
Raft Consensus with Gorums

Sebastian M. Pedersen
sem.pedersen@stud.uis.no

University of Stavanger

Abstract

In this project we implement the Raft Consensus Algo-
rithm using Gorums. Several algorithms have been im-
plemented with Gorums, this is the first time Raft is im-
plemented. As both Raft and Gorums are designed to
help system builders, we study the benefit of using them
together. We focus on the evaluation of Gorums as a tool
to implement a distributed system, and how well Raft
matches with the data-centric model used by Gorums.
The impact Gorums have on performance is also taken
into account. Our results show that Gorums is a well
thought out tool, a big help in the building distributed
systems. We do however experience that Raft and Go-
rums do not go well together. We conclude that this
is rooted in Raft breaking with the single responsibility
principle.

1 Introduction

It is well known that the building of fault tolerant dis-
tributed systems is hard to get right. In this project, we
will explore two works which aims to make this easier.
The first work is Raft [11], a consensus algorithm de-
signed with understandability in mind. The other is Go-
rums [15], a framework made to simplify the design and
implementation of quorum-based systems. We put both
of these works to the test by building an implementation
of Raft with the Gorums framework. We are interested in
seeing how well Raft implements with Gorums. Our fo-
cus will be on how the abstractions presented in Gorums
helps with the implementation of a distributed consensus
algorithm, such as Raft. We will also look at how the use
of Gorums impact performance. Prior to this project we
have implemented Paxos [7, 8], without the use of any
third-party libraries. We have thus experienced the diffi-
culty of implementing a distributed consensus algorithm
firsthand. Building on our experience, this project will
allows us to discover if Raft and Gorums combined, can

help us reduce some of the effort.
Here are the key points of our project:

• We built an implementation of the Raft Consensus
Algorithm using Gorums.

• We evaluate our implementation in three different
configurations in terms of throughput and latency.
One configuration making only limited use of Go-
rums, while the others make trade-offs between la-
tency and performance.

• We use our experience in Gorums, gained building
Raft, to discuss what we think are the benefits and
challenges of using Gorums.

• We discuss the problems experienced with Raft, and
criticize Raft’s disregard of the single responsibility
principle.

• We propose an extension to Gorums easing the im-
plementation of Raft, and potentially other algo-
rithms.

• We conclude with reporting on how well Gorums
have performed in the task of implementing Raft.

2 Background

In this section we will give an informal description of
Gorums and Raft. We will present the key concepts that
we think are relevant to this project.

2.1 Gorums
Gorums [15] is a new framework which serves to sim-
plify the construction of fault tolerant distributed sys-
tems. The framework provides an abstraction for trans-
parently invoking a remote procedure call (RPC) on a
group of servers. This abstraction is called a quorum
call. The replies are collected and combined into a single

1

reply. A user-defined quorum function is invoked on the
collection of replies each time a new reply is received.
The function is responsible for combining the replies,
and indicating to the quorum call when enough replies
have been collected. Usually enough replies have been
collected when the quorum function can determine if the
process will abort or commit. The quorum call will then
return to the caller with a single reply, relieving the user
of the coordination required to communicated with mul-
tiple servers. Gorums acknowledges the need to invoke
RPCs on different groupings of servers, and therefore al-
lows for the creation of different configurations on which
quorum calls can be invoked. Configurations are a low-
cost abstraction, local to the caller, which can be created
on-demand. Quorum calls are exposed as methods on
these configuration objects.

The Gorums paper [15] presents several case studies
which evaluate the usefulness and performance of the
framework. Gorums builds on Google’s gRPC [2] and
Protocol Buffers (protobuf) [3] libraries.

2.2 Raft

Raft [11] is a fairly new algorithm for consensus in a
distributed system. Raft was designed specifically to
address the problem of Paxos [7, 8] being notoriously
difficult to understand, leading to a divergence in in-
terpretations and implementations. The consensus al-
gorithm is leader-based similar to ViewStamped Repli-
cation (VR) [10, 9] and ZooKeeper Atomic Broadcast
(Zab) [6]. Raft greatly reduces the number of differ-
ent messages types and RPCs that must be implemented
compared to these two. Raft is used to manage a repli-
cated log, which usually powers a replicated state ma-
chine (RSM). There exists a multitude of Raft implemen-
tations [13] in various stages of development. And there
has been an attempt [5] to evaluate the claims about Raft
made by its authors.

Raft is a leader-based algorithm, and as such all client
requests go through the leader, and other servers do
rarely interact directly with each other. A server can be
leader in a given term, no two servers can be leader in
the same term. This is Raft’s election safety guarantee.
A Raft server can be in one of three states: follower, can-
didate or leader. A server always begins in the follower
state. If the server receives no requests from a server
in the leader or candidate state, the server will transi-
tion into the candidate state after some random timeout.
In the candidate state, the server will request votes from
other servers, becoming the leader if it can gather a vote
from the majority. A candidate always vote for itself.
This phase is driven by the RequestVote RPC, which the
candidate invokes on all the other servers. If a response
is received, the candidate stops invoking the RequestVote

RPC for that particular server. Eventually the server will
do one of three things: receive enough votes and become
leader, see a higher term and become a follower, or reach
a timeout and start an election with a higher term.

After a leader is elected, Raft is able to make progress
managing its replicated log. Log replication in Raft is
completely handled by the AppendEntries RPC. This
RPC has several responsibilities, mainly to distribute
new log entries but also serves as a heartbeat to prevent
followers from timing out. Another function is inform-
ing the leader of the followers state. A follower will suc-
cessfully replicate the received entries only if its term and
log matches that of the request. The success of the RPC
is important as it tells the current leader which servers
are missing log entries, or if it needs to step down to
the follower state in the case of a response containing
a higher term. A server must always update its term and
step down to the follower state when discovering a higher
term. If the AppendEntries RPC fail for a given server
because the log mismatched, the leader will move one
step back in the log and retry. As this can potentially
happen a large number of times, for a server that is far
behind, we implement an optimization. Followers will
respond with a MatchIndex for the exact entry in the log
that the follower needs next.

3 Design & Implementation

Our implementation of Raft is written in Go [14], as Go-
rums is a Go library. The source code is freely avail-
able [12].

The basic Raft Consensus Algorithm operates using
only two RPCs, namely the RequestVote and AppendEn-
tries RPC. The RequestVote RPC handles leader elec-
tion, and AppendEntries is used to replicate log entries
to followers. The AppendEntries RPC also functions
as a heartbeat, preventing followers from starting new
elections. Using the Gorums framework, the core of our
implementation will be in designing quorum calls which
implement the behavior of the RequestVote and Appen-
dEntries RPC. We will now discuss some of the chal-
lenges encountered while implementing these quorum
calls, and then present our actual implementations.

3.1 Challenges

During the development of the RequestVote and Appen-
dEntries quorum calls, we were faced with several chal-
lenges. We will first present two minor problems that
were encountered when converting both RPCs to quorum
functions. We then discuss some more serious challenges
with the AppendEntries implementation.

2

3.2 Aborting a Quorum call
The Raft algorithm specifies that a server which encoun-
ters a higher term than its current term, should immedi-
ately update its term and revert to follower state.

This is problematic to implement in Gorums as a quo-
rum function does not have access to the Raft server’s
internal state. There are ways to allow quorum functions
access, but after consulting with the Gorums authors, we
have yet to find an idiomatic way to do this in Gorums.

As knowing the term in which a RPC was initiated is
beneficial, we augment the RPCs to include the request
term. This changes the RPCs to better fit the Gorums
model while retaining its initial properties.

This change incurs a small bandwidth cost for infor-
mation that is already present on the server. In this case,
it is not a huge price to pay, but we believe this problem
can be avoided entirely. We propose a solution to this
problem in Sect. 5.2.

3.3 Canceled Replies
After issuing a RPC, the Raft algorithm can proceed after
receiving a majority of the replies. The remaining replies
will be processed as they are received. As we have earlier
established, if any of these replies contain a higher term
than the server, the server must convert to the follower
state.

When a quorum function returns after aborting or re-
ceiving a quorum of replies, the quorum call will cancel
all outstanding replies. As such, the server will not pro-
cess any of these replies. If any of the canceled replies
contained information that the server could have acted
upon, that information is lost.

Thankfully this does not affect the correctness of the
algorithm. The canceled replies are no different than
missing replies, which the algorithm is designed to tol-
erate. Worst-case scenario is a server discovering a new
term a little late, which is not a problem. If we assume
elections are far between, this is not something that will
occur very often.

Heartbeat One important observation here is that, fol-
lowers receive the issued requests, it is their replies
which is canceled. This means that the heartbeat func-
tionality works as expected. It is only the leader which
will chose to not process the remaining replies in the case
a quorum function returns early.

3.4 Separation of Concerns
The AppendEntries RPC has a collection of responsibil-
ities. In our implementation there are three important
ones: replicating log entries, the heartbeat mechanism,

and informing the leader which entries to send to each
follower next. When replicating log entries, a major-
ity of successful replies suffice to commit the entries.
For performance reasons it makes sense not to wait for
the remaining replies. However each individual response
contains important information about a follower. This
information is lost, if we do not wait for all the replies.

In Gorums a quorum call can only return once, gener-
ating a single reply. Now if we want an optimal Appen-
dEntries implementation for replicating log entries, the
quorum function should return as soon as it has a major-
ity of successful replies. As we discussed above, when a
quorum function returns the quorum call will not process
the remaining replies. This is of course problematic as
the leader does not know if the missing replies were suc-
cessful, or what entries they were requesting. We could
force the quorum function to process all replies. How-
ever if the quorum call needs to wait for replies from ev-
ery server, and not just a majority quorum, the latency of
the request will be reduced to that of the slowest server.
We would rather the latency be contacting the fastest
quorum, which is a key property of the Raft algorithm.

We do not present an optimal solution to this problem,
as it would require decomposing the AppendEntries RPC
into individual RPCs. This creates the problem of retain-
ing the correctness of the algorithm. We have chosen to
implement a quorum call that can reach both a majority
and the full cluster, depending on the quorum size is set.

Optimal replication The performance of Raft is de-
pendent on how fast the AppendEntries RPC can be in-
voked. Our first quorum call therefore uses a quorum size
equal to the majority of the cluster. This allows the quo-
rum call to commit as soon as a majority of the servers
have responded successfully.

The problem with this approach stems from the can-
celed replies, as we discussed in the previous section. As
only a majority of the replies are processed, we have to
be optimistic and assume that the remaining followers
were successful as well.

In practice we have experienced that this is not true.
Even in an ideal local area network (LAN) setting, fol-
lowers tend to eventually fall behind. The leader is never
informed of the log entries needed by the slower servers.
This causes a follower who fall behind, to stay behind.
Only after something happens to one of the faster servers,
or a new leader is elected, will the other followers have a
chance to receive the missing entries.

If we assume our cluster to be fairly stable, the cost
of updating a slower follower, when the composition of
faster followers change, can be dramatic. The longer a
cluster operates without problems, the higher the cost of
updating a follower will be. The algorithm can not make
any progress until there is a majority of followers with

3

up-to-date logs.
A possible solution to this problem is to replicate en-

tries directly to the slower servers which fall behind. We
would then need a traditional AppendEntries RPC, ca-
pable of updating followers individually. However if we
do implement this optimization, we have done the same
work required not using a quorum call at all. A bet-
ter way would be to implement snapshotting, which is
a form of log compaction discussed in the Raft paper.
We would then implement the additional InstallSnapshot
RPC [11] required, and use it to periodically synchronize
the replicated state machine. This would stop the gap in
entries replicated to expand infinitely. However there is
a cost in doing log compaction too regularly.

Synchronized cluster As there are obvious drawbacks
with the previously discussed quorum call, we try in-
creasing the quorum size to the full cluster size. This
should make the quorum function wait until a reply from
every follower has been received. With the information
of the full cluster, we are able to construct new quorum
calls containing the correct number of log entries to sat-
isfy all followers.

The immediate problem with this quorum call is that
latency will be determined by the slowest follower. An-
other issue is when servers stop responding. The leader
will be unable to proceed until the quorum call times out.
As we can not tolerate the cluster becoming unavailable
when a single server crashes, this problem must be re-
solved.

We solve this problem by keeping a short timeout on
the quorum call. We allow the quorum function to return
successfully without a response from every server. Since
the quorum function is designed to wait for all replies,
success in the case of less replies, can only happen when
the quorum call times out. This is why the timeout must
be short. As such our quorum function should, in the
common case, be able to successfully update every fol-
lower in time. If not every server respond in time, we
can still proceed given that at least a majority responded
successfully.

Another problem with this quorum call, is the fact
that when a follower falls behind, every other server will
receive an AppendEntries RPC with excess log entries.
This causes additional bandwidth overhead. We believe
this case to be rare, as the quorum call is specifically de-
signed to make sure every follower stays up-to-date.

3.5 Combining Replies
In the previous section we describe a quorum call capable
of making progress with a majority quorum. For this to
work, we need to be able to figure out which followers
were in that quorum.

Algorithm 1 Raft RequestVote quorum function
1: func (qs QUORUMSPEC) RequestVoteQF(replies []RESPONSE)
2: votes := 0 . votes granted
3: reply := replies[len(replies)−1] . latest reply
4: if reply.Term > reply.RequestTerm then
5: return reply, true . abort if follower in higher term

6: for r := range replies do . count votes
7: if r.VoteGranted then
8: votes++
9: if votes≥ qs.FastQSize then

10: reply.VoteGranted := true
11: return reply, true . quorum found

12: return nil, false . no quorum yet, await more replies

This is not practical to implement in Gorums. While
Gorums allows us to inspect which servers responded to
a quorum call, we do not know which of them were suc-
cessful. The traditional AppendEntries RPC contains a
unique identifier for the follower responding. This al-
lows the caller to update the corresponding MatchIndex.
This is of course also possible in Gorums, however we
are limited to setting one identifier, as all the replies are
combined into a single reply.

We implement a simple solution to this problem. By
allowing the replies to contain a list of ids instead of a
single one, the quorum call can return a list of the fol-
lowers who were successful.

As sending a list incurs more bandwidth, augmenting
the RPC is not without cost. AppendEntries is the most
used RPC in Raft, so this change is a lot more noticeable
than the change to the RequestVote RPC in Sect. 3.2.

The problem of type discrepancy is described in the
Gorums paper [15]. There is an ongoing discussion
about allowing quorum calls to specify a different re-
turn type for quorum functions. Different from that of
the replies. This would solve the problem with the band-
width cost, but it remains to be seen if this change will
be implemented.

3.6 Leader Election

Overall the implementation of the RequestVote quorum
call was straightforward.

Algorithm 1 presents the RequestVote quorum func-
tion developed. First we check whether the latest re-
ply contains a higher term, in which case we abort (L4).
We iterate over the replies counting the number of votes
granted (L6). If a majority granted a vote, we have re-
ceived a quorum and can return (L9). In the case of no
quorum and there are still remaining replies, we wait for
more replies (L12).

4

Algorithm 2 Raft AppendEntries quorum function
1: func (qs QUORUMSPEC) AppendEntriesQF(replies []RESPONSE)
2: successful := 0 . successful replies
3: maxIndex := 0 . max match index
4: reply := replies[len(replies)−1] . latest reply
5: reply.Success := false
6: reply.FollowerID := nil
7: if reply.Term > reply.RequestTerm then
8: return reply, true . abort if follower in higher term

9: for r := range replies do
10: if r.MatchIndex < reply.MatchIndex then
11: reply.MatchIndex := r.MatchIndex . lower match index

12: if r.Success then . count successful replies
13: successful++
14: maxIndex := reply.MatchIndex
15: reply.FollowerID := reply.FollowerID∪ r.FollowerID
16: if successful = qs.SlowQSize then
17: reply.MatchIndex := maxIndex
18: reply.Success := true
19: return reply, true . slow quorum found

20: if len(replies) = successful then . all replies must be successful
21: if len(replies)≥ qs.FastQSize then
22: reply.Success := true . majority successful

23: return reply, false . no quorum yet, await more replies

3.7 Log Replication

Developing a satisfactory quorum function for the Ap-
pendEntries RPC proved to be quite difficult. In Gorums
it is possible to bypass the quorum function, so we have
made an implementation using a regular RPC for Ap-
pendEntries. We used this RPC as baseline. Further we
have two implementations using the same quorum func-
tion, the difference is in how we have set the quorum
sizes. One is tuned for keeping every server up-to-date,
and the other is tuned for speed, always trying to choose
the fastest way to make progress. This might leave some
servers with an outdated log. The difference in config-
uration in the first case, is using a quorum size equal to
the cluster size, while the second case sets the quorum
size to the size of a majority. In addition the first case
is optimized to allow progress if some servers are down,
as long as there is still a majority. Though this requires
waiting for the request to time out.

Algorithm 2 shows the AppendEntries quorum func-
tion created. The value of SlowQSize and FastQSize dic-
tate if the quorum function will update all or only the
fastest quorum. If we set both SlowQSize and FastQSize
to a majority of the cluster, the algorithm will try to oper-
ate on a fast quorum. Keeping FastQSize as the majority
and changing SlowQSize to the size of the cluster, causes
the quorum function to try to update all the servers. In
the original AppendEntries RPC description, FollowerID
contains the unique id of a single server. In our imple-
mentation we had to change it to a list. This is so that we
could retain who successfully responded to the quorum
call, when combining replies.

AppendEntries will abort, like RequestVote, in the
case of a follower being in a higher term (L7). In the
case of a slow quorum we need to find the minimum
MatchIndex (L10). This is to make sure that the next
quorum call is capable of successfully updating ever fol-
lower. Servers that are already up-to-date will ignore the
excess log entries received. The followers which were
successful are counted and saved (L12). We save the id
of successful followers so that we know which log en-
tries to send to these servers next. If we have enough
successful replies to form a slow quorum, we can suc-
cessfully return to the caller (L16). One important thing
to note here is that, if SlowQSize is set to a majority, this
is actually a majority quorum. The remaining code en-
sures liveness in the case SlowQSize > FastQSize and
less than a majority of the servers stop responding (L20).

4 Evaluation

Our evaluation focuses on quantifying the throughput
and latency of the different AppendEntries RPC imple-
mentations. These results are meant to highlight some
problems encountered during the design of our imple-
mentation. We note that we try to show the difference in
the methods presented, and that the results are not neces-
sarily good for absolute comparison with other systems.

We first describe the environment in which the evalua-
tion were performed. Three AppendEntries RPC imple-
mentations are then presented, and evaluated regarding
to throughput and latency.

4.1 Experimental Setup

All experiments were run on clusters of 512MB droplets
(virtual machines) with a one core processor from
DigitalOcean[1] running Ubuntu 16.10. All code is com-
piled using Go 1.6.2. Clusters of three servers were cre-
ated, two servers in the region LON1 (London) and one
in NYC3 (New York). The leader of the cluster is always
in LON1. For measuring throughput the client is placed
in the same region as the leader (LON1). As the client for
measuring latency requires a lot of memory, the client is
run locally. We call this region NOR (Norway). The la-
tency from NOR to LON1 is 40ms, and from LON1 to
NYC3 71ms. The reason for placing one server in New
York is so that we can see the effect of one slow server in
the cluster. All experiments are run over a period of 30
seconds, with an initial 15 seconds to saturate the cluster.
The interval between each AppendEntries is set to 250ms
giving a margin on the election timeout with NYC3 be-
ing 71ms away, while being the timeout that gave best
results measuring throughput.

5

1,000 3,000 5,000

No QRPC
QRPC q=2 n=3
QRPC q=3 n=3

Throughput (committed requests/s)

Figure 1: Throughput w/ standard deviation using batch-
ing on a cluster of 3 servers. 15 clients continuously
trying to commit a request of 16 B. Clients are asyn-
chronous. Average over 5 runs.

4.2 AppendEntries RPC Implementations

We will now present the three AppendEntries RPC im-
plementations used during evaluation. We have already
discussed this in Sect. 3.7, but we will name the imple-
mentations and highlight the differences here.

QRPC is shorthand for quorum call. We use q to indi-
cate quorum size, and n cluster size, meaning q ≤ n. In
all cases the cluster size is 3.

No QRPC Does not use Gorums’ quorum call func-
tionality. Close to regular gRPC but retains the benefit
of Gorums’ manager. This implementation is most sim-
ilar to the original Raft description. No QRPC has the
configuration q=2 n=3.

QRPC q=2 n=3 Uses a quorum call with cluster ma-
jority as the quorum size. This configuration trades com-
mit latency for slower servers falling behind. In this case,
the NYC3 server is expected to end up with an outdated
log, while the two LON1 servers proceed.

QRPC q=3 n=3 Uses a quorum call with the cluster
size set as the quorum size. This configuration keeps ev-
ery server up-to-date at the cost of higher commit latency.
In this case, the NYC3 server is expected to be a bottle-
neck, causing the overall commit latency to increase. As
to not disrupt the algorithm when a server crashes, this
implementation allows committing an entry as long as
at least a majority quorum succeeded. The logic can be
seen in the last lines of Algorithm 2. This does how-
ever only work as a request times out and returns to the
caller. This is because the quorum function is designed
to keep waiting on replies from the whole cluster. We
therefore expect to see a latency greater than the quorum
call’s timeout, when the cluster is not operating at full
capacity.

4.3 Throughput

The objective of this experiment is to determine the effect
that implementation choice has on the overall throughput
of the cluster.

 0

 200

 400

 600

 800

 1000

 1200

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

Percentile

0% 90% 99% 99.9% 99.99% 99.999% 99.9999%

No QRPC
QRPC q=2 n=3
QRPC q=3 n=3

QRPC w/ crash q=2 n=3
QRPC w/ crash q=3 n=3

Figure 2: Latency using batching on a cluster of 3
servers. 15 clients trying to commit a request of 16 B.
Clients are synchronous. Average over 5 runs.

During this experiment we enable batching. Batch-
ing trades latency for an increase in throughput. As the
AppendEntries RPC is used for replicating entries to the
cluster, batching is implemented by buffering client re-
quests until the next AppendEntries RPC, which is sent
every 250ms. There is no batching of client requests on
the client side. As there is no application resting on top
of our Raft implementation, throughput is entirely mea-
sured in client requests committed to the replicated log.

Figure 1 shows the throughput for the different im-
plementations using a request size of 16 B, with 15
asynchronous clients. We did not gain any additional
throughput by increasing the number of clients past 15.
No QRPC has a slightly higher throughput than the
QRPC implementations. Our key take away from this ex-
periment is that throughput is not greatly affected when
using a quorum call.

4.4 Latency
We also study the implications on latency for the differ-
ent implementations. Figure 2 shows the latency for 5
different scenarios using a request size of 16 B, with 15
synchronous clients and batching enabled

We would like to note that in Fig. 2 a latency-
percentile diagram might not have been the best repre-
sentation to get our point across. Had the experiment ran
for a longer time, the differences would have not been
so clear. A throughput-time diagram would have more
clearly shown the effect of the crash scenarios.

The crash scenarios consists of permanently crashing
the LON1 follower after 15 seconds. This should cause
the leader to turn to the NYC3 server for replicating new
log entries.

We would expect to see considerably higher latency
for the q=3 n=3 scenarios. However an interesting ob-
servation is that the use of batching completely masks the
difference in latency. We speculate that the difference

6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

Percentile

0% 90% 99% 99.9% 99.99% 99.999% 99.9999%

QRPC q=2 n=3
QRPC q=3 n=3

Figure 3: Latency without batching on a cluster of 3
servers. 15 clients trying to commit a request of 16 B.
Clients are synchronous. Average over 5 runs.

would become more apparent under higher load. An-
other observation is that the latency is roughly the time
between each AppendEntries RPC with some additional
processing overhead, which conforms with our expecta-
tions. There are some requests that do not make it with
the first AppendEntries RPC, causing higher percentiles
to have a latency of double the RPC interval.

We have one outlier QRPC w/ crash q=2 n=3, which
reveals a problem with this quorum call. Crashing the
follower in LON1 forces the leader to replicate entries
to the higher latency NYC3 server. This server have
not been receiving log entries, and needs to be updated.
This causes a dramatic increase in latency proportional
to the number of missed log entries. The reason being
that the implementation only cares about successful Ap-
pendEntries RPC from the fastest majority, causing the
slower servers to fall behind. We discussed this problem
in Sect. 3.4.

To get a better understanding of the difference in la-
tency between the implementations, we disable batching.

Figure 3 shows the latency for QRPC q=2 n=3 and
QRPC q=3 n=3. We do not include No QRPC but its la-
tency is similar to QRPC q=2 n=3. Here we can clearly
see the difference in commit latency, which were masked
in the previous experiment. We observe that the latency
for QRPC q=2 n=3 is equivalent to the latency between
NOR and LON1 with some processing overhead. Re-
quiring a response from every server adds the additional
latency of having to visit NYC3 for every request. We
believe this shows the cost keeping all servers up-to-date,
which avoids stalling the progress of the algorithm in the
case of a change in the faster majority of the cluster.

5 Discussion

We will now discuss the benefits that we have found in
using Gorums. Further we propose a non-intrusive im-

Algorithm 3 Suggested quorum function signature
1: func (qs QUORUMSPEC) QF(request REQUEST, replies []RESPONSE)

provement to Gorums, solving the problem we discussed
in Sect. 3.2. Finally we discuss some subjects of interest
for future work.

5.1 Benefits

Prior to this project we have implemented network com-
munication code for a Paxos protocol, and have experi-
enced that it can be a hassle. When we first started the de-
velopment of Raft, we were surprised to see how fast and
easy it were to develop an initial prototype. This mainly
comes from Gorums’ manager abstraction handling the
bookkeeping of servers and connections. The manager
handles all communication within the cluster. Gorums’
quorum call functionality was a big help when first im-
plementing the RequestVote RPC, we believe it greatly
reduced development time, we were also able to create
tests for our quorum function easily. Quorum functions
forces us to think about separation of concerns, which
we believe leads to better code in the long run. It was not
until we tried implementing the AppendEntries RPC that
we noticed some problems with the use of quorum calls.
Though these problems were mainly caused by the RPC
in question, and are not inherit to Gorums.

5.2 Proposed Improvements

In response to our problem with not having access to the
context in which a quorum function was initiated, we
propose exposing the request that spawned the quorum
function as an argument. Algorithm 3 shows how we
imagine the quorum function signature would look after
the change. We believe this is both easier and cleaner
than having to augment RPCs arguments with additional
fields, or accessing server state directly. In our case, this
would allow us to inspect the server term from the re-
quest, and save us from having to add the servers term
to the RequestVote and AppendEntries RPCs. As we are
getting the server term from the request, when handling
responses, the actual server term might have changed.
This is not problematic, as the server has started a new
election or discovered a higher term, in either case the
work done by the quorum function will be discarded and
we should return early. Though this is a proposal specific
to the implementation of Raft, we believe that access to
the request can be beneficial under other circumstances
as well.

In the case of Raft we believe that there may be room
for an additional RPC or two, if it would allow each RPC

7

to serve one function. We think splitting the AppendEn-
tries RPC might not only help with the implementation
of Raft in Gorums, but with the understanding of the al-
gorithm in general. The Raft paper itself does explain
the importance of decomposing problems into separate
pieces that can solved, explained and understood sepa-
rately. However this is not the case with Raft’s Appen-
dEntries RPC.

5.3 Future Work
In Sect. 3.7 we describe two quorum calls for handling
the AppendEntries RPC. These both leave something to
be desired. One is fast but suffers when the servers mak-
ing up the fastest quorum change. The other quorum
call’s performance is dictated by the slowest server. For
a future work it would be interesting to see if the use
of snapshotting could offset the occasional delays in the
faster quorum call.

Recently Gorums have implemented Correctables [4].
We believe there might be some potential to improve the
Raft RPC implementations here. The reason being that
Correctables allows returning intermediate values. We
believe it is worth exploring.

As ViewStamped Replication and ZooKeeper Atomic
Broadcast both implement a lot more messages than
Raft, we are curious to find out if either of these algo-
rithms would lend themselves better to the Gorums way
of implementation. The reason being that as Raft’s mes-
sages are more dense from doing more than one thing,
these other algorithms might have greater separation of
concerns as the mechanisms of the protocol are spread
over several smaller messages.

Another experiment would be to decompose Raft’s
AppendEntries RPC into several isolated RPCs with sep-
arate concerns. We note that it might be hard to do this
while maintaining correctness. We could then see if Raft
would easier implement in Gorums. We would also be
able observe if this has any effect on the understandabil-
ity of the algorithm.

One thing we have not attempted is implementing re-
configuration in Raft. It would be interesting to see how
much Gorums could help with reconfiguration.

6 Conclusion

In this project, we have implemented the Raft Consensus
Algorithm using the Gorums framework. We wanted to
figure out how useful Gorums was in this implementa-
tion, and how good a fit it were for an algorithm such as
Raft. To answer this question we now draw on the ex-
perience gained through this project, and our evaluation
of our Raft implementation. Overall our experience with
Gorums have been good, and we believe it to be a great

tool in building distributed systems. We are specially
fond of how easily it handles the initial configuration of
our cluster, and further communication through its man-
ager abstraction. While we had some challenges with the
use of Gorums’ quorum calls, we believe Raft deserves
some of the blame here. In this case, the AppendEntries
RPC doing more than one thing. We note that while we
think there is still room for innovation in the development
of understandable consensus algorithms, Raft has suc-
ceeded in being easier to understand than Paxos. At least
that is our opinion now, after having implemented both
protocols ourselves. We conclude with Raft and Gorums
not being the best match. Raft was designed to work
closely with the individual responses from each server.
As Gorums combines all replies into a single response,
these are not easily available.

References
[1] DIGITAL OCEAN, INC. Cloud infrastructure provider.

https://www.digitalocean.com/.

[2] GOOGLE INC. gRPC.
http://www.grpc.io/.

[3] GOOGLE INC. Protocol Buffers.
https://developers.google.com/protocol-buffers/.

[4] GUERRAOUI, R., PAVLOVIC, M., AND SEREDINSCHI, D.-A.
Incremental Consistency Guarantees for Replicated Objects. In
12th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 16) (2016), USENIX Association.

[5] HOWARD, H., SCHWARZKOPF, M., MADHAVAPEDDY, A., AND
CROWCROFT, J. Raft Refloated: Do We Have Consensus?
SIGOPS Oper. Syst. Rev. 49, 1 (2015).

[6] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M. Zab:
High-performance broadcast for primary-backup systems. In
2011 IEEE/IFIP 41st International Conference on Dependable
Systems Networks (DSN) (2011).

[7] LAMPORT, L. The Part-time Parliament. ACM Trans. Comput.
Syst. 16, 2 (1998).

[8] LAMPORT, L. Paxos made simple. ACM SIGACT News 32, 4
(2001).

[9] LISKOV, B., AND COWLING, J. Viewstamped Replication Re-
visited. Tech. Rep. MIT-CSAIL-TR-2012-021, MIT, 2012.

[10] OKI, B., AND LISKOV, B. Viewstamped Replication: A New
Primary Copy Method to Support Highly-Available Distributed
Systems. In Proceedings of the Seventh Annual ACM Symposium
on Principles of Distributed Computing (PODC) (1988).

[11] ONGARO, D., AND OUSTERHOUT, J. In Search of an Under-
standable Consensus Algorithm.

[12] PEDERSEN, S. M. Raft with Gorums source code.
https://github.com/relab/raft/.

[13] Raft consensus algorithm implementations.
https://raft.github.io/#implementations.

[14] THE GO AUTHORS. The Go Programming Language.
https://golang.org/.

[15] TORMOD EREVIK LEA, L. J., AND MELING, H. Gorums: New
Abstractions for Implementing Quorum-based Systems. In sub-
mission (2016).

8

