|
32 | 32 | }, |
33 | 33 | { |
34 | 34 | "cell_type": "code", |
35 | | - "execution_count": 9, |
| 35 | + "execution_count": 1, |
36 | 36 | "metadata": {}, |
37 | 37 | "outputs": [], |
38 | 38 | "source": [ |
|
58 | 58 | }, |
59 | 59 | { |
60 | 60 | "cell_type": "code", |
61 | | - "execution_count": 10, |
| 61 | + "execution_count": 2, |
62 | 62 | "metadata": {}, |
63 | 63 | "outputs": [ |
64 | 64 | { |
|
131 | 131 | }, |
132 | 132 | { |
133 | 133 | "cell_type": "code", |
134 | | - "execution_count": 11, |
| 134 | + "execution_count": 3, |
135 | 135 | "metadata": {}, |
136 | 136 | "outputs": [], |
137 | 137 | "source": [ |
|
171 | 171 | }, |
172 | 172 | { |
173 | 173 | "cell_type": "code", |
174 | | - "execution_count": 12, |
| 174 | + "execution_count": 4, |
175 | 175 | "metadata": {}, |
176 | 176 | "outputs": [], |
177 | 177 | "source": [ |
|
189 | 189 | }, |
190 | 190 | { |
191 | 191 | "cell_type": "code", |
192 | | - "execution_count": 13, |
| 192 | + "execution_count": 5, |
193 | 193 | "metadata": {}, |
194 | 194 | "outputs": [ |
195 | 195 | { |
196 | 196 | "name": "stdout", |
197 | 197 | "output_type": "stream", |
198 | 198 | "text": [ |
199 | | - "\u001b[32m14:26:12\u001b[0m \u001b[35msam.partee-NW9MQX5Y74\u001b[0m \u001b[34mredisvl.cli.index[17001]\u001b[0m \u001b[1;30mINFO\u001b[0m Indices:\n", |
200 | | - "\u001b[32m14:26:12\u001b[0m \u001b[35msam.partee-NW9MQX5Y74\u001b[0m \u001b[34mredisvl.cli.index[17001]\u001b[0m \u001b[1;30mINFO\u001b[0m 1. user_index\n" |
| 199 | + "\u001b[32m00:29:48\u001b[0m \u001b[35msam.partee-NW9MQX5Y74\u001b[0m \u001b[34mredisvl.cli.index[40909]\u001b[0m \u001b[1;30mINFO\u001b[0m Indices:\n", |
| 200 | + "\u001b[32m00:29:48\u001b[0m \u001b[35msam.partee-NW9MQX5Y74\u001b[0m \u001b[34mredisvl.cli.index[40909]\u001b[0m \u001b[1;30mINFO\u001b[0m 1. user_index\n", |
| 201 | + "\u001b[32m00:29:48\u001b[0m \u001b[35msam.partee-NW9MQX5Y74\u001b[0m \u001b[34mredisvl.cli.index[40909]\u001b[0m \u001b[1;30mINFO\u001b[0m 2. my_index\n" |
201 | 202 | ] |
202 | 203 | } |
203 | 204 | ], |
|
217 | 218 | }, |
218 | 219 | { |
219 | 220 | "cell_type": "code", |
220 | | - "execution_count": 14, |
| 221 | + "execution_count": 6, |
221 | 222 | "metadata": {}, |
222 | 223 | "outputs": [], |
223 | 224 | "source": [ |
|
237 | 238 | }, |
238 | 239 | { |
239 | 240 | "cell_type": "code", |
240 | | - "execution_count": 15, |
| 241 | + "execution_count": 7, |
241 | 242 | "metadata": {}, |
242 | 243 | "outputs": [], |
243 | 244 | "source": [ |
244 | | - "from redisvl.query import create_vector_query\n", |
| 245 | + "from redisvl.query import VectorQuery\n", |
245 | 246 | "\n", |
246 | 247 | "# create a vector query returning a number of results\n", |
247 | 248 | "# with specific fields to return.\n", |
248 | | - "query = create_vector_query(\n", |
249 | | - " return_fields=[\"users\", \"age\", \"job\", \"credit_score\", \"vector_score\"],\n", |
250 | | - " number_of_results=3,\n", |
251 | | - " vector_field_name=\"user_embedding\"\n", |
| 249 | + "query = VectorQuery(\n", |
| 250 | + " vector=[0.1, 0.1, 0.5],\n", |
| 251 | + " vector_field_name=\"user_embedding\",\n", |
| 252 | + " return_fields=[\"user\", \"age\", \"job\", \"credit_score\", \"vector_distance\"],\n", |
| 253 | + " num_results=3\n", |
252 | 254 | ")\n", |
253 | 255 | "\n", |
254 | | - "# establish a query vector to search against the data in Redis\n", |
255 | | - "query_vector = np.array([0.1, 0.1, 0.5], dtype=np.float32).tobytes()\n", |
256 | | - "\n", |
257 | 256 | "# use the SearchIndex instance (or Redis client) to execute the query\n", |
258 | | - "results = index.search(query, query_params={\"vector\": query_vector})" |
| 257 | + "results = index.search(query.query, query_params=query.params)" |
259 | 258 | ] |
260 | 259 | }, |
261 | 260 | { |
262 | 261 | "cell_type": "code", |
263 | | - "execution_count": 16, |
| 262 | + "execution_count": 8, |
264 | 263 | "metadata": {}, |
265 | 264 | "outputs": [ |
266 | 265 | { |
267 | 266 | "name": "stdout", |
268 | 267 | "output_type": "stream", |
269 | 268 | "text": [ |
270 | 269 | "Score: 0\n", |
271 | | - "Document {'id': 'v1:john', 'payload': None, 'vector_score': '0', 'age': '1', 'job': 'engineer', 'credit_score': 'high'}\n", |
| 270 | + "Document {'id': 'v1:john', 'payload': None, 'vector_distance': '0', 'user': 'john', 'age': '1', 'job': 'engineer', 'credit_score': 'high'}\n", |
272 | 271 | "Score: 0\n", |
273 | | - "Document {'id': 'v1:mary', 'payload': None, 'vector_score': '0', 'age': '2', 'job': 'doctor', 'credit_score': 'low'}\n", |
| 272 | + "Document {'id': 'v1:mary', 'payload': None, 'vector_distance': '0', 'user': 'mary', 'age': '2', 'job': 'doctor', 'credit_score': 'low'}\n", |
274 | 273 | "Score: 0.653301358223\n", |
275 | | - "Document {'id': 'v1:joe', 'payload': None, 'vector_score': '0.653301358223', 'age': '3', 'job': 'dentist', 'credit_score': 'medium'}\n" |
| 274 | + "Document {'id': 'v1:joe', 'payload': None, 'vector_distance': '0.653301358223', 'user': 'joe', 'age': '3', 'job': 'dentist', 'credit_score': 'medium'}\n" |
276 | 275 | ] |
277 | 276 | } |
278 | 277 | ], |
279 | 278 | "source": [ |
280 | 279 | "for doc in results.docs:\n", |
281 | | - " print(\"Score:\", doc.vector_score)\n", |
| 280 | + " print(\"Score:\", doc.vector_distance)\n", |
282 | 281 | " print(doc)\n" |
283 | 282 | ] |
284 | 283 | }, |
|
0 commit comments