1.1 Primary Ray-Generation for a Perspective Camera Model (30 Points)

Have a look at camera/perspectivecamera.cpp and fill out the missing section.
A Perspective Camera Model can be defined by the following parameters:

e Camera origin (center of projection) position

e Viewing direction forwardDirection

e (Vertical) full opening angle angle of the viewing frustum

(in degrees) fovAngle ’

e Up-vector upDirection

Given the above camera description, derive the ray.direction from the camera to a relative screen co-
ordinate z,y € [—1,41]. The projection plane is perpendicular to the camera.forwardDirection.
You will have to incorporate the focus (distance from camera position to image plane along the
forwardDirection).

You will incorporate the aspect ratio as part of the SimpleRenderer class in exercise You can achieve
different aspect ratios by not using the entire ranges for z and y in the rendering function.
For example a 16:9 image would use z € [—1,+1] and y € [+, +35]-

1.2 Ray-Surface Intersection (50 Points)

Given a ray r(t) = o+ td with origin o = (0, 0y,0,) and direction d = (dy, d,, d,), derive the equations
to compare the parameter ¢ for the intersection point(s) of the ray and the following implicitly represented
surfaces:

a) An infinite plane (p — a)-n = 0 through point a = (ay, ay, a,) with surface normal n = (n,, n,,n.),
where any point p = (z,y, z) that satisfies the equation lies on the surface. Use this to fill the missing
section in primitive/infiniteplane.cpp.

b) Consider a triangle with vertices Vj, V4 and V5. Fill the missing section in primitive/triangle.cpp
using what you have learned in the lecture.

c) A sphere (p, — Cy)? + (py — Cy)* + (p. — C.)? = r? & (p— C)? = r? with center C = (C, Cy, C.),
radius r € R and point p = (ps, py, p.) € R3 on its surface. Compute the values of ¢ for which the
ray intersects the sphere. Use this to fill the missing section in primitive/sphere.cpp.

1.3 Ray Tracing (20 Points)

Have a look at renderer/simplerenderer.cpp and fill out the missing section. Generate a ray and
intersect all objects of your scene with it; assign unique colors of your choice to the objects. The program
should generate an image which should look like the one on the left. By moving the camera you can
create more interesting perspectives. Try to create your own scenes, by manipulating the exl.cpp.
Compute the time for image generation using std::chrono::steady_clock and print it afterwards.
Modify the common/Ray.h and renderer/simplerenderer.cpp to implement a simple ray counter,
which can be used to calculate the number of processed rays per second. Print this number as well (Hint:
A static member variable for the Ray-struct is usually how such counting is handled).



