Skip to content
Learning Deep Representations of Fine-grained Visual Descriptions
Lua Shell
Branch: master
Clone or download

Latest commit

Latest commit 7988b42 Jun 5, 2016

Files

Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
images add concept figure. Jun 2, 2016
modules Initial commit. May 30, 2016
scripts Add eval scripts. Jun 2, 2016
util Clean up retrieval. Jun 2, 2016
LICENSE Initial commit May 30, 2016
README.md Update README.md Jun 5, 2016
classify_sje_tcnn.lua Add eval scripts. Jun 2, 2016
retrieval_sje_tcnn.lua Add eval scripts. Jun 2, 2016
train_sje_hybrid.lua Initial commit. May 30, 2016

README.md

###Learning Deep Representations of Fine-grained Visual Descriptions Scott Reed, Zeynep Akata, Honglak Lee, Bernt Schiele

#####How to train a char-CNN-RNN model:

  1. Download the birds and flowers data.
  2. Modify the training script (e.g. train_cub_hybrid.sh for birds) to point to your data directory.
  3. Run the training script: ./train_cub_hybrid.sh

#####How to evaluate:

  1. Train a model (see above).
  2. Modify the eval bash script (e.g. eval_cub_cls.sh for birds) to point to your saved checkpoint.
  3. Run the eval script: ./eval_cub_cls.sh

#####Pretrained models:

#####Citation

If you find this work useful, please cite as follows:

@inproceedings{reed2016learning, 	
 title = {Learning Deep Representations of Fine-Grained Visual Descriptions,
 booktitle = {IEEE Computer Vision and Pattern Recognition},
 year = {2016},
 author = {Scott Reed and Zeynep Akata and Bernt Schiele and Honglak Lee},
}
You can’t perform that action at this time.