwMmRcc2xb1rlPxD0Yp4xG/vGN9x35rC0hmjKnsa4O5fUPxpuQzhCLkyvnD8ZP92HpQx2/+wq7yl3rkGehW6tuZ+Z5KGDvCpfI1PHItcOjwjEx+6y4irgV2hTymHBttuqBVjBLaxMj1eU4Ae9LbWBFR+HIAAAAAgHPI9ruhMl1jlN0ioMNTM6XjZtq4FtjlGehW+lCfMp7Ke3ueealybu867vdq93ynAkn5gxKcPcdPNgXq5Z/F5G8R1KG5GQrUDylmoivf9oxHspU6OVNGQHJ/wO1gRcXxvV02ryH7rzalvpol3x3Ziu8dLfu2vCFsvttYEVEIoQAAAADgHPIMcitU1lTaS1lSUDlPTzvyiusXJd+dAWXen32s/WgWVVsK1AvJM8QtI8WQe4ZD0W85lT7AX9ipcKZMyb7BrkDdAgI+T876UOlP+eRa4sj39DuznCl/26CyemTL/Rn3gxUV+x82ZTcNyPuCT8E6IWX2zVagXkjOpcc+xwXdxorIQggFAAAAAOeIkSq5Fjjk2GZT+cvjVCEx51Xu6li5lttlS7EpapYzt71CYpziHj220E3qG5my77SpXONYxYx3KfWNTAWaMhOqqNm3G7KlG7kzodxzHEq4ISZvn99tCpULSVGSrZ8hzyB3nu22PTaFLmYmTpEJSr6b877XzXhTxpGsqdDbWBFRiGUBAAAAnNcaj11+bk84oJD2nyQ9Wci2scf9vfGRlyStP/KKEGv+2aq4SygSjp/sCl4UklkhZ72n7KZBef5pU/TrTmXdmS3nGrtiR7qU0S9nFpp5oyl3T6d8fwsoUDukqFkOuec5dOijjOK8jFIlmBiScdykP2O/Iedqu9IH+I7dxjrMp8y+rAMVyUplCBUKhTRs2DBt2bJFLpdLI0eOVNWqVYu7LAAAAADAaTrnIaGkJ5fWUs3YOPUe+11uW5Pby+rp8bV1+bA47YnP1IimP2mWd3duQNitZaIe7F1dF3qjtPHCVI26e63WLTkkLTnn5ReqJIeEWd2yFf9IlPzXBhS60FTcE1HKbhpUoH5I5a6OzXsbq5QzEyr/kl0oZqUyhFq4cKH8fr/ef/99rVu3Ts8995wmTpxY3GUBAAAAAEqAMddvyde2usoBdez5TaH7vNdwp95ruNPKss5r2dcHlf4vv+L7Rss4aMj/t4C8z2Yddxtrzq2sR2V1yFba61knOSKKQ6kModauXatrr71WktSwYUP9/PPPxVwRAAAAAAClS3HMUlO34/7+6pE/w7mNNcKV5Flqp8MwTdMs7iKK2uDBg3XzzTfruuuukyRdf/31WrhwoRyOUpm5AQAAAAAARLxSuV68x+NRenp67sehUIgACgAAAAAAoBiVyhCqUaNGWr48Z1rgunXrVLNmzWKuCAAAAAAA4PxWKm/HO/p0vP/3//6fTNPUs88+qxo1ahR3WQAAAAAAAOetUjkTymaz6ZlnntGMGTP0/vvvF2sA1bNnT61fv16S5Pf7dfXVV+vNN9/M3d69e3dt3rxZN9xwg3w+X559ly9frvfff1+S9P777ys7O/uc1b1r1y516NBBTz6Zd4W3G264Qffee6969OiR+yppC79Pnz5d48aNO6fn9Pl8+uCDD057v9dee029evXSAw88oN69e5/R5/rQoUOaN2+eJGnQoEG5swRPVmuLFi30xhtvnLRfSkqKhg0bdtr1RJpVq1apf//+edpeeOEFffjhh9q0aZPGjx9v2bmt+hwWdE0nM3XqVEl5v+dEulWrVqlWrVqaP39+nvb27dtr0KBBkqTk5OR8+xX29X/33Xdr9+7dGjdunKZPnx5WDUXx/fD333/X4sWLT2uf0mLVqlW65ppr8nz+Hn/88dM+zoIFC/TXX3/laz/fvpedSnH8e3Im1qxZo82bNxe4rUOHDho+fPgpj1HQ1/7ZOv792r17d3Xp0kXbtm2TJPXo0SP37+Eq6Oe+orZ+/XrddtttGjs2/6q8ffr0UZ8+ffK0TZs2TR06dMj3fXXUqFH6/fffLatz27Zt6tGjh2XHL4zVP1uH8+/UiT788EO98MILeeorip9FTvY1sXv3bt19991ndfzSorCv87P9Gvjwww+1aNGiQrdb9f20pDmd9+LRn9tO9blFZGKhJIu1bNlS3333nerXr6+1a9eqZcuWWrp0qXr37i2fz6c//vhDtWvXLnDfVq2OrY7/6quvqmPHjueoaun777/XNddcU+A/km+99Zbcbvc5q6U0SElJ0QcffKDOnTuHvc8vv/yixYsXa/r06TIMQ5s2bdKTTz6pjz/++LTOvWXLFi1evFjt27cPq/8XX3yhdu3aac6cOXrggQdksxWcVVeoUKHU/+JWp04d1alTx7LjR8rncOLEierevXue7zklQfXq1fXJJ5+oXbt2knLe65mZmbnbrQwQjzrb74fffvuttm/frhtuuKEIqyo5mjVrppdeeumsjvHuu+9q2LBhqlixYp52vpcdU1z/npyJ2bNnq127dvl+Nlq7dq1q1qypb7/9Vl6vVx6Pp9BjWPW1f/z7dcWKFXr++ef16quvnmKv4rNixQp16dIlX8Dzxx9/KCMjQ9nZ2dq1a5eqVKkiKSfQff7551WrVq08/QcPHnzOaj6XzsXP1qf6d+pkjtZXFD+LnIt/D0sLK77O77jjjqIoDQXgc1syEUJZrHnz5powYYIeeOABLVu2TJ07d9YLL7ygtLQ0bdiwQU2aNMntO2zYMO3evVtSzj8WixYt0vbt21W1alWlpKSof//+mjBhgsaOHas1a9bINE316tVLt956a55zfvzxx5o8ebJcLpcuvfRSPfPMM5o3b55mz56tUCikxx9/XNdcc01u/+eee05r166VJP3tb39TmzZtNHHiRGVlZSkxMVHdunXTqXz44Yfavn27BgwYIJ/Pp1tvvVWLFy9Wjx49dMEFFyg1NVWvvfaaBg8erF27dikYDOr+++9Xu3bt1KNHD1WrVk07duyQaZp66aWXVKFChQKvc/Xq1bn/kGZlZWnMmDFyOp365z//qYsuuki7du1SvXr18v1P6Xfffadnn31WZcqUkc1mU8OGDSVJU6ZM0SeffCLDMNSuXTv17NlTX375pV5//XU5HA5VqlRJzz//vA4ePKhBgwYpLS1NpmlqzJgxKleunAYPHqyDBw9KkoYMGaJatWrp5ptvVqNGjbRjxw6VK1dO48aN06RJk/TLL79o/PjxYf8PbdmyZfX7779r1qxZatWqlerUqaNZs2ZJkjZu3KgRI0bIbrfL7XZrxIgRCoVCeuKJJzRz5kxJOf9D8OKLL2rSpEnavHlznll1b7zxhrxer4YNG6b69evnOe8HH3ygwYMH68CBA1q2bJlat26tAwcOqF+/fjJNU9nZ2Ro+fLhiY2Nzz/f5559r2rRpucf43//+p61bt+r111+X0+nU7t271a5dO/Xt2zesa48Uq1at0owZM/TSSy9p0KBB2rlzp3w+n3r37q127dqpXbt2SkpK0tatW1WmTBm9+OKLCoVCGjx4sNLS0nTw4EF17txZ3bp1U48ePVS7dm1t3bpVXq9X//vf/2SaZu7ncMmSJbnv7SuuuELDhw/P80vzW2+9pU8//VQOh0NJSUkaOHCgxo0bpx9++EEZGRkaNWrUKWd9FjRO77//vg4fPpz7Xti+fbu6dOlS4NdUamqqBg4cKK/Xq2AwqH/84x95vpeca7Vr19avv/6q1NRUxcfH6+OPP1b79u31xx9/SJJatGihr7/+utCv/5deeklfffWVLrrootyv4+Od6nttYbxeb4HvgWnTpmnu3Lmy2Wxq1KiRBgwYoNdee01ZWVn6/+3deVzU1f4/8Be74sAFZXFB0hHDhCRRJJdECnPpqhcCFAWyTDIRFzJJBUVxh3C7Ymh6RRAeuKRmZmlpLiDhwnXBAEVJ0i9OgMkmMMv79we/+cTIZ9humOX7+efMZzmf5f0+Z86cz/n0798fNjY2WLFiBQDAzMwMq1atwo0bNxATEwMDAwP4+vpix44dGDRoEHJzc6Gjo4O4uDiYmJj8MSf0GSKW67t27Yo5c+agoqIC1dXV+Pjjj/H48WOhQyU5ORmGhobCNjiX/e5p1idi9WpeXh7WrFkDlUqFsrIyhIeHw9nZuUFetbW1xdmzZ5GdnQ07Ozt07dpVOIZ9+/Zh1KhR6NKlCw4dOgR/f3/U1NQ0uCdcXV2F2G9tm6E5ysrK0K1bN43PioqKEBkZiZqaGvz2228IDg6Gh4eHaH5XS0lJQVpaGmJjYzXu35bkfLlcjkWLFmm0r2xsbLB//34YGBigc+fOGDlypLDt/fv344033kC7du2QnJyMsLAwpKam4vr161i8eDHWr1+PmTNnwszMDMOHD8eZM2cQGRkJMzOzBm2hdu3aiR7zuHHjGs1VMpkM8+fPBxHB0tJS+DwzMxPr16+Hnp4eunfvjuXLl+OXX37BwoULoa+vDz09Paxbtw6WlpZYsWIFrl69CrlcjpCQEHh4eIjmbbH6Nz09XaNt3VYaq6fU9ykAzJs3D5MmTRLW27dvn1C+d955R2iLuLu7QyqVQiqVwsfHRzSu9u3bh5SUFKhUKrzxxhsICQlpMiaYOHWcBwQEIDIyEl9//bVGDB46dAjXr19HZWUlevXqhdWrV6OkpKRBnBw5cgQWFhbw9fXFkiVLUFRUhIcPH2L48OGYO3fun32YzxyxmO3WrZtou23z5s2wsLDApEmTsGzZMly/fh0WFha4d+8etm7dCj09PURERKCmpkao45RKZYvaua+//jqOHTsGIyMjxMTEQCqVYsSIEQ3aE0924LNGEGtTSqWSRo0aRSqViry8vKimpobWrFlD33zzDW3cuJGOHj1KRETu7u504cIFIiIKCwujo0eP0oEDByg6Olr4vrq6mn744QeaO3cuERFVV1fT+PHj6dGjR8L+SktLycPDg8rLy4mIaOXKlZSYmEgHDhygGTNmNCjfyZMnKTg4mFQqFdXW1pK3tzfl5ORo7Ls+d3d3mjx5Mvn7+5O/vz8FBgYSEWksX11dTe7u7kRE5O/vT8ePHyciosTERFq5ciUREZWXl9PIkSOppKSE/P396eDBg0RElJSURFFRUVqPMykpiYqKioiIaOvWrRQXF0eFhYU0aNAgKi8vJ4VCQSNGjCCZTKZRbi8vL7p9+zYRES1ZsoQ2bdpEN2/epEmTJpFCoSClUkkBAQGUn59PISEh9NVXXxER0cGDB+nRo0cUFRVFycnJRESUnp5Ohw8fpnXr1tGePXuIiOjOnTs0adIkIiLq06cP3b9/n4iIJk6cSFlZWVRYWEg+Pj7abhOtrl+/Tp988gm5ubnRqFGj6JtvviEiIk9PT7px4wYREZ04cYJCQkIa7MPHx4cKCwspIyNDOJdhYWG0ZcsW4ZotXbpUY3937tyht99+m4iI0tLSaNq0aUREdOrUKZo5cyY9fvyYrl27RhcvXtTY39atW6mqqoqIiCIiIujw4cOUkZFBY8aMIblcTpWVleTs7Nzi438aMjIy6NVXXxXuaX9/f3Jzc6MDBw4I5668vJxGjBhBJSUlVFJSQl9++SUR1cVDZmYmERGtXbuWdu7cSdevX6dvv/2WiIiKiopo5MiRRFQXC+r1YmNjKT4+XjiHcrmc3N3dqbi4mIiINm/eTPfu3RPKmJOTQ97e3lRbW0sqlYqCg4Pp5MmTtGnTJoqKihI9JvU1r0/sOhERDRkyhIh+j2NtMbVmzRratWuXcGzu7u6kVCr/xyvQOupj3LJlC+3fv59UKhX5+/vT6dOnKSwsTOO4xOI/NzeX/Pz8SKlUUnl5OQ0ePJgKCwtp06ZNlJyc3GSuJdKeD7XdA15eXpSVlUVERHv27CG5XK6RO318fOjmzZtERLR3716KjY2ljIwMGjdunMY+L126REREoaGhQq76KxKLve3btxMRieb6vLw8evvtt6m8vJwKCgrohx9+IKK62Lp165bGtp/HXNaUp1GfaKtXjx49Sjk5OURE9OWXX9LixYu15tWwsDA6ffq0RtnLy8vJw8OD5HI5FRQU0NixY4mItN4T6thvbZtBTP371dfXl5ycnCgjI4OIfr8H09LShM8uXbpEU6dO1Zrf3d3dafv27RQaGkoKhUJjXy3N+draV+p8Vp9SqaQ333yTHj58SOXl5TR8+HB6/PixxnEUFhaSq6sr1dTUaHwu1hYSO2aipnPVmjVrKDU1lYiIjh49Sv7+/qRSqejNN98UztX69espNTWVkpKSaPny5VRbW0vp6emUm5tLx48fF+5FmUxGsbGxWvO2WP2rLmN1dXWT1761mqqn1PcpEdHcuXMpIyNDtO1fP+7s7e2ptLRUOG9PxlVxcTGNHDmSHj9+TEqlklauXEkVFRVNxkRr2qh/R9riXB0D9WOwvLyctm3bRkR1cTV69GgqKioSjRN1LBYWFtLevXuJqO4eHTRoEBGJ573nkfpeFIvZptptJ06coDlz5hARUUlJCQ0YMIAKCwtpzpw5Qt2Qnp5OoaGhLW7n1s8V0dHRdODAAdH2BGs+HgnVxnR1ddGnTx+cOXMGlpaWMDQ0xPDhw/HDDz8gJycHgYGBwrKOjo4AAAsLC1RXV4tuLy8vD9nZ2cLQaoVCgfv378PU1BRA3VxOdnZ2wjB1FxcXnDt3Dk5OTujZs2eD7eXn52PgwIHQ0dGBgYEBnJycmpzXoKnHT+iJue7V+83Pz8eQIUMAABKJBL169UJhYSGAuqGvQN2bDU+ePAlra2vR47S2tsbKlSthbGyMBw8ewNnZGQBga2srHLOlpWWDeRYePHgglMPZ2Rl3795FXl4e7t+/j6lTpwIAHj16hLt372LhwoWIj49HSkoKpFIpPDw8cOfOHXh7ewOAMPJj+vTpyMjIwLFjxwDU/VsCAObm5ujSpQsAoEuXLq2e8+Hnn3+GRCLB6tWrAQDXrl1DUFAQXF1dIZPJhKHZLi4uovM9PHkd1BwcHACI32f79u3D48ePMW3aNAB1j2X+/PPPGD58OAoKCjBz5kzo6+s3GAXQqVMnhIWFoUOHDrh9+7Yw0uTFF1+Evr4+9PX10a5du1adh6fhyUeC1PMxqEkkEkRERCAiIgIVFRUYP348AEBfXx8uLi4Afn8r59ixY5GQkIDjx49DIpFAoVAI2+nbty8AoHPnziguLhY+f/jwIUxNTdGpUycADeduuH37NpycnIR/K9WjrwCIxrU22q6TGLGYys/PFx7Dsba2hkQiQWlpKSwsLJpdhj/auHHjEBkZie7du2PgwIGiy4jF/61bt+Do6AhdXV1IJJIGb1FtKteqieVDCwsL0Xtg9erV2LlzJ2JiYvDKK680iNH8/HxhhIRcLhfK/OQ1Vt9H/0t+eVZoexxPLNf37t0bU6ZMQWhoKBQKRaNzyDyvuUybp1WfaKtXraysEBcXh3bt2qGyshISiURrXhXz5ZdfQqVS4YMPPgBQ94j7+fPnMXjw4Ebvida2GbSpf7+qR43Wn8fF0tISW7duxf79+6GjowOFQtFofj9//jz09PSgp6ensZ+W5vzG2ldPOnv2LCorK/HRRx8BqHuZz5EjRxpMF2BjY6MxMguAaFvo5s2bDY5ZrbFcdfPmTUyYMAFAXV5OSUlBaWkpZDKZMDKkuroaQ4cOxYcffojt27fj/fffh4mJCebNm4c7d+4I8WlpaYl58+Zh+/btonm7flmerH+fhubUU9pi7Enm5uYwNzcHANG4KiwsRO/evYU8tWjRIo31tcUE+51YnL/wwgvC9+oYNDIyQmlpKUJDQ2FsbCw84ioWJ+q5KM3MzHDt2jVkZGRAIpGgtrb2aR7aX8qTMdtUu61+nd2xY0dIpVIAde25+Ph4fP755yAiIa+2pJ1bnzpWm2pPsMb9LScmf9YMHToU8fHxeO211wAAAwYMwI0bNwDUJSM1HR0drdvQ0dGBSqWCVCqFq6srEhMTkZCQgDFjxsDGxkZYzsbGBvn5+aiqqgJQN6xZnSzF5sPo1auX8CieXC5HVlaWRqJtLiMjI/z6668AgOzs7AZlV+/r4sWLAOoeV8nLyxPKrp4g9fLly7Czs9N6nOHh4Vi1ahXWrFkDKysrIRE0du6AuuSi7ly7du0agLrn9O3s7LB7924kJibCy8sLL774IlJTUxESEiJM1nzixAn06tVLWO/ChQuIjo6GVCrF1KlTkZiYiA0bNghJS6wsurq6UKlULTmlyM3NFYa4A3WVnomJCfT09GBlZSVM3HrhwgX06NEDRkZGKCkpgVKpRFlZmfBo55P71nauFAoFvv76a+zZswc7duzAjh07EBQUhOTkZPz444+wsrLCzp078eGHHyI2NlZYr7y8HJs2bcL69euxYsUKGBkZNfu6/FXIZDJkZ2djy5Yt2LZtG6Kjo6FQKKBQKITrcOnSJdjZ2WHnzp145ZVXEBMTg9GjRzerYdmpUyeUlZXht99+AwDhEQM1qVSKq1evQqFQgIhw4cKFRuNaTGPXSayMYteufgw/ePAAZWVlGjnsz9C9e3dUVVUhMTFR649Ysfjv2bMnrl69CpVKhaqqKty6dUtjnaZybWO03QN79+7FsmXLkJSUhJ9++glZWVka8dmzZ0+sXbsWiYmJ+Pjjj+Hm5gag4TX+u8RVY8RyfW5uLiorK7Ft2zasWbMGUVFRAOrOR/17mHNZQ0+rPtFWr65cuRKzZ8/G2rVr8eKLL4KItObVJ68nUPf42GeffSZcz/DwcOzZs0frPaHW2jZDc4h1vm/cuBETJkxAdHQ0XF1dQUSN5ve4uDiYmpo2eBlCS3N+Y+2rJ+3fvx8rVqwQzuWGDRuQnJzcYDlt+3myLSR2zGqNnWepVIqsrCwAv+dlc3NzdO7cGXFxcUhMTMSMGTPg6uqK77//HgMGDEBCQgJGjx6Nzz//HFKpVFivvLwc06ZNa3HeVret25q2ekqhUKCyshK1tbUN6iBt5at/XcTiytbWFrdv3xY6N2bPnq3x4gZtMcHEicW5+hqcOXMG//d//4fY2FiEhoaiuroaRCQaJ2pffPEFTExM8Omnn+K9994T1mFNa6rd1rt3b/z3v/8FUPcHSEFBAYC6XDN//nwkJiZi2bJlGDVqFICWtXMNDQ0hk8lAREJ92Vh7gjWNR0I9BUOGDEF4eDjWrVsHADA0NISJiYnQw9scAwcORFBQEHbv3o3MzExMnjwZVVVV8PDw0Jics2PHjggJCUFgYCB0dXVha2uL+fPn4+jRo6LbdXd3R2ZmJiZOnAi5XI7Ro0fDwcEBubm5Wsvy5ASvgYGBeO2115CSkgI/Pz84ODigQ4cODdbz9fVFREQE/Pz8UFNTg1mzZgn/DB48eBC7du1C+/btsW7dOpiZmYke54QJE+Dr6wtTU1NYWFhAJpM16/xFR0cL/2536NAB//jHP9CnTx8MHjwYfn5+qK2tRb9+/WBtbY1+/frh3XffhZmZGTp06IARI0bAzc0NixYtEiZxXbVqFSQSCRYvXoy9e/eioqKi0bmeOnXqBLlcjujoaHz88cfNKvObb76J/Px8+Pj4wNjYGESEBQsWwMTEBCtWrEBUVBSICHp6eli1ahUsLS0xdOhQeHt7w9bWVuhMtLW1RV5eHnbt2tXo/k6ePAkHBweNTgUvLy9MmDAB7733HsLCwpCQkABdXV0EBwcLy0gkEjg7O8PT0xPGxsYwNTWFTCZr9g/2vwJLS0v8+uuv+Ne//gVjY2O899570NevS5/bt2/H/fv30bVrV8ybNw+XL19GZGQkjhw5AjMzM+jp6TX5T5euri6WLl2KDz74ALq6uujbty9efvll4Xt7e3uMGTMGfn5+UKlUGDBgADw8PLS+QQoA0tLSNCZrjImJEb1OQF2lO3/+fOGfdG0++OADLFq0CN9++y2qq6uxfPly4Tz8mcaOHYvDhw+jZ8+eov/+i8X/Sy+9hNGjR8Pb2xtWVlZCLlJ7/fXXG821amL50N3dXfQesLe3h7e3N8zNzWFtbQ0nJydIJBJs3boVDg4OiIyMRFhYGJRKJYC6HxjNzXF/VRkZGQ1Gr2zfvl001/fo0QNbtmzBoUOHYGBgILxJr3///liwYAF27twJMzMzzmUinlZ9oq1eHT9+PGbOnIlOnToJc3loy6tOTk6IiYmBjY0NevXqhRs3boCI0Lt3b2E/o0aNwurVq2FqaorMzMwG94Raa9sM2qjvV11dXVRWVuKTTz7RGBk3evRorFy5EvHx8ejSpQsePnzYZH4PDw+Hj48PBg8ejB49egBoec5vrH1VX0lJCa5cuaIx+nDAgAGoqanB5cuXmzz+GTNmNGgLXblypcExN8ecOXMwb948fP3110KM6erqYvHixQgKCgIRoUOHDli3bh0qKyuFObF0dXWxcOFC9O3bF+fPn4efnx+USiWCg4MxfPjwZuVttfpt67buaBarpwIDAzFx4kTY2NhozH/2ZPnq56n6xOKqY8eOmD59Ovz9/aGjowN3d3eNlzb80THxdyQW5wcPHmywXL9+/RAXFwdfX18YGhqie/fukMlkonFy6NAhAHUjo0JDQ3Hp0iW0b98eL7zwAl+DZmqq3TZixAicOXMGkyZNgoWFBdq1awcDAwOEhYUJf8JUV1c3+qIFbe3c999/H0FBQejWrZswIr5Pnz6YN2+eaHuCNU2HuPuV/cnUk/01NakyY8+a+hMVMsYYY4wxxp6+/Px85OTk4K233sLDhw/xz3/+E6dOnWrwWDF7Nvz5f2EzxhhjjDHGGGOMtUKXLl0QExODhIQEKJVKzJ8/nzugnmE8EooxxhhjjDHGGGOMtTmemJwxxhhjjDHGGGOMtTnuhGKMMcYYY4wxxhhjbY47oRhjjDHGGGOMMcZYm+OJyRljjDH2t7R582b8+9//btay3bp1w8mTJ5u97Tt37iAnJwdjxoxpVdns7e3Rp08fHD58uFnLExFOnTqFAwcO4KeffoJMJoNEIkG/fv0wZcoUuLm5taocbU2pVCIlJQVeXl4wNjb+s4vDGGOMsT8Zd0Ixxhhj7G9p0KBBmDVrlsZnBw8exL179xAYGAhTU1PhcxMTk2ZvNycnB97e3vDz82t1J1RLlJWVYcGCBTh16hQ6deqEoUOHwsrKCkVFRTh58iROnz6NadOmYcGCBW1elpb66KOPcOzYMYwfP/7PLgpjjDHGngHcCcUYY4yxvyVXV1e4urpqfJaZmYl79+7hnXfegY2NTau2++jRI8jl8j+iiE0iIsydOxdpaWmYOHEiFi5ciPbt2wvfFxcX491338WOHTtgY2ODyZMnP5VyNVdJScmfXQTGGGOMPUN4TijGGGOMsWfUF198gbS0NAwbNgzLli3T6IACAAsLC2zcuBE6OjqIj49/ap1jjDHGGGOtwZ1QjDHGGGMAZDIZlixZAjc3Nzg6OsLNzQ1LliyBTCYTltm8eTMCAwMBALt374a9vT1+/PFH4ftDhw4hICAALi4ucHR0xLBhw/DRRx+hsLCwVWXav38/AGDGjBnQ0dERXUYqlSIiIgIREREgIuHz2tpafPbZZxg7diwcHR3h6uqKDz/8ENeuXdNY/4svvoC9vT127drVYNsBAQGwt7dHWVkZAOCXX36Bvb09Nm/ejO+//x7e3t7o168fBg8ejPDwcJSWlgrr2tvbIzMzEwDg4uKCgICAVp0DxhhjjP19cCcUY4wxxp57d+/ehaenJ1JTUyGVSuHv7w+pVIrU1FR4eXkJnUiDBg2Cp6cnAMDJyQmzZs1Ct27dAABr165FWFgYysrK4OnpiSlTpsDKygpfffUVAgICUF1d3aIyVVRUICsrC8bGxujfv3+jy06ZMgUeHh4wNDQEANTU1GDq1KlYv3499PT04OfnhyFDhuDcuXPw8/PDd99919JTpOHUqVOYNWsWLC0tERAQAGtra+zbtw+hoaHCMvXPzfTp04XzxhhjjLHnF88JxRhjjLHnXkREBIqLi7FixQr4+PgInycnJ2PZsmUIDw9HQkKCMMfUwYMH4eTkhJCQEADAgwcPsGvXLri4uCAhIQF6enrCNoKCgnD69GlcvHgRw4YNa3aZHjx4ACJC9+7doa/fsibb559/jkuXLsHLywtRUVHC+tevX8eUKVOwcOFCvPrqq5BIJC3arlp2djY2bNggTMw+d+5ceHp64vz587h79y5sbW0REhIizMEVFBSkMRE8Y4wxxp5PPBKKMcYYY8+1oqIiZGRkYODAgRodUAAwefJkvPzyy8jIyMAvv/yidRuGhoZYt24dFi9erNEBBdQ9iga0fJJu9SNwHTp0aNF6QF0nWfv27bF48WKNDixHR0dMnjwZZWVlOH78eIu3q9a9e3eNNwMaGBhg8ODBAICCgoJWb5cxxhhjf288Eooxxhhjz7UbN24AAAYOHCj6vbOzM65du4acnBytb9QzNzfHuHHjoFKpkJeXh/z8fBQWFiI3Nxfp6ekAAJVK1aJymZmZAfi9M6q5KioqUFhYCGdnZ9GRTgMGDMDOnTuRk5PTou3W16NHjwafmZiYAKibi4oxxhhjTAx3QjHGGGPsuVZRUQHg906UJ1lZWQFAk3M6HT9+HJ9++qkwEsjY2BiOjo7o06cP0tPTNSYNb47OnTvDwMAA9+/fh1wuh4GBgdZli4qKIJFIIJFIUFlZ+YccT2PUc0/Vp23idMYYY4wxNX4cjzHGGGPPNfXjbvXfglefeiSSemSSmCtXrmDOnDmora1FbGwsTpw4gcuXLyMxMVF4TK2l2rdvj4EDB6KqqgpZWVmNLrtkyRK4urri7NmzLT6exjqPHj9+3IqSM8YYY4yJ404oxhhjjD3XXnrpJQDAxYsXRb+/cOECdHR0YGdnB0C80+bo0aNQqVRYunQp3nrrLdja2grL3b59GwBaPBIKgPBGuc8++0zrMrdu3UJ6ejrat2+P/v37QyKRwMbGBnfu3EFpaano8QAQjkc9wko9gkqNiIS3AjLGGGOM/RG4E4oxxhhjz7WuXbvC1dUV2dnZSElJ0fhu3759uHz5MlxdXdG5c2cAECb6lsvlwnJGRkYAgOLiYo31z58/j6+++goAoFAoWly28ePHo3///khLS8OSJUtQU1Oj8X1BQQGCg4Mhl8sRHBwszAHl6emJ6upqrFq1SmO/2dnZSEpKgqmpKV5//XUAgFQqBQCcPXsWSqVSWDY5ORm//fZbi8tcn7qDq/65Yowxxtjzi+eEYowxxthzb/ny5ZgyZQoiIyNx/Phx2NvbIy8vD2lpabCyskJUVJSwrLW1NQDg2LFjMDY2hqenJ8aOHYv//Oc/WLZsGS5cuABLS0vk5ubi3LlzMDc3R0lJSas6dHR0dBAXF4f3338fqampOHHiBEaMGAFzc3P8/PPPOH36NORyOfz9/TF16lRhvenTp+PcuXM4cuQIcnNz8eqrr6KkpATfffcdiAjr168XOqz69u0LBwcHZGVlYfLkyXBxcUFeXh7Onz8PJycnXLlypdXnVX2uFi1ahKFDhyIwMLDV22KMMcbYXx+PhGKMMcbYc69Hjx44cOAAfH19cevWLSQlJaGgoAABAQE4dOgQbG1thWW7deuGuXPnQkdHB3v27MHVq1fx0ksvYdu2bXBwcMB3332HvXv3ori4GLNnz8bhw4ehq6uL06dPt6psHTt2REpKClatWgU7Ozukp6dj9+7duHTpEoYNG4YdO3YgIiJC4zFBIyMj7Nq1C7Nnz4ZcLkdKSgoyMjLg7u6O1NRUeHh4aOwjPj4enp6eKCgoQFJSEqqqqpCQkAAnJ6fWndD/b8aMGXByckJaWhr27NnzP22LMcYYY399OtSaCQoYY4wxxhhjjDHGGGsBHgnFGGOMMcYYY4wxxtocd0IxxhhjjDHGGGOMsTbHnVCMMcYYY4wxxhhjrM1xJxRjjDHGGGOMMcYYa3PcCcUYY4wxxhhjjDHG2hx3QjHGGGOMMcYYY4yxNsedUIwxxhhjjDHGGGOszXEnFGOMMcYYY4wxxhhrc9wJxRhjjDHGGGOMMcbaHHdCMcYYY4wxxhhjjLE29/8A6frXpkDH1nYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABloAAANsCAYAAAAz1nVsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC5dUlEQVR4nOzde9zX8/0/8Men8wmpnFLOxJDNkpmciuUwyhw2h4g5TnMYGzZs9rNhc5jT19nmbIwSZYQhhHI+jCY5VUgpnbvS5/dH65pUunp3pc/F/X67XTef6/1+vd+v5+fdp1e6Hr1er1K5XC4HAAAAAACAxVZvWRcAAAAAAABQVwlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWuCrdE2SUpIbv3D84yRHJlkpSbMkP0jyyldbGgAAAAAAi69ULpfLy7oI+Ea4O8leST5L8nqSDv89/m6S7ZKUk5ycZIUkf0nyZpLnk6z5VRcKAAAAAEBNCVrgq/B4kp2STM+cIOWTzJnZ8lmSrZOMzJxQpe1/24/NnIDlp0ku+aqLBQAAAACgpiwdBkvbK0l2T7JDkoZJvps5IUuS3Jrk6SS/z/9ClmTOEmIbJhn81ZUJAN90n3322bIuYZnzDL5+/Jp6BgAALH0NlnUB8LX2bpKdk2yU5NdJ7kvS+XPnL0qyXJKDFnBt0/9eDwDMp1evXnnmmWcW+7o999wz55xzzjzHxo4dmz/+8Y/Zb7/90rlz53nOdegwZ63PPn365Oc//3nxgguo7b67du2aUaNGLfYzqE1VVVXZbrvtMm7cuKy66qp55JFHUiqVFn3hf+2+++4ZPnx41lprrdx///3znX/66aczcODADB06NGPHjs20adOy4oorpl27dtl6662zxx57ZI011ihU+1133ZVTTz11oefr16+fRo0aZcUVV8wGG2yQbt26Zc8990zDhg0L9bekZs6cmSuvvDKNGzfOEUccMc+5ub9/OnfunBtv/OLmgYvvlFNOSd++fbP66qvn4YcfXuL71Zav8hkAAPDNZkYLLC3jknRP0iLJPfnf5vZb/Pe/byUZlmSXzAlVvmhskpZLt0QA+KYbP358dt111wwcODDf1BV1v8pn0LBhw+yxxx5Jkg8++CBDhw6t8bWvvvpqhg8fniTZe++95zk3efLkHHnkkTnooINy2223ZcSIEfn0009TVVWVjz76KM8991wuueSS7Lrrrrnwwgtr7w19zmeffZZp06Zl9OjReeSRR3L66adnzz33zIcffrhU+luUgw46KJdeemlmzJixTPqvBJ4BAABfFTNaYGmYkmS3JBOTPJmkdZK5/+h2btAy9x/7dVvA9TOSvJ1km6VXIgB8HbRt2zb33ntvjdt/cXbB1KlT8+mnn9Z2WbVi7syLFVZYoVbut/rqq6d+/fpp3br1PMe/6mew9957569//WuS5J577qnxDJq+ffsmSRo0aJA999yz+ni5XM7RRx+dZ555Jg0bNkyvXr2y0047ZY011kijRo3yySef5Pnnn891112XN954I1dccUVmz56dE088sfB7uOqqq9KpU6d5jpXL5cycOTOjRo3KVVddlQceeCD/+c9/cvzxx+eWW25ZrJk7teGjjz5a6LmVV145a6yxRlZeeeVa6at169ZZY401suqqq9bK/WrLV/kMAAD4ZhO0QG2blWSfJK8leSzJWv89PjTJqkna//f7Yf/977x/R5/jpSRVmbOfCwCwUKVSKc2bN1/WZSwVgwYNqtX7VcrySOutt14222yzvPjii7n//vtz+umnp1GjRl96TVVVVQYMGJAk2X777dOmTZvqcw8++GD1MnKXXnpptt9++3muXX755bPmmmtml112yX777ZdXX3011113Xfbdd9+0b98+RTRp0mShn7tWrVrloosuyhFHHJHBgwfnueeey+OPP55ttqmcf0Fz/vnn1+r9fvnLX+aXv/xlrd5zaavtZwAAwDebpcOgth2bOXux/Clzlg17M8mrSf6dpMN/v/84yZj/tt94Afd4/L//3X5pFgoAsGzMXfpr4sSJeeyxxxbZ/rHHHsv48eOTJPvss8885+buCbLBBhvMF7J8XuPGjfO73/0uSTJr1qw88MADBSqvmXr16uWoo46ar0YAAODrSdACtamc5Lb/vj46yfr//dokyWdJHv3v9zclmZpkuSSNF3CfO5OskGSHpVwvAHyDdejQId26/W8Nz4MOOigdOnTIKaecssD2kyZNyoUXXphdd901HTt2zJZbbplevXpVz7T4oksuuSQdOnRIr169kiSDBw/OkUcema222iqbbrppdtxxx5x11lkL3cOjQ4cO6dChQy655JIFnh8/fnyuvPLK/OhHP0rnzp2z6aabpnv37jnrrLMyZsyY+dp37dp1vvf3Zc9g2LBh1TXcddddC6xhrp122ikdOnTIWWed9aXt5tp1113TtOmcTer69++/yPZ33313kmSVVVaZb2bI2LFjk6RG+3Bsuumm+fa3v51OnTot9ZlQG264YfXrUaNGzXd+5syZueOOO3LUUUdl2223TceOHfPtb387O+ywQ4477rg8/vjj812TzNnEvUOHDrnwwgvz6quv5sc//nE23XTTbLnllvnpT3+aH//4x+nQoUN1n5deemk6dOiQrl27znePuZ/NBdXWt2/fHHzwwenSpUs22WSTbLPNNjnhhBPywgsvzNf+lFNOma+PJLnrrrvSoUOHbL311kmSxx9/PAcddFC22GKLdOrUKXvvvXduvvnmTJ8+/Uuf5WOPPZZf/epX+cEPfpDNN988m2yySb7//e/n0EMPzR133JGqqqoFPqMleQaTJ0/OVVddlX333TedOnXKpptumh122CG//OUvF/gMkuT999+v/j3z/vvv58MPP8xZZ52VHXfcMZtuumm+973v5cgjj6xRuAgAQN1i6TCoTVVJrlrA8X8k+XuSPyTZIMnWmbN02LQkszNv5Pl0kieS/CJJ06VZLABQUyNHjszuu+8+T4AxY8aMPPPMM3nmmWcybNiw/Pa3v13o9RdeeGGuuOKKeY699957ufHGG9O/f//cdNNN2WCDDWpczzPPPJPjjz8+48aNm+f422+/nbfffjt33XVX/u///i/f+973anzPL/rud7+b1VdfPaNGjcqAAQPyox/9aIHtXnzxxbz77rtJUr3R/aK0aNEi3bt3T79+/fLII49k8uTJadGixQLbTpw4sXpGyJ577pn69evPc75du3ZJknfeeSe333579t1334X2WyqV8ve//71GNS6pevXqLfB1MufX/rDDDsvbb78933XTpk3L6NGj889//jN9+vTJz3/+8wXe/7333svBBx+cSZMmJZkTjiRZ5DJsizJmzJj06dMnr7zyyjzHP/roowwcODD33XdfTjrppBx22GGLdd/bbrstv/vd71Iul6uPvfzyy3n55Zdz55135pprrkmrVq3muWbatGk54YQT8q9//Wu++40bNy5PPPFEnnjiidx777257rrr5vtsFPXiiy/m2GOPzQcffDDP8dGjR6d///7p379/Dj744Jxyyinz/dp+/r399re/zcSJE6uPzZw5M4888kgeeeSRnHDCCfPMegIAoG4zowVqU6Mkey/ga3aSUpJj/vv9apmzLNisJPd/7vrJSQ5PsnKSU7+qogHgm+m5556bZzbKVVddleeeey6///3v52s7YMCAjB07NkceeWQGDhyYwYMH57LLLsvqq6+eJLnllluq9wn5opdffjlXXHFFvvOd7+Taa6/NU089lX/+85/V/5J+4sSJNZ4Jksz5Afvhhx+ecePGpXXr1jnzzDPzr3/9K4899ljOPffctGnTJlOmTMlxxx03XxCzOM+gVCpVBydPPfVU9dJdX3TPPfckSdZee+107Nixxu9j7vJhM2bMyP3337/QdgMGDEhVVVVKpVL1NZ+35557Vr8+/fTTc8ABB+TWW2/Ne++9V+NaloaXXnqp+vW6665b/fqzzz5Lnz598vbbb6dZs2Y59dRTc9999+Wpp57Kvffem1NPPTUtW7ZMkvzf//3fQt/HgAEDUi6Xc9FFF+XJJ5/M3/72t/zsZz/L1Vdfneeeey5t27ZNkhx55JHz/TovTFVVVY444oi88soradCgQY466qgMHDgwQ4YMyV//+tdsvPHGKZfL+fOf/5wnn3yyxs9i4sSJ+X//7/+lZcuWOfvss/PEE0/k/vvvz6GHHppSqZRXX301xx577HzX/fnPf64OWQ488MD07ds3Q4YMyaBBg/KXv/wl6623XpI5n8+5n8MkS/QM3nnnnRxxxBH54IMP0rx58/zqV7/KoEGD8tRTT+X6669P586dkyTXX399LrjggoXe59RTT025XM7pp5+ehx9+OE888UT+/Oc/V//aXnLJJcv8MwoAQO0xowW+CsOSrJc5y4HNdUCSC5P0SvK7JM2TnJ9kZJKBSdoEAFiEcrmcKVOm1KhtvXr1qperSpLmzZunSZMm1d9/2QbnSXLOOedk9913r/5+xx13TPv27avDiAcffLD6h7CfN23atHz729/OjTfemIYNGyZJVlxxxZx22mn5+OOPc9999+WZZ57J+PHj5/sX/Qvyxz/+MdOnT0+LFi1y6623Zs0116w+17Nnz6y77rrZd999M2HChNx222055phjFnqvRT2DHj165PLLL8+sWbPyz3/+M/vvv/8813/22Wf55z//mSTzPJua2GKLLbLmmmvmnXfeyT333JO99tprge369euXJNlyyy0XuHn9ZpttlhNOOCEXXnhhkmTYsGEZNmxYkmTVVVdNp06d0rlz53Tp0qU6GFvaZs2alcsuu6z6++7du1e/fvzxx/P6668nSc4888x5ZgGtuOKKWX/99dOuXbscc8wxmT17dp588sn8+Mc/XmA/p5xySnbeeeckyVZbbTXPuVKplCRp2LBhjZdJu/nmmzN8+PAkc0KOXXfdtfrc97///fztb39Lz549M2rUqFx55ZX5/ve/X6P7VlVVpVmzZrnpppuqw5E2bdrk5JNPTps2bfKnP/0pQ4cOzYMPPpgdd9wxyZyl+m6//fYkc/blOf3006vv16pVq6yxxhrp1KlTdtxxx0yfPj2DBw9Oz549k6T6M13kGZx//vmZMGFCGjVqlBtuuCGbbLJJ9bnvfe972WKLLXLsscfmwQcfzDXXXJMePXpk/fXXX+B7vuWWW/Ktb32r+tgee+yRFVZYIUcccURmzZqVQYMG5dBDD61RXQAAVDYzWmBpG5854UmnLxxvmuThJD9I8uskJyfZMMnzSbb7KgsEgLpr9OjR2XzzzWv0tdtuuxXuZ/31119gkNChQ4fqoOPL/nX6YYcdVh2yfN7czdvL5fIC9/H4ok8//TSDBw9OkhxyyCHzhCxzbbrpptlll13y3e9+d54QpYjPz1JZ0GyAp59+unqPlJouG/Z5c8OVp59+eoF71YwcOTIvvvhikjk/bF+Yo446KpdffnnWWGONeY5/8MEHuffee3PGGWeka9eu2XfffTNkyJDFrvOLpk+fnilTpszzNXny5Lz//vu57777sv/++1fPcNp5553nmenTvHnzHHTQQdltt93mCTI+b8stt6x+vbCZRKVSaZ4ApzbMnRXSuXPnBda2/PLL56CDDsrGG2+c1VZbbZ5lwBbl0EMPrQ5ZPu+QQw6pXv7t87NSJk2alN69e2eXXXbJIYccssB7rrTSSll77bWTLPw5LY5PPvkkDzzwQJI5M2g+H7LMVb9+/fz+979Po0aNUi6Xc9ttt83XJkm23XbbeUKWub7//e9XL+/2/vvvL3HNAABUBjNaYGlrlWRhfwddJcktX2EtAEAh3/nOdxZ6rk2bNnnnnXcyderUhbZZ2JJarVu3rn69qA3Bk2To0KHVG3/PDWkW5MuWNFpcPXr0yEsvvZRnn302H3zwQVZdddXqc3N/ML755psvcLbJovTs2TMXXXRRPvvsswwcOHC+H6jPnc2ywgorZKeddvrSe3Xt2jU77LBDhg0blocffjhDhgzJG2+8kdmzZ1e3efHFF9O7d+8ceOCB88yQWFxHHHFEjdp16dIlf/jDH+Y51qlTp3Tq9MV/gfM/EydOrJ6Rk8yZNbQg7dq1y/LLL1+jOmpi0qRJefXVV5MkO+yww0Lb9e7dO717917s+y8sVKpXr16233773HTTTfOEYG3bts1JJ5200PvNnDkzL730UqZNm5ZkziyiJfXss89Wh0dfFmK1bt06nTt3zuOPP77QJQM322yzBR5v2LBhVlhhhYwdO7a6dgAA6j5BCwAAddbqq69evVH60rTiiisu9NzcDbg//wP9L1rYkmCf37j8y66f6/OzPtZaa61Ftq8Nu+66a84555xUVVVl4MCB1UsdzZw5M4MGDUpSbDZLkqyyyirp0qVLHn300dxzzz3zBC3lcjn9+/evvn/jxo0Xeb9SqZQtttgiW2yxRZI5M4CGDRuWJ598Mg888ED187vpppvSrl27hc6UKKJ+/fpp3rx5VlpppWyyySbZbbfdsu2221YvX/VFs2fPzvPPP5+XX345b7/9dt57772MHDkyo0ePnmemyMJmjdRkmbnF8dFHH1X3VdufrYYNG2adddZZ6Pm5M7MmTpyYadOmzbPEX5KMGDEiw4YNy8iRI/Puu+/mnXfeydtvv10r4crnjRkzpvr15/fVWZB11103jz/++DzXfN6X/frM/X2/ODOCAACobIIWAABYhAUt+/VVXj/XxIkTq19/8YfRS0urVq3SpUuX/Otf/8qAAQOqg5ZHHnkkkyZNSsOGDbPLLrsUvv/ee++dRx99NK+++mpGjBhR/QPup556KqNHj65uU8Tyyy+frl27pmvXrjn55JNz8803509/+lM+++yzXHnllTnwwAML/drccMMN8yzvtbieeuqpnHHGGXnnnXfmO9euXbt06dJloUtSzVWT4GlxTJgwofp1bX+2WrRosdDA6Yv9TZo0qfr7UaNG5de//nWeeuqp+a5p2bJlttxyy7z22mu1tqn85MmTq183a9bsS9vOrXFhM9kaNPBXbQCAbxL/9wcAAHXE538gPW3atLRo0eIr6bdHjx7517/+lVdeeSXvvPNO1lxzzeo9W7bddtu0bNmy8L132GGHtGrVKuPHj88999yT448/Pkly9913J0k22WSTbLjhhgu89sUXX8zDDz+ccePG5YwzzphnhtAXNWzYML17985HH32Ua6+9Np988knefffdRc5cqG0vvfRSDjvssFRVVaV58+bZaaedsummm2a99dbLBhtskFatWmXWrFmLDFpq2+eDhdpe0mrGjBlfen7KlClJ5sxImvtZ+vTTT9OrV6+MGjUq9erVy7bbbptOnTpl/fXXz7rrrlu9VN1+++1Xa0HL55/B1KlTs9xyyy2y5q8q8AQAoLIJWgAAoI5YbbXVql+/99572WijjRbYbsiQIXn22WfTvn379OjRY4n77dq1a5ZbbrlMmjQpDz/8cA444IA89thjSYovGzZXw4YN06NHj/z1r3/Nvffem+OPPz7Tp0/P/fffnyTZZ599FnrtK6+8kiuuuCJJsueee+a73/3uIvvr3Llzrr322iSLDgCWhr/85S+pqqrKcsstl759+y5wb5tPPvnkK69rlVVWqX797rvvLrTd6NGjc+utt6Z9+/bZaaedvnRZvbmmTp2a8ePHL3Q5rZEjRyaZs7n93LDslltuyahRo5IkF110UX7wgx8s8NrafFarr7569esRI0bk29/+9kLbjhgxIsmcvWQAAKDesi4AAACWlS9bzqgSfec736muefDgwQttd+utt+aSSy7J5Zdfvsh71uQZNG7cODvvvHOS5OGHH87TTz9d/S/+u3btWsPqF26vvfZKMic8+ve//51HH300U6dOTdOmTfPDH/5wodd9Pli5+eaba9TX3OW6GjZsWL03yFfp+eefT5J8//vfX2DIkmSeTeFrsndPbWjVqlXWXnvtJF/+2frXv/6Vq666Kqeffvpi7ZEyN5j7os8++yyPPvpokmT77bevPj73Oa244ooLDVk++OCDvP3220lq5zltvvnmqVdvzl+R5wZ9CzJu3LgMHTo0yZzfkwAAIGgBAOAb6/P7KFRVVS3DSmpm5ZVXTpcuXZIk1113XfXm7p/38ssv5+GHH06S7Lbbbou8Z02fwdyZMc8991z1JvU777zzly7XVVPrr79+OnbsmCQZNGhQ9Q+5d9555y9dHm3DDTes3vh+wIABueKKK750g/H33nsvV199dZJk9913T/PmzZe49sVVv379JHNmcSwoHBgzZkzOO++86u+Lfi7n/rouzvU/+tGPkiSPP/74AoORyZMnV88G6ty5c1ZaaaUa3/vSSy+dZ4+hua688srqDeV79uxZfXzuc5o4cWLGjh0733UzZszIb37zm+pf7wW9z8V9Bq1atcqOO+6YJLnpppvyyiuvzNdm9uzZOfPMM1NVVZVSqVR4/yAAAL5eBC0AANRZ5XI5U6ZMWayvz1thhRWqX//zn//MhAkTFvjD4Epy8sknp0mTJvnkk0/yk5/8JP3798/YsWPz/vvv54477sgRRxyRqqqqrLLKKundu/ci71fTZ9CpU6esvvrqmTVrVu65554kS75s2OfN/YH1wIED88gjj8xz7Mv86U9/ql6+6cILL8xee+2Vm2++OcOHD8/48ePz0Ucf5dlnn83555+fnj17ZuzYsWnXrl1+8Ytf1Frti2NuUDZ8+PCcdNJJ+fe//51PPvkkI0aMyDXXXJOePXvOE6B98TNbU3P3Ohk8eHA+/PDDjB8/fpHX9OrVq3rPmp///Oe58sor895772Xs2LF59NFHc8ABB2TUqFGpX79+TjrppMWq57333sv++++fRx55pPr9/r//9/9y0UUXJZl/6be5z2n27Nk58sgjM2TIkIwbNy7vvfde7r777uy99955/PHHq9sv6DkVeQa/+tWvsvzyy2fmzJk5+OCDc+211+a9997LJ598kqeffjqHHnpodRB4yCGHVAeEAAB8s9mjBQCAOmv06NHZfPPNF+uaoUOHZvnll0+SNGnSJN/+9rfzwgsv5I477sgdd9yRzp0758Ybb1wa5daK9ddfP//3f/+XY489NqNHj84vf/nL+dqsssoqufrqq790M++5avoMSqVSdt999+pZI23btq2eTVIbdtttt5x99tnV+3Wsvfba6dSp0yKva9u2bW644YacfvrpGTJkSF599dW8+uqrC22/xRZb5Oyzz16s2Ri16aSTTsqwYcMyduzYDBgwIAMGDJivzQ477JCPP/44L7/8cvVSZ4tryy23zIsvvpjXXnst2267bRo2bJjnn38+DRs2XOg1TZs2zVVXXZUjjjgiI0aMyAUXXJALLrhgnjaNGzfOH/7wh2y22WaLVc8ee+yR/v3758gjj5zv3C677JIzzzxznmN77713Bg4cmKFDh+bVV19dYGi4zjrr5Fvf+lbuvffejBo1KlVVVfO8vyLPoH379rn22mvzs5/9LGPHjs2f/vSn/OlPf5qv3aGHHpoTTzxxMZ4AAABfZ2a0AADwjXbhhRdWb/beuHHjTJ06dVmXtEhbb7117r///hx22GFZf/3106xZszRu3Djrr79+jj766PTv3z8dOnSo8f1q+gzmLh+WJD/84Q9rdY+bFi1apHv37tXfL86STO3bt8/f/va3XH/99endu3c23njjrLzyymnUqFGaN2+etdZaKz179swVV1yRG2+8caF7o3wV2rVrl759+6ZXr15ZY4010rBhwzRq1CirrbZaunXrlssuuyxXXHFF9d43w4YNq9FMjC/q06dPevXqlZVWWikNGzZMq1at8sEHH9Sovn79+uU3v/lNvvOd72T55ZdPw4YN07Zt2+y9997p27dvdt9998Wu57jjjsull16azTffPM2aNUvr1q2z9dZb57LLLsuFF16Yxo0bz9O+UaNGue6663LSSSflW9/6Vpo2bZoGDRqkVatW6dy5c84444z07ds3++23X5Jk2rRp88xwWZJn0LFjx/zzn//MCSeckI4dO2a55ZZLkyZNstZaa2XvvffOHXfckZNPPnmeZfcAAPhmK5W/bBFjAACA/3r77berw5ABAwZkvfXWW8YVUcnuuuuunHrqqUmShx56KO3atVvGFQEAwNJhRgsAAFAjc/dm2XjjjYUsAAAA/yVoAQAAFmncuHG5/fbbkyT77rvvMq4GAACgclhUFgAAWKBnn302Q4YMSf369XPXXXflo48+ykorrTTPXi0AAADfdIIWAABggSZNmpRLLrmk+vt69erld7/7XZo2bboMqwIAAKgslg4DAAAWaO211067du3SqFGjbLjhhrnkkkuy4447LuuyAAAAKkqpXC6Xl3URAAAAAAAAdZEZLQAAAAAAAAXZo+Vzxo6dtKxLgK9Mq1bNM378lGVdBkASYxJQeYxLQCUxJgGVxrjEN8lKKy23yDZmtMA3UKmU1K9fL6XSsq4EwJgEVB7jElBJjElApTEuwfwELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAACioTgcto0aNyuabb55TTjllnuPTp0/Peeedlx122CGbbbZZfvzjH2fIkCHLqEoAAAAAAODrqs4GLeVyOb/+9a8zZcqU+c6deOKJue6669KtW7ecfPLJqaqqymGHHZZhw4Ytg0oBAAAAAICvqzobtNx888159tln5zs+ZMiQPPjgg/nVr36V0047Lfvvv39uuummrLbaavnjH/+4DCoFAAAAAAC+rupk0PLuu+/m/PPPT58+feY7d88996Rhw4bZd999q481a9Yse++9d1599dW8/fbbX2GlAAAAAADA11mdC1pmz56dU045JR06dMjBBx883/lXXnkla6+9dpo1azbP8Y033rj6PAAAAAAAQG1osKwLWFzXX399XnnllfTr1y/16s2fE3344Yfp2LHjfMdXXnnlJMno0aO/9P6lUu3U+XXjuXy9zP31rFcvKZeXbS3UHr+W1FVzxyR/1gCVwrgEVBJjElBpjEswvzoVtLz11lv5y1/+kuOOOy7rrLNOZsyYMV+bKVOmpGnTpvMdb9KkSZJk2rRpC71/q1bNU79+nZvks9TNnDU7jRp4Ll9HrVott6xLoBb5vUpd17q1MQmoLMYloJIYk4BKY1yC/6kzQctnn32WU089NRtttFEOOeSQwvcpfUnUOn78FEnsF5RKcwbN7/3xoUyeMWtZlwMsRIvGDfLUr7tl3LhJZrZQ58z9s8bnF6gUxiWgkhiTgEpjXOKbpk2bRYeKdSZoue666/LKK6/khhtuyIQJE5IkVVVVSZKZM2dm/PjxadGiRZo1a5bp06fPd/3cYy1atPjSfgwOCzZ5xixBC9QB5bJxjLrL5xeoNMYloJIYk4BKY1yC/6kzQctjjz2WWbNmZf/995/v3IABAzJgwICcffbZadu2bcaOHTtfm48++ihJssoqqyz1WgEAAAAAgG+GOhO0nHzyyfn000/nOVZVVZUjjjgiXbp0yU9/+tOst956efbZZ9O/f/9Mnz69el+WJHn11VeTJJtuuulXWjcAAAAAAPD1VWeClk022WS+YzNmzEiSrLTSSvn+97+fJNl5553zj3/8I7fddlt69+6dJJk6dWr+8Y9/pGPHjlljjTW+spoBAAAAAICvtzoTtNTUNttsk2222SZ//vOfM2bMmKy99tq5/fbb88EHH+Scc85Z1uUBAAAAAABfI1+7oCVJLrroolx44YW55557Mm3atHTo0CHXXnttOnXqtKxLAwAAAAAAvkbqdNDSuHHjvPHGG/Mdb968eU477bScdtppy6AqAAAAAADgm6Lesi4AAAAAAACgrhK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoKAGy7qAxfXGG2/k/PPPz4svvpjZs2dnq622yoknnpg111yzus0FF1yQK6+8coHXDx06NMsvv/xXVS4AAAAAAPA1VqeClpEjR2a//fbLCiuskCOPPDKfffZZrr/++uy7777p169fVltttSTJ8OHD0759+/z85z+f7x5Nmzb9qssGAAAAAAC+pupU0PKXv/wln332WW688ca0a9cuSbLttttmjz32yHXXXZff/OY3SeYELZtttll69OixLMsFAAAAAAC+5urUHi0NGjTIbrvtVh2yJEmHDh3SsmXLvP7660mSyZMnZ/To0Vl33XWXVZkAAAAAAMA3RJ2a0XL++efPd2zMmDGZMGFC2rZtmyR58803Uy6Xq4OWadOmpXHjxqlXr05lSgAAAAAAQB1Qp4KWzxs3blxeeeWVnHfeeWnWrFkOPfTQJHOWDUuSwYMH59xzz82YMWPSrFmz9OjRIyeffPIi92gplZZ66XWK5wF1i9+z1EVzP7c+v0ClMC4BlcSYBFQa4xLMr84GLXvttVfGjBmTJDnppJOywQYbJPlf0PLyyy+nT58+adGiRR599NHceuutGTFiRK6//vqFzm5p1ap56tc38wWou1q3Xm5ZlwCF+fwClca4BFQSYxJQaYxL8D91Nmg54YQT0qhRo9x3330577zz8v777+fMM8/MNttsk+WWWy6HH354mjVrliTZeeeds+KKK+baa6/NoEGD0r179wXec/z4KZLYLyiVDJpQl4wbNynl8rKuAhbP3D9rfH6BSmFcAiqJMQmoNMYlvmnatFn0z8frbNDSo0ePJMkuu+yS448/PrfddlsOPPDAbLfddtluu+3ma7///vvn2muvzVNPPbXQoCWJwQGo08pl4xh1l88vUGmMS0AlMSYBlca4BP/ztVgna7fddkuSvPbaawtt07p16yTJ1KlTv5KaAAAAAACAr786E7RMnDgx3bt3z1lnnTXfuSlTpiRJmjRpkt69e+fQQw+dr81bb72VJGnfvv3SLRQAAAAAAPjGqDNByworrJCGDRvmnnvuydixY6uPz5w5MzfccEOaNWuWLbfcMi1btsyTTz6Z559/vrrN7Nmzc+mll6Z+/frZddddl0X5AAAAAADA11Cd2qPlzDPPzEEHHZT99tsv++23X+rVq5e77ror//nPf3LWWWelZcuWOemkk/LEE0/k8MMPT69evdKqVavcf//9GTp0aI4//viss846y/ptAAAAAAAAXxN1Kmj57ne/m7/97W+55JJLcskllyRJNtlkk1x99dXZZpttkiTt2rXLLbfckr/85S+58cYbM3PmzKy33no599xz07Nnz2VYPQAAAAAA8HVTp4KWJNliiy1yww03fGmb9ddfP5dddtlXVBEAAAAAAPBNVWf2aAEAAAAAAKg0ghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKqnNByxtvvJEjjjgiW265ZbbYYosce+yxeeedd+ZpM3369Jx33nnZYYcdstlmm+XHP/5xhgwZsowqBgAAAAAAvq7qVNAycuTI7LfffvnPf/6TI488MkcccUSee+657LvvvhkzZkx1uxNPPDHXXXddunXrlpNPPjlVVVU57LDDMmzYsGVYPQAAAAAA8HXTYFkXsDj+8pe/5LPPPsuNN96Ydu3aJUm23Xbb7LHHHrnuuuvym9/8JkOGDMmDDz6YU089Nb17906S9OzZM3vssUf++Mc/5q677lqG7wAAAAAAAPg6qVMzWho0aJDddtutOmRJkg4dOqRly5Z5/fXXkyT33HNPGjZsmH333be6TbNmzbL33nvn1Vdfzdtvv/1Vlw0AAAAAAHxN1akZLeeff/58x8aMGZMJEyakbdu2SZJXXnkla6+9dpo1azZPu4033rj6/FprrbXUawUAAAAAAL7+6tSMls8bN25cHn300RxxxBFp1qxZDj300CTJhx9+mFVXXXW+9iuvvHKSZPTo0V9pnQAAAAAAwNdXnZrR8nl77bVXxowZkyQ56aSTssEGGyRJpkyZkqZNm87XvkmTJkmSadOmfel9S6VaLrSO8zygbvF7lrpo7ufW5xeoFMYloJIYk4BKY1yC+dXZoOWEE05Io0aNct999+W8887L+++/nzPPPHOR15W+ZARo1ap56tevs5N8ANK69XLLugQozOcXqDTGJaCSGJOASmNcgv8pHLSMHz8+rVq1qs1aFkuPHj2SJLvsskuOP/743HbbbTnwwAPTrFmzTJ8+fb72c4+1aNFiofccP36KJPYLSiWDJtQl48ZNSrm8rKuAxTP3zxqfX6BSGJeASmJMAiqNcYlvmjZtFv3z8cJBy7bbbpsuXbpkjz32SLdu3dK4ceOit1piu+22W+6777689tpradu2bcaOHTtfm48++ihJssoqq3zpvQwOQF1WLhvHqLt8foFKY1wCKokxCag0xiX4n8LrZM2aNSuPPvpoTjzxxGy99dY59dRTM2TIkNqsbR4TJ05M9+7dc9ZZZ813bsqUKUnm7MOy8cYb580335xvVsurr76aJNl0002XWo0AAAAAAMA3S+Gg5ZxzzkmXLl1Sv379TJ48Of369cuhhx6a7bbbLn/+85/z+uuv12adWWGFFdKwYcPcc88988xYmTlzZm644YY0a9YsW265ZXbeeefMnDkzt912W3WbqVOn5h//+Ec6duyYNdZYo1brAgAAAAAAvrlK5fKSTfAaP3587rvvvgwYMCDPP/98yuVy9Ybz6623Xnr06JHdd999kUt21cSzzz6bgw46KKuttlr222+/1KtXL3fddVf+85//5Kyzzsree++dJDnssMMyZMiQHHjggVl77bVz++23Z/jw4fnb3/6WTp06LfT+Y8dOWuIav25KpTlr0G3y2/szecasZV0OsBAtGjfIK2d2z8cfWx+VumfunzU+v0ClMC4BlcSYBFQa4xLfNCuttOg9WpY4aPm80aNH59577829996b4cOHz+mgVEqpVMoWW2yRHj165Ac/+MGXbki/KEOHDs0ll1ySl156KUmyySab5Mgjj8w222xT3WbKlCm58MILM3DgwEybNi0dOnTICSeckC233PJL7y1omZ+gBeoGQQt1mf9JByqNcQmoJMYkoNIYl/im+cqDls8bMWJEHnjggTz66KN56aWXMrebxo0bp2vXrunRo0e23Xbb6tkvlUDQMj9BC9QNghbqMv+TDlQa4xJQSYxJQKUxLvFNU5OgpfAeLYuy7rrr5sgjj8yJJ56YHj16VB+fPn16Bg4cmKOOOipdu3bNDTfckNmzZy+tMgAAAAAAAJaaBrV9w88++yyPP/54Bg4cmEceeSSffvppkqRcLqdJkybp1q1bSqVSHnrooYwZMyZnn312Bg4cmGuuuWaJlhQDAAAAAAD4qtVa0PL0009nwIABeeCBBzJx4sQkc8KVUqmUzp07z7c/y9SpU3P99dfnoosuyosvvphzzjknZ511Vm2VAwAAAAAAsNQtUdDy0ksv5d57780///nPjB07Nkmq92JZb731sscee2SPPfbIqquuOt+1zZo1y9FHH5133303ffv2zUMPPSRoAQAAAAAA6pTCQcuOO+6YUaNGJflfuNKmTZvstttu6dGjR771rW/V6D4bbLBBkmTGjBlFSwEAAAAAAFgmCgct77//fpJU77vSo0ePdOnSJfXq1Vus+0yZMiWbbLJJtthii6KlAAAAAAAALBOFg5bvfe971fuuNG/evHABffr0SZ8+fQpfDwAAAAAAsKwUDlr+9re/1WIZAAAAAAAAdU/hoOWLxo0bl+eeey5jxozJ5MmT87Of/SxJ8txzz2WjjTZK06ZNa6srAAAAAACAirDEQcu7776bc845J4888kjK5XL18blByxlnnJGPP/44J510Uvbee+8l7Q4AAAAAAKBiLFHQ8uyzz+bII4/MlClT5glZSqVS9etRo0Zl2rRpOf300/Phhx/mmGOOWZIuAQAAAAAAKka9ohdOmDAhxxxzTCZPnpzVVlst/+///b/07dt3vna///3vs8Yaa6RcLueyyy7LK6+8skQFAwAAAAAAVIrCQcvf/va3TJgwIWuttVb69u2bffbZJ2uuueZ87XbffffcdtttWW+99VIul3PzzTcvUcEAAAAAAACVonDQ8q9//SulUinHHXdcVlhhhS9t26pVqxx77LEpl8t55plninYJAAAAAABQUQoHLe+9916SZIsttqhR+29/+9tJkrFjxxbtEgAAAAAAoKIUDlrK5fKcG9Sr2S3mtm/QoEHRLgEAAAAAACpK4aBltdVWS5K88MILNWo/ZMiQJMnqq69etEsAAAAAAICKUjho6dKlS8rlci699NLMnDnzS9uOHz8+F198cUqlUrbaaquiXQIAAAAAAFSUwkHLIYccksaNG+ff//53DjrooAwdOjQzZsyYp8306dNz3333Zd99983o0aPToEGDHHTQQUtcNAAAAAAAQCUovGHKaqutlj/+8Y/55S9/mRdffLE6QCmVSknmzHiZMGFCPvvss+r9WU4//fS0a9euFsoGAAAAAABY9grPaEmS3XbbLVdffXVWW221lMvleb4+/vjjzJo1K+VyOW3atMmFF16Yfffdt7bqBgAAAAAAWOYKz2iZa+utt86DDz6YwYMH5+mnn87777+fyZMnp0mTJmnbtm06deqUrl27plGjRrVRLwAAAAAAQMVY4qAlSerVq5ftttsu2223XW3cDgAAAAAAoE4ovHTYIYcckn79+mXq1Km1WQ8AAAAAAECdUThoGTJkSE499dRsvfXW+eUvf5nHHnsss2fPrs3aAAAAAAAAKlrhoKVTp05JkmnTpuXee+/NkUcemW233TbnnHNOXnvttVorEAAAAAAAoFIVDlpuuummPPLII/nlL3+ZjTbaKOVyOR9//HGuv/767LXXXvnhD3+Yq666KmPGjKnNegEAAAAAACpG4aAlSVZZZZX89Kc/zV133ZWBAwfm6KOPzhprrJFyuZw333wzF154Ybp165aDDjood911VyZPnlxbdQMAAAAAACxzSxS0fN4666yT4447Lvfff3/uuOOOHHTQQVlppZUye/bsPPPMM/nNb36TLl265Be/+EVtdQkAAAAAALBM1VrQ8nmbbrppfv3rX+exxx7LzTffnO233z7lcjnTp0/PfffdtzS6BAAAAAAA+Mo1WFo3fuGFF3L//ffnX//6V955553q4y1atFhaXQIAAAAAAHylajVoef311zNgwIAMHDgwo0ePTpKUy+U0aNAgW2+9dXr06JFu3brVZpcAAAAAAADLzBIHLSNHjqwOV0aOHJlkTriSJN/61rfSo0eP/PCHP0zr1q2XtCsAAAAAAICKUjhoufrqqzNw4MC8/vrrSf4Xrqy66qrZfffd06NHj6y33nq1UyUAAAAAAEAFKhy0nH/++dWvmzVrlu7du2ePPfbI9773vZRKpVopDgAAAAAAoJIVDlrq16+frbbaKj169MhOO+2UJk2a1GZdAAAAAAAAFa9w0HLsscemffv22XHHHdOoUaParAkAAAAAAKBOqFf0wttvvz0nnnhi7r777tqsBwAAAAAAoM4oHLSMHTs2SbLddtvVWjEAAAAAAAB1SeGgpVWrVkmSiRMn1loxAAAAAAAAdUnhoKV3794pl8s566yzMnny5NqsCQAAAAAAoE5oUPTCbt265e23385tt92W7bbbLltvvXU22mijtGrVKo0bN/7Sa3v27Fm0WwAAAAAAgIpROGj5wQ9+kCQplUqZMmVKBg0alEGDBi3yulKpJGgBAAAAAAC+FgoHLeVy+Uu/BwAAAAAA+LorHLQ89NBDtVkHAAAAAABAnVM4aFl99dVrsw4AAAAAAIA6p96yLgAAAAAAAKCuKjyjZfTo0YU7bdu2beFrAQAAAAAAKkXhoKVbt26FriuVSnnttdeKdgsAAAAAAFAxCgct5XL5K70OAAAAAACg0hQOWs4+++wvPT99+vRMmDAhzz//fB5//PEst9xyueCCC7LeeusV7RIAAAAAAKCiFA5a9txzzxq3ffbZZ3PYYYfl1FNPTf/+/Yt2CQAAAAAAUFHqfRWdfPe7383PfvazfPTRR7n66qu/ii4BAAAAAACWuq8kaEmSnXfeOUny4IMPflVdAgAAAAAALFVfWdDStGnTJMkHH3zwVXUJAAAAAACwVH1lQcuQIUOSJM2bN/+qugQAAAAAAFiqGiztDsrlch566KGcddZZKZVK2WyzzZZ2lwAAAAAAAF+JwkFLt27dFtmmqqoqEydOzMyZM1Mul1MqlXLQQQcV7RIAAAAAAKCiFA5aRo0atXgdNWiQY489NltttVXRLgEAAAAAACpK4aBlzz33XGSbevXqpWnTpllrrbWyww47ZPXVVy/aHQAAAAAAQMUpHLScffbZtVkHAAAAAABAnVNvWRcAAAAAAABQVy21oGXmzJmZNGnS0ro9AAAAAADAMrfYS4dNmTIlTzzxROrXr59u3brNd37QoEG57LLLMnz48JTL5ay00krZb7/9csghh6RJkya1UjQAAAAAAEAlWKwZLbfffnu6du2a4447LjfccMN856+55poce+yxeeONNzJ79uyUy+V89NFHufjii3PwwQdnwoQJtVU3AAAAAADAMlfjoOXmm2/Ob3/720ycODHlcnm+0OTVV1/NBRdckHK5nHK5nJ133jmnn356Dj744DRp0iQvvfRSzjjjjNquHwAAAAAAYJmp0dJhH3/8cc4///yUy+W0bds2v/rVr7L11lvP0+aCCy7I7NmzUyqVcsQRR+SEE06oPvfDH/4wBxxwQAYNGpRhw4alU6dOtfsuAAAAAAAAloEazWjp27dvpk6dmnbt2uXOO+/MzjvvnOWWW676/Lhx4zJkyJCUSqW0bNkyRx999DzXb7rpptl7771TLpczYMCA2n0HAAAAAAAAy0iNgpYnnniieqbKiiuuON/5xx9/PLNnz06S7LTTTgvc9P4HP/hBkmTYsGFLUi8AAAAAAEDFqFHQ8s477yRJtthiiwWef/rpp6tff3FJsbnWXnvtJMlHH320WAUCAAAAAABUqhoFLePHj0+StGnTZoHnn3322erXCwtj5s5ymTZt2mIVCAAAAAAAUKlqFLQ0aNAgSTJr1qz5zo0dOzbvvPNOSqVS1llnnbRq1WqB9xg3blySZIUVVihaKwAAAAAAQEWpUdAydybLmDFj5jv3xBNPVL/eaqutFnqPF198MUnSunXrxSoQAAAAAACgUtUoaNl8882TJI8++uh85+67777q19tvv/1C79G3b9+USqV85zvfWcwSAQAAAAAAKlONgpaddtop5XI51113XV5//fXq44MHD85jjz2WUqmUNm3a5Pvf//4Cr+/Xr1+eeeaZJMl2221XC2UDAAAAAAAsew1q0qhr167ZbLPN8uKLL2bfffdNly5dMmPGjDz99NMpl8splUo54YQTUq/evLnNRx99lJtvvjnXXnttSqVSNt544y+d9QIAAAAAAFCX1ChoSZKLL744hxxySN56663861//SpKUy+UkyT777JMf/ehH87T/4x//mBtvvLG63QorrJCzzjqrtuoGAAAAAABY5moctKyyyiq588478/e//z3/+te/Mnbs2LRr1y577rlndtlll/naN2nSpDqIWXPNNXPRRRdlww03XOKCX3rppVxyySV5/vnnM2PGjKy77rrp3bt3evbsWd3mggsuyJVXXrnA64cOHZrll19+iesAAAAAAACocdCSJE2bNk3v3r3Tu3fvRbbdcsstM2vWrHz3u9/NdtttlwYNFqurBRoxYkR69eqVFVZYIYcddliaN2+egQMH5uSTT84nn3ySQw45JEkyfPjwtG/fPj//+c8X+B4AAAAAAABqw5KnHwux9dZbZ+utt67Ve5577rmpV69e7rjjjqyyyipJkgMOOCD7779/Lr744uy7775p3rx5hg8fns022yw9evSo1f4BAAAAAAA+r96im1SGzz77LEOHDs0222xTHbIkSb169bLLLrtk6tSp+fe//53Jkydn9OjRWXfddZdhtQAAAAAAwDfBUpvRUtvq1auX/v37p1QqzXdu/PjxSZL69evnzTffTLlcrg5apk2blsaNG6devTqTKQEAAAAAAHVEnQlaSqVS2rdvP9/xqVOn5s4770yzZs3yrW99K3fffXeSZPDgwTn33HMzZsyYNGvWLD169MjJJ5+8yD1aFpDjfKN5HlC3+D1LXTT3c+vzC1QK4xJQSYxJQKUxLsH86kzQsiDlcjmnnXZaxo4dm2OOOSaNGzfO8OHDkyQvv/xy+vTpkxYtWuTRRx/NrbfemhEjRuT6669f6OyWVq2ap359M1+Auqt16+WWdQlQmM8vUGmMS0AlMSYBlca4BP9TZ4OWcrmc3/3udxkwYEA6d+6co48+OkmyzTbbZLnllsvhhx+eZs2aJUl23nnnrLjiirn22mszaNCgdO/efYH3HD9+iiT2C0olgybUJePGTUq5vKyrgMUz988an1+gUhiXgEpiTAIqjXGJb5o2bRb98/E6GbRUVVXllFNOyb333puOHTvm8ssvT8OGDZMk2223Xbbbbrv5rtl///1z7bXX5qmnnlpo0JLE4ADUaeWycYy6y+cXqDTGJaCSGJOASmNcgv+pc0HLtGnT8vOf/zyDBw9O586dc/nll6dFixaLvK5169ZJ5uzpAgAAAAAAUBvq1IYkVVVV6dOnTwYPHpwddtgh11xzzXwhS+/evXPooYfOd+1bb72VJGnfvv1XUisAAAAAAPD1V6eClosvvjiPP/54unbtmksuuSSNGzeer03Lli3z5JNP5vnnn68+Nnv27Fx66aWpX79+dt1116+yZAAAAAAA4GusRkuH9evXr1Y77dmz52Jf89FHH+Wvf/1rGjRokC5dumTgwIHztdlqq61y0kkn5Yknnsjhhx+eXr16pVWrVrn//vszdOjQHH/88VlnnXVq4R0AAAAAAADUMGg55ZRTUiqVaq3TIkHLc889l6qqqiTJ73//+wW2ufrqq7PtttvmlltuyV/+8pfceOONmTlzZtZbb72ce+65hfoFAAAAAABYmBoFLUlSLpcX2aZevXpZbbXVstxyy2XmzJkZM2ZMpk2bNqejBg2WaH+UnXfeOW+88UaN2q6//vq57LLLCvcFAAAAAABQEzUKWl5//fUFHj/vvPNyzTXXpH379jnhhBPStWvXNGnSpPr87Nmz8/TTT+e8887La6+9lq222ipnnHFG7VQOAAAAAACwjNUreuGDDz6Ya665Juuuu27+8Y9/ZNddd50nZEnmzHDZaqutcuutt2aTTTbJrbfemr59+y5x0QAAAAAAAJWgcNBy/fXXp1Qq5aSTTsoKK6zwpW0bNWqUX/ziFymXy7nllluKdgkAAAAAAFBRCgct//73v5Mk3/72t2vUfqONNkqSvPnmm0W7BAAAAAAAqCiFg5b69esnSSZNmlSj9h9//HGSpFmzZkW7BAAAAAAAqCiFg5a11147SXLXXXfVqP0NN9yQJNlggw2KdgkAAAAAAFBRCgctP/rRj1Iul3P11VfntttuW2i7crmcSy+9NLfffntKpVJ+8pOfFO0SAAAAAACgojQoemHPnj3zj3/8Iy+99FLOPPPMXH/99dlmm22y5pprpkmTJpk2bVreeuutPPLIIxkzZkySZKeddkr37t1rrXgAAAAAAIBlqXDQ0qhRo1x55ZU59thjM3To0IwcOTJvv/32fO3K5XKSpEePHvn9739fuFAAAAAAAIBKUzhoSZIVV1wxN954Yx588MHcc889eeqppzJx4sTq861bt862226bvfbaK506dVriYgEAAAAAACrJEgUtc+24447ZcccdkyTTp0/Pp59+mpYtW6ZRo0a1cXsAAAAAAICKVCtBy+c1adIkTZo0qe3bAgAAAAAAVJx6y7oAAAAAAACAuqpGM1o22mijJMkaa6yR+++/f55ji6tUKuW1114rdC0AAAAAAEAlqVHQUi6Xa3QMAAAAAADgm6RGQUufPn2SJCussMJ8xwAAAAAAAL6pFitoWdQxAAAAAACAb5J6y7oAAAAAAACAuqpGM1oWZfbs2ZkwYUKSZPnll0+DBrVyWwAAAAAAgIpWKBGZNGlS+vXrlyeffDLPP/98Jk6cOM/5VVZZJR07dkzXrl3TvXv3NG3atFaKBQAAAAAAqCSLHbRceeWVufbaazNp0qQkSblcnq/NBx98kA8//DCDBg3K2WefnWOPPTYHHHDAklcLAAAAAABQQWoctMycOTMnnXRSBg0aVB2uNGrUKOuuu27atm2bZs2aZebMmZk8eXLee++9vPvuu0mSiRMn5qyzzsozzzyTCy64IPXr11867wQAAAAAAOArVuOg5ayzzsoDDzyQJFl77bXTp0+fdOvWLU2aNFlg+/Hjx2fAgAG54YYb8t577+WBBx7I2WefndNOO612KgcAAAAAAFjG6tWk0WuvvZY77rgjpVIpu+22W+6+++7stttuCw1ZkqRVq1bp1atX+vfvn+7du6dcLufWW2/NyJEja614AAAAAACAZalGQcvdd9+dcrmcjTbaKH/605/SqFGjGnfQtGnTnHfeeVlnnXUye/bs3H333YWLBQAAAAAAqCQ1ClqeeeaZlEqlHHzwwYX2WGnYsGEOOOCAlMvlDBs2bLGvBwAAAAAAqEQ1ClpGjx6dJNlkk00Kd7T55psnSd5+++3C9wAAAAAAAKgkNQpapkyZkiRp3bp14Y7atGmTJJk0aVLhewAAAAAAAFSSGgUts2bNSpLF2pvli5o1a5YkmTlzZuF7AAAAAAAAVJIaBS1zlUqlwh0tybUAAAAAAACVaLGCFgAAAAAAAP5H0AIAAAAAAFBQg8Vp/Oyzz6Zx48aFOpo+fXqh6wAAAAAAACrVYgUthx9++NKqAwAAAAAAoM6pcdBSLpeXZh0AAAAAAAB1To2ClrPPPntp1wEAAAAAAFDn1Cho2XPPPZd2HQAAAAAAAHVOvWVdAAAAAAAAQF0laAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFFQ5aqqqqarMOAAAAAACAOqdw0HL00UfnsMMOy/PPP1+b9QAAAAAAANQZhYOWV155JU888URmzpxZm/UAAAAAAADUGYWDlqlTpyZJ1l9//VorBgAAAAAAoC4pHLRstNFGSZJnn3221ooBAAAAAACoSwoHLb/97W/TokWL/PrXv86dd96ZyZMn12ZdAAAAAAAAFa9B0QsHDRqUbbfdNgMGDMhpp52W008/Pe3atUurVq3SqFGjhV5XKpVy/fXXF+0WAAAAAACgYhQOWi6//PKUSqUkSblcTrlczrvvvpt33313ge1LpVLK5XL1NQAAAAAAAHVd4aBliy22qM06AAAAAAAA6pzCQcuNN95Ym3UAAAAAAADUOfWWdQEAAAAAAAB1VeEZLV80e/bsvP766xkzZkwmT56cHj16JEnee++9tG/fvra6AQAAAAAAqBhLHLRMmDAhl112Wfr27ZspU6ZUH58btPTp0yezZs3Kb37zm3z/+99f0u4AAAAAAAAqxhItHTZixIjsueeeuemmmzJ58uSUy+WUy+V52owePTpvvfVWDjvssNx5551LVCwAAAAAAEAlKRy0TJ8+PUcccUTGjBmT5s2b56ijjsr//d//zdfupz/9aZZffvnMnj07Z555ZkaOHLlEBQMAAAAAAFSKwkHLTTfdlFGjRmWllVbK3XffneOPPz7f+9735mt31FFH5Y477siqq66aqqqq3HjjjUtUMAAAAAAAQKUoHLTcf//9KZVKOe6447L66qt/ads11lgjxx13XMrlcp588smiXQIAAAAAAFSUwkHL22+/nSTZZpttatR+7myXMWPGFO0SAAAAAACgohQOWmbOnJkkady4cY3aN2rUaE6H9Qp3CQAAAAAAUFEKpx4rr7xykuTf//53jdo/99xz81wHAAAAAABQ1xUOWr73ve+lXC7nyiuvXGTb6dOn55JLLkmpVMqWW25ZtEsAAAAAAICKUjho6d27d+rXr5+nn346xx57bEaNGrXAdi+99FIOOuigDB8+PKVSKQcccEDhYgEAAAAAACpJg6IXrrvuujnppJNy7rnnZtCgQRk0aFBWXHHF6vM/+clP8v7772fcuHHVx44++uh06NBhySoGAAAAAACoEIWDliQ55JBD0qJFi5xzzjmZMmVKxo8fX33uhRdeqH7dqFGjHHfccfnpT3+6JN0BAAAAAABUlCUKWpJkn332yS677JK77747zzzzTN57771MmTIlTZo0yWqrrZYtttgiPXv2TOvWrWujXgAAAAAAgIqxxEFLkrRo0SIHHHCA/VcAAAAAAIBvlHrLugAAAAAAAIC6qlZmtLz++uu599578+STT+bDDz/MpEmTsuKKK2b11VfP9ttvn9122y2rr756bXQFAAAAAABQMZYoaJkxY0Z++9vfpn///imXyymXy9XnPvzww3z44Yd5/vnnc9lll+WII47IMcccs8QFAwAAAAAAVIrCQctnn32WPn365PHHH0+5XE7Tpk2z5ZZbZq211kqTJk0yderUjBw5MkOHDs306dNz6aWXZtKkSTnllFNqs34AAAAAAIBlpnDQMmDAgAwePDilUikHHHBATjzxxDRr1my+dpMnT87ZZ5+dO++8M9dff326deuWLbbYYomKBgAAAAAAqAT1il7497//PaVSKT179szpp5++wJAlSVq0aJE//OEP2WWXXVIul3PDDTcULhYAAAAAAKCSFA5a3nrrrSTJoYceWqP2RxxxRJLkpZdeKtolAAAAAABARSkctMyYMSNJ0qZNmxq1b9u2bZLk008/LdplkjlBzeGHH55OnTpl0003Tc+ePdOvX7952kyfPj3nnXdedthhh2y22Wb58Y9/nCFDhixRvwAAAAAAAF9UOGhZb731kiTPPfdcjdoPHz48SbL22msX7TIjRoxIr1698sYbb+Swww7Lr371qzRt2jQnn3xy/vrXv1a3O/HEE3PdddelW7duOfnkk1NVVZXDDjssw4YNK9w3AAAAAADAFxUOWg4++OCUy+Wce+65GTdu3Je2raqqygUXXJBSqZQDDjigaJc599xzU69evdxxxx056qij0qtXr9x88835zne+k4svvjhTpkzJkCFD8uCDD+ZXv/pVTjvttOy///656aabstpqq+WPf/xj4b4BAAAAAAC+qHDQsttuu+XII4/Mu+++mx/96Efp169fpk+fPl+7YcOGpVevXnnhhReyxx57ZK+99irU32effZahQ4dmm222ySqrrPK/N1CvXnbZZZdMnTo1//73v3PPPfekYcOG2XfffavbNGvWLHvvvXdeffXVvP3224X6BwAAAAAA+KIGRS/8yU9+kiRp2rRpPvzww5x66qk57bTTsvrqq2f55ZfPjBkzMmrUqEydOrX6mv79+6d///4LvF+pVMprr7220P7q1auX/v37p1QqzXdu/PjxSZL69evnlVdeydprr51mzZrN02bjjTdOkrzyyitZa621Fuu9AgAAAAAALEjhoOWFF16Y5/tyuZxZs2blnXfeWdKaFqhUKqV9+/bzHZ86dWruvPPONGvWLN/61rfy4YcfpmPHjvO1W3nllZMko0ePXkQ/tVPv14XnAXWL37PURXM/tz6/QKUwLgGVxJgEVBrjEsyvcNDSp0+f2qyjkHK5nNNOOy1jx47NMccck8aNG2fKlClp2rTpfG2bNGmSJJk2bdpC79eqVfPUr194NTWAZa516+WWdQlQmM8vUGmMS0AlMSYBlca4BP9TZ4OWcrmc3/3udxkwYEA6d+6co48+ukbXLWjpsbnGj58iif2CUsmgCXXJuHGTUi4v6ypg8cz9s8bnF6gUxiWgkhiTgEpjXOKbpk2bRf98vHDQsixVVVXllFNOyb333puOHTvm8ssvT8OGDZPM2fh++vTp810z91iLFi2+9N4GB6AuK5eNY9RdPr9ApTEuAZXEmARUGuMS/E+tBS2vvfZannnmmYwZMyZTp05N06ZN07Zt22y++eYL3DOlqGnTpuXnP/95Bg8enM6dO+fyyy+fJzxp27Ztxo4dO991H330UZJklVVWqbVaAAAAAACAb7YlDlpef/31/Pa3v81LL7200DYbbLBBzj333Gy44YZL1FdVVVX69OmTxx9/PDvssEMuuuiiNG7ceJ42G2+8cfr375/p06dX78uSJK+++mqSZNNNN12iGgAAAAAAAOZaop3fhwwZkp/85Cd56aWXUi6XUy6Xs9xyy2XllVdO8+bNq4+98cYb2XffffPUU08tUbEXX3xxHn/88XTt2jWXXHLJfCFLkuy8886ZOXNmbrvttupjU6dOzT/+8Y907Ngxa6yxxhLVAAAAAAAAMFfhGS0TJkzI8ccfn+nTp2eFFVbIMccck1122SUrrbRSdZsPP/ww9913Xy6//PJMnDgxJ510Uu699960bNlysfv76KOP8te//jUNGjRIly5dMnDgwPnabLXVVtlmm22yzTbb5M9//nPGjBmTtddeO7fffns++OCDnHPOOUXfLgAAAAAAwHwKBy3XX399Jk6cmNatW+fWW29d4EyRVVZZJb179063bt2y3377Zdy4cbnzzjvz05/+dLH7e+6551JVVZUk+f3vf7/ANldffXVWXnnlXHTRRbnwwgtzzz33ZNq0aenQoUOuvfbadOrUabH7BQAAAAAAWJjCQcujjz6aUqmUY489dpHLcbVv3z7HHntszjjjjNx///2Fgpadd945b7zxRo3aNm/ePKeddlpOO+20xe4HAAAAAACgpgrv0fLuu+8mSbbffvsatd9uu+3muQ4AAAAAAKCuKxy0zF3Gq2HDhjVqP7fd9OnTi3YJAAAAAABQUQoHLausskqS5OWXX65R+7ntVl555aJdAgAAAAAAVJTCQUvnzp1TLpdzySWXZObMmV/adubMmbn44otTKpXSuXPnol0CAAAAAABUlMJBS69evVKvXr28+uqr+elPf5oRI0YssN2bb76ZQw89NK+++mpKpVJ69epVuFgAAAAAAIBK0qDohR06dMjPfvazXHrppRk2bFh++MMfZu211866666bZs2aZerUqRkxYkRGjhxZfc0xxxyTDh061ErhAAAAAAAAy1rhoCVJ+vTpk+bNm+fiiy/OtGnT8tZbb80TrJTL5SRJ48aNc8IJJ6R3795LVCwAAAAAAEAlWaKgJUkOOeSQ7LHHHrnnnnsydOjQjBkzJlOmTEmzZs3Stm3bdOrUKT169EirVq1qo14AAAAAAICKscRBS5K0bt06vXv3NmMFAAAAAAD4Rqm3rAsAAAAAAACoq2o0o2Xo0KG12ukWW2xRq/cDAAAAAABYFmoUtPTq1SulUqlWOiyVSnnttddq5V4AAAAAAADLUo33aCmXy0uzDgAAAAAAgDqnRkHLDTfcsLTrAAAAAAAAqHNqFLR07tx5adcBAAAAAABQ59Rb1gUAAAAAAADUVTXeo+XLjBs3Ln379s2zzz6bDz74IFOmTMkDDzyQJLnggguy4YYbZtddd62NrgAAAAAAACrGEgctV199dS655JJUVVUlScrlckqlUvX5e++9N1dffXVuvfXWXHzxxVlxxRWXtEsAAAAAAICKsERLh51//vm54IILMnPmzDRu3DgdO3acr8306dNTLpczbNiwHH300SmXy0vSJQAAAAAAQMUoHLS8+OKLufrqq5MkBx54YJ544olcd91187V78MEHc+CBB6ZcLufFF1/MXXfdVbxaAAAAAACAClI4aLnxxhuTJLvuumtOO+20NG/efJ4lw+Zq1qxZTjvttPTo0SPlcjn33HNP8WoBAAAAAAAqSOGgZdiwYSmVSjn44INr1L5Xr15Jktdff71olwAAAAAAABWlcNAybty4JMlaa61Vo/bt2rVLkkyePLlolwAAAAAAABWlcNDSvHnzJMmECRNq1H7s2LFJkuWWW65olwAAAAAAABWlcNCy/vrrJ0kGDRpUo/Z9+/ZNkmywwQZFuwQAAAAAAKgohYOWXXfdNeVyOZdddllefvnlL217//335/rrr0+pVMoPfvCDol0CAAAAAABUlAZFL9xnn31yyy235D//+U/233///PCHP8yGG25Yff6JJ57I+++/n4ceeiiDBw9OuVzOWmutlX322adWCgcAAAAAAFjWCgctDRo0yNVXX51DDjkkI0eOTL9+/ZIkpVIpSXLYYYdVty2Xy1lttdVyxRVXpFGjRktWMQAAAAAAQIUovHRYkqy66qq56667cvTRR6dVq1Ypl8vzfTVv3jwHHXRQ+vbtm7XWWquWygYAAAAAAFj2Cs9omatp06Y57rjjctxxx+XNN9/Me++9l8mTJ6dp06ZZbbXVsuGGG6Z+/fq1USsAAAAAAEBFKRy0jBkzJquttto8x9Zbb72st956S1wUAAAAAABAXVB46bBu3brl4IMPzl133ZXJkyfXZk0AAAAAAAB1QuGgZfbs2XnmmWfym9/8Jl26dMkvfvGLPPLII/nss89qsz4AAAAAAICKVTho+cMf/pCtttoq9erVy/Tp03Pffffl6KOPzjbbbJM//OEPefnll2uzTgAAAAAAgIpTeI+WvfbaK3vttVc+/vjj3Hfffbn33nvz4osvZvz48bnpppty0003Za211kqPHj2y++67Z/XVV6/NugEAAAAAAJa5wjNa5mrTpk169eqVv//97xk0aFCOP/74rLfeeimXyxk5cmQuuuii7LTTTjnwwANzxx13ZNKkSbVRNwAAAAAAwDK3xEHL57Vv3z5HHXVU7rnnnvTr1y9HHHFE1lhjjcyePTvPPvtszjjjjGyzzTa12SUAAAAAAMAyU3jpsEXZcMMNs+GGG2b77bfPVVddlUceeSRJMmPGjKXVJQAAAAAAwFdqqQQtTz/9dAYMGJCHHnoo48ePrz6+3HLLZeedd14aXQIAAAAAAHzlai1oefHFFzNgwID885//zNixY5Mk5XI5DRo0SJcuXdKzZ8907do1jRo1qq0uAQAAAAAAlqklClpef/31DBw4MAMHDsyoUaOSzAlXkmSTTTZJz549s+uuu6ZVq1ZLXikAAAAAAECFKRy07LbbbnnrrbeS/C9cadu2bXbffff06NEj66yzTu1UCAAAAAAAUKEKBy0jRoxIkrRo0SLdu3dPjx490rlz51orDAAAAAAAoNIVDlq222679OjRI926dUvjxo1rsyYAAAAAAIA6oXDQcuWVV9ZmHQAAAAAAAHVO4aDli1566aU899xzGTNmTCZPnpw//OEPSZL7778/HTt2zGqrrVZbXQEAAAAAAFSEJQ5ann/++Zx55pl544035jk+N2i58MILM2rUqBx22GE59thjUyqVlrRLAAAAAACAilBvSS5+4IEH0qtXr7zxxhspl8upV69eyuXyPG1Gjx6dqqqqXHHFFfntb3+7RMUCAAAAAABUksJBywcffJBf/epXmTVrVjbddNP89a9/zeDBg+dr97e//S2bbbZZyuVy7rjjjgwZMmSJCgYAAAAAAKgUhYOW6667LtOnT8+mm26am266KVtttVWaNGkyX7vNN988N9xwQ7797W8nSW677bbCxQIAAAAAAFSSwkHL4MGDUyqV8vOf/zyNGjX60raNGzdOnz59Ui6X88ILLxTtEgAAAAAAoKIUDlrGjBmTJNl0001r1P5b3/pWkmT8+PFFuwQAAAAAAKgohYOW+vXrJ0mqqqpq1H7atGlJssDlxQAAAAAAAOqiwkFL+/btkyTPPPNMjdo/8sgj81wHAAAAAABQ1xUOWrbffvuUy+VcdNFF+fTTT7+07bvvvptLLrkkpVIp22yzTdEuAQAAAAAAKkrhoKV3795ZYYUV8v7772evvfZKv379MnLkyOrzVVVVGTlyZK655prss88+mTBhQpo1a5aDDjqoVgoHAAAAAABY1hoUvbBly5a56KKLctRRR+W9997LqaeemiQplUpJko4dO1a3LZfLadCgQc4777y0bt16CUsGAAAAAACoDIVntCTJ9773vdx+++357ne/m3K5vNCvjTbaKDfeeGN22GGH2qobAAAAAABgmSs8o2WuDTbYIDfffHPefPPNPP3003n//fczefLkNGnSJG3btk2nTp2y6aab1katAAAAAAAAFWWJg5a51ltvvay33nq1dTsAAAAAAICKt0RLhwEAAAAAAHyTFZ7R8sYbb2TIkCF57rnnMm7cuEyYMCGlUinLLbdc2rdvn44dO2aHHXbI6quvXpv1AgAAAAAAVIzFDlqee+65XHjhhRk2bNhC27zwwgu555578sc//jHf//73c9JJJ2XDDTdcokIBAAAAAAAqzWItHXb99dfnwAMPzLBhw1Iul6u/WrRokZVXXjktW7ZM/fr1q4/Pnj07TzzxRPbee+/cfPPNS+s9AAAAAAAALBM1ntFy880355xzzkm5XE6jRo3Ss2fP7Lrrrtlkk03SokWLedp++OGHeeGFFzJgwIA8/PDDmTVrVs4666w0adIke+21V62/CQAAAAAAgGWhRkHLhx9+mPPOOy/lcjnrrrtuLrnkkqyzzjoLbb/KKquke/fu6d69e95444384he/yIgRI3L22WenW7duadmyZW3VDwAAAAAAsMzUaOmwu+++O9OmTUubNm1yww03fGnI8kUdOnTIddddl5YtW2bKlCnp379/4WIBAAAAAAAqSY2ClkceeSSlUik//elP07p168XuZJVVVsl+++2XcrmcJ554YrGvBwAAAAAAqEQ1ClrefffdJMmWW25ZuKOtt946SfLmm28WvgcAAAAAAEAlqVHQ8umnnyaZMzOlqPbt2ydJxo8fX/geAAAAAAAAlaRGQUtVVVWSpEmTJoU7at68eZJkxowZhe8BAAAAAABQSWoUtJTL5TmN69Wo+YI7+u+1c+8FAAAAAABQ1xVPTgAAAAAAAL7hBC0AAAAAAAAFLVbQUiqVllYdAAAAAAAAdU6DxWn8ne98Z2nVAQAAAAAAUOfUeEZLuVxe4q/adtVVV2Xrrbde4LkLLrggHTp0WODXp59+Wuu1AAAAAAAA3zw1mtGy5557Lu06Ftujjz6aiy++OCussMICzw8fPjzt27fPz3/+8/nONW3adGmXBwAAAAAAfAPUKGg5++yzl3YdNVYul3PzzTfnnHPOSVVV1ULbDR8+PJtttll69OjxFVYHAAAAAAB8kyzWHi2V4Mc//nFefPHFdOnSJZ988kk+/PDD+dpMnjw5o0ePzo9+9KNlUCEAAAAAAPBNUeM9WirF6NGj8/vf/z7XXHNNmjdvvsA2b775ZsrlctZdd90kybRp0zJ79uyvskwAAAAAAOAboM7NaHn44YfTqFGjL20zfPjwJMngwYNz7rnnZsyYMWnWrFl69OiRk08+2R4tAAAAAABArahzQcuiQpbkf0HLyy+/nD59+qRFixZ59NFHc+utt2bEiBG5/vrrU6/egifzlEq1Wm6d53lA3eL3LHXR3M+tzy9QKYxLQCUxJgGVxrgE86tzQUtNbLPNNlluueVy+OGHp1mzZkmSnXfeOSuuuGKuvfbaDBo0KN27d5/vulatmqd+/Tq3mhpAtdatl1vWJUBhPr9ApTEuAZXEmARUGuMS/M/XMmjZbrvtst122813fP/998+1116bp556aoFBy/jxUySxX1AqGTShLhk3blLK5WVdBSyeuX/W+PwClcK4BFQSYxJQaYxLfNO0abPon49/LYOWhWndunWSZOrUqQttY3AA6rJy2ThG3eXzC1Qa4xJQSYxJQKUxLsH/1GidrCFDhmTEiBFLu5Za07t37xx66KHzHX/rrbeSJO3bt/+qSwIAAAAAAL6GahS0nHHGGdl9993zwQcfVB/r169f+vXrl9mzZy+14opq2bJlnnzyyTz//PPVx2bPnp1LL7009evXz6677roMqwMAAAAAAL4uarR02NixY1Mul6s3lk+SU045JfXq1Uv37t3TtGnTpVZgESeddFKeeOKJHH744enVq1datWqV+++/P0OHDs3xxx+fddZZZ1mXCAAAAAAAfA3UaEZLgwZz8pi33357nuPlCl2Er127drnllluy5ZZb5sYbb8yf//znTJ06Neeee26OPvroZV0eAAAAAADwNVGjGS3rrLNOXn755Rx//PHZeeed55nZcsUVV6Rhw4aL1WmfPn0Wr8qFuPHGGxd6bv31189ll11WK/0AAAAAAAAsSI2ClgMPPDC/+tWvMmbMmPz1r3+tPl4ul3PVVVctdqe1FbQAAAAAAAAsSzUKWvbYY4/MnDkzd911Vz7++OPMmjUro0ePTqlUymqrrba0awQAAAAAAKhINQpakmTvvffO3nvvXf39hhtumCQZMGBAmjZtWvuVAQAAAAAAVLh6y7oAAAAAAACAuqrGM1q+6PXXX6/NOgAAAAAAAOqcwkFLklRVVeWll17KW2+9lQkTJqRcLqdly5ZZZ5110rFjxzRq1Ki26gQAAAAAAKg4hYKWkSNH5uqrr84///nPTJs2bYFtmjZtmu7du+ewww7Luuuuu0RFAgAAAAAAVKLF3qPlqquuyh577JG+fftm6tSpKZfLC/yaOnVq+vXrlx49euTyyy9fGrUDAAAAAAAsU4s1o+Wss87KzTffnHK5nCRZa6210q1bt6y99tpp06ZN6tevn4kTJ2b48OEZMmRIXn755cyaNSsXX3xxPvroo/z2t79dKm8CAAAAAABgWahx0NK/f//cdNNNSZI111wzv/vd77LVVlt96TXPP/98Tj/99Lz55pu57bbb0rFjx+y5555LVjEAAAAAAECFqNHSYTNmzMif/vSnlEqlbLzxxunXr98iQ5Yk+c53vpN//OMf+fa3v51yuZw///nPmTFjxhIXDQAAAAAAUAlqFLTce++9+fjjj9OsWbNcccUVadq0aY07aNKkSS677LK0aNEin3zySQYOHFi4WAAAAAAAgEpSo6DloYceSqlUyl577ZWVVlppsTtp3bp1DjjggJTL5Tz00EOLfT0AAAAAAEAlqlHQ8vrrrydJfvCDHxTuqGvXrkmS1157rfA9AAAAAAAAKkmNgpaPP/44SdK+ffvCHbVr126eewEAAAAAANR1NQpa6tevnyRp0KBB4Y5KpdI8/wUAAAAAAKjrahS0tG7dOkny7rvvFu7o/fffn+deAAAAAAAAdV2NgpYNN9wwSfLII48U7uihhx5Kkmy00UaF7wEAAAAAAFBJahS0bLvttimXy7nlllvyySefLHYn48ePzy233JJSqZSuXbsu9vUAAAAAAACVqEZBy+677542bdpk8uTJOfHEE1NVVVXjDmbMmJFjjjkmkyZNSuvWrfPDH/6wcLEAAAAAAACVpEZBS9OmTfOLX/wi5XI5Q4YMyYEHHpjhw4cv8rrXXnst++yzT55//vmUSqX8+te/TuPGjZe4aAAAAAAAgErQ4P+3d9/RUZRtH8d/qfQWOgFE0A2SRguhSG8CKkU6ESlSHpqiDwoK+FrhQYoUUYr0FgREmjQFpCtNpIj0FiCRHtKTef/g7MqmQDKUTcL3cw6HZOq1k91rZ+aa+75Tu2CrVq30119/ac6cOTp48KCaN2+u8uXLKyAgQM8//7xy584td3d33bp1S6dOndL27du1d+9e2/rdunVT06ZNH8uLAAAAAAAAAAAAcIRUF1ok6YMPPlDhwoU1btw4xcXF6cCBAzpw4ECKyxuGIXd3d73zzjvq0qXLQ4YKAAAAAAAAAACQvqSq67B7de/eXStXrlTLli2VLVs2GYaR7L+sWbOqdevWWr16NUUWAAAAAAAAAACQKaWpRYvVs88+qxEjRuizzz7T4cOHdfLkSd28eVNRUVHKnTu3nnvuOZUvX17u7u6POl4AAAAAAAAAAIB0w1ShxcrFxUV+fn7y8/N7VPEAAAAAAAAAAABkGGnuOgwAAAAAAAAAAAB3UWgBAAAAAAAAAAAwiUILAAAAAAAAAACASRRaAAAAAAAAAAAATKLQAgAAAAAAAAAAYBKFFgAAAAAAAAAAAJMotAAAAAAAAAAAAJhEoQUAAAAAAAAAAMAk04WWsmXLqly5coqMjEzTPAAAAAAAAAAAgMzCNTULde/eXZUrV1bFihVVvnx5ZcmSRZJkGEaK69xvHgAAAAAAAAAAQGaQqkLL9u3btWPHDkmSi4uLypUrZ5t3+vRpu98BAAAAAAAAAACeFqkqtEycOFF79+7V3r17dfToUR08eFBOTk4yDEOvvfaasmXLJm9vb/n4+MjHx8e2npOT02MLHAAAAAAAAAAAwNFSVWhp2LChGjZsKEmKiorS/v371bVrVzk5OalIkSK6dOmSfv/9d/3+++92xZUePXrIx8dH5cqVk7e3t0qXLv14XgUAAAAAAAAAAIADpKrQcq+sWbOqWrVqtt/XrFmjyMhIHTp0SH/++af+/PNPbd68WZKSFF+yZcumF154QfPnz3800QMAAAAAAAAAADhQmgstyfHw8FCtWrVUq1YtSVLZsmUlSePHj9fJkyd19OhRHT58WCEhIdq3b9+j2CUAAAAAAAAAAIDDparQMm/ePFWqVElly5ZN07grtWrVUuPGjW2/37x5U0eOHEl7lAAAAAAAAAAAAOlQqgotn332mZycnJQjRw6VL19eFStWtM1LS+ElT548dt2OAQAAAAAAAAAAZGSpKrS0adNG+/bt06lTp7Rt2zZt377dNq9Zs2by8fGRt7e3fH195e3t/diCBQAAAAAAAAAASE9SVWj59NNPJUk3btzQvn37tGfPHs2YMUOSdPHiRV28eFHr169Pst7s2bPl5+encuXKKW/evI8uagAAAAAAAAAAgHQgVYUWq7x586pevXqqV6+erdCydOlSnTp1SocOHdKhQ4d09OhRRURESJLGjx9vW7do0aLy9vaWt7e3evfu/QhfAgAAAAAAAAAAgGOkqdCSnNKlS8vb21uvvPKKJCkhIUHlypWTJHXo0EHHjh3TX3/9pZCQEIWEhGjjxo0UWgAAAAAAAAAAQKbw0IWWxJydnW0/Dxo0SNmyZZMknTlzRocPH9bhw4cf9S4BAAAAAAAAAAAcwnShJSAgQJLk4uKSqnmlSpVSqVKl1KxZM7O7BAAAAAAAAAAASFdMF1rmzp1rah4AAAAAAAAAAEBm4fzgRQAAAAAAAAAAAJAcCi0AAAAAAAAAAAAmUWgBAAAAAAAAAAAwiUILAAAAAAAAAACASRRaAAAAAAAAAAAATKLQAgAAAAAAAAAAYBKFFgAAAAAAAAAAAJMotAAAAAAAAAAAAJhEoQUAAAAAAAAAAMAkCi0AAAAAAAAAAAAmUWgBAAAAAAAAAAAwiUILAAAAAAAAAACASRRaAAAAAAAAAAAATKLQAgAAAAAAAAAAYBKFFgAAAAAAAAAAAJMotAAAAAAAAAAAAJhEoQUAAAAAAAAAAMAkCi0AAAAAAAAAAAAmUWgBAAAAAAAAAAAwiUILAAAAAAAAAACASRRaAAAAAAAAAAAATKLQAgAAAAAAAAAAYBKFFgAAAAAAAAAAAJMotAAAAAAAAAAAAJhEoQUAAAAAAAAAAMAkCi0AAAAAAAAAAAAmUWgBAAAAAAAAAAAwKUMXWqZOnaoaNWokOy8qKkqjR49W3bp15e/vr3bt2mnnzp1POEIAAAAAAAAAAJCZZdhCy5YtWzRhwoQU57/77ruaMWOG6tevr/fff1+xsbF68803tWfPnicYJQAAAAAAAAAAyMwyXKHFMAzNmzdPffv2VWxsbLLL7Ny5Uxs3btR7772noUOHqmPHjpo3b56KFi2qL7744glHDAAAAAAAAAAAMqsMV2hp166dPv30UwUGBsrb2zvZZVauXCk3Nze1bdvWNi179uxq3bq1Dh8+rDNnzjyhaAEAAAAAAAAAQGaW4QotISEh+uSTTzR9+nTlyJEj2WUOHTqkZ599VtmzZ7ebbi3MHDp06LHHCQAAAAAAAAAAMj9XRweQVr/88ovc3d3vu8yVK1fk5+eXZHqhQoUk3S3WpMTJ6eHiy2w4HkDGwmcWGZH1fcv7F0B6QV4CkJ6QkwCkN+QlIKkMV2h5UJFFku7cuaNs2bIlmZ41a1ZJUmRkZLLreXjkkItLhmvkAwA2+fPncnQIgGm8fwGkN+QlAOkJOQlAekNeAv6V4Qotj4JTCuXWa9fuUIlNxMmJpAlkJFev3pZhODoKIG2s3zW8fwGkF+QlAOkJOQlAekNewtOmQIEH3x/PlIWW7NmzKyoqKsl067ScOXOmuC7JAUBGZhjkMWRcvH8BpDfkJQDpCTkJQHpDXgL+lSn7ySpWrJjCwsKSTA8NDZUkFS5c+EmHBAAAAAAAAAAAMqFMWWjx9vbWiRMnkrRqOXz4sCTJ19fXEWEBAAAAAAAAAIBMJlMWWl566SXFxMRo0aJFtmkRERFasmSJ/Pz8VLJkSQdGBwAAAAAAAAAAMotMOUZLzZo1VbNmTX355Ze6dOmSnn32WS1evFiXL1/WyJEjHR0eAAAAAAAAAADIJDJloUWSxo8fr3HjxmnlypWKjIyUl5eXvvvuO1WuXNnRoQEAAAAAAAAAgEwiQxda5s6dm+K8HDlyaOjQoRo6dOgTjAgAAAAAAAAAADxNMuUYLQAAAAAAAAAAAE8ChRYAAAAAAAAAAACTKLQAAAAAAAAAAACYRKEFAAAAAAAAAADAJAotAAAAAAAAAAAAJlFoAQAAAAAAAAAAMIlCCwAAAAAAAAAAgEkUWgAAAAAAAAAAAEyi0AIAAAAAAAAAAGAShRYAAAAAAAAAAACTKLQAAAAAAAAAAACYRKEFAAAAAAAAAADAJAotAAAAAAAAAAAAJlFoAQAAAAAAAAAAMIlCCwAAAAAAAAAAgEkUWgAAAAAAAAAAAEyi0AIAAAAAAAAAAGAShRYAAAAAAAAAAACTKLQAAAAAAAAAAACYRKEFAAAAAAAAAADAJAotAAAAAAAAAAAAJlFoAQAAAAAAAAAAMIlCCwAAAAAAAAAAgEkUWgAAAAAAAAAAAEyi0AIAAAAAAAAAAGAShRYAAAAAAAAAAACTKLQAAAAAAAAAAACYRKEFAAAAAAAAAADAJAotAAAAAAAAAAAAJlFoAQAAAAAAAAAAMIlCCwAAAAAAAAAAgEkUWgAAAAAAAAAAAEyi0AIAAAAAAAAAAGAShRYAAAAAAAAAAACTKLQAAAAAAAAAAACYRKEFAAAAAAAAAADAJAotAAAAAAAAAAAAJlFoAQAAAAAAAAAAMIlCCwAAAAAAAAAAgEkUWgAAAAAAAAAAAEyi0AIAAAAAAAAAAGAShRYAAAAAAAAAAACTKLQAAAAAAAAAAACYRKEFAAAAAAAAAADAJAotAAAAAAAAAAAAJlFoAQAAAAAAAAAAMIlCCwAAAAAAAAAAgEkUWgAAAAAAAAAAAEyi0AIAAAAAAAAAAGAShRYAAAAAAAAAAACTKLQAAAAAAAAAAACYRKEFAAAAAAAAAADAJAotAAAAAAAAAAAAJlFoAQAAAAAAAAAAMIlCCwAAAAAAAAAAgEkUWgAAAAAAAAAAAEyi0AIAAAAAAAAAAGAShRYAAAAAAAAAAACTKLQAAAAAAAAAAACYRKEFAAAAAAAAAADAJAotAAAAAAAAAAAAJlFoAQAAAAAAAAAAMIlCCwAAAAAAAAAAgEkUWgAAAAAAAAAAAEyi0AIAAAAAAAAAAGAShRYAAAAAAAAAAACTKLQAAAAAAAAAAACYRKEFAAAAAAAAAADAJAotAAAAAAAAAAAAJlFoAQAAAAAAAAAAMIlCCwAAT4EsS1yVt2F2FSiRU/m9cip3l6xy+YvTAAAAAAAAgIfFHRYAADK5bFPclLtPNhnZDN0eF6U7H0TL9ZCL8r2UXS5HOBUAAAAAAAB4GK6ODgAAADw+ziFOyvFJFsX6xuvmskjbN39M/Th51MihHP9z163ZUY4NEgAAAAAAIAPjMVYAADIx9w2ucop1UmTPGLvHKxKKG4p7PkFue1wcFxwAAAAAAEAmQIsWAAAysahOsYqtEaf4oob9jFjJ5ZyzEgonOCYwAAAAAACATIIWLQAAZGauUvxzhpTDfnL2Me5yvuGkmAbxjokLAAAAAAAgk6DQAgDAUybrd27KPs5d8UUSFPF2tKPDAQAAAAAAyNAydddh7du31/79+5NML1u2rH788UcHRAQAgAPFSzk+yqLsU90VXzRBN7+PlJHH0UEBAAAAAABkbJm60PL333+rTp06atq0qd30vHnzOiYgAAAcxOmmlLtHNrlvdlVcuXjdXBCphGLGg1cEAAAAAADAfWXaQsvFixd1584d1alTR82bN3d0OAAAOIzzWSfl6ZhNrsddFN0kVre+jpJyOjoqAAAAAACAzCHTFlr+/vtvSVKZMmUcHAkAAI7jfMZJeV/JLpcrzoroF607w2IkJ0dHBQAAAAAAkHk4OzqAx+X48eOSpOeee06SdOfOHUeGAwDAkxcj5Xkjm1yuOOvO+9G6M5wiCwAAAAAAwKOWaVu0HDt2TFmyZNH48eO1atUqhYeHq1ChQurRo4c6d+6c4npO3ICyw/EAMhY+s7hXliWucj3qorjn4xVXIV7uv7jYzTfyGYqrmOCg6P5lfd/y/gWQXpCXAKQn5CQA6Q15CUgq0xZajh8/rujoaF25ckVffPGFIiMj9f333+vzzz/XjRs3NGDAgCTreHjkkItLpm3kA+ApkD9/LkeHgPRkzd3/XI+7KE/77Enn95LU6IlGdF+8fwGkN+QlAOkJOQlAekNeAv7lZBiG4eggHof58+crPj7ervVKQkKCOnTooMOHD2vTpk0qWLCg3TphYbepxCbi5HQ3afp8tE7h0XGODgdACnJmcdWhjxvr6tXbypxZHZmZ9buG9y+A9IK8BCA9IScBSG/IS3jaFCjw4KJipm3R0qlTpyTTnJ2d1a5dOw0ZMkR79uxRkyZNkixDcgCQkRkGeQwZF+9fAOkNeQlAekJOApDekJeAfz11/WTlz59fkhQREeHgSAAAAAAAAAAAQEaXKQstISEhatasmcaPH59k3qlTpyRJJUqUeNJhAQAAAAAAAACATCZTFlqKFi2qmzdv6vvvv9fNmzdt02/evKlZs2bJ09NTFStWdGCEAAAAAO7lfN5J+cvmkNsuF0eHAgDkJADpDnkJSN8y5RgtTk5O+uijj9SvXz+1bdtWHTp0UExMjIKDg3X16lVNmzZNrq6Z8qUDAAAAGY7rn87K3SWbnG46KdYv3tHhAHjKkZMApDfkJSD9y5QtWiSpYcOG+uabb5QvXz6NHTtW3377rUqVKqX58+erWrVqjg4PAAAAQLSUfZy78jbJLpfzzoq3JEjZHR0UgKcWOQlAekNeAjKMTN2so169eqpXr56jwwAAAACQSJZFrsoxOotczjkrrly8XI+4KLYiT2gCcAxyEoD0hrwEZCyZtkULAAAAgHQqQco5NKviSybo5uxI3XkvRpIUVz7BwYEBeCqRkwCkN+QlIMPJ1C1aAAAAAKRD8dK1nXdkFDQkSTk+d5ckxfGUJgBHICcBSG/IS0CGQ4sWAAAAAE+Wm2w3DiTJdZ+LjKyG4srylCYAByAnAUhvyEtAhkOhBQAAAIDjGJLrHy6K806Q3BwdDICnHjkJQHpDXgIyBAotAAAAABzG5YSznG85MbgrgHSBnAQgvSEvARkDhRYAAAAADuO67+4lSVx5bh4AcDxyEoD0hrwEZAwUWgAAAAA4jNt+F0kM7gogfSAnAUhvyEtAxkChBQAAAIDDuO53UUIeQ/GljQcvDACPGTkJQHpDXgIyBgotAAAAABwjRnI97Kw4/3jJydHBAHjqkZMApDfkJSDDoNACAAAAwCFcDzvLKcZJcRXoCgOA45GTAKQ35CUg43B1dAAAAAAAnk5xFRIUFnrb0WEAgCRyEoD0h7wEZBy0aAEAAAAAAAAAADCJQgsAAAAAAAAAAIBJFFoAAAAAAAAAAABMotACAAAAAAAAAABgEoUWAAAAAAAAAAAAkyi0AAAAAAAAAAAAmEShBQAAAAAAAAAAwCQKLQAAAAAAAAAAACZRaAEAAAAAAAAAADCJQgsAAAAAAAAAAIBJFFoAAAAAAAAAAABMotACAAAAAAAAAABgEoUWAAAAAAAAAAAAkyi0AAAAAAAAAAAAmEShBQAAAAAAAAAAwCQKLQAAAAAAAAAAACZRaAEAAAAAAAAAADCJQgsAAAAAAAAAAIBJFFoAAAAAAAAAAABMotACAAAAAAAAAABgEoUWAAAAAAAAAAAAkyi0AAAAAAAAAAAAmEShBQAAAAAAAAAAwCQKLQAAAAAAAAAAACZRaAEAAAAAAAAAADCJQgsAAAAAAAAAAIBJFFoAAAAAAAAAAABMotACAAAAAAAAAABgEoUWAAAAAAAAAAAAkyi0AAAAAAAAAAAAmEShBQAAAAAAAAAAwCQKLQAAAAAAAAAAACZRaAEAAAAAAAAAADCJQgsAAAAAAAAAAIBJro4OAAAAM5ycHB0BHhXr35K/aeZjGI6OAAAAAACAx49CCwAgw8mVN7uyurk4Ogw8Yvnz53J0CHjEomLjdftGhKPDAAAAAADgsaLQAgDIUJycpKxuLqr6xc8Kj45zdDgAUpAzi6t2fVBf4U60bAEAAAAAZG4UWgAAGVJ4dByFFgAAAAAAADics6MDAAAAAAAAAAAAyKgotAAAAAAAAAAAAJhEoQUAAAAAAAAAAMAkCi0AAAAAAAAAAAAmUWgBAAAAAAAAAAAwiUILAAAAAAAAAACASRRaAAAAAAAAAAAATKLQAgAAAAAAAAAAYBKFFgAAAAAAAAAAAJMotAAAAAAAAAAAAJhEoQUAAAAAAAAAAMAkCi0AAAAAAAAAAAAmUWgBAAAAAAAAAAAwiUILAAAAAAAAAACASa6ODgAAAADI6JycHB0BHiXr35O/a+ZiGI6O4Mni/Zt5kJMyr6cpL/H+zVzIS5nT05STHgcKLQAAAMBDyJU3u7K6uTg6DDwG+fPncnQIeISiYuN1+0aEo8N4IshLmRM5KfN5WvISOSnzIi9lLk9LTnpcKLQAAAAAJjk5SVndXFT1i58VHh3n6HAApCBnFlft+qC+wp0y/9Oa5CUgY3ha8hI5CcgYnpac9DhRaAEAAAAeUnh0HDcPAKQr5CUA6Qk5CUBm5+zoAAAAAAAAAAAAADIqCi0AAAAAAAAAAAAmUWgBAAAAAAAAAAAwiUILAAAAAAAAAACASRRaAAAAAAAAAAAATKLQAgAAAAAAAAAAYBKFFgAAAAAAAAAAAJMotAAAAAAAAAAAAJhEoQUAAAAAAAAAAMCkTF1oCQkJ0cCBA1W1alVVqlRJffv21fnz5x0dFgAAAAAAAAAAyCRcHR3A43Ljxg117txZ4eHheuONN+Tu7q4ZM2aoU6dOWr58uTw8PBwdIgAAAAAAAAAAyOAybaFl1qxZunDhgpYsWSIfHx9JUs2aNdWiRQtNmzZN77//voMjBAAAAAAAAAAAGV2m7Tps1apVKl++vK3IIkkWi0VVq1bVqlWrHBgZAAAAAAAAAADILDJloeXmzZs6f/68XZHFytvbW6GhoQoNDXVAZAAAAAAAAAAAIDPJlIWWK1euSJIKFy6cZF6hQoUkSZcuXXqiMQEAAAAAAAAAgMwnU47RcufOHUlStmzZkszLmjWrJCkiIiLZdZ2cHl9cGZH1eOTMkinfKkCmYf2MPg05jLwEZAxPS14iJwEZw9OSkyTyEpBRPC15iZwEZAxPS056nDJlljMMQ5LkdJ93RnLzChbM9dhiyuh2fVDf0SEASIX8+Z+ePEZeAjKGpyUvkZOAjOFpyUkSeQnIKJ6WvEROAjKGpyUnPQ6Zsuuw7NmzS5IiIyOTzIuKipIk5cyZ84nGBAAAAAAAAAAAMp9MWWjx9PSUJIWFhSWZFxoaKin58VsAAAAAAAAAAADSIlMWWnLlyqWSJUvq8OHDSeYdPnxYRYoUUcGCBR0QGQAAAAAAAAAAyEwyZaFFkl566SXt3bvXrtjy999/a9euXXr55ZcdGBkAAAAAAAAAAMgsMm2hpXv37ipQoIC6d++uadOm6bvvvlO3bt1UuHBhde/e3dHhpWsDBw6Ul5eXLl68mGTet99+Ky8vL9WsWTPZdbt37y4fHx9FRUVp2bJl8vLy0q+//nrf/V24cEFeXl4aPXq03fRz586ZfxHpjGEYGjdunKpWrSo/Pz+NGjUq2eV2794tLy+vB/7bvXv3E34Fmc/EiRPl5eWlkydPOjqURy4zfXYyC+v77X6f3Xr16qlevXq231ObQ9MLa/5auHCho0NJkZeXl15//fVHus07d+7on3/+sf2emXML8LCseWLixImPZHuJ82RK55QAcD/W7+4H/Xuc0nL+fvr0aXl5eemFF17QlStXTO8zI5y7AU+7wYMH23LQ2bNnU1zu448/lpeXl2rUqJGm7ad0zZk4J3l5eWngwIFp2vbDepjzunr16qlt27aPISrg/lwdHcDjkjdvXi1YsEAjRozQ5MmT5e7uripVqui9996Th4eHo8NL16pUqaI1a9bojz/+sI13Y7Vjxw65ubkpNDRUJ0+eVJkyZWzzEhISdODAAZUvX15Zs2ZN9f48PDw0atQoWSwW27RvvvlGCxcuzDA3GB9k8+bN+vbbb1WtWjU1a9bsgSfqDRs2VMOGDVOcf+9xB+7VvXt35c6dW+PGjXN0KHhIAQEBGjVqlMqWLevoUFKlTJkyGjVqlPz9/R0dyhNz6NAh9enTR5999plq1aol6W7+LlmyJGPBAQ6Q3DklAKRW7969Vbp06Se+37Re+/7444/Knj27IiIitGzZMv3nP/8xtd+n8dwNyMg2btyY7IPjhmFow4YNj2w/w4cP17FjxxQcHGybNmrUqCT3Bx83zuuQEWXaQosklShRQpMnT3Z0GBlOlSpVJEkHDhxQ06ZNbdOjoqK0f/9+vfLKK1q2bJl27Nhhd8P/77//Vnh4uKpWrZqm/WXPnl3Nmze3m7Zjxw7Fx8c/xKtIX44dOyZJeuedd+Tn5/fA5b28vJIcEyA1tm3bZve5RcZVokQJlShRwtFhpFqBAgWeurz1999/J3mStGzZshmmOAZkNsmdUwJAalWvXl2BgYFPfL9pufY1DEMrV65U1apVdfHiRf3www+mCy1P47kbkFGVKFEixULLvn37FBYW9sgeKt+2bZsKFChgN80RuYLzOmREmbbrMJhXpkwZFSxYUH/88Yfd9L179yomJkavvfaaPD09tWPHDrv5+/btk6Q0F1qeBrGxsZKkHDlyODgSAAAAAEBGtHfvXl24cEEBAQGqW7euzp49q99++83RYQF4zBo2bKgDBw7YdVlstWHDBpUqVUrPPfecAyIDcC8KLUhWQECAjhw5opiYGNu0nTt3Knv27PL391dgYKB+++03uydv9u3bp2zZsiVpenz9+nUNGTJEgYGBqlChgrp06aK//vrLNj9xv4v16tXTb7/9pn/++SdJP96//vqrOnbsqPLly6tixYrq0aOHDh8+nKrXdPLkSQ0YMECBgYHy9fVV8+bN9f3339stY+2f8qefflLjxo3l6+ur4cOH33e7y5cvV6tWreTr66uAgAD16dPH1oLF+nomTZokSWratOkj7d83pf40f/31V3l5eWnZsmW2adZjPGDAAPn6+qpOnTq6efOmpLutl958801VrFhR/v7+at++vTZu3Gi3TWvfxadOnVK3bt3k7++vmjVrauTIkYqMjLRbNiYmRhMnTlTDhg3l4+OjOnXqaOTIkQoPD7db7urVq/r8889ty1WoUEHt2rVLsu969epp8ODB+umnn9S8eXP5+vqqbt26mjRpkhISEh54nI4dO6ZevXqpUqVKql69ukaPHq24uLgky6U27r179+r1119XlSpV5O/vr1atWmnJkiVJtrdz50516dJFlStXVmBgoHr16mX33pekU6dOacCAAapSpYr8/PzUqlUrrVmzJtljf+HCBfXr10+VKlVSxYoV1a9fP124cEHSv58jSVqzZg1j+WQCyX2+f/75Z7Vp00YVK1ZUhQoV1KFDhySfFy8vL40bN04zZ85U7dq1Vb58eXXo0EG7du1Kso/vv/9e7du3V8WKFeXj46P69evrf//7n6Kjo23LpOb9J6Xcz/fChQvVokUL+fv7q3bt2ho+fLiuXbv2wNeflry0ZcsW1apVS+XLl9c333zzwG0/SFxcnL777ju1bNlSFSpUkK+vr1566SVNmTLFlnMmTpyoIUOGSJJ69OhhG18n8Rgt1r/jn3/+afsu9Pf3V9euXZPkg4SEBM2ePVvNmjWTj4+PqlWrpkGDBiU7ZhqQGQwePFj16tXTX3/9pS5duqh8+fKqUqWKhgwZouvXr9ste/HiRQ0cOFCBgYGqXLmyhg0bluT7OaW+vOfPn68mTZrIz89Pr7zyitavX68uXbokGbPp4MGDtrxTvnx5BQUFaefOnaZjvnXrlj777DPVrl3blmPHjBljd96UUu48efJkkvPgK1eu6K233lLNmjXl4+OjRo0aaezYsYqKikrlEQfwqPz222/q3bu3qlatKm9vb1WvXl3vvPOOQkJC7JZ70Lnb/a59k7NixQpJdx9ubNCggSQlex0iSVOmTLHlvsDAQPXr109///23bX5y+edJXZ8BSJuGDRsqISFBv/zyS5J569evV+PGje2mWcd2ufe6TpJGjx5tu7ZLjnW85j/++MPunlLiMVrq1aun999/Xx9//LH8/f1Vo0YN2/XPxo0b9cYbbyggIEA+Pj6qVauWhg0bphs3btjtKyIiQl9++aXq168vPz8/NW7cWFOnTrXdq0nuvO7OnTv66quv1KxZM/n7+8vf31+vvvqqFi9enMojCTxembrrMJhnHaflr7/+snV1tWPHDgUEBMjNzU3VqlXTsmXL9Oeff6p8+fKS7hZaKlWqJDc3N7ttffTRR/L19dXbb7+tS5cuadasWerevbs2bNig7NmzJ9n3Bx98oDFjxigsLEzDhg2z3Txevny5Bg8erEqVKumdd95RRESEli5dqg4dOmjWrFmqWLFiiq/n8OHDCgoKkru7uzp27Kh8+fJp/fr1Gjp0qE6dOqX333/fbvkPP/xQ7dq1U5EiRVSyZMkUtzt27FhNmTJFFStW1H//+1/dunVL8+fPV/v27TV79mz5+fnpgw8+0PLly7VhwwYNGjRIBQsWfODxj4yMTPFGpJubm3LlyvXAbSRn/vz5KleunIYOHaqrV68qT5482rJli/r06aPChQurR48eypo1q5YvX66+fftq2LBhCgoKsttG9+7dVaJECQ0aNEiHDh3SzJkzdfToUc2aNUtOTk5KSEjQf/7zH+3evVutW7eWl5eXjh8/rnnz5mnPnj1asGCB3N3dFR0drU6dOunatWvq2LGjPD09denSJS1atEj9+vXTkiVL5OPjY9vv7t27tWHDBgUFBalDhw5avny5Jk6cqHz58qlTp04pvubTp0+rY8eOypIli9588025urpq4cKFSW6GpDbuM2fOqEePHvL09FTfvn2VJUsWrV69Wh9++KEkqXXr1pKktWvXauDAgSpZsqR69uwpNzc3zZkzR6+//roWL16sZ599VsePH1eHDh2UO3dude/eXdmyZdOGDRs0cOBAhYaGqkuXLnYxdu7cWd7e3ho0aJBOnDih+fPn6/Lly1qyZImt/9L33ntP5cuXV8eOHRnLJx26fft2ip/thIQEOTun/PzDnj17NGDAAPn7++vdd9+VJC1evFj9+vXTzJkzVa1aNduyK1as0I0bN/TGG28oV65cWrBggd58801NmzbNttzEiRM1adIkNW3aVC1atFB0dLQ2bNigGTNmKDY2VkOHDrXb//3efyn57LPPNHfuXFWvXl2tW7dWWFiYZs+erT///FPBwcFyd3dPdr205qX33ntPnTt3lpubm637y4cxdOhQLV++XG3btlWHDh0UHh6uH3/8UWPHjpW7u7u6du2qhg0bKiwsTMHBwerevft9v4Mk6a233lKJEiU0YMAAhYaGasaMGerRo4c2bdokV9e7p2ODBg3SqlWrVLt2bXXs2FEhISFasGCBtm3bpsWLF2eoruSA1Lp586beeOMN1atXT02aNNHevXu1bNkyRUREaPz48ZLuPrTToUMH3b59W507d1a+fPm0dOlSrVq16oHbt56rvfjiiwoKCtJff/2lt99+Wzlz5rR7+GXnzp3q0aOHSpcurX79+kmSVq5cqW7dumncuHF66aWX0hTzrVu31KFDB50+fVpt2rSRl5eXDhw4oKlTp2rPnj2aPXt2ijkwOXFxcXrzzTcVGhqqzp07q1ChQtq/f7+mTJmiy5cva9SoUaneFoDk3e88LVu2bMqWLZuku/mie/fu8vb2Vp8+feTu7q59+/ZpxYoVOn78uFauXCkpdeduKV37JicmJkZr165V8eLFVa5cOUmSp6en1q9fr+HDhytnzpy2ZadOnaqxY8eqRYsW6tq1q65du6bZs2crKChI69atU758+ZJs/0ldnwFIO29vb3l6emrjxo12g7wfPnxYFy9eVOPGjbV///6H3s+oUaM0YsQI5cqVS/369bvvNc769etVvHhxDRkyROfPn1fp0qW1bNkyDRkyRDVq1NDbb78tSdq+fbsWL16ssLAwffvtt5Lu9voSFBSkI0eOqFWrVvLz89OBAwc0ZswYhYSE6P/+7/+S3Wfv3r31xx9/2O53XLt2TYsXL9awYcOUN29eNWrU6KGPAfBQDCAZJ06cMCwWizF79mzDMAzj+vXrRtmyZY0ZM2YYhmEYV65cMSwWi/H111/b/T5lyhTbNpYuXWpYLBajS5cuRnx8vG36xIkTDYvFYmzZssUwDMM4f/68YbFYjC+//NK2TFBQkFG9enXb77dv3zYqVqxo9O7d2y7O27dvG3Xr1jVatmx539fTrl07w9fX1zh79qxtWnx8vNGrVy/DYrEYR48etYv53XffTdUxKlu2rNGtWzcjLi7ONv38+fOGv7+/0bx5c9u0CRMmGBaLxThx4sR9t7lr1y7DYrHc919QUJBteWu81mNptWXLFsNisRhLly61TbNYLIa/v79x+/Zt27S4uDijdu3aRvXq1Y3r16/bpkdFRRktW7Y0fH19jbCwMLvX0K1bN7u/55dffmlYLBZjw4YNhmEYxg8//GBYLBZj/fr1djFt3LjRsFgsxpw5cwzDMIw1a9YYFovFWLdund1yv/76q2GxWIxvvvnGNq1u3bqGxWIxDhw4YJsWHh5ulC9f3mjXrt19j+nbb79t+Pr6GmfOnLFN++eff4xq1arZ/U1SG/e0adMMi8ViHDx40LZMdHS00bJlS2PkyJGGYdx9b9WoUcNo1KiRER4eblvuzJkzxgsvvGD83//9n2EYhvH6668btWvXNm7evGlbJiEhwejXr5/h6+trXL161TCMf4/98OHD7WJ7//33DYvFYpw+fdo2zWKxGG+//fZ9jwmePOvf8EH/6tata1sn8ef7//7v/wyLxWJ7XxiGYVy7ds1o1KiRMXPmTNs067Z+//1327SwsDCjUqVKtrwUExNjVKpUyejVq5ddnLGxsUatWrWMRo0aJYn9Qe8/a/5asGCBYRiGcfz4ccPLy8t49913jYSEBNt6S5YsMSwWi7FmzZpkj5WZvDR27Nhkt5VY4hyanLCwMKNs2bLGp59+ajf99u3bho+Pj9G1a1fbtORycOJ8b13mzTfftNuedblt27YZhmEYW7duNSwWi/Hhhx/aLXfgwAHDy8vL6NOnT6peI5CeWfPEhAkTDMP4N4/ce/5oGHfPA8uVK2dEREQYhvHvuca9ee3OnTtGs2bN7ntOef78eaNcuXJGnz597PLQjBkz7PJBfHy80aBBA6Nly5ZGTEyMbbno6GijTZs2Ro0aNYzo6Og0xTxmzBjDYrEYP/74o91yU6dONSwWizFr1iy7Y2LNnVbWc3Hrsfrjjz8Mi8ViTJ8+3W65wYMHG0FBQXavD0DapOY8zfpZNAzD6NGjh1G9enXb591q4MCBhsViMS5fvmwYRurP3RJf+6Zk3bp1hsVisV1zGIZhjBgxwrBYLMaiRYvslm3atKnRrFkzu2mbN282mjZtauzevdswjKT550ldnwFIPet5R1RUlPHFF18YPj4+dvd0xo4da9SrV88wDPtccu9697KeU50/f94wjOSvZ+rWrWu0adPGbr3E9xmsOeDe+yyGcTf3NG/e3O6ekWEYRtu2bQ1vb2/b+cqCBQsMi8ViBAcH2y333nvvGS+88IIRGhqa5LzOei5kvS9pdfLkScNisRhDhw6972sAngS6DkOyEo/Tsnv3biUkJNiehC5UqJDKlClj65rofuOzNGvWzO4pbV9fX0lSaGhoquPZsWOHwsPD1bhxY127ds32LyYmRrVr19bhw4eTDEhs9c8//2j//v1q1qyZXesUZ2dn9e7dW9LdPi3vlZpxZn755RclJCSoV69ecnFxsU0vXry4Xn31VR09ejTF5pgP0rx5c82cOTPZf4lb36SFt7e33ZNOhw8f1qVLl9ShQwflzZvXNj1Llizq3r27oqOjk3RL1rNnT7u/Z7du3STJ1oR17dq1ypkzpypVqmT3t6pQoYLy5MmjTZs2SZKaNGminTt3qn79+rZtxcfH25qaR0RE2O3X09PTrlu6HDly6Jlnnkm2j1KrhIQEbdmyRdWrV9czzzxjm54/f3698sordsumNu4iRYpIksaMGaM9e/YoPj5e7u7uWrZsme1vc+jQIYWFhalNmzZ24/I888wzWrJkifr376/r16/rt99+U61atRQXF2fb3/Xr19WoUSNFR0dr+/btdjEmHuT+hRdekKT7HgOkL++//36Kn+3EAw4mZn3vffrppzp06JAkKV++fFq3bl2S1k9VqlRR5cqVbb8XKFDAlpcuXbokNzc3bd++PUn3OlevXlXu3Ll1586dJPtP6/tv8+bNMgxDnTt3lpOTk236K6+8oiVLlqh27drJrmcmLz3KscEKFCigvXv36p133rGbfu3aNeXMmTNJbkqtJk2a2P1uPX5hYWGSZOuSI/GAttam+L/++qtdd55AZpJcfomLi7N1MbF582ZZLBa7vJY9e3a7JzqT88svvyguLk7dunWzy0OdOnWyOx86evSozp07pwYNGtieaL927ZrCw8PVoEEDhYWF2fJuamPeuHGjihcvnuR844033lDOnDmTdMPzIIULF5azs7MWLFigdevW2XLRiBEjNHfuXLvXB8Cc+52ntWjRwrbcN998o1WrVtlauEhSeHi4smTJIunf65i0nLulhrXbsHtb2Fl/TtzCuEiRIjp16pQmTZpkuyatXbu2Vq9enWLr3ydxfQbAvIYNGyomJsbuWmj9+vUOa8VRtGhRu/ss0t2eaGbPnm13z8h6HRUbG2sbv3jTpk3KmTOnWrVqZbf+oEGDtGLFimRb3fn5+WnPnj12LeYMw7B1NWb2Og14lOg6DCkKCAjQgQMHJN0tdOTLl8+uKXO1atW0dOlSxcbGat++fcqVK5e8vb2TbCfxzcOsWbNK+neA+NQ4e/asJN23yBASEqLChQsnmW7t2/7ZZ59NMs/atVLi/u8fdMNTku2EtXTp0vfdbvHixR+4rcRKlCih6tWrp3m9B8mfP7/d76l9Dfd6/vnn7X738PBQnjx5bMudO3dO4eHhdt0Y3eve7bm4uGjmzJnat2+fzp8/r7Nnz9r6EE3ct6+Hh0eSbbm7u9+3D+AbN27ozp07Sb787319VqmN+6WXXtKmTZu0atUq7dy5U3nz5lWNGjXUrFkz20WJddlSpUol2Y61mf/BgwdlGIaCg4MVHByc7D4T9/Gc+O9n7XLk3rGSkL55e3srMDAw2XnWi/OUBAUFaceOHVqzZo3WrFmjggULqlatWmrevHmSbSY3EKL1/Xjx4kUVLVpU7u7u2rZtmzZs2KDTp0/r3Llztu4yksuBaX3/pZR73d3dbQX35JjJS6nJ2Wnh7u6u1atX69dff9WZM2d07tw53bp1S5JMd9+V0vGz5rALFy4oa9as8vT0TLJumTJltG3bNoWGhpr6TgHSuwfllwsXLujFF19Mst6Dusi0nj8ml4fu/Sxblxs/fryt66/EQkJC7LrPSE3MVapUSVIAse47rWMvFS5cWO+//75tvD13d3cFBASoYcOGatGihd0NXwDm3O887V4uLi66dOmSJk2apOPHj+vChQsKCQmRYRiS/v1uT8u524PcuHFDmzdvloeHhzw8PGznS/nz55eHh4cOHjyo48eP267VBg8erF69emnixImaOHGinnvuOdWpU0etW7dO9rr43tf2OK/PAJhXsWJFFShQQD///LOaNm2qEydO6NSpUxo5cqRD4kl8LiTd7er+2LFjWrlypU6dOqVz587ZPWRtzZMXL15UiRIlbF0oWxUoUOC+13Zubm5asmSJdu3apXPnzuns2bO2Agu5B+kBhRakyDpOy7Vr17Rr1y5VrVrV7mKxWrVqmjdvno4cOaL9+/crICDArmWH1f3GHEgta8IcPnx4iieGyd2Uk/5N5PfbbuJxZVITs3W7yW3fOi3xdp+UlL5gEv997vcaUjo2ib8Ipbs3FazT4+Pj5enpqc8++yzZGKw3k8+cOaMOHTooKipK1apVU4MGDeTl5aVixYqpTZs2SdZ7mPdRcoPEJj5GqY3b1dVVY8aMUZ8+fbRhwwZt27ZN69ev1+rVq9WyZUuNHDnStu37PV1qvRHTrl07u6fS7pX4hi5Pqz7dcuTIYRvf5Oeff9a2bdv0ww8/aOnSperXr5/69+9vWza5z6n1feni4iLDMNS/f39t2LBB/v7+8vX1VatWrVShQgV9/PHHOnPmTJL10/r+s77H07qembz0KL5nrGJiYhQUFKSDBw+qSpUqCggIUMeOHRUQEKDOnTub3u6DjoNhGLZ/iZdN6XUDmcWDPsNOTk6p+i5PzPpQT3Jjodxb3LZup0+fPgoICEh2W4kL2A+K2fp5Tk5CQsIDP8/JvbYuXbro5Zdf1saNG7V161bt2rVL27dv17x587RkyRKKLcATMmvWLI0YMUIlS5ZUQECA6tatKx8fH23dulVTpkyxLZeWc7cH+emnnxQbG6tr166pQYMGyS6zdOlSDR48WNLdh+PWrVunHTt2aPPmzdq2bZumT5+u2bNna8qUKapRo0aS9Z/k9RmAtHN2dlb9+vW1evVqxcTEaP369SpatKhtXOXUeJQPaSZ3/+/zzz/XnDlzZLFYVKFCBTVp0kR+fn6aO3eurVWeNY60jFUn3W0Z0759e4WEhKhatWp68cUX1b17d1WuXFl16tR52JcDPBIUWpAia5Pibdu26cyZM7Yuou6d7+zsrAMHDujo0aMaNGjQY4vF+oRvnjx5krT0OHDggMLDw20tZRKzPv176tSpJPOs06zNutPi3u0mHuD+YbabFtaT28TdyVi7onkQM8fm3LlzdoMgXr16VeHh4bZWI8WLF9e+ffsUEBCQ5CbCmjVrbE/VT5kyRdevX9eKFStksVhsy1i7oXsU8uXLp5w5cyZ70/jcuXN2v6c27itXrujUqVOqVq2aypQpo969e+v69evq27evfvjhBw0aNEjFihVLdh/S3S7HsmTJYtfdSeL39Pnz53Xs2DFumMDO+fPnFRoaqkqVKsnX11dvv/22Ll26pC5dumjGjBnq16+f7Qb9+fPnk6x/5swZOTk5qWTJktqzZ482bNigbt26JWkp+Ki6e7Dm7bNnz9q1doyNjdV///tfNW7cOEnXO9Ljy9mptWbNGv3xxx8aPny4XbN0a5dAhQoVeiz7LV68uLZt25ZsS8jTp0/L3d092SdHgadB8eLFU/Vdnpj13OT06dN2LekMw9DZs2dtT35b81XWrFmTfCcfO3ZMly5dSvN3cvHixXX69OkkxdOYmBhduHDBFo/1JkXic7nEufj27dv666+/5OXlpfbt26t9+/aKiYnRl19+qTlz5mjz5s1JuigE8OhFR0frq6++UoUKFTRnzhy7G4X33kSU0nbu9iDWbX/88cdJnva+deuWhgwZohUrVujdd9+Vi4uL/v77bzk7O6t27dq27lr37NmjLl26aPbs2ckWWp7E9RmAh9OwYUMFBwdr9+7dWr9+vRo2bJhsHrn3XtG9D5c8zq79Ll68qDlz5qhJkyYaN26cXVxXr161W9bT01MHDx5UQkKCXdH26NGjmj59ut58803lypXLbp0FCxbo7NmzmjJlil1hJaVhBABH4BEEpMg6TsuCBQskKUmXSrlz51a5cuW0YsUKxcbGPtI+8p2dne2e5KtRo4ayZs2q7777zu5C9MaNGxowYICGDBmSbDVdutv00N/fX2vWrLG7IE9ISLA9cVS3bt00x1i/fn05OTlp6tSpdk8FhISEaMWKFSpbtqzthvvjYi3wHD161DbNMAz99NNPqVrf29tbhQsX1qJFi2x9ikt3v4xnzJghNzc31axZ026dOXPm2P0+ffp0Sf/2D1yvXj1FRERo1qxZdsutWbNGAwcO1KpVqyTd/du5u7vbjZuTkJBg2/6jeNLCyclJDRs21O7du3Xw4EHb9Nu3b2v58uV2y6Y27gULFqhLly52xzxfvnx65pln5OTkJGdnZ/n4+KhgwYJatmyZ3RO4Fy5c0OzZsxUaGqpChQrJ19dXK1eutLspbhiGPv30U/Xt21fXr19P82tO/NlB5vHVV1+pa9eudk2vixYtqkKFCsnZ2dnuRHbr1q12hYrQ0FCtWLFCAQEByp8/v+3znvgJ7c2bN+vMmTO2fm4fhvXkd+HChXbT169fr7Vr16b4PjWTlx4l6z4Td0kUHBysyMhIu2NjvSi4X8vJ1LJ2Pfjtt9/aTT948KC2b9+umjVr0qIFT61GjRrp/PnzWrt2rW1aTEyMFi1adN/1GjZsaBvX5F6rVq2y+4718fFRoUKFNG/ePN28edNuH++//74GDBiQ5rxYv359Xbx4UStXrrSbPnfuXN25c8d27mm9YXrveYU1xnsdPHhQQUFBWrZsmW2au7u7rUvSlM6DATxaUVFRioyM1DPPPGNXZAkJCdH69esl/Xsdk9pztwedv58/f1779u2Tt7e32rdvrwYNGtj9a9WqlQIDA3X16lVt2rRJTk5O6tWrlwYPHmx3TeXt7S03N7cUW6I8ieszAA+natWqyp07t+bOnaujR4+qcePGyS5nvVd05MgR27SbN29q27ZtD9yH2XsK1nOo0qVL212bHj58WL/99psk2c6n6tSpo1u3biU5T1q4cKFWr16d7ANmKV2nWe/hkKOQHtCiBfcVEBCgNWvWyNPT0+6Ey6patWqaNm2a8ufPb/fUy8Py8PDQ9evXNX36dAUEBMjf31/vvvuuPv/8c7322mtq0aKFXFxctGjRIoWGhmrs2LHJdpVjNXToUHXu3Flt2rRRx44d5eHhofXr1+u3337T66+/brtITYsyZcqoW7du+u677xQUFKQmTZro1q1bWrBggQzD0EcffWT69R87dkw//vjjffft4+OjwMBAFSpUSFOnTlVcXJyKFi2qn376KdUVfVdXV3300Ufq37+/WrVqpbZt2ypr1qz68ccfdeTIEQ0ePDhJv5tr165VRESEqlWrpn379mnVqlV65ZVXbC2g2rRpoxUrVmj06NE6duyYKleurLNnz2r+/Pny9PRU9+7dJd39Yv3ll1/UvXt3vfzyy4qOjtaaNWt05MgROTs7JzsYtxkDBw7U1q1b1bVrV73xxhvKlSuXgoODk9wYTW3c7dq106JFi9SjRw916NBBhQoV0qFDh7R8+XK9/PLLtkHbPvjgA73zzjtq06aNWrVqpfj4eM2fP185cuSwDXY9bNgwde7cWa1bt1anTp1UsGBBbdy4Udu2bVOHDh2SjIeTGh4eHtq7d6+Cg4NVs2bNx17sw5PTtWtXrV+/XkFBQWrbtq1y586tXbt26bffflPv3r3tlnVxcVFQUJA6d+5su8loGIY++OADSXf7982dO7e+/PJLhYaGKn/+/Prjjz+0fPlyZcmSRREREcl2YZUWXl5e6tSpk+bPn6+wsDDVqlVLly5d0vz581WpUqUUu8wzk5fS4vTp0xo+fHiy87p27aoaNWrIzc1NH3zwgV5//XVly5ZNO3fu1Nq1a5UlSxa73GS9AAgODtatW7eSDHqdFrVq1VKTJk30/fff247X5cuXNW/ePOXJk+e+Y5QBmV23bt20evVq/fe//9WBAwfk6empFStWPPCpzJIlS9qeHL927Zpq1aqlU6dOafHixXaFSzc3Nw0fPlxvvfWWWrZsqbZt2ypXrlxavny5jh49qv/+97/JDsp6Pz179tSGDRs0ePBg7d27V15eXjp48KCWL18uX19fdezYUdLd8bN8fX21fPly5cyZUxaLRdu2bdNff/1ldzO0atWq8vf315gxY3ThwgV5eXnp0qVLmjdvnp555hnbE+sAzNuxY4cuX76c4vzAwEAVKVJEFSpU0MqVK5U7d25ZLBadO3dOixcvVmRkpCTZzhVSe+6W3LXvvaytWVq3bp1ibB07dtTu3bu1dOlSNWrUSD179tQnn3yirl27qnHjxjIMQz/++KOioqIUFBSU7Dae1PUZAPPc3NxUp04drVixQgULFrQbP+5ezZo105QpUzRo0CB169ZNhmFo0aJFypMnj21czpR4eHjo+PHjmj9/vgIDA5Md/zM5zz33nDw9PTVjxgzFx8erePHi+vvvv7VkyRLbOc2dO3eUI0cOtWvXTj/88IOGDBmiAwcOyMvLS3v37tWKFSvUo0cPFS5c2DYWlVWdOnU0d+5c9enTR+3atZOTk5N++eUXbd++XW5ubuQopAsUWnBf1nFaUmqtYi20JDfY58N48803dezYMX311Vdq1aqV/P391blzZxUtWlTfffedJk6cKDc3N1ksFg0ZMuSBF5d+fn4KDg7W+PHjNW/ePMXExOi5557TiBEj1KpVK9Nxvvfee3r22Wc1f/58ffnll8qRI4eqVKmifv36PVThacOGDdqwYUOK8zt37iwfHx+5urpq+vTp+t///qfZs2crS5YsatSokT788MNU3/CrX7++5syZo6+//trWwsfb21uTJ0+2PWF9rwkTJmj69OkaOXKkChcurHfffddWhJDuPl05c+ZMffPNN/rpp5+0du1aFShQQC+//LL69+9vu0Hatm1b3b59W8HBwfriiy/k4eGhcuXKafHixRo2bJh27tyZlkOWIuuT8V9++aXmzp0r6e5JR5kyZezGY0lt3MWKFdOcOXM0ceJELVy4UDdu3JCnp6f69u2rnj172rbXtGlT5cqVS5MnT9ZXX32l7NmzKyAgQO+++66KFi0qSfL391dwcLAmTpyoefPmKTo6WiVLltSHH35o12VRWvz3v//VmDFj9Nlnn+nTTz9VixYtTB45pDc+Pj6aOXOmJk+erO+++07h4eEqVaqUhg4dmuSCuX79+ipXrpxmzZqlyMhIVa5cWe+8847Kli0r6e7AhVOnTtXo0aM1bdo0ubq6qnjx4ho6dKji4+P16aefau/evapcufJDxTxs2DA988wzCg4O1siRI1WwYEG1a9dO/fr1u29xPK15KS3CwsIUHByc7LxmzZopMDBQkyZN0oQJEzR+/Hhly5ZNpUqV0vjx4/XHH39o5syZunjxojw9PVWtWjU1adJEmzZt0p49e9SoUaOHim3MmDHy9vbWsmXLNGLECOXNm1cvvfSS+vfvT9EUT7UcOXJowYIFGjNmjJYvX67o6GjVqVNHXbt21cCBA++77qBBg5QvXz4tXrxY27dv17PPPqsJEyZo2LBhdk+jN2zYULNmzdI333yjqVOnyjAMlS5dWqNGjVLz5s3THHPu3Lm1aNEiTZgwQRs3btTSpUtVrFgx/ec//1GvXr3s9j1hwgSNHDlSy5Ytk5OTk1588UXNnTvXrsW1i4uLvv32W02ePFmbNm1ScHCw8uTJo4YNG+qtt96y6xYEgDmJW5Um9vXXX6tIkSIaP368Ro4cqVWrVikqKkpFihRR69at1ahRI7Vt21Y7duxQhQoVUn3ulty1771WrFihrFmz3vf6rkGDBipUqJC2bt2qK1euqFOnTsqaNavmz5+vsWPHKiEhQT4+Ppo2bZpefPHFZLfxpK7PADycRo0aacWKFbaWu8mxWCyaOHGiJk2apNGjR6tQoUJq3769ChUq9MAHuPr376+PPvpII0aMUN++fVNdaHF3d9e0adM0cuRILVy4UPHx8SpWrJh69+6tMmXKqG/fvtqxY4datGghd3d3zZ49WxMmTNC6deu0dOlSlSxZUsOHD1eHDh2S3f6LL76oESNG6LvvvtOoUaOUO3duPf/885o5c6YWLlyorVu3KjIyki7Y4VBOxqPo7wJApmf9kl6zZk2SppoA0g8vLy81bdpU48aNc3QoAOBQ1tZ5OXLksJtuGIbKly+vxo0ba9SoUQ6KDgAAAEBmwhgtAAAAADKdI0eOqGLFilq6dKnd9F9++UVRUVHy8/NzUGQAAAAAMhu6DgMAAACQ6fj7+6tUqVL64osvdPbsWZUoUUJnz57VwoULVaZMGb322muODhEAAABAJkGhBQAAAECm4+bmZhvvaeXKlfrnn3+UP39+tWzZUv3796cPbwAAAACPDGO0AAAAAAAAAAAAmMQYLQAAAAAAAAAAACZRaAEAAAAAAAAAADCJQgsAAAAAAAAAAIBJFFoAAAAAAAAAAABMotACAAAAwKHi4+MdHQLug78PAAAAcH+ujg4AAAAAgOMsW7ZMQ4YMMb3+iBEj1KpVK9Pr79ixQ9OmTdPMmTNNbyM5Xl5ekqR+/fqpf//+prcTGRmpVatWadOmTTp69Kj++ecfOTk5KX/+/CpXrpwaN26sJk2ayM3N7VGFnm7ExMRoypQpypIli3r27OnocAAAAIB0i0ILAAAAAIcIDg7W8OHD5enp6ehQkvX9999r9OjRunHjRpJ5ISEhCgkJ0caNGzV58mSNHj1aPj4+Tz7Ix6hz587av3+/+vXr5+hQAAAAgHSNQgsAAADwFHv11VfVuHHjZOe9/PLLCgkJUaVKlTRt2rRkl8mSJYvpfYeGhppe93EyDEPDhw/X4sWLJUmFCxdWUFCQatSooaJFiyoqKkrnzp3T0qVLtXr1ap0+fVpBQUGaOXOmKlSo4ODoH530+vcBAAAA0hsKLQAAAMBTzNXVVa6uyV8WODk5SZJcXFyUI0eOJxmWQ33zzTe2IktgYKAmT56snDlz2i1TrFgxVa1aVa1bt9abb76pyMhIDRgwQGvXrn2qjhUAAAAAydnRAQAAAABAenHmzBlNnjxZklS2bFlNnTo1SZHlXoGBgXr77bcl3W0BMmfOnCcRJgAAAIB0hEILAAAAgIcSHR2tBQsW6PXXX1dgYKB8fHxUs2ZNDRgwQL/++muS5ZctWyYvLy9NmjRJknTx4kV5eXnJy8tLu3fvtlv22rVrmjx5sjp16qTq1avLx8dHlSpVUpMmTfTRRx/p5MmTj/S1zJw5U7GxsZKkd955R1mzZn3gOq+//rry5s0rT09PRUVFJbvM+fPn9fnnn6tp06YqX768KlSooGbNmumLL77QpUuXkl1n4sSJtuOSkt27d6d47OrVqycvLy8tW7ZMMTExmjp1qlq0aKEKFSqoYsWKateunRYuXKi4uLgkr8fLy0sXL16UJE2aNEleXl6qV6/eA48FAAAA8DSi6zAAAAAApp05c0Z9+/bViRMn7KaHhoZq3bp1WrdunZo2baqRI0emeTyXLVu26O2331ZERITd9NjYWIWHh+vUqVNatmyZvv76a9WqVeuhX0tCQoLWrVsnSSpSpIhq166dqvXc3d31888/p9jy5fvvv9enn36q6Ohou+knTpzQiRMntGjRIn3++ed65ZVXHu4FpODmzZtq3bq1jh07Zjf9wIEDOnDggH7++WdNmTJFLi4uj2X/AAAAQGZHixYAAAAAply/fl3du3fXiRMn5Obmpt69e2vNmjXavXu3goOD1bhxY0nSmjVrNGTIENt6r776qvbt26devXpJujveyb59+7Rv3z5VrlxZkhQSEqK33npLERERKlWqlMaNG6eNGzdq586dWrp0qV5//XW5uroqJiZGn3zyySN5PadPn9b169clSVWqVEnTuikVWdatW6dhw4YpOjpaJUuW1JgxY7R161Zt27ZNo0ePVvHixRUdHa1BgwZpy5YtD/0akjN+/HgdP35cXbt21apVq7Rr1y7Nnj1b5cqVkyRt3bpVK1eutC0/bdo07du3T8WKFZMk9erVS/v27dPq1asfS3wAAABARkeLFgAAAACmTJ06VRcuXJCTk5MmTJhg17VU+fLlNWHCBH322WeaO3euVq9erebNm6t27dpydXWVq6ur3NzcJElOTk5JBpCfN2+eIiMj5ebmpunTp6tEiRK2eR4eHvLx8ZGzs7Nmz56t8+fP6/Tp03r22Wcf6vWcO3fO9nPp0qUfaluSFBMTo88//1yGYahUqVIKDg5W3rx5bfNfeeUV1ahRQ23bttX58+c1fPhwbdiwQe7u7g+973tFRkZq2LBhCgoKsk2rWrWqvvvuO9WvX18RERFau3atWrRoIUm27tKcnJwkSW5ubkn+PgAAAAD+RYsWAAAAAGmWkJCgpUuXSpIaNWqU4vgd7733ngoUKCBJWrhwYaq3b7FY1K5dO/Xo0cOuyHKve1udXLt2LdXbTsnt27dtP+fLl++ht7dlyxZduXJFkjR48GC7IouVh4eHBg8eLEm6fPmyNm3a9ND7TSxv3rxq3759svv28/OTJF24cOGR7xcAAAB4WlBoAQAAAJBmx44d082bNyXJ1kVYctzd3VW/fn1J0u+//y7DMFK1/RYtWuiTTz7RW2+9lez8S5cu6ciRI7bf4+PjUxt6ipyd/708io2Nfejt/fbbb5KkbNmy3XcMmbp16ypbtmyS7h6jR83b21uursl3ZpA/f35Jd1u9AAAAADCHrsMAAAAApNmlS5dsP5cpU+a+y1rnh4eH6/bt28qdO3eq9xMVFaWdO3fqr7/+0rlz53T+/HmdOHHCNpaKVWoLOPfj4eFh+znx9s24fPmyJKlUqVL3HWjexcVFpUqV0tGjRxUSEvLQ+03sfq1zrN2UPYrjBwAAADytKLQAAAAASLPw8HDbz9mzZ7/vsvfOj4iISHWhZd68efrqq6/suvSS7rY8eeGFF1SqVCn99NNPaYj6/u4tGN07XktqxMfHJymmWI/Rg46PJFuLloiIiDTtNzWsY+EAAAAAeDwotAAAAABIs8TFk/u5c+eO7WdrQeFBZs2apREjRkiSihUrpgYNGuiFF15QmTJl9Pzzzyt79uzasWPHIy20FC5cWMWLF9eFCxe0a9euNK07YsQIbdu2TYGBgRo4cKDy5s1rO0apKZ5Yj1Fqj49VVFRUmpYHAAAA8OgxRgsAAACANPP09LT9fPLkyfsue+LECUlSzpw5lSdPngduOyoqSpMmTZIk+fn56aefftKHH36oVq1ayd/f31bAeBTdeyX20ksvSZLCwsK0ffv2VK0TGxur9evX6/Tp09q4caNy5col6W6BSJLOnDlz3zFk4uLidObMGUn2x/XeMWNiYmKSXffGjRupihEAAADA40OhBQAAAECaWSwWWxdg69atS3G5mJgY/fLLL5Kk8uXL281zcnJKdp3jx4/bugtr0aKFsmbNmuxyO3futP2ckJCQ6tjvp1OnTrautkaMGKHY2NgHrjNv3jxduXJFktS+fXtbF2KVK1eWdHeg+V9//TXF9Tdv3qzo6GhJUoUKFWzT7201lFJRaf/+/Q+MDwAAAMDjRaEFAAAAQJq5uLjotddekyStX79emzZtSna50aNH6+rVq5KkNm3aJNmGlLS1hqvrvz0cW1vDJLZ9+3YtW7bM9ntqCiKpUaxYMfXs2VPS3YJPz5497cajSWzdunUaM2aMpLutUbp27WqbV7duXRUsWFCSNHLkSN28eTPJ+tevX9f//vc/SZKHh4fq1atnm/fMM8/Yfk6ui7SzZ8/qxx9/TMvLSxPr3+FRHVsAAAAgs6LQAgAAAMCU//znP/L09JRhGOrfv7+++uornTx5Ujdu3NDBgwf19ttva/bs2ZKkxo0b27rlssqbN68k6Z9//tH27dt18+ZNRUdHy2KxqFChQpKkRYsWafLkyTp79qyuXbumgwcP6rPPPlPPnj3tuuO6dxyYh9WnTx/Vr19fkrRjxw699NJLmjhxov744w9dvXpVoaGh2rJliwYMGKABAwYoNjZWuXPn1vjx45UzZ07bdtzd3TV8+HBJd7sPa9OmjVavXq2wsDCFhYVpzZo1atu2rc6dOydJ+uKLL+zGaAkMDLS1GhozZozmzZuny5cvKyQkRIsWLbK1nkmpZdDDsv59tm7dqitXrujatWuPZT8AAABARudkGIbh6CAAAAAApD/16tXTxYsXVaVKFc2dOzfZZc6cOaPevXvr9OnTKW7n1Vdf1ccff2zXFZZ0t7XKq6++alcwGTFihFq1aqVNmzapX79+iouLS3abzs7O6tGjh2bOnKmYmBgNHDhQvXv3ts338vKSJPXr10/9+/dP9Wu2io2N1bhx4zR79uwUY7B64YUX9OWXX+r5559Pdv7333+vjz/+OMWWIdmzZ9cnn3yiV155Jcm8FStW6P3330+2a7ScOXNq8uTJ6tq1q+Lj4zVnzhwFBgba5lv/fi1bttTIkSOT3ffgwYP1ww8/yNPT09bFm9WYMWM0depU2+9ubm7av3+/rWs1AAAAAHe5PngRAAAAAEheqVKltGLFCi1evFhr167V8ePHFRERocKFC8vPz09t2rRRtWrVkl33ueee09ixY/X111/r7Nmzypo1q20skrp16yo4OFjTp0/Xnj17dP36dbm7u6tIkSKqWLGiOnXqpHLlyungwYPauXOn1q9fb1doeVhubm5677331KFDB/3www/avXu3Tp8+rVu3bsnZ2VkFChSQr6+vmjZtqgYNGti6QUtOmzZtVLVqVc2ePVvbt2/XpUuX5OLiouLFi6tu3bpq166dihYtmuy6r776qp599lnNmDFDv//+u27cuKGCBQuqZs2a6tmzp4oXL/7IXnNi/fr1U2RkpNauXasbN27Iw8NDly9fVokSJR7bPgEAAICMiBYtAAAAAAAAAAAAJjFGCwAAAAAAAAAAgEkUWgAAAAAAAAAAAEyi0AIAAAAAAAAAAGAShRYAAAAAAAAAAACTKLQAAAAAAAAAAACYRKEFAAAAAAAAAADAJAotAAAAAAAAAAAAJlFoAQAAAAAAAAAAMIlCCwAAAAAAAAAAgEkUWgAAAAAAAAAAAEyi0AIAAAAAAAAAAGAShRYAAAAAAAAAAACTKLQAAAAAAAAAAACYRKEFAAAAAAAAAADApP8HLtoxr3jJYioAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -9350,14 +9904,14 @@ }, { "cell_type": "code", - "execution_count": 335, + "execution_count": 1172, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+MAAAE/CAYAAAAt5xKtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABtOklEQVR4nO3dd1yW1f/H8RdLCAFBpokouEdmRI7cMzfm1sTcaZorDWfi1hRH7oUr98zR/JZpKo60IjUn4khlqChDgRvu3x/+uotA0wSkfD8fj/vx5T7rOuf6nqgP51zXMTMajUZEREREREREJMeYP+sOiIiIiIiIiDxvFIyLiIiIiIiI5DAF4yIiIiIiIiI5TMG4iIiIiIiISA5TMC4iIiIiIiKSwxSMi4iIiIiIiOQwBeMiIiIiIiLyr/Dzzz/TunVrKlSoQPfu3bl16xYAMTExDBw4ED8/P+rXr89nn332yHZWrFhBjRo1qFSpEkFBQSQnJ6fLX758ObVr16ZixYqMHj2a+/fvA2A0Ghk7diyvvPIKDRo0ICwsLF29/fv34+/vbyr/KGY6Z1yexr17ycTHJz3rbshzzs7OWvNQnjnNQ8kNNA8lN9A8lOwSEXGRnj3fpkOHTvj7t2TChDF4eBTggw9G0rt3N1xd3Rg4cCg//XSMCRPGsG7dBgoUKJyhnc2b17NixTI+/HA8hQsXYfToYbz66mu8805fALZv38zy5UuYOHE6Dg4OjBgxhNdfr8677/bnq68+Z9WqEKZNm8369Z8QFxfHnDmzAIiMjKRjx44sWbIEHx+fvx2PVsblqVhaWjzrLohoHkquoHkouYHmoeQGmoeSXWbOnMZLL71Mt269cHZ2oVWrdpw6dYJTp05y9uxphg0bjYuLC/XqvUG5cuU5cGB/hjYMBgMhIUvo3/99KlasjLu7B337DmDnzm2mMps2radLl56UK/cSXl6F6dixM/v37wXgu+++xd+/FQUKvIiDQz4sLS0BSE1N5f3332fAgAGPFYgDWGbBPRERERERERHJNpcuRXDs2BGCg+eY0qpVq0G1ajUA2LRpB3Z2dqY8g8GQaTsXL4YTF3eX6tVrmtJcXFyJjY0lMTEBW9u8LFq0AguLP/6olJKS8qefk7GxseHOnVi++upz3n13AACzZs2iSJEiNG/e/LHHpGBcnsrPVao86y6IcOlZd0AEzUPJHTQPJTfQPJSsVvjzbzh4cD+2tnm5cOEcc+fOJE8ea7p27UG1ag+CahcXV+DBCvXu3Tu4cOE806dPz9CWlZUVRqORtLRUU9qRI4cATAH4n4P6ixfDWbNmJS1atAKgWbM3GTt2JDNnfkT9+g2pUaMW+/btY9++fWzYsOGJxqVgXERERERERHK1U6dOkJiYwG+/XWXs2EkcOXKIUaMCWbVqA15eD54L379/Hx9+OAyDwUBw8Md4enoSG5uYrp1ChbxwdXUjJGQJffsO4NdfT7F06QLs7OywtrYxlTMajbRs2YTo6CgaNmxChw4BANSoUYvPP9+DwZCCrW1eoqIiCQoKYunSpXz55ZfMnz8fW1tbJkyYQNmyZR85Jj0zLiIiIiIiIrlaTEwU5ctXYOjQEfj4FKN9+04UL16So0cPmcr4+voxZ85iSpQoxbp1azJtx8LCgvHjp7Bnz/+oV686s2Z9hLu7B2XKlMtQ9uOPF/LWW2/z3XffcO3ab6b0PHnyYGubF4PBwJgxIxg4cCBWVlZMnTqVkJAQ/P39mTNnTob2/krBuIiIiIiIiORqBkMqVatWT5dmb29PcvIfz3Pb2tpStmw5evV6lyNHQklKyvyt/uXKlWfLll3s3PklCxaEcOPGDSpWrJyujJmZGYUKedGnz3vY2dlz9OjhDO0sXjyPIkW8ad68OZ9//jm1a9emYMGCuLm5mY5cexQF4yIiIiIiIpKrvfjii+lepBYbG0tY2E+kpCTTtWvHdGWjom7g6OiItbV1hnaWLVvEkiULMDMzI29eO3bu3E5KSgoNGzYlJSWFZs0acPLkCVP5xMQE4uPjcHV1S9fOwYP7OXz4EAMHDgHgwoULFC1aFICzZ89SuHDGI9X+SsG4iIiIiIiI5GpNm/qzZctGfvnlZ3777SoffjiM8uVfoWHDJvz2229s2rSeO3di2b9/HwsXzqVz527Agxe6JScnm9opWNCT3bt3cOXKZQ4fDmXRorn07t0PR0dHrKyseOmll1m8eD6RkTe4fDmCUaMCKVzYm0qV/nhxdWTkDWbMmMr48ZNNz5nnz5+fK1euEBERwZYtW2jUqNHfjsnMaDQas/g+yXPkB7+Kz7oLIiIiIiLyH1b4828A2L59M598spK7d+9Sq1YdBg4cgq1tXn766Tjz5s0mIiIcd/cCdOwYQOPGzXB0tGXixMkcOLCPtWu3AJCWlsbMmdP4+uvPyZfPkU6dutCsWQvTte7ciWXOnJmEhu7HwsKSqlVr0LfvANMb1g0GA/369aJlyzY0aPAg4HZ1tefSpUu8++67XL9+nY4dOzJkyJC/HZeCcXkqCsZFRERERCQ7/R6MPylHR9sMb1PPDq6u9v+o3iO3qXfu3JmwsDAAkpOTefXVV1m2bJkpv1OnTpw+fZo6depkeDj+z+esbdiwId3+/ux25coV/P39CQwMTJdep04d3nrrLQICAkyfEydOPKSV3GndunWP9Wa+rJSUlMSmTZty9JoiIiIiIiL/ZY88Z7xatWr88MMPlC9fnmPHjlGtWjW+++47unfvTlJSEtevX6dUqVKZ1q1Ro4bp50WLFtGiRYss7fijHD9+nCpVqjBs2LAMeSEhIZk+yC8PFx0dzaZNm2jTps2z7oqIiIiIiMh/wiOD8ddff5358+fTrVs39u7dS5s2bZg+fTpxcXGcPHmSihX/2KIcFBTE1atXAZg7dy7ffPMN4eHhFC5cmOjoaAYNGsT8+fMJDg7m6NGjGI1GunTpkuHB9h07drBy5Ury5MlDkSJFGDduHDt37mTLli2kpaXRv39/qlT54+H5KVOmcOzYMQCaNm1K/fr1WbBgAffv38fLy4uOHdO/WS8zW7duJTw8nCFDhpCUlESjRo349ttvCQgIwMnJibt377J48WJGjhzJlStXSE1NpWvXrjRu3JiAgAC8vb25ePEiRqORmTNn4urqmuk4jxw5wty5cwG4f/8+U6dOxcrKivfffx8PDw+uXLnCSy+9xNixY9P174cffmDSpEnky5cPc3NzKlSoAMDq1avZtWsXZmZmNG7cmM6dO/PVV1+xZMkSLC0tKViwIB999BG3b99m2LBhxMXFYTQamTp1Ks7OzowcOZLbt28DMGrUKEqWLEmDBg3w9fXl4sWLODs7M2fOHBYuXMj58+eZO3cu/fr1+9v7KSIiIiIiIo/2yGC8TJkyhIeHYzQaOXr0KIMHD6ZKlSocPHiQM2fOUL36H+e8tWrVCj8/P4YNG8aBAwdM6W3atGHBggXMnDmTvXv3cvXqVdavX09SUhJt27alatWqODg4AHD79m3mzJnDtm3bsLOzY9KkSWzYsAFbW1scHBxYsGBBuv7t2bOHq1evsnHjRgwGAx07dqRy5cr06tWL8PDwTAPxbt26YW7+YHe+ubk5K1eufOQNatasGfXr1+eTTz7BycmJadOmER8fT8uWLalc+cFZdL6+vowbN441a9awaNEiqlevnuk4z507x7Rp03B3d2fhwoV88cUXNGvWjIiICJYtW8YLL7xAvXr1iI6OxtXV1dSHyZMnExwcjLe3N2PGjAHg/PnzfPbZZ6xduxYzMzO6dOlCtWrV2LVrF126dKFJkyZs376d+Ph4FixYQJ06dejQoQOhoaGEhYVx5swZKleuTMeOHYmIiGD48OGsW7eOK1eusHLlSgoUKED79u355Zdf6N27N2fPnlUgLiIiIiIikkUeGYybm5tTqlQp9u3bh6urK3ny5KFGjRp89913nD59ms6dO5vKlitXDgAXFxfu37+faXtnz57l5MmTBAQEAA/eRHft2jVTMH7lyhWKFStmelPda6+9xv79+3n55Zfx9vbO0N6FCxfw8/PDzMwMKysrXn75ZS5cuPDIAf/dNvW/vs/u9+teuHCB119/HQA7OzuKFi3KlStXANIF5d9++y3u7u6ZjtPd3Z2JEydia2tLZGQkvr6+AHh5eZnG7OrqmuH5+8jISFM/fH19uXz5MmfPnuXatWt06dIFgDt37nD58mWGDx/OokWLWLduHT4+PtSrV4+LFy/SunVrANOugp49e3Lo0CE+//xzAO7evQuAk5MTBQoUAKBAgQIZ+iIiIiIiIiJP72/PGa9atapptRfg1Vdf5dSpUwA4OjqaypmZmT20DTMzM9LS0vDx8aFSpUqsXr2alStX0qhRIzw9PU3lPD09uXDhAomJD954d+TIEVMQ+vtq9p8VLVrUtEU9JSWFH3/88bEOV/8ra2troqOjATh58mSGvv9+rR9++AGA+Ph4zp49a+r77y+BO378OMWKFXvoOEeNGsWkSZOYMmUKbm5upsD/UfcOHgTov/+R4ZdffgHAx8eHYsWKsWrVKlavXk3Lli0pUaIEGzZs4L333uOTTz4B4Ouvv6Zo0aKmekePHmXatGn4+PjQpUsXVq9ezaxZs2jWrNlD+2Jubk5aWtqT3FIRERERERF5hEeujMOD58ZHjRrFRx99BECePHmwt7enTJkyj30RPz8/evXqxapVqzhy5AgdO3YkMTGRevXqmVaE4cFB6e+99x6dO3fG3NwcLy8vhgwZwu7duzNtt3bt2hw5coR27dqRkpJCw4YNKVu2LGfOnHloX/68TR0evDG+evXqrFu3jg4dOlC2bFny5s2boV7btm0ZPXo0HTp0ICkpiX79+uHs7AzAtm3bWLFiBS+88AIfffQRjo6OmY7T39+ftm3b4uDggIuLC1FRUY91/6ZNm0ZgYCB58+Ylb9685MuXj1KlSlGlShU6dOhAcnIy5cuXx93dnfLly9O1a1ccHR3JmzcvtWrVombNmowYMYIdO3YAMGnSJOzs7Bg5ciQbN24kPj7+kVvQnZ2dSUlJYdq0aQwdOvSx+iwiIiIiIiIPp3PGn1JAQABBQUEULVr0WXflmdA54yIiIiIikp2ey3PGRURERERERCTr/e02dXm01atXP+suiIiIiIiIyL+MVsZFREREREREcpiCcREREREREZEcpmBcREREREREJIcpGBcRERERERHJYTraTJ5KSkpqjhwXIPIoOXVshcijaB5KbqB5KLmB5qHkFjraTETkKXzxxW4mTRqbIX3y5HF8/vmuR9bdsGENb77ZmMaN6zJ9+hSSk5PT5a9f/wmtWjWlUaM6TJ06kaSk+wAYjUaCg6dSv34N2rd/k19/PZmu3pEjh+jSpaOpvIiIiIjIk1IwLiK51qZN65k8eRwlSpQ0pd2/f5+JE4PYvXsHJUqUemjdzZvXs3r1CoYP/5Dly9dw9uxpli9fYsrfvn0z69atZuzYySxatJxffvmJZcsWA/D111/w448/sGrVeipVqsKmTetN9WJiopk2bTLjxk3C2tomG0YtIiIiIs8DBeMikuucPXuaPn26sXjxfFJTUyle/EHQvWfP/3jrrdZ899235MmTh8KFi2Ra32AwEBKyhP7936dixcq4u3vQt+8Adu7cZiqzadN6unTpSblyL+HlVZiOHTuzf/9eAL777lv8/VtRoMCLODjkw9LSEoDU1FSCgkbSs2dvvLwyv7aIiIiIyONQMC4iuc6cOTMpUqQo48ZNwszMjOLFi5OQEM/cubNo1qwFnTt3w8enmClI/quLF8OJi7tL9eo1TWkuLq7ExsaSmJgAwKJFK2jYsIkpPyUl5U8/J2NjY8OdO7F89dXnVK1aA4AlSxZQqJAXDRo0yo5hi4iIiMhzJPP/khV5TM3GbX7WXZD/kNX9GwMwY8ZcrKys2LXrUwoWLIStbV4MBgObNu3A3Nyc8eM/pHjxkg9tx8rKCqPRSFpaqintyJFDAFhYWABgZ2dnyrt4MZw1a1bSokUrAJo1e5OxY0cyc+ZH1K/fkBo1anHo0EEOHTrIokUhWT5uEREREXn+KBgXkVzHysoKgHPnzpieF//zKvi5c2d48802D61fqJAXrq5uhIQsoW/fAfz66ymWLl2AnZ1duue8jUYjLVs2ITo6ioYNm9ChQwAANWrU4vPP92AwpGBrm5eoqEiCg6cQHPwx3333LStWLOWFF14gMHA0JUs+/Ll1EREREZGH0TZ1Ecm1zp49k2EFPCkpiUuXIh65Mm5hYcH48VPYs+d/1KtXnVmzPsLd3YMyZcplKPvxxwt56623+e67b7h27TdTep48eUwr8mPGjKBnzz5YWFgyd+4sZs6cR8OGTQgJWZR1gxURERGR54qCcRHJlYxGI+fPn0v3JnWA8PDzGI1GihUr/sj65cqVZ8uWXezc+SULFoRw48YNKlasnK6MmZkZhQp50afPe9jZ2XP06OEM7SxePI8iRbxp0KARe/b8j6pVq+PhUQBnZxdu37799AMVERERkeeSgnERyZWuXLnMvXuJGYLxs2fP4OVVGBubhx8rtmzZIpYsWYCZmRl589qxc+d2UlJSaNiwKSkpKTRr1oCTJ0+YyicmJhAfH4erq1u6dg4e3M/hw4cYOHAIABERFylc2BuA8PALFCpUKKuGKyIiIiLPGQXjIpIrnTt3BhcXV5yc8mdI/+sW9dTUVJKTk03fCxb0ZPfuHVy5cpnDh0NZtGguvXv3w9HRESsrK1566WUWL55PZOQNLl+OYNSoQAoX9qZSpSqmNiIjbzBjxlTGj59ses7cySk/1679xpUrl9m9ewe1a9fPxjsgIiIiIv9lCsZFJFc6e/ZMhlXx39P/GozPnDmDLl06mL43aNCI6tVr0bNnZ2bMmErfvgNp1aqtKT8wcCSurq506/YW/fq9g7t7AWbPXmB6Sdzvz4n36vVuuvPE/f1b8uOPx+jePYA33mhMtWo1snjUIiIiIvK8MDMajcZn3Qn592o4esOz7oL8h/x+tNmTcnS0JTY2MYt7I/JkNA8lN9A8lNxA81Byi5yai66u9v+onlbGs9HixYvp0qUL3bp1o3v37pw4ceLvK/1FbGwsO3fuBGDYsGHs27fvkeWTkpKoWrUqS5cufWS56OhogoKCnrg/IiIiIiIi8vQUjGeT8+fP8+2337J8+XJCQkIYMmQII0aMeOJ2zpw5w7fffvvY5b/88ksaN27Mtm3bSEtLe2g5V1dXBeMiIiIiIiLPiILxbJI/f36uXbvG5s2biYyMpHTp0mzevBmAU6dO0aFDBzp16kT37t25du0aV69epW3bP55pbdu2LVevXmXhwoUcOnSIDRsebAffsGEDnTt3pmXLloSFhWW47qZNm2jVqhWlSpVi7969ANy6dYvOnTsTEBBA+/btOXPmTLrrffHFFwQEBJg+t27d4vDhw/To0YM+ffrQrFkzFixYkN23TERERERE5LmhYDyb5M+fnwULFnD8+HHatWtHw4YN2bNnDwCjRo3iww8/5JNPPqFDhw5MmTLloe307t2bypUr065dOwDKli3LqlWr6NSpE1u3bk1XNiIignv37lGqVClatWrFmjVrAAgLC8Pe3p4lS5YwatQo4uPjM9RbvHgxq1evxtvbm/379wNw7do15syZw4YNG/5227uIiIiIiIg8Pstn3YH/qkuXLmFnZ8fkyZMB+OWXX+jVqxeVKlUiKiqK0qVLA/Daa68RHBycof7D3qtXtmxZAFxcXLh//366vE2bNnHv3j26d+8OwPHjx7l06RI1atQgIiKCd999F0tLS/r06ZOunrOzM4GBgeTNm5fw8HAqVKgAQIkSJbC0tMTS0vKRZzqLiIiIiIjIk1Ewnk3OnDnDunXrWLhwIdbW1nh7e2Nvb4+FhQVubm6cPn2aUqVKcfToUYoUKYK1tTU3b94kNTWVhIQErl69CoC5uXm6Z7/NzMwyvZ7BYOCzzz5j27ZtODo6ArBgwQLWrl1LrVq1cHNzIyQkhB9//JEZM2aY/kgQFxfHxx9/zHfffQdA165dTX8IeNi1RERERERE5OkoGM8mDRo04MKFC7Rp0wZbW1uMRiMffPAB9vb2TJgwgfHjx2M0GrGwsGDSpEm4urpStWpVWrdujZeXF4ULFwbAy8uLs2fPsmLFikde79tvv6Vs2bKmQBygZcuW+Pv7061bNwIDA1m5ciXm5ub07dvXVMbOzg5fX1/efPNNbG1tcXBwICoqCk9Pz+y4LSIiIiIiIoLOGZenpHPGJSvpnHH5N9M8lNxA81ByA81DyS10zriIiIiIiIiIpKNgXERERERERCSHKRgXERERERERyWEKxkVERERERERymIJxERERERERkRymYFxEREREREQkh+mccXkqOz9sraMrREREREREnpBWxkVERERERERymIJxkX+p8+fPUa2aX6afn3/+8ZF1Dx06SM2alUhM/GNXw4YNa3jzzcY0blyX6dOnkJycbMrbvXsHzZo1oEmTuuzatT1dWzEx0bRp48/lyxFZOTwRERERkf80bVMX+Zfy8SnKN98cSJc2evQwrl69TMmSpR9a7/LlCIKCRlCgQEFsbW0B2Lx5PatXr+DDD8dTuHARRo8exvLlS3jnnb7cuHGd2bODmT59NtHRUcydO4umTVsAkJqaSlDQSHr27I2XV5HsGqqIiIiIyH+OVsZF/qXMzc2xtrY2fbZs2ciJE2FMnToTGxubTOvExcURGDiYF16wpXjxEgAYDAZCQpbQv//7VKxYGXd3D/r2HcDOndsA+P77vfj5VaR8+Qo4OeXH0tLK1N7SpQspVMiLBg0aZf+ARURERET+Q7QyLk/l7fVvPesuPHdmN1ySIe369WssW7aQESPGUKiQV6b1UlNTGTNmOJUrV+XcuTOUKFESgIsXw4mLu0v16jVNZV1cXImNjSUxMYGUlGRsbGwwGAxs3bqJqlWrAw+2uoeGHmDRopBsGKWIiIiIyH+bVsZF/gPmzZtNyZKlqVu3wSPKzCI1NY2+fQdw7twZihV7sDJuZWWF0WgkLS3VVPbIkUMAWFhYULNmHY4f/4H69asTGXmDLl16EB0dRXDwFMaNm4S1dear8CIiIiIi8nBaGRf5l7t4MZy9e79lwYJlDy2ze/cO9u/fx9Klq4iMvEFCQoJpZbxQIS9cXd0ICVlC374D+PXXUyxdugA7OzusrW0oWNCTrVt3Ex8fh4NDPgwGA/3796Znzz7cu3efHj06Ex8fx9tvd6dRo6Y5NWwRERERkX81BeMi/3Lr139CyZKlKVeufKb5J078wvz5s5kzZxEODvk4duwo+fM74+zsAjxY/R4/fgoffjicbds2U7RoUdzdPXB0dDK1YW5ujoNDPgAWL55P4cJFqF+/IR06tKRv3wF4eBSgX79eCsZFRERERB6TgnGRf7H79++zZ883DBo09KFldu3azp07d+jcuX269GrV/Ni8eSceHgUoV648W7bsIjExAWtrG5o3fyPTl7KFhu7n8OFQFi9ezqlTJ0lLS6N69VrcunWThIQEkpKSsLa2zvJxioiIiIj81ygYF/kXO3BgHwaDgTp16j20TEBAV1q1amv6Pm3aZIoWLU7Llq3x8CjAsmWLSEtLo2fPPuTNa8e2bZtJSUmhYcP0q9yRkTcIDp7KjBlzsLa2ISIinCJFfAAID7+Am5u7AnERERERkcekYFzkX+zgwf28/HKFdC9RMxqNJCcnkydPHszMzChY0DNdnRs3rtOu3VsUL/7gmfGCBT1ZuHAuDRs24dq131i0aC69e/fD0dHRVMdgMDBmzAh69XrXdJ64k1N+YmKiuHkzhjVrVlK79sP/ICAiIiIiIunpbeoi/2JhYT/j51cxXVpo6AHq1q3KzZs3M5S/desmt27dpGTJUqa0Bg0aUb16LXr27MyMGVPp23dgupV0gIUL5+Lt7ZNu63rFipVxcnKmXbsWWFlZ0b17rywenYiIiIjIf5eZ0Wg0PutO5KTDhw+zfv16Zs6caUqbPn06Pj4+lC5dmm+++YZ+/fply7Wjo6OZN28eQUFBWdpuZmN6lE8++YROnTqxb98+rl+/Trt27f7xtTuubv/3hSRLZXbO+PPO0dGW2NjEZ90Nec5pHkpuoHkouYHmoeQWOTUXXV3t/1E9bVP/k9KlS1O6dOlsa9/V1TXLA/F/YsGCBXTq1IkaNWo8666IiIiIiIg8lxSM/8mfV5iHDRvG5cuXSUpKonv37jRu3JjGjRvj5+fHuXPnyJcvHzNmzCAtLY2RI0cSFxfH7du3adOmDR07diQgIIBSpUpx7tw54uPjmT17NkajkcGDB7Nx40b27NnD3LlzAShTpgxjx47F3PyPpwZCQkLYvXs3lpaW+Pn5MXToUObMmcOPP/5IYmIiEydOpGjRoo8czxdffMGaNWtM32fPns2GDRu4c+cOQUFBlC9fnvDwcNq3b8/777+Ph4cHV65c4aWXXmLs2LHcvXuXoUOHEh8fT2pqKgMGDKBKlSrZc/NFRERERESeI8/lM+OHDh0iICDA9Nm1a1e6/Pj4eA4fPszcuXNZsmQJqampwINjpJo1a8a6devw8fFhw4YNXLp0iSZNmhASEsLChQtZsWKFqZ3y5cuzYsUKqlatyu7du03pBoOB8ePHs3jxYrZs2YK7uzs3btww5Z85c4bPP/+c9evXs379ei5dusSePXsA8PHxYf369X8biANERESwePFiVq9ejbe3N/v376dPnz7ky5cvwwp9REQEEydOZNOmTezbt4/o6GgWLFjA66+/zpo1a5g9ezYjR44kLS3tSW+3iIiIiIiI/MVzuTJeuXLlDM+M/5mdnR2jR49m9OjRxMfH07x5cwAsLS157bXXAPD19WXfvn00btyYlStX8tVXX2FnZ4fBYDC1U6ZMGQA8PDyIiYkxpd++fRsHBwecnZ0BMjyjHh4ezssvv4yVlRWAaTUewNvb+7HH6ezsTGBgIHnz5iU8PJwKFSo8tKyXlxd2dnbAg+30SUlJXLhwgWbNmgHg7u6OnZ0dt27dwsXF5bH7ICIiIiIiIhk9lyvjfycqKoqTJ08yb948Fi9ezLRp0zAYDBgMBk6fPg3AsWPHKFasGCEhIVSoUIHp06fTsGFDHud9eM7Ozty9e5fY2FgAJkyYQFhYmCnfx8eHsLAwDAYDRqORo0ePmoLwP29lf5S4uDg+/vhjZs6cyYQJE7C2tjb1LbM+mpmZZUgrWrQoP/zwAwCRkZHcvXs33XFXIiIiIiIi8s88lyvjf8fV1ZXo6GhatGiBra0t3bp1w9Lywa1asmQJ165d48UXX2TQoEEcP36coKAgdu7ciaOjIxYWFiQnJz+yfXNzc8aMGcM777yDubk5ZcqU4aWXXjLllyxZkkaNGtGhQwfS0tJ49dVXqVevnukPAZk5cOAALVu2NH2fPn06vr6+vPnmm9ja2uLg4EBUVBTwIMgeMmQIr7/++iP7+c477zBixAi+/PJL7t+/z7hx40z3QURERERERP655+5os6dRp04dPv/8c6ytrZ91V3INHW2W83S0WUY6QkVyA81DyQ00DyU30DyU3CK3H22mbeoiIiIiIiIiOUx7jp/At99++6y7ICIiIiIiIv8BWhkXERERERERyWEKxkVERERERERymIJxERERERERkRymYFxEREREREQkh+kFbvJUVrZfo6MrREREREREnpBWxkVERERERERymIJxkX8gISGeTp3asGXLxkzzd+zYRrVqfuk+ixbNA6Bbt7cy5FWr5sfkyeMA2L17B82aNaBJk7rs2rU9XbsxMdG0aePP5csR2Tk8ERERERHJZtqmLvKE0tLSGDt2FBERFylRomSmZQ4dOsg77/SjbdsOpjRLywf/uC1cuByj0WhK379/L+PGjaZu3QbcuHGd2bODmT59NtHRUcydO4umTVsAkJqaSlDQSHr27I2XV5FsG5+IiIiIiGQ/rYyLPKGFC+dw/vw5zMzMKFq0eIZ8g8HAsWNHqFq1GtbW1qaPhYUFAHny5DGlxcRE89FHE+nT5z0qVqzM99/vxc+vIuXLV8DJKT+WllamdpcuXUihQl40aNAox8YqIiIiIiLZQ8G4yBP48svP+O67b2nduj2enoWwtbXNUCYs7CcMBgOrVi2nTZvmDBnSn99+u5ppezNmfES5ci/Tvn0nAFJSkrGxscFgMLB16yaqVq0OPFhpDw09wMCBQ7JvcCIiIiIikmO0TV2eyvy3lz7rLmS7jrM7AnDq1AnmzJnBxx8vZMeObRQv/vAt6nZ2dtSr9wadO3dl3ryPGTXqA0JC1mBmZmYqd/Dgfn744TArV643pdWsWYeNG9dRv351ihUrwZAhw4mOjiI4eArBwR9jbW2TvYMVEREREZEcoWBc5DHExEQzYsRQhg4diY9PMc6ePUOVKtUyLVujRi38/VtSsKAnAEOHjqB166Zcu/abKQ1gxYqlNGnSnCJFvE1pBQt6snXrbuLj43BwyIfBYKB//9707NmHe/fu06NHZ+Lj43j77e40atQ0ewctIiIiIiLZRtvURf5GSkoKw4a9T7NmLahZszZGo5Hz589RvHiJTMuXK1c+XdDt5uaGubk5sbGxprSff/6RU6dO0Lp1+wz1zc3NcXDIB8DixfMpXLgI9es3ZMyY4bz9djfGj5/CrFnTsnaQIiIiIiKSoxSMi/yNU6dOcvr0KZYvX0K1an5Ur/4aiYkJDBnSn5CQxenKnj79K8uXL0mXduXKZdLS0nBzczOl7d69g1deeRUfn6IPvW5o6H4OHw5l4MAhnDp1krS0NKpXr4WzswsJCQkkJSVl7UBFRERERCTHaJu6yN/w8SnK8uVrTN9DQw+wefMGgoM/xt3dI13ZmJgoVq0KoWPHANPz3Tt3bqdEiVK4uj4Ixg0GA3v3fsuAAQ9/GVtk5A2Cg6cyY8YcrK1tiIgIp0gRHwDCwy/g5uaOtbV1Vg9VRERERERyiFbGRf6Gvb09xYuXNH0SEhIoUeLBz/b2DiQlJZnODff1fQ07O3tmzQomNjaW7du3sHXrRvr1G2hq7+effyQhIYHXXquU6fUMBgNjxoygV693TeeJOznlJyYmips3Y1izZiW1a9fL7mGLiIiIiEg2UjAu8oTOnTtLiRKlgAer5HXrVuXmzZsA2NraMmXKDM6cOUWrVk3YvftTpk6dia+vn6l+WNhPFCnibVop/6uFC+fi7e2T7jzxihUr4+TkTLt2LbCysqJ7917ZOEIREREREcluZsbfl/TkoQ4fPkznzp2ZOXMmjRs3NqU3a9aMsmXLMmXKFPr168fcuXPT1Vu3bh0xMTG899576dLbtm3LjBkz2LZtGy4uLnTo0OFv+1CnTh0KFCiAufkffz8JDAykXLlyjz2Oa9eucfr0aerUqfPYdf7O7I6Lsqyt3Or3o80k93J0tCU2NvFZd0Oec5qHkhtoHkpuoHkouUVOzUVXV/t/VE/PjD8mHx8fdu3aZQrGz5w5w71790z5fw3Es0NISMhTPSd86NAhwsPDszQYFxERERERkSenYPwxlSpVioiICO7evYuDgwM7duygWbNmXL9+HYCqVaty4MABfvjhByZNmkS+fPkwNzenQoUKAMycOZPvv/8eDw8Pbt++naH94OBgjh49itFopEuXLjRq1ChDmczEx8czcuRI4uLiuH37Nm3atKFjx46sWbOG7du3Y25ujq+vL0OGDGHx4sXcv3+fV155BU9PTyZMmACAo6MjkyZN4tSpU0yfPh0rKyvatm3LsmXLqFixImfOnMHMzIz58+djb//P/uojIiIiIiIif9Az40+gfv36fP311xiNRsLCwnjllVcylJk8eTLBwcEsX74cT88HZ02fPXuWo0ePsnnzZj766CMSEhLS1dm7dy9Xr15l/fr1rFq1ioULF3L37t0MbXfr1o2AgAACAgJ4++23Abh06RJNmjQhJCSEhQsXsmLFCgC2bt3KyJEj2bBhA4UKFcJoNNKrVy+aNm1K3bp1GT16NGPGjGH16tXUqFGDpUuXApCUlMTatWtp0aIFCQkJNGnShE8++QQ3Nzf27duXlbdTRERERETkuaWV8SfQrFkzgoKCKFSoEH5+fpmWiYyMxNvbGwBfX18uX77M+fPnKVeuHObm5tjZ2VGiRIl0dc6ePcvJkycJCAgAHrxN+9q1azg4OKQrl9k2dRcXF1auXMlXX32FnZ0dBoMBePBHgZCQEKZPn06FChX466sBLly4wNixYwFISUkx9fn3//1dmTJlAChQoIDOtRYREREREckiCsafQKFChUhMTGT16tUMHjyYK1euZCjj6urKhQsXKFq0KL/88gv58uXD29ubVatWkZaWxv379zl//ny6Oj4+PlSqVInx48eTlpbG/PnzTavqfyckJIQKFSrQsWNHDh06xN69ewHYuHEjY8eOxdramu7du/Pjjz9ibm5OWloa8CDonjp1Ki+++CLHjh0jOjoaIN0L4gDMzMye+D6JiIiIiIjIoykYf0KNGzfm008/xdvbO9NgfNq0aQQGBpI3b17y5s1Lvnz5KF26NA0bNqR169a4ubnh7Oycrk6dOnU4cuQIHTt2JDExkXr16mFnZ5eh7W7duqULljt37kzt2rUJCgpi586dODo6YmFhQXJyMiVLlqR169Y4OTnh7u7Oyy+/jJ2dHQsWLKBs2bIEBQURGBhIamoqABMnTiQqKiqL75aIiIiIiIhkRkebyVPR0WaSG+gIFckNNA8lN9A8lNxA81Byi9x+tJle4CYiIiIiIiKSwxSMi4iIiIiIiOQwBeMiIiIiIiIiOUzBuIiIiIiIiEgOUzAuIiIiIiIiksMUjIuIiIiIiIjkMJ0zLk/l3ZU9dHSFiIiIiIjIE9LKuIiIiIiIiEgOUzAu8hAJCfF06tSGLVs2ZpqflJTEjBlTadq0Pu3bv8nBg/vT5UdG3uCDDwbyxhs16dOnO5cvXzLl7d69g2bNGtCkSV127dqerl5MTDRt2vhz+XJEVg9JRERERERyCQXjIplIS0tj7NhRRERcpESJkpmWmTQpiGvXfiMk5BMCA0cxbtxoYmKiAUhMTGTAgD4UK1aCjRs/pUaN2owZMxyj0ciNG9eZPTuYiRM/YvDgQJYtW2xqMzU1laCgkfTs2RsvryI5MVQREREREXkGFIyLZGLhwjmcP38OMzMzihYtniH/hx+OcPDgAT78cDxubu688sqrlClTlv379wLwyScrcHLKT69e75IvnyPt2nXk0qVLXL58ie+/34ufX0XKl6+Ak1N+LC2tTO0uXbqQQoW8aNCgUY6NVUREREREcp6CcZG/+PLLz/juu29p3bo9np6FsLW1zVBmy5aN1K//Bg4O+UxpefPaERUVRWpqKjt2bKVlyzamPHNzc2xtbYmKiiQlJRkbGxsMBgNbt26iatXqABw6dJDQ0AMMHDgk+wcpIiIiIiLPlN6mLk/lt4nFnnUXnlrevmGmn0+dOsGcOTP4+OOF7NixjeLFM25RT0lJ4ciRUIKCJqZLv3MnlhIlSnLixC/cvXuXSpWqmPLS0tKIi7vLCy+8QM2addi4cR3161enWLESDBkynOjoKIKDpxAc/DHW1jbZN1gREREREckVFIyL/L+YmGhGjBjK0KEj8fEpxtmzZ6hSpVqGchcunCcpKYmXXqqQLj0i4iKNGjXl1KkTFCninW7V/MqVy6SmpuLi4oaHhwdbt+4mPj4OB4d8GAwG+vfvTc+efbh37z49enQmPj6Ot9/uTqNGTbN72CIiIiIi8gxom7oID1a7hw17n2bNWlCzZm2MRiPnz5+jePESGcreuHENJ6f8ODo6mtKioiK5desmZcuW48aNaxQp4pOuzunTp3B2dsbDwwN4sG3992B98eL5FC5chPr1GzJmzHDefrsb48dPYdasadk3YBEREREReaYUjIsAp06d5PTpUyxfvoRq1fyoXv01EhMTGDKkPyEhi9OVTU1NJV8+x3Rp33+/lwIFCuLlVeSh+ZUqvZ7huqGh+zl8OJSBA4dw6tRJ0tLSqF69Fs7OLiQkJJCUlJTVQxURERERkVxA29RFAB+foixfvsb0PTT0AJs3byA4+GPc3T3SlXV39+DOnViMRiNmZmb//yK2jbz5ZitT/pkzp03lr169wsGD+5k3L31QHxl5g+DgqcyYMQdraxsiIsJNK+rh4Rdwc3PH2to6u4YsIiIiIiLPkFbGRQB7e3uKFy9p+iQkJFCixIOf7e0dSEpKwmg0AlCqVBlsbW3ZsGENMTExTJ8+GUtLS1q3bg9A7dr1OHLkEMeOHeXKlcuMHTuSN95oTOnSZU3XMxgMjBkzgl693jWdJ+7klJ+YmChu3oxhzZqV1K5dL8fvg4iIiIiI5AwF4yKZOHfuLCVKlAIerJLXrVuVmzdvAmBpacnEidP4+usveeutVsTHxzNjxlzy5MkDgKdnIT74YASTJ4+jT5/u+Pq+xvvvB6Zrf+HCuXh7+6Q7T7xixco4OTnTrl0LrKys6N69Vw6NVkREREREcpqZ8fflPskRhw8fZuDAgRQr9seRYE5OTnz88cdP1M7XX39N+fLlcXd3T5eelJREnTp16Nq1Kz169Hho/ejoaObNm0dQUNATXfevIoK8n6p+bvDno83k38nR0ZbY2MRn3Q15zmkeSm6geSi5geah5BY5NRddXe3/UT09M/4MVK5cmZkzZz5VG6tWrSIoKChDMP7ll1/SuHFjtm3bRrdu3TA3z3zzg6ur61MH4iIiIiIiIvLPKBjPRY4cOcLcuXMBuH//PlOnTuXFF19kwIABxMfHc//+fYYOHcq9e/f49ddfCQwMZO3atabt0QCbNm1i5MiR3Lp1i71791K7dm1u3brFwIEDMRqNpKSkMHbsWPLmzcvgwYPZuHEjX3zxBWvW/PHystmzZ3Pu3DmWLFmClZUVV69epXHjxvTp0yfH74mIiIiIiMh/kYLxZ+DQoUMEBASYvtesWZMePXpw7tw5pk2bhru7OwsXLuSLL76gXr16xMTEsGLFCm7evElERAS1atWidOnSBAUFpQvEIyIiuHfvHqVKlaJVq1aEhIRQu3ZtwsLCsLe3Jzg4mPPnzxMfH0/evHnT1Vu8eDEvvPACH374Ifv378fd3Z1r166xY8cOkpOTqV69uoJxERERERGRLKJg/Bl42DZ1d3d3Jk6ciK2tLZGRkfj6+lK8eHHeeustBg8ejMFgSBfE/9WmTZu4d+8e3bt3B+D48eNcunSJGjVqEBERwbvvvoulpWWGoNrZ2ZnAwEDy5s1LeHg4FSpUAKBEiRJYWlpiaWmJjY1N1t0AERERERGR55yC8Vxk1KhR/O9//8POzo7AwECMRiNnzpwhISGBxYsXExUVRfv27alduzZmZmb8+d17BoOBzz77jG3btuHo6AjAggULWLt2LbVq1cLNzY2QkBB+/PFHZsyYweTJkwGIi4vj448/5rvvvgOga9eupnbNzMxydPwiIiIiIiLPCwXjz8Bft6kDLFmyBH9/f9q2bYuDgwMuLi5ERUVRpEgR5s2bx/bt27GysqJ///4AvPLKK3zwwQeEhITg6OjIt99+S9myZU2BOEDLli3x9/enW7duBAYGsnLlSszNzenbt6+pjJ2dHb6+vrz55pvY2tri4OBAVFQUnp6eOXIvREREREREnkc62kyeio42k9xAR6hIbqB5KLmB5qHkBpqHklvk9qPNMj/3SkRERERERESyjYJxERERERERkRymYFxEREREREQkhykYFxEREREREclhCsZFREREREREcpiCcREREREREZEcpmBcREREREREJIdZPusOyL9bwZHndY6kiIiIiIjIE9LKuDyXDAYDCxfOxd//DZo3f4NFi+aRlpaWadkdO7ZRrZpfus+iRfMylLt16yZt2jTHYDCY0nbv3kGzZg1o0qQuu3ZtT1c+JiaaNm38uXw5IiuHJiIiIiIi/wJaGZfn0pIlCzhwYB+zZi0gKek+gYGDcHNz5803W2coe+jQQd55px9t23YwpVlapv9H5/z5c4wcORR7ewdT3o0b15k9O5jp02cTHR3F3LmzaNq0BQCpqakEBY2kZ8/eeHkVybZxioiIiIhI7qSVcXnupKSk8OmnW+jbdyDe3j6UKlWG5s1b8v33ezOUNRgMHDt2hKpVq2FtbW36WFhYAJCYmMCcOTPp0SOAW7duUqJESVPd77/fi59fRcqXr4CTU34sLa1MeUuXLqRQIS8aNGiU/QMWEREREZFcR8G4PHesrKxYt24br71WyZT2563lfxYW9hMGg4FVq5bTpk1zhgzpz2+/XTXlf/75bs6c+ZVp02bx4oueFC/+RzCekpKMjY0NBoOBrVs3UbVqdeDBSnto6AEGDhySTSMUEREREZHcTtvU5anExLR41l14bJaWa00/Ozk5mX4+cSKM7du3MHToiAx1Dh06iJ2dHfXqvUHnzl2ZN+9jRo36gJCQNZiZmdG8+Zu0atWW5ORkIiLC062M16xZh40b11G/fnWKFSvBkCHDiY6OIjh4CsHBH2NtbZO9AxYRERERkVxLwbg8t+7evUurVk24d+8eXbr0oE6dehnK1KhRC3//lhQs6AnA0KEjaN26Kdeu/UbBgp5YWT3Yeh4efgGj0UjRosVNdQsW9GTr1t3Ex8fh4JAPg8FA//696dmzD/fu3adHj87Ex8fx9tvdadSoac4MWkREREREcgVtU5fnlq2tLUuXrqZRo6Z8+ulW4uPjM5QpV668KRAHcHNzw9zcnNjY2HTlzp07g6dnIWxtbdOlm5ub4+CQD4DFi+dTuHAR6tdvyJgxw3n77W6MHz+FWbOmZf3gREREREQkV1MwLs8tS0tLChcuwpAhw7lzJ5aTJ39Jl3/69K8sX74kXdqVK5dJS0vDzc0tXfrZs2fSPS/+V6Gh+zl8OJSBA4dw6tRJ0tLSqF69Fs7OLiQkJJCUlJR1AxMRERERkVxPwbg8V27cuMEbb9Tk5s0YU1pMTDRpaWm4urqmKxsTE8WqVSEkJd03pe3cuZ0SJUrh6po+GD937ky658X/LDLyBsHBUxk/fjLW1jZERIRTpIgP8GB7u5ubO9bW1lk1RBERERER+RdQMC7PFQ8PDwoW9GTevNncunWTs2dP8+GHw6levSbe3kVJSkrCaDQC4Ov7GnZ29syaFUxsbCzbt29h69aN9Os3MF2baWlpXLhwLtNg3GAwMGbMCHr1etd0nriTU35iYqK4eTOGNWtWUrt2xmfVRURERETkv03BuDx3Jk2azr17iXTs2Iphw97Hz68iY8dOJjT0AHXrVuXmzZvAg2fKp0yZwZkzp2jVqgm7d3/K1Kkz8fX1S9felSuXuXfvHsWLl8pwrYUL5+Lt7ZPuPPGKFSvj5ORMu3YtsLKyonv3Xtk7YBERERERyXXMjL8vA4r8A9evN3vWXXhsfz7aTP5bHB1tiY1NfNbdkOec5qHkBpqHkhtoHkpukVNz0dXV/h/V08r4XyxevJguXbrQrVs3unfvzokTJ564jdjYWHbu3AnAsGHD2LdvX1Z3k6NHj3L69OlM8/z9/Rk7duzfttGvX7+s7paIiIiIiIg8BgXjf3L+/Hm+/fZbli9fTkhICEOGDGHEiBFP3M6ZM2f49ttvs6GHf9iyZQtRUVEZ0o8dO0aJEiU4dOhQpkd1/dncuXOzq3siIiIiIiLyCJbPugO5Sf78+bl27RqbN2+mRo0alC5dms2bNwNw6tQpxo8fj4WFBdbW1owfP560tDQGDx7Mxo0bAWjbti0zZsxg4cKFnD59mg0bNgCwYcMGli5dSnx8PEFBQZQvX57Vq1eza9cuzMzMaNy4MZ07d+bs2bNMmTKFtLQ07t69y6hRo/D19WXYsGFcvnyZpKQkunfvjpeXF99//z0nT56kWLFivPjii6YxbNq0iTfeeIMCBQqwfft2OnXqRFJSEgMGDCA+Pp779+8zdOhQKlWqRNWqVTlw4ABHjhwxBeb3799n6tSpWFlZ8f777+Ph4cGVK1d46aWXHmu1XURERERERP6eVsb/JH/+/CxYsIDjx4/Trl07GjZsyJ49ewAYNWoUH374IZ988gkdOnRgypQpD22nd+/eVK5cmXbt2gFQtmxZVq1aRadOndi6dSvnz5/ns88+Y+3ataxdu5b//e9/hIeHc/78eQIDA1mxYgVdu3Zl69atxMfHc/jwYebOncuSJUtITU2lXLlyVK9enaFDh6YLxOPj4zl27Bi1atWiVatWrFu3DoDLly8TExPDwoULCQ4O5v79++n6e+7cOaZNm8aqVauoU6cOX3zxBQARERFMnDiRTZs2sW/fPqKjo7P0fouIiIiIiDyvtDL+J5cuXcLOzo7JkycD8Msvv9CrVy8qVapEVFQUpUuXBuC1114jODg4Q/2HvQuvbNmyALi4uHD//n3Onj3LtWvX6NKlCwB37tzh8uXLuLm5MX/+fGxsbEhISMDOzg47OztGjx7N6NGjiY+Pp3nz5g/t/44dO0hLS+Odd94BIDo6mtDQUKpUqcJbb73F4MGDMRgMBAQEpKvn7u7OxIkTsbW1JTIyEl9fXwC8vLyws7MDwNXVlaSkpMe9lSIiIiIiIvIICsb/5MyZM6xbt46FCxdibW2Nt7c39vb2WFhY4ObmxunTpylVqhRHjx6lSJEiWFtbc/PmTVJTU0lISODq1asAmJubk5aWZmrXzMws3XV8fHwoVqwYS5cuxczMjBUrVlCiRAn69u3L9OnTKVq0KB9//DG//fYbUVFRnDx5knnz5pGUlETNmjXx9/fHzMwsQ/C/efNmFi5cSPHixYEHwfmaNWvInz8/CQkJLF68mKioKNq3b0/t2rVN9UaNGsX//vc/7OzsCAwMNLX7136LiIiIiIhI1lAw/icNGjTgwoULtGnTBltbW4xGIx988AH29vZMmDCB8ePHYzQasbCwYNKkSbi6ulK1alVat26Nl5cXhQsXBh6sKJ89e5YVK1Zkep1SpUpRpUoVOnToQHJyMuXLl8fd3Z3mzZvz7rvv4uzsjIeHB7dv38bV1ZXo6GhatGiBra0t3bp1w9LSkpdffpnp06fj6elJ0aJFOXXqFEaj0RSIA7zxxhtMnjwZBwcHjhw5wvbt27GysqJ///7p+uPv70/btm1xcHDAxcUl0xfDiYiIiIiISNbROePyVHTOuOQGOs9UcgPNQ8kNNA8lN9A8lNxC54yLiIiIiIiISDoKxkVERERERERymIJxERERERERkRymYFxEREREREQkhykYFxEREREREclhCsZFREREREREcpjOGZen4uKyXUdXiIiIiIiIPCGtjMtzyWAwsHDhXPz936B58zdYtGgeaWlpf1vv0KGD1KxZicTEP/4AsX//Pt56qzV16lSla9eO/PDDEVPe7t07aNasAU2a1GXXru3p2oqJiaZNG38uX47IqmGJiIiIiMi/hFbG5bm0ZMkCDhzYx6xZC0hKuk9g4CDc3Nx5883WD61z+XIEQUEjKFCgILa2tgBcvBjO2LEjGTBgCFWr1uDo0UMMHz6EjRs/JSnpPrNnBzN9+myio6OYO3cWTZu2ACA1NZWgoJH07NkbL68iOTBiERERERHJTbQyLs+dlJQUPv10C337DsTb24dSpcrQvHlLvv9+70PrxMXFERg4mBdesKV48RKm9K+++pxXXvGjaVN/nJycaNCgEWDk8uVLfP/9Xvz8KlK+fAWcnPJjaWllqrd06UIKFfL6//IiIiIiIvK8UTAuzx0rKyvWrdvGa69VMqUZDIaHlk9NTWXMmOFUrlyVggU9KVGipCnP2tqaS5cucvv2bdLS0tiwYQ12dvaUKFGSlJRkbGxsMBgMbN26iapVqwMPtrqHhh5g4MAh2TdIERERERHJ1bRNXZ7K0i7VnnUXHlvrWV+ZfnZycjL9fOJEGNu3b2Ho0BGZ1ps3bxapqWn07TuAJk3q8tZbb5vyWrRozVdffY6//xtYWlqRP39+5s1bwgsvvEDNmnXYuHEd9etXp1ixEgwZMpzo6CiCg6cQHPwx1tY22TdYERERERHJ1RSMy3Pr7t27tGrVhHv37tGlSw/q1KmXoczu3TvYv38fS5euIjLyBgkJCelWxnfu3E6BAgX58MPx3L59m3HjRhMW9hMvvliQggU92bp1N/HxcTg45MNgMNC/f2969uzDvXv36dGjM/Hxcbz9dncaNWqak0MXEREREZFnTMG4PLdsbW1ZunQ1n3yygk8/3Ur79p2ws7Mz5Z848Qvz589mzpxFODjk49ixo+TP74yzs4spf/Xq5WzevAMHh3wANG7cjK+//pKGDZsAYG5ubspbvHg+hQsXoX79hnTo0JK+fQfg4VGAfv16KRgXEREREXnOKBiX55alpSWFCxdhyJDh1K9fnZMnf6FSpSqm/F27tnPnzh06d26frl61an5s3ryTw4cPUqpUaVOw/XubFhYZX8UQGrqfw4dDWbx4OadOnSQtLY3q1Wtx69ZNEhISSEpKwtraOvsGKyIiIiIiuYqCcXmu3Lhxg7ffbsfatVtMK9wxMdGkpaXh6uqarmxAQFdatWpr+j5t2mSKFi1Oy5at8fAoAGR88duRI6HUqFE7XVpk5A2Cg6cyY8YcrK1tiIgIp0gRHwDCwy/g5uauQFxERERE5Dmjt6nLc8XDw4OCBT2ZN282t27d5OzZ03z44XCqV6+Jt3dRkpKSMBqNABQs6Enx4iVNnxs3ruPnV5HixR88M1616oPV9C++2M3du3dZtmwR0dHRtG79x0q6wWBgzJgR9Or1ruk8cSen/MTERHHzZgxr1qykdu2Mz6qLiIiIiMh/m4Jxee5MmjSde/cS6dixFcOGvY+fX0XGjp1MaOgB6tatys2bNzPUuXXrJrdu3aRkyVKmtFKlyjBq1FhWrFhKixaNOH78B2bNmo+9vb2pzMKFc/H29kl3nnjFipVxcnKmXbsWWFlZ0b17r+wdsIiIiIiI5Dpmxt+XAUX+gQVvVfn7QrnEn482k/8WR0dbYmMTn3U35DmneSi5geah5Aaah5Jb5NRcdHW1//tCmciWlfHDhw9TpUoVAgIC6NSpE+3bt+fChQsABAQEmH5+XHXq1CEpKSk7umoSFhZGkyZNCA4OzpDXu3dvevfunS5tzZo1+Pv789lnn6VLnzhxIteuXcu2fl64cIGAgIBsa/9hNmzYQEpKSo5fV0RERERE5L8o217gVrlyZWbOnAnA/v37+eijj1i0aFF2Xe6p7d+/n/bt22cIdK9fv05iYiIpKSlcuXKFQoUKAfD111/z0UcfUbJkyXTlR44cmWN9zkmLFi2iRYsWz7obIiIiIiIi/wk58jb1u3fvUrBgwXRpN27cICgoiKSkJGJjY+nbty/16tVjz549zJ07F4AyZcowduxYU51169Zx4MABZsyYQZ48eUzpISEh7N69G0tLS/z8/Bg6dChz5szhxx9/JDExkYkTJ1K0aFEAUlJSGDFiBFeuXCE1NZWuXbvi6enJ5s2bsbKywsPDg/r165va3rx5M3Xr1sXGxoa1a9cSGBjIhg0bOHHiBCNHjmTmzJm8++67ODo6UqNGDfbt20dQUBCOjo4MGzaMuLg4jEYjU6dOxcbGJtMxN2vWjIoVK3LmzBnMzMyYPz/9c8dRUVEMGTIEo9GY7o3fR44cYebMmVhYWFCoUCHGjRvH1atXGT58+P8fsWXBRx99hKurKxMmTCAsLIyUlBTee+896tWrR3BwMEePHsVoNNKlSxcaNWpEQEAApUqV4ty5c8THxzN79mwOHjxIdHQ0gwYNYv78+Vk7OURERERERJ5D2RaMHzp0iICAAJKTkzlz5kyGVfHw8HC6du1KpUqVOH78OHPmzKFWrVqMHz+eTZs24ezszNy5c7lx4wYAq1ev5tdff2X27NlYWFiY2jlz5gyff/4569evx9LSkvfee489e/YA4OPjw6hRo9Jdd8OGDTg5OTFt2jTi4+Np2bIl69ev580338TFxSVdIJ6WlsauXbvYsGEDlpaWNGnShAEDBtCuXTt27dpFUFAQZmZmREdHs2XLFvLkycO+ffsAWLBgAXXq1KFDhw6EhoYSFhaGi4tLhjHXq1ePhIQEmjRpwujRo3n//ffZt28fTZo0MfVj+fLlNG3alLZt2/LZZ5+xbt06jEYjo0ePZu3atTg7OzNr1iy2bdtGSkoKZcuWZdiwYfzwww/cuXOHsLAwbt++zebNm4mOjuaTTz7BysqKq1evsn79epKSkmjbti1Vq1YFoHz58qY/NOzevZtevXqxYMEC004HEREREREReTo5sk09PDyc9u3bmwJVAFdXVxYsWMDmzZsxMzPDYDBw+/ZtHBwccHZ2BqBfv36m8qGhoVhYWKQLxH9v++WXX8bKygoAPz8/zp07B4C3t3eGfl24cIHXX38dADs7O4oWLcqVK1cyHcP3339PQkIC77//PvAgON+5cydt2rRJV87T0zPdSj3AxYsXad26NQBVqjx4ydm5c+cyjPl3ZcqUAaBAgQIZno8/d+4c/v7+APj6+rJu3Tpu3bpFVFQUAwcOBOD+/ftUrVqVPn36sGTJEnr06IG9vT2DBg3i4sWLVKhQwXTfBw0axJIlSzh58qRpW77BYDA96/57Xzw8PIiJicn03oiIiIiIiMg/lyNHm7m4uGRImz17Nv7+/kybNo1KlSphNBpxdnbm7t27xMbGApi2VgPMnz8fBwcH1q1bl64dHx8fwsLCMBgMGI1Gjh49agrCzc0zDq9o0aL88MMPAMTHx3P27Fk8PT0z7ffmzZuZMGECy5YtY9myZcyaNYu1a9dmKPew6/zyyy8AHD16lGnTpmU65t+ZmZll2offx/jjjz8CmNp0cnLCw8OD+fPns3r1anr37k2lSpX45ptvePXVV1m5ciUNGzZk6dKl+Pj4mOrFxcXRvXt3fHx8qFSpEqtXr2blypU0atTooffh9/6lpaU9NF9EREREREQeX7ZvUzc3NychIYFhw4ZhY2Njym/YsCETJ05k0aJFFChQgNu3b2Nubs6YMWN45513MDc3p0yZMrz00kumOqNGjaJNmzZUqVKFIkWKAFCyZEkaNWpEhw4dSEtL49VXX6VevXqcPn060361bduW0aNH06FDB5KSkujXr59pJf7Pbt68yc8//5xua/arr75KUlISx48f/9vx9+7dmxEjRrBjxw4AJk2axM8//5xhzI9jwIABDBo0iM8++8wUMJubmzNy5Eh69eqF0Wgkb968fPTRRyQkJJiemTc3N2f48OGUKVOG0NBQOnToQGpqKn379qVGjRocOXKEjh07kpiYSL169bCzs3toH/z8/OjVqxerVq165B8ORERERERE5O/pnHF5KjpnXHIDnWcquYHmoeQGmoeSG2geSm7xXJ4zLiIiIiIiIiIPp2BcREREREREJIcpGBcRERERERHJYQrGRURERERERHKYgnERERERERGRHKZgXERERERERCSHZds54/J86LFiv46uEBEREREReUJaGZcc8d1339CpU1saN67LrFnTMRgMDy27Y8c2qlXzS/dZtGieKX/DhjW8+WZjGjeuy/TpU0hOTjbl7d69g2bNGtCkSV127dqert2YmGjatPHn8uWIrB6eiIiIiIjIE1EwLtkuNPQA06dPZvDgD1i1aj1nz55my5YNDy1/6NBB3nmnH998c8D06dGjNwCbN69n9eoVDB/+IcuXr+Hs2dMsX74EgBs3rjN7djATJ37E4MGBLFu22NRmamoqQUEj6dmzN15eRbJ1vCIiIiIiIn9HwbhkK4PBwIwZU+nVqy++vn64uLjy5put+eabrx9a/tixI1StWg1ra2vTx8LCAoPBQEjIEvr3f5+KFSvj7u5B374D2LlzGwDff78XP7+KlC9fASen/FhaWpnaXbp0IYUKedGgQaMcGbeIiIiIiMij6JlxyVahofu5e/cODRs2MaXZ2dkRHR2VafmwsJ8wGAysWrWckyd/oXDhIgwa9AEFC3py8WI4cXF3qV69pqm8i4srsbGxJCYmkJKSjI2NDQaDga1bN1G1anXgwUp7aOgBFi0Kyd7BioiIiIiIPCYF4/JUbs3f99A8845+HDjwPb6+r5EnTx5TemxsLDY2NpnWOXToIHZ2dtSr9wadO3dl3ryPGTXqA0JC1mBlZYXRaCQtLdVU/siRQwBYWFhQs2YdNm5cR/361SlWrARDhgwnOjqK4OApBAd/jLV15tcUERERERHJaQrGJVudOnWCRo2apUuLiLiIq6tbpuVr1KiFv39LChb0BGDo0BG0bt2Ua9d+o1AhL1xd3QgJWULfvgP49ddTLF26ADs7O6ytbShY0JOtW3cTHx+Hg0M+DAYD/fv3pmfPPty7d58ePToTHx/H2293p1Gjptk+dhERERERkYdRMC7Z6vr16xQp4p0u7fTpXylTplym5cuVK5/uu5ubG+bm5sTGxlKwoCfjx0/hww+Hs23bZooWLYq7uweOjk6m8ubm5jg45ANg8eL5FC5chPr1G9KhQ0v69h2Ah0cB+vXrpWBcRERERESeKb3ATbJVamoqjo6Opu9xcXH8/PNxKlWqkqHs6dO/mt6M/rsrVy6TlpaGm9uDlfRy5cqzZcsudu78kgULQrhx4wYVK1bO0FZo6H4OHw5l4MAhnDp1krS0NKpXr4WzswsJCQkkJSVl7UBFRERERESegIJxyVbu7u7cvn3b9H3Llg14eRWmQgXfDGVjYqJYtSqEpKT7prSdO7dTokQpXF3dWLZsEUuWLMDMzIy8ee3YuXM7KSkpNGyYfpU7MvIGwcFTGT9+MtbWNkREhFOkiA8A4eEXcHNzx9raOptGLCIiIiIi8vcUjEu2qlfvDdauXUVUVCR7937L2rWrGTw4EDMzM4xGI0lJSRiNRgB8fV/Dzs6eWbOCiY2NZfv2LWzdupF+/QYCULCgJ7t37+DKlcscPhzKokVz6d27X7qVd4PBwJgxI+jV613TeeJOTvmJiYni5s0Y1qxZSe3a9XL4LoiIiIiIiKSnYFyyVadOXfD0LETnzu0ICVnMuHGTTavioaEHqFu3Kjdv3gTA1taWKVNmcObMKVq1asLu3Z8ydepMfH39AGjQoBHVq9eiZ8/OzJgxlb59B9KqVdt011u4cC7e3j7pzhOvWLEyTk7OtGvXAisrK7p375VDoxcREREREcmcmfH3ZUmRfyBy9p6H5pl39MvBnsjzzNHRltjYxGfdDXnOaR5KbqB5KLmB5qHkFjk1F11d7f9RPa2MP0OHDx+mZMmSfPbZZ+nSmzVrxrBhwzKts3XrVqZPnw7Ahg0bSElJ4ddff2Xu3LlP1Zd+/fo9NO/q1au0bdv2ofkiIiIiIiLyZBSMP2M+Pj7s2rXL9P3MmTPcu3fvseouWrSItLQ0Spcu/chg+nE8bTAvIiIiIiIij0/B+DNWqlQprl+/zt27dwHYsWMHzZo1A6Bq1aqmcoMGDeLw4cOm75s2bSI6OtqUPmjQIABq165N9+7dmThxImfPnqVbt2506dKFli1bcvz4cVPdli1b0qJFC+bMmZPuWkeOHKFz58507tyZtm3bcvHixey/CSIiIiIiIs8ZBeO5QP369fn6668xGo2EhYXxyiuv/G2dNm3a4OrqysyZM9OlX79+nenTpzNy5EjOnz9PYGAgK1asoGvXrmzdupWbN2+yZMkS1q5dy9atW4mLiyMhIcFU/9y5c0ybNo1Vq1ZRp04dvvjiiywfr4iIiIiIyPPO8ll3QB48Ix4UFEShQoXw88v8pWeP+549JycnnJycAHBzc2P+/PnY2NiQkJCAnZ0dV65coXjx4tjY2AAwYsSIdPXd3d2ZOHEitra2REZG4uub8TxwEREREREReTpaGc8FChUqRGJiIqtXr6Z58+amdIPBQEJCAsnJyZw/fz5DPTMzM9LS0tKlmZv/8X/pxIkT6d+/P1OnTqVEiRIYjUa8vLwIDw8nOTkZgP79+xMZGWmqM2rUKCZNmsSUKVNwc3N77D8CiIiIiIiIyOPTyngu0bhxYz799FO8vb25cuUKAJ07d6Zdu3Z4enry4osvZqjj5+dHr1696Nu3b6ZtNm/enHfffRdnZ2c8PDy4ffs2+fPnp2fPnnTq1AkzMzNq166Nu7u7qY6/vz9t27bFwcEBFxcXoqKismfAIiIiIiIizzGdMy5PReeMS26g80wlN9A8lNxA81ByA81DyS10zriIiIiIiIiIpKNgXERERERERCSHKRgXERERERERyWEKxkVERERERERymIJxERERERERkRymYFxEREREREQkh+mccXkq+d+toaMrREREREREnpBWxkVERERERERymIJxyTbfffcNnTq1pXHjusyaNR2DwfDQsleuXGbw4Pdo0KAmnTu34/jxH9Lljx07imrV/NJ9jhw5BMDu3Tto1qwBTZrUZdeu7enqxcRE06aNP5cvR2T18ERERERERP4xBeOSLUJDDzB9+mQGD/6AVavWc/bsabZs2ZBp2fv37/P+++/h5VWY9eu30qhRM4YPf59bt24CkJaWxtGjh1iwYBnffHPA9HnttUrcuHGd2bODmTjxIwYPDmTZssWmdlNTUwkKGknPnr3x8iqSE8MWERERERF5LArGJcsZDAZmzJhKr1598fX1w8XFlTffbM0333ydafkDB/aRnJzMe+8NIn9+Zzp06IS9vYNpdfzXX08BZpQt+xLW1tamj5mZGd9/vxc/v4qUL18BJ6f8WFpamdpdunQhhQp50aBBo5wYtoiIiIiIyGPTC9wky4WG7ufu3Ts0bNjElGZnZ0d0dFSm5evUqc/LL/tiYWEBgNFoTLel/dChAzg6OjFoUF+uXbvGa69V5L33BvPCCy+QkpKMjY0NBoOBrVs3UbVq9f+vc5DQ0AMsWhSSjSMVERERERH5ZxSMy1NZvnxZuu9vvtmBAwe+x9f3NfLkyWNKj42NxcbGJtM2zMzMcHFxASAlJYWVK5dhNKZRpUpV4EFgbWdnxzvv9CUlJYUJE4JYtGgeAwcOoWbNOmzcuI769atTrFgJhgwZTnR0FMHBUwgO/hhr68yvKSIiIiIi8iwpGJcsd+rUCRo1apYuLSLiIq6ubo+st3XrJmbPno6VlRWLFq0gb147AN5+uzsVKvhiZ/fge7duPVmyZAEDBw6hYEFPtm7dTXx8HA4O+TAYDPTv35uePftw7959evToTHx8HG+/3Z1GjZpmz4BFRERERESekJ4Zlyx3/fp1ihTxTpd2+vSvlClT7pH16tdvyMyZ88if35mtWzea0qtVq2EKxAHc3T2IjY01fTc3N8fBIR8AixfPp3DhItSv35AxY4bz9tvdGD9+CrNmTcuCkYmIiIiIiGQNBeOS5VJTU3F0dDR9j4uL4+efj1OpUpVH1rO3t8fX14+33nqb/fv3AvDtt//jq68+T1fu8uUI3NzcM9QPDd3P4cOhDBw4hFOnTpKWlkb16rVwdnYhISGBpKSkpx+ciIiIiIhIFlAwLlnO3d2d27dvm75v2bIBL6/CVKjgm6Hs2rWrCAwclC4tKioSF5cHW9pPngzj00+3mvKMRiO7du0wvajtd5GRNwgOnsr48ZOxtrYhIiKcIkV8AAgPv4CbmzvW1tZZNkYREREREZGnoWBcsly9em+wdu0qoqIi2bv3W9auXc3gwYGYmZlhNBpJSkrCaDQC8OqrFTly5BB79vyPO3di+eKL3axf/wmdO3cDoG7dBoSF/cSuXZ9y69ZNpk2bRFRUJJ06dTFdz2AwMGbMCHr1etd0nriTU35iYqK4eTOGNWtWUrt2vZy+DSIiIiIiIg+lYFyyXKdOXfD0LETnzu0ICVnMuHGTTavioaEHqFu3Kjdv3gSgZMlSBAVNZPnyJbRq1ZSNG9cyYcJH1KxZG4AyZcoxbNholi9fQrt2b3LzZgwLFizDycnJdL2FC+fi7e2T7jzxihUr4+TkTLt2LbCysqJ79145eAdEREREREQezcz4+xKl/CscPnyYgQMHUqxYMdN53BMnTmT9+vV07dqVF1988R+1u3XrVvLly0fdunUzzR82bBiNGzemRo0a6dIXL16c7vubb3b4R9cXeRqOjrbExiY+627Ic07zUHIDzUPJDTQPJbfIqbno6mr/j+rpaLN/ocqVKzNz5kwA9u/fz0cffcSiRYueqs2WLVtmRddERERERETkMSgY/5e7e/cuBQsWJCAggKCgID777DN+/PFHEhMTmThxItu3b+fEiRMkJCRQtGhRJk+ezM2bNxk2bBhxcXEYjUamTp3Kzp07cXFxoW3btnz44YfcuHGD27dvU6NGDQYOHPishykiIiIiIvKfomD8X+jQoUMEBASQnJzMmTNnWLRoEefOnTPl+/j4MGrUKOLj43FwcGD58uWkpaXRpEkTIiMjWbJkCXXq1KFDhw6EhoYSFhZmqnv9+nUqVKhAmzZtSEpKUjAuIiIiIiKSDRSM/wv9eZt6eHg47du3p3DhwqZ8b29vAKytrbl16xaDBw/G1taWxMREUlJSuHjxIq1btwagSpUHZ3/PmTMHAEdHR3755RcOHTqEnZ0dycnJOTk0ERERERGR54KC8X85FxeXDGnm5g9ekr9v3z6uX7/OrFmzuHXrFl9//TVGo5GiRYvyyy+/UKpUKY4ePcp3332HjY0N8OBFbvb29owbN45Lly6xceNG9I4/ERERERGRrKVg/F/o923q5ubmJCQkMGzYMLZt25ahXPny5Zk/fz5t27YlT548FCpUiKioKHr37s2IESPYsWMHAJMmTWL79u3Ag5XywYMHc+zYMV544QUKFy5MVFRUTg5PRERERETkP09Hm8lT0dFmkhvoCBXJDTQPJTfQPJTcQPNQcovcfrSZeRb3Q0RERERERET+hoJxERERERERkRymYFxEREREREQkhykYFxEREREREclhCsZFREREREREcpiCcREREREREZEcpnPG5al07dpdR1eIiIiIiIg8Ia2Mi4iIiIiIiOQwBeOS5b777hs6dWpL48Z1mTVrOgaD4W/rpKamMnhwP3766Xi69MTEBCZNGkuDBjVp06Y5oaEHTHm7d++gWbMGNGlSl127tqerFxMTTZs2/ly+HJEVQxIREREREclSCsYlS4WGHmD69MkMHvwBq1at5+zZ02zZsuGRde7cieWDDwZx9OhhihUrYUo3Go2MGDGUiIiLLF++hk6dujBu3GgSExO4ceM6s2cHM3HiRwweHMiyZYtN9VJTUwkKGknPnr3x8iqSXUMVERERERH5xxSMS5YxGAzMmDGVXr364uvrh4uLK2++2Zpvvvk60/JGo5Ht2zfTsWMrwsJ+4sUXC2JnZ2fK/+qrz/n55x8ZN24KBQt64u/fkjx58hAeHs733+/Fz68i5ctXwMkpP5aWVqZ6S5cupFAhLxo0aJTtYxYREREREfkn9AI3yTKhofu5e/cODRs2MaXZ2dkRHR2Vafnw8Ats3LiObt3e4fLlCG7evJkuf8uWjdSoURsPDw9T2qeffgFAWNiP2NjYYDAY2Lp1E1WrVgfg0KGDhIYeYNGikKwenoiIiIiISJbRyrg8lZ+rVOFSo7oAHDjwPb6+r5EnTx5TfmxsLDY2NpnW9fIqzNq1W2jVqi3nz5+jRImSprw7d2L59deTuLu7M2DAu7Rr14I5c2aQnJwMQM2adTh+/Afq169OZOQNunTpQXR0FMHBUxg3bhLW1plfU0REREREJDfQyrhkmVOnTtCoUbN0aRERF3F1dcu0vJXVg63lRqOR8+fP0qlTl3RtGY1GDh7cz/vvDwNgwoQx2NrmpXv3dyhY0JOtW3cTHx+Hg0M+DAYD/fv3pmfPPty7d58ePToTHx/H2293p1GjptkzYBERERERkX9IwbhkmevXr1OkiHe6tNOnf6VMmXKPrPfbb1dJSEhItzIeHR2NhYUFkyZNM72ErVOnLuza9Sndu78DgLm5OQ4O+QBYvHg+hQsXoX79hnTo0JK+fQfg4VGAfv16KRgXEREREZFcR9vUJcukpqbi6Oho+h4XF8fPPx+nUqUqj6x39uwZnJ2dcXZ2SddWoUJe6d6GbmdnR0pKcob6oaH7OXw4lIEDh3Dq1EnS0tKoXr0Wzs4uJCQkkJSU9NRjExERERERyUpaGZcs4+7uzu3bt03ft2zZgJdXYSpU8H1kvXPnzlC8eMl0aQUKvGh6Pvx3+/Z9R9my5dOlRUbeIDh4KjNmzMHa2oaIiHCKFPEBHrwgzs3NHWtr66cZloiIiIiISJbTyrhkmXr13mDt2lVERUWyd++3rF27msGDAzEzM8NoNJKUlITRaMxQ7+zZjMG4n19FjEYjK1cu4/bt26xdu4pDhw7y1ludTWUMBgNjxoygV693TSvoTk75iYmJ4ubNGNasWUnt2vWydcwiIiIiIiL/hIJxyTKdOnXB07MQnTu3IyRkMePGTTatioeGHqBu3aoZji+DByvjf35eHMDS0pKPPprFoUMHad26KXv2/I+ZM+fh6VnIVGbhwrl4e/ukO0+8YsXKODk5065dC6ysrOjevVc2jVZEREREROSfMzNmtlQp2ebq1asMHjyYjRs3/m3Ztm3bMmPGDI4cOUK+fPmoW7duDvTwyfzgVxGAwp9/84x7Is8zR0dbYmMTn3U35DmneSi5geah5Aaah5Jb5NRcdHW1/0f19Mz4v0DLli2fdRdEREREREQkCykYf0YCAgIoVaoU586dIz4+ntmzZ1OwYEFmzpzJ999/j4eHh+llaHPmzMHFxYX27dszduxYTpw4gYuLC7/99hsLFizAwsKC0aNHk5SUhLW1NePHjyc1NZX3338fDw8Prly5wksvvcTYsWO5e/cuQ4cOJT4+ntTUVAYMGECVKlWoU6cOn3/+OdbW1kyfPh0fHx9q1arFwIEDMRqNpKSkMHbsWEqWLPk3IxMREREREZG/o2D8GSpfvjwjR45k5syZ7N69m1q1anH06FE2b95MYmIiDRo0SFf+m2++ITY2ls2bN3Pr1i1T/tSpUwkICKBmzZqEhoYyffp0Bg0aREREBMuWLeOFF16gXr16REdHExISwuuvv87bb79NZGQkHTp04H//+1+m/QsLC8Pe3p7g4GDOnz9PfHx8tt8TERERERGR54GC8WeoTJkyAHh4eBATE8P58+cpV64c5ubm2NnZUaJEiXTlw8PDqVChAgD58+fHx+fBEV5nz55l0aJFLF26FKPRiJWVFQBeXl7Y2dkB4OrqSlJSEhcuXKBZs2bAg6PI7OzsuHXrVrrr/P4agRo1ahAREcG7776LpaUlffr0yZ4bISIiIiIi8pzR29RzEW9vb8LCwkhLSyMxMZHz58+nyy9evDg//fQTAHfu3CEiIgIAHx8fhgwZwurVqxk7dixvvPEGAGZmZhmuUbRoUX744QcAIiMjuXv3Lo6OjuTJk4eoqCiMRiOnT58G4PDhw7i5uRESEkKfPn2YMWNGNo1cRERERETk+aKV8VykdOnSNGzYkNatW+Pm5oazs3O6/Fq1arFv3z7at2+Pi4sLNjY2WFlZERgYSFBQEElJSdy/f5+RI0c+9BrvvPMOI0aM4Msvv+T+/fuMGzcOS0tLevToQa9evShYsCAODg4AlCpVikGDBrFy5UrMzc3p27dvto5fRERERETkeaGjzf5FLly4wOnTp2nSpAm3b9+madOm7Nmzhzx58jyzPuloM8kNdISK5Aaah5IbaB5KbqB5KLmFjjaTLFOgQAGmT5/OypUrSU1NZciQIc80EBcREREREZF/RsH4v4itrS0LFix41t0QERERERGRp6QXuImIiIiIiIjkMAXjIiIiIiIiIjlMwbiIiIiIiIhIDlMwLiIiIiIiIpLDFIyLiIiIiIiI5DC9TV2eysuhoTpHUkRERERE5AlpZVxEREREREQkh5kZjUbjs+6EiIiIiIiIyPNEK+MiIiIiIiIiOUzBuIiIiIiIiEgOUzAuIiIiIiIiksP0NnV5YmlpaQQFBXHmzBny5MnDhAkTKFy48LPulvwHtWjRAnt7ewA8PT3p3bs3w4YNw8zMjOLFizNmzBjMzc3ZuHEj69evx9LSkj59+lC7dm3u37/P0KFDuXnzJnnz5mXq1Knkz5//GY9I/k1+/vlnpk+fzurVq7l06dJTz72ffvqJiRMnYmFhQbVq1ejXr9+zHqL8C/x5Hp48eZLevXtTpEgRADp06EDjxo01DyVbpaSkMGLECH777TeSk5Pp06cPxYoV0+9EyVGZzUMPD49//+9Eo8gT+vLLL42BgYFGo9Fo/PHHH429e/d+xj2S/6L79+8b/f3906W98847xkOHDhmNRqNx9OjRxq+++soYFRVlbNq0qTEpKcl49+5d088hISHGjz/+2Gg0Go27du0yjh8/PqeHIP9iixcvNjZt2tTYpk0bo9GYNXOvefPmxkuXLhnT0tKMPXr0MJ44ceLZDE7+Nf46Dzdu3GhctmxZujKah5LdNm/ebJwwYYLRaDQab926ZaxZs6Z+J0qOy2we/hd+J2qbujyxY8eOUb16dQAqVKjAiRMnnnGP5L/o9OnT3Lt3j27dutG5c2d++uknTp48ScWKFQGoUaMGBw8eJCwsjFdeeYU8efJgb2+Pl5cXp0+fTjdPa9SoQWho6LMcjvzLeHl5MWfOHNP3p5178fHxJCcn4+XlhZmZGdWqVdOclL/113l44sQJvvvuO9566y1GjBhBfHy85qFku4YNGzJgwADTdwsLC/1OlByX2Tz8L/xOVDAuTyw+Ph47OzvTdwsLCwwGwzPskfwX2djY0L17d5YtW8bYsWMZMmQIRqMRMzMzAPLmzUtcXBzx8fGmrey/p8fHx6dL/72syON64403sLT840mup517f/29qTkpj+Ov87B8+fJ88MEHrFmzhkKFCjFv3jzNQ8l2efPmxc7Ojvj4ePr378/AgQP1O1FyXGbz8L/wO1HBuDwxOzs7EhISTN/T0tLS/ceCSFbw9vamefPmmJmZ4e3tjaOjIzdv3jTlJyQk4ODgkGE+JiQkYG9vny7997Ii/5S5+R//uvwncy+zspqT8qTq169PuXLlTD+fOnVK81ByxPXr1+ncuTP+/v40a9ZMvxPlmfjrPPwv/E5UMC5PzNfXl3379gHw008/UaJEiWfcI/kv2rx5M1OmTAEgMjKS+Ph4qlatyuHDhwHYt28ffn5+lC9fnmPHjpGUlERcXBwXLlygRIkS+Pr6snfvXlPZV1999ZmNRf79ypQp81Rzz87ODisrKy5fvozRaGT//v34+fk9yyHJv1D37t0JCwsDIDQ0lLJly2oeSraLiYmhW7duDB06lNatWwP6nSg5L7N5+F/4nWhmNBqNOXpF+df7/W3qZ8+exWg0MmnSJIoWLfqsuyX/McnJyQwfPpxr165hZmbGkCFDcHJyYvTo0aSkpODj48OECROwsLBg48aNbNiwAaPRyDvvvMMbb7zBvXv3CAwMJDo6GisrK4KDg3F1dX3Ww5J/katXrzJ48GA2btzIxYsXn3ru/fTTT0yaNInU1FSqVavGoEGDnvUQ5V/gz/Pw5MmTjB8/HisrK1xcXBg/fjx2dnaah5KtJkyYwOeff46Pj48pbeTIkUyYMEG/EyXHZDYPBw4cyLRp0/7VvxMVjIuIiIiIiIjkMG1TFxEREREREclhCsZFREREREREcpiCcREREREREZEcpmBcREREREREJIcpGBcREZEclxvfH5sb+yQiIv9dCsZFREQkSwQEBFCyZMmHfhYvXkxycjITJkzgm2++MdWrU6cO48aNe6prX716lZIlS/LFF188Vvlhw4bRtGlT0/eNGzcya9asp+qDiIjIk7B81h0QERGR/w5fX18CAwMzzStQoABRUVGsXr0aPz+/LL2um5sbGzZsoEiRIo9V/t133yUxMdH0feHChdSqVStL+yQiIvIoCsZFREQkyzg4OFChQoWH5l+9ejVbrpsnT55HXvevvLy8sqUfIiIij0vb1EVERCRHXL16lbp16wIwYMAAAgICTHn3798nKCiIihUr8uqrrxIYGEh8fLwpv2TJkmzdupVBgwbxyiuvUKlSJSZOnIjBYDC1/ddt6ocPH+att97ilVdeoUaNGkyZMoWkpCQg/Tb1OnXq8Ntvv7FmzRpKlizJmTNnMt3yvnPnTsqVK8ft27ez5waJiMhzRcG4iIiIZBmj0YjBYMj04+bmxty5cwEYPHgwY8aMMdXbtm0bd+7cYdasWbz33nvs3LnTVPZ3kyZNIn/+/MyfP5+33nqLVatWsXHjxkz7ERYWRrdu3bC3t2fmzJm89957bNq0iYkTJ2YoO3fuXFxdXXnjjTfYsGEDJUuWpHTp0uzevTtduZ07d1KzZk2cnJye9jaJiIhom7qIiIhknb1791K2bNlM88LCwihdujQAhQsXplixYqY8b29vZsyYgZmZGa+//jqHDh3i8OHD6eq/8sorjB49GoAqVaqwZ88e9u3bR8eOHTNca9GiRXh6ejJv3jwsLCwASEpKYtu2baSmpqYrW6ZMGfLkyYOLi4tpq3uLFi0IDg4mLi4Oe3t7bt26xYEDB5g5c+Y/uzEiIiJ/oWBcREREssyrr77K8OHDM83LkyfPQ+u9/PLLmJmZmb57enpy7ty5DGX+zN3dPd1L2P7sxx9/pEmTJqZAHKBTp0506tTpb8cA0KxZM6ZNm8bXX39Ny5Yt+eyzz8ibN69e8iYiIllGwbiIiIhkGXt7e1566aUnrvfCCy+k+25mZpbh3O+/ljE3N3/o2eB37tzB2dn5ifvxO2dnZ6pXr87u3btp2bIlO3fupGHDho/8g4KIiMiT0DPjIiIi8p9jZ2fHrVu30qXFxsZy4MAB7t2791ht+Pv7c+jQIc6ePctPP/2Ev79/dnRVRESeUwrGRUREJMf8edt4dnrllVfYt28faWlpprTPPvuMd955J8Mz4/Bglf2v6tati62tLWPHjsXT05NXX301W/ssIiLPF21TFxERkSxz9+5dfvrpp0zz7O3tcXd3B+DgwYMUKVKEUqVKZUs/evfuzVtvvUX//v1p27YtN27cYNasWXTq1Ak7O7sM5R0cHDh58iRHjx7Fz88PMzMz8uTJQ6NGjdiwYQN9+/bNln6KiMjzS8G4iIiIZJnjx4/Trl27TPOqVKnCihUr6NmzJ5988gk//vgjO3fuzJZ+VKhQgWXLljFz5kz69u2Li4sLAQEB9O7dO9Py77zzDmPGjKFHjx58+eWXeHh4AFCjRg02bNhA8+bNs6WfIiLy/DIzPuzNJyIiIiLPuaCgIM6cOcO6deuedVdEROQ/RivjIiIiIn+xefNmfv31VzZu3MiMGTOedXdEROQ/SMG4iIiIyF+cOHGCTz/9lE6dOtGwYcNn3R0REfkP0jZ1ERERERERkRymo81EREREREREcpiCcREREREREZEcpmBcREREREREJIcpGBcRERERERHJYQrGRURERERERHKYgnERERERERGRHPZ/Zhh4gHF/Z6MAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABfQAAAHFCAYAAAC0KXgAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/F0lEQVR4nOzdd3yO1+P/8Xciw0jsGA2iqBghBLH3pmi19h5VtVcqUqu1Yws1aisaJbWqNYqi1ge1ZxEERZYkRub9+8Mv97d3k3DTVtzxej4eHt9vznXOdc515bg++r7PfS4rg8FgEAAAAAAAAAAAeKNZp/YAAAAAAAAAAADAixHoAwAAAAAAAABgAQj0AQAAAAAAAACwAAT6AAAAAAAAAABYAAJ9AAAAAAAAAAAsAIE+AAAAAAAAAAAWgEAfAAAAAAAAAAALQKAPAAAAAAAAAIAFsEntAQBIffHxCQoNfZTaw4AFyJ49E3MFL8Q8gbmYKzAH8wTmYJ7AXMwVmIN5AnOl5bni5OSY2kNAClihD0Dp0lnLyiq1R4E3nZUVcwUvxjyBuZgrMAfzBOZgnsBczBWYg3kCczFXkFoI9AEAAAAAAAAAsAAE+gAAAAAAAAAAWAACfQAAAAAAAAAALACBPgAAAAAAAAAAFoBAHwAAAAAAAAAAC2CT2gMA8Gbgrex4kcQ5wlzB8zBPYC7mCszBPIE5mCcwF3MF5mCewFzMEaQWK4PBYEjtQQBIXQkxsbK2s03tYQAAAAAAAFiMhJhYhUY8VVpMV52cHFN7CEgBK/QByNrOVqeavK/4R49SeygAAAAAAABvvHSZMsl921ZZWaXNQB9vLgJ9AJKk+EePlECgDwAAAAAAALyxeCkuAAAAAAAAAAAWgEAfAAAAAAAAAAALQKAPAAAAAAAAAIAFINAHAAAAAAAAALwxjh07pm7dusnDw0Oenp7q0KGDfvvttyT1fvnlF7Vt21ZlypRRlSpV1KNHD505c8bsfi5fvqy+ffvK09NTHh4e+vjjj/Xjjz8mW/f777/XBx98oFKlSqlatWqaMGGCHj9+nKTe6tWrVa9ePZUtW1adOnXS1atXkz3f3r175ebmpl9//dXs8UoE+gAAAAAAAACAN8T+/fvVpUsX3bt3T8OHD9fYsWPl6Oio7t27a9OmTcZ669evV58+fZSQkKCxY8dqxIgRevTokdq2basjR468sJ+LFy+qTZs2OnPmjPr27atJkyapSJEiGjJkiObPn29Sd9y4cRo5cqRcXFw0ffp0dejQQd9//70+/fRTxcfHG+tt2rRJX331lapUqaIJEybo9u3bGjt2bJK+//jjDw0dOlSDBg1SzZo1X+r+WBkMBsNLtQCQJp2oWVsJjx6l9jAAAAAAAADeeNaZMsnj1z0KCYlUQkJqj+bf5+TkmGp916tXT0+fPtW2bduUOXNmSVJcXJyaNGmihIQE7dq1S48ePVKNGjX0zjvvKCAgQLa2tpKkqKgo1apVSyVLltSKFSue20/nzp118uRJ/fjjj8qfP7+xvFOnTjpz5oyOHj0qOzs77dq1S3379lXHjh01atQoY72tW7dq6NChmjlzppo0aSJJatGihTJnzqxVq1ZJkqZMmSJ/f3+dOHHC2C48PFytWrVS2bJl5evr+9L3hxX6AAAAAAAAAIBUd//+fd26dUt169Y1hvmSZGNjo3fffVd//vmnpGdb5URFRalZs2bGMF+SHBwclCdPHt29e/e5/RgMBv3+++/y9PQ0CfMl6b333tOTJ08UFhYmSVq2bJkcHBw0YMAAk3qNGzdWhgwZtH//fknSnTt3dPHiRTVr1szkehwd/+/Dkbi4OA0cOFBZs2bVuHHjXubWGBHoAwAAAAAAAABSnYODg+zt7RUZGWlS/ujRI509e1ZFixaVJOXIkUOSktT7888/FRgYqGLFij23HysrK2XPnj1J+/j4eP3vf/9Tjhw55OTkpISEBJ08eVJly5ZVlixZTOqmS5dO6dKl0/379yVJoaGhkmT8gCAmJka//fabypcvb2wzYcIEXbt2TfPmzZO9vb1Z9+TvCPQBAAAAAAAAAKkuY8aM6t+/v7Zv367169crODhYZ8+eVZ8+fRQZGSlvb29JUoECBdS+fXutWbNGu3btUkhIiI4dO6bevXsrU6ZMGjhw4Av78vLy0tmzZ7Vo0SLdv39fV65c0bBhw/THH3/Ix8dH1tbWiomJUVxcnDJlypSk/cWLFxUVFWUM5p2dnZUuXTodOnRI9+/f15dffqmwsDB16tRJkrR27Vpt2LBB8+bNU65cuV75Htm8cksAAAAAAAAAAP5FuXPnVtasWfXFF18Yy7Jly6bvv/9erq6ukp6tpC9cuLASEhLUt29fY72CBQtq48aNyps37wv7cXR0VL58+TR9+nRNnz5dkmRvb69ly5apUqVKkqT06dPLyclJv//+u6Kjo01W1c+aNUvS/31bIFu2bOrdu7e+/vprLVy4UBkyZNCoUaNUpkwZHT16VBMmTNDEiRNVunTpf3R/WKEPAAAAAAAAAEh1U6ZMkZeXl7JmzaoJEybom2++UadOnRQWFqYFCxYY6w0ePFjjxo1TsWLF5Ovrq4ULF+r9999XYGCgVq9e/cJ+vv32W/Xq1UtPnz7V6NGjtXjxYvXp00cJCQmaNWuW4uPjjXU7dOige/fuaejQobp+/bquX7+uoUOHas+ePZKkIkWKGOsOGDBA+/btU0BAgA4cOKCOHTvq1q1bGjBggLp06aLmzZvr7t27GjhwoKpVq6aGDRtq0aJFL3WPWKEPAAAAAAAAAEhVV65c0bJly1SkSBEFBAQYV8PXqFFDYWFh2rp1q/r166egoCBt375dVapU0ZIlS2Rt/WzNeq1atXTnzh0tX75cvXv3loODQ7L9hIaGatq0acqRI4d++OEHZc+eXZJUvXp1JSQkaMGCBTpw4IBq1qwpSerdu7eePn2qJUuWaOfOnZKkmjVrqmzZsvr9999VpUoVk/PnypXLuKXOo0eP1KdPH7m7u2vo0KGKjY1Vjx49ZGtrKz8/P50/f15fffWVSpYsqapVq5p1n1ihDwAAAAAAAABIVb/99psMBoN69uyZ5IWxiVvt3L59W/v375ckffbZZ8YwP1HRokUVGxure/fupdjP8ePH9eTJE7Vv394Y5v+9nzt37hjLrKysNHjwYB0+fFgbNmzQ/v375efnp2vXrqlAgQJ67733ku3HYDBo2LBhio+P1/Tp02Vtba3du3fr6tWrmjhxosqWLatWrVpJks6fP2/OLZJEoA8AAAAAAAAASGVhYWGSnu2D/3cXLlyQJOXLl0/h4eHPrWdra6s8efKk2M/z2icG6/ny5ZMk7d27V1OnTlVCQoIcHBzk5uamXLlyaf369Xr48KE6duyYYj8zZ87U8ePHNX/+fOO3Bfbu3StnZ2eVLFlSknTt2jVJz/bfNxeBPgAAAAAAAAAgVRUrVkySdOLECZPyCxcuaPv27SpXrpwKFSqUYr09e/bo1KlTaty4sTJlypRiP4mr8P/e/s8//9R3332nfPnyGV+Ke+7cOS1evFi///67sd7169c1a9YsFS5cWO3atUu2j61bt2rJkiWaOXOmXFxcjOVRUVFycnIy/rxlyxZZW1ubvd2OxB76AAAAAAAAAIBU1qBBA5UpU0YzZ85UeHi43N3ddePGDS1atEjZs2fX5MmTJUlt2rSRv7+/fHx8dOPGDRUpUkTnz5/X4sWLVahQIfn4+BjPefr0aYWHh8vDw8O4Sr506dJq2LCh1qxZo/j4eFWvXl337t3T4sWLlZCQoOnTp8vW1laS1LJlSy1dulQ+Pj7q27evHjx4oIULF8re3l5+fn6ys7NLch2nT5+Wj4+PPv/88yRBfbFixbR3715t2LBBISEhWr58uT744APlzZvX7PtkZTAYDC99dwGkOSdq1lbCo0epPQwAAAAAAIA3nnWmTPL4dY9CQiKVkJDao/n3OTk5pkq/jx490uzZs/Xzzz8rNDRU2bNnV61atdS3b1/lzp3bWC84OFjTp0/X3r17FRkZqTx58qhBgwbq3bu3MmfOLEmKiYlR5cqVZTAYdPjwYZPwPTY2VgsXLtTGjRt19+5dZcmSRZUrV1bfvn1VqFAhkzGdPn1aU6ZM0fnz55U9e3bVrFlT/fr1S7L/viTdv39fH330kapXr66JEycmOR4VFSUfHx8dOHBA9vb2atKkiYYPH57sBwMpIdAHIIlAHwAAAAAAwFwE+kgt7KEPAAAAAAAAAIAFINAHAAAAAAAAAMACEOgDAAAAAAAAAGABCPQBAAAAAAAAALAAZgf6gwcPlqurq27fvp3k2IIFC+Tq6qrq1asn27ZHjx5yc3PT06dPFRAQIFdXV+3bt++5/QUFBcnV1VXTpk0zKb9586a5Q37jGQwGzZw5U5UqVVLp0qXl6+ubbL0jR47I1dX1hX+OHDnymq8g7fHz85Orq6uuXr2a2kP516WlvzsAAAAAAADA28jG3Iqenp7atm2bTp06JWdnZ5NjBw8elK2tre7fv6+rV6+qcOHCxmMJCQk6efKkypQpo/Tp05s9sOzZs8vX11dFixY1ls2fP19r16594YcBlmLv3r1asGCBKleurKZNm8rV1fW59evXr6/69eunePyv9x34qx49eihz5syaOXNmag8FAAAAAAAAwCt6qUBfkk6ePKkmTZoYy58+farff/9dzZo1U0BAgA4ePGgSLF++fFlRUVGqVKnSSw0sY8aMatGihUnZwYMHFR8f/1LneZNdunRJkjRkyBCVLl36hfVdXV2T3BPAHAcOHDD5ewsAAAAAAADA8pi95U7hwoXl5OSkU6dOmZQfP35cMTEx+uijj+Ts7KyDBw+aHD9x4oQkvXSg/zaIjY2VJGXKlCmVRwIAAAAAAAAAeNO91EtxK1SooPPnzysmJsZYdujQIWXMmFHu7u6qWLGijh49arKK/sSJE8qQIYPc3d1NzhUWFqYRI0aoYsWKKlu2rLp27aqLFy8aj/99D/06dero6NGjCg4Olqurq/z8/Ix19+3bp/bt26tMmTLy8PDQJ598onPnzpl1TVevXtWAAQNUsWJFlSpVSi1atND3339vUidx3/+ffvpJDRs2VKlSpTR69Ojnnnfjxo1q2bKlSpUqpQoVKqhPnz7GFfmJ1zN37lxJUpMmTV643c7LSOk9Bfv27ZOrq6sCAgKMZYn3eMCAASpVqpRq1aqlhw8fSnr2bYyePXvKw8ND7u7uatu2rXbt2mVyzsQ9569du6bu3bvL3d1d1atX1+TJk/XkyROTujExMfLz81P9+vXl5uamWrVqafLkyYqKijKpFxISogkTJhjrlS1bVm3atEnSd506deTt7a2ffvpJLVq0UKlSpVS7dm3NnTtXCQkJL7xPly5d0qeffqpy5cqpSpUqmjZtmuLi4pLUM3fcx48fV6dOneTp6Sl3d3e1bNlS69evT3K+Q4cOqWvXripfvrwqVqyoTz/91GTuS9K1a9c0YMAAeXp6qnTp0mrZsqW2bduW7L0PCgpSv379VK5cOXl4eKhfv34KCgqS9H9/jyRp27ZtvGsBAAAAAAAAsGAvFeh7enoqJibGJHw8ePCgKlSoIFtbW1WuXFlRUVE6c+aM8fiJEydUrlw52drampxrzJgxCgoK0qBBg9SpUyedOHFCPXr00OPHj5Pt28fHR4UKFZKjo6N8fX2Ne8lv3LhRvXr1kpWVlYYMGaJevXopMDBQ7dq1M347ICXnzp3Txx9/rCNHjqh9+/by8vKSo6OjRo4cqSlTpiSp/8UXX6hOnToaNmyYateuneJ5Z8yYoeHDh8ve3l7Dhg1T586ddeLECbVt21anT582Xk/iNXh5eaX4Qty/evLkiUJDQ5P9ExkZ+cL2KVm9erVCQkI0cuRItW7dWlmyZNGvv/6qDh066Nq1a/rkk080aNAgPXnyRH379tW3336b5Bw9evRQXFycvLy8VLVqVS1btky9e/eWwWCQ9OxdCp999pkWLlyoqlWrGu/lt99+q65duxo/JIqOjlaHDh20adMmNW3aVGPGjFG3bt1069Yt9evXT2fPnjXp98iRIxo5cqRq1aqlL774Qrlz55afn5/Wrl373Gu+fv262rdvrzNnzqhnz57q1q2btm3bppUrV5rUM3fcgYGB+uSTTxQeHq6+fftqxIgRypQpk7744guTUP/nn39W9+7ddffuXfXq1Uu9e/fW5cuX1alTJ12/fl2SdOXKFbVu3Vpnz55Vjx49NGzYMGXKlEmDBw/W8uXLk1xL586dZWVlJS8vL7Vs2VK//PKLBg0aJOn/3kUhSWXKlJGvry/vWgAAAAAAAAAslNl76Eum++iXLl1a4eHhunDhgj7//HNJ/7etzsGDB1WmTBndv39ft2/fVtu2bZOcq2zZslqyZImsrZ99pmBnZyc/Pz8dO3ZMNWrUSFK/Xr16WrFihSIiIoz7yEdFRWncuHGqXbu25s+fb6zbsWNHNW/eXOPHjzdZjf5348aNU3x8vL7//nsVKFDA2LZPnz5aunSpWrRooWLFihnr16lTR8OHD3/uPbp69aq++eYbVatWTYsWLVK6dOkkSR9++KHef/99jR49Whs3blS9evV04cIF7dy5U7Vr1zYrZF2yZImWLFmS7DFPT0+tWrXqhedIjsFg0MKFC+Xg4CBJio+P15gxY5Q1a1YFBAQoa9askqT27durXbt28vX1VaNGjZQzZ07jOQoVKqRvvvnG+PvMmTOnvvnmG/3yyy+qV6+eNm/erAMHDmju3LkmL/atWrWq+vTpI39/f3Xq1Em7d+/W9evX5efnpwYNGhjrlS1bVj179tSBAwfk5uZmLL9z547WrVtn/AZIs2bNVK1aNW3ZskUdOnRI8ZrnzJmj2NhYBQQEyMXFRZLUsmVLNWvWzORDJXPHvWvXLj169EgTJ05UqVKljOdr27atrl69KunZhwPjx49XgQIFFBAQYNxqqU6dOmrcuLFWrlypMWPGaNy4cXJwcNDGjRuVOXNmSVKnTp00YMAAzZgxQ82bN1f27NmNY6levbq+/PJL489RUVH64YcfFBgYqIIFC6pFixb6/PPP9c477/AOBgAAAAAAAMCCvdQK/b/vo3/kyBElJCSocuXKkqRcuXKpcOHCxi09nrd/ftOmTY3hryRjCHr//n2zx3Pw4EFFRUWpYcOGJqvVY2JiVLNmTZ07d0737t1Ltm1wcLB+//13NW3a1BjmS5K1tbV69+4tSdq5c6dJG3PeA7B7924lJCTo008/NYb5kpQvXz41b95cFy5cMG6H8rJatGihZcuWJfvnRR80PE/JkiWNYb707JsLd+/eVbt27YxhviTZ29urR48eio6OTrKdT69evUx+n927d5f07H5Iz1amOzg4qFy5cia/q7JlyypLlizas2ePJKlx48Y6dOiQ6tatazxXfHy8cQudv3+Dw9nZ2WQ7p0yZMsnFxUXBwcEpXm9CQoJ+/fVXValSxRjmS1KOHDnUrFkzk7rmjjtPnjySpOnTp+vYsWOKj4+XnZ2dAgICjL+bs2fP6sGDB2rVqpXJexNcXFy0fv169e/fX2FhYTp69Khq1KihuLg4Y39hYWFq0KCBoqOj9dtvv5mM8e8vuy1evLgkPfceAAAAAAAAALA8L7VCX3q2j/7JkyclPQvUs2XLZrL/e+XKlbVhwwbFxsbqxIkTcnR0VMmSJZOc56+ruyUpffr0kv7vRbHmuHHjhiQ9N8y+c+eOcufOnaT89u3bkqR33303ybHE1fKJdVIac3ISw/pChQo997z58uV74bn+Ln/+/KpSpcpLt3uRHDlymPxs7jX81XvvvWfyc/bs2ZUlSxZjvZs3byoqKsr44c/f/fV86dKl07Jly3TixAndunVLN27cUHR0tCQl2Rv/ryvVE9nZ2T13D/3w8HA9evTIJMz/+/UlMnfcjRo10p49e7R161YdOnRIWbNmVdWqVdW0aVPjhxOJdQsWLJjkPCVKlJAknT59WgaDQf7+/vL390+2zzt37pj8/Pffn52dnSSZvMsCAAAAAAAAgOV76UDf09NT27ZtU2hoqA4fPqxKlSrJysrKeLxy5cr69ttvdf78ef3++++qUKGCyUr1RH9dzf2qEkPb0aNHJxvMS8mH0pKMe7s/77x/3/ffnDEnnje58yeW/f28r0tKIffffz/Pu4aU7o2NTdKpFB8fbyyPj4+Xs7Ozxo8fn+wY7O3tJcn4/oOnT5+qcuXKqlevnlxdXfXOO++oVatWSdr9k3n09OnTJGV/v0fmjtvGxkbTp09Xnz59tHPnTh04cEA7duzQjz/+qA8//FCTJ082nvuvf1/+LjGEb9OmjRo1apRsnfz585v8/LzzAQAAAAAAAEg7XinQl6QDBw4oMDDQuLXKX49bW1vr5MmTunDhgry8vP6dkSbD2dlZkpQlS5YkK9dPnjypqKgo48r/v0tcIX/t2rUkxxLLErdReRl/Pa+Tk9O/dt6XkRhyJ76wNdGDBw/Mav8q9+bmzZsme9uHhIQoKirKuAo+X758OnHihPEFyn+1bds246r1hQsXKiwsTJs3b1bRokWNdV70guOXkS1bNjk4OCgwMDDJsZs3b5r8bO647927p2vXrqly5coqXLiwevfurbCwMPXt21c//PCDvLy89M477yTbh/Rsqx57e3u1bt3aWPb3OX3r1i1dunRJGTJkeJXLBgAAAAAAAGDhXnp5c+I++mvWrJGkJFuRZM6cWSVKlNDmzZsVGxtr1r7z5rK2tjZZQV21alWlT59eS5YsMQmvw8PDNWDAAI0YMSLZbwdIz7bPcXd317Zt20wC1oSEBC1cuFCSVLt27ZceY926dWVlZaVFixaZbHly584dbd68WcWKFTMGu/+VxA8SLly4YCwzGAz66aefzGpfsmRJ5c6dW999953Cw8ON5TExMVq6dKlsbW1VvXp1kzYrV640+Xnx4sWSZFxlXqdOHT1+/FjLly83qbdt2zYNHjxYW7dulfTsd2dnZ2fyXoOEhATj+f+NbWSsrKxUv359HTlyRKdPnzaWR0ZGauPGjSZ1zR33mjVr1LVrV5N7ni1bNrm4uMjKykrW1tZyc3OTk5OTAgICTL4dEBQUpBUrVuj+/fvKlSuXSpUqpS1btujWrVvGOgaDQePGjVPfvn0VFhb20tf89787AAAAAAAAACzPS6/Ql57to79t2zY5OzubBK+JKleurG+++UY5cuQwWWX9T2XPnl1hYWFavHixKlSoIHd3dw0dOlQTJkzQRx99pA8++EDp0qXTd999p/v372vGjBnJbgWTaOTIkercubNatWql9u3bK3v27NqxY4eOHj2qTp06Gfc1fxmFCxdW9+7dtWTJEnXs2FGNGzdWRESE1qxZI4PBoDFjxrzy9V+6dEmbNm16bt9ubm6qWLGicuXKpUWLFikuLk558+bVTz/9lOILgv/OxsZGY8aMUf/+/dWyZUu1bt1a6dOn16ZNm3T+/Hl5e3sn2bf9559/1uPHj1W5cmWdOHFCW7duVbNmzYzf6GjVqpU2b96sadOm6dKlSypfvrxu3Lih1atXy9nZWT169JAk1apVS7t371aPHj30/vvvKzo6Wtu2bdP58+dlbW2tR48eveLdMzV48GDt379f3bp1U5cuXeTo6Ch/f/8k2wyZO+42bdrou+++0yeffKJ27dopV65cOnv2rDZu3Kj3339f2bJlkyT5+PhoyJAhatWqlVq2bKn4+HitXr1amTJl0meffSZJGjVqlDp37qyPP/5YHTp0kJOTk3bt2qUDBw6oXbt2Sd5XYI7s2bPr+PHj8vf3V/Xq1f/zD5UAAAAAAAAA/PteKdBP3Ec/pdX3iYG+p6fnv7q/d8+ePXXp0iXNmjVLLVu2lLu7uzp37qy8efNqyZIl8vPzk62trYoWLaoRI0aoZs2azz1f6dKl5e/vr9mzZ+vbb79VTEyMihQpokmTJqlly5avPM7PP/9c7777rlavXq2pU6cqU6ZM8vT0VL9+/f7RBxw7d+7Uzp07UzzeuXNnubm5ycbGRosXL9aUKVO0YsUK2dvbq0GDBvriiy/UrFkzs/qqW7euVq5cqXnz5hm/sVCyZEl9/fXXxpe8/tWcOXO0ePFiTZ48Wblz59bQoUONYbf07EWty5Yt0/z58/XTTz/p559/Vs6cOfX++++rf//+xg8IWrdurcjISPn7+2vixInKnj27SpQooXXr1mnUqFE6dOjQy9yyFCV+A2Hq1KlatWqVJKlp06YqXLiwyX755o77nXfe0cqVK+Xn56e1a9cqPDxczs7O6tu3r3r16mU8X5MmTeTo6Kivv/5as2bNUsaMGVWhQgUNHTpUefPmlSS5u7vL399ffn5++vbbbxUdHa0CBQroiy++UIcOHV7peocNG6bp06dr/PjxGjdunD744INXvHMAAAAAAAAAUouV4XlvhwVewM/PT3PnztW2bdtUuHDh1B4O/oETNWsr4V/6BgQAAAAAAEBaZp0pkzx+3aOQkEilxV2OnZwcU3sISMFL76EPAAAAAAAAAABePwJ9AAAAAAAAAAAsAIE+AAAAAAAAAAAWgD30AUhiD30AAAAAAABzsYc+Ugsr9AEAAAAAAAAAsAAE+gAAAAAAAAAAWAACfQAAAAAAAAAALACBPgAAAAAAAAAAFoBAHwAAAAAAAAAAC0CgDwAAAAAAAACABSDQBwAAAAAAAADAAhDoAwAAAAAAAABgAQj0AQAAAAAAAACwAAT6AAAAAAAAAABYAAJ9AAAAAAAAAAAsAIE+AAAAAAAAAAAWgEAfAAAAAAAAAAALQKAPAAAAAAAAAIAFINAHAAAAAAAAAMACEOgDAAAAAAAAAGABCPQBAAAAAAAAALAANqk9AABvhnSZMqX2EAAAAAAAACwCOQpSi5XBYDCk9iAApK6EmFhZ29mm9jAAAAAAAAAsRkJMrEIjniotpqtOTo6pPQSkgBX6AGRtZ6uQkMg0+T9A+PdYWUk5cjgyV/BczBOYi7kCczBPYA7mCczFXIE5mCcwV+JckZ6m9lDwliHQByBJMhjEP1ZgFuYKzME8gbmYKzAH8wTmYJ7AXMwVmIN5AuBNxUtxAQAAAAAAAACwAAT6AAAAAAAAAABYAAJ9AAAAAAAAAAAsAIE+AAAAAAAAAAAWgEAfAAAAAAAAAAALQKAPAAAAAAAAAIAFINAHAAAAAAAAAMACEOgDAAAAAAAAAGABCPQBAAAAAAAAALAABPoAAAAAAAAAAFgAAn0AAAAAAAAAACyATWoPAMCbwcoqtUfw3zEYUnsEAAAAAAAAwD9HoA9AsXHxypHDMbWH8Z+Jjo1TRPiT1B4GAAAAAAAA8I8Q6AOQrU06dZy6WY+jY1N7KP+6jPa2+taruaysWKkPAAAAAAAAy0agD0CS9Dg6Vo+j41J7GAAAAAAAAABSwEtxAQAAAAAAAACwAAT6AAAAAAAAAABYAAJ9AAAAAAAAAAAsAIE+AOBftWXLRlWrVl4///zjS7e9fPmiGjSoqUmTvnph3cOHD6pmzYpavnyxSfnu3bvUsWNr1atXTT16dNLZs6eTbX/x4gXVrVtVGzdueOlxAgAAAAAApAYCfQDAv2b//r2aNm2SJKlEiZIv1fb27SANGzZQjx8/UvHiz2977txZjRo1XPHx8SZ1T548oTFjRsjFxUUjR34pgyFBY8d+kaR9SEiwfHyGqUmT5vrgg49eapwAAAAAAACpxSa1BwAASBtOnTqpMWO+UHx8vBwcHJQ/v4vZbUNDQzRkSD+FhoZI0nMD/Zs3A/X55wP15MkTSVKxYsWNx/z9V+udd5z15ZeTZGNjo5CQYM2cOVUREQ+VOXMWSVJMTIx8fLyUL19+DRw49FUuFQAAAAAAIFWwQh8A8I9du/aHhg8fLA+PcrKxsZGra3FZWVmZ1fbx40caNmyADAaDChUqLDs7exUuXCTZusHBDzRkSH+9804+5ciRQ++846wsWbJKkuLi4nT48EHVqVNfNjY2/79+sKytrZUhQ0bjOXx9JygsLFTjxk021gMAAAAAALAEBPoAgH/kzz//1NChA1Sw4Lvq1Km74uLiXrhlTqLY2FiNGOGl+/fva9q0Obp//57ee69oskF7ZGSkhgzpJxsbW40c+aVCQkJM+nn0KEqxsbFyds5nLDt48IBKlnSTra2tJGnNmpXat2+vJk+ebvwgAAAAAAAAwFIQ6AMAXtnDh+EaOrSfMmTIoClTZuj69T8kScWLl3hh24SEBI0bN1rnzp2Wr+9MGQwGRUVFJds2Ojpa3t5DFB4erunT5+ju3TtJ+smSJascHBz1++/HFRoaoiVLFurq1Sv6+OO2kqRDhw5o4cJ5Gj36KxUqlPw3AAAAAAAAAN5k7DUAAHglT548kZfXIEVFRWnBgqXKkiWrzp8/J0kqVuzFgf7s2dP066+7NXnydJUo4aafftqabNv4+HiNHeujy5cvyc9voZyd82nHjp8kJd1rv0+fAZoxY4q2b98mGxsbderUTXXrNlBg4HWNHfuFunfvpWrVav4blw8AAAAAAPDaEegDAF5aXFycRo0arsDA65o3b5Hy5n1HknTx4nnlyJFDuXPneW775csXa8OGdfL2HqXKlasZ20pJQ/pp0ybp4MED8vWdZXwB7oUL55UuXToVLVrMpG7z5h+qZs3aunv3rvLmzassWbIqIiJC3t5DVKlSFXXp0kMRERGaP3+Ojhw5pHTpbFSjRk316TNQ6dKl+1fuDQAAAAAAwH+FQB8A8NJmzZqmw4cPatgwb2XIkFFBQbcUExOjGzcCVaqUu4KCbsnBwVFZs2ZN0vaXX3Zo8eIFatKkmcqU8VBQ0C1J0pkzp2Vvby9ra2vdu/encufOo9WrV2jLlo3q2rWnnJ3zGetevHheefLkVUhIsDJkyKAcOXIaz58lS1aTF+WOGuWtjBkzycdnjCRp9Ghv3bp1Uz4+YxQVFanRo0fIxeVdNW/+4X970wAAAAAAAP4hAn0AwEsxGAz65ZcdkqRp0yYnOX7y5Am1bfuhBgwYotat2yc5vmvXdknStm1btG3bliTH27VrqerVa2rSpOnaufNZ3eXLF2v58sVJ6rZt+6FatWqngQOHJjtWP78Zun79qr75ZoXs7dPr4sULOnbsqCZM8FX58p6SpGzZsuny5UtmXj0AAAAAAEDqIdAHALyUuLg4ff65T5LyvXt/0S+/7FSvXn2UP38BlSpVJtn2LVu2UoMGjU3KbtwI1OLFC1S/fiPVqFFL+fO7SJJ69OiluLg4k7onT57Qhg3r1KpVO5Uu7Z5k251EmzYFaPPmHzRnzgLjFkAHD+6XnZ2dcZufyMhIhYWFJftNAgAAAAAAgDcNgT4A4KXY2tqqdu16Scp3794lKysrtWzZWg4ODim2r1ChUpKygIDvJUl169Y3eWlt9eq1ktS9cOHZi3ebNm2uIkXeS7aPkydPaOZMX3l5+ahUKXdj+aNHj+To6Cg7OztJz74tkJCQIE/PpGMCAAAAAAB40xDoAwD+FRcvXpCzc36TMP/q1T/04MF9uboWU7Zs2Z/T9tkLcYsVK2FWP/b29nr33ULJHr97945GjvxcLVu2UtOmzU2OvfdeUfn7r5a//2rZ2Nhq4cJ58vAor9Kly5hxhQAAAAAAAKmLQB8A8I9FRDzU3bu3Va9eQ5Py0aO9dfPmDQUE/Pjc9pcuXVCOHDmVM6fTc+sZDAZdvnxR773nqnTp0iU5/vjxY3l7D1HRosXUt++gJMfr12+kU6dOavnyJTIYDKpWrYYGDfJ68QUCAAAAAAC8AawMBoMhtQcBIPW1HL9Bj6PjXlzRwmS0t1HAyI8UHBwpnnb/jJWVlDOnI/cSz8U8gbmYKzAH8wTmYJ7AXMwVmIN5AnOl9bni5OSY2kNACqxTewAAAAAAAAAAAODFCPQBAAAAAAAAALAABPoAAAAAAAAAAFgAAn0L4ufnJ1dXVx05ciTFOnXq1FGdOnWMPwcEBMjV1VX79u17HUP8x44cOSJXV1etXbs2tYeSIldXV3Xq1OlfPeejR48UHBxs/Dnxd3316tV/tR8AAAAAAAAAlotAP42rUKGCfH19VaxYsdQeilkKFy4sX19fVa5cObWH8tqcPXtWjRs31vnz541l9evXl6+vr3Lnzp2KIwMAAAAAAADwJrFJ7QHgv5U/f37lz58/tYdhtpw5c6pFixapPYzX6vLly7p3755JWbFixSzmQxgAAAAAAAAArwcr9AEAAAAAAAAAsAAE+mlccnvo//LLL2rVqpU8PDxUtmxZtWvXTrt27TJp5+rqqpkzZ2rZsmWqWbOmypQpo3bt2unw4cNJ+vj+++/Vtm1beXh4yM3NTXXr1tWUKVMUHR1trJO4J3xQUJD69euncuXKycPDQ/369VNQUJCxXkp76K9du1YffPCB3N3dVbNmTY0ePVqhoaEvvP6TJ0+qZ8+e8vDwkLu7u9q2bZvkWhPH9uuvv6pGjRoqU6aM5s+f/8Jzv0hcXJyWLFmiDz/8UGXLllWpUqXUqFEjLVy4UAkJCca+R4wYIUn65JNPjO8/+Pse+om/xzNnzmjEiBGqWLGi3N3d1a1bN128eNGk34SEBK1YsUJNmzaVm5ubKleuLC8vL92+ffsfXxMAAAAAAACA1MOWOxYoMjIyxTA7ISFB1tYpf05z7NgxDRgwQO7u7ho6dKgkad26derXr5+WLVtmsnf95s2bFR4eri5dusjR0VFr1qxRz5499c033xjr+fn5ae7cuWrSpIk++OADRUdHa+fOnVq6dKliY2M1cuRIk/47d+6skiVLysvLS3/88YdWr16tP//8U+vXr09xzOPHj9eqVatUpUoVffzxx3rw4IFWrFihM2fOyN/fX3Z2dsm2+/XXX9WnTx/lzp1bn3zyidKnT6+NGzeqb9++GjVqlDp27GhS//PPP1fnzp1la2srT0/PFMdjrpEjR2rjxo1q3bq12rVrp6ioKG3atEkzZsyQnZ2dunXrpvr16+vBgwfy9/dXjx495OHh8dxzDhw4UPnz59eAAQN0//59LV26VJ988on27NkjG5tnf529vLy0detW1axZU+3bt9edO3e0Zs0aHThwQOvWrbOoLZgAAAAAAAAA/B8CfQvUt2/f5x53dnZO8diPP/6ouLg4zZ07V9mzZ5ckNWnSRG3bttWlS5dMAv07d+5o9erVKl++vCSpRYsWatSokaZMmaKNGzcqNjZWK1asUO3atTVz5kxjuw4dOqhu3brav39/kv6rV6+uL7/80vhzVFSUfvjhBwUGBqpgwYJJ6v/xxx/69ttv1axZM02dOlVWVlaSpAIFCsjHx0e//PKLGjdunKRdfHy8xowZo6xZsyogIEBZs2aVJLVv317t2rWTr6+vGjVqpJw5cxrbtG3b9oX31lzBwcHatGmTOnbsaPKhRuvWrVW5cmXt379f3bp1U7FixVSmTBn5+/urUqVKqlGjxnPPW7hwYX3zzTfGn21sbDR37lwdOXJEVatW1YEDB7R161a1atVK48ePN9Zr0KCB2rRpo8mTJ2vevHn/yjUCAAAAAAAAeL0I9C3Q8OHDU3xhqpeX13Pb5smTR5I0btw49ejRQ25ubsqWLZu2b9+epK6np6cxzJeevbC2efPmWr16te7evau8efPqt99+U2xsrEm7kJAQZc6cWWFhYUnO2aRJE5Ofixcvrh9++EHBwcHJBvp79+6VwWBQ586djWG+JDVr1kxFixZV4cKFk73Oc+fO6e7du+rfv78xzJcke3t79ejRQ0OGDNG+ffvUsmVL47FKlSole65XkTNnTh0/fjxJeWhoqBwcHPT48eNXOu/fP7woXry4JOnBgweSZNxO6LPPPjOp5+7urqpVq2rfvn2KiYlJ8VsNAAAAAAAAAN5cBPoWqGTJkqpYsWKyx+zt7Z/btmPHjjp48KC2bdumbdu2ycnJSTVq1FCLFi2SnLNIkSJJ2ieG7rdv31bevHllZ2enAwcOaOfOnbp+/bpu3rxp3A7or6vfE+XIkcPk58RgOT4+PtnxJu77/u677yZpV6pUqRSvM3Ff/kKFCiU5lvghwN/3lE9uvP+EnZ2dfvzxR+3bt0+BgYG6efOmIiIiJOmVt71J6f4l7skfFBSk9OnTJ/stjcKFC+vAgQO6f/++8uXL90r9AwAAAAAAAEg9vBT3LZMpUyatWLFC69ev12effaY8efLohx9+UOfOneXn52dSN3FP9r9KDI7TpUsng8Gg/v37q0+fPrp27Zrc3Nw0aNAgbdmyxWRl/1/9dZW9ORKD/pdtZzAYTP7vXyVeg62trUn589498LJiYmLUvn17DR8+XA8ePFCFChXk7e2tnTt3Km/evK983hfdB4PBYPzzdyldNwAAAAAAAADLwAr9t8ytW7d0//59lStXTqVKldKgQYN09+5dde3aVUuXLlW/fv2MofGtW7eStA8MDJSVlZUKFCigY8eOaefOnerevbuGDx9uUi84OPhfGW/iSvMbN26oZMmSxvLY2FgNGzZMDRs2TLKNjyTjCvRr164lOZZYlrj90H9h27ZtOnXqlEaPHq0OHToYy+Pi4hQeHq5cuXL9J/3my5dPBw4c0O3bt5Oswr9+/brs7OyM704AAAAAAAAAYFlYof+WmTVrlrp166b79+8by/LmzatcuXLJ2traZAX4/v37TQLx+/fva/PmzapQoYJy5Mih8PBwSUm35tm7d68CAwMVFxf3j8dbq1YtSdLatWtNynfs2KGff/7ZuOr870qWLKncuXPru+++M45TerZyfunSpbK1tVX16tX/8fhSktjn3/f49/f315MnT0zuTeI3A5JbVf+y6tatK0lasGCBSfnp06f122+/qXr16qzQBwAAAAAAACwUK/TfMt26ddOOHTvUsWNHtW7dWpkzZ9bhw4d19OhR9e7d26RuunTp1LFjR3Xu3FnW1tZas2aNDAaDfHx8JEkeHh7KnDmzpk6dqvv37ytHjhw6deqUNm7cKHt7ez1+/FgGg+Glt8v5K1dXV3Xo0EGrV6/WgwcPVKNGDd29e1erV69WuXLl1KhRo2Tb2djYaMyYMerfv79atmyp1q1bK3369Nq0aZPOnz8vb2/vJPvRv4zr169r9OjRyR7r1q2bqlatKltbW/n4+KhTp07KkCGDDh06pJ9//ln29vZ69OiRsX7iinl/f39FRESoWbNmrzyuGjVqqHHjxvr++++N9+vPP//Ut99+qyxZsiT5JgUAAAAAAAAAy0Gg/5Zxc3PTsmXL9PXXX2vJkiWKiopSwYIFNXLkSHXs2NGkbt26dVWiRAktX75cT548Ufny5TVkyBAVK1ZM0rMXtC5atEjTpk3TN998IxsbG+XLl08jR45UfHy8xo0bp+PHj6e4n765Ro0aJRcXF/n7+2vy5MlycnJSmzZt1K9fv2T3+f/r+FeuXKl58+Zp4cKFkp6t3P/666+NK9lf1YMHD+Tv75/ssaZNm6pixYqaO3eu5syZo9mzZytDhgwqWLCgZs+erVOnTmnZsmW6ffu2nJ2dVblyZTVu3Fh79uzRsWPH1KBBg380tunTp6tkyZIKCAjQpEmTlDVrVjVq1Ej9+/fXO++884/ODQAAAAAAACD1WBn+jX0+kOa4urqqSZMmmjlzZmoPBa9Jy/Eb9Dj6n2+T9KbJaG+jgJEfKTg4Ujzt/hkrKylnTkfuJZ6LeQJzMVdgDuYJzME8gbmYKzAH8wTmSutzxcnJMbWHgBSwhz4AAAAAAAAAABaAQB8AAAAAAAAAAAtAoA8AAAAAAAAAgAXgpbhI1qVLl1J7CAAAAAAAAACAv2CFPgAAAAAAAAAAFoBAHwAAAAAAAAAAC0CgDwAAAAAAAACABSDQBwAAAAAAAADAAhDoAwAAAAAAAABgAQj0AQAAAAAAAACwAAT6AAAAAAAAAABYAAJ9AAAAAAAAAAAsAIE+AAAAAAAAAAAWgEAfAAAAAAAAAAALQKAPAAAAAAAAAIAFINAHAAAAAAAAAMACEOgDAAAAAAAAAGABCPQBAAAAAAAAALAABPoAAAAAAAAAAFgAAn0AAAAAAAAAACwAgT4AAAAAAAAAABaAQB8AAAAAAAAAAAtgk9oDAPBmyGhvm9pD+E+k1esCAAAAAADA24dAH4Bi4+L1rVfz1B7GfyY6Nk4GQ2qPAgAAAAAAAPhnCPQByNYmnUJCItNs6J1WrwsAAAAAAABvFwJ9AJKehd4E3wAAAAAAAMCbi5fiAgAAAAAAAABgAQj0AQAAAAAAAACwAAT6AAAAAAAAAABYAAJ9AAAAAAAAAAAsAIE+AAAAAAAAAAAWgEAfAAAAAAAAAAALQKAPAAAAAAAAAIAFINAHAAAAAAAAAMACEOgDAAAAAAAAAGABCPQBAAAAAAAAALAABPoAAAAAAAAAAFgAm9QeAIA3g5XV6+vLYHh9fQEAAAAAAABpBYE+AMXGxypHDsfX1l9MXIwehkW/tv4AAAAAAACAtIBAH4Bs09mq34Y+ehL75D/vK4NtBs396GtZWUWzUh8AAAAAAAB4CQT6ACRJT2KfvJZAHwAAAAAAAMCr4aW4AAAAAAAAAABYAAJ9AAAAAAAAAAAsAIE+AAAAAAAAAAAWgD30ASAN2bHjJ/n7r9H161eVPn0GlSnjoZ49e6tQocIvbHvu3FktXbpIZ86cksGQoCJFiqpDh86qVq1mkrqHDx/UqlXLdOnSBdnY2KhECTd16dJT7u5lTOrt3r1LS5cu0p9/3pGLy7saPNhLbm6lk5zv4sUL6tu3p/r3H6IPPvjola8fAAAAAAAgLWOFPgCkEevWrdFXX41S+vTp5e09Sr169dGVK5fVq1cXXb36x3Pbnj9/Vv36faLAwGvq3bufvLy+kJ2dnby9h2rr1o0mdX/9dY+GDRugyMgIDR78uQYOHKawsFANGPCpjh49bKx38uQJjRkzQi4uLho58ksZDAkaO/aLJH2HhATLx2eYmjRpTpgPAAAAAADwHKzQB4A04P79e/r66zkqWtRVs2fPl43Ns8d7pUpV1aHDR1q8eIEmTZqWYvsJE8bKxsZWc+cuUt6870iS6tSppx49OmnBgnlq1Oh92draKDo6WpMmfSUnp1z6+uslcnBwkCTVqFFL7dt/rPnz58jTs5Ikyd9/td55x1lffjlJNjY2CgkJ1syZUxUR8VCZM2eRJMXExMjHx0v58uXXwIFD/8tbBAAAAAAAYPFYoQ8AacDBgwcUFxenVq3aGcN8ScqTJ49cXN7VuXNnUmx782agbtwIVO3adY1hviTZ2NiofHlPhYeH6fbtIEnS0aNHFRkZqebNPzSG+ZKUKZOD3NxK6cqVy4qOjlZcXJwOHz6oOnXqG8cTHBwsa2trZciQ0djO13eCwsJCNW7cZJNxAwAAAAAAICnSEwBIA95/v4U8PMrJySm3SXlcXJzu3r2jHDlypti2QIGC2rBha7KB+q1bNyTJuKK+atWqWrduoxwcHJPUvXnzhjJkyCg7OztFRDxUbGysnJ3zGY8fPHhAJUu6ydbWVpK0Zs1K7du3VwsWLFGWLFlf+poBAAAAAADeNqzQB4A0wMbGRgUKFFSGDBlMypcvX6zIyAhVqVL1ue1z586TJPT/3/+O6NCh31S8eAlly5ZNkmRtbS1n53zGgD/R1q2bdP36NVWqVEVWVlbKkiWrHBwc9fvvxxUaGqIlSxbq6tUr+vjjtpKkQ4cOaOHCeRo9+isVKlTkn14+AAAAAADAW4EV+gCQRm3YsE4rVixRzpxO6tSp+0u1PXPmlEaNGi5ra2sNGPD8ve337dur6dMnK2PGTOrdu5+xvE+fAZoxY4q2b98mGxsbderUTXXrNlBg4HWNHfuFunfvpWrVar7StQEAAAAAALyNCPQBII2Jj4/X3Lmz9P33a+XklEszZ86To2PSLXJSsmPHT5o8ebwMhgR9+eVElSrlnmLdNWtWasGCucqYMaOmTJllssVO8+YfqmbN2rp7967y5s2rLFmyKiIiQt7eQ1SpUhV16dJDERERmj9/jo4cOaR06WxUo0ZN9ekzUOnSpftH9wAAAAAAACAtItAHgDQkMjJSY8aM0NGjh1W48HuaOnWWcuXK/eKGkhISErRw4TytXr1Cjo6ZNXHiVJUtWy7ZujExMZoyZby2b9+m3LnzaOrUWclunZMlS1bj/vhxcXEaNcpbGTNmko/PGEnS6NHeunXrpnx8xigqKlKjR4+Qi8u7at78w1e7AQAAAAAAAGkYgT4ApBF37tyWl9dA3bgRqOrVa2nUqK+UMWNGs9pGRz/V2LEjtX//XhUs+K4mT56hfPnyJ1v34cNwDR8+RGfOnFapUu6aOHGqsmXL/sI+/Pxm6Pr1q/rmmxWyt0+vixcv6Nixo5owwVfly3tKkrJly6bLly+Ze8kAAAAAAABvFQJ9AEgDbt8OUp8+PRUSEqz27Tvrs8/6y8rKyqy20dHRGjp0gE6ePKHy5T01fryvHBwckq0bFhamPn16KTDwmho2bCxv79GytbV9YR+bNgVo8+YfNGfOAuXOnUeSdPDgftnZ2aly5WqSnn27ICwsTFmzZjXvogEAAAAAAN4yBPoAYOFiY2Pl4zNMISHB6tmzt7p27flS7WfPnqaTJ0+oUqUqmjRp+nMD+mHDhikw8Jref7+Fhg8fadaHBidPntDMmb7y8vIx2Y//0aNHcnR0lJ2dnSRp167tSkhIkKdnpZcaPwAAAAAAwNuCQB8ALNz27dt09eofcnEpqGLFSujw4YMmxzNnzqwSJdx09eofevDgvlxdixm3yAkKuqUtWzbKzs5ejRs30/Hj/zNpa2VlJU/PSrKystLx4//TgQMHlDVrVlWvXktHjhwyqWtvb59kz/27d+9o5MjP1bJlKzVt2tzk2HvvFZW//2r5+6+WjY2tFi6cJw+P8ipdusy/dGcAAAAAAADSFgJ9ALBwu3fvlCTduBGoYcMGJDneokVLlSjhptGjvXXz5g0FBPxoPLZnzy4ZDAbFxERrzJgRSdoWKOCiNWs2SJJ++WWHJCk8PFzDhw9OUtfTs7JJoP/48WN5ew9R0aLF1LfvoCT169dvpFOnTmr58iUyGAyqVq2GBg3yermLBwAAAAAAeItYGQwGQ2oPAkDq6/FdNz2JffKf95PBNoOWtF2m4OBI8fSxLFZWUs6cjvzu8FzME5iLuQJzME9gDuYJzMVcgTmYJzBXWp8rTk6OqT0EpMA6tQcAAAAAAAAAAABejEAfAAAAAAAAAAALQKAPAAAAAAAAAIAFINAHAAAAAAAAAMACEOjjjXPkyBG5urrKz8/vXzlfQECAXF1dtW/fPklSUFCQXF1dNW3atH/l/AAAAAAAAADwOtik9gCA1y179uzy9fVV0aJFU3soAAAAAAAAAGA2An28dTJmzKgWLVqk9jAAAAAAAAAA4KWw5Q4AAAAAAAAAABaAQB9vPG9vb9WpU0cXL15U165dVaZMGXl6emrEiBEKCwszqXv79m0NHjxYFStWVPny5TVq1ChFRUWZ1ElpD/3Vq1ercePGKl26tJo1a6YdO3aoa9eu6tSpk0m906dPq2fPnvLw8FCZMmXUsWNHHTp06JXHHBERofHjx6tmzZpyc3NT3bp1NX36dD158sRYJ/G9AmvXrjVpe/Xq1STvG7h3754GDhyo6tWry83NTQ0aNNCMGTP09OlTM+84AAAAAAAAgDcRW+7AIjx8+FBdunRRnTp11LhxYx0/flwBAQF6/PixZs+eLUkKCwtTu3btFBkZqc6dOytbtmzasGGDtm7d+sLzz5gxQwsXLlS1atXUsWNHXbx4UYMGDZKDg4NcXV2N9Q4dOqRPPvlEhQoVUr9+/SRJW7ZsUffu3TVz5kw1atTopcYcERGhdu3a6fr162rVqpVcXV118uRJLVq0SMeOHdOKFStkZ2dn9n2Ki4tTz549df/+fXXu3Fm5cuXS77//roULF+rPP/+Ur6+v2ecCAAAAAAAA8GYh0IdFiIqK0tChQ9WrVy9JUps2bXT37l3t2rVLT548UYYMGbRkyRLdu3dPq1evVvny5SVJrVu3VuvWrXXlypUUzx0UFKQlS5aoXr16mjt3rqysrCRJhQoV0uTJk431EhISNHr0aBUtWlT+/v6ytbWVJHXs2FEdO3bU+PHjVadOHWMAb86YFy9erD/++ENTp05V8+bNJUnt27fXe++9p2nTpmnt2rXq0qWL2ffp/Pnzunz5sj7//HP16NFDktSqVSsZDAYFBQXJYDAYrw8AAAAAAACAZWHLHViMJk2amPxcvHhxxcXFKTw8XJK0d+9eFS1a1BjmS89egNu6devnnnf37t2Ki4tT9+7dTcLuDh06yMHBwfjzhQsXdPPmTdWrV0+RkZEKDQ1VaGiooqKiVK9ePT148EBnz559qTHv2rVL+fLlU7NmzUzqdenSRQ4ODtq1a9fzb8rf5M6dW9bW1lqzZo22b9+ux48fS5ImTZqkVatWEeYDAAAAAAAAFowV+rAYOXLkMPk5cSV8fHy8pGcr7atVq5akXeHChZ973hs3bkiS3n333STnz58/f5J6s2fPNm6Z83d37tyRh4fHS43Z09MzSdCe2Pft27efO/a/y507t4YPH65p06ZpwIABsrOzU4UKFVS/fn198MEHypAhw0udDwAAAAAAAMCbg0AfFsPa+vlfKLGyskr2xa8JCQnPbRcbGytJye5Vb29vn+Q8ffr0UYUKFZI9V5EiRV5qzAaDQQaDIdljCQkJxm19UpLctXXt2lXvv/++du3apf379+vw4cP67bff9O2332r9+vWE+gAAAAAAAICFYssdpBn58uVTYGBgkvKbN28+t52Li4sk6fr16yblBoPBuCpfkpydnSVJ6dOnV5UqVUz+5MiRQzExMS8dlufLl0/Xr19PEurHxMQoKChIefLkkSSlS5fOWP5XwcHBJj9HRkbqf//7n+zs7NS2bVvNmzdPhw4dUufOnfXHH39o7969LzU+AAAAAAAAAG8OAn2kGQ0aNNCtW7f0888/G8tiYmL03XffPbdd/fr1jfvO/9XWrVsVFhZm/NnNzU25cuXSt99+q4cPH5r0MXz4cA0YMEBxcXEvNea6devq9u3b2rJli0n5qlWr9OjRI9WuXVuSlDNnTknP9vH/+xj/6vTp0+rYsaMCAgKMZXZ2dipRooSk//tgAAAAAAAAAIDlYcsdpBndu3fXjz/+qGHDhunkyZNydnbW5s2bk6xi/7sCBQqoa9euWrp0qUJDQ1WjRg1du3ZN69atM9nyxtbWVqNHj9bAgQP14YcfqnXr1nJ0dNTGjRt14cIFDRs2TNmyZXupMffq1Us7d+6Ut7e3jh8/LldXV50+fVobN25UqVKl1L59e0lSwYIFVapUKW3cuFEODg4qWrSoDhw4oIsXL5ps61OpUiW5u7tr+vTpCgoKkqurq+7evatvv/1WLi4uqlmz5kuNDwAAAAAAAMCbg0AfaUamTJm0Zs0aTZ8+XRs3blR0dLRq1aqlbt26afDgwc9t6+XlpWzZsmndunX67bff9O6772rOnDkaNWqUyd769evX1/LlyzV//nwtWrRIBoNBhQoVkq+vr1q0aPHSY86cObO+++47zZkzR7t27dKGDRv0zjvv6LPPPtOnn35q0vecOXM0efJkBQQEyMrKStWqVdOqVauMq/ilZyvwFyxYoK+//lp79uyRv7+/smTJovr162vgwIEm7wQAAAAAAAAAYFmsDCm9kRN4Szx+/FgGg0GZMmUyKTcYDCpTpowaNmwoX1/fVBrd69Pju256EvvkP+8ng20GLWm7TMHBkeLpY1msrKScOR353eG5mCcwF3MF5mCewBzME5iLuQJzME9grrQ+V5ycHFN7CEgBe+jjrXf+/Hl5eHhow4YNJuW7d+/W06dPVbp06VQaGQAAAAAAAAD8H7bcwVvP3d1dBQsW1MSJE3Xjxg3lz59fN27c0Nq1a1W4cGF99NFHqT1EAAAAAAAAACDQB2xtbbVy5UrNmzdPW7ZsUXBwsHLkyKEPP/xQ/fv3V4YMGVJ7iAAAAAAAAABAoA9IUu7cufXVV1+l9jAAAAAAAAAAIEXsoQ8AAAAAAAAAgAUg0AcAAAAAAAAAwAIQ6AMAAAAAAAAAYAEI9AEAAAAAAAAAsAAE+gAAAAAAAAAAWAACfQAAAAAAAAAALACBPgAAAAAAAAAAFoBAHwAAAAAAAAAAC0CgDwAAAAAAAACABSDQBwAAAAAAAADAAhDoAwAAAAAAAABgAQj0AQAAAAAAAACwAAT6AAAAAAAAAABYAAJ9AAAAAAAAAAAsAIE+AAAAAAAAAAAWgEAfAAAAAAAAAAALQKAPAAAAAAAAAIAFsEntAQB4M2SwzZCm+gEAAAAAAADSGgJ9AIqNj9Xcj75+bf3FxMXIYHht3QEAAAAAAABpAoE+ANmms1VISORrC9kJ8wEAAAAAAICXR6APQNKzkJ2gHQAAAAAAAHhz8VJcAAAAAAAAAAAsAIE+AAAAAAAAAAAWgEAfAAAAAAAAAAALQKAPAAAAAAAAAIAFINAHAAAAAAAAAMACEOgDAAAAAAAAAGABCPQBAAAAAAAAALAABPoAAAAAAAAAAFgAAn0AAAAAAAAAACwAgT4AAAAAAAAAABaAQB8AAAAAAAAAAAtgk9oDAPBmsLJ6fX0ZDK+vLwAAAAAAACCtINAHoPjYeOXI4fja+ouNiVP4wyevrT8AAAAAAAAgLSDQB6B0tum0pN+3inkS85/3ZZfBTj3mdpSVFSv1AQAAAAAAgJdBoA9AkhTzJEYxT2JTexgAAAAAAAAAUsBLcQEAAAAAAAAAsAAE+gAAAAAAAAAAWAACfQAAAAAAAAAALAB76ANAGrJjx0/y91+j69evKn36DCpTxkM9e/ZWoUKFX9j23LmzWrp0kc6cOSWDIUFFihRVhw6dVa1azSR1Dx8+qFWrlunSpQuysbFRiRJu6tKlp9zdy5jU2717l5YuXaQ//7wjF5d3NXiwl9zcSic538WLF9S3b0/17z9EH3zw0StfPwAAAAAAQFrGCn0ASCPWrVujr74apfTp08vbe5R69eqjK1cuq1evLrp69Y/ntj1//qz69ftEgYHX1Lt3P3l5fSE7Ozt5ew/V1q0bTer++useDRs2QJGRERo8+HMNHDhMYWGhGjDgUx09ethY7+TJExozZoRcXFw0cuSXMhgSNHbsF0n6DgkJlo/PMDVp0pwwHwAAAAAA4DlYoQ8AacD9+/f09ddzVLSoq2bPni8bm2eP90qVqqpDh4+0ePECTZo0LcX2EyaMlY2NrebOXaS8ed+RJNWpU089enTSggXz1KjR+7K1tVF0dLQmTfpKTk659PXXS+Tg4CBJqlGjltq3/1jz58+Rp2clSZK//2q9846zvvxykmxsbBQSEqyZM6cqIuKhMmfOIkmKiYmRj4+X8uXLr4EDh/6XtwgAAAAAAMDisUIfANKAgwcPKC4uTq1atTOG+ZKUJ08eubi8q3PnzqTY9ubNQN24Eajatesaw3xJsrGxUfnyngoPD9Pt20GSpKNHjyoyMlLNm39oDPMlKVMmB7m5ldKVK5cVHR2tuLg4HT58UHXq1DeOJzg4WNbW1sqQIaOxna/vBIWFhWrcuMkm4wYAAAAAAEBSpCcAkAa8/34LeXiUk5NTbpPyuLg43b17Rzly5EyxbYECBbVhw9ZkA/Vbt25IknFFfdWqVbVu3UY5ODgmqXvz5g1lyJBRdnZ2ioh4qNjYWDk75zMeP3jwgEqWdJOtra0kac2aldq3b68WLFiiLFmyvvQ1AwAAAAAAvG1YoQ8AaYCNjY0KFCioDBkymJQvX75YkZERqlKl6nPb586dJ0no/7//HdGhQ7+pePESypYtmyTJ2tpazs75jAF/oq1bN+n69WuqVKmKrKyslCVLVjk4OOr3348rNDRES5Ys1NWrV/Txx20lSYcOHdDChfM0evRXKlSoyD+9fAAAAAAAgLcCK/QBII3asGGdVqxYopw5ndSpU/eXanvmzCmNGjVc1tbWGjDg+Xvb79u3V9OnT1bGjJnUu3c/Y3mfPgM0Y8YUbd++TTY2NurUqZvq1m2gwMDrGjv2C3Xv3kvVqtV8pWsDAAAAAAB4GxHoA0AaEx8fr7lzZ+n779fKySmXZs6cJ0fHpFvkpGTHjp80efJ4GQwJ+vLLiSpVyj3FumvWrNSCBXOVMWNGTZkyy2SLnebNP1TNmrV19+5d5c2bV1myZFVERIS8vYeoUqUq6tKlhyIiIjR//hwdOXJI6dLZqEaNmurTZ6DSpUv3j+4BAAAAAABAWkSgDwBpSGRkpMaMGaGjRw+rcOH3NHXqLOXKlfvFDSUlJCRo4cJ5Wr16hRwdM2vixKkqW7ZcsnVjYmI0Zcp4bd++Tblz59HUqbOS3TonS5asxv3x4+LiNGqUtzJmzCQfnzGSpNGjvXXr1k35+IxRVFSkRo8eIReXd9W8+YevdgMAAAAAAADSMAJ9AEgj7ty5LS+vgbpxI1DVq9fSqFFfKWPGjGa1jY5+qrFjR2r//r0qWPBdTZ48Q/ny5U+27sOH4Ro+fIjOnDmtUqXcNXHiVGXLlv2Fffj5zdD161f1zTcrZG+fXhcvXtCxY0c1YYKvypf3lCRly5ZNly9fMveSAQAAAAAA3ioE+gCQBty+HaQ+fXoqJCRY7dt31mef9ZeVlZVZbaOjozV06ACdPHlC5ct7avx4Xzk4OCRbNywsTH369FJg4DU1bNhY3t6jZWtr+8I+Nm0K0ObNP2jOnAXKnTuPJOngwf2ys7NT5crVJD37dkFYWJiyZs1q3kUDAAAAAAC8ZQj0AcDCxcbGysdnmEJCgtWzZ2917drzpdrPnj1NJ0+eUKVKVTRp0vTnBvTDhg1TYOA1vf9+Cw0fPtKsDw1OnjyhmTN95eXlY7If/6NHj+To6Cg7OztJ0q5d25WQkCBPz0ovNX4AAAAAAIC3BYE+AFi47du36erVP+TiUlDFipXQ4cMHTY5nzpxZJUq46erVP/TgwX25uhYzbpETFHRLW7ZslJ2dvRo3bqbjx/9n0tbKykqenpVkZWWl48f/pwMHDihr1qyqXr2Wjhw5ZFLX3t4+yZ77d+/e0ciRn6tly1Zq2rS5ybH33isqf//V8vdfLRsbWy1cOE8eHuVVunSZf+nOAAAAAAAApC0E+gBg4Xbv3ilJunEjUMOGDUhyvEWLlipRwk2jR3vr5s0bCgj40Xhsz55dMhgMiomJ1pgxI5K0LVDARWvWbJAk/fLLDklSeHi4hg8fnKSup2dlk0D/8ePH8vYeoqJFi6lv30FJ6tev30inTp3U8uVLZDAYVK1aDQ0a5PVyFw8AAAAAAPAWsTIYDIbUHgSA1De/x1LFPIn9z/uxy2Crz5Z0V3BwpHj6WBYrKylnTkd+d3gu5gnMxVyBOZgnMAfzBOZirsAczBOYK63PFScnx9QeAlJgndoDAAAAAAAAAAAAL0agDwAAAAAAAACABSDQBwAAAAAAAADAAhDo443l5+cnV1fXF/75L928edPsutevX5erq6uKFy+ue/fuvXKfR44ckaurq9auXfvK5wAAAAAAAACQ9tik9gCAF+ndu7cKFSr02vudP3++1q5dq3379plVf9OmTcqYMaMeP36sgIAAffbZZ6/Ub+HCheXr6yt3d/dXag8AAAAAAAAgbSLQxxuvSpUqqlix4mvv9+DBg4qPjzerrsFg0JYtW1SpUiXdvn1bP/zwwysH+jlz5lSLFi1eqS0AAAAAAACAtIstd4B/wfHjxxUUFKQKFSqodu3aunHjho4ePZrawwIAAAAAAACQhhDoI005evSoevfurUqVKqlkyZKqUqWKhgwZojt37pjU++WXX9SqVSt5eHiobNmyateunXbt2mU8XqdOHR09elTBwcFydXWVn5/fc/vdvHmzJKlSpUqqV6+eJGn9+vXJ1l24cKEaN26s0qVLq2LFiurXr58uX75sPJ7cHvohISGaMGGC6tevLzc3N5UtW1Zt2rQxGXPiuL29vfXTTz+pRYsWKlWqlGrXrq25c+cqISHBjDsIAAAAAAAA4E1FoI83XmRkpEJDQ5P98+TJE2O9Q4cOqWvXrgoJCVGfPn00atQoVatWTdu2bdOnn35qrHfs2DENGDBAtra2Gjp0qIYNG6bHjx+rX79+OnTokCTJx8dHhQoVkqOjo3x9fVW/fv0UxxcTE6Off/5Z+fLlU4kSJVSqVCk5Oztrx44dioqKMqm7aNEizZgxQ6VLl9bIkSPVrVs3HT9+XB07dlRYWFiy54+OjlaHDh20adMmNW3aVGPGjFG3bt1069Yt9evXT2fPnjWpf+TIEY0cOVK1atXSF198ody5c8vPz4+X7AIAAAAAAAAWjj308cbr27dvisf69eun/v37S5KWLVumbNmyaeXKlcqQIYMkqW3btoqLi9OPP/6oe/fuKXfu3Prxxx8VFxenuXPnKnv27JKkJk2aqG3btrp06ZIqV66sevXqacWKFYqIiHjhfvZ79+7Vw4cP9dFHHxnLGjRooGXLlunHH39UmzZtjOWbNm3Se++9pylTphjLihcvLl9fX125ckWenp5Jzr97925dv35dfn5+atCggbG8bNmy6tmzpw4cOCA3Nzdj+Z07d7Ru3TrjS3WbNWumatWqacuWLerQocNzrwUAAAAAAADAm4tAH2+84cOHq1ixYskey58/v/H/nz9/viIiIoxhviRFRUXJ3t5ekvT48WNJUp48eSRJ48aNU48ePeTm5qZs2bJp+/btrzS+xO12GjVqZCxr1KiRli1bpvXr15sE+nny5NGhQ4c0d+5cffDBB8qXL59q1qypmjVrpnj+xo0bq2LFisqSJYuxLD4+3riFTuJ1JXJ2djaG+ZKUKVMmubi4KDg4+JWuDwAAAAAAAMCbgUAfb7ySJUuqYsWKL6yXLl063b17V3PnztWVK1cUFBSkO3fuyGAwSJIxAO/YsaMOHjyobdu2adu2bXJyclKNGjXUokULs/r5q/DwcO3du1fZs2dX9uzZFRQUJEnKkSOHsmfPrtOnT+vKlSt67733JEne3t769NNP5efnJz8/PxUpUkS1atXSxx9/rHffffe517Zs2TKdOHFCt27d0o0bNxQdHW1yXYkSv3XwV3Z2duyhDwAAAAAAAFg49tBHmrF8+XJ9+OGH2rdvn/Lly6dOnTpp1apVJvvnS89WrK9YsULr16/XZ599pjx58uiHH35Q586dX/jy27/76aefFBsbq9DQUNWrV09169ZV3bp1Va9ePYWGhkqSNmzYYKz/3nvvafv27Vq0aJHat2+vmJgYLV68WM2aNdNvv/2WbB+BgYFq1KiR5s2bJ0mqV6+efH199f333ydb39qav9YAAAAAAABAWsQKfaQJ0dHRmjVrlsqWLauVK1fKzs7OeCxxS5xEt27d0v3791WuXDmVKlVKgwYN0t27d9W1a1ctXbpU/fr1k5WVlVn9Jp77yy+/VM6cOU2ORUREaMSIEdq8ebOGDh2qdOnS6fLly7K2tjbZZufYsWPq2rWrVqxYoapVqybpY+HChQoLC9PmzZtVtGhRY/mJEyfMuzkAAAAAAAAA0gQCfaQJT58+1ZMnT+Ti4mIS5t+5c0c7duyQ9GzfeUmaNWuWdu7cqV27dilXrlySpLx58ypXrlwKDg42hvnW1tbP3abm1q1bOnHihEqWLKm2bdsmW2fjxo06cuSI9uzZo/r16+vTTz9Vjhw59P333ytdunSSnm0pZGtrm+LK+vDwcNnZ2alAgQLGsoSEBK1cudLkugAAAAAAAACkbQT6eOMdPHhQf/75Z4rHK1asqDx58qhs2bLasmWLMmfOrKJFi+rmzZtat26dnjx5Ikl69OiRJKlbt27asWOHOnbsqNatWytz5sw6fPiwjh49qt69exvPmz17doWFhWnx4sWqUKGCyYtmpf9bnf/xxx+nOLb27dvryJEj2rBhgxo0aKBevXrpq6++Urdu3dSwYUMZDAZt2rRJT58+VceOHZM9R61atbR792716NFD77//vqKjo7Vt2zadP39e1tbWxusCAAAAAAAAkLYR6OONt2DBgucenzdvnvLkyaPZs2dr8uTJ2rp1q54+fao8efLo448/VoMGDdS6dWsdPHhQZcuWlZubm5YtW6avv/5aS5YsUVRUlAoWLKiRI0eahOo9e/bUpUuXNGvWLLVs2TLZQD99+vRq1qxZimOrV6+ecuXKpf379+vevXvq0KGD0qdPr9WrV2vGjBlKSEiQm5ubvvnmG1WrVi3Zc7Ru3VqRkZHy9/fXxIkTlT17dpUoUULr1q3TqFGjdOjQoZe4mwAAAAAAAAAslZXBYDCk9iAApL75PZYq5knsf96PXQZbfbaku4KDI8XTx7JYWUk5czryu8NzMU9gLuYKzME8gTmYJzAXcwXmYJ7AXGl9rjg5Oab2EJCC5DftBgAAAAAAAAAAbxQCfQAAAAAAAAAALACBPgAAAAAAAAAAFoBAHwAAAAAAAAAAC0CgDwAAAAAAAACABSDQBwAAAAAAAADAAhDoAwAAAAAAAABgAQj0AQAAAAAAAACwAAT6AAAAAAAAAABYAAJ9AAAAAAAAAAAsAIE+AAAAAAAAAAAWgEAfAAAAAAAAAAALQKAPAAAAAAAAAIAFINAHAAAAAAAAAMACEOgDAAAAAAAAAGABCPQBAAAAAAAAALAABPoAAAAAAAAAAFgAAn0AAAAAAAAAACwAgT4AAAAAAAAAABaAQB8AAAAAAAAAAAtAoA8AAAAAAAAAgAUg0AcAAAAAAAAAwALYpPYAALwZ7DLYpal+AAAAAAAAgLSGQB+A4mPj1WNux9fWX2xMnAyG19YdAAAAAAAAkCYQ6ANQOtt0CgmJfG0hO2E+AAAAAAAA8PII9AFIehayE7QDAAAAAAAAby5eigsAAAAAAAAAgAUg0AcAAAAAAAAAwAIQ6AMAAAAAAAAAYAEI9AEAAAAAAAAAsAAE+gAAAAAAAAAAWAACfQAAAAAAAAAALACBPgAAAAAAAAAAFoBAHwAAAAAAAAAAC0CgDwAAAAAAAACABSDQBwAAAAAAAADAAhDoAwAAAAAAAABgAWxSewAA3gxWVq+vL4Ph9fUFAAAAAAAApBUE+gBkiItRjhyOr62/+NhohYbHvLb+AAAAAAAAgLSAQB+ArGzsdGtGZSVER/3nfVnbOyj/kEOysophpT4AAAAAAADwEgj0AUiSEqKjZHgNgX7Cf94DAAAAAAAAkDbxUlwAAAAAAAAAACwAgT4AAAAAAAAAABaAQB8AAAAAAAAAAAvAHvoAkIbs2PGT/P3X6Pr1q0qfPoPKlPFQz569VahQ4Re2PXfurJYuXaQzZ07JYEhQkSJF1aFDZ1WrVjNJ3cOHD2rVqmW6dOmCbGxsVKKEm7p06Sl39zIm9Xbv3qWlSxfpzz/vyMXlXQ0e7CU3t9JJznfx4gX17dtT/fsP0QcffPTK1w8AAAAAAJCWsUIfANKIdevW6KuvRil9+vTy9h6lXr366MqVy+rVq4uuXv3juW3Pnz+rfv0+UWDgNfXu3U9eXl/Izs5O3t5DtXXrRpO6v/66R8OGDVBkZIQGD/5cAwcOU1hYqAYM+FRHjx421jt58oTGjBkhFxcXjRz5pQyGBI0d+0WSvkNCguXjM0xNmjQnzAcAAAAAAHgOVugDQBpw//49ff31HBUt6qrZs+fLxubZ471Sparq0OEjLV68QJMmTUux/YQJY2VjY6u5cxcpb953JEl16tRTjx6dtGDBPDVq9L5sbW0UHR2tSZO+kpNTLn399RI5ODhIkmrUqKX27T/W/Plz5OlZSZLk779a77zjrC+/nCQbGxuFhARr5sypioh4qMyZs0iSYmJi5OPjpXz58mvgwKH/5S0CAAAAAACweKzQB4A04ODBA4qLi1OrVu2MYb4k5cmTRy4u7+rcuTMptr15M1A3bgSqdu26xjBfkmxsbFS+vKfCw8N0+3aQJOno0aOKjIxU8+YfGsN8ScqUyUFubqV05cplRUdHKy4uTocPH1SdOvWN4wkODpa1tbUyZMhobOfrO0FhYaEaN26yybgBAAAAAACQFOkJAKQB77/fQh4e5eTklNukPC4uTnfv3lGOHDlTbFugQEFt2LA12UD91q0bkmRcUV+1alWtW7dRDg6OSerevHlDGTJklJ2dnSIiHio2NlbOzvmMxw8ePKCSJd1ka2srSVqzZqX27durBQuWKEuWrC99zQAAAAAAAG8bVugDQBpgY2OjAgUKKkOGDCbly5cvVmRkhKpUqfrc9rlz50kS+v/vf0d06NBvKl68hLJlyyZJsra2lrNzPmPAn2jr1k26fv2aKlWqIisrK2XJklUODo76/ffjCg0N0ZIlC3X16hV9/HFbSdKhQwe0cOE8jR79lQoVKvJPLx8AAAAAAOCtwAp9AEijNmxYpxUrlihnTid16tT9pdqeOXNKo0YNl7W1tQYMeP7e9vv27dX06ZOVMWMm9e7dz1jep88AzZgxRdu3b5ONjY06deqmunUbKDDwusaO/ULdu/dStWo1X+naAAAAAAAA3kYE+gCQxsTHx2vu3Fn6/vu1cnLKpZkz58nRMekWOSnZseMnTZ48XgZDgr78cqJKlXJPse6aNSu1YMFcZcyYUVOmzDLZYqd58w9Vs2Zt3b17V3nz5lWWLFkVEREhb+8hqlSpirp06aGIiAjNnz9HR44cUrp0NqpRo6b69BmodOnS/aN7AAAAAAAAkBYR6ANAGhIZGakxY0bo6NHDKlz4PU2dOku5cuV+cUNJCQkJWrhwnlavXiFHx8yaOHGqypYtl2zdmJgYTZkyXtu3b1Pu3Hk0deqsZLfOyZIlq3F//Li4OI0a5a2MGTPJx2eMJGn0aG/dunVTPj5jFBUVqdGjR8jF5V01b/7hq90AAAAAAACANIxAHwDSiDt3bsvLa6Bu3AhU9eq1NGrUV8qYMaNZbaOjn2rs2JHav3+vChZ8V5Mnz1C+fPmTrfvwYbiGDx+iM2dOq1Qpd02cOFXZsmV/YR9+fjN0/fpVffPNCtnbp9fFixd07NhRTZjgq/LlPSVJ2bJl0+XLl8y9ZAAAAAAAgLcKgT4ApAG3bwepT5+eCgkJVvv2nfXZZ/1lZWVlVtvo6GgNHTpAJ0+eUPnynho/3lcODg7J1g0LC1OfPr0UGHhNDRs2lrf3aNna2r6wj02bArR58w+aM2eBcufOI0k6eHC/7OzsVLlyNUnPvl0QFhamrFmzmnfRAAAAAAAAbxkCfQCwcLGxsfLxGaaQkGD17NlbXbv2fKn2s2dP08mTJ1SpUhVNmjT9uQH9sGHDFBh4Te+/30LDh48060ODkydPaOZMX3l5+Zjsx//o0SM5OjrKzs5OkrRr13YlJCTI07PSS40fAAAAAADgbUGgDwAWbvv2bbp69Q+5uBRUsWIldPjwQZPjmTNnVokSbrp69Q89eHBfrq7FjFvkBAXd0pYtG2VnZ6/GjZvp+PH/mbS1srKSp2clWVlZ6fjx/+nAgQPKmjWrqlevpSNHDpnUtbe3T7Ln/t27dzRy5Odq2bKVmjZtbnLsvfeKyt9/tfz9V8vGxlYLF86Th0d5lS5d5l+6MwAAAAAAAGkLgT4AWLjdu3dKkm7cCNSwYQOSHG/RoqVKlHDT6NHeunnzhgICfjQe27NnlwwGg2JiojVmzIgkbQsUcNGaNRskSb/8skOSFB4eruHDByep6+lZ2STQf/z4sby9h6ho0WLq23dQkvr16zfSqVMntXz5EhkMBlWrVkODBnm93MUDAAAAAAC8RawMBoMhtQcBIPXdmFRKhuio/7wfK3sHuYw4o+DgSPH0sSxWVlLOnI787vBczBOYi7kCczBPYA7mCczFXIE5mCcwV1qfK05Ojqk9BKTAOrUHAAAAAAAAAAAAXoxAHwAAAAAAAAAAC0CgDwAAAAAAAACABSDQBwAAAAAAAADAAhDow6J4e3vL1dVVrq6uunHjRor1vvzyS7m6uqpq1aovdf6AgAC5urpq3759JuU3b940+dnV1VWDBw9+qXP/U0FBQXJ1ddW0adNeum2dOnXUunXr/2BUAAAAAAAAAF4XAn1YrF27diVbbjAYtHPnzn+tn9GjR8vLy8ukzNfXVx06dPjX+jBH9uzZ5evrq6ZNm77WfgEAAAAAAAC8GQj0YZHy58+fYqB/4sQJPXjwQNmzZ/9X+jpw4IAMBoNJWYsWLVS+fPl/5fzmypgxo1q0aKHixYu/1n4BAAAAAAAAvBkI9GGR6tevr5MnTyo4ODjJsZ07d6pgwYIqUqRIKowMAAAAAAAAAP4bBPqwSPXr11dCQoJ2796d5NiOHTvUsGFDk7LEvfejo6NNyqdNmyZXV1cFBQUl24+rq6tu376tU6dOydXVVQEBAcbyv+6hX6dOHQ0fPlxffvml3N3dVbVqVV29elXSs62BunTpogoVKsjNzU01atTQqFGjFB4ebtLX48ePNXXqVNWtW1elS5dWw4YNtWjRIsXFxUlKfg/9R48eadasWWratKnc3d3l7u6u5s2ba926dWbeSQAAAAAAAACWwia1BwC8ipIlS8rZ2Vm7du0yednruXPndPv2bTVs2FC///77P+7H19dXkyZNkqOjo/r16ycPD48U6+7YsUP58uXTiBEjdOvWLRUqVEgBAQEaMWKEqlatqkGDBkmSfvvtN61bt04PHjzQggULJEmxsbHq2LGjzp8/r5YtW6p06dI6efKkpk+frjt37mjs2LHJ9tm7d2+dOnVK7du3V+HChRUaGqp169Zp1KhRypo1qxo0aPCP7wEAAAAAAACANwOBPixW/fr1tWbNGkVFRcnBwUHS/4XqJUuW/Ff6aNGihWbPnq1s2bKpRYsWz637+PFjzZ07Vy4uLsayJUuWqHjx4lq8eLGsrZ99IaZDhw5q06aNcW9+KysrrV+/XufOndO4ceOMH1C0bdtWBoNB69atU9++fZP0d/r0aR09elTe3t7q1q2bsbx+/fpq3Lix9u/fT6APAAAAAAAApCFsuQOLVb9+fcXExGjfvn3Gsh07dqRaiJ03b16TMF+SNm7cqBUrVhjDfEkKDQ2Vg4ODYmNjFRsbK0nas2ePHBwc1LJlS5P2Xl5e2rx5s7Jly5akv9KlS+vYsWPq0KGDscxgMBi36Hn8+PG/dm0AAAAAAAAAUh8r9GGxPDw8lDNnTv3yyy9q0qSJ/vjjD127dk2TJ09OlfHkyJEjSZmtra0uXbqkLVu26Nq1a7p586bu379vPG4wGCRJt2/fVv78+WVjY/pXMmfOnMqZM2eKfdra2mr9+vU6fPiwbt68qRs3bhiD/ISEhH/jsgAAAAAAAAC8IVihD4tlbW2tunXrau/evYqJidGOHTuUN29elS5d2uxzxMfH/2vjSZcuXZKyCRMmqFOnTjp58qQKFy6sTz/9VN9//72aN2+eZBxWVlYv1V9oaKiaN2+uiRMn6smTJ6pWrZq++uor7d27959cBgAAAAAAAIA3FCv0YdHq168vf39/HTlyRDt27FD9+vWTDcYTt7yJiYmRvb29sTw4OPg/G9vt27e1cuVKNW7cWDNnzjQZV0hIiEldZ2dnnT59WgkJCSbb81y4cEGLFy9Wz5495ejoaNJmzZo1unHjhhYuXKhatWoZy+/du/ffXBAAAAAAAACAVMUKfVi0SpUqKXPmzFq1apUuXLighg0bJlvPyclJknT+/Hlj2cOHD3XgwIEX9mFtbf1K29c8fPhQklSoUCGTMP/cuXM6evSoJBn3u69Vq5YiIiK0ZcsWk3OsXbtWP/74o7Jnz57k/OHh4ZKkwoULm5QvX75c0r/77QMAAAAAAAAAqY8V+rBotra2qlWrljZv3iwnJyd5eHgkW69p06ZauHChvLy81L17dxkMBn333XfKkiWLQkNDn9tH9uzZdeXKFa1evVoVK1ZUkSJFzBpbkSJF5OzsrKVLlyo+Pl758uXT5cuXtX79euMq/EePHilTpkxq06aNfvjhB40YMUInT56Uq6urjh8/rs2bN+uTTz5R7ty5FRQUZHL+WrVqadWqVerTp4/atGkjKysr7d69W7/99ptsbW316NEjs8YJAAAAAAAAwDKwQh8Wr0GDBpKebb/z1+1q/qpo0aLy8/NTtmzZNG3aNK1atUofffSRevfu/cLz9+/fX9myZdOkSZO0c+dOs8dlZ2enb775RhUqVNDatWs1efJkHT58WL1799aMGTMkSQcPHjTWXbFihTp06KBffvlFEydO1IULFzR69GgNGTIk2fNXq1ZNkyZNUkJCgnx9fTV//nwlJCRo2bJlqlOnjk6cOKEnT56YPV4AAAAAAAAAbzYrg8FgSO1BAEh9NyaVkiE66j/vx8reQS4jzig4OFI8fSyLlZWUM6cjvzs8F/ME5mKuwBzME5iDeQJzMVdgDuYJzJXW54qTk+OLKyFVsEIfAAAAAAAAAAALQKAPAAAAAAAAAIAFINAHAAAAAAAAAMACEOgDAAAAAAAAAGABCPQBAAAAAAAAALAABPoAAAAAAAAAAFgAAn0AAAAAAAAAACwAgT4AAAAAAAAAABaAQB8AAAAAAAAAAAtAoA8AAAAAAAAAgAUg0AcAAAAAAAAAwAIQ6AMAAAAAAAAAYAEI9AEAAAAAAAAAsAAE+gAAAAAAAAAAWAACfQAAAAAAAAAALACBPgAAAAAAAAAAFoBAHwAAAAAAAAAAC0CgDwAAAAAAAACABSDQBwAAAAAAAADAAhDoAwAAAAAAAABgAQj0AQAAAAAAAACwADapPQAAbwZrewclvKZ+AAAAAAAAALw8An0AMsTFKP+QQ6+tv/jYaBkMr607AAAAAAAAIE0g0AcgKxs7hYREvraQnTAfAAAAAAAAeHkE+gAkPQvZCdoBAAAAAACANxcvxQUAAAAAAAAAwAIQ6AMAAAAAAAAAYAEI9AEAAAAAAAAAsAAE+gAAAAAAAAAAWAArg4HXYAIAAAAAAAAA8KZjhT4AAAAAAAAAABaAQB8AAAAAAAAAAAtAoA8AAAAAAAAAgAUg0AcAAAAAAAAAwAIQ6AMAAAAAAAAAYAEI9IG32J07dzR48GBVqlRJ5cqVU9++fXXr1q3UHhbeQG3btpWrq2uSPy1atEjtoSGVLVq0SFWrVk322NOnTzVt2jTVrl1b7u7uatOmjQ4dOvSaR4g3wfPmyYwZM5J9vri6uioiIuI1jxSp4fTp0/rkk09Uvnx5lSpVSh988IE2btxoUofnCSTz5grPFFy6dEm9evVSxYoVVaFCBQ0YMEA3btwwqcMzBZJ5c4VnCv7q9u3b8vDwkLe3t0k5zxS8bjapPQAAqSM8PFydO3dWVFSUunTpIjs7Oy1dulQdOnTQxo0blT179tQeIt4gly9fVq1atdSkSROT8qxZs6bOgPBG+PXXXzVnzhxlyZIl2eNDhw7Vnj171L59exUqVEjr169Xz549tWLFCpUvX/41jxap5UXz5PLly8qfP7/69++f5FiGDBn+6+EhlV29elWdOnVSlixZ1LNnT2XKlEnbtm3T8OHDFRYWpm7duknieQLz5wrPlLfb9evX1a5dO2XJkkWffvqp4uPjtWLFCrVu3VobN25U3rx5JfFMgflzhWcKEhkMBvn4+OjRo0dJjvFMwWtnAPBWmjlzpsHV1dVw5swZY9mlS5cMxYsXN0yePDkVR4Y3TVBQkKFo0aKGNWvWpPZQ8IZISEgwrFq1ylCyZElD0aJFDVWqVElS5+DBg4aiRYsali1bZix79OiRoW7duoYPP/zwNY4WqcWceWIwGAy1a9c2DBo06DWPDm+KTz75xFCmTBnDn3/+aSyLj483tGnTxlCmTBlDVFQUzxMYDAbz5orBwDPlbTdgwABD6dKlDbdu3TKWXbx40VC0aFHD+PHjDQYD/0bBM+bMFYOBZwr+z1//XTt8+HBjOc8UpAa23AHeUlu3blWZMmXk5uZmLCtatKgqVaqkrVu3puLI8Ka5fPmyJKlw4cKpPBK8Kdq0aaNx48apYsWKKlmyZLJ1tmzZIltbW7Vu3dpYljFjRn388cc6d+6cAgMDX9NokVrMmSdRUVG6c+cOz5e3VHx8vP73v/+pevXqyp07t7Hc2tpajRs31uPHj3XhwgWeJzB7rvBMgY2NjZo2bap8+fIZy1xdXZU1a1ZdvHhREv9GwTPmzBWeKUh08+ZNTZ8+Xf369UtyjGcKUgOBPvAWevjwoW7dumUS5icqWbKk7t+/r/v376fCyPAmunLliiSpSJEikpTsVwzxdrlz546++uorLV68WJkyZUq2ztmzZ/Xuu+8qY8aMJuWJwe7Zs2f/83EidZkzT/744w8ZDAbjfyg/efJECQkJr3OYSEXW1tbavHmzPv/88yTHQkNDJUnp0qXjeQKz5wrPFEyfPl0TJ040Kbt7967Cw8P1zjvvSOLfKHjGnLnCMwWSlJCQIG9vb7m6uqpLly5JjvNMQWog0AfeQvfu3ZMkkxVOiXLlyiXp2T9mAOnZy6Ls7e01e/ZslStXTh4eHqpevbpWrlyZ2kNDKtm9e7fatGkjKyurFOvcu3dPefLkSVKe+Iy5c+fOfzY+vBnMmSeJ3wDav3+/atWqpTJlyqhcuXIaO3asnjx58rqGilRiZWWl/Pnzm6yOlKTHjx9rw4YNypgxo0qUKMHzBGbPFZ4p+KuQkBD9+uuv6tWrlzJmzKju3btL4t8oSCqlucIzBZK0YsUKnT17VhMnTpS1ddIYlWcKUgMvxQXeQokrrJN7iU/69OklPfsPJEB6tkI/Ojpa9+7d08SJE/XkyRN9//33mjBhgsLDwzVgwIDUHiJeMzs7uxfWefTo0XOfMfxHUNpnzjxJ/A/lM2fOqF+/fnJwcNCvv/6qtWvX6urVq1qxYkWy/+GEtMtgMGjkyJF68OCB+vbtK3t7e54nSFZyc4VnCv7qo48+Mi5SGjZsmIoWLSqJf6MgqZTmCs8UXLt2TbNmzdLAgQNVqFAhRUdHJ6nDMwWpgUAfeAsZDAZJeu6qyecdw9ulTZs2io+PV+fOnY1lzZs3V7t27bRo0SK1a9dOTk5OqThCWCKeMZCk6tWry9HRUZ988onxa8qNGjVStmzZtGTJEu3cuVMNGzZM5VHidTEYDBo7dqx+/PFHeXp66rPPPjOrHc+Tt09Kc4VnCv5q8ODBsrOz008//aRp06YpKChIX3755Qvb8Ux5+6Q0V3imvN3i4+M1YsQIFS9eXN26dXvl8/BMwX+BjxKBt1DiP0aS+6T46dOnkiQHB4fXOia8uTp06GAS5kvP9rJt06aNYmNjdezYsVQaGd5kGTNmND5P/opnDP6qZs2aGjhwYJI9R9u3by9JOnz4cGoMC6kgNjZWw4YN03fffafSpUtr/vz5srW1lcTzBKaeN1d4puCvWrRoocaNG2vOnDlq3LixvvvuO125coVnCpJIaa7wTHm7LV26VGfPnpWXl5fCw8MVGhqq8PBwSVJMTIxCQ0MVExPDMwWpgkAfeAs5/7/27j+myvL/4/iLnzpWKagggkZbcmwgeVDQc0aswJYJlBgbIh4qsqHlLMQZ/lhtTbK1Ni0sN3XBci1RIxaYFmppITIis4W2g7Ea1USahRW/DM73DwYf6fArv8LheJ6P7fzBfV/3zftm196Dl7fXFRQkSWpqarI717MZbn/r6wPXmzRpkiSWZ0L/pk2bRo/BDaO/uJbW1latXr1aZWVlio6OVkFBQZ8/fukn6DHUXBkIPQUJCQmSpPPnz9NTMKjr58pA6Cmu4dSpU/rnn3+0fPlymUwmmUwmxcbGSpIOHz4sk8mksrIyegocgkAfcEG33367ZsyYodraWrtztbW1mjp1KkuoQFL3Bj4JCQl644037M7V19dLkqZPnz7aZcEJhIWF6eLFi3Zvq/T0ndmzZzuiLIwxTzzxRO/Gc9ejv7iOa9euac2aNfriiy/0wAMPaO/evXYBLf0E0vDmCj3FtTU3N+uhhx7S1q1b7c717CE2fvx4egqGPVfoKa7thRdeUEFBQZ/P7t27JUkxMTEqKChQTEwMPQUOQaAPuKhFixappqamT6hvtVp15swZJSYmOrAyjCWBgYFqbm7WwYMH1dzc3Hu8ublZhYWFCgoKUmRkpAMrxFi1aNEidXR0aP/+/b3HWlpadOjQIUVERGjGjBkOrA5jxcSJE3X69GmdPXu291hXV5d27twpDw8PLV682IHVYTS8+eab+vLLLxUXF6f8/HyNGzfObgz9BNLw5go9xbVNmDBBXl5eKi0t7fO2bEdHh9599135+Pho/vz59BQMe67QU1xbeHi4zGZzn8+CBQskSVOmTJHZbJa/vz89BQ7hZuvZHROAS/njjz+UlJSka9eu6amnnpK7u7sKCgrk5eWlDz74QH5+fo4uEWNEeXm51qxZo5CQEKWlpamjo0NFRUVqbGzUnj17ZDKZHF0iHMhisai+vl4VFRV251auXKnKykqtWLFCd911lw4cOCCr1arCwkLNmzfPAdXCUQaaJz///LOSk5Nls9lksVjk5+enTz75RNXV1Xr++eeHvSkqnNPly5cVFxcnm82mTZs29bt0islkkr+/P/3ExQ13rnR0dNBTXFxNTY0yMjIUGBiotLQ0ubu7q7i4WHV1ddq6datSUlIk8TsKhjdX+D0F/9be3q6IiAglJyfr1Vdf7T1OT8FoI9AHXFhDQ4O2bdumyspKeXt7Kzo6Whs2bOC/DsLOiRMntHv3bp0/f16enp4yGo1au3at7r33XkeXBgcbLND/+++/tX37dn388cdqbW2VwWBQdna25s+f74BK4UiDzZO6ujrt2LFDVVVV6ujo0N13362MjAwtWbJk9AvFqDp69Kiee+65Qcfs2bNHsbGx9BMX91/mCj0F1dXVys/P17fffiup+y3brKws3Xfffb1j6CmQhjdX6Cm43kCBPj0Fo41AHwAAAAAAAAAAJ8Aa+gAAAAAAAAAAOAECfQAAAAAAAAAAnACBPgAAAAAAAAAAToBAHwAAAAAAAAAAJ0CgDwAAAAAAAACAEyDQBwAAAAAAAADACRDoAwAAAAAAAADgBAj0AQAAAAAAAABwAgT6AAAAAJyCzWZzdAk31a32PAAAABh5BPoAAAAARkVVVZUMBsOwP1VVVZKkzs5Ovffee8rLy+tzv+LiYhkMBq1fv37Eas7NzZXBYNDBgwdv6Pr8/HwZDAZt3769z/GysjKtW7fuZpQIAAAAF+Lp6AIAAAAAuBYfHx/Fx8cPOW7y5MmSpNLSUr388stKSkoa6dJGRXV1tXJychQZGenoUgAAAOBkCPQBAAAAjCpfX1+9/vrrwx7f1dU1gtUMbt26dXr66afl7+9/Q9enp6dr8eLF8vX17T3myOcBAACAcyPQBwAAAIAB+Pv733CYL0l+fn7y8/O7iRUBAADAlbGGPgAAAIAxy2KxaOPGjZK6l94xGAzKzc21G3fu3DmtXLlSc+fOldFo1PLly3Xy5Em7cQaDQY8++qj+/PNPvfLKK7r//vsVHh6uhQsXaseOHWptbe0zfqA19G02mw4dOqS0tDRFRUUpOjpay5YtU1lZWZ/Nbv+9hn5ubq4yMjIkSV9//bUMBoMsFou+++47GQwGxcbG9vsGf3t7u6KiomQ0GtXS0vIff4oAAAC4VRDoAwAAABizzGazjEajJCk4OFhJSUm9X/f45ptvlJ6erh9++EEmk0nBwcGqqalRVlaWTpw4YXfP1tZWpaen68CBAwoJCZHJZNKlS5e0a9cuZWdnD1lTZ2ennn32WW3evFnff/+9jEaj5syZowsXLignJ0evvfbagNcajUaZzWZJ3W/vJyUlyWw2Kzw8XLNmzVJjY6POnDljd93x48d19epVPfzww/Lx8RmyRgAAANyaWHIHAAAAwJi1evVqBQQE6OzZszIajf2uvd/Q0KD09HRt3rxZHh4estlseumll1RUVKSCggLFxcX1Gf/TTz9p5syZOnz4sIKCgiRJtbW1Sk1N1Weffaa6ujrNnDlzwJr27dun48ePKzQ0VHv37lVAQEBvHcuWLdM777yjxMREhYWF2V2bmpqqkJAQnT59WiEhIX2e57HHHlNeXp5KSkp6Q/8eH374oSRp6dKlw/zJAQAA4FbEG/oAAAAARtUvv/wig8Ew6OeZZ54Z9v38/Py0ceNGeXh4SJLc3NyUmZkpSbJarf1ek52d3RvmS1JYWJgiIyMlSXV1dYN+v/fff1+SlJeX1xvmS9L06dO1atUqhYaGqr6+ftj193jkkUfk7e2t8vLyPsvqNDU1qaKiQiEhIZo3b95/vi8AAABuHbyhDwAAAGBU+fj4KD4+ftAx4eHhw75feHi4vLy8+hwLDAyUJF29erXfa+bMmWN3rGfz28HWqG9sbNSPP/6oyZMnKyIiwu68xWKRxWIZbul9TJw4UfHx8Tpy5Ig+/fRTLVmyRJL00UcfqbOzU8nJyTd0XwAAANw6CPQBAAAAjCpfX99+l865UXfccYfdsZ639fvbYHagazw9u/88un5T23+7fPmypP/9g8HNlpKSoiNHjqikpKQ30C8pKZG7u3vv1wAAAHBdBPoAAAAAnJqbm9uoXCN1b4g7ksxms6ZNm6aqqio1NjbqypUrslqtiomJ0dSpU0f0ewMAAGDsYw19AAAAABimKVOmSJIuXbrU7/nffvtNRUVFOnfu3A3d393dXcnJyerq6tKxY8d09OhRSd0b5gIAAAAE+gAAAADGtBt9m34kBAUFKSAgQE1NTbpw4YLd+fLycr344osqKysb8B5DPc/SpUvl5uam8vJyHTt2TBMmTNDChQv/37UDAADA+RHoAwAAABjTxo0bJ0n666+/HFxJtxUrVkiStmzZoitXrvQeb2ho0FtvvSV3d3clJSUNeP1QzxMcHKwFCxaoqqpKFy9eVEJCgry9vW/iEwAAAMBZsYY+AAAAgFH1+++/a/369UOOi4qKUmpqqu68805J0ueff66srCwZjUatWrVqpMscUGZmpqqrq3Xq1Ck9+OCDio6OVkdHh7766iu1tbVp7dq1ioiIGPD64OBgeXh4yGq16vHHH5fBYNCmTZv6jElJSVFlZaWk7jf2AQAAAIlAHwAAAMAoa2lpUWlp6ZDjPD09lZqaqrCwMOXk5Gjfvn2qqKhQa2urQwN9T09P7dq1S/v371dxcbEqKytls9k0a9YsWSwWJSYmDnr9pEmTlJeXp507d6qmpka//vqrXaA/d+5cSVJoaKhmz549Ys8CAAAA5+Jms9lsji4CAAAAAPA/hYWF2rZtm7Zs2SKLxeLocgAAADBGEOgDAAAAwBjQ1tam8ePHy2q16sknn1RbW5tOnjyp2267zdGlAQAAYIxgyR0AAAAAGAPefvttFRYWqr29XZK0YcMGwnwAAAD0QaAPAAAAAGPAPffcIw8PD/n5+SktLU2ZmZmOLgkAAABjDEvuAAAAAAAAAADgBNwdXQAAAAAAAAAAABgagT4AAAAAAAAAAE6AQB8AAAAAAAAAACdAoA8AAAAAAAAAgBMg0AcAAAAAAAAAwAkQ6AMAAAAAAAAA4AQI9AEAAAAAAAAAcAIE+gAAAAAAAAAAOIH/A/0FmY9MiMrOAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -9395,7 +9949,7 @@ }, { "cell_type": "code", - "execution_count": 336, + "execution_count": 1173, "metadata": {}, "outputs": [], "source": [ @@ -9406,7 +9960,7 @@ }, { "cell_type": "code", - "execution_count": 337, + "execution_count": 1174, "metadata": {}, "outputs": [], "source": [ @@ -9419,7 +9973,7 @@ }, { "cell_type": "code", - "execution_count": 338, + "execution_count": 1175, "metadata": {}, "outputs": [], "source": [ @@ -9429,91 +9983,9 @@ }, { "cell_type": "code", - "execution_count": 339, + "execution_count": 1176, "metadata": {}, "outputs": [ - { - "data": { - "text/html": [ - " \n", - " " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "application/vnd.plotly.v1+json": { @@ -9526,499 +9998,95 @@ "geo": "geo", "hovertemplate": "%{hovertext}

Country_code=%{location}
Respondents=%{z}", "hovertext": [ - "Afghanistan", - "Albania", - "Algeria", - "Andorra", - "Angola", "Argentina", - "Armenia", "Australia", "Austria", - "Azerbaijan", - "Bahrain", - "Bangladesh", - "Barbados", - "Belarus", - "Belgium", - "Bolivia", - "Bosnia and Herzegovina", - "Botswana", "Brazil", - "Brunei Darussalam", - "Bulgaria", - "Burkina Faso", - "Burundi", - "Cambodia", - "Cameroon", "Canada", - "Chad", - "Chile", "China", - "Colombia", - "Congo, Republic of the...", - "Costa Rica", - "Croatia", - "Cuba", - "Cyprus", "Czech Republic", - "Côte d'Ivoire", - "Democratic People's Republic of Korea", - "Democratic Republic of the Congo", - "Denmark", - "Djibouti", - "Dominican Republic", - "Ecuador", - "Egypt", - "El Salvador", - "Estonia", - "Ethiopia", - "Fiji", - "Finland", "France", - "Gabon", - "Georgia", "Germany", - "Ghana", - "Greece", - "Guatemala", - "Guinea", - "Haiti", - "Honduras", - "Hong Kong (S.A.R.)", - "Hungary", - "Iceland", "India", - "Indonesia", - "Iran", - "Iraq", "Ireland", "Israel", - "Italy", - "Jamaica", - "Japan", - "Jordan", - "Kazakhstan", - "Kenya", - "Kuwait", - "Kyrgyzstan", - "Lao People's Democratic Republic", - "Latvia", - "Lebanon", - "Lesotho", - "Libyan Arab Jamahiriya", - "Liechtenstein", "Lithuania", - "Luxembourg", - "Madagascar", - "Malawi", - "Malaysia", - "Maldives", - "Mali", - "Malta", - "Mauritius", - "Mexico", - "Monaco", - "Mongolia", - "Montenegro", - "Morocco", - "Mozambique", - "Myanmar", - "Nepal", "Netherlands", "New Zealand", - "Nicaragua", - "Nigeria", - "Norway", - "Oman", - "Other Country (Not Listed Above)", "Pakistan", - "Panama", - "Paraguay", - "Peru", "Philippines", "Poland", - "Portugal", - "Qatar", - "Republic of Korea", - "Republic of Moldova", - "Romania", - "Russian Federation", - "Rwanda", - "Saint Vincent and the Grenadines", - "San Marino", - "Saudi Arabia", - "Senegal", "Serbia", - "Seychelles", - "Singapore", - "Slovakia", - "Slovenia", - "Somalia", "South Africa", - "South Korea", "Spain", - "Sri Lanka", - "Sudan", - "Swaziland", "Sweden", "Switzerland", - "Syrian Arab Republic", - "Taiwan", - "Tajikistan", "Thailand", - "The former Yugoslav Republic of Macedonia", - "Timor-Leste", - "Togo", - "Trinidad and Tobago", - "Tunisia", - "Turkey", - "Turkmenistan", - "Uganda", - "Ukraine", - "United Arab Emirates", "United Kingdom", - "United Republic of Tanzania", - "United States", - "Uruguay", - "Uzbekistan", - "Venezuela, Bolivarian Republic of...", - "Viet Nam", - "Yemen", - "Zambia", - "Zimbabwe" + "United States" ], "locations": [ - "AFG", - "ALB", - "DZA", - "AND", - "AGO", "ARG", - "ARM", "AUS", "AUT", - "AZE", - "BHR", - "BGD", - "BRB", - "BLR", - "BEL", - "BOL", - "BIH", - "BWA", "BRA", - "BRN", - "BGR", - "BFA", - "BDI", - "KHM", - "CMR", "CAN", - "TCD", - "CHL", "CHN", - "COL", - null, - "CRI", - "HRV", - "CUB", - "CYP", "CZE", - "CIV", - "PRK", - null, - "DNK", - "DJI", - "DOM", - "ECU", - "EGY", - "SLV", - "EST", - "ETH", - "FJI", - "FIN", "FRA", - "GAB", - "GEO", "DEU", - "GHA", - "GRC", - "GTM", - "GIN", - "HTI", - "HND", - null, - "HUN", - "ISL", "IND", - "IDN", - null, - "IRQ", "IRL", "ISR", - "ITA", - "JAM", - "JPN", - "JOR", - "KAZ", - "KEN", - "KWT", - "KGZ", - "LAO", - "LVA", - "LBN", - "LSO", - null, - "LIE", "LTU", - "LUX", - "MDG", - "MWI", - "MYS", - "MDV", - "MLI", - "MLT", - "MUS", - "MEX", - "MCO", - "MNG", - "MNE", - "MAR", - "MOZ", - "MMR", - "NPL", "NLD", "NZL", - "NIC", - "NGA", - "NOR", - "OMN", - null, "PAK", - "PAN", - "PRY", - "PER", "PHL", "POL", - "PRT", - "QAT", - null, - "MDA", - "ROU", - "RUS", - "RWA", - "VCT", - "SMR", - "SAU", - "SEN", "SRB", - "SYC", - "SGP", - "SVK", - "SVN", - "SOM", "ZAF", - null, "ESP", - "LKA", - "SDN", - null, "SWE", "CHE", - "SYR", - "TWN", - "TJK", "THA", - null, - "TLS", - "TGO", - "TTO", - "TUN", - "TUR", - "TKM", - "UGA", - "UKR", - "ARE", "GBR", - "TZA", - "USA", - "URY", - "UZB", - null, - "VNM", - "YEM", - "ZMB", - "ZWE" + "USA" ], "name": "", "type": "choropleth", "z": [ - 10, - 62, - 65, - 1, - 1, - 489, - 68, - 1606, - 710, - 29, - 10, - 407, - 1, - 169, - 615, - 28, - 74, - 3, - 1820, - 1, - 569, + 2, + 2, 1, 2, - 8, - 24, - 2922, 1, - 172, - 409, - 261, - 3, - 63, - 217, - 19, - 46, - 662, - 16, + 2, + 2, 1, + 5, + 6, 1, - 532, 1, - 79, - 68, - 245, - 51, - 171, - 31, - 2, - 466, - 2122, 1, - 60, - 5269, - 46, - 454, - 52, 1, 2, - 17, - 130, - 437, - 27, - 7165, - 349, - 615, - 16, - 428, - 801, - 1384, - 14, - 293, - 42, - 44, - 179, - 8, - 13, 1, - 111, - 93, - 1, - 3, 1, - 211, - 48, - 6, 1, - 191, - 6, 1, - 50, - 17, - 581, - 2, - 12, - 10, - 78, - 4, - 20, - 152, - 1625, - 442, - 25, - 377, - 500, 1, - 74, - 701, - 22, - 46, - 114, - 255, - 1710, - 454, - 7, - 23, - 38, - 630, - 1503, - 4, 1, - 2, - 72, - 11, - 333, 1, - 208, - 214, - 252, - 6, - 543, - 92, - 1432, - 268, - 18, - 4, - 1110, - 862, - 9, - 130, 2, - 135, - 39, - 1, 1, - 9, - 74, - 757, 3, - 46, - 734, - 100, - 5027, - 20, - 18271, - 99, - 18, - 57, - 124, - 9, - 10, - 21 + 19 ] } ], "layout": { + "autosize": true, "coloraxis": { "cmax": 10000, "cmin": 0, @@ -10094,6 +10162,11 @@ "line": { "color": "#E5ECF6", "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 } }, "type": "bar" @@ -10105,6 +10178,11 @@ "line": { "color": "#E5ECF6", "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 } }, "type": "barpolar" @@ -10303,9 +10381,10 @@ "histogram": [ { "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 } }, "type": "histogram" @@ -10441,11 +10520,10 @@ ], "scatter": [ { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 }, "type": "scatter" } @@ -10888,10 +10966,11 @@ } } }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAABE0AAAFoCAYAAACixgUDAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3QVYl1f7B/Av3R2KigGigmJ3dztr5uyYOXM6azPm7O7GnDVrdncnJoKoiHR3w/9/Di9MEfVHGnzPdXn5Op7nxOf54etzc859KyUlJSWBjQIUoAAFKEABClCAAhSgAAUoQAEKUOA9ASUGTfiJoAAFKEABClCAAhSgAAUoQAEKUIACHwowaMJPBQUoQAEKUIACFKAABShAAQpQgAIUSEeAQRN+LChAAQpQgAIUoAAFKEABClCAAhSgAIMm/AxQgAIUoAAFKEABClCAAhSgAAUoQAHFBLjTRDEnXkUBClCAAhSgAAUoQAEKUIACFKBAHhNg0CSPPXAulwIUoAAFKEABClCAAhSgAAUoQAHFBBg0UcyJV1GAAhSgAAUoQAEKUIACFKAABSiQxwQYNMljD5zLpQAFKEABClCAAhSgAAUoQAEKUEAxAQZNFHPiVRSgAAUoQAEKUIACFKAABShAAQrkMQEGTfLYA+dyKUABClCAAhSgAAUoQAEKUIACFFBMgEETxZx4FQUoQAEKUIACFKAABShAAQpQgAJ5TIBBkzz2wLlcClCAAhSgAAUoQAEKUIACFKAABRQTYNBEMSdeRQEKUIACFKAABShAAQpQgAIUoEAeE2DQJI89cC6XAhSgAAUoQAEKUIACFKAABShAAcUEGDRRzIlXUYACFKAABShAAQpQgAIUoAAFKJDHBBg0yWMPnMulAAUoQAEKUIACFKAABShAAQpQQDEBBk0Uc+JVFKAABShAAQpQgAIUoAAFKEABCuQxAQZN8tgD53IpQAEKUIACFKAABShAAQpQgAIUUEyAQRPFnHgVBShAAQpQgAIUoAAFKEABClCAAnlMgEGTPPbAuVwKUIACFKAABShAAQpQgAIUoAAFFBNg0EQxJ15FAQpQgAIUoAAFKEABClCAAhSgQB4TYNAkjz1wLpcCFKAABShAAQpQgAIUoAAFKEABxQQYNFHMiVdRgAIUoAAFKEABClCAAhSgAAUokMcEGDTJYw+cy6UABShAAQpQgAIUoAAFKEABClBAMQEGTRRz4lUUoAAFKEABClCAAhSgAAUoQAEK5DEBBk3y2APncilAAQpQgAIUoAAFKEABClCAAhRQTIBBE8WceBUFKEABClCAAhSgAAUoQAEKUIACeUyAQZM89sC5XApQgAIUoAAFKEABClCAAhSgAAUUE2DQRDEnXkUBClCAAhSgAAUoQAEKUIACFKBAHhNg0CSPPXAulwIUoAAFKEABClCAAhSgAAUoQAHFBBg0UcyJV1GAAhSgAAUoQAEKUIACFKAABSiQxwQYNMljD5zLpQAFKEABClCAAhSgAAUoQAEKUEAxAQZNFHPiVRSgAAUoQAEKUIACFKAABShAAQrkMQEGTfLYA+dyKUABClCAAhSgAAUoQAEKUIACFFBMgEETxZx4FQUoQAEKUIACFKAABShAAQpQgAJ5TIBBkzz2wLlcClCAAhSgAAUoQAEKUIACFKAABRQTYNBEMSdeRQEKUIACFKAABShAAQpQgAIUoEAeE2DQJI89cC6XAhSgAAUoQAEKUIACFKAABShAAcUEGDRRzIlXUYACFKAABShAAQpQgAIUoAAFKJDHBBg0yWMPnMulAAUoQAEKUIACFKAABShAAQpQQDEBBk0Uc+JVFKAABShAAQpQgAIUoAAFKEABCuQxAQZN8tgD53IpQAEKUIACFKAABShAAQpQgAIUUEyAQRPFnHgVBShAAQpQgAIUoAAFKEABClCAAnlMgEGTPPbAuVwKUIACFKAABShAAQpQgAIUoAAFFBNg0EQxJ15FAQpQgAIUoAAFKEABClCAAhSgQB4TYNAkjz1wLpcCFKAABShAAQpQgAIUoAAFKEABxQQYNFHMiVdRgAIUoAAFKEABClCAAhSgAAUokMcEGDTJYw+cy6UABShAAQpQgAIUoAAFKEABClBAMQEGTRRz4lUUoAAFKEABClCAAhSgAAUoQAEK5DEBBk3y2APncilAAQpQgAIUoAAFKEABClCAAhRQTIBBE8WceBUFKEABClCAAhSgAAUoQAEKUIACeUyAQZM89sC5XApQgAIUoAAFKEABClCAAhSgAAUUE2DQRDEnXkUBClCAAhSgAAUoQAEKUIACFKBAHhNg0CSPPXAulwIUoAAFKEABClCAAhSgAAUoQAHFBBg0UcyJV1GAAhSgAAUoQAEKUIACFKAABSiQxwQYNMljD5zLpQAFKEABClCAAhSgAAUoQAEKUEAxAQZNFHPiVRSgAAUoQAEKUIACFKAABShAAQrkMQEGTfLYA+dyKUABClCAAhSgAAUoQAEKUIACFFBMgEETxZx4FQUoQAEK/E8gMTER4eHhiI2NRUxMTOrv8fHxSEhIoBMFKPCVCqioqEBVVRUaGhpQV1dP/V1XVxfKyspf6aw5LQpQgAIUoMCXFWDQ5Mv6c3QKUIACX61AREQEnj9/Djc3N7x48QJeXl7yV1BQECpVqoSQkBDo6elBX19f/l6gQAEZTGGjAAW+TgEdHR35PRwWFobQ0FD5y9jYGLdu3YKJiQksLCzkLxsbGxQuXBglSpSAuIeNAhSgAAUokJcFGDTJy0+fa6cABSjwjkBwcDDu3LkDV1dXXL9+HeLP4qVJBEgMDQ1TX6jMzMzoRgEKfGcCvr6+8Pb2lkEV8b1/9+5dGTQ1MjJCzZo1YW1tjcqVK8PAwOA7WzmXQwEKUIACFPi0AIMm/IRQgAIUyMMCYtfIyZMnZbDk9evX8qWoVq1asLKyQsGCBfOwzNe19KSkJLk7IC4uDuIYlDhKIY5apP0ljlywUSA7BTw8POROs2vXrsm/J0TwpGLFimjevLkMprJRgAIUoAAFvncBBk2+9yfM9VGAAhRIR+DixYsyWOLi4iJffho2bIhixYrRCsCrV6/kC6I4diTyt1y4cAExMdFQSkxESGgIEhOTUCB/fnj5eENDXQNhEREwNzVBZFQUlABoamoiMQkwNc+HsmXLonPnzp90DQgIkEcjRBM/3X/06BFeuLoiMiIScfFxKFSwEJ48eSKDJmpqaihRsiRcXJyRmJAoc8jIX4kJKFGyFN6+eSODXQULFpDXDho0SM6HjQLZJSC+P86ePSv//ihZsiSaNWuGOnXqZFf37IcCFKAABSjw1QkwaPLVPRJOiAIUoEDOCHh6euLAgQM4ceIEqlatKl92xO95sfn5+cllR0dHY9LE36CproH4+Dh4+fpBW1MDlcuWRFR0LHz9g9C0ZjmYGulDQ10NSspKUFVRQWxcPNRUVKCro4n4hEQZwDh/+xGeuryBqpqqvNfbLxAaGuqoXrMOnJ2fQ0lJCcFBwRC7RuzLlkNQYABevHBBKVs7hIWFIikxCZ5enqhUuTqq1qgNYxNTxMXFIjE+EdY2JaCqpvbeo5ozfRKcnJ4gCZDBGm1tHURGRshrRKJPDQ1N9OzZA1FRUQgMDJIBmJjoGHm8onPnTvLYBVv2CIhnKp5vXms3b96Uf5+IYJ/4+6RDhw7yGB8bBShAAQpQ4HsSYNDke3qaXAsFKECBdAREnoKtW7fKLfYtW7aULzdaWlp5zsrZ2RkbN6zHS9cXCI+IgoG+LnT1DRHk74vq5W2hp6MJVRVl6OtqIzomFpXK2MDWqtAnnZxfe+D6g+d44+2Pq3efICkJsjqJvr4BLApaon6jpjA1M4e6mga0dXRSAx+hIcGIiAhHMaviUFfXQIC/LwL8/XDvzi2Y58uPhk1afPb5eHt5IigoUD5LLS1t+Pp4IyjQH2GhITiwbxfs7MpATUMDmppa0NXTQ1BAANzfuMHf31fuDBg/blyOVEwRuTHEbgTxuzg+JHa+PHv2TO6msbS0lHlyMlOpZfPmzXIXjqGREUr9/w4HkXenQoUK6Nmz52etcuqCgwcP4oGjI27dvCnXamtri2rVqskjbvnz58+pYb+6fiMjI+XOk6NHj8rdJ71794a5uflXN09OiAIUoAAFKJAZAQZNMqPGeyhAAQp8AwLipVUESx48eCBfYpo0afINzDrzU3R0dJQv4/b29h908vLlS0wYNxY1KpSEnbUlmtSsIK+5ePsxnrxwx9ELt+SfxW4BHW0tGTQZ1q0lmtZOvu6mozPCIiPlLhR3L384u3khJDwS7l5+sC9XAZcvX4aBoRH6/TxcBkLE//5SLS42Fmr/y23Sv2dHJMTHo179BihT2k4GLURlFFHtKKtNlJw+ffo0Tp0+LYNExkaGeOvhKSuyeHp4QF1DXQaARJ4VIyNT+Pv5IDo6Su6q2btnT4aHX716tfwsi10zYidN8eLFYWtbCl26dMlwX9l1Q48ePaBvYIRa9RqiSFEreaTqyaP7uH3jKgoULIi5c2bj7du3sjS3CBblhSaCJ+LvHZH3RPy9Y2pqmheWzTVSgAIUoMB3LMCgyXf8cLk0ClAg7wo4ODjIF1rx0iJ2lnwvTSSi/Gvmn1BXU0OrNj+gV69ecmnbt2/Hrr//hq6OFoJDw2FlVRRLli7HmFEjER8Xi/KVqkBFWQmH//0XrRtWRfPaFRAbG4+DZ2/g6n0nREZGw9hQDzvmj0VCYiJUlJVTyWLj4tB59HwkJSbC0rIAoKyGqKhoecxGBGn8/PyRL19+FC9RCr36D/lqqCPCwzF/1hSMHDECpUuXzpF5LVm6FK9evUH/IcPx8P59eaxITVUVly6cxbUr5/HK9YXccVHI0lImDTU3M5M5dLKyC0MEa76mhLfic7Dj779x/vx5GBoYws/fHxYWBRAUHITEhHjo6urDxNQUF8+fRZEiRTF5ymRY5YH8QcePH8eWLVvk8+7Tp0+OfP7YKQUoQAEKUCA3BBg0yQ1ljkEBClAglwROnTqFhQsXYty4cWjcuHEujZq9w1y5cgU3btyQuz6ePn2KjRs3ygE6deyAyKhomfRUWUkJ/QcMRMeOHeXX5s+fj4sXLqBYkUKIioyU19Wu1wC3rl+Gh7c/1NVU0bVbdzx5/BAuzi5yF4TIQBEcEiqDH91b10f31nVT81KEhkfiofNrHL14D06ub2BqaoK58xdiyu+/Iy4uAfoGhtDR1oGegSFa/dBB5h/52trObRtRML8punbtmqNTO3z4MM6cPYvAwEDMXbxWjrVr+yaEhQSicqWKWL1mDcqWrYAH9+9g9uzZKFeuXI7O50t2LvLH+Pv7y1/icyV23axevQahoSFyd4wIsokdMqKMd/v27b+q4E9OuYng7aJFizB27Nhv9u+knLJhvxSgAAUo8G0IMGjybTwnzpICFKDAJwXc3d3li4lIwiheTkR+hW+liTK6R44cwemTJ+H+1l0egbG1LoTXb33hFxSCGX/OlC+ZkydPwhs3N5m8tW+//jI/S0oLDw+XARYRbBFHcfLlyyctjh0+hKDQcGhraUBTQ1O+sNepVx+zZ82CuroqRvdsA3efACgrK6F4kQIoYmEmj91MXrINoeFRGDly5HvjiLE7deokX4hNTM0RERGGQcPGoqStnUwGq66h8VWwL5g9VeZQcXF6ht27d+XKnIYNG47AoEBYWhaFqqoSZv75J0Suix07dkBFRQ0mJkZo1KiRrEqU2018xkQi5JCQEERERODe/Qd49uwpLPLnlwHGnNi5Iqoaie9DJycneUTn4qXL0NDUhl3pcli3egk0tbTQonlzmQNHzEtUOTI2NoadnZ08YvY9JZYV/iKYKxIwjxkzhuXMc/sbgONRgAIUoECWBBg0yRIfb6YABSjw5QXES+mZM2dksKRMmTJffkIZnMGsWbNw7eoVqKgoIylRJFJVQVx8PHS0NFDezgb3njjLZKaVqlTDhXNn0bxuRRy9cFtWhxEBFZF886fuXaCurIyihfKhbInCOHTuNnQMjOHj7SUDHGVLFkXtiqWwYe8pWBQsjFcvX0JXVxsREVGIiY2VQZOkpEQoKSnLXSkGRsZo0qQpunXr9sFqRGBmz569MrFubGwMVFRV5dGdYlbWcHF+jqLFrFGnfmM0avpfUCeDJFm+/K+pv8njSDNmTJfHYnKr+fj4QCTcFclQcyIQkZF1iJw+4llduHgRIcHBSEhMkmWYxWcpPiEeAX5+MDQyxIrly7M8VxFME7u8RNJl8UscI8tvUUCW8XZ0fACbErawLFIUzVq2hZqaulyGOD717OlDWTI6OioKaupq8HB/A1cXJ4SEBGPQoMGoWaN6Rpb80Wt37tqFmzdv4bnTM5l7JTYmGgULFYKlZSE0adwY2traMqAhkvWKHCTCKSfaw4cPZfBEHNlJ73srJ8ZknxSgAAUoQIGsCjBoklVB3k8BClDgCwmIn5xPnTpVJnjt3LnzF5pF5oYNDg6WRxgCAgLkS72otiJK4IodJa1atoShvq4MnERGxyAxMRHdWtWTSVvFfzMy0JOBkHwWhfHH9Bnw8vLC5MmTERIUgALmJoiJi0NIWBSM9LVgqKeDkBglqCbFoG3DqtDR0sT9p66Ii0+AT0CIrJZjbKALM2M9ePuHwNHpNSb+Pk0GYj7VxPhiF4U4ciF2CqQ0MVcRTBFJS2vXa4IadRpkDigLd4k5OKxbIY/HzJkzO1OVarIw/FdxqyiDu3HjJjRv1Q7FrG3g6vIcD+7dlOWi7Urbwc7WVibENTMzy9KuLHEkSQTuxE6KSlVqyvLPIhFw4aJWsqrRyxfOsLYpmSET5+dPce7UMcTFRmHypEnQ1dXN0P3pXSyCFdNnzICtnT3KVawCl2dP4e3jieioaISGBKFhw4Y4dOggDAwMERDgj/z/XzZ42tSpMuiTE23nzp24cOECpk+fnqX8NjkxN/ZJAQpQgAIUSCvAoAk/ExSgAAW+QYG9e/dC5JIQLx059WKTUyx79uzBxo0boKWpIY/iiEo14pc4jlDcqhjGT5wMcdxo+fLlcoeAuroaChUqBFu70vJojvhJvtjJ0KFDBzlF8fIlXpJFvgiRQ2LUqFH4888/ERQYgPiEBBTIbw5vX3/kMzdDYECA7C80LBKaGupQVlaBvp4OlJSV4R8YjMKFC6Np06b44YcfsrR8EVQZPnw42v7YA2XKls9SX4reLHa9iPLFe3ZuwbF/98PW1g5Lly5R9Pbv5joRIJg4cRImTp0ld/2sXjoPhQrmx4ABA7K8g0IcAxOfNfG7+Lx6enrh9u3bWLZ2a7YEp1xdnLFo7nRYF7dG3Tp15Dg1atSAi4tLcmUnHR1Z+ejdClHXrl2T6zIwMJABxlKlSqX7LEVft27dwgvXl7C2tkJMdLSsRiSCO61atZLHg8Q44ntPlA0W4+Zkc3V1xbRp09CuXbvU3EQ5OR77pgAFKEABCmRWgEGTzMrxPgpQgAJfSEAkPRUvSD///PMXmkHmhxU7Y8RL3so/hqB44fyyo+ev3uLg6Rt44vpG7v5QU1NFtWrV5ZEBERw5d+6czCuyeOF8hIdHQF9PG/GJSpg2fQY2bNgAt1cv0OOHhjh73REv3DxQ3Noapa3MUayAOV66e+Pk1ftQU1WDhoY6ihY0h6e3P3wCgmBqbAhlJcDCzAgv3H1R2rogXnv4ykBLIcsimD13fuYXCsgjGsdPnkH/wSOz1I+iN9+8fgXrVi5GQkI82rZti2HDhil663d1nQgkaukYoEffQdizwwFVKpVDrVq1PrvGl69e4fDhIzAzNZGfO2tra1y6dAl169ZNvXfTpk144PgIFSpXg0j6qqGuIQNuzVu1/Wz/ilwggm1v3d3g5+sNb09PAIl4/dIV+QtaIsDPB1FRkTAU5ayTEuT/1tTQwNWr12BTshQ01NWho6uHO7duoEXLlhg86NN/P+zbt0/uxlFVU0ViQoL8+6RKlSpy55cIpORWE7uyhKXIdcJGAQpQgALfrkBQSBiGTFiMsYM6o0r59AP43+rqGDT5Vp8c500BCuQ5AfFTYZG0UuzA+NhPk79WFJF35fSJY2hQzR492yS/hF67/wyLNh9CbFw8LMyMUdrGEg2q2mOhwyFUtLOWuUJuOjrBurAF7j52wYSBHfHQ2Q0X7zzDJofNGNCvL7Q0VNGwell0bVEbjs9fYcaqPRCJUcqWKoagsBjoG5nKcrtnTh7FnDG9YGZsgFPXHHHnkTMmDeok5/HKwwdj5myCEpJkXpWYmDgZsFm+cpVMKJvZJpJ/zvxrFgb/8ivM81lkthuF7nNYvwKXL5yVyW9FUE3kpciLTewyWbtuPSZPn4ej/+6DuYkB2v7QRiEKseOhy0994Ofjg8AAPzRqWA/r12+ATQkb5DM3xwtXV5lENiw0FNY2thg4dJRC/Wb1oujoKJmH5d324N5tJMTHIyYmRh5Vq1X3v2NgonrU08eOOHxwNxYtXJh6vEccgUvZlSaCFCIwIkqSGxiaIAmJcheXyLMSGhIi8/uIwKyBoSFKlSyFWrVqonLlylldykfvF0mcxQ6xJUuWyES4bBSgAAW+R4Go6FhMnb8JR8/eeG95/bu1xJhB39Yx6/SeT04ETXKiz8x8thg0yYwa76EABSiQiwLipWj58hU4deok7EqXxry5czM1usjBcfbsWfmSdfLECURHReCnnr0RHx8vq3Zk90uR6Dcl38f4X3/F4yePMbhrC3j5BcLFzQt+IVHw9vaBqZEeKpexwche6R+J2XnsCkwM9dG0Zln8MnM9fuzeCw0aJL8kDujfDwbaaggKDkNYRCSCwyJQuUxxuHv7Y+mKNTKxZauWLdCguj3G9G4n70lITISKsnKqociTcu2eEwoXMEOxQslBkntPXmDuxgOIiIxChw7t8WOnLhlOqCqqyQQFBaFi1Rro3K0XVFVzJrnmgb1/Q9/QWL7k/rt/FxYvWiiPcHyt7fz58zIHiEiAKnLaiCNRVatWlcdDstoOHDiAf/7Zh1r1GqJx09ZYsXgWytrbo3v3bjIQ9rF2/cYNvPHwRZ36TeQlm9YuQz5zE9y+fQeGRsZ44fxcHvcR1XDcXr/EiSMHMfWvhVmdbo7e//TxAyyYPR09e/aUx3xOnzkjvx883r6Fjq4u1FRVYVGgAB7cv48tu/59by7iqJcInoSFhshdIMeP7MfbN24oY18GlStVkjl/xGdb9BsbGyttRd8iT0xmq/6Io0UiiFO/QUP079c3R23YOQUoQIEvIZASNMlvbpwaJEkJClQtX+qbD5zkRIAjJ/rMzLNn0CQzaryHAhSgQC4KTJo0SSYXrVylKqytiil8/l+8hCxbtgxPnz5BQmw03nr5oEYFO8TFxaOibTGYmxpgy8EL8qfKvgEhMDc1lQGFIsWKyRd88RNfUQpVvBB17dr1syt+9OiRzO8g8iGIXRb379zCnPkLZQUT8TJ19epV7N29UybJrFOnjgxCzJgxTSbnjI9PkLlF9LQ1sXb6+8dKxDpEvpLYuDjsOHYNtx+9QNsOP6JFixbyp+Nz586VL3CRIQFYM21I8kvvvtO4+ewt1q9fjzZtWqOAmRGa16mEwvlN5K4WAz1tmVNFtMioGLz18UeJogXfW+NrDx+ZSPbI5fv4+99zKFyoENZt2PhZh5QL7ty5C4fNW+Dr6y2DBKs2/K3wvYpe6PT0MVYsngNzczN5rCgsLEyWU7ayslK0ixy/TuTIEDtAxDOCkhKCQiIRGOgPfT19FLQsAsf7t3H3zi3UrFkTgwcNgrm5eZbmJHZUvHZzw6ZNDvDz9ZFBQju70li8eJHsVzyLtNVhZvz5J1q16waLAsmfARHQWbl4DkTlblVVdRQvVRqNmny5akhZAbl04Qzu376OolbFUateYxlQE5WnxBEgI2MT6ZNS0edT44SFheLJowfyV0R4mPze09LSRoFCheHu9lL2K/IIzZ71l0yQ/KkmKvWIBM4iWCt2RYlAi9g1c+r0aYicRyVLlJB5idgoQAEKfE8C6QVNxPr2H7uEG3efYvq4ftDSTK6wJv7b7/M2pS5/85IJqUde0tux8uf4fujQsi5SggxDe7fFkdPXU3e1pHw9pcPbD5zQZ9Sc1P7f/frH+khvR8yitXuwceex9x7Tu3NN6evRs5fymlaNqqeu83PjpLdOe1srrJ4zWh5PTbtrJ+0as/Ozw6BJdmqyLwpQgALZKCBe/kaPHo2JEyfKHAuKNicnJxw/fhz37txE0QLmaFKjLPKbGqJ4kQIf7ULk8ggNj5ABjOevPPDKwxdxCUkICQ2TL7rPX76VL1dlypbDlClTZAJJkYjWz8cTylCGr7+/3KmhqaGG0PBIFM5vDiMDHZy+/lDmITE3N4WyOAQg+6iAChUqyP7Wr10NY31dVCtXAokJiVBWUUaf9o3kPMUOEJGTJComFrZWlrIU8JW7Tvj76AWERkbLIwux0VEoXNAMfoHhsLMqiFG9ko9itPh5GqpXrYLqNWvLPA0bN26E8/Pn8Pb2QmJikgwOiSS0EVHRsCxgLl/+1JSBheP7fPQn5ev3nsajV75YsXKlQo+ib99+aNGmI3x9PHH03/0YP3kGStpmb0lox/t3cP7sCVmqNjDAH3/88UeOJ/BUaPGA3IUwZ+5cuLm9ga1dGejpG8LYxBQNGjf/oIt/D+zBa9fnMveMsoqSTIIqgmrihbpIkSKKDpnudWInhAiSpOyAEEfcnj17JivElC9fAcWKFpHfXxMnT0ajpq1Rt35j2Y8o+zth9BCULGWLfoNHQl/fIEvzyAs3B/j7yV06KipKMDczl1WxzMzN5bGf0qXtIPLG5M+XDyGhoXhw/wHUNTTksxHBLbvS9nB2dpI7jwz0DWSp5jlz5sjjdWwUoAAFvgeBjwVNRODB2zcwNZiQNoji6uaJQeMXYvbEgTJwIq4XLeVIjwg+OOw6jiG92yE6JkbmFfEPDMHaeWNhXaQA0t4vAiYTZ69P/XpK8KJzm/rvBV4+1YcYP+280+4KSW+XyLv3KDLXj+00+ZRBSuApOz8zDJpkpyb7ogAFKJBNAkeOHMHKlSvxzz//yIoZn2uTJ0+Cp7sbPH38YaSvg3pV7TGgY+MslVMgY3zKAAAgAElEQVRNGXP38au4fOcxhnVvCUdnNxw4dU0GMNo1ro4yxQsjJDwCBfOZomA+E3nLu8dfXF57ysCECIBUsS+BiMho7D5xFVfuPoWHj7/sR11NTSZjtTA3QWR0NELCIhCfkIjX7t7Q0daCro4WYmJiZR/GhvooZmOLoUOHYsTwYfLlS1tLvHhpyJ0qPVrVQvVyJbF8+xEcv3wXJYsVRkn7Cmjfvj3Gjh6BjX8Oh4a6Gq4/cMLSbUfw9649qUeIROnmCnZW+Kl1fdiXeP9FfeLirXjo9Ao/duyI/gMVS8Dr4eGBXbt2wdPLC6XLVEDzNsnVfjLbxE/6lZWV4OnxFt5ennB75YqL50+jceMmqFa1ityp8bU0EbRbvXoNKlSuivjYGEQG+8GsYFHUb9JKVrRJrzk9fYRSdva4c/MaHj+8L1+kxe4Fd/fXaNK4MRo1apSaY8bX1xcikWnx4sVRoECB916sxY4FcQTozJmzMkeNePbiWYhKSeIYjk1xa5nMtXuvAQgNC8GL589w+eJZGBoYyBf8ly9fyaM3Ikhy+cIpnDp+GCHBIRgxdhKKl/i+EtvlxOdF7NIRO6CioyJhUdASaupqCPDzQ2hosNzBJnapXDx3EuLzbFHAEqPGTUmdRmREBDw83sDX2wuPHt6Xu9WGDBksE0GzUYACFPjWBdILmqQNaIggwcRZ6zFuaFcZ8EhpKUECERgROyyqV7KTAY60TZEgQ9qAg+jj3UBNSjDj3YSuKXNPGVfMe/Ls9fhr4sDUeaYdW/Qp/i33br6Wd+8zNtT7IHFs2nHSW0/aa3Ljc8GgSW4ocwwKUIACGRBYuGgRYuMSUdq+Ig4f2IVly5Z+tppF+7Y/YHTfDqhappgMQmRXO3DmJs5cd8TK3/8LFIjghciHkB2txcBp0NLSlKVy4+NFnot4lC5jj0cPH2LK4M7Q1dKEo4sbthw4A11tLRSzLo7oyAgEBwVBV1sTzetUwJpdx2Ggq4PFE/sjv6mRnJaLmycSEhJlotkCRazh6vwMa6YOgY62Jrz9gjBh0TYsW7UmNU/J0MEDER8bjfDIOMTGxeC3/u1RqXTx1CXefuSCnccuw9M3EGVKl8Yf0z9/dEAcNbh0+RrKV6qCmrX/S9SZGbftDmvh5+sld0uIqimWhQrJsrMit0t25ALJzJw+ds/MmbOgpq6J2zevom6lUtDT0UK3VnXx2MUNq3efRrtOPVGpem2Fh/R4647rV87j+tWLqFSpMsaMHiXz8PTs2QvWNiURHh6G3r16yB0Ma9auxd27d1G9Zh0UtymFE0cPws6uDFTUNGBqaoY6DRpj93YH/NRnoPzMvducnz/F7etX4OrihF8n/Qnt/wUrD+3bDV9vd3msrWf/odDT01d47rzw4wJubi9RpMjnj5E5rFsOHW0NjBqZO1Wo+MwoQAEK5JTAp46bGBkk5yJLCaJ4+QR8MI2U4zHvHt1597iLuOFjQZOUoMiEX3pgzvLt6NSm/nsVbsS481ftwuxJA+W4aavgpA1UiN0qC9fukUdlUuaeduz0ju6Ivi3ymchdLpkNmog+PmWQE8+PQZOcUGWfFKAABTIpMHDgQLRq2wlVa9SRPdy4ehFHD+2VP/W2tbPDzwMHfNCzyCMickZcuXAWG2cOz+TIH9525OIdHL14B6v/GJz1PlXEGd0kICHuvb5uPHiO4NBwKCkrQUtDHQXzm2L3sStoWbciytv+90IlfnotyhFfv/8M5iaG8vrKpYvjyr2n8AsMQ7dWyV5p26IthxEWHo6pw7pB5EYRwY+/j16GuUUhTJj8uzwacOjQIWzcsA66OtqY/Ps0zJg+DYM6N0X9Kh8eCxC7YI5fvoeT1x6icNFiGD16jMzLkLY9efIEN2/fR9NW7WU+lsw21xfOWDxvBn4b/xuqVav6yW5EPpP0EsC6urrKORoZJQeUcrINGTIUrdt3wZmj+zClf2sYGei+N9xbb39MWrYb85Zt+OQ0RCUgsUPBytrmvcpDly+cwa1rF2QVqX37D8CiUBEc2rcXderUkuWB23X6CdVrfviTt6yseeHsaShtVxJOz10wavwfWemK92ZS4MbVCzh59CDWrl2byR54GwUoQIEvL5B2p0lKgKRlw2qpuzHS28HxsZmnFzhIb5eIuD8ngiZ7D194Lw9LekETMfbHKgMpsovkc4lgcyt4wqDJl//+4QwoQAEKyKSIffv2RYs27dGpa69UkZl//IZe/QfLnADHDu9DSRtrmUR1x47tCPL3xSs3dxgb6CEgOEzu2BjT+wfUrJD1IwSnrz7AofO3sGKKYkdR0j5CJS1DQMMA0NCDkroOkJSApOgQINwHSdGh2fbERbliccTnY+3h81dYtv2YTPz6xtNXJrWtVaceBg9+PxAkEu0WKlQIQwb2Q+92DVC38n8BkwNnbmHd7mOYPLQbalcoKYdasOkAnrz0xJZtO9IdWiSzfOXmgZ79FA84iRKyImmsq4szQkNDcO70MVhbW2PsmNGfrNwjqptMnTYNISGhKF7cGna2trh+46ZMpnn06BEUKWYNL8+3supS/vz5s80+bUczZvwJ+4rV4O3xBoV1YtCiToUPxnL38sOU5TvRrksf1KhV76Nz+fP3cQgPC0USkhAeFi6DJwUKWSIkKAA6OlqIiIiEr68P4uMSMHjEOFy9dBblK1VFiZLZW65W5IpZvmgWzPPll8/SzDzn/HLswXwnHYuqRbOmT8S2rVszXMnqOyHgMihAgW9cIL3jOSkJWdMmcn33aMznlv3urg9xbdpdIuK/vXskJzuO5yiy0yS9BLfvrkWRoEmKWdqdMWlN0pvP59wy8nUGTTKixWspQAEK5IDAmTNnsHDhQnl8AEpASdvS6NZzoDySc+70cfx7YDfMzMxhYKCPCb/9hr69e6FZ7fJyp4VNkQIQgYNrD57J4EmN8lkPmNx66IxVO49j8+zMb4dX0tADtIySfyXEAqGeSBK/x0XlgGD6XR48ewObD5yTyW1F0s9ly1ek5i8Rd1y5cgUb162ROVjES7ioIrRs8s8oYP7fzhGR1Hbc/M2oVb8xAv39EB7gCU/fACipamD12vUfXUtgYCDGjRuPqbMWKVRqWLwQ7tq6ATo62vI5lyhRAtWrV4eFhcVnvebPn4/Tp8+gQsXKKF+5GjzfvkGzlu3wyPEe7MtVgL6BAc6dPIoC+U3RtGlySd3sbuvWrYeGjoHcFXLx2F7MGvlhtaUHz15jyfYjMqeJ+MyKIzxDRo7/6FT+3roJFvmM0LhRI2zduhWWlpZ49swJZvkLoUPnnyCCTCJZq0gum5NNBLDEsSgey8lJZcX6FgHC30b9LIOejRsnJ+xlowAFKPCtCHyqeo6olJNSdUYENY6du5maqFWsTwQF3D190aBWBcxetgMTR/yUeizmc/lI0iZ+VTQR7KdymqSXVyTlOE7KOtLbSSPuW73lIPp2bSEf2+eOAX2sTPOnDJgI9lv5juA8KUABCigocOLECezdu1eW19TX15clfsVP7MtXqoakxHjExkRi4IABMoCScszjl+HDgPgoREZFyyMsdx65wDcwGJtnjYKZcdYqfLx664PfFm7BnsUff5lVcGnJlymrAIkJGbolKxc/+F9Ju1W7jiM6LhFNqpdF7YqlcPneMxy/dEcmGp0+fbocovOPHVC5tDWCQsMRFBKBinbWGNAp/aDCgN9XoFnzVnjx8iXKliuPNm2Sq/R8qokyzVNnLYaBgeEnrxOlXzevX4EF8+dlKnGvo6OjDNBYWhbGn/OWvTeWj7cnRIWd61cuoNOPHXPkRXPWrNkoVaYC7OzLY+v6ZejfqgqKFcr33jxESenRczeha89+spzvxo2b0H/wSJQo9fGdIcFBgfJoUu1aNeHu4Q0RWBJHjHR09dF34HCoZmPuns89S3796xBwWLdCBgNFHp+ffuoOkbyZjQIUoMC3IvCxoImYf8oxk5QdJ2lLDqfkARHJYdPmCkkpwytyi6Qt8Sv6fvfeFCtFSg5/Kmgi+kk71qJpQ+Gw+wTevS+9+aTkZlFkp4kY5908LylrFdWC3i11/K5BTnweuNMkJ1TZJwUoQAEFBEQZ3KCgIPz6668fXH3y5ElsWLcGurq6sC1tj/Hj/wtiiHK/N2/ehMhVIY71xERFol+Hhmha68PjEApMI/USUdmmy5h5OLLm28vbEBsXh4G/r4SGlhY0tbTg6eUDbXVVdG5RG9cdXeAXGAIdLXV4+ARg8NDhMniwYMEC6WdgYIDmzZvj2NEjePL4IXYvSrbecvAskpIgSyC7efpi7FwH7D94SCFSUU559JixGDxi/CdL1YpqIRvXLkPbH1qhegbKSqedxNGjR7FkyRKYm+dDmbLlYWhsCvfXrnB3d0P1atXRsWOHbD+ac+3aNaxatQpdevRDpSo1MHf6bzA30MDEAe3fm57IWbNmz2lEJqqhfccfsW3bDoyfMlMhx7fubrh68ayspDJt1iL4+/khv8XHS2cr1Ckv+mYFREWefbt34OkTR1lZq2LFiujXr983ux5OnAIUoEB2C3wuB0h2j5dX+mPQJK88aa6TAhT4qgTEzhJRLrVbt24fnVe/vr0REx0F8ZOJ/QcOwsfHB6tWrUB4gC/U1FShoqyEmuVLooxNYVhamGV5fa0Hz8CWOaNgYpgD1UGUVYGkxORf/2vyCI+6LpIifDO9G+WZqzv2nLwG1zdeGDBoKOrXry97X7RoEe7euS2PVcTFxSE0NBTlyleAKEcrAlB37tyBOELTsGFDWcb28uXLsqTt0MGDYKavgea1K6CUVUH0nbQMuro6sMxvIuc6e848hZ0fP36MNWvXY9K0Oene8+zJIyxd8BdWrFyBwpaWCvf7qQu9vb0hfonPip2dnTzSkt3t2LFj2LZtOwoXtUL33gNgZpYPjg/uwun2GYzs1vS94VzeeGP0rHXo0bMXTE1N8dzVDR0791B4SspKSkgUkSu271rg7q3rKGlbBrp6ydUjFGki18wL5+coWbIEZs5ULAinSL+8hgIUoMC3LMCgSc48PQZNcsaVvVKAAhT4qMDUqVPly3q9eh9PhJlyc3h4uNxtMu7XX+Hk9Ay92zdCh8bV5REHFRWVbFPuMX4RhnZrmS1JZNOdlJoWlPOVQVLIm+Qvx0YCSspIEtV04iIztY6VO4/jyt2n6D9wEMqXLw9zc/P3+hHVcoYNHQp/Px8ULVpU5vc4eewwatdriMf3b0FTQw3hkTGylKyerg5sbMtg+C8jsHv3bpw8cQxvPbxgoKcDXT19tPmhLTp06JDheW7bvh1Kajpo2Lj5B/fOnj4RgwcNROnSH1bpyfBAuXTDjRs3ce/hE9Sp1xgmIgfP/5rYEbJu6Sysm/Z+4tv2v8zC/AWLZI4WcRTt3oNH6DNQ8QpP6mrK0FJXQUjE+1WXcmm5HCYHBIICA+Dq8hzKyiqoWKUaXr18gbUrFkAkdJqzaPVnR7x66Rx273BAq9at8eD+A1l+2tzcDOLvVTYKUIACeV2AQZOc+QQwaJIzruyVAhSgQLoCPXv2lDk1rKz+K6f7OSoHBwe8enoPU4d1lTsnFGl+gcFYt+ckIqJiMWt0T7kTwy8oFNXLJVd/ebeNnL0BVe1t8FPrzwdxFBk75RolDf3kRLCq6lDSNASUlJAU6oGkUK/3dpxkpE9xrTj60n3cQtSuUx+/jBjx2dsjIyNl1RyR+2Pbti3w8fLGkC5NUi1EcEXki5m6fCdeuPugQqXKGD58uLxHJIsVFWfErqDMtFevXsFhy3ZUqFxNljxOqRgjqtmIPCbLly3NTLdf7J7xv/2GOvWboVLVGh/M4ei+7SigGY0W9SrJrzm/9sDqPWewdGVymVjxHH4eNAizF67+IOCX8gxEkMRIRx2RsQkIi0wOlBjqqCEhEQiLYuDkiz34bBpYBEg2rl4Cy8KWMrFuTGw8mrZoiwN7t6GsfRmERyWg5Q/vByffDRDv2rYRcTERGDRo0HsVdET1K7F7b8uWLdk0U3ZDAQpQgALpCaRXeScvSDFokheeMtdIAQp8FQKdOnXC8uXLFcotIY6TjB0zBkpJCQgNC8eCX3vJKi+fO4YTGhGJf8/dxj8nr8DEQA/9f2yCwNAIbD10HoUKFoCRlip+aFgV/kGhKF7EAjuPXsKzlx5Y9fsg6GhrSqfomFhoaqhnj5mqpqw0k52VczqOmI3RY8ehbt26mZpjt84/wmHWiA9KFcfFx+PA6evYe+o69u0/mNr39GlT0advPxQpUiRT4129eg1nz56FiakpvLx8UK5iVRw+uAei32LFimWqzy9109p166CqoYcWrdt9MAWHtUtRvrAOWtRJDpqI9sYrEOPmb8LeffvlMam//pqFkqXLwbp4KXh7eeLe3RsIDQ6Ux6esbUqid/+hMNJVg5aGKoLD4xAZE/+llspxc0Bg8/qVKGNXAj/88IPsXeTiuXjpMubMniV3ef06aQYSE5OgoaEBZ6enstTzNoc1iIuNhYmpOQoVyIc+fXqnOzMPDw+MHTsWu3btyoGZs0sKUIAC35+ASDb72t0bYwZ1fm9x7yaJTZtglUGT7+9zwBVRgAIU+GoE2rZti82bN8vqH4q2Lp07Ql1NHT169cGqlcthqKeLmaN+Qn5TI6goK3/Qzcw1e3DT8bkMBohKMJ7+IfDyDUCpUiUwZ67Y/g6sXr0aTx46QtSz8fL0gJG+HlrWrYgz1x+iXMkiuHLvmdwFsCUL5YYVWZ+SurbcMYL4mAztOhk5awOatGqX+tKlyFjvXiPK8wb7uuPP4R+WxBXXORw4A2fPcMydl5y7ZMzo0VCKi0BgWDQctmzN6HAfXH/9+g2cO38OnTt1go2NTZb7y+0OTp06hRev3qLdj//l4rl7+wZKlLLF3KnjsXbqwA92kUxeuh2FbewxZMgQOd0Hjg+xcOECmBibIDw8TFaNMjMzg0gsu3bzHnmNyNeTkMhcJrn9fDMzntgl5PH2DXx9vBESEgQkATq6ujAyNsGZk0cQFBCAPgOGoqBlEWx3WIvYmAiMHjUKOjo6cjgRTDt37hxu3XmA/oNHYP5ff8Dp2WN07dodTs+fYUD//rKq2P79+9GlSxfY29t/dJr+/v74+eef5bVsFKAABSiQvsC7QZGUSjYpV4pKNZNnr8dfEwdCVOp5t5yxKOXLoAk/VRSgAAUokO0CYmt5y5Yt5T/iU14SFB0kNjYW6urJOz769+uL6IgwhEdGo2zJIohPSJKl3lZNTX4RXbb1MG47vcaYMb9i6dLFsLUtLV8wPncM6OLFi/KnvKWsLKGsrITureti075zmDqsC0yNsj8hrJKmAaCqkUwQF4Ukkc9EwZLErz18ZTlkyyJFsGjREkUZU69bvHgRAjxfYcbwjyffdThwDlfuPUf7Hzvh/JnTKGudH73bNUDbYSJh66pM7zbJ8GRz+Qbx4jthwgSIHDrDhg37aJ4VkWR29Jgx+Gv+Cnmk6eql87h17SIC/f0wcUBb2FasAcRGICkyEGLnzryNh+AdGIaVa9a9t6IRI0eieMnSsC9bAdHR0QgLDZFHfrS0tHN55RwuqwIH9m7HrRtXUdiyMGztbOHn64eQ0BAkJSZiwIABEIGMk6dO4dGjxzI45vrCBdOmTUOFCv9V+5o3fz5K2JZH1Rq1cfLoIWiqJckk2SJfiaqqaoamGBYWJv/uEwmL2ShAAQpQ4OMC6e00Sfvf0gZR0gZNxJ9vPXDC6jmjIUoef6+Nx3O+1yfLdVGAAl9cQORwaN++vfzHe1aTtooSw2L7ufiJ6+VLF6GtpoTmdSri+oPncHrpLndtbNi0GcbGxhle99u3bzH+1zEIDA6RiU9rV7DFs5dvseL3QRnuK8s3qGoC8dEf7eb567f4Y9lO7N13IMNDXbp0CXt3bMbSSQM+ee/NRy5Yt+sEerdviLqVk5O07jt1HU89wzB16rQMj/st3NCpYwe0rl8Ju45eQuUqVTFx4kSZ0yW99ujxYyxevBg+3t7o0LEjevbogdmzZ0MtLhQTBnZMvcXp5VtMWbrjgzLNolS2+Jz+NmECevQZjOIlSn0LRJxjOgIioeuu7RuwcsWKD76akqdGfEHsJhF/z4jnLkp8pzQRGBYJgk+cPIXhoyfC0MgYly+cgZe7KypXrozatWtnyl3026pVKxw5ckQe9WGjAAUoQIEPBdILmqQNiqRNLPvu1z92vOd7tGbQ5Ht8qlwTBSjwxQWCgoLQu3dv/Pvvv9kyFxGAEflQHjveh5G+NqJj4hASEY2YmGhYmBnhjacfFixcBFtb2yyNJ6q5lChojLfegVjwW98s9ZXRm5WMrZAU5iV3oHysubz2xO/Ld0BXRxsqqhro1KUrmjZ9v8ztp8Yd2K83fuvXFlaW+TM0PW//IAyZvhqH/j2Sofu+hYvFkS13l8fo064B1v9zChGRMTAtUAQzZsz46PTFS7CamhocNm/Gk6fPoKKkhABfT8we1T21ZPWth85Yu+8cHDb/d6zJ2dkZy5avwBs3N+TLZ46e/YYyaPItfEg+Msc1yxfgh9YtZIAjs+33P6aiQuUaqF7rv0TUL1844/jh/bAtVQI9evyU2a5l4GTnzp3yCBgbBShAAQq8L/CxoElRy/zo0DI5b9zHgibimht3n2L6uH4Qx3a+98agyff+hLk+ClAg1wXEkRyxPfyff/7J0tivX7+Gk5MTjh45AvGyaZHPGF6+gShapDDmzV8I8dPU0aNGoHadehg8+P1Sr5kdWLxg3L16Hp5+gdg+b0xmu8n4fWpaCuc3eeziBnNjAzxweoUDZ2+ifuPm6Nat+2fHDA4OxrjRv2DttOQjTRlpl+48xuZ/L2Pzlm0Zue2buFYE41Si/DC4S3N5pKbz6HnYtv3vz75ois+3l18wKlWuht3bN6J4cWu8fv4I88f1wSPn19hz4iqUtY1lVZOUJhLBilQlUZERSIASDA0MULlabZS2L/9NWHGS/wm8cHbC3r83yWBuVtqsWbNRq0Fz2KSz42jFkjkoWdxKBqAz28Ruv3379snjZGwUoAAFvqSAf+sG/w0v0na9WxAxB/9seuR8usvO7E6TjTuTjz9uXjIBVcrnjd2iDJp8ye8cjk0BCnx3AhEREejevTsOHTqU6bVt3boVJ48fQ3x8LCKjopHf1ASevv5o2rQZRo4alel+FblRJOusV94Kz1+9lUd+/hiafsJURfrKrWuWbT8Kx+evUad+I1mSWZQIbtGixXvD/zXzT7i5umD11EEKl21+twNhMezPtahVtyGat2wlczN8D00kXxXHFyZPmoTe7RujZFELLNx8EA0bN0P/AQM/uUQRNPELCkdoSBC83rrBz98f4SHBqGhnhfvPXsnksLNmzXovJ8Xo0aOhqxKPRjXKIjEpCTqa6jh1/TGsylRFg6ZtvgfSL7oGdVVlmUA3N5Lozv1zMvr26YXy5bMW8BLHdiZOmoy5i9d8YPf7+BHo2rUzGjVqlKWgR5s2bbB3715oaiZXCGOjAAUo8CUERNBE/DtF/JsiN383OXxO4aCJIjlNvH0DMfrnTpi+aAvGDe0qE8Z+741Bk+/9CXN9FKBArgqIl3VxJEccXchIE7tGenTvjti4GIidKiL5YYkSpVCnbl2IozmdO79fDi4jfWfk2sDAQIwaPgRWhQtgwsD2UM9gEsaMjJWd14ZHRmH9P2fg7ReE1x7e6Nz1J7k1f+KE8Xjm5IzWDapiePeWWR7y8MW7WLvzGJo2aoBRv47Pcn9fsoN58+bh5vWr0NLUgL6hMXTUgSFdmqNoQXO0Hz4LP/Xs9cnPXVRUlExQrKmuDhPzfHj58iXMzM2hqqKCZcuWySSeq1atwuNHjrJ0bNFiVti7Z48sfW1mqIcJA9rCUE8Hp288wnUnHwwYOgbKyipfkuSbH1tTXQUqKkqIiMrZUs0uzs/gsG45mjdrhq5dPwysihLSGTkSc/LkSdy554i+P//y3jOIiAjH+JE/48CBjOcwercjkWz4xx9/lDlO2ChAAQp8KQH/HxrKocUGk0/Vh8vur5v+q3jQJCPVc9Je+6Vcc2NcBk1yQ5ljUIACeUJAVHsQL4uZ2YVw48YNzJ71F0qWKoUGDRp+sFMiJwHFC8UvwwYjLDwSZcuVR7CPO+aM6ZmTQ6bft0gCmxgHJR0zJIV5Z2p8d29/zN14CKvWbZT3d+/yI1ZOGQQD/eTyptnVuoyZjx/adUDPnl/AKYuLEM9bJP61LWyKszccUbJoIfiGRqNGzVo4f+4MhnRujPKlrDB0xloM+WUUqlWr9sGIoiLK6dOncfbUCfRpWxc7/r0IT/8gVCxjg5dvvORRi0tXrqBt41poVK2MLGX94o0XAkOjEBwaBl1tTehpaaCKvQ2uP36NcX/Mgbo6E3Zm8dFCS0MF2hqqCAiNyXBXKT/5VPTGyxfPIiY6Gg/u3oC1tRUuX74Mq2JW6NTpR5w/fx5aWlqpZaYV6fP4iRO4c9dRlh1OaetXL4FtCetsCRqLyk+//vortm/frsh0eA0FKECBbBfwb9sQSvjEThMk5cjXTQ6dfW8t75YcTvnCu0dt3v26va3Ve5Vx0iaKFddOnL0ea+eN/a53nDBoku3fDuyQAhTIiwLiWMuYMWNgY2PzzS1/1MgR0FaOR0B4LNau34Bfhv6MAR0awN6mSO6tRVUTSlqGUNKzQFJ0CJICX2Zq7It3HuPQxYdYsmyF3KHTvl07HF+f/RVvnF97YtGWw/hl9K+wt7fP1Fy/1E0+Pj7o07s3jq79Aw+fv8aKHUdR3NYe9+7cRnRMDGaO/AllbIrg3I2H2HPmLqbPmAELCws5XUdHR0yb+rvcVix2iVQqY4MhXZohITERHj4BKGxhhrtPX2DNzuNYPmUQNDU+nhxu5rr9MLAojk7dMp+v4ksZfq3jGuupy23fQeFxCk8xJCgIS+dPR0J8LHS0tREVG4+KVWrKo2jGJqaf7cfHx9VDYdwAACAASURBVAtXLpzFDx06Izg4CA5rl8ukgAGBQahWrSr69+v32T5SLjh79hxOnz2PEWMnyf905dI5nDt5GGvWfHh0R+FO37lQ5IhasWKF/MVGAQpQILcFAto1Sh0yB1OYyDHe7d/k4PtBk9xe9/cwHoMm38NT5BooQIEvKiDKs3bo0AFVqlT5ovPI7OCiXOyVy5ewfsNGWdJ45vQ/sHTSQBgb6Ga2y0zfp1y4mtxlkhTklqk+bjo+x8rdp7B9x048ePAAm9etxKIcqgLUevAMOGzegnz58mVqrl/ypr69fsJfI7ohOCwCI2dtwPDhw3F4/x4sn/IzNNT/O1q27fAlHD53A3PmLUDx4sXRpEkTrJk2FHefuEIEqJZP/vmDZXj5BeGvtXsxe1QP6OmmX7Y4Ni4ea/eeQYFSVVGr7n//iPySJt/62NqaqtDTUkVIRByiYxMUXo7DumUwUI7CoE6NZGn056884PTaC7ed3NGqYy8UsyqucF8pF+7duRXHjxzA4OFjEODrIY9xKdpevHiBnXv2oe/A4RgzrB/mzp2DYsWKKXr7Z68Tu/rEMZ2ZM2d+9lpeQAEKUCA7BfzbN0reSZKyoySXfjc5cCY7l5En+2LQJE8+di6aAhTILgGRF6JChQryZfJbbaJ87JxZMzFi1BgYGBigX59e6NWmDupWLp3rS1IyLgYkJSEp6HWmxo6Ni0PfScsxccofmDJpIlZOHYyC5iaZ6iu9m6JjYvHU1R3r956CppYuZs9fCG3t9AMD2TZoNnc0fvx4vHV7CUsLc7i4ecpg2a9jRsFYTxPtGlVDrYp2qSO+euuDeQ7/YuWa9Rg5ciQKGGmiTf3KmL1uH0b2aoOq9unvrBq/YAvaNKiMOpU+/hlatesUzIpXlgl82TIvoKqiDC11ZWioq8A/JOPHcsTIW9cuRINylqhS5v3nOXbBNtRr1gFVa9TO8AQnjh0CXR19WBQqiDYtm6NcuXIK9yFynDi7voa+gRH0tdUgKuBkZztx4gQeP34sj+uwUYACFMgtgYAOjdMZKu2ek7SXZP3rJvu50ySrz5hBk6wK8n4KUCDPCqxbtw5GRkbo1KnTd2Mgzvtv37YVK/8YgmKFcn8HhZKWEaCujaQQj0ybiqSwv87fjFkje8DYUC/T/aS9caHDQZy74Qg9XR1oaahB38gUy1eszLb+c6sjESQ7e/YsRG6Tdu3ayWGfPn2KSRN+Q4Nq9ujUrJYMDPkHh0JNVQ1HL91FSFg4dPUMkC+/BQJ8vREeHoqdC9J/4bz3xBU7j15CaGQU+rRriIp21u/tXklZpwjYLNh6HNPn8qhEbj379MYRSaiH9u+KI6t/T3caa/85h3K1WqKojW2GpikSxRYpXBDePv546eqCDu3boXHj9F4Y0u/2woWL2PvPP1iyeFGGE2srMtFdu3ZBVDvr37+/IpfzGgpQgAJZFgjo2BhQUpI/HEptufBnk39OZ3nueb0DBk3y+ieA66cABTIlcOzYMYjEgv0ycF4/UwPl4k1LlizBkwd3oKamglfu3pg4qAtqVyyVizMAoKoBxGfup+VZneiSbYfxxOUN/AKCkN/MBAa62ihjY4nHL9zhFxiCmnUb4O7t27LKzFufIOz5Z19Wh/xq7m/TuiXymxkjNi4BUFKGkrIKLAsXgbu7O0KDA7Fs8s/YcuQqitvXhIqaKm5fOIrZo7q/N3+RS2PJ1n/h7R+C7q1rIy4mAQu2HISKsjLqV7NHv/bJxz9SmodvMOZtOYZRE2bIpKFsuS/w+pUrChQshPkzfsOScT3eez7vzuaP5TtRqlJdNGzaWuFJ+vv5YtnCmahZowZCwqMRHxeLqpUroF69egr3ERAQABOT7NsplnbgDRs2wNLSEs2aNVN4TryQAhSgQGYFAn4Uu5LfrZuTtk5OzvzZ5B8ez8nsM0u5j0GTrAryfgpQIM8JODs7Y+nSpVi58tvbZfCph5WYmIgB/fuhXsUSUFFWwZ4TlzCocwuYGifv1kg5hyv+t7L4paSM+KRE+TVlJSUkvvuTk3cGUlZWhuhb9qGUnDU+bX/JX0v+4culO89Qv4odKpXOeC6FzHwYD5+/hSv3nBARB6hraCIyPAx+/r6IjY1H7Tp1UbBgQfkT8gUL5sNUWxn5TQ1x5vpD+TJXvEQJjBw1JjPDflX3TJo0CaNGjUJMTAzE0YX9+/6Bupoailnmx6Sff4Spkb6c78b953Dr8QuoKAGdm1ZHFfsS0NHWTF3L30cu4fLdJ1g9dQh8/IOQz9QIHr4BWLTxAKLjE9G0bhUEBAbjjacvwqITMW7qvK/K4UtN5oWzE4qXyN0ApfPzp3BYsxgmxqZoXLUUmtcq+8nl7zpxAw7/HEf1atVQrU5jVKz8YVWltB2sW7kYtWpUwbXrN9GsVXuIajhNmzRGly5dvhT1B+MOHjxYHtMROXvYKEABCuSkQECnxv/7d1DKv3mScuXPxnu40ySrz5VBk6wK8n4KUCDPCYj8JadOnZL/R/c9tp49uiOfoS48fQOgpqaOqJhoqKqoIL+pEbz9g+SSzYwNkJiUiICgMPlnNVVVxMXHp8uho6WBiKjk3SPiPrFrQzTxQi1erFOa6N/TNxCmhnqIjIlFwXwmGNmzNRydXqFBtbIICYuApklhaKokICkmHEhMf7yMPJN+U5YhKDhCzr1ulTIw0tfFo1c+sC5ug4cP7sk8L6VLl8bmTRuREO6HQZ2SjxeERkTi6Qt3zFi1C8uXr/gmqya96+Tp6YmJv42HslIi/ANDYGWZD7/2bS+fQXpt/5nr2HPsCkoUK4gZv7y/42S+wyE8f+kObS1NGQjT09FBVIISOv40EM8eO8LMPD8MDQ1x7/Z1tO3YHVrfWE6YjHy+FLl2q8NaeLx4DC0DM4wa/4cit2TLNc+ePsblY7vQv319FDA3VujvMxHwFHluNuw7h6Ily+KHTv+V3H7y2BEmJmbIb1EgdX6vXF2wffMaWcXq6rWbeOnqDE1NTaxfvz5b1pAdncTHx6N169YyWMhGAQpQICcFAjs3Sa5q878fEqXsK8npP5swaJLlx8qgSZYJ2QEFKJCXBH755RcMHToUtrYZO9//LRndunULG9csly/PWlqa2DpnVK5PXwRKXrzxwtkbD2GkrwcDs3zo3LUHrKys5FxEzpOkMC8gITZTcwsMCUPfiUthkc8EnZrWRKMa5eDlF4hx87dg7PgJqFSpUmq/Li4uGDd2NAZ2agYzEwO5q8bWqhDuPH6BC7cfw9DCSiZJ/Zbb/fv3sWDOLHRvUxdlSxaFhppa6u6Sj62r94QlKFrITO4O6t22EUQS3lcePth26AIG/NgYjWqUx70nL7Fi1wkMHfM7ClkW/paJcmTuri7P4bB6ATbMGIqbD1/gwIV70NYzRLMfOqNIkeyrGJPe5J88eoDbFw7DQFsDpkYGePD8JQZ2aICiBRXLZXTu5kMcve6MApbFEBESAD9vd0REx2PWov/KA0dFRWHKuGHYsWMHZvw5Ew8fOmL/vq/vWJtICiuO6ogjimwUoAAFckogoEuT1B23KTtvc+N3412ncmpJeaZfBk3yzKPmQilAgawKiOM44qhGSvLMrPb3td4vSnHqIgKPnN1Qt7I9erZVPAdBdq9JyaAQlAwKIikxCYgJgZL2fzsfknyfIikqOMND3nrojKnL/5bHSjQ01DB1aFeUKFoQ4iXQ4cAFbN66LTXxpCjBHBwcjGl/TEZcXLz8KXloSIj8MZEIEjSoWhYJWiYYM+bbP6Jz/vx57Nu7F8ULGWPETy0/6bph3xk8ePoSRQqYwS8oBC/feEMcw9LUUJOuiyf0h6aGutwltOnILUycNifDzynlhtjYGKira6TeL456hYWF4OiBf/Dw4T1M+P0vGBoZK9z/vwf2wNbOHppaWrAsXFTh+7LzwiePHLFpzRLYlCyFIF8vzB/bXR6HEkmMbz10wambTzBw1B/Q0cnZst8eb93xxu0VIiLCoK6mjn/37cTQ7s1Qs2wJhZbr5uGLe89eooJtMZm7ZuvJe+g/fELqvU8fP8Txw3uxcMECiPwkgwYNRkhIsAyimJubKzRGbl20b98++Pr6YsiQIbk1JMehAAXymEBgt6apKxY/cHh3w3JO/tl4J4MmWf2oMWiSVUHeTwEK5AmBM2fO4M6dO5gw4b8Xgu914f369MaQzo3kUZrCFmZfbplqyclBlTQNkBThL5OnKRkUBpIS8OS5K46fv44BrSrBQE8nQ3OctW4vHju/webZIzBr7T8wM9LHsJ9a4eKtx5i7YR90tbUAZWXUqFEDJ0+ewsFDh94rK/zzwAGoV78BTp88BjNTM8xf9H39dHrCb+OhoxKPyYN+TNfV+bUHfl+2A1tmj0JwaATOXH+Eszfvw9i8EKrVrIe/t25AeTsbaGhowN3LF8N/nQpjE1PZ141rl2WC2YKFPr/rJCwsFHP/nIR8+QuiXMUqqFm7PoKDg7Bh1WLoaGsjKCgQugYGGDN+qkLP/9zp47hz8wqa/H9OjWdPn+G1mxu69RqIYlbZm8tC/CNYX0sNIs4Xn5gkc/iIssDhUXGp89y/928kBb2SO5bsSxSR32vvtoDgUExYugd/zs+dvEn3bl7C6WOHUNDcGN5+/pg1UgRxVBVyffei9r/MxsKVDtDWTv6edHF+hpOH92HWrL/kn//euROXL1+Bp8dbbNq0KUeTvGZ48v9/zPCvv/5CzZo10aBBg8zcznsoQAEKfFIgoFvTdHeayC2b/8v5lt7Ok6x+3fjvk3wyWRRg0CSLgLydAhT4/gXevn2LKVOmYPPmzd/9Yh89eoSZM6Z+tJzslwaQO020jIGoQHjHaMKiUBGZ2yQpMhBJAS8+O723Pv6YuXovuraog+rlS+CXmeswaVAnJCQmykS2+0/fxLX7TxETE4sW9arg9iNn7Nz9T7r9ih0PYnfF99iG/Nwfgzs3gr1N+jsx1u46DscXb1GkmA2UlNVQpkKV1MSgWzetRmxMLJq1bgdLyyKpPEcO7kHgm6cIiYxDq069YWX96d0Mop96tWvI4IuDgwMKF7NBYmKCrGpka1sKp0+fRtHidmjZpv1nH8GaFQugpqyE33+fIq999eoVdu/eDU0dQ3Tu3vuD+w111BARk4C4+OQExhlpujJgkoTI6I/n3Nm5bSMMEYS+7Rt9tOtBM9ZjyOjJyG9RMCPDZ/jands24a3rYyz89b/8JBnuBMD9p644evkhqjRsi3IVko+3Xb54Fm6uzzB+3LjULlesWAF19f9j7zzAanzfOP5NWlQ0yUj23tvfniEryiqjQbJbKqIpikSDRCoUDSt7ZodsCqGpobRLpfS/nrdfKYVznFNO9TzX9bvO7zjPuO/P+0bvfe77ewtCWVkZ0tIlwTReGurq6rCzs4OcnBwvmUVtoQQogTpAIHXhv+nUJXmUBk04vX1o0IRTgnQ9JUAJ1HkCpLOClZVVvWiLunTJYiycMhRjB/++k8a/uOikTIevSWtGy6Q4LZop1eGT6YyCvK8QFBJEcUoEEzwpHWHvY+B89DyjVSLRRBRf0jKZbjAr5k1G57YlD6I7PU/hyt2nEBEWYspvdptq4fCZm3jxNgqyMtJQnb+Q6ZxT38aMaUrYa76CEf+tarx6F42LT6Khoq7DPACXiiI/DLmL188eIiLiHRo04IeBqWVZ6UxOdhZc7DbDdNlMbHbyx4x5S9C774Aq9/f3PYz8r5kwMjRgyqNsbbcBDRpi9LhJIAEHks0hKS2LeQuWonWb35fYHHJ3RusWzUAehomd9+7dg8chT0hIyWCK0ix07tq9gg0C/A0g3rghir4XIz37R3YIq/cAsY1kllQVcLl14zKOeO7HsP49sWHptN+KrxKxYXPXAICPH1/SMtB/8P+gumAJq2b8cl5ubg522W5GA34BNBIRQjd5CcxV/N9fZZaUHnLx7jM8j0zFh48fsdpgM2RkS3RRvA/uxeRJ49C7d+8yew4fPoyAwEBoamhg+vTpHPvD7Q2ys7NBShS3bfv7kjJu20T3owQogbpBIFVtUkknwrJanOIaeS9xhApdc3oH0aAJpwTpekqAEqjTBMg3jn379gXpmFPXx+nTp3Hr6nnYG1T+5v2f+95QCA2a90JxejSKsz8z5vBJdQCfqCwyPr2DOH8eir99BaN/0bAhQsOjsHWvL2zWqkG0kTAaNuRnvv2XaiKGnK95uBUahmshL5GT940JhnVqLYWCb4V4Gh6Fbj16QlVVtU6L/RJ+T548Qb9+/aq8tEpTpzDZRuXbCZefmJXzFRscfTBLdSlOBvpi3MSp+N/IMXj8KATPHt1lMjoePHiAS1euQ2tFiZBw6pcUeO/bCeuVs5lrsMX5OAaPnYox4xQr2FBUVARNNWWmm0lpJk9ubi4cdjkiOzsLuitWQF5eHv4BgXDf74b2HTvDzLLq1sXfvhXA64ArZkybwjy4f/v2DTo6K9CpW0+oL1lWpe/8DfggKNAAgg0bIIP0oebieBByB7cuBGKn4SKWdiUs+Pn5kfQlHTcevMK95+8xYpwiRoydzNL6qiYlJSYgyHc/Jg7uAokmjdGxDeeZLC/fRcIjKAQbyrWQTkn+jG2WpvDxOVrBjJiYGGzeYo6+/Qcj+NolphQmLS0NW7bUXOegP8Ej9x4RhyUBczooAUqAEuAWgVT1iv/eVdyX6avzm6P+/nPJwzRowuk1pEETTgnS9ZQAJVBnCYSEhODs2bPMt471YWgsVoPN2vloJlV1dsG/ZMAn2Y7RNvke/7TEjIbC+JqXj2zRtpDJ+whSKnMvKg+FxXzo1as34qPfo4d05dKK6PjPMNvtg3adujDfcg8YMAAL5qmiIT8fpkybiXnz5v9LN2vsbAO9dUyQKSHpC9M+WUqyKdMG+GtuHlLTUtGtozzMdedVsOdDTAJIRgF5kO/StiUCL99Hv8EjoKWlASsra3Tp0ZfJBAl9cBcRb15CX289Tp8Jws1bd7BEeyWkpKSxw9oECyb2ZzJ/UtKzEJEmiHGTZ1Y4JzUlGX4+HrC0MGeJB8kCi4qJxRJNXSaAUtXw3O8E5VnT0aVLF0aQVE1NDXaObpCSrnnNHr8jHhDI/4wVc9lP0yb3ufOxSygWbYG5HGSdnPH3RhuxQkwa3pclxqxM2n7wFNr1HgnxJk3Qq09/eB5wRY9unTDjp2wS0o3KxmYrdNYYQlJSGo8e3EVcbBSKvuXB1MSElaNqZI6JiQlTQjRw4MAaOY8eQglQAnWfQOoiRSYsUhL+4EMx0WqrgfcS3jRowundRYMmnBKk6ykBSqDOEpgyZQpI9oWAgECd9bHUMd0VOlCfMgSDWeyaUdNAGrQejOJvuShOfFl29LYDpzBiSF9G0yQxmw8PQkJgvVr1l2UGr9/HwPPMbezcXVlck5SAkKBBfRj+/v4IvXuN6RrUoAEfvuZ/Q0HBN0THJ0NYUACFRUXwv3QP4R9iId9CFo1FBCDeuBGehEdiwKAhIG1kkxI+YYrSdEydOhWaSxdBoW17CIqIYrHWKgbh9cvnkJ2RAh0dHdy5cwfnL1xEy9YKGDF6Ag667mC64Yg0yEfDxjLQWvVD74KkLO/eYQ31hfPRs2dPli/H48ePcfHSJfQdMAx9+g+utC7gmBd6de+C0aNHM58lJiZh9epVUFuijYFDRrB8DjcmBh7zRmvRPEwZ3o/JgPqbceDkLUQmpkNQSAjfi/kYbZmET9HMft17D8CAQcMqbJuY8Alvw18jOysLb8Oeo2dbaagrcc/vU9dC4H0qGI1ERTFg4CCkpWVAVlYKq1eV3A/lh4npRkafRkJCEg0FBCAkJIxzp/1gaGCA9u3b/w2OalmTl5cHFRUVBAUFVcv+dFNKgBKofwTSFk/+L1BSGjCpmVdJLxo04fRuo0ETTgnS9ZQAJVAnCdja2mLQoEEYN+7XQo11yfHFavOx20QD4qLsdaKpCQZ8go3A16wnipPfoDgvgzny8KUnEBYVw0TFaYiP/4SYsFCM69/htw+hx87fwpGgm9DXN6g317Wq60PKZrbaWKN/j05oIi4KLeXREBH60dK3dE1sYgqSUzPw7E0kXkfEIDktB0d8fSts6eXlhZDb1wF+Qdjv3IXlOjqwtnNiHoQ93Z1RkP8VUyZPxqBBA5kA5JMnz7F42WqkpX6B76G9UNNaCdlmFQU3LwQFoiFfERYv/lEmRkolAk+cQHRUNKSkpdGjezcsWLCgQkCTBFyMjDZg+pyFaN+hssisi+M2KE1RZLoikfHp0yfsdnJGbk4O1hqYobFo9bb3JWeS7j+uDjZQGdsHIwZU1FJh92fp5dsoCAkKID45FRlZOWgsIoz8b4V4E5mA0Ncf0LVLV8g0b4GU5CR8jHiDicN6MWVRXdq2wvD+3dg9rsr5d5+E4dX7T3geEQcZuVb4XvgNNjbWiIqKgoJC1VozwcHBuHj5GpI/J0KiaRMmgGVkZIhevXhPR+ny5ct49uwZjIyMuMKLbkIJUAL1m0DqksmMJhf596ok06Sk7XB1v5c4dKF+g+eC9zRowgWIdAtKgBKoWwTu3r0L8suyhYVF3XLsF974+PjgzbMQmK+sWI7xO+f5GklWEF2tVlB8DQD+hkBhQdkxWUWCCIv+gn7tmkIARb88Pij4IY6dvw2ppuJo0KAh0rNz4XHICw0bst9OtVp9rMHNSXmK/Q4HjBgzEeGvnqGbbAMojijpdvLzIA/ZLj4XQLJ0XPa5Q1xcvMKU1NRUrFi+DLNVVBkdmOjoaFhaWqFT1+6Yr66J1y+f49B+Z8yePRtz56oybWbFpeSY9sGlg2SufIh4A0FhYbRv1xExMVFwc9qBVq1bQVhIGJ06dcTr8LcYNGQE5Fq2hrCwMG4HX8WT0Ado2VIOo0eNYs4lnVjOBJ2FvrEFRMXEqvTH+6ArFCeOQ58+fZjPl2pooFvXrggLf4NNlvbVJvZcVFQIz/3OSE2KxZzxAzC0T5dqveIk2EUyhQoKv0NEqCH+14/zIMnDl+8wqOePYNTj1+9x4NRtZGVlQV1rFYKvnMcKnWW/DJaUdzgwMBC+vscw7H//g7aWJsR+cb2qFRKLm5POaUpKShgyZAiLK+g0SoASoASqJpC2dMp/xTiln5cW51Tvexo04fyOpEETzhnSHSgBSqCOEZg0aRIuXLhQZ9vJlr9cRCNBedZM7N2ig2ZSbJSnNOAHvv86WMELt4TP2VvwORuM79+LMXbsGKxZu4554K7vg1zz9Xr6MNpkg9XL1HDAQgdNxavOsrDc64+kjDxs2bIFzZs3r4TuwIEDePchEnm52dhhb8900iksLMSbN2+wy3E3lmithLxCO9jbmKGwsAD9+/VDU5mW+N+IMYwODdE/efHsCTIzUiEoIIDWCu3w+uUzRnekWfMWGDlmApMJMnZC1cKnRA8jJvIDmsm1QkZGGqZOn/3Hy2u1yYC5H1RU5uDhw4fYs8cJouJiWLHaqKzryx83YXHCqxdPcfPqBSR/TkC3NjJYNHMsmorxXjbXn9zZfeQcPsQmYYXqRHRt3wq5efkwcvDBRpvdJV0gACaziAjuslJW9eLFCxw77o/uPfvic2IM1q8rEQvmxUHEg2fMmIHz58/zonnUJkqAEqhFBNI0JpemljCvTIZJSapJhT8vfc+tzyUO0r+/OL1NaNCEU4J0PSVACdQpAkT0dfjw4WXaB3XKuV84o75gLtzMV0BYSLBOuTtPzx66q9fWq2vJygV8/fo1zp6/hF59B+Hu5UBYrlSpcpnvuVv4mFIAs82/7mpC9B5ehb/Dg3t3cPiwd4WMARIUIfoVTSWkIcBfjKiYGMxTVUVA4Ams1t8IAQFB7Nxmjry8XPTt3Qc6OsuxavVqyCu0R9fuvdG9Z28IC4uw4hJbc2wtTDBq5HDmQfjz588wMTHFspV6aFdFSQ9bG/80OTEhHj7uDlg1fyJIt6HuHeQ52e6frbVx84d8p964d/cO5ozrj9y8AvhdvIM+g4ZjzrxFzC/93h57MWbUSIwaybpOiqnpRowYq4iP79+ia6d2GDt27D/z8U8HX7t2jQmwEXFYOigBSoAS+FsCaVpTSlVgS15Lxw812Gr5nAZN/vaKlbtExaVfEXC+F92BEqAEKIFaTeDRo0cgpTnrePhbT24Dvn37Ng577Mc+8xXc3vqf7Hf6+kM8evkO4R/iYGFlzZM6Cf8EzH+Hkn/ySSBjnroWPkS8w4enN2CwdEaVJtm4BUCha1+oq6v/0uTIyEh4H/FB/Kc47HV1qZSdlZCQgJ0OjviSkow9e3YzQZVz584hOi4BM+csZERlD7k5wtrKEqStMAmotOvYE+06VtYk4Ra3/c47sXrVCkhJSTFb+vn5IzI6FgsWaYOfi2Vbj0Lu4t3jG9BfPJVbptfoPnn5BVhp5QaRxqJw3ecOV1dXXLp4HkOHDoOGphZu3ryJB49CobfBHB5ue9BCThYaS5eybCMJ3vn6BUBZRQ3nTvoybap5eezcuZMJwPbvX3UpGy/bTm2jBCgB3iBAgiYks4R5/P4vw6Qm3jd1P8cbAGqxFTTTpBZfPGo6JUAJcJcAeTi0t7evsgyBuyfxzm6ka8zCBfMRtNeMd4z6S0veRsZBb/tBqE4agXsvI+Hm7l4vSqzYxeXufgDgF0JR0Xe0EsnClBH9qtxil/dZDBs/rUw49VfnJCYmQlZWtox1bGws7t27x/xiSMow3n/4CMVJE7FkyZKyLby9D0NETBL/GzkWe3ZaY8H8+ejVswdsbbehXafuGDF6PLtusTQ/JioSQSd8GLHS8kNLWxuLNVf+smUxS5tXMemIhws+vH2F7XpqTAei2jQys3OxxHQ3FCdPZbogEeFc0i64tANRcnIyttpuh/JcNbTv0BkXz55EfGwkNm3ayJKbHz58gNv+A+jdfzDSkj9h1cqVLK37V5OI/xs3boSnp+e/MoGeSwlQArWcQPqyqT8STErjJqU+VlmImwAAIABJREFUVeN7if00aMLprUODJpwSpOspAUqgThA4ceIEyMOfrq5unfCHHSc2bzTByN5tMHYw73WvYMePgm/fMGvVVkYb43TQWXaW1qu5OTk5TElKnwFDIPw1HvMUS7rJlB9Hg27h6oNX8Dp8pEo2ROeB/Ly0atUK+fn5jHDyhAkTmMAJ2ftrXgHaduiI8Fcv0L1bFxgYGFTYh2ieBASewvzF2tiwTge9e/eCmZkZSJtXYxNT6JtYgp//79rx/uli+ni7IzsjFfr6+mXlRM7OzlDo0AP9BlZuV/yn/X73Ofk28XTAUfBnx0FbZRInW/2TtUXfv8N4pxcyvn5Hz+7dcOv2LbRoIQcj441o3bo1fHyP4fXrMDQSFcNS7VW4d+c6Gnz/xugk/WoQ4ViifbPPzQ1degyAqKgojnjuw15X13/iIzuHOjk5QV5enintooMSoAQoAXYJpC2bWpZpUpphUhOvTd3o70TsXquf59OgCacE6XpKgBKoEwTIA9+VK1fqhC/sOrFksToWK43AqEE92F3KU/NJi1xDe08c8TnGPJTRUTUBUlJju20bmog2xvv3EXDdsoIRJz1yJhjCQgJ4H52A1Nwiph0v0SUhAZG3796Rxoj4+PEDOnXqhNDQx0x6cbt27ZGYmIC27TvhxdNHmDVrFtNpxMvLGzGxsUz5jbraQvTt27eSMeYWlhAQaoTUlCRYWVqgUaOSTIxLly4xLWk7dOqCWXPmI+LdG7x4GorZc9WYzwu/fYO3xz706N0XAwYNYzubiPj04P5tXD5/GuJioujevTtu3LiBSUrKGD12ItdumwtnTyHhUwwK83OQ+SURw/p1gfK42tmBhZS9CQgIYMqIvjDccQjR8V+YUioySABt3z43iEnIYuLkafD38YSMdFMme6iqscvREUQjRGWuGiZMns5McXXcBk2NJWjbti3X+FfHRuTemTx5MnOP0kEJUAKUALsE0nWUStoMl1tY+v7n19Ip3PhcYh8NmrB7rX6eT4MmnBKk6ykBSqDWE3BxcUGLFi2YB776OAz09TBhQAdMGFbShrU2j5krbXDqTBDbD9K12ee/sZ1km2RmZuLZs2e4cCYQX/Py0bl7bybTo127dhg5ciTCw8Nx8dJldO7aA40ai0GuRSs0FGiIgoICdOnSndH/SE5KgrSsLPPNmZWZAaNNUqoVQuwKDQ3FgAEDqjSRPIDucXJCI5FG0NBYWqENNBHdJKVj5y9cQvH3IowfPw5nzgQhLz+faS3cv19f3L59B1u27vob95k1RUVFeBP2ChnpaZBXaItWrdv89V7lFxI+AUcPoEFeKgZ0a4u2rZqhZTMpLDHZDWkJMZgsm8O0wK6NY6ubPxIyCmBlZQVJSckyF/bv34/PXzKgsWwV82eL502vFIQm91tUVBT8AwIwcMgoDBg8rGz9kUNuGD92JPr1q7pUjJdYBQQEICUlhSlZooMSoAQoAXYIpK1QAh9Ku+aUar5W//ume4PYMZPOrYIADZrQ24ISoATqNQEiVGlkZITDhw/XWw6kvXKA72G4W5U88NTWkZyWAZNdPvDwqr/Xkt1rR3QaTEw2oplccxR9+wZxcTEmyHH3XggkpGWgtngZy1sGX78EMWF+TJs2jeU1ZOLLly9hZWXNlPqQjjpr1qxCy5YtmT3S0tIgISHB/P/79+/h7u6O2Lg4bLWxQUBAIAYPH8d1HRK2jP/F5LMnjkNOMANTRw+sMMPS9Tiehn2A4sgBWK7KvawWbtj8pz3uPA7D0QshcCOaOFUMkjk0YcosKLRtDzfnHZg4fizTiYwMc3MLPH/+HEOGDUf461dYa7iRaSldOq5ePoe4yAiYmtaO7jQLFy7Erl27GC0fOigBSoASYJVAum75fx9/lXNSuhv3Pm/qSoMmrF6jX82jQRNOCdL1lAAlUKsJbNq0iSknGDKkdqbNcwP+48eP4bjTDoYaM9GjI3e+beeGXezssdUtABExCfA64svOsno/18raBj36DET/AUMQHfUR6WmpSP78GYpK7Gs2kGyBGdMmo3PnzmxzJeKaz56/QHZWJkiXkiZNmlTaw8vbG0+ePkdjEWFs3GiKQ4c80aZ9V/QfVFmThW0DuLzgiMdejO4qhQE9OyI5NYMpG5NvIYPs3K9AcQM0EhFEq2ZS0JmnyOWTq2+724/D4XQkCPY7d1VZRuPt7Y3Y+M/I/5oLGWlJpoU0KekhWSiSMi0hLdscN69fRuPGjbFgsTZysrPhsN0cDQUEkJqSAg+PgxASEqo+B7i4M+myRsrWLCwsuLgr3YoSoATqOoH0lex9qcAtHk1dWA+anDh/CyGPw2BhqAERYVrqXHoNaNCEW3cj3YcSoARqHQFSmkBSra2tK3bSqHWOcMFg8gBw6mQg8C0PzmbLubBjzWzhc+42bj56hYlTpkNFRaVmDq0jp/j4+OJzSipUF2pw7BEJtuyw3QxnUm7znzYJx5tWsQFpCz5w4EBGa0V35Spstt5ZHcdwtKf3QRdEvw+HieYMtGoujf1+l/EpKQVtWsigQQM+LJg6CoKCApirZ49dxppoIfujzIWjg2tg8cfYRJjs8oazqxuaNWtW6UQiqE1KbBQUFJjPiPaHl/dhtG3XAWGvnkNUVAwN+BtAoW1HPH38kGkzLC4u/leBthpw97dHmJqaYt68ebSt+b++EPR8SqAWEUhfRXScuKFSQlRRWFdBaepcMWiSlpGFFca78DL8I0NPc/4U6C1XZf6fBk2qvqFo0KQW/aBRUykBSoC7BNasWYMVK1aga9eu3N24Fu+20cQYraWEsUxlIr6kZ0FCvDHP6oPs8jqD+PR8rF6ztuwhrRajrzHTScDBwNAIPfsMwKQp7GeU/MrQVy+e4vL5UxjQvx/TYYT8R0pufjVIBx0iItqlSxcmI4Gdcf/+fbi5OmOV4Ra0aNmanaXVPvfimQDkp3yoUH6juckJLpuXQ7icQLGteyAUWspi/pQR1W4TNw94HRGNvQE34Lpv/2+3ff36NRx2OUJ1wRLs2bkVCm3bQVRMHDlZWWjbVgGzZyvX6p/bV69e4eDBg0yZDh2UACVACbBCIH319DJNk1I12FKNk+p838TpdJl5pLvdFnsPDOnfDcpTRjLd7sq/p0ETGjRh5V6mcygBSqCeEHjx4gW8vLyYUgA6fhAgD6OOu3aieTNZxMTGo09XBWgqj+epb8NzvubBaIcXuvbsizVr19HLxyYBc0tLKCrNgXwb7ncqycjIwKVzJ5l2wcmfE5GVmY4d9vaV2ge/ePES/oEnkJmRwXxbNme2MvONfVVlOVW5p6u7Al+Sk6Crb4aOHbuwSaD6psdEReKkjxts18ytcAgp0SGBEw/rNZCWLBGBXWvjjrSsHHhvq3338LO3UdjlfQ6Hjxz9LUw/f398jIqDmHgTpCUnQLZZM8xWnlVBLLj6rkb177xu3TpoaWmhR4/a3Xms+knREygBSoAQyFgzg8kPKR2l+SLV/b7pnh9Bk9IsE/3lqhjYp+TfTwc3P+aVZJv8HDQh7129TsPNTh/t2/zQoqpvV5RmmtS3K079pQQoAYaAiYkJlJWVmVR/On4QIMKg27bbwWTLNvh4uyMhPh4CDYpQlJ+LeZOGlvTJKwYSUtIReOU+moqJwnylKsQai9QIxqycr1hh6QYnl7115sGrRsD9dwi5vnucXLDW0KxGjr166Rzu374OGxvrsm4rpCzuqO9xrDfazNhQUJCPkwG+eBr6gMlSERUtaQM8ePBg5nNSkvPhwwfmZ7V9+/bMny1ZpIZiPn7YOuyrET9YOeT1y+e4feMivudlYouOMvgbNChblpmdC13LfXDdrANx0ZLWys5Hz+FZ+EccsF7NyvY8N+f+87cIefsZ+oYbfmublrY22rXvAhnpJtDW0uI5PzgxKCQkBGfPnqUlnpxApGspgXpEIH3NDKbbXHFxcY2+Ntl9qgJlEggxs/OAp6MxOrRtCZOt7jDUnccERcoHTV69+Qj/oGCqb0LaRBeTq0YHJUAJUAL1iAB5ALOzs4Obm1s98po1V0nLWfVFi6Cz2gBPH96BjIw0+PhF0KxFSzx5cAdJifEQFxOHgKAgRk+cBkFBQQR478X2dfNYO4DFWaQdLMlW+Hms2eqO6bPnY+LE2tV5hEW3q33ayZMnkZn7DRMUa06M7nbwFYSG3EUxvmO2sjLzrfxmc0usNdgIQcGKwp/379xkGLx7+xrPnzzChImTkJWbB2mZ5gh9cBsfP3yAQhsF5GWng68BPzRXGXGtVTAn8K+cDcC9m1exaMYo9OzUBqKNKgYRc/PyoWO+F66bl1f4zMLlGAoKi6C/ZDqaiDaq8p7nxK7qXqu2wQE2tvZVCsOWnh0fn4AdO3dCX299WVek6rarJvcnmSZEULxUx6Umz6ZnUQKUQO0ikLFuJsiTNx8favS16U9Bkw/R8dho687Ae/kmskpNE6UJQ5kMk73b1kOiiVjtAl0N1tKgSTVApVtSApQAbxOwsbHBsGHDMGbMGN429B9Zt3btOqb0hb+4AGJiYohLTMECdc1fWvMk9AEin17HyvmKyMsvQEpaJiOA+buRnZuHxiJCzDctZJCSGze/y3jzMQ7SEuIg/6DPnToKYwf3wMMX7zDxf30Z8c+Zq7bixMlTTLCGDvYJXLt2DTfv3IfOKn32F3O4gmRihD68i/TUFCxYshwyMpWFRMsfUfjtG0If3ceQYSMrnBzxLhxXz5/Co0cPsO+QH9v3ArmPQh/eR9jLp+g/cBh69unHsmdE8LapREXhVhLgW6ezCIe3rYGwUNX3pdep63j1Pgb2BksqnXU95Dl2HjqNrp3aolvbFtBQHseyPf9yYmpGFnQt92O3kzPk5OR+a0pmZiYj+FoXx9WrVxEaGgpjY+O66B71iRKgBLhIIH3dzBrNMCnNaGmy62SZF6Q8p3xmSammSXNZybLyHJKFQoaVkQaje0IHzTSh9wAlQAnUMwJJSUnQ09PD0aO/r8WvZ1gquOvufgD8gqKIjY6A0tQp8As4yWQF/Gp8TkqEj7sDNmrPhMW+QAg3EsO6eaMhLVG5bWxGVg62up9A8pcM8PEVM8ESA01lfIxJwNngx3De64bnz5+jQ4cO8Dnijfv3QyAtLYVpI/tg6qgBmLV6K5xd9qJ1a94S/6wt98uBAwfB11AYk6cp/zOTY6Oj0LpNSXcVdkZ2dhbMTfVgsXUX3r59jSMe++DgcoidLZi5pIvL6UAfjBo5EhcuXITminVQaFtS9vOnsc3SBCmfkzBx8nQkJ8WDBAOKvxdAqrEgdFTGQkiwsqAtCdLMWm2L0y6//hky3XMM46erISszFSeOeWPF3IkY0rvTn8wp+3zP4SAM6tkRLyNioa0ygeV1nE6MTUzBhp3eOOYXwOlWtXo96aLj7OwMaenfB4trtZPUeEqAEuCYQIberJKmN6W9b34jasL0xuHS5+WDJuRLKXvXY7A11S7LIClfknPhegj8goKxy3wldu33h8q00WXaJxwDqMUb0EyTWnzxqOmUACXAPoHdu3ejXbt2mDat5soT2Lfy368gOgQ9evaFlIQYPkbFQFtX77dGRbx9g0Cfg1izwZzpiLLDyhju5hVbF/tfvIsjQcEw2mCMESNG4OPHj0wmCxGezc3JxchRozBj5qwK3Xqys7MhLCyMpYsWwsN6FTY7+WLoGEVMn07a9tHBDoGAwEAUFDbA6PGK7CzjqbnWZoYQFmmENu3a49XzJ7CwdWTbvqzMTJgZr4Hf8eN49+4djvgcg85qQ5b3MVi1FMN6dcCAHh0g2kgY/PwN0Lntr7sEPXjxFr7n7sDRpOpsrYJvhVhpcxCzF2qhT98ByMnJwYXTx/Eh7CnmTfkfBvfqXME2ks1VPqPl6Lk7SE3PQER0PNrLt0B8YjI2rlCFeOMS7ZTqHkRjyHKrXZUtiKv7bF7Z/9SpU4iLi8OqVat4xSRqByVACfAggXS9Wf8m02TniTIapUKwqtNGV+ieUz7TJORxGKNjkpefz7QmLi8ay4NYa8QkGjSpEcz0EEqAEuAFAuQB3NLSktEzoePXBNLT00GyTeRat8OTh3fRr39/pv2wyrxFLGPb57gVixT7ol2r5syaFRZ7IdhYHE5OLizvUToxMjISpsaGTJcR37O38TlfAAYGBmzvU18XHPfzx82bwZg2UxW9+w2q1RgSEz4x2SZduvVA/Kc42O5wAX/Dhmz7dMRzP9rKt4CKigr2ubkh+Us6VOYvhrh45eyonzf/+jUX9tYboTtnFHp0bPPLs4lY8l7f84zYa4DjBghWkYVSuvhT0hecuP4Yn7MKMXqiErr36I3wsJe4cu4EkhPjMbBXF+TnZSMu8Qsai4qDlAQ1ayqKx2Hv0Lq5LMxXzWOEBe88Doej92mIi4th5bxJGNCjI9ts2FkQm5AMA3tPuB88hKZNm7KztM7NNTQ0ZP59ERGpGVHsOgeQOkQJ1AMCGfr/JsuzSbmgCcFMsk2WG+1EQtIXhrrm/ClMaQ4ZP3fPKZ1ra6JdrzNOaNCkHvyAUhcpAUqghEBAQABSUlKgo6NDkfyCACkl2L17D0iXmnnqWjhy0BWGhnowMtqAueqa6NS5G0vs3oS9xLObp7FOfSq2uBxD937DQFLY/2YEBQUh9M41bNFVhTfRhohNh7m5OeLj49GpE+slDH9zdm1fExwcjAehzzBlmjKkpGVquzuM/b7eB5GRlowJE8bjxs070FrBfsveosJCOO6wwlyVORg0aBDOnTuPm7duY8bs+WjbviTQ8PD+HTSVlEKnzl0rcSMBjVtnfbFJZ3aFLjmlExOSU6Ft5oyxQ3pDafQAdFJoyRL7sPcxOHT6FsQkpJGbm4f5i7UBPn5ER33AxaAApCZ/xvipymjboSOePX6I2Hcv4Wi8tGxvIji70fEoevQfgYg3L6A7ZyTk5arvuq+22Y//jZ6IBQsWsORfXZ7k6uqK5s2bM13Z6KAEKAFKoCoCGQbKP1RgS9sRlqrCVuP7JvaB9IJwSIAGTTgESJdTApRA7SGgra0NU1PT33Z6qD3eVK+lLi57UVhcDIX2nZAUF4lxY8fC+7AP84DKyjf7HyLe4qyfB0w1p2Pd9kM45M2ZhozGYjXs2rAUzyPiEHA1FJlZ2cjMykSXLl1gYW4OAYHKWhLVS4j3d09ISICNjS1MLbbzvrFsWJj6JQXWmw1x7NgxHDl6FN/5BDF+khIbO5RMJZkZ2603wUBvHdO+unHjxrC0skZkZBQkJCShoCCPmOgYzJqrjrbtOlTY/93bMHjuc2R0fNrLVxZBfRYeif3+l7DHVBsNG1buAvUnYz/GJiI5NQOng5+guKEwhBuLo+h7Mb5nf0ZiSgbkmkmjoPA7hBs2gMVKFWa7z1/SsW67J9S1VqJZMzm8f/cGBUlhUFOqHhG/ou/fMWftNpw+c/ZP7tSLz0lXNnt7e+zbxzttsOsFeOokJVCLCGQYzvlPzaTU6N+IljBTuPM5DZpwfpPQoAnnDOkOlAAlUAsIEO0Comfi4sJ+eUgtcI/rJhJdkgsXLuD5izBkZabB0tICy5YvZzQkhISEWTqPtGC9fC6Qedgj6fsNGjRgaV1Vk7Zvs0WnZiIgJQ8NxJqjT58+jGAsecDdts32r/etqwuJQKm+gSE2WdpBQKDudRoKOOaNHl07YuzYsdDU1MIWGwc0/IvA2bXL55HxJQGf4uNhaWHBBN9IORi5/z09vRh9EXL/DhsxFgrt2jOCsaRE6IDTNhguUUKbFrLMLUTKZTKycyFZri2j9T4/pqfkphVz//o2I4Gd+M9f8ObjJ6SkZ8L/0n00ayaLCUN6YeaYil1/XryNxIXHsVi8bC1zXnTUR1w5cQibllVP5sOLd1Fw8D4H78OcBUT/Gg4PLiRZjKRMp3171oSFedAFahIlQAlUI4EMozllYZDScEhNvIrb1W+xbm5cUho04QZFugclQAnwPAEnJyfIy8tjxowZPG8rrxgYEhKC4Nv38DkxHg47d+D6jRsIe/seyipqLJvof8wbYo0EobH0RwkBy4vLTSRBAI0liyAm2pjJWjl//jzy8/Mxa9asv9muzq8hZTlPX4Rh7kLOuPMqqMLCQpibrofHwQN4+/YtfHz9sHw1+zo3JCixYf1yNGsuB9U5szF48GDGZT8/P7x7H4W8r1mYNXMmc8ajR6F4/foVZGWbobgwD7JSTREb/xmyMlJ4HxkLGWkJJkDSuc2PzBPNTU6wXL0ALZtJcQXl49cfcfVlPOKiItFCpgkTrJkzfiC6tGsFjxPXIK7QD8NHjmX+fJetGQzUxqO5tARXzv55kx0ep/BdRBJGRkZYr6fHBJ2aNPmzJky1GMMjm544cQKJiYnQ1dXlEYuoGZQAJcBLBDI2kMxApi9Ojb422U6DJpzeBzRowilBup4SoARqBQElJSVG04R0YqGDNQJv3rzBcb8AJCYmwEBfj/n21MraBmMmKKFdhz9riZAHUr1VGjh65Aga/oVY589WkgwAOTk5CAoKQl/fAKQ8YM9u9runsOZ97Z5lbmmFqTNU0bKVfO125DfWP7x/Gy+fPoCJiQkMDI0wevxkDBoynG1/o6MjcczbHUOHDGbuLZJdEh0bD43la2C2YQ3WrV2Dnj17MvsSzR9yH75+/Zppey0kJAR+fn507lzS4WaZlgbWqykiKuELgq6HIDuHBFeawM5gCdt2VbXAcIc3JsxcgG49+iAuNgaPH4Ug4kUITLWVcfbWM4jJ98KIUeOYpYvnTYez2XJ0bNOCK2f/vMlikz047HOMEdLNzi2AsABfve8eQ+4dou9y+vTpamFON6UEKIHaTSDDWAV84GPKQxkpEyZ8Uv3vxbf51W5wPGA9DZrwwEWgJlAClED1Erh58yZu3boFMzOz6j2oDu4eHh6Ovfv2Q0REGKREhoyNm8wwf/FySEr+/tvzl8+f4PrlIGzfto0jMqRUgvyCQQIvpSU+5BvdO3fuwsFhJ0d718XFLkSQskVbDB0xui66V8EnL3dnzJyhxLQR37HTAUqz5kFGtqRjEzsjPT0Vfkc9ISUty9xjs1RKhE1JkMR5ly0a8BVj+bJlaNPm191yyHxSBrh+3Vq0bi6D4f1LRJOnjBqApmLcaf/76l0UPM6GwGjzdhQWfoP+Sg3MGDcQbyPjEZ+SBWPz7WjcWJQ512OvA2Kio6A2eXCZLT8zCX39HgO6V9Rr+RM30klL12IfjgcEMhktGhqaGD56AlD0lWFU3wcRqR4/fjyGD2c/gFff2VH/KYG6TiDTpKRDDRklgRO+cnknxUwApTo+b2JLgyac3ls0aMIpQbqeEqAEeJ4AEX+dOXMm0yWDDvYJWFhaIjExCdtstzLp9/fv38e5C5egu3bDbzc7d+YEJMWFMXv2bPYPBfD+/XsmO+j9h4/ga9AAjUUaYdp0JfTt0wfi4uLMLxxUALYiWpIF4el1GMtXG/4V89q26KjXfvTr3QPjxo1DXl4e5sxRwX4v7v9y+CUlGT5e+zFn9iz079//j5h0dZZh4pDumD5m4B/nsjvBxNEXs9R0mIBOoK8H4hMS0atja7TvMxLD/8syKd0zIz0d9lbG2LBUCR3/6+AT+uo9kr6kMR2y4jOKkJ+TgSnDe6N3l7a/NCXpSzoKvhXi4Yu38D4djJOnTpdlj61duw7NWrRCp/YKmDOHiBzW70H+fiTlg1ZWVvUbBPWeEqAEKhHIMFEtCZSUBkxq6FV863F6NTgkQIMmHAKkyykBSoC3CRAtjK1bt2Ibh9kOv/Jy/bp1mKqkhN69e0NGpvpae/5LyllZWWjUqBFThlA6SLaJ6gJNyDRr9kvT3Jx3YuliNSgoKLBtvo+PD+7cuYf4+Di0atUKwiKN0b1XPwgI8CPg+FEMHjwEJsa/D9qwfWgdWHDh4kVExSZghvLftXeujQi2W23EurWrma5Yjrt3o32nHug/aFi1uOK80wbr169l6Wd9sfoCaM8eh2F9K7cs5sS4wEv3cDc8AZLSMsjNSkfO13ykJSdg+RpjtO9YUiZUfpw9HYj06Gcw0FCGi+8lfOVrBHGp5kyp4sTJ0xFy9xYunvbF9vULISQoAGGhisLBN0Je4NCp65CUkoJwIzHY2dlV2P/Vq1fYtMkMJibGZZownPhXF9YSMdgtW7ZAVLQk64cOSoASoAQIgcyNc/+FpAlo0ITz+48GTThnSHegBCgBHiZw9epVhIaGwtjYuFqs3GFnh159+mC/2z6MGTsOK1eurJZzeG3TPU7O6NKjP3r06vNL0wL9jqB75/ZMh5NfjSdPnoBco8ysLBQVfWdKG2RlZZlAV9du3aE0dQpTAvDw4UOkpqXjRGAgWsu3gbKqOoJO+mL8uLE0Df4/uAUFBdDTN4Cped1qMfyne59kXGgvmsN0e9qzxwnSzVtj9LhJf1rG9ucxMVG4e+Mi9PXWs7T29MlAfHz9GGvVlZCakYVHLyMwaXjFjjcsbfTfpMi4JKzfdgBNxUQh3VwOXbp2x9IlS7BvnxvEJGQxcfK0Krcj32h67N2FtORP+JySijGTZmCy0swKc8NfP4eTgy0UWsgiJj4JK+ZPRUxCMsI/xuFzaiYOHvJifg5/pQmVlpbGtGwmmjB0ADY2Nhg2bBjGjBlDcVAClAAlUEaACZqUyzQhHdZq4r249TF6FTgkQIMmHAKkyykBSoC3CZCH7yFDhvz2wZ0bHuzYsQM3rl9Dt25dsdV2e50vGyGZJrPnL0Xz5j86hfzM8ULQSQjyF0FdXb1KxPfu3ceJU6cxcMhwtGolj9BH99Fcuinmzv11i1aib3LsmB9ehoVj6nRlXDx7EoIN+WFkZMg8tNXnkZ2dDQtLK6zfYF7vMHi47cEitfmMHomxiSnsHN24yiAnOxs7bLdg+7ataNq0Kct7W1iY41PUB6ZtsJCAAKzXqaFz25Ysry8/8fGr99jrfx0enp4V1hPNpqcvXkN1we+L7u+1AAAgAElEQVQ7JT16cAdZaV/QoWsvyLepWIqTkZ6KXdstsXu3I5ydnZEQHYF3kXGM8HPfvn3/yt76vOjKlSsgAeENG2g2XH2+D6jvlMDPBDLN5pVkmpSO0iY61fyeBk04vxdp0IRzhnQHSoAS4GECRMvk6NGjNfJATX5RdnVxhsMuR6ZUoK4OIg577HjAH1u8kgdNSzN9eHl6lgm4lmeis2IFtFbooUXLVnjx7DEiwp9j9SrWMnXWrVsHQaFGaNGqNVJSklFcmI8hQ4YiIyOd0TshLWmJzkV9a4FK2kTfufcQCxZr19Xbr0q/LDbqMRkgnTp1YloDnw46+0fNHXYAuTpuQ9++fTBbmf0W13fv3sX//vc/GBroY1j3VpgxtqStMTvjY2witrkHYrWeEVMK+PPw8PDAp8RkLNVeVeln7d3bMDwNCUbSpxjMUluO1vIV/24imShL5s8A+fuLjKSkJCzT0kQxXzEOHvRkqRSJHV/qw1xSFrpkyRIQwWo6KAFKgBIoJcAETZi2OSUZJjX1Km7pSy8ChwRo0IRDgHQ5JUAJ8C6BsLAw7Nu3D3v27KkRI9etXQtRgUJ8/S6AnQ51uxWu2eYtGDh0JAb8QTuCZAAoTZmEPn0qlvGQB7QHjx5DY/la5tpcuXgWTRoLMIK9rAwiECshIVFWMkB0U2y3bUfrNu2goNAO2TnZePksFCOG/w+qqj/U6lnZuzbPCQ4OxvNXb6Ayf3FtdoNt2/18PNGyuTRUVFSYtUy7bP8T0NZlrZTmdweSoIKpwUrs3GEPaWlptm0rXUCEQVuKAUtmlbQEZnWQgImZky9MN20ua31c1Vry95xUc3mMKVeaFBsdBXenbdisM5v5ctPY4Qh015tW0D65ce0S0lPisVJXF7m5udDWWALd+Yp4EvYR34Qkoaenx6qpdF45AqRUc82aNWXtqCkcSoASoAQyN8//JxBo0IRz7DRowjlDugMlQAnwKAFPT0+mTGbhwoU1YuGZM2eYji/15SFD38CQKa0ZOWbiL/lmpKfB0swQCxbMR97Xr4iL+4TYuE+QbdYcizR1mXUPQu7A38cLuxx2otlvhGVLDzl+3I/5NnzaNCUmo+fx48eMAGjLFi1Q+B3Mg3LYqxeIePsa5PyF8+fi7r37IOUra1avqiBoWyM3Rg0e8uLFCxw4eAjGm7fW4Kn//qjk5CT4eO6r0N7adOMmqGvooklTib82kOileB90hVxzWSxZvIjpevC3gwQKj3p5wMNmNctbkICNorZ5WRbInxYuWLAAxpttIS0ji+/fi3DutD+kG2Rg1riSzmEO3kFo02ME+vQbiI8fI9BGoR2+FxXBerMRfHyOMnNU58zG6oVT4OZ/Gfv2H2RZzNR+uy1iY+MwfOQoKCkpMeLR9Xl4e3sz98uvyhPrMxvqOyVQXwlkbplf1j0HTHvh/9oOky46IO2Hf7zn5udi5j71FTnX/KZBE66hpBtRApQArxHQ1dUFKeMgKfs1NUhZSMOGDWvquH9+jrv7ASZoMWq8Ikb9Jnhy9dJZkPanHTt3RZeuPSAoJFRmu7+vF0QEG0BTU/OPAY2vX7+CiNBmZmYjNiYKzs5OzC8gpqYbmVchYWF8iotjMlu6d++GrKxsDB06BJs3b0F+QQE2bTRFjx49/jm36jLg48eP8PQ+Ap160nK4PMfoyI84d9oP1lYWzB+TMjIPT2+sN9r8V7hJwMRhmzkU2shjzRrWAx2/O0xjsRrs9NQh2VSMJZt0LPZizjx1TJz468Bk+Y2ePXuGU0HnsEy3JDvE+4AL5Bp/g/q0Ucz7fccv4dn7BDQVFUFjIX58Sk6H/kZbxMVF48XjeyDdwKKjo2FrYwMbW1tISUmxZCf5e2/y5MnQmD0eV+6+gLObe70PmpD7z9XVFU5OTiwxpJMoAUqg7hPIMl/wLyRNIE6DJhzfXDRowjFCugElQAnwIoH09HRoa2vD39+fF82rUzaRQEbgiZP4EBmFCZOmQaFdB7b88/F2h+KEsWwFM27cuIHu3bsznXbKD/Kg++HDB3Ts2LHCnxMBWdIymQiF1uXx6NEjBN++h4WLl9VlN3/pm6e7C3p064Tp06czc7y8vNCoiQz+N4L1LiapqSl4cO82EuPj0Ld3DyZgwa1AqJamJpTH9IXiiN930fmalw9jh8PQ27ARbdu1Z+ta6hsYYY3BJsbmr19z4LTDGjqzhjMCtDm5ebjz5A1GDewGQYGGSMvMga3nBeiZWsPf1xtNxUSwdOnvBWWrMoZkcamozMG5fZux99gl5DUUh76+Plt218XJysrKzD0oJsZakKwuMqA+UQKUwA8CmRYLfmSUlGaWMK+leSXlMk64+LnYlpJMQjr+ngANmvw9O7qSEqAEeJjArVu3QP7btGkTD1tZt0wjgpfXb9xEcnIyFJVmMSUAZFy9dI7JABkxqrKWQ0pSIg577mMyQIhoa0xMDEgQpnPnznULTg15s9NhF3r1G4ruPSuLhdaQCf/0mE9xsTi0fw8jyFw6NpltwTx1LUhK/VmP5MH927gTfAVDhgyGuJgYJk3ibutid3d3vH/9BLbrq+4oRWxOTs2A38W7eB2ZwJTHsDNI8GL+/AVw8zwOzwMuSE9NRuduvXH25HH47zKsMmhouPMoVhnbQEhICKcDfdFMRgLKs9gTvH358iUMDQ1wzMEQ+/0uQ0iiJdauLdErqs/DwsICEyZMYNoP00EJUAKUQJalWkkJTllApKSZzo/3/5XocPlz8c00aMLp3UeDJpwSpOspAUqAJwns37+faQ1an0RAeeVCkKCJt/dhvIuIgEijRvjf0CGIjY2FSOMmmDFnQQUzA45540vKZ6auNzMjHa1aKyAnJ4vRJ9FYuoQjDQle4VGTdlhaWmOc4gy0bc9etk9N2ljdZx1024P+fXpiypQpzFE2W20xSWk2WrRs/dujk5MSsX+vA+y3b6+20hKSCaU2fy7cLFagsYhwJXtiE5KxaY8vuvboBVNTU7ZRkYwqT08vfIiMROeOHRhh5XXr9ZhfvzdqTkN7+cotwtOzcrDZJRBG5nZo2FAAh9yd0aZVC6ipsa4Fdfr0afgc8cI2vUWwcPWH52H6Czq5eL6+voy4Lik9pIMSoAQogUwrtRIlk9LmOaUZJtX8XszsCIXPIQEaNOEQIF1OCVACvEnAwMAAampqlbq28Ka1ddOqrKwsptVzaUnM8ePH8fL1G+iuNargcEpKEqSlm6GgoACCgoLMZ7eDryEzLRHaWlp1E041eGVvb49mLdpgvOK0ati9dm150v8omoiKMA/+5haWmDRtNtq0aVelE5/iYuDmtBOtWrWEuroa2rdnrxyGXTKkBfqDO9fhaFz5Qfps8COEvk+GpZU1u9tWmJ+QkAA5uZIAycpVqyAnKQZTzarvi9SMLGx1P4lpqpro3K1E78fRzhLLl2mxxWLpogWYOrIfrj98gx2Oe6ot8MQRmBpeTPSe/Pz8sH379ho+mR5HCVACvEggy7p8lmFpUc5/lpZGUsoM597nYpsO8yKOWmUTDZrUqstFjaUEKAFWCUybNo35ZVVERITVJXReDRAIefgQT5+/gqSkDEaMHv/LE58+fohP0RFYpk2DJqxeFpJdJdWsNYYOH83qkjo974inG9opyEOgIT/iEpIxS6Vi5sST0Ad4F/4K6WnJWLxoEVsBAk7BLV2sjrVqk9Grk0KFrd5GfoKZkw8CAk9yekTZeje3/Xj+/Bnmje+P4f27lv3549cfYbbnMHp164KvBUXYsGV7WYDzVOAxiArzY9GiRSzb8eTJE1hZbEHvLu0QnZCCwu/F2LbdHi1btmR5j7o2kZRLkeD9qVOn6ppr1B9KgBL4CwKZ1upgmrAx8RA+kA5p5H1JvOTHe25/LraRBk3+4nJVWEKDJpwSpOspAUqA5wgQXQxzc3N4eHjwnG3UIOD8+fNITU1F+Jt36NytJ9NVZ7ziVDRp8qM1rLuLAxapL2BaCtPBOoE1a9fXu3bDv6Nz4ewJ5OdkIuL9BxiYWqLw2zcEnfJDRnoqmjYRR88e3TFy5EjWAXNpprGxMdrJiEBrzoRKO6qut4NfwAmuiRZHRUXhkNdhJMVFY1T/TiCBmYXTRsLF7wbWm25l2rIXFORDUPBHR6vEhHgE+Hpgq40Nyx6TrAqLLZshJCiAou/f0VpOGnFJqQg8Ub8DBosXL8bWrVvrdfCI5ZuITqQE6jiBrK2LSkVMavRVbKN3HSdb/e7RoEn1M6YnUAKUQA0TuHr1KkJDQ0EeTOjgXQJJSUkICQnB7du3ISvXGmpLfnR8cXLYCgO9dSy3PC31srQsgXzDKyoqyrvOV4NlGRkZWLVqNbY7ulXD7rV3y/NnAnDj2iX0HzgEUZEfoTpHmbmvunb9kXVBvCsqKvpjy2tuUTh79ixCbl6C5ar5lbZcutEJO3btgYyMDLeOg7OzCyLevUFSwifk5BUwGS6hryJwyKfqgAYRY16nuwRBZ86wZYPm0kXIz/uKqdOV8b3wGwJPBEJQSAR2dnaQl5dna6+6MtnGxoYRgh0zhvUOTnXFd+oHJUAJVCRAgialGSXlUkzKiZyQzJOSjBNufi5m4kUvBYcEaNCEQ4B0OSVACfAeARcXF7Ro0QKz2OwAwXue1B+L7Ox2YOqsuZCSkkF8/CecP30cpibGbH3bbmtri6ysr+jbtyfCw9/C2NioTCOlvpDcbmeHfoNHoHuPPvXF5TI/hQT4kf+tqJLfRGjY2cEWc+eqonfv3pUCcUQ8lZSWXLl6Ffp6ejVW0qeutgBrFiiif/cfor0vI6LgHhgM5737uXr99rm5If8bcOvaBcyaPYdpget79Ai0Vxuh6386Jj8fuHjedFy5coVtO5Yt04a4mDgUJ08GCeQdPOAOSYkmOOJznO296sKCgIAApKSkQEdHpy64Q32gBCgBDghkbVtckmHyq1FausPlz2nQhIOL9t9SGjThnCHdgRKgBHiMAEmFnj17Nm1by2PX5XfmFBYWwmzzFphussDFSxdRlJ+DefPm/tGDQ4cOIfzNW6R++YJBw0bh+ZMQkCyTtu06IiU5CTvs7SAsLFwhi4CcRb5JJ9/kkK4+3bt3/+M5tWVCXl4ebLfbYdzEaejQqUttMbta7UxJScYht92wtDBnggVfvnxh/gsOvomPkZFMYE5aVg6x0ZHQ11uHVq1aVas9pZtHR0dju7U5nDdpl533LuoTzPb4wj/wBFdtIB2tiDh2YkICLl2+zOz95s0beHofwWo900pdqh7cvYmGfIVQUprKcgcrdTU1mFtYMNow81Rng78BHwSERZHymXTHAlTmzgUpValvIzw8HGfOnMGGDRvqm+vUX0qAEviJAAmalLUXLtUwKW0vXI3vRY096bXgkAANmnAIkC6nBCgB3iOgoqICd3d3puUwHbWHwFZbWwwdMR4SklIIOnkMZht/33I1IOAEcvIK0avvAIiJN0FKciIsNhrAwMQcXbv3QuqXFDjttIGklBTTmUdt4QLcvHkT589fgJxcc5DuPqSEx8TEpFKpRu2hVrWl5OF13KTpaN+RBk4IoZiYKFw844+vX3ORn1cAKRlZ9Oo7EL1694OQcEnrXzcne2hradRY0IScuWTxImjMGInh/bsxNrx8FwVzl2M4eYq9spg/3a+XLl3Cvr2ukJaShPvBQ2XT798Pwe49e6C+dDn69h/E/Pmlc6dQ9C0XWmy0ySVBgSNeh9Bv4GCmLHLBPFVkZmYh/1shBAUFmNTzc+cv/MnMOvk5CdCtXLkSx44dq5P+UacoAUqAdQJZ25eWqsBWeC0NpKCkIXFpI+KyV04/F9tAgyasX6WqZ9KgCacE6XpKgBLgKQIk1X7GjBmM2CgdtYvAHidnPH36DCNGj2O+3ZYQE8bMmTMZJ169egXyzTzRBpCQkMD379+hvWw5LGwdy0p49rs4QEiQH30GDEfvvv2ZdRnpacgvyIe0tCw83PagbfuOGDdxKu7duQGP/S5QaKOAnTt31FhJRk1dkfT0dFjZbMV6oy1slTjVlH3/4pwvKcnIycmGfJvK4sIJ8Z+wZ6c1vDxr9hdLLy8vvAi9C3uDJQySKcstMHHiJEycOBE9epS0/+XGuHHjBjwPuEGhQ2dYWFhU2DIxMREOu3Zhxhw1nDsdgLZtWkFb+0f2CyvnE50YcXExHPAoqZt3c3ND7IcwZGRmY8qMOTh16iQUFSfX25LJSZMm4cKFC/RnkZWbic6hBOowgSy7pSWZJqVdc5iwSPW/FzWijRE4va1o0IRTgnQ9JUAJ8BSBuLg4bNq0CZ41/PDDUxBqsTGkbIaIVnbvMwhPQ0Mg2kgIRd+LkZzyBSnJyWjZqiWmKE7CvXv30VhcAlNnqJR5+/D+bZw56QczK3sICZVkD/xukMCLo50VRo8aDiUlpT9Nr3Wfv379Gsf9AqGzxrDW2V7TBr949gQRYc+wevXKGj2aZEDNn6uCw9vXIzQsEk6Hz6CYryHk5FrAzGwjZGVluWKPg4MDvqUn4NGrCGgt04GiomKFfa2srNG4iQSGDhqAoUMGs3XmmtWrEBMdjSM+vhXEl1fp6iAvvwA2W22hq7MMIkJCWL1eH4MHs7c/W8bw6GR1dXVGDFdOTo5HLaRmUQKUQE0QyLbXKDumVOu19A+q872oIQ2acHp9adCEU4J0PSVACfAUAdL20s/PD9u3b+cpu6gxrBN48eIFPL290bixOHr3G4iszAx8eBeGgQMG4FXYWyZbQHP5Gog0alRp059bp/7p1Ii34bh0/hSGDB6I6dOm/Wl6rfqcfJO1dKkGzKx2VMmqVjlTzca67rbDhHGjMWrUqGo+qfL2JwIDcOX8GXzJzIHjbieYW1hCU2cdLp7xw5Ytm7liz+rVq8H3LRdmK1Shb+8F7yM+FfYlpWrHjx+HlpYWW+cRXRQDfX2cCQqqlEWxZ7cjwl89R8LnL1g5fzITQHkQkQxra2u2zqgLk4mejJqaGvr0qX8CzXXh+lEfKAFuEciy1yjrjlPaJacmXkUNDrLswonztxDyOAwWhhoQERZkeV1dn0iDJnX9ClP/KIF6RoCU5ZBf5PX09OqZ53XL3c+fP+PTp09wdXVFEwlpdGyvwDxwXL56nXmg5PY45O6MNq1aQE1tIbe3/qf7eXp54WtBMWYo/1lU958a+g8PLyz8Bl3NhTh7NuifWXHj+lXINpNjRFRnz5kDdy9/uLvuwoxpU7jyoE20fDwOHkQrGXEkpaRj2co1GDSoRMOkOoaHhwfuBl+FXDMpNJOWwMp5inga9gGeZ+/ByWVvdRzJ03va29ujV69eIGU6dFAClED9JZC9Q7PEeT6+kjbDpePnrjlc/ryqoMmH6HgsN9qJhKQvzN/Vbnb6aN+mBWjQpOr7kwZN6u/PLfWcEqiTBEhZjoCAABYurFsPv3XyYrHgVE5ODvz8A7B4kTrzTfaBgx4QbSqNkaMnsLCa9SkkQ8VykwFcXZyZbjt1aRABytT0bMxU4exngnQdIt+I8fPz1yU8uHXjCnIyU6Cp8SNt+l86uHbtOqxYZ8wETeYoz8TQoUO5Zo6uznL0atsMN0LDsH79OgwZNpyjvS9evIjnL15ig1HFErCjR4/izKmTGD9xEu7evI7FM8dg56GTaCoujiO+9a/1sLe3N/OzQ8p06KAEKIH6SyB7pxYTMGE0TcoFTMpKcxgNWO5/Lqp3oAJ0EjDZaOsOGxNtJlBSftCgCQ2a1N+fUOo5JVCPCJC68b59+2LCBO4+VNcjhDzt6oMHDxB44jTWGZlx3c7MzAwcP3IQstKSkJKWRmJCIlq3bsXcS6TLTm0e9+/fR+CJU9AzNmfLjfDXL/Ho4V1EfohATlYW84uessoCDB0xhq19eHmy/ipN7N7tyDX9EE59JdlyFy5dQQu55tBbvw5CQkKcblm2npThkO42BXnZEBYQQP8hI7Bkyd+1ASbtrY1NNmL4qHF48+oJ04WqqoCajrYmOsnL4O6TcPTo1QsWFlZc86e2bESCS0TMmpTp0EEJUAL1l0C2A3si29wiJarnXrbV17wCbLH3gMq00RjYp3KHvZ+DJuS9q9fpskwUbtlU2/ahmSa17YpReykBSuC3BHbs2MGkQPfs2ZOSqoMETpw4gayvhZigyB39kbBXL8BXXIiuPfsxtIqKihB00o9pk9q6TXscdN2Bwm+FUJyqhGXLltVqolHR0XBwcIThRqsKD7f3bwcjNS0V/A350ap1G/To2QdxMVE4c/I4crOzMGfObKaTi7i4OOO/j48vvjcQwtgJk2s1D2L8w5C7+BQdgZW6K3jKl7CwMHTrVtKG+G9HQEAA7ty9h4L8fMybPx8jRwxn7m9DQyN069kbktLN8TEiHMOHDcaQIUPYOoZkgG3cZIa1hmaM6HLQqeO4cuEs9uzZgxYtKn5rSTbW0tTAiOHDsXgpb2TzsOUsFyY/f/4c169fx/r167mwG92CEqAEaiuB7F0kaFKurXDFFJPK7Ya59Lno+v1lyNIysrDCeBdehn8s+7Op44aUaZiUD5q8evMR/kHBVN+EXLVi8rURHZQAJUAJ1BECRPBQV1cXXbt2rSMeUTfKE3jy5AkuXwvGIg32H3JJCU5uTi6aSkjga24uXr96hjvXziEtLRWGm+0gKipWAfblC0EQyo3B3EnDoL/dA5OmzYbi5NodKCAPzQaGRug/cChIp6IXz0IZHY2OHdojNzcXSZ9TEBHxDuJiYtDW1oK8vHylG5C0qN21ew8Up87CuzdhuHcnGEu1V6FTF84e8v/Fna69WAWBAQF1riSLsLx37x6uXA/G6HGKuHX9Mrp27oA5c+bg9Okz+JKeA0WlmUhPT8URj73YasO6OGtGRgasbWyxcr0xBAVLsmAePwpB0IljTMaOiIhIlZeStIMnpZP1cZAskwMHDsDR0bE+uk99pgQogf8IZDv+my9fRNf9CJqQ0hx712OwNdWGRBMxlGaeNJeVhN5y1TJNE6UJQ5kMk73b1jPz6vugQZP6fgdQ/ymBOkaAZAOQNPG2bdvWMc+oO4QAefi4FnwHs+eWaJywMz68fwenHVZoIy/PdORpIycJjVljceNRGFKLJTFzzrwK25HSlPtXT8JUcxo+xCTA2MEbuqvWYNy4cewcy3NzyXcl/v7+jMbC7NmzK3HMzs7+YzlSfEICdu/ejQnjxzOZBSTDYIPZVggJV/3AzHMQAAQc80aXTu0wsQ6X8t0IDkZw8B0sX60PL3cXdOrYDq1atcTtuw+wYLE28vPz4Oq4DfZ2rHcb27zFHNNmzUfL1iUBtaysTLju2gZra0uIidFfrKu619+/fw+SBblv3z5e/FGgNlEClEANEch2XP6fBmzxf110SjVhq/d947VuZR7+HDQhHzx69gY73fyYAMmNu09hZlfSotjKSAPKU0bWEB3ePoYGTXj7+lDrKAFKgE0CRGiP6JrIycmxuZJO53UC5GHfy8sb+YXAtFmqbJsbFxuNw/sdoDFjFHp3KQmqkT1Xbz0ErTXGaC7XssKe6WlpOLJ/Byx0ZmGDw2F0b9cS919F4YDHIbbPrusL3r17B2eXvTDaZM12MOtfsLl88QziIiOwadOmf3F8jZ5JAmTfvjfE6PGKCDx+GKNHDMXjp0/RWFwaQ4aNxNYtG7B3r8sfbTp58iQePHiIYSPHYcDg/5XNP3zIDePHjED//v3/uEd9nRAXF8fca0SonA5KgBKovwRy9uiUa5rzI1BSQqT63ouu/RGwJeU5JlvdYag7r0wElgRNSstwLlwPgV9QMHaZr8Su/f6/1D6pb1eRBk3q2xWn/lICdZyAqqoq822epKRkHfe0/rl30MMDiZ+/MKUgfzNIecA2cyPISTbGpuWzy7YwcTyGhcv1IS0ji+ysTKSnpeKM/2F8Tv4MicYC6NK2Je49fYPt+ougtmEXzp+/8DfH1+k1aWlpMDAwhJWdE8/7+Sb8FR6H3IRhPRLltLGxRa9+g9F/0FBsszTBoIEDcOrUaRhtssLD+7cwbvRIdO1aWRCQCMeS7JF9bm7IzinAwKH/Q8dOFUsfc7KzYWe9Ec7OTlwVreX5G4kNA5OTk7FmzRr4+vqysYpOpQQogbpGIHuPzn8ZJv9n7yzAqtqaPv6nW0TEwFbsa3e86rU7sDtQsZUUlBATUcBAEBURbOwu7EK9NhY2SokoKa3ftzaCIiDncPow63nuw93stWbN/NYGObMnsh0k4vmqNTt3q3c37wBEfvrC1SphgxWGbd2sHhdV8ntNk5TUVK7+iYXpsHyLxsrb+fzNHnKaFKfTJluJQDEg0L9/f7AWq5qamsXA2uJjIvvQ4eDoCEvbJdAo5GxDnj/h2rWyTh6sE06nHgPRtHkrsO44Xu4r0KW5Efp2/PVW/PS1+3iXoIYKlavh3vVALmWhQukS6NKqHo5f/g8R0XFwtZ7AwXbZehhJ31WwZMmy4gOfB0svXryIc+cvYpaZLQ+zJTflyIE9SIpnDh5zySkhoZ0tLK0wctxUGFaoiL07tiI9PZVzELbp0Bmnjh7EBo/13B/zv4/Fi5eA1TBhfzib2zjlW6+ERWu5LLWD84plOffZz6uBgUGOKBbtwgp0s2LCrB3x8ePH4enpCT09PQnREO+2zPk0btw4sGgdGkSACBRfAknrp4PrKpy35KtIv6/9h9Mku47JifNB3GGYjOzN1TNh48/uOSydx9TaFStspxRrxwk5TYrvzy1ZTgTkkgD7w/zUqVMykSIglwcgAqPi4+Ph7u6O1u07o0Hj5oXucOvmNRzc5QPbKcZQU1WBy7bjqGxUF+9eBGP6yB5oXKtKHhkbdp+GhoYKxvfrxDlbWMHU/Nqnvv4QieWbD8PXz79QPYrThHPnziHicxy6du8jtWb7bdkAw3JlMH78OKnVUZSKPXnyBEeOncSE3yK17OfP4Wr8VKtWFSy18ffBzvRh8HN07NIDhoYV8zhUfp979XNuVn0AACAASURBVPIFrl03624138YGYR/DoKqmioYNG3EFh589e4ZRI0egZ8+eWO7sjJJ6ZZAYHwNrKytRmiw1slmU24ABA8DaSdMgAkSg+BJI9JgOBShwqcHMSf2DpeSw6z+/Cvm+1izP4gtdSJaT00RIIEkMESAC0kFg4MCBOHz4sHQoQ1oIhcBWX1+kZihggPFwnuS5LrODUTltTB7aDUo/i8UeDgzCwK78tVX9c7PY+ERYufqhRev/cS1427dvz5M+xWHS3r17kZiciV79BonFXEUFBaipKCI5LZOn/c6fOYZyBnroJsdFXwsD8f37d5hbWGKW2QJoamlx01NSkjF/3jR4em7IFRnC7p04cQJhUTHoO2DoX0Xfu3ML16+cxcgRI/D8RQgOHz4EPb1SCH3/Hrq6ulDX0ED3bt0xbNgQTs6qVavxOPgJOv/bCRMmjM+Rnf0hojA7ZPV+3759uQgbGkSACBRfAkkbZv6MMclmUFDMiXDva80kp4mgTx05TQQlSOuJABGQKgL0h6lUHYfAyrA2uDY2C2DjuIJnWdcunUM5pRi0b1Kb5zW8TgyNiIbX7lMIj/6K2nXrI+rTJ0yfPgP16sleu11ebeZlntPipejVfwgqVsobxcPLen7maKkrQ1crq3Vt5JcUfP/Bgp0LHgcDdkJDVQEmJib8bCOXcyMiIrBk6TLYLV6VY5+TnQVMp0xG06ZNc9l8+/ZtXLl+E6PG/b1F5rkzxxET+QHm5uYYNGgQOnbshGnTTHHt2jU8fPQI/fv1Q82aNXNknzlzBlu3+mL7dn+oqqoiLCwMQUFBuHHjJpSVlTF16hSuDba8jV69enFRkDSIABEovgQSN8zMitpj/26xSBMuoiQ7V+dXBIqw72vNKLzYd/E9Fd4sJ6cJb5xoFhEgAjJCgNJzZOSgeFSTRQ19+hJf6Nvu38V9+fIZfhtcsNJsJI+78D9tjd9R7g8eXW0N/Pf0DZJT0uHi6o4yZcrwL0zGV4SGhsJ3mz+mzLQQiyUlNFWgraGMzO8/8Ck25bdOBHm3f/vmFQJPHYajg71YdJOFTTZv3gwoaaDPgKxiyO/evsKhgO1wsLfP0zLYzMwcI8ZNRaXKBTvDZk4ZDb9t2/DlyxesW7+BiyyJi/2K9IwMJMbHw8VlJSpWrJgLzalTp9G2bRsuEmXK1KkooVsK86zs8DT4IU4ePQCnRQ4oWbJkln7v3nHpcrLsSKH0HFn4ySAdiYDoCSR5zWJNcsRe1ERrhofojZPzHchpIucHTOYRgeJGgOWN79q1C1o/w8+Lm/3yZu+BAwcQGR2LQUNH8WxaVFQENq9ZBo+F4ossCHr4Auu2H8dcc0uuuGWdOnk7kfBsgAxOXOG8EvUbNkfzVm1Frn1JbRVoqikjJj4NqekFp+ewWjhOC8zg47OFCkP/diqxsbGwd3CEraNzznf37PBB+TL6GD58eK56UJGRkdxcpxVr8j3XXf6bUaGcAUaOHAkWQfLg8TOMnWiK44cDEPMpAra2NoU+D0lJSXB2XgklFTWoa2gi9N0bzJhuyqXA+fpuw/sPH6GooAgtLXUMGjgQVatW5atmlTSk/bBCsOPHj+dqvtAgAkSg+BJgThOulsnPSBPm9RfHteY06e9sJ+1PBTlNpP2ESD8iQAT4IkAth/nCJfWT2YcNM3MLlCtfATPmWvOk7+OH93D+6C44m43mab6wJlm7+uHVu3DuDyBFRUVUN6rJvX3/3//+hwkTsrrvyOtgxT6HDh2GTX4BIjdRR0OFS8lJScvkok3yG6wrjPf6VViyZDHXsYVGbgL+27dDQVkTXbr35m6wSI71bstQtUoVzJg+LWcyO9cRI0Zgkukc1KxVB0rKytDS0s5xWuzb7YcmDeuhXbt2WGhnj6GjJuHm1QuAkiLu3b6JrT4+uTZmBWGrVKmCs2fP4e7du1wEypgxozkn9/DhI6CqpgbDipVQ26g6F6mSkJiCUeOncDJYV6xL588gJjoKNWsaYdSoUShduvRfj5Z18WFpQ1ZWVmjYsKHEHgNqOSwx9LQxEZAqAkkb5xRQ0yRbzexcHeFea5HTRODngJwmAiMkAUSACEgTAdbW0dnZGYaGhtKkFukiAAFLK9Yq1RTlDSvwJOX82ZOIeXsPc0aLt5NLfNI3lNDKanX98n04XrwN4xwoF28HIzVTARu8vHnSX1Yn3b9/H/47dsFqwWKJm3Dz2mUkxEZhwvhfhUYlrpSUKTBnzlyMNZmBChUr52i2zMEa9vYLUa5cuZzvPX78GNdv3MSjRw8RGRGJWrXrwKhWXdSp1wDrXJdh/fr1KFu2LFzd3PEtJQ337gShS/e+SEtLRpdO/0OjRo04Wez5WLp0GVffJDw8HGpqakhJSeGK0npv9OIcG116DsDn6E+4eycIzZq3ROcCujEFnjmB4Ed38T0zAz26d/9rgd9jx45hz969mD9/Pho2aCCRU/jw4QMcHBzg6+srkf1pUyJABKSDQJL3HLG3G2ZuGE3TddIBQIa1IKeJDB8eqU4EiEBeAlOnToWtrS2qVatGeOSAwFbfbTCsVAMNmxTeajg+LhY3r1/EtUuBGNa1Obq1bSw1BG4+eI4Nu05h1959UqOTKBQJDDyPF6/e8ZVOxYseGqpKPHfKYfLmzzPFmjXu0NfX50V8sZwTFRWFJctWYMHPIsvRn6KweYMrPDzyD+OOiYnheH7+/BknT53C+cDzMKppBHs7O47f169fwZzWTZo2A5tbqUp1qKsoYt68uTl8jx8/gf/9rz0X2cKKvjKnCevSw9KC3r59C48NntDXL4UKlaqhdJmyaPe/zn89m6fBj/D4wR3UrVMLPXt0z3fugwcPsGbNWi5KxtxsHurXry/283716hVWr16NjRs3in1v2pAIEAHpIZC0Kev3oWjiSX7Z+ad8ralrpQeCjGpCThMZPThSmwgQgfwJzJkzB9OnT0fdunUJkYwTYLUXli5bAXObRYVa8ub1S+zx3YBe7RrCQE8Hzf8xKnSNuCc8DnmHDXvOQK90OUyePDlXRxFx6yLK/RY5OaFjlz5cdyFhjZJaKohNSudJ3M3rl/EjLRFDhmS1uKVRMAEW8TF37jy4efjg1asXOLxvB9auyb9+ye9SWGFTFZWsDkbZ4+PHj7Czd+BCz/v36w8/fz+ULm2A5cuWcpEo/AzWZeZ96AdcvHgBYydOQ9Pmrf66/NjhACgrZMJk0iRuXlpaGlhq37179xESEoKXr16zjCEsX74cd+7cEXu78ODgYPj4+MDd3Z0fDDSXCBABOSOQtHkuFPCrS052zaWcr/ghkvuaUwr/vS5nqIVuDjlNhI6UBBIBIiBJAq6urmAddFgRQRqyT8DHZyuU1bXRrWe/Ao1J/vYN7ssXYO38cVmt/KR4fIiMxt3g17hwOxgjx5lwtSDkbdy4cQMXLl3l6mAIa7AWw3E8Ok2s5kzB6tWrUL58eWFtL9dyWN0SFunRoFFTxMfGoHPnzujXrx8XCcLPYA4YDw9PGJQxgOnUKThw8BCXzmNlxV9XpbVr16N27Zro2bMnWC0QV1c3dOzaG43+Em2WlJgIV2dHLv2mZ88esLa2hr6+AeIT4qCnVwpVqlTGfGtrsBbmxsbGcFm1SqypOiza5eLFizAzM+MHKc0lAkRAzgh82zIvx6LsWrDZ3xDlteZkcpoI+iiR00RQgrSeCBABqSLg4uKCJk2a/DXHXaoUJmX+SmDfvn34GP4Jw8dkvUHOb1y+cA5hz2/BfJx4a5gIcnSrfQ8jU02PSyWTt8E6rmz28cXEqXP46nLyNw4s0iT+WwZXAPZvg6V92FnPgu/WrULbW97OJz97WFTGypUrEZ+YhFp1/sHDe7fRvVtXzvmc+f07Lpy/gM6d/y3UGf3+/Xuu0CsbqampXN0SfsbLly+xarUrevfqiYEDB3JLmePEfc06zDJfUKiojRvckJwYjwYN/sHdu/egoqKM0aNGo0mTX6l6Tk5OiPoUjZEjhnMRJ+JwtJ4+fRos2sTS0rJQG2gCESAC8ksgacu8nG452V1zsr4C7J1PnsiTnO46gt3XNKEoN0GfKnKaCEqQ1hMBIiBVBLZt28a9IR0zZoxU6UXKFJ3AxYuX8DY0DD37GucrZJmDBRZM6I3yZUoVfRMxr7x69wn2nL0Dr42bxLyzeLbbvWcvMhVU0blrT6FsqKKkCC0NJcQmFp6i8/TJQ9y/dQ1WVvQBlVf4LN2GRXXdf/AAXXv0RZPmLbHTzweRER9RokRJVK9RC7duXuFa/rJIjj9Tc3jdp7B5zOHGUnMmTpyYayqLfPHeln9nppjP0dAvbYCUlGRYzzXF8uXLUKtWLc5pw/4tUFJSyrMtSyFLS0tHCR1tLtqLdbgS5fDz8+OceGPHjhXlNiSbCBABKSfwzcf8Z/ec7Kojv3/NVp69HBDufXKaCP5gkNNEcIYkgQgQASkiwP7gfvr0KSws+AsJlyITSJV8CNg7OKJT1z6oWz9394vExARsWLUI7lay5SS7cf8ZNh24AP/tO+XyvFk72XMXLmPcpOlCs09HQxmJKRncG7m/jWOH96NqxTJcmh4N/giwOkJu7u548/oNKlSshOSUZLRs3R5VqxlBW6cEdvptxpPHD9CiZSsuBYd1KWNvRlk0iLq6OrS1tcFSUZo2bYr//vsPzZv/KuCckZGB0NBQrr4JazHM61iydBmMav0DRWUltGnbAco/a6l8//4du7dvxudPUYiNjYO13RK8ffUCmamJ6FFAUdg/9zx58iRYQdwjR45i584dYDJ1dHR4VY3neSwCsnHjxujePf9itTwLoolEgAjINIFvW825kBEuoiTbMSKGa82JrjLNTRqUJ6eJNJwC6UAEiIDQCLAPawEBAVyoOQ35IcDeGtsusINlPu1sA7ZvQbMqmmjXVHaK/+44dgkP3nyGm5ub/BzSb5awyAVrG1uYWTnkfMgV1FBlJUWoKCsgOTXzr6IO7NmOf+rVxL///ivolsV2PXNwsCiNuLg4nDlzBm/evgMr9Po9MxOfYz6jUuWq0NbUwODBxnB2Xgk1dXUYlNbHl69foaWtg0+RkZzDZbGTE+rUqQNPT0+EvHyF9LQ0LgKIRYLwMsLCwsCiQrQ0tVG6dCkkfUvGhKlzoKWlje1bvVClkiFGjRrF1QvZ5ueHFa5eWGJvhaFDjLnaLLwOb29vsCiXl69eYauPD1RVVXldytM8lpbDoh+Z44QGESACxZfAN1/JvNAjp4ngzxw5TQRnSBKIABGQIgJcBwc7O7A0HRryRcB9zRoYlKuMzt165TKMheU7O1pgxZwR0NPVwfmbD9GlTaNccxKSviElNR0GpXSlAor1aj907TOIK3Ypj4NFfEVGx6JHn6y6FOIcEeFhOHZwFxY5sk4uNIRNgLUcZi10W7dujf37D+DFixdcoVVWz4RFauiW1IOiggJXA4VFlcyYMRNVq9aAhoYqOnbsgE6dOhW5jkjUp0+wsLBEaf3S+PI1huv0o6enx5m43sMDVWvUQ9XqRli93B7Dhg1Dnz681Tm6eTMIu3btRmjoO1hZWQm9uw5Ly2HRJlScWNhPI8kjArJFgHOacMVLftUo+VnMJKfWiSjua05YLVugpFBbcppI4aGQSkSACBSdAHvDPWDAALCwaxryRYC9CTa3sMDqdVvyGPb44T0cCfBHhbKlcDXoHo54LoTKz+4f+87ewt6Tl6GnWwIb7CZDVYW/riDCprjz+GW8jEjA4qXLhS1aauSxCAVHRydY2y8TmU4qyopcqk5G5vc8e7i7OMHCbB7KlSsnsv1JcG4CjosWISExGUY1qmHG9Glc218LSyuoqqqhf78+6Nixo9CQFVRkds3a9QgLC0flatVx5cJZLuKwevXqhe774cMHLLSzg2H58ujatSv3nzAHSxVjjkRW14QGESACxZfANz8rzmGSb8kSEX5fc8Kq4gtdSJaT00RIIEkMESAC0kNg6NCh2LRpU84bSOnRjDQRlIC7+xpUNaqLVm075BHF6ptEf4rCysULMKxXW6irquLqg5do1qYzOnfvAw8XByw06QstDf46egiq8+/rL9x6jN2nbsDH10+YYqVS1u7de6CgqoUOnYT7AfR3YzXVlPEtNSOP/W/fvMKF04dhb28vlWzkVamrV69y9Uyya5ZcvnwZFStWRI0aNf5q8pYtWzB58mSesYwdPQoL7R241J8/R2BgID5+DMOt27fRscP/MGLECJ7l7tq9G0eOHMEmb2/o6gonKo1F5syaNQt79uzhWQ+aSASIgHwSYE6T3F1zfojlWmOci3wCFaNV5DQRI2zaiggQAfEQWL58OYyNjfP9g1o8GtAuoiLw5csXmJqaYu1G/wK3ePP6Jd69eYW01FS0aNMe+vqlubkrHC2xeNpA6OrwXoRS2Hb0nOKIs2fPCVusVMpjHz4/f01Cr36DRKZfSW2VfDvqvHgWjKMHd8NdTmvGiAyoBASnpKRgsPEg6JcqiSHDRqJatWpcYVlWVLZly5Z5NHJ0dMTHd6/QuHlrzJ49W+gav337ltNBWOPJkyc4duwYbGxshCWS5BABIiCjBJL95+MHF2qSNVgxWHFca5LTROAnhpwmAiMkAUSACEgbAVZ0kIXlM8cJDfkjsHPnTiir6+B/nbrxZVxqSgosZk3EiF7t0L1dE5TQ1uRrvaCTj168g9shEVi+3FlQUTKx3tNrIypXr4OmzVuJRF+WnqOppoS4pLxtiHl1mrAP5ywtY6OXF6VOiOSU/i7U22sDgh89xKfoaLjZmMBj50nEJaVATVUFX+MTMGeeJRe5kj0SExMxdfJEjOzVHndex2Dx4sUS0Jq/Lfft24dsZy9/K2k2ESAC8kbg2/b5OY4SzmHCuuiw7jnI6qaT56uQ7muMLR5/d4jyeSGniSjpkmwiQAQkQuD8+fO4ffs2bG1tJbI/bSp6An379cO6jX5QV9fga7OU5GQc2b8TsZ/DUbmUJjq2rI/qlURf9+L24xB47jkD/x27+dJXViefPn0GT56/xMixJiI1gbUhTkjOm57z7u1rnDyyF0uXLPnr/nv37sXD4GeoX7cWRo8aJVJdSXhuAqyLTgVdFfTv3BIVyurn1CBKSU3D24+RcPU7ga1+23MtYuk+l88cgenQbliwdhd8tuW+L42Mly5dyhWWZQVwaRABIlC8CSTvsMlb0uRnUdhsMnlKmwjhviY5TQR+8MhpIjBCEkAEiIC0EWBF/RwcHODr6yttqpE+QiJw7tw5vAmNRL+BQ4okkbVUvXXjEu7duo5KBtqYNoT39qRF2dB85Vb06DcYvXrl7vxTFFmysMbKej5mzLOBmpq6SNUtyGkS8uIpDu71x7q1awvc33/7dty6dRuTTOfixOE9cLC3E6muxVk4K+LMzqJjp47o0aMn12lnsf0CrLQch1K6OrnQsDevExeux3rPvHVFzObNQ9+2dVDeoBS8D1zErLnmqFmzplSjHTduHJydnWFoaCjVepJyRIAIiJ7Atx22P5vlZNcy+dVFJ6vWiWiuNUavEL1xcr4DOU3k/IDJPCJQXAn079+fK7ynqSneFIziylvcdoeFhcHOzh7LVm8QaOvv3zOxxtkBlmO6oYwI2xFPWrgOYydOQZcuXQTSVxYWP3jwAKfPnsc4kxkiV5el6KRn5O2e8+bNS1w4ffSvjhDr+Tbo1msAypWvgBVOtti1a6fI9S2OG/j4+ODCuVPo27EFbjx8gYbN2uDihUCsNBvDRZj8OXwOBOJTshIWLlyY5575vDkY0b0ZalWpAFPHDShZsiS8t4jWOR4aGopSpUpxNVb4HQkJCWBOk0OHDvG7lOYTASIghwSSdy6QiFUao+W3W5+4gJLTRFykaR8iQATESsDS0hJjxoxB48aNxbovbSY+Am/fvsPuvftgPHwsSpQoeqeLVUvtMK5nUzSqI7zij39SMHP2Qav/dcGoYpACsn//fsQlpaFXX9EVgC3sKXvy+AEunTuBZcuW5pnKCo/6+W9HnX+ao2btOmC1brzWrcR8ayvo6+f9EF/YXnS/YAIHDhzA4/+uYf6kgVydEjaWb9qPr7GJsJk6GPol80aZLPbaj/rN2mDYsGF5BM+dOQ0mAzvin1pVEBYVg7vP3uDm03CutbCohpmZOdc+ecMGD763uHv3LgICAkSqH99K0QIiQAQkRiB5F3OaKEDcfYc1Ri2TmM3ysjE5TeTlJMkOIkAEchHYsGEDEhOTMH++NZGRYwKsM4Wj4yIMGTEWHf79VRhWWUkBLHXja2LeIqF/4tjtvwU/4j6gaf0aqFOtIsoZ6AmdmOu2o9CvVAuTJk0SumxpE7h02XL06GOMCpWqSEy1tauXYuTwobmcpqwryoWLl/D48WMMGTkB1WtkpXWsXLIQ8XFfKZ1PyKfFIv32B+xBgDv/v4OXbNwHnVJlYW71q+PMiRMncOfqOThM/+VMWbhmB6rVbYypU6cKWftf4jZ4euLVq1d8d2LKzMyEi4sLypYtWyx+7kV2ACSYCMgRgeTdLA00T9USkTtSNEaS00TQx4icJoISpPVEgAhIJYHDhw+DFYRdv369VOpHSgmXwNatvrhy9SpGjZuCfxpmRRcxx8n378B3liT8l8Hqm+zbsRmfoqKQFB+DdbbCd2yY2Htg5JgJ6N69u3ANlzJprB7FnLnzYG23DEpKSmLXLjIyHAf2+OPfTh3RtcuvOjXfv3/H8OEjMGKcCdq07ZBLr22bPdC1c8d829uK3QA52XBA/37Q1tSAyZBu6NSifpGs8jt8ETcfvYTbWg8uNWbu7BkY3q0FWjeqnSNv876z+K5VFtOnTy/SHrwsioqKwtKly2Bvb4cyZcrwsgRsjZW1Ndc1x9bGBu3ateNpHU0iAkRAvgkwp0lW7ZKc4iViuVYf8fei6PJNXTjWkdNEOBxJChEgAlJGIC4ujnu7x8LDaRQPAqy4pJubOxo1b4WevQfybTSrb+LsaIXF0wehZAn+6xf8bcM5y7bAbP5C1KhRg2+9ZG0BqxUyeYY5tLVzp16I2o5Txw/hTchTDB5snKtNLdv3yJEj+BQTjz4DchcOjvkcjd3+m7A8nzQeUesrr/KnTZ2MPu0b4OaDECwwHQJNdbUimxr88j1W+hxC9eo1oZj5DY7Th+aSdevhC6zbdQq79wQUeQ9eFma3BeVl7omTJ/Hg4SMYlisL5rxnLdKLUg+Fl71oDhEgArJFIHmvfVagSfbIztQR8bUGH06TgyevIOjuUzhZTYKGuqpsARahtuQ0ESFcEk0EiIBkCcycORNz585FrVq1JKsI7S42AiyiwGXVatSu3xit2vyP732jP0XCz8sFqy3G8r22oAWx8YmwdtuJLb5+QpMpzYJYgd6RE0yhpye++iCuKxzRpnUrDBkyOF80W3x8oKiihZ59BuS6/zT4EYLvB2HevLnSjFSmdBs3egS2LZ8jNJ0jor/gQtAjjO6Xt2Vv4M0HOHs7BKvd1ghtP0EEsQLVLD2NRa+NHTMarL7PunXrBBFJa4kAEZAjAsl7HX52z8nukvNbhRMF/NY9R7j31YcvLpCim3cAbj94Di9nM+jp6oCcJvmjIqeJHP0gkilEgAjkJuDn5wdFRUWMHSu8D8DEWDYIsCijiVPnoEbNX6H8vGgeHx8Hj5X2WGc7kZfpPM25dPsx/I9fxzY/f57my/qkkJAQeHp5w9oubxFWUdjm4e6MqVNMULVK5QLFs+4lUZ/j0N94eK45G9evRqcO7dC5s2hbTovCbmmUOWHsaCybMxLly5QSi3oXbz3GtqNXsH2H9HQ+Cg4O5rrtnD17FsrKylxBchpEgAgQAUYgJcAxV0WTbCoFlYYV1n2NYU75HgBzmPjsPokGdauT06SQR5ScJvQzTASIgNwSePbsGby8vOhNn9yecMGG+fr6QkFZE9179+fL+muXLyAi5BZmj+zJ17q/Tb58JxhHrjzGmnXFp76O4yIndOs9ENVriC7Ki0UVbVjjDJNJE2BUSNrTu3fv4Ou/A6YzLXKOKjMjAzOnjMbRo0eFdtbFURBzSL1+/RqvXzzD3DG9UatqebFi8Nx9EhGxaVjm7CKUfSMjI1GuXDmBZVGko8AISQARkDsCyQGOOTVMsmubiOOr+tBFeViyiJJ3HyLxv1YN4eodUKDThM3z9DsCbxcL1KhiKHdnwqtB5DThlRTNIwJEQCYJDBo0CP7+/tDREW99BZmEJUdKBwYG4uqNWzCdac6XVbeDriMl7BGG9WjN17q/TR4y1xnLnV1Qp04docmUdkF79+5FeFQMho8WXsTOnzafPHoQ3zO+YeqUKYXiYG/9X775gEFDR+XMvRB4GvFfIjFDhEVEC1VMRicwZ7SKigquXApEfaOq0FBTQYfmddGwVlWJWBQWHYtVfsfhuGiJQG2jHz58CB+frXBycoKeXski2xIbG4vJkydz6Tk0iAARIALZBFL2O+U0z8mplfSzxskP/OAcKtmhKMK8rz7UMdch/J6CE/z8TYFOE3Zv37FLVN+E9Tf6wZXvpUEEiAARkE8CK1asQKtWrSj8Xj6Pt0CrXrx4ATf3NXBc5saX5Z+jo7Btw0qsthROStfxS3dw93U0nBaLJ1WFL2NFODk6Ohpu7msx22KhyHZ5+eIZjh/eg1Uuf48wYPUlzC0suY4+LF0vezgtNIe52TzUrs1fCpfIDJIBwazY8iIHOzSuUw0Z6WkY2qMtKpYrLXHN4xO/YeKCtThw6EiuM+ZXMRa9NHnyFBhWrIQ5s2bw3C3nz33OnTuH+/fvw9qa/3bL/OpM84kAEZAdAsn7nSQTaTLYIQfSnQfPczlC2HV+kSZ9u7XhIkyya53IDmXRaEpOE9FwJalEgAhICQHWdvj27duwtbWVEo1IDXEQYK0+Fyy0g8NS15ztXr54gjMnDmPwiPGICA9D7Ncv6NytVy51EuLjYT13CjzspiAsKgYtGwqWXrLG7wi+KerAOUb6WwAAIABJREFUzs5OHGZL1R6+vttQolQ5tGnfUSC9nj8L5qrjKSkpo2bturlkrXCaD0cHB5QuXfAH92XLl6NStVro2r1PztqoyHC4uyyGv1/xKM4r0AEAXPv2nTu2QyEzDUvmjEI5A/HULOFH7+lOG1G/cXPMmSNYEdpbt27h9NlAJCbEY5XLSn5UyJm7dOlStG/fHp065S1eWySBtIgIEAG5IJByoOCCrKI0UP03pwmLMrF32Zpnu+y6Jhev38+5v8R6Eox7dxClajIjm5wmMnNUpCgRIAJFIZCQkAD2B+zKlUX747coe9IayRNgThNTU1Os3ZhVfDU87CO83JZgaPdW2H82CAlJyRjYpQWuPHgL+2XuuRS+fP4sHt67ifS0dAzp3BitGvDfJvjNx0i8fh+BHSeuYvvOPZIHIgENUlJSwNoPW9ouhrKKSpE02OGzHsmxUdDV0cTHyC/oO3wSatWulyPLZakdJk4Yh0aNGhUof/r0GTCZPg+GFSrlzDlz8ghKaqtj0CD+W1MXyRAZXzRoQH/UqmqIFebjpNaSXSev4mjgTYwZPwn9+/NXy+hPo8IjIuHl6Qkzs3lcUVd+B4swcXR0hJaWFr9LaT4RIAJyTCDl4BKW6IGs1JtsQ0V/rW5c8Iub/CJNAo5dgvuimXDftA9D+3VCi8bFJ724oMePnCZy/INJphEBIpBFgL3l79evH5emQ6N4EGA1BUxMJmP9pu2cwU8fP8SDq0dhPq4v0tIzkPQtBXq62nj04h08913EIue8bUE/fgjFRvel2LTIlOeQ/5NX78Jn3zmUMdBHfEISnF1WoUqVKsUD+h9WslSHXr16wXfX4SLZv8zeHMadGuHfVg259YcDg/AqVhFjJpjmyFvnuhQzppmicuWCO+c4LlqEFm06oWnzXz//C61mwdHBHlWrSqYGR5GASGhRTEwMFlibw8vhF3cJqfLXbTMyMrHAfQfqNW0F1j1L0MGcfurq6nyLuXHjBk6fPo3FiyXzRplvhWkBESACYiOQcui3VF1WICPHcYKcWiY5ygjxvvog/pwmQXefcnVMUlJTMd3GHRamw4q944ScJmL7MaGNiAARkBSBK1eu4NKlS3Bw+JXTKSldaF/xEGARRtbWNrBfuprbkLWWbWWkh17/a5pHgZfvwrHlyFWUrVAFoyZMz3Xf020xEmK/YsHkATAopVug8oE3HsE74BSMjGpiwiQT1K2bO41EPFZL1y7MaWJpZQ3LBezNGn9j59YNqF5KEYO6/irI++p9OLaduotZllk/x0z+Ghcn2C1cgJIlCy7auWvXLiQkZ6DfwKHcusiIcBw9sBOLHOn3AS+nMnv2DIzt0QrNG9TkZbpE55y6eg/n/3sJtzVrJaYHizDp3r072rVrJzEdaGMiQASkkwBzmvzZLYcLOeEiT7IjTnJ/FcZ99YEF1xcrqKYJc5poqKvi9ftwmFq7YoXtlGLtOCGniXT+TJFWRIAICJkAizQJCAiAhoaGkCWTOGkkkJiYiNGjx8Br626cOXkYESH3YDN5UIGqfolLQMi7cKzfdRr/duuN3v2HcNElaWlpYKkc5ZS+oN+/LfNd/yjkPTbuO48588xRr96v1BFp5CJuncaMGQMru6UwMCiba+vTJw7hf526QUtLm/t+Sso3qKtrcv/vv2U9tBSSMXN4t1xr4hKSYOd5EAsWu+JS4GkcP7ofixwXoXbtv9edOXjwIF6/+4jR46cgNSUZnutWo12blhg4kFJzCnse2PNvNnsGHKcPRmm9gp2GhckR5/2l3vtRr2lbDBkyRJzbcnux3zvsmT98uGjRVWJXmDYkAkRArARSDi/PZ78/Q0r+nCL4/b85TcQKQIY3I6eJDB8eqU4EiADvBDw8PFCxYkX6oMQ7Mpme+e3bNwwfPgLe2/bi6KEAKMW/g8ng3B/C8zMwPSMD67afgLJueQwfl5WO4L1+NUqppmD26F+FRLPXPn0VCkePPThwiD4k5ceTdTBq1Kwt6tZvkOu22YzxKFFCF07O6/A5+hM2rXNGoyYtkAkFfAkPgc2EfnnE+R4IRGSyMhSVVaCipIjJk03+GmGSLYDljnt4bEDGdwWEvHiC3r16cel6NAonwH6OTCZNwIzh3dGuqWw4BINfvodnwAVs3LS5cAOFPIM56KKiojCd2lgLmSyJIwLyQSDlyHIo5NQ0UQDXZlgM12oDqBmCoE8QOU0EJUjriQARkAkCL1++hJubG7y8vGRCX1JScAI9e/bE1p2H8OTxAzy8eoyrZ8LLOHX1Lh6EJmKi6Txu+uKFZviRloR+nVqgd8fmuUQs8QpAg5YdYGxszIvoYjfn6NGjiI5JQK/+ufmYTR8P/VK6mDjdCv7eblgyawhu3H+O2PhEDO7eFirKyrlY3X36CoeuPodhxaqIj4vBgiJ0w2K1Jtq2bVvszkAQg01MJiEsLAymw3piQBfZqAl15/FLbD8VBI8N4v9dP3XqVNjY2KB69eqCYKe1RIAIyCmB1KPOnKMke3AOk+zrH8hK0RHBffX+5DQR9JEip4mgBGk9ESACMkOA/UHLWg9Xq1ZNZnQmRYtOYNAgY6x034iEhDic3rcFZmN6QV1NtVCBExd6YNDIiWjavDXS09PgudoJmamJaNe0PgZ3b5Nr/fJN+1GniWRSAQo1RAomMEfFmXMXYDrLIpc20ycOR9um9fDpSzyWzRkO1UK662w5EIhMncq4cfkcNLW04O29SQqsk38VLC0tUUr9B2ymDJYZY733nkWKii7MzMzEqvOrV6+wevVqbNy4Uaz70mZEgAjIDoGUo84F1i4pqKaJML6v1m++7ECSUk3JaSKlB0NqEQEiIHwCBw4cwKdPnyh0WvhopVKivYMjBgwejYvnjqNDXQO0+Ie31sGPQ97h8KV7uHn3MfT1SsK4exvcC36FJXNG5bFzx7FLePoxHs7OzlLJQNJKZWRkYOjQYdiwZWcuVUxGD0LAGmtoafDenWTXyeuI+hwD1ZIVMHv2bEmbViz2P3PmDC6dPoJl88bIhL0sFct0kRcsbexQp454W2Ru2LABFSpUoBRQmXhSSEkiIBkCqcdWcnEkYmqawxnJ9lMnp4nAB05OE4ERkgAiQARkhQDLz2edDVatWiUrKpOeRSTAOquw9Bw3j63wXrMEa+ePL5KkdTuO433YJ7jOz7+Fqf/Ri/iUrAJra+siyS8Oi44dO4YrFy9ASUUVMy3skZmZATuL6fBf8XfHR3p6Bt5HRMOocvkcTObOvuhjPAzduhVen6Y4sBW1jSdOnMCda4GwNx3CvR2VhWHmvBUjxpmgTZvcUWGi1t3CwgLLly+HmpqaqLci+USACMgogZTjLj+b4fysZfLTgZJT24Rdc810hHtfrS/9jSLoI0NOE0EJ0noiQARkisC6detQtWpV9O/fX6b0JmX5I/D27Vv4+m1H0xZt8PDaKdhP47+Txn/BL7H31HWsspqQ7+afv8bDzNkXvv7boapaeNoPfxbI1+xBA/ujS5smeP4uAqoqyrAY1xvlDUoVaGRGRibMV+9E2XJlMaFXc1Qoq49jF+8gOlUVk01zt4WWL1LSZU18fDxmTpsCvxVzpUuxArR58OwNth69Bg9P8abIHDp0COHh4Zg5c6ZMcCIliQARkAyB1BO/v7QTvCtO7piVP236JV+tj5VkDJajXclpIkeHSaYQASJQOAGWnjNv3jzs2rWr8Mk0Q6YJDB48BMNGT8DzOxeK5DQZNGs53GxMUK1i7na52VDmu/qjTqMWMDExkWlO4lDexcUFesopGNu/E+c0+duITUiCk9cBzJq/BF5uyzB7eCfcCX6DC/+9wEZvb3GoS3v8RmDEsMHY5DQD2prS3659nI071qz3QunSpcV6hsOHD4enpyf09fXFui9tRgSIgGwR4JwmWaEkYv2q1ttStkBJobbkNJHCQyGViAAREC2BFStWoFWrVujcubNoNyLpEiXACv8OGTkRl07sxdLZw/jS5cSlOzhx4yk+fPwAi/H90alVw1zr4xO/YbSVK06cPMWX3OI8uX/fPjjksYCnNI+9Z4Jw7X4IxvZpgxqVysJ2zS5s8fUvzvgkYvu1a9ewb9c2uBeQniYRpQrYdPfJq/gQlwkbmwViVevcuXO4f/8+peiJlTptRgRkk0DqSdesKiPZjhOuuonor8lpIvjzQk4TwRmSBCJABGSMAEvdYI6TTZuoA4eMHR1f6s63sUX5CpVhoJyAkb3b87X2zLV7eBOvht4DhuL0sQCEPL6PRTOGQEcr62275+5TiMtQw0I7O77kFufJCxbYomopdUweyls9koSkZI631So/jDGZhiZNmhRnfBKxnf2unDdnNufsKsq49/Q13nyIROK3FHRq2QBVK5Qpihie1oy2csN6z41ijzJhkWasVlblypV50pMmEQEiUHwJpJ5yzemek5Va80Ms16o9zYsvdCFZTk4TIYEkMUSACMgWgYULF3J1TVjECQ35JLBjxw68ehuKLxHvsGZ+/nVJCrL8yPkgRP/QR9+BWREqH96/g4frEnjaT8bL0EhcevgB5lbUwo+fJ+f9+/ewt7WGz7LZUFJU5GnpZHsPTJ0xB61bt+ZpPk0SLgGWzmgxbza2LZ/DU4TQhaBHiIqJRci7CLwL/4TU9EzolzaAlpYWosI/wECvBGaO6oUqhsJ1nrDW3+Wr1YHJ5KnCBVCINNZS+/Tp01i8eLFY96XNiAARkE0Cqafd/lD8Z6RJgeYI574aOU0EfmDIaSIwQhJABIiALBJ4/Pgxtm7dCnd3d1lUn3TmgUBwcDD2HziMd29C4GBqzNdb7gu3HuHqkyiYzsldcd596Xw8CH4GFpJPgz8CmzdvRtqXD5g+omehCyM+fYGb/3FYLnBA+fKGhc6nCaIhwLrB6Cgkc46Ov43AoIc4e+0BktMBDW0dVKxYEZMnT4a2tnbOMtZ++s6dO9jkuR6u1hNQskTWvVNX76Jrm0ZQUf57rZuC9jdd5InuPXtj6PC8LcFFQ+WX1Dlz5mDatGmoV6+eqLci+USACMgBgdTT7jmRJawjGdclRwxfVXvMkwN6kjWBnCaS5U+7EwEiIEECc+fOBat7Ub9+fQlqQVuLisDt27cRsO8gBg0fhStHd2K+yQCetzp5+T9EpJdAn4HDc9a8e/Mavl6roa6pifUenjzLoolZBC5evIhzxw9g6ZxfH27T0jPw9kMEPn2JRxVDA3z+moDjV+7iQ+QXzJwzD02bNiV8EiLw5Ekw3FethOPMYahQ5leB01fvw7loEqPKhoiJTcD1+88QEh6LMWPH85RCZWlhju7NjdC2aV2s2noYz19/wA4XMygpKfFt6aSF69CoWSuYmZnxvVbQBY8ePcK2bdvg5vbnm2NBJdN6IkAE5JVA6pk1Wab9GUAi4ms1cpoI/EiR00RghCSACBABWSXw8OFD7N27F+xtKg35IxAUFITL14IwZsJUODuYwc1yDM8fzK7ceYJ1u06iR59B6NK9D1ezTUVFFRazJ2O7vx/U1dXlD5iILXr69CkWO9phtfUkJCR9w/6zQbh2NxjVq1bBDygiNTUF6enp6NqtOyZM4C+dSsSqF0vxo0YMh4nxv/j3ZxHk+89eIzAoGE9ff0RJ3RJI/vYNKqqq0NEtCeeVv7fR/DuuJUuWQBvfcPfpa6RnZMB2ijH+qVkVijymbGVLX7pxHxq37oj+AwaK5HxOnTqFXr0KjrCZP38+xowZgwYNGohkfxJKBIiA/BFIPbv2V2RJVgnYX810cq5/RqAI8b5qN9loGy/NJ05OE2k+HdKNCBABkRNwcHBAz5490bZtW5HvRRuIl8DOnTsRE5uEJs1bYa/veqyzncSXAk6ee5GQpoCM74CiohISExKwwnk5DMTczpQvpaV8ckxMDGytLcFSNdq074ApU6ZIucbFV724uDjMmDYFNatUgIa6Kj5EfUWNWnUFjuoIDQ2FtaU5MjO/Iy09DQ1qVcXi2fyl1izdGIB0ZS0sWbJMJAd09uxZbPT0gFHN2nBZldchxLoKnT9/nisAS4MIEAEiwCuBtHPrOEdJ9hBxgElOQItatzm8qkjzCiBAThN6NIgAESjWBCIjI2FpaQlWNJSGfBHw8fGBfrkqKF3aALt81sJj4WS+DZxsvx6Dh49Bnz59kJSUxBW0pCEYAeYwUS5i/QrBdqbVRSEQEBCAxMRETJrEn9Pxb3tFR0fD1tYWnz5Fod+/rWBizHv796evPmL/pUdYtGRpUczhaQ0r8LrZaz0+f43HgYOHoKqqmmvdyJEjsW7dOhgYGPAkjyYRASJABBiB1HPrCqhhkh1xUlCNE8Huq3adTQcgIAFymggIkJYTASIg+wS8vLxQtmxZGBsby74xZEEOgQULF+J///aEsooKgs4ewIIpA3nqAPI7wg8Rn7Fs8yGs2+BFKTn0bBEBIRNgzhMWdWIxrg/qGRXesvfJq1Cs23Uam322CVmTvOLGjhyO7z9+YPnKVahSpUrOhH379uHr169cPSwaRIAIEAF+CKQFemSl5GSn3vyWgpMdgiKK+2pdZ/GjJs3NhwA5TeixIAJEgAgA6NatG1hINqtiTkP2CbDUAienJRhrMh3nTh1B3TLK6NOxeZEMM7HfgEVLluf64FQkQbSICBCBPAT69O6FnassUEJbs1A6rAW145IVIv9Z/PbtG4YYD4KSkiKq16gJVzc3LqWMRUj17duXazNMgwgQASLAL4HU8x6/1TRRwA/8FlkC0V2rdp7Jr6o0/w8C5DShR4IIEAEiAODw4cMICwvDzJn0D4u8PBDMEbZt9xE8engPT26egfnYv7dNzc/u/Wdv4PiV+/DfvlNesJAdREBqCHz//h0jhg3BrFG90LpRHSgrK+Hh87e4/N9TjOvfETramvDYeQKPXryDgqISBg0Zhn79+otcf5aS9N/1C+jWtjEOBN7Bx/AIlNTVRcvWbVCtWjX069dP5DrQBkSACMgfgbQLv3fey44pybKTc6BwMSjZQ3j3VTvPkD+YYraInCZiBk7bEQEiIL0Exo0bB2dnZxgaGkqvkqQZzwTWrV+P6jUboGmLVtjothjTjNujXGm9AtdnZGTiUGAQ9HS18PRNGOISUxD84i38tu+Apmbhb8F5VowmEgEikEOAFQdeaDsfyExHs3+McP7mQygrKmLW6N5Yt+M46v7TEKam07juOqXFUIT53LlzWLvGHXvdrKCirIzgl++xfucJWC9wgIuLC3x9fen0iAARIAJFIpB6wbOAmiYF1TIRzvdV/51eJH1p0S8C5DShp4EIEAEi8JPA3bt3ceXKFYG7QxBQ6SDAIoe8vDejU5deCDyyA8vnjvyrYpHRXzHdaSOq1agBHR0d1KtXD6zgIw0iQATEQ2D16tVcYe7Pnz9j4QIbeG/aIp6Nf+7CikffuHIBbvMnQVNdFYs89yL801esWe+JLVu2oFOnTmjWrJlYdaLNiAARkB8CaRc3/lnNRCzX5DQR/Bkip4ngDEkCESACckRgxYoVaNWqFTp35r2bgxyZL1emBAYGIuRNKOrWb4igcwcwf+LfQ+oTkpIxbZEXdgfslysOZAwRIAJ/J5Ceng4VFRWwWiZTTSZgre1krPE/hvrN2qL/gAG4fv067t+/D2tra0JJBIgAESgygbRLG7k2OD9+ZKfi/BDLtWpH0yLrTAuzCJDThJ4EIkAEiMAfBHr16oWjR49yf0TTkF0C//33H3bv3QfjoaNx7sh2OEwdlK8xX+MS4eJzEN3aNcaZ6w8xdPREtGzZUnYNJ82JgAwSYA6LyZPGw7BCJSgqKSMqIhz9BgzEkCFDRGrNrVu3YG9nh4oVK6Bhw4bISPyMN+/D0bJdB0yYOAkpKSmcDsePHxepHiScCBAB+SeQdnnTz8iSgmzN7qsj3PvkNBH82SKnieAMSQIRIAJyRuDmzZs4efIklixZImeWFS9zPnz4gIV29nB284L5jAlYazMBBqV080Bw8zuCkI9foKqkhM7dulPr6eL1mJC1UkLAyckJZTV/oIx+SaiqKGH/6evo3qc/Ro0aJTINZ82ahbK6aqhQuiQCgx4iKTkV2poamGdhhRYtWnD7LliwAAMHDiRHqshOgQQTgeJDgHOasC6NP7IiTMT1VbXDlOIDWUSWktNERGBJLBEgArJNYOXKlWjatCnXipiGbBJgb4iNjY1RqpQ+alSvjrE9GqF6xXJ5jIlNSMIMp41cuKyLq7vI25nKJk3SmgiIlsBiJyfULqeJoT3b4dq9Fzhz+zmWrVgpsk0tzOeiZd3K6NqqAZZs3I/xU6Zz6Tnt2rXL2fPMmTN4/PgxV2eFBhEgAkRAUAJpVzYLKqJI68lpUiRsuRaR00RwhiSBCBABOSXQp08fHDx4EGpqanJqofybNXDQIKipqkJXtyTaNaiMsf3/zdfoB8/fYvmm/djq64cSJUrIPxiykAhIGYEJ48bAfGwfeAecwefYBOzdd0AkGi5evBgvngXDxLgrVFVU4LX3FGbPNUfr1q1z7cccKCNGjOBSNWkQASJABIRBIO3qlpwAk2x52QEnorxWaT9ZGOoXaxnkNCnWx0/GEwEi8DcCLNed/cG8bNkyAiWjBJ4/f44TJ06A1S35Fh8D89HdYVimVO4PRympmLVkE7bt2C2jVpLaRED2CSxe5ID3b99gwOBh6N+/v1ANev/+Pby9vfEk+DHaNq2LprWr4uq95wh5H4E9Afvy3cvGxoarZdK8eXOh6kLCiAARKL4E0q75SMR41fYmPO978OQVBN19CierSdD4/y5iNLIIkNOEngQiQASIwF8IsBaYDRo0QI8ePYiTDBLw9/fHkaNH0aFTV6irqyH50zvMGZ37LJOSUzDf1R9TZsxFkyZNZNBKUpkIyAeB7C42wrTGxmY+Qp4/w+Ae7dCvY3Mcv3wX1x+9Rsd/u3Cd0qpUqZJnO1bT6sWLF9R+XpgHQbKIABEAc5oocN1zskua/Ph5/edX4d5XaTcpF3037wD47D6Z870l1pNg3LsDd01Ok/wfVHKa0A8wESACRKAQAlZWVnB0dIS2tjaxkjEC7MPP/YfBGDV+CsLDPuLKyd2wHt+H+yOFjYyMTExx9ISCkgo2em+Curq6jFlI6hIBIpAfAZZeM33qZLRtXBtThmbVplq+6QAyVLSwaNHiAqHFxcVx0YUuLi4ElggQASIgVAJp1305eX/2yBH1tWq7iTl2JKekwcvvMCaO6AU9XR28fh8OU2tXrLCdghaN65DTpIATJ6eJUH8USBgRIALySCA8PBwsVJtFLdCQLQJ37tzBxSvXMWaCKVfodabJCOxfYw1FRUXOEHf/o0hR1MHChQtlyzDSlggQgQIJpKWlYdSIYbCcOBAtG9bCtbtPsf/sTVQ2qgNLS6u/khs9ejTc3NxQtmxZIkwEiAARECqBtBu+vyJLoIAf+AGFP79ykSj5fD97XhHuq7SdUKAdzIniuGorWjerx0Wb/Blpwq49/Y7A28UCNaoYCpWHLAkjp4ksnRbpSgSIgMQIXLhwAUFBQVz7SRqyQ8Bx0SJER8dg+JhJqGFUC062c+A8dzj0SmRFDSV+S8bgOc5cDQX2YalUqdz1TmTHUtKUCBCB3wls3rwZj+7fQ3T0J1SqXAkDjYfm6oyTHy3WZr5Dhw7o2LEjwSQCRIAICJ1A+k2/HJm/HCbZkSdZjpLsIcz7qm3GF2jL17gETLdxh4XpsDyRJsHP32DfsUtU34Rqmgj9Z4EEEgEiIMcEvLy8uLePrI0tDdkhYG9vj6pGddC91wBMmzgMxzzt8ijv6nsYj1+FwX/HTtkxjDQlAkSgUALx8fE8dcTat28fvn79iqlTpxYqkyYQASJABIpCIO2mXwE1TAqqbSKc76u0Hleguqy+CRvmpsO4r9mRJn27teEiTLyczbg0nuI+KNKkuD8BZD8RIAJ8EZg7dy73R3X9+vX5WkeTJUegV69e8PbdC2UVFWxetwLD/m2A2tUq5FLo0p0nOHLpAdZ6bJCcorSzTBEIDQ1F5cqVZUpnUjZ/Ao8ePcK2bdu4tBwaRIAIEAFREUgP2g7gR66qJllX2VVN/vyaPVuw+6oFOE2YwyTy05dckSTMaWLvspVD8HuBWFExkRW55DSRlZMiPYkAEZAaAqyTDiswqqSkJDU6kSIFEzAzt8CUGeYoqVcKa1fYwXJsN+iXLJGz4ENENGzX7MSuPVlvW2gQgcIIREZGwn3NOsR8/gQnJydUqJDbCVfYerovPQRY/ZOBAwdyv9NpEAEiQARESSDt1va8NUwKqm0ixO+rtBqTx6z8HCZsEnOaBBy7BPdFM+G+aR+G9uvEpe0U90FOk+L+BJD9RIAI8E3g1atXYK2IN27cyPdaWiB+AgEBAfgYEY3mLdviwA4vuFvnLoh2/NIdnL31DB6edJ7iPx3Z3JGlcgTs24/SpUvD3c2Vui7J5jFyWrPIQVtbW1SrVk2GrSDViQARkAUC6bd3SERNlZa5nSZ/puT8rtTvhWBTUlNz1TuRiPJSsik5TaTkIEgNIkAEZIvAmTNn8OHDB0yePFm2FC+G2qampmKhnT3MbZywZ5snSip9w+h+HaGirIx3YVFw9NiL7bv2FEMyZHJRCaSnpyMqKgr6+vrQ0NAoqhhaJ2EC3t7eqF69Orp1y2pJTIMIEAEiIEoCabd3cjVN8OMHkN0FRwzXKi1G5ZiVXfj18bM3uUzt06U1l6Zz6kIQgu4+zUnZ+bMlsSj5SLNscppI8+mQbkSACEg1AR8fH2hpaWHEiBFSrScpB7x9+xbb/HfCdJYFvNe7oXppJYzt1wEJSckYYe6CU6fPFIgpLi4Oa9asg4FBady7fw+bvL1zWhYTWyJABGSTwM6dO8GcXxMmFNyKUzYtI62JABGQVgLpd3ZJRLXfnSYSUUAONiWniRwcIplABIiA5AiwNJ1//vkHPXv2lJwStHOhBFjdgpkzZ2HQsLFo3LQxwt49AAAgAElEQVQ59u/cgls3r0FPtwS01FXwOjQC+w8eylcOS+8J/RiBLzGf8eb1Kzg42KNevXqF7kkTiAARkE4CJ06cQEhICMzMzKRTQdKKCBABuSSQ/t9uidil0nykRPaVp03JaSJPp0m2EAEiIBECdnZ26Nu3L1q3bi2R/WlT3giwt8ojRo5EqVL6MJ1lCZa2s8t/Ez5HRyP2awyOHTsOVVXVPMIyMzNx+vRpVKxYEVWrVoWuri5vG9IsIkAEpI7A9evXcfbsWa6ALw0iQASIgDgJpN/9LRU4u4lOQQoI8b5KM4qIFvScyWkiKEFaTwSIABEAMGvWLO6/OnWowrg0PxDPnz8Haxv9/ft3lDYog5jP0Rg3aRqCH9zB/ft3MW+eGViLYhpEgAjIH4EnT55g06ZNWLt2rfwZRxYRASIg9QTS7+5lpUyyS5r88VUBP378EMl95abDpZ6NtCtIThNpPyHSjwgQAZkhMGbMGK6rTrly5WRG5+Kq6Nq163D/wQNoaGjBfokL7t6+iatn9iMy6jNK6JWEmoY2XF3diisespsIyB2BsLAwLFiwAH5+fnJnGxlEBIiAbBBIvxcgEUVVmg6TyL7ytCk5TeTpNMkWIkAEJE6Apens37+fWpBK/CQKV+Dx48fw9/dH0rdkVK5cFV9iopGclIAvXz6D1UAxnT4LXbt2LVwQzSACRECqCSQlJWHUqFE4cuSIVOtJyhEBIiDfBNLv74MCfosoAcRyrdxkiHyDFYN15DQRA2TagggQgeJDICUlBUOHDsWxY8eKj9Eybunnz5/x/v17/Pfff2D1S3r06IGIiAi0b99exi0j9YkAEWAEevfuzTlMVFRUCAgRIAJEQGIEMh7sR3apkp9dh8VyrdKYnCaCHjo5TQQlSOuJABEgAn8QYPUyBg8ejEOH8u/GQsCIABEgAkRAPAQGDBiAw4cPQ4EVEqBBBIgAEZAggfQHB7jfRVm1S8T3VbmRsQStlo+tyWkiH+dIVhABIiBlBOLj4zFy5Eiw1pY0iAARIAJEQLwEmPOaRZgcOHAAWlpa4t2cdiMCRIAI5EMg4+HBn99lTlwWc5I9RHtNThPBH0dymgjOkCQQASJABPIlwFrashonzHGSXytbwkYEiAARIALCJ5CcnIyBAwdyv3uVlZWFvwFJJAJEgAgUgUDGw0Ng7XGyI02y2+eI+lq54cAiaEtLfidAThN6HogAESACIibA3nbu3bsXOjo6It6JxBMBIkAEijeB2NhYjB07lupKFe/HgKwnAlJJIOPxkax+w9kju/8wfkaa5Fz/nCCk++Q0EfxxIKeJ4AxJAhEgAkSgUALGxsbYtGkTSpcuXehcmkAEiAARIAL8E4iKisKsWbOwb98+/hfTCiJABIiAiAlwTpM8DpI/HSbCv1Zu0F/Elsm/eHKayP8Zk4VEgAhICYERI0bA1dUVFSpUkBKNSA0iQASIgHwQCA0Nha2tLXbu3CkfBpEVRIAIyB2BjGDWWTGnf84vB0q2I0VEX5X/IaeJoA8TOU0EJUjriQARIAJ8EBg/fjzs7e1hZGTExyqaSgSIABEgAgURCAkJgbOzM7Zu3UqQiAARIAJSS4A5TQrqmsNqnbDUHVHcV6rfV2qZyIpi5DSRlZMiPYkAEZAbAosXL0b79u3RuXNnubGJDCECRIAISIJAYGAggoKCYGdnJ4ntaU8iQASIAM8EMp+c+K1nzg8oQEEs18r1+/CsI03MnwA5TejJIAJEgAhIgMDy5ctRuXJljBkzRgK705bCIpCQkAAfn63o378fqlevLiyxJIcIEAEeCPj7+yM8PBw2NjY8zKYpRIAIEAHJEsh4euKnoyTbYSKer0r1ekvWcDnYnZwmcnCIZAIRIAKySWDbtm349OkTrK2tZdOAYqo1a2caFhaG9R4e+Pr1KypVqgq9kiVgaWlRTImQ2URA/ARWrFiBihUrcp1yaBABIkAEZIFA5rNTEqhoAijX7SULeKRaR3KaSPXxkHJEgAjIO4Fz587h+PHjWLt2rbybKhf2JSUlYcnSZYiKjES9enVRo0YNVKlSBc2aNZML+8iI4k3gx898emmnwDrksI5klOIo7SdF+hEBIvA7gYxnp3+WLsmuXQKxXCvV6UkHISABcpoICJCWEwEiQAQEJfDkyRM4OjrCz88PWlpagoqj9SIiEB8fD1vbhRgxbjKOHdwFRwcHOi8RsRaG2Hfv3oH9bH38GIbMzEzo6ZXEyJEjhSGaZxlfvnxBqVKleJ7PJp4+fRoXL15C33598b/27fNde+vWLaSmpiIxMRG9ewsedh0dHY2HDx/iwqVLGDl8OBo0aMCXzuKazNLhWDFtlt5Yp04dcW1L+xABIkAEhEIg8/mZHDnZPXQKEizM+0p1eghF/+IshJwmxfn0yXYiQASkhkBsbCz3YWD16tWoWbOm1OhFimQRYB9+XVa7YcKUWXj14imOHdqH+fOtqI6JlD0g79+/5zoP7N0bgNj4BFSsWBkGZQ2hpKSEyMgwfHj7CsuXLxOJ1t+/f4eioiIiIiI4Z9q9e/dx5OhRWFqYo0yZMmBON11dXS6lS19fn5vLBkvRMzAw4CLOjh47hspVamD46Ik4ELAdVSoawsioBtLT07l57Dl8+uw5yhtWhIqqGjLS0/EjMxXlyhuib5/eKFmyJOcgunnzJm7eDEJCYgJK6pbknCtpaWkoW64cdEvo4N37UE6fjIwM7i2nuoYm1NW18Dk6AoONjTmHDJPDUtGUlZW5tRoaGmjTpg2nuyTGixcvuNolrI6Jjo6OJFSgPYkAESACAhHIeH42u0lOrgiT7JydHz+yI09yR6AIel+pdneB9KbFADlN6CkgAkSACEgRgenTp2Pw4MHo2rWrFGlVvFVhKQsODo4YazILl86fhp6uJrp368Z9AKYhWQLsQ/21a9c4p0DIy1dITknlPugbDxuDSpWr5lHu0vlT+O/WTdSpUwuDBg7knAEnT54CO+OqVaugQoUKnMOD1cpgzoLCBovQOHcuEA8fPQL7fyaHfaBXVFBENaNaaNC4GY4e2I1v375BAUBqagoqVq4CRUUFxH79yrpLQqeELr4lJaJegybo1KUntLW1c7YNunEZIc+fQFlJGXr6ZaBf2gBNm7fKpduzJ48R++Uzbt28gpSUFHz//gPVatRE85ZtoVdKHx/ev8X3Hz9QSr80EuLj8PVrDKpVq8k5WlTV1HKZ+PDeHdy4dhE6OiWgrVMSSsrKUFFR5v56T/mWjCeP7sLVdTXU1dULQyPU+yyN8fDhw9iwYYNQ5ZIwIkAEiIA4CWSGnIMkipoo1e4mTjPlci9ymsjlsZJRRIAIyDIBVt+EvQG2sKDCotJwjuwtP4tg2BNwAE2at8LHtyHo168vDA0NpUE9udQhICAAvXr1yjei4NKlS4iKisL70A9c9EXlqjWgqqaOatWN0KBR00J5xER/wscPobh88QzSUlM5x0aJEiURFRmOLzHRCPv4Ae3atsGYMaMLlHXs2DGcOHGScya069gFTZq2gI6OLhSVlLiolj9rg2RfZ3+Nj4uFuoYGFBWVOAdIdpRKocoXMoHZo6KqykXbCHuwqBY3l0WoXKkyahrV4BxLRkZGXBTM69ev0aJFC2FvyclbtWoVF+XC6pjQIAJEgAjIMoHMkEBwHvTs3JvfIkv+/H72Nft1zhzsgtxXrEkv4gR9bshpIihBWk8EiAAREAGBU6dOYd++fVizZg1KlCghgh1IJC8E7OwduA+Fw4cNxdnASxhnMh2Xzp/FzesXYFjeEPOtrXLSLHiRJy9zhPUh/3cecXFxnDPE3387KlevhZDnwahgaMi15u7WtQvOnz+PwPMXULvuP9A3KANDw8qoXbee0JE+ffIID+5cg+VvTksWycL0+/DhA4Ju3YKqhg7atOuIsuWKn+PsyeMHePf2Db58juIcTczxU7FSFZQqqYOKFSugefPmQvmdxVIW582bx9Wh6dGD8vGF/qCTQCJABMROIPPlebHvyTZUqtlFIvvK06bkNJGn0yRbiAARkCsCoaGh3IcGS0tLtG3bVq5skwVjIiMj4bjICebzF8HVeREMK1TA1Jm/on9Cnj/DmeMHYGVlwXexT1mwPz8d2QfZ8PBwXLt+nYuoSIhPwLx5c8G6CjEHHyu+Onz4CBw9dhRfv3zNSe/Q0dbmWmuzCAhW04M5XVjUBYsUiYmJQfCTp1wdDXUNLYydNA3q6hpIT0/Dw3v/IS72C4JuXIXxsNGoW7+hyNCxtB6/LR5IiI+Fy8qVUFFRwfPnz7F5iw8+hIZy9UL0DcqiY+fuaNiYuiX9eRBnTx1DdHQUwkLfYKWzM9T+SP3h5+BYyhWLuGPPFEuZokEEiAARkAcCmS8v/FbTROFnVGJWJAn79zErGlH414pGneUBn0RtIKeJRPHT5kSACBCBwgmwzjrsg8PUqVMLn0wzhEYgMDAQFy5cRLPWHdCmXQe4LF3IpVTMsbDL2YOlLHiuXQkH+4XQ1NQU2t6iFsScHPfv3+eccazeButGYmpqyjkzWDQF61LSsGFD7h4rwBkRGYXo6E9ISvoGHd2SaNS0JTLS0qGtUwJXLpxCWlo6/u3Wh2Pw/Olj1G/YhKuhwWp7xMfHIS72K+7duYG3b15DU0uLizJmTpfSZcpBT780GjdpwdXYKGgwzsoqKiLF4u/jhft3b8Hb25ura7LVdxtXTHbk2MlQVhbt3iI1TMzCH92/yxWxjWYFbssYIDUlFZqaGqhhZMTVAmKdebKL4OanmpeXF+dMY7/3aBABIkAE5IlA5quLnDk5KTfZxmWn7Py8FvZ9JaN/5QmjRGwhp4lEsNOmRIAIEAH+CLBUnatXr3JvXv/2gYM/qbI9e+7ceVxdEfZBX1+/FPdBt2XLlvl2H/qzxkRhlrMPzp+/xCM9PQPtOnRC/QaN8fzpE+zbtRWVq1bH+Mkzc0Qkf/uGudMn4PjxY4WJlYr7LHrC02sj5/D48f070tJS0aptJ1y5dI6rHcFSLTQ0tRDzOQpfY2K4dJjSZcqibNnynO1/joiIMJQvX3g0gChSeoQJ1GH+HJiYTOKKqZ45cxZtOnRFi1YU4VVUxixSKDU1jXtlygrgfvwYiuOH92LOrFmoXbt2HrEsDY5F1nXu3Jkrhk2DCBABIiBvBDJfX/oVUZJd2iQ7wgQK+AEWafIz4kSI9xWrd5Q3lGK3h5wmYkdOGxIBIkAEikbg2bNn3IcKNzc31K9fv2hCJLiKpbuUK1dOKBqscHbGq1evERkRwX3oZ1ELrACmooICjhw5wu3BoiVY+1dWrPLu3Xs4ePAg+vbtAz09Pa5DCauV8ftgqScsBYMNVr9i1arVUFNTx9t3b6CtrQN1dTVUqVwZUVGf0LX3QBjVrJOz/P27N7h94wLmzp4tFPuELYSlwNy+fRv/196dAGdd5Gkcf+QICbkDOTkC5OAKp+GIMLKujgoqOJSixVjrllNTzoy1y66szoziyqLMrOM6Vk1ZW7rWuKsOC3MgWgrK7qA7DCAMiAhyJCEJCZD7IBdHSMJWNwQBOV6aIHmb77/KQszb79v96RB5n/f3/3VeXr6qamr0o3k/sS9hGpKaKgpT/XHuZVxDQs4+XaWz59WVnu+95ctUXVWh6Jg+uu/Bh7rS1IJ6LqbKaM3/rFJxYb4mTszW/fff/7X17Nixw96+ZULh8wUqQQ3A5BFAAIFTAu2Fa09FIRc6ROerkpPz9351+3r3c0KTI0db9OyLb2jlmo12Zs89+Yhmz7iZfbqIAKEJ3x4IIIBAkAmY0MRUBJjjibvi1VFRcG51x3333afe4REK7RWiuXPn6uWXX9bA1FQlJiTqeGurHvruXHs/r7kVyRwxmpiYqJycnPMu0TQMfXrBM7bHRXJKf1ttUpC/Wz17nDy9pP5QvZoPNys2rq+qKsttgHLLt6drz84d9i8s5ujV1tbjSkxIUkJCgsLCw/TRqg/tiSA3dOum4cOHKT0tTQcPltrjZM2Rr71CQxUVE2ePhU1O+Xplxcr3/qD0wf11yy1dqwzWWC1cuEjjsidq0JBMZY0e2xW/bZiTJwJtra0qKirQjm2f6XjLUdss9ta/vuWCx6ibY4RNP5vHH3/cEwGWgQACCJxfoK1w7Rm9Szp6mFz9X7sN/tZZE/rla7+zv3/80Tmqq2/UD3/ysuY/OkcTxn71YRB7eLYAoQnfEQgggEAQCpiqieXLl2vRokVKS0v7xlfQ1tZmwwlzNLKpIDGhhDmW1zT0NM1ATcWGqW6oP3TodEVHZVWlQnqGqL6hXr3Deqv9RLuOHT1q+2GMzMrS4cNHbBm/OYJ1zPgJqq2pVm11pWJjY2TeiGVlZSk5OVnDhw9XS0uLCgsLtfydd1S8r1gJSUma+Z0Hbd+LI82H1Se+r+ITTla1XOi2kMryMh1vbVFlRbltwjY+e5LKy0sVER6pL7d/rtzdX2rAoMGaOHmqrTS52PXe8qU6UFKkf5j394qPj//G9+NiL2g+xX/hhV/oiacXnTbpUhNkMl4IbN60Xn/ZsFafbfmLpkyZqrFjx6hv374XDD7z8vK0cOFCzZkzR/fee68XBiwCAQQQuJhAe9GfT335nCYmp88T7hjduV8/MzQxIclPf/a6nvjRg0pLPdlL7MwQhR08vwChCd8ZCCCAQJAKmAoC0yxx2rRp9ljOb+JqaGjQ84sX68iRo7YS5GQwUq9eYaHKHDZCY8dPVHr6UNs0NDYuTo0NDbaqw9z+ERMbp7raWjU1NdpeGva+XVP3caLdTj1z6NePjy3Ym6fW462qqChVcdFeO85UjpggxPTYqDtUp+qqShvehPQK1cLFL9nnvdqX6deQu3un9pcUa9OGtZo1825NnTpV0dHRV/ulL/n85tYi07dk167d2rxlsxISU3Tr7XcpLePrfSQu+WQ8AIGLCBzYX6w/f/K/ys/brcyMDN1114yAbq9ZsmSJ1q9fb0MTU+nFhQACCFwPAu371pk2sKdOyekIRq7+77sNmnKat6C4VE///HUt/un3T4cm76xaq42f7dK/PPGIwkJDroetuOw1EppcNhkDEEAAga4lsHTpUn344YeaP3++xowZc8WTKygoOKt6xQQSpvqj43r11Ve14dNP7akio8aM7zKNac2Rsea2pc68PvnjavUK7aXmpka1HGtRaO8w+5ed5cve1o03Zmvw4MGaNGmiMjMzO/NlA3ouU93zzooVqqyoVFtbu774Ypu69+iuhPhEJaX0V+rgNA0bOUrx8YkBPR8PQuByBJa9/WsdqqvSjOnTNXny5ICGmhObXnrpJd1zzz164IEHAhrDgxBAAAFfBNqLN3S0d+04V/h0jxP7KZL90OdUN5OT5xB3yte7pZ4dmrz478v086e+r9jok1W0hCaX/g4jNLm0EY9AAAEEurxAaWmpbRDbp08fG56EhLh/UvDYY4/ZW1/S0zPs/7BN5cbIkSPU2Nikmppae8tKYmI/5Uz1vxv7gif+TtXVlfY2gwEDBthP0VNTUzVlyld/AbmSbw5TMWNuZzL7ZfqpXOwyx/+aW6AOHjxob4My/VaGZ41RYnI/G4yYwMhU9ISFBc/Rx1dix9hrJ/Crf3tet9164T4l587MnEhkwhJTBWV6l3RWQ+hrJ8ArI4AAAsEpQKWJ274Rmri5MQoBBBDokgJr1qyxb07mzZunO+64I+A5muM+FzzzjOrq6my1SnVVlQqL9mlE1mjFxfWVbuhmj5UdNCRNcX36Bvy8wf7A7Z9v1rvLf6uy0gO2r8mSJb/ptCWZSpFFzy+2fV2Me2RkpKbd/K3zfgK/f/9+LVr0nAakDlZsn3gNGzFKI7NGd9pceCIEAhFoaKjXlk2f6t0/LNGjP/iBvn3bbZcc9tFHH+mVV16xYW5Xa5J8ycnzAAQQQMAzAXqauG0ooYmbG6MQQACBLi3w1ltvaeXKlXr44Yc1Y8aMgOZqjqRdseJdVdfU2Ns9zOkySYkJtgHrxo0bVVpapn79+9vmrsNGjFRlRYUSEpOU3G+gEhISNXRE1iUbpgY0kS70oL35e/T7//5PjR41WjNn3mP7uAR6mUaXpl9DxzHGZ46rra3Vv77wC33vh/+oyMgo+yVTSfLBe7/TpOzxypk86ayXMf0f/vjJn+ytQa3Hj9vKlMKCvfqrW+/Q7dNnBjolHofAZQms/dMabVr3fyoqLFBGZqaKCgs1ZMgQdeveTU8/9ZQN+i50ffDBB3rzzTc1a9YsPfQQRzhfFjwPRgABBK6iAKfnXD4uocnlmzECAQQQCAoB06TVhCcmDDHhyZ133hnQvM1pOObEFfPGPjQ01L7pMZc5MceU2ZsGtKZ/iPn3AwcO2H/fvXu3Skr22z4nWWPGBfQ6wfKgQ3W19jSdpW+/oZEjs9TU3Kj+/Qdo8KBUe0tNRkaG4uLitGDBAu3Zk6uBA1NVU1Nlb5tpqK/T4ueft7dNmcvYzp//TwqPjNSD333kVHPcGlVWlMm8TlVlmY40N+nZZ//Z2p955ebmauvWrda9Z8+etjqlsKhIqYMzNGfu3wYLJ/Ps4gKFBXna/vkWFebnatSoLGVn32hPwDJ9jQLpGbRq1Sr7c8f0OTE/d2JjY7v4ipkeAgggcH0JHDnaomdffEMr12y0C3/uyUc0e8bN1xfCZa6W0OQywXg4AgggEGwCVVVV9hNfc6LK9OnT7W07ERERzsu4++67dezYMds/w/TSMCdojL8xWz16huhvvveYevf2t6fGwQP71dRYr0OH6lRTXa3c3Tvs6T2mmsScDGSCpZaWY9Y2KipKPXr01I9//KQGDRp02vv999/Xlzt3KnfPHkVFR6uxodFWjqSkJNtKFtNU1lSorFu/Xnm5efaEotCwUIWHR6ihodGeSmRu0znRfkJJKf2UlpaplP4DnPeTgQicKfDi4meUM3mizJ/zQP8sm1vNVq9ebavbRo0aZcOSjqAQXQQQQAABBIJdgNAk2HeQ+SOAAAIBCpgqhxUrVtg3N2PHjrXhSU5OToCjz36YaTy7a9cuFRUVqay8wjYzNZUTvlWZBIpjjlaur6+zt9jU1lTZUOXg/mLb9X7zxk9tNcrs2d9RWVmZrQ4pKS5RU3OzMoYOV7/+qTp69IjCQsNshYppmL+vKF+3T5+lAQMH2SOZe4WGKSaGT+wD3Q8e5y6w7De/VkJ8nHImTTrrFK3zPeOGDRvsz5Pt27fbnyezZ8/mCGF3ekYigAACCHRRAUKTLroxTAsBBBC4mgLr1q2zb3Z27txpb9sxp1qMGzfOVkqYy1SimMeE9Q5XXGyMkpOT7S0ophIiPDzcVlGYU3U6LnMKzGv/8boOlpbbN/7JSSmKionVkPShtqzfVKWcvN3kBntEcUq/AV3mqOKr6dzx3CXFRdq0fq1i4uI0JD1TQ9Iyz/L7JubAayAQqMCa1av0+2Vvadq0mzV69GhbWWb+vJvwz/z68ccf258fpqrEhCU33XRToE/N4xBAAAEEEAg6AUKToNsyJowAAgh0nkBDQ4N987Ns2TI1Nx+2DV2jomPUo2cPTZw8VX3j41VVUaGa2hoV7s3VifZ27S/Zp54hIWo51qLY2BgNSUvX4eYme9RtZGSECgoK1NraqqamZhvCmDdZ5nQeE56Y/97a1qrjLcf12n/9tvMWwjMhgECnCny5fZu2bd2k8rJStbe1yfysKD2434YoEyZMsGHrxRrBdupkeDIEEEAAAQSuoQChyTXE56URQACBriRg+hJs2bJF+fl77Wk5lVWVSkvP0KjR4xQeEaX4hCTFJybaPibmam5qsrehmMDk8OFmHTt21IYikVHRioyItLeqmP4eJmipra1RY2ODDU5MHw7zHKmDhnSl5TMXBK5rgaqqChuQVlWW2749pvnx3r35SkxIVE7OZFtlkp2dfUX9kK5rYBaPAAIIIBC0AoQmQbt1TBwBBBC4ugLmlBZzYktJSYny8vJVWlaq8rJyVVZWaMzY8WpoqFdERJR6R0TYo4YTk1J05Mjhqzspnh0BBJwFTDVYRXmpmpoa1dzYqKamBkVHx+iLbVvtrXdJyclKSUlRRnq6UlNTbVPic09xcn5xBiKAAAIIIBCkAoQmQbpxTBsBBBC4VgInTpxQU1OTWlpabK+Djn9MlUlHT5RrNTdeFwEELizQvXt3W+3Vq1evs/65ktO08EYAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggIIqggwAAAWiSURBVAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJMAoYkTG4MQQAABBBBAAAEEEEAAAQQQQMB3AUIT33eY9SGAAAIIIIAAAggggAACCCCAgJPA/wMj++AOIPl72QAAAABJRU5ErkJggg==", "text/html": [ - "