TU BRAUNSCHWEIG

ProF. DR.-ING. MARCUS MAGNOR
INSTITUT FUR COMPUTERGRAPHIK
CONTACT: CGGQCG.CS.TU-BS.DE

OCTOBER 23, 2019

COoMPUTER GRAPHICS WS 19/20
ASSIGNMENT 1

The exercises will take place in room G40 in Miihlenpfordtstrasse 23. Your y-account is sufficient to login
and access all tools. Ctrl+Alt+T gives you a terminal and g++ is your GNU C++ compiler. This project
offers a CMake configuration to generate and executable.

Throughout the course you will implement your own minimal raytracer. In each exercise you will extend
your raytracer a little further. To make the task easier, you are provided with a basic raytracing framework
so that you just have to fill in the missing core parts. You may use your own computer to solve the
exercises, but your final program must run on the machines in the CIP pool.

Each week you must complete the assignments and hand in your commented source code for the practical
tasks, as well as your solutions to the theoretical tasks (with drawings/formulas). Please use different
colors in your drawings and also make sure that formulas are recognizable in your source code. Be
prepared to present the completed assignments on Friday, 9:45.

To keep presentation time short, make sure that the last commit contains the original scene file which
generates the results shown below.

At the start, your raytracer consists of only three simple parts:
e Primary Ray Generation for generating the rays to be cast from a virtual camera into the scene.
e Ray Tracing for finding the (closest) intersection of a ray with the scene to be rendered.
e Shading for calculating the color of the ray.

To begin, create an account on our git git.cg.cs.tu-bs.de and tell me your account name so I can give
you access rights Have a look at the ray tracing framework in repository WS1920 and its C++ classes:

e The framework is structured into the components Camera, Light, Primitive, Renderer,
Scene, and Shader. Each has a base class of the same name, as well as multiple child classes
that we will be developing over the course of this semester.

e A Ray is defined by its origin (Vector3d), direction (Vector3d), and length (float).

e The Scene holds all the geometry in the form of Primitives. Each type of Primitive has a virtual
method Primitive: :intersect(Ray & ray), which has to be implemented by you.

e The abstract base class Camera handles camera parameters. For each derived class, e.g. a perspec-
tive or orthogonal camera, the pure virtual method Camera: :castRay(float x, float y) has to
be implemented. Here, x and y specify the relative position in the camera frustum.

e In the «class SimpleRenderer you will have to implement the function
SimpleRenderer: :renderImage(Scene const& scene, Camera const& camera, int width,
in height) . This function calculates the images aspect ratio and casts a ray for each pixel.

Before implementing anything read through the presented classes and ex1.cpp.


mailto:cgg@cg.cs.tu-bs.de
git.cg.cs.tu-bs.de

1.1 Primary Ray-Generation for a Perspective Camera Model (30 Points)

Have a look at camera/perspectivecamera.cpp and fill out the missing section.
A Perspective Camera Model can be defined by the following parameters:

e Camera origin (center of projection) position

e Viewing direction forwardDirection

e (Vertical) full opening angle angle of the viewing frustum

(in degrees) fovAngle ’

e Up-vector upDirection

Given the above camera description, derive the ray.direction from the camera to a relative screen co-
ordinate z,y € [—1,41]. The projection plane is perpendicular to the camera.forwardDirection.
You will have to incorporate the focus (distance from camera position to image plane along the
forwardDirection).

You will incorporate the aspect ratio as part of the SimpleRenderer class in exercise You can achieve
different aspect ratios by not using the entire ranges for z and y in the rendering function.
For example a 16:9 image would use z € [—1,+1] and y € [+, +35]-

1.2 Ray-Surface Intersection (50 Points)

Given a ray r(t) = o+ td with origin o = (0, 0y,0,) and direction d = (dy, d,, d,), derive the equations
to compare the parameter ¢ for the intersection point(s) of the ray and the following implicitly represented
surfaces:

a) An infinite plane (p — a)-n = 0 through point a = (ay, ay, a,) with surface normal n = (n,, n,,n.),
where any point p = (z,y, z) that satisfies the equation lies on the surface. Use this to fill the missing
section in primitive/infiniteplane.cpp.

b) Consider a triangle with vertices Vj, V4 and V5. Fill the missing section in primitive/triangle.cpp
using what you have learned in the lecture.

c) A sphere (p, — Cy)? + (py — Cy)* + (p. — C.)? = r? & (p— C)? = r? with center C = (C, Cy, C.),
radius r € R and point p = (ps, py, p.) € R3 on its surface. Compute the values of ¢ for which the
ray intersects the sphere. Use this to fill the missing section in primitive/sphere.cpp.

1.3 Ray Tracing (20 Points)

Have a look at renderer/simplerenderer.cpp and fill out the missing section. Generate a ray and
intersect all objects of your scene with it; assign unique colors of your choice to the objects. The program
should generate an image which should look like the one on the left. By moving the camera you can
create more interesting perspectives. Try to create your own scenes, by manipulating the exl.cpp.
Compute the time for image generation using std::chrono::steady_clock and print it afterwards.
Modify the common/Ray.h and renderer/simplerenderer.cpp to implement a simple ray counter,
which can be used to calculate the number of processed rays per second. Print this number as well (Hint:
A static member variable for the Ray-struct is usually how such counting is handled).



Figure 1: Output of the minimal ray tracing framework. The primitives (spheres, triangles, plane) are
assigned a unique color. For each pixel the color of the closest object is assigned.

1.4 Useful Stuff
Have a look at the following links. They may help you solving the tasks.

e CMake https://cmake.org/

o The TU offers free student licenses for Visual Studio here https://www.tu-braunschweig.de/it/|
|downloads/software/rahmenvertraege/msdn-aa

e http://www.realtimerendering.com/intersections.html|gives you useful information on inter-
sections.

o Realistic Ray Tracing, Peter Shirly.

e 3D Modelling: Blender https://www.blender.org/ or 3ds Max Free Student Version
http://www.autodesk.com/education/free-software/3ds-max|



https://cmake.org/
https://www.tu-braunschweig.de/it/downloads/software/rahmenvertraege/msdn-aa
https://www.tu-braunschweig.de/it/downloads/software/rahmenvertraege/msdn-aa
http://www.realtimerendering.com/intersections.html
https://www.blender.org/
http://www.autodesk.com/education/free-software/3ds-max

	Primary Ray-Generation for a Perspective Camera Model (30 Points)
	Ray-Surface Intersection (50 Points)
	Ray Tracing (20 Points)
	Useful Stuff

