TU BRAUNSCHWEIG

ProF. DR.-ING. MARCUS MAGNOR
INSTITUT FUR COMPUTERGRAPHIK
CONTACT: CGGQCG.CS.TU-BS.DE

OCTOBER 23, 2019

COoMPUTER GRAPHICS WS 19/20
ASSIGNMENT 1

The exercises will take place in room G40 in Miihlenpfordtstrasse 23. Your y-account is sufficient to login
and access all tools. Ctrl+Alt+T gives you a terminal and g++ is your GNU C++ compiler. This project
offers a CMake configuration to generate and executable.

Throughout the course you will implement your own minimal raytracer. In each exercise you will extend
your raytracer a little further. To make the task easier, you are provided with a basic raytracing framework
so that you just have to fill in the missing core parts. You may use your own computer to solve the
exercises, but your final program must run on the machines in the CIP pool.

Each week you must complete the assignments and hand in your commented source code for the practical
tasks, as well as your solutions to the theoretical tasks (with drawings/formulas). Please use different
colors in your drawings and also make sure that formulas are recognizable in your source code. Be
prepared to present the completed assignments on Friday, 9:45.

To keep presentation time short, make sure that the last commit contains the original scene file which
generates the results shown below.

At the start, your raytracer consists of only three simple parts:
e Primary Ray Generation for generating the rays to be cast from a virtual camera into the scene.
e Ray Tracing for finding the (closest) intersection of a ray with the scene to be rendered.
e Shading for calculating the color of the ray.

To begin, create an account on our git git.cg.cs.tu-bs.de and tell me your account name so I can give
you access rights Have a look at the ray tracing framework in repository WS1920 and its C++ classes:

e The framework is structured into the components Camera, Light, Primitive, Renderer,
Scene, and Shader. Each has a base class of the same name, as well as multiple child classes
that we will be developing over the course of this semester.

e A Ray is defined by its origin (Vector3d), direction (Vector3d), and length (float).

e The Scene holds all the geometry in the form of Primitives. Each type of Primitive has a virtual
method Primitive: :intersect(Ray & ray), which has to be implemented by you.

e The abstract base class Camera handles camera parameters. For each derived class, e.g. a perspec-
tive or orthogonal camera, the pure virtual method Camera: :castRay(float x, float y) has to
be implemented. Here, x and y specify the relative position in the camera frustum.

e In the «class SimpleRenderer you will have to implement the function
SimpleRenderer: :renderImage(Scene const& scene, Camera const& camera, int width,
in height) . This function calculates the images aspect ratio and casts a ray for each pixel.

Before implementing anything read through the presented classes and ex1.cpp.


mailto:cgg@cg.cs.tu-bs.de
git.cg.cs.tu-bs.de

