Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Ruby
Branch: master
Failed to load latest commit information.
benchmark be able to reset the nodes
lib change some wording and update readme
profiling
test change some wording and update readme
.document Initial commit to k_means.
.gitignore Initial commit to k_means.
LICENSE Initial commit to k_means.
README.rdoc fix readme
Rakefile update the rakefile to include dependencies
VERSION Version bump to 0.0.7
k_means.gemspec Regenerated gemspec for version 0.0.7

README.rdoc

KMeans

Attempting to build a fast, memory efficient K-Means program.

Install

gem sources -a http://rubygems.org
sudo gem install k_means

How To Use

require 'rubygems'
require 'k_means'

data = [[1,1], [1,2], [1,1], [1000, 1000], [500, 500]]
kmeans = KMeans.new(data, :centroids => 2)
kmeans.inspect  # Use kmeans.view to get hold of the un-inspected array
=> [[3, 4], [0, 1, 2]]

Custom Centroids

require 'rubygems'
require 'k_means'

# Your custom centroid needs to have #position and #reposition methods
class CustomCentroid
  attr_accessor :position
  def initialize(position); @position = position; end
  def reposition(nodes, centroid_positions); end
end

custom_centroids = []
2.times { custom_centroids << CustomCentroid.new([1,1]) }

data = [[1,1], [1,2], [1,1], [1000, 1000], [500, 500]]
kmeans = KMeans.new(data, :custom_centroids => custom_centroids)

Distance Measurements

KMeans uses the Distance Measures Gem (github.com/reddavis/Distance-Measures) so we get quite a range of distance measurements.

The measurements currently available are:

euclidean_distance

cosine_similarity

jaccard_index

jaccard_distance

binary_jaccard_index

binary_jaccard_distance

tanimoto_coefficient

To specify a particular one to use in the KMeans algorithm, just provide it as an option:

KMeans.new(@data, :distance_measure => :jaccard_index)
KMeans.new(@data, :distance_measure => :cosine_similarity)
KMeans.new(@data, :distance_measure => :tanimoto_coefficient)

You get the idea…

Benchmarks

# 1000 records with 50 dimensions
data = Array.new(1000) {Array.new(50) {rand(10)}}
ai4r_data = Ai4r::Data::DataSet.new(:data_items=> data)

# Clustering can happen in magical ways
# so lets do it over multiple times
n = 5

Benchmark.bm do |x|
  x.report('KMeans') do
    n.times { KMeans.new(data) }
  end
  x.report("Ai4R") do
    n.times do
      b = Ai4r::Clusterers::KMeans.new
      b.build(ai4r_data, 4)
    end
  end
end
         user     system      total        real
KMeans 15.960000   0.030000  15.990000 ( 16.062639)
Ai4R   70.230000   0.180000  70.410000 ( 70.704843)

Thanks

Copyright

Copyright © 2009 Red Davis. See LICENSE for details.

Something went wrong with that request. Please try again.