Skip to content
main
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

otio-cookelensmetadata - OTIO Adapter for Cooke /i Lens Metadata

Cooke Optics has created a draft specification for lens metadata. This OpenTimelineIO adapter implements parsing these and representing the metadata in otio.

This code is currently shared as a proof of concept and is not yet meant for any mainstream use cases - other than getting excited about cool workflows!

Quickstart

If you'd like to try out the adapter in a development environment, you can do the following:

$ python3 -m venv .venv
$ source .venv/bin/activate
$ pip install -e .
$ pip install pyside2  # OPTIONAL: Only if you want to use otioview

You can now use LMF .yml files natively in OpenTimelineIO. For example, otioconvert -i my-LMF-test-file.yml -o my-LMF-marker-set.otio will generate an otio file with a SerializableObject as the top-level object containing markers with the LMF record metadata.

If you'd like to use otioview, set the adapter flag create_clip to True, this attaches the markers to a clip for easier viewing in otioview. An example of this might look like:

otioview -a create_clip=True my-LMF-test-file.yml

The kinematic data (magnetometer, gyro, accelerometer) from Cooke lenses can be very large, and if it is not needed for downstream processing it can be omitted by setting the adapter flag omit_kinematic to True.

For faster YAML processing, libyaml can be installed. On MacOS, the easiest way to install this is to use Homebrew and install libyaml, and then reinstall the pyyaml package:

brew install libyaml
pip --no-cache-dir install --force-reinstall --global-option='build_ext' --global-option='-I/usr/local/include' --global-option='-L/usr/local/lib' pyyaml

Developing

To develop, follow the quickstart above to set up a virtualenv with dependencies installed and linked to your local repo.

To run the tests you'll want to first get the full content of lens-data-2020052713471590587226.yml and put it in tests/sample_data/lens-data-2020052713471590587226.yml.

I like to use curl:

$ curl https://bitbucket.org/cookeoptics/cookelensmetadata/raw/426174755ae456b8788518e8b64b59b5db80ceb1/SampleFiles/lens-data-2020052713471590587226.yml > tests/sample_data/lens-data-2020052713471590587226.yml

Then install the test requirements in your environment:

$ pip install -r tests/requirements.txt

Then you can run pytest from the root dir to get the unittest results.

Sample

The following LMF document set:

---
RecordType: rt.header.recorder.info
Manufacturer: Ambient Recording GmbH
Model: MasterLockitPlus II
SerialNumber: MLIIxxx3
RecordDate: 2020-05-27
FrameRate: 24.0
DropFrame: false
---
RecordType: rt.header.lens.info
SerialNumber: "7065.0102"
Owner: COOKE DEMO
LensType: prime
MinFocalLength: 65.0
MaxFocalLength: 65.0
TransmissionFactor: 0.93
FirmwareVersion: "7.34"
Manufacturer: Cooke Optics Lt
Model: S7i-65
AnamorphicSqueeze: 1.0
iVersion: 3
---
RecordType: rt.header.lens.shading
LensType: spherical
alpha_1: 0.12581336498260499
alpha_2: 0.01226633507758379
alpha_3: -0.000753768952563405
beta_1: 0.5748927593231201
beta_2: 0.2656184136867523
mu_1: 0.6340188980102539
mu_2: 0.07323184609413147
mu_3: -0.06928706169128418
nu_1: 0.5157180428504944
nu_2: 0.019469689577817918
nu_3: -0.002893560566008091
sigma_1: ~
sigma_2: ~
---
RecordType: rt.header.lens.distortion
LensType: spherical
s_min: 500.0
a_nom: 47.0
f:
  - 65.14214324951172
  - 1.7906161546707154
  - 0.18333962559700013
  - 0.6837693452835083
c_x:
  - 0.0
  - 0.019257964566349984
  - -0.036516740918159488
  - 0.016662470996379854
c_y:
  - 0.0
  - -0.002460891380906105
  - -0.061148565262556079
  - 0.03879305347800255
K1:
  - 0.003968206234276295
  - 0.006302871275693178
  - -0.001324182259850204
  - 0.002760479226708412
K2:
  - -0.0022727150935679676
  - 0.0034023532643914224
  - 0.002749079605564475
  - 0.0000818250045995228
K3:
  - -0.00406430009752512
  - -0.0016328172059729696
  - -0.0008932801429182291
  - -0.001089384313672781
P1:
  - 0.00013794230471830815
  - -0.00005021776814828627
  - 0.00013637077063322067
  - -0.00005989224518998526
P2:
  - 0.000037747104215668517
  - 0.00000174504884853377
  - -0.00013667589519172907
  - 0.0001262991427211091
S1:
  - 0.8696203827857971
  - 0.8237185478210449
  - -1.94357168674469
  - 1.8002805709838868
S2:
  - -0.9447554349899292
  - -0.6812136173248291
  - 1.1339746713638306
  - -1.0275139808654786
---
RecordType: rt.header.lens.cal.accelerometer
Row_1:
  - -0.000551785109564662
  - 0.0002258910972159356
  - 0.000005715729002986336
  - -0.19677266478538514
Row_2:
  - 0.00022618577349931002
  - 0.0005531031638383865
  - 0.000007387312962237047
  - -0.014095289632678032
Row_3:
  - 0.000006813808795413934
  - -0.00000945038664212916
  - 0.0005974594969302416
  - 0.05205082148313522
---
RecordType: rt.header.lens.cal.gyro
Row_1:
  - -0.0002905404835473746
  - 0.00012045353651046753
  - 0.000008586434887547512
  - 4.4281682487490317e-11
  - -1.1357535571743238e-11
  - 2.774990306986247e-12
  - 0.013803975656628609
Row_2:
  - 0.00012031001097057015
  - 0.0002898980746977031
  - 0.00000718242108632694
  - -1.8452236266730538e-11
  - -3.607880660894125e-11
  - 1.526548505659253e-11
  - 0.03938187658786774
Row_3:
  - -0.000004768163762491895
  - -0.000001431039095223241
  - 0.00030790059827268124
  - -1.1955400558427699e-10
  - -8.378429894317918e-11
  - -4.1398087215205326e-12
  - -0.0214050505310297
---
RecordType: rt.header.lens.cal.magnetometer
Row_1:
  - 1.3834202228224513e-8
  - 5.231559185858714e-9
  - 0.0
  - 0.0
Row_2:
  - -5.231559185858714e-9
  - 1.3834202228224513e-8
  - 0.0
  - 0.0
Row_3:
  - 0.0
  - 0.0
  - 1.479034761331377e-8
  - 0.0

Becomes this OTIO metadata dictionary on the top-level SerializableCollection:

{
  "LMF": {
    "lens": {
      "cal": {
        "accelerometer": {
          "Row_1": [
            -0.000551785109564662,
            0.0002258910972159356,
            5.715729002986336e-06,
            -0.19677266478538513
          ],
          "Row_2": [
            0.00022618577349931002,
            0.0005531031638383865,
            7.387312962237047e-06,
            -0.014095289632678032
          ],
          "Row_3": [
            6.813808795413934e-06,
            -9.45038664212916e-06,
            0.0005974594969302416,
            0.05205082148313522
          ]
        },
        "gyro": {
          "Row_1": [
            -0.0002905404835473746,
            0.00012045353651046753,
            8.586434887547512e-06,
            4.4281682487490315e-11,
            -1.1357535571743238e-11,
            2.774990306986247e-12,
            0.013803975656628609
          ],
          "Row_2": [
            0.00012031001097057015,
            0.0002898980746977031,
            7.18242108632694e-06,
            -1.8452236266730537e-11,
            -3.607880660894125e-11,
            1.526548505659253e-11,
            0.03938187658786774
          ],
          "Row_3": [
            -4.768163762491895e-06,
            -1.431039095223241e-06,
            0.00030790059827268124,
            -1.1955400558427698e-10,
            -8.378429894317918e-11,
            -4.1398087215205326e-12,
            -0.0214050505310297
          ]
        },
        "magnetometer": {
          "Row_1": [
            1.3834202228224513e-08,
            5.231559185858714e-09,
            0,
            0
          ],
          "Row_2": [
            -5.231559185858714e-09,
            1.3834202228224513e-08,
            0,
            0
          ],
          "Row_3": [
            0,
            0,
            1.479034761331377e-08,
            0
          ]
        }
      },
      "distortion": {
        "K1": [
          0.003968206234276295,
          0.006302871275693178,
          -0.001324182259850204,
          0.002760479226708412
        ],
        "K2": [
          -0.0022727150935679674,
          0.0034023532643914223,
          0.002749079605564475,
          8.18250045995228e-05
        ],
        "K3": [
          -0.00406430009752512,
          -0.0016328172059729695,
          -0.0008932801429182291,
          -0.001089384313672781
        ],
        "LensType": "spherical",
        "P1": [
          0.00013794230471830815,
          -5.021776814828627e-05,
          0.00013637077063322067,
          -5.989224518998526e-05
        ],
        "P2": [
          3.7747104215668514e-05,
          1.74504884853377e-06,
          -0.00013667589519172907,
          0.0001262991427211091
        ],
        "S1": [
          0.8696203827857971,
          0.8237185478210449,
          -1.94357168674469,
          1.8002805709838867
        ],
        "S2": [
          -0.9447554349899292,
          -0.6812136173248291,
          1.1339746713638306,
          -1.0275139808654785
        ],
        "a_nom": 47,
        "c_x": [
          0,
          0.019257964566349983,
          -0.036516740918159485,
          0.016662470996379852
        ],
        "c_y": [
          0,
          -0.002460891380906105,
          -0.061148565262556076,
          0.03879305347800255
        ],
        "f": [
          65.14214324951172,
          1.7906161546707153,
          0.18333962559700012,
          0.6837693452835083
        ],
        "s_min": 500
      },
      "info": {
        "AnamorphicSqueeze": 1,
        "FirmwareVersion": "7.34",
        "LensType": "prime",
        "Manufacturer": "Cooke Optics Lt",
        "MaxFocalLength": 65,
        "MinFocalLength": 65,
        "Model": "S7i-65",
        "Owner": "COOKE DEMO",
        "SerialNumber": "7065.0102",
        "TransmissionFactor": 0.93,
        "iVersion": 3
      },
      "shading": {
        "LensType": "spherical",
        "alpha_1": 0.12581336498260498,
        "alpha_2": 0.01226633507758379,
        "alpha_3": -0.000753768952563405,
        "beta_1": 0.5748927593231201,
        "beta_2": 0.2656184136867523,
        "mu_1": 0.6340188980102539,
        "mu_2": 0.07323184609413147,
        "mu_3": -0.06928706169128418,
        "nu_1": 0.5157180428504944,
        "nu_2": 0.019469689577817917,
        "nu_3": -0.002893560566008091,
        "sigma_1": null,
        "sigma_2": null
      }
    },
    "recorder": {
      "info": {
        "DropFrame": false,
        "FrameRate": 24,
        "Manufacturer": "Ambient Recording GmbH",
        "Model": "MasterLockitPlus II",
        "RecordDate": "2020-05-27",
        "SerialNumber": "MLIIxxx3"
      }
    }
  }
}

Note that the documents were all combined so rather than having to seek through a set of documents to find which one contains the desired metadata field, you can directly access what you're looking for.

How it works

The cooke lens metadata format is broken into LMF records. Each one has has an associated RecordType. An example might be: rt.header.lens.info. From a high-level perspective they can be broken into two major groups:

  1. Header
  2. Temporal

The header records apply globally to the file, while the temporal ones exist at specific sample times. The adapter will attach header record information to the top-level SerializableCollection (essentially a bin), and temporal records will be added to Markers placed in that bin.

On read, the Timecode value is used for the marked_range of the OTIO marker and records that share a timecode are combined into the same marker.

On both header and temporal records the fields are prevented from colliding by using the RecordType to namespace the metadata. So, for example, rt.header.lens.shading and rt.header.lens.distortion can be combined into a deep dictionary structure like:

{
  "lens": {
    "shading": {
      ... shading record data here ...
    },
    "distortion": {
      ... distortion record data here ...
    }
  }
}

About

A proof-of concept OpenTimelineIO adapter for the Cooke LMF lens metadata format.

Resources

License

Releases

No releases published

Packages

No packages published

Languages