Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
938 lines (799 sloc) 30.4 KB
/*
* Copyright 2013 Con Kolivas <kernel@kolivas.org>
* Copyright 2013 Hashfast Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <stdbool.h>
#include "miner.h"
#include "usbutils.h"
#include "driver-hashfast.h"
////////////////////////////////////////////////////////////////////////////////
// Support for the CRC's used in header (CRC-8) and packet body (CRC-32)
////////////////////////////////////////////////////////////////////////////////
#define GP8 0x107 /* x^8 + x^2 + x + 1 */
#define DI8 0x07
static unsigned char crc8_table[256]; /* CRC-8 table */
static void hfa_init_crc8(void)
{
int i,j;
unsigned char crc;
for (i = 0; i < 256; i++) {
crc = i;
for (j = 0; j < 8; j++)
crc = (crc << 1) ^ ((crc & 0x80) ? DI8 : 0);
crc8_table[i] = crc & 0xFF;
}
}
static unsigned char hfa_crc8(unsigned char *h)
{
int i;
unsigned char crc;
h++; // Preamble not included
for (i = 1, crc = 0xff; i < 7; i++)
crc = crc8_table[crc ^ *h++];
return crc;
}
struct hfa_cmd {
uint8_t cmd;
char *cmd_name;
enum usb_cmds usb_cmd;
};
/* Entries in this array need to align with the actual op values specified
* in hf_protocol.h */
#define C_NULL C_MAX
static const struct hfa_cmd hfa_cmds[] = {
{OP_NULL, "OP_NULL", C_NULL}, // 0
{OP_ROOT, "OP_ROOT", C_NULL},
{OP_RESET, "OP_RESET", C_HF_RESET},
{OP_PLL_CONFIG, "OP_PLL_CONFIG", C_HF_PLL_CONFIG},
{OP_ADDRESS, "OP_ADDRESS", C_HF_ADDRESS},
{OP_READDRESS, "OP_READDRESS", C_NULL},
{OP_HIGHEST, "OP_HIGHEST", C_NULL},
{OP_BAUD, "OP_BAUD", C_HF_BAUD},
{OP_UNROOT, "OP_UNROOT", C_NULL}, // 8
{OP_HASH, "OP_HASH", C_HF_HASH},
{OP_NONCE, "OP_NONCE", C_HF_NONCE},
{OP_ABORT, "OP_ABORT", C_HF_ABORT},
{OP_STATUS, "OP_STATUS", C_HF_STATUS},
{OP_GPIO, "OP_GPIO", C_NULL},
{OP_CONFIG, "OP_CONFIG", C_HF_CONFIG},
{OP_STATISTICS, "OP_STATISTICS", C_HF_STATISTICS},
{OP_GROUP, "OP_GROUP", C_NULL}, // 16
{OP_CLOCKGATE, "OP_CLOCKGATE", C_HF_CLOCKGATE},
{OP_USB_INIT, "OP_USB_INIT", C_HF_USB_INIT}, // 18
{OP_GET_TRACE, "OP_GET_TRACE", C_NULL},
{OP_LOOPBACK_USB, "OP_LOOPBACK_USB", C_NULL},
{OP_LOOPBACK_UART, "OP_LOOPBACK_UART", C_NULL},
{OP_DFU, "OP_DFU", C_NULL},
{OP_USB_SHUTDOWN, "OP_USB_SHUTDOWN", C_NULL},
{OP_DIE_STATUS, "OP_DIE_STATUS", C_HF_DIE_STATUS}, // 24
{OP_GWQ_STATUS, "OP_GWQ_STATUS", C_HF_GWQ_STATUS},
{OP_WORK_RESTART, "OP_WORK_RESTART", C_HF_WORK_RESTART},
{OP_USB_STATS1, "OP_USB_STATS1", C_NULL},
{OP_USB_GWQSTATS, "OP_USB_GWQSTATS", C_HF_GWQSTATS}
};
#define HF_USB_CMD_OFFSET (128 - 18)
#define HF_USB_CMD(X) (X - HF_USB_CMD_OFFSET)
/* Send an arbitrary frame, consisting of an 8 byte header and an optional
* packet body. */
static bool hfa_send_frame(struct cgpu_info *hashfast, uint8_t opcode, uint16_t hdata,
uint8_t *data, int len)
{
int tx_length, ret, amount, id = hashfast->device_id;
uint8_t packet[256];
struct hf_header *p = (struct hf_header *)packet;
p->preamble = HF_PREAMBLE;
p->operation_code = hfa_cmds[opcode].cmd;
p->chip_address = HF_GWQ_ADDRESS;
p->core_address = 0;
p->hdata = htole16(hdata);
p->data_length = len / 4;
p->crc8 = hfa_crc8(packet);
if (len)
memcpy(&packet[sizeof(struct hf_header)], data, len);
tx_length = sizeof(struct hf_header) + len;
ret = usb_write(hashfast, (char *)packet, tx_length, &amount,
hfa_cmds[opcode].usb_cmd);
if (unlikely(ret < 0 || amount != tx_length)) {
applog(LOG_ERR, "HFA %d: hfa_send_frame: USB Send error, ret %d amount %d vs. tx_length %d",
id, ret, amount, tx_length);
return false;
}
return true;
}
static bool hfa_send_header(struct cgpu_info *hashfast, struct hf_header *h, int cmd)
{
int amount, ret, len;
len = sizeof(*h);
ret = usb_write(hashfast, (char *)h, len, &amount, hfa_cmds[cmd].usb_cmd);
if (ret < 0 || amount != len) {
applog(LOG_WARNING, "HFA%d: send_header: %s USB Send error, ret %d amount %d vs. length %d",
hashfast->device_id, hfa_cmds[cmd].cmd_name, ret, amount, len);
return false;
}
return true;
}
static bool hfa_get_header(struct cgpu_info *hashfast, struct hf_header *h, uint8_t *computed_crc)
{
int amount, ret, orig_len, len, ofs = 0, reads = 0;
char buf[512];
char *header;
/* Read for up to 200ms till we find the first occurrence of HF_PREAMBLE
* though it should be the first byte unless we get woefully out of
* sync. */
orig_len = len = sizeof(*h);
do {
if (++reads > 20)
return false;
ret = usb_read_timeout(hashfast, buf + ofs, len, &amount, 10, C_HF_GETHEADER);
if (unlikely(ret && ret != LIBUSB_ERROR_TIMEOUT))
return false;
ofs += amount;
header = memchr(buf, HF_PREAMBLE, ofs);
if (header)
len -= ofs - (header - buf);
} while (len);
memcpy(h, header, orig_len);
*computed_crc = hfa_crc8((uint8_t *)h);
return true;
}
static bool hfa_get_data(struct cgpu_info *hashfast, char *buf, int len4)
{
int amount, ret, len = len4 * 4;
ret = usb_read(hashfast, buf, len, &amount, C_HF_GETDATA);
if (ret)
return false;
if (amount != len) {
applog(LOG_WARNING, "HFA %d: get_data: Strange amount returned %d vs. expected %d",
hashfast->device_id, amount, len);
return false;
}
return true;
}
static bool hfa_reset(struct cgpu_info *hashfast, struct hashfast_info *info)
{
struct hf_usb_init_header usb_init, *hu = &usb_init;
struct hf_usb_init_base *db;
char buf[1024];
struct hf_header *h = (struct hf_header *)buf;
uint8_t hcrc;
bool ret;
int i;
info->hash_clock_rate = 550; // Hash clock rate in Mhz
// Assemble the USB_INIT request
memset(hu, 0, sizeof(*hu));
hu->preamble = HF_PREAMBLE;
hu->operation_code = OP_USB_INIT;
hu->protocol = PROTOCOL_GLOBAL_WORK_QUEUE; // Protocol to use
hu->hash_clock = info->hash_clock_rate; // Hash clock rate in Mhz
hu->crc8 = hfa_crc8((uint8_t *)hu);
applog(LOG_INFO, "HFA%d: Sending OP_USB_INIT with GWQ protocol specified",
hashfast->device_id);
if (!hfa_send_header(hashfast, (struct hf_header *)hu, HF_USB_CMD(OP_USB_INIT)))
return false;
// Check for the correct response.
// We extend the normal timeout - a complete device initialization, including
// bringing power supplies up from standby, etc., can take over a second.
for (i = 0; i < 30; i++) {
ret = hfa_get_header(hashfast, h, &hcrc);
if (ret)
break;
}
if (!ret) {
applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed!", hashfast->device_id);
return false;
}
if (h->crc8 != hcrc) {
applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! CRC mismatch", hashfast->device_id);
return false;
}
if (h->operation_code != OP_USB_INIT) {
applog(LOG_WARNING, "HFA %d: OP_USB_INIT: Tossing packet, valid but unexpected type", hashfast->device_id);
hfa_get_data(hashfast, buf, h->data_length);
return false;
}
applog(LOG_DEBUG, "HFA %d: Good reply to OP_USB_INIT", hashfast->device_id);
applog(LOG_DEBUG, "HFA %d: OP_USB_INIT: %d die in chain, %d cores, device_type %d, refclk %d Mhz",
hashfast->device_id, h->chip_address, h->core_address, h->hdata & 0xff, (h->hdata >> 8) & 0xff);
// Save device configuration
info->asic_count = h->chip_address;
info->core_count = h->core_address;
info->device_type = (uint8_t)h->hdata;
info->ref_frequency = (uint8_t)(h->hdata>>8);
info->hash_sequence_head = 0;
info->hash_sequence_tail = 0;
info->device_sequence_tail = 0;
// Size in bytes of the core bitmap in bytes
info->core_bitmap_size = (((info->asic_count * info->core_count) + 31) / 32) * 4;
// Get the usb_init_base structure
if (!hfa_get_data(hashfast, (char *)&info->usb_init_base, U32SIZE(info->usb_init_base))) {
applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Failure to get usb_init_base data",
hashfast->device_id);
return false;
}
db = &info->usb_init_base;
applog(LOG_INFO, "HFA %d: firmware_rev: %d.%d", hashfast->device_id,
(db->firmware_rev >> 8) & 0xff, db->firmware_rev & 0xff);
applog(LOG_INFO, "HFA %d: hardware_rev: %d.%d", hashfast->device_id,
(db->hardware_rev >> 8) & 0xff, db->hardware_rev & 0xff);
applog(LOG_INFO, "HFA %d: serial number: %d", hashfast->device_id,
db->serial_number);
applog(LOG_INFO, "HFA %d: hash clockrate: %d Mhz", hashfast->device_id,
db->hash_clockrate);
applog(LOG_INFO, "HFA %d: inflight_target: %d", hashfast->device_id,
db->inflight_target);
applog(LOG_INFO, "HFA %d: sequence_modulus: %d", hashfast->device_id,
db->sequence_modulus);
info->num_sequence = db->sequence_modulus;
// Now a copy of the config data used
if (!hfa_get_data(hashfast, (char *)&info->config_data, U32SIZE(info->config_data))) {
applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Failure to get config_data",
hashfast->device_id);
return false;
}
// Now the core bitmap
info->core_bitmap = malloc(info->core_bitmap_size);
if (!info->core_bitmap)
quit(1, "Failed to malloc info core bitmap in hfa_reset");
if (!hfa_get_data(hashfast, (char *)info->core_bitmap, info->core_bitmap_size / 4)) {
applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Failure to get core_bitmap", hashfast->device_id);
return false;
}
return true;
}
static void hfa_send_shutdown(struct cgpu_info *hashfast)
{
hfa_send_frame(hashfast, HF_USB_CMD(OP_USB_SHUTDOWN), 0, NULL, 0);
}
static void hfa_clear_readbuf(struct cgpu_info *hashfast)
{
int amount, ret;
char buf[512];
do {
ret = usb_read(hashfast, buf, 512, &amount, C_HF_CLEAR_READ);
} while (!ret || amount);
}
static bool hfa_detect_common(struct cgpu_info *hashfast)
{
struct hashfast_info *info;
bool ret;
info = calloc(sizeof(struct hashfast_info), 1);
if (!info)
quit(1, "Failed to calloc hashfast_info in hfa_detect_common");
hashfast->device_data = info;
/* hashfast_reset should fill in details for info */
ret = hfa_reset(hashfast, info);
if (!ret) {
hfa_send_shutdown(hashfast);
hfa_clear_readbuf(hashfast);
free(info);
hashfast->device_data = NULL;
return false;
}
// The per-die status array
info->die_status = calloc(info->asic_count, sizeof(struct hf_g1_die_data));
if (unlikely(!(info->die_status)))
quit(1, "Failed to calloc die_status");
// The per-die statistics array
info->die_statistics = calloc(info->asic_count, sizeof(struct hf_long_statistics));
if (unlikely(!(info->die_statistics)))
quit(1, "Failed to calloc die_statistics");
info->works = calloc(sizeof(struct work *), info->num_sequence);
if (!info->works)
quit(1, "Failed to calloc info works in hfa_detect_common");
return true;
}
static bool hfa_initialise(struct cgpu_info *hashfast)
{
int err;
if (hashfast->usbinfo.nodev)
return false;
hfa_clear_readbuf(hashfast);
err = usb_transfer(hashfast, 0, 9, 1, 0, C_ATMEL_RESET);
if (!err)
err = usb_transfer(hashfast, 0x21, 0x22, 0, 0, C_ATMEL_OPEN);
if (!err) {
uint32_t buf[2];
/* Magic sequence to reset device only really needed for windows
* but harmless on linux. */
buf[0] = 0x80250000;
buf[1] = 0x00000800;
err = usb_transfer_data(hashfast, 0x21, 0x20, 0x0000, 0, buf,
7, C_ATMEL_INIT);
}
if (err < 0) {
applog(LOG_INFO, "HFA %d: Failed to open with error %s",
hashfast->device_id, libusb_error_name(err));
}
/* Must have transmitted init sequence sized buffer */
return (err == 7);
}
static bool hfa_detect_one_usb(libusb_device *dev, struct usb_find_devices *found)
{
struct cgpu_info *hashfast;
hashfast = usb_alloc_cgpu(&hashfast_drv, HASHFAST_MINER_THREADS);
if (!hashfast)
quit(1, "Failed to usb_alloc_cgpu hashfast");
if (!usb_init(hashfast, dev, found)) {
hashfast = usb_free_cgpu(hashfast);
return false;
}
hashfast->usbdev->usb_type = USB_TYPE_STD;
if (!hfa_initialise(hashfast)) {
hashfast = usb_free_cgpu(hashfast);
return false;
}
add_cgpu(hashfast);
return hfa_detect_common(hashfast);
}
static void hfa_detect(bool hotplug)
{
/* Set up the CRC tables only once. */
if (!hotplug)
hfa_init_crc8();
usb_detect(&hashfast_drv, hfa_detect_one_usb);
}
static bool hfa_get_packet(struct cgpu_info *hashfast, struct hf_header *h)
{
uint8_t hcrc;
bool ret;
ret = hfa_get_header(hashfast, h, &hcrc);
if (unlikely(!ret))
goto out;
if (unlikely(h->crc8 != hcrc)) {
applog(LOG_WARNING, "HFA %d: Bad CRC %d vs %d, attempting to process anyway",
hashfast->device_id, h->crc8, hcrc);
}
if (h->data_length > 0)
ret = hfa_get_data(hashfast, (char *)(h + 1), h->data_length);
if (unlikely(!ret)) {
applog(LOG_WARNING, "HFA %d: Failed to get data associated with header",
hashfast->device_id);
}
out:
return ret;
}
static void hfa_parse_gwq_status(struct cgpu_info *hashfast, struct hashfast_info *info,
struct hf_header *h)
{
struct hf_gwq_data *g = (struct hf_gwq_data *)(h + 1);
struct work *work;
applog(LOG_DEBUG, "HFA %d: OP_GWQ_STATUS, device_head %4d tail %4d my tail %4d shed %3d inflight %4d",
hashfast->device_id, g->sequence_head, g->sequence_tail, info->hash_sequence_tail,
g->shed_count, HF_SEQUENCE_DISTANCE(info->hash_sequence_head,g->sequence_tail));
mutex_lock(&info->lock);
info->hash_count += g->hash_count;
info->device_sequence_head = g->sequence_head;
info->device_sequence_tail = g->sequence_tail;
info->shed_count = g->shed_count;
/* Free any work that is no longer required */
while (info->device_sequence_tail != info->hash_sequence_tail) {
if (++info->hash_sequence_tail >= info->num_sequence)
info->hash_sequence_tail = 0;
if (unlikely(!(work = info->works[info->hash_sequence_tail]))) {
applog(LOG_ERR, "HFA %d: Bad work sequence tail",
hashfast->device_id);
hashfast->shutdown = true;
break;
}
applog(LOG_DEBUG, "HFA %d: Completing work on hash_sequence_tail %d",
hashfast->device_id, info->hash_sequence_tail);
free_work(work);
info->works[info->hash_sequence_tail] = NULL;
}
mutex_unlock(&info->lock);
}
static void hfa_update_die_status(struct cgpu_info *hashfast, struct hashfast_info *info,
struct hf_header *h)
{
struct hf_g1_die_data *d = (struct hf_g1_die_data *)(h + 1), *ds;
int num_included = (h->data_length * 4) / sizeof(struct hf_g1_die_data);
int i, j;
float die_temperature;
float core_voltage[6];
if (info->device_type == HFD_G1) {
// Copy in the data. They're numbered sequentially from the starting point
ds = info->die_status + h->chip_address;
for (i = 0; i < num_included; i++)
memcpy(ds++, d++, sizeof(struct hf_g1_die_data));
for (i = 0, d = &info->die_status[h->chip_address]; i < num_included; i++, d++) {
die_temperature = GN_DIE_TEMPERATURE(d->die.die_temperature);
for (j = 0; j < 6; j++)
core_voltage[j] = GN_CORE_VOLTAGE(d->die.core_voltage[j]);
applog(LOG_DEBUG, "HFA %d: die %2d: OP_DIE_STATUS Die temp %.2fC vdd's %.2f %.2f %.2f %.2f %.2f %.2f",
hashfast->device_id, h->chip_address + i, die_temperature,
core_voltage[0], core_voltage[1], core_voltage[2],
core_voltage[3], core_voltage[4], core_voltage[5]);
// XXX Convert board phase currents, voltage, temperature
}
}
}
static void search_for_extra_nonce(struct thr_info *thr, struct work *work,
struct hf_candidate_nonce *n)
{
uint32_t nonce = n->nonce;
int i;
/* No function to test with ntime offsets yet */
if (n->ntime & HF_NTIME_MASK)
return;
for (i = 0; i < 128; i++, nonce++) {
/* We could break out of this early if nonce wraps or if we
* find one correct nonce since the chance of more is extremely
* low but this function will be hit so infrequently we may as
* well test the entire range with the least code. */
if (test_nonce(work, nonce))
submit_tested_work(thr, work);
}
}
static void hfa_parse_nonce(struct thr_info *thr, struct cgpu_info *hashfast,
struct hashfast_info *info, struct hf_header *h)
{
struct hf_candidate_nonce *n = (struct hf_candidate_nonce *)(h + 1);
int i, num_nonces = h->data_length / U32SIZE(sizeof(struct hf_candidate_nonce));
applog(LOG_DEBUG, "HFA %d: OP_NONCE: %2d:, num_nonces %d hdata 0x%04x",
hashfast->device_id, h->chip_address, num_nonces, h->hdata);
for (i = 0; i < num_nonces; i++, n++) {
struct work *work;
applog(LOG_DEBUG, "HFA %d: OP_NONCE: %2d: %2d: ntime %2d sequence %4d nonce 0x%08x",
hashfast->device_id, h->chip_address, i, n->ntime & HF_NTIME_MASK, n->sequence, n->nonce);
// Find the job from the sequence number
mutex_lock(&info->lock);
work = info->works[n->sequence];
mutex_unlock(&info->lock);
if (unlikely(!work)) {
info->no_matching_work++;
applog(LOG_INFO, "HFA %d: No matching work!", hashfast->device_id);
} else {
applog(LOG_DEBUG, "HFA %d: OP_NONCE: sequence %d: submitting nonce 0x%08x ntime %d",
hashfast->device_id, n->sequence, n->nonce, n->ntime & HF_NTIME_MASK);
if ((n->nonce & 0xffff0000) == 0x42420000) // XXX REMOVE THIS
break; // XXX PHONEY EMULATOR NONCE
submit_noffset_nonce(thr, work, n->nonce, n->ntime & HF_NTIME_MASK); // XXX Return value from submit_nonce is error if set
if (unlikely(n->ntime & HF_NONCE_SEARCH)) {
/* This tells us there is another share in the
* next 128 nonces */
applog(LOG_DEBUG, "HFA %d: OP_NONCE: SEARCH PROXIMITY EVENT FOUND",
hashfast->device_id);
search_for_extra_nonce(thr, work, n);
}
}
}
}
static void hfa_update_die_statistics(struct hashfast_info *info, struct hf_header *h)
{
struct hf_statistics *s = (struct hf_statistics *)(h + 1);
struct hf_long_statistics *l;
// Accumulate the data
l = info->die_statistics + h->chip_address;
l->rx_header_crc += s->rx_header_crc;
l->rx_body_crc += s->rx_body_crc;
l->rx_header_timeouts += s->rx_header_timeouts;
l->rx_body_timeouts += s->rx_body_timeouts;
l->core_nonce_fifo_full += s->core_nonce_fifo_full;
l->array_nonce_fifo_full += s->array_nonce_fifo_full;
l->stats_overrun += s->stats_overrun;
}
static void hfa_update_stats1(struct cgpu_info *hashfast, struct hashfast_info *info,
struct hf_header *h)
{
struct hf_long_usb_stats1 *s1 = &info->stats1;
struct hf_usb_stats1 *sd = (struct hf_usb_stats1 *)(h + 1);
s1->usb_rx_preambles += sd->usb_rx_preambles;
s1->usb_rx_receive_byte_errors += sd->usb_rx_receive_byte_errors;
s1->usb_rx_bad_hcrc += sd->usb_rx_bad_hcrc;
s1->usb_tx_attempts += sd->usb_tx_attempts;
s1->usb_tx_packets += sd->usb_tx_packets;
s1->usb_tx_timeouts += sd->usb_tx_timeouts;
s1->usb_tx_incompletes += sd->usb_tx_incompletes;
s1->usb_tx_endpointstalled += sd->usb_tx_endpointstalled;
s1->usb_tx_disconnected += sd->usb_tx_disconnected;
s1->usb_tx_suspended += sd->usb_tx_suspended;
#if 0
/* We don't care about UART stats so they're not in our struct */
s1->uart_tx_queue_dma += sd->uart_tx_queue_dma;
s1->uart_tx_interrupts += sd->uart_tx_interrupts;
s1->uart_rx_preamble_ints += sd->uart_rx_preamble_ints;
s1->uart_rx_missed_preamble_ints += sd->uart_rx_missed_preamble_ints;
s1->uart_rx_header_done += sd->uart_rx_header_done;
s1->uart_rx_data_done += sd->uart_rx_data_done;
s1->uart_rx_bad_hcrc += sd->uart_rx_bad_hcrc;
s1->uart_rx_bad_dma += sd->uart_rx_bad_dma;
s1->uart_rx_short_dma += sd->uart_rx_short_dma;
s1->uart_rx_buffers_full += sd->uart_rx_buffers_full;
#endif
if (sd->max_tx_buffers > s1->max_tx_buffers)
s1->max_tx_buffers = sd->max_tx_buffers;
if (sd->max_rx_buffers > s1->max_rx_buffers)
s1->max_rx_buffers = sd->max_rx_buffers;
applog(LOG_DEBUG, "HFA %d: OP_USB_STATS1:", hashfast->device_id);
applog(LOG_DEBUG, " usb_rx_preambles: %6d", sd->usb_rx_preambles);
applog(LOG_DEBUG, " usb_rx_receive_byte_errors: %6d", sd->usb_rx_receive_byte_errors);
applog(LOG_DEBUG, " usb_rx_bad_hcrc: %6d", sd->usb_rx_bad_hcrc);
applog(LOG_DEBUG, " usb_tx_attempts: %6d", sd->usb_tx_attempts);
applog(LOG_DEBUG, " usb_tx_packets: %6d", sd->usb_tx_packets);
applog(LOG_DEBUG, " usb_tx_timeouts: %6d", sd->usb_tx_timeouts);
applog(LOG_DEBUG, " usb_tx_incompletes: %6d", sd->usb_tx_incompletes);
applog(LOG_DEBUG, " usb_tx_endpointstalled: %6d", sd->usb_tx_endpointstalled);
applog(LOG_DEBUG, " usb_tx_disconnected: %6d", sd->usb_tx_disconnected);
applog(LOG_DEBUG, " usb_tx_suspended: %6d", sd->usb_tx_suspended);
#if 0
applog(LOG_DEBUG, " uart_tx_queue_dma: %6d", sd->uart_tx_queue_dma);
applog(LOG_DEBUG, " uart_tx_interrupts: %6d", sd->uart_tx_interrupts);
applog(LOG_DEBUG, " uart_rx_preamble_ints: %6d", sd->uart_rx_preamble_ints);
applog(LOG_DEBUG, " uart_rx_missed_preamble_ints: %6d", sd->uart_rx_missed_preamble_ints);
applog(LOG_DEBUG, " uart_rx_header_done: %6d", sd->uart_rx_header_done);
applog(LOG_DEBUG, " uart_rx_data_done: %6d", sd->uart_rx_data_done);
applog(LOG_DEBUG, " uart_rx_bad_hcrc: %6d", sd->uart_rx_bad_hcrc);
applog(LOG_DEBUG, " uart_rx_bad_dma: %6d", sd->uart_rx_bad_dma);
applog(LOG_DEBUG, " uart_rx_short_dma: %6d", sd->uart_rx_short_dma);
applog(LOG_DEBUG, " uart_rx_buffers_full: %6d", sd->uart_rx_buffers_full);
#endif
applog(LOG_DEBUG, " max_tx_buffers: %6d", sd->max_tx_buffers);
applog(LOG_DEBUG, " max_rx_buffers: %6d", sd->max_rx_buffers);
}
static void *hfa_read(void *arg)
{
struct thr_info *thr = (struct thr_info *)arg;
struct cgpu_info *hashfast = thr->cgpu;
struct hashfast_info *info = hashfast->device_data;
char threadname[24];
snprintf(threadname, 24, "hfa_read/%d", hashfast->device_id);
RenameThread(threadname);
while (likely(!hashfast->shutdown)) {
char buf[512];
struct hf_header *h = (struct hf_header *)buf;
bool ret = hfa_get_packet(hashfast, h);
if (unlikely(!ret))
continue;
switch (h->operation_code) {
case OP_GWQ_STATUS:
hfa_parse_gwq_status(hashfast, info, h);
break;
case OP_DIE_STATUS:
hfa_update_die_status(hashfast, info, h);
break;
case OP_NONCE:
hfa_parse_nonce(thr, hashfast, info, h);
break;
case OP_STATISTICS:
hfa_update_die_statistics(info, h);
break;
case OP_USB_STATS1:
hfa_update_stats1(hashfast, info, h);
break;
default:
applog(LOG_WARNING, "HFA %d: Unhandled operation code %d",
hashfast->device_id, h->operation_code);
break;
}
}
return NULL;
}
static bool hfa_prepare(struct thr_info *thr)
{
struct cgpu_info *hashfast = thr->cgpu;
struct hashfast_info *info = hashfast->device_data;
struct timeval now;
mutex_init(&info->lock);
if (pthread_create(&info->read_thr, NULL, hfa_read, (void *)thr))
quit(1, "Failed to pthread_create read thr in hfa_prepare");
cgtime(&now);
get_datestamp(hashfast->init, sizeof(hashfast->init), &now);
return true;
}
/* Figure out how many jobs to send. */
static int hfa_jobs(struct hashfast_info *info)
{
int ret;
mutex_lock(&info->lock);
ret = info->usb_init_base.inflight_target - HF_SEQUENCE_DISTANCE(info->hash_sequence_head, info->device_sequence_tail);
/* Place an upper limit on how many jobs to queue to prevent sending
* more work than the device can use after a period of outage. */
if (ret > info->usb_init_base.inflight_target)
ret = info->usb_init_base.inflight_target;
mutex_unlock(&info->lock);
return ret;
}
static int64_t hfa_scanwork(struct thr_info *thr)
{
struct cgpu_info *hashfast = thr->cgpu;
struct hashfast_info *info = hashfast->device_data;
int64_t hashes;
int jobs, ret;
if (unlikely(hashfast->usbinfo.nodev)) {
applog(LOG_WARNING, "HFA %d: device disappeared, disabling",
hashfast->device_id);
return -1;
}
if (unlikely(thr->work_restart)) {
restart:
ret = hfa_send_frame(hashfast, HF_USB_CMD(OP_WORK_RESTART), 0, (uint8_t *)NULL, 0);
if (unlikely(!ret)) {
ret = hfa_reset(hashfast, info);
if (unlikely(!ret)) {
applog(LOG_ERR, "HFA %d: Failed to reset after write failure, disabling",
hashfast->device_id);
return -1;
}
}
}
jobs = hfa_jobs(info);
if (!jobs) {
ret = restart_wait(thr, 100);
if (unlikely(!ret))
goto restart;
jobs = hfa_jobs(info);
}
while (jobs-- > 0) {
struct hf_hash_usb op_hash_data;
struct work *work;
uint64_t intdiff;
int i, sequence;
uint32_t *p;
/* This is a blocking function if there's no work */
work = get_work(thr, thr->id);
/* Assemble the data frame and send the OP_HASH packet */
memcpy(op_hash_data.midstate, work->midstate, sizeof(op_hash_data.midstate));
memcpy(op_hash_data.merkle_residual, work->data + 64, 4);
p = (uint32_t *)(work->data + 64 + 4);
op_hash_data.timestamp = *p++;
op_hash_data.bits = *p++;
op_hash_data.nonce_loops = 0;
/* Set the number of leading zeroes to look for based on diff.
* Diff 1 = 32, Diff 2 = 33, Diff 4 = 34 etc. */
intdiff = (uint64_t)work->device_diff;
for (i = 31; intdiff; i++, intdiff >>= 1);
op_hash_data.search_difficulty = i;
if ((sequence = info->hash_sequence_head + 1) >= info->num_sequence)
sequence = 0;
ret = hfa_send_frame(hashfast, OP_HASH, sequence, (uint8_t *)&op_hash_data, sizeof(op_hash_data));
if (unlikely(!ret)) {
ret = hfa_reset(hashfast, info);
if (unlikely(!ret)) {
applog(LOG_ERR, "HFA %d: Failed to reset after write failure, disabling",
hashfast->device_id);
return -1;
}
}
mutex_lock(&info->lock);
info->hash_sequence_head = sequence;
info->works[info->hash_sequence_head] = work;
mutex_unlock(&info->lock);
applog(LOG_DEBUG, "HFA %d: OP_HASH sequence %d search_difficulty %d work_difficulty %g",
hashfast->device_id, info->hash_sequence_head, op_hash_data.search_difficulty, work->work_difficulty);
}
mutex_lock(&info->lock);
hashes = info->hash_count;
info->hash_count = 0;
mutex_unlock(&info->lock);
return hashes;
}
static struct api_data *hfa_api_stats(struct cgpu_info *cgpu)
{
struct hashfast_info *info = cgpu->device_data;
struct hf_long_usb_stats1 *s1;
struct api_data *root = NULL;
struct hf_usb_init_base *db;
int varint, i;
char buf[64];
root = api_add_int(root, "asic count", &info->asic_count, false);
root = api_add_int(root, "core count", &info->core_count, false);
db = &info->usb_init_base;
sprintf(buf, "%d.%d", (db->firmware_rev >> 8) & 0xff, db->firmware_rev & 0xff);
root = api_add_string(root, "firmware rev", buf, true);
sprintf(buf, "%d.%d", (db->hardware_rev >> 8) & 0xff, db->hardware_rev & 0xff);
root = api_add_string(root, "hardware rev", buf, true);
varint = db->serial_number;
root = api_add_int(root, "serial number", &varint, true);
varint = db->hash_clockrate;
root = api_add_int(root, "hash clockrate", &varint, true);
varint = db->inflight_target;
root = api_add_int(root, "inflight target", &varint, true);
varint = db->sequence_modulus;
root = api_add_int(root, "sequence modules", &varint, true);
s1 = &info->stats1;
root = api_add_uint64(root, "rx preambles", &s1->usb_rx_preambles, false);
root = api_add_uint64(root, "rx rcv byte err", &s1->usb_rx_receive_byte_errors, false);
root = api_add_uint64(root, "rx bad hcrc", &s1->usb_rx_bad_hcrc, false);
root = api_add_uint64(root, "tx attempts", &s1->usb_tx_attempts, false);
root = api_add_uint64(root, "tx packets", &s1->usb_tx_packets, false);
root = api_add_uint64(root, "tx incompletes", &s1->usb_tx_incompletes, false);
root = api_add_uint64(root, "tx ep stalled", &s1->usb_tx_endpointstalled, false);
root = api_add_uint64(root, "tx disconnect", &s1->usb_tx_disconnected, false);
root = api_add_uint64(root, "tx suspend", &s1->usb_tx_suspended, false);
varint = s1->max_tx_buffers;
root = api_add_int(root, "max tx buf", &varint, true);
varint = s1->max_rx_buffers;
root = api_add_int(root, "max rx buf", &varint, true);
for (i = 0; i < info->asic_count; i++) {
struct hf_long_statistics *l = &info->die_statistics[i];
struct hf_g1_die_data *d = &info->die_status[i];
double die_temp, core_voltage;
int j;
root = api_add_int(root, "Core", &i, true);
die_temp = GN_DIE_TEMPERATURE(d->die.die_temperature);
root = api_add_double(root, "die temperature", &die_temp, true);
for (j = 0; j < 6; j++) {
core_voltage = GN_CORE_VOLTAGE(d->die.core_voltage[j]);
sprintf(buf, "%d: %.2f", j, core_voltage);
root = api_add_string(root, "core voltage", buf, true);
}
root = api_add_uint64(root, "rx header crc", &l->rx_header_crc, false);
root = api_add_uint64(root, "rx body crc", &l->rx_body_crc, false);
root = api_add_uint64(root, "rx header to", &l->rx_header_timeouts, false);
root = api_add_uint64(root, "rx body to", &l->rx_body_timeouts, false);
root = api_add_uint64(root, "cn fifo full", &l->core_nonce_fifo_full, false);
root = api_add_uint64(root, "an fifo full", &l->array_nonce_fifo_full, false);
root = api_add_uint64(root, "stats overrun", &l->stats_overrun, false);
}
return root;
}
static void hfa_statline_before(char *buf, size_t bufsiz, struct cgpu_info *hashfast)
{
struct hashfast_info *info = hashfast->device_data;
double max_temp, max_volt;
struct hf_g1_die_data *d;
int i;
max_temp = max_volt = 0.0;
for (i = 0; i < info->asic_count; i++) {
double temp;
int j;
d = &info->die_status[i];
temp = GN_DIE_TEMPERATURE(d->die.die_temperature);
if (temp > max_temp)
max_temp = temp;
for (j = 0; j < 6; j++) {
double volt = GN_CORE_VOLTAGE(d->die.core_voltage[j]);
if (volt > max_volt)
max_volt = volt;
}
}
tailsprintf(buf, bufsiz, " max%3.0fC %3.2fV | ", max_temp, max_volt);
}
static void hfa_init(struct cgpu_info __maybe_unused *hashfast)
{
}
static void hfa_free_all_work(struct hashfast_info *info)
{
while (info->device_sequence_tail != info->hash_sequence_head) {
struct work *work;
if (++info->hash_sequence_tail >= info->num_sequence)
info->hash_sequence_tail = 0;
if (unlikely(!(work = info->works[info->hash_sequence_tail])))
break;
free_work(work);
info->works[info->hash_sequence_tail] = NULL;
}
}
static void hfa_shutdown(struct thr_info *thr)
{
struct cgpu_info *hashfast = thr->cgpu;
struct hashfast_info *info = hashfast->device_data;
hfa_send_shutdown(hashfast);
pthread_join(info->read_thr, NULL);
hfa_free_all_work(info);
hfa_clear_readbuf(hashfast);
free(info->works);
free(info->die_statistics);
free(info->die_status);
free(info);
}
struct device_drv hashfast_drv = {
.drv_id = DRIVER_hashfast,
.dname = "Hashfast",
.name = "HFA",
.max_diff = 256.0, // Limit max diff to get some nonces back regardless
.drv_detect = hfa_detect,
.thread_prepare = hfa_prepare,
.hash_work = &hash_driver_work,
.scanwork = hfa_scanwork,
.get_api_stats = hfa_api_stats,
.get_statline_before = hfa_statline_before,
.reinit_device = hfa_init,
.thread_shutdown = hfa_shutdown,
};
You can’t perform that action at this time.