From 76834e0d38ceda0c7bca273998e04e09b2f81678 Mon Sep 17 00:00:00 2001 From: Ananya Gupta <145869907+ananyag309@users.noreply.github.com> Date: Sun, 6 Oct 2024 14:14:24 +0530 Subject: [PATCH] Add files via upload --- .../Dataset.md | 1 + .../Images/CNN-Attention.png | Bin 0 -> 78150 bytes .../Images/cnn.png | Bin 0 -> 66594 bytes .../Images/demo1.png | Bin 0 -> 83735 bytes .../Images/demo2.png | Bin 0 -> 81674 bytes .../Images/demo3.png | Bin 0 -> 91085 bytes .../Images/exception.png | Bin 0 -> 73836 bytes .../Images/inception.png | Bin 0 -> 70668 bytes .../Images/resnet50.png | Bin 0 -> 66954 bytes .../Images/vgg16.png | Bin 0 -> 66584 bytes .../Leukaemia Classification using DL.ipynb | 1 + .../README.md | 84 ++++++++++++++++++ .../Requirements.txt | 5 ++ 13 files changed, 91 insertions(+) create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/Dataset.md create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/CNN-Attention.png create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/cnn.png create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/demo1.png create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/demo2.png create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/demo3.png create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/exception.png create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/inception.png create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/resnet50.png create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/vgg16.png create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/Model/Leukaemia Classification using DL.ipynb create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/README.md create mode 100644 Algorithms and Deep Learning Models/Leukaemia Classification using DL/Requirements.txt diff --git a/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Dataset.md b/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Dataset.md new file mode 100644 index 000000000..fd3c472f6 --- /dev/null +++ b/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Dataset.md @@ -0,0 +1 @@ +The link for the dataset used in this project: https://www.kaggle.com/datasets/andrewmvd/leukemia-classification \ No newline at end of file diff --git a/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/CNN-Attention.png b/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/CNN-Attention.png new file mode 100644 index 0000000000000000000000000000000000000000..4d67bd9327f04cd5f5e5df28f21cdc0ec99536b7 GIT binary patch literal 78150 zcmd?RbyQaE+ct;@1}1_ESg5ohB?w3vGy(#W3QC7`r-Fe&Nhu9dA|TSDgh8ithe{)$ zNJ!7I_4mH-e6zlpHS_m8YduTlzPazcuQ<=6uKh?!L24HT9R&#q$u1e`OUfi9n{r7= zNC&rV!B18{dkf(YL3;@edlf4qd#9VWh9sA7+FReUvcF}jNAGB8YiDX@$$R?jX+Cy( z6MK7WJ0VU^i~oMZX)9Y}&R;Pxn)s0I*3z1GBqV!o68~>{DVAbNvWbL5=F)jp=cpgi z#u}~h*Xxj$Et{h&wk;C^HWcHDIiPP^LvI%)` z0Do>H^NtdyIrH~NJMNvQ+D1ltzU2QmKQMT-zP6(B;?kpAdC}bZTPW_IFea}t?0xUF z=l+F{6K!b&E1eYgy=i%kOfuCob^I>G5B3+k(dKhpc|o?evencx_^q`Gq=~_(8`t0E4px>!iuk9cDT0C<+o9O zw?a72{kL!57SM@_eR=O>MY6iK){>s%x#s#xHT6Qgwu#{`@&O8hg88uB2D@_L@Y2Wgm-9kpNpL#o4oG zD|~4a&g%adC>09}3%mE=L35VA6gvlpjkWcS-nTZcjo*fApUuq-96NOA&@Bs#@s3R0 zVmUv28TSJE}O+1c4mx^r1KR(}WR^o%yf@>=!^U`D-@k{H|D+jA}ZBIKT(Hk~{y z>i!%vxS8w52a>65$C~w<_!P{M?~!u{aN(+K`-f{nzpu=cN(C`QyK1`VCYJyDURmfg zb5z7_AC=}XsPPJ?9Q#xk4H$E0LvFKGsvf`St79OHxuQFO`mquFa_w zJMK9qT2@u{P|$9~U{+@2NLj})spO?gWEt88$+%wkxh5$ALBUP4V&NDHPft$`EiK!h zgXfbkM^>b%XFfmYWcgrid1Zxa|NipIW4C>=Mc>bqB-o8M^cLDNf3}*a^gp6M*`DD` z!%ceX)Tsj;T9=-kzP@ey_Kyt>yYK8cc>2q$tEV0x;Haq!=ao@VFltZN6c7+Fke#_4 z$xnIcQ0>pJpR;muzT;JPoucO$xop!Grs#KAhkyS385|xiUmUpI=(Tz4^Rre*@!!s4 zqK5-_VSbMYIR2pd{9soCw(qT;d_T{%WkcB*R1Z{PdFO7sMzxJ5){OxxQpvR9sx>I7N5*^l8d8u3K`AT0dsLbb>XI1<~ADS~Jd)v~~jR#6R+}D>zvF@{Pd?bxt z4#z60eCIHU9TSILruzCC?T#Hg+B0<5Y-Pa4dnl%kz`G=I!kAmoE!?ET7rB=V+o~ZCJSHdL}Qijt(Dw&Tm17bxeXi z97e^g@FmAs@$vps6~%6g8t?2`Q6au!*>|^vjE$Ml@tKv)Pj=7>Skv>Fw=)O}M~SWf zxr?b$E_QVga+oMX5eXN&UD6=$fjT7}lz4r)L0#J0y}Ih@$)vLzMg9H#`{+5e^W`%= zZ{14Q>B6#M*VNFE{`KoucQ)opW_o(Md-A>0jO-l)V`FBK+w0e~OY|#uZx3{w?oH*0 z6!mx)BY(%h%#4kkoZPhb^!0ZPo0?J1^9-kY3Z7xtB!2m#WYL9xFzV~;7mKQ#lIx_2GbJku+F>Cf418v-(xi!3)6@)E zRHnM~lJv?S%V52AXJasA@67#f6f<9umzMrwy7;Yp2VRh&6R?g`5Tw5xD|+3n*sP6h zd*F0`@hO=g1`&^CRUSUR(C&PTQ>JI=EQ)1`CkiS*vPob7TS;_ z=(cbxV!32VN5;iS*JD0Zq4@Rn_p%iCFN}%=b}dS1p^V8oIyyEFRR`x8Vl@W6x|)`( zGBfz`?ml{t*=lB2k3`{wo&qa5*(BwO*3{sBUY9k&lBHD@YbU1;mwc3r2fGf*%E-tF zIjFeB#t6G8lO_&$u3XmU$Aa7*n2-9F+>7-aOk&y?BOnO$l4??>N}5lj5#jYB#Fzz#{Uj zmA{XV&%!&iwpSY3+U7k>%*=L!A2ta&{y=kllCLw~oMhVf&f&q@-PfL2dDwp{rJf!P zGT%Pk-{Cs%v+Gc@UEj+qCy!iroay&N@pi1(G8@x2)|9}@xTk6*24!mq|LEpHsmH1w zZ_kL#S5#3^5!az}TVEB#t+t}Fv<=tH30M!3JbLuV_o#@Lari<`qi9Q7nsTZV+i-x- z(2&826DQu}<|bY%wADO%_C6XVx@Z~T!wVHr#~&IDGJ3>#4AT~KHtXYWmo8lzoSaPK z_&q;A+?*sQB$uw8f9rg_5|_uaeX*!=Ow+2q7# z)s;<4LTF8UqJlQ%;pUFDN)0m#JGLDyubnr>NsfuE`bjR)>kuQ|hNx zW=ZCLbWxo=c`~Cw-`!ofC*LB$VX|FFcem%-y!tD(jK|^Ov{;8I(QnKAM3?y7xoUORMy0*$e(rza9Eof}0FWkp6@oCN!UgZ}ng!%JHI_RWVP*980c zc^R0QTV6=)K-n$-^Xq$8iN`tMGp*74XXo8?W4!$R{c}y4yiv>I)Y7`p@2*_ABII@m zBa?J{W8K-=`HfyV#lm!-96r51g0Hr9fbo4@jL0D|F)_NcmUXD8T?JOh@QJFgRL7(J zSA@DebcTw8zQ}7 zxE9u{uR`)yyK;s8avJ^MwfT~S#CTn^ za#*h2L{TsL+M|E~V{9CuZ12^@a2`X7%79}jH$Oih2H0vqG)C-p%m{n^=g*t{BtHW? zH9LG_z4rD^%rkR6y%Pb)#2RvcV1Ff}+tx*%Rn$Ik>{w<;Ch#m6Mg5yntQeI9$zAvs zDF7q@lbgT3m4}BhXC5~)A)Pw=wWBnTiHT{pMNy1amf?u6udhjeksvDVC}yC0HZG37 z*yCAlH)u<(7vrZm3aA0+=Me#>hj!#4MIeiTF z>mMnKu_LJHnqi<8BhQ~df8+d1FM9pJ>1!|5JF2Rrtq$Y>>|D5b(V<4ULBVk3?S)8w z3uy&~5p>K}R^2x@Hi7fBti;o1IZkQGhO(8vx%qjlJ1?!l94Hw$&FtBc_x9u73^H|5 zf-0G@)NAKZdzDiSfU#V25<6m_qCPixvV7nyT@4!9$-$@WHvQxvXZvIV_Qkb#_K$%6 zlUSW7JeKEf0)Vn#d%O4CxpPx?yZ7uFMT_qqu3EkGJbpW1j3`P!F}~ezRtBah;q^ie}PJ3E!K^duBw zgsXvi=lod-sCWxo4*QkcdQcoh#|7>0_Uf;#xT^$onC^GL3*Vk_mfS!!2R^>$=1VLf z13;p~LiP`tE=L&rk{MO*&rwer6nPrf?g=ku=ez%)I^>~OPgj811lGo(yJ>84+wPT;_NKFu`;lc zn5ADSYh+|(Dtv$At>aWgYmtjxb#t?Fc0s{2qCGlnzTG!mgyo|QQaab2!sK@8(!JIc z#bedo-CEgMSx=Ye#!p^*vOfBpdgYpk#Iw2*P95X^ zBA0#idd+r#IR&i2I`Xp!9XrKIXMVzto5CP`8a+iG^O_X8fzP1 zCvnAJKiy}vva({Orx$k<6BN{>6Z0%Gu(IMLps=W@sIrohQiSCSC|FzYRQZ#G&386! zWNRg20{2GIN-lco&9O7S#dOotmJbDANoK4Ax&i zkr(G&B|U$Bbh_{TVKL9BjkTHE1h*I*ykRlowffkaf^vu!tFs)$Wc!XC7n78)Wa@|* zHO6rGhKmPMNckVW3BXCssS^ctfN$Us?_S=2A{kZL(Fj5}nTP5$kb=kxV?yMsXp46r6TM|}rNv-zx{rmL;@Y)q{o2+8tMVo$EGQe5?d=Bu zqlE0o0#kE&=u-^C1?`xy@-N^*Ua7K{EKi&Qlfph&Uv&{({dw^*HLLgi`{V#gMoljy z1XKO#efBCG_rBJM(&F&?_R7>*Qc_Zl93wvkmnR1}a%tb@+||mEOlXQzPR;I<(wdv@ ziv+DADjVL17UJR`a7F2%zkjk(eZ(b6NgiNLd3kva)bt<*8+4$ZIhu=OO?OdMh+Pc~ zU7o6v@&_HCmd9XQ>FVqgg+7#|mJ$y)v(}gA1CELS#4-p7(4Yl64R|b`ZlgBXdbgZ~ za$B~H+0A0*lT1t_BGSR!O-)V2E=!bnazF+=CvbUj#>(VrGpc9zmlFn61p}U^HZ_Oy z8s{29RC$JOm-vW^Ik{&6{Cgk$v!695LF-19T0`$*7v;?PbYoMAu+=?C?%^~sI(k)z#URZ1+>?i*{1 ztFyJ7=;?UJ%j@s?vGVJ4LESA*o<8l5O4I~OYT+7umH-0~h(b8D4?s8}mfvVY^!DAm z+uH%W|0AhLL_W+#>0O0HCB&05dkMLQmet8t?)a&o_^V8jzX5D{&+`78HGBcjP22M^QSU53B;A@$n&bKxR z`E>&WvCN7wKQXHbs%)Srl(prBhp~W{9z1-wO{>82GRlf33LjPh`3?LXJ^kD0XyqQU z)jKIE%q_{6^*`O)9zM~5&%uSw{;E9o8*-Kn7MYOKw69i1gX#*LLJ;2%3mB*@In9zbwoIL3;tFw#l%)>^}m7S2YO4b&%ndG0}0q9Rr zh^`q@X-?5DumtJjLFGm1Cao&`Hr-qJ8Kp_1$eA0x)&R{5s9chH$7krCFI7@@AL73i zClzp%T`TvYsK>JPP!*+~zCKYc@I7Cu_pL44Wo2i-KwpUxw0l6YpKUBD%!LZ87?3{o zYFb!-F%*TphY!oEs;WjzQSIADvNjX}EJXsfQbF4hgc2BH`>tI{AaEESJqwF^NJc7a z7fw`>)3`on*=rD*%d?%NIoq&yZlbcHVj|RI^;c!k{rmT+fde_@P6gkIj*gyNU9z)S z@;`EpLA<-r&iFyLsLSjn9)A9?Fizdq9BI0xC9Uxnw?@03QhyynV!FP%1ipRgg_!ft zI5O#2_gR?;2W0~Vj&3ni1F@g;^KEI7-MreRp2cL+xbwEK`KcatWwy{%Nq@zsTAr*wqZJtJ!bf1QL1&pr{=9_9l0}D^WPXd1av=&_+J1MTi6UHE8EOUlWnN&4pseRY?E`rtXd#e>~=#+tmot4 zU@FKWpu{GVNy0gp!(S6^ryzVsS#IR#=jU1t=tP!L4-HGAN5fVKW7JgHX;IVsbuy8C zb4g*;A0a>^pqd@P*6-}cFFe}ENT{?JhXhbxEa?fqVJHqQQkgo%B-x>S*M3@3etbl} z^q^I=N~gsA5!gHg>beNN9bnGT)uDe2qfa-sGL=4kdgaxy@)l+t%Yl*%hodqacV;0Y z(g@j`Jos*WKiA02O6Wt8f>~pR+v0STfQ@&f*hUmg7kyLHN9bHe_6=;ns z5`aKNiF(lGY56^RB=c$wK=XfiAcx_?A27=3*_Fi^W3B0foH~1HXsXb^!uc&C@>lB_ z`L}M}iq+r{rPllcJ%W%jEc=9tii#fk`PHj=o=#Gh31z#Qs}r4Rw>)QxTe=?_diB8? zAOwaWu^4>dES;a^sCyhrFd+t{1X3RraV4u--eG%Culh=0rVKYjW@9p%#nO06Z2#XI zNdVL*_8UfKqDXXO)s6)6?H+ML3E#6vv8|RUS=Nvt9*`sULGIz9IOJ>QBSqG z%TwW-K)#elwNh0HCj@du_$x1$;^M3Uu^n0=CTjjRhP>l^EfV!nQU5_(VDJMFFwlj|}z40LSS`I5A>QX^U$%KIU_Z7O(oTkgm~lf?ylG3ae5|O*#mYcj%^L_)1dV)a^PP*E`zGo- ztPXBKvFLaE*;GID^k_4)YoU4(IuwWjA=*FRS_4SO{3gcj8fe=iXH#MXB z=gv3V_QalZdaV;{FsK*vt^dg3!%;@ja6YB)@C!*mCqLsdYmjPC9TbGFG4$gHyTerX z)s%q5LtE?XGKTuT*8w z&6;85In?k@=Er`5t(Zv2)u=;3Nl8hqudkmQ$DO&(lT>2}Q+{AEgw{OcYsC8v~_ZN2Kbu@%|vd;0rsj8U+=|$hr=v;xAmhtwZ@?ml5N>S zr$v2U^wN*`?PT7Ip9XGk)Poj{_Y`EtOHdA}pxe>!Em8r)s{s}w>>wCjAYD>!+qCGb zWd8Fqzg2%7(27!8Te@zk4h`?ea~JErfJKN0a{d>=AYAw%Hs#vU(4c}-yhY)^PcfS` zCq5FmbZYO=CcI`43H-Hp$BrlVzZK`F`wpq7w5U>D9AP4=9%|iNr4|zJd?~^hcN!n8;1++nI=kZdZS9E&%5X{7AUdA zmj3)nbR8HN&?QX-nlO0RIJZyLXiN59i*F7@Lp>YR%QgNLR z4zON^thkHg!UOk}se*m<(fBfL$F*gLYRF&_0ycW@EZWTS3@j~A|6TU0P|#ef)m2`^ z-hxU~xlElHfO3`XS6C6D3!D-g=sMBgG*Nys{wuE76sbYEOH8~`6jxefU$kUAC5 z$iTn_mQU#E`oivilrpCo@uSk_lg74#uGg;gzq0gW~XIa=koN zdOpj4tzWASDXoRxIo6hTkPzUYh>~0@aStbyeo$Co0c%G`qrneesSS4^BGSTM1b}&| z$_D+s8X#FlUVaDziN1KKD5fZK*vs15Y9;P2qJIWALug*K z?|Ic`25&+6GAlSsOI`Va{re@9m6iP$SieZoocXBT1XUQ!c}{d2blC>_}l$_)I{0Hs;9sjOojwK;h@l>|beTx0cN6vvPLehF;R8L0)0`RSb?~gS`Fhke* zwY9bIb55rT#0Z;hKWaN+RljVTkRN{s6oA(BI46e}(3gRYjga9dT472jUw`ii36)Aw zQE{X`vJ#k2*1#Z9!S&hsyIX#B8OMGd8L0qsuD!RNiVHZmr=^+#t?(r119UxJgQ~qG z;QVjF95-*-c>~y!n0suGFMztyAHIOQzfg!4y4Cr{3pnBpZWDUfXOvsuktDB~i%w$Ox^oP^sSYt=5aO(K*2J=)kYc`>0$I*36AcDB6T_ESj; zu5u+-qCFv{Pckzzb^2OkR=~3u#f4nwUgoF6AzVhp9f(@}^u}R#pu6D&mUrqXnr8VB>;ZZ30f3^4L~9(=AA@EEY{ z9z1#f!-6kVO2Ia}%OXjjg_2fbm(KKDYQkeD2Odq4^oQe5(Nkh~g^I+(}if@SJd)_C}`o$w}D% z0iw&>0-xPyl&SeyCHdIysccg7`)B(;GMwDXfXD}MX&IdVE&w^PwK*ynv(O%|7*``R zwM+=tkXvR^<#=v>BEvSgegA=}D`} z8Fq~~cX$kIAQrtTD5(7S(W~|uClxJic+#)wfzklw)UwZ?FQ%-{r+;ECD=#Nv7rni` z_7xsWvxbBfxr$#k*=0|`Di>m9;W7DXFP1VK}Ab-TTpf{gMfe<)`g$P{Oz$@~W7|28yq51nZD?%mz4@Fr0M z2;lh7nFIhp5$q@_71yz}cW_9;X3`AeEC0g8z%bS)*Y!-^s*#PA^%2Sp=1=!(4|0RcFtJ#K1ZX-hLwOy^inmo`J9M4pX;1S$@;Q6a7n{V=|%(E#`bO7J~T8; z7e|lEa!**DFx=}f4ID?vw%}h^lI3ZqPL=;Uk>`flv$CRs>pH@j{U1xQ*nWX9 zcl-NA<@5{RzfWi~$;}C(w(KuTRd+(K~`|PkT&d~Wa zY@I;dDtFP&8%X`8o*sd9=6t__O%R68@#DuKNFN5z2K({T%BUzSV`y6!78dS=i`y70 zrf3%y#^dJxd#OlpQa<4S$~-ZWLi2zbZ}RioZM0;bsAXuOqkkZRJ+reX&@3R28E7R_ zhsZKseWluDS4SdP>kQ;=pRHDkLa2DBbytyAhC)m5F9+r9U8oo%8nL9bga*HjH75(a z2C}h4bQf(^PRLnf1~`Q$&YU?@tDk4tM|THu?|29&IAo@!*>|jVjhW90$im%O-|Aup zx$eQ6H(dOdy)QZBWM%cxpzz_}rlz84`FIFUM=Bd zYVoS_+)Q)QjvxkZyOFvxlSq2#TUj+?Ivu7rV0VUxoh$!SveY}Uy227Fi|j`g5QhpM zS7yOke*OxmOn~vxXaxk`M7-ctaqRwrH6Ur*g&&&H+^~|XKi=J%S9w+$6m1K}zk3qB ziFCGqWHJh_FF=YiAfyGhSmRtpiT(IK!uNt5-|9(QBOB{IN6CBUyuT7Q=R`+lBji1j zxt&_?9jBi2nIAwejza~4YV(=Ozs{Y1aE%`=^HPDb?l?2PE;=d1b~6K z1xga(OkzF+tq1Su3T|jU5M5g-(@l>Crx- z+JOb;fKl6*el-qjNl~PtrY?hjqg*^QF(C_kk4S0aEh*SKs|!6=f0mYP(C(4Ax+E{Z z6E)xlVt$|xUWnf{!y$tRR)%_Fis&Gn--FWio()&h_V@SIp!BM5;u9B58;%1aTeu{{3X%TN{FncD!>>A=H6X0I;B^PoMhl z*ofqj4f>%F+nkx2nyQNBDx$tfeSM@MI&D$7Kjio2f7+|HwRMDpQQh<7n?Pls0X|(H z1{PuuW!F?DJVeOwNrVP8_Y`=GFcV>i7ZF~mpn!lh=s*~DM@k0Op+l#jj!P5XC-O3h zu+Zcbp|`YHY+$9kW{ZHP5FsxEbMsSOot@IyqrupqA+P%3z&%@Dm^wv#99yU?T5rf1 z+aYPzRv{Fx@dC z_d-M4v?bUM5^r3V4!VR;Cm7Ip#SHZpj!0qGxov1J7oQx*Z;?L$hE#$Ic4lVB-LT8b zpALyQ|0FRtpJXpkPiuqP6bqb`Oe@cysj}Dpo_DVUMlOe5rSSGw;+kXMCUoKB7hcZE=S>U#a6kV)2mO0W2-~xt zw(-TjKWj5vNqlcoiRYl@B-b-hbm~RUU2JlrFOWQ?lKj zhmRFW#SPOFFFG7tZsj;1s>eSgu^avrp_dp21@Rp&`W3>LGX1+_%G#pveKh$om%^3| zHSSv+@&jq||FLIV?nyDf`SoM-s-n-{WuDz6_emo{?GhD5oamm}h^L;Bm*x1+2cBkC zIBNd)^11c}^N~>JbHz(deVbcg^Vg=_v00Aw-;FlYpXLrfa`563$A0DjQHMTL?K~DE zCdn-!N(cXaPTc3dpET`JMU5kNdz|MZf-8O6u8nEWtO>dp?Em);@odR&gMKNij3 zrRT~52i8Y2d%k7|OSwp??Rr`N)#frycjw8DL%du+cUmA&iMpQ!X^7x)u>X(-=q+-g zl9G}tUIyB^2{nOTwLKk_EuLB1gamPCg-JKfh^~m5LrFR<2%RN88 zU65*Dfa}7HU+rT(h4oNKCgZ*1IH%@@6U+P4V(m7wV>&&4{SLjXmd4J^0qJ^5clmFx zyTj)D1jUR*134SCPCdvX^3S=>XRZSpJr{Q2K@fV=jXyuX5&|!f6%j?U5CM2asZ%+^ z%fl0daL(Y&jAD*aJ&8u1*?wq0gRQA5tr^;9Q`+FzdtdXCJel?V+sOku+~2;YZm4~J zwLd3bv3Or@t)aqE&GH*tI8Zoo;oLUgE?IQ$3IhQ(S-vF>(hubDxMI(F*@Zt>(%K*c zu$%bj_f3lZK1qIFiiO7Y0NIh_wKDX0$Z#^4qPIZ7YHDit?%%&@X7)HEBcuQA&6_t(Yt9)r9L8Hx)uGLLva@H4 z@$K2Rt;(^d=)%8BgzK%+brpSlUu^nR;kvS8I2UiwpAQljH>WUAgx~x5({|e)&O;hi zI|-9RwODv~_zy}r7qkg1+yESa`TY4VI^i4JVOfi4a~b}BOS33HQJxG@Z9 z48#nxpZUZIQt0LIp~ZoQn-3$o5e5(lSVndSS`C;%k^7ReaadUYTM|T0LuHfHE%o$f z)vO*DSi~M=`R@yH(QbTxkHJ&a)n{00W^YQEdSsC%@*cHMi1a~fWAVfyH8}lG|wVri98D;2o!`LkC>p) zcO*N4v8Z-d?#I&Zl~vB(ve9zfxlyF<#fP4<)ZkRjUS!QCf2mk0%61;)$$dC;`0i=J z<)x)2q;^nLB#`hWwmcjYt;|ZOXWu3!Y9PIm2q3i|A0MxpsS^z?83@A*+8`{1FAIV= zsRFGg;Qjk^kdpKu9?{U!ex01$aR-~8P$wH315QXhhVoMnaX%FT&rfS2DYF|L!~Qp` zo#VjZLW_yGzq44$RTnLFN6C0D`M4VwZz$bu2N;8BPyvRpZO4uT1SW_>Jd-T@_U-eY z&AVrfr7e%sQ0JVcZy=)w#zEv?8k!*=@A)-9&xm=0)kepEs|tJ?!01c6CgLr!NkPy} zFhq9(0`@=7m{Xhx;i^Gu5qi75KLG(pY|JZXx(`qlCDFTMqnm?$@RJ<2$x)X-J)p?R1CRt7N0 z=Dn2BAN-#LXxRKX9nbllK4jT1z5@u6#_nC6q@&FMyr-KZF0Uvy5Ru zXP5rul9K;cpOe+69zPFfF}+$HembW7<;=~1ry6SR%>TaK3a!LudD<>N>ULGksenf^ z^6mY<*);E+=6llg?lG^L5&2n@pDP#s9=EL8;`CX+({=s0cB7A3G4=TdiS|NCZlMnQ z@{EVuXjVo4eLIhgK~#horwNK#{)ys zzm82A-x541`(d8BJC{S2{LJY|@n;d`CRdtdoLNUm{|>mf>f42}{n`y;29@PXpAx9@ zhKHll$G(lrR!+PYcpRu&Nbwh>4C>-FfjQ}q&5X>2ln0VH3Qif+__SRgQ_i6Yy_Q}c zq<30^xDBO27s}wOPn!!goP_Q%_)+e?pZYXt51T-9k`Z@Nt>BFl%K1aCf4`VKtc+n- zX>?H~v51$?a=m$yk!s{eVZ+*O-t+1#X7y!i zhR!zM&sa>ny{UJi!Ecyvr>Kw4|7(Z@q8Jb6prNS=Vk`|liL`UFLNrwRI3*T)9VCX_ zn3q8Sddow7p3eOlrvBU>^WF0j`))P1l1b%IF{!hOI;`g|K4Es=u~X<`&s&?5khIvf z^9g8%tn@?F5#+AQnwqX;uHztr#(PH&f{7x2^#gemXo@z7K%#PN`T%T3BWTM2DU1ms z8#>WL=N|Mp(@YNbvQ5%n^kP&8Xd8Py&UU$eJsw2Hrq6in?CJ8# z{-e~(XQ^_T1n(-471G_M%U$|CN@)CBcG8f1Kws)aKoT(_10=It=R49hKSRZaIJ1ic zRguWHBZD4*3m_e5BF3kop#iy+7}VwDb8>Rh()1vRZfl6Gi0f>*n$~8@ zCl?&T-(?!9{;z%Va!$N#lD<_s_i$;`dErMv8%`omdU&!N1Oe4H&CORoaWx7pdZ}+@ zcvV_iR(Nc&7TGUr2Zv$c(pJd)+Uw;9b&2E`WV4KpWH2ToT@Kyi``54M;pZF?vZqG? zwz4xZuF2#Nd>TTT^KV)iex{4#OO@s2_c5Qmo~zCvy`KS2T0)%QwEhjX_rhyrSEnE= z^o^75bR2l-!#(T5eJ-@jXPWNS{-=ATs%DSEK$x3odjca7sgIWQXDLO8Z~yta6}a{S z(BKsoYD5l+Gu*J=2J*CUis2CB{Fyv zKTfE*Wb&%$#b{69K?iwF%GzyrY0p5EN8ZwTcIc7966UeFx5pOeT_LfTRaWBUkQdGe zQ8CHKL6C5Dkn*D|kG;KK4V?`KKsDZFJG;1S+DlCxl6+nzRTUOru`PgDfvZZ9#Y&O* zKZIC#wX#Zs@5%1|k%HhwC1yF6{a4p_C_Kn~sHHZH&TH4N11%FU2+D-{j7(4&fJIln#UTWFlF@-_YiuD!k^mP) zSa^_;eq51?PQTfgy28G*sJ>RiB{oS$a4S<@s<`IUUGF~J{K6=O(S%VWm7$eKBnIJD z;kcXRM>&`X38y$TF2~U6~ZbAu%Pg}C#1I&@_%OFEg*i0wg(S{rvk{TgR zotCF`m%~88wyuJ)}lxhV9Pp3JaT(3HZt`yZ+dPNpF6dVLnu{ZK!@|vmA4k`QIzr`KimTF+A@# zo%)4gUm8n^y71m)Qqj<;D-XAQ^1k&Kb2w)TJ0Gn*>t^|8vPNHgH@)yXP1EJGEM7Gl zKZ3Vs2XL8?dJPuujSehR^zr^PkoBH{$yA9g4kE;#JeDVSueNXAwu8*-1c9xbQy9z{ z_+#BZ^m-I*3kX}Ro^b2rPO^|-duJdrA0!@lfDk{tohnk#QPy?4_?ZU`yQ?w&V1M45 zf1>`Bz+(@d^ZqA^&#AJRmMY^iUfi{?e$x2;8y?<~mOV9J3Us#1`$>@8{P_Mn(c=U4 zFO{b){ZiVS=HGXcTeF{ea%#B2xW3llR8z9}f4a8S#6iWbiS9H5}&ca$}s#d*d&x9-}-O{o&)JV%KdB-%?AT;K0O9)SVHL zgB{uIB@U0DU>IM29-OHH@K<_qX*)bgI4R!{^)qcp6Z@Y?-I)vQnZDYY$d=Crm zL#6{q9^sr4gCIPtfEGiX@dK@ct4W1$>B$xke_GxL@Dt$K zFrie@@R?B~X)uEGg)>)gdwmF$4k`=%BE7Kj``%i|r?>MATBDwZ>gHN%_Q{5f%(DBr z^-+;JpGVS2YkAS@?=<^D#3=%gUnCAUk>JdaK4L)WILLv6RAX(rIYzq(PyoZ91ZRJu zkXGYD+PnSr^~h9F@NLa3J@WPSb!3ir-a(zZ0-YX!Ndk)UfX@V}*Li9AX6t23vXu>& z3m@{B?-f7p=;u{q`^k3oUfBLe_ZwB6(UC+ib|a*>7^)g|%Nr`*i^Y) z$9T)aJJG`Hl~FI~$HEUf)TO6u@|!@;yMZhW9vcyhv*N~@Z>SMiM!2H_2e?yutE(R! zI%}EOU4fHa0CYsy5We2FojVN>qQD_g<9ChdEI4OO9NtZ%I&dH?xd^!SCgN7E!$_J| ze)@FcqDRXKdV2aEi{BK48gt!MlIc_1L5kPH>ei=}&u7o+mhC=8^{D1P<16Z?Eat)Y z9`R6LxF~ou!ltxPrqW5~JjCH~nnQ;oQ(bYnu^tPwz!${x5QwZ6k|s?!priWA>6r5z zB0)E*0*{Aq>K?s+!3!rDiChVExf%B#5CU;RAO(`v#C}UlOXO+xnNOyV+AIGTIN2dD zKRa4-36Q`xAm(GEo`CflD>0JeHxnC*gB%Z>$sCk^LgBA^%IL0gcpmtOM5WVZ;?gFb zXP*e8?Be-*WpKKQBTq<$M-ZXTGUR>7B zWJy_oho259HBm8hn|h@9Z(Is)7Bs2@w^7KCzJS$^0G~b{5(A*9RA701%PzVy(1LKB zkb$@NVPHV4PZavvSV!hD#9xV25OTkP&!5v|_~_vru8o6(Aw*3QWS=7-0wJrTfFmk| z0-ezG6A;_rog(~6eCWN{*kclpsXyXKE`~q_2dln*WvOa|63=C|ahX5LL%e2D;uNob zM3`M7Y6`CThGE#*5}O@lGv4fna*uD}1QRD17_AER)Ms{|BmPXIQ+l4QD36R!SUcf6Z?iUaL zQ}Rs(8g4@O4E*kaqLAFy_cI$*F;Q(C$E%o?>2iu*GXF4 zbr-)L#o@sZ!_gVf+h3oUm+LvC!Q(}5h1*M3P9}~&oQdPT-0;q$!X)Uc zoCqWsCDPI5A)#>Dz|g1;c&fP|<{Xn=tUP_ymF%f<8ypeCaRVfOT3I*1Ne8r8yy!Ej zf(dkZS7W{7I@T)7{z2^&0Z)z^J>#Wm6^`v>dt+sQ&sIo(f@-Fma07cFsG* zAQDF*FC{$fbUYpcCt=VuBA;pC=*P0)V^;~AfLLC}!Nzu^I z_=z;G_1xGM2*XJS-LBBHNMCdQ8KfYm$mQ6=7$eE3RP>NsZ1I;t-wn>2C^C!USPhWR zhY+Lh?CC*1^9p2vTb+S;w$D!lC6PP0?{qvxJkZ?bFm0n%L1@%Dmo0ZLBuo0I=Hu+#H$0|?h#a8i5+@gR=JtBgm+sp~S^KvB znSkA*APHjz!^r$=x%z!4u7!%fdsD63qU1AP__ZIA*1sA@Aq$)2_klq z;QLIf$mhQIQz>=-gp@CI?SJ*Qn?_66D^5Jv@b1X>?+I(gNWbAQ{9QCGmABS6Gg1=7 z1CMR@psoB<|4i@z!zfFdO7^w^rwqv}=2VU|C3?7h((_?EBan{h?Ttb{K)KM?(8A^E zi4$(G={HWu?2BCYta^4^=Oo+l?V(vgzcOlCNU|^;XG}jqD6yYL z+@=yr9Q#&2sv!x->z;M3N7P-820zSF{>XeRaxU5LKMD^V!F_4_fD0F2dY;&=B`EEz(DVW%m=HBgvj1QmMljw zFP!V9x6T^z*rT}fn_+X1SLJZyIZ%XLmGOOWFs=n>Qc8#@H|Tfte`Gp4EynXl83wzl z00S;K+mlMllAnxl=6a_|EALmHjv^w5n`RBIv2TntY~M_TKmOxkMwcMA)Bs~x#e#U? z4WM`}6b?f8Af6$GL^1+3%=O&(`IFe#*qA!hJAHILfph1G)4mW+Bc|Cojvw~|N+u*I z+ZU2~TG1Q@Qz86IUBl-JCjYQ0)T_U@dNcJx_|$J}mNKX4Q!07ScS%>jYzuee9CZ}2 z^9HJ--YN3?g@1S`U+oq|b}U>s(wlYvpsGvc6bupXq;qYa41FE`E?g8#`CcM)A z{un%}$6n0J?$(|RoMpyor86z_Q&UsiJUrj96oiHWmSya$%&`?Q{XPH!o0X6;($mw! zaXl6=ILXvitH$rhXu@Zw@6%MLfHzArPIm^6=95i|HSH`b8_MXXw(1e(4Aiz4rlf8d zjpU?4-r~;syc`#dy}HYGOyzQxO~0=z|3{i6l)jOw*O;usxUElZZG0^j7>-|aa}0Qh zgLZP03FuF2cvi6jBHjK?q+C2fV!r)RCa<;fC=f+JK0h*^9U(`uIFqIq;bFRgP7g23 z>vj95%`Fd@LizcsRu;AE;v~=a&$0vrCiVJSJ-c(Np1v%IfpY(T9Ka<h=XIb4aSH#RB7HR&hLx!5HIlL z2%1BauW*FJ7X<`)1Uy>KpHPf(tOIE`dE%jr%K~JDQ8|k-yp}DD(^6IDKZ}bW^QK-V zr}#hEd-HHE*RXArlq550kPI0sWGI=3WXO;xnIajJ5K5saB$->j`hQdDrfO>d1UaryilfmXusTE_rcb)iYBRC0 zlmYUesgl~auOGiL?Hw8zP>1U8j)d*uIGfFV&Vb{{kaBl;*P-a-r(s*WE@U1~m0;K^ z&5j9eG-`2a1?sN2|E;q9^5qWd1N%#F-T`{{(vB2hj1cTfga^g!3L)Ey$Z(q$Mcq?Cips0ZvZN1O@Ml;WYeAHtSFad&HI$L`{&tRzb>Mrgg-ZjooHl8)#aC@%y`^cU<1Z|mV zJT8sP$GOaYKh?fTrYPig-JMTdv1yjeEKfr#6%&-XoA^;&q5lDiCI~8o;aK0fAD)Dx zjV25C^7?fx4^v9GLwAs!P-oMBT~b1nH4S_gJc&M@#FEeb%p*dLOo9C=)iT4TKb zLHnCoi$35`jmZw9^;m%3GV{3%IC%lz~dNY~|LLhkHznSO3}^P_wIUj$icCOMc(Us&@6+>6cL*rB4zhSy^X?obT6h=Lz8ol*c0 zz)Dh3HS96T#)5lH@smy8EL5&$Gs_f|h@MAD^R;e*Yh@bn@%X?HY z-;9!9rvCFiPnTIO(!42(I5x{r*fUwogr z+*HH(+jot?WuY&x)TsuI%2v)Khez2biP))RswDgPX6#Ma@8CWA=V#0jMJsUFc>8X1 z>tfbmx$?Fg54zT8%>#*AABIM2*KZ2hW(p|&fn1Q)a5WPrwfe4Tr8}i78b(qsZS1Uh zs=3Tw?Thbjzw@*A{jwY=pC>cD&)j&UVqS{RH&3ONZ<7*g_iz7D;I(`w?Z=>`8f7qc zGFInq0}u>y6oNa1(|qY~Zv^ZaO0+xHUJi}V38tGLaVhR__qPdC3vxWP^~An}D%)wv zdmGnM^PAAGw<~kuw6(UgWWTZYVY)(q8tYkoliIxWIa{53yHr+{Qicz|xEL5eXJzeT z{B7&~A6`llHk-7ryJ!4-;*~2dxj)FLOSMFa{`3d#jnt$dA$&sUEv8^0l4n&;jRFqy zHK0@wZrm231ja&q2_SAOudfe*M*WeQFAm55@SBCOW{ad99kBJUi~mW7Y*$!h;^Jz= zCJg`9^5*7fuztpY?>g0rMHVnkUVjx5&U~p?IIZgN0FIjPqPLF*Zz;R}y(+}}Mee5U zcNsPH^SI~~=o*gG?T%OFY5c676sT_9-(fYbVrP;FV z*U|2#-koBgvycm`k?h97<~Z_P!619uQ(bg<86j@&x{44Iy2 zMS+ATqj31Uu<-liZ^->&NBz0@&&aCT=%86@(8MR8;Zr7>nKdX}s1P^M*?Z3FA z>FmzwuWJv+Ig@!od&p2y4tvzDmHD0n~6A=-{87BYF-1kpMR6Ktult+Weo+A~?e?{Azu7 zWpO`P-e86jM=1dG2cc-8JOE-j*yCtN&JJT1d>`18`(&RM(Y*iug4zU7q(iph8u5%a z$5zJ+X)}5}k99A89iU#hJbmlPehc2d%i9IiX$4;H(%=%4W~06GWAa&e!eh)Ao?P(p z+0Z+3@Tfeay6UyG6s|<|2mZ}lI-3Mf{5HuIrjxlf`JquL;^V=Iak^$P-KN%G{%N%~ zFKWK3^zRuK(h|yA3P1Xuk8L7KQ+=0IXYZ#=VX^cb-j|HfnrYCPUW7k{pp48`hz66~ z@Gs)}<#-o6H1m!fdSK2(@dd*I02H{iyuM$6SHl(iu`zL&g^4M0VZ6R~R+x<@B3|6`y?ME3qZ6lDznp^M&LcxYTCrZQA`VCFe;64ZEGhg!X3k2j z;+S92V#~QixtTp-CLP)7e;sx@i|L*A_$eJN=JHehlj!$6ms^i&zU~p0lzrAJmd>7g z>tVJi#dz66w#~N~d431({_`VVL?rhhW@Tx=w|+>r4FYB^2?wI93qyjSNCSNBfjwhC zETwGF8~ELe7YW3=1?m(CPGkuzp0V)jX1}1nuV`#M@(<4idzM2-F08#x8rvQlWkC3r z3{(LYj5cOjb6Ps8EG;W<8n`_B=$b#)$&8;Htovg6NYvM&^=QyvO}3xXKRa~s@1p@- z(Z0pBZ5gIQ6C0i#6`V}FpTOO?EMk4%>ZQ9>T@w|BL*1*YHzSOfOdfH$?05M!&#c8G zDE?KNx#h`;^o4QhXMFc}cGxo*Oe}1D)esvV9nkYYWXs6i8@wz0(amdhdnb%Pa~#^) zzbMU-psQ=Q*Wb>?B?4lU`<_415klOpm;aFzNG(qoq4c5dJGLLRQDTIFjxtrJ@?F*c z6H`{nEEl>uv!aQvSIdh%pJRk>WGiTl=WPj%rLB6st2$Esu|)shsNoBtR~QYEU;bW)e}g_m9w05eviBz@8zcE!p$>v(Ziy{9oSK zeL0jUtF9ENRQ*0osekxko4$wnttdl&x_ra9j*`IA&f8eXaIIq5vgPRyZ`i0~h$BIW zq2J&P^n0tw&Yknj+R?F&cOi?t?(d(!=!8KJ?kr*QqV=M9b9o93DIPNK5j7+Op zDf}&)Df@G`)48gMB1ioUwH@`(xwYKXXcWpXP@TU2_(#LnS391(IXPV&1rrgr^E_7a<4I_AuSGrA<8SE;6*p}*h#WPw)I zJ+(7yFWjh6|I-~mKDX=5+jY*PfmPNiokH__P8z*=yXj(B;G4n89jSAd91c*2y5*er zrT4%3adK)Z6%8)Dj6*>5f8qL5m0$v7)Qf7i5(+MCffR0kGcmLzHl`!dy;u=vx{8ZF zzd#cd4hnVe=x77UAW*zQwpQ%=YfeF0nylhKj+Z7DLuO`@kb+|8h)+AHslpF^#gMOg z|6B>z8n?vwK!s=4_6e1~(R0CkwOt<`ShOddQ+UU-8j}{NJK;-jB;)#gJp1P^D!Z-T zPLA^HQwk^LZu!2d{lrOI^vFoR>ccSk1N=|U7QA3Ly+UPsMPhWPfcbu# z_E+`oddHJn49XvTtmmcP=b+#<-Hn1ChRb0X&|)Ok0Kss6I4|z7tYj_*@!%Mu+or`- z1zmj;5HzBBJ(mP%sAqUs8%FnN+6hJuLFv!#@h+urFn9Y`H5~|q&Bw>*FLCjC&~w?Z z+x}Cix#xWjtD{1j_NHAnQQt2TW{?ol7*`okev5rF$n2R=vg?K)9dQR`E>}Iy{V@9? zT3gp5G5-Dj(H-W-RP;*q7cC3I0~`*NQ2W(aE*NAi8taU5-UwN7JzchJzb37Ab^XeZlu*W( zi7~S>IcMei1~+ps(C&1QXV@0z{p50e=O$X=%zRmuw-6uGVk`&_VBQE@uJ@cXNJ=ro zpMQH=cvS$J21&N6)1dO<{kC*V+2NlVo$taI1?uyt0}U98Qumo}TG?lA`@TZHItY{s z^OKVIxAE+L|LTB`n|S-Z`pah*(mo8Nd9zZ*Zg;pmG+_czmHTfg+oq)dsqY|2!WUbVCf4iGvp$$8I|c3b}T3y(TA z9i$lY4fuz@JQ5Y4jOqSuR}f}>=+_%I^Jg5#rdwAWZJ@dp&zmV=)GF5`vK<&uVU4wPX zhTb&t-sMAe4{sI*8QR}0eD3|p@;;}U!u669HDd21^fR9<;;gMrTZVb7JSFFa?&MRDYqBQ?{v&VnvKuO_^39(-8fpq!ZXAe*pmRu^4 z9QO39$r7UA=Hrda(mvuC*6}p$v5EAT-7Z@sBUepgdirUY9xGiMD;L~-+~L_wv{=I) z-?82j*3s=Z#_yhT3{HFIvT%X3P9-E^@4&9<4(j7?>q{MXI@dF7+_|IxzQC4|Me#?7OGbZq$v|Q|JnE?D=sc&CWMe zZ zBC7%a4t1s5KPLRC`iE&pQkHo+BMen`39;!Hhb>9V z`^k?JO_UvXD&=FSdR`?`-KTQ%&3f@YAb9H~Up<5T&h4EgAp##4tYhQnHW;exkzv>0 zQ52e5-6)t}<)oP!?X>j9qEpgNZ1il=xP#rBj)b_c2m2mu{(N1w;YDsCz5U91&D?8x zjZHRjW&C{#iAO}=zrT_jQcy?D%T;5kd38EAp1Cp0@6G1beC@-r3PSA{qrwub56QG? zXI{IpYBqSBR)#5~?%?jdCdwb0Xt{%&6)RnO4_Q<^%h@kEu;|?8U?MysBwUb~>TWBR zWuRNC(ECDZ?4E>(&5`POp4|1P!XoHIj(*m<85hAtaf!aZqj(dokj06s`3uy}qjB+k z{!~AIZk^Bf$nU{5lBbZbDo9o>e*- zH)jYqADaC2v*qTg%NsWK73F>RYu3E4u>B5?T+p$xq&Yj5_|Nr2Dz`5ARm*w25EqaC zvAEkas_0m@Q*_w37T-RqV&Nd4j~fpL@#`0lyo)&mrzPr4zj3Ku_dl&{K5*qkc-*J# z`*JZ~jg)Qg1vP4OCT%p3h&{8xIiFtSqi^f4jX?u7k|9k~`X5@FSZsG_U6(AWDe=Ct zw35qcCUbE4liQoL7xk`Z{I}nz&AIOML4x_NJ~!TgBKeahotb<16pxs&jbnxM$!E>Q zi6JSKUUK(;T(9To@4Bm_Q!=`k7Rh;RbWfv4gJ`1}^+*E`P06}6qukW0MfH@(ofd4F z0&-Vr)|x0E2xOxGZQ}iWWIRZ`9pcZdI;HI>G>R#;sQSNNKdXCCJN3vpnVoA-yjIl- zu(GYC70z1N=jCtmd1p7x+8b&}6w+z@QHIY`+g75}lp zz;!0zVH=MOrRb8K!x;$;wHMnTFz1dv6Jy%Kglr?3JkOJZ$9-79{2wxG|IyUbM;A0m z5$$t8`n5XM38B77eeMTZEqokC_dmGKTAo;z5NTnsfnC+<0G0acdo&F8!-4v2w13|k zZVC;XEPb#zVf$ufeR9neZ+jPmf{^V`=WJ=dHyrp;q@r~*y0L+>b^gnXT$;5Vd|W>%H{PE2FebTmuxnB}ZH%5QpY&sZ!z0Wx1AENl)Uy_N9d(e4u<$F`JO_*$UrKe8l zzUO<=Q!ccv3QZlIS$Ez1=3a;S(32;25DlwN*lnMV9En?n>=%Va7*;q6iq*#o{E5*f7KPAQ5lUz@?0$+1@wdDP=cv44D%pjFkbObi%&xnf}`%8a2$N%_PLu))P*Acx4!2amA(%Wo)PbtdvnDd zC@MvK7Ct%So)2M+5fwlvP{@tXxhF&2r2FS{XGWlV1G}+RKOtX zyKmMo37Y|IB)fd|-|6z7A42otz~Xc|udWMQ%lYgb#7PPP_pXch_piNm*!u6Ow}sRB zE-ZiU(&^o%yZb{%Qj=x-lIcp(XXO_Sy$quH>+7jU9%Ob;?PJSrJSM3X4J}(Qrj;^+ zA$*k1O{ebPyAPXDI$QKp1DLzb+gtA6M0@>y!Ep`v;t@T@VF9Q-P)rl+T?jnDF+C0N z3-Lp)Fjw5pIV1UOVR2Cs_BButXu+k37^cBjK?A8E(9cr9nx_n32cE$DAs)oQG#JRP z8`veZn-*M-oB>_~rmD90IjblQ_v@6ydR>E)<(g1$CwzaqXZyUKqTik~$*x+z-l~R+ z2x(15xA%v=NH4iJFD)(ha~)?StKzo12g}88#0`uH4{Q+K*Zpao%r!fK3x~z+fOdgH z()S@qUsX!2ib~y0-O+ZTD}3KJdKkdL;^X0m>cLj>O?5T2qM-}zMFHu+y44uO#Clp#q74(#Z~j1O|%ZHRPyh5I9|~g zS#>M!{TNtf9^Ktkl9wmzUs_lDVzQ4dKd8n#!TyBm@(~FsJ}78St?lgX_(S@o(AyUIIwhZ&`?QbX(L~YD&OnG zkYkU%>rQ3o@4X>fa=I{A=GKdPhm|e5lR?^DT1Ne^KOH@Pma!^AlskcqH@%@o+N0*A zjaH-Ei1_{op}Z0SkA~kx)xA3W+6(U*&1VH=s(NbehVwW-Y|D1@Dd)b3-x+A*H=VsR zicd>MP($<)a4NG4Qj(Ier-vN|Jb`8BBo?=x-s{f}7zs=tJ-xSGg-Q4B!DU7L**W5j zed*ExSd>8t057*Ku=a@&&^?@A49zL>b5emM!sFZI$$vBJF9&;MrVf4-t48&=ksiWm z>fQVJI#qkjeDfudD-Rh6zQZ?oIFx(f8o&IPBs(*?c%D|q1@`{7k4sZ!v2x))<{ zEIap7MaK?+wMlhG&c9F#*3scLk>7-Ayax7j!kGk4ioJLuVc9wKJtXX-x$+u+xj>u1 z{}xs9nt{%wmN-;g{BuWdzA0t3-|LydV_Kj_{r-%K@MhY=7}46;qw{|j2N|2$D=9+4?1bJ{Cm>>P@HxezMg+(V6s>19}f)hx(e!|xSx;dYR0%cN}`GaD-}UzbwKnl zeD?qE^+;YVry_so=2=H}J}croZv&%u7HLMw$J=yyG-8wDtd1>E<-VLWcUdc6aH}U; zsp=bby&i9%yP~~moJT8P`KK`o{Z@|P;QV5DeP{j_FWIPXNL$Gb38EmBgh8-TjH z3|jruAkGlp2qZ+_H z>x}KQt_pRU!Jx_{sqJVjl zhW9l|e*_fY3wQ;`GS~FTw|LCE4KX^ITV={EE9%v(-*)=4y>xIi^YBLB(B*2m_su+u zR}$~2MC9w&P?lxA=SrpDti>lYRN`Ylqv2nWY1Ma$E7qCe)hH9!{7R3UfSQWi_3hmq zg_>0}d9~mU&1(6!9P8_2ShPZ;WTuK~*PyGthvv$=(VG2q0#t=avBu?SP^r7|f*}L0O8t$2bhMUSQ%gm*HcisTXbd zWa%qIWrqH!!@Z%XrA_pTiPw0kUXSTm8PdI7-o^F4`0ZA`Jy#bM^U81QGBNY{e(|E0 z45b^}`1n&vL353p4>^N%b?O#|4{gbDq|d3^Um;*y#3&pi0gn7xOAu~BGZ~pd8S)}G zmt>Lw0YzvQxd0fBgVsuk=>SA6q|5-9ylLn)45x@|w0EYy(BH1r6%EXAUc7jb459(K ze_t1YfFTyuf$VvwtIjm;d*cj1R)IEtWZ$NF2l};ct0PG7Y#$2DAF2z zmh%hgI-i?JLX`N}kk}#-!}sS|{p@t3Y(RsBiq^-K!HD2O7R-+m0DXdweI&0WbY%$0 z|MbIvK1T~hzs!T&YKnE^K@WvlSr+#;Lwr8sHojyWOx^UG8-%`UxfbL><>lqd4O|9)h7(#>(g83RNT zXaSMKE%+Qyb(c~RWnjCdFFt+`yuwmZIKa{+rl+z+aY+e@l;qpNOR64YsUf)A;oNMO zON&u;a@s>E)A0URNk2CENrOuqW)D!nu73|cZ8es*G4wkyr0gM*5De=f6_Gl5<>AAJ zU*OyY$z&RqD$+$J@y?$hJ)(fg?!@dYG5%6o`AcPQZ;$C`_75^i+l+eW^kiQxaUFyD zGS}Plt3}z&@hK-GR=!8U}-)oLIw30_7l)Dd0U@eoMg?1X`yCAg2yU)4<;J z*(;H8hx{GFTY}msld+W4OaIs%evj|?-c79=$Xc)p`k;7d$?^Nm;c;|l zrWp*Lw(g*d5G||Be{q?cPG;>PiBA6y%%Yh=n?3s^a6n)rU=uqJkDrum1Lx7;$#v;*0| zbTAvAa!8GC0S^W2w&`#kRB^5G^LBMF$R-J=Nd0sJehRPIKed>uzNG$$xDBuh&tp5z z%n?Dx-m7I?UtK(t7s9EFR^%n>?H^oG$6k4%&cd>XQ^8A$Y&_eBo<0@23gI!j8V%H$ z>-`|yL5a0C8GA_RwtctoWHlAN^U1n^-RdiiZUMbjliSYV9JddZ?iqb&PaMhmZ1z6j z0wd+$XV$hlVO^z;IjWTB25a@UrVRFJ^7>P~m+IAIaXDnbyFCGm)%C+W3@VQb@)!5+ zA5Tb1{~JCapl*J*KW1KBs&;((Ye`De;cF(J?Mt?WQC~3EiTn2WP^RhI(uCC1R1kxx z;q=pkJB<f?oL+hnQSG*J;40U1PLLiJj@F(MZwSRk&JsGw&a613YRw*NIy7>Qydm_ z19M%zf{^(_ZvzDwlntB|@MskT+m%sK^G7;Xq0YO2ukatmx@|-;b|LPfJ8MC;y&?Bh zAD40Gw54^L-wkWc->-ujsVsT4n&5))JFc#jNz>)@Y3d*CHIk2?tiBJA8tc^RE8BLH zj#ArRhUUCVSsSalqpBP4y;TuIUC@o$)2b4D`4648qGKOmH#Y9D%N#kIeQ!y9#moG7 zq&+jy@XY?{Sb}Rk`7$tBgGA?!vy#hO_uXu_Ji?AR&PcwKzQYb(1{uZ>l`>>qFvit^ ztS%Vl-I&|H_f1J^=1pBpuT4m7slMBI0VeLmp_pvAaM&YOj*wfVU&-1UwsA7o8qt2p zyR>P0cAU_lJm>Byb;hvL_{W(=^2ub@i0Sqlhs5bM*>gxeDE-}%V(z;{%i+!n|B=;E z+nn>a!xEc~@5^jo{rMy8ad=Q_SAB`}wv7T?SN;3t4C0JeE%+PL+*q`(-*KIv^ZfN} z^%co$0@Jhwf-@3<43izufxNRNK*8#M-2{E`IQ!GTfn$3+<6CZl#FRDaOr9SNNi zHfn1k?W4gB?Za3qefB6GOpl~J@V@l8cLGO1Qu?p0;88rm7bWq+Bwh`Hfy82WWEoG} zDQD;VqhGN1r$BlGV#;>VeW@8f6j{m!s?^h0D8|RnU5tqN@vQ!3z)!*VslpK!RpLtB z>=dkK@zs#ByUxj#7VUVs(yq1BHEsL+%1Kw}eQFA8&Yl?mGv{1YGji-V-xJqhx@+GS z-CvCboEWP-zIqO&03GP&{n&oV7r}geD_=u5EVW1=6O`rM;0+KiAz88?JJPXrK0FrhAknD5QiWm!=EbM*FZgz&x!j;Nb0eM<4O>L|%@ zqBn2rVWVc;@j<%F$DdD2wlkh=8+4&PE9YhIPJcXk%4V1Mw%LV~@8TuS4(>b68Z+S` zrZZ>iJa*!ZslUw;d99st!SW?BdCP)TW#Td;jA7N+CcGs+7tpi1&&&ABYd2~cFc_G9 zvE9XpB}jF9^oEJtR; z%N4F)r%+_!kj{mF)pkx!Vu^uU{1e3bPxl|3Yksr=jMN@%+R1noEb>rE`;`zYS)3kZ zRF4b^m@u7&k|RMjM%uQH&GGYdybmLwB1jAq{;`ElkiD=AgeqH{v?Od9_J6-d4lXP# zoOW^w&CYgd2sq`fA@u0=NoCRG|1uKWTrbWOE|;O0=JbV2DDr(4oyW-yhgQG!F%+%@ zsFbXPMH!T49oc5kDKp$#xKC@ti)Zu!EA-);tn?|KN^D*|l4+Fp9}~5O*R`x6R;z3> zg5RFHpSqW@CAJ`fZU+8wqos^(lpE9^te5LJ4=cC(D7s-6T>IQN@@cQ_dalUTi!Kv^ zDp2sjegm7U`|&rA?hWWd^GJ`2mW-prXTCrF2D_L>O+(its&Cj;xMKV9oISL&XwJ({ z$z^IxPEvYGVr}X^E(1}gAg2$G)7K&*er?HnQ(==f@^`&oDZTc#syo+~c)nPN6+W4p zPP|vYTdz$=Wt#^ z?cPDjwThOhS~q+4hB+7<^&MFTvmuV__FRUYkMV|$E#~9)yGGZYEB05aR_@;8n#HRT z+Q=}G-Ce;u?>V;NRP4s-diq#r(Z*IxkPb$+{kgkbeEPxJ)Za0+Y~pKVqA^2WoLp{p zv^&%MsMd_@?4<`cOYZRO&EqL(S-p9D$k#oNFIf0nR`jDN82<#bZ%Q&4davBNjb`5> zC5zM6wald*!-LZjH@zumZBq`nZ{H+-B=uNb_yKOYAe%XVHNj`a2eU4;ZKiSChVy^x z-A0AJ4@HAedy9ide}i4)!G8A?V@{dv?Ke8z*3La=np>l{B(&OTqnb5aC`q$VG1~sP zRs7GN9e-w`#t$n#&DyIa(glWxXmGkIeb3Rbeul{7q5* ztYmPEHaCyK>|1Tyg8cU}EM3gqe^ztbHFli;pPz*pmIBId4^;b;K_Q}TmH?e{Hqn4X!j!HV56-j|_(Du>BCYQEuENCZeQE`-jA<0jxU zbRws%tW?kl8RK+%yIfq*cL~)5#2=yXf+Xp%2-(cWN!u$7u^RAb(wG6za%8neUQ8mS z4Q@lt{HXj8xW0Spu68)&n<=n@g2vPutuJKY!QtVbJIA_8lu)Jj!4L5X3g0gs9pY|% zHOFFHi%Dbf_g88J`8D1AiUJ^l(#x~$4DefqfiF3}N=sMQ?IQp>J|xMQ1gwD8bzKc* z;3nF2sFYei!ra9`;zd8=lSJ|bLm)e~JonbpNz9_~rfLeekWf<5?CXkd@gQ({%Ro>^ z<|YY;-D6P*E!6KvCWOzs2bn05kxU3f82XyO8}4qKD3CWX$cKl}okby5w`z!s5Fu8}*-Es;1{9uo z_;1!?+AJ)%dTd**cU0cV&WtUG{i50_@6ru#d_(2k>5X;eU)r=Nx2Anmw!8HEYS5~00iHt=(HWcT;M?(4a;U|LV?cxM7{hqvEiqf%Nn@W~vIe^v? z4c$LRrZ{-qz*!~9cc`e}c+ZJKjt5u>-U~G#JZ_P8zIQQ{xDCO*0!tyuc3vXPMtQ%} z7w&|_l?O#rbP>;ftr>s!ZYYd`hki|fK8xv^0QR@johoYS*EO?gg^sg53YJn~(_a!Y zSR1v?YvV~T<-^?5dfU?9O)bB%v(-|C$lbPcutU%r&8>{Rr+Z^kg5;p_O*mcOLhXMG z^jjJ{o8Tjt+YGOc`L43Y#l`jbt}Z@6tTr>sXeKOEq8c1>%mb$l{u>9u+BGB580Z0X zK{tP-J&T%x@+N>Px*^5+#;J!jgTBGrS}umf=WN*OxKo>jYj;IsSm2#*ZVz{#z>BID zJOT%3&QHBa=a<|DAn-JRI$n@}TfT*d-(ramA7%gaT5kjMys>a-*fGTx&n2&wUs+9# z`Ddc#4jeG1IE{JLLM|SIU}OaCtvs73?INlkx+O&^%kW9~773f1D{nxM>v=a;%&JO* z5C8^@S_DQri!zi-&VAcYc@rSY&PqjM_l+j-ksvbz=f;YArAK%hk$#*mipJ1E9X3MO46K`}2i~m;yiY^h@ zo+c~pkhBXOpPts4c-=obDq8%vC&Z=^>@*sPVdlCPa@Bqy)@sj7)66gLJhLe(0Lyj> zJz-LXo=BY}p40GDpch}u4LCc7ME#vi`Q$(X(gK+3R&U0{#26R*T)s7e8yA8)KKR$K zUwnhjUM2g6XwIR`Bx*#QK5IxW%`2ylGHfhc6}&v67cdSX_TCG}7=Wr^1&ID*HFxet zVBiEcKjO2|={=^PeA$gK>q)9uhSA3_j_yMi2kQM*Dep9uahwg=&i0Y#la|eS&SQ-S z^(kc=-#!gld&e~QPp~O{+^XH_n_dsqR`X9!S zx)Jz82$xRq28Up*WE^iZTu)-n)G;K&J_UO;47hJ#W%1v&AA{KH`#aBwg_*9aC%+;c ztNQ@3Wi)pfCbJ`~?dhWr=??5CjdB7OE5=PAGu zaFc6+%J~W>t{v@WQ60og-=Y@TzyI@lDq(r^^GDFv9chuD&)6g9LzSu59e+fF{z$b4 z)CD;oLY|eoNtL`(dmP4}Ri!B`XLIJKhJ3pLbt~jVF#Vbl{a| zQI-HDCV5W~pQr;xDbVd4I_mF*P&ecqxvkOCk`*BS1W(NpKtDpjMY3Jstx<@ChgsP=HF@9%A@_ zBS-l2k)`dJrqS=9nFk zAj=FuP$iZ}4CmubqUOe9O%t-g>I6u+bXj<7Qv|Y)l(?9gOQHFl8MD-lcgNY=>AQMm z`Ii_TG*mRiDF+`BwbU;US!A%OqhpO}%f{^kq_r0cV$mkE&2(|E0vg-hkl*ABW{h5o;NE8*YA~@21?M*VvTgr+?-} z-C+3bx=VWXsx*L3Ff}=nC!OW*Pet6rGO~+#k+npUELKav#VN4$Rnv4nc)W23)v?f_M>>zH90nNIi`$h{RdGa{h4`t_vMt z%OlwX^-CV$LB2dy05}iP+Mq+(i!5zYhLSKroDA5n8Bv&_k=RA* za%_yvuzi3EAF+!YFb~=;;}(FBs2;@Mq3pQ>)DeM)Ke4HT^sU z^Eb)qyBQn|+a%Mmf`wf!5&_hO=L0|9#L+<;rXFKM`5GrO$&9VFFwC>lMe(ocpNsB- z24#Lqn`2As0Q@l5aU=K6S)atFp2kjgCT{gyl4|IXX5{f2dRba4n2WSIaJv`X_{vw| z5CX9Z;FZb>0H^uEJCC90rxrzTk%Yt!xcD@x$y(XK!mCPjC=)ULV8vETibEidO0{#$ z2#mx*AOIW?A0m-|sMI;vIcFxq=(kV=YnC)n5BlrQVq^2Oft5iDH7*+sma%I%=e7 zJ7%hSz{)4)=AK|Rg8~zTp-)lJX~gde8NW!rx+?|3yAPN|k)ZP@+pEJkG~n1b6LK>> zKSA)w4w6`i;<+|nj0>s+Is~z!(=TCV)ClG)H|}3IqrlHwGZpDuZ*%O5)@PD0NFG0& zfXG$)+c5h#u{9ZUgaq=3Fw4a;;s+lvcyqMx=GwN+@r6EcL`%$!{}PQmilTM2Y(xj> zgZSMu&aBjAz+ZK1z9graO>NpFF8N7Bk*_|auj zvWurV#@RSp6PxSh$vz&a4G-$^KnM!U4-y{JZyXf-{eSLzFqT0LdyKt~_4LnA{QZv- zHnELg75rI&lOJsiu!Sx1HUm;_{`XCeSM!z3oX{Lz-aqWHGfLB-`h!7&-P#xKaXI4r z(I;w*oEKTNoGVZ9R_5Gf@%vJ?zkefNw3E7>4tpJQqFQvI*1a;RFUHS4Yg!A`p66Ss z>azQ45#GcXy(d&Xwe-`cDC{+qkib|+OC1bm-Um5NZtGiZyBLn?500|5JeSahL(7S^ zEw1$?W15>DFIlNYHxld6s&kF$Iz&ZSKY5;=#m8#sz3h&|4S{o}WG0mNpTBoB{TRF$ z@TfZFDu2dxAfXtjN(V1RwB5_HH){R#{rgg;x?QlQzd)1?tJF5#w51mNmt#0)0TbkY z&~4g+W#yh5p7ucbwk97-Fdu6qwJvXzCZEijGfnt!wdkFZXC1ckoo79jI5l0Uj^t3J zo$+C>to~>%7|r1k@IA%e8Qy+D_dAYOS1dX?-pzijQqLWn;He-lud^pujW?=~0cQ)g zgCn;FZC!il9<~f2vex3Q#NXn>r>lmsT?(YIsjq=n#%= zm+y3<8V*}whXQM~l-JG(-sAbU^i<;Tzi(Oq-$PC>J88}?DG6;g*}#9kg9f>V_!4ew zo0Ai00A8S{@k88F`XTXc|Ng)LH7AefuY{Njv3flClDxIdHMo=i@grK~I{eqy_+Njp zflO!6eUM;Gax5?XJ#QEin+`_aZLkuMLl%M275qSc;=j_^>!0Ghpuc^%5^#>L$l)}S zdqvKz$-%}51a9N_>jm(T#=g4+4I;^~0s{!QdIFZBIC~H8b3SE6{JV*zA}VvV=P-rIM&^HEfaHX+}w0uEs zHGCVpaR8E#G1Nj}6y3aaOCsMv{U>bJNcDq~@vdpC&LDaXIEPXp*%QS}6`Cy)V1|Q# zU%o@aKgpwLU*E$ZWdj4lKZi4T8EE_(TOSr}I(qadPP|-fg*J`gF(zTJCrPSkBW@sz z5T6H}xdBe?#9*3QIdTG@e(y)QV4Z2S8~%5dXcu&aZlAwA{VR&10tg4WY_Ou{IUFm* zgKm<9Ra5|7(Gf97o5X1nf(dYu9 zPMknA4c(OvfCd3r2#AHby@Bt;_CA^sPL|D^t5KdHZsc0A4z?q-D%Y=H*AYrM55$U! z+p^e4AdYW}WI@4>QTnf*JB#niydW%0p&4cdp@Afq;Uv@%F-jxUCLGB4V7?Rwyl3|S z$9agclR(^uON0XiQigxmIW!JWQ6Rl4-dx*VF%}8N8(K#cq~b!J|JLjR(RFW7HG=DQ z7!G?vX0M*7SJoaQFcs*sGUs~&$TCKk)lDcE@DL!(ASg}uUK&4z?eG_l(DcfBHl%~; zVv|Ib0xHW(QxVKm_Mz6r4OH(1U5}!+GlZqlR^yRM%$D0Qr$X_t4nr*)$DMf{5O50@n$<_(`H&VA7*@~d z=zVLC410S;1(-Ikhd8kaln@ShZ~B34(-=REhDDB!8QpQ4j7s^096LOgxRY z0w5}ko9r>8hN>Esj;_e*H1xpgXy54TAd#b?r{5Q)me7b^c?;+cNRw0~k5g)d;y)fy zNwRIN54VO@Eb8jL+pOh3%a8*e5^6O9{#d5941Fo`mIkmZonn&^!gL*_-XvOq7xs-i z$M45`hL?BMoomA$z0uE=-YQs;=z18&R3#)P(8k%klGgHvFk(m_n zX~VBitq*Otfiucw@Imi%)RCM)OR8$z}}irQi_33L1u zdRWin+h*09cu+!6=M&?fpCcn81d}3v4;@$t2;MizOCYB8=yPLnFcmCsg5*d(7NTCH zJ66l_0Bz)9YhOkUzX5nE=DWhs-irZOJ#CuO#gd??{_pWra6OybK=SAss0R^bz*~C~>rA{GSyoa96uqW}VC1V+XGzTH(AhsK;Bt4L zqN`nh>YqJqX^2?4g5m*l+h;cPruzC!Pzj?b7|C2fkhX(V;%mp=bC>RR-Qt5w=63#} zG#I1AikQXWkv<9{Bk}5nkq8Bd3J>w@y?OV}8f=I7_{}6q+%)rZa#(x&A&aEWc@R2K zHI%{g1ciq?v=aVjW6TaBn1OElfk+&=2Ctk2Cp3aW0s;-$+5!N<=m37f`5b2)AsgYyk3#3+bnaaG@eFo=IJ)@} zeV>~Gm~egslE&ZK`XG8kcv_u~KKlS+P$13|hlz_9FA_a9xYTI0C8SayN{H-WsDmb*1o;B3H%2lHyt@EJML+69 z$Ai#K7R)m7`uYgPCM4eFdH4xqssc_cKV~_+zAH;;dt=_ef3Fj>@5xRscmAzCIF5-^ zHqO8YD2JG^St%FH<64OWZTR!&4;iLmjS=_*G`~k*M{#e0Z{F;N^$+k4;sk?29SxbZ z!4(4~k6%n2`<;?~S6ASpDhYTPkirodyrB?V-;E`i1^^8;pE!c&ahMZ>b>(Yo&NO>t zN=a;SiJ>vdF?STCnB7#P2S?~irpig6j@Zc4k*o%s*9L{UE^&P}K6w&6A zq|O8kt(7)!V2$#W+)K1$1XCbWGE!)Ugh)R1?5&~)wVFio!1b>Wr{RB$16?rJotc$2 zRcsj57sxzB!*t zQ31?&#umebhqz5^n9$>EA5X)A3&9h$A=4;B>|61bcN7)ai)PM&$G^>d4t2!Oo*rJ1 zpKSFRZW8bQhQPW&0!uW<(nT(Ju*;!ewkrq_vdG5@a zGvgiiurD9FV!4{hchwGAk>XF=Qx2|AF-WJoN_A%WB%el)iyN|Ygg>Kx3a6;Rbx#uu z2?=3E`L!93G!RB}07AGs0btsL_Nkd80$%qg?9tM7e3vEN>W)V9kmv+l#%MRdUdxL& zZ_=QKR)w=5>6~G$qnG~!#J3nsy_V1Sv@DP(s^}Gl69D>$B5)u@;FVWQGmYxe7&w3h zhOTnK3p>>l)aL207;h|K+n4}Ej-|$=I*z3-nBIkOJpW#l>05v00^b7-bb9B0{m;+A z0EiX1tZXt@2&EQby~k&o7qFln0wD6#r3HXGMUq}Mh64B^#9h5(s7^WuiI~8&w@5ie zmP(D_af@lqfB6y(t+S+QW*h)Fq<3nd9BlsK!V9?XQ0gaA%KJ~k`<6T46u6(%{pri1 zoj35Xf~Afz>&amRi}Y7!@G181RqLI_4&q^X_tKS~eBcqhva*Tz z5yA9$a}&1!P(R2{-(Ua4a&rcpVNh-DLelmdmPmA*x?GNu2D zviN;Kh@2!4wYixEqjp+0q4#Jcn}3XDEWg7sh*6UM{a=^w3R&|0b8T?ljsj0D`lP27 zhqloW0o+K6J`8C9{HIPtUnm6NItBFYaNHiP0=Ir7U>u9P*b&WR!I{oCiT?@Y zt{lrO0a2f1_61MU61zzD_TkvVp^CF1%L!M`nW9lA)*Yy?$I;~hXI4j-G}Ev#dw4EO zo+>FR=?v)TaPcC!tf+#~x~gE)ow;yzaYWi{`qwp_-DJ1KAuPCeZ{%F3cjHsh31Som z{>2mYu7nJacEKN03rzl|8q6ocmfvY^M0yr!t?;9UB`fVX0{!!wad@~xY=e=?Vc^Xq zLHwz44ll_!l#7vkw=+qVFQE#X=%s~eVREwI#TOHf#OCWsH!r+J_#4hJ%p-sL@Kl>T%X$YN&lej+newRows+ITwR?T>Bs- zJ#*M9K@Fp#qB0a$fc=IT#DhNSKMNzQm`7Rasag^&2!9vx9P8XCl$W2sPP64AITg{* zCMfw9tIQLN^23i0PkA}mHQ}TLe)=AO#x&W+fu=A5gJ1TT#sq~v%P^yD;o~R}@Y>HX zw@ZZ{Wnn5==PWumnevu=8BQ717@KVfMD6={Hy+<>xLhLBIHxB`Z{$%GG0-n?7u@IA z+Kpqot!oR;hP#em`0)tA%8I1Z;qz5uGJ~A!k~UKv{BPLaQlnTJKq(O`dNL71%SVeh zY_UtB5S<=&$kvlygXGog`12-sDPm--hfWfRz(aVSqq$7W$gWuSKn+WLvk9}7^q=s2 z-WvLrWibg)7iM_iNBO}#ZmMK;x$%_EdYIn^ViO~_z=&nVAoiJ2=B+1B?4wsO9n!*X z1_pu{@lgUf=g;?o7@VhY*4L+6ANk=F;BN>o`Gj4twWF1=h4~s8v5*=Xr!_Bn9F!Ks?RYOE%;7nC3_L&E~%twr{k>IkRxQfb% zs4>vgN+{Ubg};|-xE=jR^|13I218n}R`3RgFewVi&(DWR`esC_Bz(!S4x*?4yfHIl z;P&lE!=c3X?=^;Q-?;XkQjR_g@yO|Jb*x@7`ItgOCXduh7m$mxok%w-r7 z2OjyU1jQF0bkE!05aGyBHZE-1K&6;i3eb%hUfcQTf)AirP1 z1}yb%!v#dfS1zN@Hc?>+!x6=TGL&?iW<{tPa zPt9Iu0qRkWZj?hf8iu5*mf7H6fSIHTuto#Fs*}5LBM9|t__aRY@B8;cF+3vxOc~-9 z@HB+5@E^X3+INf7PR&;S%#x6HttH*GY15q3flU8{v-be&xo`i6%VmJ!!1)r@P zGkpc&T{TuiGQO7ey5OVyQQn+!>Q}czAw-tTh4Q;sa0?N?%mp*E1;_$Iex~AgwNZ~S z^HyDxvTpPR88HbAk9gjU3*~TX2T55ns!OW@>i>73{C^`6RcC_FuF(iMGBy4Pca52P zt$TF4E!f>e)|Q)CttgaWLW@aOsoINen1DsQUrvq?k63$6(PN9WUMQU#Pdviw z62ZTIH4 zey6zDE7*}ZFQ6ZQe74~2ibEd|X!YkSnpdf>(jN;RbD8L&#L-VSy11}O-qi#p%W>p{ zlL^%b>iq-=6Yada*?Xu1h?o++!5VF7H1H_vKq~-=DnC=D03#yTLHAGio0Bn&iNa&? z52-WB2r_K?c!LxaNgHumlUep6@7_WPMZBaSO#WD4KN;Tsf%Bam7c81=0ojPt*MD~% z08$YaH>=kVTx#9=^^@Q-wCFHNh&gs2dt4MiV$P=}M2k`%Gf8>^w|C8-*O9ReFn z)k?Bx@m6~d|paG7>EU9RS$WeHc>}!VL-J?|UNtV%i)bJTj*S{3;e9dQDnQ{X$a_MfHFvp%?DSLxxDXF=BU=8(eOyR7 zkPT{GG70t|RHpiEoU)Tp*%C<*+DxpL_4M1M_C_j82>`t(Or3f)Q<5@n2SpGU*YXE2;S8#=-EDPsfHO!595s6BWz)zo zlpna&Ex||NiWF*U4>wl?%W^cB=Ze$JsFf&0bf_X9Yw)i{tw%(2v>P@wMvxX1g{v+q z7Ib*@!d%hmL|_iSV~a9UjUO1K9Fy=Eg$y3uPstlo*YC6PPQ%2nMHkqPop6OfXFp!I8QO$ox!c6Th1o;(VDBJf41kyi zopS}I@1pf(Yo3{$jKdaD~nQVIPR?FZZ!h#fG)DMkT~u@SSBDNt*dqO>PBGA!$) zf11b4UH$CaEfHfia>hSO<5USlTL-?PZZ@kpWSS8P&ca(=9I{!Cy z9I!F_&2_v4*|~rfsouV>%$Js_OZei27Y{>?p`>P3rn!QatN{QB22TrvVLyWHQ-=}qVFWD3h$|Fo7L*+2pp|^n)6+rqY<>6c-N)9}Q&4~HHH^{? zIq(P#<2}%GG}P485Jm|Zy|LmUK7yY^WP*hcs)O)^mw26>Gc)**D-~ZxT8{1r=vKd) z9tyG~i(8^3>0jhFj@y5+C;vh2|1Y-xzx<25yJcrB0HCx+kO{&1lp_ zqllBrKJlH%qaUhR-sXn5tNen3>Nut^Ui;O~LiAW$#Iv>mt+)V^0GCcv^YdXcm=dTy zZs#bYP&&eg!wTSw!k^5su(v4xJRCjIvuE6$muOs%P!O2_PUR*S^DaAcbI}I0+hFs560Wf7a_sgiP@XQtCfY ztdbEjhCc5chmIpn+q!whkr!<)(c|MtkwiWNYTz=M;E#c9Zv1o8akN>4=ugmq5cVG} z195TxE2%so{RUhgBm)%W85ygI`i;ampiI8f^MTUrm9V;y#Gf$!8X|Ip%fS#=F`k^} zRZkq5M^scAu%L5BiGWU0vT1oIe?-1&upAEFALyS6r-#F7EkV4i!^LWFRS`LVmoxGS z#zI0*rW?m#MP%S?CCbA?>WPbhFm|8KjXlwZhJYLXXLh9MKtxq-UdPX_f=kPg75EvB zf=V8NJcnUafMD=HV(1@`BVs}IdGrkh(u|VJSW5~zTi8xU`nL+^+@2k7;DgjC2ot3t zTgBET8fLa;^|PA*YX}liJL2e(AOm;nfQ;ZDtv#T(W1&+;gTD#TD%L{<7{=gc+?-t4 zsiYIf&4AR9FL**TLwpEH!_XQc%m7>jPJWxT-6x>)GuIlK*16z;lk6aeS_(XqWJH;u z9d*0yB!==V_QfU*GP?||P|1$fXcTrp75f0CqRiNL*h5`{8~eoYF^~_4Iv@U^n!!^d zwGu!%7()i3dqx**IC7A+$Y???jvqo}yQy#~iJt`)z7>_cO4q>$zmV;TscL=5wg zKgB^JB1P#IB&lSZowjiRn$KyhtYm651-Dr(lN)$fYc^w{9dB$+;iuv>#$R#w8pIejn>QQM@Bpdu zO-f1vCHQhh(g92BuF_K`eAx#`NIvw~Ttkdz3Kj7B^Anwdkie{=^vCg8oJr5)OXis= z#r6S?55T3&)@hzbwFu3DzIuAlLjz#Q6(=XH z8^!6fzyFWmv4eIoDjuo;HQSa~>mOP=6gQg_X#zfDa|F1o1~{a!nyRo!DDZKA;3{^A z9wjg{UXuf-IHJk6@*H_}hL17E8I5sBbT%X-FQ)}@45&fxj^}6zwgN*JVMwvo9wMpf zK;B`XiXxy8lr(p6a*j?HvUkKC4Zcn;5*NmpgN&_akbab+^l-sbmX=D5fBdM z&(I3OJp`8v2v7-OuWR%IkD!=?Z~eiYJ9m_dQHvZUU*3eE!?%v}U%5L)NR$DTVAA`K zOW9+T-52fE^qS!4uJjrrDf;i_aQ)DBO>;B~XLB!8LS_wc`y=o)NjoPdZhqrq%8!p; z5FG!JNNa*=yxxEn>z}J^#Gz1$ToS@GA|NQD=r|S>2HtQH3o$?jA~*(oJS^$j(bi^h zlv;g|kNz=#jUEC&NMyxZ8x{&sUCK13J)QG)GTlVEOssdrV1cbk7%XsW=&a(aq^;_A z5Z@NA&@yz8pYdwIe)EHKQvEe|k}+s;%>PCtdv#^y9USu+t}`~U094`bAng$e)oUGr zivS1hdEBRWQ^u7~~BA_7>?Q>E4AoS{_ z-NH~lf|P-U!DK-NiqKt#5}nIO1AUx2BFr}u8WD1JG6{h|$hga?x-JpC7;Xj&oPL4%I!mW03N1 zVDN?E;CNuo68?J$|l7NvQ#Yo>EW@Ekqkq`Z76pD!Xaxl#?DlpWnKFOTeX`@NSUxpJ0K99+g#vo`)ZZ1lLu?hOKwvMg{h+f z=oH7)&ZakFbwJlqhw{Lx{f!9j8bPevCDazUGcr7vU6*OHfDyr~s|%zE6J}@_7%WkK zgVW@6b8`bLtV9T+`na_~m4TiRqV9O~e$&1A2mZgeDT{?(WKtw(0OAe>umjf#nT$%Z zm(X)!2ILX1e~Kn-Iuse0eiw!>NtBV*P{5B4UaFF>2;CjdsP1~ysWJ@^P_QFb-#=Jz zUEMJ(yL(W(6S+A5?n&z_L}i6zP8@gZBSkMyQ(N1eggquvCuIpJ#)h6FFX$r%jpJ(t z;6%EIYv>-x7Jrm}9B=Y4Qj@H5*z)Mk&YMK&(C}a{zjSB?;ft2`^P$00*HB`p27l?l zCL6-npmH$b)bo@TJa!dG8d0yuqcmp(rm=;ba7t(JMOabEvf}4%1>!}3Y~%}RU@6e@ z_#)?%g)};N#=!QCF%V<}y24BVyXF=e$7YY%?vJgZVr^p4oGZGd=)p`(DHW~*byyFdEVG#r*au8e=zx@(pQ#@ne z_B2jSg3Vsw|FP}=Lf-p71i&%|7dL~=h2((9?@pcOBVy(kn|Rg%g~Wj=MBBbB+8Ar` z5RDgV2vZwzq8o0#jE(@@LTI0hb-l#V3-fX4-7wPg;rJMEF~Y<^)cNuIcZKZo8b*lz zi46H)D(dUa;{TX=9_W`Asr!U0F($EZ=j4>It4GBINavHZ;;TRZU2tt!*&Kf3g`WTa z_}u?4e*UM~d%=#Qf#1dYI4@2KB)UL-e)aWJLmf3>y;9qN0^#~O!mG~0vkn3ncyIXB ze!pi{?in4ehPA^Hzw;z~nrdkEkxEONM)g-jritoX7tH{A`>f`my^?T8g7*QBJy$_r z&=&PNF@Cc*u7oL+{p8A!_#O_Cp8ECvk!!hG^rBvLg9fUeqW$ zWOFmO>f2aJ>xsy(Fdb2l0`VV+vkBuOqorEA|JB%n+GIN>7~qY+B33i(W2CKqv{%}o zSEa)fBhLQK+(DN8Li)wCVr8n4MvtRQ9_3YcH(p}C^H4dAhi4mu$3@-DEK$+0(V%qT zI+iaxL1xy&`X<%72})1g#5hBR4lgILSnp3zlBBiRIM|zAAwU_Kzs$Y6bE8b=kti+Y zU9T55&y>&XS37&e!}(pZK=n!ijo(I&(7An7J{s$1inQ;a*zK3`J~2e>-qqC=k7ZjF z{=^6o8pJ89YjTQ42@ucYb}{YPn_ahf#9;C%m{}23Z~w$fbqPQtqI#Jj+ypmQjosJe z)QL6~iaiY4tB5VYajpLJD+cvmSXZT&==SzwXjKZ|Zl%f(CzD**Bi?x>?s_0i`E|zI z_WfoXf#96QZ@kV|>&m<>9KBh+>%A{tx||*x%966tZ|xzDjno&T^b215r=+B;gh4B& zFB-NokBSnEM>g13bQ%zG3*ac~LpkFb$Zfi(;P-#T9mb6UbV?FRv86z!>4&RVRo9phHw<@S&Xax`aYOL_3xOJyWQ#jyKR5 zi_@%Tj|S-50r|nUx1X5s(Pa`0EBA`ovS2|d;Wlvxzd$Qq_4LFNr9ct>$%1ZD??{5~ zbFgRMwPB?2B$5C{RVfX)fiZ9Wmy z1G&3oP*Gf*!-|~{1aLqQNCAghB;K|)4L#DXaw2>(N56vDEpIY(6keab7YOu5Dgu&N zz2AL)FOEbs$CIf}zZ&AHaTA(1jheLOScoap;2|V-hl?ZU8JiZyM+zV`L$LUjfBwvH z6SChc0LO`E5+6@-X=3g14Q4N}OIPE6ZV zoQG4LegEb2cmHt#g59NcL2Eh`?uMX}R`&sBLU!yeJyb zZK3K(ogBQ`r!BMmga>i)Kq9$ z00L1{WeFCwjyRFfxsj1%#i72wkHEp9LqQ=!M&3cSKQnYvG|c#GsFPRWvr{DD6%svt zkr6s!%7B<%{URry?+4(ioYX`{0aDSieLzn}5GUZi@t`dz+^4F9$ooO_PSywrtYe1` z9m+5AX~s{X;R)_M9rJZHb=ReOusGfbZoq$HzXK0P^(N$2hfbMTD8a;O-TfsELK-w4 z8JUN=j2$vz;GF`(!oua-M}b2Ar;|HveP1j3!WWSgd)(+-`QH3ln%r@?#zwqmDx_q! z*U>>tfZLv`$KgTO_abXbnN_#P-`V>$J+c)}AK278ntnKMw7pUP`L-~ke09kF6jC^^ za$qpQ<=}NcBOZI9)llQQIECH4L(UnlY)SV#gOep-*ciDe$;-?9;3UsFrP34&8%1k@ zgK~E#BLB#qhEQXNZ@r>F+Dk@l`{w}`6bPU*LxuOx#B5hrgzp{$j2#dd*xcGQ;)LJM zb~fVS!}FJ;zo|Jp=N6?y{D;CCl`(z{d$ZTcqOz%%FJJO|6zu*zwp`eL;_8ro`+g@& z*0Pk;%w|<@>HFWJ#e+kGdF{%=~MF-TV zc{)k#S6or*5Vqi z!%5|KnNyoB3@@@BOL?b}`D*kj$1dBWaa)yg4Wej)NFNIXnzp6K(8O1?^&DgG~%t1z>7-(g{zsVX+6b&|7rg18A0-(tn{MAwVYiZw6H0DCiwQ zYX5C5|AbNK;-muyCinU^ompt2d6|ijCWjOxBvRYxVKK7j^q8M8%^EWSkU&yw-q!(X4<4PN~m=343j0Qz&BveaK zUTQl0ytZoDg+XY-E;u->K6_2$-kECMnY-KL;OcGeDb~X%AZA+igog*Uo-DTL zsC_pZ_BABL9^l_8h=7s8dFxt5x&=r zuguFdO>~Y*^RG-R^-CFp1vk^R3I*m0ZCCdq$`Yp8M<^!<6G#TH18C^Z;{;VG3p64Q z-vH3+cF5@PYtiOEf;rKoCIW$7JSE^|v34cvchPg*0ns-$EqBo(^R2U6p59b``p5w# zj=#YWd-wGBA4V}Gj9JK_WY&ecO(Jvw$zuxmTU6s42%=`@MK_{meg)ncwjRK@%L{+m(lF+(~?=)|AxZ#DH_pVmRK zsEi};g<;x%W)iV%-6{mhyf75Rbk*_wj7LIbsgFGRvdYN4ii!ddt&8oC$qeMT zoRd5j3K)Tezmf|Mc)Mh3=WBn16c&PuUUjv3Yor4yEs;JX{{EP2#WTJlR@T|1eB?kw zjzz55w{rtag_0T`OvEuyq-xLOL#iKs{d*~#D~^(2ybuvdz!*+MBbb|t^Q2Y&E~LcU z?2c;D2dS1~U0AieV!=`R0^%oq47>fOa!Z&`%amx{o36S3b=^MBqS;XHSreJJM{l29 zWRmvWK=blD^|s>%vxgJH<|=$FxCAb^_jQS?>oS&}T`1Z#JMzs~_l8ugcTe5r)z>;l zLfD>R8Ds+RSXmh2CZ4{eXPz36D-y<_onyx&6n%g04k+}+6G_>}YVOxRbB(Y5~#Ne)chj{We_Je0`+;6+Js-1e;Q2m1t*%!6vS=lg2N`YDd;OZ7-ZCH13&-;POY3FcRSl9PF^!!&B1>F^s zlgT?Abe!GU887Vk$?!ugSj4r!HfxDSET=J3m&a%!KfZ;QDt+-uh85G$V_I2?Vy|`i z&caO$Ms<2$%O#Wt9>m?u368z`ySX+@Qs}bz)2SSNM`3M=<N=#%>D#T>)$u;5Xim>8jcuRy%AWYAmPhUN_~?yT zRdDEB>&RmMe6h51YeS&1*Jr0>OXUY8)pKD~y~V2d&f#9e&iW6;{SC%#7sSpjv5FqAk>a&E<4Dk?loJ z!s&Ap)(KiB_J7YV2!(#gREZ5*`{0%KyqNUv)&(tErRyG>zH7+7y3bF|xXgK>l#*qC zk?AXO*`H@WG*WJ!_$fG?b*kRUx;|@v5!Ze9t}>3BRZsR@87Psj6`P%4d~KDoXoxxz!Mg!gGjk_ddE6lriwas2mc~(Yjj#y6IFA=6!e8`UN$DTB;UqxbX)kI_x zpHPSG(^mg1v~*wMl|=TM_jFX2^^wc(pC)=o?)7(#j$+)#f^SA?^Y*S`jJwErhpHB} zM_Ma2pPpEn_UQTLBHjlQMdepBxYzXTQMjUTNe~% zNo@VPQ%~jHXYG~c=CP!($E9IOGaYKZi{s5>npr|}Vg%cJmQ10@skfh<~PlcNTzc`5M zF?33c{H+K)Hu6>bO}NCx;%UwPxrmm{YZzAFKgu^Mu05CJbb0M+SGAk0M$Klh6&8Rc z7yDZ!4TQjbyN>xrkJtz;Jn4Aec#)lQeNI(d}=Vq#E~ts<3nLnb=RA-%4m}Hv@)Qv zQ-VJe)QIMd_YmX6I&>E~?0ic3uNlRA)E7Vv&up2~gqS)`*tN?%KYoC-D%TqP7P`JC(^~ZNDA9S)R72-=7rFX>YqWI(ZP)Ev8LvaHUw@t)wd$K2r$VR zd?HEjYXPO*RFatgHCOQ*gYT=9yyH9P?(MoOWtF(&gp$)q#ewt5v}K$2)6)yydXkxJ|chb zZwPD+;Q;`MJP1Vs1oD0$2hlkDAe;eIn41{^t57VRM5GLUwMx)+8Mu=OiVnz`;GqZv zATpA@7l=zVEP!ML0Nx@h_dU~NdiM!%QaIOD`fm!1oKrHqrO$lYIXS<>X-f^yf+{dap!lr*LI0Z!<#OPT%r?e zx_!;~r6QN~rdu9*ac3)UWZ%B1!RWI&Vr-&YFGD<|Dv7OjZBy7~vo5i&-R<`_C*I>X zwGT|lpBpQNS2vI$aE_4Mh;64x`l0KiH3JF+%VCy;s-u>TO5J_Ujt1n?~Y;@O~xD9|W9 zKDZCYeN>Hl2}OwH&KmDtWl-I{Ik`fkh$`E*-XwF|nR8vE6FiR_WI6>ejzerM+1 zzZjjr5WRB~A6w?^t{OLe)zsr=`V^NGUjIrCq^Y|UJ7#n_{ruVGMrFSTp)+NFFPhHr zTOH_bW@LYGk>|2?$kf3dF-rcD$}^Og-Nh9c3_Q;a$e92<>$yC0%I=cghw{J$ zy@N>>58~YA_pnBI&1r*PjQ}_W@x;XJY$6se@*d<5Q(Z!{LV6Rpp9G$nySsSC*eXTk z|B}sg*cmpqk4%36OW6A>b=^&2oxWnb5y*_+;L~3n2vwLxN1>TRH==Z0*79U@VVFqn zEuq+Mp7Lcm2c4t-2G4Dly69766HbpUNgk^^;rQp7+b&sWzDt+J-b_>qUADL`Y`HY^-oR|EZumD!nj) zZioa(rlq9;+5V?+&wFs{@6^l;HZdzNx01WmzE}E3lA1`kx01up=>w62e(1c1`NIJ2s2Ob>t%o^oxl zt5EGeovJ=3a8l@lI!B8HwdI%FnE4>pK!M!ZR7i2j>B&y9i_Kj6nOqrl!`-w%XdGY z{us5|R^j-SY1@)?&5CyM9354S#19G{4D2{vEfF8R>vYCVfbG4=ZHIP`0__?V8D<0a zJr0rr00)wgOrVjHIQBg@cE`V&oUOj+LR<8MsE}cf-f2cJSSI|L{o!k&t9?!;yrN+n z&RNQ>F&t7+WOent7hrO~7sJ=i<4z^%j&RMAHW0{c4e<^GY9uOi`5WWruuzamF-ksx zl6;R!#~Ecg!!~R%(3j@jbYN5A+PKjq8aEkE{XN#{vNu~la}8UD-c+O(8ULMr&~GDU zhvF&w7oz*#tg1&9)!vnge36^kEjwxQXCb;QK%m;Hqi(ChSiyTwv0p6ITW&5lNsJ$R zr7P0pndqD#No@kSUOT0Q>=ejO!*HaJv^Ie|*TP-1fHP%sW+nleGAh2nW)hQ%&W1|; zHUtqi+CykJ5D)9Sr)Yi+Zdtf7OK=0wje-P-iG9rf0_Y;5*RR@mS`*=4aV;Cn;kE0kN z!5{p$@SV;ob7n9Bi+W05bmHZjV@Yw_t_OVDv|{d)Nc+HV?P%nXhV(GYrStD(miBSl zb9tX*>YaaZb3^-5EPre5tNpo3F*?hFGj! ztYY?5=j^35I4_64=RxE0PjE5}KZm{2z$62SyZYnP7H=OP=huNwOAT^9HAC)>-8dd4TqgCpksayB7fbfxiNo^ zyTos&%s00|IUlM`gNUa2SY9sR!Ch@@^_I+gG@IDKz>o;N0NK*m=~oy3Sc3#Oj^wtN zFxall7;V|k^yR~sifo4(Ij956VKO7>KL@vrz+6JuD`ZI!k2)5A;vRKtIot(8u?A+R zvKUm}?|H7eq;4$w`V>JqV0CmQJ6|LBJI#M+qKIP=KpHXs}5nUy{%_P=zF- zQ5ZxS6i*tB5kU#;@+&zvFYfvH^83%ja!xBZ@u;CI?~p&PqN=JJr@Y?h6gD0hN4xen z0fd4E4oF@YG$P7wRU;yK$UIa01^)j9fszvY;4JF12m*)visY*UzigJhbYPn0KceZ(#SZx0yeJcDwS7=p zBf5p|{!htsl@o5&hm$nuk0(fQ=8Fjm-o}N7prOnx2|K>jxsF|bf)Z*`T#~pFsBHBS zJp%be(nvlW(3sZ;=X;P+-ezy0e6Wq(MgSRX5X7jf`f#apTK(6BX3^dwS_SuS+3wz~ z_lE0@Ax(VR#|+KiwUHLv1UQreDl~TG{ff_a-<79NyP_v<`PF5$=9J}z+SItOGy}^e zhIem;n4h~~ToC*wd*c1GL{Fw!`}3wr&OZ-s(&1{?Iub5pg`r}m$g3hLo*+Q_$HquD zgYu^y{U0O4Do)!JNHXfx?Qb)@yr8ts#DUh}c%-57Q}0BU-SJXUuLA4S zepPp6(wNXIpUpclc;tu|hv@aSca)Ju@*@jvp_Y#{<;NBJZj0Z+D=%UyR1r6Z7j&Dbouc|L+0(lDPS&X4eKE<+(?tC$_G{sjpJN;gzMDzFB1sK_hENY7)}#^v z0vaLGkeR*a^Q=Mb=nv`-cjI%ud6pbaw(MeAC|uz%wCARuZ2MEvKgc6+C?l%HE0g6| zK-7TOeVIF!7oS9*%DX@DKAr!UyZq3m_&D)Z84+O(-JXbKY9kpcLsxF2vu8PRq+h@g zhDC|DMkMf!X2S-J$$Zd^{h;MgUdlR8#Fpe?ExroR59B)rWg=$0YEvjl4gx)k4nn`eo@?TXX8U&IP8q zHZCjS@8{qBb|a6(jT3sTd?_QzcY_YGEYndwtUSy<@1GM=Vv<9XJN!z@?0w_K+- zwNE`Ft-&W3!@#o+f0T-&l;_vn!~Y<_j`anPf`vnYA5utyN{DC>sIp+&G~$cvb0%G% z1Ple6;jVT45_1aLnxQi)UB`Dnw6^Sx_u;+1&0a;YzQ1xUooKv@nRoJBZDXePinRXS zvw{2f#vFJMCI3(QyfBLW7UkX~<+d6i}MOtUR z*W;TvYJ#*RK}0a$l~h%U=yf2B{eMzP5IUgEOS6|O*H|~`WxMR4`1pSPwf0%}h`xmTXL9Cn>-AG0{aEo?ud*4$J&#B9Q|`2Xw3a)%A-i}z5JT-;}#o9 z0iUdsT)uu+)_fP-b_sI2_|Yg<{oWfo0qcA#*4$fC$8+5*yiECXi&wpWFzPPz4Bh*UTSG(nM;{;7;h6mUnQc(}2A$nJTV3XQ zt5+V+%RICcZ0(PulW|^}C&T1WR9mbB?UmLIIPr4%hKIgIqPdaw6OkvQW_-7t{oUw# zAB0VZ&z>K6I5_;*S}CcC46{R^xOL}j|8wR8ly>KK9Gvd6FJjuB+8IjMO1tOg-}6rt z%U>zeASw%6`ot$FrWqqVj&A$BQy}Y&Qucr5*8O%(|5tDw6c<{$-C%!kDRYE+AY&D- zN)iYUn(-DqR4DyP&Yi;tB-+AN$o9p+?7}33gew>EE&F*SDRz+E`GNI^&J^r>(0kOoI<&Prln)R=jj$`-sU! zp)l3SCCMBe&U0NKb7^_}@87RzZ*OG!l0tq;-OLiH1PFQW#XHy3Fi)_xZ0)Q;)_6W1M<8XCAY2C(yFOM3Z*{F9f z+_Q@#>4l=pWv=6^YgP)i#B{35d`qeZs{fX;-8J0uR+T*=^%sNE#yA^AfjjNRn1ups z03!K5MX!APU7D$K*<$C8Llz7J^0&NB_%xViS@nmpJ!_p4p42caU6H>SMSZu0GM%cr z)W>kqvl~a>zXi8)TpRom#JQ{#Fm4vZoxj3hpzau7NdH?)jpuyj>0H*AffDkoRMJ%! z&9MbeNYq7c$tqA9Lt%>%n3l+0f|!^BCJr>;X*Wg@l6Y(`V*v;TAHWJ^fsl|BA_7O% zAF_RPkh$50rF2_(S!La=-r{GypJtNY7+v<~R-CG=6kE2vDOmoMcGQEiQL)7)w*ctskRBL&jmlZ zugD#CK$yKeFR zoxR;>#91HsnEsZjZZ|UE<1uh)rxKvKVz410l+)&|L`!b|M$R*IEmY>l6%)Rv_fLi} z%1bQf=^DHclzL3Jey2sjxgc5R7CqxSOXcA$<+ zXsN0^q3~kR4~)98QMj|cnX&Ld_-y^isnfdL#=fFWNwXClni1uzrTi7Kp(zKv7+x!- zG9EutX*;r7+*I4{vOZ=vhhJD@q*9YZ*qo4;!Be~JZ9}c1wmh@;+G+903F;gPk42+u z`b}20)-GPEAL&_=i!?Ee^1SPr7HFV2zuk3d=6c1?Yf_dyh8&N-cyEb_t2B5y6)?3> zd3&d|zrl@L?8X^sITFunGN*uRCrq) z5S_kq%;NFIuBWzt&Rq%ikKC2fCX>pX60cCcAtsncYG=7i^T^6Z$CJOBoYDs(>B2Ok zKCibp!t!XUt5%;@mPWCVddzJnm&0|8L*e=(|N2L-Wa43OqqQowhq6aB=$ee>Lx0jU ztmoOSJ1KW=nn!ES`|W{H-@L@Y(5atPKNn;)y!u7XuU`MW#gO5PQMFawC-ZwEY5`aF zHoaWPQn7ab&dD}i>2iI&;`3i0`F4#AK1d1)=%-5zQ`PHvw*B(hL(Hps7n3ZYo14${ z^enL2m(8WkjV~Vb(Z_1D9mHeY;ITbZ5G%Ug)>S5z-=jZ?@)Wn=IVZrI26MT5+vWsD3KSk>o|+ zxs&R|>Ri~gH7y3gY@m^i^$oC*m9bT6{9=iZN%^6*^pPTUOHWhxamUfGj;>;gB}2yw zM$WvCtl|@Vp%KJ0F}E6;^y{!==#xy5JP+k7$F-mAYzk`I@A; zL|!i6IrYiiB9!uOrTH>#&!2JLrWYJx8iu7iPt$JG^8S0V!MIInxZI3cs7RN#p(9@Af=+tHRnLI*SF!VM>bBBuSh z#d-Dy0#`y2sw?6BGCVLMQ`)$#r^w;))h6nRmmBDdy+5ApPR?}*(pW$4IlLjX_w2j@ z%utqW4Jt``SAzw%?O*Or65$@}<2ks&_=pIXr^Cm>3$q^cRmvn5@m5?Ro5zeW>Y($X4aa&ENNJd3x?t_0-l=v#BmQpQ7|EZQf?JHVATSOUx`P z3qK9hS-n3_N7rjxNpWeb#j?Ll8wEt#>d1<7*Dn+nIQx^FBWDY?9#3((Gv8aPp+8ys zoFnq2sFmDyPn%d@hxP@(sjIu=*`$9D_6*uCJ^A&><)(I)o%~<6ob($dZYCdt3SWLs zFZtTBsU@aA!|i$B-ZkgXP>kNceYZ30fGOj8yiWPI)$u>3LkgH)bQJNcyke>O@@%cG zc6;5eB%Len89#)Jw-;L2Wa?J5aZqucqI+`jl0Zdw{JqQP<(5uU4~FV}|9hB0_{nL> zC!f?VTP92uRrJ(4bTczg-C+#Up%vSgcC7qogymgv$(&p5&q{iV*olEEj2dtS*uB?<~mtOdgesAio8?DT2 z$v|;WwY0#orM8pRHMK^xcYbtoYDl}7y}B1#Z)K+aY|&7bhAle#>!a_>^MXv| z|J8Kc;JAfeu_~`PCB9jsFJ_K=b@t8Y%I$TY>5eX#i8h$tlsO--5xVDxmCdAXKf}r%tNBi+`FU$wA#5dz$jh_?`0lD>|DwR*N8K zXuMNFclWEWpq}Zl?C=em(Le*PNdVi~JP8EzK$6V-DC~K>W@C_Q>IHo> z2Ud6OEw+yI)aeJ~TD%W0P4E4PkYvc^)02- z{4d4oPmW%)2@nWA8>B;T1YL0P>WVy+Rm2j6;iS_fgA*tkT!EUcX;)nZh3X3mIK~v| zV`Jm@$|(zY8@)o*KdwL2|Ig+!H*(WC-%zMy2oOVelQ01 z4Im@V8vg1E7^#3A6H4uO(O(9r0zG1&!zLq#&7Ag#Q)2PYJD#VfdaY2`!0~1HeIK(= z_w+|eA%>6p2CFMBeQAestM6I2;QR*>^V5a_WpCIld=2o2N$?WMi-#vJO4c#)miStX zW%z-HMMiawk?B$Q=U|q?lt#W-VG75&vlmBL_MPB$%sBi|BfMEnBCimVcgVU73M}@UOuSTRFZsuH-$g=;pT6lH`{A>lSM;6iZ(T zM~^OqxNlw>D06Eama zth%QKnW%I%Lh2ex)m*QCoe5KZ=RFa*uEK8ri6L&E+{b#Hs_@5zmkRT}0R>QxfK&kQ zfslbyz=gU4foA~X$PfdmoVS*B+sI^F_(zZhFG>gs(7fO%)?XZY!5%g}P*aJi%eQiJ zWZ-xr8C`#VwlNW3yNvzo^j6pve6~DKuwZ5A4Lv4;yJq65(bFGdrO}#yP)(vv~ z2x&K_b5GxIFnD!s7N#301WG9X1$%=D#zOn|M*`USx5p77jr;63FDW z|3ts&0p}lk=h>Nm&AQ{A7&)%2!?kXw*v=HFQw7WcCo#AVNoZyjDVe z8cD9{5qa88o2WxmX(uN~y0xO6kEy2B?Jjr~pPeeZ@%?<(bR%C;`_-s3CrqY#zf@ZN z8movD6sU5D@KF1d_v?La6^3D8^n`U-i!fDPX(^u}B?17)$E{DOuOf2_{|p;8)d2qI zEQ0sS#}JT;AuBr&MuCidBoz@nW@ZSJT9skGCu{-k5h7V&rRIm2m zh|;UV01%<=FgZpgx~hs>A=T;pzi2NCEZRd?Hj^o5P+&@_Mo_^kgJs1I`9T|U97((+ zXrE@dwLhGHe+b3^B4kA90?d{e6E`N*G5EhHN+FT;aK1$#)(o;L;SjlC|5P%BuSmV} z`iC}o)4&d=fF9~CuZ!Y(AAfz6ZWNZ7n;m1l?(>ek<@dGf|9X%Ck{6OqnSH*J4BjGl zbtKA&OX}s5Y}DG?KyXtHpp88`u^bb=5hK`tpA*o^oQ~K-GKZ41v{|b@o79I!O zfBEXwJ|rcGY?IQ|tTErN_74E0HuoAhNL<}^^Vt|sK0v2mzK-Gb9Z~A`! zc#@mhn^kP;2?Pnj(AH&Ot}Z9u^m0V+J=?Jw9QsWvvu8caz8`4)=01KvHfaIQj#zBCJ?ANJBI=dI zQ6qQ_g9Qfg%G_t$F5=;Q|Bz}jWiJxidi&Y?zuC(l*9tDVJbEak&gI% zJPvn^SEUuQ{FVDLUCkl0_s==x7KDi{@fVnVpmE#>?z#fcY9{S3 z9tCE*`9Sf5WXQ0zS={51ea!v9FzD_lX+@E#2D)}Nki8)E=tYWG)%)_2>S*=Un#M$B zC7j1!2B^2VzZ>TqJJH!Y_HH06rU@QN7a2ASvl%dYWWWj_5W<~-hhW;a4M~$iP@YPw zMg(&n_50}3rtnhG?1_unrL^ADpCli9cs=~RW|c?K*w$te2Rv)3Fx4eI4HA;&zOYiW zDGcfwteFakA5duU-?@;c)0FdWtNfjoMC0T&W!Bf+i~ow&6)AptG$zrA53;Z+o(=0( zlb1J`DlRB6ungx2+c}M^`?(hEPPfNP5Dbcv_`L%9d;}`lCjS~fRVj}$Qot~t^?UCs z*&@LTHiH2KFwpR9R=$iR7c2)gaA<+}>04uUldX)qf;#y|Cv@KOzSPfH`LliWOM7L$ z-i^(?LY7Pz^J86(ZvbODnS==a3UZ1_)DH4Xu%4n3CD27a%@ziOLHCx#T_`C&bhJDj z+SAXTH@oXxIOo7(|53erLXQx#nCK?Efd_Hf7eStXM_AwQcfb2Fgrke+kvSF1>a}eP z3)(b}*OyCCE?CJ8?eOW^dAvB^IMUXf)jEJ*1}B3-f%BE!h-g5{`im_gY%EZYd0s29 zGX5O2N5=U4s^WtvmibM$N;XBcG(<4&o=s%c!9wPfSl(g)?iqL3j6$ z_P~Li)60K7e`HDzeUI7u_=|j5@LHMr(I4#?sKl|iI=U7{MH14pb@$o5s?&_>Sy-P& ze_70jGTNKPPTtI2x81~nesCFA`HWOGxvv=c%y4*N{26%J`_OA)?IV%qOOL=KHm0rA zJHuyQ*5>@GF}02BEvp-nigJ9&qUNA};%ERrwOMHWDKZ2tFi%Ka1c^tV!!|PY43xdR zc2U-~pS@q&`20{gwR=aA!ub8K_);2g{a#T}>`hWXqNLCJ$Xr6T<__$x>lLQjGN$@% zmKdEv9CAzsds>8~R>moqjKbnP%DtybG8u#>$yXI(3#JjGH)?lgP-YBvq&X2|C;K>awI_d#&mjFAH;2lNDH_S#SH*TKZ{b6F?#XKj)Xv&=@vX`IBhnxxHNl$g}fz@_rlubR!mpsHChgg75 z=Up2RVL<%-Fn!nl)a9+(+?B>)$EoeJ;FgwkzWbW=v%<;-juQ*-JY>73uZzER#%Eb; z{z_>hEiGj%t`B4m-vSM6X^EGac)>K$(m7tYdG3m7S$p}|Hd6)d;6dRse`Sqb7H<{a(^I2UZSk1c-PeOqIF@w0-%kk-q(9~(Rqax{xc^-4#p z&0FZfqH!Wk!^liRCl-)g%NBoz3`dKyW$UO#nX^0atXp{f#XTd7P2%~d_Iw;VR+yQ& zx4QT)%B~|QyEt$qAHGe8shng81DrAR#v>O0%S)^G`aRMYU@${iOBsYZxbRS`nrf@j zlpp{CIx-^hL%;}pe=SZm0#z<(FVfLNhVFqK+!D~eh@>H z3M9232@?*TUvaV$-zltx&rxa-78B*PBP2kmqe7a$VEh{yxB(9b)E@tc$^*ni)TGPD*x2OJu%wow9Y9A`8o6W@ra#W$w87p-v0JS%$9|9r<{ z^X`faDuGOi2saUd;Me}B{7}qBg-cuh|0p#nES#hgKKEx1)@taBkA6vd0CniF=czO(?{QPg=$0 z=I)0ttQ=*}9}AdY@NhRXGl!1ODAVBcmBK7EPx1=OnWmw@lCr8lWU>bVCxldobO?!C z%jO+-gMtL4r476|xwse(p+N(RKk`*<@^RqVC+9xV%C$$9ym^;k-Sev~;>qsGFQrG@ zckS0&l`9`URmtQSB&RkU^>4$-EY-F*iKgh#wWFpcGY*h06%Q+M9_3ID43eR&t*L~gBd7j64oX5eX`2>$J zf-ojj62P+{K?C6YK+S{|N3?tZl&E;k+Y;D@k+`4*%%QNt22CCV@2rp9LzD~;SKod* zWYKg^^|Zsx9Rd1^nupc-g=?z|qm&{868~~^ldZ+jLt;v_^6m(fF_2&6mufeMiUTp` zLrzOuhuW7G+X{S;cra9Gt#6}E4aH3zVo3rpH$X@oz_0DgRCR4F#XtSZV46RX;))$P z@#HszHtzYjZ@Ycu*!`>2jkG#hG+r!OErrTWt@C$mzdMA}7hPzcOg8%Nr)dE!0jU6& z>L(jpTX7tBm{swd!%zZ>kBIMgFr`xAJqmUu28NM1yuzidOfZVNJbLls#f29r$T{D@ zslW%V!XR7NvlOf-mrgD8-j7T)>XY+IQLYMaJ=BytI>%}T>l0ELvpe-U;{JA3F|2zm4(T9?1W#J^O+(1p<^JzD{BoL^_ zEL4L^Z0xhYk4~>&x~b2&{rG7{i8PwR6|NH_4A+{6AM!p;mbkW=w=)*Dm9#YZP=~dF zj>OteJbdj|d_=7X(#jI%aG+r_g3_P;AK$3Wa`uxNQBp9kkb~M1*d&Kh-rl4PLXn!FTj-1E~9TEVWIO>>lwu9pdI_eH0lzlI|1s(a;ZKHmdT=rLB+JrNj^#4IRgVvxQ8aD@N{^ei&nW!Z|h zIY?U)P3Y+Tcg*#3$StTQce=^s7Hy}^p5yCglnm37fWP3=F-tR$l=#kMUViCOX`^Uw z{#+&~{+8PzlRI<6h@?c)_@cSrsG(@}hOm2#fZI0Ow%DzbbA1t7mwedzf>TJXK>i5t zjg$zAKRSJ*wv?Odhko~CWU7XvuO8l5TIEI!86WJ^xDJz?LVXd-ar z>5vSXCQCUl#73t}36lO~$z0f#+MBuS9lFJ8KMl^8eLo{C6Nq3}CX+-CKo8jChq>r0 zn%!AvJ0A}pQA`^Qjn(dmC=b2)hIF2fS6~6?hYus65kfJj&&QOuqHZ)?dnHA)=P4#v z#25=NOpQ5*7Y*(-JejMcX6N%h1c>=l%;1NuDpHU+VSPD^YD8Uh$ibKWWCW ze>zQ~hU4#I$rBTR%@$i2=#y15B5Ty^|>KJUp&N2kO;e&42Pf9Anm z=S-W$#a*Ac&xx1#ZlnG3Ufa7ZXlSS3bF`!em{1*)AoaxL!x12A$o}Zka8ERh3=>C! z&+6r6Xg(S1%gUbaU=WBbZwT16k4CLxtB56Kb=xH)3m*0Z@rHSvgqAGrWxuQ72oshW zaJrJ^y(G^T)L7ly?;FnG+IuFJ)QvHK*otqac>ODc-%fvhNXFdV%_c;F-2vJo%%gU_ z1@Dodeq!j8FvsGKx`t!p@|ySxGw0|c;{nKI+9At;Mj5*LcplY2y_tIr%E}~IQ}6pO?Ys!-|R0% zLULGk4VKcV_IB$jMDWQL=p2w$m(EacEmvV)3`lP{a>v&&Q#ofNrWS?CJx+IB7MVF?MQOC;iD2k6)Tl_&nYJ_)0UoTzveHXz~R1+gQj44~#C zJjV&EqCMmMpi~0Xo6tuIS|9crlK5|%+WdGFTziDl_b!x0$+qlpJ4;#ReEN6Jh(xm8 zeCQAvHa66=Wx;HNza(HW+Y?A9fbY^58x2hua9>tJ?bM$Rk)DgXv0Nm5{rT_oOF5h0ob&M; zoL?97hO zFKAmw4MrD$qjpPk%Nk?Q7g`yF^AO=Efha2u-5AvyMe!_ z)q$+K5Ba@bFt{~V!j5cc7+LRJp3*!zzu5ov&zDo5HpnH?=B)iJbT)T)fBpj)l9m}D z6~moNY3awFdg(?Z*^)-#AOsFAfaLB_cK|?>0~IkCoPYI+(6%Eu!B8OTkmkG!`BIDz zAzinH9x+-3k1=e5VPj539}KHJ1tFH56FTe2UIl17F0=56e6z_OeiLC7s79uynY_(^ z=UDOt$EnaAiELNz5jswl+nL}{;SD^{cfs$?J_7xK7@KMgZz66FA@#+Sx1@UtT6%;_ zDFM=mTbE&Cf8{q6c?jVP01Y{a(a^e&xuFesm!N^J3?g){t$cnV`Za`*0{Ksj(K>p1 zB6ka6(@X1AzAv)kP>qH*_x$gvQ|miBZwXXIYp_HFyLC-P4$=`}ATMV5=^^*qwV#`G~-;tjfgG zzr%`8g!MJYFWU{%T0FaT?NV^i`NeLY3<3iU2AJG_lwv2y`20j61sNS^Zik_!!1OvD zff{M(y8`e^ENlvo=ljN!Drj!x1{|3oZn)>9r)kzfU%K+(`7RGlrnr%-YLO|DAu=lOkCGB?6Ikc)%HGApNw#B$tcEtQ zU{g@siFyu-uJd?;4glW6qHTh7`HTDQAE3g}0NF-(o^wL;Zy47~XcT^sxz1{CY|I8B zi|>FNKEp-;Pk(#y9ZO&8lZs&S4v1U&u#Fm6n%5-P^l#mprSPte+w6|VmVF%^8`I>w z7WD?9KSW$tkU`!ro~)9(Etq@X1%Uv&{7yiL#9ctG3thlL)Tanj45)NSfIt>OIkkKp z4W#qn!ZMt-dka0h4fqjo#5!t4L-8F#NyLykXzB`3BR&I3yw|F}@as;LanpWoH*b13 zP>%976;g>)MzvJqO+B^sMladS?hsf~t5FDl9>m58!!1zq31Rfu^p_`4UZGGF{W7%& z_KA?;;c%W_=y@V|v){!?8yFA_npnT^%CHrM)9EeKDl0zDyu7Wv&(&YJIi7a4_O9Dm zJI`i1=k`LsU1%C1sjwBop&R42!im#~7z)8m3Iho=bO~b(K)k>VC0KZPEvWKl@5FoQ zUr=Y%@xsyP$j$$$fAfChkD z5SMqZCzXD|iCUyVnDnEHx|g3cJ-e|ueU7W%X=7vQw#hxi{mK$oLq1YnxUh|VQ}<=w zDdQLN(ZABJGX&o}c72?OKXh|wqtVmESDix77V}^0N($_=J}T#Xe^*>s%~ubP*z=8R ztM6j$&cqe%Zd!EH>DHmXeRJOJc;iIzOws84SP7f|64UJ>HAB&hTs!8w4#&I%pZyU& z)@@9>V%wlpOwCAoy~u{52$>d_~@o9~_D#e4NN#s4VXH9n~GbW&mC zE%N?Z(>0Fb;<5Ls@}S{sQBhHW2yD88@erDG`yr=^4(;ycAaSzO1~=0TU1qv&IOj7_ zth~8k8P75Qep|F=jwkhcQK(UMsK0JpHVNsTJWS#6xcymjN>T;I_nQ~B-dBil3Jl5b zWNv))*z-g?t&K4~*k)>T?6KgeveOmo1!{+;*!wVEwidbx zQvDuueE9#qp{B5dse0hv!HxB<;L8JvIvHKTVG&9(k|{2;GlOdD+=5Si`b=BSTVf7X zNJvOf*Bz?r;kPf5*?3O7W!_lQR#F$Ckb5zr7^0?@`}Ls?Dc2V%+sx_aeTTP_?#+Wg zHc<=PER6eiS3)7X3e<5LUgJm1`YL3G%qV=fc%JJyS0uPA=7*oN(Frf=V~&f1Wqzw> z`;Ig{J5(ZJ_?rtQ-y*UKbIUise_ZtnXz6F=%GxIm*nBlgkKQ+V$3 zk$vHw3LS>CFS7t95{6csoSfePF&yzB_XUmO4y&PT36h0v5ah zQG+k9Z;X7z)274Oeq{#`V=_Z2`boa`d(4`vn3+e4l_hUsfD(@O%k6AIIVWG7zJuCH_3x|i7e5HVzEWNE=C$D#iYs1gza z-qWXV7EhtN8S6}=CN2%CLJ(mZ$S#XJ+88Zz2)GJ_LO~uLK@8gS#hbk9?aH=1gZZKU zOa5c`%BJ#vGCwR0uACTP{N6@IYxVw9m`iMienm9UKEf#ixe0C5sy2+%oRnPHn*RBS8$|rQY6V_ ztzUncdzI3&Y(b*%c=FAkQ8#Xn&s&G922xQ`734?BZvRvUy%z(J7!qE+g0Z^0Qf&kV zLvi-yH=_w>DHfAzza^XJd7i2q@CN4l?T%+Ar#@w4p! zARbr;yhRrYw=+}M%~dQ)QNwh|9bSeQQ@3_H2V7S@t<10}BV$TrP37~%`pDaV-do4n z&#c>HM&EX@{fk#={_v@aKk7Bvo#8~VY2UuB<#W;Wz?-7QyGI&RYWp(U6K?Lrs5C1d zU*4kk-q=M_!WpsOt^yexfn~tQT>{vC)SdP9bzE47kO_R%(d#ZB=J6sQ`6v}{a_IpR zXO_;36NkPwxK^~`LAK=Gxl|@~b7*IE8SmJ6V*cC+-3Nj$GBh&63km-Eh6Y-~o*E)~ znYY_Nz$hS`-|`@)yeiQ^j*DaQ_4Os}%5GVaMPald7jpRJYm3@Y75so_7fo0~#<#{y znaqZ%h`;UiY@LCCq90q~vt8GpRh*t#)u$;v=lNwDwV!Tu;dTz!y8Q+y8Y1B+1dC2p zH8lyW9{jvirxX~xyu6Y--G}DD>`6{d{SMi%^xHV?fb_^2LUA>X48B8zV<_C}Y# zmyelAnhE0TvOXEBBlS!0?g2A#vY#8v#b@W#EJemn{x*@bbB++|{b^Z8HRASr*Zv)x zT>X*KHsQOUnx?YBMEiS1;n`ju&SHkXq~D|dwP(N0jJ$t!ypt_)gyPwg`n)~cff z_FVVfV7brnfLzcJN10mTN$tUv?76I$cJt=qSNx+FoR#*M@kNb__Fpuq+!p@uqeNJ> z0y8A(FVQXJ)8;ab4_)Z0+f^Fl7MY;KpndysZ-n-xM-CKvKfXkS9p1-RK&L9tcXS6I zJP)?KEYD1*o041aZEy)we(RmCzr5TbsrSc@Ni;LyTz5lEl6aX-b~{apS{f^{DBrpB z%=;e+GEFoFjIG^Gao3JG^GU_=rAO}oJqrtS_$yiIGY&;_&HLDPOKnylW1haR&3eLS zi*UA)llzDW-Gjh1R(7gRE+tVpWAUBt8!Lymjn@0?CSG}Ro! z@9kg6%!kE?XPiX)bY(UQ+8n>dIM8xFJ|2_FoP&~OfU$*^p6PFY313&XM$DEso==%CD-^z>( z*B>Phe^TX}=R&L1K=SvViki3fL~AhZG^q949xlT61To-@zFu{e!d;0Imza4LXs&Cd z;dAx|;d4G(O@G?uZKJ%NpfuGGlq5cDX+PEUq58!>iu_a09D)K>j#b*%60ce%bA!(! zdbd?|SD|RB$hikyAG7>vm(|<$#~o17e6v6nnkke0g`2pIr+AUv)E2*CF_&Xn=ZV{8 zrOg-jYkY>Q&nYDN0p)XRp~h<8V@9FobAMk}!mQ&M<5XMF$6)9A>2_W7nf^zw>j$nz z+xjJYr4XA{wrFeLM;R>I1E1F9E4z0rUTaV2Pp9ehC)sDpt+DQAwG!dQ$@V9t_AagZ z1S#g zkjwmi@b>h!xPUDy2Sh;ZZInL+>$2GmhvF5!mvasxmIX1f-EnFoF2V0^hGx=~G_E!! z)Y_(}rm`GA{ummS9o*npA;HRp#)7KMdi(3CM~(sUrJ{Oh-SQ$K84PXwjg^|g>c{e$ysX)(W_q6%Z{V6 zq77U_DJ{=STN;?MIQHiEy)X(a&`v{K2BRQ3C8hGqm$D{Xh_1}d%}uWq;?B7s_knrX z{QV{HXWS zjjP0!Z+c%{okOUztS=d%n;L$~aP#o+Fkv2g51XgE$UGr6)pv68#_QbN6a-^%N{vlT zyMfm*(&Pu+WY)&OgJgDnJ{#OOB^o@myll&h%}sDQ_GYSva`waR|0iJAvB0S zMTToRH2+|8Dh|mV8F~3FUm*c>9l1Us1Ow!rf{Lmdq6=pIrOU2UL?|iX?pJUWJs)^8 zluZ44u&VaO8LNT<@m}-p6+j{dVv+Cv+V|5;EsuVxb(O%}5vl zc^|{eG^#w&FzP=Y!t7O+PkgLz+_jzFSVOss*FL4-0h1%o?vF7$PhxwuUs02pt_4eScs?0>R-Yh0~qC^HFMA)j?5njEi+9kd9Gd&g` zgmmi%)}K{h+~}zh>`hAHX*CEYqN0uGLI0_6p)*gW+E*$1vQ9K<9SZotecD`CpjEzo z`PvL;s^za5?%cgZ93U4Q9yhK%&cpB_tUo4ndtQ=H{0T(ZyLaAgTH#h4)GtxA%`dL$ zxxSe=vze_u0VZs$8VJ8pnrI$i+WR)+>GO8#tl3XB^ebG7!|(hyA4_!;ge=bAAAS+s z<&B`qY@{VNvd&JXMD1+%>RIE)IoEW?{;zZ(Labk$(g zPn$bKE_bOO3ovl-GJ6#S2i(eu8!zu-BUbEtW^ZpYZR@*-A)%|;cA8{X5yHw&3l8f~ zT|z!QpgiDKKlpjLUQF!CroZ8+&{TkqKhVLl`Z=eoj7#yMO^i(;8lBm^A~DHcoQ-SK zmp%1;Lx@E)JVlr9TUi~hUpq{z8r(r=5@cSh6Ofh4O z-e)VYVAAB4rT;qUaol4%LQ?tY@#F6xRGz;w5))EK`$-pun2`Gzj}B~ysD1A8t77f0 z7FJE^n18;GbPZ-SHD(6C5dXK&`B4VlJj7HGr07aQNR9sMC`F-HCsI%3oy=SwkuQ-h zWRv|}IxY`D3*uyt4-fzXHn7{YIVl~h$#m9U4M{r$TZ zZg{AlPC@)%j6txa13VaiX~w%-Po6x97Xkq(Jy%be6590s;E}?~kPwXqDRYq0^6&w( z-@PDb!i~rXi%XELq0;~hj-%Y%0`}&l!O_u8gg-kv53;hdh^(iflY+9!UsubMpu7_( zG(uAiclB2}IXP&WfgAQ5NV1Q<+p$yJYn(548ilSUmOP51qDM1mwFh> z^xqw2FbcI-!V98X!py^y)4xEd=7T*&=mP=09~>HzfC>qWYs#9R(LG_APD4xaDC(PZ zS3OnLc(iReL28mpPc?)L?eTj-(b3kED!Vh&(=VaH5)~8@l7RDF8hrL3V#NW~aH7Lp z!ySJC%21jZwAP8bj^1}6uSLgE)+@%2_vS#_>K5&uSn!1^_G`Gs zHflf{Z3d79KCYC>kRB-ygixEbg2En9WbQow2dFSjNTqwOmt~5XVsJd#;LT(dYIGUE zJ)v8UPGxP+E50zWr*px%0jjjLIB1G_J(axFcHH`r>EMadifL&hG(9m$r zDes_d-A_>jY?v;^wvUZ-K>-gq08L7&H&D$6Fa?z?EK)Bde&S&Vpi4hDtG<*9(I5 z{Vwwg7>|%LG2uXy?HZ;WYPdfdFy0;7-|slM$Hm13iY?dBG9|1kFy=#BlILs-n_egn zs;`#D#@<7=1S$X?G(&7LLc@&E^@q15ar*oVB{{yLN4qK@Z~3c9c;+YuaeU#F)P|{w z>u@%x;jW9l=fq^$oyl)+zNh}c%{~oE$>r&inGo<;IJGj=caV`?Cfr0OgLbFp<*5;m z>vzz!aa=ZS1bvj&DP(*~*%)mFmhLn;;_7m&40!n1&l4+gC_K7aV+CrIQ z@Stm;@d^#HfrA%BFA~A<|37m5cToGRqNPO#;2WG6x)MreYuW$));}+J$_9`qj&On! zd+XL=Hns;CBqVXy+4~2k9=X4w@}*X!5W zf%ClU>pKKNNH8i1@w15=!OxyaVj}@ogl5L)QyG5bQl^uwPrb+s-T0XL6bL`kLxL1;ZteNUcI8+Rcj&@uBj>+9!Qe52j^5S-!8k;_R{0L*)*G)F8tgJ## zzmD?r^XH$w@q4U&^m#tI$ldFcV`Dqc+t~aR`F-@k%MX5?;$hh!N^HSfinRdKK0A@8 zWfgU~M7u!vabZS=)l@T-^$Hi4qsbG+n_3>6GQ5BPK6I8~;)PK&tEh(s1rAg8=x3y^ z6(uA*fL3}7>}5&L+E0E!A7+9cw!2f%Xk_%4x(Hmkbz&hQDQO@k@qyW4TW>7iZF~EX zXBv9M5%goh3D$Xqc4G&?I!eOh2h*L+r*O0I411#&112kB@D1wi=2>i`c9hxhHf_e8 zB)qyX2gyy$n2{j8fRCUzem@8HL2yaJ3?UorIdG2~H8XbEjQXuHN0Wc=`sGyi8twL1 zz#V+yEYb#RYoHQRvPw!>Wrl+#Gv%rt9v+l91z*80slHikLuZuckid=0I8UkIUI?D7 z^i|A6L@i+2O&NreIB+F#dW z>wez%`}Vi@{>~ZajB)-r&v;7s#eLt`y4IR&&bh8& zp-Z-#nku6~?p5OwZ~obMQS=%S0@ZI;Ak@QZfvP}lS(mcnJd zOx6v5{)~lZ;YTdhkB%iEh0E~V2c3q&kGND4EsR(yNGHWx7MDSWQ(2P9k2sCuRtkv} zt_uGD58sA&fe$0p#_U^9XVsrJUfADNO<9Xq;T#k1w zlU%bNe#EAa2plc9jWhm*$IZocncw`k%#$b4Uvtv>eQ}8DX0}ptbHg$+nAJ4{qj~Tw zo*Q?>a@tGe>XvJK&@X=W%a+Z2{QE1H-9?qi@UydniO7V6qla@jzBQgF=qM>^>7CAE z&l9JL%F5J7i6Zy8vR_}Ew{~{=`T9ync10#vRNU_TAgE|5c@o>D@N)S3EB0@>xo9Z& z{Z$pqr}Axm%CE5Gw-yKUlgC!rHS?}>a40dHDN<8YcmMgrX?N$thY$C^UPD<}SV&6y zirW*?3d#KWs$K}+hl!2N_T%-@w%HGtE%eu?TP?ydOvJd?iE(R|u1-wrinBNQ@CI~u zEAKA#;c)B!s4KG`prFq0 z(iO51Mpo8K5CA-Ud~XU1c~8&I@I}AfTjo%ssqjiiRc;NakR z9wYRzu`##+B57&q!^6YLfm~g^q+;`~hQ7WlC?2~>NgFL)rwip_v69_g$J67L{DSiG zK;>I9d&_?cEqWMvnrFAk=N%&BLMXWzA)>v!yf$}s8jp4swvP8+_N~ z4lVDzr&ZH%uSe&ZUQ-QNtE1&aOtPWgK0au%+y>z`-o$?P>>0}Yqp)q-(<-Ne z!ovD*+Qru?LP*HSF!Aw2(4QWxk5@%TM*1YbKBtD41_cF4%FE;G*LsDGS2=ggk%u%{ zjFxfI2w4T)522Xq|DvY#!-W^Zacieb0^=Qa0Bpyp27i1iagW>22fhWLog6eyOw>y5 zEsd6QKl}B;A9ja;MYm+$DttW>6-WTWv)MYBc%AON@s~=(@s_HZTA|mOTZ#231qlhs zXU%+lpZ2Ir1Oz`JYPxGY-AimI=po=FAy>VNieie}fLp$8H;IDB@5844brLRAtN0n= zkLv1|7w4WsBO__>#khEQQig`t0|;pYZa(~gLeU65&nU5Krt&)7l7r91hNL80?Y3t( z{qvI2r`sfjg@sz*9lz+EzwzLzc{W;RZRg|^ke$t<_w;FMPEN?$Xt~Ms&tUr_Y$Ezl z2$uSm798mSf_pYLT<2#826~nDSoHMtC~xiJXGV}?E&4x`ym|8`B{S1MM>BsK(t|}` z)!pFmV-=SOUJTU*8`8lvwKN zB#V1$K~b99P89e2fM#gY9IA3V@LO1tsB6QahxkfwW{A{BkH6stWwoKczP@^+kTWDs zH!(VX{fg35v#ygom5 zt!XKH{s-^(@84r9BCnR~y1U=q)!?9*flazNR>^N=ZC&Z1o}=L(5%IWY0cSR!TTF}& z!UqXXDw7J=oh+$y_}GqWo8FAzvC^wzZe%nxGZfmgG zE8oIQ=00;H4r!8?m-nuz5&sIeuxM`ldEPP z{tsR)x$(EUvgB{I`wY|sd+BfP2kTf7Esden{A9lwUZi8-T$W^vyw1b(?nM;$4p~!o zsxZhqCs{rc{)_6I&*US3>WT<>wget1+9_W0?Lm+&khHQ*8u%&zmckBG6dKFAwS7IVke)EvxDO72=nx1Fd#@-ZJD zA4)#ZsI;`SQX;;e5UT`ley0{?_Wu3*$+fjG-Etd-TeolniLS|NX;Gb@?mR~Ia+jaZ z3Vsatd|6yu5y6RDs1*upJ<}S=6fa;&3ed*8pn%6_yCH5+Q->delasUO`>PkL<5iT5 zk^g+o^XFg3s>2{9F#^DaZJ<@_B^G{7A{^dT0?0|SHZJXhuq}Oa#I*UE2C|5bHk#Zh5+&|OH$jF%7oN9F0n#R)8)2m3S59qS&11 z)2B}bwiDu&Q=DefrdVJ2QKGKfn2#Pk(mRIdP39&BNci5){4b=;R_+1{kN^15As?TA zc7Afw8-OT-prCqQ+)dhEuDpdg2%*4l-#EVMlq%%qdG8+VoNUz2OgDubP6b|@TwM*l z!t&@k#CezghvH&>X3|UR6SWtA9^Afp^Cn)go`b#p=KQaZ=!2eJNn)D^2QBc%$`bfE z{~eLLcV_@>93^%A`9r?9GS~uW83BbqfBwAA%$!lT$7=gIP`0AhPvRm+kc9>3_1RwB z*RRZS*NIagiy;9vJw08q3$e>K=G?a8B6)sHWujGPr5(A_4=7=Fe%=^1z1{~c4zAs} z`+(k%!d-iQjNcMYCq0<=G&MK(?9X?DYB%yYZUZjIMBUQoSPvgQ^z-v;P2|3PTZn z7;z^F0A+Xg_9~590Cz!G07!uKlbq98;$3I#189ZnJyxWoTV}=j$0*^n^V6Lx$a|oeBG}BqAQZOt5m(idbXh{A4`}ea z6ciTbpPI_Bzdo*;;?C>3wYPU4Ud`*eZ7L%tm#&ekGX(HHb%Pr)Xu89~?=jC3?rc@( z)gcljeB-#DLXO2jIw8O`vbj2??_y&$J{OsG_5DhgxCU`A1222IGym}FT_>efmcBw0 zIZP}pqsclSq~ffPRr*?wmbLAzqL$(+prO#n*C)ilz(AS>qs9P*4I%&(NOKS`WK9DN zs7krb(@&zVq&P(MKPz6&%--}SQ`ghG`uo$Jbe=64SpeGbX+zcS!U)ubh)ai#P^-q{ z4piqi0P^oKMovz=zPJxT&-=Xp){|Tva@c>3tHZ@eMRi;oA(u)e2HaavS~{1sK*MK> z8$fgofy}9|Rt73wtx!DrbUU@X%mBFytKlLnSy|c7>Nyl#1~s9uUsy%6cwSD+z^CDe zx$V{gDw$kg4+rdYRm2e&c{)&VDt~w$@7CMao&^9Vo>@qKJx`ymU1*GjfMRHlQy@V6 zt(N${Mw_d@SA9QNat3V)`>)qq)A#qsohNwd=;)rkc+uf?vLTaMYl} zF16v#R+GT|kF2$bt9MkVhPbmu_?xv{TyEzW)QTe*2om8cbbHSr^x69c27afLi&wtB z5P$LKD|z4Gp!xj#ywzfN>X^W0SN5lqlM{YuQT%6O{)jO!`0Q;=BvaGS@IezdQ2Y9| z6Ffci$D?s~>}PQ?>a47+q95TWLqc`1von-RefKBdAo*~nNy=d$6KVO@~ zq!_B4%w8!yd}vmCx{Y64T51MOd1q6TKc`-WvdwYTst(?9<>4446KWI%J$;gS5`b`C z)G8p=P~N3<5`0Q7Q^Du`2u|&6Xn1pUcv!G9nBPHHZq$ga0od~<8D2tg@TDC9!%)!2 zPK*oV0aphneEi4{7b=4Ba6jSv^kQQ>yhV%pnE%r| zsbzp;kop2)e}4YX<`=CE_@W*%1D<17rD(dlMaI~neZp7x?c`!l`ZB+sl>8-^oq59W zt9RaYENzT*hQ&8CYeK&#jh zshVXDAt4H=IexIs0YdcvFhsXzz>ud*(yw+CgkA*4)6-K+TN~-3Ag#RbaNb`X7L|CR znWxvbbNb-HgMyM0;F=nf#N2C^MB2*JwZk)%hKtNX##VlP6lOx`o2O-S@+wgI^M1bh z1yqSm?N<>f-Ls#Ky)pk(k5s z=u^-Q#n=>sS}!VIV@v=k6^Z5W1aW~Bs5}L%?~|Pk{mx+7Ej$8(Cpo3W9b)QSYEtrE z(VSD6N^Wj$to=7%TUuHwJ$@X)X;AYC*$h~in4iBZxGE?rs=XrL-h(~QhvHyle52^T zIf-@!7t^Xen$I`&Xv0Wt=U&qJ?A^AvAx&+R#(-%s&ZJk+}GW0c<}Z+7w2a{pUFhfi$UwzVr{ma2_+h-AW%Vl%gTgcuXmTe&=hsw z5A9%zlrOLv<^%5S<;U={7lW6fmPX|iTN#vhLE{8(igFhNst1;TtoHRaNP0f7)4UF+ za8PxCt}Af{01z5kTZi5A#b#h&xHt6!sw%P;eZJv<8IjkWI5gPLX(y>_{6dGRhc~qS$kGMV&dZBz%bCi@%8Qb;p%{@17L{o zUt2RRCJ{ZFonduVY*XmQ8_+TeXLz)?|EWwJHhM0MAR<9$@r+enCOF{ol0JjA#?MA25@S z)p*hZQGvJN>gqZLJfZx%eC0|bmhF`*R|sf@l&0bV);4r^ z6OW9HAUAx_(irEo@iz<}t5N+MEQ4xn)%GXj_nBv3Y>x<{P`cG_rBdgip#=UV$zI37 zOUuhe5LjHC`A;zb$Y>cGGsbysPTs@zrUSlc;(LwzK{)UR1yFNeT87aG8Yhapdf$O0 zZESB&?IM|}t3~PykCVl7c{ujX=(Q7La#tfnokSMLtIDPH&8*9SqQ&-3lz5$_NDGwP z3@pE9aNHkDpgajs$eugU2V#<6Sa?ArB#v;yQ(wYN+~cqgRgjW$-Ty!XvJI*L^19dF z)yGMqMuap1hNy~b0P6f_xb%Otet)&nJdkhDbs37(d{=T8+(0~RjjES30eXMo7BwpE z&1_nWZ#Bkbm_o*kRs=)=UFj3~3lAz*;OUT7yEo&KaA!<1q&)y^e(s#KkJwtjeTUWa zhPDYhB0U}Ga$h23K=mNNGJNRbLg~eH;J)cnfSJRmkH~g3Uv5|>Jt zf&dOWPk7>>02pDTENz$Sd@!IDP#-aQ|K|&2UsQsCbG(?B# zE7Z^>UnUIu!9p$JzE4nAR>mVJ_^W)ZLAh+}8H7=DI2}GaJNx3|Vja}`4we_iMAyWx z-?)JVpw~dG77CAtr)MRhBHEH&dSW7-PKkxe=kM+4)=o}k4emuJ?_I}nFucdc^h$t0 z0c@uQ!0fx@(i?;Y&3=^F0Bu`=-Bd$8>b;srYOXj~nO|93<%E_5PMnF12!20;F z#4=`kN<3A$SWg%g6%^i-mkUF=L#S0q#TGAK0Jx@wPFB??YY86{J#&d8`Nrd9V2>Ws ztCVSN!&Zy_TYN;}y4PRx3AJ;_Y;B;}{ITA5$4k&*%_a@LmuDVZ|K%@eSch7tj{*w& zGM$JY5YXOT++!16Sy@@cc>aJA!r*=cbah8XBP3p*i?08z4uP`Pnpss*kplRu!ez_2 z<`t0U$g}P3>oc;j2&$`-92y=@1ppcp9*&Lr;dw&gEwCsD>CJww-M>adRTQ+W(wFjFhm(odftH<#va}*WKU$6H+kQn`wW1$^wrgd+6X&;H^L>H2=xbWFQSr z`SRtVv&}663cLLhkQf|x)e>H(L7SU)All&j`1t4@$I)i#XlVh1 zrEJrypbtnG2Ol5bYP5_H5o2I|BKN1KcaH2F9MnX3X8=Ih+1tPI@wu1OQtN(j*?Sws zO&W|R5VZxwFvR}6n+f!%AWX3WQX<<9r{YETE_oOh7PccM%<8pkj;TUhB)RQs%l5A( z6H-RC^{9}5WiKWW!cws9=Dcn``h<%Rc6U)oq{4pF6zO=Zaqyq5-CRNoL^c$e+po`m zjGg#bLN>xi)z{bC=O1~9i#V@`Lc7LJ$di06KQ+|{NGubmS3{t#f!d**{fKV;tU+lM zw*Fm4CZ@S|kKIL*N6F%0z^%2;c^+;u7#kZ`3_>Z!xL#d;R7oprGYO>HXTbMy`%{fL z{zbOq-~FWnFQ))Np{=ts~{wP*XZ`x_HPVq(=E`61B+%c&%#J)c#W z;^X7%CMK={vOxoA1?#s>$91X!MWm@O`!UiZWp0c@RKR8*Dzl~qV%8501KSWf04fPD zQAS3_Zs?mbva=C(5dlm{ZTVl@t_H%3GoT8PDxo>>jzM}8a)x2+JBH28%{oMo0Ztcv za2y^RBDTE2!oN-$Y-nyC7{&6KZSBwRkHSQNfBj$!A(Z_G!57m2^^pFKORwVkAUieW zccjyU&S?@LL-gIpGBTJz?t}vsJbRbd^k)!>R=Ew(zl+|NuH2MVQ@f%V%i$9fL+*99 zr&;+!@WlY~(d8T;s;chll-q>8K0m@?Wn~3gp78GvSKoK$ULCIPYRel1eG0PV`SRX7(yXGR7(X&e{l0y8VXnXh zVDMo`&n=FQj`1Muovf8l4E>As1(?TW0I#Fu()(=pXqLYTR=x*H6>PO6S44qD6+pQ0 zHfN~SWQ4PAeKGjVLp&MYtHV{D(zkC0g{hn?+?~ETYy)c9UUPFA3pFA z5)wW$F=>SB&Mx`H-BWT_=zvbKWXgmCjx=X>3>iZ}xDl$TsDP^G z{WV95jTjg_LJU0$9Yzv9sUK?PNAjN_h^0>&O__D#>=)~RmWU5CY;lXrZ*_6{((2$;aT@q8sK#|=wilVEDRZkDw0h1_h%v`K%_m$aaY}2 z8>NJ{Qb9O`LlLO12x!IaS9W3qK}-cc+BY}XI&wghdE3~;qzBSB6)kNeggD?Bw(fAe zB8iIaFZE__?(fS!dD5>b zkpq=_2)Zn(V?e`&kP=HQ`vMf*_m;_j{P zZb0ZV%l_o(i7@K~(7^EkK3|NM<@O$ctV@k51I7|PdFRDP4GK)WLiDBuDDt@lALO+` zA#L8>-5uJV>(D+s-qV(pgcXj?hSp78lfeM?C<{g%q@IcrXmogdBO%S-{8 zbMW&=DSm`Pj8O+Qk3G&ASXct@G1($M=k+lo5HdJ!-3rpU#)=O8)BUXUbYIX)8AU~} z0%Nb~A_4R%Ha7O*R?D@>`1l~m7LLO@VP+rW zL=U(VNDaZjlibtQr4fNu_)ls?LC?)4go;`6VlZ6yRCD-0HSB|p z2|19l42_K&a$mWe>|0}EV%D{_T>>;;P*&Cq#8vcVv6kj$pu+q?S&v~;-vs`U z35sJ^vIGv)3TVg3!>b&ZNFhdHN9ljYia1yu#(4brF>>LSz`IC-$X*D^&m-cZ7oLC} zxgBYB_bqjg2cPk_gKOR$}Qj~St#g$bnqN=0TD?UX z5TyK!tgLC!6YO1o8uLQ#3xe;hA0MX!e?l|pT9KbVag@(>z*gq98M{3+IywWz3<1_a zPKSXth3qp|JCpirh_=44;LJa7u<8(Phz-FVbuMZ!K z15&X6Tt^&2f+BnlY{ALdSwDcE9c$iau2oc2R4G7PBH}*uMltJ#n|Fd`-hf+&ef-sE zM+ZJ+%#&p?BQuaC(cl-bAnlnQ=eS7AnwFNfx%`KHb*%CVNYf4Rye4ECb8%}7<%acd zq+%Y6r!R9cvQ9u@N(c)hJUKtvnCk^h@e5S|AQpt#j`ntA<3cU2E_eV)c>z|#-ty46 zRi&&TPwB}MGK@OdObpI7;-1I12<|}fy48OKt44qt{o%?Vw_nO2XKQO)dEXWUR>&i- zRy4RcSy%!+fxl8RFi6hK$Y^~Ul8}%vw%H3JInZy1n@0XcHM{HMce7Gc>p@Lw$%Oa} zdbQmDfNKJf1r@5yw2jo?L7thknaTvT1Q5sJp0+!8N*N}&M>Y1{m;TjUuE9h2-o-ZP~c*z@Hi?OA?wITc3nJyQBjvCB)f8=qOIHAkgg5tj_pn8k;65JCbBQ(&I z&G!PDK;l0mGjnRJ(!u@+l6#YN^Cj>9%f8g(^e|F!w91*g^Vct4w_OW=ht_}>|LRNw z5$KhWeG7>5ym$MqRpw@94C3PS6P^cjD7!VTNO`--I<&*%W41Nkw&i}PjnENw?DYb% z?sItPf>>U>ON4(?bsR*7b#^MDdb?)gOdI`+M6m!Vn&{Pf(ZOR-aQ@=t=qLl*w$N!! z2a*1Ku?ZV~xbBd-z5jRnne`}9XR;`m5zk`wV_Sd@$kb@4e1qEN+KY31*e*604lZhY^SMEYiXP^BAyckeG;E0<|EN&YAK z`gAlju8;M+pr-{%erF7=>N5blw0E&kd4Qp6Xm7_85fOoln%r(1IfI%n|KNd7PR@#E zm#vi*fq{X+`VN+SAnn@fYIoZG5UD@v6c)wB#pHjZ#^X*!sTSlYOlz;&U}n4y1-^#h z^~ITRz-79(Q0+7FY(y_~#c7PhL zr;0jB_5d)9;QbFm)^CAb1+r*>)^TKXApWQ~6ymhum~DRiWviI1mx zlBY)vy>f-y9vfg**rG8>UBkoFNF{_uFsWKVdt<9(|EOs2Nbs73mkdZfh=v4RJl7d` z*6fb}xf?>F5VpL*4GZN9SOuts07!PwTw(wQ;kHXO1;Yx!gbMA%v4V6gj6`O6#Z^0jzI# znpjvMwues=ul3i@K<&z@+l$45B!1R0K?IU3D8MhF9Au)+@5~4a2y|CD+pdn3;seY1 z2FMh!STt4}#9N*~A0cOInxU5fWOxH?;>s3bQ+jcaAXu2pg-Al5{iQy+r4wkz8zGvI z)Ks|($-}p6!C^0%-~2MP+S~{H;Mzph{afo}?+jvgRsLf|mgWULH%Q*&#+EyU&NRi@e1a937U@e2zJH^)1cSwcfZg_;Lx z0I6h%TMGsXUBrYWo6I4fB$X;4Y(CtvK4sfzCnsv z1tHFU;fK>2&B4(zfYQ0Y?28<7%~XmH9vH!n>Fn)&`5&H40u^zi5?KR7D(&(GW| zf1qZ)4)`i7D?8iU-+CU5JG;g@tdHHfNsJp0ofa6uygqvs&sqDCM2{$|I>)@!AVK^e*id z?L4=%4WVIS z31D$r=}E^42?EJ@66$O;Tf- zX%EJJgBB`j@Y_LouKn)Cf>px!HYCKiy1M#n&OKZP@@7!<$tc{}uYziq1|jXr#jLBMGI~pHE$wQl;@|!+)~c$ihPJlJ8x1{V-EZZEI>BA8mEoP0 zlY=iU-DrPtkKLwUs9mKB-tk`emDR^nn+>oF{Xd*B5U@@rmXZ%{?IdAZRwvE7&+-P1 zs;@UwrXwAhNXXD)&M=!9>4>PHNDOLSjHsaf7^)ZSC{4*P#u;j(QYsUNm+{Z*x~WWD z65jc=F3RYIoCmeW1-qOxJY`6ZNhMAS&)Rep@R#pQ$-MW^tOMTM+Z!&MH_1tQg7t_v z#5r{t3K+{M_V*#CIF{0)!ZotIewJUB zCHY7F?CZf7?F#xclE|KGFW1Z%*PAjWPbbc}simz6kt=BI!G!CzE9PfY8@!KPE#57- z0HVJclQvd->&*`?PG&tnG*H&^VM|%2@LzD(wV@|9ndfs7`tkhfdlQgin*7-~bjsC3 zMA*@VQ-q}F5;fk@YUryB>A;I|42QygoMZ#1gV+B&G6iPyw|3lI)Cb0DcEViL&L&Y? zqT+N)4_5j5`rhOul6=)(Vp3yn4(zvDdaNV#H`|oyuI8KmRlSU73)8MY08N2n+Pjm$ zj_(pMV(-(fteY-*kS$|;X}$TTB8#mI%k*(aguHy0%B}M6F=(O}D?YApf4{Y|m94X$ zBZDR6`cgVVgEQYL<3g(nS%V%tSuI3)m!=Botr1K;H^lgYl@QSf?c^@zchPWrbj|ustcgZ-4 zkK|)?LJRc~N*o;(`buzW%CH@aNAs>Uu3-D`v;1jf$R;foLiCJRjlrcUd+yfk+?F@n zyxRp9w{*n_O)7j_sH0+e3*+QYMUsYBk&N-r?78t7MfnbF2_}+6nyTr$<_@SKyG3@%!t*j{Ps(CBi z{0>2#v+D_)92%^&YPlPw!-XOeb1TB~xC|FYU|1b5*YeWz{xbNO=`6%N1GVI!`X`rg z^11n;0g7LW@P#j*;Ga)q*I7rh|G z_MiP{&UX7fIAHHjB$`o9yl-;N$4~s>>{92!Re|!%AY%r5MI+fWU@kjZlKB}=_dwllcxiWI zwW?3qeTG>FgPEX&oX}eb1&+{mBxO45=~zn zx~|9a#4kQKo{uQqGI^@I9204)%0-`R00`_V9UVf+ARwBNaXRM+_y?70w^xYX`1db8 zVp1w9ir#SE1&zZSY!-l9ZYVoQwJz8+d&soRQ5H;hss-I3pc}KY+orU2{Aw;&AL>!e zHz7R=W_`qu3WYHpY;U-iFUtadw6)m71eQ>?e|RQX*_#chPX=FzAynbia$R0jc_ z2pOo-GGL1-aNBzh^Df4X0fY)W2GC-G8A}$}LBu>GWId7s5EQTaJCLsca4Dfd^9>Gu zV5x`4K(6{TMCOp=gmUFP2D>P--b+z4*2-p}L7;R~ZW>u>Y5KoQ(6X6t; zeuW525RaidehdBs7w{S&BO7kJx4^8x9cK&r0yxkx01f!xahRXgjRTLrskymBzM5)= zaM6865*fy(hnTgpv9$#)>X=X`V_KXZbp39cE?^n5-y=uWwMz!2JSy!@`;O&3T^YMQ z#FcqJaU?5cP&o@j$HPMus5f9uW_xqLecRlelFn>F=CeQ~Kpd=fRMKEsN6dcUO0sta z#>)p-lb5^+)DZNQv$y?L@|N zR&(!HXJSf-WH7C0Glz?_pKrG-R(*aWQt}YQN}uhRC2tKfKygjLR3Mr<;&4RB0YLE~ z;JPq5-d%D5S{?Z#c$F<)PXgsc(d^u7??2pVNM@loS@6|Dc_$VM%{zV#yY}@%jJ)ey=F=zl5=Uf(7-N(9=(>To zVIaoc1VXHG7Z$jFWJG6)7Zg7^5Egi0Rt=KJM_Leud98+cls*a(B8v&SQBTS}jCCq7 zWbZ6=nKZp6Z~gr{Kr*F5tV;QopYp9I@`L^T9NU3&y5Z{1{X)H1Zpl9$OPe|}GA6N1 zS`u8-v`)6EXI>!}vpG2?2%W4PXO`~K>q0?v+cMVmmXu7Y&o(>Xt z>ThRVwpQytj$881%FM)ac6LT6Tj&r_C?Ib@C=R6&R9NB#R&;V_?qVSp>sB+BPMKBk zUFY@IY6+MU>;J5R5q0ySDorOYE1@BAC{)OY+iMDe=&74^PA07!Vy3r zoCvh}$XFft!!U7hm|&IywiPA{{MsldC#QG_9aP=mASK9-_kb~|WI)EZ8sP`P=YiB< z_v%#)yY%D7M8KBdE%`-f%o32~wJuy=J7z_OS$48`7;b-CES z)X82oX{~U1`aK^>+^1mS2imP9io|iB{3~WTCgA;Bv^x0j|v>@`(fP(5wysN1mCy7gC67;bBXX#>u9?@z~)f0aY zNID2o3`}PgrF*E{*G&8YT^vY^aC*D>IaSoX59e{iw*` zV9r{&4)`QuB6Di1N+5G@W(&oRVa>HT>^V?XEI1I5Sa>DxW~1 zzUnNS+&d7lP)?xtVfd;xk3oZiz+mfQXa>JVd-XtfcOB?bJRotSCtq|p5O3%HBn^^hKd-+ZLOypRLU?ALCs4H)x$detRYC?Z@y~ z)NhJoyRvT0;~JTUckhyRwCg%f`)5wLiJPmkB4LYTBEBks&H9N0CdH~vsNGMO%SJj zi`%}Vh`}J56K^k8Kr?`CW-Q|QvU`9m~P~K zc~e4^-Y|=0cAZ6g5r4`w6^97tN`I+vK-tY-(@Ys0&=Ivq#|2Zn#Q&7u|8<-B**qKJ zlePqZU9mAqU0-}Vz$4tcJT+f+ZozK)_FJ6q<} zK^F&T%cDse&ryr3)nCk*VGQHnPox-)Dz+KXs`9Iwd+yp+q~0SGC!!c3y*>J&u~%6) zmBq~Rx}SfI5Wy=28*3>k`6C&$u;{Nt8A_|w=QLIMwGBBxmAI-u#E84O4W*}lB+pB_ z>%YG?-f@OE<@c@^nwjVdjz}t_g9)R-Qq77@0s7V2VLxms!c(m-3Nf)&q^EKbP10G- zQ^Zvv1Pj*Bu@J@PyjIQI#N;f(ku&Zr{JXo~{G3XyE!3T)c1E!`3Q~Yoa#esJJO5Y+t0YKYtvJ`qp0Jpb9Vqs_Qu9q>VL09k z!05>Ur|s>VNI$*aMyp~pU^<<;YtyH&6c9eJxMUfz@ipG(@fA^kr36?4=qMMGc+F`?a!jr29Itc^0H*`0}{+PUy7$j6F_EaSg#T+XYJpY2uJE9uUx zp>uP20%%{Fd>|ZJ&v0}dEGIyq=d_Hll`+JLEHuVR#l+ZB?-R0HSau7s`Mulrhu4r( zCkEZ4Ws3Zehz~8#x227H$hFMTz|hp<*bLF3Wrv_?F!QFpK+^;oJx_nui3z+h4BqIl z`O$8Gr^*A3$~*BK)Smb@E`Zka^GmZ zp2B)|u>mEjtB>BHs-nlZ9)2T*_V5>PGqK0=rC5InG!%igDwf*lAZ7%BRpK=L_9mA; z&^o3T7ja>l3^9npbgsd#Ygey^{#*Rs-`_u+i!*o^vu7!I2neqcOfgXFz`ZR4wh`hN@6usfCdDPM(b;E?F-n9QGt0G z4Fz-DX@HavIzDazOiT7HFb;YNjExmuXCfes=)BQX6De|NqAF*?Ygw)u$XE zWB>A9$B$Swt=&-)gu#07GxD0XlW~QC(-Y>G5J9ik1PEb2WL}Mt5gm9&m-Ev*FbVk< zbpHkINA~u7piB1)bcuqizxDTdNwX0^L6jsj={;sr^5yTQNBHh~_e^JJjc50DAsL{3 zK&OA>K5*}&j>ZjDjR&{d%2>NTKaEazYWpZs`tV+UsuE5K2yJkh09ftYGIh1Jr+|%A zhyYwdgwSV=L=xV-0l>n;43nNs>y`ry%Y$Q48vdDDUjAVI6ilxXAe*pefM<~u*jfLI zuaDuOzjf5p=d<@ICBkxvZ1<%|Hj)?QwNKBVv2ZM;P-A;rW!;Ze8e-qi<*F7~*4Em3 zOSuMM=-X*9ry-K|`SA)j5=-FfZ35*QIqyIzS^O!(1x)?DJXn9KS7A4mvyjMVh6im@ zSM?*%!m6vqfPTi1ZfxM3WG4*{n=o+ zLhJX_4+?44{b>KbknFO^u%NkYKysiLfMoH*{ooPT8PJztg3xg5g!Z5ZXl(*&K1|f) z{Cof$HGpVopgLkCUs%$2f=ISmdvQhth6K4x1%uiaW->fDj)A;aP*5=B)aWSIM1nFd zI@oI^AEA*t_eu*~m8JWOI45#uDK$qw(>|x1`~37jA+B~f*ohFMIS4s%HzVbd89&6% z^AEnYzlV>)L|^KC6w13^n=TvH0I~5Bj@WqeMK#keFJ)Hj;#~lJ4)+Xvk5yPn;Y#*K zhbIqEX=%6m#QuAjn)q?=Hdsi(@o5By51>$h<~X#AFd;k_0c7|1meh%CS?*8mo3 zVmPOu+;$=j{9(7fPHzjVFyFi>n|LQz#6npN zd`r;NhW<-NQc^P5K<#D4IUfmzuq@*ZcFIyKfS}gqWeUq79TG&83OP&B=z&D~zzsN^N^h_*3HL7!g z;yHUbUQShfcGLbRslZF#mJjFa-G9;ym>B%Jg^lhM9UQ+nEjtkUNs4_<^9AO~A75qP zeLirErT9I&0}3r8Os@h&zVY%H&$6$H^6=FGC$#wE&YpPB{D`*`NH1By?r8+; z0Ajy@AO+(SoqdOF<&4daHnJ64{FbMA@cul_{mQr{cj8*da^DP+} z8N{(mCFUjo;}<;O$OKj)o%!t(#ZcbPyT_=IMtTfXbE*A3!xo*%zUEJG=uC>tMW=0d z%0I_FAZMV&^I{+Zu&9`rO1{1rq_@eS@q<{wd*%^3o{2HwJT zBWuC1E+7XOaCD4RY$1YOzigAgwBe*uxRIKSQBr?vUq=A9&z6AYXCyw;bhZGkratdpATqld)-; ztXEH$+<}7qS0z}FZhbcc`YX~)`|pBqF$0_VhKgzB?xHmtwoQ!>(U)O6fxe~z211oK z8O?v)$`=_o3vlQg#aW_|5ikJ(iz9hd&?Bs4o1mY7s{0Fs>hh*0K;D3uR%S%Y1@R#s zk|kLBDobFnS1D119108<+(`_3*OkKU8dO_CCFDe^yMdlWiWt`FnjwH?N=cWvICV;J z;obhez8D~!6QP3MzI_9R*)pqPRnq&h>?_=|OmYp)#spylPQD~nb-!m9FwQ;sbv*AtZmWpuyj#n~g+B#|{X?7yN3m|M8Jasc`xPn59rCpiM|9DREGC zc6N0@|0<-(gEm917rfgICxX0$NnPZ7!JPgRjLgU}A0X>Cw6%RW05Zc89|X0Y7nrGU`qeau9UndjfofoXsPFAnWq1wN1DKZzgR*1D^^^+uk$&>+>}sPyx9$Ipx7@f+28!h(8x)2-L%E7%dgD8uA9b$39yN z9zz;on@})=p-{lU_JD@02NOlD3&>O5ho}0H*F?7P6G)T)FG)v(SqF4UCnq5oQK=jR z-#02F%20+;B{fg+KRL$#(Bhtde4{U&@HdnlyiCT0RR7GD!M|J%H&c5N;?5T^6%s#& zp~$2R*mYVUPlk9rLLmY5U)aNCiv3;`3iy-zB6*A{Wh&t#_wPK9`|(A36wdP?yJZlJ z34H0rAJ*d=cQCg9Z^2P@>wk}jq#LCY6`4sHz=H!@J|HXWS>#GaIPin%PVj9vY?u3m zibx7iqva(>k@0{RpkzR>BOX+hk&d>I%E~+79Dvybmbi1E2eou{*~Om04KBhAdH?}6 zIts=uq}|*^5I;VM_vA~TP}l!=-1CR7Gz_2~2${1F>41UV2d3#PEG-cuBv5E$GFSdjRxeqW7&qgtG=KA3$43z5W(HsWN+YfY9;jkcbo>y1 zhbJe<)&|^+u;y@K!qP9n^jlC|+<1DlgNCZ9snIGjy#%?ei|`I?cRKiio?*uZ6iTV~ zWL10%@ChOVb8yTD-YY%OufczW11Ee5k?RXVH1O~ z1)R0`U}Q6fOoS!Q0(*Bm8>&HE2r)mf7a#Cog4k;OdujIqt>E(~NsT@R>)yFA^?}&q zP8RD1e?I_C_LMc!y9@?UE4`Z+b|5Hx;HkpFQyKp=Vc_H9-U{x6(!}7(7TFXGr`rSp zKxNN>DG^#Y6Xfv&GURjKut$0e!2vsPfCGDmu8xi|7(o6@K2cI4_{Uqe4(B?+z{mSr z?_qmm!S?&r+e-=nO+&sG3}Z5>mmT+9R5Z|Q4nKVS6BXjTwW_j z3-H!Va6SZT&`?4EhIfnK-SF1p}dfosA7~v_bfQY9jrBOb$6% zZ?#twY*ltIU$V9_!k>vzHynu|YHbd|)c#^H$&-5JEuEcuU|Y!20VNjhxmO3h%J7v4LpImO6%MNoDY={^vWQq!4cxa#j}H z1Dp$jg}M$#a6r35U`qU-k98iPDNwqG@I>JkL@>RfjGRFLBgNo7`;TY*Gi%Lxu^SBr zO;9K}I>Znz5jn&R&UL$7sHLac1nc)DMPZiyLnrjZQyUvZ;7LJ76rkAFfzeZ;=$|_B zr0}2{Y-k}+evN=E2E*Syu;4}}CWgTUbi*S+(!7?t1w`;?{b~`LiJGvn@QP@*0s0YGB_6PIo}TV>mCTYuV5+Kr6DtAh-F28h1b3gsPyqvy*WqNfX%2vz zxGG<@Fh*cDB@iYqr@+sI%(fPov|NV4Z7DcS2QmrR?wYi(!U8q0MrwxxmZB1{Ach$n zZ{XS|LCR>l_WBeJ=3-8fLX8wMV)ZK_-ajepb{y)$IO~=w>uQp{3B~Km-W$Z%$dpH* zc|)^}U4`O3 zM+IMsxk}o-l^k`o2Van{dh|%d<$x&t_@l}HAn#3}v26Rj;p@_%P$XkY6J;n=N`sIx zMlz>NB}IjZ%6zHJlw?TCEJY|~9wRg1Dh)EvDiM{L?|0nKv-iIDv%kI9_r2>~>s{aa z_FDV7yPrp{^E%JtJdXeWH~rbx?q^6S5W8N&zO0!4`LFG|T+hd}#TZ(EbiBCSB~K7> z+#3aGrC@pp>9_juj2D-Z6okj+ymp`6Vw!z%77i;SOjkzC5Y+PI37~~8IFf!7pQK~A zjqL?jPSNr;1}aae6r19zdnP6Hmy}7tJdrcL!sApcQ~-odK>o#F^y1#VJP-<%qsTzg z+|wX;`0c8ytGkT13JAnNA2rz2^NuAF0DTX-R7i+KaW2||o(h1g4X#K@=6h^f^94mq z4X2oMu2D?srztX6UHFcq-qcgFBO1Uq`{Oqcf&p~hM2W!gv6e}jD73TY6 z$}1}mZ{sSfsZkYcgXk6|SKY)U_{r8nXKr{qpjlkL{PpwGWh9gaavfN7%|N=r{Ad|9 z@Zet$_ffxIPft(Ip&UP2i{d_X_#*Q8gXha%50$BW+GTcP!3cW;Ra++@DpGP{^Vk9L6>dfxup`xm-9VB8 z*2_jgJrT?R2RWQMOQF2-Ob%BTkVo4FOWO)qxl2v%uZjOhsgY^JT~Xp}%Qfq>yHobS zZ{g2$&NJ!J8=karzFi}~S9G7w|3nc^r&K;pN+QiGs@LG7us**bh6(otH*2L~IRD5F z@6WZpW>?H|Pk9(vJniw}o7_(n^__4~vWi~|*yX}Uv36B#>I39jzSqCg2Jau9eN(!LY_9$1gW~ht zQi@9$r~<(*Q4Jez1qFw&Gai{=Vfba)*)6K?Uj6czp7Zc3qiAn!{*WFZ`VLsZu@@5) z6W-q5jChgR09q1M2g{!#@gHc2U1h3CF+adXFVqHxdC0~=9NP{gyAYoL^=m3#)iOwc zU!aoJ$`_Mg*7e4iG3^<{k6}iET)JdWja*rm+?*RN>+Xeb`o}`1XdhDa#a$*xsW3#r zY_lD2nKu-SS5_-P$IIb#iYQEBnZ1nHH*ug9whg=$#B2fPZ53*6Vklp2WQeo3 ze2~W5xr1kPEenr}YaCzodMGiL2@3~M8yZx-Iinv=hFBY%+W&0u!=lFbdIrCd>_z@} z>o~Q}x7N5w1i(0DUZu*Pj^tG92~b1kLFm8i&vi7uxincaE}>Aj~Q>;t8A=^rL;Qnv9aB< z%=;@G86Ow4Cq;Pov6CPDEckYbv2oDS7mVH>zgVN&SFe%prgMFK_w0B_{vyd=^)gEY zR#-hyI6);}J7oKrRioVnl0FA#JCZ)%ph=!+9$fbR>*Bq;Z{Gj8>e?@%uexK4Yo`3h zdcTk#e`0KX`xo`B0b8x=^slJf!pFypH}rqvXl%s4t@&P|=EsUF@VVfVK^r(vb7rI| zRnorqYK#mSP6VNj7?#a7i=(1~|GeQ}7cMg{7;m%W{p`=;4Ig~; z9&GhgBx;}xJG#f#t%--e|E$(v9%rC=q)O77zb^hHwYcaLlV4CN*evCJuX}z5J$kg_ z#ffKMlY7OtuJb9{FdSG|z~b{VVMt!Pq>l4R%i7DOr;r2F)xQW}Ty8#dU_SfL>16w0#!1Sr1X-8ua$ndQcLvEkF=Q}F#$JNG1v#qvpK^=hM8&Pjcn%|E z1DFph1wlH(W4Um-Yk8sJ7l5`OF?+al^-NF z^x=GxtLjHeOzdVO$HSF5I{emQ$^tm4J+iW{M$FUoJn`*O^-^fyFv{rkj4Jn6c*Y4V ztNVH>xt|-&EF0@;mWoU9+j$5Umy{(6I~M0y47!{=r>dQFy+K`s1ziM%?(7Z?lO}fn zb>s*2+5|&`7=we`k`84C^%eZbCmmNSl-!#iou82!DgIcJTC$O?Yrh6%Z#Km+pSru{sQ0go z3>vq%j$U(ImCc|9fS3FGuAGZ);N#_84yQW9fDQCQsJs_#-W)FRe zB>ZIV5kHX3i5oX-=FL^N70Uf8j<%AoUbNO7zn@|E0jkqEk<@dx1TmW!!G69;LV^vu zZ8x1nvbpc7K;ms|?A-(2tyts4s582a9fGDFiJzB|&XaQRW{;z=Wx}`4VIx!9UrJgVk=p z0VXHlDiaR?mV*mWEOwhCp~&3a+(;DjabCbyk9HJRVFn5zqbe#YNU{O~cbDV0!1Z}d zjDpCUGic)^_Uyr7#tZ-cVt03Ups4#gzCpHqkRTU;AI%{CVj97(Cw?$5U`nvxc6N1n zr0C23Zp0O{z|{$#R#|K7T6i??=6^s#QuV0e(RU zBLXX^U{FDNLQVvesMs}rbcjosxnkg3MNkEa{e}04nL_$6)AzfuLb`BEOx8vFmL)`33?FGDOpO7fN3P{<*0Y})v1JRP3RtF27 zfWVLVt5JxSBD%+N9^UzFKtmCwM}=_&cSquM>0)Bnp^PHLiKK-BQQl1QjbVD|Lg^0| z^^|`4R&-g=q?6DKAYUs4wr=eqnR5^#Q7G7Z$Sp$l2x2=HU%Yq`ug)TN-&aX)ARY-K z4t9yu7I%@DirSy+sS%GU+6!LeUQ#ItBz_I5>N&hfxB-+B@DHbf)pBh=$&u$KNMxfOB2r3uD{3Ac zEQyboJJymkQD>NNs4kPwR8!r-VVfBuiyQMCF8;{Gy7>AbwYCs0<2^9A+(Fia@Gmx* zfsv6rz;%eh9fnupt_34ZBDIC<5x_y@g?kSiSVY0&^+dwXk2$zPkQC$jZC&b#7jbeP z=BOtD033oziAp?u8&X!|^ojS4KSJkhnCf5~oGWl3Tm z?bSeHQj$0EWjH@a_;V9^2k_}jAjyL5_6!0BNRA71T2zt-O4NQ73c>@*aZ@fMb%^-R zXs?p^*w~J534aGIsIsQ=8@lspY_t=s)i%nOItES}b(xW`^!4f%dcIjOU6y@f^&;wJ zOdl6FD=Ta6M?6#PT3bjgo0Lua2EczP8vz(ieRU+}D)(h-J0Wp zWm&UgI82b73PQe%udmy<;>^TK%22ec?blOBz1fZOsiD%UzZ}K*@91AT?4CT*~vx%dGZ~Vz%w8T*eJE?$Tlw0 zE08Sj>{r^xW6mZ92Se4TCo_!jhTX=GZ96g#*Sjc|4Q} z0!2PU*FYgTE-=Au+_6J*XdlE0kh#RGESParUlgs%hsA^GSy z(-0PsC_nEy^QU@FH#{ha23HXY_BU*S1`e>atSPMgBoP7;9kwIw2Q4nXW0&E4aD)X= z3w!iYclIdNt=9!)W;pRUGIBvlYY#%W5_~OjG-IzQL(BneT0|NAvF9RA1_D;${3F0Sk#mA4>p|iycDEil z`VoEo8aM{gvLc+AnP#tSi!*x?@hXIY0aww3A0!_SzPOwgT5KGXfa8e) zoI+QGsj-w8Edg?N;`n@`mB@rHdaU`pIzlppr534dk(3O{f2~@xwCKp7?7uV`$Z6ocat!=D0mbexEinl-XcnF0_H+VlRJTkfW{<^^(X~! zN=h_b2^pesfk!-W-~jP7qdGVkK92|cm;0VoP-HdEPcQ-9*e6=+5&_VcqFI8}hV1qv z-3aJ`8MYRJ%>$VTjXG+;S`YsLwCpBUrsfdZLXU$Z`y0awJ{^H2)_j^~{`PRCOT^J60~YW7^s;s}2njkvVD3Le4H)Z{m`d6gs(9d3MA>_4`MSm_*k5 zdQ`PX9B$XAKTx9YjInWnz>s>eJm~FJ(QlEv!?t{0Xee(M1B?0zff6K5SE7O>X=26N zHiU<6EpOU`GfENVjArV|-6*q@j>tN@$gG#<*BF{ObEtT0t-T!loZfiXaHRIqI|`k{ zN7h(jx(mch-mQo4Wn8&nVR2bX!JJfwSd<(Z|J;0 zsx_`mC(ped^EldY;~ZbG{LAd@N+d<;8U^ko;UpciCk|VRyrZh4{6mefjFolZhYb=N zA%u5#_)VdZC@kzlef(EL9=*e08S5816r3ft5w2PCRw@D|DWcI)-)elkDYRBUul9aRtXZPGMiS~e+z~Ier2NB|EUk}$@@=m*mp4f1QG}GN!Tbtdms?8Hq}H?wIqLrzTxV% z^j}5y0~*<$G->9Qdfk%}VBhd(Q1g9eDr@7Mg1quZeBx4NZnpZ1KAHyU$++^V+cPWI zNIp@M{h7wa9!0&j@Fj4n?54)hn*DMP>n+(*T9_JVFDYs-m;I=)Ow*)q69Pg7rZVk? ze!k`JRDYjj@4rS{{8P;;>mv*_qCdN^%Qx01P?mlw*-P z!-D#v$JjmBEOTeg)vIED-TPUEjgV2bB>d4*>HS-VeGeWKbT6*WqIP~*_oSIuB17AN z)AuW4vgHNXyYM)fMo8XTYt1jDn+U&mM5-5OmeQ0SBGTR=I1H0mltS~_apXG)!i2<8d4Pv86F&qG1Y6~S!72) zx{yQ@RkTOkII1XQ<=r!MI(c#psd-W6Zboz~=~&TE**iFNL8J%P*8O*Z$;y2)h`Ps7 zN2)kzGw_!mU#>&u#c{mPWV#R1j$n5g(6jD9{2q!(Pmqqbwf@y#XZwPBaP%QmgPFj+ zb#*MLH4oz>C*0t@?yQHNFT#QkV)yrUo13uLaBve z3pAXSou6N7oLXZAT`2@1UhvA`43yd|4c>IimMwOL4N&MHKGXW@B$!BmZI_Y!nUkM? zScsz=V8nGKgaBM$OmZ#1eIsI8AO*oG`p_+qb{?=l+B%YCjz_|1#sXrX9DyLcV@e7N zsEoUy>zv9`(F|>nQ1gpE!ctHmH0;|ZD^#eo#q7lL%fp-67S%l#OMM%AA&$i~%4#V5 z!0wfeHSSd!P|=~9AVIhiRxOg&>uNwdgC`-=c`(-CCIa)wrz6OV&|i=X$cb9|&`BjJ{_6K7~v>p=pZ^(&_bEXRo1t~=)%&ic)aQQYM zc~aGqV-Z;uKjGcCc7NV*^A9rCOwG)0lCVE~t3i|x1WHGx(eJnp6+#)Jj!1HdM8znE zSassxT9Xx!Dok=JNr)4kH|bH)Q1|M^Bf*oCIPPTUCl|r;k2*z+PB((=w*og0GQGt( z(hHn^GhsbdLc|1J=L^U2bD;aXN#-J83(8O&7tV+Zw7Vpfo&@0I`~@6Cm{GhGBtGo2 zIid?zq5M%m=frGOd?Svgch`Iib%#Ffd{W}U=dT(*)V+U6xp3|7+vCrAmo(nUNnj)8 z71)4od?<8~yp$nsusChVSzC-ZIafR%AK!!gl~2fF_F!m%Ta9?xkgd=1kDRhMC<8G* z3geJa;|iCTPoyI*Z&26%gL?3 zvr|P|zvYycLhceW=73lxNn?%l3X&>2OLoUIUFanUT0uUPkIx@>(F4@IwF>NZgW8Nl^fFAZMBf`fxkG?cs~3 zE40oVRF~A&Ix5#l|8Nw=Lg6D z5F8?>*?kaq4G}XTAJ?sWBzLNR>6&Eu8M`Wb&5(5u_2QP@e;&Bl{NM@j+ys zPRvxNU!w3JzKvv8BSPd14nn--`o1<^YE<<{99wAn_E6XIE%Fk{;XW*K3nbsH>GE5Oip%RuA=Ueee&S{*oV#BqStH@bvzygIV;Kt&3!67N!Vw?q;!!it#nD)^i^(*B1p^wC@C775_k!!#uwetuxdB}{ z0zzNoJ|V{M2HIFM@NCIS3pje^(a7aE?`HQsvQYwqfi_^=+kva!X-P?22}Xszy0*{O z-u?}MbW{VLh(>x1(_h!V=inUA0D>p!P<0Wz2>gcB={5NI0WUu0Z|I`;V)z%qEiqa! zcLM34G%=$*lFo;onlz5Hv$Nz95%Amv-2~oQc}V$oAOxO_LxEFb^ykk*$kQOt2uqLT zBw}wk@!XV()kk*uTxUO%p6>1&Krvp!A_==8w(Rh4R#+gV$f!leSN9gr0+%UvC_9z# zI#LO8hFOF}>5A;Xkd@21rSjgHM4c5p8olJe)Pd(&yrW5*pBHjpcJ#DwJF?~O(&tO( z$pa0j}tCc-tHXBY)}MlA3}fWiA9Z4Z&zAA^4Q zALDUW;R}Oq^ajA&C2F)FYC*FqA!nSZX zaC_v{nU+U-n8Fql@V$yL^ zTGYUey)yEYs*~xlXeZN^fwglY>y}tYGLhp1qY`LP4%^w;0W)~=+(=6SR)(P9VEN&= zBL)_ckfC!!D)t8Q>apSa8kuiI$W69d=OuGRi5n|35*U_B$oouJzkOQ)|9}M64glTw zs>3fm6{zZ=8Co>%k3zIn^6zT^S?oZj(EAj9R=n0?nRdc4PbsovHj=KdxYlSk`BCc< z{3L0*ma5bMHZ3tkELEv9h-~L*)Y&M!W(#ja;zHOGiO<`P#H*UfhGD9O7XBBx?hmUq zM|i%@?qzsz?sjt8N?}HeA6%N(%75}ESsqF@HDXLx$L=HfP`T*Xo_C1LJzTzfW5U^L znVycF`4LVQw?a;1J%WUp9PL^Jy9DB{g|m%K6}I9I0M19^{e!Fp&oTO*fE{FZ8{R9h zGV_lcq`;8X>;)G9PYwZbptWip(>yY54q@Ic|)EbG5KZ}n?wLH#I+eYIIreUMEiqC1`Cc?+??wR4QA32@v0TaZqoRndoC_hMC`GyB^V z-Um#mgo)b$O8I78;Vb{~>p5RoS!fY`;lIZIkYJdiH+77xkw*bSF1Vgk2WELpSP?Q&szg~D6 za$;Krup!MvRZh}WAjS>#&)aJ&jyS-E7cz_#O+Y#X0lnN)v4TLtMEixhK-Xw@=sqNO zD&Ah}i*t+M@Bj&|T3#J;a>`3i(K`ozwG1lqQGlOZ6|$wltO}Z$+%GPF}nJxI*qU9v_3!=4)*a3to@XPi}EdBzL??t z!%&J0zl-{Nh=v8*IEfMkK$!gX>k~t4QfnkFXk?xiioQc=^`NPFhHv~HER`*eJyLBY zr>REJv0q`$5?!MqDQHQOD>l32=jRe{I$0zN{X@I0gw6Hufe|9l3_b@xe8@sU%)hR! zdX3lJ%}Q~go$R6`{eA%DM2NT?9t9c3iUy46vXaxnYQPdNgJ6hY>J&0M7Tz%iM9}FN zzN8=WUmYGd`CsgBBFVa+H{Dex0B<)1^pokTYStL{sISN`ISeoJxY?qvN@+mNanh;!lH+mgh&kamK zwj(tO@FMi4OJSwd)lX7G^F(sdu?tWr0K_V>S-${g!L+Usgq9~31)1=M9umpS90WQ= zz&}%y7)PV(-Tx}vPI;ndUimkV+CqP-<9p&iBu6b~hSH8Ac@dR{G(p!9wSjV<^TTlm zpz@H(ZqI#%mgx*s#v;j@p9zeo7A4J#5{N=U;X=+}Ktt(l)W9FHp_@=VpVHNwKrQAsgKAd}W#uYPPTkXpa>dO*(baSt zOhOsr(G+%z@BumH*i*u>Y;lmX04`-Hj{l@E-+vRkpo2wz4mMCy5&|3`%{Q=9h9K*~ zB*Z#)w>-TK2)fku2z)2lT6HI9{7GU9F<%l^0_G4T;g%rNj9|*T`s#_86+viY62ypm zUIAePBwy?-Yb2GMbw$?&gyiAPA>%#}PEigu*(dBBWVc|5`E?!}0-kzA&+u?P;yhBm zUI`iyNGNJ6i% z4U`l3Gm=oJ_`jiDrqO6;QX8^e^pwjHm{isE^ZJtMea?TLC8wP1f>dBBeikm(`dtlB zTSC!s8Kt|{GlQ=3@^Uic7j`Kv2i?6HvLYbZ6TT(~G0@4FadcI+T)7`ns$k6JeR(JB z*~L#EqOik6I*y@Fq~OHvG5>h1`4D*>Ap6A73v`Mi_5WqSITEaI9v9j+wr^}Tx<+8c zB+(s(_C4njj2=%o1L;mL4k3*nzX=ly+$(545lRMtUR*hAi6FC?l_DuA854VGeH%LZ zIFRd~id^&QG!kX_-%T{fuidDmWkCS7|F`qXd&j#TVX>Fu&_mEJ3Sdk(4mqIr`Jf~o z1q2dAIDs4#5;Bgu))wHk=QPm~VIUDI6)#MaM8c(Z=ZxLL{ERpm?u_07&{*j|1DAI0 z+Qpfsfw)j0Jp`qOw1*fe0D1_$QosyuxQ+;TVrFLc5Bf;BBacEiZb3JLa(RX41cU~F z+(-;4ABHFS>FwHo9sX=a2|G%Fk&Q#_y^?z`TxSt3{li@uoLvQ=n3`#f#!6A`AFHD=0 zfOnB12kAE9%7F-VV*xCtkZO&D#dy9glnzYO8Je-xHF zFZo9l37qYifv7Duj5>;i!n}NW7ahl91l|Gvz`#B_G!3QLOgP>?4aoQwi88t8=k@PE zUhO_I(lGL)x(`ZfnJd?>4H&QAdznTxW#-z}Nk_YC03IKq>v#oSzV!|bRbycL8&GuN zSMmBUrI9f81LrZ6snr(I#%J+9T!IF|Ziw;;C34P3C_^we8}J2>SwNxtLKFlzF91tO z_#P?ki-g;8Q3=F8xn#U-uG5Y!b4JXb^0`^Q0ReU6PQ|m&s#-3gNw%9J14|H-(t187 zCYss&Y;-lyul|Uwd-vX_nt}}IqoaxaghHkPJBk6yI_knPhwr@~N&Pakyw;7+?~ya(>Jx{t%7vWFs#C z*4)4bH<1U-3PUD(Z$r|v*WoJ%Xa*Kogv3mM8+Y~e+#8vqPJP4Xp@bMS6c39lcrZK# zt`KyZcIlClmYc3^huFgtO!Y^zMF|tn5EyHOS<>{GDB{=#d6xSM=LuN$So~P)zRXvz zC=@7ReSLka>gzqBhNpMcr0>HA<2y?r&pr2a3m%PdFDH{{=Xj#YE`X)b5I{Ang!RO1 zlvW4)2Kiycwc;V5T z*7s(`;3XnN0fx~V`At_7qF9A9n4jr-$n7uw1iT-#G5`?}G|p@-uYwCJ8c6-;s4zt8 zn#JA;T_=9v54vcg*2I0{91}jO4L)Tl5FxY+eLwsiot+mQFOWfP?HOCw@NE(F#6^U9 z!2|6Z(?#_y_nS(A`T&(L&~OF{-i+rkGr$&AHD^1DH!lW{rFD)MR{)YD0fVC(3Q_q| zI=j0!gv3-n|gF{=+@-VhJV_lbP6rnZbKj zN@zd)n7Z-g*tF`!bCAUdq6G^CaYiUZ_#H9tPXT2|t~A!Y0yZMxabza+T3NTX_(B9@ z@IB@mjhGI?n1IIlmzmjGk$xuhX#X1|;RTHeUd1k@ zpP#Wo>p=kybnR*L%Yt|n4Dxx1!yc;(Q-;^0t*l8bzW!6*GjsY4yoqSTRo5SxZz-!L z^IKk{N&X8?hriQsI=fCD6K6q9?4{G`y-t?s14Z6D5&I0Iy-l?HUA_JmTAkrC5#%ha}8kzCtVnBSb6+C#}|nk2+DBtbrVSpG``m z7y2TB5uuMhs;e8knQd7k=ByL))YjJ4a2iJi=a2ke2k8y&t^qr8pMLagF8WWStrcN9 zi+%ep_sV&cdEKZmO0iXuQJoO&x@Z0%_lRS$(@&=zr1UqJSeh(Eg_EO3l85*?ju>?Y$Ti5CtWUN70k$?y@vC+*#j z5uQJC7P7B(bZK(fP%4YB35U0<+>}!mTE32*-A_wEhpHKr%(3c{5ABI*?9-SVJ{$^~ zB@8!i^d)UzmtVD!y%h>d^H0xDds#*lP4!1Q zw`6JujEGmk3Y~;-nAnE{Pa1g+JlbKlbhBbW3@#WGlY#&U^JIRfFf3Yx zhklyKvmmXvvC+T^NBt~jHxH_mz`pI*dsdJu0^AjRfKX;_3uja^B*Q%-pYchD9zB-uzBJI8rVnO$J~PA<0-K zz5vsa!_*w2>Z`90MCe~6{w~?=%l5gWjKFY~*Jx;JT;JA-yq3Nxs$j0!`g{(}#DltG zd_W>-48PRW)b4NJQVOQOrqsY38cV4`Im0sL2O0PUA4#bdo5ig^%`=M^96#Fu&X9M- zW_=C?Uo=lBt<#9<96M(Xw~0$^0faz)fr08fGB39QKM8>|uN>F_fP>?Jx6OH$y7dH& zBS=#iu~Q0vq;&saxe9B@OeJ*p_9j3~C`$f3hRr<0>6057<1I|X&C@>nq~KVRHpF31 zAsRf|WFe^v+9tHaZ6>v9EnTLE zl6w35$vxz7%u-#Z=~xxRX4^4@`3q#K3yKH}$u&4o>d_zx-e0a+t-`F1owU6D|mN z$Q|i1<)`5nBd~3vUW&tN`Sj@%AzyKKfGGP_&tfJ9(YF%h^5Vs#=$jmS0;K{-e1bRL zwNnp9>cU9^yg?Jlkle-AK zHFlqKz+apkjK5>iQFM@`{G_oLLSX=CtO9#FNHl>xm{)Z)j3{+s=3^O`VZhW&tPw_p zYP^LCApklFoNW*HU8xwn58iOVU%V(r<=z%h+oNdu+d?mLpF8)~QuS6&xSD#8xhldp z4hpINMA}LmrG`~@*7Sp2YZ{7B6KV)H8Xo!?Gc!(Jb0%PRSf`|s&z|&2Fyoj{X$Y}YB6}#2WuuO-RR|fKV!#}(xu;O`9OQ5JK zciLX`9_8${nRwx?E<9(dAP8X-0e`` z2+I53#Yx{}1qQ5RSW#!R*et%I})zDDfvvaGUAW_benT}EJ^N#JV6Go^!2ix+cWaoa}+enBt zGP{`!1%@q&obb>Ny>OneJ{)yE+BHl=b}j@g>R9#GXo8tya)57O;O<_?dRQ?9R3YqA zZp5)9qJ|Wdlzdg?jN0pFkI=u90Q=ZVN?n%?grB z05l#C4ht_A(^Y*3*mQ$(BYossMaxsyQiRYBi3NA)NPXDVARP})moN?juUFlAD`6SY z7c(ikq`ZJoJ`TAlOxdt8cuTk6hdEKls3F+7_~<}cLjZiDKAZRY{Aaym@7*){ibB0W zh3yobw9WHux!kldx`0D20!b@(CkV7fsX-556)$f!>ZBSpltA2t zGOSN^eIwIPAseS>+nAiIyZ;)3+q$*D^L(#G-Q3hVEn2kmu$-Kn+)vTud+Y!sX-1 z<0J^@HooqGvClli+G2qmgU%n_Q`wtpAG9b4ug^nQW)4( z?q#<-`9p<9yx`ETW^Wq6c^%YL1Wn3PQ|L~z9ahAR1(VBtTx1F-za=&=#+7SLQTEPG ze@h2(F$U%IqL2&si(po-w(sLV7QJTeS~U#60Kd`g!N_k4Bu;v?WD#b zVA!^h(^iXJ)e_VgUQy?W2H4BI6yq`cm|3A+R1HHd1ZMMu#>3XGl>LF{>s|g zTA_4k501;Y@Aav{3(K|zxhSDHre9zg8#@gNlG^CVkz1PFar@B6`QsqN{W6M$ieYC0 z8Q=nEHXe zsE%d^stj`(vB6WOWO^`5R5UiPUIcKVG<8yFS0B!D=Ob z$Hjq)WhkivPS%;Y{9Ho82`KjB85UiHJgyD}VoqM(PN)t*75J+rc1PM2jn%&k5E6RF$*(Et1WLfqD5QQ^NNvIBZRiOsA>Be&&YOyg4CGqy zyG@=(a)gSydLoJ`pvI)T>jp4{f8Yy<15u3adI+6KESx-844H2{HsV%DPv3m}) zD*!7Jk_7z6byP%wV@nws-=Rw=`$fDzn>TGDc`#(E>B-c7Z0r4asmf7`h8sIoKTn6l z$)@1vQtiiTu_ypgYIp-IML-m3hR^<5+lu0A#jZCTOIxnBJ2EzApNn=GtJa#=JK}ln z!;Ucd*2Cp1zKC0&m;u!pg2qM|)ekAN#_-KWFb2+>K?v5p9lfF`G_h#?*WS}&aTQ;? z$)r_pug(JMeN{Xr4wxy+D=HM1Gc#)w9eBK%>z~i(Rr9Y7bHJXd5Z@$33Q^JYf;e<< z!hUf=AkhE%SD1fvPypzF&kn`i62Z0kR__ee`6G{^;F@3~lVCs;#u=mvrAjDnM#Qr_ z=&JaPlM)hyuzTr25XS)=xE#^zPfum1?F9FTabk&8^ZOqiGk9+5p#>jQIZ`Qpj*n}% zyNs&~ii@YecW~;NQs~>l?81a-6LwT_psz&^;hp*){_!M(>7(GOBA48aAdW4c=p<_m zr)xb`b?Hxj2K>tO)nY%kxLIYn)tvI6`(C_!ncsKPfS3lc&sBZr=B!86eIJw*)Q$aO zeq?x}=2IOA{VQ4(a!G0lnJ$S}7MjU7o9{?#eN_oLfN{&Ji6R*&wo{ecVSq4p9^Q>M z{6%Ia>XV06Rm%4&>uYPxK$pNKbQ+RQ7#Q(tOMrqajK9d4t#poQ6=x|x&Pg0rQwXDh zhs@&c1Qe!NVkUzqJOR>YyGBWMxV(JNY~P-SV?e@n+WxPv6TEv+-+;?JJR(8`D^TU= z(H{JgN{oEEBQx!TCjeomc5=fJGAw!b#W2kWPkn;z9_F>UW^;_1L_c{GLKU9v zAMZs+H=snS!%4uq`vM0vdqmts2Kk{v1l4Ohz%5pTpra>bCS4%n)xgtB@;16n^>G7F zf}E{t-J?oC8Ap$fyM9;SuDx0H52^zq@x}gPcAuV%atgo42j4#klE1L)EEqaiHYQt6 ziUw@QXYgZc5BIL3LFY;;JY(12y77XRGSh>b(VbSHh*dao;?p|AM?&JL^h6c|Hsp8y zz9TL!j)-^0=5euDrU{Vkl5P*P)96S+L<@^q>2dgIU<@&D#_#8O1JtYqv;9;r^+DI# z$9VyWd#Z=HO#_5Io?Cfa+apwatxqo6;_i4YzYal}#bArb!<5GN2VeE}o+SzeJVi{j z#ETJ(lBN^HNVgRsp)e-Q!Lk8do*ytD@;Fma8=Px0Qo zaRVl&)hMo9pQfkB#Kcs|$4W(4mX_W?p~6Q8uMN4j0BAlG<4YUG*Z+b8ZycpPdMCw0 zhdioPLdy#Usp>jBSo^W$uXDc#W-^8AypDq&_n;4w29l{nPGB(mW7r0We-v$>d#!G` z|M;(W8oO-TrO6a6=aE8hgeKydUcT#syKIj41SumyKw`(yle2SjDxf}LF*%2G)(o{C zr2qlAF5~r5PCu8H-Yd8I1 zzoM~4_(<%H8w`l$QL;pSn&xzOxj&~Ic@BV#LLgI9NNHZv2e3K>{YVJB+dPTX8XTQ0 zmT>Rveh{-48MD+7^nLAv*HICP?c}u~O~X!Hm?&)wdjTKa4JP1Ct9iIDbQBdfoz1}k ztxf5}$+SD6udh!SvJ^eMAR&;U$6vJlXZ2h)gKiGZ7TPAReIEmvwhqkU0Q9Thg>5^& z`VOap=HF}R{qDVYmHZwx<_2NU8Y^WM4@p)NRKNZ(I5>`?So}pEte+O84|gD2xh>)pmo$s)R-m z-a<7BQHa!6x=0}YxrpbaE-_8&3ycJco*Eb!xPlODc+GD5`yY*HaPFBZEG*AKbw3Y3uKt?n5oCR8ZgE&fIEH`A1(dolbQ5X?>*uOgI3%R zWkeM8mAsEqBnO1QXVq0z5h)1@@?99}jCFr2PRM2SHDmU+J2?jgVtknrFE=W6&E3bx zW{}~%E7w|_u-8s{_Y;U6QSM_?0o4p7J`iPNcGa0s!F`yGej)P#+TnPT&&pkmdAPbH zlqWhmy2%j*b*)P~UxNw$?qQmk&L;&&U}y2a{;lrU$Kb@&@eV^S?T@Zk49L-k#e|}s zJg$P#Qf9pFWfsw_GLtk2nYsoBl+fp)HOe23IW_71CXo3ymx!UmOoi+o)s)LtSt$Mf z@kM8|A^*X!c;2z*X9o8e`LCB)jQZqUBVSNZK;Raf^(3U1LjHq8VaJ*_m;=?|?UX|$ zGx_I>4S9b+ye9xDQxxS6&jz%17m07-fLX?YN4^9y3aKf z3(#{tj#%Sn5?m^04|&1i2Y2phJbkM@nI0alf42aedEXeLm(T&;EOC*CXc$L7oU-|e z=Swzz@M{+(^Q=IX5;z7(1>K?;5IlU*HTG!$fnwhc!RdcX^P7N}SekM>4gw;}jSqcz z#m)|d#_k&ZmI!60h6Vh(xOYPVCoMfibw5J>_P#Pto3s{=ZI5dJuQp(~ERTdK1#lTz zXaz`@gw*MCa4~@ZPd;4wg zc62#OS>boHSmLV9fM_6so^J(<@Y+#2un7tYF~zBXvq03Y6*Mm2I_=g2botes$4+0o zg!l$PM;wlS>Pk!Fl>K|X*Skqf^=So{ihsnZ!I#(&DV45ltUX`^z4Xb{4?@K78KWGt zD-nzyVzo06vvBz2p+i(KtjMVHK%o=fzq3XGJqL*`#1`O12vM1Z*()GN37Rc;H{v9A z4Dv_6xS(hZX-e5nUxKg#U)0c=*NhFkh9}SvU^iN`Boi^xdu-Y-T~~{1#Aym)fkeSE z4GnR6;1eMx0FWz5pu+C`_!WJ)T~Y~s{rwq8|1B*mTamgS8!u!VuTem)pst5SAPmh7 z9S10Tx=M(wWvnk#5+EsvX}pM#I!0OU8^Q_@;BETGXBGKxv4>|sv50$Iu*gb*-I z7S{)3y%7zt&5p2`R9lPZ7|3ZJ2uKDdMx&yMl@q5DdO7x;uIuEzJG@@il z(Fe~L;!*s=!^69bPsGCQPcY`|e{3K{hYZc<(9Na9gpg)jSOetg4f-Hr%g0KU_|C`A z{}!+OThuHn$ByBR-S6_dS^rICCHK%OLO|iRk%PtSkOI*Y0OSW8TKK+rwdUNi&Ayn|Ix} zmkl!7=&O@*^7BR41S&%3p=0dW$0@jdySgTaLUnz;F8S9)z(RhI1mg8iCw&|a7Y((r zrwJL{`>*r|&>@y7udY@B!E_wZ#8WWab!S~$PgHKzh|=MApS48;YXY^ACUDOXAdBX} zG5wAuiDoPS9STK-Ez;iJ?xz^930U(fa%x|njlk+kLRO*>I12K)V^y2)2w_;g$ypnjhX(oLM28--;lZORChoaa@-{jg^if*Y+}-} zX|*E)qFSu>yU!OiZTo`X{v!=qCdmE+&vb;-u0}E?3E<1B-EFoy8jKbPM?Oi_hScI( z{PobV_kosL;*V7dInqU%)e))-<)`4WC0nV(dpNJ|+P`mKo1Pphn=)iu)7=|uBLDW| zAJkQ{ubn;a^MBKk{)k<^QB^&q8J}nK;|x#lz<`;hC06ILyPkR@*Fv9K18m1+wVa+F zbffYi%9|VSJz5f;NN}pp%o5jUh`S>E4<`S(|;tGN2Qqfmcyn8pEmA_sv z#@G31(#_hfou$;C?OQo1%rVPL=;^O(R=PwU4h);F7iU>3U4LS7M!W0aE+FE&!jI^f zdq$_v&blnOh-090m6Y%8DG9yKHn!8hU-y*9d5QfEOA{XM4>;d$sgpZ&*~!~Yv{!5O zge`oPQQAHowAYcFok4eK(?>MWLEZx zF&Tf=CHxM*PrZCS{i>B^Z}!4T{l3iYGxSXB+JnbG1zq`7$lr>`Qfp&=Wu!*zM;?K| z-N4W829~u^OzdqC)K#XF2AUkNPHqni6Lc5ULo2V=hruEhU%uq4&G>xLeo<-Xmwz;p zRcW3v#jB)ssYKFBmoMCL=SuFHq%rOaf56ttyuWDqO?O&&kLj7UEK~gaPK$0h-|+7! zTyd_vX|KGTvxU^ErRiS!$4dNXx|$kd`rdW6E!N=*vNd)Omy2s@}{P{DB2!jA44JRKKGj&n``G?CH~j7wanPG zv4>Ry-U_(=ZDgbYx^$LwT@g+KQ36d7LSIEt?1i}zcdrSE`u$WBcS?s80oH{biv)+j zNmzkm1eGuEl1?;r1ipk;2Ix(}pO%YIg^*D9)~l|DxptnwH@XqQfaV`hYykQVuL&UL z>X7Mx%r8fq2!1&Os+6)K(x4L-u%$%{H8`N*t6$7>PbGL>l~p~!I8%IM&g5{#lAejy zZ#>y~1(CEzk&ZP6{5m3+S>M~JGk$$HmeDyY`!P=>eZ~H2)uxW<1KF%sO}>15&HUBg zORr&w@x`)53Ys|&Y@&ujE~Rd(v3k=7-iSnRKv)DA)~>&fm((-)BSrpzzR?gqhQ0zR z%$nfN&)nGs97<-ga}k2Y>QNgLKO@{+74`MM79N350p?YPrv4`2P~WXlrT|c%!Fx*s z#TO0!|2c}L8#ixG;oeQ56hN9pkCn+cP_g^2e&<=3=~zG~-JSW-82BMSQTL!eFuvZk zWNd7VSa)&!4!|+$rT6`mO<_4;JEAlImD~wj#}I9JR;^vOvRuB&p#9|wqTlD(yWJT3 zTEg!>@^))fXcOyfUUsP_E9+F^Su56g)*NSxT=~hH{I6qOm zumhY5ZVzfLpu3ApKo*n1ngm-0_Pb>qt>#NaltKMK<=J(P1qGl)K`{U!3=yb{zazs` z0*+xtYT_47o+?b|JOqsgg~WQ{U?P|d0oVlu1R6ozpvq>!+!)&Fg{C>tg81n`|UDKuqE;wyQ( zEw)ONG3rSexytOyBz?2~RE6K$mX#N>-`VJQpZ<8pmD_6U^kko-&x4hx<9|CCMC6~f zxtAKcMCqLU?k~Buwe|6wc=eT$as?+(EDA=vU!)Ym;<9#p7^#0t@2O5Ui_GIO(Q`%T zX8?A+gT4r8a3xBI2qa5^E7&MrG`Weqy@2uwVF#oa$pvqq@+iUCU3aoSvN|RxSwKpA z{TnXXWhPg>7Ih5WjJURX@b?ZiA5Z?5g7-s1Q)KPkS+}h9^0Dk3j32q(I=jc^J==%k zGp*BwtWR`AzCYVupV3y&dlZY{HC_xt!V$^`>Q05F0$_$)}3#c_T0(U@o z%x2YI$yR1g6;a;L;O@ShQSY#^mrOl<=^B}(+m+;hv*nIx^ItOR^7z^Kb;;h@&EE}| zsW6^y75jz{Wi&wM znQ`#MYeQAdUw!^$=zdj5RyO*hv2!4vubGX_9cTmqSoC42f@0;*i3xGLhZF72BWXrG zMw&s)3-gqt`LB~wPmgdkg|8bka?19k=RvaPa6dX#hokjKU}qXWRnPM~dXOQC&9yx#)g5C7u4vk-AvHUqn+D%eZXfD=Sd6_g>7<6u+ZS(gM_icrh}x9<@#SVj^! zBwBD-m|p+4x3#s}guf)TPTh=1xQ1{|g|Oe48!b-Ffo}88kkh=GO<`Y=f#$20jP)-W za^v%MBqeP28yg?@+ga8#Jz{RWTH*8Wh`8Rc;g{xq`@Z$TR9Qm=QUKA~$FGDRNoj_s z$WZfD=y7To-URk%isn@@Im`E~R+CpcKgaZ%wUs>ljn?K)oY0{C{+F#9d7OPMRVAfk zx`I&sp2tZq^0?;Z25Hq{f6d8+ABO|y zWz?cP4=(>P>~n2IIV^BC)WlL~f5E%?*kfZ(tuNCwc7=TZZg;{>qT_s@(tYFWFUtj2u5~? zTYi-@jOBe`Xdw&u9Txf=^H7L32ambQLQQtt#bnR^fdLYVW#jn0yJj6PuL=;fblE$> z_q?V%FT9@#kI$Qo-k6@|^rUDvS1aGMOSSe+yo2M6ZZZ!QL!@BbN2g1n@``)KU=oWwqqY|diHgw7PpPYWQj~I3oE|uv3*2tGLtdW%E!CA2*2$a7foZ04 z&(}bu%}9puwQCdXcSxMw$y7ACFTZo!9TQRec$=}{~GR;ufVn|9WPAAD=|y_=-g4L7`ef9!$6hwpBmAIxiR>Jz>@ zol@MZ-p3QY+0R@1gs2h(Sb&_j?Ais8h6JwcF)j2#pl|5V+SU=N}x`%`%b2 z_IjYU1V_ehm7v%#=UsJcGmxl6)(a3~9&Z=-l&f>SD$Zu)a<(D)4APnRm|u{mLAF9} zQvxz^vx_dYXU#zK(;3XUa#(oAd(h50Wv)e4ps!kha*U0+rd+BMCdmD*frfd7`XHL z=Og!IKODNj)_&)9q$m3=mAndy!#O)5=?0l=?=OWpPg0-QG4rBAw%C1hOQ5OBNyC89 zP;U&b4@B5cSJW0%&UcB_ed`X@96j=BcV%s@F<4qq*58(sgTHGzU09fPtQ%x4D=_Kx zJotuT@U8c}yidq2g~KQ3$PN)Glo8IASG3WWM2McO<8k5K3t7w#tr`ePW|E3yrDRK*wE9uyy)w;F$bfa>P&9rBZ;yFW` zA9c3@iPP(MXQghz5div!#=Rag8Y~B$VMQ82cb%*Y^q4C$mE4q(YclEha z@hry{wY;8R|7(x5)LS-7ju)-3&eskfX+aUYNY~m?=p>F;BD~DsIUaLQVM7mnAl9uu zZQoBp$8#l={J7!ep9$wp7rR9d8I5K&?Kt8VfQ8~hhYUdp8xzL*?~o0@h&tAaxN0l2Gq9@l}Vv_YFSZ~LS;zr5UVdwxe1 zZ-}e9?lkwCU&HgXooP~246Y&N(>rojes;SyoG!^9$=1TU;!Vq|AqCAdh)_U=aV3JY zh)j1wh9SUi8jz6~3yj0Ms*SP}PRsnvlm#2zd_YI3r4aIg{fCh(C$8OGhW@ z)6#1h=(|Wf6ZVyEVv_g(!#k*$?@edV8^R?*grnFjlzP=?*@DT~xPNas5?msILuZi7y}3Gv%~r+4uUw)HFKGpV_%0a2Oz!`G`e#c6z1JyDc(OXs(2fc2Qe?Dv6?Cr+xrhuXWDrxy;l+;zRFlIM2h zgQ!F2JmXy3p@vhO68X+duZ9)iDKhu z(V@XlGvOAiuB}}vivDrO+tafLwf}{f4HaBg6ot$4*T@}&c)Y8S5u=aHhlT>}3gx`4 z8Z}7F|1`ZzKj_cj25dKOu+e1fYC_j%Z}&SAhi7M}DQs`@zC3_3G$>M6tFx_6--YI5 z?8K4Q-P^Yx2PUAEYt0U=GeJDAcNK;}9Y8VP<^h?11#$AB)%{Rag{a%?#%-kuh0=$wm~>;n06?-@e^<*@8KQ)>7cUWa{IXjXy7i`B7XIrN}hZ+Kmd@ z;c{Z!B>H?{p@E7d*9#|AE}`#6G2O%8Y9dNbOn26`1pui$o0Wa@O)o`c@lVbTMidw} z3H6P95CW*(UBAr^qIx(}%n>>86(b=ljK{8^l_oIe6PF5tM}D+tkD7L7b8)Y~BGX~c zl@xJ?VX4`I|GSZlOy+XLhCw*_cO zEy0Y}(p~d4MGgguBGZEB#5UOn&d*X$z1xtr<4W>s*%QoT*VnyH)@n<9TR|rqyN|VY zg_Q+#TE9(Sk$c*%aZ*x5lEs15k6E6JcVFY zfiQ0p1uF5<;9-ivgZfH0o8Tb)u+SV?96P3eYrNDlt}PM|kwsC%Vd>6~^Bed4e70QJ z9&b8-=A1s$6|3n^U;6+GzrrfzZ*g4;_R3Y~kSA8F$XoCpQm8rH(Doxa{TpT*2!H^= zS~1!N${(Zj`0*|tZTA!q3x+4em}GPqD76utL2nzj72*`{c_i}X(94h`PCCDjDT#eI zzNGi$fv|{fm(X=jccFJ1ccm`gv$=dVKh-vV4egmBtsL)gKKa>C^!e+he3B z3V`rLQ7R)Sm@69X+9L~G2K@&V*)Pl(*e>&aMxQx3o0uc!$0aVON^{&chJwULUx5*s{n+Isjba~ z(*^~q9ILO0{0Kd;+->S`vk)=hY^j4kqcgAXs?MD*nrwJ{Z7M0Uij`t)*5aE+vG&DH zrI?sEGU`dz9e(qJ=BpZY{x1H@)}}GesZR`Q9~y${#p{ptc=1kvcH0$0%_Wp|pf&f0 z2~KoQR5!VN~TL+^3>T>bSD?zi;#H{YIp*?oz=H@ zM~kS6)IF?zuEN1G(4NgpfqEK+wt!qd04XGm9MgZ*ndbC!&3fYLn_q7k3=6y2AqqQl>|25b$1^JI5vrF=y{P0-je8TQ=70EB<|fq`dR*( z&vL0&EoNUFj8hzS9J%qc() z11%}cXpk>LQDJ*d3MZ7Hd1q+futS|hBy&yPrpOlcl<;(`{(xTU8#Xs1^+w+vpBhni zO<9}RuY6mvJnci_hiKpZD7p%$G|Y_!a$os z8QHa~b6Q61d(RckMqfGIpPl)s#ocds+C|YmZ1AS9ZYP^(VU?)JRpER`}|6? zKKZoBspx$6&0)xu=(F_YIl=ONSUo<)>4E5vwFiG>&hzGXT%$}5AM-lG!0$sLbj9q= zZ=$-$%`_`GS)Atv)6|(EpOt{u^>FUZErg@69PppP* zZzcWI{v=}-+RoyDw{mRm@kv%q}SvPW`a;@RXB+6xhs!PoFW z+S%#~c`9{jYTZz;N_@j}jQS_To#w2X;#|wjL!$?qvQ$%=XTE;5IVLjoh;rn!bYxx! zHy3$H^X+q0`mw*$IXB#xYnyiz($0BeqgwR1X=A5P^Udt8iBGiKH=a9SL$A}hJ->0n zMw>&fv+m1$pvgqWROct#z(tR{o1@i6zLjeX{(MK3EXAO?^J``f&Wc5@52qUYd0)Ja zzw!0xCz&sGhR>ZO?FKvpU(A;A94lGkIo&kEpWo6r__OGnF5BbUfK`Gl@40t)CsZS> z4Y6G#AwSBDqok$ojFl~zd(v7qOf$HCrt&M>@^ghswDGy3{^;!)&s^QJ#@8KF)LlAO zI_nr zz(Gjsi`1%0w_hST`Xa*|w>se!=v1wG^`vcu4q9WlQZK>B<{^kWdHnb)NR&!Ph-w=q zzq$eI%qySnpbpm~k&FUlge;6vaKCsgLI#VgizJ^K7@;0`dzT@2XLGf*6mzgnk`b0R zd8`*Qhn88vBzhmKPDo(#Wgx$>lpe zSSlDF(4*;|%g%U6ZEFS%6}uO~{J29~@Unyl1T|p?7GiWT2ilWrw2d25kn#>kKolU_ zY@vWlU~8bJN*>droDKRXy&)YsJ9`D2Bs+V2qsW@1SFcDiB_g)g zCU?D2g4*WQX^mgGKw>;3M7mme*x0^eGRu}ok&8MS#h%OM;pf+6>Y_Drxhp|wuuL$X zuHmJ==h+>DF`2z0?OI9zV=yWr^@#uFfVCJ@=cjlK%sin3L*wu9RTGsNI*mu(fuW%v z!A)!|2gWA^#2iM%+9$@qg8-F6C06yV9=ez3x3%*aSx-HGiPb&aOgZo`jM{fo*<^foPFkATq1y!!3k$4Nh=wWk+3s6qe{(k ze22P4|1m6cXQ`C_-#s2gZ4*&VSp#bgW}YWcp4uOEW`15ICw4vK^!!EGmo z3GLZHGHJK1h0GHx8{L3u0=yes)_f%ztlNV0%6%Eh2-u4U< zLNa96W0i&vbxKpRUNE99{1qwP@$u`~tfa;5C-$RJ&oyKMSn)>};7&GYS0+?bCLMad zgccvZrxo+E0tj)b%D#->I!=$54v}>92iAh|YZG(}6o4V4A-g3I9*pt6w)EuXxBA() zE(0n!je`vwE%8zSgV~1YXc#*2o(dTZx8wB`H2P>!l-fx%O;pt{n^Mk)!8kVtBcuPd zZhZ3l^&D2zHMO;mVfEWPpp!%ku@*nw1!Qa>p9(2e$6)sdDbC*Hj7dl)TI~})Y?L)f zIm=+!##tU06}dc}?SjF8KR^%fzf`r)RTxhI1|wOLu5s)$)EqTr+QG?OY5fY4Gy!Za zg8;A+5YJU)2B4EYASycNzW{|j8UB5^i-~&06ekKS*o0$_x<%Oc%30hG{_#WjR2=^N zwxT%ZUO>Qrr!_6Jaa3PL#T7Xs%97LD@sBUdDC)1d{j2|tO!{P!MUWDhx=5xOnR33& z&ddlqEJ5d82T2eVo)7Dhck1*VV}B81Qd&Scwh?d z_}Hy*VBbDB*05WUPx@m`pK5{=w!T%uCj!)vPa*7(!JY1YP@5M_O%YQkQGzoQko3XF zLiQ7vqm~eF{f`0yh|O<62aF=JkzNAFJ{Y?xFHF7@@8V)mqvCjiTIcqe`+hI0DTe{4 z5Jwcjx;;i}gM_Go=ipMGz;d#9?{ELkh#VX>4S}f{;YXmc3{N%;SkHT@ka-& z&8*OqHB)okg4}D zWTwCZQFb?wqXQyXjG`(iF_0DM4t_&4!nUnjv5m`@<#cQVA|+)3&Ut;Op`s!v6vWj# zUt>aSz?}xGK2r1qDv2W+FsKaLO+_xnQ>QkVWbIN`u2l;-Po6AGU79napR=e*5f363 z(}Gzh@N3)+Y0%aGUuqPAZ!rbSEzl_y*jQl~nHYh7A(1e6Y9)8#LGNdsnnCs3~5a2pohn*qH$POMj;kn&WS zkm=j=+SlIq8$uV58XW`D1^2-vv?Wu{@&ZHD_HbV}3U0fyg?WLC;uw*JQw(w64QH;-HL@lR*vk~WFAvE^y z#zN8OKpnE5jV*3b@y}W+N>QUoHj6 zD-s;z8-0en5jNc4Z(!ufQ{6;9k~hi{#4G;1=arD@g2j*MlcHv^Uhtfm`!-T%67f_< z2k2jf8;^*^;UGN8lunCtlLdbh&Cws143nfo$D;|7dz>9zT^oUA&{gSt`*E%cI&jlQ7L{tUKD@nfr)?R&uGZ8d0Rs=mpa27&!LDR-+EZ_%F`61xrZu?Dt3LO#-of2+o=CirGAypJfPa+t3aZi}BPl z&OUPgAkKpbTo$37Lv(%aDZ`>|J}zR_Y1TqfgZPvj9#4IZegja@#;ep=*_$K+*~N+0!G;3=CE1_J~IsSQG`( z?BHS(k_A53s{S6cZnyGX;~(xwi3a&rSapqDY8yNBio0qto7@5nzGC4AFgp$mXb&ww zLpIb^6oxKcZ8xT^$Kb;Ga84f!(n&f9_cY?7FU}&2Zw-dXhm4}n5Z4e~oniCy46-FH zY;1ZX?lJX**nT0)(p|xW;-YVOw_(rTy(_YGYS3^KdDLkptf~rt4Y%YcENv7x?<;C~ zbvdi5-aRwElf@;LU{F4;cxv&8hv?GxE$iN@1Q;eYpx6I9n?&cb4-4V_&i(oYKhNr8 zD%e=c2W3q;cJ#qS*?^d_OdZpBZ(C$NgQA7CTy6mWVw7}f{C7?9Y80!Ld=xoMbC`1sOJUU;3E`5smT9Mu;ei~pBm+1aCTI?;gU*viRY z5@%|DFBeG9L|aWI#Bn^%YUh$X9rzxPR5lX&uy>jq?z|EIK{rgdyBR0 z2SDd<4>te$_O?eDrm|C*f!A%=a2fRi@goDTYo+iF;E=yy7XsQ9kSh{K-a+ersvKM^ zD+cql$0t;NUf?J9R*aPi)0Iz8SPY!A^~w^$Q_aYVAU{9994~c)lmDpb8Y1qJ7Z0#c zN@nV^D+UDKySEmG6et4eqmeffnE%_R=ly!z-Oz;vuq561%ngRDr>6(+h%5a(2s_x* zU~zeYaR=&My~}m-;GeLMgJ-6Y;m2szRU}&sK)0X0WRRAgeo^I(R0aLqt;_)_qeWV; z6tCTSyJ*jQFO)(}p!v_j{->ZCF+4zn@bAKa?NC|qJd5K!L=c(+GaY!z=K;4O`TJkRVCJvaqtAzCC`^O5OPg^$SA@F0ElV zO1XM**H^x3KjL8w;1XCBF1&F80Kuv(CHxPE~?m_zUYhKJIY7AQ1x z$8Zoa*w7_wrQN~MSBI5$jV3~Px`keSFy-;5HKE;P_U>)1t;N{6T_pj-2E$gSV>j47 z*RZ4d#Q}ZK%i8oAlNhwH4=ZM0n{_%=IpI4uoBG_`>b+Giv^`Mp)YFcKrnP9L zTiYozEm*IOxu-?vC>o(L4T7-?}L-gy!Q?GM+y(7DTAAnEKe3Zvg!%0D|9*PPpn-+6=Ixl!`@ z*W{@M3JQJQ1>W|@(a&>^qfqg6T1X?(vL8;}gTlhEB`WuwvP-(QxgdC6EnMAhqbNEjBdITU&rq6O?xQ_) zu}%MDw7!sS8ZM;_O8Ek`(Hp6+En_T&1Pk{p!QOCavd^xdl6(}sI!uyY!HM_8GXYEb zLTj3wq7dz-c8tIXSscOe_elJB$+2xFsmwfJnf-->WZeP~B4M->aPUUiDH% zsCt0?+`W}QtS25K#{uOVe3v)OknrkkL^T<}mY?uZPi&I1un$mvzWMv`dt+sf3x*LF zJB#R^Pv>p;utnxR>N!ceLIog`073x_pGzFxvqyR)qVt&PpxvRo^Xe4-*QHA9i5SUyQEa($1ws^^3mkDrRGbT#*?*azTr^ z%o3}{(K@c0diM%tfnL` zPC?Uz(ZPAZvm|E}a2iQP%O5Xez}2w0hDY*h0YiPxZ94naVxh}}=H9HvL3vs->nv(9 z2V%R{7ISlRisqE_wE!}dz+%`9#>XDUT$e+q;#)0~baDA@pWvhw%dp9j68{kv(S79| zrCVk0J7V%j(u5a~)$k^hwp4?aK+D!(O)>*DwU;GtINNUBYt)5|w4OzIyZhBr_;Kg( zTTxf*ap6%gu4JqO`g#;&##QWI#XAHcMnQxJDk>`E$A;#)d8C9=m2`dyD(P>qcP@3F z$P%-nQ-sy(0lp7(qQIlilQ>mSjko2ZD1kKIfp*U?hXMm4*=WPSz<_ZYn74BL3^Y(X z@G~IQ*jbMfZ9kmVas{Op+5yDM@B{t&7$#+&nF7HshhOCt%>T2M=VmIEc0x`v@a2!h)ACs4fru3q@aq z$rFK~uIP_RwiR?SUY#crn~<8Z8Iv;9Dz2X#f%qb_s2&HvU`vWJP!TO`p+(uj^1pX% zDHx%k{q}$zwh-^mmieZG0Aa&VmX$cus( zrL65r6Z6XVZe(P9q6fhwN7vR5pzR_`9l9uB14JW_c%NRJ4#M`{NKXJd zrKqB^nWQsuT>E#R0$1k`P*Ek0(eW=(LDqu-s2B{YIjVZ0biI(HdZSk24*lzK(J^j0 ziU&X?1^g$0XGMJLEkm=25QIgcfbNhVMeGFLje|DLSre!$iHRS?%_^*m#QKQ-eqtft zF53-MO~}C;fM`3-2r~uU<$ug%fFaR&9m9L0Sdz>HtTqXKNWlEz=H_N-%CWJ_ zaHm5`!vH=6SwA8>v3B+99f1$N!}`1*s1PQ)*3GA=-P-Unt?7ouYIVT>08){&beyUH zrH4d4a<-@|KhjoF;idg>(S(=tL{@Q`0+R=Pe;ZNoY9(hG@jTr^LdGpPR9%+~KZDdp zAlwOni3rsv9($Q%$Dqf$1ghw=p&=h)j424Uj2n{JKv3T>jDEQCyZAPf`vA~jk}3sB z>?91j5ltrYr%tVUTT`>~e-Ux2_MW94vrIRbyYElBl!a|-_E(#vZt?G5MV(dIA-hfH zzWA9K*E1?A#6x6{I`9i)>&UO~{~e0I60-;e5R#qEx}1*yUyT?2UZQbD2S;C!4P5{t zR$S$x3}Epbbd_2Oh8^Q#er*8n@o14J>aQhTs4f9}R13V{~p-YlWt z6Gbcg<&^@o=iN8^sRxcm*uaF2N@9Wd8L%&&)u{;E9<}6r@g^_S`H<^myeL}!|VwfH)dEL(jJi`x7q zf#)};C0d<__U0++_k3`-R(g5aV($U39eL9YhVri4WHi>`HgT_Yevoh!aB)N->+Zpy z%-ScbJ{l`88r}@a*SP3P(IDrY0I5f!+k;HcYv_HvdB)o8t8D+8`KK}Q zZT3T=Hi3Gq(?@xP)2_HCejAWZq!4kUR$B35bMYyK-F3(t!2NxREV_IeDDn@tf0*+; zI|Q|yvochZ7HJtVipR`z1siL>T;zDWTlwR6JIjMzBhM&U?;Z+63k~v!OaML&Cq>1@ zC#wZ&#~>_{mrm^Qq`vWql{f9@cf*Uk+nK-WthL*WD|63n)nS(7bDY3uZhWOcY=m># zsO><#JMczd#fam*7FMo#&-`plBo8-GCMU6DotQ{=UA}RqM$j97w|1 z17sdlRyBPIO5Rv7;NV4J%O&b_sUq-J#!tZuj9+CI6FydUqcurvq)Y-riU}v~1J{E4 zGVI_WP%D!zM4BAh@%3g{?h((4D;MRSQk?Dlcqgj4{6|OKy%?c$my_jLj>lsnp9UaH z$~5L2L})EC)}u2f>ixw)5gqYx! z=PsJiQnwtpXe$dCF6Xge=X{*CP@8`9w>DQ3NAb#zA6i{LO7HX=XHt2)f1nkSk6#%C z0+mEY=k$mEVSMFXVIswxW{AhbLwmygjo!#ibLOjygZTUV=<3_To>VU1)xh9%FC}9m`F!jjyqa&1v}$QT&-*2FKM(9*+!R+M zhfbq)wCw4#`Xg##lksQUwgy!9wO(EpbACE`RrFRK=WTP_0~anu$C!q%#fwbfS{?cL zx{s%DbL0y+>NUO5ogFK_#bXot%z4{v1nFJZ98t2)rR@l6 zzHyYhHh;b9)j%h$RxHFNDd#BIm+!3zVpQTfYzzm}rc+DBh=!UsDV zeFv99J9X~xW9M`q|53A^-cg#=<*%#xEhlR9tU=WUX1TwH%Zi}yFe9$>f}WtD3E{&kZrW~qi!@uE-Ww3k=zS{Igw`tvUf`;>`GR4)Bfm? zi>=Ao4A!?LOfEEzjDq#?EXQRHn}3I(${2z!MzrY)($;1`#7t%~c!*DpL^YYvL*4=R zjWHTnkk`AusBd@2IW*hD)LYflL%`IFAc!u$cGu zU(JQY{Ew)Ewb+WGXl9n&Z3DK00)_v3e?XFB!XX#!**xaw8D=`o)-i^sjrD)(1gPV& zp6`5)mKnT!*12N2f860zy=nH@3e zb_9$in=620+QQ08;5(loU?qS^1t;g>LqqZ*=glHraAAK4xg8N^`4qexGZQyy+#6bP zvf{RHB8Qr##{To}zKlEAMV~}zS_li>%ZL|Uv{6s|C=>nFU}e+w?FntJu}RBaCc;!7 zo98cR>FkKm=h*vK;{kSpN3&4D>e!xtBkwF~|2wpiFXzWV5&|-|{dGH;=j^XtisNra zMmWxzeamXXu{=iGT-d#SDYnh~clKVNpt9bt=l(KLc3(h9)@q^7p}1jOx$-RkkUYs{ zrkig*Ycot}mO13m5%C5X&eRjH_8U=O0kQ~2@rkeRW#3R=-@Dn_wogfz_8vS(XyEDV zVLc5uH-N&1ent^W5uM6|h?Yb5MEP}i__U>E`lmE%DylcP=F%%BY3r{DUJ;ayRY&UK zKRG5EBgKWYRn2tPe^iUM7 z|AH{{Y~S@1zC4o{H*!(YhEA6$?pjC2lawZlK1*`d=}pH`HNyOleQvsS@#D*_RtKj) zGtqKM(LT~y?QC|lF}_cFxANK*lGDGN$F1MW`?qYF<;%GF|6qhd5kCfT*25WF3k%9a z3d~5%AjwL2mqHubXQ!uyR@ER=0xU}zJPum)#_S0a8EY~rSFXXj)?#0Fb?BLh!h;0Z9E!uNO_`N@J*tGnPm)|qoR%O&NJcRE z16Ne*kzPQAE%19I>NN&i539qZiq55+zAtWY&D6loXw%f}vE~$I_;q+*_6;5meNpk? z`zfG2mJ+hR&D9)uD(L4;``3TF&F(GiFGrc2YSZ6u#L9Wci=$-7O@_21>0Voi+akNe z7Mz!Cy#~h)5)y^qDIGxyG4wKC3i8ov-2+$LVxu;iu6UGpsKIJNH1Jt8jb+R0ZR~+B z3Vmhel-`~03~*?sH8F8)Ww6ydW3?wdsGuWuo1b^v%An1Ww+^>yeX6c?H*)5Y8^~F$ z)5B}Tu;QFSs<=I$&x>2TE#&FnAE2jEP>p|E+w?I`mhQ(@(H+e^Pv)-5@?49HGOU$Earloo<*VN=p}h|DLNoJhx#JKu8Tc;pPi?i z@$J`v5-}^GbEfo+`aa7M&US~lhdh+NpGSUN&ucC1xPdRN_eLH$9S(d};n}(VRhzAU z#@XbFcOHk2crHF3d34Jz-G*D{T27_ajhz~iVid!*hW#?54J(hBtx<(~SY#l$|;F;zK z`)&WM_P0cZn~fy-Nn)$*zl?Kq^(^lrGTvHyvCp{9xe_fAn{)xQ505llU*L5|N1eXZ zDtqgNDfw=1b1#iqr?bzw%Iv}4F_5D**|B9~{{1UoWs9S)pBWOZp>YYr%7#r=`+i?? zZsf}qoa%WnrjxnJIw0bAk3acVIqn9H+&neHRDJj3^sl80d%H%&YPw=mQkO66{Yi6h zt4d8MOLx|fmPn6NPq=@A?CIreX&dZ_o^CToz zNTU7B2brWuC84#u=EXjJ{oGtvu08TjQn#Z`8{>=B~@h~e7r^LM0T{;%-++ydA8R%uTD+2!;kuoLJ0|zIe)qjlT zY(7w0ATU@N(+AlPVvj`t8|^(8q@9sRNz6_Z(0Eyqw8&ZGnxIm&gp~scaBn+=GjkS;v^=TZsbu;wM`;XfK zHrNaKo7~CYef8_l>pxy^n7LWptTR%jc^q%?zi)|6(z6;7{TbE5TQId1HuoK%ivw7~ zv9*h#_fO7qYuY|U?#Ka)jqzy z?@?t*e!6EqiMSXCk*A(vbeb5IFkGf(autdJ;67>KGogY<%AP<(%exHDF+t@vW+@bqtoRy{{k+j36Fv%b0PG=#F})0Lk5 zH)!~!?w5A8#3l?!YYB?D1u_t*>pWLwLYJ|Pj;l3`kFTB2$ggEJyCB|35sAl^+(tY!a)U@>Q!t8z1 z1ztz^eV_U$FP2_c(yQFN99gJ&_D!^2O+RUy>Mb8K@lhwt4uP9An7KSU0AQ_k$uOc!OUWY>)w&Pk!ClxNY$elSui;-LcDLJJe;7Qu< z(u^*20T--0{-wL)uvEep2gJvaxO_yK5Yz$wJ%&zZNVcpjGt(k1HX840xxq8>#qX7b zl72o*onB>6W7bIZkOcSofDHLJ=MLX5zGH4|8etQ@HiW@$%a)-Bk28h~3Z6Tjj7Cn# zh>V6De0Yb&#eMw!Z|b_q;L<4r58!a>x@rF}L%~mI?L_yr)IIZ(3@e*|-f*s(kLh9k zn_Ph{@AL`&n)>)s^z)I#%&u%dGhb-D??GoQHccp5E)OvgQ- zNu(P(zLM8k%>8*r{Bb7viw#frdmk`PN8@^vvFQEO`NyElPX=7GXE(b~azM)m5|7{I%Ey!Ap#yZMsC9hcX?E9u_ z&P^oGa-AyIS;uQk*HqogbsG2J@k;gyn9}n}liwfRKd}&T+*!)^KKg(w+-FPTjO60IBmTr@^<01 zbnT6Fje~hEU4JgneSUT1{I#7rXdPc0Sk-pC^dLSaKzCk?e_+zN)2o;^?b>@sGVpU^ zx1QdxF1f7t#ryh=%Ew-3(SLa@jDk;Qj;AM{wK@m}dIjbz+AQuBK4Uxk&h*dQtMtoA z+5yopOL*IZKzxzh+&(HY3ZLPrD z;5Zt3Ebp{uBn9-^`h8B&QvgFbh_jzFu`-)usPiAkyc%z5qJoY3FG<~B1-gvuuVl0D z+qaVJ^+enz$Ojsd>mn{rw@|3S&i;M94=@erILirt-H=1#FAy#RqY;wzaupA}dI7tm z&p%kXc(Z@Tsh)2f>>2fyrydptF-(>|oG8biPncrP%#-~O<+$cx-x=-<8GbhWSgb!o z$NuM+nhi)+gc$_OM4sod?ePAWPiNHm6$AbDy?BBY5ZC_a1OE?~hMu7CE-o$zMqdZm z6Ml_8o@d$+Rd~VW(1WGr*sp^VpCnIqlqTFD2}pRRp)wb+Rpq!#crR=x`Z_Y=4TnF} zC1eweux(nkLSoYd61Rze7G^QXc)w%)5s$^D_X#p9K1==+YelhZD{_%S$sh^7Fueum zT`|fqZ5JlFS|GP%!NvlMum)8Etqa1Niis>T%xQ)mJ}Ex(27s&9Avc)pQiBIW)bjf} z5*CLuypJbHy8yw=WW^i_fPz2%3-&jV{6s*V7e*pGxA9;9%|uN@6ANuD{>0|G+VunY z!boHq+UM$Xxt=Ts4y=X^fCvqcn^CRDm{C<-{Su;8EQ?{ypZq9Jq|$&`1M{?ugrMsr zzHj&iYV>@mqH!hd?Cl9sxT~J%dvJNk3P7aGnV+N{W~%&~K!xPqo%IlJ!GDHbf5B;& zcPOIWqCg*I#3NsdNO#^bBv>#wnT^SMcIw|ArAyTLFvDwytB??~KSUAee@}BY$Dc8jS=`+1Lg?Y#1P*G;yx19Jck5!K91QZ7i`Vk6udMqeI+k_Ha-BBtK44&|5Xs8l6e~1nt^&vaW zAZxuyE-r#z-N||avU&;|D0r>tN{6uTtpxrNXezPXPPmUp$sIm9d?rIgS5lD7HPrDm zyYZd{v2Z7R8pK!L!8Quw(}S#@tWW_mJu6#)pvimx?mk-&36FqZLJx^|ELxgjfIqN* zH*byl4ziUFD@1fMuNa(cFv%k7U2-#^H9#<1wU!K4$&QmS6uGMqU1K|E^Qi*~J4uc+ zJPz*xl2a0)3_>=I0O!uiO8YoonSBBk0fIyb=tn?IL?0pX#uS{(%Y_d}Mo*Hbp~m z@e1@*Ft*uF$@TxQwzX2w3e|do8N_6*m1B9JXmNrXvkYMM74xf?@Wj=e6Pv_x z7A{NXPe^k|^wPreat}rfNQX8etofzOZ?d@P9vY7q_@|>oRv;0u>^QPw)G&{bEDb~x zmO#QxSnz7SOvhteW;+l%>I>5g2W|lpjGd0vp;mMiuPA)lu`2?9h$C+Zb>+2L8yz^Ox0x_gm-pn}1t20ut9^cbmV z2R=v&LS3$T2Q&Hq_b>0c;ep!$MW~5MLXOwo_uK?Zz-#_3mgJYnJ8+MnU-Ux8A0+*X z#1@=kwDCrP_zg_hWVbdHR61Fe4AQ$PC|0`3A3v&LQi>eehu&!jZpZb((wTQq-$S!k z_hSk76WPXqQ4MYw9BTK-P64)BC`fU4mm*#VNh#a43uV_~A@|S+xBwg>67)r@M;Mq& z@JfFcZ6H;=4csEGCGBbzcr^WRo^s#_OR0y9izI_rAlMI{IAX?{qolSfvY|uQQ z+G00Kquud<<1WqMhqdY@_tHz96wvQQYyD>k%) zP9YN84RdDa#ygFpdS+^5)(18AQ%tGibsmC$VA3NPqc{7k!6bt*^40>6_O~Mtn_j> z8yb%U+u=^aZCnXWvoEe2C*(m2Fe&}w`-k(X6Eo-A|W&i?@;)3C7s literal 0 HcmV?d00001 diff --git a/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/demo1.png b/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/demo1.png new file mode 100644 index 0000000000000000000000000000000000000000..a8b8666263672e4985ecdaf4351a6c3a322f855b GIT binary patch literal 83735 zcmeFZRa9JU*DY9h;S$^}xVt+95-fOd3GPmCD5Q`82_Zo62u^?y+}(l&hoFVKyY#Mn zeZKR)W1Nc~-8X&lUxZY4RrY>lt-0o$>nUP1)t_NwkYj*AAZ!(71uYN=l^z5_;0L1u zSDJ7sFoC~By%Y_+v|Vkyd@VezL24FWZceUVPWG0xKGq(d_O34cT*6$u9JF>`UT&UZ z+}zIp{Q#G%hb{L!1~?kH3A&r|D^Cyz*8=_rp-{TO9)th_sVKzQKHIlzj!s> zvhhMkR~AecfhYIhA3t!@Fq=XD``_?a#tl4p|NdA~5F`xz?+@)!U@83LKERu=m&|Fy z|9$Be6$$^JPm=@B3X?)<|8=RarCkR3Ut^NHz(%G2?+E`s_J=DEo;&{Wi`KIjc<;^x zNwM6njw~eZw>5ebAFmQ&HS;dJdyjL|EyVO5VR`|NC%;o$2yx%^$#b3Yf$73n%26Q* zE)CoHl84g!_8Og5)Te2f6+eE-Q=cR;YP{t&Ff{C7pt)9VT6@af{&+3@xY^VT1)JW^ zO)s_rs}s1vpA!aMP7U5p*R$kdHPz)|F|LK7>@SN)`|!}EN_`0P#j#%QMnl3U zp>qw|HFEF77GBnPSkpK%d)y7_hEZRNG#$Tn?Sen%Zae3}e(rFcJ4Do_ZY2t{PD`#2 zlC`j4(zGF1UOzfmr`>YG-bx_+#|>%mvgLAx>d+6ZWw)^fGw0!~;P{uV)RUz%wWWwz zr>WV;C<>RhL9>Sw%%6sGechJ z_pR`vUtX$*>BrR6<27b!GL7JqzqhE{*#Mjg>$3o>$j7k8ePm+`ayn zjZ1F}B=_wNjEp+nM7mP+O=C!!mQiNr=APfG7HBuEV7sM9aXt=NS;bTS1OPst*>?$$4cW`oX@wvF2D3FRIY2H#4@jqj^xtGGB z5{s~vfRSD8wm$4iZr;Y0Utz@eTB$NUkvL5s=>jHZwqHMOcJs}wLvY#{0zB=R)XBRm znnzg3pNzx=ydQ~o%eW7;Q&Uq%#rn-VT$l5+v+cO|qqr-@CEw-Br#r1vO`;C(h7Y^8 z#|y-7CD-V1+dXq`jhjxh4!fRYA0Y!HG!EFW_8T->^vL;sTU{Q+NqxWd4Ay#=`WT*- zmGv{Ig|mNZirDmeKz|juXNNgY+s+PK_Ei`2s&Ft&SZwol8BH2m{&-W~3tR`noBHvp z7bYBXDlC4RDdLW}bWF7r_Dpi;Wtu9Jh~E)y%T7rP#$nK5z-8&-X7Iu0(NnXNr@(s# z1_pl@H01K|!NfKP)|&_;D)&QyN5YxEq_Ov;uHVA0X>^UV`0YaA>5$(FrWrIc5`}}4 zbH%7--N^0k>NwzL3||g|1xfNlSVYo&_<#3#rjYv#u`j5%D(BuwM>n$dDy~)J@HXfA zm+evJrUaTs(2n-;$J!>8!NI|+4w9Bo-#TL#`5A8a=hHBIjR10~t9D#V5lTdm)Nzc)^6W^kP|M+M3oh)Klm=MF;~wD_{KJsP z+v5Y@*2XF>N6y8weBr+#w_m%I0EBB073`)rc(3>9({vLmcfjo6-xuTCgwn@Pq{9lN z&WrpWZ2cEO`9twhyEnNThYPbzjI!}4I!O23y}nJAN7x0C-&Cmt^Ff~ zYZLzC#nOXO)6HagPo8}AQ5>*fSNe}TW-AuB0i+N8($~zFvvaKnyDd16E7EspfkzOU zF6oEf$E&8>yEfcAQ1H5bFp8^RC&kfKuQYW=M#fb}>orBD#2dc-Q`?XWTR(U@GfQr( z_?>1f#ee(uv}xbjwX-&Gu-4qs5tBP;`vn5X_m4XoX!&NhymzHDy0Wq|Z0TWtsb@U< zLZE5al=vHa@*KSA$^@Jjc$eY@NoD@9dhX#lKTD4-IaUbb!v!c zJnz-z=mf-WuBHg{Kvk0R8^&}YlI zk4L!2oJ%L1m$RG7eGsw%nE@HOz6W{nG$68YZCH?4k+|7D7z;F=m$~YKZo+T_m(?#t zy|$8o3{BM0o!l*NH61iNcDW$o z2r$yu*FOhRvYVv3$Er7B+cWz#Q#|Mqp2NU|?)P0a=0RHk_~w{O128|fDS7zD_f3{# zd9xl3fC#%zLc2~O2c9`4&k`tKI_|$obez|-txA`Ik&TRQNN3*#giMxwKk99OTzPT z&7)EkPfJ4M{}A>eER_I@!o;$0C#&VMu2&ML*%bHj#_ZAY?u7f156CNx{n<_2hh^M~ zrl$Dv+lF%a`I_xr_rw5792%*3AXy~sm*83AcN}LH-x-bjrI<}X4YK>a5eIbiE-?@p zRMF57TT$4{juW@G0k)@8JNx8Az|A{+xr=nu^60-|3BYMx0TEj02SNNQONOPpp{4j^zj)u~ zU6ZW+#DG6AxAheL{Aox#DABKr!EIbkc%fjoh5ZfrH83xayTix(*5e)hR`SC)BLNl7 z%?ocH4<8>6kH->&2_Nrr9z8)@eRV)6&DO1dG&-tG4C2^-+z@Uh)9~wf!b6IsIW71p zzrAts{5zvIOi&|7>TSry$OBn0kWM7EOTo9<-uLY^cL>=){fBLheaUhR-k%QU1TDkE z7U4>D9YEy3`{|IN%`1}Dt8U*@ZTg5ic}-L;R06pRnz{Cfzgx3r85Rb80Ua7r12BQ$ zSt7OM;jO+|kl@3a#v>sbE_Ii0@TTu7JXa_6&E7s<(L7qsZB7}vb^|qRZ1;RrKy7pP z>KN8PGe0xark!)6bGP((8*&^a+=Kw1^%0PXAb{)KbAyzl3Zctz(8~tEepSuYA1HYd z%*$cnHF(dma%PwE+4IQW)ahXDr#zKHt+6(LlTkp774QaeVMco zmZk3t9wUIVtb3KUbWQb_CBkbb9EqRgTp@>YEWyj_!8=!YkwgHg^xOk0AkcC@-%6$7 z|2z38!M6!11i-Ht09ugXs5x0*3x|_#qs0^AKVIW%e(jj1p%66ORTT|?0)XQ^Fz$N- z1Zwp%_02~Q26JpOMQl(rlX?1uDRr*uTM(D|q& z&EMhx5EY^+!@t-b@-Xs9wsaY^6fGZ(v!clDk3Tg%U0G8T1uvAFlED@h2%#g3jn^9) z$H3f}6{QgN$cn*NEbAda>`{S^juS&DTdy-(W2Rd!s)54#7xvH3y+Lj8$*jy&TKP6y z*!ktShSEl35S+9rDICG;rrD{W83YbRTTQjV!)lz}SG!^o7}Ry$;jliN8Z>*~Y+T3| z{CF8c1JqlMz||**Uadf`OgA5R|0N4XuFZnhs38l}K~z#VV~I@H7xL0)@>e~scRi=s zuuqQP5kPl4G8WuJXzUYT<&?=HWeD_@bPxxq6%`%JP@KN7^X zcu`Z^ZWsrzmA?Lg9MNpi%!qC9Tw7ZArh(Te!SXlQi^mDR%kcjOT23DcWZG%yVV1sD z0mv$M-MCeG{RTOus0T7Yty{xruEJ=P9pU`ts0H92T>KYcI+E=2hn@1C>A<1s<@53o z$?tWmu|Mz0M*L9!QWgD>bN%D{rN?{wTk*wX9Du~G0`K+Qw@krT`Kqz?R{X9J;A{YP z98B>><4|?HFuT$E1Jti8pl-c#a&}$;*15ft=E3dn#Y&pn%0>xOg^Ruk+>onIKy^@v z<>>eON%TwuP+}>TwF+b~^#g$R#PEfNbJe>sntS~3EjJFOrKNwi1>xG`FTXqvXuS-` znqmYBYin@rK{}qt<$u=w&*dmiK9%Z!N_JZupy9aW9yVMbn9kK3_iN_=vN^akdZ|kk zd|Mk5pkW`fHsl)2zj%M(3lklAgY&)V z^s&j(xycnU9vcZj_&fthdgIc)OW;)}O%GfrfZ6~xh}ZORUfv65ATR*n2(!;iZ7r;= zQEC_c*%u!lE(@H*t+0aEo&_Uwhg=UH-)&0MEL}J+MU59|z~B^quo7Ia><6P*f^y&g z=I(Z`UHEAD8rb1L?7u*$TkcOZoGlqwem79w6)k;dVH|RQ?so^HNrWflLhX5`R1i5F zc+lHYe+KVa(R9L@)?amnX?7*obl_dyI0(yu$1OZc;i+H=jE?5I@7WQ1>k0eSUm2ss z05WC0oh!dL{HtZ)abfH;Yh4FR5dT|2X>LZNj{u4LhzydrtRLx4yz5K+%lN#fO`;Qn z_N@Hwcg+$@zBgbv&*wV^&({V~M0L{rRipriXg`Ma9>b&`V1Ql=}^O@Y%BvLU=45!?XDc ze#`r-I`lWA@?^?n%HaCVe+JWwa7-bljKHz~aK7!5>D}#i2--PN-^YQ#rWv1iX)LRH z1Xxh{difO~iT_d?|GgRB{ma{inwtD+6W^?d#lw5k&AM5qd^lq*0_2a`XMkrhC&!oq zO6(?9ze!FS5EEbT;hK9}Kd@VW%TC}opfa}reeH2S8ZGq|bXMjXR8m~L=)YTb16T|? z<;@p{REfP}>8fWyO)q@_WOaOv^L+gQT>EW}=RA0s7#mLnx0VA*HST(o@A_N%eq4Hg z?-EY#Z;qm+jRTsqrB?A1M{AqbId8Zhx?4v9lDB}C!v{!a+JO>y1qxUU0LV}&=nP(0 z=4zUo%gX&HOU?lNo)dUWE$X4r3REr=jV!TA(F@?>4Ir*;M?~RNv-zN5x1~^!THJ@D zUmJg{|Mll-W6!t2yS2e3561vodXtEd3n-Bw|9gPC80G-ta%W&5_Tn}OV5~I70QxMI z1MDMUvkp)vFUzq+4)- zdk>V}EXkAoR3M(uw>3fKd+n`$e9mx;3nvAtRGpmq$#NW5l{KD8m!PTuS0|p`PjOcGsy5yeDgr>km-7w0L^`m;k{r!ie=G7 z(k`G2aSsV!KQ3Ov4eeM-c$++vzHe^Z@OEecTf}=)vRoTY7nSW_zW*OVz`vFQBlnPE zWzZEDD><`a1z4T!NJR~S?`=L5)3fnzO$NpL!&b3kUsi{vXIR+S&df++>Y~YnefE$8 zIUTr|Tlpf{)(%&A{Hrt3mjxf443>;ezFhf^)tjdH;Du-92Uc%>Mp?Kf;*Q8XycjjKpk^@7NBWO7>r+gS0i|D( zBGRMw=-AUlc8H?U`l_jLE}@I!0(0pi<+UqDO>ReyPE9a(uZUP*AxAw2DY1dskl%ou zQT8WfCp(HdWI8CpG^Thl7N`jEGFUtUR@{CHv?*6X$c6Fkg|$#fTxz@6((v}5;dIRF zm;c=O0|dk{Qpnr{=>;?CCCN)&wddxWC8EL~cV{>Fe zKEvh#zDQL*1EI*XNI>g?ETw2v2V3c$_hZx`sgQhp1~1e7)3XvOe^NOo6q#j0H@%e! zOteY7bPgNwLV9EhP#7XlD9G|oA48$;$OI&a0hQIb5orj-YIX<><`1oI@kay=R1|sQ zjQgPRi;EvhvVsae@-zQqkLzg)Ro^x^RPY$cwUT{aqOcgH_)>(rH7PHn>Twu@annra zKLoaPkU_!gKIv=2$#?r6sU5fAL(y2}>~xSFRt(XOF3a)+ro-##%Ud;$=|8g80qm_} zIR27B)AS;j+vLzd(p-Al9gk3SU%{~WJqMsCs;k2dIC5MmAJT#T1MOK%$ zO8eIymiqofNZLQ5UjmwhXMl&VldlBC)M&h$`8Ep^DJ1O=@+QK}CWkTq_4&ztu z61L1(Tm=@MZS3$Iyd$-A%FJOmn_J{eF@x#V1kYLv&s)M8U*U>+Pp+p7xAi~Q+9S3W zROM4G4S4HA$j+4vNLAggcZfuIL?dJ+6(Xf35OzTGVrJLNpz56x%Da$d+7<#tj3>h+ zNXP`AaWT|n!7uwKv3SAw!IzdDyghAD*QM9Rnsf+}vB%$x5!2>!dLr0shSA7$?&fq5 zyn`Zr;b56crj?mbDh^u~mfjRTLOewhJjxxR&Ut>h5U-%9}D zp)MrlEi6He>m)kMKtLS=KhsaJn28@NiNc$3<5`RbBRNu)o_o?vux8#kSsyBWm@!2` zM2dKA4HIwf)M2Xji$ZdUMq07fiVjC4lkee#4IPDh2gg`YuqNVr7oU& z6?yu;re&w6&Rx64#T04sBgKR$a^UKX3Cok}cN(@Co+E&FbGeXdGozqSL3S8&EFk6Y zu~2#I-=3Ur3bEuG^D7WSuVPDdp60pH<1rNePC}PaLJu+j@PAf!x%mW@Uo zuo6qXnh}lkBoBPs0(*YOh)QBkZD(?YsEh1CWQn|r)s>di#er8e)`#bqJXpzN(0$-U zVav=Mh(^LodeH*{?b?Vmdb15>yOn;b`wH~U5TN*w;PKuH;g0rhNL}Fib5;Mi!k^JK z=P&zfs-^Jok>#NxYod5Z;dBp~h#yBu(ZKFuq@mE;UZi)In8zxSh^w9CriFg^gjU1^ zMnW-PwYc$7;&GL}-iPN7oU$U{+ki`moAVQ^<_jt%7cj~`vAF#+SH*#yEk=ddgr0XZ z7*Nx+-E`oSPJ`Ioh%1~iy<_#LN|7i*1&EG8%kBE|S9*twRiqhB>};=Ta(Gd>n4ZRk z#omA-ypsmnbXpb~c~LFdIB=%Se~D!pa=Zm_rCm9)-yA*Ebs_lVkNdAV6A{}={`m$? z8irZ4nNQmYN+y#A)SN38Xfz3v$K=GHp3bDV8Rj}uWqQ-`ZI2pq6Y5wg@I_$DsYE~{ z3az=^c<7YP?jy8;U0*|R^9LTe;(1vsG$-k39l9=alYu2d zz<@1bzSFk4lfof38uz@qh0%06+q!mBQPlF2y5oDW>Q!k1cIp9F>L;wPcMK7KOt=KE z(f(cnn!jsuFeE&|k5TLfCL&Pwsq&uOS7Eu~Rk1!h$)C!+HFxC*e#i+vW@mX;6jyLv zVZrp@P+9$Mdd1KZ)OacU+z!b#aFYmjAE$eSK+aIOi=mZatb#u`_`(i`gP&I1QM7O5 z?f?^!I;qFa_2wT=t^?PJ^Cg8r(ZDH16#|AG9p?C{<;Dr$9xzZR@sucj@~0vz9*jlN z5?a!JCY3h1QxbIMW+MTmO~kUgpj$+FmF5ztq&%sNd>_J2XrVYuaFG}WrZE`Ba|3s} zVR>LO$M7?$;yp*yPHBe{7u2e+?p=@tuAFUFRyT$%%yQKf7*z~!cqgH8=(K?WpN&h9 zO!@j5xW3WY;RH7q5Ke!BSdjW7%ME`TpiRYySe8B86B<9nZYraPAP2wbgIlrbliRI;>(hVsv>cK?Qa!544ox?{}2w zPwt@L0^gm@0XbUl$n*nC+nO*~fpp{(+t$#sg{ql!mqlqBmilLIN^ty#$ntmX_+jrR zBLR6r`je=d`(tl<%(zR&~#t7PHn zi_}Bvbm(HSVW=dB{(m#lKd#{6!zAm^lyqxy7F}&=7;2N9VUh9%>7}sc)t68qO+h=( z3h~qZ1>3ytMhzFAP;F((b;F+~9_^`U(934~ZK4nL$aayZ_-J6`Pc-z_lo#s1up-|^k0Yzp6X)HufTxqTN4t;rL45llXCoLi` zUf!#*-+U6}gQd%ZwW@byEgkK&HKy-%Eb@+RW4ej*j0d}_!NqK;_PXAbb_{u~nURq0 ziGx+wRyPLq%tmb68uk6bL&zUto+lA_C*~Vk$zdNt{v%)?K?7}Q;sk7u>_wxls9Bm3 z+L7MGjr;0pLw?)$x6EdgKvq2{&>CcwT6zCSuyWM5vag7J?jTY!llAJCVfRlIL&y8l zSB~R*Xfg=Q{l0b`60h2rWeX&%`WIz58FMeUub)Q~Jh=})dXOr45Sh$`?pYVhJ`Hbp zznpmXAl;?To^rfdjP8Iu zG-aiMMoCipmrdSDJF5UHz0Oz>G#2({Go&{*!Q*Fvrfe)#n5CF^AlVm!`o!eoQ@K0| z^%JRWTy2g9mM`DP6E79Ev6p$y&2v{le4#E`c0(uNZhR zp(aulL_Y5Gaa!Sj!S0_I$cw0wKy`yHB7a#V{bECD!|dNUD;BNC=`*M1G$aJzbjQyH zPHp7V3MEkEK9`LTs-uyJHc0xC3;1oJ;;U4^FMRVlbhHN@lT5O0iW zwoGSjl!zQwif^x`#zwy>#GBcLZ-&Y zDSAAMz!DbaG%bq2JmOFtqMmd5?@}iQf4t_Oxw-5z*39N_e~t))Vn*OYEL@@Ikr0tO zH_|Wu;jt&+=D50eEFV@wX{QrS8GQz`oZ1XWTowjR%r+i;Fo1t z2n{jmSubP$mk#kL=d~OyA;&5xKpT0pD|5zOV3-nMq~TEC8EJDlGEu=@V^7;?(Dv(jYi9bJ_H@u-pPE*dDe0khAkbrr3A!=mN{fW=KiOBF3>o z^cQNVS`YYtYvLUe3lfbJDX#%J*Xqgop!?*Uu7TZDuKF^ixqL06t|G}3-CKG4IGdJNG=K{M0LVn@yeTv$ZUl&w$*L$0l^^Gw_3(brg(<07L+8W+iXQKyj_(PtM39e|~VrSNA&C%Bx62Bb_)!3m_r(rza9Z!H9WR-g9nJXd%s{70Pm~7?Fg(2_t4~ zV?#G&N5vx!}(cW;64je^0 zOQf)Q-pG%t{I!tuEXzTcWngPWY6DPfvl~&yeMqKWG0mEM)kJ-N`zha{LcqA=UH4#x zh(X71bE;}G1jF`Ma8@Q}kc#we$0N>H7mdV5%FptVfcAo;Kf7M0*c7U^a$obj`H&lx zUhCP1&z&*s8ta7lV1+e7WxL(%5)Rs6C522PqjVi@RA^Wlh89_xX=DR2i_J`SR*&?;LAKTTawJc`gF9)UPg;kM`1Q7Wzowmupb4z@F&TrB6{ z)CardBaWaP_17yQ)nMYTn>A1ZhiQU}D?U-wO!}*zdSf*;Puz~ObWfa6B5#%z-usM6 zlLq96NAHyzYy&-wC`+zxZ07;m6}EpsT~|TB8vIrN((SxG zdSzxnzEZ-t+pG6;mZ3VYYZ;Dr_e z_9*3`^b+2d((3OhYT9|56tYoATx^>*Htt~{v@h_bZC&U<5% z0JR|98v}x&_aZf!#T$GfZzy)OFxib&peqSS{4KcreA-8mPzL42z& zeFp(S)u)O?ULucfB%T^J^&dw4ap7oAKmTr-wi`Z^`7k- zP*KZ>qZk4lNA#!A6;3A>bmpT8{zjFdJ~A1|@6fnd=E#-ML@!k05P@K0%1C$ ziZID?X(?Bg8e}2J8fMs0KVC1F$V76IVnXV&|AI>u?De|!+oho1LvSD_k&Z5kwyxbL za&Hq^HiS^H{BzNXD zVri8xtX3Y*fjqXg(lM%w#vE_bu!wn_qDaqs?TSsAJ=Fx#lNTCZ9lN?jt1fIi#g@$y z``9+7)c|(P*?X@Rpj%=}jD{(~BNaMG%oT0Njpgp_`K@I_GXt%{aC5X6aW0CkJb1LE znrn7@_Kd6fO+N`*8=AoTdrH0w1r*LCz5uE~G*IPrLp~oK5-FKwUePfWlGsgURJ(e1 zq4LM;mN}>qUu+UwzeXk?&w=ytr~;DM^|dxU`>e7G^Oub~aRm1MAJ`rMf(Ut&{@*>* z9M!exMX9=F?%V8@SH>|9yJJxmLUL|o*aWiCc7DasMJa7<-@^179@G#qH{gb~g@;k1xQL#UIqhe64tt$a-x2o(1HRY2 zjJBWwC6|Ts54alqqdHm>9NS#=DSw)|AUIalXYku<{s(V-IS{X$2`b%h+|zbP**xJC zg6-jyPjV?c*##`KvA5l{-)MWZek{khj~%3J2#UybHhX(DlfKlAj76NfGH@gV9S!wh*FBoyK?!6ZiYb34T&#ZBi4`El$z0*ASi&9 zC^jS_kEpCg3KK^SWfAfnvGA>VyD*D0yr0>9;YBeI*m@eZ%b5`Exb*YpH?vEbcph{| z`>N!nSo#%w#_g6N==0*SQ(`~$!bVYNpnkK&ud}?R_@_l9t9L?h_;Hdsi|XaWm>BBk zqh{(WtlXMnZcMj!j4>2G2z}Sh4Q~@c!iO|`*VJbyeM>xA60kLmlqum$AykkVt=#ub z{V5SKYMcQTP1{QM;L04vFh)Lq-0ZK8`ubOR#r0LnT;6@bwL1OlF>@x&vtO^+kZ?ps z0#3tX4=!~WKB`l*bKGrQW&4!$G3sl41;yI1q93cw_mdRwY!0!>H8Mq3w!GC|*tPg$ zq|~ef%o>}4$Y!65qhx?uvqErON?RYB%cvepzf2m-@e8D)5kuTFcxI9V6R!{wXRSl` zjs7ERH=01Ic#7n#m?EYkAs>r=cRctBj6hMP*|qoe^73E508CkZ**y$I^2f8Z) z*=Au$vj}VNCvt-$9ZA|hvJ?w^&%-MGC5WNCpRL+3U2Hc#p@XVsl2?qiGmv|rJ5ys+ z=Y2{XxYyO|X0yprlW%mnN1}XypK7@r4L{}waE#Zq>r35{GMecaFTMbVW}HDrsg-k6 zf-Jv6D|LrGlK1K@TI1?c$>2s|{u}f5I>8o&7M!KGS8V!3XlQZTM$CYv({bU2*{czP zKp{>6l#Z&bK1kAknwTU{l(2xDt+QO`Gj2X{I~xK!usdmR8gBAb1z(u|D1T~um9O{0 zaIR1$eRkgYwbnyp(rc^QtkYh)GSu1U&wM&!T-y;DSd}eQ-wu!ps71<_hjkLxx`rUo z)UPW6$O4FigTrX$10q0JW^1LB4|ZBh?DWAZ#U#LAB%Ka7Fv@D2$M>QsNi}uo-c1kk zs#O`5-H0JhYEI^Yb#bZjBWa%Qe>1wn$!rx9qC{p0$M7W3OtRHt#NVQL8B zSKi7eU>`Y2S91gPOb~~;&Li_~m+;B@Orho%Yfch<3P!Ru%>2`YLeqK;5ovZ0Z-?H- zG%_HOL1&&ZLC`-&y{NnB`@&mHJk|%Q$|9~gf2!-?NjUzLIq2jh`qHCDkqo+p5!Ymb z9~r&2eFhDK8rU!6(FAiM>u!-pe|1GcQTgom{wKP+mClbsQ)PU08Yr}vl-Is2G-?+A z+K_edE5mxjB*{yQI5I{h)q&SVB^YY^D4Hg^h2%&?(X2jh4wsDTF4Eb4qr?7Kk&CAN~LEl-x{9NTz_6zq+JeiS-#O>{FO!+C@s z#=algT-=06k8Qk_8&_7Hf%s0S@QTyxR86MHmKVL$MJzH3d^lTzT@1mle(mS{8Mg|R za04u=%Lu?6k_*Ad6+dF(xR@T}m!Ba{8#Y`@=zrDL{d#$;IpY)^Q5k)RweXW8Vbc@o z7q|?uGe)ej1qbyWh#n2G5f+o-I$?QGUF_L{ZQAx{29dMX?KG^YZ}>*;ygRVw>k!Ca zKb4#Qkolp^Qcm+L2EE8HDSjeVYt2iCv>x*vA2*vzWGU}EB`2qx4xxF0eeq0ucLaPe z(>?kW6Tkt=I)||Ku-u4SsI*@`Ux(o4sprD7G?)jMEW717^tYyPzS8k5R1;=iE-4VQ zzn`P?_7#7m$^L1UV7%tr@#0Adouy3{I6kUffX?%^3u|7}ubgL)(9`HmI+0_VS`s%5 zZyX#{VpBSS6!VGr(ToW@)wko~wmen*do_(%O7MQt+WU5(jU+&NhH7A9(EHmB1&t)p z{5MBOZg_Re(?ZWrH(9CuTnmh8N0N+H3SR_R^6=sWevYPzI8EmAA(4K;L*h6i;oWw% zC|FR^z8o#N6{+Vx^l*>`@$!#raG3LmALqT5}|rZon-%uB_;z!2o;qW6`}h49{9tD?OmiNOd`lA#X_~Q z?~^E5aEkLNKo0Q%0J7sEe6HKybKmSt%660ZuhZyUrSp^w5DUa zT(9l~muZghV0%y!ej_`uJkL$w@u9+CA5N_tj|FvXm@GO;ECG9M69!v&K8fdF6rMh@Psw-L zyrK~OuBV+p0NO3s^EKPt`<~Wt&vM!YR>dqGGe1n-n_k8bVEcHO61aXE@B~OXmY3H+ z)ZSMwNza zNZM(qrKck-t$a_M2J^jl32%Ub_IkQ@ulpk+J6%uK@*Blq1D28_v>dd*TS~%^*|g{)**=o4QTH{^*xq za-|$Hs>|Lyl{j=YQqT4r-mmLC*TiX&RWs27MGUiHL}LFa+pBnwoT)(dJE#9vw7IlQ zK`!I`GopMK?vfsMm49G|JI382I=R;b;e=*Lfm;i93!A1Ok$--B^|Ku4{74WrO{I3` ztQh*{UeM7z!zCdq{YBW^M4i*Q2M4bHm^oAknbyg1r4&1y@uv_Q<*mtup12n#BV&rM z4z5meEWKj|A8agpC~EBqGY$b?_*)S0{Y2hE!!YNd*2TGaxAl`rz%=QYazg4I`4c{# z;cM>bo6MO3rZW>z)3y4YvmCoVSSe=QTS4}v9a+3Fm>70Y%K0NEt5!03f5$rGt55e> zlXw4i3Iy+)q+t!|)E;eILem-F9?AHXSo)xa&}U2%q9p-t-5jFyo=^yO_LVzMY4{NFbtNHwFA!4bTE+fRoLR=#oVup?IyIxYUSr?6mn7`kLqAJWKMo5o zRBUC%rHyT1TZetpEZZT}b=K4;>bZZ46~Mqzr^pieoJ~L%7ibCORdZs?$@NJ? zWi<5#KLV7StZcb&^(DuJp2cV`_Wgv>E>D$EZC-}Pkv8XPP-jgNV!^sgWFXf3Z`E$T zx?Feb+126UCcbanM)lVXWAC~4E%qsQDR~^j=19Q~@u+b;$r!Lj($HKp?8X+Btp$CDxlT<2tbvPw?!Ss$aD;vKko1??7sZkNF>$D5>08DrMpte9q8@3 z60=7aU(Xa-3L%u$SEdf93Ud3j%QOJu>e%%NcKSnlA2-%ZYV?~7zc8l0hhXZ-T>xuH z1J*aYhVH@;n;44nbyt}(2tQ6r$!JNGK^A4tsv8lgqB`Ip?mFe&EgnuuOCs52uK{)0 zvWmVWilt+n9?$$S#=Gh~ZfllE4Ow)>SVBapfidVkuF<4A8pq|dt7pyrv+xk1ZG zPGYPmTAInfT^E^BScZ&Q-pZmVU}>=z;Taq~TU%BlWOB!Q8{z#)$Ny=?Fr7`3U)Tmi zwvZlFL0-hsTTwwUQyvAFm|t}Hf&2~ivUQ+`wtwkqeHsO#^3WFkB`kQOAL!rUQUZqbDAp15OJdi~8m(SWG|z(WPku#lPXJpzP0=Pa zhiT4>Ghct+_WnJn#rJ%)^?epeO3Nrr!YO&!$o-1;hlPCyB|0qRK#*uBU(SSLLK2dG zVD9Np9CCY20dzWX01Y@(dr7eT_guj;QcUnd=bRt5na6CZ`J0N^0qlxO{_axmv})q1 zS9PNaDwxkqJWk~E@}5T1`Y&M^iT8E>X_X+$*97Uw^UyP$bo(m4=N~4V9~^}cUidw6 z_VE)XD;d?=g;fx{Zr;9;P&4@gh}CBDPE#5+=g|ow8<*HDAIw_Ug{Vj0(`YxJTLB0@ z3EqIr2`(MpS%ws~?|SM=-w9D$Y2x-@qj~nM=o1cZb9>wDzhgOHD z0+;z%ZLtv;JhZp_9i>rzsz?2-fzN-WQGzOymQx82OFnQcY01c(EOdY8L_FRk$qi2p z&>clr)BeKSQ|rJ-SC|*-%xSng&F6_jTt7r*u7y&5oO-9^ZY%dMe^%x2-|ZIX8| zS?B;M)`unR1K-9xQ@gqv3Q=qJq*<=mxlJF?5vlV7KTG9;)S=d#H}^XgMnQ2N(o$-K z891Tw^q6J0)Ja&R*nZY_>>ph=d$O)dlh_JCYnRKY*ruHFdYpSK-t zAQmER1S|yA$T^+9-y|xlYV)iU-b{%2a>~)&V+6#}aUwqg$)tFV0jWTQO$M0y`r#ZL$ex zzzN&30?NPxLFT+9WN4vEB>3hOIBDqCR;tlK@;b^rt@1 zDLr*+KcI7@qs=+}dQEL% zs#`skXGF7Pcu8}1JZ1Uq{k|!4_dr%hhpb}9s6EXBl;3WgOyI@z@Amy^%H%o|yt(%W z!na0L6X?c{$=Qvg99F(R-y+35b6?#X!csB@kwWVd@xW2d_`rEE0I3kBWXjYaMdGM* zniACkZ`+1Ptc8@OpcvDE$GRd9r?Xb|6UJ_I7<{bUMFAgmTR!@|`(X0E`;|*OqrHqb zh63T7?sH`HvX6|x&wl?Fb5H#$vmt{0dm^?jUxz&7yUqeymAxdA#mwbnz3a)_EV;L=wI5x{+S8whr?v ztpa$RxGZYi;rAqCDSM5U&+y@_VcaXn&Ke8=DZV?ze?s^eRWg(9%!?=6hx7q{_%8~6 zBrKaut}NHt*`a$)t{{mJs;u%fE!nv*xcY0AVn`aH?C6!=(c(}&1(7HiUt>GS_V`l( z{kH%Jp6AkO!-<|^p#$`~b9f{q6eRTV9o8;>V)cJs}Q)+m4})fj?S?0riKL zGOv)EgK=Rt_$A2#r@EijuwN}R5R=$mj6gQ`06jl5u zxny>EeRhEd#-*Il3=6!11>aRXP&mO8b-l=yQC*gW_&Qp>JBZn*jCwvqmT4_8-&^&^ zALYhHGAeV-F2ZB4n6JID`0ON@P;@Ik$a#gd_MgS-cC-Dg*=0Zjqm7BLz-kJfDsBb(GNVr&smscK@fe9+ir%D3~10!Yu8D|TMo zIw#qya|+drSlZN9@-K88kLPsOmub&rIgjH%1Iv~lz(!9jj6KhI4Ys&DhaC0}YSOAX zZOR~yL_37V!C%ez<}5>S4a%kMg?O~>r9U%p*7WU(Er~5*E|fZ&Myb9_dK-13d>#fy z$<=C)l2LG^DxPZ7K^-cUE0=CJuLwP7Ph5V|`v|n?t`S}8VV>P7z{woFPsQy(*-R8W zBjq^P4|>`)jOFZjFSD~&>e(O5iVXMxci`h#PaLuO= zmid{b(Q&>rt%ddewj#|{oLqeRzV`u9YtY8 zVctyoyTzZqr)ph%e;?=M-{PbDJF13rJ*lc9&KTLwB_7R%3?q|H4*GTFF}F1UhZx~K z4p&xgxeGE>`U503?Yt!{x9gJ>Qr#yr=@3WA=cE^S7nGZt5#=VP3*`Iynkd4P2G)`)G__Y7y&2*}cYO?BV|`A@^(Mv>of5pHFVNtBy8)0%5L$ zEUYs8rDV@azqQ>C^~1r($LO+cy#Y(62;)1fT?9SUK@qWfEVW6bQSYAa9I87BG8$;1 zg+($?@i*C#v(b{9t#mqt=7+F6MQ@z1;Zly+roIq_o2NLdL#rR$qrnncD6szFOa(u?xr)Z**2npp^TN)L7hTYX@)NjLH zb$B^cG|yYk-T0^mFPi&Ik#WACVI1V=)bguR#hmR_ta1No;Az8&(fi3OG4bO1O#{A+ zyg5B8i-7p`>KiLf`tld}oAMvqt!TfS<$i9_)hR`M8Ohr-V)@hkLebZllWwhp0q<;w z8W>1-UiYB6EjVUy3RfqApEi^I?8l#%-_F>`&l?sp?GS&Qv4C5eNUu1Cw-d2FDi|2P ze2x8~6YIUV|CukOzNrvTLZwAXZ63k~MlgRn=!n!5oDmqRvaO03lxR${v_VD3l6mpW z4!0PC^ql&6K~g#hr%)3%vs0aRmijWCytYbh{2ut7IF|^(LF@9{v@>E0W2EVZr1bnO zM2Lc>*YkBm!`S$%q)m`Q;E4w)S0raG)x=uagOCSDe+!&d3SP&KTqo0Kwr1pCZ}#Sk zv+_|+==4D`pY35aW#09EA3QZYatwL*HGarZ_xCmR^U?6BBF|eTB3+%8a7`^RfCq)t zo$=Uuy~3T)_Vj&z0e|#*WYUQsjtdeuI}f~Q5}Yr**gD;|ui8cmR3P<$fh%hr*qCIH z$W+XumG_Z6ML?6C)ykT9##|JJ1~%?x&Y}q}TwkihFR4Q(yTV z^?ojv)`=c!6_=F125t{Nf|b^ZKlP(Zj&s3G$GF~z(F273DY}IefdXpX7Tv?lMQJ6=$R-{m1l^~4#(wXcEmBM&g>(D~e;w!dV7jFj=8m&@ z4KriELt>dVkJ`2ic#=q2t;2v2uz<#om&W=R^19*eB~Q|K!y=Qi_^&ULA7RN%;mGOj>2_goU=9Nv)Q1-`hzRR!zRwEGqm+4n?Gw%E4ljAP z+br|A*2N7bQSpGuxPVT)bGoPYjpb`aRe=sX*ynS|G5i~KABts(S$d^{Z`ywiXGv-sT4LTq~ zD>q|HeZW(9OCn{0x0Gh(P~wY?feI=J75+xONNf4xdjrNAn9WWm`|{Ab7RBXXnH$M( z+%Eo_;^k<8Y49+aNAeF@uV3aKw@XUp`k!&%L%5p_=x4GFVq|ZyB!9_TmKKJ!ebY{% z!`VA_LQjwREt|_j?JVO?9*2FwfHSa#D9kD_q4(Pps-Z19D6TC`b5N*K(llB)?jI1N z{@VRsP+lAk+F_T1B?;M73P9=bL+E5m`u9W#yq2k?kXA*E6Wd=WlUlSPXTd5$jBig9pyu;Tz@>4#a zc%#KS$8?2%s=9Fb&+!Cf(v^Od*hr1mi~fzM&e-i&86<12tVogMQ5hF?D%gOe^C!{R@(7pwR@(tj0v?WH|1ZIZ% z2|P53^r|2Gk?GZkV%+)V13HlN2#1!)mIdKvmsYnRwYT? z*g$n*Q!UCS9e)29gq-q=?~!Q+l5r5K2in=mw}P@Fxq8K%VT5J6g-3a9fEMY|T3ULX z+MjWtRH;?RIaL^o003F?Ox;T>~YXB&9@5ao|s0G8{3t#J34V8Rtz9+Liyx zapoZP?Z=^M`XFi>o0BHEb9wVfd2U}cLv-!`cJm_d=F;C@G= zQrpkJeEGPu8OW8~(}=Re#vF<4{>VMGOG*1y4T?Qq$T;EL>vAb`DrCLbtG+KVsHpq; zHSqeJdgMbgds_&)#d<>+n4{oEzya|-fXA8@v~InbRxIM?fDii&-uzq z;s@0{6*x~8d}YUoSY!04{?iWtJ-7OEt0x@HWJ!j37g)Oc0JP@%zr=n;3dcbiltJy} z7+#q{YHS&9a!=Q}41rcsJBe6qSkCH`-{GyCv&tB{O5lxLhI&n`>g%d*sL7JNI@U&! zAZx0N3elJ6$sPb7>6015N}WJuKy;AL>=;QX2^W=cayi7=E&U0uD#lC)oJ{*mLV&SF z^zbJ^X{U&QyHf%7;!aE6=j5eFKbMAO7FLHP!3lvyqGfkEl8}T>`Fwd4p;?1W=2j&w zqGl4Taxe;>QpOQ!{7EX+H4}1MtlfRXI{jVuKr1KkN+|%S$-+u{B4Kw9cXlymlj#5Y zq&2!ec(zFO0%}v$iuc{|{9x9$DiHa9qRGd)<1e#TD+{QSQ_ti@S@>!aTmz|842oO((wUk~&lDp;7&;=N>CelkY}uHD54l^g)097McRXq;SZ~q&qdDY-kyG%?rjI*Z^LL|28mXfKU5n7zFC480ogi-iD~o z0^Y_~N_yI-AyAqI7}3PHU(*V*TEC>!OC3*u<(M5h>+IkNhm+a1H%3lm~*GNTRDQ}V;v?9@w^57mbNYRkYcAo1QqKhr|AE<3OiYa&NO zmwVRWLgI8Aj@SH#Bm*YnqNvu_SJEdk1@*K*ol(acoNP?QK*R}U*J)a6mpCIWL}^hp zY%JB{@5k~)s}l8U1{%2(dl--ddBBJ;ENOrkQfmi*S$LMfXL(4uz7SgyQMi zW6!~n%e=Zv?$mRWcG{1umrNo|8&UgV8yUfr)yjQZfLwuSVX?oqm%i$3&3JsFVQf)A;7^3SoxKrNZkh9pB!vm zQg+H2;RdGXWB3JBT-V9*V~cg}(U#q{7v0eEA)!MZ`sPD*@QCO}4tbGUY?04K&j~6` z?j0x;c2r-1j+CI=hp`fWGv^NTA^Q)1&!;NJD;*-r`>3w7_49;ij@JQ+HU|~~SC?sk zDp1VsPwtQK0}N(9LI2C}43}rYBkt&EBT99mx#=5Rt2$@9bkbTqAQ00rp>Dg4x7-n6 zCK%)HU#eWz)!pvW@ZG(%l}?k7Efz5lhid@ZT-yST+5$LBKr`fOK`Z0NvLT#Ka81`@ zx1(;8zzeo&kK08&=U^$r(h_CI>}!Mr0j+vmJvVm*wqARjwpZ@P7+{*G=j&}&xOh`nEhDF?is@cT$bjT&+b*T;tL{4P{(KAv54d0(a z+}YnrK1Ei74Dyxiop=TBi_hP};k8u3W~y`@Hcho3S*vmDg!rPTb6mlo^g0QjA4e77 z+VlR442hUbOzMyh3A7n@ZgKS3+tH%o9AvW@GF_7gpy&4{rMACAnbYZ1mlnlC0hP~TMS?Ih>05)1>D%&mLEVLlTyCbXuxbZsu920Mz~Rct$px*s z!pZgxYjI1l;p$rU@*1@C!*!yQ(J{di1!a zf`{P!P|Tn`<&&CAXwP}drhODWx2N+9mt~yv8e(qH7U=!Pxr?dZ@f*9}Tmv4Sr`?ub=PAVW;Z7-p3h%UDklpo>}uK$OGTv+8yqep@&--J{u*Hc>+vj7>pRhLrfC ziy(_rYv3QcuSiOWUH(@G-Pt~tjR~ObT>_xBs`Y>B&1^*?MS8hBj z8)*+(*p0H@u$XEq)(N<;?YIMyx4M~6sFu2DhlNs)+O=BD& zt65JL_yx`uX85vkY`aXiPE|U&2Bb{$qOe}<9*C*5*p(CrCAO^B!_1EUc~Ce+W!uM= zv+v&_nzhoO@lkkRV8T;T-bBMJgL5)Wxe8h^%uDT^jSHqkSuEm-a5Wl(qeaOBAMJfd%Gt&Yg|f(T1OU4FgXcVDPjAc1?bLMaEh54YRvt=P4^ z*}i_skQU64Gj-o#6nd2rsXTxF+9?B?9@5`T_6)&ID&bS#JF~%v-B*+pcs?0*^^4Mb z@os98|FQ)slS#f+tx4>78qj?}c~GNq0*qb}11czDZ|kWdwl@hVRH8Yf0{z5NTjheM z1fHz7*v>Pzg?BUvzN~`#F)2yv$avLp*|*89OV08BUb_LntM~h>sPzz>$;|)`boTEe z9Qh|RWvYYY7~F`Q0+#uD+|XRMPh!GoIpjsdn0p-SDYT!<$U3~o-^#?ee>fBbNABimUh(q#fD#=*_hLzfZUI8p z7?Xg|FLr4rCT)?WB!!72(U&G2c6FDQb-(V{2e=8mL6Z0nRJi^#E;`)`NoySviA5~X zSZLpp8pl*MpeUQ75J$^2-9?EP)~vegbP+)fZ;qP}Ee(cb@xz)YbWE+?hSD0o@B zko-9MGJXj-dB0)l3Uoe`a+4qVmvD2f;H)@VpVO{L!LlKPM`UPBRj1iqh_P%^=EZXu z%jY1igNK*5k`va>Bt0uS?}xpm?;hJKv(dt0%9&X;LaozFnXGCEI&r|zxHuoU2eXkRJxL0Q$Y%R zJh4nqCJ7xYI#1q}XE9KhtdTxvhyw8yhuhc}N#T&Lt545y4`D@}2 zPEfYE3^(0!-&#jo@-aa$-iieuk8l$g|DWu?eK8SfIf{$M?EzqMf*pYs4#3cfa^^a> zJF6F2Y)nv+47e$pIrzdYW|-RM)Ve5+PpY^KTebW4BwWeD7N;Hvjq{F)#oSR$46OCg zPKXDDKJVM`m!-w5_m+$1j@Y?nb-ER+E#Mb9)-3kWNntK@6yomr*e&Sq9|d^=pCcd{ZxeZF*=8@yb)0$ddwC{MN&2H%_?e}6vpj`T zCY?|r#c#gNMG;#*jnu%`=HZ5FZFKPR$5lI@iI>@wI~d(tKJLl=_{302_hrz zTF$;@L#s+xQkOKwmk_@a#UWirD{*TC@dt(UwV;IfqlVZ5ZPkn==WD>juj|9u6Fq@h>8~0bxe34rqL8<5KnsEU&Q$J5SG)znJH- zjTkGVve{BsOk3JxZ!I65Jk&J_+8XhdqqR=c+4_8V%fet=MIB(c9>~UHNU0CnLrZWe z+y#M|l1}UAXc*R2Y2?nz`OK|AaRx4&*$%g}9V z#Hm46;=`@%I^ZDT0I88t&^zyEFfH!$my`?fFi&vd2A6Cb_SRE~i9ba!P|9jO*{vcLl0S{m9zC^_cmJ(_vQBo-I8zl-)N$Ip**4(j1cX`--~QE zJJZ5!`enS*F&9Z`Ib%~Ge_|}L#574(#X}N;qjTo74i@7=eW@jT&xpZ!=d+K{vHE^V zIhWicC`-T?$ZFrLyr1Z0py_H&vXrTWf0W115>@0nYYUBS?B@%W^a+uz>wD4i&D7O1 z$s3;>mk;QkTQF#uDt`mxs`EGrY3QGU@h$0MgJ`q<xtK>Rt&xglPLWOZ` z<0~DnCZ8Cp*wO{jBMA>yKJbDAP29QLD)m!X{w6(NG(6eY!&<>&Jk^#?Ud>4&I8+IL zDwEj0(mF@Jk;aX>+yIoT&fDQe1-91`b66L9{S|&)7%=)-Q{!>TukFNM9}^82>%b9B zwDZ(YW1!_ZhFU2&ue4s~yYy!A=0ucbQ9QK4>UGqSq$GrO ztmfP(r+B99SRks|jI)DByoT>TXL-GK7qfH{Z*trcsNA*$qpk-=;YHLVXJGp=^HIv7 z3VX22%fl`(4k6cP#PlG~AM4nKLO+cIlTKsJtXh`O<3(hW@8`cG-BzL20 z=X>NxT0mf7B*tz8Q)1U08VX(Z4e@a0)n;j;x8luDhmoK~W%JXFV(`$&v)FqG@-$Ft zq_Rohh&yb-9R5qDe`F(la9{K@lMe5T2L$sKgR^osZdeUm;gF$Y24mUcShp$+Z2a7|j2q1c17@ zpb}s!G4pWvt)6b8n0gBa5Wrr!=`1w z9$|c{YRb91lnkEsq%jLBj^apJ+_o0@3VTdHbmSmLnp+D(?`DpR?q!Q>aA^}0_toK> z__PdH8;dbh;7I?kUsT@;!BaKgA_Qjg%W)hBmSE(frU3yFq#sEboSAB_o9yLWYRtY- z?4$qg7(1Jay&z=86CsCOEIP?1yTwo34Z*D01-c_M*M7S5>#YqaaVvp%FmeZNI|JEnZ0v0u8-oolsD3wr&g|A=57(e&KP(Hk7qM`qjc zA8`t5g88%D_`vpco`tCYRa@nhALgS9RUwc&p$%gdf4S_+xeRbQ|9U}u4N{Q3t8?1R zir2t!IM8jVojX|!f985a=kh*_bd^v3*`KKK!abPzQ78irJALmg>Dvdk?Gu3*>yV=0 zJgeeAydE{IdT&MasZ_k@Y;Q*ep<)D!p||QITr8Fiv9h^&T`j5cTsNmTIB|qFW4|3c zox?%)j0`-zkWj(E6sC;_U5~VIW~Ya*K`6q4JK4GoPr#@JS6E1K;8fQk3;foM-F26i zW$h5Tp~1g=H~-{2%cm{*@31K_apA9|&6?$vLMtPeYZ(rQS5Fy&y+FF>Hwe(m=53*% zTW~z2eSMIQz&+%#_+(=BD&@W=6jda^gb3adSU98fNSzF(sZbB&Stq7T4vQym8_ci} zs=B}-K(-cPgsq+*IDhPmlm$9R+|xuO00Jw3Pu#r5nYpfeW+BH#9JCCT4FHEh)`eZ; zbY!%2J8nk$Dwpn<^npJ#t^EtJXcX@CbzHSca2};l7lvH;?Bd*Xq1PS;H1))v~XsD9&qIro!&1NBmk{1bFmnolA~sW4GkZifZ_aPm~xsnT|58X*I@ zh)_DoNr!V@dyRhSA38qo{yE|eV&$jX1kWr@U9k(R-7?9_Fa>9f>;2BXuPax>&d$3p z{1-XHF_!C#$gyBv!fIoicfF;Dhw?B#>Vs<__=RU_c0Igu%iT-A3F2M!TsNx2VB1zl zqZ(U!);GJRe)hh>0ofn;2;Re`kkmBZ%qx;FvY@Y;1V`tXiWEXj@&Ki2Ub|3n7owwf zxNV5Jqg1`Jgd!J1=xy(D$nW3N()@!+(nI~5+o)AvE33OAE}4WL{zRd{_WiIb!v@(A zXT#B}x0#+J01&d%<@zC~2mCrsDu4+Ze2rEKK-R0r7@&Y66SHf=GLXc8xX4b!R6&wq^DG$t9Y;YmQ+35iIg%^_-PVc; zU>A-5BlX}UCxHb>xbPIgz?cz;DEv=i+^v5NwDaa~Fr?KJ%Pv))_-U26UU#k1Jw??P zJ>d^R`b_bR&s5idf92t1CFZFOuuTLxkLrUGI!Q(oUt_11^JyYq+6@Xtti2Ah`zlEl ztP8Ajg7W(}&frG6;jwV?zTV0LZp3=vm>3n^e9Mo*NEFrv^J{y!y17nC4Z^^~&8ECO zZnIEtGAf3>U9s^_lQ+MR^#Nll)PCQ^$&H{~*ZlbJ>VDUJ3Qky^sS=7$nU3{yF|#?E zXVqk4ceRR8YOEODOv<%Aq5Ezj{g-Cy>-63drW{E2Q#)s%Ve%Ud4yZ--4;PiYLs=R4 zlb~1Khs@TY5!8DN39U0vWW-M6)q=S(sNCxWLwNRpuo=cOvsM{g#hS5tTGg3gK(f@H z*3hf<&XdOFSf4YDWfOa$h?lHmJw2uw1$X3cSEg?s5ih;)Hm7xhAIR}DW!hnu6UMAL$k?g`APTUfyNj<9@N=MsP;121OfESRVeY{n<8dO-&^2fd~hh#6|0 zu2zHYX}kTzso)o5v84veb2$k3@$YPOs27_8bo%t{l6A7K`Gd7|o{TIx`u=*U*7G|o zSLbf(EyG27-2K!nem{<oHQ)-wJe*svLLBE;d;7x6D2D5y$Qz_I%x+3$QS|6s>Ne= z{+}mlpU4pIPZ2VOXzq`VK+l= zUdb6a@8?H5zoIX=X1Z6jFYjR2%aP+(_4CH!6F?~Dg@k?-EefOT(PQR4`);3iG~cU{ zEL<1yIvYxpwDG3VU<9+U;q7OKI0wri<9K5dr4#j?UoX17pu3P#PynVtML{t&WVNb9 z;{|e9%_#r#oCZ}U_5eg0{f4sx_Xg$hTZo(_h?1r2o-~CW(`T=rhpVbEq$k+JuMX?< zG1m%mRcoj`OJumjL-5sLznaf@Afq#(t7BK$9Lm<51=JJayaG)XKqd3+z)L#ifwdWq zgWPF{v29I{_dLo%S@h{bbbd~9i&STH0)Nnp(|C%D?pso9rfXt~b3}mhKMBLr*O<+L z%hpr-MC1oDVeCI6oe0?k+Lv>Y!_^o-oimGkMd}h*MfLPQQ7vG39fKtL0@Rt!2oM$|@Jk*Z zkiH%Lp$`oqGp8UE_D#^nSLWYoTpM302^}-wdHrQKA_!z6i`eT^d!t+)-tb6EtxhrL*^$@9Hmdq zv6$@n%X-}56p+}-)>ma`B+AyaKL|E)^fdBx3A5kmg3x3%kf_%$eISwQhcWjY*4Gfc z9P@dl#OEH_U^dnG8&-GiS0dS(0X-@1(z1Fk!SL!V`y!`x>dQJXYz&q7M+Q9Dc-1|TMO8B(Q7j_NtPI)!&M?A~m?07YTzMLr zLhhgD(stsG4#n8G+v|lv@1Ylb|NKCi&cp@Qk3dv*iC&YZVJ{tBe8AgBZSTnjUmHK{ zps!t^Zpq>Qz2w+Rw+54z%DRA%VQ=X&KINWcJQF=t%8s|$d7yRt%QM1%2TMS6z&n;O zUA-m3HKh)xCon@V*)H11C<8H0ddyQiDol{D4_jN>=4+3^zO4XwqR!SQs0`MvA7BYZ z*$63WnJiDl5NHHVm)I+X3c?*zx%=B`WY;76L#&Mv!0NfPSJSjhNOE!>?NDZ*pr`v8 zqACKM>C_^vLl?XH1DGWx)=XYMG3S)ucRlg2oP#&&{UU+3CTMh1i%B=RB#x)yH z5xDl}C5@2f@LTSA;CVysj>b;lCt}&A>3${v&wKU&_YNpS6N$Q)L z?Wy39-H<0|a&wr0z;WaLQa!1q;Wr^Omo{<+JCz%{hIh;#G}+~SeBl|*Ydbjw0HTi+ zyO%kL)9OexTK4@Pl zs6HkNlfPtDn8q|&nQdY@r`W+7(H+)_EFC%GF8Z0`yusd1brF2Kpuv6IVJA0q7l6!^ z8O%+v7!$&5yQo4=PWb~B8^X%hxX?YY>9$cVy>g^ZXT+@bMf#<$OgI!Me6coOoyw0v zCKzrH-Z|m_J3C7g*}`koWNX}U#tm1Oem&4H;QHyQFf1XM)NPNZvfChou#K=I6{pc$ z!Yil5F008@4FMb-p{a`FZEt_1Ju;mCcx%wVPaz(2F=)__BCvWYIX2I5+i|i^4%mPA zgH2JdsJ7FJpw!h-Ij0WOJ(9nR=X)~61hAroFGTR<&r~TD|AlHcZLuCF78#E186O}O z&%2q2t5Z3DiDCor{B#R6cM-{CwexmdQSA30I{`P(KZE2TML~tcY8$Imn;g1rN=4gQ zkMbEtSe%pk65WhztLJM2lX;vHvX>K$z5_ngTHdm7V(JBgNf4~`)=Pb1#S&GK1Q0a- z9@^`YeUiIo^`>;6m)GvK;+A@XF9^fEzq3Jj;7ffv;VZfi7wDSQ;kWCUd4bT66F!Il zO&;+_X6DTUY6qWM1vNqNScdpO+-ODG^qT%J#*rs-$Z`>{3`-Cj<8uc!J+}+quTqVE>g<@{T2iZP_sIGtX zV5}|F#WJCs!2Ylx6e8FIpn~7^TCy=Ah_D69SKqG=X7sZFRbm`l4}}a_|cFo1C%mVB7!_AY2i$3>hjH^X( z_;V_W;VlaN=;uq|5ZVC242sNm;llA|aQYJNn$-B8`_0lr>Q!P4GSqN;w46uE48~dy zljyrn?@xGU3$py=FY|1g{0+ru=HnV#wC3#3FQXsNG9b5Ha~!Kz4?|HMf{J4sbEW+0 z%XZLE6n*(o6*WFdoFY4CdMbr7UO9v&HZ|{xC4_=rNC!9GGk{+P zjRw7ZA$^|G9nYhiEORz%+w=mgD$g#`+698(Q_$$>Xu4_`AkDB)07U>FNb!lA#(dYh zlEix%OmSIS;NHKecpCeTL2y;)&(ZG^4kmOz-I5UDRx1YiuE-8J+5^ULq9IzQxuupa zr$x^W25c)RvG^iw)#Un|Wm}Vi$*pUdRO?7a)I;5a4~tiWYQ&w-7!DRF9qv(c(OMs= zw_d{Pb6yD3KP}1{ozMF325>3_R@f<=cuzRW8eFku|?FGMI%`<}I4y;JJ$Hp2&M=Vv1PWwpK# zs?lyI`se_v4KSrlkPV?<=kT6KfF7A>Q;sp=PM&N-5^JDnk8(2AmiQb=&U#NwuoCWS-koCaN z1VT87tG{5Fh!~K@^IY-0sdn_jSDk)sZisf3^?&ILVrXjF!(7^vj(T$4FXC~%X#mp5 zG~C>-N`d8SMAKBksamk|e-Ibxc*GuWmB*60|)253jQ>lp}KTC#T6tmGxC z;o`N#;YZkc?xB0pRjR7esOGJ|!2#9`{Y7QCvm<_YW!#F=e8b~u_y6wk9#Y`Wd);oi z4PrJjab{R>Ix%#!i_^Z!comU|Cs(mzabiR;=#vqqQa4?Vf(V(~EjwIL_n#%=B(x0| zSd!Rb`Rsjm5J@Mn~2F>8d28DNHWQzC1zZ{ zVHmhrM>apMIRnZq@O7#Me}2RSt+`M=(Lm#PM`;rrOHx%;m`g&adbd>=5Ba#dPfa!JAPg-Q(T+5xba(G+DhaBQSq2M+^^_f#fcM(L zjPMWOO%J5fCG!X?Bd}mJb9m;$HJ*d6J0JHZ-5z${0p?6$v$4j7lixUN|ks7ZKkzb4D=11My^3B!2(qX>w3KpO8eS zt^SAQON4_%AS8YW*)$`vY;02(226-G88U0;u`r zrqN4(jVQBs9445fxK?7-fQyB1Dica3k&IH~p>Q*|CbT^qjzkXIG)45mBx1R?1}o_w zTFzOrJgPA(N-sNkVikpzk3zgGPu9w`;ZKs2vd_>wGbBJD>lYJWds?S7qVaYuQvy99+OYY@=5YENxm$&ghB6kk<|3;`c5CJWPCCUPq_? ziGh`nl~J^sGw8>oSjbPlgrw2nMAF-Mfvy0zS8}4ULN2?e<|WQf9mQJULlTye6apVU z1hkDTIWJnRNufgcE(?ryf>7h1bHFHsC<^y8fKWnAKpBkAdf(kbC22#Yz3K1XX3`ZV zQznhbQpqy!>1L6p>HY>zO2vE?EZze(P#>{k+mQ$Gq;SeFbPnT@s#8m8yo_Fs*OvZ7 zMf2LcXN`zN5gPEv8i(IXxRaqZIE7EErC#Vm)?g~_L@Xbx7?HUwYr!)~*7DKeJAPB$ zmcD9y!jC0YB=|bpfIt)()ZaZre|y0t%qi8;z-PKlAIlBCCMqu946mssT&~Be z?yrw~Q@|sp@tK42uy#W!|n3VR$UE^k2sv}D^piohpDiHa+18g9@sdWF8)l};Qly^%r1 z{O@c=+qNbpoKBx%ScbWyZG%CPW~zi^5Z#PTq6QGe z;`W#+l~|F?jN`NLQ_!|@0jAF3^RNV{jP&G*-}QGolk*mRt4{W??L58{*jxV`xWp-LI>aI{oQTeI$}JaLeq?{)eIS7HO6wIUcA0@mDOxqZ zcSN58G$LjH(pe-8PlVm+I_KMEKvs);?+h~-EsQQan1Fq+29n$g+vGs#k(u93~6>0E>d!XLq7Ro<7(Vg zZw%MW+R|aK#)*tgZN5HFN|EooT3Rq4r6Utg$XeCk3oC51*LU)BrN*G8$j&s7rKTZ( z9}mwQREak2S9%efaNF#V{1Ugj#M(M0dHB7Ml=&LwoHyb$?KO-Y_>8uSYZ_LXJj8p| z!lY`n#9{AFKiLkg9kbVo?5_%0RCx#m6XL#-`t9Fl?yz@vhVax!j88o306Pw_A1QX( zIP{7TSS7(P1m`TiraVu2t)=#oqTUQ_gVqRz8ZN`)%Q3eYPeCvde{mGb$AHJyneRRI zR=YF@_R*>9QsB%$~ZnEy%;cj>RHV> ztLw*zh+BCHC-djkySE=P=iCPnu1f`fi=uPWKA%+`H`v~ zMvANXo}USc3D^yYzu$sC{BFPLmp#9eXP)lq(rdyk%3?a#k=z@6gFxJ;m8>zSi@*PY zpg2GG!xzh2X2Oi$Ra+iQ^7tg%h{&zJMy*~yK*y@8J(>rR`f;Fg>I5d$3O z!12u5ZNZ3~>Li5?xJ%K*dVT=b(-7}7D-!KK-acMfSlD^Aqs1*~!BmZr)bF2qt+-_) z7(QSNQR*2i98v-FB;G9CBQ^FTf{S63It=sWiMo%5P?p71Ib3 z1Qp?J5?fONsjxmb#>}SZl$9*F4yE5^+eTT$^Q36d}63yQGc64GFF^s1Wr(*Q413h z0Otmgu#bSHy^7cvbWsI?e!VwRk|p|q?V1P9#?tEqoRN18>-N_*J_ChL!eH#PNDt|m zVK=OxK9DVZX#3aOuiO8;!~H!w(xMs&2#BmQ&3`#^RsUf+iIlXhm`$0f*{j1$@*eB# zlJDTaa;d2s2_ZSt6UEn1FD%f=djXTM0IuH z{vT2NDWyz7pbh`dkX`t*g416~V$KU|6^tqbbu1}xrlyG{DFmIVR~(lSSW{Dm()?Y% zX}hSGSt)@hPwX5&*%g@H97Kmo^~Lt28iLJO82no0^n5*m^47A!)9;kj9kkWXXjN!s zz#WfXoab-%@cUqAJPHCJoM&_J+;3vy`GW5cN~#=uZ7F$pS_3UqPcL^8P*o5dAXXaSsZ-l>j1tpgGg2-rOZDsL zfOd4GS_Oblp@pE|#(Vvui42Ur)=kepraML1C0x1+C4GVty4UT*_q{i|*P0x)g68)7 z4cEs=Zq}SCPU3y39zwxrtw1V2XrW#T0c<}ZXH_NVo}U9`B=O`{>QPogq^HkfnUlvk zHlKX0{RJn=Q>txhf(x*0@*i__PZx%u0veMM%~mE^91m5vv9|9aUH(if!YpP*{+a)@ z9w?=>av?I!ZS-yEGghzKB;a%f%B+8h+hI3qs>p^oI|hG=f}N|%G&aT*V+Qm>K#xM& z;Bnv2!$1Hn!dpWnpwggoCL%A%I9N?+0w!k>RDIGHBANRI{jpTc4#^7agsUl3qJ6np zn9C5dUo?D8&ODayQDY$HWE~Z*fiv7gtq-^TI1%eQt&r(^uz}&ve0B&kD8SASEC(a1 z>VsRCj#e*Mgv@`+lpXz^604;Csh(NrdGd70dlZ$!UopFml$&Jv>V2$XaDGqUQ>K<< z#g=1!{6OVHb>_9I%p4%ph31zGGIHE`3}bv#jQ=o=uDy!CiekK=k0;zd1U#}^&{ z9(B{yY>K59(su95$1kdQYpVK9g(TsdK#Qfxgez8zMq<(KKl;jZdiITQfyq;h zn7H`eh~54)Mc8c>4}0-uRQ)~KC?#aL>o$9{#hiS}AZNt7jKa^7*%u9iGPaUIXtfYK zumdd`jYyvtkm0z{cq+lQGeqMlgvqBPY0c>(51VBM!?4-miLBl&mc#TjxVWl>5XCE) z1R2j+wySC~x+zY+1`fQg3hkCwU_DzjOMcQrw29()%xdxO1THZMJ~E`X>Gn#cCCmLb ze}M6H8qtybB1nWsDxt>Zb3_VYztnVAG9zh0vt(JQVs3^s#8iX{n%KYSbsq;+Tv-d< zf~Pb5Rg|E*N1-zk9nCvTK ztA!8Rc{d(ji-oF!Nv}spfIH&dqt|gjNEC)K<;+`jA%vM#YbUTtezmIHjJnv=jQvs2(T#*Qdtf#Fy z&*4r-n$2+%{`s z{HGzR@T6H9*ZQa6WL8k!fRfb2Gd1>GO>8eiuaRLlj{L(V!4nRf^+>tm@0x!m@tvVu zRL_AcEo)obKs2bPO-cka1ZCyX!qC_#O>V1t9DJT`nfs7VlQromJFianJVn7EoOfHU zDl^=eTJpz)GymvPl1KCVdUCgC{cw`o)AXexw_5>OAua6UL7*>UiI>5SSqt~aMn|OH zEq5R-WkaCTK4z_$pr$>UGU)SL4cf)6>n#n-cSe6Po9$2k_vY?!wGcMsh=5HU-c#t6 zw$=zkLAa8Zsjt8~JJTWKHA1sBJ&9hOzM0tHm_&{1g~1dhWC&TEDG;~6RJk?@$^MAZ zO+q2h{*XSsMZ6sAVVpu}mYy(c@Qs4RMn9@AMU*s2ZDhrgbt}F9KL9X6&%SH-C8ByM z0JNAmn_5vhR|Gg5L;>dnwsq*$eH@)!j++Lbf>VdB>DHb6CI}(>Mfr$FStjbMAfhgl z`#Dq$T$^hc9Yj<&G`xMUYp1T*nEkejY z#OinzN0+bkem?bWnY6PNeW21~p2`N$r7Nq#*2D37MKIh!oCB;wuiwYGw}_?j8cv+O z8A`w3J%WLVdq6DtwCaKqfb<=u&QOpH&}=2P>o_) zms04)g-BKi_k4zPTgn{g^0UfWGk`jUItQ2vgL;U5JwQ`6*ll+~2)TP0V=x*{P*r^> zDp+SzR(~fFpk0wDb6+se`KVPDkfuq0^96S5>H35kbfWpWv^UaB6cEK@m*Q zsPAbV+^I{Uqx0rL)uB?v2#f)&w%FJ?ja|D7%h_Or>?@V2(U>Oqg`(rV`{bU_)+~K} zQJm@A{-u1_`$mv1ofDN#xVSm$S*2eroNiCxARnAH&Tw=%cM3wB=iZVuO#a1UA!*0% zOvHGN^Gez|IiJ>D2*{KeSUT)P0PTioqP^@;%!kDM?aRU?Acik{%c%spKbHYd}_L!gHYU?fA48@yqg|K_0j~XB(znG(S1{8P#maoyUFN zF*Y?$l#k~wEWk1=P2nRDo#(o9&GPtCYwUhbX*KgD5``^Z=wtbQqb3>dx06wVm>Zl# zV>cLqTv}Di<}A#LW3v^Tt}UHI%E92_cNG4}sPU!5#wmu)2%~0%K{Lc|I|V3~2)SDr zsjxU&MpgCT)MxwJqFo43nutl2LK-fw3RB3Q(v&=};unRU7A`RDy7>Hgieu92Le@lw znHGv2vW!Y?OC(lPg*GBF=qp*`yFFJd*HD(UW-ZlU&jBzgpsnh&fJFdjjIS(l0yu*M z<3ng&i`zDCW7QTR7l5R1L<6m~1cQUBE4xY~F8`Q2-^TnkkE%k8mXr#GXx`)eT1lzh z#4W`z=%@!ucWqgxEzVu2ZIbpZ&Fa0zWZoY2&G^5df1z+HDw5JFoii5B!k`ZujdL^r z>wF8VCdm9s42)qQf{+Wrus6iGKS3NwZ$skAd|Qt+-*C=J@101J+E)6#Be@#Eok!s1 zc1qFFR66xhywj1oNy4NwwL%W1z3|e2bM~#Tm=_U!4GMQro2P$91dIV#Pw#+p>*%7tX+ZW8Kwh-ZytTn3wMH z+*)joay->NkV{$2JAvDZI4^x#ddpZMq!FD6JyS3 z4uW7_M+?7(tcW5097|T?1q7-#8P2I(7KIY3S&&J%X1Ts7qWrJW=Nvkx5OIJN)J=oS zmao9DKg3^t>i|J;INX<;!Ffwcbb%Ifd{W^RU?2VcOs9S$!fC{sMMD$Lc+^~JdQ^H6r4gEq*(_gC$haW&N`RU_v1VbGsw~)CCzB&ZaR`AbZ580Dueg2!n|3I`aHcl>iWbmexfbHtUDUJ`OUt z?_m>Q!u;Sp^}b2u^h%R5)az zrd?qgWL~y)(>lX7M7`}B6Y5esWe7w}$8e6avnm=O#o0bl4-TTz|2>G+UWJb|{%wf& zACsXi^4|v&yViuy+9jjDTYYO&uv)VpKm?UBDG(BU2wLdt0zj=|VX%U#_i)^F;-j$6 zg3*XC9tI-r4T4Y+5glQ%wNX-E@`Icrcrtg2xIMfQ@ATJ>U?`km&`v{4G~dwk^@do0S64KA(n?L822aG+}*^C3LqhOiEoopW7wZS zq=pR&gI9KPK*3Xl2a29=Qph2oP|`HWvuHhLKbt=kSpp>oT>Px6LCp#yIx>jsT>9=>1JT#x9Gd$Hq zy{}la0@)N+ZWw?Ot*$#Sj zgWcJb<|85ZBQaUb>v)>&QO#pk^Wf0)9E(Cv1dvNYF;}r#>?ehj&7Udhj(NU~cH~W| z3(mRgIzJbu+$&}~odts9OS*C^-&^;TQJ!|+&z5VPp^@f1#xDT?hnbuG|JnP`E=iIk zI~2U4YVIBp$%}S1odGZa2J;>scF)_h`(gk8*$;bmcK{4Q&onERJcBwnQ`rwHOf90O zi)NA5+Z`FM>EwEagfSGZej@XS`9LB>P)hQhv9bX8l zGg=a5G<=|udUl~w{WrC`=B;_}j=X(Q>z_8NrJY0KaYzg}4g9PBO!MOeo(oaQCT8dE zE1A#glzNwe*K(uz+i`Z7+L-O-dKVYDFk`*aR!g{j8tZ=Joek?OzK(iW|6J`_PYRrM zR6&UU$yZ7lLt1#%@ci;S{w%r>@wK6uS0qECfQdo~oaN!?kVhebFuv=dZcUM3M1}Hu zy6Zo4e_Y(QiQBZUnSaXRr@I38aci2LR>_8LZ3d{(>lsC8j9dbW^+TYy*~M!76wwyxI?L}5V#a9hb2;efJdi~F-~I_ zB04($42TkjJmBo)A$ZD|Mt8n6_-;9D#u0b8NVDLbyeW?^xo|OSqh#v{KiQ*>xv>^L zhj1q)b7HGO6gb=i@!Pbq&a?5_z@9~S|L`wBaP0s87*Q2&2Q6Yj+Cc=Ov9-TbK z>zmgYd*9%Wj<*H^VL2>rw*(>&A^~cz%#BEaI`Z@*9&X#Amx4e(Xr;jl)V|`fT&E_?(_g6Sh z2OOv4t>0TmN5|dJP&q@Y1qd(|Gth~N5Edg;<`I}r$l;~)3u}8N*dUrXvY?Vi@fWnBOoL)J9BCLvb|fzsmUF3mLQzV2*FNOFSmqh zSc0);>j!)HggO8`-0N_=H0fJSR2y0?icZtUO7}M*q+V`9GLG$b#+>o5e=D!6Ip4R?ox{1!|6C76OePluiyDK#_5Qg{WUr|I=&b= zWejCQO9ta{q-7uL|C}o?(0H@|SjZ{qj z%71pzp=R$9a#DBFO})ZEk)6G46|Ip2cdT`bB1f^@w8r?+a|pMya2`d&v^x5w5GD`~ zW5LJ9mwTZ^3E9r%ex~x7wIZFZ}|v`7D&iQlg{tTa9e2m|{ z{4K`P#fXlMKMSs{x{niEtH=7(dVEh?&smM8#mL$y8O<2U_&|>vY%a6W$YWdj8Gt5X zM3YN64Eu6_lf)06N5xQE!9iNK%Zh5tJ6W;#(0Y#8I*ROna;>&@wrV%6kU)qzYAa9W z;UZIEb-mWQPqy~i6>jfp46x~{pzD@cpkFR|t9)61Dh!r6z!uZA1nT;CWf&I7`92<; zJOMMXJFdU*Kaq~R(S?YwiQRFFtL+5}PatH=+|VF;{0}^4t0@J^kNQt*G$E87@jPG- z+}eRcxm9?mTxWHc?yhP9gO-ljI-{E?D-T0n>%%UY#sqUZ{mUuW&O2vUj>p%3DHw;` zoL{$TuGMd@za%y-LH+o>emb8(k8b^=JrCd(M%tTH!jhni6A38HsK+X6fkY zm|?kC;beJ+L<`ia01d8dKrDy?D(D8zxdm4>@2F7F{pY(x!|oQPn6c-tgMlTyX>9}` z8N`9xjN2Qdb5;t=WV{(2?503I{4I$=KmFIr^i{NmS#32SR|>!h3tHj9>H!YZz6%i@ z9d8Q^Ol4|1XGWU|v!8)z=Y&u0;1)kev$v8?bF5}xA-uN6Oj$5kWoidev|(o!rEu@u zcAOvGtWwG9v)yMGUXy6zrLowczWz{i+#udI5)W3L(o%ql2`OcqE>F6x*3t2n5vv&* z$1re$a*hd~1k?~!<%J?aFF>lWG)P3As8M}IC%%RQl~P;cF@8h}Hz&y0`?$oQPl_GGj;s9xWf?H;;ae<1~Umc({Cw zMP4EE3g8R|VFZCFA?1XOgvTfEV|}{DgOi82+@ALqo*f-u0$P0;!|$;ry0;o~Pg4iZ zD;ersuDK(s33VKNRfJd-$pUOXs>R;g3RXxJt(ud{8OA5<@h(dMHWG6G)e2Toxwg#W znKKhIM9$`yrg2I(F`^0&;ijVfd!Y#}dhQ8aD`?4u7p?H9`ZU{_nt|cAwt8&WsJ*I= zOMzEt_~%^e97~i0N*Ryuy@z8tbRptvpbHUS6T8C}mzyd?WYnQ1sa8Ch5~oj!_9*xN z{;L%eD#64slM>Lwf~8H4Ym_v&yjo9Xy7>vGoF3 zh9?@=2`_QsI){-H9-chFc3k6pb8+YIrK6+c+lTW(w8OY{bmZe|K5=B8TZWSRdviNe z84Qhc8IClwewtP45q+tFN8@ZRpDD&Bv_^Y19xt4Fb^)RPubt2{n~lcqSfyEW+#V9< z*eb(%Ym|wB!U-u2I9;3|r8KvmJ32bPOW5;zX9x1uZi5Uo4HTkcL`pKqxu!0lXZ8*Dtq zQoTmCS9|PRt^u?}38(24zj^TMT9sRBYr3&8j>m$6slLxZN(1u1STN!K>MX!Y{&XoWl0{9$b_K zSu#rFuIoK^wZaBbH&t`t?2z~Tv)Y)+;)N_CgeVj&q+f*#6(bml6CU6H05|(9oZ|&L zz8bm^@ilQ64_NPSusz)1G~bh9CDNjaLJ*tlgIM%onpqO2T#`Oe4C3SuOd}e2$yUq` z=D3|c>VBdCJ10cnbeVzp21LIPo7I=bIM|tgIYX6`$cqZ4fA1sva#`? z$HdGqOlFp8g@)Hv)XE2zQvJ#YSqwPcFG`#0Y)(?13p=Owa(Cypog#5NJf@+^!hDPS zg3dpO)0K*$=JF5nlk+E-7j#0jNPM$T2h; zf4fMm5`&iGQ}b?pm84w1$a(C1x~1|AsY_k6l8ao2uLr?C^79jb#NM8+n!}-;)GSD6 zoO}n3`!=&3b^S@iw5DyV}1z zT0Q1+3K(MRmLp#;?`8K5>C2Tl>@i^mDUvOs6h?BVF!0yUtY)u99|0j(~c z9_>vmpyACbF0j182y=Qu9FHwH=#&QlQ(+v&5oxMzq^4<-DzN%DqcCGC zj3SxQ69bfhR1%I8adUtB5^yhIjvMx1Ps|`Vs`(z6!GglY0o%Zd9s8%K$VyE_b`c#s%<~@ z?@fZAu#no}N~+R5Kz~Pi0VHXLg(a@a;AsL%1~FkdtdNs8-Rt=B=t9KTM9r)!IE)9Z z=mbOy#9rhn`Lkj}Uno3D!PC6uumMdENJAirSgpY7e1+Bd%Nl7*1aMLUQBs6aO$`1= zAI^wU9XisW9Q=AHo-!;9c8T#4+|7-VLnFDcomGQS^M1Ipu!FkQPKC;@bMuL2ON^VR zZ~`OJupNbS-CB_JX=f%3X^9~%FyuuSB04(01VY%W2|`&%5{{pWLl+!44}gUd&cK5v zD4M;|8Zf@)T|Y;@CTqWxh>+OJY2zFTS5^CmbNxERD(ks zjaL18LbESW?N>i>TYb{e(eWL_?47y9=t&OX(7dC0=&6|tfjJ`t4ro7fLTn^XvvC5y z*)HZi!UFs(`-BRH$V2r@1>@)<#}(HWCb8{^eOGP{U$**SXIhm=T%%n&1zWZK(u`r| zI>W7I3>tf*qod>P;4tm6J8mU;FSg)y9#Ix4%=XNuhO2^w7PzB6>-C>Dk&GKZS_Ao! zYdje)1gD@utl32vK?Uv%+@qURQGvs5ZSakJHNhutPvV)@flueoEyEJ>rcx_~3m8)= zL5NVnn5!ru$L4CNf=UhUEz$~)PoH2&8HZUWcSlFZ-LN%KAI2{|glXj`b#9FOfD6|*(#XBuxU2-}Bh6BD52yiEu%*xw9l|7^%_F;TdG!nNs+ zD(8+bk1j-f12ES?pJ#cLJ1M=wsb+rpBj}9duYufj_b2yx_wB&$f}=H;4Qyn zvC>2r8SiHTi2}{aGkT>hd8@M;u2r+D?Y74sKegPxlzx17!Np3eGp+s$6JS$Qidm8 zj1iWgl?sTh&0z;HYs7MC5lLbZHz$gU**mERf-Gi4IH>5g{(U~tO*DO_nR`D(g`YPN~; zO1MEB9{Xq@#@nas_G$-dD`k$Waw~^jS~>-CJ&PR2NmkZ~T53k}HP8b0R}b*y-n+Qj zU3X&Y==dU-z0l;hRc;{iQhEEFWRRa5P|*;JPq7<1u(>t>V`5Z;hY+?PIq%(Y(Ln?I zB%Bb9*48V8f-K+1 zX~OgCmpI>Ee&MgBqod>7MXjWjrbZOpOLc@Kh-6t?q@!7NyJ9>?sAcE{WW8{WJSYmB z?)rrdU;+lgj_G!la|=lTE2mhlAM7oLtzX|T`&0sOg#aA@sJ({Ok8TAMB2a~a$w*}oIl9_iymSfqqyUg1~oeu(AO0#DChc1x|J<1OG~djTNf z@ZP@iTuOE3m1N(mZAKDQS6-2D3N1g_nGUG;t8v^3yjm@3;sLlxC>o~_$H7)>a2k< zedy&ORR_w9o>|z)%RXIYoBzotJGNxG%EyU90F2203s&wd^C zMzpmKeqMF?{XCulc$e;}BwK@j)R1jQN5^fHGNF{op3Nq(59c9wz{s*pAg|rzh)*On z?-UMO&NjE_`&O;HKmASMjWqC2P5Vr!(I?zcKq$oK_!VfGe&~;`i%&?t&*e6r9HZf7zs^`45&s5QMTP_>$HGX3Fd*U4=|gPxJ3LRR&xz>hcndgA zBlgD~_Tv@>E13uA{#|U<3Ai2D@?J;&M z&a1`hKT&X2YfWv&N_nwgyC1#rg5&ywM@kf!()bT%2Nrgr+maQb{K-fu+;83P)?Ml7 z=$M0uaDVjxtKkGh8AazDa^wej9_8^&^1|XsLP9<>rzX3_nKfQW%douPnK5R5w7rV_ z*0zN6m66$1ZWii#tDkFuf8{9kR(0|0ysdVuad$8;ZJY2p8z)MYSn$gkL1?ML%3Gg% ztZvTE;jc%k0z^_lMAszhaSa9D=JqgxB2=}oB{r&ly~s=CG$7Fzr80JW5xNlZjS*Zv zb0%Z`0pALa*Z=b8hK+^Xpcx^0e0^{;#RuC1cD3k0Jw6!gZ~-VOWstLgh!HvrYcdfc zI;X8;r$$x0F6LN-FOw)+Ubz~x|1)t;}56o3A zO6-+M5Ci2lxM3MH_z<6GfEr6FZXLMUGDn0LL~Q23F;Uzt@N78y&i*qf4B8UnYYoKK z<)+(j1w$^ZI9k7~{g=tI-A10Un>IL1drW1E!&vf&;MCXH-epw6%IR1C8DesM03{i`+{yA$e%zD;I& z_}VhG=xXEQZB$ph#(3TO+P_$;glqrwu`qHWFef}by@#vqDKaHY=t4wC$9IjXj5tn5 z9Ht#I22fgfq%BN1HP4u0z`eq&VqtzQ;0Yi4<-s)sqKp14+^5qY1L4G^jtCW3qpxV9 z@g1(82?25v6I<+DF)41gE+x{2-<93w>ubDu=;D~U9aJm4oTBZ_+V{L3Cs6{me+)W0 zIsyoUv(-H;h7|}I1;-``A8jigD6L5*X2htc+ElQ{VfU~^Inr#45a)`1B0;;d@GVylEO@ctul3^@ZF#kK!)GZ;Rxeu*{rZ%g-iU}>z{6AsDVJo_+2Ab(rV`d29zG=vE#Y#bif#W&A|jwf z#!*rrpcEJzH8DF123te2t+zcV4<$FFBPss^k@t2({hTB%nZ*iJ!i&aO?T@ZOPA5F1 zK&r(90cv|uF#hzW`5l7`LTGy{BYyAb=(rP`{TewfQTPC2EhmNa*sag1mO|ES+yqb^ zw5JSW(r)A(=&YU+f?utxrmdBtP1kNEV13TLyptj2v1RgVI9rcaMtB+RC}o_SgnuM6 zSkGt1pBZ&xUInhRDv+6B#DSdH)-lU!BOoP025h)ir>BmNw~MJv*d8|69M*U^+z-4m zV;v%^LI5D93fYUM%%6)_PY^;<1k)ME+ue@<)6RT54+RY~v z^3;{2-YbAi31G&gY{`B$J$Gys#hMbR9BqNTu%B9Aq?K=O2YR1*Js^;oFiwOa0n-HB zTb|J%r76^>;Ji9j749p4$mhb2~9&olQ67jJ_}jLh18!;LjfremiId0%^%*LE9C zRfJhn5WZ_gPUViU#PHn{0IgLr0I+28hB$!Qb6SZTgM!}5M16O+POYMg+@4fl+-%RV z#A+AU`=de5*eXRU^hpTOW=JqVB-6z7JupxTQeh-y4Cw?9P99?{BX0IrU*$L3(eW1r zwLzHbSCKDJvggg)Q&JWG*q`qjFVxp$aY5r4sx5x2O-L4yPsA2nZ#hZ*KSI(NSF_%F zP$KpO5y|dQAC^E~c_F@JQu|Beal&D0z7_yk)}4%N-QTR-rJO8D!x~@Y+Ty(m$VK=m zu2=pZ7#G&nTJ+FFT0*9Tl!S-L+tlUcB1B?FNi0>egt3&+UeBF#vI|W1`ynEfQfk}4 z!pNL)y10jjXYXQn+*-V}K$v9x4KgX(}gTDL<$ZGfzKJ4Dm1JXId5 zn&qlao*FffQY!Vt>b{92I3>ri-fQs*7Xs9wFh*XsZg?P`?ds|=V+6jryw*yL)MPf7 zy)!S!jeA(=zd3GfaYaN;Vs!NFt%_u}Jr{S}sp%I`ude8}b`dd%m;BNgu5vf2IvpJy zUxexeO(QS0m89xkw-vyTPVY$L5u1GJ*9wuK4?s5+y>kaV|>j*hpC!Ug+r zhuv|5M+>gQnW}gZnTW(@W*u)(YXXW}BJyIZM}TxGlUVaWE4j8Ul-) z%X3b>eZ1TGYcXptu>Q=1G815|x}VbrIeDSJj{ci{mmQP`V>@HDlV(d3Ap}jmr=2Cb zxCXl8Cx2}%LhrEf{AF8(TM*lTdYh=G2^@=+Yi_?Xo}WWoBa^g7R&G@Pm*R#Y?x@0w zbF#0QP<*bL*^@CENlnaw!-o0rnP#-7*J%oDbfo=~b!d(e(ae}@4YvAT0xVe98m?-z#*6p$F~m_O|89H9 zPDJSa;yOD145~9(FqJ)kK}x{^a|+>E8;Z(ZBozX889u@-jMg)R+k5V|MT3lHZm*AXAWwb1XF_TeA);uiKj~NF2czXY<-|D) z%>C(ReXQL|8fXncMZAXKzqNko+DJCM!u)wvyI z=2jbb>#?O;4T0-x6~=%eFYdS#9sd@(5b>>{jb6`PqwuKN=7c(*f$eksk2)Ndq0Qcm zzzCJ-noZy$Ma_<_+m%`dQ3F$6bW7F#rNShr^+lO)Z#@uS5_n&lgBLF*bi(I{%! zXk;y?INO#&n*gAa1`$$rBe0g;MzWldm>GQad~sD)W~Egl%}V0yx_t@+?>~}V2Fov| zNQoSys;*~?Q#?FtZGoF&)3?9?!RqpCH6PjF+eBfqu7lBJpP6{!j&U`*SU8(&y(wVB>?1*004_`= zt0J#AVgX=TZA}?J>6O{#R{9GWa=L~I>WebibAUTKI^HraHs?r`@YnDD4Um!u5^M%u zZGq%`mEc0GCR~{9A={|E#w3oe@1(Z*`q2 zipH5aZ0B<$s#wM@*_oPujnCNE-M(Y32<$bY)S;`Y=NiGt3>*tEaJ6iQlp7bhqod=y zg;n+I)9+b!)-H&kzO8VL@LJ(u*HLKeDNe7_%*5(91CvLqpxuNCWE{xlcETIYzDL`Q znVRZXn*k~GW*H$A*GO*oeja9jJ9~qcRF;17O z6)vxBMvPNa0Tl*KjK`<%;c9!{{n(C-oh}BHxZJ@mGWHl~F6nc$#yinI%{qz(s*nRSp#12mOJJFVPsYvJ#>YGp zQXGD=ho9Uz)J+q^OPolv)7T6ZBN^MpgM3b$vukXq&VMNL^@oo&E2Oc$;@LyM&u(Mz zQ>nS)IeE#?Y2E(U0wr=Je z!{)&13C)~>&Z5yH)aomWkvLl+1A&)rXC(V71D8lCRx=b)@0VTzRRg!6ir$4;5@_i5 z2|7AD-U<%m0o%hC`*91xDN@Q!dA&lNHV@K==bNKVKjSXYyF z5>~?!kIwGnYP&|^2^}3B-!&N1G$MmNkKmXYUg#pTAK$rCcL~1qOvq(TTGo3304!53jB~Z>7j~2U{oAqEMD@7y7=hl9 zj5;xb8i!lA?auXAK^G#vHMGS>kq%;ejJSQX2Zx6w8Y=8n5I|5tX9kLd#GEwj2}ktj z{587~5>oB_Om_s&>+|OBU3lc%bI#8nt|wmm-1RlWo;knmDS}}*JN|s@c{ZFKVP=4~ zzqfECvnO>hyAE<+txPNRGOdn|KZn8-*83Z98S8+lM4%#ECt~5Du;7Ij9^(tJlp$J@to8nGYuI81viX$4ARijx@~Ud<4KL_lkGg<`D6 zdE`52i@D{LuL9?!=(@S%YOO;8r8VXtyYsBao8^DBm1labVcm?#VJ)f0^=P&s2f}ac zwfVXjAS5jE68BeUHRG>zA)=$>y9P63KkhN)2?r{h=iQC6r~V6W0c{S^m-CQd-9Dj0PhLfIx-7qPALZ&G;aNesM$qm-+yf z5{|FWw6t(i^_8R?%FG~{py>T6y=4+uDbd#$2Zb@k2Xtl)LNYGQcxuCdbK>*tU8fuq zGFY-xtYkHzaDi2Qu>VfDu>F550 zeS=RgKStqRu+`D=Z=sZe?S2i$h@62;3561v7>oohQMVFTR^vsD8%CUXqr4QwUd{yqjHChRb!8x0h2P_95Q$|W$v#?U-Lw9P(+LI)X?wkKR z?>QVs9NOFQof!15U+%^k2U!IzgmW~{*pFUp6{*S8b$^y6TdfGU(k&;uankkv*xvOV z-sY~oR=2~1^HAHcuq`51q&XLJDX=~S5}_ji$^SrfbaZ^jI7|op>GdD**H2FHaCwRh zM$+e=Nc=h$AGwI{C5|m%Rj1V~^X>rdi@QarHj!4SC-UHvRySC{3R;^m<4`dR6Sbiy z6%)KQr-v2QzO#yd32K={VP$63kM&I9=o2gd!`d+s5i->|5IXlzZCKcysJ`%IYl?9P zp+5#jW)!`D%7^m)ekwSYN&Y5vbaZ?X2vlbxSbVNpMqIP%?nnj^dn8z5rLeFdB(}z8 zBiW#5As$8z)JOYCXTbs_v9LBsPD$g5uu(LCSJs_o)MT z3s3XEJRKb!GcYsu#~pUZ4GzaGayr2TssVeVrlm;b8Tnbcibw=McPQ(DfovAkT@6S= zAdX?@D5z!WC3v$d(rq z*7h@ImT_Y_8dC*V8j*rn9LDP0aX6N*$*)z!VWHTV(Hp@}mIjHK9 zcUJ7^c)KVfXKFxQTOgUJKy4cj9V@ex9JGZ!-j@j-)Qp1|mV1+ut7Sf2*rB=J#g)5#JG zD?d-{ty;F@2D{@H$LY`+vZLb;Fbb}ASJ)o67^kT|Nfzf*t3;jEC_wr%*CYv>eJ2Pp zId$(W_C#p>JgWqi&K&y0T6<5@7+Vxm-LDR-wG&$RID`bZ880@GL|ahn+xk|)WQ8B! zOfd>vtJ_oCmQLO781t+5mCV*-iZjgI#!Udqe728UpS~_#gNPBHkWAjozwPxjO2%CV89~GsCo#QGTHT?{8A%L9 zvSb?G7P%pmt|1tLeqSZCnZngH%T_8UyCnbf5w4d)Ln&e~v1C1tcif?lj*bWh<2W9% zJ8ZC9Zm>$HNJN$I%t5TY;jydO;7y+GS%5tXg)v)B9a-Bv@MARijJv}z>=oDGoN`30 zjuzv!bkJUJPY(GZ^f_fPIh#B?_e;-GJ;W%2*^a3 z2wv1myP( zEz`x7a`?%IH|k(Oy%*eU7Xy^RIAv5-&nX?TShG3NXgUTjzUI5%ioVmzyY`5#oOq{Kyu`}6Y1P#aDv7fn|rbdVR zB7YlHjHug7wTB*s(ePgh2Mwu+Rg7S{r{U6_YYB&Ohr_h*zHCRw7l4_u*>A8P516<} z5=Tv>Gs8@uNPDj|c2eYwI}wso^Z{4@Gi(HVC&ch{RJMlUq97Wpy8zg{1x?P2p|u+K zx+~%Dc2^VkcwLNOibrbKZMNksG-&=XwFDI-h5o+U#gU<@F@62-3)!0bSy;Q1mT%UOkVMWy%xJ&WVw; z^nDH1=_i!xWf(`vdaLs&rlT2rZDxkcC%QKOTcK$DNJ?RlnGmtrzyvEh?X=X<@x9?V z9`V`hPjK@71Du?kA!lF^gQQkQR6_H&EU`NP`) z_*#|EYF3(XZE%X&3C0f+Y+Gqi0EipQYO99eznRM12Ew$O%v+_a> z9>(@`mPriAakY|)EU-88QuWMIfhF9Ml3!a8K}fDcZ8)oB2*EMEFDccwOey-X%-~X6 zx~T8UvJ!1!%Hs6uIctlnS_x6jQvZ99P;YQb2{|Vm_8W}T-tJpRN5^f9)3LTfB0^4t zLZw#oQvykQ+}hr(K5d0+8}R}*aaEsFtCnD@J{&?U3xLMvh&2hW?mIDC1%S4+t6R@( zBD0*@R6VU0(`tQnueCX723bxr0&gbrqv%gsQ3XoS**+SBi{gp3o(kNhTsS0W)0k|m zP54L>fQzn^VB&2dAV~s>{+&=kgN$n#N#eEMtuyj60Zhoyc!E~+){{|6NI4;8;O2Oa z?coah;SJMG>A>tc>!5F7wt%@*%h{Aue>Lj(AWpw^LSQg(4TT%!-xz%GvN5fmf z9I>dtsx!>zV^c?ihX%j{UJ5hKs8uNw1;Qck%+BnsOq`bVhd?|^h;gG}OL8F3U{W>f zQ^!*|L79vJptwP0d)R%E0AYKnww?gO_ ze01GTTQW`XKJ%KWqN2x;fs4%x-0UyoUF_)SxC`n7iov7oQ(a8wtNJXu2xt}&dHl<^ zHQUc;;CLNZ@JS&yV4RiH5Q6d}2b;)wP-A8a4*Tgl^;G0<3m>WA$~+fU<$7XVkYd~p zu-5N#^OT1OXp#$?_+R4_d)s)QH`a2MCeP@4Vs&h##9#!g4NBU`Q_jUz1}AbsS=;1+ z3Z9?;30IrfD5d+=Ulm=5_=YGlK#SGOGenOuSHm1K~?et z6$*-^tDImB?8DZfYtSUw=B#vk9hw0bY_o=lqBB?mA@YMG}d?euJ8Y>b=J(>XWx5Y+DTq%(ZlPWR(9-b zhb?GTDH_v(jn!&7+Gvu7%=o&IJ7c0SZO~tuvL&)ErzK$W<2aD_8_= znEB~iu=uI!o6909BFd)R;l|@)=-M=d7iPRqt0l)fVEl&dN^Hy&j9zn*TkmXrN!63R z2*+x#-TuaREQIL+T}}g`VLI%?S1ORl8^Y@@HY|{1pM9yop&R4&23w42BJ> z^^L^s{OQncf>QD{Uv316ZSGZxy%_lzbz16}{o@E@S}tE9HRwNoh2*BTp#YsSoHeV zBPE$%>HPcFfko$SO11IQ2rhfP`>BZWhcZgv@>^zI)o{2d!^-Lq7B0 z5iZef`ML@@Q1c}6!1|}v&8vYtr-GHvX&A!0eG5fOaiF8DZ*F$()#2=C$t9JPrCP#L z>e$M+@Y3BD36znEDiYCw1tAuK9u;}dQ>-K9?Yn2VoN3E`C-K3YInD=V6he)iv(cLP!!$Ckb}lZFV#|mN&7O((1xT(dveC5V zyS;qcidi~#7U?<_whLOYC@aCWfj#E?)F5Ek9+WEBhXXWrsL7U-vG+=GWij~nV|^e9 zaXj4sGV84p4m_voVwd3%Btu&Wv60MDxG0+{r}1l#*9@cDg;UC^2u-;>Rm7%LCs|I6 z$kV^EG(13zZAar=E>Y~y%+Nfp^xY*3@FYU-ERFMqdO~NZ5RVn>!dUi`c72i9NyGR= z&h8>vHb{d?j#Jf7U#+@l(u@nP7TV*D-9{+`lF8q}Dk>&*7DXXRaE`vhX6AH|BAO zk*+-&bqHW5VJC5!jcZZlPlnH!c~!#)0N0@xIvQF9-F&Nx`5{MZj;!}IlTs(@BkpP^ zJNyfqn}M(ft}5np2DHExEIc_!Op@N4Drb=4`qoz|X^X50SGNXe$aWP0%avqc5$)rW zI8BXDcC0IP;|FZC8Q3R4zXd&x<}VIAgVop1)2-@2p6{eC8y*B{BjGatcF)MY%dPXr z4Z!{kaeN0}4x;65tMmX) zR9BhJ-jZrP15x{JG~@xxl!WvbRG964kAf2O_nr2r6;tLjb$jw^)GRCp+5^gBnz4NJ zjz=TPS1JQvErJ~4Dr z>5Q^!FesXXbD|^KZmJOxPP=KgNPTDtvf#Y%6g3k4+gly#g78e4oa`D_Fg6{Q`=`bI zY;*hML0Pv+QxO7sJaKPA;#IGCTde_v8E7| zC(fvXONCz+O9^r;NDUXl0stJ4nzgT;0;%`87&%V zNY0JAC>zl+j+Xld{x2Yf7?b_V$GGU}#-(x{l?o`~Csa+X!nfgmQb~WXzKP!_s#Y*MI zg)d9kZ5`4w{Y{6{Z0@2R#-?Xrt%_pwV(A0q=bIH3f@WMLn_itVo=r&R_mt zZmFZ6N?b_13)Lp->4p|g%^I$S?DtIgO%N3;SXIQ2Q>|y7C2#^;q0G(GpD?zZq@ms>E|R=wzV^ym+oVqH=p@BxfVtqjbOLSHG2CYTp$HGin!@pqXPKgZ-)UoDa^@~W zIzEt9*&POXlsOQC=hsVgv}`IO>|rnrQkU#w5hEOg{=Dk7Gqc2e;>zK!*&2>|<_oqv z&Ff`x0F{P}MnG2~H*4jGT;=}tX@f|ar{QDo{O+7Q7$Cc4xOqp$ znK(y`KQm*F@I(7RRJ%%d3abF>{7@uUk{OQp(`tGw^3FCaQzU~8*M$43>{ENhlpLkI z>>MQM{5Jv=UVP_q^gw&WXKNb&ewmYwXC8b?$~H)T-~QGGlSOrm27wya%zLB%b&Z*m z(Ni-5ZD9Lc);abAzs#~{k_>Ta1Y>J9b9z6I5H0BNmGAJq7>?C+rq+hVhEuiU1HR@w zE(C)sF=cU|E18h0lgorkFZs|cUvmnhSBGuu^|raFJv@8FYz9sDXB9|EMKK)Eh&Rsa zILu%emfbETWg}E&;qvJYG0+WGF?2#{`z!eEmFfNBL)Ue^Rx;bPXcC{F@6%^3`pAih z6-jNpq&uG`Rx!scXq^_5*k1Tg7o%BwJZEl*QyxsK$Kz2k#q(b;}IE z|IAiSsvV|58x{u~>`+9?kS(oM0RMrZBq>Eg1U{K0=VI}ieYhutEQFB{kC8b8qn2^r+pX2d{FBum zq+Q3+_m71wTCnT1Pmv0nl5J#*vN{U*qa>-Zi~Xg<5r?jc4S{$;FQE6Skc(#u?$GUI zlvrbcbd-XSf{q>zUNW5?@GCf-TQt?6{jLQ10jnYVw(7C8+?j6A0jW}70CaVm z(1AcP#Ed|8^5lD5KK=-gd#S(fe|!Cq+=_G50@-O#%)M)pBMr3+_ML z5ZOUdHgOAu#FWS3X5$Q+E(|gb3B9m#GGKH_zIA&H>^e_;e!0Y?TOarye3NrxUDSiyPrppMiql&U$cy3;5Eu{6wKY;%J2EU!zcjsKwQTgJ zn5v5sXz8k5)C6pI?jCizJ4#y)hyQ5Ku~6hbR+wm1;K>oNF_j%i3ZcYyvpyIx&A#f+ zDA>81p-q^7{2mkp92yh!2tvLWVv;G$!q8l<8%@>BN%v7)zqU3DTQr~};C6c@{O}_|+ zOJ)fOFsR~g$9qHt#gEtwj$xCG6WQ}=XS}5d8#lPvT1l~!HN_Evmf`^2bqSF<2MW*v z2pI0H9)dIFk4FFi1UmBBhG#9ELGHy3^_4zxRnAahy}I*QkLE}!dg5E7Q68_rGX16j z-{}37`WIS5okZF|8Vah?b&c=tn^B4-Byld%t;-16i|UEmIC)s7w#2 zjW>bLspAXKyDdZRTYJUlavIkb?7r_A)ubzc_DY}zG-Iuzc>qZzTY)b(i!7mJ#hou<|UYk7P4w0QJ<2j6sX_9_!kN- zrXi&LzYyx}k;tF-MVQmO-s!zyCkFMMyx#+ro3!AgodZ`2PWvJ(0XEC_(FlFFSd#g9 zLH*&Z1zW9sC55*bMGz^LS@K);Y$OB06y|a_YFpG>!Hd>EZlwCkm!T{)4X^d4Fo`C> zN9j9k(uhp+J+WP?TwFZO`q&8HA$#UAiVtXLW66Z%`&7 z0Cwsb+wI87>j#ijWK0qBT_l25C?kRXmcYah& zHf#Ko8er?~mD9LX;T zzo3IoR;nDcvDs6A~z#j7Fq5A~}*DKsvYcJNAb{e^uGM$2%=jEAiKPKc3}w9-!POM?v#=b7^S z@XaRW&(E#>opCJsh=%Q7;b*!~&y?Nr(A5k$4^e6!@K?y{IMVl*UrIf{y~6&t3;W0= zjV08s_)_r&=I6YHE$iA--FpIBcm8oULwP5x%--p&j(>NrMs3I55tkAD=~^)#5|?RPk!%&R{fylWueA4PkBCe8tU&GLOpEN-Gfrn)-;}Ntig;MuKK)D z>gRMKp=INPV4*AZIn9Z=+tAaaYsl)$w4;gTQwqiqDWzErC`btTR-@pWu4ucQvMy2R z9ZAm(Uc{By+7q6pdV~5Z_M{>^X2_!HINAEp+Gr}c>*$366ut<^yhF7N%@PddHF#U} z=YtU|y+{ObaEb$KuY&qb|1jCrflDAd4*y>@T!8;mJG!UyGx zkoy71R;vGiA5)rKuqSbcH^wSq2I^ZH(+AEHFSWUL%y8v*lVIzzMxW{uG!o6fF6%TA zw`t>Fn?$M8mgnmEdep=jrG+hxBv|b|L^OvzjaR>`lKz&OYWSp|utaIYg~6Wn=~K86h&*R5~RtUf{e+-QX!)jQof8 zb19xBeBz#=D$d*7m__lNxk=h`JuBE++6cKKn*X6Wi zjiCwi0dopf!5x!=H*`a%t-m|^GGHAD%o3&c&gh2Nr4a&_s~L#IA4}V7^_6Tz|JzBwV7^sn19VuQC(g^Y(7}zy7hr%IaT360OD%U4VTXx}{%|1(-l^h^ zDat`e3#p#L&EFJieJ}dgl95Ls15rI9-H$lnKhgcZHwCA;2q+8@gPE#GMW$7U$CL&& zjqDiPs=CS6!WnLaRBy1S;Hrvm%4me}C&@F{VS@Ry({Z0D`^Zib6?_FrfR zrKefL$8-#xbO#Fqyu!1R$AVP2Y*$&*TDfDHd1Rh7{*k6s^jbEX+4z8X9|9oaPF&{0 z&+O_2obkQ8{wK@lMc*qCEG^Ix6a@A&NNuT58GIN*2n$50yU3{^Uoxf^_BO@ z94rrA924hYVH}eX;Uk;S$rGrLxe>T@8SV`5dHcMPoW9{EXgF&v|Gd_6$wULljY1$= zM;;NILkuyO#tdMc({^rqXh_KSlq@N~U8@vfHlI8!#_Q(0ZkESG(#0Ki(q_;=m~5l= z(Y6o1n;+Y%VDMfO5PV~k#Pw_@$O5goRo2OQ-jGipRg0XT6TOAwbU`$LC3r-}T?Wf& zm28w2DgJtxzWe6ceFpb)xcZ6eqrTIsDi@*%1-wPArB^EcetZVJ@O%*NgT6uWQBzTc zR{O*=CfuU8XL+C0e=S_uN^Mhgd67H6(gf(*0%Su|o;!C5jlS`kl z%oi^QfPz6)v>F;cLXG6!DVDJ>X&IrS2Qe-SU}`pd5Xu1!fGQ>f~;vjA(!>?;0+E&%RS}E8N zg}2KF+=?_uW1NA~)SKEAQ?;AMj6%v%mZCZ$vE6rgA$Z$EPp%fmm+h#T);Hxxkaddn zMm!X5mX!ONj{LBlZJ)EpJ&pv4%?S{4-q4P7jsb15qHqUr_`kc5JgkuMk&(;8D2A^D z#>DBg@##4PtLf#w>?|1sfD2A`yv7_gE!nqzJ{)mK2H~3c@t?K9-bc{=mk)304sO8; zr6sc!xn@Z(v*mZ7W0-bU!)8HQmW5HV`*|Sb*4TOBzP=Lwpc16K%e8Vnboo8_bW^|+ zJd^h`;{Q$YIM#;FpRO>CjndnLt<*t5u2D8pn(}7uoUH*P_VY^c z)-ppwv>AiFVwyu%;HLu@5K(Rmk)f=1^E=Wj89t>tTo_XBz=|hNF+VotvE6uSE_>0= zvrD`VU%juKy$rZLI_?hk9t`a^`RJwcjz=E{PXG?DJb2!4b8ONs=(1eWJS4?M{-)dO z2J)?)=$H$KhWeJ-0{hC15WUmFX@F-S+AClUs)+edgLK0u~i{!QVLJ+Z;Um{TQ-m=NIEDxHo^hy|1J4 zPV|tD4oRmdD~oN$G)Zr`9*c0y0oyLe>~vU~9mqj}ziwjZqA1f3HMq8a6~A!wOZZef zHOZ_MIS*OxtUG(~G}pTJ%eXBO1d$Whi(a6ec|wS@M=Nhz`j8L;R3r?cGAaxFkQ*cm zob)VgK~G?ejZXcwb-*I?zW@pu2Xtb?pTRl%u*x^oxj(Q7|u&D1%QnE6z2s(ubj@ zMxn~5Xc-c9$!D+soNhm~4FOje^l~>dMEH$aW$l){_$*KQ$Ta7f@fur9{rEINt&)$U zRQaaD$vn%<+^S7O(@3wbC`4h8d-aW2A1#uoJ61twt*VlpMe^f_x&5g8a*2o&2wxp_ zbDiC8Ne`P+nNfji-(I-hAnNClg*2|id5;}Tlg{vJD{Ty4Q|m1ZZ4BWOHGO9)B8n0P z%Yha(%d&Nlgm^1)DUAtC%9cSc(mfb;ta2{&t?XYNg|f(%<^o~;fZ07SYOIwblXM-L z{z^@q(dEo8R?{QQ;G1Ns?LvG<37-nPvXH3;NrAcgAn$2;ppnJ{lI2edizD%MTCz1l zsCmL`U=e|f;~(T@uXdt{w4|1{wWmklb z4e5R!vLLU2Am>iYxp)Z#Ymk%|Y4>olGpeaIq3FojAp0K% zy1oe@VJzg<2OJI;8Ehpp&F6|mBxio%)c6kxTjWnQCRF%yX77^?V^XJO{_C+2zC=iT zIiih_-8v`jcQeDkSIA{QJ{b#W+t|@$g#klX9$SVk8+>jJ9H9CX-5tFv2TYJV#+3gm zvTH8dKRaY^K!RT!y)N4vyBqG?z-Se<7^0=SRmda{PhC1Tq@ig0YWWWrgUw=Y6yAMa zH2)HJVp#)vEyX4sPGgs&pG9k)hM}}S|E!+$wVtcLk^L%L>}UO{ZxOQ^A^Fw&hFs3P zL7iZor(uNK%(2!y_h;Sst0$VF2`s#lyYhYNO%X|*EobvpEztzeynaXfJ6dXsRkruY zyKa;wc{iYr``5=t4|_MDXv_#%(Bc+Dhm1YSt>Yz&dc;@b$`?ixWq&2*n3kGbN-J88 zatV_jMW0I72pPFw<`K{%D24eC8iVuT#BV7m;n*bEb9m^#G4bT+4O6aijb7`1El;*y z&*Dl`jIrR|*Mv$7Qs=AyhyHZg$#YMwXww=m`!g`<80UWg4zfO~Nmuj0*RfV$Ay9L5 zF#*j|77k^arteh?La^54Nz?`P51`WI+9=}lgOx-Gd@>!!$fA+2+tQ6Oe#d~U4#v$2 zFeEh+a>(I{S|)4l!ag?boTq0#>Fg48?wPr5 z5NW$8@r4v;=2swf4Ag)k1rzU?<|%lu@mvAg!R>XZ<|$z5enbmBul={9$g!C;>g&@J z=p0G{j(l_LHUU;^gpycU_yBZBMNMzYVgP*0$f=o}i+-RuC;_mWqF;}3Kg0#9Y&ER< z?4mT|M3|c9bRZXUtOUu4HVONhVXZJ7IrI-23#Uiu=JSoU+x^a{6HMtt!rGAv@+8=E z9#4YmmI^%=esu7iuh=YOQr^yr2JkM>ce+0g2$Bw^y!i=j%n2BIZ2gPd?F$lTpqbS4lKU*F#v#NuUOkpG{ z5?P-LLT$tuXgl5v2Yd3BTTQVw2_qpnqjJIe1^&`nwPM<*n5x0_74M;04%b1NF+-(^ z3Z&BSbyVur*v9^~$GnRvMv=i*?5C}fg+)X@*WNWx!M=Kdp4Fik5=t>kX9iEb0(x@5 z0+1q%+>#Mf^PY~t$kR8EOTG;tN-1~{u(ZGanIQ+r!mGjhEifY-ia;0yNm-@aj}m|8 zl0vO|Q)c8^LSi=E20h=OUr^u*(*3ETF@Bt(AxVxo@<2m|A4HN+n=QGdWKe2;#?{^(uKtPFsTasu5ly|c*R-93`Z zZ2r#mL^r`NBr9{5FRa)$(vdBxEK*I8#iS#64LWpRBeBPp&0j{t(FDXd$KdiOj|T76 z(P$u2+jd~SN`x4YnFM4AQ_m=`_(uGc>79D=TtjWk@-NkVa^;|5fm^7DP2y_UB)vMj z;qi=;@S^%G7)SwpZ~wq2!Yu(m{Fq=boqh=UFL1j9EPb?Qd*+TAExj&0m*xzU#hx6* z{BB5M42Fs@1PbR^N#&u?N@8$WRwahaD%hAEIEtmFxkzK`N%H66J72m_F7aGtHK6DO zz8bc_OI&%f+O4-9Sp#uhxe&;4K5N3%L-tct&I;L%juD8(2u=+ z-{FONUkSSR?{i*}J`29@aRC2J{oMQKz`HFta^ZK>t?rL%c_@pT36HS zNAqeWTi0&m_YwB|9Gb^0d*DG4oFWO{NaKaiSh*#lr>V z3?9`n3O0hcSZpUzJE4Eb%tt%fnN31iMY`5ltpaGB@zA|;%mBS0mCcldTU!6()a4`1k2hT~@^UwtAP={sEwAxU%+(d2`*C0s>*l z8RfJ7J$l{d1JwWaJ7~B#m0mV(5N2UyB3B%a5|_|Ge$vk+Id$;_F*KMzrBxh%7E~l| zZv2MSVQ+J0d8DRD60_d$7cKp^Y27uQK(XC&;tsj^2kP;tV56IC6O!xA7L zMpc8h{$0p@1K|3C{U0xdUf*5|Rpke5G79$C$*vxY9~ua-uuxmSUui}}m*8U1Q6*i& zz~{4vh=t0>^Fy}64|jIX`td7{>fd5PN|053WFaa}gxPa-qi~Y{v{q6@@Q2iP&8f*& z(5Vu10m0e2T(|uwT*PCNW^iB1{9@!Yx!9)mBvYIkc=bHq^&b$)=`Kh&J7L9_#X$ag=rCUschL zqI{EtvI0t7tB9K2Kbo!$cnFDtUA5jiYO`56R&`$WSXabA&`@h9<5*rAhq)_sC6Od~ zGIpN@F)7lX7ap{L#AKbEIUmEh8HQ124h(G}T!FF-dN4YJ*OO`!h4Q7bZap|2kmF-B3VedDJl$HXpUSyNm%S4$_!F7*$bLdbS~2 zEjtwxb*LxCXK{@1sULiw#i)(+dri$DT)L?jNSYm6zoo@7G*#e|KEEbNEeDIyeYt9Y zZMi6s%eqzYz@=(ocjfcy)AcZ4HFkG5a#f+$3sAWbAUu`N35~?OlW{)QTwDpICU|#kGllv^W(LJ^j*Dz|yjcRnaa|lG{z+ELCile$r81kR(f+ zQ>RnsA2h4SMxrJ*WIST1QTxM1{AFA1-V_gf^Oq^6k zU4n4vWtqm;CgCHVitZzAs-C1N)o5~KRI7s*wGTd{udvLB{^xVb*j`@UdB*G6WEUNt z8%()uwkT02(Sn@Vv9`5i?jB!#-Zd8qyrm%_gFyC{MIq$rFzxJ(1Pl94QpyZuHAhJ{ zDM>)%Z+$;&t>sAYemmrrdVtTsfAC{U4C2%d&am1X6ceNWT$tS^;^s_L+4LIkdYSHCReu2Lm_ zTknA)!j^B->>Tb@oW5^fAsp^%wRlnae#4yGmJ%MtM(Tklr+65#ykHm;A7jNPLEN8gzRp56<|PPELu0Z+KaE1*qOc zgkA*H#m`w|vWrG#&o%JZd?9Fr88^-5pRl?dvw7w{Box4=t(3K%Q}X7|1GtVFp#&Jn z=W#^Y_VlaGwW^Wdlwg<~X7)3yIV-_sG^b|xa8*C-o`|U&M!E_AL|7}^tIAdW6h0NE zHEKq$iwDa~f0)C_Uo~QSjpwxk|MUM=bJSDMT7-(cpr#@(5PS62|4av`zCHVcyRZ zk(<0?e%zd(cL>yUO8{dL_LtqzoJ~}bz+3vW1i#mrxpy=|L~baI9BI_7axaD~MTk7x(Ne%Xi=?_%KlZ#t*u0^$*Afq9%BaRLOw{Pe$7|8Fk$y&ce zD`U+bQiZpf5Ms%FrW;?X&o%?h9e-s#?xCr%sa0Stse{#s97UN z;i2++c8Db7$lN5a$KZzB`J*pTYukgT z&S?h*`hy-s&A%v=D9Q?i&{N{qLp4R=B{?7ls099k(ERoFfevB%cA*8nUR1M9xO=_w zW2wfpsfK$ho#)dJ9Sp?rg8fG^g#kqakt~RvsN#w8MQRKK597DkR$Sb@*f1L=Pg3qe zn?;Q-JYlvqJq(10vR{;y@ z+zxvF7@h+{;DJeMaPHy*rMd^8kD~U&hxyHzK*?3!lV4t~FeT#j*ioAFxU*gHrx~zS zQiUEMcCwfj%iNmT)L3PtyypU`a4qjXXZ3<5% zaP?Mnj_rQsKV#pk(T) zjL-(%@JrnahdC7~Hs8sd@*b-SPaplq52oZgOWt*tZr3FAHIE$3oq3R*=GIn|$LG^@SzrZ4MI0%n4^TuVAhab;L+(#B1b z{lg>JS-#_rt?h47fIE^Nsr8ewq4026s>}eQ+4oCobQr}H?i7e$B^i=C>Z9t)-}`Hn zqWvo9NTQLCZ>PfNH-s%(=y(Df0H5Lgv?d#C`@`z7DJf~i{nUx z{cDwqfO^sV?7H!s4GXH&ToP0+wPr2Pj^>r~IJaEw%RW2}ysq7%KJd3U;mUFC6DeLu zQX@&#<9@9;FT@6TvqSpRqv2fKHQmgr6LH&ipngMO7uV0pwV3j^w8ezxq zE5)$iL=Sh29v<tT9GP z&4`A0=G?ASo1eU9EOD`VKTM#lZyMWtn9jmYnTlby9DKy3>BPB1UNTva!-u6-CkX5N zQXS3@gcHxIPNr7cVwG%Tj+a<4dhf^j;@XuWF!l6th}LG#pw1t&H7jQ7Vi7RUD=kfH zQTk{JHI)R+dX4sH3?CWtIj1SZ5cpx=if1G$RhdXfP); zSFN58;zT$K0XiU6(lg+owUi%^X&~ZM#?xB^VX)oTyY>ad2l?E6HgsTf%|zRz0U}&u z08V?qnXdo>#sBJx`hU$q8rH9IQ^mr@HTh}I*Ce~k-J$TIQn)z=kct*nD8C0wuj{Vz zSC*gUcB+vOdO53j*uqEe_WWwpRt;qMW_^+k{VVq|b&QJPY}$HboAoxZCmL(ILzmCDgz?$a~L0 ze;Yc-yRSCMLP&GVgG~mQhTu`vYD#`m*G9ki?Y>ud|G;a;`~5olYM@@C6O>b8{r#D*XC;|7##kF{eg3qxWO2XmN07GZ9R*0+?uLFTRu)$`-F zkqt~n<3EV!*sx{Tf1})zpcsk1L_ic;Q&gppLb#|?&n-ke>lG)sQJZ$)2~Zx{E{^S#uf&n|O|KHyk{1Z01wdt8y#flY(m?#vqE|tEL<`e1E z&Qp5fQymMhobC=%I2A{P-EUT8wZjik(N)C`7i6%W3oO`L9ui_n#bFi4k;oKFL7R`w z>C^N;!l-iiA(dHcl3g^UuC@5Am^^6HHF4AX_q`r4{Gk9LV9vbGSLkye@bAyp+dB@| z5OItax$=iZOtOr61~j)(6K~yg)k}sBywx>*G}uCvxXl!})~z>8XEK2a;gj`8Ygik~ zmUl#YBO2SE>SQ*5r=>(UIB2zGkAt(tWf2`N=_?~EBr5UaXfve^NsRaA<3xA-UywdI z1KUd!0ksYnu>Q!#`90dC=jF1YCn%O1gA+R#(TXW4|4$}Tp;C}uXKmzGgay&+d`E2? z0o(Xm9oC}fq`8|9KEE^~r5y5HL{fnyOwn2CZRg1bV&z^1CGV>G8poH^h58 z0Z4%`F0;>$*Vb<&5q_Lg?eT!rRRM5U+}j&E&AA5NAdu(wnKT1yUyZ&tY|D<+;{Aj! zQDlI5h^G+~hsh)jwh^uVe0+qzDM%Eh62@u=MGc2h_z?EsN#W@Oue+owVRI3 z47aXmj&K~uIcQ}6HAiNYicPrXgnV~XUSwj?%sqC{7!gyFFlE$EwDSakUX|*soRk;L zx)gO+TMb}c-rfI<^1F6k@#n5_04#UW0e(9S06ufUdI5~qh|rNOFr^?Xq9hGzvoT$) zv9IE0aIS-zdyTaFXa|IjL>d}f6u24t{2ZtYv^=L9gsp$ECVFIBvCIW5Q3wmU0fp<8 z^#hVlH!=VhBvfyrCd?OMh5+h-cg_aU3kZl$_4#I5_}(rz1n3!;6sQud_G2d~Zjj%$ zP%~g?79azQ=5npiIj1~>8*|}?|3ko}->jI|@lo_vb7ZTyLdxXeX&x5h|E*j;`|8Gq z+bCXZDlc0pSnCmOnun|wrGXs@scWf;8QOvNvgO>kdMR}JZ#$I?P-y|J4F2-m^osoCkl?sDeu@a0pcVBC%QKQLyu8W z8X`Vl{nhVxKYroPL@Pm9TIoqcn@LVP*gh0IO*Kt5N2<*6O5W_T3a8Nn|J!?l8;O!U zI?nO)gm&>zPvc#NDsi^B#-nR4Tyrgl#pr#14tBKV+tJhA)wY@I#WBmx#2j5fEy5vB zWEKCY{}Jh(b6{ygP2Nb(r+Zn~Rro>*EY#ViLIXHLU5mmSqg}t+IDEdao zmY?jUw{XSr=VdR=;EMB123iVCHc$MH4Wk|Fpm=~4B8MXY4SyRk^BWnxM~cD1qRnMh zcJ1OHeOnCh|GQ)3-QXK7L$8w5IHY+(G4z(nJ|Q+lO-C%72}!8Uy2|9s>2{pXzlwrL z%OLJZo>DkmZa-COSz3q42+WcMZbM1f+Eb9&Z7U$Y$Ni_vtBD*Hm)^_X0N^-Q5dfsS ziff|?xcgyyc>C?7e{buCBN`qgPz0(7QQY`()p~g7+jVd`em#KI++28@04N$dQPiK{@@19l!8ddtq}umIShsM@P^3u9|sFrOLk}ho0H(muAnL|$8X%#ZLr!% zETx(ukXRe34;u1g5iC%Wt;DB7(TC;(tACK{+Y9y&pWR=F=RZCr?C&a1{7aNSw_u_+ z&J7BkPlcx-y84;g4|S*+HLU_G6VvFLQr?#KJdIqho6^ubDlIU^Rl%D&M_==TLwEe? zSESOcNAQX*PlfJ&1Pw=ntYwHwY)j!h5*s_A$=D=}SVuD)*Exeov$ln+$Ns%0j>@0q z%}Ja)dBD~C+e|NI@LVXXD+)XWBY+ zJ|HLnNcQSR0G3@~4y>H<5tQ4kknnn64#InTKNDOEKN4zBaak%CQd$rpmeMGe2FoX7 z1*V78^9=B)eYLURFwoA28^KaJBFO37@1%jmQ5v>O9aXWgr$h4jTC@G%wKm_3`LI=G zAOU9s5kfVs9qvf*S{Wmky7>kPZ^y>QPU`a9)yXqSx5ecjAl=sjpsf9UpBNM7qaQBc zYUmuu20es7l(@S!IT`}_6>!DP8nyZ*V{8cyJk!*`}zxx#$p0wuilR91;J4jVo~D_df&3d^QODb6Kwvh#;Ynnitx zYI%CgtYVhSV&w20iVtk>FvepHoW_|W65yPJ|2zh4wf(E!3`qEAiGH9%6407P-XK3Q zndx^O{u%mlAHDN*bsK4yO5srZbds!L`D|>eF?9N`%a(+L&)EY~2GE)VtJ z-d#HW8DYD6K{U<%SQCoTh6e1coB)`rjZA^wiaVcF-2jYh-T?t2e5VRMU3~)=-ZhKl z0D>W^zd_>U($zoYxdG84uDlv4%SDUBo}$_0$IsTr5#o}nYkOvBp>_KO4t27kMHQ(a zv*YBwjJLfyV8LJx*F|mUW@Ctm=j)u#rwI=t{te zJPK9uw=cggI`*lChz$p6OF`D|?M;65QjJ$TW5q*3?4xT+x6WA^ipjD{_)jOvXG%p_ z%@37>h~OdcM0-9f6%t^ zZt_=0Ev*zxpr{(Y=l)#Gd(sLY`c0klM50{WVu4R-+%#C6xah}I<^Q$!R$*~;QM4fL z?hxEv1Hql(5o39h~v}O9yG~PV5Wqc@QU*aBllVsG>6gJh3tTZ)c>d&U5 zh4`9u7L#HC=gMt_BRa3I+u&!sfu-w*W50A08cC^=Flrj@!dqv?S=Llq=6!N+15l!D z-V3<@u6yxN9fCzLXT~k!Hubo~shX=gE53|7e}3`+ubcB<-*dOlM;;h8dN(Qsh`7bc$hgcq`(){BtkKr4K?5Ema zy0z*cgWZqN(cw7Ty~h{zzC;F7EW5u?%iazo8L$8GrkGnjsE3NvETbw4;>Jedp{M^z zTft;Mn5SJ?3abmR6QTA_u6BBc04aUUU35xx4q(RmP)uXLSA#%iJrhx-5!5gN_|4AQ2mMB$@=ZLLOe`oK& zdNd&&5}8{@^|{_`x}EigK#zH!QehH9<2R7&FMr8(sWCn?7 zD>sf()a(>Ce7|%e|CYTAv1N_p3@mJ5pcU1%J^HDa6~1U>YDfacF#>xJyR9io=IVt! zk`?nBo=B;N%A7!`3hn6yD)@JULe>2#o-FOO{+JQMAJT)6B$$G2dQF!$Z7)fd`|jd0SaQH-Y zB|0m-T4%ph!~FhuHORZGi^hmNVn-y+Uwr1JQ?*21k}4k&H#i;hwfGt`TbU9Fs!=gJ z4HS=bijC~*OVWu);E*b8f5r%KglavY|FDn^5#$#pH#(Jh4Dt|fgim_LmTSmei+AeA z&NcQ86U%`>KRB<2&jZJBIJNYi>4-GY%B<<=WgyJm&{6e^^q5>7YAZf97htt(ON5Cr zAJin$Fx^(S=tK*Tb!c#5&Q~AiM%P6LRZk7&$JqJim9_QD`P?mAkH{#LjOlPV{(UVQNBC|jQ8$6o>N za=t>2cc?0Ze3wT{upvoixL8|#EVUG-ailk9LDN+4^2ua&WcFwF_^%NGQ-PVN@FcBl z!~{f>;h3xv!M|`B=I^RkPo0TmV>Ad|0Zz~SKeasvP5e)1qU694lJGrugdJlHy(Tsk zGv~OJ9dERb3^L|YnL+oi4oPvw&x3E$qiPU%GHP?LKe9HHMvFAtq04%d5lq=JxSo(r??Y7!^6=KknIvB>V_r;Ae*z)p$n zeh~pe#aQd8f=vqZ-02QWU>+lJTqZ&~ifiCKtk=)yxfS?RwvZpJVV~*;(K5tNK1VhG zT5+PPe^u>o;;6Q;jXII@qp&|^a#cr5=Zk6e>G;&6K!2BLk6PWxWqg2lMMu zrHSb$KYU}%6^oLQvjWPV=q8)?fN_Tn1PPdDKK|%2AuXmEv;o#@=De)VS#M*eu^H~j zweR27-aAbl!ZIa2mepgDjFw#x@g-;cLeZ3JOQt1wugN83;@4Yuu&aTZpek=bW zBxGwu4ZrRBHQ$mJ!2(eXUmr@FGwNW7_n5b5wNJqG2A-6ji5%=je7u4rbGMw#qdNLb zBn@K~Dr_V&BU)ll6v@n`=s^WrnN%(B3Su`igD|Y_JY&Q53mr6lP0{D*-h0EaxGk4`my@K_tq`$GJNt3&aGaxIN;-+E29Nf?w;I6Z%( z1dZ~h$Py(~zn+jPQ_t=)i$VYSAs6vdgev68gbz^rz8n7SAQQ1@5nY@YYu$SEi`^ai z*;{$X33tsZYI}OfWboO2cXs=Ti07X|#OVCURyg(B7=APF=E1vr_#*DrnzLBPm*Gwr zpvevH!-l`#v)Ea#KOdEtif6r##iGf_5=7m=R9>m+f8?v5|e^O5J>GYB+xJByH5%GMkntNge1sxNCpgYBWvj>J- zLqf;?(D8M^Yk*4C1IcR8RCt|}+^M5&aO^Nm7hMtfPn=y2QM^oDYWF@xR!O^&$O=q! zCJIy!P(NUeutgu?JQRF~KhDY}R@?ZAH~+hzgH}hu39bBcGBf+|Caw2-9El%!jg%#i z8LkZ-VKTk8J-Qg(k(yHR1sf#+??jY)&1!nX>g=KY)iXCAh+eY;G{$kd2)ze>$qho$9&U4 zrUCFyjF>k%Q_giA(h9JC&nI1d-|IX$(Z)ti$BDQDT`MB;wnDhMM>Xw#lxWt#Ks75V zKNQ|;vFbXG4^$Ho(q8l3%DOQ&d{q6)NG(4tU7*LpT1#Z+T|<@RAzFf{piqIg+|YzA zQ6Y?Ks%-s%x@-`NS}eSu5Gpd!f0FZ@cA3QDB=(cw2Br9Ra=iN6QDPf8-8e$9Z*=lcby&V(mgM8JaaUsO>v@0Wy4d&W~S!3 z68pRIx$=qi%BQnIWRDdtM2Z zdv`U*#&#jaSoVL)av}mT&}d!N@j2w?q$B)c46(V(CjhZbmj8X$CTmqZW2D3zQ{U!( ztENFfrz*Q*0mXH-Xr(=Zv}4Z<0MqyYTX}g4D4P{`9S{%uRZ^G<08L||&)YXLdHg%ZP<^riCTD}1v&n`%=LGwGj-f<(G zf>sETi@g>%D-vkU2w)RayFfXc(3Ax$HLN^?fp=hp8&5L##^OMkC<`#wW(bM?125iP zJl{2hSll&e>lM^D{9CpiD(SX(X)>Mrla=(b92B-h*&Df3j5msP=+9K;DH^pQ0>{Rp zB@ouk`9-0anp^ByM+7Ldid7HdpaQa}`(oY_y7xd&fT@cHt6c`~J`G=qSye5tlK0Od z^@SNoG~^tvngii6GV}?1D2_YJ#Dw7H2;V}L4G^ot@GCd$?1<-aQ7OZFWpR=*C~2Vo zOpy;!C;njAGGaZX9eX}_0{teTz^@5_9FG7PxA^J?LkqY0Ma7-?hai@P=dr4)2NvEP_7!MBY37nb9e=MP zws{^ra=ojBz71p0#g|`O0?~{*LkHWQCwBRV-hS0pC{EJVgZ;^H?$qk~Vp{N0?#P!$ z&uz~Z>33yr?_|R1wIwyRG;abM%oQ>M`T_po+2I!o#(X&+pxDR`8Kc|%zW0W8-6;mc zo8m%z761*hCij{@m4>{0P8S1AJjN}*K#>|9W}5$4Cz&V7SU3}fET3Ak*n!5by#|#| zql8n9o2ec1cC0)}iSXN3lO&}G@h4HICxM<_2`Da}Q+Jn9Tiwl`5s~(rGcp4Q2etIJ z2_TKY?a_P-40eRO{Gz5Gv5NboSP5Bf_%iIAFr18&XK2{Y_!Lf5ZLy*QuzIJ@h-fo) zc|M!k?~JlW#>s@Fqv-d+(xcBob4l+l_E(P^PmI%GYvIzNQA?r;z+Tr8Mow^xzOw?o^Nl+Wp!!Ly;3S&c$0}c1BuwVCkPVUkoUJZ92 z-5;kSN`q>rCR7q5A*#ixf>On} z!pYqQvyU@Rt)#=9X_niQD!U(U7fx>NTmi4*VE7)oYEUXWT?J$dKuUUy3RzA|dO&2_9TP8b$ zZ_7)fvXGH9lT>+)MgP^QMrbH^^%2|r%`<37Q0KE{PBww9)F|&dS4kH`k@fQ11wVlE z_`<)W{PXC1DK+!+QOa>EJ?39%U5h)e?+QVZkQCpo)kAaH|OiyqLTzS@t#nw zk_p$!<8CS#F9AVQ%60cI$|YS;1M<(#0g`h?d8N+&2C*t6YynuN8XtKx(r^CWLVGG~ zZPLWnWg3t79dV$Rg&B`2JD%|H6?zd<;xrBcP5yxg;Ju%&JqU=l-snIfMbcvxXyKMA zmKc4P{cHPRf?T(VHFw*Igp|avB2#2auXK@}y~2siK)~LBpCmAc)LEq|-W_aFuso_$ z6hnnMEMP8x#&5_bkx|2#z-#Kf48kyimt2wH&TWfu@e1C zU4i~>K~{Wth$)we0%De<(YkRCM1*~=O08KZvjZK=e`GgES-fe>jz(jUBj*u^Li7;} zvLDMPemEDbOHrq;8IdOry=pu$CT=(|v!4Dm{%nFM zLi14rJKUi`qa!LCReF~nM;)oZrH7EM%@%5u0Itgjt~M~5N&I*p80%D6#n0H|6vPz^ zw#*q%A``hlq7uI+uP{d^FcyTOJm2j=`s>Q}0P}-%=(l3SGpS#ch@uc87`&M5Pu-ey zoAxD_1kwHZVGIhJN&+tMHORJ8y#f)7F`XQ}0CWQcVjVY5fU3)!8=yF>g1tAp6lLpx z-m)VjNR|MlQrJk57xeV0yJjY;hIY}B30s8#Ry$fRBfmp(*3?~b{#Z72sbOl;c=K*R z5eNbN!fTqiyzFjE&MAHhoP|eB4=|DEb_PSvR{aOVZ~Q_7wHGMpk1!FHG)n9_gZ+h4 zem%b59kJrw{>i-{rX$4uIp02!!)B8NsyYfa1%l$;0S7O(;`?rYOl9_FoJoK1B%X&L z8lFIE(3aPvmtg+k&29M9^IG#ld+O+lgZXp(FM;Z6?jAOM0%r2 z4zfcb(8CE)f*sX#T2M_d3OeVPXRRSIGFZ4pQp4_*eEQMLrmxP09qO4UOQhWT!OVj; zJG*@+iCW^gM)1|Rd8&n;U6JOUB7b94Q%rCrF*)JP=UTi(VCAjk=YYT{-w=#KNj;o? ztB7o)J2RS?1&HNbXvooY8x&#?|Bb5&S0MhG+mrNByyYfcV4+^+rq6L|>3~849Y`e1 z)EnnSRj042%J8iB3xtvi@JTWg=Evf!LSK-sV5x$)D#gg=_#;hhZN3Mf;J(&_?e!KG zWB+r{%p2aJ*-R-G0WnNAH8H^}DU~~ESZ&q#jG0*2HjI_284gXw z)3`;TGo%Q_HGyS+EMIVJK?ey$68D!3J-uf$J*Xd6CLgiIUAJ&fUayI@#APP&h6$T&{`P8p$!Y#LhqJWy*Bz>I z6~Ir1A?g-->#`vx_wvUgPrnY`ZZiml(V}lgD0lhM&q1~3zWT54N!^Q0jKC{D1w$=R zB7ZX&ep}Ku+hT7nu;j{4fR&RKN1SG|sj5aG2OuG_V-v4PTS3F(JZZpmg|`ZMwaC7$ ztH<3x7>xY_wOU`t4$U^zT?{dLIerN|C$o99#~&@_(z>Q4qUnu_^5DMw;=^ks%G zxPO<`^?t5KVzlC`+|k~z?|Rhr6j~nbZslH^+{$5?^P>yYz<8G(Nlno5zNg z|DsGp)5~}eOyGNL)?sY!y|9@U=O6i!ei{qk%4nUU6r@#t2r$sY+us zaOAC7%U$^E-!dU{-FmfS8)A$<8)is?@)O$VKBCRJ(3Ul`fcOH~o6vqw+iM%o7szTj*WsXH!02ipW%)#K zUKMy?U%YOSSU6 zD0G^}Ep$J~eb?62mFq{$!;^4e#1op|2uFUtdoQqRASU}Q#Dn4)?Q{hK1$pj+1PyG$ z4Qs6k2dM$1mH^qYW?-nkv?sr&b;+pY!yayIf~X6&Wam&`7ajV1p2Z(knE1J`DpPM~ z-_m&NZ#r1kQqm3_SxnK)MPzrLH7ZKvnnXe`J?dDR;~Ec}`9|WnOv(vtfP&((43I~j zaKg8)m+uPQd~E*BDXq}}^VDs+NrK|rt0dzs9k4Wp%EEPj;Y@3KpQJ{zlq3h)FsCs7 zlfacN&;AZYLol{g%^dUttrgQ+IY$@qSAV12N9jJ+JwkVr9P~hXEj~MBElt^{u3Fu< z2{8i;$#V<+@>NAf!KvOY+$_0?zLfL2@{G{Kksm2K)T>W(3reGL0$mVXj&B6adc}kx zxgdf+&tmz> zI5_6bjS9c{7>(7mQX|fOZDF4Ee7`yCf*d$XjdYPTHd2ZxB>C{9U{A3dtwS!W{NpnJ z6g7=|EB>!Q5le-xyA7{GXnhM*nGC|BzJ#actB7fu(G4ik6o#e#Y;4K8OW_~H?UUz* zLj&dSdY9nsB=aWo)|r{dpS_zTN}e$y5+6#bB|&X^Nx9jF6Dhrj33}`SY zY0Iu9jE5^%=8}8ev8N~k=tLJVH`H|j)0m{QT+3Rr`}f3Q$<;!CHlONlYVzpR6&f60MgLMiT=YFdp$%Aj z{ANh{a}<_4vKC%OjQ!*H<1cy0R@<=ll2@f=Xr=If_n`A5dbH*!U8HC8OWNaIGf7BL zxg@7In4@WhBABZMGsCUh{wlaVDTya~VI?CSI)9mH9=O^-;Hb>qa`6Cr7U-$H92kL( zf=ttdh(kDJ<(A@Eiq~3d={2t~7sxOf1Ki*mV+8yErF;me^({4%1>lS-p*bUX2J9UAWV<9u5Ln~I>1OZH3K3c@KBx8f4wuovEtQf5j7JBYYfr~ArRx#sCzF|l zN^c4dNtk<#Cdrq+`f8@V50(mAE0Rg0Ha?}94@dvM1$*(b;XKVGOLa*Ab0l#6ia6fD z0X7?|Z9p{2DYvxog| zw{Ldxjj>VObh3I-<-ck60`rCqnHe=kk--0G4G%n`@8NrFgJYr7DYV59rgVWNs{ug@IH0Mm@glg5N!-Y6jMWbetwtBSupiN za1pv$?c17WxLpj6i%+OgU@0d+O-}5lGaZd7sXmLDv@B1-;WNRfDj`bzYc=9_GIgMK zfZ}MK_z8jPpnE3E7PV-ny4zNO60w2H+WI+xVL}f{UNpMW3N+l`P-eMZ79CIhvyko$u`tpxL8M!9qUV zLf~+Cjws&i0=kWT;Rlg#O;-2NRFTdujr@K7kLzNaPu{0n9iT^*0*BZ8S|zv@eB~_)~m@=wNbwaP=pR3(fS=V(gF|l9nT?#Q;ViSEYteOzJS$G!f}Q` zd1!lurup#fR78DGa#vMF`lf%J(RHZcnnac+^=~-5MNX=bhxb+zY6{)r&4LD-i&uNM z#lW+4!Z{c?-&t0#L5ax}ce$E?2PbVn^$V;J#LdT8cN<#uL}U*1pry8n^a%sz z%`lkSnCG5XaAThkDD$0qH~7u66rPyjmx2nMoQ(;7QCL0XsM}7(F@u6#-;Q2^IGW0w zh+9P)wi2Vtxy3safOv60&5h2}QOtIlh zzn?s_IAd`YOk*@^+!fuXu)31?jW_h#3t#EtGdH`Wqg2Q9Qxf669@O!uwXn96qz;0z z)e33U3ny*TF6N?_^Jbj6{>LZOt2kvLD((9&io&>TLL7Ox#igd+kRl8^8UV5x=l||8 zJ$;{uMSY(*_(=imev9!-pXX^&s`+c46& z=~a+Kv7HaWkIjbE&~JY-7_>)Z4)Dm0q#Wc)Cujyy;!JMANGFT+QVBRnPkw^_>Wiaz zZWo(X$wYdE+8>onNeu^`;ndRAUpArW<98(h%<90%j^e`qHb?N|lvsmlfxHpuqS1g3 z5ny#$tSUhF+TK*7ls>A7XvRZ3Qn)^_!;)3S(J}80?zAylIx$Tg6zGPC92jJhU2kDf zuDf^yM(+rK>fO1vIlOMb7Y#6XN;i9)73Ru(muZzzow0rzs52*x|g^DGShrjVl1$_$T5OI=eFO$PR>_(N-7EjxS&Ej}hZohI+hQ{Y!kB`sm7(7#_FSzSBL!c$-< zG}&Zf((T&l=7$UY7c^c6OK4cq*kD;!31yl z``HF6P0cpN_V7D1E%%QIaq$Gr_D^AI4;Ba3`Ih?jJ+#!)AAc3_yej8SY_EFaNil4P zPr_A--0uBc&g`fsBV)@r^l5RaZF)Wdhbk~WX|h}`SQV`&Ie}Z8i3$^$j;r!o=l1BH z=W)8uzusMmYz@ONO2r?fVZb3c`af*q@U~Mznn?Yv3h|h!O|VJefq`n_Yj;wf-j9*F zbC##J&PlU)d?Y$1B_|a^0^Styr zNx4Z;h`$G8ONGs9dX`d|22q#sY<9G2b5!N&O?0rSi}m0W!a@ej-jz)ebk~)MZCrsM zaJwV6#ed?LIJJw34Klts(yuKwqU93Ox3`bxj|b;f&W_F$(WcN?!9^j0E5v*$MyOPB zrR17D1+Q5~66-$vN`~B+HRu>o4>&*kycjN}+@49vxahIIHD-=KhvraJV~er(Nf2| zm5^oG(~FSbgtHtCq63^^Z&{~#A;;WRcZ>6+YijHSV3^3JtTcQNuY}uf;krKGh?%6Q zf=a!)fSFd#j4RESp+?KKNAO#C4n0)+PK(S=L2_>?VR}Wcq}Uugb7~B$Z1ondmj5*`PgHt zFpqMByj6qp5{~QO#S2y|aDkDgw5h6e7XJpelE^D;y6r43R)p;=PF5tL)pgqk9LW7+ z*Ou*5>*Wb1-phJLg6j=V3imvHZo6&EeIf%26B7wooO$w8gM)3aY21Ptg^X`jG4lHw z$U6o3Btg+PT`{%=*kkRzfu?mN>L?HW5CgL>1Ta<3$>QH?O$JQ3JtS2kEcD;pghG8Y z7&GRfDqbpO;y^%)Hdr2_TOYU=$XOE}>gv2Fn+xX!yo4ERNgsw=rqm8MjF(w2wYMeC zCVO4~b2ouNXTu7C=36=&T3+KbUF(%--ic$6COsaz2-Y=W2qXW%sHm3$Sxp31B%n`N9=_F7Ev|26h;L z4JFWq<~TiyPEi%*0taMn*pq%ttS zFRqq~EYuJtq%K!6Z6rZCZR{PWn2_=>y6zg`92C@cjlV9QHgb^&rQ^WX=m`oLmt&!< zMZ$*Nh=9Ew5~;-0xdjB_EXPSOsH3Nb<@^6yi~qg*BY42q7nLy7gNOamNo_Rb%{&LE ziY#DzoUTFW!s;c-xi2)g0zx(H+wgGWS!fX$D&9r>8xzx!kdO)gMkfCwgVnS{A$@%a zI$q=VFAT<|X|nC!&@84!C_Q4yY&ombVb%y%S7WZt-CKlt@G#c3b(bAZ)vOxN>KYSL z`Tcx(E?<%+AgFe@e&e}!giM|*(&L!(NOGFf5p7Ao{d$Hv;u{?XXF@)nf45e-)4;D# zq;xEahBZq{eBa#q@zD_Iic+j4Dlv?&Tj2-cR%gLX*m5;*$aHsAu%b>%Lg@N+5d-PA zrH9`yaasl-n0V`M`FO|10Zsh$Sn_1VugQm9b$!Ydy@@>g%vqu9*TX9N!) zmcJDle*Hf?Q^wl+W#dG9AAlIZSmX{}B|J$17WaFMcm~R-CZ}?Ydb3LXJPI;adUTqV z{MHz=cKm)u!Y8zb^>6N8Nj=zlF$v{NS&gBkLp5GFP!Um)guf9mq(icBG~dygTPhm z22y5*=GD%gy9rdK>6#|fd+7h3n(t0ERr81Qz-|*Tlth~$Gtj?i z@exB!wNS?|VGzFh-r%qX*Mw=y&s1!FJS;7p43`Pfndsl=NA1<;ph^zTAfiSoVfrRO zg$YNy9-+tO0y=VlbhmEi9r)CIss(tq|Cd9|h7%0qta9pT?FR-zmYs2Ml2-C(_*B%E zHor89T0)|b?Dr>m3(|i?p_t^-adE0y48n$Y(hJV#yK~5kQovA47kp;5e`UIYwBARQP#nDN5B8`<+Jh$S z)PlF5h*gsxlIox8a3h6cn@-#?X~8I$hYdt9*~HGY2`+x43d%}4QBg?q|7C}GxdQ%N z3uG_T0XHrnYpWf{gU*IFP|r6fyYjU50>5c-$5)hGh$$U8PazmQ!~KJ_5p0X8o<|y5 z$1Oh&ijHWBsO6|sE+3$zQWpx4B6Ml*Pp_)3lvj-mi`dgjh|6L}pZSg!Hge{glKtf5 zU!6{3s8(sNB4V3YsEhbKCXy~`E!E3%@itpS>W#9Qb8Hn-3kz5kY}uHi1^F6i_m|?i zJ5DutHPjVyXLsp64&%H$Zo*fDebSVhROU~qeQx)PzV0Jsv#MO&Z@T$iU5j0markA| zeNLUjByO$wTB6LWY@c5GHEd%)wtogSjc?Urp~^7j33|T-*5RYU=cNpySE)ITBpAjV z$4Q>wlwOWJ>~ZCl7kC2aE}M}j!8hsD`j2>lDPJKAm-}#IlJES z-W1Zl5-&6OGap?_Z%uU>i_V@X$3d1h{QIxMBjXQ`pS&9ziZgM-37JpV80ez82hj@M z!c$XczUC*R(JdBQe2{W~VsFActy^8SZ0MMJ$P}{zZI9?jWRD=+RA_gX|dRNl|cm>xMV=lZb|tLu@)sWk1gUg4R~3D2?~4^1S?l48hF zkYZ>-&eE=f9rf(*>D_gG`3nlSjNfAr4@~b$O^8C3xV6K-Q;;X1Gvs@JI(O&yvOOxiOrp`K~R5^A|UM;${mKjc}PPx?bd!s<< zDJze08pWj3cjx-%Q5gJKy=f<#R6G(&!eAPBc2;d7wN2b`;xwxwSHCKzSvao7<|?Xq z2sje5cbkXcPJanb(2idr}+r2iN`*Y7|9Qg7rp{8ar4aw&{?xt@bNmnOa z(L3CP*79u8$uq2@)P+_)CzUE}jKs!j21(B5)DKd>tazFHG_fK1%y=gJ_9WT-^K5e7*_fu)Kl$-acxpI2cMBp?)I>8uQj@H(Kl_Y zeVsAz>A`gEDb@FQdK&v+z)aXogTSp7{+;?k{Ok!=TwA!$<(YEl<4M_y{YmXUpKZFI zSu7V8H(0}h|Mw-$Y+24<<(8qdH~)UdlE5v)xbw*^b*yeChC@@-z=>_lAj@dyVzVwe zxx5L}OLuMePdG>2lBh+U{uheoCr-W(Hj78((>I1;`I(LMMS6vEuhZJ0N;Bl%e0qPZ zZ4<}Vh>EYkzQ`(ZNgmGKYKZ`e_jSn=O?x$BOdZ>WBc#}BUBN?)WrUrF2=B>yj+R?|KP7qe%3l{zTuJh~VggaO+s>c)8xu>sVJ^9Bgwl zL{HDCC+3q2t}SsQ;EvQ=rC6+u%q%V7dkmBN&9r{{p?Cj|+Ig6i8y*YndKdq$RhiQd z%!J=&C!)CxyX)>bc%)T{`lZ}>oL)A2e?o+L`Mf!Wmh<))UHXm`&zs*B0HyE!jLdKD z#$vRNz4hBRwTXYd$;mV7mx}{#oz1t@U5`h`myWp*Z; zo-fFIL~`}1_4&&3)?*rBdV@~ik1iv)A{aF!Yr3Gh!q9n3wzh`u3oRIZ$%|2ns!pGi zZ*JCh!Pe4tb$okAGtt$L2A4C124}=QtMr(Wn%a5gwIEzX z5%#fF`Q%O9-Q(tEyVn(c+Su4ks~iFEelZp`o0K;S_4ON?rTBdlWo5lgy|1Dr`rtk{ zkOxJmA2dIyCCwyiE9%+o>!oQmjec$#4WIRBSzER4(BE-zO&dBkZ|p#!f4M9H{%?aK z2yK@g>yDdRmREM%UDKM<9Fr1fba;!Sr?Y0JY2}s4)=U@XUmwTmTcgp2sbcD@&QlgG zV_Tw7TsJ5-C=C@C%S7bYqZO*o-wR)t`55>QA0N>Bx8JR;IFi>MHxlbX(nNh<{uk7< z{0}Q?`C7(kR>CoZ9HU+9D!)`?pX=!Mjz<~x)I9-xpr;`{NDu4$lA_edN!H+3s>obn z;g9=m#s>Av|)XZvxRI?Xx_Z0wVFBVOz(>@IHZ*<*EO;Nw`n zR~f7b-+wEenCy&h2J{Q{XsS)6b|XLUKUIwNUDH$OyzyFC-E;8H4L_EeYjY##!`#>R zPhM*_{$~E@@%n%F*axO5VfCz)7i?QNC)Vw}pHyYPxIR$sZ1zcdlji7J)2_ru$4mFH z6MD|*_8U_wjL%~J6vKa2q4rhd;=fFvn=|&)lhqw7w@h%u!ua?_eM26h5ZWz<_+Tf* z)>~rjpXsb9&wRiu5t;h7jj3?AfZerKcp|f`Nx(2?=M$Ix+XB)?ipD>DhYs18m=uYs z)M5GP#9^Y#enJk)NEESODY^sxx64oh&R?f68EnaW40|PR2{I)QO{C;J^`d`%TG#1A z)_rd_f*&wBg8!d?{S0#hk@J5O+QF(9;HiG@iu-RpK;6DVrvC3NU=iv6Kl%UeMM$30 wdyw_V`R`VDJJ(`E|93Y27VH0=lU)cDC#kd90fD;m%O94PQIW2cGzt1Y09~+#V*mgE literal 0 HcmV?d00001 diff --git a/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/demo2.png b/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/demo2.png new file mode 100644 index 0000000000000000000000000000000000000000..6584d2d7a5809c148e76a1914885964d2fde6655 GIT binary patch literal 81674 zcmeFYWl&sE(=Lj;dvFO5f(ILH@BqOREI`oUI=H)gAV`9{ySqaY+%>qnyWBnbPJQRR zw@%glckBE(sY)`nYwy{;dUZd~)7@*rloh2h(MZu?U|=w1Wh6hsz#!4Wz`$~$AOTle zvB}VZ|M(rHG#x+LnmD=`*c-zr7&zKl**aR88&W$P+dG)s+HkS)v2n6cn>jk#IS8<` zTmSbBY_|5M?2Bk9A;6cQ+R1!&fPuj_fc}Lo6e%!=frWvQl@wETO+9>aYqb9Sc^PwM zG}+T6QNl|VV=rjNdbUEs1^V^O1!_lCCI zXxW}r#=h7=g`u<`sa0Ky_iI}|TaKK0`b3^Za&9lQR2B+6I6A%PXSChu)My_}wT@0= ztEeH;1mcLJ{P#bMd!BXNK+yB7>}h5wyree@{VWsP!vgo5&qKB(pAnFHw@j!b>a=5my?&a9Zp(* zjgI?i;+yyEuvB-yq^W6de`MVKkn>^=)cK|iUtv|~7pS9~oWC$@2kQMsCw)3(3dR>X zg%|N{Ic_egc`4C*vIzY}-@F(xD5ralr{nW==S6lixZ{1ivp%D3+b6hkr`Wp1YTL!QcuMM?f*`4`$75f?HWvkZm%dxI|laDKZ(o4(B*O`>u(9+Mp7p$VUucDtut=vYr4hSy$Y1=d*+PV#DJHLuia{Kei z?(z0a&aojdmKoE6nkG;OM0wLVu=elS>)L{~Aa+k0@52Faj1!-i2hJbzr^b5M#*G&v zg0L_HF;oMefEUPl0#Ao<0e%7&BrX`MgUNwgHR`$J;?2m*%X=EG(YhXg+|bq*b#h;R z(v8WtAL0l{@|>2M;N=~#-k&I5quU#67|0EZad|ypRfJQ zfB6QwLqgY8F?~MIqc5)(7Z=SR4CVH>w;6Pw&yzNS$!t1-oxQ&oNWaWwTubuaOA^@e z81+~VV84rF?*gs|_t2!D1~RT{cyDP4JS=(L{Jjmfy+!g|DDWc9pJc+K5C|N7XdUel zTt18ba&v<(a)y5!IeLpBU+{^Am33`9#kSwY=f=h5x@jX?@U%Lq4Fg!cbjQj7bUCxF z+dO7J^J`WB!%fJ}B>rdHfZ# zdN^Nm`#a-N7RIAtv*XCxwudYI48zLGN}ro_4SEy0-mSQmjZMCnNzE(Wo95YncIb0- zb_F1xO(eAwxU6`&?C5kn4t7NP+$+5>MN0u`}v&{csv05?OIy zT+v-+G{8ZEVRw6K;Q74c1AcxSees;V1MfJ1k>h_OOzshky3f>{n)+Ouwk#ivJ`Rnp zj>mX&BL%=xUL+5!cD&rYJS&3*#D9Us$v8yGVsWZ7#;{&%kY44r`<0~S<_?6!_d1oK-wecXZQHo}oN;0Lkvrb^H|3aT{@V^77O%;IVu` z`55nWu5`V$BiOznc+~LYgf?D{ zc51KOt3y8kByu-w+t26O!?&8!ahGz|Bl6f|H?k%{b&vDBU-A6*%SE){aVON3J^Ud) zHz&^&HqCnsOYR3{|E!Dg+@y1zOj$;NnOj)sCid(iUd7M2Metrl_J)aZpUOEE?6?rT z{R7yAe$9_}ZWl}{gZVn}P-N6?#6ek&@Oe||`RnMc$oaRJ)uvG|wsdHwM%jAOscUGQ zoyGW&|4XBJtKc(Nj1%GZOSuk$6Cn3b(^l@%T=zd^gfH5(U^Xn-qoqormtRtu%yQq4dX1|2Q zGb*j8op_oucHTa%yga#1m*@s1wO{7_`vAP2>OPCA``?B`pD*xQD1b#7*^$$`|LD1w zZWS>fhXejWi!`y!ox%y3X22qNFNZupy6Z*6V8cYoj9erU}8@csC#Hw^!NX$O4ct@jd^af^zW2~DTede|`l zC+VM_8wZ3HGhQBdd?pT-JTHdt0~v+Hb}rmZA1=~wgoNEM3+t_0b|4CqyPn|L(U-^3 zS>o1JMDqtI3GD6f?=!Y-59(gOOH(XJ8jC$i04vseIq>;=0Xk_L*>QN<5P3F2%slZ}c~Dim+WZ|4xaV=e z=h3_34oGd)gXS6A=WW|#D-nCP|`q zMyTfpL{dZhRax3mjL+i+_VH%#}BSfXByfGsct)w1!jeu_6eTnMIKB6vbn`f6>_tm^?JItec?^N8!}y= zt1?Qn^d2Yn0>VG$?s85J22<+m~jE z6(S)7M7z@L<0`U9sFLS8{w)AC`y+*Z_>79HMM_@#0Z+eBXdW=EMFD*f8v%bLYM<9B z*({fH+flm5vDlYckn5?wX-nwpuWxi|*NQN6z#pgQF8#{E zTerewF_*)+s)xTjBF_Uap#X^!-d^dwI0;?+82!hzKvHZ#5d)T*HSyv+se`;tx8mXo zbLA8hCKjWR>S>&+Z`S8&cH_5__q$~vKv$JsE|t!XT{_4{y{~HoPmV0xw=GWre#dS2 z>rAG5+fBSamL=hO9-k2@avLBb^RVQ$lXhFSa$ojk*7MMaYO!fs_+}{p;Dr-+J-~@> zV;N*LU-_m)0on5P1&Z~@O*`oi(P3mus&^}O7PydYP2{5?3mZs?#m@xEy}6M5NrLGaDh zp#2xbt}`|1LH_^{0BlKeAy=H0bJi9A8q?8yOSn!`uNl*$=56+ub9R?nv^njRLXAM3 zr(-0F`Py;|! z?ejQt@`$xiui(&ovu>{BK?%Z1vJj;jrYmTwUD>D zIjU%({xcArehnQ@M@9FTo#jEse#%AHE6^Q(7w%d=FvO#_??$wv z)XZay`aEBpCHdSXfgtM$=>S}=L6s#mMh&d3j{szb7AGC&%pLwKz}gRM^Pm!D9o~I3 zFcuk$CzezOrRmi3GKZ>fQ196uS_~Ppd(4Y8`>3h?%bgV4_E#OJ=pDW{fSI?&758t2 zPTWR&QdS;KYONy}Mecszc(m5_vhPnT0W!jS;sCs_64MRTGjIP@F91^j;-@D4ie<_v zs^g)h11dthAB3-=fdti;diQyH-7cO3F1a4iGVOH4rTrpaofTi4O}G};93X{j%Gt(UhPe>nQ4cN?S^YASs2*|m>Z*N@9|WECpd&Yo{NsQ$?js6>at z!u652VwymZ$kU_H{3=&D8ay; z6qc5j0OW&xGai~UdUiZVcJzfP;ZgiArSvYP{^e~_>n45U_D@T@leU|6c&b~N<%i{) zb)UzW7g(5op?~tUe9{M1egz^=d$&-Soo&CaYg`K^8{<}J-k$aPJ8J-FbEwgf%UzWv zAW?7qsBU3_ZOASD0lgPMu3LDat0JYo2G7BUe*(I`q2cUXj3)xrn-Nf|0(n1z{#CC7 zKxK8hPTWDVa^tlUA`L$OcKdhb>C59YP(FHlE(Ho5W+8n9>O|~xK=F3STsWLGAF#D< zP@Ht8EMGFHss-si)afnqEcd$hkS+T*v>jQy9y?@29F(_U0VR^_2H6Sz0ACepYHRm&-0{62LHESHjS_g) z8y2b|1ZF*79#&#(@AGZDH9Y$?R)J-`zJCG(!mwfO>BL6_%G_`;&|1Cqx~`({#&h&$ z6-s>20@cXc8q;OjjdA&^+$AsEXotKVsP%}UD~NzrMp=`^g2fa&R8yBcOQ?q1UPHq;OY`!(0jLx z8@GEXIvv#jGL_xuZt&`-W%>A;T_KdLub=>ZrS}-&lf|f*D)aDkIQm=)2H128Kt{`s zm06>K=)DNtOIk0$$16?Se_d9}pxlzpw`3OpEbWV)-Ym2zn>x8mKN)w}8OeJBdIQg5 zKzb7I0}BCUi`N>uUg3%7jv%3L`<{aB{de#uaT(u#%0&kx|LLe?<>VksBIFY43vU3a zI+g(ypY{YSn22@w5h%vg^iKVWccE&TgJieAKlq=z{s%+kd>Nzvun0915?`6zDb7bM< z=1L{T{d@aal9A^#6(!bo8T6n4``Tc$KHuawYix+2ayISjuaM{m*MUZFW(i zC9(F=o4TN#RdNUAz}OOeXcq(rXtH2Kn=InLwlH4^+tK!}+%ql@^qvQO+=^_!;fP=V zYnJ@SZGyDr;>%CRE;>4PAJIzfNbT68apm9LT;F68V?|5>*wu8)cw zwpk}@^L-|XHoc~MZOe$J2)5Hh->uPqYaGqJJOfS1f-f-Bzfj`9 zPo1#rtqE6DG&8k;=nCeVyMMx(fU1zH_F?S~#MCy@V{|3TjccHE{{04-K;1tV5Qkc^ ztB;#Fl1$M>KH$rTFwZ4ZiXT~os^V1aHjzFx&JY`Z4$H)pdb2MvP@-YQw>W3x4AX!5 z3tsXP7VEmXBmAwsv5IU^bMbhII|(*}CPl^CLLL6@EWGMOPbQ_fVPDFPflWp67HYQ- zylxJB2_`7@HhsXhO=by?sP(?o}g-ixG|YadJ~0dgObs)DGb4db99U13T6eR zuJHD7s%#i@YzagcTG0OwS>fVV!>!X@DAKiWhKbA&!m%4QR)GY(yQfKD!D#$_gik`0 zZRMoZ#?tkxNOz;sNR5EM1#2Z&XuVEU_vKX9VpR1hUkbtV?q$eYRJyip(h>UXaBCnr zt5B3){>x&t1booWScPRH+NqhH%?{;~^XSUzW>bsZXj4maWFuVD!X>?QbkebQsbB?jS`J6~wW8EL63a8o>gH z`-86M=4HtEEx(XigYc3YHR&(OUbRTku?i2!-(b>%cuc@*U^_rXDlL@v(X;pQmGfE6Xl~c)fvLbHX@Gf|LpZvtjg00w9Fs! zTOW>*?eT^nzB$UaihmJ#`pdK4!`WmmIrl{nOd6|PsOy5qF3-?duU zNgwGLCb-hTs_=*WL3MYEDlVp0q<%MWH}3_cO8-%TNU-3jH(ZL~PEmvgjz-EeETC6^ z!H1B_uo1hfz2Q#BNaUm_2XddYP@3eD0l+UA#1P6%I5oc;exy*<-fSG#Wa*RvuAt)Y zpIZXbOvqfUyvb{v1$(azxs`ptdcakYyobe(DKlY?Tz`~KC&pHKxkcOXGozN~`eKZd z?LaI@)&Iolu7=%K9FxO5tG|Gaj#})ZVuf%qlXF!CFTQw5rKp8W>nwFUXL2&xjAJ19 zTA(29Wpx5Cm?_lM*wvbhLJ4_lnk2xToI)8HrSjb+PQhvN#^bg5WeIr1CZx$h@PeXN zXDk-S9u`;Acc`x^`Ht{_8s0bGn!|Rd$Vg62rRA-&7vlL(et+F*i7(R}!j9$L3tw65 zTZ89QqOf;LM>LWf9BLP`udG2yZ(D8SVc(l9=y@evZ_q!bG!6k*MJ$Gp}$vlDpvqYR#;r#>a@xWyLAQd0~J^fb) z8v&ZHs6;zRvz@C>U(ZKazo9(?D~NxVmxKW)GQ+b)n^z}lj#IiP^w__^m>dypA7M$t zm`3QzDawEXjkHhJa>KpLiEgYV#B2DLZ}~}A^tVkPUb?h81`c`{|^ zA2Y&`q!|4PJ@Ft?<&b(rPqNg>dh4D?T`B?c*1ENV;<`8DD2jP+GU0A(gC*M8(1`g^ zH6Bl-B$XrNZi+167z)1-F)(7`EaFHG@{4uYlVFkSY;j(go)W*D`anjTJSuq>n?p0$ z?owH%InNL!DR)ySz84aLsn0OMHDhf2{lt^aP` z&1%%e&hd)lUX3cDB%IS(l%8j%za$x}07i$@mYC?V_@i2-bRlgz4_E3ue?ZwhL%qpP zrt;7N|FM7v7=x}3)nPS5B^qHe$MWCSi;0@lZ%2Y3{M^!+im`EKW{Z?7nm7- z@EHWFqXta=3@Tz&D*7|aIVh)ZBNkTzlv3|VY($>0A0GVT(EF$JePEz?+nI$FCntMk zf#FV9ilG7N@sl=~O36+%U=z9y?+;1VJs`ZO56hW#fD=~(asY<97)J$!u)@#y*07Z$ z4_io5qPm*_22@~&H=@zE-fHI>e~xL~AQejAth(!B;!Ij#S^!!65tDg_i5^!0GlzS| zAu2gmaSy6?#)y9==y4BkC(GKo#}Vna8p!MWI<@nme&zvWk}D(G8wej;^9^lN5&@=; zLU{-!7&X>9`ZK!Vvf5qnq#HtF1&TN!5tk~i**9V9MKoPPC&Z~MlG(DqzSHBRfRhCk zttIzzDxz~pWh zE5S@enlv+OBFW^UQyg=FZ>%TgX0_0pgu}ZUA*83}an~$P7>Rhg-QPG0IcC~1Zj<`UwdQHT-{qBu z6?Lt`a31>N2=Hbe|7?IZ&VB~-Z$*EuOZ0q=iH@#M$M|lD5(7C<-LoY&Po$Jy4 z7|Q{-QS)*=b#--^QRe&yb*$8BI`>%N}ep9sp?K)cjdmomlL_60zl*Hf?5>+{~9k$nG zT7A(Pg|{0`m+{z2M>!LdBGgl4?uJ|#rb^$}AB%0-1(47P z>&{)T=H#idS~khgjd9F7FdB~1uD6Zl$q|+xYS%fW$Hv`t4Honywk%SGe2|@gQgCzq zj{{0DWYhe;xguTnn=n|4(T2(~%D-WvlE!Gr2H4FHEvzHz+G~v-2nRe!-I#Z>|$#q6*xR|Yl4&}*?O#ZZSA#WLI-~L{B zqwYiN3qmeJ2wib`BpNwR?GI6U#souF1^{3We242X5BV=}H4sQ%&yONID~uX2R8^?r zvaPD)l9;@2+}2P;n$u)B(Qceur?hI+@k>OLgsI)%C{)Z~Uc%Xaw5X-vVajmo?DsM( zD2ck{h9wN!_~E-`6Jt1T@y+!aR9;l9GV3&U+}vL{E3L*{yU<-m^-QCVX>HdSud~?TCA)%@GKAB{`HI$zl5P0& zI{vl#g@eq^%oeR*J$_hZC}q!Ch!xC37GS$nf{=jUcE!^k=D9+pV zj+m+r`yf>Nrp|GB4JJI(pL#yK?@OcjU_^RHk(*w0(+D(4e?BbZx%meeXQ9Ft26~g9AwCw&D<3AAh<*X-*1xsFZA^ z4EeEXN74+NTCx6D<#=WoINl&Z2DJLiuV1ZMEzxxv{V!_+7%-QLK; z3;Unt(P)#8SoUyjxUGH}Tltga?8S1W4w>vq885j9IXzP@IUKVw7^1q7a2!Wff^`Ql z5BRd#y=u#(C%MOx5uK{!B?rq@2a#TvuoD$Il8g7k;gT)x<@9MfFBGs?PY5z8W-lCh z^OTH|D;|_`2y)MTNlQQe{i zhJ`X?kPXxdY4vyI^(0?wjE^u6ZDVdnNl)H`41b%n1Pv_3;rJr{2}dm88T$I^0?m&F zyXgeHE?8$b)1%*!RCdenuuK?Sc^lPK#NT3({gt#Z+aS}fl-dS1GYl5YPIBczqUt5j zfDcq9K&_m*GT*yb_KD`rz~dVlY(WGX6~SYrO3wMtsx8Y(Alm>Y&I|z8D*a&rg9H!>r0cuV4)k(_gcALol*5R6BeqPna~5rp$gi5j>kG zwJ4y9Wk;fK+!zg12RErLDO%D%=OH$P5YEp5>&e1*YwfK%@VaF3;9JsV_zMPtIrHRK zsRQhJf$#z%4-f6>ZYoO>!MPr@7E+s&nI-NnrpcPF=M4 z$WeBcRkxffJ3a`DuY?a3M2>JI|^R>EG@QpGTmv;l^H1 z#E^3rO)B%$QX5G7oixMYX=nBH5+#2ct=^@(dup+U ze_Te6X&I03`zTec5HZ0;zgpQJ`s- zAp8eh>lU*IS@Hvf#pAc3psDii%<}OHkK{;c(YgSShU3nc9SNUb{_%s!B?>Pv(4mB% z1m^39KB%2e!jn6Vj%yCGh6s1iknaBL(BNH2eYRUDsO> zmp)C0ymFzndwaUJ%^47ojajoGdBzVY8J}LRD$M27tCMnxma~(dY z-JYWViolHgXMZyVix`>Oh-nV9T5xZt_H80QZm0S0p>unnY=iRhCx$<9~stCWZpPMN+<|B&i%D7>u@;5{ud8pZjFW$p0# z6?Zzi26WQ4xzE5NBizYT!U(`qpJOG`iN~A`!3A%rQ{niJIv#SX*!<-96g2rmxp1}+ zJOzphlZUP3FAaCoVsiKuAct#D>xmENVey}n8yI5*=3|;7x^47wLkT~C7JkEoFwAC} z3oBZ$gv9SCO(3_6>jM%vv)ls1L!wlHuac8L5@P$x`jY`~3i4XjWXWXEc*D zGqv}q?2+bQ28g2!#_@ngGi+_H#zF!SD%Tcw*dnE2V!Ks*Ze&s2b`qT02&e3)7^A-Q z$y09@nhAHR_q_bb-_R^`0)S(k?Pc+eH;-+}4a11H+Q9j@aukG(XOfZ}9`Y~z!F63o zEGHH^Vu}Ki>}qP@gf`!Cpz#oD&)v0 zXqEXmq}a*vnhqzvS`=LaI1m;B;^4>FLAXg137Z5uddoxMf^>m8MHu_AiNSK9YEOb3 zcQ~=A&y&4UC|){?`F3x=)x8yTcZ=e1ycSg)=|7qepFDs43oD0+%qU2kJj?vAF1SpF zgiN2fyvg-x>=kb9QpsL!h(?IIa4L3=^n+FoK;tp$RXi(S|Ldr~1`n+P_rrufqGb*| zz;G(RaTYI#tPePCy%@*!!$LP#w=G(N#08n*#S9SpE#W9ED^f~#8R&E8QjOdU0`%7; zw@u~T+JkN)q%3)@F#nSKx{6H($4{w6$=ae?=3t5<09`SIf_VeeUP2gr+$4UuuCA>B zP^BYE4CvMz)Ue07csBQAl+*U7@?J^Pga*r9?Au}cpwyVZ=zZq_Or2Cj3e(Xj2^$H2 z5CV+p1dj_h`-+cltMSD%v+6oJVME7jm2s`I)uWMoS$B#JHovPD(RI^A2ArdD>#Fd_ z%rNJd$JDLS2<_dYF5hLjtY6L)1-%s!|26H8AL2bdkb^Bk8p0rL=W0)IK@pR0KF&?4 zu$V8J5~V+ZNLTu%V^P{Pjsyx_*nII^5TwytgjXGCtdvtJ;2ypxZ0OI z;g*!qNddv4GU5@gwNV4Ewfvb_Coj7#b}QS$b3Yt}C}=d^C8#!fZy-doQS@OR z#PoV@bEfbl^I)1-N7P#z@k#ayfoo84$u*JvO6+Iqq}aq!6JDR40^l5R)k!4HZ2W|g zvz02tWW2}Ay^vu3nzA&T%{f00H_d+xdF^9RN=y(}Hl+gj9k(qRw?a@m*_uiSWrV|` zDbTI0IsZ2W(O}JS4@_8lO9?rhR31cVFRSFSl@L1@$KW7nh82CITpvBd4gPY7jXsqm z)oa|uIpM5Ac9t%UCow3?+_c;Kkw9^9BurC^JaU2nA}@>edztNZ(gA%O6|3?|x8clq z^p$R=mVuWekR|U@O8`8!>ERvV{&LNM3wbqJ;tr~;^*flc?R2aRzR+f^chMRmJ3^TK zBW0%l8yPT`0Vnprrp}Y2Y*0)h&u)%kFL{ca-4|cMZSq}Okto(Vz4;!uA!5j|4#i18*Gn~sy{?_YtD2ZcQH zr_xAuyQ2jskPyGW3eS5k%Q5aOsc8Y4^H4h0I3!~plx*E>BW4hoGuf z3q`W;8$5!0i<^#m7f%aUiUD2u@8YyU{%b}f5`&`y!9+#BXCIqG$N3}_U97G zJW%jY2o~iy!~_avkYedFRPLBK#LTy1%Ffg)Ad-=$38@A49pS#+us{2(Oj7g53Ty|+ zpR&5j1H(98&kOTL#<+&h>fN8adr~K>E5u*NpesXukJo;+1oN6@5>rj7!=4C}qWBUy zku}r0e>8A%#F^|utKUumy1OeO9k9SL2Ev*v@MoOCYgk`zVbPBLF4;l}bv0ndVCF?8 zz067S9_4PT3L-zCUfy%APl07LwC&#?;+k28igZ=wYEy-y7>`}ZgrzYPwOPGlgTUUp z9cx{?WMCO6Tt>jqiyM)Znb=i%L3|gb=!ru_%Yq!f-4Y*^VdaGuwq1PF*@}5>OfNyM z+e}n;18Va^gF;)s!@ECQXh8lm(L!5&{S#s=F*D;X_^FFloVK1?$qOk)1*G`sKRXOR z8uI1U{NPI9Z!uRh%OgOMB$!_ts^I^<)_QFDg{j7R%b%Avt~`FRgFBrsS2ea?cBV$N ztw3Fjm|mGiEb=Fj;#-Ub%9#P=v3nwy4F0fu>*Pr4&9|Ll5*^3TUSHI2q-eG;0T3R) zPs9V9cc9{tTAW|a$;|xCYSc0h##?*)QY@P?{U1N@e!rVJE)v{13cOWar!@@Cxgc6( zkA-vRN6o4XUbHLE^xGHKnG{#fS|MBQ+~kl15WIu9fcIoAnL)gq1E~#w??F(tBLQ=1Xke9(fo%x@SER#Sz+y4R&C%m-B23YuSOVhcD4 zf6suL@r&Y_<5^qmwG~$_SmMq|Q;+(Qtt(2<0xTkBeZp(naDiWD#Ud-9R0h59Lw41K z0nA;PPUfi@i|UA#u`3rJ4f4W?@9%L(VI+hRo!)pn6e3*#+JPoV7*V#XUJ>ex4{b@u zT4B&%@hFnJvqc(dy|U4t(Du70y#SgnNGWfkq-GUQJasIYZP|O=%?)Ly$O!BN1i8<8mcK#=~mp*48x&>_O?>booM(7fTn}#pNv+QDG^sygsLjmw1y* zepPd~#+X9&{a{G;V}XCeNph`E=xbkVRoy$^x;#1@)kY6{zGGn*_L}TKoiz|78H1tG z=15?v@eD=YW3bT4*JQc>byDN#L81h9=C>wuZECW6 zW2sn);>^TwJ`n8^88LxzEB&T(O5aq+V9|))5_4UWI=oT%KF7xJu5*%&F1+W*dXc`p zVUMawJ9&H>4LE=afR~bg28WZ)Qijc!_FXFmq%BlN2WFdGoFGAO8nLW$1zpBx;^`Lg!_nf2U*T-waLtxz>IP%yKiX}veP7JXK|pL z`WGB9xma+nK){<1$E4Dg`HJSNCU%vOP9Gh%Cn3VJo;nX!5V?H^RO^GWf7C#bRU}}FAj8bcBdu|HjdqC|dgQfvS4-QDEX?-E6gP?lZ*tuyIJOcb#We;XQ3 z2H_%yVmHr+>w_(6)PfS8ktp46t3YnoSe~2d9eq~q5<7{pg9Lv1V`Qrfbq98aNAF89 zW;rsLw;f{K@SABe(TJaT$%enSWuYk?UEq!GkjGIb%7(^*DtQ`*1R|xF{8yI=H@I1M zJ`2=}s>r}ejRXb0xJf;t2_)c`-sws@h{;b3C8ySX`;?tng^9>(FcoGvM`olM!+yI0 z50nBD)IhHd0QW+^?zKGw`FnhMWV!JZr^4LsO46Ki_rkgmi5?@f2W!eQ0{UWm9{2K) zKR2twtJ+;G?hCS8wP=6uCVIxtAmro};w274i)plZDnzX)CP!G#3lymf&DaI?$31s< zz(6M@t1-Hsj0PJW!C&m}01xv3(0LbSg^+(DYZh;FO3tU{(WaUqo>6w7#D{)R z8%!r$Iw$!FHtoZ)I|r4U#xHECaoJ+=-;{M_REZH`4q?^Ps!8qD)Gm^9E!7!Dzuplo z$h@upUDnu@p-};}#NU&rmT(qB^@BpA?ZIm>WIxA1hqLao+7F01jFRgw8CLqnwb3R> zwPpRhp1GR=PU6Y8zsjYZReb-PY^$Ihsx)W_)~tR^bn?sIFY}n`3vXh1zm>J!>s(#3 zFzlEwiFEGejE_4%?~E5my7y;4YagI5K?ku44I|@5zpLM{p(rN9k!iSrItHpA4VI|Z zIyb4Y6tN7NsQew(jB1^62fL1#_;r%oWGJ`bCn`2=g;$zE` ztZQ8RAMXw^CqemJplEaO#r)kRm_Yw^3pNL170W{9m6g4*mg_XJV##N#EXh9q$2;9r znZkPJ5wcvy^p>#+S274}uV-|1C;i?Rm!w_&43r3ttv{dont* zpwfIn@Yhu<=#1LRUmT6`hrcTp73n#(%UW;q`amX-=ycWh& zrjae$77hjiw?qDZnqqgZ-Z13on+t!Mro!}+H*cY9ZB zTFw>gRdj4gGPFIwsQIegu&4v>gt>M(CyFj)&_c;_aT1TO$^to$~|6h}B9+zV)ie?@%H8GoX-tX9Of^e-9t zDGYL;SqwL4`7$+LjE0KJC`!>cE~_qFf@)l4dWQyp@M?pR6}pCEDATJLgh`K#KAgy$4#GbCxkCFE<>;iKn3wF}-@;kL)B>tt#rG z=cN^A9)igsiwvwc>d_5t(}pMlB-&lHdMTHak$-b$csu{KDCnKVmod>KHVgA9{qIGa zz5X$%YA|N3DiL$t#eWejo13ClUX>@5qx)H)UqOy2&Buojh4(goO+c0!ys?k@T^NCh z^#J7v56$LB;FKD34k7uMb|hp*X^spxpwa)c-)NcF%u5$rzDzS`*GBm&EeNqjUAB@! zZH?y*21}DK=w622>0RMhQ@7ijsZYtjZlH1R2E4IW0DNmwg4d{592#8?D1lgv_*@fUJpyLj440+`aSI35jg#{B zORp`0owr3NEe?Z$(*5uIG8e)3EvDfWCHZGEUD&#jCkX=luN1>)_Dbd%nJ&N#a4=O$?6(n}B3ZlT^hos}Z}nLqU{k(2qdFqs>&2LdGwIGi-v z_$CLumj!2&dQ9$atd#q#P2gz=oASIOoV4VAYyM(LPTu167EEFxUm4CwyfOCUUt~t! zmnR)IRtJe%uN_t{NY3T^YH**LkxHpuRq-x&Hj2ETZx5J|R$-oc z%h&x!7Cl$p0$>Bow7#e2{w=l^PDvc=Rnr9%%dOj)9yP3uWd!6TtR73~Xcp3jBF=_y zp|R0-U~2=H}{Y=vx4q`7R>4h*W>dY1}1PYZ_ zzFily4F%!}i=CqDqiwjkEmNeFe?Wbw5K%=f_Y6fKy z7Z(?ewin=`lvlHH)SGBh)VmtOEZ9j^?{t8kapm-zZEKW#Z53G;&5z&oed!sRW&O^b zG{{YpsVsx6J)C&woSJ3B+OES;QF?=NjWwRgKk8IAHgxx~v6%>v9Evk127i5+EhsiW z+|S0Lic&rso5}LebOuhpS{9bTBKXgHlI@t9R`Ccb{cV+mcAGdU*bLkn!|#R+JZAKH zZO3b^8LRZmE)|>AATkeu7`bY0b3JK27V0!Qxm4WX-ycI0)rMuU?vtWT>@h$6MhRyK zEoG1baimEYIi;y>2eFv8kM{9*5y`VGc1{S>rRJzmeZupvwQ@Q4@8NegVGVvFmFvMI z*98MgnvVE!_+FJlr>jTa2wflM6%^=2;c6t`H?)lgN|j#&1^&*7|#m@l6KbuNH!w!XfVOw_3Z|7uIAVqoj;8Hh_3q8=CQIJQzv?j#P*}4g(bl0TAC5 z@@FsP4;Yumk@dJkJD4U40rkUaIP=znVF*-odRYWLaYf)G>tkIrznCyt&BYc5VavKw zD`p!u8{*HNG>pi95M&JO^ELz8^skL37``i3Bd%p{Fx@@PjPy}|p;X%;0E$1P}~{0tbsCj^m2@q9{1Xno`Fu)Ua1m(9xH z+k4e?=vwz@>sHXPUTtAFLoj4UmVACwng2Iz>vtcH7aj2(mhK9yPWw9lEqB6!{8__b z>(pibpbq{!u_d={EUV#$vD(@Ll%@&bg!a{$0Pp*d$|=2`ZTYIn-Q#caGyFjuTEEvl z=GVi2hZd4yp}U)Sm@5i>w;<7FhP#g|6Rts(7-F~O`{6L=C>)}!vqMm{F&OyqbrMMn zNTts(_RbI;A2m*)Xpd6+jjDt=-`yH#X7ZyADm{xXqArDdA!n(2WovV|ifv^4j?IAe zjc4fdDZM{{X)w6JNzPs#%UMIZ`mM$85?W4`Ox}lvROEsn<;}-ULn%pq3j`TX{@l#u zP2-yN81qzFwALRG)y52_Op`7S{Mt7h>gE$+`+WyVei9B^pF|aMH6sgdQzue>^ATO! zLwE}|KM=t9Dn(GMzfEpn{fafU=uam%0O)sq4?N7-aO%zKjZQ~+WX6!w&@1We7~F*> zY}wEmm$wq~mIA2SgWwNUQiS_CIXnK}zWYP+zZJ_GN|s7=J^w;VChAYl3QErsa#=`( zw_!uX8{8<1NAD_(^Gr>f!=pBypy{wwa4~lfxsVc4)ygcYoY3njpzwmzdU@&jar6l| zaPA%M!xb2d-nU>zh+GiDS)QLf>UYucyTL)|gw8Iu0H}RlKMg`t@f*&ehfRhsZEAx&FE2 zqB(j)3JB1|VvK)A80;ZT)fDs#*pMJmrOPZEs|63C-;mb*KO~)FcwBAQhGW~doyKfz z+cp|aCT`Q%Y|tbV+ji2}HX7TF()Q`cPyU;I{45 zn*7>nDgHQeXF;5}=8NZ~!j+8* zK4vFLTtm0?=)<}}B}Y`a=x4~&h#5$-!9<9iO2Gju)K|WJGAHnpU6DOXwOY9?j3->N ziM!~N+9welHj19dU^~gl{A^Usaid);W_d%Mt8f?e{bSCf$e(>%Z!Z;;Sh-n)K(doV zF7jHSA^?oi{o`Ifg^$x8pY&xpxB!(60k|tVHirSx(IWp4ug#hx3aedaajWz=jrb$m z-`LaNXq7rQ2_e#kFS$8u)g-cqtSe>sjL60%f~{j9s@TzMVlUa?TBJWEla=fPrW6gC zFx+PieWvRe**o?IzTAR!uDlBN_XLA`aEtFarGxZ9;%Kmi2B{+s&;fujAP~~C*f5uB zDx!wQhShL{?sxDzEH2liL!onn)iM#E&Afm+^bA?X$uo3~v4Km12{4_$s&wg;9S33n z=Y?LRxHLiz?U~V0`drBv>AD!N>rxGs^F*dd2L9o#F}b7`K_Do^QbcGb@bTu-M=1{I zG#vwqS_{{1gfjfVO*~6ex^*hH)D$SY0g5Z4f3%)x>~v zKJo*iJRQWX5Ye|b;w(BrAkwieXOZjS29$ikt{{@l zd-mqu5(qFJM@1Efofo%-Ksqe8X@;ts=b(!V4hjaThc}xb`Ww#2EJoDw?F5Yk1+;EZ zPb5#h7oUm_*-NQoLSqK@J>&Id6Al%-zYNK^%nc`XYs4d`hNF&AoG22mUKX9aj*&p* zjD`jC;YAU9#O3}n>y0A1`(KEc`=1}mMgS*Ru-VpNG%O=mHN&rXfTA^jw$xr5SRFBW zbz!KeRgXMYlmd=UV1Sj|7d6eazL-E1{`iMn9tVf@UJ9Y*=OBzVOtF47?m%toVS#&y z7#88B5!bK%051*SWL`Nc2VEZmcSi{h6Xtgc`L^;<2Zzb6@32LZl#`*}KYf4sza5Q! z?ECMDQUOFHkl?Vl^XeXuVt6C-usr97KjlSO`PyhV_;bvKu7c*=_!9JMo(h-lz}|;S z)ia`5P`_7-_-!&nw@dDAJtP>M!F-CqykX{r7(oMaaj3?K_DL~=P1<<8ulg+(Wkqe2?^zkr7|gZ7N}DKipH5BYA6>Dxina@XgeU zo{Nn;MOPJzd}bhGDbt2MwL)txx`I?Nw+b9ot+oQ#bw##5tbn=&M4Tf_5pRj*Kay7s z;z!j1N*>A12p^Rv%|HOUgIQ`G@{kA3yk1jv1rG!Virb)MgM64dOGImN z9e+M?*1MMiV?(L^6Mh$M&Ok-1(W;odQa6kOet*q06}o`FE^PIZbhRs4upT>qwij@y zje2a3{}=^==)eg+KSO)?L5k|MivlAK6VRNvj(ZcYO8ePru`iYbHS$)>%CUrtrZAh^ z^Bf+?*^?c`se;u&Qz=mOnP$%kP}wdEkJ4UN{5SgV>E`LpnyJ(JpoNjwCJ#+<23olO z-sSe1IM9SN_P~Bv`9LsHF8~)P3^RYGiP4(V0why(Z5_8%v+<7I8edb7;M*`>4>{g zmb6)|VaGIhThgxuKJDT)fD8AEdRPjes&+~wN(#M79quQa^L_HY9==f2|G6}xHZ0pK zoG0br*Ak}uB5G0|f{l4Y3WblgY3XCfe(oPuG`YIh8t@L?Sp#@2i1+#cnIRakGt{ch z6OZ0m{Dq_XI|M7~&S>`cb-$9mO=J<037nnAM4MI-1WVhKMMK7M;3{s}5PGHfOa-?w z6y=@7`L|+C`CL;5)~`4+U2nzWpAjWL@Go|IFBf;Lvs^OhcycYkgmPc(9S95GzL)jb z0^!*H->`{&JCHXlJCzX}&w1d$l~#@fG8p}R@eMrAMI+(%Z7f$@%Dpt3?)`kzGY}fM zAznK=yi%BXhPc+;a=iY3!LisJUk}&MtgH{QM#I>IA>*6z239gDe~)Dbq!ySZNv-W} zeG^Um>}boig!y!rWf5@+el_XHtgR}BYr4TOnsA0BRY8@4OiSoe-QgJ8YgB1_izP@Rz8I1iAg*a`w-gV4vw00H&= z>n0y7=icb6bpj*X{q!VdMbl-$&OkWUP`(G-kZHqE!;AT$$L}8%b74^hwa&9j%iFU6fMWwZ-Z#OXK!X^ z-2d=4i$K&#cCYv~&qoaHKKU(*GC)dezf{phQX`<1~C6j*_Q za|e8&KPZFc8GWW76!&UPMnu`yhYppN8OQ|EoTg%7rGT+jVGCT;a=6@~j9(nW1F+q86a%cdk#Pgd1r2Ce06tFh4i41Eqp z-T70_eXZ)@eugCO@#o;zdB+$vHDNUHhh)2g6HS#cP1 z*1a{Q%A9I|l<2(#7?_V-SL*J7Fn3Xe&W5Q+Ee@ByguwKyiE%vkWPI1cNf^2=T{g$2rI^GJ}O)~kQfP!YpxZxWAeslS#O~q~<9iH{=y28~o3bxc$@xD`YywPiU29km= zOIXX&=*G6?6`M6}Xh(G?SpI3&^_fTN_Fd#g`u_L835gcPx%AYsU%p;sNk0ns*jP{( zGSm%$T^fvq0sQjJ{|uFnQtZ-~F9`psp)I_#QnNj1PY)5qyVTeg3)%?fbO_r;utaqw ziV}EgjiE&5@n1&53tIwJ2`F6i7a5JxSJDOy*Np7496>s&Y#T4>yAxC8c(1h4scqpT z+CGuGxocuhL_PbJpkWJRgwgFP3DG$v12`r&EImN0A>}H66>Rb*VYeT|_8d1LuGyV? zz)IkxL?l7n@qOWUwya!{<=30=kniWZ?eMQgJ0DeQ>u< z4oCeC<654MVvDV+LBJ4h6IeYP|?n!A=l)t9{5-hZTjq7tor-EuSm6ne5!pWMf}u z*|1Al#4NdH8@jyrOA6Y&)c-?MYhcIRd>R&2r}UI<>Vd%u-zoutO<61T$Y=Vyw|~sr zZJvj)g+C0w3~n0x-fTG(k_?ZjF@f4vG4{#)wltLEQc>gQ-or$BQJ#8H0YjIelfb?`oaJ`eDSEZNo_ZW5;0~11_ihW&ZzI7RW zgQ-fD{;vJ$(b<`*LdU`8Lsv&`iaLvhkFk<&W5iiuCNO{(=oaj(UpG8oVqG2>?zc3= zuNT#9wn%19CAvN%TnER@l+ny8{%^QZU|1MM;e?5GV*p#+(RjPcIsVs_`=0zo?3%GpiUa>P(dViEyN_zIu&914~E*Otx#>_GWS)W z!~5xkY;}{`hO)vm+*(=Q-QAO@X~eQi^RhW+h48k~0TX4Q6Du96WsPkA#;}y`Pgzz9 zEV-$2BuMJL^c!^ogJgiIr5|(B4B@3hpR}hS78vt)>D1zrEE$JSj4Y)AbcW09uPk|{ z!WrydS>vTU5+SgI$dNA3zJbPJK;z@MNwW_=R3PjQiV+hDR8eK*j%uc3D7%d+DrC@ z^^#3E&^C2@bHZ*R#_7eAYS#LZ+JfeQ>KVZky2wr375%DjAvGp#yGCjyoSC0aK_bh< z#(eohZTI8tc{t7_y;jK*471ig(#Rcu=3NX6~4 z9x%+WQg)cDQ`LDclz^A6qRf4Da>%$x!zYa&UGMt#X(u$q$*Jg?N_gb|c(YSu5wd$? zKYdm8YdQ+qpcn=Mi8j~!5)5=T7Y1ML@)$(C>yn?s?PxZ(apWYbe9BEIfws`dU*;_E z2tZQ|j*e1}qH4B_Kj+?932_xim{Lt>OvW`jYs&w|FHfy$C^$8anp`XTBpqD&vTi6F zEw)raqrPBNSCadksn}h=SLUElMmKmW{Awuw9f=??c#Sl7~X6`2AEp(F7gM-(rUUf_b zqTFjfI?b+dVE}mq{}sSI>>W!d4)85nXD+4IW5_%tpEQW*6;T*0DHdT91df@s!%+Qh z7MH!8A5Y4vV?BBwFQ3G2n-RUQr}x`7jF^50osn!wP^QG|ZOh;N463$UamfZB=TTUMBj0-?y&T1emcw21q2N7rq%Hsxr=^rC}M zV{{U#+z|^9mg1_+*y9>``e}W=$)!bj>$lpy*2Bt1-?TW@s}ve*1=D}oa{1@FwK)W9 zYyh{XzEkS1scFaM<59st*5}#&FI_T>vRDrzZ@V<4mZi0(^>LmXf7hi}j#`T|7J4}E z_o`?JNZvuRy)<9+3g)=+=x2=*jmXZO!j9%ij<3*8T4yz0pNN5XFSYmbAV3>Avw&}6 z&pR1dUn^MfWuZ{#3Dhe8I1|s~$HlEsND~~TtlPH0J(TnzUy+nR1ct6zeOU{q1lSA+EmhoS>h6Cx9*Oj5d28ek#Ej5^0)jBLN}aH^ zV54D593gtq$IFws4U&-%sN;Zh3K$$_yJF+HkBH9`9B}NYUIz{Ql%~5{3U$sS-%Lr* zl)#)|^l=2UO8;0wFc|&NJ8(fklzr2maO9YoiX*PrOPrC#h{;Lcy5mO-DTXLcS=;sC zN?K$y)fFwHhVy_e}}{Y)=q7NpiL`wyG3A`(V3No!@)pFqgz6 zRRKK<6pT0l_pODN({ZQ`lt8lCGi%1MXWM0$&+n6b)FIn12{k2pLN4#0sKw^B(d@r{ znq$=_=sRkzJWD>a@8nd-{E%;ID(At@{;r|v6>u<1U^O|87OiL~BB*Ztp^g*_IXZ?6 z)qOtwar|E!GU^6QFFK^57DuOL(ElG*`l_DC)`WNa>znC+C585jpId-t$e%bs6BalD zSTH)UWX8e?8}SWWOj#>dUnFqe zpEFRVfQN+%)(*endCLgf+fQ@BL3H@U(rkF7PRb1r;L#sR2c=k1KHsK!MO~u zA;~5Dx#Qic@RVi`R6Bv?Be1u-Tjg_=Mxpl`W}sO|v=u;m*SWOb|03*QQis;o*R_aIJ0W6)uMt9~csr@+vES z5$eN%T|nGt=pwI0hW`Y01+jkyb0+EZx3qBvwFI z?Q0eHC3=CitoomFQ%s*-FyOE?EMC`ZgeM^a^+C%e(*I}$uB^PSM7X&z$7}{>PFgn9 zEQD?N!=ou}*J^>+;;nBrWLw!^q!Vxn_{#}q9Q5dm$y@4|wVw5tb`r?fItF__v)riP zGdAv`WwhE{zpdg?Che17_bPRtIH>z$`eHs*VMp{JM*xC2P!OsEjNNDek+ETe|JMo1 z7f4gh`Bq&|u<9`HmnZA=q=$MsZNVhXWFd=lz&IF=+r$n9g<|7P)1lYAtW&UrezKk8 zm@wYsvs+}X8mP5_h9cF50o~Ap_-tSmEfak7GS#@$7G+a;jAs02KV&_#W;ZRUpF`_V zBY(9xd|E1ClvY8|p888RjRAzNP0#>iHyu&=RFQH!5*u{x)hsT0VF(M`U|fArElc+! zK@G?1HqxdA-joHcJWg4%K8FNK#w6<~8@GvBCZkvCS*o0>b<*$KL8(ofq#hi!YnMEi zMo>eMycrX}3F}YgOa^*#+bfcad9v6G`*KXwkmqyp6*tK1RyKC=erZ|B9Q6q8zrYqJeW z?DO2)V8q{zZEPLe^jkXv-$H%kFSkx!)hIx5uxrAJ3gp%$WwA5sgYr5F_i^N8Bx;23 z>?nBxMu;cDl?2sK{Qvohw`m6e3hTcF74Z3_hCy{G$pu`mK9~T6h5B`<`?agI$PeDQ zr~xej$MXv7&$tHIjgIjgF42ENH6C|bnv`z%%1~3D@P_@4^jA7PDaUW643bqVl=t}Z z-ZVh?RkV4(XYTPruNko)xOU_XD2zo&V#5pjExb71Nb{+o_ef<~DZF*9H6pQ9?OU%) zOgj?)dkC>Sh#p6<%nKYn8>w~O6yC1yt#@4K&xekbg~n(V7B-MuUvzyf_=MY@EZXc$ zy?-06xFii>sPbZOYLpM?-16H%6>nd3}NNp7f!{v{KKtu;>e=sQA!m?XS)J%3z;hVy(^$S@J z-bUxCnDV>Nh=`!Kpr9CVk7t zj^oI9&X!R%-?bA+@OAd3ezEJ-@wvw4F0Bz!jNJZ5!V3EN`52e*tu7XzQ9qbqD*r`( z&l^k}?gwsuKZ)-Ba&UI>Ya(Dobn|spqYbl#a+l~fqKvvfnc|kfND@?67aFMT-!P4= zrnP3eI`aWJ7WN3^HJ(vwa`PpZ=6pzj0Q6a}Cfv{BqI;q4j4Q=O1;oYs4;q;tV;^qd zJUa`kJ2?~AH$h;igA@u%`rE7BnKqJZI z3-P;{_f>7hu-IYSKU!=uZyho6aAy+4;QnYhN5h?m12$5$N7q_s7DyPi&1QulZW-jX zn}}vyYhyFEh4u6pc@BjenC^Wt4xFR!s*4IJt%@LDtRgA5ZmJgP$2C^7Wi1wD|_^OyhADvL>F;xZFgbFTTMzbIOjZ2xdC2)BnDxZv@`(wrLXx%nBx~>OLARQ z3uq==E=w9+hx~Lo6@5Y zdnSo;4(63g1^ijNSb~{CdTA{_Ws(q+_ulfoSV|?{2r;0$@SkS|JQDyP=-0STI@aAT zQ%$DLUqi{5S>)gzISme)SQ6$Vx2zBoa(1p0T{bbS6x@n6>;Bv+>5~*x!jrrcn^4D% zzs{<@(qKYnNlR$n)X(fbZNGmA{jy5~*XZk@2%cHm)<@L*X1Esg5+Rq9s>NcdsOLB8 z|KmVTI_UlI6Y88E{uD%gn;>wRGn0 z#Vv@k*FbMrGDm>=Db_;@upbV7&Ip~eQ~yH>;YxSZKnME$mUOAB*Y`E1Ek?~aC8CCJ zJ(m$oVm%22-*47Bifo3{x-8maK!y)Zsj0be)en#^eYB01=hw}98q_iY)@D)jmxY;D z&-j>O)-j4rms#H2aX(*gtP1W+RgEqR5&`+iY7}@u?J1DCtIntG3 z9EAB-3^a74U@$?vTVH?!D^TV_YXT$s2#tcP3Ab)iN2JUH3X>let%Kaa9wWn=t3d z3)WliQ!-5HFog4<3Q11>!gr+%Kev7UK8)eIBbwfRnWfuK)By_lsY~{6YpmB@p84RP zwNL`f##)7zt{B?uBw*%DZ4%>Rzrq1eC!p{}ow>(Yy2V_L48FE9!EkI!N>5jnj@F@7 z|9<#YfQ6;s>;^5gr?IAt%wy3_>@xgQg~y4l$)TUOYqH+h#M{hkvm6&S$+4kqOOo0J z2d$xb8338<>qdcQlf!AtA<$DtgGn5ezo{-Z(n;Op@g{(xT%&$Rg(x zF{h~S)G#%GUkceN!f_3AMvIvaVHPm!4@2Y-F>kjog=ZAY&N<7-tlZ~v#`ndizdl;& zE^%9&T>eBYf=%J6I?Ld?*^)j`v0K$6TGa;fh!Km%WxK`zhJg^T<)^s`nfgJ-EQuw) zJM&syaO4fbAJkD6{IBK8lI5S0c5Ho?{_Km4!f43i8{g31Ksp(QW}LyAjRJ!~g2-RR zl{1US3$=tlgX4rE8YhWs*ygwSFG2JM?m$_l5SxDAInuhio^Q< z*s9|9S)`n2)zBre<62T7JW2fvs$$Aw4Izx!G`geuS+vQ zcX=YPTIi=nT$mb>x*Ngn8sRcIE1Zy0JVQG<3J zEenr_wW=sbwK3H4t-r6`=l1vaX_tPrG7jRjae*gll>EXu&;`tGU;nKpuWRf`+sj%I zWyv@yoHj;bzvg)fPn?xi&-rgvnx({X-3DIU zI4$r`aVP72etyp5(Qxq>voXb160CG;ifan(A9>W8e2qraYvi+c z*DdRA6`k^d+2Zv4p*0r2U@V`Hi#G7@_LY$vF5Kxx!z9zzhZ_1XhUsi`Ka z!uw(D(?H0-F7@K^?=8iDi0rR`aWCPRao5A*-b z7Z&{@N7Boh>aZkr{QtsL(mRjRIP)xlmgYhYS(l=lW=Jw;)y(x}!G`#z-R`4y%{|KO z?qmII%n4^iRwV=uPh#{#O;j9tVzd05grrORCcppMEpnbZQV1pCVs~7xRz?qINo@x_ zlth~G^?|sCtJf_p;*usaHQmCN_dcvdUYt%s{Q{cK;l_(EC03%^=@g2sG5Cd01i>&9 zw?D==aOwUsiO@85e!sK3Sz9@nxQM>0o#Ru1WjAp9TK8b88P^@#nv2)zSm%gxf8>?z z!8)8Sh)xwmc9x)|F0vy%^?DrM8tXHEyD$j_tx_4ZVF3OP?9)*Ef(&qs+7G6#0H~xB z2Xz3Ju!ytDt8#fU;Yyd{lSy13{nkWs$0tH3jPl4ZS++kC9C1wpKZnPepO%bpXmWe3 zU(?{}Nn~kvOkeKEZJDjWs0}|Z4GHQ%Fp1&4_@4vLZf^7%w{9vfBMiF3XlhxTFaF3v zgDkiH2%ZX>?ri?}hym2Y!N(^a>9m{A|2cNhtOvR-DwqRp9u(g>!z2h{w1h_Bjgcwp zCyZ6eaY_tIJm?o1m{X+BQFrh>EKhzl7F+b>Z&upIHrw?_C3-gZ-C5P4_6P8M-j9xv z`ngbxLcA)41g#qDWbECXi2vi6Fj_n9PM-;DB#jDW9yZ)f5U&^@ps6LcTRc!M@Y5Cy z?2tlB(>c`-0`dczU7zRrm)3*d#MbSE9+7NlhbTZiy(za^4;La{y~P2|x<6sK4cumm zuNc<*n|GQDN`+oB-r5UU*sqLFZGdf=kK{3w%6n|1CnfM`_o{fKcsCUagjG}DWIoNZmnc=@sL*5>N!tyIk z4mTC*R49V*3=COu5P1ZrQ{Ee}fER8Or$p9jK_rk9e5?WdmB6ejpGlpN?T& z@gvTz)WImR^wD8cFri{Df=*x@v!$-FP#{-CWNI%>>NRIl_-xnZq}~MN(W|AMs!#HF zztM;;0_$p6N@TLI&E>+edy#B|GssWz>C*@1s~`f&<^*u(E@gK7=I_x0q{i^gl_lE( zNKm6{_LF=)?BE$MJTpGUIX!5$wXeA?%zu4vkntm2UG7#>*rnu=)a`hC8{Ezlm)j(t ziziuKku}oi3RYoAh$?|u6cPgXSd)(tRBU+D3i!Lo;M5uryvk=J6Ga zMy!=~F5jEoMxkR)XQ2wtw~aR6nYU}WqxG(v^@oY;Y3F*O`~Kg5kDswd#pUBsjjMLc z0x)mjw^8*N5E~X<_P4!!`n+sj;UlA?VpXnK*f7)Ug-!Ycw+kJOntNq0#5PWK_#kW* z@Cp0KY}A&C)<0K=n233!FpFF0y#r@8zB20RVqXy^Uo$Z{7qL+O;q}o{7~FmYf^ zRAQ-hicW7|uDXh(8v{>hNeElvgRcWi3&dJ3Or(QRI9eVz$DjhHOJsk3Ron4LwZ&@nY-y0j;J580f7W1?6FO|6uL zH$O1Dejes%6dvk)uO~L^S|lRJE326+@pUo+A}Arl?JmZquMCKAGeR%v0HmLSrIll* zy)8_VZ^Y%A+DzNIqud+ACVO1|6{CJAl)?2wfCBc4e{|)NhsymL243eky5cpS&(GqK z#hy#7T{Scnr-E?Ljh}Qm>Q3^ZhHSegc|Xsun}Apb-ww*xabgurs&#R*ami3^>CQ7* zWCqtNl`2hZS*Q>1fSTZfMa%)~sE5lLQC0_nxgZ109SN2MKX^i-L-wWUi!t1i3<`WR z4eq_`^DhrC5?V%lodYCMo1Uhs3D-QeOTFZ&dZ=L+QSF*$>v3K(dn3~eW0=m46Sq0 z2$6XL#kFhQ`Xz1vXGJ!;o@lv;sIHn1Uh>?V-x~YqMF3peCSjhYnK^Baevpb>GX>E2 zPnW+i$fg(==V=>k;<^dhf4?;y3kR~4%RvuS(EhcFE0udX+Bk)(X)ar>+E8bX=UKMD zheZkKZt{47z?cNS=LkQvYPnnL())!$PiGX?H&asHLP%|=FAUQ2mF}8EUUn|*f+Jap zQ!~D|4G#7nRSDIIZBUtI? z4h`3pmI0q>{I6Xcb3G}SkIHYNK|<#id*TGkVq4$CY&5?YQvtHK3>lDM_OC_!sys|e zpfXyxB1>8mSW=y}RmD_PMQn;X^Mq2TfFV(m(P;$!q5frFGwq4Jt13yJ#Zb#~wS=HI z#@M($@&lDaR{O8sq7~hJE^@Z{Pe2S+=D&7%{4GLh5B-Bpa4GUdcX92Ssrk{ZL;@4F zqekNi-G#>8$0iVnOQigi95yCz5^9CQC+WK2)yuK#dU-neOLI$KcSLX|Cs^^M`MKj_ z2Ktq8uy>(j!3QKRzw`T?!gvIQV8{3QsmaRNvOqg>`BoU1!2o3a79}q=rq`cZV7`ab z@Xi&2Iy0Qy1FII)ALc0ud^G}h|9S9wBZt|!4WR9ksmB$HP3(<6x=xmdoSGLXm-JrS zx`Gqi{@MQPio<6x@BZm_yHN?bUpGuu?Of%)ToHV{jjW!0l#Hdn%`T7nhU;k+)PvW3nxifoWhr5}=Mkj2E#Ky(?D z#q`^^EtbZ)DG5Sl<90Bbdcr2pXjn4|2mGusuIKn^OQ)-Ray`^`(-=mxmyFbeDVA=* zieJzW2`hyrCN>X;zH8fa`j8h5kcPJ;Y}SqaplJ)Vl^#pL7*Q9WiaF)O5~ z@Gcx~VwKX3%KBQ&rKl1~`0Oa0HbY6S)RdfZj*?PJ=(#CN_eG(k0sd=DAp$L1A`jV2grjT_@lLWTUrJ|ItE!1cbiwGs7R zI%+Z$FO60E^gs(AZXUb4TKZlyz|j;C*QOt6OU@CRRG9V9ob#rYP}AgP$XLyqg5~In zwm63&R1mtvY?8yZ0g;X3Wuz^%*!_I~oqO^6dRTK-g; zs2#B|7yP-M+#{Wh%HqgDW)um`^fkW;fZGP5wP7K6S3yOY(|Yjb->0408ND-@_FxLknjnpTB&bD;C*U#OD~Tv zLoG_D``48pVIes&MqFK?{+XaIqwC9k`CLMUy;t=ezSjaR18sL= zzXH_XZK%~6v&6@7g!hM=e?Qi8+zK6qRx+^|F@SzhI-;{fV5}aH2_T3SOJlB25EWkS zWjWMTMOVS4LpXuH&D#GA36mC3NEaQ07r<}jR)J!o@ygPfR>L-DuK5v2lc9!j2%VLJ zODQ|=#)6QrxtXx+WY4+saWV6u-m841*s;T>x9BBe5jpfaE#UI0YSAzSawW}fhU&0s zwfm=hloYscG=H9fIYI>#aKdB&&PWVwwfJmMT}m`3*ZGPVTK zoja4j5Q&4G0n5`nn*j61il{mp4{O{jF8+hHu^EWEH=`BaUdOUZo34nH#2a${b3eXP zK68|KwpstOy85)q1vI0S?U6y4@PP7P6;^C#;Cl^EKu$8&orU{8fXoGiT&09kp@?9i zLi(fPvDavJb~uP987Jp2T@oqFyuy+nUhQl-#ow~Kr_wkavWk(cu0NpStci6Ag_gKy z<2t>FZQFcXtX@2NW!;wS-~uxjADvXsLwg@bRR+=6B_QYM03iUE4wCzH)E_u^8Xh!6 zPjcnO6PgTEf0A(QZ_~Flvr>>EY+!-6@izq@GtRp|*hw^4y224>vxUm|0qagBX=yiN z>mDh(bUsbPEGAXrE7#G>A(0HmXJSezGa!8}wic)5j$2_f{25wwL3?>P>I_Uv*C^ZS zM1kEoz^MellONZ3`!YULOmH-Gw-_Igh^P^Y{>YgcW62NqFa&2@{q8wMIo+1xm}d>r zf$9>zq!z*=oF2`DOV_z<=<<^geoiOf-P&uKF(o|CU5`1_X2!v$Kx$f^|Jz1Cj9LGp z$boYsFCEwyAkm$Ff{^(H53uI@Ij8GeoPg!#)9>a$sRXJ~KfD#_UDm9o}qy z{y`o}QcS!nd-g;3CTyO|k52}@&L;);!Nz2DJf+=&Zre0#LB7lh>mw#h$tJw|YpvYG z$xjzVIgm7WONK(wc3;R!`U!I_^z_A6y6`9SBgQ=Ti?`1;fLzP4{s6o`5qto6h)=nM=5A5mJFPx z)xBYV53ne7x|z8q-{L7l4Z}tpw#Wa7VJA4MHr#6Ket1;8HR= z38W6PQ(dwDf^zQuM6R(fB@RJIHHK{&>d>I^CzY3#dAIP{lezL=`yTlzsxgBvA`goP7pgd_D($d??l?HhE=%=WkX~%TFzYvRq&0H?$#mlt z)J2&^sQCAS;(Ho&9EF>~>rIq9lm^1`}W%}C85#^u0JYF zcw1D4;elT`Y-I*tFr5WllihTeS!5iC!()tM-0P2g}l@o8SYiXFM4&bJJFzTPMfKT1V+Zf94I1c_< zc$-E>!PcI3lweyDE;ik0QHvK5@0b?PGJb;kr`e#S)M^GofRMUH8Kcy`@LRbJl8S&z zQ6^)(fRi6StV@)>PQnV2T{PJgf$Y#u+hi1m6FSM^LuH_gbH{`DBdA<1I!G4#ae(S9 zz^@wMdPa9DE4K<+6pE}w(Mt;L8=ZHp!Q{vq$SxtcD!AklW@N6{vtyg!`Zm45M~(y- zkD&AFRK7ggnkztVLMxD-1k|6fv&JBj8^r_nQj5M}<7o^w87lE=vDA?$u#Q+)PsNxV zucMzMy%CkF?tCl7ed*VBlEHo=;5z{85IjDeT*AMQ(uRrR0epyG3zpUBtK5~0nXY`6 zD$$8wh1gw72Ub{(%E=l(AJL?GUJWhK#l6?t{aA*rIOXh0Uf<@ffw}v`%QW*n#3?{# zdtzccX%~J054H)He#7Y2r-?@_X(aBj<5T_9!KZDo_=IQwE?1W!Xp*0{Us*Y_79 z3six+c>)uaj$(GLKc^ns-K#G?yL(iEqT(@-b&TU_G@qOfu@OEbzZXr#_ya&UuPM_o zAD&l0l4%c^k5rd z@|w-3TYpCxUGNObA{!uf6o;sWey4Ja%&_~4tXdz8XmTi^+MUEM)3vJ9F&B( zmH@OC7JWhp(|_aO5sQloKUcN9d%3Xd3xU(bNSN4UET(?}a!NceTP8O%x+dI(YMq5C z22EG)&4L_{v=ZL0)?Lu|Xa(U#`gPyit~1}>e+%uSs+RQ=PnDw7VWNV-X|r_PQ!WqtP$_xt?v6u145Gnebm$>)eNp%l z!y&%NBy5!|_oa9>=3{4N3L*Ct9(kcruCXwQJ%N#U+g7%O33fYc??A-e486!`7P<1` zk7BoBeLq(^`%PGno@@=7!eByR!^!t3s>2WcfDGgg59G67^4-Mo_m7}78Q?ma^1jo^ zlOM1p);EXr)|ws8e+u@tE@>+5!v&M7X>u;wy0SN@Vb!hK^~(%#Qz zsQ9`*bNo*pR^WHpT1_OmuxG8KHO5`ZgX`z}lvu}!=TDO|m$v`XmItH4r96s-bCwK< ztAUbOD6mKmSir^YY#)#lo>Y~g#DaD%&d|f0^C0z;6JZZ^IW+uV4OU(AQQ&RYkeF+Q z^P2M+H9qJc+Xzn41ubFn3mIc5J!98!zoG2JJ)2dp&$R&(>BRoPUDmOPGh6Zajbc~X zlz!@6+dz!&II4p&4gW?Bfo#%3xoorUfork1FRJGB4VOdqvmP50(ZdL^<87&SRAvYs zU_QhSdhO6k-_#&qgQ4UK*Uv)+V8odNiQYZ0M(dbFUx~WWY*kWw_wnN*fAL@Zw7j zZ~T_2(XpD0ojF`lxW-zM#9>NQvJKnvpsCEsKBkJ~=de^el6+hVyEvxMa4y+Rojz-H&hv!xMm`UY6@4Ooqr^1nUmV2Y}lLxRkDpq-2PPlq>V{# zyk4tp&%%rOn_nx1P{MtCK~t0cAfSPpp>g!JadE@Q*3bABL3eLi+62C83ccw2z|?Pm zbKaWG4$wcIY#0GYK^zA8f;K@G^J+{0huCZ_VOEi~426}CL(Z<*x^vLSXn=4{JF|j7@WAcUlu9_LXZ!sUahF~ zEs`m5XG@@%ohhQR-6~uo%{3Q6B`yW{tQw}2fl>&|MYz-AhjHib=n}iLkQi#c!nF#t zfwSvso08B6YEacv9sn`@n&TAho$%uo93of%c(ZwB9&gIV7!nVwc2h`4`PSZAypi^`d4d!^7t!RnWJo3{%kD|ri z`{cB`)}wJAvw4dnOUL2F;bZsRhVA(lZ8t(L5w)u^tVh@w9fE87n9n`hHjgC^3)vSI zPO@z*@GfbwQNw(~kjMzHRnE3c(m%5&U9_)KH-0=%(KL{K*p%dm_Muz!BQ1Cp3)DoC zADL&k7h{wQJIpSetw$S)g7ka7v25j9Az;^q&$?KK1no@aqO}5-{cr_rLV(Xd#){wY zv#WB~tg{cIh%@BR&iwYgy={Yy-K&SV`N-oScm5U5&(5Q1=OEBPvAE*dvUrtPlE98Lo#}d-W&;W&j@JzZCuWlgLg%}M7wwvU;XHOO zd#b}yo@9e(vsWh$2fWjWN9W?!^X;eGneWl_++h?)hE}tNrF)h5)O^l?NLN`DN zi&vV>>WllYI$?!S9;9%=c231Eg1YKsJY2%LozordBM%OidS3*bI1K9%M!gAIzxQaN zGH9LyP}wkYF-agMViJWXJ+!4<`BZf_F&4KWmlC zT`GY0f^j{@p{2v9T)7M_A>>mfbcKyEaKm6O?eXt->0p)Gke=hD4-3Xgsi~dwc2gEz zb0{5+l!z6{dgroMCY_aqIAE$C?w%3pzU}o=4U69;tL9#BA$5!)JA3)}g`d$qNqXPb z4ypZ!`P|agIun;(H+UpX6_Z5VD_)`(vz(R?w3^pi(4NQPkY!#Dh_q zRe6Myri5%xNEXk3{7R{eXc(o0fbNp0U6gAe=Gjfz_DkzWNY-O35|m^QF4$$IdTOE9 zMf@)5CtxQlG&7$etQoQB^V=1%@Kg8mG(SB5yOKkR<>z9BF{Zisb1whRy1`TXpzSk< z2S&Xi#{CgSz0v)A+Jszv4C+26{Rt+$DOxY76C#aZvah&*$I2^;-#P|RQoy2M4TU|W z3RftDvp6A;ii^APKwx(y&hAFiq?1xCW!G2kCMf;#QYX9XCwAUw=XDojfR)|*g39eK zjz$V9mhr~jzODbK5+y!mu~Os6UDA z>iM7i^dNSEY@G~66a?#Nuqu&-WCRu;_U<{uLv9HOK~*Lfkdq1Ka5~9J3TOMfu*h@e zfZ73dOlH_D$#8e}(4u3snCRuo=Xj6lt|i}_NE}B{1|y|7SD9dtB(zQhwUe|squsmh zYm^3JOh1IVd!4|XLcL(zpW^89F;tGtLxemOhP@${`cw3)eyGpVt{an#8J8Wp(vT{@ z(r6E$8D3y)4q? zL>Ci9%W7aCc9V49@8Z357THctdr?^obdnLKfq-Cbyn&^`5-MRLmXL>vSC2E>r?EZX zLhGBZt`zo6a=8kPNMe{a1d>CD9Na3N_(Bl6fq#4c+fLBQl8|OUMIDsA6g3AAlXHlu zzN*DJvK^M(#bn=UtY|CWV;0B7z~SPkISWjNPK%I)XxkR>4wK$8ZanY^jCx}@>K7pw z9f4qJxP$}a1E|pp>qE3YdR>aLI3n!d4Y~tybVuC3Og3ox@=*1it})XEpc|C8AYRIS zAnUF_@upq9@!9zI8i7LLh80IJocU$;lAEJ!OnLgem>Y%J{=#5Wr(B{|K=(lEeotudQJJtfvtos&W2ecpyusEEjM{$g)OD zOJP1;uFf@q0J1Tm3v)Xxh@Ztp(tW0TGJi1|Dc&B`xbRHsG>C$uovYfpOl$?x8O4-y;^;Vj7 zwkD1X^M+9*G>X8NxK7_sJC*LKX#XFgtGbtizt&o+-v5%1w!!P0OQOT$%622-5bI^78x5JEmR z6pC51gEQOr;q>-04h#;%J3*)vj%(&Dv^jY-eGJ>w0%k>|DLbeD#MV~O^tuSr!hAsu zCB9s={)d;+x(up7Rpkybg%6c|c5RrWoK+z#RvL7)q=`c9#6iVp714M;SjAvGtJ$px z$(y9fnw|J=7%jY$)_csF2KB5$uUF&XDg0^^ACkQ1A z%A$ama03nkb#_enpGW>ZI;C;6T+xk@0$!OS#JHQXO4=fW3fMZ5c7lALQo6ReYYfF@ z&HjsivKBUI>6M#(7{)afiQ{Bw#(yc|&n{(NN;^B;gvMh;9R~Fflm2wk043zAq;@r~ zT{(_vZxyZYW7c{!YI-41&Fey>cv$C&w&L6D(wWSac3LjTErR@(*o~T5DLS1O!9UFp zqKo%qo%f~!<++N`U((W$ILJP>X>BNM&i7_QYMSE{ZQaq`1x-^`h*yXM+6HjwV^}Z2xeDSN`o#|sCL%5p zUJ#^y*?D3`vzbu{d2gR?3y+QwXlOrx>U!V|khdFIVx! z_Xe1?m>%xVK!A<`l7ErHC@kbJ>P%N0@>|RAFBiv^p~K=F$cc;2Njk(eJET0`K6wRD zp%OvuYB=Y@>Oq8%PYEXuqy8Av{!&O*cB=RbfhdhDGj5W}riBxxSdga$WRIT<%~Xxa z%wjK*R2h=?^TqXxS(GLdqTM!GEtD?=&Gx#V#XHLmr#Yf|0j}=20yCa9Mw{eI0)NnSEH`#Fq*Ekj0qtR3ROj`En44nyR7WlGdnTv+j*YVo>fT} zN^stgwG&-UDn-r|Ajr)gI$?gUWT#VOvH-|7m@e2>*?HDo%)av@tb*0^#CeKW~}hw#BSz0RgJ2hXa$tXnl)&&)4HK?dL<~E6|>n&u;NLbkWD*f{GVGBn65tc_Q<-b^jT$NPf(04s7^_NgdA8i}g0W8{!QiN(j z40c81>^Vz+%AUWKez1t9cvf*bWP7QIhuQNQZ>99dO_9w{v~y&o&Oa{(^1E*;zt4`Z zo$hP{^LzPCW=9o!pfd`6FOHr>D!)Q{dM_0be*47-vgYF>=g%M&Ewn1oI zarA<7i-miMZTdDo1&Y|IQ3kxa??2t8=50v;Y{BYuY-ti&_eW7REQR3{w{;fuMqF?a zi>+x{YPwtF(mtBU4|Jt12yG=5*oH;OgTpz8ac_+2V47RJ_lQCz14W`NsX%=Xv$Jfo*+siWBO(&l zD_cBIu3F2Qoll=*R2E*#_Fva2jkaZ>fx9Z;O0Cw=huiva-dWQC62_u#j1R-B$L*&- zhWmVj);FKR-xeX{!SMfQ@6VnjIhHeD@KbY-h+JyLdNwu>n_Ks7ip+@Imn$PO|NFem z+sJee$!4>8HsAm#)S6rD;clk$V5(~BkqHt@RiRMOAEYWXBYcg5f2q3>63*sln56}X zJB(vSmTm|gaRD6LE2awW&1v}BDrem`suQiN3gR2K!yG3ezzj~Ua@U93*!CxT&v#a| zieGlgfa%RN+snP8y6EC)+SO{dDYtFCT{rEDb)K@7O|x~P5uCjz*V}Zp=_f-2iEU~^ z?d;G)O3Il55VsLgRJYTMnELPjvm~6%BoX0*1VQi~(xndbZjST*K6061$m&aZ>!&@R z8c}kOr1K7a%Jp_1=r=w}q9?~eM75uEB0!6aL5lJui7`2je(%)83$MlwC+;^jC;sSK z$^K#+yJS~#N5aC}t5XZH#Q=^K$G#JxwciNb?t@4_duI!ClQfWpCfi@~&&SN@Qjd9m zhAwrXYp;PwM7&|Tl<@f8L(FFjFq16`Sj?%cAt&uXAfUC?1JGaX$6+>0R%mcaXCsva z$Oxm9WW5F1IjPa%svz2frsqm#92HWDs86U3PtwW?E+`C)rH=E^8RKfac&GE5AUE#G z3_z-%6C@a>BbJI8N?KV*A}H!MSBJSXwbN;E)C|g_;9U`G)fOOw?kfhFY!^Bc1mBND z2@g&l;NJW`&iXU3#DN%6Eh0a(Dv_2*1lYCMQ*|5}txa9tVN9JMA8OO8Ex+i!+Di6p zr+SQB3cA$hW!fTFavg2NQ!`lVxH3MH`u`v3A!lpdbi-09D~e1`4&gwHoLeAqm$~ z%oYOVxu#~Rc;{_m%T465*-C9rFs$H=h>(llfoul*C`k~V->c||C$I$OP-?>1Y)cud zqz4A+$zGl6i!R#S^cHO_iHjOqtcqE*PHb3y?0G(R*&)9lCEzLZjXTQ5~Zt|28QlTU6Fh zhu7a15F1&K!6>-d-QfAn(|@z9747O~H2FqjW%3*sw)b?LIwOIJY%LzJw-xII0aIR|m}u1??rTeG zs7BXL0@(E=)30KOV)}zYJ_uZM(9HWE%D`XBOgT>*j?`3A|^04;TiA?By>iryFtLt3Qsy}BC+UH~!E&}O< zwi&K!UQ#;`H^b;wsk1oa(-8w=-ilE*5ya_T1wrsFAn1sn4qfUn$}jUtd%iq#%^mW4 zH)Ez6RNhRG*CdDzx820^tjR6w?}H;vwDTW*^8QZ{1V5Za3G@C0i~dxSjWX9< zyCArAeeta)Z)!W4bIMK2YGI3WnEYO1{I#{G)#Bl%8{W>5!xUa+$y@OmH+`qbgk=_AZ&E`@3gn@4`^ZwjqTmCc;FWp}mgg6!jrI~IG+bt=@O z@$K*L2=1FLbsV6QYhyAO)Y)O8XyziSZo%oS8zm>_Zui#g$7=62pIpzSn(ei)X?oLT zpdHV=>1N!?Io*0{enRz?z@u#6 z#*nuAOz3Ea)A>D&Wx#kC5PW|k5%Gp0BFy@kweVOn!dJ)&iQ201`g~3uJ@4F27w&3- zrD*`49B6u-)$!FJTzkJ6 zMC}6EK8#}HQ1qgS_47nC2IV9zq&P9%+Aj)HL7f_N_DRW&s{tJZ!FPqwrGz94MIZOD z*ZJXauT9^-`-u9isR$K?X75} z={5jc2-aFf^*D)av2L(-r}@w9j$4Lqqb>K`^x8hOs=&I=kN>R9h;#;ERC@%$>m^Z# zli3MQXXny+B!6UndMQUmCYTm>&_pYnT57dctv=(nt$WTHtxDMMuivrXUPQ(xR@+-V zNwAtjsok;!aA}UME^w{as(;i>oFtW@GkMXDjdl$XZEMBGWVS9;Crgpe65udoEU3q6 zI>WCX{sj^x-0ZGny@()qLl6WM7VpND{T+q7NI^qul<`?z97K zUw@A2jrn2~e}#UV>92~qo}$f^Kb|XNcIq^CF_saB@$es+^g-~Ghfv3O>*JgNBq=O8 zF0Qy^XIQtqQzE~5!EIZp?OSa|Zt*_%5Z1qaNt?O5rek$NNb!e+MjXx8X4hSRX3qjL>q?%|0C<4YA6u8q-GA#NtC}CIxHgL5(!=& z$Qf^F!KmYNTP#esumF5BLA=ZrHHO41R)eqrHs5XJ<}{lFZBo@7TJL-&)QXFmc&T@h zQWJ;5wH>rjJC=$jD79-8@u{=qTY_ff`gvt;;{=ksrbM;}12C3? zp%i4um?lbq1nb&DuFXdC!7F=4Z~0Zp?I+KN&_a>=H-4E0y#I%RH1wF#3eFp-(U()rMwOIZO!D)ee#j^%ev zL1x03GH3uOCH(TO@y`I`JeR#kix=xQ+5qlTf>>R0A6for4ajpXlvS zxm-S8he!8CyEC_sx63A>Ggo4)MI^@>@2BYLh>`ks)oG0>pdG4xZp=v95ur9CT$qyl zD?UJ2&sz(L^z&}_tVM|0F`=WIbV2P%_y#`*sy46`6jw#*;1z*tuwT|XZ1Fi!AHrl* zWqlmgcH-NCaa0XZO{k$TpAaq1pSB%boQ}-~V`8AVjsj{)i9$(yOVt&9-ltlbpl+pI@zs8XFxY=HaeI0xsA`$U6V2$&%hgcs^BC!XWzi3d~{WjusS%CiN z5ZXQAGol)ZtFk~E8#8gJveoP`o*cB9OWE03dgmhd*`_8V7Ckw}PfOSe_ z*26Vnt0L3ptXmr?%cNkM8f(WvNoy6ekMVZhZ*_zTyS&5o{$+KZk9&24Ao$iyg8h<- z)g%NY5#d5&w;V$2;t~Z*Y9Q$0>YG(#sJUmlza=BI1A!zdszG?YG!eG;Rduo{hrbm~ zg0_qBhF^0MoAMof45-4z&EJ*lI6lhsedn_RaLH&o+QWYBND_j`493a5ObjvoBtr9o z;7wt{_$D3lP&S2Oan!0xxqzJpv0TtjkJ8xzqJrmyH-&U z`J$utB%Wn9S>bl3$>sR_)*ak6`s!%$((S4&i7W57?g|N0auxY8*F}jajYu@Zj85_K z`LFQs^fLg6WJD0WX3pkkcy#&*34QIDFRn|=ZRdSVQz!OHQ}?*bKhrRJvw&c_aI0HO zzZZwO`Jm1&bZ2X}l-ET%x^|je2itL)P93%AJ6(03fE{0FkZYkJtXR<-YyNJ@9aIw= zZS!`v_UoV}a_c$tx>`Kp_!DpCKKcR5ep)qrd{=Uf2|z9*_QMXF!zOIW;QfcE-}sV^ zM6Phxwwm^W)@R*4Z_cPYetO9MG%IcDG0Wdv3tV&`_D7i5nlvdqZW55tmeuyLJRjk6 z`U`kxvh78B$6mWtgUHs4^){|EV{M(Asju#)qsXiFIWTa1eg2d2ip)pHtX6kwKdYS% z0x@iz->#b>QGfKg2H%xPM7#xxjUIt7JZ&x>i32B2o#sEM#@5t;J2rvzeQy$Y!Mn>L zRpFZ?S&yD3d!ShjqgMG~XC|K9%OtqvuGJfJw}b{>V~!;QKvDxyg@NpzYMZ`I;cHI0 zIj{aK?mMER*J$zqQUdme9WFK($R!px41ym@3oOC9Af~}M?XWsFsU{IC+!}#I-r1sC znr8l?RYpvM@zgezQ?Y#|Y1_1F4>52i6(#nUsGaM3KQ3a?#s_lUWDI~x+g3a0?u49H z`L+)Cn?OxOQ(R3zq$Fl#OV*fyg*M90F4_GX1wrsSkwA`igYonod!C&cla4|}6Z?%Z zdG5WHX&YFF0noar>KY4X4)OFte6fn|`%Q9CbYz`7dvi`*_ZRy+)Z@%{h|J-q5$H$<;L8g*H#59ZI!N$HLw2iEW2ZPSZ@QsE!@+fj|JVK&vZkq3NYe ziuT+FO>v#QYj3m;UbE43-y;pQ;z8{~qiQG0yUo}3yOG|XhUD6B1=6x$3-(d_>~Q-x z1`*daE5z2Ee5PtAi+$`1i`CA~WyE3FVRs0P4Sp`v(L~ynq-z?I)4O9^FZtcQFRPm$ z`;hMM7F*M&`Zz8~u1Ld9VMk~oucj8$K$s|rY}{nDov!o z36uuRNFHvpaAckxd}h@>oUHaETj#{YMs)UJQbQB&VXr55Mj%;5a=mUe@n*7oWD!SQ zE0?P%BojM0k>Pc(f0ch|qO}t^+a#Y=(7oLj=JOg#pO= z3kB^Ly}hTKXkbo%23xzT>Kze~62R;=Zfb&AWksrHo+T4hbHsqNjtDtNao6HIxu(u= zJ15w?m42JsDy)YgdEeH@P+b>M_1AE8(x&82V?o}y(gdyEr#ObGj$FvZzlrOjBY`Tea zka_xsvo}Gmm0!2y+v4FhumBcV^P>h-|I|@cC)`Gn6Tqc3U9BHV{jVMrAVy|_j&dOs z6#Zob!k7{WJvy4Y zvuBA!8>`)xT=zn=Tz#P*nLj+KoF+oy;yyDC*0nJt^|)St)xXsbm*jq=3R)7#Exd@y zXVc7VSG;&faU-PIMH3!}agRejSXWvQyw{NWPfde#tWrT81LO;br`{{8ay@Y&<$ zE8PHd)@o~fZ89?d5G{tKhMT=14xT1RRQBvzxGg-`)}!|Q8STE0adEG=peVg)#q6Cp(Ss9vXvyN-ZTwPd|TkYR@bV-=aRV-FSr>q z_6Es)R8JJ%sB$-~N3$S5xEZN-@AkE+uP;UM)h8rt-N+43KOX1g>V2D$OC*bAyMGV0 z53AJ&N;T0llmSCNV8}xxV}sxaV&=)j3$1oab*32hNZTGw=juzEjF3PQr0dqXd?ec) z2bR9+3HCbUE9p$~j#s#zXjnUjsVAvB?A%b3F+VhOlhp5-4(_cnR2 z(0^?m0(E4$_Z?g8P9OFJw1Q`MYHCMv$8VP9G?D7BwAqn%HLkV8+ks7!$;?gt?3(nE zC07$4yXBKl{OH_u%fdR&x#_bdnOV9V$W3T)mM}`~ilFJ?gV#hPBHl0z#*haT&LHBN zh>+k{k;hJhMY?@K8_h(RjxKRFQbWZ}o^!wEf$mqFkvBbtKbp%*IDPYH86CXB{icEY&bcl|OJa447Yh-uPw$0H+5gm1mko!Kt0(6N886)=N z4(ok%L>mK~>>dY= z2wb~kr7DEXiJTs#?n+jzOZFP=3q&v$ZP_O;n&N9sDML^H>8((N|6 zF!w?c2VRXv3HKe@WzGF$XWOy;DWxFig3=Y7F7DyM;vpWMJ;rjsj6_5b{6G>C?l10P zkrqhYp_CCUt4Nc@y!>2rHe<}|k%q1yKTqO6&PMW2ta)-IT~tmh+cpy`&JNltUj2?! z!S#VJ)lm(8v3udzZndsm(@zE+-J2z#0b9(QLGsy6%~WqAwqcsn>!0+VFyBf{XkI~M z3JeznL@SP&1T96c{lc=gof)_F!>2?jiE*>N#%|a~$64^RAall028rTzx9lJ9*YeS; zIC{Olr%Z?D9$8y%%iAl%SnTlVxVj(fniTAh0$IeF+xzw|yFdO4?~c!_TME05cE!!- z*La-YZnBjepC(&$Ab&_sON zgY4(du_YnYZe%gI3J9dLHT7zV+x|ZK=kCWFH1&M73a(XmRAaSw_gw11o9H;Ju*iW3 zEpgF4zk245WPw_$pP!dw7R#(lguWy6UBcz&0?YjkhG;7dg73|&>+u(leuI1Sd+^Q+ zIZck3j|kV64a%;4(2sy=r>H3GP1Xr8Nh9>ZG;~ zFTEda=S}W=O7-0OQKv2;bqUlHE|)KHy}hi?WSCw-@Pir3h@0INuD2I>*ncAJ@^xHV zW*^*1AYvQmX+botY)fRepT*ArbQ)xm*L-YkQoSagS`B{HeaZf6fhoAxZVjPR?UqER z*B`5*6}@CJ9L*JH)kV=}HBiAgF6d=Dj^0DnX4O7FX0DpR^*q&{l+k|nr=XMq6vEl; zK7RA)w|I8*HO4Z0>wm)_2&NDS^L~!M|LAXVuX_N_)vO?9TToQTU9ftyUT~m(@bsuv z%Utq7kEMTE_vevEYir=B@aZ}W^;kM%oHV#aWQBa@??TVTKmoFgESlmtKh$(mY&q|L z+S{tZtoK9BuQp#BsKLyZEP%gnw66ZComtOW)NJ+VKGIL!Q+q*tm9&k+)BViGq&C`x z#BbMsvP53%);*hjOAPZpci@VR_6i{EV@70qsd--m(7^dWQD%#3+K!kCBJWTM4|hm zb%Us(2&xWt5w&R5gKUPWeL^ah=CkWL#PM~;@3C+v0=h1t?+LH2Ut+miMgT4deh`E% zbr$%puRuK<3qVa9I$c2B1=|`FTINSR@JBVO6@`aWkkc}1>RjV{8k8cNZbGQeqIa}aQ`ujro?mp=k`7ift-&s5d3k}= zYk~&K)V^)MNAxpINmCv6>7y{$@d?bBb#pvEdyFpi_{J{0APD|L`qbg1o8w-8jv3Ef z;Eg1qO40={&#T6boKFZ~;_#Y3ISC3iFVQuB!l~ReV0Y)MYVTDcvh*l>_0mn9Ca@Hd zkUz%MM?W5`q}u}OZ&TB1o_31pXi~KXbqq4tU6CG7oav5E z(;M)gs{DRRE^$oFN@oC+>YvmRHsc02hbwFk>sTKm_}MU)f_)ya9yT~ho%p@F7R&K? zI4=~cAT;q$Tf(3|@6*VeKB`k2?D(j;C`}qDj8^T0lCm#P=&}#-PNppPeiJa?( z(3pcy0|(!iNJP8^7>w;`}y`mIr*6Z*1>JgotwCauFGP2gc^`!cQEVpG%>FG)wM3_u{1L| zX{&Vt>-QtH`RLlI;TK8-U{%�#agJZ7;DttPupk52N)1*bB}MtB#O8sXA`R-qv6I zkcH;!_noZeqCq_7QYUyMGAGNof=&$876-pOO-QJ)W&Mtvp9UWkAE9y?ojD=Per&4e z?Yb7}QzO(>68r91cW;)zb@4av<7xnGGE$_CEU5mih5=dEZ6q~7WiuANR8vs9YrXH? z5&_QTwRh~4a%(KtoNST+nca8n(eva-|C>b;)Xttvq@RWUZjmHKM?eC$yA>`sFR>r@ zC?z8Zehw5a7|V#&ut7IJL7x^#sGR^-Am)Sn@KWTTN*C+H9nULkk?&Cq%f36(LQ|90 z1!VzvZh!pVlcP*d<19pr8#-ZTZk=sYM;RL1Yx=2$BhCfp<9n_9Cx&&7`1Nu9^}>#M z``QWhcMjQydDKDDwzBiydXJ|+*U1ZaIqt!CArcX9iJRRGy42zCJ|X0>ws>afgEtNH zl!-{lB7V?u8q@ijn*U2j4&yBc^|I((+*V!?o!8fbX!SVFxz>OeMBkdn zst$H-#jmf|5mCooT@AfY>jqIFwD;@xh1t$so#^C@KdrzcXk~NZYLv0vBU$BhO2B&9 z;KlX@)`xYh4-o{fnU|{bt&ibtD zbKP{IxL}*}0qu)*ZcW4qlPX!$1ib(sv~t(xgJEpPqB{NvEs$p0a*=zhT5DrKa8w;E z$1~@VYR84g-1bsn#VlU3%?GYJE9qiTA&lc#fB$qP+{hsKfy}!(&gN(6Xx zM|^14d@aCe1rrLPSVgW=Ke!Ftm(~e;SKzH~LUtVD7K~F(u z<<2aL?b^bJe5|3mD3?U>TDMr;mRZ(dWVG=k?%wsPle{+R^C)Z@?7LivWQ?-z#{f_; zF?L})PChp^>fVA z0{3U}b8XyLN^!v)*@5{Gej`*RDv6Oo8`OAO-yyJ3eRAHY(r z1(>@BLS5C}9;E8AO^%@fcON(d;N+=Qz5#9{Z7$Xtgi-^w89m#Uq{lh zL}VI5q9a7rU`eEFw^q&ZRlYvpU$_}&tcH~;hMl`!_p#wOt(R->wL*~FV@1qZD#e`7 zR{aKN1+{Od-4M=KwyuY|U8jbw{x&(bSE+3~HMU$!EwtUf{w^BEgCvH+$O?kj$$s2p zb68<@xWNpk==%=cm@t+EGFzzWgZ}L`OZ60(2J_S@bOmKR~;#oP#F* zo2@IOHY(cUs=A%2ZObZ5Fl&|C@$^+@@&eTkO6}XDlQpMabgusP5C>l?2U(5{9Yr92 zNjLX`O!rqCdDM#aR1=O4 zeTx=2gT<@VPxWWi&a2yjCl?5Gvyz;JS>Lokne+4AwfU(47EpuCC9lpaz%pKin$HW6 z73taj&ZyL}CUCyBPeQwfJG*}+QSEj}iR$`cNxG5U^=D+Phc%YN3SZoOfmf@S*bY&| z7ySHSW?b)AcsReoX?KDXdgzi0bgMJJtskLJvKDXvYOl07q3s2Ig3W)#QAd{Z7ZY^c zrMDW}k!&9cs;SO3b#bHKk5sLF<(4?Gzx4a#X($?*YYCU>W%-Cf{m!oq#b{ZVhirab^Ho=rjabiaR@x;GW5z;XN z^>Xhr)YJjhWQ6SuzbLGw5?WNReO9u4B3-fC}onYHYZUfG#C;bd)TZIJ?zxsxvuNGrX6j z7v!qrG*IPYV2xIB3|1Av#G!*~r_*6yKy0q3H+*hY{Y_3e`J{X@21M|Q89(MEp(Q6; zjE?O3NVMDE<*~f!JB1k|XVK*#2wo>+9xY=Fe(W1w^o1seyDJ4)zRR=XzW&Rzz zs8w+NSmeN!#k?X`dK7mRkHyzSsvA;HxY;W+H z=1mooMCaK#z&3sfjO4nF>$%(NVx@5PE0NHp8B*$yb0i{y;QKJ|Y9a!_-MIxHaJwT> zF%7BRoj7RzTK&n^tC2U&X7Wd8OwKi}EN&)|SG*RCKhh<+GL~XCa_`)>9lrseV0A%B zZ;NRl(5o+tU8%()T1m}%!8k4sl$+xOU8vS{8%Kdbf+T9&r=%vX+1Z+mNV4{rTvI{8 zcHH7>e}$Kum-zF==Qxaej3w5F2!4Jr7@J{>M*%{6j55=Zx&nQncr#*LGw@hzT zby;zZ0Cyc@Nc_#>dyfb{~HI2S5If;Qu8cpI5feL;i>lP5=(WHoCrE1CfY$OB61( z>Yp+|y{ovb?df&lL6wU3Aa>9ZCel`^Rlq7!>>M-p1`1#ma2AM?ZAkZPt?X7c%O1j0BbmEz?}8-8UB#(P9!VMkuMlD+0zx z4tDdpL6p$RXr_zp3%po8$IIo*sZkdM!S_c-x-r-1xu_u~-4R+bQBrkMQ*p*x!lWB4 zQEFOq)RIaQ{b|7~=&K?Kw?bb>9Tu9x7kxW7$a) zj?KQDgrlG;lF$|m)au-+oy1L;^jy&EbmNxL63J@cu?z~<7JCgM>KBGq^`^;ddcGnz z#tdZC5E%;D2$5P*SHSZ7V;DzJnqiSn@$mF9#&W>bHpb8e!FPo~IG^9chi4y(pH&BK z)XIHTkET5~jz}KhBL%@UIwnE9N!PuZWG+kwE6O8+v$M$Q2&0AfsdnG1mby^YG)*Gm zDY*Um{to+Lzwd z5M=8@qiP$P&NlDe>`t-0Q%aVE=o2AzwJR9_R);k%cUSo5r~i!Qeu>Rt6J2G&&z`~s z%fkwN>hbB>FVLY!&#C&dYP4{ks7&)oTawRro*tvRP~=%|LG-DASAFI>X{2eTKI1yF zQpaA}idr_YgiL#zRj5~7EP2T&F1)5izSX~P*QQ5lnyE)3rg}*~k?Gi_B2xm?ceZg+{y448f1IdK$6*cp~4 z!e*dV$C3)$!i{a?HcP&(@h#OMle-}kL}vp+MOX!mD9P;0gzd1wK4!iJ!E2*%!OiXl zkLHhoPP?%Hdm?R}2UO#O0iq&-BNoTVX&;f_8#-9m0$5(3Z0Wc9zdkXF=nf>LfZI2#ucPM`dxP8CL12acX&!tJ*Nf1#*i|ZtS)NC<-3xryA zJZ-&iXHG=ON5M%w7jprN4Ox_DLXy>}OO5ydrfDs(U%ziyfL?wesF)?OLXPRF5 z*YzwDWwq*$TZfr^XV=K>C+F0gquYFW?N%UUlHzreHAGhA)2aL9*9LIi=Z8MmN4;bMP@ zlk@<6cY-bxvaDaoaGJ(yulY3TRKqIMXTQeNixWOul}Ge&s&8H+Ni?U9GWLPZ^!H2a zPN}w~+K1jBZy$-d%=WvZV9X;*XxiI6&D1ri^2u#!>W!tvj@Me$DqIDwL1*%*{>~| z-f64Qk%Vag-i!*}uD*Ngn#{3;#okSVTClzuZaUxCnKrWTk+F1iO_q#cRd=VMciNcx zc}x=qGH(%d0>~v}pZDN9KD!_YemKkp+rtLS-4#|R z4{&yVA6=K~A1R$HxTE1+gY=W5ebW=)%%0|e!M-60L^-z;cPa=worKdb@&~@{yxED5 zUss*x)-`+Ug!!N8i`WfHwc1n z4TEbU;;=D0rTSF~NfM~7Lje<8t?u9cR(#yQRlxE@dnWGgu|RlRko`H_fpwqbHJjmW zNpAkQ6ToA?cKUh9r($dJ$X~?f&zntajyti|d#XMM0;N042g^T2_no@|P%Q}<^Xu{#gwY0^wvb3qzF$4vLU9v!pTCVRG z)Rr=KBH}I7`f@v;-Z8Z|L6pSM0$#3OV!6Bd?*Fhs5Zp;A1y|ck?CfAtBvjxe9~7-l_?0V-6DoFa<| zfxLsH5eqE%yQoMMn!9Ru) zX$mu-l&JM#KruFJ`e0*KMd%R8pnqLW{&v29R-XOSGM=d|C3gE%+0!%am^;a9u=>Uz zt=%_Mt|SKPg3mGVXN-y_9cR2epJ2fFWOels+^-r4e%e2s_N9su<<0jC-qd7>)8PtbO+9?l8Ej{afAm^G8}L1_PH_ z{Tl1~8Np9YiNnrP^^U=@r&B+n47gNFPXroMRz>KfgG$j<^Iwb1y97_PSwBpB%Jk#k z`_ren+jO1UBBb!OEkx;4a5x0&&fwQscaNLAD@U$}wqd`1(6*(g@)p(>ZPj!}2Q&p_ zSAadlEmQ21ghREMa?8!o#!yaRn(b;*O6AxB(%49}r77Es>Vp7mf`%1(=ppy2Y0=P{ zx9_{o^sm{%^TXy&MT$<(fLf;@XVy`j>)O+@jKLsV6_I(A!SYpeqqMto%d``8wO%0` zAW$^3+u~xPq3Sa9_TILm_NIbTB{0Cd6kB^GEfvtnZa@!K4>bRh@gF+@7oT0n{(MfM zEQUd!iKxok&YxFqb|KX^!Y$q)dR(klBwa0$b)#*wZ x_AN>+BHfGFGZUXQQer zy_(Q$ZMtx1ZRB`zJ_JK=+5VzE#QC)fQJwXzOBDSfeUiVU$rg$WsWPFGBRu%X`0=`l zD?H&BqqOpi@`Q#L)8^!WAY_W;%_ac$E1 zIBDe>CoW%|QyR79a=j=ozU~9XPmDZ@AvH2mU-8<6*&0^XExRmM$?b^%Ncp{}vwK(j zU{hY*+1)nb!~-Gaz51|53lb@*!c-}_keY^?nQefXNy+i=BZi(jCMJHY3NVOymeN2= z^MV{>hOCKX2a_jH^G_yMNCKXoS>Z~aQ;tEGc+hI1o>kos{h#``qJ@m6ilX#5JoX7? z1C(MvcW=+fF?)vhfX_?Q8o8hLj^k*U>c7cwYl!A-?4ZI=DA+LEkRiPN-j%&lT+QgWvYV}rE+1HgZR^U(X=l?jX6z(%p9aODQv^Jnf}`SD_lqfaJJ>n5q|rnlse6mV zC9;9NS`LTgC|b_o#Loc2oT2{7&M~ytmbQXAS>KJyT4w)qNXfLmf;zp|WEjuszF+s10bKg+sJuV;aLd#Ho@SKp+~g9 zb*oV_-MFjCeo8LMLIclSSq1NJDY*52M|`yzicVoRqO62o30lB2$8fZS`vuTM|Gitsq^V4jq~kY)&v>X zB71zae{?ov4O9YtjgRE^Pj9H%eomL+nL)Ou_$p;jssvb5zQ+kYs5h7TG3(yIYRN3E zMK@RZ3NCysVaa~vlNVA!D`{yyiL*W~$YSgXRekKi8qbj9=bhm(+K$;aWB=*%s^zQFj@)!Kw{sP5rdgLbKkLXB1t#U-ozILcMA7 zyN?>@ckiX#+W8YDi$9_fTEVRNaDJC7F?Lf2A1f8!eWK~m1U56|bLWV3m%G`$!?3izTCUdQQ zfi&^;D)Fe!mRIh|heGEla>t)L0_QUb0fQCesb&%2dEp?u+IiV(@p}#{0Ypl}h@+vE zs5AF=WfX4MyxgC#yr-9$(TqNy!XH)#AjphrZ<&vTzu3wiV^m7fD|&M^i9MFkTnnFe z*xICmM(aMm_ctWjq2I4pP}Xbe0Gnya?u+m{mn)%pzpD)op~ZD-O02mwKDp)er>f*^ zIm-moG)phAFBLq_%kHkUByqs1x9{T$>$>XJ9Yk3P#(Kr%({fPZWXF(Pi<(7(svt>;Z-yQdfNe}#t|My-D)#ys3S87ueu}7d zf;^+Cno04uuvs#mR(>~>hP`fLO{di4Ux1{pn*PzB)UQx-I9H@fM4L@jW8c9M4mP8# zY_^5e`IXuYFd3i}3<~Iu^DGW&geQ*JKn_RCwMTv?Ui-ycMKvu3K3*#XCrem7VoxL- z*Z+0>7bA7XYtKezvG%U-@8j$Epr~Y$9!U!kca-4_WR6iqmr#wF*TNxp8L~_0OtEp` zF|3(rpP$5MjWK%H1fM=CB1q5t4QC~GJ6M{imu6%6KE2ty;AUnmNvApP(HHuiw8xjs zZ(AP3DO>J0>i8+rKk8y8+ew(Vj@f;uexlPEkGPN4p8d_}WyZX&BdSSnViO(H zuu|7R9}`6QRAy^^P}Ki+`lf(M}`DfMRJMnCo>J&VLHB6$HCk&1c!DX zavDs&xoJ_AoF?>PM`zB zA$H^vvzjh{#z?|bn;ggDkU{vV%70>koC4n8_H{5X85zIsNd!YN`ZOETT)&F9mVIUD z?=+OCp~o(uP@$`9>t%n7oy>I2_F%n}lvJm{B5Wzb_=#yRCD3~iX%RW^>wdl^hs%k- zX96;(g?CGNp+>SClfQpF|J^R7lc#)M!<=`oV{1Rje31f(9%~J$-4;mtoI76PyrLF| zcy`bcc+KvKl3zmDGNbe^e&>;55i`sTvZ?P$T^&&GXMVG#fLCpdx9qKcq&X^GEW}&5~ zk*wT^$@h-6p^MEUn}+Uvyfpd0FSB=MT3iYU*gru|7rA%bFf@oG=WI}FJxLtX=M>41 z7EpfqyQ&3c`w;djj?qh3O)mKIk+FImbHEgB`|0U4!pp9 zgewF`4_%YoJ;G^Bdij9c-H@UDJBuDP-m^Ytnow=X5VbBL$P`Be+?2{j3YMVs<^K?x z^C_O3R3_ku(xeEkGCacGsxTq3TFy-k(fr!2B>f}%cJLLni8TV5&4;lLhLzuHm5dq} zx$Hq`ImDx&)myb*%Z+@YpiHam^4zH>$*d%+C`}J6Y3X@i#X$H2fz9#f$$+CvYJ)tL z9E@H=8huig0{r^LI__;5RUE9a)3L*PjL`b79_bR^i4N*$wuT1!F{~Vr=99u3@ysVT zW}3tG^5Bb-h~09Z^gGC|VEpUYPQ$Gj%XE$~@XJv)cF&3~->M-$f4w<`yrfo_-K=dG z@q|z<8%LDj0T$}mYgCYgUZ7hejLl1jqV*)MuG+8FFzoLHZRfgxSa~fK^1pT@{fL*~ zkTkF-Aq%q1qD@mzEOhaIOrgk8LU~oE?1k(H<_Hm|R(YP-27Oc~osl#Tiqj}+W`=T( z^;-7aru`(fmOxQK;W~Iv9kR$jy>$nSwb}NTI^y#gfF1P8P2fLoT}bQ8Rf5|HF{Caz z`^gXctZcyV-;!;&aWp87Vwro2)+z!RplT9uACE{=s^!c zr7CDAA}`*A;}|u!(I}L5&ElC(jf* zwFi=`W)SSLjF1v`w0B>KsN}plM{vw*lM?s^K}pNp<+=nSEd}{1FV(=WRbK^H&~q`x zzEEop+aMk;Ov1luab%Zv6|B82_pxUG>Dt}W%4)RvwMOoz!sc?Eo^hCzhI0Y^#nN_D zw7OQR69GFq_weUlSHnn`yWAMr!DQ(`G^b%T1`})-Iwz=&%$3wT5Zy~fc-NuxhHS`B zvw2LlMDBEU0#r@U4W!(6D;@6YF6)lwtlXWfn#_&nX0>ni6<}hyF9JNY`AalC&9`8Sa<^ z2!2-eD$)HcL$Ju)Tj;mp6pU!Bvagd5j4daur=cxz0!ox0mL;{~EBHt9(uW)8P^xB@ zJLsH|duH=H?AkTel4AM{ld(m8YTrST+3ADL`AR_}!zL6ngPRFyE^_IdGncTy_!%R7 zHA;CMwZBYN1ad&Op2_^a+b5pVy;nl~FHPIR_kPEodyaqKq=2*t$2>_TE+q%|=}+zo zyn$>@Wu9dPSV<6PB;iq*d&s9xt+)6TuUx_Dt+j^X&WG%cGu&`9!wuXJTnv!%8~z0> z!49Q&Iy(M`hvFyXiqJZS+Fl#al50tFOWl{wX83Je)${*slf0jH34e){-R=mlyF zh`KN^;?Ei~;#KC|KzwjK$0F@r($OU{!YX`1#*7&yVg(Ko-3>Eceur4FI55t>k$|nS zW0-`P&p<^m4AYy8-RE+qnDxGw=uyo!`9#^`a_1yh?#&UA<&^su2h6$oX}_q*OI=SY zkpFSb#mfVCq+r_rrrBySv*@qt*xg1NCBigyq%UkW&p53KVGu0ag5~*o4_XLr`fB_` zCqZPj8Fme(yvodY8MZO0ncYBfd$$F*zdIg?c%`wMearirOPK?9QKUnKIyi}$iQjo( z*z~7avi#%D zc_0=79-4ZZc|#XY2CawxE$R?Gjt>IrX&@zD57RwF*iy$an#-8(`Pm4>1sXz#>9Z(N zshCpmRlJRFv0`Z5@gbeV66;ep{O%Gptp-*lH*^RP*<#r;CcIfcD|Jun*Antw8}lc( zgRZh$@^F$L%=fD1Q?+J!zGV#Fsq8-h=@pjukAHXe{M!9PDP8WQ&W0C~18VSCO^-Rx zEN}4RPtc5Ba!MG-kQo(OXro)j+E?N0R?D(-RwAW%gW?_?;$_oS9Gedt=2m+Jq8uP3 zFdIoG(PG!dBdVwLZ>HgnQN1Mr=ILF8&hcdaO;aeLY(MKf?cuSoanOz)gSPrtW95~W zo5oYBc_>0Mw*KA9M)gh>An{uX9(A8exBwqlXg~V0Rs0mkbI7{*y-EHQwdLF`3lC3t zw##sB#FXYsR+?d_;k4F+8n7H|#KGN>ZIZbd&Q@j-|1>f2%bTa>TtUkwJ?s?AMcphM zWbb1vA}()bcxe7wbWc&0nBQlTlaH%=#am`a-oJ6W!c2Ks2tQCZNPzQiUY*U;Jc>aD z4cgYstUL{a2NuITJ)FEq@&hQ;z#8M@HA z)xpJ_En{`Vo52w#HdZ`!u|xT@p2jo>?5We+mFk~nl7gyRyalQTTMrwUOY|)8NrFF) z3qS^+R?Umc%W~b7y!i+#6G_W54nHs*gzeu)cz5?r?&4^;cK62b@E(m&MSYIx@1*rp z;UZZ%%4%D)uv%kxce`o0tBREK|ggq#! zFFEryByQu!=0zP^-0*%k6A%kyk~!kn4#*hPa~;^xT@)k5O<%!;g)4qEvvp=9p2HKIyIkY=(+n95r) z<0<08^n0jmHHKN#0NyZm{^vT5DQf!a@ffN%a5$AthvM@xeQJMB>T@38JhO~0yl{GF z7L>SJpBRZ1zM&A+M|yz_%mp4Sq9LS#S-;A_#yPIu^dEd7t9q6TsnM`f*X7z9F{ra)-_uaTIhZcA5E6+Eio_*Q8 zcs5cBxIlIVi>5F*A>i_1W(t^0|E17}w#o>Pl8)XpYo)2{s{VTv9nq$MTI=h{P%58d z&Kc+udhF4B9{9v;?D3gOLA>I&!J{U;)yHQ&27}1%A-$dGciUgAW7Ni}MB{!sIGQX~ z&#Vy&z0wGx&=*+W8$0)8-QCZi@l}4G0f97psWW0Lr0DaIYpY1Odw2#;hb~FUDOP&F zsGHmC3a50^tQm56oN;nRxBF!*f9C%D2PE(?lN{SpPTjiGg>^}@9q#YcHeof`%e8hca%&?}epz;lXm-GYxVb;R@{>A-)ZZ``p?mWfkW4X& zCX?HFd$koJTDbQbBF#0?%Z~Ld=8z1<*@dcqxBnj&9Oi!aJN_Y5BsUkUMQ!?a=L(?DD!aX zcRB0ol1ZU`d50hC_iqjcnWPj$dgAp->>!t!AB3|{w96h<^CS5oc+i2jIdpTN&UdMq z-~z%4s0uQA)jouXeScWeuLj|^E#@OMy zI3@=~=N*yf0ni&Hcbl72+(BThHG<)H0R1+9cf5t0KQ+Zwv^tXQ36Iof9f%X(aV7ZR z_QnBT-_lpD&UC1%v#=NrajLQY5Gs~M>MfAby=MYdM73ku7%8Y#fPbvn!paTO0FAkm z?aUBxZq4S;>6#dMXQWa09r0e?4Z7)S)pM4x zAL5#fbUF9Cz@xq`Ro&!?7U@$zAdwA5HBRz94|@~nt=2DK==@ul^3y0uRG6!1(yL}) z6qz4vL1S849-btqM6gK}bmS&{l~puD5gER4Pvqoyj*;lOXAp??Uic(+#?Wv1eWkm< zoAPX|OM?rcF#J6j|^xuh9IhWEuW z*EO$WkIV{xj9L{oRVNyZIkx;34@JvBf>GIW7TPrHz2AX14)=6^)u4He00U-hswof0 zeAeC78u9JkB8n_K!k~!9?rZu;zX5jZi?5_=9Q&u8H06t0_L>K4o9_<0+2RIVy9tWl zf4KhC!p(B_&@UV{dGNlKC1RDiFM+!#OjAKCQlEdY2=$j_>G2=0sAJFbB$moV-Ozkd zZ|o+cXjggC5i#JuvJO22j*8bD|FsKMBRG-m9w(!NO~Q{vao+47$JC!d)J$GUDEnjBC$NO9g2ka+#5)JP! z_8A+kXV?a<6oZwGKL2(t;@HO^7C!|uzSX;!#N{b&e7ERr?lLE74*^@6H2Hqbdv5Wk z^5Dzy_}&Kd9v^#2K$2iHoFd;4j2%A|xMJ~cco1OAC#z|Vg|(-l0=gUicOdNDdtX1CzGHBAcaRGWqGU$jKlAXvpOD*dZF+XA#D-Vsz*^XBHr*Z5>DyyAvjdjH1- zV)5DpELe{Q*ixrxJ8BTXqS*(gLUaJ4CHOw~`G_Q?N}aeIj|sJ)nNm#$f0FwOkLv4G zG47fXhBkUNyH_A<%1+SLX@Hbx^t-i%FmERC$=V4{P7X3;TC%l3{|pXDZBwHG&Lc1N zAKnXPNu6c>Qf`l*MBiPd{C6;IVV!9Q>&FdYlpaH*%~0&!HOyd&wV*$k(JHS+P!$eZ zmQ-n#xOHO0nHbc?TH{{j5O{+9ybvao)!)p!%y*lYZ2Yw#1F<`T;Wg1()$*gzPT|uN zUvwFea6K;%H?-BDBsewZWtcCv-7w(nHMu7JyYh?Xm<)jq&@pPhx%eI*_QCn*gN{gb zmLsFIi|2~%$J`W=ei15UDg(sBJ?u5~iu&=(MMbTfW$7dWnuW_1rgE@N)4SXvYny0BRE zQhhRL38yJF_KJ3^x!5*;r#n@9}bzvKPG`G}#bQ$rDj{%_%P0>PMpfTKV>+h;VndD%V zOaZeRi#+9v>8T(K&~mcoyjjGN*89kEe?|#D;E_b5It2mvns^H7v9y#|O=1McM@hR&C6rSg#RPGE^pJ<|}bN4+eprh_T zpNceLwSK@3km;end|yq!PxE2yXOZIABxd_ZR^TpvnN4zfj~>`-R7>-yUtHx2Gs`Zr!>5P&Ndkj#{~?==gmJB8>LOj z9>BxY#F%I5MzGsx2i&r|_t2)IzjyM}bMNzp3V`s6$ z1xd>@HXsDT_tT(fa_o1QFDJNL)v@+FKqcpymJW8-^b3CFX&~h)oGH^&I;Rigy97P{cSPc15B$WJgp`1{MwahMCAux|QyHl{ zhz!s2O6_0To#Ky;4dc+WNp6q%t;^8lW7@22g}AVumgtmjFsMpGR-APfgd47M2y4|c zXr_r`j6d57R5-HrZfJ9cF>?P|T{yHk1lu(D86Cs@m8lkOcgut9{Lv$|w5#TIafUr= zPLr_*Mh(68?zW%n&Ubd~we%>_)`8oZMP2vs&X*5m<3D`Gw!t}Po)G}oYFvfC!e!^`ag1tVFx17oJ*K$PY1ve$0 z>2{_pn$fgZGg1-g-MUt(U8W$CH$Nl%@xLLYuFQ@PPeC1Iz%r>9XFGTP%Wqz5VI64r z$1Z>h-AC#yi6=9`etb^|G4+e!?87r|hV}@2XEszN)z*PMqu!6gxNd&7wAKP*z#`6I zINUkrB(9%*_z*kFr*>Su#h{_r&~K`scyJH8HK-2B))P+kWY$GUXWKG^VZzXlUipyI04X% zTTVZE^%Dr#@ISlXW33w6Z}V`2K-qCn@8snS48 zaka$wsbu6jenR?%EX77u1)-P<5(~0fst2BUwEIi=3x_rj?Taeokr_?JpPZob&Cer0siqn}=i^qFQPNu~?gN z{=FEd+gutK!@L*nV3~?U2W#JTSaQ%O5r4h9vx%c(tjE*jlkEU1YopIFab@=chYIHz zr_lF^8cTjWG(?Dqi_29@DT69{I4H+SKMvQ3_C@a%S+22j?Q)BZhHZ!fS`f|c-DFj{FdhL)p%VmO(2x$ zB~nEpe7meG*Y)!r$E0LtLdamn8e1F4toLzMKc^#4kulRVYalxEZu41zhPI5FSDjR+YKW*Rsa~gCjyA5T z(YZ@9RsK2v-c3*SX;x$(k!(I@D#c|?yPjlERag6K=(GLPvOSw7>}QFOV~~iLD|OF| z1i$*z%gzI~!5Op|bH-&eN=CY)yY$zJ5Bp%t(ULxIu(=rneHnF?%EIY*Zs^7EkTyt6iBNga~F4KA@U}E;WsDQ!3%jM;NLcq%Oa2z6K$YR5-!`XdYeU=N(Dm6;p=^-E-tSy>( z0cCO*=i*nB&em3^T=$`+BJ5Z1&PDzZ%G({7?_X0Iz);b2SfA#pAInsP7CLFch>gb- zhRD`ooE(N3YGa$Q+0S1oD2Pd|Bo&2j;2-P!fF31+zaac-0 zKEZqSEWs(t-BY!-tCIrPg&@0I-e1Gw4%Be{qu<-8mj30du$CY)QA`s;if;uZFW9r& z5x1c|;!O`pklZIRHNENM>XysF&{}eHWvTVs{Rhv94&jbwnX%#=sWUScQ}?Diy?daI z1Hh~|zy+lh!uQ>n_DFJ_xr0I06*4trLjw9uAHV591ZN-L7x8^idgT$JCYXFJon%MU z*mw)x-wk&Y&!2-@H70frL%zULzA1r>H0ym}KaBCU6@Oo2&l0rRIA4+@23{7j_Y7ac zb(~-2DT<@@X(UY6qigm18(O8Fl&bK0y`kexQTFJ7@5ZU3cwZO?%#(#SE;bk$9&@yK ze1X&kwcfjUzr|*AqHRGD(GJ$}Vf5R%jP{%#GZ!4Q&Oa6yU37D0*7@at()W6K2z9Z` z&Ujs%>0wnW{R!Lw8N-5mvTqTye3Z4i2^<{Z;+h|yIV%nAfPEK*^ikp zzanxZwjd1GSgtt=5EjTPmnEdDqF4^jZKbWCUwTSySN1^ZHU6uD9SiEn;6h+sl3C@{ zoqJuQ{kwxp*d!1?(B5fTaq*DgI;uJ2(@b!Bzr*BpoX*!p6FuNMu9EP>oI~H{KHmHd zEAro=#=DB+YapqQU-vzEvx8rY@BrRTYj5JxA=WKC|ugtwPLQgGwd)zjYx#|(x!D0AT1gd{K4w$V!c;I^c(C z%7-YU`7P(5SHRj!u@QI2|7?K6>v|(-NHb^nisBJoy1toysd4sajPq9_x{cj0!<09r zug_1nolFKh7M+N+7+^E`1fM!jV9yy}8HA7kAHs*58&|)|T@6LQhGOx2*`c5XUo+my zv?PMPJ5p9@juchsZ>lQ)`B$^|aJy+ zTU>q5#Sq7LRz6v(rWv!s>W|k^pjdB%{2OPP`1hN}KoBY~jo9+8xN=&kq@sWFWNQZE z7Rq46>Xd~QsIV`Be_N z>3v30U!RT9W*F;o4P|ol9Cw0MCvb;Br!@C8A?N*;MKkW=ZbUo+d+F~@sn`xIt+9LO zV$S9f#+p^vX9HI%e5$OnI8DuBZBElN!dvX2QdIn@v+7tLc9?56?LGbJh&rx}Kg-WL zKBP+nXebDv1?d$X&OQ7H+nL)c%VA)`NPNSTaw_x%WK@nV+G82*%HInL2=O2)R72N zoR2@@8n*HrRd2%*F+3c`9PCOqJ1q+Aj3jX{T1X>mn=IBpKrDBQW<*|gIYb+Lte9^{ z!1uhj)Y*7d=h(~TJpHAXV8*x#AnmLa5otk{g-m`|0fW2M%U~d80erW&PtV97mcW?JLvyx{eRm}4=1?>Mx-CUnEib1^Y7_yGuSE@=0q4wO0`aV7%AgK)H6u#1>Yyu07&`Q!hjI?RJ!m!~NEh&6jNiwuah)SN%-_lfse=yW{D z#6AWGEFtdAsOF~|@mepvgXp2jsSRM>B%szbYx0aya-<-e2AhZ9Q3-dR;7`(_sEZSZ zK2PpR;YrxZT`^Th7lOo|k3l=^6YcOQDzs(Z@I;?o3uucyJUjKlstgOkrdUk0d5RuJgSdA&g0 z(slqnx4wQ+R5-tJN6%EdfDj+=Il4{s&V!&`K71&$ zw@PhK#)xhMZU~CED1ou>Z`laqW(N31t zw$jrNzacWOEwo{g(cQ)93qaxp(hLg;PR=9z>K)PhICLb^CALz2xPye9V95vN-f!np z>mDjoLN3l!xJb@aOIx)_us&0semtwFFPF8;<|8*>THj47zmA?;Hk@60<~9pfz%jbY z{nJFR_U-!JQlMRCp-TQj_wx)PbI1KkN!RE?vM3u+0NDUDbuvl4 zW^vF8=}k2zvpCwYrYO%qG#SiWyQZYc+kir!!+NAU(= zDa7VIftC$P03-?f;~2lNpP{v=tB0Go8%EqgbUD_KX(5r`G$aM1@Fg`m&ZFlmb~0$6CEKma*!>-B9N)89UF5Q7QvE-GZ@vGZED61&il6CKQ8zt_4<-bkci#B8<}3x|80F zqsCe_9ZNrdMWHXi-Ip=(F_)kv!b6ZW?^zwOpB_uzketH=6tnr_Q;{n(7)>XX>0^$H zP>Ix8?r1(xh;c4a^u(Dzq3*s^v{8DQd>$XrGdM7Wx?-||sT{41H9$)RG9CHU$i%38 zEqwjyHne3pwXAft0V&P9w&TzU${>nc9mVG~Q&(16pl!^xnU0^yc3vT;;3TEif)6;GwES zJ547=82@vdOE@I8Y)MTlkZHO)G$o`_OIHGuyV=AK46t#!mI~n>VpVKXzGo%pQ@dI; z7Z5Bo{F3~Yb&cohde_F_$@Y%RmdK|aM|n5A^##s=QMkXofBlk~RJvm2(5vIuvty$C zkSd0>2cv$ww*H~rDMJ_YA;q79ieUO6Fps?{l(RmdZRm+F%t;o<5&B`r%_?)wU-cQB zw#%%)r-K%rx4bLkMoY8c<{|vDoJi8HVGLnP^GN)7fk$IIfn8ipSmr1w3;6=JOEF55 z+M6y;^ro-UO~-Zq17l)^gz39%rr|S5aJf6j&rn zmRvw@8Rr~l{l3PTAdUEM!CqH1s;VJ|q>3cxu$ivdk-hx!8wSxX%?EiDZw@~@Js)cZ zSX@Gj3$DDw7y0FN6lZaVKVf0w`}!8N560Ij6MVnlrXHp^(zlCj@R&>H8(}!cFM16b zaaUr^60~fQ|EHtukrV+WITdg#yo=RR?(_fO0FMt67x_zM*B*86`DU~%hIi-&=7^!; zrNKJLlnBy~l%H&gn5h!o>BlDP8(yla#coEgQleDu(U##~&23tS_O(~!>iUF=_dpYS zXsUU9z|+4D?*uAZ3k{Bqu`%LMm&zi<8L!Nujk35h#af~nGr92?vCKu`cq=xes4W9{ zQ~FcDA>-$Mfkaaf81ZoV;O#ZzjA7T$MZ9fFh?euHdzLHtVN1@^tWx}-@=IgEjI0XY zD3ncUS$iSQcp{j1eg64FfOpR$5|X%+lB|^O*^k8!{^+%xbBR9baV93?^@x-Xh}07s zpi=q`4n5<{Kd=H%HJlCY>;cu+K%%ZM;0OE!Btw0+e?{=qp2kvKv`$x#lTBm+nvt(!Vi)MBH=Ilz>ZwEO7af`M8~+DpX*8)M^mDPgJfTxqa~Zqyr;cmxZb4atMCaLBH--F+%}fXX8k}s`-$Cafe`? zUGrHr;@UcHW6@u~%)VJ1f}oGMSQ(17!0tp9jAWe4VJ8?n0TQ{rAj*#%$0$m%nkfxr z0)8$2aex%@M2ZdII#qp^fGh;xMPYuz78iezGaKdeR(!*tRZuGKVnGs}UZ4|g^Wc>G zRj*W?HGx^!JX^XWFi+3^p;CTKpPz2J!~Mzhwu&C1h23qLv=X%z<%|&IdstwOE55b4 zeFt-cuc<2$$Esmd!E9yeEqR?i8iHbF)<*8F|3~#{wpp?|%7Tf@B?_l~iGIN3c#zm9oS2-<))Y9~>x^WA3n_3z;V#f93DCYj0 z#L5F;!v#wFt{Aj$9YF@l5wiqBL_kWTWecNjZVHGB0G!m|O?~VpK(QqYZzIc6m^xb& zmlEdRcsFdPVo$)Tsmh?;Wj4P|I*@+pRxR4EfH2o;yLIGjP5zZb-zmRJvD&uT*NHo$_ysLgbOkT7GAtI00x4dYx=S1lVZQ!8>PH zkX?AXS&^skFh`(RNF8JUc`elIPlt&Tj+snJtiibSwss9U)T}fvwWEohpQoLqBGcTi zODyXbPbIC}>$w0%h)pSuJmn9(`OduTSl}@S+WBQCpwtELZwOwKBkhN?!h-KeNOvqA zzs%?LwHG}%PY)UeQiya>n`tM?FeQOIidjA|$ z?0=LV^QPodK{h|Oteo<(lK-Rqw5@cN=#*8tp!23ZB-cR^hRZ${(y{?bLJ4){T=tri zD@Rpy+zhKa^r+QUZ_GQYV94o+aLtsAZD6H%Jh-^^>;4>sfVL1p9sFA|IUcfie5M#U6t z-H@tI;jR?6oz`0uewZtrOSR88BOk|fUIkyvNGEZe&mHXwCC&x6E6|7GnKpvuAg5vJ zCYPB=hpOY9M#<3AUsG6sWgbyI>G?t!=XQ+`5c^Ww4SSFX&Md^AUO$9N+60p3d_z~+ zYc?{8@S#pY--0}AguCVG43)^VAv!PV0@h4GEe9CoWVqwWOSYrApU-$l8Ljmc#9$CJ z-?zMtN$D-tBO%$Q{V+yFKKxx#_N)8P+SX}&?n*cX!KRv;BfaTt)|E+YUz<{q`MXy< zR*5WJIXv3`LxpUHKjA+PE+z*6*6W{O@h64HYs`NyE1Ci%544o4Zpe5$v`HF%nsR*v z*ii_t@?bfmw+s1KM_sB*-Ea3bBK7>g48EZlZTaU)R=ONdKI@V+F(&3cgT4h)v;V1H zpXaa?4w^2aRa%1-txc=GS$r-?AV6OtcYqu$CjVBM6fVn{Fh6<#Ub6XBfp_^S*=W5O zfvu5c0WcjT0DwnqqZPKH@YTI9Xk}~N{1Gp>`w=Bso#xM0K+z`ffYZqowN;@VtryIu z7>IP(SS92*J9BkH5^d$E2nk;-@gt|yQuQhF6s^_;8eWgQ#0*^~+K2!vVKw0*_kNy* z$d~~qneIr47uoXnzJH%D)`2}Zbkgd7!$wY@C6K1KSp6KDx5^*%Kq_=VU97^3gtm>6 zMw{ouhBQg6^YDW0T-33}Fp;s*i-1qG*756tK}V0_rwIim?A|!x!*j+(+O2ec{j7z* zjg{vrYCroKU(X(S85~gA{@t_*0$qX)L*rn^m2+u7xT=(JUrR>;4LxySx@?g0q$28@ z;=F6pPvOA%LsDG;=nK$0JG_UBv5OWvAjs{LNkfn;fR&`>^vZ zM*r5$U((7=&+UlVag2or{rCI*6v)P7WY%l~4L89B)^n50RIhUDuOu|wl~k*n+P>su zTQAv+Y}++A*KT|nQ{Q1@E5gq?LJ)#{&5_#~?kTiNA=Hwc{4v__{@LBvf~8uw8SB`z zTm(G!M*_5Cqkk*UUxHt9u=Vc2-^GCh=UZx>{1-R>g%j1lU!O_YI?5Zy= zpQ-IuUrhAI5Zg2nm5wFyi~r_TOY?_mKTM|K-xn@gwAw?n)dbtM8*Ne2Z!@?Tb$W`D z>^~ZhAB+5*D||kB-s}9l??bhAYsd8ZgO=cS0BAB3gXN32x$x4BvKLr|D;R;c|vcOkq7^NC1~zbr^ntVX3PH+%nP z>k?KGAI%^Bk?v^o3Uue?tsKpL4K-c}vr|A8l6P`~mva?qPM@Z)m^_)k6dSew1yy0a z77+_03m=0#q)n_Gf&ToxKnG07r|1vy1zCcD@w%z6 zNySX~vk@K)seGUHXo-3iFyb+Gn|Y;);-?{MiZ7_Awe=~cVAYLtS0DhyshER|w1NgX zCU%F?uKkfY&?h2HzcrRJ;EPmmUcy=R(9_A%Ukr<%o;yFi01lL>@nb!eTtG`rwpN$kQtVYgl-!1R(*TdZ!xx6C_JwekTBX`zl)$TJG!&4$iXrF%)> z!-ueSn4P4qsMJX=MJR*_FxIvlpHPY{o(U{WgQ5o7UL6B_d`Lq=+akM1lSx?2uL|n_ zD!FZa!kQMzg0A=Hh4Kn)=GfiS)REOk8Rn<+a*>E0-Vhk0y{Ko&u{h!<(Cok)^PYU0 zd-m&Gg_u|ct^QC4_lv`3D2VR5;3%tsGV^ZpLc_1&a~$G$$K>vHIIUmSSbhW9+}+F$ zO^SB(2)0mBAR5xw4oA;KT%N&GN=E7tTC#EMW?3ip{txFJTasOz9668QTD~TJyL5=T z`QrXsH4{PKDknWNm3ioH!;6e7e(#i*KmPEK{nSaIP=D$*j2jto$O0O$y*}knT4Max zEhC}Qw$jzRbBNvD{U|m}ImGN1|KCCc*f^``b%_V6pvw(6cY%O}r(zEE(kY2_a;ZaG z$O$pmn_RMp&>*>>)AEoAz=*PCqEgKTcs@}NW!cMMfYUrJEEhfJnqOJJ(cJE_Dx>Y2tYex7pfzZLg4d(yesIViu45=7r zzT4@t0OIJ#qb2&@U6e(Z@C|K~qFo_HFWYZ1JAHbFZ1GMbw7!}#$faR=vhiN;VvaP% z$h<&&O%1A$0QK#1-0w?zB{JSVdJnob?X!W(i6}q(LIkwss)HAuJRn<-Q6GD=1U1e+ zUsLu3UtN^9d3q!=(>*fKaRUe`3^o^;r zAzQmQjr48)m_ux$5q-#;#oG*!h!KL75iTq*HC%jDKV@QSYPR7R0GuJQ04V#^HbM$- zmBPmY%GF=}XZQd}jhlE|@=Q?Fr~hm3E2E+g-!_L%Nhy`?6p*f=JCp_)NkK|!RJuWi zMmi*<8)>9lQc}7>x;ys4|9;qaKkTR7FMD2($Ki~eIluYE{anv|U$Iq&#AzlO_sXdg zHID?N(b}erp4KJ-zdY=So-^3CQ_J-|`-k?iL|X(&R_yW;{Ydz$I7D-$+3F5Shi0_uym?HOe}-+R1PVvBJXQ@FVm3dG@m<4N73|lKFaE{JzH{j-qBgI%3V2&# zicIb;R;~f9anH7eYk4j`eMHNe-Hc#&dXYzOH_-hB;sA zS&ych$dzAGztbY@w!ri27viQ;Wy=xjB>Zk|Ra}Ss`vd3CG-7xm)GliEy}2Dta<64P zEy7Qa{8W0i_i2l3>+~hAlRaEBBIxtNr0~LB`t>=)WHhA{r@#^=Ci;xW<)=*43ZY*) zp3R-b_i4;*uX_S!y7{CA>YQ^{{SLWVJ{v5!B`%%U8nCFZyjW z72ZQor{eY+tEn2da4xAsbxbw5g!ZM*fz>hMgAUB;5;;Cuhx7=qcLq%DjSp4@=OWzb z^xT{FKZD+4U}Lv}S9thmyubRKq97})UNw$~=rAuU==(+Z_LbS|YD&&kgzLsmjt}KeYk=%w+1xE`psdw%$~bB8kuO!=RW;efrg~7}9P8{h zWrh+~e?6U$rkTkX;)r+4gmO50Ji5@s*s9v_8>NABF)@D?!1k%|s2FI3y0MPiIeAr} zAgoSi*055W?c=+}J??lkkl))iD$>NH8(yul~{IgFxQLAu@V0>-OdZb9x&YRIUl2b)P zmzOMwE_=*hDkeSYlMSw`Bf)E$Oq4608NJHN`J!m{&JcDRs4^>jZo(6W4sFnFVE0Z+ z$rvNRgGKYX>Dk$dQXH&aVYsa9Reu8sh^nsyOzRAn!LxOIDeCU-z<^3@Ll;xsRmf2H zTth=HjD`7Aa*_nkpM+bVT44UpZuV4zU&7BWGb)7h?_Gr(B7atxwN8L#iHmrxsnr2o zhIIg)a6kq@cC0{zUHO%BuIA~bd2<_7?3U5p`53vu&dzV~=em_62IOP)Ctt(Vd*aHw z>~Ly?U%@qqiUc;ST7|j=Zq~QYsCA;8Ej8JNeFSa3a@%tgnsx0Jb1ACmygnk?)#7lT zWr%X}97j@DG&l5}nI@_dklEE+5LAlOl~)LKQ#`5<>#(L(!m5PtDsMWggq0YrBHf+- zfv$|N1Fn}&>2W$EI?xv``9@a3n-i@6-k!o;ElweLw&99dX;oQckd&U_nS^_LqtZoT_TJgb~iqsX{ zww=@ub}-fL#Go$A-7Q=sdfDW}qTTe9~gO6Y0!#5nXH9`r-D?isP!t zVEq&iUC!pD=gaNVGm?u;yy|So4%6r-=7XF};hekSzU16awkyR@`MzvOIkeDHFwA&@ zGNuEor=*tXc_{hRIn$4J^V*KeLg*6bo=uy?!5NsT3QNM^+o-ugFWeo@jGe~>XtTUW z#(Bx#b@*ARoEVXWwuvbsu$B7)=m9&Rf#R(6aIDtvyKBF7y!&Oo{0K5c3qWyslEbz zRn9nku+agn2+G?dLd(#2D)l&IM#|eL5097W^cR|^>PY$(vi_8Yxe7YpdQ+qa^>cl- zUtWB{x2pb%Qa?2@&PDh#xu zri|E3>8O1dMT3BL^ZkLE;jL?|;bTAmR# z6sC@ibY4Rm1-s?Qxv075l7nl&P|2OQ#jo6{M-BU@z$3r4L1D?4`UMAn{ILCdI w zu@xtmFC60mTdggPhKn|yfpWQ&n!Bc5expH~8iv9wij3A$PNWx*U(pO;spDJ~1px(i z<)1^g2T=H=syZEdd)_|2=G>`xa7{KPvj-}i=Ee&Pz^iWgKygE)dL@^TOJ?&Houdbt zb+J+~1%ml?-7i{A0Yd!O5mw@PJGp8rbo-00=ys71i*FfcJWw-zhGaW`9}A+l5?2(0 z^r!3QDnDXJ$vj5`C6Au+$CS*YSLK8nTf?WKOhjhWOUESl!E1X&+6}C+@_6@557i2= zSplx}Gn_*+C-+g}4aX$%juwf%8Wui;u)QpG81}RZ9am;`!w@s<-Qx`$QdL#Q=dhSI zlZ(NUS@Y93krv7i*LbqvU5Hri7{$&vT9L()$KDg4t%_lbJ3shQ?z;P-HoHTU$kM^S zz)x;+8D3M}%pm;U@XOzC$?+y&u3QY2tR6_o!eT@BWLS+ZpML(pXH;a?6%lA{6h?U^ zxrCGdm~-67Gb)O@y5teWJxd#pp@P2j(nDXe{dJV>he~ak(vzxXm*c*PXL`CO)KNu9 z)TyN*Mx~PjZyRD$vWgVubF%!WWoCd4NjzsP5^$?}Q

5-OExGM4y)m@8N6jmrb*Cb@=82 z4VJiOJNQU$3s9U6NAw~-xrXaCLm+SzUW^QxpH?eTtW1J9ZFMcPJWr-&tzv++7`>>u-*Ic(6oim}HE-XZ7AY+48Kl8q4HSN{w%`dx|Equ!cf zQ#Rk+HgHA{W)lwZ<(rX*0@AT|MbPhme-w%ksu$sJMr4zSPLFT(K|@9A+4J9sh`|~# zX*_n*Jf9M6vtNMjN9*$W+4+y{3;fVeRW=Z(sJ~ZfaIW%iPyWag*#;kx6JYZrqSTbO zy2?F<1Xv0sg+yzu&}VODyZAS$83`FN3A4E>#e$A4Xp@&smkz%Q`gP0dUVA|r>ZD%i zHpe&p=#^7ZP@X(v7jfMuMQQ)Bsz1w}Y_yYEYuMlGW75#$obs;K!YXof-A^h<^IxOc z`tXk{d=-P%X#`a*aEMrj#D0d^I(}J|!n@gd$#_~B3SBgJ4ePWCH(a=92ekO_5Gjsv z?dR@Ve-@oG_~J*Ojl}X@c)U|}6!l4WBE;7})T|X+XDBT3 zwMrWkH{h6Aw_5F{r7ej|!grm7^r_4;aNE#)1pjGZUL8e2d8NO+seBVo-|+*t9Un%W)yeU0JG!r{oDZu$Ip ze3hgxbjg1Thg@lDYU3DS`NgzIW3ZVdVeB|Tr$Oa5>42UZ&o+X5x?YU9%@pS>g$kOG zZ^Rb&e?7~xLZddK8>;F#BwpLjAu}n*j=*K~SmikE`1i`ms-10vSpdZe9+FOaI` zm=&^)`4G0j!J;$kf~$n739dpdx6Jb4fbZMOrB#HI>t%&l1=AcM!P?RqlfJ`)dXE2aEAQ|>_m6}jXZjkTlOgBS=Y<9C&14Qd>9hFz&HIm1u|O#irNw!Y{%7et`wpR) zsU1G?7`zg-jnAzUyBvs}`L}#Qw5+H!u81nLC`>86!Y; z=Tivqr(uno36+;@q&D;XWn~sWJ8jtnXi(t6?G5P(jwOF#q zS|LkUz2z-0J@>?P?)$8}Jg)`}GV-7EO_iBu9!RW{l#ZS}|P$UDIl z{b7&47;6t!m^Hvyt=2InMQv4!1XpAJ&C+Kt7zyzXCGDCO=U=wokiTtmf~qQz*@EnY zi%0sM`{mr0X!$O&myXv|I=2mED!h?7Ppwip7!>BOv|szRg*$Gy^;#NUXI*cl1Nno? ztO=9U(-`1QJQO(H)Z8|@MhO2Tor&Ww7ztW?O&qmJSWFxBbW+SrDG>5B%qCEj1NgY^$CqBGQ=$8wM{3i%PlBj4=xy8Ks zk|Ny`1PJj3U};|yy(vit{eXkk72K#7SqTjE-e2BgT3N(xCS%>Hg^?8RC2Y<8cq+*% zFwNCNK1v*{9W)j$87HE(!j?fVH+{TiQgNnAMvxoEnVG(~|# zpe=K@GQaKzo|I#s)}FT=>2GckfOjlhWYKR_&7Qjh+YYzz zZ`GbA->uTv_<0=%n(kVk^%F?6{UI&0Amcp4RQlV zu;=HnKn7v-i8$ObnbHOhW8u96tLtY&acbpXKoS`;xVBJgZi}Kb)|b6YHB5h*isChju`U6aLWS6*TO)8O<1cO@ilXKn$J-EI!i} zrI_3cAm)lKjd|5qX7bhL5gXq-B|a)kZb=~;bwonya^=U7j;^q(OY=(q!c*2peP}yL zd~i35$m){CPnC7U2} zF_CLhMyK$m{por<6nTR%CUO#fq6FeimV+zZ1q+oF)jsYYS324eWmQf|E|zxvaPD|- zCWFaukuYh!WS{Y9yfV6=!QL^YGFCJ1dKU(Vz<35ub(+V0Q*rDiI)F_0>pm==yG8)r zH~qP@@+gY-HU0W6#^A=rNB1*)F`;|pb6|0JaDv~Z7i7;SfK407Mf)OILs$5{GhGb) z4GUYygjJ~Jq*i>7$bfWlDO*&1ee{$(dC`8WU~c`Qk)q}ArLWQ}LJB`7{B4!OUn*9F zBPR)D30B07shob+m_z{CZ_RD@pRb0do=tGYF{Ar}=RN%yI1ulRU%8+HkoMtt9WFvm z%LU~4&!!^kh|?n{o-5g?VSW8xyP7B0_9ejCLpy9BpQJG0<8(~{p}tWkt<{EQEMhETDUQ!3T6- z?q#eP^N&Cpb$A8kIatL%I-C-Do_=e$yoWGW3gSQ<@>B8k^h?y4t9TU<9gBNY8Ha>3 zbRqqs3whx=h7y^r+RSW&bV$nGuQy%o2za!TUe_Zj>lcs37jFnq^k#qUr8{1<;_tAD z^L{AX%a>bZphIsA-J!+6N8W!(rKed;GY@&?Tw5O?3$?bnHfZ6Q3H?&V#w zU-qr3gjE|;w}F@~!Rv=pl@&=8yVaa!+*dMXlwyrG!R)-R)_nX^Z^q}bihHc9-zf3S z-kHvsRij2~k5_GvYQIpi%MJ(mMjhj4h?5Q5fGz``@rN-08=&r>k|f6q><-z9x%pS# zahbymP0bU{V3SGGOeUt|{*td9Cn9Wr`}+~^s??JgnGJ>c*EG+$l#EK0XQN(LteKN+ zNsem2oKhCVqkm0V9d5zs6uqCfk`N6~WMS&j-7hT@GgunGVx9=1?*eOZ%)=TSkXZib z!$E_^eV`tHd-pkMgqkM;gjCLc0y85PQI#9hU#YmCeV`bLZZOC8mHtSf57z_>AFP8& zs2%x9okqTiGs)#tqSNFqYY?xv{O(8%i)mdTouF1E1KC>Vc!)!ZAYqo9D)*4b) z?g+6`mvkDI4XjtipsJcAlZO?A^P%S}(JaA1FaKk`yYILsS*q#7HO9MH6VFA=h#laY7jI(h@`mLnA$q>tVe zMfRUnK1Qi3O@idVcZsHxhar)i$;m+#sErhD*&3Ys&+<9?U@`dq{V0iOJIAPMI$mH8 zhNzPqzx1@Z9dCgsvCg`EhCZkD^)eXe$XP@jdfgmR+IgK(3-xnhqeu-h1-w$+g&T1& zeeby-P>{5{RvaUEoIkOzPt$h4P0Y~~5LI_aMnaSA;B=%bUoanb$!9$$*0t=v86BCg^n zhKA>0SBlChzrB>=1~Yy38s%=g`~FeB(;{3*mCo@|+TXLJV7t?*t9u%J25UyU{A*$| zg-ow6DS9!GR5)6qD>qBW9rR$%$T`it*JkAiQ*B`q(-77%?JBi-A@uZ5tkHNAGd)HT z7fxgQz5CS=xENnHep!(I(v>?6IQ!|?_~8j~`|uQ(-pp$UZIp{nKf{#|(5uqTL&zty zXMy;FI-*O_-$x{N6!h99b{jax&n`-=X(eC0=u(fY>zRIgnv%q3PS!d0P9Z#&;IjhX zNyS}!xW$&Rvp97KN+L#4NXXdL^V-K$mhmXw(z?4J4pxtb{%wB1_(4jn@$1mlM*nq= zm-ss)JmiJ6;g&_)7$)P10Xwng2*bI1tl4yEhhL{D9UDZI2^+g^`rVU_Lh^Ftb-3?U z<+SIi1-o+E-MtNpPjS5SZ`{I=U};+qbPvYwmNZ$AYCAq%mcx#DI+~NzDIaFzI0E(P zDht9gvN&K3X7Jt+Fcw4RYCGRgEk?Tb(06B!L1`9bk+Nu)8CyW?PuNDJ1598Cuk%=zASS{jKs_*Nn zktFj^dKc;6u1rieRuatdHwpiARhi9NZj2_rAElwO)A%7R$+X9`cr9ixbig>wf?o|7 z-*K)kvAg&Ed-jn(L;%e;P*y%aC!@hN4U5LFFf&`Us=vWGeuCrB3H#n%(L-mL>kf~Z?t)r$nS6Axd`K&4`GD}w znY9@O!s8;~kO~F^w~s)O%UUVZ?s53fOAj`8xWJd66aZ!< zYy*+QJ~GN(DV*5fU0%daYjzTo7lxut)9~IsQ&mpjQlNmad*@8jmQJ9Q6w_uZDyuJ* z>tyt*Ty_n4jcS+hDS!F#8p%JlUjI`(`mtVHZzIxoI81M;un=@APFWs&Y0?}k8(KY! zwwqIKj*uhNKKGl43SC!lGHquTjN6sN#fg~sSB}oulov+d3ekJf|NhFzl4M$jgPNz= zcc@;B!=UpOOF{j|YJr+`+0XSts1ptYJ)$!PIOXGanD^V4&5Pq(Z$a0V>OunWVM?{1 zm(7;YJ3pCT*@OGmy_05T>;nn>H_jTi+7#Y*ck{uK|JF;4W9vAHa>vzf;2 zn;U)9mt#Te3T$|r;zeKSpR}4DNAO<042?}~W|ir(LT9idFGi^1X#Qhaq!OO)S^fSP6)HIR9QMcr<^egB&IGd{YAQ2L%YY=sJu?d z)xbtF?T2$sPOy>-Mmt7L8KhpLlFOOcH%urEVZ*u4`Te4*bg)*tlI6dbj@_J9J9xla zUJ??{_Iba3t|v15Rv3Xl9HSo3SaQ-i!I>O1<;56hpS@XjxF%?JyZZnT;H$Z_a02%H z*6pq?9?=^jFz9&fb${s9svsmI8N^)y&qiW{QKjPc?>cjQ|C`~$CU4EM>UQhJ|0?x) z8XecLGiS3yQFHPQ{*EdrAW#ThfU@<949s+lIK>36 z@uV>T=Igv7`Zss!pmui5_=ash#TNeQofo91dA_tZ{LYu#q#i zXJIV%p<34BkFKgvXKltYtg;k}7$wmf@Xb!tVY+28NYe%y>1>35Jos}SVNx9S@c;7%4`_fxVa4`}M1kZy@d148Gad#0^!dO!7bYrWV zfiqV>)~3@#QNw(RLj{iY!XdlnHH>``bY<^?o_!@?p&bk zC>HT$Qx8+FP*eVtZ(+cUzrb#KK?qjK?q!~We|888|6oT~nrraI3!&YpaPfK-uU&S7gr9jYJ(@a*a!2*a?rSGNiz|2DEjm+FX`JSMJS~*5 zBC8vN%X^85n1_^Bn!faBOYp8+=iYFq8%9U%Y4SgTRaU63*T*|9id0W;+#zTeP$51c zKZOvO^L()0wj&R*c%sj#aO1#CTIal&q>VUXoD&jUPb}TmsPwI5F_QmcWo`d(Z5){8 zO_=#Jkj~dwY(1CsH&jlCDUs zK=nwhNF|k*oFo`=TCJ8L=+(C9O)WVd&K;b<-@f*5Dl9fjK16+B zkPYb!9h?q;{^yS>X5Vy*{p34@3?DGRc9TT%OUD!%pv&kyyc)|=6D2qmNKIXG_r!%I zEzK{B?LDWUp{~P7uxTn)MaUa{#U0n6RD}EBr_4mZ0z7UEWXp-<;PhE`alSDoL#k6= zP+Jq8(IIS9+V}?tnglfLw|HEM)YMB>_8~GgdB;oU=bTE8Y*#41b!UpZQp6KqB}k)F ztt3N!YqR}sRUx7&sa$X}uMgw)xlK`rIWf?;6)A1HNybBR;JbEyx1K?}wX#doNmb)n2wWRd&B?dL1u}y zt&o=G%1U@Qz2$Hb2gRdveHCd=URz{(x)v6n?SQ^6I;q_g(!U7YiC3yF7bdA zH&i=oU@W}ThKJ?5Sp2H?n_U#~9h-}Rq-}XAc~PNp0JzWD2JF4=AeB5)>EAmW?WGiN=)w6-mYfPKah1MI4YPg6N^vnP8mXWjo$ip0Tud&RmADn#!@ zFdiR`S(&U4;o3elR;UP?V(jMsSXG~UJ5AL8-sM(JY)<{?D{d|k>>~T z5%&b?^Vg5PPA{OQfr2e&FvIVh4jk_@SYIQfY1P>DeTRp|D9(#1$oUsRB!GXUkK9a6 zRtf6%%gL2;6k0P>LcODm)Tq`TCV>M4AP^Hx10ML`mjAN4t(Ni+JRs65bOO=)btsy^ zUo~JA)GoJ?4#1NsC>$*`slK&HK2|{qtjhV7JD9TbD}T0F8x5e{`-XQMvco^+8b4g2 z`J;ly@Giz9?0Gq-exU=~JHthJ?i+Z>h;l2tra1T-^8@yL(9Ya*Xlqtw_r>N7E!~@M zk0m+$Z(qK|+@gFca2kh=Ep#-{yQCulq~u1iQ$4sD{vA5`9E>)!BI;4 zB*xw-PzIrrzlVR&K=9xV5(OK@(hsOy{8hcSbO~*;*->p#qD*lxQkmkSbl#H*`(jMy z*AHVakUZxywfuKW4~F;DAB_?BL5f9@Ce~KEfB)q8eR!I=k&1i^(U)&VhG(FiiX~zQ z?T*=I7pKU_a)l zB|ZmdzMGAmb6=Hne=us;Z+OxS*@-JD$)9sWg9P>+pSv4_86n^Wa18}JE9joxg8>;4 za329C>r=Q5^^rCL>HFjl=ZDW@%N~@G5y%*69D;*7d?!ei+-I zCs#X|GY&y&9w38|fwH!(GNA0m403OY#0BmS!GZXy=8S;bx&)XN5n!>p+1`M;~iij5kt}T@x3SDC+ttsOL^#?lphy(I8UBm@NHfZSX4R!S*ZQ*^f46N z{O}^y9$$lI+#V$}FZGf5Sa{Sn| zH`5UQ0ON2M>Kx8LnuXjq=k_ccyu!G-JNkEYpo0>3u5#}^-10zhd02LCQZD(POf?5= z0}jZ$wr_S4>u|0JAk@Re1k84iq`DR|)2i3TJxE<5CQN=PQve0d)04stxVgEzqB-N> z;RN+#GfCKWW^Cub^vhX=;sm`)Q8e|4{~~&)n9i#Ir=|jwyLR>m$oXIYHZg(|_`kgeX7*t4@?U@N;V?=6`&a+_4E*;Q`2XV!+}-caw1RLv z2ol$<*QQV>wLG`Py&M7r{Na{Fet3aI;?w+l^@ij9dmm!vkN)osDq87(uMje7#D72Z zpyU606_*YE&wu>C_=x^L)swXUKHeMp>HppVBx12Uxp$;yj+sAvwt|eRbcv*q@BaXi CL{-WF literal 0 HcmV?d00001 diff --git a/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/demo3.png b/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/demo3.png new file mode 100644 index 0000000000000000000000000000000000000000..ccf82746927af7c48e125249404e6f57206f9511 GIT binary patch literal 91085 zcmeFZWmH>Vw>}!&2^4oJh2qfS?pCZVR$SU*#oe9Yp-@_iTX8M!8mM8VxRc^uEJ)z) z^nK5J&hJ0&{dC8;<9;|}06W=xXRW>Fn)7*{IoArYy4tEl__X*S5Qs=!P3aj3gv|;9 zp*_aM2F`SV=?H*>xTms_=X00Wo<3IYuRvN>p000PJm1(`Gkd>s_po=kakNKqGjrYA-xMAg~qc7p+vb#2$nO0;wy>>-lEwb^0}Y zdhufUF6jI^=Q2xjdPdP}Vl09gyxIoVP948*6fK{BXo)VqJN+dNnVi&La2sMkwAEZo+#KE^yZKw8 zF)L{`f$Qs?W86K9KFdU;y*kKWI%eBXSRzA3R#YQIm{|;EfAv5hv}#`_!NNzY`PeeI zmaJ=TUv@3-{1?2Y%@9?~SG+g#A=fU)4JFb_nqY41qQAg z20x&TSGK)I-Gpi>B&zy7iF=hIT{4L~uObm!r0I8EjIWb&L7(_T1NWrXIdys;=U)Ce zMMUujvUHtDc9Z2IXLA#45OFm<0n69s^y2QA(-tAp)!nyO+`gY8lO4195#jtjqc=ZB zS6=Z4(8#Pmms!`a7?GKpnmQ7_9b8s}${wD`fR}HEmlIHS_noXTk2367qwpPeG*30> zZ+;M&{GG^2PT@-zVJlfRRW8c{r&xh;Xs+83JaveLh$uIH6gZ`=N5_ipOgtdC-D!x88m8LFaeX z{YZM|W#r;=BJh}jqZfgrs*BD(K2*!soy+l=E?qRpV5Vs^ABL{W%x)Unk*w`EJ`-A^ zt62QLXiJDe(KVV;Uu=~^Qs-`@cgKNOO@Lm_HQ;6sa&CTez?W|_Ln0Oz7f)~g*cI>Z zJ9X^6;_n|8T~1hajY&)-k~;Y~Ixu>>H|m{q(bU{Y6te4rN`K>Xqf&e!!c zs7DE0z6i3g&AdKn2lEGQKXF5zO&2a7!Z$Kq1}n_ZxP-JOW)GGE4q@@;r>s9-Kd!8< zUaRQZsc>Bmx(MoUVPN_F=>PCMIFYxKsdC^rRS;=;dEepP?V-h=v-ZO-I*S{aMS`vD z^{nsWt~sQ!Q8*CM&ooH4j8OTp>5(vG<9m4g$>Qo0B0?5{5qRMfA}Vw8Se6V3UGPE2 ziMG^5>nLn~>0AVG5YS)8{o6$sT(S!z^($t`F;z&|bjOA;qEPnge#hmo%Ymukd=p}v z3HcP|Phws>j zOlI8CC+2_d1#W)`=DfX>z1tKEIOj3H{AOqkMC^!Qjmj6B#Mw8|s1^|CE_dFjUI#Y= zM>hB7RrHTvS)9M}oyc5@JVY)X!s>I8Z#qu04+pY+mSRz%>$B)Zg&iS3cgt|-i*tJ{ zdpqQN`Q0MvzG~76@cJ$$hpqzm)zH23y-$G($Gzir65 zt%ZB$;Z^lvUkI}1j-n>`tm62zM3#Yy-+UnVb~|_NbbG=+bNMoRxtA)imult3s6VCo z_1v_zmluWXg@-Jp=Bm7=@BCcE{AP^`1H>43BoFFAJzt?JbgeIn0Firl60+7h8pOAB zS}eMXdI4J53_jRA(po;%LQJ_J4Q^(jNa`#P-{tEii0s{otj=b~Vb}H1HqgE6$ZGCQ zYDl<=b1N2Vu;$1eL-;}a;UEemK|LcQ#4;!pxmXI|5B{whjM=>8&mD}M4q>o3)3-P) z?Sw`qM?gfF0T`)%RT}o|--n(d3Jpflj@z>uL(tV!bJv+wv$*^3m?Z$h%gg;Yvwa*c zxo=?>H_BLfA%8eR{?uOI?Ty}6qK}DotP*8!E(4$80wI0w4wlW_We+>~C<&0A%h%Fa zd56A3l6v}QzsjED%iY1c5mexS5pduNhVgV`@NRRk<0gPuqr2mUs%Ogl{%_06o17{D zP?@%sg467D>dY?&T`bP+o}CWFl7Rz=6~3&0`c=`{DIL^DmXkLcxbb+x_CkErFG=R| ztB!&Gq-fW1BEDS6scJ}rM?&u1WiBunrrZ7ywb5)bHw8$4{*uS2^mc1@HpAk~%-Dyn z(@#tj!a2aDZbW=H!phLmw=b+9)DN1O&N*)=$p^3mHL{qyo7}s{OLw;yhw~fL!TZy-O-<4Kmnr=66GGd& z_BsKyNsQ8QD0J1D@47=C4owFRPp@o^7nYXecbbDo{YC&Ob?86c4g%59(Y36kk0kQ32yA)>B>-L7hn5db?kr8dR4vkrqV+T9L2FV-BpHXJ3K zUUO(?_1Fe)*ammF(6Iat-M+Z?J*%)tZ0_85x*jA&Q`0A#qOrW$??yHYe$+fF7VRuM zxtYj07eWEa_OYwjKvnZnT);u==F`ptXmQD4Nyt?R92J96AG&YW5sS-6v%S4NPxBB| zSfHk?XBpWZLIskby->C|RYrVKl?nIhzFxGyp6)tt^c{Sh69znMTlM(v8LBr<`||9Q zA0HnhBtte2S3ZPXesJ6QRTeaT=GcAi=(}{11Az}geMT;$ED%wkP!#=OkhBQ{cz!#z zd}Wf2?A`#zN!s-!GIy$SD ze2EY<$t1YkZnzBcHZS~*+Pgm%x8ECvkr&I*$F?JR%ZG*2yIx&D2zQYmwYjdM=OFiN z;i!3yFzmjX{5$N9vnm(Z9fIi&1N2NlTM0E9ywQ-`lVbpt3;zyO5kkB=-?cyQdV6!} zsSQFj=v+4hZQfi0QQ)af=jDF7H6C=~UABqK0%iD1-J`(Aj*!cDNFyG~>}l;>nZ&kg zx2>`KkrUQ%0I0kN>Ct*NHa5E8VC;w>^-vx1CvT*(iqU(zuMF?-mrtaZBLGsd=sU@| zkOCNU1&ELDM@tu7RB}_zA3FD5U7zk}c5P>ZnC%z-`Vw9DG2L;ctu%p)Z$I4;Bm@ER z-8ET`LrJ2og?W_ct^wT508Bn($59mjz-m9_@9o`ZCf#XGt#`NA#}$BDyB@jx%^}B8l#SDVoXI0O2(+r_O$;!in%q0*`$KQJQMg)U|D;;od^P7Xi zTjy_q=rhf=JS3mr-EGSvIRK_yI$^x&*$fEP3k1P5${uJhC<%X-b*M~Zbq!xc3ScIecQoA|_ptcjxort(6 zjPRy;XAICy^WFLK(ZZ$-6(GoDXZ;ol8&f`X{C?nzqULxi{v+|`{sN10D%Rf53+ax zjItk)rbj3kMN|W1?MZ}EG$<(&_^bSt!k4to6MzSgQ2vhyV?v-Uxb_omUydRdMqyB3 zNNWHH-9;bXj2vo?cB6WN#Zw)l!21Kz*aBtb(Yu?`;~+r9Q4>R;cDX410OJo9Tsltj zS+Tf@4+#U*2?*`)*Z7q@yn;{B)es|x?SSX@GCHfRDh1O z23+KCjG**|nA;kr`B6C4ifAxg)b%@Wvt>{a(rWawV^bR3eMHb5YH^unv7KOh^)dJI zqpIg%LlBL7tZe;+E1f=>YNQGl5b z4#MpQ(wYc<h*_qcu$Q=?T zGYj?H_OklHw=3Ya-R|4nV-%eN1c|`T68FFc5=idZB;_yg$iJ!-NM7}_r2HNw;$7X0 z-Ua?mH-HS{Vr8M#15r78#q%F=h@x%8Tn%y#qdfg50X=p?eYQbUwyQIBHZ3T{hswl_%*?bF@5>%x$c8RoRW0|SD0b~H*3UaNTLGDp z&vFpTk%BR5g7zIznFf3ppz0$s*<-SQ<=;R&lc1(!6?NNDX7^<#&apR{f{eT!#!qav zzmQ4v??VSyOE|%+ROnkki=5#z2c2C9Ne3coWj4h}#{matno8x+@owrq8If$fp;!iT z^1o`we{BGdfe^c`wY3Z-DNYT8*9|4Ec>xtz$8;@-e5Z3s&Oi(SB+wa3L80W(6~Gmu zP8aW+JCtSNk7X2x;B|}=o@&5+cbhNYo;P!Yf&fRZDKEcR4(aYf!1$-;UAoOUQe(AC zo(Jtb&n*WAC!4P|;W={sr2F*A6%aZ)h6VIwm6GiF{>GL*zH;c_$R@(aS~Us`{N>Il${@fQpye?=%@qs#Q_W1vxW9c87GiLxaC zAg&rMt{bmVHvh1I6T0NLnZ14d-Qw0gXyb8i+3xPH1U2C)o{n#L@TO02Nsfe9dHu5F z(lK$+c)WQL1k5xAbgK$woE*K(8XZT;8v9I?{sr*17)XkMWOwiq+vwV9J zay$Ch7EpTe0%WiSlu5Rl-+w&*H2W~nb~6hsbrc#r-yD>=6nHWW=xR?J8%5c(=d$`h zEOuM)o3;bdsc;>DAp)l!5Gr-hDh)#e*mj!z zR}V<|Xh%*@_S?^$e-xZ>S#m)K8Wx~`)|{%%TU3BDRB}a}yL8l()vO4QAN^$iDS4Ul zQO5%JyXyl0B(pQUe0Lpkr(wbRpC-NtV@aZ_Xr}roL4+)=adC1oE9U;sbzBxu53C&T zf4m18vvd_A`^TBTg|B}U-hi8=)`VG=elyoZkhoL032O%yV&79>AwPkkmb*m#Y6a<+T5^)&Cz<`2P2i{^6GY4|UN0wbK7u=|3=ps;>XPsHy*d z=}SA@L1_OybB5gLeoFJ4r=c~dbFJ?G6Mp{Sv05u~kdGZ14djM1ocZ2TK z9(utzaV$|>=taLIhQ>hw;#6>6-6V;@=xFlYT7bA&UCT>(9^9XqZ4YfS6HrsdZ7smX z)TZCzvZDt5svfMA?Jbhs{;f$7ZY4d?B06w9YxNKlA1!aj-n*`IrWZ-2jgIbnCe|E4 z+&;`lxsR?juX|XHrlij_?sEC;1s^a*a;UBWqoFPa-d~W$C<}>9R{b_v90C$f_AE0^ zoSUQuzotItpeABZCw`rOf)?IuiG66|yR4u;eyBBe2o<2Ixz97snJtj15m<>YS0^b8 zyQJMqKQr_*Meo59RRJ2W!)tj<+&{ijkba8|mo?1>IKs zG(GAwm0G1pMYTTSa+ww0Am$^kQnSRlGl5;G;%8w--&H!Ez=(aAa%6}>+@d!)(Pa#Q z)wH<@pTdt>xmoht6ZR0=M?djKtJz-<4EQqCdw*QcTPYbz5Vk^^)Y`#yNBv(s*(ySU zTV6hx$7nr6XA|U4U6IOLnIKXt@&Y24#}(R={#^GVJ@fg4Ba%|k7=nR?lr#w(1L|L* zW@X&pLAM=QhI-7Gj9p<%25gQCod~pXCW($)cL1a*bx%pbM{(UDA)qi_sMJP5$ZkA; zn^NTrx8ENV3^C?9EoUr_crnJ0^~-S!|2dvN)d`N1rpm)mzrxTf*Ebv>hf}3mnXCeL zzDRP#V9F&?vGxF3bSAz&G>%c((D)OA87J>L>FyZi`Mfit4u5ZLsU#~^Oh2U-qg57k zu`+=@BEd==TnYy8osL@mOwOU@_{jJbrFoFpd)$r^U(+hn#IGEGDcHTyp7{()@<*+8 z?i8GdZN95ltx&ULGe);MSjAywRL&U+5qqu9q8m#p5(~|iQ(mdM z5;MS*e48FaBF3>=hrx_LNg4kdOyx6b9dJR?XtG@%`5%vb!ia}2So>!oOB-J5{CH$DTsSuR-fvyhr^J*?{17Pv(hD- z6V+I9AO#w;Ye5~E;+juSY+g7-3=hhU<0go`9lH3MZa$s>@#PW>KZQM?d9i2dQ`euq zW`lQV6wPgr!~?uSA5MCY~MzD~ozv z`%JHSJw&-3()k)(cuU>53rpCb_vr44>O8SCc`fo^YRL43!XK-cLdR*FUzwJGuAf?6MR0N*;ukDmz8Xbk@NB%*bQ5$?9+Rc3W-V|fi9sYM%W2BR z^x^6H$(cU1uI3J#K#NZ6ACK+7vLtIC78yB^j>KtZ(sa~J9>UR7GA%UvBd?_UL`?v2 zPf%}*Xx}&2=$u{UFjphG>H-UJpMt6DR;!GEHFPZMle%llc9Eb5U!0%hka>NCUwwT1 zNxTtFluh=mOvK`A8~|i6)z<3lHiU})3&c%D!l8RWc*A=!>sM)=7djqP;yi`sR}u8K z8LaYZl!Uqj(We!;$`Lk26-ardq>#qkHuvF2IPs(^a!F7%s^HD!bCs?5-#-no(Nx*h z#XYB#+`3Tl-MT@h^LyuIWozTMVrrYJDI|!xE`IYeqG3dDP?^Br(As)!*CZ*Ogw5q-eARxF}HEWk@Rs&T{bsir1jpr!&E;Z{-z^QgHe zwyFCam#!Z#>%<6QCeSeJZR>^;HsI7vMfZTEg=!I^qFb}}Fa12YgW;rqTuq&>aC9+hurR~T z83y?iaURnfODCNjQ%((;lrDni9Jc)JD0YMm@EuPfykA}?)eeSt=#G`d5Ilpluw__a^R~%Xbeq2kY9`O}v5shFu@^ zLS#Y-0C@YvXf7z05$m~SD6I*3OrOCxSelc!c}1;8US&!IW4|Sf-G8pO z_Pev-jMjEA>hLRj9Q-5sMjmzqz6`bb_!Ry%%Z8lIgBZ2MuphM|TdVJRVIQ+`+^i0z zM)q^$``>E)<$Ihs=7jA^vqX96o)%H!Lh(+ooc2qNt=dQuQEF<{mGk)nbovrvu zBnpfsxS0L7)TzDX_2aa~5&EY)ELWYRDxI8HlO#vNb5n{YU?O5y<09b)tRQlLzwqPS zDpUB;ovZ={tyyv+%AeS1nV!bOR2aA=+PE{I;7GY#<^+DfmPkRC-*W?dt;1j04WhYc z=v}P0*mW&z#vh(jGFBN1nU8M_R$C6uV!WlFz(~Fy7$;`PM`*%zAl~zUL4O<@n%wZvwz~{hsx20mNsB-B<8V2xr5=%hDUG!*Sa2sh%n-T=2F zDaamzIX`6kYi%fYldo0xL7~N&U@0X1bkK;Q+S;ZiET^JhOb1iaxn#B%b}4c-4=&J$ z8kmT=eP|fhqW}orA%3cvhYMgE)E*FtkAd9|D7F_$zVbPH)+$j=)D&mZloMm`68%(I zA<_IuR60+FpJ(fbIOb2TD14ZAed5pKhW+z7>8v(iT3c_XKIG;h0Qit73)kR7{U3kj z;n9u)AUW!UB@^hHb3*$kc2`ZoN8wFGQQqeL57*wgj!__KC^xyXAmjf|Aii zNM}%?T6Ndx8XPE?w5Aa5pb=|<;paBFk?M`;z7SXe?4Uq-!vDwo7~ZN=wqdU7_jNZl zt9xfr8Y-J4yyBmrN=YKQM=-LdIaw=*2{L&;bdEQD zZ@MU1psCCo2pWi>R-H3Q>95U8YCXB7k7#kA=&T5y)YVor?0|6+Fvl}?r> zc8CB205hgTUxrtN8f+R94}Un-Giic;)Sc2w&<4JZvFp_NicKEA#`cmEHmCg{E`#B@ zu$ul`HGRk7XFc%>YsTawID+nJ{bR$rV4PCX=$RL$1J3mkz-+p?9nx>?GoEL3e!rZ$ zhsv&`_(*Xb3~grUtX>K9e{&@&T*6GfC7f`eNSm_Dq^*h`@pp+2SLUzHT68=a?$270 zmkO?>`$R-XG&VF<3r$_s)b_OdlYEd~fj47}+P z-u#T|#!^{RDYCyIIBCE0q~-c|fNm=-atU{rTlJ}7kXV^+J3eIEx#wj=T=9z{4?q2^ zc3)aRDE^?5vc7e&2Hfg0oL@6>+5X~L?O z9A)|8A5Up2R!vY~7yxObwKhr=$f>kE@Tr@2hW|L{l+rt^mF@`0&{H2EIg z_zU$Yjq-PqGgc3DKx)0c zK+|N3-n+!%*Cc2g@n%`e;t@av)LgF`GH!{FHFiieUW1cP_&>Kq7F@QqOu9(b4o1?IgcQBlTp@wNv^mPmxD(>)bvy{WeuV(`IMe2Wole~ z!su83HHqpQ8_l1TL)E)7uaPqB{WN@gIf@U6t6XR#0||Qoq$O>7IGji)Y8liKd%qrT zh33F-M@#gWZ*opuc(m#l&!aSb%YpYiiSZ;{$r7xABZ|cdcDDJIeT-yZtuY4JR7@d# zLrwaLbpG{c16Xc#j_&%Ugk^mSLL+!P8q7bfmkw6)v#*c4aF!BJ+HLEO;=iA~PKDx| zJVUMU{Vjen<{Dinb|2VybVQ}y67CjyRf3zxJc9Io4i(^Gah({9H^|IFx@sx*jaW$E znw)XF_3~0wyq$Pgsb)}sIse(6xU*cr46orvS34Ie$Yd%P#oZf8^%pzqqa z%_K(@C^b=WMSa2H`|V6;XwH>k;ue3-K;e}uSxU`P-02S*EbA2J1e<5Wg(~!ax{t?r zD5)HI1C7b=%-IrO$Az_))3S9Yh?Rqy0h6i2T zzQA8>^-XdMiG!Pn!r$BIz+Se*8JzfOW%_JVxoxZ=5hoXS-7PHv#5ocHE5Js-^}ble znjQGe&eJ#AO|I}OJfTFz2~a>hW&4SU1AX3Haij4`LrR0SV!FdxkcQH4)^~a4+T_G> zTweD*C22Zfh`z!W7b)i(O~kkL@C~-+@D2g*jv7y`j6EH>JiZ}P*z62Dr*#TT8QoNF z)mQ~XxrXjEvA#uZXG>`6<{``?+n=dvlS**&Wg13U;m2wg>@(0rFS+V#)moXkzC1<@ zCvZG_!{qgp@sq~Vt%vpR7YW(&>^)PVG|GtzEZerjRfTR$6RD5joZ@tEld{jp6x{a^ zw3M9&6b}E7D}hW^K6ZieQQ-P;sydBo9=$r6ErUygXqIp9gG&ck(^itN zW(HlN_;%Qa^$fjA%g4%P%M8ZoE>@HDeC;me0d|KzpD(GkYmLTa`Aw$CY?S%N(y1ZL zrefO4sWvL-beu=wXX9DEgpmnoXH{ra6Z~>nTqay0VyevR((zBkaEXC_55@Ce6SwzL zCm^>tk-s>wc=vf=SJ5@bYB-@`yYdtQ;Q!qH3NvWk-%Wj7D z(^xdrizhNyc<|iaKGsW%S(;<&ZE`h6lZUa|90lz={0}GUafS1(l9aEcRNPE|zl3Pv zd&OkGS{EK*kOG~F7??l39OE4SfZs@1CoYct79VUb6%{ZV2#SBbq#mC99fOP%>X9X; zS3USfp#RF3VaTvru{#6ZILZM!1;Mg=V`-wv%(L0>gtX43NhPxT-3*VHve-5|#W(1m z&tjgLpHtYqF$rYYSTJ!%N^y%QN;T4Rw<*dgcFG4!MSG@xQ*#-@^Rp*fT6}WiU!clJ zzcZNi!o-0BT#;;VDUdQVH*D(oKiBksF6UT^V_ah-B#1j5?blnymGOxWmzS{5a@XFS zPddDCdpI;zZ0C8KHv_1pujP3~>V)fnxo}V3flbS!z82BJkGG0O4FqraQDV_lHk{;- zpbZ)N)fp%=mG_MnbOo`4XSbVYJ}#7h-Rrm&EudEGhl)JF9K5MQ}0h_AZGB<~#y7xk2)CiZjS=gla8!8V&i#Q8i;2Y#U2NHSry z;GRyMgk<zXd1uz}zUip!Fu#Mi{qs98p6rlV zeyMj-Nw`3{Is*s{weyIR%cw0qD{7AOpNdGO1r*j=-@ywZr+&ohtLVayj6;BpTVw}U zXGs@2{0IimFpns_H?8Wbn$GHoxN&teMD10cTZu<$zH;Sx9zfyl&T@C#&OnjYsHn{G zt831;V`PSX_-o?I7Y(C_9Epx`YpJit)jds59JNjDn(yIk_Wghd*9_(v<{!60iP~0oh8>5%;< zQY#}&kp!-%_HGAj>VaFobK&>F9aQl!J~@j^xjgKYh`y<)R%f^hy+u1IP~CJ2yX;V& z_vfMHrPQJx`ZcIP2Fh<2zNH>?d|xQ^*4m}OPpM?qUmYpr!vYd~ZM!Q=u0H>{hUa2J zCG4G@cn0U}wwMQ}%11KF%Mwr_N#g%7-6c^<7^{XnU9nFYAU$wDtsH# z;rvVp4=LYcw5+xxP-!fbn10wZ?O7{+;Sw&yR<-VtY44mJfpo&S2yqvYO?n5v5*w{@ zE9HIZC`%p~MupsSi?Zyh%(4ZYX09SlmGt^@*s2g7d7R^SFV?0+WLW0v2veUu&yzxs=0%i{(`jT%lynDj{H&7zJu znwmX`GwT(%CZ)v;tpZ%==G&=iC70E!PI#&C*dnDgPAg>Ck$6eNNmf5It&E@oyES?I zHi+UrXVbvO#KI4>Ot$%sg5h|pt#3ZehJJEhH!Y2PVs10!{bZfHbym1FJJ}9wEU0m6 zIVs*l&=LJR!lkdP+P$<0S~V{C<7#(?o}sTS8^_iAg6BXogy|hT1DEB49P`#>kS5OK zh1y^;gJ?%124|2{VidX)SxW5=1#S81GgmEm!7ub4id}i;2QL*tqrW(6GBHXAUaZTd zYb8}1Y$!;b1W?f0COv#3MV5C@MX8Ld160muKnaPe$ksDra9YEIIGWB#LUBeG;|ba~ z1sF928Gh)h8Ruk_Ly(Vpl?LF19K=Y6(8gm4VjZZZgb}Q$Ioz8x>uXai zfzzj_n(8u^9>J1JtjPvBP;=`P=*WBH;L{VGGD+5vj)s?!G|#N$YZMwhUyPkwK=Izw zc(CT%DB#Nzj7AX!%@>g7;q=zZ_FefBn46fU=PFK!WV7M0L{jIsYv{H!mY1sl<@ZPF z(IOY6PA9Ly0r8773m?ywxJ z!N-zFC0xYQOk5TwI&^t6*xRgrFVkjsY4$UGhiO&bPBHI+LB2~N@3J$${hFzO-}gwg z&W(oLG)IRljk)x`R-LR`?br_AO?QNO^=SyvN|Uci8;h0JkLNR@%YVWz<4V}28SLZ) z%2Qj@L4@UKKnbniyq@kfbxs|Z6IZ{F?9DJSAo9+r&x%XO`U4LXHw{fZ6?_xxe-x$^ zVU-uwWYJH)^Z&x}b72)s&RAKbW+LbQh$>l%0?Ud4S8bJPsH6i-`q+M$%4ck_&^^=x zSjQT)l<4zp!QZ5h2I@f;V1d0vg<}iND~Wc^3i1S*HZn*Xqm`3CVZ}th-Ml#9NBc`m zEWZV#Qt|t5ae-ADx(Qx-bMd6FmeIk|3iY_&ORVh1L3D#7>o4ugY`@6bX)92R1V5HB zTH=)EbR)v!Hs*u}UaE<|AkF;z6aG%_q0nQ`cd;Koz_tsLDTpXu70bunk9(=b2VS*d zSI}SSj0}IT#|&p~1k!H|P;L9nAW#!(MTD3MdO}DOtRz@vei#qx5J zdT{TDYPR4S=Cp{&RxVux`GBJ^l*e9gtUT{Hbn-0Piz=epK-<-7lTAA(Sa#{6x4FQ6 z^TVpBmyUN?J|;ekE&>%vbY-HC(O#5pGc5=D*Q-S zI;M4HUnipEAUv5a_oZI2-&sDkV^Du5>{q!%8a3Yo5%*0c4jqW7}XBmKD=ZtF%_1ud|u=9o(KW;m(9 zkm%`mP=rImx3kqu8Sl(IequRZkZ%4@7G}mWc*R+|;)+)oJFOpkXRmmoiowx+8x~cj zAT!wUq=}oSh-zWLOinIr`-H>I>Vm%Mg75RU4j*h0?JG;AdW=8Vg&&t2K4ZI(%%=2=@n8XMo5@tB(TOH1|#R#)4%5_Pbu zc5QoO-7(0EtvI`WiJs;<$G)MLk*BVn?hM#xxSQUiD~h(Vp%8Dz0w>ik!kV(xi5`Lb z{`A>q5H}ZmSr;30*2;JrdC5jDt46&tN-{Lv85i-;HT^2If*BCIV~oc8HWCe@#w$5y zs&l;1Z^5ByRReW8<~FMuY67LKp6X)qpU}OC&4Z|?e}l^6l*=Xi7^Y87nir_q&@gn~uWzMq@!SnI}r|AgUHlA(5K?t zeZd?1SvK-uT;RKqIAU(pzc4DHqO~#-k?J87U0!zcwIqrDTE!|2d7z?#dPMKia$55F zLqfs&S4A^plr)6%FQO@6{$PU#1!D@K;S&yDiDzw(ydE>P60p*Fu-l3_&Uk*_rHPMZ zi!6`dZzfLLwF+v9njDwt;L2Ep82M>_5spc<)C6P|cIVUd8ga>l`xVoLDQJNv@||+h zD|D9CGC$zTrNyrIl1S-W$0)`d(F=WE~XQ&y&T`-+0jClT(iZZo76E^6ZEhwKAm^hWb z_WbT&XrP!9^n>-wy8bf)DU$t1oYMr~Em&qaz7jVGYC90yc2IgqNwfWMfsT~LPn+ly z!?XUEt{Rp!viTZybGJ6fjKpRQ++ zHOi0r@TYYV!^)(wo?M~z(8{lON~CNAjPnc+3ySAV%$SoXDTG)gM<;2 zj7{FkM+w4|^n=MJf;2ta=BBxGH=&`Qk|vX?!pmu`XL7AYminUN!F|`1--E?je*bv} zlx^FfXUFWsRrD~=hUjg(`$dw%?BqdP(MMGjD}#+)Lfom_rrsL+s@qbwxd`o=CvkMf zt^)M)>bfH%8L^;m^kJ_U;~G?KP1Nt~llFNz1b!N|yC!7485?<=ou4;e%wwS=`kbC~ zzHn8V+)dY4D6#0Ja*gc3n_6Nw;*!y2XnepX03ow?-&u17=!Z|mEWH}yhQCrCh+XN~ zO+Z{2GK!;IoCaIiZ3bcDb}SfNc2&lrL3aIj#*P+oo46kbSf9{%eS@(nePdRrvwLfN z{X}tC^|C%hmjyv-av47oJ$1gnL&!z2fL4b7;HAcJ-?t&+4^%lGb;BBL4V!J{3hVU# zUQt+lYhnA>$JMEa1F%j4O%+piAR}ZXh`}`&tT4)bvlcy^S^H=~i5Ej`-^PbAp;_6n z3L&q0f=immMMzyE^W%jfH0q-4x`If$Y&-DWMYdtS&=otPasAsO`xCZ2wHS!vd(#l_bU7gcmMEb7DN!4@@VTzRH})cos+J z8JOd+QpJNTgS~VGO%*=Y;H`>IjQ*a%u zqG$*~p|H((rZ2dGaYs7CFI9pi!vKCtrgbbwa9+_UFaPu5>APCcN?vK)aRz0*2X33~ zlTitR)uFe!we|L-5BAtt1Ak7uJcPmLy$sOh!Z#WArtLmaetp4|+O!&IMUdF55dT!; zr@>>VPh*NoiyozMZ1F0K6u9Nay5f*>_fmi9U!9gNIZL;=GVU9U3&@^;*3h#dT-C>B zSU}05E)71DP9KesnWMB4qy=)2x#7TKJm>IJf0D#KyE)nTBYEEX0zO-gFuhf5EWJNQ z#YdA`QZs~2+H?-|y?WKUHioOrv$}D__O0)gBwXH3|4>g|=SuEdZviVSvG`lb`dafKeB$A+@HDf~cs?nA7@hRjGJ7dkxzhOPC0Om3 z1(YPPqGM%jOYAjLxH3`XDF5*VYGapamIcCS*<9fZ9F+MXxc^Gah{?s$!<`)NfNjtH zBZzM5t34c-JvaWzn=Y|r3=d-bl9YQS<(x(Dt7Im=zGEgr69pH&beI}0*af)>34WHI zp;5PueL-PIug+nd00UML(6Jh#%AZ^tSbOo`gOCqBEg%-8rdFli{PTNlr2agPYXGD1 zRDi*0We~2@t7v-&LzdjdeZ^Jad)(RbdUa~=p@^-j07IohqXI$Ckdho>Uli+a#3W({ zZC6oVU0X)UQF}c0?uEMARJcOn&(Wu`1fICQobB3Y|{@XEjF@Nsm*mk z!c+Aq$WqFetf5iD<&=x3+iqP^FUQ!CKbD2I%e3@3IR;{`l6xuSOq4S>wp){DbYYd< zaoOXPA|H=kZq0{&`_)W|%T4xQ_nz<;^D>D$%!xRZ{PZ zPPna`#F}a*yP)#IgZbM}0}*>TV+d>_27QHU<1DcRoadEEQ?7RF)FK>1x=)y#?i&fo zj82|TeN0Ow>TMEKu;(%3`1XOUesL32q~4j5pza0ik=geSH+KO_=~h3m zxk=FGnv@^t@BCidB2}oC<}$Q#YDlX3YE=m(?&VJw`Y{#yP?AC7{$u_JG;KGEO@}`f z#~)k>KFjb?o>Zf5eK|jHe)%NRzBWTrFo4(ltzYAgB=<}C64nuwM7zQx?R;aanan&3 zqVbA=8MD1ScVXIPV58hDQsaxh(mJq3Pv&($4e@A_HLzZkcB?|I{?mc}={*%EK!ETE zsuJ*Be%f;oWG8--ZSh|0q33sl>22MCy`R-w*-y1$s}efz_}qqM`GtfYKspEA^6_J; zTHvcN*k&QpnEaMy=kw*y*^;EIYFbI&=ozC{;vMM`7g_2-A;B4yFJbraC;PU}#x28v zH5Ntgq1s1t3f-dkW||rMVo$h=l#~*%iqE=#l~}g7X1uuj=8556OSHXx8t8Mb=GT}{ z?PovQ@M?)0nocG-KlU@?XQO4O0qty{}xr)`g`^E5o2akua*(1vaL>zS3iYTfV_G9%k zts+4`{)@SR5ipOJ;_p}mw zPxS}Cxr*HLU)`m;1WFh{OsMs_(+@el3!KZL@!&y`NnMJm?6jN>gNzbt)hvX2zT&WR zp;z?!`&V=>RF!3VmHEW1j1*jA18xuB6TTIo>a3>spQLWCTn;O&hx^)Xk}qBMHpAC$ z&?)!V9(APxU(C>2=Ry_9K6}xL45{W3^cL8U2{~njEfq5de>B>97sun5Q2b1W&TSkc zzJ{vH)_dEUnolBn!w7p`3xA$hcKL-N;cG|yh0iB6RIi9+quiIX8i>3Lp=n)5a=YZ( zQae*Nb@HNibIbH#8_~H*!oj!3X1z^1p#gI>WRRQIrSqh> zz#~p5sjP8)&-}RpD~AQI0zVAbd!mh5qial*BPCAmXNDQ>B2vvwJToSomCuO0Eyl0^ zz2q0izBwU~+=@_jNord+59d9yj^h@$6JKe*%enkK8o{?*_Vas*PhRYP5H@gs8&9G6 z!R?9iL7YHptNpwXno1EQ?UsEisj~2lNZUdz7Kc9v`|Nl;3_!bwj=-{NqNr=&`s-iR z)^$hrRy*#+pJL;A@e`8-euK>`V(zQ8(I|P~YwcOmD612Zt|}(7qFI&1Fj=3NYSmW0 zq7bk zWXHx`6uwNx$_X53x$eG|6xgl;RYm?*gs+;IIDQuykr#a-p>Y7keJ5i2(MzqBFcJ3f z85^c<dy%4wl(VF{PR5B=S2k{SnaK4qcz$C`FH9)@YJgRM9t=-CpxAzuB|pI zm>E(VR`{+BGHkV@0UbwOk1T(GiOB+ezEci)>JoFGd&uq0x>zw%|I{nNo8_oWnQUm{ zQ@Q2g^LxNbKy4o>$UfQ^zZy;4zD`H{sh!cO9=r~d;cH@)_i9)oUDyL%UY4ii^RpSz zZqNtIqQuPOY(vUN{N&_uk=K8ms3SHt4TFT__ai|A_NHo*rp;AOl%kLaA3Lc|ckreR ztA|z-GhNU7)U(=;dJ2zB*djeifqjWdHOnz)04)ICTOMs>hc#f`Y6)4-%hb95QQ;oz z1J*cvt0x(A3FPsWj#mSj0p;%n)&4Jz&VnJTzlp+tAh2{J-QC?%OLsRcok~mp=~}wG zySowT?p#tj1pxsO(f9g(hkNHYGv}OVqyiNi;aPG-S(DIi`Yat>4A3r=B|hhO8r+Os zEh&|y9*r*f-rpam6G@4uMKI@^MPpa8(V1j8j|r7xb!0?PF)|MMLsGF1ylT-%E(xF& z5ktj{m_U6D)%+MbwJH?2PxozF9v+y4!vH@vX@jLpTZ~(OtSwGl{fZi@>`P5mhbp^5 zj#($=kOF-fQc0@L$d#QyG3ZmfGqOx_xIsb)sz^#FXX^K+ERzxiqYY*E7`$Uyd4b=t zXfvXf{u)dp{?Tx%XmJ-f6|V%qm<{+*;Xm(p;Yl~V%@b0Iss$P&h=)76_&XWns0s%( zD-4ul^Bgjz+7G;C3v|jFWn#>CnaZ|WEG13#%YVU8rKGmPG1y2nuOPk1_~3UmBz6jR z#Qq*>(|GP2Os!sbl{N%u3gZn^if@;>;h4FTJ14#Kzv(dWPW2?Gg(rQ;838>l@gA3>!aaPy zC^{&1Q45b=sk)@Fef4ryO@N~j>ik5wb?=e@un*iK@uJQxBGdO-5@r%0P63Evj)*Rn z(rf;0j)Pr&4B_

};%^E^vSrc!ewiOlHI^gBYhSndKpRCbwWVy|1vcLvHG<+>Ec zO${h>1iMc9DeTlZVIL0o;~bRUAw`TlFceAhh_s91i4zce+g%RU4k=;{4}#WgyUS!@rKW)+(bG8}01z?X^;vIvFKi~Qqu5Xb3u^U~VI%A&v0PXj!nZS;CH{?-w7x*QQXQXso8H{;vv5&S z|M$*9TCJwtH?J}C(D+Af)EG(}A7m9|C;Naf-`*%-4i>IB*9-C#5flVlxQ4 z{ylWeV;jhY*sifI-!8fgXejej=Nat{# zwvRM0$5G1)H^I!!dwR|}Bm5?X~vnAk53ji8ZH^LPQwuiyF6)l31DjRSXt8v-qx@hO!K>X<{wLqjfoj%DD z9*90*os#7N8^=pMxX@O>a5;DVT;2p|8;9i$ep%>tK6elEBSnJX<6j1Cv2rq%)gB0% zSh|TIP#Xm^+JfVXDBW!887o6_%TNOGwmNErP!BsD#tdOfo2#b}lUsOhMOWdn5aSnI zoQk)bt0KA62+aDjapcBKLX=nS1O)%F3hXD;EnbpNQ(G zrH2Xj1D%%rwLR0**ULdw@=y{11g~Hcr(qcb(vL;AXnCJqaj{GTu%{;}?j|5K2i)P3 zTo;LMTgjCcHcd#CZ`d|X&LO(Q!alZ&VI>bdfk8vajS=t2QwUpA4#J#XqJ&eX4=ftJ zmrx?ykRJ zhn%xk8d-EY)@5@qkk{u!De-e*r!Ir`$W3YB0!V2@=3?zct`0(0L}ZtJ?45GXwVz~k z1}(x39FX87wU;E}bS4zT0429sTl*{hr%Yz&G24a74o~U*WY*{qP$)=}J||B$nd^vd zLzMf0+8Z-b4zXTjWmn1sD|fimXK4+glA~bcMXevJ-p&q@TA#GN*6sBo9pmmSAvm>Y(I_w{Bvl|8E9P@S9|ON>bAMyfd53t#=6(Bh6#4s?h?n;r z<_OeBE!w>#!@DTs>kZ=S zv}OkyQR$xMnA-W-+)pkWg{R=5Hw}YTTdk4kwql;i!1+zqNEoOnmt#z;d@lphQVO?= zl!Qc;2_x=O{^(^5C~jK#s#^vrTp#G@Z0NR%N!nWV6S>aRn|eRtC{bo7sS`62B-HN( z1H%m0)$CVI$S%uf7Hjx(`C|8qfMd@5rBrxaFnG(Igb!xQ9cdRaBV?v%=Mk!jN-PvGLcg=JDksr#ws9#6h;G2byJO zm9f2at#lHbxh3M1qBL%#lT4skosn?a?ac6+KCwarfj%y#$mY=se~t*4w4iq0S{_j{ zjHsGHF++reZRJ)xzT8=T>IJj5E+)#t$)2fF8dq6M-I1Q`mYu0s8Ws9OfB8WQX9?dA zG^&Sx*`wWiCusM-G^Y~sTT3P;jiafN*_P_osbd1~HljE>y!l|K3%Y_K&rl6u2{yrm zg00lt8T}(@LP)}VDE1S}6X!dneuZ|(QnxzBc{<0)Vcems>67hQPp=hxzmVb4hfiMs zUC0K%4F=UrK{Voty|4{I^5#>LP>&5!63%!#hSA z8Tyi5Rp{{B=A&z|on^*VH5}$7;*gK0IVT0qZ&@*Bd`U`pJff4u;cF#IakGVQ!}c`Z z6?9HcG-eQHTd-5Bg|!VD&KxS6zFBD>_Td^Hvqw|y{c;Y)TF|6B;*LuN{ZlC-Yd3Nz z2AfD^_&mcL>d@CpUZ~kEK&$6!e8)nzlL_S>@3!7wZ zeQi<3bm%FwSsrW=ey2i~*8$MejN{fE%*r?gzrA_jw-K6s^$7`^^3&co{~ni{B79FED>!?lOOV}Jd1`6Sx>VV0}Yj~ZOo zu>!2j;BxyI&QMRA3NAYVo@!<4e3|>8+Z-8ODJ>p^i38h4L)V6@vZg|^SnrndWR;Vl z&G@or4U+t4Y=IHL&M>PP_H7ld>*)#^*f*CH2V>uLefhs{rjx>-XDu>{`wKd>TmEuu zL&{c)nSE25;B#A3ED0)d?S_U9$0u-Exfv2RWzBjY4ZGDL{S~lr)w&bN60pIg!QgW< zl-EY9r|~upXLSj@YQsiF)zQ_F&}me?;76~p`r-fP_n!Y>M67RO6WprdCiFip;XiD5 zy)!->&RSvJ*l`&$NLj0+Q7tH;=dCYYL2y%R@wKggAuQ@mGbVbWjEzuj<;{+jpxd(Q zAY;7}Zha4>%3Kd1(--Qu37#KwuRx3x4p1(rBiPH5$?grA^+u0iaE!_9>c<=1pY+l| zk_b4VxZ?N6I$Z*iRaF0vUKIEod6N~84+F+C+lDMo{LMD*#WQUxHA{<$aivua&&>2` zMKvw_;Z#d^y``VDi};;U!o@q*G7U=@rZ}cZlXmDYLinku8fW=k_;DUJzj$XzBN7X5EGkDW4Roo-{w&DFLrrmT$9W8& zQXL>hZ@9;X*#sCS3zoVX92YvoL?#PR-|K=kKN>DvK@WY=2uZXmsOa(-8N|rx9Mui0 z>Af7|=_qyc4wTJ&fim~_kFFpoCc(TGgssr;1AhQ|`o zw>~lref5XYyOB5U(rZ1m2i7WC!z4N^$TOfV4r1?|L`{)4>gZFeh&a`iv^;FRqU5jW zJvC#+fXO%LCnnHdyx;Y>+o^k`KXRJ`%=M&)?0E*gNP+K)4ciRZNcddP_8kAj5q-As zMyOwq)#8zKiBo7+ouZ-=bvb79(EqUJJL}wxlm8!G-qCaQJMR7}`&$ipLsi98c*^+M3-HmE&6c4{uX%5 zRpS>OVPuINY;OQnmKhHlxki47?YMPg)BcV@4tE*dg4L249o68Nm}>(UT&IsZQhcW{)Zz8WSoJP z3Uw_N58cU!wK_T-!ZFJ^+-2gvTd@9g;!(*b>o;(PJG@7hD3B1O=T_A&tt$$At-Nr9 z*8#}>v)ATN^C9^E|Bgo>+l7{!=KpM8whiQ^Q$5IcDng!dASXqZRBV_xi|NXbYFQF9 zRDUH=bwjS%A%~Y#>~e6b3$@`NTv(zM&$C(py{!lm6x)O7{bZ zqDHW?*c^4!lKiZ2@V0P9K5WUsR4r%hb>^ocX4%l?U92#y8C{M@gNzVF*+aiF?2pVz zp~eD~TIYn$uZssV{a6;F@maLtV!N(d5CM~6;GqFj=OFmD_^3qoUuM&z`P#oxYz#mx z^K2IZ<$(}y)3(K_Q+7+D_=X=Q#s1!|gG*PYJB_vZnVh$+Y=QD_7}I(zR1pj}?_1<5 zg%Ozof9GnHngawf;XFU%i!80CAvTs83YI?RPiTycRSB z@Nv`gBy8REF7=xj)+cydd(@(Qmc6^=fA>{cK4sh6lh%NX&?rsj1U)?Jc_!szL zbqeg>%7aY@dB@^u5~2ZZ5Eq)@_HM)NA|Vx}1$&d_nW*@@+J#Rtb&X_UPwbB;L~f4= z<6Ag)&A1FXIsm+&s>V!{tR%kysmx6UbQAW+Ch(1=g7_FxtF-6u6`C2l!6)nG;@lNa z=8lck>42SmCtnxjR;*S!j?p{ZwVfXG5OyA9cC_**?Ha3$?UGczryC>hl}+N_00%?k zX|?XQ5Xb$$r}xn;_&|~!g2Ri&=MwNAYurn17KR@8yE(1_p+r-nqvS8LBUZs?tHaH! zmt5EN2%F<24n?DVTfZTi_{!?YAqs{gNv}?jF~i?g>FM|k*5ypaC@|$`=WRj-au7mH z>0%39RXev~lr(jK?o5Xs2WLQ*D4|BQ+wbq0diu#56B|ewm=4~O1j6?@z)!3<_LGju zOePY>4;fJWkNlx7QS-m>&i}su1w!)LIRNQz97T;Rp^jpB?FUn23+@;4QUj4g{}^YG?*yDO1za+!l>@OGi zFmf0?{n|B2o%bab$coEABUAiE3Vs#YpJ54#YkDTut8zgn;fSDF6^@U|!4ol1Ev5Um zUY|&7vWni;T$T03NqqxL0i;pHbnDvnwQiIgGTd%v>gC0YfI>6zkvA?|C5COpYj|Ri zdjT=meTlPRFa4(2L5yUtB>qrQD@7_WIhu=d zY1ru+uC-Z#WAsTieMT@n;cs@0H$gMKa>;yF`#h0ePW-o~uh|H`Ci2@gF@6~pa9KLf z_->boU);SsybEN$&#a+AcRHJK{e&wj)l#<|w?_o>0ZUyzbskO0><-SM zP^$vE6*(xLbG=C-M0}{}{aE4O)xXeZOU^xf>Z3-W5ir{s_iV$(#R-nVUSZAiqw;?L zbF9=s1_yiz{TAy(rGf|X&WTZBQx?dr!b?hg=_Omh0#nEs8A3BR^h8@bBjG` zo3(kj$z}p2Ln>UknE_w(_s`l_O*2mnKrV{@Wll|F+oO|J@K4>&Lx@%j-Kg-ez_Bju zbM@^yO`}9*fOMzfg3c<#>xalyY^PEgIQ-L3b0zzm@rlGhT8^u|mit;A*t;{Vh)DBx z>aj(%7go&cI(jV;o6MueBq=NeuDWuCC6s0yPi*Ln&=sn*V-I58FR)6may4%8EXvb*?93D{0z!KKxXYJsGw*oM6`K9_W~ zN%`Ftv<}7U(Nga*Xk#?>wvLhNQUX!F=^#RdHmKpt)S?3@6ki->e*3jQuDYu2^;`M~ zMUPEMqDe|Gc7*oSbJdLbES=PMHTlEWQ1m(%G9I~s8!z_HHXi^-wFQ+G-@SmROq)bU zIgy$nP8#Q%KgTVL!bp(oB3KLu%$oUGLxN*lCYdi(Z1$&WsSMwxb|rNBvlC1vw-NE| zXIyk{g@^Z*U@wPqTpH}{k#+dUh_dggnatODv;_eSM1r;&*Xfh`Ec6PW`N>ais$4)D zdwGcQZv}k0uP(P2AKVcIJ{&d@GK0SvCdR&0i2h@IM|`NQwc(@pGx4X8g6uU^UGZ(a zd^3}NOa(9g>L~c39%=Rpmyfa-1r=d2p>16Z?lxMguF7tdTe_va>6I_hvBkQMqp%cZ zi2hhlvKgxuM|8;_Qpt$K9xx=&lAJ?3A>qf2=<&=dK(cR z0d36e$?xUHC;u3v*sC2nRPf1{Ed7Z5>c_qrV)HUJnWTxBWQ$v`+nZ=Aw&BC&>V7!; z5FjyJWj1JG6Al0?D(Cj1qBsgz4l<7R0R%0G_bi?Z;5gJ&+7s%c$DKZE8J|)iFU989 zYf~FZXM~>-voJ~I9!pG$fkbTn2i{}J*9cZVL==AuQ;HtmuJWH;{UQ~k5}ITAYGWK!o}pOYW|rdqip55 z&+Cgas88+%7^zo2c`i#l-NM6ZSI{g(*6}iR#C^6@Av|I+XHF@su4(u=B_EH>Bpr4v z;CRdu;Y(0~WsNKv?8N``!ZMSV0HBF4zz~=06x5P$N?D@$f8bj(}tVC17T&G zf8H(XnP0W`q~UXoYf;yFxtR$l&*$n+@CX|>)k?boFdX))Ve8A{TGkFJ zchu?Nb^5uqg!Y@&hE^vjQFe0w>a@M7R{i?CC|V+w)8pKe&ECZ}kpEvh@^`m(*aAHdgX zXciU^^=*yHe-`jQA0B-(IIi;MO2TawaxR?^G#s-|Mn6ew zX!Ja_TEp1)oN}`B5II)Ls(O+}RcO)Rs=`1EMe#I-`zN!;i;XWro%h&8{J?Hz2#8nx zvVODPxED8?P-M!qDHpbQGAuS*{<$hxSQ{lK+}eOyOS1MV5-v9T)YhKOLCr41RlqKT ztDjAOQ;IQ*kW3?H5=r&2aLU5y!>9D7j&QWbb_)9(Y=f&+%;7=e^~T-co|@Z*M;VjT z$fR-9^jfYuc_9(;gwK!rL@s$qryjT^S4T<$+KceXFRQ@THKY|pEuu9&X7q(%lmfOk zHI#Xvf3B&I-&&Vp`tHPq2KJw6J{y_N2*+Dxs*U~%Sy}WP-!1L^GU8FgI29?+hHoTB z;5?gC?laY90f}%@!H+||H~vIK1awC{ha->`(nA12B-G(9z97=38YZCkCW?EQTH&;8 zg+x`r&`*!uV4#jYvteDGyukqtk2r!gKu5P09y7Ph?Nh!pxViz%RHrSJsZ9$RnQRg7 zb~f?bm`LSvoBZ+q(NBT85>A6-g2V&ETZhtkW9fKgBiPHKj1|g0;_F#0`E_Vhc7KRE zU9yH`oxF!!jjZF-{MVW1)PEl+1qIH(1f|!d;Ma}K2iIMx!#vf(6fDqyy$r5Ef+Hx% z?i!m369vxx@RY;rF_-G3N@C=gL!X%k6k7y-PWH|5MYF4602bxR-lK}Lmin1USK=zV zZ42Wq%gS_>_)}$W!ev6L6EeQ{xDSFRNt`teNTGW4jOHa~QRN@p#g?h<%Zx%hQriqj zN{PNXr~bO`&D>+A#KS>ItY|iTiy37Hq#&7JzMem6GyWyXitds|0ffTD*;|Nnd}6WT zMu~}=4sA)RF0p~{+m8aJDO#h?XD4|vh%yyFW$nhbTHeu2@P;VoGI`SAkL3e@Yo6vg z_L~dN%hJccyi7xdSN@{(2Nvp=lS)d18|HAkA+RN8AP#wJxAd6jiE+w`A#%@l zPwyAsb4-8%cN)rFt4b=LhSDJy#a;E*J`mbV*+&X!l#WEyiEd-BsCrROSvuNn9$$=| zK68$xWEC>Nyg@w&P<0={b3+NrXsP;=7S{GFL^#EsH?*4tHl^d?31?{#_xqv@?)W#QTv#yVl*WuC*`^?mNc@S@8sV`Rsp0ma z?D2^6rlxS%N`gZk4&;qz>bXx@VIDhNhR@mpTV*J4N=+)M0=BPc?L4D7I0uJ)k3)YG zc0eW3P;I6b`P^?Sd?G7kkW=`ZU?C+szr3i}WxlgDK!cIERg1lAR^U-=`!mGQ0aOZ_}sjOwyn#>*V; zlNpgC{5}Bz<}6Gs(H;ipAB#JMN5TL+-L)mDYVXD;aXMg1BPekvSd%Bs`e8?`L(At8 zAE_-ozy1f7`*WjiW?)wsogc&RT%h6L@6KA)>v&U{^lA6qJvjzNZgD~9We{?U5G?3; zWV+$d*=~v)|M|=muL+%tg>OEa*F*iT!wvdf;jD_o;WmexasV46@l(MoRbNLQ zy~+fEwCqCTuYYsnx5h7>xab}DWips+@QV5=ZY_;V`my|UJx&sI=}ZX_la`E5E|n|Y zO!OAZ_mhq3m=)xuo^|XK_CaO3HX9_85a+Zg{iwAU>@&O~2jd^L6k`wg@(l8B-luG` zWJEUfN8EE&f`gu1G7%v5%{-IUhW;om+F<1k6`XIM3o2dlJ95S4yeX$IdUT#i2euaG z%C(QI98Mv>3I?WVJ=^&l3fSK33pFgQ8b+5PA%z^TK+Bxe|Dz0Ox(TSQGKp9G80+>i z)R%YsL#s#ir)2CqCaqC772q>)j_cHzrs4=YOO|u0nB!0uVR{r!u*CuIW1H#?4l(~` z+9(Tge>84dpDL4nhd(_yC>^b#WK*5_9CL6Xin?*kI>ij)rff&w&DP8c`1bpW%JbF9 zjgEC8wft$mp&rGCkTYt4$mUt8!(12fg7rr&we6v*jxI(cdu29S{}GJke3_Tl|BZN#0Xh+9_{RI=J|^O>T6bA5mE zRwhC{!mpW>+O)t^evtFLfbhL%dZ&{|&Om;z?GtIft*TZN ziHoz?HWA{EpFSYzoW7(S&><6HEF}HseK4OtPabV2kC*sX9aV9@!$36q`qr`JySoI3 z0qfB+tOm{-+CpMXy?3W6g3c#vEoik1dHs9?+8)vf$B!*n8%ntD$nYy~Bsi8Fa3_eqiPFUfGSh)0s%ueoi2^GtUe~)1BtnWTc z9ECGkiIr|`iC^)$o7yl?!jAR~{cWp{V8h=GbM?kH6mk8t$TEWnu4GSY!%7h)Nl~o; zOK&)nx-x%(|egxl`bsc~(4!;m$$P?qWBu-ky z&Ylwj9_#PBkVT&vQt+}5U%mWt8#O#6Cb~?5S}yYk$LP}4gNXvE#1N*$BO4R;x9%n> z!^xXE_hC!x2*Svt5Xnc~FsjJuA-5&!kt?=dY$;Yk%S$=*R6Qb8^R21zC_SP4j)jHh zbomb_+*6ABnO93k-n5%-DNxMX1M(lC8@@yZs8%pgFmLV>Z^JV0vC9+Rh0o5J>dbu1h+)!P<_Af z=neXVeyYcTRHj{+Hy7!?5@Y(G&sF!0O(jjskZSmGAp#+XZ{=W!Q3=*<@A zuX(W}7xHAU5$KNDWX}0IU19f!K;$`>ifD100fR z4vpLXXf67!TF)PR$P;Yk*~&7Z957-!Mh>EOdvu@dZ<%DUCPppk!H&dImDnmshtz%d zRF0v?4>ovba4*70PSRDtR&(CiNcfHiw-PAYN})Wr4#(+o!Cw8>g6b&{g2M+q`@zw} zVOy232c-#k$YGYmb5AA2t1AY=|BoXe#PC4kDKA4T78u%}IFIzVHD0P!sdXZ4FsM_skU`lx;% zf@Nyg_XqDO2eZ+zOfJ^dCir9UqUvGPCY?dF9ToBmd?_hd04!#M(#=%n@&b8A0u43V zWWmTCYoUlh!AuJvZ53P04fy&vP& z9o(BgY-EeHFftxB)(8(J^8ctzj`ei;4}%xxB+~~0DpnN7cH-2ky@Q<@F0cxN1E@`k z|B;+n)r_@M_t0kJ?<1T3p?X8!tUy4Qtk#?C=>BWT1BG&=1%p!ZqGZD^b#mz`P=9%c zZ{&OCn4qb9qZZ*(zGuf-p3I{-UV++}zM&wQnZoLXccgn@>=2W3W{w;mY5;2%#@au~ zo1bnx(pC*hcOCjK8Gw~om)NPH$ocN0nFo?7E_Lm3%S!@;!Jzw@tZ+?bb+U`0?Vbse^VP^)?SaLI?}B0=Kq(lCjMv{ z*cM|Xr*X5;q1trZSE1H~f1L=QU-n-OQ><^Y2#IVg-20vm)w{sn6snh?DX@o)<8lYL z%{LZDEwKRn7^U&~b@Dg*z!-3@lro%`xV5^$Bd)b;OZb7;>RW6pr&-+_9R}7|-ZWF1 zxzI2z#5et8L}FjbSWcS+#KU(+1?D~$N?o2);w{zs5&wu3;u8;rSzx?6hL4ijlYp05 zNQ}{joUV?rUI+-af02E{r{0vwU#A;yQz~0PU_EaidTlax;Ea4l+7N_*IUvfWN|!1F zWkNwqqpn{MhsAuAs^J6; zpG|#D^~vA}9cpAnq4sgMBMCu?q^4;y(UpuNl{BNo36(GZuLM3@_Z~#1x6AbKO~Pl2 zT+5aC=fBJGsuzC1*k@)8*ek13J`8N1ICZ)qR0r1RSXxJ|g$oGv4oY$QNgZsx%UkKt zt;6heb-NLZ?B~vTBn$HiH<4RoAQj>h1>QBynNIPXG5J&e-^ugeUdlu8LX9$<-=u_XOCzmf*owm;c_Mv?=p2QQ@$j``vjmk;^?SZ3hJ#amP~EnzS}k0&HUDn z$&FKD__tNFx|n`lwC%gEr4lJ2$(1fGfI+|`{5<%2`ablj5VQ0Ig<7A25i@lk9r#s^ z{0x4+t)B%YY_TN{qR&By)vZkns<(%JASop1k|5hfytDMqIf_4M55IS42*)cj<>?c_ zxL7P!h9bm%A&gTMuoBZFhS53TNJ<_C>?{cD>AiK72#DMDG959Ai1OU?ZuI^eG&!h_ zig~k-WN(}Z7|sm;BLFZyfF=T*7Cq9G#UA6{X$nGEZ`=uX;~x$vHsE9L`zTZHqWLZ_ zV7JSny)0bzQ=9R+TnZVVeoVeLcw#1C`mTGZST*GLfiE{H7NIN4&ZJrnziDfXnS5{T z(;&yzm99R6laDDhkgSCxJ$A%jEsN|c#cNPZfT-WnWqNmoO$^f^+M)n`z1TYYPJ^LXP za9O%YU{tG9FV3t#>dQMb_1|Zj{F;b6T8C1pnaLT-9}OXgpk!A<4VjEKCf3pPQ>D&4 zl=Cc^(LdDhEZ>@Las+PNYc3m(to0>rweNo z3x=ffhlKGIkpc{=rDdr;Cu)k1t{tHO#4(s2c*3U0oxrw~V7u!Xu`UtI>f^fAXZu9~ z2wkdhJ*1(&B0T(^TE-VoN7R@;gLJ%jOe4=PbV3jZie98Y5Wl#iw2YISM1uZqX&UdO}TMk3BA4U9|eP!K-Q$B+syJwVexD zApOco>BH$QToIGRnve=&4dY)~lG)mf?jlP; z@_B5jK{++KJ#8O2+9Mo(O1;}q57rfpyJY@gGVqRZelIFgw?AC$U#JRz-W2$~@-_(= zj92AYG}|Bk6s9Cfd}5}u%g`qcl#7W$xyMmW)hgOq5JD!;dGql^H)oPQ_??xR$^dp^ z_PSA>g$HaFYI+^bRnI2Eo$|4+saYA6`<`N+w3A>qWSj^7z=Zp&3>$Tb^?HS|>O(JB zgS(%xq7xxHOeku~3lBTV{YY8tv*TiYMwrL*N3RKr5eNhq`8kyMdB z7=5v|$`TS`@hrm@V|j8ClGf%GBX|`*0tQ)7r13I=yBV zx10Uh4@(*GCtI8$5mJ)YmKHd_qA)YH16ILi8CFu|F3DBjoZMV!T4RKB#67+L%KZCh z7nGjdIS?fJ-!*Y_!q*b@xm_x(XygR7M5`sr{d%%Deu_Zn9TzP$^OiTxAMZyk&ZaMB z2`p+|j@@hPp3{p>@t$`&Sl5n_ZU}jrmIF7Cd7KLs{;_kxX;&ow)44w*?>qhxuTPVR z#u%`s>2W`y`|>SvTg6BkW-XIOj`!5l>LYZrCPG_K1}ipm-JqM*H?NM->H8viLQNT2 zNnv2BGhK0Kl}@hf#-f`@gBh0s*FVlmxJ)lAPA%qIE!^>RlRf$y%)X**4)S~(&Mp-A zTSU2@b5^T3ISo>xxH@_hqly9CG2b;;ImxN{YrKqT=#Y=5G8TM3C)E-DsL9iKU67$1 z0W^$ir3r$vlz-^Xbclkiz1`jHHA#H}0cm+fl37d)Xv`q4YIj1P)U5`LHiNjSs zcq#3A5qh5$W{_9e+KzP1Cln{)m)?B!Msjhn=2_?%!Zw1!Ou3a#_}FCo%5J)-#aOQE zgQc@H4AAV%R^?Z(igk^A!vkng0DL(}fFaj_)WwqO%@@(19WjS2Q_p95Oc?{5TQWBK z1|2m$@D*xb%%BYoKH)z+igBJ5@0pW3uk%V)dWQTHBz)e5w${(Iwf?j$;LZHjktdUs zFh`J?9%^$OnD*!-2+Q>{%`0nPEaUR?SZL|uMU!B#5@NMOcaZ*iM@dV0rBX=%fOrHd zrs)T{Vl0U&W$>db#_i;9Q@qq-Dp|8+%0!K;)G?oqSL^Nmc} zL5o>xa_d&`xcCWMSPXogiE0bOEj3mc=U97Bn;NBWRGT9q0i6Bz*jd87_lRty8c2dOxer{ zsE;(u+zBFIxf}Mn-q8w%nXeekY;7z#9%jvyDOSs{{DWipQT=w>Da-Dbc-LN*Rh~y&fdfZ62-4B%D-xYeBqdO|Wch zB22XPox18@hQDFF>o3O@zvu>pCNzmvuJPJRBD}EUm?jYD3tGsB(AzJ}Z zH-ND7OofMYlv8T{#6>#idcVewUB4h8x!l%FJ5+k>!Y0xBQ#Uq-} zohj5iE8eU1HdB$Ct?MIC+V%k(+p&*(jLhN8S9~{LKP4PmR>!}ok)N!Bp82CkEZ&QF z6wx`bxjQd9uj1cKdpp+rNIf9d+@pJNP9tdm%V!lmz>qnY=Qv=6Mp^SDUfq4b)BLS3 zYSBpj2FkmmkMS6AxOlT(wN1P{h;C+l<#S<;iieXKqjA19zL-wB_z90~(|`bX+R6o| zwxO^*|41gICa(_rC_>*^%{LvLFGS~TW)r<6nbjvmI<4qj=ISs?NU(eprQGu$Oy)BbBq~F+rsfep{;zk$KPNF}Z58#628V3M4ZaV}ZLqpOHn6*UEYv*UpB^_}IfUrzI2| z+4_9p(@iBh1z{~Z&#om@c@t?N4#mQmiBx-x;aOiX z_|UNS!lhHV5_lMlwTFu9@E>8GGMEewI9X_Zww#gi9+K)QLCnDdzR*w+7b~Omc2D#D zym!``X`uD?Xm{9U#q9ILhw=}xzav=Pnl(lkFZpV--m-g!rYWdKFiIp&gpGWN`@uy- z80n_sYuiJ$nP#&j;t&K}v$!q&8Nf*`VIk+B^@y$foq`3pgz+na%(NG$_ueJ1+ckEl z<0z-togkrsY#8HG5WyuLTnel&flx4jVUgZ4vAAkCNd3}Ai?qzXcA{<5FK#uKoNkqs zpwL#XGB4I5drW7^UBkg3C$s<2H|48=@h;!!&tQ`)<4qgM;(e)clN`yUZ%UUN>iFDh zP&>!d5Qe~6a!hVaBS&{0o5NSI>PL8;11j7#@3T79 z`q4F4dS9SGs8!wS_`t{bA_6I0eV@C<%6(4tep0}cE0uu24p=I9Gy$9p3!4$mXC)|Z zg(Qi)mqgNgNt)5hj-LunI2Oiph=h-^@vKqHzmwUVqMnd?Vo#^_L87+jVz+eB2y#BCyc@u$qYG_ zdd5x^x0u0ATxK%kgkW@^Q6lGJ$6H_8Ee3J3Uzi)y744a8oXY~> zQ`hsymN)sGg+CZKOr4iM(;gjKuTcIoH59|R<6d}CSooTg%9g+B{_M`MKNEpUo-UJ@ zTEHYOg8VYM`&&Z!;PS1!JWIc`Kan$^TL(GcRw&n~Lk_*(mZh0?-%_RYEOLNhkmOhA znDL&YXt7IsJhnh~uk#b_vKOU4zHT!40|MvL{C}miB5JV6yI6=H7>OUofX&CoZm;WP zFU^soG+kVg@w*1VLL2gNSg4``DZmNvKsAg8dOf!miuTULDQB4y%*XunV_9Gla9>ah z;P_d1yX*`fWWPk++ZVWQDfO2JcVn^Crk0O2E@QoV6f%=|lgE7B?m0}OY^?bGuZNxf zpA!wTR{UPqvNk=i)`=QeS%Kl`C*5Om5T#yp)(85(9Csh*oj)Os$WNk|c8{O|apgMn zb+@1(OaK=gc#dcG@8(4|&@aXL9dg}^%_V4mgqj>XR~w1qEa0Ri`A+|xNF5-4@A(Kp zH-B_UOm}cQT>I3>OmI=cidlYlENK8cNC%H21kt3(vd`;bjWdhV$hL41cGzz+Vg<%N zdBt4v7T@2JQ3x+$^UR%_DxY5Peb1rJi(}myLgeea?vHxHykI5ErWo$q84cUQ0`eDU zOSLauZkM*e_zE#lZT4tZbdsjCQqtZ)ldKEik7}}#4YvrmmRK$0?ywNYci>CWul>b; z$d-ejQPwt07-{l@;qbOq#Gx*QOI)evyv6q9t0i9<-CQ*r*$-?471JVy)I1kYG*G?^CR+@80rz8$2 zx)C-A1eE9A8+>8;O(y4MyWZ@|nv7d*i^714K5yLeWh}8u&+WajWG_lGyO)b6og(yJ zNkYEKslK+;DWt;6^Hs?w{2IiZcjnnUs^7uh+Q7M$R1sei8h=Z8@{NLG)7N#+3tL)3 zga#A9!vU3#0&s{T7!|pQkz7W8XJ2{Q$p7e1;H~FAiI|dEG;bA)&6dl<@L`^wl$A6< z_>t&SlkFl;GV>^$+h|Io;f6OX>dMjhGlysDo7+6tz3gH=;gf4OhyF?>ZMkUNW8ry? z@{Nr5X6j>%@_%oZoEF8rmbk@}S$qkq{RIVt*>q_)cM+Hhiw-UcqYvlm{ za2C3L6YpNa7OuM&4K{%GSxhelW&n$?avLzT!>mn)kxgeZAH&C_A?3+~nEBe#7rybL z5_la3Y12hFn?J<_AxwPnExZFfJwuCs*#jqqx<}RoWgRHf%>*o|P4^FJE+LPR)3nwD z-M<|MQbwV8P|Auwt8;DXp1NwWjC?!2%H$AXwQN3E+yp)rliV!)!p{Jo#Ii0yD3YA9 zD1($IbF!&->2aFhSr>*Ks^ZU%2MxEgr!j*R%(cQ*O zNCY1jsl(-dhxiHq@47v@mt`bVShy**>u4a&XS3Z*B;s!y5cE7l!{^tj|KLhOG8)vh za2eZv=OB~H)3;IV`T{tgf8Ye*#1tXBaSe)Z8&Em2;`Q9DkL9{-gP+Zu4?963jY(Ch zhOB|aFzdOptW+4k+>ApzW{ALM_#oko)XS0!e!JfC)y4^zSwUh?T~yuT7nfjzhiagbqG+atICGP zJkf?7(KP{Yx_y8ByTg0?siBx}b?@}-b9otO$eM)a1-C+A`Fy=~yaz4lYs#MH>}L$H zKOj3StM^xZ6}e`~M(e4jc0Kr%MFdt|}`*iaDDYnz0{;|^;XU7e5RenynIh;1_bQr{&CGLlSQ zmkpn%=Fu&Db2?GDpcYZb;!dgmu6k-;ytRI4Sy)F;4=L(fK+PC?;8II^4XNdHzIhJr zmwX82xyVwFXaoZ+d8)>wcB1{VwG{O(&PP-qq{8sjR~6h5F3VjoIVvQ*uUk2Qg1eWl z0d|2#MXhiC5JhlTqds#W9pShCuih23q6KmCLkA4o{?PX$bGt~ubtsf>5<}8POQ)U) zMrR4`x~Cq%(T@VGxs52-_}IoBYfdyTY`EPPSj_9(gA-hAxyAKI03Tx-mw!Ez67x`` zEvpTA^Kj*a!FEfoUQ=Lv2X_8fQu!CIZ^oO>9A0xkl$&F_aKt0612R4!ARf=iIkvnN z$nc;3T{peUwbhcK(~di`%R9W)p+e4?jUT-&q-vKsaQ09aH2L?tQqh!jFQ&n7L7Wr~ z50Z!6*Y*1gI^Q#|O$~k`rFH-vNDDwp1WvYX7e*k4uk$hTwpY|tTp7TW(oHLPdP&}! zXax|a*fEbr&4^&cf}#UCOk&EgGKx^H${95RzB?CQM{PO_v3IaHvTPeAka+J52K)~+ zLCe0PTtK4xD*8;jd{H@=-lKcvFziU7j+A4AWnkHtD~1-j9yP#s#Y( z0&OL&r{ODyel^5&xQ_M7AwU(29VQ~k)rW{+*c)MGxQc$&hi@Ggnv08bSF6$KnMWS3 z8;^%>3@qryk`*Lo@8vZnx{;_d9=PPcqO^mSDH8xd$39FuFB@6WnYK>Z<;}6Qd9=rn zk|dIkY4)j|z0lNT;}-t^(puFpwNkskuFDNUSI^MdHz|GbOuE>j6Qw+(mb>n|@A8rD z;e!DVRgcPhR8@^ZJ;I<9#FlXYxO4~NQXqOcBslq+^oNvWHfgw z#2vZ;wBq?}{GroUTUO#O2j8S{I7=x^$13ijbg1*9*kOQyL!KGjRi-i-;p1Yhie5Fq zs5c5T(VJbg%JEEuTn+@Goquh#fu0)x9x+H~i&UedNh#D+7+u!AnZ8RXbg5jiP-)&N zAFpFGMT#|UlKr#f|As?Z5<=iy=p5}-8Qc0}$<~a|rFkD=aX*dDr^JmF$o7+a1!J!`FfwryCuWIz&0F(X{O}pTt)nFpxz^Pn~qbtX-I^4jZ8e?bP#uofA zmPw;9m6fSs#&|Y!)IL%9V-YJYENE|8K}DWRhx9@1IBtRvl!}2a7ZuOMB7d054}H8Y zyNqaCm@#Ho9_w?Hv1aE^XHTM6wDyQmyQ#XuxzFuiWZxj$*F3uv3_UX7?ILu0UeI zFWg5+JQQuJqNoZZP&)=>zSiW%Y8Z6|U!g*cQEv=~htPtF2tqCgb=AYLH^%1p5Nbbw z_vm&*6h3U%&d|6nLhi>D0F?-;IF6}u4t0@;5Xpg}Hrg&W{<8EplkFGJ6AUF6Tlz!d zAsi|P{=`WdBNwzM{;Xk-+Ne4yH8ej=R%8s0b&6bkIXT|vgG2z&9;?)1Ylzc<)ov(S#t4#Es930u_P=LUVO%+zXw6Rm33%uvrlt2a?TG z2K|;hDY`bDy%K{;F=`d!WKz5;=`4y|Xwva4W1uVOnS*ttx_GHx^7&NqY12(wOb`ln z7Fg3X2uX?t(3w@4ZN&q;~_hm%wHkr*nJFWi*{AJxfJy2s4dao@w5vo>&#GZ42KB-~`vL--On;*ja4jT8D{<1E!J+ z8{;kXt6>NxX}3ZIK(f;;%A^_=BJFn0YYJEah0vr&#lGgaX}Lq$@}C6@=D3Lk=8G;1 ziT0!ENWP3Ds5xU>h+=WwMaT_y6bqbLz`vBZk|YnBlLL0lZqbHxRIxj5M2i3CXO{IH z2nM34g)GB~QesETASNN?6GcSOuLl^`BlPPb{Jb2;BuH!7=q2_=p$`aJRmEfGWP}+f z*(lWI&u?+QV61gdX4S>ZmyqLld6bd`#4b5G$^w9K{hE}%)vSybXbe?q*=RC5&i;3a z=GlB~b5`Ru<}G=P!FMvplz25M=qgrMluft zDbZlnS5`pc5WnJcc@-?vHgk!QD&i7lLcpB9QbQ%%h(LDU$|91ucjxDBFbrAu3SBI> z?%1~)G))w#o1zS*$aV+pPRvj2nud>05&Vi*R6JRB zPX#3?ItG^SM9N3#*jd?@EB!|kz#f3fSCEk5P9&c1qprpHk02uFG$Ne)-OS8;p0o3tR1*G@--iVrh`oknL> zaj8~dLdeIC6Nh1cgke2KzZzoK`{)RjA3~4PJj-sOrjbRV{x!Gz+t29iV?XUT#(+?f z;g>wJa(x9R|HmxVunpVgzuarCj!jV?HGiXgwS|DB5TqQ0#YPmHZK&J}K4%YqT+cAnZc^4fimn-gU97j%|L@hM=)O=nwXVaYK zc)!X1iW{b?W63I=rLypdiyuqpIxNzt$yQC_fZ}-eccKgis3LYoI1K9vj?S*bJrBO0 z3#}4z3I2cf{|$j_@c+L-1P{B93|!>Xg1`sMrBE~G}goEYjD*pMwV{uy)P00hGX zXf!NZ9%*9<=7kg3qh7&&{WJ?7n|1UAW18!m*{zl6V?Q#oO7y5AgivgV1;=G4%3WzX3TT-lIvDN-SEn)H97BajEelK2$)Oz z9<700;4&$gC%3#p~)Bu-Va>uRth^o@5Nee zMC5dHD9<4kUoxysS#HrlI)LANqXcp+1gvaRm?d+0s9Z(G=&E1FZMFJ++PFr#KxRW12`jr=s})u#y`= zJM2$-u4%Kuz{qONsp*JJ$upoc#kI9?aphDOGNF=!U*3*O;-n)Sy$irSzfFuqa+{Jy ze8_Qb8WV%Qp3&5z1R-j7$~w$ZVdS&=or*c7g(}#Qmof=b+OEM097H5Z@Z}~Vn&OLP zC<7jxKElTjKgBm!U-pKEUAlZv$ws(Hcakr0Pi<8rKOxf1iMSa@6h`(;2+M{DrVtxF zW1cw*jL?*<_^L8y83_c9WCI%X5tWP=Q6YiJOb$Z+tER5mtYw(o0LbLgF;!VvkVjj? zl0anzSSVgi-P0m;V!`^{g|$3#&g-3`W^t|W#U-1sD464_1$gdhmejJ+z7;QtW%7V5+p?pP)pMq z&>F~F!;~FrI<_1iS!iX*XPUFa))A4;@{j55l;)RoYP$~Ne&uOd566f!W(QFVUV*NW z4Hr4C9Zs9%JXWKkyd3wg5# z2OqObm!F~#2+tpUgui(Hmp~mc&5Zq_Vt<%1%@uP6h%08pIuwt57lT+Bv@_0_u4k{> z@!o4De!0CYNd4gRZ3%VG%W#8#x*EVy zA~``(Iw#-UoHv`skX6IpvhNk+!*mDI7aP*wocajCf`Y7t2FyzRgPGh z+-Xdl%SvTjtIma?+*>}o_#OinR4t$P@a!p0$8(Hj#J+Y%M3?s@k4_)s`Gb$aT(kje zGO%HxkQsn+)PA!~(`s+*n;|!z(!YIJW3GnFd`Cn=M1Gjj58hl@Kyq`Q`ear_O3s?b-$NGqIVk&^*f{jGZ>(X zQh;$d!SnNvP`P5i?v98qU4}B^+4*yP^7u1+^x#vR4i8Z3fWx6;o-5{Br8i7+Iy4(! zpJ!wAeTM0F4~L!%XvDD9&H$1=yu=bS#J4WZU~iOOjjJ$#CceeWq&VivHJRgi&cHBC zrUW~N$5~fhYL2v6cN=HRj&Vrm2FJ7Si^#|joNmZwx^glg`o!h4srmEae3hJ0vdm0w zKVuIlV#aDX#e>tw7>5<+I)CsHzg>RX^5FCV9-ltJ)6-|DGcZl8*k?Vy%sCLhMG^|p z606`;&Tt?C?~D(|^MXZh2UxYVZbe#=}DIEsUI^EF*Q&n;<)%v#!r zLvb_3I{aGm!32y{ zu%Z#4KKccwI^lBt_UN8<>GGk;sn$jRH=q1_JX}4+JOPJ8#k8L=n-RNeS5#)_P&q5Y z-^0SFqx*Vb<4dMPrc5W(aqR_Z+@+&XM7O5h%IU|BbMY5Rbw&Wig7@MqA9dmMurg5Y zz;)f2k30?TjL6vBYT~e96i!1CC#=n97^XUZ)OEAX(}*AE0}xpz>8_aJ6l#C)x2k^@ z*07rM9kgZYgtG&JtNg5nQ#?FpCYCcR{vZmZuLObOxQk2@G-81`mi@Lo***t03{3al zm&XhYDF``zBbi-PI4ax`5jQ$A#AL2vhwxsu&M^bm;~OpbF`-~pPH-}uVU62AbZ36{ z(j5`+L5K>ToIS)d9F^zj5DOYp9V--5qhwbqHNTs*dG~gJW66Y zI7iZ@*GwaleiVR^2o8WN19^w}!IEYfsIx^Q>wL7Nh^2f$Au|%$< z?5_;Qq2U_KYVJo6KgAu#d^6}-3Vy>n5z#4`qfv@j)-rQkFw%&R9(;t|yv60_@(+AE zUAlC6XJVUMHM>FtvdEN~1K*M{j9e>~pHOxP6Kj3-%HTq6Ep^u}0XHR?QC>Nfjp+^u z0*ck6W2v@5o*khaju|sT0gu|qNMtI&nK=jFL}nHM#Y%ND4^h4Z#`|oj#QPWqo$OUb zIHrg2+S8B+NtG0LRMJ_I176;Ki_Lz0k1F4#%ZDLj8S#Jn=x_1) z<6q&y_!#@$jCrc^Gta*7h^rf=EvU;Kjwu4oaEXoI=<8b4BB35U2nA5xGV!V6$7V_8 zI$)P&H`<3IBqn3Jpas@hnG>(y&W4p_s-YVJxmLff{p*hu*TcRqI4ycTCyWxqL@39Fbu`KJ4N6bTzAQO!5a4RKZu*=FWA&hniD`@Cy% zF4qC25QehC^M{{+x#F9q;CZeS+Ntu=W`9%wf5@VEAVSud9b^3tu)r{lEne&z|9gyAl&UT8L$w zWJhknkZDwxE?wTEtOhBE=8;nzJWM2jh|()fB!4pQS69Pylv-VxD{@Mc-M}e@%HeRq z7r~(fiXy8xS2K>JNLdbt1lXLOhD#N#lQk)qZZOMAsP@ZYfT(pKH<)dBXnHU*PMbT{ z-aEcN`yA5ui>_m?jMaF8)8QNsPaX^33W0W&a774s~; zY?dWR8qF^`APnaKXpo7WW*fLI%0%}(0t1!8@MNrNxicHzr6Fe8zcFJ~ zDM>$#GQX6tDRIg)UEz-A_>?y-y4QQvxXmg@$?6;z%B^I~x#e-O=vaI-Y7L02s;@gE zP2O8G3bNl-9R1k$(Gg8HE?EH-?P1CGcTrGiz{9hrxZPd@xI&jMKQ$T3fYb35k58ZA zWH?2wQes`QK#z|PBQ<=(h!a6KAp$Fky$Jw$e^ZNqhDUasz20Pb>5G9z$66(sp&VhD zrv`Nvy%jP)wdvD+*AGrflt!h7Vm5p&X375hKHT?MJAKJ9G?BL@<}+tIf|cEiFg>G> z&D_$l;e3soy41dN*}Vpq7vBrZ6^S#Vg1LYzaK3to$LG)Sp*O7Vj)-?G1j0D1@cENp z;e31qo++Y2jFmzD&?`lBL^vUW4iO>#x>XsC%@cq1q9f)E0i6q*2Q`Qjrwwle(IY{S zfKM-J&0oi2&0Bynvo^J1aLuHQ0~9!jojW*y)=1`*OqJJ!P?^BNeg%I*ddE>k=1s6u z<)On*#@951{3N1>r2$VOW?ZqK_E_)lx??IS=y*HpeAM%SDZqF}E337R7UI*tjh>FDZ4FMY!!knIpDb!WUU zaNbE>qr&Q)(hS@TsK#G2t~;O8?+Xi{F(tar4B{0|hjTnVdxnekYg9fCZRyhG=Ps*Z zg@-4P@ae-(G2j$+s^W;K;fV13EKVH610E7rOZz+eC@A64s8@Z(IZrkfxq&HjIMWjw zy-|;LfMm(#PtFcgD=Psd<5KEfL$HbgI%nj75;-WfAhk;cMEQ&ME7l=g7f3H3OB%=z zT?Cl0-Al3)~bxAWtuN4@WP-wv8 zvuC&%U#X$3<7k(kmW*Y@gA?fwQE-CkAiW`?98(-CC2uW@tHLsoL?44VBfz5HqBU&0 z(Vjx*1IPnP-06qFNa0_L!HBi28^Vak%58L`W@iLom_W+cqGWl_vRK;B%%E@QN7kuX z^(=cL=AJcLAPT?*$}hr3l3s02XHFv=_txQXA_Sd{+oSh^K<*GX-j_%8gk_yrR@Gbe zyZBlOQi`|UI6rv=E)_!=z;pc<&;PkfcSO8nIa{6M$=OqUa{dcUQ^8@X zk-`YTXc^FMr1o)ONFe~I-l^RcNFPr~jcxK~E0dKrk_fOu2(lHq`-qVeAVRVr1|p1w zFb<-)&6O||OUDO@>JdOXk@58=;e?Nr73z49NotNNabux69&+D`WxaG;S#f|g;~Y6y z<#aN+sYPqp$r(l0KajKun(7{#Lr>N3(&gPrC|je}2B~0FNQovXzmawvh0&=|{%jCC z*3Yr%Gb_Ku@m|6P6E7R0ET&Mad>VjdoQ<*q?D%J7hSaD=Mo4|t%PR-&3NbA4recr~ zGh4fmP)mn5%!ST_NQf|TQ5+59U^K4oIM$`h4ffQl@PI{xJ3{(mXb^IVL zDVL32YK)BgKt7+yh{&0=ax(&pbmfZ69)uDL^L`dleZa~%S1sR8s2DV(L+*PacxH%k z+?gw8#at`RV&4_g6O_S;o_j``|uyZ3f8!pM;H_xNr} zH%8YOHVD(*i3^A;xXSnGIIeI$KE$K5r?}f)f3QufyCdQq%j46>`1s*xAPmacDpK74 zg7)a|^xY36qT)`0MYaOaMn|Br!N;Ca62$qK_B2<*kPQ1&k^wC_KbS3&H((*JD_@6? zE^_be;;qHJkTGDXzb;eQ(i&qyt&$6yD+^DZ!b@aXatKgYrGHb#UmH%?n++ba}5*%7E2yg4J*m5yLeUTE~TiQQ6&@ zl|D|dnX!w&sLIa@G<#L~3@I=)27074_XHBmQC5!iA5+?zgVIdce-g(vqnaDczT55D z;4~KalwLau<>7pEd#q!(D}^cO#jw+H8t`;^{agx3ADtyF?b78#kU|CLt8+X(e+F}$ zw%J>mW0~%#Y@~@6ZVQN*PL@y3J9vq6W(&%^r#+`N;zzWvp+M`T%+h9N=cdkXvPFC3H&S_~3UI+VtmLPRn7c!_%TGuO6)ns3Sc7mS*ur|ONX3!ZqvnVJ zupl9M)MR5ydSGMoTkswr>20Q~Hu`RsTp2*G(eNalgE=v1srMq4g}aBbQTwXf=Ug|9 zIeH&j`$<6W4itTERautHkpRLro6WyI97Cyf20Laa+urh;HaF$Bc|}A^u4;JKt~;9( z81@~QuNSx8gRheUE?E(S{6$dn*Ym+icSO8HDOB*}{24xb^f_uJ)L9|~oMh0VdKL{e*p4O(J9*;~Z?JVvAn!QZ0^-=-?1tecns{&JgF-JasxERr;%X<}TEbU3D zs&uh2ixlCIE$N1-{uuBwaZ6Z@EVN_sxP>F=%88_*L^=tv<2bS)W&{CoN3M_NDDLBM zgI8HAwGm9ghM(((LVFL<9NY0KVPQjH?Jkf+#PzZxUAnw~8OnfhIKfy>BO@tAq&0W~ za_(W=%<&@go%D#ATq(B3u36!0N^~MjbdI+OJh9#nu0)x_hiv2v16d2m@awuG!wi$Q zx_gvpF=F{@+B-rS??UOz>u<(coFCsF@@2pPGJAV$Y zFDiTE1+de>3B{Y{BU6* zaD!x=<2SOsIZMnw(zWBaIU&G|kw%;hCs>Uq*iBn>>GD$%=?`&+hbNCE8=^{CI?2M4 zJ)J9=6l*2TVHay`R#@ng`8~=R^QojI01Kk<$bH92)h9D1a1Kui3>G-dTr=mWg+n%T ztQOsZF}g~gSH}VJhDU|NNqWRv71Oi9Ub42*d`)-GcEZHr0Jt+XjeK;^^OgO(gMy=G z9&8$Vwh=D>jjy688RhqemvgXtNPZvetI2f$$oK6c+~C{p5)YGNgA3Idw)AV$zxpq%0#M6xAF_!HAVE&1HHk3hq^wmswd1c4JzO z?jvPYQ;=&PF0|NcM1Vjf9W-%d{e?s@3(-)U|*@gmlK0)0{DPEpsPkV#;qx~UZP&l|)GQl*_!%W%i7W!6DAI8kW z?+9?*%FKu%r9N^nht^hVqJp!n%BmAM9;7vdZpyG&XKx?MmL0)fB>-0PEnP1(T6so# zBUrJjDrvO3@m7Sz4PtIAWOx7}BbDomRY+iAtZyc`Gl&X&H9z?>xk07x?L6lw$@{CM%cP?pa(Yw>gtAT)AD>D zlD;M<0jiJYAd*61G&lV>B8jzRIU~l+^U)edwg#(4;4`J*uQucifGSBJ8C$Z>zmjRG zijRtKM8Ke^X8mt$)L$HQKT-qxhKW<>{XnM8E=52{vsCr=z%o3?) z0o5fff*Nn;a;Ajkok21p1{B-7?#-kO96>x6D|2v;Vj#5N3|Ln%?FqV{TGhJrW|lUoGo^1EEbBjD#yAdpHIHvaz$emflX+^5_*HWl7lM z&|;T9h*-TUj9~9SF(b-AHCI;yr8~h%8#Xrg5SV%DieZ;7?^_5cG{Bstby4P|iJVJO zU|1-2fbMlCM^QuElsP-KWk3j{79~sr8bn~l7d`?Mn@jK|a&V)VAGdm0b2{Kkv7BET zIL!*Uy%2M3jc_)Xrr?U-lgRLpfNe(GKuo_E(r}qoI#%bJo?W_pU_wY5p&Q(iQ4QSK zc+7|em?}kTXk$N*C=7GK*;=%+%Pq@vEW3zDX%`d}JTUI#c4C02fRV)lh zHVP;GlVQHl=DtYwf&_~gayImo?)Vhmj7X4Xe|9vrR$4 zKDcA>Z#zD|ek=#qXP^edtUJedN3l=Tze5U!VTIM|4DF}frOS_3hzdS_^eG;lJ^?df zHl52I0bzw|&O6$3@qVk%$~)HM&n!(0!OWc5?)!34GO3|3_pJdyQ+CtOF%qWylN#%s zOYZlzET?y$IG1E3{W-W+&b-aX2Vk@#F`~TF@*2%68Ltu#4C7rxu$2xj?`e#F-%^8X zvVXUwk7yw+zpfzd-Dda+4L(w*F$ia?hZxH0XrvECx+CHp2~ol0v!^&Ir=H4c5xxGC zzVMykWra@3O@T&#Q2Qq>AeFCa1TW}<5fb=WNDNI*u7(tGfDP#7mi(Fuz_!0FTfnXp z2DK$H2f&6yv_-KXZ3f6?ajvboHQf0z9IrX>Q4meLVmvo;o7bNftR#*7yhK31OT+Hc zrOTfz4NX$gRhcoXvLv|;2~`%_ob691QTh+5QW@!=K^`21{n${j`kpQ%C?S)R`K=6q;*9X1k(s?D5H_WDUAhF_5~uk&#o(xBQZa)L_m9a1pU%*$4i$k zUEZ4z2xA#xk^WVid5S|Z^R;Cpno*NPO#INmhHMG*pBjfw%W9uB_bFBv z=Fym6x0`kOV1*!2o2CF-6#o&kk$+n!fbKX_-OP302nh=tk!r&Y!K0(SdtZP?F83td zXu)REmQQiZ?YPZz(sj2r$xUA$5SS$R!wI1xpv0UI{tBlk+r>hRgC-P2(y-y>m=f!V)65T7h zbont0fiRSUj~{)4v+v4V&z{cU=EwZJGzn2b` znb~=MqFK1~UtXeI%Z1v<)Hp&*dd|xu?*ZTj@@-DZW8vE$fzb)*ZD5#wYy3B3Va{H) ziYJ`T0~9!l-)S~1sI$}=H!#{5Sv<&|QSc`Cgbs30d98A>z&*4%_h zqC%J;N+tu7vI{mXlwyNtrPJr*hJ1^(AXQv-Q&pf8+f?MK>}<-d&dO?IT4@qn*MJhr zol&fW29}bQfvN#v)3Y<6z|v#oN~O75neHaAFDb)8|FIO|_gHB08DDUoRPj4(j2Ofx%_S+y?((sAg#VjmoD#1 zhBDx@r@zF5lZPM-sHmvWRCr3p|J10SIAwW4YJW=!Ig-)<%IG|=fElGE=c)dtLWws8 zC@^xVlgyd)0Dn@0Z`n%=4r$|MgBC%sZC0*lGbT#;sT_*C@m=AyX&!dLdo*bVNpn`x z(jp1YB05{{Tjr03#rb>2cwtd4S+i!^rOO8<7B$bcD!;KzDfajC^8z)3bCiqJkz7Xu z;K6xzmS_#r!=;iij))v@SOZp~G$=(TgdMYF zN{Ss78Bp}Cs#nxw{0#<}E7)*Z^=J0AC;gQ~qqWC!$?7~3HeY7U6#Ukv!T_M9lnVhv zDHu>tO|MnY2E!t}HOQr=U>AM8YIzgyy^*ftnQ6p8YPRZG5g^n$tR?p`|l+RMQ7b08xzhNSN&#e=$GG{1c#(Mx!FD%~X;j@EA-9 zw}PKZ&~tSsr&&J<09Eok?w&Y$CKc!0vA_EBIZA8piIq9&2i zkQK@V7j9T`;-*HjrIAU=js3YVqgDXjq?F!C2Y4pBfsGM9eQta+lQVl@MlNfVRT+&z zkSL;lZP+|kHlEqW47}C4aYuJtvqu(+bi7j|3J^j3eC~SBIG>}&NvXw|@0)#r_}9wO zY`S#m^2ZB2JknW+NS+mQXhaO-7Fwkfx^0GrIiusFwzNLBY|N&7kPbGv@P z(GnZ%jL`MMWDX59Q50?Vd(tr-$Bd`xJjjl-%a8}jvT{e$Unw2yC~etkNcy=44YE2a zT7+vKA@M+60|`$I=q5Lw7CnyC9>HvlwS&t>zo2YzjcankWz*@YSr;|;Qa+N3TBi=D zU49Z`!CJ%x%!JC-%i+4d#gWAn)J^wvK;;pK$TY9XoUn5U9@uOD+Ad7AC}lg@q`%9i z7O&Cbd8{|v+yDo$mfksrw$Js|Vu%^z1X@#iEpRkSL6O_*(%?rJ*WMBR9yt0CEE6p= z%f%g_1wV8L$^H3$&ARNmNT0ENo}8LIcvxXY&#|66ylE`0NA>;=;kj)Hc(+n{SU9B9^Yt>hBLN9 zlJb`3VOuQ|y$0xvppk6Trje_^9vL5n0-$39>c*!q2AXluqHwZAiKe(u87m!|eYrV} zE0l9_kXR}gHFw?b$Jb{y+$jc3qEKU)Oa_wwA4I3BgQ78i_rlof5~b3Ti} zyL@AqRRKN)Franp0w%j$VeJjgqN2u7t2LFj?eEG#!KWQ?T(e`LtT_ejn5s;R_?> zdJK@8CsSYz={X$d8+Jr%?*_Vip}L9Aj!7P2~XaD}!2D1|Uk^oj`MSs2nR;+HieK~hc= z=)jI|$s1rE=m}e3uKptePPyrO!23q04$s>IH=u>=sx#>+_ zyL9=UQn_NiU*l$bg-0ik@o4x&kjOW8I1+7N3dswM@x2N(#PB$s6=2kc1WFj zBPx-$Nm2^Qu;e&v3NcqCVnU0@#NPi01TURp5oqqbhLm8j25B=_?+@X})Rry@;c>Rs ztkZCBD3TI8GB?g8JH_!u8JL|_#lil#={B$qbV)6Lpk9Kg(I@~Il(QZ z)LluLsHQ+k#J^wxnjSces>)gLPP-=j{3KU3R8y!!rTF!n` zLGyesTxw(#b5#ReGm~YBrQDYcj`>nP2C9f!6kgncf>!zbuvNn@T^Jz7K&CIT8&k}g zCwdlX6@VyxDKvzgC^b84+3y8tc$ontp$P7oamfw;L2jZ{N}y9VM3D{GSb$PYE5$iv z7@)_;{K>N)3@=)vm7cG-W@YujspOokD`An10Xa>i##%te>8!_vU{>J@3v4vQ9{V7o z{6>>kbv9JFb93`auvc#or$qi7#D-9n2dBS?SbuzjVFqJxty;_N5rZ%T3lnFTEu_{0}{235>rmxKP?3t?i5)1M+T4I6*O{_4~{EArM^9$RWvT z?sQEialL*4lsCFFz^+cEIRk!1?DE#|o}H_KW2Kasw>v|`7HT-{8Yda%$^979Jqnl% zm$LYT;{C_~gU?lPN4~2JalG7Btk&_#KOy(FhC|(*tqj$Z^*fMFk5@d-Bl~NtL^!^O zqFiABe$kufy_E3bN_RwjPbow=8BTCEo}+3r8;de9QU<_xS7bsoI#2?dl-`pJTux*l zC$bvuNo%b&DPxXrBp_g$Kkoy5P>e9@+fr9D93FzT0SHEHoJ?{MzC)vr zixEC5&CWBUxxthuNoGiwU7s^Z!B##}IiE+>8dgPMiS2g}03nh-Sp@GV0mn&gI7+~L zPmD!YUE9YgVfC>Nmo6WSxI?oL1}1Pdt5a;Q%*6arGS=rt%b}K%?`=EK_I|@m2%i1#`#SZ}Vc(~X zBHd_w?L0+q&CuXZili5ZZcZN5Mmk522`M!HC_xmvKu{&(BJ#6m3CtbSy$Yd-7 z&Q@oxSBb5yHjaP{O18Ud>S>di#d0r2=}Q}m0V<8|OKD`}Yw8GX=7a?$w;)86&&VY@ zX)&)5!#%UlErv`9UyG7UL>O!?gy5VERALWA5ljoh8znO1I!)FWCp<|`SA*@=0^kE^ zQ)o2b9oC145Itob`hCD)w^kBA|F|Zu&Y_~1Olhumx8tJ=tR%fxq`chhmlj;}p-Oi| zd`~G8_;8F@X=V$u~8{2XK1)u zcDlAYp{Yh`_omc%I~TAd_(atbnZV*bK{F#P)HEKMpgs@~4L<7Nw|LCyysjiN{h|F9gU(z!yfY_Os&o?6L?i)AbcQ_x?oU)SHoRA)B zxfIG1)q{!RMiCJA-d^oQugixjY9uK|OaE5Y-834*^iPxELs4SRdIshw-i!gkUD8J5 zy!XwRBL{Pe6gK{2R|`By+>in%@;o#4x~_{b3&I=m#{h3<#}f5 z9i(>@pVGW3MZp+nG+s)JQT-eXPD$fb`%+Py_n^Ec;7=`M&VMtf&5oG7##m9#SUXI6 z?4~XD)9yR&RhKS5E-7WeYCHj8wx}qTYqq)2<3y4+2f%_|Gx3rAQFH@S#xmn-X%__& z#T7gY0Ac8tqcV2IF%36@LN{f^fZHEq2P5IEU!alp3Zb)GsbL9pfpgOwj9qOlc0F6Z z-`8VZ*zKZ=uZlc1vNEN~wwIxgeXcQQyI-C$%jgQnwC{zv2DzCv_&1R^ddX93+<%623H0iYQ|MMfR_yw;Q*!wDvHh zL3pKW$c9fWB|ynAE4ZH9nm7!IaHUC^RMMpxoZbu0l?pK6%8nQ^eh4(& zEpuJT6bVJmuyfX6pV}zr$$`uX!*#KN@Mgd)QI8#rf+88OBs_IC=f#q!cj@v036*3x zDFosQ*79o>PiEW1^d&Pkg&~Jv3S3hq07%ibh84M7t^i<5&$LVuh3;9IyhNOxEmKMO zm{JIqIKcods7M%NB)^;0}Yk26uON8Qd+nYj6_WodE`ScMI;l#>CS_6Bt*gi9y>Nx)q#+7W>Dw^)U4B zADe>ITr>-Yoc&=PMIaeIr(DFb3c)`aMtzJWID%K-$VqbNzR}C5rya>&yR}Kqb$IC4 z{HCDbH(Ff+te|d(ofT;TD&$=#=DKl3`>F#Z&Bt81NBigBuy`ISEJoT#nt#GX2KY> zDNVXhNB&G6*&R#}>(3jeM#q7@N3_~(+nzQqY}W?>V-wBMZPZ*b+e6OaXP3;zWrs47 z%sng22w2}w+Hy7vG*w!pA4jcjIq-+cPD>HG8H+sy?aQJI3RbJ!O?Q81?ug(4vV93n zc5|wAm;gt6W?IN3A(b287&; z*UV}LIbtGbqc=+LY?ARx`Tqt{I?gT?ST~6GIC?gVWD*dfE}5OUo(D2HApJ6~!M`0C zgg$Vs1ZOKn=#7Tw3_jo5x7#Pt8~;pVxly`p%lZR%{0Z+Q;edfW|C$_LwyWnV$*OYkCLyErFB1&G#M+WZGVHU;c(F@CuS2X(z5!|jfY3T{V z;)*=EUMKsFkHWyF&CTg(L@GeS`{i209+|ZZQw;7y`lt7eI!E>4>p?F1tTP}oDi&(6 zJIj~+DvP-Mb4>;2#KGeuCLYGDV=6C!MvfHK-m)E3vZ=E+Mw`aQ`p=vA#bco&wm)z0 zMdqn;eh=RYPZAM7#;VPJBmQS;SYK?-q*FFA6$h8+`<=gAU$J7SHLGMBWYLDjp`KK z6MV!#r!CQcR^@QWPPH-RM%AcK2DbL2hD}_{T+1#WfaWz+O3ip=H_o`nL^5NE4jH>w z*a;im)v7hi1N<$58%vIp*eU2V5Ds;MyPxZL9)I{#Ll$hgMn}T6#`;x(Q~zrpk88X3~VzIOa{dIZ?C$2f|l}tyZNw z7AUdle`JkhW`m(-@-Z$y!=DoyAg_c6^r>r4W*U?)r6~5`TDHS z0T99H!HT`Da~QdaN9||9omr76Mz-aQ4bVIED&67m6s%mn`iPwc{8H)AHq;u@7^QDJ zs^ld6NN(?x6Bas&Jxq_HeVjuDk*v1fz2%f_o;`+yax{NaYk6@vP8ij`I144HZ60aA zJ}{ATTU31a6{FHCC?ue+=gU}A&2I39ybTu*EyO6Y2ZNGlSzC5j
    tkyv~Gr( z8prgMP`^Yx{8L>0+19fw{b1F(pjyB0=M-D{fFsOCLIcXdd#o2gKx(r221q|gA96!+ zogVmg`^;_NW5E=EB_?}B*mj0OBD#0`6;d&XlmG|hFhoZok~o3wC!YwP>85?|4x%15_Z-mzt+xF}km zG4a$lEI)I(IMCc8EI3Z*q8(~qAH;Ob=4wFfCg?}@fzct*k(~%>ScgEML$Y6%7NuJ= z=Ab6+iprrj(W1Js0y?&oVoJLI%9721^H1u}D6;Ht`ScU9UT;80+#X!m#`ZFE7uuog zD5%EA!&d1)%@$6I%5JjU zIHMRxXtI-UE7ehyWu1oN(4Uqr0Y_dQ0JwvUAspLI_aG}K7&Nr8hAGEXQT~kZ2ztio z1ga96OC1uRks()Uq-%{eOq*YIl^t3;{_Q6dL%0Y*Ou>}^#rbvAsoMwIuH5RHo??5Axlrk$lOYs| zNDsJGqtcXFyrOzA6ZY65`fMG;c5z=l ztMRuQ$x(zBRhkTT3xxHCKs*U_)Q6Ow_=yg6f@%wJ=72*?)8iicvekA){BhHlD^2D` zPD!}IciRHJP%ikWDk-udYAF zne(gfw8=jQUcUGiNsq>M(-Ih}19|5CjypzfFq9#^TK`F)EP%)iFj4eTT2@a&jis~P zuJPibL{#L01|ytK)7eDblO0aVz4vuIK-$0N)9lijLfVF5Kvh zlTL}x;=AMHV3W-GXF8fsEB5OOr*xz2P(wg=E$9Y~b>GwTHYF~$d%-f)O;j^7B?9>- zA?@=QRdn+b#rQzKCGg<~kWx#_v7E)(YgHBdzg7BP>OR6v-jMIDS6BcVnCirmE7Mov zOVS@-$?N~8w zx=mS|h=NjTth`&y%1Jo8OE`6v2q~N2Fuzy=KR7%MZW(vSQPD&>lv5vbuDFRi;3#4% zTA2}V7jsebQe&pgh2xqOf+d{c4<8uKJX|$~IGlP%r5w1B1<0B4Do-eE0+>02sJWP% ztq6D1Y%LMO1t_PZbFLI#$mYw_(sT{9T3B{Ej>Bfmm$=3ts_vlK*5&2(!3*36#2daJ z;1iXs3gkf+m78Jvt4huA=#ECk@u~4INkfKy=$~8ubqd_hx*N$Mqyc3My$L(aO~OLy z&*+56g6<}f-CrHoQly3?Nc172QUxmD?AtkWvvIKgzK(^QEH^R(tcHY^{L$`?On!;u z*{}FHerC_*y`(fe1vJBn6Q6E)Yrf>gxKTfBGzd32Ew39QPeM7KkUBrELijG_zeBZw zJ4fZ8zr58Q1aa+H8imudm+zC`b~nNOA(9X4fUd5Wk@e&n|mf$ZT+TzRMVh?0*s zsXYz$n>gcbbMG~?Jh80;h=ctp?||W?;eJ@UjQ(9>!v!HkX8_5pL9S6CL($Ra5oU$6 z5s5uTEI{#OG6z<9a0*-$yWS5b#%vS_leGWP?5QXX=HZi{C}c?2Az4o{=Bt()Fa3sH zx@IK6^BnUkniT9*HM6pHHqL!BYWLt@Xli{u>Cpz#v>r9zvFPa&dO82E9w=8jim9B1 z9MN${fN)tp&+R^&cu5*ZW&g#>L2MTsX)=Z4kr8wZ$>bepRmWfsS0OZU*=zdIW8O(t zY{A6xue$-!NeAf{t?U&?Q?IWv(Xnuz5Frd9X}UEC=t=~E&eu#HK(Nd|oMAQCFSr3B z+FG>o;f+xt3i^7#GOIaFNHQXw>oT>3>ZNjaCj(eKG>-CCs0XQw1xTaL9c|MVCfy!u zRx`M)=K!&`7K(Ru!wH$gNlo8_?s-eV+0vcb45iDYSjM8jbrm5aM^?9Mj|zC zO$x&Nz^O7$<@iY=tbrWyIDW;pb%r1*9nMQVhWJlGWN-*`Eig^0J?x05u#ZAe(I?@m zIZnYh3BnG)bKp9xR4drHgK1biQABB_bbe3j_z}3u5OR2ZT+9(2WRR1b2(LBB9Rj<} zA%Ow0<;ZzOh}~JY~L#8?cX^Z($|wBj%!eYp$#Ae9SvDUA&6q zmD&v1X$kE)a0vyzvT?(bp>ElevJSfn#F~eo_lRBn$`=Hg@Ldpi`y6W9P^ECr%_~NG8r>nIVK()yzDL+in?{+H`TfeF7wo zYEJ)&yO*S_(YN9;P~S8`;G_&@8WGp9CzjGazk4mA4FJS=(It_YIMlcN1QBZR23cK> z{88_0%G#nQSxc>~muX<(qV0y~ROgOebDn3I)!b$*f}hp5BGJE36%)e9jh!H&`L zms~WG3!GpN&Og$j_Ci9Sbz4UI2o|rOm308#G9kP=`4Ro(TUmivoE<`&FM14W>T_Eh zRiOsd&SiU6mr?T$T6(0%{i6o^Z%fzR15T>}$t$!ZjT1$CBZ2IBS^OO5+M$yg>?Nbs za`QV7>VPVZ>0ycN-}MXmHQ(F^QDT1nVHmu!G*|*$!cQlErl}|L)jjqbK~@tb@yiyP z+z&YgMFDMbPmP&8*U)5y_kmXXiQ`3$+!}b6FWH%QLsf@z@G{`)n7O%H>$;&IrH4>c z8%@gJRyme(#_!j}`Hh>mkw_P=&^~+GD|Pv7d$NLY%N6~|bBda3nHx8{Hl~qF<7fSs zdJu%y*hCo=Q=|H#i_bZzTqzmcsL&`mmg1%^;Cg#sG@2;|gS?(k$1fh>P5a(q@r@?Mi_O`MQW9&>{FUp8?!8&B4C9wXXvL7Iex%=1ycX zGOhmz4&f1jVv;ll1jetg}q5ibJOK@KieZ}3@U zw&-%{)N4wms*lGbQNG9%T!UXtL?MtyfWfF&7k{B@U2oae12I&a*aGDbd;_k~#E{JS6QJXG25teu){<*XZ{+gp zd)c~wj6oH<@&5ic=Q1YrBJ{;~rkkfrV$zkav`%f1)wp-2!Ase%;IXf$FhF%&jqwd>GbDt~&^`u^jFiotE%<=Ic~G9{icJi5hjV?R5dz4fM;lo%+e z9MK(&TxyfU3|`$dGHTxba8vmC3n_PHM10p{%eZYG8jOex21Z9pu@lL%}b1%sL>?j7C0{Y<@s~z zZZH>0CA{%e@1A9yLzfNCuCG!cNSQ!3Xy%Acto#*07OtYCB1Aa^^BbZF*S9vq4HFmb zN{bh~(Ypr>{y(A{Y6Q6<;F90mf!~DNfC)(50Rn6nwy@R*rT#yQ{RfCf2CESL-oJb$ z+3F(a!XBCCT+0q2TV2e5;}Q_dPp4pCxx!4tu zLrF{DT^ihgQy-@vobAe)ym)eVEC$1w5dWR#k%HKP`#Mn3O!Q}BvUk-!`w6Gpsei$~ zHQ;RAjFGRu_~uRUxe3`aVpEO)iMsu8c7BIk|l+Bg3 z$kZ^J4Diw`x1Kqe={o<@0)14Q(^on+iuYecZb~Q5m-gaA$IdEPLFR0(!Pi%QZzXbN-{2c)&@jdodjJ4~iNX)mu?sdvyA zd?ZV-m0>}Dj)(Q=@Z@??w|$xE)cd~L9^oO{m5NlKg<_fGg^Ie9RaTYo=_tyJP4ZbJ ztBr7R&9~!&2G)?$tjqM!`Frf&4?IXUe?QDw1Qnzqz+?Zz*em@-=*OJa?(MW97#)vL zC9fybCo10ND3}J!d)=(?P5v!n2`m^NP7nj1!Xb&TeVj2b4YTofGgzHd4;c@-K(f%V z^J|P&4`XF|eR12R4=YQlEe@AmE72_Lp@$nmH=A%D5dHkgx!fgLdNRY}d&bt|HxLw! zOPDI$f7ms8&zApxJ=;oQ2ZNb7N!Y3~IUP=)7^jqI#pdl4=&fAXyp?cq+}&Jh7s# z@3zAy52)x2%3%6&_DqU)Ha0}VyK&D|G67qUucj-hx&9JMu7p{+}2u_w?ot1;A` zwKqiAjkR&f-_KC{7CuK7kYJ#|Nm=zfWlDZ!dNfLsZF;n;!j$Yu{rxR{391lf!{1`2 zj2pT&re9zvir10Ws+5tuxWit7o&y_BkHgv`Lol=Ig^|gJgmBh=@gX$^1MS0OtNCz- zKQiDSKPniryKYv#$<8`Mf{OCFpVh=8q?uPm6Yv&@_Q{O>oZxY$+8p4Em$6DG8+z;ZsAl?gVIAxR`%-wKky^xAwQQ-xp z*ekzyFTGv(sHK6`!;SpBba4iTa(x5Ibks!Nh;4tBSH^Lg_=EoYDI>`-Z&3&PeW|rDw-2|Q* zNz%`-0iWMFAB!H-ibcxczf^6el)QdDdA^K;?`g7?A@Gd1_adQDe!FICke5& zQd3QfTlv`$B%J4qH^mXCWB=~er+JL1`q6^;kH?6oP980X9jqj*>Z6Ay!3Z2|I%&7J zN;{|W;04nPJ5Bjml2kkYZgL-lI{k`PkU~tijdwNBJihanQ-ghb<2bCn74m!MwypE8 zgU$~5eJ41A4`lV{!suavh+Nt=7~UHYg(o9F@6+cfNYX8d(Gaj!n!yXwBQ{6?H_Wp~ z7Jb5ji9c_BE7o}eW8jKi>E(xSLL2LP?%=&{kD^h(rF5~}f9Yqrji~;{MDJH+Q0!j` z1}U0uNRMCYTKvG6RrvKZw08`<@0pQoZLl;Hz`k| z&@>zPq8u}qxaeKr?j^Z*MDf(IV`}cLXOShS14&SN1Wjr$I+U@HB}U+0l+kS~U*LbI z0;uwyM$Jymj2Q`7jN)| z6bXi4Cv2*l`nW}2fy50zt%C@Ng|sG$%z&Y^zF5Q z@Cu#XOqE7%U0nlz|3F{!Qz0QMa0z?MLRGDi5tj{L56eZg0Oy;$o{d%a*_Bv+8yB#; zNhaL)ra3PvAcv^aN294)ah6mZu?>5ROZ8-ZZM~b?CBGD>JVT&4yf_hgxIc23r6s@`}!o~ru&j3M{QQLy{Z+KQ|AzZXS8WDq@obeN?5y`H??=S^Bz*xjWpw8XTXGyW`t);+i3jaJek{FjT}Mf##BGC) z-q5A2Wf=xVXxFp-@qGM+ac+fKJ3vF)^hFT=pUdmNSHw#LKo;3IBrGhypKG`t9Ghd6}73)RQXZ=0;y9=i2YOl$tdr#9mA%xQ0?e@G+49TWDa|86UoM?B2`@yiGXj^RriLz?6bg(8Q3 zI$T>ID;@#4w|o=Hu+C`aOH6abPjLBNxLc>C9v8yp_9cAwP^S=8r>Fk-_9eRRrjn84 z?%v&YMAF!ARwUn1B7&zU@)*R9FwBlx&}dc!`{ND| z|Evvifc%^6tAM<+=`UMlbkse)BbdbLf2_g}yv^a0n<{~ST86Vg=b0^i3272bQ-z$g z{+dQf?eNSrTSQUpDIhuG`Ks{rePk*in)OLK8xpjv zWs=b=kTf*CJcQC1!dc%Znm z#q|Rv@7&hdmg}4UCjIrV60~NN)P$adLS+IiBckHEmRoY-u%@D*ex!H(TcU#=o~O79*Gp%{q@U01c^f8 z-x1ChRXUVCB6*-FA_|7ZWLDIfyI-BkKuo$9XR$?9p^A5p+)&UhKDHHEx{ zPhmV1UjjV#UIU=IlO6BBRJ!+ZtC&bE;8BN+Hn<37 zL}4HJ(`YP2W{^8Q?i&&cNvOoBj{!+)a-yaZ`9qY5SXlGHsf@~f&+C_01GzfVi)P*} zwSO#A99X#Tx&B1|QHhb*@P~dL;mtR=d1C*BWu^zvbi}WltR{Py0u)eqZ0wg{V^NYPvZ&0kgkt2{aMGSRP%B;PQ3W*BN(Hto`KkGHVC)q_dSYL%)Icp?eu&2 zv;@8!x~-FcNrYXJ%vST}4wS0bkDt{jReV{Eiixe_mbZbK+yleL2OF-JpTM;{4-U48 zIx77f1q+nx0PFCyA_)?nHwL?RcoFS|Vg_7y8!ID8JLsC${@qKjvVf z4F%_vSL3^EANw1yV`AOdF3=Rg=QSyD-kbYj-ARa-Km1kAup^Tm88zPh3qs5>Gp4v* zT;1-lyN2M6Asw)7r0ji$qDSbbT_<=Hq2AxJM=j8yt(JEt$${9+Di zd~oo)p%eF3o-r&cpb)Qc#)>``cb1+X?W7-m6PLroH6beu%H^$39<(w7xhfGUS$XMA z_W!UYqsy)LB~-Kh!%H818{t=EQ(L`YO(0@`zI~d8_i7iDFaeoGX#yhSr`w-5{q^TH z%oSwsM2d7{KaPPaf8qXpB{#6%g2&_^kgNFf*%EH8As%0j*o)W0d}yFQ0A8an4@ypr z`YU~@bzS^{?Niwm)uafFxd8B2tdhB!VEb!o?JDUY*YK!=Bo= z(SG`SKmX061tPg;ZzhjA{hb}w7r2|dA1_}HL>Pgy!V8;zgE$s$IKngfzy= zQhz$4GnTW-K>POY!OR7da%;x>`K=~in;u`cWDeGVU3W?Qg{BAc(+-!vL7b6(h|kp- z?0#9T^aY3&slHL1ho{7_K?Yi8-c2w$xNN^?pRqu7r9{lVQwJ1X-0o8>)JDRYDR{O1 zw=8sY<5q}Q@p=$$vdkSaX&682unG3j7B9?8OSLd2+Evlo)nMsMo!fT{4zGW|7@kFD z-@hZ{qLvl_2H641-9uiTL)P9)N^6y#kWv9NqJ)Q(fM3gOF+~zy125j*PWqSu=NgI4 zAxNhLEXZI1O@{Jb->R~pY;WV3RZ5i&Okv^7m|i0j6Zp!YLttY3%EweH?_e$t5aRt~ zi~ktS5S$vTE3VwN7%Y>Zp`=k7t1xtm|2-X0$8-;8m zBi10Y#F8Tx4dw804FHBf^@{^ZR5~=w#1jTc%Nk1YDQElCyjxthym7XreLzAs9+6)t z0fxy!^{@N_>Q|Dw7GgJ+m$f)o)u^ArA~(=%E~fimJZ|b=A#rr4x3iXYT*rbkKn2R5 zMODhYwx?oTCFdnSF_22z=nwp4{3nqn<%EgB@&8ucebgQvi^!rXC;-_`VCxqUH zOcTWpg0`Y4U}yb--_8@M4ryW#C6i%s^>#la=Zij}s;T9L9z(-vqkh%I-5HMS;4D$_ zfG)0@B|J)}Vx1YB2vIv~s6RkV0ch%wriOlAjx%lzOxqsJK-2aLNQU|W%rpM}aI3-- zulh@{O1RZbV1R%rS|de*joLtEsv%|8@~{Na{mihPj;hiySQ@rv6b5Z3ESvgjjwHR;`9ENy7AK>{CIR`u@7wVpgxRWLzK5#GJ8K zx8y8cL{&{&;H_Th7;jJ~O+kg4=6CtQoRFeH(zUKYSvUZVZy@Xv)E`yG(0^&m0dFN8 zC84e+lgkwMKFvQJXJ7m{8+LOwsu9 z+Y9-%z!yD+$_YGmfH=DhP@|)SoUb`ijU_I>(7DZcN^(^tGbs8no~>Nrzp7q42wbDY z-k+t;6=qofSv;C!;!g5KH%ov~Z%@&%n9L{cEU}3L@{hC=A*TqDr^y}7_tfZVbIQ`w zYW+fFdj6RX;9%xb%~sZ|0*%0G9v3ySg($sn*g3Yjgnt>+KF)vd*6~=sgnd;bSRd@Q zos9-$rtg2nvbRO1PBrp2{jB_o#v7?JM+CVj3Wa5I%pe5#-Uy-6Ln70Hmj7rqIKubG z2}W|{;W+El*_z2;7tu=Dd#aW4o}2gdo>KeF{ll%4JERTGn3twFlE{B`B3Ec6@n|;t9c_*s#s}Kw_H8=v?X$s`Su%>{N^Unu29~(2TW3ycB};1>}fZR(7{_=iuL`2xXlRo3-OL3p}H%Z zYM8tasqd-MSobF?Y;JrjUNnnZE9ttogYqsMs!i@x7VPN!XAvZJ%gM)*$;X(v1^&Dp z6m-$<>9T7DTIM_d3{NN4k@#?v+~{AWiq;t1n-W{uM~|`wqy_I1$haUkP+wtVklpCa zG1`vNxAlu?h5vF8lpKTD@iK7+DW@D|c+m1Gp`mnw}%aI<$wVOgeo zqafN|4Es6{@!q(d3Cb`W2n1KOxn+|_g;V^W{ac$+7Xk?yIkCAxLgSm|$O~sbp-K`| zRCz2C1=5b_{82~dg?DTnBPf*Tt?X~NJm4JslvKV;l}n95k81X^g}YiKvsvulAkrt^ z62Q^7`^7ZW49$0X%~5ZT|EI|DB@mK=HAl4!LzF@}O=ae`o2NyE@6QilZ}I?D%j;7g z=8T7FqP?PC4B~bt!Z5+yv zG3}u1^3$C1^>x56RYLo0lh>Fzg0$d}1A)u8A$p#BV08HjzE2Y*=lFBJ839y5fzAy* z+0_7TsD=pV-REDqnf+rO$~wZN1Y6?iGwSPqGnFl71g8~{&yGr0**-ddx0I=|{k<8F zP!a4atYB;7h<*OsEsQuF9$SILZvn+)#0XGrLAw}x>h*?8A!YMf2qtQk3w_Il;39eG{=X~|qq|J-()n|@d{8;syo6Vu;OSiVi1A z(vCl<&iXNDua(18tfP>>tENqY#WTP?6kVhekKM2-Odp6xkzf$e$x3CrEkH;KTUDPB zRERlRXf}tibzbiWaD$-t1zL4aFMk}A@51{0UNZD*;ZaM2z#OUfDHUc~wUJW;51vqm z*kMKY#Tr1kSVa$PFjhacI%4>co@`~fW5o}HTZM@D&aoWO&-sjfLiCAipJDuWzZYjg zT^{dtN;a%6lIUs0fM}X5XR#~S4&U&<-{Pg}mDV9{UDhr;CR(x+7DS7Ce?3I#$_SV1 z7RFzS05w1-pB4io{7q*9Hee|%7hT;^=n&B1RT zKGcBTq!C6{6qwSs;ncrZu?gEU|WXiy(8ovM_f7G-tLd~jeYO*xr2WfIVdxiN`F9r zg766E-!*5_MDHq)W%wh^L*O>>@-whqKt!nM)Ay#uUu9=#p$SH{G+KK`UTpl|IgP>l zssNbsAY12A*K=)U3l}Oh(>}PhwVbBfMK10*z7TOO*ki&M5%b3kKxDi_R-jr!zQXlS z*eVhK!S>QRHtq1nSHym&TI^}fHz6x_ROuI}cMl#z%Wm^WDbcF~)lG8}pbo5$S$EF| z(bHz+K0psEjycGCIpVAnmVda5~UUgt138aE86DAr8DVBzn?c|uIJloO!p1pY@ zIM}Ev>-5vWm1Rb6zPO?`z}f>Tg2}xGR7B3T**8!Q^ilO97JNz-ya4++tGc~K=?)vcPQV!?R9cITY`4Jp#cG9l-S4%pedrGYR z7ee$Gz^F1or^}6nOncBNSqEc!H6`zwl5Uggx%qlRFnHQ#=@KQ#;z9SbN|yIh_6Mu+ z2MOmYp{7VsYkH?l%Z#}wj9E-_RU?gX3YKC~8ol|2DYc&lm6t8KHM?DiqO$qYqsMyE zFL<~D#f>7q1i}xe2NoODBObtyhNetOMjw_w7F+2E3@HnO;k8ghdD3~eRYv!{v$JgHuyA85B6Q*|n!V z;FdS;E9{zxTk@qT(5Z=7&+=4Dlc0R=t11G1wOcJx{iUQUgo3hQRgjj@f{}D7#aq3# zki1{F4-vd?D~z3^xOpIV13!xB)lbdIf!&%rhM)g% z{D!8n4IA{5wsvsOWwFv?Q3UDf^Hf(Y04h<5s6;UFV~j1$ql>?=leU0!6WCMMNTZ9? z@Fv1bA#e?nx3o->fQmZj9KV3{JKmGa7{-Z};6KlRg(m2P2Ef3~EVWW_i>vif5*{iT zw5>H$K*VPia<2&){1m)S(vZW+jC$uNiZ?8$Xf*Tni;t6!{@qDYx1bQqTXKT=qeLBT zsZQzVh^_BL$hJH|qalh2-Muf^XWM95#H*!3R6F4$e@qtJQBmcI7Aca;OK(4u1mRI9 zU+mJHmn)o7``Xz}+5ebWAW#aQ2XtF2)&|Gkf`4RM6rapEWlZu&Fv*Y#XcYY({cb%s z$S%{eavnB69&c@ud~n3>3`^IPMlF4dOajhII~HQrfVyyJBl`(K-exY5dn%P7dwLCI zH-~Jr_CVpkU_ zmIy^GH3~?w*+`RMCBpT-@Lc(_M45JPn0;kzwNYLvcH`zO{xbT~a5?!UgY`RIvWX^9 z^%G5{-A*en?u2~ocUt`X|x$Wu|OOcdS!8j;#Qgj~ounv^oWmulrT zW;2@Xboa0SA+h;v^Yr^%6SWu|S=JJtS$$vO7NkcJc9w{Q(iAvJc2pqX&jOuzQ}n7L za&D2uF?}qNuKJ^U=ODn~jme11yv*Fuh?W@23{8zN%F)D`qefrK1H&Mr`RpDgK>>wY zJWi?(k&Uok`mRjb@V7T0&2~*lFB1#WqmHhgF*K^%HLD}#>Us+Z8(6zsh1k~!Ok;bX zp?+Q$I;JP+o~yrHyc$j4NXQw4209zX-)C77=&7;aC4xD6e%(2~GLE{TZR*{Jvy)YL z2@J`$P8~HB#4jXoL<%fXCa(V;lV2+$(AVG0bQ`SrB`!j z(o1x@&L8_=iUOiA;%&1@6`Bn?~~V@Ku*c+vdl#{A{y56iy4 zEBud~9bk`UISkb@5ue)+FPu(V$bt2;#VamIV%<`|{IPPiDTxRpeUZ);KBf7*y{%B! z;EUid@{L|m7C^&1Q%Sd&mL?c0Tn%NLM?EO{cnCyg`{WBBL*H${WPO3A?l4_X0jqf9 zK)lfO%Iy(9-WFh5VXI{XvcoQ5zec&D4+cVFIqCTcQ69d=Z@%NQuGDwAL!yWMTM2;v#Y+;bl_NnnqmGAy70vCE_`O9&;6_%$9L zoOc6nK7VDcou~lo9QLsc@*bx02)26XsOjj(SvATa&8#44^sC(GrTJjl$lf%m7h-Qv z%Qi^edR%k`6BaC7Qn%3E6Y+I1X?fPImQMBQ5X5C)@O*oPFp!Y$&xhFeyS{x$GSE^J z49+1CDk~@&zOuNGIIkljk$s6BN}eA|`d8!cy4$S%(BEa(i`k!6n48Aa(cYBbZKjh- z{W^#7J%lg_L{n6hzG=!5b9_hpP_8u#qaP-b>c4*SHjrUV`yuhJy`A&V>qA7c;I z%j(SbyC(?yfe?hE+j51vAKz#)bPEHLnB=I{DS!q~h4sC@h(RW;5P5H&iM=5}kQ6oG z$|kWRhBw$ZQbUy{D<6L5m*rdpTY}o)1b-0p6BEB(Uf8Y3;=eSujQ}odjheanwW(`;fajN>haUA?eFc1*io5qjCp=gBd1X?3Dx zkhx4n6k$vIO~Ds~H2=w+2hEw@2?`FD!54t{KpP!BR%ud-jiyVPNkrY_s~ZVA7%{T? zSf1rd3bUai_{S&{ysS{B4~457F`UD^3=2qhWB4*e^*(4g{jGlOO2G()7vJ#v68adx z|G^ttb47uR5_wc22dl5|Sp>4|*=M$WAS)qXiBUJe|Bi)m?&*HNTrbT70GJm>#BjZ| zTC*FLcW>WQg@L6VAW>S%@CJEm!(*60(Rd_EbK^hRO|nO(u0$D+mO7es>7tH1#$1k< zYH7?N+9s)}YZ2-I`r~p+<)b?SxBpN1T>T&N=?Ke&FcFZPY#ve3SGd{8v1Ezr$*jlD z19-orX-PqFuZ1TNca)#OBD?1&jC#VDg|)hM>}U`JzDKR#eQ!&iUPk#l6E9JCty$tY zHMl8euM5O#j^$q!5X+IA9aDKckGMoON zW~tO9a?ZZm_9WK(w0rYhY`Rw*nZH-utk#n*aHVZijVcS*2(mo*1IJ;OT^~IRS0r3^ zS}*TYvi9@d3aW*hQ}#GL9(kYe?%?BqlekE)6vuJ? zz>~a==vWcZz)WQB!CP<7i>Uabdv+52r`nIiC-}=zr7>yb) zt22Y#V9x<&0%eGb}u=gF&4b=6VbzCMbf zz0Efjo=P&ODPgE?ng1A^swi%7rncWTCBxUXYYVo5r-+xaoQ-mIq%q825ppRza@|v` zQEPz94k!u+2dVa}<9SR2;AqaU%KmtC<&_W+o9P8wQ5!~3>AS)04LdNyl|mH|W@NXu zZ|*V|)Inqov6ih1$h}Tv;OG*YJU5PDvhwGU^eEVqmX!G1zYk6g&NmzhDase$7!P>dp zak~Q&-55g6?(dd1^GY2LxjC5YZszT_35bh3nB16Nckrv5DBZo!@S8*Mnind%U2nqS z18ZuATh8^@zi-Mn@+lvhFG}}5_b)Eu2fvP*4U*ZGsNTYU5k^_L{y?%*i%q3MAQ=0K z+Qlj7AqqZe0S0(PXn~|%ZY&CyS%Y|I%Rvf9VxT9cHovBQdbVzI-=}d02M?SNOr_>? zG&$}Bj}S785$S9Rk#Fbdr*Y5TS*%47Su42GG@YL%Ysda`5+X z@pF*-6j4kylgTVSb((4Z%TZIauEtX+HC}|=QL=378d1n2CE-|=`|RG3WN`*^adFLy zGJ(;)@ZzM)#s7a|`&~ zB3Ve7dU0YvixN}x7;kkFc?loH!#+!$FoEW8jlx+?Ona$A^goiW!7uN(3uklLwz+EA zOG``3*0OEeHlOTTcFS(rwYY4&-+u3Z@O-|{eV_ZB>s*L2S%9I%JHwaf4&R|gjM)># z&%&BYBMu`6wH)04Zq(x}4lIuFBh{F>hR451T{L}ao)%75fjYw*YVulecKX8nOp{i) zR_FblG%A0u)qJKCa@4Yi6+6lQvc2U!2uEFSYc-OE^VbI-t!C|~?IptI7E8`60UBJt zcv@ci{kVLkmraudVZI60g@bUx7to|dGmS`V8(cJxQqwDV427brOAo=|9V5OWM-07X$Fp{7xWH-hw%Z9R(rx5< zXdvf-x3)fEw`3xodffeS{V;Z79P`kzNKYI_+|e2d^S*2_S-QQ+IS7F%;vCFMghEKUF9;wI zFG#oYu5ArI-T(R4t~*);XduFY0I{ylH|)~>4-+=Lx2L1cog|oXthB=jt$q_t4F&~v z1L|HSLw!()kaQ)wJRK&ffhK!^dwP7(_jqLVVaa(!_w}1f!sDI^XuOMG*^j>_w6ier zunF!g)Zh@L$HuBcz$?JPDRMI&AIun_p zQc@s8O7_D~8d(Zb@9*+>KrF$Bv%Xw#sxbLgMm3(?}L6%VT`?|+8%$x#J5Uk95dI2 zlSlYqY83BjRw41}*?XC>-q zw|1ZC^3TaYHJ74DX5bEG(%tNY0rPTtW1Ac`Lh26-08jqo4-!uL0jX=~$IxELodt#1 zkG=P>YgT@ma1@x8QF$!f_G#`_tl6(S=rU@tymYyfmUf8?S~&}C<}gH&ZQIm0wBn5F z97Ui3NShLBVdZEJWdhil9N$Q_B(N)BBg@E*W8l(6e9>RPgD^y?qGTh`O?fzcny0z? zX-#06Wz6ZxuHQa~SF{~Xw62m!a_D5x*NMYBPLvJ#N1j%|o8Ta7%i~(!hc&h7-yE{t z9Tv8!NG193x;Sdc0+bwpc8USePCGjxKKxm81s@4fL!>m2OEsbm5kRWQE`+Mm90K8> z&@OyfjO3IAGQljwfuS=_b12yj)?@3Uv8A84cA?asDFGUL zdUt`053Ds?(ly^~%>;j?h3Ief{Ykr=$=)!DyCOFdDULXEifnOZv2X7jFj#r-{W1-N z|47iQ%Q^Rra|jpSptF8TK6Q_Vj-Yd)8IGwU6amm2w;_6CRIRDmVnfSLvb7vI{cuS^ zrd^}s4!Pg&a2fk;c$YPo4W4I_=DhYolxy%!ZQtmRn|`ZK@^!D%1|RXXj22A&b6+NFFF_?Acs=Xqu@d3xcXZ9K_AZci0uh1Bt7Cqlh-Wp(On!v3lZXJ4k0+ifD5X zKc&u#i9(AvAD{>VJvn1AA209NGh1}VBdDW;u_JvF@$z8bF}#Pc1#q>igVh{lz;rZL z5jdDb>u)H}?y>I=%kM#@rBikIQ>;_puQxSE5HLVNcZSt!^pw&he&atfHm@{16@=jy zPyeYHi_vl;2#)#fnNtjJlwKTch@@lxdL1vTq92qOudzylGA~aNh2CY={|=KCL!ltq z2S{qV-JkU?0Y2xd#dGJm`^WyGn-w?IJ@#xHWwoD(IN7WW(_~>h@wat|LvMao^*>Uj z5!qgoVc`R>lwPfIuzk$PwWBQ)NX&oZz9%tiDeNu{h83{IMdjiypu|o;y4{Fh*cHQw zk>`QF^YbYS82XbVbgw#uX5G zwx+g*3kVd%iU-9GLrz>6K ztyLI)OQ&p_U~AWh8B|-MSw;Eei$R7ZxXbpZQ8N-I9~nn}N@0V=?P@vv(n`O`CBi;W zjI#^-eDmEt$&>!bvlrq5EFp@&UlQ3g{$RdP{Jt8dvQ)MMV28ZlTy<}=o)KK@10#xA z`T->H%YaRfTCqN^!dkWIU2C&l?CEHNuDy@sbb@@!Bjz$@09S1*{2*Q(47Rf*_CAyH zC%CWqNV`N#alMaO&y+kmGd#-mHAl1oI=#Qg8`Wu@)XU`Ac}$W7K(sk+KSYS*#?cPN zCpZi!iD3^NL(J`cqdt>cM~`ALVW2GAl;=j?@HN!SPV16f5*bomzch^IhI$XtaX@I# z!{<{OedHL~53oY?!;Syh-nskX^>{#Hmv(>Df9#O^fn}sj7(ha7d%R;G_8VnYD%5RG z*>FltWFjBuu~I|-Ibdg<)&V0;>XXw=A*A{O(~*K#Ul1|9t-s3-BPH&ztG(y zT;fcT9z6_>JJ6#~XEIq{pdWtI31<0S3TkXuYniu1FF2YqU8UG#w4x@w56=J(Ex4#V z*#EOXYuk*{D96`5sovkL`h{+A24Lc0@B&aR@s^GlJk-q^pSu4m-E_PcByWfN^0lJPJaxw&cSHrFz!pHSB)~(aWe^bxL|8?!ZzN2nL z+idN;8YrPXbHgP5QuYq)>go@;L)TmAFEO&hw2Cmg1GMM5$R>>rqbOxpJ+)J<_%Dp@ z`nWgRjDG?F$i6KJdICytbnEAx5$l61-VU-&L-xbWF4o9 zKToMFx`_i9ni@l2kbup-`X4z0LXX`AKvW$$?mSd+g2O|{V0~xxa(3;DO5P{;JxbYn z`O+>s5p;8taQbxIDiO#l&$W{>Zm!4Q4Z{Nl+JIbKs7mx#A$ z{8To%@Ms2+vE}wN7{}G1cKM}f+++V3OKHs}^(gC7cc})xfq-q7Lo+2FLBYx^u25VJ zlo01$hFb20C7k$Gd*VR)@{!d~>kk`7;LS|Fy|5-aD;O-{1+aC^ZSC+5zP&5Sc1!jA z*qzh?Pm#^a&e;L7ATLRsR<^V}ZwN-AwfU8h63TwX^32yYvESepZL6L#v~imvuAkCn zWbzZ^Nj0$STm2(nRed|cxb4To;YUtRGqcFH)V#6-lWcaK$Sf(DGK~!b+t2u~sQ!2T)>%@BG9~6f zbFQeF$&qav5R{oHR;dYLBx9JU*i8^Fd>&p)s8xqncTeW6Rpplyz;dYY(*e-UMz_B* zl}XFnU@F=Dv7)825=h98*y_bbLC1_JkQ(6nlaj$gNBdXPU99Lb^?u44G;bCPZ*PkHEjM9Z8M3QgzAM-V+ zZWEV=RFZl!jcRA?nkSAYyFf*rH&hR!zH3$p`?T;cfsJ^m3L{`91;JGOz@OLC;2)a<`BL8q$&#*NeE+vu$A5Tz!!8RM1@8zF7S@t)$uc6Uf%dXYz6JZ{`%YIk`t;R;z zfQM^jo5J5K7Fl4vgI%72eK}aLW%c6T>HQ6fv=3$dsFdQdsZl7(%Ry?-SDdN9?Ia#) zB9?j@&FUk9{GCa!?sCLmK1vg;uEbA-;+ph2^E=tyC(1iWLSANCSFP`PoEP(EXRE0MQU zE^{ck{7;yS56YEt7?d~=jL~Wpo>V+hjyVOk`=SnNX_#}Eg_#%h zv8Tz232dXf{yJDTdkztjN{2)SqcIkNt_xB z=ht$$B_2J7TCx5eTb)q5SWHaHA>g|_`h7&qi!2v|gSMAf#}&HG)nl*>$qc%i9m2f` zs3bxX`2jL3&rQ@{GB5Ga;LzvM@`?QBC6ovV32Mf|D9yr-N6?)TYNt*^v3ji_glLxs z8Rw96)#m&_mirhE!fbN-x#6l@;iuIaipB_Ww|iGjLwu+9-}|X&3YL%u@z$XH;ie_J z2lv#tUl=2ooDUA{>;=|OON0CE$@QQnNq(YjM;16`GA-6~gnZikBnMfBX@|!e#bBWz z@M%=T&e=0KbxCi>)Nwf*%{K_>Cp^($faiM0!!??w-HKnwJETAWU7O7k=?RpUt^z(> z{t%yGBRo*|^=p)_WLQMDdH~~k1zP>Q!`Q!eb_B3w%J1BBjH8rwRW)j8`_ktA(#;#? z^=q)+3^IZXWi99A`akpq2}NMi6N;?ey|=^>q6I!hV5s=?!l@L*;|LDHYuJGSz~XaOXaZaz;d}myoWUahR)z~R#cw9A2?tu z0`O5GHoG2~4kl^dX#sBCJtfCf+DTA2DzVAIj5TOp^HMiNX#Vfg1^Wv6BAsAhK&SrE zAvj}oQ*r5bi#Gn$Rh?v7o+Ai4kC$kNCe-dpery;f;n#-c$xMDhi4K1BipXkfaw80i zp_wpF^hg=o!~Uu%W!2x$y@TgW%q=*8Mod7U8-O#*H1^JYs$2hP2lTqRJ%PoleY01d zRFXkItmMY99?3CCf=I!8WnWCctN`zT#x+H{X<$T*8M*wD$BRxvlYeoNdBrpBCmK{I zO;-YN^9+RPurTgE=sNrBh#l)4XX$9b4s8Tbal6c6*VuLsE+=wiWo5~LTIh}GP!xPr za2qHy5YNNHKL4pO;2z>cRn8AG_-$CM&Q87GZ))zScm@B6TeS2I^aG!*;5sTYy&!$u zEq|cIYV;)Q_JZPvwu?rP5?fS&jf=54{HMo!2<<8s`-XPF$=DxR4@!Bll>QeEC9Th2(}9_+xAWzly_Y2L^#W zZ6L~rNp)?PQ2JlvBTn_i=I8Xmuz7uDZj_LGd-qp3a->%3-UDk-u(fy{gnXpE;$s)* z$o77$jg8K}vvd6Ca@aFfeN-ZDT^>%xj4_y7-h_3518*lbh7V272Nx zMa+sYG4J=Zj@*q?1wvk@{3_i}zRee26zLCY?MZPHP+f;!VQkg9vN1wI&=nrdd; zVKZ+9HS6AkY*Fi6|Bvhztv+xW33RlwOlLi;-cZ$CR*qawhp%GQ21&0R5k3^aK6(-r zkvRc<-mL!T{2#V!{aE)0&4Rd?>~k~vP2D`>9AQ|}gs^FCfLLtlq|{3Jkw1jwsc|^D zN6d|OrZhyhooJCNmG{)7GgXTW-q)-e7YZHEYBGo1*QS2Jao;3t*Ph&|KXsM}H z=SgF-Sg?fU>l4CN*!Prd>=<5udOtdO4_bZwIrSId!PAhItiA14yvKZmWo+$%D~zTa z!(m43L5J{B`zdc}s(=D5f|lzf#tLi)dvd2I!b`+QnNCm>J?P~$$0WUX9pn8gLb{Sb zsEaU>d{S1%XIzO~fqez8;Tjpj1x$|mlb>LUR3opqD)S`6`D-w~jS42i$}DDHX;L$Z ziRLK-vnCEO_bmi|1CVBa;1+bXJ>jco%4St5Tt-TD4;3yLAwdBYwsPY*K-5oV$InY#i84=GKqK1wR^^b4=ah z;IqJg751m7BkO4vX2c`A*u8$1wHrB}qCBa3;F7J|!k%3@fDBoHqmNphfPOogcn{93 zx|ukdEk?9!=^VN}fQX&i+$x0ah6qz^^P`3{gY;AG0EJ(WidGMkB}5%R`GB(;6OfI+ zl@xEm<#UwBQGTF#TcdG8-4Fs1FBcLfgmZ-&ua&(0r`!q~f18>d_hG{0Uhx}!6Jd!L#fM99FUb32Q(q5#|JL_Fo8hw zrMgEfc4@Xac6R8R^-St)$|&~|bx%hk*sNNx(XpgS6ioHk@4a7voEHT(L`Oo{JUO>^ z@90gPR|?(r&Qk>d2lX*!U%)$gg?YcZ%e?^T0XsFhZ%mSybTgb7a1A@k=u}H_A&@kK z5#MiaK@n9t{x{C~x`PD?`+KC)qj~)FJjLUXc4EYIN8o<>abL(`G^nAroe1mj{qbP6 zPxW^HZN5PQ4Ku*s3T*p~aSEJgit#AmWlL?@EJzCI_PMg9?6ahv*Xmt(iU_XjOsfac z)f%88Ml+E2D!((uh6R85oDs!>FqF1%APq#q?Q73GsSlhzX9gq=?Qejn zih|I=V9@3m#kQ+1zksOCqAq7h&g5G^ptvY)#`C7xRum-*iXZNvP1aFjPmhi|H_S8H zisa=1nzI{W_Q!R+LkuE`(%(5jPWtenNej#TX5)G+>F zOI2YBSN0MRBd^F8%Y;^TFN3)paC3?E^B;fh(c&A!E&D@9p~7?;PAlOP0)bCSV90|9 zm<%9A-EQOC0yec3kt`Q?2R{gZ5nX-*_7x9g1IiQ&J$el8^BOulWI=j%o<0wF$~X9J z7-XJEi7bl#eG15s1f;L@2r9GRR7OjpO9hyM_?bH3VEEi$I0Hvg!scJXkEa0(eZ!v~q| zru6%?K3o`D(j^Rd2_(eo;)E=SyLnU-TH^Y5?ohC2p)=Q>G2LBvnZ*J4gIQ8K0IJzE$zfdl-Gf&crIW#9 zMS`-6j|xE;k6Ss$lDHtBV}UTJawtFhzVCYh)nD3{RjQ^rRhExSNcg537TW#&%~FGPS4NSlPDmjLtlxBCgCaBqYv5lBn>~$nCYZOVI0}?I+F?{+$nkap;G3q&L;q z8kyZFRkw0^s$WizK7b5X_2HXJ;xU*zBQSWocBeg9?h=k)SykrTFhNC5U&>MLM{|~ zmRf36V`bDA%|V4>fO-MhX34L!I&52#w`hcmn>Mb^O$*dUj*CtKB9T)Bhs_pO zP9d5sfo5@I)2jhTVR+cmU*_i1yZ<1flbdEU7K*aU!mqwnp^=GNsg zo?3soIJinY>pEys5suqkKMdN%*Z^i}o;HIqOiVItSAJR6t$0|~bRJ7X>4k~2~jqAlG6;c)vW8U1Qvi4iu7h3n{+W=FFAC35YT9;{4@ zz_x?tML_ZQ=r}UY(e>*IA$3(Yt8(%pa=3e-Fi{G3G%pzvmxDeGj)Q}qjkUt%=uc1C z#z2M$Csk)Siv)ODphML9 zWkXn;8pB8Ka!s81iuDHcaxC2KU*rTZc09j+Jo;^b$=JjLLaxw5Q<7017(V^6HrrBw zKWI@j(lkIZ6q?76;`0;ac%w~TKoK$os~Hp`n%ckgynns;T*E_zp8_wfzW2_La!b-C zH2d==vh~O&iHq0Cqg{k>jgW#)3Y$Z;V-#KD>IwAAt0ota8lj!|b+FYk6_TdD)A8sa z|Cw|J)J6m^cRM6sj)3+OGXB;enx&>|0Km3@!GCut);IVg9Ug(gk|~WwnSEf3FOn?= zh?I%2!K$R9T+X1z_qk-V{RC@k9FC4fBSIx{h+;~5y%h0Tl?Ya{7_#~<_2G3Nr}dBS zmV=}Jt5=U|DX@W`-8UmmHUo?iU;0npV|=fFzxy2?k_3i8NJ6W-Kw{@nF{sGvA&~FA zz*7>A1`6HqP2$`_)#X}zrHFQeiXgLW$Kdt|VLvv7JD3K?~gh*84qasB*jH>xfN7jSsybs;+edPbmz>A?HHigye> zp*KLlE!3wc@J^70jLM3_P>kp9X;$)8tL>P`*IeRQ9$;g_oLpbHIJ@=Xc;vOn~)+s*JD znh>&9!%PcrDPQhS;JA4|L+EM0pk%)OQilP)2`Zf9;NXN6KaY0=4XV)4@t*b_DfpbO zt2GsBPOTq$KBaO&XP)`*k}W~8Mm_8;$o0M9;dxKMwHFdb8(w z6E$i=s|;#~kvkqQ#$PEnL0acM+3HYT>2xG1_X(Wh+!u8VwA zFN;YD6fj{~hg!Fxqp$&^dMm7wU3bi^is-uS{>=1VsK`g^w66+bE|Qx}!+@@NeDzkj ztW|!1q#QyEVW>|3%jS-ytADC13vm5!yMS@rixjZV`+Rl*uz=?H{o4$M&g|K`isWGUllB+WuC{$u;w1#OZmkj>~I zV)Ydtc4J4;wRJ=1W8~NVXH&aTGXom`sD0&Qs;I3R-5q^z28iDxEIjI~lv(;#7 zCe`U;{f=3qd3w84TB4YofAuA`&c-N~X4n*o1}Ez@i4ZzON{!SG^CX_2OK_JO21Y*dEeB+@TbtHbm8(wDe=T1}?) zf{Sb22F7t#HHEocT*KCkfL2PVa*k6!kPQsL| zJjPV7YB88kliVc{LzzNn6rF9IJCG!-czzqrObxOb2qppRbk|jY3e4DOkEvM-mx#horO$lejhvu ztsVl);a#yx^I&)Kak;W&k%podoRl2CV(GR|yA%@wiviIyOnOP=3+q` zWI(EDz-nrJC{Xfi_^EctmgODKcG0#LKw>jph-!f2hX*jbfc7j}{bN`H2jrnVBl=8b zMKe8UD3a3$prHnKcq>e~lMo79Rg_6A=Sg_ygAu=AV{vKs5-+c^gmW)DotZRE`7E|p zEj7f6OH1u(7*w&WY|9Lf49H=nAu;cnT29|P2iFoe>l*up&Y`hP93DM^p53|Ohs@Y_Y@looJsuO%^z*uzZku6krE6PMt^_6P#D{dL_sW%t z;a-IeJd#nZacxl^H5VOfRXY3uN7j$Ty+P9$01JVrn4HC3LaM;^F9nl@H}?L?&QEij zL7JcY;|6n%E09~x8v24A$ks}c<{$%R4Gm=Bbo-XB0ilk!FJ1um`t)%9%j*m9Wq8Lp zN$lL85yqov04<#XAs8|16ox6a-NMB1P%6740;G?X91V>`${9kQJEO^G_+&;Etl=)W zF*JDv6j$3{*>Q>*;2=r(+mVq^mFOhZypn{_uX=5gt-1t)u$Dia_!OEj;;E;=xTwlG zSCPy8IipY-98?=?0@ty5D=5O~Oag_UFB6Q5I8l-c9EqT40GbDTe6l5;6F+P9XPnkm z9U~#t-E24bPA4?V6l-tPgG=uthP_j>dHlC>mxUZJbm&JE$fV zHr71;^;md7pyXsm%H@Xs^_VXonhX*F<}0#OSb#cK(zrg1aN!;;FC>@-#Zqu!V262D zOfFGFPMb*N2tS$Ia>{U6y`sHp=2@J`n2+aCBD+3qP@+N4^4H$x>dOhh9BH`4H}-bB zncx=qhCM)-!~#H?Z2tmK2|v*JfrbXNhtnCehl*0)=(%l7iYivM-f1m{1HLkU1te!( ztih~iILIG1F*20MrJD<)jG3hxr z0ZHc4sblmLwq2#eCXCU-NIqnyVuVX`dYVR*AD=9)l1)YT)gI>4ukn#~a3ZRfszDLU zTvj61S2p+yLjqlN^w^oi|LGB_ZIc@R{?!Ut+cmWf{C0~-yu^(CMzX8^?LVK_3%gsW zepWDTsNsVIkGY=gPvZ;OtqYGC_%j+#=Gb~Q&%zU1YWNN6N!AdU?c>vCxLKHb_R48F zgzi?$ey~tk*i4Az>hvyOTPJ1XZMPNFFb6#x#WCG^Wa!ZG2f*2k`aHUZHho`n?c00; zD{i4tI_ZT0ae+5YCemk|a^$7Vs>(y%75zp!|St%w}a<7#8@C zbvL?%0rKY&Hc7TOGZmkV2-Af;j<5)Cejb~YrdBeTUx#UgVLs~%ftzApq*O$Df!Url zH>+btQZ{(>F+PW-wehy~2u2KN1M7U7gM|^z@bK&@HQn>Jy5#lhB4NDk>|PUqi>^Lm zFFhl6XalCk+s&y)fLSjhSnJHYV)0?0Dvcatd5YOCuR;w+)gUc zWY?59jnV6X^x}HG(#1(Aib1js@=nivVNxR-c63)+e5MFoAJi(aX6X2bP^a{R*C5Ci z!@U3x7)Nij8h-w%6lUk>5gl4F?B;ZZYu1l9sg6pSkPN()^{+&&!+$Ff(&>5qlxJBds4ofGSr||<0 z7ZJgNdVth_(|R}_T1MU41z0IvLu9W1v{iVG0ca>br17*%L|wmL5K>QM`2~Dq-k0>e zq7344(38Pc^A~t;4`5U|7FPLVF&1Fv*{? z_Q**Ujk3}C^m?kH&DN#F*y16AxA+Gi8O|g90ZU2pj0nRl=mob^q!~~|P#6N=6~+yT z0NkMmD{f`I+;1hOfB~j>tP^m)NnK^o24o-$3rjqD*}IoV6faLlH5V_ZcsV&jiRO{y zMf+Y}P;7C_aG(6uwF8YSOPSJ4$N2#rZM3>;&4tS~Hj9n!mSSm)6wq8+0I?ka1$MLZ z$&;VgGbV8XPhm_<$(T!^%e+z2M*Ht#Y47A|5s>`2sI(&<(i6rvO>GIY4=(5ko?XFzVr z!1~)=?1T6RXWJ;QZ8Gg7>a{Vkk`3REFJ}jk0#FJ1Jka?#KdIx6hCx86=b1NT@~K}? zMuWmNqYWtWRIQga3Gdh~PdXs&vaieJV{YB1LzbwqR#a#taDSAWunS;^k&FdgSclc_ zx^qJ(2en`RN;Rqn4IBh%L|?gqF*EB*s~op<51MwvxSj+46ZfAiv|m4cwABErFjJ@( zc#@aA1#)1ZtN5zBHE|~pO2okUvwWO@_nqyW!!gNtGzJPyx!If_#=_lT*V8~_-g=>S zV435jS6@Rq;%A7gbSl?ynZO6Xg9aPkuHB8y zz6ogW4FCStD>Zy>+&5USyNe|^9>HEt@KB2(ZHAJzf<+M53fMo=vyew& zvfso72lszR3+OWm=?Y3-c%dxRpEOUb*k$LX>7XAmHi3pE<;e=`;)>F7+tEa56vtnP|@m zc!C_8LNEIQ)IrWes)KZF zOGmn%2C2EJFKeu|yPK#q;?N{QPe>#JFG%lisqd&+TTqZV7uq7pB3x$7VVK`Zqx-?p zp;I|mBv1GClTOzvEOX%)So9_NWca@wSo-+QJH;Cc-sL2p8`JmhYKNODb*Qva{arI{ zxOD%GwcA*}Mgy+TbgwFX{EPx^LfgZ->+t-sZ}@j{3-DXM30$9s#^n;cffGUcT8oMU zQ4VVT2!}MNmwPX~#My#FQm8_M!-rG$T57nKy_|SC!6LTRZDUa>rn6>0S@Za?PKT?1 zdN9n^d3ectRBe+l(YMl=c`D`zr=m+wV5)3YnkG@oNXj`5jTS1y{C>eNK7~VuZlvd# zCI*CFFXy+LySEc9KrZ7SSBe!>dZA&@b++2%1-FQXMA(Ox?kByAts7p2kWe0L({YtS z{_pb^2?A5~HIe6+b*vEsn?}>tC89mTLExkLU>Zl`;Z^S`Xbg+`NtWPL*fKkvY7G?M zr!L*YH1a}k{aG^$No8+)P?(DciD8NiWua;m@!*(^I+=hDgQKb7$jTOg zHb?sYTFnyM|tmfDQnG*~EW(NS7fUTBu4eS~K zmZmIDQIg*Ni;YAs2>77N6kdO`=g!$R)@U;< zd9Ap0qi_|?!*=03w4olN_*rRbQHg{mE6!R6YPsW|RNJ2oFj&Kw;URx9iCfye9niAO zC5Uh8!fb-Jqm zz{?z#@HhzId9PXou5V+)+=;`8TCKl7fWeh#FH9my-L$S-7-{+*5#TyB|X z3J@%RkRKM#ycScZ8O_jplwRRDdSO*KtStf+KS>o~qnBxD%1h8rIfQ{F_3fz}$}F*- zbB&-{tqhHGAVl!|;IS;2|2xlAh^3d&)MTEe8~-=%U@(i_bU$Ze(kjxizgN~t=CQck z1_)cXYj5wnePR+0n!7~G_2xHh;*+AI@n9-fb_CcnC+qUAq8&6qCn%H%Y`#E6XP?8xOJc4;6=)0k)xYi{5)%>Fft8UuTU9cqxG=(`+@ohs6?m1tcb# zC8*VK32G=~D?`=T^QcV1C0qR&n1!73C>}V}r{Zg}P5X=@i>yC$N5-J4T|QwblgCdj z?;8u2_5uKJHlQMOpEZ;sbU$p~Q?C?jrj?>!8g??^sS)9K0MaS6GqElU_;+>vJl+L{QMp@x4@gj?-gQjEBw=b53h2d zr-!2v(cg|9Pgu69;W`r}UQrew>(4zF0e%v{_0Vf6%wZOE$>yRiGAgX!i9$s{VwI<( zs$M4t&w>c6udf_awtv=>fTuJtsU8x*{>fAhXduoyhQ9KG1N9m=>Di)0BKYn)p4q&T zDm5jV5^jg`(hiqiP>;c%re>9APb6@bMvi@`42%=4`n>uAIR0H8*FV;N4l1M*9Iicw03`ulrGP?C@kuT1g?&=`mGlVKLs+ev9n{E6^-=qPdz?Z12P;D-?(XTwow~Qj*mo&vIjoNFKU@*KRX*i0-oO6bgnxe(~`QA=2UN%UnU)5!owzgD`StxI_!IpctXi5l_sb+>!z@h1OZQ28po zBk~)kmzv17dB}kMjO#;VEJ}5h-W{6Rmo$wsII;VX=zDniC+#ecv*YBPO|NS86Ejdd z{g6|McRrisKcS~D*(}5-hK~fv6KW<6GcLYW6K~3suJ>1mkMm)s9g(#iR=QIV z721DGqL#!qGEOF~hEuzjY!q3KZ4bYd33#_&5k#U54MB*HN^o$$j%4(c7uC_mgKD_5 zcX)oCkT^Mc$WtF!KJk1bM~MjUjv~pSbN=#23};m1gZ zwtG&g2=`^Dr>CbQx09rC|1+ydHp_x@^r&UUcgI4V_61Ovk`y`w7+A-ymmO$TSyEE3 zrYp%&;cyNy`x|r8Dx)*yLw}cDM>vU%PAw6$L3C2RS767l>7&QHbZxuQ$_3k0Uqu5% zO_NK`Y_?r_t}g?e%Var64@ns|uNEd?grY^$hCBugI`h|fL@Lf?c=V~<+x1&`zCSNvz(?x8+ z*}9dC)&xI-;L=&mlz-Yxg{yCm+oX0_{iaK4S1b8e*F+C=&TzI8U42)h+ESd+WjX=r zqbB0~4wJ`tfynT6yf zMNW`D8dl>5Vb?Rw)_>!8Zqx~X4k^1zFm?<*J8`dDaSRQ$p+;EcdOf*~pFMI94g94r zuwO`<^0l5%EnBJGw{8_u8=<)7-H zBl_sI?34ljr;3alkZ7Rz^pJV zL5e&zY4ly0`oP_0C3@7RX5;=>n!vO}{X8R!;aH_Qy%V7?VQ7Aky9cqY$JrP`RR)2; z58q;)c8Yf#Ft9ZSLAT@ygu@bhh*Bmmy(jD;3xkkvQc`vNH=KPpRXpFwcSNe~nd3Pd5v`RzIrdofhtW-tQJ< zo-GHx2XgUdzN>?t-RSpPx9qY8xvPH;{p|#P3~+n`mm!^*qpHd~uPuBePW6en9oiPsp1(LT zx$*v7Nv^K2syd0T9<$=AR{G}|jJ8vr=mnw~qw(PP1w9()%cYw>Dod!1i~_fOL8mzL zNy}Lsbj(n7l6>5y_RsUS>+ojy$AO?tm?k9n+Jg5FNX_>Rl=O-3#=$9b9IyRz@8we0 zr5?ZBzV#Mo>NA)9(^)BmM#dly2#DZUv5Aftr=JR}9#wzZJD~9PxDDsqq~l0`yZ`ql z-~Hve)5rA=wryj5#TF$w%skor~U~!r8NU?3Lm5Xu;Qf^L*dSH^Ua}e6Op@_mkC@x2cM2&}@^F zsRNc~^`LS2;GW!J1ES72NeP72%e}yaX$BUX3*`_Wo(b7Er8AKs5sqwd?HGZu@B!n;Kh6H8fiD zOrt`nu_cle4clBZF%y)HqFQPwg0^bfp<;)o#sqE6bBQ44Ip(pZ;=KL#={~>CpY!Yd z_|~6yt?OFrU28q>{oK#}tm}HO<(-Z7+}(6sfmSAra}U%DI>b{kemPtFnn$C-C-2Nc zb4CoPibgrR%o1WsqBj~V^Re%&-;(l7Thz8CI_D#9_&fm^b?-hB|Hf$gRZq(2v`wtHk2ka@4v3q5PaT(x7 zQ^!8pstF%*aK3uT#u_9O9amHnrk?B}`z~Wl!|O>ooSM2h#)t~ZDe(Bv((R*A)gzZF zu2@wj4E%6E^ua0CW88(F>Wt1UlC&4`r2xH$<@iYy#C+&p%0p}o(#Y}|12(|9v0w7? zUr9UG@gaO?y6upd9RBG79K~eC*$oFs8>BtTiPqHkyVzx=@#esb%m5enxk6lII-lKj z9%?i7B~pFp?$m1S5*I|lcYS6y5NLu{pZ^CpG=Th29X?7eYg(|`yqD1l4<_rmWoT{aH#&~ZD~uq|?|IWH;Pj)@bH(rP`G!o zaG!EiNpE^(mEjo!?&bV7f{dkpv{FS5s&s(Y zmjEB7LFi4J;^M`DUIqB<$4QsWXS~g3zOx2=>noLu3$JlgDUf)k~jG9ZX!mbY^ToBW*6L&V;VyY!!o$pWNh-9~z~-j&AkcSbz;fRJJwWL%FxO2gxIc%R zZ+{rm5h)HsM&mp-Lz>6B=Rj9KseQlD^gchD38d|(4^|9lh)iU zh{8@v#rqC=j6v?jbN5eLOm|&Oe%}|hk!XhD>~`v_C3cu+7&wQNBE0dE?$F+9it&9> zrYCP6S6U-?NsE*L^J0(N;ENd2G-GUJF6aXmxI_Fj+Mql2);LWh^G3zpW$e8Tu(sd( zMVyd?asVlWSM@UIyd>f41Or7+8#Wb}5BWT)I&r0^3YqP)L!H$DwtCCKv2AnqA!;4k zXsL(SpL~$cqnFZ8TG(IwU!_%G9+!@gKZi2b<;kq^oBB^$rInXEPsKxKHdh;QfuV&o9EoQ604(+Dx{S;HA})2;Y2)c^DpX>Au^Aeb3J~ zYHC6WpFf$9@{4lQPJ=*KHyJa7PbE+EeNl@I%P$4GUN5*}2*Pjvl!|KlQ-tL@sIaR7 zh#t1+G}QR8RpVZlIoSg-$O!0F?uwFnn$FJA(HrHF=)du4hwZbEn9617i*1Fup4Q?N zY0q?hp06D-LMB(GrB&*ABny#}-z0s|lz~E&V7`QzgwikH)nMxzQrUT3jXOkV{Sdd; zt>(o}P^w6#SVffko2J{4%7VIs2~!fWPdzd{aJlan%HYunaKkQW%nv=j&`uL{Ce?jC zIha0yD`d3IMb)O($|jv>9&6rfpSYgf_~KtIjzCHDUIy+6(^89{5`f^ z=4+Gt5|-Rq8VbeKs%^$EaSD&Ie>Mye92vBcY>X=WNGhTvv05TfWMWtNCoV`?EJjtA zJH^4Z+dl_2&qp4sdoYv=sWG9=rWO%QMrrE%{bw4_f+zBkP3px!C7$?yU{npqlUhfxuQ9eq`py#*aM5Ijkr#k*>KRS;_qzw7c>m$(kF)ubIb%CfD{|>Jgvv0je2ivy6hGnr}zoOXe z_|p~9{v&&OHGU-tgyVN17L=D$0AN9@5@HJlwO^kT?4S3_y>YU<=_4JMH?IEuP9GN1 zxMu=-NF48Iyva% zvurnLV*XpF-6>EVl|_LW1`=J$UEuexaoYgxzXH z1x+WkozW0Vmmb2Xt+Pj;7QhdB7MIH%zk0!)facI#jOCmO;d#@{dZ^67D$Fn5%BQUC zhD)_{rI_fuUOv_ak9a+PqI|3qZxv-v>{o{#iym$Dg~g)T@pre&cbbDp!T9zg7iP9S zBXtL^)|v=;wtDnvg?!@9+URfP;qdtRp0Tx2C9(C=>}paIL^k79vaFely`8CFK656J zuG*QXEr?_;T7~U;m~#?OUz2TI$za!0KRf3c(S25Q?a-7dcKSmJ5mLr5Hi$*7sgel2 z1r+0<)ZvO?@<>QY*(lz-WSBBLvu?5cZw+|$NsTSb7iru0SAg)lDX?UvzE>xM(-T6C z2mhKD8YsFp_5EC+qF;>4n#YwpM$?(oODPVpJndhTnK`^d4daa=9g62!r9*Z39H4nd z$ZL(ZU@%$fp4nwRx02LOn~G?7se0XaR`iM$qoDSGedf<+V@H$y#9Js%F8+&N* z%mzOo52?`uG=&S@RSX7Tr`8^J4uiq0Hd|f2X#DojFU?&oJz#6xq396IQlil2O1NJN z{aX9b8P_e>KCg3)bNc$)q>PC6g>6cLtk|PWiPzIxH$~^C@0Oh>171v5gw$jYQ;e6) z0coW|dojcSrtqj?i@<&Sic~x}IFP;lkWxA{12dC0{>!8#J_5d+S*mQO)(E9}9Y@B;j+P9xIcO`$GGm7QE!-AU zfnxxGk2reK4Ga*P7!43iE@zoCm+OPs$P(G3mSjO6mReqvQ*Dj_y`}FtT zS*stUG6%m^=%`bEl`^jkByu(IKEaxW#Bnpe+rcno8TqH;_)j86rkfv zNG<*W>zoMbpe(aaFt?XGGBKjlMCj@ljREi%-T`peR2(tYc5Jp}Dxx>hiPwVvQ?KPs zF5$1WvBcs=u?u}g%>aTpO5B`@Qe{=Cq@>oof>K{Nda?09d^831V-xJ1k#){I@gZst zo}FR}J$DNa3hi8_^R*m2t#cR@KTfPnh!0csQ|s{^beS6U6|4(;9}ZfLlV=-mZV~Hd zp551a#)uNI`i`96(y4x^W}E{<^C;!p`y zzI#{b;#0Qe+edQR(m}0!W-fMR+q*!X1e^yH`-YU%)$U0mRxDX!#VSv~%UDnL(m3~n zrMKX_agX{>fu0-!5!pLC%U{}BL}{gnzhpNJVCu)OBz>SEVisTCMeZi~Z!{5njqnhm zdDhcKhU=Tw>CLGQY9osgl~>Z7-WzsuY!JciCYG@!@*zJO$^`=?LDEg8)AOCJl^S#-J)B38&}V|q}U@fSeQ34Ikcq}+0kVy24)Lp zUv5}ly*gg!n8np=@b?Zu>s)b~`0UzR7(Z|<=)FVywqw3!gEu4gV=)CCb4jsi&ZOsP zHmJ6p`5Rbz#LFvm0nU>TpWiOAC1=j`ADCwzrQ+O6i|9atZ%R^4T`?lBg*B9(Syg3b z|2e_4e=VYm$4EtVvLDrai($gbb$@4K8DFq}lk3_tY+z97upvO#vY{XYJ60+x~vJ(jxpS< zlF7{1iQKkIeAx?Fae8Z4zSZHz=8e#kHowB9QE_=U{6~*|Khh&l>CMYkbMDa!P z)t~-zc7m`;-nM_=?-ZT5$O<6R50k04v}t< zlyKj}xxRD0eeJW)IoJ8~tZS`n&ZY4Cjq#4>eV)7C;eB2H+WtM%dq_w~_De~ME0U0G z$s-}z+P`}z{$%~58$bTRXMI)0TFG4B+D^+-k3>$(`oVp3>-$F9r)>2st&GggxY;kV zpJzK|Xl?z#il2kS^#Aw)c5_Pu4xvP){rC{l2a>8*BqRs5i2rSQA(Cc9vW0|1N?i1& zeavK!or+Q$&HFj?54&j&AKJdl?T*FS@1_&C$6q+jsLAA~6ilnKZ-m&~L z|G=lROsBJEHx6B2+B3MhSrkM~q5Fibe#Bv3(yXp*xt4KwD8|W4EQoA?RH9cS75_-(L)|vMHzVTHwl*yk;>r*SPqGcQQ*(_Z2$kmU(?BL+qv(3YwHD> zHThWn!=7S+Wm|?gmuLE}C0u`F-1?GMq);s3-grxT=SarwOtFOP5B_X!STEby*yz1~ zw55Z(zRUUccDlDuJi-pLQa;@$bl`+wL{~!jvV=daw^+id^XJdka#1kJUdAtuHKow{ zvi*t^bokJcu2lTshnU%8?S{pPwi_&z5s{H(WMqL|KXw;iX2^3Mtrz*z;*e+9_@RI4 z>EW~Gtqx)5?o`!AU&_s!`Q%OE{p^`*#;>E>%bb>XzOS$6sO2(gdtLeQqx;KS8TzY& zE^AAS!oqQiDbjkY$HpAy2T7Y#<+vjndWUm^)W5${bq@}vAc?+c`mI&PqgyMcYs>D) zwlsy4u_Me1ai9A7G|ks01_lP+ym|9w)C}(Y^wPD+1JAz&$9KJ3WeKAEk^h}J9Q&^QBjgFR9#md~zE$!tl0#lv& zA3HjzLZv<5z7^osuQ|oYcy;7hR^L&nGJ}O?1(CV6nRh>@r~Rc<67le2_^c!hG_Nc- zQ102$+uM7;tHAHft(VUg(_h>z=6Y*4^WEo9e}#L?YjqlKZtm`$p4F+sJ}zg?=`Vrw z)>ECKL5wnqis>vj61Qu*EQV_MS>XAqsH&1tQi^}}Kc1bF^P!^RpT?wX6Y4%sp6uSa z@7SZv%yXW54kx<)*`zZ2KHl^8(j~L*{_bKc$E?-W)r9LTqaC@-Qc_Z~ae|R*`Nmo% zCO#=CjDFM?2HyX(Z7l9%gAk8Y(8~1N85WIF-Xlkj@R)q}%}~x7pITdAwUT&t!te3p zUAJ%FZf|dINR^{u*C>5)&T6(_6t%eRJw747wljVC;QpQ~K7M{f6It(4#l6X2+&uFw zoTFYrWW$3&ihqdfSFvPuw$A4w*FVBSjtkGPJv%`w>>Tm=*~y8}W<#F!`DzY(d;5F( z`d;qt+cNJI4)?kKX=N?cucaRUp6TQ1xx;hs(Nv3{Rg*n$m6?Z?XS7lsH#T+0XNDRQ zuJ|6~bW6PIqgZNhL2^RS{{0g&dKS%c!QtWI_KuFmd=q8&Wl{Rmr&q=^vL4vjTuo8D zfuH=nIB`uyqRP60}O*``vaJdU( z&AYB$yLNd~L0?bL^Vze5SdhuScky3?nJEq*uEZm65_*jyYiw+E{ymn)Lb>PR`rI{s zyXl&qw|31NG8?0fN%uQ)Jjv)K?wOj_y6xDzG8n92zcNc_YimmqBjOtOJ@byzD;3UE zxo8P#={?P93ZE+~=&sB-{jBo)R9QLKVGyrnVDNdYIZd_b0o}8cBKr6Xemx~cMZ?yY zhvVYn)=`L)U4_r$T{o%h?CgZsCb=)m?>o+K-H)%{cTzY8`!~mC;`Z<5nfL^I$K~nT zJfr5>U%!&{Yoqu_df#YmLq#O&ehu>Q^qhP5XX9C%kQ0~n==H>;B-L_fzD%|J0W8AJ zEDfP6BQh5p=5@>0rUg0+Ol7(XO!@4lY0up$U|?mHO6$fAcNCb?sK2#Mu^wyk@bH-J zGJn^YEJg8J{jFDSF8ATHw{?Fnj1kqS_0g;G#SMCr@wP1U+3p~Qxw+3Lt@__@*?I7U z?BaN9N3OxaKIdQiMMXtxqAw|=IZFs1H6NIm@WC#$8E;9zW>ry9d1E`JR=zq+6Km!5z?%UifFFS;vU0WmQ(f%MmS9p)MGP1<(e>&!EfjpYx;qvv+{Z7nM&$7eH6xwbr$ zrdJ(CRlb=;&8fZpz<~qAb+xyvkkrNSeVqIGd8{#MSEbL@4nywp_KR-W9*C^wU<+st^_`O&YE1;Z~T8?XEkZQW< za@0O3V8&&0b);$H-8Uw=D9J~8)?=F6L` zQ@@;+r==e08W=DOxo+Nli>5k7erl>c`^sC>Zy~IXoLhp@)6*%B9edGZJ2!BZG~fvP z-4{K>Lqm+JDk_p#x=zzV^S&@&KfgtPqbCW=mzB(2j|Zg6MkczHTMkK+22A(7WtIwJ5OP|Q<+^Yov@_p? z*@%bQv>1yk^Qh&WtLs#OhsXBVA_l2V^^BWmVoj`uYa)62W+vi8TTGUE?E1z+CYn-w zlCQH^3vZ*^xSPy~GRw)$4Q7&!c;53pLzyETU5$TeX{L{3OB0&tqJN;HpIKk|Io43= zbfq+T$F{-NiIv}r3b(MFu_n>Kos8PwB!tAoyi)q!FtUKrL4IljmDg#CSrSHKR2_EC zsH)7M{sd`&?Nn#VFGti=3ZB*Il=5|Nrq5etQxrKL^j|KULXYW;PfAK6-Mcpl3x#cp z9_45K42xs8=P3Itm$=_;zlr_dQ|Rz(xajR$lX&G!wZk+tG*jiQtgOUt^*=5!Fgf|^ zoN}rx6$&(XdQNnCqq3?B#Uz3131sm8HBvtjdQ#ZAsP319AN5#ixa;QXE*%{mQ@{O# zPPa9k=dOAUY*{TILD}&+ue`C1Mi)v=O~oX+`>R@orr)>y>nhSbE62J&KBoyAK}x{O#M*`Jrlq-=*oO)RVrxzQ_11 zlk1kU-fdD#1-0j!gx4)CU@PXBw6TBq_;IWwH_i4=eVkCS{am6v#l&!JG?0XBB-hoM zW9e;%=nsZG)JzI-ugaLR!oNOExbk?s=cn_c)yvx%qz4bC;Rh+t+>{(CG4CynL=iUP zneqHI>n-K0tE~_=uT6Gv5B&Ves+8)h!FQ!=p94BC0M~QL zz|);;+Hz4mTNe5>$6Z45u$CIvvb8JU@e21{Bq8VS+%|aY?(SZ=wb9KphyVHK zpY1z$4ggwsdV1C!U5^#8dthsuimNs{F;N#Qz!EAAXc02)z@3C%>)3@`j1+XpSvsLJ zZu9KPlZN7HyXkJCPnrvsE2byg&HP0pMMb=q&Acvfb2o2REC?SW%_MPJmkM z$;0O;2N#-x?PU8u@7{@stj}&c?;fvuAdBIn8qD+sr~~*0=GI(`U{+JuYDTV5V2- zTiCe_7j#B%+{XI)dd^gCC|Q;rleFIGpMj&A&J{J0++*J}X=pCqzc8@YsN{|uy}f=km%f|5vzyUimspGk zu+Y}m*MD$oK6)o}T8Z;2SD{&tHlF*!M4Q6fp1wYjYR=Fzx1K(FM1s$@Ha3bpZrA$O z&fIpUw-)0LiAvNYI$8YHQ`*3i0sV%=(^d z)XaoAQiZK&Q*cdO{GPdamP=eDQy~C!wt1g0Cb5mNQMz1b#{~^DG${rKhBvxj$zxSS zH#cNscms7l`!~MPx&lN=49@y^5ry2aVU&(U(hoFU^GOe-q6b=K8m|Eb1zmpge9SiQ z%=5-v`}M0{#H5gsfnoG`TTf5yS>@NsPNgWT>q!#(on2g5feH_v6xRLm!IR2A?bM+Q zdCRinnjf+@TcbikKA|T>-Ju&h&&8F99!FqZfOo^fT|0M<_t;69xHh=BVy;(nywl}N zEimm0!cfNU%Td?*rwT$Z*mmnT~$*v>6abPZ}XIbSzeca7|ldS zTl>QY&%HMOms~fU%W@a+d zI8fg~xq7VU11l??mDwNIA6G{>9TyB=y?T{b>mTntPa4F)Y1+wC_A|Ns5BhN8%`=h0 zE+rc0##&7Vr>9?AiBR@0_qi(Mdg(t&m?#HLD${YE|H^!~)IJaxHI>TlWx2~*4k~51 zKK@y3Z0r*MV^2>^fc>Ucx}uE6hBJ`>2gI5Ka%IJaje$$mH0nn#5GVwUsp+}sHUgzh z9o0bzHO1Pdi+S$Bkl@BOy1BW%$a2v5g{9U)<&>rvLn~1uUyEq zt6*q-_19!)zDyQVGkz^qA-)bsK3(&ja5#r%Ra={Kn*Of&aQg%?Pn8mD*6-iH111lQ zjTy~u284$nt&O^%^TC6(`<-h%`gJx|puoJZE?o0rdh-^B41!nwvu)P`e_XO+`prD! z)~9$@Irl2I;#o-amAk0Exwi#{pK3Gl9dp5-mQO5Kzjk(M36OzHHsbt0RNVRv0ENKL zzS1cJ*v-5G0w$lW_ET|r{P_6z*H`BFhQzCTK|{WvODw#eiq13dixc^?PI2eX9aJsG zIdglVd3^7APxJCsFOWKd1OS$Z1H#&461r|I9+e4aPXTD?%ppi2;Hlok_e|%d4ueiD z9-kxUv@wZkc^^Ci*wdev9--&!&QP@9)ihq9S!}82KJ@Ik024-!0@tNW;W4qXDdz7s zZg)*BV*xuYjcmH&xefe#IUO=-tkimza9vhqE}AprY*Im#hYp=;eR1Oofr79}Q~qqs zxHh$Ex}J-Sj7+gOylDksnT|~q6dD?;Yi`c5|2Y56uKnw+>?0d%%i(P2&MhuoqI9yi zFKQ_?*Zf*lC6SY#ANqS~>TIlttMJF3C8eqEVx_Ig+LceKCXWc4d}m9)nXVWlof2f+ z@`7$-W4X`q-7YEVcU|QSQi{^jPkB)L=_=XULB++zEqO*tW8Xs0I<^VW(TV>4J&~0^ zgo-;A%WENK+?4FC5k523RVYK$>45}Eml-c@Uw{9w^55fUzjkz}a&dA7qAQ=RjpV+T zw&pbM^mTM(;1+H@ce~`4EnAGjRP&8Pw@Y>vnujw;ouKA4sG}unoxrVw{r#u%jhZF+ zot9qJJv@8+RRD3Z={L`$Klt%MF_=k?0YhSH0%)lzf>VdV$;pWT$f&wdAl?Z5!VPYN zy3xv|fy%u`{qO$?Dl03)o?y&3Zj~;v_~})#eEh@-b_XXX8FqGd;_GgL`=x^?E2^kO z^jZL!oZZp{9Gc&yDAJs@`G@@pWl+fDO`fA3mqy#O>6NoIhL)zfijO}%HK+Slq&Io?EEnVGu6X_F6`_*|0camv0!#W4KYX$3bVs_se|=2J5OKrk<76 zPoM&VLVWrpUKcNtb*Vu5P_G?!=}&Cy^%>VcKT+x+?bqJUzh4u#-a|H@3`&>_;^5}) zek1*+^K8Ygny3ph4BVpU`@wtn(eehMljb-sjxTdX{_`S%)a}&n9UeuGnIM@_?mqqR z|96u#6#K`(a83$3*@?ggkGsJo;}(w3z?6n!n zN!Js^2(k~Lw(lI>w)s!Z#CE~=K!x}*Ix2}t#`|!+NWOT>ww?F+cG5vTn{Aj1$E)g0R_X0OY`juuxfm{9 zytpe-N>f(WSJ%jh^_cOGZ+X&=*6_Djxu%McqmO&e|B0Qu}#nK3v^#@ZiCz#H9ZcXT14r z)C-kaDfgtx$G&tCwi&+(v8(O1dJ^^wCHvh7ul+PzAv7{hJ+i@v#l*xM<1sw+$`W+6;|Ov}L8O#d*Xq?!3L%LF0dtcCM|Zpk1&(G?g0(Vmp8!+OcfV6^e?B8v!+d3? z==j+t#|HB-2%t8cXZ6b>Ikp&Z!-=4=}X1Ua<}L_mS5&qw{d>dewvHd z-#y&eXLDlDfdf0gwAB0-JMeYtOya3zX_Hox%W5Uo=^Cqm>Sd0w_iOMQjhc_>y=rpsRC?bDWWFW=F&Mgmb%Qz zPpQ9qsJ^DAs2GItniYF)6U*s1M@3FeeP&A&mSa)lPN{wNc1dhj`=6YIg3$U(RcUM9 z!AqA4t(Uv9bsj_V*!(>~Qw=?Xk%Q<0+IQzNu)^Y3Vy?in}e0vWN1Ryh*$_H`MF*mOV zmr1bmZRu?Imrw6hPOYms)0jmADWJDNIZIVcY^#=*R!fHR!AIzQTP#hDFwg8A9H?F$ zPpxXnymP6hrY3K%;Z}gY$8X-8hvc^Hi(FL@Ls_=%&OdSzrZ0ZVkDq>#rJ%CGkA{tH zQiEww2YsJF<5KeSsdygd_vaVDVLpBGFzYEPn_D62?d`q$*47W~PwPG#b|-IsiL=zYw?*i;oq9E>fizi2-<`Ti;apXKrRF~zZC zlK1YNg7kEXmDL*<(YU&&*y=H6?7O+@88mB*C8cD^KKeOTR5^ zY#jLPm zjCL1u1AfTQWbQ7O#2#E#G(PQ+e=+o5diuMrerjSu2DLNVTPC1hV%_NA{Hyj7$t(4@ zM;>ACd0=x8ywNVErCnrokb*&q!2d>JfCCl1y>TBOADk$Si(EDtjoMNZFQPe83?T(u zW3oN_<2^SA8&_y?j!TnYG4WK;&QF{;0Zr)EnxlTnl-*d9CxK66P;k+33pCS4Sl*-1 zA^RsRITTwCk*xL(XAm`mEf1;Ht9MoG%9V~n^OFFZAMl@hvRL(0*bh8r-N!UF`()b$ zJ!8Nu#maBKd*}j*Q5Gg36`v&oh9}@QchB&LLSpH*Zre7uv~+Q$#K&hZ#H3GcZQ*$O z4NyQfSAHIJc6R0k|A%^g`r^efls-{k{MMtF!NW$o3OV*3Ve3ar?i_wcf6c$)l`8jC zvDZGT58%S}SnL<-Z!hAih5=5g{CldZyx^7n`uR*G@pcA=jTR)AohJGCByIc~Atw>@ zC|mm~fsOH#e2xn&@T!`^rcmX?7oi110y@b5`Kw`}%Olt$Z|-++L9Y0WvICydn(i*< z<>#MAOPUDDRLMRKsjgAp=XS>Jb82~p6&QrxPoE~D?4f9cz$MZ)Gy6+K?aJY21_O8K zTm1ysU0M103}EQ52GGlL8G^1&P+`EXLA5{9qV{s&Y1l#c->d^ICIj|KVdw?r=H@QI zn3Hx|nhYcv`=803RGQB!+B4mjCMXt7Y}|l9qyb>0EK)(;w;qBTD}s45QczGpb(I>2 zcwNUC6datwXEiJd_!0o`ff2Qz4oKGosU}|!E@v{>fee()p#1!NqIpA9H88U6I=Fv- ztIrgAgd%8tGDwpYent^MD+MykG3P$0_yJHEnE7~lCC`LPTUuEK3xjg95*@E7^sI7N zh;+)r%A8K@6xCEg{5SxLB9v4HNYG!ueUmosD=({{;v-3y3TEQ(BCZ1d62bCLXp}iBqGP5IyD%%QD(*Xd(u~v>K5h1EqKA6bP)sa}$-A-R!IoxE zQ0)KUcB(Yg_0LB5-lOa&ym#FPuG-goQ%9ZJtqN7|a9x~GHS`c!m~a5Xtq0tWcyymK zHiX|DOh?}Jm=@R;RKb(seFZ(RA;=l`#N5575K_V*t7*F zln!~s(2++4(1B=h!pjuDb}dac6<-k%6-9lQjfp=|-4fkF8X6QMUo&?ZA^U;S|1AftZZ+Q}s2&#!Z zgoozX{B=3Bt%7qRQG>ZNnJ` zqDc^1atyD98(`prrAbv>((7|5dDWN7S@O?L2)!vN7)E`u-6`-zsayW|umd_o?(*qU z1xu@&g#oVcJft8GDI$}wuY7uBgn3I7h8mZ1&82f{kz~3S1zzZPn47^@#PQz0^}pv%a=*O z=bD{*>gx{z;s|f9=){S*)}gb^&Cb66_H7TIF{pb8E!w+s48H33v267H8sA3Fy^>u9Ltqn zt0c0qK=JO+rU1qz3;=MfBz0pZdQ3oRXJ{5=vgGc&|Gehdy0=ziZtpKm9nR4V*BEkQ(Acj7Q2)?}no+>ze>R_8W znHMbx%GOP%lS!x_Us^u$N9dlv0Bz^-KSfL;_YwbR&(g5L2z;|J-4l(re9y$B8Y&I3 zz6;;hR#yp$ig05Ik9)fBodU4ojf_?*$1LnZkfwdi%*^;oQSdnd+sOvj;GiHeI0}&$ zO{u{n2k=GuEiZ0}OGu2ft#Ve?Y+o2{bO)zvEHJ$j`!z9M&_N7%Q5BQ{j-mnXc44Y3{L144WJixa zj*h0;PtDVyx@E0(Lfh0-?(u=+#DoWF;wf^g$l#&gkEYL6G;WJeCpf`tMnq^-yjI$4`ShkwFS^05V!y!b!&;F+hAzywcS54FoU1 z6%SIT^6BAVf*Hn6K_m(#F~Wumg1#sw<`xnZl&Ca}#0?=qLScTL>(>@VtHk_W&IWCS zG(f`lSb|k4>UHb_UsYx0Sf%s8CsNV?0-;P5T)Mz_(Wpt>ps5Q_9o!I6kf{RH=$QLK z;Q;XToBE0+i;k8Ep_v>xP`c za5+lA?sYFGZkjLXHp0l zp`dssv) zSsmlerGk<{BqV_?_$iJlM4Yeaw*V-5sr1@@ZlDPt$$i-8xk5{W$3AX&Dd-63%3^6$ z_2^v)o(TUQr6;+0Ce*g)1#AvjRmcG)ISu-t-FF=3wKgpRXnd zeM9eCNCKq1e{Duf%S15DPE+7|Y>J?Wh+_wi^Cv5ngXecv@@_##-X4&kfqKill715| zN4#O-;$%lKy3-uQ)v1F2nUoH967Jr0mIy9A=_tJ%ZTKsWT^eQ6q@<*%mm3I)kWAUM z8S=mn+7I)>{X%L>1m=Plly3QRrl=A8R3oBZmtXIf3JRGH@LO52zq~0}&YoXnE-7h(FZl4!hTTQ;-WoKq2#6vTQM!SrufioXz)Y2m7e0=M0S}Ig z*5_UXs7-3}#r&1k)h)AV91}p!sZL0|X3{_(NeW1i@op8uaG_m@FH-=kB^UY^{S67P4`qII1;xn2a z-@|oYSjp?)0t>M7n=`H+WmViBDqRWwy{IA6GdwvN^W!HXZ#T-F9WZ}WmOJ52N)ymj zqqL}Q39?-TP#47aKUF#a8S$8|Wx;*F*2I0UP;g~pGRa2qc%zN|7#Sf-#KtiY;+!|| zRW?>IcH{Kv({Bn3>syMU`*=zuHGY>?>?w6n%9_M@9PNWu4#UIt4mzJkeRd5`F<|sl zd{{!Gp>_Fn^X{Sq7a;*)Fx2P=0+WSPq9ngzXb~YWMwu|wT`YiU!tD&eI8J*(WVn_l zJ3b=*(fleU<@*VEb6IWteS-iiP!!L@ydfeLJrCEGOk*vPTY_RgYON+EgB^@~!TYwh zqY4TNfb?K==3Y9|DL2mm^fWAuJGUZV0XyPjXD9!a&(iAY&QOMSY91sdZ8S2L5ACF4 z;p5}$v4Xj*Tg)gL0LUI-l%Agr5^sgJUB+~bo}Rvp`YX5`>7G5`7K#C&w!Oz~SQo%? z*35d9@C%~+^{lGE&Yx`b>d6@DG7lb{hxpoNCL=GekHH2T0dcTk-%>wou=ys4VI_7m z@|aN8Cy2Dyqk`M(=s$;!9MPZcl^tLEgP>dhgEt0tiYhw$PVDmoCxu`A`b}8RKZ=xs zXC~S<7WKLH5#6D}!wk&M9_fY6OIp`9xr`-}Pq zwyegDKycXCt4YZvkCrWaR=tD=lcKHe;jE*W2`pBWqye~X3#tq_<|i_1(b0EO>u;4g z+7My^QJ1>94EPo1Q>Pxie}B0w2O8)I7}2Ni-@{N}7MO+L;Axj=#E~}OT{gTwiL|<1|SN{YAmX=ql z6q=fvRlZbLpx1&Bi$LuDL8!p6OptiP*L_BKazlcM|?mAF6@i3NC)|nvfK&FTQ@gjqvgD!>9GKBH(sAo_cRf&HwYDy-B zY@CE`N3eCQxFy=bp2KI7&vikXIKrj^mc47`$K#XM{#L&ijEF2m2&+=l)G;my6c8pQ z-r7zb6LRFi38v2BOC$}hcf!Few2%sYajEuZV3;7OFa^Ru2^m3@($R^V zi1|BNaFUw(<RJ5(zR#Fuo)y#D}Pr2*@H3Eo#PNmSzj3fl4$shm(||f ztDvd3f{sNfB*ZP~YHOc{m?0m3C`kW31)r1U!(QN0Q zNc!)P4CoYK&h5PVl#=e$sZ)hl$mU5c4$2+!5FEin9zvjGC-a9R9(hj)O~RoHAJ6Nw z#73xSP}RH3oRkgf#6|5X2+e`6p0H8?%f&Nq6NYSHjfX7Rh5wvI_^*Hd=S;$<_r}|> zS+F`4ot?ik^_h<1h(d21gA|mApOcg8!+b(k7W-ld1ZvoL`oA1{#GKDU^BeaY8mWzD zCT^9Bn>+aFQ4V&O)uC{HnFJ6H83bZN?y9RZLTCPp)KC<{Dz;@QzLLlD&Yl>cBmV0! zLa4Qu9@>o9w!5Q(Zch?fcq2}L3zKty;^?K{)xV3FxSzkH>V?FQg!HSzr%5hDlp z1JNWQz10|FS_a-}bBy4{ ztZ!M_K1Eg<5B=0X#pdSFPXnU^I|WYPv?`8j7_N)0hNVmeX@>-3Q4f@g_;!?4KQul*E)8@6i8(|*5(u^7wYq?5B!nPKOsRdJLpy5>b##Ji?N^a1({7QGs< z0xZzgIxOr31}s6+5%5ZcL`|f8P_4!$54;$dn8w+*9y@$^$Cr0cT82(?(c8qonvCxH z_bbCSb>$yqbI>khC_eCI(rEo{@0}dQ$nEH@^sV*2(!nL^9lq^MZzx~Y?G=5~|ULeSO zl>Kf$;#i+LIwGNg(Fjf#S^UHxXcSg3%`ye*35%xP*w`?_fGIboezZ>W_KCpAP+R-e zZoabu1M;R9WE5UA@?Zv|OYH_`=r}=6?uIQ|;ev#$IO082T)MkSpn`v@s^Y?YLP(eB zt3)G4#evgaxibu@vnEbRpw=T*G5vb_O~)=dS=ruk_g@8TBdP1u|K}G@m=4s9J}kcY zrn99b1aX})w*5d;yLa#I2Mau3q;U6cOz$y|Hsu<*3}1<)uXVFKa7sv!NjaL<#o3ua zWT=}|m`#xF<1ye&vp&NT{4p@_0j9;4+4*^GlskC(m99Zvqb7#Z($YNd+UjZ_P(8xw zARIBw(MT{X_nrH{x2;DkNTt$ zi<(}WSXcI46Zbjv3`A>#JkxLF9J(NLB(*g70+WP;>v-Q?1*ojM#p<5QU(X%AeCq78 zUS`&-?uuLFs*eu+_{F<5zH;`Ip#QEP7WaitZhutlO?INv)Fvp#-KICA(%S>!lG!-P zM#)zqzn;V|_c91xBz@$iHyPPpe)@3CAf0sJoH4uL)Bg33M`N5={?Nn*)QmaR^SR6v zFR4`SjaJIl)iMra6ZgY)4c-r)$mjigbgOsUHS@=FJ#{ACyZv{*udN6oH9b48<(bH@ zB;64e-H;r!P3{{X$@50Z?)^SLy4`ozi8xji?;`7VJW~7f=$zm~vU<&<@g&c=ZY$;& zox7kRW$AyB@9jX5BypoV+G87z=}(o)zxOkE6!WJ1zDAhvqO{%%2>@airIskJtC?fB z)3%?wq^jXe`L*~l2k)QR9U~{N9wJK{uGu&mQ~XElZI%q3)yt!Wl{^xnkpYHhj&jVK z^$yDXP1xwV2fWxGcB15pZfVrBGrUcCrQ5<@cCS74dm^K~S>E-EZ}pL`pGUT$Xx~9; z&hexi%AE5q89H~OBOBhl653zgxow`e-$^UGlj)n)LHZ&p+N;;a1x3l`9+7$036T*a zg^t5VLHft?M>|!=(F1eilq3Z)dq1?ONF{MC<-ME~|0V5DneF_RA?U_9<$l*V`}Z7M z3cY>9nHM)+h~20v%y{zFy;XoOO)LS+y64iavn4HO4qTSi<_bS?ZFZ*Y!BSjVJ2zgp2nmd1B zWlE>+_$D0x3^KEew7UOY( z_70u?CiX?`O)qokGtUUzNPTguWWqURMB)Ku--b(U(mz@x?W$1&%{jC^CgJaSPx_v$ zX8-ql8h#$NaDF$j(^b=P&!d!dGWw`ctp^{QA|j6&RU^J~hPUH-#aFKzwbk>Z4zy0M zcjhh|?>0CgIAVF7A>94+s?p53?#XjTw<^7FhsM4b*Y;72oEtoHB=}3clX>=L%@rQ< z2x?ZU_J+{<=+KHPwm)+B)(id~OO(8ZRhBuhGiUOPP*BhX7RrYF+ZGaqYzmG0tmQav zd~&1n>ps@>#jjyhd`Ugr#O(97kHs`cs)O9^R4iu?$Y0dYb5^y=xKkn-Rd$G?h4q!7 zZG7dft=>|yJD+DhrqH>goSdxwz3oBG4DoGr^-|K`?`bF7Pox$Vh9(BKTQ8A`OqE?V z%qxBAB2;)<_P( znsv(BnY$)^-e6kfbA{T~q?~z@KC}ham@8%5m5#rosIqg_9O+bYu#i#~*jtsKDOoM; z-w|e*Su49z6vcf~*@{Ut_Cxmj^GkR4>-Q}h2tJe3{#E?>zVPxfD++q*(0uyYKr%Z8 zjjit+B`Pmvo@prdl1YtX-OEL^k1vOV7|2%Gyo8k9JFG5vREq}kXFV2Y%o&^1xftu> zE4Jm9&(TCFRi~&ByXR_iVl%IDKW@BH(ciF&Eo&RBe4JV9OSO1I^|wp^)AYHw6Zf?A zwLe`ue0=pqBK=oZ>P?qfF{i$BET`kj+TynCsgVuYXEIqg%Vee!@ic2z**k-7x0rvU zAp`r4tKXz1rQZ}d@jVjTVk3PxK~L|R@T=<~%w(jr<;TDMxRZe9Haw8D8wG!_V)OF- z8eb!o?{QUn#|`h+Z5g>gy7MGemcG_|)7$Yy&-kx?kW7DGXds1l#s0Y}AcgCqqGElm zzoVJ0teK|wSs1h1(*VGB_EhGOc*x*2Rd!vAwJ|PraI#<4jCwDsGT=w#oX1 z@UZBl9e2L}=NtcBvjewz*i7nI3J#O{hXi*e+)1D;NY-o z$rJf!9~T(X3}*#40vt9A?a7!Aikm6c{o_4#M)5o6GR0#wl%%3_hiT8PFpnLnyl-Xu z@YA|DaRoW*&Wd{;n^(sk-}+jlxlUz^rSfv>;iuTR6t&+3?#2EyJtSYCZ=Ip;W|l7# zkQi9B!0UFUaImw>^BP(A!y_N33^>_D91n(OlPg>jpbpPZGjiC~eZ1+!h|TOUcX^jX z?0W;wM={5k^D-ox=db3Di0$T+{`7(pRyHQ}|@WK?OxhWCy=Hutn#v1L)9rx=Vk_nhyko8aw=YFrtb zoLj7J*U{QnVR3%tSuP&pfy-KZDV)_pk_>u+W?C-~x=H-~Vm2;PX9bbd{Sqw9(;mUE z0`szpDY@GG(_gB;oE4CvEI7iHm!alsd&|d2Ad0qx@sdJZ$#M*HAn7ZCUr%fdPH5qp zD!x9QQ1ERyO;Qmip0N9%sv(V{I`^c6_RzUxB1pT+P- zHVZ}Ptq-leT-S6cdyf;_M>1T3-eO*Zm!?ioyDjt{dGG}e%^TMWRUqbmbTMr zO3TV?_2nD9`m;=S&Ft~%veI+Bb>F!#-ny4WSy`EogP_Re=@GF}!X!crJHHF5 zvJL+}?^A=WZSfM>Kl-lS7dV-G{Mn9v)so%BcglroM?~wF*(IJTH7O2jfXqy=SDZd; zHd8ti%46Oe1GadqI}Lyr-jWxdh7v4aB0>m;dj&8(Uk^bx4uI;b&`0>JM-M?EB977` z^qWd01HKJuxpU;kjrnd<<9zCTwb<`wM$$dZXV-=c{z7z<#DUhyBHEhNT+zD@TFWrpy?&mhTB695R!HR0vZ6JXCzGBr;O)Y47LHk0Co)4%bj2PFD$iV+;o* zD|8@BghCn|GhIeb?Zd!^`cqMs2p;n760E$dvK1*0b{I=ddmAPPyiip6ko!WsQjA=? z{0?2#6CWQUstSt^Nwr}8;{Qhyg`*0_ZLe#wm?Y5ZcOs_ipd*Hu7A*>nSf?9AfkUGz zpBqTIntA)@%!~p~63nY}y!^XdE()gyIxIIyqw7U}%=y?)E#+K2H>Q@sds6wVmpaoh z8)ciIL0P>;T0v9_a~pY7S(y-=Hk_Ruy$@lw0x^<)VT9omAf-%l z#F_r|n~FF&jI$5Pxtj3fIw0>yWy5KPAk%9Lf4%T`f9cd_G3&c3_JQxA5ixFm@(*2H zUsFkQf1LmASk`!*b;dcnS^MZY?SZI~SIeB!zSH3*q_zK&F0w<1F2iBjQfzzp(4j|# zg@qL^P?fKrvAITljOy#9bfr7;G&q|AKgi}A;oA_W{eKA@@+cj-dY>E+s+gAYYszP` z7&N^n%KY{%R%gWuI}_a>Uq3%&9Grxc)X3VVVb3A-5)LXuK|_-Y)Svo12GTIO&j$z%>#r{B6;^OTO#@PEhSXpbM?LIkwr{qBRp;UG8ooFszr5X=y+ z@^qEhoy|;Ixe=J zEW7#6@Qc=lK4*EI%=G3nS@*$9F{RQ+vWXddg1z9TO?FC-PiBO!vc36`qZoz9@~x*5 z1FF`i|GDvIer4NhVZUL(S-UGb`@=Xi+G&B|1fO;(wx%4qb@x7tZeZ?N*1cjHOu%xb z+b}n_Ut>H(8+lpsrdw}4T_CBTkGykn_fyWhty5nH6~DxsVZV6uoW^c^$jhR3MFtA> z@f|;081T!wZW8o!g6vWpd^?Cw2$g)GD_9XoD$dAYFlsNoqdh{h#rCXpKDlT5e9me^ zue9qi?^CDP7Sk^cG=PiE`RI47(i=WOTcC*^S?`_47>b%H`)8rZNd60y2jy6@x=ErI{`G zIwF1;nt0`Zbh&nCeDSw*Yml!Jb!xl>4LWh4kb8n7SnmvacMDc}3M+vQ@5HptLnH%e+H=)&AmT93tb|0PT9NJcCNZHp=8vJWA~0w;#=lt+>fpgp8TTPxI^<$uK<2y z6?*4gC+f-^8tKPY)lL^&=8gyNuvYGubKNzqU-R_DIAWJ9rghcp6kU4L`Oa!G-_e@1uwxqCo= zIrN^}>4E&Lbl*^(vzj3nPssCFa(oEfaI&y^Q&VZUL-dOrKHNbb`=VxJ1n4=WN7*giK8t_uzkGEg`T#Rw}6mc#*fI%l!bNBnN-)XPW zgxXd}Gt+R##`~ycoPX$JQvp^XTWH#3*%2}EZr6OaJ605Gw=I+X9#ic9)}F+5 zL`wFM$EE5;4@BV|Vc!yG`S7L)LNvOasb=wOSnlbOb1#*9>+7FEhRxBg+=IYGJ&t$~ zsUbv45fvE^5waTIhjackNIcc17Y3V8y(9Zjlo>9S8Bv*Wp?j~-kcP_rs5KVKd*+Md z#Y$@oG-NiUS@d9csM?kK?1kz(RxOLK+pjU9CtZG^yOr+7{D1lygDO24 zb*!YJ^=ZthX2EjE1O5g2?PzSj8G_oADW^;hd_U89(}Dom<0VHNGN|KE?Vc&TD`yDH z8sVidB#ev-;c!Gz{=oq1QafAx|rnO)sC|03=Z^Vdvy$Uwt7Lj<9vV|sM- z3%t2~)6M@|-5OC2UcB;yI7xJ!7DkaiOkl?@WDN1Hma9y?f$XlXf7oWCDH2=H|H&b% zr#MVm7-Fc&;NiYDRLRaw@9xWA;CoS<+Jx;x> zdOD+H)qj5Tf`ZILKbm=SLfePl{kgI-Me~VZ!(fE!u7f9ZvC``}s)+L`I-{tXvRHOd>_^SiqZg{ioE8TfNb$I2onF}E!7)i%gW9gS$=ktk&W}| zfM-qn`5KB{Cb!C;^c=!URsZ!iZrgr}?KBRHLkYmdgJ@4iPM(-6#K5o}295g~ksrXB zV7y=G5DAj(PyGD!+TUmqhgz{n^T;gVn0tB;Gb5uXvPHS@f5<5)IJugpIMeJ_Pw5lpO6q1<3FxLp*LKIq4DGPFu;&_ zxO(~WBim?+Bp6 z3?#1wvx0_y*3p@!-q-M?RNe(>w|UAvUvlj971<`m2P?2jw4)Ezk0djs#3z$y3V z&rjj-2ch1h%@!{nnfJ?2J2@}&-jqb&`jwcEwEx&7-EOx4SM-!^I8|Il*xx3omKF!I z`}b?$Cli?^uV;ULbM{`_(sm`HXlf6Mrn8DyZ(NEc-)R^KlZ+DC<-6)coGV5ijzH=L zVx)~fGGr;hfWN%YjQ3C2aj=C|Wc*Pj`wSays3!&u(4=SBM`-JMy&A3u&*gs^DWJ>6oHXYv>)Hz~zWCmg7E7$nZ9YIf2E19UQylUE3Pnhqe3j(6q<`8}{tRhw70?JXG=0h-0++ zd#^E!xSat02Ws@9ZEBUP()(hLZ2uv|K&~ddJpO(xb?A5m zAR10?DXba0S}S}1y@ZXh6c1a(O#tiVz-U$n zd^lK;D1{kXs zJpIG<&)P}i1R=uxFder_1?6zd|46yOeDclQq>gXMo+HbzMHk6E|9!@Sbk&#CTZ}Kj z1=m9egh)Ce(1v#s)xZabaVH2|{t<6G6VP#)VN5eraU5kQfgs!eanIki7JDhnoQIHQ zHr{^o{k6Ieaw(ec9^wT?&k%JmtR{{efj{V)Jl{H5OigH~SJ~vo*8WkkP&>5!$E`?t zL*hblz>4r-agY#sp+x0W1jXQ;(cjrhxtR+aPhjGwDmgbr(p`TESOn%@t;OCVIGQ3| zR&0CE$mlC1gk0K?=QG`e4Rh?D^uQqDL|a%l&zYNJ#fY3T1c!wJ;w1}6=wG_yM!s+k zn%kpi83IZzoowMrWKdO|xMCZKk#$1IF}YBPh2;stDS|ShY#ODOZr_t48h3`_GCL!K5F_Y7j_!^JiC_hBa<_SIXh+7gKIW_Rjn93L zhsKy%3eXaUA#3w;15Q=Z(b1to$L_oSUSO@Niafc4I8xD7>UXjvbHUsAq?{c}{SFUb;66=JZZ3W^t z{{bW^h;$-4teh6M^b)}%r17c|O+*CcY3~H`XL=arJL~ndv;u!D|6-?getB==f3WxF z;as+B+ptDasZfTAo=XlI75iO1*wMk98Y&?1$q8mjb7xWEA24!P4Z8p&0XKqTs+~upD;!q{nnzEDt{l zoUoY>evv!CFM^013ZVT5pK>Iti_+Hhv-JX2dE|ID<$T9|-EU8;v%cC!|JQpN;Okr7 z*(uZE88Ij>%fP?@7K$fiZVW;?AYI0Sl|u+GEQOW-Q(e)tX9XyqE%pS_P^QYd#{%KY zJ*8mTSWU-w+O2r(d4q+0nqwo~tIzyi3N!(Soxgpx_51gS_-C4ZF?znbsVM~H6+^@G ztp8U<#H!SZGB-i&fs5!Eh=1PC_kLwJizWBnWWQ4W>LF=`~qh+trhm~#7w*BX=5mFNIB6}HLJrIHO6iy@sIqykHNii65 z`2Schw7r|b?d|UGuK*?J`HL4k2QTb;YY4Z(!a_%*E}JZQR{4(7Cn5pjSK0G1!FIx) zK}6NSSE)8^NW=~qE8`lCB}hnNZZP3frfdYU3sfOkA{}`1<_)~-;=uRl9^h->TKON# zinasktS6$yEuPqBfs1nh@_yxt2hH&(Kjcm}X;7?}sCCa*!p_kiH0WtZhcBiP-(N<50L|m0o+oZ<$W$yaXWNp z^0)_(QT9L;`3|TZ(DchzGg~<(#S@&BHDwQE+3j%AJhS&Z2n<1I@U{XP{#5S+g}@E4 zfKNjh`7AeAAKPc^uI~#cl7lZe{*s|svoq|2yz)j){FN*CE8q?_Eo;N1%(A`U4SHFA z?Sf}7(vpM37ObSZbuR1`H~MfRJ$&Uu9cr1LN6HF9 z>peOYAJ6?<)6nr=B0F{xehsQRXp12?Fmiet6;zsWnp4toR`R6cx~2C=ui*|W*W3`Q zprYg1@3!awn)I^ZPe-d%niR|aGn@Kl=k&*4;y&nv4BBPlyxhjfcn|i1xLM^*P3ryA zID!o?T_5u^K121ZfNzWY*2~l2hve{}Ao+Z=#`D+j3LnbH8eG>R1(X3w{c{$$@Z+m0 zA~!ZfF(icD9;>GP|1r}_gcS$V%)wDnjePz;I_pR^PDn#<^4!g zpzEug?vzLELI0Ci-`CW$uNm_D=XKoOOl1L5?xBXy*TkTdH3l~ks@Q$sRy(t?ykf16 zYrOFE><1vQ>(w`cU*eDA0lcRH3wYjb#Nso;bJ?^@`rsve``#m*E%mQj_;2N3T)w1! znUDjjUO1cJ2kr*Lt%&CQ_l^w#KQYo$T(`;Odo)a3@i3fQLmELzB(6Jv_*<=TYdeP@6=CFO9h2JOgdR5`$>R1i>yz(${Vsf_v^iu+R(ie z3?Qmb;W;OHZ|!QP4(H*@a;&>gmW%*GH^2q7(rO-iu_U|o$8&`O`U7b<4TXbH4sjG2 z97?K-KfDu=Ny!MFu_0Q%i_}*kNdQ9=&RpL31Zk%e-1O%F9czI0jd>FPKhCM!p+&H| zSsTl)5Mp<32~#y;aay{3T&_W+vU{?O%b%d8)ajUNaBbgXqZDC%4JO?0-@gg;iW)Nj z-PA|$Gf^xVJu8N#9u&XOQ}An-xy9kQ%mtwGA&@PhSHCZ8_sh2h+iC9rJm?sXsQi2Z zOM*HYPZ8c>HgLcw86js(eZ64wDgt9;zH$KW9>k~!GmPiYp6Q{aSYN|-#4VQ0pU`q+ zhGyED!%eg(>9-7L9!PTM+kMHmqcVT@_mwaYA5`VQ7Y%wUgD+gV)C^?=1s2RZw7-Oy z_b7nKp1}r2*BfgWgW?me8jzBdf0scu1tzW-*(K4y+suw$ChmSP5Q^#5$0-I)$Ya-C zgyq)k1VaPmlC)1tI!g@SXL1>7I;iE6JWAu==iX?K)#IC4Jo=xEJ2Knp!sSBS0!w07 zB2>BW-`jx$94nVR>i<({AzvlnqGTV6#?AG|3n3!dyEjK>pcOX23zM&;6p#9xy0ZDa z>aHHeh`?wObiqfqS@#$Jovj#`sI;TcWfF)S^fbD5tr`z<4scMx^&hK=dxe98+7r!m zWy+}S|I^uC-6UM$zw>TjVBm}+bQdUO6QL^pOLKJiFED`*RfB%$pPAY#N8c9I$A7AS ztKXm#c(`oqzds8GrsIjT=Foc~FvRv`Ge> zGu-?dXsRh7>SKo%8&!eum2%I$tQx86N$TlSFJc}%DE>^zdvj&8@mT1Cr%BhWFAWt+ z6OMV(;25Hgi29TdFmpixKm=QN z7Qp&V(j4-(FfdqK+3_>irq-TcSkmh=@A6LhIJOY-3cH2jfP4P94_N+^^gQf^-n%j@aU1ssxWPC}XZbiUL#SEhxgl4g6qZH3l-7r=GJMDZ^2)z}c)40Nn#*xCOKT~lZ+HR2QrU}3O8yGv+dxUY z84o$Ah+#E7jL1UBiyb-}Z@Xkl-^X)u>dB=8=k?JQ@eSZd5uzj5t3XF-AjILIfZ`BJ zqvx1Hns3>E=n0Y^F*se&|#?e>G{=r zF28#qblC6i8i}`Re0q9ogfmKUM~Wg+Ef-(~lZ;2`AuXeaf5m7t8dWN)gOJQsedj3? zs%L9to~VU2%|sNk_~UuKiR{&(#@%`3zOoGW3}Wmz2|B$EK$Tzj_jUQ+)3D{y9F0Fx zkaS7#)NWAu+$uFU?*oSsZ57eD!0%=N)``F-A>7(m!zxStaC$|CM(JJ@rwY4nc@ZDm-lKg~@jRJX@1 z-+5mtezCDW*jTu2?z7Yppwa|RIu=K9TJY$*x9tI3R`U05i^ZMsq@*=g_Y6Ci+cn2O zc|sP3HNsh0Sw!E9`vus!dG9yq#_6fOI?2Lm1E44j{-_3g&u}z?ZcYpCb)C;kPP}sL z9Mrp5?uIJq4I4j8SygLyt1IU9)zc0(GB0=6ULJC|@Qp5B=S0r4{u5EcdfgNCr(@E$ zXLNb}t0%|dg^JT)d2x<7{KZIEsppxTDVezR!kh#4ybE~UV#yH->%9?iHa0et$bY>U zAyEP92%-Tb_r}7va@aRS(a}-AVfZn~?clWSw$Pi&BJUdJsN08V7M)%|3iQ70&U=p`0PtBX+X%1^R$CT7!tVCkjJcI z#MGP&G*CC}APmd5Tnd(gn@YKOv%g1D?VV5mF(Ljw>B8CTPv*PIjKrTk6q7Dm@78gp zQBdt-|F4Bg73R(6D=d~HtMx?&3Tb@L-kIe{;^yYIhGrh~;Is}@f~N4U<%OQVQ8+?K z_pgdRFYl9O1_|)Q=z6BhTXXR`rj@pE+yf3dG zr+PJawK#{{H>k!$oQ5lPm|2b4@N|36kKug^e6s-+15Hj`UfcNNB6k;ls*At`ARA~J ze~q!D(*LGWzXxET#Cio7L^oC$Kpl9hW!XV)$%$?UZ_D!QuU{Ec)vNF}4nUUwrkhw? z{wFJ=oYQYi6+p}JkZ1nx9{QiSSsn^%@GbB95Y1I`mDy|C86&|H(UF`@D#V{%9y}+o)@t2%^YkCmg6c=U1+X$OoXXZI zfq)ZybDlbz!p@#Q;<)PpckkX+J+KD55(kVjdZ4#@2$LYvGy}$B!P>*fCd)n+1Dqe- z-N~fvk@KPDHfhc2-6^D_1KMz5g%~_V-cj2zu`qAUo#%#V1 zw#G$r({1Fc5Rebp)z-!^)B9ZX+!d;WWxa!`!>M{T?Cr;Ae`-zc7R{$D`}})iV)|VC z9BcBV%>gCTxx;6NHzf_#v_L2E>0Itq&o$ZHe-#N^JGN-a%WqIsRkdoDKve)yt}t=w z9zl5ugex8cx@*odfSJOHWE=4VOv)w#;nd-ZsV_U;z3a)8IcQbnZuu`UM!e7EkngQG z3rZL)7v3g^CMqnC-K5)i-AvK<+g+C81m*64HNs~Mv--mM&mOr|Nx60Z=H!y@{W+3d(e?tmZ?e-ud zK{e5o7HD}^X1X*|Jza|PO=aZ<|C6DazcI8+5Rf) zcFuez-CO|IF^BIpYhRq-wJ~C%x@5n;$aRaghL@_xUf#Pj`kp#b?dXEz*54GPY{AYl zG#y*M1QhN(Z&zS{LbXYqT61{aKI7^!2?kI#hT%w*l$1m~=f8i~gXcy)6j0VT!rXtr zaraY(1@xt%P@xc$**g{5(Ej7bCS$5d%o9MgA#4=yEo{s6U4iU9udqupbMcC#QgO-M z(LHanw8nv^W@O-i5I@Z*TR7c?#3RK8*$Yld>S|fxvG25Z-u7|K@{Hoq*BDslUCdtR z+2x&oSnsv!{<;d*`uNyLO4T$j*|`_vzh%|>mZez>;~ObZEj628m3A0U?0iAa$w&23 zSfo!ODk&A8f=w~Y zKe47-deX6a=NaG;hb>3F^~)-c*k4#Hx98~H_Y;wBuSE|o6-n2~MQ+zKiYa=|91_dN z+tcmmaemn(pMQBm=YkSn2czb>!W~y5S__YF(fyOWM!Sn+MMi623qy4?=dL#iti4f_ zab`yw^7STYq`nx0;QUnsHhsNlR?>CBI@T7w?-#x3;dxF4q+H+RqybxNds!zSo&8spU%R-3i^V+(Sc=bqdk+ zg%@wEC^tTSQ@%?^hhlqMYMGUrW@eGLlFZcM#ii}^0#ueNwo*?dly9nD%Bkd_+E z!6gKBb$q4b-BESKUVD?*lt7i;tq@IWp z(aBt^-@>yIk-u;H!}A|zG%g;S6;oT;I5+pE^_kp9h1t-e(n|W^1i`i;jVU@ zu1)bX&Q=|$ey6PZ-Rp91SNE$5@;_eY$l(rlM}^NQ=n#Wn8!p3b~K##fIoYGz*u_~1GuQSf5pQ^jic zsW9`^R2MT28*y2}iR%9SPB#IhkFFdc>T6{YgFTM8Nwv#?6nmC%$Qz@VHKARuDPerE#)b5FUNxV4Lm) z{mAB|`N74dROw^phlST&G)m#gC4TEr_HoMXo2A*?L(yl~DkY@n8zcQD`;e-erRl~9 zxlKDhn~1_oNYBtPRpM|*&FZZ?sek|0yL2J`$J-AV$NUbZrS7!1^rZ@>+?VVjD|a*N zY`{C#mDLZsS5eMw;jVc(mKdsoq!GBLROA}lXxPK*KgUH7yes?DaTLQ&<;fb?yRG;- zHn8mJx6_=Hg-^10RBLN%l>+DDDn_%{@2Gz%d2q&*wePL2x|7$PaQx~9#?;F07M+Ef zi^(5@!ooaZak0!0eu(DbuF8B7eXrtIx&BJ^wbv5@BtFD_)8sxD#o5K+zd6L6;lqS7 z%b4`&pAGl6M7Zll&`gZ&*?H|Ylh3zyZA&VLnO{u6yXtHv^>-~;P_GL(xw}E<_dxGZ zcgV@o^PvouF8yoLXKVBJq@7w<)qR`(q|GVcU#dpzY`JO*&)f>%8EP|1mn9dyxS+*F z_3(Jl+;RwA56wESj-Kw`TLuyR{PYtBH9R{e_RjpU7qRQeRSexLA$;=gqQqdXW3aiB zQB?3eQ%m9LSOt)##?HMKEqHa-(sF2g4`X^ym66qA+_&J~J=9*ZmNdT3lIPN&Wk~xi z6iFquhg~cXO$;lWDz~h$-S>!F@=W~V!Fek7s@WFWsBk?7=i6ebm8_utj5UrA+pit& zS&={GcKa}0qOzZ~*mKkPh}aDuxAZ1tvb?F~F|Ie$kssArSlM z78r6e>qqO3$d#rBkvPE#rrmUo@fFW5OLr`>O-l5Lu(12Z>^1IDXeft`E&2>272sq>Hq+rkeji+mQHo97ImwVn#MwaD^ZXG;# z%MvGJ{xIkn(mdi38jI;I*KPdpNKf~iPTF2!TFzaG`vX55;#j?o`6$QAu6=$F<@=Sa zfpemO7i;E#{pEV4n)|asPtm);b@Kfe@&0J(J+M84mzl%(_f_Ooc0Vezv+%{vIYzlD z4P_PI#CsaYZ5C_V&PyMv`DMc2^JNR&MoHo53zbz*J-RAty9O^*I&X`xR_ro5C&Xrd1q>S`g&S~9lzxaB9wNpYVuxW#D*!r4>6nwZlC+--S)6n$x zK2r0#jppqd8|Dxdut7Ke2H-RQZWxzOPtX0EP6*=olWnWK9#B&0bit$AgRmS#<&61| z7bMNbUAJ@xWvr6i0yu}BYwy;mSQXO#&g>e0B)_J576(Iy@2jAq#rCFSZY3VPA_$tR zRHZs&bHL9{U?pv6ChbSSMn&$t3VkFUX$CCu~9aj$2?FG-H@2At^vly*yjCf@~CCjC%Plz1WLZGID0RC58o&GIB8L z|BB29ko$;nH~boivrq>wCaQ2EP=Bn(0qX-s5u;6nYYilOaQPMKOwl+Izel*PH##q2 zpbb}*P)<2tFbIeTG0|YpOk<*~mZr*zc|S1BH1vThB`vbtUzxA3_b=a2^@;f@3%_PM ze}>)CM%A;0Z2G7|3Bdjv?blNSOh~lDMY00!ZWuJPAl0 zzTan{wl%7crFso#i+f<0tIoko3Ec(8dh)Z;J)+nJ3<5u0EIgi7>7G8@$!E_euk>5X z#(%zU=rbuRphX`q3Q zr{`ln=luX-1G#V6pldJhHz&25{DeQ`~(hZh*wR2RDvH zN&vXT^q&FlGDBa&Tiy@_1E@Lr#5U0UYY<*58w6NT!0+?+%a;ds zP}ikftZFk(1*_8`dTCqQse--@IcJ5&9BOKIq1Im6czZdV_n6AaLC)7%Ry{ixXg+r- zQ2MotqkRR-F3D8~2DVSmE?Du*Vq8Ed^hAVG!d#vK|AC`WMz4ai(+*+_3Svo~Wk;Ky zW4=}$#)EjLU&HzZ9v;L<%+(dN+WR{tR4+;4rv~d>6*fSxM?4p+!+WXL5HmQmC;3!$ zAhu#9A;~LQ<%MDOqQrSn#zaV>SM#H#mbEKG)0K~jOC#>>u(@--&n$5=!l!^>{uU-A zw0KPTayg0;A||I89Ua9z+UkLC?;aVc!;qTf%&@oIpxne5bobHbg+O_e@^4ayw$v|i zyzI5V$RWfTwe5>)jL1c~u<8+dMQ`MveIFfF z#l(XBbZ(fI4Av5c3>J0kUSr$<6xGyB-Spz~tLt3nr#{MzHK%QXf9e(D!E@;nvGW02 zBiN|!H_R~L6*cAGUwN-3+YIq@xkh!wU>ySX;IOb0Ah68n^Z@u%P*(1N_xb?`X?Rdr z&|QO90wLxQ&wA6gI;DvdI~%}BfDg@kI21yH1^QN;Q7i0`9;)$8?HXwt%)0IjM|@($ zh<)&RUS101JA=#pTXVioJX$$qm$$sC`ejx7^7P5d!?Ra!{}^aD-y+oIXm>noWVI;M zMl?g)v3Wuk(En$*)C#A2$;+SE`dg96gb(}^(O=pH*H=Ls1Ax5Kfdy4>iP_|%9{tC~ zQxUmeh&v*H>Is;-UNtwr52XbeoPx^&d}Y;&%1Btml#T>_S`w3(PFWVLQhvZp%9OW5w(eQu7N7lK_a%WocItGai5jO&vlKU>yESfrca#FTe+9GPT6; z48r?#F9H|+I4FD*<8b&U47BBEyudKfo>)R)2lx(czxJyeKJc))V#Krlw^0Tqug*p7 z3EOd&h&lZS4~{9#trx9esLJIm&JMZSyI?eQ@VXhb|EaVhrDN8=z6z6<2llYU8M3O% z2a$IDCYwMMf)OK;OO3pMV;t7(?1v??=>tJPP8a825-8z>m%2!@w{Qt*7re%Cx_MVJ z_6n>)p`EOwbMv7r#oF(LZGE5LBbP$%_V#vBGPQE>AF1-8l20=I-rfI*lchC{FwBiTLV z(7^4d_w(F&8A1WZYq}Rmd5RBH{PQ%L&GMVnqgh0l;J?7P0D-mX(!#46kHn|MlPnmoCj*vKYyMCv`|LEMh=e zLBslFEWA4*^wU>v1>EFe71h{}D=m;m;Vt@aM1=+ejJSd{lq+pdUYtxO2Z{^mTx1G> z1*Cyc2OMpYMlIhkgC1_buab}RQrX|xF|Mr4Jz}=b!pgTplT|MHQnRpv)0>SOB?6*u zav9Ekn|_rmZl)pRx-Pfa-= zv3-h9t8X1_e)#T*FRj(JyD63PhabfZ^PcJc;lxGHV#}=jhodk;53e~QW-$U86ff(I z7#J83)kVt1(Gac?HlOr--+=*>I3&)h#CYSZgLNIu<~hL|hwY9II=PgN^XTY;f)ZV6 zwjyIS470S=Ha5YY&>aYDVoXb|6mo#oFexG_PK zk$t!ii;-j`;r&2WAdK}!e0fHk{e6Nf1mKD`^iJ5OM;=}$axit;FCmeJ4?;4rV8LTi zh#HXOZozVtiiYOH$B)6FyA83V;df(_OPpKrq;sY&x-|E%?Qy}iHh_jV{ej0QMVvY@ zsPo0DxqZ@(6Kg@53t&4^Ps!$z*s+XF)MlWOBTksv8+-z0ve(BQN-YWA$-<&c((|4@ z`(89wnhbRwg5F|KTas8$*yTU8XZbgk&)Z+6ufG;VArkZgVsMH0La|`S*U!Hh=j={0 z-B_Ql#vigU7Lrz5wZ6JTfB&H(mUI*D5X!Mg<7*9B1-YF3C*877ceeMet*okju~z+u zy1bY6kKQu%E9d!oqWjwY;2<69o|$;@`zHD-sua;Uk4JCLx3wU`&tYmHcxIQaPDnJ% z)6C3CgTR-020WI)ufgma#NMoGRoNaC)3N}698y%E=slBbv|h@!BpQSgfCeXiL9?Fp|# z#}ByPGcW3^Qg~*#Ra%m_!L`Mzs962A-@^FM_{Fiw$d%H9Ku+#$oTJJ23bwE`9f^0` zRye5?+%!=J?8|Y!b|l@_YMXD*TE1qMK|uO?1hiO0Cg(i6X8s@-V?5fdE=Xvw@gb% z;xee}Iy=dz6noH(7k529Q>3*9-#-4Ll9u4+tqS$m z>M2+5TX^(3e`F$OM~7?gU_ef&+%^;OW4rF;yYpzyolxbGgx*W4sJ&GvFk`rc%D04t zPBZWJj|t&7hp1F}2j6>D`5AsV5=qyyM_EUPYxpYPp(Vlfk^KiSm%@QXeB(m6&VVn6 zy6qHpTwAF;ZE|>`v^@zUOR#4(EboS9LD}(Nh>}bD{!TSs@1)dNZQfoGjPoe&Ia_+g zQ}kvMR-K<(-Edvf-#*hT+c%Q6uyp}F-IZ@Hr zG0Mk&q;}=|pVf2yG=9Bj)4IIc?(`TM%VxiQ!t!xe_^$r*L}tysv{iwc^0kk^B2bI^XQ1J&=sZW!V1hefhRh z1hmEZFK?M`)c;S0A;!bMUSjT#u{NKO(n_=yY?m>BAe^F+!+ALIuOq1^)+;gh?#VNZI&B=A1uhld@yZXCW_uW(Tzu_Wc<88|7p>*5Ftcs;Ti%3D zPUw%F;5)0Em49|&Q<@nd6MYK-cAW6-zFjS9GQT6#6+FhwI(S{OVqrBiSFCgF*{byJ(Q27G~G_fc<;H?(=#)* zdhKW^+erbwZ>yzW9c?|wq!jD(@q5fGdS$tRnY%wy^*Xmp**j`I)t~Iuie9)oHo7<) z@Vf7f&AvRNBY&QwvZC4V z*$dtjuBy=8FJsPsH+sR~IqL=GOSmhO$;3VvH)?M-FK^u{rB__TSR%-`R)Zc^~^(;vzF6AgFW!knFq()#VMs4&R;daG~# z5!!2$Mi2fiHtF9S&!x7XQygmF1h1J#p^$9WnJxVcl)dH_kmT1mwJ3cyrh#c2X}#qUt526_5};# z3zpjt)43D7ww(LAecrrYD~;(5yO2<}D8pB2o1P7jZ4!6A`2vXZ zu6%vA_vyg+dK_RRzRl@df{d$TjJV|F9B6K7D0bk0JgoeN*C1ZrWNc6BwgRzRfehsX z-x_TXJKQ*)^Q`+(cZJEdEvhSwlBp*yj}NSue`fYn`j2GBC#q+74%!jU5i=bEvj?{4 z)S-jPA2u$r#0iR+;Y-F>>hHr6(jlX&T;wfrFSy|_Rt~B|I%b7vcq*s0lDHI{=+^Y} z0!pwMdoz*wBh-+~{buOS`pY&_oUV0g)w5H(;=-J*jpP(_+GBpdIiuEkG(kn}-M&k2 zYqy1P2^ohr2X0#C_y`9{$ia}j5?((8IjFd0dnG;#6{;@S{}mJz=wY02_bw&$B(B}o zx>h#Dt_$LjWguqsKB%8e+NPw%BbjI5iJ*jkAZi+7#~%Vd6p01}wfga8zJp?YfZ2p} zOKS-}1?m=@Jz=q|EcN#AYna9lASsYI{Nqe{TVEeQWHQHV;!y~oFq$Xr(#X7N_A94p z0kl$S@Z%;%5tuk%@2_Va83y*2h&&9KHQ+#e#Jc(>D3oY6NOu-@oY;SU~E0_ouc2NvIVz_9umws$Ut zhv-NN;B}}MjUJ31+4t|?-(ePV_9sn2(2=jNjvi-oG@@UrQY*FS`!J$F`)g5gbi_2} z_Aa-Tx`qc`kGu6EZ0i&37wKTm{qg}iXH3)eQKdrJcueZ;JPLjYVv}&gF_=*UoC%NF zJIF;M=A@9m78Df?D~rePz)^~30r?0$__%Q17;3jtGPJO$!|9Ar<32z(03qo2?Ab${ z_rd+Ehkf5y7p=@(S5b_gIz^AqX7mVeK_E84XJ(g>aDz=diP|zV%a}Br zeb1o#44LKPK=G115#u34nEJR$*X<%g7hqd5HR`Mqd+^LcE+l(cKSn^zTp*Ho5EG-1 zQQBo&!F_ISZg71bNBeEka#=giWE-w(5oVxm7yS`6R0|l4r2N9HGS93fz{A5sf+r8A zHjTJT)C>{4KP*2#*$&5710YuvL?wp!7)br@1_uY*jpTi54JBC$M4AE3M(SZBxSckY zxMj!4xE_Lzr%^@-=`o+5EX`7OAz+SVY!j+fXJ;p|6hUhS159L|OiW$3v|P!z+r+rv zgBVi7#1oK%zgDIZ@M@?07r)>p5#;{hL5;{g^It++3bH;@QisdCmxU@}iaOCS(tj*9 zu*>wpSgeni_N8k7Nh38l+7jbW@)}~FM%K0sLik387!f#13^nnaw_=^ZOcV?)rqWX+ z&ym={s~CCINBgFetOTeG3%~?LlL?DmV<-Q&u)5X&@MCdcjR^!|Al!l+ca2U9JLAoB zT7pn9B4Sr{vH-u~sZL2Wq7~(eGBH~rZX!~VwMSULipr*0-$~FS%(#K_&-I7Wt=4X7YLzPPl1r669+RMJ z<~mLqA#?g7^11+hwh6sPP{ufb?EOZyj5I6Rx}GbJF}VZ6kPcw$-?ZfTJ$t%1h}p@O#Xok1Lwa3P{edB?Z1V# zs>h#WRaD|t0l_rg?i-%X&1x3V^a=0gO8HvCFoIpG2c<~c=6%$=d&@3I{n|jQzY8@ z>x{5Z@BkRn$JqjX6;84(v9Yn}IZJ15;@>eixl6-zp>`$}JJ3~VJyH8&PSTi_I3Wn8 zM9-1;Ph{(sCmM=AEK1Z=W$aqnxO2W*>5t~%>P#a){!E((;o;i>D;dKWmzZ!P!qr4~ z55`H$E5>8>Zy!GCqzG`oyUN?OYx}BI_Fmfi?U#IhmiC53J&ZVa?b@U8aI@&B)Rd@* z-jKcsvtHknKH027Z>ifm+4+jhMP_F!Dtk6mdc3BHZG!rm^FxN8=;c>z$nFuVhbj#}T&;jpeoMQ#TfV~(i za1)mMoDQY9Nh3R2=nXV9efXYVU1bUOU9OQ>wPvq&`VFCTCjps6Ne=05<~JM^2!7v* z<)(+@9xv)7qA)>=Rv^Cv2CibmhY40q9Obdf2uMZ@g|OpM+}tySP?$bU2G|j<3DV}Z zI1QH_u+v4h=NBe4g-n=4nR_G<2t*Yyr>CjPKZ{7JPr`9;VysM-1PO;Hx;=@j>aj4V~Iz0AnSNQNk6eg!ojx;Gx&$}dlvk(<%!Ja(8I!{9;#sspQi z#3xPHv3EP9$0x8iK%QAU+q4QWJ_#AXWs$KHDu`74kHC3y&cg9QQm?tnCUsG^R6tY) zUP4D2~L6S^W zf7c}(VZ+G)`lTvS{3CA*q6e*;h=`Ph)e*5RMuN`OclWkwWnNHQS<21HaTv*O@tvpL z?x*}jz9u*#xTnVes11~j0uxjQYO@++7?VKF*)w=vXiPx!*N?7ry-lBFcLC6Xrjn>p`qzj!86N^+#h5nRj&z=lvvmFt} zoTE9mSdk)nrH#lVv&qrws>uf((dHVH+>yK9r{>F@*IyshpQ_HjluZXj* z!$^xwTU+HLVKZ^F5X||rM{n>^ zd{cG1PQxndaz9htIZQ}{P{RQ;ulZF#R!NK%`=9k38ohdxe9TqvPR7;VD3pPVxjG3X z3sd9uhWRhYiO1l>e-xF-}Ba{h3mmk#`N&h5ZGzB+xawS|V7J<${( z&HylX#?rS;TBxk8{S-aHgSDilJN2Yywd?7cjza~~2mdiz|o zR8?v4Zl(erW@H{(DtcajqTMj#S%KjJCU0-=%HE09=WD)9uV`gwE8>__Og+%xVp3mU zk4aH_<47Q&SS-znrxQpz)84dsGn16vQ&nq%8)LNE!{1e8KW1A;6W2xkYP*~qEYdH} zkXftiUA4Vf+|$z5!%j4XKU3yh$SVvZHC?k~uhA#|1`n2aqsPVc0^~D7lwtG&`ZtvD z&9Df%dfIh6a%te!SG_WI=5+dF_`TQY{Qc=K6gfxRb#luG#F8Wr9%PTKnXJuW-MRCU ziS9KmEoKt`v6u0|Fr@i-zNQgWl+&_K@M@ER7)ncty$5O#K6+p2UYOoBOn-3f9GOmk z2(vmt=j~#!scChJFSyyEntj|5WrHb3mS3D?(A@xJmW^a4X|+{&-SCeV0g!6;qsM60 z(ygqk^T#~xISMFs$6e4;++H3msjS(^*{U;Gmx#Fgj+2Ox;nA8R6sHy4j8UTejT<-O%^2`b)B?|HEwZ;t ze}}NF)gDDf54NanU7J)4?jO7?hN1u3jDsmU`TSy5~K!=EKwf z+?$NQ58<4`yL}3@s3}2dI6V2#rsQQ~_3kxm)?i*d-@bsbs3&Sx#k^-f!N=V&`|qv2 z)Ub0lSIekSpnj2`+@A4G*lqAH;fRb+Mc;{pnLL+li#=oi%jMpsGG znEaENh;H>%JVwk=*CwfhGXvGlV|sv2>kxSHp}84zSURAR)tCZIvo?v;VTq#u1iM{{!Ee7#*Puuq%nomJCvmfBg?!G>6WgdMLqgsJVA@9&^l8H2qFtmnQIwemM z^b*FO79ihq4$VzEs(+{iaodDZQorf*hd{>nVNxwukJ=x?RU^t1pg zfJl*n3!pgghb9!|ELQWNRNiWI=s{peP9h_f4ljtEoj7VrF08Gtq`_Zk28r4T4pv9I zk_LM4%!#r95II~A-(&l$A(8foS13L1{0LW_0|Nvyvjai%0Zg&bAaDbQZ?ZRWOi4{e zG*JcSi<7R4#8d@?eBzY_M$Z*+*I`nKt9~j;u#>7 zc^Wxhtgn#l>}+}jX6KtWpG2yCZ0T`_D1_0CL{%Gq%kDVV*>BTs+?M=DMgJoGwuJ0~aSAhL~< zbpVLTEa%IxPA3WfCiWD>{U0faNM$OaoMxpaZ*<^%(1sJ@&)C}O@;T1fF+7zR| zx+aOj*todD8-pS74+WSJ*@N;2i3;lgN;KOa^wNS55l^KL3uB%pRh~5J;J7@%_?viM zKslrbeiGF4bSx}S$Hu9rKAvJjY=km2_(3(j`1wW+@pUAqomC41iFXt|3uVy@7vzG1 zgWupuRHEvvS@L`j{=xgk#vtt45pBXK0rE&Ug?o7&dQR87>g2Q%hU*;c5peE*v_B~K zP(7XGd!fLSq!22ZqD8wxylZ<8C0Stdfo150W>OsnP~g+N#RXa0+U{wwK7SJIShz#6 zDTG|eG4LsU>-gwDkCDNv`>Im+eC)k&8yFovJ2X1i!a>=Cf#}1u$2TOk&gkgTp4r00$ zC^LWWysm3Fq`xA_TSW0&BE6?N(!OvdaQn2om_(GEoZL2MX06dn#yGq&W0$~AQHX!-WEtYnPq9w-7Or`K~hf<_Yw*Ab}R^-WFFCGYB4Soo)>r^hGn zd61fF7(eNPT@Uzgt&_JYabe|jItN=N`0RoC!D-6E|kQKbZgae2K@Nu1lgajby)UrfJ zyLLQ8aL^(lCz}M=l&C2nwvvrP4J&?l&o5csu{65u;NWf8DiB$f+jE=mqj2c${|L+h zpC$xsH~Otx*_VLP&C?7pVNp@(V~rDEp&Ke48%8su5c28xY?^Wur=*mW5_rxe zC;7(QgyGWqeTSt+k?g*DMRyj9*0Q_)wCSdA3^f%*KN^1f;9Zz3v1?NQ=Shk`mQ95_ zC=OUPeppKW|6l%FVEkX+mM|Zno<9c%FFv)vz8Rp*v!~UgItsWNXK2+0WE4fQUE&EP z8o9b9AguU9n0^~2eRFbhIsiT`t$)8`=bmyu6|OvnSY@8(K|62}T<^}8@5IRTK-7J7 zINLAuhn|)>#uEy@W#NJQPX~xoHaLhl1n-v~|5&-C{`>QJ-9ah(qz9X(Sv?YUGtOs! zd9{L90mprG8gdfb8g9nIFaWB3-~5rZ1h?u_Xh5_pvNyri;T?d43q^MOu)Wp2tOo)` zAV=gK@y%G1-T{VLzOqStGcwe+@MJKmeQ*n|7SJDR1s-m2mUDRS<2iHN8ItAvQEXLR zAo29^yKA8dLeBIdHrNV0zVLe$BQx_=6TZ$TXt@xSd>53q-k3(jgyI{8%`F;Uv~KGWviQa?@)Zy*NAfAUGKQ$ABz|#9vJy zTx-E$zPK{9LyC}Ffz9HJ;0ct&`7-ZC-55(WiY}llkdFJ~RZmjmBVYj9kb1fm5KhS1 z0_+lE_!#k7@y$fwGJ_vNpR>U1V%9 z^y64Xu=ZLHz!j#i@@*T~`s``;?c3*%l8+5+S`2M~ko4eLLQ9+JBUyvRzkAE1|p172ET$dqZm8!VWEPbOydFeF|yO- zahj7DDGFj|CTVj*!x&*^q*KR(4}~2E&Lv652`(()N3g(c*xtWUiPn=B^_rH`yv0Y% zSEzyjY(%HIVMB}0dD-ctMAG3795^6q2wSTVNS(>?o3d6O53dO&lV~pD|mS#&B zu6EyPWe)>zZ~)k;XxKrhP8GCcpH>P#)Tc!TMn*gxg|??O>;QUJH8$>VkeNg#D#BU= zxI(K)%yMQwr96t7Pfr$_l!O$>V4}V2g+x4 zI^=Z!1ls_GRCUuK*TvrzwCw9BDb1>Jxp_ZBxTd?bFcU2iN0rPsJ}0xJQ{`HRN+b1b zHYSZB*xjAB49u5So*s3!0jGW47q|cgQ<$QNi_XD@kPbpx2*{>kv9WseXI zv9YnCZjVezNWd>{G5)|s?>}Hee*>gtcm-UDw*k6eH-?1=%3m{Bz*zq%?bVYOSYeY4 zo^A9(Vb>P~yq+0&ftCatoY|;^Nh1Yb?z$J40RT}YZ~}TN(Pr@CAoOlwXrxArrhKn{Sm zz#+;%emof}-neuwTzD@pyg+dD zlbml!p)Yt7*vBSC;11IqK4&0JfnJf=KwY_#bT%7n;L!Uu9S9eJRiJy)2Voc!hY(Ku;_y%+EYLeyTXDJdyg zSXm{3tpx`z^!)B(3thI2FK04hy_d=Y1oPvXCu0mUh!xMY%X zafqLEz)Qm=EF28@TMg$4UJT7qp_hClu<6ExffDz5@aurF{6ODX8!H)#W;_nhyH0Y= zWp5n@(P&ktAp>^>tBj54n$fdh0!@j6oCB!FZc$N95r-dx{pZi^UK1A^OA=dA3-RCp zAwL9cZ`2$q>DUvQVPEM>bR3{3;2`D^6%AWKE_CW4u4QcT#sI@0vcL-XLMF%P1k=$J zMs0pCG&1WY2;~0YKi1zdeT%wS0{Qjf01cu6<&i*X)Xo*ymgUi_%|RSfv$wwbB#rd5UVH+jeIRrj7SBW+(_vJJcs19VvBuWUG0niXSS;gMwdj%h4V|R!;|#p=V~di z@Ce5xdVBHGH?Ta@a9$oBxRoUq>V`$>f;;{7r4<|AX06P;cEOSMKh?Lv z55e^v$A**NG~xID>(>W_1P1~ddVG`*KXF(XLlYOhYc&#Ua6Wx_cIBqh4`5n~0^xXX1mu2i-O%aLl+CIdV-5-O_UhRKO^|7Gg7T_A9A zDQF$f_IrYptEZ>u8E_w!C>*vh50z^>4RO|f5s_}NX!U`qpcbVB+1vPo8z_sY>-<=3 zF+T%bisM(_%pEYQ<4|?)g!H~7Vo!s;!z3Kxv}*=#6v`r48MPZ3>S*;sT62^qbkId6 zkBgj@gfL_NHIcujs_F`UD{3v1SIJ70Tuh z$X6NYD3ZWA#toqhg4@+0O~Z=uyYaMrc#trtp-C8kao)<} z5n!<-(j8!4Ib6+bOEW>4CglSN5m$_jD==Vg#mWZC@R0?PteNC9gI^K$CpIcP#BKd~ z>fW=*-p=3)F;+|Xt@4m2Y0?DX@E&z2Uw=`llL1pt#P-hbc7(pz|u0_cwzDCX?gh|^e%fZUc9IPgWo0qgsFc8X;&5s?S6gb zSQV0yVHTe>ArP)Ok8+Y5lWT<}HF@AlAya5Edgi3$)qlJtamgqYMD;&xs=^Tb08SN5 zH}_nIYfHm$TyQW)$;$FVv=ay-L0I#txU=%uF+Uy}#VMGIg<>L@ROvc8_x?dh2q&5c z=a86~7(5v+#EL6I5z+kWKKpDT$^i$hQRke*Z`iZ&3sVpUY6@HSkUMuEC^g^v8P#D! zmj(6_b({;_FmkWLci>?~Pkp&$rGOfy`4gF463C(T>sNWugVk|Fr$FDJgv)na-hpDj zxY8g*GoVy;qb$?l=Zr|k1N%0F-v=Ck@ziOJn<%Ytz$#!5n5GM2-;gSs*XXI(@cDB% z&NcuQH{rVl@Qey?8!5dVvodMdCjF$nBkQS{jf(#1rI!JCQ_*3djOoTVFjOgT6=3=g z{N0-7KLGcC;%S5J|-zS_QUqXz6kO7uYBo zfqI~uBE1fZ+(Sa2Cs2w^La^99FmMl@2yLVefjO>t8_z>TIfFJ{_5Zx;Juc^dx|8qZkQvj*F*V#W29|6ATT^b z^vy0at;T?HGhL-!X-2RuRT>;1?GkbA!wU(88yZbdlJ_%72eH7%(phtVTx#cD%CPFY>7ZVwoMXC4tEPT5zUFw(G z>FOrD{Zne>o|nT`IH4SOT`G2XzE&QmwNsxA&`y*fX<`|!C?`|FLZf$TU;OC|u2J6@ zP9F}OOQ+kOUAco7ByIJ|jBGE5mPz?WIZW-KU6t;|78TtEMiQ<%4b52e=*x0Y<|wdK z>Xz{ER}DzFja?)=5?CX+?VrMM)b1zxq0Zu}vX$kH9w2Wb|IW?md>Z}@FI=?I+ zX}ORT*;Cv4ROg?n@l8la6n!0NraRtW0nitvD{jF5!`getbN%=G<1{pA7l}3sp^T)^ zCnbAiZzW_DA<0%~XxTy;WskBYvuqN{C^MV4P)0Vt`?Jq=u5+F1oOAo0KYsswZr63o zd%a$-=kxh^+}Fbn-Sh)@_p_uj=Nwfc^|-VkH7$oL2_V#G;~LR~d!as3W=m}O}Z z*2@9dcYwVRy#uO-vX+)z=$lY^+XL{TzM|Pd$wAlF=+CqhlW>ZtEIJG1z}fmtbE*)Ml*fNT z^ddM-XeBma%QV8>BVr=}bG&F5s9xM1s_q+is*dJ;&XI{4ln`(5&VETVk~wbKA&V_6 z`1rMu7jOXfc3JdPoYpjqv! zY;wg!goXKyfc_H|B?^qqyLZc>!W3}Fp7-t@uUW%kY-8tfiULi*nC{#PE5@BWNe2V| zHFy9k^vMMrSy(O)^Yj(7f8H=<9ANN+%m{$^Ax=)2;nX$@H3^AwgHjfMS8}!T+APNv zvSQGQ5`oa<4qspy@2(?|4@bIy5f}@iF}>yBKo&ka+(9Ya89di(q{|J zy(80%(1&9om=Y9W26`@JE6As6Jr*n7XS{xk-mU*EWHD3VAz(}pbw(|^K#}{M)`UYa zFaZiK6{(?U@IImwOGREb7A7>zX#kq(=o&g@Ao#;fL0Xh5MF{tU&W%vG?{1EG!D9(D zNCjzaL64+YvY63Z*(8m2(lwJ#qQD}B{`Ebxw^^!i;{`gJM4{|{9r zu2A2%LnrB+Yj+>euj8_dTf(CrjbAE_;@THK{0~us&(oTp!y1VO$}EHDicr6#_Qdv! z!yibDl#;P=430gP%Gz3mw2TaYROGCfT`+|Hr&=)PgF!8hJFa+w@dN|}kkSc`s#28u_=V<4F0YS*%EUUN-SUCekuS<#D>F!?Uhy#;luV} z4YA5?x=+M{`2+-_ftq`GdV-h^8u&#}HIgosG2%aAl| z4a8mpOHJIw1Rw(Taj{729A=Om7+Xb~9NK!IIr_EYao|~#2Jp54!swlKbHHUmEglKi zH)J~`OoW^!Xv?1=iV@$q8%B3LCH=vP+zh=Co1wZSQ*Op#U$|&!cn$~AM8heo?o}iX z2b7x;Brb$4zzz6}hrXuwEowz$z?4*^V;};0(qGVbIJH2iZGzBZY>URkXdf!L2{aKI z-$Fq4*d=uI!Ge~1Ec2)6Nmc|-Q$Q;B5Q}r*^jK`^e<@7)Wj_A@Q(N_xPSj` zz@kL`q&b@x@$Sx^!Q2Oj^PU0eWdTD&AZ@KaKuA~&ASuXJdj9;~C>4%O3eG2Ku-73% zHZf|93bsP>z}wC5bYp=^y7A+jPhQOb-C}N!!OA!?OPKfU;ij&KeJP3EQ7z~)Hq{Ka zo(=ySe4aF=^J8Qr8VY_B3hE=>6;Z$*MQT&SqW&&`GuciDvPelwN%?>lVL?w)W8MLA zvRLjIaNuYVC&Sy75fF}TJBTW|@Y-t#=Vjc0Nkv~7y^O)X^|(9HIF@CwGo&{_&%DkX z`Mu$mi-i5)t4syZ-jHpnpWM7Cgb72iCpKfKd9Os6Jm)jh*GAF zo&+RZh-E(hHeJ|DDV}BjerlBeWE@*#bo4_+ajY=WQq3We{;{KeoZ1M8B`Q@+r^PWQ zE;{O0ZihiDN)f((Ec{Pu=~)2I)V#m{SJnyrqQFe&_CKxUEP01x5C`y*qa z5S($utHSrofJAQ2! zQd=%T{z0&(EeFr1U|_-$woKtEbg2p^CWkTIn(&i{1FD1{y7%J=XFxySi+(l+OBZ4> z5kC6JtEdYHiCTz?f8a81R1F}9Teva;4=o^FrT?GsZgqY#ET^c53UNEhpNB#g zWU5zgZf=tmzT?A8U+d9d&d$yP>rSd$Fc_(*_^a7NxScUNz?Kbek$!kaq1?A~!sTS( zrqc_XaVgM`{hXRI!ong9n0Y9+DPQ#FB)kSq2uM4goAot|2Y&V5d6i?W-tID9efPC> zvoVM){jhQnOyYn$&)%i$BH>4XiO?Ml7u+aats8&RuCy-=0wtfZ ziBCNAHa0d$lOeXoimIxYIQh^4gaVl~e@BhvIwH?Uw@>s_WbzaaJ0d=gdP_$~MCH5$;mD-^f^R70Q5 zUfg~cFn;4%q+ov19s){k$w@RJz&;Lt=+kph`ld8*#-kp-C!rUg36!D zek+)f_Gbuw0eSKY74-Adu3)>k++M4 zf;7aRy>;sZ-maQY#uMF_b$#@(T3vi~iFroLc#$&s9cfC@0O%@DON zR-gxhO$;)H!;H`;h0r(q-EnuH#dt`vSg;wA0~U}|s#zlkOgES(o*uLM8%TA)Lne?h zVlTxEvY$X@>d~g)`XU#KIGRYX7;1JhiwqPC7}`3s_WxUVqiMr^MExJVO@B)vwgWz} zjiAnfU~IxeV}J!rzBO?5`jks&YqH2W4qZB-uQ17B^R{ip*ib%z5tu>f3Z|-1HSh&N zw9bd!nJjLYcFE`+P|X_J+L-a+-@Rb(Q6EuA9e5`q@D%eYn9yo31B|LiMa+XPSek&m zc;W!_{S-diZOfR&Bjt;|>!2yFjBkE^KIt%Q$2xSey4Aw=_aU6iA1i{5;N^(9Q&Lp) z##zQ%SzLT}{l<+=Ed$V-{*jvjRy1F`{N)(PZWJA6zaeD#8-V`7mQ!m4#@b%*X>89& zh0)EkcPw(wPQB4DZP!_9zsT z0d@3-l=6_hgM&0QJH7y>8xT)tisRWA(#4jW?eA;}MbP`>#}P*8ok4<=|C<3EEZG5n zT#p7c3hbREd3P8!=l?2WQi4iBzErWo{GT}X|D-D~ z@ofATN&Er1Yb@y2{Dq}_iDLxD`IL;>0;Ys^9ZaTAu?OFW;eMY%EA(mHk@ z?ixM5ns|pO5Mn}B;n_wmm-NXzCDlJN{(P@pxp0C6oNN2r{J?NhL?=hm1WdLu?h!<{ zM9qUOXYJaxhf`cYMIB-I7+gCtf8+A<&w z?`vz{e4XD;1pK1;H-(IijI1aP>}ZUV*g^fli29D`4sr2+xa6A3D-qGYRp4MA!oYJZd^bQg zdPi;NKc)wnAX&Dv+(G7}OuKfaxh}hioL3Qs5kpm@jd*45yi<@?P-q@GA^t?R7DO)g zLjp8G21op8*yNs}9l-VEZ2EIu!dw#+ z;c{c*7MkbJ(_m5Tpg73Eno=)d0l*Su`FQd~@BFCdWJukA(>nW(9f#x<^oFUk436;Q zIJXRqjPL`|mV1i%#I{vb4CaU$hS@nfClEJ>OgWxO@;GCh3A#6UBH(suXi&k%8fKqr zZhx?wTide~eh>7+Fd(4T1#(@ZEYZBYA)k#OhZ`waMWpN#_O;RC@hX@IbsrWD;58xE ze_OH0?;c&LR-$|J#)H;|hV5>+Civ|cyN-xQPOBS1P;dk&K9Dwa+V4+|>3y0jw zi!j(|trRANFkwTnJ-oHlp1Sd*-ls z&Y|A$0jIQm+u5cUr-a=lCS5jOLwV9x=o*d#4UH&qI6~XdL`T8!vZg8uiYijofen0$ z=SmTQKafY4qic?v5S0mN^M0hfiYRN*+re`MhxN}E(kE8y@9w<^6A)6UT*AE|g8(QH>YE;6-v z`n0?5UN`CZ&bO-~x7t`)eQrYo2Z?3KJR}#Te@EDU#^C^J3x$6_jt#`fZbJiwr8qR>b5Ct@s30 z0$Gh;zY^mqu{K~uVvLVss{T`a6q&LOU;`}MD>Okm`3|ZRw?MB0$Ac(=6tXz@tFf&J zv~JwRzZMJ+EPlVxf}jW}eG;7kwZEDn@7m`ZU-YlwJ+ZX%>MojZjB`(9H+#wYvec(r z-|~-U5#fxLwX6*}5Fbaznh}2zI49!jhmfA=C!kj$Bh-ke7F*PVCr@1ZU7(megZ2T+ zA!gloH!cB-AOjPM=CD?s(038Yg7}n>JqLU@&fW=Phy}2%7)yKyc&j&Z+R!D259c5} z%pVrKaoCWy?Ah~#MG7A%&L``F#RARVI0|Jes2KomVdna3D$*dJ0XIUOh|-KmNtl_d zIt8*`R;MQAFC5o6@gXq#d*_Jv5|!TKYFX)QSKZCh^{=k7PQ?sgS*mosLUYMjhj*_o zpn)iGWFhm!H_2&7h)SZNf-Y?&_*D$?{XyPCO`0f8aP(+HNh0uU6IvS*feU%ZO3HD;HEQ4JYkN+Q%psEH;S}$oJ@FZB%nThlQ+H| z2+5iVBIOx@D$9N-I*2HTBP^l=C0=^QY?{)$-7M&y%GxHpiu2ul+LYC2Hd&vJumKv$ z3uOsOg8*ZN5)4;idyANPUBvBvJ3I@>Qx3~ndWl1rE%>&BbYa^ZU}s`S;gUQOR88an zK4GnXxVuOB`J-_9gz#eIAm9N)I#Yr2AcF_t+PZ^(B9Xju?RFjZ_wY@7#>Q%qh*yLY z^5Je7)2&?m&hZ^IcSqa=ocI4;vCy!E#*%uCzOw||T2Ed9Uz(ye2IT1 z``Am6OUVUDcjl-9CYz%XB{VR!HZZnD1M0>hA!2h{p;qA8sb-@KlpsTOGpoGW{!oZt z(PVA>J=$IkCY)5f_FzSa&yBRgIYJ`sb+_D|iqhYk#a$Wsp87`H7f5emBo)=sX}g zwn5edkty}UD8&9-6s@fse5`~c^oQB^I$RRyOYNW51*G2=oJ>I0`*H_Rv}Str1h5U)!Pk6$GsNMC`Q!=R}@GqjW$JaCr<}^Bfb??f7J%txq6qNOI z)$TG}WH@zGWSdn`7;-|;*kK|OM0w|wUn|8+%FCBkRV94jx}x;CTP_e*D47Hv9ENJk3A!V6mNGF-PtD`4xAqkr3}Cc z*r0o{a}k*qx(v#x3~M7&{_r&jLg)cyO-Xz^zJY)wb6i#%(2-|l*G{%~D!gD_sx_gKoE@krg6NGUk@`JrIPEqCl1 z00>_UqypbU2X{HyQ^>XtA|O=WQXU$Ifm3f^FCNUC$cxMHlJ+^Zz{xZ6cOASX>vua# zu=uZOo-Pjbxjy{N!Sv-|;neO6!RXnUz<)q3qLe5M%nnvGzN=r4Vz$Z76W8~tCaAoJ z^#U7zI$UK}MyH3k%K_fkBfK7sE(yQKU?lsjKOWr+uV|njC-a-xm1CeK*$}5K$!GkL zST>=Z0pZ5hADhd}gF(nZ3DLU4*Tx6r1M(t)r<<^s!Qw*vJ6#kC;azYAo0t<%Alhc= zTlyiK6&jkFpP_;RDJbwXT*NUDT+Ai7lOa)r+P%A1YUtY|-nur*)Y5fsDC_sM)DG@7+^5_(c*<+MYsu*APCDPMvRC&V zypYd3=RKmBd7+Z|tnWU~4QXHY%jjkKU116y%2?qU8HqiE?hkBnThm5nuBi1yP-?Yu3U*V^VTcv69(Q!O z2O!A`2{?#od^yl!sQL*-4#omXmJ7WnZm4o^ZGrxR&@bXG;+8N-Xtl}QcBH>;rKeX*^1uUIh8+^lu9Eil-EKIBgK>;l<5-3ni&%KT zvc1GRx;gkX=%BPGJQw}|PmSkOg`p)&%HlRl^km3xyG^PYggq=QEUaC>9;oi?qH8FW zpgRfcr{A$7AeNB98Is zRtQ;vjFc{pA#(v9GXf%`@&uns1nF3ywk@tGz|hi#7}C_CZV;YAC-WChd`u&F5BGw? z=|z=+%YX1$NH&Vw777hJAUsC94+VLXeBV5%t-%GuExuN0~1WUx+p@|uwFyDX`4u!3U>L?!Fg4up1 z5(19v384?sZ{oggr4__fPVoLf1LzPd1X~=LE>2V^tT!JW63JIgf`7&|dbm3TscZ-} z+C_dPItq*{e~eo93rrjx&@)5XR)msA2y^oEoqnx`;9LM;wMBf%%Vv+jfPhl;<n3G{CqqfVq0n^v7b;*Rq9P$qfht@WX{M*X7G7vaxj!(0d;G{4lnT}H(}4Yw9GobQYjRhG){pt;w-|8(IN zDK?4ODr=Td%FkZWKI5O1^K{LV=jrXJO;rW0X_jAGR1R%^#Uh1l#^g=sD=X+8`AeQR zj;p$^YRe+!{N)0PD}q+iyeX**BS88gcobvv+b^{ht!WI{>pW1aZgbB+qppe5&CU94 z_}lmxlOn}IJlUA->7y0+em`=;%`Nc zAt^Em{$c(mzYK&BIq;}ZKpKH!g+c9!g6OOVz{Fz^^*Z%trvj_d& zy-$_m8zvX~t3>Rdg@Xr7gYN@u)L)3hBRPtwM+dNPL)x@M(N6F;9175wkU%Yn{$x?k zf_$x=5TpLDku)1>Yb-OAgS{8lrC4~F*Rxx@Fc#?x#7pcb-LcD|<*H(;NiD7-e-s$nbD zC$-&TD(7~c>pkuJ@$1kvEtcB%9DN%#Pv7jmKUVHpAZT4X5)~8E-)fE4kNxHkqi8_H zL`8rA_McUpZ>T75p^W<>TN?K-yrUxGoX|KT%mY5bhK-6FJa18X z`8}L{d{|D9x6JhVDNrF=d<%h$b8@y|dI&N-$%qH+=|(7qBz>d4#o}oPAPz2L739D; z3iyksY^I6V1cOaJK}ApM9aytS0tAt4;=I6TL8rt9pPhMo29~j~kwR5P1qtrfbgh9` z1(X0fu3|LiWI_!DEs)3hU?Wh3Aqgc-Feo-4D^Z|?VL%B&x(fL;ylJqoJuhf3$)prl^2(F02znBFmfM!^a$T`!!xFWuo z*E5Nej$UH`rQFtiDDrqZ%Rx5csLWtmo&H%A7G`=VXoSE?Ih{{Yjse#WW;6o zRpBS4G)*5kJk8C}8~ed@kF`-&Vrn>b;$VB0%>6)>{VtU0^Y_F312#{6oWs4ShqNFX zxrtqi}a+AWEvc z+6wO(;eJBqNfZgnDS_#O2M$Dm{*{JYQ3-Wo6y8PJEd#x>+zS-u(nRG(h!qr;rZ_r$ zGcz;$iN-1(q^d7KidB+uW%&`E#&17Azk|C)oixl^vyu%#CP4lvh4L%LA43Sf)xsc^ zVW7?tQ2#Y`O!}Huwy%G1yf5W~Zi;Pysc>0cSlvLkXt?*k|bn3XOAPM@SS$|&!_ z6af4V)J4svr*Xs-*VX+DUU?e)0gM#%;O^8S=Vj1w0zJf2f@k`MSCCUHB5XAf##tpx6aLqf z8)Naf-EE3Ze#a)u4{5)>_q>_tR6jU$JZUgV?@2{uj6+TSicdnwazaYZ1JJR+vO~t( zcK9bJB~|@qZm~&7u^KS+37n*&<=bZHyIw_lDw>glHO@M0X7Pcwl;-40#^BqY=?)!V zw+>1-O-*qRI@7#!WgDJ)V+tE4cneG_|KcC7!U2EH_-=Opy=di8rU@)I&ysc?+WFcf zWp+(<&)dU)y>_cUwf~4^wwY&y()-cMW!CiH%8|v7t}LhL_ z&GAMo@j;uVpRNg_sk;(9T1nS1_V|0}`-Jr+`f5*IWL*`_y4IIQD4jW<=8)#`R%U03 zZVB(ip0s;D6rZHZ?EQUVbF{;+)=;L;sd4lQuP|y-u9T&rxl7@(J#QS5vSOR|Q5(fW zJTihu)76`+7ND;89y5307$kE|zW4N;1uxnW7Tck6jV`~y zy~eW0$FiZbOn+C@Slo?Rr4N>uyFTukTIAM0q@5#6pW!XhcPw!Zs z6E@14`!F;gR8+r1uQg&%rG`pY*wJ1=jc=9?#BwM>-oW%%#7C9vUS)%ZgT^(? zXI@YH|B`ihYVkkQ4BG+oHkrkU0ylyt2h6iO0^LZT2;7FqmjB}G8iWQ_QdYJEVn-rv z`*tNf|Ed(t5ITT&7i0`U1LlciB42tz*?IGvUL5Hc0V%0YGzTFcqZkstaYjp!=oXPB+gF8B65yoXF0<89&)J1Tq|1ueFW&D?H0{^< zgxY&8>gt>7j`4n84&n}$ZRfCwTlZUZIkSy#Yooq*&zpqW_JAVCS1cX+2O{$&AJsIt zpF5)4<>KKG;gPWORfM#%){2F;l`o$roYuK_b!GT(*7UI;y?dV~8VdJ5r@ePp+PKiD zt3$|^cH6pLG|Smn6{QmDCEI!Vc-8Gpmv+$!X@-0bI;l@PdBBflD#EKlL-H-n^ruAE zn6iXwYC5?FuD!Vw3eVP!0u9T4>uDDcrQE47q!=2Ht$dPM)UeSzUORM?MO^Jb%%Qk# zw~qA{6oy^7VVeWPdzE)Us6#}F7dM5zu7ka9$Oa8vpp$|~%jgp8)cwTw+V30R7(V@c zgT*lReZf$QWyoA>>T7q|N!HmghaH|j_(wGc8YRs2z`J zJ+iZJU@Gu-Jm1c53AqRNil{tI`gniEx81f6KQ){eIU#=UEvwW4z#`xvVPG47u^^_7 z%Y8qA-=jn3dvhdZRIq$kok^U_WrthJBF*26Ln-@9&Su3Aygagjt5f;uzIpRKKc2_! z(Yc@};bI&e@25GwdrEM2DY4QJ*)hKC{*n`|>~muDxK+7VoKtUi3i z+tB(&cNRwVjn3MMi#c9s97!Hs?l{eKGjG$)4$3Bsc*%{j2##)>w>+GaEHShvz5Niy z@Yl56&(@tsc|9GRrKg{XM=QlM4CUFKZ!eu_p_%$IYxMrm&j+6)3lI2lULQ$a3v4-g z_Runt9-%SPE#UsZQ({y4A|OUjcxqh!t@DbS6o=p~x3U!VzmI;Sqk9~l6UzHE_eif{ zy!O;`((QYK4Mx0YRSI?sh3UHQ+P!A`&TJo_&o-GKt&u@TvU-&JNh%e%K# zGt(Y-jWTL{k!W8Y)zEIQF;S&qD5^HxJef1Mk}}CL)kl5aSTS9BXs@>Vr7w-mwUv(> z+e>aXR{x$6I91Gf`hCnL$}rW29TmAQj~9L&*$4p>iZVcdRRe3TQhPCH^GZ0&|7xRo zo6%Efb16d4=948=!%+078K-#P^3?I$cNgCmzL~pG=Hp4BJ|9~c%N4<&b0=>&D0&P2t+yS<2#ar6RN1j~RkaoY*TYApvmMDfid}a(zC|u;3 z-&>-8reI3WQ0=Vr@>`tobIpy1{6w_k?)8UmckcK&V7yOV|C9HN*A^R+nc^&1)f{tv zT&~w|J=FPt#=!^-X8gjocO1Oy%ry)+^x@RMCH%Z?R8jle_+0e5{+bWBiZH z4+;}REu*V0xVmM{zx{E!LZNs+MU(5MyhrgwqrOK-VeD9(blIzOQywb^j*B&HlZo3I z5?A{`U}r?Zji`(@Jt_u6>j!x47oi?+&|xa#JbmEWp4(P8L*`c0eVv$X4ybJOYtd3) zJ)rvJK4(I<8}RW-)r7&sfBTIVxH_pSH{S z)ib|(acSmv?^wiA_bVk)y=bke61mw1=b;Dh5}YVY+4;h!+~w7OU%GXCq;Q~5LtEtS zE0@z#j;e9qB=C<>+uJ~EM`i5FUO}j~RB9c(Z=4Em<+2@@QE*GzK6RC4`r!CzPv3<; zyNkC!Y^Aw&N433?ukHPZqO?dQTl%5Ij|7&eS;38=#(i=ngN_(085fLhRmJ zOX^83zSI}#B~;^L1RX)Kj_+=8#Gwi_^I$vBUuY;U-~xZB+^v_Us#QO!+xL`g{g zftg@1b78Yk#bm_*%$g2rgM4ce_d8s3X9&eak=-nLbG3G1H)jy z9iR7UtJB$G!r>0~*{TUFPsC&DqL$}(vR7T=)Hr+`A<4d1uF`BQKp?MCSKOYRX?cDQ zuiqhZ*vBGg@AI5t*-Ar&WRZaRnQePhw4PRHWCaZvD$RHF1boYNiZ6)Bd6{x!e`!X- zJ6mP$HxH}AIZlPnuRB$(ZkMfi06*R1jz&(rUyIjkO5<%lU+IO-Iee|`p?RKpm7%N! zu4iufkO;V1gW+{!VII$DDeqT@oLM71LcNy5=)F(U4w}Q3OI+mnAYRp#n?I2#7-gPgAn;3J@V#9a}lV*i!37~ zoa*j6_UDfxy_`2DUn;%}pR6~8HoV9`by@f&0kHWFcmT`-l<l5SS-5__ke5h6R|C;D3{zQSu{C476 z5%@JNJ^jJ``+$npkTJw?8Uj?cEYO_n4Wi`u-ntct+`L| z(>Dck330icY48$!26a}m2wa><35e!ebpA)W!HCUxZzUO%V{=+ah!NH)j9R-N5TNQa z9rWUb96TIk{^oSr-SMP<&AaA!@Ycq$X1#K+$8n^*!_aDqaFV-sDK$3M*5Hl|f!;!Q zprbsEJ5<{iSjTnZ#M^T#Ny07kA0&zw zpe6VTNg0{TVECxWqKAz8C`27pB##aLher^8!#+wJ6i^k^td$9tEdyUp@FTc7k-vHj z8PFtCOX`mX*2zmiC>7Z`Ko_C>p;AQgOM)tNxOv742;B+tk^rHEU!0#$cbvAUiFg7D z79HJE?mIG7jtE7Nu|bS-4RKpYDmzG`kdw$&p@u{G5wnmlgc8K%0prPpjvE*DBb7ba zX~2%W0+ZPWbd>LgE0S@Eo(b9h)P zsoASRwk5Cl3I?^OyHC->Z$r2NsDFj9QGmK5KND#x_4hB3-F3Zc5^W;1G?rjQ_>F)s zI{hkTfGFwZId`I%UZuMu$1_IpFodI(%3&cPUa6^84_2{~ol{)3*8@nbAn_wXIpoc< zPRe%%Qg?fV0%0{81B}A2P9a$@4U}D<_&ao zumQ2|-yfOLO=8474A{qoGI$DR?!axtgPJUTO(XWH z-M4XIKE%@~2j-+2!rIaXbvJ3&)ZXtKVqOH=EV_gg6yrPHx-{6<2QQh}U-|si(AwVz ziraq-XdZ|zaqueAq94|m75!BftSuEaP%&dRw!?*aSHze%K3i|?$wL`!0u?M$29U#P zwLb(l3}<^9qBX3dL)grkCiHlsJU z7KZ00j$OyM;K)C)sTF`RgcrV0C?aeb5%OA3mqAOj((8yD8_^xqwol#nW0(GDfvln~ zgY2V{!++jZ3HuHBB8;_`!gC$3{wC~g#T?^Zf$59w4_e!#oJwlD1R1}zXm{?%{Z!Gy z;}2->3eG$HzG(jLcoo^leR-X!G=9flT>c#1JlI^ZTieFU)E$+E>0#UxD3epK%5Ir7 z)dqovSVUlu2N4^jHVc9eN3~WqcAp)bS-!nj zjXvCOYNURaJHJ&^C_yZXtc@GdHe!wrDm~!eKn%GU@75&)>;GFcy=T^1OXPVVXTTI$ z1qDy-pe6$oWoiK`iqraPbXRgyqg9IH<^b# z6`dPwHEGz>Fg^SeQf>Xmjw4OsA2c#ls^=hO4m$}cI|M>63?Tes!Lk15xO2lsB`gIB zzO^?yIhFd+e7K;p%Y2aMCH0|iMU0%vuY{*2`!rL7$heh%j!(c@FT)?XLlv?(s1GoA zqw-%u-g&O)g5<(Hl@cb)y!X(9j3<-9!axpEGBf*#?Fr`I4;`Y*Mmk94D8@lG?hnH{ zJkaR}L=%_c9_ZJ$;J*DZ{`oVBZ?am9=M|ogH&1CO{^)ygKldMgg<<<{c^C)c!#=H( zWApRDm|UbF`LgWyt3>8oV}`M{E4}!ic^q3I(nz+(e?VE_q7d~n0*Si8cdj1IMtKC` z#eZi+o3+ZhnlXtPCd51aE;uY9Zh+@t3ntGTIQ<6v>pz?aVZ)Qwnlo)zdP7`KFkh+g zSJzf-Y|5x8XW#IyL~qZ7e;K=Bp*!&qU)7hztRXJab~!poul}8WOK~0YUx-8qYoqx6 z`^X{(Qmgb&gQO$%5zZ%}>))xs*3~NO|6LFGGchuXG&2oow%WxFOWTZ@Jke9w*IPU6 zG(nM>ZTb>4;5<5a;NM1a40vR@E-x9Z9zU{i<3?C3z&B=AVVO^eEZbsK8pv#tpCw?F zQ{9Y&Vrz&)^YSM?nIM|N7A}dmH%GJz*2(RK!C|jmyxg?qru4;+x*aA%;_eB^*q6b+ z@S$EPk|bV~Y_j-ImW3`~JzfRX20~Y#2~U|fCX|9`$*dxQ1%!vi7J}rL+UXOBuwjGI zS6#h%tLw(vS9&|l9p=?9RiCzdmVfZh)IoiE25nj#XMTEXJgJBr21ZHLcCzrJB2N$g zS<~|(8~?L1A*wWNiA}#@38o4e$8m&@e~;MQJIMWjX?wtZlPFQiTrM(@hs;w7IWpV)LUkz>$)P$Y5#WK!6_`D`gFSUe9JY%Ol zXfU4bnN#l0Ga?I1n%K(YZ96gg0t~RfqM=dGi>!{TC#)VaO@GmF?WT9v|6OM%i7&O| ziOG8Zm1=C~A8ndky^m#bJv-x$;SW;SJIBB0Y}3MHioyzn=S!Au`%4?>;?CQyvDsRm zHna47gY!K!XNq0hg(9aA@?%-JNbiR7=`-|$@WLt}*!L?UpB}84d3n^A>F1>ZEvh4@ zZn!&2J)LCs!G=?cGv_zSCt+LFfu_-y#RtQW;QK_Kr-m0D7}6*YW(&(Q?2nsq7~App zXGP+(SXo(-cd(`i<(Pe6fI7&>S15JSmt~f$bn@xdySgD|cJdl`hg`kQIr94?e71$; z=AP>6>cV|ZMg505d~FfV5>$ljzo_*2c~sM*bHkZ@SJ~Xu<7o0F(oLS1sQZx{!3QxL z;^4eOLzy7bT-~7SgB_b^Xhu(R@2bWU4U3{K^Iyz)*7}`Ys6$lN;#eduCP;12i`XFA zv_`xZAq5Nrb<+29UogI}X>5L3^UZ!;v~)&2?%I0gq)YR#499?;h42Y!_z0k&!`@Cp z5m|S4(wfVj(od3m{FXWNLyU6v-}`iqdJ=bexXau+#W&3Dpr+Ao-OtT+j7)b}`!4-B zUpE5RsD4g$a7G#R4+!^RC^4rG9Scz@@7BVV`Zb4eOh~e9J<2@?r zd}&G z41j@XFwv9W!_bwZM>o5XpdmQi$!iYzRnBB2&KV4EIAmePdR)AA3lZ=t;7UWFH9#_^ zpjwBf;#_*!Gc27~PenO?QLQ%lVJZ>(jysO!S-P_93Ve`vxIyy0ChQ8rBsaNs_anuW zO{ba-^v@lc=jj}%$h@UBb7JsM#b6z+(Hu#Jy5RextaV2-0vW(}oX)JfLw~N~S!1K; zn)h?y$L=k0e_tsr6ueL`orV4s@XDjzrvg!DBj-aJ5CGC>uc5*gKAx4&6S)5DQhv}! zU-#xx;Xjh%!`5P<2ttGXmla8Rbu1asNBu+?#!s+@0p}lmxO}s}?2%($+EkuMP;lDf zif_^ZVXuH@9Nvph#N?1O*f}QrrxBtCR%Pot>BC={xbkP>Y`6@0H74x%i`B#S4PD48 zD8@_bat*llZlk9UjCF!`35`mSq@vh+Y`&J+zl?{5A0LH5VbDz2x!{zTidaa&Su_=O zi3grqli@Xtm@Z{3X5a>kN{V%#H1uVmTQ@0I=%ajean5D5e0{QVYTk5G%gJMGjUZc5 zwR|TTCNwDSv#kX-Fn8>bL?*^0Xt62+l^dy706hfWaua(`QB5_Te@6dkW|n2Z;?S|d z^1|6XjJp${=Q2V;Ei5i=0?~mJY&Jw`j|Cf~CM&k(gm!SsB}2ZBgiu=bif^2=`P zs;<%ty=V60Bpe_imRlbFWX7AIjAf&xnYnaC@M3ML#+>V3d0F3Qk@}lG7|!}^)52mP zZs}(ytPY@<>dEeO`SNZDnacx#2XF=tcsQ*QaP=aKWW7V%4gIlc!2d9cNGs_pM@R>c zs?o^(n6IHsHeK?(A`E-`7e-i|@1b#1q<9G*HiYw*3IjJz*Iovx5v`;dwfK)oL@5A0 zFjq+$b3Y)6g)fxx(4p8B*}3);Y$TWlGB5i*^RUMmkT6D?DQP($Z4-`wgd*(=evEP3dj3a? z>56O&XCb3c5E7(_lRf$W0Wj%{_gP#i>%UNAs$A^z=;{v3H$pYti_IlBG)Y%c8gi{L z3eJ~*^P^(u+Rqi)p^zKE$e9N(u|1pklfP&5q{}n8Wo8P%`p=3@7h_-qYM0=D#!#?^ zHU)Wkntd>o{`m2-_Ja>Gr*cWfSZmCM?6tY6-!)M9DmZ(9x7omNHtCA)_PevLLF_!K z3<3YF1^@Q0zS!0Rm2D-udD1k4QLlG6!p{BxSWh~PRwU-w#{2KdKY*e#t1y7*Z#;^O z6T&9_0EVdE`CGEGkBs*!jPXsU#*z_O|1qVF2m6Jm$m12B#M#>F+aO6Zq{o|eZdc0G zN0Co@h1E;~0UA4Z-QtIlJc1KQ92S#z$$@U@CvMsc)tQ(7x73qJ2VFTGLb zwf1=NFi+R8Au_gw%U;vM^7_w-V=r3G)pp|IKp+r&%Fg2UQ@bBueNbjfH@8!N$D})0 zU5+1DOB6nSoF3sx!oo3=h;F9qMCV2`$?wiSUu{|cy)Heo zA8%UQ7LOeO5i`xUc2ux8et}Ifx$=qX9}o)&#}S1^sN#r?4#3T;9E5YZV{@{?G#@~X z#2iyvDsCPQF&I)Pk90a0m^eK@^6mJ$)zo1(qYV3xI`yq{*;t5?WLPL+p`W-i0AXP| z^lAVf!6C+v?w>Y`g44MYXp^>f9L>y)Guy(f(%veh^R@uO`|< zSZL28VukuG!ZTo;N0J{r4dL54??Zn4r$*g->iYL0zHD6#a0%lDyobgqSjfgWwcGvz zTpb;z!;gd9g~qO(DArdW{jz+oCnM9ZD}3g@*~YsSh6Z;o1L&Z6u`LAYW+W>Lc;h9~ zE7IP;h%Ri0m_U7^R?$AvU{IyjGa;+y*5$@^uiF)RTAYPW>xp_~#&5~gITAl&Ccayp z(=1o3YxwHz2R=HT`|(41FGSHM5-Dho%^?Ik^tK30C2a$Yg<0EyYEEK|@#>`^on;xl z!y-W^wp)eHGt#h#RQ03Ie#RgpTb<Wy_K62{jKFTGUEz?T(-v%Y+h{)FVo9S?<_bAPd{Lrn* z`rTg^vMMO_N8WC(qudwIZ$&-l8`B*B#$#OOlF47Xg65QWn&wqN+p5Uk2MY9OuHaZ4QkSnY=L`a6mSV7tOX z<5QVW+c7P)UE??MWwDy?I+(o5Zb^Qt-PXOSzk07756hE7qcC^;brt7^#O|xC-0^5q z2(9J6K3MiHis8|l#y64@!=Au$D}P?Zu;+pHj}xv>nSPl%<;?TykL1W=g-=@kke_e) z)SVX!knh0O5Jh8@EONplCf%mxlY4BxSuO1;49hEh5W4A`>#Qg$x$;kK&-9j52Qis3 zQ^!m6SO!XYZcyL(N7Z-M7p9)V&#>un;ULTCOMGidv|-wUBun+vb4rC?0*g%Q(f9Os zB-L+Z>OQ{GQ>p#q;r+ga7c8GTrMlC1Z@G~$ELK>i zYT7m8cKh~D$pdS}^bma6cQ>-l?Plh46ZPr`YfLq-&JS#4Qt0Sbl3ic;BEQ=5%9v7V znZNoj)oA@!32$3>xc*Yb6TKG%rFA8KKo?j3&ZZB3w06GVZjIBo*0y!YcORs`t7~-W zt7?d2>z6lHswW$5OBMNB(Dog|Re237Cq+Fo#zoa!bVw^Sf4OXYxKf+BfWG$g@H*!F zup*UG@ps3szvo(6!~E*bzPwwwfgE((4ho4Zv<-F*l#SdQx+-dWPcGKdYWV%Zrtr5L zcBV}%b<&w>Jr3hheP4Bsj%AAn!-KcqCE~mjT0)L-*9Ez6YfZg*PT7I~dZ{9t6+4?J zdn-@UEhHFp-&GpEQGn;GnpIs-=vK4~|s^#?bd+GYRsSf=*wtQR@OEtfy*JdwLJG1Pih z)H!t5CwgQRoevL6@OqfFI?@-@D&rcGY96h%7_Ia+-m_rC>0?{|a(1yz_jO4OZ_l*r ztU)vDyCyrMi(kz6>C=~K#XK=%{->CCr6GTku}ra9mQzde#zK4!Px;H7?S3BuT}M;; z!cWbd=*wzJxM*&XH0Hhf%;5vLtqf1F>9~j5kIz-_d7l5G+YPggD5PEi75h@%z}3?RP^AuS9wujAs0<#p6R|S-#bY z?at3`3}xTE{$k|O-prWBTgj#Z*rr5eq^!>$XJ-^*Ib8*@_H*HBW!^L?m&vzB4u+y0 zq>2v~iZbrM&cojG%ZF~T@W%-*XXc%)9YIt)rxry_&%_nsPOsXHGvecpyU#f3tTMSf zMANKQq6`;;zWeU&`?+sw%kb~;u5)?M|K9(?f)ZPgq4}ywXniF|b$p)XkA78kB!b=~kbc|`!%zW9g6~c`Vl0BbFUcD3X(E6AVW<>qh z693nVVGEG!a99BJa!1M#2sSwUwGu!53y>S|`wMuEM1#v!1Np-?*OgA)<)0`5Z15{| z)2+qW%Xw+Nhu3hIKadJs9l04(W6=g)M34qC-JrYe85od&5eb8FW}C9p(|a(cY(J`8 zur8#EK;}>x8mSBlLSOz9+&Ln@WCJrl;AHCEzo0Mnb>CMDKB*#48P(AM^}kY!gis0|h%`WC{yxI}AvdQNhRRusAb=_g~qS zaOX1I6$D*gE11H_q1(7GKp0*jt=fK1?HkX2#OXOXE%52*-NA(+qiB)YaFjPeL&i^~ z;j4be+ihRcHFxYOO(=XNRarqD@y?y`Rf|fjxibS@U$pD-E^)`2sS)ufNJC>>v*!P6 z?8?KjYWMZqfRay{5``~{D5=O)LgsmjGK3V~%!Q1R%*7YVJSEAHAzt$=Wu9fKL?nDl zsSK6a_iCSWuD#E7u5)ew^oQ26*0Y}HH{QSd4nED4U|O|@<9|zc>W*InPy=%#r14Lm zv@o9so*w=q$PY|8pqhg@#TduadjFT8^V)-FAIbL5o@th_^)?0TD>;7Yf2)kdUHHmZ zs#+;0|K5+@GmE+`VQqgF)*LAC@L1q(%A339$-ztr9sN7PzSzhvPzPNt!Q9Nz+Utn{ z0h>+EpHDq#Dto{YwKBq3G;)<*)YaCo>kKQ8kLY@+F}*T2L~{mVLcIcGenP<#@i` zcXWKvU&*_A@uZ!;+4NvfV@%M19r;{mjHH8sWuGTgK+(hH08x;Z&5zY}15J(&c*EFO zDyB~-KYXB*!Eh%v_4=<#%+VYLeIJhE z0YvbwVxdYqcJ%D7F9y3Esl~pUe=H=6CRcVw4>Qm2J2ipW!bjSRl>{r{qi^rt+NenR zoSmMrvc5w=w1!XQ#=nN_=w*X)^eE=uHZEJ**d$DI+seB4#X95tnD3;T z=$6^6;G|nVEz-TAM0mW?NwcT!y9_0~Dmk0C;`o;*88NplaVuq2MfzrLE~i6Z>I{;C zYvLs*|zzPJbB$?SId**8a_UwLpV9~GPp2pgXz*8rlj;AnPuq`rt~|96WF3x zqQr@6c#4LJDsN#cTSDq`Y9&`{LTGqe((Xq?v!gv6S~Oo7!{vGqGNMoyS`yD-Z!6hb z`iSX%%5B%irStAT#U>3bsKqAwL#k7o!dFD_@GWgRS0qFO+Y9+U@a+PSUkz|{WUq<0 zdPu}g&YB0s7cMn}KJKJ?H}B#7{=@IoCph^s%ilFGbH$EnweC~PHs&I$mxej6Rd+%PA-G>t+w~wt1%_zGK)*C&Dv$x zx3+DzK1gLiyUAc}jaBCu-&4nv;~zfm>w2SUvDCH2bg3vaxNdjyT!r~XtJP|uNbM#f zLP&eY*7ir1m80TuFX5MiFMK}e#6)G$te3oh(W;re!uiPBS%@E<2oGzqLSeC{*((-T zi_VO%ieHd0=10yJD`6yXwUoMMgkcgaixHo9Zw(kz zHvfBRTXFVVWjARt$ro3;`fZro_!iDW!9_iuy&aLQf?#a*-Huc0?cB#?M=dYgT*`7d zZx}yLPOBe&@~$A%`HA+Chw*%J2_9GHWF>u*s))OnBa*BQ5l7?bg3Z26ISy;jl?rUj zi`ma~A|5J@nA}#IGBTk(YY|n!W_iQWPQW$i)*{DO9^xEL1?5#7Eq&i4l54QUHH-wS zx_>ay?WL#lanZoBt~ZuHzQc7C7(YAhKAbWV$h39GLpU`@de9 z@SM0N9sQGEt6RrbX1Gl0^1OX_gjLGs!E21Hb<)4Z-UBjMB#poLG$*LfX#2z65Bt2Q zC!YV;J@rA3y62UXWlp8KJ$Zh+kzpW$tnATARE>UyJi{Yu5ND~AQRe%V643^nS0OLq zE|ZGZz+h@3Q9-^^ZkTvv#&SEg$dzVUlW)K6!)aNheP|r4RK5Cqc}Q|kRb)LDYQ*&| zXJKpns*8A3D!tOgWk<#B(qf(~Rc}#Y>~wdXsAP|Qpkf-iaQV{vchcq0WvDrq-n*YL zA|Li#b}g!Z)w*$8;E#)vC=ezW?OqXcY;5XxGjv2~*6914SDAF5Q#sPpMA&xh7k zX|UCvp1Q3}MqflSVs{I9ep1Gni^ggxr`_!A#0cK~C$~ifT+LJIg2K<;w!2zn^y`aS zn}Vp%xE&eVC+Ip+^sK*uF7PddhVt$z<*22uw&0szsX`~Z$1du-Gg~|EFGAj6_kEh) zM?a6Puj6k1A12#4{?r>Gj?_(Ud0M$enMiuqB$f7#3+Px7v3$Y7qFfLaKbF@Bd=<@HUfX&!l{QoTNBX!R*R82a>vi}rQ8zrks;n(+vYW7GAp9}da zT@mB=|3q(MJ=-wnk~OLBB&?O-@hbMRiKWKx`!HHqS_DLg>bzx93#|#f3AgV4*wq!A zdBJ%_16^gJq`qVl_Pn|ECVEca9M0)GJLDhB_U=|jd4S6LfY^OKDOSk==eIU?w9>&! zh3MqvKhHR3`BULN5G!Mf`fRT|HaRM7yB=(8@r;TNA0#>srZ#mkr+JL4%-VBV5=+i^ zTsSyd$+2&3&Yx~=c30YZ(}P3geQH!tX(M`jq=QU6L8YH9l!dkaGPz?t(0kzN;pbP; z{s_)*x@c<^Q1Nufrg*w|x=UF?#yvkcMDBbo?~rMll)N){DnE0C-hD+|GvOVIS-qMdQ_Adm9tpAqQ@70HBV`+(Pwe4M;SkgdZFj3B7*^BKCR?O zYS&|ReNQ2QK?*;v9`;To%SKP&Ct#ht(~klQ^k%o8V(>qWf@FZ|?=!kNO_xaG03T&0 zOd=`_RD`?upI^US|2XQa{vwd8d0}W_@~^w3O-$mGXD_TW#szAdJ8Og;rxY68V8Fr{F$~N8#dqDcQc91yn#`!eKs$M^X7pnFW>c<_JQkD znVjC^wFS-Bc6-m4d%X$Y{^|PsDeqI){5FM$gnZbzzTKXg+n1}qgDmo9up86>7oD7T zD5f)Xb+vJL{JhpNaP3-mb;ZlB`FP9Q^O1GWd3+O_pZba3T3hoW-2h|%)BW=DA`j~7 zxPUjkXj%{zs`zGoFJ&YQl}5;^d@R)rvKC=~3%L!DOxKT&UT3Gx>^8BtUhYVI{P9DI zVd>0HhHuNua+&=N4HrIWwUq~o(js_$4dHkU{$7qN;Ux`=w)P_wSQX0`0LW zDFMWDbz8c>=*Iz-3fEEukF=3G?>U4i(7+9Q$#KhYu z@5>bo@kmOtW61u~gBPF|anamdX0}+x*1@3(OCAh} zC*CQepkO=ZWWi$7gf31XT6a`P%9@aE<+;2pzjf=Dwvo{-Kz1M0)Nm*$C=m5oXi25J zyc9$}0vVfdEN8gqFL3_p=<41C@lbLt!6gYSM zIJLhlN%{Kqnm+!!ePd%n*m5yBIRXHh2cmDqpDdDwl{2jMuIOXaD@Cf%+S2mGXbDW+ zAdSyCt#Egf4F1TWvBXX*G>sy`;%yj%8n}W8dpN=RL(BZvyl<6K|BDyC*bQTT^4>CKMx_ZO&7znVO-M0?>JZOIvw|l`y9I zBVuENLqb9>Lu@8#IA{&ru5s#w9n2)XuV04&ZXuUvz#}Dfezy9k{p)fD*a>hnIJvk4 zv|f4&y2QwYgdCTb_wa;UNs8ysD&;3`!}pFzO}zsutF9lLcCxatG_4~x zq)2SpWYPURbCV`mm>@%FmgVH+Sp6Ct0Wm+xzk%fI>)T%W^3|)`03Lw%x5w&Eqo0+W zO$qyUsc$=MY-|p-yx7Rt`0dP0mdivO_`V#z4~0N#2UJxD&WK3h1ePV4qxHmKMKMf!@QR6zy%VI~^-J@u?+-Wx!-(Qds3-U4Qkb|}0PP9moJ zJE{h6r>2h2Nv}iTL>90tYHq>K9&UF<>A9mAN^F1g3BDCDB%GV z@(k4M>~f*_ERZa6n3QhX*4`einOIa&^r|+b1z2uNjK)0ZCGUesa9dm3J>B^C9?UG>tAG?A&dy`4Rr8Ze)gasTbP4*h+71iqh; zg@Ms6OPUWN4;Id*{S`X%7cgBK09{Uj@g!z`-hp38h&5c1$JNy}h9@C7Ft8Qqj)S0* zjD{Yp?#4}HflduG(uzj$$eM>t4Q>z!GD&r3fE}RZssw?0?<&N z3qwve)Oa@b2QygQ1& zDA+D=@F3Lf+ z0eMObtSpHHT`tI8L=L#Jhd0?|jpnze1il8R$Cnb-jE$d{r@iDUEM>&2LOGKx!Vb*? zPJA5$LNK8HBm3^%f@aH$i)j=J69!C3H-K9g5fM2z>L@3-iPL?2gSez5_pxJ)u*-{! zi^5+YhFEPOZpMI9O%N@$w6^+<*bxjzSK#$bW1Jo0q30`0*eWR8dN060%EM3gN=>t06)JhYHprhUKft+iinDO z@IsHT(pl9vL`ijjj0_BWZAy$_lBUqt zHdwv_ARq{l2x2#!#8|@XpZ5hs7U%*7*m9l617Peu#O1S+7P3mwQ#Lb8omzsL=}r=+ ze}qT1QfErD!DyS3Eia;it?B-uu(@YwC>WOiV6vRZV!Z literal 0 HcmV?d00001 diff --git a/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/inception.png b/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Images/inception.png new file mode 100644 index 0000000000000000000000000000000000000000..b7534bd6123b283878443abc2682fec5467ef067 GIT binary patch literal 70668 zcmdqJbyQdF_brNwfr_L7q6m^wQqmIAC4x#wC=DV=HyDVL5|SdIlt@V^0s<-`qI60t zArb;gOL*t@`#a~JxZ{p<|Gj^_<8|<x{caKx5^@z~d2JGs zEhQu*TfgqwfxoQR+!DwC#9S2gTyz{PUEHrYS&(R4ak*~i;9_TEdd$tj$=SxiUXb?` z?@8`s)-EpBoyGb1uKo8n@H#kI@ku?=A;*`HU02q3CLy7?Lj1SosdSbN$rch46?xh7 z9!b*!?s_`ihu{2ipgv~zfaxAhtGFXq*Byh>VdJN-UUZ$yd*RwSU^{S8!Y=R9_1P4f z<)fWXUf92vlI`JQSzcCR5f0>`elzcxEEy5)JnK8lI@&0;-0y52#iFw7*0Ei3yzC-w zB>2azi2d?%G^DbWzeyuo@V@{_Sr#E#N>Zk?lw=x|q_Q7r{{QfD0PW&L``zK%5G&gr zPMyqS(e*{AQW?GvR(gLl7r2;jnDDbNw%%MlK|o>IXY5l9{x~yG5%;~QHsoN|*_6}z z^v!FpbxE0W?ghl|sW&fjkqSR5Wjn1U?PcP($|{f$D&anpu4nZwfDE6^H!O<^i?ryE zW)YFSEtf2~(VJR`RZcG&Ry3eMO$a2Z}rCrZ* zZ&O=_TAAm(WoGQgOvUWIurS|(pX1x5ycS5_3=K)wicfXr)zsA74&KjY=_OHBRrUVE z2kl(FLiK{%gM!|+wFwOL@e2z#p7$YPV`GbtzgHTUmBr4g7Hd9G?y8{{H3evzphhpY-$d+k5Ebo2UF4 zEaKwyTwGjccO%(@1WP2J$==>^{;Af@kb`{M)qcL*JUn#Lev%{-Zqun3axT6qFMo3W zgrmE=)t`llr=7NyuCKj~SSAu%`^%hHNA62scXwCHKChjoNX~2cDz((ksk_BofUYKx z+-z;>C%$$|hPKM;@3EdzhZNa$rTa%SycQ?pA3hwJnQ5A>{+m2A<;1R;l+9A#zthl`O3;lL`1}!bd~6*7xU=d+}!l^_0JU; zONBFtMSVXNRT0RhLOtaFSL)85gCE-3q5{be|Hhi=xz{E;xfJgo4ZC}HXIEF(m)_pC zCklIbO{#KpoELtav+a1gMP{hV*R`=%rJEwUBJjYGBaPiA{u)@i)`^%0yhe#-&g0A~ zQO1>_ulcl{CObHBVwFnm2Yz(r9j?32INqA3v|~|-o?Lokf#&GZqr~kP9hIN|-ncqd zP`xmjXH*fJD16n_#ztjxeKp&p`t;6y3@st6Kd;8C3|5{_Sa26}n?7_VaPMQ8n_Fpl z4G-N|Tb>m(|46AC#~XI%&h~x#_PNaTi}g&UUb%9`XR%Y4md}_0xAxn+I}@Eb2bq|d z=as+P4|BO3JwQ*d8ghV#Sgw@!()*qsx|Ypo z{Y#ewZ96z}^YX-eR!&B03Rd3$Dy*WSLT$|M5yi>Q9HrJL3S?wt-N`tmv2-N zn3KarETgx?1~D6ia3c;OiEVfOqv@BdDo->Xo?;Ml3fSCO(4@!nPf$a(8y?85k7V4~SQ-em`94wXwErg}hi|-Fj=wwjB}i z@gIX|*hP^?I&*Y)UPjtM>b%qY;;P`aUZIAD22uAJhPxDunKtd26Q?&F4hxv?($v%> z*7f6uH3?$)%|v_F1a=-lK_ubzr9KBC>y{f=yYnXube=qU@>I9rC^BZ2NwwekJcF2s z2uin^{`xef`%ewa1b+6FS|RouQlw30)qRnql%vwG{%M+LVd_3C?(%eDCZ+B3XSJ>A zNMVOM?gs_&bFAUiu&Sx4aq{wN>ULGQJ7nt>nwF2hefyUBn3$-ja)EJWTg>d2!ZTab zkp(6`v7Jq}qog^OkdUC_KGWYCV^rm%zcn4jVCvKB%1Yv!CVq|7l^6AuI;bIM?wC^7 zbXpT}{;saV7Ok>8JJj7LEt7caTB7m5i3`t^aSGa{5X%*$%EeaAT`{a|Y^sZsozWyV zwZZ#sKAcBd%f9~YU6esyR}8N0?ACN_t5Ipw%8Ezjm~piqkC=pn+Qy&7cCMZ2IB-+R z1$u>YThqUOy{r<&GJ#b^VWAz*E^w)&wf>k4W0W@DnvR<~^$7)FVK|EA=a516`N<;> z_Z;L+e^otOr5hFAgP==c`_CyL?2Y?g!3alp$|iZ>fXBb@jp1;j>5ovfwh>C0?rd$CbNIsRjiF zdAUY=rzDFxD{f84`I!1d6u2#IU3r&uLcRZPZcrclIZ&ZHyND{LYHV!0|EtLFUKMUXRgtS)o1?4phAO>98ZD5D zLn|sOW<0Ti!WS<(d2%l1hcZh?7y6wWMjGrZLf$A^3WL#d~R5_OaI7Se(gZjQ_@Bw{p~b?APL_b}y53%h|z7 zynA?LB#mqS*ROBC$3A;$q-^b}_gLDv&sgaD1=N(omI6jFsW{u zD^mH)&a*aLyT{bbj8nfTUAA)cQ`G#|x7$#^Z&y}U&XmW;#T~r-%3r1XoObZel5TON z-+M1!yg;C3sAX{-yLiBmQFE@K`}Y02rPhJNhd-mVyL2Cl4)+Ff8+4@Dz55B$V|Km?Z(Mtt62(i0 zAx(Aly{Xp%g+)ZVeXsmE1dw>Qa)bP&3J?U&w_%k}0uo{2)o$LcTerpwUpK_H*Sy^jo)!!=Bx19aezbX1|sM=w(|Um z{RjeP0RipV-VaE($f6W8Gc(+mUWWRvEm2WY%A_fVwJo~W=h6vUo@H}=`+BPV zrGfY!@R@AhwqL%M;Acj?5_|D5IvPn?y1(2t1OTu#N0-mY zQ$|K6(+t~x=$|l42f&u|+!NAErS_dy z2UYWfxTW~F^;h{mq-It9@yVph$L4xhF_1Lu*(6m+* zX(BQ*(#y(5MWa{WwYneaDJUdlq;$xyJ!F50f68ptS~&9Kxl((h{(%AF4&sVce{nYs z3>*nltO35({uvN0?eBNnI3Lwn()W+hK%v9n>jZ?dpu?b~k-ni}(p#^Afq^owMcc%w z9IeM&FFZT{wz>KKyE}V`SUJFFoHXO{d#hvMQl!csw)LgbE~H?;jYVCvJLyV~wOU>| zn&EUcp^L50H6qzevtJ*U)(j11WI`WMk z`fsl8l$MsR6qIQ3yEpzh?moWcvYFZKn3(;^$;tJ`jK7zbGOyGGs>h$ai7z;pt<8#y zc@us_;t-06@y>__uiv9&O5qIrKRlx3v(LBX>Ifb7RZiqmuFXrM7ex z8e$iK4#~r>*&5)&fqb7A7ZbN8Nz6I$_D%}={>-^Xk)h{^DRK81^=iKjqTfMGnBr`4 z>lXzeJ5Nly%?>`oag4pz_wrZmL6aZ$X{)Q_DGB1PCvXLiflBEl+sc$rEkC0@ed9s- z&p1@6o1T^%dlTNb9bMx z-qJvR6Nn6?iKu7ivzZB;hBVlg;=jr1i+UPWR_3`|>6>(SzEL#2h&?yD3N_S-wl_Do zxemM;nsFKg1g!t`>C@%aQBw+X@)#dqU)D>PF4Z?RY5rbZjM>~=n{{#TJ6q(vY)=+} z$`x-{I){v^444u9KsDohhU)$a|G#S~Z--=~+GbwzsYIn;%*g=gS4B~Jz|GB_zJr`z zS+~GgSai_Q(XkDUTV9TCmgbQO#9&lhT%2s&ELs$0RGRhyxyX{)`r1Qubez6uqoQ(h za?EXQPsE(KpqeOX6>hw|obIbKyEc3cty?t7M9bqdoL%~5P8p=i2)PIr74NI>u|w%N z>&ljvmQm5s(H&?cClFm;pLtBG44-Ld1gD=rk+HryuZC)*EhBSd#`T2(PZ*t`qLYiu z1GM59mW_!7&{Zky+XN!tYwEr6=S4@UgGqgB>$#$rFNsExZQzyT@t%!+xLasp*@y@e z5EP8weUO)Xac1DsZZa}{J%`V+JghR}zJE&cxhJGHmj1dMvqYyeEOZ)DYPaSaNo;N` zo7fLkU7OY-Wva79Sp8j}KU*>g=FBFIB+u!oq|O4pdk{ zK|$de{@sp&Y@^D!!RcURh#Z85biU7_nu?LJ8G!lPb%&T^KGUdZVy=_4h&uLzyoSd( zIFv=^-_*&w?51)`N69EgO9K)lP&<2+NTDA>>6jD9g z-kza$5E$-mULFr(LZh2jAoYlcSA7)g`FumVt5>fkJ$hu*`eZv;Ce4?dM6=hPNxrnS zgziiGvE23pJO=5yR#+wA{T_C9c2rN)Yue*V;iF@p<7O)hE; zzK-rP;>yF@TL)25?)Ebnbc(F3thErmWpi>~PB#*KQc@C!PUhZIr%oAG`#r)%Y6A#t z-L}njsfddD$kxdppp+a0espjh8@oIE>I%zt$ zW1Cy7@os^+ZHO>S}B6VA)jk^tR6jiKABS??3R% z)!BIjgvK!@rkeni%+d9FXz<@U;eaW!MHk}u4{-lLXJvD=x$&Wh4th^eO^>;_us&uqDwPKS$7BoWW*``EN>sa}kbL{BA@a7Kn|}s`PTb-EG^ItAe%y@RF0);mVbp zV36?Idmz7^6i0tVxuc1t6S9uTp8<*jo*e_1078!**}(4FwN*fvs0}%06>98~r1w%N z4Z9}MDn8NTcz@DPEVA${)pjNo)#4o_ZK&^iC+pt7KlH$Nb9Fol{S58FgIQc^HeDn; zckToYr(6D;C^I)oK&%Lv`EIV4nVXt2^B9$%*S!cRm5meYwHV81!n>sn<$=5_QfPAh zTg_ea#M;5UXj*5d<7?6H)OVgfeR_v$w1g#)4hqo9uaWX1<4P|Tr!vW&bHmZ5f3Sb7 zGUa|7*MEnQDg(|byB;ZZ7>Y&CIkBZ& zDTtbNZ)}cU;S+Nk8%})#164E~aX@O!cnY>2jfY|x&u`m7q`pL=3{pcxXPrW7(%c4@CA|$4A z`y6|>BfAZChx^W4zqqh4a^!6*KrsN$7^K@6FbHVSvbsm<_U~6fABhVv#lds=(Q;EE z7PHzcI~;Y;}pl z&`}8q37jNHC#N>wh)k>BjsLB8pGes20sxP!9o^ERHPc^K1484eb_S|9nO$#*iY^}q z$2~OYW~NcUpJyYBgDx<2a7g*?CdgbCBw|wOMbNp|-P}IBd$$$k$fz>iZ0Yxy8dzH7 zQMqSR&2fB;gM)+RWNNZ~{d!NenCOLVA3WBJroQIm^ZM;omBt$m>?7_Vz>u=drl+S@ zaD4>6Hu3qj9kIcJpGQ_WWcRtQPRZd2vfj><@l5><4WS>x4!4)PUS-ov`UomY4gtS9 z^mjAvu`lguNq*77h!NIhStS2Junxfa#2rF%Mzt(+nV>fN5USFx;CDwZ(yr{mhezBv zd|j?bRqUUe6S(~9DSf64!58ilZ(j41jdY=0Yo?qA(Dg~HFi``cX6exM6vw^LrkxEh z5Oh801M`m&OdrSS*7EHf9PR^4;C${VV2vp&FVB3nj&MfHcLH>BHy0nOHB!VFYGt{A zuC6X1(2%)AgiNoAHK>Hj5wwtc>anFBb6>aMjMNScJVK6ptet&QSXjf&7f5(|s5%AcGs7b` z)@5nMzPTJwDNAAojH>gG7N$(iN1q5zV{G&b9WB&DQ4 zh1GW$8akCRP*6}96*QINpoF8fM&}Ye{JS|tdS}$xxf3x20X8rX><&DUIz<~b3V!m2 z+uwHTg9qdCFOr}%uqiR=s;aU$q-e0Ru*^Yv@SD4~wz^7?(*O&qM6o_P-dbaq| zI1zsSx1iR;4vQ2yjj2jXN6`7yrU4vm=>r55A*2O@$jk8_`9OYD(j(P- zvz|SLr1$DWhYB1Q5r@Ha^fKi|h-{MQc0B@>mNQ)%tHW=u=lw28zq(e2H6!Gjr1J%X4!RzVlBhL3q@n81S2Y zXaVnWvB0?T>A5sf6cez*$Hm1H(QOf01_TB*@Z7%^7l~2?ZsSt-y8G~ZGSt?meO))U zY+LzN$4GbbG6@p>IMOn>6t027zTRF!VFUOIQ_XmSsALemeypds7yZliuWz=ze*OB8 zkToT7CUIyH^g*B(2(r*IHCC=U)(}Pn2gOs zvH_KC2DOfbjcu~47-5Cj&br$B+IQ^~b}kd8>H(+Djxxh0e0eQ$Bd76e(c_At%FBfZ zi-KDJ=azT7Eipk+i4ic{0jWZ;9! z7M~tOLeF49uFFQKwSjDRbp;woN2ja?jx;JPEUW`5gJ9t~-TM4je`m$?Mr`r=C10mU%z%tp;>#)68AX+ zAblbxtF+HA3KEJcXo@K0a#nzYY@~@cG)Ux=TZkUgSYKT|R0x7gHk$OPJ9qAwTUoKc zupcn^gDOBCdsbOFB2ztqc|X@hbpc`F7}Z#AP9DAIG6h6U&Oj%wLR?&KZZ3k;kK@Uf%i@RLHPh*294ys|E*?(QwmA(0)74mj9US)|~O?pD8{-cYuqy!ZTE- zord>nPzIfs2N4R67Mhx^gzxh<)(+xU6z9UIkVeoQvemZ@=n9a7 zki#Iu&YgGF9mXqWtJIcBA0@aF3($O|iauh&vS^1W0&M4io7W2R+iMR;2(ooRQ#Spt z3JcGCdI8pmAZ)&U`xeS5eH6#-0Jq)^)GHVSva56-B_-(uMTHs}A=Bg6FfF?7*%xRw1fexm7Io|}InY*rPsDXknKI6TxtZB<;j3NTJ>44{ z8>})0$O7fv3BBnt6S6xLQ$6}X#_d(4sprH(SRl=#?NrbP&5(ZD_s=1TbXs&>bP@qV z0Km}BP`su-<(pLVa?5e_1+QdZ5lvccyu%k>PI*E=EHvB29{al6!kw9h81pM*lB_Zp6tro^CpH%_XlWs zR@Db@`uiEs#Qa&DinD8<$5ERYs+I=7#Sx>5ghNo3%F4=L@mZKga275_@spv%}75%z+z>(xcLiUQ{w09DZG(Tb3yN>dp^8XT`et;pf1wfTY#hB-hTmqjnq+xJdCce$al?+Ao)a2_4X z)|2R-Q9WwVp>sg7D(VXl3nMa3u6}VKRP~cqO$@+%#NB}@AzIcKlK%IGgc|&M6J)1m zgfYQUg8DLAn;aikLhZxGJO&Lbuc%lAwW3no_C+Fak)Z43d2I8C*Pio-_)SR>QC>P# z3$sHhC^6dU%2c4UYQGek@r#IzPxlm01ha~v1fzZjq6YrRXWC9mN@S=%OFut@B_m|$ zsqTU-R79`a3eujx1F-xeU~a&ZPe567i;H9UGE{x7C-P({4{0LXmip>yKYR!TY3;PR z?)fQ}=i&6;9S-f*Lde9dJ?DNAm0wFs>sfa|G=bj1%EH2<{32O3!xW?oSmC}@{li~z zCGd(|0T&z+vIkwB`m(pY@*VVdclwX>^PfAR_dIoBA}eJwhEKmperr08xf)1M+!8`5 z&Y@vo;O2}`wLx%sS-fr^jTd@uANA&q3|U0rUb-ixRXA6Ng~UD(V8!Qq107iea7G@N zT3&rC#Bqm~J`jDXH%g$38R^T(-6DQS6+RSgdHI0BDv{7|AUmh@f zxZsWw$N%(UzoSX1{UcIkuoc}gKs#ztpU2v;67A3loPaoz2^^*JZZvW%N=i!E?z4kY zEE)c9MnDs*-Wc@etq1mJ-qHq`plwuFfg`}SpIfix>&6BQ5N;|r7632lUw0LlNZWjR zz}bdwj?kaguJx8gl4N7mbioQIS(;h`Ty!{SiOwIkrXRv1pf*OPryG#ocHGd;?r7A@ zy_f^>s!EbqP{ZdJ|NW|*vf#Wv-BYEQXI9@T3T|v9};q$g(Uz1x#dTAg<{$j zh;Ja?*u6hIpw&UCI|%_&Lah&>j&^lnx`(Fa)E>2{2j6)PBWK@O+E~d?|Nbsre8O?6 zi-*_vwKCj7ZAp=RNYV)Nf&Qxw2wFP8!A#VAFds!`b^Ab>d;~rlnwr+9)CiZ`!7BV> zWo>QS+>h4dnn|Lv_y!jmWm_S7oma zNU+mT#GS^Qj-X>bgNlW;c^TNU+zTBlL7dP;Kak+uxqbV$$;rgwy2<3K(@K=Q% zx(Squ#t{1O#3bvHWt=2xAk#a$_iG#Z147O%Ep=5^%ltn!tKFOYp0<+G>3IiX`!hE@`P z+E*O3E+jFHjE7riP!o^lveN0uhfd_}QmPfcqp|Cv5Q zzQr2cFGh_5QSER=H>D0THbKN8IiH)CH~jhYla*d{Hcq(qL%R8fvgojVQwLu;o>}&~ z2;5WC(eVHn<`7FQ&S4QM4f-<~02O!x$06N6J%2)7LnGQK1wJM8wBrbG&g2Z%M^aVZ zK7&$I>W#?cVn82g8!aGemH&n=Hr46utaE>s%oN$15w36F?x7;p<3Q9C~zn@ zQ)Q0({A+HmWpUD{54Jjj>jPOmVW8WlK8Ay)R-BK!kL*~2Ze^g5O;|-jOf18j?rns% z6RiOE#KUp4)1b?RR@k0taqMkUhCY`rVj$=B!n$?q4fG8YF?@v5YVXu%^xC8FE!|y+ zf0tKelamnkzo&ZyPuYD*tl4=FqSr&ErY z_KHfB(V4uJLdXvck{%H_E@n11HgjI68?rP{SyX)fZY+}s0fjdDQfspz+3p1{OT*7j ze<|E{@^xklSR9;7LT$-5syGD&hyt4dIfuEX?-|TpAm<42I^gbILhJ>=d5_w?cM?bq zvDbCk%1WusX-w4l`(DsRLa)Nl!OTXxdwa2EBeSF=;Xi}{fIIuED4`nQMprY@@0+C=Q4toFBT>{LvXGLA7WFA z^jQ#c_rk-!!zzR}H~=NT4fqp+p+0Pe1d}BE_mQaMEofqsFNH6^A@N)PrL<%3AsK9( znBTf65~Qm8H2M$tAX1=grD4om0k^T+Mi;#Db z`s?HPQu6Jguo8~O|Bsz{@l5%JsQ>EAE7Iq?z=C*iDvj1yH_TDmaz?ab}`K6r;>0lT=w#Kr%C4QyLF z6bC|AZFgPOEOMF9&Xy0Nj*@%aGWG7SeP~qrPtBAPV>GDsusx^dc(+wSK&|`g@%r$1 z1x#AJTeJbQf?bI|cS{?NB&$lBTTBWJY@^@5vn3=Zs`B#k{u6|{BIDyZ8WRMSPUvKY znp;}3f%sB^=O_Yo@M#W$;rQb0kO|SP!$F!3=0_O~j5734G|S|su&+jTRQY;yf^~>` z^ypCsB%TRkhh~;h;4%m{9R9{A?d%7t4>*{}kBFZSzJFgt&jBn4YndT00saakD+iXM zC4E-32!_G@>Qyd6m4869Yh+7Qq)<{TvJ7;P#<|~M6k#%IL7t`EdA~8+>FPA|%yir(vxAOS1-bVmUI4NWwQN+gg_3LoRZ~B_;2>x=!g<{yMh&fp@scuT0pD%6;k6r&sOeq%7ihhr4<&2`&wHVXjlxgbH$x?l|~n0_;KZLAN|NH}@5i?VpGWrd_w@ zT0K`z1aeCJ9cyQ#;J5m#A@^jM)7q*jAl5=mIG<|7AT}e_XsJ=$zC*ACY#-qmi{;k8 z1-**!is~0z_M-%B-M;%!$MW*B6*4%tNmUXkIcES!!s(~ZW(F;bMBCzWn_B+vWRYeVJ&<$2! z-`pfl+zt3+p2K(nS*i(r7x^R-_`h$j^mZo+KFAk-|2_o*p}jK!PC7#IL-HsW5D_V* zc+F1y*h9tRjtj9b)9QLE3S7n(RmB9J`jJh>x(NMQk5p8%hSFj9+9MJ!sEJQdGSNz) z1r@C4C8|wVzR_o>M%nNcq4lr;<_8L%oFu>#FlZ}+p7064DR~HdD9))me=Iz@;4fU8 zk25oq{N!jw?^?4KTcU0mEBvybzT%$5+E~{Yg?>7kl&4q5$FjJkUGGacln*}qXi>6s z{jtfT;RifVD^JD7$H!0q)~9m!ii<)2WZ}g%`wiIzY|p*+th4h(5BRBiW9brpJ=48w z@g?#Dzt@5_iwZM8eMP?Od>95*+7yCz-n0OCEOWs%D!Jz zF^oRLJ6R~f5I{;$iqSwuhC~BHB^Txo$j*cry??avFUUKjypDYSB)Ht;vdYg-W=oQE zEoNc0xUqu@pG(m! zL0?FPTgignzpq|Rh){NUZ7^%4ek<_@sWAVqpxzXRZcm+~^Icxl9rOdIoV1nhhn}>J z9)VDR4HW@C$-2|5S44Tdzb8>OWph^H*1Aa;QL+e61m$QB51v8v7$YL{hbI0t?9eftu+(xTbY}lFi z?nY}G<0(76V2x0a#hu>vrl#*8OeIKqIz5{rjDFaNre~DkxbL#4^!puENb3C(IqG+| z#!SpnA|Sf-jOYXfbr43NLC=&|~upI~PHM25Fns_|ye+aH*a z3+Pu!i#$~Qld;Rh;~v9yzx&PFp9iSUig-UeSX$S_yzE-?Q8Uu@y(8 zAK6^sZlv`n@6pLhKaK?TE2vmlAYm^`ZF1I4Q3Ec1;r)yQ^;AjqWc3eTl2rRLGVxtTL&SSJuOXD-g=2OH{Z__6$6>c!Su+8Y zD<{>vLnviUuw(Ggm`A7rdPbS+co~m9}RYA)g_Tj8!o#( zD?EPdjF|iK{_Yfo>mn?P6-=$U)pL|L-mUV?VI{=@QZM=$I7}TPGnP-=2vMI1+Yw_R z7xR>f?exv@!nx(!C!d_Be`k6=pjzepH-{+gFA~i)W*4jlS}qJW$ZIwZt8~9*;M8ro z=<@aB4g!5dJXw(!KC{8=IQM5y1Fci+%EgRxbmK03vzPPIJ+~iB)NKjhq&b>4T(DLk zdN9}5(3hbpt-DatYeU)HsHwIqDbc>SiS@*bK+;A3`XANf4xc*csi_xJ{_1A>Cdb>c z3EX_sF>b6Lekc2uPi*EF{rJu0_IK)Q6&Xv*PnKfO^CdGn>nH?v^Sx&Lw^0|9R2#p( zI4I^d&#Foz=D+YPyqjHf_JyW|n$BsisRk>H7b^TGPDh3;n>f$dbBy0Maa=ujsF`{A zi|4A!#c8=BbAgj_YNB5ZqK4Yk`DDk6Pu4UsbBZNI%{ET0a;q1=BU>tcKUp};bR=>V8CT57v8h5wE2&j zB$XWw&Pcd5=4-2!6L99GUEe!(S>l9jlGFS7Ig zJ*7K3L;4O&aLXzmByJ5!$#J~}eaD-)bh9*}D;NGIp65v%`f`O#uAKPz)^CL;ym+LW z$L?PFlKAks+YR>pd&ULb^ln8kVVB=2@p7|m8L}8(9d{I6<@o9r zK+`!Y@BNQt?n^g2ZrG46U9?;wpG&uU+b?!7_85Uw8M7mvdU$Pmh97Qbb}YF#EZq`) zHtE{GPbdESv=y%#bm#fkG-`3%p^t}7;mtQf`Yba_1t%&ybX`F+%yN1u(X3qSH za~)^g>f~`Gf4SUn2X<_<)F(PAH<~(z`fe$8?8d|2>#>&cCq_T?(8+#eBGzYjfPuP^ zvRcj1pZ=!$4st^wmxX6?TO`zsp5XTsc;o0K&dYwh@b8@^YoByJ*pL}+3<5z z_I;kS5Z7#IcDD5a+JNQAT|z>IyjP3228rr>{WJ}-Nl{-wl=qb zAb10)p;u&1hA$^z2GEA%{CADrv>cbUhG5I4%@Bg!eE>7d#Jl}&Y4UjMe0 zu!urSvk zsDV9i09n6axC?zZ(Qxco1W`$N^?wXjN|1oWse{1-YT!g?NO15Ily`2U@&}-KPIn#x z4iCD2zgz15y?Z1w8QK<;+t_Uq`d6;RTrz9Uc4RF7b<3gDkd>L2N@5R@|I;lH-UxIHgn_iu71Kn;n3Y^O;zY8NygYFt zh?&I6w`xI{5<7N`7%Cbq-?LFByp%+{+&(8-)$4I5DTG7H~Rqtl$aF^K*$OD|8eLJZROO#mwq9PXDL#Up(!YFy^5EeJ0}Kf$Zh0joLF<-dZ0hlEa7;X*3u8w*d0-nQ zcsS|5>w=J=IB0_@N_E~TspLhjOnl`zz*u&h#pdqAKQELn1cxM~ZfEK{^rEi{Ryxpu zBLMW}0$?^Ebgsa^8f^p#5xx}Z>2y+76>7pQOR$%a@5`0I_7Ro={2Pf;e@4NaLF%t$ z-IJPL^R9tnj!Snt4%Dkt7A3SkWKasDR{$TLja~_Sra5d(SooBe6y%B!jFs_2*eAh^ zX#(OI28>o=F~}@b4h{~ud{EMub(eKG3{njW-Ju72-mQt#(0+=W`up9&Tr$>jw`Iw4 zs!@y_k@rulDxS4QXEFv>j2OJNYECA&Qt-7|QyjlBeN-t}1aQ7DLH&dKkZ&Di3)ltU z_4Peu^jmqWS8>cI08ncvd^`W_8x0|9pJBVk0;y-`if+6pJVO(3Kem;I{>}3%HHQGR ziwcfNd7Ymv3ko6w2V@Dy(1h{diYahFzfOqXEI38#G~J~}B7TvlVZm*zQ0Oz&Uri7b z)PHZ@ir8{+w%RoQ?~o+<{WCVqR$djmU9yeeqb%LJf!Y$m8^uyMZGKXErc(Ba;*)^1 z{nZOkReNsHRi8aa89;FcC0_X^YDAhg&4K7QB}Uz%*EPJoRi=WsC-l7Cc6h$uoiF0p zs0AvRr<~lAKMH0>L@ukZ2WzsiB(>`v8~ip98&ge>J?in8^)oxhj`!o}9?izbGT z%RGD?D11Vp?%AE^r$pZN%ilCicD0fM+h)F__#o-GZ=S@zqXPnT@|dlW*n$_VULwf@e_2twzw4nJOY}v&39*?ub)48;zdA^ zq2iEuE#0O*r(LZ^-K}Hhg1FMX?ba+WH#g$-*X-v61dfsvoK1=!HQMLS&foj`*sc#u zST55|hw^VGe(mJdXgX*v#igA~*g9;?BTE^o3ipE%AO*kokjAO%PICVhtBfC)vP4yB z`1icRr`hr8X94o$T$)$%KZ; z`iUoptB&mwi@=!#!asR=ku`i^-bd*qQWP zos#t1HY&28$K9lb5;fH{o!1m-d0&3FTVL0a+}%S51PhB+{dGAmIO)K`jG#kjWIoFD zu;1f=Y!<7P$AWn5@V;0(`gP8X|A5L}a+wyQkHhc;3)FUP*d7vvY~DedM}7TESxCnC zF=J=J#Gf^NW5o{y5(~R6opG-+qp*gWRMvwpLDd?05P&2Z`h$Sa%5~z&3&<6(fK2Y* zJNHqJ-M%`#uFW~1?%C6e+|q}4_^NI>%s+hh*sd~@%!0=kFz*k7>(^*K4aV>rFw><1 z!ho3j2P9C6lCQg!WI5ECwP3P(u<(R1+UKH7e~oEwg|mtvr32O3h0sSsv4($&oET>T zQ!)-4RXS8M*shXcLrM2Gf)#xafhAzjIeYdjRGt*u4Z?-+AHxxccKR-YErHXbyc@~} z@%x~*i3ef8NFV-C#KF={cRnD@U&{R65G(i@15et~=E2TFAsY8<2o!ho6`G%@!FVvs zEm-!L;yx2k#MpCyI~B7a<>KJ@vp|YX7z{x)IwWjMs}{@sw!J+X3m|6u><3?~VC-V= z%0HJ4 zrm)Za-k6ypamh0dpgSU|b&n|*5A!h-NNT~nhb*3~vGTKY2-BiQMIuAxWo50{XqP+( zu(^8~L?b}uY<+HCPmSTLMhq{}Nx0?8Zh(pegLni_df8{~ZS-elXF0niD)9m3`Z)i$^f2x;e=!NJo# z-6JC-i(a;h^716TmKS1FW4`;n=CVm>;C^@kMQnDt|8is5T@s&xS1c*r?y%PIcaAy9 zO(!t@-%>&FtM-aq^-q^)!vLW{WzH=ubZ|-IDHeEW38tR1yp7VW5 z6SvO^qal^W`K8d2?!mZrT!k8YL5x(whRV}Zj*$>3d6WkZd;pmnohOKy9+(AfwPx@v zfeee8siyp{8~zbV)pDaBBYuo#KF$yMk$!xa+zjpi006sA)q2sLK7;34a1h>BSvhY^ zvO+df8}4iilUwjC0&XCTJH31FNGO`ougcHWMo#*oi{aj{FkC`ZoQ zD%!nzXTrqCANe_cpmp19@b>n~*ZgMwjQ^7YLjXWJP2$|7!S%gk3>f7b&@r7s9CT;g zER1DM#Yp>a!uS?v9+x2M$czD1JQ4^GxT2uIco*hgDB-x3;r&}M@*PQG1up(N2pF6I ztig_O#$mitw(P$F#nsT@P#ylujYCO${O+{LH#tbDg_2k5$@u!ZBXDs;hIB3}R1i}SAR?^30?xSW$PVGe>I;xMwJFr0COdLV8< z5^(1ZKkz=1W7Ibigmf)}UjK#de)#Oii4iPuaf9xuLKyMA9w`FTt>Vb&VYUd59U&zp zJqh@VKe`58gXt~TsNw)x3TTfWOVe~9GGJ0XRr70X2S~|@-)nUFlDq2$KZP#dw*996 z?kxe3j+y7|6%hl~ABViGldH#%LD;P_moFb{YHEVtj;&@3COu+ccM-5@W5L9uA{r4q zABnN4skbAO7O4(nmn+KdFevZ0V|FuJimS3^-Qu5v^k%}Z)&9-6oo+|Ipq z@zDc&f->t;{x$lb5V{tY)6KW=b7mde#h8MS26n{*81}EPufOtH6@cT0&~g|VQ`AfE z@53lE#&%fOdJ!ax+fMOc0Y+3$mK3X9^yRLxH}a;IEf^ao3kt4lYz-FPxT-DcKQk4> ziTk}@KzJzGT!I{V`ar_bhFP3M zNsqZ3m_n-jjnI4Tt|d1aKHydVRrp}gh3xEelG6T5`8OXa%uFq^;Ok=qgte97p~4V~ zKjwbQzgMPzd(dI)+NH?xL(E&`!Im7}RBbg6-{JRB$(_$n>Kq~}DQVj0>wI;XJ^T9o z`v+LtpO=)3V*GRr2K@5{#sgoy;vyC=rj*@P)fPa1hX+^jp~8l*f-SNe!uU z1QLcJFANzvc(wo-`+A7w_4tYnreRu=7mCB9KPgG7tiOgQsAO9Gr9#$r7FZ8@dNBvO z`j(R8zLK85NpB!&`Yt$!`&!2_-l3w3yO&o+wto*wJp)QT18a?yH3oFQB6WjZ|28pE z4;v)Epde^~%~a^?jLeGP!e~lMtgJxRnm(blvVw5t@cFvj8u8Gv@bDd%!ONGxaRC$2 zx36E{AV7*FWxh$*IaHIT8gsHAS7OH9n>R-=TF`Gi4#|rO zUu#a1OvX3~*`LI>i)jV+=3y2UEfl1o3kCgygT^ey6w~TjyKKYc$=JF0>F)s_3J5%C zfx!oJxKCeoH|z?pEc3f)A|$f=)-e{Y8mT=*bBFuviFWJmJtgHp78Qo-j7q=ni+F?y zex$yBPPhbsApz4Cm~mG{X?b2$)aJcG#N~mc)cqh}MxN_|WCd}4_&@iGvxW?h!g6Cg zwwFnmeXw8MsM5oayHP-DJ(KXK$9_9o*O7UR>U3!Ocg0pC6KG}@!!!L1yr7yADjt(` z{FQgix}~byOrBJe=YI5Vq6V)Tj+$=fD%Th#3(5 zLh)~5>1EBI_LtPwE82`&6DxX&1X3ljtB^$n{#rZ;tRCT0EcELBfTNLfny3U+er2^l zn%-O6_bgB+8uAjuK|o7*{z6K|Ti*s2m9_ybBa_g4KAeS2TpVoVJ~vJVxDR+7sQ>)Y zgIj(7c`n{64q`E^HQg;xzTOfJ^iLvix4>Fb#KQ5dx>eRT=DCv1lao$D#33=k&q0lK zbP=-K%B7V`0yXhtR4S?C1|oqQoFP`Qns@)

    gP$C39=eeKf{k;Fbf9&7hzny)#uIqcA$FPpI*75393~E^+jOJBa>mj?TgW7tyGmj7P zTpt&YAXK2BLJISrV{*WP=TPSZ@Axdfy5_r>P54T=1??wae8t1TedY`B2_Wwmuvruc z!~c*5V&I5H-*XcVMnuN}#(#kT^pcp-K?b9kSwoyGP>K<{Gt{kBm??wIv<106Ovl*S zSpvVRU})R6j=n_P@xMdxU@`=E*|WDIa<_7&;rXm5+KDX_Qav2@`rECHOaBYpcC@jP zIh5;y58S2AY zt7>V9t_kW8!K~{PNUR1o!vyOL-S0e8-=5@W;5_#-Ags-1)qgD(n82t>b3_>facn$* zO^~qU(w$LP64b2SsVTDoi7M={J{5Qr+`vDHXAlBDzstNWCe2Th?fm|CT+JudtbAyn zYO)&MK|Sm=5XA(uM@yzcZx7vUwM;UM3!v|rUT}&Fn) z&>Vb-DMIT5Z8M+j2)r3iz$6Ny>tb@{V3QOuDgc)F`_|S_c(74?>FblWwG~2Y)PwJ2 zm}U~FQ^`V%i>*yflf^wE^x8V9{vs|jJ1I6*zowfyyHK)V&hww8+{}IP;u^!(s;AY| zXmK2>%=wEogzo$V@3lI<*X;3JH7h;%wqu&m9k~*9uB)%>-fW}^ul2m zwSctf=0n3M!Hkl2A+*2bq31sjw6lL70WRVHvj(s(Ijn@y zl`3z|e8jbj)i)zTJv$cm==6Ao3V#_)6+UL6 zw`aoJG2~}`_O>TJVSRtL``15Y9UgtDzMeXWore6z{2*3o+sdZ~cKxMmc3E$D7M1k+ ziHqXa@NQk{B*T3>@@fWl9*CvC|8qXf#GKYMTYmcqiQA8#T146v&(SZ44G!Me;Gt@2 z$rZN{MmM#6PEL1V#hkLW`utGMjZWX0?T+`}rk`UeyuN-;tE_{bXH=Rujgf8J`cLch zb~Htl&d_X~iC%w)(wFKd)4in7sc;(k)225i=?C}{L$fWpHu*)nHOqA@URi(Y@dDivvI-EbyMKZPtSKTQ_h4gUgTAEx1$_;_rm>Xl}72ppHJfoPbJ)r za%~Ua7O`P7+kRz_lt|H^=hVwLpW15e7sFy{Nh7gI$oXs{#lm(Aw$%9d7ibg@31o*| zsbE*LeEe8<+T+vGl`q>YE$afbE3Nw;T`@alFtP2#Q&GLJbc)R9ySMIG6|m<(^fhMF z!x(7wpQa52nm!q^Y$;y*i1*F>PyR1gGL3EJb}sB`vA5gnfoNt zCcsJTzGuj%b0wzcFV$F??L!jf{N%P~YG|#A&{<>bN_pX7?n{FmCKB{o5)XH%_Wh`L zq#UKAIc0pu<`(COS;VE|opCn3BCm5-(;9Vnj;K(oz1ULNt#r>M{p9jE_v=?`3p1u! zbOZTAxd;5~GutydpXDphu45~Ich}HTkN3R^M|Q$_I}?GOKCMU0Z%|xteA~!vx$I!p z7$++~HYKhvl5?Jc`uGCd7xiNcx!T2iPc+|7mu>x?#B?Fy9dpOGPg*c&z7gMYI>J$K zUq&dd@GPB4lcgaGV;E(hg&2!SP(ze|uxVsgTBFbcrH+<|6UUXvEgK~^hD^6Jyc?YA zs69;a$>{i9zxF~GcLnXTCdQ*Ptva1*A7qAtJ2Dx09gaNyX1yY@nS)2}u5bSOU>a}* zMDG0RJH5TDW6PNzrln)|j!`_l^QCy5S48vC;lX$Vs*bG3wJC4XIEyxW9a@r(eB#ns zYIC}Cbp5Yk{#jd-X|o0G!44T=H~z!-E<0V-79O+9VLXS=5Y$wd;aAAQPGj}`uEdYN zwU^py77O1za4YNDyhrJFUucY`#rc6RUi-PJ$BuCC*sxA)#JR^s_ZubEMw(N<`6S6~&}{ANm8m52 zC7GKxIqFZXroh+1vm!!gJ1=j|?)`av^PK`+L$}861?Yu};g+)`-T!SDw3P%^S;Sz6iZE-yoSc&{k^fciM#Dwy62~5YW|LsNDx( zs0u91VB{#gV^Lz$2jzj^huU=Y)}1?v0uVV+95O95!4uFY3ZP@yQox*i-&@scSelMv z>iuX_e#MmbtFqmXr7C~ye8WLevqHVLTAGdddE3q#5yvX0rM$g4EUo==cifJr3}fV) zai{8kllC|xt|o$psjvN*r8VU!V;Yn1`y7Q93l6apPTzJct%{J0Nr|3bejO42oMWG_foEP-GdSnD%`U7F1Zm6+O#Fx7X@cnb1-&_xm8R$wi0uFnW~wP78Gs`1=PeTx zPKceJVcK1giQd9$_SaP~RL?*oA_~a>teMN2n}d=63~F49M-fJ%b^r>UZgr|vF)@aJUF}uROPv3MM z9chUU*5a0p?tYcXBvJaJ*dl%A+$*~y_6Cj*qyB5JLIH^TD(2OMJ`75)g=KbL>#=6I zH%Y>)&~g1343^-X{1l{33VzIRU00SI0LoirdrtR$-}iNt=i)l2n6cpyx)i26$u&Q= zSdX2GQ?WYyVpZ*?>-vt@cdwbheowE!<@f@BUZaj`a@T5_3rEZY<5|m63OjV%%PJ1% zGaXN!6>e4YY5uIk!5!dSqmagW@p#3tzPh@7lYY~CE~YbS2rh<*DR;)t%^tWk(0a5# z!T9|aeQRE7mzlROj&5~i2oY{&&lxS+CbbE4<^P#PJgixPi3c&XR##uy^!qXx#V9D` zq5guE)F504iP1PduBO|HUOR zcE;!aPFqcns_Mkby%BQ7LzjgPeJj$X2=LUayI5&4CM$6GRQHE12cs{CSMZ)%wCLD% zSErDFV#Iyaj=$meF4pO`XT>{N*8T^BdGadn=6E6qAW|2ghu>he)*S4%FqQ{JD}xBxyjlx z=$5N^wwd#IPW4KgKPKSItcpGsMj`#^ak5^rQWvi|H>j?RI++5c&d^)>VxQS<_MM*X_by= z2U|BM>j}rp91-YYrC-?7zSLOxvs840(=FL?L;1wxT$kvRZ%U5ES#BCtJe0B8$5m}S zIKR3E)b3`(xVSjt#|1c}k^7Oaui@hC#Es5eU(!mQ z&(J#wD+-`}=9%lyCaZyVIn4vB3zu}^a}B?f?qm!8a17>sEZE~c{EKwI<2z@DKm3~E zI_~wdKl;h8PbGZJrsZbWwj7zi#vCi%v5k#4U3S;<)(^cYedEm?!xy*~j(;$JoPPQ@ z=ANDl#`|XJ)-bnD4>XRH9c=Vt`2KCJ`IP_8C0dO=Ogp8*XB0dv`UXoY)5hKyoY6Jo z@P9b@wJ3l0v`gGl@p2xg1a&}Ic{rm@(Vv~3QY))V&sFZ#e)B%vBUk@ShEiba@_!Ir zAaw#ZR!+3_aB`)<2nlE5Fwh#c&~7-i0%w8LLp5DuxFB>fazO;FkUhTaXZn>MVV-S# zr{|*^d%4BO{Iu~qt9Rs-3NKJrXA781BwJbDliQKq{dGLL$(}VoSGM!=&tEf^v(#ft zios4M;@J{~&qgZC`pvIo(No-PX;0Z^^ zSg9h4r}Nh=u0L;36;C;?bH!iDDY`?9dCcjC8THsYmY-o30WQp72{B@}2~B?@P-Nmb zh56=oCZ^PpsWv#E(Cp-T52SA@gh-At-+Naky)y3wpC2gUod0|hCKNUdHOQC~^Ea?z zTyw`R2K?LPl~tq3voQ(ndeq(7{pb2dcTL%cOv>|>gB`2`>dcz8x37!${Vou$8hJA9 zAF*h@a_C}_&d-9OPi;XhU;5J{Wyh-6W_wSY%v}C)ws?PDPWPW3`mt)NCdK>?y~kI0 z6MXGY`1_Vv4(*$DXr89w?Uv}2J?tnm@;?F#5s^771~5b97wIgx^@knZ^Z@X=sx%w4 ztAu@pdGjv_kzsXSzUA2Bl^}+cKsoB<%hlWRCAJjb|KszD`b+QF*_lQ5dS`XNrB~Qa zkUTjpa5s}F=h3f<4*#>}i(3xt^$5I z!wU}er%0zsLbf~<5YQR3`Zpu_Ke-A-&xvH``%2OV(&2}d$ac4 zGt}z#>uARli%lgIsDyKvUN-D-fK=Pk%Ia3SOUj&eh)H`Qg zvK#MSDm*^3Nz^{bE8ajI_L9H@Z9d)$lZ)HW#YF@291r!N2%Z`Q#IaYp6MgQCqZ^hS z8gt@rzq)tDj9OsF*r$r|Te9|PqCEi&C#3Ga<{wi{aX#^aN%i6709FV(0FkVvSi8Y! zdG8tjda0O3>DbfTgRC-Q-62se`L53@|7wU~%;ZO6NWII_)8R3jy*ZkxXN<;m_>La+ zm6HXk3eBGA!s=-zjXik{XT`61aZ%~*_2_@P@cZpg58Bm zvA$C8W3n``I7LIf>kFSVg>`;zpl{a+@hHPKmobgYDyjyqc|7t)`F@I2xp&`acJ6*F zGex7J_Ty73)WtLO$|qQ}x10$0()83*T}kU$jcD4Kr@MSd@6%6}?cINR160H5?;1RL zV!C6uz?faTiCH84oXSN%cMNN<9XPtH>IKC%g^R2Ywz#>)oi<^v z^tBwz^VMWyM7LJ>HnjYghX`{b+>+a32+RGzRy|+&KjYdUZtTf0}V^&R6tZH(ECi_i{ zv`2$>DdfrU@1_+OFH|(+6RcKC^%W@Pu8T4*aVjC|cNYpPt|QXhIy^CG`krQ?c5Ua4 z(M^2mE3J~cruw7Le`lk{`LP$w0mu;5({BLVD<}wHh2r!{+LV~6sNr*)hhbsuPQ9%` z+YlgF;Xi}XP6nnoH`C zeDFQW!1$SJSuhWbQ)KTaY#5L>h{G)G^HFsqJ1upyS3uZLY{0M?K;C=s=CM9oZAg*Pw5QtIVHu z53Ux89qIng>6k>{IQ+rViVf$l#@cpf@uByHl<{>ac*z19Ohy2m>Or|w1{Lroqg*9O zb>G31hR~)lzb8U+3=*(bh58Lf@^ClMhgLD@(B+V5*ZKRP0X4q5`om*P4(2xS6~HL} z6sp~ITeb|nzrTaHg}B3*7j|u=h{izkJ=|X5VKPjmNOoV~zb5OZUV`F*X*Wg}fyw=1 zz=**DxC2Hws7u6d6%KP(u3xW#b{Hmd@CgJc&;qYq0>KhG5~#yC_CXB7*^TQq(eb+j z&pwRT=zhpbY&S4ABvYq%6D}s?3hZV!NqUfcQDxFvV2{VoxkJ7Tk7A55Cx+kKi5ZM@ zqo6k%jsmh9iKCZ+B45q8htR?y=%;|H-UE-z3e%%-VI|iqTHt8GCEN>?0~|C!>53LK zFHi;xLND0e{uw7UBJDl#;K6I2gov7wG*vikjch_-N$8X~SD~1&t;)rEkAgurc+wKT zUE$BaIxAR;;jclA!6&PG%)erHi3n^Wj4?$b6-Z^}Y1jE-4%g*5W1Qek?l6%6KWl9a zN-P5BV;V%T^W#p5ojCW5bB5Zul~U4D1<%gapy4Cd}=p5;K3mNEFo&k4_OCJhV{g!X!n($Jh_#I&if3 zo6X`Y3M($8stbaL4WVTvD7^BgPw$hG(s4NS8>A3y8T!+19L-iJ1qTN09oHcB2L*3C z=qSzCJ3h%HN>V89wC*x1E0>^Fd^?k|-fi7T&(Ek8{iu;BJ}gLkIb3(?<;%%ab#(CU z!d!;99)p}uJig%CNc<=4B*)J!at2nZoRz9-RvOPK3nFG%*l|O~gwPqrabHYneyLj; z1)BU1FM9=f&2*04#@3NiJ(6hz#z~5H)dK+<9>`a)C<=pByNV;JV|Q}fGa%TMaGdle z?33rpEU2DBzFC*=gOvN0*L^Xnz)e!moLqTfig6H(b6GGrVBYZt_XDxW@cKsh@?m~R zB(U0HnyKH=OD6LI7!n}MFu;ahzj0%eBw_2IS*I8aGXQ4>%moE|CgPNr6L=Sg5(Jz^ z$x;{+f-7eF6N?U#OgeK9!Q49@kAPT@!;@-Qhj@E}=#p&S3C$_0)GXK+U=B45`cHW0 zkzJs%7D=Z*llxUysnc__QPM5$dsOs;AdEV}wcAcdSBdw6$!4Ll(GzBzQ zP2xU0k+>y5h)Cc=5KG5`FBa=?{O~8N+idB_%W~x0d;SznKbhv)wS4!F}aw z3e%;oJSlUytHU(e4b;&HN00jc{%Oo_S3gdk9D2N{K@bp?R-l)i}QJ+ zR>i~+GiC-5{mH>8tPPID-{0XZVNAFiR|7U;pAkf9Pr3Ex+i(EXt8%TxM-IV5%*3-L zgK?a)Sy+dVZ44M$2612X!^d6g4piwC;w!cw)Pn!wjUEG^vo-ZP>`j0>-9w!J`r}76 zNPX`Sff~F1F8%;Pk#I3lL=s#AUowk?gw{plukY_8sq+&?6|AChe>btqPESl+1u0;5 zcJ_*Sl#TIbfBErF_Xz5fCr%Kv5}2yz=F&53slofuxNa{tdWEG~D9a^$Hc2{r?2q6Y z=9&QogK^ek+JKlaHk0j*{?GNYTi*zrmhme1b4{^2uWG>6pftOO8v%U{HFf{DZz26s zr{O0Cdrj=;`L;N$*c0IY`pBM5pcSB6=YTufhmQm))BuqMY?N#XkOhrGN4uCNv8!>uac%u)f1yE3QVmdBANWNK=J z_Pj1;u3cO;b8hjX&ZO$|BPYc36SNe~z}oEDw_Q^wXzQli%a+r^H+RM#3OpF&>@;h; zj`oF7*DM*OQux>Z4gj3Iyk++K+V^)&Yl7_07jJ1|4C0UrCln&GhN&#DG^e#Bs}xBUAJ%f^6rcW&9{~Az2*4yVd^kmo$EmC z;L#T%ud@}LTt@9)CVXT8iH;z=a&m_oiF_S7*|znagGZf_2n(rFZ;S zj#nfQEg!M4ggz|(=UkznItNF7Sfn6JN(+lYI-`I6|E@IqP_Su_&~f%adI=n?gp1<{ zRxjm}gV$ z-xT>^2;2QWh&db~SRp~+a&8X%fU86Klu*GvbXDj4%LJD5?Q@}%jQs?9IYLtd_Gw_| zUV#(}%Af(NnyMB!~fYbC1Qpuq}fq5Mvp10>*9_JHU zr=E9r%p*ruZ6_!7((0IIE&e<~d)qsQ?ucoOn5Fi^P?6AfO%>tvOBdt50B2I77om*P2a)Mth2%lKhA>Hv#uT1m|)T*MB+nBZ!8r;>}9o zxiSeV2_u{4(&7yTvUq;188CK}cD3G{`Cf!|hmFuwiFCi{8rnp9hH$POJ>2#z)hSjf zYFw=HGI5_5g^yj55&F%XwGt)ssqK_w>MD8J18g5cPwm`a^RIc=uZf9R&{avz`aypW3JGihZG$5)Fe74N!^rp&I~70y zheH-KjsR4H=Q(M~(lj(S$aFA1VZf6%0@aIjq`!VyqEtzB*x0kQG?p1ZM3{B>q@*ar zOyLiFreN_#Hg+g;1*2Y|0+R?fw&!3WM@gJKL4+l&7xWeQ#fn%j6~Ou#7n6_^5w~o| z0}+adeKyX$|EQJ&R;S1ZAdgWsPQ}lxbUa^wh?R9sj;3!`*0P8@4jFiIET4!ENgax$ zsgmZRn-h1?wGk7rl9gpAoQx09QV>^D_;;1n)YM#&By}DdNUA}2fZa@I_ZuiVoXGCh zWX5$&%g?M!pF*ci?TfX4&wEeNcgqh`M_derrXvode=yV2yMthZN6gB~YO>+N;encx zdfNjBSjyDQ&hMo+6{(SdD-P*l2^4@c3hTZkP<>!5f$pJr%RC%HuuRV!1Z}d5g#r~4 zUg&$t6___dB<$_&{ROt2_&grOUGvoyX$mkDmGF`Xyv>IMA>-*jO1#4%L;%C<3K)3s z@7B9^4KPgOQgrDO+fh?VWcdRCH&90D8ycR(S3U=WazNHs(W!!~LlLZSH!_k5CLpV6 z?yiCvKIEv?%S#J5y4QUwY(ZueGVi)HL)n9ppNs&@{g^hq0s9o%n?BsH*0X$S=={fe zSq|KRNRb4Uh9o8CLs%|13D4DDO`qrO0%x`g;%i#3skj>8-lsMe()(TbrxG&iFxUbE| zyJ(LCpx!OaQtvxD=1Z@?3Gki1aqww-xaN;f&inovZMC(v(S7_5YPB6vWFs${pbCaX zPai;bV#$YM@tJx`n5Yf=)1zizaoh0lw=y$7N=;4u>4yC%YXF^e+vIBzIXPN#!lH-A z6mekgK6(sHR0{ClY-l<=#uClMynU}82E8^OL7%){98tP5^Y*-;{Z zavP#^WgJI<`7V~unz!lt^)YuE$X^Ru1ErV`9XbTpux7U37%&W{vT$(`K6NIl>?kQ0 z1qh=$$D0JrGzOz8!_QT`Z;)#2{6sTeI9?vm`c*xp8Hs1W zI)8bG^ic?T{Y-E;-fP^g=I%d@I=a2~h-F%GCK`e8y-~jY?Jv1M% z#VocfF8mokB)@)gtTn(@NlYEWwK7me@s*HH2ENNgdIDFs##HY7siNYNN%J$MBHYVsYA4>ZY6ShxKwlWu`iTH{2(n*MZ-a}un<&Ta zOa9Rp1(4DNSS$1zSAKPn-OdOCEOUOyllN?z+J5 znXH5&AmhTc87TPg@hd6K0!_g>y~(O4-!h#B*6e4RpBb;icTUJbX=y8)D1MPnI_KI2=pg0Lu3;V~pRwE88o}~k zS9|<{0I?tiAX+Sj#-T4Iy+p6=)zyNL?;wshr8Hs}8>%A`Ng(!Dm~Np&g-=$2gLr|{ zMFpFUuUU0c{WvbQZDluWfN5nwKchY4)CqTNFASl83x7a8k9)HN>x%F?rr2mefY~Eu z*aG+zP{VInO{ze(LhR-7sqIEIOPobfY!Ema_Uyl*d`aRiK|~;i`N&nis8L8M3Fy<& zju63NB>4XEepynaAbd25KUh1~3qR}I02PcUw;K8=R-bM3HwyIjUWb?lw7kwX=`oPG zdaUpoW8jmb@vCjx%*tb$ty&-yNp-=|)Yzp~dZS()+wW^#{{=*$qN+C$0$CdH_|va; zK@q3lN4mgip$wn19G4%F%;1Gp(zK4!xUqHG&%r0$U1Ai4rCz^;-c8w^bc9OCD+PAAjIX5<{3b!cH1EPPh4FKDZ?KLB**TOEMr z-~vYnCy|fgN4Pt4xohh)!{t1{mXIox+LkXyWkBU%3wLn!Y%w@0hhYV&W4U zMu9M>2Ub1S?ex-O@<_a5IAFF*x=f+mPXXeXx*cczG|sZicI)x3(EhkxQ0MCZ(UWKY zy!rZD+Ui9WCuJ74GAdZ-9T$Ae-H^t;F8TD2xhFjtqigo(DL6hVRpK-JJixh5^odOD zJ~U$mbCiKzGS%x*eS_(Q!NXv<`M|!fwdSTD4#{r^CQ8a&h)(DqW=C&>Y+Yt^s8E`z zLSWCH2dwhgfCq@!Uq9f6qxb8qi;n%Z81#he&nBLPUqfXd_Tr!^Y&xqNpo*;J$9(J@ z!n95ICt~y&81?$>*|WVPA9;wL>+u=5b@0q3)o}s-!=53;3!7$YxPUqt8h7Od~nU_wVve?KMV`U~OU2ZGrKNJQ9VZ0Gyg^JEj2GsR<#y}NXowNg3iP<}F(hR7W zkTS5ts8gh@ge~Va{PWR}m%V$p8kSfQ~{u(i$3kUf)!m-vMSRuxTTkHuoAY-32)&`Iz5|z=%O7XMJ$R$J-PnMFAd;w~y9$HHbVA|SZ>7k2E z1p2@DyN0i-L<#^6c5}W5fFJ^uI1)B2uOGgC{rZNVn(j3#?Buf?ZeSyR=>TQhu$PIj zJJDyzd8_GaR)|*-xiQ`?mVsz6d$JlNIzU9RQZlb?;G=x0nF$R-Y;mg0|n!6L8R> z%ccPEn+iG;vNjmb24vqHp5YPuOQtX20FGJRSHN`?q~pi2$I{OYET=*aLnICTj^ena zzOnJWq$K0CdEK>RD=CWXEC^8eHZGtwN4-!o_l*I#+lqAVekzVy8B`Y#=K&#LL*;e!eT(RnkbDE#&!rdW+5iE8vKsJD12*`GbdH2`v=ix>P-GUr!|Eaz)| z$;=a=rL=PQc8dR2U7VvhW-Q8eC@()X!c;w6(?~=8+B@Ym>jwip`PAlK8zOEPYDM)j zUo_XDT)T$%%gmBvcW9SQ-5-hGA;)~(+FP|YwGI#I4&MO-=rK|!`D*?te)2Nj)sW?- z-T*hT;0?fndWs?L6E0q3TkPOz?7lpnSei1NzH=?2jsdKviYCe#?z+DHiV-OzmNo!# z3Ad>$uj|rH`t|D71$-D=> zHI1DNaR-}4TGl|Zh@*uqYZ2I5g!)wZc|Wh8ii!%UwtSwE>VsZ9B1z18;IBIdyth6z z2WYjkY5U!(#O{k6&9iE1LDIJ%C-;V z1#O1Tl`PL+M|1f3T2A@q!)LI&4k&I_%tttkA;Ytr43Z?+54vZNDm+kQ^*D|klA8Up z8b-8NN9(Owmu51aFQ+APWC0ff_DAC~aswqbA=+Xg@^`n37_XAepcvoZvS*YxxmDTK z6@kmP9jFr@iXRqCE6_dCAI?ltrM(N51n&GE?9yb0H~vE=m0WVG(Lh)&&RQ)IvUCq!2m*KFC8l9gMH-UlyN8$5d(W(OLHqd5*HE@ zs_AV-{kps3wO}CgyJ^EYy8WJ8Kiq+zy39Idp3^e_|KI+NBhkosbZ{oQbg4}+Z)$oPQ(LK9d+Po;tG|D6c6-N$ zb1?QBA)8qA@6Ep@t|<8LkW36UhTw&DmN8coN0t?>3i$Nx$1aQfj%h?h5_9V87Qe>8IE{3c z$m0T5U*9W^kUkrM2;-T6k^UlFT|}nUzH)&hE)q3>PM?6Vj%b5+2R5ohb1%JjKV{9{ z-SyO>#Pru9PBS91A*Y)P;3*Uh?NR_2G}6AV#^%lsO=?mvkjE3W@~!bZcp5$bE|is( zox|R*s1cECIeT(6m$Vjc?ydWyv5oKOur+O6695{5GorCFX?ng5ujoA6caLHb>lxrw zv>B}?N_dF0Nvm#>qv-+f2V`mj$+0tTPrMegR&L>;+WvB`kV%^pDGaf1dDP(qJW0nqG*B& zTM~(zAZ{jh&_2Riak7vSWRE%tIiuEk+LKqoJ|gRXP(czT8Dj;38%|gxjq3I!kOnZY zP{@DA=0G%dvFTYjH0U=s9f$UKs=H&jb&Fu3R|sr}P#Qpqa3bzA;gbWgM;xM>vi_Z4 ziCkqqQ7b+UD+wR;zJTEj(ZkdKz@kQyL-eq01#mV-N6u5t7w215RaD5s#~cM))>auC z8|%2v86qeB=4sjOyV%a1Ifxb(V^XpT?H9JLfptLhy<`zz5Lse|cT1$L2VsD#8*OgqTj2SMq;e86~UjRQ5~nTBj{27nsB3J zB$Gfa!NqQjJE$r!av)1qE)OlCyAOEsq!K(1{Ny(z0&=_&t0(XWdzzZBO9VgkN@s)}XYA+qie zOD6m9aEV-()Gm`Ft&i}L2n`Ddinvz@*#42M!H6;JsM#Jc#}e=t$r>0H21G>MI6sa- z7u<0|aMGB-2n6grySy-tdE8-K%n#@v@Gi(gTf72UuZJVDCI%2r*j_|rZ zU*Vn@Y(sEHWk7-bmaot{xI`jc5$aWs%ZxU@Tv?cHka;G`q6DB&bvuVPoZ0sEFmM`` zsKrZUut6Dw#@FC^G#DhYqs22ls+g4rK~MgphR`W*-num$eb38_%l+%<=*zA`2PNHQ zeCC7hnOOMa(vAf~0`J#wf|XN^NHl54aW3LKg&`;`^O=}daN_1yBhOA50x4G`)&rx0 zf?<)p8069hD9 zkdT@(?MYabh3H`=HbT%j`7>u4TNhAe>^u&zFRx@2r6rZsL7$&1nsJ}$iiGj`YkxaO zFTRW~H3sA>_`Ege`b8`XrFW*vT*$9foHw?{;7_9kgRQhxoR|eZE#VOr)kwaW9)%_B zaR3{*e4cRvh*AX_6x7tz#4~dN5Lp5&U6g#~2Oipr`rJSyL&YR4n~$9-%R@MQWQ`d9 z6T)i+YF*c5fr7xw*0$-G(#rKEoVU8JT!cNaT7N`e#6A_!8kTZ3Q$uhv$qop>?vqpa zsZ*GwMCH5jOO#?zNnR2_hBED4GLU?ZlQ7O8VbS&~wk-cf*K4vy(dEG=+t!ybjSWb> zdEBA<55D8kj+`^PB;cVNxCKr7)Pj((F!erEa2TWbV|xw2OM$U8=WzUH|A>f>fW%pCg)l6wS26zNAysGT%w}lY@SuW9L!13OdjE6M&;}C>=npQ9>0xU zc%v%NvRT>K^y4_!hXU0;j79{-T{{R>6q`41#z;saXQ3YW9xwt+$P9=4&U{Cu(@uE8 zOS=d9(K^baZ9<1vQCmy4L4T(X!aP92rWCjQ@J$$H{KTBN->flDsdpMZ9YKP@voL%f zs-a;-U|Y~ZQ3TG9=pj*32}DKTy?fFt?PEnhC2+io?rtVbDm@%Q!~3W%L4lKqZc>Nn@gK88bDsgt3_4&W{L!t$PK}v3=g{mKKOs6bQY-oP5g9Jj*7Ihe`~6 z43kB1il>jhoa}A{GdirlU&_@Pc@g#Trs~F1J&6^eKQ*Es3~k%H_Z)tBN?ttW5_aC5 z#)3Hfx=pwQ-+&0zS~6MSjw4&C#>%V(4}o6N(KfcU``N2NPxj2gi4cVX3x3{&$-+;Uxe zL;#k10of*>?;z9o2L!xD4EBETAP#YEUW`n^F@Yo#9YP)kWJBrJd4~^G++;c@eTV{Diw-~cB8X? z4bx}xV9UiM|7A&^SZGbBU%8tpO4j5edGf_mZ-sS zr#;j)9YgIMo!4T@{s1^aKuCyDy+RGoE|6c*-5kg7I(_DhK9}h{7A&~Kk&fX)h4==qd{gze#mm@uYR{Vb`Fj|_+s~Pv#v&OhrM=L_G6kT zF=P2kaX!69cs0zncnu|S`jpj=L|`lCq2%ObXSl1)3#6*o0ARAtjz$i|Q2aw)uWJpu zrkki3fQj9_HVRu3gO%kaQNMhI94s~_1ZqELz7HUw%O7xpfitRe&r|MG`74a!*E9mOgkmb#{ly`bZ%tvH|#Q+qFv$!*(+Hr64mABqO+j-o>hnvsuz!kyQUSJE zA-F9WB#x7NaQzitWrQz~lS7tw;`$)C1@_GX3nLav z&Xb={!Lg4_Q1EH0$#!v6zMH7r2kv5Kh8XiCwg>|qvPYIUBcTMa9H`s|i#`o3bwxln zM2w%`HGm0H4HOGE2ZJwiVrwE;G^Bn)gFc*|2RFp~Ks?W98J&%Yh?vDYBmXTi=4Q6R zkONsL6bW{4E+XthfECq6pSN5oR~OK5hqd$;I;8(@IKy`kf@mLb2?U_B019x3CI*u) zZCyV6T-YZ6Z}+bbXl&|a7BV^SWma5Nw9(5Sy)cNO+?ZKhL>AeJ=P`(tF0fW-OvWhN zV1jp%?7&sP#oLMK`T=Y+@ROrm>1O+7Yw@8{L6b6WlgesC6_-M~86V(gD7VweKUWiz zcgY*ax-m+mJ&qNOb^K~lhYp>cgB$ivP<2kmedZ*;7~Vb6eJj$+QIa=wk^fVgv1CnA zxvRT-Cm@ytTwlhF*lb=hitHP5glk zKo9h*03AXAM-gAefPerIc({5wrFd>V8M={X+Xo$_1`TK)F=oKFTuj(1z=G$hQuNl7 z(=?G;x8G-Nz8Aaa)@PRh>izq-6PpckXXCd%v&6shxjT8`QS=nb`+FI(M_!?)L1zF) zw~#$&zCEG@4!xI$$7)dE2|K>?Ob%HtS~S^k2F3p>@brL{*5TCW<65caEdcd{4L`m5 zAqujx8{;4o}&S|(EU~e?fZeFd*K%1Q>-47=n+;*VU;OO0pMpy|255GwS> z=T-wPh>U3z)#xE64FUZ6Xr`(YSG5!uP!&}ugK&Ke=jZWF1!FAFh3xauwjcw;9-O-N zB}VVB(glnkHpJm{lJPBJJAihCl6)4$D&;Kj0V2SK@(51}F7tB(flBq)a;O$={@$Z` z=@K1a2Q&l|5D0x48F?TV7mE63R&Y6{8mw^ zi-?J-q^KWST2mf#`GPZ6{sI_@`)o3KJw>u4+;;w2KSuVqjI{7nsK41EkgMiGi<1;?*g+u41xU6N8>l$Y7T7epBBXnl#87&R`o zL?5KUnFS2#Mbrf#-YFwUkpTtZ=ggd5WMp!^NUKReJ$ypaY92gzu#U+Fh%Vy0F`^Oi z2F4vBEIZO$p(dN0+J&b@oQM&)$v7N?crxlm%=(1yFKsTg8M1aNH zq#e2z&(cyiuR+bIppX#akeiIM$Ey`();rX3_a8iP`Zjma=PhOj-VYxdphDlsBu0yj zINW3a3_S?}9eH6oY+)zgUfdWRPFyISORwB#dYtNFoZ&b|<GO^1ha<{*y919s(Scj*%rOa`FhKMTD*OH^zhq?FzBHm-710-KPD|0OMAlM z9&@ODSe<|qC|KiS209daP2w%`qXu$?z?9c$@lUC!YzK}_uXBd45U!XgXPtkzqHoDt94{1Yk*p-aCe z<*{u|TA3EAkj19g4ID1DJncz*N9PCL*N1@wZ~z`^0G$qFqq>%smcYyQ5cC<;%+7Bx zGgCt5j>=b>&GhK$f%h6gzFoo%{NLk8CK0#~zq5_izY? z#D)`Bw*8u=sTpqAUHP##hX?f=;Vc062?H^Ql#-DSJy+3d&5IEY5$Y=7#cUTde0F=V z3QfpVjczz9CKgVD5J)Km89+!RJv_=>>dF>=7aSqed=+=qg!zR98|akCo-!f?XHuy&RJxf-|`Qpm?&nvP-j?w#_RxeUT6vfUiQ zDP=b^Eh^PG4B^n5Zb$iptAv7v(?(XPvvJ3*qeJybLqG66ygY}|=I@tcZ@Q!AI?R}6Xv z$l>*+ZYx?$r)c>C>fdkRE4G`ud7VpCGz^2WmP`BTO;FXMhSo#Yp3g+XOGqZDjiy?I zFg?5eDiXXwgl`#TT2z<_l=KBkXb0}2l9A54dd_Ri0cOOwwhXK}WbquPSHF-~7@8z8 zJcX2nYUnXgk*m>!+XO=B{O3S;;~1b~qTh?5=?5&lgwZU&>*B02+WlkngPb}y5s`?V z6vv2+(~tx)1-X9Pes`K?4p(Ct2P!mz;1aMF4mtez5fo%ZmkA;~ya;J_?C9=IfMV+X zr%%2(j>Ih%WMHyJo0t)_w1l9aQwZfHWT<4kBKm96XOK_u&`|=p5^swDA9aj$0$5yw z7?`O z6_mTXyW$Ae(_FkYoDfQj2n$?H7QTfK(O2zSdp_5qH!ZytQ=|_yHD^{N0Mbwf;Yb^` zal~LV$Z)b%VjXQjvp#|zN~vlD-(bwexc~?N^}I_;BtzUbs)c!A8o?;`4}$khCML*= z!GLVJG4moNn2Jh(0G3iFpc3{0t5na-EEQz*3v(DE3HlCeWF!?jPQ7RVy7Qs7_8h30 z${l$Y>F_{2+&B}5PGNosR5x`{p3?E{9K^2ezat<73qvHxYV-=xx4Q7Kjm1K;i)JLZ@>ldg2 z!gy~V@T_DGs6TOgq%DI5Sz1Y(I|Z#bCRWBzmY%&Lc5Q6w1Gpx(Iy5JqIKZf30p6*-7UL!f4+9{@AKVgVxobs*GJ4AJV&^8w}oAb1{z ziRg>q5R`y3HHubLIEmx;eO4jmFQ6<|A&+j{mE^32c>y830g}c*PqejS4y8a=j&s!? zLL(q@cA;3a?t)AZk=g zZvihpfvG0Y!+87<{kK{`utHd;xsRX!F(!e6)&r+`wO${`VIv1Kt?t6WVg26rLpl-& z9pq^@AbKk5>K520ui^xzP&X~rXgrFw)yipl2dD-0C4S<@f8>Aaosm!%^cQCq57Hu1 z!=1xs9D9)fS3h|OeQj++L%>B{m*6j7z9@z+5iTT{&9%#x_w#%}n5;rNg)eAy+$5$`eEg(rqH$#rh?{ zvfVLkxsZM@ttrAo16&!al00d%6El=Cz+OdvYQc|K!p>uO{&`Sy~O`?;=q#3K&X^2!Dxr+$m@kVUWbpQujY`PGd^&3bEk=H=h6n;|s608FBpqHQ^gDlc}kiX{d3P(?3Wf9pzg3?-n z%o@OCM+HJ?nWRvaUHU&3u%c4q94AknR7Q>l=khH^a8qYK;uL(2;l2s+F{;WSpoxd^ zJ~1gFe1DOfzhX*iQUBDD#YorFi^~aU1J(j$TYyMU=nkRW1#KKIHN6r?(lF@=`<>moiqlDZ|d zOCWxD0NmoyR((QOc%M^85h#*RVPT<4x{jpBZ^Q~tcM{M~D$@=EMfXupIr4nRo;@$n zppfYfm7&DvK@mt(J=Xg?LVrb3jgPu%dZu(`iBC3EA08%NPiDq@(lw-*@}@;v`ZF5`u`R*Uqw3Mllgdz!5U++0 zot>9gq8#x2Yt~0Lws&@NWA;(4u2}b@rPyU5cNN`YZ{pKqZY8TYAu4hDAqB65V8YQT zj@q8v`^@IaJ6Y~;%oUSX1^}i#f9Zb+!OowH7-(fo>bd?rB91hSc zw-r|p^CCQbjMEfw#VEk*oF7yMKnB>0)SPJk_Sl*l66~9DGWCTma(LbOnTgUa%382;}I6F(gc|qto92XosPRcbF)>;d8@MT>hO$utp zmwZ`R3*)x33|Pqu4qg;c!M#SyrdlY*#K?$q^hNdZ$G_!wka5o*e<^P;?G0{zf=y1$ zId$UijarGco6(vUz$IZmecPeu);*%1pPw`ZEhRzMY+<4w(hX95!l?u>+7Yr^1mBV^ zcCTFSe*Vw(BrJJ~rKu;libUcA-dC)ytswFX+Cx%rqh5uD50OYAgBe|V`C9{p1ui(y zoyesTUXQeWLxK4P*Yl>MBPk)!engDKKV81}zJG&X z;u&4L1=H4-_#&R*9;0rpC@=q(T;T|0mgK8{nMnWAv(Z?sj_H*;awHgGOW(qx4&-(+ zhM>dZHxQruapOKlhzedD;`$xMDs)u{rQ-X#x<_dLDPKVuPJ8k*hnPF$-9dy)L!?C@ z86y(Nz$69GTYN&o;N=@IQ@o1n2QPQuW6QH1NTb_nX+5*DY)badSPjcB$tzH%%?^x@ z*MYdK0YWpbkN_!G(fJvX`Ii{s)FAu<3It%a1>;+J^!mWrt0yKmxiW=X0CcQkVjVF$_QnU~k1gZ1FuxNtNk~Xn8yg%99&?dI zJCd$gC!TfbWojz1Wk){XK$AeyEZ&+RwxPHP$3V6UEXe?8nh>#ITTPtPF{}@ad#$Lb zxDNgc=|W4dQQ8oUA2m@{m(+m+caY$e@mw~hZ^B5sKF1PQXmSu}G?jKb9&;RUVpN8d z1(ZTDBfni$6clK14cf&;{m0QgKjbPtauf?y04$l;i>=n?9<16`1*K9I+5{Wtmy>+0 z$QvCo&VX>~e;CT_(wE&cuSh8M`d^4K>CElmjCck1pdaa{9C9tSzX0GHHEFyCPMp!4{Pd!wfD^MrBW z{|uBX-*oFQK~Xrzl~PJL15j0_;bp`_P>kIZz{7Q1Bp*M&PnON>>mhDHU_ea9!jFZ* z3D>xYc*oIE5wIb;d6>H!(K)==NcKn85%JQagxHbXK{#YGEH2|knyb3QNIY}c(TN#d zAgf?)Dgp9s=j3Dphtv+I_4Rea#kL0439NiT@mW$b0`Pc{JN5MQI8uSHD&; z35kym3#$Py*F=r<673}$bhWiSOkyI%3)nCrIe3GzL*35VSp%=pOM<`$Z&uCob`8xh zL2b}LsEfTz#-jQCOM9&JMB_%#=Y?XxMibG|YoJ=*A-NRwNLBR!GdsI{fj(doW*#1% z;&GOdAs~5Gd!|Z*>`YlaU%6{Mor_+ z?-9|Ae}7!ZdwmKeBY`g+cq|i3w09tOQ~-_hjbj*>YUnwq_i7My|9}HNEh|ft=nJ7h z>lgR`fB#|qp+-tu8+B;sx0V(G*~<)Mj6P)^ z{xMVs4+4>p^(+5!jFpUwn)vUHjg4)FyBK|3s|eeNZmwf+s)9tN)XD)V+!C~^r%O8$ z-oE|lG^Rm3A5d%Q-499iw;bQ^QpoW>O`(&NgS+<$0iZ%C<sD(XFu+_ZoNq`iw=)of|ikoOk2w^eNM`D)HV9jd<>`DZ76mKPe zXYyxDU($qWODa4kR(OQpdP4*LN6eK`j|Xao7cUN6aJl&%;i1@JOmo8=44Lf?ei;9L z)6~>YJK1Z}hz`*ODCz-l5)Nq+m^6t&K!i9R_ONU59njfBzZsdU4_LM8oWz51h#vs2 z-+P%uBV7ns1*9?UyH$STl)JLAnA6;?O5UmbHu%EXY zsx9!j*pTt|QegDNWmv)Yj6(E$4}5d)@NgOE?jkIhd>;fNPMkoAh3Q*7>0@}&6 znwqV9oIb6t8aDYjqc~Mm{?^>g-x$}o1;Y0-6!MBdwjMluNW|#Cq#gxz#IQ}aRaY)Q z(Rx7QOGwuVZ8zFT)T0}U;hA{A4SOza(I}yZXP$ z!__~hdP96d#KRE+HGgUEyJcYBgTnrK^@z^ILTgslzo! zsjssO3#O=5+EWVtGJG!!cd0%XN2WHciZ!SZ2&@LsLLcxFq}ynTt1zK{A{??~Jq6xT zcw>K0O)29(!@F;S?F5o~vO0bp_-o_<0}(##sr=c!xEchlLh8<~{pcm7#g^2qEM(<9{62r*QDgOL!z!c zsOD7&{G~Vt(_s8_2+Nt^E&?{kX+ z7$JECC>(^Fa_w3~A@eS2RRGAZ!o*fN(lD${*uNOu?c_tQ<1#kUG*)}{RCHQtSGjGe-&C`?}8_bZ^8=75pE(h*Ch0A^jn=iU6b#;l&D<5#Szzr~{N+ZBU@> zEc{-boshlcI*#1MVvU-42(?m6!G>|A1zL0Ll^@Y>!%a;59$McWWJ0J8!8bx^a2urp zSdBRFy)XrwX`L#?1tMHbs93@K5wcTkgo)ng@m64i|Am=vK=ILVKn|u_a1#*5Dac}R zfnIRycN?(87fI~b_Od!lf7Y4GZU3dzv(9HF`pKkK|53a&aPd>{_x`4>p8W%_Wl)p$ z!J>H*Tq=kuIQWU%OtyFL;J<>;Fnkr&zI`)I>u8{Tv5!CxEk_7L@O?Q@Ee6k1Q&WfX zThS7ejZj}flyw)Y?T9`mS=SQ$g;s|7KJ;(Q$T+}9#&T*hae_nw2r;q@DImwBRlx)# zZ)|)-t@ixIi|;6Jg`7qYpw<=^5XfCMXGISJ#IPM<#o%NK_7CbSQBBe1Xcb3cTC0|t z=|8r+BFPJ*ZhOn}q`MB9N*pkyRLfA0yb%#zSbOQF?@PDtTTYnx{t`RZaFmF!Fd^7j zpG6*x51!a*Xe!Lyw6;5z6QWF#Uq}`oK;25nShX(sM?y7)%@C^`sbh#P$e;J#o~YD_ z@u*m8NTz|<4C^T5*a1@5*jTk$nCw!(6TO9Szd!wKrs{n@$309KK?#BrdQ`vw$gE&w zV(Jg&%D`NiVFFtDiRPz^YegZz&FNVIaq0Jw&drxY$~hIIe!`< zBTx*Ewj?KUJ2*SXqeF-4l!Rb02yzy<%B!;$`&pGY1kZVVyS;@-)d%X%3&{w|_>i%y ze}XdV$nWORoL#5dIJzg#RAN5TV8nbp(Wi`G;S7HQYu5480(*5tI<|hPZ*3S~HZxH+ zLny-ZEg0+|N8`ojfL8WCf;UkaGYbnZzgu5sAvpw< z01@hhftiRGh(g8OH#J514f^GG7~6>j0^4kw*Sh<1Bh47e(PARVm z(>Z-!F9IV*>*29#Rx=*)5|t#uNMj*7bLqX?#ICg^@;7%E7jNqf2(b|oLLj_6%Z zjJp{Bgdhu-z_ZvCrgEvZf^1ZcEJSxy-TXahCzSq^I1s7ltYpTqn9dp{ zEwE&(-`=@sPXet0=tVpdk6@YoXV^%Mrdql`XmF-*}kJ7_vCgt|Xlp>n=u zNu1eJ3nZ-o)oc~_w*N6&h4%>#j@8c6nxyr7HsbT_G#N`$i?cIvR8B28IMqEMNf;|h z1r{ed?gOy6I?Iu__n4R>o|q^>(QSYT<58E;RoGw99|jKw{B{6q{2SzOU_-@f zT!un1GPj2{?=Vb4|KPDEW+MW6AuKgWp>9h<2H+MDCKX8b@FAoAM^0{wBiCD~zHFfc z07K0FQvTR%knR&CqeSDyMgI<|J#pIL!&?iwVN8KTwF>1GT+OB6d9cHcJblT4nipCs zGGLsLm=j(|bQdeF$`L{rLG;7hjVAF4lrRM2zBO0)l!){A12DQ+@d^73aF1)He>nN( zuNd~K?X{fuEfz0oA*-7@rt9*S%J*^11^caUnIt~t8YEbsNv~*`^2NBQFYfc#QGO75 z#g)wOL|6o>RKgGgvWiDFti;;@+_?H_r`9H z0A3>$1`skuoOAL=X^2&-5-Zp+z&mu5rf9xU4pG!`{aJnsS|1pJJiebO_|UraqIfld zZE=U32lN-llYDzJG%rDN>uHBx>9jT6>kJ}mY`kqY53$uI(Ju>uc4 zF^O6dnlQWdihbC;PMkXR5Izl1O%+&(u~U}Y9d2jFb7dh)dx`TtgY54r`oy*OX(#ue zh+7RRFq#8NH!lKW;Lb20&4jf3D(L zCU_Pku}Br%9wGoK=pU9)Cjn9-{RZs;k+TNNZdBAU6b`8Bg*3^yP}^f=ftb}lA;J1$ zFOj#3m?z@(!e<^ncwhhn%3l~$TCEXcj_J{)RDk;gZHyhI(r%A1qwW*m$4YXE;_8bI z)9U{y30R9t95D3q@*+CVDDRf)?+$R5J7X|A!~mqjw3%yArU6p@j_Is8dIH!+{qlL? z*#7-@6A}`{Lbo7Fnp^S<@I=@}x1n4n;0MQZzV;bW{4C40to?QS#)UU6Q66Zy)E$+_-kw`SWMeykBp% zYIYbCyeT4Te1Ng1o7bO!z5ou_EhK2S`-vbE^h00-pev{b_$PO%CQqCReAfSEJi=EN zA%q$={45HQ!FJxGi~SO5>@V4MICO_vUgJr+X>iI$>rSx0-eQm~ehdCxU-~ zX%pl!F`NpWc(cATF)$GYKrhP8wKLlBx z?)LX~9{A8SOjRwVKfZuq->BPN6iQED##4D}Dp@A{MGC=emgv!of zdrvx%$OqnzuqYGhDd?UFx9y%$G&Pa%Zxh-o+>vE)xKK+zzIX&_d=iq9gcSjFKI5rV zeWMHzW`2jjhmc!?^@3KV2G^cg*ydVm?G=)m?Xhm$lZ7}3;u%)R5irZ#9?AtYI#P&j zHir=m5OptXhkK5SzC!;=b@XTrgd)ON!Em`rh!8EHkHk;Wl(&EN%-hIZJ5I)RZ2XI3 zND>*lK%{@w`lTk*x?6#hL!Lbs#;X%r4@wx1KxFnCXe_*N6~EkDA*ogbGi~1do(6m# zfo@?kX(cn42D%}l?0Tgx26mK9ugjaG)y1`H)EhOl-a5mi$?M+ zX2`=nW9&Y58+|8~3;p;iV#F@$7b2|-sRrQ@U+6-SBAEalaK}@e?Hjdsgeuk6(eW)h zHsZo#JN$J02RRAsKDb43z$=LmTr_<|^BJ#LuQZg=~E zGXG1lH}~V9>3)|Dx20*uf8#|B;JD^i*1yx9-Q?0U}46g@!gz@IVAQT~%!P|Kxv zaF+ROT~~;+J?S-(J&fLxahK@E-m(;bsiX^P=?cirY~hRL+p?3JO?98VI#YAu{YKWO z)WbUDPHKCYx*L<@Z%$8nUbxfm+I5m;=b59gI&Mpb%2KA5dU?%#bbR5X`A_*0@AIfX zy|c`?f|*IZCB&C{|6!s2sVT88+V$kKwTkzHNtv;mL4_$9DL-CDW=uxh_lSODZ08XF z^O}pk&O`EFYBL4iuPg7gd!O{jjV`hg+E@36YxILmSDeLfLyhv&LH!{cqVv(Gw{)LN z@-Qyx6fg=5@-b5%iRA{a0C~(=`?E3G(1UO1t8omZ4y^m5y8fv~=xV4PtJuSPnv-e; z5tR;;w!79=&vfQ(75^IOcEq9MkzA6Lw64`ZuVpv8SS)o9#$4H}^SYdj%41thv6Jo_ zWwGAaYImBOn8Zb0It3mQP&RFjVLvcQ zH;qpJ7!*N-i`N!Tq*wR(5^z6GI$WmysqSpl9-Z_-#I0|cI;@0N`_lc)sj(ETIM(F- zUcb~XhGgI9+HJGDq?7(y#n{nMIX9Ae&11~jih+7X$(+=YbanDKA3t1|P86i#Jo0DV zQIBaP{hPR0d2$RJ3~wX~3YDEbRu4oE`qO4-+M*$s`D^=_$67sI3trP zrKnl%r1xFXf2`bEf3ho9aUNqHCJ!x$jM&B7%BSR7@rC1+c=pabvHSOWF244fZaDtY z`E;8D8!=%U(obm1)C#T|gL4Fo6N44OcOibd>L2hCB6i`Sq31O#Id!9#G_akEVFP92 z;|l~E2TxEwXX^=~oX1YZ&(>&uR`k|V&zqgnssy5dO$zjH7znGsVILnFFRP3OJC*#9 zDSo}gw4j$OdAT64wxF^1Rn@2BPWDQlkg&ODeUWi-|OeheJq>lz$Ao5!wUFJg? z0jP;a@uN`|+NuY@p;Qv9Jz8}lsD{|oK@%CEdLy-!p>s-nuVAiID>K70Frpy!VCXI1 zmd(A>-KUp&qEvD}TRRR!PyHUV{AexINqNTpnZ$!NgQl-Z{ryCgXc55Lc@u0H#L^9{ z&@4yye@A$b?4qDx#@&L}VQj3UqvJAo9WbrRP)qTRbN^*M{MxQ|tpz}vzcNM&+Jk?` z?FwrF*ESv7lY@*MHJxv-T=+e);m)@ZbD}ZZGwiMlwYp&*Py3nOK@Zk#jrUd5>#Jgkix^Xq;w3?5&9tn<*$mr!0Xx%;{AR#!5g+px4(L3&=YD)mp4iG-xL zJ9!{)fz&7#MLsJ-@_^Aix=)OcFW@w8O$g)v>$EJ*~v(mSeULFT?o zvFCF3G?x!tbGY>|Amzw|bWYumcf_I-zxJp&8r4>2SF2Gcy121Cd8kPu)B4d?~5YqM>EY%*~jjNyG9nx%p8%T2eE`Wf(y<^-TEV!vVaQ26$Nax_fb$4Xz@`Y zR5kzM#Wh7U3HEpQy0l6vL)zMG*Or^F=IAzu~ob2o_CTo~oWfWj%XYW`% z2}jO<*plsQE(MD4V_*T;vHAg>cKj-|CFW+T?i3^=As5P;}TGBVL(fGf*_YV zDXWk)bbs#^CxwEkeB1C>-(#E%v#xTCQ0jW$y?8%bTUq7Z??2)n6ZttUcWOEh2mjo6 zLU&y0YUf_-`+$n)+IKOpJEpdW_|XPAiQ9z7W}C0G%#saUj2uoTSSI|rzK&){aR_of)S?vs3c`_b=OwtOgu&;zE)z^^rE z>On`n0Rai0@+@M?(gAYpsdPV>@h9c;Qck=5X}%|1W+z58IvNva9uD!ZOi7`QiA_{xO5WR%k{^_Gv9sCeZ|*BJ~uzuRXL=}I+BFLOl>nOtnK9Q+D=aHLtlJ%@E}P9mkr9tUYHP?l65pU z2{-Z8eAl#%Ww=)7oKBuR*$y8x5CXxrDEYYSP>^AO{2zFW(6h_eYo(w>K@{1`LGK@_!le`+fJAR!ER7uOf9%ZFMT9eJ1g|j@Y;T&;{HVnUSka+W9>dtx3zIw~cN$#nE&3mcui)uot4$fEUK0GlxY0|}?{%Thj{asJN zyOIK@>6(tkg!@exp1naIG-XJyRHS>gVc!YmJ5F-Cl^@=E-?`6-(d=_wPgsGkowB?< zZIzUFly8o$=@@zNB`O$gl6|+{3waMyX@LH%8O9jEjECO8&X$ zoM$Y9xuYqC&xhKctB)CfKbZ`>-t=x$#v`8c*(n3zOXl6(-Gr{_!GnXg{g;kfEGBl$ zsI;B8E)nIiKYKzmqC%ol*+6QSvYk)_F0x|N(_ z`{j2GfBkUNA=@;>xY6l2rL0jYPILP(YX-oVbhyF+ z=MkQHpfov!q7Qo8J14l_^(E^}xE0G;#L-xo(&qAycDIvHP2JJ9xtBxHDNGq&I=bWe z8vh~d!)Kh|o=7;MJQAo?#MSj|wtMVbywv1Ev+IYHBtEhIcUk&xMwG-To0>W8-o4oV zY`*skDU&AI1a@lZFLr^+L0khdgaPE{AacW(_Zg+V5ZhMJX{`Gwn^a;|I9EfbLrdk; z{%)}Gp|s~FmT~%*Zr)Eg1bt}>^&)x0bbog2n1X!_W*6p0HRUD1Yu$U03iP8L@QO~d!;ub zEbKydTz=DeWF>oL`XjxHjKw_41*tk(e$2 z^(&5H#@RsZ)@ADXsnlM(O@o=-6tx$+=eHL)`rYUKwY)z+a|dc?>&Z%`$7DooB z75zz5cjVT8pv?(CBBns=oNH}ydt1+__C0Co6-Rv+?z>+SPKTN}U(VS#;5wQFKTacR z0>aP>gg9b^vkan-(9>^E?a3s!?TgJ!5IRU#>YFIUp8b4G?6N8S>N&^I6iOZShqh7l>}5VZVc_aV1ex%|s(BJ>lc{R#d#@m8T-l+D$;?Pm8TdnDLP z$CGS~$$CewgvV$wR z(pIyz_r&}u!R7E*qq(mlZaLi}iKqy)oRBa3TD?8{cKHNVmr~g~$_*vcCFoZlx6Hv zC+z5aX8QE+7wXPm5FGPpJKA;9G0XZ%VbV^gr(ODYAJV-@i3^WAF*)ch$1!j!>p@~u zZVHoU!ynS2Pr2R`=bbKlpO=x7`(43ITJZTMFYlRqXOkx@xkn#O+Kugzdfj|PaAvR1 zWYhT#kvEeQBOc{@9;%Ls zqcwh){~{(vI;)1)Pjo%$r8``4A#-!&=o@e!*A%$R>yKrMj;41M_T!UG6WY_fL(c&~$&<&gi|V*;7R?uin(PYH~eZ z;jQKDrk4P3<9W^S5$z|VvbBxg0=ypT!OOKQE~hVZ%rU6H9noN)`s3+mtZOi?AQ^B9 zNuJx4ef@7f^7b6{%1$w%Ju+i{k@T2hX2BFDF-?{qvJX(vRYk;ndFL z+mzUYzsnd^%n$E8oaY`Drsrl$o#2`#P_Sm<)5J4b zEl&4?-!JQj#tfT=|D$ZJYQ{L4ak~4(_O8sLTY=s0LTKA4f==&#)KjgQ&K;pg`rE^B z-PYA1bB1=?mt#8uM25B3E`812a=iWZgB+?dI|&TPWFdt08*9reca9U`Sm2(GAfj_S z`YYgDk)l$ie98wg=hsfG*76e6wX$&y%&8L2PoHghDWAppG?`=R>mU6bfh(=jZX!~x zpBm$bQ|#j6M!ha6)Hm0&Y%V(dj6Js!74`LTjM6~Ndrq;5A;atA#yfH+oA>G$yUaVC zJf_UKnmVBSY|?i$e$_wceYne~MfZ;m+)F}{l253$qr^Nh!Qw6O(pO=l0?JBCKcIz# z)h8VP=;$v3Lv}l8!P^@BerM8CU9u>zGYC30uabZCyIujav` zk3n^|Qfcz0&ng*`C=UzW4r=taf$if=l;;8+Mx2#3{?d~=@;*1+RsWDqjnp3==>XqQ z$3F6zqM7%UnLQwLM`^bm`FKpdJ$vLlKiQ?^rp&UKOXBS6BPmat8Qyl-@J4bAl#(gM z)K-t66)|ce)gdSYv^=H^y5%h+$*%FM_tv74{jJ zL;BKPjz?DX&sdiRHB7L5-#zy5$Av4Q)sgmNhu6*@7~DP#9Fwc7il;i^+k-Q8&V#%E zEw#WclptLSbORCdh`d9b{~Kgc65)o+`}%e#NM7kuKU2t<^*~vk-yU*?*mrg0Tl4M& z`nea|s$0Cv9Wx5K`@2>1cSo+R<3nq=V^2qO<$~|Oz8!M^UR-QiEVr%jsJ;3DUr2Td zS_tBEiWW&wAH$T(oSa)l$EWSmSmrKm?WmEd&vCDRbqL})wXx5{Dt3#c7NdH*n6TAyZBeKKbOE6U2a-2~Fo}g|wH0FIeZSp&XoVi4P z*@xHj0e6D^#XfMH$+|OYbFpjjTX|{r49y7~(OF*JXhhj#fTmzU@4lyRT|_2xUBidJ z8=r&>gXeukYIJgUz|{aX^Khj*lr{62+f7qvt@DOl zJ^Kw|YKw7OAF7hKYR_Ao1v=Kvo-H)I$qzsO_Eq`J$93Qj7!3Un)SFQGmNqmr{BjC4 z6raNGQC~3j;RTbi`91NZv&%1TM!%ptS$L2#K zO!!cSedf_HwnHWn$%&&Q-ySB_-#F(Pq&J`c_(&j3(b~da{o*x}kjSUu_Xm+66*pFw z-`uO3VDq7BMGB zDgo60=`j;>!?<^#qW z3wy84>;zL+9YkVU8>v*_wN40ONHD9J$hljC_5cIvPB-3!9)w6!gTkDcK?l3u9w*>< z(7(FvH!?J^u^>8tcG~?vz>XyjYt*+f;u=Teew$ibN19cZK>Ou@XdZ;+q;j9Z^ADT| z(oXTp2`DDz;maWcGuvQ!jCVpt#YOx8;fVb&HT8(VRoFz#v<0EyfJ<|I7B4diN=8U+ z%4gi-Y=XjXM#bMW(Un+TU83+iJ5wHVs_YNP!WxU+!TcEdyzjan|6t66b&}er+{@>7 zLma`3Fw@`2#&w(IZh~S^1wn&Y*#3gH1CV4GLR11R3s12C(oUnX$RnH_Qp!=-K=h zhukLq5iKlfR6VS0m*5?4>DDb@S=%-n^j&xQU!O@uKz5@?btH2sSv9m5*joFA-c;dx z!GAsU_vd4K>hE7Mx6%rtoox5+Sg2H1K7olNfsjSmdqWh5L-&~ju}Y8%5?-%HpZI$7 zI&;1nV;fV`g=@zmhPuSgYzuqA%GOWYQPVXzw65t^U{^9*y?c3|$HiyayY&c9#p$cH z)Gp3hm39(3aP>dASN>o0^x|^}1$&GPH3Ys#M1O@I2IL7J+bXQ*i1F!z8lkAM@l0bM zF&r9eP%mcan58i&7+83)IPLn?mzl79eO7p@LVM$zYc0uFV8u~2_GsHk_p48ck2hW2 zNGp8|iwlt)1q&9MM#A@r5cCz*r$A;KDCr5u47PwBlxW7Fc0wvRA7WB5Jn9UrOHf%{ zfWZeG|p+vX)MulByB%@C#}Rg=8RnexJC*mCLo)CO(8 zz3m2CdS>GK_O9vG1PHg%3LTK=0aZ_6l92!Y-DmiF3a$h#%r4mWTAsb!`r5=j#wm7X>M%A}C5~WY*K~4{ zTNw*y6H-eL37=r};dyd{^(;cSF=Gx&cf#kV_72hmRsjKxO{x;!{+IS=lds&ATEI~>rL9LSBbAWzMM0O_>k?q zxurPx7%LZ-OY0e5s+h!zg*VS2ejPG9+$-F!6Pos`I?Qp|nOlUrb1>;w03d+7X~j6~ ztw9q$#LW7&N0R+_4Ga3-~xvs#DSZ41w> zWxJv&mcJ**b||pUKbmZUL-os}ZE2L3-8QpgMgIv7Pw}Pt5yg~oy{xmz$Ht@O+mDin zXW?nLG6vOCY}^k@JcxlHpLf98raWKJ@{NFM+De;~mk5>h_%k1>6Z+>}Bm&^A02BaW zcE7af3CiYKC(|2NT@wc`w?+;8v*dXaN?odD)>1O?&(^o#1tB5QP$8@&Muj0fya>56m+Llx1oD~!$uCJ4}lLN$cn3W z+X1voYBSQU@0Wry$)|D&eGx<4>8 ze{pPIZ;;yGx}yK#HHwZ@2=U?5D=aD5fm#G(Y6$d&DAvc8q>i4s5FaoQVv4m&pEN@l-F*Yy|rpeQPo7qfsB7o za{PV5BXyoo{{%zyPWy^rHZd?4epSMaNyx0kR)%9mDOLKP(wiI(ZDS<4T`Ta~sAoV# z2I4lxNM-yYNK??t+YI2?AWQ{>_=adMp$;5yyM1CaUn^@*Y73im*jCBlqkX1TD7kRk zbAtPP2BC`tS&fMp@b-j4n??c|!vpQ)8r*;l6fBBUhaVK=9dV%!q+4254ZJ)MZ^bB8 z|Dw;Q1>h*cu4KS!;bSO%4&MfF-8(cCf_uJZVv#bqDrj}x%&;Qufw}38zi)u_<LDJn3R{ryGFl6L=8clCs+-r_aqY4#aC_Mc^CvXD3j_4(|m zgNt^L3DTClCJlUM&dzg`e>5FfW?wpCRovXUIe+MkeyY5jNa(usF4eRBqhcAjDh<(+ zJ8@NI5gsy(s2wb_HDhg3TNt|YMf-F#zp2N4ob5fLUDHKWFOQA{Q%M*r;BrE^B!h<; z^T>#J5F!f>>mp>gCGZB%o|I9&09k~M;IyeD4cC^VpQTvid0a<${Z5O>I9~shRt(ip zLIn^BXcLJTbs{5`H3I<9bh}y9OgU>*zwD!!+c{c=QR`!T8Cq^=9yi47?rAu#yXFBb(V?E@Rq41wM<6hxA$A-PmRUsC?qe|-d}Q^IJG~> zWCIuJcTm!R5oXDqd0_*Ut+H~hD4G0$qs^j6+ITV;Jx4vZO?TYc_0uae{N(S&M+~p1 zBt#iYV-I6kY&oQq^VIvd0c8xqK-F0!_TjlHTH>s3R-8O^AwWLm(aP+0LlgG1$w!-q}u-N|%kX&Erz#Gb1aDBh;t1oeM_*kq7 zv!>WJhcK*}jw`0zC$%-+=of!VR8lY5tGa9EZiTA;b4Zzqi~a5$AKNeK*4$4bI(~vN zIo@)CnHIM`j~wnQ=uuwk+D=?u*NX#7y+ptv+>2&j-%t3z+W(oJcH#YxgStruSgU%b zS2LC^1r;b|%3`9iCxrA_nZrY22(E-sHRCaWEcE8IJKSxvoIA-}6!`P2e{ZdrWNE;$A0@`aM3kx~C0XfJWO1Vy*6C~!;GKz;zr?=o;I`IT;a*2Lh zEjVg8UJ<0&V;k&Ncu?yT_apw&l$qKbwhf9rf}uEJbo9@0Eskx9ME^HoWe)#)9Be9W z?I!tmS|Fc=uJb8ELlBb@dzkd&fBGBrY>7Hqr-{#^zk#AC5`J9M99`5^5aGwb8bYVH ziX^`!LgooQHpmg=E8hXGPlTdyavDFAxcDB;sUIW7^7Tq#+6juj@#;t3RObUiwS8av z(m4k|JxUw@bc4URrs05x!kG`%irLQk(wRsXx8s$L3tau}<63Vl68&1p?k=b>(aKgN z`Ikd?X@B?|o=W7|9)p^R6a%VA|1+RgxRT~$=Ks_qnXg;<$M7KLM{HxsXuXP=Q1(D7 zPs|oTj!eIh%*-v~-5RC3km}y;)1`EL;UYQ81*c81e;5}G@julb)^C3BI6rui{O4KU z1Ia~QKE{(QqGRVG!hDCEjchFZqQbd0CY_h^I(mmpWu*mmIIEgS?Y~Ow>ML`W2=MnW zs;c4~I}#dZzv^6*^8Ei#55~vINl#BNk5Ff5Ut2?vsq-H-P?Uv)g1kI*^m3b`Uv&5p z-Spzci^H!kuQ)&5)OpcwHXb)oed?x78%ax54oFy?z^lcRoEN&wrgfE=BS@iZT={^-xhnNQX)y zSeytxhRK%z?96PQDPh`^8En5RL#T|AWzzuBtzs&j7%o3KTrWs#?|qm2vnVmKB=V?B zxCULH#sS}snevE$M<@GD4-dum64c;Jk%vr{ztuRe`LCzG4DJq_bxDuwjiuFn*{~p_ zV^-i4+L#^ibCu$6N`S$DbZ01qOqJqi>Yvb|RYAi<7{<>@8(|Y&_9syieqF=*R zY^99Tc&ARx7QykG4G(${$?OoY$ia#2HS7uV3Ys)%xP>G=G0+K)788{PkkHgfJVUyS zFGN~6QVi3Ars#vR0qzE2a@n$NM?agGYQBYHv-)WhWl(J^eA24fG$G&H!_y-2-YM88 z*nGDgaNatbrEfa$-0G1{pK^lbQNBR62NEo@-j?oeZfS^d#@K>d*w0lC_yQ9mOwVJ4 zz2PE!h=l7Cv0jESAD|>2mOZ~P+8hAS5r*#V!TiHSjG!u9fXI_%#{eu?W&lVaeb*De z(F4U$@w%mis9c=dZ%eZ~Nv}zjI7Y1*kdcsV7W?Y+Z%)mr^9D=)eQTe@AC({3mZRD_=Kmt&WodE`K~WP-$WEP;%Z}xujSI%j8FTx{zmXzuP_=& z*Dt}W9kTp`UrJ1PFDJFR{T4_bn(PglH+$%&l40sZ6~l%h3{powX7U)_V(|X#RrhLe zgIP}L@{)xzTWZzM!cUU>%p2b_s6AL?AyaxF+TVA*`so*|^!|x+=$!_wCHVR@qhk65 zJ%r}kIs+vhpxeRr_+vMc1^jrqZW0VP>o_ ziEcFbWAm>8V`(~8jtU{2^^oz14{U};oxXCuY>)7phTDS&E&T*jza=$yh8DPsEX3W) zpo#Q6V!1ATxNwB$MoD-{_C}KBx zPPlmN9?fIVxT#fWP@Mqq+|xcFJLDg!m4e0nIs0aB?>wblBRfLN;Tb4TI_XU7dQM9< zyMiTdD+3E_ga+T?eyH!d0Yxx=d_o4m+kQ}D>#4$zBU%xx0IAZdOT?Sv@ zHRHp&U%M(<$7%y#MOcoj_?9`~blFO9xpm)%n07oUaZDM!7`9b>f-G(zLU%mhwgaW} za|q4JX13aXuII^;b)ub5Ryws)A*IXv!c-LHOrd{Yr@}u1&aSZc6Xe8&Fb&S~7E1aV z=WWN-*{?c`pQ|>TGM-2q`^58(?GN!6-A!wG#g`_@tU;Oh6eY&u{y@5~y+U6O9vK|{ zB4u=+RVoE%-%EPs%cGNHe)(0y8Z@{NhONFG84>9L$6WNE&v!^YXTn2$@KxwfpNmSB zX%<%{N0)?Vj!Rc&P%!4NOz25im(YudGTKXlK-}81Ux0IJaetIE+4q*B7u2oShk0x$ z&tydenOI9bXCzbFwdFQKKR27Xia+mrY;ok5jAdBS+C+%OY_s*=YdKcLyUT(z+qEsl znU>QviDh^9hl_GL6wxmGhi8hnl%$HuRoy#49Ct9zj*+h!jlso}^s_Rr`A9fL9A6Hm zyL?)nQ#vWjA~i^S;FGZpDh17LTJ@XE6}eX(L{2|k^cIod)Zbv{TZqQ1Sae(Q5~q)A zJUGR6p%08$>3j3g&A1Ere+ijVX}DJXUPSg|=GoGc&I6Dy2+(Iv>hHdM<81uZu}UYC z7J7aG`pcZvO`raGS9Y0*kZr$i7;kD^>7S9*Thn$WLCB6jtd5B$+AfEI=X%UmtJyiG z#jAX`)Cc=+C|x)u0^;hF1qX*?fEgAcpR#@8f+Dz2wRbAB+CHxyr`h&?n&%3m*r}IG zOk8Ag@0gh4_Ad_i_`FpIq9ONB!{~<6C27^;N_Vnl=OcgoC^_uyqHDi<`s2xO#d~ec ztP~ZQ${%iG9hB&Q^;1gvhz;vx#1(U$*cXMC9kqeM@zckplaw82o-*gpNgY}}?i-+L z2iH(#oX$+=LuFGu@#9}zWebjRILyZ~C3paSOt>3PL4VoFE8-K|R^r-{zj*jizURkP zK8E>Y@#exPRYDnfp;@VHXGlW{!_2Ey`FwiyFj+xrs+DC-%r!X%Plc3**!!=g7pPO% za{vAn`~W4<&n7Ok$#=Z_c^1lJ+d&ylGwbiR3#P;$`(M8*$|)17kuFIa9rj*j>ocBD zq%o6~*0efWwi5p%5HG&ebEEeH(fLVSXqrZ@eK|nlA46!_%~HfI%e$H~2UBFlkN4`G z*tfW!SS?8$sQF7@q|aIWx>u0*npau6pAnB6f}!HnR4WPt!K!BLv26_LQT_+Ypn%`w zkFP$FmZJ9JeonKgXY`|>HL>fS``Ccy}Z zDxI{4mG9MV2zvxbMlT8-aHrH1q1a67`@!IJ{*;B4VSl2uHF0C|iRkHpaRc*?_nk^j zpXOAyqe-Qr3I85(^Wc){sx&C91Q$<0VVYR0EWhgu4-c27O;7CG3eN#^AqPpXU!8^X8oqJW<0Cmx=`b_qnC4zm$ zpS@l}A_*%;^_uSTz{I(=GoN@p8C;E$c$vWj z6F_R5^1WsA>QgncC3GT92P5ls%mLjP5HUQ6`UlqaH(nNV8l=?_3MS^JTG<_q~$(t9Ms6 znT0dS;w@?38}oNiE34I4KOs*Mc)@LPFI@Mxo;E9Y_Y^_A9r$6cDG(GCMBr$^2|<2p z>374uiSm)~-ACqriD3gAD^6%X0qqgfm@l*rAkd4B-hHIPao(6HNU_2&8* zM0lkY739!?oYwzZg|uaG))WZelTEI1<(4z$I;*U#j8cBKNsyc4|2BIB9Og<=J#^r2 zI-91t5%(iI4u1)M4MweS8GB3mQ$I6g#W_}n9?F%krBCU9=<>|DHMHfR%@1mK!F@Mr zW4VrSR{t^V3pQU>_144@7BZ`kkMDmWZLSbfiG6gkxl%|i=Y{Tb9nNNa`TsMSxxnw=gs#7#QVU)X zN$knp6NQ*>e#{yO$je)u_2Yy*A<{QAtRimw-L;DDH=>NEUIvUjgvDWZR&Nd!oviV= zr1f{v{*rh92t>MPe1G!O=eC-26I)-RhpX@}Ya5G4jpYKdF2YYhEka9m85(CI)EA>t z2(R_uNUwviiCqUqL4qcWn11?uY)k>8J@8oeBd~h_-uG?C#l#}PFB54&zXu0Pz`(-q zvLBzt>F5IJTzKrq1jB4Ra(!8QGQxJhL`0B+}Ry?!^8#6Xt9M*iD{TA1E$Q#CMP zuroHevqYlP|BSl?k>zC@tosNl7Cf$EH-DZ5`yD*+6*-o;=L&j$tT-!-l=RIC;O{=& zlCK?$G}aVRH!haajfy&Ur77J*=B{UP=4Lq7372Y=J@e2>L$=UVgDh!v)MU({jK(3RLAdEuwjycQBDBZ|*-EEP z3oaQ zen3PV4KEt9ws1q*snvxejZ^#{eWhCLvNSLFzHdp}kp1HH(oy7>TFK3xx13x$DC7Rz zvU$>`$K|VoR{Xd{1Tu%sJC6L|TUB|F-a5pX7I4UD5Asf+=5*ATiI(=)3!q zf+92-rX_qr{h)(THM0dqc}4Hhk!()y`YS4RPQ)@xsqXL(a-t$c*e_%Q8-g`u2MpfR zDKp-kA}6+mEbkEn<X zK$^fh+QU1oH@0q0OzYOqp2P7%7KP>hz)Cs2zw?mgSu47WK`;=_V$6$OjGzKD9G_mz zRoOXMfkhIHpz>*H4d-i%%-Qg85B}^KhzY@Nf<04sH-2Rq5~yHN(18;1g%G-1fK1S* zfgKd{4~|R0IH||S0`qGJE$V17xQeSrN_sjpTLFZk1y}j1^?weu4g`&4UT52T>S&sj zGX>-kdW~=tVTF1O?U%FohQ?m~O?NtuuEAAcFnOJ%Z{M)IzBc_7$LW)mLI!_TdB*wV zqlXXU*{ce6f6;iIN=J7Z!Ja8uGfEfV3t2M(q<= zN?$SSchx++NF*wl10erUS;Tm;?7WbvQ`g z6!4TnhD$UxG>RkT#SPaKe+TG*y9-EQ?^0J+*D1_->`f>=%u8n+&>m`yX!T_kD3aOa z*9-oHk@eTjj(!a&nF4YrD69ejN)u4z(NHW2UT;=G8E<$!MMxo8iLhb_V#d1!F!0vh z_(svwo0fbz{Yl2a?ks_o^xwo>LD1IxN30 zK1GIAY4mzFuk#zhp2HdS0*$+?BVZr z2@^p*U~#sSs$R3{>1ZLZdtX1~*<9r}Lj5Ky_3f!-lhaIRVwlp}^7L!KB!Vg~q65BP zLOPR_kXvTc6#fQteH6w2E+WRV0}0e7hF0nL>=cZMFhYG?0%Y}&q@~h?Uct^ z0!dHx%@UslFy;_hoH(0^iLAaG@5P2Q-5fwF_oiMXe5)sQV?A>aD-B%l;B%Vj(geSp zG?;T$?wuV(C8lD7!1?%zK+z)}{{~23{8aUMmPP>T6`n>)6>YHuWd0!-3|>Np8O#Pn zNane3pX__9;JG20rl_Rkue`bA*wO`T5KInWL(lvjnj1H6tYYV{?_PeZ-k+pH)Jw6c zV&p}QXuX`l)r+v4!Dh{0UaEC4c7tTg6(@CR){2_$dsF1b#Ht6wAFvY94)3yk0H!oj z$FLKn1=<-g;WxqGXUgJ5JD(A0d1ColdyHJ!2{(LnQ3D#OYHPB(K1lUZ0; zl+{*KW_^4wcjA7dg4bScdZL=x<}%|?3x@w&Q|N)<>`5*lr-FRf@R^~1_=^eQ(DZRN zO7SXsAm-A~7xAFKx_?&(mq^eCxIl}nMuy$)c^E-*9!>&`a`twv)_5h4U46=RN5m~~ ziQ%ZH%&aFnazd)`aIB)x*l(aIwgyDmLXm9AIcg>t-~t0J0z**B z+ok0&(M4p?D5}Oq0=rERp~$}!F;JH~-=>qvWy<5>B&dq!&N;RM@Ue7iJccIdRw*K} zw-LRhlwrIB?22Z=Ewv|}Agejy8jWYfclIjsuLXo&o@Z#Y@(9J8)?NS|qcCC$T}ZpM zR?%cA5N}l`M_x4~ng;tpa1<190pe%1v|R2~JFL2q5Ono5yToGdMoA#a`4ru{9EgjH zvy8wyWi|x;N4<9$VRW#`*G|M!>~EBqxRn3gJ$h@a`L+Hb48zB+r5@~S2o?+ z>6w{r9_eiP>*o1=Ur6$fG%f2;yZIWFy|g-6z51K8%Qv{bIiKl!(d}SzT0rfRn5Of! zzpSmzbr~~n-^`e%Pqb%D`uyeVfGFeJ8%_?@Xy~}~=@Df`)9Iv)`NQfbU#j_~!_7On zsQyKDS$=Vfl}Jo7XM7}? z`~xJh=xJ3FiTzL?eox0j5;#CZUvfpW+rR#DzDaAZ8*ev-M~;;6W9}^bnWt<#w*3di#bf2?=Qy z3CWfpyLRBetbKXNhd+32M3ijg%=K;T?^)@QNZzxtxNmNA-$?tkot~Aok+~WBWv1?B_K^Q>sYdY9MJGqSl}U*9$3CPcIPDk7rMMW5EBKV-Si;AV`!?5;D9 z4@&bUJxujDcx~6~Q|I6AKJ)kz#s5G4c)|GO$rG74i4Xy5{(GOdah#CcP#D>5J=Md@ zabo}8W0zefhT9D}B!XGW=3Rb%eqzXRq9KAmXfj=|#{Uc>BctZ{981)ZGqYaXvf^Le zjHzzcnfqP8UA@hquiL!T`)16~Zy)58e^avS?>piB^wCZ-p^DI;ekbB}G(=D(%kZ_4Q@Q7nQ)2@Cu1nOFzNZ>n z({(C+F7Wa$ziZGuK0nb(?(zKjbH+JF^#cDy`6SsCm282ic*Qi0^R%>b1vaAsL9Zif zgP7SZ2fj*d?fT-PFk3rN?lm(rL#j1Y6R=(7m<-GPJq26NE@?PVa%K+m+fSWmV{19P z?j|ZK%EQO^`>#MwPL5;ZDGzV&{ajqLGkf;ziN4>NLHxQue=NK@>?gjLb!HkY|MHWj z853x4Z&y-P6~0SJHh52nVfiYZ$c-D@1fAx8Omt>4DrY?2SYJJ67?JTNIQY4rpWIc& zm^*K1RL-&{QdcC zWWgzuZL0M08_W8U%toO>tn&pHmV+q@;=Kj7co5&t^bqyyt%e-?Xas^eP1^6oiXFjE z2QVn=;{!(*`imUdZO6Wq_4P%5`gEma`F9wVX3*+*TIonj?A}**`B z^8C#O@qv+%+nM_Hf0z2*nS6>J=PsVR`SPuCTOtoX|KQk|SQwWnkHrrUy2ju2VINd; zFO#^g%(Lz{F;Ek(n>eAOt$lX7Wc9L}o10;_N=*=Rqd}DGQ`s6uO*5fm%AGl;Cx;s% zVw{(zY^M7nm{fBtMq4g;x$JoKfVt%FLj;Ysxw&sp(6JQN+~3osn_RWI4l~+gZAs5! zV$RXf&~TXb1n)n|72LMmXA(>~RVoxRj$dLCsG3%ab%R(!x|bjVP&N~()8|V zrFwzQZW9v|oWeI>0$mEKqne(4_ddyO*c!LLx6pn#yF=qkclSw_4O(kEJN>_Zeqv4L zDo?o|q@j^gQ=@8)ldR3@dH#IYz~G?c`a(yuA&1M#XnfJiSW-Bz^~LVeZ@Ff@HF!-2 zJg}vu<-PV~Wt*{YFL1i=WEskkY%C9-Qpq)woEaz&;jujHR2(Vlck$=YP(aL5v3B{M zH*elJ40>~4QpvhhXg{sLIMJzAVDsV#gF^67+xSA3ahvDcx2J_xC)l~ndaC9}TX*l< z_sg5RkL2Zpcdo08_j?Nhu0Gl!lddhIkftGNXlUp&)|zP`eNig>HbNxZxQ&f}$ya#e zHlpH^d?H19divV5`{udx=O2@9-Er{Lsm3D5Im5QZBlz8MH@#2r@@YQBxf5C$IoFkA zD&C!A+L>#93VV8=;bYJY;;FkVvCmgob{LS`O42v_8MW&)>oHk1qCBYH&(nN z`0ZumrKm~px>b*NlN&a@CH1=~`MIINN4?N)27B0)p;t?lyII`lGACJ7RD_d4%gTDl zL(qBgBeG$E{j^l|n+v@5Q&gJn>zsJJp{m#C;+p**Ki-Ci|JodLYqUF;8LN1fiz`sm zZTX3K&}EsJoBR3fCaPwKYC~9co+?Yb;vp}^N?h-M5_wpBza`~X8ihBLNfwYS zLR%_)PnpZmUg_-Y{2&)E71DBmisvl}r}N@{ITZ_wk5)D|cbl7=Gi09mt3nOF}`)Pwo^UIMjR(H8?Q(SA5#_;7neg(lGmwt$r`&b(tKS$O{15w z|CIaMJCcRPZgW-t*UdL+r6cbuC@3VNL>)D?GUxB>-=IV$Fm2DFEDbuQ;czuJK0a)y ze!{vyr}Dt|gi~&R%lwbh(4>-J3lkZ~i`~|pwkPzvZ}v_s;6Hr0C>g3mrKnW>O6N>m zoAGFCyst>XqeqWMhyVU{(ALp0`j&7AWr~X5j^A=%kUN!l|aNE?GIY;DkeZ``H2NKMM<-Lky}pjHX>#)j2LK?(Q#My!cvC(en1{ zR)5(wMEud^o%>JdE*2r0^r!VEyRyH3{~qjgU#m!;Q@83BRol*&9fHj21z!W1R3(fK z9Xj;Av$Hu?{Fq#bot>SBrQrmA`TO{IghqtKGlo;TgB9NIV`Eu$s}5$~>$>;lsq(Kj z<7_2m%F;daPJ-NKJ)cl!5U|55MU?HS>R#E|oaUwLIm#=A(lkxIfB&fzg<2eF9@{Yr01g14P}j03A=eYYAf6O-Z}gPo zrK2ipYCOdP==GfYdj2de<=z&TlDa4$&|~Ax8q;guUt-!mg%8Ey6J(72_$XjOhJO7C z)De#R2B ziYS=Yc6U1!MvlUClu6|e0MAU>&Ql-pm1obLlk___Ho}4ej z2k9~Zha}VFB;M;HRvl>@Az6u3^8Dq?U**R%>zb!8q+OJbto!rx3xT@uIsNsOg&Q|- z%3{rKIrTXYEm$8qcB~SQR0Ci|r({R-m{d5VC;JNR%~9-8mb{JH4GQfhEv&6;ZIz`NLMUcmb^?td z`nB2;0&NyXtXZUikWQkH_lm zGaBw#w@Ok-IeX#46D&(ta;nza`b%p5K-2D=na_Kf4<0{Wg+iF`IHw<2oP{Odw`1!q zA1cQm=c&lZ$h?$Ojf{-c@~tjZ+G^tezkByiB1)*&Kk&^PZ5cByt<%rQPBr8d(aR^^ zK~V@~RKAAVmv8ZN3sQ4~rR$!pqwfTD*ftKAETy$)WpR`M;5s!Z5Ogb*xO?-bn&c|)uN2RK&s^1uCs?b*#!p=0Sf`6UYR!CO5YGae7 ztWr@d$D6PI4lfT>{<|(jClFXFDyG@c%0-Zap9s9ur#*mvn)9sL$F-l| zZtUCcSPF7lsjN%1gX{JqO{5GA3t zP!DZXvkrA&bps&Ccf=-skbr0`uB-}(=We|q`nw5Nu>OGDr}_9!AhEfj3{$ClRf}0z zu;A0Wzp7q`^V|F2OsAtRscC9j+1bTie|8{l+;B-c)~q9y8c`9As#ml&TN^Iu9GGuC zEQ{|(Y+Bi-zFZvzw!MbfH^e?{uFa8^Zf+EcNXG#LNrZB|5OQ5T#KN>9Wq8C(yQh61FP+p>n2vbFwnK)52JJvT`Pm2b(rhWK%=_|n_V1f zeuQ=>sx3)zuHvM5uvrY?>jA`tE+9RJX%|Nj(>jG?T_%0`xmRsj>ooxk2BGdiykiJ5 z#RCTp)O2(x7Na1=8I__vVjHS8?%K#QYGthXRbo`9EZOZoo|4PxQ|z9YDJv!-BJu$z zgr1+D|H$#<2^&kLn;-1^T@^dKyA7K6Z1P(DdT!iTl#gvyh>VOh{^UU#XY^x9ikEEv zet9V=siTz!3QH%s%}^|z=nx-6zkkPJJ!6S@r;_e&B(gHyl_Sg=0}mPh@WJL_18#K#4Fw{_c}(rLm~k47&7qD$%r>^qWfHz)a6Q^ z?mwA`g-jsOkHj+ZE9B9bO615Ls3uBB z3DvZ=%JK5^;{>RDz!A_}DKYQKdxxk>7W2RK4&d`H@|e7#VS=Z(clM=Rq>DXwx^vCB zWA$9(rq?&sj~n?rJ>1|pHb9Cl`xA~vEwc080{UwL=>(2{cm0`_O@02y*CvJoFKjm1 z=iPYz%x0+Oh}-HUH+Dn5NuKUt%XM<;_h2~4j~=~w{@KOH2cuuTGBLci>&%|*yZ_^l=%(8HbE0Q% z{5(f0NfG=~-8a+uKBDVwQfMp=LUgks@Tcqjy~{`S(InVRb{)ZKN4YZUFLCwBc||(- zxz&2OAr|c((fv47qn{Y%P8Kzd+8p1vBTL0JvbIVLuiRPU$`4N992?skoXX)< z-pC`ncklj|DDMR@_h+hbTHC~=7IEVv>xpj8pwM~&K(zKHCA-69c84KgcdmK=?=bTc zP-1)UcjtIx^+`XP_Y0liy8k>X>J(}t9{^}t$%1580;@#n|Y*8Ss)i;I8%{%t~= zXV#NCF_gi1E1gEJL z6vD>z=0;=IK^wCg3h5oYaTe_dEB1F~8C^%g2nNwoAIiB^3ju+cWq0{&QSx_SuW?7J zq=N&`xm!MUGWlqdB*M77QFI~*&I=JfGnSMV-8yPzvxc%~h{`4;Bt%eD0IqK93yPTn zfV|+%SS<%`;G61k_$c{oF4<4@uyzk70=exw$+b^dSU659q6V};dTy=(!h!ex1#$2n zXXxl&AdRqVeIogk$J~R;GSV7P1|$^+9*j{n=Vgv*cj#oE1u734GTDwLFV5iXuS)f#W%)e)2qUi!Abx8}aKaP*5z5aAx`lWL^ zJ4d42R(5;e^c!vXmfv|{#SPq6#_ht~dRbZ7=ic5!*wvjc{Vsg^u1a*sWo2a{i@|JT z-?B{PV@<>C!b+9|c$x6d=ik1d)p&9E z!pF?a%-fqd|D)g2&k+=IK>@l`y_K`|)xX0~>e-wl5A|4OP>$f_eNarJL5K7Ms6L#} z))N@!O<-UJ`Xh;Dby8{52e_jL9t=JD%jz5 zr)})B0D0-jjomCuHOajNc9S*0Z6w%#6E%iEN3i6Yj!tT=`{dKNUZzXOr=_( zoj1W^LbxHIaOQ&FLAOUHwr& zmPX5B^WFlHyLX8$={&dvf49x2AAs2qDWQ@o)nfSCnb}!wWS4E*x4-uH_m3~mOHNMy zr@AN%7b9tk0Q_9Od|8>seX@)5^c+cA>*#H1>D=3;_KUQi(9+T=XPie3sIm@;))FO? z6bNA3Qe9m9;op7bEw?GqKutJ&APjC2MV1C+FbxUl)$MOVPJk-Y=c{FonTp`Ey+&7# z-aNAoGKDA3B2Fr+vmp00cP7_Xl!drXYh)Dy*rA|=8hPX|Ie-tvj{F5tpqyuM22DyV zkY!wlHM?mkiUO3P%876&UBk#)Z}AKD9et_!E1v8!6ViU@?ATad=Y;lad%9Y5Z=L78Z$bm5IKwo9q7fS4L@ev%jkEfB*OZSf2%q zJiS746{ISqbnWfn(aL*!d;N3mr~8Ny0tgIw>cT$JR~!bY#Ok*8_de}YLUVCJ>L=Px z2vb{#cD*k6L2fQL^q^GbKI93|{p76~hIr{X(6^38JlS0tO&ix-Q*W9 zU7_Z&xI(8FPA{xqcYJ7iIt{%{fUmFbSWkYYG9|bQV?c|oV z9XgA`{K0K~g^rt>duU)F8krzbTU$FLJjZ=~#n!6;wO`bB;=4?KVIc!P(gso%ZSjyq z|I+f@usr&mfS{nD7UOLC)2FW#FSM)DgGG<-L32s`V+&<0b3RHxo@s>Ll}<7rf*k2 zGV>CVeDJLFfm1?tC?z36u6(GGfO!=*u^>M8UNH`SDV4B{ZGc;to4bR@va2z^9 zMNNGwk5(StL3(CptxaYXZT0JOw}PQmBNP~*R2!q|0vtx-oXaYSW;sSpEeXQU(%!zZ ztt|jYW7zQ4c9v9gs5NR(kRCuTMeRXr`gF28SM?Wa%FrV+p-&wh9a%vty1MU`BLQhF({JCtNtl0h4R@L!d52|>Avr=xsr=T~v8%kY zG6`|}0r>3$wkQ#d$0guL`3zmrBPUOWP0oCIMyBZDgcgSoSYm)H69HxXy}iAGvVxTR zkPsMu1b~;~<>5(yIUy`I3h|+Ry&dF|aM3V}I52{1eq5yPuacpXYeP3B^ZLN(DaZ*xVrVwzAD=SP~q+>c#Btv~!P>fnDg zT>TQyB4c7=M)8~_B_&YU*Vfk^Aqn3W7as)BAUed&HEXZI9P@skn=$tw9OkS1aR3w| zT1C{)&=&BEpTwDqzoMf3{iI{dM_pZA?cnSj7JH0AVIR^?=A{~4g+YPBSB|azbN=3S@a4yZ#$Iamey9Ll3iwfMb!vL0#Jfg zLWXz>Ik72Kogd|(%z3)F5-f^g%lqBvj2jjlkzpF~CB`B zdH1Eh-uvT67NQ08TKn(&zIlxxklgr9e`aRhp)LDbSvg0Dt3%BY)=fHmUXatuLK=;e zj%sLncO3`Hr!$Zlfvkgi^>=xh)pqReO&_Wk#l?bPE$U>{*;?1i1 zdV}4dp($Sa6i94IB3jT!0N!z`GOj>v`12vG{onygf*fV-jWE zU%q@{bXdnX5_|xVn@adjE#LyObq&lC-$==YC!;qn5Ato4e8d(qCZ$JLDf27#KI!k(Nf3G&QyGPG>rmtb_u` zxj4G%{~>Oxgpa!+vCDCBagBlYVUGopx{__)-^bVw<@(55gw#Emr)64q#OM}4A1Lkf z>Wvz{dc9;R*R*2#!uj)G&zkE`mY^1GPk=EYxW#E{Dh1&58zF=x|Gzs+xhGGb(#Kkr z{Fqr7?>M5h7*hLZC`gn33f^SmfnKVat%Ht&;1lpo!TSecMf!m@59e^3he8tPBpuc^ z-*RvVh$7flBC*3mW8tt&Y-d?WWYf*Dtt`HN1-u9l{+*or%00ck|B?;|2e040{hY48 zy*)6u-z^O6)yCSKbmkh`4|dav-2`U-ZyMGH(C!jOgg^(1c^@U)S7^0AyZ+U(e)&5y zm|5p{?B5-0uiXFaSXr_Q%e1sm54P>xY0#xplOTu90oegXDn+w262b>z-TK7CnCxG( z80d||`01}>k!D5WMM}qvfq{W*$V85y!ihdf({WQA?!|rT!vy(-vY;(`D<>FW6+@2*4FA8oL3ho)uNXA=7P}BQM_f>-6zvms$=sX zqOtQUovcOZ^VxuTCKx-Uw-kvAm;yr&_CtX*|(S? zaLP?6J1$J`uUHb7mW~JG1)CPDK?4;*J)bl$DnqZt3t|UZjh$anqk$cOwq$jRUuf;m zbvSUs=D2CuF1R0fuJ%E_kP8i!7Scc5YoVxm(f(}P`B=;j@S64TtSnB}K0D=h8yzV4 zHEkp?-}#cnGuNMf)GFJ8RC5z)&C=TXdQ3C8#HC6*Va1zwN~3D@pX5VL2)*b_^uYrQ zgfy?7Sxu(A@Qubs_^!TY9g4gjmX`3~#I0t-;9(Tg(lgdu$jzXTtcAZo(F-7aF~Bpe z1HPUU6m+uNAaUaqF>2J_o?BR`pZ!ZX!v6lbM;z-w4eTw^gn%8BFhcR6<>TX1947j- zQ!al<5uMr--_v=WK&mcBf+gHikmx76viC+vJxfV3jT_p&V@C!YB&dZUddy5QOAhX< zJ^kY@uh2>zI&y^QQg@S)amPjpIJPiG!8(wdnyT-okU=o&Km|$}y1TDly^8jt8O$zK z2i>E9fFtNmIqS!YaN-Jg?b`LJy!=A#V48a24qcibDC0Oval@R(-?R`N=&C{__o2NH z8eMQ+hlOMwni=?^0B~e%iqqn{l255bQuXF5K7aYrS?XS@JiYH_vHz;`dF)ixJoEPn zAmtq%Sh$c_@Y$`%p~De^&N=1B-uU^EYb}dJhG0*upmGE#^$RcZ zzRv`278C=bnDN<9-CuM-!%m_EC4&S#I_yzgt;%kc)1_$MFU1D)SZW740?f_K&+7t! z>ZiFcv?=nY+TZ+BT-rOmxvr$F-2CqPPOz{Y5?kwvE4#mcKM2;1;1N;W2#Nj*mjq0|Eg?bpfQX(w%e+4lag0D?Cc+twrQ{cP z_w|KiNb~FwN$#5)F0<9NL^LntLu%MtN&r(NdeO}Inj~c&F3-mP5 zLHpThu&;#e0<`SCAD3nhr)U^4QM`rkY}N&su6t+G9)31DoMO(tj=u;I37R;*SUs_t4k)16Mts)U`rLPB@ zR}z|{4||T#UxK_mG&B?o>LO-ws@J5(&)@$&V0k>)Q-2ta#=5eTJYT%1w(8nId14x~ zLwRjW*SR$`HI<5w+{L#Hb{4g@yNDw%nbd{H>=!0F3`#%An9b^??Put@Dcv6%2dyM zB_GC?>I2Hcj8phF>1^a#sIJ!pSpN%}!aCz%=WB2n1258{J^?5{l8VYJk1=axeSg43ixUD`_$>gw@?{zZE9oxIP0_I5!bYuY$BrF)78RwL zBVI2`{0K`-Qj$sJ)==1;Q4wYzG~8-QU6$_Rz{iF7I@Pzl5k2$2%DeyR-=5H(ee1eB z6y#4Qw*$@P!-o&QLkkRaL~($<^DLa{_^*kIX$|NDX%Z!fNs7`fWQM>;1~4+iut(rd z8T7qi1VkhxB;uBlI%`p_zkr&9D`6K(F5xR7EQyYn<#wI<+M4!hYZsKA<1AW)3H%)h zC^#yP-MV$_cVkqP(FQthR;PJG!W|3>m{11M@aSRX|M~GfwFJ@k8SNn@*F|MXtMxwy_y$ z4DwS#YXVdsGn{6FmTHYuj~ZU_^7a-<>ww5@8aM@Xj^PG2!8laix?t8vNYF5F-Uba0 zZ^5;+j^X?|I=MI&$bnw-aK6C46daVh$Y*_BOP3CY7vL z0b6EYXPIpHan-x~CQ0t!Q64Cl&e-MnfQi;TxMiyVwIfpk1-0?t0d4a&Pib*(3$}|7 z+?gw9rUQ5mX!;C(Z`&r@vOnCj)q;Mi)GA^k`GZo=6MB1R>m#mee{7lu^vxf6+m@-t z)*R=om3pv)1D1^Bl$3nC$x!7LBxE$u)$_-hnVI2jzYfDB;V6Zb6a3xbg9l#?vt_F= zsid@@?QL&gd?)mZ%(q|qEy_{kuA7ly==p^I0E$A;kxZZ64mwV;Fv*>AyUt&}*jGQ)v+`~#6`*V15!yYlw z_~bb7bpHGqJd?MyEGW$1Iq=i)nW@mWvhW-oJULP%Aq!(up_-ArRLw<&W_9@UV<(M? zxw$mdF?bc$=3Avyw?>-Y8R4IG=TS5P?VWTLmp#YvEA z0SMl>bxRHw^XQluVu}Yg2MBq>m7r3;wq7y6bA!6LVu`;Yee#?87tcmVe)6uj`>0I< zKQ&+8EU7R}PH|}HellF7K5}=p)KsNqVaL?@@w@>4ij?!z+~lo!5&jkRH+p;By+
      b5}`bIFF!42}cw^#6=$MmD;RBwE8QuIC_%@;EM2J2A;Hm&f4=Avls zd;4qd2!9;W>2>*D(d8N4pyJ7=su5c4+4uIj_y%*8V_}zpd((CLKOQ?+uw#tRwt^kJ zzgPr9oC>+>T@7~Y;d}qH7li^^JIHyg1)Kjq=iG1^RXF_A*^JWKJ}XvLUD!!bGxQCO zW0dWBp0cXZ%Z}FY37T%+sOKKA(mau|3hkpvnA)#mphGTtTe5MMhnC-jp29xXB;rk0 zn#>kw)$vND@%W%^V79AhKa4t^wNuyXJj5WxoAHFfUN)o7B$l-Ftj{(FzC%BTBs_x1 zHzK9BIq}NXiL5F;qu9HbaOljun%`00xEd33$Z=qblbPYu@wy&r)B1-B9`WoCG^G6L z$DX&}bkbNB-4c56+OOBLp29xmET-$0KI+~(-v)aH?htvi%SbtD*rkVNob$aw#6QpS zNO0JUZDC1g&2{6bmKwv1cbwj+a_+V;uGDx1I{SR(byh#(1@kQ?jHz1NscFZ8E&1tF zypOn^Sed)&ccq8QRPWvJmh+?_?yY_d)Snmf6(}29Z@#1#9@v-dbLzS#{WIV0n9@oy zU1{R61g_k_MsK~rQ~pMMxOvo@`+2ci3eR+ogAWPw@Rrnwynijw4Hr+J=?%Wx%?&;s z75;P?Ug*&Nbrs;3vbMd`U|$~uXQ?V zG5Ph;?JKD3t%qe>d7bT#__ng{Udv(*9qF!EAm3UP?vSSEsG>OY`ea1Z7UIjEL?TW~ z0_u!f+3xO+i%m!^k5&1#WSMQCG-qX#s-E$QE1M#p7OyB{*dyAacOt8y_x4$)-d97G zA`uf3Ne*|JMsE&xUC>+q8vhE5`c;leBz`z(Jt(AfGTA8Gr|!G5s!T=eYm&x7@jJch zp7c$vl-#%SNefsYFF$smSNE0HYi^ih>~xGgX-{kJVVT!-{Nqc(%bSH)lO8|Y+OA+l zoyFNhZ*AFheeE$MfQj4fogpzX~2p61p5bZTL3m+76SZ)kkBt6iTt|Au%l zZK@)hFh|wK+3qri_a|SDUktoFb~|c^-iTTynL&z+-izew`0Kk~$J!J>=&t57qm8v> zm#Iv7&tY~U&XQrYFRJynB)67MY*|-L&EK@_-&5A!jsVry{ z|H{Qa?$!~^byxxMJV2?#a>-5DC4f0v%3?rei`M>QjlzG9bMI6Ypfa7Y$oTSwb#SKN z8u9HE+jNp*bjK47bCwO~rTjDJdgs%I#>;!DMl>49%oRITC4PBhi6Rf}c%d8w3Hr!ggT|a+oF^p4s#zWUSvxoQ5)%2fL z^7>{1Mk*(2L`<&tA6pxxzWXL6?5t7u81H>ky=B@N8*J8%GkW`UJN}*>JAW(fD`~}* z_TlaBE1dI{_02~kq!d48Q=HwT_{;Md^M;}!Y+%GVG4?`1SOAAFKFNKP=JpvpF4Z@ zIIq?Dx#32l{SD`_dIu7k9f=ltI6^A>XCNX~Eu?gFBMe@eAHRQBz>B(`*B^b* z*IU-J>Rd-~{>=GXQ;SvM*AOG{|-)FGNJPPoO0zq14&XX(0FSY4+ctBP{FNhO>vQwWkO#8J}jIO*QhPAH8;h{V8$*m!N z5u8YDt%x$^WJLk?J&bSvTXcDX!|)SqE}g~B+zVrEgr1VDUKof995S?whavnl1cv~{ ziGZJRG-~?5qoR`Q<{e#mJcB_GrQ&N_IiJ4N`L%Lmy#IjjU`I&tD95G-m(-#~ zMrPd7T}rCN0bZa>DIuz627C&F*_l$7QuUW zDHfIq1E?S%^t${FU;+opBlGUsc0e!uoC_=>7{Fz(EszLddjhdS<-Pg$kEFLMi_$2M z5fchJBJGhwc9KnHqdfcL2RW%qQ+^s}SZ?3X&mb~5;Hh8UYS|v4Tlw2BpMFW%to4=% zS`M&JLznvHIBP92NGuU45JGq;Fc2TY~;r_&+k1HZPlads>Kuw%fZC0b-}$esw_$a1^lqd}h|t#iLy zZya@Q=pE3Ni0&Nsv1^~-Lod?*G?wnovv=hN>5`{7v1~!C#(@!A_8Nls#f+~tY$ciV zpv!*_4*HF%#(t1o3LZc-=azq5PA|x!w_x&4HO87#~`CL=8CbboF5+tozYss_6_dRuS z+j&iZDwe`Po4nI?@nT`a@vYy7`04Z=IZh+@- zgxI!!+y{4zK8D5!;tBHZkMZ$ZsBBUW4u5sr-LHADJ~tJj`Lan}@cGm&o!jlBl4+ft zN;0jD5vMoLZre@~t50W7H5r*G-i;2QLoBfA<3R*fSlCGrY}Iq`U!nVG$uU)>yxw?A zTCOl|WNJtHBgMaiO8Z2OHn*q0p*c_lXu>T2C$1psq{_+hElI7<;kWa(LNgNd$lk0P#Y?y@R%kYjaL!n<~Y&$QTF*7YO(-%OUwSXBH_@e zMfGcscAVmNE>fSQb6e8H|8h~AoUv;DZEXLGA|g^)T5UM@QN`&%2hD@d%Vr0YE?<>+ zeoJag=%sH1vNks+3O+qFHON026l&^b!mwYXL8Yj7g3gV*iE?Y?(Nl^$U3wGIIQ?vx-p%|V!>Et^WhaMg&({ct zI6X?z%w!<@n$r)q(H(;>@rZWHrb`}+oMKuAehWULPLIxVoe4;?m(8=PJpOBHze~r! z%h75+L7`MEaj4tjua6xLqmD}p#!_@k_5KKBieDbrO{Ob$yCSoLYxmnxYYpBLE15Yh zKPHW-w3DZT7V;0b&hvDsh#w>$*o`L;$hL9XYC@*|GfcQKcyTkM0k)?;iZX&ZK*B>4n z7`=e+JUZ(1Xf#woqr6A-XUCkv%hmgPE$J#=&_p)aJ#J_IV$v8C=*{@Vp#pfq_ob{S z`bX`bi`Mu5F46P3x-p9BY=2MwWAv*>1*uK4@)qarhpI-npyC&>-mJQ(R3q~$bEd^A zZ)r=hy1w@OO(}^pru>VtM>cNp403Z8NpG zCaQeuB^2i#UwRMSLqJqa+@M}KXxVL**GJQfJC=JFqnP0%HjcEBh$PNKPYw>;!%O8` z{k(~$I#Opj(km|H>4BW~B9)|V@AlXH3C|TL?YOgRCK;eFBi3Jg{DTtEp-+MitM0^G z#e#%$#gWXCL40m`yj3OAXsL+Ryz{NuL}GdUc)a#u2_x^QxwFYvjY5TJ{n)`M9l#sQ zp?wUVA1_Vrbf+XSNZB7@67*hiy#>wBF^kE^2S2~r#&Pc^U3u4a#oe3BEZm1%Kel}G zxJkOtEuHc5B3tsM#|~C_=8LQ|bT3t{gBLb6w!Z96l^9ox7;~H2uF8sbi*&c)mRJhm zNw42uHu*nC=u&ejoano+5SSafJv#ffUMwDD=WfHsypitemm0RuaSC_772B;SGL)h%-EG#6MUeIvY&d834#)`>hwLA~F9SQXV z9wV4n!e&7X%)vtVXLY(1yzdQ+R4ISdA_bw~NM%mfxX*rTXL16h8UsC_Ro+hJu!m~9 z$##l4@oX$*7H*AfP-)#m!&m&kd_$lO zFDVHI4VaXK1&%OcMh66CBb+u&vly|A0A6W{xkW~T)q|kE3;sH`p%6Y>dR$@w-{B|! z-_z5Z&-+FDj_>pAC(|7AN+6GWJ7{cvee)*iV@}3LCKnm3!HD3TUtCeh80{C&eIp^P z=`DVSsrOUc{n)TOLiR7V{CCv*_wT8OYHhDD$i?jgzPSMD z4E*#^fi@X&G0y)1&w@q+uwrqX)g^&MSpDJ zJ|fUONMW+3hbMR+70)YHoeC{IJrS4}Kfry`X^HDKe#J+*)nr^&N#SZ;>F(+h`nI#B ztLtgPAosso&*ScA8dOfMa4}vlJ+{Td+Mmo>LttWBMClD^I}x?!!f;{iIYPWq+?)k3qsBdPfxa3%6&VcqoWfr4HH+1=HZ^6o`#-@$>2c# z*c4X{y0>3{E$8kP!bW}viV;=E`ESZ&6_BmI5m z${G(tKzd~gFn1{?DKHV*Br*=Au$#ceE}kK%#*MY*IFh;30K~)a2Mr?M4I{dW zW-3mezj!fJUl1p(`+m!9%+3Z6qp=RDt6-B zdz6vzc>z>M!WC=@MGc|<&(QYs=MGwwphX9vz~ROdYiQ@h%_dM{B*;aOzqQ)Woy64< zxTXhO>0xSWZ=^&Fg%E9BoPh0kyB-?SmnS$qL2v$?{>LykiW8*KZ=4FtpK*}Y@Q){9 z^R8z+9!S;<{5*eEV%HfOPVX8~#W5NfFLa=5WB7^!ju`l#BoR0tFnUSXh{z`H?}7TZ ztnst*45At)Wx_xcFM5W1;Ehu5nK!AE-8ILZgjz;zh*mhqG**4i>pyb9x>SQLSqj)+ zj5I$a9Q7C))?L|4DC98E48Et+D^aKfmzRxUvrhyUTHX zPH^yXc%qj<@1vCOMIFC~9OnDhllY!RtKRF~={h@Mc-Toa#LCJzdF6YVi#{QzI$+*_ z=<;Yp1R-8N-&tczCJBveU|R!@ru6Usm_M-iFbdZU;ewgN)8?f zDa11(g1X;rm5G#;)Hm9P_>DQ(oeCdnaoqJp0%e&6!;FBTs2&cHEM&aObEkI<~;o8w^_)q?UH$Gb)*S- zluka;zsCeT^}q{1tOEwk@1eF}K4nhk+bu*-m7kjC^)QS9!JzdS`V#hS5Pq}8l@iz0 z*%T|{F{Kc6wj)hH58cH%eeA%42ZH6tonirxcZNnRHSHY{H`38+OHJ?u((s6A>R-Xa zU)q&F^)3a@Uci|U8bTfgjvr#<2DgC_l-4)x&H)z2=s$<0@HW;NE^J9 zO>p!Q_A&thf!X=U#{i>(h_qS>D=Ri)HW9-r`Fxj|n7rW)U<1h`7YdIO_SgWbaR^N- zE)jr>t`0m4F*b%EC?LIV0zTdvx1(hb*h`1yfl!cf6 zvf?z|V4m~lk>%_EQ!5W@&8f4!Qs{n2`yUA&?~vgzGoTg#!@QS9T4i^4H)AirFERJ+ zB;iXVNX*$iIi_)ij+l!h{9*{8I03w(4(LRb0oq#&!EAbaP>`~2_rtJ)%ii)GZvDo* z`J78~Rp`G}Num@&jJ>stpeM}LnI8IjdQXs_VbJo`Gc^A{f(aM^baAg33Jxwdi;7{p z<$a7Ti|7&rpp#{FI319vCz4lXo!0Q*>~@3D}7OUMM8(R&%HN83TlgiHQ% zpXpY&wvvNCf(uMP&<)I&i;D}JAi=2+_fVixZ@rUkEPt4soRY`lG;wOc2_eVcK?!YT z#Skm_Hx^h5vE1pfpD@TJwM8RoHlR?i-Z@qEOi)8t>VK}dU#nf+!uwaa`iZdbc+CR= z{6Uf)PGtO-bZW{K@>Pokb0Z=MVs^ocbacBJ80L%(wq1&)U@o3N3<69Wg{Zy?ONiukA25FBczBLuRWKQwARFu1$r~OXj%(5qL<*4fKA-C# zokRvkN>hCgUrQ+b|Gx^h{NI)1e4*Tbe`N}YaX18DvFX(W$DZP`@Ie0i{oycN`}%)= zl!cV!;OdpkVYuC3tq@Z5I^VDPl=w;7j*ceGoDqq+Gs_59=@1q)TwPTLP8DwV)tH1B zB7LS{fe2$K#waS`6MpRNJ!A2xj1YiB1RSkO6j5&;SG`c%Nr>36;WgYk<@y!74*`I< zs?Yzj`ijgqY2q`l1(;psVTS}a8x-~LqJ&2P#QlmjW@>>6n7Ewr4RgR@Y|Q_|-h0P$ z-S_>&RJ2HCgo>8zt&EVSk}{H2MhV#~dzMNWX&9jpS!IuGQlX59vRAg0vS-}S_i>!p zd7amNo!8_3{qD!_&)@ZU9B0RM5Z~|j^B%9)^Yt9Iyv>vr*do~$?M-`%A@qX5B8MIi z2eyB|Ixf-hZviD(%xo`^~g`p(-#evSj+8yuj@^hx0eQN6sD65dAd4O^M&&mTYD!)2BUo++_o zA+85R&Ieh%6DcB2>?9Yu`G9kqtQck1~k;(<6dx$p3VV_?Q3h-%^TZS5JZ!`WT{xzMdX0SSMl`-FwZZHoEvlLNIP9g;sO zVGyMcs}$5@YrQbTn!w~q*mKzpq70LVp15+wpmAiAaiLHKcM{vL1>{)nI@I4a_X(pI zmn;F#Q2@?uDcO#nN);!!T3cJ271z5V`o4HE6wk!k2!#wtK^TF-;Nl5pa_51+gRcG# zi2n$r6d^6hPKYf0aYV(p_?-GA+!uh$F| zE-3w1CK9Gh;j0~=sL3}z!BdGA-RaSB~8h}eB4}r^Y zcj;jY92^|N!Vlr%BLeYda`JM-kciW7ePZwsh{vp)dG#aT=<~0paJ%^H(4m{Y;nvc3 zV(^8|WYph{$YDu~%2m$>uKmxAXc!g0Q0fd_bdboOL-^USZK}n2d!w{;Wv|OxtoBF- zD%pMsKv~e|5~VD9Ed$85|JguBY~@f8GOS{tK*I%6`z1PyQ@ z>p_)WQC@x1l;f4`!- z+V3A@n)8w9t606DU=4p}hAs|8pUlMUJ{%C^ykNdmnCalQ`81V-vMWL+HzVURb{4s9 zswYJ5uo1H2p$%?voADa<947RMbt+u{fB%r)az=0c?#zVd(Mk7hSHW_J2QT*g@brQk z|DqO$MYt<&g!u9S_B&*RZmqzLflw8=^z5fwfm&QDa@qnfgkJ-P{a&1%tmy3A$<7|- zV=9UhNcx+|O)Z>haPX{Y7CenB4p$7gqfCo5zC{lY*6xgBfW8$K425!$)3|gf0O-4% zPju77sj|p@>pBm(21pu&b_3PoQKupXbt`0p!S-d~Rp+aF7ue8tRJu$gH4N?*Ox9;_ zIc1B;_R-lr(*$!xi87z*@oI$|A`I90kFyO_8eh7z<2E>vQ)+q66?19D+a*Bo-gvFw zYR359(rbL>Hg0<2@>RV}m44UEnimNa8&oad)ry+y7H`JW`}w50qAP-Hinviv1fPs` z?lFJ?i!+ZSDCt0G>ZOH8_IF57-MOA_?-gTM_Hkpf`8DNN8#I<%y&}eVE*+*GZ{8*I z^ILb%YPCdVN?6yT#G5%)w^xMo*!`n--R$8m)L4f$fm2%gDbCf12JorQ9_Ed!ADwP# zxw>+pe_&v`n?7#WH=g%;2V`>{SI;)+8(Qozy*^zoaDa`yIpTqBWs9p{skvK=0SQ{^0uR-c+Gq zuLOrbKR-}>Ga~)^=c8hd0xaH1WfCd_XcuqYx~2T$)D~2ViP-c6^ktmKFj5utW2`2~ z5niB^h;IhT!K^7+_|?tA!b2z=*YtG!<-~)U>l}JturrLI3PFuSd@zB>-T-x%R6`&Z z8x6qdh!EtfLiqjQfu@$EN&p=S;%xy-=oY>eFs~tS-pj+oBOm2cdHSyp`;om1&+RnN zA44)CNsRX$<|l)NZTn9V;~xlsfB*j71BwEwvk(X%m?57b7E3_42vGw+e`V*j`t3f< zjaw<7NZ7GOom=!b5gihO6|Bq5kB<+zvHr^i80tBh9`AD*y_zj8t< zjh3bQuA@&z|0|`kGVdfkw@RQKnnG4=j8VMR+p>%^jA~88513Nqeq!NuGiqd9_ zdho$F%G02E<&WI$Ov60-s5ecu55+dTq|$sCofUIBOM^=#W?$*j#6~O_-1v0wI`wC9 zF@FZn9GE;L2}^RgV==j}Jzq%l_~Bn)8Ca#9%HMhHr*_U99;&sy{Q!zAGS6Q_O|6Q{ zmIAEca$>iEj!eVxV+X+JS%- zASK5S;evjS?jnAOxXj_i9>n^~PwNQ>h_sUk+iHtPX1yJ$`-)XfQ6#AYbB-KPmK~uvrdq+6^MZ(dEltqO` zubiDNEg9zJ)K$T>FKp}mxOgv06}R1R=56|%ST-50wD-#VhE%=MPmy}tlwW8Hr#r@* zSL&x{tnKLwJWL#d6rW0bR$D0kIWDJgLx9Tba+=SCX{4FJEx~+`;muo6rf!g@x1%^aXtL$8n-Hh*<8QAPpICB&*2;cUGj0oA7_96 z9{Q9sd8yFD+vNZct6sCFK}t@7Lx3qWL(g|JX~&9pRn%i1Np*U!?=-vk+%VV@R3plC@5;;W{NWT($ud3R>y&px0MyRXD}0q*0ayZ}(VnGG4@BxZ=K8$!r`Jhk zyA=`Y|5H0dZ1_>Ye6o2xCKAqV<{nF>r()7{InRckBNX!egU}H_3J|6-Dccc=qD0hhF>NpFbJC4wg|CN2*k|gS3v{8yfr{>jafCXg>1| zq6iexA6?V*T5<8}2E7`+ikkKBlC+=i05nSzAy(azx|G}h#hXZe;A~BFmrQ(`Z~O#H zPT^3?l1bh5;l*Zvo$xr@e);m{>oDlV^M>R3JJi0r_$kLOQ3Q?eH{ldKFH~&>OCfNY zvWB9()3wa5kAM>l4L)0AJ#j1M zMn&|PyF1s3tzl>Lj|7PZ2h=VR(>hLd2WYzS7B(#DcF!fOyJbB zCJ^s{xPueC3(YBPBCW<))me7Uzs@k8zbmta@+SbR7eF2`T_vz6o(cOCPwcOMxXeRX z>NNDs@zm+l&WR$ooxTs-SM1I^8jUV5Sv!aL*4aU}<8teke*Nff{*O<}S}V=({!(EP zxw;Ni?r%8C1|hno*(nu-yVKCQ_!JB@ATmUsLePxAtZp$lsKlNnru;zY$|@^?tw^O? zv>znhhtjL&bb}R@-(0nGf$^EwYh5bp7H-5E$4FkET65mm-9Y+YFu&kI%QsKiJ$j@3 z?k%}<2OKew6`eVlBT%vUD>D%mumkYoy}H=FR>DQ64v3*G|IB_anfH-zWI688b-4!O z*GA#2yaB;$mfg^~^SeIPmwI~2&iB&?sTySoX1xfq(VUt&VPIWi&-BP@@Vn!~ZB%Ua z1egHaMY=k)V6ixHVN%aiZSxzRxaiD2;!R7sOmP81Ge8RqYMWG@;fC=qrwb^Xmk)So zbx5!N=otCkp2iqPGCn?V!4@O5CUsgf)mNs@at1qAU9VjX*^^I9h@lBQiViMGuT&P* zBYw>WSJy?w$rYfrxSaPk3eH0?uL|#bEHNJ-+C-0oCY9Wzc=k}ZMLkguwrWdefd;ZC zbUGqwT$NMz$1+plij3Kgn5m?q4Q3HBxbej- znrNaP8T#k$x;kb1*ivY0TEltvr#J~*z(D-^Xj5%(p~${{YyP$z$~52jM#6djGSB-R z2U5EpF__Urs=s~{8+ANJMY1@*f6IDgTcBqE^srXw{>UO62H@BIcQcDiZikG^mt?;s z=*Ti*AOu-mc!J0;A|?8p3spu4cE3(z5jp(ShWci)rn6;^OUCbK_@hT}F*h2YofY?Z z$VFunx?A}1;ZI^sJ;RinPWU&Q+15uu8w+OPx9{Hi^A+7$EJIwU!oN7>xo-*(iB8T*+(TJ$dRJhEE<|v~ z5IBmNG~7a4Ppo1-MarCkje}i>tdeSk>;oLfvOfETnYO0JeCCKrWnaxH7?eeKEg6kJ zDGo87{S7=GYK?%xU#D3-^*-kA8rT$Gn7fWkDD{1>@*2ZmGu^%Q3WkM|@n!mQ+_%pq zWVO)oC#(!@6pJpesEBDE9iKTECDRXeQbEQq4+NR)f?z|Ia1Yb4ihU64e-bJJ z4Cac%iaf@)2c^Hrs=@o(Syuh(Pc2goEIeSvr+f=&ik`!RYBye+q+a`c?MzQ};f-gq z>$j%GKC*mdelh6mp_wg9RlG!&2`uiB)2P(zg*87K=<9#$r8k+GpU$$`U)#oFXt-KR zF7&}GZCs=epFXVtw0BBLy!7BxIE}@ML>8DV;x;jYb(I@r!x+dA5iAt=RZzHp0PAr= zZ4d+tW?8qqzl367bYz>iiqsvuj}HcO%ib^+R@WUMpPoH^`de@7V~M!(D;5TFTCFkC zOE&5DZ*28H&{D+FR4@)bwt9a0%$ueMH!ZX`Z0ZoArQ}Yj?kw^}r3K8HZ6zSH%4`4p z{(bMG^AEWyNivkRrR)<3{N{4T2>y0K1E|rP?hV}E zZZfJ~k@W3c7i7>oQbV_n$3H8to~Y!XO>usd0F|| z0E5p7eCsr;n2p?$EyDG7jCHLJb)xM}WAVwg>S%BL@?<8Wv7^&Upw#0c$Sv2z!WCCM zho)9sZ@hku(-(x6gAqNKg_!U9`o>^Z9>xZm($(?ZADOK#C=4Vi?v9igN%~!_-y*eB zIof`8U1omi+Uk=V1!OB0gQTNGEmCgo-nli+fYEhTXwWsW_05XaoH8OfWN7ltR#-KP z>olj|)zTI5vaJ4no~>pB6)&$f_oi~5n@x=M%xQl4^EZ?jxq7W=OqF^Dll~{{rvX+i z6l7kGbxg)Y6qv^oB_K#k;dgda0>eVM26wulM*L=H+r>RgS?lgEv*!hSX%~OXZ<_av zwK__}_ls(q<4rr0zJScs61rKcn9s}_Md@}TA;GM4r^Qvc9n;mN`qcT>YXq2Wl*;oi zUfUw8@8V!N+!#=t@xJhU9%XV)Pp^fWl~T{P*f(>P%Ae)>uHH}Rrwf2=^WRS|9!vet zWPsi!2NdTvdNKz}E^IeXRybzZF!B*YrUiX zHjIz`^{Q#ET+MfTuw7u_2+H6*ax5CeW zz>7lx&CSbN=1UFT!j*GeotsT>AC1!x(YbNs%Nk8lEGknsT~8sgsC7+LOL~n9B|Raw zYgH{-MkBPW8xxK;@GIV^`SdYw`N}5syB`!_{*a^+d&ef!)c=q=-S&h2$oDXG_J?}BrEf}peOr3H(xBsethPDYNbvWEawZnGxNqed^;h>j z^%bN3@OZnwVN^GDX(`>;!tLG>jvRf$xu4!;vRVI3w|T8s7^a+M>`_v^blGC{xf20& z?gb{_OSS6wy`OC?dw#5bgb@&O7T0&6m?9~Pp1*XBBr{--=x1Tf)`UKiAdI~3#^ z>7vKiNffW25fJ+Hq$s;`j)F^fXMw!e#gA)4?FHlf>E$QjNy5il+vc?L*}J2(XS}%V zCmV+A?|>VVp%!>}=Uo7z65AE1|4H>h=vwHoP*9#gwg8&l{rmRqt8VN*-0w8ef10!w zXlM{Z(Ss&0U1AX4c=}i`2$x#V&dv_#=ro*@fe6CGy*|5Nr=qrlFrE1LYOZ`3$JCPa zEnqG}1APjgAkhNg^V}B?3Ksodg|2}Uw&(aIld!wFdgz7;20TSGZD#QQ z5VwjvA-9PBf;71;V7Dl66KWLZwPz1m)qy^W5uP0`b!46#B|jb`HPE%*ffNISLmxD# z6xIm#0!aZ$X7m_X8lsyJGi&n46+=D>GCD&sgkie@RPJPk1T8JGmBG;D8jR4BbTRq^ zC5u?bDk{>TKp;FT%-vKmGsVCKz65&}=VyO)D`D15++Z=WbJvgP4_+ho@Q?zFMr5Ad zcx1G_xV7QZ(%l)E%vElbWBmjA7yH&wZ|4t6rOSD{E1gAC%h+}JSXSm8+uDG@IkSq^ zhd$~zt!S?;va}4?7Axy)Rh+4fdPzAZSu4GeIo_su5GL8faLxhVcola}ygmSOlFqYx z_ij8mWx%Ymb3LnJnlcY0W*Arn5FX$@g6(!d9Es02NSValmFOa-+QQ+VhoAHw<4^#k z!oUwuvN*wga|AZiWX^-T#JnSKi;(4nb16O@qW=e&L@1g7(g_Se)(^0v^CkFvRbV9! znxBNz?_Kz&Sn%?|t=&~U3+pixVr7DEN?CzO)2v~?*Lc4kw(^8mg&D>K9J+eGf3G5j zK4v?Kp$ie5Dap>?f}y7M(5IdFLdd{;rpW&~-sv^Y_6>K8m4Hs*Tpo0VX%qS!o&r&)fJY9lev)bB`afgK)JaF~lroy_dh zkvU?24m33s^S|&0II>4rEOuJKOcb^8+o>XWL}3o!Ikg0+_9{*Ul9@pOL{Mga1D)K; z!ea70hic85ClfxmZ*O5^vutC8r7Yo40t5>gEf~17CY$qfzD2qr>(kcjvnRh?sTk$^ zRL-`P^~`RjOexCplEVjvXaQ#S_-Ol&68@n(IRy=(ZR^%)&#n=4JZvCWZA|^_{$z8r zYQFYGr;uO2vh2lXLMCnidJ~Xk)7TdJ<5yT_t+P@lTusHU)q9}+0$lYP=LfUz52sC{4W>T3~xU0EuqY^$Z9^ z3V6%4`(I#m3>&C7<9(H9DO2En2+3JQlPw0o64*SSGB1I@f#b{SpxQ#4S(-2$IU$A5 zfU_2uFQCP7HD0a;eNRBIq=vwYuVx>IfqU^pM(NZkeawf5%#n}*Fy4i`5{cN+-yxfg zSsJLGVIe~hNCA1Of!Q6QQNaP4FcrYq8+bmtunXb@1_hSYEm4gPT0T?m6%Y+FSeACYAd0{E{;XcsEa)WgjBY2HCM^9oXUh>Qn^J&NpA46!^fC>J2 zC1bb~%sbq7?PR|$##+02_SnTz4;k!yrsf(PTX1Z_dRn#CCwV1GX86FHskK$bX2w@@ z(pvsx$;T$UB+4g9d4-r-q>;RvFgH#W_nNQn&Ue0~d zjAC*AjfE>q3^6MQe-aa!(j>Z5I(1|;sF;*Z?3xBLm2M(4c4Wuvu&jT(f6+sTmMe{4PAmmIftX;XG0kEl0SO4C< zc)?}-NRTp50OYb$>#l(xSs?Dhh_7@6<2S-xNGPzG~5aUY5n>w@+LFGyU939ZK;y5?B4GvSdD z$~|U$m1vu7uaEicrc8-urm_C9;(yFfgO0V){Ks<#_G?1#-I{dHHLX)TE0h`$YAyc3 zaOtUSd!9pNlH-7}o4}cgyYe*%g+uuujP(r0%({&mMT_A;B}rVU;L-_Rr#=QcFe&G+ zq)dTb3$d95uU`ZXb@+C^RmT7@=3#9UdJujLS@iHuZR1mdz*)j|h7VO>0s;y!N7U?C zORPkZX{dzJ1^s@-9+W3=D7*zJ#DKGV3ykrJF((e9Qf1_+W;K%*4a*ThSNjR|3QlCi zXA#L9-=IInQX=~X+)QKaHGm{{fyI4}Kf4`pH3=id+yrgi4FIr_xQEtwdU}G5Qj^Lp zOQ2!mQi!jDVGYKDaZ@`VSf5~~P5o?d7US;6mc&%L9!S`myp0M7U>)fP5E&;T4J^8rZUg2+~T z2^?2|CFh&@yIxfk`uJm^nb6MQn~U(Qc(_|(a>BtwgDw*F;ObbEcAO^WaI0>wOXgdVU@HzgodM+M2cXaw$2zC+VmzIapCz9=#?V69MSTv z=W>y(I$RlcN`vfm98}1Bk3UjaYQ*9_&|*|z{k6cm!MkZ+$#j=}lH9z_Lh<^9h=Ai8SC@DVDMdi(*fM12@2sKKGMHQ7t?4C;qUUzC@MrpsD8p57SRTW_6cbGfY} zm2lUT!mwMjPRj)%op~w#bF^eB3u1W8ube^GEp?W74Yw>*lg#sD@Oyb)RiK5y5QrfT?%))tW&?g{p+F)3=?D z8oE`m8&PLX)!%Zusde!p8I7Z$)i2^ycpT_=VLJ^qx&1Jp7)*FFw9TZkLq!2@{m1bw zV`F2Q7l+(;+x$((P`_EX&UF4X_X!Yvfj-T%azz<7#5?2XE!S^`sJ zmn~#&og0`&K%BdSKO{OMp}SC}Hswjv@2_eOM6AZAxeVmE@Wb zv`1E!O;4|TZCA2@OtvBj^eUho`3S&E{DN$Kpx1vAfk%(vEs1a+2bu3Vbeezv@pB7; z9KgC^OHsdw*eA7rQj_>4{^MK!>3;sNZ}dOjcD8)ae;Y1sEKpENfj2$a<27v96FcWbaJ$&?N;)&V9)Q8lwlt?YMm}!OK{fI&GH_=n~+z`ns zLww@GA`#t10>Z%dRrShoaX~DsF1}bC{YoW~!W6F}eu&!p$o$+~BAn~O8jxn4lC7Ph zU2xrm^2_fLJI@H7I5h-znS!%@03C8WTD9m=IsAV$m+&_?mT312_14?dyz zpG&yM(L_E`k%lH)82DgKw%gTzOOK;$O8$N7)Ttg6z7RMRMZZ$L29k7NU!TEDet@5!0YK)7 z{91W%rhBouCtBTaUHu>&MT@SjzFrxwAIG3WeFE(RG-&t{3DK`+)L4bDtikaP0&+Mu zA6aa0sKCUMd-$cyg}?GKsY&J;YGe4n-U3xv82UGoA&v6J2l-KGkKUnCMcdABDK5&I z&a@E>VB)ieqWM-}Al*OmToQ2L;0k$3VW#teaZ0TE?KNEd@Lg6V84Vy}Dj_f{EBe*c z7t+)4=oaOXq&c`$Dq};SaeBr>HWVJt3kpAZtS;3m342c091;;H5a`4?OzAIcx3(xFsIN4o9RnI+7SK+A5}gY0!*I{QfEm~8Scdys&m zW@k0jIPBk-ZXdxZ6DH$&5IrwIB;#;ntPONa!C0CD^U~NJF<|gO%qboE@EO?;Sja?Y zgW{}4*Y!!AuhZ+(a;_D{fWnOGfYzKw7{!T&KQN9be8_QUthPzD!xR|ZnVa{=vck`l zNV#z~##370RXjz!C+gPz=bsELECOF3J)igFQq;w?EV;g}D7 z3r6g$UWEPwz7va{o*vkGfR5Y%EI`SdB{EhjVEgO$Corzg;P^o#76{TLZYaw@wD3+m zluR(_1{v-->_d<}fQqjM-@y016h|pe18=zBlb=Sir%D87L2oBIWqj{#^;c-N10B1Z zeIU{Dn;rV`LlK#A;H4vLngul}X#AHyGl3g|cwicc5OJcdr==ahHPzZgCu_^fUFHA7*Q)g$=@4Sp9MlSQInJdG%)FfTdPm+kPCdB%p*~q<|5={rpMGT)Oo1*)taCVZdl0 zZTb3@PSwPz_5E7GFoxikwzFsVj_E z@usDlH15X}ge2<#5@cmas1y(jH)IGI&D%}j31h92ED2D;$+}-&UM2~)sN+$h)B^UV z1Y-sb(XCKjmwWi0Rn~~81A=K(C5rG560(asjx?XBWQnqs@W^niNUO<2X(`-wC5ndc z%Yi3ANo0tIhl1I|!`$2-_xwbHiv~6-4+lqi5ECowOA=Y{f-Gt+szgv1U!o)kZ@>dI zrb-0F^)=`qE?7S)N^>z+NHjx zT+|5W(^4Iob~)dMjn5EGKJW8kK%|T+v3t%qySlytavmPH+7v|e_#sRQl)a=}XOa;h zf$d^wY@DF$F>h!n#H=_EWpoM!BP*+^0+K3)Uxlhxbmt%n!7Kt|#;fxlzgCj3X1B_- z|M7HnWMjH8eb{++r-6?k$+;9l>eGZAN&ZIiM^Ce4iE_{U5PHyXwp z4ycBOBpHTpzZd=}eDMB@553epH_bCY{rMv-BDJcjXV=}R=E<6OHDPwYWM(Bk8Gp(j ziWF_!)lIJ?{X9{P$Gc9>`S7+l?q$VKVWJ5&(m2;QL=$7Ph3uszw>aQ9ki$NE^zh+x zF5eiE+Ik)+Z4gM5BD0J;b|k}vcrnCqYsEtWc@+Vuxq;>eoyvXvy6JFTO-(;Y$I?^v z$NKyGt?~J^k2%5~TjJ26QN3*|+J`}~w8*91xDk^Ly%oe@3?eFTIG3M?=L$d*VrGSN z(!B)k%b3SFxBv0}HjmHK4&*#MHJ=!+CGf8~CQ3o`q)uaZ8Q$$}r-em5I5@b#w0$^L zs~FJj01w@8s%s?tB!0H%jy3`kx)T@2f&1fyM-;+1C~%|$rBu9pc{g?`Pfp>4I_Wq( zJY-=TpLs<5CrV_6{;$`>o`j8*sQdc*0!l51*%eShR`-r80A}P<)I~9J@t%U$JmU!! zkWmlQG+52%=h5SfmG9n>In-z)WQ@$9O=)Rq0mY)Fz}b!3%&OIWxWE5B1V6A@d%rXE z%rKM+1B83eKwh@*g#odaI4Xgeo582csRNr1!Hcf6|Pts-EC`gp#g}^@%=SC^_ots;XWd*BA^Kpo9_ndk89l*?GHx zGQ+3gOo5@#E$tK|T(lJZgM*na)28^uO@8<3gXayCj!T~I@$jBYzL=YOX+=O>K~ZrH zEcfbnk)%87%GEl*m--(o!KU|k>}L!+6aaxpULSt&xw3eC4i4Jj4{m?4EwG4RKrf@+ zU101uG}O2=7ov64wXh}5LZ(WDl4!yP!i*!iZFX7#S%r@V(bJNP%q*=~{ijuK;uySt zZ1XeXRQY6Np5aZA>f^gBhGhpLl1^Gjn*ALMZ9k}u;)A3bt}60j(TsOV!r!o!nf@srOF*cjRFu&a23e#;pp z1F!w5B{YT1VE17L(~kvcjOyJSkq6Py(S-*YN;3~{8z3kgu2@1Do@!nppQLpPxz9l| z8^?cZK#4-SDH7$4g2BDHN~`fh^k$XI=%HT3$CFzOAZMZy;@HyOs_G0uSQ8w4AxV5s z_xHj6E5P3eakU%Z$pFSxi}K)%tp`3v4rX57>gZsm?c2@1c-*03d5c9#mZK&@cd&xc ztjMn{V*wGmAavFu!~36#7%JSZq9H~#B$P&})M@<6J@q<#4=TEi-ENZsM_eEyhAa0% zb4AS(p}S%OeW$$#ru3G%?;V4kpV_y1R zl}k}akaPtWfrR7OQ`tXgbU9KBgK}h;Bco!tsE?%u;Jy{yuyG?q;w7>viHUbX$7Ril zLXB%+VDJvo%Q8$s$_xT!@Ckn9uP#9pGJM$r1nhuaGBGhhdETt=iSv$Q;^o)xTlt@p zG7*|b))%d9ZL5Mt9c}}GRZ&xW53tno!7`Dyt0q;s%Y0z~07lKru}ILte0U44W5p*zH}C>`dwP(>vScgY zdu7%GG?37b7=ISE-0wI0i#+c+ulyfJY6Z27}-jZ^WZ*0tWs1%+P+9F;MswXE%#L#CG@+xM1(k<|SW#(Sv65L+|*+QW}SHOUWO8d<{-w~F;OI|GB7=`yfi9)v_hU$L-A zK@rFe=(HdcUeIlo55}3vjfzP`VhnHiC6>x@&y6R>^F!4uYHAdruhmsS4hw9WH*yFGDI>J%ewoFZ z@*&l(y7F4z!;cMR2vhuo3IhiR#|iWlw|bGysHv^Z1Cjvm_^;Op7>GmT=Nl0bamBqahO$9LEZbRe`qLlE>~#K&gSrWZiNF2lKk&= z8i4Gxi0~h$-P>G$Jiu{M>;mVxr}{vQuEWK_bi=+|i3|-#=?_H0%mX5Y1Pl%Up2OO~ zZDL}AaK+DbT;#Zw=lBsvYTq=xnaCg%buC&3lrn|@5x3UdO1z9c2ms^c-vEZ`n!kj> zfBnJyJiDCp_U5nN2yWcVkmll6D6gibc46CBIhdyN1p8u&KP zJ-z%8Q~1hU#%K%En4NeYXnUM{ZmfNB*wf?Qg%Upv3BjKkFbfe0R8dxz!|I)S73&v% z_N1gQ>oy=ur%uDtJJF5qG(0WA#Wt-lm&uRYFw( zrV07P7PR-IRigkULIdM0V*Uf4LtMD9I8cch9UU~gR<3iINR^0U7bhQ|cqn=AZTZC;O>+>D zc^43Nu#+HsRP*vAL_|dcWV^95ytazYuZG(m8RLS42A<^s@F;lf*^#JB@}Kbgm~&>r z^C~ac)2rOAQf_)l>4lm3&8_oxwzdi{h`!$!DV>jS;3)B$ef2^s%MF{Iri2yDxi&=O zrke>F;8O}EmaGhNtr-SBvizc==K(UDN1Exh=ugbz(`qhk@r7bFL~6UciD7{a^>V|d zA}1BfAYiPaPFC1d8=_&fw-mCNr=_bKiSC^q_=*xY7gv1(=l=aXz>zgT07)ZbR)yoo zZxP*GIgYh?tX|p~sHuYi-x@+k;2WcsT&UU+aaH+lUK$n^a2S<6oj5sHq*4AA6-l$9 zlOR_TNjSE){>?vo2+6 z`CZ4-LNn4hr(5!DVvlrT5D|`m;@{t2r8OWQ*?j?POVVxbw~UOfnwtN0N#8{Uoa*V> z*?bQ@(2uiW!NNF+XtA)87R&?(wA`{#$55yFdAC2~qt@obm;<$8$SFa#jIbw9*1bW_ z+6|N`nDat#H~}0u17m*gzxYY%%>kJpIVbo=@G?g5z(SvQlVD}Msz*_>|y z6!8{#|FR!}gkY}Sn*ww`+AU~gW>yV}msa+*E$G3}8ecqo_r(+3R3x<%7bWq@fGrK# z+_BY$Mn)&W!I{HBpiq>H+7wlIU~%yui`l=%{T+67<1Ge(!T^V2tCTwmu#XN>;HLrz z!aU~|TqrOETo~&{Xc_XmD&eB$FLfu+5l!T5ac|StfRrS>EkJR8FL@r_zycsNRFnbJ zCatZlL^(jnQ`kmw;x{Kxq8COzu;zpc7Z+D_Vq)U)*(B&{(7aK1-l?Ez_w2pL*;443 zc0?J0F$3VH^rIFQ`{0V>ZL7E>F;s#*1d+HBN=Z$P!iqux=_RsJQ%;bM2kvK4LPeGU-1D5ndAweJ=Il=~JgDb^&HYRop${_P+S+s_?vD$a(W4t}7(T4iNQr zgaH5L69HM=RyH;d4IIX9w@}W;gXM@UK0i3Kc%uixQG5oRP_06Tl(OLxa?ubW8|2eZ zl9Tx`9;$|beY*Jt7A~`lix>|3EBHld;s79Ey$CuXe}`Ai5~l26))D6wGVlU44r<9H z9{g}2W%X8e_B1Qu5>gv?MUm|oZ4U|x+5sUfS4`clZEZ<#63GeUSoI{&^W&;0jD}3t zkeqE&b`d|8|M?HoTfO!l;iZ+V6d`4AnjgAJB}px}c&JK~yj5)Y{hbM$W6ZbKzt?F7 z5fN|0GGDz35$EI(6ka@G4=;IPk{?~_oGS&n#nCv`&c>|TD2xs$S5x=&_Y;l>89~nO ztHMt_8K)ZTgh%~um!7&h6V!>%L6rk9Cur`7TFA|ttAG~9=(Su>W4ATP$r~lDH6RBq zm>=Rp=O6btcWx6QsX?AZ0_YfJKSA!TGe#xFi@;z5Vq%MrZF}-n+MxWo7kN2&04NaN zqKb6F&>$l{z2~u#>~nGyN?1oFr)qsT<8u2vG|PhbfgC{ci5bbPj{!HA&gOF_HB#rTsQU8EDnwrR;S4)oB; zg+z^D5M%<0Gs(W)9mU%B&=qb!oKpZu32H?sRW%3tEw4l9OfVJ_#fk2_+VN;_Du6zl zX0RHlDqXvR~nh6FyIy8uM^SB|=m&$_+i%dz_V7j(X3Z(t7){0k9mMzSRii#44 z|GxfS<{@FDw|#hMB(2h$q7g_wlJBdO4*yXbo8;x=1NQQ&X7&IpEhzm1 zUF>h*R%g{QWE|C>n{$OUvUXdlvQ4&o^k(hfpV^~9MV!*cto^*%YC}ev!>$(P@ zsc8fYAFIZA$|eel+C-g;OlX4Eqxh$u+|ATp=qLzM0*QzwQ#_({Cw8p)cE+eSD25Rn zhP_AC1B1MNViAge8U+E7;p`>fL;5(fiov19$n7dP;?(p%m@Wb*f@AGB9A3uYKcblZ zjR%ZYMSsef77f{yPtaphDRU5-eI#GS@)Cvmj08 zJ?Q?1fFukNRwWh%XfgEk^s#lg7}!|FEo*Qzc~skC{EXrEaiCHPMcYtUUAol4pH|F- zYG5TjC#Srti;a$s4kWK6#!TXcQUp#d+dlavT-O_-u>jljJ(Xmp zgI00j0Qj6R(BB`#Wq190_9`wcz^@4;QglPKIikytFaM*DZYaHf_pUO<0A6Nu!obiF zFM6vBxKo1s{b{`Ik{|-L#mv>c3qy+wltCEVg-A375P*TA3ODE_qe#>?++LXmm7CnP zjf~=ZhlUbxC4V0+f}5;@vT{9t;1HmJA{?;;JdFYNm%_nHiR8ATT)bCT7XWg}R?JmEW7bp&8eKVw$DD7d^}dsX zUrdGLi|GL%uzRGW+M>5xVGraL7LraUL_YU zfIV-+G0~NmX%Fxe-?C=S8XT-wr);dGOK|<7;cQCK($pkT2!NPckkxx+8K5XDpNMvm zvZ1s5VrMEJ%1St99f>kBHm(G-3~*7s;LQ+$0&&fnJpyc*%LSke=dLZ-_>%u2cw;e3@kA& z#5>i?k55BW@hKf2J&^Agde>nINaWC)nVIjNjD?gq7zex^OboaBUFbRoxZ23b2;;Wx zFT~AT(vNrHHHg3}8G-}a`w@|mmgGHq=JHh8y$c6Py+klL5swn49|&& z#$`{I{S^ zdzuGnjJKI%hYGv2V|8J#y$33O2i94i+x-gVSA{2v00w&jRE5}KP>}!O^1UKdU<0&+ zq#VM+YXXf>7Pc=L`@*|iJLPpl)eP3mBox(HEfgLLBb*?Iyhq7`rK=vtHhZ%C$RDFB zolE0M|0jxYak^5$z+SoQ*b=e1Bq9A{U7az8K{#g~Ja`bzehLgH6y2-l=jTuU(s&X{ z)4uJ3DP#milb;Te&J`0-$g8gj6){82E+*O#j)FZ`(e2u{SYWX!aHN?ppov_lqSrRyl z>VkxXn?_j|N6a|*-4B6L~yi?rDZY9!q&;XFsv9uy7Rc zGM>1MTZ4j8`-U6HyM*c7GmfHt6-nTQ{a8R$RMh81#&}NhK7pcKgRcpxn&j?z&3xD! zD1@OpI`JcfP3tx%L>Oi0vBeiOA^#!j3k(Eq;(-zn8eXN)Bwf8%6evBh4(-8CjE)KH z4Xp!acdA!HeBnxjLk*XQtVZf3*pB?hYU>*uRKF61d3Y~~hvdp5-aKG~5H>e9;k~O_o`mk*04NXHNMw?a-U?XLTNE320|SRZB>9}X3;sC&+kM7?Yn@}Q zSv~?f1u$0&YTrb|g7O=S>4oF3ELxJfnjUYFWlJ;gpflIUH?>%4%WkJz=|m34$S$%9X<28;St4Fi~9z z8QMD*!?WWu_pKPNW*-BeJ9k2y1jWTQoY4?6{sTic=`JaTA-B$zQ*O?8e)9UpTq<_C zz;ehTSrx5oc~g@*I`%+Y3?8-~t7>d$2*PxL3qv9@B}P+{3Yg{+;$l@$&>5xIp*rNj zqtt*fyKM7vL^ZBuP<>*$({MC4p!C^#tla9rzNJCika(xNZd!r8&lkWRs3Nmz2}wzA z2&ol7R-3>jyZy%~o}C(*je#3}2BauogaJ>0Il_(Stio_Y1psgmDyXyTH*Hc!G0J%H z;zbS#2~7fuDeyP`tkV5~$<*IJT0(*gCvnx@K{WP9{#e7#`PctI;j(%B3 zlKB2V{;)N$=LQLhDEdGQZj#x0^e#_4*9HuYFpCI&(y@4QYrTTaSchcTg^TNUzYIeM za2}#dk?v40b>Cj@yBNp>U~cfaeH#NqI%Y+r;YDqk1eX*X;8?`fpyhEiKXlEm1%rRa(tn z_+<{7Av6{rYis#4b|rH?yM3F=G-u)dEHZ4?*h9Om*pie?J_fE1u{X1!f} zgf1~J4r5$*p;x$*KGJA3+Iyxv8#Bsy$&bH@F+G;Y*7~ZCZEdVx*hcUmRR1<6pJcK7 zJwKzKXjVoB_q>tE!58JDZ1a+i`B!81b1%DfemtNJwEwOx_vhL~F6)7s>E^JZG0Pjr z1Fra5nv<{i=7&>LNk)sTR(lY-KA+`+4v!5x2^RjiZaMt~ zP3`R&93Uj`_rll`c5EL2T(n{8!%hPnH_o4w+_2mKLJ*x6cfrsmU40|!CnGnt2c31Q zYpce!HLiY@^jt1lChjgzU}*`r)dgaS`^OIO4G+)Tj-?qr5)*##V=z%bbX^4`CiyEXX&w+80rULa8xI#RaLaO#)m8p2lw^~nUju~m1 z(b;bB{qRxni_8W_Td|yv-1U#_=66WuJ2!WWemf@o?LYy6lVIVog`WNxAd`<(RWTTp zpqrY&1wtZH$beNeN_wO$914%SrW2$X{i<40T3U6Z6363aA>bOB2 zM5zFV6*|>;O$;s2cRf1%Mo7Gw``6Ra5l@$R!J^Hx8&BNeHKxon9XtLw?2u(vSy+3K zo^WNnkAZnpZ)3_u@jqrDk>F=fr@@e@4D5I!zhxFRQVd%pEInLG)IFV!-G(Se zFc9+rQV|?p8XfHgB&g@tFS<8CwV%kk7cBn)a3NySu#ceA6a!4jc59~E#Gd#^kBTQN}6`JX-N?c*9YpFHzmD| z^cOhG_3F#fqL8r(S*5UW!)C(7$FlvX8R+)Q`Iv5l@0h!^2?xsOwW9TBXVsprfF*&r z73QTxjaOeW-f2j*D^!871neWUz$c^BaaFP&GzZs)h625~A!;L-Lz3t{Yh)j|6GY}A zBwF-ax4y+_{1fmzvUb%5__GNN05aeAi#p(vkz8Rn*k;2JFXM}a@8Vl4D1ATN*4(Xl zLS@(J%`wjO;_bMQcSNx1I&^(`T;Te}{8CxQ{nLI|ENq6dGPh;H3)x8q*d;;N!RdssY8F-0{AYL1fw;)WWgC;n2g`S@gk@lUz|JX7LV?*zOS=^LEb zhD6p2QYmQ>bzMd{h$Rva|77h;v1qiw2uP77#j+A$l)Xrw86F-M$*r!cdRtiuLdY2; zOAulvN)c*jAd5sU46qk3>j@gZ5LvpN4?;ubG2L0VKY3?tupYJYhO_TfivswvE^Di% z#cM=LL69K#v6>=5`xK z852({8fk1k(g{qBHq+I+H>2T*=JGvK5~0_f7qz|G!N6sFGNRhr&KVU0pj{N(GH6OE z>uVFVI=nBaNArz7r65ld95HYu7X&I{hJ+&6PX3h68MIc_Ca?PD{z-EB@%OeS%428+`QA(=d%V|Np{#vX+ zg%?(B*-2CLqg5t2)fl_fgU){cI%Rnw;b6aVWeQV|!u@=DsxYmAwuF?h159nN7%rXL zBj0Bf^GIFM(o(=TX4o@%uzz^)85$e0Cvq*2ClK%p+-3?iE^$%jc}^GcKrJm(mk+!F zichP%ja_u_-q`mUmI7zSXRQBJPTAGTRATuM%p38nBuEov@beg@_d-M!IEg{M0jyGg z>tX^zdXv5K_xo|kkxK%im~SH^r!n*X@Zp0#W)$!M-U4+CxJaN6qW~szB^(j}nx3QO zg$XR7mo!8l@fN98-GT-Z^=dHi|MQ^Af6wnc7wjm>`U>C-RIchP1thrxg*5@;5f(`y zgtVqVix|zs0#!kiPeLpK)t~uchhL1|S$9Qh@7~pTrKHRvWtSlz7neRhQ`noO9B;mv zD3PSm$gA{>$^41po@XjGDH#sqZwrbJgwi6d>pSJMOd2#B>U+IB>{>rYHhIuAeh z0dP}XGNh2AK3TEd${NvBKxX08Hbg#jgm?h#CkY(rz;QkhA9F~5)rJ={`114faltlX zxP#d+O&70YkJ?LRY|YhHZOcC10IPk;c zM7~q+{VHccZXO<0j1+=U2tFRm!lbDR2)jk5ySg~;%?rRb;_<+9-n$O`IhWd?avwzx znYY6?-923W6$jJ|(Tonf*kU_m-R464-XfIe&X+G=4rxoAySsQl=1qk-B^94VS>~$F zUo(+j8zu~UuNZ()k_jOduHeIj^n{Q56jXP>2SEf$(S9{?c@gtIV{CWOD{f)Nr0X_* z0+i0_ST>9&O@*#qMb!Z2);%=e8J;U1f6Z(_UWx>oE9banHm6y)59P&v41@482_qZl z^0#k>{#9F#1~FtYZFRh<9UD>ga!<{HW=?@miSzW^B7DQbSconaJV|nsph6)2CIC?{ zeLeB2>E#k@8*qbsr|~_25Qs(=T`-7?(d=B0U^8X?`5?^ZaIHLg`qUrX2(&d*eVSL-yG5JKn8cUJ>Zq${THa9Jt*8i_>)wL?cj=x< zW6puI|4(Oc0#0SSwvSUUilm7qkxFJIQ!+*1MM-LYP9kyF<}b zKx@T%Qph)GZ}_-(rPlUA?Ub3gGc(!ynuS&{-u0%vd5Tfg(iq6f0{5Py*Mh^j-DP); zHsr^@RMVidU1tz%VVPjET}-sdIhbqAg#6e}OP))g802Mz+MFB>9x`n0X_7rBNgwUa zKd_&_b=tuAJvZ;$Qny7r;);5EtE9%#+*j80qkW^Jm#UbYuQ;;#=#CEfZ~+qMyvb-m zy+GwHewe?;=!no=uh4dRb0y;v#|z%q4f$s*wsQd4+z%g*`w2U?TU7EIU;9L6*gLoCblKwH_?DEY%#|twSmM1yn;1h zY5{6VP2sa&g{w$8jUf;eLj+$UC$^DMTlf^IU}01`0ILr$qC>!2`4092wQNqX|DwhjNj*GSU6-3<5c>QzLIP(DB&3z>W;L-G!66+Ob)q$-jY#Ap#Rx^UksckvxapHf|x{pnRTRjIo9s=R&LBZ?9C(g zlVV}u#47l$A}v}-iD@e}zp!(!q@*n-(Ik7Jp!*_IYrcaIq!6H@6M+Wq8MzXmzRO{r z{sE>35HSQnQiwL7K=ztJdjHcZj#q%e@l3nGOx=IPp^^ZG=nsJHV?QL7CSrQ(Nezna zLkd%9(48$nzo*%M;6b#sC;&xhNr0@>00bvi9boLTBV$KoMF(UrmAGq}CI!xLR3iKd z1WDo;FZnhb>h4on0jj&h1~xWAC=mgLWrPXdV`~Eodn}bk$?f~T% z=d~5c6PUE+V1J^p_rvwR<*Y3*gPxJtnK>;F|2^di<}V9mxA*V;y?;||J56Nu{2c=! zKE`38a|wzEJ5yL}UVN)5b2zxVb~3Fbms%Y)P%Z2APPAU;6@V@P5L*HD(z{ZFP+;%J z%n;r7J`~2@itqT)~bAYNFdpjAGmz20pBaEkZo&Eh%;Mj8mKm`c_7j^p- zKz*V=18oKsKYHv?&kXd+_oAX|P$WIgZ;e?3w1r8HH!&TWp6WRuEjjqhwq_m^D ze1z$S=l2)5QnWBH*d^^g`l;Ra5uIy|W*zMQP~r80S%=RC9^o$V1W(N02@I@&PL#9O zPbd6^@zaxZgkJIL)p9%_f7mpfeQ&G~A2Z^=Spj5ZBv*j6Gu(^pI6NOq& zx3=G^&))x#mYh1EO`^r3q2A;p3ksgfB&8fY-k~X+=MT^hG@)=N`sv39_rJNz7MW7C zxUl;DLi)&i#wg=S@8pYnCm4=T-f;Y4)pGX2ugqezTK@AE5sQ@1y%f#$UqU9i)<3OnS z*wI1g$|#)#E=q7CT2>TZw9wiS0Up*432MQ-GAO4uuu|u`-vYIEf#f3hS@s=9YLN>MKrsw^ za=NS~RKCx~$axz-!hs~x)Z9FM)SZ@i6B(L$1`zHyS`}jLyx@hZmq69TADR$aFd8;c zGdc+LD)ssM51AGH9cwydd`C*SG!GU(r3{q4_{(-i-)A5C1Jt$+LX-;OfykJ%d#+me~dHkeO8`s2ZUC z!%&$_n+Wj?RP70vc3~>AY894wAnC`UHH44T8`R>=lSEX{$ypE7l33(nGQ%A#j%9!{ z81Z(S5W{GR@3aKKE1_@Cjo7m4Ln?ruUc~{20rV`58AhT6X9uGP>NFOxMUqet5*HAH zAcCll9vB0HQY)2&|g!s6#o4y)bWR@dPu}Fd6|`-hH+*lgYso_8AolttuWA_3=AEiq&_`1h!xL` z>JR(4|A;9`^aEnB9f=wkyY%(;9)wDurqmoAJHZrC(GwXec=y=kH`9C0{rpw~y2eY) zaR{!DnvwfTH(CY_cts6DC4%Eyc=`h^#<_sp-{KCQ0ee(a=KEi0v-*KaNM`L*yB8K# zxtvADVuGacfkBOFAuA?%7~~(u7lISh7D`J$$AkUotl?v;h7N)px#($6b%>dc9|i`! zC&=gC8}-PB1l9c{3=s8rVc+BfLa>jNp zlMwDtYwqeg0oDLWs;{7&nyfyq7iWKvUzw6*Gg`y(-7p561@gX5PUW?s>8xG$HyOG5 zZfDJNy2>9v@w>X#C%xXtvn*u1uY*mzsZpO|VdF?g?Gbl05n$LC=)c#*Fg^^SP& z3}(tco(3Ch&)QYoedKnuNKev^$tfejD>mYiX6+PjwUhWZ;WsB(Y~07fB;^O0Nu9M* zeyfD(NcGT!TIJ&MqF)t$NtD*GJHMU1`@edH#g}uQEBD>%deCRWIi=scHHkkeza~Gm zU_+rZ#pZWh;iC<#ipEzQ&9odIkBJU+C`h)pn+|qA@Y`({yp8kV8zZXI@1INQzkGgk zTn!FP z@AV~os4vBp?AS*m)4e$4M&4(8=d-VNFl&%CUyzB;?%Jv-Q2Er{vN?Y7G|(6=SJxI}K)rCgrSeXc>TBMcFTrpEkK}bnMm`OuDo!PJC%4BKa5w2Nr$KSPJyV&6Q zDmNXOIT4$XcSjBP94&0Fh#dx}!8Xp=iOm&>iGl|FxsV(V}C)MEcby)`{s?PBttV3qASs1!+TNs_(6-r8ZLGuIWrNi$TJBdua2G zgAn}SBd4%+Yt*`>0siZZf~Kwm&O>5wvHD)r#S9D{JwAx*<6}AA4qRVs6wN4O#Y%e? zI?P2))7zR<3WVbV^eg46JR>L;sT+pPI$M@Sb;ODLpXgJ4!v8n^Qw|*4fS-f zn+=(BKs&aKOqFwp7sZerPUgxvMO^y8V-JBl+S`|+bVb!-9&N?bkdd} zNQJrVc=MLxBzu}wKDTD@{mn?`a1DhrPYO%i-VF;yV}>a)(yo_Eor8O~&}a%@8-L{I zFMq|PPkO7XjuE4?<*e@Ai|g2jU+T(7oTa<`dFdQ$%$MgcH_+uaWm6L#Jf5G-__{&4 zmyB*qObmTK8E!B=TC!brrop2#)irasi-4)&B}>P5Y?0N+W_-@S=u}sTYgKgYn5Hvo zWus`Pwo55|7LpWV;o(U($&%3G(BIO4k^_kmoak|yk}(Nd%f_bS>gpQNiHT5eU!OlR zb-)&_jTFCy$W$6^P>3>ugTS#zJ&ld`FtJ?&+}2K^rlv;pq1|o_t{SLsP3{GJzgYmL zykB%p%6*pj12cQlrWjoB)ZTxl#mg^VD1Pw!DwXf64vuWT!auuam^nM)K<+vR<7LX4 zg00iqJ;|$vS-1DGf9;e%M7KdshECam*(2v}uTZPkif4}F@!eu;t*18ReU&&J#nR-x zR*&H(+jQi{y+?1VG=9|GKcSkF=GHmKtDRf`W#~;*_CP8 zr8tarJQaw~$+?SDqY)T?ZJof7z)xp(o2Mfp(ofg6wvOyP$jT$1$L#f(c?CmpN86MD zV`6OiXqTLx?NXyR3pFn`=AUl8&9Y%x_V`E$ES+Z zCU=_DdA+ZLRg9V)4G4sTN9%OE$9wr>_`ZNGLGm|o0hhf+pO@g^MC_wunK2 z6o>gB@xdc}aa6x9pxP5AEhhKG1Aw5pu%0QSf|ah7syD}H;wT0ejs-m-Nra{w1w1gG zDas4$h)_LW9atr?bTV*;RqvFs=RL>1qZD=TCWqgJCrw#0joz_bxBn_)TvcD0%Nxah z)NnCNKK9rMMI}6Sx83F?I=AMf-K`RL%a-+I{dQDPempx=`73Fd?X{p*r_+a2=48_j zmv)I9wPLQVkLDxj`Rp6xcOS4=7C!2qmLVASxIJP##rM2u`-7~r4q~@GkwUxbp`?eejw%~ago*ouxog5d@ER)MoKL1nc`$d{c(L*y% z=dR_y;jk}%HcCCw%%n4)@cYLGiEz!v{uaTT9HuwcHPj6{Q%68sfeDHz;F4F9T^zMb z3tQ<}S1;e#P$T+lY(spCv~ux|z0wo1Y@2Prt5a{D8#dTrE1y?KAMYUXsl(!0vFh}= zPVJH@li$yKD-``1!o51Tj^r6@Hb3ZD+h4Q#qfPYVg{N{ufqGz#ISvhKk#(z zGbI77O67PRSJ6oU8#dm{y{Ds?%LTWuI+xGwk^7bMeDB8oQ8~Sp(pub$0mGy6AHSHt z9GF~9{jT-c+eyq|8&A`7#wY#)W8%dz{LH68ph$rR^_fX>Vq$3Vp4OKyuP|_2@WU`~ zS=;=au8z(smnYgOMqdPq_3uW}@<@(Q1Z%}D9KB2HsV|4G$z8C2_2QSBV0eIW z!0Z!ATCIHcVC7PSF!zl638!gyblBsDJx-E~V+S_Bmgc>7O&@Gh8b;5{t)= zTA3I1OBK;AUQnMYY2Ny?6)BN&!PRdnU0<~b z32u*jHbzS+lGj{f{@%&eCzIB2FQrr|^_NqSw2;}XToiUqK_Q_tNNoi?Ft<4?-&hF$ za(lDxi+LLiN(i9{Vwz>;_4S~UvVcD{O)Cg67Bdl&lWOqhOlX|gSWVysmt_kFhUIvl zSoAGhDq#Fjx@^gZWox%z%X$h|dzi?iz#gWbmr{$3ihgl~OztcEcuA8b{1?BW^Yw@?{IStm~m09t&Q{Hp(eClr_d>~2>buqMo|dQS^lByNz`_! z3wwXLwFrfrRC{;5H`$Wnl^@A+<$Z`_SzW2%-c^w-SCs@@M~Z?v=)ZdSFb@P4DoYVVV2Z?{xtI>8!s~cLs_prPsa3C}h1VaATbo%mnFgu~w3@I;HSjh2)1w+Dv zfRqQdLXXD>DD$!snvFvDoM%HF|B4MuI1_yDQ9|eV`x_(8tEJ{ITbWYV%)ac}%Hc`5 z=N3?;<@##D=;qJ46amK-*Z5RjD>juUNd59?q$|AWP$PS#Id}W=XWuCG%UH@xWp}r? zemwZrg1U1-jNN!OgU{8P^OQY3N&>f+boluTU)*>3I@`2l7JU6>I)%-$r>J$tV3{uC zqfGlSv;FkG-pgWoQX-vC$kBOSL@l3wyyE6j?{#`|EmKpfnL0z=x}hV!tl!kn zgx2~md*I%Xm_63h)*^q+E`^`vG-Q;-d?dZq6oIcb_!-y4k#DI>{yBPi%T$>mq{cmu~aVFkTSzH>lV9eM#U}h@|T!W{yZ2 z+r`HGj^N+%#q|@}ciisSQ&skV5RyJ_ZT|Vqo_G5^#r!Y#=-+uzO|>v#y66*UB5N_v zZd#CKl29$56<8Clw961AKC&qO?F0S3sqwz^k(?ip6;#2j|``Tldb+w)B z(uK>dxwpPJXJXPOWW@f7-IZw{+wQT0r76<<8#X%%%U%dSEUjX$&tAx%YRLaE{;6j$_C&F!wne)Fb#$+rQf~xvSo0M={;P?nO=+ZG zXh_cciiB;sBt1w8-TJd-VSmxr*ogy z<>%tr=&fDD{@L;}lLVNi+H9IhXyi8d6xq2D74+RrCbbHH^8f zHlu`v8OmpGeVB7G)G_DqfaKAoeS-W~U&&WIpK)_}dU-5-Q7K!o#*#wI?h&Gv6y^CU zQzUO&roBjPyNhgj43#DPWUo%f7`>gSKky*oz^3%q>K-0>pO>&8u&3?@rmi-o^F z?o)45OMClm-Oc#o=UZoZqHnk4zjchJ_H@u~`Pt;gGv|>iCGfCKYh8ogvZE#!ocRuE zG&6twD5om9puIHPwzS;t)~C1pAAiP<$u_usbGxAIA(Te>ttwv7;@1Dm-7jl=Fsrok z+;v?O?e}8?aZiNmZiTb0ohdM=AI{R;t^8^{yZmlg|JF?*Zr_bPW*$*gzl-;s)R=Y^ zkPsVY?q=y;Kc&jJZ8kiO4_j!bm=p8W{61Gx&6wsEC(0(1bIKz&P|JD5AO>cuBbgGNpbPqnmx>(mtV6nmC0g& zWy_0mmI+&rY--Ri_^p-cH*fX&H1jUn%qO0omde{V8vN#rrZTLpQ}A+7+bW=XdM4Mg zx4Qa8ui=g23h^}uN>}^7Z^)#qY0#Hc;1?geNOP-)mahF;r>EHRr7X(tZig`+!{U?; zxOY2xR#PIBA22t#?XhG3RMAN3*9Xc)aaDY1FuzpMD1O&@(}SP>C96!wUk9DFA2Bvx zG<9oxIo5aNh5f#jr^WS!e5otmhTNlYO|8?^rhHLvQZU$~-|s6`YvnC}At- zpr3iN@8l0T3s;4y>1pDjVhMh0OS*>#k0q;0uJhF=cl6!(uBKdaGcNBlANj!ca5rBZ^3b(8 zR2cFwi9%h1DnKK@Y z*7NIT@{e~nE<7qLkz9??rfm%n)$l*wME)yAmbG635LUqf41^1aGDZ%>edF}$ zL5Bk39}n`^6AYKZ#87zzXx-_7pwY>@k{B%FHy=_4@j7XNjOrREFck%d>xZNP107u> z^m?EIH_j6ffnew$34pG04Z3+)$Ro+1vMzJfx(U1}@Uavlb_zg)X}Q-VP$fZxau%;R zwhiAMisB|1zrc<(os%LDwH%nPMg@-BU=yJ7ZT$asU;r8ban=UK1W40re0@j1fJjUL zob*+g@Y3H3wK;W)hQdmxwzbhyy0TO6l!>+k7#^V15@xNyInyoM8VGq2AR7pNl5n-5 z0bDuhyENl_8^{G#UYM6T2pGis3=`?0W-w@A_P7)5oZ4@|ZiAt#B@#AZF1+HJu#~_! z2ZaTJCq-c^4HHFuyKan&!8XiWHw0oVGgd6^(%*{?1^+3QL0!LBbZe7l0~mUiigmXpQbhM#9o1`8unnkSLq@nWH>O$;3NNHofpbcX!EEYdgK$w82g2z5 z!pf-6cgiAmEjSP%KQXktyquBY=~iZdCBVsv zh6(u#P`qRJVV=9Z1EBZAh_EuQRD*Q*cda3+YFXKBXaGQcdJl#F7c;n4r&Qc#JdJM{ zRsqN%R0Ayej!^_y2G9cCVK0!N3%cA1o}ZnWnb{8ifdiiEU8k6PJb4LR0b!vZGh)j0snf@02D? ztr8MhK(;Z9rJxc$Ki8vy;{BMpA~}-StG6}4Rdl^Vo1#gM#pQ!D@leD7?-e|rQ~rZ{ z19_pxU9>`Q&Gv(OBL^N`(J?UsnOfvspWf!^FT{gi&3hf&|9Ms1aBMRKu?M+F_(Y)} zO#Ut`fiEm()Jv{@a^Hct1^DP$;Xc74APQe#wfYCVQX2WhI4Xz*2{>_v)}g9+`II#Y z<4Vt<9eS55Lf(#V^R@;Oc!LGmyzg8N8~Md6*y_pS4algUFok(}vF9-P&lqBup8Iko zK4CvjHrRE1ZdB#W{O8@YaaAyZJj6Ow39nkXv;W04gN{}6lKg^#r$B=AII*4Fm>sw= z(C#x|F$Pg@zxQ0;q8r>!z@`&-7$P6WncqX9*i+96#4$QLx`JBR0xNb2sjzgGu||j! z*KmE2GYaV`7@qZxjF2Y^`x@U&ej)0N1fA5up0cuolz3kBUYnslA->5>Onp$#hG{wD z-CLE5mPe{3?SL}}^bA=iim(=T2ngK5e=H>IFvvJwfjCv4}LJMD+jB=+)C*4Bh! z{AqNQu%vK~WoXe7MGi@Bg`w2xro@$)$Crbe4jk=ytpnjs4W0+fXv}VR0vey z=1xFrYp}lQ$1AI$mXmBA{u2*#k!}@;l@ECla}$+HmBMC|+W8yYL*idc^ye)z817Hc z7kWOb9H*Xzy)@+OnTO`EKy#ixEux+Y{lAh)6E)N|hg)2sIIa$>AB<2;)3LGH4Mj8& zG`((ZZ9O#~^PfXLf?NDp{P(m@K%_0{4~6pY19p5<(BIQAJLLbYYQpFXUn}oDd12w; zt5^R5u`WSVz)YmGt1BAro(t|6ie0#Pam%Rau3d>O&QL3eZBY+&Wn#J|J*Ut;^fTV| z-)EF=_r;7R%lZEx2&SnQ!onK+*JCp}w-<%nroDcEg9zfBWmc+&vjt2Y1?>$asu%}{ zqbnCS?^i&0)x1$;4nOD=hI#lQJa@!gj!32l$?jVyx!If90ql;sb}1t0i|57rO<|#e zB6BQcqZWRImj(M5_?}MZ&(m7q6UZ$7>H|Hi0W#!>J=)j{!cbPiF?Id6ZR)sFB##*8 z8#FL9c_+?~hf$ww>+n;wg6_;cCyOK0Fco;z#^+%$x z;x!nQHR2>vLH~*3tDhza^TLOuq1Mj8E%6CP`Y5oX@|>_y9`Ym~0s}6x;{AjlLTeic zHTb7*-@H4yev%)s#wBK+D7uezO7j6cV9-7>P#b_dT5o1S_dZWrBKMlaUBwB1M4om6 zZ|w=~@EJsW)XPk*!W&Bb`)7*4=LRPNy97o`%Q2i@?mE&657;YS1I3Og6!4dX z=L=pxOdbt3lkJMjv1U-XiezQMVvEo@lpjez&rLQ&*mPCsYRXzS{e78C->~3uiOGj9 z!s09N&K=1kk8u>Nu+l$0i*xYpx*^Dy!6EAWR|6B?2iv@Acx2$2qk#l!xdpy#a%y4^ zY579;=gfVD%fyWKGt^{oM1GCG`HMuG8KHTAB1H7>JIx`+6No~nVji2lxScP_Cq!M1qQZ}0b=WY#CxU*fu&5~P?Kl*sCg)0(QIx>P z4Ll!jsdA<$-3?#P zA2ys7hVy)khhJIyww)phI%ytMn))+*8LjwsS;p2e5(jPlo2vCufB7_l7 zVKWBP9_Xn^nqcLB<5n#6@a);^@y#*V=Jeq*<2X$gr)LSiH#ROP4uAS~QulE#wVpKg zun54w9S*_qX}5HD9*&8OZAl#pn~`oGWCJ6+G~o)B_kTS9dfdHWp$pas`oMmyPRR?{ zj~L<8idu`fuSURz28uC$H+i&bp#2Y-+mdFDg&cpWon2}!d!*@G+M0%X-G6WM4KQbk z<=OXh2hW~U-+P}d{c>vd&6_+Quj!(BQNpdN{Y}%LRo9)HOG5mU=XR+5-NbZL#3%ta zYFLN~P~H+p9oSnBH-oX_hJSejlCwc7 zwC9Ra7+6CMI@ zBXo7!Q5vD-BtcSmI!MA04Y)K-0}ha;qkXJGfMiMvFN{l!Px}66i#NmQCdCFxDd@g1 zp|NS`pZJwu_HJ|0Zy(->p4G8DyQM;Qp5YHpyd3i;dSbie9G%y?;gKsH89zoGj58Hg z9J#`uO&zIu$0L;Nmlu6W*w%bLN>{@k~J+TcUWI9 z8mr<+Or+WQ?DlV=(s9bLwS#q~PT8kz+qMzwNNjeRXg2;JWB;WVaFNCg2-_MBC`nup z#o?G8S>93i?{-d5JnjtINroUi^k^q@GrpDD8%>)V@UHczPv%8yFbz2*oSY;5U^<$UOzyd)gI z>mLeRG^JKW%RAujeDp*zMH`MMv*_V#ilu4(4Mq_U>ju*V)T<=ZvcLNdI)OrZ_hFDvM&5T^HsoGL- z=k)vEI?YY1MzS4iYxVL{&2LFe+l%C%TVry^{L7=OH6Klk2CsxkRpr;vG$uv{XVLzC>};lZ#S2J)W_E~80?ElnM0qdABXgeK^ZgERa7H8lCg zb$E&6xu;eF=Yqbv5u*&8UFQwQm5bMJaS@k|yx5R%rk$GgCa3kG=nIqOv5c8jRZ&*6 zo;{m=_G!Qy3(kzA98uaKAhE0T{hP)?!2~*N0|20X@`oBS(jxN;xzL)_Ulkbrp!d>IV++RXoTH-lLaHAB0ZG>c zB|iaynV8;$x}_n8;JgwEr^J9iFQIfhk`F$0*Fnq+ff^TzBkc_V00X0A`frV!S!YRD zX`Pmx`^yWzHG1?|-_t$rjm1Sg>#aZCSo4{~@<)py4YC_RU+!qJUaOyycX{W?>KNOp z#tqk=Pe1m$%RuYsUih(E%oJUGsvJymuXt&}P{w?Tl|@0wGbV+#=k{@4}o!-^3@{h!XS90r7 zm&jJPL?csG{~x~ES?y3+`=I4zMqt-eJl@D=H2Hc`E zL_!pJuBOl+04CTdGHPh~`ns&-jb~WjC-yt-;J&qfqwB%3GNy>=!|!%vYt=NmY-X3W z-GA$OP*S9Vhu4sy*aCNCpTl&L;F zobEK|y!t60d8J(v${R;N3)|caG1s$eODYYMV(uEvc_+HltH5 zit`@0wH`4Y#{#m`gMY5VX3A1?n?Z6H^SuYi$vG*+uQ7e zmszArB-~4uJ!lpzmfm-``M_%2sH$p3gCne;eRk2R>uqJT6J6Fdy3*-cvSb?%<-LI5 z=a$N|!LjPL)c5`;^3y6Cry@>$Wpf^^WnCRp^zu&IWMow8=}(TDe5$6)oi+=SGJ;spKBMos0*AK-ad6!H!>Zhikg7>{uvuk(ARgt=^rjl|KHw86K1T# zt8=aKwz@1O(HY}Ehfu~7JI(M6!4|Per?`99drw}jEZ7iTDAHhByJJj|&B!w#n)0wN z^;Y{?naG#eC%!Al@?4ahO0*T#96s!{{?EhonO?G6r{UW*uYnE9Tv9v3LpJ8#ka|?{ zz-r^is0&6t)>1B}t17xRemH(TSpOt8_e<~^eFbQ&`eB7W;hOiRxiRwkGJDaq1bM#A zMR=Q9iqb%Ph?9}8(yxr^sxxM7_sr^KhFV)fF6QqlTzOs+{LuI-_@tXUK7>DZ@GiO= zQS&B&F9TaG^?T~vd|&r`-+uLx{e%8d+361Y8%=I(If{4N{mJHBWi!j%#1DVD6ScKg z%}-B#;FQyJJ(1?<+TXrP?&F%H>oplJO3ozW?hLm*Pai(X1Vbr>^)FxBb=q%gdUKu2 z;nLx{YW(5`{9=7pq29vaJE^T!-&3uXj&j;A>};qrd(g7>^J;Q^>soW0_wLW*@K+kS z_aLVJiPgId>FC<5knqFD>bOM2uj|jdNqTkK*RD(*NMv#1>ej$Xr}usHiu2jT9X`=i zF>^V-YyWWna^}d>9}!wVHOJoEw^iKSDSme~ZPrKQw0E@vr>X*v9y%*k(cClocs5V{ z$BmEgP10GO*)45er~6EMLsFWi(ha-xYLnCdzx$2Vs3&;){ zMQBsq3N*EEtYgm*9Bhe`h}qIYAD46Z=vlSh^Xr>GhCh7sB2i4k{6(5M`}B3{5t_md zqo(-oX~*g(ZtT`>v|L%KlYT#82`7rkYgqo!mLsY8IKUescSct$c&`j%Ir{9SnX;v) zFnU8bw+F}&jv!PlsCxU?|NHvFS&DWnG@H} z@P#97%TAo!qWa#(iBI5>dX>&cS3$Z4s$^R^HTJ8Ut3aS+c6!t$BP-#98eP8stAM@J zF`JhWS}z{-X(bR((BN$RdnES==^U76!c>XU;sbsV&}ZBR&U-{4$K539&~Y_Lz4F{mDu9@P0#@tdo{?6j z3Fj-_!FOX>ju`Q4*rxA~p*zyf@66cywrEvwbdAMqzC*1(qZ|5ogNja#$FZ4LikVZg znbS&oM)LNd&%^rGD4Nvw47XB7>W2%0d0?!7Xo^#4dZ9fjJLGZ76E;(Ua2OdOy&L8( z>L{GyRa{v4AW7g~!fIr~Y)-P_*U2tO=4G^P$~H4GQt(*n>~-0U!{Yu!x$qPv6o^5y4Xxw{^eQr?)B zk<3<)XNfPOc6xI*lp1UZc-_LjI;Qkxujml_0hfS;fqieQ1-|r%ZuZ-3@}lGDLdWwT zXU3EtS?pQX_2tR9H1{LjX1;T>24@s7%uj?`j9507`TCMh{10DE^hwt|q*HVD7LZ5d zY7vx>%3=WsZnV2J3WgDlEy>#tz}G=~Sn5new0yY|i^uNaL;UtEu~yii<}UAck$AIi z^xL6FUt?vOx|mp0i@quAnd@^jKr8qbJxK)2Yk>TK(ulzo{X$$Y2v@bWS$Eze+Q|kI zSFi!-5f(ruvlxcd15TUvB;jAAZ-Imp1wGNJqfmY;ds;EHqPse}%DAN;{l$@*_qKhF zr#^5TP{j%1!+P1Ht*W7;DnPD+GTn3Ho0@wwlXjTi&114!iYhAf&~t&;n*>q<;(;|0 z)0xOZy_#sIKJM;zQA8BLTD0xA3YSs!!_CQ2sd3(Z0(Zn_5>@Z=1WU9P=x+#!{=Fl2 ziV?f=F6r#M86}FjQ#XIqKU>x0Hr{?b?abJ>*UP&##D3)LnU?VPx_n7PJ^P=OBt<=Q zlp=H7&hL}Vt*MWvGGtwYm29(e`d)LpM;E^Cv=9FD?W~gfVt!nh`C(<>-Ag6ot7x{k zh+ZjSU-8|2_s7nAYtHcu7kzxod+hvCVmsCUx&Kt%+u-TV?N8+bQ`>+09By-#j*Who zdbFK;GF{IiS)@wCD)?Le^%#{*U++G1=^&|8BhTMnnO>qh3$%Qfdy3d@Wx7%tvm$Hc z&|z7s`9_nP;^WKXDMT^7Hxk9A+3>pZqo&LDdve{n72!!KKV^+qi?eokoTYV3O?$)V zJ=QK0#||)Pn)hNudmUY~9g~2RkGBq0nzamM4xCiFQLr9`#MKKUPgaK%35}bRi}u)6 zUiUt6CKEjgj_m{=2WbxPIAI#k0Oi-w^(`z~QceeAbi;FxP@$QEzMa=9{-O6-8B1OH*{^$gBAQhs9$Gs-l%Qz3Hq6?Q_ zaJlwqQOZ9(hPyPYRkbSogt(g{Isj>zFLzZdm(uGdc6w{ zoTSD;!61#-HH|k_uapkra_@%w-;T~WxGQcYmmPb4#7%~gw$BxF`42lJZ^ZEI`QBOK za`r&v%OZiIOZf{M%pK&Fy$w6y}+UT_Jxdpz1pC7p3Wa8QWtY;g83w4Q<_aE%7Vfn2!w!;`Ub@ z5#i0_Kp8q3sM(*rK6UhF@$2tjjs?fmfBHDP>P3eSBUAoOhGD7Z?w+vKm-A1XwGG9_ zc;r60hb6a0GN<|Bl+#WR4#z~3?|mn2IEp_DKOH&6?;BI{y8TD`Xkb}w?5~k>f0Qot;lV!pBi3Zuujx-jmHUs@>RR6SgX#MF z-R1mE&xilQb$IpdAz$-RBOCUQTRdL5YgN75vee;DxgM3dSd<=<)Wu}GgM4N2S1=v< zXESqqcu>>Ka;=x9>E~pj;>MON)!#|%8fLXSWRv|w&lpODxQ96`nTmb9?jI(#=;+?& zZ|Y!zHaKPAal1Ute_i<@;KK`H z`k^8^kp1k#I>KEN&iMvDAz3Z~3TZ_Nrdr&Ni(WTC%37<$Z9;Z{-kVxm|ukFB$eREVcZpVQO)M3+|`GF@+jf|>35EUdMaZM91O z{JtGbw;SKSx~#&n`t}%mdH?98=L;T}-#%nIJ3qbygG8hJCBgKck1D&4DchTe+hVe66X{BOaU+>1IA-@`x8 zy4%WpwMmnH@xkVaPVZ@l%OODli`gOhNn_K@^)VSjPPs)tyWT9bXPP!G+xFP_FN7+8 z6+sLFp;D|~Z381LV1W-JJ%~97Ojtm6plJYW7>pO|yS^ai!7=2uMKLgF;B;D^JOs2V zZ)<&Ed*IjiV+``SlZ>+?ua$RL3FnCaTo#@?$=AZ~ap`tCz8c#vTk?aFI!2Alo9POx zOj@k9PM1mx*JQ$V!{mP@Q`Kc2TExtko`r)X)#v2qe#Trq8K@iKgFyH^I7K3IF#R7g z2LY$pSq?W>e^l)2Tm_PWw7qZka8ve)((i6^ zbjpmg%ErPrU(bt(viPA9?3rEJtrEuYw~N)jldo6Mz(27Z6J;VdM@-epz~Aus@~;4Y zdNC4%v;a)3!RJfUZ2QB*(sS$$SQ8()PgGa`U8()ec&Gfh8$Y6#H91cfISVz=73wcq zgaIJ_pBYvs=HI@1_c$(&X5+?J^V0ueF$Mq1Or4o~|Ekkf=xM-N0K0CJm+{=6GCis# zos6VoTlkKr#68cH%6DK^I;K35SkkHgKRPuze?zidcRBJWpcwQvhA5U;5u;(+3ACCp z86h)-m1dB!sq>YF|H|rm@>!tG5&mK?J8$M5Dg6VH;GO?fLHEU60G;bNXm;S#95*sG z&n05ExdF61|J|vGWSRa?PDTCv|0<}}<)?!RUH*-P|6yxEHv#Wl?etb+WR?isN!QQ0 zHn?%U^%^g&0tg5O!>rI0iXu)F(i*WcMs^A?luKH@1+Mjl2`pb?9QUa4ASw_o3GkBx z{h3w#rG4+4n(pIwNlca|LT5;g3*=;90pVc)Vx}jcFYxjLS%gj6k~qcY=H^}fAhBpK z=*Mj%aDA>DCTzI&Yi?%`szD=rMAm-RH~ z&W-a62Lf?E84(cy$BGBDFVu=m-xjlgdj^i}_0m%B0GnIFFYbH;^vX)PqaLaOo3DQ` zGk##6gVz8}#9xF}GK9?-Wa`=!lY+5r<5d+E2jv>V6#n(Id5*0Jv+I9FcvmZQ?~!58jPI1vn^rZjEC`Kn4*5W481Q+f5qf@JuwI0%DaYdCn|# z+;^gaf%xYWJQk!v_>UX~9t*=OkD|nx;LcV)1w7EJwS3bZp62y5sSCE zHc-57!XFu74Ws;mt)=$Wp?qqPgX?chP@xS4d27VnKHs?V)hi{e^I$n4c=Lj2S`Bj6 zaXRjjnXVJb2yX*NLKpK4L+<_}^CL`kSN|#g1RH2h3=kI()EmLUSugKXJE2Ct3~weP zmIpav7dN-Q+daEbq#wUJ!l|>W^oW#Ip5jm`RP!JSc#tN3}nYRM!?xL3E)nbB14B;x1h&- zmUc_W>KBA)y}gzbMRjnK!?afcf- zcwS$?)-^FX8SlHasBbuEH)h~A49Fkf+XWa?exI1wjxz%c#TbxHG4V>zX%Ro6&+;rI z5TxsL5~qiBO+7^=r7-Mq#c8)(>w${JeI6Q0g=-u?h%DM@t5c$7Jaf}-xz)E*+|rkY zURbqN;+XaZYQqA8$W<{hGZfnr)C7tLw}ixVJ0{aQYMKT}fuX>)1>odhfP|Y3oSd8_ zv``J`v;M|nm5_d`KMy(a0tP&Xf%E_OKPC zAHj(t96;1jaCtAE9xDf}k`RS4Ouc}I75+pwD&&YsH>_ol@C1jBNe~)0mpnqM2#K+R zPW(j%sPp}_I=mEGX7 zj7}j%1++v~SZP>8ElWQH(rN~=!Sc@GTP=sp0wD`GVF{QE$5W&*_NOMt>JXehX8}hE4c>Nw^8j zQ|78LP7SC?2SCciLw_DKJSm&Eg$=4>7>$7 zr)9a)1mH=m9YoxKKpNN4S%=e_o&|Pt-Y>AiO_pRpAIH4)4t!^pH{jcV%iNiq9*pbY z^tc??fJz7<^|@d<6}#vtqN`I}AHN00#kSynmP}R)AkT7Y#9* z2gg1D{s6@22HXOI(fbiQ8rWxvTD@6CjI5ye1_@7!a64!~0>)Ex+cwto8orU+;Dy0a zmN;Q8r(czlrn~X;d;Mu;8Lq2bnFi?)Tk>KarHAJz6nmTi_MK`}KR=dBfJ&B*XhJ@4 z4~d_-GmLcny)#Y}>6~dw3_OY3LLP8(QdGiSRdl6sw?Zs}|D_I%ZJL%XOkjU!TTboc6BaFPiLDG7<>)yvAx zFUNaaoMqbne4JU536-R$kvvWAHeRN9RpFKyG2u;TTl;SMH6A-JuV>-MxB{*|yy~u1&n3@k^i6Q7JE+QixZ7=#pG8c8;{HL= z$Eq(c7P9_>?{41P#!YwsVE*0ze|!l@)GBsW$TDsm>2&;jfA3KKQdHSfS{YfVj?ldm+tSH;EkV)X z*9W_iZ{umd&8&Vk#NuM-H1eJsMt#t$j8jbJv*|CBey29vQ{)n~`!Iv`c>9O(w5MW8 z^3mc6ia&q+5K&fEc2t$n-@4m4J?6n)stAE&7fkgzip@JR)H>_gOV>YlWEw@Ab;%2F z1mC}ZpKU^z_g8Bw4T+A9j>)iEhW>6+Qc~r2H)ryfn&Tx7kdu=$DZc({_aY!FlGlpU zrvIuB=~+ChnOc_dAt50ll6N;h(BB%P&v<0vs4AkbwKUly8%4`!?L9qhojIRWURgOX zI2inMqrIa;P<4aE+`{5Rc1W(O@39L^3US+{L)moJmuC#qr}|2xYhJK(IsE?4Hc?qo zv4e&tk}V|Qh?-0K&3kc7_a8iH%r;X!r(IIpU+y#7mad)C%6!(w#%8c8h_NswfK~Fq z*%xoMONEZGDF65xaO!*NEh|{un$2J! z;GtP&U1z*HKf1m?SHHZr7T;+6MyvSZqXV=&9j#3lxI?7Me|);9mT9;TmlcU`yk6q& z!eiBIuJY&AB`3vH^$W+3AD>=Y8cB-wte$qr7yh#zGf?U4;yBqY zx$wJ%^jA+|?o3wB&(+ujGh>XW`|{666fDZSe8sPfHYJ1$d0c!N7dBW^yGDQ3ZE13- zI)v4JwCTY)&4TxCOO|QcrIw-cNzF48xqajZ4|?Cbw^d6^i`$|zxO8*1=5!wx_bxKB zvZ|^lMJ{uSxt5wamOZA5BaG=f#{@h)nx>sPvdyUO?bt`}wYg5gcJrWjifTHial=1S zFV6YK$DcZR@}&KEdt<*t!<#ouLd!q4KBYYSR6ITwZ#h5S5%l%zHC;VD%>RKe5BG6( zO|CACwYRsQH>eIK%Nb0OEfF2jU7G4k!t@c3JlRt?Ffp<3*Pp7FuU=7e=x+P=?c4fH zCG9g>;izA~j1y%eLoM^M1i6+g76inB>pB!e4YcUPyHX+AYP+y!Js(EpkmbTt) zs`$~PM>`+wKcTxg-l0+I`3gUX9BeVo<~C`%j~#m6W7R&#qN}1!+sn7KRCua*>150S zvea9-hV@Z`WXJiQXBgCExGtCyt3)~4vZsIpd-3z<&&~tByfTX$Yg464NpdIlP@R*} z*FXJdt?$pS{reNW{%qof&O1$NL~xsYj=l2ejYhuh!$qU>p6kv+f7b0Hc&+5-hU@rU z=b3zIcp3QlJ5Ki{NWZv=B~Pran;&$$^X(o*d#*llUHEPD`#ZC{hX?bm9JU|^SzYW~ zvZLp{FFO1txt^kO)@MzH;(x)x`;Etd))ogT1sK^M`mXyMIJlm2gx=2P~Cm zvS}3^_44w1tC}u{Jz{NZt6LR##(lm~f?)-ptGT;W$TfQx`6T5PNFt&i&W1 z*+>}VUVgp5`|z6^DU`VX=ic6^dpi%zR?>Pk+v6iZgmemk>*Elwe_g0=h1Bsn=*>eWRD3XyPO zFV6ypw_3#oitle<7E5V4){Hpzj-(nnK%b3^nYl{85K)h%x3^a+TF67DiS!IN_xEM@ z&GnT%F&ZWAY6=u$`EE;Tx>i={$Z?{LqxKcTI^|mz45UCKB z@WHhKe_;v{>WlVo)TkfwT=d#3ic?7m!H$T?t_qr1wqK(m#`3krKCc(Ky{^)dva%Pd z%tk#5y#9D@zwWsG~JTq`aL@nF&M#MsIhJnu(CWKo~mtx)Wr&5TrwK+AZgTZ>| z5*v+)sHavCA0I!n6c%>%CrsIOGTa=7Ym)HcoH8xc%WltC12@x z!q=d)t8443k{;H~KiCPTEpOEXG*{TVax6~q^M})2c^LLG@r00jo|=}g_&xR1KTJq! z-KAc%NHqwcuSPeHnRn+MqM@OAxc`J{;O5Uqv~f&(h!K&LpYoVt!*~6g8*AHk?xbnH zd+#2<=Xzchb885zDnj3`efuu3erXUlYkhY)shI=8LN8L_)riadRA1ltv5}yu=HOt8 z$-YwgC*)_Wot$`0mhd^nWW_U`ITn$I#WXzTkJHoHeW=)ZN*regCFNf71x#iybYI<~ zer|YV#Aw~yy{YuirZip!$?Qu@%Mo^V_JPRF#(0U*&|65KK_d@;EKdLYB4cIN-ur%{ zr_f3A+O?RgPsj~d*b>yp4;{Lku2uZ?1$*>N!A;C8$=m>!hJ<8_P)up7LW~G0BE0Nu z$T`i6R~ATrH6`rj;o+%h^n3E;$vds$2*bLFaCiRYg*NSEAea67_hVoF7#b>nxQ~W& z-pQq@B}J8#NiE~GWWkFUFRC_0Xa!1FhH0ci*`A2Ue`;<%j7KHjXLLg--%DFtTSG%b zrfJ_Pt9=Vx*N9>Dp*$OhunDLE%=QtR8UUdZD}He6CXmbW>S`dnb_sV)f%6Q#X?6sn zOhRE_EtAT-Fg0~i(JcsFyjptPS#HY8!IFjAMa}_xj<5)1x@W7)=34d;VHvB`dz1U! zy?gg&_BM}+U_=)Oc}4CaL;h|_sYGrkGS66BI-`KVOJF_n2CuvX#?(gpY9*?*)M5*9 z<7{;#n=-uZ(F>*&m|!{qfo?wMpQ8hAYNxi&jnvD>i~HWpw>`tm%=}KfGz$A8$c%<~ zE7f!@U?eW&62uM}XJFGB=+{OH5nzpb6HQx%A3ov;7jbx-g zI>~vazhWNHD15QV`qU;iOh+8e=YOH@YIyQT+#p%RsHe% zLA+L4nF?uGPTd6#tX~|oKj?0!qoZ@*SZJ%r!sRk;H#Ro-U1s$QhHkvMeuw48+xN~h zx_c9zW(mALZ*7o3;m>b?{b z&~*ez#7`w-hjZr# zkF`anr=QE79ImV8IPQh{x}MS^6Tw~e?!~-5&C1$Zq{e~m%PS+%&Ev6Zy2(98^-&fo z;+SegIz9kRxy;@jg0Azo$68ZsU-BP5aNvO6B?)nH+u>U3fzhwsQm)47;p*9@0T^;X zu4m1hXEpMs6QV*T>w!VqG5pzPZNtS&yRo+~u>oIvz9n5?W$PG_8Sm8^9JduIz zO{VE1DSiF=LE^WA;#Lr0CNS^Qoef1pkDqsNQG~R5}mi}n3 zO`Vzkat6Um4PK863kxyk#}TBy0w-TE{r=wBgNcdhF_6-Eq~A1+e9;7{5aMmj+R_Y` zr++eR6^UxAi{$P2p!cZbGiMr5CgPsIv+7+-Lm+2p*m@>U@ zFZq?DJd!a!^4Rf(km;#?_2`reYdd*_r!ol zeC&TejSsLQJ}Gb?^HofcIx_TUbLvm+=KiOFo9{iKr=+T+$h_oJV7?yX-T&*?oA2q` z+SvQA)!Y~v7+7dMmt#4!Cpxo3HrAF{LG`$3W{Vvs)Du7eDsC~6Raz$dad2={@1%8) zK~`dMbaa#g4i6z-oy?2(xU_g5mHg`JSo#r>4iKFP7fQC9F(lO>(?`S_`;Ku~baE%i zgmXSEE-vmL8cN_cYn9=*9eiBn2s)wkRyjEi8Sso%ZxMmKf}sTrjH#!pP+u?&?jIdZ z21#X>jo?-wWR2nX8vyE&EfYV#Jd&E~Ej}VIFJIo#p=Q$b`U$ZaeJVXLUIx=YK0S?& zjwTQ&sN(hAyLT%9x7Af!^cLlBVZyfNN~G>>mf!Rm5oZyrx~yII!1*D9(=-5>EnqAZ zl7svz02~MiUYz!I{J8;U#`F@dt`TpM^D=D)D!M%iu0Cc%4xoRNPod;VUGo!8*aWxj*MQ6J^ z{~^QugY>G;z5m-6TR~|b`8{;Dw7ZSzyN;>|%1!-C9x{#KvFv^AMh>IiLOfE zzFh|nB3N4B1j6yf#hD~7dUmmv}n zh+9EHVSTIx;d&c%YxT+Xg;v_SQ&b;C+7G?`>$b+ ztMexKZEc(JR)ep;cIKMPV3pzhz_cF}SC8We?R(%}MUIXD6!;9Y;K%nTuk>3R$a zw(9^;Muot|SAIZOq2Ask199;P^F!&So1Dp+I-0qR$^VuSg>*h|gN&FY_bLt{aIh|t zphbJV4>QUgwYuqKZT+#b@{y3osx>xGrmYpUr@j&o--%oAZgTXxO$i1D1?Ah1l0%%d zDp{#8FGMnpRZPB_q5s6@$o$u@U+uf>%AX!lPS@&r-KLx-@hxTgfeINZ{rRa=qdGz#-u3Z+Zq^tdnpM_L~`@}ZBi&M z1WY7e?Cp&dPC|lM84Mx|p`oO#$TDem26tWoN+XCm1_I0N%#|*7t)eg_s~-acS1@Xi zpFGh)5@B%3Qa^k4R*rsu*%Red^$-kB1Xke8uf|hB7t#n30o;LE`OQIX&y_RL?z6iQ zoekUUIpg&z{mLpUxd4z>m!=NmL|k)+*vdI_FV4v|8l|wioL#){15J7y?bi*;8}eujDEr z0=-d5jp#7DbLWl*P<&We7n8=AZ_8*GI;L)60{EBDO>>&;R)E+Vf*~jmQvn%Gz*91;4A(^_kyJmU=BlkeUwiQn z#FN)9dupCnUN@5FS_`U>+WG0zCqtLB*&UEOC`3An-Euinft;SIr{?fU7sbj6Z_Ed6 zVS?7oQxf{}&m2ru(oe85xHBO4@gvuYql%ibq;T<}@c~AR^UaZ>X+YR(qR3=6CJc zlhLln3E-V12O1GJ-vqEC3T+K+bmx51vm;_0{AWy`=x~}!Z*?N`i4hXiS!f2(V$v=V zK++LPQAzE8MC(aVcjTe4m$UDnTd}IVi;<5O$}(+vDlfEhAIesYV)9W$rN8ft@LoAL zH}?fH4BJMZ*PjGH!MyzZpTB=U1s9#U$9>Aj3L&|DFrO~ZK%b)lDDlwIqhFEW^R0hw zp*p7#1104&BV#7wm|h9!w_<_4iMd5{6wktca!>oENa|3^UU%RqV2v+bT{HkeMMXu= zR>&+Ir+NiJ){?Kse&(uyBF)Ie^fm7`^DlYc)s>Z*#V#wOw`mVWB7=kV7bAWa3}&XO zB_t*`0pWLdcP~RVHSWqeO9+?9vqT(|iR76GUt@>PPso_iG%C#AtDRLUa_8j#@O6gG z0ZOG0AZKAW4Hvn8^Qc2^;TyA1p|Bpq}H@u2;8 zn`+bVWI;iaVad?WR7}r!SFS&h;#X&@5V<6-wBDC$;EVbzvqQuW5JOv2Z&k)zzIQ!^ zYe|z|yTl#P1p2ALVgy}XTN`iPgws@S9k5n7hu%X;SAZZw;RL0V&D{@yk{)79ULGHw zF;y|qIsbIb6V;|~uP)_#{hi`CT&Q9mm5b784?Nq^OP4MYNt2RdX}sghJGIQmj~~Za z|NIQ%Y&ZSmvZA8m`^?PDn^B+%w{pyXf+d+OHjx!qg1!gMgOnKN^&X%V(nod%vI_v4 zr)iGXI^R-Lvlp=;=rXH`NoN)_bY*C$VW9B`X=(pxnAs$^m~Pp!rFMrQ$#DVa=NR~b z{{Fz>MT7uSww=qt!NJ@ToI;TEr7^re#>dUGIm>I#BpokjtvYxuYFzdVBjenc1Hwgr z-yjTnZUc7LMf+d3XP1A)`;#Ck>?Q&5W#r^+>Sq$Z($ke|^3$%Lw$?s1rQq|SW|AT4eILZ>?A*aycYZ78}!{>yLQDuNvmk%;xaEq zvIj$G*N;Y+83MM7L6Bx}sej3TYfK|C54Y7tAQZ`gx-^ z*B~dDAX3|C6RZYoXMU{B9~#{U3?bpv?hz+9vbeOztF=b*3^H+ut3sNXpRb=q+O78CN z!2}cw4v2_&i;y7;eft@K^POE>nCl`gC;@@#)}n@zK0nc=3c*kbQ8pMbml^w3)~0nfcY*t=CIEJ$|>P zTeWaLIM{lIR90USNeTrR*J1S=fVf27>8B6mufjSAJFl|^73!+Vw>PtF2E+k0Q9rG} zFco*+VW46kV#NKz!b{lvS(ZH)udtpyT4J5BaQ>a(&ed{*=#VAIAMCRSwJ&ihJ^mVq z)&0S9!&N0+%fhDJ(cN7Da5Vum6S}LwlBdwdd@~t)_ev2av>dEGS-Z5PYEK&ps-PaR zYu_FNDJf+cD?q9EOzX9N87V8XP%8ahd;3jn$&X0aN4X5iKwjNJ=ZP(a=pi^){2PKU zwt8I?#4Ms>Y|@?gfn%b_sqeztCCFJH?`&mO&tgIhXuZTlhk=kK2ExXM4w9s<$gM(0 zqO@#3)_PWY?L&69$1ph?dql#JnN}haL2H_34FF4+u$K@r?6(i3XV0DU69A-ix)3#r zg#QDz8UhVMj@{buPK}F2`OQbv^y*NlZtmtm;kLryX;czY^zV%UXM2;x@7 z3zQ^`axY^bK2xx39pAZgC&IR|#yGLPneM2z8G?`zqyuUi2MR(~0fZc?#p$$*GW&&N6WvvS_w z9gh@O9Hb-umm3DRI9KRu0O0%3Zpl5(NSZe`X$EWVKmVVqNPYw*h4 z2u(BD;mKoADP%~4k@3TW+u%0Itg;>$7^wSQ^xu^jk*4byczE8Zrbkuj=RsRlCNaQ_ zR%F4SkpRy76!4Dx#0d*qHWV(ZQJ;S1f~A~7QjKY=TU^LOZILM_C#M<%swm&wn|CkJa_`bPAJ~#E}6d;s&Xq#doyIRIo(qN<& znr7F<@nn$jArM}ZR@4wY6-kC5KvcAW;1fz3>a$lBf}hFXcL%iJe%_^?+8r!@PYf!Z z!{G)3sX#2mVAb~a$=@pVEZ)LINHmGnRMe-Sd>No{MyyZ}jL4T2d-v`ITZnY(b=gVc zE3T(uCY91c)Ll?*V@6zo=2Q1w2zzqZ?eQDbH`SX4szM@_6czITl+Q>7f9&ZIY+m!Q z{R7X?-wblV@olD|&BkEOUPu6}=MmjL&KExP;$v zV#AE4eLn#&&Z}1^z(A|5SLg>$$Lvly|I&2#-o0CYU~<<1oG@19dGB9C6NlR&7Nsr_ z4XD5~v$GH?4hz6!p|n=$y1-(ZeGKAp&^!=%`6>f?_ zodJ(7zZnP(lVcD)-|02LSbi|%5M2d1X#!4;9$KLL{J zx_~Le&G!I==5>cO*Zj$7%jhJxSM{^gKd&H-e8Xa+7WORS*Z>q^SOK@Uc5t{rofR00 z5*@_)atva!Li`S34U`^EeR1GK>ghpX_BN8nY)eEu^gPWh+n_f$f4r>-U zbKu61Em)czD5*~+9e>brw8X^^-YMX%aF4^;A3ku51+ZzCtmhj_6ZRbvJUpjlG{0S< znwIq1D^&l~{J&UFeQ%~6{9C>Phs-qZ;M7w$HDv*DI$0%hryGTs4)&GFu#JO5IaD6R!^omd5Lx}a-iJTd z>KV36(=mPHwbSUVwHqc6SOhpa&{% zx{$KGS1vpt@~KJFX;%mcprXsDH{8VVA=A~*mtb|u-~kY1w}MT^p=1pb@M7f_evzRS73n8HLU{CO}+Ce!a1oZjeEk57~ z*MXB!gZ>0kfXboa!_uF^K0mwuU`EfDOpc6H(pVLJBK8mJ{$QAc*xq_&j}H-86?pz2 z6&3MrN4bp;Laa$d68!HfeFLMVgb@ou?9ru`bZy~8xmQvEHjp@v!L>3Bj~I1YAu0}# z7>82QOXyK45Ed3j1-}}buWnW@N+28;RfN>DgY2jXpiDl>ED%jVbp-PY3u)${zXkyr z5Zoi$(uWP<93*ege%OP&E}m%4uaxh?QuW^5M(8f8pwDs+#(1Q94A z7(jptl{$|7D?G%524k36kvti$EJvrs$NhTLOjDhmo2yEwG!F}C{0us?ObjPx>;;i|E9p1d{%D`HeER^I_Qk#F$j@^a5%tJ1+<-DKO#esPV756+ae+cLm-B{ zLR2ocap?s7oB9$T-W9-lP2}&Fuf8pmfK|}+pZNGlhZ_Dvg&#URjXQYw@V)f(DXx*p zU~j`uz^SMiTz6ExvWu?laGGYJI9!9x?wVU7wm&rS!Ji+dq?je<%1cV>K)&I&?B=VJ z)D;_+EL4xqN?wqRRM&>c0>MzqNh;s`fHCx2K@|T6z}`@(eu8vx_~_9v!%f7LSyqBj`Yt zsHW+B`dTwpzVrL)Ygz4=^XEtn%tU}?s85MMyNyEM_csdna1#XX!{4F=&1^*5-@iYP zO3Pso5(z{k0@a`>E1IB4I2%Pu&BYM7AZ3xlLh%{SWJ2tCN6Cf~0A_t`2&!;gD1>^E}csM&l zJ184aCT=v%hCUYg+Re?4Ms>r3FdY*3Fg3SVRDl8kf|}3zABboi!$eJtFo_aF2@C^a zG7NGc#3=b|*B+PKCdq{B+I;##sM#hQC8)cM^#1oZbOj;e3TE%x`9Qw{8X&k4ClTpk zyC8rX84b@f6bqjLNsz9(eMJeZ0-6BnhT>r?a(zsk$&M^gBQD*tT?2Ms9!Ee#5nhUU zjxsDnywg+>v`!vVn11Plsdp9r&1 z((dT$Qi7NmB(`dQ@dWlPfz>E;K~;GRrMqF)Z|IZUf4$Jrf>>{XBS;5?RWqUm+iZsH zgJkmhiJ9jHk4}YUZBneA6EB(eFdSp9JakI@AUU}x5+^+3`VfuF%FC%G1d$02BX=aq zgl`dnZHCLRmMCgeDEUF=J%w__(RRWKPOKOV-stz_!*B)lBgYQozi&AM6j*939AY)) zZXaG29{!Sl313cp>A1w9;T3i}u)eDIq55VNd)B#*V+|LbCTk%b9u@W!Ky^M5Y1X{A zsDtnNX?pt4uO${irU(-_(km>uJD|CPK+M3Oc61KP$19YYxm@Rs8Dt}_0$mdf9|D@& zXeA?BTEyO}REDh05clus;#iG#(#<2Mess=P>}!$ch2UAo*x=l~R+LN5KOJfpFVle| z8p7N_soj-tmsDkU>((vEyu0`9^DqntZG8>9PwU&bgQ7($fl3bRZgYnuPQ@*cxKbER zmD$c%vQ??SDqpwsa|~XziOtI0n?NR9{L02D!z+2=+u~pUfLo8R+@NvU6+aD+HwSci zPX@d+Jz4Z}+~VX?-b?1830*Q>t#c8_KX5)F`f!|mUmH8TETFDy+~qNS(RG22H;%k^ zcE}-P!1pth`1V&B+cof^yU~TGOdS??rezTU_OZser3}49y7-I}ZX+%*ShgT>TCinJ zF(n2sdc$XM2p@Kdzozxnm2c>=ma5_3sLcB0nXK+e_@(<2Z}Rg7=#O2xW!}PK{+)&R zzr}Y3VTNDJvm0%ld6{~@CEOl!a4DPB8sKjx$1=yPSGt92SxRt$1!OXQB_XbEiKQj z3+~r&6%l>fdRktMmTLC*Nrk*?Iuv4JZ{_H2BsKr}{=4CKaAoOObN0mt6sfaU3xs5o znE2W|Vm{o6|B(6V)3+TvZ)J1T5nnGgk3=NR=JB;F^wu9yeblB`LB1R2j~OzBnX2*p zgLumM;`fpMAjUvQ>)+Q#nd!_KF*fmm`R^IJ~_Dmtu6RC`_d7!-AEPZZ{h zd12=KY-Oogb3`rs;c<(WJpRs~lg5uC<4;)1twvAEEe?Ljt(t#R)c#sou6H?o!~qXR ze=>}nB3b2f)%v+@6!!6omw8#Js-<1D+m3r|{qUZ6_w?8@inC*WJ^GDzST*wWzPu^T z2?&16m9G*U)c*EH;^l8MrME{6*L(cJ%9Q=I{rjWG{PV2YTl;4y7OdlRFFUbN+Q;Kd z^;$t7BUSgkGZ>y3^?d4(k8xX7)ohvWKAL&>X)nu1_u*ZSDzB7Zkl%O2%k^vCz0`d? zJZe*QrxT5z$X)xXAi76k=Ff&q>+eTJeg4wJo*K4^)$TUwh|mqxkAW zyuB<>MRlLb(RPyux==)mejkWQ`XktJnxwPqP4bTs@dQ!JZOi!sL%Jp8#b1l@^a0Xm z5{=cI)*1FLYW@74YOLp4*MD;Ut!D5;gW^ULrH;HA?(K6IhrhZdLNoDO~8OPJ7eSUv8&}yk({I2#quPkJzkm~U+)&Hwy#fF1T{YuG^LES%N8B1o3o|5 zMbU2%gas1v+SH-@iDbW_@)q8c4A!T9&kW2=@y3%sme1)vlaZ?s)OX`vZpv1nwEc#q zG+X+b<7dc~vfc@M25nzU6X4)DSEMFDTWoqHUZ-Onu|fNn&E5bdgcSP2u-hZhed~F0 zVXt~_{9!J8;n1Ya9l}mK1GD!y#T|Az_(CQ_rE=lXZps&{&ViW~lv9i1?pmJ4m8#3rKl);>>(9)l34G4 zHErkgk$q~QZ|%*%YnF8Rjqs|LvqAG<}f zXV@X`wpNnSu#c>i$MN}j(n$ndF@f1>Icok?rftN_%N`gA4Bx2SPI)p<^r_0_gu6L6 z)|cPgnBZdCt{yKh|x-0nM4(r0rg?CQq5F$XEvS;v1hFSOcqKW;kkjcH)ubJ(y!@~vvtNHfO!*WmV{^A;RA z6`nDgW%J98ly|3)xkdzT&FLX4vnxOl#qze!(OZo&J@yYZM_ThiJ3iMFVvPrKr#1}_JuK4Pa=<9OLFKV(z&7p~^(T@tI^WWK zYJ2R$%P2Mina^(7Gp!KRM6pmCRF{2NRQ~~NM`p$jdzSQqq6+xcyfSAeDwnJ@-44ok z4~!&7+O3o{(7m$AOXI z$t8dCe5%Oc*yNEZD>4N(L6qF)BIy1F1o#~tB%x4b>Eqymj;IW=xk$; zA8IK1v*`v=rUK>lWaVUXC?O2z&!4Yb2cH~-HwRE;3q)L$BR`_#1mQrN#2VVjvy*~^ z--*L+xR%P9B41kZZK&A+^2g2xD}CQw?GI8Ul4S7PGaOS$6O3t-A`{Of z{JPfqyQy!KtNqQ5yo>GqF{hP2*B_?kt^9L0*k=bVuSdh|S3UMmQjgn|b9QDC%}+q1 zz-Cv_uStL$m^OcocVrIMNB6OL-Mo2}Fjqmlj)#yzcCH9E3o8H~ zy>Q@55B^m~K|fh(x8NzDN?S(l-W_S`mXj zzP<^lEw0bju)A-rjMTro0xu_owTh9(#??qO2-epmC9CE+sB>JREK(;t&B|<)M?3c{ z+IU{t7&~|D*0@D<`ciO2L_~b&h1};n*+M2tV>QON49!HO<>ZFJZZV&oVTmd!ChhO( zAVTEk5yH_;^w$F0(w{&79QyMI6k!4Cbpnabvn0F_T*l{nym<_&DbN;Y99rTqrteHEeK zsTWA^ErVEit)n9?KjdFTR^HvcLg+@ug%~k$ar83IEH3g$E-fx%9dJ?R5+fQA5Ky$x zdW-3)DCPyCyFR#5g#aFN=vQMrNE6?c1(=$+!J^I!`TO}LUXK+8Up}hZR?8k72LB++ zMOaX-qe&Ie@Kyq7WV&qqew8UJvrHpzS_>sr9*_u%{uW_A_1fsBV~&~S84FX7ro>hw zKC{p$)sg1$4`}(|M9I~2`R7j4?{7Y#&E_bN`B6e%22B`%m_v{)FejgTSJ_ajH0B=8 zyn@=B!RWs5mI`;q`+ZumMUK2_&7zK0bO-;+~zj6bg09dTCOV=p`KB zL2V71OHjf!Vd~9LuTA`v=o~&G#9j z6_BtrA|OCKpdtAe-!dWy0>QT=Qh7F>^K4@hQ}|oF1m}^_f-1?2rdJ*C{`_-cC-PUH zH>Sv0Ps*{805r~sMed=fURrO%_4{uGPb3|ecy{#iwQIW|)}O-Cf>1zCMP+n+p&bs1 z_4V~IPJ=xpmoHz&gx*8@$WeKIKfEk@5#hx`fjn09!5)S+qL%>WEyL0DjIc6_L<|0! z&s$X$D5k&a)i1}`X1yI`&D7pSrzPES^8b`%>9^4p+27hMmi^V~m4D*ZE|EuXw^Mf& zvAN8(8`;%Cnpo3!6WMxHz}Y$?=_q_oCbQkGt)UGK*TJ2*G&Y+Jir!9MWh5_H)aLo) zM&nI?QclK_Mr49KszZZ|?*3O#e)^avM$MxXpZAMR4<&MyolekAQQ?TOw0T&fq(~VH z7Fl^ZX2^PEs_eXLi}1R`4KF*p1kp(u3o4P0E#alYa`0($?Kb9Dwtee2<)rcB(JQKJ zjVyc}T|`!zf2T%4lTEe?=8+^RQWJ{-`oiv|wd2Pt&Xw@*iCa7;{W>&Q@fa|Z4T)4G zUks(q-~VyMf~6rmh_a&E;>$GT+U|VvVcUI(A9*yF;Xa&9Hh_0Qyv`i z8*?)PrkQqh_&VGPK@I3peSZwo9s1x9k*Nw@tCU0&Z+RSC zfR!VOhw{#@Tqw@Wl^&^V`E)MQ>=gC~!*1ganIxr~f1K_0B3U?(Ufo3(^Ok+%x>kY7R~J%$+`IQmmZwb|7uF zu}E6j>r&nAOQ?vrU{$M^RZv)5e4f$CE$jM!f0G5jS$00tGo`vD<9QNJySRhLJV+f` z7PWWvfxs=*&_;Y%XCFTN>EU7g4eJs6_%NfWzxO4KI~kukD>2HF#3;XGkl2<5=Ufyd zvVI)zfXE4@tbuC|9=RZt5C?w!x`utZ{Nvt%Ycew2B|^vvXs-72@!1OnF$wPRmyr9# zXvH5Akkj}oh3S!PH`t!{v>XC;Kh;c{3RxX}Q%@d0-j$+!8|pb>(#BRoh?7Edka5%N z-KgtlhY7Q>JtIu3_>o++P#shrHHeOXWivvZBRsD#2mFJ+Lo|mT<6SsDvT1|915!HW~@7T~|3zNb~+DG`3fAy6LLzPK{NQHE>6TQ@s zEsZ$-z{l}MvycaVh6Fq>vPl@^#vrX8{1m=_D%2U0;0+|a)p!p$#%8-0vUZ3mJhS7i zF2*|7(aZ_&xeYf18O-=_4Q0T9^N@`CGb#(ekkC9<=YPVY{MA|w{*mMSw)Y{#(KJIZ zL+7tP+L0)8li}V)7i2$b0`PYcwhw}cqlnYgU61RL5Z$QdZ7^fW+_i-cOagBLVZ2y& zCL`+-D4s~Z)u`cI^nBz}f?!n2c$=E~1WVL^la0l@6cbQ>ZaJ|r{pG;3V;7!c{E$|N z>NrM1ZfWx^1oeItaELKb%S`0hfPQQU4HIt9hJHs>+H?oM2K+}dCV*pBm}*jUBaA|E zadC+3{^bIP8DwswT4p#36A{egf^$bX^(Ky7@ak4n;*a+0O>j^_CkLHv=JK+0f#XCq zUI|4*SuX8FH{%^dD=1t(SWSmdp8ST|wj|1L`Dj_jP}Q<4VM#6DF-!;u~Wcjcc1G#>X?}AG+JFZBR|w zF<#tFwe!}oPpp@=4sZ_&c_@N|5IvK=PmQ6PDK zE8$quEU=f%WrHkDxNlG?@HIi_2XcSp%e(H1F#Ah3Y3qQlmj_#nPlxTMyWe6^@W>Gh^C<=MY%LsVgF0w@qGqu|kq_s*5JxD$ zIe^L_1KyKpH}FQOlUP=u79?=H>%x8lGeNm?wM}=P4b)ERtzGC!lLyR)W3L>CUO@TX z`eS(bVSK!v;Q{^{kX`e23GJPKqbR#LCIWCL-(!sjg7;%o@?*!K3Wn#mkGbcjJP0|yZhR$byG6^zjI>?}RH6xmCbKZjMG7kLeT z2E$qerWkdLYUPc0I&EqjqEWqR$4tM9Mj_aX>R*g0Mx!3l2xv$;0p;8s%|9l7GVY-$ zn{zo&-}XtL=+18*%uh`{3$MuihYwMgrrc?%-qSg->Q;Z3rTXu6;`CRKb;A9~)@!B$ zqcLm+1|d>I3>;6G%`YX;&Nn4KttB!ByHw)V2x#UsA-k+$5;V7nUOVTlVK!FkbWN&7 zp_}!Y2zzx!V`BiyzlV<>XX8C2Wbj2ew~_gJ{_{&>e-oH(et;x zv&RC*-U-t!MeU|5tC{VN=Ob))XcI;NWEchisJ2b8z4!GhACyAVBU#TM2s}90|G+IR zTogV2HK+#PlS<(1oijK(9n)f(dh3ho_ke32Zr{)Sl=P%h`>KRon7qHBknzQFhSE-k<*ZRy(>{s}j5P=B` zAo^Z)V1-%-_hFBVN)J}b)y<21BdV8@DCwfcKqU5uGD{6;3W9~q+jHebB=17=#Usp$ z_d%%Da~;#)EHGM`a3!jW7I;7EWuY`^$fya*))2cDS=a~w0zU0FmLqt0I?gYqZ4JHdbF#3dSf=(9x0U%IB_a*a z6UxKOD^KQ_tAx<2Ef0d}c1O9^x`3I<5@O{0d0UB+S6E8z3rO0xu8hgy(;Ob6FpCHhsp?+Frq;Bf6fOXT8RoXwc$z*MtkhE} zt*oqq?D0Rm5z;hj@8s0fRky5)AH*@iNWclZ>;QA+2(ulMJSC$_FZ$O}8xI#cckh2y zlf_MAV8{z*Q=4_+^|Ay4(8v6*18@=La`JqzggQn>OBxR3!~a<QV2C@x*?X}RN3PGg3U(nQK=6_2|Sj?~f zPAC`0GVL#2Dr76B%Pc59DZ9tzz5w7nV>$ z)3Hw%`X1v|B2~JGYHdC1ioo9`y8y&MNkijagbR(p?GTKa{}4&?Eeju)%no?kJZs6wCABCKnZ81 z-N8vtxT-s9uGHs{Pp(b|jd}xf^AVPKL}(XSo=MwFJT3vyq7|Y)pM?W?e#e26<}=xl zhav=Wv$JuEQE)>;!^nSpo|1y148GtnROZo&_Yv6=#bulV=Jgz>vQQ~V5P?Fo9>)Y= z&)}e=Ee!{fG|>J8S!WPB9nMZkQMtYgQSvcz8+UuL8!tu*{_|OcnK`t_+5PxPYSt=C z{Kk8kg$6*KIgv8x&t@T_6M8~VadOUz z{rl!*JF{Sa4?^?j1Bjh7NDCP-WaIEIoZJL`5dPRX`Y~oagMbnO!EjX&(JK5NmxLrr zD@0g;;qU@_G--L;;`1h+c$T!0lQ{>jqoI&!XhOTpH#D8RyTM3|SaSwN0~rJ&iLTdWAz2+aRCqz5qq$A=yHNf4o!`dLSFsg70!R7YE*Oxdq zjeD3lU=B;$5Z3UQLLLz~6@UPt=)PLY*e{J4ln$LBwE*76flAT9Ycy_(h+nmly!E=9 zNc=xRPTVm~I5|#tLzy9*u7 z=U|km{M!Odbj#s*ujz#a1Gp;*!JcUT)}@C0efrE9YJ!YyeGYk+h~54*@9XBwS(_Lp z{z|WmP++MoY9LTT`^7%MF#@tp2ph1G%M^6c!b1q=M>O;X&BN)$b^9X;PMvuSw2h`* zVif|^s|yW>;G<#~g&Pps#6#d98VMnIECXPBprcDe^6S}WvHHJbE{(S`Wr_N>vXC6W7(YZ47$|rMaZioaQ-An(IAp`}ytn*~jsF-sAlP z-hCW?U3Z?Ki%0UZ&kZ`Z*(_$%b!_x0X~ zDD;ItR>g3GoQIqPQTB7?EI}@Lt{mfnMAl%<=2jyIQEeAq5;!s|tD@c*@hvgK@qQqHT|P!ZRQbo58h*oCiT7@jtn zp*iDGQm}n;NA2ovN47BIzUB~!me$_5;?uxoH_3P7%ai`YvjE)?JoXgM8-hHAmj>yO zZQSxn4}RUUP84m&7i;O>%R4VJvJY+vd6Zq0-&8IZtfOV`v2oAX(XYAT3pt2IPd2N} z^w>CKJo&Z0zJC8*WX0la*RWR@ZiSlVWM}gq6E1FV7cZYZrdy0!@&a7jpx}TMpr>e@ z_t?6<)u&}xJ{V0mmb0|E^8{>+Gnu4Nl~^9zaJ!BJm~GJe3zMq`-VI zaH+MeZQ}Ru>nINap44DS`@q8%@d%;p%bluVd0GHYwY z>!EDF}|NO9fdLV#}r*gYJb=Ua&x}fVO=^-GjPM zK9alQP>(o{AK$t|8fESsliz1;?+L76k$xuq1LpcSuC=$X-%FNF7(^4?-qK4UotO z)c;?=G4Mm6Py2-#V)4ALkkQXmc#BMMj>%j8vkR~U>TeLWj&wTG81pt!#HYWzrE-{^&TS~4L z*TIL6(M&&Dss4llpI-{+fPzT7QQr|tJr0aUMKH9vP+GwPkajwm;bg|m5(G?`(4-_< zPGc+>!KxNSgmRF!NaGBlHiQ1~B`iUhs5OAP!6l~~m$vx2ChR4<|7hDy(4g((Q}>-H z{ln|(_}fY?m+Hgxd#1Z1?mQr+2SP~aZ#3C+s2zS63A*Jw96Ay_^Mzct+!uo9N^qfN zhup#a`~RVU^oV?Y3Q|Wy8=wxgD>O}1(Qq!q6Jp z!3zer9NyM^z`@?=RZsj()IqVd>c6;$eSKKmkfWsut#`B0ACIV(E7A3TXTk6cBo@nv z=BQ^D3}4@K7Pg<`#4tZwxrpt}&C}gRNjd1{frk(RGpWW=%KZgfl(R$#{ZWe#0p?EB z3TCb!!HsHa$^CKrExJUVNjtm@PM9zqL8RRenF`QcUb{IH`>aowg>4vZ1C^sB+y@n@ zM&xPRiSGck==Y)X1>w3H_gEexq#$dtCaE>fz*gE&Uy=z4^r{E;?4iH_8(Qkgo0gwA zUon79Hn#g-+)=Ck*`D7SEekisKGbj&nNE-A%{0c2X+L@LR8RRrCEN^fGl_N|?$!h_ zhb@c{o850p)R#0Xnz!bVv3Eo(CEk=Of6V>hgq0Nyk4JWE=C+S{c@?pH`gyMILGErl z1A7=A1lUO6z=RMFiNyV}R*~-E1G3&wq`e+p^cbd|f9$p(?H;^&^X5}H7DP(1mX7W{ z98(6zgt7>4^i~$yjwI-i$VY)c2Jnqxw`;G2j!Adydv0qd;p2X?XG;HD%`Z8BanIB& zkNbaKvlfc4zJBU)bGp&(P1wx+z3t*3$7>Iic)kg&Koo^HP$Y)he@!U|TGDxlNd&0- z;EU|Uqk>MO5YLa$!XZ4owd%0^tPt}rA8vI?0|R1%(+8pLukw$|)07;1uIYxV{aMb@ zbBjyzaP;DVXQ5x{l|YOoq(OLqr$;xGnc2YTIA*_z2n+M#EQqg+7&>UCI=lHEy?=dJ zrf)^8Bs>skH=p^?Wdr8)%E$SI0Ck4LSG^!6s)2g;+)Eb!P}@n;%@aBV;qgP>?0$Minou-| zOlxUc#4ENVsA~LW&scqO$nvPzv&OJ8+?Y}R9}B=mWR!gAv(C6cV^D`?XG=3I9?4e%Nb;w>D&mO2Sc@lY7mxd%8f?@Yma@Sn8kswe+`4FDycrXU0xppq4|eETC*J?zsGeZiK+7NC zJKL*_YBc^+_|9b^n?69cxoSy9sx zY+4V)j0-f`{MznM$vk)b-EmTyBJJfucVhMX)$7*JJ6!LFdp#+k7P>i8eV27Qim`4! zfDy8Gz*>3^jutOF`)K26E^U1;{lfiAK`E2Bd(Q2UvWG(ZG;j5<-M#W7J~pIPctJZ; zX1T+*qFvqbupsTbPd-k6s6HGW4H?ULeyM-s?{EIIhCPQ}!}2Z|uhl3H*54yiEVi0T zZDPbH7`S%3XwC^X{xyfzEf}5-8TTJlVn23z^;uSwLVB&(_RbOQoNl|_Ct@8q=6_~6 zg{@LpOw`VXUFP}qST*8Y?dLaM|1h6dy(}_NC|)-*HJ~6-EVW|ETwBF=KF?!+hB z?Ey!EUkR=7mn{|7m^00(RE=r$GN*ks{Se3cgtmV-ZEOi;g-P9D-H)_R_4Sj!^%8+% z*T>Trf|`dYe>Yw=_;X-R#rk8(MC*f(3%~kY$0oYmR~AxwN*Mb*Z_YfF5BO(7dNtLp z`QqxsaBG%MBUZC%+B$*32O;4@k9{vjOE~mSRDb@qx`xA`H9vOG&t{1%vDe3OK1#Si zpigc3`KH;NX5FgcbHkC1ejO|)DxAMpCS~dQ3_e&;)OI;9^QAl3CFP&xBIASf%R<)} zgBcx9aQzB(DERW!H+asPriGUA_Llo}D~Tzu*H3O=e-{60r-Wt-ib8g8~;>fuw>8MdFt|8#0yX7e%{nHHiF?W^yvi&zmF;y!dy z;`(XdFt+?xbC-h8>r(%z`Y8#u7fyW~m|j$RkiRWYV!7FKFl3za3QgPU%s!V$5cz_Z=Qu()#6j$A$cDKkDX>qNs;#F5%Os4?(AEf)2B2!60&;xg5~6e z#n#M=w2A3Q{)sJLXg`0`tEh6r^17mW`YS7Dt2D7ox-&VviyJoGO}p=Of=x2w`p@H( z7r7t5&nw6?3|-+|%koMf{&Z3M%6R+7?4s{1Kb@L)u(VFo*U&!lnk%6^s5d9ZV)$HCc3j;h)1mJaO^ z{UHTgXOG8cBnBlaL@R7f_l?AjJv~M}vq))g{C+?)@?n|E`@GMF!@psN@H8cFV%NZf zg&Q?!PZxYv^egT@%lNp;v^=NZdUE+==)my8(*uWhEz?dZpLWYG+GDKfHu^q1{FTiT zO-z#J=QY!-)GJ#5v>Y5%rPTVdNk-@?hxUMiuHM0Ghs82Kt{R(9{+M-0{vxb&gx=MY z(bU5@#vy{1cP)rQj0zEtn$NHsZ&5o&QDyvaUY^~`-@z|FHJqb>Ex0hZ$tjF2thJAp zQ>D>n@lrIqN7Tx%ZLciE@4Ds+?YO^~*U4x}A2_wjn9@quA5&*@XV(X2s$Px4xcF&p z@v3`I=vqSht}h=d8`;?x%o5Kw(Al-dqN>5Zy2pedj8H)pU-<;0OBp&3CUHBfw=IC= z;ob8tbbDlQkw)(`Us?&g=oND7=LQtK?RDH1wEEq0Ub3RZO~rrUS-mE<|`9-jQkUhTS3> z=GwR65T9RNO^*Zw0>KNeGj0{-^Q){G(gk;Fj76=yYiFr&){MuIc%QtE z;syCs-gotgip}Ld>1(H(sEUTq$gps4Y;ZKuZCG|&Q1*4Si)8zt7mZ~VyQvgM&%dxfWUbwBW06(tV(7yw* zMb~!;o{lgLGqAHqpXSA*y&ERf@F*el7YcaVoQ_cPpB8@~76yx+k=BfDPMG#UsYisf zaMgyd3z=i!_g_H$3hFYk7J%nZ^4*r>o;L6lB`w(c?T4RWkqj0JRJ;>qlu{(13U+`9 zl{%u~#5aSr#)WkGAm2c7a+xkHKjnYGc+YHk)`; z=f1j-oBB*MGht#P6%t|$EAy-?Z)y9}256VP?ijT#OLaWzI5YkDw9K)3kBfFnGGcOn zQp@6gIN6>P@W}8F4FCjtcMw=E90{(&@@*mYs}qot_w{$sn!sx2uU9HQGwh<85^j+8 zH6O0C`T6+|W<%=+iQ_tKyTAl{g)&$@JFTy)>kBF{VEnykO+p=4SMWrCW5h))Gclql zMLF-z)^P7$pZ@W#t}epvgR6cIZhI??pGfP0L4{{X4wU%o894JXd=N41`UfB$sDOvj zvPx8Tf5z?t09E>+5W|2S2GaRJhTOR%JK#QyQ>2vVV81fgO;0{>mSub*;|ylj{Lm4Q znG$esxC_HyL*;9D$+becr&_OidXDHEm-z6KJAm{8Hj;0?2N))Ls zP`7Rask*zzF>2HWzCc)zV0P^U;vD$y9c;&7G9{UZR4|>@yKt(zTO6RNX z@H{;%vFMR2_qq9 z<12@*eDX3~M0^b-8vwx5W2*a0lv_M`_dnsT>5iFYB3s5gPKF*E1J()*8;Eb#x_=oz zQ!wzXbQp93JR0RX(ch3@Q;8; zTOh!?oxzw*y~Wf#5hh#^Ws@l!nr=adtZ!Q`A70*{VeK|ZYaZD0&s4x5t=nhuiH%nk zJA-=@ZtUNG@;iNwvEaH-v*n809_Jo+t$#TCr{E<|XFmPH?v^5n>65*acas~G+xgeT zv3=L39!>f-xvXb#aiRUqb_`p>bZ(lMn@T&LOp%Kzy@Hrc)Wvv&AFxl1nC##o-NG}W zz}O4s-4)=#R3XJ&xOkBR-?Fgr8`!X9uns;4U#mYO>N=;mU>1vsPqB9z9WEO@Nb9&&qw6P!v?@C-K> zF$~g>@)Qvp-Da-=lK{!dc(O`VJx@CcYYI53u~oqzrhU-ocLEB>Pkr<1)hY0~LL}@B zu-pNSBezdKP6={5u(sV0+LQGj7)ZmB+OIcLTsF;-`KV^v3!=+rW-bHFLlj9w@H2L; ze0CS|oGWlXCN?lQ5!{QzLlI)Xfs!EwC$*noe!`{gI(UOTw;rC2=ImG_xuW3cQ9HWr zce&_lTMCP%_Nu%66-RsCspvJ-v!~oCw^k&1=6J5`PR(tZj%F=6|HZXEAtr0Z!nxm+ zTTUXG?o^ic_uN(ahy~-9Ck@3$0{MM-JRfEvlabttr6joQ9(j3r6VxWaXo&q8AMx z7#!Ud0z8>qWmw{oc!W8t_FPDi(dyYi@FifR6$LIeSpb2-DIq%Hm~r=2!wCb0L-BdQ zM8N$yDDNTYDGWI_)NRSZ#ZI8_mqQ!PRs6EA+YaKRUwS`4@E>vo>lg(|nL%mN{n4 zH)H=CV9gVaSPoFTiRC+@+RpeW_%r+B2$AHBAAT0LYa$rzx|HK|aD#Q+jel310@aUS zPgA-v8(E-&k4uIhfac7AQ+SF&#A1+Itz`#`pClFuhd|gS>NMlb!j8uaYk3OI9h!kL z0RyGOqZ6YoAtU*%;4`IoOoB1th)xt500l8Sx^EkzdydtErSmA*RfG7o}QjqPp}q<@9{|3 zN>p#6oAH*I5t5;HRb^7rT&57;emZL4{IOh@psZ`!!pE{_ zws;x6tX$nFWxpsKW6#zm!Bum7QNwZDeDYU`e2d$bmp?uqkP$qmIZSQUrM6uP8<$Q_ zwX96>+t~_@6k{)JAAvLh-OUW~?%` zT>6Pa5b|{xpg%hhkj|bzFJKYlaQQ=MEW8^*^xuQ`O==>D%7`sz1@$E?T_S4?aO)4L zCBQP`Xz{NF7c;QW;6xCCKL(6hGt8JknU};^0z5p)sJc*2*Tj2e%G$TMQ-^`1sA1}b zDOV^kFOGO~P?1nOz_PRy6nkucIga~97N8U$1L5porhftNp9D78{1Dp_3`{V;DMSJz zg&sy+guntWF5$vr0&AEZX&`+3Ok0qHqc^-!Q0WmPMbv6!Wzy~d0C%uiCTjsnW(FyN z1868TtJd}~+d|4nV^7BQgy7xm0@ z><@950Dpqx%r%VMWl>MVZn_uNzy0MrdAE>o$-o9tM@_6>^uI~*8o140AKAFCYOS}X z@nM^vN&^MEk6It=k$d=O;H4JrcfWH($ELDJ7x+Kexpc?3%lT_YCuF2hw|N{B>1}yl z9yG3&dq|^JajNUVWXajhhQYztUfz{%o9@VY?m|h2l)^J|ndy|=3up80m=NMlA0Xrb zLfS7lJ1-?c8gdCVtMe$dOddSgzkmM|g5ScCu)-4~8cfV5GB7a5db+tKLgYlDLd=pF zj$ZY{v;H1>h87Dy0g*=vU~OERp;eF!N*{O(4eV6v2pJY=4SP# zCMMT0S0%VOY3qQl!`RgcL>lbe41uHrhnKMUK^>Tb*W)}Kslo9J!Jl1>4YPrzFp&Fz zotHhdJ@loOWD27#~Wubzwp=)u3tonnzn4bdh3cQ{`87lUIpBUN=ga ze*6Ng6?ui^=f|ReoeD$;hhbad&rJ$4h{*8WB=%x$bow9kZ7!G9X&=-IL;n3QQHI>n z0S7S8;bZ8A`LFo>MQot)MXV>Ju4I0!>Viq2Kx8^h-!aEg%Wf=EqK^eQ3PU5k1uFi5 zj@Ex^9ykp>2Zoepq7whPUSwg#$ilHS`e z!6c+l%sl*a8p#U0>FFL^`|2gRss;sF%&S4<`h36Sf!ZW)Y>>!{9n-TeNN7KV?+lgl zqgAQQoWOui7gP5g<=+hicj(i=(!BgTt-eb7Q?mScevdQ$9K>rjMlm{w#q__XZI;(}url_<=stL2 z<*fTJ6=i~{WM!24&=u^=Yc?_%sYAm)r8H){d9U)-?9i#bP=mCtf1Ir9a=g4aQByLT zp~1?d|CtlVSHqI{J1$8~M_o!vO7smZ*05_`aS5GQXZj6u>1Qkz;F@BIK=)-66g4WW z>*MMMNzu&5H<8NvTL13%NdNbo>%k>J@X8=RVi7{lD|&6N*T*Zx%^pGZbT)1e*fRg^FO4fN zN}vpie7vxJt?F+HK^V3-1{t0_cEdjEeP89!_cO_-VpYICEa3L- z9vV7qJivJB-#;xgs9r$e)oFG@t)(HXp}&9OaXR;&T~Lt0{hVjpmC`H!W+5kgVC|43 z@jj#fkFWHfUyyQ?hD1|hf(_;gp+I9et!wG6rH)SV6aW@6Q1v|9>TP;Q+H(RR{{?jv zSrO-(aVQHK)Od`)Dl3Z|PK;@eGElzlKd6dQ?QWlKsmlE#~It zZYjr_kt+)wkGZ5`I6mfQ-? zo)6hj5_0O{NSsWZB2+ji=;hke!ITD?b*VjF!JM~w&k3R~|iEmTLn1%Uv8luoFjfD`uPV!#&-^ZOExSwW7&m=2R-a`djMla0y4xI+`r54 zUAgWoZ+WW${K{k?&)N=-=K)^cOCpdaSf~zq*CTjGAUgfskJjHGg9yN zz}9GZZ9yx8DK%TB1UT(QEiIbl{E3cdzlU1)xGmSa!jsYRu%GtEC*y+qnCrWD??@>e z0YtA1R=8U)8Y>@t7Q<&lZ7Zv_9M*P2j`aeFGu80BTTQr*Xad!{O`8ml%B;9j1 z^F!vuQXT;41+pFKG7&d1Zz%2uIE%1o3YE=+^dpFx$kIu7?2{(7w!{mqGl&<#4&%@g zT#n?dPw_dR>jRL65KHo{b@5A9H<<{OrrUTD_53ZT`s6v}{D`g(m*$)c&vxKK!~wJa zRzTbK%}s_lN*vXW*hKQBu(0ww*ogrV%fzb$hUfjwf8eLmiyo@<`^x>tpsx{P9t?>Q zjkAlyKr>GbFAFsR3+ zQ=}i;z5AZeN(yRc^qc(IY>=Gve`0e2fjcd2QY98{!KA`Q@3e!u8I5y>-8?_a=gRL6 zs1_3v6HAqt)L(ngx?1Iw9ycOoW79HD#goHp2JA+^hZrb_G#e@eNZcEU2zG+3P5?)CDH!gGW7EiV z*#RqFXsC&(A1@Gq$=kuYsP~+%(zzAcJVA|!c!MA+0rkf^pG&|L!GKgvwgXo^0`(~> z|IVQy8ANjcI%WMssjDutW`ya7L#+9?kkOVQ*b;#1-iJp&02pelA$=nj0w#@>tA20->V z;6H>u2_7n8v=LYHH$X)3E4LAmCh-2Iw7a{o!}l0Gut|gJB+g5g24FzIi_lBhO8_=N z*Dt+fkJ`H!#~#gBH?;k{O|!stAaXT_l#&-JhNW@G)qSu9!f}QkrjS(c7>1zX=NGN? z4Fb1p3Sd+n*1kCnn5f`3SBA0pdY;A^WU= zOz2}22I3U06OxvCYkC+b+582(peEf|8(z>Az#hqtC4xT!#c`Kjd4V^q3L+(DvHip| z6wFk>Vu=t65RNHq#$lRDO*|Gb%p*Jbh+8rRv17miaBbBT&cRPO;1IcUIL0h0k-HISpjdQEWnZ`wIv z)IxI!vH~wuU_0vo|NU#1f%|R9sP)XL7?AgR@j;7I@NK!A_z{tGG~ksCvUNDn;6gtO ztnMmmXlRI$ljUaZz=wm(JK}1NO?}TC#b0fObu^ZR;y%^S+2M+>4s;&ayUUP<4c=?PhBW|p?$yw&JtLf2%~+Lkw0uNw1*vbb9b$6` zLdu{IePjtP-g#7#h>P&HU0GQ)PF_NM7qlju@;r5#z>fpNu6XyZfq3=86#t>~hbT zm?ZF3!q6KzbL*~M<&b((kSKig=$L;LeOp`GJVwJJc$q%K2c}`$wqaswO2FZi_#gu7 zf3C+fJyi;f6ps(Z9Y^)X0619|_QgOjiC4(L_+&Ud8mKNM-IDfvfGrE2%MZn^9I%`S($lT5+C?#qY7XB2d;f03 z!0SWA_6y&2uAO;E|5f|qUM}pIC7XENPm9K862D_$V6_l;k}cjCkX6KW1EPM8g>g7o zQV8>q`6#~3Yug(IFFpRA(jeEJQx!ZU?pUM4Yx+hGfX^DSX@NH)^5JE#JHUM?HPI>qWNuD zcC?*kZNJX zV>qosBlW>)&zVD6M$M9;wh^WC%ccfxR1Ni!@vyQ9hfrriItuE#%xg}@6KF1#RlWgCC5gev0VK}12y|Bno zc`?KRYzLeMy3uEL=~bokIPDe43uK=!Kx_V^dBG|M5P%}idIkmEGxN5<7fXIAfINhg z{|$18F8~6cVo?@`_PlZ0Sk_Los<2iFe`|u$p~#h~6Zr{qQYK&R46}&*E7jns8el8f z>SD*LoDWda?%`oWySr82$TmBpwoLDo6hY7El%>O?OLH=3APPjb`f{Du?`p*M9T4%J z#Lpp{i+65V1B|u^Q{qyjX~P(H;voV51nd;@nx1|@NX-buR={RuM^AbmG;`)~J+kWi zJ2ubm{{8#@AmXP=@}qr(MfNR(WaReJ&r1NoX~wczZ#(kZJGzGX3FaJEMKUNYFV}%I zs#w=1CkPWQKl4C@w(gOU3e2?#dz&z-F+#I+w+AGL6XeHwAF&DRx&Wb-^jHDII+}nr z)<;YZOryKPh94 zgqj7=BB`;yBe@{h-Q7Jg*%p9PXbZg3u?+B7x6P&KR2cPWj0`nDb-x<={H7uH2;dST zx&9R9u0x2GO}*2vMZhy)<%EaAlRFnS;g*O~Jj-J75$1-(k_{W|Oz;7r3sMJ3#=gyM zu=YJIPB>XJ(}V8=T2L~G>B)HsU_L;SpFSbp99!>BfqIQlB?wgkf8Z7rci?A$V{`E2 z$+npLy|YmPm<-|op>PNvvl+kz@8&H2<2LMGj7DN8;FG!L21Uj#z9&@(5Hj5Fn>bte-^n(+}86?9Wdf!q>;UA`l}cX9n3FJ8-M9-JPf`QHL%; z{tOBBBc#=x)fqN3cU(5HmVsKtEv~1RaqC^NcUVlOa`G~g9785S5WLT`*$S2o&^cLqE;#j!RcZAAvD_(m=ieOF+tvmMtp0;O;n97L2uvatus8~9cI=WAqvAO_YX zTgl)n%2(mRX&ev}YyIiGcQuD`hmMBE+sQJncuuI@|91Is3(_S^G~3orcE~D9Fs7HU z%C!$BLMVjAPzTuAPs0)7L)Y+d^v{+Sve}*Mx20y{P3P}eY*bWTtw1Ur)Rr;mIF!(* zC7A}Gec%FU>>3pnMd~u_%aXNTU7q#E`Jr;8yD!d2FW?^L6&hS8>GcNpSJv}3dl^&4 zQ;xEnmZu+2fc^tg0omWyuy&ORul`)x{9<522Sv%4B z1~IjDxHUt7Fkk@jqEo3sB~7f`rS&Ae1Q2qbY!18n%9b?fWi-6(^LSrtfU&G|>X}1nfR4WBIXYsylBuO-6o$f5L0@_w(~Ec3 zo@a}|Y=dmI#B)TqM^==NWp*GzVPW?n-hhWz!WX#CE5;qcOrr+}*Rc{s_dlC7dHCU zv@TfEg6mNr+}|9VEZ1Kx>3}n7Tbz2cXgxHQGO)39FUL=jLav&_hEmrVt*P?#ge?mS zfx-pE?+FNRLaMiG)Kl;Mg6x-~Cb9mBj+9bB*0AwsH`$d9OuP)`%=}1lH3>QR>0JoA z+}};}7RN-1Z33B1irb&SKrj>(5r8F&FGVo3+i^rA0YXud42hGKg~f3~B*Vum9>uHv zhQ1vfCVl)MK&swAvWc5U_i>)=-&9zF5d|g(8LcAjgQ;=W$SB4%0KXl34o0c!KDSm~ z=QSCqVF%Yl>H0PBY%nz3d*sMy(71vk11aIq&%(8ZF!~Hqn;zXH{Gt9>zrHCHMh`-q$bOA3Qq>Mku(D$f-ljseyjH;rSXtmv* zGKmbyZB&3+uA_*c@evgfVG53lh%g1$LnHm(-57@~UrOpVoxQ!fc7V$bo%W{x$qK+L z+`MJWX;f4%%8?L>BLZH}FT5!Vq%SkTGg&I;HvhFd`1vJcd_PgR!D8-U>CWZIYd}l; zlxleLAbXB|{=gS(??{HC5zLbkd5pJNAdJqeMZz z#nyI_svK8G8%tnTY<@b{hSRS2{m zrgs)a@Wr0wH<;T^!E}QdB9M7AfM%oCK7!t%>&972RZDc8l-l}sGs6l^KwzL8(t-%= z(r{ID@Bj&O5Tv}#Ar~sAQ#I~}mU}C)NTz~ni2Z~wFncAwe)tAtc`J-e5Z{4d++Uc! zO?;Zk$_)LgaNJZq1&^@l!3^80itkRdDg(Nb?X-Z znuwwC>o=}j$9MF;sp$;>AEX07FI!8xhJA1BkTM8I3v5&DntBRM9qA&s$+YR`&r4Vg zg>V^9H4FzEd9MUmAbElkeu)#HxL} z<^F!WrRZqQ_(-#V7qGRc6LGW8$jQAhRX=xb&Fb>FBgibr+Ld8%!QWI34!L7Wdbl2cw@-k4bKyX^#?oS0@Y=ZFdzHU?SGeU)>hyq4`ayP$#03FMH z;K5h(9NK=`e8;{#OqCd|NXP<(6Fp)jYWs1fXikanLYK{!HF)R*aRj#oelu?Z`e!PkI7AAh&S3kcZ7&5lB z!d{FlwkC+$!ca6v3s&3)AW1PlWfMj6$6F?*BS5fV3{eQ^jcisu1NkEw9DWKU33v%+ zA3%sd*b(-b>gt$@}e{QJ4wyhvyKc@|Hr?0!EM#!2-eeoHbM+D z5PZ9LG``kgtSPL^UO9(>xyezx@06Aqbcn01<3SmX`|sv(_!ZEw%b=Va8a#MdOG z6U4|w3(j+}T0D<4f*fl2RLKa_r*OyB6~xW1v9XI-=Ibh^W`;b3L{76C2f}i6_;85C7S%Z#m78f60P8Y`Bf9d6I@Y z8oywtut}%=yOO`$&0+hmbOA5VwYH%D6vo*_Srv*0L4mtQENIAGz+z;!)~TJqnTu~b zjD;f|)98KPjV00mq=jJl-NejUI+e< z(^@cFM9sJV;K2ayV8jlz7r11!j|)znJLjTavOVI=*0%|+52xT@tJF^neREx_9>h#^b@6 z@4`FmAq+fcMy)+yL?SOToquGE(~ht}(+SSYO%MzJGL{PZMw60~h(v-I`E=$#1Z=wv z3;l@kuYRz-%JoGYq?ag&`B8O6Dg;;IZwX?7<)I_9_F0%20WmJX%wi|tbJN5A2yaQ~ zZo4hu7k3MV9kB!e;7xQ5WS3cvZMtayqn6d*+lJ5rFrnnhx@|;obNqP2=Suu`VqpwK zqv%>U|IQ7Vb9@sHTZzSzPhq^DYvVb6q7F;Kz&{Yrw?J|Y@W!^pto+-zPLvISC(K<* z^a6j*8Lwk!V^m}$bNr4DSUCWmhgt6dEH97whfC(+-Y468dV3Ec-^!rmxaZq{=Kfc6>mCorRV+mr*}Z+$Cm5uE5`u+P7c%0Y5{q7y<{(|%=MJczEHjh25m`q?yGj8(&LF6J> z>8>QU^dfhwkS)m+G7yl^wK+g)u|9;t6*$o(Xu<(ri{!{V(nF=K3%OAl`ow7PH#nKy z&!NiE9%J_4Jc({K25{+QkEa4IrH+z2(P8`=A2(id9szC~xCSr)N~0&(fQjlx@Zl} z3p6>PcH;1S4rUi~$hX+#vF);GFOVepkKQ*o*TqZk&t;#Pp@e8=ia39>&K9YW5*jWpZIR)t0hG%=GL<>37`vU2rSh=d@y`I(Ez67+?IOM%)F^ zU|`G`0xX}HP$46}9hpM>n?T{c8M~hG{Gi1Vh;Z zEu|VJ4JwdHWIwV@j^pIXcUbVSvp=U?LK~GP5!0ATsH&<0jw&Fm>+*5|QH~qdC_L+l z6*=DO1du!G-}oOgs2wgQGiN}>WQPOsn<49~0W*A1j@q>5ap>2Zwu2GAR_IR#;dV|| z1Oi3Z15N~Ljn{y+v3Kwf<0!AL7YfM1eK;B1kYxabOvG`^EiNF8`e;x z>*dcl0bY&T!@H`04^dXg>lvXaJX*65`(fYfp5Rrya{$r=wr2WxMpDw%E@pB2)~!kd zi$}RJ>1M=6Se$q2Z$<3nu z+zO~2uJmfVlQ{}1Fopr!$oe~US6>s^fU`qJtL%#JFd6BN$idFMm4)cUfU~)nYMK2tO8N2Q2UWedYuL{5 z`)w!ctZrO82TBzgg#+y_=BJo(Ac9m>)o!LuXhn#xkH^VBY7g(+y1_~!*e3*2m>oXC zp`v2AU_g>DP$M!EK=3EKk8_v*Xo5~sA+AcGt)Y)mL?;9YjQl15#}E&yUvEK_Nd^*$ zltUnFxH`eoWyj8lFeu0{|0C9sr~?5NbfU;CtgepF=flF00y2ug#PBEdB0wn!R*XAJ zhQ)5HWn}a*;X14Wl1Cqb(oye4Azx#i3bBDDbX<@ELCO(yIBf}I4v;7`(u|(xveg^d z&UHjzL?C!H3ANLet7ci;C5Bxii|LN54na0Uhsb}?UYt`=*@3~H9tay`KLQFkrdd|l zT%c_RBH@B^X)6Y}h~MSNLG#EIWasuh^iOBWk{S?V2#=SDW3f~g_|#tW=^YVYZ8mZ{ zU+NVqdHL)aXTniYQB7+MzrDd>EGjLP#vmdB=|(w3+D`H9D3@#4EnVG1sBx}KW<-IV?iuke@U5Q2Yxd z7g$}z_&x$XaMtbUY7gw)D>;vB zA^&m)x$!VY;fmzLpavy4VwqulP9&BdVB*e+Qu*&c3L4a$0z#^M_3BkGtdHhILBb^% zX%vh5B~gNRL8Edv9Z`{9zp&QdFqH@BzlxX*yx~$Q4K-mdvO$%ag~+BXZOiG zJ*Ox$u_+mjrizl`U4;DmKX!Eg{ok=h)7{|R`58Vy1e@4+cmI>kUnXHxcjSnBNJvQ5 z%d)-eVmG7e=ij7v7|6Dfu;Ypt5=UmYjkJODH?~Iu_`3L}0XcaWqjc~PU@@~!R8&;< z>1@p#vsAG|%H^K?so7vXAW)Bshz0IXk?c_w$jr)O6b%&t<~lZZl+A$d-@o*T$ZRIf zes|&`>qUnw^xytMx>dznHaWYoTYi+cOz_>sr(kiR?4#j$vfUYDi8Iml?X#vp%Gk%G z6&Wx}a}yMpExf2mc23}9XHV-KBU5ThO3K+QdgRZZ^$M;a!f^`=AD*Es^x5H2Q9xvE z8ZYKcMsTk8_xIn=!9fK@kJ^Ziv?Leh+xNo;5A@itMz32*jbVMcc^2i-E>C|Hf2oCs zrjRr;GBVK8$VhVS#oM948OKnc%VOrem&Lk-raZsS;j9Fa#HQxZwWb}D$_1+?Qbi7!DO(1Nq5V$Y~1ngKwhxWt?d^R6;mqf*Sc`6k9TuFXoKxoAWwMVYa> z=j_K!j9ey=ddmp~h{)SW)pkr=l>sG{N9<@$-c~O3f+{SaSs*$2rFwAg&XD9{myS!l zWb|&&=+^y9hNC7=tOoEece0^Ng#&c=FfMafUtcj07fHA$p>FR)oa;nEjMeXSC|yzi z+-^=eq?!Kq_*iC6nIa7R$Y_kTWVkwa8e&QTL%tX`&NI`%q5yd7lV%J(8D66dBAWbG z6HHPOTZ*ty7{whasenkyLG$ExZ8wCv`ZXb^LDho9NDhY_o%IvbWjsSN0R^rD1_ROT zcQ1a%P7q|&a58`q5m7|>hSYL-L`_D<|AGOaKx9D%gb|>v#2s=h(;jAR_-fdBw;3@6 z1g{&Dl!vSMj#OUP@z~m|VQ+d<`D2jgvp11AWf|5g)|{?46K5y-0*ohvSC^iG)(fCW z!N%qU0Eq)=1@pi#13CwRCO!UQ+1O2BeFBaGrzfILV9#jPn_1JVD=G+^R}YOMVL}rp zTx5csjgA;l5G^S|F7XGvdHc2upLJ|FXA@>!$j5Hr7(Pb_#2^)lNK>pgNk06+gHHjz zyd(SWFy3H}zu93wdkq_CzL2*C#TZ5ju&JHR?K-qhCEo06uAK-Wh9M0I8aBMZL)?a? z5P(l%JIIw_4@?{Mu&+Q9LB_rWOErww+@hlN6FtXF%_a9xt7KuC7>I)CLz4R zd%+X0m*O|TxveZL(B>Ojbv-{w){6snc#o_?L8uM0kl(O)h)u3VxkdRS`bW~YAyos= zXKs>ZJSaX;72(G^VR)r&KXWCtg*c|e9@ZV56ahN1(CcW#89t&-1d%U97I031e_O*(6wYl7SF+GShKm4cMJD>w^mNEC)FWgmG_lNR4vGi0JL z-x39vmcQcYC#E?n(Im0x<)mvC6&K$$G?c|hdr^+8_CYJT5KqdI&RqW%U? z=|xNKT$dXu%5kYCfm@;E<<}?%;1ex6vv+teMUn#7rip!t4$J4DD z4Eyq&_U_S^*37X#n=0l@?8Y+s2f%s+Bu|V}$&NSzMFHHyViPG;X=FJ(Fh_#%LdQ?` zQ)V${Ga=%;hK1A(uHRsP<;Uujio5}t*Ty%3>ua3U3g#|u(T>b&JY=%2f$U-@B6f5+ z7#FO6cae0hZsrwC0(!h?aj43{@3+$~TqaWz6ZxI>B4xd!ZcUEGp+8Hu3f*l=Dr#o; z61C(~hL9Tx?Sg{BK_Q`ZhWCfBYNX9C-qP1ce>PEaM^7)(CI)1hi5-?BKMTOAmd1FJ zV#XC4L|y{7*)@A?=LY=ZUE0*By8N@NB=qmxx%2RT+iuyFm5>#`1_MDjnh@jo8o;Wj zSQYMLBN7;(@%h%1ZG$H%;b7sx{b=U87Yh* zkflJy9D+-Rfc+GrH(mfS?e?>6wu}y2di(m`czYKS?kYlU==i8sj01h;RlIk!4J#lD zG4mAiK#C9O9C~!K#Fy~vI17h;W4m`??ZHqFFxnRo=|;K-ADl=tYLdi9NzCin)L|5& zRHaCj`CyHEy`eRmTDng(BnHUPjIK(NC>P)fvl|^RsxMg)$#Rni56-@?-MK2!zk131 z{(XUYiJ%V2L`+DLp74R6gmI#+*_EE0m{>sY1_>ng?%}0#T=Olh4sk6yr5$X%M@iF5 zl)!k4p=f7GJVCXH`rEQ(JbY;isKy%9@!e+b=L+|Eh)DuiCGubrJ^}f{c7`}i5^w?I z3aegk)dA28i1j@#I<6Q=K&bbKBp>qAFbu$YdU`g)3>@IQ+sv}nL3|~0^bsPdf|ErL zOth#U3!PtB0HYMnLA>fguU?syIP3ywM#J$q8o>mtg`U2?9m9SQNC^uwWZQr^lNHZ% z5mlQ}bP5%%rJ%p`&jTye-mcp8M=#GVT5h3fii8_p56$w*xS5jbZ);Sy_SHRlD@O+!^6?mD#pTvDNueK878QWVsgTzh_)FoQAC_ zOjA(G*W5|9T-w#cgIUSDQnOeUS>$T)ANo*&6LUv=N@D#DBH#6;F@c>MvZuex!orsl z`W&+29wT;uT^sQ&vX}p~kcW(SgRyNToQJs=tifwM{l1oAL7jVY)v~AzSfm%B@n{dv z*hGMNTn5|o^=%H&FUVZD@GPux*u7j22p6q)}Fm2I^piA31RZTl^umJOvVbb9h6BDEKVx%CVao8KtB*5;xdY2zw z<|V>uc4JMB$!O`1`Os0SvYK%WF9+KZ06 z8;_$8Jr;4bAm|I)FvfYmh&Y>rGune598WkO5yd3>pqFeCRlf?KTI2XZ#fkO6!D$u- zx^L^pLpNf~g+`MX0w0vcWE(4n_JYTUkkSH6b?@RXVS7%Ox2jes)X^9-zsBwL7izb9 z|E+}Ey#7b+Y{s-u_`yepgEP+CB*m;CjUa28h@wuB0m8&`jITdl%SuZ74S{n9T19Y+b*xSJh{8R~34Kri}YhsfAXZaD|!( zRXi!Pta`44QS#YV_I0r-Jssyo=eY(VbP}*=@a_JT?@EbVgssn9Tp!5O_V5kXHr?2R zU-i=fn>JqG!HSCnVQGVikLOnG1(`CXQ4q^-)wum>!SBTMm9D&3cI~7{KAVAlMo`4| zOhn|+l&6_D$JfV%0EES-RdWk}n4;-G0x|E{X7=dBSDynfrxH*d=B$eXA-ytQqJ%7-ye5e#;TZdf}v%SR!RZHOXxg*FxrIw;uJ-`s364 zbg+$1TYM|e7><;D)`fGu6R;%ubvl{`@Ti|5+W5&;s9y%0_&NS|L-JZR`ND0D2Hp9a8gw#NXL8nIDL7*gn4tc|- z#_?uiq_!>dgvMO5-^UhL6&TbS)D9?R$QljigRxifPSIiZqOnHsL*C@;Yl&uo0ds|p z$4M9HK0w(Z5CNE$-3zc{uF0}A7GIgu!N?skn5Ng>P@;!CE+9gQDftlUm8ξ&x3KXa+p;K!YkJl{|CFY8aJiSA{u zh~gab;5SUTud>S4_846s;LMvqzsSWe_J8XL#t|5m3MXe6@GQuWz}clnm;mRk8bWwk zlzu=_Klh6uW5e;O2&ow;5&SQ1n&lk{hK3PQhXeacQ0fZ6jTrPXE0}LH@m{A`U7DiD zUAcwi?{uQJZxmxW2<wsz+cZ0vbV(g@2nb%>4^n1PJ#IoMdtA)J21_Gs>0}Qs^T|`HuF(r03ff z^gxv_-+$O2s(xnXqR`f6y@5$KL$rbO5Bz_heq~;@+;AYl@(|VyoSbC=Y}!Mx_Nr}Z z2DN*UL7svnf@Vw3kGJ6SvMf)|SLBJmY$dN6;P7Ow0FL6e)2HuP6X$cx&HasLF&5n! z{M5yTA0u>tyTzC^yu|CrD=qdf81KRKW}m2N0BQhcM#h}))CkXI`ubu& z!UPSz4{9<(k-${Z&ASHwD`Gdt3;Hoi2H76(J$d4Tlc@SbhUe_ zSzV8rqz*r|0SL1I`_Vlz`PP3_F1bb30|X0QedUS9*!~Th{#Rvh0*>Xn_KmAn36&<5 zDXCB-r3_^%iZYeVV?vU7mbpTTP{}-#d7eTtm1M}2c@`OxdCdI%?zQ&!?ft&r`#+BF zzmH=d*4q1d9=H3s?&~_w^Ed6`X1?$kRX%1&pe$@}{`G-a4Djz-u6N!5Gn=QR2_m@~ zls*LY7Uo!I6;9AuR8j?V@qQ4wVex!by-0k{wy|>`*}bED4;I9$R7SWzXWaYzh$tt( zK!>4GG^S5*g*o&X0NyN-H;Kt2@mIk|2JP|*9-cO>9~I^0ghGe_>p+mlcTE)V$TKb1 z8p&^&$mTP+NaL%V!)^rdo~X=;V}yX(aJ%4Q!wDYIXMm2k@K&PwMI}#Ezj(WAfQDV- zHLcfd7Y)u!Lx86Fg7lSWjKZq&pp5J4gS;^e_#vJp{LCHjtne>&TU4w*1fS>~YG8s7 zfdScLuqbgTY5dg2F&2V)#{#08!K|+M_vp(GV}?gOzl8D`f06|Ogc!l?`u*MZz9Nj^?!<@^ql0g_GGdt#NPQJI#?d3tR}ps{%bCdi$_9?= zYlP;GID+wf6RL~Q(5LElpdvhnzdA7t2G@#67bWT$f}*=5V4JCtK7toB`=Is50wPjQ zup1E0aNupZgEPdjVYON(frWPZptGXoMmd44hlA3m~7k40*{nY%%$0 z4G8%*I*E8ty@`@|m`aopJQrfalLQ7ek8p+z5FNlBBIG{kCvg%HdN2|o@Q`K@3K0l3 z8gPOTBMyv&ws6T1@nu*$gykQhngbbPlCPJq5hdE&_C|)=m{~u1^ax2mPYVkRJ66&7 z<5;wr3X!O<;{&8?uTGg4cpPUF4+2Pe0LmiFG|>v28QRIfk7pju zDr)Y`%-06bqCfmovEAux)%oc2{`y2425`~s*o|fN*fOkKn<-u$F__RJKkR(uz4Ok~ zhg0ca>=o_?<dn&icgd-_nau6tCQ+AI|-4wGukEP#uN&5oSq)pntx|rw?p_jsk>#$`}g{<$4W*v zTvK#RXLF?K6urw#7(NLlKc-!p`(!Ut$n#@G`HvIH+NE1z?=Cu%hmuzP>eH+}m220= zMI!noVXo=LaoN`0bo=&Al9}$c3iYR)|mR(Hd;HtxZ{Jtn1x}VvP{ZN7ZZ!fJ-?#rZDXf|3}mv$0XIu*84AwdS$q`++Oz+foJE z3x!*``dRbUWdr5gsIWgccouR6!O%toh5$@Z+Qvd@E`NB#xp=)Ja)>EElG4NrV|EH@91&7aLr zZ9TMd=JEE_AL9(uBWijwoH5P;JecAfzso-qq>#+S!9fY2^ShLuDs!1oU!tRGgxc0( z9{r=2Z#}WC{jp|}@%zMr*uzWm%ufE8k_JHcfgb;1YYH`pNd{hYMr$<)1(2V-*@7E#~X zbI+bF9@|uY99Xb7FJ^v_jY;8_9^5k?Kx!=+&L0FXr6v>`=!GX$6sIO9>oA7*^684# zBEb+KyNcUw_o8y#Pae0Dd`ix=-oDJV2)8fl_f~f;PzdI5?dsX-(t2gO=)sR7mctCA zb4-y>*6)5UF__#8{1SC4<3UvC^6Hv#hK=mz1)&9je5!l%Gomh0q7SSdkIJ7omfpW} zMEI@k$WrNt%(1!F1ChOh+w&4TsA+a@J(#;HZmpmAOi3k0V~7{@#AlQYbwInfz&l_I z&W{lYQ@~TF*jylpfVOiDWo1#7JVz`rd5bf+Atk@remN{nX^CQX>Ab<+c=Gm@HW6Rb zz>nG?x5pNERzH#iJ1a)7-`^S>dhwvW;=Hh!x9*&CPsY~_E-$dNuuI>AZNMPc7~a?M3>MPQeY z)Y%seH7Qz-3SZRy^n>EmO07GZ^yUkW=v#~Qtt{|u3OO6HzK?en@pU-#`B_`zQlRYY zjPebcn(s+u>^wXHs2>Pxj6qI#Y~UCMJYO*Agq8x17MkadAl-N$kq&|}&-o5r9Ko2B z{TLehg6^mSMIL&f)ANroi#{i9W10-dzQJ+B-tqjrP5{@+U2V*7Y3P_YmeMCsbo+Q?_|jqCys{K+DnHSOR}4nZedN65o25s>mwf9lDYCos zY~-0W@wYcW-7%aG8s)O4BO9xKnC_i1ch0nZTx7=|A(8C-`ivLLPXm*UPZqRhIdtED zTXdF6)vI;9J}E!%%~{!0!H`y#xWU&}ZU^J5$4y7wHUhkCdcGEZx{xEjK@uX;m(5e_ z^Qitf_s;CB=*1^FWAo?H#71LQLKv?Qv%>&%Zok(+BZYTPVW}W!0FZk=MU#O}>JvtW ze>;d`6Oo7&AEP1ypn$B!0h}ioUQp*#VCsfsNAjX5^>!*13>{D@vMGvS6m*HsENd|5f7W`y;1atT=8&Au}pTPCVUGA=D%@Q~O(`^@;X`R*6B z=}iq44&DRfBE8e}{bP!p=T&a&>k~4prBK0&F?sJ{eGo=(&JyZ7g4hD>*+uD;rJue$ zd^N2Q&*KKk=IYB6N=(dR$?2L9pGE5aR7x3X>yy8?JzU&i^m!V?5igQ;Ap`buqD@OBdLqHH`V$Rn`d9LlGwe=w(qCv)u;0bXlRb`(mN$p4i+yS! z)NK2gibGOeJedy{$hlQ099;{Yc0Sm=f~8)VI(230O^9p5*npFJ#NG4Oym=y|LSBz4 zoUe>*zV%W_9x7dTa_(+PpZc5`an-;_w=}PPS>g0bF@5iorjqEJe@F}OYRFGr3YhVp zz0NL{%uPPCuy8%OD=^_EPfD@2>GH#t|k zdb`qhk%?m|qfy2}kM4af^3}YVAarG7Dt7c<%iP$pQh#$Z28R~1){l>w2gwt?{VHic zPn&iW2{t1IZ7Ox(TIfBv>_P_mG1(PoX==FwBjyB#*VCUqH# z-EV57T|Tm8bL*3$y79{#8BuzTEhWzH1gB<#mW7TP(KpwBXg%t^xz(8?*WsmtR*S2y ziODUL&XC`6pT&d`g4Yl=w;nH4;}F>4bOdn^+6xA2jM@^a`0pB z@wij-XKtIuAgE@93KaLI3F>HqF(N1TR=zhzImwFT;+Q3SVt{1Z(7Vr_=cflX7g$dv z?0dOJPa}ALopqZSC0C+;&e*Z9q@Ep8$2ksLJ8rR{`P|n>Lf-7WU!&7K>Wk7YZl-RT z+#c2bySM1ij>ey-+z7Dye%flhnu{Z0s)~c|nbEV!Y)L1Q(@{qKZejWif{tmOCDVml zmipY@ovD^~D>;-XmF9~kvwgqVfKFR%kP6N#a@RuvaEA>Vl|#lMLhdxm|J-B z=i6024bOl`bBanS#q{pocAl;erEnT=+p(*kfK1`U0Rya8XuC4t9=f*P;&crFG7&~o zF@ZR|IxGmxIJpT#mW#^|KlU9xx+kG%o)W&$nCQcLa|cEbF~HnFpp9u*)w%EOIaM2# zV4Q0Gah}JaV_0yHO3jF5GIXLfzr&aj z)w%EER6xImxMJJ;#fGJlNUPg5&VA9}FQvy04JEkTsy9gMy^w9?y2rPL;fl?e=jcF8 z@2y`eGhRz2H&e-Y7Yu$?XzV|DonFm;fnwTh_a9q2wKWMNUioA`{#-hZOVN8i3FrvO z=_h&1mAqpK?KK|i-=co#jJ=9f4wb%0pPQydgiW2#-r`=9>e$aXjy0M0 zPQ2YU9qJjzbZP=|#c3;nou*$4H9tS$^MAM|lwp2E?NU;)@iJ$Q^GL6A4Xk0`Tz2~P z#H6KOS+I|0x-xsrkiso@7R|@dwicbZT=%afPdf!XEX6&YrKzs3tFC3=q5p35C*5s> z-P35ZZMsQfY?ZE9D%Japw#Q1C;R4%5ndfUVBGN`Ku|@ZO>u?3NOeQ)N__qLKO)oCK z`!purPQGB`>|g~JeQV;Fn&DUOgc5%S`rRB8vSM5r!;i~qHRQyU8t*5?JRhwcO)+8* zYHQ|*yRP1>GkoW2>JBGezva7+w^+4s?m{S>_?b??@61Ur_|ryG=g5Sf67E+$?@mvx;9r(NBgJ8vHnuJ zk<5#0Ny9BC7)JM5pfbO{Wq0WpN=xd!OCffC4HkRmH&@C6?{~y}ugx5^c2dZw7M1C5 zpwvI%CZwCV`8r83PMWoIdE0L;;{rdg-Sgp;dyeY2G&5wU&^LyiCZ}83H!PY^^8PA) ztHJzHt0V6Qdhh1iD3CsyESVpse9O_5AWP|Yoow?{MV_VtJJ*)5_7v&(I|bY4gGmo~ zBaN#6d9>e))NTC5N~x!B@5-=#+o=?Hk$#!%y_8~vO-O8=>AiIGAb-V#LC<&xd58Cdb-l!B%tILa|uP)mD=~_q?aW8y@Y9EKPc??`w9u zoY$}TF}4UbH#!fIM>O>89@^J&Po zIht5?rfQ_Qq<+&%Zt8Wwxoo~!AP(L{rX;-f3HcJnexptC^)8M516RM#2qd)Z7VhGI zw8TDp-7&Hk(sMPV`y+=Q4U!AXq+eFWCL+^*sdw(Sg6tGo?&bNu7JaRw%Y}ABT1GeH zo0Gf4vRf2PR7i78u-{1x&ke}j4C68W$}$$&=I(rZ#P|1-->=HaSVo=$-f8Y4HO)KN zmM^4rwO{o*l}nzg@@{D5wEo40haXfd(7{^Gwx{Ui9QD4N z^B)vn43961@az8=wepNVC=L(=C#&olPkg}>Gqtn7k*X6uWjhDRJWDoJMfQAx94a=>}ipNeLo zTJU3AtxEiUx$!#~NbSQcasZh7JrM5yR((YXMPQtL9xP%w2dJzx`FLirWE9)QzQ6ah zlkr21SSxkyPbXe`k*R`dDWUecy9=z57o7}8t@KBh*G~G|%?w}mQYeb}uJ`J)xa7l) zyUA+_oxBfwYQ_ST=H<8=|KgHM_Hr~xl8?}cTH3rG`be&5Ki~X`cN+Nx-50J&X)Tbx zHKu5O{zE^ariCNHZ0KDQ*@%-qXbTJC7WDxw18}2d5r#6zN|z0O@eNn+svl!l`xW%_0Yb4XtgP>=@+4>!hBi_Yzab2O$-)M zC{4qPIMeF4LNV0K5*4gR<@SAUq0Gxpw^BXZ>!bgA?|ES1M>JWm`{?5ER`mixRXtzIwPm5XPdI3ExBEHb?V# zG;?Ogd(9C!Et7gf8ZSFHB?0lG2=*v}dB4n0Y2hABK zM(ubvM{1w#j&$m18%q;>dScS~+VeNV!|4j_J)JY{nvdVknGRL>g`Dr8mz~UZ$?KgZ@vN!$rf=!X&&RIoZP0%4tWJ8YiFMvz5L6tyUwK1rwT&r4o?&T!d%x)Z-*Mhd ze?OxH70^;*rMYdCU&N?Ixu8I$N3}>cD4eZf z+|@tg8~SSwE$x;hS7OKwYq%Ow=4;CLN8UO8=$(+@;ZUTv;aCuTBT;A=y!L&tEITW> zT;E!L^`pS9i!`Pbw;ApkrP6!dmrEe~%w5)2)Zh8guw+s?vX3N3$mFTBVp0$575eu{ zGn!WORQ1)ZUIhuqpC$W{x^|FF0EFgWXqF{XhhUUV0?PSAG_!cPFVxYnmy6W4YOH^^ zyIq`LzCM$(tKR5otYhOzI_BfXb+uMo7Fv=sKde``3N)Bkjx%3GyTA`~EdUun2rAGI zgWT{1)0249eZtS(y^|SsEmMmO4IgRH+Bp@or%qtjCb!J}WcL0Ci&UKuNLJuo3CeTB z=dOb%r&AYtDaTm-8EGw*Fjmjc7aKvjhH9G!!U~rv;@&-Q+spi|SeRnZ9>k7NDW$dj zCL<@$x^Y{0=S=DMcFhdiEAGkmr9oj0gpmRPecpBM39VWHZaF|uDp2&l*E5Ap$2FNC z^&wu+2O)hX#)a?Sk4@Uz+O~Ig66BT{{Fgef$a*4p=r|Q#J^5+el^YYq{X0cqjhrup z^;PB~VJdx;5wJj@2Ny4}oClCVR(Q7%d?4^x^m6YzJSYC|A%EOzV8cYzHl~p@A(QpM z+Mo;qPJOE->At3>6kbJ1pRIZc{s%-p5*&zaiQNZWPXZ&w14u+tFzt&0&D-qOmocSv z;4=dgjuuHo{_VybL@A*2dG25Var&TNhoTSN_liD+up>ZHRTLZ_ub`8WI4+8-7zqC+t%v{h5-`?Sz}?_A4~&l9z>hNTO0~a(gl#qaI{hOrh2frWk-H_2BdUH%~s=KemI+2nP%V#Dp>yc&M2jee| z@=by#DhQ8Fvdt=A^hCO2bK-r^NTFXpkfuxWpw>e z)1IAOE$9K@=~0xPf8n$u!PX~8`&Hk*o%wE!g#vmf463xPueibgh!yO6XD~X3piZDe z+INE^!N3N>N@PU=v-^Q(Dh{qrYhaxa)=F?)9XxL=q`UEO4rLfr{ctt9kS zu*2h7b^H(Vo-eflyJ&UG>^n*JTh-08vj(-3u}X6Q+JH(w#E5Oi3MI$iN>it0CRo2{ zWP1OC1kc4qP)Sp0A7a0Z zyT+XokE+3(``gi#YWOU`g@;I>P}4nk1kn=Q1>}XaMH=*R;QqH5(J!o z<|D@4!ytOFfYyfm2?DT(vqyWrnf8-C?M$%`6AqKOpN)Hy+BB%gav*}7@!HL%Q#MH= zA6;OKL>P_%85U<{PL`08`T~1b@p?T`6w&KkG3;w!+g)4mbZiNns%EL(B?13&%SKIG} zGa4TQAp!#s2qy*R-_Ed2@Z7$1EO{)>^cdMf8nz}dT0nU-$dqm! zl4_w<)LX4nJ8{dTRKZ~J3utOPF9e1);Bl$|8-@U$C60%ipJ<@&rZ>7-TQ^uaBsZow zn`3>69 znuz3>x7W@LNrzpr2_4T-t8X?N6TjTD-jhQA2KpLR{Bd|@{jSjsy(voF?Iq0LVaxfV z$E=M|(p)2BofXLWB-&mg4{{~}q)k1p4vC8zJH=?uKwOi;>jNs9nvpl}fFpc#q&|YD zSXx}1wWx8N;n?zLjfoe9%)1|AYyFGrQdG~zeTU(1)Rvcf)bsXD-^e&@t+IP2u|q9C z{62&sd!xIvMyIJb^>192UQ`*ApC{4GljFmxc=38BQ2gpODh858ap41?2Fm_)jce2c z)AR%$EZ6{Fq}dIO2Ekx74AG|hp2+uZidTe#3sh7yd zM!jQ``a51c?D$jQS9dK21;e@1=EAtGsy8cS(rkGpPhnr>mxXnAz#w_D1X65N2aqKJkoB;>HOk zSsR~Jm~8|~>{mIR*gt$FFrC6jO9+7_Zu^N7Zy_YH+Y9Z)LvqnfsNs%l;wqZFInMeZCS@!p!3SdCb=&^JymDx_cJ zHtxOw?iB&vfL;%X=hMIze-`M*!GYWx?TS}|w+U>F5zjSb;DkLJ36#s;F)_P-S#n63 zoV-Y#palA54GJY#z=Qa51A2EN(jB|PV-+f8_KMxBb&}7Vzr-K9bdib&(6rMOu ziQOs70p5N1XJ0XlU_GfqVz~;@g+&xf8;6%w6D-c&z_9{HF-xwFkmkxOb$Wpqi0}<5YDTus$yhe`TFOwvoR0UbJ7ns z&dD#Yc0cT^@Du2mH`(eOUR*uL&KBah=H60NEgwi6!Z<_I6Yf8>7ADlv_55?YNU*F< zKuiE_Ll*S1L^`T9G5~&Rs~6c(K?#QJx+-%N383nzj0zIl6=C`bE0a=sAF#O|tSnAQ zfNTR}h=YWwoB9V!MrP(6sS2u^tN*Elc$uAT@w%^m0>u71qqE(XB&yaCA3oLp=FvRS zR2eiRJ;dtqughb(a3T9f7s`CXoD9CPB!tKUjxmuahX`64v5yWPtvmDZ;X{IL1$&^q zcklM`83UlZMHA8Xe*<)eLjNB^1754k^#1}Y;haaMl+JVNo6rUu^(DJcG`Yw58`doN zUrx%WeRBBM3ACK6yQF0;Jh!wo0)-afq%0r{s4FQGsBBec|=ekzpUA{BR4h@WLM}KV!#93zDV&muoeI&;i2FLIyyRND^6u}*VRoH3%;`H z?AxQaf1uXnYkJ0}1M6N~5NEmNAZ*DZFsvgEF zgf##Ogn)67E$GtM{9h$a94i0q@6+Xz54lq^41=LoA%+fta1bQjLwAgqH@{&HjQl5{ z9dF%MQ&%3$c{>wZnLip2*b+p6O-cmtLht(N(S78;+QKckc8?~w4}|?U_|EWAD+AgD zrXOLzMnX`&pf~13iHiC^Q8h2EY6Fc6Nd-Z1CM0iQn-TUQFuf)CxkSZ-2V3{6;vLZX zdM~uyKDgaW)c75!RqN;YqPFlOtaZEp?xXzqN?Qmz?*G7mKZvd>G&5aQ1`=<0kCcOp zPbB$(3XHRL2012FDye$x3v9NUCI+8d=GCO{)<$BVFmQ)VmNG|+DTfFbgjA@V_ddvo zyx_2Q((_&FtATU~QZvb@-*^(8+8hsaXc*3RR#m+KC60>C`}rd^JE+&n; zwTgcJ^7G7D<_F4rbd0W#BB=~k0#!pgM!Mi9L?2S?`Kf@n{SMEK2|4x_ZqdY77%f$$j_mj^Pwkbi z$<6!-5vtErgrx%5e&~fEuHUMOEq{CK!;3Tsn_3rJc=aORjA5cOR_;!=RX$(!+XHB> z&t@mn?cVX3p5e_m50=u;ud93OjvQ>aS^V(#i9-6OgG}n}%bnD1D9bZKRl)h`L zdZZjDeN%mtRFTu9hz|rm^;dVn9DN(%DF8x?^2r2undd$ioQ(I3&XbeYv8ew2_4MO| zkprapz-FY?2FB^A@4pItcRXb-oQzx@0KxV2Z45BZ0QcGRuZ4`i`-Lxx zKV4f zO*|fi3Xudt|NDr@8(px&F*32AV*cLk&-J@0S@`Z`S+3ci_Ip+q-ns`$j-y9Vd!gqf zh$vu}zlLTi`V@I&@9GN=4=sEEI_&_ZNXl)rw7aE5irQ&HD*siP-P@7e{ z;b#|ytrKs=;NWXbP4c?|`%!$)#jhLEE<}6f#^A&!b??x=v=xHjM$B|2z8=3#%DSW7 zewb#5%Tq6}it2sXT3oI^D`wRm`>SA3C!UE(;_FQLMFV$GLMeCM)Vu#Oto2z1qdryI z%ikD|TxTIm-KB4*edJ8gwCqks59$3X)RqRMzt>vd5rd>O$&)$gpkV9o0b(#ZbRsP3 zdZ)>M)In-82eD0FgRB5n7$6~=L$9>|`9~f8I~@o3QlFLQ(AB8}6hj3!b0x!0SoL2T zTznJb$X|jl0ij>i(i%`-;)8E8VdVu=nC-2O=ocN(c%DJ*IXct9fdOGTIk~8q(6`sU ztyR#X{H3`@N!nrhC+j8Map>eV7hJjjO#>sWMWOQLMTSO;;@uuI2K2l*8iFocv4X14 z{2OMMFeUgnSH}ktw+$ngU~8>p6ew(;YtkI&#<- zNF!12-uyD=u6r5^2*SG=Uo=esj1>1$Q{R-7{6@b7of3_clM{hAU^X3?;_2ymLQpUq zmCzt36o`=Oib_iE0)1WQ$>7lc9=Qm;NR*BjiEj#8FP>dGU01xk!oBO{@p4~=jSrlu-y1UG#1gS{Cv^wDu;a1n+2)8e9xOg|&l!8w|etlheir@~1j=^X^=J4SyL0>duVjnWb&6@E%wNldgA?}vlL z*ao%Ihvr*$#ijeicD&T9;1DV;&i)=CwR6Ta!_JS$9iWE2ALQPQAjU)B?)&<689|FY za#3$DRP8#@0bxvfC(l^jcU?e0V2h-`4^Upne`R49kR+G*3CbCX+qZ8&+0Y-l{^%87 zlYQG@?b+PrU!_dN%X4SM&cTaxYv$r*QYOKW6tK7LF`l5w5Ek3 zNij|B9=IyyU%wK@hiI_$44chhqho0Jt?(5wb|k7Pcxl1Gt_iwKya2KT?VBInI6t?P z`NxOI4<|m?+@o>hN0(6jY*U#;xrX#mYKwbNCZoTT7u(FY7{A2f5#0$>)EUtiJ(|U+ zkdfhmQwM%IUyKiC-TS-)nW*{;m*;o3fnv@$&&!+7o4s&;&? zolW`i(-K1}8aMv+^epgoKpr2hV|%%4&f)jDa06vGA!&{Kzak#I@RrhSOFU^ECjP0f z=Slo=);YOr_t$!AmZ(zpMmzYrF22ghY;1@V-QL-pQ0n$O$f0C}u4XZmg^|m>L-p45 zmvojFNe4#Z6*=|_>x8-r=Yi$n`s{H5i?9WEj_i%; z`$@|Mv$)iGBe{J%Vu_slg!zx)J>_(Ux%2u;uQhhFng6`Q+BYs(6I{Y!&UrqpN@%^t zo!003$ZHRNDj8}a9#YF4+ttIL@Vh+e=6Bzk3c1bWBsc($x^WX;!She}G0boGqSiarL$H7u@!4 zJsI_a4>p?@)5k>Sk_2Hu@ml{=jv>9O_sNXOekSYCeDU!iIW3O(*~SX(i@O%z;krJw zP@F6kQBfsl{Ki5i)$JQQXlk(Yd)iRa#v5!I7d2Y-Q&cS^}{!u~uoX)lT;V%;;wN$uE=)52Flu4{vEnfbo zET)llS_wEL?>O3c?0LfFExa}H@;l8A&r&g_)YaF%E@Ky_?mqt3vr0Kd$nr%5rTTD# z+d*7(wf6x%(c(vO1}OW9DeTZ8}{pS#~vP1)rZ$lmy3wQaZ{Gn?(+F) zDS6SH#Ok1A>NSVa{lE8U3@ZuKba|_9H+)`fIpDq8rB~WhwWpr;X5D&4Nq8O4frvcM zZN+Jee?DC9|2_6N&r@LWJ!Qr8UE$|^zOKyGDYx$)uHaV)JMSYu@<^B_WV7H~ue0|L z`r9vZ3(Im#EcK7CKKUuRkPAng@oBT%uWetp+~u)%P;1s1(Ux>r z{L}rXO+Ia_+bLgsO{BuRoq3WT@$C;iD$$l^ML|E$r5ew|B_THJbu!?M?TL<_M`6LS zgLb-S+c?b&g2N^5*zLJVT`;=a3$1c6d2@08Y@Hu|OJb<3roz={=-nG_+17lUNKn5$ByHvClSoxADr+AQM3 zKV9Pz;?eN792}|~3%zked;Ld^A+JLaUVM!~>g0;v@x^3AJ@uXd`69E$S|^T+R$o3mhQ{(61K%R{<&W?l1R#x{&!&e>?I>Fm}v zS9KocWZ7?W(^!R;b(J@{hurvNreWBR;=1JA#=QfBl2$^BNvj3a2h_2Ac{?P81Z5yO z7k+-cfUAK17OsnNp?cz))@7ChO%y$1FzdVto0qz}2J{|iFUs+GMDL9VuB|G!ls@^+Vpbf#`}?KWffWmq^dsr_%{EjH zl^m72*uhcSL$sp#mpTU~b=*T@CcNCks!Arkt@Hb4J3BPknzr~IxPLr~fMg*xh2tB6 zq7wPEfSufo3(>a`5f^aEdx1cDz)6IkHZe`BFd{r>F*cE0^h7U)2`1BupzEU}LyDv- z9tiSn`26AuB@5PyX4cu$0$(3p58UK^9VjZSzXy~5@_5}4N5NFD9g3u?-C>4i7Pnbk z7Hn+F>wBJ%*odw5(9hV|l-5hBGm8ZHssCFzLv$^O;3KrK5YF(zQP9b0ySvcR;^HtA z*2E|a^&yeD2v6?Y@b>~3%xT<)(IZTKbQ~u7k69>?%|yuKV*cf|ylcdH-6wfKll}n#y>fHN4peahJJe%+P=%;+0AA@dn1Fz?_=mY{cKnGf52OX2+u$qp`Mzqwl*>5 z!>D|z8_6z&FF4Bd3V1>5Wf}j^Di-*OTmoQygaB)|>c`85rDa4tojmItF)+?HDG7x3 z=ptus)8jnfLniU|iYHh-gw6fE%bV%;H<>>#nK98)d2gnSuUPTBMWyV;HAg|WlKS{k zX)9-w!+c|k^O0AXC~5w(Z-|U0o%}9Sbi-q1IY(c(@c)9B=e<`Eeoc5q!P5s`Aw*^c zuAHU~@t8sIB0_!`6~=U5R85MmL#cw0>Z{4@f6BuCTibPbbsg?GvF-l{X`d?~k$=pp zQu@1M+qqMwT(os@2F+r@&pd-n*+srC4k~syttHJIaq=c-G$v-2}8!N^~&ML-+9*771uh2$vUh#1&(e zED;Xh^NoN40=H2G;#;^FSo_3QtJx;nZ z2ju-r5?O6q+hMq}2n#>0nuP?auy->nGn0rZCLx&eVE6!kmg(P6DTdA){x6rnzlb8M zg&3?s^aSAarGZa?$+aji(1i?_E+5O(5?4m1^{W(ZDwc2au6`KCo3Zeob?J%jtxNe_d z+8%y|nuxFZiFscmth|HqjffKvuz<{ZQ&}H|vYgTi)Au(a+iE8&yXY4VSTlF)4 zEce`%{4xFI;6_2H#rghE*DKytPb*52UWk-(Jjg4LKD<|tx7H^7@1 zz&Iry-vV>$G1Ss$5C-ciZ_1SNl+BS=KC9h~-Y~a0`RCOl@uL;@3v73Iv%CvpE~t6< zPIn~px7_|h=^jb*v_0?T7OmrO?3DG^{nhs;?@hpkvR-N4E>!`qBgz7AAc{8~s-_}F zPk{6Rt?OW8uXuJGXx!(D;bHafU?BiqAtJJ20v=6x9$~bP89NCH0vw}6+?9|d2QmVZ zdK!Ta5_#aiJV7&fT$Ji%rmzrie5U4>`DXWkL{_g`KjZ*r5BqZ+i8-VoFJyBqbX+qDfn&Ff(30IuhSwbI?7JzUDSPwNx9r7#_e>fS8~ zQ;VYd1bk84Z_-)tIDAx=uLO|%`?Vjs{FDVB9>ib}L070z{{Eq`6@V0x+Vbs{5%ijW ze!sT27WPe2J5$1ugwN>JKN7{-oKeVXKK3MF^d?}=L z1gZ^a3{bK#%mcu!@?G$VCR~mF3rkFirJc0AsM-=3@^-;O;1utrGbqV!>K%FycL9P? z0}5V8iL(&gbdQ1l1rrwo_r=mASXd*jmm7{YgOmpD^QD-hz`$(Bw=llEh6RLC?jzW6 z#K8_jS6~IiWEGp-X|a|5e8r%x$U*P;nY{|1>;NrSO2+F-a@Vf8a@x)74H^__q~k$2 z4P|JCmKC`-T3g~b(&}pw4a4(7MgCS6;@`PO}!@Fwa zWDee+?k^JuY@V{e{-mst=D}dLIV%)0TacRq(KRvY1tY2!#YH7h7f~F`$meR^liK~J zaq)UkE3%je=dhDCA@@^QSeO8Xj&K_WQk^(3FiAL|4bGvqlqqp?Oj1a##s&Urh;pGi z!B+BQCtEJ4R5s8J+a*hcVfx$H84kX zVXFZ%l08C|;=@1Z#cT)r)jLCa_XvYad=-Re36hdv7$zkux&w%6uC*TJJ2-7Nz@Za= z7h$K1D-wmZezWW?WxgCzaXY&YReo1tB?#cOw5uxw`J)#=j)2>|G;ErXa!3wGk+U%N z2G_dF?rMM;oc`bvO}M&%i?MU(PQn!RBly7tl@cMTY@+IQ%7sDqZ7;$oJ=T1v+5^^@ zNOp=M+_qZx{CdKrSxUlm?%eIaQ}Yy360kd8!3q5?_p@EUVb^=9E#&;LGeL@Qr{yMG z|K$<9L#(@4{591W8K=-%QrqNl)_(gYhj_zx2${N?nVl_*Kkn_1&+cp(bGPm(RP+6% z{kKK$|67vGfBFs+1f72zitlNm7y{V?3qO_KW3MiZ_y6lwagAF0+z~)VJ3xOe1BeP( zgUFBR*R>)n@)A)|VcQ^72!N`Dn7=9&m@@%KhXu?NuuBC^>)0zuNVeJDymnP?`R4)O z1=O~LHUmRp`1fDI$oNm+=Ej4pT2z#J;Msw1LHL40knA^3dw9S}+1^rz(KQiMTsFM+ z4(6!|&@+oG=jgp2=?`i!{bUa_K0ipl*&y(}gS7E9*JsaIfnmTfx*A62vF+{c zgpf%VCA&y;)KB$sQaUJ~azWNEQfk8o{R& z2k*iU?@@~3bv?z2uJbJ;5qSaM<1B-=v%W(>xMT_MFYTn!YfNLL(! z8=L}iQ1r4k2{UU1e86}66qp6FB%tlGyH&h$_QtQK2}nf*!4|mKo$>s5i&6Zk+$D0E zXW&G>!2yJ~6CuqrGX$IiqQancUfs!wi3urOCSibd3~7OYH-hQ%@R6VmZ3Qlb#0^yL zurOLo%WO`++xLgx*?$PGhO16K!fy`-WvV>qJSiYR{}^GuvMBU@tpFA<-%QO1@a>TU z+s3e&0@0W)&8zmpZ{=}@T%+C(hk1}`P>IA4C6Ev9-JrGe#&Z13GCt!HVn#qY-w_En zT#(tDe&!R7L?~5&?-RaBWt#nP$6^cPVY+r2&PI&YdtuB-go`6g>1ml}BuaBQH)dFj zNW=aGNXHgUILRZtpnqzrzRRS<3pfapr*`xM_liaQ4w2JNFbm+E3+Ge{FltG!;1nY~ zehNmy2eBOEae{=xsRxJ5%F>icYTnuM_3T9{en!{RE@hD*bgCvQXUAzhco0uKVSqF5 z00`yLcJTsEcN(i$1`J?7Y&C=_8"]},"metadata":{},"output_type":"display_data"}],"source":["plot_history(history)"]},{"cell_type":"code","execution_count":17,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["112/112 [==============================] - 2s 21ms/step - loss: 0.5065 - accuracy: 0.7841\n","\n","Accuracy: 78.41261029243469 %\n"]}],"source":["_, acc = model.evaluate(validation_ds)\n","print(\"Accuracy: \", (acc*100.0), \" %\")"]},{"cell_type":"markdown","metadata":{},"source":["#### Approach 2: VGG16"]},{"cell_type":"code","execution_count":18,"metadata":{},"outputs":[],"source":["# Load the pre-trained VGG16 model\n","\n","base_model = VGG16(weights='imagenet', include_top=False, input_shape=(180, 180, 3))\n","base_model.trainable = False\n","last_output = base_model.output\n","x = tf.keras.layers.Flatten()(last_output) \n","x = tf.keras.layers.Dense(1024, activation='relu')(x) \n","x = tf.keras.layers.Dropout(0.6)(x) \n","predictions = Dense(1, activation='sigmoid')(x) "]},{"cell_type":"code","execution_count":19,"metadata":{},"outputs":[],"source":["# Create the final model\n","vgg16_model = Model(inputs=base_model.input, outputs=predictions)"]},{"cell_type":"code","execution_count":20,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Model: \"model\"\n","\n","_________________________________________________________________\n","\n"," Layer (type) Output Shape Param # \n","\n","=================================================================\n","\n"," input_1 (InputLayer) [(None, 180, 180, 3)] 0 \n","\n"," \n","\n"," block1_conv1 (Conv2D) (None, 180, 180, 64) 1792 \n","\n"," \n","\n"," block1_conv2 (Conv2D) (None, 180, 180, 64) 36928 \n","\n"," \n","\n"," block1_pool (MaxPooling2D) (None, 90, 90, 64) 0 \n","\n"," \n","\n"," block2_conv1 (Conv2D) (None, 90, 90, 128) 73856 \n","\n"," \n","\n"," block2_conv2 (Conv2D) (None, 90, 90, 128) 147584 \n","\n"," \n","\n"," block2_pool (MaxPooling2D) (None, 45, 45, 128) 0 \n","\n"," \n","\n"," block3_conv1 (Conv2D) (None, 45, 45, 256) 295168 \n","\n"," \n","\n"," block3_conv2 (Conv2D) (None, 45, 45, 256) 590080 \n","\n"," \n","\n"," block3_conv3 (Conv2D) (None, 45, 45, 256) 590080 \n","\n"," \n","\n"," block3_pool (MaxPooling2D) (None, 22, 22, 256) 0 \n","\n"," \n","\n"," block4_conv1 (Conv2D) (None, 22, 22, 512) 1180160 \n","\n"," \n","\n"," block4_conv2 (Conv2D) (None, 22, 22, 512) 2359808 \n","\n"," \n","\n"," block4_conv3 (Conv2D) (None, 22, 22, 512) 2359808 \n","\n"," \n","\n"," block4_pool (MaxPooling2D) (None, 11, 11, 512) 0 \n","\n"," \n","\n"," block5_conv1 (Conv2D) (None, 11, 11, 512) 2359808 \n","\n"," \n","\n"," block5_conv2 (Conv2D) (None, 11, 11, 512) 2359808 \n","\n"," \n","\n"," block5_conv3 (Conv2D) (None, 11, 11, 512) 2359808 \n","\n"," \n","\n"," block5_pool (MaxPooling2D) (None, 5, 5, 512) 0 \n","\n"," \n","\n"," flatten_1 (Flatten) (None, 12800) 0 \n","\n"," \n","\n"," dense_2 (Dense) (None, 1024) 13108224 \n","\n"," \n","\n"," dropout_1 (Dropout) (None, 1024) 0 \n","\n"," \n","\n"," dense_3 (Dense) (None, 1) 1025 \n","\n"," \n","\n","=================================================================\n","\n","Total params: 27823937 (106.14 MB)\n","\n","Trainable params: 13109249 (50.01 MB)\n","\n","Non-trainable params: 14714688 (56.13 MB)\n","\n","_________________________________________________________________\n"]}],"source":["vgg16_model.summary()"]},{"cell_type":"code","execution_count":22,"metadata":{},"outputs":[],"source":["vgg16_model.compile(optimizer = opt,\n"," loss = 'binary_crossentropy',\n"," metrics=['accuracy'])"]},{"cell_type":"code","execution_count":23,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Epoch 1/20\n"]},{"name":"stderr","output_type":"stream","text":["2023-06-28 00:19:16.674956: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] PluggableGraphOptimizer failed: INVALID_ARGUMENT: Unparseable tensorflow.GraphDef proto\n","\n","2023-06-28 00:19:16.687992: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] PluggableGraphOptimizer failed: INVALID_ARGUMENT: Unparseable tensorflow.GraphDef proto\n"]},{"name":"stdout","output_type":"stream","text":["223/223 [==============================] - ETA: 0s - loss: 0.4952 - accuracy: 0.8113"]},{"name":"stderr","output_type":"stream","text":["2023-06-28 00:20:27.793970: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] PluggableGraphOptimizer failed: INVALID_ARGUMENT: Unparseable tensorflow.GraphDef proto\n","\n","2023-06-28 00:20:27.802193: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] PluggableGraphOptimizer failed: INVALID_ARGUMENT: Unparseable tensorflow.GraphDef proto\n"]},{"name":"stdout","output_type":"stream","text":["223/223 [==============================] - 117s 523ms/step - loss: 0.4952 - accuracy: 0.8113 - val_loss: 0.6141 - val_accuracy: 0.7670\n","\n","Epoch 2/20\n","\n","223/223 [==============================] - 107s 478ms/step - loss: 0.4023 - accuracy: 0.8346 - val_loss: 0.5370 - val_accuracy: 0.7599\n","\n","Epoch 3/20\n","\n","223/223 [==============================] - 112s 503ms/step - loss: 0.3932 - accuracy: 0.8398 - val_loss: 0.5530 - val_accuracy: 0.7656\n","\n","Epoch 4/20\n","\n","223/223 [==============================] - 117s 523ms/step - loss: 0.3839 - accuracy: 0.8409 - val_loss: 0.5643 - val_accuracy: 0.7658\n","\n","Epoch 5/20\n","\n","223/223 [==============================] - 124s 555ms/step - loss: 0.3844 - accuracy: 0.8412 - val_loss: 0.5333 - val_accuracy: 0.7650\n","\n","Epoch 6/20\n","\n","223/223 [==============================] - 122s 549ms/step - loss: 0.3767 - accuracy: 0.8417 - val_loss: 0.5463 - val_accuracy: 0.7661\n","\n","Epoch 7/20\n","\n","223/223 [==============================] - 105s 471ms/step - loss: 0.3752 - accuracy: 0.8426 - val_loss: 0.5616 - val_accuracy: 0.7675\n","\n","Epoch 8/20\n","\n","223/223 [==============================] - 106s 475ms/step - loss: 0.3733 - accuracy: 0.8471 - val_loss: 0.5295 - val_accuracy: 0.7627\n","\n","Epoch 9/20\n","\n","223/223 [==============================] - 106s 475ms/step - loss: 0.3656 - accuracy: 0.8481 - val_loss: 0.5271 - val_accuracy: 0.7574\n","\n","Epoch 10/20\n","\n","223/223 [==============================] - 106s 475ms/step - loss: 0.3665 - accuracy: 0.8472 - val_loss: 0.5341 - val_accuracy: 0.7678\n","\n","Epoch 11/20\n","\n","223/223 [==============================] - 106s 477ms/step - loss: 0.3648 - accuracy: 0.8507 - val_loss: 0.5481 - val_accuracy: 0.7658\n","\n","Epoch 12/20\n","\n","223/223 [==============================] - 106s 475ms/step - loss: 0.3573 - accuracy: 0.8510 - val_loss: 0.5319 - val_accuracy: 0.7661\n","\n","Epoch 13/20\n","\n","223/223 [==============================] - 106s 475ms/step - loss: 0.3583 - accuracy: 0.8510 - val_loss: 0.5283 - val_accuracy: 0.7658\n","\n","Epoch 14/20\n","\n","223/223 [==============================] - 107s 480ms/step - loss: 0.3547 - accuracy: 0.8505 - val_loss: 0.5364 - val_accuracy: 0.7664\n","\n","Epoch 15/20\n","\n","223/223 [==============================] - 107s 478ms/step - loss: 0.3534 - accuracy: 0.8521 - val_loss: 0.5450 - val_accuracy: 0.7715\n","\n","Epoch 16/20\n","\n","223/223 [==============================] - 107s 479ms/step - loss: 0.3511 - accuracy: 0.8544 - val_loss: 0.5242 - val_accuracy: 0.7684\n","\n","Epoch 17/20\n","\n","223/223 [==============================] - 112s 504ms/step - loss: 0.3463 - accuracy: 0.8542 - val_loss: 0.5337 - val_accuracy: 0.7692\n","\n","Epoch 18/20\n","\n","223/223 [==============================] - 106s 478ms/step - loss: 0.3475 - accuracy: 0.8545 - val_loss: 0.5607 - val_accuracy: 0.7765\n","\n","Epoch 19/20\n","\n","223/223 [==============================] - 106s 478ms/step - loss: 0.3431 - accuracy: 0.8564 - val_loss: 0.5283 - val_accuracy: 0.7678\n","\n","Epoch 20/20\n","\n","223/223 [==============================] - 107s 480ms/step - loss: 0.3402 - accuracy: 0.8578 - val_loss: 0.5356 - val_accuracy: 0.7698\n"]}],"source":["# Train the model\n","history = vgg16_model.fit(train_ds,\n"," epochs=20,\n"," validation_data=validation_ds,\n"," verbose=1)"]},{"cell_type":"code","execution_count":24,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAbQAAALgCAYAAAD8w4I6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhM1//A8fdMlkkiG0kkEnvsxFJEUVtrJ/YtttiraqtqFSVoi5aq0kXbr6VFUDs/a6ildqWo2tfYCSL7NnN/f4yZGjORRIZEfF7PM08yZ84999yTyXzm3HvuOSpFURSEEEKIV5w6uysghBBCWIMENCGEELmCBDQhhBC5ggQ0IYQQuYIENCGEELmCBDQhhBC5ggQ0IYQQuYIENCGEELmCBDQhhBC5ggQ0IYQQuYIENCGEELmCBDQhhBC5ggQ0IYQQuYIENCGEELmCBDQhhBC5ggQ0IYQQuYIENCGEELmCBDQhhBC5ggQ0IYQQuYIENCGEELmCBDQhhBC5ggQ0IYQQuYIENCGEELmCBDQhhBC5ggQ0IYQQuYIENCGEELmCBDQhhBC5ggQ0IYQQuYIENCGEELmCBDQhhBC5ggQ0kaZevXpRtGjR59p2woQJqFQq61Yoh7ly5QoqlYoFCxa89H2rVComTJhgfL5gwQJUKhVXrlxJd9uiRYvSq1cvq9YnK+8VIaxFAtorSKVSZeixc+fO7K7qa2/o0KGoVCouXLiQZp6xY8eiUqk4ceLES6xZ5t28eZMJEyZw7Nix7K6KRadPn0alUuHg4EBUVFR2V0dkAwlor6CFCxeaPBo1amQxvWzZslnazy+//MLZs2efa9tPP/2UhISELO0/N+jWrRsAYWFhaeZZsmQJAQEBVKxY8bn306NHDxISEihSpMhzl5GemzdvMnHiRIsBLSvvFWtZtGgRPj4+AKxYsSJb6yKyh212V0BkXvfu3U2eHzhwgPDwcLP0p8XHx+Pk5JTh/djZ2T1X/QBsbW2xtZW3V40aNShRogRLlixh/PjxZq/v37+fy5cvM3Xq1Cztx8bGBhsbmyyVkRVZea9Yg6IohIWF0bVrVy5fvszixYvp169fttYpLXFxceTJkye7q5ErSQ8tl6pfvz4VKlTgyJEj1K1bFycnJ8aMGQPA2rVradGiBb6+vmg0Gvz9/fnss8/QarUmZTx9XcRwzWj69On8/PPP+Pv7o9FoqF69OocPHzbZ1tI1NJVKxeDBg1mzZg0VKlRAo9FQvnx5Nm/ebFb/nTt3Uq1aNRwcHPD39+enn37K8HW5P//8k44dO1K4cGE0Gg2FChXigw8+MOsx9urVC2dnZ27cuEGbNm1wdnbGy8uLkSNHmrVFVFQUvXr1ws3NDXd3d0JCQjJ8Wqtbt26cOXOGo0ePmr0WFhaGSqUiODiY5ORkxo8fT9WqVXFzcyNPnjzUqVOHHTt2pLsPS9fQFEXh888/p2DBgjg5OdGgQQP+/fdfs20fPHjAyJEjCQgIwNnZGVdXV5o1a8bx48eNeXbu3En16tUB6N27t/G0tuH6oaVraHFxcXz44YcUKlQIjUZD6dKlmT59OoqimOTLzPsiLXv37uXKlSt06dKFLl26sHv3bq5fv26WT6fT8e233xIQEICDgwNeXl40bdqUv/76yyTfokWLCAwMxMnJibx581K3bl22bt1qUucnr2EaPH190vB32bVrF4MGDSJ//vwULFgQgKtXrzJo0CBKly6No6MjHh4edOzY0eJ10KioKD744AOKFi2KRqOhYMGC9OzZk8jISGJjY8mTJw/Dhg0z2+769evY2NgwZcqUDLbkq02+Qudi9+/fp1mzZnTp0oXu3bvj7e0N6P/JnJ2dGTFiBM7Ozvzxxx+MHz+e6Ohopk2blm65YWFhxMTE8O6776JSqfjqq69o164dly5dSveb+p49e1i1ahWDBg3CxcWFWbNm0b59eyIiIvDw8ADg77//pmnTphQoUICJEyei1WqZNGkSXl5eGTru5cuXEx8fz3vvvYeHhweHDh1i9uzZXL9+neXLl5vk1Wq1NGnShBo1ajB9+nS2bdvG119/jb+/P++99x6gDwytW7dmz549DBw4kLJly7J69WpCQkIyVJ9u3boxceJEwsLCeOONN0z2/fvvv1OnTh0KFy5MZGQk//vf/wgODqZ///7ExMQwd+5cmjRpwqFDh6hcuXKG9mcwfvx4Pv/8c5o3b07z5s05evQojRs3Jjk52STfpUuXWLNmDR07dqRYsWLcuXOHn376iXr16nHq1Cl8fX0pW7YskyZNYvz48QwYMIA6deoAUKtWLYv7VhSFVq1asWPHDvr27UvlypXZsmULH330ETdu3OCbb74xyZ+R98WzLF68GH9/f6pXr06FChVwcnJiyZIlfPTRRyb5+vbty4IFC2jWrBn9+vUjNTWVP//8kwMHDlCtWjUAJk6cyIQJE6hVqxaTJk3C3t6egwcP8scff9C4ceMMt/+TBg0ahJeXF+PHjycuLg6Aw4cPs2/fPrp06ULBggW5cuUKP/74I/Xr1+fUqVPGsymxsbHUqVOH06dP06dPH9544w0iIyNZt24d169fp3LlyrRt25Zly5YxY8YMk576kiVLUBTFeOo711PEK+/9999Xnv5T1qtXTwGUOXPmmOWPj483S3v33XcVJycnJTEx0ZgWEhKiFClSxPj88uXLCqB4eHgoDx48MKavXbtWAZT169cb00JDQ83qBCj29vbKhQsXjGnHjx9XAGX27NnGtKCgIMXJyUm5ceOGMe38+fOKra2tWZmWWDq+KVOmKCqVSrl69arJ8QHKpEmTTPJWqVJFqVq1qvH5mjVrFED56quvjGmpqalKnTp1FECZP39+unWqXr26UrBgQUWr1RrTNm/erADKTz/9ZCwzKSnJZLuHDx8q3t7eSp8+fUzSASU0NNT4fP78+QqgXL58WVEURbl7965ib2+vtGjRQtHpdMZ8Y8aMUQAlJCTEmJaYmGhSL0XR/601Go1J2xw+fDjN4336vWJos88//9wkX4cOHRSVSmXyHsjo+yItycnJioeHhzJ27FhjWteuXZVKlSqZ5Pvjjz8UQBk6dKhZGYY2On/+vKJWq5W2bduatcmT7fh0+xsUKVLEpG0Nf5e33npLSU1NNclr6X26f/9+BVB+++03Y9r48eMVQFm1alWa9d6yZYsCKJs2bTJ5vWLFikq9evXMtsut5JRjLqbRaOjdu7dZuqOjo/H3mJgYIiMjqVOnDvHx8Zw5cybdcjt37kzevHmNzw3f1i9dupTutg0bNsTf39/4vGLFiri6uhq31Wq1bNu2jTZt2uDr62vMV6JECZo1a5Zu+WB6fHFxcURGRlKrVi0UReHvv/82yz9w4ECT53Xq1DE5lo0bN2Jra2vssYH+mtWQIUMyVB/QX/e8fv06u3fvNqaFhYVhb29Px44djWXa29sD+lNjDx48IDU1lWrVqlk8Xfks27ZtIzk5mSFDhpicph0+fLhZXo1Gg1qt/yjQarXcv38fZ2dnSpcunen9GmzcuBEbGxuGDh1qkv7hhx+iKAqbNm0ySU/vffEsmzZt4v79+wQHBxvTgoODOX78uMkp1pUrV6JSqQgNDTUrw9BGa9asQafTMX78eGObPJ3nefTv39/sGueT79OUlBTu379PiRIlcHd3N2n3lStXUqlSJdq2bZtmvRs2bIivry+LFy82vnby5ElOnDiR7rX13EQCWi7m5+dn/IB80r///kvbtm1xc3PD1dUVLy8v45v+0aNH6ZZbuHBhk+eG4Pbw4cNMb2vY3rDt3bt3SUhIoESJEmb5LKVZEhERQa9evciXL5/xuli9evUA8+MzXEdJqz6gv9ZRoEABnJ2dTfKVLl06Q/UB6NKlCzY2NsbRjomJiaxevZpmzZqZfDn49ddfqVixIg4ODnh4eODl5cWGDRsy9Hd50tWrVwEoWbKkSbqXl5fJ/kAfPL/55htKliyJRqPB09MTLy8vTpw4ken9Prl/X19fXFxcTNINI28N9TNI733xLIsWLaJYsWJoNBouXLjAhQsX8Pf3x8nJyeQD/uLFi/j6+pIvX740y7p48SJqtZpy5cqlu9/MKFasmFlaQkIC48ePN15jNLR7VFSUSbtfvHiRChUqPLN8tVpNt27dWLNmDfHx8YD+NKyDg4PxC9PrQAJaLvbkN0CDqKgo6tWrx/Hjx5k0aRLr168nPDycL7/8EtB/uKUnrdF0ylMX+629bUZotVoaNWrEhg0bGDVqFGvWrCE8PNw4eOHp43tZIwPz589Po0aNWLlyJSkpKaxfv56YmBiTaxuLFi2iV69e+Pv7M3fuXDZv3kx4eDhvv/12hv4uz2vy5MmMGDGCunXrsmjRIrZs2UJ4eDjly5d/oft90vO+L6Kjo1m/fj2XL1+mZMmSxke5cuWIj48nLCzMau+tjHh6MJGBpf/FIUOG8MUXX9CpUyd+//13tm7dSnh4OB4eHs/V7j179iQ2NpY1a9YYR322bNkSNze3TJf1qpJBIa+ZnTt3cv/+fVatWkXdunWN6ZcvX87GWv0nf/78ODg4WLwR+Vk3Jxv8888/nDt3jl9//ZWePXsa08PDw5+7TkWKFGH79u3Exsaa9NIye99Vt27d2Lx5M5s2bSIsLAxXV1eCgoKMr69YsYLixYuzatUqk9Nblk6RZaTOAOfPn6d48eLG9Hv37pn1elasWEGDBg2YO3euSXpUVBSenp7G55k55VakSBG2bdtGTEyMSS/NcErbWvfLrVq1isTERH788UeTuoL+7/Ppp5+yd+9e3nrrLfz9/dmyZQsPHjxIs5fm7++PTqfj1KlTzxyEkzdvXrNRrsnJydy6dSvDdV+xYgUhISF8/fXXxrTExESzcv39/Tl58mS65VWoUIEqVaqwePFiChYsSEREBLNnz85wfXID6aG9ZgzfhJ/81pqcnMwPP/yQXVUyYWNjQ8OGDVmzZg03b940pl+4cMHsukta24Pp8SmKwrfffvvcdWrevDmpqan8+OOPxjStVpvpD4s2bdrg5OTEDz/8wKZNm2jXrh0ODg7PrPvBgwfZv39/puvcsGFD7OzsmD17tkl5M2fONMtrY2Nj1otZvnw5N27cMEkz3DuVkdsVmjdvjlar5bvvvjNJ/+abb1CpVBm+HpqeRYsWUbx4cQYOHEiHDh1MHiNHjsTZ2dl42rF9+/YoisLEiRPNyjEcf5s2bVCr1UyaNMmsl/RkG/n7+5tcDwX4+eef0+yhWWKp3WfPnm1WRvv27Tl+/DirV69Os94GPXr0YOvWrcycORMPDw9jO0dGRnLmzBnj6cjcSnpor5latWqRN29eQkJCjNMyLVy48KWelknPhAkT2Lp1K7Vr1+a9994zfjBWqFAh3WmXypQpg7+/PyNHjuTGjRu4urqycuXKDF2LSUtQUBC1a9fmk08+4cqVK5QrV45Vq1Zl+vqSs7Mzbdq0MV5He3oodcuWLVm1ahVt27alRYsWXL58mTlz5lCuXDliY2MztS/D/XRTpkyhZcuWNG/enL///ptNmzaZ9WRatmzJpEmT6N27N7Vq1eKff/5h8eLFJj070H+Iu7u7M2fOHFxcXMiTJw81atSweH0oKCiIBg0aMHbsWK5cuUKlSpXYunUra9euZfjw4SYDQJ7XzZs32bFjh9nAEwONRkOTJk1Yvnw5s2bNokGDBvTo0YNZs2Zx/vx5mjZtik6n488//6RBgwYMHjyYEiVKMHbsWD777DPq1KlDu3bt0Gg0HD58GF9fX+P9XP369WPgwIG0b9+eRo0acfz4cbZs2WLWts/SsmVLFi5ciJubG+XKlWP//v1s27bN7DaFjz76iBUrVtCxY0f69OlD1apVefDgAevWrWPOnDlUqlTJmLdr1658/PHHrF69mvfee894G813333HxIkT2bFjB/Xr189kS79CXvKoSvECpDVsv3z58hbz7927V3nzzTcVR0dHxdfXV/n444+Nw3537NhhzJfWsP1p06aZlclTw5jTGrb//vvvm2379FBnRVGU7du3K1WqVFHs7e0Vf39/5X//+5/y4YcfKg4ODmm0wn9OnTqlNGzYUHF2dlY8PT2V/v37G4eBPznkPCQkRMmTJ4/Z9pbqfv/+faVHjx6Kq6ur4ubmpvTo0UP5+++/Mzxs32DDhg0KoBQoUMDisPDJkycrRYoUUTQajVKlShXl//7v/8z+DoqS/rB9RVEUrVarTJw4USlQoIDi6Oio1K9fXzl58qRZeycmJioffvihMV/t2rWV/fv3K/Xq1TMb8r127VqlXLlyxlsoDMduqY4xMTHKBx98oPj6+ip2dnZKyZIllWnTppkMfzccS0bfF0/6+uuvFUDZvn17mnkWLFigAMratWsVRdHfGjFt2jSlTJkyir29veLl5aU0a9ZMOXLkiMl28+bNU6pUqaJoNBolb968Sr169ZTw8HDj61qtVhk1apTi6empODk5KU2aNFEuXLiQ5rD9w4cPm9Xt4cOHSu/evRVPT0/F2dlZadKkiXLmzBmLx33//n1l8ODBip+fn2Jvb68ULFhQCQkJUSIjI83Kbd68uQIo+/btM6YZ3tNP/n/nRipFyUFfzYV4hjZt2vDvv/9y/vz57K6KEDlW27Zt+eeffzJ0zTm3kWtoIkd6epqq8+fPs3Hjxtx9ukSILLp16xYbNmygR48e2V2VbCE9NJEjFShQgF69elG8eHGuXr3Kjz/+SFJSEn///bfZvVVCvO4uX77M3r17+d///sfhw4e5ePGiceWB14kMChE5UtOmTVmyZAm3b99Go9FQs2ZNJk+eLMFMCAt27dpF7969KVy4ML/++utrGcxAemhCCCFyCbmGJoQQIleQgCaEECJXkIAmcj1Li08KIXIfCWgi2xhWPU7vsXPnzuyuapo2btyISqXC19f3pU3km5vduHGDTp064e7ujqurK61bt87QEjKgn3h6zpw5VK5cGWdnZ7y9vWnWrBn79u0zybdz584032sHDhx4rjJFziCDQkS2WbRokcnz3377jfDwcBYuXGiS3qhRI+Nq288jJSUFnU6HRqN57jLS0q1bN/bt28eVK1cIDw+nYcOGVt/H6yI2NpY33niDR48e8eGHH2JnZ8c333yDoigcO3Ys3ZWrP/zwQ2bMmEH37t2pU6cOUVFR/PTTT0RERLB3714CAwMBfUBr0KABQ4cOpXr16iZlNG3a1GT6qoyWKXKIbJujRIinWJrCy5K4uLiXUJv0xcbGKnny5FFmzZqlVKlSRenVq1d2VylNsbGx2V2FdH355ZcKoBw6dMiYdvr0acXGxkYZPXr0M7dNSUlRHB0dlQ4dOpikX7p0yWyV6h07diiAsnz5cquVKXIGOeUocrT69etToUIFjhw5Qt26dXFycmLMmDEArF27lhYtWuDr64tGo8Hf35/PPvvMbLbyp6+hXblyBZVKxfTp0/n555/x9/dHo9FQvXp1Dh8+nOG6rV69moSEBDp27EiXLl2MS5k8LTExkQkTJlCqVCkcHBwoUKAA7dq14+LFi8Y8Op2Ob7/9loCAAOOio02bNuWvv/4yqbNhXbcnqVQqJkyYYHw+YcIEVCoVp06domvXruTNm5e33noLgBMnThhvWHdwcMDHx4c+ffpw//59s3Jv3LhB3759je1brFgx3nvvPZKTk7l06RIqlYpvvvnGbLt9+/ahUqlYsmSJcRX0yMjIdNtzxYoVVK9e3aTXVKZMGd555x1+//33Z26bkpJCQkKCWU8+f/78qNVqi+uRgX7F9tTUVKuWKbKPBDSR492/f59mzZpRuXJlZs6cSYMGDQBYsGABzs7OjBgxgm+//ZaqVasyfvx4PvnkkwyVGxYWxrRp03j33Xf5/PPPuXLlCu3atSMlJSVD2y9evJgGDRrg4+NDly5diImJYf369SZ5tFotLVu2ZOLEiVStWpWvv/6aYcOG8ejRI5M1rvr27cvw4cMpVKgQX375JZ988gkODg5m13Qyo2PHjsTHxzN58mT69+8P6NeFu3TpEr1792b27Nl06dKFpUuX0rx5c5MVF27evElgYCBLly6lc+fOzJo1ix49erBr1y7i4+MpXrw4tWvXNlkR+sl2cXFxoXXr1hw6dIiyZcuaLSPzNJ1Ox4kTJ6hWrZrZa4GBgVy8eJGYmJg0t3d0dKRGjRosWLCAxYsXExERYQzeefPmZcCAAWbb9O7dG1dXVxwcHGjQoIHxy0NWyhTZLLu7iEIYpLVqAKDMmTPHLH98fLxZ2rvvvqs4OTkpiYmJxrS0Vg3w8PBQHjx4YExfu3atAijr169Pt6537txRbG1tlV9++cWYVqtWLaV169Ym+ebNm6cAyowZM8zKMMw6/8cff6R5CsuQx1BnSzP7k8ZKB8HBwWZ5LbXZkiVLFEDZvXu3Ma1nz56KWq22OEu8oU4//fSTAiinT582vpacnKx4enoaZ4s3nN57sn6W3Lt3TwGUSZMmmb32/fffK4By5syZZ5Zx/vx55Y033lAA46N48eJm2+3du1dp3769MnfuXGXt2rXKlClTFA8PD8XBwUE5evToc5UpcgbpoYkcT6PR0Lt3b7P0J0/5xMTEEBkZSZ06dYynudLTuXNn8ubNa3xep04dgAyNqlu6dClqtZr27dsb04KDg9m0aZPJ2msrV67E09OTIUOGmJVhWAF65cqVqFQqiytTZ2aV6KcNHDjQLO3JNktMTCQyMpI333wTgKNHjwL63tKaNWsICgqy2GMy1KlTp044ODiY9NK2bNlCZGQk3bt3B/SnjBVFMTklaolhMmpLA3cMi6A+PWH101xcXChfvjzvv/8+q1at4ocffiA1NZU2bdqYnPKsVasWK1asoE+fPrRq1YpPPvmEAwcOoFKpGD169HOVKXIGCWgix/Pz88Pe3t4s/d9//6Vt27a4ubnh6uqKl5eX8YM0I4tvFi5c2OS5IbhlZDHQRYsWERgYyP3797lw4QIXLlygSpUqJCcns3z5cmO+ixcvUrp0aWxt05429eLFi/j6+pIvX75095sZlhbefPDgAcOGDcPb2xtHR0e8vLyM+Qxtdu/ePaKjo6lQocIzy3d3dycoKMi4YCnoTzf6+fnx9ttvZ6quhkCblJRk9prhuuSzrlmlpqbSsGFD3Nzc+O6772jbti3vvfce27Zt4+LFi0ybNu2Z+y9RogStW7dmx44dxmuwWS1TvHwyObHI8Sx9kEVFRVGvXj1cXV2ZNGkS/v7+ODg4cPToUUaNGpWhe8JsbGwspivp3Mly/vx54+ARS5MlL1682OrXV9LqqT09AOZJltqtU6dO7Nu3j48++sh4b5VOpzOu3pxZPXv2ZPny5ezbt4+AgADWrVvHoEGDUKsz9105X758aDQabt26ZfaaIc3X1zfN7Xfv3s3JkyeZMWOGSXrJkiUpW7Yse/fuTbcOhQoVIjk5mbi4OFxdXa1Spni5JKCJV9LOnTu5f/8+q1atom7dusb0y5cvv/B9L168GDs7OxYuXGgWFPfs2cOsWbOIiIigcOHC+Pv7c/DgQVJSUrCzs7NYnr+/P1u2bOHBgwdp9tIMvceoqCiT9KtXr2a43g8fPmT79u1MnDiR8ePHG9OfXjDVy8sLV1dXk0EraWnatCleXl4sXryYGjVqEB8f/1xrcanVagICAswGZgAcPHiQ4sWL4+Likub2d+7cASwH+JSUlDRHMj7p0qVLODg44OzsbLUyxcslpxzFK8kQSJ7sTSUnJ/PDDz+88H0vXryYOnXq0LlzZzp06GDy+OijjwBYsmQJAO3btycyMtLiKD9D3du3b4+iKEycODHNPK6urnh6erJ7926T1zNzvJbaDGDmzJkmz9VqNW3atGH9+vUWA8yT29va2hIcHMzvv//OggULCAgIoGLFisbXMzNsv0OHDhw+fNhkn2fPnuWPP/6gY8eOJnnPnDlDRESE8XmpUqUA/bXNJx09epSzZ89SpUoVY9q9e/fM9n38+HHWrVtH48aNjb3LzJQpcgbpoYlXUq1atcibNy8hISEMHToUlUrFwoUL0z1dmFUHDx7kwoULDB482OLrfn5+vPHGGyxevJhRo0bRs2dPfvvtN0aMGMGhQ4eoU6cOcXFxbNu2jUGDBtG6dWsaNGhAjx49mDVrFufPnzee/vvzzz9p0KCBcV/9+vVj6tSp9OvXj2rVqrF7927OnTuX4bq7urpSt25dvvrqK1JSUvDz82Pr1q0We7WTJ09m69at1KtXjwEDBlC2bFlu3brF8uXL2bNnD+7u7sa8PXv2ZNasWezYsYMvv/zSpJxDhw7RoEEDQkND0x0YMmjQIH755RdatGjByJEjsbOzY8aMGXh7e/Phhx+a5C1btiz16tUzTotWtWpVGjVqxK+//kp0dDSNGzfm1q1bzJ49G0dHR4YPH27ctnPnzjg6OlKrVi3y58/PqVOn+Pnnn3FycmLq1KnGfJkpU+QQ2Ta+UoinpDVsv3z58hbz7927V3nzzTcVR0dHxdfXV/n444+VLVu2KICyY8cOY760hu1PmzbNrEzSGWI+ZMgQBVAuXryYZp4JEyYogHL8+HFFUfRD5ceOHasUK1ZMsbOzU3x8fJQOHTqYlJGamqpMmzZNKVOmjGJvb694eXkpzZo1U44cOWLMEx8fr/Tt21dxc3NTXFxclE6dOil3795Nc9j+vXv3zOp2/fp1pW3btoq7u7vi5uamdOzYUbl586bF47569arSs2dPxcvLS9FoNErx4sWV999/X0lKSjIrt3z58oparVauX79ukp7RYfsG165dUzp06KC4uroqzs7OSsuWLZXz58+b5QOUevXqmaTFx8crkyZNUsqVK6c4Ojoqbm5uSsuWLZW///7bJN+3336rBAYGKvny5VNsbW2VAgUKKN27d7e4n4yWKXIGmctRCJFlVapUIV++fGzfvj27qyJeY3INTQiRJX/99RfHjh2jZ8+e2V0V8ZqTHpoQ4rmcPHmSI0eO8PXXXxMZGWkcJShEdpEemhDiuaxYsYLevXuTkpLCkiVLJJiJbCc9NCGEELmC9NCEEELkChLQRI5jae0vwxpfGfH0+mDWUL9+ferXr2/VMoUQ1iUBTWRJq1atcHJyeuZaVd26dcPe3t7iIpI5yalTp5gwYQJXrlzJ7qpYtHHjRlQqFb6+vs8176IwdePGDTp16oS7uzuurq60bt06QystGL5wpfUwrD0H+sVln5X3xo0bL/IQXzsyU4jIkm7durF+/XpWr15tcdh2fHw8a9eupWnTpnh4eDz3fj799NMML9z5vE6dOsXEiROpX7++yQrXAFu3bn2h+86IxYsXU7RoUa5cucIff/xBw4YNs7tKr6zY2FgaNGjAo0ePGDNmDHZ2dnzzzTfUq1ePY8eOPfO96uXlxcKFC83SN2/ezOLFi2ncuLEx7d133zX7OymKwsCBAylatCh+fn7WOyghAU1kTatWrXBxcSEsLMxiQFu7di1xcXF069YtS/uxtbV95hIsL5ql5Wtepri4ONauXcuUKVOYP38+ixcvzrEBLS4ujjx58mR3NZ7phx9+4Pz58xw6dIjq1asD0KxZMypUqMDXX3/N5MmT09w2T548xmWKnrRgwQJcXV0JCgoyptWsWZOaNWua5NuzZw/x8fFZ/p8Q5uSUo8gSR0dH2rVrx/bt27l7967Z62FhYbi4uNCqVSsePHjAyJEjCQgIwNnZGVdXV5o1a8bx48fT3Y+la2hJSUl88MEHeHl5Gfdx/fp1s22vXr3KoEGDKF26NI6Ojnh4eNCxY0eTU4sLFiwwToDboEED4ykhw1yBlq6h3b17l759++Lt7Y2DgwOVKlXi119/NcljOD01ffp0fv75Z/z9/dFoNFSvXt24BE1GrF69moSEBDp27EiXLl1YtWqVcZ2wJyUmJjJhwgRKlSqFg4MDBQoUoF27dly8eNGYR6fT8e233xIQEICDgwNeXl40bdrUOCmwpWuYBk9fnzT8XU6dOkXXrl3Jmzcvb731FgAnTpygV69eFC9eHAcHB3x8fOjTp4/FU883btygb9+++Pr6otFoKFasGO+99x7JyclcunQJlUrFN998Y7bdvn37UKlULFmyJFMTIa9YsYLq1asbgxlAmTJleOedd/j999/T3f5pt27dYseOHbRr1y7d2xfCwsJQqVR07do10/sRzyYBTWRZt27dSE1NNfsgePDgAVu2bKFt27Y4Ojpy6dIl1qxZQ8uWLZkxYwYfffQR//zzD/Xq1ePmzZuZ3m+/fv2YOXMmjRs3ZurUqdjZ2dGiRQuzfIcPH2bfvn106dKFWbNmMXDgQLZv3079+vWJj48HoG7dugwdOhSAMWPGsHDhQhYuXEjZsmUt7jshIYH69euzcOFCunXrxrRp03Bzc6NXr158++23ZvnDwsKYNm0a7777Lp9//jlXrlyhXbt2pKSkZOhYFy9eTIMGDfDx8aFLly7ExMSwfv16kzxarZaWLVsyceJEqlatytdff82wYcN49OiRyVIwffv2Zfjw4RQqVIgvv/ySTz75BAcHBw4cOJChuljSsWNH4uPjmTx5svEaUnh4OJcuXaJ3797Mnj2bLl26sHTpUpo3b24yifTNmzcJDAxk6dKldO7cmVmzZtGjRw927dpFfHw8xYsXp3bt2iYrYz/ZLi4uLrRu3ZpDhw5RtmxZiysbPEmn03HixAmLq3EHBgZy8eLFZ14TtmTp0qXodLp0e10pKSn8/vvv1KpVy+y0trCC7JtGUuQWqampSoECBZSaNWuapM+ZM0cBlC1btiiKoiiJiYmKVqs1yXP58mVFo9EokyZNMkkDlPnz5xvTDBPuGhw7dkwBlEGDBpmU17VrV7PJcOPj483qvH//fgVQfvvtN2Pa8uXLzSY2NqhXr57JZLgzZ85UAGXRokXGtOTkZKVmzZqKs7OzEh0dbXIsHh4eyoMHD4x5165dqwDK+vXrzfb1tDt37ii2trbKL7/8YkyrVauW0rp1a5N88+bNUwBlxowZZmXodDpFURTljz/+UABl6NChaeax1P4GT7et4e8SHBxsltdSuy9ZskQBlN27dxvTevbsqajVauXw4cNp1umnn35SAOX06dPG15KTkxVPT08lJCREUZSMT4R87949BTB5zxl8//33CqCcOXPmmWU8rWrVqkqBAgXM3t9PW79+vQIoP/zwQ6bKFxkjPTSRZTY2NnTp0oX9+/ebnMYLCwvD29ubd955BwCNRmNca0qr1XL//n2cnZ0pXbo0R48ezdQ+N27cCGDsVRlYWtLjyZWbU1JSuH//PiVKlMDd3T3T+31y/z4+PgQHBxvT7OzsGDp0KLGxsezatcskf+fOnY2LdALUqVMHIEOj6pYuXYparaZ9+/bGtODgYDZt2sTDhw+NaStXrsTT05MhQ4aYlWE4Xbty5UpUKhWhoaFp5nkeAwcONEt7st0TExOJjIzkzTffBDC2u06nY82aNQQFBVnsMRnq1KlTJxwcHEx6aVu2bCEyMtJ4Pat+/fooipLuLRsJCQmA/v34NMPpQkOejDh37hxHjhyhS5cu6a7UHRYWhp2dHZ06dcpw+SLjJKAJqzCcagkLCwPg+vXr/Pnnn3Tp0sW4sKROp+Obb76hZMmSaDQaPD098fLy4sSJEzx69ChT+7t69SpqtRp/f3+T9NKlS5vlTUhIYPz48RQqVMhkv1FRUZne75P7L1mypNkHmOEU5dMrSRcuXNjkuSG4PRmQ0rJo0SICAwO5f/8+Fy5c4MKFC1SpUoXk5GSWL19uzHfx4kVKly79zMEzFy9exNfXN82VsZ9XsWLFzNIePHjAsGHD8Pb2xtHRES8vL2M+Q7vfu3eP6OhoKlSo8Mzy3d3dCQoKMr6/QH+60c/Pj7fffjtTdTUE2qSkJLPXDNclnwzG6TEE2fRON8bGxrJ27VqaNGmSpRG/Im0yylFYRdWqVSlTpgxLlixhzJgxLFmyBEVRTP7JJ0+ezLhx4+jTpw+fffYZ+fLlQ61WM3z48Bd6X9WQIUOYP38+w4cPp2bNmri5uaFSqejSpctLu5/LENSfpqQz89z58+eNg0dKlixp9vrixYsZMGBA1iv4hLR6alqtNs1tLAWATp06sW/fPj766CMqV66Ms7MzOp3OuIBpZvXs2ZPly5ezb98+AgICWLduHYMGDUq3V/S0fPnyodFouHXrltlrhjRfX98MlxcWFkbp0qWpWrXqM/OtWbNGRje+YBLQhNV069aNcePGceLECcLCwihZsqTJKLIVK1bQoEED5s6da7JdVFQUnp6emdpXkSJF0Ol0xl6JwdmzZ83yrlixgpCQEL7++mtjWmJiIlFRUSb5MnPKrUiRIpw4cQKdTmfygXrmzBnj69awePFi7OzsWLhwoVlQ3LNnD7NmzSIiIoLChQvj7+/PwYMHSUlJwc7OzmJ5/v7+bNmyhQcPHqTZSzP0Hp9un6d7nc/y8OFDtm/fzsSJExk/frwx/fz58yb5vLy8cHV1NRm0kpamTZvi5eXF4sWLqVGjBvHx8fTo0SPDdTJQq9UEBAQYR3U+6eDBgxQvXhwXF5cMlWVYwXzSpEnp5l28eDHOzs60atUq03UWGSOnHIXVGL55jh8/nmPHjpl9E7WxsTHrkSxfvvy5Zkto1qwZALNmzTJJnzlzplleS/udPXu2WY/DcO/U0x/kljRv3pzbt2+zbNkyY1pqaiqzZ8/G2dmZevXqZeQw0rV48WLq1KlD586d6dChg8njo48+AmDJkiUAtG/fnsjISIuj/AzH3759exRFYeLEiWnmcXV1xdPTk927d5u8/sMPP2S43obg+3S7P/33UavVtGnThvXr11sMME9ub2trS3BwML///jsLFiwgICCAihUrGl/PzLD9Dh06cPjwYZN9nj17lj/++MN4+4bBmTNniIiIsFiO4RRoekPw7927x7Zt22jbti1OTk7p1k88H+mhCaspVqwYtWrVYu3atYD5NYWWLVsyadIkevfuTa1atfjnn39YvHgxxYsXz/S+KleuTHBwMD/88AOPHj2iVq1abN++nQsXLpjlbdmyJQsXLsTNzY1y5cqxf/9+tm3bZnYdo3LlytjY2PDll1/y6NEjNBoNb7/9Nvnz5zcrc8CAAfz000/06tWLI0eOULRoUVasWMHevXuZOXNmhr/hP4vh2//gwYMtvu7n58cbb7zB4sWLGTVqFD179uS3335jxIgRHDp0iDp16hAXF8e2bdsYNGgQrVu3pkGDBvTo0YNZs2Zx/vx54+m/P//8kwYNGhj31a9fP6ZOnUq/fv2oVq0au3fv5ty5cxmuu6urK3Xr1uWrr74iJSUFPz8/tm7dyuXLl83yTp48ma1bt1KvXj0GDBhA2bJluXXrFsuXL2fPnj24u7sb8/bs2ZNZs2axY8cOvvzyS5NyDh06RIMGDQgNDU13YMigQYP45ZdfaNGiBSNHjsTOzo4ZM2bg7e3Nhx9+aJK3bNmy1KtXz3hPooFWq2XZsmW8+eabZtdyn7Zs2TJSU1PldOOLll3DK0XuZBj2HBgYaPZaYmKi8uGHHyoFChRQHB0dldq1ayv79+83GxKfkWH7iqIoCQkJytChQxUPDw8lT548SlBQkHLt2jWzodsPHz5UevfurXh6eirOzs5KkyZNlDNnzihFihQxDvk2+OWXX5TixYsrNjY2JkP4n66jouiH0xvKtbe3VwICAsyGuhuOZdq0aWbt8XQ9nzZkyBAFUC5evJhmngkTJiiAcvz4cUVR9EPlx44dqxQrVkyxs7NTfHx8lA4dOpiUkZqaqkybNk0pU6aMYm9vr3h5eSnNmjVTjhw5YswTHx+v9O3bV3Fzc1NcXFyUTp06KXfv3k1z2P69e/fM6nb9+nWlbdu2iru7u+Lm5qZ07NhRuXnzpsXjvnr1qtKzZ0/Fy8tL0Wg0SvHixZX3339fSUpKMiu3fPnyilqtVq5fv26SntFh+wbXrl1TOnTooLi6uirOzs5Ky5YtlfPnz5vlA8z+9oqiKJs3b1YAZdasWenu680331Ty58+vpKamZqhu4vnIemhCiFdKlSpVyJcvH9u3b8/uqogcRq6hCSFeGX/99RfHjh2zOG+oENJDE0LkeCdPnuTIkSN8/fXXREZGcunSpXTnTBSvH+mhCSFyvBUrVtC7d29SUlJYsmSJBDNhkfTQhBBC5ArSQxNCCJErSEATQgiRK8iN1RbodDpu3ryJi4tLlmYgF0IIkXWKohATE4Ovr+8z5+6UgGbBzZs3KVSoUHZXQwghxBOuXbtGwYIF03xdApoFhmmLrl27hqura6a3T0lJYevWrTRu3DjNSWJF5km7Wp+0qfVJm1pfdHQ0hQoVSndKuWwPaN9//z3Tpk3j9u3bVKpUidmzZxMYGJhm/pkzZ/Ljjz8SERGBp6cnHTp0YMqUKSbDeG/cuMGoUaPYtGkT8fHxlChRgvnz51tcQNASw2lGV1fX5w5oTk5OuLq6yhvaiqRdrU/a1PqkTV+c9C4BZWtAW7ZsGSNGjGDOnDnUqFGDmTNn0qRJE86ePWtxQtiwsDA++eQT5s2bR61atTh37hy9evVCpVIxY8YMQL9sRe3atWnQoAGbNm3Cy8uL8+fPm6wWLIQQIvfJ1oA2Y8YM+vfvT+/evQGYM2cOGzZsYN68eXzyySdm+fft20ft2rWNSzUULVqU4OBgDh48aMzz5ZdfUqhQIebPn29Ms7SarhBCiNwl2wJacnIyR44cYfTo0cY0tVpNw4YN2b9/v8VtatWqxaJFizh06BCBgYFcunSJjRs3mizyt27dOpo0aULHjh3ZtWsXfn5+DBo0iP79+6dZl6SkJJPl2KOjowH9qYOUlJRMH5thm+fZVqRN2tX6pE2tT9rU+jLaltkW0CIjI9FqtXh7e5uke3t7G1f9fVrXrl2JjIzkrbfeQlEUUlNTGThwIGPGjDHmuXTpEj/++CMjRoxgzJgxHD58mKFDh2Jvb09ISIjFcqdMmWJxwcOtW7dmaTG+8PDw595WpE3a1fqkTa1P2tR64uPjM5Qv2weFZMbOnTuZPHkyP/zwAzVq1ODChQsMGzaMzz77jHHjxgH6e8iqVavG5MmTAf1SEydPnmTOnDlpBrTRo0czYsQI43PDiJrGjRs/96CQ8PBwGjVqJBeFrUja1fqkTa1P2tT6DGfN0pNtAc3T0xMbGxvu3Lljkn7nzh18fHwsbjNu3Dh69OhBv379AAgICCAuLo4BAwYwduxY1Go1BQoUoFy5cibblS1blpUrV6ZZF41Gg0ajMUu3s7PL0hsyq9sLy6RdrU/a1PqkTa0no+2YbVNf2dvbU7VqVZNF+nQ6Hdu3b6dmzZoWt4mPjze7S9zGxgbQ30kOULt2bc6ePWuS59y5cxQpUsSa1RdCCPEMsUmp/B3xkGWHI5i0/hT7Lka+8H1m6ynHESNGEBISQrVq1QgMDGTmzJnExcUZRz327NkTPz8/pkyZAkBQUBAzZsygSpUqxlOO48aNIygoyBjYPvjgA2rVqsXkyZPp1KkThw4d4ueff+bnn3/OtuMUQojcKjFFy8V7sZy7E8O5O7Gcux3D2TsxXH+YYJLPyd6GWv6eL7Qu2RrQOnfuzL179xg/fjy3b9+mcuXKbN682ThQJCIiwqRH9umnn6JSqfj000+5ceMGXl5eBAUF8cUXXxjzVK9endWrVzN69GgmTZpEsWLFmDlzJt26dXvpxyeEELlFqlbHlfvxnLsTw9nbMfqfd2K4EhmHLo1FyLxdNZTydqGUtwtvFvd44XXM9kEhgwcPZvDgwRZf27lzp8lzW1tbQkNDCQ0NfWaZLVu2pGXLltaqohBCvFaSU3X8e/MRRyOi+Od6FGfvxHLxbizJWp3F/G6OdpT2caG0twulDD+9nXF3sn+p9c72gCaEECJ73Y1O5GjEQ45cfagPYjcekZxqHryc7G0e97icKeXtYgxiXi6aHLEyiQQ0IYR4jaRodZy6Gc3RCH3wOnr1ITeiEszy5XWy443CealS2J2yBVwp5e2Cn7sjanX2B660SEATQohc7G5MIkevRvF3xEOORjzkxPVHJD3V+1KroJS3C1WL5OWNwnl5o0heino45YheV2ZIQBNCCCuJjE1i55k7hEeoubjjIho7W2zVKmzUKmzVKmxt1CY/bdQq7GxU2KjV2NqonkhTowISU3QkpWpJTNGRmKIl8fHvhrSkFK0+/cl8qf+lRcYmmY02BHB3sqNKIXdj8KpUyB1nzasfDl79IxBCiGySlKrlyJWH7D4fyZ/n7/HvTcOMFmq23LiYrXUzUKmgVH4X3iiSlzcKu/NGkbwU98zzyvW+MkICmhBCZJCiKFy8F8fuc/f48/w9Dlx6QEKK1iRPWR8X8uoeUbhIYRRFRapOIVWn0//U6tDqlMe/69O1OoUUrfJEuj5Npyg42NmgsVWjsbPBwc4GB1u1Mc3BzgYHO9PnmqfyuDjYUd7PFVeH12PGEgloQgjxDFHxyey5EMmf5/S9sJuPEk1e93TWULekJ3VLeVG7hCfuDmo2btxI8+blZOqrl0wCmhBCPCFFq+PYtSh2n7vH7vORnLgehfLEjcP2tmoCi+ajzuMgVsbHxeT0nSwbk30koAkhXmt3oxM5fv0RJ65HceL6I45efUhMUqpJnlLeztQp6UWdkp7UKOaBo71NNtVWPIsENCHEa+NhXDL/3NAHr+PXH/HP9Ufcjk40y5fXyY63HgewuiW98HFzyIbaisySgCaEAPQDHpJSdfpHyn9DwJOeGgqemKIlKfXxMPLHv2vTmswvE+xt1bg52uHuaIebox1uTvqf7k725LG3yfSovNikVE7e+K/ndeL6IyIemC8UqVZByfwuBBR0o1JBNyoXykt5X9ccfQOxsEwCmhCvocQULeuO3WTRgStcuGPDqL+2kZSqM7lWlJPYqlWmQc7xv2DnZvzdjpjEVI5fj+Kf64+4cC/W4vEU9XCiYkF3KhZ0o2JBd8r7upInF9yDJSSgCfFauRmVwKIDV1lyKIKH8YbBCyrAfOYIh8dDxTVPDRV/esi4g60NNjZZ780kpmiJTkjhUUIKUfH//UzW6oe8349L5n5ccqbK9HVzoGJB98e9L3cC/Nxwc5KRh7mVBDQhcjlFUTh85SEL9l1my793jKcH/dwd6VajIOrbp2nyTgOcHTVo7NQ42NpgZ6PKETfeKopCYopOH9wSknkUn0LU46Cn/z3ZJADa26ip4OdGpUJuBPi54+VivhK9yL0koAmRSyWmaFl3/CYL9l7h1K1oY3rN4h70ql2UhmW90WlT2bjxNAXzOubIe6ZUKhWO9jY42tvIwAyRLgloQuQyhtOKSw9f48HjU3QOdmraVvEjpFZRyvi4GvPqtGmVIsSrRwKaEC+JoihExadwIyqBm1EJ2Nmq8XF1wNvVgbxOdlk6xacoCn9dfciCvVfY/O9tk9OKPWoWoXO1QuTN83IXWxTiZZOAJoSVpGp13IlJ4mZUAjceJnAj6vHj8e83oxKIT7bcJbK3UZPfVYO3qwM+rg5mvxsC39Oj8RJTtKw/fpMF+648MTEuvFk8H71qFaNh2fzY2qhf6HELkVNIQBMiExRF4WjEQ87diTULWrejEzN0P5answY/dweStQp3ohN5EJdMslbH9YcJFpf6eJKzxhbvx8EuXx579l28bzytqLFV0+4NP3rWLErZAq7PLEeI3EgCmhAZdPxaFF9sPM2hyw/SzGOrVlHA3QE/d0f83J3wc3fAL+/j3/M6UsDNAQc702mTklK13ItJ4k50Inei9T9vRydy96nfY5NS9Y97qVy8F2fcXk4rCqEnAU2IdETcj+erLWf4vxO3AP2MFrX8PSiY1xFfd0f83B0p+DhoeblosMnkDBMaWxsK5nWiYF6nZ+aLTUp9HPT0Ae5uTCJFPPLwThk5rSgESEATIk0P45KZ/ccFFh64QopWQaWCtlX8+LBxafzcHV96fZw1tjh7OePv5fzS9y3Eq0ACmhBPSUzRsmDfFb7fcYGYRP2s63VKevJJszKU93XL5toJIdIiAU2Ix3Q6hTXHbvD11nPciNIPzijj48KY5mWpW8orm2snhEiPBDQhgD3nI5my6bRx6HsBNwc+bFyatlX8Mn1NTAiRPSSgidfa6VvRTN10hl3n7gHgorHlvQb+9KldzGw0ohAiZ5OAJl5Ltx8l8vXWs6w4eh1F0Q+37/5mEYa8XQIPZ5nQVohXkQQ08VqJSUxhzq6LzN1zmcQU/ZIpLQIK8FGT0hT1zJPNtRNCZIUENJFraHUK92OTnro5WX+z8u3H929dexBP3OPpp6oVycuYFmV5o3DebK65EMIaJKCJHC8xRcujhBTuPYrnTJSKhKM3uB+fyu1H+iB1JyaJO48SuReblKGpp4p75mFUszI0LuedI9b8EkJYhwQ08VJodcp/qxEbVyVOfmKhxv9WKI5OMF24MSn1ydWUbeD0v2nuR60CLxf9XIf5XRzwcdPg7aKf2NfbzQFvVw0lvJxlZg0hcqEcEdC+//57pk2bxu3bt6lUqRKzZ88mMDAwzfwzZ87kxx9/JCIiAk9PTzp06MCUKVNwcDBfAHDq1KmMHj2aYcOGMXPmzBd4FLlLUqqWaw8SiHgQx42oROKTUklM0ZGUqiUxRUdiqpbEFC1JT6alaB+nm6YlpehI1urS3+kz2KhVuDrY4qAkU8LPEx83x/+ClIsGHzd90PLIYy/BSojXVLYHtGXLljFixAjmzJlDjRo1mDlzJk2aNOHs2bPkz5/fLH9YWBiffPIJ8+bNo1atWpw7d45evXqhUqmYMWOGSd7Dhw/z008/UbFixZd1OK+U6MQUIu7Hc/V+PFcfxBl/j3gQz81HCSjpn73LtDz2Nrg72ePqaIe7ox1ujna4O9nh5vT4d0f7/9KeeN1ZY0tqaiobN26kefOqOXJ1ZSFE9sr2gDZjxgz69+9P7969AZgzZw4bNmxg3rx5fPLJJ2b59+3bR+3atenatSsARYsWJTg4mIMHD5rki42NpVu3bvzyyy98/vnnz6xDUlISSUlJxufR0fqba1NSUkhJScn0MRm2eZ5tre1+bBKXHwepiAcJJj8fxj+7fnnsbSiUz4lCeR1x1tigsbNBY6vGwdYGjZ0aBzs1GlsbHGzVaOwMP5943fZxfjv96y4aW+xtn6/3lJqamqPaNbeQNrU+aVPry2hbZmtAS05O5siRI4wePdqYplaradiwIfv377e4Ta1atVi0aBGHDh0iMDCQS5cusXHjRnr06GGS7/3336dFixY0bNgw3YA2ZcoUJk6caJa+detWnJyePQP6s4SHhz/3tlkVnQyrrqj5+/6zA4izrYKnA3g6PPlTwUMDLnapqFRJwEPTjVIfP55auksLxD9+vEjZ2a65lbSp9UmbWk98fMY+VbI1oEVGRqLVavH29jZJ9/b25syZMxa36dq1K5GRkbz11lsoikJqaioDBw5kzJgxxjxLly7l6NGjHD58OEP1GD16NCNGjDA+j46OplChQjRu3BhX18wvlJiSkkJ4eDiNGjV66afGFEVh+ZEbTNtyjujEVFQq8HVzoHA+p8cPR5Ofzpps76RnWHa2a24lbWp90qbWZzhrlp5X59PssZ07dzJ58mR++OEHatSowYULFxg2bBifffYZ48aN49q1awwbNozw8HCLg0Qs0Wg0aDTms0PY2dll6Q2Z1e0z6+K9WMas+oeDjxegrODnytR2Fangl7tmiH/Z7fo6kDa1PmlT68loO2ZrQPP09MTGxoY7d+6YpN+5cwcfHx+L24wbN44ePXrQr18/AAICAoiLi2PAgAGMHTuWI0eOcPfuXd544w3jNlqtlt27d/Pdd9+RlJSEjU3umqMvOVXHT7suMnvHBZJTdTja2TCiUSl61y4qI/6EEK+NbA1o9vb2VK1ale3bt9OmTRsAdDod27dvZ/DgwRa3iY+PR602/ZA2BChFUXjnnXf4559/TF7v3bs3ZcqUYdSoUbkumB25+pDRq05w7k4sAHVLefFFmwoUyvf81/6EEOJVlO2nHEeMGEFISAjVqlUjMDCQmTNnEhcXZxz12LNnT/z8/JgyZQoAQUFBzJgxgypVqhhPOY4bN46goCBsbGxwcXGhQoUKJvvIkycPHh4eZumvspjEFKZtOcvCA1dRFPDIY8/4oHK0quQrs18IIV5L2R7QOnfuzL179xg/fjy3b9+mcuXKbN682ThQJCIiwqRH9umnn6JSqfj000+5ceMGXl5eBAUF8cUXX2TXIbx0W/69Tejaf7kdnQhAh6oFGdu8LHnz2GdzzYQQIvtke0ADGDx4cJqnGHfu3Gny3NbWltDQUEJDQzNc/tNlvKruRCcSuvZfNv97G4AiHk5MbhtA7RKe2VwzIYTIfjkioIln0+kUwg5F8OWmM8QkpWKrVjGgbnGGvlNSFqEUQojHJKDlcOfvxDB61T/8dVV/c3OlQu5MbRdA2QKZvz9OCCFyMwloOVRyqo7vd1zgh50XSNEqONnb8FGT0vSsWRQbtQz6EEKIp0lAy6GmbTnDL39eBuCdMvmZ1KYCfu6O2VwrIYTIuSSg5UDJqTqWH7kOwOdtKtCtRmEZii+EEOmQaSRyoD/P3yMqPgVPZw3BgRLMhBAiIySg5UBrj90EIKhSAbleJoQQGSQBLYeJS0ol/JR+bss2lf2yuTZCCPHqkICWw4SfukNCipaiHk5ULJi7ZskXQogXSQJaDrPm2A0AWlf2k2tnQgiRCRLQcpD7sUn8eT4SgFaVfbO5NkII8WqRgJaDbPjnFlqdQoCfG/5eztldHSGEeKVIQMtBDKMbW0vvTAghMk0CWg5x7UE8R64+RKWCoEoS0IQQIrMkoOUQ647re2e1/D3wdnXI5toIIcSrRwJaDqAoCmv+fjy6sZLceyaEEM9DAloOcPpWDOfvxmJvq6ZpgE92V0cIIV5JEtBygLXH9b2zt0vnx9XBLptrI4QQryYJaNlMp1NY/3h0Y5sqMhhECCGelwS0bHb4ygNuPkrERWNL/dL5s7s6QgjxypKAls3WPO6dNa3gg4OdTTbXRgghXl0S0LJRcqqOjf/cAqBNFRndKIQQWSEBLRvtPnePRwkp5HfR8GZxj+yujhBCvNIkoGUjw8z6QZV8ZSFPIYTIIglo2SQ2KZVtp/ULecrcjUIIkXUS0LLJ1n9vk5iio7hnHgL8ZCFPIYTIKglo2cQws36ryr6ykKcQQliBBLRsEBmbxJ4L+oU8W1eW0Y1CCGENEtCywYYT+oU8KxV0o5hnnuyujhBC5AoS0LLB2sejG1tJ70wIIawmRwS077//nqJFi+Lg4ECNGjU4dOjQM/PPnDmT0qVL4+joSKFChfjggw9ITEw0vj5lyhSqV6+Oi4sL+fPnp02bNpw9e/ZFH0aGRNyP52hEFGoVBFUskN3VEUKIXCPTAa1o0aJMmjSJiIgIq1Rg2bJljBgxgtDQUI4ePUqlSpVo0qQJd+/etZg/LCyMTz75hNDQUE6fPs3cuXNZtmwZY8aMMebZtWsX77//PgcOHCA8PJyUlBQaN25MXFycVeqcFesez6xfy9+T/LKQpxBCWE2mA9rw4cNZtWoVxYsXp1GjRixdupSkpKTnrsCMGTPo378/vXv3ply5csyZMwcnJyfmzZtnMf++ffuoXbs2Xbt2pWjRojRu3Jjg4GCTXt3mzZvp1asX5cuXp1KlSixYsICIiAiOHDny3PW0BkVRjHM3yr1nQghhXbaZ3WD48OEMHz6co0ePsmDBAoYMGcKgQYPo2rUrffr04Y033shwWcnJyRw5coTRo0cb09RqNQ0bNmT//v0Wt6lVqxaLFi3i0KFDBAYGcunSJTZu3EiPHj3S3M+jR48AyJcvn8XXk5KSTIJydHQ0ACkpKaSkpGT4eAwM2zy97alb0Vx4vJDnO6U9nqvs11la7Sqen7Sp9UmbWl9G21KlKIqS1R398MMPjBo1ipSUFAICAhg6dCi9e/dO9/6qmzdv4ufnx759+6hZs6Yx/eOPP2bXrl0cPHjQ4nazZs1i5MiRKIpCamoqAwcO5Mcff7SYV6fT0apVK6KiotizZ4/FPBMmTGDixIlm6WFhYTg5OT3zGDJj7RU1f9xSUzmfjt6ldVYrVwghcrP4+Hi6du3Ko0ePcHV1TTNfpntoBikpKaxevZr58+cTHh7Om2++Sd++fbl+/Tpjxoxh27ZthIWFPW/xadq5cyeTJ0/mhx9+oEaNGly4cIFhw4bx2WefMW7cOLP877//PidPnkwzmAGMHj2aESNGGJ9HR0dTqFAhGjdu/MzGS0tKSgrh4eE0atQIOzv9CtQ6ncLkr3cDSfRvUoXG5bwzXe7rzlK7iqyRNrU+aVPrM5w1S0+mA9rRo0eZP38+S5YsQa1W07NnT7755hvKlCljzNO2bVuqV6+eblmenp7Y2Nhw584dk/Q7d+7g4+NjcZtx48bRo0cP+vXrB0BAQABxcXEMGDCAsWPHolb/d1lw8ODB/N///R+7d++mYMGCadZDo9Gg0WjM0u3s7LL0hnxy+/0X73MnOgkXB1sali+Ana2sffa8svp3EeakTa1P2tR6MtqOmR4UUr16dc6fP8+PP/7IjRs3mD59ukkwAyhWrBhdunRJtyx7e3uqVq3K9u3bjWk6nY7t27ebnIJ8Unx8vEnQArCx0QcHw9lTRVEYPHgwq1ev5o8//qBYsWKZOsYXwTC6sXmFAmgkmAkhhNVluod26dIlihQp8sw8efLkYf78+Rkqb8SIEYSEhFCtWjUCAwOZOXMmcXFx9O7dG4CePXvi5+fHlClTAAgKCmLGjBlUqVLFeMpx3LhxBAUFGQPb+++/T1hYGGvXrsXFxYXbt28D4ObmhqOjY2YPOcuSUrVs/EdfBxndKIQQL0amA9rdu3e5ffs2NWrUMEk/ePAgNjY2VKtWLVPlde7cmXv37jF+/Hhu375N5cqV2bx5M97e+mtMERERJj2yTz/9FJVKxaeffsqNGzfw8vIiKCiIL774wpjHMECkfv36JvuaP38+vXr1ylT9rGHXWf1Cnt6uGmrIQp5CCPFCZDqgvf/++3z88cdmAe3GjRt8+eWXaY5MfJbBgwczePBgi6/t3LnT5LmtrS2hoaGEhoamWV4WB25a3drj+nvPgirKQp5CCPGiZPoa2qlTpyzea1alShVOnTpllUrlJjGJKWw7pR/00qaKzN0ohBAvSqYDmkajMRuVCHDr1i1sbZ/7LoBca+u/d0hK1VHcKw/lfTN/C4AQQoiMyXRAa9y4MaNHjzbOvgEQFRXFmDFjaNSokVUrlxuseTyzfpvKfrKQpxBCvECZ7lJNnz6dunXrUqRIEapUqQLAsWPH8Pb2ZuHChVav4KssMjaJvY8X8mxVSUY3CiHEi5TpgObn58eJEydYvHgxx48fx9HRkd69exMcHCw3ET5lwz+30SlQuZA7RWUhTyGEeKGe66JXnjx5GDBggLXrkuusPyH3ngkhxMvy3KM4Tp06RUREBMnJySbprVq1ynKlcoPIRDh+/RFqFbSQhTyFEOKFe66ZQtq2bcs///yDSqUy3vNlGPCg1WqtW8NX1JFIfXvULuFJfhdZyFMIIV60TI9yHDZsGMWKFePu3bs4OTnx77//snv3bqpVq2Z2E/TrSlEU/rqnb9rWleXeMyGEeBky3UPbv38/f/zxB56enqjVatRqNW+99RZTpkxh6NCh/P333y+inq+UU7diuJuoQmOrpkl5WSZGCCFehkz30LRaLS4uLoB++ZebN/XTOhUpUoSzZ89at3avqPUnbgHwdmkvXBxk5KcQQrwMme6hVahQgePHj1OsWDFq1KjBV199hb29PT///DPFixd/EXV85Ry7pr/pvFUlGQwihBAvS6Z7aJ9++ik6nQ6ASZMmcfnyZerUqcPGjRuZNWuW1Sv4KlrSrzrDyqdSp6RndldFCCFeG5nuoTVp0sT4e4kSJThz5gwPHjwgb968MrXTYyqViuKuoLHN9PcFIYQQzylTn7gpKSnY2tpy8uRJk/R8+fJJMBNCCJGtMhXQ7OzsKFy4sNxrJoQQIsfJ9DmxsWPHMmbMGB48ePAi6iOEEEI8l0xfQ/vuu++4cOECvr6+FClShDx5TCfdPXr0qNUqJ4QQQmRUpgNamzZtXkA1hBBCiKzJdEALDQ19EfUQQgghskTGlQshhMgVMt1DU6vVzxyiLyMghRBCZIdMB7TVq1ebPE9JSeHvv//m119/ZeLEiVarmBBCCJEZmQ5orVu3Nkvr0KED5cuXZ9myZfTt29cqFRNCCCEyw2rX0N588022b99ureKEEEKITLFKQEtISGDWrFn4+clilkIIIbJHpk85Pj0JsaIoxMTE4OTkxKJFi6xaOSGEECKjMh3QvvnmG5OAplar8fLyokaNGuTNm9eqlRNCCCEyKtMBrVevXi+gGkIIIUTWZPoa2vz581m+fLlZ+vLly/n111+tUikhhBAiszId0KZMmYKnp/lKzPnz52fy5MlWqZQQQgiRWZkOaBERERQrVswsvUiRIkRERDxXJb7//nuKFi2Kg4MDNWrU4NChQ8/MP3PmTEqXLo2joyOFChXigw8+IDExMUtlCiGEeLVlOqDlz5+fEydOmKUfP34cDw+PTFdg2bJljBgxgtDQUI4ePUqlSpVo0qQJd+/etZg/LCyMTz75hNDQUE6fPs3cuXNZtmwZY8aMee4yhRBCvPoyHdCCg4MZOnQoO3bsQKvVotVq+eOPPxg2bBhdunTJdAVmzJhB//796d27N+XKlWPOnDk4OTkxb948i/n37dtH7dq16dq1K0WLFqVx48YEBweb9MAyW6YQQohXX6ZHOX722WdcuXKFd955B1tb/eY6nY6ePXtm+hpacnIyR44cYfTo0cY0tVpNw4YN2b9/v8VtatWqxaJFizh06BCBgYFcunSJjRs30qNHj+cuMykpiaSkJOPz6OhoQD9PZUpKSqaOybDdkz+FdUi7Wp+0qfVJm1pfRtsy0wHN3t6eZcuW8fnnn3Ps2DEcHR0JCAigSJEima5kZGQkWq0Wb29vk3Rvb2/OnDljcZuuXbsSGRnJW2+9haIopKamMnDgQOMpx+cpc8qUKRYnVt66dStOTk6ZPi6D8PDw595WpE3a1fqkTa1P2tR64uPjM5Qv0wHNoGTJkpQsWfJ5N39uO3fuZPLkyfzwww/UqFGDCxcuMGzYMD777DPGjRv3XGWOHj2aESNGGJ9HR0dTqFAhGjdujKura6bLS0lJITw8nEaNGmFnZ/dcdRLmpF2tT9rU+qRNrc9w1iw9mQ5o7du3JzAwkFGjRpmkf/XVVxw+fNjiPWpp8fT0xMbGhjt37pik37lzBx8fH4vbjBs3jh49etCvXz8AAgICiIuLY8CAAYwdO/a5ytRoNGg0GrN0Ozu7LL0hs7q9sEza1fqkTa1P2tR6MtqOmR4Usnv3bpo3b26W3qxZM3bv3p2psuzt7alatarJLP06nY7t27dTs2ZNi9vEx8ejVptW28bGBtDPK/k8ZQohhHj1ZbqHFhsbi729vVm6nZ1dhruFTxoxYgQhISFUq1aNwMBAZs6cSVxcHL179wagZ8+e+Pn5MWXKFACCgoKYMWMGVapUMZ5yHDduHEFBQcbAll6ZQgghcp9MB7SAgACWLVvG+PHjTdKXLl1KuXLlMl2Bzp07c+/ePcaPH8/t27epXLkymzdvNg7qiIiIMOmRffrpp6hUKj799FNu3LiBl5cXQUFBfPHFFxkuUwghRO6T6YA2btw42rVrx8WLF3n77bcB2L59O2FhYaxYseK5KjF48GAGDx5s8bWdO3eaPLe1tSU0NJTQ0NDnLlMIIUTuk+mAFhQUxJo1a5g8eTIrVqzA0dGRSpUq8ccff5AvX74XUUchhBAiXc81bL9Fixa0aNEC0A+nXLJkCSNHjuTIkSNotVqrVlAIIYTIiEyPcjTYvXs3ISEh+Pr68vXXX/P2229z4MABa9ZNCCGEyLBM9dBu377NggULmDt3LtHR0XTq1ImkpCTWrFnzXANChBBCCGvJcA8tKCiI0qVLc+LECWbOnMnNmzeZPXv2i6ybEEIIkWEZ7qFt2rSJoUOH8t5772XLlFdCCCHEs2S4h7Znzx5iYmKoWrUqNWrU4LvvviMyMvJF1k0IIYTIsAwHtDfffJNffvmFW7du8e6777J06VJ8fX3R6XSEh4cTExPzIusphBBCPFOmRznmyZOHPn36sGfPHv755x8+/PBDpk6dSv78+WnVqtWLqKMQQgiRrucetg9QunRpvvrqK65fv86SJUusVSchhBAi07IU0AxsbGxo06YN69ats0ZxQgghRKZZJaAJIYQQ2U0CmhBCiFxBApoQQohcQQKaEEKIXEECmhBCiFxBApoQQohcQQKaEEKIXEECmhBCiFxBApoQQohcQQKaEEKIXEECmhBCiFxBApoQQohcQQKaEEKIXEECmhBCiFxBApoQQohcQQKaEEKIXEECmhBCiFxBApoQQohcQQKaEEKIXCFHBLTvv/+eokWL4uDgQI0aNTh06FCaeevXr49KpTJ7tGjRwpgnNjaWwYMHU7BgQRwdHSlXrhxz5sx5GYcihBAim2R7QFu2bBkjRowgNDSUo0ePUqlSJZo0acLdu3ct5l+1ahW3bt0yPk6ePImNjQ0dO3Y05hkxYgSbN29m0aJFnD59muHDhzN48GDWrVv3sg5LCCHES5btAW3GjBn079+f3r17G3tSTk5OzJs3z2L+fPny4ePjY3yEh4fj5ORkEtD27dtHSEgI9evXp2jRogwYMIBKlSo9s+cnhBDi1WabnTtPTk7myJEjjB492pimVqtp2LAh+/fvz1AZc+fOpUuXLuTJk8eYVqtWLdatW0efPn3w9fVl586dnDt3jm+++cZiGUlJSSQlJRmfR0dHA5CSkkJKSkqmj8uwzfNsK9Im7Wp90qbWJ21qfRlty2wNaJGRkWi1Wry9vU3Svb29OXPmTLrbHzp0iJMnTzJ37lyT9NmzZzNgwAAKFiyIra0tarWaX375hbp161osZ8qUKUycONEsfevWrTg5OWXiiEyFh4c/97YibdKu1idtan3SptYTHx+foXzZGtCyau7cuQQEBBAYGGiSPnv2bA4cOMC6desoUqQIu3fv5v3338fX15eGDRualTN69GhGjBhhfB4dHU2hQoVo3Lgxrq6uma5XSkoK4eHhNGrUCDs7u8wfmLBI2tX6pE2tT9rU+gxnzdKTrQHN09MTGxsb7ty5Y5J+584dfHx8nrltXFwcS5cuZdKkSSbpCQkJjBkzhtWrVxtHPlasWJFjx44xffp0iwFNo9Gg0WjM0u3s7LL0hszq9sIyaVfrkza1PmlT68loO2broBB7e3uqVq3K9u3bjWk6nY7t27dTs2bNZ267fPlykpKS6N69u0m64bqXWm16aDY2Nuh0OutVXgghRI6S7accR4wYQUhICNWqVSMwMJCZM2cSFxdH7969AejZsyd+fn5MmTLFZLu5c+fSpk0bPDw8TNJdXV2pV68eH330EY6OjhQpUoRdu3bx22+/MWPGjJd2XEJYm1artfpAg5SUFGxtbUlMTESr1Vq17NeVtGnm2dnZYWNjk+Vysj2gde7cmXv37jF+/Hhu375N5cqV2bx5s3GgSEREhFlv6+zZs+zZs4etW7daLHPp0qWMHj2abt268eDBA4oUKcIXX3zBwIEDX/jxCGFtiqJw+/ZtoqKiXkjZPj4+XLt2DZVKZfXyX0fSps/H3d0dHx+fLLVZtgc0gMGDBzN48GCLr+3cudMsrXTp0iiKkmZ5Pj4+zJ8/31rVEyJbGYJZ/vz5cXJysuqHpE6nIzY2FmdnZ7MvjuL55Jg2TUmE5DhwdAd11ns/L4qiKMTHxxsn0yhQoMBzl5UjApoQwjKtVmsMZk+fXrcGnU5HcnIyDg4OEtCsJEe0aeIjiL0Kig6UeMhXPEcHNUdHRwDu3r1L/vz5n/v0o7yDhcjBDNfMsnI/pHjNxN+HB5f0wQwgORYeXvnveQ5leI9n5TqxBDQhXgFyLUakS1Eg5jZEReifO+YDjxKAGpKi4eFVfZ4cyhrvcQloQgjxqlMUeHQdYm7pnzt7g3th0LhAvmKAChKj4NG1HB3UskoCmhDilVC0aFFmzpyZ4fw7d+5EpVK9kNGhOYpOCw8uQ3yk/rlrQXD1BUOPx8EV8hbR/x5/H6Jv5tqgJgFNCGFVltYrfPIxYcKE5yr38OHDDBgwIMP5a9Wqxa1bt3Bzc3uu/T2PMmXK4OjoaDb70QujTYX7FyHpEaCCvMXA2cs8n2NefY8NIO4uxL6k+r1kEtCEEFb15HqFM2fOxNXV1SRt5MiRxryKopCampqhcr28vDI1OMbe3j7L9zVlxp49e0hISKB9+/YsWbLkxe8wNQkiz0FKHKhs9NfLHN2NL5sNrnDyAFc//e8xtyDW8pqTrzIJaEK8YhRFIT451WqPhGRthvI9697PJz25XqGbmxsqlcr4/MyZM7i4uLBp0yaqVq2KRqNhz549XLx4kdatW+Pt7Y2zszPVq1dn27ZtJuU+fcpRpVLxv//9j7Zt2+Lk5ETJkiVNFvF9+pTjggULcHd3Z8uWLZQtWxZnZ2eaNm3KrVu3jNukpqYydOhQ3N3d8fDwYNSoUYSEhNCmTZt0j3vu3Ll07dqV7t27s3jxYrPXr1+/TnBwMPny5SNPnjxUq1aNgwcPGl9fv3491atXx8HBAU9PT9q2bWtyrGvWrPmvsOR43D28WBC2HNR2XIm1R+XgwrJly6hXrx4ODg4sXryY+/fvExwcjJ+fH05OTgTUfIclmx8vzRV9A+Lvo9Pp+OqrryhRogQajYbChQvzxRdfAPD222+b3SN879497O3tTaYszCnkPjQhXjEJKVrKjd/y0vd7alITnOyt85HxySefMH36dIoXL07evHm5du0azZs354svvkCj0fDbb78RFBTE2bNnKVy4cJrlTJw4ka+++opp06Yxe/ZsunXrxtWrV8mXL5/F/PHx8UyfPp2FCxeiVqvp3r07I0eONAagL7/8ksWLFzN//nzKli3Lt99+y5o1a2jQoMEzjycmJobly5dz8OBBSpUqRXR0NH/++Sf16tUDIDY2lnr16uHn58e6devw8fHh6NGjxvllN2zYQNu2bRk7diy//fYbycnJbNy40fLOkmL0w/JRwMYOvEpB4k1ju3799ddUqVIFBwcHEhMTqVq1KqNGjcLV1ZUNGzbQY8BQ/LeuJrBMQYiKYPTXk/hl/kK++eYb3nrrLW7dumVcvqtfv34MHjyYr7/+2jiB+6JFi/Dz8+Ptt99+ZptkBwloQoiXbtKkSTRq1Mj4PF++fFSqVMn4/LPPPmP16tWsW7cuzVmEAHr16kVwcDAAkydPZtasWRw6dIimTZtazJ+SksKcOXPw9/cH9LMUPblix+zZsxk9erSxd/Tdd9+lHViesHTpUkqWLEn58uXR6XS0a9eOefPmGQNaWFgY9+7d4/Dhw8ZgW6JECeP2X3zxBV26dDFZl/HJ9jCKf/B4WL4CqPSjGW3sjS8PHz6cdu3amWzy5CneIUOGsGXLFn7fsJPAN4YRczeCb7+fw3ffTCckJAQAf39/3nrrLQDatWvH4MGDWbt2LZ06dQL0Pd1evXrlyFtJJKAJ8YpxtLPh1KQmVilLp9MREx2Di6tLurNaONpZb6aJatWqmTyPjY1lwoQJbNiwgVu3bpGamkpCQgIRERHPLKdixYrG3/PkyYOrq6txCiVLnJycjMEM9NMsGfI/uneLO3fuEOjvoQ8aTh7Y2DlRtWrVdFfqmDdvnsnKH506daJly5Z89913uLi4cOzYMapUqZJmz/HYsWP079//mfsgIQqirup/d3AHldps9o+n21Wr1TJ58mR+//13bty4QXJyMklJSfprkW6FOH34KElJybxTxR+SYkHjbLK9g4MDPXr0YN68eXTq1ImjR49y8uRJk1O7OYkENCFeMSqVymqn/nQ6Han2NjjZ277UaZry5Mlj8nzkyJGEh4czffp0SpQogaOjIx06dCA5OfmZ5Ty9TpZKpXpm8LGUXzHcw3X/kj5R0eqHt8ffB1sH/eALVdrB/NSpUxw4cIBDhw4xatQoY7pWq2Xp0qX079/fOLVTWp75uqLo6xl/X/88jxe4+lmcUePpdp02bRrffvstM2fOJCAggDx58jB8+HB9u6pUOHoXe5xTpz+N6VEC7E0H3vTr14/KlStz/fp15s+fz9tvv02RIkWeeTzZRQaFCCGy3d69e+nVqxdt27YlICAAHx8frly58mJ3qiiQFKf/Pe4ebq4ueOf35PC52/ph7qjQJsVx9O+/9det7l+EhIdmU0jNnTuXunXrcvz4cY4dO8bRo0fZvXs3H3zwAXPnzgX+W2T4wYMHFqtSsWJFy4MsdDp4eAUvj7zcuhOpv7/MrSDnL1wgPj4+3UPcu3cvrVu3pnv37lSqVInixYtz7tw54+slS5XG0dGR7fuP6wP5g4v6SY2fEBAQQLVq1fjll18ICwujT58+6e43u0hAE0Jku5IlS7Jq1SqOHTvG8ePH6dq164tdkDc1Sd8jiXt8P5aNPeTzZ8jQ4UyZPpO1u49z9pEdwz7/kYePYvTXi5Ki9XMi3j6p79Elx5OSnMzChQsJDg6mQoUKxke5cuXo27cvBw8e5N9//yU4OBgfHx/atGnD3r17uXTpEitXrmT/fv2Iw9DQUJYsWUJoaCinT5/mn3/+4cupU/QBJjGKt2tX57uFq/j7/E3++usvBg4cmKFVnEuWLEl4eDj79u3j9OnTvPvuuyb3yDk4ODBq1Cg+/uxrflu1hYuXLnNg60rm/jzHpJx+/foxdepUFEUxGX2ZLm2q/lTpoxv6mf9fMAloQohsN2PGDPLmzUutWrUICgqiSZMmvPHGGy9mZzF34O4ZfYDi8cAGr7Lg4MqoUaMIDg6mZ8+e1KxdB+e8XjRp2gwHV0/9AAy1nb4nE3cPIs+ybtEc7t+/T9tWLc12U7ZsWcqWLcvcuXOxt7dn69at5M+fn+bNmxMQEMDUqVONs8rXr1+f5b//zrp1a6lcuTJvv92AQ3t26CcWVqn5+ptZFCpclDp16tC1a1dGjhyZoXvyPv30U9544w2aNGlC/fr1jUH1SePGjePDDz9k/PQ5lK3fns7vjuTu1bOg/e+UZnBwMLa2tgQHB+Pg4JD2DlOTHw9cuQZ3T8Odf+DhZf3N3ImP0q1vVqmUjN5c8hqJjo7Gzc2NR48e4erqmuntU1JS2LhxI82bN8/QtyiRMa9juyYmJnL58mWKFSv27A+S56TT6YiOjsbV1TX3Lx+TFKufyzD18Sk1e2dwKwR2aberTqejbNmydOrUic8+++zxacoY/fW1xEfoRxsCqPRTTDl6oNM4Ex0dY9qmOh3oUvRBwvDT0u9Pz4ivtgOP4mD3klZb0CZD5Hn9T1sH8CgJNrZcuXIFf39/Dh8+/N8XDUUBbZK+XZPj9MFXa+Gap60D2OfRD2RxSPvz9Fnv9Yx+JsugECFE7qZNhZgb+p4DgNpWfy3KMd9/8x0+dvXqVbZu3Uq9evVISkriu+++4/Lly3Tt2lWfQfU4cDm46stNfKgvNyVeH+ASH6FS2+Kk0qB6EPlfwFK0Ga+vykZ/f5mtRj+zh63GSg2RATb2+oEhkechNZGUO2e4T14+/fRT3nzzTd4IKAOx9/TBKzkWdBZmebFz1H9ZsHfWBzKbl/flUwKaEK+qpBj9N3r7PPoPaWFKUSDhgf76jSGgOHmAiy/YWG4vtVrNggULGDlyJIqiUKFCBbZt20bZsmXNM9vY6kcc5vGClAR9YEt4gEqXij2pYBbDVPoPdxs7fc8rrd+zeyFOWw14+EPkefbu3U+DjgMo5V+MFT9Pg3tnn8qs0o+KfDKAZWP95b/gRcnhi+m9FgzDse+ehrun9D8fXoGib8FbH5jdc/NKiX/w3z1JALaO+uOxz6P/YHmJ34pzpJSExwM3YvXPbR30pxfT+ZsXKlSIvXv3Zn5/do7g5geuBVASo0mMjcLByRmVjb1poMqBNyNbZOcIHv7Ur62g3Dj6X7pK/d97zN5Zfyo0B52qloD2Aqgu7aDuuYlQ5w3wyJn3a+QqiqK/SG8IWsafZyA5xjz/tQNwbDE0nAgVO706HzIGKQn6a0Gg75npUiE1Qf+Iu6dPt9E8FeDsX73jfB46rX4m+di7gKL/AHbx0feiVC/hg1elRtG4kpQEGkdXVDnowz7T7PPoTz/GRf53GtHOMUe/jySgWZs2FZstn5A3/jLK/MbQdRn4Vs7uWuUatqlxqK4dhAfnHgetxwHMcNPp09S24FkK8pfVP5w8YO+3+p7a6gHw11xo9iX4Vnmpx/HcdKn64eaK7vHijf76tOTHF+aTYvWBTZsE8Un/tYvaTv+BpHkc4GwdcvQH0zPpdKCk6oOXTqs/fuXxz7jI/wYmaNzArSDY2j+7PJE2+zz6xytCApq12diS2nUFCf9riWvsDZjfHDrMhdLNsrtmlul0+lFfhkdKwuOfhrQE/cVvJw/9N10Xnxd/OivhoX7BwoeXn/h5BdsHF2kRcwv+sbSRCvIV/y9w5S8L+cvpP/Cf/kCr1BUOfA+7v4ZrB+HnBvBGD3h7vOW1pHIKRYGHV/Uf2Db24F5UH5Rs7PQ3Ajvm1efTpf436iwpTj9gQZeiH8CQ+FCfR2UD9s6o7PNgl5qCKkELKPpAqej0+1J0wBO/P/3ak+mg7wGp1Po6pfU7z8ijKI8D0+PgZAhYTwcv0hmYrbbTB7InllIRrwcJaC+CWyH+LDWOZjFLUV/eCUu7QpMp8ObAl1uP89vg8C/60VfGQJWgv6k0NUEftLRJmS83j9fj4Ob7+GcBcC2g/2lId/JI+9y6Tgexty0Ercv63kdilMXNDP0JxdUPVf5y/wWt/GX1vTD7DA5ttnOAOh9CpWDYNgFOLIOjv8G/a6H+KAgckDOvQcXe/u/eqbzF0hzYgNoWHNz0D9AHgpT4xwEuVv+7ooWkR6iSHpEH4NkzTOVMalt9YFbb6H9X2+h7nnm8sn9ghcgWEtBekFQbJ7Sdl6AOHw1HFsDmUfoP66ZTXvw/W1IsbB2r329mqG31gwvsHJ74qdGnx93XLwqoS9Ffp4m7B7ctdpX+K8vZ53Gg8wEnT/21jQeX9Kf7DPcCpcXZW/+hna+Y8WeqayG2HL1C46AO1rkPzdUX2v0M1frCpo/h1jHYMkbfbk2nQol3sr4Pa0mKgbjb+t/dC2U8eIP+/aZx0T9c0PeoUhIgORYlKZbUlGRsbe1QZaSHpVIDT6YZel6Y9+Sw0JOz9LuhF2ioqyE4qZ74/eng9eR+hXhMAtqLZGMHLWfqT3uFj4NDP+k/zDvMe3Ej7K7uhzUD9fsBfW+j6FumgcpWo7+4a+vw309bh7S/8RvodPph0DG3IPqW/mfMbYi5qf8Z/fhn3D39qaHo6/qHJSob/QfzU0GLvMUgb1GL7aOkpJB6/AWsslu4BvT/A/5eBNsn6VcBXtQOSjeHJl/oT2VmJ10qPLqp/2918tT3frPCOFItD4qTF3GPb6x+pQcwCIEEtBdPpYLaQyFvEVg1AM5vgflNIXiZfpivtaQmwR+fw77ZgKIfotzmByhW13r7UKshj6f+4ROQdj5tir43FnP7v+AXdw+c8/8XtNwL56zTemobqBoC5VrDrq/0Xz7OboQL26DmYP0pyuwY5p8crx/o4OIGds7Wfc/kcPXr16dy5crGVaqLFi3K8OHDGT58eJrbqFQqVq9enaEVpp/FWuWIl0sC2stSrrX+rv8lXfSn6v73jn4EZAELi/hl1q0TsPpd/Wg/gMrdoenk/66hvGw2jy/KuxXMnv1nhaO7vu2qhsDmT+DiH7BnBhxf8vKH+SsK7JwMXo1AZQv5ir6coedZFBQUREpKCps3bzZ77c8//zTOTP/kWmYZcfjwYbPlUbJqwoQJrFmzhmPHjpmk37p1i7x581p1X2lJSEjAz88PtVrNjRs3jCtDi8zL+f8duUnBatBvO3iV0fdc5jWDs+b/9BmmTYXd0+GXt/XBLI8XdAmDNt9nXzDLLbxKQ/dV+vbMW1T/91o9AOY1gZt/v5w6HPwJzm0GVPqemc2rMfy8b9++hIeHc/26+enm+fPnU61atUwHMwAvL68MTchrDT4+Pi8tsKxcuZLy5ctTpkwZ1qxZ81L2mRZFUUhNtTCd1StCAtrLlrcI9NkCxetDShwsDdZ/cGXW/Yv6U5d/fKYfqFGmJQw6AGVaWL3Kry2VSt+egw7CO+PBLs9/w/z/7wNIjH5x+766Tz+wB/S9xifvBVKUx8PyrfRIic9YvgzOY96yZUu8vLxYsGCBSXpsbCzLly+nb9++3L9/n+DgYPz8/HByciIgIIAlS5Y8s9yiRYsaTz8CnD9/nrp16+Lg4EC5cuUIDw8322bUqFGUKlUKJycnihcvzrhx44wLYy5YsICJEydy/PhxVCoVKpXKWGeVSmUSXP755x/efvttHB0d8fDwYMCAAcTGxhpf79WrF23atGH69On4+flRvHhxBg8ebHERzqfNnTuX7t270717d+P6aU/6999/admyJa6urri4uFCnTh0uXrxofH3evHmUL18ejUZDgQIFGDx4MABXrlxBpVKZ9D6joqJQqVTs3LkTgJ07d6JSqdi0aRNVq1ZFo9GwZ88eLl68SOvWrfH29sbZ2Znq1auzbds2k3olJSUxatQoChUqhEajoUSJEsydOxdFUShRogTTp083yX/s2DFUKhUXLlxIt02el5xyzA6O7tBthf5D8e+F+hF2Dy5Bk8npj4DU6fQ3A28dpx96r3GF5tOgYmcZ9fWiPDnMPzwU/vkd/poH57boB/2Uamzd/UXfgt9D9INBSjXVj058Uko8TPa1yq7UgHtGM4+5maGbbG1tbenZsycLFixg7Nix+rXEgOXLl6PVagkODiY2NpaqVasyatQoXF1d2bBhAz169MDf35/AwMB096HT6WjXrh3e3t4cPHiQR48eWby25uLiwoIFC/D19eWff/6hf//+uLi48PHHH9O5c2dOnjzJ5s2bjR/Wbm7mZzbi4uJo0qQJNWvW5PDhw9y9e5d+/foxePBgk6C9Y8cOChQowPbt2zlx4gR9+/alSpUq9O/fP83juHjxIvv372fVqlUoisIHH3zA1atXjStC37hxg7p161K/fn3++OMPXF1d2bt3r7EX9eOPPzJixAimTp1Ks2bNePTo0XNN3fXJJ58wffp0ihcvTt68ebl27RrNmzfniy++QKPR8NtvvxEUFMTZs2cpXLgwAD179mT//v3MmjWLSpUqcfnyZSIjI1GpVPTp04f58+czcuRI4z7mz59P3bp1KVGiRKbrl1ES0LKLjR20mq2fBHTbBDg4R3/TbPv/pT344NENWPs+XNqhf16snn7gx6t4repV5OoL7X+BN3rCuiH6e+fCOkJAJ/1sI075sr6P1GT4vad+/aj85aH+GLhxJ/3tcpg+ffowbdo0du3aRf369QH9B1r79u1xc3PDzc3N5MNuyJAhbNmyhd9//z1DAW3btm2cOXOGLVu24OurD+6TJ0+mWTPTCQw+/fRT4+9FixZl5MiRLF26lI8//hhHR0ecnZ2xtbXFx8cnzX2FhYWRmJjIb7/9ZryG99133xEUFMSXX36Jt7c3AHnz5uW7775DpVLh6+tL8+bN2b59+zMD2rx582jWrJnxel2TJk2YP38+EyZMAOD777/Hzc2NpUuXGm9VKVWqlHH7zz//nA8//JBhw4YZ06pXr55u+z1t0qRJNGrUyPg8X758VKr03/X9zz77jNWrV7Nu3ToGDx7MuXPn+P333wkPD6dhw4YAFC/+32jgXr16MX78eA4dOkRgYCApKSmEhYWZ9dqsLUcEtO+//55p06Zx+/ZtKlWqxOzZs9N8U9evX59du3aZpTdv3pwNGzYYn58+fZpRo0axa9cuUlNTKVeuHCtXrjR+u8gRVCr9JLl5i+kHdZzbBPOb6QeLuD7xDVxR4J/lsGEkJD3SD71vNAmq98tRE4O+NorVgff2wY4v4MAP+h7bxT/0PeXybbPWU94yBq4f0l8D7bLI8v1mdk763pIV6HQ6omNicHVxSX89tEysyVWmTBlq1arFvHnzqF+/PhcuXODPP/9k0qRJAGi1WiZPnszvv//OjRs3SE5OJikpKcPXyE6fPk2hQoWMwQygZs2aZvmWLVvGrFmzuHjxIrGxsaSmpmZ6jcPTp09TqVIlkwEptWvXRqfTcfbsWWNAK1++PDY2NsaVtgsUKMDJkyfTLFer1fLrr7/y7bffGtO6d+/OyJEjGT9+PGq1mmPHjlGnTh2L913evXuXmzdv8s47Wb9fslq1aibPY2NjmTBhAhs2bODWrVukpqaSkJBAREQEoD99aGNjQ7169SyW5+vrS4sWLZg3bx6BgYGsX7+epKQkOnbsmOW6Pku2fxouW7aMESNGEBoaytGjR6lUqRJNmjTh7l3L9xutWrWKW7duGR8nT57ExsbGpKEuXrzIW2+9RZkyZdi5cycnTpxg3LhxL2SBRKso3wZC/k9/j9HtE/DLO//dtBx3X/+NfVV/fTDzqwYD90CNARLMspO9k/4etb7b9Ksdx0fCit6wrLv+doXncSxMP7MLQLtf0r7/TaX6b449azzsnDKWL5OBum/fvqxcuZKYmBjmz5+Pv7+/8QNw2rRpfPvtt4waNYodO3Zw7NgxmjRpQnKy9aYs2b9/P926daN58+b83//9H3///Tdjx4616j6e9HTQUalUxuBmyZYtW7hx4wadO3fG1tYWW1tbunTpwtWrV9m+fTsAjo6OaW7/rNcA4xeUJ9dwTuua3tOjR0eOHMnq1auZPHkyf/75J8eOHSMgIMDYduntG6Bfv34sXbqUhIQE5s+fT+fOnV/4oJ5s/0ScMWMG/fv3p3fv3pQrV445c+bg5OTEvHnzLObPly8fPj4+xkd4eDhOTk4mAW3s2LE0b96cr776iipVquDv70+rVq3Inz//yzqszCtUHfpvB8/S+huV5zWF3dPghzfh9Dr97Ahvf6ofUOL54s5Bi0wqWBXe3QX1Run/Rmf+D74P1N+knZnF4G8d119TBag/Gko1eTH1fYk6deqEWq0mLCyM3377jT59+hivp+3du5fWrVvTvXt3KlWqRPHixTl37lyGyy5btizXrl3j1q1bxrQDBw6Y5Nm3bx9FihRh7NixVKtWjZIlS3L16lWTPPb29mi1z158s2zZshw/fpy4uDhj2t69e1Gr1ZQuXTrDdX7a3Llz6dKlC8eOHTN5dOnSxTg4pGLFivz5558WA5GLiwtFixY1Br+neXnp5yV9so2evj0hLXv37qVXr160bduWgIAAfHx8uHLlivH1gIAAdDqdxbNlBs2bNydPnjz8+OOPbN68mT59+mRo31mRracck5OTOXLkCKNHjzamqdVqGjZsyP79+zNUhuFNYfiGodPp2LBhAx9//DFNmjTh77//plixYowePTrNmySTkpJISvpvTsPoaP3otZSUlAyNUnqaYZtMb+vsByEbsVnZC/WVP/U3SgOKVxlSW/0APhVBp+hHNb6GnrtdXzg1vPURlGyOzf8NRX37OKx9H90/K9A2+1p/E/mzxD/Adml3VKmJ6Eo0RlvrA3jiWBVFQafTPfPb/vMyfHs37MOanJyc6NSpE6NHjyY6OpqePXsa91GiRAlWrlzJnj17yJs3L9988w137tyhbNmyJvV4ul6G52+//TalSpWiZ8+efPXVV0RHRzN2rH5UqKGt/P39iYiIICwsjOrVq7Nx40ZWr15tzANQuHBhLl++zNGjRylYsCAuLi7G4fqGcoKDgwkNDaVnz56EhoZy7949hgwZQvfu3fHy8kKn06EoirFuylNfZCy1671791i/fj1r1qyhXLlyJq91796d9u3bExkZyaBBg5g9ezadO3fmk08+wc3NjQMHDhAYGEjp0qUZP348gwYNwsvLi6ZNmxITE8O+ffsYPHgwGo2GN998k6lTp1KkSBHu3r1rvKZoODZD3Z5+f5UoUYJVq1bRokULVCoV48ePNx6bTqejcOHC9OzZkz59+jBz5kwqVarE1atXuXv3Lp06dQL0PdSQkBBGjx5NyZIlqVGjxjPfY4byU1JSsLExHRyX0f/5bA1okZGRaLVa4zloA29vb86cOZPu9ocOHeLkyZMmQ13v3r1LbGwsU6dO5fPPP+fLL79k8+bNtGvXjh07dlg85ztlyhQmTpxolr5169YsdZEtDSPOCJVbbyp62FLowR4ueTXkTIH26I5eB9KYRuo187zt+jKofIbjr95MmVursLm0A92PNTnl24nLnu9Yvila0VHz4nTyx0QQa5+fXY5tSd30372JhgELsbGxL+xUGUBMjIV146ygc+fOzJs3j0aNGuHs7Gz8sjh06FDOnTtHs2bNcHR0JCQkhObNmxMdHW3Mk5qaSnJysvG5TqcjMTHR+PzXX39lyJAhvPnmmxQuXJipU6fSoUMHEhISiI6Opn79+rz33nsMGTKE5ORkGjVqxMiRI5k6daqxjEaNGvHOO+/w9ttv8+jRI77//nu6du0KYCwH9CM0R48eTY0aNXB0dKRVq1Z8/vnnJl9+U1NTjc9B/4X96TSDX375BScnJ6pXr272evXq1XFwcGDu3Lm8++67rFmzhtDQUBo0aICNjQ0VKlSgUqVKREdH07ZtW6Kiovj+++/56KOP8PDwoFWrVsYyZ86cyZAhQ6hevTolSpRg4sSJtGvXjvj4eKKjo4mPjwf0f/8nr6FOnDiRwYMH89Zbb5EvXz6GDRvGw4cPTf4eU6dO5bPPPuP999/nwYMHFCxYkBEjRpgcT6dOnZgyZQpdunSx2A5PSk5OJiEhgd27d5vdC2eoZ3pUytNfJ16imzdv4ufnx759+0wu6H788cfs2rWLgwcPPnP7d999l/3793PixAmzMoODgwkLCzOmt2rVijx58li818VSD61QoUJERkZm+gIy6N/c4eHhNGrUKGuT6OpS9aexBGDFdn0Z7l/AZsNw1Nf0p8F0hd5E2+Ib8Chpkk29czI2e2eg2DmRGrIJvMubvJ6YmMi1a9coWrToC7kGrCgKMTExuLi4GE8HiqyRNv3Pn3/+SaNGjbh69apZx+VpiYmJXLlyhUKFCpm916Ojo/H09OTRo0fP/EzO1k9LT09PbGxsuHPHdFjynTt3njmMFvT3hixdutQ4aurJMm1tbc268WXLlmXPnj0Wy9JoNBZnBbCzs8vSB2dWt4cc/qGdTbLeri+BT1novUl/z+C2CaivHUD9S31oMBpqDtFPBH36/2DvDABUrWZjV7CyWTFarRaVSoVarU5/FOJzMJwCMuxDZJ20qb6TcO/ePSZNmkTHjh0pUKBAutuo1WpUKpXF/++M/r9na2vb29tTtWpVk4uaOp2O7du3WxyC+6Tly5eTlJRE9+7dzcqsXr06Z8+eNUk/d+6c8WZFIV4KtRoC+8Og/eD/tn7tuW0T9PN4nloHqx+vj/fmIAjokK1VFcKalixZQpEiRYiKiuKrr756afvN9vNZI0aMICQkhGrVqhEYGMjMmTOJi4ujd+/egP5udD8/P6ZMmWKy3dy5c2nTpg0eHuZLaXz00Ud07tyZunXr0qBBAzZv3sz69euN070I8VK5F9bPC3ksDLaM1q+79nsP/WtFauvvKRQiF+nVqxe9evV66fvN9oDWuXNn7t27x/jx47l9+zaVK1dm8+bNxvOtERERZt32s2fPsmfPHrZu3WqxzLZt2zJnzhymTJnC0KFDKV26NCtXruStt9564ccjhEUqFVTpBiUawsYP4fR6/QrfHRfkrGV0hHiFZXtAAxg8eLBxQs2nWepVlS5d2mxo7NP69OnzUu57ECJTXLyh8yK4cQTcCoOzV4Y2y8axW0K8FNZ4j+eIgCbEa8evaoayGS6Gx8fHZ2h2BiFeVYah+VkZ8CUBTYgczMbGBnd3d+NUcE5OTlYdCq7T6UhOTiYxMfG1HZFnbdKmmaMoCvHx8dy9exd3d3ezm6ozQwKaEDmc4RaWtOY3zQpFUUhISMDR0fG1v2fKWqRNn4+7u3u6t2ulRwKaEDmcSqWiQIEC5M+f3+rTfqWkpLB7927q1q2b8+/te0VIm2aenZ1dlnpmBhLQhHhF2NjYWOWf/ukyU1NTcXBwkA9fK5E2zT5yglcIIUSuIAFNCCFEriABTQghRK4g19AsMNzgl95yB2lJSUkxLs8g59CtR9rV+qRNrU/a1PoMn8Xp3XwtAc0Cw9pQhQoVyuaaCCGEMIiJicHNzS3N17N1PbScSqfTcfPmzedez8iwntq1a9eeaz01YZm0q/VJm1qftKn1GdaY8/X1febN6tJDs0CtVlOwYMEsl+Pq6ipv6BdA2tX6pE2tT9rUup7VMzOQQSFCCCFyBQloQgghcgUJaC+ARqMhNDQUjUaT3VXJVaRdrU/a1PqkTbOPDAoRQgiRK0gPTQghRK4gAU0IIUSuIAFNCCFEriABTQghRK4gAe0F+P777ylatCgODg7UqFGDQ4cOZXeVXlkTJkxApVKZPMqUKZPd1Xrl7N69m6CgIHx9fVGpVKxZs8bkdUVRGD9+PAUKFMDR0ZGGDRty/vz57KnsKyK9Nu3Vq5fZe7dp06bZU9nXhAQ0K1u2bBkjRowgNDSUo0ePUqlSJZo0acLdu3ezu2qvrPLly3Pr1i3jY8+ePdldpVdOXFwclSpV4vvvv7f4+ldffcWsWbOYM2cOBw8eJE+ePDRp0oTExMSXXNNXR3ptCtC0aVOT9+6SJUteYg1fQ4qwqsDAQOX99983PtdqtYqvr68yZcqUbKzVqys0NFSpVKlSdlcjVwGU1atXG5/rdDrFx8dHmTZtmjEtKipK0Wg0ypIlS7Khhq+ep9tUURQlJCREad26dbbU53UlPTQrSk5O5siRIzRs2NCYplaradiwIfv378/Gmr3azp8/j6+vL8WLF6dbt25ERERkd5VylcuXL3P79m2T962bmxs1atSQ920W7dy5k/z581O6dGnee+897t+/n91VytUkoFlRZGQkWq0Wb29vk3Rvb29u376dTbV6tdWoUYMFCxawefNmfvzxRy5fvkydOnWMS/yIrDO8N+V9a11Nmzblt99+Y/v27Xz55Zfs2rWLZs2aodVqs7tquZbMti9ytGbNmhl/r1ixIjVq1KBIkSL8/vvv9O3bNxtrJsSzdenSxfh7QEAAFStWxN/fn507d/LOO+9kY81yL+mhWZGnpyc2NjbcuXPHJP3OnTv4+PhkU61yF3d3d0qVKsWFCxeyuyq5huG9Ke/bF6t48eJ4enrKe/cFkoBmRfb29lStWpXt27cb03Q6Hdu3b6dmzZrZWLPcIzY2losXL1KgQIHsrkquUaxYMXx8fEzet9HR0Rw8eFDet1Z0/fp17t+/L+/dF0hOOVrZiBEjCAkJoVq1agQGBjJz5kzi4uLo3bt3dlftlTRy5EiCgoIoUqQIN2/eJDQ0FBsbG4KDg7O7aq+U2NhYk57B5cuXOXbsGPny5aNw4cIMHz6czz//nJIlS1KsWDHGjRuHr68vbdq0yb5K53DPatN8+fIxceJE2rdvj4+PDxcvXuTjjz+mRIkSNGnSJBtrnctl9zDL3Gj27NlK4cKFFXt7eyUwMFA5cOBAdlfpldW5c2elQIECir29veLn56d07txZuXDhQnZX65WzY8cOBTB7hISEKIqiH7o/btw4xdvbW9FoNMo777yjnD17NnsrncM9q03j4+OVxo0bK15eXoqdnZ1SpEgRpX///srt27ezu9q5miwfI4QQIleQa2hCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaEIIIXIFCWhCCCFyBQloQgghcgUJaOKl6NWrF0WLFn2ubSdMmIBKpbJuhXKYK1euoFKpWLBgwUvft0qlYsKECcbnCxYsQKVSceXKlXS3LVq0KL169bJqfbLyXhGvNwlorzmVSpWhx86dO7O7qq+9oUOHolKpuHDhQpp5xo4di0ql4sSJEy+xZpl38+ZNJkyYwLFjx7K7KkaGLxXTp0/P7qqI52Sb3RUQ2WvhwoUmz3/77TfCw8PN0suWLZul/fzyyy/odLrn2vbTTz/lk08+ydL+c4Nu3boxe/ZswsLCGD9+vMU8S5YsISAggIoVKz73fnr06EGXLl3QaDTPXUZ6bt68ycSJEylatCiVK1c2eS0r7xXxepOA9prr3r27yfMDBw4QHh5ulv60+Ph4nJycMrwfOzu756ofgK2tLba28latUaMGJUqUYMmSJRYD2v79+7l8+TJTp07N0n5sbGywsbHJUhlZkZX3ini9ySlHka769etToUIFjhw5Qt26dXFycmLMmDEArF27lhYtWuDr64tGo8Hf35/PPvsMrVZrUsbT10WePL3z888/4+/vj0ajoXr16hw+fNhkW0vX0FQqFYMHD2bNmjVUqFABjUZD+fLl2bx5s1n9d+7cSbVq1XBwcMDf35+ffvopw9fl/vzzTzp27EjhwoXRaDQUKlSIDz74gISEBLPjc3Z25saNG7Rp0wZnZ2e8vLwYOXKkWVtERUXRq1cv3NzccHd3JyQkhKioqHTrAvpe2pkzZzh69KjZa2FhYahUKoKDg0lOTmb8+PFUrVoVNzc38uTJQ506ddixY0e6+7B0DU1RFD7//HMKFiyIk5MTDRo04N9//zXb9sGDB4wcOZKAgACcnZ1xdXWlWbNmHD9+3Jhn586dVK9eHYDevXsbT2sbrh9auoYWFxfHhx9+SKFChdBoNJQuXZrp06ejKIpJvsy8L57X3bt36du3L97e3jg4OFCpUiV+/fVXs3xLly6latWquLi44OrqSkBAAN9++63x9ZSUFCZOnEjJkiVxcHDAw8ODt956i/DwcKvV9XUjX3tFhty/f59mzZrRpUsXunfvjre3N6D/8HN2dmbEiBE4Ozvzxx9/MH78eKKjo5k2bVq65YaFhRETE8O7776LSqXiq6++ol27dly6dCndb+p79uxh1apVDBo0CBcXF2bNmkX79u2JiIjAw8MDgL///pumTZtSoEABJk6ciFarZdKkSXh5eWXouJcvX058fDzvvfceHh4eHDp0iNmzZ3P9+nWWL19ukler1dKkSRNq1KjB9OnT2bZtG19//TX+/v689957gD4wtG7dmj179jBw4EDKli3L6tWrCQkJyVB9unXrxsSJEwkLC+ONN94w2ffvv/9OnTp1KFy4MJGRkfzvf/8jODiY/v37ExMTw9y5c2nSpAmHDh0yO82XnvHjx/P555/TvHlzmjdvztGjR2ncuDHJyckm+S5dusSaNWvo2LEjxYoV486dO/z000/Uq1ePU6dO4evrS9myZZk0aRLjx49nwIAB1KlTB4BatWpZ3LeiKLRq1YodO3bQt29fKleuzJYtW/joo4+4ceMG33zzjUn+jLwvnldCQgL169fnwoULDB48mGLFirF8+XJ69epFVFQUw4YNAyA8PJzg4GDeeecdvvzySwBOnz7N3r17jXkmTJjAlClT6NevH4GBgURHR/PXX39x9OhRGjVqlKV6vrYUIZ7w/vvvK0+/LerVq6cAypw5c8zyx8fHm6W9++67ipOTk5KYmGhMCwkJUYoUKWJ8fvnyZQVQPDw8lAcPHhjT165dqwDK+vXrjWmhoaFmdQIUe3t75cKFC8a048ePK4Aye/ZsY1pQUJDi5OSk3Lhxw5h2/vx5xdbW1qxMSywd35QpUxSVSqVcvXrV5PgAZdKkSSZ5q1SpolStWtX4fM2aNQqgfPXVV8a01NRUpU6dOgqgzJ8/P906Va9eXSlYsKCi1WqNaZs3b1YA5aeffjKWmZSUZLLdw4cPFW9vb6VPnz4m6YASGhpqfD5//nwFUC5fvqwoiqLcvXtXsbe3V1q0aKHodDpjvjFjxiiAEhISYkxLTEw0qZei6P/WGo3GpG0OHz6c5vE+/V4xtNnnn39ukq9Dhw6KSqUyeQ9k9H1hieE9OW3atDTzzJw5UwGURYsWGdOSk5OVmjVrKs7Ozkp0dLSiKIoybNgwxdXVVUlNTU2zrEqVKiktWrR4Zp1E5sgpR5EhGo2G3r17m6U7Ojoaf4+JiSEyMpI6deoQHx/PmTNn0i23c+fO5M2b1/jc8G390qVL6W7bsGFD/P39jc8rVqyIq6urcVutVsu2bdto06YNvr6+xnwlSpSgWbNm6ZYPpscXFxdHZGQktWrVQlEU/v77b7P8AwcONHlep04dk2PZuHEjtra2xh4b6K9ZDRkyJEP1Af11z+vXr7N7925jWlhYGPb29nTs2NFYpr29PQA6nY4HDx6QmppKtWrVLJ6ufJZt27aRnJzMkCFDTE7TDh8+3CyvRqNBrdZ/rGi1Wu7fv4+zszOlS5fO9H4NNm7ciI2NDUOHDjVJ//DDD1EUhU2bNpmkp/e+yIqNGzfi4+NDcHCwMc3Ozo6hQ4cSGxvLrl27AHB3dycuLu6Zpw/d3d35999/OX/+fJbrJfQkoIkM8fPzM35APunff/+lbdu2uLm54erqipeXl3FAyaNHj9Itt3DhwibPDcHt4cOHmd7WsL1h27t375KQkECJEiXM8llKsyQiIoJevXqRL18+43WxevXqAebH5+DgYHYq88n6AFy9epUCBQrg7Oxskq906dIZqg9Aly5dsLGxISwsDIDExERWr15Ns2bNTL4c/Prrr1SsWNF4fcbLy4sNGzZk6O/ypKtXrwJQsmRJk3QvLy+T/YE+eH7zzTeULFkSjUaDp6cnXl5enDhxItP7fXL/vr6+uLi4mKQbRt4a6meQ3vsiK65evUrJkiWNQTutugwaNIhSpUrRrFkzChYsSJ8+fcyu402aNImoqChKlSpFQEAAH330UY6/3SKnk4AmMuTJnopBVFQU9erV4/jx40yaNIn169cTHh5uvGaQkaHXaY2mU5662G/tbTNCq9XSqFEjNmzYwKhRo1izZg3h4eHGwQtPH9/LGhmYP39+GjVqxMqVK0lJSWH9+vXExMTQrVs3Y55FixbRq1cv/P39mTt3Lps3byY8PJy33377hQ6Jnzx5MiNGjKBu3bosWrSILVu2EB4eTvny5V/aUPwX/b7IiPz583Ps2DHW/X979x3eVNk+cPybpnsvuqC0lF2mjCIbpFD2VFBRhggoICLiwMES5VUUUWT48nsFxAHKFEFWBUWogCBDKbts2kKhe6XJ+f1xaCC0QFPSppT7c125SM688zTkznnOM376yXj/r0uXLib3Stu0acOpU6f46quvqFu3Lv/3f/9Ho0aN+L//+79Si7O8kUYhoti2b99OUlISq1atok2bNsblcXFxVozqJj8/PxwdHQvtiHy3zsn5Dh8+zPHjx1myZAmDBg0yLr+fVmghISFER0eTnp5ucpV27Ngxs44zcOBANm7cyC+//MJ3332Hu7s7PXr0MK5fsWIFYWFhrFq1yqSacPLkycWKGeDEiROEhYUZl1+5cqXAVc+KFSto3749//vf/0yWJycn4+vra3xtzsgvISEhbN26lbS0NJOrtPwq7fz4SkNISAiHDh3CYDCYXKUVFou9vT09evSgR48eGAwGRo0axZdffsm7775rrCHw9vZm6NChDB06lPT0dNq0acOUKVN4/vnnS+09lSdyhSaKLf+X8K2/fHNzc5k3b561QjKh1WqJjIxkzZo1XLp0ybj85MmTBe673Gl/MH1/iqKYNL02V9euXcnLy2P+/PnGZXq9njlz5ph1nN69e+Ps7My8efP45Zdf6Nu3L46OjneNfffu3cTExJgdc2RkJHZ2dsyZM8fkeLNnzy6wrVarLXAl9OOPP3Lx4kWTZS4uLgBF6q7QtWtX9Ho9X3zxhcnyTz/9FI1GU+T7oZbQtWtX4uPjWb58uXFZXl4ec+bMwdXV1VgdnZSUZLKfjY2NsbN7Tk5Oodu4urpSrVo143pQq7WPHj1a7Orah41coYlia9GiBV5eXgwePNg4LNPSpUtLtWrnXqZMmcLmzZtp2bIlL774ovGLsW7duvccdqlWrVpUrVqVCRMmcPHiRdzd3Vm5cuV93Yvp0aMHLVu25M033+TMmTOEh4ezatUqs7+wXF1d6d27t/E+2q3VjQDdu3dn1apV9OnTh27duhEXF8eCBQsIDw8nPT3drHPl96ebMWMG3bt3p2vXrvz999/88ssvJldd+eedNm0aQ4cOpUWLFhw+fJhvv/3W5MoOoGrVqnh6erJgwQLc3NxwcXGhWbNmVKlSpcD5e/ToQfv27Xn77bc5c+YMDRo0YPPmzaxdu5Zx48aZNACxhOjoaLKzswss7927NyNGjODLL79kyJAh7Nu3j9DQUFasWMHOnTuZPXu28Qry+eef59q1azz22GNUqlSJs2fPMmfOHBo2bGi83xYeHk67du1o3Lgx3t7e/PXXX6xYsYIxY8YYz7l69WqGDh3KokWLLD5mZrlkncaVoqy6U7P9OnXqFLr9zp07lUcffVRxcnJSgoKClNdff13ZtGmTAijbtm0zbnenZvuFNZHmtmbkd2q2P3r06AL7hoSEmDQjVxRFiY6OVh555BHF3t5eqVq1qvJ///d/yquvvqo4OjreoRRuOnLkiBIZGam4uroqvr6+yvDhw43NwG9tcj548GDFxcWlwP6FxZ6UlKQ8++yziru7u+Lh4aE8++yzyt9//13kZvv51q9frwBKYGBggabyBoNB+eCDD5SQkBDFwcFBeeSRR5Sff/65wN9BUe7dbF9RFEWv1ytTp05VAgMDFScnJ6Vdu3bKP//8U6C8s7OzlVdffdW4XcuWLZWYmBilbdu2Stu2bU3Ou3btWiU8PNzYhSL/vRcWY1pamvLKK68oQUFBip2dnVK9enVl5syZJt0I8t9LUT8Xt8v/TN7psXTpUkVRFCUhIUEZOnSo4uvrq9jb2yv16tUr8HdbsWKF0qlTJ8XPz0+xt7dXKleurIwcOVK5fPmycZvp06crERERiqenp+Lk5KTUqlVLef/995Xc3NwCfwtzPhcPM42ilKGf00KUkt69e0uTaSHKGbmHJsq924epOnHiBBs2bKBdu3bWCUgIUSLkCk2Ue4GBgQwZMoSwsDDOnj3L/PnzycnJ4e+//y7Qt0oI8eCSRiGi3OvcuTPff/898fHxODg40Lx5cz744ANJZkKUM3KFJoQQolyQe2hCCCHKBUloQgghygVJaEJYQGGTUgohSpckNFGu5c+GfK/H9u3brR2qie3bt6PRaFixYoW1Qym2ixcv0r9/fzw9PXF3d6dXr15FnsLlgw8+4NFHH6VChQo4OjpSvXp1xo0bx5UrV+6637fffotGoykwm4F4OEgrR1GuLV261OT1119/zZYtWwoszx+OqLgWLlxYaqPJPwjS09Np3749KSkpvPXWW9jZ2fHpp5/Stm1bDhw4cM+Zo/ft20fDhg158skncXNzIzY2loULF7J+/XoOHDhgHAvy9nO+/vrrha4TDwlrDlMiRGkrbGivwmRkZJRCNHe2bds2BVB+/PFHq8ZRXB9++KECKHv27DEui42NVbRarTJx4sRiHXPFihUKoHz//feFrn/jjTeUmjVrKgMHDix0GDJR/kmVo3jotWvXjrp167Jv3z7atGmDs7Mzb731FgBr166lW7duBAUF4eDgQNWqVXnvvffQ6/Umx7j9HtqZM2fQaDR8/PHH/Pe//6Vq1ao4ODjQtGlT9u7da7HYT58+zRNPPIG3tzfOzs48+uijrF+/vsB2c+bMoU6dOjg7O+Pl5UWTJk2MAxuDOtv4uHHjCA0NxcHBwTjn2q2zTOfPQn716tV7xrVixQqaNm1K06ZNjctq1apFhw4d+OGHH4r1XvPLt7AR+k+cOMGnn37KrFmzsLWViqeHlSQ0IVCn8ujSpQsNGzZk9uzZtG/fHoDFixfj6urK+PHj+eyzz2jcuDGTJk3izTffLNJxv/vuO2bOnMnIkSOZPn06Z86coW/fvuh0uvuOOSEhgRYtWrBp0yZGjRrF+++/T3Z2Nj179mT16tXG7RYuXMjYsWMJDw9n9uzZTJ06lYYNG7J7927jNi+88ALz58+nX79+zJs3jwkTJuDk5ERsbKxxmz179lC7du0C07jczmAwcOjQIZo0aVJgXUREBKdOnSItLe2e709RFK5evUp8fDw7duxg7NixaLXaQocsGzduHO3bt6dr1673PK4ox6x9iShEabrTbAKAsmDBggLbZ2ZmFlg2cuRIxdnZWcnOzjYuu9NsAj4+Psq1a9eMy9euXasAyrp16+4aZ1GqHMeNG6cAyo4dO4zL0tLSlCpVqiihoaHGEfh79ep1x9kS8nl4eBQ6Sn1hMd06Mn9hrly5ogDKtGnTCqybO3euAihHjx696zEURVEuX75sMtp9pUqVlOXLlxfY7ueff1ZsbW2Vf//9V1GUO898IMo/uUITAnBwcGDo0KEFljs5ORmfp6WlcfXqVVq3bm2sfruXAQMG4OXlZXzdunVrgCK39rubDRs2EBERQatWrYzLXF1dGTFiBGfOnOHIkSMAeHp6cuHChbtWdXp6erJ7926TiVBv165dOxRFYcqUKXeNK38waAcHhwLr8ichvX3A6MJ4e3uzZcsW1q1bx7Rp0/D19S0wl1tubi6vvPIKL7zwAuHh4fc8pijfJKEJAVSsWBF7e/sCy//991/69OmDh4cH7u7uVKhQgWeeeQagSJNyVq5c2eR1fnK7n0lC8509e5aaNWsWWJ7fYvPs2bMAvPHGG7i6uhIREUH16tUZPXo0O3fuNNnno48+4p9//iE4OJiIiAimTJlS7KSb/yPg1pmX8+VPnHnrD4U7sbe3JzIyku7du/Puu+8yd+5chg0bxs8//2zc5tNPP+Xq1atMnTq1WLGK8kUSmhAU/gWbnJxM27ZtOXjwINOmTWPdunVs2bKFDz/8EKBIzfS1Wm2hy5VSHEK1du3aHDt2jGXLltGqVStWrlxJq1atmDx5snGb/v37c/r0aebMmUNQUBAzZ86kTp06/PLLL2afz9vbGwcHBy5fvlxgXf6yoKAgs4/bokULAgMD+fbbbwH1B8X06dMZPnw4qampnDlzhjNnzpCeno6iKJw5c4bExESzzyMeXJLQhLiD7du3k5SUxOLFi3n55Zfp3r07kZGRJlWI1hQSEsKxY8cKLM+vCg0JCTEuc3FxYcCAASxatIhz587RrVs3YyOSfIGBgYwaNYo1a9YQFxeHj48P77//vtlx2djYUK9ePf76668C63bv3k1YWBhubm5mHxfUK7z8K+Pr16+Tnp7ORx99RJUqVYyPlStXkpmZSZUqVRgxYkSxziMeTJLQhLiD/KurW6+mcnNzmTdvnrVCMtG1a1f27NlDTEyMcVlGRgb//e9/CQ0NNd5TSkpKMtnP3t6e8PBwFEVBp9Oh1+sLVJ/6+fkRFBRkUm1oTrP9xx9/nL1795oktWPHjvHrr7/yxBNPmGx79OhRzp07Z/IeMjMzCxxz5cqVXL9+3dh60s/Pj9WrVxd4tG/fHkdHR1avXs3EiRPvGasoP6TDhhB30KJFC7y8vBg8eDBjx45Fo9GwdOnSUq0uXLlyZaGNTwYPHsybb77J999/T5cuXRg7dize3t4sWbKEuLg4Vq5ciY2N+nu1U6dOBAQE0LJlS/z9/YmNjeWLL76gW7duuLm5kZycTKVKlXj88cdp0KABrq6ubN26lb179/LJJ58Yz7lnzx7at2/P5MmT79kwZNSoUSxcuJBu3boxYcIE7OzsmDVrFv7+/rz66qsm29auXZu2bdsahx87ceIEkZGRDBgwgFq1amFjY8Nff/3FN998Q2hoKC+//DIAzs7O9O7du8C516xZw549ewpdJ8o3SWhC3IGPjw8///wzr776Ku+88w5eXl4888wzdOjQgaioqFKJYdmyZYUub9euHa1atWLXrl288cYbzJkzh+zsbOrXr8+6devo1q2bcduRI0fy7bffMmvWLNLT06lUqRJjx47lnXfeAdTEMGrUKDZv3syqVaswGAxUq1aNefPm8eKLLxYrbjc3N7Zv384rr7zC9OnTMRgMtGvXjk8//ZQKFSrcdd9KlSrRr18/fv31V5YsWYJOpyMkJIQxY8bw9ttv33PYLPHwkgk+hRBClAtyD00IIUS5IAlNCCFEuSAJTQghRLkgCU0IIUS5IAlNCCFEuSAJTZQL+fOPLV682LhsypQpaDSaIu2v0Wju2bfKXO3atSt0qhMhRMmQhCZKXc+ePXF2dr7rnFgDBw7E3t6+wCgXZc2RI0eYMmUKZ86csXYoRtu3b0ej0bBixQprh1JsFy9epH///nh6euLu7k6vXr2KPFhyu3bt0Gg0BR6dO3c22e7ff//liSeeICwsDGdnZ3x9fWnTpg3r1q0r9LgGg4H58+fTsGFDnJyc8PHx4bHHHuPgwYP3/X6FZUjHalHqBg4cyLp161i9ejWDBg0qsD4zM5O1a9fSuXPn++pE+8477xR5Is7iOnLkCFOnTqVdu3YmM1YDbN68uUTPXV6lp6fTvn17UlJSeOutt7Czs+PTTz+lbdu2HDhwoEifiUqVKjFjxgyTZbcPiHz27FnS0tIYPHgwQUFBZGZmsnLlSnr27MmXX35ZYBzI5557jm+//ZZBgwYxZswYMjIy+Pvvv2UA5DJEEpoodT179sTNzY3vvvuu0IS2du1aMjIyGDhw4H2dx9bWFltb633EC5uORtzbvHnzOHHiBHv27KFp06YAdOnShbp16/LJJ5/wwQcf3PMYHh4exml+7qRr164FZrgeM2YMjRs3ZtasWSYJ7YcffmDJkiWsWrWKPn36FONdidIgVY6i1Dk5OdG3b1+io6ML/XX73Xff4ebmRs+ePbl27RoTJkygXr16uLq64u7uTpcuXYpUzVPYPbScnBxeeeUVKlSoYDzHhQsXCux79uxZRo0aRc2aNY3VS0888YRJ1eLixYuNA+22b9/eWLWVPyZhYffQEhMTGTZsGP7+/jg6OtKgQQOWLFlisk3+/cCPP/6Y//73v1StWhUHBweaNm1610k6zXX69GmeeOIJvL29cXZ25tFHH2X9+vUFtpszZw516tTB2dkZLy8vmjRpwnfffWdcn5aWxrhx4wgNDcXBwQE/Pz86duzI/v37jduYM7DxihUraNq0qTGZAdSqVYsOHTrwww8/FPn95eXlFZgQ9F60Wi3BwcEkJyebLJ81axYRERH06dMHg8FARkaGWccVpUMSmrCKgQMHkpeXV+AL6tq1a2zatIk+ffrg5OTE6dOnWbNmDd27d2fWrFm89tprHD58mLZt2951duU7ef7555k9ezadOnXiP//5D3Z2dibjHubbu3cvu3bt4sknn+Tzzz/nhRdeIDo6mnbt2hlHgm/Tpg1jx44F4K233mLp0qUsXbrUOMHm7bKysmjXrh1Lly5l4MCBzJw5Ew8PD4YMGcJnn31WYPvvvvuOmTNnMnLkSKZPn86ZM2fo27cvOp3O7Pd9u4SEBFq0aMGmTZsYNWqUcSqZnj17snr1auN2CxcuZOzYsYSHhzN79mymTp1Kw4YN2b17t3GbF154gfnz59OvXz/mzZvHhAkTcHJyIjY21rjNnj17qF27Nl988cVd4zIYDBw6dMg4ov6tIiIiOHXq1F3vveY7fvw4Li4uuLm5ERAQwLvvvnvHcsvIyODq1aucOnWKTz/9lF9++YUOHToY16emphqvFt966y08PDxwdXUlLCzMrAQrSoEihBXk5eUpgYGBSvPmzU2WL1iwQAGUTZs2KYqiKNnZ2YperzfZJi4uTnFwcFCmTZtmsgxQFi1aZFw2efJk5daP+IEDBxRAGTVqlMnxnn76aQVQJk+ebFyWmZlZIOaYmBgFUL7++mvjsh9//FEBlG3bthXYvm3btkrbtm2Nr2fPnq0AyjfffGNclpubqzRv3lxxdXVVUlNTTd6Lj4+Pcu3aNeO2a9euVQBl3bp1Bc51q23btimA8uOPP95xm3HjximAsmPHDuOytLQ0pUqVKkpoaKixzHv16qXUqVPnrufz8PBQRo8eXaSYbi3jwly5ckUBTP62+ebOnasAytGjR+96jOeee06ZMmWKsnLlSuXrr79WevbsqQBK//79C91+5MiRCqAAio2NjfL444+blPv+/fuNfw9/f39l3rx5yrfffqtEREQoGo1G+eWXX+4ajyg9coUmrEKr1fLkk08SExNjUo333Xff4e/vb/yF7ODgYJwGRa/Xk5SUhKurKzVr1jSp0iqKDRs2ABivqvKNGzeuwLa3zmCt0+lISkqiWrVqeHp6mn3eW88fEBDAU089ZVxmZ2fH2LFjSU9P57fffjPZfsCAASaTibZu3RqgyK397hVLREQErVq1Mi5zdXVlxIgRnDlzhiNHjgDg6enJhQsX7lrV6enpye7du+96xdyuXTsURbln14isrCxA/bvfztHR0WSbO/nf//7H5MmT6du3L88++yxr165l+PDh/PDDD/z5558Fth83bhxbtmxhyZIldOnSBb1eT25urnF9frVlUlISa9eu5cUXX+Tpp58mOjoaHx8fpk+fftd4ROmRhCasJr/RR/79mAsXLrBjxw6efPJJ4+SaBoOBTz/9lOrVq+Pg4ICvry8VKlTg0KFDBSalvJezZ89iY2ND1apVTZbXrFmzwLZZWVlMmjSJ4OBgk/MmJyebfd5bz1+9enVjgs6XX0V59uxZk+WVK1c2eZ2f3K5fv16s898eS2Hv+/ZY3njjDVxdXYmIiKB69eqMHj2anTt3muzz0Ucf8c8//xAcHExERARTpkwpdtLN/yFx68Si+fJn1771x0ZR5c/BtnXr1gLratWqRWRkJIMGDeLnn38mPT2dHj16GOe9yz9flSpVaNasmXE/V1dXevTowZ49e8jLyzM7JmF5ktCE1TRu3JhatWrx/fffA/D999+jKIpJ68YPPviA8ePH06ZNG7755hs2bdrEli1bqFOnDgaDocRie+mll3j//ffp378/P/zwA5s3b2bLli34+PiU6HlvlZ/Ub6eU4oxPtWvX5tixYyxbtoxWrVqxcuVKWrVqxeTJk43b9O/fn9OnTzNnzhyCgoKYOXMmderU4ZdffjH7fN7e3jg4OHD58uUC6/KX3d78viiCg4MB9R7tveTPtn38+HGT8/n7+xfY1s/PD51OJ41Eyghpti+sauDAgbz77rscOnSI7777jurVq5u0bluxYgXt27fnf//7n8l+ycnJ+Pr6mnWukJAQDAYDp06dMrk6OXbsWIFtV6xYweDBg01mbM7Ozi7Q+q2oI5Hkn//QoUMYDAaTq7T8GalDQkKKfKz7FRISUuj7LiwWFxcXBgwYwIABA8jNzaVv3768//77TJw40VgNGBgYyKhRoxg1ahSJiYk0atSI999/ny5dupgVl42NDfXq1eOvv/4qsG737t2EhYXh5uZm1jHhZjXtvSYXhZtVmvlX4kFBQQQEBHDx4sUC2166dAlHR8dixSQsT67QhFXlX41NmjSJAwcOFOh7ptVqC1yR/Pjjj4V+udxL/pfr559/brJ89uzZBbYt7Lxz5sxBr9ebLHNxcQEokOgK07VrV+Lj41m+fLlxWV5eHnPmzMHV1ZW2bdsW5W1YRNeuXdmzZw8xMTHGZRkZGfz3v/8lNDSU8PBwgAIjtdjb2xMeHo6iKOh0OvR6fYEqWD8/P4KCgkyqDc1ptp9/hXRrUjt27Bi//vqrsZtEvqNHj3Lu3Dnj69TU1ALVlYqiGO9z3TrTeGFdRnQ6HV9//TVOTk7GMgD1fub58+fZsmWLcdnVq1dZu3Ytjz32WIFqZGEdcoUmrKpKlSq0aNGCtWvXAhRIaN27d2fatGkMHTqUFi1acPjwYb799lvCwsLMPlfDhg156qmnmDdvHikpKbRo0YLo6GhOnjxZYNvu3buzdOlSPDw8CA8PJyYmhq1btxYYpaJhw4ZotVo+/PBDUlJScHBw4LHHHsPPz6/AMUeMGMGXX37JkCFD2LdvH6GhoaxYsYKdO3cye/Zsi//KX7lypfGK61aDBw/mzTff5Pvvv6dLly6MHTsWb29vlixZQlxcHCtXrjR+QXfq1ImAgABatmyJv78/sbGxfPHFF3Tr1g03NzeSk5OpVKkSjz/+OA0aNMDV1ZWtW7eyd+9ek6vbPXv20L59eyZPnnzPhiGjRo1i4cKFdOvWjQkTJmBnZ8esWbPw9/c33gvLV7t2bdq2bWvs+7d//36eeuopnnrqKapVq0ZWVharV69m586djBgxgkaNGhn3HTlyJKmpqbRp04aKFSsSHx/Pt99+y9GjR/nkk09wdXU1bjtx4kR++OEH+vXrx/jx4/Hw8GDBggXodLoidfQWpcR6DSyFUOU3x46IiCiwLjs7W3n11VeVwMBAxcnJSWnZsqUSExNToEl8UZrtK4qiZGVlKWPHjlV8fHwUFxcXpUePHsr58+cLNCm/fv26MnToUMXX11dxdXVVoqKilKNHjyohISHK4MGDTY65cOFCJSwsTNFqtSZN+G+PUVEUJSEhwXhce3t7pV69eiYx3/peZs6cWaA8bo+zMPlN5O/0yG+qf+rUKeXxxx9XPD09FUdHRyUiIkL5+eefTY715ZdfKm3atFF8fHwUBwcHpWrVqsprr72mpKSkKIqiKDk5Ocprr72mNGjQQHFzc1NcXFyUBg0aKPPmzSs0pnvFnu/8+fPK448/rri7uyuurq5K9+7dlRMnThRaHreW8enTp5UnnnhCCQ0NVRwdHRVnZ2elcePGyoIFCxSDwWCy7/fff69ERkYq/v7+iq2treLl5aVERkYqa9euLTSmU6dOKX369FHc3d0VJycn5bHHHlP27NlTpPcjSodGUUrxDrMQQghRQqTiVwghRLkgCU0IIUS5IAlNCCFEuSAJTQghRLkgCU0IIUS5IAlNCCFEuSAdqwthMBi4dOkSbm5uZg1tJIQQwvIURSEtLY2goKC7jsoiCa0Qly5dMg5mKoQQomw4f/48lSpVuuN6SWiFyB+C6Pz587i7u5u9v06nY/PmzXTq1Ak7OztLh/fQknK1PClTy5MytbzU1FSCg4PvOTycJLRC5Fczuru7FzuhOTs74+7uLh9oC5JytTwpU8uTMi0597oFJI1ChBBClAuS0IQQQpQLktCEEEKUC3IPTQhRZHq9Hp1OZ+0wyjSdToetrS3Z2dkFJoQVhbOzs0Or1d73cSShCSHuSVEU4uPjizQz98NOURQCAgI4f/689GM1g6enJwEBAfdVZpLQhBD3lJ/M/Pz8cHZ2li/quzAYDKSnp+Pq6nrXTsBCpSgKmZmZJCYmAhAYGFjsY0lCKwGao+todGYhXKsJ/rWsHY4Q90Wv1xuTmY+Pj7XDKfMMBgO5ubk4OjpKQisiJycnABITE/Hz8yt29aOUdgmw2b+Y4Ou7sDmx2dqhCHHf8u+ZOTs7WzkSUZ7lf77u5x6tJLQSoFTrCIDm1FYrRyKE5Ug1oyhJlvh8SUIrAYaqkQBozu6CnHQrRyOEEA8HSWglwbsq6fZ+aAw6OL3d2tEIISwoNDSU2bNnF3n77du3o9FopIVoKZCEVhI0GhI9GqjP5T6aEFah0Wju+pgyZUqxjrt3715GjBhR5O1btGjB5cuX8fDwKNb5ikoSp7RyLDHx7g0Iu7IFTmwBRQG5/yBEqbp8+bLx+fLly5k0aRLHjh0zLnN1dTU+VxQFvV6Pre29vxIrVKhgVhz29vYEBASYtY8oHrlCKyFJrrVQbJ0g7RIk/GvtcIR46AQEBBgfHh4eaDQa4+ujR4/i5ubGL7/8QuPGjXFwcOCPP/7g1KlT9OrVC39/f1xdXWnatClbt5o27rq9ylGj0fB///d/9OnTB2dnZ2rWrMmGDRuM62+/clq8eDGenp5s2rSJ2rVr4+rqSufOnU0ScF5eHmPHjsXT0xMfHx/eeOMNBg8eTO/evYtdHtevX2fQoEF4eXnh7OxMly5dOHHihHH92bNn6dGjB15eXri4uFCnTh3j+7h+/ToDBw6kQoUKODk5Ub16dRYtWlTsWEpKmUhoc+fOJTQ0FEdHR5o1a8aePXvuun1ycjKjR48mMDAQBwcHatSoYfIBKs4xLc1gY48S2lp9cWJTqZ5biJKmKAqZuXlWeSiKYrH38eabb/Kf//yH2NhY6tevT3p6Ol27diU6Opq///6bzp0706NHD86dO3fX40ydOpX+/ftz6NAhunTpwsiRI7l27dodt8/MzOTjjz9m6dKl/P7775w7d44JEyYY13/44Yd8++23LFq0iJ07d5KamsqaNWvu670OGTKEv/76i59++omYmBgURaFr167GZvKjR48mJyeH33//ncOHD/Phhx8ar2Lfffddjhw5wi+//EJsbCzz58/H19f3vuIpCVavcly+fDnjx49nwYIFNGvWjNmzZxMVFcWxY8fw8/MrsH1ubi4dO3bEz8+PFStWULFiRc6ePYunp2exj1lSlGqRcHKzWu3Y+tVSO68QJS1Lpyd8knV+qB2ZFoWzvWW+uqZNm0bHjh2Nr729vWnQoIHx9Xvvvcfq1av56aefGDNmzB2PM2TIEJ566ikA3n//febMmcOePXvo2rVrodvrdDoWLFhA1apVARgzZgzTpk0zrp8zZw4TJ06kT58+AHzxxRcFfrSb48SJE/z000/s3LmTFi1aAPDtt98SHBzMmjVreOKJJzh37hz9+vWjXr16AISFhRn3P3fuHI888ghNmjQB1KvUssjqV2izZs1i+PDhDB06lPDwcBYsWICzszNfffVVodt/9dVXXLt2jTVr1tCyZUtCQ0Np27atyYfQ3GOWFMON/mic3w1Z10v13EKIe8v/gs6Xnp7OhAkTqF27Np6enri6uhIbG3vPK7T69esbn7u4uODm5mYcyqkwzs7OxmQG6nBP+dunpKSQkJBARESEcb1Wq6Vx48ZmvbdbxcbGYmtrS7NmzYzLfHx8qFmzJrGxsQCMHTuW6dOn07JlSyZPnsyhQ4eM27744ossW7aMhg0b8vrrr7Nr165ix1KSrHqFlpuby759+5g4caJxmY2NDZGRkcTExBS6z08//UTz5s0ZPXo0a9eupUKFCjz99NO88cYbaLXaYh0zJyeHnJwc4+vU1FRA/RVVnF7r+fvonAOwrVALzZWj5B3fghLex+xjiZuM5SqjvVtMUcpUp9OhKAoGgwGDwQCAg1bDP1M63nGfkuSg1RjjKKr87W//18nJyeRYr776Klu3buWjjz6iWrVqODk50b9/f3Jycky2yy+PfFqt1vhaURQ0Go2xvG49Z/7Dzs6uwPFuL+Nbn9++zb3e4+3b3Lru9g7M+cd87rnn6NixI+vXr2fLli3MmDGDjz/+mDFjxhAVFUVcXBwbNmxg69atdOjQgVGjRjFz5sy7F7wZDAYDiqKg0+kKDH1V1P/zVk1oV69eRa/X4+/vb7Lc39+fo0ePFrrP6dOn+fXXXxk4cCAbNmzg5MmTjBo1Cp1Ox+TJk4t1zBkzZjB16tQCyzdv3nxfw/1s2bKFcE0Y1TnK5e2L2X/GodjHEjdt2bLF2iGUO3crU1tbWwICAkhPTyc3N7cUoypcWrb5+2RnZ6MoivHHamZmpnqstDST8RZ37NjBk08+SYcOHQD1ii0uLo7mzZsb9zUYDGRnZxtfA2RlZZm8zj9nampqgXPdHkv+/qD+mNZoNPj5+fHHH3/QsGFDQB1Pc9++fdSrV6/AefLd6T0BBAcHk5eXx6+//mq8Srt27RrHjh0jNDTUeEwPDw+efvppnn76aaZOncqXX37JoEGDAHBwcKBPnz706dOHJk2aMHnyZN599917F34R5ebmkpWVxe+//05eXl6h7+1erH4PzVwGgwE/Pz/++9//Gi/DL168yMyZM5k8eXKxjjlx4kTGjx9vfJ2amkpwcDCdOnXC3d3d7OPpdDq2bNlCx44dsb/kDt9soFLOUQK6dAaN1Wt5H1i3lqudnZ21wykXilKm2dnZnD9/HldXVxwdHUs5QstwdHREo9EY/z/n/1B1c3Mz+T+e30KxX79+aDQaJk2ahKIo2NvbG7ezsbHB0dHRZD8nJyfj6/xGK/nb3H6u22PJ3x8wLnvppZeYPXs2derUoVatWnzxxRekpKRgZ2d3x++k/POcOXMGNzc343KNRsMjjzxCz549GT9+PPPnz8fNzY2JEydSsWJFnnzySezs7HjllVfo3LkzNWrU4Pr168TExFCnTh3c3d2ZPHkyjRo1ok6dOuTk5BAdHU3t2rWL9f14J9nZ2Tg5OdGmTZsCn7M7JfHbWTWh+fr6otVqSUhIMFmekJBwx34bgYGBBSaDq127NvHx8eTm5hbrmA4ODjg4FLx6srOzu68vTjs7O2yrtAIHdzSZSdgl/gOVil8PLlT3+3cRBd2tTPV6PRqNBhsbmwd29Pj8uAv799b39Omnn/Lcc8/RqlUrfH19eeONN0hLSzO+/3y3v771OLdW9926PP/57TEUFtebb75JQkICQ4YMQavVMmLECKKiotBqtXf8G+Qvb9eunclyrVZLXl4eixcv5uWXX6Znz57k5ubSpk0bNmzYYPzuMxgMvPTSS1y4cAF3d3c6d+7Mp59+io2NDQ4ODrz99tucOXMGJycnWrduzbJlyyz6ebCxsUGj0RT6WSzy/3fFyiIiIpQxY8YYX+v1eqVixYrKjBkzCt1+4sSJSkhIiKLX643LZs+erQQGBhb7mLdLSUlRACUlJcXct6MoiqLk5uYqa9asUXJzc9UFy59VlMnuivLrB8U6nlAVKFdx34pSpllZWcqRI0eUrKysUozswaXX65Xr16+bfEdZ4pg1atRQ3nnnHYsds6y52+esqN/JVv+5NX78eBYuXMiSJUuIjY3lxRdfJCMjg6FDhwIwaNAgkwYeL774IteuXePll1/m+PHjrF+/ng8++IDRo0cX+Zilrnon9V/pjyaEKIKzZ8+ycOFCjh8/zuHDh3nxxReJi4vj6aeftnZoZZrV76ENGDCAK1euMGnSJOLj42nYsCEbN240Nuo4d+6cyWVtcHAwmzZt4pVXXqF+/fpUrFiRl19+mTfeeKPIxyx11dTR97n0N6Qngmvp9YUTQjx4bGxsWLx4MRMmTEBRFOrWrcvWrVupXbu2tUMr06ye0EDtVHinTovbt28vsKx58+b8+eefxT5mqXMLgMAGcPkgnNwKDeVXlhDizoKDg9m5c6e1w3jgWL3K8aFRPUr9V0bfF0KIEiEJrbTk30c7+SvopWOwEEJYmiS00lKxETh5Q04KnC/dgZKFEOJhIAmttNhobzYOkWpHIYSwOElopalG/n00GbpJCCEsTRJaaar6mDr0VeK/kHze2tEIIUS5IgmtNDl7Q6Wm6vOTcpUmxIOgXbt2jBs3zvj69hmrC+Pl5XXfE3KCOsSWJY7zsJCEVtqq35hyQ6odhShRPXr0oHPnzoWu27FjBxqNxmTOr6Lau3cvI0aMuN/wTEyZMsU4sv6tLl++TJcuXSx6rtstXrzYZILkB5kktNKW3x/t9HbIy7nrpkKI4hs2bBhbtmzhwoULBdYtWrSIJk2amEzMWVQVKlS4r2mlzBEQEFDowOmicJLQSltAPXANAF0mnPnD2tEIUW51796dChUqsHjxYpPl6enp/PjjjwwbNoykpCSeeuopKlasiLOzM/Xq1eP777+/63Fvr3I8ceKEccqT8PDwQueWe+ONN6hRowbOzs6EhYXx7rvvGietXLx4MVOnTuXgwYNoNBo0Go0x5turHA8fPsxjjz2Gk5MTPj4+jBgxgvT0dOP6IUOG0Lt3bz7++GMCAwPx8fFh9OjR9zUp7rlz5+jVqxeurq64u7vTv39/k9lMDh48SPv27Y3T4zRu3Ji//voLUMek7NGjB15eXri4uFCnTh02bNhQ7FjupUwMffVQ0WjUase/l6rVjtU6WDsiIcynKOqPMmuwc1b/H92Dra0tgwYNYvHixbz99tvGmZp//PFH9Ho9Tz31FOnp6TRu3Jg33ngDd3d31q9fz7PPPkvVqlWJiIi45zkMBgN9+/bF39+f3bt3k5KSYnK/LZ+bmxuLFy8mKCiIw4cPM3z4cNzc3Hj99dcZMGAA//zzDxs3bmTr1q2AOtHm7TIyMoiKiqJ58+bs3buXxMREnn/+ecaMGWOStLdt20ZgYCDbtm3j5MmTDBgwgIYNGzJ8+PB7vp/C3l9+Mvvtt9/Iy8tj9OjRDBgwwDgs4cCBA3nkkUeYP38+Wq2WAwcOGKd7GT16NLm5ufz++++4uLhw5MgRXF1dzY6jqCShWUP1TjcS2mbo8h9rRyOE+XSZ8EGQdc791iWwdynSps899xwzZ87kt99+M84TtmjRIvr164eHhwceHh5MmDDBuP1LL73Epk2b+OGHH4qU0LZu3crRo0fZtGkTQUFqeUyfPp1u3bqZbPfOO+8Yn4eGhjJhwgSWLVvG66+/jpOTE66ursaZwe/ku+++Izs7m6+//hoXF/X9f/HFF/To0YMPP/zQOPi6l5cXX3zxBVqtllq1atGtWzeio6OLldCio6M5fPgwcXFxBAcHA/D1119Tp04d9u7dS9OmTTl37hyvvfYatWrVAqB69erG/c+dO0e/fv2oV68eAGFhYWbHYA6pcrSGsHZgYwfXTkHSKWtHI0S5VatWLVq0aMFXX30FwMmTJ9mxYwfDhg0D1MlL33vvPerVq4e3tzeurq5s2rSJc+fOFen4sbGxBAcHG5MZqIOn32758uW0bNmSgIAAXF1deeedd4p8jlvP1aBBA2MyA2jZsiUGg4Fjx44Zl9WpU8dkAuTAwEASExPNOtet5wwODjYmM4Dw8HA8PT2JjY0F1Om6nn/+eSIjI/nPf/7DqVM3v9PGjh3L9OnTadmyJZMnTy5WIxxzyBWaNTi6Q0hziPtdvUrzedHaEQlhHjtn9UrJWuc2w7Bhw3jppZeYO3cuixYtomrVqrRt2xaAmTNn8tlnnzF79mzq1auHi4sL48aNIzc312LhxsTEMHDgQKZOnUpUVBQeHh4sW7aMTz75xGLnuNXtsztrNBqTWbQtbcqUKTz99NOsX7+eX375hcmTJ7Ns2TL69OnD888/T1RUFOvXr2fz5s3MmDGDTz75hJdeeqlEYpErNGsxTvopw2CJB5BGo1b7WeNRhPtnt+rfvz82NjZ89913fP311zz33HPG+2k7d+6kV69ePPPMMzRo0ICwsDCOHz9e5GPXrl2b8+fPc/nyZeOy26e22rVrFyEhIbz99ts0adKE6tWrc/bsWZNt7O3t0ev19zzXwYMHycjIMC7buXMnNjY21KxZs8gxmyP//Z0/f3MgiCNHjpCcnEx4eLhxWY0aNXjllVfYvHkzffv2ZdGiRcZ1wcHBvPDCC6xatYpXX32VhQsXlkisIAnNevIT2pk/IDfj7tsKIYrN1dWVAQMGMHHiRC5fvsyQIUOM66pXr86WLVvYtWsXsbGxjBw50qQF371ERkZSo0YNBg8ezMGDB9mxYwfvvvuuyTbVq1fn3LlzLFu2jFOnTvH555+zevVqk21CQ0OJi4vjwIEDXL16lZycgl16Bg4ciKOjI4MHD+aff/5h27ZtvPTSSzz77LP3PXmxXq/nwIEDJo/Y2FgiIyOpV68eAwcOZP/+/ezZs4dBgwbRtm1bmjRpQlZWFmPGjGH79u2cPXuWnTt3snfvXuNEpOPGjWPTpk3ExcWxf/9+tm3bVqKTlEpCsxbfGuBZGfS5atWjEKLEDBs2jOvXrxMVFWVyv+udd96hUaNGREVF0a5dOwICAujdu3eRj2tjY8Pq1avJysoiIiKC559/nvfee89km549e/LKK68wZswYGjZsyK5duwokvX79+tG5c2fat29PhQoVCu064OzszKZNm7h27RpNmzbl8ccfp0OHDnzxxRfmFUYh0tPTeeSRR0wePXr0QKPRsHbtWry8vGjTpg2RkZGEhYWxfPlyALRaLUlJSQwaNIgaNWrQv39/unTpwtSpUwE1UY4ePZratWvTuXNnatSowbx58+473jvRKIqilNjRH1Cpqal4eHiQkpKCu7u72fvrdDo2bNhA165dC9Rnm1g/AfYuhMZDocfs4gf8kChyuYoiK0qZZmdnExcXR5UqVXB0dCzlCB88BoOB1NRU3N3dsbGRa4aiutvnrKjfyVLa1mS8j7ZF7dcjhBCi2CShWVNoK7B1hNQLkBhr7WgKF38Ytn8IKRetHYkQQtyVJDRrsneG0Nbq87LW2jHhX1j+DCxoBds/gO8GgC7b2lEJIcQdSUKzNuOkn2UkoSXGwg+DYX4LiF0HaNR+PwmHIXqqtaO7P9kp8OcCuFL0ZtlCiAeHdKy2tmqR6r/n/oSsZHDytE4cV47Bbx/CP6uAG/fzwntDuzfh+ln4fgD8OU+dpDR/CpwHyenfYM0otXrXNQBGxajz04kik/ZjD5isZMi6Du5BYFv2R+y3xOdLrtCszbuK2oRf0cPpbaV//qsnYOXzMLcZ/LMSUKB2T3hxF/RfAn61oWZniBipbr/mRUgv3jA6VpGbCRteh697qskMID0e1r0sDXGKKL/1Y2amlQYjFubLSYfrZyA7Wf1B+gB81vM/X/fTglmu0MqC6p3g6nG1tWOdPqVzzqRT8NtHcPgHUG4Mi1OrO7R9AwILmSOq4zS1E3jiv7D6BRi4Asp6k+QLf8HqkZB0Un3d5Dmo+7ia3GJ/gkPLocGT1o3xAaDVavH09DSOB+js7GwcaUMUZDAYyM3NJTs72zrN9vNy4VoccOP/dV46XLsALhVKP5YiUBSFzMxMEhMT8fT0NBmH0lyS0MqC6p0g5gv1PprBULKJ4loc/D4TDi5TrwoBanRRqxaDGt55PztHePx/8N92cCoads+H5qNLLs77kZerVp/+MUtN1m6B0PMLqH6jerfdm/DrdNjwGoS0UDu4i7vKHwW+uIPcPkwURSErKwsnJ6fST/yKAdITQK8DrT3Yu0LWNeAquF1Tl5VRnp6ed51toCgkoZUFlZurH7yMK3D5AFRsZPlzXD+rJrID391MZNU7qV/uFRsX7Rh+tSHqfVj/KmyZrHY7CGxg+VjvR8K/6lVZ/GH1db0noOtMcPK6uU3LV+D4ZriwB1a/CIPXlf2rTSvTaDQEBgbi5+d3X5NFPgx0Oh2///47bdq0Kd0BAAx62DABzuwA5wrqLQOXCuoPt7jt4BUG/ZeCXdm7n2ZnZ3dfV2b5JKGVBbb26pQyR39Wqx0tmdCSz8HvH8OBb8GQpy6rFgntJkKlJuYfr8kwOPkrHFsPK4bByN+KPDdViTLoYdfn8Ov7YNCBkzd0/xTq9C64rdYW+iyABa3h7B/w51xoUTKjf5c3Wq3WIl885ZlWqyUvLw9HR8fSTWhbJsE/36l9W59cAr43ah46T4F5zeH8b7DrI/VHaTlVJn6Wzp07l9DQUBwdHWnWrBl79uy547aLFy82TlOe/7h9mJQhQ4YU2KZz584l/Tbuj6VH39fnwfb/wOeNYP8SNZmFtYdhW+CZlcVLZqCOdN5zjlqNl3QCNr5pmXjvR9IpWNQFtk5Rk1mNLjDqz8KTWT6fqtD5A/V59DT1yk6IB9WB72HnZ+rzXnOh0i21Li6+6v9ZgJi5ELej9OMrJVZPaMuXL2f8+PFMnjyZ/fv306BBA6Kiou5aV+/u7s7ly5eNj9unYgDo3LmzyTaFDfZZpuQ3hb+4DzKu3t+xrp+FxV1h+wz1Cz60NQzdCIPWQPC9Z+G9Jxcf6PMloIH9X8O/a+7/mMWhKLBnodr5+/xusHdT/zM/9T24FWH08UaDoUZndYDoVSMgr+AI50KUeef3wLqx6vPWE6De4wW3qdkZGg0CFLX7SnZqqYZYWqxe5Thr1iyGDx/O0KFDAViwYAHr16/nq6++4s03C//1r9Fo7nnz0MHBocg3GHNyckyma0hNVf/YOp2uWPcL8vcxa1+nCtj610OTcJi8Y5tQ6vU3+7wAmn9Xov1lApqcNBR7V/RdZqLUfSI/sGIds1DBLbBpMRbtrs9Q1o0lz78BeFSy3PELYVKuqZfQrn8ZmxtdHQwhLdH3+AI8giEvr+gH7TIL2wt70ST8gz76PQyPTS6J0MusYn1WxV2VapmmXMB22dNo9LkYanZD3/r1O/8/f2wqtqd/Q5N8FsOG19H3mFPy8VlIUcvSqgktNzeXffv2MXHiROMyGxsbIiMjiYmJueN+6enphISEYDAYaNSoER988AF16tQx2Wb79u34+fnh5eXFY489xvTp0/Hx8Sn0eDNmzDBOd3CrzZs34+xs3uy4t9qyZYtZ29cmlBocJv73r9l33tWsfW31WdS78DWVr+0E4JpLNfaFvEjmORc4t8GsYxWVRmlAa+cwvDJPk7JoADurTwRNCV/0Kwqxy6dQ/8JSbPSZ6DV2HAnqz2mvjrDzMHDY7EMG+D9Ds7jPsIn5gpirbiS51rJ83GWUvS4VW43W7M+quLeSLlOtPpvWJ6bjkXWFFKfK7HDohf6XjXfdx7vCM7RK/gCbQ9+zN82PeM8iNgizsqL2gbTq9DGXLl2iYsWK7Nq1i+bNmxuXv/766/z222/s3r27wD4xMTGcOHGC+vXrk5KSwscff8zvv//Ov//+S6VK6hXCsmXLcHZ2pkqVKpw6dYq33noLV1dXYmJiCr2hXdgVWnBwMFevXi329DFbtmyhY8eOZt0U1pzfje3X3VAcPcl75SjYFO33hubiPrRrRqJJPoOiscHQcjyG1hOKvP99uR6H7f+1Q5Obgb7Nm+p5S4gu5TLJS4cSlPIXAIagRuh7zAXf6vd9bO3PL2Nz8FsUj2Dyhv8ODm73fcwyLS8bm52zsdn1GXkaOwzdZmNTr6+1oyoXivv/3yyKAe3K57A59jOKSwXyhm4pcg2Jza/T0MZ8juLsQ97wHeDqVzIxWlBqaiq+vr73nD7G6lWO5mrevLlJ8mvRogW1a9fmyy+/NE6s9+STNzvL1qtXj/r161O1alW2b99Ohw4dChzTwcEBB4eCTVnt7Ozu6wNp9v4hj4KjJ5rsZOziD0BI87tvb9Crfa22zVCb4ntURtP3v2hDmlNq7dD8akC3WbB6JNodM9FWewwqN7PsOQwGOLQc2y3v4pxxBcXGFk3bN7Fp9Qo2Wgt9hLt+CGf/QJN8Frut70DvkpuE0OrifoefXzF2OLdDBz+NgAt/QOf/lI1Wq+XA/X5/3NWv78Oxn0Frj2bAt9j5Vin6vh3egdO/okn4B7tfXlXvOZfxjvJFLUerNgrx9fVFq9UWmPI8ISGhyPe/7OzseOSRRzh58uQdtwkLC8PX1/eu25QJWtubYzveq7VjygVY0kPtIKzooW4/eGHHvZNgSag/QO3vpehh1fPqIMCWcnEffNUJ1ryAJuMKqY6VyBu6Gdq+ppaXpTi43WzocuBbOPKT5Y5dVmQkqQ0ClvRQk5mrP3m9/8tx/x4o+Q18/tvuZh++h0lerjoY93dPwlddboy0UUYdXgG/f6Q+7/GZ+T8gbR3Uz7rWHo7/An8vtXyMVmLVhGZvb0/jxo2Jjo42LjMYDERHR5tchd2NXq/n8OHDBAYG3nGbCxcukJSUdNdtyoxbJ/28k3/XqKPhn92pdsjuvQD6/c96AxtrNNDtE/AMUfu9/fzK/Y8dl54Ia0fDwg5wYS/YuaBvP4nfak6FgEKG5rKEkObQapz6fN3LkJZw180fGIqiNuv+oomarNGo/QlH70Gp05fYoCfQD1ypdsW4ehwWPgZ/zn8gxv+7b4lHYdPbMKu2Ol3S8V/g3C74qjMkHLF2dAVd3Kf+vwBoMRYaPl284wTUhfZvq883TizbCdwMVm+2P378eBYuXMiSJUuIjY3lxRdfJCMjw9jqcdCgQSaNRqZNm8bmzZs5ffo0+/fv55lnnuHs2bM8//zzgNpg5LXXXuPPP//kzJkzREdH06tXL6pVq0ZUVJRV3qNZqnUANOp0LamXTNflpMPaMfDjYPUqKKgRjPwdGj5l/SoDRw81qWq06iDHB4vZTSIvF3Z9AXMaw9/fAArUfxJe2oehxVgMNiXcUbXdW+BfTx0u6KcxD/6XetIpdezKNS+o78kvHIZthu6zTH4AKaFt4IWdah8+fa7av/C7AfffhaQsyk6FvxapP5bmNVOHncu8Cq7+0PJltYzS49W+jRf+sna0N6Vegu+fhrxstbtJ5JT7O16Ll6ByC8hNV6/cDXqLhGlNVk9oAwYM4OOPP2bSpEk0bNiQAwcOsHHjRvz91X5E586d4/Lly8btr1+/zvDhw6lduzZdu3YlNTWVXbt2ER4eDqi99A8dOkTPnj2pUaMGw4YNo3HjxuzYsaPQ+2RljovvzaGobq12vPQ3fNnmRvWABlq/qn4x+VS1SpiFCm4K7W/8+Fg/Qf0yNcfJrbCgJWx+G3JSIbCh2hG875fgXkpX17b20Pe/oHVQy3/fotI5r6Xl5aiDT89rrt4zs3WEDpPVH0B36ovo4qPeT+n68Y33v0mtCTj1a+nGXhIURR1ce/UL8HEN+HkcXPxLbThVqzs8tRxeOaIOwj1kPVRqqo5Uv6QnnN5u5eABXRYse1pNtBVqQ9+FYHOfd8pttNBnvlrLc26XmtgfcFZt5VhWpaam4uHhcc8WNXei0+nYsGEDXbt2Ld5N4d8+gm3vq//R+i+9MaTTdLWTtHtFtf67Smvzj1saDHr1S+DsHxD0CDy3WU0Sd3PttFrtc+xG9wJnX4icDA2fMRlj8b7L1Rwxc2HTW+rkpi/8UbZ+ONzL2V2wbhxcPaa+rvqY2nDHu2DDgTuWafw/sHIYXDmqvm75MrR/595/y7Im9ZI6fumBb9XPWT7fGvDIs+psC4W18stJh+UD1WSmtYfHv4LaPYp0Sot/ThVF/Vv8s1Id0m34r4X+LYtt/9fw00vq+xy+Ta2OLGOK+p1s9Ss0UYj8UUNObYOlvWHrZDWZ1e6pfrmW1WQG6q++vl+Co6d6VbntLuPG5aTD1qnqXGzHNqi/lh8dDS/tU0c1sOaAwc1eVEdY0WWqo4jozeisbS2Z19QvpkVd1GTmUkGtBn5mlflfgAF11S+3Js+pr3d+pjbOMfeq2xrycuHIWvj2Cfi0Dvz6nprM7F3Vz9WwLTB6D7Qce+cm6w6u8PQPahLT58IPg+Dvb0v3feT7/WM1mdnYwoCllk1moCb2/Krm1SMf6BFzJKGVRQENwMUPdBkQ95t6ldBzDvT/+sGYZdmj0s2x43Z+VrDKRlHg0A9qI4U/Zqn/kao+pk4q2vkD6zVuuZWNDfSeDw4eatXUH7OsHdGdKQoc+hHmRqi/tkEd1mv0HnUYpOLeX7V3Vgd47r/05g+UL9uoUw+VRQn/wsa3YFYtNQGd2KxOp1K5BfSaBxOOq5/L4IiilYmtAzy+WK0pUAywdpTaWKY0HfkJtk1Xn3ebpc5wYWkaDfT8XK0ZSfgHtn1g+XOUErMTWmhoKNOmTePcuXMlEY8A9cu0dnf1eWAD9b5Ho0HWb/hhjvCe0HgIoMCqkWqTcVC/FL+KglXDIe0yeIXCk9+pVxEValox4EJ4BkO3j9Xn2/+jtjAra66dhm/6qt0lMq5AhVrquJ09P7fcj5/wnvDiTghpqTYgWD0SVg4vG+MBpiWojYjmt1Lv9/05FzKTwDUAWr0CY/bBc7/AIwOL179Oawu9voDmY9TXG99Uv/BL407N5YNqWYNaY9B4cMmdy9VP7QIA6o/Qs3ceqcksyefUv8//dVTvkZcwszvyjBs3jsWLFzNt2jTat2/PsGHD6NOnz4PR4OJB0vE9qNUNQts8ePct8kV9oN7PuXpcbWXnFnjjCkJRrzpbv6p+Udg53vNQVlPvCbU69N/VamIe+bt65WJtSafUq9yds9VWb1oHtW9ei5dL5vPiUUmdN27HJ+qg14d/UOeT6/eV6cjupSE3E46uh0PL1AYr+TOu29hBjSi1Cq1apOX6KWo00Gm6WnPw63R18tisZLUTeklVi6clqC0adZlq7UWn6SVznlvV7g4NB6r3G1ePVH/EFGfEnGun1SvLI2vh0v6by/9dc7OfbQkpVkIbN24c+/fvZ/Hixbz00kuMGjWKp59+mueee45GjUpgcsqHkYNrif/xS5y9i3oP5/86mLbYrPcERE4Fj4rWi62oNBq1qudsjDpdztbJ6oShpU1R1Mlfj65XH4m39JGq0latGizphis2Wmj7OlRpAyufh+tn1Ptq7d+GluNK9p6nwaA2NDq4TP2izE2/ua5SU7VxR52+JVclr9FAm9fUqtcNE2DPl2rXmV5zLdvBP+kU7P2f2mUlJwV8qsPjiyx7jrvp/B91epnks2pDrZ6fF22/qyfhyBr1bxN/6JYVGvXKPrzXzVqnElTsUmrUqBGNGjXik08+Yd68ebzxxhvMnz+fevXqMXbsWIYOHVr604+LsiewvnqltmGC2iG6y0fWGc3kfjh7Q++58E0/2PNf9SqgNH5s6HVq5/n8JJZ68eY6jVa9n9JokDpKTGn+X6v8qNo4ad3L6pdY9FQ10QQ1VKuNfWuqVZ9eoff/RZx4VL0SO/QjpF64udwzRE1i9QeUbgvUiOFqn8vVL6hx5aSqCed+ahkMBvVKc8+XNwZUuFGd6VsDnlpWuveUHd3VpvyLu6vzKNbsqk49U5jEo2oCO7IWEm+ZTzD/sxneS21UU4pjRRb706bT6Vi9ejWLFi1iy5YtPProowwbNowLFy7w1ltvsXXrVr777jtLxioeVBHD1Q+3s691Wy7ej2qREDFCTWhrRsOomJK5GshJh1PRagI7vtF0GDE7ZzWOWt2hRidw8rL8+YvKyROeWKz2i/zlDbVVZX43gXxae/Cuqia5/IdvTfCpdvcEkH7lZuf8ywduLnfwUCdtbfCUmlSt9YO5fn+1Ku6HwWp19LePq/33zK2ey05RuxTsWQjXbmk9Wr0TRIxUqxqt8f8ltBU0H632S/vpJfWz7uKr1hIk/Hszid3697axVWsKwnupt0pcfEs/boqR0Pbv38+iRYv4/vvvsbGxYdCgQXz66afUqnVzyo0+ffrQtGlTiwYqHnAPwIje9xQ5VW2xefU4zK6n3ldyC1T7BroHgnsQuAXdeF4RnH2K9qWbcVX9Yjy6Xu2qob+l2bSzL9TsoiaxsLZg51Rib89sGo16hVg9Sr2fduUoXDmu/nv1BORlwZVY9WGyn4169eZ7W6JLPguHlqtXKcqNUStsbKFaR/VqrEbnsnO/tWYXdeb375+CMzvUvpfPrCzaj5zEo7B3oTocmS5DXebgAY88A02HlY0+j4+9Cyej1b/dmhfBv66axG5NvFp7NenW7qmWRxlogW12QmvatCkdO3Zk/vz59O7du9COg1WqVDEZ8V6IcsHeWR1F5JvH1aGSrhy92fG4MFr7Gwkv6Eayu+W5i5/a4vPoejj/582GDaB+2dfqrj6CI+5/RIiS5uavVi3d2vHYYICU83DlxpWbMdkdU+8NXTutPo7/UvgxgxqpSaxuP6v92r+nKq1h8E9qVfSl/Wr/v2dXg1OFgtsa9OoV9+4v1a44+SrUVmsw6g9Q75uXFXaOan/ShTfuf+ffA9c6qP1kw3upVe+OHtaN8zZmJ7TTp08TEhJy121cXFxYtOgBHTJIiLsJegRe+QeSz0PaJXUkivxH2mX1PlfqZchIVPvXJZ9VH/cS2OBGEuumjiX4oN9/trEBrxD1UaPTzeWKAukJamIzJrsbD3tnNYHVfxIq1LBe7Oao2Aie2whf91aT9ldR8NSKm+szr6kte/f+D1JudHXS2Kj3ppqNVDvvl9W/dWAD6DxDbdVZubla3Vu9U5meK9DshJafzP766y9iY9WqhNq1a9OkSRPLRiZEWWXnpH7h3u1LNy9XHXcv9UaSS7tsmvzS48GzsprEanZV+7w9DDQacAtQH2FtrR2NZVSoCcM2wde94NppbL/uTqDfALQ/b4J/V6rdKkAdtqrxYHX0Fc/K1o25qCKGq48HhNkJ7cKFCzz11FPs3LkTT09PAJKTk2nRogXLli0zzhotxEPN1l790npQvrjE/fGsDM9tgqV90SQcJiJuzs11AfXVq7G6/crWPdByyOwmNM8//zw6nY7Y2FiuXbvGtWvXiI2NxWAwGKdwEUKIh46rHwz5GUPl5hjQYgjvow7OPfJ3tcGHJLMSZ/YV2m+//cauXbuoWfPmMEU1a9Zkzpw5tG5dhgfNFUKIkubkif6ZtWxc/xOdu/fGpqRnhRAmzL5CCw4ORqfTFViu1+sJCgqySFBCCPHA0thgsHlAh6t7wJmd0GbOnMlLL73EX3/dnMn1r7/+4uWXX+bjjz+2aHBCCCFEUZld5ThkyBAyMzNp1qwZtrbq7nl5edja2vLcc8/x3HPPGbe9du2a5SIVQggh7sLshDZ79uwSCEMIIYS4P2YntMGDS3BOHiGEEKKYijU4sV6vZ82aNcaO1XXq1KFnz55otWV8iB4hhBDlltkJ7eTJk3Tt2pWLFy8am+7PmDGD4OBg1q9fT9WqZWBgTSGEEA8ds1s5jh07lqpVq3L+/Hn279/P/v37OXfuHFWqVGHs2LElEaMQQghxT8XqWP3nn3/i7X1zqgAfHx/+85//0LJlS4sGJ4QQQhSV2VdoDg4OpKWlFVienp6Ovb10JhRCCGEdZie07t27M2LECHbv3o2iKCiKwp9//skLL7xAz549SyJGIYQQ4p7MTmiff/45VatWpXnz5jg6OuLo6EjLli2pVq0an332WUnEKIQQQtyTWffQFEUhNTWVZcuWcfHiRZP50KpVq1YiAQohhBBFYdYVmqIoVKtWjQsXLlCtWjV69OhBjx497juZzZ07l9DQUBwdHWnWrBl79uy547aLFy9Go9GYPBwdHQvEOWnSJAIDA3FyciIyMpITJ07cV4xCCCHKNrMSmo2NDdWrVycpKcliASxfvpzx48czefJk9u/fT4MGDYiKiiIxMfGO+7i7u3P58mXj4+xZ0ynuP/roIz7//HMWLFjA7t27cXFxISoqiuzsbIvFLYQQomwxu9n+f/7zH1577TXmz59P3bp17zuAWbNmMXz4cIYOHQrAggULWL9+PV999RVvvvlmoftoNBoCAgIKXacoCrNnz+add96hV69eAHz99df4+/uzZs0annzyyQL75OTkkJOTY3ydmpoKgE6nK3SqnHvJ36c4+4o7k3K1PClTy5MytbyilqXZCW3QoEFkZmbSoEED7O3tcXIynYXVnBH2c3Nz2bdvHxMnTjQus7GxITIykpiYmDvul56eTkhICAaDgUaNGvHBBx9Qp04dAOLi4oiPjycyMtK4vYeHB82aNSMmJqbQhDZjxgymTp1aYPnmzZtxdnYu8vu53ZYtW4q9r7gzKVfLkzK1PClTy8nMzCzSdmYntE8//RSNRmN2QIW5evUqer0ef39/k+X+/v4cPXq00H1q1qzJV199Rf369UlJSeHjjz+mRYsW/Pvvv1SqVIn4+HjjMW4/Zv66202cOJHx48cbX6emphIcHEynTp1wd3c3+33pdDq2bNlCx44dsZMZay1GytXypEwtT8rU8vJrze6lWPOhWVPz5s1p3ry58XWLFi2oXbs2X375Je+9916xjung4ICDg0OB5XZ2dsX+QOYZAButfKBLwP38XUThpEwtT8rUcopajmb3Q9NqtYU22EhKSjJ7tH1fX1+0Wi0JCQkmyxMSEu54j+x2dnZ2PPLII5w8eRLAuN/9HPN+vb7yMG/u1fJnnExwKoQQpcXshKYoSqHLc3JyzB76yt7ensaNGxMdHW1cZjAYiI6ONrkKuxu9Xs/hw4cJDAwEoEqVKgQEBJgcMzU1ld27dxf5mPdNo0Fn0LD3zPXSOZ8QQoiiVzl+/vnngNrC8P/+7/9wdXU1rtPr9fz+++/UqlXL7ADGjx/P4MGDadKkCREREcyePZuMjAxjq8dBgwZRsWJFZsyYAcC0adN49NFHqVatGsnJycycOZOzZ8/y/PPPG+MbN24c06dPp3r16lSpUoV3332XoKAgevfubXZ8xdE0xJPVf1+ShCaEEKWoyAnt008/BdQrtAULFphUL9rb2xMaGsqCBQvMDmDAgAFcuXKFSZMmER8fT8OGDdm4caOxUce5c+ewsbl5IXn9+nWGDx9OfHw8Xl5eNG7cmF27dhEeHm7c5vXXXycjI4MRI0aQnJxMq1at2LhxY4EO2CWlaagXAIcuppKt0+NoJxOfCiFESdMod6pDvIP27duzatUqvLy8Siomq0tNTcXDw4OUlJRitXLMzc2lyXubSdVp+GFkcyKqeN97J3FPOp2ODRs20LVrV7nZbiFSppYnZWp5Rf1ONvse2rZt28p1MrMEjUZDmLv6O2FPnOVGVRFCCHFnZjfb1+v1LF68mOjoaBITEzEYDCbrf/31V4sF9yCr6qZwIAn2yH00IYQoFWYntJdffpnFixfTrVs36tata7FO1uVN1RtXaPvOXCNPb8BWa/bFsBBCCDOYndCWLVvGDz/8QNeuXUsinnIj0BncHW1Jzc7jyOVU6lfytHZIQghRrpl92WBvby9znxWBjQYah3gCsEc6WAshRIkzO6G9+uqrfPbZZ3fsYC1uym++LwlNCCFKntlVjn/88Qfbtm3jl19+oU6dOgWapa5atcpiwT3omoSoCW3vmWsYDAo2NnK/UQghSorZCc3T05M+ffqURCzlTp1Ad5zstFzP1HHqSjrV/d2sHZIQQpRbZie0RYsWlUQc5ZK9rQ2NQjzZeTKJ3XHXJKEJIUQJKvI9tMJG2L9VXl4ee/bsue+AypumoeooIXIfTQghSlaRE1pgYKBJUqtXrx7nz583vk5KSiq90ewfIPnDXu2JuyYNaYQQogQVOaHd/mV85swZdDrdXbcR8EiwF3ZaDfGp2Vy4nmXtcIQQotyy6PAVMmpIQU72WupV9ABgt1Q7CiFEiZHxmEpBRBUfAPZKQhNCiBJT5ISm0WhIS0sjNTWVlJQUNBoN6enppKamGh+icBFVbnSwPiMJTQghSkqRm+0rikKNGjVMXj/yyCMmr6XKsXCNQ7zRaCDuagaJadn4uZXORKNCCPEwKXJC27ZtW0nGUa55ONlRO8CdI5dT2Rt3nW71A60dkhBClDtFTmht27YtyTjKvYgq3hy5nMqeuCRJaEIIUQKkUUgpye+PJi0dhRCiZEhCKyX5I4YcS0gjJVN3j62FEEKYSxJaKang5kCYrwuKAn+dlas0IYSwNElopejWYbCEEEJY1n0ntNTUVNasWUNsbKwl4inX5D6aEEKUHLMTWv/+/fniiy8AyMrKokmTJvTv35/69euzcuVKiwdYnuTfR/vnYgqZuXlWjkYIIcoXsxPa77//TuvWrQFYvXo1iqKQnJzM559/zvTp0y0eYHlSycuJIA9H8gwKf59LtnY4QghRrpid0FJSUvD2Vq80Nm7cSL9+/XB2dqZbt26cOHHC4gGWJxqNRqodhRCihJid0IKDg4mJiSEjI4ONGzfSqVMnAK5fv46jowzpdC9NbyQ0GahYCCEsy+yENm7cOAYOHEilSpUICgqiXbt2gFoVWa9evWIFMXfuXEJDQ3F0dKRZs2ZFnvl62bJlaDQaevfubbJ8yJAhaDQak0fnzp2LFZulNbuR0Pafu05unsHK0QghRPlhdkIbNWoUMTExfPXVV/zxxx/Y2KiHCAsLK9Y9tOXLlzN+/HgmT57M/v37adCgAVFRUSazYxfmzJkzTJgwwXg/73adO3fm8uXLxsf3339vdmwloWoFV7xd7MnJM3D4YrK1wxFCiHKjWM32mzRpQp8+fXB1dUWv13PgwAFatGhBy5YtzT7WrFmzGD58OEOHDiU8PJwFCxbg7OzMV199dcd99Ho9AwcOZOrUqYSFhRW6jYODAwEBAcaHl5eX2bGVBI1GQ9PQG9PJxF23cjRCCFF+FHlw4nzjxo2jXr16DBs2DL1eT9u2bdm1axfOzs78/PPPxirIosjNzWXfvn1MnDjRuMzGxobIyEhiYmLuuN+0adPw8/Nj2LBh7Nixo9Bttm/fjp+fH15eXjz22GNMnz4dHx+fQrfNyckhJyfH+Dp/bjedTodOZ/4wVfn73GnfxpU92fRvAn+evsrzLSubffyH1b3KVZhPytTypEwtr6hlaXZCW7FiBc888wwA69atIy4ujqNHj7J06VLefvttdu7cWeRjXb16Fb1ej7+/v8lyf39/jh49Wug+f/zxB//73/84cODAHY/buXNn+vbtS5UqVTh16hRvvfUWXbp0ISYmBq1WW2D7GTNmMHXq1ALLN2/ejLOzc5Hfz+22bNlS6PLcdABbdp+6ws/rN2Aj08iZ5U7lKopPytTypEwtJzMzs0jbmZ3Qrl69SkBAAAAbNmzgiSeeoEaNGjz33HN89tln5h7OLGlpaTz77LMsXLgQX1/fO2735JNPGp/Xq1eP+vXrU7VqVbZv306HDh0KbD9x4kTGjx9vfJ2amkpwcDCdOnXC3d3d7Dh1Oh1btmyhY8eO2NnZFVivNyjMP/4rGTl6whq1IjzQ/HM8jO5VrsJ8UqaWJ2Vqefm1ZvdidkLz9/fnyJEjBAYGsnHjRubPnw+oGbSwq5+78fX1RavVkpCQYLI8ISHBmDRvderUKc6cOUOPHj2MywwGtaWgra0tx44do2rVqgX2CwsLw9fXl5MnTxaa0BwcHHBwcCiw3M7O7r4+kHfa3w5oEuLNb8evsP98Kg0qF14VKgp3v38XUZCUqeVJmVpOUcvR7EYhQ4cOpX///tStWxeNRkNkZCQAu3fvplatWmYdy97ensaNGxMdHW1cZjAYiI6Opnnz5gW2r1WrFocPH+bAgQPGR8+ePWnfvj0HDhwgODi40PNcuHCBpKQkAgPLzsSaMlCxEEJYltlXaFOmTKFu3bqcP3+eJ554wnhlo9VqefPNN80OYPz48QwePJgmTZoQERHB7NmzycjIYOjQoQAMGjSIihUrMmPGDBwdHalbt67J/p6engDG5enp6UydOpV+/foREBDAqVOneP3116lWrRpRUVFmx1dS8hPa3jPXUBQFjUZupAkhxP0wO6EBPP744wWWDR48uFgBDBgwgCtXrjBp0iTi4+Np2LAhGzduNDYUOXfunLGvW1FotVoOHTrEkiVLSE5OJigoiE6dOvHee+8VWq1oLfUreWBva8PV9FxOX82gagVXa4ckhBAPtGIltN9++42PP/7YOGVMeHg4r7322h07Od/LmDFjGDNmTKHrtm/fftd9Fy9ebPLaycmJTZs2FSuO0uRgq6VhsCd74q6xJ+6aJDQhhLhPZt9D++abb4iMjMTZ2ZmxY8cyduxYnJyc6NChA999911JxFhuNZNxHYUQwmLMvkJ7//33+eijj3jllVeMy8aOHcusWbN47733ePrppy0aYHkmI+8LIYTlmH2Fdvr0aZNm8/l69uxJXFycRYJ6WDSq7IXWRsPF5CwuJmdZOxwhhHigFWv6mFub2efbunXrHZvNi8K5ONhSN0jtVC3VjkIIcX/MrnJ89dVXGTt2rHFAYoCdO3eyePHiEh8ppDyKqOLNwQsp7I67Ru9HKlo7HCGEeGCZndBefPFFAgIC+OSTT/jhhx8AqF27NsuXL6dXr14WD7C8axrqzcIdceyJS7J2KEII8UAzK6Hl5eXxwQcf8Nxzz/HHH3+UVEwPlaahasOQU1cyuJqeg69r2ekrJ4QQDxKz7qHZ2try0UcfkZeXV1LxPHS8XOyp6e8GwF9n5D6aEEIUl9mNQjp06MBvv/1WErE8tJpWUSf8lOb7QghRfGbfQ+vSpQtvvvkmhw8fpnHjxri4uJis79mzp8WCe1hEVPHhmz/PsVeu0IQQotjMTmijRo0CYNasWQXWaTQa9Hr9/Uf1kIm4cR/tyKVUUrN1uDvKlBNCCGEus6scDQbDHR+SzIonwMORyt7OGBTYd/a6tcMRQogHktkJTZSMCBnXUQgh7kuRE9qvv/5KeHh4oVNhp6SkUKdOHX7//XeLBvcwkQk/hRDi/hQ5oc2ePZvhw4fj7u5eYJ2HhwcjR47k008/tWhwD5P8+2gHLySTrZOqWyGEMFeRE9rBgwfp3LnzHdd36tSJffv2WSSoh1GIjzN+bg7o9AoHzidbOxwhhHjgFDmhJSQkYGd359Z3tra2XLlyxSJBPYw0Go1UOwohxH0ockKrWLEi//zzzx3XHzp0iMDAQIsE9bCShCaEEMVX5ITWtWtX3n33XbKzswusy8rKYvLkyXTv3t2iwT1s8hPa/nPX0ekNVo5GCCEeLEXuWP3OO++watUqatSowZgxY6hZsyYAR48eZe7cuej1et5+++0SC/RhUMPPDQ8nO1KydPx7KZWGwZ7WDkkIIR4YRU5o/v7+7Nq1ixdffJGJEyeiKAqg3vuJiopi7ty5+Pv7l1igDwMbGw1NQ73YGpvInrgkSWhCCGEGs4a+CgkJYcOGDVy/fp2TJ0+iKArVq1fHy8urpOJ76ERU8b6R0K4zoo21oxFCiAeH2WM5Anh5edG0aVNLxyJQByoG2HvmGgaDgo2NxsoRCSHEg0GGvipj6gS542SnJSVLx/HENGuHI4QQDwxJaGWMndaGxiFqFa6M6yiEEEUnCa0ManpjGCyZ8FMIIYpOEloZdGsH6/zWpEIIIe6uTCS0uXPnEhoaiqOjI82aNWPPnj1F2m/ZsmVoNBp69+5tslxRFCZNmkRgYCBOTk5ERkZy4sSJEoi8ZDxS2RM7rYbEtBzOXcu0djhCCPFAsHpCW758OePHj2fy5Mns37+fBg0aEBUVRWJi4l33O3PmDBMmTKB169YF1n300Ud8/vnnLFiwgN27d+Pi4kJUVFSho5yURY52WupX8gRg/A8H2XD4sowcIoQQ92D1hDZr1iyGDx/O0KFDCQ8PZ8GCBTg7O/PVV1/dcR+9Xs/AgQOZOnUqYWFhJusURWH27Nm888479OrVi/r16/P1119z6dIl1qxZU8LvxnL6N6mERqPOYD3q2/20+M+vfLzpGBeTs6wdmhBClEnF6odmKbm5uezbt4+JEycal9nY2BAZGUlMTMwd95s2bRp+fn4MGzaMHTt2mKyLi4sjPj6eyMhI4zIPDw+aNWtGTEwMTz75ZIHj5eTkkJOTY3ydP4mpTqdDp9OZ/b7y9ynOvvn6NgwkIsSTH/66wI/7L3IlLYcvtp1k3vaTtK3hy1NNg2lT3RftQ9RPzRLlKkxJmVqelKnlFbUsrZrQrl69il6vLzBklr+/P0ePHi10nz/++IP//e9/HDhwoND18fHxxmPcfsz8dbebMWMGU6dOLbB88+bNODs73+tt3NGWLVuKvW++WsDEOnD4uoad8RpOpNqw7dhVth27ipe9Qgt/A4/6Kbjb3/epHhiWKFdhSsrU8qRMLSczs2htCaya0MyVlpbGs88+y8KFC/H19bXYcSdOnMj48eONr1NTUwkODqZTp06FztB9Lzqdji1bttCxY8e7ziFnjp43/j19JYPlf11g5d8XuZ6Vx/rzWjZd1BBZ24+nmlaieZg3Gk35vGoriXJ92EmZWp6UqeXl15rdi1UTmq+vL1qtloSEBJPlCQkJBAQEFNj+1KlTnDlzhh49ehiXGQxqYwlbW1uOHTtm3C8hIcFkfraEhAQaNmxYaBwODg44ODgUWG5nZ3dfH8j73b8wNYM8mdTTk9e71Gb9oct8u/ss+88ls/HfBDb+m0CYrwtPN6tMv0aV8HIpn5dtJVGuDzspU8uTMrWcopajVRuF2Nvb07hxY6Kjo43LDAYD0dHRNG/evMD2tWrV4vDhwxw4cMD46NmzJ+3bt+fAgQMEBwdTpUoVAgICTI6ZmprK7t27Cz3mg8rRTku/xpVYNaolG8a25plHK+Nir+X01Qymr4+l2Yxoxi8/wL6z0pdNCPFwsHqV4/jx4xk8eDBNmjQhIiKC2bNnk5GRwdChQwEYNGgQFStWZMaMGTg6OlK3bl2T/T09PQFMlo8bN47p06dTvXp1qlSpwrvvvktQUFCB/mrlRXiQO9N71+PNLrX56cAlvvnzLEcup7Lq74us+vsitQPdefbREHo1DMLFwep/ciGEKBFW/3YbMGAAV65cYdKkScTHx9OwYUM2btxobNRx7tw5bGzMu5B8/fXXycjIYMSIESQnJ9OqVSs2btyIo6NjSbyFMsPVwZanm1XmqYhgDl5I4ds/z/LTwUvEXk7lrdWHmbEhln6NK/HMo5Wp5udm7XCFEMKiNIrURxWQmpqKh4cHKSkpxW4UsmHDBrp27Wr1OvTkzFxW7LvAN3+e5UzSzZZCLar68OyjIUSG+2OntXp3xCIpS+VaXkiZWp6UqeUV9TvZ6ldoomR5OtvzfOswnmtZhT9OXmXpn2eJjk1g16kkdp1Kwt/dgaciKvNURGX83cv3FawQonyThPaQsLHR0KZGBdrUqMCF65l8v+ccy/acJyE1h9lbT/DFryeJqhPAM4+G8Gg5bvovhCi/JKE9hCp5OfNaVC3GdqjOxn/i+ebPs+w9c531hy+z/vBlqvm58uyjIfRtVBE3R6kyEUI8GCShPcQcbLX0aliRXg0rcuRSKt/sPsuavy9yMjGdyT/9y4cbj9LnkYo8FVEZPzcHdAYFXZ6BPIOB3DyFPIMBnV5BpzeQd+Nfnd5AniH/ef46AwrQJMSb2oFucvUnhCgRktAEoDb9/6BPPd7sUovV+y+y9M+znExM59vd5/h29zmLnadqBRe61w+iR4Mgqvm5Wuy4QgghCU2YcHe0Y3CLUAY1D+HP09f45s+zbD4Sj96gYKe1wU5rg61Woz630WBna4OtjabgOq0GWxsb4/MsnZ5dp5I4dSWDz6JP8Fn0CWoHutOjQSA96gcR7F38MTOFEAIkoYk70Gg0NK/qQ/OqPiiKYpFqwrRsHVuOJLDu4CV2nLhK7OVUYi+n8tHGYzQM9qRHgyC61QskwENaWwohzCcJTdyTpe55uTna0bdRJfo2qsT1jFw2/RvPukOXiDmVxIHzyRw4n8z09UdoGupNjwZBdK0bgI9rwTE2hRCiMJLQhFV4udjzZERlnoyoTGJaNr8cjmfdwUv8dfY6e+KusSfuGlN++pcWVX3o0SCIqDoBOMunVQhxF/IVIazOz82RwS1CGdwilIvJWaw/dImfD13m0IUUdpy4yo4TV3l79WFaVfPBJs2G87/H4ePmiIeTnenD2Q43B1tpRSnEQ0oSmihTKno6MaJNVUa0qcqZqxn8fOgS6w5e5lhCGtuOXQVsiL504o7722jA3ckOzxtJzv3Gv57ONxOft4sDvq72+Lo64OvqgLeLPfa2D8bwX0KIO5OEJsqsUF8XxjxWnTGPVed4Qhqb/7nM3n+O4R1QibRsPSlZuaRk6UjJ0pGcqSMnz4BBgeRM9bU5PJzs8HG1x9fFAV83e3xc1GTnY0x89vjc+NdVrgKFKJMkoYkHQg1/N6p4OxKcHkvXrnULHfQ1W6cnNUtH8o0kl5J5I9ndeJ2apeN6Zi7XMnK5mp5LUnoOSRm56A2KMTGevpJxz1gcbG2MrTK7SMMVIcoMSWii3HC00+Jop8XPjEGWDTeSWVJGDlfScknKyOFqmprorqbncjU9h6T0HGMCzMjVk5NnYHfcNXbHXWPybQ1XPJxkqDAhrEUSmnio2dho8HKxx8vFnmp+994+K1fPpZQsomMTWHfwMocvmjZcaVujAt3rBxEZ7o+rTKYqRKmS/3FCmMHJXkvVCq5UreBaaMOVrbGJbI1NxMHWhg61/eheP4jHavnhaKe1duhClHuS0IS4D7c3XPn54CXWHbpM3NUMNhyOZ8PheFzstUSG+9OjfhCta/jiYCvJTYiSIAlNCAup4e/G+E41eaVjDf69lMq6Q5f4+eBlLiZnsfbAJdYeuIS7oy1RdQLo3iCIKj4uZOryyMzVk52rJzNXT6Yu/3kemTo9Wbnqo+DzPLJ0ehxstXg52+PlbIe3iz2ezvZ4u9ipy1zs8XK2x9vFHg8nO7Q20jJTlG+S0ISwMI1GQ92KHtSt6MGbnWvx9/lk1h28xPpDl0lMy+HHfRf4cd+FUo5J7Zrg7WyP5y3Jz8NRS3aihpZZOnwLaTkqxINEEpoQJUij0dCosheNKnvxTrdw9p65xrqDl9h8JIGMnDyc7dWWmc72WpzsbXGys8HZ3hYnOy1O9jeWF3hue2M/G3LzDFzLULsjXM/I5VpmLsmZOq5l5BqXpWbnody1f56WHz7cTqtqvnSrH0THcH9prSkeSJLQhCglWhsNj4b58GiYD+/3qVdq583TG0jO0qkJLyOX65k3++NdSc1i04GzXM6CbceusO3YFey0GlpXr0DXeoGS3MQDRRKaEOWcrdbGOMzX7XQ6HY9wmhpN2rA59iobDqutNX89msivRxONya1bvUAiJbmJMk4SmhCCan6u1K7oxcuR1TmZmMb6Q/GsP3yJ4wnpJsmtTf6VWx1/3B0luYmyRRKaEMJENT83Xo504+XI6pxISGP94ctsOHyZ4wnpRB9NJPpoIvarbGhd3Zdu9dUrt9uTm8GgkKlTW2tm5bfgvNFKM8NkWZ6x5aaTnZZqfq5U83Ml1MdFBowWZpOEJoS4o+r+bozzd2NcZA1jclt/6DInEm9JblobKvs4q90KbiSxbJ3hvs6rtdEQ4uNMdT9Xqvu5GRNd1QquONlLPz5ROEloQogiuTW5HU9IY/0h9crtRGI6JxPTC91HowGnG604nW+0zrzZYtP2xnJ1WVp2HidvHCs9J4/TVzI4fSWDTf8mmByvkpcT1f3cqO7nSlU/V6rfSHZuUgX60JOEJoQwWw1/N2p0dOOVjjU4mZhOYmr2jUR1M0k529viaGdj9lQ7iqIQn5rNycR0TiSkc/JKOicT0jmRmMb1TB3nr2Vx/loWvx5NNNkvwN2Ryt7OuDna4u5kh5uj7Y2Hncm/7o52uN/y2tleK9MBlRNlIqHNnTuXmTNnEh8fT4MGDZgzZw4RERGFbrtq1So++OADTp48iU6no3r16rz66qs8++yzxm2GDBnCkiVLTPaLiopi48aNJfo+hHgY5VcHWopGoyHQw4lADydaV69gsi4pPcd4RZj/OJGYRkJqDvGp2cSnZpt9Pq2NBlcHW9ydbHFzUCeD9Xd3xM/dgQB3R/zdHfF3d8DPTV0mQ5eVXVZPaMuXL2f8+PEsWLCAZs2aMXv2bKKiojh27Bh+fgWHP/f29ubtt9+mVq1a2Nvb8/PPPzN06FD8/PyIiooybte5c2cWLVpkfO3gIHNWCfGg83F1wMfVgUfDfEyWp2TpOJmYTnxKNmnZOtKy80jL1pGanUfqLa/TTF7noTcoJvPhQdY9Y/B2scfPzcGY6ALcHfG7JfF5O2kxKCVUAOKurJ7QZs2axfDhwxk6dCgACxYsYP369Xz11Ve8+eabBbZv166dyeuXX36ZJUuW8Mcff5gkNAcHBwICAko0diFE2eDhZEfjEC+z9lEUhSydXk1yWWryS8tWO50npOaQkJpN4o1/4288z9UbuHajg/rR+LQ7HttWo+Xri7t5pLI3DSt78kiwJ5W8nKRqs4RZNaHl5uayb98+Jk6caFxmY2NDZGQkMTEx99xfURR+/fVXjh07xocffmiybvv27fj5+eHl5cVjjz3G9OnT8fHxKfQ4OTk55OTkGF+npqYCaqdTna6woYLuLn+f4uwr7kzK1fIe9jK104C3kxZvp3tXIyqKQnKWjsTUHBLTcoi/8W9iWrZxWUJqDlfSc8hTNPx9PoW/z6fATnV/bxc76lf0oEElDxoEe9Cgogfu0lG9SIr6+bRqQrt69Sp6vR5/f3+T5f7+/hw9evSO+6WkpFCxYkVycnLQarXMmzePjh07Gtd37tyZvn37UqVKFU6dOsVbb71Fly5diImJQast+MGdMWMGU6dOLbB88+bNODs7F/v9bdmypdj7ijuTcrU8KVPzuQBVgCpawOvGAzAocDUbzqZr1EeahouZcC1Dx/bjV9l+/KrxGH6OCiFuCiGuCqGuCkHOoC1G9zuDAtn6G488yNJDtl6DokCgs4K3g9pC9EGVmZlZpO2sXuVYHG5ubhw4cID09HSio6MZP348YWFhxurIJ5980rhtvXr1qF+/PlWrVmX79u106NChwPEmTpzI+PHjja9TU1MJDg6mU6dOuLu7mx2fTqdjy5YtdOzYETsZwdxipFwtT8rU8vLLdGDPSGOZ5uj0HIlP4+CFFA6eT+HghRTOX88iMVtDYraGvVfUfR1sbagT5E6DSh6E+bqQnadWiaZn55Geo973S8/JI+2W5+nZeWTk6u8ak6eTHeFBbtQNcqdukDt1gtwJfoCqQPNrze7FqgnN19cXrVZLQkKCyfKEhIS73v+ysbGhWrVqADRs2JDY2FhmzJhR4P5avrCwMHx9fTl58mShCc3BwaHQRiN2dnb39Z/8fvcXhZNytTwpU8u7tUzt7OyICHMkIuxmq82k9BwOXkjmwPkUDpxP5uD5ZFKydOw/l8z+c8nFOqe91gY3R1tcb3RZ0BvgZGIayVk6dp26xq5T14zbejjZUbeiO3UrelDvxqOyt3OZTHJF/WxaNaHZ29vTuHFjoqOj6d27NwAGg4Ho6GjGjBlT5OMYDAaTe2C3u3DhAklJSQQGBt5vyEIIYRE+rg48Vsufx2qpt1wURSHuagYHzidz4Hwy569l4uJwSz86h/xEdfO1m6OdMXm5OdoW2qUgJ0/P8fh0Dl9M4fDFFP65mMLR+FRSsnTsPJnEzpNJxm3dHW2NCS7/3xCfspnkCmP1Ksfx48czePBgmjRpQkREBLNnzyYjI8PY6nHQoEFUrFiRGTNmAOr9riZNmlC1alVycnLYsGEDS5cuZf78+QCkp6czdepU+vXrR0BAAKdOneL111+nWrVqJq0ghRCiLNFoNIRVcCWsgit9G1Wy2HEdbLXUq+RBvUoexmW5eQaOJ6SZJrnLaaRm57HrVBK7Tt1Mcq4OtlT2dqaSlxPB3s4E3/i3kpczwd5OONtbPY0YWT2SAQMGcOXKFSZNmkR8fDwNGzZk48aNxoYi586dw8bm5l3SjIwMRo0axYULF3BycqJWrVp88803DBgwAACtVsuhQ4dYsmQJycnJBAUF0alTJ9577z3piyaEEIC9rY1xVvWnbizLT3L/3JLkYuPTSM/J48jlVI5cLvw+lo+LPZXyE96NJFfJS018Fb2cSrUjukZRFOkCeJvU1FQ8PDxISUkpdqOQDRs20LVrV7kvYUFSrpYnZWp55alMdXoDcVczuHA988aQY5lcuJ7F+euZnL+WSWp23l3312jA382RSl5OPNGkEgOaVi5WHEX9Trb6FZoQQoiyyU5ro47b6e9W6PqULJ0x2V24fiPZXcu8kfCyyNLpjUOStatZodBjWJIkNCGEEMXi4WSHh5MHdYI8CqxTFIVrGbmcv5HkagYUnhQtSRKaEEIIi9NoNMaxNxsGe5bKOWVKWCGEEOWCJDQhhBDlgiQ0IYQQ5YIkNCGEEOWCJDQhhBDlgiQ0IYQQ5YIkNCGEEOWC9EMrRP5oYEWdg+d2Op2OzMxMUlNTH/ihb8oSKVfLkzK1PClTy8v/Lr7XSI2S0AqRlpYGQHBwsJUjEUIIkS8tLQ0Pj4KjkuSTwYkLYTAYuHTpEm5ubsWaByh/xuvz588Xa3BjUTgpV8uTMrU8KVPLUxSFtLQ0goKCTGZfuZ1coRXCxsaGSpXufz4id3d3+UCXAClXy5MytTwpU8u625VZPmkUIoQQolyQhCaEEKJckIRWAhwcHJg8ebLMkG1hUq6WJ2VqeVKm1iONQoQQQpQLcoUmhBCiXJCEJoQQolyQhCaEEKJckIQmhBCiXJCEVgLmzp1LaGgojo6ONGvWjD179lg7pAfWlClT0Gg0Jo9atWpZO6wHzu+//06PHj0ICgpCo9GwZs0ak/WKojBp0iQCAwNxcnIiMjKSEydOWCfYB8S9ynTIkCEFPrudO3e2TrAPCUloFrZ8+XLGjx/P5MmT2b9/Pw0aNCAqKorExERrh/bAqlOnDpcvXzY+/vjjD2uH9MDJyMigQYMGzJ07t9D1H330EZ9//jkLFixg9+7duLi4EBUVRXZ2dilH+uC4V5kCdO7c2eSz+/3335dihA8hRVhURESEMnr0aONrvV6vBAUFKTNmzLBiVA+uyZMnKw0aNLB2GOUKoKxevdr42mAwKAEBAcrMmTONy5KTkxUHBwfl+++/t0KED57by1RRFGXw4MFKr169rBLPw0qu0CwoNzeXffv2ERkZaVxmY2NDZGQkMTExVozswXbixAmCgoIICwtj4MCBnDt3ztohlStxcXHEx8ebfG49PDxo1qyZfG7v0/bt2/Hz86NmzZq8+OKLJCUlWTukck0SmgVdvXoVvV6Pv7+/yXJ/f3/i4+OtFNWDrVmzZixevJiNGzcyf/584uLiaN26tXGKH3H/8j+b8rm1rM6dO/P1118THR3Nhx9+yG+//UaXLl3Q6/XWDq3cktH2RZnWpUsX4/P69evTrFkzQkJC+OGHHxg2bJgVIxPi7p588knj83r16lG/fn2qVq3K9u3b6dChgxUjK7/kCs2CfH190Wq1JCQkmCxPSEggICDASlGVL56entSoUYOTJ09aO5RyI/+zKZ/bkhUWFoavr698dkuQJDQLsre3p3HjxkRHRxuXGQwGoqOjad68uRUjKz/S09M5deoUgYGB1g6l3KhSpQoBAQEmn9vU1FR2794tn1sLunDhAklJSfLZLUFS5Whh48ePZ/DgwTRp0oSIiAhmz55NRkYGQ4cOtXZoD6QJEybQo0cPQkJCuHTpEpMnT0ar1fLUU09ZO7QHSnp6usmVQVxcHAcOHMDb25vKlSszbtw4pk+fTvXq1alSpQrvvvsuQUFB9O7d23pBl3F3K1Nvb2+mTp1Kv379CAgI4NSpU7z++utUq1aNqKgoK0Zdzlm7mWV5NGfOHKVy5cqKvb29EhERofz555/WDumBNWDAACUwMFCxt7dXKlasqAwYMEA5efKktcN64Gzbtk0BCjwGDx6sKIradP/dd99V/P39FQcHB6VDhw7KsWPHrBt0GXe3Ms3MzFQ6deqkVKhQQbGzs1NCQkKU4cOHK/Hx8dYOu1yT6WOEEEKUC3IPTQghRLkgCU0IIUS5IAlNCCFEuSAJTQghRLkgCU0IIUS5IAlNCCFEuSAJTQghRLkgCU0IIUS5IAlNCGFi+/btaDQakpOTrR2KEGaRhCaEEKJckIQmhBCiXJCEJkQZYzAYmDFjBlWqVMHJyYkGDRqwYsUK4GZ14Pr166lfvz6Ojo48+uij/PPPPybHWLlyJXXq1MHBwYHQ0FA+cM4txgAAA3lJREFU+eQTk/U5OTm88cYbBAcH4+DgQLVq1fjf//5nss2+ffto0qQJzs7OtGjRgmPHjpXsGxfifll7dGQhhKnp06crtWrVUjZu3KicOnVKWbRokeLg4KBs377dOMJ77dq1lc2bNyuHDh1SunfvroSGhiq5ubmKoijKX3/9pdjY2CjTpk1Tjh07pixatEhxcnJSFi1aZDxH//79leDgYGXVqlXKqVOnlK1btyrLli1TFOXmKPLNmjVTtm/frvz7779K69atlRYtWlijOIQoMkloQpQh2dnZirOzs7Jr1y6T5cOGDVOeeuopY7LJTz6KoihJSUmKk5OTsnz5ckVRFOXpp59WOnbsaLL/a6+9poSHhyuKoijHjh1TAGXLli2FxpB/jq1btxqXrV+/XgGUrKwsi7xPIUqCVDkKUYacPHmSzMxMOnbsiKurq/Hx9ddfc+rUKeN2t84k7e3tTc2aNYmNjQUgNjaWli1bmhy3ZcuWnDhxAr1ez4EDB9BqtbRt2/ausdSvX9/4PH+W5cTExPt+j0KUFJmxWogyJD09HYD169dTsWJFk3UODg4mSa24nJycirSdnZ2d8blGowHU+3tClFVyhSZEGRIeHo6DgwPnzp2jWrVqJo/g4GDjdn/++afx+fXr1zl+/Di1a9cGoHbt2uzcudPkuDt37qRGjRpotVrq1auHwWDgt99+K503JUQpkSs0IcoQNzc3JkyYwCuvvILBYKBVq1akpKSwc+dO3N3dCQkJAWDatGn4+Pjg7+/P22+/ja+vL7179wbg1VdfpWnTprz33nsMGDCAmJgYvvjiC+bNmwdAaGgogwcP5rnnnuPzzz+nQYMGnD17lsTERPr372+tty7E/bP2TTwhhCmDwaDMnj1bqVmzpmJnZ6dUqFBBiYqKUn777Tdjg41169YpderUUezt7ZWIiAjl4MGDJsdYsWKFEh4ertjZ2SmVK1dWZs6cabI+KytLeeWVV5TAwEDF3t5eqVatmvLVV18pinKzUcj169eN2//9998KoMTFxZX02xei2DSKoihWzqlCiCLavn077du35/r163h6elo7HCHKFLmHJoQQolyQhCaEEKJckCpHIYQQ5YJcoQkhhCgXJKEJIYQoFyShCSGEKBckoQkhhCgXJKEJIYQoFyShCSGEKBckoQkhhCgXJKEJIYQoF/4fk+7euJ4aGSUAAAAASUVORK5CYII=","text/plain":["
      "]},"metadata":{},"output_type":"display_data"}],"source":["plot_history(history)"]},{"cell_type":"code","execution_count":25,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["112/112 [==============================] - 31s 273ms/step - loss: 0.5356 - accuracy: 0.7698\n","\n","Accuracy: 76.97719931602478 %\n"]}],"source":["_, acc = vgg16_model.evaluate(validation_ds)\n","print(\"Accuracy: \", (acc*100.0), \" %\")"]},{"cell_type":"markdown","metadata":{},"source":["#### Approach 3: ResNet50"]},{"cell_type":"code","execution_count":26,"metadata":{},"outputs":[],"source":["# Load the pre-trained ResNet50 model\n","\n","base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(180, 180, 3))\n","base_model.trainable = False\n","last_output = base_model.output \n","x = tf.keras.layers.Flatten()(last_output) \n","x = tf.keras.layers.Dense(1024, activation='relu')(x) \n","x = tf.keras.layers.Dropout(0.6)(x) \n","predictions = Dense(1, activation='sigmoid')(x) "]},{"cell_type":"code","execution_count":27,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Model: \"model_1\"\n","\n","__________________________________________________________________________________________________\n","\n"," Layer (type) Output Shape Param # Connected to \n","\n","==================================================================================================\n","\n"," input_2 (InputLayer) [(None, 180, 180, 3)] 0 [] \n","\n"," \n","\n"," conv1_pad (ZeroPadding2D) (None, 186, 186, 3) 0 ['input_2[0][0]'] \n","\n"," \n","\n"," conv1_conv (Conv2D) (None, 90, 90, 64) 9472 ['conv1_pad[0][0]'] \n","\n"," \n","\n"," conv1_bn (BatchNormalizati (None, 90, 90, 64) 256 ['conv1_conv[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv1_relu (Activation) (None, 90, 90, 64) 0 ['conv1_bn[0][0]'] \n","\n"," \n","\n"," pool1_pad (ZeroPadding2D) (None, 92, 92, 64) 0 ['conv1_relu[0][0]'] \n","\n"," \n","\n"," pool1_pool (MaxPooling2D) (None, 45, 45, 64) 0 ['pool1_pad[0][0]'] \n","\n"," \n","\n"," conv2_block1_1_conv (Conv2 (None, 45, 45, 64) 4160 ['pool1_pool[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv2_block1_1_bn (BatchNo (None, 45, 45, 64) 256 ['conv2_block1_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv2_block1_1_relu (Activ (None, 45, 45, 64) 0 ['conv2_block1_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv2_block1_2_conv (Conv2 (None, 45, 45, 64) 36928 ['conv2_block1_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv2_block1_2_bn (BatchNo (None, 45, 45, 64) 256 ['conv2_block1_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv2_block1_2_relu (Activ (None, 45, 45, 64) 0 ['conv2_block1_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv2_block1_0_conv (Conv2 (None, 45, 45, 256) 16640 ['pool1_pool[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv2_block1_3_conv (Conv2 (None, 45, 45, 256) 16640 ['conv2_block1_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv2_block1_0_bn (BatchNo (None, 45, 45, 256) 1024 ['conv2_block1_0_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv2_block1_3_bn (BatchNo (None, 45, 45, 256) 1024 ['conv2_block1_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv2_block1_add (Add) (None, 45, 45, 256) 0 ['conv2_block1_0_bn[0][0]', \n","\n"," 'conv2_block1_3_bn[0][0]'] \n","\n"," \n","\n"," conv2_block1_out (Activati (None, 45, 45, 256) 0 ['conv2_block1_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv2_block2_1_conv (Conv2 (None, 45, 45, 64) 16448 ['conv2_block1_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv2_block2_1_bn (BatchNo (None, 45, 45, 64) 256 ['conv2_block2_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv2_block2_1_relu (Activ (None, 45, 45, 64) 0 ['conv2_block2_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv2_block2_2_conv (Conv2 (None, 45, 45, 64) 36928 ['conv2_block2_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv2_block2_2_bn (BatchNo (None, 45, 45, 64) 256 ['conv2_block2_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv2_block2_2_relu (Activ (None, 45, 45, 64) 0 ['conv2_block2_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv2_block2_3_conv (Conv2 (None, 45, 45, 256) 16640 ['conv2_block2_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv2_block2_3_bn (BatchNo (None, 45, 45, 256) 1024 ['conv2_block2_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv2_block2_add (Add) (None, 45, 45, 256) 0 ['conv2_block1_out[0][0]', \n","\n"," 'conv2_block2_3_bn[0][0]'] \n","\n"," \n","\n"," conv2_block2_out (Activati (None, 45, 45, 256) 0 ['conv2_block2_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv2_block3_1_conv (Conv2 (None, 45, 45, 64) 16448 ['conv2_block2_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv2_block3_1_bn (BatchNo (None, 45, 45, 64) 256 ['conv2_block3_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv2_block3_1_relu (Activ (None, 45, 45, 64) 0 ['conv2_block3_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv2_block3_2_conv (Conv2 (None, 45, 45, 64) 36928 ['conv2_block3_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv2_block3_2_bn (BatchNo (None, 45, 45, 64) 256 ['conv2_block3_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv2_block3_2_relu (Activ (None, 45, 45, 64) 0 ['conv2_block3_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv2_block3_3_conv (Conv2 (None, 45, 45, 256) 16640 ['conv2_block3_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv2_block3_3_bn (BatchNo (None, 45, 45, 256) 1024 ['conv2_block3_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv2_block3_add (Add) (None, 45, 45, 256) 0 ['conv2_block2_out[0][0]', \n","\n"," 'conv2_block3_3_bn[0][0]'] \n","\n"," \n","\n"," conv2_block3_out (Activati (None, 45, 45, 256) 0 ['conv2_block3_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv3_block1_1_conv (Conv2 (None, 23, 23, 128) 32896 ['conv2_block3_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block1_1_bn (BatchNo (None, 23, 23, 128) 512 ['conv3_block1_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block1_1_relu (Activ (None, 23, 23, 128) 0 ['conv3_block1_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv3_block1_2_conv (Conv2 (None, 23, 23, 128) 147584 ['conv3_block1_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block1_2_bn (BatchNo (None, 23, 23, 128) 512 ['conv3_block1_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block1_2_relu (Activ (None, 23, 23, 128) 0 ['conv3_block1_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv3_block1_0_conv (Conv2 (None, 23, 23, 512) 131584 ['conv2_block3_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block1_3_conv (Conv2 (None, 23, 23, 512) 66048 ['conv3_block1_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block1_0_bn (BatchNo (None, 23, 23, 512) 2048 ['conv3_block1_0_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block1_3_bn (BatchNo (None, 23, 23, 512) 2048 ['conv3_block1_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block1_add (Add) (None, 23, 23, 512) 0 ['conv3_block1_0_bn[0][0]', \n","\n"," 'conv3_block1_3_bn[0][0]'] \n","\n"," \n","\n"," conv3_block1_out (Activati (None, 23, 23, 512) 0 ['conv3_block1_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv3_block2_1_conv (Conv2 (None, 23, 23, 128) 65664 ['conv3_block1_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block2_1_bn (BatchNo (None, 23, 23, 128) 512 ['conv3_block2_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block2_1_relu (Activ (None, 23, 23, 128) 0 ['conv3_block2_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv3_block2_2_conv (Conv2 (None, 23, 23, 128) 147584 ['conv3_block2_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block2_2_bn (BatchNo (None, 23, 23, 128) 512 ['conv3_block2_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block2_2_relu (Activ (None, 23, 23, 128) 0 ['conv3_block2_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv3_block2_3_conv (Conv2 (None, 23, 23, 512) 66048 ['conv3_block2_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block2_3_bn (BatchNo (None, 23, 23, 512) 2048 ['conv3_block2_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block2_add (Add) (None, 23, 23, 512) 0 ['conv3_block1_out[0][0]', \n","\n"," 'conv3_block2_3_bn[0][0]'] \n","\n"," \n","\n"," conv3_block2_out (Activati (None, 23, 23, 512) 0 ['conv3_block2_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv3_block3_1_conv (Conv2 (None, 23, 23, 128) 65664 ['conv3_block2_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block3_1_bn (BatchNo (None, 23, 23, 128) 512 ['conv3_block3_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block3_1_relu (Activ (None, 23, 23, 128) 0 ['conv3_block3_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv3_block3_2_conv (Conv2 (None, 23, 23, 128) 147584 ['conv3_block3_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block3_2_bn (BatchNo (None, 23, 23, 128) 512 ['conv3_block3_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block3_2_relu (Activ (None, 23, 23, 128) 0 ['conv3_block3_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv3_block3_3_conv (Conv2 (None, 23, 23, 512) 66048 ['conv3_block3_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block3_3_bn (BatchNo (None, 23, 23, 512) 2048 ['conv3_block3_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block3_add (Add) (None, 23, 23, 512) 0 ['conv3_block2_out[0][0]', \n","\n"," 'conv3_block3_3_bn[0][0]'] \n","\n"," \n","\n"," conv3_block3_out (Activati (None, 23, 23, 512) 0 ['conv3_block3_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv3_block4_1_conv (Conv2 (None, 23, 23, 128) 65664 ['conv3_block3_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block4_1_bn (BatchNo (None, 23, 23, 128) 512 ['conv3_block4_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block4_1_relu (Activ (None, 23, 23, 128) 0 ['conv3_block4_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv3_block4_2_conv (Conv2 (None, 23, 23, 128) 147584 ['conv3_block4_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block4_2_bn (BatchNo (None, 23, 23, 128) 512 ['conv3_block4_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block4_2_relu (Activ (None, 23, 23, 128) 0 ['conv3_block4_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv3_block4_3_conv (Conv2 (None, 23, 23, 512) 66048 ['conv3_block4_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv3_block4_3_bn (BatchNo (None, 23, 23, 512) 2048 ['conv3_block4_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv3_block4_add (Add) (None, 23, 23, 512) 0 ['conv3_block3_out[0][0]', \n","\n"," 'conv3_block4_3_bn[0][0]'] \n","\n"," \n","\n"," conv3_block4_out (Activati (None, 23, 23, 512) 0 ['conv3_block4_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv4_block1_1_conv (Conv2 (None, 12, 12, 256) 131328 ['conv3_block4_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block1_1_bn (BatchNo (None, 12, 12, 256) 1024 ['conv4_block1_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block1_1_relu (Activ (None, 12, 12, 256) 0 ['conv4_block1_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv4_block1_2_conv (Conv2 (None, 12, 12, 256) 590080 ['conv4_block1_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block1_2_bn (BatchNo (None, 12, 12, 256) 1024 ['conv4_block1_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block1_2_relu (Activ (None, 12, 12, 256) 0 ['conv4_block1_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv4_block1_0_conv (Conv2 (None, 12, 12, 1024) 525312 ['conv3_block4_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block1_3_conv (Conv2 (None, 12, 12, 1024) 263168 ['conv4_block1_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block1_0_bn (BatchNo (None, 12, 12, 1024) 4096 ['conv4_block1_0_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block1_3_bn (BatchNo (None, 12, 12, 1024) 4096 ['conv4_block1_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block1_add (Add) (None, 12, 12, 1024) 0 ['conv4_block1_0_bn[0][0]', \n","\n"," 'conv4_block1_3_bn[0][0]'] \n","\n"," \n","\n"," conv4_block1_out (Activati (None, 12, 12, 1024) 0 ['conv4_block1_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv4_block2_1_conv (Conv2 (None, 12, 12, 256) 262400 ['conv4_block1_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block2_1_bn (BatchNo (None, 12, 12, 256) 1024 ['conv4_block2_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block2_1_relu (Activ (None, 12, 12, 256) 0 ['conv4_block2_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv4_block2_2_conv (Conv2 (None, 12, 12, 256) 590080 ['conv4_block2_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block2_2_bn (BatchNo (None, 12, 12, 256) 1024 ['conv4_block2_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block2_2_relu (Activ (None, 12, 12, 256) 0 ['conv4_block2_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv4_block2_3_conv (Conv2 (None, 12, 12, 1024) 263168 ['conv4_block2_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block2_3_bn (BatchNo (None, 12, 12, 1024) 4096 ['conv4_block2_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block2_add (Add) (None, 12, 12, 1024) 0 ['conv4_block1_out[0][0]', \n","\n"," 'conv4_block2_3_bn[0][0]'] \n","\n"," \n","\n"," conv4_block2_out (Activati (None, 12, 12, 1024) 0 ['conv4_block2_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv4_block3_1_conv (Conv2 (None, 12, 12, 256) 262400 ['conv4_block2_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block3_1_bn (BatchNo (None, 12, 12, 256) 1024 ['conv4_block3_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block3_1_relu (Activ (None, 12, 12, 256) 0 ['conv4_block3_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv4_block3_2_conv (Conv2 (None, 12, 12, 256) 590080 ['conv4_block3_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block3_2_bn (BatchNo (None, 12, 12, 256) 1024 ['conv4_block3_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block3_2_relu (Activ (None, 12, 12, 256) 0 ['conv4_block3_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv4_block3_3_conv (Conv2 (None, 12, 12, 1024) 263168 ['conv4_block3_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block3_3_bn (BatchNo (None, 12, 12, 1024) 4096 ['conv4_block3_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block3_add (Add) (None, 12, 12, 1024) 0 ['conv4_block2_out[0][0]', \n","\n"," 'conv4_block3_3_bn[0][0]'] \n","\n"," \n","\n"," conv4_block3_out (Activati (None, 12, 12, 1024) 0 ['conv4_block3_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv4_block4_1_conv (Conv2 (None, 12, 12, 256) 262400 ['conv4_block3_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block4_1_bn (BatchNo (None, 12, 12, 256) 1024 ['conv4_block4_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block4_1_relu (Activ (None, 12, 12, 256) 0 ['conv4_block4_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv4_block4_2_conv (Conv2 (None, 12, 12, 256) 590080 ['conv4_block4_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block4_2_bn (BatchNo (None, 12, 12, 256) 1024 ['conv4_block4_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block4_2_relu (Activ (None, 12, 12, 256) 0 ['conv4_block4_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv4_block4_3_conv (Conv2 (None, 12, 12, 1024) 263168 ['conv4_block4_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block4_3_bn (BatchNo (None, 12, 12, 1024) 4096 ['conv4_block4_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block4_add (Add) (None, 12, 12, 1024) 0 ['conv4_block3_out[0][0]', \n","\n"," 'conv4_block4_3_bn[0][0]'] \n","\n"," \n","\n"," conv4_block4_out (Activati (None, 12, 12, 1024) 0 ['conv4_block4_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv4_block5_1_conv (Conv2 (None, 12, 12, 256) 262400 ['conv4_block4_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block5_1_bn (BatchNo (None, 12, 12, 256) 1024 ['conv4_block5_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block5_1_relu (Activ (None, 12, 12, 256) 0 ['conv4_block5_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv4_block5_2_conv (Conv2 (None, 12, 12, 256) 590080 ['conv4_block5_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block5_2_bn (BatchNo (None, 12, 12, 256) 1024 ['conv4_block5_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block5_2_relu (Activ (None, 12, 12, 256) 0 ['conv4_block5_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv4_block5_3_conv (Conv2 (None, 12, 12, 1024) 263168 ['conv4_block5_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block5_3_bn (BatchNo (None, 12, 12, 1024) 4096 ['conv4_block5_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block5_add (Add) (None, 12, 12, 1024) 0 ['conv4_block4_out[0][0]', \n","\n"," 'conv4_block5_3_bn[0][0]'] \n","\n"," \n","\n"," conv4_block5_out (Activati (None, 12, 12, 1024) 0 ['conv4_block5_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv4_block6_1_conv (Conv2 (None, 12, 12, 256) 262400 ['conv4_block5_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block6_1_bn (BatchNo (None, 12, 12, 256) 1024 ['conv4_block6_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block6_1_relu (Activ (None, 12, 12, 256) 0 ['conv4_block6_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv4_block6_2_conv (Conv2 (None, 12, 12, 256) 590080 ['conv4_block6_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block6_2_bn (BatchNo (None, 12, 12, 256) 1024 ['conv4_block6_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block6_2_relu (Activ (None, 12, 12, 256) 0 ['conv4_block6_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv4_block6_3_conv (Conv2 (None, 12, 12, 1024) 263168 ['conv4_block6_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv4_block6_3_bn (BatchNo (None, 12, 12, 1024) 4096 ['conv4_block6_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv4_block6_add (Add) (None, 12, 12, 1024) 0 ['conv4_block5_out[0][0]', \n","\n"," 'conv4_block6_3_bn[0][0]'] \n","\n"," \n","\n"," conv4_block6_out (Activati (None, 12, 12, 1024) 0 ['conv4_block6_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv5_block1_1_conv (Conv2 (None, 6, 6, 512) 524800 ['conv4_block6_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv5_block1_1_bn (BatchNo (None, 6, 6, 512) 2048 ['conv5_block1_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv5_block1_1_relu (Activ (None, 6, 6, 512) 0 ['conv5_block1_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv5_block1_2_conv (Conv2 (None, 6, 6, 512) 2359808 ['conv5_block1_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv5_block1_2_bn (BatchNo (None, 6, 6, 512) 2048 ['conv5_block1_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv5_block1_2_relu (Activ (None, 6, 6, 512) 0 ['conv5_block1_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv5_block1_0_conv (Conv2 (None, 6, 6, 2048) 2099200 ['conv4_block6_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv5_block1_3_conv (Conv2 (None, 6, 6, 2048) 1050624 ['conv5_block1_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv5_block1_0_bn (BatchNo (None, 6, 6, 2048) 8192 ['conv5_block1_0_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv5_block1_3_bn (BatchNo (None, 6, 6, 2048) 8192 ['conv5_block1_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv5_block1_add (Add) (None, 6, 6, 2048) 0 ['conv5_block1_0_bn[0][0]', \n","\n"," 'conv5_block1_3_bn[0][0]'] \n","\n"," \n","\n"," conv5_block1_out (Activati (None, 6, 6, 2048) 0 ['conv5_block1_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv5_block2_1_conv (Conv2 (None, 6, 6, 512) 1049088 ['conv5_block1_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv5_block2_1_bn (BatchNo (None, 6, 6, 512) 2048 ['conv5_block2_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv5_block2_1_relu (Activ (None, 6, 6, 512) 0 ['conv5_block2_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv5_block2_2_conv (Conv2 (None, 6, 6, 512) 2359808 ['conv5_block2_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv5_block2_2_bn (BatchNo (None, 6, 6, 512) 2048 ['conv5_block2_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv5_block2_2_relu (Activ (None, 6, 6, 512) 0 ['conv5_block2_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv5_block2_3_conv (Conv2 (None, 6, 6, 2048) 1050624 ['conv5_block2_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv5_block2_3_bn (BatchNo (None, 6, 6, 2048) 8192 ['conv5_block2_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv5_block2_add (Add) (None, 6, 6, 2048) 0 ['conv5_block1_out[0][0]', \n","\n"," 'conv5_block2_3_bn[0][0]'] \n","\n"," \n","\n"," conv5_block2_out (Activati (None, 6, 6, 2048) 0 ['conv5_block2_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," conv5_block3_1_conv (Conv2 (None, 6, 6, 512) 1049088 ['conv5_block2_out[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv5_block3_1_bn (BatchNo (None, 6, 6, 512) 2048 ['conv5_block3_1_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv5_block3_1_relu (Activ (None, 6, 6, 512) 0 ['conv5_block3_1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv5_block3_2_conv (Conv2 (None, 6, 6, 512) 2359808 ['conv5_block3_1_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv5_block3_2_bn (BatchNo (None, 6, 6, 512) 2048 ['conv5_block3_2_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv5_block3_2_relu (Activ (None, 6, 6, 512) 0 ['conv5_block3_2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," conv5_block3_3_conv (Conv2 (None, 6, 6, 2048) 1050624 ['conv5_block3_2_relu[0][0]'] \n","\n"," D) \n","\n"," \n","\n"," conv5_block3_3_bn (BatchNo (None, 6, 6, 2048) 8192 ['conv5_block3_3_conv[0][0]'] \n","\n"," rmalization) \n","\n"," \n","\n"," conv5_block3_add (Add) (None, 6, 6, 2048) 0 ['conv5_block2_out[0][0]', \n","\n"," 'conv5_block3_3_bn[0][0]'] \n","\n"," \n","\n"," conv5_block3_out (Activati (None, 6, 6, 2048) 0 ['conv5_block3_add[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," flatten_2 (Flatten) (None, 73728) 0 ['conv5_block3_out[0][0]'] \n","\n"," \n","\n"," dense_4 (Dense) (None, 1024) 7549849 ['flatten_2[0][0]'] \n","\n"," 6 \n","\n"," \n","\n"," dropout_2 (Dropout) (None, 1024) 0 ['dense_4[0][0]'] \n","\n"," \n","\n"," dense_5 (Dense) (None, 1) 1025 ['dropout_2[0][0]'] \n","\n"," \n","\n","==================================================================================================\n","\n","Total params: 99087233 (377.99 MB)\n","\n","Trainable params: 75499521 (288.01 MB)\n","\n","Non-trainable params: 23587712 (89.98 MB)\n","\n","__________________________________________________________________________________________________\n"]}],"source":["# create the final model\n","resnet50_model = Model(inputs=base_model.input, outputs=predictions)\n","resnet50_model.summary()"]},{"cell_type":"code","execution_count":28,"metadata":{},"outputs":[],"source":["resnet50_model.compile(optimizer = tf.keras.optimizers.legacy.Adam(),\n"," loss = 'binary_crossentropy',\n"," metrics=['accuracy'])"]},{"cell_type":"code","execution_count":29,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Epoch 1/20\n","\n","223/223 [==============================] - 15s 66ms/step - loss: 0.3541 - accuracy: 0.8573 - val_loss: 0.4978 - val_accuracy: 0.7872\n","\n","Epoch 2/20\n","\n","223/223 [==============================] - 15s 66ms/step - loss: 0.3450 - accuracy: 0.8620 - val_loss: 0.5030 - val_accuracy: 0.7917\n","\n","Epoch 3/20\n","\n","223/223 [==============================] - 15s 68ms/step - loss: 0.3470 - accuracy: 0.8609 - val_loss: 0.4814 - val_accuracy: 0.7909\n","\n","Epoch 4/20\n","\n","223/223 [==============================] - 15s 66ms/step - loss: 0.3328 - accuracy: 0.8669 - val_loss: 0.4944 - val_accuracy: 0.7920\n","\n","Epoch 5/20\n","\n","223/223 [==============================] - 15s 66ms/step - loss: 0.3287 - accuracy: 0.8708 - val_loss: 0.4936 - val_accuracy: 0.7931\n","\n","Epoch 6/20\n","\n","223/223 [==============================] - 15s 67ms/step - loss: 0.3243 - accuracy: 0.8708 - val_loss: 0.4867 - val_accuracy: 0.7931\n","\n","Epoch 7/20\n","\n","223/223 [==============================] - 16s 70ms/step - loss: 0.3193 - accuracy: 0.8751 - val_loss: 0.5300 - val_accuracy: 0.7934\n","\n","Epoch 8/20\n","\n","223/223 [==============================] - 15s 66ms/step - loss: 0.3152 - accuracy: 0.8741 - val_loss: 0.4992 - val_accuracy: 0.7971\n","\n","Epoch 9/20\n","\n","223/223 [==============================] - 15s 66ms/step - loss: 0.3068 - accuracy: 0.8772 - val_loss: 0.4897 - val_accuracy: 0.7934\n","\n","Epoch 10/20\n","\n","223/223 [==============================] - 15s 65ms/step - loss: 0.3010 - accuracy: 0.8794 - val_loss: 0.4923 - val_accuracy: 0.8010\n","\n","Epoch 11/20\n","\n","223/223 [==============================] - 15s 66ms/step - loss: 0.2958 - accuracy: 0.8841 - val_loss: 0.5217 - val_accuracy: 0.7976\n","\n","Epoch 12/20\n","\n","223/223 [==============================] - 15s 66ms/step - loss: 0.2871 - accuracy: 0.8848 - val_loss: 0.5665 - val_accuracy: 0.7945\n","\n","Epoch 13/20\n","\n","223/223 [==============================] - 15s 66ms/step - loss: 0.2884 - accuracy: 0.8846 - val_loss: 0.5192 - val_accuracy: 0.7990\n","\n","Epoch 14/20\n","\n","223/223 [==============================] - 15s 67ms/step - loss: 0.2830 - accuracy: 0.8887 - val_loss: 0.4796 - val_accuracy: 0.8069\n","\n","Epoch 15/20\n","\n","223/223 [==============================] - 15s 67ms/step - loss: 0.2741 - accuracy: 0.8901 - val_loss: 0.4866 - val_accuracy: 0.8035\n","\n","Epoch 16/20\n","\n","223/223 [==============================] - 15s 68ms/step - loss: 0.2674 - accuracy: 0.8950 - val_loss: 0.4946 - val_accuracy: 0.8047\n","\n","Epoch 17/20\n","\n","223/223 [==============================] - 15s 67ms/step - loss: 0.2634 - accuracy: 0.8965 - val_loss: 0.4945 - val_accuracy: 0.8019\n","\n","Epoch 18/20\n","\n","223/223 [==============================] - 15s 66ms/step - loss: 0.2559 - accuracy: 0.9004 - val_loss: 0.5039 - val_accuracy: 0.8038\n","\n","Epoch 19/20\n","\n","223/223 [==============================] - 15s 68ms/step - loss: 0.2559 - accuracy: 0.8986 - val_loss: 0.4974 - val_accuracy: 0.7982\n","\n","Epoch 20/20\n","\n","223/223 [==============================] - 16s 69ms/step - loss: 0.2541 - accuracy: 0.8979 - val_loss: 0.5144 - val_accuracy: 0.8016\n"]}],"source":["# Train the model\n","resnet50_history = model.fit(train_ds,\n"," epochs=20,\n"," validation_data=validation_ds,\n"," verbose=1)"]},{"cell_type":"code","execution_count":30,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAbQAAALgCAYAAAD8w4I6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXzMx//A8dfm2twHiUQIklD3faSoq3VXijpDSZzVllLV1hlHW6pKFW21/TpaBKVo+6siUqpupa66b+KIuHInm935/bGytTaRQwjxfj4e+5Cdnc98Zidr35n5zGdGo5RSCCGEEE85q4KugBBCCJEfJKAJIYQoFCSgCSGEKBQkoAkhhCgUJKAJIYQoFCSgCSGEKBQkoAkhhCgUJKAJIYQoFCSgCSGEKBQkoAkhhCgUJKAJIYQoFCSgCSGEKBQkoAkhhCgUJKAJIYQoFCSgCSGEKBQkoAkhhCgUJKAJIYQoFCSgCSGEKBQkoAkhhCgUJKAJIYQoFCSgCSGEKBQkoAkhhCgUJKAJIYQoFCSgCSGEKBQkoAkhhCgUJKAJIYQoFCSgCSGEKBQkoAkhhCgUJKAJIYQoFCSgCSGEKBQkoIkshYWFUaZMmTwdO2HCBDQaTf5W6Alz7tw5NBoNCxcufOzn1mg0TJgwwfR84cKFaDQazp07l+2xZcqUISwsLF/r8zCfFSHyiwS0p5BGo8nRY/PmzQVd1Wfe22+/jUaj4dSpU1nmGTNmDBqNhoMHDz7GmuXe5cuXmTBhAvv37y/oqmTq6NGjaDQa7O3tuX37dkFXRxQACWhPoUWLFpk9WrRokWl6xYoVH+o83333HcePH8/TsWPHjiU5Ofmhzl8Y9OzZE4CIiIgs8yxdupSqVatSrVq1PJ+nV69eJCcnU7p06TyXkZ3Lly8zceLETAPaw3xW8svixYvx8fEBYOXKlQVaF1EwbAq6AiL3XnvtNbPnO3fuJDIy0iL9fklJSTg6Oub4PLa2tnmqH4CNjQ02NvLxCgoKomzZsixdupTw8HCL13fs2MHZs2f55JNPHuo81tbWWFtbP1QZD+NhPiv5QSlFREQEPXr04OzZsyxZsoT+/fsXaJ2ykpiYiJOTU0FXo1CSHloh1bRpU6pUqcLevXtp3Lgxjo6OjB49GoCff/6Zl19+GV9fX7RaLYGBgXz44Yfo9XqzMu6/LpJxzeizzz7j22+/JTAwEK1WS926ddmzZ4/ZsZldQ9NoNAwePJg1a9ZQpUoVtFotlStXZt26dRb137x5M3Xq1MHe3p7AwEC++eabHF+X++uvv+jSpQulSpVCq9Xi5+fHO++8Y9FjDAsLw9nZmejoaDp06ICzszNeXl6MGDHCoi1u375NWFgYbm5uuLu7ExoamuNhrZ49e3Ls2DH27dtn8VpERAQajYaQkBDS0tIIDw+ndu3auLm54eTkRKNGjdi0aVO258jsGppSio8++oiSJUvi6OhIs2bN+Pfffy2OvXnzJiNGjKBq1ao4Ozvj6upKmzZtOHDggCnP5s2bqVu3LgB9+vQxDWtnXD/M7BpaYmIi7777Ln5+fmi1WsqXL89nn32GUsosX24+F1nZtm0b586do3v37nTv3p0tW7Zw6dIli3wGg4EvvviCqlWrYm9vj5eXF61bt+bvv/82y7d48WLq1auHo6MjHh4eNG7cmA0bNpjV+d5rmBnuvz6Z8Xv5888/efPNNylWrBglS5YE4Pz587z55puUL18eBwcHihYtSpcuXTK9Dnr79m3eeecdypQpg1arpWTJkvTu3ZvY2FgSEhJwcnJi6NChFsddunQJa2trpkyZksOWfLrJn9CF2I0bN2jTpg3du3fntddew9vbGzD+J3N2dmb48OE4Ozvzxx9/EB4eTlxcHNOmTcu23IiICOLj43n99dfRaDR8+umnvPrqq5w5cybbv9S3bt3KqlWrePPNN3FxcWHWrFl06tSJCxcuULRoUQD++ecfWrduTfHixZk4cSJ6vZ5Jkybh5eWVo/e9YsUKkpKSeOONNyhatCi7d+9m9uzZXLp0iRUrVpjl1ev1tGrViqCgID777DM2btzI9OnTCQwM5I033gCMgaF9+/Zs3bqVQYMGUbFiRVavXk1oaGiO6tOzZ08mTpxIREQEtWrVMjv3jz/+SKNGjShVqhSxsbH873//IyQkhAEDBhAfH8+8efNo1aoVu3fvpkaNGjk6X4bw8HA++ugj2rZtS9u2bdm3bx8tW7YkLS3NLN+ZM2dYs2YNXbp0wd/fn2vXrvHNN9/QpEkTjhw5gq+vLxUrVmTSpEmEh4czcOBAGjVqBECDBg0yPbdSildeeYVNmzbRr18/atSowfr163nvvfeIjo7m888/N8ufk8/FgyxZsoTAwEDq1q1LlSpVcHR0ZOnSpbz33ntm+fr168fChQtp06YN/fv3Jz09nb/++oudO3dSp04dACZOnMiECRNo0KABkyZNws7Ojl27dvHHH3/QsmXLHLf/vd588028vLwIDw8nMTERgD179rB9+3a6d+9OyZIlOXfuHF9//TVNmzblyJEjptGUhIQEGjVqxNGjR+nbty+1atUiNjaWX375hUuXLlGjRg06duzI8uXLmTFjhllPfenSpSilTEPfhZ4ST7233npL3f+rbNKkiQLU3LlzLfInJSVZpL3++uvK0dFRpaSkmNJCQ0NV6dKlTc/Pnj2rAFW0aFF18+ZNU/rPP/+sAPXrr7+a0saPH29RJ0DZ2dmpU6dOmdIOHDigADV79mxTWnBwsHJ0dFTR0dGmtJMnTyobGxuLMjOT2fubMmWK0mg06vz582bvD1CTJk0yy1uzZk1Vu3Zt0/M1a9YoQH366aemtPT0dNWoUSMFqAULFmRbp7p166qSJUsqvV5vSlu3bp0C1DfffGMqMzU11ey4W7duKW9vb9W3b1+zdECNHz/e9HzBggUKUGfPnlVKKRUTE6Ps7OzUyy+/rAwGgynf6NGjFaBCQ0NNaSkpKWb1Usr4u9ZqtWZts2fPnizf7/2flYw2++ijj8zyde7cWWk0GrPPQE4/F1lJS0tTRYsWVWPGjDGl9ejRQ1WvXt0s3x9//KEA9fbbb1uUkdFGJ0+eVFZWVqpjx44WbXJvO97f/hlKly5t1rYZv5cXXnhBpaenm+XN7HO6Y8cOBagffvjBlBYeHq4AtWrVqizrvX79egWo33//3ez1atWqqSZNmlgcV1jJkGMhptVq6dOnj0W6g4OD6ef4+HhiY2Np1KgRSUlJHDt2LNtyu3XrhoeHh+l5xl/rZ86cyfbY5s2bExgYaHperVo1XF1dTcfq9Xo2btxIhw4d8PX1NeUrW7Ysbdq0ybZ8MH9/iYmJxMbG0qBBA5RS/PPPPxb5Bw0aZPa8UaNGZu9l7dq12NjYmHpsYLxmNWTIkBzVB4zXPS9dusSWLVtMaREREdjZ2dGlSxdTmXZ2doBxaOzmzZukp6dTp06dTIcrH2Tjxo2kpaUxZMgQs2HaYcOGWeTVarVYWRm/CvR6PTdu3MDZ2Zny5cvn+rwZ1q5di7W1NW+//bZZ+rvvvotSit9//90sPbvPxYP8/vvv3Lhxg5CQEFNaSEgIBw4cMBti/emnn9BoNIwfP96ijIw2WrNmDQaDgfDwcFOb3J8nLwYMGGBxjfPez6lOp+PGjRuULVsWd3d3s3b/6aefqF69Oh07dsyy3s2bN8fX15clS5aYXjt8+DAHDx7M9tp6YSIBrRArUaKE6QvyXv/++y8dO3bEzc0NV1dXvLy8TB/6O3fuZFtuqVKlzJ5nBLdbt27l+tiM4zOOjYmJITk5mbJly1rkyywtMxcuXCAsLIwiRYqYros1adIEsHx/GddRsqoPGK91FC9eHGdnZ7N85cuXz1F9ALp37461tbVptmNKSgqrV6+mTZs2Zn8cfP/991SrVg17e3uKFi2Kl5cXv/32W45+L/c6f/48AOXKlTNL9/LyMjsfGIPn559/Trly5dBqtXh6euLl5cXBgwdzfd57z+/r64uLi4tZesbM24z6Zcjuc/Egixcvxt/fH61Wy6lTpzh16hSBgYE4OjqafcGfPn0aX19fihQpkmVZp0+fxsrKikqVKmV73tzw9/e3SEtOTiY8PNx0jTGj3W/fvm3W7qdPn6ZKlSoPLN/KyoqePXuyZs0akpKSAOMwrL29vekPpmeBBLRC7N6/ADPcvn2bJk2acODAASZNmsSvv/5KZGQkU6dOBYxfbtnJajaduu9if34fmxN6vZ4WLVrw22+/8cEHH7BmzRoiIyNNkxfuf3+Pa2ZgsWLFaNGiBT/99BM6nY5ff/2V+Ph4s2sbixcvJiwsjMDAQObNm8e6deuIjIzkxRdfzNHvJa8mT57M8OHDady4MYsXL2b9+vVERkZSuXLlR3ree+X1cxEXF8evv/7K2bNnKVeunOlRqVIlkpKSiIiIyLfPVk7cP5koQ2b/F4cMGcLHH39M165d+fHHH9mwYQORkZEULVo0T+3eu3dvEhISWLNmjWnWZ7t27XBzc8t1WU8rmRTyjNm8eTM3btxg1apVNG7c2JR+9uzZAqzVf4oVK4a9vX2mNyI/6ObkDIcOHeLEiRN8//339O7d25QeGRmZ5zqVLl2aqKgoEhISzHppub3vqmfPnqxbt47ff/+diIgIXF1dCQ4ONr2+cuVKAgICWLVqldnwVmZDZDmpM8DJkycJCAgwpV+/ft2i17Ny5UqaNWvGvHnzzNJv376Np6en6XluhtxKly7Nxo0biY+PN+ulZQxp59f9cqtWrSIlJYWvv/7arK5g/P2MHTuWbdu28cILLxAYGMj69eu5efNmlr20wMBADAYDR44ceeAkHA8PD4tZrmlpaVy5ciXHdV+5ciWhoaFMnz7dlJaSkmJRbmBgIIcPH862vCpVqlCzZk2WLFlCyZIluXDhArNnz85xfQoD6aE9YzL+Er73r9a0tDS++uqrgqqSGWtra5o3b86aNWu4fPmyKf3UqVMW112yOh7M359Sii+++CLPdWrbti3p6el8/fXXpjS9Xp/rL4sOHTrg6OjIV199xe+//86rr76Kvb39A+u+a9cuduzYkes6N2/eHFtbW2bPnm1W3syZMy3yWltbW/RiVqxYQXR0tFlaxr1TObldoW3btuj1eubMmWOW/vnnn6PRaHJ8PTQ7ixcvJiAggEGDBtG5c2ezx4gRI3B2djYNO3bq1AmlFBMnTrQoJ+P9d+jQASsrKyZNmmTRS7q3jQIDA82uhwJ8++23WfbQMpNZu8+ePduijE6dOnHgwAFWr16dZb0z9OrViw0bNjBz5kyKFi1qaufY2FiOHTtmGo4srKSH9oxp0KABHh4ehIaGmpZlWrRo0WMdlsnOhAkT2LBhAw0bNuSNN94wfTFWqVIl22WXKlSoQGBgICNGjCA6OhpXV1d++umnHF2LyUpwcDANGzZk5MiRnDt3jkqVKrFq1apcX19ydnamQ4cOputo90+lbteuHatWraJjx468/PLLnD17lrlz51KpUiUSEhJyda6M++mmTJlCu3btaNu2Lf/88w+///67RU+mXbt2TJo0iT59+tCgQQMOHTrEkiVLzHp2YPwSd3d3Z+7cubi4uODk5ERQUFCm14eCg4Np1qwZY8aM4dy5c1SvXp0NGzbw888/M2zYMLMJIHl1+fJlNm3aZDHxJINWq6VVq1asWLGCWbNm0axZM3r16sWsWbM4efIkrVu3xmAw8Ndff9GsWTMGDx5M2bJlGTNmDB9++CGNGjXi1VdfRavVsmfPHnx9fU33c/Xv359BgwbRqVMnWrRowYEDB1i/fr1F2z5Iu3btWLRoEW5ublSqVIkdO3awceNGi9sU3nvvPVauXEmXLl3o27cvtWvX5ubNm/zyyy/MnTuX6tWrm/L26NGD999/n9WrV/PGG2+YbqOZM2cOEydOZNOmTTRt2jSXLf0UecyzKsUjkNW0/cqVK2eaf9u2ber5559XDg4OytfXV73//vumab+bNm0y5ctq2v60adMsyuS+acxZTdt/6623LI69f6qzUkpFRUWpmjVrKjs7OxUYGKj+97//qXfffVfZ29tn0Qr/OXLkiGrevLlydnZWnp6easCAAaZp4PdOOQ8NDVVOTk4Wx2dW9xs3bqhevXopV1dX5ebmpnr16qX++eefHE/bz/Dbb78pQBUvXjzTaeGTJ09WpUuXVlqtVtWsWVP93//9n8XvQansp+0rpZRer1cTJ05UxYsXVw4ODqpp06bq8OHDFu2dkpKi3n33XVO+hg0bqh07dqgmTZpYTPn++eefVaVKlUy3UGS898zqGB8fr9555x3l6+urbG1tVbly5dS0adPMpr9nvJecfi7uNX36dAWoqKioLPMsXLhQAernn39WShlvjZg2bZqqUKGCsrOzU15eXqpNmzZq7969ZsfNnz9f1axZU2m1WuXh4aGaNGmiIiMjTa/r9Xr1wQcfKE9PT+Xo6KhatWqlTp06leW0/T179ljU7datW6pPnz7K09NTOTs7q1atWqljx45l+r5v3LihBg8erEqUKKHs7OxUyZIlVWhoqIqNjbUot23btgpQ27dvN6VlfKbv/f9dGGmUeoL+NBfiATp06MC///7LyZMnC7oqQjyxOnbsyKFDh3J0zbmwkWto4ol0/zJVJ0+eZO3atYV7uESIh3TlyhV+++03evXqVdBVKRDSQxNPpOLFixMWFkZAQADnz5/n66+/JjU1lX/++cfi3iohnnVnz55l27Zt/O9//2PPnj2cPn3atPPAs0QmhYgnUuvWrVm6dClXr15Fq9VSv359Jk+eLMFMiEz8+eef9OnTh1KlSvH9998/k8EMpIcmhBCikJBraEIIIQoFCWhCCCEKBQlootDLbPNJIUThIwFNFJiMXY+ze2zevLmgq5qltWvXotFo8PX1fWwL+RZm0dHRdO3aFXd3d1xdXWnfvn2OtpAB48LTc+fOpUaNGjg7O+Pt7U2bNm3Yvn27Rd69e/fSunVrXF1dcXFxoWXLlpmuQpObMkXBk0khosAsXrzY7PkPP/xAZGQkixYtMktv0aKFabftvNDpdBgMBrRabZ7LyErPnj3Zvn07586dIzIykubNm+f7OZ4VCQkJ1KpVizt37vDuu+9ia2vL559/jlKK/fv3Z7tz9bvvvsuMGTN47bXXaNSoEbdv3+abb77hwoULbNu2jXr16gGwb98+GjZsiJ+fH6+//joGg4GvvvqKmzdvsnv3brNtgXJapnhCFNgaJULcJ7MlvDKTmJj4GGqTvYSEBOXk5KRmzZqlatasqcLCwgq6SllKSEgo6Cpka+rUqQpQu3fvNqUdPXpUWVtbq1GjRj3wWJ1OpxwcHFTnzp3N0s+cOWOxS3Xbtm2Vh4eH2bJRly9fVs7OzurVV1/NU5niySBDjuKJ1rRpU6pUqcLevXtp3Lgxjo6OjB49GoCff/6Zl19+GV9fX7RaLYGBgXz44YcWq5Xffw3t3LlzaDQaPvvsM7799lsCAwPRarXUrVuXPXv25Lhuq1evJjk5mS5dutC9e3fTVib3S0lJYcKECTz33HPY29tTvHhxXn31VU6fPm3KYzAY+OKLL6hatapp09HWrVvz999/m9U5Y1+3e2k0GiZMmGB6PmHCBDQaDUeOHKFHjx54eHjwwgsvAHDw4EHTDev29vb4+PjQt29fbty4YVFudHQ0/fr1M7Wvv78/b7zxBmlpaZw5cwaNRsPnn39ucdz27dvRaDQsXbrUtAt6bGxstu25cuVK6tatS926dU1pFSpU4KWXXuLHH3984LE6nY7k5GSLnnyxYsWwsrIy24/sr7/+onnz5mY9vuLFi9OkSRP+7//+z7QQdG7KFE8GCWjiiXfjxg3atGlDjRo1mDlzJs2aNQNg4cKFODs7M3z4cL744gtq165NeHg4I0eOzFG5ERERTJs2jddff52PPvqIc+fO8eqrr6LT6XJ0/JIlS2jWrBk+Pj50796d+Ph4fv31V7M8er2edu3aMXHiRGrXrs306dMZOnQod+7cMdvjql+/fgwbNgw/Pz+mTp3KyJEjsbe3Z+fOnTlsJUtdunQhKSmJyZMnM2DAAMC4L9yZM2fo06cPs2fPpnv37ixbtoy2bdua7bhw+fJl6tWrx7Jly+jWrRuzZs2iV69e/PnnnyQlJREQEEDDhg3NdoS+t11cXFxo3749u3fvpmLFihbbyNzPYDBw8OBB6tSpY/FavXr1OH36NPHx8Vke7+DgQFBQEAsXLmTJkiVcuHDBFLw9PDwYOHCgKW9qamqmwcjR0ZG0tDTT7yU3ZYonREF3EYXIkNWuAYCaO3euRf6kpCSLtNdff105OjqqlJQUU1pWuwYULVpU3bx505T+888/K0D9+uuv2db12rVrysbGRn333XemtAYNGqj27dub5Zs/f74C1IwZMyzKyFh1/o8//shyCCsjT0adM1vZnyx2OggJCbHIm1mbLV26VAFqy5YtprTevXsrKyurTFeJz6jTN998owB19OhR02tpaWnK09PTtFr8pk2bLOqXmevXrytATZo0yeK1L7/8UgHq2LFjDyzj5MmTqlatWgowPQICAiyOq1q1qnruuedUenq6KS01NVWVKlVKAWrlypW5LlM8GaSHJp54Wq2WPn36WKTf+1d2fHw8sbGxNGrUyDTMlZ1u3brh4eFhet6oUSOAHM2qW7ZsGVZWVnTq1MmUFhISwu+//26299pPP/2Ep6cnQ4YMsSgjYwfon376CY1Gk+nO1LnZJfp+gwYNski7t81SUlKIjY3l+eefB4yTJcDYW1qzZg3BwcGZ9pgy6tS1a1fs7e3Nemnr168nNjaW1157DTAOGSulzIZEM5OxGHVmE3cyNkG9f8Hq+7m4uFC5cmXeeustVq1axVdffUV6ejodOnQwG/J88803OXHiBP369ePIkSMcPnyY3r17m3abvvc8OS1TPBkkoIknXokSJbCzs7NI//fff+nYsSNubm64urri5eVl+iLNyeabpUqVMnueEdxyshno4sWLqVevHjdu3ODUqVOcOnWKmjVrkpaWxooVK0z5Tp8+Tfny5bGxyXrZ1NOnT+Pr60uRIkWyPW9uZLbx5s2bNxk6dCje3t44ODjg5eVlypfRZtevXycuLo4qVao8sHx3d3eCg4NNG5aCcbixRIkSvPjii7mqa0agTU1NtXgt47rkg65Zpaen07x5c9zc3JgzZw4dO3bkjTfeYOPGjZw+fZpp06aZ8g4aNIjRo0cTERFB5cqVqVq1KqdPn+b9998HjBux5rZM8WSQgCaeeJl9kd2+fZsmTZpw4MABJk2axK+//kpkZCRTp04FyNE9YdbW1pmmq2zuZDl58iR79uxh69atlCtXzvTImHiR2XWlh5VVT+3+CTD3yqzdunbtynfffcegQYNYtWoVGzZsYN26dUDO2ux+vXv35syZM2zfvp34+Hh++eUXQkJCsLLK3VdLkSJF0Gq1pl7SvTLSfH19szx+y5YtHD58mFdeecUsvVy5clSsWJFt27aZpX/88cdcu3aNv/76i4MHD7Jnzx7T+3/uuefyVKYoeLLavngqbd68mRs3brBq1SoaN25sSj979uwjP/eSJUuwtbVl0aJFFkFx69atzJo1iwsXLlCqVCkCAwPZtWsXOp0OW1vbTMsLDAxk/fr13Lx5M8teWkbv8fbt22bp58+fz3G9b926RVRUFBMnTiQ8PNyUfv+GqV5eXri6uppNWslK69at8fLyYsmSJQQFBZGUlJSnvbisrKyoWrWqaVbnvXbt2kVAQAAuLi5ZHn/t2jUg8wCv0+lIT0+3SL939ifAxo0bKVmyJBUqVMhzmaJgSQ9NPJUyAsm9vam0tDS++uqrR37uJUuW0KhRI7p160bnzp3NHu+99x4AS5cuBaBTp07ExsZmOssvo+6dOnVCKcXEiROzzOPq6oqnpydbtmwxez037zezNgOYOXOm2XMrKys6dOjAr7/+mmmAufd4GxsbQkJC+PHHH1m4cCFVq1alWrVqptdzM22/c+fO7Nmzx+ycx48f548//qBLly5meY8dO8aFCxdMzzN6VcuWLTPLt2/fPo4fP07NmjUfeO7ly5ezZ88ehg0bZupdPmyZ4vGTHpp4KjVo0AAPDw9CQ0N5++230Wg0LFq0KNvhwoe1a9cuTp06xeDBgzN9vUSJEtSqVYslS5bwwQcf0Lt3b3744QeGDx/O7t27adSoEYmJiWzcuJE333yT9u3b06xZM3r16sWsWbM4efIkrVu3xmAw8Ndff9GsWTPTufr3788nn3xC//79qVOnDlu2bOHEiRM5rrurqyuNGzfm008/RafTUaJECTZs2JBpr3by5Mls2LCBJk2aMHDgQCpWrMiVK1dYsWIFW7duxd3d3ZS3d+/ezJo1i02bNpmGfDPs3r2bZs2aMX78+Gwnhrz55pt89913vPzyy4wYMQJbW1tmzJiBt7c37777rlneihUr0qRJE9OyaLVr16ZFixZ8//33xMXF0bJlS65cucLs2bNxcHBg2LBhpmO3bNnCpEmTaNmyJUWLFmXnzp0sWLCA1q1bM3ToUFO+3JQpnhAFNr9SiPtkNW2/cuXKmebftm2bev7555WDg4Py9fVV77//vlq/fr0C1KZNm0z5spq2P23aNIsyyWaK+ZAhQxSgTp8+nWWeCRMmKEAdOHBAKWWcKj9mzBjl7++vbG1tlY+Pj+rcubNZGenp6WratGmqQoUKys7OTnl5eak2bdqovXv3mvIkJSWpfv36KTc3N+Xi4qK6du2qYmJispy2f/36dYu6Xbp0SXXs2FG5u7srNzc31aVLF3X58uVM3/f58+dV7969lZeXl9JqtSogIEC99dZbKjU11aLcypUrKysrK3Xp0iWz9JxO289w8eJF1blzZ+Xq6qqcnZ1Vu3bt1MmTJy3yAapJkyZmaUlJSWrSpEmqUqVKysHBQbm5ual27dqpf/75xyzfqVOnVMuWLZWnp6fSarWqQoUKasqUKZm+r5yWKZ4MspajEOKh1axZkyJFihAVFVXQVRHPMLmGJoR4KH///Tf79++nd+/eBV0V8YyTHpoQIk8OHz7M3r17mT59OrGxsZw5c8Z0E7QQBUF6aEKIPFm5ciV9+vRBp9OxdOlSCWaiwEkPTQghRKEgPTQhhBCFggQ0UWAy2+MrYy+vnLh/H7D80LRpU5o2bZqvZQohHg8JaCJHXnnlFRwdHR+4J1XPnj2xs7PLdLPIJ8mRI0eYMGEC586dK+iqZGrt2rVoNBp8fX3ztL6iMBcdHU3Xrl1xd3fH1dWV9u3b52hHBTCubzl37lxq1KiBs7Mz3t7etGnThu3bt1vkTU1N5YMPPsDX19e0l1pkZKRZnqSkJL788ktatmxJ8eLFcXFxoWbNmnz99dcPXJdT5FBB3gQnnh7Lli1TgPr+++8zfT0xMVE5OTmp4ODgHJeZ2R5fOp1OJScn5+h4cnHD7r1WrFhhcfN1htTU1ExvsH2cevToocqUKaMAFRkZWaB1edrFx8ercuXKqWLFiqmpU6eqGTNmKD8/P1WyZEkVGxub7fHDhw9XgHrttdfUN998o6ZOnaoCAgKUjY2N2rVrl1ne7t27KxsbGzVixAj1zTffqPr16ysbGxv1119/mfIcOnRIaTQa1bx5c/Xpp5+quXPnqo4dOypA9e7dO9/f/7NGAprIkaSkJOXi4qJatWqV6esREREKUMuWLctxmQ/atDInHkVAK2gJCQnKyclJzZo1S9WsWVOFhYUVdJWylJCQUNBVyNbUqVMVoHbv3m1KO3r0qLK2tlajRo164LE6nU45ODiozp07m6WfOXPGYkPWXbt2Waw+k5ycrAIDA1X9+vVNadevX1eHDx+2OFefPn0UkOmqKCLnZMhR5IiDgwOvvvoqUVFRxMTEWLweERGBi4sLr7zyCjdv3mTEiBFUrVoVZ2dnXF1dadOmDQcOHMj2PJldQ0tNTeWdd97By8vLdI5Lly5ZHHv+/HnefPNNypcvj4ODA0WLFqVLly5mQ4sLFy40LXTbrFkzNBoNGo3GtCZgZtfQYmJi6NevH97e3tjb21O9enW+//57szwZ1wM/++wzvv32WwIDA9FqtdStW5c9e/Zk+74zrF69muTkZLp06UL37t1ZtWqVaT+we6WkpDBhwgSee+457O3tKV68OK+++iqnT5825TEYDHzxxRdUrVoVe3t7vLy8aN26tWnx38yuYWa4//pkxu/lyJEj9OjRw2yl+oMHDxIWFkZAQAD29vb4+PjQt2/fTIeeo6Oj6devH76+vmi1Wvz9/XnjjTdIS0vjzJkzaDQaPv/8c4vjtm/fjkajYenSpbla8HjlypXUrVuXunXrmtIqVKjASy+9xI8//vjAY3U6HcnJyXh7e5ulFytWDCsrK7PteVauXIm1tTUDBw40pdnb29OvXz927NjBxYsXAfD09KRy5coW5+rYsSMAR48ezfY9iaxJQBM51rNnT9LT0y2+CG7evMn69evp2LEjDg4OnDlzhjVr1tCuXTtmzJjBe++9x6FDh2jSpAmXL1/O9Xn79+/PzJkzadmyJZ988gm2tra8/PLLFvn27NnD9u3b6d69O7NmzWLQoEFERUXRtGlTkpKSAGjcuDFvv/02AKNHj2bRokUsWrSIihUrZnru5ORkmjZtyqJFi+jZsyfTpk3Dzc2NsLAwvvjiC4v8ERERTJs2jddff52PPvqIc+fO8eqrr6LT6XL0XpcsWUKzZs3w8fGhe/fuxMfH8+uvv5rl0ev1tGvXjokTJ1K7dm2mT5/O0KFDuXPnjtmWL/369WPYsGH4+fkxdepURo4cib29PTt37sxRXTLTpUsXkpKSmDx5MgMGDAAgMjKSM2fO0KdPH2bPnk337t1ZtmwZbdu2NVss+vLly9SrV49ly5bRrVs3Zs2aRa9evfjzzz9JSkoiICCAhg0bZrqf3JIlS3BxcaF9+/bs3r2bihUrZrqDwb0MBgMHDx7MdNftevXqcfr06QdeE864DrZw4UKWLFnChQsXTMHbw8PDLHj9888/PPfcc7i6ulqcB2D//v0PrOvVq1cBY8ATD6Ggu4ji6ZGenq6KFy9uNoSilFJz585VgFq/fr1SSqmUlBSl1+vN8pw9e1ZptVo1adIkszTuG3LMWFg3w/79+xWg3nzzTbPyevToYTHkmJSUZFHnHTt2KED98MMPprQHDTk2adLEbNHbmTNnKkAtXrzYlJaWlqbq16+vnJ2dVVxcnNl7KVq0qLp586Yp788//6wA9euvv1qc637Xrl1TNjY26rvvvjOlNWjQQLVv394s3/z58xWgZsyYYVGGwWBQSin1xx9/WAyL3Z/nQUO+97dtxu8lJCTEIm9m7b506VIFqC1btpjSevfuraysrNSePXuyrNM333yjAHX06FHTa2lpacrT01OFhoYqpXK+4PH169cVYPaZy/Dll18qQB07duyBZZw8eVLVqlVLAaZHQECAxXGVK1dWL774osXx//77rwLU3LlzszxHamqqqlSpkvL391c6ne6B9REPJj00kWPW1tZ0796dHTt2mA3jRURE4O3tzUsvvQSAVqs17Sml1+u5ceMGzs7OlC9fnn379uXqnGvXrgUw9aoyZLZ1x71DQDqdjhs3blC2bFnc3d1zfd57z+/j40NISIgpzdbWlrfffpuEhAT+/PNPs/zdunUzbcYJ0KhRI4AczapbtmwZVlZWdOrUyZQWEhLC77//zq1bt0xpP/30E56engwZMsSijIzh2p9++gmNRsP48eOzzJMXgwYNski7t91TUlKIjY3l+eefBzC1u8FgYM2aNQQHB2faY8qoU9euXbG3tzfrpa1fv57Y2Fhee+01wDgsrJTK9paN5ORkwPh5vF/GqiYZebLi4uJC5cqVeeutt1i1ahVfffUV6enpdOjQwWzIMzk5Oc/nGTx4MEeOHGHOnDnY2MiOXg9DAprIlZ49ewLGIAZw6dIl/vrrL7p3727aQNJgMPD5559Trlw5tFotnp6eeHl5cfDgQe7cuZOr850/fx4rKysCAwPN0suXL2+RNzk5mfDwcPz8/MzOe/v27Vyf997zlytXzhSgM2QMUd6/Y3SpUqXMnmcEt3sDUlYWL15MvXr1uHHjBqdOneLUqVPUrFmTtLQ0VqxYYcp3+vRpypcv/8Avv9OnT+Pr65vlDth55e/vb5F28+ZNhg4dire3Nw4ODnh5eZnyZbT79evXiYuLo0qVKg8s393dneDgYNPnC4zDjSVKlODFF1/MVV0zAm1qaqrFaxnXJe8NxvdLT0+nefPmuLm5MWfOHDp27Mgbb7zBxo0bOX36NNOmTTM7V17OM23aNL777js+/PBD2rZtm/M3JzIlfw6IXKlduzYVKlRg6dKljB49mqVLl6KUMgU6MG4OOW7cOPr27cuHH35IkSJFsLKyYtiwYY/0vqohQ4awYMEChg0bRv369XFzc0Oj0dC9e/fHdj9XRlC/n8pmhbmTJ0+aJo+UK1fO4vUlS5aYXbPJD1n11B50P1RmX8xdu3Zl+/btvPfee6b7tQwGg2mj0tzq3bs3K1asYPv27VStWpVffvmFN9980+KPiuwUKVIErVbLlStXLF7LSPP19c3y+C1btnD48GFmzJhhll6uXDkqVqzItm3bTGnFixcnOjo6V+dZuHAhH3zwAYMGDWLs2LE5e1PigSSgiVzr2bMn48aN4+DBg0RERFCuXDmzWWQrV66kWbNmzJs3z+y427dv5/qid+nSpTEYDKZeSYbjx49b5F25ciWhoaFMnz7dlJaSksLt27fN8uVmyK106dIcPHgQg8Fg9oV67Ngx0+v5YcmSJdja2rJo0SKLoLh161ZmzZrFhQsXKFWqFIGBgezatQudToetrW2m5QUGBrJ+/Xpu3ryZZS8to/d4f/vc3+t8kFu3bhEVFcXEiRMJDw83pZ88edIsn5eXF66urmaTVrLSunVrvLy8WLJkCUFBQSQlJdGrV68c1ymDlZUVVatWNc3qvNeuXbsICAjAxcUly+OvXbsGZB7gdTod6enppuc1atRg06ZNxMXFmU0M2bVrl+n1e/3888/079+fV199lS+//DJX70tkTYYcRa5l9MbCw8PZv3+/We8MjL2U+3skK1asyPQv2Oy0adMGgFmzZpmlz5w50yJvZuedPXu2xReSk5MTYPlFnpm2bdty9epVli9fbkpLT09n9uzZODs706RJk5y8jWwtWbKERo0a0a1bNzp37mz2eO+99wBYunQpAJ06dSI2NjbTWX4Z779Tp04opZg4cWKWeVxdXfH09GTLli1mr3/11Vc5rndG8L2/3e///VhZWdGhQwd+/fXXTAPMvcfb2NgQEhLCjz/+yMKFC6latSrVqlUzvZ6bafudO3dmz549Zuc8fvw4f/zxh+n2jQzHjh3jwoULpufPPfccYLy2ea99+/Zx/PhxatasaXYevV7Pt99+a0pLTU1lwYIFBAUF4efnZ0rfsmUL3bt3p3HjxixZsiTXPU+RNemhiVzz9/enQYMG/PzzzwAWAa1du3ZMmjSJPn360KBBAw4dOsSSJUsICAjI9blq1KhBSEgIX331FXfu3KFBgwZERUVx6tQpi7zt2rVj0aJFuLm5UalSJXbs2MHGjRspWrSoRZnW1tZMnTqVO3fuoNVqefHFFylWrJhFmQMHDuSbb74hLCyMvXv3UqZMGVauXMm2bduYOXPmA//Cz6ldu3Zx6tQpBg8enOnrJUqUoFatWixZsoQPPviA3r1788MPPzB8+HB2795No0aNSExMZOPGjbz55pu0b9+eZs2a0atXL2bNmsXJkydNw39//fUXzZo1M52rf//+fPLJJ/Tv3586deqwZcsWTpw4keO6u7q60rhxYz799FN0Oh0lSpRgw4YNnD171iLv5MmT2bBhA02aNGHgwIFUrFiRK1eusGLFCrZu3Yq7u7spb+/evZk1axabNm1i6tSpZuXs3r2bZs2aMX78+Gwnhrz55pt89913vPzyy4wYMQJbW1tmzJiBt7c37777rlneihUr0qRJE9M9ibVr16ZFixZ8//33xMXF0bJlS65cucLs2bNxcHAwm5gUFBREly5dGDVqFDExMZQtW5bvv/+ec+fOmY1UnD9/nldeeQWNRkPnzp3Nro0CVKtWzSx4i1wqqOmV4umWMe25Xr16Fq+lpKSod999VxUvXlw5ODiohg0bqh07dlhMic/JtH2ljCsuvP3226po0aKm5bUuXrxoMXX71q1bqk+fPsrT01M5OzurVq1aqWPHjqnSpUubpnxn+O6771RAQICytrY2m8J/fx2VMk6nzyjXzs5OVa1a1WKqe8Z7uXeliAz31/N+Q4YMUYA6ffp0lnkmTJigAHXgwAGllHGq/JgxY5S/v7+ytbVVPj4+qnPnzmZlpKenq2nTpqkKFSooOzs75eXlpdq0aaP27t1rypOUlKT69eun3NzclIuLi+ratauKiYnJctr+9evXLep26dIl1bFjR+Xu7q7c3NxUly5d1OXLlzN93+fPn1e9e/dWXl5eSqvVqoCAAPXWW29lutxY5cqVlZWVlbp06ZJZek6n7We4ePGi6ty5s3J1dVXOzs6qXbt2ma7IAVj87pOSktSkSZNUpUqVlIODg3Jzc1Pt2rVT//zzj8XxycnJasSIEcrHx0dptVpVt25dtW7dukzrntUjLyvfiP/IfmhCiCdSzZo1KVKkCFFRUQVdFfGUkMFbIcQT5++//2b//v307t27oKsiniLSQxNCPDEOHz7M3r17mT59OrGxsZw5c8Z0c7IQ2ZEemhDiibFy5Ur69OmDTqdj6dKlEsxErkgPTQghRKEgPTQhhBCFggQ0IYQQhYLcWJ0Jg8HA5cuXcXFxeaiVyYUQQjw8pRTx8fH4+vo+cGUVCWiZuHz5stlSNUIIIQrexYsXKVmyZJavS0DLRMZyRhcvXrTYgTYndDodGzZsoGXLllkuHityT9o1/0mb5j9p0/wXFxeHn59ftkvNSUDLRMYwo6ura54DmqOjI66urvKBzkfSrvlP2jT/SZs+OtldApJJIUIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQqFJyKgffnll5QpUwZ7e3uCgoLYvXt3lnl1Oh2TJk0iMDAQe3t7qlevzrp16x6qTCGEEE+/Ag9oy5cvZ/jw4YwfP559+/ZRvXp1WrVqRUxMTKb5x44dyzfffMPs2bM5cuQIgwYNomPHjvzzzz95LlMIIcTTr8AD2owZMxgwYAB9+vShUqVKzJ07F0dHR+bPn59p/kWLFjF69Gjatm1LQEAAb7zxBm3btmX69Ol5LlMIIQoTpRR/nbzO7KiT/HbwChduJPEsrENfoPehpaWlsXfvXkaNGmVKs7Kyonnz5uzYsSPTY1JTUy22lHBwcGDr1q0PVWZqaqrpeVxcHGAc3tTpdLl+XxnH5OVYkTVp1/wnbZr/CrJNE1LTWbP/Mot2XuBMbJLZa672NlT2daWyrytV7j78PBywsnryl/fLaVsWaECLjY1Fr9fj7e1tlu7t7c2xY8cyPaZVq1bMmDGDxo0bExgYSFRUFKtWrUKv1+e5zClTpjBx4kSL9A0bNuDo6JiXtwZAZGRkno8VWZN2zX/SpvnvcbZpTDL8ddWKXdc1pOqNAUprrajorriRouFyEsSlpLPjzE12nLlpOs7eWlHSSeHnhPFfZ4WXPTxpMS4pKSn7TDyFK4V88cUXDBgwgAoVKqDRaAgMDKRPnz4PNZw4atQohg8fbnqescxKy5Yt87xSSGRkJC1atJCVAvKRtGv+kzbNf4+rTQ0GxZZTsSzaeYEtJ2+Y0gM8HXktqBQdavjiYm/8ik9LN3AyJoF/L8fx75U4Dl+O49jVBFLSDZyK03Aq7r9yneysqVjchSp3e3MVfVzwdNHiZm+DjXXBXKXKGDXLToEGNE9PT6ytrbl27ZpZ+rVr1/Dx8cn0GC8vL9asWUNKSgo3btzA19eXkSNHEhAQkOcytVotWq3WIt3W1vahPpAPe7zInLRr/pM2zX+Pqk3jUnSs+PsSi3ac49wNY89Fo4EXyxcjtEEZXijraTGMaGsLNUprqVG6qClNpzdwKiaBQ9F3+Df6Doei73DkShyJaXr+Pn+bv8/ftji3m4MtHo62eDjZ4eGY8bj3+T0/O9ni4WiHbT4EwZy2Y4EGNDs7O2rXrk1UVBQdOnQAjFu3REVFMXjw4Acea29vT4kSJdDpdPz000907dr1ocsUQogn1clr8Xy/4xyr9kWTlGa8xOJib0O3On70ql+a0kWdclWerbUVFYu7UrG4K9Qx7i6SrjdwJjaRQ5eMAe7fy3c4cS2BO8nGa1h3knXcSdaZAmlOuGhtcHeyJbR+Gfo3CshVHXOrwIcchw8fTmhoKHXq1KFevXrMnDmTxMRE+vTpA0Dv3r0pUaIEU6ZMAWDXrl1ER0dTo0YNoqOjmTBhAgaDgffffz/HZQohxNNAb1BEHb3G9zvOse3Uf8OKz3k7E9qgDB1rlsDRLv++xm2srXjO24XnvF3oVPu/bVrS9QbuJOu4lZTGrSQdNxPTuJ2Uxs1E3d1/jenG19O4lZjG7WQdSkF8ajrxqemk6PT5Vs8s6//Iz5CNbt26cf36dcLDw7l69So1atRg3bp1pkkdFy5cMNvQLSUlhbFjx3LmzBmcnZ1p27YtixYtwt3dPcdlCiHEkyo1Xc+FG0lsOh7DDzvOc+lWMmCcqNG8ojdhDcpQP7DoY9182MbaiqLOWoo6W16ayYreoIhL/i/IebvaZ3/QQyrwgAYwePDgLIcDN2/ebPa8SZMmHDly5KHKFEKIgqSUIiY+ldPXEzhzPdH4iDX+fOlWEoZ7bhlzd7SlW10/ej1fmpIeeZ91/bhZW2mM19Oc7B7bOZ+IgCaEEIVRcpreFKjuDVpnYxNJSE3P8jgnO2sqFHela52StK9RAntb68dY66eXBDQhhMgnqel6InZdYNkRKz45soUrd1KyzGulAb8ijgR4OhHg5UyAlxP+nk4EejlTzEX7WIcUCwsJaEII8ZD0BsXP+6OZEXni7jUvK8AYzNwdbc2CVoCnM4FeTpQq6ojWRnpe+UkCmhBC5JFSij+OxTBt/XGOXY0HoJiLlgZFkghpWZ/nfNwe6zWkZ50ENCGEyIM9524y9fdj/H3+FmBcK/GNpmXpWbcEmzaup1Ypd7lZ/TGTgCaEELlw7Goc09YdJ+qYcTsqrY0VfRr680aTQNwcbWWh5wIkAU0IIXLg4s0kPo88wer90ShlnJbetY4fQ18qh4/bo7/HSmRPApoQQjxAbEIqc/44xZJd59HpjTeIvVytOO+2eI4AL+cCrp24lwQ0IYTIRHyKju/+Osv//jpjWjuxUTlP3mtVnmol3Qu2ciJTEtCEEOIeKTo9S3Zd4MtNp7iZmAZA9ZJuvN+6Ag3LehZw7cSDSEATQjzTElLTOXt3FY/TMQn8tC+a6NvG9RMDvJx4r2V5WlfxkRudnwIS0IQQhZ7eoIi+lcxp0zJUCaalqK7FpVrk93G1Z1jzcnSuXbLANrUUuScBTQhRaNxJ0mUatM7dSCIt3ZDlcUWd7EyreFQt6Ubn2iVl/cSnkAQ0IcRTLUWn55f9l5m/7axptY7M2FlbUcbTkQDPu0tQ3V2KKtDTGTdHuQG6MJCAJoR4Kl2PT2XRzvMs2XmeG3cnb4BxuNAYsIw9Lv+7QauEhwPWVnIdrDCTgCaEeKocvRLHvK1n+WX/ZdL0xmFEXzd7QhuUoWsdP1k78RkmAU0I8cQzGBSbjscwb+tZtp++YUqv4edOvxf8aV3FB1uZvPHMk4AmhHhiJaWl89PeSyzYdo4zsYmAcR+xNlWK0/cFf2qX9ijgGooniQQ0IcQT58qdZL7ffp6luy9wJ9m42K+L1obu9fwIbVCGkh6OBVxD8SSSgCaEeGIcvHSbeVvP8tvBK6QbjOsmli7qSJ8GZehcxw9nrXxliazJp0MIkaV0vYHbyTpuJ6VxM1HHraQ0biWmcSvp3p/TSE03YGOlwdrKyvivtebuc415utV/6fe+ZqWBLSevs+fcLdO5g/yL0O8Ff16q6C2zE0WOSEAT4hllMCiijsWw4ZKG/b8f505KukWwiktJf6x1srXWEFzNl74v+FOlhNtjPbd4+klAE+IZYzAofj98lS+iTnDiWgJgDRfPP/AYNwdbPBxt8XCyw8Mx4/Hfc62NFXql0BsU6QaFXm8w/nv3uSEj3fSv5evF3RzoXs8Pb1fZW0zkjQQ0IZ4RBoNi3b9X+WLjSY5fM66o4WJvQ0WXNKqVD8DTxR4PR1vcHe0o4nQ3YDna4eZgK+sZiqeCBDQhCjmDQbHhyFVmbjxpWhrKRWtD3xf86R1Ukq2bImnb6jlsbWX5J/F0k4AmRCFlDGTX+CLqJEevxAHGQNbnBX/6NfTHzdEWnU5XwLUUIv8U+DjCl19+SZkyZbC3tycoKIjdu3c/MP/MmTMpX748Dg4O+Pn58c4775CSkmJ6Xa/XM27cOPz9/XFwcCAwMJAPP/wQpdSjfitCPBGUUqz/9yrtZm9l0OK9HL0Sh7PWhrdfLMtfHzRjeIvnZDFeUSgVaA9t+fLlDB8+nLlz5xIUFMTMmTNp1aoVx48fp1ixYhb5IyIiGDlyJPPnz6dBgwacOHGCsLAwNBoNM2bMAGDq1Kl8/fXXfP/991SuXJm///6bPn364Obmxttvv/2436IQj41Sisgj15i58SRH7vbInLU29GlYhn4v+OPuKGscisKtQAPajBkzGDBgAH369AFg7ty5/Pbbb8yfP5+RI0da5N++fTsNGzakR48eAJQpU4aQkBB27dpllqd9+/a8/PLLpjxLly7NtucnxNNKKcXGozHM3HiCfy8bA5mTnTV9GvrT7wV/WaxXPDMKLKClpaWxd+9eRo0aZUqzsrKiefPm7NixI9NjGjRowOLFi9m9ezf16tXjzJkzrF27ll69epnl+fbbbzlx4gTPPfccBw4cYOvWraYeXGZSU1NJTf1v19q4OOOXgk6ny9M1hoxj5PpE/pJ2NaeU4o/j15m96TT/XjZO9nCys6b386Xo07A0Hnd7ZA9qL2nT/Cdtmv9y2pYFFtBiY2PR6/V4e3ubpXt7e3Ps2LFMj+nRowexsbG88MILKKVIT09n0KBBjB492pRn5MiRxMXFUaFCBaytrdHr9Xz88cf07Nkzy7pMmTKFiRMnWqRv2LABR8e8rxkXGRmZ52NF1p7ldk3Qwek4DafjNRy/reFqsnEFDTsrRePiimbF03HWnWTH5pO5KvdZbtNHRdo0/yQlJeUo31M1y3Hz5s1MnjyZr776iqCgIE6dOsXQoUP58MMPGTduHAA//vgjS5YsISIigsqVK7N//36GDRuGr68voaGhmZY7atQohg8fbnoeFxeHn58fLVu2xNXVNdf11Ol0REZG0qJFC5kKnY+exXa9FpfCnnO32HP+FnvO3eJkTKLZ64521vQKKkXfhqUpkoehxWexTR81adP8lzFqlp0CC2ienp5YW1tz7do1s/Rr167h4+OT6THjxo2jV69e9O/fH4CqVauSmJjIwIEDGTNmDFZWVrz33nuMHDmS7t27m/KcP3+eKVOmZBnQtFotWq3WIt3W1vahPpAPe7zIXGFtV6UUl24ls+vsTXafvcHuszc5d8PyL9PnvJ2p51+Eev5FaVTWM1+ukRXWNi1I0qb5J6ftWGABzc7Ojtq1axMVFUWHDh0AMBgMREVFMXjw4EyPSUpKwsrK/E4Da2trANO0/KzyGAyGfH4HQjwcpRRnYhPZffYmu84YA9jlOylmeTQaqFTclSD/otTzL0LdMh4Udbb840sIUcBDjsOHDyc0NJQ6depQr149Zs6cSWJiomnWY+/evSlRogRTpkwBIDg4mBkzZlCzZk3TkOO4ceMIDg42Bbbg4GA+/vhjSpUqReXKlfnnn3+YMWMGffv2LbD3KUSG5DQ9m47H8Pvhq+w4fYPYhFSz122sNFQt6UaQf1GC/ItQu4wHrvbyV74QOVGgAa1bt25cv36d8PBwrl69So0aNVi3bp1posiFCxfMeltjx45Fo9EwduxYoqOj8fLyMgWwDLNnz2bcuHG8+eabxMTE4Ovry+uvv054ePhjf39CgDGIbT4ew/8dusIfR2NI1ulNr9nZWFHTz50g/yIEBRSlZil3HO2eqkvbQjwxNEqW0LAQFxeHm5sbd+7cyfOkkLVr19K2bVsZQ89HT1O7pujuBrGDV/jjWAxJaf8FsZIeDrxcrTgvVfCmup8bWhvrAqvn09SmTwtp0/yX0+9k+VNQiHxiDGLX+e3QFaKOXjMLYiXcHWhXrThtqxanWkk3NBrZsFKI/CYBTTwT0tIN/Lw/mp/2XUKDBh83e7xd7Sl+918fN3t8XO3xctHmanfkFJ2eP09c57eDxiCWeF8Qe/luEKsuQUyIR04CmijU4lJ0ROy6wIJtZ7kWl5ptfmsrDV7OWrzd7Cl+N9AZA54WH1cHfNzsKeJox66zN1h76Aobj8aQkPrfrs6+bva0rVqcl6sVp4afuwQxIR4jCWiiULp8O5n5W8+ybM9FU8DxdtUS2qAMvm4OXI1L4eqdu4+4FK7FpRATn4reoIyvxaVwIIfnKn5vECvpjlUuenhCiPwjAU0UKkevxPHtljP8euAy6QbjfKfnvJ0Z0CiA9jVKYGeT9Y5JeoMiNiGVq3dSuHLHGOTuDXzX4ozpyTo9Pq7/BbGafhLEhHgSSEATTz2lFNtO3eCbLaf562SsKb1+QFEGNgmg6XNeORr6s7bS4O1qHGKs7pf1uRLT9DjaWksQE+IJIwFNPLV0egNrD13hmz/PmPb/stJA26rFGdg4gGol3fP9nBqNBmet/LcR4kkk/zPFUychNZ2fdl5kwbZzRN9OBsDB1ppudf3o94I/fkXyvkOCEOLpJQFNPBbpeoPpmlZexdxJ4dfzVoz7bAtxKcaJHp7OdoTWL8Nrz5eWjSyFeMZJQBOPjFKKv8/fYuH2c2z49yo6fX4sSmMFpBPg6cSAxgF0rFkCe9uCW2lDCPHkkIAm8l2KTs8v+y+zcPs507Wt/OLvong/uCatqvjKpAwhhBkJaCLfRN9OZtGO8yzfc4FbScYt07U2VnSoUYJe9UtTuujDXdsy6NPZvHEDzSsWk2AmhLAgAU08FKUUO8/c5Pvt59hw5CoZl8lKuDvQq35putXxy7drWzpdvhQjhCikJKCJPElKS2fNP5f5fvs5jl+LN6U3CCxKaIMyNK/onas1EYUQ4mFJQBO5cuFGEot2nmP5noummYYOtta8WqsEoQ3K8Jy3SwHXUAjxrJKAJrKllGLrqVi+336OqGMxZOygV7qoI72eL02XOn64Oci+T0KIgiUBTTxQ1NFrTPn9GKdiEkxpjZ/zIqxBaZo+J5MzhBBPDgloIlM3E9OY9Ou/rNl/GQBnrQ2da5ekV/3SBHo5F3DthBDCkgQ0YUYpxdpDVwn/+TA3EtOw0sCARgEMfrEsLvYyrCiEeHJJQBMmMfEpjFtzmPX/XgOM265M61yd6n7uBVsxIYTIAQloAqUUP+2L5sP/O8KdZB02VhrebFaWt5oForWRZaWEEE8HCWjPuOjbyYxedYg/T1wHoEoJVz7tVJ1Kvq4FXDMhhMgdCWjPKINBEbH7AlPWHiUxTY+djRXDmpdjYKMAbKyz3tVZCCGeVBLQnkHnYhP54KeD7Dp7E4DapT2Y2qkaZYvJ7EUhxNNLAtozRG9QLNh2ls82HCdFZ8DB1pr3W5end/0yskyVEOKpJwHtCaQ3KH47dIVNx2LwcLSjhIcDJdwdKOlhfLg52KLR5C4AnbwWz/s/HeSfC7cB45qLn7xajVIPuQK+EEI8KQo8oH355ZdMmzaNq1evUr16dWbPnk29evWyzD9z5ky+/vprLly4gKenJ507d2bKlCnY29ub8kRHR/PBBx/w+++/k5SURNmyZVmwYAF16tR5HG8pzwx3A9msqJOcvGdljvs52VmbglwJDwdKejj+97O7A57OWtMKHjq9gW/+PM2sqFOk6Q24aG0Y/XJFutf1y3VQFEKIJ1mBBrTly5czfPhw5s6dS1BQEDNnzqRVq1YcP36cYsWKWeSPiIhg5MiRzJ8/nwYNGnDixAnCwsLQaDTMmDEDgFu3btGwYUOaNWvG77//jpeXFydPnsTDw+Nxv70cMxgUaw9f4YuN/wUyV3sbQoJKoRRE30rm0u1kom8lEZuQRmKanhPXEjhxLfOgZ2djha+bPSU9HImJTzHle7FCMT7uWIXibg6P7b0JIcTjUqABbcaMGQwYMIA+ffoAMHfuXH777Tfmz5/PyJEjLfJv376dhg0b0qNHDwDKlClDSEgIu3btMuWZOnUqfn5+LFiwwJTm7+//iN9J3hgMit8PX+WLqBOmoONqb0P/RgGENSyDayYrc6To9ETfTib6VrLp30u3kkw/X41LIS3dwLkbSZy7kQSAu6MtE4Ir076Gr/TKhBCFVoEFtLS0NPbu3cuoUaNMaVZWVjRv3pwdO3ZkekyDBg1YvHgxu3fvpl69epw5c4a1a9fSq1cvU55ffvmFVq1a0aVLF/78809KlCjBm2++yYABA7KsS2pqKqmpqabncXFxAOh0OnR52FUy45isjjUYFOuPXGPOpjOcuNsjc7G3oU+D0oTVL2VaYiqz462BUu5aSrlrAXfLc+sNXItLNQa428kkpelpXdkbT2ct6enpuX4vT5Ls2lXknrRp/pM2zX85bcsCC2ixsbHo9Xq8vb3N0r29vTl27Fimx/To0YPY2FheeOEFlFKkp6czaNAgRo8ebcpz5swZvv76a4YPH87o0aPZs2cPb7/9NnZ2doSGhmZa7pQpU5g4caJF+oYNG3B0zPukicjISLPnBgUHb2pYd8mKK0nGnpKDtaJJcQNNiqfjmHycv/44nufz3c/+7mP3lsP5VuaT4P52FQ9P2jT/SZvmn6SkpBzly3VAK1OmDH379iUsLIxSpUrlumIPY/PmzUyePJmvvvqKoKAgTp06xdChQ/nwww8ZN24cAAaDgTp16jB58mQAatasyeHDh5k7d26WAW3UqFEMHz7c9DwuLg4/Pz9atmyJq2vuV8zQ6XRERkbSokULbG1tMRgUkUdj+HrTaY7dHVp01trQp0EpwuqXxlX2EsuR+9tVPDxp0/wnbZr/MkbNspPrgDZs2DAWLlzIpEmTaNasGf369aNjx45otdpclePp6Ym1tTXXrl0zS7927Ro+Pj6ZHjNu3Dh69epF//79AahatSqJiYkMHDiQMWPGYGVlRfHixalUqZLZcRUrVuSnn37Ksi5arTbT+tva2j7UB9La2oao4zf4IuokR68YfyHOWhv6NixDvxcCcHOUD3tePOzvRViSNs1/0qb5J6ftmOs1joYNG8b+/fvZvXs3FStWZMiQIRQvXpzBgwezb9++HJdjZ2dH7dq1iYqKMqUZDAaioqKoX79+psckJSVhZWVeZWtr4+K56u42yg0bNuT4cfNhuxMnTlC6dOkc1+1hKaU4eFNDh693MmjxXo5eicNZa8OQF8uy9YNmDG9ZXoKZEELkszwv2lerVi1mzZrF5cuXGT9+PP/73/+oW7cuNWrUYP78+aYA8yDDhw/nu+++4/vvv+fo0aO88cYbJCYmmmY99u7d22zSSHBwMF9//TXLli3j7NmzREZGMm7cOIKDg02B7Z133mHnzp1MnjyZU6dOERERwbfffstbb72V17eaK0opes7/m3nHrTl6NR4nO2sGNzMGsndblsfd0e6x1EMIIZ41eZ4UotPpWL16NQsWLCAyMpLnn3+efv36cenSJUaPHs3GjRuJiIh4YBndunXj+vXrhIeHc/XqVWrUqMG6detME0UuXLhg1iMbO3YsGo2GsWPHEh0djZeXF8HBwXz88cemPHXr1mX16tWMGjWKSZMm4e/vz8yZM+nZs2de32quaDQaapdy5+CFm/R9IYCBTcri4SRBTAghHjWNyklX6h779u1jwYIFLF26FCsrK3r37k3//v2pUKGCKc/hw4epW7cuycnJ+V7hxyEuLg43Nzfu3LmTp0khN+KSWLchkq7t28oYej7S6XSsXbuWtm2lXfOLtGn+kzbNfzn9Ts51D61u3bq0aNGCr7/+mg4dOmT6C/P396d79+65LbrQcHWwxVk+x0II8VjlOqCdOXMm2wkWTk5OZit1CCGEEI9arieFxMTEmC01lWHXrl38/fff+VIpIYQQIrdyHdDeeustLl68aJEeHR392GYSCiGEEPfLdUA7cuQItWrVskivWbMmR44cyZdKCSGEELmV64Cm1WotVvcAuHLlCjY2Bb69mhBCiGdUrgNay5YtGTVqFHfu3DGl3b59m9GjR9OiRYt8rZwQQgiRU7nuUn322Wc0btyY0qVLU7NmTQD279+Pt7c3ixYtyvcKCiGEEDmR64BWokQJDh48yJIlSzhw4AAODg706dOHkJAQuYlQCCFEgcnTRS8nJycGDhyY33URQggh8izPsziOHDnChQsXSEtLM0t/5ZVXHrpSQgghRG7laaWQjh07cujQITQajWlVfY3GuAOzXq/P3xoKIYQQOZDrWY5Dhw7F39+fmJgYHB0d+ffff9myZQt16tRh8+bNj6CKQgghRPZy3UPbsWMHf/zxB56enlhZWWFlZcULL7zAlClTePvtt/nnn38eRT2FEEKIB8p1D02v1+Pi4gKAp6cnly9fBqB06dIWO0ULIYQQj0uue2hVqlThwIED+Pv7ExQUxKeffoqdnR3ffvstAQEBj6KOQgghRLZyHdDGjh1LYmIiAJMmTaJdu3Y0atSIokWLsnz58nyvoBBCCJETuQ5orVq1Mv1ctmxZjh07xs2bN/Hw8DDNdBRCCCEet1xdQ9PpdNjY2HD48GGz9CJFikgwE0IIUaByFdBsbW0pVaqU3GsmhBDiiZPrWY5jxoxh9OjR3Lx581HURwghhMiTXF9DmzNnDqdOncLX15fSpUvj5ORk9vq+ffvyrXJCCCFETuU6oHXo0OERVEMIIYR4OLkOaOPHj38U9RBCCCEeSq6voQkhhBBPolz30KysrB44RV9mQAohhCgIue6hrV69mlWrVpkey5cvZ+TIkRQvXpxvv/02T5X48ssvKVOmDPb29gQFBbF79+4H5p85cybly5fHwcEBPz8/3nnnHVJSUjLN+8knn6DRaBg2bFie6iaEEOLpkOseWvv27S3SOnfuTOXKlVm+fDn9+vXLVXnLly9n+PDhzJ07l6CgIGbOnEmrVq04fvw4xYoVs8gfERHByJEjmT9/Pg0aNODEiROEhYWh0WiYMWOGWd49e/bwzTffUK1atdy9SSGEEE+dfLuG9vzzzxMVFZXr42bMmMGAAQPo06cPlSpVYu7cuTg6OjJ//vxM82/fvp2GDRvSo0cPypQpQ8uWLQkJCbHo1SUkJNCzZ0++++47PDw88vSehBBCPD1y3UPLTHJyMrNmzaJEiRK5Oi4tLY29e/cyatQoU5qVlRXNmzdnx44dmR7ToEEDFi9ezO7du6lXrx5nzpxh7dq19OrVyyzfW2+9xcsvv0zz5s356KOPHliP1NRUUlNTTc/j4uIA41JfOp0uV+8p47h7/xX5Q9o1/0mb5j9p0/yX07bMdUC7fxFipRTx8fE4OjqyePHiXJUVGxuLXq/H29vbLN3b25tjx45lekyPHj2IjY3lhRdeQClFeno6gwYNYvTo0aY8y5YtY9++fezZsydH9ZgyZQoTJ060SN+wYQOOjo65eEfmIiMj83ysyJq0a/6TNs1/0qb5JykpKUf5ch3QPv/8c7OAZmVlhZeXF0FBQY9laG/z5s1MnjyZr776iqCgIE6dOsXQoUP58MMPGTduHBcvXmTo0KFERkZib2+fozJHjRrF8OHDTc/j4uLw8/OjZcuWuLq65rqOOp2OyMhIWrRoga2tba6PF5mTds1/0qb5T9o0/2WMmmUn1wEtLCwst4dkydPTE2tra65du2aWfu3aNXx8fDI9Zty4cfTq1Yv+/fsDULVqVRITExk4cCBjxoxh7969xMTEUKtWLdMxer2eLVu2MGfOHFJTU7G2tjYrU6vVotVqLc5la2v7UB/Ihz1eZE7aNf9Jm+Y/adP8k9N2zPWkkAULFrBixQqL9BUrVvD999/nqiw7Oztq165tNpnEYDAQFRVF/fr1Mz0mKSkJKyvzamcEKKUUL730EocOHWL//v2mR506dejZsyf79++3CGZCCCEKh1z30KZMmcI333xjkV6sWDEGDhxIaGhorsobPnw4oaGh1KlTh3r16jFz5kwSExPp06cPAL1796ZEiRJMmTIFgODgYGbMmEHNmjVNQ47jxo0jODgYa2trXFxcqFKlitk5nJycKFq0qEW6EEKIwiPXAe3ChQv4+/tbpJcuXZoLFy7kugLdunXj+vXrhIeHc/XqVWrUqMG6detME0UuXLhg1iMbO3YsGo2GsWPHEh0djZeXF8HBwXz88ce5PrcQQojCI9cBrVixYhw8eJAyZcqYpR84cICiRYvmqRKDBw9m8ODBmb62efNms+c2NjaMHz8+V4sk31+GEEKIwifX19BCQkJ4++232bRpE3q9Hr1ezx9//MHQoUPp3r37o6ijEEIIka1c99A+/PBDzp07x0svvYSNjfFwg8FA7969mTx5cr5XUAghhMiJXAc0Ozs7li9fzkcffcT+/ftxcHCgatWqlC5d+lHUTwghhMiRPC99Va5cOcqVK5efdRFCCCHyLNfX0Dp16sTUqVMt0j/99FO6dOmSL5USQgghcivXAW3Lli20bdvWIr1NmzZs2bIlXyolhBBC5FauA1pCQgJ2dnYW6ba2tjleb0sIIYTIb7kOaFWrVmX58uUW6cuWLaNSpUr5UikhhBAit3I9KWTcuHG8+uqrnD59mhdffBGAqKgoIiIiWLlyZb5XUAghhMiJXAe04OBg1qxZw+TJk1m5ciUODg5Ur16dP/74gyJFijyKOgohhBDZytO0/ZdffpmXX34ZMO5Ts3TpUkaMGMHevXvR6/X5WkEhhBAiJ3J9DS3Dli1bCA0NxdfXl+nTp/Piiy+yc+fO/KybEEIIkWO56qFdvXqVhQsXMm/ePOLi4ujatSupqamsWbNGJoQIIYQoUDnuoQUHB1O+fHkOHjzIzJkzuXz5MrNnz36UdRNCCCFyLMc9tN9//523336bN954Q5a8EkII8cTJcQ9t69atxMfHU7t2bYKCgpgzZw6xsbGPsm5CCCFEjuU4oD3//PN89913XLlyhddff51ly5bh6+uLwWAgMjKS+Pj4R1lPIYQQ4oFyPcvRycmJvn37snXrVg4dOsS7777LJ598QrFixXjllVceRR2FEEKIbOV52j5A+fLl+fTTT7l06RJLly7NrzoJIYQQufZQAS2DtbU1HTp04JdffsmP4oQQQohcy5eAJoQQQhQ0CWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCoUnIqB9+eWXlClTBnt7e4KCgti9e/cD88+cOZPy5cvj4OCAn58f77zzDikpKabXp0yZQt26dXFxcaFYsWJ06NCB48ePP+q3IYQQogAVeEBbvnw5w4cPZ/z48ezbt4/q1avTqlUrYmJiMs0fERHByJEjGT9+PEePHmXevHksX76c0aNHm/L8+eefvPXWW+zcuZPIyEh0Oh0tW7YkMTHxcb0tIYQQj1medqzOTzNmzGDAgAH06dMHgLlz5/Lbb78xf/58Ro4caZF/+/btNGzYkB49egBQpkwZQkJC2LVrlynPunXrzI5ZuHAhxYoVY+/evTRu3PgRvhshhBAFpUADWlpaGnv37mXUqFGmNCsrK5o3b86OHTsyPaZBgwYsXryY3bt3U69ePc6cOcPatWvp1atXlue5c+cOAEWKFMn09dTUVFJTU03P4+LiANDpdOh0uly/r4xj8nKsyJq0a/6TNs1/0qb5L6dtWaABLTY2Fr1ej7e3t1m6t7c3x44dy/SYHj16EBsbywsvvIBSivT0dAYNGmQ25Hgvg8HAsGHDaNiwIVWqVMk0z5QpU5g4caJF+oYNG3B0dMzlu/pPZGRkno8VWZN2zX/SpvlP2jT/JCUl5ShfgQ855tbmzZuZPHkyX331FUFBQZw6dYqhQ4fy4YcfMm7cOIv8b731FocPH2br1q1Zljlq1CiGDx9ueh4XF4efnx8tW7bE1dU113XU6XRERkbSokULbG1tc328yJy0a/6TNs1/0qb5L2PULDsFGtA8PT2xtrbm2rVrZunXrl3Dx8cn02PGjRtHr1696N+/PwBVq1YlMTGRgQMHMmbMGKys/pvnMnjwYP7v//6PLVu2ULJkySzrodVq0Wq1Fum2trYP9YF82ONF5qRd85+0af6TNs0/OW3HAp3laGdnR+3atYmKijKlGQwGoqKiqF+/fqbHJCUlmQUtMK72D6CUMv07ePBgVq9ezR9//IG/v/8jegdCCCGeFAU+5Dh8+HBCQ0OpU6cO9erVY+bMmSQmJppmPfbu3ZsSJUowZcoUAIKDg5kxYwY1a9Y0DTmOGzeO4OBgU2B76623iIiI4Oeff8bFxYWrV68C4ObmhoODQ8G8USGEEI9UgQe0bt26cf36dcLDw7l69So1atRg3bp1pokiFy5cMOuRjR07Fo1Gw9ixY4mOjsbLy4vg4GA+/vhjU56vv/4agKZNm5qda8GCBYSFhT3y9ySEEOLxK/CABsZrXYMHD870tc2bN5s9t7GxYfz48YwfPz7L8jKGHoUQQjw7CnylECGEECI/SEATQghRKEhAE0IIUShIQBNCCFEoSEATQghRKEhAE0IIUShIQBNCCFEoSEATQghRKEhAE0IIUShIQBNCCFEoPBFLXwkhsqfX6/N9F2SdToeNjQ0pKSno9fp8LftZJW2ae7a2tqbF5R+GBDQhnnBKKa5evcrt27cfSdk+Pj5cvHgRjUaT7+U/i6RN88bd3R0fH5+HajMJaEI84TKCWbFixXB0dMzXL0mDwUBCQgLOzs4W+wyKvJE2zR2lFElJScTExABQvHjxPJclAU2IJ5herzcFs6JFi+Z7+QaDgbS0NOzt7eXLN59Im+Zexj6VMTExFCtWLM/Dj9LaQjzBMq6ZOTo6FnBNhHi0Mj7jD3OdWAKaEE8BuRaTA0qBMhR0LUQe5cdnXIYchRBPv/RUuHnG+K+9GzgWAa0LaORv9meJ/LaFEE+FMmXKMHPmTMsXUhMg9gSkpwAKUm7DzTNsXr0QjUbD7ZjLxt6bKPQkoAkh8pVGo3ngY8KECXkqd8+ePQwcONA8Mekm3DgFhnSwdYCiZcHJC6xsaFCrClf+2YCb7ipcPwbx1yA97eHf4ANUqFABBwcHrl279kjPIzInQ45CiHx15coV08/Lly8nPDyc48ePm9KcnZ1NPyul0Ov12Nhk/1Xk5eX13xOlIOEqxF81Prd3A/fSYGVtHGp09cUuNR4f15uQcsfYe4u/bHzYORuHJO3djfnzydatW0lOTqZTp04sXbqU8PDwfCs7L3Q6Hba2tgVah8dNemhCPGWUUiSlpefbIzlNn6N8KofDdj4+PqaHm5sbGo3G9PzYsWO4uLjw+++/U7t2bbRaLVu3buX06dO0b98eb29vnJ2dqVu3Lhs3bjQr1zTkqAxw+zwaV1/+F7GajgNH4ViyCuXKV+CXX34xZtZYsXnnP2iKBnDbviS4+bHwpw24V2zM+g0bqFi9Ds4uLrR+qQlXzp4wDUmmp6fz9ttv4+7uTtGiRfnggw8IDQ2lQ4cO9/0SDMbrdanxkHQD4q4w76sv6NGhNb2Cm7B00UI0dy4Zg6nBOFHl0qVLhISEUKRIEZycnKhTpw67du0yFfnrr79St25d7O3t8fT0pGPHjqbXNBoNa9asMauCu7s7CxcuBODcuXNoNBqWL19OkyZNsLe3Z8mSJdy4cYOQkBBKlCiBo6MjVatWZenSpWblGAwGPv30U8qWLYtWq6VUqVJ8/PHHALz44osMHjzYLP/169exs7MjKioqR5+Hx0l6aEI8ZZJ1eiqFr3/s5z0yqRWOdvnzlTFy5Eg+++wzAgIC8PDw4OLFi7Rt25aPP/4YrVbLDz/8QHBwMMePH6dUqVL/HWjQG4cY0xIBmDhzHp9O+4xpM+cwe/Zsevbsyfnz5ylSpMh/x1jZgJM7uHiTlJzKZ//7kUVzpmJFOq8NGcuId4ex5KtPwcGDqV98x5IlS1gwbx4VnyvLF7NnsWbNapo1agC3zhmHLPVpYDCfWh6fkMiKn39j1//9QIWyZbgTn8DWzZE0CqoFWJGgs6JJs1coUaIkv/zyCz4+Puzbtw/D3WD322+/0bFjR8aMGcMPP/xAWloaa9euzVO7Tp8+nZrVq2NvrUi5HUPtWrX44IMPcHV15bfffqNXr14EBgZSr149AEaNGsV3333H559/zgsvvMCVK1c4duwYAP3792fw4MFMnz4drVYLwOLFiylRogQvvvhiruv3qElAE0I8dpMmTaJFixam50WKFKF69eqm5x9++CGrV6/ml19+uaeHoCDxujGYaYxDhWF9+hISEgLA5MmTmTVrFrt376Z169aZnlen0zH3u/kEBgSALonBA88y6dPPjQEqMYbZc+Yw6q0wOtYPAAzMGfeGMbCkp0LyrftK04C1HdjYsWzFBsqVDaRy0IsoK1s6vdqBeSvW0ajB86BPI2L5Cq5fv86eXxdQpFgxsHembMdgsLEH4OOPP6Z79+5MnDjRVPq97fFASoEuBYBhr4fyaqNKoIs3thcwIrQduJUErQtDhgxh/fr1/Pjjj9SrV4/4+Hi++OIL5syZQ2hoKACBgYG88MILALz66qsMHjyYn3/+ma5duwKwcOFCwsLCnshbSSSgCfGUcbC15sikVvlSlsFgID4uHhdXl2xXtXCwzb/rTXXq1DF7npCQwIQJE/jtt9+4cuUK6enpJCcnc+HCBWOG1HjQpxsnf1jbQZFAAKpVq2Yqw8nJCVdXV9MSSplxdHQkMNB4LHZOFA+sREzsTfDw586181y7foN6NSoaX9dYY621p3aNahgU4OprPHfGw8oG7n6pz1+2htd6h4FjEZTBQOduPWnXrh2z587DxcGG/ScuUbNqRYp4uIEu0fiIv2Isx96N/fv3M6B/v5w1nl53t4eqjBNdrh6Em5eM7VqxNOiSjfmsbNCnpzN52mx+/L9Ioq9eJ02XTmpqqukm5qNHj5KamspLL72U6ans7e3p1asX8+fPp2vXruzbt4/Dhw//N7T7hJGAJsRTRqPR5NvQn8FgIN3OGkc7m8e6TJOTk5PZ8xEjRhAZGclnn31G2bJlcXBwoHPnzqSlpUHiDbhzEVDGAOD5HFgbJzvcP+lBo9GYhvEyk1l+pRQ4uIPH3R6He2nwqWoMWAB2TsbrYM7emZZ55MgRdu7cye7du/nggw9M6Xq9nmXLlzNgwAAc3IqCrSN4V4aUOOO1tdR44/Bl4nUctHZwJ9o4rGnvZpzYYmVjHGLVJRnrGXcFrh42DXfq0tKMk12UwRRYnYqUAI8yYOsE1rZM+2QKX8xfxswJw6laoRxOTk4MmzTL2K78t+TUg/Tv358aNWpw6dIlFixYwIsvvkjp0qWzPa4gyKQQIUSB27ZtG2FhYXTs2JGqVavi4+PDuXPnIC0B7lwAlPEmaScvUzDLb25ubnh7e7Pnn4OmYKbX69m3b98Dj5s3bx6NGzfmwIED7N+/n3379rFlyxbeeecd5s2bBxh7kvv37+fmnQRw8oSigcag6eEPDkWoVuk5orbuNA5r3jpnDFzXjhh7XzdO4VXUgyuXLpiC2ckLV0lKTjHO1vSqAF53e5UuxcDBA2zsQKNh2/YdtO/Qkddef4fqNWoQUKo4J04cN967l5ZIuXLlcHBweOAEj6pVq1KnTh2+++47IiIi6Nu3b+4aVhkg+baxZ/mIPREB7csvv6RMmTLY29sTFBTE7t27H5h/5syZlC9fHgcHB/z8/HjnnXdISUl5qDKFeOrodcYhuEKgXLlyrFq1iv3793PgwAF6hIRg0OshLcmYwdnHbIjvURkyZAhTpkzh559/5vjx4wwdOpRbt25leb1Ip9OxaNEiQkJCqFKliulRqVIl+vXrx65du/j3338JCQnBx8eHDh06sG3bNs6cOcNPq9ewY/9R8CjN+I+msnTNesbP+oGjZ6I5dPQEU2d9YzyJlS0vNm7AnB9+4p+Lifx9KY1BYz4z9ja1Lsb777KoX7ly5YiMjGT73wc4el3P6+Nmci32Jig9xJ7APiWGD957j/fff58ffviB06dPs3PnTlMgztC/f38++eQTlFJmsy+zpJRxWPT2RWNwvnUWkm/m6neRFwUe0JYvX87w4cMZP348+/bto3r16rRq1SrLcfCIiAhGjhzJ+PHjOXr0KPPmzWP58uWMHj06z2UK8dRJugHX/jV+Wdw8A8l3nup1DGfMmIGHhwcNGjQgODiYVg1rUqtqeUBjHAJ0zfuWIrnxwQcfEBISQu/evalfvz7Ozs60atUKe3v7TPP/8ssv3LhxI9Mv+YoVK1KxYkXmzZuHnZ0dGzZsoFixYrRt25aqVavyySefmFaVb9qsGStWrOCX9Zup8VInXuz+Frv/PWscovSpwvTZ3+BX2p9GL7Wmx2u9GDFiRI4WrB47diy1atWiVatWNG3WDJ+SZYy3IGT0cpNuMO71V3n37TcIDw+nYsWKdOvWzeK7MiQkBBsbG0JCQrJsC8A4eSb+KsQcNa7ekhRrDJ5WtsCjn0SiUTm9ueQRCQoKom7dusyZMwcwjun7+fkxZMgQRo4caZF/8ODBHD161KyL/O6777Jr1y62bt2apzLvFxcXh5ubG3fu3MHV1TXX70mn07F27Vratm37zN3Y+Cg9i+2akpLC2bNn8ff3N36RKAVxlyExkz/ONNbg6AEORYzXa3LQmzEYDMTFxeHq6vpkbHWiSzYGaH2a8f0UCQCtc/bHPSIGg4GKFSvStWtXPvzwwxwf80S1aVZSE4zXJtPvjm7ZOoG7n7HHd59z584RGBjInj17qFWrlvmLhnTjkGLyTdPtFIBxiNjezfh51Lpk+3m0+KzfI6ffyQU6KSQtLY29e/cyatQoU5qVlRXNmzdnx44dmR7ToEEDFi9ezO7du6lXrx5nzpxh7dq19OrVK89lpqamkpqaanoeFxcHGL9A87KVQcYxD7MNgrD0LLarTqdDKYXBYMCgT0dz6xyatHgAlLM3yt4NTfItSL6FxpAOibGQGIuy1hpn3Nl7PPCaU8bfsxnnKEia1Hi4fQ6NMqCstagiAcZJII+xXufPn2fDhg00adKE1NRUvvzyS86ePUv37t1z3D5PUps+kK0jeD6HJjEWEq6i0SWirh8DJy+Usw9orNDpdNy4cYMxY8bw/PPPU6NGjbvvSRl/X8m3IOUOmru3CCgwrsTiUARl7/bf4tBKZbuepsFgQCmFTqez2A8tp//nCzSgxcbGotfr8fY2nz3k7e1turHvfj169CA2NpYXXngBpRTp6ekMGjTINOSYlzKnTJlidv9Hhg0bNjzUPlSRkZF5PlZk7VlqVxsbG3x8fEiKu4VW3cJK6VBoSLLzRGdwhCQd4AxaJ2wMydilJ2CrT0KjT4X4K2jir6Czskdn40yatVOWq8/Hx8c/3jd2L2VAmx6Hve4WGkBnZU+SXTFUYgqQkt3R+SoxMZH58+fz3nvvAca1GVevXk2JEiVMf+jmVIG2aa5o0WhL4KC7gZ0+CRKvo5JukmxblE079hH8yiuULVuWhQsXknjrOrb6BOzSE9DwX7DWa2xJs3EmzdoZZWUDOkCXkKtapKWlkZyczJYtW0hPN782nJSUlKMynrpp+5s3b2by5Ml89dVXBAUFcerUKYYOHcqHH37IuHHj8lTmqFGjGD58uOl5XFwcfn5+tGzZMs9DjpGRkbRo0eKZGRp7HJ7Fdk1JSeHi2ZM4pcVibWNAWdmiPPxxsHXAcmDIDQClDMYV55NvoUlLwNaQgm1aCg7cMA0BKa3L3byK+Ph4XFxcHv+NssqAJvkmJMSguTt7TzkUwdqtJC6P4XpLZipVqpTlSE5OFWibPpQiqNR4iLuElT4Np7QYXq5fEUNKnHEoMfkmmtTLptzKygYcPFD2HmhsHdAC2oc4e0pKCg4ODjRu3DjTIcecKNCA5unpibW1tcXK1NeuXcPHxyfTY8aNG0evXr3o378/YJxSmpiYyMCBAxkzZkyeytRqtaZlXe5la2v7UF+cD3u8yNwz065Kof93JRpVAo27J9g6oynijybbaetWxqnhTp7/rXCRfBNNeqox0KXcRnP3y8jg4AFKodFoHt/1HoP+7tBozH+zNK1swcUHjWPRpywIWMoYZnysbZpfHO7eA5d4DeKvGYe3b9zb09SY9pvT3N1vLr9+W1ZWVmg0mkz/f+f0/3uBtradnR21a9c2m+BhMBiIioqifv36mR6TlJRk8SHJGG9VSuWpTCGeOOmp8Mtg2DodUKB1A8+yub8Hy0YLLj7G+5Q8nzNtrYIhHRKvYxV7ApeUaDQJ10zLJz0yhnTjDLhr/xpXvc9Y9cPND7wrGQPwUx7MCgUrK3ApDsUqgtYV0Bivi7n5gU8VKOJvDGpP4OapBT7kOHz4cEJDQ6lTpw716tVj5syZJCYm0qdPHwB69+5NiRIlmDJlCgDBwcHMmDGDmjVrmoYcx40bR3BwsCmwZVemEHly+yL8swiO/h+4lYBaveG51vl/o29CDCzvBRd3gnNp442yrr4P9wWi0RhXvLBzMpaVGg9JN1Epd7BWOuNWLAlXjWsLOriDvQfYPmB6dm7o0429scS7U7gBrLXg4m18b0/gF6PA+MdQ0UDjZI6n5A+NAg9o3bp14/r164SHh3P16lVq1KjBunXrTJM6Lly4YNYjGzt2LBqNhrFjxxIdHY2XlxfBwcGm7Q5yUqYQOabXwYl1sPd7OLWRjAVfifkXTm4wLodUo6cxuBXxf/jzXTkAS3tA3CVjryx4Jhiyn/KcKxnTqe3dUHodSbeu4qhJM85aS08x9qLiM4Kbh3HfsLwEN73unkB2dwKBjb2xzRw8npovyWfeU/R7KvD70J5Ech/ak+mxtuvNs7DvB9i/BBLuuR5bphHU6AHXjxtfS7z+32v+TaB2GFR42fjXbW79uxrWvAm6JOPOyyHLSHH2y/LenPxgds8UBuMag8m3jT047vlqsHG423Nzzz646dOMvczEG5AxE87GwTj0ae/2VH1B5sVTcx/aE+apvw9NiCdKeioc+w32LoSzf/6X7uT1Xy+saOB/6c3GwInfjb23038Yjzn7JzgWheohxuDmWS778xoM8Ocn8OdU4/PAl6DzfGMASXmM09atbIx1dyxqHCZMvSe4pSdDfLJxhfiM4Obgbtr+BDC2X0KMcRWTjGBo62gMZFrXQh/IRMGTgCZE7EljEDuw9O6XMYAGAl+E2qHwXBvjYq/3s7GDSu2Nj1vnjdfX/lls/NLfMcf4KN0QaoVCpVcyXYGB1ARYMwiO/mp8Xn8wNJ8I1gX8X9P6vuCWcgdSbhnrm1lw06dC0i1MgczOybj+Yg5WiMhK06ZNqVGjhnGXaow7Vg8bNoxhw4ZleYxGo2H16tWWO0znUn6VIx4vCWji2aRLhiO/wL7v4fy2/9JdikPN16BmL/DIxRYZHqXhxbHQZCScijQGyJMbjGWf3wa/vw/VuxuDm3cl4zG3zsOyHnDtsHG2X7uZULNnfr7L/GFtA05FjQ99umnqv1nPLYOdC8GhQ9DpFevWrbMo6q+//jKtTH/vXmY5sWfPHottZx7WhAkTWLNmDfv37zdLv3LlCh4eHvl6rqwkJydTokQJrKysiI6OzvQWIpEzEtBE4aVPN05y0N/dNyo9BZJuwqEVcGCZ8UsZjJMkyrU0DhGWbfFwvSNrGyjfxvi4E23ssf2zyLhm3q65xkfJulChHWyfZewROhWDbouhVFB+vOtHy9rmv3vcTMHtjrENnYuBnRP9BrxOp06duHTpEiVLljQ7fMGCBdSpUyfXwQzAy8srn95E9rK6Z/VR+Omnn6hcuTJKKdasWUO3bt0e27nvp5RCr9djY/N0hoans9biyZaxbcSdi3D7vPHn+CsPvdWJtUFP3eiLWC/7wTjElZ7637/pKff8m7Hxof7BBbr5Ga+L1ehpnIaf39xKQNMPoPEIOL0J9i4wzpi8tMf4ACheHbpHgFvJB5d1L6WME0fyg8FgLCvN2nj/0YPcv+DxvcHtHu3atcPLy4uFCxcyduxYU3pCQgIrVqxg2rRp3Lhxg8GDB7NlyxZu3bpFYGAgo0ePJiQkJMvT3z/kePLkSfr168fu3bsJCAjgiy++sDjmgw8+YPXq1Vy6dAkfHx969uxJeHg4tra2LFy40LTkXcbN3AsWLCAsLMxiyPHQoUMMHTqUHTt24OjoSKdOnZgxYwbOzsaFk8PCwrh9+zYvvPAC06dPJzU1le7du/PFF19kO4Fp3rx5vPbaayilmDdvnkVA+/fff/nggw/YsmULSilq1KjBwoULTTtvz58/n+nTp3Pq1CmKFClCp06dmDNnDufOncPf359//vmHGjVqAHD79m08PDzYtGkTTZs2ZfPmzTRr1oy1a9cyduxYDh06xIYNG/Dz82P48OHs3LmTxMREKlasyJQpU2jevLmpXqmpqYSHhxMREUFMTAx+fn6MGjWKvn37Uq5cOQYNGsSIESNM+ffv30/NmjU5efIkZcuWfWCb5JUENJE7ShlXnrhz8Z6gdTdwZfz8iPY9sgJ8Ae7k5WBb4wQGGy2Urg+1wiCwGVhZZ3voQ7OyhnLNjY/4a8bZkYdWgm8NaPsZ2OVyvVBdEkz2zZ+qAe45zTz6svHaWDZsbGzo3bs3CxcuZMyYMaZgsWLFCvR6PSEhISQkJFC7dm0++OADXF1d+e233+jVqxeBgYHUq1cv23MYDAZeffVVvL292bVrF3fu3Mn02pqLiwsLFy7E19eXQ4cOMWDAAFxcXHj//ffp1q0bhw8fZt26dWzcuBEwbvJ5v8TERFq1akX9+vXZs2cPMTEx9O/fn8GDB7Nw4UJTvk2bNlG8eHGioqI4ePAg/fr1o2bNmgwYMCDL93H69Gl27NjBqlWrUErxzjvvcP78edOO0NHR0TRu3JimTZvyxx9/4OrqyrZt20xrHX799dcMHz6cTz75hDZt2nDnzh22bduW5fmyMnLkSD777DMCAgLw8PDg4sWLtG3blo8//hitVssPP/xAcHAwx48fp1SpUoDxHuEdO3Ywa9YsqlevztmzZ4mNjUWj0dC3b18WLFhgFtAWLFhA48aNH1kwAwloT7b0NONNu49zdphSxplq9/au7g9eaTlYdNXeDdxKGbejcPMz9lasH+7agN6g59DRE1SpUQcbO4e7AepukLKxN07SMHuuNZ7TRvt4AldOuHhDo+HGRyHWt29fpk2bxp9//knTpk0B4xdap06dcHNzw83NzezLbsiQIaxfv54ff/wxRwFt48aNHDt2jPXr1+PrawzukydPpk2bNmb57u0hlilThhEjRrBs2TLef/99HBwccHZ2Ni0AnZWIiAhSUlL44YcfTNfw5syZQ3BwMFOnTjXd3+rh4cGcOXPQaDT4+vrStm1boqKiHhjQ5s+fT5s2bUzX61q1asWCBQuYMGECYNyo2M3NjWXLlpl6es8995zp+I8++oh3332XoUOHmtLq1q2bbfvdb9KkSbRo0cL0vEiRIlSvXt30/MMPP2T16tX88ssvDB48mBMnTvDjjz8SGRlp6rUFBASY8oeFhREeHm7aFUWn0xEREcFnn32W67rlhgS0J9G5bbBlGpzZdPdG1GLG6yzOxR78s51z9sFPn25cdsgUoC4YH6agdck4jJcdJy9joHLPCFr3BC93P2NAy2cGnY7z19dSuVpbeJbv77N1NPaW8oHBYCAuPh5XF5fs75myzXlPskKFCjRo0ID58+fTtGlTTp06xV9//cWkSZMA0Ov1TJ48mR9//JHo6GjS0tJITU3N8e4WR48exc/PzxTMgEyXtlu+fDmzZs3i9OnTJCQkkJ6enut7S48ePUr16tXNJqQ0bNgQg8HA8ePHTQGtcuXKWFtbm9ZyLF68OIcPH86yXL1ez/fff282VPraa68xYsQIwsPDsbKyYv/+/TRq1CjTYcuYmBguX77MSy+9lKv3k5k6deqYPU9ISGDChAn89ttvXLlyhfT0dJKTk7lw4QJgHD60tramSZMmmZbn6+vLyy+/zPz586lXrx6//vorqampdOnS5aHr+iAS0J4UShkD2J/T4ML2/9LTU/4LOtmxcbAMdPauxmGujKAVdzn7a0saK3DxNQ9QpuBVyni9J7Mp6OLxyFjGKj8YDGCrN5aXzzcB9+vXjyFDhvDll1+yYMECAgMDTV+A06ZN44svvmDmzJlUrVoVJycnhg0bRlpaWr6df8eOHfTs2ZOJEyfSqlUrU09n+vTp+XaOe90fdDQazQP3Q1u/fj3R0dEW18z0ej1RUVG0aNECB4es/5896DXA9AfKvWtnZLWv2P2zR0eMGEFkZCSfffYZZcuWxcHBgc6dO5t+P9mdG6B///706tWLzz//nAULFtCtW7eH2o4rJySgFTSljNO7//wUov82plnbGaeOP/+Wcags8bpxGDDh2t2fr91diSHj5+ugSzROob593vh4ECtbY1Byvxuk7u9duZbI//UJxTOna9euDB06lIiICH744QfeeOMN0/W0bdu20b59e1577TXA2FM8ceIElSpVylHZFStW5OLFi1y5coXixYsDsHPnTrM827dvp3Tp0owZM8aUdv68+f8NOzs79PoH/4FXsWJF415giYmmL/5t27ZhZWVF+fLlc1TfzMybN4/u3bub1Q/g448/Zt68ebRo0YJq1arx/fffo9PpLAKmi4sLZcqUISoqimbNmlmUnzEr9MqVK9SsWRPA4vaErGzbto2wsDA6duwIGHts586dM71etWpVDAYDf/75p9lEkXu1bdsWJycnvv76a9atW8eWLVtydO6HIQGtoBgMcOz/jEOLVw8a02zsoXYfaDDEfNZdTtYITE0wrpuXcDfIZfycctu4dp6pd+VnfC5L8ohHzNnZmW7dujFq1Cji4uIICwszvVauXDlWrlzJ9u3b8fDwYMaMGVy7di3HAa158+Y899xzhIaGMm3aNOLi4iwCQ7ly5bhw4QLLli2jbt26/Pbbb6xevdosT5kyZTh79iz79++nZMmSuLi4WNwH1rNnT8aPH09oaCgTJkzg+vXrDBkyhF69euV5fdjr16/z66+/8ssvv1ClShWz13r37k3Hjh25efMmgwcPZvbs2XTv3p1Ro0bh5ubGzp07qVevHuXLl2fChAkMGjSIYsWK0aZNG+Lj49m2bRtDhgzBwcGB559/nk8++QR/f39iYmLMrik+SLly5Vi1ahXBwcFoNBrGjRtn1tssU6YMoaGh9O3b1zQp5Pz588TExNC1a1fAuAtKWFgYo0aNoly5co9ltxP5VnvcDHrjDLevG8CPvYzBzNYJGrwNww5Bm0/yNoVc6wxFAoz3MlV6Ber2h2ajoM1U4wSEqp3Brx64FpdgJh6bfv36cevWLVq1amV2vWvs2LHUqlWLVq1a0bRpU3x8fHK1KoeVlRWrV68mOTmZevXq0b9/f7MFygFeeeUV3nnnHQYPHkyNGjXYvn27xSbAnTp1onXr1jRr1gwvLy+WLl1qcS5HR0fWr1/PzZs3qVu3Lp07d+all15izpw5uWuMe2RMMMns+tdLL72Eg4MDixcvpmjRovzxxx8kJCTQpEkTateuzXfffWfqrYWGhjJz5ky++uorKleuTLt27Th58qSprPnz55Oenk7t2rUZNmwYH330UY7qN2PGDDw8PGjQoAHBwcG0atWKWrVqmeX5+uuv6dy5M2+++SYVKlRgwIABJCYmmuXp168faWlpj22nE1mcOBOPZHFivQ4O/gh/TYebp41pWlcIeh2C3jCuwiAe6Flc9PlBC7bmB1lIN/9Jm/7nr7/+4qWXXuLixYvZ9mZlceKnQXoq7I+ArTP+m9jh4GG8PlZvgHEdPCGEKERSU1O5fv06EyZMoEuXLo9t6y4JaI+IlSENqz3fwc45EBdtTHTyMi4+W7efcdFWIYQohJYuXUq/fv2oUaMGP/zww2M7rwS0/KYUVju/pMW/M7A+cHdJC5fi0HCocWHa3K4KIYQQT5mwsDCzSUCPiwS0/KbRoDm/Ffv0OyjXkmgavQM1Xsu/7eyFEEJkSgLaI6BvPJIDaaWo0uNDbO3zd7sL8WySuVuisMuPz/izPQXnUSlenQtFmxhvkBbiIWTM5kxKyqfV9YV4QmV8xh9mBrP00IR4gllbW+Pu7k5MTAxgvCdKk4+LVRsMBtLS0khJSXnmp5jnF2nT3FFKkZSURExMDO7u7lhb530hcQloQjzhMlaCzwhq+UkpRXJyMg4ODvkaKJ9l0qZ54+7u/tAbq0pAE+IJp9FoKF68OMWKFctycdm80ul0bNmyhcaNGz8zN6s/atKmuWdra/tQPbMMEtCEeEpYW1vny3/6+8tMT0/H3t5evnzzibRpwZEBXiGEEIWCBDQhhBCFggQ0IYQQhYJcQ8tExg1+cXFxeTpep9ORlJREXFycjKHnI2nX/Cdtmv+kTfNfxndxdjdfS0DLRHx8PAB+fn4FXBMhhBAZ4uPjcXNzy/J12Q8tEwaDgcuXL+Pi4pKn+0ji4uLw8/Pj4sWLedpPTWRO2jX/SZvmP2nT/KeUIj4+Hl9f3wferC49tExYWVlRsmTJhy7H1dVVPtCPgLRr/pM2zX/SpvnrQT2zDDIpRAghRKEgAU0IIUShIAHtEdBqtYwfPx6tVlvQVSlUpF3zn7Rp/pM2LTgyKUQIIUShID00IYQQhYIENCGEEIWCBDQhhBCFggQ0IYQQhYIEtEfgyy+/pEyZMtjb2xMUFMTu3bsLukpPrQkTJqDRaMweFSpUKOhqPXW2bNlCcHAwvr6+aDQa1qxZY/a6Uorw8HCKFy+Og4MDzZs35+TJkwVT2adEdm0aFhZm8dlt3bp1wVT2GSEBLZ8tX76c4cOHM378ePbt20f16tVp1aoVMTExBV21p1blypW5cuWK6bF169aCrtJTJzExkerVq/Pll19m+vqnn37KrFmzmDt3Lrt27cLJyYlWrVqRkpLymGv69MiuTQFat25t9tldunTpY6zhM0iJfFWvXj311ltvmZ7r9Xrl6+urpkyZUoC1enqNHz9eVa9evaCrUagAavXq1abnBoNB+fj4qGnTppnSbt++rbRarVq6dGkB1PDpc3+bKqVUaGioat++fYHU51klPbR8lJaWxt69e2nevLkpzcrKiubNm7Njx44CrNnT7eTJk/j6+hIQEEDPnj25cOFCQVepUDl79ixXr141+9y6ubkRFBQkn9uHtHnzZooVK0b58uV54403uHHjRkFXqVCTgJaPYmNj0ev1eHt7m6V7e3tz9erVAqrV0y0oKIiFCxeybt06vv76a86ePUujRo1MW/yIh5fx2ZTPbf5q3bo1P/zwA1FRUUydOpU///yTNm3aoNfrC7pqhZasti+eaG3atDH9XK1aNYKCgihdujQ//vgj/fr1K8CaCfFg3bt3N/1ctWpVqlWrRmBgIJs3b+all14qwJoVXtJDy0eenp5YW1tz7do1s/Rr167h4+NTQLUqXNzd3Xnuuec4depUQVel0Mj4bMrn9tEKCAjA09NTPruPkAS0fGRnZ0ft2rWJiooypRkMBqKioqhfv34B1qzwSEhI4PTp0xQvXrygq1Jo+Pv74+PjY/a5jYuLY9euXfK5zUeXLl3ixo0b8tl9hGTIMZ8NHz6c0NBQ6tSpQ7169Zg5cyaJiYn06dOnoKv2VBoxYgTBwcGULl2ay5cvM378eKytrQkJCSnoqj1VEhISzHoGZ8+eZf/+/RQpUoRSpUoxbNgwPvroI8qVK4e/vz/jxo3D19eXDh06FFyln3APatMiRYowceJEOnXqhI+PD6dPn+b999+nbNmytGrVqgBrXcgV9DTLwmj27NmqVKlSys7OTtWrV0/t3LmzoKv01OrWrZsqXry4srOzUyVKlFDdunVTp06dKuhqPXU2bdqkAItHaGioUso4dX/cuHHK29tbabVa9dJLL6njx48XbKWfcA9q06SkJNWyZUvl5eWlbG1tVenSpdWAAQPU1atXC7rahZpsHyOEEKJQkGtoQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWhCCCEKBQloQgghCgUJaEIIIQoFCWjisQgLC6NMmTJ5OnbChAloNJr8rdAT5ty5c2g0GhYuXPjYz63RaJgwYYLp+cKFC9FoNJw7dy7bY8uUKUNYWFi+1udhPivi2SYB7Rmn0Why9Ni8eXNBV/WZ9/bbb6PRaDh16lSWecaMGYNGo+HgwYOPsWa5d/nyZSZMmMD+/fsLuiomGX9UfPbZZwVdFZFHNgVdAVGwFi1aZPb8hx9+IDIy0iK9YsWKD3We7777DoPBkKdjx44dy8iRIx/q/IVBz549mT17NhEREYSHh2eaZ+nSpVStWpVq1arl+Ty9evWie/fuaLXaPJeRncuXLzNx4kTKlClDjRo1zF57mM+KeLZJQHvGvfbaa2bPd+7cSWRkpEX6/ZKSknB0dMzxeWxtbfNUPwAbGxtsbOSjGhQURNmyZVm6dGmmAW3Hjh2cPXuWTz755KHOY21tjbW19UOV8TAe5rMinm0y5Ciy1bRpU6pUqcLevXtp3Lgxjo6OjB49GoCff/6Zl19+GV9fX7RaLYGBgXz44Yfo9XqzMu6/LnLv8M63335LYGAgWq2WunXrsmfPHrNjM7uGptFoGDx4MGvWrKFKlSpotVoqV67MunXrLOq/efNm6tSpg729PYGBgXzzzTc5vi73119/0aVLF0qVKoVWq8XPz4933nmH5ORki/fn7OxMdHQ0HTp0wNnZGS8vL0aMGGHRFrdv3yYsLAw3Nzfc3d0JDQ3l9u3b2dYFjL20Y8eOsW/fPovXIiIi0Gg0hISEkJaWRnh4OLVr18bNzQ0nJycaNWrEpk2bsj1HZtfQlFJ89NFHlCxZEkdHR5o1a8a///5rcezNmzcZMWIEVatWxdnZGVdXV9q0acOBAwdMeTZv3kzdunUB6NOnj2lYO+P6YWbX0BITE3n33Xfx8/NDq9VSvnx5PvvsM5RSZvly87nIq5iYGPr164e3tzf29vZUr16d77//3iLfsmXLqF27Ni4uLri6ulK1alW++OIL0+s6nY6JEydSrlw57O3tKVq0KC+88AKRkZH5VtdnjfzZK3Lkxo0btGnThu7du/Paa6/h7e0NGL/8nJ2dGT58OM7Ozvzxxx+Eh4cTFxfHtGnTsi03IiKC+Ph4Xn/9dTQaDZ9++imvvvoqZ86cyfYv9a1bt7Jq1SrefPNNXFxcmDVrFp06deLChQsULVoUgH/++YfWrVtTvHhxJk6ciF6vZ9KkSXh5eeXofa9YsYKkpCTeeOMNihYtyu7du5k9ezaXLl1ixYoVZnn1ej2tWrUiKCiIzz77jI0bNzJ9+nQCAwN54403AGNgaN++PVu3bmXQoEFUrFiR1atXExoamqP69OzZk4kTJxIREUGtWrXMzv3jjz/SqFEjSpUqRWxsLP/73/8ICQlhwIABxMfHM2/ePFq1asXu3bsthvmyEx4ezkcffUTbtm1p27Yt+/bto2XLlqSlpZnlO3PmDGvWrKFLly74+/tz7do1vvnmG5o0acKRI0fw9fWlYsWKTJo0ifDwcAYOHEijRo0AaNCgQabnVkrxyiuvsGnTJvr160eNGjVYv3497733HtHR0Xz++edm+XPyucir5ORkmjZtyqlTpxg8eDD+/v6sWLGCsLAwbt++zdChQwGIjIwkJCSEl156ialTpwJw9OhRtm3bZsozYcIEpkyZQv/+/alXrx5xcXH8/fff7Nu3jxYtWjxUPZ9ZSoh7vPXWW+r+j0WTJk0UoObOnWuRPykpySLt9ddfV46OjiolJcWUFhoaqkqXLm16fvbsWQWookWLqps3b5rSf/75ZwWoX3/91ZQ2fvx4izoBys7OTp06dcqUduDAAQWo2bNnm9KCg4OVo6Ojio6ONqWdPHlS2djYWJSZmcze35QpU5RGo1Hnz583e3+AmjRpklnemjVrqtq1a5uer1mzRgHq008/NaWlp6erRo0aKUAtWLAg2zrVrVtXlSxZUun1elPaunXrFKC++eYbU5mpqalmx926dUt5e3urvn37mqUDavz48abnCxYsUIA6e/asUkqpmJgYZWdnp15++WVlMBhM+UaPHq0AFRoaakpLSUkxq5dSxt+1Vqs1a5s9e/Zk+X7v/6xktNlHH/1/e3ceFlX1P3D8PQww7JvIpggIuKFCLphLLonikkubS/5yqbQy82tmpS3uaWULZaZl5VKZlqllmhuJmpKa5o6kyOIGKoJsss79/TEyOgLK4CCIn9fzzMPMmXPvPfc4zmfOueeeM9Mg3xNPPKGoVCqDz0B5PxelKf5Mzpkzp8w8ERERCqB8//33+rT8/Hylbdu2ip2dnZKRkaEoiqL873//UxwcHJTCwsIy9xUcHKz07t37lmUSxpEuR1EuGo2GESNGlEi3trbWP8/MzOTSpUs89NBD5OTkcPz48dvud+DAgTg7O+tfF/9aP3Xq1G23DQsLw9/fX/+6efPmODg46LctKipiy5Yt9O/fHy8vL32+gIAAevbsedv9g+H5ZWdnc+nSJdq1a4eiKPz7778l8r/wwgsGrx966CGDc1m/fj3m5ub6Fhvorlm9/PLL5SoP6K57njlzhu3bt+vTli1bhqWlJU8++aR+n5aWlgBotVouX75MYWEhrVq1KrW78la2bNlCfn4+L7/8skE37bhx40rk1Wg0mJnpvlaKiopITU3Fzs6Ohg0bGn3cYuvXr0etVjN27FiD9FdffRVFUfjjjz8M0m/3ubgT69evx8PDg8GDB+vTLCwsGDt2LFlZWWzbtg0AJycnsrOzb9l96OTkxNGjRzlx4sQdl0voSEAT5VKnTh39F+SNjh49yqOPPoqjoyMODg7Url1bP6DkypUrt91vvXr1DF4XB7e0tDSjty3evnjbCxcucPXqVQICAkrkKy2tNElJSQwfPhwXFxf9dbFOnToBJc/PysqqRFfmjeUBSExMxNPTEzs7O4N8DRs2LFd5AAYNGoRarWbZsmUA5Obmsnr1anr27Gnw42DJkiU0b95cf32mdu3arFu3rlz/LjdKTEwEIDAw0CC9du3aBscDXfD85JNPCAwMRKPR4OrqSu3atTl06JDRx73x+F5eXtjb2xukF4+8LS5fsdt9Lu5EYmIigYGB+qBdVllGjx5NgwYN6NmzJ3Xr1uWZZ54pcR1v+vTppKen06BBA5o1a8Zrr71W7W+3qO4koIlyubGlUiw9PZ1OnTpx8OBBpk+fztq1a9m8ebP+mkF5hl6XNZpOueliv6m3LY+ioiK6devGunXreOONN1izZg2bN2/WD164+fzu1shANzc3unXrxi+//EJBQQFr164lMzOTIUOG6PN8//33DB8+HH9/f7755hs2bNjA5s2befjhhyt1SPysWbMYP348HTt25Pvvv2fjxo1s3ryZoKCguzYUv7I/F+Xh5ubGgQMH+O233/TX/3r27GlwrbRjx47ExcXx7bff0rRpU77++mtatGjB119/fdfKWdPIoBBRYVFRUaSmprJq1So6duyoT4+Pj6/CUl3n5uaGlZVVqTci3+rm5GKHDx/mv//+Y8mSJQwdOlSffiej0Hx8fIiMjCQrK8uglRYbG2vUfoYMGcKGDRv4448/WLZsGQ4ODvTp00f//sqVK6lfvz6rVq0y6CacMmVKhcoMcOLECerXr69Pv3jxYolWz8qVK+nSpQvffPONQXp6ejqurq7618bM/OLj48OWLVvIzMw0aKUVd2kXl+9u8PHx4dChQ2i1WoNWWmllsbS0pE+fPvTp0wetVsvo0aP58ssveeedd/Q9BC4uLowYMYIRI0aQlZVFx44dmTp1Ks8999xdO6eaRFpoosKKfwnf+Ms3Pz+fL774oqqKZECtVhMWFsaaNWs4d+6cPv3kyZMlrruUtT0Ynp+iKAZDr43Vq1cvCgsLmT9/vj6tqKiIuXPnGrWf/v37Y2NjwxdffMEff/zBY489hpWV1S3Lvnv3bqKjo40uc1hYGBYWFsydO9dgfxERESXyqtXqEi2hn3/+mbNnzxqk2draApTrdoVevXpRVFTE559/bpD+ySefoFKpyn091BR69epFcnIyK1as0KcVFhYyd+5c7Ozs9N3RqampBtuZmZnpb3bPy8srNY+dnR0BAQH690HXrX38+PEKd9feb6SFJiqsXbt2ODs7M2zYMP20TN99991d7dq5nalTp7Jp0ybat2/Piy++qP9ibNq06W2nXWrUqBH+/v5MmDCBs2fP4uDgwC+//HJH12L69OlD+/btmThxIgkJCTRp0oRVq1YZ/YVlZ2dH//799dfRbuxuBHjkkUdYtWoVjz76KL179yY+Pp4FCxbQpEkTsrKyjDpW8f10s2fP5pFHHqFXr178+++//PHHHwatruLjTp8+nREjRtCuXTsOHz7MDz/8YNCyA/D398fJyYkFCxZgb2+Pra0tbdq0wc/Pr8Tx+/TpQ5cuXXjrrbdISEggODiYTZs28euvvzJu3DiDASCmEBkZSW5ubon0/v37M2rUKL788kuGDx/Ovn378PX1ZeXKlezcuZOIiAh9C/K5557j8uXLPPzww9StW5fExETmzp1LSEiI/npbkyZN6Ny5My1btsTFxYV//vmHlStXMmbMGP0xV69ezYgRI1i0aJHJ58yskapmcKWorsoath8UFFRq/p07dyoPPvigYm1trXh5eSmvv/66snHjRgVQtm7dqs9X1rD90oZIc9Mw8rKG7b/00ksltvXx8TEYRq4oihIZGak88MADiqWlpeLv7698/fXXyquvvqpYWVmVUQvXHTt2TAkLC1Ps7OwUV1dXZeTIkfph4DcOOR82bJhia2tbYvvSyp6amqo8/fTTioODg+Lo6Kg8/fTTyr///lvuYfvF1q1bpwCKp6dniaHyWq1WmTVrluLj46NoNBrlgQceUH7//fcS/w6Kcvth+4qiKEVFRcq0adMUT09PxdraWuncubNy5MiREvWdm5urvPrqq/p87du3V6Kjo5VOnTopnTp1Mjjur7/+qjRp0kR/C0XxuZdWxszMTOWVV15RvLy8FAsLCyUwMFCZM2eOwW0ExedS3s/FzYo/k2U9vvvuO0VRFCUlJUUZMWKE4urqqlhaWirNmjUr8e+2cuVKpXv37oqbm5tiaWmp1KtXT3n++eeV8+fP6/PMnDlTCQ0NVZycnBRra2ulUaNGyrvvvqvk5+eX+Lcw5nNxP1MpSjX6OS3EXdK/f38ZMi1EDSPX0ESNd/M0VSdOnGD9+vV07ty5agokhKgU0kITNZ6npyfDhw+nfv36JCYmMn/+fPLy8vj3339L3FslhLh3yaAQUeP16NGDH3/8keTkZDQaDW3btmXWrFkSzISoYaSFJoQQokaQa2hCCCFqBAloQgghagQJaEIYobTFJ4UQ1YMENFEjFK96fLtHVFRUVRfVQFRUFCqVipUrV1Z1USrs7NmzDBgwACcnJxwcHOjXr1+5lmrJyclh3rx5dO/eHU9PT+zt7XnggQeYP39+iVW+i1c4L+2xfPnyMo9RUFBAkyZN9Kuji5pNRjmKGuG7774zeL106VI2b95cIr142qGKWrhw4V2bNf5ekJWVRZcuXbhy5QpvvvkmFhYWfPLJJ3Tq1IkDBw7ccoXoU6dO8fLLL9O1a1fGjx+Pg4MDGzduZPTo0fz9998sWbKkxDaDBw+mV69eBmlt27Yt8xhz584lKSmp4ico7i1VOU2JEJWltCm8SpOdnX0XSlO2rVu3KoDy888/V2k5Kur9999XAGXPnj36tJiYGEWtViuTJk265bYXL15Ujhw5UiJ9xIgRCqCcOHFCn1ae1aRvlpKSojg6OirTp083eltxb5IuR3Hf6Ny5M02bNmXfvn107NgRGxsb3nzzTQB+/fVXevfujZeXFxqNBn9/f2bMmFGi6+vma2jFXWEffvghX331Ff7+/mg0Glq3bs3evXtNVvZTp07x5JNP4uLigo2NDQ8++CDr1q0rkW/u3LkEBQVhY2ODs7MzrVq10k9gDLpVxceNG4evry8ajUa/ttqNq0kXrzZ+6dKl25Zr5cqVtG7dmtatW+vTGjVqRNeuXfnpp59uua2rqytBQUEl0h999FEAYmJiSt0uOzub/Pz825Zt4sSJNGzYUL/grKj5JKCJ+0pqaio9e/YkJCSEiIgIunTpAsDixYuxs7Nj/PjxfPrpp7Rs2ZLJkyczceLEcu132bJlzJkzh+eff56ZM2eSkJDAY489RkFBwR2XOSUlhXbt2um74959911yc3Pp27cvq1ev1udbuHAhY8eOpUmTJkRERDBt2jRCQkLYvXu3Ps8LL7zA/Pnzefzxx/niiy+YMGEC1tbWBsFjz549NG7cuMRyLTfTarUcOnSIVq1alXgvNDSUuLg4MjMzjT7f5ORkgBIz+QNMmzYNOzs7rKysaN26NZs2bSp1H3v27GHJkiVEREQYtfaauMdVdRNRiMpQ1qoBgLJgwYIS+XNyckqkPf/884qNjY2Sm5urTytr1YBatWoply9f1qf/+uuvCqCsXbv2luUsT5fjuHHjFEDZsWOHPi0zM1Px8/NTfH199TPt9+vXr8xVEYo5OjqWOht9aWW6cQb+0ly8eFEBlOnTp5d4b968eQqgHD9+/Jb7uFleXp7SpEkTxc/PTykoKNCnJyYmKt27d1fmz5+v/Pbbb0pERIRSr149xczMTPn9998N9qHVapXQ0FBl8ODBiqJUrLtS3JtkUIi4r2g0GkaMGFEi3draWv88MzOTvLw8HnroIb788kuOHz9OcHDwLfc7cOBAnJ2d9a8feughgHKN9rud9evXExoaSocOHfRpdnZ2jBo1ikmTJnHs2DGaNm2Kk5MTZ86cYe/evQZdgDdycnJi9+7dnDt3Di8vr1LzdO7cuVxr2hVP+qzRaEq8V7zY6M0TQ9/OmDFjOHbsGOvWrcPc/PrXU7169di4caNB3qeffpomTZrw6quv0rt3b3364sWLOXz48D09clRUjHQ5ivtKnTp1sLS0LJF+9OhRHn30URwdHXFwcKB27dr6ay/lWXyzXr16Bq+Lg9udLAZaLDExkYYNG5ZILx6xmZiYCMAbb7yBnZ0doaGhBAYG8tJLL7Fz506DbT744AOOHDmCt7c3oaGhTJ06tcJBt/hHwI0rLBcrXiDzxh8KtzNnzhwWLlzIjBkzSoxkLI2LiwsjRowgNjaWM2fOAJCRkcGkSZN47bXX8Pb2LvexRc0gAU3cV0r7gk1PT6dTp04cPHiQ6dOns3btWjZv3sz7778PUK5h+mq1utT08rR0TKVx48bExsayfPlyOnTowC+//EKHDh2YMmWKPs+AAQM4deoUc+fOxcvLizlz5hAUFMQff/xh9PFcXFzQaDScP3++xHvFaWW1Am+2ePFi3njjDV544QXefvvtcpehOGhdvnwZgA8//JD8/HwGDhxIQkICCQkJ+mCXlpZGQkJCuQaUiHuTBDRx34uKiiI1NZXFixfzv//9j0ceeYSwsDCDLsSq5OPjQ2xsbIn048eP698vZmtry8CBA1m0aBFJSUn07t1bP4ikmKenJ6NHj2bNmjXEx8dTq1Yt3n33XaPLZWZmRrNmzfjnn39KvLd7927q16+Pvb39bffz66+/8txzz/HYY48xb948o8pQ3LqsXbs2AElJSaSlpREUFISfnx9+fn767t9Zs2bh5+fHsWPHjDqGuHdIQBP3veLW1Y2tqfz8fL744ouqKpKBXr16sWfPHqKjo/Vp2dnZfPXVV/j6+tKkSRNAN4LzRpaWljRp0gRFUSgoKKCoqKhE96mbmxteXl4G3YbGDNt/4okn2Lt3r0FQi42N5c8//+TJJ580yHv8+PESNzlv376dQYMG0bFjR3744QfMzEr/Srp48WKJtLNnz/Ltt9/SvHlzPD09ARg7diyrV682eHz55ZeA7paL1atX4+fnd9vzEvcmGRQi7nvt2rXD2dmZYcOGMXbsWFQqFd99991d7S785Zdf9C2uGw0bNoyJEyfy448/0rNnT8aOHYuLiwtLliwhPj6eX375RR8EunfvjoeHB+3bt8fd3Z2YmBg+//xzevfujb29Penp6dStW5cnnniC4OBg7Ozs2LJlC3v37uWjjz7SH3PPnj106dKFKVOmMHXq1FuWe/To0SxcuJDevXszYcIELCws+Pjjj3F3d+fVV181yNu4cWM6deqkn34sMTGRvn37olKpeOKJJ/j5558N8jdv3pzmzZsD8PrrrxMXF0fXrl3x8vIiISGBL7/8kuzsbD799FP9Ni1atKBFixYG+0lISAAgKCiI/v373/J8xL1NApq479WqVYvff/+dV199lbfffhtnZ2f+7//+j65duxIeHn5XylDWfISdO3emQ4cO7Nq1izfeeIO5c+eSm5tL8+bNWbt2rcHovueff54ffviBjz/+mKysLOrWrcvYsWP116RsbGwYPXo0mzZtYtWqVWi1WgICAvjiiy948cUXK1Rue3t7oqKieOWVV5g5cyZarZbOnTvzySef6LsByxIfH69vMb700ksl3p8yZYo+oHXv3p0FCxYwb9480tLScHJyomPHjrz99tslApi4f8kCn0IIIWoEuYYmhBCiRpCAJoQQokaQgCaEEKJGkIAmhBCiRpCAJoQQokaQgCZqhOJ1yRYvXqxPmzp1armXDlGpVLe958pYnTt3pnPnzibdpxCibBLQxF3Xt29fbGxsbrlW1pAhQ7C0tCwx+0V1c+zYMaZOnaq/ebc6iIqKQqVS3dOzzZ89e5YBAwbg5OSEg4MD/fr1K/ckyp07d0alUpV49OjRwyBfVlYWU6ZMoUePHri4uJT4QVSWgoICmjRpol/YVVQfcmO1uOuGDBnC2rVrWb16NUOHDi3xfk5ODr/++is9evSgVq1aFT7O22+/Xe4FOivq2LFjTJs2jc6dOxusZA2UufikuLWsrCy6dOnClStXePPNN7GwsOCTTz6hU6dOHDhwoFyfibp16zJ79myDtJsnSr506RLTp0+nXr16BAcH62cwuZ25c+eWmMJLVA8S0MRd17dvX+zt7Vm2bFmpAe3XX38lOzubIUOG3NFxzM3NDdbUuttKW6ZG3N4XX3zBiRMn2LNnj35dt549e9K0aVM++ugjZs2addt9ODo66pf/KYunpyfnz5/Hw8ODf/75p8w15G504cIFpk+fzhtvvMHkyZPLd0LirpEuR3HXWVtb89hjjxEZGcmFCxdKvL9s2TLs7e3p27cvly9fZsKECTRr1gw7OzscHBzo2bMnBw8evO1xSruGlpeXxyuvvELt2rX1xyheXuRGiYmJjB49moYNG2JtbU2tWrV48sknDboWFy9erJ+At0uXLvqureJf+qVdQ7tw4QLPPvss7u7uWFlZERwczJIlSwzyFF8P/PDDD/nqq6/w9/dHo9HQunVr9u7de9vzLq9Tp07x5JNP4uLigo2NDQ8++CDr1q0rkW/u3LkEBQVhY2ODs7MzrVq1YtmyZfr3MzMzGTduHL6+vmg0Gtzc3OjWrRv79+/X5zFmwuOVK1fSunVrgwDTqFEjunbtyk8//VTu8yssLCQrK6vM9zUaDR4eHuXeH8DEiRNp2LDhbYOlqBoS0ESVGDJkCIWFhSW+oC5fvszGjRt59NFHsba25tSpU6xZs4ZHHnmEjz/+mNdee43Dhw/TqVMnzp07Z/Rxn3vuOSIiIujevTvvvfceFhYWBvMhFtu7dy+7du1i0KBBfPbZZ7zwwgtERkbSuXNncnJyAOjYsSNjx44F4M033+S7777ju+++0y+8ebOrV6/SuXNnvvvuO4YMGcKcOXNwdHRk+PDhBhPsFlu2bBlz5szh+eefZ+bMmSQkJPDYY49RUFBg9HnfLCUlhXbt2rFx40ZGjx6tX2Kmb9++rF69Wp9v4cKFjB07liZNmhAREcG0adMICQlh9+7d+jwvvPAC8+fP5/HHH+eLL75gwoQJWFtbExMTo8+zZ88eGjduzOeff37Lcmm1Wg4dOkSrVq1KvBcaGkpcXNwtr70W+++//7C1tcXe3h4PDw/eeeedO663PXv2sGTJEiIiIso92EjcZYoQVaCwsFDx9PRU2rZta5C+YMECBVA2btyoKIqi5ObmKkVFRQZ54uPjFY1Go0yfPt0gDVAWLVqkT5syZYpy40f8wIEDCqCMHj3aYH9PPfWUAihTpkzRp+Xk5JQoc3R0tAIoS5cu1af9/PPPCqBs3bq1RP5OnTopnTp10r+OiIhQAOX777/Xp+Xn5ytt27ZV7OzslIyMDINzqVWrlnL58mV93l9//VUBlLVr15Y41o22bt2qAMrPP/9cZp5x48YpgLJjxw59WmZmpuLn56f4+vrq67xfv35KUFDQLY/n6OiovPTSS+Uq0411XJqLFy8qgMG/bbF58+YpgHL8+PFb7uOZZ55Rpk6dqvzyyy/K0qVLlb59+yqAMmDAgDK32bt3b4nPz420Wq0SGhqqDB48WFGU6/9Gc+bMuWVZxN0lLTRRJdRqNYMGDSI6OtqgG2/ZsmW4u7vTtWtXQNctVLw8SlFREampqdjZ2dGwYUODLq3yWL9+PYC+VVVs3LhxJfLeuLJ1QUEBqampBAQE4OTkZPRxbzy+h4cHgwcP1qdZWFgwduxYsrKy2LZtm0H+gQMHGiwyWrxQZXlH+92uLKGhoXTo0EGfZmdnx6hRo0hISNAvgunk5MSZM2du2dXp5OTE7t27b9li7ty5M4qi3PbWiKtXrwK6f/ebWVlZGeQpyzfffMOUKVN47LHHePrpp/n1118ZOXIkP/30E3///fctty3L4sWLOXz4sH4Vc1E9SUATVaZ40Efx9ZgzZ86wY8cOBg0apF90U6vV8sknnxAYGIhGo8HV1ZXatWtz6NChEotV3k5iYiJmZmb4+/sbpDds2LBE3qtXrzJ58mS8vb0Njpuenm70cW88fmBgYIlFLIu7KBMTEw3S69WrZ/C6OLilpaVV6Pg3l6W08765LG+88QZ2dnaEhoYSGBjISy+9xM6dOw22+eCDDzhy5Aje3t6EhoYyderUCgfd4h8SNy44Wqx41e0bf2yUV/HabFu2bDF624yMDCZNmsRrr72Gt7e30duLu0cCmqgyLVu2pFGjRvz4448A/PjjjyiKYjC6cdasWYwfP56OHTvy/fffs3HjRjZv3kxQUBBarbbSyvbyyy/z7rvvMmDAAH766Sc2bdrE5s2bqVWrVqUe90bFQf1myl1c8alx48bExsayfPlyOnTowC+//EKHDh2YMmWKPs+AAQM4deoUc+fOxcvLizlz5hAUFMQff/xh9PFcXFzQaDScP3++xHvFaTcPvy+P4kB0+fJlo7f98MMPyc/PZ+DAgSQkJJCQkKAfSJSWlkZCQgL5+flG71eYngzbF1VqyJAhvPPOOxw6dIhly5YRGBhoMLpt5cqVdOnShW+++cZgu/T0dFxdXY06lo+PD1qtlri4OIPWSWxsbIm8K1euZNiwYQYrOefm5pKenm6Qz5jBAT4+Phw6dAitVmvQSiteqdrHx6fc+7pTPj4+pZ53aWWxtbVl4MCBDBw4kPz8fB577DHeffddJk2apO8G9PT0ZPTo0YwePZoLFy7QokUL3n33XXr27GlUuczMzGjWrBn//PNPifd2795N/fr1sbe3N2qfcL2b9naLjpYmKSmJtLQ0goKCSrw3a9YsZs2axb///ktISIjR+xamJS00UaWKW2OTJ0/mwIEDJe49U6vVJVokP//8M2fPnjX6WMVfrp999plBekRERIm8pR137ty5FBUVGaTZ2toClAh0penVqxfJycmsWLFCn1ZYWMjcuXOxs7OjU6dO5TkNk+jVqxd79uwhOjpan5adnc1XX32Fr68vTZo0ASgxU4ulpSVNmjRBURQKCgooKioq0QXr5uaGl5eXQbehMcP2n3jiCfbu3WsQ1GJjY/nzzz/1t0kUO378uMFNzhkZGSW6KxVFYebMmQAVWoF87NixrF692uDx5ZdfAjB8+HBWr16Nn5+f0fsVpictNFGl/Pz8aNeuHb/++itAiYD2yCOPMH36dEaMGEG7du04fPgwP/zwA/Xr1zf6WCEhIQwePJgvvviCK1eu0K5dOyIjIzl58mSJvI888gjfffcdjo6ONGnShOjoaLZs2VJiloqQkBDUajXvv/8+V65cQaPR8PDDD+Pm5lZin6NGjeLLL79k+PDh7Nu3D19fX1auXMnOnTuJiIioUMvjVn755Rd9i+tGw4YNY+LEifz444/07NmTsWPH4uLiwpIlS4iPj+eXX37RtyC7d++Oh4cH7du3x93dnZiYGD7//HN69+6Nvb096enp1K1blyeeeILg4GDs7OzYsmULe/fuNWjd7tmzhy5dujBlypTbDgwZPXo0CxcupHfv3kyYMAELCws+/vhj3N3d9dfCijVu3JhOnTrp7/3bv38/gwcPZvDgwQQEBHD16lVWr17Nzp07GTVqFC1atDDY/vPPPyc9PV0/oGXt2rX67sSXX34ZR0dHWrRoUWK74oFMQUFB9O/f/5bnI+6iKhxhKYSiKNeHY4eGhpZ4Lzc3V3n11VcVT09PxdraWmnfvr0SHR1dYkh8eYbtK4qiXL16VRk7dqxSq1YtxdbWVunTp49y+vTpEkPK09LSlBEjRiiurq6KnZ2dEh4erhw/flzx8fFRhg0bZrDPhQsXKvXr11fUarXBEP6by6goipKSkqLfr6WlpdKsWbMSQ8VvNST85nKWpniIfFmP4qH6cXFxyhNPPKE4OTkpVlZWSmhoqPL7778b7OvLL79UOnbsqNSqVUvRaDSKv7+/8tprrylXrlxRFEVR8vLylNdee00JDg5W7O3tFVtbWyU4OFj54osvSi3T7cpe7PTp08oTTzyhODg4KHZ2dsojjzyinDhxotT6uLGOT506pTz55JOKr6+vYmVlpdjY2CgtW7ZUFixYoGi12hLb+/j4lFlP8fHxZZZPhu1XTypFuYtXmIUQQohKItfQhBBC1AgS0IQQQtQIEtCEEELUCBLQhBBC1AgS0IQQQtQIEtCEEELUCHJjdSm0Wi3nzp3D3t5e1j0SQogqpigKmZmZeHl5lZjc+0YS0Epx7tw5mVVbCCGqmdOnT1O3bt0y35eAVoriKYhOnz6Ng4OD0dsXFBSwadMmunfvjoWFhamLd9+SejU9qVPTkzo1vYyMDLy9vW87PZwEtFIUdzM6ODhUOKDZ2Njg4OAgH2gTkno1PalT05M6rTy3uwQkg0KEEELUCBLQhBBC1AgS0IQQQtQIcg1NCFFuRUVFFBQUVHUxqrWCggLMzc3Jzc0tsSCsKJ2FhQVqtfqO9yMBTQhxW4qikJycXK6Vue93iqLg4eHB6dOn5T5WIzg5OeHh4XFHdSYBTQhxW8XBzM3NDRsbG/mivgWtVktWVhZ2dna3vAlY6CiKQk5ODhcuXADA09OzwvuSgCaEuKWioiJ9MKtVq1bJDFfTdX+tne5msaotrVZLfn4+VlZWEtDKydraGoALFy7g5uZW4e5HqW0hxC0VXzOzsbEp+WZ+NqTF6x75OXe5ZKImKf583ck1WgloQohyKdHNqChw5cz115nn7m6BRI1iim5sCWhCiIq5mgYFOaAyA1SQlwm5GVVdKnEfk4AmhDCetggyrrXI7NzB1lX3PPOcruVWg/n6+hIREVHu/FFRUahUKhkhehdIQBNCGC/7ImgLwMwCbN10QU1lBgVXITe9qksH6LqwbvWYOnVqhfa7d+9eRo0aVe787dq14/z58zg6OlboeOUlgVNGOQohjFWUD1kpuucOXmBmBpjpglrmeV3LzcrxWldk1Tl//rz++YoVK5g8eTKxsbH6NDs7O/1zRVEoKirC3Pz2X4m1a9c2qhyWlpZ4eHgYtY2oGGmhCSGMk3EeFC1Y2IK18/V029pgZq4LeDmpVVe+azw8PPQPR0dHVCqV/vXx48ext7fnjz/+oGXLlmg0Gv766y/i4uLo168f7u7u2NnZ0bp1a7Zs2WKw35u7HFUqFV9//TWPPvooNjY2NGzYkPXr1+vfv7nltHjxYpycnNi4cSONGzfGzs6OHj16GATgwsJCxo4di5OTE7Vq1eKNN95g2LBh9O/fv8L1kZaWxtChQ3F2dsbGxoaePXty4sQJ/fuJiYn06dMHZ2dnbG1tCQoK0p9HWloaQ4YMoXbt2lhbWxMYGMiiRYsqXJbKIgFNCFF++dlw9bLuZlhrD3IKisjJL9Q9ChVyNLXJKdCSc/kcObl5198z4UMx4TW6iRMn8t577xETE0Pz5s3JysqiV69eREZG8u+//9KjRw/69OlDUlLSLfczbdo0BgwYwKFDh+jZsyfPP/88ly9fLjN/Tk4OH374Id999x3bt28nKSmJCRMm6N9///33+eGHH1i0aBE7d+4kIyODNWvW3NG5Dh8+nH/++YfffvuN6OhoFEWhV69e+mHyL730Enl5eWzfvp3Dhw/z/vvv61ux77zzDseOHeOPP/4gJiaG+fPn4+rqekflqQzVostx3rx5zJkzh+TkZIKDg5k7dy6hoaGl5l28eDEjRowwSNNoNOTm5upfDx8+nCVLlhjkCQ8PZ8OGDaYvvBD3C0WBK2cBuGruRJOZO26zwZnbvF8xx6aHY2Npmq+u6dOn061bN/1rFxcXgoOD9a9nzJjB6tWr+e233xgzZkyZ+xk+fDiDBw8G4N1332Xu3Lns2bOHXr16lZq/oKCABQsW4O/vD8CYMWOYPn26/v25c+cyadIkHn30UQA+//xzg1afsU6cOMFvv/3Gzp07adeuHQA//PAD3t7erFmzhieffJKkpCQef/xxmjVrBkD9+vX12yclJfHAAw/QqlUrQNdKrY6qvIW2YsUKxo8fz5QpU9i/fz/BwcGEh4frp0EpjYODA+fPn9c/EhMTS+QpbsIXP3788cfKPA0har68DCjIBszAvuLTE1UnxV/QxbKyspgwYQKNGzfGyckJOzs7YmJibttCa968uf65ra0t9vb2t/wOs7Gx0Qcz0E33VJz/ypUrpKSkGPyoV6vVtGzZ0qhzu1FMTAzm5ua0adNGn1arVi0aNmxITEwMAGPHjmXmzJm0b9+eKVOmcOjQIX3eF198keXLlxMSEsLrr7/Orl27KlyWylTlLbSPP/6YkSNH6ltdCxYsYN26dXz77bdMnDix1G2K+8JvRaPRyIVYIUxFUSDrgu4nsL0b1tZWHJseXnbe1JO6e9RsXMGxjkmLYm1x57OyF7O1tTV4PWHCBDZv3syHH35IQEAA1tbWPPHEE+Tn599yPzevTK1SqdBqtUblN2VXakU899xzhIeHs27dOjZt2sTs2bP56KOPePnll+nZsyeJiYmsX7+ezZs307VrV1566SU+/PDDKi3zzao0oOXn57Nv3z4mTZqkTzMzMyMsLIzo6Ogyt8vKysLHxwetVkuLFi2YNWsWQUFBBnmioqJwc3PD2dmZhx9+mJkzZ5Y+Dx2Ql5dHXl6e/nVGhu7m0IKCggpNw1K8jSyzYVpSr6ZXnjotKChAycsArSWKuSWKTW1QFKzMy+7gUbnUQXU5DqUgDUXlDmpLk5VZURSjv/yLg0tpf28MPDt37mTYsGH069cP0H3XJCQkoCiKQb6bX9+4nxvLdmN68fOby3Bzeezt7XF3d2fPnj106NAB0M2nWdyDVVagLOucABo2bEhhYSHR0dH6LsfU1FRiY2Np1KiRPn+dOnUYNWoUo0aN4s0332ThwoW89NJLgK5F9/TTT/P000/Tvn173njjDT744IOyK91IWq0WRVEoKCgoMZdjef/PV2lAu3TpEkVFRbi7uxuku7u7c/z48VK3adiwId9++y3NmzfnypUrfPjhh7Rr146jR49St25dQNfd+Nhjj+Hn50dcXBxvvvkmPXv2JDo6utRJL2fPns20adNKpG/atKn0+evKafPmzRXeVpRN6tX0blWnNuRQx60W4EqOuRMFmVnl2qetmTUW2qsUXE4iR+NmopJWTG5uLoqi6H+s5uTo5p3MzMw0mEDY19eXlStX0qVLFwBmzZqln2y4eFutVktubq7+NcDVq1cNXhcfMyMjo8Sxbi5L8fZw/cf0c889x+zZs/Hy8iIwMJCvvvqKy5cvU1RUVOI4xYqP8/fff2Nvb2/wXrNmzejVqxcjR47k448/xs7OjmnTpuHp6UmXLl3IyMhg0qRJhIWFERAQQHp6OpGRkQQEBJCRkcGsWbMICQmhUaNG5OXl8euvv9KgQYMyy1IR+fn5XL16le3bt1NYWFjqud1OlXc5Gqtt27a0bdtW/7pdu3Y0btyYL7/8khkzZgAwaNAg/fvNmjWjefPm+Pv7ExUVRdeuXUvsc9KkSYwfP17/OiMjA29vb7p3746Dg4PRZSwoKGDz5s1069atRNeCqDipV9MrT50WbJhMIp1RzK2xdvHCurw7t7FEuRSLZVE25tYWYFHuLU3OysoKlUql//9c/EPV3t7e4P/4p59+qu96c3V15fXXX+fq1atYWlrq85mZmWFlZWWwnbW1tf51cQutOM/Nx7q5LMXbA/q0yZMnk56ezosvvoharWbkyJGEh4ejVqvL/E4qPk7v3r0N0tVqNfn5+SxdupRx48YxePBg8vPzeeihh1i/fr2+50qtVvPGG29w5swZHBwcCA8P5+OPP8bBwQF7e3tmzpxJQkIC1tbWdOjQgRUrVlTo+7Esubm5WFtb07FjR6ysrAzeK3fgVKpQXl6eolarldWrVxukDx06VOnbt2+59/PEE08ogwYNumUeV1dXZcGCBeXa35UrVxRAuXLlSrnLcKP8/HxlzZo1Sn5+foW2F6WTejW929bp2X+Vq3OaKsd2bVCuXkk1/gCX4xXl7H5FuXjijsp5LykqKlLS0tKUoqIik+6zQYMGyttvv22yfVY3V69eVY4dO6ZcvXq1xHvl/U6u0lGOlpaWtGzZksjISH2aVqslMjLSoBV2K0VFRRw+fPiWi8KdOXOG1NTUO1o4Toj7jqLAxjcBBSxtwbIC3e/2noAK8mXiYmMkJiaycOFC/vvvPw4fPsyLL75IfHw8Tz31VFUXrVqr8mH748ePZ+HChSxZsoSYmBhefPFFsrOz9aMehw4dajBoZPr06WzatIlTp06xf/9+/u///o/ExESee+45QHcR97XXXuPvv/8mISGByMhI+vXrR0BAAOHhZYzKEkKUFLMWEneCWqObyqoizDXXJy7OqPkTF5uKmZkZixcvpnXr1rRv357Dhw+zZcsWGjduXNVFq9aq/BrawIEDuXjxIpMnTyY5OZmQkBA2bNigHyiSlJRkcNE2LS2NkSNHkpycjLOzMy1btmTXrl00adIE0PUDHzp0iCVLlpCeno6Xlxfdu3dnxowZaDSaKjlHIe45hXmw6W3d8wee1k1pVVF2HrqpsAqv6pacsXExTRlrMG9vb3bu3FnVxbjnVHlAA91d8mXdhR8VFWXw+pNPPuGTTz4pc1/W1tZs3LjRlMUT4v7z93xIT9R1GbZ4Gs6WfZPwbanNr09cnHkerJ2qfOJiUTPJp0oIYSjrAmy/dsNs1ym662d36saJi7OrfuJiUTNJQBNCGPpzpm4Qh9cD0HygafZppr4+XVZWsm6BUCFMTAKaEOK65MOwf6nueY/3rq11ZiI2LroBJtpCXStQCBOTgCaE0FEU2DAJUCDoUaj3oGn3rzLTLQgKkH0BimQKM2FaEtDE/SUvS4aOlyV2PSTs0LWiwkpOBWcSVo5gYaNbIDQzuXKOIe5bEtDE/SNhJ3zgBz89LddwblaYBxvf0j1vNwacfSrnOCrV9VZaziUoyL11/mqgc+fOjBs3Tv/65hWrS+Ps7HzHC3KCbhZ+U+znfiEBTdwfigpg3XjdKLuYtRBZSS2Qe5TZP19DWrxueH2HVyr3YBp70FybAzDzfKUdpk+fPvTo0aPU93bs2IFKpTJY86u89u7dy6hRo+60eAamTp1KSEhIifTz58/Ts2dPkx7rZosXL8bJyalSj3G3SEAT94c9C+HicbC4NgR956dwQBZ9BbAsyMDsr+Jh+pN1AaeyFbfSctMhP7tSDvHss8+yefNmzpwpuXL2okWLaNWqlcHCnOVVu3btO1qFwxgeHh4yIYQRJKCJmi/rAkTN1j0Pfxc6vqZ7vnYsJO2uunJVE42SV6HKywSP5hB8l+YKtLAG62szhlTSlFiPPPIItWvXZvHixQbpWVlZ/Pzzzzz77LOkpqYyePBg6tSpg42NDc2aNbvt6vY3dzmeOHFCP0N8kyZNSl2K54033qBBgwbY2NhQv3593nnnHf0aX4sXL2batGkcPHgQlUqFSqXSl/nmLsfDhw/z8MMPY21tTa1atRg1ahRZWdeX8xk+fDj9+/fnww8/xNPTk1q1avHSSy/d0RqCSUlJ9OvXDzs7OxwcHBgwYAApKSn69w8ePEiXLl30qwm0bNmSf/75B9DNSdmnTx+cnZ2xtbUlKCiI9evXV7gst1MtZgoRolJtmQZ5GeAZDC2GAiq4EAPHf4cVQ2DkVnDyrupSVo0LMfhe2qp7bswwfUXRrUh9JzT2umBWcBUs7cGqnC1DCxvdtbjbMDc3Z+jQoSxevJi33noL1bVtfv75Z4qKihg8eDBZWVm0bNmSN954AwcHB9atW8fTTz+Nv78/oaGhtz2GVqvlsccew93dnd27d3PlyhWD623F7O3tWbx4MV5eXhw+fJiRI0dib2/P66+/zsCBAzly5AgbNmxgy5YtADg6lpw7Mzs7m/DwcNq2bcvevXu5cOECzz33HGPGjDEI2lu3bsXT05OtW7dy8uRJBg4cSEhICCNHjrzt+ZR2fsXBbNu2bRQWFvLSSy8xcOBA/SxOQ4YM4YEHHmD+/Pmo1WoOHDigX4ropZdeIj8/n+3bt2Nra8uxY8ews7MzuhzlJQFN1Gxn/oED3+ue9/pQd4MvwKNfwrc9IOUw/DgYntkAmsr7j1YtKQrqLW+jQkHbqA9mvu3Lv21BDszyqryy3cqb58o9e8kzzzzDnDlz2LZtG507dwZ03Y2PP/44jo6OODo6MmHCBH3+l19+mY0bN/LTTz+VK6Bt2bKF48ePs3HjRry8dPUxc+bMEmuSvf322/rnvr6+TJgwgeXLl/P6669jbW2NnZ0d5ubmeHh4lHmsZcuWkZuby9KlS7G11Z3/559/Tp8+fXj//ff18986Ozvz+eefo1aradSoEb179yYyMrJCAS0yMpLDhw8THx+Pt7fuR9/SpUsJCgpi7969tG7dmqSkJF577TUaNWoEQGBgoH77pKQkHn/8cZo1awZA/fr1jS6DMaTLUdRcWi2sv/ZlFfwUeN/wBaWxg8HLdFMypRyGNS/o8t9Ptr2PWfw2ilTmFD08papLUykaNWpEu3bt+PbbbwE4efIkO3bs4NlnnwV0y0/NmDGDZs2a4eLigp2dHRs3biQpKalc+4+JicHb21sfzIBSl75asWIF7du3x8PDAzs7O95+++1yH+PGYwUHB+uDGUD79u3RarXExsbq04KCglCr1frXnp6eXLhQsRvZi8+vOJgBNGnSBCcnJ2JiYgDdiinPPfccYWFhvPfee8TFxenzjh07lpkzZ9K+fXumTJlSoUE4xpAWmqi5/v0Ozv2r684Km1ryfad6MPAHWPKIbuRj1Gx4+K27XswqcWCZ/rri4bpPE+Tsa9z2Fja6lpIpZKXo7klTW4Jrw9t3e1oYNyDj2Wef5eWXX2bevHksWrQIf39/OnXqBMCcOXP49NNPiYiIoFmzZtja2jJu3Djy8/MrejYlREdHM2TIEKZNm0Z4eDiOjo4sX76cjz76yGTHuNHNK4+rVCq0lfhjberUqTz11FOsW7eOP/74gylTprB8+XIeffRR/erf69atY9OmTcyePZuPPvqIl19+uVLKIi00UTNdTbs+NL/zRLB3Lz1fvTbQ51Pd8+0fwOGVd6d8VenUNvhN94VS1O5/JLp2MX4fKtW1RT9N8HDy0Q3jN1NDfsbt85fj+tmNBgwYgJmZGcuWLWPp0qU888wz+utpO3fupF+/fvzf//0fwcHB1K9fn//++6/c+27cuDGnT5/m/Pnrtx/8/fffBnl27dqFj48Pb731Fq1atSIwMJDExESDPJaWlhQV3freyMaNG3Pw4EGys6+PCt25cydmZmY0bNiw3GU2RvH5nT59Wp927Ngx0tPT9Ut2ATRo0IBXXnmFTZs28dhjj7Fo0SL9e97e3rzwwgusWrWKV199lYULF1ZKWUECmqipts7WrcHl2hDaPH/rvCFPQbuxuue/vgRn91V++arKhRhY8bRuPsWgx9B2rgYtUjM1OF7r0sq6APl3ONjkJnZ2dgwcOJBJkyZx/vx5hg8frn8vMDCQzZs3s2vXLmJiYnj++ecNRvDdTlhYGA0aNGDYsGEcPHiQHTt28M477xjkCQwMJCkpieXLlxMXF8dnn33G6tWrDfL4+voSHx/PgQMHuHTpEnl5eSWONWTIEKysrBg2bBhHjhxh69atvPzyyzz99NP662cVVVRUxIEDBwweMTExhIWF0axZM4YMGcL+/fvZs2cPQ4cOpVOnTrRq1YqrV68yZswYoqKiSExMZOfOnezdu1e/EOm4cePYuHEj8afi2L9/P1u3bq3URUoloImaJ+Uo7P1a97zn+6C2uHV+0HVJBoZDYS78+JRu9F1Nk5kCPzwJeVegXlvoP7/6rEtm7QhWTrrn6Um6qbFM6NlnnyUtLY3w8HCD611vv/02LVq0IDw8nM6dO+Ph4UH//v3LvV8zMzNWr17N1atXCQ0N5bnnnmPGjBkGefr27csrr7zCmDFjCAkJYdeuXSWC3uOPP06PHj3o0qULtWvXLvXWARsbGzZu3Mjly5dp3bo1TzzxBF27duXzzz83rjJKkZWVxQMPPGDw6NOnDyqVil9//RVnZ2c6duxIWFgY9evXZ8WKFYBuQeXU1FSGDh1KgwYNGDBgAD179mTaNF3vSFFRES+NfpHGTZrQo0c4DRo04Isvvrjj8pZFpSgysd3NMjIycHR05MqVKzg4OBi9fUFBAevXr6dXr14l+rNFxZWrXhUFFj8CiX9B4z4w8PvyHyA3A77pprsB2+sBGPGH7n6pmiAvCxb3hvMHwMUfntsCNi7lqtPc3Fzi4+Px8/PDysqq8spYVKBrQSpFuqVm7Mse8VedabVaMjIycHBwwMyUqxXca4oKIeOMrvsfdD9YXPzKzH6rz1l5v5Pv49oWNdLRVbpgZm4F3d81blsrBxi8XHfD77l/dd2PNeH3nrYIfnlWF8xsasGQn3VLuVQ3agtwrKN7npl8T8zzKMpwNR0uxlwPZnbulTc/6A0koImaIz8bNl3ryunwSsX+A7n4wYClutWVj/xyfeXme5WiwB9vwH8bdEF+8HKo5V/VpSqbtcu1qbcUuHK6ZvyguJ8UFUJagm5eUG2h7jPn2kA31dld6N6WgCZqjh0fQcZZ3XD89v+r+H78HoLe14ZUb50Jx34zTfmqQvQ82LsQUMFjXxnei1cdqVS6ASIqM8jP0g3sEfeG0lplrg3LfRO8KUhAEzVDahzsmqt7Hj7rzq99tRwObV7QPV/9PJyv3BtCK8WxX2HTtRkqus+AJv2qtjzlZa7RXUMD3eCcItPdEyYqwa1aZXf5GqIENFEzbJik++LzfxgaPWKafXZ/F+p30U3z9ONg3ZDye8XpvbBqFKBA6+eg7Zg73uVdHT9mW/vaQqBFkH5Guh6rq6tXbmqVuVW4VWaKz1e1CGjz5s3D19cXKysr2rRpw549e8rMu3jxYv2M1MWPm0fEKIrC5MmT8fT0xNramrCwME6cOFHZp2FaigKF8su0XP7bCCc26q579Xjf6Btvy6Q2hycXQa0A3Wit5UN0C2FWd5dPwY+DdLcgNOhxx3VSPPoxJ8e094fdkkql6zpGpbvNIDf97h27JijMg4zzus9CZrLu+rIpb4XQt8pOXWuVaa61yupUuFVW/Pm6k5HhVT711YoVKxg/fjwLFiygTZs2REREEB4eTmxsLG5ubqVu4+DgYDB3meqm/6wffPABn332GUuWLMHPz4933nmH8PBwjh07VrnDjitKUXTXfs79q3uc3a/7W3AVHhoPnd4w3Zd0TVOYBxsm6p4/+CLUbmDa/Vs7w+AV8PXDcGYPrP3ftfu3qum/R85l3b1mOZd0qws8/o0uMN8BtVqNk5OTfj5AGxubEv/nKocKLF1053LpNLhY3PG53A1arZb8/Hxyc3Pv7rB9bSHkZkJeuu67Qy/92l8zXavX0ka3LqCFVcU+x3mZumCpFOpe29QCm9qgNYNc40emKopCTk4OFy5cwMnJyWAeSmNV+afj448/ZuTIkYwYMQKABQsWsG7dOr799lsmTpxY6jYqlarMWakVRSEiIoK3336bfv101wyWLl2Ku7s7a9asYdCgQZVzIsbIunA9aBU/ssvozoqaDZdOQL95ug+gMBT9ue5XqJ07dHy9co7hGgBPLobvn4CDP4Jb4zsbdFJZCnJh+VOQehIc6sJTP5lsBYHi/28VneS2whQFstKv3aOWofvyrOYUReHq1atYW1tXfuBXFF1LvCBH99B326l0rSZzK11XfGFuyRaaykz3fnG+201AoNVCbtr1BVnVFrpRqdk5QOItNy0PJyenW642UB5VGtDy8/PZt28fkyZN0qeZmZkRFhZGdHR0mdtlZWXh4+ODVqulRYsWzJo1i6CgIADi4+NJTk4mLCxMn9/R0ZE2bdoQHR1dakDLy8szmGomIyMD0N3IW5GF8Yq3KSgogJzLqJIPojr3L6rzB3SPzJKzUCgqNbg1QfEMRvEMQesZgir5EOoNr6M6shJtWgJFTyzV9VHfpwzqFSDjHObbP0QFFD48BUVtDXewkOEt1XsIs27vot40EWXzFLTmNmibD9J9EVQHihb1mhcwS4pG0dhTOPBHsKp12/ooUae34OrqirOzM4WFhXf1epoq5QrqNf9DhUJh7wiUum3u2rErorCwkF27dtGuXTvMzSvpK/ZyHGax6zE7sRHV1esjQRUnP7QNe6ENCAe72tfzKwqknsDs3D5UZ//RfQ/dtJ6dYl0LpU4LtF6tUOq0BHsvfQtOlfAX6h3vo8q5hIIZ2uDBaFuP0k0ofYdUKhXm5uao1WoKCwtLzVPe7+EqnSnk3Llz1KlTh127dhksufD666+zbds2du8uuZpwdHQ0J06coHnz5ly5coUPP/yQ7du3c/ToUerWrcuuXbto3749586dw9PTU7/dgAEDUKlU+ilbbjR16lT9VC03WrZsWYWWWve5tJXamUdxyonHNv9iifcVVGRaeZFu40u6TX3Sbfy4Yl0PrVnJD4dr5jFax8/FsiibHEtX/q4/nkzrukaXqSZqGf8FddP/JtU2kL8C3678bkBFofnpxfil6hbELFDbcNapDadd2nPZNrBKuyEbn/uZBilr0aImOmACl+yDqqwslaHZme+of3Ez2ZaubG00iyJ1NfkhcRdpCq5QJy0a78t/4XT1+tIzeWo7zrq0JcmlA1esfcv1OVQphTjlJOCaeYzamcdwyT6BWjEMGjmWrly0a4xaKaBumm7C5UyNJ//6jCTNNsCk53Y7OTk5PPXUU7edKaTKuxyN1bZtW4Pg165dOxo3bsyXX35ZYg618po0aRLjx4/Xv87IyMDb25vu3btXaOor1fLvMU+/PrBFcfZD8XoAxTNE93BvhrXGHmvAs+zdXNMLUvuj/PQUNpdP0eXULIoeXYgS0M3oct3rCgoK2Lx5M926dcPy3B7M//0bBRUOAxfQyzP47hSiqDtFuyIwO/A9Fhln8U3dim/qVhRnP7TNBqJtNuDaYIa7R/XvUsz/XQuA9pEIQoMHl3vbG+u0Wk/Tlt8R5csO2GacoafVPrTdjJwF5i4yaZ0W5qI6sRGzQytQxUWiUnQz8itmFiiB4WibDcAsIAxvtSV3sua6tjAX5ew+VAk7UCX+hersP9jkX8Ln8g7d8VChfXA0Vh0n0rYKpoMr7jW7nSoNaK6urqjV6hKzW6ekpJS7L9XCwoIHHniAkydPAtf7+lNSUgxaaCkpKYSEhJS6D41Gg0ajKXXfFflAFgYP4liOIw26DMbcuwUqa2fu6Le7R2N4LhJ+GooqYQfmPw2B8Nm6WeQru1WQmwEnN+u6LMw1YG59vc/dwuqGPnhrw774SiyXhVqF+aY3AVC1HI5FvVaVdqySB7eAh9/ULUmTsEN3Te3Yb6jS4lFvfw/19vfA9yEIHqS770tjX7nlObkF/nhN97zTG5i3Glqh3VT0s37XWDjrlvn54XHUe75C3XwA1L2L/+7llZeJ6sQGGp37Dc3Og7oBDiqza/8fVDf85abXpfxNjdNN5ZZ75fr+67SE4MGomj6OysbFdMPULSwgoLPuAbq5P0//DfHbIeM8qtCRqL1DqfhwjTstXvk+m1Ua0CwtLWnZsiWRkZH6Ga61Wi2RkZGMGVO++2aKioo4fPgwvXr1AsDPzw8PDw8iIyP1ASwjI4Pdu3fz4osvVsZplKA07suJeHMC/TrqPiimYOMC/7cK1r0C/34PG96A1BO6IdmVMfIrLwv2fKm7Wbn4HpPyMrjYfC3QWdqCV4juvq76ncHWtcJFM9u3GC4c1U122nVyhfdzR8zMoH4n3aPXh7oFQg8ug/gdukCXsAPWv6abIDl4MPh11C2TYkrJh+GnYbp7tZoPgs6Tbr/NvSwwDJoPhEMrdOu5jdoG5nd+DeeOZV2A2PVwfB2cisK8KJ+GAOVfhebWHOrozjt4sOlH8ZZFYwcBYbrHPaTKuxzHjx/PsGHDaNWqFaGhoURERJCdna0f9Th06FDq1KnD7Nm61XWnT5/Ogw8+SEBAAOnp6cyZM4fExESee+45QHeBcdy4ccycOZPAwED9sH0vLy+jloWolswtoe/nuvs9Nk/RLZFy+ZRuBJ6Vo2mOkZ+j2+/OiOvTDjn7gWNd3RD5wtwbHnm6kXWFuVB0w/1Zivb6qCtuCIYpR3TBGMCjOfh30QW4em3LPYLTsiADs+26zwIPv109JtnV2EHIYN0j/TQcWg4HfoTLcbov30MrjP9SKiq4vpJz5vnS/16Oh8KruhZh37nV91YCUwqfrWuVXjgGf30Cnd+omnJcPgUxv+uC2OndwPWhCIpLfRJUPtTz80etUuneU5TrfxXtTWmUzIMClnbQpK/u39fUP4ZqqCoPaAMHDuTixYtMnjyZ5ORkQkJC2LBhg37BuqSkJIN7OdLS0hg5ciTJyck4OzvTsmVLdu3aZbB66uuvv052djajRo0iPT2dDh06sGHDhup5D5qxVCrdkHEXf1g1EuL+hG+66yadvcXSDLdVkAv7FsNfH+u+SEEXyDpPhGZP3v4/lFarC2qFudeDXGGe7gu3ME93f1TiTojbqmtdJR/SPXZ+qmvN+bTTBTf/LuAWVObNmY3P/4wq9wp4NINWz1T8fCuLkzd0fA0emgBn/tG12o78orvP8K+PdY9r3UY41i07WGVf4sYvyTJ5NIOB31WPlsrdYFsLen6gWz1g+xxdt65bo8o/rqLA+YO6AHb8d11AvZFXC2jUGxr3odDRj0N//EHd8F6oq3M3bg0k66GV4p5ZD+3cAd2MEJnndffnDFoG9R40bh+F+fDvUtj+ERTfTuBUT3dPV/DgyunOzEyBU1FwaqsuwGUlG75vW1vXLVkc4Bx0CzIWJu5Bvag7KhQYsQF82pbYdbVUkAv//QEHl8OJzbouwvIwM7++Lpi9xw3Pr/2189C11u/g3+ieXLtPUWDZQN3sMHVD4ZkNldOCKSqEpGhdADu+Tjf7fzGVGnw76LqUG/bU/Ti55p6s02quvN/JVd5CE3fAKwRG/qkLaucPwpI+ui7J4IG337aoAA4s0/3KLf6P6lAHOk6AkP+r3F/89u66MgYP1H05XTyuC2yntkLCX5B9EQ7/rHuAbm44/y6oE3ehQkHb9AnM7pVgBrru1KBHdY+sC7rzOrpa929wc5By8Lr+2trlrk/uek9QqeCRj2Heg7rZW/Z+rRsgZQr5ObrPYczvuh8hN14/trCBgK7QqA806K6bRUZUKxLQ7nUOXrqVlVc/rxuYsHqUbrBI5zdL/zIsKoTDP8G293VzsYHul/5Dr0LLYboBHHeTSqWbecOtMbQdrWsxntlzPcCd3Q+XYuFSrO4GajMrlIenVI9JSCvCzg3avqR7iIpzrAthU2D9BNgyTddKqsjtEoqiu7Yb9yecjNS1yG6c3d/aBRr20nUn+nepOSuY11AS0GoCS1t4cilETtMN5tg+Rzf9Uf/51/8DaovgyCrY9p7uPdB17XV4RXctqrr8RzW31HXl+HaAru/orr3Fb4dTW1HO7uegpi3Ni5cWEfe3Vs/qrk8mRcPvr8CQleUbGJN18Vp395+6R/E142JO9XQrNjTqDd4P3hPzRwod+ZeqKczMoNs0cA2EteN0XVrpSTDwB90orKjZuq490P3qbP8/CB15VxffqxAbFwjqD0H9KSwo4Mz69TSv6jKJ6sHMTDe6c3573cjHQz+V3t1emK/7PxAXqQtg5w8avm9hoxtJGNBVt/xQrYD7Y8RoDSQBraZ54P/A2RdW/B+c3QcRzUB7bUobK0do97Ju4crKvuFXiLvBNRA6vQ5/ztCtuhDQVTdAKjXuegCL3wEF2YbbeTQD/666/N5t7n5Xu6gUEtBqIt8OuplFlg3QdS9qHODB0brlVaydqrp0QphW+//B0TWQchiW9oO8DF3vxI1sa+taX/5dddfC7uNJvmsyCWg1VS1/3QjIk5G6IfDV4QZkISqD2gL6fgZfd9UN8ADdLPD1HrwWwB4G96YyYvQ+YHRA8/X15ZlnnmH48OHUq3d3J2EVRrJyhKaPVXUphKh8dVrA41/r1hb07Qi+7av/9WFhckb/ZBk3bhyrVq2ifv36dOvWjeXLlxusJSaEEFWi6ePQfabuHjEJZvelCgW0AwcOsGfPHho3bszLL7+Mp6cnY8aMYf/+/ZVRRiGEEOK2Ktyp3KJFCz777DPOnTvHlClT+Prrr2ndujUhISF8++23d3VFWyGEEKLCg0IKCgpYvXo1ixYtYvPmzTz44IM8++yznDlzhjfffJMtW7awbNkyU5ZVCCGEKJPRAW3//v0sWrSIH3/8ETMzM4YOHconn3xCo0bXZ7x+9NFHad26tUkLKoQQQtyK0QGtdevWdOvWjfnz59O/f/9SZ5P28/Nj0KBBJimgEEIIUR5GB7RTp07h4+Nzyzy2trYsWrSowoUSQgghjGV0QCsOZv/88w8xMTEANG7cmFatWpm2ZEIIIYQRjA5oZ86cYfDgwezcuRMnJycA0tPTadeuHcuXL6du3bq33oEQQghRCYwetv/cc89RUFBATEwMly9f5vLly8TExKDVannuuecqo4xCCCHEbRndQtu2bRu7du2iYcOG+rSGDRsyd+5cHnroIZMWTgghhCgvo1to3t7eFBQUlEgvKirCy8vLJIUSQgghjGV0QJszZw4vv/wy//zzjz7tn3/+4X//+x8ffvihSQsnhBBClJfRXY7Dhw8nJyeHNm3aYG6u27ywsBBzc3OeeeYZnnnmGX3ey5cvm66kQgghxC0YHdAiIiIqoRhCCCHEnTE6oA0bNszkhZg3bx5z5swhOTmZ4OBg5s6dS2ho6G23W758OYMHD6Zfv36sWbNGnz58+HCWLFlikDc8PJwNGzaYuuhCCCGqiQpNTlxUVMSaNWv0N1YHBQXRt29f1Gq10ftasWIF48ePZ8GCBbRp04aIiAjCw8OJjY3Fza3sZdITEhKYMGFCmSMre/ToYTBbiUajMbpsQggh7h1GB7STJ0/Sq1cvzp49qx+6P3v2bLy9vVm3bh3+/v5G7e/jjz9m5MiRjBgxAoAFCxawbt06vv32WyZOnFjqNkVFRQwZMoRp06axY8cO0tPTS+TRaDR4eHiUqwx5eXkGi5RmZGQAuhUFShvReTvF21RkW1E2qVfTkzo1PalT0ytvXRod0MaOHYu/vz9///03Li4uAKSmpvJ///d/jB07lnXr1pV7X/n5+ezbt49Jkybp08zMzAgLCyM6OrrM7aZPn46bmxvPPvssO3bsKDVPVFQUbm5uODs78/DDDzNz5kxq1apVat7Zs2czbdq0EumbNm3Cxsam3Odzs82bN1d4W1E2qVfTkzo1PalT08nJySlXvgrdWH1jMAOoVasW7733Hu3btzdqX5cuXaKoqAh3d3eDdHd3d44fP17qNn/99RfffPMNBw4cKHO/PXr04LHHHsPPz4+4uDjefPNNevbsSXR0dKndopMmTWL8+PH61xkZGXh7e9O9e3ccHByMOifQ/ZrYvHkz3bp1K3U1AlExUq+mJ3VqelKnplfca3Y7Rgc0jUZDZmZmifSsrCwsLS2N3Z1RMjMzefrpp1m4cCGurq5l5rtx6ZpmzZrRvHlz/P39iYqKomvXriXyazSaUq+xWVhY3NEH8k63F6WTejU9qVPTkzo1nfLWo9E3Vj/yyCOMGjWK3bt3oygKiqLw999/88ILL9C3b1+j9uXq6oparSYlJcUgPSUlpdTrX3FxcSQkJNCnTx/Mzc0xNzdn6dKl/Pbbb5ibmxMXF1fqcerXr4+rqysnT540qnxCCCHuHUYHtM8++wx/f3/atm2LlZUVVlZWtG/fnoCAAD799FOj9mVpaUnLli2JjIzUp2m1WiIjI2nbtm2J/I0aNeLw4cMcOHBA/+jbty9dunThwIEDeHt7l3qcM2fOkJqaiqenp3EnK4QQ4p5hVJejoihkZGSwfPlyzp49a7AeWkBAQIUKMH78eIYNG0arVq0IDQ0lIiKC7Oxs/ajHoUOHUqdOHWbPno2VlRVNmzY12L54CZvi9KysLKZNm8bjjz+Oh4cHcXFxvP766wQEBBAeHl6hMgohhKj+jA5oAQEBHD16lMDAwAoHsRsNHDiQixcvMnnyZJKTkwkJCWHDhg36gSJJSUmYmZW/IalWqzl06BBLliwhPT0dLy8vunfvzowZM+ReNCGEqMGMCmhmZmYEBgaSmppKYGCgyQoxZswYxowZU+p7UVFRt9x28eLFBq+tra3ZuHGjiUomhBDiXmH0NbT33nuP1157jSNHjlRGeYQQQogKMXrY/tChQ8nJySE4OBhLS0usra0N3pcZ9oUQQlQFowPaJ598gkqlqoyyCCGEEBVWofXQhBBCiOrG6GtoarWaCxculEhPTU2t0Gz7QgghhCkYHdAURSk1PS8vr9KnvhJCCCHKUu4ux88++wwAlUrF119/jZ2dnf69oqIitm/fTqNGjUxfQiGEEKIcyh3QPvnkE0DXQluwYIFB96KlpSW+vr4sWLDA9CUUQgghyqHcAS0+Ph6ALl26sGrVKpydnSutUEIIIYSxjB7luHXr1soohxBCCHFHjA5oRUVFLF68mMjISC5cuIBWqzV4/88//zRZ4YQQQojyMjqg/e9//2Px4sX07t2bpk2byk3WQgghqgWjA9ry5cv56aef6NWrV2WURwghhKgQo+9Ds7S0NMmyMUIIIYQpGR3QXn31VT799NMyb7AWQgghqoLRXY5//fUXW7du5Y8//iAoKAgLCwuD91etWmWywgkhhBDlZXRAc3Jy4tFHH62MsgghhBAVZnRAW7RoUWWUQwghhLgj5b6GVtoM+zcqLCxkz549d1wgIYQQoiLKHdA8PT0NglqzZs04ffq0/nVqaipt27Y1bemEEEKIcip3QLt5VGNCQgIFBQW3zCOEEELcLUYP278VmTVECCFEVTFpQKuoefPm4evri5WVFW3atCn3tbjly5ejUqno37+/QbqiKEyePBlPT0+sra0JCwvjxIkTlVByIYQQ1UW5A5pKpSIzM5OMjAyuXLmCSqUiKyuLjIwM/aMiVqxYwfjx45kyZQr79+8nODiY8PDw2w5CSUhIYMKECTz00EMl3vvggw/47LPPWLBgAbt378bW1pbw8HByc3MrVEYhhBDVn1HX0Bo0aICzszMuLi5kZWXxwAMP4OzsjLOzMw0bNqxQAT7++GNGjhzJiBEjaNKkCQsWLMDGxoZvv/22zG2KiooYMmQI06ZNo379+iXKGRERwdtvv02/fv1o3rw5S5cu5dy5c6xZs6ZCZRRCCFH9lfs+tMpYBy0/P599+/YxadIkfZqZmRlhYWFER0eXud306dNxc3Pj2WefZceOHQbvxcfHk5ycTFhYmD7N0dGRNm3aEB0dzaBBg0rsLy8vj7y8PP3r4tZmQUFBiYEv5VG8TUW2FWWTejU9qVPTkzo1vfLWZbkDWqdOnSpcmLJcunSJoqIi3N3dDdLd3d05fvx4qdv89ddffPPNNxw4cKDU95OTk/X7uHmfxe/dbPbs2UybNq1E+qZNm7CxsbndaZRp8+bNFd5WlE3q1fSkTk1P6tR0cnJyypXP6JlCqlJmZiZPP/00CxcuxNXV1WT7nTRpEuPHj9e/zsjIwNvbm+7du+Pg4GD0/goKCti8eTPdunUrMdelqDipV9OTOjU9qVPTK+8YjSoNaK6urqjValJSUgzSU1JS8PDwKJE/Li6OhIQE+vTpo08rXjHb3Nyc2NhY/XYpKSl4enoa7DMkJKTUcmg0GjQaTYl0CwuLO/pA3un2onRSr6YndWp6UqemU956rNJh+5aWlrRs2ZLIyEh9mlarJTIystRZRxo1asThw4c5cOCA/tG3b1+6dOnCgQMH8Pb2xs/PDw8PD4N9ZmRksHv3bpnJRAgharAq73IcP348w4YNo1WrVoSGhhIREUF2djYjRowAYOjQodSpU4fZs2djZWVF06ZNDbZ3cnICMEgfN24cM2fOJDAwED8/P9555x28vLxK3K8mhBCi5rjjgJaRkcGff/5Jw4YNady4sdHbDxw4kIsXLzJ58mSSk5MJCQlhw4YN+kEdSUlJmJkZ15B8/fXXyc7OZtSoUaSnp9OhQwc2bNiAlZWV0eUTQghxbzA6oA0YMICOHTsyZswYrl69SqtWrUhISEBRFJYvX87jjz9udCHGjBnDmDFjSn0vKirqltsuXry4RJpKpWL69OlMnz7d6LIIIYS4Nxl9DW379u362TlWr16Noiikp6fz2WefMXPmTJMXUAghhCgPowPalStXcHFxAWDDhg08/vjj2NjY0Lt3b5kvUQghRJUxOqB5e3sTHR1NdnY2GzZsoHv37gCkpaXJNSohhBBVxuhraOPGjWPIkCHY2dnh4+ND586dAV1XZLNmzUxdPiGEEKJcjA5oo0ePJjQ0lNOnT9OtWzf9CMT69evLNTQhhBBVpkLD9lu1akWrVq0A3cz3hw8fpl27djg7O5u0cEIIIUR5GX0Nbdy4cXzzzTeALph16tSJFi1a4O3tfdsh9kIIIURlMTqgrVy5kuDgYADWrl1LfHw8x48f55VXXuGtt94yeQGFEEKI8jA6oF26dEk/AfD69et58sknadCgAc888wyHDx82eQGFEEKI8jA6oLm7u3Ps2DGKiorYsGED3bp1A3Tr1ajVapMXUAghhCgPoweFjBgxggEDBuDp6YlKpdKvDL17924aNWpk8gIKIYQQ5WF0QJs6dSpNmzbl9OnTPPnkk/p1xNRqNRMnTjR5AYUQQojyqNCw/SeeeKJE2rBhw+64MEIIIURFVWiBz23bttGnTx8CAgIICAigb9++7Nixw9RlE0IIIcrN6ID2/fffExYWho2NDWPHjmXs2LFYW1vTtWtXli1bVhllFEIIIW7L6C7Hd999lw8++IBXXnlFnzZ27Fg+/vhjZsyYwVNPPWXSAgohhBDlYXQL7dSpU/Tp06dEet++fYmPjzdJoYQQQghjVWj5mMjIyBLpW7Zswdvb2ySFEkIIIYxldJfjq6++ytixYzlw4ADt2rUDYOfOnSxevJhPP/3U5AUUQgghysPogPbiiy/i4eHBRx99xE8//QRA48aNWbFiBf369TN5AYUQQojyMCqgFRYWMmvWLJ555hn++uuvyiqTEEIIYTSjrqGZm5vzwQcfUFhYWFnlEUIIISrE6EEhXbt2Zdu2bSYtxLx58/D19cXKyoo2bdqwZ8+eMvOuWrWKVq1a4eTkhK2tLSEhIXz33XcGeYYPH45KpTJ49OjRw6RlvpWf953l+5Nm/HUylSKtcteOK4QQ9zOjr6H17NmTiRMncvjwYVq2bImtra3B+3379jVqfytWrGD8+PEsWLCANm3aEBERQXh4OLGxsbi5uZXI7+LiwltvvUWjRo2wtLTk999/Z8SIEbi5uREeHq7P16NHDxYtWqR/XTzn5N3w074zHLhoxogl+3Cz19An2ItHH6hDkJcDKpXqrpVDCCHuJypFUYxqQpiZld2oU6lUFBUVGVWANm3a0Lp1az7//HMAtFot3t7evPzyy+We7LhFixb07t2bGTNmALoWWnp6OmvWrDGqLMUyMjJwdHTkypUrODg4GL393ycvMHftbo5maEi/WqBPD3Czo3+IF/1C6uDtYlOhst3PCgoKWL9+Pb169cLCwqKqi1MjSJ2antSp6ZX3O9noFppWq72jgt0oPz+fffv2MWnSJH2amZkZYWFhREdH33Z7RVH4888/iY2N5f333zd4LyoqCjc3N5ydnXn44YeZOXMmtWrVKnU/eXl55OXl6V9nZGQAug9mQUFBqdvcSnMvOwbU19Lp4Xb8HX+FXw+eJzL2IicvZPHhpv/4cNN/tPJxok9zT3o2dcfZxtLoY9yPiv8tKvJvIkondWp6UqemV966NLqFZkrnzp2jTp067Nq1i7Zt2+rTX3/9dbZt28bu3btL3e7KlSvUqVOHvLw81Go1X3zxBc8884z+/eXLl2NjY4Ofnx9xcXG8+eab2NnZER0dXeoipFOnTmXatGkl0pctW4aNjWlaUlcL4eBlFf9cVHEyQ4WCrutRrVJo7KTQqrZCkJOCpayRKoQQBnJycnjqqadM10L7888/GTNmDH///XeJHV65coV27doxf/58OnbsWPFSl5O9vT0HDhwgKyuLyMhIxo8fT/369encuTMAgwYN0udt1qwZzZs3x9/fn6ioKLp27Vpif5MmTWL8+PH61xkZGXh7e9O9e/cKdTkWFBSwefNmunXrZtDl8Pi1v8kZufx+KJnfDp4nJjmTI2kqjqSBncac8CA3+gV7Eurrgtqs9OttWq1CRm4hl7PzScvJJy2ngLScfC5nX/ubU0Badj6Xc/IpKFR49AEvhoR6Y2leocUVqo2y6lVUnNSp6Umdml5xr9ntlDugRUREMHLkyFK/4B0dHXn++ef55JNPjAporq6uqNVqUlJSDNJTUlLw8PAoczszMzMCAgIACAkJISYmhtmzZ+sD2s3q16+Pq6srJ0+eLDWgaTSaUgeNWFhY3NEHsqztvWtZ8GIXe17sEkhsciZrDpzltwPnOJt+lV/2n+OX/edwd9DQrYk7RVr0wSktO18fxIwZPBnzRyw/7DnNxB6N6NHU454fmHKn/y6iJKlT05M6NZ3y1mO5A9rBgwdLXKe6Uffu3fnwww/LuzsALC0tadmyJZGRkfTv3x/QXaOLjIxkzJgx5d6PVqs1uAZ2szNnzpCamoqnp6dR5bsbGnrY80aPRrzWvSF7Ey6z5sBZ1h06T0pGHt//nXTLbe015rjYWeJsY4mLre5vLf1rC5xtLEnJyOWzP0+SmJrDiz/sp5WPM2/1bswD9Zzv0hkKIcTdUe6AlpKScssoaW5uzsWLF40uwPjx4xk2bBitWrUiNDSUiIgIsrOzGTFiBABDhw6lTp06zJ49G4DZs2fTqlUr/P39ycvLY/369Xz33XfMnz8fgKysLKZNm8bjjz+Oh4cHcXFxvP766wQEBBgM669uzMxUtKlfizb1azG1bxBbj1/kn4TL2FtZ6IKTrSUuNpa42On+OtlYlrsL8bEWdfly+ym+2h7HP4lpPPrFLh5p7skbPRrJaEshRI1R7oBWp04djhw5ou/qu9mhQ4cq1AIaOHAgFy9eZPLkySQnJxMSEsKGDRtwd3cHICkpyeBWgezsbEaPHs2ZM2ewtramUaNGfP/99wwcOBAAtVrNoUOHWLJkCenp6Xh5edG9e3dmzJhxV+9FuxMaczU9mnrQo2nZ3a7GsNWYM75bA54KrcfHm2P5ed8Zfj90nk1HUxjWzocxXQJxtJGuESHEva3coxxffvlloqKi2Lt3L1ZWVgbvXb16ldDQULp06cJnn31WKQW9m+70PrTqfh/KsXMZzP4jhh0nLgHgaG3B2K6BPP2gT7UeOFLd6/VeJHVqelKnpmfy+9DefvttVq1aRYMGDRgzZgwNGzYE4Pjx48ybN4+ioiLeeuutOy+5qHRNvBxY+kwo2/67yKz1MfyXksWM34+xNDqhxgwcEULcf8od0Nzd3dm1axcvvvgikyZNorhhp1KpCA8PZ968efpuQlH9qVQqOjd0o0OAKyv3neGjzf/pB460vDZwpIUMHBFC3EOMminEx8eH9evXk5aWxsmTJ1EUhcDAQJyd5YvvXmWuNmNQaD36BHvpB47sS0zjsS920bu5JxNl4IgQ4h5h9NRXAM7OzrRu3drUZRFVqLSBI+sOnWfz0RSGtvWhe5AHAW52uNjKNF1CiOqpQgFN1FwejlZ88EQww9v56QeOfP1XPF//FQ9ALVtL/N3sCHCzI/Da3wA3OzwcrOS6mxCiSklAE6W6ceDI0uhEYpMzOZt+ldTsfFLjL7Mn/rJBfjuNuS7Q1bYj0F33N8DNDm8XmzKn8BJCCFOSgCbKVDxwpHND3bp0OfmFxF3I5uTFTE5eyOJEShYnL2aRmJpDVl4hB0+nc/B0usE+LM3NqO9qS6C7PYFudjRwt6ehhz31JNAJIUxMApooNxtLc5rVdaRZXUeD9PxCLQmp2QZB7kRKJqcuZZNfqOV4cibHkzMNttGYmxFwLcDpHrrndZysMZNAJ4SoAAlo4o5ZmpvpAxPNrqcXaRXOpOVwIiWLExd0Qe6/C5mcSMkir1DL0XMZHD1nOIu2jaWaQHd7GrjZ0dDDnkB3exq62+PucG/M8iKEqDoS0ESlUZup8Klli08tW8KaXL9HsUircPpyDrEpmZxIySQ2RRfs4i5mkZNfVGrXpb2VOQ3c7LDJMyN731mC6znTwN0eC3X1ndlECHF3SUATd53aTIWvqy2+rraEB12fr7KgSEtiajaxyVn8l5KpfySk5pCZW8i+pHTAjB1rjgJgqTajkac9QV6ONKvjSNM6DjRwt8fKQlZJFeJ+JAFNVBsWajMC3OwJcLOnN9cnus4rLOLUxWyOnk1n3c6DXLWqxdHzmWTmFnLozBUOnbnCj9fympupaOBuT9M6DjSt40jTOo409nDAWpYCF6LGk4Amqj2NuZrGng4EuFpjcfZfevVqjbm5OUmXczhyNoMj565w5KzukZZTwLHzGRw7n8FP/5wBwEwFAW52NPXSBbiGHroRl7XtNXLvnBA1iAQ0cU9Sqa5fn+vdXNeaUxSFc1dyOXzmCkevBbnDZzO4lJXHfylZ/JeSxap/z+r3YW9lrrsxvPjeOTc7AmrbU9dZRloKcS+SgCZqDJVKRR0na+o4WRusJZeSkXutBadrzZ28kEViajaZuYX8m5TOv0npBvvRmJvhX/v6LCjFs6L41LKt1svrCHG/k4Amajx3ByvcHazo2vj6SMvcgiL9vXM3Pk5dyiavUKvvtryRbtSmDYFudoT61aJnUw+8nKzv9ukIIcogAU3cl6ws1DTycKCRh+FigcW3FJy4MdBdzCLuQhZZeYWcupjNqYvZbDyawozfj/FAPSd6N/OkZzNP6khwE6JKSUAT4gY33lLQ7YZ75xRFITkjl5MXsog5n8GWYxfYm3hZ32U5c10Mwd5O9G7mQc+mnrLkjhBVQAKaEOWgUqnwdLTG09GahwJrM6qjPykZuWw8msy6Q+fZk3BZf0P4rPXHaV7XkV7NPOnV1JN6tSS4CXE3SEATooLcHawY2taXoW19uZCZy8ajKaw/dJ7d8an6++Pe++M4Tes46IObr6ttVRdbiBpLApoQJuBmb8XTD/rw9IM+XMzMY9OxZNYfPk90XKpudOXZDD7YEEsTTwd6N/ekZ1MP6te2q+piC1GjSEATwsRq22sY0saHIW18SM3KY9OxFNYfPs+uuFT96Mk5G2PxqWVDSx9n/SPQzV6W1BHiDkhAE6IS1bLTMDi0HoND65GWnc+mY8msO5zMrpOXSEzNITE1h1X7dTd722vMCannpA9wId5O2FtZVPEZCHHvqBZ3ic6bNw9fX1+srKxo06YNe/bsKTPvqlWraNWqFU5OTtja2hISEsJ3331nkEdRFCZPnoynpyfW1taEhYVx4sSJyj4NIW7J2daSga3rsfSZUPZP7saSZ0IZ2zWQDgGu2FqqycwrZMeJS0RsOcHT3+yh+bRN9IjYzlurD7Nq/xkSU7NRFKWqT0OIaqvKW2grVqxg/PjxLFiwgDZt2hAREUF4eDixsbG4ubmVyO/i4sJbb71Fo0aNsLS05Pfff2fEiBG4ubkRHh4OwAcffMBnn33GkiVL8PPz45133iE8PJxjx45hZWV1t09RiBIcrCzo1KA2nRrUBqCwSEtsSib7E9PYl5jGvqQ0Tl++ql8c9YfdSQC42lnSot71bsqmdRxldQEhrqnygPbxxx8zcuRIRowYAcCCBQtYt24d3377LRMnTiyRv3Pnzgav//e//7FkyRL++usvwsPDURSFiIgI3n77bfr16wfA0qVLcXd3Z82aNQwaNKjSz0kIY5mrzQjyciTIy5Gn2/oCcCEjl/1J1wJcYhpHzmZwKSufTcdS2HQsBdDdN9fA3Z7mdXQriTevq5t8WWMuQU7cf6o0oOXn57Nv3z4mTZqkTzMzMyMsLIzo6Ojbbq8oCn/++SexsbG8//77AMTHx5OcnExYWJg+n6OjI23atCE6OrrUgJaXl0deXp7+dUaGbsqjgoICCgoKjD6v4m0qsq0o2/1Wr87Waro2dKVrQ1cA8gqKOHo+k/1J6exPSuff0+lcyson5nwGMeczWPHPaQAs1CoaXltCp5mXA03rOBDoZlfqYqj3W53eDVKnplfeuqzSgHbp0iWKiopwd3c3SHd3d+f48eNlbnflyhXq1KlDXl4earWaL774gm7dugGQnJys38fN+yx+72azZ89m2rRpJdI3bdqEjU3Fb4rdvHlzhbcVZbvf69UL8HKC3o6Qng9JWSpOZ6s4nQVJ2SpyCuHIuQyOnMtg+bVtzFUKdWzB21bB206hnq2Cuw2orw2qvN/rtDJInZpOTk5OufJVeZdjRdjb23PgwAGysrKIjIxk/Pjx1K9fv0R3ZHlNmjSJ8ePH619nZGTg7e1N9+7dcXBwuMWWpSsoKGDz5s1069YNCwsZpWYqUq+3pygKZ9KvXltZQHf/2+FzGWTmFpKYBYlZKtD1VmJlYUZjdztqKemM7t2GpnWdZH04E5DPqekV95rdTpUGNFdXV9RqNSkpKQbpKSkpeHh4lLGVrlsyICAAgJCQEGJiYpg9ezadO3fWb5eSkoKn5/VVj1NSUggJCSl1fxqNBo1GUyLdwsLijj6Qd7q9KJ3U663Vd7OkvpsjfR/QvVYUhcTUHA6dvcLhM+kcOnOFo+cyyMor5N8zGYAZW77aS/3atvRp7kWfYC8C3OSm7zsln1PTKW89VmlAs7S0pGXLlkRGRtK/f38AtFotkZGRjBkzptz70Wq1+mtgfn5+eHh4EBkZqQ9gGRkZ7N69mxdffNHUpyBEtadSXZ9wuW+wFwBarUJ8ajb74lP5PuoQxzPMOXUxm08jT/Bp5AkaezrwSHNP+jT3krkoxT2jyrscx48fz7Bhw2jVqhWhoaFERESQnZ2tH/U4dOhQ6tSpw+zZswHd9a5WrVrh7+9PXl4e69ev57vvvmP+/PmA7j/vuHHjmDlzJoGBgfph+15eXvqgKcT9zsxMhX9tO+o5adCcP8BDD3cm6kQqaw+eY8eJS/qBJnM2xhLs7USf5p480twLD0e57UVUX1Ue0AYOHMjFixeZPHkyycnJhISEsGHDBv2gjqSkJMzMro/Oys7OZvTo0Zw5cwZra2saNWrE999/z8CBA/V5Xn/9dbKzsxk1ahTp6el06NCBDRs2yD1oQpTB3sqcx1rU5bEWdUnLzmfj0WTWHjpHdFyqfhWBd9fH0NrHhT7BuvXfXO1KdtMLUZVUikw9UEJGRgaOjo5cuXKlwoNC1q9fT69evaQP3YSkXk3vdnV6MTOPP46cZ+3Bc+xNSNOnm6mgfYArjzT3pEeQJ44217dVFIWc/CKy8wrJzCskO6+QrLxCsvOK9M+zDNJ179lYqmnu7cQD3k409LAv9TaDe4F8Tk2vvN/JVd5CE0JUX7XtNfolcs6lX2XdofOsPXSOQ2eusOPEJXacuMTba47g7WxDdv61oJVfSEV/Jv+87wwAGnMzgrwcCPF2JtjbkRBvJ+q52MgoTHFLEtCEEOXi5WTNyI71GdmxPomp2fx+SNdyO56cyalL2SXyq1RgpzHHTmOO7bWHnUatf33jXzuNOalZefx7rXszI7dQfwN5MWcbC4K9nQiu60RIPd1fF1vLu1gDorqTgCaEMJpPLVte6hLAS10COHkhi4uZebrAZGWO7bWgZW2hrlCLSlEU4i9lc/BMOgdPX+Hf0+nEnMsgLaeAqNiLRMVe1Oet52JDiLcTwd5OhHjrpg6TuS3vXxLQhBB3JMDNzqT3ralUKurXtqN+bTsefaAuAHmFRcScz9QPUDlwOp1Tl7JJupxD0uUcfjt4DgBrCzVhTdzpG+xFxwauMqflfUYCmhCi2tOYqwnxdiLE20mfdiWn4ForLp2DZ3RB7lJWPmsPnmPtwXM4WJnTo6kHfYK9aFu/Fub36CATUX4S0IQQ9yRHGws6NqhNx2tL8CiKwsEzV1h78By/HzpHSkYeP/1zhp/+OYOrnSW9mnnSN9iLFvWcMZOVwWskCWhCiBpBpVLpW3Fv9mrM3oTLrD14jvWHz3MpK5+l0YksjU7Ey9GKR4K96BvsRZCXg4ycrEEkoAkhahy1mYoH69fiwfq1mNo3iJ0nL/HbwXNsOprCuSu5fLX9FF9tP0V9V9trwc2TADf7qi62uEMS0IQQNZqF2ozODd3o3NCN3IIiomIvsPbgebbEpHDqUjafRZ7gs2vzV/YJ9uSRZjJ/5b1KApoQ4r5hZaGmR1NPejT1JCuvkC3HUlh78BzbT1zUz1/5wYZYfGrZ0M7flfYBtWjn7yr3u90jJKAJIe5Ldhpz+j9Qh/4P1CE9J58NR5L57eA5dsdfJjE1h8TUJH7ckwRAE08HOgS60s6/FqF+LthYyldndST/KkKI+56TjSWDQusxKLQeWXmF7IlP5a8TqeyKu8Tx5EyOnc/g2PkMvtp+Cgu1igfqOdPe35UOgbVoXtfpnp13sqaRgCaEEDew05jzcCN3Hm6kW/HjYmYeu+IusetkKn+dvMTZ9Kvsib/MnvjLfLIFbC3VPFi/Fu0CdF2U9V1kVY+qIgFNCCFuoba9hn4hdegXUgdFUUi6nMNfJ3UBblfcJdJyCog8foHI4xcAcLWzpK7GjDirOAI9HPCvbYefqy3WljJrSWWTgCaEEOWkUqnwqWWLTy1bhrTxQatVOHY+g11xl/jrZCp74y9zKSufS1lmHNgad8N2UMfJGv/adrqHm63+uaudpdwLZyIS0IQQooLMzFQ0reNI0zqOjOroT15hEXtPXeKnLbvR1K5H/KUcTl7MIj2ngDNpVzmTdpVt/1002IeDlTn+bnbXg11tW/zd7KjnYiPX5owkAU0IIUxEY66mjZ8LqXUUevUK0i/weTk7n7iLWcRdyNL9vZhN3MUsTl/OISO3kH+T0vn3hqVydPsyo32AKw83cuPhRm54OVlXwRndWySgCSFEJXOxtcTF1oXWvi4G6bkFRSSm5pQa7HLyi/jz+AX+vHZtrpGHPV0bu/FwI3dCvJ1Qy3yUJUhAE0KIKmJloaahhz0NPQyn3VIUhdiUTF1Ai7nA/qQ0jidncjw5k3lb43CxtaRzw9o83MiNjg1q42BlUUVnUL1IQBNCiGpGpVLRyMOBRh4OjO4cwOXsfLb9d4HImAts++8il7PzWbX/LKv2n8XcTEVrX5drrTc36tc23dp09xoJaEIIUc252Fry6AN1efSBuhQUadmXmMafxy8QGZNC3MVsok+lEn0qlZnrYvBztaVLQze6Nnajta8Llub3z8ASCWhCCHEPsVCb6VcSeLNXYxIuZeuvte2OTyX+Ujbxl+L5dmc85maqO77WZqZS4WhtgZONhf6vk7Wl7vUNz52sLXCyufbcxgJrC/Vdvx2hWgS0efPmMWfOHJKTkwkODmbu3LmEhoaWmnfhwoUsXbqUI0eOANCyZUtmzZplkH/48OEsWbLEYLvw8HA2bNhQeSchhBBVwNfVlmc6+PFMBz+y8gr568RFImMusDX2Apey8inUKnd8jKsFRSRn5Bq1jaXa7FrA0wW4x1vUZVBovTsuy61UeUBbsWIF48ePZ8GCBbRp04aIiAjCw8OJjY3Fzc2tRP6oqCgGDx5Mu3btsLKy4v3336d79+4cPXqUOnXq6PP16NGDRYsW6V9rNJq7cj5CCFFV7DTm+tUEtFqF5Ixc7jScFRUpZOQWkJ5TQPrVfN3fnGt/r+rSr1y98XU+BUUK+UVaLmbmcTEzD4CHAmvf+QneRpUHtI8//piRI0cyYsQIABYsWMC6dev49ttvmThxYon8P/zwg8Hrr7/+ml9++YXIyEiGDh2qT9doNHh4eFRu4YUQopoyM1NVyb1riqJwtaCI9JwC0nLyuXIt0AW4Vf5glSoNaPn5+ezbt49Jkybp08zMzAgLCyM6Orpc+8jJyaGgoAAXF8P7O6KionBzc8PZ2ZmHH36YmTNnUqtWrVL3kZeXR15env51RkYGAAUFBRQUFBh7WvptKrKtKJvUq+lJnZqe1ClYqKC2rTm1bQ1DTEXrpLzbVWlAu3TpEkVFRbi7uxuku7u7c/z48XLt44033sDLy4uwsDB9Wo8ePXjsscfw8/MjLi6ON998k549exIdHY1aXXKC0NmzZzNt2rQS6Zs2bcLGpuIr127evLnC24qySb2antSp6Umdmk5OTk658lV5l+OdeO+991i+fDlRUVFYWV1fsmHQoEH6582aNaN58+b4+/sTFRVF165dS+xn0qRJjB8/Xv86IyMDb29vunfvjoODg9HlKigoYPPmzXTr1k0/9Y24c1Kvpid1anpSp6ZX3Gt2O1Ua0FxdXVGr1aSkpBikp6Sk3Pb614cffsh7773Hli1baN68+S3z1q9fH1dXV06ePFlqQNNoNKUOGrGwsLijD+Sdbi9KJ/VqelKnpid1ajrlrccqvePO0tKSli1bEhkZqU/TarVERkbStm3bMrf74IMPmDFjBhs2bKBVq1a3Pc6ZM2dITU3F09PTJOUWQghR/VT5LeTjx49n4cKFLFmyhJiYGF588UWys7P1ox6HDh1qMGjk/fff55133uHbb7/F19eX5ORkkpOTycrKAiArK4vXXnuNv//+m4SEBCIjI+nXrx8BAQGEh4dXyTkKIYSofFV+DW3gwIFcvHiRyZMnk5ycTEhICBs2bNAPFElKSsLM7HrcnT9/Pvn5+TzxxBMG+5kyZQpTp05FrVZz6NAhlixZQnp6Ol5eXnTv3p0ZM2bIvWhCCFGDVXlAAxgzZgxjxowp9b2oqCiD1wkJCbfcl7W1NRs3bjRRyYQQQtwrqkVAq24URXdvfXlH1tysoKCAnJwcMjIy5KKwCUm9mp7UqelJnZpe8Xdx8XdzWSSglSIzMxMAb2/vKi6JEEKIYpmZmTg6Opb5vkq5Xci7D2m1Ws6dO4e9vX2FZosuvo/t9OnTFbqPTZRO6tX0pE5NT+rU9BRFITMzEy8vL4MxFTeTFlopzMzMqFu37h3vx8HBQT7QlUDq1fSkTk1P6tS0btUyK1blw/aFEEIIU5CAJoQQokaQgFYJNBoNU6ZMkfveTEzq1fSkTk1P6rTqyKAQIYQQNYK00IQQQtQIEtCEEELUCBLQhBBC1AgS0IQQQtQIEtAqwbx58/D19cXKyoo2bdqwZ8+eqi7SPWvq1KmoVCqDR6NGjaq6WPec7du306dPH7y8vFCpVKxZs8bgfUVRmDx5Mp6enlhbWxMWFsaJEyeqprD3iNvV6fDhw0t8dnv06FE1hb1PSEAzsRUrVjB+/HimTJnC/v37CQ4OJjw8nAsXLlR10e5ZQUFBnD9/Xv/466+/qrpI95zs7GyCg4OZN29eqe9/8MEHfPbZZyxYsIDdu3dja2tLeHg4ubm5d7mk947b1SlAjx49DD67P/74410s4X1IESYVGhqqvPTSS/rXRUVFipeXlzJ79uwqLNW9a8qUKUpwcHBVF6NGAZTVq1frX2u1WsXDw0OZM2eOPi09PV3RaDTKjz/+WAUlvPfcXKeKoijDhg1T+vXrVyXluV9JC82E8vPz2bdvH2FhYfo0MzMzwsLCiI6OrsKS3dtOnDiBl5cX9evXZ8iQISQlJVV1kWqU+Ph4kpOTDT63jo6OtGnTRj63dygqKgo3NzcaNmzIiy++SGpqalUXqUaTgGZCly5doqioSL/adjF3d3eSk5OrqFT3tjZt2rB48WI2bNjA/PnziY+P56GHHtIv8SPuXPFnUz63ptWjRw+WLl1KZGQk77//Ptu2baNnz54UFRVVddFqLJltX1RrPXv21D9v3rw5bdq0wcfHh59++olnn322CksmxK0NGjRI/7xZs2Y0b94cf39/oqKi6Nq1axWWrOaSFpoJubq6olarSUlJMUhPSUnBw8OjikpVszg5OdGgQQNOnjxZ1UWpMYo/m/K5rVz169fH1dVVPruVSAKaCVlaWtKyZUsiIyP1aVqtlsjISNq2bVuFJas5srKyiIuLw9PTs6qLUmP4+fnh4eFh8LnNyMhg9+7d8rk1oTNnzpCamiqf3UokXY4mNn78eIYNG0arVq0IDQ0lIiKC7OxsRowYUdVFuydNmDCBPn364OPjw7lz55gyZQpqtZrBgwdXddHuJeNS3wAABOtJREFUKVlZWQYtg/j4eA4cOICLiwv16tVj3LhxzJw5k8DAQPz8/HjnnXfw8vKif//+VVfoau5Wderi4sK0adN4/PHH8fDwIC4ujtdff52AgADCw8OrsNQ1XFUPs6yJ5s6dq9SrV0+xtLRUQkNDlb///ruqi3TPGjhwoOLp6alYWloqderUUQYOHKicPHmyqot1z9m6dasClHgMGzZMURTd0P133nlHcXd3VzQajdK1a1clNja2agtdzd2qTnNycpTu3bsrtWvXViwsLBQfHx9l5MiRSnJyclUXu0aT5WOEEELUCHINTQghRI0gAU0IIUSNIAFNCCFEjSABTQghRI0gAU0IIUSNIAFNCCFEjSABTQghRI0gAU0IIUSNIAFNCGEgKioKlUpFenp6VRdFCKNIQBNCCFEjSEATQghRI0hAE6Ka0Wq1zJ49Gz8/P6ytrQkODmblypXA9e7AdevW0bx5c6ysrHjwwQc5cuSIwT5++eUXgoKC0Gg0+Pr68tFHHxm8n5eXxxtvvIG3tzcajYaAgAC++eYbgzz79u2jVatW2NjY0K5dO2JjYyv3xIW4U1U9O7IQwtDMmTOVRo0aKRs2bFDi4uKURYsWKRqNRomKitLP8N64cWNl06ZNyqFDh5RHHnlE8fX1VfLz8xVFUZR//vlHMTMzU6ZPn67ExsYqixYtUqytrZVFixbpjzFgwADF29tbWbVqlRIXF6ds2bJFWb58uaIo12eRb9OmjRIVFaUcPXpUeeihh5R27dpVRXUIUW4S0ISoRnJzcxUbGxtl165dBunPPvusMnjwYH2wKQ4+iqIoqampirW1tbJixQpFURTlqaeeUrp162aw/WuvvaY0adJEURRFiY2NVQBl8+bNpZah+BhbtmzRp61bt04BlKtXr5rkPIWoDNLlKEQ1cvLkSXJycujWrRt2dnb6x9KlS4mLi9Pnu3ElaRcXFxo2bEhMTAwAMTExtG/f3mC/7du358SJExQVFXHgwAHUajWdOnW6ZVmaN2+uf168yvKFCxfu+ByFqCyyYrUQ1UhWVhYA69ato06dOgbvaTQag6BWUdbW1uXKZ2FhoX+uUqkA3fU9IaoraaEJUY00adIEjUZDUlISAQEBBg9vb299vr///lv/PC0tjf/++4/GjRsD0LhxY3bu3Gmw3507d9KgQQPUajXNmjVDq9Wybdu2u3NSQtwl0kITohqxt7dnwoQJvPLKK2i1Wjp06MCVK1fYuXMnDg4O+Pj4ADB9+nRq1aqFu7s7b731Fq6urvTv3x+AV199ldatWzNjxgwGDhxIdHQ0n3/+OV988QUAvr6+DBs2jGeeeYbPPvuM4OBgEhMTuXDhAgMGDKiqUxfizlX1RTwhhCGtVqtEREQoDRs2VCwsLJTatWsr4eHhyrZt2/QDNtauXasEBQUplpaWSmhoqHLw4EGDfaxcuVJp0qSJYmFhodSrV0+ZM2eOwftXr15VXnnlFcXT01OxtLRUAgIClG+//VZRlOuDQtLS0vT5//33XwVQ4uPjK/v0hagwlaIoShXHVCFEOUVFRdGlSxfS0tJwcnKq6uIIUa3INTQhhBA1ggQ0IYQQNYJ0OQohhKgRpIUmhBCiRpCAJoQQokaQgCaEEKJGkIAmhBCiRpCAJoQQokaQgCaEEKJGkIAmhBCiRpCAJoQQokb4f7VSplG7sgQJAAAAAElFTkSuQmCC","text/plain":["
      "]},"metadata":{},"output_type":"display_data"}],"source":["plot_history(resnet50_history)"]},{"cell_type":"markdown","metadata":{},"source":["#### Approach 4: Inception"]},{"cell_type":"code","execution_count":32,"metadata":{},"outputs":[],"source":["def create_model(base_model):\n"," \n"," x = base_model.output \n"," x = GlobalAveragePooling2D()(x)\n"," x = Dense(128, activation = 'relu')(x)\n"," x = Dropout(0.4)(x)\n"," x = Dense(64, activation = 'relu')(x)\n"," x = Dropout(0.2)(x)\n"," \n"," outputs = Dense(1, activation='sigmoid')(x)\n"," \n"," model = Model(base_model.inputs, outputs)\n"," \n"," return model "]},{"cell_type":"code","execution_count":33,"metadata":{},"outputs":[],"source":["def fit_model(model, base_model, epochs, fine_tune = 0):\n"," \n"," early = tf.keras.callbacks.EarlyStopping( patience = 10,\n"," min_delta = 0.001,\n"," restore_best_weights = True)\n"," \n"," print(\"Unfreezing number of layers in base model = \", fine_tune)\n"," \n"," if fine_tune > 0:\n"," base_model.trainable = True\n"," for layer in base_model.layers[:-fine_tune]:\n"," layer.trainable = False \n"," # small learning rate for fine tuning\n"," model.compile(optimizer=tf.keras.optimizers.legacy.Adam(1e-5),\n"," loss='binary_crossentropy',\n"," metrics=['accuracy'])\n"," else:\n"," base_model.trainable = False\n"," model.compile(optimizer=tf.keras.optimizers.legacy.Adam(),\n"," loss='binary_crossentropy',\n"," metrics=['accuracy'])\n","\n"," history = model.fit(train_ds,\n"," validation_data = validation_ds,\n"," epochs = 15,\n"," callbacks = [early])\n"," \n"," return history"]},{"cell_type":"code","execution_count":34,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_resnet_v2/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5\n","\n","219055592/219055592 [==============================] - 59s 0us/step\n"]}],"source":["# load the InceptionResNetV2 architecture with imagenet weights as base\n","inception_base_model = tf.keras.applications.InceptionResNetV2(\n"," include_top = False,\n"," weights = 'imagenet',\n"," input_shape = (180, 180, 3)\n"," )"]},{"cell_type":"code","execution_count":35,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Model: \"model_2\"\n","\n","__________________________________________________________________________________________________\n","\n"," Layer (type) Output Shape Param # Connected to \n","\n","==================================================================================================\n","\n"," input_3 (InputLayer) [(None, 180, 180, 3)] 0 [] \n","\n"," \n","\n"," conv2d_3 (Conv2D) (None, 89, 89, 32) 864 ['input_3[0][0]'] \n","\n"," \n","\n"," batch_normalization (Batch (None, 89, 89, 32) 96 ['conv2d_3[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," activation_5 (Activation) (None, 89, 89, 32) 0 ['batch_normalization[0][0]'] \n","\n"," \n","\n"," conv2d_4 (Conv2D) (None, 87, 87, 32) 9216 ['activation_5[0][0]'] \n","\n"," \n","\n"," batch_normalization_1 (Bat (None, 87, 87, 32) 96 ['conv2d_4[0][0]'] \n","\n"," chNormalization) \n","\n"," \n","\n"," activation_6 (Activation) (None, 87, 87, 32) 0 ['batch_normalization_1[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_5 (Conv2D) (None, 87, 87, 64) 18432 ['activation_6[0][0]'] \n","\n"," \n","\n"," batch_normalization_2 (Bat (None, 87, 87, 64) 192 ['conv2d_5[0][0]'] \n","\n"," chNormalization) \n","\n"," \n","\n"," activation_7 (Activation) (None, 87, 87, 64) 0 ['batch_normalization_2[0][0]'\n","\n"," ] \n","\n"," \n","\n"," max_pooling2d_3 (MaxPoolin (None, 43, 43, 64) 0 ['activation_7[0][0]'] \n","\n"," g2D) \n","\n"," \n","\n"," conv2d_6 (Conv2D) (None, 43, 43, 80) 5120 ['max_pooling2d_3[0][0]'] \n","\n"," \n","\n"," batch_normalization_3 (Bat (None, 43, 43, 80) 240 ['conv2d_6[0][0]'] \n","\n"," chNormalization) \n","\n"," \n","\n"," activation_8 (Activation) (None, 43, 43, 80) 0 ['batch_normalization_3[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_7 (Conv2D) (None, 41, 41, 192) 138240 ['activation_8[0][0]'] \n","\n"," \n","\n"," batch_normalization_4 (Bat (None, 41, 41, 192) 576 ['conv2d_7[0][0]'] \n","\n"," chNormalization) \n","\n"," \n","\n"," activation_9 (Activation) (None, 41, 41, 192) 0 ['batch_normalization_4[0][0]'\n","\n"," ] \n","\n"," \n","\n"," max_pooling2d_4 (MaxPoolin (None, 20, 20, 192) 0 ['activation_9[0][0]'] \n","\n"," g2D) \n","\n"," \n","\n"," conv2d_11 (Conv2D) (None, 20, 20, 64) 12288 ['max_pooling2d_4[0][0]'] \n","\n"," \n","\n"," batch_normalization_8 (Bat (None, 20, 20, 64) 192 ['conv2d_11[0][0]'] \n","\n"," chNormalization) \n","\n"," \n","\n"," activation_13 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_8[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_9 (Conv2D) (None, 20, 20, 48) 9216 ['max_pooling2d_4[0][0]'] \n","\n"," \n","\n"," conv2d_12 (Conv2D) (None, 20, 20, 96) 55296 ['activation_13[0][0]'] \n","\n"," \n","\n"," batch_normalization_6 (Bat (None, 20, 20, 48) 144 ['conv2d_9[0][0]'] \n","\n"," chNormalization) \n","\n"," \n","\n"," batch_normalization_9 (Bat (None, 20, 20, 96) 288 ['conv2d_12[0][0]'] \n","\n"," chNormalization) \n","\n"," \n","\n"," activation_11 (Activation) (None, 20, 20, 48) 0 ['batch_normalization_6[0][0]'\n","\n"," ] \n","\n"," \n","\n"," activation_14 (Activation) (None, 20, 20, 96) 0 ['batch_normalization_9[0][0]'\n","\n"," ] \n","\n"," \n","\n"," average_pooling2d (Average (None, 20, 20, 192) 0 ['max_pooling2d_4[0][0]'] \n","\n"," Pooling2D) \n","\n"," \n","\n"," conv2d_8 (Conv2D) (None, 20, 20, 96) 18432 ['max_pooling2d_4[0][0]'] \n","\n"," \n","\n"," conv2d_10 (Conv2D) (None, 20, 20, 64) 76800 ['activation_11[0][0]'] \n","\n"," \n","\n"," conv2d_13 (Conv2D) (None, 20, 20, 96) 82944 ['activation_14[0][0]'] \n","\n"," \n","\n"," conv2d_14 (Conv2D) (None, 20, 20, 64) 12288 ['average_pooling2d[0][0]'] \n","\n"," \n","\n"," batch_normalization_5 (Bat (None, 20, 20, 96) 288 ['conv2d_8[0][0]'] \n","\n"," chNormalization) \n","\n"," \n","\n"," batch_normalization_7 (Bat (None, 20, 20, 64) 192 ['conv2d_10[0][0]'] \n","\n"," chNormalization) \n","\n"," \n","\n"," batch_normalization_10 (Ba (None, 20, 20, 96) 288 ['conv2d_13[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_11 (Ba (None, 20, 20, 64) 192 ['conv2d_14[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_10 (Activation) (None, 20, 20, 96) 0 ['batch_normalization_5[0][0]'\n","\n"," ] \n","\n"," \n","\n"," activation_12 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_7[0][0]'\n","\n"," ] \n","\n"," \n","\n"," activation_15 (Activation) (None, 20, 20, 96) 0 ['batch_normalization_10[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_16 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_11[0][0]\n","\n"," '] \n","\n"," \n","\n"," mixed_5b (Concatenate) (None, 20, 20, 320) 0 ['activation_10[0][0]', \n","\n"," 'activation_12[0][0]', \n","\n"," 'activation_15[0][0]', \n","\n"," 'activation_16[0][0]'] \n","\n"," \n","\n"," conv2d_18 (Conv2D) (None, 20, 20, 32) 10240 ['mixed_5b[0][0]'] \n","\n"," \n","\n"," batch_normalization_15 (Ba (None, 20, 20, 32) 96 ['conv2d_18[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_20 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_15[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_16 (Conv2D) (None, 20, 20, 32) 10240 ['mixed_5b[0][0]'] \n","\n"," \n","\n"," conv2d_19 (Conv2D) (None, 20, 20, 48) 13824 ['activation_20[0][0]'] \n","\n"," \n","\n"," batch_normalization_13 (Ba (None, 20, 20, 32) 96 ['conv2d_16[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_16 (Ba (None, 20, 20, 48) 144 ['conv2d_19[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_18 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_13[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_21 (Activation) (None, 20, 20, 48) 0 ['batch_normalization_16[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_15 (Conv2D) (None, 20, 20, 32) 10240 ['mixed_5b[0][0]'] \n","\n"," \n","\n"," conv2d_17 (Conv2D) (None, 20, 20, 32) 9216 ['activation_18[0][0]'] \n","\n"," \n","\n"," conv2d_20 (Conv2D) (None, 20, 20, 64) 27648 ['activation_21[0][0]'] \n","\n"," \n","\n"," batch_normalization_12 (Ba (None, 20, 20, 32) 96 ['conv2d_15[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_14 (Ba (None, 20, 20, 32) 96 ['conv2d_17[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_17 (Ba (None, 20, 20, 64) 192 ['conv2d_20[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_17 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_12[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_19 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_14[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_22 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_17[0][0]\n","\n"," '] \n","\n"," \n","\n"," block35_1_mixed (Concatena (None, 20, 20, 128) 0 ['activation_17[0][0]', \n","\n"," te) 'activation_19[0][0]', \n","\n"," 'activation_22[0][0]'] \n","\n"," \n","\n"," block35_1_conv (Conv2D) (None, 20, 20, 320) 41280 ['block35_1_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer (Custom (None, 20, 20, 320) 0 ['mixed_5b[0][0]', \n","\n"," ScaleLayer) 'block35_1_conv[0][0]'] \n","\n"," \n","\n"," block35_1_ac (Activation) (None, 20, 20, 320) 0 ['custom_scale_layer[0][0]'] \n","\n"," \n","\n"," conv2d_24 (Conv2D) (None, 20, 20, 32) 10240 ['block35_1_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_21 (Ba (None, 20, 20, 32) 96 ['conv2d_24[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_26 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_21[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_22 (Conv2D) (None, 20, 20, 32) 10240 ['block35_1_ac[0][0]'] \n","\n"," \n","\n"," conv2d_25 (Conv2D) (None, 20, 20, 48) 13824 ['activation_26[0][0]'] \n","\n"," \n","\n"," batch_normalization_19 (Ba (None, 20, 20, 32) 96 ['conv2d_22[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_22 (Ba (None, 20, 20, 48) 144 ['conv2d_25[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_24 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_19[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_27 (Activation) (None, 20, 20, 48) 0 ['batch_normalization_22[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_21 (Conv2D) (None, 20, 20, 32) 10240 ['block35_1_ac[0][0]'] \n","\n"," \n","\n"," conv2d_23 (Conv2D) (None, 20, 20, 32) 9216 ['activation_24[0][0]'] \n","\n"," \n","\n"," conv2d_26 (Conv2D) (None, 20, 20, 64) 27648 ['activation_27[0][0]'] \n","\n"," \n","\n"," batch_normalization_18 (Ba (None, 20, 20, 32) 96 ['conv2d_21[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_20 (Ba (None, 20, 20, 32) 96 ['conv2d_23[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_23 (Ba (None, 20, 20, 64) 192 ['conv2d_26[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_23 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_18[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_25 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_20[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_28 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_23[0][0]\n","\n"," '] \n","\n"," \n","\n"," block35_2_mixed (Concatena (None, 20, 20, 128) 0 ['activation_23[0][0]', \n","\n"," te) 'activation_25[0][0]', \n","\n"," 'activation_28[0][0]'] \n","\n"," \n","\n"," block35_2_conv (Conv2D) (None, 20, 20, 320) 41280 ['block35_2_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_1 (Cust (None, 20, 20, 320) 0 ['block35_1_ac[0][0]', \n","\n"," omScaleLayer) 'block35_2_conv[0][0]'] \n","\n"," \n","\n"," block35_2_ac (Activation) (None, 20, 20, 320) 0 ['custom_scale_layer_1[0][0]']\n","\n"," \n","\n"," conv2d_30 (Conv2D) (None, 20, 20, 32) 10240 ['block35_2_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_27 (Ba (None, 20, 20, 32) 96 ['conv2d_30[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_32 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_27[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_28 (Conv2D) (None, 20, 20, 32) 10240 ['block35_2_ac[0][0]'] \n","\n"," \n","\n"," conv2d_31 (Conv2D) (None, 20, 20, 48) 13824 ['activation_32[0][0]'] \n","\n"," \n","\n"," batch_normalization_25 (Ba (None, 20, 20, 32) 96 ['conv2d_28[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_28 (Ba (None, 20, 20, 48) 144 ['conv2d_31[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_30 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_25[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_33 (Activation) (None, 20, 20, 48) 0 ['batch_normalization_28[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_27 (Conv2D) (None, 20, 20, 32) 10240 ['block35_2_ac[0][0]'] \n","\n"," \n","\n"," conv2d_29 (Conv2D) (None, 20, 20, 32) 9216 ['activation_30[0][0]'] \n","\n"," \n","\n"," conv2d_32 (Conv2D) (None, 20, 20, 64) 27648 ['activation_33[0][0]'] \n","\n"," \n","\n"," batch_normalization_24 (Ba (None, 20, 20, 32) 96 ['conv2d_27[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_26 (Ba (None, 20, 20, 32) 96 ['conv2d_29[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_29 (Ba (None, 20, 20, 64) 192 ['conv2d_32[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_29 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_24[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_31 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_26[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_34 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_29[0][0]\n","\n"," '] \n","\n"," \n","\n"," block35_3_mixed (Concatena (None, 20, 20, 128) 0 ['activation_29[0][0]', \n","\n"," te) 'activation_31[0][0]', \n","\n"," 'activation_34[0][0]'] \n","\n"," \n","\n"," block35_3_conv (Conv2D) (None, 20, 20, 320) 41280 ['block35_3_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_2 (Cust (None, 20, 20, 320) 0 ['block35_2_ac[0][0]', \n","\n"," omScaleLayer) 'block35_3_conv[0][0]'] \n","\n"," \n","\n"," block35_3_ac (Activation) (None, 20, 20, 320) 0 ['custom_scale_layer_2[0][0]']\n","\n"," \n","\n"," conv2d_36 (Conv2D) (None, 20, 20, 32) 10240 ['block35_3_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_33 (Ba (None, 20, 20, 32) 96 ['conv2d_36[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_38 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_33[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_34 (Conv2D) (None, 20, 20, 32) 10240 ['block35_3_ac[0][0]'] \n","\n"," \n","\n"," conv2d_37 (Conv2D) (None, 20, 20, 48) 13824 ['activation_38[0][0]'] \n","\n"," \n","\n"," batch_normalization_31 (Ba (None, 20, 20, 32) 96 ['conv2d_34[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_34 (Ba (None, 20, 20, 48) 144 ['conv2d_37[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_36 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_31[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_39 (Activation) (None, 20, 20, 48) 0 ['batch_normalization_34[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_33 (Conv2D) (None, 20, 20, 32) 10240 ['block35_3_ac[0][0]'] \n","\n"," \n","\n"," conv2d_35 (Conv2D) (None, 20, 20, 32) 9216 ['activation_36[0][0]'] \n","\n"," \n","\n"," conv2d_38 (Conv2D) (None, 20, 20, 64) 27648 ['activation_39[0][0]'] \n","\n"," \n","\n"," batch_normalization_30 (Ba (None, 20, 20, 32) 96 ['conv2d_33[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_32 (Ba (None, 20, 20, 32) 96 ['conv2d_35[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_35 (Ba (None, 20, 20, 64) 192 ['conv2d_38[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_35 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_30[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_37 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_32[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_40 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_35[0][0]\n","\n"," '] \n","\n"," \n","\n"," block35_4_mixed (Concatena (None, 20, 20, 128) 0 ['activation_35[0][0]', \n","\n"," te) 'activation_37[0][0]', \n","\n"," 'activation_40[0][0]'] \n","\n"," \n","\n"," block35_4_conv (Conv2D) (None, 20, 20, 320) 41280 ['block35_4_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_3 (Cust (None, 20, 20, 320) 0 ['block35_3_ac[0][0]', \n","\n"," omScaleLayer) 'block35_4_conv[0][0]'] \n","\n"," \n","\n"," block35_4_ac (Activation) (None, 20, 20, 320) 0 ['custom_scale_layer_3[0][0]']\n","\n"," \n","\n"," conv2d_42 (Conv2D) (None, 20, 20, 32) 10240 ['block35_4_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_39 (Ba (None, 20, 20, 32) 96 ['conv2d_42[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_44 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_39[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_40 (Conv2D) (None, 20, 20, 32) 10240 ['block35_4_ac[0][0]'] \n","\n"," \n","\n"," conv2d_43 (Conv2D) (None, 20, 20, 48) 13824 ['activation_44[0][0]'] \n","\n"," \n","\n"," batch_normalization_37 (Ba (None, 20, 20, 32) 96 ['conv2d_40[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_40 (Ba (None, 20, 20, 48) 144 ['conv2d_43[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_42 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_37[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_45 (Activation) (None, 20, 20, 48) 0 ['batch_normalization_40[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_39 (Conv2D) (None, 20, 20, 32) 10240 ['block35_4_ac[0][0]'] \n","\n"," \n","\n"," conv2d_41 (Conv2D) (None, 20, 20, 32) 9216 ['activation_42[0][0]'] \n","\n"," \n","\n"," conv2d_44 (Conv2D) (None, 20, 20, 64) 27648 ['activation_45[0][0]'] \n","\n"," \n","\n"," batch_normalization_36 (Ba (None, 20, 20, 32) 96 ['conv2d_39[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_38 (Ba (None, 20, 20, 32) 96 ['conv2d_41[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_41 (Ba (None, 20, 20, 64) 192 ['conv2d_44[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_41 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_36[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_43 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_38[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_46 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_41[0][0]\n","\n"," '] \n","\n"," \n","\n"," block35_5_mixed (Concatena (None, 20, 20, 128) 0 ['activation_41[0][0]', \n","\n"," te) 'activation_43[0][0]', \n","\n"," 'activation_46[0][0]'] \n","\n"," \n","\n"," block35_5_conv (Conv2D) (None, 20, 20, 320) 41280 ['block35_5_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_4 (Cust (None, 20, 20, 320) 0 ['block35_4_ac[0][0]', \n","\n"," omScaleLayer) 'block35_5_conv[0][0]'] \n","\n"," \n","\n"," block35_5_ac (Activation) (None, 20, 20, 320) 0 ['custom_scale_layer_4[0][0]']\n","\n"," \n","\n"," conv2d_48 (Conv2D) (None, 20, 20, 32) 10240 ['block35_5_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_45 (Ba (None, 20, 20, 32) 96 ['conv2d_48[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_50 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_45[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_46 (Conv2D) (None, 20, 20, 32) 10240 ['block35_5_ac[0][0]'] \n","\n"," \n","\n"," conv2d_49 (Conv2D) (None, 20, 20, 48) 13824 ['activation_50[0][0]'] \n","\n"," \n","\n"," batch_normalization_43 (Ba (None, 20, 20, 32) 96 ['conv2d_46[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_46 (Ba (None, 20, 20, 48) 144 ['conv2d_49[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_48 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_43[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_51 (Activation) (None, 20, 20, 48) 0 ['batch_normalization_46[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_45 (Conv2D) (None, 20, 20, 32) 10240 ['block35_5_ac[0][0]'] \n","\n"," \n","\n"," conv2d_47 (Conv2D) (None, 20, 20, 32) 9216 ['activation_48[0][0]'] \n","\n"," \n","\n"," conv2d_50 (Conv2D) (None, 20, 20, 64) 27648 ['activation_51[0][0]'] \n","\n"," \n","\n"," batch_normalization_42 (Ba (None, 20, 20, 32) 96 ['conv2d_45[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_44 (Ba (None, 20, 20, 32) 96 ['conv2d_47[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_47 (Ba (None, 20, 20, 64) 192 ['conv2d_50[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_47 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_42[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_49 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_44[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_52 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_47[0][0]\n","\n"," '] \n","\n"," \n","\n"," block35_6_mixed (Concatena (None, 20, 20, 128) 0 ['activation_47[0][0]', \n","\n"," te) 'activation_49[0][0]', \n","\n"," 'activation_52[0][0]'] \n","\n"," \n","\n"," block35_6_conv (Conv2D) (None, 20, 20, 320) 41280 ['block35_6_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_5 (Cust (None, 20, 20, 320) 0 ['block35_5_ac[0][0]', \n","\n"," omScaleLayer) 'block35_6_conv[0][0]'] \n","\n"," \n","\n"," block35_6_ac (Activation) (None, 20, 20, 320) 0 ['custom_scale_layer_5[0][0]']\n","\n"," \n","\n"," conv2d_54 (Conv2D) (None, 20, 20, 32) 10240 ['block35_6_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_51 (Ba (None, 20, 20, 32) 96 ['conv2d_54[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_56 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_51[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_52 (Conv2D) (None, 20, 20, 32) 10240 ['block35_6_ac[0][0]'] \n","\n"," \n","\n"," conv2d_55 (Conv2D) (None, 20, 20, 48) 13824 ['activation_56[0][0]'] \n","\n"," \n","\n"," batch_normalization_49 (Ba (None, 20, 20, 32) 96 ['conv2d_52[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_52 (Ba (None, 20, 20, 48) 144 ['conv2d_55[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_54 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_49[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_57 (Activation) (None, 20, 20, 48) 0 ['batch_normalization_52[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_51 (Conv2D) (None, 20, 20, 32) 10240 ['block35_6_ac[0][0]'] \n","\n"," \n","\n"," conv2d_53 (Conv2D) (None, 20, 20, 32) 9216 ['activation_54[0][0]'] \n","\n"," \n","\n"," conv2d_56 (Conv2D) (None, 20, 20, 64) 27648 ['activation_57[0][0]'] \n","\n"," \n","\n"," batch_normalization_48 (Ba (None, 20, 20, 32) 96 ['conv2d_51[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_50 (Ba (None, 20, 20, 32) 96 ['conv2d_53[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_53 (Ba (None, 20, 20, 64) 192 ['conv2d_56[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_53 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_48[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_55 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_50[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_58 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_53[0][0]\n","\n"," '] \n","\n"," \n","\n"," block35_7_mixed (Concatena (None, 20, 20, 128) 0 ['activation_53[0][0]', \n","\n"," te) 'activation_55[0][0]', \n","\n"," 'activation_58[0][0]'] \n","\n"," \n","\n"," block35_7_conv (Conv2D) (None, 20, 20, 320) 41280 ['block35_7_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_6 (Cust (None, 20, 20, 320) 0 ['block35_6_ac[0][0]', \n","\n"," omScaleLayer) 'block35_7_conv[0][0]'] \n","\n"," \n","\n"," block35_7_ac (Activation) (None, 20, 20, 320) 0 ['custom_scale_layer_6[0][0]']\n","\n"," \n","\n"," conv2d_60 (Conv2D) (None, 20, 20, 32) 10240 ['block35_7_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_57 (Ba (None, 20, 20, 32) 96 ['conv2d_60[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_62 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_57[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_58 (Conv2D) (None, 20, 20, 32) 10240 ['block35_7_ac[0][0]'] \n","\n"," \n","\n"," conv2d_61 (Conv2D) (None, 20, 20, 48) 13824 ['activation_62[0][0]'] \n","\n"," \n","\n"," batch_normalization_55 (Ba (None, 20, 20, 32) 96 ['conv2d_58[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_58 (Ba (None, 20, 20, 48) 144 ['conv2d_61[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_60 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_55[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_63 (Activation) (None, 20, 20, 48) 0 ['batch_normalization_58[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_57 (Conv2D) (None, 20, 20, 32) 10240 ['block35_7_ac[0][0]'] \n","\n"," \n","\n"," conv2d_59 (Conv2D) (None, 20, 20, 32) 9216 ['activation_60[0][0]'] \n","\n"," \n","\n"," conv2d_62 (Conv2D) (None, 20, 20, 64) 27648 ['activation_63[0][0]'] \n","\n"," \n","\n"," batch_normalization_54 (Ba (None, 20, 20, 32) 96 ['conv2d_57[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_56 (Ba (None, 20, 20, 32) 96 ['conv2d_59[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_59 (Ba (None, 20, 20, 64) 192 ['conv2d_62[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_59 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_54[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_61 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_56[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_64 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_59[0][0]\n","\n"," '] \n","\n"," \n","\n"," block35_8_mixed (Concatena (None, 20, 20, 128) 0 ['activation_59[0][0]', \n","\n"," te) 'activation_61[0][0]', \n","\n"," 'activation_64[0][0]'] \n","\n"," \n","\n"," block35_8_conv (Conv2D) (None, 20, 20, 320) 41280 ['block35_8_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_7 (Cust (None, 20, 20, 320) 0 ['block35_7_ac[0][0]', \n","\n"," omScaleLayer) 'block35_8_conv[0][0]'] \n","\n"," \n","\n"," block35_8_ac (Activation) (None, 20, 20, 320) 0 ['custom_scale_layer_7[0][0]']\n","\n"," \n","\n"," conv2d_66 (Conv2D) (None, 20, 20, 32) 10240 ['block35_8_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_63 (Ba (None, 20, 20, 32) 96 ['conv2d_66[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_68 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_63[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_64 (Conv2D) (None, 20, 20, 32) 10240 ['block35_8_ac[0][0]'] \n","\n"," \n","\n"," conv2d_67 (Conv2D) (None, 20, 20, 48) 13824 ['activation_68[0][0]'] \n","\n"," \n","\n"," batch_normalization_61 (Ba (None, 20, 20, 32) 96 ['conv2d_64[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_64 (Ba (None, 20, 20, 48) 144 ['conv2d_67[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_66 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_61[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_69 (Activation) (None, 20, 20, 48) 0 ['batch_normalization_64[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_63 (Conv2D) (None, 20, 20, 32) 10240 ['block35_8_ac[0][0]'] \n","\n"," \n","\n"," conv2d_65 (Conv2D) (None, 20, 20, 32) 9216 ['activation_66[0][0]'] \n","\n"," \n","\n"," conv2d_68 (Conv2D) (None, 20, 20, 64) 27648 ['activation_69[0][0]'] \n","\n"," \n","\n"," batch_normalization_60 (Ba (None, 20, 20, 32) 96 ['conv2d_63[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_62 (Ba (None, 20, 20, 32) 96 ['conv2d_65[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_65 (Ba (None, 20, 20, 64) 192 ['conv2d_68[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_65 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_60[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_67 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_62[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_70 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_65[0][0]\n","\n"," '] \n","\n"," \n","\n"," block35_9_mixed (Concatena (None, 20, 20, 128) 0 ['activation_65[0][0]', \n","\n"," te) 'activation_67[0][0]', \n","\n"," 'activation_70[0][0]'] \n","\n"," \n","\n"," block35_9_conv (Conv2D) (None, 20, 20, 320) 41280 ['block35_9_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_8 (Cust (None, 20, 20, 320) 0 ['block35_8_ac[0][0]', \n","\n"," omScaleLayer) 'block35_9_conv[0][0]'] \n","\n"," \n","\n"," block35_9_ac (Activation) (None, 20, 20, 320) 0 ['custom_scale_layer_8[0][0]']\n","\n"," \n","\n"," conv2d_72 (Conv2D) (None, 20, 20, 32) 10240 ['block35_9_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_69 (Ba (None, 20, 20, 32) 96 ['conv2d_72[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_74 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_69[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_70 (Conv2D) (None, 20, 20, 32) 10240 ['block35_9_ac[0][0]'] \n","\n"," \n","\n"," conv2d_73 (Conv2D) (None, 20, 20, 48) 13824 ['activation_74[0][0]'] \n","\n"," \n","\n"," batch_normalization_67 (Ba (None, 20, 20, 32) 96 ['conv2d_70[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_70 (Ba (None, 20, 20, 48) 144 ['conv2d_73[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_72 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_67[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_75 (Activation) (None, 20, 20, 48) 0 ['batch_normalization_70[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_69 (Conv2D) (None, 20, 20, 32) 10240 ['block35_9_ac[0][0]'] \n","\n"," \n","\n"," conv2d_71 (Conv2D) (None, 20, 20, 32) 9216 ['activation_72[0][0]'] \n","\n"," \n","\n"," conv2d_74 (Conv2D) (None, 20, 20, 64) 27648 ['activation_75[0][0]'] \n","\n"," \n","\n"," batch_normalization_66 (Ba (None, 20, 20, 32) 96 ['conv2d_69[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_68 (Ba (None, 20, 20, 32) 96 ['conv2d_71[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_71 (Ba (None, 20, 20, 64) 192 ['conv2d_74[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_71 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_66[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_73 (Activation) (None, 20, 20, 32) 0 ['batch_normalization_68[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_76 (Activation) (None, 20, 20, 64) 0 ['batch_normalization_71[0][0]\n","\n"," '] \n","\n"," \n","\n"," block35_10_mixed (Concaten (None, 20, 20, 128) 0 ['activation_71[0][0]', \n","\n"," ate) 'activation_73[0][0]', \n","\n"," 'activation_76[0][0]'] \n","\n"," \n","\n"," block35_10_conv (Conv2D) (None, 20, 20, 320) 41280 ['block35_10_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_9 (Cust (None, 20, 20, 320) 0 ['block35_9_ac[0][0]', \n","\n"," omScaleLayer) 'block35_10_conv[0][0]'] \n","\n"," \n","\n"," block35_10_ac (Activation) (None, 20, 20, 320) 0 ['custom_scale_layer_9[0][0]']\n","\n"," \n","\n"," conv2d_76 (Conv2D) (None, 20, 20, 256) 81920 ['block35_10_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_73 (Ba (None, 20, 20, 256) 768 ['conv2d_76[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_78 (Activation) (None, 20, 20, 256) 0 ['batch_normalization_73[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_77 (Conv2D) (None, 20, 20, 256) 589824 ['activation_78[0][0]'] \n","\n"," \n","\n"," batch_normalization_74 (Ba (None, 20, 20, 256) 768 ['conv2d_77[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_79 (Activation) (None, 20, 20, 256) 0 ['batch_normalization_74[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_75 (Conv2D) (None, 9, 9, 384) 1105920 ['block35_10_ac[0][0]'] \n","\n"," \n","\n"," conv2d_78 (Conv2D) (None, 9, 9, 384) 884736 ['activation_79[0][0]'] \n","\n"," \n","\n"," batch_normalization_72 (Ba (None, 9, 9, 384) 1152 ['conv2d_75[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_75 (Ba (None, 9, 9, 384) 1152 ['conv2d_78[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_77 (Activation) (None, 9, 9, 384) 0 ['batch_normalization_72[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_80 (Activation) (None, 9, 9, 384) 0 ['batch_normalization_75[0][0]\n","\n"," '] \n","\n"," \n","\n"," max_pooling2d_5 (MaxPoolin (None, 9, 9, 320) 0 ['block35_10_ac[0][0]'] \n","\n"," g2D) \n","\n"," \n","\n"," mixed_6a (Concatenate) (None, 9, 9, 1088) 0 ['activation_77[0][0]', \n","\n"," 'activation_80[0][0]', \n","\n"," 'max_pooling2d_5[0][0]'] \n","\n"," \n","\n"," conv2d_80 (Conv2D) (None, 9, 9, 128) 139264 ['mixed_6a[0][0]'] \n","\n"," \n","\n"," batch_normalization_77 (Ba (None, 9, 9, 128) 384 ['conv2d_80[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_82 (Activation) (None, 9, 9, 128) 0 ['batch_normalization_77[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_81 (Conv2D) (None, 9, 9, 160) 143360 ['activation_82[0][0]'] \n","\n"," \n","\n"," batch_normalization_78 (Ba (None, 9, 9, 160) 480 ['conv2d_81[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_83 (Activation) (None, 9, 9, 160) 0 ['batch_normalization_78[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_79 (Conv2D) (None, 9, 9, 192) 208896 ['mixed_6a[0][0]'] \n","\n"," \n","\n"," conv2d_82 (Conv2D) (None, 9, 9, 192) 215040 ['activation_83[0][0]'] \n","\n"," \n","\n"," batch_normalization_76 (Ba (None, 9, 9, 192) 576 ['conv2d_79[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_79 (Ba (None, 9, 9, 192) 576 ['conv2d_82[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_81 (Activation) (None, 9, 9, 192) 0 ['batch_normalization_76[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_84 (Activation) (None, 9, 9, 192) 0 ['batch_normalization_79[0][0]\n","\n"," '] \n","\n"," \n","\n"," block17_1_mixed (Concatena (None, 9, 9, 384) 0 ['activation_81[0][0]', \n","\n"," te) 'activation_84[0][0]'] \n","\n"," \n","\n"," block17_1_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_1_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_10 (Cus (None, 9, 9, 1088) 0 ['mixed_6a[0][0]', \n","\n"," tomScaleLayer) 'block17_1_conv[0][0]'] \n","\n"," \n","\n"," block17_1_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_10[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_84 (Conv2D) (None, 9, 9, 128) 139264 ['block17_1_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_81 (Ba (None, 9, 9, 128) 384 ['conv2d_84[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_86 (Activation) (None, 9, 9, 128) 0 ['batch_normalization_81[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_85 (Conv2D) (None, 9, 9, 160) 143360 ['activation_86[0][0]'] \n","\n"," \n","\n"," batch_normalization_82 (Ba (None, 9, 9, 160) 480 ['conv2d_85[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_87 (Activation) (None, 9, 9, 160) 0 ['batch_normalization_82[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_83 (Conv2D) (None, 9, 9, 192) 208896 ['block17_1_ac[0][0]'] \n","\n"," \n","\n"," conv2d_86 (Conv2D) (None, 9, 9, 192) 215040 ['activation_87[0][0]'] \n","\n"," \n","\n"," batch_normalization_80 (Ba (None, 9, 9, 192) 576 ['conv2d_83[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_83 (Ba (None, 9, 9, 192) 576 ['conv2d_86[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_85 (Activation) (None, 9, 9, 192) 0 ['batch_normalization_80[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_88 (Activation) (None, 9, 9, 192) 0 ['batch_normalization_83[0][0]\n","\n"," '] \n","\n"," \n","\n"," block17_2_mixed (Concatena (None, 9, 9, 384) 0 ['activation_85[0][0]', \n","\n"," te) 'activation_88[0][0]'] \n","\n"," \n","\n"," block17_2_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_2_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_11 (Cus (None, 9, 9, 1088) 0 ['block17_1_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_2_conv[0][0]'] \n","\n"," \n","\n"," block17_2_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_11[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_88 (Conv2D) (None, 9, 9, 128) 139264 ['block17_2_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_85 (Ba (None, 9, 9, 128) 384 ['conv2d_88[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_90 (Activation) (None, 9, 9, 128) 0 ['batch_normalization_85[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_89 (Conv2D) (None, 9, 9, 160) 143360 ['activation_90[0][0]'] \n","\n"," \n","\n"," batch_normalization_86 (Ba (None, 9, 9, 160) 480 ['conv2d_89[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_91 (Activation) (None, 9, 9, 160) 0 ['batch_normalization_86[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_87 (Conv2D) (None, 9, 9, 192) 208896 ['block17_2_ac[0][0]'] \n","\n"," \n","\n"," conv2d_90 (Conv2D) (None, 9, 9, 192) 215040 ['activation_91[0][0]'] \n","\n"," \n","\n"," batch_normalization_84 (Ba (None, 9, 9, 192) 576 ['conv2d_87[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_87 (Ba (None, 9, 9, 192) 576 ['conv2d_90[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_89 (Activation) (None, 9, 9, 192) 0 ['batch_normalization_84[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_92 (Activation) (None, 9, 9, 192) 0 ['batch_normalization_87[0][0]\n","\n"," '] \n","\n"," \n","\n"," block17_3_mixed (Concatena (None, 9, 9, 384) 0 ['activation_89[0][0]', \n","\n"," te) 'activation_92[0][0]'] \n","\n"," \n","\n"," block17_3_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_3_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_12 (Cus (None, 9, 9, 1088) 0 ['block17_2_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_3_conv[0][0]'] \n","\n"," \n","\n"," block17_3_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_12[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_92 (Conv2D) (None, 9, 9, 128) 139264 ['block17_3_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_89 (Ba (None, 9, 9, 128) 384 ['conv2d_92[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_94 (Activation) (None, 9, 9, 128) 0 ['batch_normalization_89[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_93 (Conv2D) (None, 9, 9, 160) 143360 ['activation_94[0][0]'] \n","\n"," \n","\n"," batch_normalization_90 (Ba (None, 9, 9, 160) 480 ['conv2d_93[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_95 (Activation) (None, 9, 9, 160) 0 ['batch_normalization_90[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_91 (Conv2D) (None, 9, 9, 192) 208896 ['block17_3_ac[0][0]'] \n","\n"," \n","\n"," conv2d_94 (Conv2D) (None, 9, 9, 192) 215040 ['activation_95[0][0]'] \n","\n"," \n","\n"," batch_normalization_88 (Ba (None, 9, 9, 192) 576 ['conv2d_91[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_91 (Ba (None, 9, 9, 192) 576 ['conv2d_94[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_93 (Activation) (None, 9, 9, 192) 0 ['batch_normalization_88[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_96 (Activation) (None, 9, 9, 192) 0 ['batch_normalization_91[0][0]\n","\n"," '] \n","\n"," \n","\n"," block17_4_mixed (Concatena (None, 9, 9, 384) 0 ['activation_93[0][0]', \n","\n"," te) 'activation_96[0][0]'] \n","\n"," \n","\n"," block17_4_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_4_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_13 (Cus (None, 9, 9, 1088) 0 ['block17_3_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_4_conv[0][0]'] \n","\n"," \n","\n"," block17_4_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_13[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_96 (Conv2D) (None, 9, 9, 128) 139264 ['block17_4_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_93 (Ba (None, 9, 9, 128) 384 ['conv2d_96[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_98 (Activation) (None, 9, 9, 128) 0 ['batch_normalization_93[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_97 (Conv2D) (None, 9, 9, 160) 143360 ['activation_98[0][0]'] \n","\n"," \n","\n"," batch_normalization_94 (Ba (None, 9, 9, 160) 480 ['conv2d_97[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_99 (Activation) (None, 9, 9, 160) 0 ['batch_normalization_94[0][0]\n","\n"," '] \n","\n"," \n","\n"," conv2d_95 (Conv2D) (None, 9, 9, 192) 208896 ['block17_4_ac[0][0]'] \n","\n"," \n","\n"," conv2d_98 (Conv2D) (None, 9, 9, 192) 215040 ['activation_99[0][0]'] \n","\n"," \n","\n"," batch_normalization_92 (Ba (None, 9, 9, 192) 576 ['conv2d_95[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_95 (Ba (None, 9, 9, 192) 576 ['conv2d_98[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_97 (Activation) (None, 9, 9, 192) 0 ['batch_normalization_92[0][0]\n","\n"," '] \n","\n"," \n","\n"," activation_100 (Activation (None, 9, 9, 192) 0 ['batch_normalization_95[0][0]\n","\n"," ) '] \n","\n"," \n","\n"," block17_5_mixed (Concatena (None, 9, 9, 384) 0 ['activation_97[0][0]', \n","\n"," te) 'activation_100[0][0]'] \n","\n"," \n","\n"," block17_5_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_5_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_14 (Cus (None, 9, 9, 1088) 0 ['block17_4_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_5_conv[0][0]'] \n","\n"," \n","\n"," block17_5_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_14[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_100 (Conv2D) (None, 9, 9, 128) 139264 ['block17_5_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_97 (Ba (None, 9, 9, 128) 384 ['conv2d_100[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_102 (Activation (None, 9, 9, 128) 0 ['batch_normalization_97[0][0]\n","\n"," ) '] \n","\n"," \n","\n"," conv2d_101 (Conv2D) (None, 9, 9, 160) 143360 ['activation_102[0][0]'] \n","\n"," \n","\n"," batch_normalization_98 (Ba (None, 9, 9, 160) 480 ['conv2d_101[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_103 (Activation (None, 9, 9, 160) 0 ['batch_normalization_98[0][0]\n","\n"," ) '] \n","\n"," \n","\n"," conv2d_99 (Conv2D) (None, 9, 9, 192) 208896 ['block17_5_ac[0][0]'] \n","\n"," \n","\n"," conv2d_102 (Conv2D) (None, 9, 9, 192) 215040 ['activation_103[0][0]'] \n","\n"," \n","\n"," batch_normalization_96 (Ba (None, 9, 9, 192) 576 ['conv2d_99[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," batch_normalization_99 (Ba (None, 9, 9, 192) 576 ['conv2d_102[0][0]'] \n","\n"," tchNormalization) \n","\n"," \n","\n"," activation_101 (Activation (None, 9, 9, 192) 0 ['batch_normalization_96[0][0]\n","\n"," ) '] \n","\n"," \n","\n"," activation_104 (Activation (None, 9, 9, 192) 0 ['batch_normalization_99[0][0]\n","\n"," ) '] \n","\n"," \n","\n"," block17_6_mixed (Concatena (None, 9, 9, 384) 0 ['activation_101[0][0]', \n","\n"," te) 'activation_104[0][0]'] \n","\n"," \n","\n"," block17_6_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_6_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_15 (Cus (None, 9, 9, 1088) 0 ['block17_5_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_6_conv[0][0]'] \n","\n"," \n","\n"," block17_6_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_15[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_104 (Conv2D) (None, 9, 9, 128) 139264 ['block17_6_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_101 (B (None, 9, 9, 128) 384 ['conv2d_104[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_106 (Activation (None, 9, 9, 128) 0 ['batch_normalization_101[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_105 (Conv2D) (None, 9, 9, 160) 143360 ['activation_106[0][0]'] \n","\n"," \n","\n"," batch_normalization_102 (B (None, 9, 9, 160) 480 ['conv2d_105[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_107 (Activation (None, 9, 9, 160) 0 ['batch_normalization_102[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_103 (Conv2D) (None, 9, 9, 192) 208896 ['block17_6_ac[0][0]'] \n","\n"," \n","\n"," conv2d_106 (Conv2D) (None, 9, 9, 192) 215040 ['activation_107[0][0]'] \n","\n"," \n","\n"," batch_normalization_100 (B (None, 9, 9, 192) 576 ['conv2d_103[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_103 (B (None, 9, 9, 192) 576 ['conv2d_106[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_105 (Activation (None, 9, 9, 192) 0 ['batch_normalization_100[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_108 (Activation (None, 9, 9, 192) 0 ['batch_normalization_103[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_7_mixed (Concatena (None, 9, 9, 384) 0 ['activation_105[0][0]', \n","\n"," te) 'activation_108[0][0]'] \n","\n"," \n","\n"," block17_7_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_7_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_16 (Cus (None, 9, 9, 1088) 0 ['block17_6_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_7_conv[0][0]'] \n","\n"," \n","\n"," block17_7_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_16[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_108 (Conv2D) (None, 9, 9, 128) 139264 ['block17_7_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_105 (B (None, 9, 9, 128) 384 ['conv2d_108[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_110 (Activation (None, 9, 9, 128) 0 ['batch_normalization_105[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_109 (Conv2D) (None, 9, 9, 160) 143360 ['activation_110[0][0]'] \n","\n"," \n","\n"," batch_normalization_106 (B (None, 9, 9, 160) 480 ['conv2d_109[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_111 (Activation (None, 9, 9, 160) 0 ['batch_normalization_106[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_107 (Conv2D) (None, 9, 9, 192) 208896 ['block17_7_ac[0][0]'] \n","\n"," \n","\n"," conv2d_110 (Conv2D) (None, 9, 9, 192) 215040 ['activation_111[0][0]'] \n","\n"," \n","\n"," batch_normalization_104 (B (None, 9, 9, 192) 576 ['conv2d_107[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_107 (B (None, 9, 9, 192) 576 ['conv2d_110[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_109 (Activation (None, 9, 9, 192) 0 ['batch_normalization_104[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_112 (Activation (None, 9, 9, 192) 0 ['batch_normalization_107[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_8_mixed (Concatena (None, 9, 9, 384) 0 ['activation_109[0][0]', \n","\n"," te) 'activation_112[0][0]'] \n","\n"," \n","\n"," block17_8_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_8_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_17 (Cus (None, 9, 9, 1088) 0 ['block17_7_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_8_conv[0][0]'] \n","\n"," \n","\n"," block17_8_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_17[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_112 (Conv2D) (None, 9, 9, 128) 139264 ['block17_8_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_109 (B (None, 9, 9, 128) 384 ['conv2d_112[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_114 (Activation (None, 9, 9, 128) 0 ['batch_normalization_109[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_113 (Conv2D) (None, 9, 9, 160) 143360 ['activation_114[0][0]'] \n","\n"," \n","\n"," batch_normalization_110 (B (None, 9, 9, 160) 480 ['conv2d_113[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_115 (Activation (None, 9, 9, 160) 0 ['batch_normalization_110[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_111 (Conv2D) (None, 9, 9, 192) 208896 ['block17_8_ac[0][0]'] \n","\n"," \n","\n"," conv2d_114 (Conv2D) (None, 9, 9, 192) 215040 ['activation_115[0][0]'] \n","\n"," \n","\n"," batch_normalization_108 (B (None, 9, 9, 192) 576 ['conv2d_111[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_111 (B (None, 9, 9, 192) 576 ['conv2d_114[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_113 (Activation (None, 9, 9, 192) 0 ['batch_normalization_108[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_116 (Activation (None, 9, 9, 192) 0 ['batch_normalization_111[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_9_mixed (Concatena (None, 9, 9, 384) 0 ['activation_113[0][0]', \n","\n"," te) 'activation_116[0][0]'] \n","\n"," \n","\n"," block17_9_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_9_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_18 (Cus (None, 9, 9, 1088) 0 ['block17_8_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_9_conv[0][0]'] \n","\n"," \n","\n"," block17_9_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_18[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_116 (Conv2D) (None, 9, 9, 128) 139264 ['block17_9_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_113 (B (None, 9, 9, 128) 384 ['conv2d_116[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_118 (Activation (None, 9, 9, 128) 0 ['batch_normalization_113[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_117 (Conv2D) (None, 9, 9, 160) 143360 ['activation_118[0][0]'] \n","\n"," \n","\n"," batch_normalization_114 (B (None, 9, 9, 160) 480 ['conv2d_117[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_119 (Activation (None, 9, 9, 160) 0 ['batch_normalization_114[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_115 (Conv2D) (None, 9, 9, 192) 208896 ['block17_9_ac[0][0]'] \n","\n"," \n","\n"," conv2d_118 (Conv2D) (None, 9, 9, 192) 215040 ['activation_119[0][0]'] \n","\n"," \n","\n"," batch_normalization_112 (B (None, 9, 9, 192) 576 ['conv2d_115[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_115 (B (None, 9, 9, 192) 576 ['conv2d_118[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_117 (Activation (None, 9, 9, 192) 0 ['batch_normalization_112[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_120 (Activation (None, 9, 9, 192) 0 ['batch_normalization_115[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_10_mixed (Concaten (None, 9, 9, 384) 0 ['activation_117[0][0]', \n","\n"," ate) 'activation_120[0][0]'] \n","\n"," \n","\n"," block17_10_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_10_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_19 (Cus (None, 9, 9, 1088) 0 ['block17_9_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_10_conv[0][0]'] \n","\n"," \n","\n"," block17_10_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_19[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_120 (Conv2D) (None, 9, 9, 128) 139264 ['block17_10_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_117 (B (None, 9, 9, 128) 384 ['conv2d_120[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_122 (Activation (None, 9, 9, 128) 0 ['batch_normalization_117[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_121 (Conv2D) (None, 9, 9, 160) 143360 ['activation_122[0][0]'] \n","\n"," \n","\n"," batch_normalization_118 (B (None, 9, 9, 160) 480 ['conv2d_121[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_123 (Activation (None, 9, 9, 160) 0 ['batch_normalization_118[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_119 (Conv2D) (None, 9, 9, 192) 208896 ['block17_10_ac[0][0]'] \n","\n"," \n","\n"," conv2d_122 (Conv2D) (None, 9, 9, 192) 215040 ['activation_123[0][0]'] \n","\n"," \n","\n"," batch_normalization_116 (B (None, 9, 9, 192) 576 ['conv2d_119[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_119 (B (None, 9, 9, 192) 576 ['conv2d_122[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_121 (Activation (None, 9, 9, 192) 0 ['batch_normalization_116[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_124 (Activation (None, 9, 9, 192) 0 ['batch_normalization_119[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_11_mixed (Concaten (None, 9, 9, 384) 0 ['activation_121[0][0]', \n","\n"," ate) 'activation_124[0][0]'] \n","\n"," \n","\n"," block17_11_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_11_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_20 (Cus (None, 9, 9, 1088) 0 ['block17_10_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_11_conv[0][0]'] \n","\n"," \n","\n"," block17_11_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_20[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_124 (Conv2D) (None, 9, 9, 128) 139264 ['block17_11_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_121 (B (None, 9, 9, 128) 384 ['conv2d_124[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_126 (Activation (None, 9, 9, 128) 0 ['batch_normalization_121[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_125 (Conv2D) (None, 9, 9, 160) 143360 ['activation_126[0][0]'] \n","\n"," \n","\n"," batch_normalization_122 (B (None, 9, 9, 160) 480 ['conv2d_125[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_127 (Activation (None, 9, 9, 160) 0 ['batch_normalization_122[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_123 (Conv2D) (None, 9, 9, 192) 208896 ['block17_11_ac[0][0]'] \n","\n"," \n","\n"," conv2d_126 (Conv2D) (None, 9, 9, 192) 215040 ['activation_127[0][0]'] \n","\n"," \n","\n"," batch_normalization_120 (B (None, 9, 9, 192) 576 ['conv2d_123[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_123 (B (None, 9, 9, 192) 576 ['conv2d_126[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_125 (Activation (None, 9, 9, 192) 0 ['batch_normalization_120[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_128 (Activation (None, 9, 9, 192) 0 ['batch_normalization_123[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_12_mixed (Concaten (None, 9, 9, 384) 0 ['activation_125[0][0]', \n","\n"," ate) 'activation_128[0][0]'] \n","\n"," \n","\n"," block17_12_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_12_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_21 (Cus (None, 9, 9, 1088) 0 ['block17_11_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_12_conv[0][0]'] \n","\n"," \n","\n"," block17_12_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_21[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_128 (Conv2D) (None, 9, 9, 128) 139264 ['block17_12_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_125 (B (None, 9, 9, 128) 384 ['conv2d_128[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_130 (Activation (None, 9, 9, 128) 0 ['batch_normalization_125[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_129 (Conv2D) (None, 9, 9, 160) 143360 ['activation_130[0][0]'] \n","\n"," \n","\n"," batch_normalization_126 (B (None, 9, 9, 160) 480 ['conv2d_129[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_131 (Activation (None, 9, 9, 160) 0 ['batch_normalization_126[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_127 (Conv2D) (None, 9, 9, 192) 208896 ['block17_12_ac[0][0]'] \n","\n"," \n","\n"," conv2d_130 (Conv2D) (None, 9, 9, 192) 215040 ['activation_131[0][0]'] \n","\n"," \n","\n"," batch_normalization_124 (B (None, 9, 9, 192) 576 ['conv2d_127[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_127 (B (None, 9, 9, 192) 576 ['conv2d_130[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_129 (Activation (None, 9, 9, 192) 0 ['batch_normalization_124[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_132 (Activation (None, 9, 9, 192) 0 ['batch_normalization_127[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_13_mixed (Concaten (None, 9, 9, 384) 0 ['activation_129[0][0]', \n","\n"," ate) 'activation_132[0][0]'] \n","\n"," \n","\n"," block17_13_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_13_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_22 (Cus (None, 9, 9, 1088) 0 ['block17_12_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_13_conv[0][0]'] \n","\n"," \n","\n"," block17_13_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_22[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_132 (Conv2D) (None, 9, 9, 128) 139264 ['block17_13_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_129 (B (None, 9, 9, 128) 384 ['conv2d_132[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_134 (Activation (None, 9, 9, 128) 0 ['batch_normalization_129[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_133 (Conv2D) (None, 9, 9, 160) 143360 ['activation_134[0][0]'] \n","\n"," \n","\n"," batch_normalization_130 (B (None, 9, 9, 160) 480 ['conv2d_133[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_135 (Activation (None, 9, 9, 160) 0 ['batch_normalization_130[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_131 (Conv2D) (None, 9, 9, 192) 208896 ['block17_13_ac[0][0]'] \n","\n"," \n","\n"," conv2d_134 (Conv2D) (None, 9, 9, 192) 215040 ['activation_135[0][0]'] \n","\n"," \n","\n"," batch_normalization_128 (B (None, 9, 9, 192) 576 ['conv2d_131[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_131 (B (None, 9, 9, 192) 576 ['conv2d_134[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_133 (Activation (None, 9, 9, 192) 0 ['batch_normalization_128[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_136 (Activation (None, 9, 9, 192) 0 ['batch_normalization_131[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_14_mixed (Concaten (None, 9, 9, 384) 0 ['activation_133[0][0]', \n","\n"," ate) 'activation_136[0][0]'] \n","\n"," \n","\n"," block17_14_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_14_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_23 (Cus (None, 9, 9, 1088) 0 ['block17_13_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_14_conv[0][0]'] \n","\n"," \n","\n"," block17_14_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_23[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_136 (Conv2D) (None, 9, 9, 128) 139264 ['block17_14_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_133 (B (None, 9, 9, 128) 384 ['conv2d_136[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_138 (Activation (None, 9, 9, 128) 0 ['batch_normalization_133[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_137 (Conv2D) (None, 9, 9, 160) 143360 ['activation_138[0][0]'] \n","\n"," \n","\n"," batch_normalization_134 (B (None, 9, 9, 160) 480 ['conv2d_137[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_139 (Activation (None, 9, 9, 160) 0 ['batch_normalization_134[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_135 (Conv2D) (None, 9, 9, 192) 208896 ['block17_14_ac[0][0]'] \n","\n"," \n","\n"," conv2d_138 (Conv2D) (None, 9, 9, 192) 215040 ['activation_139[0][0]'] \n","\n"," \n","\n"," batch_normalization_132 (B (None, 9, 9, 192) 576 ['conv2d_135[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_135 (B (None, 9, 9, 192) 576 ['conv2d_138[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_137 (Activation (None, 9, 9, 192) 0 ['batch_normalization_132[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_140 (Activation (None, 9, 9, 192) 0 ['batch_normalization_135[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_15_mixed (Concaten (None, 9, 9, 384) 0 ['activation_137[0][0]', \n","\n"," ate) 'activation_140[0][0]'] \n","\n"," \n","\n"," block17_15_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_15_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_24 (Cus (None, 9, 9, 1088) 0 ['block17_14_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_15_conv[0][0]'] \n","\n"," \n","\n"," block17_15_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_24[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_140 (Conv2D) (None, 9, 9, 128) 139264 ['block17_15_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_137 (B (None, 9, 9, 128) 384 ['conv2d_140[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_142 (Activation (None, 9, 9, 128) 0 ['batch_normalization_137[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_141 (Conv2D) (None, 9, 9, 160) 143360 ['activation_142[0][0]'] \n","\n"," \n","\n"," batch_normalization_138 (B (None, 9, 9, 160) 480 ['conv2d_141[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_143 (Activation (None, 9, 9, 160) 0 ['batch_normalization_138[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_139 (Conv2D) (None, 9, 9, 192) 208896 ['block17_15_ac[0][0]'] \n","\n"," \n","\n"," conv2d_142 (Conv2D) (None, 9, 9, 192) 215040 ['activation_143[0][0]'] \n","\n"," \n","\n"," batch_normalization_136 (B (None, 9, 9, 192) 576 ['conv2d_139[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_139 (B (None, 9, 9, 192) 576 ['conv2d_142[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_141 (Activation (None, 9, 9, 192) 0 ['batch_normalization_136[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_144 (Activation (None, 9, 9, 192) 0 ['batch_normalization_139[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_16_mixed (Concaten (None, 9, 9, 384) 0 ['activation_141[0][0]', \n","\n"," ate) 'activation_144[0][0]'] \n","\n"," \n","\n"," block17_16_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_16_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_25 (Cus (None, 9, 9, 1088) 0 ['block17_15_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_16_conv[0][0]'] \n","\n"," \n","\n"," block17_16_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_25[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_144 (Conv2D) (None, 9, 9, 128) 139264 ['block17_16_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_141 (B (None, 9, 9, 128) 384 ['conv2d_144[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_146 (Activation (None, 9, 9, 128) 0 ['batch_normalization_141[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_145 (Conv2D) (None, 9, 9, 160) 143360 ['activation_146[0][0]'] \n","\n"," \n","\n"," batch_normalization_142 (B (None, 9, 9, 160) 480 ['conv2d_145[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_147 (Activation (None, 9, 9, 160) 0 ['batch_normalization_142[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_143 (Conv2D) (None, 9, 9, 192) 208896 ['block17_16_ac[0][0]'] \n","\n"," \n","\n"," conv2d_146 (Conv2D) (None, 9, 9, 192) 215040 ['activation_147[0][0]'] \n","\n"," \n","\n"," batch_normalization_140 (B (None, 9, 9, 192) 576 ['conv2d_143[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_143 (B (None, 9, 9, 192) 576 ['conv2d_146[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_145 (Activation (None, 9, 9, 192) 0 ['batch_normalization_140[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_148 (Activation (None, 9, 9, 192) 0 ['batch_normalization_143[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_17_mixed (Concaten (None, 9, 9, 384) 0 ['activation_145[0][0]', \n","\n"," ate) 'activation_148[0][0]'] \n","\n"," \n","\n"," block17_17_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_17_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_26 (Cus (None, 9, 9, 1088) 0 ['block17_16_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_17_conv[0][0]'] \n","\n"," \n","\n"," block17_17_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_26[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_148 (Conv2D) (None, 9, 9, 128) 139264 ['block17_17_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_145 (B (None, 9, 9, 128) 384 ['conv2d_148[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_150 (Activation (None, 9, 9, 128) 0 ['batch_normalization_145[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_149 (Conv2D) (None, 9, 9, 160) 143360 ['activation_150[0][0]'] \n","\n"," \n","\n"," batch_normalization_146 (B (None, 9, 9, 160) 480 ['conv2d_149[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_151 (Activation (None, 9, 9, 160) 0 ['batch_normalization_146[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_147 (Conv2D) (None, 9, 9, 192) 208896 ['block17_17_ac[0][0]'] \n","\n"," \n","\n"," conv2d_150 (Conv2D) (None, 9, 9, 192) 215040 ['activation_151[0][0]'] \n","\n"," \n","\n"," batch_normalization_144 (B (None, 9, 9, 192) 576 ['conv2d_147[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_147 (B (None, 9, 9, 192) 576 ['conv2d_150[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_149 (Activation (None, 9, 9, 192) 0 ['batch_normalization_144[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_152 (Activation (None, 9, 9, 192) 0 ['batch_normalization_147[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_18_mixed (Concaten (None, 9, 9, 384) 0 ['activation_149[0][0]', \n","\n"," ate) 'activation_152[0][0]'] \n","\n"," \n","\n"," block17_18_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_18_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_27 (Cus (None, 9, 9, 1088) 0 ['block17_17_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_18_conv[0][0]'] \n","\n"," \n","\n"," block17_18_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_27[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_152 (Conv2D) (None, 9, 9, 128) 139264 ['block17_18_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_149 (B (None, 9, 9, 128) 384 ['conv2d_152[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_154 (Activation (None, 9, 9, 128) 0 ['batch_normalization_149[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_153 (Conv2D) (None, 9, 9, 160) 143360 ['activation_154[0][0]'] \n","\n"," \n","\n"," batch_normalization_150 (B (None, 9, 9, 160) 480 ['conv2d_153[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_155 (Activation (None, 9, 9, 160) 0 ['batch_normalization_150[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_151 (Conv2D) (None, 9, 9, 192) 208896 ['block17_18_ac[0][0]'] \n","\n"," \n","\n"," conv2d_154 (Conv2D) (None, 9, 9, 192) 215040 ['activation_155[0][0]'] \n","\n"," \n","\n"," batch_normalization_148 (B (None, 9, 9, 192) 576 ['conv2d_151[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_151 (B (None, 9, 9, 192) 576 ['conv2d_154[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_153 (Activation (None, 9, 9, 192) 0 ['batch_normalization_148[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_156 (Activation (None, 9, 9, 192) 0 ['batch_normalization_151[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_19_mixed (Concaten (None, 9, 9, 384) 0 ['activation_153[0][0]', \n","\n"," ate) 'activation_156[0][0]'] \n","\n"," \n","\n"," block17_19_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_19_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_28 (Cus (None, 9, 9, 1088) 0 ['block17_18_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_19_conv[0][0]'] \n","\n"," \n","\n"," block17_19_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_28[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_156 (Conv2D) (None, 9, 9, 128) 139264 ['block17_19_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_153 (B (None, 9, 9, 128) 384 ['conv2d_156[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_158 (Activation (None, 9, 9, 128) 0 ['batch_normalization_153[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_157 (Conv2D) (None, 9, 9, 160) 143360 ['activation_158[0][0]'] \n","\n"," \n","\n"," batch_normalization_154 (B (None, 9, 9, 160) 480 ['conv2d_157[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_159 (Activation (None, 9, 9, 160) 0 ['batch_normalization_154[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_155 (Conv2D) (None, 9, 9, 192) 208896 ['block17_19_ac[0][0]'] \n","\n"," \n","\n"," conv2d_158 (Conv2D) (None, 9, 9, 192) 215040 ['activation_159[0][0]'] \n","\n"," \n","\n"," batch_normalization_152 (B (None, 9, 9, 192) 576 ['conv2d_155[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_155 (B (None, 9, 9, 192) 576 ['conv2d_158[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_157 (Activation (None, 9, 9, 192) 0 ['batch_normalization_152[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_160 (Activation (None, 9, 9, 192) 0 ['batch_normalization_155[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block17_20_mixed (Concaten (None, 9, 9, 384) 0 ['activation_157[0][0]', \n","\n"," ate) 'activation_160[0][0]'] \n","\n"," \n","\n"," block17_20_conv (Conv2D) (None, 9, 9, 1088) 418880 ['block17_20_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_29 (Cus (None, 9, 9, 1088) 0 ['block17_19_ac[0][0]', \n","\n"," tomScaleLayer) 'block17_20_conv[0][0]'] \n","\n"," \n","\n"," block17_20_ac (Activation) (None, 9, 9, 1088) 0 ['custom_scale_layer_29[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_163 (Conv2D) (None, 9, 9, 256) 278528 ['block17_20_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_160 (B (None, 9, 9, 256) 768 ['conv2d_163[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_165 (Activation (None, 9, 9, 256) 0 ['batch_normalization_160[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_159 (Conv2D) (None, 9, 9, 256) 278528 ['block17_20_ac[0][0]'] \n","\n"," \n","\n"," conv2d_161 (Conv2D) (None, 9, 9, 256) 278528 ['block17_20_ac[0][0]'] \n","\n"," \n","\n"," conv2d_164 (Conv2D) (None, 9, 9, 288) 663552 ['activation_165[0][0]'] \n","\n"," \n","\n"," batch_normalization_156 (B (None, 9, 9, 256) 768 ['conv2d_159[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_158 (B (None, 9, 9, 256) 768 ['conv2d_161[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_161 (B (None, 9, 9, 288) 864 ['conv2d_164[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_161 (Activation (None, 9, 9, 256) 0 ['batch_normalization_156[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_163 (Activation (None, 9, 9, 256) 0 ['batch_normalization_158[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_166 (Activation (None, 9, 9, 288) 0 ['batch_normalization_161[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_160 (Conv2D) (None, 4, 4, 384) 884736 ['activation_161[0][0]'] \n","\n"," \n","\n"," conv2d_162 (Conv2D) (None, 4, 4, 288) 663552 ['activation_163[0][0]'] \n","\n"," \n","\n"," conv2d_165 (Conv2D) (None, 4, 4, 320) 829440 ['activation_166[0][0]'] \n","\n"," \n","\n"," batch_normalization_157 (B (None, 4, 4, 384) 1152 ['conv2d_160[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_159 (B (None, 4, 4, 288) 864 ['conv2d_162[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_162 (B (None, 4, 4, 320) 960 ['conv2d_165[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_162 (Activation (None, 4, 4, 384) 0 ['batch_normalization_157[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_164 (Activation (None, 4, 4, 288) 0 ['batch_normalization_159[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_167 (Activation (None, 4, 4, 320) 0 ['batch_normalization_162[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," max_pooling2d_6 (MaxPoolin (None, 4, 4, 1088) 0 ['block17_20_ac[0][0]'] \n","\n"," g2D) \n","\n"," \n","\n"," mixed_7a (Concatenate) (None, 4, 4, 2080) 0 ['activation_162[0][0]', \n","\n"," 'activation_164[0][0]', \n","\n"," 'activation_167[0][0]', \n","\n"," 'max_pooling2d_6[0][0]'] \n","\n"," \n","\n"," conv2d_167 (Conv2D) (None, 4, 4, 192) 399360 ['mixed_7a[0][0]'] \n","\n"," \n","\n"," batch_normalization_164 (B (None, 4, 4, 192) 576 ['conv2d_167[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_169 (Activation (None, 4, 4, 192) 0 ['batch_normalization_164[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_168 (Conv2D) (None, 4, 4, 224) 129024 ['activation_169[0][0]'] \n","\n"," \n","\n"," batch_normalization_165 (B (None, 4, 4, 224) 672 ['conv2d_168[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_170 (Activation (None, 4, 4, 224) 0 ['batch_normalization_165[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_166 (Conv2D) (None, 4, 4, 192) 399360 ['mixed_7a[0][0]'] \n","\n"," \n","\n"," conv2d_169 (Conv2D) (None, 4, 4, 256) 172032 ['activation_170[0][0]'] \n","\n"," \n","\n"," batch_normalization_163 (B (None, 4, 4, 192) 576 ['conv2d_166[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_166 (B (None, 4, 4, 256) 768 ['conv2d_169[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_168 (Activation (None, 4, 4, 192) 0 ['batch_normalization_163[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_171 (Activation (None, 4, 4, 256) 0 ['batch_normalization_166[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block8_1_mixed (Concatenat (None, 4, 4, 448) 0 ['activation_168[0][0]', \n","\n"," e) 'activation_171[0][0]'] \n","\n"," \n","\n"," block8_1_conv (Conv2D) (None, 4, 4, 2080) 933920 ['block8_1_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_30 (Cus (None, 4, 4, 2080) 0 ['mixed_7a[0][0]', \n","\n"," tomScaleLayer) 'block8_1_conv[0][0]'] \n","\n"," \n","\n"," block8_1_ac (Activation) (None, 4, 4, 2080) 0 ['custom_scale_layer_30[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_171 (Conv2D) (None, 4, 4, 192) 399360 ['block8_1_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_168 (B (None, 4, 4, 192) 576 ['conv2d_171[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_173 (Activation (None, 4, 4, 192) 0 ['batch_normalization_168[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_172 (Conv2D) (None, 4, 4, 224) 129024 ['activation_173[0][0]'] \n","\n"," \n","\n"," batch_normalization_169 (B (None, 4, 4, 224) 672 ['conv2d_172[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_174 (Activation (None, 4, 4, 224) 0 ['batch_normalization_169[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_170 (Conv2D) (None, 4, 4, 192) 399360 ['block8_1_ac[0][0]'] \n","\n"," \n","\n"," conv2d_173 (Conv2D) (None, 4, 4, 256) 172032 ['activation_174[0][0]'] \n","\n"," \n","\n"," batch_normalization_167 (B (None, 4, 4, 192) 576 ['conv2d_170[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_170 (B (None, 4, 4, 256) 768 ['conv2d_173[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_172 (Activation (None, 4, 4, 192) 0 ['batch_normalization_167[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_175 (Activation (None, 4, 4, 256) 0 ['batch_normalization_170[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block8_2_mixed (Concatenat (None, 4, 4, 448) 0 ['activation_172[0][0]', \n","\n"," e) 'activation_175[0][0]'] \n","\n"," \n","\n"," block8_2_conv (Conv2D) (None, 4, 4, 2080) 933920 ['block8_2_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_31 (Cus (None, 4, 4, 2080) 0 ['block8_1_ac[0][0]', \n","\n"," tomScaleLayer) 'block8_2_conv[0][0]'] \n","\n"," \n","\n"," block8_2_ac (Activation) (None, 4, 4, 2080) 0 ['custom_scale_layer_31[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_175 (Conv2D) (None, 4, 4, 192) 399360 ['block8_2_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_172 (B (None, 4, 4, 192) 576 ['conv2d_175[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_177 (Activation (None, 4, 4, 192) 0 ['batch_normalization_172[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_176 (Conv2D) (None, 4, 4, 224) 129024 ['activation_177[0][0]'] \n","\n"," \n","\n"," batch_normalization_173 (B (None, 4, 4, 224) 672 ['conv2d_176[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_178 (Activation (None, 4, 4, 224) 0 ['batch_normalization_173[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_174 (Conv2D) (None, 4, 4, 192) 399360 ['block8_2_ac[0][0]'] \n","\n"," \n","\n"," conv2d_177 (Conv2D) (None, 4, 4, 256) 172032 ['activation_178[0][0]'] \n","\n"," \n","\n"," batch_normalization_171 (B (None, 4, 4, 192) 576 ['conv2d_174[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_174 (B (None, 4, 4, 256) 768 ['conv2d_177[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_176 (Activation (None, 4, 4, 192) 0 ['batch_normalization_171[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_179 (Activation (None, 4, 4, 256) 0 ['batch_normalization_174[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block8_3_mixed (Concatenat (None, 4, 4, 448) 0 ['activation_176[0][0]', \n","\n"," e) 'activation_179[0][0]'] \n","\n"," \n","\n"," block8_3_conv (Conv2D) (None, 4, 4, 2080) 933920 ['block8_3_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_32 (Cus (None, 4, 4, 2080) 0 ['block8_2_ac[0][0]', \n","\n"," tomScaleLayer) 'block8_3_conv[0][0]'] \n","\n"," \n","\n"," block8_3_ac (Activation) (None, 4, 4, 2080) 0 ['custom_scale_layer_32[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_179 (Conv2D) (None, 4, 4, 192) 399360 ['block8_3_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_176 (B (None, 4, 4, 192) 576 ['conv2d_179[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_181 (Activation (None, 4, 4, 192) 0 ['batch_normalization_176[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_180 (Conv2D) (None, 4, 4, 224) 129024 ['activation_181[0][0]'] \n","\n"," \n","\n"," batch_normalization_177 (B (None, 4, 4, 224) 672 ['conv2d_180[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_182 (Activation (None, 4, 4, 224) 0 ['batch_normalization_177[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_178 (Conv2D) (None, 4, 4, 192) 399360 ['block8_3_ac[0][0]'] \n","\n"," \n","\n"," conv2d_181 (Conv2D) (None, 4, 4, 256) 172032 ['activation_182[0][0]'] \n","\n"," \n","\n"," batch_normalization_175 (B (None, 4, 4, 192) 576 ['conv2d_178[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_178 (B (None, 4, 4, 256) 768 ['conv2d_181[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_180 (Activation (None, 4, 4, 192) 0 ['batch_normalization_175[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_183 (Activation (None, 4, 4, 256) 0 ['batch_normalization_178[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block8_4_mixed (Concatenat (None, 4, 4, 448) 0 ['activation_180[0][0]', \n","\n"," e) 'activation_183[0][0]'] \n","\n"," \n","\n"," block8_4_conv (Conv2D) (None, 4, 4, 2080) 933920 ['block8_4_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_33 (Cus (None, 4, 4, 2080) 0 ['block8_3_ac[0][0]', \n","\n"," tomScaleLayer) 'block8_4_conv[0][0]'] \n","\n"," \n","\n"," block8_4_ac (Activation) (None, 4, 4, 2080) 0 ['custom_scale_layer_33[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_183 (Conv2D) (None, 4, 4, 192) 399360 ['block8_4_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_180 (B (None, 4, 4, 192) 576 ['conv2d_183[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_185 (Activation (None, 4, 4, 192) 0 ['batch_normalization_180[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_184 (Conv2D) (None, 4, 4, 224) 129024 ['activation_185[0][0]'] \n","\n"," \n","\n"," batch_normalization_181 (B (None, 4, 4, 224) 672 ['conv2d_184[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_186 (Activation (None, 4, 4, 224) 0 ['batch_normalization_181[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_182 (Conv2D) (None, 4, 4, 192) 399360 ['block8_4_ac[0][0]'] \n","\n"," \n","\n"," conv2d_185 (Conv2D) (None, 4, 4, 256) 172032 ['activation_186[0][0]'] \n","\n"," \n","\n"," batch_normalization_179 (B (None, 4, 4, 192) 576 ['conv2d_182[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_182 (B (None, 4, 4, 256) 768 ['conv2d_185[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_184 (Activation (None, 4, 4, 192) 0 ['batch_normalization_179[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_187 (Activation (None, 4, 4, 256) 0 ['batch_normalization_182[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block8_5_mixed (Concatenat (None, 4, 4, 448) 0 ['activation_184[0][0]', \n","\n"," e) 'activation_187[0][0]'] \n","\n"," \n","\n"," block8_5_conv (Conv2D) (None, 4, 4, 2080) 933920 ['block8_5_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_34 (Cus (None, 4, 4, 2080) 0 ['block8_4_ac[0][0]', \n","\n"," tomScaleLayer) 'block8_5_conv[0][0]'] \n","\n"," \n","\n"," block8_5_ac (Activation) (None, 4, 4, 2080) 0 ['custom_scale_layer_34[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_187 (Conv2D) (None, 4, 4, 192) 399360 ['block8_5_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_184 (B (None, 4, 4, 192) 576 ['conv2d_187[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_189 (Activation (None, 4, 4, 192) 0 ['batch_normalization_184[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_188 (Conv2D) (None, 4, 4, 224) 129024 ['activation_189[0][0]'] \n","\n"," \n","\n"," batch_normalization_185 (B (None, 4, 4, 224) 672 ['conv2d_188[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_190 (Activation (None, 4, 4, 224) 0 ['batch_normalization_185[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_186 (Conv2D) (None, 4, 4, 192) 399360 ['block8_5_ac[0][0]'] \n","\n"," \n","\n"," conv2d_189 (Conv2D) (None, 4, 4, 256) 172032 ['activation_190[0][0]'] \n","\n"," \n","\n"," batch_normalization_183 (B (None, 4, 4, 192) 576 ['conv2d_186[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_186 (B (None, 4, 4, 256) 768 ['conv2d_189[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_188 (Activation (None, 4, 4, 192) 0 ['batch_normalization_183[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_191 (Activation (None, 4, 4, 256) 0 ['batch_normalization_186[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block8_6_mixed (Concatenat (None, 4, 4, 448) 0 ['activation_188[0][0]', \n","\n"," e) 'activation_191[0][0]'] \n","\n"," \n","\n"," block8_6_conv (Conv2D) (None, 4, 4, 2080) 933920 ['block8_6_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_35 (Cus (None, 4, 4, 2080) 0 ['block8_5_ac[0][0]', \n","\n"," tomScaleLayer) 'block8_6_conv[0][0]'] \n","\n"," \n","\n"," block8_6_ac (Activation) (None, 4, 4, 2080) 0 ['custom_scale_layer_35[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_191 (Conv2D) (None, 4, 4, 192) 399360 ['block8_6_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_188 (B (None, 4, 4, 192) 576 ['conv2d_191[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_193 (Activation (None, 4, 4, 192) 0 ['batch_normalization_188[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_192 (Conv2D) (None, 4, 4, 224) 129024 ['activation_193[0][0]'] \n","\n"," \n","\n"," batch_normalization_189 (B (None, 4, 4, 224) 672 ['conv2d_192[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_194 (Activation (None, 4, 4, 224) 0 ['batch_normalization_189[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_190 (Conv2D) (None, 4, 4, 192) 399360 ['block8_6_ac[0][0]'] \n","\n"," \n","\n"," conv2d_193 (Conv2D) (None, 4, 4, 256) 172032 ['activation_194[0][0]'] \n","\n"," \n","\n"," batch_normalization_187 (B (None, 4, 4, 192) 576 ['conv2d_190[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_190 (B (None, 4, 4, 256) 768 ['conv2d_193[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_192 (Activation (None, 4, 4, 192) 0 ['batch_normalization_187[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_195 (Activation (None, 4, 4, 256) 0 ['batch_normalization_190[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block8_7_mixed (Concatenat (None, 4, 4, 448) 0 ['activation_192[0][0]', \n","\n"," e) 'activation_195[0][0]'] \n","\n"," \n","\n"," block8_7_conv (Conv2D) (None, 4, 4, 2080) 933920 ['block8_7_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_36 (Cus (None, 4, 4, 2080) 0 ['block8_6_ac[0][0]', \n","\n"," tomScaleLayer) 'block8_7_conv[0][0]'] \n","\n"," \n","\n"," block8_7_ac (Activation) (None, 4, 4, 2080) 0 ['custom_scale_layer_36[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_195 (Conv2D) (None, 4, 4, 192) 399360 ['block8_7_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_192 (B (None, 4, 4, 192) 576 ['conv2d_195[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_197 (Activation (None, 4, 4, 192) 0 ['batch_normalization_192[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_196 (Conv2D) (None, 4, 4, 224) 129024 ['activation_197[0][0]'] \n","\n"," \n","\n"," batch_normalization_193 (B (None, 4, 4, 224) 672 ['conv2d_196[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_198 (Activation (None, 4, 4, 224) 0 ['batch_normalization_193[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_194 (Conv2D) (None, 4, 4, 192) 399360 ['block8_7_ac[0][0]'] \n","\n"," \n","\n"," conv2d_197 (Conv2D) (None, 4, 4, 256) 172032 ['activation_198[0][0]'] \n","\n"," \n","\n"," batch_normalization_191 (B (None, 4, 4, 192) 576 ['conv2d_194[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_194 (B (None, 4, 4, 256) 768 ['conv2d_197[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_196 (Activation (None, 4, 4, 192) 0 ['batch_normalization_191[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_199 (Activation (None, 4, 4, 256) 0 ['batch_normalization_194[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block8_8_mixed (Concatenat (None, 4, 4, 448) 0 ['activation_196[0][0]', \n","\n"," e) 'activation_199[0][0]'] \n","\n"," \n","\n"," block8_8_conv (Conv2D) (None, 4, 4, 2080) 933920 ['block8_8_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_37 (Cus (None, 4, 4, 2080) 0 ['block8_7_ac[0][0]', \n","\n"," tomScaleLayer) 'block8_8_conv[0][0]'] \n","\n"," \n","\n"," block8_8_ac (Activation) (None, 4, 4, 2080) 0 ['custom_scale_layer_37[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_199 (Conv2D) (None, 4, 4, 192) 399360 ['block8_8_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_196 (B (None, 4, 4, 192) 576 ['conv2d_199[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_201 (Activation (None, 4, 4, 192) 0 ['batch_normalization_196[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_200 (Conv2D) (None, 4, 4, 224) 129024 ['activation_201[0][0]'] \n","\n"," \n","\n"," batch_normalization_197 (B (None, 4, 4, 224) 672 ['conv2d_200[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_202 (Activation (None, 4, 4, 224) 0 ['batch_normalization_197[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_198 (Conv2D) (None, 4, 4, 192) 399360 ['block8_8_ac[0][0]'] \n","\n"," \n","\n"," conv2d_201 (Conv2D) (None, 4, 4, 256) 172032 ['activation_202[0][0]'] \n","\n"," \n","\n"," batch_normalization_195 (B (None, 4, 4, 192) 576 ['conv2d_198[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_198 (B (None, 4, 4, 256) 768 ['conv2d_201[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_200 (Activation (None, 4, 4, 192) 0 ['batch_normalization_195[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_203 (Activation (None, 4, 4, 256) 0 ['batch_normalization_198[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block8_9_mixed (Concatenat (None, 4, 4, 448) 0 ['activation_200[0][0]', \n","\n"," e) 'activation_203[0][0]'] \n","\n"," \n","\n"," block8_9_conv (Conv2D) (None, 4, 4, 2080) 933920 ['block8_9_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_38 (Cus (None, 4, 4, 2080) 0 ['block8_8_ac[0][0]', \n","\n"," tomScaleLayer) 'block8_9_conv[0][0]'] \n","\n"," \n","\n"," block8_9_ac (Activation) (None, 4, 4, 2080) 0 ['custom_scale_layer_38[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv2d_203 (Conv2D) (None, 4, 4, 192) 399360 ['block8_9_ac[0][0]'] \n","\n"," \n","\n"," batch_normalization_200 (B (None, 4, 4, 192) 576 ['conv2d_203[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_205 (Activation (None, 4, 4, 192) 0 ['batch_normalization_200[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_204 (Conv2D) (None, 4, 4, 224) 129024 ['activation_205[0][0]'] \n","\n"," \n","\n"," batch_normalization_201 (B (None, 4, 4, 224) 672 ['conv2d_204[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_206 (Activation (None, 4, 4, 224) 0 ['batch_normalization_201[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," conv2d_202 (Conv2D) (None, 4, 4, 192) 399360 ['block8_9_ac[0][0]'] \n","\n"," \n","\n"," conv2d_205 (Conv2D) (None, 4, 4, 256) 172032 ['activation_206[0][0]'] \n","\n"," \n","\n"," batch_normalization_199 (B (None, 4, 4, 192) 576 ['conv2d_202[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," batch_normalization_202 (B (None, 4, 4, 256) 768 ['conv2d_205[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," activation_204 (Activation (None, 4, 4, 192) 0 ['batch_normalization_199[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," activation_207 (Activation (None, 4, 4, 256) 0 ['batch_normalization_202[0][0\n","\n"," ) ]'] \n","\n"," \n","\n"," block8_10_mixed (Concatena (None, 4, 4, 448) 0 ['activation_204[0][0]', \n","\n"," te) 'activation_207[0][0]'] \n","\n"," \n","\n"," block8_10_conv (Conv2D) (None, 4, 4, 2080) 933920 ['block8_10_mixed[0][0]'] \n","\n"," \n","\n"," custom_scale_layer_39 (Cus (None, 4, 4, 2080) 0 ['block8_9_ac[0][0]', \n","\n"," tomScaleLayer) 'block8_10_conv[0][0]'] \n","\n"," \n","\n"," conv_7b (Conv2D) (None, 4, 4, 1536) 3194880 ['custom_scale_layer_39[0][0]'\n","\n"," ] \n","\n"," \n","\n"," conv_7b_bn (BatchNormaliza (None, 4, 4, 1536) 4608 ['conv_7b[0][0]'] \n","\n"," tion) \n","\n"," \n","\n"," conv_7b_ac (Activation) (None, 4, 4, 1536) 0 ['conv_7b_bn[0][0]'] \n","\n"," \n","\n"," global_average_pooling2d ( (None, 1536) 0 ['conv_7b_ac[0][0]'] \n","\n"," GlobalAveragePooling2D) \n","\n"," \n","\n"," dense_6 (Dense) (None, 128) 196736 ['global_average_pooling2d[0][\n","\n"," 0]'] \n","\n"," \n","\n"," dropout_3 (Dropout) (None, 128) 0 ['dense_6[0][0]'] \n","\n"," \n","\n"," dense_7 (Dense) (None, 64) 8256 ['dropout_3[0][0]'] \n","\n"," \n","\n"," dropout_4 (Dropout) (None, 64) 0 ['dense_7[0][0]'] \n","\n"," \n","\n"," dense_8 (Dense) (None, 1) 65 ['dropout_4[0][0]'] \n","\n"," \n","\n","==================================================================================================\n","\n","Total params: 54541793 (208.06 MB)\n","\n","Trainable params: 54481249 (207.83 MB)\n","\n","Non-trainable params: 60544 (236.50 KB)\n","\n","__________________________________________________________________________________________________\n"]}],"source":["inception_model = create_model(inception_base_model)\n","inception_model.summary()"]},{"cell_type":"code","execution_count":36,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Unfreezing number of layers in base model = 0\n","\n","Epoch 1/15\n"]},{"name":"stderr","output_type":"stream","text":["2023-06-28 01:17:13.479624: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] PluggableGraphOptimizer failed: INVALID_ARGUMENT: Unparseable tensorflow.GraphDef proto\n","\n","2023-06-28 01:17:13.622448: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] PluggableGraphOptimizer failed: INVALID_ARGUMENT: Unparseable tensorflow.GraphDef proto\n"]},{"name":"stdout","output_type":"stream","text":["223/223 [==============================] - ETA: 0s - loss: 0.5149 - accuracy: 0.7708"]},{"name":"stderr","output_type":"stream","text":["2023-06-28 01:18:15.830478: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] PluggableGraphOptimizer failed: INVALID_ARGUMENT: Unparseable tensorflow.GraphDef proto\n","\n","2023-06-28 01:18:15.988644: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] PluggableGraphOptimizer failed: INVALID_ARGUMENT: Unparseable tensorflow.GraphDef proto\n"]},{"name":"stdout","output_type":"stream","text":["223/223 [==============================] - 97s 408ms/step - loss: 0.5149 - accuracy: 0.7708 - val_loss: 0.5485 - val_accuracy: 0.7546\n","\n","Epoch 2/15\n","\n","223/223 [==============================] - 81s 364ms/step - loss: 0.4480 - accuracy: 0.8146 - val_loss: 0.5063 - val_accuracy: 0.7622\n","\n","Epoch 3/15\n","\n","223/223 [==============================] - 97s 436ms/step - loss: 0.4186 - accuracy: 0.8258 - val_loss: 0.5100 - val_accuracy: 0.7675\n","\n","Epoch 4/15\n","\n","223/223 [==============================] - 94s 421ms/step - loss: 0.4028 - accuracy: 0.8329 - val_loss: 0.5082 - val_accuracy: 0.7670\n","\n","Epoch 5/15\n","\n","223/223 [==============================] - 93s 418ms/step - loss: 0.4014 - accuracy: 0.8334 - val_loss: 0.5054 - val_accuracy: 0.7675\n","\n","Epoch 6/15\n","\n","223/223 [==============================] - 101s 453ms/step - loss: 0.3972 - accuracy: 0.8340 - val_loss: 0.4942 - val_accuracy: 0.7816\n","\n","Epoch 7/15\n","\n","223/223 [==============================] - 98s 439ms/step - loss: 0.3839 - accuracy: 0.8431 - val_loss: 0.4847 - val_accuracy: 0.7816\n","\n","Epoch 8/15\n","\n","223/223 [==============================] - 95s 427ms/step - loss: 0.3808 - accuracy: 0.8441 - val_loss: 0.4789 - val_accuracy: 0.7771\n","\n","Epoch 9/15\n","\n","223/223 [==============================] - 96s 429ms/step - loss: 0.3661 - accuracy: 0.8559 - val_loss: 0.4822 - val_accuracy: 0.7802\n","\n","Epoch 10/15\n","\n","223/223 [==============================] - 98s 440ms/step - loss: 0.3649 - accuracy: 0.8530 - val_loss: 0.4782 - val_accuracy: 0.7867\n","\n","Epoch 11/15\n","\n","223/223 [==============================] - 94s 423ms/step - loss: 0.3605 - accuracy: 0.8533 - val_loss: 0.4777 - val_accuracy: 0.7886\n","\n","Epoch 12/15\n","\n","223/223 [==============================] - 94s 421ms/step - loss: 0.3508 - accuracy: 0.8541 - val_loss: 0.5002 - val_accuracy: 0.7737\n","\n","Epoch 13/15\n","\n","223/223 [==============================] - 97s 437ms/step - loss: 0.3502 - accuracy: 0.8573 - val_loss: 0.4647 - val_accuracy: 0.7872\n","\n","Epoch 14/15\n","\n","223/223 [==============================] - 94s 423ms/step - loss: 0.3463 - accuracy: 0.8579 - val_loss: 0.4749 - val_accuracy: 0.7861\n","\n","Epoch 15/15\n","\n","223/223 [==============================] - 92s 412ms/step - loss: 0.3412 - accuracy: 0.8634 - val_loss: 0.4977 - val_accuracy: 0.7746\n"]}],"source":["history = fit_model(inception_model, inception_base_model, epochs = 15)"]},{"cell_type":"code","execution_count":37,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAbQAAALgCAYAAAD8w4I6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT1xvA8W8SIGyUIYgT0TpxK9aFWrfiXqi4tdZRrbV11d1q3VY7bK1bcO+fE/ce1aK1bsQ9QdkrJPf3RyQ1hi0SwPN5njyQk3Pvfe8l5M0999xzZJIkSQiCIAhCLic3dgCCIAiCkBVEQhMEQRDyBJHQBEEQhDxBJDRBEAQhTxAJTRAEQcgTREITBEEQ8gSR0ARBEIQ8QSQ0QRAEIU8QCU0QBEHIE0RCEwRBEPIEkdAEQRCEPEEkNEEQBCFPEAlNEARByBNEQhMEQRDyBJHQBEEQhDxBJDRBEAQhTxAJTRAEQcgTREITBEEQ8gSR0ARBEIQ8QSQ0QRAEIU8QCU0QBEHIE0RCEwRBEPIEkdAEQRCEPEEkNEEQBCFPEAlNEARByBNEQhMEQRDyBJHQBEEQhDxBJDRBEAQhTxAJTRAEQcgTREITBEEQ8gSR0IQU9enTh+LFi2dq2SlTpiCTybI2oBzm3r17yGQyVq5cme3blslkTJkyRfd85cqVyGQy7t27l+ayxYsXp0+fPlkaz/u8VwQhq4iElgvJZLJ0PY4ePWrsUD96X375JTKZjDt37qRYZ8KECchkMq5cuZKNkWXckydPmDJlCoGBgcYOJVnXr19HJpNhbm5OWFiYscMRjEAktFxozZo1eo8mTZokW162bNn32s7SpUu5efNmppb97rvviI2Nfa/t5wU9evQAwN/fP8U669atw8PDg4oVK2Z6O76+vsTGxlKsWLFMryMtT548YerUqckmtPd5r2SVtWvX4uLiAsDmzZuNGotgHCbGDkDIuJ49e+o9P3v2LAEBAQbl74qJicHS0jLd2zE1Nc1UfAAmJiaYmIi3l6enJyVLlmTdunVMmjTJ4PUzZ84QHBzMjz/++F7bUSgUKBSK91rH+3if90pWkCQJf39/unfvTnBwMH5+fgwYMMCoMaUkOjoaKysrY4eRJ4kztDyqQYMGVKhQgYsXL1K/fn0sLS0ZP348ADt27KBVq1a4urqiVCpxd3dn+vTpqNVqvXW8e10k6ZrR3Llz+eOPP3B3d0epVFKjRg0uXLigt2xy19BkMhnDhg1j+/btVKhQAaVSSfny5dm3b59B/EePHqV69eqYm5vj7u7O77//nu7rcidOnKBz584ULVoUpVJJkSJF+OqrrwzOGPv06YO1tTWPHz+mXbt2WFtb4+TkxOjRow2ORVhYGH369MHOzo58+fLRu3fvdDdr9ejRgxs3bnDp0iWD1/z9/ZHJZPj4+JCQkMCkSZOoVq0adnZ2WFlZUa9ePY4cOZLmNpK7hiZJEt9//z2FCxfG0tKShg0b8u+//xos++rVK0aPHo2HhwfW1tbY2trSokULLl++rKtz9OhRatSoAUDfvn11zdpJ1w+Tu4YWHR3N119/TZEiRVAqlZQuXZq5c+ciSZJevYy8L1Jy6tQp7t27R7du3ejWrRvHjx/n0aNHBvU0Gg0//fQTHh4emJub4+TkRPPmzfnrr7/06q1du5aaNWtiaWlJ/vz5qV+/PgcOHNCL+e1rmEnevT6Z9Hc5duwYQ4YMoUCBAhQuXBiA+/fvM2TIEEqXLo2FhQUODg507tw52eugYWFhfPXVVxQvXhylUknhwoXp1asXISEhREVFYWVlxYgRIwyWe/ToEQqFgpkzZ6bzSOZu4it0HhYaGkqLFi3o1q0bPXv2xNnZGdD+k1lbWzNq1Cisra05fPgwkyZNIiIigjlz5qS5Xn9/fyIjI/n888+RyWTMnj2bDh06cPfu3TS/qZ88eZKtW7cyZMgQbGxsWLRoER07duTBgwc4ODgA8Pfff9O8eXMKFizI1KlTUavVTJs2DScnp3Tt96ZNm4iJieGLL77AwcGB8+fPs3jxYh49esSmTZv06qrVapo1a4anpydz587l4MGDzJs3D3d3d7744gtAmxjatm3LyZMnGTx4MGXLlmXbtm307t07XfH06NGDqVOn4u/vT9WqVfW2vXHjRurVq0fRokUJCQnhzz//xMfHh4EDBxIZGcmyZcto1qwZ58+fp3LlyunaXpJJkybx/fff07JlS1q2bMmlS5do2rQpCQkJevXu3r3L9u3b6dy5M25ubjx//pzff/8dLy8vrl27hqurK2XLlmXatGlMmjSJQYMGUa9ePQBq166d7LYlSaJNmzYcOXKE/v37U7lyZfbv388333zD48ePWbBggV799LwvUuPn54e7uzs1atSgQoUKWFpasm7dOr755hu9ev3792flypW0aNGCAQMGkJiYyIkTJzh79izVq1cHYOrUqUyZMoXatWszbdo0zMzMOHfuHIcPH6Zp06bpPv5vGzJkCE5OTkyaNIno6GgALly4wOnTp+nWrRuFCxfm3r17/PbbbzRo0IBr167pWlOioqKoV68e169fp1+/flStWpWQkBB27tzJo0ePqFy5Mu3bt2fDhg3Mnz9f70x93bp1SJKka/rO8yQh1xs6dKj07p/Sy8tLAqQlS5YY1I+JiTEo+/zzzyVLS0spLi5OV9a7d2+pWLFiuufBwcESIDk4OEivXr3Sle/YsUMCpF27dunKJk+ebBATIJmZmUl37tzRlV2+fFkCpMWLF+vKvL29JUtLS+nx48e6stu3b0smJiYG60xOcvs3c+ZMSSaTSffv39fbP0CaNm2aXt0qVapI1apV0z3fvn27BEizZ8/WlSUmJkr16tWTAGnFihVpxlSjRg2pcOHCklqt1pXt27dPAqTff/9dt874+Hi95V6/fi05OztL/fr10ysHpMmTJ+uer1ixQgKk4OBgSZIk6cWLF5KZmZnUqlUrSaPR6OqNHz9eAqTevXvryuLi4vTikiTt31qpVOodmwsXLqS4v+++V5KO2ffff69Xr1OnTpJMJtN7D6T3fZGShIQEycHBQZowYYKurHv37lKlSpX06h0+fFgCpC+//NJgHUnH6Pbt25JcLpfat29vcEzePo7vHv8kxYoV0zu2SX+XunXrSomJiXp1k3ufnjlzRgKk1atX68omTZokAdLWrVtTjHv//v0SIO3du1fv9YoVK0peXl4Gy+VVoskxD1MqlfTt29eg3MLCQvd7ZGQkISEh1KtXj5iYGG7cuJHmert27Ur+/Pl1z5O+rd+9ezfNZRs3boy7u7vuecWKFbG1tdUtq1arOXjwIO3atcPV1VVXr2TJkrRo0SLN9YP+/kVHRxMSEkLt2rWRJIm///7boP7gwYP1nterV09vX/bs2YOJiYnujA2016yGDx+ernhAe93z0aNHHD9+XFfm7++PmZkZnTt31q3TzMwM0DaNvXr1isTERKpXr55sc2VqDh48SEJCAsOHD9drph05cqRBXaVSiVyu/ShQq9WEhoZibW1N6dKlM7zdJHv27EGhUPDll1/qlX/99ddIksTevXv1ytN6X6Rm7969hIaG4uPjoyvz8fHh8uXLek2sW7ZsQSaTMXnyZIN1JB2j7du3o9FomDRpku6YvFsnMwYOHGhwjfPt96lKpSI0NJSSJUuSL18+veO+ZcsWKlWqRPv27VOMu3Hjxri6uuLn56d77erVq1y5ciXNa+t5iUhoeVihQoV0H5Bv+/fff2nfvj12dnbY2tri5OSke9OHh4enud6iRYvqPU9Kbq9fv87wsknLJy374sULYmNjKVmypEG95MqS8+DBA/r06YO9vb3uupiXlxdguH9J11FSige01zoKFiyItbW1Xr3SpUunKx6Abt26oVAodL0d4+Li2LZtGy1atND7crBq1SoqVqyIubk5Dg4OODk5sXv37nT9Xd52//59AEqVKqVX7uTkpLc90CbPBQsWUKpUKZRKJY6Ojjg5OXHlypUMb/ft7bu6umJjY6NXntTzNim+JGm9L1Kzdu1a3NzcUCqV3Llzhzt37uDu7o6lpaXeB3xQUBCurq7Y29unuK6goCDkcjnlypVLc7sZ4ebmZlAWGxvLpEmTdNcYk457WFiY3nEPCgqiQoUKqa5fLpfTo0cPtm/fTkxMDKBthjU3N9d9YfoYiISWh739DTBJWFgYXl5eXL58mWnTprFr1y4CAgKYNWsWoP1wS0tKvemkdy72Z/Wy6aFWq2nSpAm7d+9mzJgxbN++nYCAAF3nhXf3L7t6BhYoUIAmTZqwZcsWVCoVu3btIjIyUu/axtq1a+nTpw/u7u4sW7aMffv2ERAQQKNGjdL1d8msGTNmMGrUKOrXr8/atWvZv38/AQEBlC9f/oNu922ZfV9ERESwa9cugoODKVWqlO5Rrlw5YmJi8Pf3z7L3Vnq825koSXL/i8OHD+eHH36gS5cubNy4kQMHDhAQEICDg0OmjnuvXr2Iiopi+/btul6frVu3xs7OLsPryq1Ep5CPzNGjRwkNDWXr1q3Ur19fVx4cHGzEqP5ToEABzM3Nk70RObWbk5P8888/3Lp1i1WrVtGrVy9deUBAQKZjKlasGIcOHSIqKkrvLC2j91316NGDffv2sXfvXvz9/bG1tcXb21v3+ubNmylRogRbt27Va95KroksPTED3L59mxIlSujKX758aXDWs3nzZho2bMiyZcv0ysPCwnB0dNQ9z0iTW7FixTh48CCRkZF6Z2lJTdpZdb/c1q1biYuL47ffftOLFbR/n++++45Tp05Rt25d3N3d2b9/P69evUrxLM3d3R2NRsO1a9dS7YSTP39+g16uCQkJPH36NN2xb968md69ezNv3jxdWVxcnMF63d3duXr1aprrq1ChAlWqVMHPz4/ChQvz4MEDFi9enO548gJxhvaRSfom/Pa31oSEBH799VdjhaRHoVDQuHFjtm/fzpMnT3Tld+7cMbjuktLyoL9/kiTx008/ZTqmli1bkpiYyG+//aYrU6vVGf6waNeuHZaWlvz666/s3buXDh06YG5unmrs586d48yZMxmOuXHjxpiamrJ48WK99S1cuNCgrkKhMDiL2bRpE48fP9YrS7p3Kj23K7Rs2RK1Ws3PP/+sV75gwQJkMlm6r4emZe3atZQoUYLBgwfTqVMnvcfo0aOxtrbWNTt27NgRSZKYOnWqwXqS9r9du3bI5XKmTZtmcJb09jFyd3fXux4K8Mcff6R4hpac5I774sWLDdbRsWNHLl++zLZt21KMO4mvry8HDhxg4cKFODg46I5zSEgIN27c0DVH5lXiDO0jU7t2bfLnz0/v3r11wzKtWbMmW5tl0jJlyhQOHDhAnTp1+OKLL3QfjBUqVEhz2KUyZcrg7u7O6NGjefz4Mba2tmzZsiVd12JS4u3tTZ06dRg7diz37t2jXLlybN26NcPXl6ytrWnXrp3uOtq7Xalbt27N1q1bad++Pa1atSI4OJglS5ZQrlw5oqKiMrStpPvpZs6cSevWrWnZsiV///03e/fuNTiTad26NdOmTaNv377Url2bf/75Bz8/P70zO9B+iOfLl48lS5ZgY2ODlZUVnp6eyV4f8vb2pmHDhkyYMIF79+5RqVIlDhw4wI4dOxg5cqReB5DMevLkCUeOHDHoeJJEqVTSrFkzNm3axKJFi2jYsCG+vr4sWrSI27dv07x5czQaDSdOnKBhw4YMGzaMkiVLMmHCBKZPn069evXo0KEDSqWSCxcu4Orqqrufa8CAAQwePJiOHTvSpEkTLl++zP79+w2ObWpat27NmjVrsLOzo1y5cpw5c4aDBw8a3KbwzTffsHnzZjp37ky/fv2oVq0ar169YufOnSxZsoRKlSrp6nbv3p1vv/2Wbdu28cUXX+huo/n555+ZOnUqR44coUGDBhk80rlINveqFD6AlLrtly9fPtn6p06dkmrVqiVZWFhIrq6u0rfffqvr9nvkyBFdvZS67c+ZM8dgnbzTjTmlbvtDhw41WPbdrs6SJEmHDh2SqlSpIpmZmUnu7u7Sn3/+KX399deSubl5CkfhP9euXZMaN24sWVtbS46OjtLAgQN13cDf7nLeu3dvycrKymD55GIPDQ2VfH19JVtbW8nOzk7y9fWV/v7773R320+ye/duCZAKFiyYbLfwGTNmSMWKFZOUSqVUpUoV6X//+5/B30GS0u62L0mSpFarpalTp0oFCxaULCwspAYNGkhXr141ON5xcXHS119/ratXp04d6cyZM5KXl5dBl+8dO3ZI5cqV091CkbTvycUYGRkpffXVV5Krq6tkamoqlSpVSpozZ45e9/ekfUnv++Jt8+bNkwDp0KFDKdZZuXKlBEg7duyQJEl7a8ScOXOkMmXKSGZmZpKTk5PUokUL6eLFi3rLLV++XKpSpYqkVCql/PnzS15eXlJAQIDudbVaLY0ZM0ZydHSULC0tpWbNmkl37txJsdv+hQsXDGJ7/fq11LdvX8nR0VGytraWmjVrJt24cSPZ/Q4NDZWGDRsmFSpUSDIzM5MKFy4s9e7dWwoJCTFYb8uWLSVAOn36tK4s6T399v93XiSTpBz01VwQUtGuXTv+/fdfbt++bexQBCHHat++Pf/880+6rjnnNeIampAjvTtM1e3bt9mzZ0/ebi4RhPf09OlTdu/eja+vr7FDMQpxhibkSAULFqRPnz6UKFGC+/fv89tvvxEfH8/ff/9tcG+VIHzsgoODOXXqFH/++ScXLlwgKChIN/PAx0R0ChFypObNm7Nu3TqePXuGUqnk008/ZcaMGSKZCUIyjh07Rt++fSlatCirVq36KJMZiDM0QRAEIY8Q19AEQRCEPEEkNEEQBCFPEAlNyPOSm3xSEIS8RyQ0wWiSZj1O63H06FFjh5qiPXv2IJPJcHV1zbaBfPOyx48f06VLF/Lly4etrS1t27ZN1xQyoB14esmSJVSuXBlra2ucnZ1p0aIFp0+fTrb+pUuXaNOmDfb29lhaWlKhQgUWLVqkV2fGjBnUqlULJycnzM3NKVWqFCNHjuTly5fvva9C1hOdQgSjWbt2rd7z1atXExAQwJo1a/TKmzRpopttOzNUKhUajQalUpnpdaSkR48enD59mnv37hEQEEDjxo2zfBsfi6ioKKpWrUp4eDhff/01pqamLFiwAEmSCAwMTHPm6q+//pr58+fTs2dP6tWrR1hYGL///jsPHjzg1KlT1KxZU1f3wIEDeHt7U6VKFbp27Yq1tTVBQUFoNBpmz56tq9exY0ecnJwoU6YMNjY2XL9+naVLl1KgQAECAwN141sKOYTRxigRhHckN4RXcqKjo7MhmrRFRUVJVlZW0qJFi6QqVapIffr0MXZIKYqKijJ2CGmaNWuWBEjnz5/XlV2/fl1SKBTSuHHjUl1WpVJJFhYWUqdOnfTK7969azBLdXh4uOTs7JzsrNTpsXnzZgmQ1q1bl+FlhQ9LNDkKOVqDBg2oUKECFy9epH79+lhaWjJ+/HgAduzYQatWrXB1dUWpVOLu7s706dMNRit/9xravXv3kMlkzJ07lz/++AN3d3eUSiU1atTgwoUL6Y5t27ZtxMbG0rlzZ7p166abyuRdcXFxTJkyhU8++QRzc3MKFixIhw4dCAoK0tXRaDT89NNPeHh46CYdbd68OX/99ZdezEnzur1NJpMxZcoU3fMpU6Ygk8m4du0a3bt3J3/+/NStWxeAK1eu6G5YNzc3x8XFhX79+hEaGmqw3sePH9O/f3/d8XVzc+OLL74gISGBu3fvIpPJWLBggcFyp0+fRiaTsW7dOt0s6CEhIWkez82bN1OjRg1q1KihKytTpgyfffYZGzduTHVZlUpFbGyswZl8gQIFkMvlevOR+fv78/z5c3744QfkcjnR0dEZai5Oei+lZ9YBIXuJhCbkeKGhobRo0YLKlSuzcOFCGjZsCMDKlSuxtrZm1KhR/PTTT1SrVo1JkyYxduzYdK3X39+fOXPm8Pnnn/P9999z7949OnTogEqlStfyfn5+NGzYEBcXF7p160ZkZCS7du3Sq6NWq2ndujVTp06lWrVqzJs3jxEjRhAeHq43x1X//v0ZOXIkRYoUYdasWYwdOxZzc3POnj2bzqNkqHPnzsTExDBjxgwGDhwIaOeFu3v3Ln379mXx4sV069aN9evX07JlS70ZF548eULNmjVZv349Xbt2ZdGiRfj6+nLs2DFiYmIoUaIEderU0ZsR+u3jYmNjQ9u2bTl//jxly5Y1mEbmXRqNhitXrlC9enWD12rWrElQUBCRkZEpLm9hYYGnpycrV67Ez8+PBw8e6JJ3/vz5GTRokK7uwYMHsbW15fHjx5QuXRpra2tsbW354osvkv1CIkkSISEhPHv2jBMnTvDll1+iUCjEMGw5kbFPEQUhSUqzBgDSkiVLDOrHxMQYlH3++eeSpaWlFBcXpytLadYABwcH6dWrV7ryHTt2SIC0a9euNGN9/vy5ZGJiIi1dulRXVrt2balt27Z69ZYvXy4B0vz58w3WkTTq/OHDhw2axd6tkxRzciP7k8JMBz4+PgZ1kztm69atkwDp+PHjurJevXpJcrk82VHik2L6/fffJUC6fv267rWEhATJ0dFRN1r8kSNHDOJLzsuXLyVAmjZtmsFrv/zyiwRIN27cSHUdt2/flqpWrSoBukeJEiUMlqtYsaJkaWkpWVpaSsOHD5e2bNkiDR8+XAKkbt26Gaz36dOneussXLiwtGHDhlRjEYxDnKEJOZ5SqaRv374G5W83I0VGRhISEkK9evV0zVxp6dq1K/nz59c9r1evHkC6etWtX78euVxOx44ddWU+Pj7s3btXb+61LVu24OjoyPDhww3WkTQD9JYtW5DJZMnOTJ2RWaLfNXjwYIOyt49ZXFwcISEh1KpVC9D2+gPt2dL27dvx9vZO9owpKaYuXbpgbm6ud5a2f/9+QkJC6NmzJ6BtMpYkSa9JNDlJg1En13EnaRLUdwesfpeNjQ3ly5dn6NChbN26lV9//ZXExETatWun1+QZFRVFTEwMvXr1YtGiRXTo0IFFixbx+eefs379eoPZHOzt7QkICGDXrl1MmzYNR0fHDM9PJ2QPkdCEHK9QoUKYmZkZlP/777+0b98eOzs7bG1tcXJy0n2QpmfyzaJFi+o9T0pu6ZkMdO3atdSsWZPQ0FDu3LnDnTt3qFKlCgkJCWzatElXLygoiNKlS2NikvKwqUFBQbi6umJvb5/mdjMiuYk3X716xYgRI3B2dsbCwgInJyddvaRj9vLlSyIiIqhQoUKq68+XLx/e3t66CUtB29xYqFAhGjVqlKFYkxJtfHy8wWtJzYBvJ+N3JSYm0rhxY+zs7Pj5559p3749X3zxBQcPHiQoKIg5c+YYbMvHx0dvHd27dwcwmCHczMyMxo0b07p1ayZOnMgvv/xC//79+d///pehfRQ+PDE4sZDjJfdBFhYWhpeXF7a2tkybNg13d3fMzc25dOkSY8aMSddFfoVCkWy5lMadLLdv39Z1HklusGQ/Pz+9azZZIaUztXc7wLwtuePWpUsXTp8+zTfffKO7X0uj0ehmb86oXr16sWnTJk6fPo2Hhwc7d+5kyJAhyOUZ+65sb2+PUqnk6dOnBq8llbm6uqa4/PHjx7l69Srz58/XKy9VqhRly5bl1KlTujJXV1f+/fffZDuQQNpfaGrXrk3BggXx8/OjdevWqe+YkK1EQhNypaNHjxIaGsrWrVupX7++rjw4OPiDb9vPzw9TU1PWrFljkBRPnjzJokWLePDgAUWLFsXd3Z1z586hUqkwNTVNdn3u7u7s37+fV69epXiWlnT2+G7Puvv376c77tevX3Po0CGmTp3KpEmTdOXvNrE5OTlha2ur12klJc2bN8fJyQk/Pz88PT2JiYnJ1FxccrkcDw8PXa/Ot507d44SJUpgY2OT4vLPnz8Hkk/wKpWKxMRE3fNq1aoREBCg6xSS5MmTJ4B2/9MSFxeXrlYAIXuJJkchV0pKJG+fTSUkJPDrr79+8G37+flRr149unbtSqdOnfQe33zzDQDr1q0DtDfmhoSEJNvLLyn2jh07IkkSU6dOTbGOra0tjo6OHD9+XO/1jOxvcscMYOHChXrP5XI57dq1Y9euXckmmLeXNzExwcfHh40bN7Jy5Uo8PDyoWLGi7vWMdNvv1KkTFy5c0NvmzZs3OXz4MJ07d9are+PGDR48eKB7/sknnwDaa5tvu3TpEjdv3qRKlSq6si5dugCwbNkyvbp//vknJiYmut6L0dHRxMTEGMS5ZcsWXr9+nez1RcG4xBmakCvVrl2b/Pnz07t3b7788ktkMhlr1qxJs7nwfZ07d447d+4wbNiwZF8vVKgQVatWxc/PjzFjxtCrVy9Wr17NqFGjOH/+PPXq1SM6OpqDBw8yZMgQ2rZtS8OGDfH19WXRokXcvn1b1/x34sQJGjZsqNvWgAED+PHHHxkwYADVq1fn+PHj3Lp1K92x29raUr9+fWbPno1KpaJQoUIcOHAg2bPaGTNmcODAAby8vBg0aBBly5bl6dOnbNq0iZMnT5IvXz5d3aTOFUeOHGHWrFl66zl//jwNGzZk8uTJaXYMGTJkCEuXLqVVq1aMHj0aU1NT5s+fj7OzM19//bVe3bJly+Ll5aUbFq1atWo0adKEVatWERERQdOmTXn69CmLFy/GwsKCkSNH6patUqUK/fr1Y/ny5SQmJurWs2nTJsaNG6dr2rx9+zaNGzema9eulClTBrlczl9//cXatWspXrw4I0aMSPexF7KJ0fpXCsI7Uuq2X758+WTrnzp1SqpVq5ZkYWEhubq6St9++620f/9+CZCOHDmiq5dSt/05c+YYrJM0upgnde8OCgpKsc6UKVMkQLp8+bIkSdqu8hMmTJDc3NwkU1NTycXFRerUqZPeOhITE6U5c+ZIZcqUkczMzCQnJyepRYsW0sWLF3V1YmJipP79+0t2dnaSjY2N1KVLF+nFixcpdtt/+fKlQWyPHj2S2rdvL+XLl0+ys7OTOnfuLD158iTZ/b5//77Uq1cvycnJSVIqlVKJEiWkoUOHSvHx8QbrLV++vCSXy6VHjx7plae3236Shw8fSp06dZJsbW0la2trqXXr1tLt27cN6gGSl5eXXllMTIw0bdo0qVy5cpKFhYVkZ2cntW7dWvr7778Nlk9ISJCmTJkiFStWTDI1NZVKliwpLViwQK/Oy5cvpUGDBkllypSRrKysJDMzM6lUqVLSyJEjkz22gvGJsRwFQXhvVapUwd7enkOHDhk7FOEjJq6hCYLwXv766y8CAwPp1auXsUMRPnLiDE0QhEy5evUqFy9eZN68eYSEhHD37l3dTdCCYAziDE0QhEzZvHkzffv2RaVSsW7dOpHMBKMTZ2iCIAhCniDO0ARBEIQ8QSQ0wWiSm+MraS6v9Hh3HrCs0KBBAzEtiCDkUiKhCenSpk0bLC0tU52TqkePHpiZmSU7WWROcu3aNaZMmcK9e/eMHUqy9uzZg0wmw9XVNVPjKwr6Hj9+TJcuXciXLx+2tra0bds2XTMqJH3hSumRNMccaCeRTa3u48ePdXUbNGiQbJ3mzZt/kP3/mIiRQoR06dGjB7t27WLbtm3Jds+OiYlhx44dNG/eHAcHh0xv57vvvkv3BJ2Zde3aNaZOnUqDBg30ZrIGOHDgwAfddnr4+flRvHhx7t27x+HDh2ncuLGxQ8q1oqKiaNiwIeHh4YwfPx5TU1MWLFiAl5cXgYGBqb5XnZycWLNmjUH5vn378PPzo2nTprqyzz//3ODvJEkSgwcPpnjx4hQqVEjvtcKFCzNz5ky9stQGXxbSyYg3dQu5SExMjGRjYyM1a9Ys2df9/f0lQFq/fn2615napJXpQQZGoHjbpk2bDEYTySmioqIkKysradGiRVKVKlWkPn36GDukFEVFRRk7hDTNmjVLAqTz58/ryq5fvy4pFApp3LhxmVrnZ599Jtna2kqxsbGp1jtx4oQESD/88INeeWqj3wjvRzQ5CuliYWFBhw4dOHToEC9evDB43d/fHxsbG9q0acOrV68YPXo0Hh4euuntW7RoweXLl9PcTnLX0OLj4/nqq69wcnLSbePRo0cGy96/f58hQ4ZQunRpLCwscHBwoHPnznpNiytXrtQNdNuwYUNdc0/SmIDJXUN78eIF/fv3x9nZGXNzcypVqsSqVav06iQ1T82dO5c//vgDd3d3lEolNWrU0E01kx7btm0jNjaWzp07061bN7Zu3aqbD+xtcXFxTJkyhU8++QRzc3MKFixIhw4dCAoK0tXRaDT89NNPeHh4YG5ujpOTE82bN9cN/pvcNcwk716fTPq7XLt2je7du5M/f37q1q0LwJUrV+jTpw8lSpTA3NwcFxcX+vXrl2zT8+PHj+nfvz+urq4olUrc3Nz44osvSEhI4O7du8hkMhYsWGCw3OnTp5HJZKxbty5DAx5v3ryZGjVqUKNGDV1ZmTJl+Oyzz9i4cWOay7/r6dOnHDlyhA4dOqR5m4K/vz8ymUw3z9q7EhMTxUShWUwkNCHdevToQWJiosEHwatXr9i/fz/t27fHwsKCu3fvsn37dlq3bs38+fP55ptv+Oeff/Dy8tJN0ZERAwYMYOHChTRt2pQff/wRU1NTWrVqZVDvwoULnD59mm7durFo0SIGDx7MoUOHaNCggW7U9Pr16/Pll18CMH78eNasWcOaNWsoW7ZsstuOjY2lQYMGrFmzhh49ejBnzhzs7Ozo06cPP/30k0F9f39/5syZw+eff87333/PvXv36NChAyqVKl376ufnR8OGDXFxcaFbt25ERkaya9cuvTpqtZrWrVszdepUqlWrxrx58xgxYgTh4eF6U77079+fkSNHUqRIEWbNmsXYsWMxNzfn7Nmz6YolOZ07dyYmJoYZM2boriEFBARw9+5d+vbty+LFi+nWrRvr16+nZcuWeoNFP3nyhJo1a7J+/Xq6du3KokWL8PX15dixY8TExFCiRAnq1KmjNwP228fFxsaGtm3bcv78ecqWLZvsDAZv02g0XLlyJdlR8WvWrElQUFCq14STs379ejQaDT169Ei1nkqlYuPGjdSuXdugWRvg1q1bWFlZYWNjg4uLCxMnTkz3e0RIhbFPEYXcIzExUSpYsKD06aef6pUvWbJEAqT9+/dLkiRJcXFxklqt1qsTHBwsKZVKadq0aXplvNPkmDSwbpLAwEAJkIYMGaK3vu7duxs0OcbExBjEfObMGQmQVq9erStLrcnRy8tLb9DbhQsXSoC0du1aXVlCQoL06aefStbW1lJERITevjg4OEivXr3S1d2xY4cESLt27TLY1rueP38umZiYSEuXLtWV1a5dW2rbtq1eveXLl0uANH/+fIN1aDQaSZIk6fDhwxIgffnllynWSa3J991jm/R38fHxMaib3HFft26dBEjHjx/XlfXq1UuSy+XShQsXUozp999/lwDp+vXrutcSEhIkR0dHqXfv3pIkpX/A45cvX0qA3nsuyS+//CIB0o0bN1Jdx7uqVasmFSxY0OD9/a5du3ZJgPTrr78avNavXz9pypQp0pYtW6TVq1dLbdq0kQCpS5cuGYpFMCTO0IR0UygUdOvWjTNnzug14/n7++Ps7Mxnn30GgFKp1M1YrFarCQ0NxdramtKlS3Pp0qUMbXPPnj0AurOqJG9PB5Lk7RmaVSoVoaGhlCxZknz58mV4u29v38XFBR8fH12ZqakpX375JVFRURw7dkyvfteuXXWTcQLUq1cPIF296tavX49cLqdjx466Mh8fH/bu3as3i/KWLVtwdHRk+PDhButIaq7dsmULMpmMyZMnp1gnMwYPHmxQ9vZxj4uLIyQkhFq1agHojrtGo2H79u14e3sne8aUFFOXLl0wNzfXO0vbv38/ISEh9OzZE9A2C0uSlOYtG7GxsYD2/fiupObCpDrpcevWLS5evEi3bt3SnJHb398fU1NT3dxrb1u2bBmTJ0+mQ4cO+Pr6smPHDgYOHMjGjRvf6+xZEE2OQgYlNbX4+/sD8OjRI06cOEG3bt10E0hqNBoWLFhAqVKlUCqVODo64uTkxJUrVzI8y+/9+/eRy+W4u7vrlb8903CS2NhYJk2aRJEiRfS2GxYWlunZhe/fv0+pUqUMPsCSmijfnTG6aNGies+TktvbCSkla9eupWbNmoSGhnLnzh3u3LlDlSpVSEhIYNOmTbp6QUFBlC5dGhOTlDspBwUF4erqmuIM2Jnl5uZmUPbq1StGjBiBs7MzFhYWODk56eolHfeXL18SERFBhQoVUl1/vnz58Pb21r2/QNvcWKhQIRo1apShWJMSbXx8vMFrSdcl307GaUlKsmk1N0ZFRbFjxw6aNWuW7h6/SfO9HTx4MN3xCIZEt30hQ6pVq0aZMmVYt24d48ePZ926dUiSpPdPPmPGDCZOnEi/fv2YPn069vb2yOVyRo4c+UHvqxo+fDgrVqxg5MiRfPrpp9jZ2SGTyejWrVu23c+VlNTfJaUxwtzt27d1nUdKlSpl8Lqfnx+DBg16/wDfktKZmlqtTnGZ5BJAly5dOH36NN988w2VK1fG2toajUajm6g0o3r16sWmTZs4ffo0Hh4e7Ny5kyFDhqR5VvQue3t7lEolT58+NXgtqSwjXeX9/f0pXbo01apVS7Xe9u3biYmJSTPxva1IkSKA9suBkHkioQkZ1qNHDyZOnMiVK1fw9/enVKlSer3INm/eTMOGDQ2muA8LC8PR0TFD2ypWrBgajUZ3VpLk5s2bBnU3b95M7969mTdvnq4sLi6OsLAwvXoZaXIrVqwYV65cQaPR6H2g3rhxQ/d6VvDz88PU1JQ1a9YYJMWTJ0+yaNEiHjx4QNGiRXF3d+fcuXOoVCpMTU2TXZ+7uzv79+/n1atXKZ6lJZ09vnt83j3rTM3r1685dOgQU6dOZdKkSbry27dv69VzcnLC1tZWr9NKSpo3b46TkxN+fn54enoSExODr69vumNKIpfL8fDw0PXqfNu5c+coUaIENjY26VpX0kzl06ZNS7Oun58f1tbWtGnTJt2xJjVJOzk5pXsZwZBochQyLOmb56RJkwgMDDT4JqpQKAzOSDZt2qQ3WkJ6tWjRAoBFixbplS9cuNCgbnLbXbx4scEZh5WVFWD4QZ6cli1b8uzZMzZs2KArS0xMZPHixVhbW+Pl5ZWe3UiTn58f9erVo2vXrnTq1Env8c033wCwbt06ADp27EhISEiyvfyS9r9jx45IksTUqVNTrGNra4ujoyPHjx/Xe/3XX39Nd9xJyffd4/7u30cul9OuXTt27dqVbIJ5e3kTExN8fHzYuHEjK1euxMPDg4oVK+pez0i3/U6dOnHhwgW9bd68eZPDhw/rbt9IcuPGDR48eJDsepKaQFPqgp/k5cuXHDx4kPbt22NpaWnwekREhEETqCRJfP/99wA0a9YszX0SUibO0IQMc3Nzo3bt2uzYsQMwvKbQunVrpk2bRt++falduzb//PMPfn5+lChRIsPbqly5Mj4+Pvz666+Eh4dTu3ZtDh06xJ07dwzqtm7dmjVr1mBnZ0e5cuU4c+YMBw8eNLiOUblyZRQKBbNmzSI8PBylUkmjRo0oUKCAwToHDRrE77//Tp8+fbh48SLFixdn8+bNnDp1ioULF6b7G35qkr79Dxs2LNnXCxUqRNWqVfHz82PMmDH06tWL1atXM2rUKM6fP0+9evWIjo7m4MGDDBkyhLZt29KwYUN8fX1ZtGgRt2/f1jX/nThxgoYNG+q2NWDAAH788UcGDBhA9erVOX78OLdu3Up37La2ttSvX5/Zs2ejUqkoVKgQBw4cIDg42KDujBkzOHDgAF5eXgwaNIiyZcvy9OlTNm3axMmTJ8mXL5+ubq9evVi0aBFHjhxh1qxZeus5f/48DRs2ZPLkyWl2DBkyZAhLly6lVatWjB49GlNTU+bPn4+zs7PuulWSsmXL4uXlpbsnMYlarWbDhg3UqlXL4FruuzZs2EBiYmKKzY2XLl3Cx8cHHx8fSpYsSWxsLNu2bePUqVMMGjSIqlWrprp+IQ1G6l0p5HJJ3Z5r1qxp8FpcXJz09ddfSwULFpQsLCykOnXqSGfOnDHoEp+ebvuSJEmxsbHSl19+KTk4OEhWVlaSt7e39PDhQ4Ou269fv5b69u0rOTo6StbW1lKzZs2kGzduSMWKFdN1+U6ydOlSqUSJEpJCodDrwv9ujJKk7U6ftF4zMzPJw8PDoKt70r7MmTPH4Hi8G+e7hg8fLgFSUFBQinWmTJkiAdLly5clSdJ2lZ8wYYLk5uYmmZqaSi4uLlKnTp301pGYmCjNmTNHKlOmjGRmZiY5OTlJLVq0kC5evKirExMTI/Xv31+ys7OTbGxspC5dukgvXrxIsdv+y5cvDWJ79OiR1L59eylfvnySnZ2d1LlzZ+nJkyfJ7vf9+/elXr16SU5OTpJSqZRKlCghDR06VIqPjzdYb/ny5SW5XC49evRIrzy93faTPHz4UOrUqZNka2srWVtbS61bt5Zu375tUA8w+NtLkiTt27dPAqRFixalua1atWpJBQoUkBITE5N9/e7du1Lnzp2l4sWLS+bm5pKlpaVUrVo1acmSJbpbF4TME/OhCYKQI1WpUgV7e3sOHTpk7FCEXEJcQxMEIcf566+/CAwMTHYgbEFIiThDEwQhx7h69SoXL15k3rx5hISEcPfu3TTHTBSEJOIMTRCEHGPz5s307dsXlUrFunXrRDITMkScoQmCIAh5gjhDEwRBEPIEkdAEQRCEPEHcWJ0MjUbDkydPsLGxea+RyQVBEIT3J0kSkZGRuLq6pjqmp0hoyXjy5IlusFBBEAQhZ3j48CGFCxdO8XWR0JKRNJzRw4cPsbW1zfDyKpWKAwcO0LRp0xQHj82pcmvsIu7sl1tjF3Fnr6yIOyIigiJFiqQ51JxIaMlIama0tbXNdEKztLTE1tY2V73xIPfGLuLOfrk1dhF39srKuNO6BCQ6hQiCIAh5gkhogiAIQp4gEpogCIKQJ4iEJgiCIOQJIqEJgiAIeYJIaIIgCEKeIBKaIAiC8MH88ziclbfkBL2M/uDbEvehCYIgCFlKo5E4cvMFfxy/y7ngV4CcFafvMatT5Q+6XZHQBEEQhCwRp1KzI/AxS08Ec+dFFAAmchlV7NX09Cz6wbcvEpogCILwXsJjVKw9d58Vp+4REhUPgI3ShO6eRelRszB/nzpMGZfUh63KCka/hvbLL79QvHhxzM3N8fT05Pz586nWX7hwIaVLl8bCwoIiRYrw1VdfERcXp1fn8ePH9OzZEwcHBywsLPDw8OCvv/76kLshCILw0Xn4KoYpO//l0x8PMWf/TUKi4iloZ86ElmU5Na4R41qWpaBd9s06btQztA0bNjBq1CiWLFmCp6cnCxcupFmzZty8eZMCBQoY1Pf392fs2LEsX76c2rVrc+vWLfr06YNMJmP+/PkAvH79mjp16tCwYUP27t2Lk5MTt2/fJn/+/Nm9e4IgCHnSlUdh/HH8Lnv+eYpG0paVLWjLoPputK7oiqnCOOdKRk1o8+fPZ+DAgfTt2xeAJUuWsHv3bpYvX87YsWMN6p8+fZo6derQvXt3AIoXL46Pjw/nzp3T1Zk1axZFihRhxYoVujI3N7cPvCeCIAh5m0YjcfSWtqPH2buvdOX1SjkyqH4J6pZ0NPr8kUZLaAkJCVy8eJFx48bpyuRyOY0bN+bMmTPJLlO7dm3Wrl3L+fPnqVmzJnfv3mXPnj34+vrq6uzcuZNmzZrRuXNnjh07RqFChRgyZAgDBw5MMZb4+Hji4+N1zyMiIgDtKNEqlSrD+5a0TGaWNbbcGruIO/vl1thF3BkTn6hh5+WnLD91jztvut6byGW09nChX53ilC2ovTaWmJiY7PJZEXd6l5VJkiRleivv4cmTJxQqVIjTp0/z6aef6sq//fZbjh07pnfW9bZFixYxevRoJEkiMTGRwYMH89tvv+leNzfXtteOGjWKzp07c+HCBUaMGMGSJUvo3bt3suucMmUKU6dONSj39/fH0tLyfXZTEAQhV4pJhFPPZRx/KidCpT3zUiok6hSQ8CqoIZ8yG2OJiaF79+6Eh4enOqVXrurlePToUWbMmMGvv/6Kp6cnd+7cYcSIEUyfPp2JEycCoNFoqF69OjNmzACgSpUqXL16NdWENm7cOEaNGqV7njSZXNOmTTM9H1pAQABNmjTJVfMWQe6NXcSd/XJr7CLu1D16HcvKM/fZdPkxMQlqAJxtlfT5tBhdqxfCxjxj286KuJNazdJitITm6OiIQqHg+fPneuXPnz/HxcUl2WUmTpyIr68vAwYMAMDDw4Po6GgGDRrEhAkTkMvlFCxYkHLlyuktV7ZsWbZs2ZJiLEqlEqXS8OuGqanpe71x3nd5Y8qtsYu4s19ujV3Ere+fR+H8cULb0UP9pqdHGRcbPvcqQSsPV8xM3q+jx/vEnd7ljJbQzMzMqFatGocOHaJdu3aA9uzq0KFDDBs2LNllYmJikMv1D6pCoQAgqeW0Tp063Lx5U6/OrVu3KFasWBbvgSAIQvaTJInYBDXRCYnExL/5mZBIdLxa72dMgproBDUx8Ynan2/XeVMe89Z6EtQa3TZyUkePjDBqk+OoUaPo3bs31atXp2bNmixcuJDo6Ghdr8devXpRqFAhZs6cCYC3tzfz58+nSpUquibHiRMn4u3trUtsX331FbVr12bGjBl06dKF8+fP88cff/DHH38YbT8FQRAyIz5RzcV7rzl5J4QTt19y65mCkWcD+BA9H0zkMtpUcmVAvRKUc834pZacwKgJrWvXrrx8+ZJJkybx7NkzKleuzL59+3B2dgbgwYMHemdk3333HTKZjO+++47Hjx/j5OSEt7c3P/zwg65OjRo12LZtG+PGjWPatGm4ubmxcOFCevToke37JwiCkBEajcSNZ5GcvPOSk3dCOR8cSpxK81YN/bMlSzMFlmYmWCnf/DRTYKl88zOlcqUJlqYKLJUKrN6qk8/SFEuzXNWtwoDRox82bFiKTYxHjx7Ve25iYsLkyZOZPHlyquts3bo1rVu3zqoQBUF4hyRJ3H4eRZza2JHkfk/DYzlxO4STt0M4HRRCSFSC3utONkrqlnTkU7f8hN0NxLvZZ9hZmWNuokAuzz3NgdnB6AlNEITcRaORGL/tH9ZfeIgcBX6Pz1LL3RFPN3uqF7fHziL3dbTITpFxKs4EhXLqTggn7oRw951pVSzNFHi62VOnpCP1SjnxibM1MpkMlUrFnqeBOForMTUVH93JEUdFEIR0U2skvt18hS2XHgGgQcaVxxFceRzBH8fvIpNBWRdbPEvY4+nmQE03e+ytzIwctXGp1BoCH4Zx4nYIp+6EEPgwTNeLEEAug4qF81GvlCN1SjpStWj+9+5R+LESCU0QhHRJVGv4etNldgQ+QSGXMa+TB6/vXMLGrTJ/PQjnfPAr7oZEc+1pBNeeRrDi1D0APnG21iU3zxL2FLDJvsFqjUGSJIJeRumaEc/eDSU6Qb9ttriDJXVLOVK3pBOflnDAzlKc1WYFkdAEQUiTSq1h5IZAdl95iolcxmKfKjQu48ieh9Cysiudamhvi3kREce54FecD37FueBQbj2P0j3WnL0PQAlHK11y83RzwDWfhTF3LV00GonI+EQiYlWExagIi01481NFeMx/v4fFJHD1cQTPIvRnAMlvaUrtko7UK6k9CytiL0Yg+hBEQhMEIVUJiRqGr7vE/n+fY6qQ8Uv3qjQt75Ls+HoFbM3xruSKdyVXAEKj4rlw7zXngkM5d/cV159FcDckmrsh0ay/8BCAwvkt8HRzwLOEPbXcHChib5Gl9z5pNBIqjQaVWkKVqCEmPoHnsfD3gzCiVBrCYlSEv0lU4W+SUtg7z8NjVWgy0FXezEROzeJJ18EcKVfQVnTgyAYioQmCkKL4RDVD/S5x8PoLzBRylvhWpVEZ53Qv72CtpHkFF5pX0I7+Ex6j4q/7rzgXrH1cfRzOo9exPHr9SHddzsXWnJpu2s4lKrWGBPV/yei/52/K1BoSEvWf/1emfZ6YbCYygcDU515MjoWpgnyWpthZmP7308JM+7ul9vei9pZUL54fc1NFhtcvvB+R0ARBSFacSs3gtRc5evMlShM5f/SqjtcnTu+1TjtLUz4r68xnZbVJMSo+kYv3X3Pubijng19x+VEYzyLi2Hn5SVbsQrJkMjCXSzjYWpLf0kwvQeWzMMPOIik5mZLvzev5LEyxtTAVSSqHEwlNEAQDsQlqBq35ixO3QzA3lbOsdw3qlHTM8u1YK03w+sRJlyhjE9T8/eA1lx68JkEtYaaQYaqQax8mcv3nCjlmJu88V8gxfVNmpiuXvVlW+1yjTmTPnj20bFkvV47lKKRMJDRBEPTEJCTSf+VfnLkbiqWZguV9alCrhEO2bNvCTEHtko7U/gDJM4lG3AyeZ4mEJgiCTlR8Iv1WXOD8vVdYK01Y2bcG1YvbGzssQUgXkdAEQQC0I1j0WXGBi/dfY6M0YVX/mlQtmt/YYQlCuomEJggC4bEqei0/z+WHYdiam7B2gCcVC+czdliCkCEioQnCRy4sJgHfZef553E4+S1NWdPfkwqF7IwdliBkmEhogvARexWdQI8/z3H9aQT2Vmb4DfCkbMHcOReWIIiEJggfqZCoeHr+eY4bzyJxtFbiP9CTT5xtjB2WIGSaSGiC8BF6ERFH9z/PcedFFAVslPgPrEXJAtbGDksQ3otIaILwkXkWHkf3pWe5GxJNQTtz/AfWws3RythhCcJ7EwlNED4ij8Ni6b70LPdDYyiUz4J1A2tR1EGM/C7kDSKhCcJH4uGrGHyWnuXR61iK2GuTWeH8IpkJeYdIaILwEbgfGk33ped4HBZLcQdL/AfWyhXzkAlCRoiEJgh5XHBIND5/nOVZRBwlnKxYN7AWzrZ5e9Zo4eMkEpog5GF3XkTRfelZXkTGU6qANX4DPSlgI5KZkDeJhCYIuZxGIxEWq+JVdDyhUQm8ik4gNFr7c/WZ+4RExVPGxYa1AzxxtFYaO1xB+GBEQhOEHCYhUcPrmIS3klM8r6P1E1XSz1fRCYTFJJDspMxvlCtoy9oBnthbmWXfTgiCEYiEJghGtPfqM/68IWfFo3OExagIjU4gMi4xU+uyszDF3spM93CwMqOIvSU9PYthZykmshTyPpHQBMEI4lRqpu76l3XnHwJyeB2u97pcBvZWZuS3fJOcrJMSlRKHtxKW/Zvy/JZmmCrkxtkZQcghREIThGwWHBLNEL9LXH8agUwGDVw0dPSqQgE7S12isrMwRS6XGTtUQchVREIThGy0+8pTxmy5QlR8Ig5WZszt5EHErXM0K++MqaloFhSE95Ej2ih++eUXihcvjrm5OZ6enpw/fz7V+gsXLqR06dJYWFhQpEgRvvrqK+Li4pKt++OPPyKTyRg5cuQHiFwQ0ic+Uc2Unf8y1P8SUfGJ1Cien91f1qNuSQdjhyYIeYbRz9A2bNjAqFGjWLJkCZ6enixcuJBmzZpx8+ZNChQoYFDf39+fsWPHsnz5cmrXrs2tW7fo06cPMpmM+fPn69W9cOECv//+OxUrVsyu3REEAw9fxTDM/xKXH2mvkw32cmd0008wUchRqVRGjk4Q8g6jJ7T58+czcOBA+vbtC8CSJUvYvXs3y5cvZ+zYsQb1T58+TZ06dejevTsAxYsXx8fHh3PnzunVi4qKokePHixdupTvv/8+1Rji4+OJj4/XPY+IiABApVJl6gMnaZnc+GGVW2PPqXEfuvGCb7dcJSIuETsLE2Z39KBRaSckjRqVRp1j406P3Bq7iDt7ZUXc6V1WJklSKnewfFgJCQlYWlqyefNm2rVrpyvv3bs3YWFh7Nixw2AZf39/hgwZwoEDB6hZsyZ3796lVatW+Pr6Mn78eL112Nvbs2DBAho0aEDlypVZuHBhsnFMmTKFqVOnJrstS0sxeKuQcWoN/O+hnMNPtK36xawl+nyixl7c1ywIGRYTE0P37t0JDw/H1jblGdWNeoYWEhKCWq3G2dlZr9zZ2ZkbN24ku0z37t0JCQmhbt26SJJEYmIigwcP1ktm69ev59KlS1y4cCFdcYwbN45Ro0bpnkdERFCkSBGaNm2a6sFLiUqlIiAggCZNmuS6C/25NfacFPfT8Di+2niFi0/CAOjzaVG+afoJZiaGl6xzUtwZlVtjF3Fnr6yIO6nVLC1Gb3LMqKNHjzJjxgx+/fVXPD09uXPnDiNGjGD69OlMnDiRhw8fMmLECAICAjA3T9+YdUqlEqXS8Kuzqanpe71x3nd5Y8qtsRs77uO3XjJyQyCvohOwUZowu1NFWngUTHM5Y8f9PnJr7CLu7PU+cad3OaMmNEdHRxQKBc+fP9crf/78OS4uLskuM3HiRHx9fRkwYAAAHh4eREdHM2jQICZMmMDFixd58eIFVatW1S2jVqs5fvw4P//8M/Hx8SgUig+3U8JHSa2R+OngLRYfuYMkaYeb+rVHVYqLmaAFIdsYtdu+mZkZ1apV49ChQ7oyjUbDoUOH+PTTT5NdJiYmBrlcP+ykBCVJEp999hn//PMPgYGBukf16tXp0aMHgYGBIpkJWe5FZBw9/zzHosPaZNbdsyhbh9QWyUwQspnRmxxHjRpF7969qV69OjVr1mThwoVER0frej326tWLQoUKMXPmTAC8vb2ZP38+VapU0TU5Tpw4EW9vbxQKBTY2NlSoUEFvG1ZWVjg4OBiUC8L7OhMUypfr/+ZlZDyWZgpmtPegXZVCxg5LED5KRk9oXbt25eXLl0yaNIlnz55RuXJl9u3bp+so8uDBA70zsu+++w6ZTMZ3333H48ePcXJywtvbmx9++MFYuyB8hDQaid+OBTHvwE00EnzibM2vPapRsoC1sUMThI+W0RMawLBhwxg2bFiyrx09elTvuYmJCZMnT2by5MnpXv+76xCE9/EqOoGvNgRy7NZLADpWLcz0duWxNMsR/06C8NES/4GCkAEX779imP/fPA2PQ2kiZ3q7CnSpXsTYYQmCgEhogpAukiSx7GQwP+69QaJGooSjFb/0qErZghm/T1EQhA9DJDRBSIFGIxGjUhMWk8C0Xdc4cE17e0nrigWZ2cEDG/Pcdy+QIORlIqEJeUJCooZoFTwJi0UlxREdryY6IZGYpJ8JaqLj3/x8uzyZ12MSEomOVxOrUuttw0whZ2LrsvSsVQyZTMxVJgg5jUhoQrbSaCTiEtVEx/+XOGISEolOUBMT/+bnW+Ux7zxPqb5KLQEm8NeJLI9ZLoNPnG2Y3akiFQvny/L1C4KQNURCEz44jUZi29+PWXjoFo9ex/Ihh8M2VciwUppgZWaCpZkCS6UJVmYKLM1MsFK++fl2eXKvKxW65a2UJihN5OKMTBByAZHQhA/q8sMwJu/8l8CHYQavJZdQLMwynoAszRSYySWOHQqgTeuWuXKcO0EQ3p9IaMIH8SIyjjn7brLp4iNAm7yGNSpFx6qFsDY3wdxEgVyedWc9KpWKZAazFwThIyISmpClEhI1rDwdzKJDd4iKTwSgQ9VCjGleBmfb9M1+IAiCkBkioQlZ5sjNF0zfdY27IdEAVCxsx5Q25alaNL+RIxME4WMgEprw3oJDopn+v2scvvECAEdrM75tXoZOVQtnabOiIAhCakRCEzItMk7Fz4fvsPxUMCq1hIlcRt86xRn+WSlsxU3HgiBkM5HQhAzTaCS2/v2YWftu8DIyHgCvT5yY5F0Odycx2rwgCMYhEpqQIYFvuuFfftMNv7iDJRNbl6NRmQLiXi1BEIxKJDQhXV5ExjF73002v9UNf/hnpehbpzhKEzELuCAIxicSmpCqhEQNK04Fs/iwfjf8sc3LUEB0wxcEIQcRCU1I0eEbz5n+v+sEv+mGX+lNN/wqohu+IAg5kEhogoHnsTBg9SWO3Q4BwNFayZjmpekouuELgpCDiYQm6MSp1Mzdf4sVlxWopRBMFTL61nFjeKOSYu4vQRByPJHQBACi4hMZtPovTgeFAjK8PnFksnd5Sohu+IIg5BIioQm8jk6gz4rzXH4UjpWZAh+3BMb0rCpGrRcEIVcR45N/5J6Fx9Hl9zNcfhROfktT1vSrjof9B5ywTBAE4QMRCe0jdj80mk5LTnP7RRQutuZs/PxTPArZGTssQRCETMlwQitevDjTpk3jwYMHHyIeIZvceBZBpyVnePQ6luIOlmwa/CmlnG2MHZYgCEKmZTihjRw5kq1bt1KiRAmaNGnC+vXriY+P/xCxCR/IpQev6fr7WV5GxlPGxYaNgz+liL2lscMSBEF4L5lKaIGBgZw/f56yZcsyfPhwChYsyLBhw7h06dKHiFHIQiduv6TH0nOEx6qoViw/GwZ9SgEbMeKHIAi5X6avoVWtWpVFixbx5MkTJk+ezJ9//kmNGjWoXLkyy5cvR5JEx4KcZt/Vp/Rf+RexKjX1Sjmypn9N7CxFT0ZBEPKGTCc0lUrFxo0badOmDV9//TXVq1fnzz//pGPHjowfP54ePXqke12//PILxYsXx9zcHE9PT86fP59q/YULF1K6dGksLCwoUqQIX331FXFxcbrXZ86cSY0aNbCxsaFAgQK0a9eOmzdvZnZX84SNfz1kiN8lEtQaWnkU5M/e1bE0E3dtCIKQd2T4E+3SpUusWLGCdevWIZfL6dWrFwsWLKBMmTK6Ou3bt6dGjRrpWt+GDRsYNWoUS5YswdPTk4ULF9KsWTNu3rxJgQIFDOr7+/szduxYli9fTu3atbl16xZ9+vRBJpMxf/58AI4dO8bQoUOpUaMGiYmJjB8/nqZNm3Lt2jWsrKwyusu53p8n7vL97usAdK1ehBkdPFCIIawEQchjMpzQatSoQZMmTfjtt99o165dsjffurm50a1bt3Stb/78+QwcOJC+ffsCsGTJEnbv3s3y5csZO3asQf3Tp09Tp04dunfvDmh7Xfr4+HDu3DldnX379ukts3LlSgoUKMDFixepX79+uvc1t5MkifkBt1h8+A4Ag+qXYFyLMmLeMkEQ8qQMJ7S7d+9SrFixVOtYWVmxYsWKNNeVkJDAxYsXGTdunK5MLpfTuHFjzpw5k+wytWvXZu3atZw/f56aNWty9+5d9uzZg6+vb4rbCQ8PB8De3j7Z1+Pj4/V6akZERADaZlWVSpXmfrwraZnMLJtVNBqJ7/fcYM25hwB83bgkn9d3IzExMdXlckLsmSHizn65NXYRd/bKirjTu6xMymDvjQsXLqDRaPD09NQrP3fuHAqFgurVq6d7XU+ePKFQoUKcPn2aTz/9VFf+7bffcuzYMb2zrrctWrSI0aNHI0kSiYmJDB48mN9++y3ZuhqNhjZt2hAWFsbJkyeTrTNlyhSmTp1qUO7v74+lZe7rzq7WgH+QnL9C5MiQ6OSmoa6L6KQjCELuFBMTQ/fu3QkPD8fW1jbFehk+Qxs6dCjffvutQUJ7/Pgxs2bNSjEJZZWjR48yY8YMfv31Vzw9Pblz5w4jRoxg+vTpTJw4Mdl4r169mmIyAxg3bhyjRo3SPY+IiKBIkSI0bdo01YOXEpVKRUBAAE2aNMn28RDjVGpGbLjCXyEvMZHLmN3RA++KBdO9vDFjfx8i7uyXW2MXcWevrIg7qdUsLRlOaNeuXaNq1aoG5VWqVOHatWsZWpejoyMKhYLnz5/rlT9//hwXF5dkl5k4cSK+vr4MGDAAAA8PD6Kjoxk0aBATJkxALv+v4+awYcP43//+x/HjxylcuHCKcSiVSpRKpUG5qanpe71x3nf5jIqMUzFgzd+cC36F0kTObz2r0qiMc6bWld2xZxURd/bLrbGLuLPX+8Sd3uUy3G1fqVQaJCCAp0+fYmKSsfxoZmZGtWrVOHTokK5Mo9Fw6NAhvSbIt8XExOglLQCFQgGgu/dNkiSGDRvGtm3bOHz4MG5ubhmKKzd6FZ1Ajz/PcS74FdZKE1b3q5npZCYIgpAbZTihNW3alHHjxuk6WgCEhYUxfvx4mjRpkuEARo0axdKlS1m1ahXXr1/niy++IDo6WtfrsVevXnqdRry9vfntt99Yv349wcHBBAQEMHHiRLy9vXWJbejQoaxduxZ/f39sbGx49uwZz549IzY2NsPx5QZPw2Pp8vsZrjwKx97KjPWDauFZwsHYYQmCIGSrDDc5zp07l/r161OsWDGqVKkCQGBgIM7OzqxZsybDAXTt2pWXL18yadIknj17RuXKldm3bx/OztqziwcPHuidkX333XfIZDK+++47Hj9+jJOTE97e3vzwww+6OkkdRBo0aKC3rRUrVtCnT58Mx5iT3QuJpsef53gcFktBO3PW9PekZAExKacgCB+fDCe0QoUKceXKFfz8/Lh8+TIWFhb07dsXHx+fTLePDhs2jGHDhiX72tGjR/UDNjFh8uTJTJ48OcX1fSzDbl17EkGv5ecJiYrHzdGKNf1rUjh/7uuVKQiCkBUyNfaRlZUVgwYNyupYhAy4eP8VfVdcICIukXIFbVndvyaO1oYdWwRBED4WmR7M79q1azx48ICEhAS98jZt2rx3UELqjt16yeA1F4lVqalRPD9/9q6BnUXu6/UkCIKQlTI1Ukj79u35559/kMlkuua9pOGU1Gp11kYo6Dl7N5QBqy6gUkt4feLEkp7VsDBTGDssQRAEo8twL8cRI0bg5ubGixcvsLS05N9//+X48eNUr17d4HqXkPVWn7mHSi3RpJwzS3tVF8lMEAThjQyfoZ05c4bDhw/j6OiIXC5HLpdTt25dZs6cyZdffsnff//9IeIUALVG4uTtEAC+aOCOmUmmZ/8RBEHIczL8iahWq7GxsQG0I308efIEgGLFin30c459aJcfhRERl4ituQkVC9kZOxxBEIQcJcNnaBUqVODy5cu4ubnh6enJ7NmzMTMz448//qBEiRIfIkbhjRO3tGdndUs5YqIQZ2eCIAhvy3BC++6774iOjgZg2rRptG7dmnr16uHg4MCGDRuyPEDhP8dvvwSgXiknI0ciCIKQ82Q4oTVr1kz3e8mSJblx4wavXr0if/78YuLIDyg8VkXgwzAA6pVyNG4wgiAIOVCG2q1UKhUmJiZcvXpVr9ze3l4ksw/sTFAIao1ECScrMRqIIAhCMjKU0ExNTSlatKi418wIjr25flZfNDcKgiAkK8M9CyZMmMD48eN59erVh4hHSIYkSRy/pb1+5vWJSGiCIAjJyfA1tJ9//pk7d+7g6upKsWLFsLKy0nv90qVLWRacoBUcEs3jsFjMFHI8S9gbOxxBEIQcKcMJrV27dh8gDCE1J97cTF29eH4szTI9/KYgCEKeluFPx9SmbRE+jKTmRtFdXxAEIWXi7twcLiFRw5m7oQDU/0R01xcEQUhJhs/Q5HJ5ql30RQ/IrHXx/mtiEtQ4Wisp62Jr7HAEQRByrAwntG3btuk9V6lU/P3336xatYqpU6dmWWCC1n+jgzgil4t7/QRBEFKS4YTWtm1bg7JOnTpRvnx5NmzYQP/+/bMkMEHrxJuEJpobBUEQUpdl19Bq1arFoUOHsmp1AhASFc/VxxEA1C0pOoQIgiCkJksSWmxsLIsWLaJQoUJZsTrhjaS5z8oVtMXJRmnkaARBEHK2DDc5vjsIsSRJREZGYmlpydq1a7M0uI/dcV1zozg7EwRBSEuGE9qCBQv0EppcLsfJyQlPT0/y58+fpcF9zCRJ0t1QXV+Mri8IgpCmDCe0Pn36fIAwhHfdeBbJy8h4LEwVVCsuvigIgiCkJcPX0FasWMGmTZsMyjdt2sSqVauyJCjhv9FBapWwR2miMHI0giAIOV+GE9rMmTNxdDRsAitQoAAzZszIkqAEcf1MEAQhozKc0B48eICbm5tBebFixXjw4EGWBPWxi01QcyH4NSASmiAIQnplOKEVKFCAK1euGJRfvnwZBweHTAXxyy+/ULx4cczNzfH09OT8+fOp1l+4cCGlS5fGwsKCIkWK8NVXXxEXF/de68xJzgaHkqDWUCifBSUcrdJeQBAEQch4QvPx8eHLL7/kyJEjqNVq1Go1hw8fZsSIEXTr1i3DAWzYsIFRo0YxefJkLl26RKVKlWjWrBkvXrxItr6/vz9jx45l8uTJXL9+nWXLlrFhwwbGjx+f6XXmNCeSZqf+xDHVcTMFQRCE/2Q4oU2fPh1PT08+++wzLCwssLCwoGnTpjRq1ChT19Dmz5/PwIED6du3L+XKlWPJkiVYWlqyfPnyZOufPn2aOnXq0L17d4oXL07Tpk3x8fHROwPL6Dpzmv/GbxTNjYIgCOmV4W77ZmZmbNiwge+//57AwEAsLCzw8PCgWLFiGd54QkICFy9eZNy4cboyuVxO48aNOXPmTLLL1K5dm7Vr13L+/Hlq1qzJ3bt32bNnD76+vpleZ3x8PPHx8brnERHa4aZUKhUqlSrD+5W0TGaWfRoex50XUchlULOYXabW8T7eJ3ZjEnFnv9wau4g7e2VF3OldNtPTH5cqVYpSpUpldnEAQkJCUKvVODs765U7Oztz48aNZJfp3r07ISEh1K1bF0mSSExMZPDgwbomx8ysc+bMmcnOFHDgwAEsLS0zs2sABAQEZHiZM89lgIKiVhKnjmR8+aySmdhzAhF39sutsYu4s9f7xB0TE5OuehlOaB07dqRmzZqMGTNGr3z27NlcuHAh2XvUstLRo0eZMWMGv/76K56enty5c4cRI0Ywffp0Jk6cmKl1jhs3jlGjRumeR0REUKRIEZo2bYqtbcbnIFOpVAQEBNCkSRNMTU0ztOy+9ZeB53jXcKdlo5IZ3vb7ep/YjUnEnf1ya+wi7uyVFXEntZqlJcMJ7fjx40yZMsWgvEWLFsybNy9D63J0dEShUPD8+XO98ufPn+Pi4pLsMhMnTsTX15cBAwYA4OHhQXR0NIMGDWLChAmZWqdSqUSpNBz819TU9L3eOBldXq2ROH33FQANyrgY9U37vvtuLCLu7JdbYxdxZ6/3iTu9y2W4U0hUVBRmZmbJbjC9WTSJmZkZ1apV05t2RqPRcOjQIT799NNkl4mJiUEu1w9bodCOpCFJUqbWmVNceRRGeKwKG3MTKhW2M3Y4giAIuUqGE5qHhwcbNmwwKF+/fj3lypXLcACjRo1i6dKlrFq1iuvXr/PFF18QHR1N3759AejVq5deBw9vb29+++031q9fT3BwMAEBAUycOBFvb29dYktrnTlV0mDEdUs6YqLIsqnqBEEQPgoZbnKcOHEiHTp0ICgoiEaNGgFw6NAh/P392bx5c4YD6Nq1Ky9fvmTSpEk8e/aMypUrs2/fPl2njgcPHuidkX333XfIZDK+++47Hj9+jJOTE97e3vzwww/pXmdOlTR+o+iuLwiCkHEZTmje3t5s376dGTNmsHnzZiwsLKhUqRKHDx/G3t4+U0EMGzaMYcOGJfva0aNH9QM2MWHy5MlMnjw50+vMiSLiVPz9MAzQ3lAtCIIgZEymuu23atWKVq1aAdreJ+vWrWP06NFcvHgRtVqdpQF+LE7fCUWtkSjhZEXh/Jm/VUAQBOFjlekLNcePH6d37964uroyb948GjVqxNmzZ7Myto+KbnR90dwoCIKQKRk6Q3v27BkrV65k2bJlRERE0KVLF+Lj49m+fXumOoQIWpIk6a6fieZGQRCEzEn3GZq3tzelS5fmypUrLFy4kCdPnrB48eIPGdtH415oDI9ex2KqkOHplrkZCwRBED526T5D27t3L19++SVffPHFew95JehLOjurXsweK2WmRyMTBEH4qKX7DO3kyZNERkZSrVo1PD09+fnnnwkJCfmQsX00TojZqQVBEN5buhNarVq1WLp0KU+fPuXzzz9n/fr1uLq6otFoCAgIIDIy8kPGmWclJGo4ExQKQL1S4vqZIAhCZmW4l6OVlRX9+vXj5MmT/PPPP3z99df8+OOPFChQgDZt2nyIGPO0Sw9eE52gxtHajHIFMz4QsiAIgqD1XuMrlS5dmtmzZ/Po0SPWrVuXVTF9VJKun9Ut6YhcLmanFgRByKwsGTBQoVDQrl07du7cmRWr+6gcF9fPBEEQsoQYAdeIQqPiufpYO0NBXXH9TBAE4b2IhGZEJ+9oe4mWLWhLARtzI0cjCIKQu4mEZkTHb2kTmhgdRBAE4f2JhGYkkiT9d/+ZGL9RELKPKhYkjbGjED4AMSyFkdx4FsmLyHjMTeVUL57f2OEIQt4T+xpe3oSXN+DlrTc/b2Ia8Yh6lu7QtBGYipnh8xKR0Iwk6eysVgkHlCYKI0cjCLmUJEF0yJtkdeO/BBZyC6Kep7iYfUwQmt1fQadlIBO3y+QVIqEZie76mWhuFIS0SRJEPIGQm2+ddb35Gfs65eVsC4NTaXAqo/uZGPUS+UZf5P9uAdfKUOfLbNuN9xJ6h8KvTiO7awn5XMHaGSzsQS6uHCURCc0IYhPUnL/3ChD3nwmCAY0G7h2Hp5f1mgpJSGl4PRnkL6aXtHAqDY6fgNLGoLakUnG1cHcqPloLByeDczko2fjD7tP7en4NkxXNqBYfAfeX/FcuU4B1Ae3DqoA2yVm/+/PN70qbPH82KhKaEZwLDiUhUYOrnTnuTlbGDkcQco6gI3BwCjwNNHxNpgD7Em8lraTEVQpMLTK0mWDHJlRwkJBf9oPN/WDgEXBwz5JdyHLhj2BtR2TxEUSbOWKZrwCyqBcQEwKSGiKfah9pMbEAayf9JPf2T4dS4PTJh9+fD0gkNCM4cTupu74Tsjz+jUkQ0uXJ39pEdveo9rmZtfasqUDZ/xKYvTuYmGXN9mQy1M1mIw+9BY8uwPruMOBgsmd0RhX7GtZ2gsgnSI6fcKzgSJq06YKpqSmoVdrrh1HPIerFm59v/R798r/n8RGQGAthD7SPlDQYD17f5tozOZHQjCBp/MZ64vqZ8LELDYLD38O/W7XP5aZQoz/UG609m/iQTJTQZQ380UDbrLltsPZ5TrkmpYqD9T3g5XWwKUhit42oTl3573WFKdgW1D7SkhAD0S+SSXxvHpFPtF8qjs4AVTQ0npork5pIaNnsSVgst19EIZdpByQWhI9S5HM4PhsurgRNIiCDil2g4XjIXzz74rAtCN38YEULuPE/bUwNxmbf9lOiUcO2QXD/FChtocdmsCsMXElz0WSZWYJZ8dSP7ZlfYf84OPWTNgG2mJ1zkns6iYSWzU6+aW6sVCQfdpamRo5GELJZXAScXgRnfgFVjLasZBNoPBlcPIwTU+Hq0HoB7BgKR2eCc3ko622cWEDbo3PfOLi2AxRm2oTrUgFUqg+73U+HaK9F/u8ruLBU+/dpsxjkuee2IpHQstmx26K5UfgIJcbDhWVwYi7EaCe0pVB1aDIVitc1bmwAVXrC0ytw/ndt06NDSe31O2M4tVAbB0D7JeBWP/u2Xb0vmFrC9sEQ6KcdVaXDH9rmzVxAJLRspNZInHozILGXGL9R+Bho1HBlIxyZAeFvOiM4lNKekZVpnbOu0zT7AV5cg3snYJ0PDDwMlvbZG8Pl9drOMQDNZkCFjtm7fYBKXcHUHDb3117bVMVC55XashwudzWQ5nL/PA4nLEaFjbkJlQrnM3Y4gvDhSBLc2g9L6mm/7Yc/AJuC4L0IhpzVNunlpGQG2rOQzqvArii8DoYt/UGdmH3bv3NI2+wJ8Okw+HRo9m37XeXaQjd/MDGHW3thXTftdbUcTiS0bJTUu7GOuyMmCnHohTzq4QVY2Qr8u8CLf8HcDhpPgeGXoFpvUOTghiErB+01KxMLCDoMh6Zkz3afBMLGXtoOMhU6QZPp2bPd1HzSFLpvBFMruHsE1nbUXgPNwXLwOyvvOSFmp86dbgfAzT0fZNVyjYayT0LgqSsUqZ7zzloy4uVNODRN21sQtN/uaw6Cul9lf9Pd+yhYEdr9or3h+vRicKmo7YH5obwKBr/OkBClvV7W7tec07uwhBf4btPG9+A0rG4LPbfk2L9njkhov/zyC3PmzOHZs2dUqlSJxYsXU7NmzWTrNmjQgGPHjhmUt2zZkt27dwMQFRXF2LFj2b59O6Ghobi5ufHll18yePDgD7ofqYmIU3HpQRgA9cTs1LnH9V2wwReQPsjqFcAnAMv/BwXKQSUfqNgVbJw/yPY+iIgncHKOthOBpAGZHCr3gAbjwK6QsaPLnAod4dk/cHIB7ByuHY3EtUrWbyc6RHvmE/0CnD2gq5/2/ricpKgn9N4Ja9rDk0uwyht8t3/4+wQzwegJbcOGDYwaNYolS5bg6enJwoULadasGTdv3qRAgQIG9bdu3UpCQoLueWhoKJUqVaJz5866slGjRnH48GHWrl1L8eLFOXDgAEOGDMHV1ZU2bdpky36960xQKGqNRAlHK4rYWxolBiGDHl+ELQMBCUq30n5zz2JqtZqn/xyjUGQgshfXIGCitlNAyc+gcnf4pEXOvRgf+5pyj9dj8tsgSIzTlpVpDZ9N0o7ukds1mgjPrsKdAFjfEwYdzdoP8YRobbPsqyDtdbsem8DcNuvWn5VcK0Of3bCmHTy/qr1vr/dOsHU1dmR6jJ7Q5s+fz8CBA+nbty8AS5YsYffu3SxfvpyxYw1vcLS31z/VXb9+PZaWlnoJ7fTp0/Tu3ZsGDRoAMGjQIH7//XfOnz9vtIT23+gg4uwsVwh7oO3plhirHYKpy+oPcu1Ho1JxMaoCzg1rY3prFwT6a4diun1A+zC3015TqdwDClU1bpOkJMGru9pegMHHMbkdQKn4N9dUitXRXicrknzLSq4kV0DHP+HPzyD0jvYaV68dWTP8ljpR26T5+CJY5Nc246VnxA9jci4HfffCqjYQehuWN9cmtey8ET4NRk1oCQkJXLx4kXHjxunK5HI5jRs35syZM+lax7Jly+jWrRtWVv8N8lu7dm127txJv379cHV15ejRo9y6dYsFCxYku474+Hji4+N1zyMitP+kKpUKVSZuZkxaJumnJEkce5PQarvbZ2qd2eXd2HOLLI07LgITvy7Iop4jFShHYruloJFAk/XHRBe3iRVU8tU+Qm8jv7IB+T8bkUU+gb+WwV/LkBxKoanog6ZC5+z78It4jOzeCeT3TyK7dwJZxGPdSzIg3LwIylYzUZRupk22ueB9k6H3iokVdFqDycqmyB6cRr3nWzQt5rxfAJKEYs9XyG/tQzIxR93FDymfW5rHLkf8b9oWhV67MPHrgOx1MNLyFiT22KK9FSMFWRF3epeVSZL0YS4OpMOTJ08oVKgQp0+f5tNPP9WVf/vttxw7doxz586luvz58+fx9PTk3Llzetfc4uPjGTRoEKtXr8bExAS5XM7SpUvp1atXsuuZMmUKU6dONSj39/fH0vL9mwdfxsL3gSYoZBIza6hR5p4b7z86MimRWkHzKRB5lTiTfBwrPZk4MwfjBCNpcIq8RpFXJykY9hcmkrapXULGC5sKPHSox1O7qmjkWTRgL6BUheMYdR3HyGs4Rl3HOl5/kkyNTMErq5KEWJcjxKYsoVafaK+Z5XHO4X/jeXchMiQCi/TlvmPDTK+r9NOtlHm2HQkZ592+5Fm+alkYafYwV72m9p1Z2MQ9Ic7EljMlvyXCougH215MTAzdu3cnPDwcW9uUm2WN3uT4PpYtW4aHh4dBB5LFixdz9uxZdu7cSbFixTh+/DhDhw7F1dWVxo0N5z0aN24co0aN0j2PiIigSJEiNG3aNNWDlxKVSkVAQABNmjTB1NSUteceQOANqhe3p713jYzvaDZ6N/bcIkviliTke0ejiLyKZGqJwnczjQpWztI435V23K2Bb5HiI0m8vgP5lfXIH57FOfIfnCP/QVLaoinXDqliN6RCNTLeJBn7Gtn908juvzkLe3lD72VJpkAqWBmpeD3to3AN7EwtsQOKflTvlZZoTlqgODaDSo/XUqFhJ6QinhnetuzSKkz+3g6ApsUcqlbt84Hj/oCimyGt64z5839ocG8uap9NSMl0nMmKuJNazdJi1ITm6OiIQqHg+XP9b4HPnz/HxcUl1WWjo6NZv34906ZN0yuPjY1l/PjxbNu2jVatWgFQsWJFAgMDmTt3brIJTalUolQa9iwyNTV9rzdO0vKngrQz6nqVLpAz3ojp8L77bizvFffpxfD3KkCGrOOfmBbNvi8facZtag81+mofoUHaESUur0MW/hDF36vh79Xa6VUq+0DFbpCvSPLriY+E+2cg+BgEH9f25NPrwSnTjhvo5gVu9ZEV/RRZGh0VPpr3SoNv4eW/yK7twGRLX20nkYz04ry5F/Z9o/29/rcoPAeSmcaaHHO88xWEPv8Dv07IHl3AxK+DtmNLsU+Trf4+cad3OaMmNDMzM6pVq8ahQ4do164dABqNhkOHDjFs2LBUl920aRPx8fH07NlTrzzpupf8nfs4FAoFGo0mS+NPj4REDWeC3sx/JsZvzLmu74IDE7W/N/sByrQybjypcXCHRhO03eLvn9R2JLm2Q9tb7vD3cPgH7f1MlXtoO7Q8u6LryMHjS9pJId/mVAaK19MuU7xujr3HyOhkMmj7K4Tc0d4wvqGntpNEenqhPrwAm/pqb2uo0lM7q0BeYJFPe5/aOh/te2xtB+0II+6Zb5J9H0Zvchw1ahS9e/emevXq1KxZk4ULFxIdHa3r9dirVy8KFSrEzJkz9ZZbtmwZ7dq1w8FB//qGra0tXl5efPPNN1hYWFCsWDGOHTvG6tWrmT9/frbtV5JLD14TnaDGwcqMcgVzaJfcj93b3fNrDIBaQ4wdUfrI5dok5FYfWs6Bazvh8ro3yeuY9pGc/G7/LVe8Xu66583YlNbg46+dQ+3JJfjfSGj3W+pNvSG3td3zE2OhVFNovTB330D/LqWNdkSRjb5w5yD4d9X2Ci7dPNtDMXpC69q1Ky9fvmTSpEk8e/aMypUrs2/fPpydtf9kDx48MDjbunnzJidPnuTAgQPJrnP9+vWMGzeOHj168OrVK4oVK8YPP/xglBurk0YHqVvKEbk8D72J84qwB+Df7U33/CbQfFaO/bBRq9Wp9PYyhbIdtY/wx9qRTW78DyIeg5WzdoqUwjWgUDXDHpJxcZmKR6VSYWJiQlxcHGq1Ou0Fcoj3jtvCBTqshh3DIegknF0BVbonXzf6JWwZCgorcKsB3ktApdY+sjvuD0oO7VbA/vEQfBT+NxYSVFCqSbriNjU1RaF4/95yRk9oAMOGDUuxifHo0aMGZaVLlya1zpkuLi6sWLEiq8J7L8dviebGHCsuXPttMvoFOFeATstz5DiDkiTx7NkzwsLC0r+QU2PtQ6PWn88qNA5Cg7MsLhcXFx4+fIgsh34JSE7WxO0EjZdC7GtABreuGzY9ShrtbNAVv9bOxG1dAB4/T3Zt2Rf3B1Z2CBTvpr1pPEoGN7UdrNITd758+XBxcXmvfct5/715SGh0AlefhAPihuocR62CTX2004VYu0D3DTl2lIakZFagQAEsLS1zzIeZRqMhKioKa2trg1aUnCzL4pYk7bBf8eGAHOwL/XfTtaSBsIdgbQcyE+3Nx+95Q3auOd6SG0Q+hbgw7VOrfESqHVOMW5IkYmJiePHiBQAFC2b+HkuR0D6g00GhSBKUcbGhgG0OHb7oYyRJsOcb7WjqppbQff2b6e1zHrVarUtm714vNjaNRkNCQgLm5uY5+wP2HVkat9JNO2qGKgZiHoPjm/vywu6DFAOmCm0nHjOrtNeVnXF/aOZu2ubu6JcQ/xxM7VGaO6YYt4WFBQAvXrygQIECmW5+zOFHJXc7cUc7M6+XGF0/Zzm9GC6uAGTaoY0+xKCzWSTpmllW3OAvfAByubaTjdxEO55l2H3tWVtSU2R+tyxJZrmOTAa2hcBa2xfCQvUKWVTqza1J7/H3GVFEJLQPRJLg1JuEVk9cP8s5ru2EgEna35vNyNnd89+SU5oZhWSYmGkTFzLtddlobdMZ+Yrk2GbsbCGTga0rks2bJkRF6veSZcV7XCS0D+RpDLyIjMfcVE714vmNHY4A2u75WwfxX/f8L4wdkZBXKK31m61tCoJlzmoiNhbJqgARSlckiw9/f6NIaB/IjXDtt41aJRwwNxWDNxpdLuqeLySvePHiLFy4MN31jx49ikwmy1jv0Pdh5Qj5ikG+orqmNkFLo8ieOd5EQvtAboRpPyxFc2MOEBcOfl3+657feUWO7J6fV8hkslQfU6ZMydR6L1y4wKBBg9Jdv3bt2jx9+hQ7O7tMbS8zylStjTK/K8+eZ757vpB5IqF9AHEqNUER2oTm9Ynorm9UahVs7A0vr//XPV9pY+yo8rSnT5/qHgsXLsTW1lavbPTo0bq6kiSRmJiYrvU6OTllqHOMmZnZe9/XlBEnT54kNjaWTp06sWrVqmzZZmpy2xRQWUEktA/gwr3XJEoyXGyVuDtZGzucj5ckwZ7RcPdIju+enxGSJBGTkJjtj/TONOXi4qJ72NnZIZPJdM9v3LiBjY0Ne/fupVq1aiiVSk6ePElQUBBt27bF2dkZa2tratSowcGDB/XW+26To0wm488//6R9+/ZYWlpSqlQpdu7cqXv93SbHlStXki9fPvbv34+npye2trY0b96cp0+f6pZJTEzkyy+/JF++fDg4ODBmzBh69+6tG2s2NcuWLaN79+74+vqyfPlyg9cfPXqEj48P9vb2WFlZUb16db0psnbt2kWNGjUwNzfH0dGR9u3b6+3r9u3b9daXL18+Vq5cCcC9e/eQyWRs2LABLy8vzM3N8fPzIzQ0FB8fHwoVKoSlpSUeHh6sW7dObz0ajYbZs2dTsmRJlEolRYsW5YcffgCgUaNGBoNevHz5EjMzMw4dOpTmMcluot3lAzih693oKHqnGdPpxXBxJdru+ctydPf8jIhVqSk3aX+2b/fatGZYmmXNR8bYsWOZO3cuJUqUIH/+/Dx8+JCWLVvyww8/oFQqWb16Nd7e3ty8eZOiRVOeZ2vq1KnMnj2bOXPmsHjxYnr06MH9+/cNZrZPEhMTw7x581iyZAk2Njb06tWL0aNH4+fnB8CsWbPw8/NjxYoVlC1blp9++ont27fTsGHqg+1GRkayadMmzp07R5kyZQgPD+fEiRPUq1cPgKioKLy8vChUqBA7d+7ExcWFS5cu6QZM3717N+3bt2fChAmsXr2ahIQE9uzZk6njOm/ePKpUqYK5uTlxcXFUq1aNMWPGYGtry+7du/H19cXd3V037da4ceNYunQpCxYsoG7dujx9+pQbN7TTCA0YMIBhw4Yxb9483Ywka9eupVChQjRq1CjD8X1oIqF9ABcfaKeLqVdS9HIyGoPu+S2NG4+gZ9q0aTRp0kT33N7enkqVKumeT58+nW3btrFz585UZ97o06cPPj4+AMyYMYNFixZx/vx5mjdPfmBclUrFb7/9hpOTE7a2tgwbNkxvCqrFixczbtw43dnRzz//nK7Esn79ekqVKkX58uUB6NatG8uWLdMlNH9/f16+fMmFCxd0ybZkyZK65X/44Qe6deumN9Hw28cjvUaOHEmHDh30yt5u4h0+fDj79+9n48aN1KxZk8jISH766Sd+/vlnevfuDYC7uzt169YFoEOHDgwbNowdO3bQpUsXQHum26dPnxz5ZV0ktA9g/YCaLNm0j7oioRnHo7e75w/Mc93zLUwVXJvWzCjbzSrVq1fXex4VFcWUKVPYvXs3T58+JTExkdjYWB48eJDqeipWrKj73crKCltbW90QSsmxtLTE3d1dN2FkwYIFdfXDw8N5/vy53oTBCoWCatWqpTn11PLly/WmsurZsydeXl4sXrwYGxsbAgMDqVKlSopnjoGBgQwcODDVbaTHu8dVrVYzY8YMNm7cyOPHj0lISCA+Pl53LfL69evEx8fz2WefJbs+c3NzXRNqly5duHTpElevXtVr2s1JREL7AEwVctxtwcY8B0zC97EJfwjr3u6e/2Oe654vk8myrOnPWKys9EfPGD16NAEBAcydO5eSJUtiYWFBp06dSEhISHU97078KJPJUk0+ydVP77XBlFy7do2zZ89y/vx5xowZoytXq9WsX7+egQMH6oZ2SklarycXZ3KdPt49rnPmzOGnn35i4cKFeHh4YGVlxciRI3XHNa3tgrbZsXLlyjx69IgVK1bQqFEjihUrluZyxiA6hQh5hok6BpMNPqJ7fi506tQp+vTpQ/v27fHw8MDFxYV79+5lawx2dnY4Oztz4cIFXZlarebSpUupLrds2TLq16/P5cuXCQwM1D1GjRrFsmXLAO2ZZGBgIK9evUp2HRUrVky1k4WTkxPPnj3TPb99+zYxMTFp7tOpU6do27YtPXv2pFKlSpQoUYJbt27pXi9VqhQWFhapbtvDw4Pq1auzdOlS/P396devX5rbNRaR0IS8Qa2iRvDPyF7eeNM9f6Ponp+LlCpViq1btxIYGMjly5fp3r27UWaYHz58ODNnzmTHjh3cvHmTESNG8Pr16xSvF6lUKtasWYOPjw8VKlTQewwYMIBz587x77//4uPjg4uLC+3atePUqVPcvXuXLVu2cObMGQAmT57MunXrmDx5MtevX+eff/5h1qxZuu00atSIX375hStXrvDXX38xePBgg7PN5JQqVYqAgABOnz7N9evX+fzzz3n+1j1y5ubmjBkzhm+//ZbVq1cTFBTE2bNndYk4yYABA/jxxx+RJEmv92VOI76+Cv95/i/ywPWUf3QL+bErYGGrHVjVzPrNz7d+N7V863eLrG/W06i1cyrpHlGp/q54EkiBSO3cS7LuG8CuUNbGI3xQ8+fPp1+/ftSuXRtHR0fGjBmju86VncaMGcOzZ8/o1asXCoWCQYMG0axZsxRHf9+5cyehoaHJfsiXLVuWsmXLsmzZMubPn8+BAwf4+uuvadmyJYmJiZQrV45ffvkFgAYNGrBp0yamT5/Ojz/+iK2tLfXr19eta968efTp04eWLVvi6urKTz/9xMWLF9Pcn++++467d+/SrFkzLC0tGTRoEO3atSM8PFxXZ+LEiZiYmDBp0iSePHlCwYIFDSZD9vHxYeTIkfj4+GBunnNnDpFJ79uAnAdFRERgZ2dHeHg4trYZH1xUpVKxZ88eWrZsma5vUUal0WinTT/zMwQfy+RKZO8kvRSSoJklaBLTkahitNfAMkhChrrzakzKt8nkfmS/tN4rcXFxBAcH4+bmluM+SDQaDREREdja2ub86UzekpG4NRoNZcuWpUuXLkyfPj2bIkw5FmMd73v37uHu7s6FCxeoWrVqhpZNb9ypvdfT+5ksztA+VgkxcGU9nPlVO58TgEyBpnQrgl6pKVHEBUVi7DsJ550EpIp+szIJEiK1j6wmU2gHfk02Qf53pqg2seDMc3M8P2mR9TEIH4379+9z4MABvLy8iI+P5+effyY4OJju3bsbOzSjUKlUhIaG8t1331GrVq0MJ7PsJhLaxybyGZxfCn8th9g3F6iVtlC1F3h+jtqqINf27KF485Yo0jq71Gi0ExsanGklk/gSoiE+SttJI6XklNzvCrN0NWdqVCpCM3EjqiC8TS6Xs3LlSkaPHo0kSVSoUIGDBw9StmxZY4dmFKdOnaJhw4Z88sknbN682djhpEkktI/F08vas7GrW0DzprtvvmLae7Sq9PyvA0VGxn+Ty7VnT0prQIwuLuR+RYoU4dSpU8YOI8do0KDBe9/WkJ1EQsvLNBq4vR/O/AL3TvxXXvRTqDVEO7mlXExtIwhC3iASWl6UEA2B/nD2N3gVpC2TKaB8e/h0CBSqZtz4BEEQPgCR0PKSiCdw/g/4awXEhWnLlHZQvQ/UHJQnRpoXBEFIiUhoecGTv7XXx/7dqu0WD5DfTdusWLn7m2tcgiAIeZtIaLmVRg0398LZX+H+Wxexi9WBT4fCJ83F9TFBED4qIqHlNqo4uLRKe33sdbC2TG4C5Ttor4/lkTm/BEEQMir33N4vwN1j8NunsPdbbTIzzwd1v4KR/0DHpSKZCXlKgwYNGDlypO75uzNWJye5mZ0zI6vWI2SvHJHQfvnlF4oXL465uTmenp6cP38+xboNGjRAJpMZPFq1aqVX7/r167Rp0wY7OzusrKyoUaNGmnMr5VjRobBtMKxuA6/uagffbTkXRl2DxlPA1tXYEQqCjre3d4oTbJ44cQKZTMaVK1cyvN4LFy4waNCg9w1Pz5QpU6hcubJB+dOnT2nRIntGnYmNjcXe3h5HR0fi4+OzZZt5ldET2oYNGxg1ahSTJ0/m0qVLVKpUiWbNmqU4Sd/WrVt5+vSp7nH16lUUCgWdO3fW1QkKCqJu3bqUKVOGo0ePcuXKFSZOnJjjxsJLkyRB4Dr4uTpcXgfItBNWDjsPNQdqR9IQhBymf//+BAQE8OjRI4PXVqxYQfXq1fUm5kwvJycn3cSUH5qLiwtKpTJbtrVlyxbKly9PmTJljH5WKEkSiYmJRo3hfRg9oc2fP5+BAwfSt29fypUrx5IlS7C0tGT58uXJ1re3t8fFxUX3CAgIwNLSUi+hTZgwgZYtWzJ79myqVKmCu7s7bdq0oUCBAtm1W+8vNAhWt4Xtg7VDVBUoB/0DoNVcMLczdnSCMUnSO8OMZdMjnSNGtG7dGicnJ1auXKlXHhUVxaZNm+jfvz+hoaH4+PhQqFAhLC0t8fDwYN26damu990mx9u3b1O/fn3Mzc0pV64cAQEBBsuMGTOGTz75BEtLS0qUKMHEiRN1E2OuXLmSqVOncvnyZV1LT1LM7zY5/vPPPzRq1AgLCwscHBwYNGgQUVFRutf79OlDu3btmDt3LgULFsTBwYGhQ4cmOwnnu5YtW0bPnj3p2bOnwbQtAP/++y+tW7cmX758FClSBC8vL4KCgnSvL1++nPLly6NUKilYsCDDhg0DtAMKy2QyAgMDdXXDwsKQyWQcPXoUgKNHjyKTydi7dy/VqlVDqVRy8uRJgoKCaNu2Lc7OzlhbW1OjRg0OHjyoF1d8fDxjxoyhSJEiKJVKSpYsybJly5AkiZIlSzJ37ly9+oGBgchkMu7cuZPmMckso3YKSUhI4OLFi4wbN05XJpfLady4sW6eoLQsW7aMbt266WZq1Wg07N69m2+//ZZmzZrx999/4+bmxrhx42jXrl2y64iPj9c71U+atkKlUqXrDfmupGUysyzqBORnf0F+ch6yxDgkE3M09b5B4zkEFKYZG5oqE94rdiPKq3GrVCokSUKj0fw3P1hCNPIfs/+eQs3YR3qtAklDIiXFl0Qul+Pr68vKlSsZN26cbi6xDRs2oFar6dq1K1FRUVStWpVvvvkGW1tb9uzZg6+vL25ubtSsWVNvG2+v++1j0aFDB5ydnTlz5gzh4eGMGjVKG+dbx8ra2prly5fj6urKP//8w+eff46VlRWDBw+mS5cu/Pvvv+zfv58DBw4A2kk+k5ZNWk90dDTNmjWjVq1anDt3jhcvXjBo0CCGDh3KihUrdHEdOXIEFxcXDh06xJ07d/Dx8aFixYoMHDgwxWMaFBTEmTNn2Lx5M5Ik8dVXXxEcHKybEfrx48fUr18fLy8vAgICUCgUXL58mYSEBDQaDb/99hujR49m5syZNG/enPDwcE6fPq13DN79/e2ypOdjx45l9uzZlChRgvz58/Pw4UOaN2/O9OnTUSqVrFmzBm9vb65fv07RokUB8PX15ezZsyxcuJBKlSoRHBxMSEgIkiTRt29fVqxYwahRo3Tvk5UrV1K/fn1KlCiR7Fx3Go0GSZJQqVQG0/Wk9//aqAktJCQEtVqNs7P+OIDOzs7cuHEjzeXPnz/P1atX9b7VvHjxgqioKH788Ue+//57Zs2axb59++jQoQNHjhzBy8vLYD0zZ85k6tSpBuUHDhx4ryaO5L4xpiZ/1G0qP1yObdxjAF7YVOBykd7EhDnD/oyt631lNPacIq/FbWJigouLC1FRUSQkJGgLVTHky77QdCIiI8FUbVAeGWk4y0Lnzp2ZO3cue/fupW7duoD2y6e3tzcymQwbGxu9D/pevXqxe/du/Pz8KFOmDACJiYkkJCTovmBqNBri4uKIiIjg8OHD3Lhxg40bN1KwYEEAxo8fT+fOnYmNjdUtM3z4cN02vLy8GDp0KBs2bGDw4MEkJiZiamqKTCbT/Z+//SU2aT2rVq0iNjaWxYsXY2VlRdGiRfnxxx/x8fFhwoQJFChQAJVKhZ2dHT/88AMKhQJXV1eaNm3K/v376dq1a4rHdMmSJTRu3Fj3Ad6oUSN+//13xo4dC8CCBQuwsbHh999/100vVLJkSe3fIyKCH374gaFDh9KnTx9A21RaunRpIiIidGeQ0dHRuuOR9LeKiYkhIiJCN+v1mDFj8PT01MXl5uaGm5ub7vno0aPZsmULGzduZNCgQdy5c4dNmzaxbds2GjRoAICjo6Murg4dOjB58mSOHDlCtWrVUKlU+Pv7M3369BTnuUtISCA2Npbjx48bNHumZ3ZuyOXd9pctW4aHh4feN7qkzN+2bVu++uorACpXrszp06dZsmRJsglt3Lhxum93oP2DFClShKZNm2Z6PrSAgACaNGmSvvnQ4sKRH5mO/PYqZEhIlg6oG08nf4XONMjqiTPTkOHYc4i8GndcXBwPHz7E2tr6v2vAko32bCmb2Zpa6s18IEkSkZGR2NjYGMzoXL16dWrXrs2GDRto2bIld+7c4cyZM3z//ffY2tqiVquZOXMmmzZt4vHjxyQkJBAfH4+tra3uf87ExAQzMzPdc7lcjrm5Oba2tjx48IAiRYpQunRp3TY/++wzACwsLHTLbNiwgZ9//pmgoCCioqJITEzUvWZjY4NSqUShUCT7f560nnv37lG5cmVd4gRo0qQJGo2GJ0+eULJkSUxNTalQoQL58+fX1SlSpAhXr15N8TNErVazYcMGFixYoKvTu3dvvv32W77//nvkcjnXr1+nfv36ODg4GBzvFy9e6DqvJLcNa2vtgApWVla615M+Hy0tLbG1tdUl8nr16umtIyoqiqlTp7Jnzx6ePn1KYmIisbGxvHz5EltbW+7cuYNCoaBFixbJvm9tbW1p2bIlGzdupEGDBvj7+5OQkICvr2+KJwlxcXFYWFjompHflt7JXo2a0BwdHVEoFHpTggM8f/4cFxeXVJeNjo5m/fr1TJs2zWCdJiYmlCtXTq+8bNmynDx5Mtl1KZXKZC8Am5qavteHY5rLSxJc2wF7x0DUM21Z5Z7Imk7HxNI+09vNCu+778aS1+JWq9XIZDLkcrn+5IgKm2yMLnlJH45J8b2rf//+DB8+nF9//ZVVq1bh7u5Ow4YNkclkzJ49m0WLFrFw4UI8PDywsrJi5MiRqFQqvXW9u+6k50kJ9O3Xkn5POlZnzpzB19eXqVOn0qxZM+zs7Fi/fj3z5s3TrSu59by9vvRuSyaTYWZmZlBHo9GkOKnlvn37ePz4MT4+PnrlarWaI0eO0KRJEywtLXX7/O7xTrrMYvDeeMPExMTgGKrVar1lksptbGz01vHtt98SEBDA3LlzKVmyJBYWFnTq1En390lr2wADBw7E19eX+fPn4+fnR5cuXXRJNjlJxzG5/4X0/k8btVOImZkZ1apV49ChQ7oyjUbDoUOH+PTTT1NddtOmTcTHx9OzZ0+DddaoUYObN2/qld+6dUvXLp0jhD2Edd1gU29tMrN3h967oN0vYORkJghZoUuXLsjlcvz9/Vm9ejX9+vXTJYdTp07Rtm1bevbsSaVKlShRogS3bt1K97rLli3Lw4cPefr0qa7s7NmzenVOnz5NsWLFmDBhAtWrV6dUqVLcv39fr46ZmZnuQz61bV2+fJno6Ghd2alTp5DL5XpniBmVdP0/MDBQ79GtWzfdZZSKFSty4sSJZK8h2djYULx4cb3Pz7c5OTkB6B2jtzuIpObUqVP06dOH9u3b4+HhgYuLC/fu3dO97uHhgUaj4dixlGe5b9myJVZWVixZsoRDhw7Rt2/fdG37fRi9l+OoUaNYunQpq1at4vr163zxxRdER0frdr5Xr156nUaSLFu2jHbt2uHg4GDw2jfffMOGDRtYunQpd+7c4eeff2bXrl0MGTLkg+9PmjRq7biLv3jCrX0gN4X638IXp8GtvrGjE4QsY21tTdeuXRk3bhxPnz7VXecBKFWqFAEBAZw+fZrr16/z+eefG7TUpKZx48Z88skn9O7dm8uXL3PixAkmTJigV6dUqVI8ePCA9evXExQUxKJFi9i2bZteneLFixMcHExgYCAhISHJ3gfWo0cPzM3N6d27N1evXuXIkSMMHz4cX19fg+v/6fXy5Ut27dpF7969qVChgt6jV69ebN++nVevXjFs2DAiIiLo1q0bf/31F0FBQaxZs0b3hX3KlCnMmzePRYsWcfv2bS5dusTixYsBbZNprVq1+PHHH7l+/TrHjh3ju+++S1d8pUqVYuvWrQQGBnL58mW6d++u15GjePHi9O7dm379+rF9+3aCg4M5evQoGzdu1NVRKBT06dOH8ePH4+7unuZJSlYwekLr2rUrc+fOZdKkSVSuXJnAwED27dune6M8ePBA7xsGwM2bNzl58iT9+/dPdp3t27dnyZIlzJ49Gw8PD/7880+2bNmiuzhtNE8vw9JGsH+cdhbnop/C4JPQaAKY5rJ75AQhHfr378/r169p1qwZrq7/DQDw3XffUbVqVZo1a0aDBg1wcXFJsRdycuRyOdu2bSM2NpaaNWsyYMAAfvjhB706bdq04auvvmLYsGG66+gTJ07Uq9OxY0eaN29Ow4YNcXJySvbWAUtLS/bv38+rV6+oUaMGnTp14rPPPuPnn3/O2MF4y+rVq7GystJd93vbZ599hoWFBWvXrsXBwYHDhw8TFRVFw4YNadiwIcuWLdM1wfXu3ZuFCxfy66+/Ur58eVq3bs3t27d161q+fDmJiYlUq1aNkSNH8v3336crvvnz55M/f35q166Nt7c3zZo1o2rVqnp1fvvtNzp16sSQIUMoU6YMAwcO1DuLBe3fPyEhge7du2f0EGWKTMpN05Fmk4iICOzs7AgPD890p5A9e/bQsmVL7RsvPgqOztQOJCxptFO6NJ0GVXppZ33OQQxizyXyatxxcXEEBwfj5uaW4wYG0Gg0REREYGtrm+J1lJxIxJ19Tpw4wWeffcbVq1cpWbJkqnGn9l5P72dyru7lmCvcOgC7v4bwN8Nule8AzX8Em8w1VQiCIOR08fHxvHz5kilTptCpU6dsG9Qid6T5XEipCkOxtT/4d9YmM7ui0GMzdF4hkpkgCHnaunXrKFasGGFhYcyaNSvbtivO0LKaRoPs0io+uz4RuToGZAqo9QU0HC/GXhQE4aPQp08fXSegpKbS7CASWlaTyZBf24ZcHYOmYGXkbRZBwUrGjkoQBCHPE02OWU0mQ91iLv8U6oG6z36RzIQsIfpuCXldVrzHRUL7EBxKcrdAM5Ar0q4rCKlI6vmY3rHsBCG3SnqPv08vZdHkKAg5mEKhIF++fLr5AZOGQsoJNBoNCQkJxMXF5Zpu5CDizm5pxS1JEjExMbx48YJ8+fIZjLSfESKhCUIOlzSuaUqT3hqLJEnExsZiYWGRY5Jseoi4s1d6486XL1+aY/imRSQ0QcjhZDIZBQsW1E1TklOoVCqOHz9O/fr1c93N7CLu7JOeuE1NTd/rzCyJSGiCkEsoFIos+afPKgqFgsTERMzNzXPVB6yIO3tlZ9y5pyFWEARBEFIhEpogCIKQJ4iEJgiCIOQJ4hpaMpJu8MvscC0qlYqYmBgiIiJyVVs35N7YRdzZL7fGLuLOXlkRd9JncVo3X4uElozIyEgAihQpYuRIBEEQhCSRkZHY2dml+LqYDy0ZGo2GJ0+eYGNjk6n7PSIiIihSpAgPHz7M1HxqxpRbYxdxZ7/cGruIO3tlRdySJBEZGYmrq2uqN5WLM7RkyOVyChcu/N7rsbW1zVVvvLfl1thF3Nkvt8Yu4s5e7xt3amdmSUSnEEEQBCFPEAlNEARByBNEQvsAlEolkydPRqlUGjuUDMutsYu4s19ujV3Enb2yM27RKUQQBEHIE8QZmiAIgpAniIQmCIIg5AkioQmCIAh5gkhogiAIQp4gEtoH8Msvv1C8eHHMzc3x9PTk/Pnzxg4pVTNnzqRGjRrY2NhQoEAB2rVrx82bN40dVob9+OOPyGQyRo4caexQ0uXx48f07NkTBwcHLCws8PDw4K+//jJ2WKlSq9VMnDgRNzc3LCwscHd3Z/r06WmOsWcMx48fx9vbG1dXV2QyGdu3b9d7XZIkJk2aRMGCBbGwsKBx48bcvn3bOMG+JbW4VSoVY8aMwcPDAysrK1xdXenVqxdPnjwxXsBvpHW83zZ48GBkMhkLFy7M0hhEQstiGzZsYNSoUUyePJlLly5RqVIlmjVrxosXL4wdWoqOHTvG0KFDOXv2LAEBAahUKpo2bUp0dLSxQ0u3Cxcu8Pvvv1OxYkVjh5Iur1+/pk6dOpiamrJ3716uXbvGvHnzyJ8/v7FDS9WsWbP47bff+Pnnn7l+/TqzZs1i9uzZLF682NihGYiOjqZSpUr88ssvyb4+e/ZsFi1axJIlSzh37hxWVlY0a9aMuLi4bI5UX2pxx8TEcOnSJSZOnMilS5fYunUrN2/epE2bNkaIVF9axzvJtm3bOHv2LK6urlkfhCRkqZo1a0pDhw7VPVer1ZKrq6s0c+ZMI0aVMS9evJAA6dixY8YOJV0iIyOlUqVKSQEBAZKXl5c0YsQIY4eUpjFjxkh169Y1dhgZ1qpVK6lfv356ZR06dJB69OhhpIjSB5C2bdume67RaCQXFxdpzpw5urKwsDBJqVRK69atM0KEyXs37uScP39eAqT79+9nT1DpkFLcjx49kgoVKiRdvXpVKlasmLRgwYIs3a44Q8tCCQkJXLx4kcaNG+vK5HI5jRs35syZM0aMLGPCw8MBsLe3N3Ik6TN06FBatWqld9xzup07d1K9enU6d+5MgQIFqFKlCkuXLjV2WGmqXbs2hw4d4tatWwBcvnyZkydP0qJFCyNHljHBwcE8e/ZM7z1jZ2eHp6dnrvpfBe3/q0wmI1++fMYOJVUajQZfX1+++eYbypcv/0G2IQYnzkIhISGo1WqcnZ31yp2dnblx44aRosoYjUbDyJEjqVOnDhUqVDB2OGlav349ly5d4sKFC8YOJUPu3r3Lb7/9n737jquy+gM4/rlc4LK3MhQBcYCIe6Tmyr21TO1nOSott7mtnGlWmlpmWVZqw1Gucovk3rkHboYLnGxlXJ7fH1duXgEFBC7g9/163Zfcc8/zPN/nerlfznnOc853jBgxgg8//JDDhw8zdOhQzM3N6d27t7HDy9K4ceOIjY3Fz88PtVqNVqtl+vTp9OzZ09ih5UhkZCRApr+r6a8VBQ8fPmTs2LG88cYbhX7C4s8//xxTU1OGDh2ab8eQhCYMDBo0iNOnT7Nnzx5jh/JMV69eZdiwYQQFBWFhYWHscHIkLS2NWrVq8emnnwJQvXp1Tp8+zYIFCwp1Qvvjjz/4/fffWbp0KQEBARw/fpzhw4fj4eFRqOMujlJSUujWrRuKovDdd98ZO5ynOnLkCF999RVHjx7N1ZJc2SVdjnnIxcUFtVpNVFSUQXlUVBRubm5Giir7Bg8ezPr169m+fXueLJ+T344cOcKtW7eoUaMGpqammJqasnPnTr7++mtMTU3RarXGDjFL7u7uVKpUyaDM39+fiIgII0WUPaNHj2bcuHH06NGDwMBA3nrrLT744ANmzJhh7NByJP33saj+rqYns/DwcIKCggp962z37t3cunWLMmXK6H9Xw8PDGTlyJN7e3nl2HEloecjc3JyaNWsSHBysL0tLSyM4OJh69eoZMbKnUxSFwYMHs2bNGv755x98fHyMHVK2NGvWjFOnTnH8+HH9o1atWvTs2ZPjx4+jVquNHWKWGjRokOHWiAsXLuDl5WWkiLInMTExwwKLarWatLQ0I0WUOz4+Pri5uRn8rsbGxnLw4MFC/bsK/yWzixcvsm3bNpydnY0d0jO99dZbnDx50uB31cPDg9GjR7Nly5Y8O450OeaxESNG0Lt3b2rVqkWdOnWYO3cuCQkJ9O3b19ihZWnQoEEsXbqUv/76C1tbW/01BHt7eywtLY0cXdZsbW0zXOeztrbG2dm50F//++CDD6hfvz6ffvop3bp149ChQ/zwww/88MMPxg7tqTp06MD06dMpU6YMAQEBHDt2jNmzZ/P2228bO7QM4uPjuXTpkv55aGgox48fx8nJiTJlyjB8+HCmTZtG+fLl8fHxYcKECXh4eNC5c2fjBc3T43Z3d6dr164cPXqU9evXo9Vq9b+vTk5OmJubGyvsZ77fTyZeMzMz3NzcqFixYt4FkadjJoWiKIoyb948pUyZMoq5ublSp04d5cCBA8YO6amATB+LFi0ydmg5VlSG7SuKoqxbt06pXLmyotFoFD8/P+WHH34wdkjPFBsbqwwbNkwpU6aMYmFhoZQtW1b56KOPlKSkJGOHlsH27dsz/Vz37t1bURTd0P0JEyYorq6uikajUZo1a6acP3/euEErT487NDQ0y9/X7du3F9q4M5Mfw/Zl+RghhBDFglxDE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITBaJPnz54e3vnatvJkyejUqnyNqBCJiwsDJVKxeLFiwv82CqVismTJ+ufL168GJVKRVhY2DO39fb2pk+fPnkaz/N8VsSLTRLaC06lUmXrsWPHDmOH+sIbOnQoKpWKS5cuZVnno48+QqVScfLkyQKMLOdu3LjB5MmTOX78uLFD0Uv/o2LWrFnGDkXkkqmxAxDG9euvvxo8/+WXXwgKCspQ7u/v/1zHWbhwIWlpabna9uOPP2bcuHHPdfzioGfPnsybN4+lS5cyceLETOssW7aMwMBAqlSpkuvjvPXWW/To0QONRpPrfTzLjRs3mDJlCt7e3lSrVs3gtef5rIgXmyS0F9ybb75p8PzAgQMEBQVlKH9SYmIiVlZW2T6OmZlZruIDMDU1xdRUPqp169alXLlyLFu2LNOEtn//fkJDQ/nss8+e6zhqtRq1Wv1c+3gez/NZES826XIUz9SkSRMqV67MkSNHaNSoEVZWVnz44YcA/PXXX7Rr1w4PDw80Gg2+vr588sknaLVag308eV3k8e6dH374AV9fXzQaDbVr1+bw4cMG22Z2DU2lUjF48GDWrl1L5cqV0Wg0BAQEsHnz5gzx79ixg1q1amFhYYGvry/ff/99tq/L7d69m9dff50yZcqg0Wjw9PTkgw8+4MGDBxnOz8bGhuvXr9O5c2dsbGwoUaIEo0aNyvBeREdH06dPH+zt7XFwcKB3795ER0c/MxbQtdLOnTvH0aNHM7y2dOlSVCoVb7zxBsnJyUycOJGaNWtib2+PtbU1DRs2ZPv27c88RmbX0BRFYdq0aZQuXRorKyuaNm3KmTNnMmx77949Ro0aRWBgIDY2NtjZ2dGmTRtOnDihr7Njxw5q164NQN++ffXd2unXDzO7hpaQkMDIkSPx9PREo9FQsWJFZs2ahaIoBvVy8rnIrVu3bvHOO+/g6uqKhYUFVatWZcmSJRnqLV++nJo1a2Jra4udnR2BgYF89dVX+tdTUlKYMmUK5cuXx8LCAmdnZ15++WWCgoLyLNYXjfzZK7Ll7t27tGnThh49evDmm2/i6uoK6L78bGxsGDFiBDY2Nvzzzz9MnDiR2NhYZs6c+cz9Ll26lLi4ON577z1UKhVffPEFr776KleuXHnmX+p79uxh9erVDBw4EFtbW77++mtee+01IiIicHZ2BuDYsWO0bt0ad3d3pkyZglarZerUqZQoUSJb5/3nn3+SmJjIgAEDcHZ25tChQ8ybN49r167x559/GtTVarW0atWKunXrMmvWLLZt28aXX36Jr68vAwYMAHSJoVOnTuzZs4f3338ff39/1qxZQ+/evbMVT8+ePZkyZQpLly6lRo0aBsf+448/aNiwIWXKlOHOnTv8+OOPvPHGG/Tr14+4uDh++uknWrVqxaFDhzJ08z3LxIkTmTZtGm3btqVt27YcPXqUli1bkpycbFDvypUrrF27ltdffx0fHx+ioqL4/vvvady4MWfPnsXDwwN/f3+mTp3KxIkT6d+/Pw0bNgSgfv36mR5bURQ6duzI9u3beeedd6hWrRpbtmxh9OjRXL9+nTlz5hjUz87nIrcePHhAkyZNuHTpEoMHD8bHx4c///yTPn36EB0dzbBhwwAICgrijTfeoFmzZnz++ecAhISEsHfvXn2dyZMnM2PGDN59913q1KlDbGws//77L0ePHqVFixbPFecLSxHiMYMGDVKe/Fg0btxYAZQFCxZkqJ+YmJih7L333lOsrKyUhw8f6st69+6teHl56Z+HhoYqgOLs7Kzcu3dPX/7XX38pgLJu3Tp92aRJkzLEBCjm5ubKpUuX9GUnTpxQAGXevHn6sg4dOihWVlbK9evX9WUXL15UTE1NM+wzM5md34wZMxSVSqWEh4cbnB+gTJ061aBu9erVlZo1a+qfr127VgGUL774Ql+WmpqqNGzYUAGURYsWPTOm2rVrK6VLl1a0Wq2+bPPmzQqgfP/99/p9JiUlGWx3//59xdXVVXn77bcNygFl0qRJ+ueLFi1SACU0NFRRFEW5deuWYm5urrRr105JS0vT1/vwww8VQOndu7e+7OHDhwZxKYru/1qj0Ri8N4cPH87yfJ/8rKS/Z9OmTTOo17VrV0WlUhl8BrL7uchM+mdy5syZWdaZO3euAii//fabviw5OVmpV6+eYmNjo8TGxiqKoijDhg1T7OzslNTU1Cz3VbVqVaVdu3ZPjUnkjHQ5imzRaDT07ds3Q7mlpaX+57i4OO7cuUPDhg1JTEzk3Llzz9xv9+7dcXR01D9P/2v9ypUrz9y2efPm+Pr66p9XqVIFOzs7/bZarZZt27bRuXNnPDw89PXKlStHmzZtnrl/MDy/hIQE7ty5Q/369VEUhWPHjmWo//777xs8b9iwocG5bNy4EVNTU32LDXTXrIYMGZKteEB33fPatWvs2rVLX7Z06VLMzc15/fXX9fs0NzcHIC0tjXv37pGamkqtWrUy7a58mm3btpGcnMyQIUMMummHDx+eoa5Go8HERPe1otVquXv3LjY2NlSsWDHHx023ceNG1Go1Q4cONSgfOXIkiqKwadMmg/JnfS6ex8aNG3Fzc+ONN97Ql5mZmTF06FDi4+PZuXMnAA4ODiQkJDy1+9DBwYEzZ85w8eLF545L6EhCE9lSqlQp/Rfk486cOUOXLl2wt7fHzs6OEiVK6AeUxMTEPHO/ZcqUMXientzu37+f423Tt0/f9tatWzx48IBy5cplqJdZWWYiIiLo06cPTk5O+utijRs3BjKen4WFRYauzMfjAQgPD8fd3R0bGxuDehUrVsxWPAA9evRArVazdOlSAB4+fMiaNWto06aNwR8HS5YsoUqVKvrrMyVKlGDDhg3Z+n95XHh4OADly5c3KC9RooTB8UCXPOfMmUP58uXRaDS4uLhQokQJTp48mePjPn58Dw8PbG1tDcrTR96mx5fuWZ+L5xEeHk758uX1STurWAYOHEiFChVo06YNpUuX5u23385wHW/q1KlER0dToUIFAgMDGT16dKG/3aKwk4QmsuXxlkq66OhoGjduzIkTJ5g6dSrr1q0jKChIf80gO0OvsxpNpzxxsT+vt80OrVZLixYt2LBhA2PHjmXt2rUEBQXpBy88eX4FNTKwZMmStGjRglWrVpGSksK6deuIi4ujZ8+e+jq//fYbffr0wdfXl59++onNmzcTFBTEK6+8kq9D4j/99FNGjBhBo0aN+O2339iyZQtBQUEEBAQU2FD8/P5cZEfJkiU5fvw4f//9t/76X5s2bQyulTZq1IjLly/z888/U7lyZX788Udq1KjBjz/+WGBxFjcyKETk2o4dO7h79y6rV6+mUaNG+vLQ0FAjRvWfkiVLYmFhkemNyE+7OTndqVOnuHDhAkuWLKFXr1768ucZhebl5UVwcDDx8fEGrbTz58/naD89e/Zk8+bNbNq0iaVLl2JnZ0eHDh30r69cuZKyZcuyevVqg27CSZMm5SpmgIsXL1K2bFl9+e3btzO0elauXEnTpk356aefDMqjo6NxcXHRP8/JzC9eXl5s27aNuLg4g1Zaepd2enwFwcvLi5MnT5KWlmbQSsssFnNzczp06ECHDh1IS0tj4MCBfP/990yYMEHfQ+Dk5ETfvn3p27cv8fHxNGrUiMmTJ/Puu+8W2DkVJ9JCE7mW/pfw43/5Jicn8+233xorJANqtZrmzZuzdu1abty4oS+/dOlShusuWW0PhuenKIrB0Oucatu2LampqXz33Xf6Mq1Wy7x583K0n86dO2NlZcW3337Lpk2bePXVV7GwsHhq7AcPHmT//v05jrl58+aYmZkxb948g/3NnTs3Q121Wp2hJfTnn39y/fp1gzJra2uAbN2u0LZtW7RaLd98841B+Zw5c1CpVNm+HpoX2rZtS2RkJCtWrNCXpaamMm/ePGxsbPTd0Xfv3jXYzsTERH+ze1JSUqZ1bGxsKFeunP510HVrnzt3LtfdtS8aaaGJXKtfvz6Ojo707t1bPy3Tr7/+WqBdO88yefJktm7dSoMGDRgwYID+i7Fy5crPnHbJz88PX19fRo0axfXr17Gzs2PVqlXPdS2mQ4cONGjQgHHjxhEWFkalSpVYvXp1jr+wbGxs6Ny5s/462uPdjQDt27dn9erVdOnShXbt2hEaGsqCBQuoVKkS8fHxOTpW+v10M2bMoH379rRt25Zjx46xadMmg1ZX+nGnTp1K3759qV+/PqdOneL33383aNkB+Pr64uDgwIIFC7C1tcXa2pq6devi4+OT4fgdOnSgadOmfPTRR4SFhVG1alW2bt3KX3/9xfDhww0GgOSF4OBgHj58mKG8c+fO9O/fn++//54+ffpw5MgRvL29WblyJXv37mXu3Ln6FuS7777LvXv3eOWVVyhdujTh4eHMmzePatWq6a+3VapUiSZNmlCzZk2cnJz4999/WblyJYMHD9Yfc82aNfTt25dFixbl+ZyZxZJxBleKwiqrYfsBAQGZ1t+7d6/y0ksvKZaWloqHh4cyZswYZcuWLQqgbN++XV8vq2H7mQ2R5olh5FkN2x80aFCGbb28vAyGkSuKogQHByvVq1dXzM3NFV9fX+XHH39URo4cqVhYWGTxLvzn7NmzSvPmzRUbGxvFxcVF6devn34Y+ONDznv37q1YW1tn2D6z2O/evau89dZbip2dnWJvb6+89dZbyrFjx7I9bD/dhg0bFEBxd3fPMFQ+LS1N+fTTTxUvLy9Fo9Eo1atXV9avX5/h/0FRnj1sX1EURavVKlOmTFHc3d0VS0tLpUmTJsrp06czvN8PHz5URo4cqa/XoEEDZf/+/Urjxo2Vxo0bGxz3r7/+UipVqqS/hSL93DOLMS4uTvnggw8UDw8PxczMTClfvrwyc+ZMg9sI0s8lu5+LJ6V/JrN6/Prrr4qiKEpUVJTSt29fxcXFRTE3N1cCAwMz/L+tXLlSadmypVKyZEnF3NxcKVOmjPLee+8pN2/e1NeZNm2aUqdOHcXBwUGxtLRU/Pz8lOnTpyvJyckZ/i9y8rl4kakUpRD9OS1EAencubMMmRaimJFraKLYe3KaqosXL7Jx40aaNGlinICEEPlCWmii2HN3d6dPnz6ULVuW8PBwvvvuO5KSkjh27FiGe6uEEEWXDAoRxV7r1q1ZtmwZkZGRaDQa6tWrx6effirJTIhiRlpoQgghigW5hiaEEKJYkIQmhBCiWJCEJkQOZLb4pBCicJCEJoqF9FWPn/XYsWOHsUM1sGPHDlQqFStXrjR2KLl2/fp1unXrhoODA3Z2dnTq1CnbS7V8+umnvPTSS5QoUQILCwvKly/P8OHDuX379lO3+/3331GpVBlWLQA4dOgQAwcOpGbNmpiZmeVo3khRtMkoR1Es/PrrrwbPf/nlF4KCgjKUp087lFsLFy4ssFnji4L4+HiaNm1KTEwMH374IWZmZsyZM4fGjRtz/PjxZ64QfeTIEapVq0aPHj2wtbUlJCSEhQsXsmHDBo4fP66f8/HJY44ZMybT10C3ZtmPP/5IlSpVKFu2LBcuXMiTcxVFgDGnKREiv2Q2hVdmEhISCiCarG3fvl0BlD///NOoceTW559/rgDKoUOH9GUhISGKWq1Wxo8fn6t9rly5UgGUZcuWZfr62LFjlYoVKyo9e/bMdLqxyMhI/Urj2f0ciOJBuhzFC6NJkyZUrlyZI0eO0KhRI6ysrPjwww8B+Ouvv2jXrh0eHh5oNBp8fX355JNP0Gq1Bvt48hpaWFgYKpWKWbNm8cMPP+Dr64tGo6F27docPnw4z2K/cuUKr7/+Ok5OTlhZWfHSSy+xYcOGDPXmzZtHQEAAVlZWODo6UqtWLf0ExqBbVXz48OF4e3uj0Wj0a6s9vpp0+mrjd+7ceWZcK1eupHbt2tSuXVtf5ufnR7Nmzfjjjz9yda7p729mM/FfvHiROXPmMHv2bExNM+9gcnV1zXT9PlH8SUITL5S7d+/Spk0bqlWrxty5c2natCkAixcvxsbGhhEjRvDVV19Rs2ZNJk6cyLhx47K136VLlzJz5kzee+89pk2bRlhYGK+++iopKSnPHXNUVBT169dny5YtDBw4kOnTp/Pw4UM6duzImjVr9PUWLlzI0KFDqVSpEnPnzmXKlClUq1aNgwcP6uu8//77fPfdd7z22mt8++23jBo1CktLS0JCQvR1Dh06hL+/f4blWp6UlpbGyZMnqVWrVobX6tSpw+XLl4mLi3vm+SmKwp07d4iMjGT37t0MHToUtVqd6dRkw4cPp2nTprRt2/aZ+xUvHrmGJl4okZGRLFiwgPfee8+gfOnSpQZ/1b///vu8//77fPvtt0ybNg2NRvPU/UZERHDx4kUcHR0BqFixIp06dWLLli20b9/+uWL+7LPPiIqKYvfu3bz88ssA9OvXjypVqjBixAg6deqEiYkJGzZsICAggD///DPLfW3YsIF+/frx5Zdf6svGjBmTq7ju3btHUlIS7u7uGV5LL7tx4wYVK1Z86n6ioqIM9lG6dGmWLl2Kn59fhti3bt3KiRMnchWvKP6khSZeKBqNhr59+2YofzyZxcXFcefOHRo2bKjvfnuW7t2765MZQMOGDQGyPdrvaTZu3EidOnX0yQx066H179+fsLAwzp49C4CDgwPXrl17aleng4MDBw8eNFjw9ElNmjRBURQmT5781LjSJ33OLNmnLzb65MTQmXFyciIoKIh169YxdepUXFxcMqzZlpyczAcffMD7779PpUqVnrlP8WKShCZeKKVKlcLc3DxD+ZkzZ+jSpQv29vbY2dlRokQJ3nzzTYBsLb5ZpkwZg+fpye15FgNNFx4enmkrJ33EZnh4OABjx47FxsaGOnXqUL58eQYNGsTevXsNtvniiy84ffo0np6e1KlTh8mTJ+c66ab/EfD4Csvp0hfIzM61LHNzc5o3b0779u2ZMGEC8+fP55133mH9+vX6OnPmzOHOnTtMmTIlV7GKF4MkNPFCyewLNjo6msaNG3PixAmmTp3KunXrCAoK4vPPPwfI1jB9tVqdablSgFOl+vv7c/78eZYvX87LL7/MqlWrePnll5k0aZK+Trdu3bhy5Qrz5s3Dw8ODmTNnEhAQwKZNm3J8PCcnJzQaDTdv3szwWnqZh4dHjvdbv3593N3d+f333wHdHxTTpk2jX79+xMbGEhYWRlhYGPHx8SiKQlhYGLdu3crxcUTxIwlNvPB27NjB3bt3Wbx4McOGDaN9+/Y0b97coAvRmLy8vDh//nyG8vSuUC8vL32ZtbU13bt3Z9GiRURERNCuXTv9IJJ07u7uDBw4kLVr1xIaGoqzszPTp0/PcVwmJiYEBgby77//Znjt4MGDlC1bFltb2xzvF3QtvPSW8f3794mPj+eLL77Ax8dH/1i1ahWJiYn4+PjQv3//XB1HFC+S0MQLL7119XhrKjk5mW+//dZYIRlo27Ythw4dYv/+/fqyhIQEfvjhB7y9vfXXlO7evWuwnbm5OZUqVUJRFFJSUtBqtRm6T0uWLImHh4dBt2FOhu137dqVw4cPGyS18+fP888///D6668b1D137hwREREG55CYmJhhn6tWreL+/fv60ZMlS5ZkzZo1GR5NmzbFwsKCNWvWMH78+GfGKoo/GeUoXnj169fH0dGR3r17M3ToUFQqFb/++muBdheuWrUq08EnvXv3Zty4cSxbtow2bdowdOhQnJycWLJkCaGhoaxatQoTE93fpS1btsTNzY0GDRrg6upKSEgI33zzDe3atcPW1pbo6GhKly5N165dqVq1KjY2Nmzbto3Dhw8bjHo8dOgQTZs2ZdKkSc8cGDJw4EAWLlxIu3btGDVqFGZmZsyePRtXV1dGjhxpUNff35/GjRvrpx+7ePEizZs3p3v37vj5+WFiYsK///7Lb7/9hre3N8OGDQPAysqKzp07Zzj22rVrOXToUIbXwsPD9TPEpCfaadOmAbrW7FtvvfXUcxJFmBFv6hYi32Q2Q0Tjxo2VgICATOvv3btXeemllxRLS0vFw8NDGTNmjLJlyxYFULZv366v17t3b8XLy0v/PDQ0VAGUmTNnZtgnoEyaNOmpcabPFJLVY/fu3YqiKMrly5eVrl27Kg4ODoqFhYVSp04dZf369Qb7+v7775VGjRopzs7OikajUXx9fZXRo0crMTExiqIoSlJSkjJ69GilatWqiq2trWJtba1UrVpV+fbbbzON6Vmxp7t69arStWtXxc7OTrGxsVHat2+vXLx4MdP3o3Hjxvrnt2/fVvr376/4+fkp1tbWirm5uVK+fHll+PDhyu3bt5953N69e2c6U8jT3tPHjy+KH1ngUwghRLEg19CEEEIUC5LQhBBCFAuS0IQQQhQLktCEEEIUC5LQhBBCFAuS0ESxkL4u2eLFi/VlkydPRqVSZWt7lUr1zHuucqpJkyaZLoEihMgfktBEgevYsSNWVlZPXSurZ8+emJubZ5j9orA5e/YskydPJiwszNih6O3YsQOVSsXKlSuNHUquXb9+nW7duuHg4ICdnR2dOnXK1STK0dHRlCxZMsv348iRI7Ru3Ro7OztsbW1p2bIlx48fz1AvLS2NBQsWUK1aNWxsbHB1daVNmzbs27cvN6cn8okkNFHgevbsyYMHDwwWp3xcYmIif/31F61bt8bZ2TnXx/n444+ztXzJ8zh79ixTpkzJNKFt3bqVrVu35uvxi6P4+HiaNm3Kzp07+fDDD5kyZQrHjh2jcePGOf4DZ+LEiZlOrwVw9OhRXn75Za5cucKkSZOYOHEiFy9epHHjxhnmzhw9ejQDBgwgMDCQ2bNnM3LkSC5cuEDjxo05dOhQrs9V5DFj39ktXjyJiYmKra2t0qpVq0xfX7p0qQIoy5cvz/Y+02fsWLRoUa5iIgczYzzuzz//zDCbiLGlz5Tx559/GjuUXPn8888VQDl06JC+LCQkRFGr1cr48eOzvZ9Tp04ppqamytSpUzN9P9q2bas4Ojoqd+7c0ZfduHFDsbGxUV599VV9WUpKimJpaal07drVYPsrV64ogDJ06NCcnqLIJ9JCEwXO0tKSV199leDg4EyX/Vi6dCm2trZ07NiRe/fuMWrUKAIDA7GxscHOzo42bdpka9XizK6hJSUl8cEHH1CiRAn9Ma5du5Zh2/DwcAYOHEjFihWxtLTE2dmZ119/3aAltnjxYv0EvE2bNkWlUqFSqfRzFWZ2De3WrVu88847uLq6YmFhQdWqVVmyZIlBnfTrgbNmzeKHH37A19cXjUZD7dq1n7p4Z05duXKF119/HScnJ6ysrHjppZfYsGFDhnrz5s0jICAAKysrHB0dqVWrFkuXLtW/HhcXx/Dhw/H29kaj0VCyZElatGjB0aNH9XVyMuHxypUrqV27NrVr19aX+fn50axZM/74449sn9+wYcPo0qWLfrHVJ+3evZvmzZsb9AK4u7vTuHFj1q9fr19kNCUlhQcPHuDq6mqwfcmSJTExMcnWmm+iYEhCE0bRs2dPUlNTM3xB3bt3jy1bttClSxcsLS25cuUKa9eupX379syePZvRo0dz6tQpGjdu/NRVl7Py7rvvMnfuXFq2bMlnn32GmZkZ7dq1y1Dv8OHD7Nu3jx49evD111/z/vvvExwcTJMmTfRdWI0aNWLo0KEAfPjhh/z666/8+uuv+oU3n/TgwQOaNGnCr7/+Ss+ePZk5cyb29vb06dOHr776KkP9pUuXMnPmTN577z2mTZtGWFgYr776KikpKTk+7ydFRUVRv359tmzZwsCBA/VLzHTs2NGgK3jhwoUMHTqUSpUqMXfuXKZMmUK1atU4ePCgvs7777/Pd999x2uvvca3337LqFGjsLS0JCQkRF/n0KFD+Pv788033zw1rrS0NE6ePKmfaf9xderU4fLly0+99pruzz//ZN++fXzxxRdZ1klKSso0GVlZWZGcnMzp06cB3R9gdevWZfHixfz+++9ERERw8uRJ+vTpg6OjoyxdU5gYu4koXkypqamKu7u7Uq9ePYPyBQsWKICyZcsWRVEU5eHDh4pWqzWoExoaqmg0GmXq1KkGZTzR5Thp0iSDCYqPHz+uAMrAgQMN9ve///0vQ5djYmJihpj379+vAMovv/yiL3tal2Pjxo0NJsOdO3euAii//fabviw5OVmpV6+eYmNjo8TGxhqci7Ozs3Lv3j193b/++ksBlHXr1mU41uOy0+U4fPhwg8mPFUVR4uLiFB8fH8Xb21v/nnfq1CnLCZ3T2dvbK4MGDcpWTM/q1r19+7YCGPzfpps/f74CKOfOnXvqPhITE5UyZcrouyezej8CAwOVChUqKKmpqfqypKQkpUyZMgqgrFy5Ul9+8eJFpUaNGgYTHZctW/aZsYiCJS00YRRqtZoePXqwf/9+g268pUuX4urqSrNmzQDQaDT65VG0Wi13797FxsaGihUrGnRpZcfGjRsB9K2qdMOHD89Q9/G/3FNSUrh79y7lypXDwcEhx8d9/Phubm688cYb+jIzMzOGDh1KfHw8O3fuNKjfvXt3g0VG07vOcjPaL7NY6tSpw8svv6wvs7GxoX///oSFhXH27FkAHBwcuHbt2lO7Oh0cHDh48OBTW8xNmjRBUZRn3hqRPohHo9FkeM3CwsKgTlY+++wzUlJS+PDDD59ab+DAgVy4cIF33nmHs2fPcvr0aXr16qVfbfvx49ja2hIQEMCgQYNYvXo13377LampqXTu3Dlb3aiiYEhCE0bTs2dPAP31mGvXrrF792569OihX3QzLS2NOXPmUL58eTQaDS4uLpQoUYKTJ09mWKzyWcLDwzExMcHX19egvGLFihnqPnjwgIkTJ+Lp6Wlw3Ojo6Bwf9/Hjly9fXp+g06V3UYaHhxuUlylTxuB5enK7f/9+ro7/ZCyZnfeTsYwdOxYbGxvq1KlD+fLlGTRoEHv37jXY5osvvuD06dN4enpSp04dJk+enOukm/6HxOMLjqZLX3X7adeswsLCmDlzJtOnT8fGxuapx3r//ff58MMPWbp0KQEBAQQGBnL58mXGjBkDoN8+NTWV5s2bY29vzzfffEOXLl0YMGAA27Zt4/Lly8ycOTNX5yryniQ0YTQ1a9bEz8+PZcuWAbBs2TIURdEnOoBPP/2UESNG0KhRI3777Te2bNlCUFAQAQEBpKWl5VtsQ4YMYfr06XTr1o0//viDrVu3EhQUhLOzc74e93HpSf1JSgGu+OTv78/58+dZvnw5L7/8MqtWreLll19m0qRJ+jrdunXjypUrzJs3Dw8PD2bOnElAQACbNm3K8fGcnJzQaDT6VtLj0ss8PDyy3H7ixImUKlWKJk2aEBYWRlhYGJGRkQDcvn2bsLAwg/+/6dOnExUVxe7duzl58iSHDx/Wv16hQgUAdu3axenTp+nYsaPBscqXL4+/v3+GBC+MR1asFkbVs2dPJkyYwMmTJ1m6dCnly5c3GN22cuVKmjZtyk8//WSwXXR0NC4uLjk6lpeXF2lpaVy+fNmgdfLkPUfpx+3du7fBSs4PHz4kOjraoF52ZyJJP/7JkydJS0szaKWlr1Tt5eWV7X09Ly8vr0zPO7NYrK2t6d69O927dyc5OZlXX32V6dOnM378eH03oLu7OwMHDmTgwIHcunWLGjVqMH36dNq0aZOjuExMTAgMDNSvNP24gwcPUrZsWWxtbbPcPiIigkuXLlG2bNkMrw0cOBDQtXAdHBz05Y6OjgZdr9u2baN06dL4+fkBugE0oOvyflJKSgqpqanZOzmR76SFJowqvTU2ceJEjh8/btA6A10r5ckWyZ9//sn169dzfKz0L9evv/7aoHzu3LkZ6mZ23Hnz5mX4UrO2tgbIkOgy07ZtWyIjI1mxYoW+LDU1lXnz5mFjY0Pjxo2zcxp5om3bthw6dIj9+/fryxISEvjhhx/w9vamUqVKABluZDY3N6dSpUooikJKSgparTZDF2zJkiXx8PAw6DbMybD9rl27cvjwYYOkdv78ef755x/9bRLpzp07R0REhP75tGnTWLNmjcHjk08+AWDMmDGsWbNG/3+WmRUrVnD48GGGDx+u/6MjvaW2fPlyg7pHjx7l/PnzVK9e/ZnnJAqGtNCEUfn4+FC/fn3++usvgAwJrX379kydOpW+fftSv359Tp06xe+//57pX+DPUq1aNd544w2+/fZbYmJiqF+/PsHBwVy6dClD3fbt2/Prr79ib29PpUqV2L9/P9u2bcswc0m1atVQq9V8/vnnxMTEoNFoeOWVVyhZsmSGffbv35/vv/+ePn36cOTIEby9vVm5ciV79+5l7ty5T2155MaqVav0La7H9e7dm3HjxrFs2TLatGnD0KFDcXJyYsmSJYSGhrJq1Sr9l3nLli1xc3OjQYMGuLq6EhISwjfffEO7du2wtbUlOjqa0qVL07VrV6pWrYqNjQ3btm3j8OHDBq3bQ4cO0bRpUyZNmvTMgSEDBw5k4cKFtGvXjlGjRmFmZsbs2bNxdXVl5MiRBnX9/f1p3Lix/t6/x1ta6dJbY7Vr16Zz58768l27djF16lRatmyJs7MzBw4cYNGiRbRu3Zphw4bp69WsWZMWLVqwZMkSYmNjadmyJTdv3mTevHlYWlpmOqhIGIkxh1gKoSj/DceuU6dOhtcePnyojBw5UnF3d1csLS2VBg0aKPv3788wJD47w/YVRVEePHigDB06VHF2dlasra2VDh06KFevXs0wpPz+/ftK3759FRcXF8XGxkZp1aqVcu7cOcXLy0vp3bu3wT4XLlyolC1bVlGr1QZD+J+MUVEUJSoqSr9fc3NzJTAwMMPsJunnMnPmzAzvx5NxZiZ9mHpWj/Sh+pcvX1a6du2qODg4KBYWFkqdOnWU9evXG+zr+++/Vxo1aqQ4OzsrGo1G8fX1VUaPHq3ExMQoiqIb5j569GilatWqiq2trWJtba1UrVpV+fbbbzONKbuzsVy9elXp2rWrYmdnp9jY2Cjt27dXLl68mOn78eR7nNX78eSw/UuXLiktW7ZUXFxcFI1Go/j5+SkzZsxQkpKSMuwjMTFRmTp1qlKpUiXF0tJSsbe3V9q3b68cO3YsW+cjCoZKUQrwCrMQQgiRT+QamhBCiGJBEpoQQohiQRKaEEKIYkESmhBCiGJBEpoQQohiQRKaEEKIYkFurM5EWloaN27cwNbWNkdTGwkhhMh7iqIQFxeHh4dHhsm9HycJLRM3btzA09PT2GEIIYR4zNWrVyldunSWr0tCy0T6FERXr17Fzs4ux9unpKSwdetWWrZsiZmZWV6Hl6+KauwSd8ErqrFL3AUrL+KOjY3F09PzmdPDSULLRHo3o52dXa4TmpWVFXZ2dkXqgwdFN3aJu+AV1dgl7oKVl3E/6xKQDAoRQghRLEhCE0IIUSwUioQ2f/58vL29sbCwoG7duhw6dCjLuosXL0alUhk80hcZTNenT58MdVq3bp3fpyGEEMKIjH4NbcWKFYwYMYIFCxZQt25d5s6dS6tWrTh//nyma0qB7trW46vtZtav2rp1axYtWqR/rtFo8j54IV4wWq2WlJQUQHdtxNTUlIcPH2a6mnNhJXEXrOzEbWZmhlqtfu5jGT2hzZ49m379+tG3b18AFixYwIYNG/j5558ZN25cptuoVCrc3Nyeul+NRvPMOkKI7FEUhcjISIOVuRVFwc3NjatXrxap+zUl7oKV3bgdHBxwc3N7rnMzakJLTk7myJEjjB8/Xl9mYmJC8+bNDZaGf1J8fDxeXl6kpaVRo0YNPv30UwICAgzq7Nixg5IlS+Lo6Mgrr7zCtGnTMqw2nC4pKclgufjY2FhA95dF+l+jOfH4X7BFTVGNXeLOX1FRUcTGxlKiRAmsrKxQqVQoikJCQgLW1tZF7gtW4i44z4pbURQSExO5ffs2Wq0WV1fXDHWy+/th1IR2586dTE/A1dU106XjASpWrMjPP/9MlSpViImJYdasWdSvX58zZ87ob7hr3bo1r776Kj4+Ply+fJkPP/yQNm3asH///kybtTNmzGDKlCkZyrdu3YqVlVWOz8sp/gIvRf3NjtR4Ukxtcrx9YRAUFGTsEHJF4s57KpUKd3d33NzcMDMzM/hyMTc3L/TJODMSd8F6VtxmZmbY2tpy8+ZNjh49ypPrTicmJmbrOEZdsfrGjRuUKlWKffv2Ua9ePX35mDFj2LlzJwcPHnzmPlJSUvD39+eNN97gk08+ybTOlStX8PX1Zdu2bTRr1izD65m10Dw9Pblz507O70NTFNQLG2Ny+ywptQdAy8xjKqxSUlIICgqiRYsWRe5eF4k7fyQlJREREYGXlxeWlpb68vTpiIraFHESd8HKbtwPHjwgPDycMmXKZBjzEBsbi4uLCzExMU/9TjZqC83FxQW1Wk1UVJRBeVRUVLavf5mZmVG9enUuXbqUZZ2yZcvi4uLCpUuXMk1oGo0m00EjZmZmufqSSX1lIiYremB69CdUDQaCQ5kc78PYcnvuxiZx5z2tVotKpUKtVhvMo5eWlgboWnBPm1+vsJG4C1Z241ar1ahUKkxNTTP8LmT3d8Oo74q5uTk1a9YkODhYX5aWlkZwcLBBi+1ptFotp06dwt3dPcs6165d4+7du0+tk5cU32bctqmESpsM/0wvkGMKIcSLzuhpfsSIESxcuJAlS5YQEhLCgAEDSEhI0I967NWrl8GgkalTp7J161auXLnC0aNHefPNNwkPD+fdd98FdANGRo8ezYEDBwgLCyM4OJhOnTpRrlw5WrVqVTAnpVJxplR33c8nV8DNkwVzXCFEvvP29mbu3LnZrr9jxw5UKpXBCFGRP4ye0Lp3786sWbOYOHEi1apV4/jx42zevFk/UCQiIoKbN2/q69+/f59+/frh7+9P27ZtiY2NZd++fVSqVAnQNVtPnjxJx44dqVChAu+88w41a9Zk9+7dBXovWoyVD2kBrwIKbJtUYMcVQug8OblC+kOtVuPo6JjpQLDsOHz4MP379892/fr163Pz5k3s7e1zdbzsksRZCO5DAxg8eDCDBw/O9LUdO3YYPJ8zZw5z5szJcl+WlpZs2bIlL8PLNW2TjzAJWQeX/9E9fF8xdkhCvDAe/0N4xYoVTJw4kfPnz5OWlkZcXJzBJQhFUdBqtZiaPvsrsUSJEjmKw9zcXO6JLSBGb6EVaw5eUFvXFUrQJHh0cVQIkf/c3Nz0D3t7e/2EDG5ubly8eBF7e3s2bdpEzZo10Wg07Nmzh8uXL9OpUydcXV2xsbGhdu3abNu2zWC/T3Y5qlQqfvzxR7p06YKVlRXly5fn77//1r/+ZMtp8eLFODg4sGXLFvz9/bGxsaF169YGCTg1NZWhQ4fi4OCAs7MzY8eOpU+fPvTs2TPX78f9+/fp1asXjo6OWFlZ0aZNGy5evKh/PTw8nA4dOuDo6Ii1tTUBAQFs3LhRv23Pnj0pUaIElpaWlC9f3mAmpsJCElp+azQaNHYQeRJOrzR2NELkCUVRSExO5UGylsTk1AJ95OWdRuPGjeOzzz4jJCSEKlWqEB8fT9u2bQkODubYsWO0bt2aDh06EBER8dT9TJkyhW7dunHy5Enatm1Lz549uXfvXpb1ExMTmTVrFr/++iu7du0iIiKCUaNG6V///PPP+f3331m0aBF79+4lNjaWv/7667nOtU+fPvz777/8/fff7N+/H0VRaNu2rf7+sEGDBpGUlMSuXbs4deoUn3/+OTY2uvtoJ0yYwNmzZ9m0aRMhISF89913uLi4PFc8+aFQdDkWa9bO8PJwCJ4KwZ+Af0cws3jmZkIUZg9StFSebJybwc9ObYWVed58dU2dOpUWLVronzs5OVG1alX9808++YQ1a9bw999/Z3lZBHTJ4o033gDg008/5euvv+bQoUNZToqekpLCggUL8PX1BXSXXaZOnap/fd68eYwfP54uXboA8M033+hbS7lx8eJF/v77b/bu3Uv9+vUB+P333/H09GTt2rW8/vrrRERE8NprrxEYGAjobndKFxERQfXq1alVqxaga6UWRtJCKwh1B4CtB8REwOEfjR2NEOKR9C/odPHx8YwaNQp/f38cHBywsbEhJCTkmS20KlWq6H+2trbGzs6OW7duZVnfyspKn8wA3N3d9fVjYmKIioqiTp06+tfVajU1atTI0bk9LiQkBFNTU+rWrasvc3Z2pmLFioSEhAAwdOhQpk2bRoMGDZg0aRInT/43OnvAgAEsX76catWqMWbMGPbt25frWPKTtNAKgrkVNP0Q/h4Mu2ZC9Z5g6WjsqITINUszNacntyAuNg5bO9sCvdHX0uz5Z2VPZ21tbfB81KhRBAUFMWvWLMqVK4elpSVdu3YlOTn5qft58sZflUqlv6E4u/WNOGkTAO+++y6tWrViw4YNbN26lRkzZvDll18yZMgQ2rRpQ3h4OBs3biQoKIhmzZoxaNAgZs2aZdSYnyQttIJS7X9Qwh8eRsOerEdpClEUqFQqrMxNsTRXY2VuWqCP/Jz2ae/evfTp04cuXboQGBiIm5sbYWFh+Xa8zNjb2+Pq6srhw4f1ZVqtlmPHjuV6n/7+/qSmphpMJ3j37l3Onz+vv+UJwNPTk/fff5/Vq1czcuRIFi5cqH+tRIkS9O7dm99++425c+fyww8/5Dqe/CIttIJiooYWU2BpNziwAGr3AwdPY0clhHhM+fLlWb16NR06dEClUjFhwoSntrTyy5AhQ5gxYwblypXDz8+PefPmcf/+/Wwl81OnTmFra6t/rlKpqFq1Kp06daJfv358//332NraMm7cOEqVKkWnTp0AGD58OG3atKFChQrcv3+f7du34+/vD8DEiROpWbMmAQEBJCUlsX79ev1rhYkktIJUviV4vQzhe2D7p9DlO2NHJIR4zOzZs3n77bepX78+Li4ujB07Vr+cVEEaO3YskZGR9OrVC7VaTf/+/WnZsmW2kmujRo0MnqvValJTU1m0aBHDhg2jffv2JCcn06hRIzZu3Kjv/tRqtQwaNIhr165hZ2dH69at9ff8mpubM378eMLCwrC0tKRhw4YsX74870/8ORl1tv3CKjY2Fnt7+2fO7JyVlJQUNm7cSNu2bTNOqnntCPz4CqCC9/eAW+W8CTqPPDX2Qkzizj8PHz4kNDQUHx8fLCz+G6GblpZGbGwsdnZ2RW6y3KIWd1paGv7+/nTs2JHPP/+8yMQN2X+/s/qcQfa/k4vOu1JclK4JAV3QTYk12djRCCEKofDwcBYuXMiFCxc4deoUAwYMIDQ0lK5duxo7tEJNEpoxvDIBTEzhUhBc2WnsaIQQhYyJiQmLFy+mdu3aNGjQgFOnTrF161YqVqxo7NAKNbmGZgzOvlDrHTj0PQRNhH7boQh1IQgh8penpyd79+41KEvvuhNZk29RY2k8Bsxt4eZxOLPa2NEIIUSRJwnNWKxdoMEw3c/BUyE1ybjxCCFEEScJzZjqDQQbN4gOh39/NnY0QghRpElCMyZza2j6aDXunV/AwxjjxiOEEEWYJDRjq/YmuFSAB/dgz1xjRyOEEEWWJDRjU5tC80dLwR/4FmKuGzceIYQooiShFQYV20CZepD6EHZ8auxohBCPadKkCcOHD9c/f3LF6syoVCrWrl373MfOq/28KCShFQYqFbT4RPfz8aUQdda48QhRDHTo0CHLBTb37duHWq02WPMruw4fPkz//v2fNzwDkydPplq1ahnKb968SZs2bfL0WE9avHgxDg4O+XqMgiIJrbDwrK1bzVpJkymxhMgD77zzDkFBQVy7di3Da0uXLqVWrVoGC3NmV4kSJbCyssqLEJ/Jzc0NjUZTIMcqDiShFSbNJoFKDRe3QNgeY0cjRJHWvn17SpQoweLFiw3K4+Pj+euvv+jbty93797ljTfeoFSpUlhZWREYGMiyZcueut8nuxwvXrxIo0aNsLCwoFKlSgQFBWXYZuzYsVSoUAErKyvKli3LhAkTSElJAXQtpClTpnDixAlUKhUqlUof85NdjmfOnKF58+ZYWlri7OxM//79iY+P17/ep08fOnfuzKxZs3B3d8fZ2ZlBgwbpj5UbERERdOrUCRsbG+zs7OjWrRtRUVH610+cOEHTpk2xtbXFzs6OmjVr8u+//wK6OSk7duyIt7c3tra2BAQEsHHjxlzH8iwy9VVh4lIOavWFwz/C1gnQ7x9dd6QQhY2iQHICpCRCsrpgp24zs8rW74WpqSm9evVi8eLFfPTRR/q1xP7880+0Wi1vvPEGiYmJ1KxZk7Fjx2JnZ8eGDRt466238PX1pU6dOs88RlpaGq+++iqurq4cPHiQmJgYg+tt6WxtbVm8eDEeHh6cOnWKfv36YWtry5gxY+jevTunT59m8+bNbNu2DdAt8vmkhIQEunbtSr169Th8+DC3bt3i3XffZfDgwQZJe/v27bi7u7N9+3YuXbpE9+7dqVatGv369Xvm+WR2funJbOfOnaSmpjJo0CC6d+/Ojh07AOjZsyfVq1fnu+++Q61Wc/z4cf3KEYMGDSIpKYkNGzbg6urKuXPnsLGxyXEc2SUJrbBpPBZOLIcbR+HMGqj8qrEjEiKjlERMPiuNgzGO/eEN3T2c2fD2228zc+ZMdu7cSZMmTQBYsmQJHTp0wN7eHkdHR0aNGqWvP2TIELZs2cIff/yRrYS2bds2zp07x5YtW/Dw8ADg008/zXDd6+OPP9b/7O3tzahRo1i+fDljxozB0tISGxsbTE1NcXNzy/JYS5cu5eHDhyxZskS/gOc333xDhw4d+Pzzz3F1dQXA0dGRb775BrVajZ+fH+3atSM4ODhXCS04OJhTp04RGhqKp6duQeJffvmFgIAADh8+TO3atYmIiGD06NH4+fkBukVS00VERPDqq68SEBCAnZ0d5cqVy3EMOSFdjoWNTUmoP1T3c/BUSE02bjxCFGF+fn7Ur1+fn3/WzcRz6dIldu/ezVtvvQXoFrX85JNPCAwMxMnJCRsbG7Zs2UJERES29h8SEoKnp6c+mQHUq1cvQ70VK1bQoEED3NzcsLGx4eOPP872MdKdO3eOypUrY239XzJv0KABaWlpnD9/Xl8WEBCAWq3WP3d3d+fWrVs5Ola69PNLT2YAlSpVwsHBgZCQEABGjBjBu+++S/Pmzfnss8+4fPmyvu7QoUOZPn06rVq1YvLkybkahJMT0kIrjOoN0nU73g+FI4ug7nvGjkgIQ2ZWpI27RmxcHHa2tgW74KRZzgZkvPPOOwwZMoT58+ezaNEifH19adCgAQAzZ87kq6++Yu7cuQQGBmJtbc3w4cNJTs67PyT3799Pz549mTJlCq1atcLe3p7ly5fz5Zdf5tkxHvfkQrEqlSpbK13n1uTJk/nf//7Hhg0b2LRpE5MmTWL58uV06dKFd999lxYtWrBq1Sp2797NZ599xpdffsmQIUPyJRZpoRVGGhtoMk73887P4aEsGSEKGZVK1+1nZqX7tyAfObyu3K1bN0xMTFi6dCm//PILffv21V9P27t3L506deLNN9+katWqlC1blgsXLmR73/7+/ly9epWbN2/qyw4cOGBQZ9++fXh5efHRRx9Rq1YtypcvT3h4uEEdc3NztFrtU4/l5+fH6dOnSUhI0Jft3bsXExOTfFsnLf38rl69qi87e/Ys0dHRVKpUSV9WoUIFPvjgA7Zu3cqrr77KokWL9K95enry9ttvs2rVKkaOHMnChQvzJVaQhJYvfjkQwayTai7ein925azU6AXO5SHxLuz7Ou+CE+IFY2NjQ/fu3Rk/fjw3b96kd+/e+tfKly9PUFAQ+/btIyQkhPfee89gBN+zNG/enAoVKtC7d29OnDjB7t27+eijjwzqlC9fnoiICJYvX87ly5f5+uuvWbNmjUEdb29vQkNDOX78OHfu3CEpKePqGz179sTCwoI+ffpw+vRptm/fzpAhQ3jrrbf0189yS6vVcvz4cYNHSEgIzZs3JzAwkJ49e3L06FEOHTpEr169aNy4MbVq1eLBgwcMHjyYHTt2EB4ezt69ezl8+DD+/v4ADB8+nC1bthAeHs7Ro0fZvn27/rX8IAktH+y9dJerCSo2norM/U7UZtB8ku7nfd9A7M2n1xdCZOmdd97h/v37tGrVyuB618cff0yNGjVo1aoVTZo0wc3Njc6dO2d7vyYmJqxZs4YHDx5Qp04d3n33XaZPn25Qp2PHjnzwwQcMHjyYatWqsW/fPiZMmGBQ57XXXqN169Y0bdqUEiVKZHrrgJWVFStXruT+/fvUrl2brl270qxZM7755pucvRmZiI+Pp3r16gaPDh06oFKp+Ouvv3B0dKRRo0Y0b96csmXLsmLFCgDUajV3796lV69eVKhQgW7dutGmTRumTNFN56fVahkyZAh169albdu2VKhQgW+//fa5482KSlEUJd/2XkTFxsZib29PTEwMdnZ2Od5+1b8RjFx5Ch9nK/4Z1UTfvZFjigI/t4KrB6FGb+iY/y21lJQUNm7cSNu2bTP0xRdmEnf+efjwIaGhofj4+GBhYaEvT19B2c7OrmCvoT0nibtgZTfurD5nkP3v5KLzrhQhzfxKYGaiEHo3kTM3nuP6l0oFLabqfj72K9w6lzcBCiFEMSQJLR9Ya0wJcNQ1fNeduPF8OyvzEvi1102JFTwlD6ITQojiSYbt55MazgrH78L6kzcZ29oPE5PnmPGj2SQ4vwnOb4TwfeBVP2+CVBSIj4Lb5+HOBbh9HvXdy9S5ex/1us1g4wyWTmDllPm/puZ5E4cQQuQBSWj5xN9BwVqj5nr0A45dvU9NL6fc76xEBd2oxyOLIGgivBOUs6HLaVqIjtAnLV0COw+3L0CS4SrZJoA7wMljz96vuc2jBOcIVlklP0fD5xpbmc5LCJEvJKHlE3M1tPArydoTN1l34ubzJTTQ3Zd2cgVcOwwhf0OlThnrpCbDvcsZk9bdi7q11jKjMgEHLyhREUpUJNXBh9MnjxPoWwp1Ugwk3tOtpm3w731AgeR43SMmBzMemNuAQ5lHD6/Hfn70sHSUhFdIyfgxkZ/y4vMlCS0ftavixtoTN1l/8iYT2ldC/TzdjrZuUH+I7kbrbZPBrrSuxZWetO6ch3uhoGRxc6baXHdfW4kK4FLxv3+dy4HZfyOKlJQUwm84EdCgLeqsRt2laeFhVskuk+SX/jz1oS4B3jqre2TG3DZjkpOEZ1Tpoy8TExOxtLQ0cjSiuEpMTAQyznSSE5LQ8lH9ss44WJlxJz6Jg1fuUr+cy3PucAj8+zPcuwI/vpJ5HXPbjEmrREVda0idR//dJmpdF6JVDludyQkQewOiw3VdoE8+4qMgOQ5undE9MpNZwnP0AhsPTNJk3sv8oFarcXBw0M8HaGVlpZ9OKTk5mYcPHxa5YeQSd8F5VtyKopCYmMitW7dwcHAwmIcypySh5SNzUxPaVHZj2aGrrDt54/kTmsYWWk6Hte/rrlmlJ60SfuBSQZe4bN0LbwvG3BpcyusemUl5ANFXHyW4TJJewq0sE54Z0EptjYn9Rag3ECwd8v10XiTps8A/Psmtoig8ePAAS0vL3N9raQQSd8HKbtwODg5PXW0gOySh5bMOVTxYdugqm05HMqVjZcxNn/Mvq6rdofJredfaKkzMLB8l6AqZv56cCDHXMk14yr0rmD+4B7s+h4PfQZ1+8NIgsHYu2HMoplQqFe7u7pQsWVK/WGRKSgq7du2iUaNGhfam8MxI3AUrO3GbmZk9V8ssXaH4Vpw/fz4zZ84kMjKSqlWrMm/evCzXIlq8eDF9+/Y1KNNoNDx8+N+gB0VRmDRpEgsXLiQ6OpoGDRrw3XffGazTU1DqlnXGxUbDnfgk9l66Q1O/ks+/0+KYzLLD3CrLhJea9JDjy6ZQK2E7qtshsPtLOLAAar8N9YaA7fPNdSd01Gq1/otHrVaTmpqKhYVFkfqClbgLVkHGbfSO2BUrVjBixAgmTZrE0aNHqVq1Kq1atXrq+j12dnbcvHlT/3hy5uovvviCr7/+mgULFnDw4EGsra1p1aqVQdIrKGoTFe2ruAN5cJO1yJqJmhuOL5Habyd0/w3cqkBKAuybB19VgY1jIOa6saMUQuQjoye02bNn069fP/r27UulSpVYsGABVlZW+gX5MqNSqXBzc9M/Hp9pWlEU5s6dy8cff0ynTp2oUqUKv/zyCzdu3GDt2rUFcEYZdaiqS2hbz0bxMOXpS0SI56QyAf8O8N4u+N+fULq2bnTloe/h62qwbjjcDzNykEKI/GDUvqvk5GSOHDnC+PHj9WUmJiY0b96c/fv3Z7ldfHw8Xl5epKWlUaNGDT799FMCAgIACA0NJTIykubNm+vr29vbU7duXfbv30+PHj0y7C8pKclguYbYWN38iykpKfrrBTnx+DUGgMpuNnjYW3Aj5iHbztykVUDh7f56MvaiItO4fZqCdxNUYbsw2TMLk4j9cGQRytFfUAK7oW0wHJx8jRPwI0X1/YaiG3u+xf0wFvXGD0BlgrbjfN2tMnnoRX6/s7utURPanTt30Gq1GdbycXV15dy5zCfirVixIj///DNVqlQhJiaGWbNmUb9+fc6cOUPp0qWJjIzU7+PJfaa/9qQZM2bolzt43NatW7GyytnquI8LCgrS/+xnbcKNGBN+DDqGNjz/Vo/NK4/HXpRkGbfzAJw1TakQ+Tcl406jOrkM1cnlXHN8iYuuHYizLF2wgT6hqL7fUHRjz8u4zVITqHd5Jo6JVwA4f9+EC26ZTH6QB17E9zv9HrVnKXKjC+rVq0e9evX0z+vXr4+/vz/ff/89n3zySa72OX78eEaMGKF/Hhsbi6enJy1btszV8jEpKSkEBQXRokUL/UVQrxux/PPdAc7FmtKoWRNsNIXzrc8s9qIge3G3BUaQev0IJnu+xOTSVjzv78fz/n7S/DqgbTAC3AILMuwi+35D0Y09z+NOvIfp0tdQJV5BMbVElfoAv1vrKNdxpO52mjxSZN/v+LvcWDYcj57zMbPK+fcp/Ndr9ixG/VZ1cXFBrVZnWCE2Kioq2/cjmJmZUb16dS5dugT8d79MVFQU7u7uBvusVq1apvvQaDRoNJpM9/08H5zHt69axgkfF2tC7ySw69I9OlUrlev9FoTnPXdjyVbc3i+B959w8wTsmgkh6zA5p3tQoQ00Gg2laxZMwI8U1fcbim7seRJ3wh1Y+ipEnQYrF1S9/4ZtU1Bd3ILZhuHw9mbdRAR5qEi93w+iUf/5BuVuHSVty0hMui3O1W6ye75GHRRibm5OzZo1CQ4O1pelpaURHBxs0Ap7Gq1Wy6lTp/TJy8fHBzc3N4N9xsbGcvDgwWzvMz+oVCo6yGjHwsW9qm5E5MADULmrbkDJhU26WVh+7QLhWV/HFYL4W7C4vS6Z2bhCnw3gGgDtZ+tmtLl2CA7/aOwojedBNPzaBZMbR0lWW6OtNzTfD2n0UY4jRoxg4cKFLFmyhJCQEAYMGEBCQoL+XrNevXoZDBqZOnUqW7du5cqVKxw9epQ333yT8PBw3n33XUCXOIYPH860adP4+++/OXXqFL169cLDwyNHS6vnhw5VdUu/77xwm5jEonVht1gr6Q9df4JBh6FaT1Cp4fI/sKg1LGoHV3boltoRIl3sTVjcDm6HgK0H9NkIJf10r9mXhhaTdT9vm6K7+f9F8+A+/NoZbhxFsXRib7nxBdKdb/QLOd27d+f27dtMnDiRyMhIqlWrxubNm/WDOiIiIgzm/7p//z79+vUjMjISR0dHatasyb59+6hUqZK+zpgxY0hISKB///5ER0fz8ssvs3nz5gzLehe08q62+LnZci4yji1nIulW29Oo8YgnuJSDzt9C4zGwZw4c+x3C98Ave6BULajTX7fKgZlxP0fCyGKuwZIOujlV7UpDn3XgVNawTs234dQqiNinu1XkzVWFd0q6vJZ4T5fMbp4AK2dS/7ea2CPhz9wsLxi9hQYwePBgwsPDSUpK4uDBg9StW1f/2o4dO1i8eLH++Zw5c/R1IyMj2bBhA9WrVzfYn0qlYurUqURGRvLw4UO2bdtGhQp5d3H2eaS30tadlG7HQsvRGzp8BcOOQ533wNQCrv8La/rDbH/YOkH3ZSZePNERsKit7v/foQz03ZAxmQGYmEDHeaDWwOVgOLG84GM1hsR78EunR8nMBXqv13XDFpBCkdBeJOmzhuy9dIc78UnPqC2Myr40tP0Chp2Eph/r/hp/cA/2fQ1fV4dfX4VzG0CbauxIRUG4F6rrgo4OB0cfXTejo3fW9V3K6dYxBNg8TnfNrThLvAe/dITIk2BdAvqsB9dKz94uD0lCK2BeztZULW1PmgKbTt00djgiO2xdofFoGHYCeiyDcs0Ble4v7+X/g6+qws6ZEBf1zF2JIuruZd01s5gI3RqCfTeCQzYuGdQfopuG7WE0bBqT72EaTcJdWNIRIk+BdUldy6ykf4GHIQnNCPTdjickoRUpalPwa6u7HjL0KNQfCpZOEHsNtk+DOZXgj94QuksGkRQnty/ouhljr+uWbOqzAew8sret2gw6faMbaHRmDYSsz99YjSHhju6aYtSp/0Z7pg+QKWA5Tmje3t5MnTqViIgXcOROHmn3qNvxUNg9bsY8MHI0IlecykLLT2BECHT5ATzrQloqnF2r++WeX1c32/+DaGNHKp7HrRBdyyw+EkoG6L6sbXO4Zpd7VWjwaMj6hpHF6zMRf1v3eb91BmzcdO9PVss/FYAcJ7Thw4ezevVqypYtS4sWLVi+fLnBPIji2dztLanjrVvtecNJaaUVaWYWujXq3tkK7++BWm+DuQ3cOQ+bx+oGkfw1GG4cM3akIqciT+mSWcIt3ZDz3uvApkTu9tV4rK6rMj4SgibkbZzGok9mZ3ULC/fZkPXivQUkVwnt+PHjHDp0CH9/f4YMGYK7uzuDBw/m6NGj+RFjsZQ+A7/cZF2MuAVC+zm6VlvbWVCyEqQkwrFf4Ycm8ENTOPabbqFSUbjdOK77sk68C+7VoNffz7dYrJmlbtQjwNFf4MrOvIjSeOJvwZL2j92Ht0E3CMbIcn0NrUaNGnz99dfcuHGDSZMm8eOPP1K7dm2qVavGzz//jCLXEJ6qTaA7Jio4cS2G8LsJxg5H5CULO92K2QP2Qd/NEPi6bub1G0fhr0G6VtvmD+HOJWNHKjJz/YhutN6D+7r7D3v9BVZOz79fr/pQ6x3dz+uGFt0/bOIiH91Ufg7sSulGMzobd9WKdLlOaCkpKfzxxx907NiRkSNHUqtWLX788Udee+01PvzwQ3r27JmXcRY7LjYaGpRzAWC9dDsWTyoVeNWD136ED85C88ng4KUb8XZgPnxTE/Xvr+Jx/2Dxuq5SlF09BL90hocx4PkSvLUGLB3ybv/NJ+uSwP0w2D497/ZbUOIiddN93bnw6KbywpPMIBcJ7ejRowbdjAEBAZw+fZo9e/bQt29fJkyYwLZt21izZk1+xFusdKiSPtpRuh2LPZsS8PIHMPQ49FwJFVoDKkzCdlE7bD6ms8vDgoa6ltv5TbovVFGwwvfp5vBMigWvBrrRrBa5mx0+SxZ2um5pgAPf6lqDRUX6dF93L4K9py6ZZXZTuRHleOqr2rVr06JFC7777js6d+6c6SzIPj4+mS6kKQy1CnDjo7WnOBcZx4WoOCq42ho7JJHfTEygfAvdIzoC7aGfSTyyHNukm7obUiNP6lpvKhPd/Us+DcG7IZSpl/dfruI/obthaTfdNU+fxvDGMjC3zp9jVWil64Y+9Sf8NQT67wDTvF0MNM/F3tC1zO5dBvsyuum+nnZTuZHkOKFduXIFLy+vp9axtrZm0aJFuQ7qRWFvZUbjCiXYFnKL9SduMKJlRWOHJAqSQxnSmn7EPw+q07ZRTcyuHYCw3RC2B+5egpvHdY9983QJzr3aowTXCMrUBU0B/QGUlqa7B+veZd0NxveuwL0rmEZfpc5Dc0x2ngD3QHCtrPuLPY+XS8l3l7fDsjcg9QH4NoMev+sGceSn1p/pJsC+dQb2ztXNH1pYxVzXDQC5d+VRMlsPjk/PAcaS44SWnsz+/fdfQkJCAPD396dWrVp5G9kLokNVD7aF3GLdyZt80KICqhdlAlNhyMYVArvqHqD7izhsL4Tt0iW4e1d0g0puHIW9X+lu1C1VA7xfftSCe+n5WhRpaRB387GkdVk31dPdy3A/FFIfZthEBbgD7Hms28zUAkr46ebvK1lJ969rANiUzH1s+eniNt1sL9okKN8Kuv1SMJNPW7tAmy9g1Tu6Nfn8OxrtZuSnirmma5ndD9XNXdlng+7fQirHCe3atWu88cYb7N27FwcHBwCio6OpX78+y5cvp3Rp4y5lX9Q093fFwsyE0DsJnLkRS+VS9sYOSRQGdh5Q5XXdA3RfLGF7dC240N26+QSvHdY99swBE1MoVfO/BOdZF8ytDPepKLqL+gYtrctwV9fiIvUpN/mbmOq6mJx8dYMAnMqSau1KyL7NBLiAye0Q3U3IqQ/+a1k+zsrlv+SWnuxK+GWMsQCpLmyG1W+DNhn82kPXRQXb9Vf5NTj5B1zcAn8PyZfFQJ9L9FVdy+x+mG4wU58N2Zvuy4hynNDeffddUlJSCAkJoWJFXRfZ+fPn6du3L++++y6bN2/O8yCLM2uNKc38XNlw6ibrTtyQhCYyZ18aqvbQPUA363vYHt0jdLdujsGrB3WP3V+CiRmUrqWbpSLu5n9JK+Upt4io1LquJH3S8gXnsrp/7T11U389RklJ4colBb+2bTExM4M0re7LL+qM7nHrDESd1R038Q6E7tQ9/jug7jiPt+RKVtJN/GuSv7PyuUf/i3rVt7rZXSp1gtd+0k1TVZBUKt1ioPNf0i0GemghvPR+wcaQlegIXcssOlz3h0yfDbrPYCGX44S2c+dO9u3bp09mABUrVmTevHk0bNgwT4N7UXSo6s6GUzdZf/ImY1v7YWIi3Y7iGRzKQLX/6R6gSyTpyS1st+6aV8R+3eNxKhPdtgZJS9fiwqHM832pm6h1+3L2hUod/ytPTtDdsxT1KMHdepTwEu/qrhXevQQhf/9X38waSlTU3ftlYqZLpGrz/342MdM9V5vpWo7qR8/TfzYxe1SW+c8mdy5TK/QbVKTpVirv8n2GZF1g7EtDiymwYQQET4WKbYx/fep+uK5lFh3xaFWBDWBfyrgxZVOO/xc9PT1JScm42rJWq8XDI5sTdgoDTSqWxEZjyvXoBxy7ep+aXnlwE6d4sTh66x7V39R1Ld4P1SW42+d19z3pk5ZXwY+oM7fWdYeWqvlfmaLoZptIT25RZyHqtC7elATdtcJ8kt6plxbYDZMuC4zfzVezL5xeBeF7Yf1weHO18RYDvR8GizvoWvxOvroBINmdiLkQyHFCmzlzJkOGDGH+/Pn6gSD//vsvw4YNY9asWXke4IvAwkxNy0qurD52nXUnbkpCE89HpdIlr0J2j5ABlUq3LI+tK/i+8l+5NlXXRXk7RNey06bornGlpep+TkvR1dEm//dz2qM6+p+fvo2iTeWiqiw+7edhYuxkBrru1Q5fw3f1dSMfTyz7r+VdkO6F6qb7irmqm3ey93qwcy/4OJ5DjhNanz59SExMpG7dupia6jZPTU3F1NSUt99+m7fffltf9969e3kXaTHXoaoHq49dZ/3Jm0xoXwm1dDuKF5HaVDdbez7O2J6akkLIxo34FIZkls6lHDQdD9smw+bxujX3CnJk6K0Q+K2rbikk5/K6lllOVxUoBHKc0ObOnZsPYYgG5VxwsDLjTnwSB6/cpf6jabGEEC+IekPg9GrdzfUbR0O3Jfl7PEXRXW/d/y1c2Awo4FJB1zKzdc3fY+eTHCe03r1750ccLzxzUxPaVHZj2aGrrDt5QxKaEC8ataluMdAfmurW1QtZD/7t8/44qcm6a3YH5uuWyElXsS20n1tkkxnkIqGBbgDI2rVr9TdWBwQE0LFjR9TqQtSEL4I6VPFg2aGrbDodyZSOlTE3lQXFhXihuFeFBsNgz2zdYqDeL+fd5MiJ9+Dfn+DQj7p12QBMLaF6T6g7oFAs//K8cpzQLl26RNu2bbl+/bp+6P6MGTPw9PRkw4YN+PoWnpmXi5q6ZZ1xsdFwJz6JvZfu0NSvkM6uIITIP43H6m5juHtJtxho+jpquXX7gm4i5BPL/7t53tYd6vSHmn3yZmmcQiLHTYChQ4fi6+vL1atXOXr0KEePHiUiIgIfHx+GDh2aHzG+MNQmKtpXkYU/hXihmVk8/2KgigJXdsDvr8P82nBkkS6ZuVeFVxfCsJPQcESxSmaQyxurDxw4gJPTf2+Es7Mzn332GQ0aNMjT4F5EHaq6s3hfGFvORPIwRYuFmXTjCvHC8aoPtd+Fwz/qFgMdsB9U2bjpPTUJTq3UtciiTj8qVOmuj9UbpNtvMZ4vNscJTaPREBcXl6E8Pj4ec/NCvgRCEVDd05FSDpZcj37A9nO3aBNYtO4DEULkkWaTdGvjpS8G+srkrOsm3IF/f9ZNn5VwS1dmZv3o+tj7hWoRzvyU4y7H9u3b079/fw4ePIiiKCiKwoEDB3j//ffp2LHjs3cgnsrk8W7Hk9LtKMQL64nFQFWZzZ5y6xz8PRTmBOiSXsIt3cwwzafAiDPQduYLk8wgFwnt66+/xtfXl3r16mFhYYGFhQUNGjSgXLlyfPXVV/kR4wunQ1XdVDPBIbeIT0o1cjRCCKOp0AoCu4GShnrDcFRpqbrrY5eC4ddX4du6cHSJbnkfj+q6SZaHnYCXh4Olo7GjL3A56nJUFIXY2FiWL1/O9evXDdZDK1eu6A/5LCwCPOzwcbEm9E4C285G0bl60ZgYVAiRD1p/BpeDUd06S83k7zBd+IVusmcAVLp71V4apFsTrxhfH8uOHCe0cuXKcebMGcqXLy9JLJ+oVCo6VHHn638use7EDUloQrzIrJ31i4GWij6sKzO3gepvQd33wMnHuPEVIjnqcjQxMaF8+fLcvXs3v+IRj6R3O+66eJvoxGQjRyOEMKrKr6Gt3otYi1Jom02BD85Am88kmT0hx9fQPvvsM0aPHs3p06efXVnkWnlXW/zcbEnRKmw5E2nscIQQxqRSkdZ2Ntv9Z5D20qC8mz2kmMnxsP1evXqRmJhI1apVMTc3x9LS0uB1mWE/73So6sG5yPOsO3GT7rXLGDscIYQo1HKc0ObMmYPqBb/wWFA6VPFg5pbz7Lt8h9txSZSw1Rg7JCGEKLRytR6aKBhlnK2o6unAiavRbDp9k171vI0dkhBCFFo5voamVqu5detWhvK7d+/KbPv5oIPM7SiEENmS44SmKEqm5UlJSTL1VT5oX8UDlQoOh93nRvQDY4cjhBCFVra7HL/++mtAd4/Ujz/+iI2Njf41rVbLrl278PPzy/sIX3Bu9hbU9nbiUOg9Npy8Sb9GZY0dkhBCFErZTmhz5ujmFFMUhQULFhh0L5qbm+Pt7c2CBQvyPkJBh6oeHAq9x7qTNyShCSFEFrKd0EJDQwFo2rQpq1evxtHxxZsnzFjaVHZj8t9nOHkthrA7CXi7WBs7JCGEKHRyfA1t+/btkswKmIuNhvq+zgCslxn4hRAiUzlOaFqtlp9++on//e9/NG/enFdeecXgkRvz58/H29sbCwsL6taty6FDh7K13fLly1GpVHTu3NmgvE+fPqhUKoNH69atcxVbYZE+Fda6EzeNHIkQQhROOU5ow4YNY9iwYWi1WipXrkzVqlUNHjm1YsUKRowYwaRJkzh69ChVq1alVatWmd4a8LiwsDBGjRpFw4YNM329devW3Lx5U/9YtmxZjmMrTFoFuGGmVnE+Ko7zkRkXWBVCiBddjm+sXr58OX/88Qdt27bNkwBmz55Nv3796Nu3LwALFixgw4YN/Pzzz4wbNy7TbbRaLT179mTKlCns3r2b6OjoDHU0Gg1ubm55EmNhYG9pRuMKJdkWEsX6kzeo6FbR2CEJIUShkuOEZm5unmfLxiQnJ3PkyBHGjx+vLzMxMaF58+bs378/y+2mTp1KyZIleeedd9i9e3emdXbs2EHJkiVxdHTklVdeYdq0aTg7O2daNykpiaSkJP3z2NhYAFJSUkhJScnxeaVvk5ttn6ZtZV1C+/v4DYY08cmXKcjyK/b8JnEXvKIau8RdsPIi7uxuq1KyulM6C19++SVXrlzhm2++ee4v1Bs3blCqVCn27dtHvXr19OVjxoxh586dHDx4MMM2e/bsoUePHhw/fhwXFxf69OlDdHQ0a9eu1ddZvnw5VlZW+Pj4cPnyZT788ENsbGzYv39/prOZTJ48mSlTpmQoX7p0KVZWVs91jnkpSQsf/asmJU3FqMBUPG2evY0QQhR1iYmJ/O9//yMmJgY7O7ss6+W4hbZnzx62b9/Opk2bCAgIwMzMzOD11atX5zzabIqLi+Ott95i4cKFuLi4ZFmvR48e+p8DAwOpUqUKvr6+7Nixg2bNmmWoP378eEaMGKF/Hhsbi6enJy1btnzqm5eVlJQUgoKCaNGiRYb353ntSDzBxtNRHE9xp3+banneSsvP2POTxF3wimrsEnfByou403vNniXHCc3BwYEuXbrkOKDMuLi4oFariYqKMiiPiorK9PrX5cuXCQsLo0OHDvqytLQ0AExNTTl//jy+vr4ZtitbtiwuLi5cunQp04Sm0WjQaDLOZG9mZvZcH5zn3T4zA5qUJyjkFtvO3ebn/Vd5v3HG880L+RF7QZC4C15RjV3iLljPE3d2t8txQlu0aFGOg8mKubk5NWvWJDg4WD/0Pi0tjeDgYAYPHpyhvp+fH6dOnTIo+/jjj4mLi+Orr77C09Mz0+Ncu3aNu3fv4u7unmexG0tgaXsmdQjg47Wn+WLzOQJL2dOgXNatVSGEeFFke9j+s4bRp6amZvv+sceNGDGChQsXsmTJEkJCQhgwYAAJCQn6UY+9evXSDxqxsLCgcuXKBg8HBwdsbW2pXLky5ubmxMfHM3r0aA4cOEBYWBjBwcF06tSJcuXK0apVqxzHVxj1rFuGrjVLk6bAkGXHZNJiIYQgBwnN3d3dIKkFBgZy9epV/fO7d+8aDOzIru7duzNr1iwmTpxItWrVOH78OJs3b8bV1RWAiIgIbt7M/s3EarWakydP0rFjRypUqMA777xDzZo12b17d6bdikWRSqViWufKVHK3415CMgN+P0pSqtbYYQkhhFFlu8vxycGQYWFhGYZS5nDApN7gwYMz7WIE3fD7p1m8eLHBc0tLS7Zs2ZKrOIoSCzM1379Vk/bz9nDiajRT151lepdAY4clhBBGk+OZQp4mP+6LElnzdLJibo9qqFTw+8EI/vz36rM3EkKIYipPE5ooeE0rlmR4swoAfLT2NKevxxg5IiGEMI5sJzSVSkVcXByxsbHExMSgUqmIj48nNjZW/xDGMeSVcjStWILk1DTe/+0I0YnJxg5JCCEKXLYTmqIoVKhQAUdHR5ycnIiPj6d69eo4Ojri6OhIxYoyt6CxmJiomNu9OmWcrLh2/wHDlh8nLS131zOFEKKoyvagkO3bt+dnHOI52VuZseDNmnT5di87L9zmq+CLfNCigrHDEkKIApPthNa4ceP8jEPkgUoednzaJZCRf57gq+CLVPW05xU/V2OHJYQQBUIGhRQzr9UszVsveQEwfPlxwu8mGDkiIYQoGJLQiqEJ7StRvYwDsQ9Tef+3ozxIlpuuhRDFnyS0Ysjc1IRve9bAxcackJuxfLTmVK5vehdCiKJCElox5W5vybw3aqA2UbH62HV+OxBu7JCEECJfPXdCi42NZe3atYSEhORFPCIP1fN1Zmxr3e0UU9ef5Uj4fSNHJIQQ+SfHCa1bt2588803ADx48IBatWrRrVs3qlSpwqpVq/I8QPF8+jUsS9tAN1K0CgN/P8LtuCRjhySEEPkixwlt165dNGzYEIA1a9agKArR0dF8/fXXTJs2Lc8DFM9HpVLxRdeq+JawJio2iSHLjpKqTTN2WEIIkedynNBiYmJwcnICYPPmzbz22mtYWVnRrl07Ll68mOcBiudnozHl+7dqYW2u5sCVe8zcct7YIQkhRJ7LcULz9PRk//79JCQksHnzZlq2bAnA/fv3sbCwyPMARd4oV9KGWa9XBeD7XVfYeCr7a8wJIURRkOOENnz4cHr27Enp0qXx8PCgSZMmgK4rMjBQ1uMqzNoEuvNeo7IAjP7zBJduxRk5IiGEyDs5TmgDBw5k//79/Pzzz+zZswcTE90uypYtK9fQioDRrSryUlknEpK1vPfrEeKTUo0dkhBC5IlcDduvVasWXbp0wcbGBq1Wy/Hjx6lfvz4NGjTI6/hEHjNVm/DN/2rgZmfB5dsJjFl5Qm66FkIUC7nqcvzpp58A0Gq1NG7cmBo1auDp6cmOHTvyOj6RD1xsNHz7Zg3M1Co2nopk4e4rxg5JCCGeW44T2sqVK6laVTe4YN26dYSGhnLu3Dk++OADPvroozwPUOSPGmUcmdghAIDPNp1j3+U7Ro5ICCGeT44T2p07d3BzcwNg48aNvP7661SoUIG3336bU6dO5XmAIv+8WbcMr9YoRZoCQ5Ye42bMA2OHJIQQuZbjhObq6srZs2fRarVs3ryZFi1aAJCYmIharc7zAEX+UalUTO8ciL+7HXcTkhn4+1GSU+WmayFE0ZTjhNa3b1+6detG5cqVUalUNG/eHICDBw/i5+eX5wGK/GVprub7N2tiZ2HKsYhoZmyWm66FEEVTtlesTjd58mQqV67M1atXef3119FoNACo1WrGjRuX5wGK/FfG2YqvelSn7+LD/HbwKvFeKtrIyEchRBGT44QG0LVr1wxlvXv3fu5ghPE09SvJsGbl+Sr4ImvD1dz/9RgzX69KSTuZ/UUIUTTk6j60nTt30qFDB8qVK0e5cuXo2LEju3fvzuvYRAEb3rw841tXwFSlsPPiHVrO3cX6kzeMHZYQQmRLjhPab7/9RvPmzbGysmLo0KEMHToUS0tLmjVrxtKlS/MjRlFAVCoVbzfwZnQVLQEetkQnpjB46TGGLjtGdGKyscMTQoinynFCmz59Ol988QUrVqzQJ7QVK1bw2Wef8cknn+RHjKKAuVnBn/3rMrRZedQmKv4+cYNWc3ex88JtY4cmhBBZynFCu3LlCh06dMhQ3rFjR0JDQ/MkKGF8ZmoTRrSowKoB9SnroltLrffPh/h47SkSk2X+RyFE4ZOr5WOCg4MzlG/btg1PT888CUoUHtU8HdgwtCF96nsD8NuBCNp+tZsj4feMG5gQQjwhx6McR44cydChQ/UTEgPs3buXxYsX89VXX+V5gML4LM3VTO4YQItKroz68wRhdxN5fcF+3m/sy/DmFTA3zdXYIiGEyFM5TmgDBgzAzc2NL7/8kj/++AMAf39/VqxYQadOnfI8QFF4NCjnwubhjZiy7gyrj17n2x2X2X7+NrO7VcXf3c7Y4QkhXnA5Smipqal8+umnvP322+zZsye/YhKFmL2lGbO7VaNlJVc+XHOakJuxdPpmLyNaVqBfw7KoTVTGDlEI8YLKUV+RqakpX3zxBampMijgRde6sjtbhjeiuX9JkrVpfLbpHN2/30/43QRjhyaEeEHl+OJHs2bN2LlzZ37EIoqYErYaFvaqxRddq2CjMeXf8Pu0+Wo3Sw9GyKKhQogCl+NraG3atGHcuHGcOnWKmjVrYm1tbfB6x44d8yw4UfipVCq61fKkXllnRv15goOh9/hwzSm2no3ki9eqyNRZQogCk+OENnDgQABmz56d4TWVSoVWq33+qESR4+lkxbJ+L/Hz3lC+2HKeHedv03LuLqZ1rkz7Kh7GDk8I8QLIcZdjWlpalg9JZi82ExMV7zYsy4YhL1O5lJ1MnSWEKFByA5HIc+VdbVkzsIFMnSWEKFDZTmj//PMPlSpVIjY2NsNrMTExBAQEsGvXrlwFMX/+fLy9vbGwsKBu3bocOnQoW9stX74clUpF586dDcoVRWHixIm4u7tjaWlJ8+bNuXjxYq5iE7mTPnXW6gH1KVviv6mz2n61m/8tPMD7vx5h7MqTTN9wlnnBF1myL4w1x67xz7ko/g27x4WoOCJjHvIgWSsDTIQQ2ZLta2hz586lX79+2NllvIHW3t6e9957jzlz5tCoUaMcBbBixQpGjBjBggULqFu3LnPnzqVVq1acP3+ekiVLZrldWFgYo0aNomHDhhle++KLL/j6669ZsmQJPj4+TJgwgVatWnH27FksLGSQQkGq6unAhiEN+WLLORbtDePszYx/ED2LmVqFnYUZdpaPHhamj/41w87SFHtLM6zNTLh2X0W16AeUcTFFpZL74YR40WQ7oZ04cYLPP/88y9dbtmzJrFmzchzA7Nmz6devH3379gVgwYIFbNiwgZ9//jnLFbC1Wi09e/ZkypQp7N69m+joaP1riqIwd+5cPv74Y/3MJb/88guurq6sXbuWHj165DhG8XwszdVM6hBAr3rehN1NIPZBCrEPU3X/Pkgh9mEKsQ9SidH/rHs95kEK2jSFFK3C3YRk7iY86zqcmoXndmNvaYafmy3+7nb4u9vi52ZHRTdbLMzUBXK+QgjjyHZCi4qKwszMLOsdmZpy+3bOrpEkJydz5MgRxo8fry8zMTGhefPm7N+/P8vtpk6dSsmSJXnnnXcyLCwaGhpKZGQkzZs315fZ29tTt25d9u/fn2lCS0pKIikpSf88vVs1JSWFlJSUHJ1T+naP/1uU5Gfspe3NKW1vnu36iqKQmKwl9mEqcQ9TiHmQSuzDFOIepuoTnu7nFKITkjkbcZvbSSbEPEjhYOg9Dob+N4GyiQq8na3xc7PBz81W/3Cz0xi1NSeflYIncResvIg7u9tmO6GVKlWK06dPU65cuUxfP3nyJO7u7tndHQB37txBq9Xi6upqUO7q6sq5c+cy3WbPnj389NNPHD9+PNPXIyMj9ft4cp/prz1pxowZTJkyJUP51q1bsbKyetZpZCkoKCjX2xpbYY7dHHB59ABAo3t0dILUNC2RD+BGgorriSpuJML1BBUJqSqu3Engyp0ENp6O0u/LSq3gYQ0eVgqlrBU8rBTcLMG8gBtzhfn9fpaiGrvEXbCeJ+7ExMRs1ct2Qmvbti0TJkygdevWGa5DPXjwgEmTJtG+ffucRZlDcXFxvPXWWyxcuBAXF5dnb5BN48ePZ8SIEfrnsbGxeHp60rJly0yvGT5LSkoKQUFBtGjR4qmt2sKoqMaeHnebVhnjVhSF2/HJnIuMI+RmHOej4jgXGceVO4kkauFSLFyK/a+Vlt6a83ezpeKjFl2V0vY4W2e/dZnTuIva+w1FN3aJu2DlRdyZDUbMTLYT2scff8zq1aupUKECgwcPpmLFigCcO3eO+fPno9Vq+eijj3IUpIuLC2q1mqioKIPyqKgo3NzcMtS/fPkyYWFhBguMpqWl6U7E1JTz58/rt4uKijJoMUZFRVGtWrVM49BoNGg0mgzlZmZmz/XBed7tjamoxp5V3KWczCnlZEOzSv99JpJStVyMiifkZuyjZBdLyM1Y7iem6FtzG07r6pqbmtCvoQ8Dm5TDWpPj+QhyHXdRUFRjl7gL1vPEnd3tsv2b6erqyr59+xgwYADjx4/XD6VWqVS0atWK+fPnZ+jmexZzc3Nq1qxJcHCwfuh9WloawcHBDB48OEN9Pz8/Tp06ZVD28ccfExcXx1dffYWnpydmZma4ubkRHBysT2CxsbEcPHiQAQMG5Cg+UbxpTNVULmVP5VL2+jJFUbgVl8TZm7Gcu6lLcqdvxHDldgLzt19m5ZFrjG/jT6dqHjKSUohCJkd/anp5ebFx40bu37/PpUuXUBSF8uXL4+jomOsARowYQe/evalVqxZ16tRh7ty5JCQk6Ec99urVi1KlSjFjxgwsLCyoXLmywfYODg4ABuXDhw9n2rRplC9fXj9s38PDI8P9akI8SaVS4WpngaudBU0r6m4bURSFrWejmLbhLFfvPWD4iuP8sj+MyR0DqFLawbgBCyH0ctV34ujoSO3atfMkgO7du3P79m0mTpxIZGQk1apVY/PmzfrWXkREBCYmOZvQZMyYMSQkJNC/f3+io6N5+eWX2bx5s9yDJnJFpVLRKsCNxhVK8NOeUOZvv8TRiGg6frOX12uWZnTripS0lc+WEMaW9xcDcmHw4MGZdjEC7Nix46nbLl68OEOZSqVi6tSpTJ06NQ+iE0LHwkzNoKbleK1Gab7YfI7Vx67z55FrbDodyZBXytG3gQ/mpjKbnBDGIr99QuSQm70Fs7tXY9WA+lQtbU98UiozNp2j1dxdBIdEyVRdQhiJJDQhcqmmlyNrBjZgZtcquNhoCL2TwDtL/qXPosNcuhVv7PCEeOFIQhPiOZiYqHi9lifbRzXmvcZlMVOr2HnhNq3n7uKT9WeJeVC0ZnUQoiiThCZEHrC1MGN8G3+2ftCY5v4lSU1T+GlPKK/M2sGyQxFo06QbUoj8JglNiDzk42LNj71rs+TtOviWsOZuQjLjV5+i4zd7OPTY3JJCiLwnCU2IfNC4Qgk2D2/EhPaVsLUw5cyNWLp9v58hy45xI/qBscMToliShCZEPjFTm/DOyz7sGNWEN+qUQaWCdSdu8MqXO/hq20UepmiNHaIQxYokNCHymbONhhmvBrJ+yMvU8XbiYUoac7ZdoNmXO9l0OhIZ5S9E3igUN1YL8SII8LBnxXsvseHUTT7dEML16AcMXXESLxs1R5QQvEvYUsbJCi9nKzwdrbAs6DVshCjiJKEJUYBUKhXtq3jQzM+V73ddZsHOy4THp/HrwasZ6paw1eDlZEUZJyvKOFv9l+ycrChhY9yFSYUojCShCWEEluZqhjevwKvV3Jm/ejv2pXy5Fv2QiHuJhN9NJO5hKrfjkrgdl8S/4fczbm+mpoyTLrl5ORsmvdKOlmhMpXUnXjyS0IQwInd7C+q7KrRtWcFgzafoxGR9cou4l0hE+r/3ErkR84AHKVrOR+kWK32SSgXudhZ4OllRrqQN77zsQ9kSNgV5WkIYhSQ0IQohBytzHKzMM12eJjk1jevRDwi/m8DVx5Peo0dispYbMQ+5EfOQg6H3+PPINYY1K0//RmUxU8s4MFF8SUIToogxNzXBx8UaHxfrDK8pisLdhGTC7yZy9V4iq45eY/fFO8zccp51J27w+WtVqOrpUPBBC1EA5M81IYoRlUqFi42Gml6OdK5eil/ersOc7lVxtDLjXGQcXb7dyyfrz5KYnGrsUIXIc5LQhCjGVCoVXaqXZtuIxnSu5kGaAj/tCaXlnF3svHDb2OEJkackoQnxAnC20TC3R3UW9a1NKQdLrt1/QO+fD/HBiuPcS0g2dnhC5AlJaEK8QJpWLMnWDxrxdgMfVCpYc+w6zWfvZO2x67IwqSjyJKEJ8YKx1pgysUMlVg+oj5+bLfcSkhm+4ji9Fx3m6r1EY4cnRK5JQhPiBVW9jCPrhrzM6FYVMTc1YdeF27Scs4sfd1+R9dtEkSQJTYgXmJnahEFNy7FpWEPq+DjxIEXLtA0hvPrtXkJuxho7PCFyRBKaEALfEjYs7/cSn3YJxNbClBPXYugwbw8zt5yTZW5EkSEJTQgBgImJiv/VLcO2EY1pHeBGaprC/O2XafPVbg5cuWvs8IR4JkloQggDrnYWLHirJgverEFJWw2hdxLo8cMBxq8+ScyDFGOHJ0SWJKEJITLVurI7QSMa80adMgAsO3SV5rN3svn0TSNHJkTmJKEJIbJkb2nGjFcDWdH/Jcq6WHM7Lon3fztK/1/+JTL2obHDE8KATE4shHimumWd2TisIfO3X+K7HZfZejaKvZfvUNJczao7R7C1NMfG3BRrjSk2GrXuXwtTbDSmWOvLdWXWGjU2GlMszdSySKnIU5LQhBDZYmGmZmTLirSr4s7YVac4cTWa0CQVoXG5GzBiogJr8/Qk91gyfFTm42xNQCk7AjzsKWkrK3SLZ5OEJoTIET83O1YPqM+By7fYtvsgFQOq8DBVIT4plfgkLQlJqSQkpRL36N+EpFTik1JJSNLq/k1ORVEgTYG4R/WexcXGHH93XXIL8LAjwMMOb2drTEwkyYn/SEITQuSY2kRFHW8n7pxVaFujlMFq28+SlqbwIEWrT3TxjyW89EQY+yCFi1FxnL0Zy6Vb8dyJT2b3xTvsvnhHvx8rc/WjJKd7VHK3p4KbDRpTdX6csigCJKEJIQqUiYlK38VYMhv1H6ZoORcZx5kbMZy5EcvZG7Gci4wlMVnLkfD7HAm/r69raqKiXEkbfUuu0qOHnUX2E64ouiShCSEKNQszNdU8Haj22Erbqdo0Qu8kcOZGLGduxHD2ZixnbsQSnZjCucg4zkXGserof/so42T1qBVnR0VXax7I+qbFkiQ0IUSRY6o2obyrLeVdbelcvRQAiqJwI+YhZ64/asnd1LXmrkc/IOJeIhH3Etl0OhIAcxM1x5Sz9Gngg7+7nTFPReQhSWhCiGJBpVJRysGSUg6WtAxw05ffT0h+1IKL4eyNWI5FRBN+L5EV/15jxb/XqOPjRK96XrQKcMNMLbfmFmWS0IQQxZqjtTkNyrnQoJwLAMnJycxbsYnLqlJsOXuLQ6H3OBR6D1c7Df+r48UbdT0paWth5KhFbkhCE0K8UFQqFeXsYGjbqtxN1LL0UARLD0YQFZvEnG0X+Gb7RdpUdqd3fS9qlHGU+9+KEEloQogXlpu9BSNaVGBw03JsOn2TX/aHcyT8Pn+fuMHfJ24Q4GFH73reGpc2dAAAE21JREFUdKzmgYWZ3A5Q2EmHsRDihWduakKnaqVYNaA+64e8TLdapdGYmnDmRixjVp3kpRnBzNgYwtV7icYOVTyFJDQhhHhM5VL2fNG1KgfGN+PDtn6UdrQkOjGF73ddodHM7byz+DA7L9wmLU0xdqjiCdLlKIQQmXC0Nqd/I1/eebksO87fYsn+cHZduE3wuVsEn7uFj4s1b73kRddapeXG7UKiULTQ5s+fj7e3NxYWFtStW5dDhw5lWXf16tXUqlULBwcHrK2tqVatGr/++qtBnT59+qBSqQwerVu3zu/TEEIUQ2oTFc38Xfnl7Tr8M7IxfRt4Y6sxJfROAlPXn+WlT4P5aM0pzkfGGTvUF57RW2grVqxgxIgRLFiwgLp16zJ37lxatWrF+fPnKVky48Q4Tk5OfPTRR/j5+WFubs769evp27cvJUuWpFWrVvp6rVu3ZtGiRfrnGo2mQM5HCFF8lS1hw6QOAYxqWZE1x67zy/4wLkTF8/vBCH4/GEFdHydaVHLFwkyNudoEc9NHD7UJZo/+NTc1QWNqgtkTrz9eXy2TLueK0RPa7Nmz6devH3379gVgwYIFbNiwgZ9//plx48ZlqN+kSROD58OGDWPJkiXs2bPHIKFpNBrc3NzIjqSkJJKSkvTPY2NjAUhJSSElJedLzqdvk5ttja2oxi5xF7yiGntexG1uAt1retCthjuHwu7z64EItp27zcHQexwMvffcMapNVJipVf8lObUJpmoVqmQ12xNPUtHNjgquNpQvaYObXeFeWicv3u/sbqtSFMVoVzaTk5OxsrJi5cqVdO7cWV/eu3dvoqOj+euvv566vaIo/PPPP3Ts2JG1a9fSokULQNfluHbtWszNzXF0dOSVV15h2rRpODs7Z7qfyZMnM2XKlAzlS5cuxcrKKvcnKIR4YUQnwf5bJtx6AKkKpKbp/tWmqQyeZ/avVsl9QrJQK7hZgruVgpuVgrsVuFsq2JpBIc5zOZKYmMj//vc/YmJisLPLeqoyoya0GzduUKpUKfbt20e9evX05WPGjGHnzp0cPHgw0+1iYmIoVaoUSUlJqNVqvv32W95++23968uXL8fKygofHx8uX77Mhx9+iI2NDfv370etzngvSWYtNE9PT+7cufPUNy8rKSkpBAUF0aJFixwtq1EYFNXYJe6CV1RjL4xxK4pCilYhWZtGcmoaKdq0Rz8r+ueJScn8s+9frN19uXznARdvxRN6NxFtFqMtHSzNKO9qQ/mS1lQoaUO5kjZUcLXB0cq8QM8tL97v2NhYXFxcnpnQjN7lmBu2trYcP36c+Ph4goODGTFiBGXLltV3R/bo0UNfNzAwkCpVquDr68uOHTto1qxZhv1pNJpMr7GZmZk91wf+ebc3pqIau8Rd8Ipq7IUtbnPA+imvp6SkcO+8QtvmFfRxJ6fqVh04HxXHxag4zkfGcfFWPGF3E4h+kMLhsPscDrtvsB8XGw0V3WwoX9KWCq62up9dbfN9pObzvN/Z3c6oCc3FxQW1Wk1UVJRBeVRU1FOvf5mYmFCuXDkAqlWrRkhICDNmzMhwfS1d2bJlcXFx4dKlS5kmNCGEKIrMTU2o6GZLRTdbg/KHKVou3YrnQlQcF6LS/43j2v0H3IlP4s6lJPZeumuwjYe9BdXKOFCjjCPVyzhSuZRdkVss1agJzdzcnJo1axIcHKy/hpaWlkZwcDCDBw/O9n7S0tIMugyfdO3aNe7evYu7u/vzhiyEEIWehZmayqXsqVzK3qA8ISmVi+mJLjKOC7fiuRAZR2TsQ27EPOTGqUg2nnq0xI7ahIBSdtQo46h7eDngbm9pjNPJNqN3OY4YMYLevXtTq1Yt6tSpw9y5c0lISNCPeuzVqxelSpVixowZAMyYMYNatWrh6+tLUlISGzdu5Ndff+W7774DID4+nilTpvDaa6/h5ubG5cuXGTNmDOXKlTMYBSmEEC8aa41phsVSAWIepHD2RixHI+5zLOI+RyOiuZeQzLGIaI5FRPMToQC42VlQw6vwtuKMntC6d+/O7du3mThxIpGRkVSrVo3Nmzfj6uoKQEREBCYm/93/nZCQwMCBA7l27RqWlpb4+fnx22+/0b17dwDUajUnT55kyZIlREdH4+HhQcuWLfnkk0/kXjQhhMiEvaUZ9XydqeerGwmuKArhdxM5GnH/UZKL5tyjltzGQtyKM3pCAxg8eHCWXYw7duwweD5t2jSmTZuW5b4sLS3ZsmVLXoYnhBAvFJVKhbeLNd4u1rxaozSg6648eS0mx624iiUL7tanQpHQhBBCFG7WGtNMW3HHrt7naHg0RyPuZ9qKM1OrKGWpJsH1Gv97ySdfY5SEJoQQIsceb8V1qa5rxSUmp3LiasZWXFi8ittxyfkekyQ0IYQQecLKPGMr7vKtWBav20nLShnn5s1rhWK2fSGEEMWPSqXCy8mK2iUUypW0yffjSUITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLMiN1ZlIX8Q7NjY2V9unpKSQmJhIbGxsoVpAMDuKauwSd8ErqrFL3AUrL+JO/y5O/27OiiS0TMTFxQHg6elp5EiEEEKki4uLw97ePsvXVcqzUt4LKC0tjRs3bmBra4tKpcrx9rGxsXh6enL16lXs7OzyIcL8U1Rjl7gLXlGNXeIuWHkRt6IoxMXF4eHhYbCc2JOkhZYJExMTSpcu/dz7sbOzK1IfvMcV1dgl7oJXVGOXuAvW88b9tJZZOhkUIoQQoliQhCaEEKJYkISWDzQaDZMmTUKj0Rg7lBwrqrFL3AWvqMYucResgoxbBoUIIYQoFqSFJoQQoliQhCaEEKJYkIQmhBCiWJCEJoQQoliQhJYP5s+fj7e3NxYWFtStW5dDhw4ZO6SnmjFjBrVr18bW1paSJUvSuXNnzp8/b+ywcuyzzz5DpVIxfPhwY4eSLdevX+fNN9/E2dkZS0tLAgMD+ffff40d1lNptVomTJiAj48PlpaW+Pr68sknnzxzjj1j2LVrFx06dMDDwwOVSsXatWsNXlcUhYkTJ+Lu7o6lpSXNmzfn4sWLxgn2MU+LOyUlhbFjxxIYGIi1tTUeHh706tWLGzduGC/gR571fj/u/fffR6VSMXfu3DyNQRJaHluxYgUjRoxg0qRJHD16lKpVq9KqVStu3bpl7NCytHPnTgYNGsSBAwcICgoiJSWFli1bkpCQYOzQsu3w4cN8//33VKlSxdihZMv9+/dp0KABZmZmbNq0ibNnz/Lll1/i6Oho7NCe6vPPP+e7777jm2++ISQkhM8//5wvvviCefPmGTu0DBISEqhatSrz58/P9PUvvviCr7/+mgULFnDw4EGsra1p1aoVDx8+LOBIDT0t7sTERI4ePcqECRM4evQoq1ev5vz583Ts2NEIkRp61vudbs2aNRw4cAAPD4+8D0IReapOnTrKoEGD9M+1Wq3i4eGhzJgxw4hR5cytW7cUQNm5c6exQ8mWuLg4pXz58kpQUJDSuHFjZdiwYcYO6ZnGjh2rvPzyy8YOI8fatWunvP322wZlr776qtKzZ08jRZQ9gLJmzRr987S0NMXNzU2ZOXOmviw6OlrRaDTKsmXLjBBh5p6MOzOHDh1SACU8PLxggsqGrOK+du2aUqpUKeX06dOKl5eXMmfOnDw9rrTQ8lBycjJHjhyhefPm+jITExOaN2/O/v37jRhZzsTExADg5ORk5EiyZ9CgQbRr187gfS/s/v77b2rVqsXrr79OyZIlqV69OgsXLjR2WM9Uv359goODuXDhAgAnTpxgz549tGnTxsiR5UxoaCiRkZEGnxl7e3vq1q1bpH5XQff7qlKpcHBwMHYoT5WWlsZbb73F6NGjCQgIyJdjyOTEeejOnTtotVpcXV0Nyl1dXTl37pyRosqZtLQ0hg8fToMGDahcubKxw3mm5cuXc/ToUQ4fPmzsUHLkypUrfPfdd4wYMYIPP/yQw4cPM3ToUMzNzendu7exw8vSuHHjiI2Nxc/PD7VajVarZfr06fTs2dPYoeVIZGQkQKa/q+mvFQUPHz5k7NixvPHGG4V+wuLPP/8cU1NThg4dmm/HkIQmDAwaNIjTp0+zZ88eY4fyTFevXmXYsGEEBQVhYWFh7HByJC0tjVq1avHpp58CUL16dU6fPs2CBQsKdUL7448/+P3331m6dCkBAQEcP36c4cOH4+HhUajjLo5SUlLo1q0biqLw3XffGTucpzpy5AhfffUVR48ezdWSXNklXY55yMXFBbVaTVRUlEF5VFQUbm5uRooq+wYPHsz69evZvn17niyfk9+OHDnCrVu3qFGjBqamppiamrJz506+/vprTE1N0Wq1xg4xS+7u7lSqVMmgzN/fn4iICCNFlD2jR49m3Lhx9OjRg8DAQN566y0++OADZsyYYezQciT997Go/q6mJ7Pw8HCCgoIKfets9+7d3Lp1izJlyuh/V8PDwxk5ciTe3t55dhxJaHnI3NycmjVrEhwcrC9LS0sjODiYevXqGTGyp1MUhcGDB7NmzRr++ecffHx8jB1StjRr1oxTp05x/Phx/aNWrVr07NmT48ePo1arjR1ilho0aJDh1ogLFy7g5eVlpIiyJzExMcMCi2q1mrS0NCNFlDs+Pj64ubkZ/K7GxsZy8ODBQv27Cv8ls4sXL7Jt2zacnZ2NHdIzvfXWW5w8edLgd9XDw4PRo0ezZcuWPDuOdDnmsREjRtC7d29q1apFnTp1mDt3LgkJCfTt29fYoWVp0KBBLF26lL/++gtbW1v9NQR7e3ssLS2NHF3WbG1tM1zns7a2xtnZudBf//vggw+oX78+n376Kd26dePQoUP88MMP/PDDD8YO7ak6dOjA9OnTKVOmDAEBARw7dozZs2fz9ttvGzu0DOLj47l06ZL+eWhoKMePH8fJyYkyZcowfPhwpk2bRvny5fHx8WHChAl4eHjQuXNn4wXN0+N2d3ena9euHD16lPXr16PVavW/r05OTpibmxsr7Ge+308mXjMzM9zc3KhYsWLeBZGnYyaFoiiKMm/ePKVMmTKKubm5UqdOHeXAgQPGDumpgEwfixYtMnZoOVZUhu0riqKsW7dOqVy5sqLRaBQ/Pz/lhx9+MHZIzxQbG6sMGzZMKVOmjGJhYaGULVtW+eijj5SkpCRjh5bB9u3bM/1c9+7dW1EU3dD9CRMmKK6uropGo1GaNWumnD9/3rhBK0+POzQ0NMvf1+3btxfauDOTH8P2ZfkYIYQQxYJcQxNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IIUSxIQhNCCFEsSEITQghRLEhCE0IY2LFjByqViujoaGOHIkSOSEITQghRLEhCE0IIUSxIQhOikElLS2PGjBn4+PhgaWlJ1apVWblyJfBfd+CGDRuoUqUKFhYWvPTSS5w+fdpgH6tWrSIgIACNRoO3tzdffvmlwetJSUmMHTsWT09PNBoN5cqV46effjKoc+TIEWrVqoWVlRX169fPsNyNEIVOnk51LIR4btOmTVP8/PyUzZs3K5cvX1YWLVqkaDQaZceOHfoZzf39/ZWtW7cqJ0+eVNq3b694e3srycnJiqIoyr///quYmJgoU6dOVc6fP68sWrRIsbS0NFg9oVu3boqnp6eyevVq5fLly8q2bduU5cuXK4ry36zpdevWVXbs2KGcOXNGadiwoVK/fn1jvB1CZJskNCEKkYcPHypWVlbKvn37DMrfeecd5Y033tAnm/TkoyiKcvfuXcXS0lJZsWKFoiiK8r///U9p0aKFwfajR49WKlWqpCiKopw/f14BlKCgoExjSD/Gtm3b9GUbNmxQAOXBgwd5cp5C5AfpchSiELl06RKJiYm0aNECGxsb/eOXX37h8uXL+nqPr6rs5ORExYoVCQkJASAkJIQGDRoY7LdBgwZcvHgRrVarX827cePGT42lSpUq+p/d3d0BuHXr1nOfoxD5RVasFqIQiY+PB2DDhg2UKlXK4DWNRmOQ1HIru6uQm5mZ6X9WqVSA7vqeEIWVtNCEKEQqVaqERqMhIiKCcuXKGTw8PT319Q4cOKD/+f79+1y4cAF/f38A/P392bt3r8F+9+7dS4UKFVCr1QQGBpKWlsbOnTsL5qSEKCDSQhOiELG1tWXUqFF88MEHpKWl8fLLLxMTE8PevXuxs7PDy8sLgKlTp+Ls7IyrqysfffQRLi4udO7cGYCRI0dSu3ZtPvnkE7p3787+/f9v1w5xHATCMAz/K0DXVGAIogkJCBwe1RtgSXoDzoFpmqayJ6jrBUBVkp6gqcUgcXzruqnb7GbDZvI+FkIY9Wbmn5sdj0c7nU5mZhZFkVVVZbvdzg6Hg2VZZs/n04ZhsLIsl1o68HtLD/EAvJvnWfv9XnEcy/M8rddrbbdbdV33urBxvV6Vpql831ee57rf72/fuFwuSpJEnucpDEM1TfP2fJom1XWtIAjk+742m43O57Okr0sh4zi+3u/7Xmamx+Px18sHfuxDkhZuKoBvatvWiqKwcRxttVot/TvAv8IMDQDgBIIGAHACR44AACewQwMAOIGgAQCcQNAAAE4gaAAAJxA0AIATCBoAwAkEDQDgBIIGAHDCJ/UL0f56kJclAAAAAElFTkSuQmCC","text/plain":["
      "]},"metadata":{},"output_type":"display_data"}],"source":["plot_history(history)"]},{"cell_type":"markdown","metadata":{},"source":["#### Approach 5: Xception"]},{"cell_type":"code","execution_count":38,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/xception/xception_weights_tf_dim_ordering_tf_kernels_notop.h5\n","\n","83683744/83683744 [==============================] - 24s 0us/step\n"]}],"source":["# load the xception architecture with imagenet weights as base\n","xception_base_model = tf.keras.applications.xception.Xception(\n"," include_top = False,\n"," weights = 'imagenet',\n"," input_shape = (180, 180, 3)\n"," )"]},{"cell_type":"code","execution_count":39,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Model: \"model_3\"\n","\n","__________________________________________________________________________________________________\n","\n"," Layer (type) Output Shape Param # Connected to \n","\n","==================================================================================================\n","\n"," input_4 (InputLayer) [(None, 180, 180, 3)] 0 [] \n","\n"," \n","\n"," block1_conv1 (Conv2D) (None, 89, 89, 32) 864 ['input_4[0][0]'] \n","\n"," \n","\n"," block1_conv1_bn (BatchNorm (None, 89, 89, 32) 128 ['block1_conv1[0][0]'] \n","\n"," alization) \n","\n"," \n","\n"," block1_conv1_act (Activati (None, 89, 89, 32) 0 ['block1_conv1_bn[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," block1_conv2 (Conv2D) (None, 87, 87, 64) 18432 ['block1_conv1_act[0][0]'] \n","\n"," \n","\n"," block1_conv2_bn (BatchNorm (None, 87, 87, 64) 256 ['block1_conv2[0][0]'] \n","\n"," alization) \n","\n"," \n","\n"," block1_conv2_act (Activati (None, 87, 87, 64) 0 ['block1_conv2_bn[0][0]'] \n","\n"," on) \n","\n"," \n","\n"," block2_sepconv1 (Separable (None, 87, 87, 128) 8768 ['block1_conv2_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block2_sepconv1_bn (BatchN (None, 87, 87, 128) 512 ['block2_sepconv1[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block2_sepconv2_act (Activ (None, 87, 87, 128) 0 ['block2_sepconv1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block2_sepconv2 (Separable (None, 87, 87, 128) 17536 ['block2_sepconv2_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block2_sepconv2_bn (BatchN (None, 87, 87, 128) 512 ['block2_sepconv2[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," conv2d_206 (Conv2D) (None, 44, 44, 128) 8192 ['block1_conv2_act[0][0]'] \n","\n"," \n","\n"," block2_pool (MaxPooling2D) (None, 44, 44, 128) 0 ['block2_sepconv2_bn[0][0]'] \n","\n"," \n","\n"," batch_normalization_203 (B (None, 44, 44, 128) 512 ['conv2d_206[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," add (Add) (None, 44, 44, 128) 0 ['block2_pool[0][0]', \n","\n"," 'batch_normalization_203[0][0\n","\n"," ]'] \n","\n"," \n","\n"," block3_sepconv1_act (Activ (None, 44, 44, 128) 0 ['add[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block3_sepconv1 (Separable (None, 44, 44, 256) 33920 ['block3_sepconv1_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block3_sepconv1_bn (BatchN (None, 44, 44, 256) 1024 ['block3_sepconv1[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block3_sepconv2_act (Activ (None, 44, 44, 256) 0 ['block3_sepconv1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block3_sepconv2 (Separable (None, 44, 44, 256) 67840 ['block3_sepconv2_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block3_sepconv2_bn (BatchN (None, 44, 44, 256) 1024 ['block3_sepconv2[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," conv2d_207 (Conv2D) (None, 22, 22, 256) 32768 ['add[0][0]'] \n","\n"," \n","\n"," block3_pool (MaxPooling2D) (None, 22, 22, 256) 0 ['block3_sepconv2_bn[0][0]'] \n","\n"," \n","\n"," batch_normalization_204 (B (None, 22, 22, 256) 1024 ['conv2d_207[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," add_1 (Add) (None, 22, 22, 256) 0 ['block3_pool[0][0]', \n","\n"," 'batch_normalization_204[0][0\n","\n"," ]'] \n","\n"," \n","\n"," block4_sepconv1_act (Activ (None, 22, 22, 256) 0 ['add_1[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block4_sepconv1 (Separable (None, 22, 22, 728) 188672 ['block4_sepconv1_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block4_sepconv1_bn (BatchN (None, 22, 22, 728) 2912 ['block4_sepconv1[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block4_sepconv2_act (Activ (None, 22, 22, 728) 0 ['block4_sepconv1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block4_sepconv2 (Separable (None, 22, 22, 728) 536536 ['block4_sepconv2_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block4_sepconv2_bn (BatchN (None, 22, 22, 728) 2912 ['block4_sepconv2[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," conv2d_208 (Conv2D) (None, 11, 11, 728) 186368 ['add_1[0][0]'] \n","\n"," \n","\n"," block4_pool (MaxPooling2D) (None, 11, 11, 728) 0 ['block4_sepconv2_bn[0][0]'] \n","\n"," \n","\n"," batch_normalization_205 (B (None, 11, 11, 728) 2912 ['conv2d_208[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," add_2 (Add) (None, 11, 11, 728) 0 ['block4_pool[0][0]', \n","\n"," 'batch_normalization_205[0][0\n","\n"," ]'] \n","\n"," \n","\n"," block5_sepconv1_act (Activ (None, 11, 11, 728) 0 ['add_2[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block5_sepconv1 (Separable (None, 11, 11, 728) 536536 ['block5_sepconv1_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block5_sepconv1_bn (BatchN (None, 11, 11, 728) 2912 ['block5_sepconv1[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block5_sepconv2_act (Activ (None, 11, 11, 728) 0 ['block5_sepconv1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block5_sepconv2 (Separable (None, 11, 11, 728) 536536 ['block5_sepconv2_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block5_sepconv2_bn (BatchN (None, 11, 11, 728) 2912 ['block5_sepconv2[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block5_sepconv3_act (Activ (None, 11, 11, 728) 0 ['block5_sepconv2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block5_sepconv3 (Separable (None, 11, 11, 728) 536536 ['block5_sepconv3_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block5_sepconv3_bn (BatchN (None, 11, 11, 728) 2912 ['block5_sepconv3[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," add_3 (Add) (None, 11, 11, 728) 0 ['block5_sepconv3_bn[0][0]', \n","\n"," 'add_2[0][0]'] \n","\n"," \n","\n"," block6_sepconv1_act (Activ (None, 11, 11, 728) 0 ['add_3[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block6_sepconv1 (Separable (None, 11, 11, 728) 536536 ['block6_sepconv1_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block6_sepconv1_bn (BatchN (None, 11, 11, 728) 2912 ['block6_sepconv1[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block6_sepconv2_act (Activ (None, 11, 11, 728) 0 ['block6_sepconv1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block6_sepconv2 (Separable (None, 11, 11, 728) 536536 ['block6_sepconv2_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block6_sepconv2_bn (BatchN (None, 11, 11, 728) 2912 ['block6_sepconv2[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block6_sepconv3_act (Activ (None, 11, 11, 728) 0 ['block6_sepconv2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block6_sepconv3 (Separable (None, 11, 11, 728) 536536 ['block6_sepconv3_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block6_sepconv3_bn (BatchN (None, 11, 11, 728) 2912 ['block6_sepconv3[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," add_4 (Add) (None, 11, 11, 728) 0 ['block6_sepconv3_bn[0][0]', \n","\n"," 'add_3[0][0]'] \n","\n"," \n","\n"," block7_sepconv1_act (Activ (None, 11, 11, 728) 0 ['add_4[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block7_sepconv1 (Separable (None, 11, 11, 728) 536536 ['block7_sepconv1_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block7_sepconv1_bn (BatchN (None, 11, 11, 728) 2912 ['block7_sepconv1[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block7_sepconv2_act (Activ (None, 11, 11, 728) 0 ['block7_sepconv1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block7_sepconv2 (Separable (None, 11, 11, 728) 536536 ['block7_sepconv2_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block7_sepconv2_bn (BatchN (None, 11, 11, 728) 2912 ['block7_sepconv2[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block7_sepconv3_act (Activ (None, 11, 11, 728) 0 ['block7_sepconv2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block7_sepconv3 (Separable (None, 11, 11, 728) 536536 ['block7_sepconv3_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block7_sepconv3_bn (BatchN (None, 11, 11, 728) 2912 ['block7_sepconv3[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," add_5 (Add) (None, 11, 11, 728) 0 ['block7_sepconv3_bn[0][0]', \n","\n"," 'add_4[0][0]'] \n","\n"," \n","\n"," block8_sepconv1_act (Activ (None, 11, 11, 728) 0 ['add_5[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block8_sepconv1 (Separable (None, 11, 11, 728) 536536 ['block8_sepconv1_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block8_sepconv1_bn (BatchN (None, 11, 11, 728) 2912 ['block8_sepconv1[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block8_sepconv2_act (Activ (None, 11, 11, 728) 0 ['block8_sepconv1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block8_sepconv2 (Separable (None, 11, 11, 728) 536536 ['block8_sepconv2_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block8_sepconv2_bn (BatchN (None, 11, 11, 728) 2912 ['block8_sepconv2[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block8_sepconv3_act (Activ (None, 11, 11, 728) 0 ['block8_sepconv2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block8_sepconv3 (Separable (None, 11, 11, 728) 536536 ['block8_sepconv3_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block8_sepconv3_bn (BatchN (None, 11, 11, 728) 2912 ['block8_sepconv3[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," add_6 (Add) (None, 11, 11, 728) 0 ['block8_sepconv3_bn[0][0]', \n","\n"," 'add_5[0][0]'] \n","\n"," \n","\n"," block9_sepconv1_act (Activ (None, 11, 11, 728) 0 ['add_6[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block9_sepconv1 (Separable (None, 11, 11, 728) 536536 ['block9_sepconv1_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block9_sepconv1_bn (BatchN (None, 11, 11, 728) 2912 ['block9_sepconv1[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block9_sepconv2_act (Activ (None, 11, 11, 728) 0 ['block9_sepconv1_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block9_sepconv2 (Separable (None, 11, 11, 728) 536536 ['block9_sepconv2_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block9_sepconv2_bn (BatchN (None, 11, 11, 728) 2912 ['block9_sepconv2[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," block9_sepconv3_act (Activ (None, 11, 11, 728) 0 ['block9_sepconv2_bn[0][0]'] \n","\n"," ation) \n","\n"," \n","\n"," block9_sepconv3 (Separable (None, 11, 11, 728) 536536 ['block9_sepconv3_act[0][0]'] \n","\n"," Conv2D) \n","\n"," \n","\n"," block9_sepconv3_bn (BatchN (None, 11, 11, 728) 2912 ['block9_sepconv3[0][0]'] \n","\n"," ormalization) \n","\n"," \n","\n"," add_7 (Add) (None, 11, 11, 728) 0 ['block9_sepconv3_bn[0][0]', \n","\n"," 'add_6[0][0]'] \n","\n"," \n","\n"," block10_sepconv1_act (Acti (None, 11, 11, 728) 0 ['add_7[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," block10_sepconv1 (Separabl (None, 11, 11, 728) 536536 ['block10_sepconv1_act[0][0]']\n","\n"," eConv2D) \n","\n"," \n","\n"," block10_sepconv1_bn (Batch (None, 11, 11, 728) 2912 ['block10_sepconv1[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," block10_sepconv2_act (Acti (None, 11, 11, 728) 0 ['block10_sepconv1_bn[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," block10_sepconv2 (Separabl (None, 11, 11, 728) 536536 ['block10_sepconv2_act[0][0]']\n","\n"," eConv2D) \n","\n"," \n","\n"," block10_sepconv2_bn (Batch (None, 11, 11, 728) 2912 ['block10_sepconv2[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," block10_sepconv3_act (Acti (None, 11, 11, 728) 0 ['block10_sepconv2_bn[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," block10_sepconv3 (Separabl (None, 11, 11, 728) 536536 ['block10_sepconv3_act[0][0]']\n","\n"," eConv2D) \n","\n"," \n","\n"," block10_sepconv3_bn (Batch (None, 11, 11, 728) 2912 ['block10_sepconv3[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," add_8 (Add) (None, 11, 11, 728) 0 ['block10_sepconv3_bn[0][0]', \n","\n"," 'add_7[0][0]'] \n","\n"," \n","\n"," block11_sepconv1_act (Acti (None, 11, 11, 728) 0 ['add_8[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," block11_sepconv1 (Separabl (None, 11, 11, 728) 536536 ['block11_sepconv1_act[0][0]']\n","\n"," eConv2D) \n","\n"," \n","\n"," block11_sepconv1_bn (Batch (None, 11, 11, 728) 2912 ['block11_sepconv1[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," block11_sepconv2_act (Acti (None, 11, 11, 728) 0 ['block11_sepconv1_bn[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," block11_sepconv2 (Separabl (None, 11, 11, 728) 536536 ['block11_sepconv2_act[0][0]']\n","\n"," eConv2D) \n","\n"," \n","\n"," block11_sepconv2_bn (Batch (None, 11, 11, 728) 2912 ['block11_sepconv2[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," block11_sepconv3_act (Acti (None, 11, 11, 728) 0 ['block11_sepconv2_bn[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," block11_sepconv3 (Separabl (None, 11, 11, 728) 536536 ['block11_sepconv3_act[0][0]']\n","\n"," eConv2D) \n","\n"," \n","\n"," block11_sepconv3_bn (Batch (None, 11, 11, 728) 2912 ['block11_sepconv3[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," add_9 (Add) (None, 11, 11, 728) 0 ['block11_sepconv3_bn[0][0]', \n","\n"," 'add_8[0][0]'] \n","\n"," \n","\n"," block12_sepconv1_act (Acti (None, 11, 11, 728) 0 ['add_9[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," block12_sepconv1 (Separabl (None, 11, 11, 728) 536536 ['block12_sepconv1_act[0][0]']\n","\n"," eConv2D) \n","\n"," \n","\n"," block12_sepconv1_bn (Batch (None, 11, 11, 728) 2912 ['block12_sepconv1[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," block12_sepconv2_act (Acti (None, 11, 11, 728) 0 ['block12_sepconv1_bn[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," block12_sepconv2 (Separabl (None, 11, 11, 728) 536536 ['block12_sepconv2_act[0][0]']\n","\n"," eConv2D) \n","\n"," \n","\n"," block12_sepconv2_bn (Batch (None, 11, 11, 728) 2912 ['block12_sepconv2[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," block12_sepconv3_act (Acti (None, 11, 11, 728) 0 ['block12_sepconv2_bn[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," block12_sepconv3 (Separabl (None, 11, 11, 728) 536536 ['block12_sepconv3_act[0][0]']\n","\n"," eConv2D) \n","\n"," \n","\n"," block12_sepconv3_bn (Batch (None, 11, 11, 728) 2912 ['block12_sepconv3[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," add_10 (Add) (None, 11, 11, 728) 0 ['block12_sepconv3_bn[0][0]', \n","\n"," 'add_9[0][0]'] \n","\n"," \n","\n"," block13_sepconv1_act (Acti (None, 11, 11, 728) 0 ['add_10[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," block13_sepconv1 (Separabl (None, 11, 11, 728) 536536 ['block13_sepconv1_act[0][0]']\n","\n"," eConv2D) \n","\n"," \n","\n"," block13_sepconv1_bn (Batch (None, 11, 11, 728) 2912 ['block13_sepconv1[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," block13_sepconv2_act (Acti (None, 11, 11, 728) 0 ['block13_sepconv1_bn[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," block13_sepconv2 (Separabl (None, 11, 11, 1024) 752024 ['block13_sepconv2_act[0][0]']\n","\n"," eConv2D) \n","\n"," \n","\n"," block13_sepconv2_bn (Batch (None, 11, 11, 1024) 4096 ['block13_sepconv2[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," conv2d_209 (Conv2D) (None, 6, 6, 1024) 745472 ['add_10[0][0]'] \n","\n"," \n","\n"," block13_pool (MaxPooling2D (None, 6, 6, 1024) 0 ['block13_sepconv2_bn[0][0]'] \n","\n"," ) \n","\n"," \n","\n"," batch_normalization_206 (B (None, 6, 6, 1024) 4096 ['conv2d_209[0][0]'] \n","\n"," atchNormalization) \n","\n"," \n","\n"," add_11 (Add) (None, 6, 6, 1024) 0 ['block13_pool[0][0]', \n","\n"," 'batch_normalization_206[0][0\n","\n"," ]'] \n","\n"," \n","\n"," block14_sepconv1 (Separabl (None, 6, 6, 1536) 1582080 ['add_11[0][0]'] \n","\n"," eConv2D) \n","\n"," \n","\n"," block14_sepconv1_bn (Batch (None, 6, 6, 1536) 6144 ['block14_sepconv1[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," block14_sepconv1_act (Acti (None, 6, 6, 1536) 0 ['block14_sepconv1_bn[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," block14_sepconv2 (Separabl (None, 6, 6, 2048) 3159552 ['block14_sepconv1_act[0][0]']\n","\n"," eConv2D) \n","\n"," \n","\n"," block14_sepconv2_bn (Batch (None, 6, 6, 2048) 8192 ['block14_sepconv2[0][0]'] \n","\n"," Normalization) \n","\n"," \n","\n"," block14_sepconv2_act (Acti (None, 6, 6, 2048) 0 ['block14_sepconv2_bn[0][0]'] \n","\n"," vation) \n","\n"," \n","\n"," global_average_pooling2d_1 (None, 2048) 0 ['block14_sepconv2_act[0][0]']\n","\n"," (GlobalAveragePooling2D) \n","\n"," \n","\n"," dense_9 (Dense) (None, 128) 262272 ['global_average_pooling2d_1[0\n","\n"," ][0]'] \n","\n"," \n","\n"," dropout_5 (Dropout) (None, 128) 0 ['dense_9[0][0]'] \n","\n"," \n","\n"," dense_10 (Dense) (None, 64) 8256 ['dropout_5[0][0]'] \n","\n"," \n","\n"," dropout_6 (Dropout) (None, 64) 0 ['dense_10[0][0]'] \n","\n"," \n","\n"," dense_11 (Dense) (None, 1) 65 ['dropout_6[0][0]'] \n","\n"," \n","\n","==================================================================================================\n","\n","Total params: 21132073 (80.61 MB)\n","\n","Trainable params: 21077545 (80.40 MB)\n","\n","Non-trainable params: 54528 (213.00 KB)\n","\n","__________________________________________________________________________________________________\n"]}],"source":["xception_model = create_model(xception_base_model)\n","xception_model.summary()"]},{"cell_type":"code","execution_count":40,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Unfreezing number of layers in base model = 0\n","\n","Epoch 1/15\n"]},{"name":"stderr","output_type":"stream","text":["2023-06-28 01:41:57.950908: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] PluggableGraphOptimizer failed: INVALID_ARGUMENT: Unparseable tensorflow.GraphDef proto\n","\n","2023-06-28 01:41:57.990418: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] PluggableGraphOptimizer failed: INVALID_ARGUMENT: Unparseable tensorflow.GraphDef proto\n"]},{"name":"stdout","output_type":"stream","text":["223/223 [==============================] - ETA: 0s - loss: 0.4715 - accuracy: 0.7923"]},{"name":"stderr","output_type":"stream","text":["2023-06-28 01:42:54.833314: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] PluggableGraphOptimizer failed: INVALID_ARGUMENT: Unparseable tensorflow.GraphDef proto\n","\n","2023-06-28 01:42:54.869082: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] PluggableGraphOptimizer failed: INVALID_ARGUMENT: Unparseable tensorflow.GraphDef proto\n"]},{"name":"stdout","output_type":"stream","text":["223/223 [==============================] - 86s 375ms/step - loss: 0.4715 - accuracy: 0.7923 - val_loss: 0.5935 - val_accuracy: 0.7557\n","\n","Epoch 2/15\n","\n","223/223 [==============================] - 96s 429ms/step - loss: 0.4159 - accuracy: 0.8254 - val_loss: 0.5658 - val_accuracy: 0.7571\n","\n","Epoch 3/15\n","\n","223/223 [==============================] - 114s 512ms/step - loss: 0.3900 - accuracy: 0.8419 - val_loss: 0.5290 - val_accuracy: 0.7520\n","\n","Epoch 4/15\n","\n","223/223 [==============================] - 101s 455ms/step - loss: 0.3843 - accuracy: 0.8403 - val_loss: 0.5254 - val_accuracy: 0.7689\n","\n","Epoch 5/15\n","\n","223/223 [==============================] - 103s 463ms/step - loss: 0.3726 - accuracy: 0.8451 - val_loss: 0.5544 - val_accuracy: 0.7436\n","\n","Epoch 6/15\n","\n","223/223 [==============================] - 102s 458ms/step - loss: 0.3603 - accuracy: 0.8530 - val_loss: 0.5221 - val_accuracy: 0.7596\n","\n","Epoch 7/15\n","\n","223/223 [==============================] - 102s 459ms/step - loss: 0.3584 - accuracy: 0.8545 - val_loss: 0.5218 - val_accuracy: 0.7577\n","\n","Epoch 8/15\n","\n","223/223 [==============================] - 102s 458ms/step - loss: 0.3433 - accuracy: 0.8575 - val_loss: 0.5580 - val_accuracy: 0.7771\n","\n","Epoch 9/15\n","\n","223/223 [==============================] - 101s 455ms/step - loss: 0.3364 - accuracy: 0.8631 - val_loss: 0.5262 - val_accuracy: 0.7647\n","\n","Epoch 10/15\n","\n","223/223 [==============================] - 101s 454ms/step - loss: 0.3318 - accuracy: 0.8678 - val_loss: 0.5256 - val_accuracy: 0.7748\n","\n","Epoch 11/15\n","\n","223/223 [==============================] - 104s 466ms/step - loss: 0.3349 - accuracy: 0.8637 - val_loss: 0.5258 - val_accuracy: 0.7791\n","\n","Epoch 12/15\n","\n","223/223 [==============================] - 101s 454ms/step - loss: 0.3241 - accuracy: 0.8720 - val_loss: 0.5370 - val_accuracy: 0.7819\n","\n","Epoch 13/15\n","\n","223/223 [==============================] - 102s 456ms/step - loss: 0.3291 - accuracy: 0.8673 - val_loss: 0.5452 - val_accuracy: 0.7647\n","\n","Epoch 14/15\n","\n","223/223 [==============================] - 101s 451ms/step - loss: 0.3161 - accuracy: 0.8756 - val_loss: 0.5471 - val_accuracy: 0.7675\n","\n","Epoch 15/15\n","\n","223/223 [==============================] - 102s 458ms/step - loss: 0.3159 - accuracy: 0.8724 - val_loss: 0.5331 - val_accuracy: 0.7833\n"]}],"source":["history = fit_model(xception_model, xception_base_model, epochs = 15)"]},{"cell_type":"code","execution_count":41,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAbQAAALgCAYAAAD8w4I6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT1xvA8W/CCBsVEAQHgltxK9Zt61bqqHvvWku1pbbuXbWtrVpHtfXnagX3qrUOxL2teytuURBQ9grk/v64khoTZIgsz+d58khuzr33zSXm5Zx7hkKSJAlBEARByOeUuR2AIAiCIGQHkdAEQRCEAkEkNEEQBKFAEAlNEARBKBBEQhMEQRAKBJHQBEEQhAJBJDRBEAShQBAJTRAEQSgQREITBEEQCgSR0ARBEIQCQSQ0QRAEoUAQCU0QBEEoEERCEwRBEAoEkdAEQRCEAkEkNEEQBKFAEAlNEARBKBBEQhMEQRAKBJHQBEEQhAJBJDRBEAShQBAJTRAEQSgQREITBEEQCgSR0ARBEIQCQSQ0QRAEoUAQCU0QBEEoEERCEwRBEAoEkdAEQRCEAkEkNEEQBKFAEAlNEARBKBBEQhMEQRAKBJHQBEEQhAJBJDQhTQMGDMDV1TVL+06dOhWFQpG9AeUx9+/fR6FQsGrVqhw/t0KhYOrUqdrnq1atQqFQcP/+/XT3dXV1ZcCAAdkaz9t8VgQhu4iElg8pFIoMPQ4ePJjbob73Ro4ciUKhIDAwMM0yEyZMQKFQcOnSpRyMLPOePHnC1KlTuXDhQm6HYtD169dRKBSYmZkRERGR2+EIuUAktHzozz//1Hm0aNHC4PaKFSu+1XmWLVvGzZs3s7TvxIkTiY+Pf6vzFwS9e/cGwM/PL80ya9euxcPDg6pVq2b5PH379iU+Pp5SpUpl+RjpefLkCdOmTTOY0N7ms5Jd1qxZg5OTEwCbNm3K1ViE3GGc2wEImdenTx+d5ydPnsTf319v++vi4uKwsLDI8HlMTEyyFB+AsbExxsbi4+Xp6UmZMmVYu3YtkydP1nv9xIkT3Lt3j++///6tzmNkZISRkdFbHeNtvM1nJTtIkoSfnx+9evXi3r17+Pr6MmTIkFyNKS2xsbFYWlrmdhgFkqihFVBNmzalSpUqnD17lsaNG2NhYcH48eMB2L59O+3atcPZ2RmVSoW7uzszZswgJSVF5xiv3xdJvWf0008/8fvvv+Pu7o5KpaJOnTqcOXNGZ19D99AUCgXe3t5s27aNKlWqoFKpqFy5Mrt379aL/+DBg9SuXRszMzPc3d357bffMnxf7siRI3Tt2pWSJUuiUqkoUaIEX331lV6NccCAAVhZWREUFETHjh2xsrLCwcGB0aNH612LiIgIBgwYgK2tLYUKFaJ///4Zbtbq3bs3N27c4Ny5c3qv+fn5oVAo6NmzJ0lJSUyePJlatWpha2uLpaUljRo14sCBA+mew9A9NEmS+O677yhevDgWFhY0a9aMq1ev6u37/PlzRo8ejYeHB1ZWVtjY2NCmTRsuXryoLXPw4EHq1KkDwMCBA7XN2qn3Dw3dQ4uNjeXrr7+mRIkSqFQqypcvz08//YQkSTrlMvO5SMuxY8e4f/8+PXr0oEePHhw+fJjHjx/rldNoNPzyyy94eHhgZmaGg4MDrVu35t9//9Upt2bNGurWrYuFhQWFCxemcePG7N27VyfmV+9hpnr9/mTq7+XQoUOMGDGCokWLUrx4cQAePHjAiBEjKF++PObm5tjZ2dG1a1eD90EjIiL46quvcHV1RaVSUbx4cfr160dYWBgxMTFYWloyatQovf0eP36MkZERs2fPzuCVzN/En9AFWHh4OG3atKFHjx706dMHR0dHQP5PZmVlhY+PD1ZWVuzfv5/JkycTFRXFnDlz0j2un58f0dHRfPrppygUCn788Uc6d+7M3bt30/1L/ejRo2zZsoURI0ZgbW3NggUL+OSTT3j48CF2dnYAnD9/ntatW1OsWDGmTZtGSkoK06dPx8HBIUPve+PGjcTFxfHZZ59hZ2fH6dOnWbhwIY8fP2bjxo06ZVNSUmjVqhWenp789NNP7Nu3j59//hl3d3c+++wzQE4MHTp04OjRowwfPpyKFSuydetW+vfvn6F4evfuzbRp0/Dz86NmzZo6596wYQONGjWiZMmShIWF8b///Y+ePXsydOhQoqOjWb58Oa1ateL06dNUr149Q+dLNXnyZL777jvatm1L27ZtOXfuHC1btiQpKUmn3N27d9m2bRtdu3aldOnShISE8Ntvv9GkSROuXbuGs7MzFStWZPr06UyePJlhw4bRqFEjAOrXr2/w3JIk8fHHH3PgwAEGDx5M9erV2bNnD9988w1BQUHMmzdPp3xGPhdv4uvri7u7O3Xq1KFKlSpYWFiwdu1avvnmG51ygwcPZtWqVbRp04YhQ4aQnJzMkSNHOHnyJLVr1wZg2rRpTJ06lfr16zN9+nRMTU05deoU+/fvp2XLlhm+/q8aMWIEDg4OTJ48mdjYWADOnDnD8ePH6dGjB8WLF+f+/fssWbKEpk2bcu3aNW1rSkxMDI0aNeL69esMGjSImjVrEhYWxl9//cXjx4+pXr06nTp1Yv369cydO1enpr527VokSdI2fRd4kpDvff7559Lrv8omTZpIgLR06VK98nFxcXrbPv30U8nCwkJKSEjQbuvfv79UqlQp7fN79+5JgGRnZyc9f/5cu3379u0SIO3YsUO7bcqUKXoxAZKpqakUGBio3Xbx4kUJkBYuXKjd5uXlJVlYWEhBQUHabbdv35aMjY31jmmIofc3e/ZsSaFQSA8ePNB5f4A0ffp0nbI1atSQatWqpX2+bds2CZB+/PFH7bbk5GSpUaNGEiCtXLky3Zjq1KkjFS9eXEpJSdFu2717twRIv/32m/aYiYmJOvu9ePFCcnR0lAYNGqSzHZCmTJmifb5y5UoJkO7duydJkiQ9e/ZMMjU1ldq1aydpNBptufHjx0uA1L9/f+22hIQEnbgkSf5dq1QqnWtz5syZNN/v65+V1Gv23Xff6ZTr0qWLpFAodD4DGf1cpCUpKUmys7OTJkyYoN3Wq1cvqVq1ajrl9u/fLwHSyJEj9Y6Reo1u374tKZVKqVOnTnrX5NXr+Pr1T1WqVCmda5v6e2nYsKGUnJysU9bQ5/TEiRMSIP3xxx/abZMnT5YAacuWLWnGvWfPHgmQdu3apfN61apVpSZNmujtV1CJJscCTKVSMXDgQL3t5ubm2p+jo6MJCwujUaNGxMXFcePGjXSP2717dwoXLqx9nvrX+t27d9Pdt3nz5ri7u2ufV61aFRsbG+2+KSkp7Nu3j44dO+Ls7KwtV6ZMGdq0aZPu8UH3/cXGxhIWFkb9+vWRJInz58/rlR8+fLjO80aNGum8l3/++QdjY2NtjQ3ke1ZffPFFhuIB+b7n48ePOXz4sHabn58fpqamdO3aVXtMU1NTQG4ae/78OcnJydSuXdtgc+Wb7Nu3j6SkJL744gudZtovv/xSr6xKpUKplL8KUlJSCA8Px8rKivLly2f6vKn++ecfjIyMGDlypM72r7/+GkmS2LVrl8729D4Xb7Jr1y7Cw8Pp2bOndlvPnj25ePGiThPr5s2bUSgUTJkyRe8Yqddo27ZtaDQaJk+erL0mr5fJiqFDh+rd43z1c6pWqwkPD6dMmTIUKlRI57pv3ryZatWq0alTpzTjbt68Oc7Ozvj6+mpfu3LlCpcuXUr33npBIhJaAebi4qL9gnzV1atX6dSpE7a2ttjY2ODg4KD90EdGRqZ73JIlS+o8T01uL168yPS+qfun7vvs2TPi4+MpU6aMXjlD2wx5+PAhAwYMoEiRItr7Yk2aNAH031/qfZS04gH5XkexYsWwsrLSKVe+fPkMxQPQo0cPjIyMtL0dExIS2Lp1K23atNH542D16tVUrVoVMzMz7OzscHBwYOfOnRn6vbzqwYMHAJQtW1Znu4ODg875QE6e8+bNo2zZsqhUKuzt7XFwcODSpUuZPu+r53d2dsba2lpne2rP29T4UqX3uXiTNWvWULp0aVQqFYGBgQQGBuLu7o6FhYXOF/ydO3dwdnamSJEiaR7rzp07KJVKKlWqlO55M6N06dJ62+Lj45k8ebL2HmPqdY+IiNC57nfu3KFKlSpvPL5SqaR3795s27aNuLg4QG6GNTMz0/7B9D4QCa0Ae/UvwFQRERE0adKEixcvMn36dHbs2IG/vz8//PADIH+5pSet3nTSazf7s3vfjEhJSaFFixbs3LmTMWPGsG3bNvz9/bWdF15/fznVM7Bo0aK0aNGCzZs3o1ar2bFjB9HR0Tr3NtasWcOAAQNwd3dn+fLl7N69G39/fz788MMM/V6yatasWfj4+NC4cWPWrFnDnj178Pf3p3Llyu/0vK/K6uciKiqKHTt2cO/ePcqWLat9VKpUibi4OPz8/LLts5URr3cmSmXo/+IXX3zBzJkz6datGxs2bGDv3r34+/tjZ2eXpever18/YmJi2LZtm7bXZ/v27bG1tc30sfIr0SnkPXPw4EHCw8PZsmULjRs31m6/d+9eLkb1n6JFi2JmZmZwIPKbBienunz5Mrdu3WL16tX069dPu93f3z/LMZUqVYqAgABiYmJ0ammZHXfVu3dvdu/eza5du/Dz88PGxgYvLy/t65s2bcLNzY0tW7boNG8ZaiLLSMwAt2/fxs3NTbs9NDRUr9azadMmmjVrxvLly3W2R0REYG9vr32emSa3UqVKsW/fPqKjo3VqaalN2tk1Xm7Lli0kJCSwZMkSnVhB/v1MnDiRY8eO0bBhQ9zd3dmzZw/Pnz9Ps5bm7u6ORqPh2rVrb+yEU7hwYb1erklJSTx9+jTDsW/atIn+/fvz888/a7clJCToHdfd3Z0rV66ke7wqVapQo0YNfH19KV68OA8fPmThwoUZjqcgEDW090zqX8Kv/tWalJTEr7/+mlsh6TAyMqJ58+Zs27aNJ0+eaLcHBgbq3XdJa3/QfX+SJPHLL79kOaa2bduSnJzMkiVLtNtSUlIy/WXRsWNHLCws+PXXX9m1axedO3fGzMzsjbGfOnWKEydOZDrm5s2bY2JiwsKFC3WON3/+fL2yRkZGerWYjRs3EhQUpLMtdexURoYrtG3blpSUFBYtWqSzfd68eSgUigzfD03PmjVrcHNzY/jw4XTp0kXnMXr0aKysrLTNjp988gmSJDFt2jS946S+/44dO6JUKpk+fbpeLenVa+Tu7q5zPxTg999/T7OGZoih675w4UK9Y3zyySdcvHiRrVu3phl3qr59+7J3717mz5+PnZ2d9jqHhYVx48YNbXNkQSVqaO+Z+vXrU7hwYfr376+dlunPP//M0WaZ9EydOpW9e/fSoEEDPvvsM+0XY5UqVdKddqlChQq4u7szevRogoKCsLGxYfPmzRm6F5MWLy8vGjRowNixY7l//z6VKlViy5Ytmb6/ZGVlRceOHbX30V7vSt2+fXu2bNlCp06daNeuHffu3WPp0qVUqlSJmJiYTJ0rdTzd7Nmzad++PW3btuX8+fPs2rVLrybTvn17pk+fzsCBA6lfvz6XL1/G19dXp2YH8pd4oUKFWLp0KdbW1lhaWuLp6Wnw/pCXlxfNmjVjwoQJ3L9/n2rVqrF37162b9/Ol19+qdMBJKuePHnCgQMH9DqepFKpVLRq1YqNGzeyYMECmjVrRt++fVmwYAG3b9+mdevWaDQajhw5QrNmzfD29qZMmTJMmDCBGTNm0KhRIzp37oxKpeLMmTM4Oztrx3MNGTKE4cOH88knn9CiRQsuXrzInj179K7tm7Rv354///wTW1tbKlWqxIkTJ9i3b5/eMIVvvvmGTZs20bVrVwYNGkStWrV4/vw5f/31F0uXLqVatWrasr169eLbb79l69atfPbZZ9phNIsWLWLatGkcOHCApk2bZvJK5yM53KtSeAfS6rZfuXJlg+WPHTsm1atXTzI3N5ecnZ2lb7/9Vtvt98CBA9pyaXXbnzNnjt4xea0bc1rd9j///HO9fV/v6ixJkhQQECDVqFFDMjU1ldzd3aX//e9/0tdffy2ZmZmlcRX+c+3aNal58+aSlZWVZG9vLw0dOlTbDfzVLuf9+/eXLC0t9fY3FHt4eLjUt29fycbGRrK1tZX69u0rnT9/PsPd9lPt3LlTAqRixYoZ7BY+a9YsqVSpUpJKpZJq1Kgh/f3333q/B0lKv9u+JElSSkqKNG3aNKlYsWKSubm51LRpU+nKlSt61zshIUH6+uuvteUaNGggnThxQmrSpIlel+/t27dLlSpV0g6hSH3vhmKMjo6WvvrqK8nZ2VkyMTGRypYtK82ZM0en+3vqe8no5+JVP//8swRIAQEBaZZZtWqVBEjbt2+XJEkeGjFnzhypQoUKkqmpqeTg4CC1adNGOnv2rM5+K1askGrUqCGpVCqpcOHCUpMmTSR/f3/t6ykpKdKYMWMke3t7ycLCQmrVqpUUGBiYZrf9M2fO6MX24sULaeDAgZK9vb1kZWUltWrVSrpx44bB9x0eHi55e3tLLi4ukqmpqVS8eHGpf//+UlhYmN5x27ZtKwHS8ePHtdtSP9Ov/v8uiBSSlIf+NBeEN+jYsSNXr17l9u3buR2KIORZnTp14vLlyxm651zQiHtoQp70+jRVt2/f5p9//inYzSWC8JaePn3Kzp076du3b26HkitEDU3Ik4oVK8aAAQNwc3PjwYMHLFmyhMTERM6fP683tkoQ3nf37t3j2LFj/O9//+PMmTPcuXNHu/LA+0R0ChHypNatW7N27VqCg4NRqVR88MEHzJo1SyQzQTDg0KFDDBw4kJIlS7J69er3MpmBqKEJgiAIBYS4hyYIgiAUCCKhCYIgCAWCSGhCgWdo8UlBEAoekdCEXJO66nF6j4MHD+Z2qGn6559/UCgUODs759hEvgVZUFAQ3bp1o1ChQtjY2NChQ4cMLSED8sTTS5cupXr16lhZWeHo6EibNm04fvy4TrkBAwa88fOWOuVXXFwcixcvpmXLlhQrVgxra2tq1KjBkiVLMjXFlZBzRKcQIdesWbNG5/kff/yBv78/f/75p872Fi1aaFfbzgq1Wo1Go0GlUmX5GGnp3bs3x48f5/79+/j7+9O8efNsP8f7IiYmhpo1axIZGcnXX3+NiYkJ8+bNQ5IkLly4kO7K1V9//TVz586lT58+NGrUiIiICH777TcePnzIsWPHqFu3LgAnTpzgzp07OvtKksTw4cNxdXXVrqF25coVqlatykcffUTLli2xsbFhz549bN26lX79+rF69ep3cyGErMutKUoE4XWGpvAyJDY2NgeiSV9MTIxkaWkpLViwQKpRo4Y0YMCA3A4pTTExMbkdQrp++OEHCZBOnz6t3Xb9+nXJyMhIGjdu3Bv3VavVkrm5udSlSxed7Xfv3k1zlepXHTlyRAKkmTNnareFhoZKV65c0Ss7cOBACZBu376dkbcl5CDR5CjkaU2bNqVKlSqcPXuWxo0bY2Fhwfjx4wHYvn077dq1w9nZGZVKhbu7OzNmzNBrDnr9Htr9+/dRKBT89NNP/P7777i7u6NSqahTpw5nzpzJcGxbt24lPj6erl270qNHD+1SJq9LSEhg6tSplCtXDjMzM4oVK0bnzp11agkajYZffvkFDw8P7aKjrVu35t9//9WJOXVdt1cpFAqmTp2qfT516lQUCgXXrl2jV69eFC5cmIYNGwJw6dIl7YB1MzMznJycGDRoEOHh4XrHDQoKYvDgwdrrW7p0aT777DOSkpK4e/cuCoWCefPm6e13/PhxFAoFa9eu1a6CHhYWlu713LRpE3Xq1KFOnTrabRUqVOCjjz5iw4YNb9xXrVYTHx+vV5MvWrQoSqXS4Hpkr/Lz80OhUNCrVy/tNnt7eypXrqxXNnXl6OvXr6f7noScJQZWC3leeHg4bdq0oUePHvTp00f7pbVq1SqsrKzw8fHBysqK/fv3M3nyZKKiopgzZ066x/Xz8yM6OppPP/0UhULBjz/+SOfOnbl79652lvI38fX1pVmzZjg5OdGjRw/Gjh3Ljh07dFYITklJoX379gQEBNCjRw9GjRpFdHQ0/v7+XLlyRTvr/ODBg1m1ahVt2rRhyJAhJCcnc+TIEU6ePEnt2rWzdN26du1K2bJlmTVrlnY1BX9/f+7evcvAgQNxcnLi6tWr/P7771y9epWTJ09q1zx78uQJdevWJSIigmHDhlGhQgWCgoLYtGkTcXFxuLm50aBBA3x9ffnqq6/0rou1tTUdOnTg9OnTNGvWjClTpugk3ddpNBouXbrEoEGD9F6rW7cue/fu1Vtb7VXm5uZ4enqyatUqPvjgA22T44wZMyhcuDDDhg1L89xqtZoNGzZQv379DHUeCg4OBsjUzPpCDsntKqIgpEpr1QBAWrp0qV75uLg4vW2ffvqpZGFhISUkJGi3pbVqgJ2dnfT8+XPt9u3bt0uAtGPHjnRjDQkJkYyNjaVly5Zpt9WvX1/q0KGDTrkVK1ZIgDR37ly9Y6TOOr9///40m8VSy6TGbGhmf9JY6aBnz556ZQ1ds7Vr10qAdPjwYe22fv36SUql0uAs8akx/fbbbxIgXb9+XftaUlKSZG9vr50t/sCBA3rxGRIaGioB0vTp0/VeW7x4sQRIN27ceOMxbt++LdWsWVMCtA83N7d099uxY4cESL/++usby0mSJCUmJkqVKlWSSpcuLanV6nTLCzlLNDkKeZ5KpWLgwIF6219tRoqOjiYsLIxGjRppm7nS0717dwoXLqx93qhRI4AM9apbt24dSqWSTz75RLutZ8+e7Nq1S2fttc2bN2Nvb88XX3yhd4zU2tDmzZtRKBQGV6bOzCrRrxs+fLjetlevWUJCAmFhYdSrVw+Ac+fOAXJtadu2bXh5eRmsHabG1K1bN8zMzLQLaALs2bOHsLAw+vTpA8hNxpIkvbF2Bv9NRm2o407qIqivT1j9OmtraypXrsznn3/Oli1b+PXXX0lOTqZjx45vbPL08/PDxMSEbt26vfH4AN7e3ly7do1FixZhbCwauPIakdCEPM/FxQVTU1O97VevXqVTp07Y2tpiY2ODg4OD9os0I4tvlixZUud5anLLyGKga9asoW7duoSHhxMYGEhgYCA1atQgKSmJjRs3asvduXOH8uXLv/HL786dOzg7O1OkSJF0z5sZhhbefP78OaNGjcLR0RFzc3McHBy05VKvWWhoKFFRUVSpUuWNxy9UqBBeXl7aBUtBbm50cXHhww8/zFSsqYk2MTFR77XU+5Jvug+WnJxM8+bNsbW1ZdGiRXTq1InPPvuMffv2cefOnTSboGNiYti+fTutWrVKtxflnDlzWLZsGTNmzKBt27YZfWtCDhJ/Ygh5nqEvsoiICJo0aYKNjQ3Tp0/H3d0dMzMzzp07x5gxYzI0JszIyMjgdimdkSy3b9/Wdh4xNFmyr6/vG+/ZZEVaNbU3jYcydN26devG8ePH+eabb7TjtTQajXb15szq168fGzdu5Pjx43h4ePDXX38xYsQIlMrM/a1cpEgRVCoVT58+1XstdZuzs3Oa+x8+fJgrV64wd+5cne1ly5alYsWKHDt2zOB+27ZtIy4uTm/18NetWrWKMWPGMHz4cCZOnJje2xFyiUhoQr508OBBwsPD2bJlC40bN9Zuv3fv3js/t6+vLyYmJvz55596SfHo0aMsWLCAhw8fUrJkSdzd3Tl16hRqtTrNjibu7u7s2bOH58+fp1lLS609RkRE6Gx/8OBBhuN+8eIFAQEBTJs2jcmTJ2u3v75gqoODAzY2Nly5ciXdY7Zu3RoHBwd8fX3x9PQkLi4uS2txKZVKPDw8tL06X3Xq1Cnc3NzS7BACEBISAhhO8Gq1muTkZIP7+fr6YmVlxccff5zmsbdv386QIUPo3LkzixcvTu+tCLlINDkK+VJqInm1NpWUlMSvv/76zs/t6+tLo0aN6N69O126dNF5fPPNNwCsXbsWgE8++YSwsDAWLVqkd5zU2D/55BMkSWLatGlplrGxscHe3p7Dhw/rvJ6Z92vomgHMnz9f57lSqaRjx47s2LHDYIJ5dX9jY2N69uzJhg0bWLVqFR4eHlStWlX7ema67Xfp0oUzZ87onPPmzZvs379fp+cowI0bN3j48KH2ebly5QD53uarzp07x82bN6lRo4be+UJDQ9m3bx+dOnXCwsLCYEyHDx+mR48eNG7cGF9f30zXPIWcJWpoQr5Uv359ChcuTP/+/Rk5ciQKhYI///wz3ebCt3Xq1CkCAwPx9vY2+LqLiws1a9bE19eXMWPG0K9fP/744w98fHw4ffo0jRo1IjY2ln379jFixAg6dOhAs2bN6Nu3LwsWLOD27dva5r8jR47QrFkz7bmGDBnC999/z5AhQ6hduzaHDx/m1q1bGY7dxsaGxo0b8+OPP6JWq3FxcWHv3r0Ga7WzZs1i7969NGnShGHDhlGxYkWePn3Kxo0bOXr0KIUKFdKW7devHwsWLODAgQP88MMPOsfJaLd9gBEjRrBs2TLatWvH6NGjMTExYe7cuTg6OvL111/rlK1YsSJNmjTRTotWq1YtWrRowerVq4mKiqJly5Y8ffqUhQsXYm5uzpdffql3vvXr15OcnJxmc+ODBw/4+OOPUSgUdOnSRefeKEDVqlV1kreQB+Ra/0pBeE1a3fYrV65ssPyxY8ekevXqSebm5pKzs7P07bffSnv27JEA6cCBA9pyaXXbnzNnjt4xSaeL+RdffCEB0p07d9IsM3XqVAmQLl68KEmS3FV+woQJUunSpSUTExPJyclJ6tKli84xkpOTpTlz5kgVKlSQTE1NJQcHB6lNmzbS2bNntWXi4uKkwYMHS7a2tpK1tbXUrVs36dmzZ2l22w8NDdWL7fHjx1KnTp2kQoUKSba2tlLXrl2lJ0+eGHzfDx48kPr16yc5ODhIKpVKcnNzkz7//HMpMTFR77iVK1eWlEql9PjxY53tGe22n+rRo0dSly5dJBsbG8nKykpq3769wRk5AKlJkyY62+Li4qTp06dLlSpVkszNzSVbW1upffv20vnz5w2eq169elLRokWl5ORkg6+nxp7WI6PvScg5Yi5HQRDeWo0aNShSpAgBAQG5HYrwHhMNwoIgvJV///2XCxcu0K9fv9wORXjPiRqaIAhZcuXKFc6ePcvPP/9MWFgYd+/e1Q6CFoTcIGpogiBkyaZNmxg4cCBqtZq1a9eKZCbkOlFDEwRBEAoEUUMTBEEQCgSR0IRcY2iNr9S1vDLi9XXAskPTpk1p2rRpth5TEIScIRKakCEff/wxFhYWREdHp1mmd+/emJqaGlwsMi+5du0aU6dO5f79+7kdikH//PMPCoUCZ2fnLM2vKOgKCgqiW7duFCpUCBsbGzp06JChFRVS/+BK6zF06FCd8rdv36ZHjx4UL14cCwsLKlSowPTp04mLi9MpN2vWLOrVq4eDgwNmZmaULVuWL7/8ktDQ0Gx93+8jMVOIkCG9e/dmx44dbN261WD37Li4OLZv307r1q3TnbX8TSZOnMjYsWPfJtR0Xbt2jWnTptG0aVO9BR337t37Ts+dEb6+vri6unL//n32799P8+bNczukfCsmJoZmzZoRGRnJ+PHjMTExYd68eTRp0oQLFy688bPq4ODAn3/+qbd99+7d+Pr60rJlS+22R48eUbduXWxtbfH29qZIkSKcOHGCKVOmcPbsWbZv364te/bsWapXr06PHj2wtrbm+vXrLFu2jJ07d3LhwgUsLS2z9yK8T3JzVLeQf8TFxUnW1tZSq1atDL7u5+cnAdK6desyfMw3LVqZEWRxtoaNGzfqzSaSV8TExEiWlpbSggULpBo1akgDBgzI7ZDSFBMTk9shpOuHH36QAOn06dPabdevX5eMjIykcePGZemYH330kWRjYyPFx8drt82cOVMCpCtXruiU7devnwToLCRryKZNmyRAWrt2bZZiEmSiyVHIEHNzczp37kxAQADPnj3Te93Pzw9ra2s+/vhjnj9/zujRo/Hw8MDKygobGxvatGnDxYsX0z2PoXtoiYmJfPXVVzg4OGjP8fjxY719Hzx4wIgRIyhfvjzm5ubY2dnRtWtXnabFVatWaSe6bdasmbb5KHVOQEP30J49e8bgwYNxdHTEzMyMatWqsXr1ap0yqc1TP/30E7///jvu7u6oVCrq1KmjXWomI7Zu3Up8fDxdu3alR48ebNmyRbse2KsSEhKYOnUq5cqVw8zMjGLFitG5c2fu3LmjLaPRaPjll1/w8PDAzMwMBwcHWrdurZ3819A9zFSv359M/b1cu3aNXr16UbhwYRo2bAjApUuXGDBgAG5ubpiZmeHk5MSgQYMMNj0HBQUxePBgnJ2dUalUlC5dms8++4ykpCTu3r2LQqFg3rx5evsdP34chULB2rVrMzXh8aZNm6hTpw516tTRbqtQoQIfffQRGzZsSHf/1z19+pQDBw7QuXNnnWEKUVFRADg6OuqUL1asGEql0uB6fq9KbSl4fTUFIXNEQhMyrHfv3iQnJ+t9ETx//pw9e/bQqVMnzM3NuXv3Ltu2baN9+/bMnTuXb775hsuXL9OkSROePHmS6fMOGTKE+fPn07JlS77//ntMTExo166dXrkzZ85w/PhxevTowYIFCxg+fDgBAQE0bdpUex+jcePGjBw5EoDx48fz559/8ueff1KxYkWD546Pj6dp06b8+eef9O7dmzlz5mBra8uAAQP45Zdf9Mr7+fkxZ84cPv30U7777jvu379P586dUavVGXqvvr6+NGvWDCcnJ3r06EF0dDQ7duzQKZOSkkL79u2ZNm0atWrV4ueff2bUqFFERkbqLPkyePBgvvzyS0qUKMEPP/zA2LFjMTMz4+TJkxmKxZCuXbsSFxfHrFmztPeQ/P39uXv3LgMHDmThwoX06NGDdevW0bZtW53Jop88eULdunVZt24d3bt3Z8GCBfTt25dDhw4RFxeHm5sbDRo00FkB+9XrYm1tTYcOHTh9+jQVK1Y0uILBqzQaDZcuXTK46nbdunW5c+fOG+8JG7Ju3To0Go3ehMapfwQNHjyYCxcu8OjRI9avX8+SJUsYOXKkXjOiJEmEhYURHBzMkSNHGDlyJEZGRqJD0tvK7SqikH8kJydLxYoVkz744AOd7UuXLpUAac+ePZIkSVJCQoKUkpKiU+bevXuSSqWSpk+frrON15ocUyfWTXXhwgUJkEaMGKFzvF69euk1OcbFxenFfOLECQmQ/vjjD+22NzU5NmnSRGfS2/nz50uAtGbNGu22pKQk6YMPPpCsrKykqKgonfdiZ2en07y0fft2CZB27Nihd67XhYSESMbGxtKyZcu02+rXry916NBBp9yKFSskQJo7d67eMTQajSRJkrR//34JkEaOHJlmmTc1+b5+bVN/Lz179tQra+i6r127VgKkw4cPa7f169dPUiqV0pkzZ9KM6bfffpMA6fr169rXkpKSJHt7e6l///6SJGV8wuPQ0FAJ0PnMpVq8eLEESDdu3HjjMV5Xq1YtqVixYnqfb0mSpBkzZkjm5uY6ExhPmDDB4HGePn2qU6548eLS+vXrMxWLoE/U0IQMMzIyokePHpw4cUKnGc/Pzw9HR0c++ugjAFQqlXbdqJSUFMLDw7GysqJ8+fKcO3cuU+f8559/ALS1qlSGlgN5dYVmtVpNeHg4ZcqUoVChQpk+76vnd3JyomfPntptJiYmjBw5kpiYGA4dOqRTvnv37trFOAEaNWoEkKFedevWrUOpVPLJJ59ot/Xs2ZNdu3bx4sUL7bbNmzdjb2/PF198oXeM1ObazZs3o1AomDJlSpplsmL48OF621697gkJCYSFhVGvXj0A7XXXaDRs27YNLy8vgzWm1Ji6deuGmZmZTi1tz549hIWF0adPH0CuDUmSlO6Qjfj4eED+PL4utbkwtUxG3Lp1i7Nnz9KjRw+D66K5urrSuHFjfv/9dzZv3sygQYOYNWuWwZpkkSJF8Pf3Z8eOHUyfPh17e3tiYmIyHItgmEhoQqakNrX4+fkB8PjxY44cOUKPHj20C0hqNBrmzZtH2bJlUalU2Nvb4+DgwKVLl4iMjMzU+R48eIBSqcTd3V1ne/ny5fXKxsfHM3nyZEqUKKFz3oiIiEyf99Xzly1bVu8LLLWJ8vUVo0uWLKnzPDW5vZqQ0rJmzRrq1q1LeHg4gYGBBAYGUqNGDZKSknTW4rpz5w7ly5fH2DjtTsp37tzB2dk5zRWws6p06dJ6254/f86oUaNwdHTE3NwcBwcHbbnU6x4aGkpUVBRVqlR54/ELFSqEl5eX9vMFcnOji4sLH374YaZiTU20iYmJeq+l3pd8NRmnJzXJGlo/bd26dQwbNoz//e9/DB06lM6dO7N8+XL69+/PmDFj9O4nmpqa0rx5c9q3b8+kSZNYvHgxgwcP5u+//85wPII+kdCETKlVqxYVKlTQrsi8du1aJEnS+U8+a9YsfHx8aNy4MWvWrGHPnj34+/tTuXLldzqu6osvvmDmzJl069aNDRs2sHfvXvz9/bGzs8ux8VypSf11UjozzN2+fZszZ85w9OhRypYtq32kdrwwdF/pbaVVU0tJSUlzH0MJoFu3bixbtozhw4ezZcsW9u7dy+7duwGydN379evH3bt3OX78ONHR0fz111/07Nkz06tFFylSBJVKxdOnT/VeS93m7Oyc4eP5+flRvnx5atWqpffar7/+So0aNShevLjO9o8//pi4uDjOnz//xmPXr1+fYsWKvZPf8/tEjEMTMq13795MmjSJS5cu4efnR9myZXV6kW3atIlmzZqxfPlynf0iIiKwt7fP1LlKlSqFRqPR1kpS3bx5U6/spk2b6N+/Pz///LN2W0JCgl7Pscw0uZUqVYpLly6h0Wh0vlBv3LihfT07+Pr6YmJiwp9//qmXFI8ePcqCBQt4+PAhJUuWxN3dnVOnTqFWqzExMTF4PHd3d/bs2cPz58/TrKWl1h5fvz6v1zrf5MWLFwQEBDBt2jQmT56s3X779m2dcg4ODtjY2Oh0WklL69atcXBwwNfXF09PT+Li4ujbt2+GY0qlVCrx8PDQ9up81alTp3Bzc8Pa2jpDx0pdqXz69OkGXw8JCdFpak6V2hkoOTk53XMkJCRkuSVBkIkampBpqbWxyZMnc+HCBb0mGCMjI70aycaNGwkKCsr0udq0aQPAggULdLbPnz9fr6yh8y5cuFCvxpHa4ywjXaTbtm1LcHAw69ev125LTk5m4cKFWFlZ0aRJk4y8jXT5+vrSqFEjunfvTpcuXXQe33zzDYC2VvzJJ58QFhZm8N5M6vv/5JNPkCSJadOmpVnGxsYGe3t7Dh8+rPP6r7/+muG4U5Pv69f99d+PUqmkY8eO7Nixw2CCeXV/Y2NjevbsyYYNG1i1ahUeHh5UrVpV+3pmuu136dKFM2fO6Jzz5s2b7N+/Xzt8I9WNGzd4+PChweOkNoH26tXL4OvlypXj/Pnz3Lp1S2f72rVrUSqV2vhjY2P1Zg4B+Z7nixcvDN5fFDJO1NCETCtdujT169fXzn7wekJr374906dPZ+DAgdSvX5/Lly/j6+uLm5tbps9VvXp1evbsya+//kpkZCT169cnICCAwMBAvbLt27fnzz//xNbWlkqVKnHixAn27dunNxtE9erVMTIy4ocffiAyMhKVSsWHH35I0aJF9Y45bNgwfvvtNwYMGMDZs2dxdXVl06ZNHDt2jPnz52f4L/w3Sf3r39vb2+DrLi4u1KxZE19fX8aMGUO/fv34448/8PHx4fTp0zRq1IjY2Fj27dvHiBEj6NChA82aNaNv374sWLCA27dv07p1azQaDUeOHKFZs2bacw0ZMoTvv/+eIUOGULt2bQ4fPqz3pfwmNjY2NG7cmB9//BG1Wo2Liwt79+7l3r17emVnzZrF3r17adKkCcOGDaNixYo8ffqUjRs3cvToUQoVKqQt269fPxYsWMCBAwf44YcfdI5z+vRpmjVrxpQpU9LtGDJixAiWLVtGu3btGD16NCYmJsydOxdHR0e+/vprnbIVK1akSZMm2jGJqVJSUli/fj316tXTu5eb6ptvvmHXrl00atQIb29v7Ozs+Pvvv9m1axdDhgzRNm3evn2b5s2b0717dypUqIBSqeTff/9lzZo1uLq6MmrUqDe+HyEdudW9UsjfUrs9161bV++1hIQE6euvv5aKFSsmmZubSw0aNJBOnDih1yU+I932JUmS4uPjpZEjR0p2dnaSpaWl5OXlJT169Eiv6/aLFy+kgQMHSvb29pKVlZXUqlUr6caNG1KpUqW0Xb5TLVu2THJzc5OMjIx0uvC/HqMkyd3pU49ramoqeXh46HV1T30vc+bM0bser8f5ui+++EICpDt37qRZZurUqRIgXbx4UZIkuav8hAkTpNKlS0smJiaSk5OT1KVLF51jJCcnS3PmzJEqVKggmZqaSg4ODlKbNm2ks2fPasvExcVJgwcPlmxtbSVra2upW7du0rNnz9Lsth8aGqoX2+PHj6VOnTpJhQoVkmxtbaWuXbtKT548Mfi+Hzx4IPXr109ycHCQVCqV5ObmJn3++edSYmKi3nErV64sKZVK6fHjxzrbM9ptP9WjR4+kLl26SDY2NpKVlZXUvn176fbt23rlAL3fvSRJ0u7duyVAWrBgwRvPc+rUKalNmzaSk5OTZGJiIpUrV06aOXOmpFartWVCQ0OlYcOGSRUqVJAsLS0lU1NTqWzZstKXX35p8NoKmSPWQxMEIU+qUaMGRYoUISAgILdDEfIJcQ9NEIQ8599//+XChQsGJ8IWhLSIGpogCHnGlStXOHv2LD///DNhYWHcvXtXZ85EQXgTUUMTBCHP2LRpEwMHDkStVrN27VqRzIRMETU0QRAEoUAQNTRBEAShQBAJTRAEQSgQxMBqAzQaDU+ePMHa2vqtZiYXBEEQ3p4kSURHR+Ps7PzmOT1zcQycJEmStGjRIqlUqVKSSqWS6tatK506deqN5efNmyeVK1dOMjMzk4oXLy59+eWXOkuhJycnSxMnTpRcXV0lMzMzyc3NTZo+fbp2vaWMSB20Kx7iIR7iIR555/Ho0aM3fnfnag1t/fr1+Pj4sHTpUjw9PZk/fz6tWrXi5s2bBqch8vPzY+zYsaxYsYL69etz69YtBgwYgEKhYO7cuQD88MMPLFmyhNWrV1O5cmX+/fdfBg4ciK2trd6aWmlJnc7o0aNH2NjYZPp9qdVq9u7dS8uWLdOcPDavyq+xi7hzXn6NXcSds7Ij7qioKEqUKJHuVHO5mtDmzp3L0KFDGThwIABLly5l586drFixgrFjx+qVP378OA0aNNBOEOrq6krPnj05deqUTpkOHTrQrl07bZm1a9dy+vTpDMeV2sxoY2OT5YRmYWGBjY1NvvrgQf6NXcSd8/Jr7CLunJWdcad3CyjXElpSUhJnz55l3Lhx2m1KpZLmzZtz4sQJg/vUr1+fNWvWcPr0aerWrcvdu3f5559/dJaWqF+/Pr///ju3bt2iXLlyXLx4kaNHj2prcIYkJibqLAIYFRUFyL+I1OUfMiN1n6zsm9vya+wi7pyXX2MXcees7Ig7o/vmWkILCwsjJSUFR0dHne2Ojo7ataZe16tXL8LCwmjYsCGSJJGcnMzw4cMZP368tszYsWOJioqiQoUKGBkZkZKSwsyZMw2uMptq9uzZBpfZ2Lt3LxYWFll8h+Dv75/lfXNbfo1dxJ3z8mvsIu6c9TZxG1pyx5B81cvx4MGDzJo1i19//RVPT08CAwMZNWoUM2bMYNKkSQBs2LABX19f/Pz8qFy5MhcuXODLL7/E2dmZ/v37GzzuuHHj8PHx0T5Pba9t2bJllpsc/f39adGiRb5qGoD8G7uIO+fl19hF3DkrO+JObTVLT64lNHt7e4yMjAgJCdHZHhISgpOTk8F9Jk2aRN++fRkyZAgAHh4exMbGMmzYMCZMmIBSqeSbb75h7Nix9OjRQ1vmwYMHzJ49O82EplKpUKlUettNTEze6oPztvvnpvwau4g75+XX2EXcOett4s7ofrk2sNrU1JRatWrpLA2h0WgICAjggw8+MLhPXFyc3hiE11fMTauMRqPJzvAFQRCEPCZXmxx9fHzo378/tWvXpm7dusyfP5/Y2Fhtr8d+/frh4uLC7NmzAfDy8mLu3LnUqFFD2+Q4adIkvLy8tInNy8uLmTNnUrJkSSpXrsz58+eZO3cugwYNyrX3KQiCILx7uZrQunfvTmhoKJMnTyY4OJjq1auze/dubUeRhw8f6tS2Jk6ciEKhYOLEiQQFBeHg4KBNYKkWLlzIpEmTGDFiBM+ePcPZ2ZlPP/2UyZMn5/j7EwRByA/OPnjOqXvPKVfUmholC2FnpX8LJj/I9U4h3t7eeHt7G3zt4MGDOs+NjY2ZMmUKU6ZMSfN41tbWzJ8/n/nz52djlIIgCAXPo+dxzN51nX8uB+tsL2VnQc2ShalRshA1SxamvJM1JkZ5f+rfXE9ogiAIQs6KTlCz6EAgK4/eJylFg1IBTcsX5eHzOAKfxfAgPI4H4XFsPR8EgLmJER7FbXWSnIN13qvFiYQmCILwnkjRSKw/84if994kPDYJgIZl7JnYviIVnOQhSpHxai48iuD8wxeceyj/G52QzOl7zzl977n2WMULm1OzZGFqlixEjZKFqeRsk+u1OJHQBEEQ3gNHb4fx3c5r3AiOBsDNwZIJbSvyYYWiOlNK2Zqb0KScA03KOQCg0UjcDYvh3IMIzj96wbkHEdx6Fs3jF/E8fhHPXxefAKAyVlK1uC01XklyjjY5u+K4SGiCIAgF2J3QGGbtvE7AjWeAnLC+bF6WPvVKZahGpVQqKFPUmjJFrelWpwQgN1lefBTJuYcvOP/wBecfRRARp+bM/Recuf9Cu69LIXOqF7fFNEZBmZBoKhcv8m7e5EsioQmCIGSDkKgElh66Q2S8mo8qONK0vAOWqtz7io2IS2L+vtusOfmAZI2EsVJB3w9KMeqjshSyMH2rY1ubmdCwrD0Ny9oD8jjge2Gx2ibKcw8juBkcRVBEPEER8YARhc49EQlNEAQhL4tPSuH3w3dZeugO8eoUALacC8LUWEmjMva0quxE80qOFLF8uySSUeoUDX+eeMAvAbeJjJcn9f2oQlHGt6uIu4PVOzmnQqHAzcEKNwcrutQqDkBMYjKXHkfw771w9p69xQdu7zaZgUhogiAIWaLRSPx18Qk/7L7B08gEAGqWLEStUoXxvxbC/fA4Am48I+DGM5RboI5rEVpXcaJlZSdcCplnezySJLH/xjNm7rzO3bBYAMo7WjOpfSVtTSonWamMqe9uT52StpSKvUGz8g7v/JwioQmCIGTS2QcvmP73NS4+igDke0Vj2lTAq2oxFAoF49tW5GZINHuuhLDnajDXnkZx6p48eHnajmt4uNjSqrIjrSo7UaaoVbrrfKXnRnAU3/19naOBYQDYWZri07Ic3WuXwDgfjB/LLiKhCYIgZNDjF3F8v+sGf196CoClqREjmpVhcMPSmJkYacspFAoqONlQwcmGUc3L8uh5HHuuBrP3aghnHjznclAkl4Mi+WnvLdzsLWlVxYlWlZ2o6mKLUpnx5BYWk8jPe2+x/sxDNBKYGikZ2NCVz5uVwcYs/01g/LZEQhMEQUhHTGIySw4GsuzIPZKSNSgU0LVWcUa3LE/RDHRNL1HEgiGN3BjSyI3Q6ET2XZdrbscDw7kbFsuSg3dYcvAOTjZmtHxZc6tbukiavRAT1CmsPHafxQcCiUlMBqCthxNjW1ekpF3W13DM70RCEwQhz0lK1mBipHjrpri3laKR2HT2ET/tvUVotLyqfT23IkxsV4kqLrZZOqaDtYqedUvSs25JohPUHLgZyp6rwRy88YzgqAT+OPGAP048oJCFCR9VcKRVZUcal3PACJAk2HUlmDn+t3n0PB4ADxdbJrWvRN3S777TRV4nEpogCHlCUEQ8e68Gs/tKMGfuP8fBWkWjsvIA34Zl7CmcQ70EUx2/E8Z3f1/n2lN5cUlXOwvGta1Iy0qO2ZZorc1M+LiaMx9XcyZBncKxwDD2XA1m3/VnPI9NYvO5x2w+9xhzEyMalbUj8JERd09eAsDRRsU3rSrQuYZLppopCzKR0ARByBWSJBH4LIY9V4PZczWEy0GROq+HRCWy6exjNp19jEIBVYsXoklZe5qUd6Ba8ULvrLPD/bBYZv1znb3X5MWHrc2MGfVRWfp94Iqp8bvrYGFmYsRHFR35qKIjySka/n3wQnvfLSginr3XngEKzEyUDGvszvAmbliYiq/wV4mrIQhCjtFoJC4FRcpJ7Eqwtns5gEIBdUoVoWVlRz6sUJQnEQkcvh3K4Vuh3AiO5uKjCC4+imDB/kBszIxpWNaexmUdaFzOAeds6AYfGa9mYcBtVp+4jzpFwkipoLdnSb5sXi7HxpClMjZSUs/NjnpudkxuX4krQVHsuvyEm7cDmdKrMSXtrXM0nvxCJDRBEN4pdYqG0/eea2sbwVEJ2tdMjZQ0KGOnHXxs/8o6XG4OVjQsa8/4thUJjpST26FboRy9HUZkvJp/Lgdrlz0pW9SKxuXk5OZZuohOj8P0JKdo8Dv9kHn+t3gRJw9EblLOgYntKlLWMfcTh0KhwKO4LRUcLfgn6RbFbHN2fsT8RCQ0QRCyXXxSCodvy50dAq4/085YAXJX96YVitKqshPNyjtgnYHu5U62ZnSrXYJutUuQopG49DiCQ7fk2tuFRxHcfhbD7WcxLD96D5WxEk83OxqXtadpeQfcHdIe53Xw5jO+23mdwGcxgJwYJ7SrSNPyRbPnQgg5SiQ0QRCyRWS8mv03QthzJYRDt0K100ABFLE0pXnForSu4kR9d/tM1aBeZ6RUUKNkYWqULMyXzcsRGafmaGAYh2+Fcvh2KE8jE+Sfb4Xy3c7rONua0fjl7PH1y9hjYQzBcTD4j7Mcvh0OQGELE3xalKNn3ZLv1UDkgkYkNEEQsiwyCXxPPyLgRign7oSTrJG0r7kUMteOqapdqvA7SxS2Fia0q1qMdlWLaTuaHLolN0+euvecJ5EJrDvziHVnHmGkVFDByYrrT4zQEI6JkYIB9V3x/rAstubv30DkgkYkNEEQMiUyXs2Oi0/Ycu4x5x8aIZ29rn2tbFErWlV2onUVJyo72+T4ODKFQkFZR2vKOlozpJEb8UkpnLoXzuFbYRy69Yw7obFcfRINKGhRsSgT2lXC1d4yR2MU3h2R0ARBSJdGI3HyXjgbzjxi15VgEpM1L19RUK24La2rFKNVZUfc3tFs7lllbmpE0/JFX94Tq0RQRDwnbj8j6OYFRnSvjomJqJUVJLneWLx48WJcXV0xMzPD09OT06dPv7H8/PnzKV++PObm5pQoUYKvvvqKhIQEnTJBQUH06dMHOzs7zM3N8fDw4N9//32Xb0MQCqQnEfEsDLhN058O0mvZKbZdeEJisoayRa0Y17oc02oms+lTTz5r6p7nkpkhLoXM6VDdGdfc77wovAO5WkNbv349Pj4+LF26FE9PT+bPn0+rVq24efMmRYvq9zLy8/Nj7NixrFixgvr163Pr1i0GDBiAQqFg7ty5ALx48YIGDRrQrFkzdu3ahYODA7dv36Zw4cI5/fYEIV9KTE5h37VnrP/3EUduhyK9vC1mpTLGq5oz3euUoFpxW5KTk/nnn2u5G6wgvCJXE9rcuXMZOnQoAwcOBGDp0qXs3LmTFStWMHbsWL3yx48fp0GDBvTq1QsAV1dXevbsyalTp7RlfvjhB0qUKMHKlSu120qXLv2O34kg5H/Xn0ax4d9HbDsfpB2PBeBZugjd65SgTZVimJtmvXeiILxruZbQkpKSOHv2LOPGjdNuUyqVNG/enBMnThjcp379+qxZs4bTp09Tt25d7t69yz///EPfvn21Zf766y9atWpF165dOXToEC4uLowYMYKhQ4emGUtiYiKJiYna51FR8txtarUatVqd1m5pSt0nK/vmtvwau4g7a6Li1ey4HMyms0FceRKl3e5oraJzDWc+qelCKe3s7RrUao22TG7HnlUi7pyVHXFndF+FJElS+sWy35MnT3BxceH48eN88MEH2u3ffvsthw4d0ql1vWrBggWMHj0aSZJITk5m+PDhLFmyRPu6mZk8it7Hx4euXbty5swZRo0axdKlS+nfv7/BY06dOpVp06bpbffz88PC4v1dikEomDQSBEYpOPlMwaVwBWpJ7olopJCoUljCs6hExUISYr5bIa+Ii4ujV69eREZGYmNjk2a5fNXL8eDBg8yaNYtff/0VT09PAgMDGTVqFDNmzGDSpEkAaDQaateuzaxZswCoUaMGV65ceWNCGzduHD4+PtrnUVFRlChRgpYtW77x4qVFrVbj7+9PixYt8l0vqvwau4g7fU8i4tly/gmbzz/h8Yt47fayRS3pWqs4H1crhl0m5iwU1zxnvc9xp7aapSfXEpq9vT1GRkaEhITobA8JCcHJycngPpMmTaJv374MGTIEAA8PD2JjYxk2bBgTJkxAqVRSrFgxKlWqpLNfxYoV2bx5c5qxqFQqVCqV3nYTE5O3+uC87f65Kb/GLuLWlZicgv+1EDb8+1ing4e1yhiv6s50qy138Hib8WLimues9zHujO6XawnN1NSUWrVqERAQQMeOHQG5dhUQEIC3t7fBfeLi4lAqdUcaGBnJN6lTW04bNGjAzZs3dcrcunWLUqVKZfM7EIS850VsEpeDIrkcFMmlxxGcuveciFc6eNRzK0K32qKDh1Aw5WqTo4+PD/3796d27drUrVuX+fPnExsbq+312K9fP1xcXJg9ezYAXl5ezJ07lxo1amibHCdNmoSXl5c2sX311VfUr1+fWbNm0a1bN06fPs3vv//O77//nmvvUxDehcg4tZy4giK4/FhOYq82JaZysjGjS63idKlVXMyKIRRouZrQunfvTmhoKJMnTyY4OJjq1auze/duHB0dAXj48KFOjWzixIkoFAomTpxIUFAQDg4OeHl5MXPmTG2ZOnXqsHXrVsaNG8f06dMpXbo08+fPp3fv3jn+/gQhu0TGq7kaFMmll7Wvy48jefg8zmBZVzsLPIoXoqqLLVWL21LbtQhGooeH8B7I9U4h3t7eaTYxHjx4UOe5sbExU6ZMYcqUKW88Zvv27Wnfvn12hSgIOSo6Qc2VoCiupCawxxHcDzecvEoWscCjuC0eLrZUdbGlsoutmGRXeG/lekIThPdVikbiWXQigVGw8vgDrj6N5nJQJHdDYw2WL17YHA8XWzyK21LVpRBVXGwoZJGzKykLQl4mEpogvAPxSSkERyUQHJlASFSC3s8hkQk8i058udyKMVzV7cjkUsicKi42VC1eCA8XW6q42FIkE13qBeF9JBKaIGSCRiPxPC5JLzkFRyUQHJVIcGQ8wZEJRCUkZ+h4SgXYmEjUditKtRKFqfKy+dDeSn8YiSAIbyYSmiC8QWScmmVH7nLybjhPIxN4Fp2AOiVjk+tYmBrhZGOGo40ZTrYv/7VRaX8uZmuOrUrB3j27adu2Rr4cWyQIeYlIaIJgQII6hdXH77P4QKBebUuhADtLFcVSk5StSidxOdmY4WhrhrXKON0By/ltXj5ByMtEQhOEV6RoJDaffcy8fbd4Gimvs1fe0Zphjd1wtbfEydaMotYqTIxyfSlBQRBeIxKaICDPNLPv+jN+3H2D289iALljhk+LcnSs4SLGcQlCPiASmvDe+/f+c77fdYN/H7wAoJCFCd7NytCnXinMTMT0UIKQX4iEJry3boVE8+Pum+y7Lk+QbWaiZHDD0nzaxB0bM9FBQxDyG5HQhPfOk4h45u+7xaazj9FIYKRU0K12Cb5sXhZHG7PcDk8QhCwSCU14b0TEJbHk4B1WHb9PYrK88nLryk6MblWeMkWtcjk6QRDelkhoQoGXoE5h1fH7/PpKF/y6pYswtk0FapYsnMvRCYKQXURCEwqs5BQNm889Zp7/bYKj5C74FZysGdO6Ak3LO7zVopaCIOQ9IqEJBY4kSfhfC+HHPTcJfKUL/tcty9GhuuiCLwgFlUhoQoHy74MX/OQfyFnRBV8Q3jsioQn5niRJXHsaxbIbSq6cOAOILviC8D4SCU3Il1KT2K7Lwey68pQ7obGAEiOlgu51SjDqI9EFXxDeNyKhCfmGJElcehzJP1eesvtKMA9eWcXZxEhBlUIpfN+7EeWdC+VekIIg5BqR0IQ8TaOROP/oBf9cDmb3lWCCIuK1r6mMlTQrX5Q2Hk40ci/Ckf17cXOwzMVoBUHITSKhCXlOikbizP3n7Lr8lN1XgwmJStS+ZmFqxIcVitKmSjGalnfAUiV/hMUyLIIgiIQm6AiPSSQuWW7ey0nqFA0n74az60owe68GExaTpH3NWmVM80qOtK7iRJNyDqK3oiAIBuWJhLZ48WLmzJlDcHAw1apVY+HChdStWzfN8vPnz2fJkiU8fPgQe3t7unTpwuzZszEz0+8E8P333zNu3DhGjRrF/Pnz3+G7yP82nHnEmC2XkCRjpl8IwMnWHEcblXbBSicbM52fi1qrMH6LdcGSkjUcCwxj15Wn7L0WQkTcf7UsW3MTWlZypI2HEw3K2KMyFklMEIQ3y/WEtn79enx8fFi6dCmenp7Mnz+fVq1acfPmTYoWLapX3s/Pj7Fjx7JixQrq16/PrVu3GDBgAAqFgrlz5+qUPXPmDL/99htVq1bNqbeTb+2/EcK4rZdJrZjFqzXcC4vlXlhsmvsoFGBv9epqzSqK2ZrLP7987mhjhvUr3eYT1CkcvhXK7ivB+F8PIfqV1aDtLE1pWdmJNlWc+MDdTiyiKQhCpuR6Qps7dy5Dhw5l4MCBACxdupSdO3eyYsUKxo4dq1f++PHjNGjQgF69egHg6upKz549OXXqlE65mJgYevfuzbJly/juu+/e/RvJxy4+iuBz3/OkaCQ6VS/GB6aPqFm/KWFxyQRHJhAclUBwZAIhUfLPIZEJPItOJFkjERqdSGh0IpeDItM8vqWpEY62Zthbqrj6JJLYpBTtaw7WKtpUcaJ1FSfquhZ5qxqfIAjvt1xNaElJSZw9e5Zx48ZptymVSpo3b86JEycM7lO/fn3WrFnD6dOnqVu3Lnfv3uWff/6hb9++OuU+//xz2rVrR/PmzdNNaImJiSQm/tfxICoqCpA7GmSls0HqPvmho8KD8DgGrjpNvDqFRmXsmNquHAf3P8LZxoRSdhZQwsbgfhqNRHhsEiFRiXKii5b/lZ+//Dk6keiEZGKTUrgbGsvdULm252SjolVlR1pXdqRmiUIoX05FJWlSUGtSDJ4vPfnpmr8qv8YN+Td2EXfOyo64M7pvria0sLAwUlJScHR01Nnu6OjIjRs3DO7Tq1cvwsLCaNiwIZIkkZyczPDhwxk/fry2zLp16zh37hxnzpzJUByzZ89m2rRpetv37t2LhYVFJt6RLn9//yzvmxOi1TD/shHPExUUt5RoXySEg/vlxS4zG3vhl48KZoAZ8LK1ODEFIpIgMklBVBLYm0mUtEpGyV2eXb3L7qvZ+Y7y/jVPS36NG/Jv7CLunPU2ccfFxaVfiDzQ5JhZBw8eZNasWfz66694enoSGBjIqFGjmDFjBpMmTeLRo0eMGjUKf39/g51EDBk3bhw+Pj7a51FRUZQoUYKWLVtiY2O4hvImarUaf39/WrRogYlJ3px2KS4pmb4r/iUsMYrihczYMMwTB2tVvojdEBF3zsuvsYu4c1Z2xJ3aapaeXE1o9vb2GBkZERISorM9JCQEJycng/tMmjSJvn37MmTIEAA8PDyIjY1l2LBhTJgwgbNnz/Ls2TNq1qyp3SclJYXDhw+zaNEiEhMTMTLS7TGnUqlQqVR65zIxMXmrD87b7v+uJKdo+HLDeS4FRVHYwoTVgz1xLqK7wGVejT09Iu6cl19jF3HnrLeJO6P75eodeFNTU2rVqkVAQIB2m0ajISAggA8++MDgPnFxcSiVumGnJihJkvjoo4+4fPkyFy5c0D5q165N7969uXDhgl4ye99IksSErVc4cDMUMxMlywfUwd1BrNYsCEL+l+tNjj4+PvTv35/atWtTt25d5s+fT2xsrLbXY79+/XBxcWH27NkAeHl5MXfuXGrUqKFtcpw0aRJeXl4YGRlhbW1NlSpVdM5haWmJnZ2d3vb30fx9t1n/7yOUCljYs6ZYsVkQhAIj1xNa9+7dCQ0NZfLkyQQHB1O9enV2796t7Sjy8OFDnRrZxIkTUSgUTJw4kaCgIBwcHPDy8mLmzJm59RbyjbWnH/JLwG0AZnSsQotKjunsIQiCkH/kekID8Pb2xtvb2+BrBw8e1HlubGzMlClTmDJlSoaP//ox3kcB10OYuO0KAF98WIbenqVyOSJBEITsJUaxvgfOP3zB537nSNFIdKlVHJ8W5XI7JEEQhGwnEloBdy8slsGr/yVBraFJOQdmd/ZAoVDkdliCIAjZTiS0Aiw0OpH+K07zPDYJDxdbfu1dU8yPKAhCgSW+3Qqo2MRkBq8+w8PncZQoYs6KAXW0a4cJgiAURCKhFUDqFA2f+53j0uNIeeD0wLo4WOsPHBcEQShIREIrYOSB05c5+MrAaTcxcFoQhPeASGgFzLx9t9nw72OUClgkBk4LgvAeEQmtAPE79ZAFLwdOf9fRg+Zi4LQgCO8RkdAKCHng9GUARn5Yhl6eJXM5IkEQhJwlEloBkDpwWiNB11rF+UoMnBYE4T0kElo+9+rA6ablHZglBk4LgvCeEgktH3t14HTV4rYs7iUGTguC8P7K9Lefq6sr06dP5+HDh+8iHiGDYhOTGbRKHjhdsoiFGDgtCMJ7L9MJ7csvv2TLli24ubnRokUL1q1bR2Ji4ruITUiDOkXDCN9zXA6KpIilKasH1cXeSgycFgTh/ZalhHbhwgVOnz5NxYoV+eKLLyhWrBje3t6cO3fuXcQovEKSJMZvucyhW6GYmxixYkAdSttb5nZYgiAIuS7LN1xq1qzJggULePLkCVOmTOF///sfderUoXr16qxYsQJJkrIzTuGlNScfsPHsY4yUChb3rkH1EoVyOyRBEIQ8Ics3XdRqNVu3bmXlypX4+/tTr149Bg8ezOPHjxk/fjz79u3Dz88vO2N97yWnaFh66C4AY1tX4MMKYuC0IAhCqkwntHPnzrFy5UrWrl2LUqmkX79+zJs3jwoVKmjLdOrUiTp16mRroALsuRpCUEQ8RSxN6fuBWHFaEAThVZlOaHXq1KFFixYsWbKEjh07YmJiolemdOnS9OjRI1sCFP6z/KhcO+vjWRIzE6NcjkYQBCFvyXRCu3v3LqVKvbl2YGlpycqVK7MclKDv3MMXnHsYgamRkj6idiYIgqAn051Cnj17xqlTp/S2nzp1in///TdbghL0LT96D4CPqztT1Nosl6MRBEHIezKd0D7//HMePXqktz0oKIjPP/88S0EsXrwYV1dXzMzM8PT05PTp028sP3/+fMqXL4+5uTklSpTgq6++IiEhQfv67NmzqVOnDtbW1hQtWpSOHTty8+bNLMWWFzx+EcfuK8EADGpQOpejEQRByJsyndCuXbtGzZo19bbXqFGDa9euZTqA9evX4+Pjw5QpUzh37hzVqlWjVatWPHv2zGB5Pz8/xo4dy5QpU7h+/TrLly9n/fr1jB8/Xlvm0KFDfP7555w8eRJ/f3/UajUtW7YkNjY20/HlBauP3ydFI9GgjB2VnG1yOxxBEIQ8KdP30FQqFSEhIbi5uelsf/r0KcbGmR8FMHfuXIYOHcrAgQMBWLp0KTt37mTFihWMHTtWr/zx48dp0KABvXr1AuSpuHr27KnTDLp7926dfVatWkXRokU5e/YsjRs31jtmYmKizmwnUVFRgDw0Qa1WZ/o9pe6TlX1fF5OYzNrTco24f72S2XLMN8nO2HOSiDvn5dfYRdw5Kzvizui+CimTI6B79uzJ06dP2b59O7a2tgBERETQsWNHihYtyoYNGzJ8rKSkJCwsLNi0aRMdO3bUbu/fvz8RERFs375dbx8/Pz9GjBjB3r17qVu3Lnfv3qVdu3b07dtXp5b2qsDAQMqWLcvly5epUqWK3utTp05l2rRpBs9lYWGR4ffzLhx8qmDrfSOKmkmMq56CUkykLwjCeyYuLo5evXoRGRmJjU3arVSZTmhBQUE0btyY8PBwatSoAcCFCxdwdHTE39+fEiVKZPhYT548wcXFhePHj/PBBx9ot3/77bccOnTIYOcTgAULFjB69GgkSSI5OZnhw4ezZMkSg2U1Gg0ff/wxERERHD161GAZQzW0EiVKEBYW9saLlxa1Wo2/vz8tWrQwOKwho1I0Es3nH+Xxi3imeVWkV92MX9usyq7Yc5qIO+fl19hF3DkrO+KOiorC3t4+3YSW6TZCFxcXLl26hK+vLxcvXsTc3JyBAwfSs2fPHLnIBw8eZNasWfz66694enoSGBjIqFGjmDFjBpMmTdIr//nnn3PlypU0kxnIzagqlf7kviYmJm/1nt52/4ArwTx+EU8hCxO61SmFSQ6OPXvb2HOLiDvn5dfYRdw5623izuh+WZr6ytLSkmHDhmVlVx329vYYGRkREhKisz0kJAQnJyeD+0yaNIm+ffsyZMgQADw8PIiNjWXYsGFMmDABpfK/fi7e3t78/fffHD58mOLFi791vDktdSB1b8+SmJuKgdSCIAhvkuW5HK9du8bDhw9JSkrS2f7xxx9n+BimpqbUqlWLgIAA7T00jUZDQEAA3t7eBveJi4vTSVoARkbyl31q66kkSXzxxRds3bqVgwcPUrp0/uvqfulxBGfuv8DESEG/D1xzOxxBEIQ8L0szhXTq1InLly+jUCi0SUShkHsrpKSkZOp4Pj4+9O/fn9q1a1O3bl3mz59PbGysttdjv379cHFxYfbs2QB4eXkxd+5catSooW1ynDRpEl5eXtrE9vnnn+Pn58f27duxtrYmOFgew2Vra4u5uXlm33KuSB1I3b6qM442YiC1IAhCejKd0EaNGkXp0qUJCAigdOnSnD59mvDwcL7++mt++umnTAfQvXt3QkNDmTx5MsHBwVSvXp3du3fj6CjPJP/w4UOdGtnEiRNRKBRMnDiRoKAgHBwc8PLyYubMmdoyqR1EmjZtqnOulStXMmDAgEzHmNOeRsaz89JTAAY3zH+1S0EQhNyQ6YR24sQJ9u/fj729PUqlEqVSScOGDZk9ezYjR47k/PnzmQ7C29s7zSbGgwcP6gZsbMyUKVOYMmVKmsfL72uxrT7+gGSNhGfpIlRxsc3tcARBEPKFTM8UkpKSgrW1NSB36njy5AkApUqVytfTS+UVsYnJ+J16AIjamSAIQmZkuoZWpUoVLl68SOnSpfH09OTHH3/E1NSU33//XW/2ECHzNp97TFRCMq52FnxUUSzgKQiCkFGZTmgTJ07Uzok4ffp02rdvT6NGjbCzs2P9+vXZHuD7RKORWHnsPgADG5TGSEwLIgiCkGGZTmitWrXS/lymTBlu3LjB8+fPKVy4sLano5A1+288415YLDZmxnSplf/GzQmCIOSmTN1DU6vVGBsbc+XKFZ3tRYoUEcksG/zv5UDqnp4lsVRleYigIAjCeylTCc3ExISSJUtmeqyZkL6rTyI5efc5RkoF/cVAakEQhEzLdC/HCRMmMH78eJ4/f/4u4nlvpQ6kbudRDOdC+WPwtyAIQl6S6XatRYsWERgYiLOzM6VKlcLS0lLn9XPnzmVbcO+LZ1EJ7LgoD38QXfUFQRCyJtMJ7dV1y4Ts8ceJB6hTJGqXKky1EoVyOxxBEIR8KdMJ7U0zdAiZF5+Ugu/LgdRDGonamSAIQlZl+h6akL22nH/Mizg1JYqY06KS4SVzBEEQhPRluoamVCrf2EVf9IDMOI1GYsXLziAD6ouB1IIgCG8j0wlt69atOs/VajXnz59n9erVTJs2LdsCex8cuh3KndBYrFXGdKstBlILgiC8jUwntA4dOuht69KlC5UrV2b9+vUMHjw4WwJ7Hyw/ItfOutcpgbVZ/ltSXRAEIS/Jtnto9erVIyAgILsOV+DdCI7iaGAYSgUMaOCa2+EIgiDke9mS0OLj41mwYAEuLi7Zcbj3QmrtrE2VYhQvbJHL0QiCIOR/mW5yfH0SYkmSiI6OxsLCgjVr1mRrcAVVaHQi2y/IA6kHiYHUgiAI2SLTCW3evHk6CU2pVOLg4ICnpyeFCxfO1uAKqjUnH5CUoqFGyULUKiWumSAIQnbIdEIbMGDAOwjj/ZGgTmHNSbEitSAIQnbL9D20lStXsnHjRr3tGzduZPXq1dkSVEG2/UIQ4bFJuBQyp3VlMZBaEAQhu2Q6oc2ePRt7e3u97UWLFmXWrFlZCmLx4sW4urpiZmaGp6cnp0+ffmP5+fPnU758eczNzSlRogRfffUVCQkJb3XMnCBJknZW/QH1XTE2EhO1CIIgZJdMf6M+fPiQ0qX1m8pKlSrFw4cPMx3A+vXr8fHxYcqUKZw7d45q1arRqlUrnj17ZrC8n58fY8eOZcqUKVy/fp3ly5ezfv16xo8fn+Vj5pQjt8O4FRKDpakR3euWyNVYBEEQCppMJ7SiRYty6dIlve0XL17Ezs4u0wHMnTuXoUOHMnDgQCpVqsTSpUuxsLBgxYoVBssfP36cBg0a0KtXL1xdXWnZsiU9e/bUqYFl9pg5JbV21rV2CWzEQGpBEIRslelOIT179mTkyJFYW1vTuHFjAA4dOsSoUaPo0aNHpo6VlJTE2bNnGTdunHabUqmkefPmnDhxwuA+9evXZ82aNZw+fZq6dety9+5d/vnnH/r27ZvlYyYmJpKYmKh9HhUVBcjTeqnV6ky9p9T9Xv0X4PazGA7dCkWhgL6exbN03JxgKPb8QMSd8/Jr7CLunJUdcWd030wntBkzZnD//n0++ugjjI3l3TUaDf369cv0PbSwsDBSUlJwdHTU2e7o6MiNGzcM7tOrVy/CwsJo2LAhkiSRnJzM8OHDtU2OWTnm7NmzDc5DuXfvXiwssj7o2d/fX/vzujtKQIlHYQ1XTh7kSpaPmjNejT0/EXHnvPwau4g7Z71N3HFxcRkql+mEZmpqyvr16/nuu++4cOEC5ubmeHh4UKpUqUwHmRUHDx5k1qxZ/Prrr3h6ehIYGMioUaOYMWMGkyZNytIxx40bh4+Pj/Z5VFQUJUqUoGXLltjY2GT6eGq1Gn9/f1q0aIGJiQnPY5P49sxhQMO4zp7UzsNjz16PPb8Qcee8/Bq7iDtnZUfcqa1m6cl0QktVtmxZypYtm9XdAbC3t8fIyIiQkBCd7SEhITg5Ge7SPmnSJPr27cuQIUMA8PDwIDY2lmHDhjFhwoQsHVOlUqFSqfS2m5iYvNUHJ3X/DWfvk5isoWpxW+q5O7xx+Z284m3fe24Rcee8/Bq7iDtnvU3cGd0v051CPvnkE3744Qe97T/++CNdu3bN1LFMTU2pVauWzqTGGo2GgIAAPvjgA4P7xMXFoVTqhm1kZATI3eKzcsx3KTE5hdUn/htInR+SmSAIQn6U6YR2+PBh2rZtq7e9TZs2HD58ONMB+Pj4sGzZMlavXs3169f57LPPiI2NZeDAgQD069dPp4OHl5cXS5YsYd26ddy7dw9/f38mTZqEl5eXNrGld8yctOPiU8JiEnGyMaOtR7EcP78gCML7ItNNjjExMZiamuptNzExyXA756u6d+9OaGgokydPJjg4mOrVq7N7925tp46HDx/q1MgmTpyIQqFg4sSJBAUF4eDggJeXFzNnzszwMXPKqwOp+9d3xUQMpBYEQXhnMp3QPDw8WL9+PZMnT9bZvm7dOipVqpSlILy9vfH29jb42sGDB3WeGxsbM2XKFKZMmZLlY+aUk/eec/1pFOYmRvSqWzJXYxEEQSjoMp3QJk2aROfOnblz5w4ffvghAAEBAfj5+bFp06ZsDzA/W3lcvnfWtXZxbC3y301cQRCE/CTTCc3Ly4tt27Yxa9YsNm3ahLm5OdWqVWP//v0UKVLkXcSYLz2LhwM3w1AoYGADMau+IAjCu5albvvt2rWjXbt2gDw+YO3atYwePZqzZ8+SkpKSrQHmVwefyvfLPqpQlNL2lrkcjSAIQsGX5V4Khw8fpn///jg7O/Pzzz/z4YcfcvLkyeyMLd+KiFNzJlTunj+4oVsuRyMIgvB+yFQNLTg4mFWrVrF8+XKioqLo1q0biYmJbNu2LcsdQgqi9f8+JkmjoKKTNfXcRDOsIAhCTshwDc3Ly4vy5ctz6dIl5s+fz5MnT1i4cOG7jC1fkiSJHZeeAjCoQSkxkFoQBCGHZDih7dq1i8GDBzNt2jTatWunHcQs6FIoFGwYVpfubim0rSJWpBYEQcgpGU5oR48eJTo6mlq1auHp6cmiRYsICwt7l7HlWxamxtR3lDA1FgOpBUEQckqGv3Hr1avHsmXLePr0KZ9++inr1q3D2dkZjUaDv78/0dHR7zJOQRAEQXijTFchLC0tGTRoEEePHuXy5ct8/fXXfP/99xQtWpSPP/74XcQoCIIgCOl6qzax8uXL8+OPP/L48WPWrl2bXTEJgiAIQqZly00eIyMjOnbsyF9//ZUdhxMEQRCETBO9FgRBEIQCQSQ0QRAEoUAQCU0QBEEoEERCEwRBEAoEkdAEQRCEAkEkNEEQBKFAEAlNEARBeHciH1Pn7i8QF/7OTyUSmiAIgvBuxIZhvLYLzpFnMdr51Ts/nUhogiAI2UGdAE8uQMTD3I4kb0iIgjWdUYQHEmdShJRWs9/5KfNEQlu8eDGurq6YmZnh6enJ6dOn0yzbtGlTFAqF3qNdu3baMjExMXh7e1O8eHHMzc2pVKkSS5cuzYm3IgjC+yAhCh4ch5NLYOtnsKQBzHaB35vAYk94cj63I8xd6nhY2xOeXkSysOdEmTFg4/LOT5upFavfhfXr1+Pj48PSpUvx9PRk/vz5tGrVips3b1K0aFG98lu2bCEpKUn7PDw8nGrVqtG1a1ftNh8fH/bv38+aNWtwdXVl7969jBgxAmdnZzGBsiAImRMTCsEX4ekleHoRgi/B87uGyxqZgjoO/HrA0P1g++6/xPOcFDVsHAgPjoLKhuQe64k5H5Qjp871hDZ37lyGDh3KwIEDAVi6dCk7d+5kxYoVjB07Vq98kSJFdJ6vW7cOCwsLnYR2/Phx+vfvT9OmTQEYNmwYv/32G6dPnxYJTRAEwyRJbi4MviQnr+CXCSz6qeHyNsWhWFVwqvrfv2Y2sKI1PLsGft1h0C5QWefs+8hNGg1s/xxu7QJjM+i5DopVg/choSUlJXH27FnGjRun3aZUKmnevDknTpzI0DGWL19Ojx49sLS01G6rX78+f/31F4MGDcLZ2ZmDBw9y69Yt5s2bZ/AYiYmJJCYmap9HRUUBoFarUavVmX5fqftkZd/cll9jF3HnvPwau1qtBklDcvBVFGHXUARfRhFyWf43IUKvvIQCirghOVVFcvJAcpT/xcLO8Am6+WK8siWKkMtoNg4kpesaUBplT9zk4estSSj3jsfo0nokhREpnZcjudTNlrgzuq9CkiQpy2d5S0+ePMHFxYXjx4/zwQcfaLd/++23HDp0iFOnTr1x/9OnT+Pp6cmpU6eoW7eudntiYiLDhg3jjz/+wNjYGKVSybJly+jXr5/B40ydOpVp06bpbffz88PCwiKL704QhDxDkrCNf4Bj1CUcoi5TKP4expokvWIahRFRZi5Empci0sJV/te8JClGZpk6XeHYOzS4PQsjSc0dh5ZcKd4nu95JnlX+6VYqBG8F4Gyp4TwuUj/bjh0XF0evXr2IjIzExsYmzXK53uT4NpYvX46Hh4dOMgNYuHAhJ0+e5K+//qJUqVIcPnyYzz//HGdnZ5o3b653nHHjxuHj46N9HhUVRYkSJWjZsuUbL15a1Go1/v7+tGjRAhMTk8y/sVyUX2MXcee8PB97QhSK+4dQBu5DcWcfipgQnZclEwskxypIjh7a2hf25bE0VmEJOL/l6aXrpWDLINxD9+Ja8yM0tQe/1fHy8vVWnvkdo/NyMktp+T1V6wyh6svXsiPu1Faz9ORqQrO3t8fIyIiQEN0PWkhICE5OTm/cNzY2lnXr1jF9+nSd7fHx8YwfP56tW7dqez5WrVqVCxcu8NNPPxlMaCqVCpVKpbfdxMTkrT44b7t/bsqvsYu4c16eiV2S4Nl1uL0XbvvDo5OgSf7vdRMLcGtKituHHLyfTOOOAzFRZa7mlSlVP4HIBxAwDaO94zCyd4eyLd76sHnmeqe6uA72jpd/bjYBo/qfYaiB9W3izuh+uZrQTE1NqVWrFgEBAXTs2BEAjUZDQEAA3t7eb9x348aNJCYm0qePblU+9b6XUqk7IsHIyAiNRpOt8QtCnvb4LJxbBfVGQNGKuR3Nu5EYA/cOvUxi+yDqse7rdmXlJFK2BZRqAMYqNGo1McH/ZMt9rXQ1/ArC78CFNbBxAAzaA05V3v15c8qNf2DbCPnneiOg8Te5Gk6uNzn6+PjQv39/ateuTd26dZk/fz6xsbHaXo/9+vXDxcWF2bN1B+UtX76cjh07Ymene2PWxsaGJk2a8M0332Bubk6pUqU4dOgQf/zxB3Pnzs2x9yUIuSoyCHy7QPxzuLIVuq6CsvqtE/mOJEF44MsEtlceC5byyr0wYzNwbQRlW8rvt4hb7sUKoFBA+3kQ8QDuH5F7Pg7dD9aOuRtXdrh3RE7SUgpU6wUtZ8rvNxflekLr3r07oaGhTJ48meDgYKpXr87u3btxdJR/4Q8fPtSrbd28eZOjR4+yd+9eg8dct24d48aNo3fv3jx//pxSpUoxc+ZMhg8f/s7fjyDkuhQ1bBokJzOlCSRFg19XaP0DeA7L7egyLykO7h+VE1igP7y4r/t6oVJQrpWcxFwbgol5roSZJmNT6P4n/K8FhN+GtT1gwE4wzccdzp6clwdOpyRC+bbw8UJQ5v48Hbme0AC8vb3TbGI8ePCg3rby5cvzps6ZTk5OrFy5MrvCE4T8Zf8M+f6RqTUM2QfHF8AFX9j1jfyF2mo2GOWJ//ppe/EAbu2Rk9j9I5Cc8N9rShNwbfCyFtYS7Mrkes0gXeaFodd6+F9zeHIOtg6Drn/kiSSQaaG3YM0n8h9Kro2gy8o883nKG1EIgpA9bu6GY7/IP3dYBEUrQIfF8pd+wDQ4/bs8y0WXFWBmm7uxGpKcKCfk44uAV/5otSn+8l5YSyjdGFRWuRZiltm5Qw9f+KMDXN8h/z5a6A8XytMiHsGfHeWZ851rQM+1YPIOO9ZkkkhoglBQRDyCbS+b1esOg8od5Z8VCmjkIye1LcMgcB8sbyXXGAqXyrVw9QRfhi2fwrOr8vOS9f9rSixaMe/XwjKiVH34eJFcQzs2X05yNQ2Pj81zYkLlZBYVBPbloPfmPDcLikhoglAQJCfBpoEQ/0L+y7nld/plKn0MtsXlex+h12HZh/Jf2CXq6pfNSZoUuVl0/0zQqMHCHj5eABXapb9vflStu1xLPvQ9/P0VFCoJbk1zO6o3S4iENZ3lDjm2JaDvNrBMY6aUXJQPG3AFQdATMA0enwGVrdyj0Vh/XCUALjXlXnZOHhAXBqvaw+VNORqqjuf3YFU72DdVTmbl28GIkwU3maVqOhaqdJHHya3vB6E3czuitKXOnB98Sf5jo++2PDvpskhogpDf3dgJJxbJP3dcDIVd31ze1gUG7pZ7p6UkwubBcPB7uUt8TpEkOLsaljaEhyfA1Eq+19fDF6wcci6O3KJQyO+3RD1IjAS/bhAblttR6UtRy13zHxwDlQ303QL2ZXI7qjSJhCYI+dmL+7DtM/nneiOgolfG9lNZQfc1UP8L+fnB2bB5iLxI5bsW80z+i3/HSEiKke+VfXYMavQpGPfJMsrETE7ghV3l3+O63jlz/TNKo5EHTd/aLY/v67Venjk/DxMJTRDyq+Qked2phEhwqQXNM9ljTmkk32vzWgBKY7iyCVa3lxPOu3L9b/j1A3l5ESNTaDEdBvydfq2yoLK0h14b5abiRyfhL++crSmnRZJg9xi4vEH+bHT7Q+7QkseJTiGCkE+kpKToLqNx+CeICoUilaHD/yBZozteK6Mqdweb0rBrDEQEw5o+0H5uuk1LarUaY2NjEhISSElJefM5EmPgyM9wYwcozaHUh3ICdigHSWog55ZEyVTcOcG6JHRZA3+NhHsn4fAC8PxUr1iOxn3qN7i2C6xKyn/0lGwCCVmrPWYkbhMTE4yM3n4qMpHQBCGPkySJ4OBgIiIi/tuojgPrOtCgDlg6QHgihN97i7M4wIe/yfdxNGp4/BSeJ71x1g1JknBycuLRo0co3tRUmJwAcc/Brik0aCrfizGzhRgFxLxNzFmT4bhzlAM0XyZfJ4CbV8DUUqdEjsWdGA2mFaDBz/KAcBNruJf131NG4y5UqBBOTk5v9d5EQhNyRmw4/P2lPEFsPTEFWWakJrOiRYtiYWGBIkUt9w4s5ADmdtk7L2CKmzzBrzpOfm5pC5ZFDBbVaDTExMRgZWWlNz3dywIQGwrx8WBbWJ7hw8ZZ74s6p6Ubd26KCZEHLaOAQkV1rlWOxB3/AqLjAQf5DyXLt++gk17ckiQRFxfHs2dyU3exYsWyfC6R0IR3T50A63rCo1Nw428o3QgcK+d2VPlCSkqKNpnZ2dnJSSL8ARhrwMQK7EuAIpu/3CzKyYO0459DYggYpcjj1177y1mj0ZCUlISZmZn+F5U6DqIeyLUzY4W8urONS87McJ+ON8ad21QlQZki3xeNDZJ/F8byTBzvPO74CIgPln9flg7y7ysbaoIZidvcXG4JePbsGUWLFs1y82Me+20KBY5GI89e8ejl6uOSRr5XkxdufOcDqffMtCunRwXJ44IURnJHiuxOZiAfs1BJsH65xGVcGDy/o7u2WFokCaJD5Pn+khPkDgWF3eTj5YFklucpFPJkyyYW8iz24Xczdt2zSpMsNzFGh/w36bN5kWxLZpmR+hnXuU+cSSKhCe9WwDS4ulVuburwKxip5Mlmb/yd25HlKwqFQm4Oins5VqmwqzyL+7s7odyUWbg0oJS/9MJuy3MtpiU5UZ78OPoJIMn3yRwqgHkenDMyL1MaycveKE3kcYLP78l/CL6tFLVc84sOlmcqCbkqTzcWHqj7OytUMleGT2THfUHR5Ci8O/+ukOerA3mi3Go95P9IR36CPROgTIs8NbFpnpacCNEP5Z+tHMHMJmfOa15I7l7//K5c4wq7JSe51ycHjg2Ta4+SRq7h2RaX/9LPM50u8hkjE3mex7Bb8li9iEfylFMZIUnyGnHqOLk2n/pvWjU9I1O584+plTwTSD7+nYkamvBu3PaHnaPln5uOl5MZyCv4WheTFzw8uTj34stPJElesFPSyJ0ErLN+0zxLTC3kyWiNzeUvxfBAbW88hSYZxYt7EPnoZXxWcq3Mwi7bvxhdXV2ZP39+hssfPHgQhUKh2zs0PzExf1lDBuKfo4g1MD5Q0sjJKi4cIh/Ltejgy/DsmtyEGBMi165Tk5mxmdxz0cZZnqza0UO+n13EDayK5s/lbF4hamhC9nt6SXcl2ybf/veaykoef7R1GBz+WX7dJoe/oPOb+BdgZQ6mJi/vm+XCX9DGpmBfVl6nLDESIh6gMI/GOiECBRpAIf8eLYuiSOdLccqUKUydOjXTIZw5cwZLy4z3kKxfvz5Pnz7F1jbnmjwrVKjAvXv3ePDgAU5OTm9/QDMbubYb+RhF9FNMTYqgiFNDcvzL2lc8OsvsaCnk1g8TCzkxmljIyayA38fM3+lYyHsig+R56ZJi5HWrvH7R/wL26ArF64A6Vr7HJqTt5m75WoLcWcDoHd43S4/SCIqUBsuiACjin6NEg2RsDg7l5aZQhYKnT59qH/Pnz8fGxkZn2+jRo7WHlCSJ5OSMdXpwcHD4r3NMBpiamr71uKbMOHr0KPHx8XTp0oXVq1dn34Ff6T5voX6OIuqxXCNTxwGS3MRraimXKVRSriEXq4q6kLv83NJBfr2AJzMQCU3ITglRcjKLfir/p+r2p+GOC0oltP5B/vniWnj8b87GmV+E3oIDs+SfLey1980kSSIuKTnHH5IkyX+c2LqAbQkkI1MSjG2R7MvqDMB2cnLSPmxtbVEoFNrnN27cwNraml27dlGrVi1UKhVHjx7lzp07dOjQAUdHR6ysrKhTpw779u3TuRyvNzkqFAr+97//0alTJywsLChbtix//fWX9vXXmxxXrVpFoUKF2LNnD56entjY2NC6dWuePn2q3Sc5OZmRI0dSqFAh7OzsGDNmDP3796djx47p/rqWL19Or1696Nu3LytWrNB7/fHjx/Ts2ZMiRYpgaWlJ7dq1OXXqlPb1HTt2UKdOHczMzLC3t6dTp07/vddCJdgacAaNwgjJ1BqsHClUqSmrdv0LTlW5H2OKolAJ1u/YR5PmrTEzt8DX15fw8HB69uyJi4sLFhYWeHh4sHbtWp24NBoNP/74I2XKlEGlUlGyZElmzpwJwIcffoi3t7dO+dDQUExNTQkICEj3muQ00eQoZI/UWblDrsh/qffeKHcoSEvxWnJz40U/uRv/YP98336frZLiYGN/SI6Tm4peGeAar06h0uQ9OR7StemtsDB9+ZVhaY9kXoSEqChMyXwNaOzYsfz000+4ublRuHBhHj16RNu2bZk5cyYqlYo//vgDLy8vbt68ScmSJdM8zrRp0/jxxx+ZM2cOCxcupHfv3jx48IAiRQwPBo+Li+Pnn39m6dKlWFtb069fP0aPHo2vry8AP/zwA76+vqxcuZKKFSvyyy+/sG3bNpo1a/bG9xMdHc3GjRs5deoUFSpUIDIykiNHjtCoUSMAYmJiaNKkCS4uLvz11184OTlx7tw5NBq59+LOnTvp1KkTEyZM4I8//iApKYl//vlH5xySpT1R5iWxsbF52ayrkDuPvFIDHTt2LD///DM1atTAzMyMhIQEatWqxZgxY7CxsWHnzp307dsXd3d36taV18EbN24cy5YtY968eTRs2JCnT59y48YNAIYMGYK3tzc///wzKpW8JNGaNWtwcXHhww8/fOM1yQ0ioQlvT5Jgpw/cCZDb6nuuk5s60tN8Clz/C4L+lSdBTe04IsCub+Qb+w7V30kHi9w2ffp0WrRooX1epEgRqlX7byb3GTNmsHXrVv766y+9GsKrBgwYQM+ePQGYNWsWCxYs4PTp07Ru3dpgebVazZIlS3BwcMDGxgZvb2+mT5+ufX3hwoWMGzdOWztatGiRXmIxZN26dZQtW5bKleUJA3r06MHy5cu1Cc3Pz4/Q0FDOnDmjTbZlyvw3V+bMmTPp0aMH06b91wT/6vXIqC+//JLOnTvrbHu1ifeLL75gz549bNiwgbp16xIdHc0vv/zCokWL6N+/PwDu7u40bNgQgM6dO+Pt7c327dvp1q0bINd0BwwYkIemDfuPSGjC2zs6D879Ibfld1khLyKZEdZO0Ohr+T6a/xSo0F6/O/j76MJaOL9Gvp4tZ0Cy7r0PcxMjrk1vleNhmZtk3z2Y2rVr6zyPiYlh6tSp7Ny5k6dPn5KcnEx8fDwPHz5843GqVq2q/dnS0hIbGxvtFEqGWFhY4O7uTlRUFCBPs5RaPjIykpCQEG3NBcDIyIhatWppa1JpWbFiBX369NE+79OnD02aNGHhwoVYW1tz4cIFatSokWbN8cKFCwwdOvSN58iI169rSkoKs2bNYsOGDQQFBZGUlERiYqL2XuT169dJTEzko48+Mng8MzMzbRNqt27dOHfuHFeuXNFp2s1L8kQbz+LFi3F1dcXMzAxPT09Onz6dZtmmTZuiUCj0Hu3a6a5we/36dT7++GNsbW2xtLSkTp066f7nELLg8qb/Ona0/gHKt8nc/vVGyD33YoLh6NxsDy/feXZDru0CNBkLJerqFVEoFFiYGuf4Izv/In+9t+Lo0aPZunUrs2bN4siRI1y4cAEPDw+SkpLeeBwTExO9a/Om5GOovPSWs9Zcu3aNkydP8u2332JsbIyxsTH16tUjLi6OdevWAf9N7ZSW9F43FKehGTVev65z5szhl19+YcyYMRw4cIALFy7QqlUr7XVN77wgNzv6+/vz+PFjVq5cyYcffkipUqXS3S835HpCW79+PT4+PkyZMoVz585RrVo1WrVqleZfWVu2bNHpMXXlyhWMjIzo2rWrtsydO3do2LAhFSpU4ODBg1y6dIlJkyZhZiYG8WarBydeWVzyc/AclvljmJhBS/kGNMcXybMivK+SYuX7Zuo4cGsKjUenu0tBcezYMQYMGECnTp3w8PDAycmJ+/fv52gMtra2ODo6cubMGe22lJQUzp0798b9li9fTuPGjbl48SIXLlzQPnx8fFi+fDkg1yQvXLjA8+fPDR6jatWqb+xk4eDgQHBwsPb57du3iYuLS/c9HTt2jA4dOtCnTx+qVauGm5sbt27d0r5etmxZzM3N33huDw8PateuzbJly/Dz82PQoEHpnje35HqT49y5cxk6dCgDBw4EYOnSpezcuZMVK1YwduxYvfKvV9nXrVuHhYWFTkKbMGECbdu25ccff9Ruc3d3TzOGxMREEhP/m9IntTlCrVZnaV6x1H3eZk6y3JLh2MMDMV7XE0VKEpry7UhpNhmy+n7dW2Lk2hjl/cNo9kwkpcuqTB/inV7zFLWcbMxss/1eljbupCSMdn+FMvQGkpUjyR8vgRQNarUaSZLQaDTpNnvltNQaQ2p8hqRuN/Tvq/uUKVOGLVu20K5dOxQKBZMnT0aj0egd+/Xnhq5L6rbXz5X63FDcqf96e3sze/Zs3NzcqFChAosWLeLFixc6ZV6lVqv5888/mTp1KpUqVdJ5bdCgQcydO5fLly/TvXt3Zs2aRceOHZk5cybFihXj/PnzODs788EHHzBp0iRatGiBm5sb3bt3Jzk5mV27dvHtt/IYzmbNmrF48WI8PDxQqVSMHz8eExOTNN/rq9d18+bNHD16lMKFCzNv3jxCQkKoWLEiGo0GU1NTvv32W23tskGDBoSGhnL16lUGDx6s815GjhyJpaUlHTp0yNRnMSOfk9TYJUlCrVbrTU6c0f/XuZrQkpKSOHv2LOPGjdNuUyqVNG/enBMnTmToGMuXL6dHjx7aqrZGo2Hnzp18++23tGrVivPnz1O6dGnGjRuXZtfb2bNn69yMTbV3795MjXt5nb+/f5b3zW1vit1UHUWjW9MxSXrBCws3jpl1JGX32/W6szZrTTOOoLz5NyfW/0SYdaX0dzIgu6+5aXI0DW7PwiYhCLXSnFhVUeJURYk1LUqsyoE406LEqooSb2qHpMj6Paab6ydR4+F6JBQccxpM+CG5lmBsbIyTkxMxMTHpNr/llujo6DRfS0hIQJIk7R+JqbWK6OhonZnXp02bhre3Nw0bNqRIkSKMGjWKFy9ekJSUpN1Xo9GQkJCgfQ4QHx+v81ySJG2Z18+VGktqvNHR0cTHxwP//RE7fPhwHj58SP/+/TEyMqJ///58+OGHKJVKnfOk+uuvvwgPD6d58+Z6r7u4uFC+fHmWLl3KzJkz2bhxI5MmTaJdu3akpKRQvnx55syZQ1RUFDVr1mTVqlXMmTOHH374AWtra+rXr6895pQpU/D29qZt27Y4OTkxe/Zs/v33X+17jYmRxyrGxsbqxDFy5Ehu3bpFmzZtMDc3p3///rRt25aoqChtuZEjR5KcnMzkyZMJDg7G0dGRgQMH6hynXbt2+Pj40LlzZ5KSkrL0WXzT5wTkfBAfH8/hw4f1xiZmpDYKoJDetgH5LTx58gQXFxeOHz/OBx98oN3+7bffcujQIZ0xGoacPn0aT09PTp06pb2RGxwcTLFixbCwsOC7776jWbNm7N69m/Hjx3PgwAGaNGmidxxDNbQSJUoQFhaGjU3m58xTq9X4+/vTokULvTb7vC7d2NXxGPl2Rhl0BqlQKZL775KnzMkGyt1jMDq7HKloJZIH75dnas+uuLMiKUZ+r0/e3OQEyMnMtgRS4VJIhVzh5b9SYVco5Jrm3ItqtZqTf62gWeAMFMkJpDSdgKbBV9rXExISePTokfYec16Smhysra3zZI+3tGQmbo1GQ+XKlenatatOb8jckJvX+/79+5QtW5ZTp05Rs2YGO329lNG4ExISuH//PiVKlND7rEdFRWFvb09kZOQbv5NzvcnxbSxfvhwPDw+dXkmpVdoOHTrw1VfyF0P16tU5fvw4S5cuNZjQVCqVdozFq0xMTN7qy/Ft989NBmPXaGCrNwSdATNbFL03YlLYJftO+tFEuLoZxbNrmFzyhTpDMn2IbLvmyUmwZRA8OSfPfddvu7xSwIv78OKe/O/zl/++uI8iJREi7qOIuA8c0j+eeRG580uR0vK/hV3lefrM7alzbxGK5AQo0xyjxqMxeqXmkpKSgkKhQKlU5rm1u1L/r6XGl1+8Ke4HDx6wd+9emjRpQmJiIosWLeLevXv07t07199jblxvtVpNeHg4kydPpl69enq9KDMio3ErlUoUCoXB/8MZ/T+dqwnN3t4eIyMjQkJCdLaHhISkOw9abGws69at0/uryd7eHmNjY7327IoVK3L06NHsCTw3JSfJk41a5MJM5vumwLXt8rIW3X3l6Y6yk0URaDZBHoO1fyZU+UROJjlNo5E7u9zZL4+r670Jir0cE1S0guHyMcE6CU4n6cWFyYtlxj+XE+QrTF4+JOtiKDr9LgaX5zKlUsmqVasYPXo0kiRRpUoV9u3bR8WKFXM7tFxx7NgxmjVrRrly5di0aVNuh5OuXE1opqam1KpVi4CAAO39LY1GQ0BAwBsHUwJs3LiRxMREnbEfqcesU6cON2/e1Nl+69atPNvVFEmCxCh5kb2YYIh5Jq9ZFBMiP6JfbosJlieqBXlqqSpdoEpneZmJd+3M/+D4AvnnDovlVaffhdqD5GVnQq/DwR+gzffv5jxpkSTYPRaubJKbPLv9CcXT+atUqZRnL7dxBtcG+q8nRv+X6LRJT/5XinhICkro9D+MLe3ewRsSMqNEiRIcO3Yst8PIM5o2bfrWwxpyUq43Ofr4+NC/f39q165N3bp1mT9/PrGxsdpej/369cPFxYXZs2fr7Ld8+XI6duwoL0v/mm+++Ybu3bvTuHFj7T20HTt2cPDgwZx4S//RJEN0+GvJ6eW/McGv/BwirzWVGaE34MB38sO5hpzcKneS59nLbrf2wj/fyD83mwDVumf/OVIZGUPr2fBnRzj9O9QaYLhW9K4c+QlO/yb/3HEplG3+9sdUWYOTh/x4TXJiPLv/+ZvWJTzf/jyC8J7L9YTWvXt3QkNDtT1sqlevzu7du3F0dATg4cOHeu2uN2/e5OjRo+zdu9fgMTt16sTSpUuZPXs2I0eOpHz58mzevFk7ncu7ZvT3KFpd/Rvj81EYXtohDSpbuYOFtZM8H6KVo7xqsJWT7naFEm7slGsRdw/Bk/PyY+9EKFVfrrVV6giW9m//Zp5efLkUjAaq94bG37z9MdPj3gzKt4ObO2HPOOizJWeaV8+ugv3fyT+3/h6qdn1j8WyhNEajzMUZ9AWhAMn1hAby2I+0mhgN1arKly+fbjV40KBBuTcAUB2LWXKk/LNCKS+3oZeoXiYpKyc5aVkWlRdSzKgaveVHTChc2wZXNsPDE/DgmPz451s5MVT5BCq0k8dQZVbkY/DrLi/zUroJtJ+fc/ftWs6AQH/5PtatPVDe8Nx82ebaX/D3y96Fjb6Gep+92/MJgpDt8kRCK2hSGn3LoZRaNGzdGRPbYu92HSIrB6g7VH5EPoYrW+Tk9vQCBO6TH0YqKNsCPLpA2VYZS5yJ0eCbuhRMRej2h+GlYN4VO3d5Wqxj8+VamvuH7+78947A5sFyLbRmP/hw0rs5jyAI75ToUvUu2JcjyqKUXBPLyUX1bItDg5Hw6SHwPivf77IvDymJcONvuenwp7Kweahc60k2PDhSISVjtGUQPLv6cimYDW9eCuZdaTxaPv/zu3Bq6bs5x9OLsLYnpCTJkyO3m1fgZrYXhPeFSGgFlX0ZaPItfH4Khh+Fhl/JS7okxchLtfh1g5/LwV8j4d5h0KTI+0kSVR+tRnn3gNxlvdf6jC0F8y6orOGjKfLPh36Ue3pmp+d3YU0XSIqGUg3hk+VypxRBEPIlkdAKOoVC7l3XfCqMuiQvpOk5XK75xL+Ac6thtRfMrQS7xqIMmIxr+CGk1KVgnGvkbvzVesoxJEVDQDbO1BAdAn92gthn4OgBPf3kiZKFPKNp06Z8+eWX2uevr1htiEKhYNu2bW997uw6jpCzREJ7nygU8nIkbX4An+vQ7y/5npFZIXkYwaklGJ1aAoCm5ezMLwXzLiiV0OblJNPn18i9Od9WQiSs+UQeD1bYFfpszlqnGcEgLy+vNBfYPHLkCAqFgkuXLmX6uGfOnGHYsCys6PAGU6dOpXr16nrbnz59Sps2OfP5j4+Pp0iRItjb2+tMwSdknkho7yulEbg1gY8Xwujb0HM9eHRDsrDjpuPHaGoPTv8YOaVEXfDoBkiwa6w8+Dmr1AmwtheEXJZ7lvbdKvcyFbLN4MGDtetnvW7lypXUrl1bZ2HOjHJwcHirycIzw8nJyeB0eO/C5s2bqVy5MhUqVMj1WqEkSXoTA+cnIqEJcu/B8q3hk2Ukf3WTG85dcjsifc2nyvf0Hp2Ue3FmRUqy3JvxwVFQ2UCfTVDELVvDzBGSJC9nk9OPDP4h0b59exwcHFi1apXO9piYGDZu3MjgwYMJDw+nZ8+euLi4YGFhgYeHB2vXrn3jcV9vcrx9+zaNGzfGzMyMSpUqGVxpYcyYMZQrVw4LCwvc3NyYNGmSdimSVatWMW3aNC5evKhdKDg15tebHC9fvsyHH36Iubk5dnZ2DBs2TDvDPcCAAQPo2LEjP/30E8WKFcPOzo7PP/88Q8ueLF++nD59+tCnTx/t+mmvunr1Ku3bt6dQoUKUKFGCJk2acOfOHe3rK1asoHLlyqhUKooVK6YdAnX//n0UCgUXLlzQlo2IiEChUGiHQx08eBCFQsGuXbuoVasWKpWKo0ePcufOHTp06ICjoyNWVlbUqVOHffv26cSVmJjImDFjKFGiBCqVijJlyrB8+XIkSaJMmTL89NNPOuUvXLiAQqEgMDAw3WuSVeIOuJA/2LpAQx95ZhT/yVC+bebG7UkS7PxK7u1ppIIefv/Nz5jfqONglnPOn3f8EzC1TLeYsbEx/fr1Y9WqVUyYMEE7w/rGjRtJSUmhZ8+exMTEUKtWLcaMGYONjQ07d+6kb9++uLu760w2nhaNRkPnzp1xdHTk1KlTREZG6txvS2Vtbc2qVatwdnbm8uXLDB06FCsrKz799FO6d+/OtWvX2L17t/bL2tZWv+k5NjaWVq1a8cEHH3DmzBmePXvGkCFD8Pb21knaBw4coFixYhw4cIDAwEC6d+9O9erVGTp0aJrv486dO5w4cYItW7YgSRJfffUVDx480E7TFxQUROPGjWnatCn79u1DqVRy8eJFbS1qyZIl+Pj48P3339OmTRsiIyOzNHXX2LFj+emnn3Bzc6Nw4cI8evSItm3bMnPmTFQqFX/88QdeXl7cvHmTkiXlTmL9+vXjxIkTLFiwgGrVqnHv3j3CwsJQKBQMGjSIlStXMnr0f4vUrlq1isaNG1OmTJlMx5dRIqEJ+Ud9bzj3B0Q+hGO/QLNx6e+Tav8MeV+FEj7537ubi1IA5IkN5syZw6FDh2jatCkgNzd+8skn2NraYmtrq/Nl98UXX7Bnzx42bNiQoYS2b98+bty4wZ49e3B2lpP7rFmz9O57TZw4Ufuzq6sro0ePZt26dXz66aeYm5tjZWWlXXMuLX5+fiQkJPDHH39o111ctGgRXl5e/PDDD9pZjQoXLsyiRYswMjKiQoUKtGvXjoCAgDcmtBUrVtCmTRsKF5Yn4W7VqhUrV65k6tSpACxevBhbW1vWrVuHkZGRdu201NmTvvvuO77++mtGjRqlPWadOnXSvX6vmz59Oi1atNA+L1KkCNWq/fcH34wZM9i6dSt//fUX3t7e3Lp1iw0bNuDv70/z5vL0cG5u/7V2DBgwgMmTJ3P69Glq166NWq1m7dq1erW27CYSmpB/mJjLM4hs7C8PuK7RBwqVSH+/k0vgyM/yz+3nQaWP32mY75yJhVxbyo3zZlCFChWoX78+K1asoGnTpgQGBnLkyBHt6hgpKSnMmjWLDRs2EBQURFJSEomJiRm+R3b9+nVKlCihTWaAzpqKqdavX8+CBQu4c+cOMTExJCcnZ3qNw+vXr1OtWjVtMgNo0KABGo2GmzdvahNa5cqVdVZaLlasGJcvX07zuCkpKaxevZpffvlFu61Pnz6MHj2ayZMno1QquXDhAo0aNdKuTv2qZ8+e8eTJEz766KNMvR9DXl8WJiYmhqlTp7Jz506ePn1KcnIy8fHxPHz4EJCbD42MjAwuxwXg7OxMu3btWLFiBbVr12b37t0kJibSteu7nU5O3EMT8pdKHeQxY8kJctNjei5tlGfPB/hwojzZcX6nUMhNfzn9yOSA88GDB7N582aio6NZuXIl7u7u2i/AOXPm8MsvvzBmzBgOHDjAhQsXaNWqVbauyn3ixAl69+5N27Zt+fvvvzl//jwTJkx4Zyt/v75ml0Kh0EtCr9qzZw9BQUF0794dY2NjjI2N6dGjBw8ePCAgIAAAc3PzNPd/02uAthb36jSBad3TezVZA4wePZqtW7cya9Ysjhw5woULF/Dw8NBeu/TODTBkyBDWrVtHfHw8vr6+dOvW7Z136hEJTchfFAp5Nn6FEq5ugQfH0y57ex9sGy7/7DkcGo1Ou6yQ7bp164ZSqcTPz48//viDQYMGae+nHTt2jA4dOtCnTx+qVauGm5sbt27dyvCxK1asyKNHj3j69Kl228mTJ3XKHD9+nFKlSjFhwgRq165N2bJlefDggU4ZU1NTUlJS0j3XxYsXiY2N1W47duwYSqWS8uWzvibg8uXL6dGjBxcuXNB59OjRQ9s5pGrVqhw5csRgIrK2tsbV1VWb/F7n4OAAoHONXu0g8ibHjh1jwIABdOrUCQ8PD5ycnLh//772dQ8PDzQaDYcOGVjM9qW2bdtiaWnJ0qVLCQgI0K6g8i6JhCbkP8WqQs3+8s+7xvw3y8mrHv8LG/rKS/hU6QKtZosprXKYlZUV3bt3Z9y4cTx9+pQBAwZoXytbtiz+/2fvzsOiqt4Ajn+HAYZ93xUBAXeFXDB3/YnivuWSmaKWVmpqppWVa5qZpaSZluWS5pZr5Yqk5kKuuYY7ghsgKLtsM/f3x8jkCMiAwACez/PMA3Pm3HvfGYZ555x77jmhoRw9epSIiAjeeuutPAv9PktgYCA1atQgODiYs2fPcujQIT755BOtOr6+vkRHR7N+/XquX7/OwoUL2bp1q1YdT09PIiMjOXPmDPHx8fleBzZo0CBMTEwIDg7mwoUL7N+/n3fffZfBgwdruhuL6v79+/z+++8EBwdTr149rduQIUPYtm0bDx48YMyYMSQnJ/Pqq69y8uRJrl+/zurVqzXrPU6fPp2vv/6ahQsXcvXqVU6fPs2iRYsAdSvq5Zdf5osvviAiIoKDBw9qnVN8Fl9fX7Zs2cKZM2c4e/Ysr732mlZr09PTk+DgYIYPH862bduIjIzkwIEDbNy4UVNHLpczdOhQPv74Y7y9vfPtEi5pIqEJFdP/PlUvtxNzTn3B9ZPuX4Zf+qpHA3q3h15LxErQevLGG2/w8OFDgoKCtM53ffrppzRs2JCgoCDatm2Li4uLZpFfXRgYGLB161YePXpEQEAAb775JrNnz9aq06NHD9577z3GjBmDv78/R48eZcoU7YmnX3nlFTp16kS7du1wdHTM99IBMzMz9uzZw4MHD2jSpAl9+/alffv2fPvtt0V7MZ6QO8Akv/Nf7du3x9TUlDVr1mBvb8+ff/5Jamoq7dq1o127dvz000+a7s3g4GBCQkL47rvvqFu3Lt26dePq1auafS1fvpycnBwaNWrE+PHjmTVrlk7xzZ8/H1tbW5o3b0737t0JCgqiYcOGWnWWLFlC3759GTVqFLVq1WLEiBFarVhQ//2zsrJ47bXXivoSFYtMqkjLkZaR5ORkrK2tSUpKKvIJZFD3U+/cuZMuXbrk6Vcv7ypU7OHfqWfiN3Mg+53j7PzzMF1a+mG0qisk34YqjdSzoSgs9B1pgQp7vTMyMoiMjMTLywsTk/I1NZdKpSI5ORkrK6s8axaWZyLusnPo0CHat2/PhQsX8PHxeWbcz3qv6/qZXDFeFUHIT8AIcKgB6fEYHP4Ko5wUDNf1Uycze1947ddyncwEobLKzMzk9u3bTJ8+nb59++Lk5FQmxxUJTai45Ebqc2OAwYkfaH5tLrL4K2Dppp7SytxezwEKwotp3bp1eHh4kJiYyNy5c8vsuCKhCRWbbyD4BiFT5WDzKBrJxEadzHS5Pk0QhFIxdOhQlEolp06dokqVKmV2XJHQhIov6HMkuYIcmTHKAevAqZa+IxIEQQ9EQhMqPgcfct7cz4Has5GqFn3an4pAjN0SKruSeI+Xi4S2ePFiPD09MTExoWnTphw/frzAum3bttXMjP3krWvXrvnWf/vtt5HJZIUuDChUcA41SFNUvmVgckc+pqen6zkSQShdue/x5xldrfe5HDds2MCECRNYunQpTZs2JSQkhKCgIC5fvpzvyJgtW7ZoTV2TkJCAn59fvnOEbd26lb///lvr+hdBqEjkcjk2NjbExcUB6muiZOXkAnGVSkVWVhYZGRkVZhg5iLjLWmFxS5JEeno6cXFx2NjYaM2HWVR6T2jz589nxIgRmmlRli5dyo4dO1i+fDkfffRRnvp2dnZa99evX4+ZmVmehHbnzh3NDN4Ftd4EoSLInQk+N6mVF5Ik8ejRI0xNTctNktWFiLts6Rq3jY3NM1c90IVeE1pWVhanTp1i8uT/lgExMDAgMDCQ8PBwnfaROx/ak5NrqlQqBg8ezKRJk6hbt26h+8jMzNSa8iY5ORlQX/SqywJ9T8vdpjjb6ltFjb2yx+3g4ICtrS05OTnl5nxaTk4OR48epXnz5hga6v27sc5E3GWrsLhlMhmGhobI5fICV8vW9f9ar69KfHw8SqUyz3xozs7OXLp0qdDtjx8/zoULF/Ks8jp37lwMDQ0ZO3asTnHMmTOHGTNm5Cnfu3fvc80Ond8KuhVFRY1dxF32/vrrL32HUCwi7rL1PHHreg654qT5fPz000/Ur19fa0HAU6dO8c0333D69Gmdm+WTJ09mwoQJmvvJycm4u7vTsWPHYk99FRoaSocOHcr/9FFPqaixi7jLXkWNXcRdtkoi7txes8LoNaE5ODggl8vzzLIdGxtbaF9qWloa69ev1ywYmOvQoUPExcVplgkH9UJ677//PiEhIVpLIORSKBQoFIo85UZGRs/1xnne7fWposYu4i57FTV2EXfZep64dd1Or0NljI2NadSokdZ6PiqVirCwsEKXGvj111/JzMzk9ddf1yofPHgw586d01pfyM3NjUmTJrFnz55SeR6CIAiC/um9y3HChAkEBwfTuHFjAgICCAkJIS0tTTPqcciQIVSpUoU5c+ZobffTTz/Rq1cv7O215+uzt7fPU2ZkZISLi4vOi/HlnnTXtZn7tOzsbNLT00lOTq5w36Qqauwi7rJXUWMXcZetkog797O4sAFRek9oAwYM4P79+0ydOpWYmBj8/f3ZvXu3ZqBIdHR0nmsXLl++zOHDh9m7d2+pxJSSkgKAu7uYD1AQBKG8SElJwdrausDHxXpo+VCpVNy9exdLS8tiXe+RO6jk1q1bxRpUok8VNXYRd9mrqLGLuMtWScQtSRIpKSm4ubk986JyvbfQyiMDAwOqVq363PuxsrKqUG+8J1XU2EXcZa+ixi7iLlvPG/ezWma5Ks78KYIgCILwDCKhCYIgCJWCSGilQKFQMG3atHyvbSvvKmrsIu6yV1FjF3GXrbKMWwwKEQRBECoF0UITBEEQKgWR0ARBEIRKQSQ0QRAEoVIQCU0QBEGoFERCKwWLFy/G09MTExMTmjZtyvHjx/Ud0jPNmTOHJk2aYGlpiZOTE7169eLy5cv6DqvIvvjiC2QyGePHj9d3KDq5c+cOr7/+Ovb29piamlK/fn1Onjyp77CeSalUMmXKFLy8vDA1NcXb25vPPvus3Cw6+qS//vqL7t274+bmhkwmY9u2bVqPS5LE1KlTcXV1xdTUlMDAQK5evaqfYJ/wrLizs7P58MMPqV+/Pubm5ri5uTFkyBDu3r2rv4AfK+z1ftLbb7+NTCYjJCSkRGMQCa2EbdiwgQkTJjBt2jROnz6Nn58fQUFBxMXF6Tu0Ah08eJDRo0fz999/ExoaSnZ2Nh07diQtLU3foensxIkTfP/99zRo0EDfoejk4cOHtGjRAiMjI3bt2sW///7L119/ja2trb5De6a5c+eyZMkSvv32WyIiIpg7dy5ffvklixYt0ndoeaSlpeHn58fixYvzffzLL79k4cKFLF26lGPHjmFubk5QUBAZGRllHKm2Z8Wdnp7O6dOnmTJlCqdPn2bLli1cvnyZHj166CFSbYW93rm2bt3K33//jZubW8kHIQklKiAgQBo9erTmvlKplNzc3KQ5c+boMaqiiYuLkwDp4MGD+g5FJykpKZKvr68UGhoqtWnTRho3bpy+QyrUhx9+KLVs2VLfYRRZ165dpeHDh2uV9enTRxo0aJCeItINIG3dulVzX6VSSS4uLtK8efM0ZYmJiZJCoZDWrVunhwjz93Tc+Tl+/LgESFFRUWUTlA4Kivv27dtSlSpVpAsXLkgeHh7SggULSvS4ooVWgrKysjh16hSBgYGaMgMDAwIDAwkPD9djZEWTlJQEgJ2dnZ4j0c3o0aPp2rWr1ute3v322280btyYfv364eTkxEsvvcSyZcv0HVahmjdvTlhYGFeuXAHg7NmzHD58mM6dO+s5sqKJjIwkJiZG6z1jbW1N06ZNK9T/Kqj/X2UyGTY2NvoO5ZlUKhWDBw9m0qRJ1K1bt1SOISYnLkHx8fEolUrN0je5nJ2duXTpkp6iKhqVSsX48eNp0aIF9erV03c4hVq/fj2nT5/mxIkT+g6lSG7cuMGSJUuYMGECH3/8MSdOnGDs2LEYGxsTHBys7/AK9NFHH5GcnEytWrWQy+UolUpmz57NoEGD9B1akcTExADk+7+a+1hFkJGRwYcffsjAgQPL/YTFc+fOxdDQkLFjx5baMURCE7SMHj2aCxcucPjwYX2HUqhbt24xbtw4QkNDMTEx0Xc4RaJSqWjcuDGff/45AC+99BIXLlxg6dKl5Tqhbdy4kV9++YW1a9dSt25dzpw5w/jx43FzcyvXcVdG2dnZ9O/fH0mSWLJkib7DeaZTp07xzTffcPr06WItyaUr0eVYghwcHJDL5cTGxmqVx8bG4uLioqeodDdmzBj++OMP9u/fXyLL55S2U6dOERcXR8OGDTE0NMTQ0JCDBw+ycOFCDA0NUSqV+g6xQK6urtSpU0errHbt2kRHR+spIt1MmjSJjz76iFdffZX69eszePBg3nvvvTwrypd3uf+PFfV/NTeZRUVFERoaWu5bZ4cOHSIuLo5q1app/lejoqJ4//338fT0LLHjiIRWgoyNjWnUqBFhYWGaMpVKRVhYGM2aNdNjZM8mSRJjxoxh69at/Pnnn3h5eek7JJ20b9+e8+fPc+bMGc2tcePGDBo0iDNnziCXy/UdYoFatGiR59KIK1eu4OHhoaeIdJOenp5ngUW5XI5KpdJTRMXj5eWFi4uL1v9qcnIyx44dK9f/q/BfMrt69Sr79u3D3t5e3yEVavDgwZw7d07rf9XNzY1JkyaxZ8+eEjuO6HIsYRMmTCA4OJjGjRsTEBBASEgIaWlpDBs2TN+hFWj06NGsXbuW7du3Y2lpqTmHYG1tjampqZ6jK5ilpWWe83zm5ubY29uX+/N/7733Hs2bN+fzzz+nf//+HD9+nB9++IEffvhB36E9U/fu3Zk9ezbVqlWjbt26/PPPP8yfP5/hw4frO7Q8UlNTuXbtmuZ+ZGQkZ86cwc7OjmrVqjF+/HhmzZqFr68vXl5eTJkyBTc3N3r16qW/oHl23K6urvTt25fTp0/zxx9/oFQqNf+vdnZ2GBsb6yvsQl/vpxOvkZERLi4u1KxZs+SCKNExk4IkSZK0aNEiqVq1apKxsbEUEBAg/f333/oO6ZmAfG8rVqzQd2hFVlGG7UuSJP3+++9SvXr1JIVCIdWqVUv64Ycf9B1SoZKTk6Vx48ZJ1apVk0xMTKTq1atLn3zyiZSZmanv0PLYv39/vu/r4OBgSZLUQ/enTJkiOTs7SwqFQmrfvr10+fJl/QYtPTvuyMjIAv9f9+/fX27jzk9pDNsXy8cIgiAIlYI4hyYIgiBUCiKhCYIgCJWCSGiCIAhCpSASmiAIglApiIQmCIIgVAoioQmCIAiVgkhogiAIQqUgEpogCIJQKYiEJgiCIFQKIqEJgiAIlYJIaIIgCEKlIBKaIAiCUCmIhCYIgiBUCiKhCYIgCJWCSGiCIAhCpSASmiAIglApiIQmCIIgVAoioQmCIAiVgkhogiAIQqUgEpogCIJQKYiEJgiCIFQKIqEJgiAIlYJIaIIgCEKlIBKaIAiCUCmIhCYIgiBUCiKhCYIgCJWCSGiCIAhCpSASmiAIglApiIQmCIIgVAoioQmCIAiVgkhogiAIQqUgEpogCIJQKYiEJgiCIFQKIqEJgiAIlYJIaIIgCEKlIBKaIAiCUCmIhCYIgiBUCiKhCYIgCJWCSGiCIAhCpSASmiAIglApiIQmCIIgVAoioQmCIAiVgkhogiAIQqUgEpogCIJQKYiEJpSJoUOH4unpWaxtp0+fjkwmK9mAypmbN28ik8lYuXJlmR9bJpMxffp0zf2VK1cik8m4efNmodt6enoydOjQEo3ned4rwotNJLQXnEwm0+l24MABfYf6whs7diwymYxr164VWOeTTz5BJpNx7ty5Moys6O7evcv06dM5c+aMvkPRyP1S8dVXX+k7FKGYDPUdgKBfq1ev1rr/888/Exoamqe8du3az3WcZcuWoVKpirXtp59+ykcfffRcx68MBg0axKJFi1i7di1Tp07Nt866deuoX78+DRo0KPZxBg8ezKuvvopCoSj2Pgpz9+5dZsyYgaenJ/7+/lqPPc97RXixiYT2gnv99de17v/999+EhobmKX9aeno6ZmZmOh/HyMioWPEBGBoaYmgo3qpNmzbFx8eHdevW5ZvQwsPDiYyM5Isvvniu48jlcuRy+XPt43k8z3tFeLGJLkehUG3btqVevXqcOnWK1q1bY2ZmxscffwzA9u3b6dq1K25ubigUCry9vfnss89QKpVa+3j6vMiT3Ts//PAD3t7eKBQKmjRpwokTJ7S2ze8cmkwmY8yYMWzbto169eqhUCioW7cuu3fvzhP/gQMHaNy4MSYmJnh7e/P999/rfF7u0KFD9OvXj2rVqqFQKHB3d+e9997j0aNHeZ6fhYUFd+7coVevXlhYWODo6MjEiRPzvBaJiYkMHToUa2trbGxsCA4OJjExsdBYQN1Ku3TpEqdPn87z2Nq1a5HJZAwcOJCsrCymTp1Ko0aNsLa2xtzcnFatWrF///5Cj5HfOTRJkpg1axZVq1bFzMyMdu3acfHixTzbPnjwgIkTJ1K/fn0sLCywsrKic+fOnD17VlPnwIEDNGnSBIBhw4ZpurVzzx/mdw4tLS2N999/H3d3dxQKBTVr1uSrr75CkiStekV5XxRXXFwcb7zxBs7OzpiYmODn58eqVavy1Fu/fj2NGjXC0tISKysr6tevzzfffKN5PDs7mxkzZuDr64uJiQn29va0bNmS0NDQEov1RSO+9go6SUhIoHPnzrz66qu8/vrrODs7A+oPPwsLCyZMmICFhQV//vknU6dOJTk5mXnz5hW637Vr15KSksJbb72FTCbjyy+/pE+fPty4caPQb+qHDx9my5YtjBo1CktLSxYuXMgrr7xCdHQ09vb2APzzzz906tQJV1dXZsyYgVKpZObMmTg6Our0vH/99VfS09N55513sLe35/jx4yxatIjbt2/z66+/atVVKpUEBQXRtGlTvvrqK/bt28fXX3+Nt7c377zzDqBODD179uTw4cO8/fbb1K5dm61btxIcHKxTPIMGDWLGjBmsXbuWhg0bah1748aNtGrVimrVqhEfH8+PP/7IwIEDGTFiBCkpKfz0008EBQVx/PjxPN18hZk6dSqzZs2iS5cudOnShdOnT9OxY0eysrK06t24cYNt27bRr18/vLy8iI2N5fvvv6dNmzb8+++/uLm5Ubt2bWbOnMnUqVMZOXIkrVq1AqB58+b5HluSJHr06MH+/ft544038Pf3Z8+ePUyaNIk7d+6wYMECrfq6vC+K69GjR7Rt25Zr164xZswYvLy8+PXXXxk6dCiJiYmMGzcOgNDQUAYOHEj79u2ZO3cuABERERw5ckRTZ/r06cyZM4c333yTgIAAkpOTOXnyJKdPn6ZDhw7PFecLSxKEJ4wePVp6+m3Rpk0bCZCWLl2ap356enqesrfeeksyMzOTMjIyNGXBwcGSh4eH5n5kZKQESPb29tKDBw805du3b5cA6ffff9eUTZs2LU9MgGRsbCxdu3ZNU3b27FkJkBYtWqQp6969u2RmZibduXNHU3b16lXJ0NAwzz7zk9/zmzNnjiSTyaSoqCit5wdIM2fO1Kr70ksvSY0aNdLc37ZtmwRIX375paYsJydHatWqlQRIK1asKDSmJk2aSFWrVpWUSqWmbPfu3RIgff/995p9ZmZmam338OFDydnZWRo+fLhWOSBNmzZNc3/FihUSIEVGRkqSJElxcXGSsbGx1LVrV0mlUmnqffzxxxIgBQcHa8oyMjK04pIk9d9aoVBovTYnTpwo8Pk+/V7Jfc1mzZqlVa9v376STCbTeg/o+r7IT+57ct68eQXWCQkJkQBpzZo1mrKsrCypWbNmkoWFhZScnCxJkiSNGzdOsrKyknJycgrcl5+fn9S1a9dnxiQUjehyFHSiUCgYNmxYnnJTU1PN7ykpKcTHx9OqVSvS09O5dOlSofsdMGAAtra2mvu539Zv3LhR6LaBgYF4e3tr7jdo0AArKyvNtkqlkn379tGrVy/c3Nw09Xx8fOjcuXOh+wft55eWlkZ8fDzNmzdHkiT++eefPPXffvttrfutWrXSei47d+7E0NBQ02ID9Tmrd999V6d4QH3e8/bt2/z111+asrVr12JsbEy/fv00+zQ2NgZApVLx4MEDcnJyaNy4cb7dlc+yb98+srKyePfdd7W6acePH5+nrkKhwMBA/bGiVCpJSEjAwsKCmjVrFvm4uXbu3IlcLmfs2LFa5e+//z6SJLFr1y6t8sLeF89j586duLi4MHDgQE2ZkZERY8eOJTU1lYMHDwJgY2NDWlraM7sPbWxsuHjxIlevXn3uuAQ1kdAEnVSpUkXzAfmkixcv0rt3b6ytrbGyssLR0VEzoCQpKanQ/VarVk3rfm5ye/jwYZG3zd0+d9u4uDgePXqEj49Pnnr5leUnOjqaoUOHYmdnpzkv1qZNGyDv8zMxMcnTlflkPABRUVG4urpiYWGhVa9mzZo6xQPw6quvIpfLWbt2LQAZGRls3bqVzp07a305WLVqFQ0aNNCcn3F0dGTHjh06/V2eFBUVBYCvr69WuaOjo9bxQJ08FyxYgK+vLwqFAgcHBxwdHTl37lyRj/vk8d3c3LC0tNQqzx15mxtfrsLeF88jKioKX19fTdIuKJZRo0ZRo0YNOnfuTNWqVRk+fHie83gzZ84kMTGRGjVqUL9+fSZNmlTuL7co70RCE3TyZEslV2JiIm3atOHs2bPMnDmT33//ndDQUM05A12GXhc0mk566mR/SW+rC6VSSYcOHdixYwcffvgh27ZtIzQ0VDN44ennV1YjA52cnOjQoQObN28mOzub33//nZSUFAYNGqSps2bNGoYOHYq3tzc//fQTu3fvJjQ0lP/973+lOiT+888/Z8KECbRu3Zo1a9awZ88eQkNDqVu3bpkNxS/t94UunJycOHPmDL/99pvm/F/nzp21zpW2bt2a69evs3z5curVq8ePP/5Iw4YN+fHHH8sszspGDAoRiu3AgQMkJCSwZcsWWrdurSmPjIzUY1T/cXJywsTEJN8LkZ91cXKu8+fPc+XKFVatWsWQIUM05c8zCs3Dw4OwsDBSU1O1WmmXL18u0n4GDRrE7t272bVrF2vXrsXKyoru3btrHt+0aRPVq1dny5YtWt2E06ZNK1bMAFevXqV69eqa8vv37+dp9WzatIl27drx008/aZUnJibi4OCguV+UmV88PDzYt28fKSkpWq203C7t3PjKgoeHB+fOnUOlUmm10vKLxdjYmO7du9O9e3dUKhWjRo3i+++/Z8qUKZoeAjs7O4YNG8awYcNITU2ldevWTJ8+nTfffLPMnlNlIlpoQrHlfhN+8ptvVlYW3333nb5C0iKXywkMDGTbtm3cvXtXU37t2rU8510K2h60n58kSVpDr4uqS5cu5OTksGTJEk2ZUqlk0aJFRdpPr169MDMz47vvvmPXrl306dMHExOTZ8Z+7NgxwsPDixxzYGAgRkZGLFq0SGt/ISEheerK5fI8LaFff/2VO3fuaJWZm5sD6HS5QpcuXVAqlXz77bda5QsWLEAmk+l8PrQkdOnShZiYGDZs2KApy8nJYdGiRVhYWGi6oxMSErS2MzAw0FzsnpmZmW8dCwsLfHx8NI+Dulv70qVLxe6ufdGIFppQbM2bN8fW1pbg4GDNtEyrV68u066dwkyfPp29e/fSokUL3nnnHc0HY7169QqddqlWrVp4e3szceJE7ty5g5WVFZs3b36uczHdu3enRYsWfPTRR9y8eZM6deqwZcuWIn9gWVhY0KtXL815tCe7GwG6devGli1b6N27N127diUyMpKlS5dSp04dUlNTi3Ss3Ovp5syZQ7du3ejSpQv//PMPu3bt0mp15R535syZDBs2jObNm3P+/Hl++eUXrZYdgLe3NzY2NixduhRLS0vMzc1p2rQpXl5eeY7fvXt32rVrxyeffMLNmzfx8/Nj7969bN++nfHjx2sNACkJYWFhZGRk5Cnv1asXI0eO5Pvvv2fo0KGcOnUKT09PNm3axJEjRwgJCdG0IN98800ePHjA//73P6pWrUpUVBSLFi3C399fc76tTp06tG3blkaNGmFnZ8fJkyfZtGkTY8aM0Rxz69atDBs2jBUrVpT4nJmVkn4GVwrlVUHD9uvWrZtv/SNHjkgvv/yyZGpqKrm5uUkffPCBtGfPHgmQ9u/fr6lX0LD9/IZI89Qw8oKG7Y8ePTrPth4eHlrDyCVJksLCwqSXXnpJMjY2lry9vaUff/xRev/99yUTE5MCXoX//Pvvv1JgYKBkYWEhOTg4SCNGjNAMA39yyHlwcLBkbm6eZ/v8Yk9ISJAGDx4sWVlZSdbW1tLgwYOlf/75R+dh+7l27NghAZKrq2ueofIqlUr6/PPPJQ8PD0mhUEgvvfSS9Mcff+T5O0hS4cP2JUmSlEqlNGPGDMnV1VUyNTWV2rZtK124cCHP652RkSG9//77mnotWrSQwsPDpTZt2kht2rTROu727dulOnXqaC6hyH3u+cWYkpIivffee5Kbm5tkZGQk+fr6SvPmzdO6jCD3uej6vnha7nuyoNvq1aslSZKk2NhYadiwYZKDg4NkbGws1a9fP8/fbdOmTVLHjh0lJycnydjYWKpWrZr01ltvSffu3dPUmTVrlhQQECDZ2NhIpqamUq1ataTZs2dLWVlZef4WRXlfvMhkklSOvk4LQhnp1auXGDItCJWMOIcmVHpPT1N19epVdu7cSdu2bfUTkCAIpUK00IRKz9XVlaFDh1K9enWioqJYsmQJmZmZ/PPPP3murRIEoeISg0KESq9Tp06sW7eOmJgYFAoFzZo14/PPPxfJTBAqGdFCEwRBECoFcQ5NEARBqBREQhMEQRAqBZHQBKEI8lt8UhCE8kEkNKFSyF31uLDbgQMH9B2qlgMHDiCTydi0aZO+Qym2O3fu0L9/f2xsbLCysqJnz546L9Xy+eef8/LLL+Po6IiJiQm+vr6MHz+e+/fv56k7e/ZsevTogbOzMzKZjOnTpz9z3xs2bKBZs2aYm5tjY2ND8+bN+fPPP4vzFIUKQoxyFCqF1atXa93/+eefCQ0NzVOeO+1QcS1btqzMZo2vCFJTU2nXrh1JSUl8/PHHGBkZsWDBAtq0acOZM2cKXSH61KlT+Pv78+qrr2JpaUlERATLli1jx44dnDlzRjPnI8Cnn36Ki4sLL730Env27HnmfqdPn87MmTPp27cvQ4cOJTs7mwsXLuSZU1KoZPQ5TYkglJb8pvDKT1paWhlEU7D9+/dLgPTrr7/qNY7imjt3rgRIx48f15RFRERIcrlcmjx5crH2uWnTJgmQ1q1bp1WeOxXX/fv380zX9aTw8HBJJpNJ8+fPL9bxhYpLdDkKL4y2bdtSr149Tp06RevWrTEzM+Pjjz8GYPv27XTt2hU3NzcUCgXe3t589tlnKJVKrX08fQ7t5s2byGQyvvrqK3744Qe8vb1RKBQ0adKEEydOlFjsN27coF+/ftjZ2WFmZsbLL7/Mjh078tRbtGgRdevWxczMDFtbWxo3bqyZwBjUq4qPHz8eT09PFAqFZm21J1eTzl1tPD4+vtC4Nm3aRJMmTWjSpImmrFatWrRv356NGzcW67nmvr5Pz8Sv67nLkJAQXFxcGDduHJIkFXkyZqHiEglNeKEkJCTQuXNn/P39CQkJoV27dgCsXLkSCwsLJkyYwDfffEOjRo2YOnUqH330kU77Xbt2LfPmzeOtt95i1qxZ3Lx5kz59+pCdnf3cMcfGxtK8eXP27NnDqFGjmD17NhkZGfTo0YOtW7dq6i1btoyxY8dSp04dQkJCmDFjBv7+/hw7dkxT5+2332bJkiW88sorfPfdd0ycOBFTU1MiIiI0dY4fP07t2rXzLNfyNJVKxblz52jcuHGexwICArh+/TopKSmFPj9JkoiPjycmJoZDhw4xduxY5HJ5sacmCwsLo0mTJixcuBBHR0csLS1xdXUt9PkIlYC+m4iCUBoKWjUAkJYuXZqnfnp6ep6yt956SzIzM5MyMjI0ZQWtGmBvby89ePBAU759+3YJkH7//fdnxqlLl+P48eMlQDp06JCmLCUlRfLy8pI8PT01M+337NmzwFURcllbW+c7G31+MRXUpZcrt+tv5syZeR5bvHixBEiXLl165j4kSZLu3bunNat91apVpQ0bNhR63Pzie/DggebvYWFhIc2bN0/asGGD1KlTpwL/9kLlIVpowgtFoVAwbNiwPOWmpqaa31NSUoiPj6dVq1aa7rfCDBgwAFtbW839Vq1aAeg82u9Zdu7cSUBAAC1bttSUWVhYMHLkSG7evMm///4LgI2NDbdv335mV6eNjQ3Hjh3TWvD0aW3btkWSpEJHEeZO+qxQKPI8lrvY6NMTQ+fHzs6O0NBQfv/9d2bOnImDg0Oxuwlzt0tISODHH39k4sSJ9O/fnx07dlCnTh1mzZpVrP0KFYNIaMILpUqVKhgbG+cpv3jxIr1798ba2horKyscHR15/fXXAXRafLNatWpa93OT2/MsBporKiqKmjVr5inPHbEZFRUFwIcffoiFhQUBAQH4+voyevRojhw5orXNl19+yYULF3B3dycgIIDp06cXO+nmfgl4coXlXLkLZD75RaEgxsbGBAYG0q1bN6ZMmcLixYt54403+OOPP4odk5GREX379tWUGxgYMGDAAG7fvk10dHSR9ytUDCKhCS+U/D5gExMTadOmDWfPnmXmzJn8/vvvhIaGMnfuXACdhunL5fJ8y6UynCq1du3aXL58mfXr19OyZUs2b95My5YtmTZtmqZO//79uXHjBosWLcLNzY158+ZRt25ddu3aVeTj2dnZoVAouHfvXp7Hcsvc3NyKvN/mzZvj6urKL7/8UqyYTExMsLe3z/M3cXJyAkrmS4ZQPomEJrzwDhw4QEJCAitXrmTcuHF069aNwMBArS5EffLw8ODy5ct5ynO7Qj08PDRl5ubmDBgwgBUrVhAdHU3Xrl01g0hyubq6MmrUKLZt20ZkZCT29vbMnj27yHEZGBhQv359Tp48meexY8eOUb16dSwtLYu8X1C38HRpGecXk7+/P/fv3ycrK0vrsdxuVkdHx2LFJJR/IqEJL7zcb/JPtqaysrL47rvv9BWSli5dunD8+HHCw8M1ZWlpafzwww94enpSp04dQH3e6EnGxsbUqVMHSZLIzs5GqVTmSRJOTk64ublpdRsWZdh+3759OXHihFZSu3z5Mn/++Sf9+vXTqnvp0iWt7r60tDTS09Pz7HPz5s08fPgw39GTuhgwYABKpZJVq1ZpyjIyMvjll1+oU6dOsVqNQsUgZgoRXnjNmzfH1taW4OBgxo4di0wmY/Xq1WXaXbh58+Z8B58EBwfz0UcfsW7dOjp37szYsWOxs7Nj1apVREZGsnnzZgwM1N9LO3bsiIuLCy1atMDZ2ZmIiAi+/fZbunbtiqWlJYmJiVStWpW+ffvi5+eHhYUF+/bt48SJE3z99deaYx4/fpx27doxbdq0QgeGjBo1imXLltG1a1cmTpyIkZER8+fPx9nZmffff1+rbu3atWnTpo1m+rGrV68SGBjIgAEDqFWrFgYGBpw8eZI1a9bg6enJuHHjtLZfvXo1UVFRmiT4119/aQZ5DB48WNNSfeutt/jxxx8ZPXo0V65coVq1apptf//9d93/KELFo9cxloJQSgoatl/QsPYjR45IL7/8smRqaiq5ublJH3zwgbRnzx4JkPbv36+pV9Cw/Xnz5uXZJzoMfc8dIl/QLXeo/vXr16W+fftKNjY2komJiRQQECD98ccfWvv6/vvvpdatW0v29vaSQqGQvL29pUmTJklJSUmSJElSZmamNGnSJMnPz0+ytLSUzM3NJT8/P+m7777LN6bCYs9169YtqW/fvpKVlZVkYWEhdevWTbp69Wq+r0ebNm009+/fvy+NHDlSqlWrlmRubi4ZGxtLvr6+0vjx46X79+/n2T73sov8bk/+jSRJkmJjY6Xg4GDJzs5OUigUUtOmTaXdu3fr9HyEikss8CkIgiBUCuIcmiAIglApiIQmCIIgVAoioQmCIAiVgkhogiAIQqUgEpogCIJQKYiEJlQKueuSrVy5UlM2ffp0ZDKZTtvLZLJCr7kqqrZt2xZ7CRRBEIpOJDShzPXo0QMzM7NnrpU1aNAgjI2N88x+Ud78+++/TJ8+nZs3b+o7FI0DBw4gk8nYtGmTvkMptjt37tC/f39sbGywsrKiZ8+eOk+i3LZtW2QyWZ5bp06dtOpdvHiRfv36Ub16dczMzHBwcKB169b5Xny9bNky2rRpg7OzMwqFAi8vL4YNG1au/u6CmClE0INBgwbx+++/s3XrVoYMGZLn8fT0dLZv306nTp2wt7cv9nE+/fRTnRfoLK5///2XGTNm0LZt2zwrKu/du7dUj11Zpaam0q5dO5KSkvj4448xMjJiwYIFtGnThjNnzuj0nqhatSpz5szRKnt6yquoqChSUlIIDg7Gzc2N9PR0Nm/eTI8ePfj+++8ZOXKkpu4///yDl5cXPXr0wNbWlsjISJYtW8Yff/zB2bNnxXRa5YW+r+wWXjzp6emSpaWlFBQUlO/ja9eulQBp/fr1Ou8zd8aOFStWFCsmijAzxpN+/fXXfGeq0CddFg0tz+bOnSsB0vHjxzVlERERklwulyZPnlzo9s+aEaYwOTk5kp+fn1SzZs1C6548eVICpDlz5hTrWELJE12OQpkzNTWlT58+hIWFERcXl+fxtWvXYmlpSY8ePXjw4AETJ06kfv36WFhYYGVlRefOnTl79myhx8nvHFpmZibvvfcejo6OmmPcvn07z7ZRUVGMGjWKmjVrYmpqir29Pf369dPqYlq5cqVmAt527dppurZy5yrM7xxaXFwcb7zxBs7OzpiYmODn56c1iS78dz7wq6++4ocffsDb2xuFQkGTJk2euXhnUd24cYN+/fphZ2eHmZkZL7/8Mjt27MhTb9GiRdStWxczMzNsbW1p3Lgxa9eu1TyekpLC+PHj8fT0RKFQ4OTkRIcOHTh9+rSmTlEmPN60aRNNmjShSZMmmrJatWrRvn17Nm7cqPPzy8nJKfJCoXK5HHd3dxITEwutm9si16WuUDZEQhP0YtCgQeTk5OT5gHrw4AF79uyhd+/emJqacuPGDbZt20a3bt2YP38+kyZN4vz587Rp0+aZqy4X5M033yQkJISOHTvyxRdfYGRkRNeuXfPUO3HiBEePHuXVV19l4cKFvP3224SFhdG2bVvN5LitW7dm7NixAHz88cesXr2a1atXaxbefNqjR49o27Ytq1evZtCgQcybNw9ra2uGDh3KN998k6f+2rVrmTdvHm+99RazZs3i5s2b9OnTh+zs7CI/76fFxsbSvHlz9uzZw6hRozRLzPTo0YOtW7dq6i1btoyxY8dSp04dQkJCmDFjBv7+/hw7dkxT5+2332bJkiW88sorfPfdd0ycOBFTU1MiIiI0dY4fP07t2rX59ttvnxmXSqXi3Llz+c60HxAQwPXr15957jXXlStXMDc3x9LSEhcXF6ZMmVLg65aWlkZ8fDzXr19nwYIF7Nq1i/bt2+dbNyEhgbi4OE6ePKlZ+byguoIe6LuJKLyYcnJyJFdXV6lZs2Za5UuXLpUAac+ePZIkSVJGRoakVCq16kRGRkoKhUKaOXOmVhlPdTlOmzZNa4LiM2fOSIA0atQorf299tpreboc09PT88QcHh4uAdLPP/+sKXtWl2ObNm20JuMNCQmRAGnNmjWasqysLKlZs2aShYWFlJycrPVc7O3tpQcPHmjqbt++XQKk33//Pc+xnqRLl+P48eO1Jj+WJElKSUmRvLy8JE9PT81r3rNnz0K776ytraXRo0frFFNh3br379+XAK2/ba7FixdLgHTp0qVn7mP48OHS9OnTpc2bN0s///yz1KNHDwmQ+vfvn2/9t956SzPJsYGBgdS3b1+t1/1JCoVCU9fe3l5auHDhM2MRypZooQl6IZfLefXVVwkPD9fqxlu7di3Ozs6ab70KhUKzPIpSqSQhIQELCwtq1qyp1aWli507dwJoWlW5xo8fn6fukytbZ2dnk5CQgI+PDzY2NkU+7pPHd3FxYeDAgZoyIyMjxo4dS2pqKgcPHtSqP2DAAK1FRlu1agWg82i/wmIJCAigZcuWmjILCwtGjhzJzZs3+ffffwGwsbHh9u3bz+zqtLGx4dixY89sMbdt2xZJkgq9NOLRo0eA+u/+NBMTE606Bfnpp5+YNm0affr0YfDgwWzfvp0RI0awceNG/v777zz1x48fT2hoKKtWraJz584olco8i4Pm2rVrFzt37uTrr7+mWrVqpKWlPTMWoWyJhCbozaBBgwA052Nu377NoUOHePXVVzWLbqpUKhYsWICvry8KhQIHBwccHR05d+5ckVc0joqKwsDAAG9vb63ymjVr5qn76NEjpk6diru7u9ZxExMTi7WScu7xfX19NQk6V24XZVRUlFZ5tWrVtO7nJreHDx8W6/hPx5Lf8346lg8//BALCwsCAgLw9fVl9OjRHDlyRGubL7/8kgsXLuDu7k5AQADTp08vdtLN/SLx5IKjuXJX3X7yy4auctdm27dvX57HatWqRWBgIEOGDOGPP/4gNTWV7t2757seXrt27ejcuTMTJkzg119/ZcaMGYV2owplRyQ0QW8aNWpErVq1WLduHQDr1q1DkiRNogP4/PPPmTBhAq1bt2bNmjXs2bOH0NBQ6tati0qlKrXY3n33XWbPnk3//v3ZuHEje/fuJTQ0FHt7+1I97pNyk/rT8vugLS21a9fm8uXLrF+/npYtW7J582ZatmzJtGnTNHX69+/PjRs3WLRoEW5ubsybN4+6deuya9euIh/Pzs4OhULBvXv38jyWW1acIfLu7u6A+hxtYXJX4b5y5coz63l7e/PSSy/xyy+/FDkeoXSI69AEvRo0aBBTpkzh3LlzrF27Fl9fX63RbZs2baJdu3b89NNPWtslJibi4OBQpGN5eHigUqm4fv26Vuvk8uXLeepu2rSJ4OBgrZWcMzIy8oxo03Umktzjnzt3DpVKpdVKy12pOnfF5bLg4eGR7/POLxZzc3MGDBjAgAEDyMrKok+fPsyePZvJkydrugFdXV0ZNWoUo0aNIi4ujoYNGzJ79mw6d+5cpLgMDAyoX78+J0+ezPPYsWPHqF69OpaWlkXaJ/zXTevo6Fho3dwuTV1a4o8ePcq3NSnoh2ihCXqV2xqbOnUqZ86c0WqdgbqV8nSL5Ndff+XOnTtFPlbuh+vChQu1ykNCQvLUze+4ixYtQqlUapWZm5sDug3d7tKlCzExMWzYsEFTlpOTw6JFi7CwsKBNmza6PI0S0aVLF44fP054eLimLC0tjR9++AFPT0/q1KkDkGemFmNjY+rUqYMkSWRnZ6NUKvN88Ds5OeHm5qb1QV+UYfu5LaQnk9rly5f5888/NZdJ5Lp06RLR0dGa+8nJyXkSjCRJzJo1C4CgoCBNeX6XjGRnZ/Pzzz9jamqqeQ1ycnLy7eY9fvw458+fz3dEpqAfooUm6JWXlxfNmzdn+/btAHkSWrdu3Zg5cybDhg2jefPmnD9/nl9++YXq1asX+Vj+/v4MHDiQ7777jqSkJJo3b05YWBjXrl3LU7dbt26sXr0aa2tr6tSpQ3h4OPv27cszS4W/vz9yuZy5c+eSlJSEQqHgf//7H05OTnn2OXLkSL7//nuGDh3KqVOn8PT0ZNOmTRw5coSQkJBitTyeZfPmzZoW15OCg4P56KOPWLduHZ07d2bs2LHY2dmxatUqIiMj2bx5s6YF2bFjR1xcXGjRogXOzs5ERETw7bff0rVrVywtLUlMTKRq1ar07dsXPz8/LCws2LdvHydOnNBq3R4/fpx27doxbdq0QgeGjBo1imXLltG1a1cmTpyIkZER8+fPx9nZWXMuLFft2rVp06aN5tq/06dPM3DgQAYOHIiPjw+PHj1i69atHDlyhJEjR9KwYUPNtm+99RbJycm0bt2aKlWqEBMTwy+//MKlS5f4+uuvsbCwANQzl7i7uzNgwADq1q2Lubk558+fZ8WKFVhbWzNlypTi/HmE0qC/AZaCoJY7HDsgICDPYxkZGdL7778vubq6SqamplKLFi2k8PDwPEPidRm2L0mS9OjRI2ns2LGSvb29ZG5uLnXv3l26detWniHlDx8+lIYNGyY5ODhIFhYWUlBQkHTp0iXJw8NDCg4O1trnsmXLpOrVq0tyuVxrCP/TMUqSJMXGxmr2a2xsLNWvXz/P7Ca5z2XevHl5Xo+n48xP7hD5gm65Q/WvX78u9e3bV7KxsZFMTEykgIAA6Y8//tDa1/fffy+1bt1asre3lxQKheTt7S1NmjRJSkpKkiRJkjIzM6VJkyZJfn5+kqWlpWRubi75+flJ3333Xb4x6Toby61bt6S+fftKVlZWkoWFhdStWzfp6tWr+b4eT77GN27ckPr16yd5enpKJiYmkpmZmdSoUSNp6dKlkkql0tp23bp1UmBgoOTs7CwZGhpKtra2UmBgoLR9+3atepmZmdK4ceOkBg0aSFZWVpKRkZHk4eEhvfHGG1JkZKROz0coGzJJKsMzzIIgCIJQSsQ5NEEQBKFSEAlNEARBqBREQhMEQRAqBZHQBEEQhEpBJDRBEAShUhAJTRAEQagUxIXV+VCpVNy9exdLS8siTW0kCIIglDxJkkhJScHNzS3P5N5PEgktH3fv3tVMZioIgiCUD7du3aJq1aoFPi4SWj5ypyC6desWVlZWRd4+OzubvXv30rFjR4yMjEo6vFJVUWMXcZe9ihq7iLtslUTcycnJuLu7Fzo9XLlIaIsXL2bevHnExMTg5+fHokWLCAgIKLB+YmIin3zyCVu2bOHBgwd4eHgQEhJCly5dir3PJ+V2M1pZWRU7oZmZmWFlZVWh3nhQcWMXcZe9ihq7iLtslWTchZ0C0vugkA0bNjBhwgSmTZvG6dOn8fPzIygoKN+ZsAGysrLo0KEDN2/eZNOmTVy+fJlly5ZRpUqVYu9TEARBqPj0ntDmz5/PiBEjGDZsGHXq1GHp0qWYmZmxfPnyfOsvX76cBw8esG3bNlq0aIGnpydt2rTBz8+v2PsUBEEQKj69djlmZWVx6tQpJk+erCkzMDAgMDBQa52mJ/322280a9aM0aNHs337dhwdHXnttdf48MMPkcvlxdpnZmam1hpKycnJgLqpnJ2dXeTnlbtNcbbVt4oau4i77FXU2EXcZask4tZ1W70mtPj4eJRKJc7Ozlrlzs7O+a7jBOqVZ//8808GDRrEzp07uXbtGqNGjSI7O5tp06YVa59z5sxhxowZecr37t2LmZlZMZ8dhIaGFntbfauosYu4S5dMJkMul2vuGxoasn//fj1GVDwi7rJVWNxKpTLPgrpPSk9P1+04RY5Mz1QqFU5OTvzwww/I5XIaNWrEnTt3mDdvHtOmTSvWPidPnsyECRM093NH1HTs2LHYg0JCQ0Pp0KFDhTp5CxU3dhF36ZIkibi4OE3vRW5ZRkYGJiYmFep6TRF32dI1bisrK5ycnPKt8+T77ln0mtAcHByQy+XExsZqlcfGxuLi4pLvNq6urhgZGWl9S6xduzYxMTFkZWUVa58KhQKFQpGn3MjI6Lk+ZJ53e32qqLGLuEvHvXv3SElJwdnZGTMzM2QyGSqVitTUVCwsLJ55sWt5I+IuW4XFLUkS6enpxMXFIZfLcXV1zVNH1/8NvSY0Y2NjGjVqRFhYGL169QLUTz4sLIwxY8bku02LFi1Yu3YtKpVK8+JcuXIFV1dXjI2NAYq8z5Imu/sPTa9/DRktwMihTI4pCKVFqVSSmJiIk5MT9vb2mnKVSkVWVhYmJiYV7gNWxF12dInb1NQUgLi4OJycnLQaLEWh91dlwoQJLFu2jFWrVhEREcE777xDWloaw4YNA2DIkCFaAzzeeecdHjx4wLhx47hy5Qo7duzg888/Z/To0Trvs1Qpc5BvG4lL8lkMV3eH5Hulf0xBKEW5J+Sf53yyIBQm9/31PINH9H4ObcCAAdy/f5+pU6cSExODv78/u3fv1gzqiI6O1srq7u7u7Nmzh/fee48GDRpQpUoVxo0bx4cffqjzPkuV3JCcV1agXNkTk7h/4acO8PoWcKxR+scWhFJUkc7bCBVPSby/9J7QAMaMGVNgd+CBAwfylDVr1oy///672Pssdc71+KvGVDrEfIfswXVYHgSvbQT3JvqJRxAE4QWg9y7HyuqRwpGcITugSiN49ABWdYcre/QdliAIz8nT05OQkBCd6x84cACZTEZiYmKpxSSoiYRWmswdIPh38OkAOY9g3UD4Z42+oxKEF4JMJsv3JpfLsbW1zffaU12cOHGCkSNH6ly/efPm3Lt3D2tr62IdT1cicZaTLsdKzdgcBq6D38bC2bWwfTSkxECr90GckxCEUnPv3n8DsjZs2MDUqVO5fPkyKpWKlJQUreHhkiShVCoxNCz8I9HR0bFIcRgbGxd4yZBQskQLrSzIjaDXd9DyPfX9Pz+DXR+ASqnfuAShEnNxcdHcrK2tkclkmvtXr17F2tqaXbt20ahRIxQKBYcPH+b69ev07NkTZ2dnLCwsaNKkCfv27dPa79NdjjKZjB9//JHevXtjZmaGr68vv/32m+bxp1tOK1euxMbGhj179lC7dm0sLCzo1KmTVgLOyclh7Nix2NjYYG9vz4cffsjQoUMZNGhQsV+Phw8fMmTIEGxtbTEzM6Nz585cvXpV83hUVBTdu3fH1tYWc3Nz6taty86dOzXbDho0CEdHR0xNTfH19WXFihXFjqW0iIRWVmQyCJwOneYCMjj+A2waBtkZ+o5MEIpMkiTSs3J4lKUkPSunTG/PmiKpqD766CO++OILIiIiaNCgAampqXTp0oWwsDD++ecfOnXqRPfu3YmOjn7mfmbMmEH//v05d+4cXbp0YdCgQTx48KDA+unp6Xz11VesXr2av/76i+joaCZOnKh5fO7cufzyyy+sWLGCI0eOkJyczPbt25/ruQ4dOpSTJ0/y22+/ER4ejiRJdOnSRTNMfvTo0WRmZvLXX39x/vx55s6di4WFBQBTpkzh33//ZdeuXURERLBkyRIcHMrfNbaiy7Gsvfw2WDjClrfg3+2Q/gBe/QVMSrd/XRBK0qNsJfWm62f+yX9nBmFmXDIfXTNnzqRDhw6a+3Z2dlord3z22Wds3bqV33777ZmjpocOHcrAgQMB+Pzzz1m4cCHHjx+nU6dO+dbPzs5m6dKleHt7A+pR2TNnztQ8vmjRIiZPnkzv3r0B+PbbbzWtpeK4evUqv/32G0eOHKF58+YA/PLLL7i7u7Nt2zb69etHdHQ0r7zyCvXr1wegevXqmu2jo6N56aWXaNy4MaBupZZHooWmD/Vegdc3g7El3DwEK7qIC7AFQQ9yP6BzpaamMnHiRGrXro2NjQ0WFhZEREQU2kJr0KCB5ndzc3OsrKyeuf6imZmZJpmBekq/3PpJSUnExsZqLUgsl8tp2LBhkZ7bkyIiIjA0NKRp06aaMnt7e2rWrElERAQAY8eOZdasWbRo0YJp06Zx7tw5Td133nmH9evX4+/vzwcffMDRo0eLHUtpEi00faneBobtgDV9IfYC/NQRBm8BB199RyYIhTI1knNhegdSklOwtLIs06mYTI2KNy1SfszNzbXuT5w4kdDQUL766it8fHwwNTWlb9++ZGVlPXM/T881mDvXZVHql2RXanG8+eabBAUFsWPHDvbu3cucOXP4+uuveffdd+ncuTNRUVHs3LmT0NBQ2rdvz+jRo/nqq6/0GvPTRAtNn1z94I29YOcNSdHqpHb7pL6jEoRCyWQyzIwNMTWWY2ZsWKa30pyx5MiRIwwdOpTevXtTv359XFxcuHnzZqkdLz/W1tY4Oztz4sQJTZlSqeSff/4p9j5r165NTk4Ox44d05QlJCRw+fJl6tSpoylzd3fn7bffZsuWLbz//vssW7ZM85ijoyPBwcGsWbOGkJAQfvjhh2LHU1pEC03f7LzUSe2XfnD3tPoC7H6roEZHfUcmCC8cX19ftmzZQvfu3ZHJZEyZMuWZLa3S8u677zJnzhx8fHyoVasWixYt4uHDhzol8/Pnz2Npaam5L5PJ8PPzo2fPnowYMYLvv/8eS0tLPvroI6pUqULPnj0BGD9+PJ07d6ZGjRo8fPiQ/fv3U7t2bQCmTp1Ko0aNqFu3LpmZmfzxxx+ax8oTkdDKg9wLsDcOgethsO5V6LEIXir+EF1BEIpu/vz5DB8+nObNm+Pg4MCHH36o81pcJenDDz8kJiaGIUOGIJfLGTlyJB07dtQpubZu3VrrvlwuJycnhxUrVjBu3Di6detGVlYWrVu3ZufOnZruT6VSyejRo7l9+zZWVlZ06tSJBQsWAOpr6SZPnszNmzcxNTWlVatWrF+/vuSf+HOSSfruuC2HkpOTsba2JikpqdgLfO7cuZMuXboUbY0rZTZsHwPnHr9R2k9TX7tWhhdgFzt2PRNxl56MjAwiIyPx8vLCxMREU65SqUhOTsbKyqrCLWdS0eJWqVTUrl2bHj16MHfu3AoTN+j+ehf0PgPdP5NFC608kRtBryVg4QRHF0LYDEiNhaA5UIHewIIgPJ+oqCj27t1LmzZtyMzM5NtvvyUyMpK+ffvqO7RyTXxKljcGBtDxMwj6XH3/2FLYPBxyMvUblyAIZcbAwICVK1fSpEkTWrRowfnz59m7dy81a9bUd2jlmmihlVfNRoOFM2x9Gy5uhbR4cQG2ILwg3N3dOXLkiFZZbtedUDDRQivP6veFQb+CscXjC7C7qic2FgRBEPIQCa28824HQ3eAuSPEnlevgB1/Td9RCYIglDsioVUEbv7qa9VsvSAxGpZ3hHvnCt1MEAThRSISWkVhVx3eCAVXf0hPgLUDxPyPgiAITxAJrSKxcITg38CxFqTchfUDIStd31EJgiCUCyKhVTQm1jBwPZjawd1/YPso0MPUPIIgCOWNSGgVkZ0XDFgDBkbqIf0H5+o7IkGotNq2bcv48eM1959esTo/MpmMbdu2PfexS2o/LwqR0CoqzxbQTT3PGge/gPOb9BuPIJQz3bt3L3CBzaNHjyKXy7XW/NLViRMnGDly5POGp2X69On4+/vnKb937x6dO3cu0WM9beXKldjY2JTqMcqKSGgVWcPB0Pxd9e/bR8PtU/qNRyhfzm9SL0l087C+I9GLN954g9DQUG7fvp3nsbVr19K4cWOthTl15ejoiJmZWUmEWCgXFxcUCkWZHKsyEAmtogucATU6QU6GepBI0h19RySUB9f3w5aRcOuYemmi6L/1HVGZ69atG46OjqxcuVKrPDU1le3btzNs2DASEhIYOHAgVapUwczMjPr167Nu3bpn7vfpLserV6/SunVrTExMqFOnDqGhoXm2+fDDD6lRowZmZmZUr16dKVOmkJ2dDahbSDNmzODs2bPIZDJkMpkm5qe7HC9evEhgYCCmpqbY29szcuRIUlNTNY8PHTqUXr168dVXX+Hq6oq9vT2jR4/WHKs4oqOj6dmzJxYWFlhZWdG/f39iY2M1j589e5Z27dphaWmJlZUVjRo14uRJ9bqOUVFR9OjRA09PTywtLalbty47d+4sdiyFEVNfVXQGcnjlR/U38bh/1UvPDN8NxuaFb1uZ5GQgU+XoO4ry4f5l2BgMkhJMbCAjUb0y+pDtULVRyRxDkiArDbLTIUtetpNnG5nptAKFoaEhQ4YMYeXKlXzyySeatcR+/fVXlEolAwcOJD09nUaNGvHhhx9iZWXFjh07GDx4MN7e3gQEBBR6DJVKRZ8+fXB2dubYsWMkJSVpnW/LZWlpycqVK3Fzc+P8+fOMGDECS0tLPvjgAwYMGMCFCxfYvXs3+/btA9SLfD4tLS2Nvn370qxZM06cOEFcXBxvvvkmY8aM0Ura+/fvx9XVlf3793Pt2jUGDBiAv78/I0aMKPT55Pf8cpPZwYMHycnJYfTo0QwYMIADBw4AMGjQIF566SWWLFmCXC7nzJkzmpUjRo8eTWZmJjt27MDZ2ZlLly5hYWFR5Dh0VS4S2uLFi5k3bx4xMTH4+fmxaNGiAt9MK1euZNiwYVplCoWCjIwMzf2hQ4eyatUqrTpBQUHs3r275IMvDxSW6pGPy/4HMedg61vQ7+cXZ4b+26cwXNuf9jlASz9w9NF3RPqTFq9ukWUmgfvL8Np62DBYPXXamt4Q/Ae4Fr2bLY/sdAy+qIrN8++p6D6+q/MXtuHDhzNv3jwOHjxI27ZtAVi1ahXdu3fH2toaW1tbJk6cqKn/7rvvsmfPHjZu3KhTQtu3bx+XLl1iz549uLm5AfD555/nOe/16aefan739PRk4sSJrF+/ng8++ABTU1MsLCwwNDTExcWlwGOtXbuWjIwMVq1apVnA89tvv6V79+7MnTsXZ2dnAGxtbfn222+Ry+XUqlWLrl27EhYWVqyEFhYWxvnz54mMjMTd3R2An3/+mbp163LixAmaNGlCdHQ0kyZNolatWoB6kdRc0dHR9OnTh7p162JlZYWPT+n+b+r9E2/Dhg1MmDCBadOmcfr0afz8/AgKCiIuLq7AbaysrLh3757mFhUVladOp06dtOoU1o1Q4dl6wKtrQW4MEb/D/tn6jqhsRB6Cn3sgS4/HPCsew1/6QPJdfUelHzmZsH4QJEaBrad6MmtTW/WXHfemkJEEq3tBXIS+Iy0ztWrVonnz5ixfvhyAa9eucejQIQYPHgyoF7X87LPPqF+/PnZ2dlhYWLBnzx6io6N12n9ERATu7u6aZAbQrFmzPPU2bNhAixYtcHFxwcLCgk8//VTnY+S6dOkS9erVw9z8v2TeokULVCoVly9f1pTVrVsXuVyuue/q6vrMz9NnyX1+uckMoE6dOtjY2BARoX4fTZgwgTfffJPAwEC++OILrl+/rqk7duxYZs+eTVBQENOnTy/WIJyi0HsLbf78+YwYMULT6lq6dCk7duxg+fLlfPTRR/luI5PJnvlNBtSttsLqVDrVmqpXut76Fhz6ChxrQoP++o6q9FzerV7lW5mJyqMl6feuYJEYBT/3hKE71ReivygkSb047K2/QWENr21Ur4QOoLBQT3L9c0/1tYuresCwXeDwHN+WjcxQfXSb5JQUrCwty3bBSaOiDch44403ePfdd1m8eDErVqzA29ubFi1aADBv3jy++eYbQkJCqF+/Pubm5owfP56srKwSCzc8PJxBgwYxY8YMgoKCsLa2Zv369Xz99dcldownPb1QrEwm02ml6+KaPn06r732Gjt27GDXrl1MmzaN9evX07t3b9588006dOjA5s2bOXToEF988QVff/017777bqnEoteElpWVxalTp5g8ebKmzMDAgMDAQMLDwwvcLjU1FQ8PD1QqFQ0bNuTzzz+nbt26WnUOHDiAk5MTtra2/O9//2PWrFnY29vnu7/MzEwyM/9bbyx3iYbs7OxinUzN3eZ5TsQWW51XMIiNQH40BGn7GJSWVZGqNtF5c73GXgSyi1uQ/zYKmSoHVY3OZHT7jqN7thIY/RUG8VeQfu5FzuvbwNRG36E+U0m93gaH5iE/vxFJJkf5ynIkm+rw5D7lZvDqRgzX9EYWdwFpVTdyBv+ubsnpEKMkSahUKq0PRsnIDIyUSEZmqMpwVXUkSX3TUd++fRk3bhxr1qzh559/5q233kImkyFJEocPH6ZHjx689tprgPqc0ZUrV6hdu7b2c338/J++X7NmTW7dusWdO3dwdXUF1JcE5O5LpVJx5MgRPDw8tD7nbt68qakD6iSkVCrzTTy5+6lVqxYrV64kNTVVcx7q0KFDGBgY4Ovri0qlQpKkfGN98lj57b+gx3OfX1RUlKaV9u+//5KYmEitWrU02/j4+DBu3DjGjRvHa6+9xvLly+nZsycAVatWZfjw4YwbN45PPvmEZcuWMXr06HzjkCSJ7OxsrRYm6P7/odeEFh8fj1Kp1PT95so9eZifmjVrsnz5cho0aEBSUhJfffUVzZs35+LFi1StWhVQdzf26dMHLy8vrl+/zscff0znzp0JDw/P80IBzJkzhxkzZuQp37t373MNz81vtFOZkPwJsG6Ea9Ipcn4ZwF81p/PI2KFIu9Bb7DrwiN+P362VyJC4Zducf8z6Ie0/BMYO/Fl1HC2vfo5J3AVSlgYR7vMBOXJTfYdcqOd5vas8CKdx1BIAzlYdQlREGkTkP5LM2OltWiTPwSrlDlk/duKI78eFvjdyz+2kpqbm23JJSUkpduxlpXfv3nz88cekpKTwyiuvAOq4PTw82L59O6GhodjY2PDdd98RExODr6+v5ottTk4OWVlZmvsqlYqMjAySk5MJCAjAx8eHwYMHM2PGDFJSUvjkk08AePToEcnJybi5uREdHc2KFSto2LAhe/fuZevWrUiSpNmnk5MTkZGRHDlyBDc3NywsLDTD9XP30717d6ZPn87gwYP58MMPSUhIYOzYsQwYMABTU1OSk5PJzs4mJydHa920rKysPGVPysjIQKlU5ll/zdjYmICAAOrUqcPAgQOZM2cOOTk5TJw4kRYtWlCjRg1iY2OZOnUqPXv2pFq1aty9e5fjx4/TvXt3kpOTmTx5MoGBgfj4+JCYmEhYWBg+Pj75xpKVlcWjR4/466+/yMnRHuCVnq7jFH+SHt25c0cCpKNHj2qVT5o0SQoICNBpH1lZWZK3t7f06aefFljn+vXrEiDt27cv38czMjKkpKQkze3WrVsSIMXHx0tZWVlFvqWlpUnbtm2T0tLSirV9idxSH0iq71pI0jQrSbX4ZSkrJaHixP6MW85fCyRpmpUkTbOScraPlbIyM/LGffuspPrCQ5KmWUnKnzpJWWmJeo+7tF7v7BuHJdVMR/XrsfMj3bZLiJZUIX7q90aIn5SVEPXM+snJydLFixeltLQ0SalUam45OTnSw4cPpZycHK3y8ng7fPiwBEidO3fWivv+/ftSjx49JAsLC8nJyUn65JNPpMGDB0s9evTQbNumTRtp7NixmvseHh7S/PnzNfcjIiKkli1bSsbGxlKNGjWknTt3SoC0efNmTZ2JEydK9vb2koWFhdS/f39p/vz5krW1tebx9PR0qU+fPpKNjY0ESD/99JOkVCq19pOTkyMdPnxYatu2rWRiYiLZ2dlJb775ppSUlKTZz5AhQ7RiVyqV0tix70ptWreSlJmpkupRkqRKfyipUu9LquQYSZV0R1q++GsJyHPz9vaWlEqlFBkZKXXv3l0yNzeXLC0tpb59+0p3796VlEql9OjRI2nAgAGSu7u7ZGxsLLm5uUmjR4/WvFdGjx4teXt7SwqFQnJ0dJRef/11KS4uLt+/UVpamnTx4kUpOTk5z3swPj5eAqSkpKRn5gOZJBWh7V7CsrKyMDMzY9OmTfTq1UtTHhwcTGJiItu3b9dpP/369cPQ0PCZAz8cHR2ZNWsWb731VqH7S05OxtramqSkJKysrHSK4UnZ2dns3LmTLl265OnPLlNJt+GHdpAWBzW7PJ4uK28L9UnlJvanSRIcmPPfNF8txkPgdM3w7Txx554rykwGn0D1gBnD8neB6nO93g9vwrL2kB6v899XI+k2rOisXo7IoaZ6zb0CzjlmZGQQGRmJl5cXJiYmmvLcFZStrKzK9hzac6qwcedkkZb0AAszE2SSClRK9aUZKiWocp74/YlySVn0AxmZgYWzet7YEuhK1vX1Luh9Brp/Juv1r2lsbEyjRo0ICwvTlKlUKsLCwvIdKZQfpVLJ+fPnNf3X+bl9+zYJCQnPrFMpWVeFgetAroDLOyEsb7dqhaBSwe7J/yWz9lOhw4xn/7O5vaQeGGFkBtf2wabhoKxE16llJKmXEEqPB5cG0GeZ7skM1O+N4N/BqgrEX1aPfkx/UGrhCsWgUkFGsnqyhLhLGMRdxDLzHrKHkeqRrMm3IeWe+gvrowfq90RWKuQ8AmXWU8lMBgaG6i91RmagsAITWzBzUCcvSzcws1fXy06Hh5Hq0bBp9yvU5Od6H+U4YcIEgoODady4MQEBAYSEhJCWlqYZ9ThkyBCqVKnCnDlzAJg5cyYvv/yypk923rx5REVF8eabbwLqASMzZszglVdewcXFhevXr/PBBx/g4+NDUFCQ3p6n3lRtDL2+g81vwJFv1N/GXxqk76h0p1LCb2PhzBr1/S5fQYCO19N4NFO3zNb2h0t/wLZ3oPf3Ff/6PGW2+sLp+5fA0hVe26AeyVhUtp4w5DdY2QViL8Dq3urliUzyXtQrlAFJguxH6l6FzBT1hetod6ApZYYYGBojM5CDTK7+EvPk7zK5OnHlKdPxPW/pqk5iafGgzFS35FNi1CNmzRxBrveU8Ux6j27AgAHcv3+fqVOnEhMTg7+/P7t379YMFImOjtZqpj58+JARI0YQExODra0tjRo14ujRo9SpUwdAM+HoqlWrSExMxM3NjY4dO/LZZ5+9uHOi1e+rnj3iry/h93HqxUI9dGsB61VOFmwZAf9uA5kB9PwO/AcWbR/e7aD/z7DhdTi/EYzNoFtIiXSl6IUkwa4P4MZ+9TftgevByq3w7Qri4PNfUrt3Rj2jyOAt6ov1hdKXk6lOXrm3p7sIDYzUfwuFJSpjC1JS07GyskJWWl/K5Ebq95OFs3oh4bT76tZeSgykxIGZHVg4lcvueygHCQ1gzJgxjBkzJt/HcqdXybVgwQIWLFhQ4L5MTU3Zs2dPSYZXObSdDPFX1MlhwyAY8adOQ7b1JitdfY3ZtVD1xeJ9l0Pt7sXbV83O0OcH2PQGnFoJRuYQNLtiJrW/l8DJ5YBMPeWZm//z79OplnparJXd4PZxWPuq+ro147KZgPeFosxRdwvmtsKUT40alRmAsaUmiWGo+O99WpZdfwZydeIyd4RHD9XdmtmP1F3c6fHqKdUsnMrdFHsVvO9F0JmBAfRaAq7+6m9ea19V98+XRxnJsOYVdTIzNFW3QoqbzHLVewV6fqv+/e/F6gEmFc3lXbDnY/XvHWZCra4lt2+X+o9bZlYQdRjWvwbZGVpV9Dh+rOKSVOrElXxX3UsSe159fio94XEyk6mTgqUL2Puqz4faV1cP0DEy0f+XLplM3SpzqAn2Pv+13DMS1V+Q46+qz92VwHujJN5fIqG9SIzN1INELF3hfoR6oISqGKOgSlNaAvzcA6KPqj9ch2wDn/Yls++XXofO89S/H5wLh0NKZr9l4d45dQsTCRoG/7dsUEmq0kjdMjMyV3dp/hoMOVma0Zc6Xwv0IpMk9aCK1FhIuAb3zqt/psaqywEMTdQtH7vq6i8SDjXU/5MKC/0nsILIZOpkZu8DjrXA1A6QqVubD26oz+emJ6gTeDHlvr+eZ3R1uehyFMqQlZt6oMSKLuoW0N4p0OlzfUellnxPPdru/iX1iKvBW8HVr2SP0XQkZKfBvumwb5r627Gug0z0JfmeehWF7DTwagNdvy69D75qL6sHmfzSF67shs1vIO+7AhsbG818gGZmZprplLKyssjIyKhYw99LI+7sDPWE0I+SQHpqNK3MUP0+MzZT/5Qb//dYVjag2ywY5ef1loGpMxjZqrsjHz1Uj6zMiALZHXWLztRGPThFh7glSSI9PZ24uDhsbGzynfxCVyKhvYiqNITeS+DXoeruN8ca0GiofmN6eFM91+DDm+ohxEO2qeeiLA0t31OPIPtrHuycqB5cUV5HfmalqZNZ8h31N/n+q9Qn7kuTVyv1xMbrBkLEb7DtbVx6LQXQmuRWkiQePXqEqampZmmWiqDE4lYp1V8ystK1z4XJDNTnvgxN1De5EZD1+Jao/7hLmmQEmanq1poqB7j3+FygBSgskGRyneK2sbF57vl3RUJ7UdXtre7/3j8bdrwPdt7qDzJ9iLukbpml3PtvKLmtR+kes90n6mTx93fw2xgwMoV6fUr3mEWlUqkX6bx3Rt3F89oG9ez5ZcEn8InRob8ikytw7bEIJycnrfkn//rrL1q3bl2+LsIvxHPFnZWmXjz18k64fQLNsHqZEXi2UF/g7tkMDI2fuZsyj7ss5GSpW/X/rIGHN9RlMkNUvh05nl2DGh0HFBi3kZHRc7XMcomE9iJrPUndvXdhM2wcDG+GgVW1so3h7hlY00fd/+5YW93NaFUGF8DLZBD0ufoD6vQq9eUBRmZQs1PpH1tXYdPV18/JjdXdxHbVy/b4NTvDKz/BpmHq6wANFci7fo388SwOcrmcnJwcTExMyucHbAGKHLcyR31O8dwGuLTjv3NhoF5zzm8A1Oml7morReX/9TaBhv3Bv6/6dMaRheoBRqe/py2gNLmCvOuXpRqBSGgvMpkMei5Wd/PdOaXu2greVXbHjwpXX/Scmaye2eP1LaX+oaBFJoNuC9TDkc9vVF8mMGgjVG9bdjEU5PTP6gvhQf030td1g3V7qbvTtoyEkz+pu9KCPi+/gxdKiiSpW8ZnN8CFTerrsXLZeYPfq1C/H9h56S3EcsvAAGoEqW93TqE6/A2yiN+QSvp8eD5EQnvRGZmqv/0v+x/EX0G+9U1kVkNK/7jX9sH619Unkz1aqIfmmxR93sznZiBXX86Qna5uDa0bqG4lVnu57GPJFfkX/PGe+vfWH+h/TbsG/SEnA357V91Fa2iinn6sMkqMhnMb1bf4/xbNxMxefelHg1fV56Are0IvKVUaoezzEwe2rqBtnd6lfjiR0AT1NTAD18PyIAxu7KeT/DiG9+aDjbt6zr/cm9Xjn5YuRZs38Gn/blcPQVdlg08H9bkafV7EKzdUX7i9biBcD4Nf+qmngHJ7qexjib+qPm+lylF/gLb7uOxjyE/DIepZLXZOhMPz1V+Emr+n76hKxqNE9YQD5zZC1BNLqBiaqM+JNRigvnSktAfjVGLpCucyef1EQhPUXBvAKz8ibR6BcXaa+gLQ2PP515XJ1ZPaWlcF6ypPJL3HCdCqSsEzdZ9ZC9tHq69XqdNLPaluKZxALzJDhXq2+l/6qj/UVvdWr3rtXKfsYkhLUCfTjCSo2kQ91Vd5agkEjFAntb2fwP7ZGMgMAW99R1UsMlUOsss74eImuLJHPW+h+hHwbKnuUqzdQz+9BkKxiYQm/KdWV3LGX+TQ72tp7eeFYeo99eSkyXfUP5NuqWc8UOVAUrT6VhBjyycS3eOkl5UGhx9PW/bSYOj+zfO19EqasZl6JOHPPdXnFFf3gmG7wL4MPrRzMtUts4eRYFNN3Q1sZFL4dmWt+Rh19+OfnyH/cwadDC0xvGqmXtFBbqiee1BunPd3ufHj+wX9/vj25O+g/uKjUj5epVr1xE351H3pibqqfOr+t708O4NOV/ZheDbtv+flWFs9uKN+P/V7VaiQREITtBlbkGJaFcmnA+Q3kkqlVM96kHQ7n9stdfJLT4CsFPVsJPcj8u7j5VHld2CBwhIGbYJV3dUz0K/qAcN3qZNMaZEk5Dsn/Dc7ymsb1fPklVetJ4IyG+ngXBQ5KZBa/lesfpIBYAxIFs7I6vdTdym61C+f70ehSERCE4rGQK6ebcTKDdwD8q+Tlf64VXfrcaJ73MJLjYEanaDJm+X7w8PMDgZvUy+AmXBV3WIbtkt97rAU1Ij9HYN7m9Rduf1WgFPtUjlOiWo3mRy/1zm09zdatWiGkUxSnxNVZqmXt1Hl/Pe7MvvxY0/+nqUeDv/kNk/Xk8nUF+jmdzOQP3E/t548n3p5t1WqJI5FptCk//sYKcphK1goNpHQhJJnbAYOvupbRWXhqB4YsryTeq66xQHqkW65H5y560zJZE+tPZX7+BMfsFqPy7S2l+dkUvve45XZu3ypvqC5orB0IcW0qrp1Uy6vi8qfKjub+wk7y1d3t1AiREIThIJYuamT2oqu6tWBM5JK/BC5M9spm7yFvMmbJb5/QXiRiIQmCM9i6wnvnoSYC+rBBZpBB0rtAQgqZcFlz3hcmZPF6Rvx+AdORbQXBOH5iIQmCIUxMgX3JqWya1V2Nncf7sRfdH8JwnOrOGs+CIIgCMIziIQmCIIgVApFTmienp7MnDmT6OhnXFQrCIIgCGWsyAlt/PjxbNmyherVq9OhQwfWr19PZmZm4RsKgiAIQikqVkI7c+YMx48fp3bt2rz77ru4uroyZswYTp8+XRoxCoIgCEKhin0OrWHDhixcuJC7d+8ybdo0fvzxR5o0aYK/vz/Lly9HkqSSjFMQBEEQnqnYw/azs7PZunUrK1asIDQ0lJdffpk33niD27dv8/HHH7Nv3z7Wrl1bkrEKgiAIQoGKnNBOnz7NihUrWLduHQYGBgwZMoQFCxZQq1YtTZ3evXvTpEnpXLcjCIIgCPkpckJr0qQJHTp0YMmSJfTq1QujfOZw8/Ly4tVXXy2RAAVBEARBF0VOaDdu3MDDw+OZdczNzVmxYkWxgxIEQRCEoiryoJDcZHby5ElWr17N6tWrOXny5HMFsXjxYjw9PTExMaFp06YcP368wLorV65EJpNp3UxMtJeAkCSJqVOn4urqiqmpKYGBgVy9evW5YhQEQRDKtyIntNu3b9OqVSsCAgIYN24c48aNIyAggJYtW3L79u0iB7BhwwYmTJjAtGnTOH36NH5+fgQFBREXF1fgNlZWVty7d09zi4qK0nr8yy+/ZOHChSxdupRjx45hbm5OUFAQGRkZRY5PEARBqBiKnNDefPNNsrOziYiI4MGDBzx48ICIiAhUKhVvvln05S/mz5/PiBEjGDZsGHXq1GHp0qWYmZmxfPnyAreRyWS4uLhobs7OzprHJEkiJCSETz/9lJ49e9KgQQN+/vln7t69y7Zt24ocnyAIglAxFPkc2sGDBzl69Cg1a9bUlNWsWZNFixbRqlWrIu0rKyuLU6dOMXnyZE2ZgYEBgYGBhIeHF7hdamoqHh4eqFQqGjZsyOeff07dunUBiIyMJCYmhsDA/xZKtLa2pmnTpoSHh+c7WCUzM1NrtpPk5GRAfWlCdnZ2kZ5T7nZP/qxIKmrsIu6yV1FjF3GXrZKIW9dti5zQ3N3d8925UqnEzc2tSPuKj49HqVRqtbAAnJ2duXTpUr7b1KxZk+XLl9OgQQOSkpL46quvaN68ORcvXqRq1arExMRo9vH0PnMfe9qcOXOYMWNGnvK9e/diZmZWpOf0pNDQ0GJvq28VNXYRd9mrqLGLuMvW88Sdnp6uU70iJ7R58+bx7rvvsnjxYho3bgyoB4iMGzeOr776qqi7K7JmzZrRrFkzzf3mzZtTu3Ztvv/+ez777LNi7XPy5MlMmDBBcz85ORl3d3c6duyIlZVVkfeXnZ1NaGgoHTp0yPeyhvKsosYu4i57FTV2EXfZKom4c3vNClPkhDZ06FDS09Np2rQphobqzXNycjA0NGT48OEMHz5cU/fBgwfP3JeDgwNyuZzY2Fit8tjYWFxcXHSKx8jIiJdeeolr164BaLaLjY3F1dVVa5/+/v757kOhUKBQKPLd9/O8cZ53e32qqLGLuMteRY1dxF22niduXbcrckILCQkp6iYFMjY2plGjRoSFhdGrVy8AVCoVYWFhjBkzRqd9KJVKzp8/T5cuXQD1Rd0uLi6EhYVpElhycjLHjh3jnXfeKbHYBUEQhPKlyAktODi4RAOYMGECwcHBNG7cmICAAEJCQkhLS2PYsGEADBkyhCpVqjBnzhwAZs6cycsvv4yPjw+JiYnMmzePqKgozQhLmUzG+PHjmTVrFr6+vnh5eTFlyhTc3Nw0SVMQBEGofIo1ObFSqWTbtm1EREQAULduXXr06IFcLi/yvgYMGMD9+/eZOnUqMTEx+Pv7s3v3bs2gjujoaAwM/ru64OHDh4wYMYKYmBhsbW1p1KgRR48epU6dOpo6H3zwAWlpaYwcOZLExERatmzJ7t2781yALQiCIFQeRU5o165do0uXLty5c0czdH/OnDm4u7uzY8cOvL29ixzEmDFjCuxiPHDggNb9BQsWsGDBgmfuTyaTMXPmTGbOnFnkWARBEISKqcgXVo8dOxZvb29u3brF6dOnOX36NNHR0Xh5eTF27NjSiFEQBEEQClWsC6v//vtv7OzsNGX29vZ88cUXtGjRokSDEwRBEARdFbmFplAoSElJyVOempqKsbFxiQQlCIIgCEVV5ITWrVs3Ro4cybFjx5AkCUmS+Pvvv3n77bfp0aNHacQoCIIgCIUqckJbuHAh3t7eNGvWDBMTE0xMTGjRogU+Pj588803pRGjIAiCIBSqSOfQJEkiOTmZ9evXc+fOHc2w/dq1a+Pj41MqAQqCIAiCLoqc0Hx8fLh48SK+vr4iiQmCIAjlRpG6HA0MDPD19SUhIaG04hEEQRCEYinyObQvvviCSZMmceHChdKIRxAEQRCKpcjXoQ0ZMoT09HT8/PwwNjbG1NRU6/HCZtgXBEEQhNJQ5IS2YMECZDJZacQiCIIgCMVWrPXQBEEQBKG8KfI5NLlcTlxcXJ7yhISEYs22X1llKfUdgSAIwoulyAlNkqR8yzMzM8XUV4BKJbHk4A2mnZZz/X6avsMRBEF4Yejc5bhw4UJAvTTLjz/+iIWFheYxpVLJX3/9Ra1atUo+wgrGwEDGmVtJpOfI+GrvFX4cGqDvkARBEF4IOie03DXIJEli6dKlWt2LxsbGeHp6snTp0pKPsAKa1NGXA5fj2HfpPn/fSODl6vb6DkkQBKHS0zmhRUZGAtCuXTu2bNmCra1tqQVV0fk4WdDMWeJIrIzPd0awbVQLDAzEyFBBEITSVORzaPv37xfJTAedqqowN5Zz7nYSv5+7q+9wBEEQKr0iD9tXKpWsXLmSsLAw4uLiUKlUWo//+eefJRZcRWZlDCNbebEg7Bpf7r5MUF0XTIzEKFBBEITSUuSENm7cOFauXEnXrl2pV6+euMj6GYY192DdidvcSXzEz+E3GdnaW98hCYIgVFpFTmjr169n48aNdOnSpTTiqVRMjeW837EGkzadY9Gf1+jXyB1bc3FpgyAIQmko8jk0Y2NjsWxMEfRpWJVaLpakZOSw8M+r+g5HEASh0ipyQnv//ff55ptvCrzAWtAmN5DxSdfaAKz5O4qb8eJia0EQhNJQ5C7Hw4cPs3//fnbt2kXdunUxMjLSenzLli0lFlxl0crXkTY1HDl45T5f7rnEd4Ma6TskQRCESqfICc3GxobevXuXRiyV2uQutTh09T47z8dwKuohjTzEpQ+CIAglqcgJbcWKFaURR6VXy8WKfo3c2XDyFrN3/Mvmd5qLEaKCIAglSOdzaPnNsP+knJwcjh8//twBVWYTOtbA1EjO6ehEdl2I0Xc4giAIlYrOCc3V1VUrqdWvX59bt25p7ickJNCsWbNiBbF48WI8PT0xMTGhadOmOifG9evXI5PJ6NWrl1b50KFDkclkWrdOnToVK7aS5GxlwojW1QGYu/sSWTmqQrYQBEEQdKVzQnt6VOPNmzfJzs5+Zh1dbNiwgQkTJjBt2jROnz6Nn58fQUFBhbYIb968ycSJE2nVqlW+j3fq1Il79+5pbuvWrStybKXhrdbVcbBQEJWQzpq/o/QdjiAIQqVR5HNoz1Kcc0Lz589nxIgRDBs2DIClS5eyY8cOli9fzkcffZTvNkqlkkGDBjFjxgwOHTpEYmJinjoKhQIXFxedYsjMzCQzM1NzPzk5GYDs7Ow8SVsXudvkt62xAYz7nzdTfvuXhWFX6dnAGStTozz19OVZsZdnIu6yV1FjF3GXrZKIW9dtSzShFVVWVhanTp1i8uTJmjIDAwMCAwMJDw8vcLuZM2fi5OTEG2+8waFDh/Ktc+DAAZycnLC1teV///sfs2bNwt4+/2Vc5syZw4wZM/KU7927FzMzsyI+q/+EhobmW24ugYupnJhH2UxaGUZPj/LX9VhQ7OWdiLvsVdTYRdxl63niTk9P16mezglNJpORkpKCiYkJkiQhk8lITU3VtGZyfxZFfHw8SqUSZ2dnrXJnZ2cuXbqU7zaHDx/mp59+4syZMwXut1OnTvTp0wcvLy+uX7/Oxx9/TOfOnQkPD9daxy3X5MmTmTBhguZ+cnIy7u7udOzYESsrqyI/r+zsbEJDQ+nQoUOe6/RyWfjcZ+SafzgcZ8iUV1tQ1da0yMcpDbrEXh6JuMteRY1dxF22SiJuXfOLzglNkiRq1Kihdf+ll17Sul/aw9BTUlIYPHgwy5Ytw8HBocB6r776qub3+vXr06BBA7y9vTlw4ADt27fPU1+hUKBQKPKUGxkZPdcb51nbd6jrSnPvaI5eTyDkz+t88+pL+dbTl+d97voi4i57FTV2EXfZep64dd1O54S2f//+YgXyLA4ODsjlcmJjY7XKY2Nj8z3/df36dW7evEn37t01ZbnL1xgaGnL58mW8vfPOaF+9enUcHBy4du1avglNH2QyGR93qU33bw+z/cxd3mjpRYOqNvoOSxAEocLSOaG1adOmxA9ubGxMo0aNCAsL0wy9V6lUhIWFMWbMmDz1a9Wqxfnz57XKPv30U1JSUvjmm29wd3fP9zi3b98mISEBV1fXEn8Oz6NeFWt6+1dhyz93mL0jgvUjXxYXWwuCIBSTXgeFAEyYMIHg4GAaN25MQEAAISEhpKWlaUY9DhkyhCpVqjBnzhxMTEyoV6+e1vY2NjYAmvLU1FRmzJjBK6+8gouLC9evX+eDDz7Ax8eHoKCgMn1uung/qCY7zt/jWOQD9kXE0aGOc+EbCYIgCHnoPaENGDCA+/fvM3XqVGJiYvD392f37t2agSLR0dEYGOi+KIBcLufcuXOsWrWKxMRE3Nzc6NixI5999lm+58n0rYqNKcNberHkwHXm7IqgbU1HjORFXgRBEAThhaf3hAYwZsyYfLsYQT38/llWrlypdd/U1JQ9e/aUUGRl45223mw4cYsb99NYf+IWg1/20HdIgiAIFY5oCpQDViZGjA/0BSAk9AopGRXrwklBEITy4LkTWnJyMtu2bSMiIqIk4nlhDQyoRnUHcxLSsvj+4A19hyMIglDhFDmh9e/fn2+//RaAR48e0bhxY/r370+DBg3YvHlziQf4ojCSG/Bh51oALDt0g3tJj/QckSAIQsVS5IT2119/aSYE3rp1K5IkkZiYyMKFC5k1a1aJB/gi6VjHmSaetmTmqPh67xV9hyMIglChFDmhJSUlYWdnB8Du3bt55ZVXMDMzo2vXrly9erXEA3yR5F5sDbD59G0u3k3Sc0SCIAgVR5ETmru7O+Hh4aSlpbF79246duwIwMOHDzExMSnxAF80L1WzpbufG5IEc3ZeKtaSPIIgCC+iIie08ePHM2jQIKpWrYqbmxtt27YF1F2R9evXL+n4XkgfBNXEWG7A4WvxHLxyX9/hCIIgVAhFTmijRo0iPDyc5cuXc/jwYc1Fz9WrVxfn0EqIu50Zwc3V16LN2XkJpUq00gRBEApTrGH7jRs3pnfv3lhYWKBUKjlz5gzNmzenRYsWJR3fC2tMO1+sTY24HJvCplO39B2OIAhCuVesLseffvoJUK8c3aZNGxo2bIi7u3uhs3oIurM2M+Ld//kA8PXeK6Rl5ug5IkEQhPKtyAlt06ZN+Pn5AfD7778TGRnJpUuXeO+99/jkk09KPMAX2eBmHlSzMyMuJZNlh8TF1oIgCM9S5IQWHx+vWats586d9OvXjxo1ajB8+PA8S7sIz0dhKOeDTjUB+OGvG8QlZ+g5IkEQhPKryAnN2dmZf//9F6VSye7du+nQoQMA6enpyOXyEg/wRde1viv+7jakZylZsE9cbC0IglCQIie0YcOG0b9/f+rVq4dMJiMwMBCAY8eOUatWrRIP8EUnk8n4tKv6YusNJ25xJTZFzxEJgiCUT0VOaNOnT+fHH39k5MiRHDlyRLPGmFwu56OPPirxAAVo7GlHp7ouqCSYs1NMAi0IgpCfYq2H1rdv3zxlwcHBzx2MULAPO9diX0Qs+y/f58i1eFr4OOg7JEEQhHKlWNehHTx4kO7du+Pj44OPjw89evTg0KFDJR2b8AQvB3Nef7zw5+wdEajExdaCIAhaipzQ1qxZQ2BgIGZmZowdO5axY8diampK+/btWbt2bWnEKDw2tr0vlgpD/r2XzJKD18U8j4IgCE8ockKbPXs2X375JRs2bNAktA0bNvDFF1/w2WeflUaMwmN25saMe7yy9bw9l5my/QLZSpWeoxIEQSgfipzQbty4Qffu3fOU9+jRg8jIyBIJSijYGy29+KhzLWQyWPN3NMNXniDpUba+wxIEQdC7Yi0fExYWlqd83759uLu7l0hQQsFkMhlvt/Fm6euNMDWSc+hqPH2+O0JUQpq+QxMEQdCrIo9yfP/99xk7dqxmQmKAI0eOsHLlSr755psSD1DIX1BdF359uxlvrjrJ9ftp9Fp8hO8HNybAy07foQmCIOhFkRPaO++8g4uLC19//TUbN24EoHbt2mzYsIGePXuWeIBCwepVsWb7mBaM+Pkk524nMejHv/m8d336NRYtZUEQXjxFSmg5OTl8/vnnDB8+nMOHD5dWTEIROFuZsGFkM97/9Qw7z8cwadM5bsSnMaljTQwMZPoOTxAEocwU6RyaoaEhX375JTk5YimT8sTUWM63AxtqlptZcuA67/xyivQs8XcSBOHFUeRBIe3bt+fgwYOlEYvwHAwMZLzfsSYLBvhhLDdgz8VY+n8fTkySmKFfEIQXQ5ETWufOnfnoo4+YOHEi69at47ffftO6FcfixYvx9PTExMSEpk2bcvz4cZ22W79+PTKZjF69emmVS5LE1KlTcXV1xdTUlMDAQK5evVqs2Cqa3i9VZe2IptibG3PhTjI9Fx/m/O0kfYclCIJQ6oo8KGTUqFEAzJ8/P89jMpkMpVJZpP1t2LCBCRMmsHTpUpo2bUpISAhBQUFcvnwZJyenAre7efMmEydOpFWrVnke+/LLL1m4cCGrVq3Cy8uLKVOmEBQUxL///ouJiUmR4quIGnvasW10C4avPMHVuFT6fX+UkAH+dKrnqu/QBEEQSk2RW2gqlarAW1GTGagT44gRIxg2bBh16tRh6dKlmJmZsXz58gK3USqVDBo0iBkzZlC9enWtxyRJIiQkhE8//ZSePXvSoEEDfv75Z+7evcu2bduKHF9F5W5nxuZRzWlTw5GMbBVvrznN4v3XxHRZgiBUWsWabb+kZGVlcerUKSZPnqwpMzAwIDAwkPDw8AK3mzlzJk5OTrzxxht5JkWOjIwkJiZGs04bgLW1NU2bNiU8PJxXX301z/4yMzPJzMzU3E9OTgYgOzub7Oyiz8KRu01xti1JpnJY+pofc3Zf4ee/o5m35zLXYpP5rGddFIb5f5cpL7EXlYi77FXU2EXcZask4tZ1W50T2p9//smYMWP4+++/sbKy0nosKSmJ5s2bs2TJElq3bq1zkPHx8SiVSpydnbXKnZ2duXTpUr7bHD58mJ9++okzZ87k+3hMTIxmH0/vM/exp82ZM4cZM2bkKd+7dy9mZmaFPY0ChYaGFnvbktRIBuleMrZEGrD1zD3OXr/LGzWVWBgVvE15ib2oRNxlr6LGLuIuW88Td3p6uk71dE5oISEhjBgxIk8yA3UL6K233mLBggVFSmhFlZKSwuDBg1m2bBkODiW3HtjkyZOZMGGC5n5ycjLu7u507Ngx3+dbmOzsbEJDQ+nQoQNGRs/IGmWoC9D1WgJjN5zlRkoOS65b8sPrL+HrZKFVrzzGrgsRd9mrqLGLuMtWScSd22tWGJ0T2tmzZ5k7d26Bj3fs2JGvvvpK190B4ODggFwuJzY2Vqs8NjYWFxeXPPWvX7/OzZs3tSZHVqnUs80bGhpy+fJlzXaxsbG4uv43CCI2NhZ/f/9841AoFJqVt59kZGT0XG+c592+pLWr7cLWUeYMX3mS6AfpDPjhON8OakibGo556pa32HUl4i57FTV2EXfZep64dd1O50EhsbGxz9ypoaEh9+/f13V3ABgbG9OoUSOtyY5VKhVhYWE0a9YsT/1atWpx/vx5zpw5o7n16NGDdu3acebMGdzd3fHy8sLFxUVrn8nJyRw7dizffb5ofJws2Ta6BQGedqRk5jB85Ql+Dr+p77AEQRCem84ttCpVqnDhwgV8fHzyffzcuXNaLSJdTZgwgeDgYBo3bkxAQAAhISGkpaUxbNgwAIYMGUKVKlWYM2cOJiYm1KtXT2t7GxsbAK3y8ePHM2vWLHx9fTXD9t3c3PJcr/aisjM3ZvWbAXyy9QKbTt1m6vaLXI9LZUq3OvoOTRAEodh0TmhdunRhypQpdOrUKc+1XI8ePWLatGl069atyAEMGDCA+/fvM3XqVGJiYvD392f37t2aQR3R0dEYGBTt6oIPPviAtLQ0Ro4cSWJiIi1btmT37t0vxDVoulIYypnXtwHejhbM3X2JVeFRRCakE9KvsBNjfAAAH81JREFUXuEbC4IglEM6J7RPP/2ULVu2UKNGDcaMGUPNmjUBuHTpEosXL0apVPLJJ58UK4gxY8YwZsyYfB87cODAM7dduXJlnjKZTMbMmTOZOXNmseJ5UchkMt5p642XgznvbTjDX1fu0/+H47S1k+Gf+IhqDobIZGKCY0EQKgadE5qzszNHjx7lnXfeYfLkyZoLdGUyGUFBQSxevDjPUHmhYuhUz4Wqts14Y9UJrt1P49p9OT9ePoS1qRG1XCyp7WpFHVcrarta4etsgYmRXN8hC4Ig5FGkC6s9PDzYuXMnDx8+5No19awTvr6+2NrallZ8QhmpV8Wa38a05Os9lzgUcZv7GQYkPcrmWOQDjkU+0NSTG8io7mBO7ccJrrarJXVcrXC0VIjWnCAIelWsmUJsbW1p0qRJScci6JmzlQmze9Vlp3EU7Tt2IOphBhH3Uoi4l6y5PUzP5mpcKlfjUvnt7F3NtvbmxpoEl5vsvB0tMC5gRhJBEISSptepr4TyS2FoQF03a+q6WWvKJEkiNjmTiHvJ/PtEkouMTyMhLYvD1+I5fC1eU99ILsPHyVLTiqvtaoW/uw3mCvG2EwSh5IlPFkFnMpkMF2sTXKxNaFfrv5UQHmUpuRL7ZEtO/XtKZo6mbAt3ADAzltOtgSv9G7vTyMNWdFMKglBiREITnpupsRw/dxv83G00ZZIkcfvhI60Ed/5OEncSH7Hx5G02nrxNdQdz+jauyisNq+JsJS6pEATh+YiEJpQKmUyGu50Z7nZmdKyrno5MkiRORj1k44lb7Dh/jxvxaXy5+zJf7blMmxqO9G/sTvvazuK8myAIxSISmlBmZDIZTTztaOJpx/Qeddlx/h6/nrzFiZsP2X/5Pvsv38fO3Jhe/lXo36QqtVyKPjG0IAgvLpHQBL0wVxjSv7E7/Ru7c+N+KptO3WbTqdvEpWSy/Egky49EUr+KNf0bV6WHXxWszSreZKyCIJQtkdAEvavuaMEHnWoxoUMNDl2NZ+PJW+yLiOX8nSTO30nisx0RdKrrQr/GVWnh7YCBgRhIIghCXiKhCeWGodyAdrWcaFfLiQdpWWz75w4bT97iUkwKv529y29n71LFxpRXGlWlX6OquNsVf/FVQRAqH5HQhHLJztyY4S29GNbCkwt3ktl48hbbz9zhTuIjFoZdZWHYVZp729OvcVU61XXFUDTaBOGFJxKaUK7JZDLqV7WmflVrPulam73/xvLryVscvhbP0esJHL2ewFTFRbo2cMEtA80co4IgvHhEQhMqDBMjOT383Ojh58bth+lsPnWHTadvcevBI9afuA0YsvP+3wxqWo2eL1XBykQMJBGEF4m44EeokKramjEu0JeDE9uxdkRTejRwxVAmcSkmhSnbL9J0dhiTfj3L6eiHotUmCC8I0UITKjQDAxnNvR1oUs2al41vke5Ulw0n73A1LpVfT93m11O3qeViycCAavR6qQrWpqLVJgiVlUhoQqVhbgT9mnnwRitvTkc/ZO2xW/xx7i6XYlKY9ttF5uyKoGt9N15r6k7DamIeSUGobERCEyodmUxGIw87GnnYMbVbHbaducPaY9Fcjk1h8+nbbD59mxrOFgwMqEafl6qKi7YFoZIQCU2o1KzNjAhu7smQZh78cyuRdcei+f3cXa7EpjLj93/5YtclutZ3ZWDTajQWs/8LQoUmEprwQpDJZDSsZkvDarZ82q0Ov525wy/HorkUk8KWf+6w5Z87+DjlttqqYGturO+QBUEoIpHQhBeOtakRg5t58vrLHpy9ncS6Y9H8dvYu1+JS+eyPf5m7+xJd6rkwMKAaAV52otUmCBWESGjCC0smk+HvboO/uw2fdqvN9jN3WXssmn/vJbPtzF22nblLdUdzXguoRqd6LtiZG2NqJBcJThDKKZHQBAGwNDHi9Zc9GNS0GufvJLHueDTbz9zlxv00Zu2IYNaOCAAMDWRYmRphaWKIlclTP02NtH5/8jHrx49ZmBgiF5MrC0KpEAlNEJ4gk8loUNWGBlVt+KRrHX47c5f1J6K5cCcJlQQ5KokHaVk8SMsq9jEsFIaaZGehkCOlGeBaL5EAb8cSfCaC8OIRCU0QCmChMOS1ptV4rWk1JEkiPUtJckY2KRk5JD/Kfur3nDz3UzKySX70uCwjm4xsFQCpmTmkZuZwLynj8ZEM6L/sOC19HBjb3pcALzv9PWlBqMBEQhMEHchkMswVhpgrDHG1Lt4+snJUpGT8l+CSH+XwIPUR6/af4US8nMPX4jl8LZ6Xq9sxtr0vzarbi/N1glAEIqEJQhkxNjTA3kKBvYVCU5adnY0UrWLO4Db8cDiKX0/e4u8bD/j7xjECPNWJrYWPSGyCoItyMTnx4sWL8fT0xMTEhKZNm3L8+PEC627ZsoXGjRtjY2ODubk5/v7+rF69WqvO0KFDkclkWrdOnTqV9tMQhGKrYmPK573rc3BSO4Y088BYbsDxmw94/adjvLLkKAcux4lJlgWhEHpPaBs2bGDChAlMmzaN06dP4+fnR1BQEHFxcfnWt7Oz45NPPiE8PJxz584xbNgwhg0bxp49e7TqderUiXv37mlu69atK4unIwjPxc3GlJk96/HXB+0Y1sIThaEBp6MTGbriBL0WHyEsIlYkNkEogN4T2vz58xkxYgTDhg2jTp06LF26FDMzM5YvX55v/bZt29K7d29q166Nt7c348aNo0GDBhw+fFirnkKhwMXFRXOztbUti6cjCCXCxdqEad3rcujDdoxo5YWpkZyzt5N4Y9VJui06zJ6LMahUIrEJwpP0eg4tKyuLU6dOMXnyZE2ZgYEBgYGBhIeHF7q9JEn8+eefXL58mblz52o9duDAAZycnLC1teV///sfs2bNwt7ePt/9ZGZmkpmZqbmfnJwMqM9vZGdnF/l55W5TnG31raLGXlnjtjWR80FHX95oXo3lR6NYc+wWF+8m89bqU9RytmBU2+oE1XHGQA/XtlXW17y8epHj1nVbmaTH/ou7d+9SpUoVjh49SrNmzTTlH3zwAQcPHuTYsWP5bpeUlESVKlXIzMxELpfz3XffMXz4cM3j69evx8zMDC8vL65fv87HH3+MhYUF4eHhyOXyPPubPn06M2bMyFO+du1azMzMSuCZCkLJSM2Gg/cMOBgjI1OpTmIuphJBVVX420uIa7aFyig9PZ3XXnuNpKQkrKysCqxXIROaSqXixo0bpKamEhYWxmeffca2bdto27ZtvvVv3LiBt7c3+/bto3379nkez6+F5u7uTnx8/DNfvIJkZ2cTGhpKhw4dMDKqWEuTVNTYX7S4E9OzWRUexaq/o0nJyAGguoMZo9pUp2t9FwzlpX824UV7zfXtRY47OTkZBweHQhOaXrscHRwckMvlxMbGapXHxsbi4uJS4HYGBgb4+PgA4O/vT0REBHPmzCkwoVWvXh0HBweuXbuWb0JTKBQoFIo85UZGRs/1xnne7fWposb+osTtaG3ExE61GdHGh1VHb/LT4UhuxKczcfMFvj1wg9HtfOj1UhWMyiCxvSiveXnxIsat63Z6HRRibGxMo0aNCAsL05SpVCrCwsK0WmyFUalUWi2sp92+fZuEhARcXV2fK15BKG+sTY0Y296Xwx+2Y1JQTWzNjLiZkM6kTef439cHWHssmtjkjMJ3JAiVgN4vrJ4wYQLBwcE0btyYgIAAQkJCSEtLY9iwYQAMGTKEKlWqMGfOHADmzJlD48aN8fb2JjMzk507d7J69WqWLFkCQGpqKjNmzOCVV17BxcWF69ev88EHH+Dj40NQUJDenqcglCZLEyNGt/NhaHNP1vwdxQ9/3eDWg0d8vPU8bFVf59bQw5aG1WxoWM2WOm5WZdJ6E4SypPeENmDAAO7fv8/UqVOJiYnB39+f3bt34+zsDEB0dDQGBv/946WlpTFq1Chu376NqakptWrVYs2aNQwYMAAAuVzOuXPnWLVqFYmJibi5udGxY0c+++yzfLsVBaEyMVcY8lYbbwY382DtsWg2nbrNldgU7iQ+4k7iI34/excAhaEBflVteMnDRrPwqaOl+P8QKja9JzSAMWPGMGbMmHwfO3DggNb9WbNmMWvWrAL3ZWpqmucia0F40ZgZG/Jmq+q82ao6qZk5nL2VyOmoh5yKfsg/0YkkPcrm+M0HHL/5QLONu52pJrk18rCllotlmQwuEYSSUi4SmiAIpcdCYUgLHwda+DgAoFJJ3IhP43T0Q/6JfsjpqESuxKVw68Ejbj14xPYz6lacqZGcBlWtH3dVqrsrn5yHUhDKG5HQBOEFY2Agw8fJAh8nC/o3dgcgOSObM9GJnI5+yOnoRP6JfkhKRg7HIh9wLPK/VpyHvZk6uXnY0sDNgscr4ghCuSASmiAIWJkY0bqGI61rqBcZVakkrt9P5XT0Q05FqZPctbhUohLSiUpIZ+s/dwCQISfk8l94OVrg7WiBl4O55lbFxlQvM5gILy6R0ARByMPAQIavsyW+zpYMaFINgKT0bP659V8L7sytRFIycridmMHtxAwOXY3X2oexoQFe9o8TnKP6p7ejOV4OFtiaGZX4kjiSJJGYnk1cSiaxyRman/efuh+fmomNoZwbptfp3dAdTwfzEo1D0B+R0ARB0Im1mRFtazrRtqYToJ6LdcP2XXj7N+NWYgY34tOIvJ/Gjfg0ohLSyMpRcTk2hcuxKXn3ZWqEl4M51R3Mqf44yXk5mOPpYIaZsfbHkiRJPEzPJi4lg9jkTOIeJ6e45Mf3H5ffT8kkS6lbH2hMtoxv/rzON39ex6+qNd393Oju54azlcnzv1CC3oiEJghCschkMqyMoYmnLc2fmskhR6nibmIGN+JTiYxP48b9NCLj1bc7iY9IepTNmVuJnLmVmGe/rtYmeNibkZmjIq6IiQrAxswIZ0sTnKwUOD3+6WypwMnKBGcrBVYKA1b+/hdRMifCbzzg7O0kzt5OYvbOCF72sqeHvxud67lgY2b8vC+RUMZEQhMEocQZyg2oZm9GNXsz2tbUfuxRlpKoB/+15tTJTp34HqZncy8pg3tJeWc3sTM3xulxYnKyVOD8OGE5WylwtFSXOVoqMDHKOwH5k7KzswlwkpjepRFJmSp2nr/H9jN3ORX1kPAbCYTfSGDq9gu0qeFIdz83OtRxztNqFMon8VcSBKFMmRrLqeViRS2XvJPMPkzLIjJB3WVpamSobl1ZmeBoocDYsOSviXOwUDCkmSdDmnly60E6f5y7x/Yzd7gUk8K+iDj2RcRhaiSnQx1nevi50bqGY6nEUZCkR9lci0vlWlwKV2KSuRllgG9sKnWqivUd8yMSmiAI5YatuTG25sY0rFb2H9judma809abd9p6czU2hd/O3mX7mbtEP0jnt7N3+e3sXaxNjehS34Xufm409bJHXgKjOCVJIi4l83HieuJ2P5X7KU/PUWtA2LdHae5tz5BmngTWdhIXvz9BJDRBEISn+Dpb8n7HmkzoUIOzt5PYfuYOf5y7x/2UTNYdv8W647dwtlLQrYEbPfzcaFDVutBRm0qVxO2H6XmS1rW4VM0SQPlxtTbBx8kCL3szzly5yYWHBhy9nsDR6wm4WZsw6GUPBjRxx0Fc9C4SmiAIQkFkMhn+7jb4u9vwadc6HLuRwPYzd9l14R6xyZn8dDiSnw5H4mlvRg8/N3r4u+FuZ8bNeHXiuhqXoklekfFpZObkP7jFQAYe9uZ4O1poLnr3dbLA28kCC4X6Yzo7O5udshv4N2/DxtN3WXf8FneTMpi35zLf7LtKtwauDGnuib+7TRm+QuWLSGiCIAg6kBvIaO7jQHMfB2b2qstfV+LZfuYO+yJiuZmQzsI/r7Hwz2sYyEBVwLLJxoYGVHcw1yQtdeKyxNPBDIXhswez5HKzMWVSUC3e/Z8vO8/fY1V4FGdvJbLlnzts+ecOflWtGdLMk64NXAsdIFPZiIQmCIJQRApD9UCRDnWcScvMYV9ELNvP3OWvK/fJUUlYKgzxfiJp+Tha4OtsQVVbsxI57wZgYiSnT8Oq9GlYlTO3Evk5/CZ/nL3H2dtJvP/rWWbvjODVJu4MetmDKjamJXLM8k4kNEEQhOdgrjCkp38VevpXITkjm0dZSpwsFSU+E8qzqLtF/fmkS23Wn7jFL39HcTcpg+8OXGfpwet0qONMcDNPmnnbl2lcZU0kNEEQhBJiZWKElYlR4RVLib2FgtHtfHirdXX2RcTxc/hNjl5PYM/FWPZcjMXHyYLgZh70blhVc26uMql8z0gQBOEFZyg3oFM9FzrVc+FqbAo/h0ex+fRtrsWlMmX7RebuvkzfRlUZ3MwDb0cLfYdbYsQFDIIgCJWYr7Mln/Wqx98ft2d69zpUdzAnNTOHlUdv0v7rgwz+6Rih/8aiLGgkSwUiWmiCIAgvACsTI4a28GJIM0+OXI9n1dEowi7FcuhqPIeuxmNrZoS5whADmQyZDGSoL1vQ+h00j/O4zEDG4zqP6z6up9kOePhQTprzHV572bNUn6NIaIIgCC8QAwMZrXwdaeXryK0H6aw5FsWGE7d4mJ7Nw/TsUjqqjLuJj0pp3/8RCU0QBOEF5W5nxuTOtXkvsAZXYlNQqqTH19BJSBJIqBd7leDx/cflT/4OqB7/klumktRTeklATk4OJ0+dpkt9l1J/PiKhCYIgvOBMjOQ0qGpTKvvOzs4m56aEr1PpDz4Rg0IEQRCESkEkNEEQBKFSEAlNEARBqBREQhMEQRAqBZHQBEEQhEpBJDRBEATh/+3df0zUhR/H8dfx446TAAMTOONXYfwSmIVQYHNNjDWzsVaUEbHonzac/DCGy5GbvwidRahhtGJry7SZVMr6AQSUJIKcaBQBEkPL6a2GHoIou3t//+jL1X3lpx584L6vx3YbfO64e96ND+997j58PnaBA42IiOwC/w9tFCJ/H9PMaDTe1s8PDw9jcHAQRqMRzs7KHXn7dszVdnbPvLnazu6ZZYvukb/FI3+bx8KBNor+/n4AgJ+fn8IlREQ0or+/Hx4eHmNer5KJRt7/IbPZjIsXL8LNze22ToZnNBrh5+eHCxcuwN3dfRoKp89cbWf3zJur7eyeWbboFhH09/dDp9PBwWHsT8q4hTYKBwcH3HvvvXd8P+7u7nPqF+/f5mo7u2feXG1n98y60+7xtsxGcKcQIiKyCxxoRERkFzjQpoFGo8HmzZuh0WiUTpmyudrO7pk3V9vZPbNmsps7hRARkV3gFhoREdkFDjQiIrILHGhERGQXONCIiMgucKBNg3379iEwMBAuLi6Ii4tDU1OT0knjKiwsxLJly+Dm5oaFCxciOTkZHR0dSmdN2ZtvvgmVSoXs7GylUybljz/+wIsvvggvLy9otVpERkbi1KlTSmeNy2QyoaCgAEFBQdBqtbj//vuxdevWCY+xp4Tvv/8ea9asgU6ng0qlwueff251vYjgjTfegK+vL7RaLRITE9HV1aVM7L+M1z08PIz8/HxERkbC1dUVOp0OL730Ei5evKhc8H9N9Hr/26uvvgqVSoXi4mKbNnCg2dihQ4eQm5uLzZs3Q6/XIzo6GklJSTAYDEqnjam+vh6ZmZlobGxEVVUVhoeH8fjjj2NgYEDptElrbm7Ge++9h6ioKKVTJqWvrw8JCQlwdnbGV199hV9++QW7d+/G3XffrXTauIqKilBaWoq9e/eivb0dRUVF2LlzJ/bs2aN02i0GBgYQHR2Nffv2jXr9zp07UVJSgv379+PkyZNwdXVFUlIShoaGZrjU2njdg4OD0Ov1KCgogF6vx5EjR9DR0YGnnnpKgVJrE73eIyoqKtDY2AidTmf7CCGbio2NlczMTMv3JpNJdDqdFBYWKlg1NQaDQQBIfX290imT0t/fL4sXL5aqqipZsWKFZGVlKZ00ofz8fFm+fLnSGVO2evVqycjIsFr29NNPS2pqqkJFkwNAKioqLN+bzWbx8fGRXbt2WZZduXJFNBqNfPLJJwoUju5/u0fT1NQkAKS3t3dmoiZhrO7ff/9dFi1aJG1tbRIQECBvv/22TR+XW2g2dPPmTbS0tCAxMdGyzMHBAYmJiThx4oSCZVNz9epVAICnp6fCJZOTmZmJ1atXW73us92XX36JmJgYPPvss1i4cCGWLl2K999/X+msCcXHx6OmpgadnZ0AgDNnzuD48eN44oknFC6bmp6eHly6dMnqd8bDwwNxcXFzal0F/l5fVSoV5s+fr3TKuMxmM9LS0pCXl4eIiIhpeQwenNiG/vzzT5hMJnh7e1st9/b2xq+//qpQ1dSYzWZkZ2cjISEBS5YsUTpnQgcPHoRer0dzc7PSKVPy22+/obS0FLm5uXj99dfR3NyM9evXQ61WIz09Xem8MW3cuBFGoxGhoaFwdHSEyWTC9u3bkZqaqnTalFy6dAkARl1XR66bC4aGhpCfn4+1a9fO+gMWFxUVwcnJCevXr5+2x+BAIyuZmZloa2vD8ePHlU6Z0IULF5CVlYWqqiq4uLgonTMlZrMZMTEx2LFjBwBg6dKlaGtrw/79+2f1QPv000/x8ccf48CBA4iIiEBrayuys7Oh0+lmdbc9Gh4eRkpKCkQEpaWlSueMq6WlBe+88w70ev1tnZJrsviWow0tWLAAjo6OuHz5stXyy5cvw8fHR6GqyVu3bh2OHTuG2tpam5w+Z7q1tLTAYDDgwQcfhJOTE5ycnFBfX4+SkhI4OTnBZDIpnTgmX19fhIeHWy0LCwvD+fPnFSqanLy8PGzcuBHPP/88IiMjkZaWhpycHBQWFiqdNiUj6+NcXVdHhllvby+qqqpm/dbZDz/8AIPBAH9/f8u62tvbiw0bNiAwMNBmj8OBZkNqtRoPPfQQampqLMvMZjNqamrwyCOPKFg2PhHBunXrUFFRge+++w5BQUFKJ03KypUr8dNPP6G1tdVyiYmJQWpqKlpbW+Ho6Kh04pgSEhJu+deIzs5OBAQEKFQ0OYODg7ecYNHR0RFms1mhotsTFBQEHx8fq3XVaDTi5MmTs3pdBf4ZZl1dXaiuroaXl5fSSRNKS0vD2bNnrdZVnU6HvLw8fPPNNzZ7HL7laGO5ublIT09HTEwMYmNjUVxcjIGBAbz88stKp40pMzMTBw4cwBdffAE3NzfLZwgeHh7QarUK143Nzc3tls/5XF1d4eXlNes//8vJyUF8fDx27NiBlJQUNDU1oaysDGVlZUqnjWvNmjXYvn07/P39ERERgdOnT+Ott95CRkaG0mm3uHbtGs6dO2f5vqenB62trfD09IS/vz+ys7Oxbds2LF68GEFBQSgoKIBOp0NycrJy0Ri/29fXF8888wz0ej2OHTsGk8lkWV89PT2hVquVyp7w9f7fwevs7AwfHx+EhITYLsKm+0ySiIjs2bNH/P39Ra1WS2xsrDQ2NiqdNC4Ao17Ky8uVTpuyubLbvojI0aNHZcmSJaLRaCQ0NFTKysqUTpqQ0WiUrKws8ff3FxcXF7nvvvtk06ZNcuPGDaXTblFbWzvq73V6erqI/L3rfkFBgXh7e4tGo5GVK1dKR0eHstEyfndPT8+Y62ttbe2s7R7NdOy2z9PHEBGRXeBnaEREZBc40IiIyC5woBERkV3gQCMiIrvAgUZERHaBA42IiOwCBxoREdkFDjQiIrILHGhEZKWurg4qlQpXrlxROoVoSjjQiIjILnCgERGRXeBAI5plzGYzCgsLERQUBK1Wi+joaBw+fBjAP28HVlZWIioqCi4uLnj44YfR1tZmdR+fffYZIiIioNFoEBgYiN27d1tdf+PGDeTn58PPzw8ajQbBwcH44IMPrG7T0tKCmJgYzJs3D/Hx8bec7oZo1rHpoY6J6I5t27ZNQkND5euvv5bu7m4pLy8XjUYjdXV1liOah4WFybfffitnz56VJ598UgIDA+XmzZsiInLq1ClxcHCQLVu2SEdHh5SXl4tWq7U6e0JKSor4+fnJkSNHpLu7W6qrq+XgwYMi8s9R0+Pi4qSurk5+/vlnefTRRyU+Pl6Jl4No0jjQiGaRoaEhmTdvnvz4449Wy1955RVZu3atZdiMDB8Rkb/++ku0Wq0cOnRIREReeOEFWbVqldXP5+XlSXh4uIiIdHR0CACpqqoatWHkMaqrqy3LKisrBYBcv37dJs+TaDrwLUeiWeTcuXMYHBzEqlWrcNddd1kuH330Ebq7uy23+/dZlT09PRESEoL29nYAQHt7OxISEqzuNyEhAV1dXTCZTJazea9YsWLclqioKMvXvr6+AACDwXDHz5FouvCM1USzyLVr1wAAlZWVWLRokdV1Go3GaqjdrsmehdzZ2dnytUqlAvD353tEsxW30IhmkfDwcGg0Gpw/fx7BwcFWFz8/P8vtGhsbLV/39fWhs7MTYWFhAICwsDA0NDRY3W9DQwMeeOABODo6IjIyEmazGfX19TPzpIhmCLfQiGYRNzc3vPbaa8jJyYHZbMby5ctx9epVNDQ0wN3dHQEBAQCALVu2wMvLC97e3ti0aRMWLFiA5ORkAMCGDRuwbNkybN26Fc899xxOnDiBvXv34t133wUABAYGIj09HRkZGSgpKUF0dDR6e3thMBiQkpKi1FMnunNKf4hHRNbMZrMUFxdLSEiIODs7yz333CNJSUlSX19v2WHj6NGjEhERIWq1WmJjY+XMmTNW93H48GEJDw8XZ2dn8ff3l127dlldf/36dcnJyRFfX19Rq9USHBwsH374oYj8s1NIX1+f5fanT58WANLT0zPdT5/otqlERBSeqUQ0SXV1dXjsscfQ19eH+fPnK51DNKvwMzQiIrILHGhERGQX+JYjERHZBW6hERGRXeBAIyIiu8CBRkREdoEDjYiI7AIHGhER2QUONCIisgscaEREZBc40IiIyC78B9z+J04dsYqbAAAAAElFTkSuQmCC","text/plain":["
      "]},"metadata":{},"output_type":"display_data"}],"source":["plot_history(history)"]},{"cell_type":"markdown","metadata":{},"source":["#### Approach 6: CNN with Attention\n","\n","this file was run on KAGGLE for GPU-based NN boosting"]},{"cell_type":"markdown","metadata":{},"source":["HEM: normal\n","\n","ALL: cancer"]},{"cell_type":"code","execution_count":2,"metadata":{"execution":{"iopub.execute_input":"2024-05-17T10:23:52.427860Z","iopub.status.busy":"2024-05-17T10:23:52.427245Z","iopub.status.idle":"2024-05-17T10:24:05.908894Z","shell.execute_reply":"2024-05-17T10:24:05.907914Z","shell.execute_reply.started":"2024-05-17T10:23:52.427830Z"},"trusted":true},"outputs":[{"name":"stderr","output_type":"stream","text":["2024-05-17 10:23:54.693312: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n","2024-05-17 10:23:54.693456: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n","2024-05-17 10:23:54.849698: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n"]}],"source":["# importing libraries and modules\n","\n","import os\n","import shutil\n","import tensorflow as tf\n","from tensorflow.keras.models import Sequential\n","import matplotlib.pyplot as plt\n","import numpy as np\n","import keras\n","from keras.layers import Input, InputLayer, Conv2D, MaxPooling2D, Flatten, ELU, Dense, BatchNormalization, Activation\n","from keras.callbacks import ModelCheckpoint\n","from keras.optimizers import Nadam\n","from keras.models import Model\n","from keras.layers import Multiply\n","from keras.regularizers import l2"]},{"cell_type":"code","execution_count":3,"metadata":{"execution":{"iopub.execute_input":"2024-05-17T10:24:05.910999Z","iopub.status.busy":"2024-05-17T10:24:05.910475Z","iopub.status.idle":"2024-05-17T10:25:47.318935Z","shell.execute_reply":"2024-05-17T10:25:47.317899Z","shell.execute_reply.started":"2024-05-17T10:24:05.910965Z"},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Processing /kaggle/input/leukemia-classification/C-NMC_Leukemia/training_data/fold_0...\n","Checking /kaggle/input/leukemia-classification/C-NMC_Leukemia/training_data/fold_0/hem...\n","Checking /kaggle/input/leukemia-classification/C-NMC_Leukemia/training_data/fold_0/all...\n","Processing /kaggle/input/leukemia-classification/C-NMC_Leukemia/training_data/fold_1...\n","Checking /kaggle/input/leukemia-classification/C-NMC_Leukemia/training_data/fold_1/hem...\n","Checking /kaggle/input/leukemia-classification/C-NMC_Leukemia/training_data/fold_1/all...\n","Processing /kaggle/input/leukemia-classification/C-NMC_Leukemia/training_data/fold_2...\n","Checking /kaggle/input/leukemia-classification/C-NMC_Leukemia/training_data/fold_2/hem...\n","Checking /kaggle/input/leukemia-classification/C-NMC_Leukemia/training_data/fold_2/all...\n"]}],"source":["# moving down training hierarchy to read files and merge under common sections\n","\n","def combine_folders(input_folder_path, output_folder_path): # combining folds into a single folder with 2 subfolders hem and all\n"," target_folders = {\n"," 'hem': os.path.join(output_folder_path, 'hem'),\n"," 'all': os.path.join(output_folder_path, 'all')\n"," }\n","\n"," for folder in target_folders.values():\n"," os.makedirs(folder, exist_ok=True)\n","\n"," for fold in ['fold_0', 'fold_1', 'fold_2']: # going over patient folders\n"," fold_path = os.path.join(input_folder_path, fold)\n"," print(f\"Processing {fold_path}...\")\n"," for category in ['hem', 'all']: # checking against categories\n"," category_path = os.path.join(fold_path, category)\n"," print(f\"Checking {category_path}...\")\n"," if os.path.exists(category_path):\n"," for item in os.listdir(category_path):\n"," source = os.path.join(category_path, item)\n"," destination = os.path.join(target_folders[category], item)\n"," shutil.copy2(source, destination)\n"," else:\n"," print(f\"Directory {category_path} does not exist.\")\n","\n"," for category, folder in target_folders.items():\n"," num_files = len(os.listdir(folder))\n","\n","input_folder_path = '/kaggle/input/leukemia-classification/C-NMC_Leukemia/training_data'\n","output_folder_path = '/kaggle/working/combined_dataset'\n","combine_folders(input_folder_path, output_folder_path)"]},{"cell_type":"code","execution_count":4,"metadata":{"execution":{"iopub.execute_input":"2024-05-17T10:26:07.480006Z","iopub.status.busy":"2024-05-17T10:26:07.479266Z","iopub.status.idle":"2024-05-17T10:26:11.210806Z","shell.execute_reply":"2024-05-17T10:26:11.210024Z","shell.execute_reply.started":"2024-05-17T10:26:07.479973Z"},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Found 10661 files belonging to 2 classes.\n","Using 7463 files for training.\n","Found 10661 files belonging to 2 classes.\n","Using 3198 files for validation.\n"]}],"source":["# file generation\n","\n","batch_size = 32 # takes 32 files at a time for generation\n","img_height = 100 # size of images\n","img_width = 100\n","\n","train_ds = tf.keras.utils.image_dataset_from_directory( # splitting training daat into train and val \n"," output_folder_path,\n"," validation_split=0.3,\n"," subset=\"training\",\n"," seed=123,\n"," image_size=(img_height, img_width),\n"," batch_size=batch_size\n",")\n","\n","val_ds = tf.keras.utils.image_dataset_from_directory(\n"," output_folder_path,\n"," validation_split=0.3, # validation split from training\n"," subset=\"validation\",\n"," seed=123,\n"," image_size=(img_height, img_width),\n"," batch_size=batch_size\n",")"]},{"cell_type":"code","execution_count":115,"metadata":{"execution":{"iopub.execute_input":"2024-05-17T11:35:15.991139Z","iopub.status.busy":"2024-05-17T11:35:15.990722Z","iopub.status.idle":"2024-05-17T11:35:16.109384Z","shell.execute_reply":"2024-05-17T11:35:16.108657Z","shell.execute_reply.started":"2024-05-17T11:35:15.991107Z"},"trusted":true},"outputs":[{"data":{"text/html":["
      Model: \"functional_67\"\n","
      \n"],"text/plain":["\u001b[1mModel: \"functional_67\"\u001b[0m\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
      โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“\n","โ”ƒ Layer (type)        โ”ƒ Output Shape      โ”ƒ    Param # โ”ƒ Connected to      โ”ƒ\n","โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ\n","โ”‚ input_layer_33      โ”‚ (None, 100, 100,  โ”‚          0 โ”‚ -                 โ”‚\n","โ”‚ (InputLayer)        โ”‚ 3)                โ”‚            โ”‚                   โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ conv2d_130 (Conv2D) โ”‚ (None, 100, 100,  โ”‚        896 โ”‚ input_layer_33[0โ€ฆ โ”‚\n","โ”‚                     โ”‚ 32)               โ”‚            โ”‚                   โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 100, 100,  โ”‚        128 โ”‚ conv2d_130[0][0]  โ”‚\n","โ”‚ (BatchNormalizatioโ€ฆ โ”‚ 32)               โ”‚            โ”‚                   โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ max_pooling2d_97    โ”‚ (None, 50, 50,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\n","โ”‚ (MaxPooling2D)      โ”‚ 32)               โ”‚            โ”‚                   โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ conv2d_131 (Conv2D) โ”‚ (None, 50, 50,    โ”‚      9,248 โ”‚ max_pooling2d_97โ€ฆ โ”‚\n","โ”‚                     โ”‚ 32)               โ”‚            โ”‚                   โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 50, 50,    โ”‚        128 โ”‚ conv2d_131[0][0]  โ”‚\n","โ”‚ (BatchNormalizatioโ€ฆ โ”‚ 32)               โ”‚            โ”‚                   โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ max_pooling2d_98    โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\n","โ”‚ (MaxPooling2D)      โ”‚ 32)               โ”‚            โ”‚                   โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ conv2d_132 (Conv2D) โ”‚ (None, 25, 25,    โ”‚      9,248 โ”‚ max_pooling2d_98โ€ฆ โ”‚\n","โ”‚                     โ”‚ 32)               โ”‚            โ”‚                   โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        128 โ”‚ conv2d_132[0][0]  โ”‚\n","โ”‚ (BatchNormalizatioโ€ฆ โ”‚ 32)               โ”‚            โ”‚                   โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ max_pooling2d_99    โ”‚ (None, 13, 13,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\n","โ”‚ (MaxPooling2D)      โ”‚ 32)               โ”‚            โ”‚                   โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ conv2d_133 (Conv2D) โ”‚ (None, 13, 13, 1) โ”‚         33 โ”‚ max_pooling2d_99โ€ฆ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ multiply_33         โ”‚ (None, 13, 13,    โ”‚          0 โ”‚ max_pooling2d_99โ€ฆ โ”‚\n","โ”‚ (Multiply)          โ”‚ 32)               โ”‚            โ”‚ conv2d_133[0][0]  โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ flatten_33          โ”‚ (None, 5408)      โ”‚          0 โ”‚ multiply_33[0][0] โ”‚\n","โ”‚ (Flatten)           โ”‚                   โ”‚            โ”‚                   โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ dense_66 (Dense)    โ”‚ (None, 32)        โ”‚    173,088 โ”‚ flatten_33[0][0]  โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ dense_67 (Dense)    โ”‚ (None, 1)         โ”‚         33 โ”‚ dense_66[0][0]    โ”‚\n","โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜\n","
      \n"],"text/plain":["โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“\n","โ”ƒ\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0mโ”ƒ\n","โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ\n","โ”‚ input_layer_33 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m, \u001b[38;5;34m100\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ - โ”‚\n","โ”‚ (\u001b[38;5;33mInputLayer\u001b[0m) โ”‚ \u001b[38;5;34m3\u001b[0m) โ”‚ โ”‚ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ conv2d_130 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m, \u001b[38;5;34m100\u001b[0m, โ”‚ \u001b[38;5;34m896\u001b[0m โ”‚ input_layer_33[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\n","โ”‚ โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m, \u001b[38;5;34m100\u001b[0m, โ”‚ \u001b[38;5;34m128\u001b[0m โ”‚ conv2d_130[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\n","โ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ max_pooling2d_97 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m, \u001b[38;5;34m50\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\n","โ”‚ (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ conv2d_131 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m, \u001b[38;5;34m50\u001b[0m, โ”‚ \u001b[38;5;34m9,248\u001b[0m โ”‚ max_pooling2d_97โ€ฆ โ”‚\n","โ”‚ โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m50\u001b[0m, \u001b[38;5;34m50\u001b[0m, โ”‚ \u001b[38;5;34m128\u001b[0m โ”‚ conv2d_131[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\n","โ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ max_pooling2d_98 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\n","โ”‚ (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ conv2d_132 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m9,248\u001b[0m โ”‚ max_pooling2d_98โ€ฆ โ”‚\n","โ”‚ โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m128\u001b[0m โ”‚ conv2d_132[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\n","โ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ max_pooling2d_99 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\n","โ”‚ (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ conv2d_133 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m1\u001b[0m) โ”‚ \u001b[38;5;34m33\u001b[0m โ”‚ max_pooling2d_99โ€ฆ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ multiply_33 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ max_pooling2d_99โ€ฆ โ”‚\n","โ”‚ (\u001b[38;5;33mMultiply\u001b[0m) โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ conv2d_133[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ flatten_33 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5408\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ multiply_33[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\n","โ”‚ (\u001b[38;5;33mFlatten\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ dense_66 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) โ”‚ \u001b[38;5;34m173,088\u001b[0m โ”‚ flatten_33[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\n","โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\n","โ”‚ dense_67 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) โ”‚ \u001b[38;5;34m33\u001b[0m โ”‚ dense_66[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\n","โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
       Total params: 192,930 (753.63 KB)\n","
      \n"],"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m192,930\u001b[0m (753.63 KB)\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
       Trainable params: 192,738 (752.88 KB)\n","
      \n"],"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m192,738\u001b[0m (752.88 KB)\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
       Non-trainable params: 192 (768.00 B)\n","
      \n"],"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m192\u001b[0m (768.00 B)\n"]},"metadata":{},"output_type":"display_data"}],"source":["# modelling\n","\n","def attention_mechanism(inputs): # Attention mechanism\n","\n"," att_weights = Conv2D(1, kernel_size=(1, 1), activation='sigmoid')(inputs)\n","\n"," attended_output = Multiply()([inputs, att_weights])\n"," \n"," return attended_output\n","\n","# MOdel Checkpoint focused on val_accuracy to store best weights of max val_accuracy\n","model_checkpoint = ModelCheckpoint('model.keras', monitor='val_accuracy', save_best_only=True, verbose=1, mode='max')\n","\n","input_dim = Input(shape=(100, 100, 3)) # input layer\n","\n","# Convolutional layers with BatchNormalization and MaxPooling\n","layer_1 = Conv2D(32, 3, activation=ELU(), padding='same')(input_dim)\n","x = BatchNormalization()(layer_1)\n","x = MaxPooling2D(pool_size=2, padding='same')(x)\n","\n","layer_2 = Conv2D(32, 3, activation=ELU(), padding='same')(x)\n","layer_2 = BatchNormalization()(layer_2)\n","x = MaxPooling2D(pool_size=2, padding='same')(layer_2)\n","\n","layer_2 = Conv2D(32, 3, activation='relu', padding='same')(x)\n","layer_2 = BatchNormalization()(layer_2)\n","x = MaxPooling2D(pool_size=2, padding='same')(layer_2)\n","\n","# Applying attention mechanism\n","x = attention_mechanism(x)\n","\n","# Flatten layer to reshape data\n","x = Flatten()(x)\n","\n","# Dense layers\n","layer_4 = Dense(32, activation='relu')(x)\n","\n","layer_5 = Dense(1, activation='sigmoid')(layer_4)\n","\n","model = Model(inputs=input_dim, outputs=layer_5) # setting model layers\n","model.summary() # summary of model\n","\n","model.compile(optimizer=Nadam(learning_rate=0.0001), loss='binary_crossentropy', metrics=['accuracy']) # compiling the model"]},{"cell_type":"code","execution_count":116,"metadata":{"execution":{"iopub.execute_input":"2024-05-17T11:35:16.224505Z","iopub.status.busy":"2024-05-17T11:35:16.224212Z","iopub.status.idle":"2024-05-17T11:36:24.186534Z","shell.execute_reply":"2024-05-17T11:36:24.185671Z","shell.execute_reply.started":"2024-05-17T11:35:16.224480Z"},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Epoch 1/12\n","\u001b[1m 12/234\u001b[0m \u001b[32mโ”\u001b[0m\u001b[37mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[1m3s\u001b[0m 16ms/step - accuracy: 0.7340 - loss: 0.6387"]},{"name":"stderr","output_type":"stream","text":["W0000 00:00:1715945721.501733 114 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n"]},{"name":"stdout","output_type":"stream","text":["\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.7917 - loss: 0.4856"]},{"name":"stderr","output_type":"stream","text":["W0000 00:00:1715945726.868314 112 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n","W0000 00:00:1715945727.473353 115 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n"]},{"name":"stdout","output_type":"stream","text":["\n","Epoch 1: val_accuracy improved from -inf to 0.81238, saving model to model.keras\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m13s\u001b[0m 33ms/step - accuracy: 0.7918 - loss: 0.4855 - val_accuracy: 0.8124 - val_loss: 0.4244\n","Epoch 2/12\n","\u001b[1m232/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.8392 - loss: 0.3878\n","Epoch 2: val_accuracy improved from 0.81238 to 0.82896, saving model to model.keras\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 21ms/step - accuracy: 0.8392 - loss: 0.3879 - val_accuracy: 0.8290 - val_loss: 0.4083\n","Epoch 3/12\n","\u001b[1m233/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.8554 - loss: 0.3573\n","Epoch 3: val_accuracy did not improve from 0.82896\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 21ms/step - accuracy: 0.8554 - loss: 0.3573 - val_accuracy: 0.8005 - val_loss: 0.4577\n","Epoch 4/12\n","\u001b[1m232/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.8670 - loss: 0.3259\n","Epoch 4: val_accuracy improved from 0.82896 to 0.84522, saving model to model.keras\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 21ms/step - accuracy: 0.8670 - loss: 0.3259 - val_accuracy: 0.8452 - val_loss: 0.3770\n","Epoch 5/12\n","\u001b[1m229/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.8852 - loss: 0.2962\n","Epoch 5: val_accuracy improved from 0.84522 to 0.84897, saving model to model.keras\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 21ms/step - accuracy: 0.8851 - loss: 0.2962 - val_accuracy: 0.8490 - val_loss: 0.3622\n","Epoch 6/12\n","\u001b[1m229/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.8961 - loss: 0.2734\n","Epoch 6: val_accuracy did not improve from 0.84897\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 21ms/step - accuracy: 0.8961 - loss: 0.2734 - val_accuracy: 0.7942 - val_loss: 0.4653\n","Epoch 7/12\n","\u001b[1m233/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.9001 - loss: 0.2512\n","Epoch 7: val_accuracy did not improve from 0.84897\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 22ms/step - accuracy: 0.9002 - loss: 0.2511 - val_accuracy: 0.8474 - val_loss: 0.3727\n","Epoch 8/12\n","\u001b[1m229/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.9138 - loss: 0.2255\n","Epoch 8: val_accuracy did not improve from 0.84897\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 21ms/step - accuracy: 0.9138 - loss: 0.2253 - val_accuracy: 0.8390 - val_loss: 0.3986\n","Epoch 9/12\n","\u001b[1m233/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.9252 - loss: 0.1959\n","Epoch 9: val_accuracy improved from 0.84897 to 0.85553, saving model to model.keras\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 21ms/step - accuracy: 0.9253 - loss: 0.1958 - val_accuracy: 0.8555 - val_loss: 0.3830\n","Epoch 10/12\n","\u001b[1m231/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.9394 - loss: 0.1654\n","Epoch 10: val_accuracy improved from 0.85553 to 0.85616, saving model to model.keras\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 21ms/step - accuracy: 0.9393 - loss: 0.1655 - val_accuracy: 0.8562 - val_loss: 0.3792\n","Epoch 11/12\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.9522 - loss: 0.1435\n","Epoch 11: val_accuracy did not improve from 0.85616\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 21ms/step - accuracy: 0.9522 - loss: 0.1435 - val_accuracy: 0.8427 - val_loss: 0.4524\n","Epoch 12/12\n","\u001b[1m229/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.9585 - loss: 0.1239\n","Epoch 12: val_accuracy improved from 0.85616 to 0.85804, saving model to model.keras\n","\u001b[1m234/234\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 21ms/step - accuracy: 0.9585 - loss: 0.1239 - val_accuracy: 0.8580 - val_loss: 0.3903\n"]}],"source":["# training model\n","\n","history = model.fit(train_ds,validation_data=val_ds,epochs=12,batch_size = 200, callbacks=[model_checkpoint],verbose=1)"]},{"cell_type":"code","execution_count":117,"metadata":{"execution":{"iopub.execute_input":"2024-05-17T11:36:24.188433Z","iopub.status.busy":"2024-05-17T11:36:24.188136Z","iopub.status.idle":"2024-05-17T11:36:24.833408Z","shell.execute_reply":"2024-05-17T11:36:24.832447Z","shell.execute_reply.started":"2024-05-17T11:36:24.188399Z"},"trusted":true},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAbQAAALgCAYAAAD8w4I6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZ1hURxeA313KAtKUKoio2LuiYkeNijX2gsZeYk0imthrEk1iLNEYTfwsiYoae4wVscVu7MYKFhRFBRXpLOz9ftywcV266FLmfZ594M6dcs5l2bMzc+YchSRJEgKBQCAQ5HGUhhZAIBAIBIKcQBg0gUAgEOQLhEETCAQCQb5AGDSBQCAQ5AuEQRMIBAJBvkAYNIFAIBDkC4RBEwgEAkG+QBg0gUAgEOQLhEETCAQCQb5AGDSBQCAQ5AuEQRMIBAJBvkAYNIFAIBDkC4RBEwgEAkG+QBg0gUAgEOQLhEETCAQCQb5AGDSBQCAQ5AuEQRMIBAJBvkAYNIFAIBDkC4RBEwgEAkG+QBg0gUAgEOQLhEETCAQCQb5AGDSBQCAQ5AuEQRMIBAJBvkAYNIFAIBDkC4RBEwgEAkG+QBg0gUAgEOQLhEETCAQCQb5AGDSBQCAQ5AuEQRMIBAJBvkAYNIFAIBDkC4RBE2SJ/v37U6JEiWy1nTFjBgqFImcFymXcu3cPhULB6tWr3/vYCoWCGTNmaK9Xr16NQqHg3r17GbYtUaIE/fv3z1F53ua9IhBkB2HQ8gkKhSJTr8OHDxta1ALPJ598gkKhICgoKM06kydPRqFQcPny5fcoWdZ59OgRM2bM4OLFi4YWJVWuX7+OQqHAzMyMly9fGlocwTtGGLR8wpo1a3ReLVq0SLW8QoUKbzXO8uXLuXnzZrbaTpkyhbi4uLcaPz/Qu3dvAPz9/dOss379eqpUqULVqlWzPU6fPn2Ii4vD3d09231kxKNHj5g5c2aqBu1t3is5xdq1a3F2dgZg8+bNBpVF8O4xNrQAgpzho48+0rk+deoUAQEBeuVvEhsbi4WFRabHMTExyZZ8AMbGxhgbi7ecl5cXpUuXZv369UybNk3v/smTJ7l79y7ffPPNW41jZGSEkZHRW/XxNrzNeyUnkCQJf39/evXqxd27d1m3bh2DBw82qExpERMTQ6FChQwtRp5HzNAKEE2aNKFy5cqcO3eOxo0bY2FhwaRJkwDYsWMHbdu2xcXFBZVKhYeHB19++SXJyck6fby5L5KyZ/T999/zyy+/4OHhgUqlonbt2pw9e1anbWp7aAqFglGjRrF9+3YqV66MSqWiUqVK7N27V0/+w4cPU6tWLczMzPDw8ODnn3/O9L7cX3/9Rbdu3ShevDgqlQo3NzfGjBmjN2Ps378/lpaWhIaG0rFjRywtLXFwcGDcuHF6z+Lly5f0798fGxsbbG1t6devX6aXtXr37s2NGzc4f/683j1/f38UCgW+vr4kJiYybdo0PD09sbGxoVChQjRq1IhDhw5lOEZqe2iSJPHVV19RrFgxLCwsaNq0Kf/8849e2+fPnzNu3DiqVKmCpaUl1tbWtG7dmkuXLmnrHD58mNq1awMwYMAA7bJ2yv5hantoMTExjB07Fjc3N1QqFeXKleP7779HkiSdell5X6TF8ePHuXfvHj179qRnz54cPXqUhw8f6tXTaDT88MMPVKlSBTMzMxwcHGjVqhV///23Tr21a9dSp04dLCwsKFy4MI0bN2b//v06Mr++h5nCm/uTKX+XI0eOMGLECBwdHSlWrBgA9+/fZ8SIEZQrVw5zc3Ps7Ozo1q1bqvugL1++ZMyYMZQoUQKVSkWxYsXo27cv4eHhREdHU6hQIT799FO9dg8fPsTIyIg5c+Zk8knmHcTX5QJGREQErVu3pmfPnnz00Uc4OTkB8j+ZpaUlfn5+WFpacvDgQaZNm8arV6+YO3duhv36+/sTFRXFxx9/jEKh4LvvvqNz587cuXMnw2/qx44dY+vWrYwYMQIrKysWLVpEly5dCAkJwc7ODoALFy7QqlUrihYtysyZM0lOTmbWrFk4ODhkSu9NmzYRGxvL8OHDsbOz48yZMyxevJiHDx+yadMmnbrJycn4+Pjg5eXF999/z4EDB5g3bx4eHh4MHz4ckA1Dhw4dOHbsGMOGDaNChQps27aNfv36ZUqe3r17M3PmTPz9/alZs6bO2L///juNGjWiePHihIeH87///Q9fX1+GDBlCVFQUK1aswMfHhzNnzlC9evVMjZfCtGnT+Oqrr2jTpg1t2rTh/PnztGzZksTERJ16d+7cYfv27XTr1o2SJUvy5MkTfv75Z7y9vbl27RouLi5UqFCBWbNmMW3aNIYOHUqjRo0AqF+/fqpjS5LEhx9+yKFDhxg0aBDVq1dn3759fP7554SGhrJgwQKd+pl5X6THunXr8PDwoHbt2lSuXBkLCwvWr1/P559/rlNv0KBBrF69mtatWzN48GCSkpL466+/OHXqFLVq1QJg5syZzJgxg/r16zNr1ixMTU05ffo0Bw8epGXLlpl+/q8zYsQIHBwcmDZtGjExMQCcPXuWEydO0LNnT4oVK8a9e/dYunQpTZo04dq1a9rVlOjoaBo1asT169cZOHAgNWvWJDw8nD/++IOHDx9SvXp1OnXqxMaNG5k/f77OTH39+vVIkqRd+s5XSIJ8yciRI6U3/7ze3t4SIC1btkyvfmxsrF7Zxx9/LFlYWEjx8fHasn79+knu7u7a67t370qAZGdnJz1//lxbvmPHDgmQdu7cqS2bPn26nkyAZGpqKgUFBWnLLl26JAHS4sWLtWXt27eXLCwspNDQUG3Z7du3JWNjY70+UyM1/ebMmSMpFArp/v37OvoB0qxZs3Tq1qhRQ/L09NReb9++XQKk7777TluWlJQkNWrUSAKkVatWZShT7dq1pWLFiknJycnasr1790qA9PPPP2v7TEhI0Gn34sULycnJSRo4cKBOOSBNnz5de71q1SoJkO7evStJkiQ9ffpUMjU1ldq2bStpNBptvUmTJkmA1K9fP21ZfHy8jlySJP+tVSqVzrM5e/Zsmvq++V5JeWZfffWVTr2uXbtKCoVC5z2Q2fdFWiQmJkp2dnbS5MmTtWW9evWSqlWrplPv4MGDEiB98sknen2kPKPbt29LSqVS6tSpk94zef05vvn8U3B3d9d5til/l4YNG0pJSUk6dVN7n548eVICpN9++01bNm3aNAmQtm7dmqbc+/btkwBpz549OverVq0qeXt767XLD4glxwKGSqViwIABeuXm5uba36OioggPD6dRo0bExsZy48aNDPvt0aMHhQsX1l6nfFu/c+dOhm2bN2+Oh4eH9rpq1apYW1tr2yYnJ3PgwAE6duyIi4uLtl7p0qVp3bp1hv2Drn4xMTGEh4dTv359JEniwoULevWHDRumc92oUSMdXXbv3o2xsbF2xgbyntXo0aMzJQ/I+54PHz7k6NGj2jJ/f39MTU3p1q2btk9TU1NAXhp7/vw5SUlJ1KpVK9XlyvQ4cOAAiYmJjB49WmeZ9rPPPtOrq1KpUCrlj4fk5GQiIiKwtLSkXLlyWR43hd27d2NkZMQnn3yiUz527FgkSWLPnj065Rm9L9Jjz549RERE4Ovrqy3z9fXl0qVLOkusW7ZsQaFQMH36dL0+Up7R9u3b0Wg0TJs2TftM3qyTHYYMGaK3x/n6+1StVhMREUHp0qWxtbXVee5btmyhWrVqdOrUKU25mzdvjouLC+vWrdPeu3r1KpcvX85wbz2vIgxaAcPV1VX7Afk6//zzD506dcLGxgZra2scHBy0b/rIyMgM+y1evLjOdYpxe/HiRZbbprRPafv06VPi4uIoXbq0Xr3UylIjJCSE/v37U6RIEe2+mLe3N6CvX8o+SlrygLzXUbRoUSwtLXXqlStXLlPyAPTs2RMjIyOtt2N8fDzbtm2jdevWOl8Ofv31V6pWrYqZmRl2dnY4ODiwa9euTP1dXuf+/fsAlClTRqfcwcFBZzyQjeeCBQsoU6YMKpUKe3t7HBwcuHz5cpbHfX18FxcXrKysdMpTPG9T5Esho/dFeqxdu5aSJUuiUqkICgoiKCgIDw8PLCwsdD7gg4ODcXFxoUiRImn2FRwcjFKppGLFihmOmxVKliypVxYXF8e0adO0e4wpz/3ly5c6zz04OJjKlSun279SqaR3795s376d2NhYQF6GNTMz035hym8Ig1bAeP0bYAovX77E29ubS5cuMWvWLHbu3ElAQADffvstIH+4ZURa3nTSG5v9Od02MyQnJ9OiRQt27drF+PHj2b59OwEBAVrnhTf1e1+egY6OjrRo0YItW7agVqvZuXMnUVFROnsba9eupX///nh4eLBixQr27t1LQEAAzZo1y9TfJbvMnj0bPz8/GjduzNq1a9m3bx8BAQFUqlTpnY77Otl9X7x69YqdO3dy9+5dypQpo31VrFiR2NhY/P39c+y9lRnedCZKIbX/xdGjR/P111/TvXt3fv/9d/bv309AQAB2dnbZeu59+/YlOjqa7du3a70+27Vrh42NTZb7ygsIpxABhw8fJiIigq1bt9K4cWNt+d27dw0o1X84OjpiZmaW6kHk9A4np3DlyhVu3brFr7/+St++fbXlAQEB2ZbJ3d2dwMBAoqOjdWZpWT131bt3b/bu3cuePXvw9/fH2tqa9u3ba+9v3ryZUqVKsXXrVp3lrdSWyDIjM8Dt27cpVaqUtvzZs2d6s57NmzfTtGlTVqxYoVP+8uVL7O3ttddZWXJzd3fnwIEDREVF6czSUpa0c+q83NatW4mPj2fp0qU6soL895kyZQrHjx+nYcOGeHh4sG/fPp4/f57mLM3DwwONRsO1a9fSdcIpXLiwnpdrYmIijx8/zrTsmzdvpl+/fsybN09bFh8fr9evh4cHV69ezbC/ypUrU6NGDdatW0exYsUICQlh8eLFmZYnryFmaALtN+HXv7UmJiby008/GUokHYyMjGjevDnbt2/n0aNH2vKgoCC9fZe02oOufpIk8cMPP2RbpjZt2pCUlMTSpUu1ZcnJyVn+sOjYsSMWFhb89NNP7Nmzh86dO2NmZpau7KdPn+bkyZNZlrl58+aYmJiwePFinf4WLlyoV9fIyEhvFrNp0yZCQ0N1ylLOTmXmuEKbNm1ITk7mxx9/1ClfsGABCoUi0/uhGbF27VpKlSrFsGHD6Nq1q85r3LhxWFpaapcdu3TpgiRJzJw5U6+fFP07duyIUqlk1qxZerOk15+Rh4eHzn4owC+//JLmDC01Unvuixcv1uujS5cuXLp0iW3btqUpdwp9+vRh//79LFy4EDs7O+1zDg8P58aNG9rlyPyAmKEJqF+/PoULF6Zfv37asExr1qx5r8syGTFjxgz2799PgwYNGD58uPaDsXLlyhmGXSpfvjweHh6MGzeO0NBQrK2t2bJlS6b2YtKiffv2NGjQgAkTJnDv3j0qVqzI1q1bs7y/ZGlpSceOHbX7aG+6Urdr146tW7fSqVMn2rZty927d1m2bBkVK1YkOjo6S2OlnKebM2cO7dq1o02bNly4cIE9e/bozWTatWvHrFmzGDBgAPXr1+fKlSusW7dOZ2YH8oe4ra0ty5Ytw8rKikKFCuHl5ZXq/lD79u1p2rQpkydP5t69e1SrVo39+/ezY8cOPvvsMx0HkOzy6NEjDh06pOd4koJKpcLHx4dNmzaxaNEimjZtSp8+fVi0aBG3b9+mVatWaDQa/vrrL5o2bcqoUaMoXbo0kydP5ssvv6RRo0Z07twZlUrF2bNncXFx0Z7nGjx4MMOGDaNLly60aNGCS5cusW/fPr1nmx7t2rVjzZo12NjYULFiRU6ePMmBAwf0jil8/vnnbN68mW7dujFw4EA8PT15/vw5f/zxB8uWLaNatWraur169eKLL75g27ZtDB8+XHuM5scff2TmzJkcOnSIJk2aZPFJ51Les1el4D2Rltt+pUqVUq1//PhxqW7dupK5ubnk4uIiffHFF1q330OHDmnrpeW2P3fuXL0+ecONOS23/ZEjR+q1fdPVWZIkKTAwUKpRo4ZkamoqeXh4SP/73/+ksWPHSmZmZmk8hf+4du2a1Lx5c8nS0lKyt7eXhgwZonUDf93lvF+/flKhQoX02qcme0REhNSnTx/J2tpasrGxkfr06SNduHAh0277KezatUsCpKJFi6bqFj579mzJ3d1dUqlUUo0aNaQ///xT7+8gSRm77UuSJCUnJ0szZ86UihYtKpmbm0tNmjSRrl69qve84+PjpbFjx2rrNWjQQDp58qTk7e2t5/K9Y8cOqWLFitojFCm6pyZjVFSUNGbMGMnFxUUyMTGRypQpI82dO1fH/T1Fl8y+L15n3rx5EiAFBgamWWf16tUSIO3YsUOSJPloxNy5c6Xy5ctLpqamkoODg9S6dWvp3LlzOu1Wrlwp1ahRQ1KpVFLhwoUlb29vKSAgQHs/OTlZGj9+vGRvby9ZWFhIPj4+UlBQUJpu+2fPntWT7cWLF9KAAQMke3t7ydLSUvLx8ZFu3LiRqt4RERHSqFGjJFdXV8nU1FQqVqyY1K9fPyk8PFyv3zZt2kiAdOLECW1Zynv69f/vvI5CknLR13CBIIt07NiRf/75h9u3bxtaFIEg19KpUyeuXLmSqT3nvIzYQxPkGd4MU3X79m12796df5ZLBIJ3wOPHj9m1axd9+vQxtCjvHDFDE+QZihYtSv/+/SlVqhT3799n6dKlJCQkcOHCBb2zVQJBQefu3bscP36c//3vf5w9e5bg4GBt5oH8inAKEeQZWrVqxfr16wkLC0OlUlGvXj1mz54tjJlAkApHjhxhwIABFC9enF9//TXfGzMQMzSBQCAQ5BPEHppAIBAI8gXCoAkEAoEgXyAMmkDwL6klpBQIBHkHYdAEuZ6UTMgZvQ4fPmxoUdNk9+7dKBQKXFxc3ltw3/xMaGgo3bt3x9bWFmtrazp06JCptDIgp2WZOXMmpUqVQqVSUapUKb766iuSkpJSrX/+/Hk+/PBDihQpgoWFBZUrV2bRokU5qY4ghxBOIYJcz9q1a3Wuf/vtNwICAlizZo1OeYsWLbQZuLODWq1Go9GgUqmy3Uda9O7dmxMnTnDv3j0CAgJo3rx5jo9RUIiOjqZmzZpERkYyduxYTExMWLBgAZIkcfHixQyzWffo0YNNmzYxcOBAatWqxalTp/j1118ZMmQIv/zyi07d/fv30759e2rUqEGPHj2wtLQkODgYjUbDd9999y7VFGQHg8UoEQiySWphvVIjJibmPUiTMdHR0VKhQoWkRYsWSTVq1JD69+9vaJHSJDo62tAiZMi3334rAdKZM2e0ZdevX5eMjIykiRMnptv2zJkzEiBNnTpVp3zs2LGSQqGQLl26pC2LjIyUnJycUs1ULcidiCVHQb6gSZMmVK5cmXPnztG4cWMsLCyYNGkSADt27KBt27a4uLigUqnw8PDgyy+/1Itg/uYe2r1791AoFHz//ff88ssveHh4oFKpqF27NmfPns20bNu2bSMuLo5u3brRs2dPbXqTN4mPj2fGjBmULVsWMzMzihYtSufOnQkODtbW0Wg0/PDDD1SpUkWbiLRVq1b8/fffOjKn5Hp7HYVCwYwZM7TXM2bMQKFQcO3aNXr16kXhwoVp2LAhAJcvX9YeYjczM8PZ2ZmBAwcSERGh129oaCiDBg3SPt+SJUsyfPhwEhMTuXPnDgqFggULFui1O3HiBAqFgvXr12szo4eHh2f4PDdv3kzt2rWpXbu2tqx8+fJ88MEH/P777+m2/euvvwA5uerr9OzZE0mS2Lhxo7bM39+fJ0+e8PXXX6NUKomJiRHLxbkcYdAE+YaIiAhat25N9erVWbhwIU2bNgVg9erVWFpa4ufnxw8//ICnpyfTpk1jwoQJmerX39+fuXPn8vHHH/PVV19x7949OnfujFqtzlT7devW0bRpU5ydnenZsydRUVHs3LlTp05ycjLt2rVj5syZeHp6Mm/ePD799FMiIyN18l4NGjSIzz77DDc3N7799lsmTJiAmZkZp06dyuRT0qdbt27ExsYye/ZshgwZAsi54u7cucOAAQNYvHgxPXv2ZMOGDbRp00YnC8OjR4+oU6cOGzZsoEePHixatIg+ffpw5MgRYmNjKVWqFA0aNNDJEv36c7GysqJDhw6cOXOGChUq6KWWeRONRsPly5epVauW3r06deoQHBxMVFRUmu0TEhIA/eSaFhYWAJw7d05bduDAAaytrQkNDaVcuXJYWlpibW3N8OHDU/1CIsgFGHqKKBBklbQyCQDSsmXL9OrHxsbqlX388ceShYWFFB8fry1LK5OAnZ2d9Pz5c235jh07JEDauXNnhrI+efJEMjY2lpYvX64tq1+/vtShQwedeitXrpQAaf78+Xp9pESiP3jwoARIn3zySZp1UmROLdo/aWQ/8PX11aub2jNbv369BEhHjx7VlvXt21dSKpWpRo5Pkennn3+WAOn69evae4mJiZK9vb02gvyhQ4f05EuNZ8+eSYA0a9YsvXtLliyRAOnGjRtptt+yZYsESGvWrNEpX7ZsmQRIlStX1pZVrVpVsrCwkCwsLKTRo0dLW7ZskUaPHi0BUs+ePdOVU2AYxAxNkG9QqVQMGDBAr/z1b+NRUVGEh4fTqFEj7TJXRvTo0YPChQtrrxs1agSQKa+6DRs2oFQq6dKli7bM19eXPXv26ORj27JlC/b29owePVqvj5Ss0Fu2bEGhUKSarTormaPfZNiwYXplrz+z+Ph4wsPDqVu3LiB7/YE8W9q+fTvt27dPdcaUIlP37t0xMzPTmaXt27eP8PBwPvroI0BeMpYkSWdJNDVSAlSn5riTkhj1zSDWr9OmTRvc3d0ZN24cW7du5f79+/z+++9MnjwZY2NjnbbR0dHExsbSt29fFi1aROfOnVm0aBEff/wxGzZsEBkeciHCoAnyDa6urpiamuqV//PPP3Tq1AkbGxusra1xcHDQfpBmJiFn8eLFda5TjFtmEoSuXbuWOnXqEBERQVBQEEFBQdSoUYPExEQ2bdqkrRccHEy5cuUwNk47vGpwcDAuLi4UKVIkw3GzQmrJOJ8/f86nn36Kk5MT5ubmODg4aOulPLNnz57x6tUrKleunG7/tra2tG/fXpvEFOTlRldXV5o1a5YlWVMMbcrS4eukLAO+uZz4OmZmZuzatQs7Ozu6dOlCiRIl6Nu3L9OmTaNIkSJYWlrqjeXr66vTR69evQCylTVc8G4RwYkF+YbUPshevnyJt7c31tbWzJo1Cw8PD8zMzDh//jzjx4/P1Ca/kZFRquVSBidebt++rXUeSS2A8rp16xg6dGiG42eFtGZqbzrAvE5qz6179+6cOHGCzz//nOrVq2NpaYlGo9FmdM4qffv2ZdOmTZw4cYIqVarwxx9/MGLECJTKrH2nLlKkCCqVisePH+vdSylzcXFJt49KlSpx9epVrl27xosXL6hYsSLm5uaMGTMGb29vbT0XFxf++ecfvaMgjo6OQOa+0AjeL8KgCfI1hw8fJiIigq1bt9K4cWNt+d27d9/52OvWrcPExIQ1a9boGcVjx46xaNEiQkJCKF68OB4eHpw+fRq1Wo2JiUmq/Xl4eLBv3z6eP3+e5iwtZfb48uVLnfL79+9nWu4XL14QGBjIzJkzmTZtmrb8zSU2BwcHrK2tdZxW0qJVq1Y4ODiwbt06vLy8iI2NzVZ+LqVSSZUqVbRena9z+vRpSpUqhZWVVYb9KBQKKlWqpL3evXs3Go1G53ygp6cnAQEBWqeQFB49egTI+gtyF2LJUZCvSTEkr8+mEhMT+emnn9752OvWraNRo0b06NGDrl276rw+//xzANavXw9Aly5dCA8PT9XLL0X2Ll26IEkSM2fOTLOOtbU19vb2HD16VOd+VvRN7ZkBLFy4UOdaqVTSsWNHdu7cmaqBeb29sbExvr6+/P7776xevZoqVapQtWpV7f2suO137dqVs2fP6ox58+ZNDh48SLdu3XTq3rhxg5CQkHT7i4uLY+rUqRQtWlRnebF79+4ArFixQqf+//73P4yNjUVi2VyImKEJ8jX169encOHC9OvXj08++QSFQsGaNWsyXC58W06fPk1QUBCjRo1K9b6rqys1a9Zk3bp1jB8/nr59+/Lbb7/h5+fHmTNnaNSoETExMRw4cIARI0bQoUMHmjZtSp8+fVi0aBG3b9/WLv/99ddfNG3aVDvW4MGD+eabbxg8eDC1atXi6NGj3Lp1K9OyW1tb07hxY7777jvUajWurq7s378/1Vnt7Nmz2b9/P97e3gwdOpQKFSrw+PFjNm3axLFjx7C1tdXWTXGuOHToEN9++61OP2fOnKFp06ZMnz49Q8eQESNGsHz5ctq2bcu4ceMwMTFh/vz5ODk5MXbsWJ26FSpUwNvbWycsWvfu3XFxcaFixYq8evWKlStXcufOHXbt2qUzu6tRowYDBw5k5cqVJCUlafvZtGkTEydOzHBpU2AADOZfKRBkk7Tc9itVqpRq/ePHj0t169aVzM3NJRcXF+mLL76Q9u3bJwHSoUOHtPXSctufO3euXp9k4GKe4t4dHBycZp0ZM2ZIgDY6RWxsrDR58mSpZMmSkomJieTs7Cx17dpVp4+kpCRp7ty5Uvny5SVTU1PJwcFBat26tXTu3DltndjYWGnQoEGSjY2NZGVlJXXv3l16+vRpmm77z54905Pt4cOHUqdOnSRbW1vJxsZG6tatm/To0aNU9b5//77Ut29fycHBQVKpVFKpUqWkkSNHSgkJCXr9VqpUSVIqldLDhw91yjPrtp/CgwcPpK5du0rW1taSpaWl1K5dO+n27dt69QDJ29tbp+zbb7+VypcvL5mZmUmFCxeWPvzwQ+nChQupjpOYmCjNmDFDcnd3l0xMTKTSpUtLCxYsyJSMgvePiOUoEAjeGzVq1KBIkSIEBgYaWhRBPkTsoQkEgvfC33//zcWLF+nbt6+hRRHkU8QMTSAQvFOuXr3KuXPnmDdvHuHh4dy5c0d7CFogyEnEDE0gELxTNm/ezIABA1Cr1axfv14YM8E7Q8zQBAKBQJAvEDM0gUAgEOQLhEET5CpSy+eVkrcrM7yZ8ysnaNKkiThEKxDkAYRBE2SbDz/8EAsLi3TzT/Xu3RtTU9NUE0PmJq5du8aMGTO4d++eoUVJld27d6NQKHBxcRFJJnOA0NBQunfvjq2tLdbW1nTo0CFT2RNAzjKwbNkybYxLJycnWrduzYkTJ3TqHT58GIVCkerrzfx1me1TkD7CoAmyTe/evYmLi2Pbtm2p3o+NjWXHjh20atUKOzu7bI8zZcqUdFOC5ATXrl1j5syZqRq0/fv3s3///nc6fkasW7eOEiVK8PjxYw4ePGhQWfI60dHRNG3alCNHjjBp0iRmzpzJhQsX8Pb2ztQXr88//5zhw4dTpUoV5s+fz9ixY7l16xbe3t6cOXNGr/4nn3zCmjVrdF6lS5d+qz4FaWDIU92CvE1sbKxkZWUl+fj4pHrf399fAqQNGzZkus/0ElRmBrIQbeJ1Nm3apBc5JLcQHR0tFSpUSFq0aJFUo0YNqX///oYWKU2io6MNLUKGfPvttxIgnTlzRlt2/fp1ycjISJo4cWK6bdVqtWRubi517dpVp/zOnTt6yVdTop9s2rQpx/oUpI+YoQmyjbm5OZ07dyYwMJCnT5/q3ff398fKyooPP/yQ58+fM27cOKpUqaJNZd+6dWsuXbqU4Tip7aElJCQwZswYHBwctGM8fPhQr+39+/cZMWIE5cqVw9zcHDs7O7p166YzE1u9erU2qG3Tpk21y0Ip8f9S20N7+vQpgwYNwsnJCTMzM6pVq8avv/6qUydlP/D777/nl19+wcPDA5VKRe3atbVpZTLDtm3biIuLo1u3bvTs2ZOtW7dqc3+9Tnx8PDNmzKBs2bKYmZlRtGhROnfuTHBwsLaORqPhhx9+oEqVKpiZmeHg4ECrVq20gX5T28NM4c39yZS/y7Vr1+jVqxeFCxemYcOGAFy+fJn+/ftTqlQpzMzMcHZ2ZuDAganOgEJDQxk0aBAuLi6oVCpKlizJ8OHDSUxM5M6dOygUChYsWKDX7sSJEygUCtavX5+l4MabN2+mdu3a1K5dW1tWvnx5PvjgA37//fd026rVauLi4lJNKaNUKtPMxRYVFUVSUlKO9inQRxg0wVvRu3dvkpKS9D4Inj9/zr59++jUqRPm5ubcuXOH7du3065dO+bPn8/nn3/OlStX8Pb21qbjyAqDBw9m4cKFtGzZkm+++QYTExPatm2rV+/s2bOcOHGCnj17smjRIoYNG0ZgYCBNmjQhNjYWgMaNG/PJJ58AMGnSJO2yUIUKFVIdOy4ujiZNmrBmzRp69+7N3LlzsbGxoX///vzwww969f39/Zk7dy4ff/wxX331Fffu3aNz586o1epM6bpu3TqaNm2Ks7MzPXv2JCoqip07d+rUSU5Opl27dsycORNPT0/mzZvHp59+SmRkpE56l0GDBvHZZ5/h5ubGt99+y4QJEzAzM9Pb08kK3bp1IzY2ltmzZzNkyBAAAgICuHPnDgMGDGDx4sX07NmTDRs20KZNG53A0I8ePaJOnTps2LCBHj16sGjRIvr06cORI0eIjY2lVKlSNGjQQCfb9evPxcrKig4dOnDmzBkqVKiQaraC19FoNFy+fDnVDNt16tQhODg43T1hc3NzvLy8WL16NevWrSMkJERrvAsXLpxqfrsBAwZgbW2NmZkZTZs21ctMkJ0+BWlg6CmiIG+TlJQkFS1aVKpXr55O+bJlyyRA2rdvnyRJkhQfHy8lJyfr1Ll7966kUqmkWbNm6ZTxxpJjShDdFC5evCgB0ogRI3T669Wrl96SY2xsrJ7MJ0+elADpt99+05alt+To7e2tE+B24cKFEiCtXbtWW5aYmCjVq1dPsrS0lF69eqWji52dnfT8+XNt3R07dkiAtHPnTr2x3uTJkyeSsbGxtHz5cm1Z/fr1pQ4dOujUW7lypQRI8+fP1+tDo9FIkiRJBw8eTHMJK6VOeku+bz7blL+Lr6+vXt3Unvv69eslQDp69Ki2rG/fvpJSqZTOnj2bpkw///yzBEjXr1/X3ktMTJTs7e2lfv36SZKU+eDGz549kwCd91wKS5YskQDpxo0b6fZx+/ZtqWbNmhKgfZUqVUqv3fHjx6UuXbpIK1askHbs2CHNmTNHsrOzk8zMzKTz589nq09B+ogZmuCtMDIyomfPnpw8eVJnGc/f3x8nJyc++OADAFQqlTY7cXJyMhEREVhaWlKuXDnOnz+fpTF3794NoJ1VpfDZZ5/p1X19uUatVhMREUHp0qWxtbXN8rivj+/s7KyTO8vExIRPPvmE6Ohojhw5olO/R48e2sSbAI0aNQLIlFfdhg0bUCqVdOnSRVvm6+vLnj17dDImb9myBXt7e0aPHq3XR8py7ZYtW1AoFEyfPj3NOtlh2LBhemWvP/f4+HjCw8OpW7cugPa5azQatm/fTvv27VOdMaXI1L17d8zMzHRmafv27SM8PJyPPvoIkJeFJUnK8MhGinORSqXSu5cSwSQjByQrKysqVarEyJEj2bp1Kz/99BNJSUl07NhRZ8mzfv36bN68mYEDB/Lhhx8yYcIETp06hUKhYOLEidnqU5A+wqAJ3prevXsDshEDePjwIX/99Rc9e/bUJovUaDQsWLCAMmXKoFKpsLe3x8HBgcuXLxMZGZml8e7fv49SqcTDw0On/PWswinExcUxbdo03NzcdMZ9+fJllsd9ffwyZcpoDXQKKUuUb2aHLl68uM51inF73SClxdq1a6lTpw4REREEBQURFBREjRo1SExMZNOmTdp6wcHBlCtXDmPjtFMcBgcH4+Likma26+xSsmRJvbLnz5/z6aef4uTkhLm5OQ4ODtp6Kc/92bNnvHr1isqVK6fbv62tLe3bt9e+v0BebnR1daVZs2ZZkjXF0CYkJOjdS9mXTG/PKikpiebNm2NjY8OPP/5Ip06dGD58OAcOHCA4OJi5c+emO37p0qXp0KEDhw4dIjk5OUf6FPyHMGiCt8bT05Py5ctrsy+vX78eSZK0hg7kRJB+fn40btyYtWvXsm/fPgICAqhUqdI7PVc1evRovv76a7p3787vv//O/v37CQgIwM7O7r2d50ox6m8iZRB17vbt25w9e5Zjx45RpkwZ7SvF8SK1faW3Ja2ZWsqHb2qkZgC6d+/O8uXLGTZsGFu3bmX//v3s3bsXIFvPvW/fvty5c4cTJ04QFRXFH3/8ga+vr96XiowoUqQIKpWKx48f691LKUsvcefRo0e5evUqH374oU55mTJlqFChAsePH89QBjc3NxITE4mJicmxPgUyImO1IEfo3bs3U6dO5fLly/j7+1OmTBkdL7LNmzfTtGlTvXT2L1++xN7ePktjubu7o9FotLOSFG7evKlXd/PmzfTr14958+Zpy+Lj43n58qVOvawsubm7u3P58mU0Go3OB+qNGze093OCdevWYWJiwpo1a/SM4rFjx1i0aBEhISEUL14cDw8PTp8+jVqtxsTEJNX+PDw82LdvH8+fP09zlpYye3zz+bw560yPFy9eEBgYyMyZM5k2bZq2/Pbt2zr1HBwcsLa21nFaSYtWrVrh4ODAunXr8PLyIjY2lj59+mRaphSUSiVVqlTRc8wAOct4qVKldLJWv8mTJ0+A1A28Wq1O05PxdVKyDVhaWuZYnwIZMUMT5Agps7Fp06Zx8eJFndkZyLOUN2ckmzZtIjQ0NMtjtW7dGoBFixbplC9cuFCvbmrjLl68WO/Do1ChQoD+B3lqtGnThrCwMDZu3KgtS0pKYvHixVhaWuLt7Z0ZNTJk3bp1NGrUiB49etC1a1ed1+effw6gnRV36dKF8PDwVL38UvTv0qULkiQxc+bMNOtYW1tjb2/P0aNHde7/9NNPmZY7xfi++dzf/PsolUo6duzIzp07UzUwr7c3NjbG19eX33//ndWrV1OlShWqVq2qvZ8Vt/2uXbty9uxZnTFv3rzJwYMHtcc3Urhx4wYhISHa67JlywLy3ubrnD9/nps3b1KjRg1t2bNnz/TGvnTpEn/88QctW7bUfhnKSp+C9BEzNEGOULJkSerXr8+OHTsA9Axau3btmDVrFgMGDKB+/fpcuXKFdevWUapUqSyPVb16dXx9ffnpp5+IjIykfv36BAYGEhQUpFe3Xbt2rFmzBhsbGypWrMjJkyc5cOCAXuSS6tWrY2RkxLfffktkZCQqlYpmzZrh6Oio1+fQoUP5+eef6d+/P+fOnaNEiRJs3ryZ48ePs3DhwnS/4WeW06dPExQUxKhRo1K97+rqSs2aNVm3bh3jx4+nb9++/Pbbb/j5+XHmzBkaNWpETEwMBw4cYMSIEXTo0IGmTZvSp08fFi1axO3bt2nVqhUajYa//vqLpk2bascaPHgw33zzDYMHD6ZWrVocPXqUW7duZVp2a2trGjduzHfffYdarcbV1ZX9+/dz9+5dvbqzZ89m//79eHt7M3ToUCpUqMDjx4/ZtGkTx44dw9bWVlu3b9++LFq0iEOHDvHtt9/q9HPmzBmaNm3K9OnTM3QMGTFiBMuXL6dt27aMGzcOExMT5s+fj5OTE2PHjtWpW6FCBby9vbVnEj09PWnRogW//vorr169omXLljx+/JjFixdjbm6u45jUo0cPzM3NqV+/Po6Ojly7do1ffvkFCwsLvvnmG229rPQpyABDuVcK8h8pbs916tTRuxcfHy+NHTtWKlq0qGRubi41aNBAOnnypJ5LfGbc9iVJkuLi4qRPPvlEsrOzkwoVKiS1b99eevDggZ7r9osXL6QBAwZI9vb2kqWlpeTj4yPduHFDcnd317p8p7B8+XKpVKlSkpGRkY4L/5sySpLsTp/Sr6mpqVSlShU9V/cUXebOnav3PN6U801Gjx4tAVJwcHCadWbMmCEB0qVLlyRJkl3lJ0+eLJUsWVIyMTGRnJ2dpa5du+r0kZSUJM2dO1cqX768ZGpqKjk4OEitW7eWzp07p60TGxsrDRo0SLKxsZGsrKyk7t27S0+fPk3Tbf/Zs2d6sj18+FDq1KmTZGtrK9nY2EjdunWTHj16lKre9+/fl/r27Ss5ODhIKpVKKlWqlDRy5EgpISFBr99KlSpJSqVSevjwoU55Zt32U3jw4IHUtWtXydraWrK0tJTatWsn3b59W68eoPe3j42NlWbNmiVVrFhRMjc3l2xsbKR27dpJFy5c0Kn3ww8/SHXq1JGKFCkiGRsbS0WLFpU++uijVMfJbJ+C9BH50AQCQZ6hRo0aFClShMDAQEOLIsiFiD00gUCQJ/j777+5ePEiffv2NbQoglyKmKEJBIJczdWrVzl37hzz5s0jPDxc6yUoELyJmKEJBIJczebNmxkwYABqtZr169cLYyZIEzFDEwgEAkG+QMzQBAKBQJAvEAZNIBAIBPkCcbA6m2g0Gh49eoSVldVbRSoXCAQCQfpIkkRUVBQuLi7pxu8UBi2bPHr0CDc3N0OLIRAIBAWGBw8eUKxYsTTvC4OWTVLCGz148ABra+sst1er1ezfv5+WLVumGUw2r1MQdISCoWdB0BEKhp55UcdXr17h5uaWYVg5YdCyScoyo7W1dbYNmoWFBdbW1nnmTZVVCoKOUDD0LAg6QsHQMy/rmNH2jnAKEQgEAkG+QBg0gUAgEOQLhEETCAQCQb5AGDSBQCAQ5AuEQRMIBAJBvkAYNIFAIBDkC4TbvkAgEAjeGc+iEvj97wcAjGxa+p2OJQyaQCAQCHIUSZI4H/KC307eZ/eVx6iTJazMjBnQoAQWpu/O7AiDJhAIBIIcITYxiR0XH7Hm5H2uPX6lLa/uZkvfeu4YpxOHMScQBk0gEAgEb8WdZ9GsPRXCpnMPiIpPAkBlrKRDdRf61C1BlWI270UOYdAEAoFAkGWSkjUcvPGUNafu89ftcG25u50FH3m5061WMWwtTN+rTMKgCQQCgSDThEcnsPHsA/xPhxD6Mg4AhQKalXOkTz13GpdxQKk0TEotYdAEAoFAkC4pTh5rTt5n95UwEpM1ABS2MKFH7eL09iqOWxELA0spDJpAIBAI0iAuMZkdF0P5LRUnjz513WlbtShmJkYGlFAXYdAEAoFAoMPd8BjWnLzP5nMPePWak8eH1VzoW+/9OXlkFWHQBAKBQECyRuLgjaf8dvKejpNH8SIWfFS3ON083Shc6P06eWQVg4e+WrJkCSVKlMDMzAwvLy/OnDmTZl21Ws2sWbPw8PDAzMyMatWqsXfvXp06M2bMQKFQ6LzKly+vUyc+Pp6RI0diZ2eHpaUlXbp04cmTJ+9EP4FAIMjNREQnsORQEI2/O8SQ3/7mr9vhspNHeUdWDajN4XFNGNrYI9cbMzDwDG3jxo34+fmxbNkyvLy8WLhwIT4+Pty8eRNHR0e9+lOmTGHt2rUsX76c8uXLs2/fPjp16sSJEyeoUaOGtl6lSpU4cOCA9trYWFfNMWPGsGvXLjZt2oSNjQ2jRo2ic+fOHD9+/N0pKxAIBLkESYILIS9Z/3couy4/1nHy6F7bjd513CluZ3gnj6xiUIM2f/58hgwZwoABAwBYtmwZu3btYuXKlUyYMEGv/po1a5g8eTJt2rQBYPjw4Rw4cIB58+axdu1abT1jY2OcnZ1THTMyMpIVK1bg7+9Ps2bNAFi1ahUVKlTg1KlT1K1bN6fVFAgEglyBRiOx4+IjFl4x4uGp/1bDqhWzoU+9ErTLZU4eWcVgBi0xMZFz584xceJEbZlSqaR58+acPHky1TYJCQmYmZnplJmbm3Ps2DGdstu3b+Pi4oKZmRn16tVjzpw5FC9eHIBz586hVqtp3ry5tn758uUpXrw4J0+eTNOgJSQkkJCQoL1+9Ur2+FGr1ajV6ixojrbd6z/zIwVBRygYehYEHSF/63k8OIJv997ielgUoMDUSEm7qs70ruNGVa2Thwa1WmNIMVMls38Pgxm08PBwkpOTcXJy0il3cnLixo0bqbbx8fFh/vz5NG7cGA8PDwIDA9m6dSvJycnaOl5eXqxevZpy5crx+PFjZs6cSaNGjbh69SpWVlaEhYVhamqKra2t3rhhYWFpyjtnzhxmzpypV75//34sLLI/NQ8ICMh227xCQdARCoaeBUFHyF96PoqFP+4ruf5SdpkwM5L4wEVDA6ckCpmE8PByCA8vG1jIDIiNjc1UvTzl5fjDDz8wZMgQypcvj0KhwMPDgwEDBrBy5UptndatW2t/r1q1Kl5eXri7u/P7778zaNCgbI89ceJE/Pz8tNevXr3Czc2Nli1bYm1tneX+1Go1AQEBtGjRAhMTk2zLlZspCDpCwdCzIOgI+UvPJ6/i+eFgMFsuh6KRwFipoFcdNz5u6Mbfx4/kKR1TVsQywmAGzd7eHiMjIz3vwidPnqS5/+Xg4MD27duJj48nIiICFxcXJkyYQKlSpdIcx9bWlrJlyxIUFASAs7MziYmJvHz5UmeWlt64ACqVCpVKpVduYmLyVm+Kt22fFygIOkLB0LMg6Ah5W8+YhCR+PnqH5UfvEKeWV6/aVHHmC5/ylLAvpF2+y0s6ZlZOg7ntm5qa4unpSWBgoLZMo9EQGBhIvXr10m1rZmaGq6srSUlJbNmyhQ4dOqRZNzo6muDgYIoWLQqAp6cnJiYmOuPevHmTkJCQDMcVCASC3EpSsgb/0yF4zz3MosDbxKmTqVncli3D6/FTb09K2BcytIjvHIMuOfr5+dGvXz9q1apFnTp1WLhwITExMVqvx759++Lq6sqcOXMAOH36NKGhoVSvXp3Q0FBmzJiBRqPhiy++0PY5btw42rdvj7u7O48ePWL69OkYGRnh6+sLgI2NDYMGDcLPz48iRYpgbW3N6NGjqVevnvBwFAgEeQ5Jkjh08ylzdt/g9tNoQI54P75VeVpXdkahMEygYENgUIPWo0cPnj17xrRp0wgLC6N69ers3btX6ygSEhKC8rWEcPHx8UyZMoU7d+5gaWlJmzZtWLNmjc7S4cOHD/H19SUiIgIHBwcaNmzIqVOncHBw0NZZsGABSqWSLl26kJCQgI+PDz/99NN701sgEAhygquhkXy96zon70QA8jmyTz4oQ28vd0yNDR43471jcKeQUaNGMWrUqFTvHT58WOfa29uba9eupdvfhg0bMhzTzMyMJUuWsGTJkkzLKRAIBLmF0JdxfL/vJtsuhAJgaqxkQIMSjGhSGhvzvLEv9i4wuEETCAQCQeaIjFPz0+EgVh2/R2KSfF6sY3UXxvmUo1jhvBfZI6cRBk0gEAhyOYlJGtadvs+iwNu8iJW9FOuVsmNSmwq5NvK9IRAGTSAQCHIpkiSx92oY3+69wb0I+XBxaUdLJrUpT9NyjgXK4SMzCIMmEAgEuZBz918we/d1zt1/AYC9pQq/FmXpXqsYxkYFz+EjMwiDJhAIBLmIe+ExfLfvBruvyKH4zE2MGNK4FEMbl8JSJT6y00M8HYFAIMgFvIhJZNHB26w9dR91soRSAd1ruTGmRVmcrM0y7kAgDJpAIBAYknh1MqtP3GPJoSCi4pMAaFLOgYmtK1DO2crA0uUthEETCAQCAxARncCOi49YcewuoS/jAKhY1JpJbSrQsIy9gaXLmwiDJhAIBO+JhKRkDt14yuZzoRy++ZQkjQRAURszxrUsR6cariiVwnMxuwiDJhAIBO8QSZK49DCSLecesvPyI17G/pessloxG7p4FqN7Lbc8nSk6tyAMmkAgELwDHkfGsfV8KFvPPyT4WYy23MlaRacaxehS05UyTmKPLCcRBk0gEAhyiNjEJPZeDWPr+VCOB4cjySuKmJkoaVXJmS6exajvYY+RWFZ8JwiDJhAIBG+BRiNx+u5ztpx/yJ4rj4lJTNbe8ypZhC41i9G6ijNWZgU3aPD7Qhg0gUAgyAZ3w2PYev4hW8+Har0UQc5F1rlGMTrXdMWtiAgY/D4RBk0gEAgySWScmj8vP2LLuYecD3mpLbdSGdOuWlG61CyGp3thEWPRQAiDJhAIBOmQlKzh6O1nbDkXSsD1J9q0LUoFNC7rQJeaxWhR0Ul4KeYChEETCASCVLj26BVbzj9kx8VQwqMTteXlnKzo4ulKx+quOIqQVLkKYdAEAoHgX8KjEzj0SMHSJSe5ERalLbcrZMqH1V3oUrMYlVysxZJiLkUYNIFAUOB5EZPIwgO3WHc6hCSNERCFqZGSDyo40qVmMbzLOWAiUrbkeoRBEwgEBZbEJA2/nbzHosDbvPo3MLC7pcSAphXpWKMYthamBpZQkBWEQRMIBAUOSZLY988T5uy5zv1/M0FXKGrNxFZleHHjNG3quGFiIs6N5TUMPodesmQJJUqUwMzMDC8vL86cOZNmXbVazaxZs/Dw8MDMzIxq1aqxd+9enTpz5syhdu3aWFlZ4ejoSMeOHbl586ZOnSZNmqBQKHRew4YNeyf6CQSC3MWVh5H0+OUUw9ae435ELA5WKr7rUpU/RzekXik7Q4sneAsMOkPbuHEjfn5+LFu2DC8vLxYuXIiPjw83b97E0dFRr/6UKVNYu3Yty5cvp3z58uzbt49OnTpx4sQJatSoAcCRI0cYOXIktWvXJikpiUmTJtGyZUuuXbtGoUKFtH0NGTKEWbNmaa8tLMQBSIEgPxMWGc/cfTfZeuEhkgQqYyUfNy7Fx94eFPo3E7QmOYNOBLkagxq0+fPnM2TIEAYMGADAsmXL2LVrFytXrmTChAl69desWcPkyZNp06YNAMOHD+fAgQPMmzePtWvXAujN2FavXo2joyPnzp2jcePG2nILCwucnZ3flWoCgSCXEJuYxM9H7vDz0WDi1fIZsk41XPncpxwutuYGlk6QkxjMoCUmJnLu3DkmTpyoLVMqlTRv3pyTJ0+m2iYhIQEzM91zH+bm5hw7dizNcSIjIwEoUqSITvm6detYu3Ytzs7OtG/fnqlTp6Y7S0tISCAhIUF7/erVK0BeBlWr1Wk1S5OUNtlpm1coCDpCwdAzL+qo0Uhsv/SI+QFBPImS/3c9i9sysXU5qhWzAfT1yYt6ZpW8qGNmZVVIUko86PfLo0ePcHV15cSJE9SrV09b/sUXX3DkyBFOnz6t16ZXr15cunSJ7du34+HhQWBgIB06dCA5OVnH2KSg0Wj48MMPefnypY7R++WXX3B3d8fFxYXLly8zfvx46tSpw9atW9OUd8aMGcycOVOv3N/fXyxXCgS5jKBI2HbfiIcx8nkxO5XEh+4aqhWREEfI8h6xsbH06tWLyMhIrK2t06yXp7wcf/jhB4YMGUL58uVRKBR4eHgwYMAAVq5cmWr9kSNHcvXqVb0Z3NChQ7W/V6lShaJFi/LBBx8QHByMh4dHqn1NnDgRPz8/7fWrV69wc3OjZcuW6T7gtFCr1QQEBNCiRYt8601VEHSEgqFnXtHxfkQs3+67RcD1pwBYqowZ0aQkfb2Ko8pEaKq8oufbkBd1TFkRywiDGTR7e3uMjIx48uSJTvmTJ0/S3NtycHBg+/btxMfHExERgYuLCxMmTKBUqVJ6dUeNGsWff/7J0aNHKVasWLqyeHl5ARAUFJSmQVOpVKhUKr1yExOTt3pTvG37vEBB0BEKhp65VcfIWDWLDt7mt5P3UCdLKBXQy6s4Y5qXxc5S//82I3KrnjlJXtIxs3IazKCZmpri6elJYGAgHTt2BOQlwsDAQEaNGpVuWzMzM1xdXVGr1WzZsoXu3btr70mSxOjRo9m2bRuHDx+mZMmSGcpy8eJFAIoWLZptfQQCwftHnaxh3an7LAy8zctYeZ+lSTkHJrWpQFmRDbrAYdAlRz8/P/r160etWrWoU6cOCxcuJCYmRuv12LdvX1xdXZkzZw4Ap0+fJjQ0lOrVqxMaGsqMGTPQaDR88cUX2j5HjhyJv78/O3bswMrKirCwMABsbGwwNzcnODgYf39/2rRpg52dHZcvX2bMmDE0btyYqlWrvv+HIBAIsowkSRy88ZSvd1/nzrMYAMo6WTK5bUW8yzoYWDqBoTCoQevRowfPnj1j2rRphIWFUb16dfbu3YuTkxMAISEhKJX/nf2Oj49nypQp3LlzB0tLS9q0acOaNWuwtbXV1lm6dCkgH55+nVWrVtG/f39MTU05cOCA1ni6ubnRpUsXpkyZ8s71FQgEb8+1R6/4evc1jgdFAHLgYL+WZelRyw1jEW+xQGNwp5BRo0alucR4+PBhnWtvb2+uXbuWbn8ZOW26ublx5MiRLMkoEAgMz9OoeObvv8XGvx8gSWBqpGRgw5KMaOqBtVne2AsSvFsMbtAEAoEgPeLVyaw4dpefDgURkyiH8mhbtSgTWpXHrYg4MiP4D2HQBAJBrkSSJP649Ihv99zgUWQ8ANXcbJnWrgKe7kUyaC0oiAiDJhAIch3n7r/gyz+vcfHBSwBcbMwY37o87au6oFSKk9GC1BEGTSAQ5BpCX8bx7Z4b/HHpEQCFTI0Y0bQ0gxqWxCwTB6MFBRth0AQCgcGJSUhi2ZFgfjl6h4QkDQoFdPd0Y6xPWRytzDLuQCBAGDSBQGBANBqJrRdC+W7vDZ7+G0DYq2QRprarSGVXGwNLJ8hrCIMmEAgMwtl7z5m18xpXQuWMGG5FzJncpgI+lZxRiAjCgmwgDJpAIHivPHgeyzd7brDrymNADiA8ullp+jcogcpY7JMJso8waAKB4L0QnZDET4eC+N+xuyQmaVAqoEft4vi1KIuDVdYDCAsEbyIMmkAgeKckayQ2n3vA3H23CI+W98nqe9gxpW1FKrpkPfWSQJAWwqAJBIJ3xqk7EczaeY1rj+V8ViXsLJjctiLNKziKfTJBjiMMmkAgyHHuR8QwZ/cN9v4jZ7uwMjPm0w/K0LdeCUyNRQBhwbtBGDSBQJBjRMWr+fFQEKuO3SMxWd4n6+3lzmfNy2Qr0aZAkBWEQRMIBG9NskZi49kHzNt/k4iYRAAalbFnStuKlHMWiTYF7wdh0AQCwVtxIiicWX9e40ZYFACl7AsxpV0FmpYT+2SC94swaAKBIFvcDY9h9u7rBFx7AoCNuQmfflCGPvXcMRGJNgUGQBg0gUCQJSLj1CwOvM2vJ++hTpYwUiroU9edTz8oQ+FCpoYWT1CAEQZNIBBkimQJ1p15wKKDwTz/d5+sSTkHprStQGlHsU8mMDzCoAkEgnSJTUziwD9hfHfJiLC46wCUdrRkStsKNCnnaGDpBIL/EAZNIBDoER6dwMHrT9l/LYy/boeTkKQBFNiam+DXsiy+dYqLfTJBrsPg78glS5ZQokQJzMzM8PLy4syZM2nWVavVzJo1Cw8PD8zMzKhWrRp79+7Ncp/x8fGMHDkSOzs7LC0t6dKlC0+ePMlx3QSCvMS98BiWH71Dt2UnqP31Ab7YcpkD15+SkKShWGFzmrtoODCmIX3rlRDGTJArMegMbePGjfj5+bFs2TK8vLxYuHAhPj4+3Lx5E0dH/aWMKVOmsHbtWpYvX0758uXZt28fnTp14sSJE9SoUSPTfY4ZM4Zdu3axadMmbGxsGDVqFJ07d+b48ePvVX+BwJBIksSV0Ej2//OE/dfCuPUkWud+ZVdrWlZ0pmUlJ0oVMWPPnj3YmJsYSFqBIGMMatDmz5/PkCFDGDBgAADLli1j165drFy5kgkTJujVX7NmDZMnT6ZNmzYADB8+nAMHDjBv3jzWrl2bqT4jIyNZsWIF/v7+NGvWDIBVq1ZRoUIFTp06Rd26dd+H6gKBQUhM0nD6bgT7/3lCwLUnhL2K194zVirwKlWElhWdaV7RCVdbc+09tVptCHEFgixhMIOWmJjIuXPnmDhxorZMqVTSvHlzTp48mWqbhIQEzMx007Gbm5tz7NixTPd57tw51Go1zZs319YpX748xYsX5+TJk2katISEBBISErTXr17JwVbVanW2/tlT2uTnD4qCoCPkfj2j4pP463Y4AdefcvhWONEJSdp7hUyNaFTGnuYVHGlS1l5nBva6Prldx5yiIOiZF3XMrKxZNmglSpRg4MCB9O/fn+LFi2dZsBTCw8NJTk7GyclJp9zJyYkbN26k2sbHx4f58+fTuHFjPDw8CAwMZOvWrSQnJ2e6z7CwMExNTbG1tdWrExYWlqa8c+bMYebMmXrl+/fvx8LCIkN90yIgICDbbfMKBUFHyF16RibC1RcKrjxXcCtSQbL0X8QOKxOJyoUlqhSRKGuThIkyFEJDOR6acb+5Scd3SUHQMy/pGBsbm6l6WTZon332GatXr2bWrFk0bdqUQYMG0alTJ1Sqdx949IcffmDIkCGUL18ehUKBh4cHAwYMYOXKle987IkTJ+Ln56e9fvXqFW5ubrRs2RJr66zndFKr1QQEBNCiRQtMTPLnvkRB0BFyj57Bz2I4cP0pAdefculhpM69knYWNK/gSIsKjlQrZoNSmbWQVLlFx3dNQdAzL+qYsiKWEdkyaJ999hnnz59n9erVjB49mhEjRtCrVy8GDhxIzZo1M9WPvb09RkZGet6FT548wdnZOdU2Dg4ObN++nfj4eCIiInBxcWHChAmUKlUq0306OzuTmJjIy5cvdWZp6Y0LoFKpUjXaJiYmb/WmeNv2eYGCoCO8fz01GokLD16y/1oYAf884U54jM796m62tKzkRMuKzpR2tMyRMcXfMv+Ql3TMrJzZ9r2tWbMmixYt4tGjR0yfPp3//e9/1K5dm+rVq7Ny5UokSUq3vampKZ6engQGBmrLNBoNgYGB1KtXL922ZmZmuLq6kpSUxJYtW+jQoUOm+/T09MTExESnzs2bNwkJCclwXIEgN/DPo0gmbr1MndmBdFl6gp+P3OFOeAymRkq8yzrwdafKnJ70AdtHNmBEk9I5ZswEgtxOtp1C1Go127ZtY9WqVQQEBFC3bl0GDRrEw4cPmTRpEgcOHMDf3z/dPvz8/OjXrx+1atWiTp06LFy4kJiYGK2HYt++fXF1dWXOnDkAnD59mtDQUKpXr05oaCgzZsxAo9HwxRdfZLpPGxsbBg0ahJ+fH0WKFMHa2prRo0dTr1494eEoyNWERycwb/9NNpx9QMr3RSszY5qWc6RlJSe8yzpgZZY3vnELBO+CLBu08+fPs2rVKtavX49SqaRv374sWLCA8uXLa+t06tSJ2rVrZ9hXjx49ePbsGdOmTSMsLIzq1auzd+9erVNHSEgISuV/k8j4+HimTJnCnTt3sLS0pE2bNqxZs0Zn6TCjPgEWLFiAUqmkS5cuJCQk4OPjw08//ZTVRyEQvBcSkzSsPnGXxYFBRP3rodi2alF61nbDq6SdyAAtEPxLlg1a7dq1adGiBUuXLqVjx46prm2WLFmSnj17Zqq/UaNGMWrUqFTvHT58WOfa29uba9euvVWfIC9ZLlmyhCVLlmRKRoHAEEiSROD1p3y16xr3ImQvryquNkxvX5FaJYoYWDqBIPeRZYN2584d3N3d061TqFAhVq1alW2hBIKCzq0nUXz55zX+uh0OgL2lii9alaNrzWJZ9lAUCAoKWTZoT58+JSwsDC8vL53y06dPY2RkRK1atXJMOIGgoPEyNpEFAbdYezqEZI2EqZGSgQ1LMrKph9gfEwgyIMuL7yNHjuTBgwd65aGhoYwcOTJHhBIIChpJyRp+PXEP77mH+fXkfZI1Ej6VnAjwa8yE1uWFMRMIMkGWZ2jXrl1L9axZjRo1MrW/JRAIdDl66xlf/nmN20/l4MDlna2Y1q4i9UvbG1gygSBvkWWDplKpePLkifYwcwqPHz/G2FikVxMIMsudZ9F8ves6gTeeAlDYwoSxLcvRs7YbxiI9i0CQZbJsgVq2bMnEiRPZsWMHNjY2ALx8+ZJJkybRokWLHBdQIMhvvIpXszjwNqtP3EOdLGGsVNC3Xgk+/aAMNhZiaVEgyC5ZNmjff/89jRs3xt3dXZuD7OLFizg5ObFmzZocF1AgyC8kayR+//sB3++7SURMIgBNyjkwpW1FEc1DIMgBsmzQXF1duXz5MuvWrePSpUuYm5szYMAAfH1980xcMIHgfXPqTgSzdl7j2mM5yGoph0JMbVeRpuX0E9kKBILska1Nr0KFCjF06NCclkUgyHc8eB7LnD3X2X1FTk1kZWbMZ83L0reeOyZin0wgyFGy7cVx7do1QkJCSExM1Cn/8MMP31oogSCvE5OQxE+Hg1j+110SkzQoFeBbpzh+LcpiZ/nuUy0JBAWRbEUK6dSpE1euXEGhUGij6isUcvSClGSbAkFBRKOR2HYhlG/33uBplJzhvL6HHVPbVaRC0aznzRMIBJkny2sen376KSVLluTp06dYWFjwzz//cPToUWrVqqUXe1EgKEhcePCSTktPMHbTJZ5GJVC8iAU/9/Fk3WAvYcwEgvdAlmdoJ0+e5ODBg9jb26NUKlEqlTRs2JA5c+bwySefcOHChXchp0CQa3kcGc9vt5WcO3kGgEKmRoxsVpqBDUpiZmJkYOkEgoJDlg1acnIyVlZWgJwh+tGjR5QrVw53d3du3ryZ4wIKBLkVjUZi9Yl7zN13gzi1EoUCutYsxuc+5XC0NjO0eAJBgSPLBq1y5cpcunSJkiVL4uXlxXfffYepqSm//PKLXvQQgSC/EhIRy7jNlzhz9zkAJa0k5vWuS80SIlyVQGAosmzQpkyZQkxMDACzZs2iXbt2NGrUCDs7OzZu3JjjAgoEuQlJklh7OoQ5u68Tm5iMhakRX/iUxfbZFaq42hhaPIGgQJNlg+bj46P9vXTp0ty4cYPnz59TuHBhraejQJAfCX0Zx/jNlzkWJOcoq1OyCN93rUZRaxN2775iYOkEAkGWDJparcbc3JyLFy9SuXJlbXmRIiJ7riD/IkkSm/5+yJd/XiMqIQmVsZLxrcrTv34JlEoFarXa0CIKBAKyaNBMTEwoXry4OGsmKDA8eRXPhC2XOXTzGQA1itsyr1s1SjmI2IsCQW4jy+fQJk+ezKRJk3j+/Pm7kEcgyBVIksT2C6G0XHCUQzefYWqkZELr8mweVl8YM4Egl5LlPbQff/yRoKAgXFxccHd3p1ChQjr3z58/n2PCCQSG4FlUAlO2X2HfP08AqOJqw7zu1SjrZGVgyQQCQXpk2aB17NgxRwVYsmQJc+fOJSwsjGrVqrF48WLq1KmTZv2FCxeydOlSQkJCsLe3p2vXrsyZMwczM/ncT4kSJbh//75euxEjRrBkyRIAmjRpwpEjR3Tuf/zxxyxbtiwHNRPkRXZdfszUHVd5HpOIsVLBJx+UYXgTDxFIWCDIA2TZoE2fPj3HBt+4cSN+fn4sW7YMLy8vFi5ciI+PDzdv3sTRUT+thr+/PxMmTGDlypXUr1+fW7du0b9/fxQKBfPnzwfg7NmzOnt8V69epUWLFnTr1k2nryFDhjBr1izttYWFRY7pJch7vIhJZOqOq/x5+TEA5Z2tmNe9GpVchCu+QJBXyHa0/Zxg/vz5DBkyhAEDBgCwbNkydu3axcqVK5kwYYJe/RMnTtCgQQN69eoFyLMxX19fTp8+ra3j4OCg0+abb77Bw8MDb29vnXILCwucnZ1zWiVBHiTg2hMmbr1CeHQCRkoFI5p4MLpZGUyNxaxMIMhLZNmgKZXKdM+bZdYDMjExkXPnzjFx4kSdvps3b87JkydTbVO/fn3Wrl3LmTNnqFOnDnfu3GH37t306dMnzTHWrl2Ln5+fnszr1q1j7dq1ODs70759e6ZOnZruLC0hIYGEhATt9atXcqJGtVqdLbftlDb52eU7t+v4Kk7NV7tvsO2iPCvzcCjEd50rU7WYDUjJqNWZey/ndj1zgoKgIxQMPfOijpmVNcsGbdu2bXoDXbhwgV9//ZWZM2dmup/w8HCSk5NxcnLSKXdycuLGjRuptunVqxfh4eE0bNgQSZJISkpi2LBhTJo0KdX627dv5+XLl/Tv31+vH3d3d1xcXLh8+TLjx4/n5s2bbN26NU1558yZk6p++/fvf6vlyoCAgGy3zSvkRh2vv1Cw/o6SyEQFCiSauki0cYvk4eXjPLycvT5zo545TUHQEQqGnnlJx9jY2EzVU0gpCc3eEn9/fzZu3MiOHTsyVf/Ro0e4urpy4sQJ6tWrpy3/4osvOHLkiM4yYgqHDx+mZ8+efPXVV3h5eREUFMSnn37KkCFDmDp1ql59Hx8fTE1N2blzZ7qyHDx4kA8++ICgoCA8PDxSrZPaDM3NzY3w8HCsrbOeGkStVhMQEECLFi0wMTHJcvu8QG7UMTohiW/23mTj36EAlLCz4NvOlalZ3DbbfeZGPXOagqAjFAw986KOr169wt7ensjIyHQ/b3NsD61u3boMHTo00/Xt7e0xMjLiyZMnOuVPnjxJc29r6tSp9OnTh8GDBwNQpUoVYmJiGDp0KJMnT0ap/G/P4/79+xw4cCDdWVcKXl5eAOkaNJVKhUqln2nYxMTkrd4Ub9s+L5BbdDwRFM7nmy8T+jIOgP71SzC+VXnMTXMmxUtu0fNdUhB0hIKhZ17SMbNy5siud1xcHIsWLcLV1TXTbUxNTfH09CQwMFBbptFoCAwM1JmxvU5sbKyO0QIwMpI/jN6caK5atQpHR0fatm2boSwXL14EoGjRopmWX5B3iE1MYtqOq/T632lCX8bhVsScDUPrMuPDSjlmzAQCgeHJ8gztzSDEkiQRFRWFhYUFa9euzVJffn5+9OvXj1q1alGnTh0WLlxITEyM1uuxb9++uLq6MmfOHADat2/P/PnzqVGjhnbJcerUqbRv315r2EA2jKtWraJfv34YG+uqGBwcjL+/P23atMHOzo7Lly8zZswYGjduTNWqVbP6OAS5nLP3njNu0yXuR8hr8L29ijOpTQUKqQzq4CsQCN4BWf6vXrBggY5BUyqVODg44OXlReHChbPUV48ePXj27BnTpk0jLCyM6tWrs3fvXq2jSEhIiM6MbMqUKSgUCqZMmUJoaCgODg60b9+er7/+WqffAwcOEBISwsCBA/XGNDU15cCBA1rj6ebmRpcuXZgyZUqWZBfkbuLVyXy/7yYrjt9FkqCojRnfda1KozIOGTcWCAR5kiwbtDc9Bt+WUaNGMWrUqFTvHT58WOfa2NiY6dOnZ3i4u2XLlnpLkCm4ubnpRQkR5C8uhLxg3KZLBD+T8/Z18yzG1PYVsTbLG/sFAoEge2TZoK1atQpLS0u9yBubNm0iNjaWfv365ZhwAkFWiE1MYvHBIH4+EoxGAgcrFd90rsIHFZwybiwQCPI8WXYKmTNnDvb2+mnmHR0dmT17do4IJRBkBY1GYtuFhzT7/ghLD8vGrEN1FwLGNBbGTCAoQGR5hhYSEkLJkiX1yt3d3QkJCckRoQSCzHLu/nNm7bzGpYeRABQrbM7UdhXxqSTCmgkEBY0sGzRHR0cuX75MiRIldMovXbqEnZ1dTsklEKTLwxexfLv3JjsvPQKgkKkRI5uVZmCDkpiZCFd8gaAgkmWD5uvryyeffIKVlRWNGzcG4MiRI3z66af07NkzxwUUCF4nJiGJpYeDWf7XHRKSNCgU0KOWG34ty+JoZWZo8QQCgQHJskH78ssvuXfvHh988IH2jJdGo6Fv375iD03wztBoJLacf8jcfTd5GiWHIKtbqghT21UUKV4EAgGQDYNmamrKxo0b+eqrr7h48SLm5uZUqVIFd3f3dyGfQMCZu8/58s9rXAmV98nc7SyY1KYCLSs6pZv5QSAQFCyyHS6hTJkylClTJidlEQh0ePA8lm/23GDXFTm9i5XKmNEflKZf/RKojMU+mUAg0CXLBq1Lly7UqVOH8ePH65R/9913nD17lk2bNuWYcIKCSXRCEksOBbHi2F0SkzQoFdCzTnH8WpTF3lI/QLRAIBBANgza0aNHmTFjhl5569atmTdvXk7IJCigJGskNp97wNx9twiPlvfJGpS2Y0rbilQomvUUPQKBoGCRZYMWHR2NqampXrmJiYk2i7NAkFVOBkfw5Z/XuPZYfg+VtC/EpDYVaF7BUeyTCQSCTJFlg1alShU2btzItGnTdMo3bNhAxYoVc0wwQcHgfkQMs3dfZ98/cl48KzNjPv2gDH3rlcDUOEeyGwkEggJClg3a1KlT6dy5M8HBwTRr1gyAwMBA/P392bx5c44LKMifvIpXs+RgEKuO3yMxWYORUkGvOsUZ06IsRQrprwAIBII8THgQaJLAsfw7HSbLBq19+/Zs376d2bNns3nzZszNzalWrRoHDx6kSJEi70JGQT4iWSOx4WwI8/ffIiImEYBGZeyZ2q4iZZ2sDCydQCDIUTTJcHoZBM4CuzIw5CAYv7svrNly22/btq02E/SrV69Yv34948aN49y5cyQnJ+eogIL8w/GgcL788xo3wqIAKOVQiKltK9KknIPYJxMI8hsRwbBjJISclK8L2UFCFBi/uxCJ2T6HdvToUVasWMGWLVtwcXGhc+fOLFmyJCdlE+QT7kXE8O2+IA5cl/fJbMxN+Kx5GT6q646JkdgnE+QyJA2o4yApBpITISnhtZ8JkJT4xs+Et6iXCCYWUG8klPI2tOY5g0YDZ5dDwHRIigNTS2j5JXgOgHf8xTVLBi0sLIzVq1ezYsUKXr16Rffu3UlISGD79u3CIUSgx6s4NdvuKRl35gTqZAkjpYI+dd35rHkZbC3EPpkgFyFJcPpnjA/PoUP8S7j4nse/vQ8qdoCWX4Ot23sePAd5fhd2jIL7x+TrEo2gwxIo/H4iSWXaoLVv356jR4/Stm1bFi5cSKtWrTAyMmLZsmXvUj5BHuXM3eeM9j/PkyglING0nAOT21agtKPYJxPkMmLCYfsIuL2PVOcPRqZgpJL3flL9qZLrvP7TWJX2vTf7CDkFZ/8H13bArf3QyA/qfwImeSjYtkYD51bC/mmgjpFnnS1mQa1BoHx/qzCZNmh79uzhk08+Yfjw4SLklSBNNBqJX/66w9x9N0nWSDiaSczp7skHFYsaWjSBQJ87h2HrxxAdBkYqkj+Ywf5HVjRv1RYTs0KyEXrX+7uVu4Bnf9j9hTyzOfQ1XFgLPrOhfNt3P/7b8jJEnpXdPSJfuzeADj9CkVLvXZRMm85jx44RFRWFp6cnXl5e/Pjjj4SHh79L2QR5jJexiQz57W++2XODZI1Eh2pFGVc1mcZl9DOcCwQGJVkNB2bCbx1lY2ZfFoYEoqk9hEQTa1BZybOp92VMnCpB/z+h60qwdoWX92Fjb1jbGZ7dej8yZBVJgnOr4ad6sjEzNodW30K/Pw1izCALBq1u3bosX76cx48f8/HHH7NhwwZcXFzQaDQEBAQQFRWVLQGWLFlCiRIlMDMzw8vLizNnzqRbf+HChZQrVw5zc3Pc3NwYM2YM8fHx2vszZsxAoVDovMqX1z37EB8fz8iRI7Gzs8PS0pIuXbrw5MmTbMkvkLkQ8oK2i44ReOMppsZK5nSuwtwulVGJGMKC3MaLe7CyFRybD0hQsx8MPQzOVQwrl0Ihz9ZGnYVGY+XZYfBBWFoP9k+B+FwUiSnyoWxsd34KidHgVheGH4e6w97rEuObZHnkQoUKMXDgQI4dO8aVK1cYO3Ys33zzDY6Ojnz44YdZ6mvjxo34+fkxffp0zp8/T7Vq1fDx8eHp06ep1vf392fChAlMnz6d69evs2LFCjZu3MikSZN06lWqVInHjx9rX8eOHdO5P2bMGHbu3MmmTZs4cuQIjx49onPnzll7EAIAJEli1fG7dP/5JKEv4yhhZ8G2EfXxrVNcuOILch9XNsOyRhD6N6hsoNtq+HARmBYytGT/YVoIPpgGI05B2VbygeQTi+HHWnBxvbxfZSgkSV4O/amebGyNzWRHlgG7wc7DcHL9y1uZ0nLlyvHdd9/x8OFD1q9fn+X28+fPZ8iQIQwYMICKFSuybNkyLCwsWLlyZar1T5w4QYMGDejVqxclSpSgZcuW+Pr66s3qjI2NcXZ21r7s7f9b8oqMjGTFihXMnz+fZs2a4enpyapVqzhx4gSnTp3Ksg4FmVfxakasO8/MnddQJ0u0qeLMH6MbioSbgtxHQjRsHwlbBkHCK3DzguHHoFInQ0uWNnYe0Gsj9NoERTwg+glsHwYrfeDRxfcvz6tH4N9dPluW8Apca8HHf0H9UaDMHUsx2T6H9jpGRkZ07NiRjh07ZrpNYmIi586dY+LEidoypVJJ8+bNOXnyZKpt6tevz9q1azlz5gx16tThzp077N69mz59+ujUu337Ni4uLpiZmVGvXj3mzJlD8eLFATh37hxqtZrmzZtr65cvX57ixYtz8uRJ6tatm+rYCQkJJCQkaK9TAjGr1WrUanWm9U4hpU122uYG/nn0ik82XiLkeRwmRgomtCpHHy83FAp93fKqjpmlIOiZp3V8fAnj7UNRPA9GQoGmoR+aRp+D0hje0CdX6lmyKQw5ivLMzyiPzUPx8AzSL03Q1OiDpslksMjaQeUs6yhJKK78jlHAJBTxkUhGKjTe49F4jZQN2Xt4VpmVNUcMWnYIDw8nOTkZJycnnXInJydu3LiRaptevXoRHh5Ow4YNkSSJpKQkhg0bprPk6OXlxerVqylXrhyPHz9m5syZNGrUiKtXr2JlZUVYWBimpqbY2trqjRsWFpamvHPmzGHmzJl65fv378fCwiILmusSEBCQ7baGQJLg5FMFW+4qSZIUFFFJ9C+ThP3zq+zZczXVNnlNx4wwTo7DMv4RVvGPsIp/iHniC2wdW+U7PVMjT+koSZR6to9KjzaikJKJMynMOfdhRMRUgL37022aO/UsjVnZr6n4aCNuL05idOE3ki9v4UbRLtyzb4qkyNosKTM6qtQvqRayiqKvLgDwwqIUF4oPIeqFK+zdly0tskNsbGym6hnMoGWHw4cPM3v2bH766Se8vLwICgri008/5csvv2Tq1KmAnJcthapVq+Ll5YW7uzu///47gwYNyvbYEydOxM/PT3v96tUr3NzcaNmyJdbWWc/VpVarCQgIoEWLFpiYmGRbrvdJTEIS0/64zh935AzSzco58G3nythapC5/XtRRh/hIFOE34dlNFOE3UYTfkn++CtWrWijxCapRJ/Kmnpkgz/0tY55htHM0ytADAGjKtsa47Q94WaQfbzZv6PkRSSEnMdo3EdOnV6n68DeqJJ4j2WcOUvH6GbbOlI6ShOKfLRjtm4Yi/iWS0gRN4/FY1htFI+X7NxuZTU1mMINmb2+PkZGRnnfhkydPcHZ2TrXN1KlT6dOnD4MHDwbkVDYxMTEMHTqUyZMno0zFu8bW1payZcsSFBQEgLOzM4mJibx8+VJnlpbeuAAqlQqVSj9bsomJyVu98d+2/fvi1pMohq89R/CzGIyUCsa3KseQRqUy5fiR63WMfQ7Pbvz7uvnfz6jHabexdAKHcmBfDun8bxSOvUvS0ysYl/B6f3K/R5R/r6T6/T8xvW+KcdkWYJSLvwsHH4Rtw+Q9JyMV+HyNsvZglFlwUsr171mPxjDsKPy9Eg5+heLpPxiv+VD2kmzxJdi4ZthFmjpGP4U/x8CNP+XrotVQdFyKkVMlDLVTltm/hcHelaampnh6ehIYGKjde9NoNAQGBjJq1KhU28TGxuoZLSMj+RFLkpRqm+joaIKDg7X7bJ6enpiYmBAYGEiXLl0AuHnzJiEhIdSrVy8nVMt3bD73kCnbrxCv1uBsbcaPvWpQq0Qey6wgSXJECD3DdQNinqXdztpVNlwO5f/7aV8WXvumL8VHorjyO8rzKyE/GrTnd1HuG487Emw8KhvzKt2gei/5/FRuIVkNB7+E4z/I1w7l5XNduUnGnERpBHWGyEbs4Jfw9yq4ugVu7oXGY6HeKPksXVa4uhV2jYW45/Ieo/d4aDgGjHKxcX8Ng37N8vPzo1+/ftSqVYs6deqwcOFCYmJiGDBgAAB9+/bF1dWVOXPmAHL4rfnz51OjRg3tkuPUqVNp37691rCNGzeO9u3b4+7uzqNHj5g+fTpGRkb4+voCYGNjw6BBg/Dz86NIkSJYW1szevRo6tWrl6ZDSEElLjGZ6X9c5fe/HwJympeFPapjZ5nFf5L3iSTJ38yfXtedbT27If+TpoVN8X8NVjlwrPCv4SoDZhl7bGo8B6G88juKf7bJ0R0Kvbto4gbh7P9QIBFj6oCFsQZF9BM4+aP8cq4qG7bKXcHSwXAyPr8DmwfBo/Pyda2Bsju5afb3t/MMFkWg3YL/oo08OCWna7mwFlp9A2V9Mu4jJlw2ZNe2y9dOVaDTUsOfzcsiBjVoPXr04NmzZ0ybNo2wsDCqV6/O3r17tY4iISEhOjOyKVOmoFAomDJlCqGhoTg4ONC+fXu+/vprbZ2HDx/i6+tLREQEDg4ONGzYkFOnTuHg8N8/24IFC1AqlXTp0oWEhAR8fHz46aef3p/ieYDgZ9GMXHeeG2FRKBUwpnlZRjYtjVKZi8+WxYTDihbyh1uqKKBwCd3ZlkM5ecalssz2sJJLTV6al8A27h5cWAMNP8t2X7mOhGg4vwaAy8X6Uqv7WEzuHYaL/nBrH4Rdhr2X5YO/pVtAdV/57FRWZwZvw+Xf4U8/SIySv4B8+CNUzNqZ2HxB0WowcK/8PAKmyf8H/t2hjA+0mpP2ObFrO+TnFxsOCiNoPA4ajXunecveFQoprbU6Qbq8evUKGxsbIiMjs+0Usnv3btq0aZPr1up3XnrEhC2XiUlMxt5SxaKe1alfOuvhq967jvsmy7MGhVIOvaM1XBX+NVxlwMQ8x4dVq9VcXTOeGiErwLY4fHIx15zLeWvOroBdfkiFS/KH+3TatG33398y9rm8xHXR/7+ZEYCZrbwMVr0XuHq+u/BRCVGw+3O49O8Z2OL1ofMvbxWtPjf/X2aJhCg48h2cWgoatRx1pN5IaDQOtVIl69ikLiYBk+DqZrmNY0XouBRcqhtU9NTI7OdtLt7ZFbxvEpKS+erP66w5dR8Ar5JFWOxbA0frPBD1OypMjlgO8kHUMs3Tr5/DhBauS/WnW1C8DIGgA5lb5snt/JtSBUBTewg8e8PpyqKIvIdTZ4i8rHvRX54dRD2Cv1fIL7syUK2n/LIplnOyPboAmwfKsxCFUt7raTQudzurvE9UVnIOspp9Ye8E+T15bAFc2ojig+k4v7yG8S/jIOapPCtrOAa8v3i/M+t3gMiuKAAgJCKWrktPao3ZqKalWTfYK28YM5D/WZPi5QgQpT9478MnK1VoqvWSL84sf+/jvxPuHIbwm2Bqiaaqb/p1HcpBi5kw5ir02QZVusvBaiNuyw4LCyrDrx/KoZsSY7Ivk0Yjh4H6379Ly9bFoP8uaDJBGLPUsC8DvTdDz/Vg6w5RjzDe/jFed39AEfNUXsUYHAAfTM3zxgzEDE0A7PsnjHGbLhEVn0RhCxPm96hO03KOhhYr80SGyu7LAE0nGyzdhqZmf4xO/yR/G35+x2ARx3OMf2dnVO8tf+PPDEoj8GgmvxKi5P2Zi+vltCh3j8ivXWPlZJbVfcG9YeaD2UY/ld3xgwPl6wrtof0iHY9TQSooFFC+jfw3ObEY6a95kBSPpt5ojJpNzlt51zJAGLQCjDpZw7d7bvC/Y3cBqFnclh971cTFNuf3md4pf30vp7J3bwglGxtOjiKloHRz2aD9vRJafmU4Wd6W53fg1l759zpDs9eHygpqfCS/XtyTlyMv+sOLu3DJX37ZuEHVHlDNF+xLp91X0AHZmMU8kwPitpoDngNyf66w3ISJGXh/TlK13hzev4smzfpjlJf3CVNBLDkWUB69jKPHzye1xmxIo5Js/Lhe3jNmL+5rvfBoZrjZmZbaQ+SfF9aCOs6wsrwNZ/4HSLKBTs/QZJbCJeQ9mk8uwMB9sou5ygYiH8hfSH70lJcRz66AuBf/tUtKlD0o13aRjZljRTnVS62Bhv9b51UKORCrykMrMFlAzNAKIIduPsVv40VexKqxNjPm+27VaFkp7SgpuZqjc2UvrlJNwT3jsD/vnDItZE/HlyGyB2CNjwwtUdZJiJaPHwB4DcvZvhUKKF5XfrX6Bm7ulpckgwPh4Rn5tXcilGstLymeWAyPL8ptaw+RHR3egaeqIH8gDFoBIilZw4IDt1hyKBiAqsVsWNKrJm5F8ujh04hgeQkL5L2z3IDSSJ49HJghO4dU7533ZhKX1svpQYp4gMc7dLAxMZfd+yt3kb1Ur2ySjdvTf+QDvimHfM0LQ4clUL7tu5NFkC8QBq2A8DQqntH+Fzh9V46W0a+eO5PaVkBlnIfPSx2dC1IylGkJbrUNLc1/1OgLh+bIM4vQ81DM09ASZR5JgjO/yL97ffz+sg9bOUP90XK4prDLcGmDHIbJsYJszDIRm1AgEAatAKDRSAxbc47zIS8pZGrEN12q0r6ai6HFejue3YLLG+Xfm0xMv+77ppAdVO4sz3TOLs9bBu3OIQi/BaZWsqPG+0ahkCNeFK0mO34IBFlAOIUUADacfcD5kJdYqozZMaph3jdmAEe+AUkD5dqCa01DS6NPbTkjBFe3QkyEYWXJCimu+jV6g1nWI+AIBIZEGLR8Tnh0At/suQ7A2JZlKe2Y/ZiFuYYn12RDAdA0l83OUnD1hKLVITkBLvxmaGkyR0SwHJ8Rsu+qLxAYEGHQ8jmzd13nVXwSlVys6VPX3dDi5AyH5wCSfDg3t0YDVyjkkFAgn0nTJBtWnsxw9l9X/TIt0w5kKxDkYoRBy8ecCA5n64VQFAr4ulMVjI3ywZ/78WW4/gegyH17Z29SuYscqPdlCNzOON29QUmIks/OAdT52LCyCATZJB98wglSIyEpmSnbrwLwkZc71d1sDStQTnH4X0eBKl1lD7jcjIn5f+fQzuby+I6XNsiu+nal5RBJAkEeRBi0fMovR+5w51kM9pYqxvmUM7Q4OUPoOfkgbkp09bxA7UGA4r/4jrkRjeY/Z5A679FVXyDIYcQ7Nx9yLzyGxYeCAJjargI25vkkXtuhf2dnVXvKUcTzAinxHUEO65QbuXNIjopvaiUHDBYI8ijCoOUzJEli6o6rJCZpaFjang/zg4s+wIMzEBQg527y/tzQ0mSNOq/Fd0yMNawsqaF11f8o81H1BYJciDBo+YxdVx7z1+1wTI2VfNmxMoq8FnYpLQ7+G7m+Ru+8l5aldHM5vmP8Szm+Y24iIhhu7wNe88oUCPIowqDlI6Li1czaeQ2AEU08KGlf6L+bEcFwYR0kJRhIurfg3r+5tJQm0DiPzc7g3/iOg+Tfzy6Xw0vlFlKSkQpXfUE+QBi0fMS8/bd4GpVASftCDPP+98NJkuDcaljaAHaMgD8+yV0fqBkhSXBotvx7zb7yTCcvUqMPGKng8SXZuSU38Lqrvpdw1RfkfUQsx3zClYeR/HbyHgBfdqiMmYmRnFdq56dy1uAULm8Al+pQd7hB5Mwyd4/A/eOyMWg8ztDSZJ9CdvK5tEv+8qyoWK0sd5GcnIxarc45mS5tBVNbcKwGLvUgPj7Nqmq1GmNjY+Lj40lOzgOHxLNJQdAzN+poYmKCkdHbB0o3uEFbsmQJc+fOJSwsjGrVqrF48WLq1KmTZv2FCxeydOlSQkJCsLe3p2vXrsyZMwczMzmN+Jw5c9i6dSs3btzA3Nyc+vXr8+2331Ku3H+u602aNOHIkSM6/X788ccsW7bs3Sj5jknWSEzefgWNBB2qu9CwjD2EnIItg+UEikpj+GC6vPS1bxLsmwxOlQyb3TkzSBIc/Fr+vdZAsM7jDi61B8sG7Z+t4PM1FLLPVDNJkggLC+Ply5c5J4skAW7QYJ6cnuX+/QxlcHZ25sGDB/lnXzYVCoKeuVVHW1tbnJ2d30omgxq0jRs34ufnx7Jly/Dy8mLhwoX4+Phw8+ZNHB31M6r6+/szYcIEVq5cSf369bl16xb9+/dHoVAwf/58AI4cOcLIkSOpXbs2SUlJTJo0iZYtW3Lt2jUKFfpvT2nIkCHMmjVLe21hkUdzggHrTt/n8sNIrMyMmdy6LBz5Tj6ALGmgcEnoukKOLShJ8pLX5Y2wqb+c+Tc3L+EFHZATPhqbQ8Mxhpbm7SnmCS414NEFOYFmJnVKMWaOjo5YWFjkzIdQQjRExgNGckZqZfrfjjUaDdHR0VhaWqLMx+fUCoKeuU1HSZKIjY3l6dOnABQtWjTbfRnUoM2fP58hQ4YwYMAAAJYtW8auXbtYuXIlEyZM0Kt/4sQJGjRoQK9evQAoUaIEvr6+nD59Wltn7969Om1Wr16No6Mj586do3Hj/2YkFhYWODvn0SzNr/H0VTxz994EYEYTWxy3dpOX6EA+r9X2+/9csRUKaP8DPLshG7YNvWHgPjDNhcZckuDQv7OzOoPBysmw8uQUtYfIe5lnV0L9TzI0JMnJyVpjZmdnl3NyxISCsUJeCrUolGF1jUZDYmIiZmZmueJD8F1REPTMjTqam8tZyJ8+fYqjo2O2lx8NZtASExM5d+4cEyf+F49PqVTSvHlzTp48mWqb+vXrs3btWs6cOUOdOnW4c+cOu3fvpk+fPmmOExkZCUCRIkV0ytetW8fatWtxdnamffv2TJ06Nd1ZWkJCAgkJ/3kIvnr1CpDXo7Ozr5HS5m33RGbu/IeohCSGOPxD51M/QfwLJNNCJLeai1Sle8pgr7Uwhi6/YryyOYqwy2j+GE3yh0vfSVblt9FRcWsPxo8uIJkUIqnOyDd0yF1kSc9y7TE2n4wiMoSk67uRyrZKt3pCQgKSJGFmZoZGo8kJcSE5AWXCKyRAsrCXI4VkgPSvI5EkSTknRy6kIOiZW3U0MzNDkiTi4uJQqVQ69zL7GWIwgxYeHk5ycjJOTrrfvJ2cnLhx40aqbXr16kV4eDgNGzZEkiSSkpIYNmwYkyZNSrW+RqPhs88+o0GDBlSuXFmnH3d3d1xcXLh8+TLjx4/n5s2bbN26NU1558yZw8yZM/XK9+/f/1bLlQEB2Q9ae+OlggPXk/nSeC19og4A8MKiJOdKjCDmgSU82J1mWzuXIdQP+hbl1c3888KUO47pf7C+DVnWUdLQ5OY0bIDbRZpx/ciZdyJXTpNZPSta1aVM3B4i9n7HqaD0P1CMjY1xdnYmJiYmxxxCzBIjMAOSlObExMQDaTuDvElUVFSOyJDbKQh65jYdExMTiYuL48iRIyQlJenci43NXEACgzuFZIXDhw8ze/ZsfvrpJ7y8vAgKCuLTTz/lyy+/ZOrUqXr1R44cydWrVzl27JhO+dCh/+V6qlKlCkWLFuWDDz4gODgYD4/Uz+JMnDgRPz8/7fWrV69wc3OjZcuWWFtnPRGiWq0mICCAFi1aYGKS9dBU8epktizawA7T7ymvfABAct1RWDaZhLeRaSZ6aIN01gr2T6Lyow1U8O6KlMNOItnVUXFjJ8YXQ5BMLSnZez4lzQvnqFw5TZb1fFER6ae9OEVdpk3d8ukeFI+Pj+fBgwdYWlpqHZ/eCkmD4qnsAGJs64K1aeby40mSRFRUFFZWVrnKkSCnKQh65lYd4+PjMTc3p3Hjxnrv9ZQVsYwwmEGzt7fHyMiIJ0+e6JQ/efIkzb2tqVOn0qdPHwYPlrMBV6lShZiYGIYOHcrkyZN11oNHjRrFn3/+ydGjRylWrFi6snh5eQEQFBSUpkFTqVR602CQ3U2zY5Deqr0kcWT99/wSNw8zpRpNIUeUnZZhVPoDsrTyXG8EPLmK4pI/xtsGy04ihXM+Z1qWdNQkw9HvAFDUG4mJtb5zUG4l03o6loEyLeD2fkwu/iZ7PKZBcnIyCoUCpVKZM/sd0RGys5CxGQpV5j/QUpamUmQxBCVKlOCzzz7js88+y1T9w4cP07RpU168eIGtrW2m2uQGPd81uVVHpVKJQqFI9f8os58fBtPG1NQUT09PAgMDtWUajYbAwEDq1auXapvY2Fi9P0DK5uHr68KjRo1i27ZtHDx4kJIlS2Yoy8WLF4G38655b8Q+J3pNL5rf+QYzhZpnTo1QDj8BpT/Iel8KBbRbIHvexT2Hjb0NH2vwn23w7DqY2UDdEYaV5V1SW/5SxoU17++ZSxLEPJN/L2T/TvZNQf6gTO81Y8aMbPV79uxZndWVjKhfvz6PHz/GxsYmW+Nlh/Lly6NSqQgLC3tvYwr+w6Dm2c/Pj+XLl/Prr79y/fp1hg8fTkxMjNbrsW/fvjpOI+3bt2fp0qVs2LCBu3fvEhAQwNSpU2nfvr3WsI0cOZK1a9fi7++PlZUVYWFhhIWFERcXB0BwcDBffvkl586d4969e/zxxx/07duXxo0bU7Vq1ff/ELLCveNIyxpieWc3iZIR6wt/jP3HO8DSIft9mphBj7VQyAHCrsAfow0XSSQ56b98Z/VHg7mtYeR4H5RuDrbuEB/5/uI7JkRBcoIc4Nm8SMb1s8njx4+1r4ULF2Jtba1TNm7cfwfkU/bCM4ODg0OW9qtNTU3f+lxTVjh27BhxcXF07dqVX3/99b2MmR45egg/j2BQg9ajRw++//57pk2bRvXq1bl48SJ79+7VOoqEhITw+PFjbf0pU6YwduxYpkyZQsWKFRk0aBA+Pj78/PPP2jpLly4lMjKSJk2aULRoUe1r48aNgPwmP3DgAC1btqR8+fKMHTuWLl26sHPnzverfFZITpJTp/zaDsWrUO5onOmR/BUNPpqBIgO370xhUwy6/SofwL66GU4sfvs+s8OVTRARJH/Yeg0zjAzvC6XRv7nSyHJ8R0mSiE1MyvrrRRixag2xxjbEJmW9DymTMjo7O2tfNjY2KBQK7fWNGzewsrJiz549eHp6olKpOHbsGMHBwXTo0AEnJycsLS2pXbs2Bw4c0Om3RIkSLFy4UHutUCj43//+R6dOnbCwsKBMmTL88ccf2vuHDx9GoVBoD6SvXr0aW1tb9u3bR4UKFbC0tKRVq1Y6nzFJSUmMHz+eIkWKYGdnx/jx4+nXrx8dO3bMUO8VK1bQq1cv+vTpw8qVK/XuP3z4EF9fX4oUKUKhQoWoVauWzpGjnTt3Urt2bczMzLC3t6dTp046um7fvl2nP1tbW1avXg3AvXv3UCgUbNy4EW9vb8zMzFi3bh0RERH4+vri6uqKhYUFVapUYf369Tr9aDQavvvuO0qXLo1KpaJ48eJ8/bW8DN6sWTNGjRqlU//Zs2eYmprqrK7lFgzuFDJq1Ci9B5bC4cOHda6NjY2ZPn0606dPT7O/jP7p3Nzc9KKE5GpePoCtQyBEPsrwh6IpExL7MNKnGsXtcvD8WIkG0Oob2D0ODkwH58rvN3NxshqOfCv/3uDTgpHGpEYfORLK40vw8G9wq52pZnHqZCpO2/cWA4cBV7Pc6qRfXXJq8W7ChAl8//33lCpVisKFC/PgwQPatGnD119/jUql4rfffqN9+/bcvHmT4sXTPvw/c+ZMvvvuO+bOncvixYvp3bs39+/f1zumk0JsbCzff/89a9asQalU8tFHHzFu3DjWrVsHwHfffcemTZtYsWIFlSpV4ocffmD79u00bdo0XX2ioqLYtGkTp0+fpnz58kRGRvLXX3/RqFEjAKKjo/H29sbV1ZU//vgDZ2dnzp8/r93P2rVrF506dWLy5Mn89ttvJCYmsnt32l7K6T3XefPmUaNGDczMzIiPj8fT05Px48djbW3Nrl276NevH/v27dPqNHHiRJYvX86CBQto2LAhjx8/1nqaDx48mFGjRjFv3jytD8HatWtxdXWlWbPcl9nc4AZNkA7XdshLgPGRYGrFRucxjL9VntKOlgxp9A5SqNQeDI8uwsW1sHkgDDkERTLeg8wRLq2HF3flpc+CksbEosh/8R3PLs+0QcsPzJo1ixYtWmivixQpQrVq1bTXX375Jdu2beOPP/5I8wsvQP/+/fH1lZOSzp49m0WLFnHmzBlatUr9GIparWbZsmVa569Ro0bpRAz68ccfGTNmDJ06dUKpVPLjjz9myrBs2LCBMmXKUKlSJQB69uzJihUrtAbN39+fZ8+ecfbsWa2xLV26tLb9119/Tc+ePXWOBr3+PDLLZ599RufOnXXKXl/iHT16NHv37tUa6aioKH744Qd+/PFH+vXrB4CHhwcNGzYEoHPnzowaNYodO3bQvbt8rnX16tXaCE25DWHQciOJsXLMxXOr5GtXT67WW8CEdQ8B+KpjZUyN38FqsUIBbefJThmh5+RIIoMDwDTjSBJvRVIiHJkr/95wzLsfLzdRJyW+4zbwmZ2p+I7mJkZcm+WT+TE0yfD02r+h0EqBWdZnvxqNBnVcTJbbpUWtWrrBmaOjo5kxYwa7du3i8ePHJCUlERcXR0hISLr9vL7vXahQIaytrbUhlFLDwsJCx5O5aNGi2vqRkZE8efKEmjVrau8bGRnh6emZ4QHklStX8tFHH2mvP/roI7y9vVm8eDFWVlZcvHiRGjVqpDlzvHjxIkOGvP0XuTefa3JyMrNnz+b3338nNDSUxMREEhISaNeuHQDXr18nISGBDz5I3anMzMxMu4TavXt3zp8/z9WrV3WWdnMTucdnUyDz5B9Y3vRfY6aAhmNI6reHzwNfIUnQpWYx6pbKwRBIb2JiBt3XyDOlp//AjpHv3knkwhqIDAFLZzkIcUHC1RNcakJyIpz/LVNNFAoFFqbGmX8lRWJhDBbmFlhY2Wat7WuvnPxG/npcVZBnEdu2bWP27Nn89ddfXLx4kSpVqpCYmJhuP2+6cysUinSNT2r1M7s3mBbXrl3j1KlTfPHFFxgbG2NsbEzdunWJjY1lw4YNwH+hndIio/upyZma08ebz3Xu3Ln88MMPjB8/nkOHDnHx4kVatmypfa4ZjQvysmNAQAAPHz5k1apVNGvWDHf3nD/ekxMIg5ZbkCQ5rcgvTeVYi5ZO0GcbNJ/B6tOhXH/8ChtzEya1Kf/uZbFxlY2a0lieORz/4d2NpY6Ho9/LvzcaCyYZ/4PlO1KWWP9eJc+mchJJgphw+fd36Kr/thw/fpz+/fvTqVMnqlSpgrOzM/fu3XuvMtjY2ODk5MSFCxe0ZcnJyZw/fz7dditWrKBx48ZcunSJixcval9+fn6sWLECkGeSFy9e5Pnz56n2UbVq1XSdLBwcHHScV27fvp2p6BnHjx+nQ4cOfPTRR1SrVo1SpUpx+/Zt7f0yZcpgbm6e7thVqlShVq1aLF++HH9/fwYOzL1fOoVByw3EPpeX93aPk92qy7SE4SfAoymPXsYxP+AWABNbl8fOUv9w9zvBvR60/tdJI3CmHPn+XXBuNUQ9AmtX8Oz3bsbI7VTqJKdwiQyB2/tztu+EV+/FVf9tKVOmDFu3buXixYtcunSJXr16GSTO4KhRo1iwYAE7duzg5s2bfPrpp7x48SLN2alarWbNmjX4+vpSuXJlndfgwYM5ffo0//zzD76+vjg7O9OxY0eOHz/OnTt32LJlizZu7fTp01m/fj3Tp0/n+vXrXLlyhW+//VY7TrNmzfjxxx+5cOECf//9N8OGDcvUYeMyZcoQEBDAiRMnuH79Oh9//LFOMAszMzPGjx/PF198wW+//UZwcDCnTp3SGuIUBg8ezDfffIMkSTrel7kNYdAMjOL+cTmb9M1dYGQqexr2+l27lzJr5zViE5PxdC9M91pu71e4WoNkTzxJIzuJPL+Ts/0nxsIxOe0PjceB8Xsy1rkNE3P5OYM8S89JUg5SW9hlGNnfkMyfP5/ChQtTv3592rdvj4+Pj85e1vviiy++oEuXLvTv35969ephaWmJj49PmmHH/vjjDyIiIlL9kK9QoQIVKlRgxYoVmJqasn//fhwdHWnTpg1VqlThm2++0Z6fbdKkCZs2beKPP/6gevXqNGvWjDNn/othOm/ePNzc3GjUqBG9evVi3LhxmTqTN2XKFGrWrImPjw9NmjTB2dmZDh066NSZOnUqY8eOZdq0aVSoUIEePXro7UP6+vpibGyMr69vzoRge0copLddQC6gvHr1ChsbGyIjI7MXyzEhjjurPqZs2B8okMCuDHRdCUX/2+QOvP6EQb/+jZFSwa5PGlLeOevjvDVJCbCqDYT+DY4VYVAAqDIX/0+tVrN7927atGmT+rfJE4th/xQ5J9uoc2CcmRiUuY8M9cwML+7BD9UBCUafBzvZcSE+Pp67d+9SsmTJrH+QqONlBx+Q/3Zv8YVBo9Hw6tUrrK2tc1W4pJzmTT01Gg0VKlSge/fufPnll4YWL0fIzt/y3r17eHh4cPbs2Xf2RSO993pmP2/z7zszN/MyBKM1H1IubIdszGr0gY+P6BizuMRkpu34B4DBDUsaxpiB/CHYY428p/f0mpzLKye+AyVEw7GF8u/e4/OsMcsxCpeQl5oBzq5It2qmSZmdqWwK7uw3i9y/f59ff/2VW7duceXKFYYPH87du3e1ORgLGmq1mrCwMKZMmULdunUNMmvOCsKgGYIj36F8eAa10pykTsuhw496ruqLDt4m9GUcrrbmfNq8jIEE/Rdrl3+dREzks3HHFrx9n2d+gdhwOdJ81Z5v319+ICW+48W1bx/fUZMkx+eEtwuNVsBQKpX4+/vj5eVFgwYNuHLlCgcOHKBChQqGFs0gHD9+nKJFi3L27FmWLVtmaHEyRJxDMwQ+X6NJiOIwjWhSUX/t/daTKJYflferZnxYCQvTXPBnKu4Fbb6DP8dA4CxwriJHjM8O8a/gxCL5d+8JYJQL9MsNlG4uz9Re3JNDkNXsm/2+Yp9ro+qTyRQxAjmS0L59+/L90mpmadKkyVsfa3ifiL+YITCzIbnT/4hV6X9zliSJKduukqSRaFHRiRYVnVLpwEDUGgg1+wESbBkEEcHZ6+f0Moh7AfZloUrXHBUxT6NUyo44IDuHZPeDRCeqvkOuddUXCHIaYdByGZvPPeTMveeYmxgx48NKhhZHnzZzoVgdORzXht5yBPesEPcCTvwo/95kQq72vDMINT6SZ1Vhl+Hh2ez1kfBKPqitMJKPAwgEBQRh0HIRL2ISmb1b9kob06IMrra58JCx1knEWfag2z48azOJk0sgIVL2uktlubXAkxLfEeDs/7LXRx5x1RcIchph0HIR3+y5wYtYNeWdrRjQ4D0FBc4OVs6yUVOawPWd8Nf3mWsX+xxOLZV/bzJRXmIT6JPiHPLPNohJPbJEmqjj/5s1ZyIupECQnxCfKLmEs/ees/HvBwB83akyJka5/E/jVkcOZAxyCpRbmUhncvwHSIwG56pQof27lS8v41pTjvGYnAjXd2StrXDVFxRgcvmnZsFAnaxh8rYrAPjWccPTPfeGKNLBs9+/wYQl2DIEwoPSrhv9VHbVB2g6WTgqZETKLO3q1swv6QpXfUEBRxi0XMCKY3e59SSaIoVMGd/qPQQfzklafQtudeV9sQ29ZJf81Dj+A6hj5ZlH2SykPimoVOosx16MfgxJ8Zlrk89c9Zs0acJnn32mvX4zY3VqpJbZOTsYGRnlSD+C94swaAbm4Ys4Fh6Qgw9PalMBW4s8FjHD2BS6/wZWRSH8puwk8mZQ2ajH/zk4NJ0kZmeZwcQMav4b3zEznqS5yFW/ffv2aSbY/Ouvv1AoFFy+fDnL/Z49e5ahQ4e+rXg6zJgxg+rVq+uVh4aG0rp16xwdKy3i4uIoUqQI9vb2JCQkvJcx8yvCoBkQSYJZu64Tr9bgVbIIXWq6Glqk7GHlBD3WysGVb/yp5ySiPLFInmW41QWP1BMJClKh1kBAIT87dQYfdLnIVX/QoEHa/FlvsmrVKmrVqqWTmDOzODg4ZCogb07g7OyMSvV+9iC3bNlCpUqVKF++vMFnhZIkkZSUZFAZ3gZh0AzIlRcKDt0Mx8RIwdedKufKlOaZplgtaPtv5PxDX8PNPQCYJUagvPCrXC5mZ1mjcAlwbyD/Hv/iv3JJgsQY3deLEFDHyZH7k+L17+fEK5N7ee3atcPBwYHVq1frlEdHR7Np0yYGDRpEREQEvr6+uLq6YmFhQZUqVVi/fn26/b655Hj79m0aN26MmZkZFStWJCAgQK/N+PHjKVu2LBYWFpQqVYqpU6dqE2OuXr2amTNncunSJRQKBQqFQivzm0uOV65coVmzZpibm2NnZ8fQoUOJjo7W3u/fvz8dO3bk+++/p2jRotjZ2TFy5MhUk3C+yYoVK/joo4/46KOP9NK2APzzzz+0a9cOa2trrKysaNSoEcHB/wU1WLlyJZUqVUKlUlG0aFFGjRoFyAGFFQoFFy9e1NZ9+fIlRkZGHDt2DIDDhw+jUCjYs2cPnp6eqFQqjh07RnBwMB06dMDJyQlLS0tq167NgQO6KaQSEhIYP348bm5uqFQqSpcuzYoVK5AkidKlS/P997pfbC9evIhCoSAoKJ299rfE4DGHlixZwty5cwkLC6NatWosXryYOnXqpFl/4cKFLF26lJCQEOzt7enatStz5szRic6cUZ/x8fGMHTuWDRs2kJCQgI+PDz/99BNOTu8vKkdMQhJb7srfJ4Y2LkVpR6v3NvY7o2YfeHxRXl7cOhQG7JOzCSQnQolGUMrb0BLmPap0gxdJEBcpJ/9UGsl7kbNd3qsYSoCR1wGbDOsaGxvTt29fVq9ezeTJk7Vf1DZt2kRycjK+vr5ER0fj6enJ+PHjsba2ZteuXfTp0wcPD490//9T0Gg0dO7cGScnJ06fPk1kZKTOflsKVlZWrF69GhcXF65cucKQIUOwsrLiiy++oEePHly9epW9e/dqP6ytrKz0jFBMTAw+Pj7Uq1ePs2fP8vTpUwYPHsyoUaN0jPahQ4coWrQohw4dIigoiB49elC9enWGDBmSph7BwcGcPHmSrVu3IkkSY8aM4f79+9qM0KGhoTRu3JgmTZpw8OBBrK2tOX78uHYWtXTpUvz8/Pjmm29o3bo1kZGRHD9+PMPn9yYTJkzg+++/p1SpUhQuXJgHDx7Qpk0bvv76a1QqFb/99hvt27fn5s2bFC9eHIC+ffty8uRJFi1aRLVq1bh79y7h4eEoFAoGDhzIqlWrGDdunHaMVatW0bhxY0qXLp1l+TKNZEA2bNggmZr+n73zDI+q6ALwu7vpjQAhDQKEUBJaAoQWuvTeQUSpgkivCihVFKSJNEEUUPwoUgSRGnoLXXpASiD0Thqpu/P9uGZlSUIKWTZl3ufZJ3vnzp05Z3dzz52ZM+dYiKVLl4qLFy+KPn36CEdHR/Hw4cNk6//vf/8TlpaW4n//+58ICQkRO3bsEG5ubmLYsGHparNfv37Cw8ND7N69W5w8eVJUq1ZNBAQEpEv2sLAwAYiwsLAM6T75z/OiyOd/iRrTdouXsQkZaiNLEh8rxM+NhZjgIHRzfIV2Ql4hJjgIcfOwqSUzGnFxcWLjxo0iLi4u09uOjooSl47uFtG3TgkR+VgpjI1UPtN3/Hr+6K7QarVpkjs4OFgAYu/evfqyWrVqiQ8//DDFa5o3by5GjBihP65Tp44YMmSI/rhIkSLiu+++E0IIsWPHDmFmZibu3r2rP79t2zYBiD/++CPFPmbMmCEqVaqkP54wYYLw9fXVH2u1WvH8+XODdn788UeRN29eERkZqa+3ZcsWoVarxYMHD4QQQnTv3l0UKVJEJCT897/csWNH0blz5xRlEUKIsWPHijZt2uiPW7duLSZMmKA/HjNmjPD09Ezxt+Xu7i6++OKLZM+FhIQIQPz999/6skTdNm/eLLRardi7d68AxMaNG98opxBClClTRsybN08IIcSVK1cEIAIDA5Ote/fuXaHRaMSxY8eEEMr/iJOTk1i+fHmK7UdHR4tLly6J6OjoJOfSer816Qht9uzZ9OnTh549ewKwaNEitmzZwtKlSxk9enSS+keOHKFGjRr6VA5FixalS5cuHDt2LM1thoWF8fPPP7Ny5Uree+89QHly8PHx4ejRo1SrVs3YanPpXjjLg0IBmNDCG2uLHBTNIdFJZHEdVM9DUAE6z7qoiwSYWrLsiVoNlv9mYoh6okT/MLeBsfeUMl0CPApWvBvzeaU5V1160el0EJ32tRVvb28CAgJYunQpdevW5dq1axw8eJDJkycDoNVq+eabb/j999+5e/cucXFxxMbGpnmNLDg4GA8PD9zd/xupVq9ePUm9NWvWMHfuXK5fv05kZCQJCQnpzl8YHByMr68vtrb/ZcSoUaMGOp2OK1eu6Gd2ypQpo0/YCeDm5sb58+dTbFer1fLLL7/w/fff68s+/PBDRo4cyfjx41Gr1Zw5c4ZatWolm2fv0aNH3Lt3j/r1335d2t/f3+A4MjKSiRMnsmXLFu7fv09CQgLR0dGEhir3rTNnzqDRaKhTJ/lZF3d3d5o3b87SpUupUqUKmzdvJjY2lo4dO761rG/CZAYtLi6OU6dOMWbMGH2ZWq2mQYMG+rTkrxMQEMBvv/3G8ePHqVKlCjdu3GDr1q189NFHaW7z1KlTxMfH06BBA30db29vChcuTFBQUIoGLTY21sADKTxccU+Pj49P0zz5qyw7fAOtTuCXT0cNT8d0X5/lscyLqsNyNL+2RKWNJa7GSDQ5TcdXSPz+jPE9xsfHI8xtEcRDQjQiLgphbgNmSlg0VdRjVGaWCDMrhK3x9p4JISAmAiGEYtzSQM+ePRkyZAjz5s1j6dKleHl5UatWLXQ6HdOnT+f7779n9uzZlCtXDltbW4YNG0ZsbKxB+6/3l3gs/l3Pe/Vc4nudTodOpyMoKIiuXbsyceJEGjVqRJ48eVizZg2zZ8/W1329HfHKOmFiO2npSwiBmZlZks8m8XxybNu2jbt379K5c2eDcq1WS2BgIA0bNsTKyirFzzzRaeVNfSS2l3j+1XvYq+1aW1sbtDFixAh27drF9OnTKV68ONbW1nTq1En//aSl7169etG9e3dmzZrF0qVL6dSpE1ZWVinWT/wc4+PjDR4MIO3/WyYzaE+ePEGr1SZZt3JxceHy5cvJXvPBBx/w5MkTatasqffG6devH2PHjk1zmw8ePMDCwgJHR8ckdR48eJCivFOnTmXSpElJynfu3Jluz6vq5qAtqsI3n0h2ITun4Og1BnNtFI8vPoOLW00tjtExxndpZmaGq6sr8XlssSaa+Bf3eGnprJwUAvuYR2iAaJUtceEp7AHMRCIi0h6MukmTJqjVapYuXcovv/xCr1699Nfv37+fpk2b0qpVKwD9aKdUqVL6h8WEhATi4uL0xzqdjpiYGMLDwylcuDC3b9/mn3/+wdXVFYA9e/YAiht8eHg4e/fuxcPDQ+8kAXDt2jWEEAZtvtrHqyS2U7RoUZYvX879+/f1o7TAwEDUajXu7u6Eh4cTHx9PQkKCQTtxcXFJyl7lxx9/pF27dowYMcKgfNasWSxevJiqVatSqlQpVq1axdOnT5MdpRUuXFjv0PE6iUbn+vXreHkpGdCPHDmiPx8REcHLly/1719Nl3Pw4EHef/99/egvMjKSkJAQqlevTnh4OJ6enuh0OrZt20bdunWT1a9mzZrY2NgwZ84cduzYwZYtW1L8LED5vKKjozlw4EAST8tEOVPD5E4h6WHfvn188803LFy4kKpVq3Lt2jWGDBnCV199xbhx44za95gxYxg+fLj+ODw8HA8PDxo1apTuKQyAJvHx+qew5H6oOYH4XKAjGFfPmJgYbt++jZmDM0Tewlz7Egc7G1CboYoNRxWdgFBpsMrnjpXKeE7LQggiIiKwt7dPszeug4MDnTp14quvviI8PJxPPvlE/7/i4+PD+vXruXDhAnnz5uW7777j8ePHlClTRl/HzMwMCwsL/bFarcbKygoHBwdatWpFyZIlGTRoENOnTyc8PJypU6cCymjDwcGBsmXLcufOHbZu3UrlypXZunUrW7ZsQaVS6dssVaoUoaGh3Lhxg0KFCmFnZ0dcXJxBO7179+bbb79l8ODBTJgwgcePHzNmzBg+/PBDvYODubk5ZmZmBvcCCwuLJGWJPH78mO3bt7Nx48Yks0K9evWiffv2JCQkMHz4cJYsWcInn3zC6NGjyZMnD0ePHqVKlSqUKlWKiRMn0r9/fzw8PGjSpAkREREcOXKEgQMH4uDgQLVq1Zg/fz5lypTh0aNHTJs2Td+Pvb29/mHc3t7eQM5SpUqxdetW2rdvj0qlYvz48Qgh9N9H2bJl6datG4MHD2bOnDn4+vpy69YtHj16RKdOnfTt9OjRg8mTJ1OiRAmDWbHkiImJwdraWu+5+ipvMoQGvHGFzYjExsYKjUaTZAG3W7duolWrVsleU7NmTTFy5EiDshUrVghra2uh1WrT1Obu3bsFIJ4/f25Qp3DhwmL27Nlplv9tnUKM6UiQVcgNOgphZKeQVxfKH10W4u5pIcLvKycfX1WOw+5ker+vk+gskVankESOHDkiANGsWTOD8qdPn4rWrVsLOzs74ezsLL788kvRrVs30bp1a32dNzmFCKE4JtSsWVNYWFiIkiVLiu3btydxChk1apTInz+/sLOzE507dxbfffedyJMnj/58TEyMaN++vXB0dBSA+Pnnn5M4hQghxLlz50S9evWElZWVyJcvn+jTp4+IiIjQn+/evbuB7EIIMWTIEFGnTp1kP5eZM2cKR0fHZH8zsbGxwtHRUXz//fdCCCHOnj0rGjVqJGxsbIS9vb2oVauWuH79ur7+okWLRKlSpYS5ublwc3MTgwYN0p+7dOmSqF69urC2thZ+fn5i586dyTqFvH4/DAkJEfXq1RPW1tbCw8NDzJ8/P8n3ER0dLYYNGybc3NyEhYWFKF68uFi6dKlBO9evXxeAmD59erKfw6tkhlOISb0cq1SpIgYOHKg/1mq1omDBgmLq1KnJ1q9YsaL47LPPDMpWrlwprK2t9d5FqbX54sULYW5uLtatW6evc/nyZQGIoKCgNMsuDVrq5AYdhXiHBi3qiWLAHlwQIu6l8v7uaSHiYzK939fJqEHLbuQGPd+ljgcOHBDm5uZ6b9A3ke29HIcPH0737t3x9/enSpUqzJkzh6ioKL2HYrdu3ShYsKB+KqFly5bMnj2bChUq6Kccx40bR8uWLfWLiKm1mSdPHnr37s3w4cPJly8fDg4ODBo0iOrVq78TD0eJJMNY5QX1PSUiyPOQf8tkVH1J1iM2NpbHjx8zceJEOnbs+M72+JrUoHXu3JnHjx8zfvx4Hjx4gJ+fH9u3b9crHxoaarBQ+eWXX6JSqfjyyy+5e/cuBQoUoGXLlnz99ddpbhPgu+++Q61W0759e4ON1RJJlkatVhKARj6ChH+91Yzo2SiRZJRVq1bRu3dv/Pz8+PXXX99Zvyoh0pNuWJJIeHg4efLkISwsLENOIfHx8WzdupVmzZrlWIeJ3KAjGFfPmJgYQkJC8PT0VBbKE2Lh0SXlpJkVFPB+J+HEdDod4eHhODg4GDxk5jRyg55ZVcckv/VXSOv9NutoI5FIUsfMUplmBLBzlrExJZJXyFZu+xJJbsVgIsWxiBKA2MI25QskkmxGZkwWyhGaRJKFSZzCNNhYqtZIYybJcST+xt9m2l6O0CSSLIxGo8HR0ZFHjx4BYGNjY5I0Q4kRNWJiYrLUuktmkxv0zGo6CiF4+fIljx49wtHRMUnYq/QgDZpEksVJDO2UaNRMgRCC6OhorK2ts3fevlTIDXpmVR0dHR31v/WMIg2aRJLFUalUuLm54ezsbLJA1vHx8Rw4cIDatWvneI/VnK5nVtTR3Nz8rUZmiUiDJpFkEzQaTab802e074SEBKysrLLMTdAY5AY9c7KOpp9AlUgkEokkE5AGTSKRSCQ5AmnQJBKJRJIjkGtoGSRxE2Ca8/S8Rnx8PC9fviQ8PDzHzWMnkht0hNyhZ27QEXKHntlRx8T7bGqbr6VByyCJmXc9PDxMLIlEIpHkDiIiIsiTJ0+K52Vw4gyi0+m4d+9eujL4vkpixuvbt29nKLhxdiA36Ai5Q8/coCPkDj2zo47i34zp7u7ub9wMLkdoGUStVlOoUKG3bsfBwSHb/KgySm7QEXKHnrlBR8gdemY3Hd80MktEOoVIJBKJJEcgDZpEIpFIcgTSoJkIS0tLJkyYgKWlpalFMRq5QUfIHXrmBh0hd+iZk3WUTiESiUQiyRHIEZpEIpFIcgTSoEkkEokkRyANmkQikUhyBNKgSSQSiSRHIA2aCViwYAFFixbFysqKqlWrcvz4cVOLlKlMnTqVypUrY29vj7OzM23atOHKlSumFsuoTJs2DZVKxdChQ00tSqZz9+5dPvzwQ/Lnz4+1tTXlypXj5MmTphYr09BqtYwbNw5PT0+sra3x8vLiq6++SjVuYFbnwIEDtGzZEnd3d1QqFRs3bjQ4L4Rg/PjxuLm5YW1tTYMGDbh69apphM0kpEF7x6xZs4bhw4czYcIETp8+ja+vL40bN+bRo0emFi3T2L9/PwMGDODo0aMEBgYSHx9Po0aNiIqKMrVoRuHEiRMsXryY8uXLm1qUTOf58+fUqFEDc3Nztm3bxqVLl5g1axZ58+Y1tWiZxrfffssPP/zA/PnzCQ4O5ttvv2X69OnMmzfP1KK9FVFRUfj6+rJgwYJkz0+fPp25c+eyaNEijh07hq2tLY0bNyYmJuYdS5qJCMk7pUqVKmLAgAH6Y61WK9zd3cXUqVNNKJVxefTokQDE/v37TS1KphMRESFKlCghAgMDRZ06dcSQIUNMLVKm8vnnn4uaNWuaWgyj0rx5c9GrVy+Dsnbt2omuXbuaSKLMBxB//PGH/lin0wlXV1cxY8YMfdmLFy+EpaWlWLVqlQkkzBzkCO0dEhcXx6lTp2jQoIG+TK1W06BBA4KCgkwomXEJCwsDIF++fCaWJPMZMGAAzZs3N/hOcxJ//vkn/v7+dOzYEWdnZypUqMCSJUtMLVamEhAQwO7du/nnn38AOHv2LIcOHaJp06Ymlsx4hISE8ODBA4PfbZ48eahatWq2vhfJ4MTvkCdPnqDVanFxcTEod3Fx4fLlyyaSyrjodDqGDh1KjRo1KFu2rKnFyVRWr17N6dOnOXHihKlFMRo3btzghx9+YPjw4YwdO5YTJ04wePBgLCws6N69u6nFyxRGjx5NeHg43t7eaDQatFotX3/9NV27djW1aEbjwYMHAMneixLPZUekQZMYlQEDBnDhwgUOHTpkalEyldu3bzNkyBACAwOxsrIytThGQ6fT4e/vzzfffANAhQoVuHDhAosWLcoxBu3333/nf//7HytXrqRMmTKcOXOGoUOH4u7unmN0zC3IKcd3iJOTExqNhocPHxqUP3z4EFdXVxNJZTwGDhzIX3/9xd69ezMl1U5W4tSpUzx69IiKFStiZmaGmZkZ+/fvZ+7cuZiZmaHVak0tYqbg5uZG6dKlDcp8fHwIDQ01kUSZz6hRoxg9ejTvv/8+5cqV46OPPmLYsGFMnTrV1KIZjcT7TU67F0mD9g6xsLCgUqVK7N69W1+m0+nYvXs31atXN6FkmYsQgoEDB/LHH3+wZ88ePD09TS1SplO/fn3Onz/PmTNn9C9/f3+6du3KmTNn0Gg0phYxU6hRo0aSLRf//PMPRYoUMZFEmc/Lly+TJI3UaDTodDoTSWR8PD09cXV1NbgXhYeHc+zYsWx9L5JTju+Y4cOH0717d/z9/alSpQpz5swhKiqKnj17mlq0TGPAgAGsXLmSTZs2YW9vr5+Tz5MnD9bW1iaWLnOwt7dPsiZoa2tL/vz5c9Ra4bBhwwgICOCbb76hU6dOHD9+nB9//JEff/zR1KJlGi1btuTrr7+mcOHClClThr///pvZs2fTq1cvU4v2VkRGRnLt2jX9cUhICGfOnCFfvnwULlyYoUOHMmXKFEqUKIGnpyfjxo3D3d2dNm3amE7ot8XUbpa5kXnz5onChQsLCwsLUaVKFXH06FFTi5SpAMm+li1bZmrRjEpOdNsXQojNmzeLsmXLCktLS+Ht7S1+/PFHU4uUqYSHh4shQ4aIwoULCysrK1GsWDHxxRdfiNjYWFOL9lbs3bs32f/D7t27CyEU1/1x48YJFxcXYWlpKerXry+uXLliWqHfEpk+RiKRSCQ5ArmGJpFIJJIcgTRoEolEIskRSIMmkUgkkhyBNGgSiUQiyRFIgyaRSCSSHIE0aBKJRCLJEUiDJpFIJJIcgTRoEolEIskRSIMmkUgkkhyBNGgSiUQiyRFIgyaRSCSSHIE0aBKJRCLJEUiDJpFIJJIcgTRoEolEIskRSIMmkUgkkhyBNGgSiUQiyRFIgyaRSCSSHIE0aBKJRCLJEUiDJpFIJJIcgTRoEolEIskRSIMmkUgkkhyBNGgSiUQiyRFIgyaRSCSSHIE0aBKJRCLJEUiDJpFIJJIcgTRoEolEIskRSIMmkUgkkhyBNGgSiUQiyRFIgyaRSCSSHIE0aBKJRCLJEUiDJpFIJJIcgTRoEolEIskRSIMmkUgkkhyBNGgSiUQiyRFIgyaRSCSSHIE0aBKJRCLJEUiDJpFIJJIcgTRoEolEIskRSIMmkUgkkhyBNGgSiUQiyRFIgyaRSCSSHIE0aBKJRCLJEUiDJpFIJJIcgTRoEolEIskRSIMmMQk9evSgaNGiGbp24sSJqFSqzBUoi3Hz5k1UKhXLly9/532rVComTpyoP16+fDkqlYqbN2+mem3RokXp0aNHpsrzNr8VSe5CGjSJASqVKk2vffv2mVrUXM/gwYNRqVRcu3YtxTpffPEFKpWKc+fOvUPJ0s+9e/eYOHEiZ86cMbUoehIfKmbOnGlqUSRpxMzUAkiyFitWrDA4/vXXXwkMDExS7uPj81b9LFmyBJ1Ol6Frv/zyS0aPHv1W/ecEunbtyrx581i5ciXjx49Pts6qVasoV64c5cuXz3A/H330Ee+//z6WlpYZbiM17t27x6RJkyhatCh+fn4G597mtyLJXUiDJjHgww8/NDg+evQogYGBScpf5+XLl9jY2KS5H3Nz8wzJB2BmZoaZmfzpVq1aleLFi7Nq1apkDVpQUBAhISFMmzbtrfrRaDRoNJq3auNteJvfiiR3IaccJemmbt26lC1bllOnTlG7dm1sbGwYO3YsAJs2baJ58+a4u7tjaWmJl5cXX331FVqt1qCN19dFXp3e+fHHH/Hy8sLS0pLKlStz4sQJg2uTW0NTqVQMHDiQjRs3UrZsWSwtLSlTpgzbt29PIv++ffvw9/fHysoKLy8vFi9enOZ1uYMHD9KxY0cKFy6MpaUlHh4eDBs2jOjo6CT62dnZcffuXdq0aYOdnR0FChRg5MiRST6LFy9e0KNHD/LkyYOjoyPdu3fnxYsXqcoCyijt8uXLnD59Osm5lStXolKp6NKlC3FxcYwfP55KlSqRJ08ebG1tqVWrFnv37k21j+TW0IQQTJkyhUKFCmFjY0O9evW4ePFikmufPXvGyJEjKVeuHHZ2djg4ONC0aVPOnj2rr7Nv3z4qV64MQM+ePfXT2onrh8mtoUVFRTFixAg8PDywtLSkVKlSzJw5EyGEQb30/C4yyqNHj+jduzcuLi5YWVnh6+vLL7/8kqTe6tWrqVSpEvb29jg4OFCuXDm+//57/fn4+HgmTZpEiRIlsLKyIn/+/NSsWZPAwMBMkzWnIx9zJRni6dOnNG3alPfff58PP/wQFxcXQLn52dnZMXz4cOzs7NizZw/jx48nPDycGTNmpNruypUriYiI4JNPPkGlUjF9+nTatWvHjRs3Un1SP3ToEBs2bKB///7Y29szd+5c2rdvT2hoKPnz5wfg77//pkmTJri5uTFp0iS0Wi2TJ0+mQIECadJ77dq1vHz5kk8//ZT8+fNz/Phx5s2bx507d1i7dq1BXa1WS+PGjalatSozZ85k165dzJo1Cy8vLz799FNAMQytW7fm0KFD9OvXDx8fH/744w+6d++eJnm6du3KpEmTWLlyJRUrVjTo+/fff6dWrVoULlyYJ0+e8NNPP9GlSxf69OlDREQEP//8M40bN+b48eNJpvlSY/z48UyZMoVmzZrRrFkzTp8+TaNGjYiLizOod+PGDTZu3EjHjh3x9PTk4cOHLF68mDp16nDp0iXc3d3x8fFh8uTJjB8/nr59+1KrVi0AAgICku1bCEGrVq3Yu3cvvXv3xs/Pjx07djBq1Cju3r3Ld999Z1A/Lb+LjBIdHU3dunW5du0aAwcOxNPTk7Vr19KjRw9evHjBkCFDAAgMDKRLly7Ur1+fb7/9FoDg4GAOHz6srzNx4kSmTp3Kxx9/TJUqVQgPD+fkyZOcPn2ahg0bvpWcuQYhkbyBAQMGiNd/JnXq1BGAWLRoUZL6L1++TFL2ySefCBsbGxETE6Mv6969uyhSpIj+OCQkRAAif/784tmzZ/ryTZs2CUBs3rxZXzZhwoQkMgHCwsJCXLt2TV929uxZAYh58+bpy1q2bClsbGzE3bt39WVXr14VZmZmSdpMjuT0mzp1qlCpVOLWrVsG+gFi8uTJBnUrVKggKlWqpD/euHGjAMT06dP1ZQkJCaJWrVoCEMuWLUtVpsqVK4tChQoJrVarL9u+fbsAxOLFi/VtxsbGGlz3/Plz4eLiInr16mVQDogJEyboj5ctWyYAERISIoQQ4tGjR8LCwkI0b95c6HQ6fb2xY8cKQHTv3l1fFhMTYyCXEMp3bWlpafDZnDhxIkV9X/+tJH5mU6ZMMajXoUMHoVKpDH4Daf1dJEfib3LGjBkp1pkzZ44AxG+//aYvi4uLE9WrVxd2dnYiPDxcCCHEkCFDhIODg0hISEixLV9fX9G8efM3yiR5M3LKUZIhLC0t6dmzZ5Jya2tr/fuIiAiePHlCrVq1ePnyJZcvX0613c6dO5M3b179ceLT+o0bN1K9tkGDBnh5eemPy5cvj4ODg/5arVbLrl27aNOmDe7u7vp6xYsXp2nTpqm2D4b6RUVF8eTJEwICAhBC8Pfffyep369fP4PjWrVqGeiydetWzMzM9CM2UNasBg0alCZ5QFn3vHPnDgcOHNCXrVy5EgsLCzp27Khv08LCAgCdTsezZ89ISEjA398/2enKN7Fr1y7i4uIYNGiQwTTt0KFDk9S1tLRErVZuM1qtlqdPn2JnZ0epUqXS3W8iW7duRaPRMHjwYIPyESNGIIRg27ZtBuWp/S7ehq1bt+Lq6kqXLl30Zebm5gwePJjIyEj2798PgKOjI1FRUW+cPnR0dOTixYtcvXr1reXKrUiDJskQBQsW1N8gX+XixYu0bduWPHny4ODgQIECBfQOJWFhYam2W7hwYYPjROP2/PnzdF+beH3itY8ePSI6OprixYsnqZdcWXKEhobSo0cP8uXLp18Xq1OnDpBUPysrqyRTma/KA3Dr1i3c3Nyws7MzqFeqVKk0yQPw/vvvo9FoWLlyJQAxMTH88ccfNG3a1ODh4JdffqF8+fL69ZkCBQqwZcuWNH0vr3Lr1i0ASpQoYVBeoEABg/5AMZ7fffcdJUqUwNLSEicnJwoUKMC5c+fS3e+r/bu7u2Nvb29Qnuh5myhfIqn9Lt6GW7duUaJECb3RTkmW/v37U7JkSZo2bUqhQoXo1atXknW8yZMn8+LFC0qWLEm5cuUYNWpUlt9ukdWQBk2SIV4dqSTy4sUL6tSpw9mzZ5k8eTKbN28mMDBQv2aQFtfrlLzpxGuL/Zl9bVrQarU0bNiQLVu28Pnnn7Nx40YCAwP1zguv6/euPAOdnZ1p2LAh69evJz4+ns2bNxMREUHXrl31dX777Td69OiBl5cXP//8M9u3bycwMJD33nvPqC7x33zzDcOHD6d27dr89ttv7Nixg8DAQMqUKfPOXPGN/btIC87Ozpw5c4Y///xTv/7XtGlTg7XS2rVrc/36dZYuXUrZsmX56aefqFixIj/99NM7kzO7I51CJJnGvn37ePr0KRs2bKB27dr68pCQEBNK9R/Ozs5YWVkluxH5TZuTEzl//jz//PMPv/zyC926ddOXv40XWpEiRdi9ezeRkZEGo7QrV66kq52uXbuyfft2tm3bxsqVK3FwcKBly5b68+vWraNYsWJs2LDBYJpwwoQJGZIZ4OrVqxQrVkxf/vjx4ySjnnXr1lGvXj1+/vlng/IXL17g5OSkP05P5JciRYqwa9cuIiIiDEZpiVPaifK9C4oUKcK5c+fQ6XQGo7TkZLGwsKBly5a0bNkSnU5H//79Wbx4MePGjdPPEOTLl4+ePXvSs2dPIiMjqV27NhMnTuTjjz9+ZzplZ+QITZJpJD4Jv/rkGxcXx8KFC00lkgEajYYGDRqwceNG7t27py+/du1aknWXlK4HQ/2EEAau1+mlWbNmJCQk8MMPP+jLtFot8+bNS1c7bdq0wcbGhoULF7Jt2zbatWuHlZXVG2U/duwYQUFB6Za5QYMGmJubM2/ePIP25syZk6SuRqNJMhJau3Ytd+/eNSiztbUFSNN2hWbNmqHVapk/f75B+XfffYdKpUrzemhm0KxZMx48eMCaNWv0ZQkJCcybNw87Ozv9dPTTp08NrlOr1frN7rGxscnWsbOzo3jx4vrzoExrX758OcPTtTkdOUKTZBoBAQHkzZuX7t2768MyrVix4p1O7aTGxIkT2blzJzVq1ODTTz/V3xjLli2batglb29vvLy8GDlyJHfv3sXBwYH169e/1VpMy5YtqVGjBqNHj+bmzZuULl2aDRs2pPuGZWdnR5s2bfTraK9ONwK0aNGCDRs20LZtW5o3b05ISAiLFi2idOnSREZGpquvxP10U6dOpUWLFjRr1oy///6bbdu2GYy6EvudPHkyPXv2JCAggPPnz/O///3PYGQH4OXlhaOjI4sWLcLe3h5bW1uqVq2Kp6dnkv5btmxJvXr1+OKLL7h58ya+vr7s3LmTTZs2MXToUAMHkMxg9+7dxMTEJClv06YNffv2ZfHixfTo0YNTp05RtGhR1q1bx+HDh5kzZ45+BPnxxx/z7Nkz3nvvPQoVKsStW7eYN28efn5++vW20qVLU7duXSpVqkS+fPk4efIk69atY+DAgfo+//jjD3r27MmyZcsyPWZmjsA0zpWS7EJKbvtlypRJtv7hw4dFtWrVhLW1tXB3dxefffaZ2LFjhwDE3r179fVScttPzkWa19zIU3LbHzBgQJJrixQpYuBGLoQQu3fvFhUqVBAWFhbCy8tL/PTTT2LEiBHCysoqhU/hPy5duiQaNGgg7OzshJOTk+jTp4/eDfxVl/Pu3bsLW1vbJNcnJ/vTp0/FRx99JBwcHESePHnERx99JP7+++80u+0nsmXLFgEINze3JK7yOp1OfPPNN6JIkSLC0tJSVKhQQfz1119JvgchUnfbF0IIrVYrJk2aJNzc3IS1tbWoW7euuHDhQpLPOyYmRowYMUJfr0aNGiIoKEjUqVNH1KlTx6DfTZs2idKlS+u3UCTqnpyMERERYtiwYcLd3V2Ym5uLEiVKiBkzZhhsI0jUJa2/i9dJ/E2m9FqxYoUQQoiHDx+Knj17CicnJ2FhYSHKlSuX5Htbt26daNSokXB2dhYWFhaicOHC4pNPPhH379/X15kyZYqoUqWKcHR0FNbW1sLb21t8/fXXIi4uLsl3kZ7fRW5CJUQWenyWSExEmzZtpMu0RJLNkWtoklzH62Gqrl69ytatW6lbt65pBJJIJJmCHKFJch1ubm706NGDYsWKcevWLX744QdiY2P5+++/k+ytkkgk2QfpFCLJdTRp0oRVq1bx4MEDLC0tqV69Ot988400ZhJJNkeO0CQSiUSSI5BraBKJRCLJEUiDJpFIJJIcgTRoEslbklwCSolE8u6RBk2SY0nMfJzaa9++faYW1YB9+/ahUqlYt26dqUXJMHfv3qVTp044Ojri4OBA69at05yuZefOnfTu3ZuyZcui0WhSfFi4fPkyn332GX5+ftjb2+Pm5kbz5s05efJkkrpXrlxh2LBhBAQEYGVllSQDtyRnIL0cJTmWFStWGBz/+uuvBAYGJilPDD2UUZYsWfLOIsdnByIjI6lXrx5hYWGMHTsWc3NzvvvuO+rUqcOZM2dSzRK9cuVK1qxZQ8WKFQ3y1r3OTz/9xM8//0z79u3p378/YWFhLF68mGrVqrF9+3YaNGigrxsUFMTcuXMpXbo0Pj4+qYY5k2RTTBmmRCJ5lyQXxis5oqKi3oE0KbN3714BiLVr15pUjozy7bffCkAcP35cXxYcHCw0Go0YM2ZMqtffvXtXH+6pefPmScJeJXLy5EkRERFhUPbkyRNRoEABUaNGDYPyp0+f6rNHz5gxI0koL0nOQE45SnI1devWpWzZspw6dYratWtjY2PD2LFjAdi0aRPNmzfH3d0dS0tLvLy8+Oqrr9BqtQZtvL6GdvPmTVQqFTNnzuTHH3/Ey8sLS0tLKleuzIkTJzJN9hs3btCxY0fy5cuHjY0N1apVY8uWLUnqzZs3jzJlymBjY0PevHnx9/fXBzEGJbP40KFDKVq0KJaWlvr8aq9mlE7MOP7kyZNU5Vq3bh2VK1emcuXK+jJvb2/q16/P77//nur17u7umJubp1qvUqVKSRKj5s+fn1q1ahEcHGxQni9fviQJQSU5D2nQJLmep0+f0rRpU/z8/JgzZw716tUDYPny5djZ2TF8+HC+//57KlWqxPjx4xk9enSa2l25ciUzZszgk08+YcqUKdy8eZN27doRHx//1jI/fPiQgIAAduzYQf/+/fn666+JiYmhVatW/PHHH/p6S5YsYfDgwZQuXZo5c+YwadIk/Pz8OHbsmL5Ov379+OGHH2jfvj0LFy5k5MiRWFtbGxiF48eP4+PjkyRly+vodDrOnTuHv79/knNVqlTh+vXrREREvLX+b+LBgwdJov5LcgdyDU2S63nw4AGLFi3ik08+MShfuXKlQWbufv360a9fPxYuXMiUKVOwtLR8Y7uhoaFcvXqVvHnzAlCqVClat27Njh07aNGixVvJPG3aNB4+fMjBgwepWbMmAH369KF8+fIMHz6c1q1bo1ar2bJlC2XKlGHt2rUptrVlyxb69OnDrFmz9GWfffZZhuR69uwZsbGxuLm5JTmXWHbv3j1KlSqVofZT4+DBgwQFBfHll18apX1J1kaO0CS5HktLS3r27Jmk/FVjFhERwZMnT6hVq5Z++i01OnfurDdmALVq1QJIs7ffm9i6dStVqlTRGzNQcqL17duXmzdvcunSJQAcHR25c+fOG6c6HR0dOXbsmEHS09epW7cuQggmTpz4RrkSAz8nZ+wTE46+Hhw6s3j06BEffPABnp6eGTbIkuyNNGiSXE/BggWxsLBIUn7x4kXatm1Lnjx5cHBwoECBAnz44YcAaUrAWbhwYYPjROP2NglBE7l161ayo5xEj81bt24B8Pnnn2NnZ0eVKlUoUaIEAwYM4PDhwwbXTJ8+nQsXLuDh4UGVKlWYOHFiho1u4kPAq1mWE0lMkvnqg0JmERUVRYsWLYiIiGDTpk1J1tYkuQNp0CS5nuRusC9evKBOnTqcPXuWyZMns3nzZgIDA/n2228B0uSmr9Foki0X7zB8qo+PD1euXGH16tXUrFmT9evXU7NmTSZMmKCv06lTJ27cuMG8efNwd3dnxowZlClThm3btqW7v3z58mFpacn9+/eTnEsse5MrfkaIi4ujXbt2nDt3jk2bNlG2bNlMbV+SfZAGTSJJhn379vH06VOWL1/OkCFDaNGiBQ0aNDCYQjQlRYoU4cqVK0nKE6dCixQpoi+ztbWlc+fOLFu2jNDQUJo3b653IknEzc2N/v37s3HjRkJCQsifPz9ff/11uuVSq9WUK1cu2c3Nx44do1ixYpnqbajT6ejWrRu7d+9m5cqV1KlTJ9PalmQ/pEGTSJIhcXT16mgqLi6OhQsXmkokA5o1a8bx48cJCgrSl0VFRfHjjz9StGhRSpcuDSgenK9iYWFB6dKlEUIQHx+PVqtNMn3q7OyMu7u7wbRhetz2O3TowIkTJwyM2pUrV9izZw8dO3Y0qHv58mVCQ0PTrvhrDBo0iDVr1rBw4ULatWuX4XYkOQPp5SiRJENAQAB58+ale/fuDB48GJVKxYoVK97pdOH69euTdT7p3r07o0ePZtWqVTRt2pTBgweTL18+fvnlF0JCQli/fj1qtfKs2qhRI1xdXalRowYuLi4EBwczf/58mjdvjr29PS9evKBQoUJ06NABX19f7Ozs2LVrFydOnDDwejx+/Dj16tVjwoQJqTqG9O/fnyVLltC8eXNGjhyJubk5s2fPxsXFhREjRhjU9fHxoU6dOgbhx86dO8eff/4JwLVr1wgLC2PKlCkA+Pr60rJlSwDmzJnDwoULqV69OjY2Nvz2228Gbbdt2xZbW1tAWfOcN28egH4Ncf78+Tg6OuLo6MjAgQPfqJMkm2DSbd0SyTskuUghderUEWXKlEm2/uHDh0W1atWEtbW1cHd3F5999pnYsWOHAMTevXv19bp3724QzSIkJEQAYsaMGUnaBMSECRPeKGdipJCUXgcPHhRCCHH9+nXRoUMH4ejoKKysrESVKlXEX3/9ZdDW4sWLRe3atUX+/PmFpaWl8PLyEqNGjRJhYWFCCCFiY2PFqFGjhK+vr7C3txe2trbC19dXLFy4MFmZUpM9kdu3b4sOHToIBwcHYWdnJ1q0aCGuXr2a7OdRp04dg7Jly5alqHv37t319bp37/7Gz+nVSCCJ30lyr5QikUiyHzLBp0QikUhyBHINTSKRSCQ5AmnQJBKJRJIjkAZNIpFIJDkCadAkEolEkiOQBk0ikUgkOQJp0CS5isRcZcuXL9eXTZw4EZVKlabrVSpVqvuw0kvdunWpW7duprYpkeRGpEGTZFlatWqFjY3NG/Nnde3aFQsLiyQRMbIaly5dYuLEidy8edPUoujZt28fKpWKdevWmVqUDHP37l06deqEo6MjDg4OtG7dOs2Blb/55huqVatGgQIFsLKyokSJEgwdOpTHjx8nqXvt2jU6dOhA3rx5sbGxoWbNmuzduzez1ZG8JdKgSbIsXbt2JTo62iBh5au8fPmSTZs20aRJE/Lnz5/hfr788kujpTRJ5NKlS0yaNClZg7Zz50527txp1P5zIpGRkdSrV4/9+/czduxYJk2axN9//02dOnXS9IBz6tQp/Pz8+OKLL1iwYAGtW7dm2bJlBAQEEBUVpa93+/ZtqlevzqFDhxg1ahRTp04lMjKSRo0aceDAAWOqKEknMvSVJMvSqlUr7O3tWblyJd26dUtyftOmTURFRdG1a9e36sfMzAwzM9P9KySXukaSOgsXLuTq1ascP36cypUrA9C0aVPKli3LrFmz+Oabb954/fr165OUVa9enQ4dOrB582bef/99QEmm+uLFCy5cuKBP2dOnTx+8vb0ZNmwYp06dymTNJBlFjtAkWRZra2vatWvH7t27efToUZLzK1euxN7enlatWvHs2TNGjhxJuXLlsLOzw8HBgaZNm3L27NlU+0luDS02NpZhw4ZRoEABfR937txJcu2tW7fo378/pUqVwtramvz589OxY0eDkdjy5cv1QXnr1auHSqVCpVLp4xcmt4b26NEjevfujYuLC1ZWVvj6+vLLL78Y1ElcD5w5cyY//vgjXl5eWFpaUrly5Tcm9EwvN27coGPHjuTLlw8bGxuqVavGli1bktSbN28eZcqUwcbGhrx58+Lv78/KlSv15yMiIhg6dChFixbF0tISZ2dnGjZsyOnTp/V10hMEed26dVSuXFlvzAC8vb2pX78+v//+e4Z0LVq0KKCkD0rk4MGDVKhQwSD/nI2NDa1ateL06dNcvXo1Q31JMh9p0CRZmq5du5KQkJDkBvXs2TN27NhB27Ztsba25saNG2zcuJEWLVowe/ZsRo0axfnz56lTp84bMzGnxMcff8ycOXNo1KgR06ZNw9zcnObNmyepd+LECY4cOcL777/P3Llz6devH7t376Zu3bq8fPkSgNq1azN48GAAxo4dy4oVK1ixYoU+GefrREdHU7duXVasWEHXrl2ZMWMGefLkoUePHnz//fdJ6q9cuZIZM2bwySefMGXKFG7evEm7du2Ij49Pt96v8/DhQwICAtixYwf9+/fXp51p1aqVwVTwkiVLGDx4MKVLl2bOnDlMmjQJPz8/jh07pq/Tr18/fvjhB9q3b8/ChQsZOXIk1tbWBAcH6+scP34cHx8f5s+f/0a5dDod586dw9/fP8m5KlWqcP369TeuvSYihODJkyc8ePCAgwcPMnjwYDQajcEDRmxsbLI582xsbADkCC0rYeJYkhLJG0lISBBubm6ievXqBuWLFi0SgNixY4cQQoiYmBih1WoN6oSEhAhLS0sxefJkgzJALFu2TF82YcIEg6DFZ86cEYDo37+/QXsffPBBkgC9L1++TCJzUFCQAMSvv/6qL1u7dm2SoMaJ1KlTxyBA75w5cwQgfvvtN31ZXFycqF69urCzsxPh4eEGuuTPn188e/ZMX3fTpk0CEJs3b07S16skBhxeu3ZtinWGDh1qEBBZCCEiIiKEp6enKFq0qP4zb926dYpBnhPJkyePGDBgQJpkSi0I8uPHjwVg8N0msmDBAgGIy5cvv7ENIYS4f/++QaDiQoUKiTVr1hjUadmypXB0dNR/7olUr15dAGLmzJmp9iN5N8gRmiRLo9FoeP/99wkKCjKYxlu5ciUuLi7Ur18fAEtLS33KFK1Wy9OnT7Gzs6NUqVIGU1ppYevWrQD6UVUiQ4cOTVL31Sf3+Ph4nj59SvHixXF0dEx3v6/27+rqSpcuXfRl5ubmDB48mMjISPbv329Qv3PnzgaJR2vVqgWQZm+/1GSpUqUKNWvW1JfZ2dnRt29fbt68yaVLlwBwdHTkzp07b5zqdHR05NixY28cMdetWxchRKpbIxKdeCwtLZOcs7KyMqjzJvLly0dgYCCbN29m8uTJODk5ERkZaVDn008/5cWLF3Tu3Jm///6bf/75h6FDh+rzvRnboUiSdqRBk2R5Ep0+Etdj7ty5w8GDB3n//ff1iTh1Oh3fffcdJUqUwNLSEicnJwoUKMC5c+eSJLBMjVu3bqFWq/Hy8jIof3UNJZHo6GjGjx+Ph4eHQb8vXrxId7+v9l+iRAm9gU4kcYry1q1bBuWFCxc2OE40bs+fP89Q/6/Lkpzer8vy+eefY2dnR5UqVShRogQDBgzQ5x1LZPr06Vy4cAEPDw+qVKnCxIkTM2x0Ex8kXk1CmkhiJu7kpglfx8LCggYNGtCiRQvGjRvHggUL6N27N3/99Ze+TtOmTZk3bx4HDhygYsWKlCpVii1btugzetvZ2WVIB0nmIw2aJMtTqVIlvL29WbVqFQCrVq1CCGHg3fjNN98wfPhwateuzW+//caOHTsIDAykTJky6HQ6o8k2aNAgvv76azp16sTvv//Ozp07CQwMJH/+/Ebt91USjfrriHeYGcrHx4crV66wevVqatasyfr166lZsyYTJkzQ1+nUqRM3btxg3rx5uLu7M2PGDMqUKcO2bdvS3V++fPmwtLTk/v37Sc4llrm7u6e73YCAANzc3Pjf//5nUD5w4EAePnzIkSNHOHnyJJcvXyZPnjwAlCxZMt39SIyDdNuXZAu6du3KuHHjOHfuHCtXrqREiRIG3m3r1q2jXr16/PzzzwbXvXjxAicnp3T1VaRIEXQ6HdevXzcYnVy5ciVJ3XXr1tG9e3eD7M4xMTEGXnJAmiORJPZ/7tw5dDqdwSgtMXt1kSJF0tzW21KkSJFk9U5OFltbWzp37kznzp2Ji4ujXbt2fP3114wZM0Y/Dejm5kb//v3p378/jx49omLFinz99dc0bdo0XXKp1WrKlSunn/Z7lWPHjlGsWDHs7e3T1WYiMTExyY6ubW1tqV69uv54165dWFtbU6NGjQz1I8l85AhNki1IHI2NHz+eM2fOJNl7ptFokoxI1q5dy927d9PdV+LNde7cuQblc+bMSVI3uX7nzZuHVqs1KLO1tQVIYuiSo1mzZjx48IA1a9boyxISEpg3bx52dnbUqVMnLWpkCs2aNeP48eMEBQXpy6Kiovjxxx8pWrQopUuXBkiykdnCwoLSpUsjhCA+Ph6tVpvESDg7O+Pu7m4wbZget/0OHTpw4sQJA6N25coV9uzZo98mkcjly5cJDQ010CHRC/VV1q9fz/Pnz5P1nnyVI0eOsGHDBnr37q0fqUlMjxyhSbIFnp6eBAQEsGnTJoAkBq1FixZMnjyZnj17EhAQwPnz5/nf//5HsWLF0t2Xn58fXbp0YeHChYSFhREQEMDu3bu5du1akrotWrRgxYoV5MmTh9KlSxMUFMSuXbuSRC7x8/NDo9Hw7bffEhYWhqWlJe+99x7Ozs5J2uzbty+LFy+mR48enDp1iqJFi7Ju3ToOHz7MnDlzMjzySIn169frR1yv0r17d0aPHs2qVato2rQpgwcPJl++fPzyyy+EhISwfv16/QiyUaNGuLq6UqNGDVxcXAgODmb+/Pk0b94ce3t7Xrx4QaFChejQoQO+vr7Y2dmxa9cuTpw4YTC6PX78OPXq1WPChAmpOob079+fJUuW0Lx5c0aOHIm5uTmzZ8/GxcWFESNGGNT18fGhTp06+r1/V69epUGDBnTu3Blvb2/UajUnT57kt99+o2jRogwZMkR/7a1bt+jUqROtWrXC1dWVixcvsmjRIsqXL5/q5m3JO8aULpYSSXpIdMeuUqVKknMxMTFixIgRws3NTVhbW4saNWqIoKCgJC7xaXHbF0KI6OhoMXjwYJE/f35ha2srWrZsKW7fvp3Epfz58+eiZ8+ewsnJSdjZ2YnGjRuLy5cviyJFioju3bsbtLlkyRJRrFgxodFoDFz4X5dRCCEePnyob9fCwkKUK1fOQOZXdZkxY0aSz+N1OZMj0UU+pVeiq/7169dFhw4dhKOjo7CyshJVqlQRf/31l0FbixcvFrVr1xb58+cXlpaWwsvLS4waNUqEhYUJIYSIjY0Vo0aNEr6+vsLe3l7Y2toKX19fsXDhwmRlSk32RG7fvi06dOggHBwchJ2dnWjRooW4evVqsp/Hq5/x48ePRd++fYW3t7ewtbUVFhYWokSJEmLo0KHi8ePHBtc+e/ZMtG7dWri6ugoLCwvh6ekpPv/88yRu/BLToxLiHa4cSyQSiURiJOQamkQikUhyBNKgSSQSiSRHIA2aRCKRSHIE0qBJJBKJJEcgDZpEIpFIcgTSoEkkEokkRyA3VmcQnU7HvXv3sLe3T1dYI4lEIpGkDyEEERERuLu7Jwna/SrSoGWQe/fu4eHhYWoxJBKJJNdw+/ZtChUqlOJ5adAySGL4odu3b+Pg4JDu6+Pj49m5cyeNGjXC3Nw8s8XLEuQGHSF36JkbdITcoWd21DE8PBwPD49Uw75Jg5ZBEqcZHRwcMmzQbGxscHBwyDY/qvSSG3SE3KFnbtARcoee2VnH1JZ3pFOIRCKRSHIE0qBJJBKJJEcgDZpEIpFIcgRyDU0ikaQZrVabJHlpTiI+Ph4zMzNiYmJyrJ5ZUUdzc3M0Gs1btyMNmkQiSRUhBPb29ty4cSNH77sUQuDq6srt27dzrJ5ZVUdHR0dcXV3fSiZp0CQSSao8evSIvHnzUqBAAezs7LLUjTAz0el0REZGYmdn98YNvNmZrKajEIKXL1/y6NEjANzc3DLcljRoEkl24+l1uLINKn8M5lZG706r1RIeHo6TkxP58+fPEjdBY6HT6YiLi8PKyirH6pkVdbS2tgaUBydnZ+cMTz9KgyaRZCeEgLU94ME5iH4G9ccbvcv4+HgALCwsjN6XJPdiY2MDKL+3jBq0rGGeJRJJ2rixTzFmAEcXQdSTd9Z1Tp1mlGQNMuP3JQ2aCdDpBL8eDSUq3tSSSLIdh7//7318FByeYzJRJJKshjRoJmDcpgt8teUyq66rEUKYWhxJduH+ObixF1RqaDZTKTv+E0Q8NK1cuYyiRYsyZ86cNNfft28fKpWKFy9eGE0miYI0aCagS5XCmGtUnH+u5n/Hb5taHOMQH41m4ydUv/YtxEaYWpqcwZG5yt/SbRSHkEKVISEaDn1nUrGyKiqV6o2viRMnZqjdEydO0Ldv3zTXDwgI4P79++TJkydD/aUVaTilQTMJZQvm4bPGJQGYuv0fLt0LN7FEmUxCLKz5EPXF9ThHXER9eLapJcr+vAiFCxuU9zUGg0oF9b5Qjk8uhbC7ppMti3L//n39a86cOTg4OBiUjRw5Ul9XCEFCQkKa2i1QoIDegSEtWFhYvPX+KknayBYGbcGCBRQtWhQrKyuqVq3K8ePH03Td6tWrUalUtGnTxqC8R48eSZ7WmjRpYgTJU6Z7tcKUyasjLkHHwFWneRmXtn+mLI82Adb1gmu7EGolkrf62CJ4cs3EgmVzghaC0IJnbXCvoJQVqwuFA0AbCwdnmVS8rIirq6v+lSdPHlQqlf748uXL2Nvbs23bNipVqoSlpSWHDh3i+vXrfPDBB7i5uWFnZ0flypXZtWuXQbuvTzmqVCp++ukn2rZti42NDSVKlODPP//Un3995LR8+XIcHR3ZsWMHPj4+2NnZ0aRJE+7fv6+/JiEhgcGDB+Po6Ej+/Pn5/PPP6d69e5J7WXp4/vw53bp1I3/+/Li7u9OsWTOuXr2qP3/r1i1atmxJ3rx5sbW1pUyZMmzdulV/bdeuXSlQoADW1taUKFGCZcuWZVgWY5HlDdqaNWsYPnw4EyZM4PTp0/j6+tK4cWP9JryUuHnzJiNHjqRWrVrJnk/8ASW+Vq1aZQzxU0SlUvGBlw4Xe0tuPI5i4p8X32n/RkGnhY394PJfoLFA23kVDx3Ko9LFw44xppYu+/LyGZz+VXlfY8h/5SoVvPfvKO30r8oo7h0hhOBlXIJJXpm57jx69GimTZtGcHAw5cuXJzIykoYNGxIYGMjff/9NkyZNaNmyJaGhb/5sJ02aRKdOnTh37hzNmjWja9euPHv2LMX6L1++ZObMmaxYsYIDBw4QGhpqMGL89ttv+d///seyZcs4fPgw4eHhbNy48a107dGjBydPnmTT6l/Zt2UtQgiaNWum35YxYMAAYmNjOXDgAOfPn+fbb7/Fzs4OgHHjxnHp0iW2bdtGcHAwP/zwA05OTm8ljzHI8vvQZs+eTZ8+fejZsycAixYtYsuWLSxdupTRo0cne41Wq6Vr165MmjSJgwcPJjunbGlpiaurqzFFTxU7c5jVsRwfLTvJ7yfvUKO4E639CppUpgwjBPw1FM6vBbUZdPoVUawuFwpexzkyGNXVnfDPDijZ2NSSZj9O/qx4NLqUBa/6hueK1gTPOhCyH/ZPh9bz34lI0fFaSo/f8U76ep1LkxtjY5E5t67JkyfTsGFD/bGjoyOenp44ODigVqv56quv+OOPP/jzzz8ZOHBgiu306NGDLl26APDNN98wd+5cjh8/nuLMT3x8PIsWLcLLywuAgQMHMnnyZP35efPmMWbMGNq2bQvA/Pnz9aOljHD16lX+/PNPDu8NJKBkfgD+t2gWhctUYePGjXTs2JHQ0FDat29PuXLlAChWrJj++tDQUCpUqIC/vz+gjFKzIlnaoMXFxXHq1CnGjPnv6V6tVtOgQQOCgoJSvG7y5Mk4OzvTu3dvDh48mGydffv24ezsTN68eXnvvfeYMmUK+fPnT7HN2NhYYmNj9cfh4cq6V3x8vP4JJz0kXlOxkD0D6hRj/r4bjP3jPGXc7CiSL+3z81kCIVAHfoHm9K8IlRpt60WIYg2Ij48n0sqNBP8+mB9fiNj2OQkeNcDM0tQSZyqJ32VGfgepkhCD2bHFqICEqv0RyazzqGqPxixkP+LMShKqDYJ8xZK28xbEx8frR0VCCHQ6HTqdLlP7SA8Z6T+x/ut/K1asaNBWREQE48aNY9euXdy/f5+EhASio6O5deuWQb3EzyGRsmXL6o+tra1xcHDgwYMHBrImvtfpdNjY2ODp6ak/5+LiwqNHj9DpdISFhfHw4UP8/f3151UqlV7WlHR/vZ9XuXjxImZmZlQp6QwoAYmdLOMpVaI4ly5dQqfTMXDgQAYMGMDOnTupX78+7dq1o3z58gB88skndOzYkdOnT9OwYUNat25NQEBAur6D1NDpdAghkt1Yndb/rSxt0J48eYJWq8XFxcWg3MXFhcuXLyd7zaFDh/j55585c+ZMiu02adKEdu3a4enpyfXr1xk7dixNmzYlKCgoxR3qU6dOZdKkSUnKd+7cma4F4tcJDAykmAAvew3XI7T0/PEgQ8tqMcvyk8H/4XNvLSUfbgbgb4/e3L5pATf/e5rcGeNLfbM8WD0P4eqvQ7nq2tJUohqVwMDATG+zyJO9+EU95qV5PnaFWiFuJ/+UXs2hPC7h53iwehini36SqTKYmZnpZzMiIhSPVSEEQcOrZWo/aSU+OorwmPQ5WMTExCCE0D+Ivnz5ElBuoollAMOGDWPfvn189dVXeHp6Ym1tTffu3YmMjNTX0+l0xMTEGFyXkJBgcJzYR3h4uL6viIgI1Go1MTExmJmZGdR/Vb7E8qioqCR9vC7v6/292k9y51TaOHRmFsSrrbHURoI2jtgYRc5OnToREBDAzp072bt3L9OmTWPKlCn07duXGjVqcO7cOQIDA9m7dy8NGzbk448/5quvvkrrV5AqcXFxREdHc+DAgSQOOonyp0aWNmjpJSIigo8++oglS5a8cX73/fff178vV64c5cuXx8vLi3379lG/fv1krxkzZgzDhw/XH4eHh+Ph4UGjRo1wcHBIt6zx8fEEBgbSsGFDzM3N8a8ZQ8sFR7gdlcAlMy9GNymV7jZNgfrwd2j+VoyZtvF0yvn3oty/5xJ1rNekFWZFtfBnf3yebKVEh/HgkPEApFmN17/LTEOnxWyx8hBlWWcYTau2SrGq6p4bLGtIoRdBuFaZCU4lMk2MmJgY/RqSvb293lvPuE7omYuVlRUqlUr/v5r4EGpvb2/w/3vy5Ek++OADunTpgkqlIjIyktu3b2NhYaGvp1arsbKyMrgucVSWiEql0td5va/XZUm8HsDBwQEHBwdcXFwIDg6madOmgLKMcv78eXx9fVO836SkE0Al3zIkJCRw7PQFqjVsTXSsIOLhE65cv8XYEu44ONgDKkqXLk3p0qUZOnQoY8eO5bffftOv7Tk4OPDJJ5/wySefsHjxYj7//HO+//7718XIMDExMVhbW1O7dm2srAxjlKZkxF8nSxs0JycnNBoNDx8abhx9+PBhsutf169f5+bNm7Rs+d8IIHHobWZmxpUrV/Rz1q9SrFgxnJycuHbtWooGzdLSEkvLpFNl5ubmb3UTS7y+sJM5Mzr40nfFKX4+fIuaJZ2pV8o5w+2+E4IWwr6vlfcNv0JT/ROSG9+am5tj5tcFTi9Hdec45vu+gvZL3qmo74K3/S0kIXg7PLsOlnnQVO6J5k1tF6kCpZqjurIF88MzocPSTBNDq9XqjZhKpcoyAW3TQ6LMyf19VZ/ixYuzefNm2rdvj0ajYdy4ceh0uiR6v378ejuvlr3e1+syJCfXoEGDmDZtGiVKlMDb25t58+bx/PnzZPt5vY2LFy9ib2//n6wIfN2tad24Ln0+/4Yf8hZDpVLx9ddTKOjmTJv61VFH3GPohFk0bdqUkiVL8vz5c/bt24ePjw9qtZrx48dTqVIlypQpQ2xsLFu3btWfyyzUajUqlSrZ/6O0/l9l6V+mhYUFlSpVYvfu3foynU7H7t27qV69epL63t7enD9/njNnzuhfrVq1ol69epw5cwYPD49k+7lz5w5Pnz59q7QFmUGjMq50r14EgJG/n+VReIxJ5Xkjp5b/57lYd4yyN+pNqNXQ9FtABed/h9CjxpYweyPEf2GuKvcGS/s31weoN1b5e2EDPLxkPNlyMLNmzcLR0ZGaNWvSsmVLGjduTMWKFd+5HJ9//jldunShW7duVK9eHTs7Oxo3bpxk5JIctWvXpkKFCvpXJX9lA/6y776iUuUqtGrVisaNGyMEbP3zD8VYRD1BG/uSAQMG4OPjQ5MmTShZsiQLFy4ElHvxmDFjKF++PLVr10aj0bB69WpjfwzpR2RxVq9eLSwtLcXy5cvFpUuXRN++fYWjo6N48OCBEEKIjz76SIwePTrF67t37y5at26tP46IiBAjR44UQUFBIiQkROzatUtUrFhRlChRQsTExKRZrrCwMAGIsLCwDOkVFxcnNm7cKOLi4gzKo+MSRJM5B0SRz/8SHywJElqtLkPtG5Uzq4WYkEeICQ5C7PhSCF3yMiar46aBynU/1BRCm/Bu5DUyKX2Xb8XNI8rnNNlJiPD7ab9uTTflutVdM02U6OhocfHiRfHw4UOh1Wozrd2siFarFc+fP89yemq1WlGyZEnx5Zdfpu/CuGgh7v4txN3TQkQ90bdloGPYXeX8vTNKfRMRHR0tLl26JKKjk8qQ1vttlh6hAXTu3JmZM2cyfvx4/Pz8OHPmDNu3b9c7ioSGhhpsSEwNjUbDuXPnaNWqFSVLlqR3795UqlSJgwcPJjul+K6xMtcwr0sFrM01HL72lB/2Xze1SIZc+hM2fgoIqNwHGk5W9kOllffGg2UeJWJ84t4qSVISw1z5vg/26dheUnc0oILgzXD/rFFEkxifW7dusWTJEv755x/Onz/Pp59+SkhICB988EHaGxECwkIBoYzwrfMlX8/eDSzsQOjgeYiynzSbkqXX0BIZOHBgintA9u3b98Zrly9fbnBsbW3Njh2m2T+TVoo72zGpdRk+W3eO2YH/UK1YfioVyWtqseCfnUoUEKEFv67QdHr6jBmAXQGoNwa2j4bdk6FMG7DOArplJR5fgSv/ejNWH5S+a519oFwHZT/g3m/ggzWZL5/E6KjVapYvX87IkSMRQlC2bFl27dqFj49P2ht5+QTiopRg1nk8Uv5fVakgb1F4fBkSYiDsDuQtkil6vGuy/Agtt9KxUiFa+bqj1QkGr/qbsGgT55oJOQC/fwS6eCjTDlrNU9bFMkLlj6GAt5Kgcu/UzJUzJ3BknvK3VHMoUDL919cZrdzE/tkOd05mrmySd4KHhweHDx8mLCyM8PBwjhw5Qu3atdPeQEIchN9T3tu7p773U2OuGDVQ/i+jnmZIblMjDVoWRaVS8XXbshTOZ8PdF9GMXn/OdKlmQo/ByveVp7dSzaDdj6DOWEZZQPnnafqt8v7ET/AwB4T9yiwiHsC5f0dVqTnapIRTcfBVolaw9+vMkUuSfRACwm4rU4jmtmCbxhBVlvbK9CMo18enbe9XVkIatCyMvZU587pUwEytYtuFB6w8/u5i9em5dwb+10EJvVSsHnRYphikt6VYXfBppUxfbvtc+SeUwLFFoI0Dj6pQ+C02Ltf5TAlBdn0P3Eo5qo4kBxL9HGLDARU4vmGqMTnsXMDSARDw7CboslfQdGnQsji+Ho583sQbgMmbL3HlwTvMLfbwEqxoq/xzFA6A91eCeepuw2mm0RQws4KbB+HSxsxrN7sSGwEn/t0/FpDB0VkieYtChQ+V93KUlnvQJkD4v6mE7F3B3Dp916tU4FgENBZKFocXodnqYVMatGxA75qe1ClZgNgEHQNXniY67h14IT29Dr+2VubTC1ZSnAssMjnGZN4iUGOo8n7HlxCX/aY4MpVTv0BsGOQvrkztvi21Ryk3ppsHlTVQSc4n/I4yqjKzArsMBmbQmP27nqaCmDCIepyZEhoVadCyAWq1ilmdfClgb8nVR5FM/svIm2ZfhMIvrSDqkRLhves6sEp/eK80UWOI4oEVfgcOzzFOH9kBbTwcVTaxEjAo4w43r5KnEFTqobzf83W2etKWZICYMGW6EcCxsOIYlFEsbMHh38wf4fcUb8lsgDRo2QQnO0vmdPZDpYJVx0PZci7te+/SRfh9+KWlYmCcSsJHG8Emhf0rmYGFjTL1CHBoDjy/aby+sjIX1itTRbbOUP791OunlZrDlaf120fh+u7U60uyJzotvLitvLd1VgzS22LrBFaOKOtpIcp0ZhZHGjRTcOcUml9b4Pk4ECIfpl7/X2oUd6J/XSUW5egN57j9LJOn6KKeKNOMz28qUw7dNin7xoxN6dZQtJYyZ7/zS+P3l9UQAg7/u5G6Wr/MXad0cAP/3sp7OUrLEHXr1mXo0KH649czVieHSqV664Sc6Won/J6ypUZjkb6N+G/uXBnpaSyVtl/cyvK/H2nQTMGF9ahvH6X8nRWYzS0Hy1vAyaVp2vsxtEFJKhZ2JCImgUGr/iZem0l5qaKfw69t4MkVZaqh25/g4J45baeGSqW48as0SoSL63vfTb9ZhWu74dFFxcXav1fmt19zGJjbwL3Tyt60XELLli1TTLB58OBBVCoV586dS3e7J06coG/fvm8rngETJ07Ez88vSfn9+/f1EfdTJDZS2UQNigFK55aa5cuX4+jomPxJtQbyeQIqxTksHQ/gpkAaNFNQfQDaBl/xzMYLldApi/Z/DYOZJRSvwtMr/psLfw1zjZrv36+AvZUZZ26/YHbgP28vT2wE/NYBHp5Xpiu6/fnuIwW4lFE2XIMSRURr4o3k75LEtcNKPYwTNcWuAFT59wa892swYXLOd0nv3r0JDAzkzp07Sc4tW7YMf39/fQLL9FCgQIG3yoGYHlxdXd8ckk+nU9a8AWzypy2IdXoxt1bc/wEi7iv3iyyKNGimIE9BdFU/5WCpCcQPOA0NJoGbr7In6/oe+HMgzCgB/+sEZ1dDjGEuII98NnzbXvlHXLT/OgevvoUXUtxLWNkZ7p5UbqbdNikbc01BvTHKP+Xjy3A856WXSZa7p5UHGpUGqn1qvH5qDAELe3hwHi5vNl4/WYgWLVpQoECBJOHvIiMjWbt2Lb179+bp06d06dKFggULYmNjg6+vL+vWrXtju69POV69elWfw6t06dLJJnr9/PPPKVmyJDY2NhQrVoxx48bpszAvX76cSZMmcfbsWVQqFSqVSi/z61OO58+f57333sPa2pr8+fPTt1c3IsOfg9ocHNzp0aMHbdq0YebMmbi5uZE/f34GDBjwVtnUQ0NDad2lF3Yla+JQqhadOnbg4b3b+vNnz56lXr16+jxslSpV4uRJJULNrVu3aNmyJXnz5sXW1pYyZcqwdWvySWozg2wRyzFH41gYag5VXk+vw8UNcOEPZQrq6g7lpbGEEg2hTFso1RQsbGlWzo0PqhZm5bFQhq05y7YhtShgn87gygmxsKYr3DqsbKb86A9wKW0MLdOGdV6oPx42D4F9U6Fcx3ezhmdKEoMQl+vw31OwMbDJpxjMA9OVcGPeLd4u2osQposkYW6Tps3CZmZmdOvWjeXLl/PFF1/oc7qtXbsWrVZLly5diIyMpFKlSnz++ec4ODjw119/0a9fP8qWLUu1aqlvbNfpdLRr1w4XFxeOHTtGWFiYwXpbIvb29ixfvhx3d3fOnz9Pnz59sLe357PPPqNz585cuHCB7du3s2vXLgDy5EmaPjUqKorGjRtTvXp1Tpw4waO7oXzcty8DX4az/JdflY30wN69e3Fzc2Pv3r1cu3aNzp074+fnR58+fVLVJzn9WrdujZ2dHfv37iXhyQ0GjJ5M544d2HfoKKhUdO3alQoVKvDDDz+g0Wg4c+aMPn/ZgAEDiIuL48CBA9ja2nLp0iXs7OzSLUdakQYtK5HfS9k7VHsUPLoMF/9QvN+eXoXLfykvM2so2RjKtmN84/qcuvmcKw8jGLH2LMt7VEatTmNUAG08rO2pjAjNbaDrWnCvYFz90kKFj5T1xPtnYfckaD3f1BIZj2chcGmT8j4gnUGIM0L1AXB8MTwOVn5b5TpkvK34l/DNO1pjfZ2x99LsxderVy9mzJjB/v37qVu3LqBMN7Zv3548efKQJ08efUZmUAKhb9myhbVr16bJoO3atYvLly+zY8cO3N2Vz+Obb75Jsu715Zf/OTsVLVqUkSNHsnr1aj777DOsra2xs7PDzMws2cTFiaxcuZKYmBh+/fVXbG1swMWM+VM+p2WPoXw7LxaXf/dQ582bl/nz56PRaPD29qZ58+bs3r07QwZt9+7dnD9/npCQECWfZHx5fp1rQZm67TmxbyuV6zUnNDSUUaNG4e2tBIAoUeK/bOmhoaG0b9+ecuWUPPbFihVLtwzpQU45ZlWcvZUpuIEnoN8hxf06b1FIiFaiavzeDas5pVjr/DNNzU9z9J97LDl4I21t67TwxydwZYsy+uuy6u3CLGUmao0SxR/g79/g7inTymNMghYo8fa86oNrOeP3Z+34X/T+fdOyhRv22+Lt7U1AQABLlyoRWK5du8bBgwfp3Vvx/NRqtXz11VeUK1eOfPny4eDgwJ49ewgNTVuYueDgYDw8PPTGDEg2+fCaNWuoUaMGrq6u2NnZ8eWXX6a5j1f78vX1xdbWFiIfQXw0NapURKfTceXKFX29MmXKoNH8N/p2c3Pj0aNH6err1T49PDz+S45sbkXpKvVwzGNP8LnTEBPG8OHD+fjjj2nQoAHTpk3j+vX/Ul4NHjyYKVOmUKNGDSZMmJAhJ5z0IEdoWR2VSrnZuZZTpuPu/a1MS17cCGG3cbi6kR80EK62IXCXP9fNe+FVtUXK8RZ1Otg8WBn5qc2h8wolrmJWonA1KN9ZCdK77XPotTNzNhpnJaKeKgYbMh6EOCNU6wdHFyij/vNrwa9Lxtoxt1FGSqbAPH0OGb1792bQoEEsWLCAZcuW4eXlRZ06dQCYMWMG33//PXPmzKFcuXJYW1szaNAg4uLiMk3coKAgunbtyqRJk2jcuDF58uRh9erVzJo1K2MNJsQozhmQrCdy4nRfIiqVCl1mOgJZ50U/Fnp+i4lfjuGDDz5gy5YtbNu2jQkTJrB69Wratm3Lxx9/TOPGjdmyZQs7d+5k6tSpzJo1i0GDjDMjkcPuEjkclQoKVlQ2Ig89D70DoeqnCHs3HFQvaa85gNfOHuhmlIA/Bynu768+hQsB2z9XbqQqNbT/SZm+zIo0mKS4sd858V/0+ZzEiSXKaNvNFzzrvLt+Le0VBxGA/dMy7k2qUinTfqZ4pTMHX6dOnVCr1axcuZJff/2VXr166dfTDh8+TOvWrfnwww/x9fWlWLFiBiOM1PDx8eH27dsGSYaPHj1qUOfIkSMUKVKEL774An9/f0qUKMGtW7cM6lhYWKDVvjmknY+PD2fPniXq7hVAgIU9h09fQq1WU6pUqTTLnB4S9bt9+z8nkEuXLvEiLIzSpX0UR7bnNylZojjDhg1j586dtGvXjmXLlunre3h40K9fPzZs2MCIESNYssR4Dl/SoGVXVCrwqAJNp6EadonID/5kg6YJj4UD6pjnSjboFW1gtjf8NRxuHoJdE+H4j4AK2vygJNfMqji4QZ1RyvtdE5J4emZr4l7++z2gBCFOb5LUt6VKX7AtoGygP7Py3fZtAuzs7OjcuTNjxozh/v379OjRQ3+uRIkSBAYGcuTIEYKDg+nXr1+6pucaNGhAyZIl6d69O2fPnuXgwYN88cUXBnVKlChBaGgoq1ev5vr168ydO5c//vjDoE7RokUJCQnhzJkzPHnyhNjY2CR9de3aFStLC7r3H8GFKzfYe+Y6gwYP5qOPPsLFxSV9H8praLVazpw5Y/AKDg6mQYMGlCtXjq5du3L69GmOHz9Ot27dqFOnDv71WhEdE8/Az8azb8s6bt26xeHDhzlx4oQ+EenQoUPZsWMHISEhnD59mr1796YvSWk6kQYtJ6BWY1eyDkW7L6JG/EI+iBvLdY/2ytRA1GM4+TMsb/7ffqcWs8E3E8MrGYtq/SGfl7KZ88AMU0uTeZz5H7x8qni4lm7z7vu3sFU2W4PyuSYkvXnmNHr37s3z589p3LixwXrXl19+ScWKFWncuDF169bF1dWV5s2bp7ldtVrNH3/8QXR0NFWqVOHjjz/m668Nsxu0atWKYcOGMXDgQPz8/Dhy5Ajjxo0zqNO+fXuaNGlCvXr1KFCgAKtWrUrSl42lGTv+t4BnL8Ko3OxDOnT+gPr16zN//ts7TkVGRlKhQgWDV8uWLVGpVGzatIm8efNSu3ZtGjRoQLFixVizZg2YWaBxKsbT52F0+2QIJUuWpFOnTjRt2pRJkyYBiqEcMGAAPj4+NGnShJIlS7Jw4cK3ljclVMJkWSOzN+Hh4eTJk4ewsDAcHNIfuDc+Pp6tW7fSrFmzJHPeb8MP+67z7fbLWJmr+at/VYpHnlbW3IL/UiK5N/5G8XZ7B2SKjv/shJUdlfW+/kHgVCL1a94x6dJTp4V5FZXRUdPpUPWTdyJjEuKjYW4FZS2m2UyokrIHXExMDDdu3MDJyQknJyfUOW098xV0Oh3h4eE4ODhkLT2FgGc3lGgd5jZKnNUMjuwzXcfwe8pDp0oNTqUyHLotJiaGkJAQPD09sbIybCOt99ss9I2lzIIFCyhatChWVlZUrVqV48ePp+m61atXo1KpaNOmjUG5EILx48fj5uaGtbU1DRo04OrVq0aQ/N3zSe1i1CrhREy8joFrLhBTtB60WQijrsKwS+/MmGUaJRtBicZKLLnto7N8LLlUCf5TMWbWef/LV2YKzK2h1gjl/cFZioGTZF1iXryStLPwu5+mfhP2bmBhp3jsPg9RHtpMRJY3aGvWrGH48OFMmDCB06dP4+vrS+PGjVOd57558yYjR46kVq1aSc5Nnz6duXPnsmjRIo4dO4atrS2NGzcmJibGWGq8MxJTzTjZWXD5QQRfbwlWTphZQp6CphUuozSZqozQru3K3rEIXw1CXLlP5kREfxsqdgOHQsoo7eSy1OtLTIM2AcL+Dd9l75L+pJ3GRqVSthSpzRQPzLA7JnvwzPIGbfbs2fTp04eePXtSunRpFi1ahI2NjX5fSXJotVq9m+zrG/mEEMyZM4cvv/yS1q1bU758eX799Vfu3buXKdGxswLO9lbM6uQHwIqjt9h+wUipZt4V+b3+G1luHw3x2fTB4+YhJUCwmdV/sRVNiZnlf443h2Znm5xXuY7wu68k7Xw75w+joTH/NykoSlLgl6kHWjcGWXofWlxcHKdOnWLMmDH6MrVaTYMGDQgKCkrxusmTJ+Ps7Ezv3r05ePCgwbmQkBAePHhAgwYN9GV58uShatWqBAUF8f77yTtLxMbGGngehYcrXnfx8fEZipOWeM3bxFh7EwGejnxcsyg/HbrJZ+vO4eNii7vju32yy1Qdqw/B7OwqVM9voj08D11ipussQFr11ByagxrQln8fnaUjGOm7TxdlOmF2cDaqF7fQHl2MrnrS/UHx8fEkLrULITJ3T1MWI6vpqYqNQBX9DAGQx0MZ+Ii3k8toOprborJ3QxVxHxF2B2FurUQ2SiM6nQ4hBPHx8QYbwyHt95AsbdCePHmCVqtN4pLq4uLC5cuXk73m0KFD/Pzzz5w5cybZ8w8ePNC38XqbieeSY+rUqXrPnVfZuXPnW0XeTi6QaWbho4MidhpuRSbQ48cDDCqjRWOCqffM0rFQ/jZUilyMODCdPY+diLEwYuLRDPAmPe2j7/De9V0IVOyNKUOUEQO0phcPh0ZUfLGEhP2z2PXEnQSN4U0oMSSTEIKIiHcQaV3osEwIxzI+DFQq4jS2xGts0aot39na0TvRMzWEDvuYu2iAWDMHYqITIDrztq8YRUdhia3aGnNdNLqnN4iwclcCb6eB2NhYoqOjOXDgAAkJhlFsXr5MW9zQLG3Q0ktERAQfffQRS5YswcnJKVPbHjNmDMOHD9cfh4eH4+HhQaNGjTLs5RgYGEjDhg0z1cvxdfwCXtJ64VFCIhK4ZlmSYQ3eXST9TNdRNEX3y2nM7p6gIQfRNlv89m1mAmnRU7N5IADCuwV12vZ8l+Kljq4RYvEeLJ9dp0neW+hqDjc4rdVquX79OnFxcTg5Oek3JRsDVfRziLiPSvfvE7kAq4RwrBLCEWozJYOyVR6EhXEC3CYabXt7e6PqmRZU4XdRiQSExgKL/EWwUGXOCpHRdRR2iCf/oNHGkUcXhkicikyFp0+fYm1tTf369ZOM0BJnxFIjSxs0JycnNBoNDx8aJpV7+PBhskE8r1+/zs2bN2nZsqW+LHFIbWZmxpUrV/TXPXz4EDc3N4M2k0uwl4ilpWWyeYnMzc3f6mb9ttenhpdLHqa2K8egVX/zw4EbeBawo6O/EaO6J0Om6th8JvxYF/XF9air9IEiSePmmYoU9Qy7CxeUlCTqmkNRG/H7zhjmUHcMbPgYzbEFaKp9osR9TDxrbk6ePHl4/PgxVlZW2NnZZf6NMDZSiU+o/Xd9VGWmZFpQmymb6mMjgXiIewzhj5XzlvZg5ZDm6PtpQafTERcXR2xsrGnd9uOiFD0BbF0gPvPibr4THa3dlAzXCS+A+2CbP8WqQghevnzJkydPyJs3bxKXfUgazislsrRBs7CwoFKlSuzevVvveq/T6di9ezcDBw5MUt/b25vz588blH355ZdERETw/fff4+Hhgbm5Oa6uruzevVtvwMLDwzl27BiffmrEfFQmpKWvO0dvPOV/x0IZte4cl+6H80UzH8w0Wd4nKCnuflCpO5xaDttGQd/9b5cG5V1w7AdlUb9IDSjkb2ppkqdsOzg4U8lFd3Qh1BtrcNrZ2Zl//vkHS0tLnjx5knn9auMg+oXiHQfKXiZLB7C0gsgX/9UT5pCgVbYXxL/8dx3pX2cnlUbx/DO3URxd3sK4CSGIjo7G2tradCM0ISDygRKWzMJOCY7AW+Q8TNL8O9IxNv7fRMVPwM5Z+W7egKOj4xuzDaSFLG3QAIYPH0737t3x9/enSpUqzJkzh6ioKHr2VKZtunXrRsGCBZk6dSpWVlaULVvW4PrE1OKvlg8dOpQpU6ZQokQJPD09GTduHO7u7kn2q+UkvmpdFic7S77ffZVlh29y5UEECz6oSF5bC1OLln7eG6ekP3lwHk7/Av69TC1RysSEwcnlyvvEGIpZEbVGGaWt7Q5BC6FqPyWH2r+oVCoiIiIICAjInP7C78OxRXBlKyBAZQ7lO4F/T4PRYbJo45UYn9f3KPFKY8P+O2eZB4rVAa8GysODWfp+3/Hx8Rw4cIDatWsbdebkjRz9QYnuY50fuv4OVklzo70N70xHIWDHWLgWqIwyO/8GNslnZDc3N08yzZgRsrxB69y5M48fP2b8+PE8ePAAPz8/tm/frnfqCA0NTfew+bPPPiMqKoq+ffvy4sULatasyfbt25Md6uYU1GoVwxqWxMfNgeG/n+HI9ae0WnCIHz/yx8ct/WuAJsXWCep9Ads+g91fKeGjbLKWg4iek8sgLgIKeEPxhqaW5s34tAKXcvDwvJJ4tMHEJFU0Gs3b3QSjXyhbBI4uAu2/XsNl2ysPKfk809iIFZR6T3lp45XtEJc2QfBmeHobnl6AEwsUQ1CquRKztFjdVEcIoOiXkJCAlZWVaQzagwtwYIoyom/2NThmvpv+O9Wx6WT48QA8PAlbBkDXdUbNnJHlDRooSfeSm2IE2Ldv3xuvfT39OihPm5MnT2by5MmZIF32oklZVzydatDn15OEPntJu4VHmNXJl2bl3FK/OCvh31sxFo+DYe83ytpaViMhVnnaBiUIcVYKpZQcarUy1bi6CxxbDNUGZF7G8IRYOPGTEjsy+rlSVqQmNJoMBStlvF2NOXjVU17NZkLoEcW4XfoToh7B2ZXKy9JByfZeug14vZfh8ExGRZsAfw5UjJl3Cyjd2tQSvT2W9tDpV1hSH16EKtOn9sbbS5fF/8MkxqCUqz1/DqxBrRJORMdr6f+/08zaeQWdLhuFldKYQdNvlfcnf1aebLMa59cqayH2blCuo6mlSRulmiqZy+Nf/hfM+m3Q6eD8OphfWZl+in6ujFY/+B16/PV2xux1NGbgWRuaz4IRl6HHVqjyifL5x4YraYhWd4EZXrCutzKiy0ohv479oOQ7tMyj6JBTcCkDXddC371GNWYgDVquxdHGgmU9KvNxTWWaZ96ea/RdcZKImCyw2TetFKujPMUKnZIINCvFedTp/gtzVe3TdK/lmAyVSpnOBWVEFZHy3sxUCTkIP70H63srHm92rtBqHvQ7rOThM6ZDgloDRWtAs+lKDNNeO5TsDQ4FIS5S8Tpd8yFM94K1PZSEuaaMlPLsBuz5N0p/4ylg/3bOEVkOz1rKaM3IZIspR4lxMNOo+bJFaXzcHBjzx3l2BT+i7cIjLOnmj6eTieMMppVGU+CfHXDrkOIoUradqSVSuLoTnlwBC3uo1MPU0qSP4g2gUBW4cxwOzlaMQnp4FAyBE+DqDuXYwg5qDIXq/U0Tv1KtVrKgF64Gjb6Gu6fg0kZlWjIsVPndXPwDzKzReNXH+4Ua9Yk7ymjCJr+yZmvjpLw3xoOJELB5iJLw1bM2VPgo8/vIJUiDJqF9pUIUd7bjkxWnuPYoktbzDzG3SwXqlnI2tWip41hYye21byrsHKc8+Zs66C/A4e+Vv/49M91LzeioVPDeF/Brazi1DGoMBps0TBWF34d93ygZ0YVO2UNWqSfU+Tzz1uLeFrUaPCorr0ZTlNialzYpI7QXt1Bf+YtSADv/TP56yzzKniobp38N3SsGT//3lfNpCST89woIOaCEiWo5N2tF0s9mSIMmAcDXw5E/B9Xg099Oc+rWc3otP8HnTbzpW7uYySMmpEqNIfD3/5Sn7UNzlJuxKbl9QnFOUJsr043ZEc86itPGrUNwYCY0eUOC1ZhwxSvyyHxllAGKx2T9CeD07iLTpBuVSlnDK1gJGkyC+2fRXtlB6MVjFClghzr6GUQ9gZdPlGC7QqdsEYgNU6YI04K57WsG8DWDZ2kPO75U6r73ZTo8PSXJIQ2aRI+zvRUr+1RlwqaLrD5xm6nbLnPxXjjfti+PtUUW3rxsbg2Nv4bfP1JGRhW6/hf52xQc+Xd0Vr4TOLi/uW5WJXGUtqypMoKoloyXsTZe2eC+b5py0wfwqAoNv4LCVd+puG+NSgXufugKlOFc+FYKNWtmGNFFp1NykiUaOP3fpykf6+IhPgpeRCkefm/CvWL2ffjJQkiDJjHA0kzD1HblKOPuwKTNl/jz7D2uP47kx27+FHzH0frThU9LZVQRsh9WdlbWIbybv/sn3qfXlezgAAFJI9dnK4oEQLF6cGMvmoOzQNNEKRdC8RDcNRGeXVfK8hdX9q15t8iZU2ZqtbLX0SYfUDL1+kIonpVR/47uDAzha8cAbRdl/Yg32QBp0CRJUKlUfFS9KCVc7On/v9NcvBdOq3mH+OHDSlTxzKIbmFUqaDodfmqghG/a+YXyci6jGDbv5uDma/yb7ZF5gFCybDv7GLevd8F7X8KNvajOr8HW2w/VneOwe6LiMAJgWwDqjoaK3ZU9YRIFlUpZO7XKo+Tzk7wTpNu+JEWqFcvPnwNrUNrNgadRcXyw5Ci/Hb1larFSxtkbBh5XDJtnbSXG36OLcGA6/FgH5pRT3PtDDiibWDObyEdwZqXyvsbgzG/fFBTyhxKNUQktNa5NxeyXZooxM7eB2p/B4L+h8sfSmEmyBNKgSd5Iobw2rP80gBbl3UjQCb7ceIExG84Tl2D65IfJ4uAOVT+B7pth1DVos0iZBjOzhrDbSvzAX1rCzOLwRz9l6iyT9h+pT/6shHMqWEkJRJxT+DdQsXX8c4RKrYzGBp1W1tjewd4iiSStyClHSapYW2iY16UCpd0dmLHjCquOh3L1YQQ/fFiJAvapx8czGTb5wK+L8op7CTf2weW/4Mo2JU382VXKy8xaCYfk3RxKNnljqouU0GhjUJ/6WTkIGJyz1pHc/dDWn8jdv3fj1mEa5u5lU79GIjEB0qBJ0oRKpaJ/3eL4uDowePXfnLz1nFbzD7H4o0qUL+RoavFSx8IGvJspL20C3D4Kl7coDhxhoXBli/JSqaFwwH/rbnmLpKn5Ik8PoIp5AXk9FQeVHIau2kD+flYMtwKlTC2KRJIiRplyLFq0KJMnTyY0NBVXVUm2o563MxsH1KBYAVvuh8XQcVEQG/++a2qx0ofGDIrWhCZTYeg56HcI6oxWIs0LnbL3ascY+L48LKqpuKU/OJ9yaC1dAl6PtyvvAwZKbzWJxEQYxaANHTqUDRs2UKxYMRo2bMjq1auJjY01RlcSE+BVwI6NA2rwnrczsQk6hq45wzdbg9Fmp+DGiahU4FoO6o2BTw/BkLPQeKqyqVilVgzZvqmKYfu+PGwfo6QrecWpRBW8CZu4JwgbJ/DrakJlJJLcjdEM2pkzZzh+/Dg+Pj4MGjQINzc3Bg4cyOnTp43RpeQd42BlzpJu/gyop7gk/3jgBj2WHSfsZTYKbpwceYsqMQd7boGR16D1QijVDMyslM2xRxfC8uYwqyRsHACXt6IJmg+Azr932kIdSSQSo2BUL8eKFSsyd+5c7t27x4QJE/jpp5+oXLkyfn5+LF26FJGVoqNL0o1GrWJUY28WfFARa3MNB68+odWCQ/zzMMLUomUOtvmVqCNdVsFnN5SMu75dwMpR2Rx75jdY3QXVw/MkqC3QVeptaoklklyNUQ1afHw8v//+O61atWLEiBH4+/vz008/0b59e8aOHUvXrnJ6JifQvLwb6z8NoKCjNbeevqTtgsPsvPgWaUeyIha2irNH20XKdoDum5VcWw6FALhRoHHWzZotkeQSjOLlePr0aZYtW8aqVatQq9V069aN7777Dm9vb32dtm3bUrlyZWN0LzEBpd0d+HNgDQasPM3RG8/ou+IUg9/zwjMnDsI15srGbc/a0PRb4p/fJvjAKWRYWYnEtBhlhFa5cmWuXr3KDz/8wN27d5k5c6aBMQPw9PTk/fffN0b3EhOR386SFb2r0iOgKABz91xn6RU1TyJzsEOQSqVkRFbJGAUSiakxygjtxo0bFCny5v07tra2LFu2zBjdS0yIuUbNxFZlKO3mwBcbz3P+uZrG3x9mTDMfOvt7oFbnoA3HEokkS2GUx8pEY3by5ElWrFjBihUrOHnyZIbbW7BgAUWLFsXKyoqqVaty/PjxFOtu2LABf39/HB0dsbW1xc/PjxUrVhjU6dGjByqVyuDVpEmTDMsnSUqnyh6s7VuVQraC8JgExmw4T+cfg7iaUxxGJBJJlsMoI7Q7d+7QpUsXDh8+jKOjIwAvXrwgICCA1atXU6hQoTS3tWbNGoYPH86iRYuoWrUqc+bMoXHjxly5cgVn56QZlfPly8cXX3yBt7c3FhYW/PXXX/Ts2RNnZ2caN26sr9ekSRODEaKlZRYO4ZRNKePuwPByWp7kLcOc3dc4cfM5zeYe5JPaXgx8rzhW5nIDskQiyTyMMkL7+OOPiY+PJzg4mGfPnvHs2TOCg4PR6XR8/PHH6Wpr9uzZ9OnTh549e1K6dGkWLVqEjY0NS5cuTbZ+3bp1adu2LT4+Pnh5eTFkyBDKly/PoUOHDOpZWlri6uqqf+XNmzfD+kpSRqOCngFFCBxehwY+zsRrBfP3XqPxnAMcuvrE1OJJJJIchFFGaPv37+fIkSOUKvVf3LdSpUoxb948atWqleZ24uLiOHXqFGPGjNGXqdVqGjRoQFBQUKrXCyHYs2cPV65c4dtvvzU4t2/fPpydncmbNy/vvfceU6ZMIX/+lIPSxsbGGkQ7CQ8PB5StCfHx6d9MnHhNRq7NLryqo7OtOQu7+LLz0iO+2nKZW09f8uHPx2jt68aYJiXJb5d9R8i57bvMyeQGPbOjjmmV1SgGzcPDI1kBtFot7u5pT0n/5MkTtFotLi4uBuUuLi5cvnw5xevCwsIoWLAgsbGxaDQaFi5cSMOGDfXnmzRpQrt27fD09OT69euMHTuWpk2bEhQUhEaT/DTY1KlTmTRpUpLynTt3YmNjk2adXicwMDDD12YXXtdxuDdsua3m4AMVm87eJ/DCPVoV0VHVWZCdfUZy43eZU8kNemYnHV++fJmmekYxaDNmzGDQoEEsWLAAf39/QHEQGTJkCDNnzjRGlwbY29tz5swZIiMj2b17N8OHD6dYsWLUrVsXwGC7QLly5ShfvjxeXl7s27eP+vXrJ9vmmDFjGD58uP44PDwcDw8PGjVqhIODQ7pljI+PJzAwkIYNG2JunjOTI75Jx3bA2TthjNt0ieAHEay+oeGa1pGvWpWmuLOdaQTOILn9u8xJ5AY9s6OOiTNiqWEUg9ajRw9evnxJ1apVMTNTukhISMDMzIxevXrRq1cvfd1nz56l2I6TkxMajYaHDx8alD98+BBXV9cUr1Or1RQvXhwAPz8/goODmTp1qt6gvU6xYsVwcnLi2rVrKRo0S0vLZB1HzM3N3+pH8bbXZwdS0tHf04nNg2qy7PBNZgf+w8lbL2i1MIhP63jRv172cxrJzd9lTiM36JmddEyrnEYxaHPmzMmUdiwsLKhUqRK7d++mTZs2AOh0Onbv3s3AgQPT3I5Op3tjtP87d+7w9OlT3Nzc3lZkSTox06jpU7sYTcu5Mn7TRfZcfsTcPdfYfO4+U9qUpUZxJ1OLKJFIsglGMWjdu3fPtLaGDx9O9+7d8ff3p0qVKsyZM4eoqCh69uwJQLdu3ShYsCBTp04FlLUuf39/vLy8iI2NZevWraxYsYIffvgBgMjISCZNmkT79u1xdXXl+vXrfPbZZxQvXtzArV/ybimU14afu/uz/cIDJvx5kZAnUXT96RjtKhbki2Y+2dppRCKRvBuMlrFaq9WyceNGgoODAShTpgytWrVK0ekiJTp37szjx48ZP348Dx48wM/Pj+3bt+sdRUJDQ1Gr/9t9EBUVRf/+/blz5w7W1tZ4e3vz22+/0blzZwA0Gg3nzp3jl19+4cWLF7i7u9OoUSO++uoruRfNxKhUKpqWc6NGCSdm7bjCr0dvseH0XfZcfsTYZj50rFQIlSobe41IJBKjYhSDdu3aNZo1a8bdu3f1rvtTp07Fw8ODLVu24OXlla72Bg4cmOIU4759+wyOp0yZwpQpU1Jsy9ramh07dqSrf8m7xcHKnEmty9KmQkHGbDjP5QcRfLbuHOtP3eHrtuWyndOIRCJ5NxhlY/XgwYPx8vLi9u3bnD59mtOnTxMaGoqnpyeDBw82RpeSHEiFwnnZPKgmY5t5Y22u4VjIM5p9f5DvAv8hJl5ravEkEkkWwygGbf/+/UyfPp18+f7LD5U/f36mTZvG/v37jdGlJIdirlHTt7YXO4fVpl6pAsRpdXy/+yrNvj/Ikesy0ohEIvkPoxg0S0tLIiKSBqGNjIzEwsLCGF1Kcjge+WxY2qMyCz6oSAF7S248ieKDJccY8ftZnkXFmVo8iUSSBTCKQWvRogV9+/bl2LFjCCEQQnD06FH69etHq1atjNGlJBegUqloXt6N3SPq8FG1IqhUsP70HerP2se6U3cQIidmE5VIJGnFKAZt7ty5eHl5Ub16daysrLCysqJGjRoUL16c77//3hhdSnIRDlbmfNWmLOs/DcDb1Z7nL+MZufYsXZYc5frjSFOLJ5FITESmezkKIQgPD2f16tXcvXtX77bv4+Ojj94hkWQGFf91Gvn5UAhzdv3D0RvPaDrnIIPeK06/ul6Ya2QWaYkkN2EUg1a8eHEuXrxIiRIlpBGTGBVzjZp+dbxoXs6NLzdeYP8/j5kV+A+BwQ+Z1dGXEi72phZRIpG8IzL9EVatVlOiRAmePn2a2U1LJCnikc+G5T0r8/37fuSxNufcnTCazzvEkgM30Ork2ppEkhswypzMtGnTGDVqFBcuXDBG8xJJsqhUKlr7FWTnsNrULVWAuAQdX28N5v0fg7j1NMrU4kkkEiNjFIPWrVs3jh8/jq+vL9bW1uTLl8/gJZEYExcHK5b1qMy37ctha6HhxM3nNJlzkBVHb0lPSIkkB2OU0FffffedjLknMSkqlYrOlQsT4OXEqHVnOXrjGeM2XmDnxQd827487o7WphZRSrWFqgAAMKdJREFUIpFkMkbLhyaRZAU88tmw8uNq/BJ0k2+3X+bg1Sc0/u4AE1qVoX3FgvLBSyLJQRhlylGj0fDo0aMk5U+fPk13tH2J5G1Rq1X0rOHJ1sG1qFDYkYjYBEauPUufX0/xKCLG1OJJJJJMwigGLaV1itjYWBn6SmIyihWwY12/AD5v4o2FRs2u4Ic0/u4AW87dN7VoEokkE8jUKce5c+cCyvrFTz/9hJ3df2k+tFotBw4cwNvbOzO7lEjShUat4tO6XtTzLsDwNWe5dD+cAStPs/2iO5NblSGvrXzgkkiyK5lq0L777jtAGaEtWrTIYHrRwsKCokWLsmjRoszsUiLJEN6uDmwcUIP5e66yYN91Np+9x9EbT/m2fTne83YxtXgSiSQDZKpBCwkJAaBevXps2LCBvHnzZmbzEkmmYmGmZnijUtT3cWHE2rNcexRJr+Un6eRfiHEtSmNvZW5qESUSSTowyhra3r17pTGTZBt8PRz5a1BN+tYuhkoFv5+8Q5M5Bzl8TeZbk0iyE0Zx29dqtSxfvpzdu3fz6NEjdDqdwfk9e/YYo1uJJMNYmWsY28yHBj4ujFx7ltBnL+n60zG6Vy/C5029sbEwyr+KRCLJRIwyQhsyZAhDhgxBq9VStmxZfH19DV7pZcGCBRQtWhQrKyuqVq3K8ePHU6y7YcMG/P39cXR0xNbWFj8/P1asWGFQRwjB+PHjcXNzw9ramgYNGnD16tV0yyXJeVTxzMe2IbX4sFphAH4JukWz7w9y6tYzE0smkUhSwyiPnatXr+b333+nWbNmb93WmjVrGD58OIsWLaJq1arMmTOHxo0bc+XKFZydnZPUz5cvH1988QXe3t5YWFjw119/0bNnT5ydnWncuDEA06dPZ+7cufzyyy94enoybtw4GjduzKVLl7CysnprmSXZG1tLM6a0KUej0q58vv4cN5++pOOiIPrULsawBiWxMpd7KSWSrIhRRmgWFhaZljZm9uzZ9OnTh549e1K6dGkWLVqEjY0NS5cuTbZ+3bp1adu2LT4+Pnh5eTFkyBDKly/PoUOHAGV0NmfOHL788ktat25N+fLl+fXXX7l37x4bN27MFJklOYPaJQuwfWht2lcshE7A4v03aDX/EBfuhplaNIlEkgxGGaGNGDGC77//nvnz579VaKG4uDhOnTrFmDFj9GVqtZoGDRoQFBSU6vVCCPbs2cOVK1f49ttvAcUT88GDBzRo0EBfL0+ePFStWpWgoCDef//9ZNuKjY0lNjZWfxweHg5AfHw88fHx6dYt8ZqMXJtdyAk62pjBtLalaeDtxJebLvHPw0jaLDhM/zrF6FfHE3ONOkfomRq5QUfIHXpmRx3TKqtRDNqhQ4fYu3cv27Zto0yZMpibG7o/b9iwIU3tPHnyBK1Wi4uL4b4gFxcXLl++nOJ1YWFhFCxYkNjYWDQaDQsXLqRhw4YAPHjwQN/G620mnkuOqVOnMmnSpCTlO3fuxMbGJk36JEdgYGCGr80u5BQdh/vA2htqzjxTM3fvdTYcv8aHxbW4/fv15xQ930Ru0BFyh57ZSceXL1+mqZ5RDJqjoyNt27Y1RtNpwt7enjNnzhAZGcnu3bsZPnw4xYoVo27duhluc8yYMQwfPlx/HB4ejoeHB40aNcLBwSHd7cXHxxMYGEjDhg2TGPycQk7UsaMQbDn/gIl/BXMnKoFZF8wZXK8YhSKv0LhRztHzdXLid5kcuUHP7Khj4oxYahjFoC1btixT2nFyckKj0fDw4UOD8ocPH+Lq6pridWq1Wr+G5+fnR3BwMFOnTqVu3br66x4+fIibm5tBm35+fim2aWlpiaWlZZJyc3Pzt/pRvO312YGcpmPbSoWpUcKZ0RvOs+fyI2btuo6rtQbzos9o7puzI/jntO8yJXKDntlJx7TKmalOIclF2H+VhISEN7rcv46FhQWVKlVi9+7d+jKdTsfu3bupXr16mtvR6XT69S9PT09cXV0N2gwPD+fYsWPpalOSu3F2sOLn7v5Mb18eByszHkSrGLj6LC3mHWLP5YcykahEYgIy1aC5ubkZGLVy5cpx+/Zt/fHTp0/TbTSGDx/OkiVL+OWXXwgODubTTz8lKiqKnj17Akp27FedRqZOnUpgYCA3btwgODiYWbNmsWLFCj788ENACZw8dOhQpkyZwp9//sn58+fp1q0b7u7utGnT5i20l+Q2VCoVnSp7sHd4LRoX1GFroeHivXB6LT9Jux+OcOjqE2nYJJJ3SKZOOb7+z3vz5s0k3inp/Qfv3Lkzjx8/Zvz48Tx48AA/Pz+2b9+ud+oIDQ1Frf7PLkdFRdG/f3/u3LmDtbU13t7e/Pbbb3Tu3Flf57PPPiMqKoq+ffvy4sULatasyfbt2+UeNEmGcLA2p1lhHZM/qsXSI6H8EnSTv0Nf8OHPx6jqmY8RjUpRxTOfqcWUSHI87zyeT0bWFwYOHMjAgQOTPbdv3z6D4ylTpjBlypRUZZg8eTKTJ09OtywSSUrks7VgTDMfetfyZOHe66w8FsqxkGd0WhxE7ZIFGNGwJL4ejqYWUyLJsRhlY7VEkptxtrdiYqsy7BtVly5VCmOmVnHgn8e0XnCYj385yaV7afPYkkgk6SNTDZpKpSIiIoLw8HDCwsJQqVRERkYSHh6uf0kkuQV3R2umtivHnhF1aV+xEGoV7Ap+SLO5Bxmw8jTXHkWYWkSJJEeR6WtoJUuWNDiuUKGCwXFOdmmWSJKjcH4bZnXy5dO6Xny/+yqbz95jy7n7bDt/nzZ+BRnSoARF8tuaWkyJJNuTqQZt7969mdmcRJKjKO5sx7wuFehf14vvAv9h56WHbPj7LpvO3qOTfyEGvleCgo7WphZTIsm2ZKpBq1OnTmY2J5HkSHzcHPixmz/n7rxgduA/7LvymFXHb7P+1F26VPFgQL3iODtIj1uJJL1IpxCJxESUL+TI8p5VWNevOtWL5SdOq+OXoFvUmr6Xb7YG8zQyNvVGJBKJHmnQJBIT4180H6v6VmPlx1WpWNiR2AQdPx64Qe3pe5m54wphL7NPVHSJxJRIgyaRZBECijux/tMAlvWsTNmCDkTFaZm/9xo1p+9h3u6rRMYmmFpEiSRLIw2aRJKFUKlU1CvlzOaBNVn8USVKudgTEZPArMB/qPXtHhbvv050nNbUYkokWZJ3YtDCw8PZuHEjwcHB76I7iSTbo1KpaFzGlW1DajG3SwWKOdny/GU8U7ddptb0vSw/HEJcgs7UYkokWQqjGLROnToxf/58AKKjo/H396dTp06UL1+e9evXG6NLiSRHolaraOXrzs5htZnZ0ZdCea15EhnLxM2XaDLnAHuvvDnDhUSSmzCKQTtw4AC1atUC4I8//kAIwYsXL5g7d26qcRYlEklSzDRqOlQqxJ4RdZnSpixOdhbceBJFz2Un6LX8BCFPokwtokRicoxi0MLCwsiXT4kuvn37dtq3b4+NjQ3Nmzfn6tWrxuhSIskVWJip+bBaEfaMrEufWp6YqVXsufyIRt/tZ+rWYCJipEekJPdiFIPm4eFBUFAQUVFRbN++nUaNGgHw/PlzmaJFIskEHKzM+aJ5aXYMq03dUgWI1woWH7jBe7P2s/bkbXQ6mYdNkvswikEbOnQoXbt2pVChQri7u1O3bl1AmYosV66cMbqUSHIlXgXsWN6zCkt7+OPpZMvjiFhGrTtH2x+O8Hfoc1OLJ5G8U4ySD61///5UqVKF27dv07BhQ30CzmLFisk1NInECLzn7ULN4gVYdjiEeXuucfb2C9ouPEK7igUZ3cRbhtKS5AqMluDT398ff39/ALRaLefPnycgIIC8efMaq0uJJFdjYabmkzpetK1YkOnbr7Du1B02nL7LjgsPGFS/BD1rFMXSTGNqMSUSo2G0Kceff/4ZUIxZnTp1qFixIh4eHkkyTEskkszF2d6KmR192TigBn4ejkTFaZm27TKNvzvA7uCHCCHX1yQ5E6MYtHXr1uHr6wvA5s2bCQkJ4fLlywwbNowvvvjCGF1KJJLX8PNwZMOnAczq6EsBe0tuPn1J719O0mPZCa49ijS1eBJJpmMUg/bkyRNcXV0B2Lp1Kx07dqRkyZL06tWL8+fPp7u9BQsWULRoUaysrKhatSrHjx9Pse6SJUuoVasWefPmJW/evDRo0CBJ/R49eqBSqQxeTZo0SbdcEklWR61W0b5SIfaOrMsndYphrlGx/5/HNJlzgCl/XSJcuvlLchBGMWguLi5cunQJrVbL9u3badiwIQAvX75Eo0nfHP6aNWsYPnw4EyZM4PTp0/j6+tK4cWMePUo+QsK+ffvo0qULe/fuJSgoCA8PDxo1asTdu3cN6jVp0oT79+/rX6tWrcqYshJJNsDO0owxTX3YOawO9b2dSdAJfjoUwnsz97HmRKh085fkCIxi0Hr27EmnTp0oW7YsKpWKBg0aAHDs2DG8vb3T1dbs2bPp06cPPXv2pHTp0ixatAgbGxuWLl2abP3//e9/9O/fHz8/P7y9vfnpp5/Q6XTs3r3boJ6lpSWurq76l3RWkeQGPJ1s+blHZZb3rEyxArY8iYzj8/Xnab3gMKduPTO1eBLJW2EUL8eJEydStmxZbt++TceOHbG0tARAo9EwevToNLcTFxfHqVOnGDNmjL5MrVbToEEDgoKC0tTGy5cviY+P10cuSWTfvn04OzuTN29e3nvvPaZMmUL+/PlTbCc2NpbY2P8SLoaHhwMQHx9PfHz6p20Sr8nItdmF3KAjZE89axTLy+b+1fntWCjz9t7g/N0w2v8QRKvyboxqXALX19z8s6OOGSE36JkddUyrrCqRhV2e7t27R8GCBTly5AjVq1fXl3/22Wfs37+fY8eOpdpG//792bFjBxcvXtRHKVm9ejU2NjZ4enpy/fp1xo4di52dHUFBQSlOiU6cOJFJkyYlKV+5ciU2NjYZ1FAiMT3hcbDltppjj1QIVFioBY0K6ajrJjCXCaYkWYCXL1/ywQcfEBYWhoODQ4r1jLYPbf/+/cycOVOfMqZ06dKMGjVKH7T4XTBt2jRWr17Nvn37DEJuvf/++/r35cqVo3z58nh5ebFv3z7q16+fbFtjxoxh+PDh+uPw8HD9+tybPuCUiI+PJzAwkIYNG2Jubp7u67MDuUFHyBl6vg+cvxvGV1su8/ftMP4K1XA2wpqxTUtR37sACQkJ2V7HtJATvsvUyI46Js6IpYZRDNpvv/1Gz549adeuHYMHDwbg8OHD1K9fn+XLl/PBBx+kqR0nJyc0Gg0PHz40KH/48KHeizIlZs6cybRp09i1axfly5d/Y91ixYrh5OTEtWvXUjRolpaW+qnTVzE3N3+rH8XbXp8dyA06QvbXs2JRJzb0r8GmM/eYui2Y28+j+XTlGWqVcGJMk5JA9tcxreQGPbOTjmmV0ygTCl9//TXTp09nzZo1DB48mMGDB7NmzRqmTZvGV199leZ2LCwsqFSpkoFDR6KDx6tTkK8zffp0vvrqK7Zv366PVvIm7ty5w9OnT3Fzc0uzbBJJTkSlUtGmQkH2jKjLgHpeWGjUHLz6hJYLglgfouZZVJypRZRIUsQoBu3GjRu0bNkySXmrVq0ICQlJV1vDhw9nyZIl/PLLLwQHB/Ppp58SFRVFz549AejWrZuB08i3337LuHHjWLp0KUWLFuXBgwc8ePCAyEhlI2lkZCSjRo3i6NGj3Lx5k927d9O6dWuKFy9O48aN30JriSTnYGtpxqjG3gQOr03D0i5odYIDD9TU/+4QC/Ze42VcgqlFlEiSYLT0Ma+7yQPs2rULDw+PdLXVuXNnZs6cyfjx4/Hz8+PMmTNs374dFxcXAEJDQ7l//76+/g8//EBcXBwdOnTAzc1N/5o5cyageFqeO3eOVq1aUbJkSXr37k2lSpU4ePBgslOKEklupkh+W5Z082d5j0oUshVExiYwY8cV6s7Yx8pjoSRodaYWUSLRY5Q1tBEjRjB48GDOnDlDQEAAoKyhLV++nO+//z7d7Q0cOJCBAwcme+712JA3b958Y1vW1tbs2LEj3TJIJLmZGl75GVFOi65QBb7bfY07z6MZ+8d5fjp0g88ae9O4jAsqlcrUYkpyOUYxaJ9++imurq7MmjWL33//HQAfHx/WrFlD69atjdGlRCIxMmoVtPB1o4VfQVYeC2XenmvceBxFv99OUaGwI2Oa+lDFM1/qDUkkRiLTDVpCQgLffPMNvXr14tChQ5ndvEQiMTGWZhp61vCkQ6VC/HjgBj8dDOHv0Bd0WhxEAx9nRjX2ppSrvanFlORCMn0NzczMjOnTp5OQIBeNJZKcjL2VOSMalWL/qLp0rVoYjVrFruBHNP3+AKPWnuXei2hTiyjJZRjFKaR+/frs37/fGE1LJJIshrODFV+3LcfOYbVpVs4VnYC1p+7w//buPCzKev//+HNmgGERUURZlM0VQUEFJQHXUDLtZJtLnvSrZR2Tbypl6jE1lwKXzGORpqXVOZX2tbJdRTYPbihKioELopjG4IKCoEDM/fvDn3Q4orkMzvZ+XNdcF3Nv834rzOu677nn8+m7JI34H3O5VGE+QywJ89Ygn6ENGjSI6dOnc/DgQUJDQ3Fycqqz/i9/+UtDvKwQwojaNG/Ee6NC2V9YQvxPeWQWXOD9bcf5PLOQif3aMibCD3tbmTFbNJwGCbQXX3wRuDZS/n9TqVTU1NQ0xMsKIUxAV5+mrH/+AdIOnyXhpzwO68qI/ymPj3acYMqA9jzRrRUatdwRKQyvQS456vX6mz4kzISwfCqVin4BLfhxUi+WPBWCl4s9v126yqsbDjDoH9vY+osOEx4XXZgpGUtbCNFgNGoVT4a2IuWVvsx8uCMuDrYc0V3muU/2Mvz9XWSdLDF2icKCGDTQUlJSCAwMrHdk5EuXLhEUFMS2bdsM+ZJCCDNgb6thfO/WbHu1HxP6tkFroybzxAWeWLGDF/65l2PFl41dorAABg20ZcuWMX78+HqnU3FxceGFF17g7bffNuRLCiHMiIuDLdMeCiBtal+Gh3mjVsHmQzpilm1jxlcH0ZVeNXaJwowZNNB+/vlnHnrooZuuHzhwIFlZWYZ8SSGEGfJ0cWDhk8FsnvzH4MefZxbSZ3EqizfnUXpVbvUXd86ggabT6W45b42NjQ1nz5415EsKIcxYO3dnVo8O4//+1pNQ36ZcrdaTmJpPn0WpfPDv41T+LjeRidtn0EBr2bIlOTk5N11/4MABmXNMCHGD7n6ubPhbT1Y9E0qb5k6UVFSz4IdcBizdRnKu7s8PIAQGDrSHH36YWbNmcfXqjdfBr1y5wpw5cxgyZIghX1IIYSFUKhUDgzzYPLk3C5/ojHtjLYUXKnj2472M+2gPJ86VG7tEYeIM+sXq1157ja+++or27dsTGxtLhw4dAMjLyyMxMZGamhpmzpxpyJcUQlgYG42a4d19GBLsxTspx/gw4zgpecVkHD3H871bM7FfWxzsZMQRcSODBpq7uzs7duxgwoQJzJgxo/aLkyqVipiYGBITE2sn5hRCiFtx0towfVAAT4W14vVvD/Hvo+d4N/UYX+8/zWuDO/JQJw+Zg03UYfChr3x9ffnxxx8pKSnh2LFjKIpCu3btaNq0qaFfSghhBdo0b8Qn43qw+ZCO+d//wumLV5jw6T6i2rrx+l8CadtCpqoR1zTYSCFNmzale/fu9OjRQ8JMCHFPVCoVD3XyYGtcH156sB12Nmoyjp3joWX/5s0fc7lcKdNVCRn6SghhRhzsNMQNaM/WKX2I7ujO73qFVduO039JGt9kn5bxIa2cBJoQwuz4NHPkgzFhrP2f7vg2c6S4rJJJ67IZ/v4ucn+7ceg9YR3MItASExPx8/PD3t6e8PBwMjMzb7rt6tWr6dWrF02bNqVp06ZER0ffsL2iKMyePRtPT08cHByIjo7m6NGjDd2GEMLA+gW0YPPk3kyN6YC97bXxIYe8k8Hr3x7i0hUZbcTamHygrV+/nri4OObMmcO+ffsICQkhJiaG4uLierdPS0tj5MiRpKamsnPnTry9vRk4cCCnT5+u3WbRokUsX76clStXsnv3bpycnIiJian3+3NCCNNmb6thYr+2JL/cl8GdPanRK3y04wT9l6Txxd5T6PVyGdJamHygLV26lPHjxzN27FgCAwNZuXIljo6OrFmzpt7tP/30U1588UW6dOlCQEAAH3zwAXq9nuTkZODa2dmyZct47bXXePTRRwkODuaTTz7hzJkzbNy48T52JoQwpJZNHEgc1Y1PnwunbYtGnC+v4tUNB3h8xQ4O/HrR2OWJ+6BBZqw2lKqqKrKyspgxY0btMrVaTXR0NDt37rytY1RUVFBdXY2rqysABQUFFBUVER0dXbuNi4sL4eHh7Ny5kxEjRtR7nMrKSiorK2ufX58ip7q6murqO7+0cX2fu9nXXFhDj2AdfZpTjz18XfhmwgP8c3ch76Tkk33qIo8mbmdYaCviotvi6mR3033Nqc+7ZY493m6tJh1o586do6am5oYvY7u7u5OXl3dbx5g2bRpeXl61AVZUVFR7jP8+5vV19YmPj2fu3Lk3LN+yZQuOjo63VUt9kpKS7npfc2ENPYJ19GlOPXoC0zrDtyfV7D2nZv3eX/ku+xSDvfVEuCuob/GdbHPq826ZU48VFRW3tZ1JB9q9SkhIYN26daSlpWFvb39Px5oxYwZxcXG1z0tLS2s/n6tv/rc/U11dTVJSEgMGDLjlDAXmzBp6BOvo05x7HAnsOVHCvO9zydNd5v8KNBy66szrQzrS1adJnW3Nuc/bZY491jdpdH1MOtDc3NzQaDTodHVH29bpdHh4eNxy3yVLlpCQkMDWrVsJDg6uXX59P51OV2fkf51OR5cuXW56PK1Wi1arvWG5ra3tPf1S3Ov+5sAaegTr6NNce4xo14LvX3Lj092FvLXlML/8Vsaw1Zk80a0V0wcF0Ny57t+2ufZ5J8ypx9ut06RvCrGzsyM0NLT2hg6g9gaPnj173nS/RYsWMX/+fDZt2kRYWFiddf7+/nh4eNQ5ZmlpKbt3777lMYUQ5s1Go2ZMhB8pr1ybLRvgy32/0n9JGmsyCvi9Rm/kCsW9MulAA4iLi2P16tV8/PHH5ObmMmHCBMrLyxk7diwAo0ePrnPTyMKFC5k1axZr1qzBz8+PoqIiioqKuHz5MnBtCJ3JkyezYMECvv32Ww4ePMjo0aPx8vJi6NChxmhRCHEfuTXSsvDJYDZOjCS4lQtllb8z7/tfGLw8g90FF4xdnrgHJn3JEWD48OGcPXuW2bNnU1RURJcuXdi0aVPtTR2FhYWo1X/k8ooVK6iqquLJJ5+sc5w5c+bw+uuvA/Dqq69SXl7O888/z8WLF4mKimLTpk33/DmbEMJ8dPFuwsYXI1m/9xSLNuVxWFfGX9fspWMTNa4BF4hq30JG8zczJh9oALGxscTGxta7Li0trc7zEydO/OnxVCoV8+bNY968eQaoTghhrtRqFSN7+DCokwdLk47wr10nyb2o5pm1e+nc0oXxvVvzcCcPbDQmfzFLYAaXHIUQoqE1cbRj3qOd2DI5iih3Pfa2ag6evsRLn++n75I01m4voFxG9Dd5EmhCCPH/+bo68lRrPekv92ZKdHuaOdnxa8kV5n73CxEJKSzenEdxmQyRZ6ok0IQQ4r+4OtkxKbod26f3543HOuHv5sSlK9UkpuYTlZDKtA0HOFZ82dhliv8igSaEEDdhb6thVLgvW+P6sPKvoXTzaUJVjZ71e08RvTSd5z7eQ2bBBZmHzUSYxU0hQghhTBr1tRmzH+rkQdbJC7yffpykXB1bc4vZmltMiHcTXujdmpggDzS3GlNLNCgJNCGEuAOhvq6sGu1K/tnLfJhRwIasX/n51EVe/HQfPq6OPNfLn6dCvXGw0xi7VKsjlxyFEOIutGneiDcf68yO6f15qX9bmjjaUnihgtnfHCIiIZmlSUc4d7nyzw8kDEYCTQgh7oFbIy1xAzuwY3p/5j0ahI+rIyUV1SxPPkpkQgp///ogBefKjV2mVZBAE0IIA3C0s2F0Tz9SX+lL4tPdCGnlQuXvej7bXUj/t9J44Z97yTopQ2s1JPkMTQghDEijVjE42JOHO3uQWXCBVduOk5xXzOZDOjYf0hHq25Tne7dmQEd31HIDiUFJoAkhRANQqVSEt25GeOtmHNWVsfrfx9m4/wxZJ0t44Z9Z+Ls58Vwvf57o1gp7W7mBxBDkkqMQQjSwdu7OLHoyhIxp/Xixbxsa29tQcK6cmV/nEJmQwoq0fBlaywAk0IQQ4j5p0dieVx8KYMeMB5k9JJCWTRw4X17Fwk15RC1MITH1GGVXq41dptmSQBNCiPuskdaGcVH+pE/ty5KnQvBrdu3OyMWbDxO1MJV3ko9SKsF2xyTQhBDCSGw0ap4MbcXWuD68PTyE1s2vjRn5VtIRohJSWLb1CJeuSLDdLgk0IYQwMhuNmse6tiJpSh/+MaILbVs0ovTq7yzbepSohBSWbjnMxYoqY5dp8iTQhBDCRGjUKh7t0pLNk3vz7tNdae/eiLLK31mecoyohaks3pxHSbkE281IoAkhhInRqFUMCfZi06TerBjVjQAPZy5X/n5t+pqFKST8lMd5GVbrBhJoQghhotRqFYM6e/LjS714/5lQgrwaU15Vw8r0fHotSiX+x1wZL/I/mEWgJSYm4ufnh729PeHh4WRmZt5020OHDvHEE0/g5+eHSqVi2bJlN2zz+uuvo1Kp6jwCAgIasAMhhLh7arWKmCAPvv/fKFaPDqNzSxcqqmp4f9txohamsOD7X2Qmbcwg0NavX09cXBxz5sxh3759hISEEBMTQ3Fxcb3bV1RU0Lp1axISEvDw8LjpcYOCgvjtt99qHxkZGQ3VghBCGIRKpWJAoDvfxkay5n/CCGnlwtVqPR9kFNBrYSpzvzuErtR6g83kA23p0qWMHz+esWPHEhgYyMqVK3F0dGTNmjX1bt+9e3cWL17MiBEj0Gq1Nz2ujY0NHh4etQ83N7eGakEIIQxKpVLRP8CdjRMj+Whsd7r6NKHydz1rt5+g16JU5nyTw2+Xrhi7zPvOpMdyrKqqIisrixkzZtQuU6vVREdHs3Pnzns69tGjR/Hy8sLe3p6ePXsSHx+Pj4/PTbevrKyksvKPa9WlpaUAVFdXU119598Tub7P3exrLqyhR7COPq2hRzDPPiNbNyXCvzvb8y/wbmo+WYUX+XjnST7LLOSp0Ja80MsfryYOtdubY4+3W6tJB9q5c+eoqanB3d29znJ3d3fy8vLu+rjh4eF89NFHdOjQgd9++425c+fSq1cvcnJycHZ2rnef+Ph45s6de8PyLVu24OjoeNe1JCUl3fW+5sIaegTr6NMaegTz7fMZL3igkYpNp9Tkl8Fnmb+yfs8pwlsoDGipx/U/LlqZU48VFRW3tZ1JB1pDGTRoUO3PwcHBhIeH4+vryxdffMGzzz5b7z4zZswgLi6u9nlpaSne3t4MHDiQxo0b33EN1dXVJCUlMWDAAGxtbe+8CTNgDT2CdfRpDT2C5fQ5GdhdcO2MbVdBCTt0KjLPani8qxfPRXiTuzfDrHq8fkXsz5h0oLm5uaHRaNDpdHWW63S6W97wcaeaNGlC+/btOXbs2E230Wq19X4mZ2tre0+/FPe6vzmwhh7BOvq0hh7BMvqMau9OVHt3MgsusDz5KBnHzvFF1mm+3H+GsGZqAsOraOdx91eX7qfb/b8w6ZtC7OzsCA0NJTk5uXaZXq8nOTmZnj17Gux1Ll++TH5+Pp6engY7phBCmIIe/q7867lwvpzQk97tm1OjV9h9Vk3MP7Yzad1+jujKjF2iwZh0oAHExcWxevVqPv74Y3Jzc5kwYQLl5eWMHTsWgNGjR9e5aaSqqors7Gyys7Opqqri9OnTZGdn1zn7euWVV0hPT+fEiRPs2LGDxx57DI1Gw8iRI+97f0IIcT+E+rryybge/N/zPQhqqkevwDfZZxj49jb+9s8sck5fMnaJ98ykLzkCDB8+nLNnzzJ79myKioro0qULmzZtqr1RpLCwELX6j1w+c+YMXbt2rX2+ZMkSlixZQp8+fUhLSwPg119/ZeTIkZw/f57mzZsTFRXFrl27aN68+X3tTQgh7rcu3k14PkCPb5cIVmWc4KecIjYduvbo16E5sf3bEerb1Nhl3hWTDzSA2NhYYmNj6113PaSu8/PzQ1GUWx5v3bp1hipNCCHMUpBXY94bFcpRXRnvpeXzTfZpUg+fJfXwWSLaNCO2f1t6tm6GSqUydqm3zeQvOQohhGg47dydeXt4F1Je7suI7t7YalTsyD/P06t38+TKnaQeLv7TkwRTIYEmhBACPzcnEp4IJm1qP8b09MXORk3WyRLGrt3DI+9msCmnCL3etINNAk0IIUStlk0cmPtoJzJe7cf4Xv442GrIOV3K3/6VxUP/2MY32aepMdFgk0ATQghxgxaN7Zk5OJDt0/sT268tzlobjuguM2ldNtFL0/li7ymqa/TGLrMOCTQhhBA35epkxysxHciY3p+XB7SniaMtBefKeXXDAfouTuNfu05ytbrG2GUCEmhCCCFug4uDLf/7YDu2T+vP3x8OwK2RltMXr/Daxhz6LE7lw4wCKqp+N2qNEmhCCCFum5PWhud7tyFjWj/m/iUITxd7dKWVzP/+F3otTOW9tGOUXTXOSP4SaEIIIe6Yva2GMRF+pE/tR8LjnfFxdeR8eRWLNh0mMiGFt5OOcLGi6r7WJIEmhBDirtnZqBnRw4eUl/uwdFgIbZo7UXr1d/6RfJTIhBQSfsrj3OXKPz+QAUigCSGEuGc2GjWPd2vFlil9SHy6GwEezpRX1bAyPZ+ohSnM/e5Qg1+KlEATQghhMBq1isHBnvw0qRcfjA4jxLsJV6v1bM4pQmujadDXNouxHIUQQpgXlUpFdKA7D3ZsQcaxc1RU1WBn07DnUBJoQgghGoxKpaJXu/szk4lcchRCCGERJNCEEEJYBAk0IYQQFkECTQghhEWQQBNCCGERJNCEEEJYBAk0IYQQFkG+h3aXFOXajK2lpaV3tX91dTUVFRWUlpZia2tryNJMhjX0CNbRpzX0CNbRpzn2eP199vr77s1IoN2lsrIyALy9vY1ciRBCWIeysjJcXFxuul6l/FnkiXrp9XrOnDmDs7MzKpXqjvcvLS3F29ubU6dO0bhx4wao0PisoUewjj6toUewjj7NsUdFUSgrK8PLywu1+uaflMkZ2l1Sq9W0atXqno/TuHFjs/mlulvW0CNYR5/W0CNYR5/m1uOtzsyuk5tChBBCWAQJNCGEEBZBAs1ItFotc+bMQavVGruUBmMNPYJ19GkNPYJ19GnJPcpNIUIIISyCnKEJIYSwCBJoQgghLIIEmhBCCIsggSaEEMIiSKAZQWJiIn5+ftjb2xMeHk5mZqaxSzKo+Ph4unfvjrOzMy1atGDo0KEcPnzY2GU1qISEBFQqFZMnTzZ2KQZ3+vRp/vrXv9KsWTMcHBzo3Lkze/fuNXZZBlNTU8OsWbPw9/fHwcGBNm3aMH/+/D8dN9DUbdu2jUceeQQvLy9UKhUbN26ss15RFGbPno2npycODg5ER0dz9OhR4xRrIBJo99n69euJi4tjzpw57Nu3j5CQEGJiYiguLjZ2aQaTnp7OxIkT2bVrF0lJSVRXVzNw4EDKy8uNXVqD2LNnD++//z7BwcHGLsXgSkpKiIyMxNbWlp9++olffvmFt956i6ZNmxq7NINZuHAhK1as4N133yU3N5eFCxeyaNEi3nnnHWOXdk/Ky8sJCQkhMTGx3vWLFi1i+fLlrFy5kt27d+Pk5ERMTAxXr169z5UakCLuqx49eigTJ06sfV5TU6N4eXkp8fHxRqyqYRUXFyuAkp6ebuxSDK6srExp166dkpSUpPTp00eZNGmSsUsyqGnTpilRUVHGLqNBDR48WBk3blydZY8//rgyatQoI1VkeIDy9ddf1z7X6/WKh4eHsnjx4tplFy9eVLRarfL5558boULDkDO0+6iqqoqsrCyio6Nrl6nVaqKjo9m5c6cRK2tYly5dAsDV1dXIlRjexIkTGTx4cJ3/U0vy7bffEhYWxlNPPUWLFi3o2rUrq1evNnZZBhUREUFycjJHjhwB4OeffyYjI4NBgwYZubKGU1BQQFFRUZ3fWxcXF8LDw836vUgGJ76Pzp07R01NDe7u7nWWu7u7k5eXZ6SqGpZer2fy5MlERkbSqVMnY5djUOvWrWPfvn3s2bPH2KU0mOPHj7NixQri4uL4+9//zp49e3jppZews7NjzJgxxi7PIKZPn05paSkBAQFoNBpqamp44403GDVqlLFLazBFRUUA9b4XXV9njiTQRIOaOHEiOTk5ZGRkGLsUgzp16hSTJk0iKSkJe3t7Y5fTYPR6PWFhYbz55psAdO3alZycHFauXGkxgfbFF1/w6aef8tlnnxEUFER2djaTJ0/Gy8vLYnq0FnLJ8T5yc3NDo9Gg0+nqLNfpdHh4eBipqoYTGxvL999/T2pqqkGm2jElWVlZFBcX061bN2xsbLCxsSE9PZ3ly5djY2NDTU2NsUs0CE9PTwIDA+ss69ixI4WFhUaqyPCmTp3K9OnTGTFiBJ07d+aZZ55hypQpxMfHG7u0BnP9/cbS3osk0O4jOzs7QkNDSU5Orl2m1+tJTk6mZ8+eRqzMsBRFITY2lq+//pqUlBT8/f2NXZLBPfjggxw8eJDs7OzaR1hYGKNGjSI7OxuNRmPsEg0iMjLyhq9cHDlyBF9fXyNVZHgVFRU3TBqp0WjQ6/VGqqjh+fv74+HhUee9qLS0lN27d5v1e5FccrzP4uLiGDNmDGFhYfTo0YNly5ZRXl7O2LFjjV2awUycOJHPPvuMb775Bmdn59pr8i4uLjg4OBi5OsNwdna+4TNBJycnmjVrZlGfFU6ZMoWIiAjefPNNhg0bRmZmJqtWrWLVqlXGLs1gHnnkEd544w18fHwICgpi//79LF26lHHjxhm7tHty+fJljh07Vvu8oKCA7OxsXF1d8fHxYfLkySxYsIB27drh7+/PrFmz8PLyYujQocYr+l4Z+zZLa/TOO+8oPj4+ip2dndKjRw9l165dxi7JoIB6H2vXrjV2aQ3KEm/bVxRF+e6775ROnTopWq1WCQgIUFatWmXskgyqtLRUmTRpkuLj46PY29srrVu3VmbOnKlUVlYau7R7kpqaWu/f4ZgxYxRFuXbr/qxZsxR3d3dFq9UqDz74oHL48GHjFn2PZPoYIYQQFkE+QxNCCGERJNCEEEJYBAk0IYQQFkECTQghhEWQQBNCCGERJNCEEEJYBAk0IYQQFkECTQghhEWQQBNC3FJaWhoqlYqLFy8auxQhbkkCTQghhEWQQBNCCGERJNCEMHF6vZ74+Hj8/f1xcHAgJCSEDRs2AH9cDvzhhx8IDg7G3t6eBx54gJycnDrH+PLLLwkKCkKr1eLn58dbb71VZ31lZSXTpk3D29sbrVZL27Zt+fDDD+tsk5WVRVhYGI6OjkRERNwwrYwQRmfs0ZGFELe2YMECJSAgQNm0aZOSn5+vrF27VtFqtUpaWlrtiOodO3ZUtmzZohw4cEAZMmSI4ufnp1RVVSmKoih79+5V1Gq1Mm/ePOXw4cPK2rVrFQcHhzqzHwwbNkzx9vZWvvrqKyU/P1/ZunWrsm7dOkVR/hi1PTw8XElLS1MOHTqk9OrVS4mIiDDGP4cQNyWBJoQJu3r1quLo6Kjs2LGjzvJnn31WGTlyZG3YXA8fRVGU8+fPKw4ODsr69esVRVGUp59+WhkwYECd/adOnaoEBgYqiqIohw8fVgAlKSmp3hquv8bWrVtrl/3www8KoFy5csUgfQphCHLJUQgTduzYMSoqKhgwYACNGjWqfXzyySfk5+fXbvefswy7urrSoUMHcnNzAcjNzSUyMrLOcSMjIzl69Cg1NTW1M2z36dPnlrUEBwfX/uzp6QlAcXHxPfcohKHIjNVCmLDLly8D8MMPP9CyZcs667RabZ1Qu1u3O4u4ra1t7c8qlQq49vmeEKZCztCEMGGBgYFotVoKCwtp27ZtnYe3t3ftdrt27ar9uaSkhCNHjtCxY0cAOnbsyPbt2+scd/v27bRv3x6NRkPnzp3R6/Wkp6ffn6aEaCByhiaECXN2duaVV15hypQp6PV6oqKiuHTpEtu3b6dx48b4+voCMG/ePJo1a4a7uzszZ87Ezc2NoUOHAvDyyy/TvXt35s+fz/Dhw9m5cyfvvvsu7733HgB+fn6MGTOGcePGsXz5ckJCQjh58iTFxcUMGzbMWK0LceeM/SGeEOLW9Hq9smzZMqVDhw6Kra2t0rx5cyUmJkZJT0+vvWHju+++U4KCghQ7OzulR48eys8//1znGBs2bFACAwMVW1tbxcfHR1m8eHGd9VeuXFGmTJmieHp6KnZ2dkrbtm2VNWvWKIryx00hJSUltdvv379fAZSCgoKGbl+I26ZSFEUxcqYKIe5SWloa/fr1o6SkhCZNmhi7HCGMSj5DE0IIYREk0IQQQlgEueQohBDCIsgZmhBCCIsggSaEEMIiSKAJIYSwCBJoQgghLIIEmhBCCIsggSaEEMIiSKAJIYSwCBJoQgghLML/AzJn7s7vwpzrAAAAAElFTkSuQmCC","text/plain":["
      "]},"metadata":{},"output_type":"display_data"}],"source":["plot_history(history) # plotting history"]}],"metadata":{"kaggle":{"accelerator":"nvidiaTeslaT4","dataSources":[{"datasetId":849724,"sourceId":1449674,"sourceType":"datasetVersion"}],"dockerImageVersionId":30699,"isGpuEnabled":true,"isInternetEnabled":true,"language":"python","sourceType":"notebook"},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.10.13"},"vscode":{"interpreter":{"hash":"f6becb90ea85e501e0c5dc0cf472a45ace99c50f8d1426b3da8c341d18623653"}}},"nbformat":4,"nbformat_minor":4} diff --git a/Algorithms and Deep Learning Models/Leukaemia Classification using DL/README.md b/Algorithms and Deep Learning Models/Leukaemia Classification using DL/README.md new file mode 100644 index 000000000..1c837e0d1 --- /dev/null +++ b/Algorithms and Deep Learning Models/Leukaemia Classification using DL/README.md @@ -0,0 +1,84 @@ +# Leukaemia Classification using DL + +## PROJECT TITLE + +Leukaemia Classification using DL + +## ๐ŸŽฏ GOAL + +To classify normal from abnormal cell images of Leukaemia. + +## ๐Ÿงต DATASET + +The link for the dataset used in this project: https://www.kaggle.com/datasets/andrewmvd/leukemia-classification + +## ๐Ÿงพ DESCRIPTION + +This project aims to identify whether the given medical image contains Leukaemia cells or not. + +## ๐Ÿงฎ WHAT I HAD DONE + +1. Data collection: From the link of the dataset given above. + +2. Data preprocessing: Preprocessed the image in order to have all images in equal shape. + +3. Model selection: Chose three Image detection architecture VGG16, ResNet50 and Inception for Image detection. Created models for CNN and CNN with Attention mechanism. + +4. Comparative analysis: Compared the accuracy score of all the models. + +## ๐Ÿš€ MODELS USED + +1. VGG16 +2. ResNet50 +3. Inception +4. Xception +5. CNN +6. CNN with Attention + +## ๐Ÿ“š LIBRARIES NEEDED + +The following libraries are required to run this project: + +- numpy==1.24.3 +- pandas==1.5.0 +- matplotlib==3.6.0 +- tensorflow==2.6.0 + +## ๐Ÿ“‹ EVALUATION METRICS + +The evaluation metrics used for assessing the models: + +- Accuracy +- Loss + +## ๐Ÿ“ˆ RESULTS + +Results on Val dataset: + +| Model | Accuracy | Loss | +|------------|----------|---------| +| Inception | 0.775 | 0.498 | +| ResNet50 | 0.802 | 0.514 | +| VGG16 | 0.77 | 0.536 | +| CNN | 0.784 | 0.506 | +| Xception | 0.783 | 0.533 | +| CNN (Attention) | 0.858 | 0.39 | + +## ๐Ÿ“ข CONCLUSION + +Based on results we can draw following conclusions: + +1. Inception: The Inception model achieved an accuracy of 77.5% with a loss of 0.498. It demonstrates good performance in distinguishing between leukemia and non-leukemia samples. + +2. ResNet50: The ResNet50 model performed slightly better with an accuracy of 80.2% and a loss of 0.514. It shows improved capabilities compared to Inception in leukemia detection. + +3. VGG16: The VGG16 model achieved an accuracy of 77.0% with a loss of 0.536. It falls slightly behind ResNet50 in terms of accuracy and loss. + +4. CNN: The CNN model achieved an accuracy of 78.4% with a loss of 0.506. It demonstrates similar performance to ResNet50 and shows potential in leukemia detection. + +5. Xception: The Xception model achieved an accuracy of 78.3% with a loss of 0.533. It shows comparable performance to the other models in this task. + +6. CNN with Attention: The CNN with Attention mechanism model achieved an astonishingly high accuracy of 85.8% with a significantly lower loss of 0.39. It demonstrates exceptional abilities to generalize and classify with a simple and lightweight architecture. + +Overall, all the models performed relatively well in leukemia detection, with accuracies ranging from 77% to 85.8%, with CNN-Attention being the clear winner. + diff --git a/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Requirements.txt b/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Requirements.txt new file mode 100644 index 000000000..05eabaada --- /dev/null +++ b/Algorithms and Deep Learning Models/Leukaemia Classification using DL/Requirements.txt @@ -0,0 +1,5 @@ +numpy==1.24.3 +pandas==1.5.0 +matplotlib==3.6.0 +tensorflow==2.6.0 +Keras \ No newline at end of file