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Abstract— Hyperspectral image (HSI) and multispectral image
(MSI) fusion, which fuses a low-spatial-resolution HSI (LR-HSI)
with a higher resolution multispectral image (MSI), has become
a common scheme to obtain high-resolution HSI (HR-HSI). This
article presents a novel HSI and MSI fusion method (called
as CNN-Fus), which is based on the subspace representation
and convolutional neural network (CNN) denoiser, i.e., a well-
trained CNN for gray image denoising. Our method only needs
to train the CNN on the more accessible gray images and can be
directly used for any HSI and MSI data sets without retraining.
First, to exploit the high correlations among the spectral bands,
we approximate the desired HR-HSI with the low-dimensional
subspace multiplied by the coefficients, which can not only speed
up the algorithm but also lead to more accurate recovery. Since
the spectral information mainly exists in the LR-HSI, we learn
the subspace from it via singular value decomposition. Due to the
powerful learning performance and high speed of CNN, we use
the well-trained CNN for gray image denoising to regularize the
estimation of coefficients. Specifically, we plug the CNN denoiser
into the alternating direction method of multipliers (ADMM)
algorithm to estimate the coefficients. Experiments demonstrate
that our method has superior performance over the state-of-the-
art fusion methods.

Index Terms— Convolutional neural network (CNN), fusion,
hyperspectral imaging, superresolution.
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I. INTRODUCTION

HYPERSPECTRAL imaging technique can obtain images
of different spectral bands simultaneously. The high

spectral resolution of hyperspectral images (HSIs) provide
faithful knowledge of the scene and enhance the performance
of many applications, such as object classification [1]–[6],
anomaly detection [7], and disease diagnosis [8]. However, due
to the limited sun irradiance, there is the ineluctable tradeoff
among the spatial resolution, spectral resolution, and signal-
to-noise-ratio (SNR). In other words, HSI with high spectral
resolution suffers from low spatial resolution to guarantee
a high SNR [9]. Therefore, spatial resolution enhancement
is a basic problem for HSI imaging. Compared with HSIs,
multispectral images (MSIs) with lower spectral resolution can
be obtained with much higher spatial resolution and SNR [9].
Hence, a possible way to solve the problem is image fusion,
which combines a high-spatial-resolution MSI (HR-MSI) with
a low-spatial-resolution HSI (LR-HSI) [10], [11]. The fusion
technique has been widely used for HSI imaging due to its
improved performance in many applications, including object
classification [12], anomaly detection [13], and change detec-
tion [14]. Experiments performed in [13] demonstrate that the
fused HR-HSI can really promote the detection accuracy.

Recently, convolutional neural network (CNN) has been
successfully applied to solving the denoising problem for
its high speed and good learning performance. Especially,
Zhang et al. [15] proposed a flexible and fast CNN for
denoising, which can adaptively deal with noisy images of
different noise levels. Inspired by this work, we propose to use
the well-trained CNN for gray image denoising to regularize
the HSI-MSI fusion problem. In general, the proposed method
has two steps: subspace estimation and coefficients estimation.
To exploit the high correlations and redundancies in the spec-
tral mode, the HR-HSI is decomposed as a low-dimensional
spectral subspace and corresponding coefficients. Since most
of the spectral information exists in the LR-HSI, we learn the
spectral subspace from it via the singular value decomposition
(SVD). With the spectral subspace known, we propose to
plug the CNN denoiser into the ADMM algorithm to estimate
the coefficients. In the ADMM iteration, we mainly need
to solve two subproblems. One subproblem is the quadratic
problem, which can be solved analytically and efficiently.
Another subproblem can be seen as the denoising problem,
and we solve it efficiently by applying a CNN denoiser for
each row of coefficients. Finally, we can acquire the desired
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HR-HSI with the coefficients and spectral subspace known.
The proposed fusion method mainly has the following
advantages.

1) The proposed CNN denoiser method has good general-
izability and can flexibly deal with different HSI data
sets without retraining.

2) Even though our target is HSI-MSI fusion, we do not
need to train the CNN on any HSI and MSI data
sets. In fact, the CNN denoiser is trained from more
available gray images, and it is very ingenious to use the
CNN trained from gray images for HSI recovery.

3) In comparison to the state-of-the-art fusion methods, our
method has superior performance.

We arrange the remainder of this article as follows.
We review recent works about HSI-MSI fusion in Section II.
Our method for fusion of LR-HSI and HR-MSI is pro-
posed in Section III. In Section IV, we present experiments
and the corresponding discussions. The conclusion is drawn
in Section V.

II. RELATED WORK

HSI and MSI fusion, which combines an LR-HSI with an
HR-MSI, has become an effective way to obtain HR-HSI.
Loncan et al. [16] gave a review of recent state-of-the-art
fusion methods. The fusion approaches can be classified into
four types: sparse representation-based approaches, low-rank
representation based approaches, tensor factorization-based
approaches, and deep-learning-based approaches.

Sparse representation-based HSI-MSI approaches assume
that each spectral pixel can be sparsely represented by the
learned spectral dictionary. Kawakami et al. [17] proposed
to estimate the overcomplete spectral dictionary from the
LR-HSI and then obtained the coefficients by conducting
sparse coding for HR-MSI. Akhtar et al. [18] first learned
the nonnegative dictionary and then estimate coefficients for
each patch simultaneously via the simultaneous greedy pur-
suit approach. Based on the learned nonlocal similarities in
the HR-MSI, Dong et al. [19] proposed a structured sparse
coding approach to estimate the coefficients. Han et al. [20]
proposed a sparse representation method to learn the local self-
similarities in each superpixel and nonlocal self-similarities
among patches.

Low-rank representation-based methods exploit the low-
rank structure of the HR-HSI and decompose it as the coef-
ficients and low-dimensional spectral basis, which exploits
the high correlations among the spectral bands. In this way,
the target of fusion is transformed as the estimation of the
coefficients and spectral basis. Based on the linear spectral
unmixing model, the HSI can be decomposed as endmembers
and abundances, which has been used for single HSI super-
resolution [21] and fusion [22]–[24]. The unmixing-based
fusion methods [22]–[24] treat the spectral basis as endmem-
bers and alternately update the endmembers and coefficients
from the HR-MSI and LR-HSI by using the priors of spectral
unmixing. The subspace representation model is different
from the spectral unmixing model, where the subspace and
coefficients are not necessarily nonnegative, and coefficients
do not need to satisfy sum-to-one. Besides, the subspace is

often semiunitary. Works [25]–[27] obtain the spectral basis
by conducting the SVD or vertex component analysis [28]
on the LR-HSI, and they use different regularizer to estimate
coefficients based on the maximum a posteriori (MAP) [29].
For example, Simoẽs et al. [25] made use of total varia-
tion regularization to improve spatial piecewise smoothness.
Wei et al. [27] used a sparse representation-based regu-
larizer to promote the self-similarities of image patches.
Zhou et al. [30] and Veganzones et al. [31] emphasized the
HR-HSI is locally low rank, and the subspace and coefficients
are estimated for each local region separately.

Tensor factorization-based fusion methods deal with the
3-D HSI from the point of tensor. Work [32] first proposed
a nonlocal sparse tensor factorization for HSI-MSI fusion,
where they approximate the HR-HSI by dictionaries of three
modes and a sparse core tensor based on the Tucker decom-
position [33]. To exploit the nonlocal self-similarities, they
assume that similar cubes can be sparsely represented by
the same dictionaries. Furthermore, Li et al. [34] solved the
fusion problem by simultaneously conducting sparse Tucker
decomposition on the HR-MSI and LR-HSI, where the core
tensor and three dictionaries are alternatively updated until
convergence. Kanatsoulis et al. [35] proposed a canonical
polyadic decomposition-based framework for the fusion prob-
lem, where the identifiability of the model is guaranteed under
mild and realistic conditions. A weighted low-rank tensor
recovery model is proposed by Chang et al. [36] to solve the
fusion problem, which gives the weighted parameters to the
elements of core tensor.

The deep-learning techniques, especially CNNs with deep
structure, have been successfully applied to many image
processing tasks. In the field of HR-MSI and LR-HSI fusion,
Dian et al. [37] first used the imaging models to initialize
the HR-HSI and then map the initialized HR-HSI to ground
truth by the well-trained CNN. In addition, Yang et al. [38]
proposed the two-branch CNN for the fusion, which makes use
of the two-branch CNN to extract the spectral features of each
pixel from the LR-HSI and its spatial features from HR-MSI.
These methods mainly have two disadvantages. First, they
need additional HR-MSI, LR-HSI, and HR-HSI data sets for
pretraining, where these data are often not available. What is
more, they do not have good generalizability, that is, the CNN
trained on one data set cannot directly be applied to another
data set of different spectral sizes. Besides, Han et al. [39]
proposed the multibranch BP neural networks to fuse the
LR-HSI and HR-MSI, which clusters the spectral bands for
several groups for fusion.

III. PROPOSED CNN-FUS APPROACH

In this section, our CNN-Fus approach for the fusion of
HR-MSI and LR-HSI is presented. The proposed CNN-Fus
approach has two steps: estimation of subspace and estimation
of coefficients.

A. Observation Model

All HR-HSI, HR-MSI, and LR-HSI can be naturally repre-
sented by the 3-D data. Here, we unfold the 3-D data with the
spectral mode and denote them as the matrices. The HR-HSI
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Fig. 1. Subspace representation of the HSI.

is denoted as X ∈ RS×N , where S and N = W × H are the
number of bands and pixels, respectively. W and H are the
lengths of the two spatial modes.

The acquired LR-HSI is denoted by Y ∈ RS×n, where n is
the number of spectral pixels. Compared with X, Y is spatially
downsampled, and the relationship of them can be modeled as

Y = XBD + Nh (1)

where Nh represents the additive Gaussian noise. B ∈ RN×N

models a blurring operation of hyperspectral camera, and it is
a block circulant. Therefore, we can decompose B as

B = FKFH (2)

where F stands for the discrete Fourier transform (DFT)
matrix. The diagonal matrix K holds the eigenvalues of B
in its diagonal line. D ∈ RN×n is the spatially subsampling
matrix.

Z ∈ Rs×N stands for the HR-MSI. Compared with X,
Z is spectrally downsampled, and the relationship of them is
written as

Z = RX + Nm (3)

where R ∈ Rs×S denotes the spectral downsampling matrix of
MSI sensor and Nm represents the additive Gaussian noise.

B. Subspace Estimation

Hyperspectral data normally has low-rank structure, and
therefore, it lives in a low-dimensional subspace [25], [40].
As shown in Fig. 1, the HR-HSI can be written as

X = SA + N (4)

where S ∈ RS×L and A ∈ RL×N are the subspace and coef-
ficients, respectively, and N denotes the additive noise. The
subspace representation model mainly has three advantages:
1) it fully exploits high correlations among the spectral bands;
2) small values of L (L < S), which reduces the size of
spectral mode and therefore makes computationally efficient;
and 3) the subspace is semiunitary (ST S = I), and therefore,
we have A = ST X. In this way, each row of A can be linearly
expressed by the rows (bands) of X, and rows of A preserve
the spatial structures of the X.

Based on the subspace representation, the target of the
fusion is transformed into estimating the subspace S and
coefficients A. Since the spectral information mainly exists in
the LR-HSI, we assume that the HR-HSI and LR-HSI share the
same spectral subspace, and therefore, the spectral subspace

can be estimated from the LR-HSI. We first conduct SVD on
the LR-HSI, that is

Y = U1�1VT
1 (5)

where U1 and V1 are semiunitary, and diagonal matrix �1 con-
tains the singular values, which are arranged in nonincreasing
order. By only reserving L largest singular values, we give a
low-dimensional approximation of Y

Ŷ = Û1�̂1V̂T
1 (6)

where Û1 = U1(:, 1:L) and V̂1 = V1(:, 1:L). The subspace S
is equal to

S = Û1 = U1(:, 1:L). (7)

C. Estimation of Coefficients

With the subspace S known, we calculate the coefficients via
the MAP estimation. By combining (1), (3), and (4), we can
obtain the following equation:

argmin
A

||Y − SABD||2F + α||Z − RSA||2F + λφ(A) (8)

where ||·||F denotes the Frobenius norm. In (8), ||Y −
SABD||2F + α||Z − RSA||2F is the log-likelihood term, and
λφ(A) represents the prior on coefficients A, where λ is
the regularization parameter. Formulation (5) is based on the
assumption that the noise in HSI and MSI is both independent
identically distributed (i.i.d), and the parameter α models
different noise variances in the two images. Hence, some
prior information is needed to regularize the estimation of A.
The coefficients mainly reserve the spatial structures of
the HR-HSI. Many handcraft priors have been used for the
estimation of the coefficients, including priors of spectral
unmixing [22], [23], [41], sparse priors [17], [27], [32],
low-rank priors [42], nonlocal spatial similarities [19], and
spatial smoothness [25]. Image denoising is a hot research
topic in image processing. Many state-of-the-art denoising
algorithms have been proposed to solve the problem, such
as block-matching and 3-D filtering (BM3D) [43], weighted
nuclear norm [44], and CNN denoiser [15], [45]. The recently
proposed plug-and-play framework [46] makes it possible
that we exploit the state-of-the-art denoising algorithms to
solve other image restoration problems. The plug-and-play
framework plugs a denoiser into an iterative algorithm, where
the denoiser is treated as the proximity operator. Instead of
using the handcraft priors, we use the prior learned from
the images for the estimation of the coefficients. In specific,
inspired by the spirit of plug-and-play, we use the well-trained
CNN denoiser to regularize the estimation of coefficients. The
CNN denoiser is trained from more available gray images,
which can effectively capture the instinct spatial structures of
images and remove the noise. The problem (8) is hard to solve
directly. The ADMM algorithm can solve (8) by decomposing
it as several treatable subproblems. By bringing variable V, we
acquire the augmented Lagrangian function

L(A, V, G) = ||Y − SABD||2F + α||Z − RSA||2F
×μ

����V − A + G
2μ

����
2

F

+ λφ(V) (9)
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Fig. 2. Flowchart of the coefficients estimation.

where μ is the penalty parameter and G is the Lagrangian
multiplier. Based on the ADMM algorithm, the problem (8)
can be transformed as minimizing the augmented Lagrangian
function (9). As shown in Fig. 2, the coefficients are estimated
by iteratively updating A, V, G, and μ.

1) Updating of A: In each iteration, A is updated by
minimizing L(A, V, G) with regard to it, that is

A ∈ argmin
A

L(A, V, G)

= argmin
A

||Y − SABD||2F

+α||Z − RSA||2F + μ

����V − A + G
2μ

����
2

F

(10)

where problem (10) is strongly convex. Therefore, we force
the derivative of (10) with respect to A to be 0 and acquire
the Sylvester equation

H1A + AH2 = H3. (11)

Since the spectral basis S is acquired by the SVD, it satisfies
ST S = IL , where IL ∈ RL×L is the identity matrix. Therefore,
we can obtain

H1 = α(RS)T RS + μIL

H2 = (BD)(BD)T

H3 = α(RS)T Z + ST Y(BD)T + μ

�
V + G

2μ

�
. (12)

Since the matrices H1 and H2 are positive, the system matrix
of (11) is positive, and therefore, we can apply the conjugate
gradient method to solve it. Here, we use a fast method to
solve (11) analytically and efficiently [26], [47]. The matrix H1

is symmetric and positive, and therefore, it can be diagonal-
ized by eigendecomposition, that is

H1 = Q1�Q−1
1 . (13)

where diagonal matrix � is written as

� =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 0 · · · λL

⎤
⎥⎥⎥⎦ (14)

and matrix Q1 is invertible. By multiplying left-hand side
of (11) by Q−1

1 , we can obtain

�Q−1
1 A + Q−1

1 AH2 = Q−1
1 H3. (15)

By multiplying right-hand side of (15) with the DFT matrix F
and combining (2), the following equation is acquired:

�Q−1
1 AF + Q−1

1 AFKFH DDH FKH = Q−1
1 H3F. (16)

Lemma 1 (See [47]): The following equation is satisfied:

FH DDH F = 1

d
(1d ⊗ In)

�
1T

d ⊗ In
�

(17)

where 1d ∈ Rd is a vector of ones and In ∈ Rn×n is the
identity matrix. Here, n is number of pixels of LR-HSI, and
d = (N/n).
By combining (16) and (17), we can acquire the following
equation:

�Ā + ĀM = C (18)

where Ā = Q−1
1 AF, M = (1/d)K̄K̄H , K̄ = K(1d ⊗ In), and

C = Q−1
1 H3F. Equation (18) is the Sylvester equation with

regard to Ā. We rewrite the diagonal matrix K as

K =

⎡
⎢⎢⎢⎣

K1 0 · · · 0
0 K2 · · · 0
...

. . .
...

0 0 · · · Kd

⎤
⎥⎥⎥⎦ (19)

where Ki ∈ Cn×n. Therefore, we have K̄K̄H = d
t=1 K2

d .
Equation (18) can be solved in an row-by-row manner. We first
rewrite Ā and C as Ā = [ā1, . . . , āL ]T and C = [c1, . . . , cL ]T ,
respectively, where āi and ci represent i th row of Ā and C,
respectively. In this way, Ā can be estimated row-by-row
manner, that is

λi āi + āi M = ci , for i = 1, . . . , L . (20)

We can obtain

āi = ci (λi In + M)−1, for i = 1, . . . , L . (21)

By using K̄K̄H = d
t=1 K2

d , (λi In + M)−1 can be computed
as

(λi I + M)−1 = λ−1
i In − λ−1

i K̄

�
λi dIn +

d�
t=1

K2
d

�−1

K̄H . (22)

Hence, āi is equivalent as

āi = λ−1
i ci − λ−1

i ci K̄

�
λi dIn +

d�
t=1

K2
d

�−1

K̄H . (23)

After obtaining Ā, the coefficient A is estimated as

A = Q1ĀFH . (24)

Algorithm 1 outlines the method for solving (11).

Algorithm 1 Solution for (11) With Respect to A
Input: H1, H2, H3, S, B
1: B = FKFH ;
2: K̃ = K(1d ⊗ 1n);
3: H1 = Q1�Q−1

1 ;
4: C = Q−1

1 H3F;
5: for i = 1 to L do
6: āl = λ−1

l cl − λ−1
l clK̄(λl dIn + d

t=1 K2
t )K̄

H ;
7: end for
8: Set A = Q1ĀFH ;

Output: A.
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2) Updating of V: In each iteration, V is updated by min-
imizing the Lagrangian function with regard to it, leading to

V ∈ argmin
V

L(A, V, G)

= argmin
V

μ�V − A + G
2μ

�2
F + λφ(V). (25)

Inspired by the spirit of plug and play, the optimization
problem (25) can be seen as the denoising of A−(G/2μ) with
a white additive Gaussian noise of variation σ 2 = (λ/2μ).
Many state-of-the-art algorithms have been proposed to solve
the denoising problem, such as BM3D [43], K-SVD denoising
method [48], weighted nuclear norm method [49], and deep
CNN-based denoising method [15], [45].

Due to the high speed and powerful learning performance
of CNN, we take the recently proposed FFDNet [15], a flexible
and fast CNN-based method, as the denoising engine. The
FFDNet consists of three kinds of operations: 3 × 3 convolu-
tion layer (Conv), batch rectified linear units (ReLUs) [50],
and normalization (BN) [51]. In specific, the first layer is
“Conv+ReLU,” the middle layer is “Conv+BN+ReLU,” and
the last layer is “Conv,” where BN is exploited to speed up
the training procedure, and ReLU max(0, x) is the activation
function. Using FFDNet as denoising engine mainly has three
advantages. First, FFDNet uses a tunable noise level map
as input, and therefore, the FFDNet can flexibly deal with
images of different noise levels without retraining. Besides,
the FFDNet decomposes the noisy image as four subimages
and uses these subimages as the input, which can reduce the
number of layers and make the algorithm much faster. Then,
the denoised subimages are aggregated to acquire the final
denoised image. What is more, we do not need to train the
FFDNet on any HSI or MSI data sets and are trained on more
available gray images. It is very ingenious to use CNN trained
from gray images for HSI recovery.

Since the subspace E is semiunitary, we have A = ST X,
and each row of A can be linearly expressed by rows of X.
Therefore, each row of A preserves the spatial structures of the
HR-HSI. Besides, even though the bands of HR-HSI are highly
correlated, the rows of coefficients are much less correlated
due to the subspace representation. Based on this conclusion,
we apply the well-trained FFDNet to each row of A−(G/2μ)
to solve problem (25). In other words, we estimate V in (25)
in a row-by-row manner via the learned map F , that is

V(i, :) = F
�

H(i, :), λ

2μ
; �

�
, for i =, 1, 2, . . . , L (26)

where � is the parameters of the FFDNet, and the variable
H satisfies H = A − (G/2μ). Since each row of H is not an
image, we need first to scale each row of it to [0, 1] and then
reshape it as the matrix Ĥi of size W × H , where W and H
are the dimensions of two spatial modes. The abovementioned
operation is represented by Ĥi = vec−1(ci H(i, :)+bi). Here,
vec−1(·) denotes the inverse operation of vectorization, and
transforms a vector a ∈ RW H into a matrix B ∈ RW×H , where
B ∈ RW×H = vec−1(a) is equivalent as B(i, j) = a(( j −
1) ∗ W + i). In this way, the noise level is changed as ciσ

2

correspondingly. Finally, we need to scale the denoising results

back. Therefore, the estimation of V in (26) is transformed as

Ĥi =reshape(ci H(i, :) + bi , W, H ),

for i =, 1, 2, . . . , L

V̂(i, :) =reshape

�
F

�
Ĥi ,

ciλ

2μ
; �

�
, 1, N

�
,

for i =, 1, 2, . . . , L

V(i, :) = V̂(i, :) − bi

ci
, for i =, 1, 2, . . . , L (27)

where ci = (1/(max(H(i, :)) −min(H(i, :)))) and bi = −ci ∗
min(H(i, :)).

3) Updating of Lagrangian Multiplier G: The Lagrangian
multiplier G is updated via

G = G + 2μ(V − A). (28)

4) Updating of Penalty Parameter μ: The penalty parameter
μ has an important effect on the FFDNet denoising process,
where the input variance σ 2 = (λ/2μ). With the iteration of
the algorithm, the image is more close to the clean image,
and therefore, the input noise level σ 2 should also be turned
down. In this way, we need to increase the value of μ in the
iteration. Another advantage of increasing μ is that it can make
the algorithm converge. The penalty is updated by

μ = γμ (29)

where γ is the constant satisfying γ > 1.
We summarize our method for HSI-MSI fusion in

Algorithm 2. The algorithm is stopped when the number of
iterations is reached a preset value T , and we set T = 12 in
the experiments.

Algorithm 2 CNN-Fus-Based HSI-MSI Fusion
Input: Y, Z, λ
1: Estimate the subspace S via (7);
2: while not converged do
3: Update A via Algorithm 1;
4: Update V via equation (27);
5: Update G via equation (28);
6: Update μ via equation (29);
7: end while
8: X = SA;

Output: X.

IV. EXPERIMENTS

In this section, the experiments of HSI-MSI fusion are
conducted on two simulated data sets and one real data set
to evaluate the effectiveness of our method. The source code
will be available in https://sites.google.com/view/renweidian.

A. Experimental Data Sets

1) Pavia University: This HSI is acquired over the urban
area of Pavia University [52]. It has the size of 610×340×115,
where the number of bands is 115. Since some bands have low
SNR, these bands are removed and 93 bands are persevered.
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The HSI is used as a reference image. The LR-HSI is simu-
lated by using a 7×7 Gaussian filter with standard deviation 2
and then by subsampling every 5 pixels in two spatial
modes. We simulate the HR-MSI Z by filtering X with the
IKONOS-like reflectance spectral response. The i.i.d Gaussian
noise is added to HR-MSI (35 dB) and LR-HSI (30 dB).

2) Cuprite Mine: The Cuprite Mine is acquired by the
AVIRIS [53] in Nevada. The HSI has a size of 512×512×224.
The HSI covers the wavelength range of 400–2500 nm with
10-nm interval. Bands 1, 2, 105–115, 150–170, and 223–224
have water absorptions and low SNR, and they are removed.
The LR-HSI is simulated by using an 7 × 7 Gaussian filter
with standard deviation 2 and then by subsampling every
4 pixels. Six bands of wavelengths 480, 560, 660, 830, 1650,
and 2220 nm are directly selected as the HR-MSI, which
correspond to the visible and midinfrared range spectral bands
of USGS/NASA Landsat7 satellite. The i.i.d Gaussian noise
is added to HR-MSI (35 dB) and LR-HSI (30 dB).

B. Compared Methods

Three recent state-of-the-art fusion approaches are used
for comparison, which includes the nonnegative struc-
tured sparse representation (NSSR) [19],1 coupled spectral
unmixing (CSU) [23],2 coupled sparse tensor factoriza-
tion (CSTF) [34],3 coupled nonnegative matrix factorization
(CNMF), and Bayesian sparse fusion method (Fuse-S). The
NSSR, CSU, and CSTF belong to the sparse representation-
based methods, low-rank representation-based methods, and
tensor factorization-based methods, respectively. We tune the
parameters of the compared methods for the best performance.
For the NSSR, the number of atoms in spectral dictionary K ,
nonlocal similarities regularization parameter η1, and sparsity
regularization parameter η2 are set as K = 75, η1 = 10−4,
and η2 = 10−4, respectively. For the CSU, the number
of iterations is set as 1500. For the CSTF, the parameters
are set as nw = 500 and nh = 500 and nw = 500 and
nh = 300 for Cuprite Mine and Pavia University, respectively.
The other parameters of CSTF are set as ns = 15, β = 0.01,
and λ = 10−5. All codes of compared methods are publicly
available.

C. Quantitative Metrics

We use four quantitative metrics to measure the quality of
the recovered HR-HSIs.

1) PSNR: The first quantitative metric is the peak signal-
to-noise ratio (PSNR). The PSNR that is extended for HSI is
by computing average PSNR of all bands.

2) SAM: The spectral angle mapper (SAM) [54] is the
average angle between the estimated and referenced spectral
pixels.

3) UIQI: The universal image quality index (UIQI) [55] for
HSI is calculated on a sliding window and then is averaged
on all bands and all windows. For two windows a and b, the

1http://see.xidian.edu.cn/faculty/wsdong
2https://github.com/lanha/SupResPALM
3https://sites.google.com/view/renweidian

Fig. 3. Effect of parameter T on our method.

UIQI is defined as

UIQI(a, b) = 4μaμb

μ2
a + μ2

b

σ 2
a,b

σ 2
a + σ 2

b

(30)

where μa and σa denote the mean value and standard variance
of a, respectively, and σ 2

a,b stands for the covariances between
a and b.

4) SSIM: The structural similarity index (SSIM) [56] is used
to measure the structural similarities of the gray image. The
SSIM is extended to evaluate the qualities of HSI by averaging
on all spectral bands.

D. Parameters Selection

The proposed method has three important parameters,
i.e., the maximum number of iterations T , the dimensional of
the spectral subspace L, and the regularization parameter λ.

The estimation of the coefficients A is the iterative process.
The maximum number of iterations T is an important stop
criterion of our method. In the T th iteration, we obtain
the coefficients A(T ) and estimated HR-HSI Z(T ) = SA(T ).
To show the results of the intermediate steps, Fig. 3 shows
that the PSNR of estimated HR-HSI varies from T . We can
see from Fig. 3 that the PSNR for Pavia University has a sharp
rise when T varies from 1 to 7, and then, it keeps relatively
stable. The PSNR for Cuprite Mine rises as T changes from 1
to 10 and then does not have obvious change. Therefore, we set
the maximum number of iterations as 12 for our method.

The parameter L controls the dimension of the spectral
basis, which can highly influence the final result. To test the
effect of L, we plot the PSNR as a function of L in Fig. 4.
It can be seen from Fig. 4 that the PSNR for Pavia University
has a sharp increase as L varies from 4 to 6, and then,
the PSNR keeps relatively stable. The PSNR for Cuprite Mine
increases when L ranges from 4 to 8, and then, it decreases
when L is bigger than 8. Therefore, we set the dimension
of spectral basis L = 8 for the best performance, which
indicates that only eight atoms are enough to represent the
spectral information, and the spectral vectors really live in a
low-dimensional subspace.

Since the noise level is σ 2 = (λ/2μ) in each itera-
tion, the parameter λ highly influences the performance of
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Fig. 4. Effect of parameter L on our method.

Fig. 5. Effect of parameter λ on our method.

CNN denoiser. To discuss the influence of λ, we plot the
PSNR for Pavia University and Cuprite Mine as a function of λ
in Fig. 5. The parameter λ = 0 means that the CNN denoiser
is not used for the estimation of the coefficients. We can see
from Fig. 5 that the PSNR for Pavia University and Cuprite
simultaneously has an obvious increase of λ that grows from
0 to 8 × 10−4, which indicates that our method highly relies
on the estimation of the coefficients, and the CNN denoiser
really helps the estimation of the coefficients. The PSNR for
Pavia University and Cuprite decreases as λ is bigger than
1.2 × 10−3. Therefore, we set λ = 1 × 10−3 for both Pavia
University and Cuprite Mine.

E. Experimental Results

1) Experimental Results on Simulated Data Fsuion: The
quality matrices of the HR-HSIs reconstructed by compared
approaches on Pavia University are reported in Table I.
We highlight the best results in bold for clarity. From Table I,
we observe that the proposed method and Fuse-S consistently
outperform the other testing approaches in terms of the quality
metrics. The superiority of our method mainly comes from the
low-dimensional subspace representation and CNN denoiser,
where the low-dimensional subspace representation can effec-
tively model the correlations among the spectral bands, and the

TABLE I

QUANTITATIVE METRICS OF THE COMPARED
APPROACHES ON PAVIA UNIVERSITY [52]

TABLE II

QUANTITATIVE METRICS OF THE COMPARED

APPROACHES ON CUPRITE MINE [53]

CNN denoiser can well depict the spatial prior of the HSI. The
reconstructed Pavia University at the 20th and 50th bands by
the CSTF, CNMF, Fuse-S, and CNN-Fus and corresponding
error images are shown in Fig. 6. The images reconstructed
by NSSR and CSU are not shown since they perform relatively
worse in this data set. From the recovered HR-HSIs, all testing
methods perform well in recovering the details compared
with the observed LR-HSI, which indicates the effectiveness
of these methods. The error images reflect the differences
between the estimated images and ground truths. From the
error images, we can see that the HR-HSIs recovered by our
method have fewer errors and are more close to the ground
truths.

The quality matrices of the HR-HSIs reconstructed by
compared approaches on Cuprite Mine are shown in Table II.
Our method still delivers the best results among the testing
approaches, and the Fuse-S takes the second place. In Fig. 7,
the fusion results and the corresponding error images of CSU,
CNMF, Fuse-S, and CNN-Fus for Cuprite Mine at the 50th
and 90th bands are shown. The images reconstructed by NSSR
and CSTF are not shown since they perform relatively worse
in this data set. As we can observe from Fig. 7, the HR-HSIs
reconstructed by our method and Fuse-S still have fewer errors
and higher PSNR.

2) Experimental Results on Real Data Fusion: To further
assess the performance of our method, we have tested the
compared methods on real LR-HSI and HR-MSI fusion.
The LR-HSI is captured by the Hyperion sensor loaded on
the Earth Observing-1 satellite. The LR-HSI has the spatial
resolution of 30 m and 220 spectral bands in the spectral
range of 400–2500 nm. After removing the bands of low SNR,
89 bands are retained. An area of spatial size 100×100 is used
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Fig. 6. First and second rows show the fusion results and corresponding error images by the CSTF (42.525 dB), CNMF (43.308 dB), Fuse-S (44.694 dB),
and CNN-Fus (44.806 dB) at the 20th band of Pavia University. The third and fourth rows show the fusion results and corresponding error images by the
CSTF (41.361 dB), CNMF (43.355 dB), Fuse-S (42.945 dB), and CNN-Fus (44.192 dB) at the 50th band of Pavia University. (a) LR-HSI. (b) CSTF [34].
(c) CNMF [22]. (d) Fuse-S [27]. (e) CNN-Fus. (f) Ground truth.
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Fig. 7. First and second rows show the fusion results and the corresponding error images by the CSU (44.933 dB), CNMF (43.887 dB), Fuse-S (46.395 dB),
and CNN-Fus (46.942 dB) at the 50th band of Cuprite Mine. The third and fourth rows show the fusion results and the corresponding error images by
the CSU (40.904 dB), CNMF (42.043 dB), Fuse-S (43.208 dB), and CNN-Fus (43.147 dB) at the 90th band of Cuprite Mine. (a) LR-HSI. (b) CSU [23].
(c) CNMF [22]. (d) Fuse-S [27]. (e) CNN-Fus. (f) Ground truth.

Fig. 8. Hyperion LR-HSI, Sentinel-2A HR-MSI, and false-color images consisting of 16th, 5th, and 2nd bands of the recovered HR-HSIs. (a) Hyperion
LR-HSI. (b) Sentinel-2A HR-MSI. (c) NSSR [19]. (d) CSU [23]. (e) CSTF [34]. (f) CNN-Fus.

for experiments. The HR-MSI is taken by the Sentinel-2A
satellite. It has 13 spectral bands, and we use the four bands
with a 10-m spatial resolution for the fusion. The central
wavelengths of the four bands are 490, 560, 665, and 842 nm.
The spatial size of the HR-MSI is 300 × 300. We use the
method proposed by Simoẽs et al. [25] to estimate B and R
simultaneously. From the observation models X(3) = Z(3)BS
and Y(3) = RZ(3), we get the equation RX(3) = Y(3)BS.

Therefore, B and S are estimated by solving the following
equation minB,S ||RX(3) − Y(3)BS||2F + λbφb(B) + λrφr (R),
where λbφb(B) and λrφr (R) are the regularization term on
B and S, respectively. To smooth the blur matrix B, φb(B)
is set as φb(B) = ||Dh B||2F + ||Dv B||2F , where Dv and Dv

calculate the horizontal and vertical differences of B. Since
we only need to smooth the spectral response matrix along
the vertical mode (row), φr (R) is set as φb(B) = ||Dv B||2F .
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TABLE III

RUNNING TIME IN SECONDS OF THE TESTING METHODS

We first estimate R with the strong spatial blur and then
estimate B with known R. Fig. 8 shows the false-color image
consisting of 16th, 5th, and 2nd bands of recovered HR-
HSIs. The recovered images by CSTF and CNMF are not
shown since they perform worse in this data set. As shown
in Fig. 8, all testing approaches can obviously improve the
spatial resolution of the observable LR-HSI, and the fusion
results of CNN-Fus have much fewer flaws. The CSTF
applies to the case that the blur is decomposable in two
spatial dimensions, and the estimated blur dose not satisfy
the case. Hence, the fusion results of CSTF have obvious
artifacts.

F. Computational Efficiency

To compare the computational efficiency of the testing
methods, the running time of testing approaches on the
Pavia University, Cuprite Mine, and Hyperion data sets is
reported in Table III. All experiments are conducted at
MATLAB R2018b and computer equipped with 8-GB random
access memory and Intel Core-i5-9300H CPU with 2.4 GHz.
As can be seen from Table III, the CNN-Fus has obvious
speed advantage on Pavia University. The speed advantage of
our method mainly comes from the subspace representation,
which can largely reduce the size of HSI data. Besides, the
CNMF is the fastest method on Cuprite Mine.

V. CONCLUSION

We propose a new HSI-MSI fusion method, which is
based on the subspace representation and CNN denoiser. First,
to exploit the high correlations among the spectral bands,
we approximate the desired HR-HSI with the low-dimensional
subspace multiplied by the coefficients, which can not only
speed up the algorithm but also more accurate recovery.
Since the LR-HSI preserves most of the spectral information,
the subspace is learned from it via SVD. Due to the powerful
learning performance and high speed of CNN, we use the
well-trained CNN to regularize the estimation of coefficients.
Specifically, we propose to plug the CNN denoiser into the
ADMM iteration to estimate the coefficients. Experiments on
both simulated and real data fusion demonstrate the superiority
of the proposed approach over the existing state-of-the-art
HSI-MSI fusion approaches.

The proposed subspace representation and CNN denoiser-
based framework can be easily used for other HSI restoration
tasks, such as HSI denoising and compressed sensing, and is
expected to obtain good performance.
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