A library for simple wire-like connectivity semantics.
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
examples
resources/private
src
test/kabel
.gitignore
CHANGELOG.md
LICENSE
README.md
peering.png
project.clj

README.md

kabel CircleCI

kabel (German for cable/wire) is a minimal, modern connection library modelling a bidirectional wire to pass Clojure values between peers. Peers in Clojure and ClojureScript are symmetric and hence allow symmetric cross-platform implementations. Clojure peers can connect to Clojure and ClojureScript peers in the same way and vice versa. kabel can use any bidirectional messaging channel, currently it supports web-sockets. It also ships a transit middleware for efficient serialization. It works on different JavaScript runtimes, currently tested are the Browser, node.js and React-Native.

Rationale

Instead of implementing a REST interface websockets provide several benefits, even if you do single requests. Most importantly the distinction between server and client is unnecessary, because both can push messages to each other, effectively having one input and one output channel. Together with edn messages over the wire this simplifies the semantics significantly. The tradeoff is that REST is standardized and offers better interoperablity for other clients.

Since we work on a crossplatform p2p software for confluent replicated datatypes with replikativ, we could not reuse any of the other ClojureScript client-side only websocket libraries, e.g. sente or chord. For us all IO happens over the input and output channel with core.async, so we can implement cross-platform functionality in a very terse and expressive fashion, e.g. in the pull-hooks for replikativ. But you do not need to write platform neutral symmetric middlewares, so on the JVM you can of course do IO without core.async.

We also extended and build on superv.async to catch all exceptions in an Erlang style monitoring fashion and propagate them back through a parametrizable error channel. We are thinking about ways to refactor kabel, so that it can be decoupled from this error handling without losing the error handling guarantees.

Usage

Add this to your project dependencies:

Clojars Project

From the examples folder (there is also a cljs client there):

(ns kabel.examples.pingpong
  (:require [kabel.client :as cli]
            [kabel.http-kit :as http-kit]
            [kabel.peer :as peer]
            [superv.async :refer [<?? go-try S go-loop-try <? >? put?]]
            [clojure.core.async :refer [chan]]
            ;; you can use below transit if you prefer
            [kabel.middleware.transit :refer [transit]]
            [hasch.core :refer [uuid]]))


;; this url is needed for the server to open the proper
;; socket and for the client to know where to connect to
(def url "ws://localhost:47291")


;; server peer code
(defn pong-middleware [[S peer [in out]]]
  (let [new-in (chan)
        new-out (chan)]
    ;; we just mirror the messages back
    (go-loop-try S [i (<? S in)]
      (when i
        (>? S out i)
        (recur (<? S in))))
    ;; Note that we pass through the supervisor, peer and new channels
    [S peer [new-in new-out]]))

;; this is useful to track messages, so each peer should have a unique id
(def server-id #uuid "05a06e85-e7ca-4213-9fe5-04ae511e50a0")

(def server (peer/server-peer S (http-kit/create-http-kit-handler! S url server-id) server-id
                              ;; here you can plug in your (composition of) middleware(s)
                              pong-middleware
                              ;; we chose no serialization (pr-str/read-string by default)
                              identity
                              ;; we could also pick the transit middleware
                              #_transit))

;; we need to start the peer to open the socket
(<?? S (peer/start server))


(def client-id #uuid "c14c628b-b151-4967-ae0a-7c83e5622d0f")

;; client
(def client (peer/client-peer S client-id
                              ;; Here we have a simple middleware to trigger some roundtrips
                              ;; from the client
                              (fn [[S peer [in out]]]
                                (let [new-in (chan)
                                      new-out (chan)]
                                  (go-try S
                                          (put? S out "ping")
                                          (println "1. client incoming message:" (<? S in))
                                          (put? S out "ping2")
                                          (println "2. client incoming message:" (<? S in)))
                                  [S peer [new-in new-out]]))
                              ;; we need to pick the same middleware for serialization
                              ;; (no auto-negotiation yet)
                              identity
                              #_transit))


;; let's connect the client to the server
(<?? S (peer/connect S client url))


(comment
  ;; and stop the server
  (<?? S (peer/stop speer))
  )

The client-side works the same in ClojureScript from the browser.

Applications

Design

Example pub-sub architecture of replikativ

There is a pair of channels for each connection, but at the core the peer has a pub-sub architecture. Besides using some middleware specific shared memory like a database you can more transparently pass messages to other clients and middlewares through this pub-sub core or subscribe to specific message types on it. It uses the pub-sub semantics of core.async:

(let [[bus-in bus-out] (get-in @peer [:volatile :chans])
      b-chan (chan)]
  (async/sub bus-out :broadcast b-chan)
  (async/put! bus-in {:type :broadcast :hello :everybody})
  (<!! b-chan))

Middlewares

You can find general middlewares in the corresponding folder. In general middlewares themselves form a "wire" and can filter, transform, inject and pass through messages.

Serialization

Serialization is also done in a middleware, a transit middleware is currently provided and used by default. If you do not use any serialization middleware than a simple pr-str <-> read-string mechanism is combined with a very simple binary header to track different serialization types over the wire including raw binary data.

External

We provide the following middlewares separately: - Passwordless authentication (and authorisation) based on email verification or password and inter-peer trust network as p2p middleware.

Useful middlewares still missing:

  • QoS monitoring, latency and throughput measures
  • remote debugging, sending superv.async exceptions back to the server
  • other usefull ring middlewares which can be wrapped?

Connectivity

More transport alternatives like long-polling with SSEs, WebRTC, NFC, ... or normal sockets should not be hard to add.

TODO

  • implement configuration as circling of config handshake before serialization to allow adaptable configurations between peers, e.g. transit+msgpack on JVM, transit + json with javascript peers etc. The configuration message circles through all middlewares until a consensus/fix-point is reached and then middlewares start their lifecycle.
  • factor platform neutral logging
  • implement node.js websocket server
  • implement more of wamp client protocol (and maybe router)
  • investigate https://github.com/touch/pubsure-core

Contributors

  • Konrad Kühne
  • Sang-Kyu Park
  • Brian Marco
  • Christian Weilbach

License

Copyright © 2015-2017 Christian Weilbach, 2015 Konrad Kühne

Distributed under the Eclipse Public License either version 1.0 or (at your option) any later version.