RandomForestClassifier(max_depth=2, random_state=0)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestClassifier(max_depth=2, random_state=0)
ColumnTransformer(transformers=[('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_value=-1),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. ColumnTransformer(transformers=[('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_value=-1),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])<sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>
SimpleImputer(add_indicator=True)
<sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>
OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',\n", + " unknown_value=-1)
ColumnTransformer(transformers=[('pipeline',\n",
+ " Pipeline(steps=[('standardscaler',\n",
+ " StandardScaler()),\n",
+ " ('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True))]),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('onehotencoder',\n",
+ " OneHotEncoder(handle_unknown='ignore'),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. ColumnTransformer(transformers=[('pipeline',\n",
+ " Pipeline(steps=[('standardscaler',\n",
+ " StandardScaler()),\n",
+ " ('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True))]),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('onehotencoder',\n",
+ " OneHotEncoder(handle_unknown='ignore'),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])<sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>
StandardScaler()
SimpleImputer(add_indicator=True)
<sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>
OneHotEncoder(handle_unknown='ignore')
Pipeline(steps=[('columntransformer',\n",
+ " ColumnTransformer(transformers=[('pipeline',\n",
+ " Pipeline(steps=[('standardscaler',\n",
+ " StandardScaler()),\n",
+ " ('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True))]),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('onehotencoder',\n",
+ " OneHotEncoder(handle_unknown='ignore'),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])),\n",
+ " ('lassocv', LassoCV())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. Pipeline(steps=[('columntransformer',\n",
+ " ColumnTransformer(transformers=[('pipeline',\n",
+ " Pipeline(steps=[('standardscaler',\n",
+ " StandardScaler()),\n",
+ " ('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True))]),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('onehotencoder',\n",
+ " OneHotEncoder(handle_unknown='ignore'),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])),\n",
+ " ('lassocv', LassoCV())])ColumnTransformer(transformers=[('pipeline',\n",
+ " Pipeline(steps=[('standardscaler',\n",
+ " StandardScaler()),\n",
+ " ('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True))]),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('onehotencoder',\n",
+ " OneHotEncoder(handle_unknown='ignore'),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])<sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>
StandardScaler()
SimpleImputer(add_indicator=True)
<sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>
OneHotEncoder(handle_unknown='ignore')
LassoCV()
Pipeline(steps=[('columntransformer',\n",
+ " ColumnTransformer(transformers=[('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_value=-1),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])),\n",
+ " ('randomforestregressor',\n",
+ " RandomForestRegressor(random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. Pipeline(steps=[('columntransformer',\n",
+ " ColumnTransformer(transformers=[('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_value=-1),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])),\n",
+ " ('randomforestregressor',\n",
+ " RandomForestRegressor(random_state=42))])ColumnTransformer(transformers=[('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_value=-1),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])<sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>
SimpleImputer(add_indicator=True)
<sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>
OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',\n", + " unknown_value=-1)
RandomForestRegressor(random_state=42)
Pipeline(steps=[('columntransformer',\n",
+ " ColumnTransformer(transformers=[('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_value=-1),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])),\n",
+ " ('histgradientboostingregressor',\n",
+ " HistGradientBoostingRegressor(random_state=0))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. Pipeline(steps=[('columntransformer',\n",
+ " ColumnTransformer(transformers=[('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_value=-1),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])),\n",
+ " ('histgradientboostingregressor',\n",
+ " HistGradientBoostingRegressor(random_state=0))])ColumnTransformer(transformers=[('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_value=-1),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])<sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>
SimpleImputer(add_indicator=True)
<sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>
OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',\n", + " unknown_value=-1)
HistGradientBoostingRegressor(random_state=0)
StackingRegressor(estimators=[('Random Forest',\n",
+ " Pipeline(steps=[('columntransformer',\n",
+ " ColumnTransformer(transformers=[('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_v...\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_value=-1),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])),\n",
+ " ('histgradientboostingregressor',\n",
+ " HistGradientBoostingRegressor(random_state=0))]))],\n",
+ " final_estimator=RidgeCV())In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. StackingRegressor(estimators=[('Random Forest',\n",
+ " Pipeline(steps=[('columntransformer',\n",
+ " ColumnTransformer(transformers=[('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_v...\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_value=-1),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])),\n",
+ " ('histgradientboostingregressor',\n",
+ " HistGradientBoostingRegressor(random_state=0))]))],\n",
+ " final_estimator=RidgeCV())ColumnTransformer(transformers=[('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_value=-1),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])<sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>
SimpleImputer(add_indicator=True)
<sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>
OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',\n", + " unknown_value=-1)
RandomForestRegressor(random_state=42)
ColumnTransformer(transformers=[('pipeline',\n",
+ " Pipeline(steps=[('standardscaler',\n",
+ " StandardScaler()),\n",
+ " ('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True))]),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('onehotencoder',\n",
+ " OneHotEncoder(handle_unknown='ignore'),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])<sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>
StandardScaler()
SimpleImputer(add_indicator=True)
<sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>
OneHotEncoder(handle_unknown='ignore')
LassoCV()
ColumnTransformer(transformers=[('simpleimputer',\n",
+ " SimpleImputer(add_indicator=True),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>),\n",
+ " ('ordinalencoder',\n",
+ " OrdinalEncoder(encoded_missing_value=-2,\n",
+ " handle_unknown='use_encoded_value',\n",
+ " unknown_value=-1),\n",
+ " <sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>)])<sklearn.compose._column_transformer.make_column_selector object at 0x7dda18ac1b20>
SimpleImputer(add_indicator=True)
<sklearn.compose._column_transformer.make_column_selector object at 0x7dda11bbf950>
OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',\n", + " unknown_value=-1)
HistGradientBoostingRegressor(random_state=0)
RidgeCV()
| \n", + " | sepal length in cm | \n", + "sepal width in cm | \n", + "petal length in cm | \n", + "petal width in cm | \n", + "class | \n", + "
|---|---|---|---|---|---|
| 0 | \n", + "5.1 | \n", + "3.5 | \n", + "1.4 | \n", + "0.2 | \n", + "Iris-setosa | \n", + "
| 1 | \n", + "4.9 | \n", + "3.0 | \n", + "1.4 | \n", + "0.2 | \n", + "Iris-setosa | \n", + "
| 2 | \n", + "4.7 | \n", + "3.2 | \n", + "1.3 | \n", + "0.2 | \n", + "Iris-setosa | \n", + "
| 3 | \n", + "4.6 | \n", + "3.1 | \n", + "1.5 | \n", + "0.2 | \n", + "Iris-setosa | \n", + "
| 4 | \n", + "5.0 | \n", + "3.6 | \n", + "1.4 | \n", + "0.2 | \n", + "Iris-setosa | \n", + "
| \n", + " | sepal length in cm | \n", + "sepal width in cm | \n", + "petal length in cm | \n", + "petal width in cm | \n", + "class | \n", + "
|---|---|---|---|---|---|
| 0 | \n", + "5.1 | \n", + "3.5 | \n", + "1.4 | \n", + "0.2 | \n", + "Iris-setosa | \n", + "
| 1 | \n", + "4.9 | \n", + "3.0 | \n", + "1.4 | \n", + "0.2 | \n", + "Iris-setosa | \n", + "
| 2 | \n", + "4.7 | \n", + "3.2 | \n", + "1.3 | \n", + "0.2 | \n", + "Iris-setosa | \n", + "
| 3 | \n", + "4.6 | \n", + "3.1 | \n", + "1.5 | \n", + "0.2 | \n", + "Iris-setosa | \n", + "
| 4 | \n", + "5.0 | \n", + "3.6 | \n", + "1.4 | \n", + "0.2 | \n", + "Iris-setosa | \n", + "
| \n", + " | CRIM | \n", + "ZN | \n", + "INDUS | \n", + "CHAS | \n", + "NOX | \n", + "RM | \n", + "AGE | \n", + "DIS | \n", + "RAD | \n", + "TAX | \n", + "PTRATIO | \n", + "B | \n", + "LSTAT | \n", + "SalePrice | \n", + "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", + "0.00632 | \n", + "18.0 | \n", + "2.31 | \n", + "0.0 | \n", + "0.538 | \n", + "6.575 | \n", + "65.2 | \n", + "4.0900 | \n", + "1.0 | \n", + "296.0 | \n", + "15.3 | \n", + "396.90 | \n", + "4.98 | \n", + "24.0 | \n", + "
| 1 | \n", + "0.02731 | \n", + "0.0 | \n", + "7.07 | \n", + "0.0 | \n", + "0.469 | \n", + "6.421 | \n", + "78.9 | \n", + "4.9671 | \n", + "2.0 | \n", + "242.0 | \n", + "17.8 | \n", + "396.90 | \n", + "9.14 | \n", + "21.6 | \n", + "
| 2 | \n", + "0.02729 | \n", + "0.0 | \n", + "7.07 | \n", + "0.0 | \n", + "0.469 | \n", + "7.185 | \n", + "61.1 | \n", + "4.9671 | \n", + "2.0 | \n", + "242.0 | \n", + "17.8 | \n", + "392.83 | \n", + "4.03 | \n", + "34.7 | \n", + "
| 3 | \n", + "0.03237 | \n", + "0.0 | \n", + "2.18 | \n", + "0.0 | \n", + "0.458 | \n", + "6.998 | \n", + "45.8 | \n", + "6.0622 | \n", + "3.0 | \n", + "222.0 | \n", + "18.7 | \n", + "394.63 | \n", + "2.94 | \n", + "33.4 | \n", + "
| 4 | \n", + "0.06905 | \n", + "0.0 | \n", + "2.18 | \n", + "0.0 | \n", + "0.458 | \n", + "7.147 | \n", + "54.2 | \n", + "6.0622 | \n", + "3.0 | \n", + "222.0 | \n", + "18.7 | \n", + "396.90 | \n", + "5.33 | \n", + "36.2 | \n", + "
| \n", + " | 0 | \n", + "1 | \n", + "2 | \n", + "3 | \n", + "4 | \n", + "5 | \n", + "6 | \n", + "7 | \n", + "8 | \n", + "9 | \n", + "10 | \n", + "
|---|---|---|---|---|---|---|---|---|---|---|---|
| count | \n", + "1012.000000 | \n", + "1012.000000 | \n", + "1012.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "
| mean | \n", + "180.143778 | \n", + "12.008350 | \n", + "16.834792 | \n", + "0.069170 | \n", + "0.554695 | \n", + "6.284634 | \n", + "68.574901 | \n", + "3.795043 | \n", + "9.549407 | \n", + "408.237154 | \n", + "18.455534 | \n", + "
| std | \n", + "188.132839 | \n", + "17.250728 | \n", + "9.912616 | \n", + "0.253994 | \n", + "0.115878 | \n", + "0.702617 | \n", + "28.148861 | \n", + "2.105710 | \n", + "8.707259 | \n", + "168.537116 | \n", + "2.164946 | \n", + "
| min | \n", + "0.006320 | \n", + "0.000000 | \n", + "0.460000 | \n", + "0.000000 | \n", + "0.385000 | \n", + "3.561000 | \n", + "2.900000 | \n", + "1.129600 | \n", + "1.000000 | \n", + "187.000000 | \n", + "12.600000 | \n", + "
| 25% | \n", + "0.257830 | \n", + "0.000000 | \n", + "8.375000 | \n", + "0.000000 | \n", + "0.449000 | \n", + "5.885500 | \n", + "45.025000 | \n", + "2.100175 | \n", + "4.000000 | \n", + "279.000000 | \n", + "17.400000 | \n", + "
| 50% | \n", + "24.021000 | \n", + "7.240000 | \n", + "18.100000 | \n", + "0.000000 | \n", + "0.538000 | \n", + "6.208500 | \n", + "77.500000 | \n", + "3.207450 | \n", + "5.000000 | \n", + "330.000000 | \n", + "19.050000 | \n", + "
| 75% | \n", + "391.435000 | \n", + "16.780000 | \n", + "21.890000 | \n", + "0.000000 | \n", + "0.624000 | \n", + "6.623500 | \n", + "94.075000 | \n", + "5.188425 | \n", + "24.000000 | \n", + "666.000000 | \n", + "20.200000 | \n", + "
| max | \n", + "396.900000 | \n", + "100.000000 | \n", + "50.000000 | \n", + "1.000000 | \n", + "0.871000 | \n", + "8.780000 | \n", + "100.000000 | \n", + "12.126500 | \n", + "24.000000 | \n", + "711.000000 | \n", + "22.000000 | \n", + "
| \n", + " | CRIM | \n", + "ZN | \n", + "INDUS | \n", + "CHAS | \n", + "NOX | \n", + "RM | \n", + "AGE | \n", + "DIS | \n", + "RAD | \n", + "TAX | \n", + "PTRATIO | \n", + "B | \n", + "LSTAT | \n", + "SalePrice | \n", + "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| count | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "506.000000 | \n", + "
| mean | \n", + "3.613524 | \n", + "11.363636 | \n", + "11.136779 | \n", + "0.069170 | \n", + "0.554695 | \n", + "6.284634 | \n", + "68.574901 | \n", + "3.795043 | \n", + "9.549407 | \n", + "408.237154 | \n", + "18.455534 | \n", + "356.674032 | \n", + "12.653063 | \n", + "22.532806 | \n", + "
| std | \n", + "8.601545 | \n", + "23.322453 | \n", + "6.860353 | \n", + "0.253994 | \n", + "0.115878 | \n", + "0.702617 | \n", + "28.148861 | \n", + "2.105710 | \n", + "8.707259 | \n", + "168.537116 | \n", + "2.164946 | \n", + "91.294864 | \n", + "7.141062 | \n", + "9.197104 | \n", + "
| min | \n", + "0.006320 | \n", + "0.000000 | \n", + "0.460000 | \n", + "0.000000 | \n", + "0.385000 | \n", + "3.561000 | \n", + "2.900000 | \n", + "1.129600 | \n", + "1.000000 | \n", + "187.000000 | \n", + "12.600000 | \n", + "0.320000 | \n", + "1.730000 | \n", + "5.000000 | \n", + "
| 25% | \n", + "0.082045 | \n", + "0.000000 | \n", + "5.190000 | \n", + "0.000000 | \n", + "0.449000 | \n", + "5.885500 | \n", + "45.025000 | \n", + "2.100175 | \n", + "4.000000 | \n", + "279.000000 | \n", + "17.400000 | \n", + "375.377500 | \n", + "6.950000 | \n", + "17.025000 | \n", + "
| 50% | \n", + "0.256510 | \n", + "0.000000 | \n", + "9.690000 | \n", + "0.000000 | \n", + "0.538000 | \n", + "6.208500 | \n", + "77.500000 | \n", + "3.207450 | \n", + "5.000000 | \n", + "330.000000 | \n", + "19.050000 | \n", + "391.440000 | \n", + "11.360000 | \n", + "21.200000 | \n", + "
| 75% | \n", + "3.677083 | \n", + "12.500000 | \n", + "18.100000 | \n", + "0.000000 | \n", + "0.624000 | \n", + "6.623500 | \n", + "94.075000 | \n", + "5.188425 | \n", + "24.000000 | \n", + "666.000000 | \n", + "20.200000 | \n", + "396.225000 | \n", + "16.955000 | \n", + "25.000000 | \n", + "
| max | \n", + "88.976200 | \n", + "100.000000 | \n", + "27.740000 | \n", + "1.000000 | \n", + "0.871000 | \n", + "8.780000 | \n", + "100.000000 | \n", + "12.126500 | \n", + "24.000000 | \n", + "711.000000 | \n", + "22.000000 | \n", + "396.900000 | \n", + "37.970000 | \n", + "50.000000 | \n", + "
| \n", + " | 0 | \n", + "
|---|---|
| CRIM | \n", + "0 | \n", + "
| ZN | \n", + "0 | \n", + "
| INDUS | \n", + "0 | \n", + "
| CHAS | \n", + "0 | \n", + "
| NOX | \n", + "0 | \n", + "
| RM | \n", + "0 | \n", + "
| AGE | \n", + "0 | \n", + "
| DIS | \n", + "0 | \n", + "
| RAD | \n", + "0 | \n", + "
| TAX | \n", + "0 | \n", + "
| PTRATIO | \n", + "0 | \n", + "
| B | \n", + "0 | \n", + "
| LSTAT | \n", + "0 | \n", + "
| SalePrice | \n", + "0 | \n", + "
LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LinearRegression()
| \n | pregnant | \nglucose | \nbp | \nskin | \ninsulin | \nbmi | \npedigree | \nage | \nlabel | \n
|---|---|---|---|---|---|---|---|---|---|
| 0 | \n6 | \n148 | \n72 | \n35 | \n0 | \n33.6 | \n0.627 | \n50 | \n1 | \n
| 1 | \n1 | \n85 | \n66 | \n29 | \n0 | \n26.6 | \n0.351 | \n31 | \n0 | \n
| 2 | \n8 | \n183 | \n64 | \n0 | \n0 | \n23.3 | \n0.672 | \n32 | \n1 | \n
| 3 | \n1 | \n89 | \n66 | \n23 | \n94 | \n28.1 | \n0.167 | \n21 | \n0 | \n
| 4 | \n0 | \n137 | \n40 | \n35 | \n168 | \n43.1 | \n2.288 | \n33 | \n1 | \n