LAB 1:
Requirements Modeling
Preparations and instructions

Bjorn Regnell, Emil Hammarstrom

November 3, 2017

1 Introduction

1.1 Purpose

This document provides instructions for getting acquainted with the reqT ecosys-
tem and the modeling of requirements using Entities, Attributes, and Relations. In
other words, the purpose of this lab is learning how to use reqT, and preparing the
mental model of viewing requirements as a tree structure. The preparations will
help you learn how to navigate the reqT tools. The first laboration part will deepen
your understanding of requirements as a tree structure, and the second part will
introduce the metamodel, and a more advanced usage of reqT.

1.2 Background

In this lab you will learn how to get started with requirements modeling through
the open source tool reqT.org, and reflect on how you could model requirements
in your own project. The reqT tool enables scalable requirements modeling, rang-
ing from small models of a couple of features to large models containing elabo-
rate structures of thousands of requirements. Requirements engineering is a dy-
namic process where the understanding of an imagined future system (of systems)
is evolving over time. During this evolution we can capture the knowledge and cre-
ative ideas that we elicit in various ways, depending on how we foresee the (later)
usage of that knowledge. For example, we could create and use spreadsheets, post-
it notes, emails, wikis, video clips, mockups, sketches, diagrams, mathematical
specifications, etc. If we want to keep track of many different types of inter-related
requirements and if we see a future benefit of more structure beyond just a flat list,
one option is to use requirements models where requirements-related information

https://en.wikipedia.org/wiki/Tree_(data_structure)
http://reqT.org

is expressed using relevant Entity, Attribute, and Relation concepts to capture what
we want to model, as illustrated by this lab and the metamodel of reqT seen in
Figure 1.

Model
Elem

def toVector: Vector[Elem]

Relation

val entity: Entity Node
val link: RelationType
val tail: Model

Attribute[T] Entity

val value: T val id: String

Figure 1: Some classes in the reqT metamodel.

2 Preparations

Throughout the lab you will find framed command snippets. Commands prefixed
with reqT> are issued in the reqT-REPL. The $ prefix denotes a command issued
in a terminal and may sometimes be followed by some output.

2.1 Installing and running reqT

2.1.1 Prerequisites

Open/Oracle JDK8+ (Java Development Kit)

$ java -version

openjdk version "1.8.0_144"

OpenJDK Runtime Environment (build 1.8.0_144-b01)
OpenJDK 64-Bit Server VM (build 25.144-b@1, mixed mode)

or
$ java -version
java version "1.8.0_144"

Java(TM) SE Runtime Environment (build 1.8.0_144-b01)
Java HotSpot(TM) 64-Bit Server VM (build 25.144-b01, mixed mode)

If your output is similar to this,

$ java -version
zsh: command not found: java

you may refer to the material in the section Installera JDK here

2.1.2 Linux & OS X

The reqT.zip contains the reqT-REPL and reqT-webeditor, preferred installation
steps:

Visit https://github.com/reqT/reqT-webapp/releases and download
the latest reqT.zip. Open up a terminal and change directory to where you
placed the zip and extract it:

$ cd <reqT.zip path>

$ unzip reqT.zip

Archive: reqT.zip
creating: reqT/
creating: reqT/server/

http://cs.lth.se/pgk/verktyg/
https://github.com/reqT/reqT-webapp/releases

$ 1s
reqT reqT.zip

You will now see a folder named reqT which contains the reqT-REPL
(reqTjar) and reqT-webeditor (start.sh start script).

2.1.3 Windows 10

1. Visit https://github.com/reqT/reqT-webapp/releases and download
the latest reqT.zip

2. Unzip it (using the Windows File Explorer)

To start the webeditor double-click the start.bat file — Figure 2 shows the we-
bapp running in the CMD.

To start the REPL double-click the regT.bat file — you should be greeted by a
view similar to Figure 3.

Bl C\WINDOWS\system32\cmd.exe - bin\server.bat - [m] X

Figure 2: A Windows CMD running the webeditor

2.14 reqT-REPL

To enter the reqT REPL (Read-Eval-Print-Loop) run java -jar reqT.jar — you
should be greeted with the output seen in Figure 3.

https://github.com/reqT/reqT-webapp/releases
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

tool

Figure 3: reqT-REPL

In the reqT console these keystrokes and commands work as follows:

<Ctrl+A> to move the cursor to the beginning of a line.

<Ctrl+E> to move the cursor to the end of a line.

<Ctrl+K> 7kill”: clears text after the cursor.

<Arrow Left/Right> to move the cursor backward/forward within a line.
<Arrow Up/Down> to move backward/forward in the command history.
<TAB> to invoke code completion.

:q to quit reqT when all threads and windows have been exited.

:help to get help on console commands.

sys.exit to exit reqT and kill all threads and any windows without saving.

reqT wraps the scala REPL, enter:

reqT> println(”"Requirements, requirements, requirements!")
This also means that you have access to the JDK — java libraries. The com-
mand below will utilize your favorite GUI library to display a message dialog!

reqT> javax.swing.JOptionPane.showMessageDialog(null,"Hello Swing!")

2.1.5 reqT-webeditor

To start the reqT-webeditor run the start script in the reqT folder with the ter-
minal command (Windows users may refer to Section 2.1.3):

$./start.sh
[info] play.api.Play - Application started (Prod)
[info] p.c.s.NettyServer - Listening for HTTP on /0:0:0:0:0:0:0:0:9000

Once started visit the url localhost:9000 using Google Chrome — you
should now be greeted by the page seen in Figure 4.

Note: the webeditor is currently only supported on Google Chrome

Restart reqT

Figure 4: reqT-webeditor with component annotations

The reqT-webeditor allows the use of common shortcuts such as CTRL-C,
CTRL-V, DEL. The symbols A — F’ describe general parts of the application:

* A - Add-button used to create new models, followed by model tabs (right of
the add-button).

* B - Entity & attribute list, from which you may drag and drop objects into
view C'

localhost:9000

2.2

C - Model tree view

D - Menu bar or simply menu

FE - Entity list and ReqBox view toggle

F' - Webeditor terminal, here you may interact with the reqT-REPL but also
view query responses

Preparation Assignments — Mandatory

. Creating a model in the reqT-webeditor

In this assignment you will create a small model consisting of a data require-
ment and a quality requirement. The following is an informal specification
of a system providing search query capabilities.

QuackQuackGo query system requirements:

(a) Query time (in milliseconds) should be kept low
(b) Query time may not exceed 200ms
(c) A query consists of;

query text,

search flags,

domain restrictions

To start of, create a new empty model. This can be achieved by pressing
the add button in the model tab bar seen by symbol A in Figure 4, name the
model QuackQuackGo.

You may now drag-and-drop Entities and Attributes into your model (defini-
tions can be found in the reqT-cheat-sheet). That is, dragging an object from
the list seen by symbol B in Figure 4 and dropping it into the model area by
symbol C'. When adding an Entity or Attribute you are sometimes asked to
pick an appropriate Relation to the Entity that you’ve dropped the object on
top of.

Now produce the QuackQuackGo model given the specification above. An-
swer the following questions when done.

What relation(s) would you assign the reqT-webeditor and reqT-REPL, given
that the reqT-webeditor verifies its models using the reqT-REPL?

Try adding an attribute to another attribute, why is this not possible? (Tip:
see Figure 1)

http://reqt.org/reqT-cheat-sheet.pdf

2. Exporting a model from the reqT-webeditor

The "Export"-button in the menu bar, by symbol D in Figure 4, will down-
load a .scala file containing your model (if you named your model Quack-
QuackGo you will download a QuackQuackGo.scala file). Your favourite
text editor (neovim) should now provide syntax highlighting if you want to
edit a model programmatically.

3. Importing a model with the reqT-REPL
We will now be working with our QuackQuackGo.scala model in the REPL.

To interpret (read and evaluate) code in a file, you may use

reqT> :load <path>

To list (Is) files, or change directory (cd) from within the REPL

reqT> 1s
reqT> cd ("<path>")

Example

We can now load our exported model QuackQuackGo.scala Given that
QuackQuackGo.scala is in our working directory

reqT> :load QuackQuackGo.scala

You may explicitly assign the model to a variable in the script file. If not
the result of the script execution is stored in a variable with the naming
scheme: res<number>. Let’s store it with a more appropriate name,
such as quack

reqT> val quack = res<number>
reqT> quack.size // What's the output and what does it correspond to? __

By giving reqT a path to an element, you may select an Element in
your tree. Here I select a quality requirement from my model of Quack-
QuackGo, your model may differ

reqT> val bpVal = Quality("Query Time")/Breakpoint(”"Too slow")/Value(200)

We can check at what depth our selected element is positioned at in the
tree

reqT> bpVal.depth
// Does this correspond with your view from the reqT-webeditor tree?

https://neovim.io/

Because reqT is a DSL (Domain Specific Language) embedded in Scala, we
get to apply the power of Scala to our requirements model. This is not pos-
sible using the reqT-webeditor. The reqT-webeditor has another purpose —
preparing the user for thinking of requirements as a tree-structure, regardless
of programming literacy.

4. Build a model of the hotel system context diagram

— -y,
- -

Recep-_ -~ R - ~ <
. L eception ~
tionist P Sa
’ \\
/ «—| Hotel Account|
system
\ system y }
S ,
~ -’
~ -~ - - -
A Accountant
Waiter Guest

Figure 5: Reception domain in the Hotel system.

You will now model the context diagram in Figure 5. It should contain the
elements: User, Domain, Product, System; interactsWith

Transform this context diagram into a reqT model, this can be done using
the REPL or the webeditor. Viewing interactsWith as a doubly-linked arrow
simplifies the context diagram model.

Finally, we’ll use the reqT-REPL to produce an HTML document with a view
of our context model. It is also possible to produce: graphs using GraphViz,
Latex output, and Scala code.

A model have methods such as toGraph, toLatex, and toHtm]l.
We may produce an html document, given that a model is stored in
myM odel:

reqT> myModel. toHtml.save(”"myModel.html")

You will show your lab supervisor this HTML document (of the Con-
text Diagram) — also do this for the model in assignment 1 (Quack-
QuackGo).

If you edit your model in the reqT-REPL you may want to save it to text
(and version control it or view it in the reqT-webeditor)

reqT> myModel.toScala.save("myModel.scala")

3 Model Assignments

In the following assignments you are going to be working with a system called
DuSlang. DuSlang is a video streaming service with two types of users: video
viewers, and video creators. DuSlang relies on advertisement revenue and utilizes
an ad system called ReklamSinne - this delegates the ad handling to the third party
service.

Here follows an incomplete model of the DuSlang requirements specification
which you will complete and build upon - the source file is available on the course
web page. As you may notice it follows the ReqBox structure you’ve been intro-
duced to in the lectures. Note: The Delivery section has been stripped away from
this model view.

context

stakeholders

User videoCreator
Spec

User videoViewer
Spec

10

product

systems

System ReklamSinne
Spec

interfaces
intentions

goals

Goal advertisementDistribution
Spec DuSlang shall ensure that advertisements are received by
(shown to) the videoCreator and videoViewer
Goal freeVideoDistribution
Spec DuSlang shall ensure that videoCreators may distribute
their media freely (as in a zero cost upload)

priorities
risks

commitments
requirements

functions

Feature subscriptions
Why To enable a videoViewer to follow their favorite
videoCreator
Spec The videoViewer should be able to get an overview of the
latest videos from their favorite videoCreators
Feature favorites
Why So that a videoViewer may easily access an older video
they watched

11

Spec
Example
Feature history
Why
Spec
Feature videoViews
Why
Spec Views shall be recorded when a video has been viewed for
more than 10 seconds — or when the full length has been
viewed
Feature videolikes
Why
Spec Record the amount of like votes a video has received
from its viewers
Feature videoDislikes
Why
Spec Record the amount of dislike votes a video has received
from its viewers
Feature recommendedVideos
Spec
Feature uploadVideo
Spec
Feature playVideo
Spec
Feature playAdvertisement
Why
Spec An advertisement should be played before playing the
video to be viewed by the user
Feature useAdvertisement
Why So that it is possible to make use of the advertised
content
Spec The videoViewer should be able to access the contents of
the viewed advertisements

data

qualities

tests

12

1. Introducing a context

The section product in the context section should contain a context diagram of the
DuSlang system. Fill in the product section of the DuSlang model. This is how a
modeled context diagram might look given a hotel system, followed by the context
diagram in figure 6:

Model (
Section("context”) has (
Section("product”) has (
Product("hotelApp”) interactsWith (

User("receptionist”),
User("guest"”),
System("telephony"),
System("accounting”)))))

Hotel Account
system system

Recep-

tionist Telephone
system

Guest

Figure 6: Context diagram of the hotel system.

2. Finalizing features

Now we’ll move on to the functions section, as seen in the model the functions
section are missing some field values. You need to fill in these fields and you may
use the informal system description of DuSlang below - from which the features
have been elicited.

13

DuSlang system description

One of the goals of the service is to supply everyone with a free medium
of video distribution. This should be made possible by distributing adver-
tisements received from a third party supplier - and this revenue may be re-
invested to improve the service.

From a user perspective the service should provide an ease of use. This
implies easily accessing their favorite videos or videos they have previously
viewed. As noted in similar video services, users like to express their feelings
towards a video - showing whether they liked it or not. It has been noted from
similar video services that comment sections provide a very toxic (as in the
informal sense) environment, thus DuSlang will not provide this feature.

Based on what kind of videos the video viewers are consuming we want
to recommend them similar video material, therefore every viewer shall get
individual video recommendations.

Video viewers often want to watch popular videos, to measure popularity
(or lack thereof) video views, likes, and dislikes shall be measured. This is
also interesting data for the video creator to verify whether they are producing
good media content or not.

The user is also a big driver in providing the video content for our service.
Allowing the user to freely distribute their video media will supply the view-
ers of the service directly. It is also possible for entertainment companies to
distribute their video media on the platform - both as a means of advertising
and providing it for their followers.

3. Introducing a new goal
Introduce a new goal for the video service. Make sure that you elicit the features
necessary for fulfilling this goal.

4. Specifying data requirements

Some of the features in our model, such as videoViews and videoLikes, will need
to store data in our system. DuSlang shall store the following data on a per video

basis: views, likes, and dislikes. Model this in the data section.

14

5. Introducing relationships

Given our goals, what features do we require? For each goal, link the required
feature to the goal using relations. It is okay to reference an entity from another
scope in the model as entity identifiers are to be seen as unique and global. This
notion of cross-referencing is very graph-like.

Verification checkpoint

Verify the results of this section with the lab instructor and continue with Section 4.

4 Metamodel Assignments

In the following section we’ll describe the metamodel, by this we mean the model
that describes the reqT model that you used in the previous section (the model of a
model, thereby the meta prefix).

These assignments are focused on teaching fundamental principles of the REPL
and metamodel. To get started you may follow these steps:

Note: You may skip this if you already have a copy of the reqT.jar

Download the reqT jar
curl -0 http://reqt.org/reqT. jar

And launch the REPL

java -jar reqT.jar

4.1 Create and update models using the reqT console

Type in the following lines in the reqT console after the reqT> prompt. Press
enter after each line. The + operator is used to add elements to a model, and
the ++ operator is used to append one model to another.

reqT> val m1 = Model(Req("a") has Spec("sss"))

reqT> val m2 = m1 + (Req("b") has Prio(2))

reqT> val m3 = Model(Stakeholder("”x") requires Req("a"))

15

reqT™ ((m3 + Stakeholder("y")) ++ m2).size

What is the integer value result of the last evaluation above? Why?

Continue to type in the following lines in the reqT console after the reqT>
prompt. Press enter after each line. The for keyword is used to make a for-
loop. The yield keyword is used in a for-loop to construct a sequence of
values, that are picked one by one by the reserved <- operator. The val key-
word is used to declare a name that refers to an immutable value (a constant)
and the var keyword is used to declare a name that refers to a mutable value
(a variable). The - operator is used to remove elements from a model. With
the transform method you can make transformations of specific elements in
a model.

reqT> var m4 = (for (i <- 1 to 10) yield Req("r"+i)).toModel

reqT> (1 to 10).map(i => Req("r"+i)).toModel //alternative to above
reqT> m4 = Model(Stakeholder(”x") requires m4)

reqT> m4 = m4 - Req("r7")

reqT> m4 -= Req("r3")

reqT> m4.pp //pretty-print m4

reqT> m4 = m4.transform{case Req(id) => Feature(id) has Status(ELICITED)}

What is the size of the m4 model after the above transform? Why?
m4.size

4.2 Investigate the reqT metamodel

A reqT model can be viewed as a vector of elements. Elements can be entities,
attributes and relations. An entity has an id of type String. An attribute holds a

16

value that can be of different types. A relation connects an entity via a link of a
certain RelationType to a submodel that, in turn, can contain elements. A part of
the reqT metamodel is shown in Figure 1.

Investigate what different entity types, attribute types and relation types that
the reqT metamodel contains, using the evaluations in the reqT console below.

reqT> reqT.metamodel. // Press <TAB> after the dot
reqT> reqT.metamodel.ent // Press <TAB> after the t
reqT> reqT.metamodel.entityTypes

reqT> reqT.metamodel.entityTypes.size

reqT> reqT.meta.model.pp

reqT> reqT.meta.model.collect{case Meta(_) => 1}.sum

The collect method gathers selected parts of a model into a vector. In the last
evaluation above we collected the integer 1 for each occurrence of a Meta
entity and sum all ones.

How many different entity types, attribute types and relation types are
there respectively in the reqT metamodel?

How many entity concepts of type Meta are there in the reqT meta-
model (as calculated by the last evaluation above)?

The meta model elements can be used in many different ways. There are no

restrictions on how to combine the elements, except for these three basic rules:

1. Attribute identity. A model or submodel can only contain at most one
attribute of a specific type at its top level. However, the same type of attribute
can co-exist if they reside in different submodels of the same model.

2. Entity-Link identity. A model or a submodel can only contain at most one
entity with a certain id and a certain relation link at its top level. If you add
an entity with the same id and the same relation link at the top level of a

17

model or submodel, it will merge the elements of each submodel, and if the
above rule applies then the last same-typed attribute will be overwrite the
former.

3. Leaf entity has empty submodel. The has-relation is special, as a leaf
entity that has no relations to any subelements is equivalent to an entity with

a has-relation to an empty submodel.

Try the subsequent statements in the reqT console, where Prio is an attribute
type and Req is an entity type and has and requires are relation types. Make
sure you can explain the evaluation results in relation to the rules above. Write
the number of the rule(s) (1 — 3) that is/are in effect besides each evaluation.

reqT> Model(Prio(1), Prio(2))

reqT> Model(Req("x") has (Prio(1), Prio(2)))

reqT> Model(Req("x") has Prio(1), Req("y") has Prio(1))

reqT> val m6 = Model(Req("x") has (Req("”sub1"), Prio(1), Prio(2)))
reqT> m6 + (Req(”"x") has (Req("sub2"),Prio(3)))

reqT> Model(Req("x") has ())

reqT> Model(Req("x") has Prio(1), Req("y") requires Prio(1)) - Prio(1)

Create a model with two stakeholders a and b, both requiring the same two
features x and y. The stakeholders’ features shall have different priorities:
a thinks x is of higher priority than y, while b thinks the opposite. Declare
a constant called prio that refers to the model. Write the reqT code that
describes your model below and then test it in the reqT console.

When you create a reqT model, you actually create an immutable, tree-like

18

data structure that consists of computational objects in the Java Virtual Machine
(JVM) runtime environment. When you encode reqT models you are actually cod-
ing in the Scala programming language that compiles to JVM byte code. The reqT
metamodel classes are actually Scala classes and the reqT language is embedded in
Scala. The reqT. jar file includes the Scala compiler and the reqT console wraps
the so called Scala Read-Evaluate-Print-Loop (REPL), which enables any Scala
code snippet to be interactively compiled and run on a line-by-line basis at the
reqT prompt.

4.3 Access elements in models using paths

A model is represented using a recursive data structure where relation elements can
include submodels, which in turn can include relation elements that include sub-
models. The recursive nature of the model data structure thus enables hierarchical,
tree-like requirements models of arbitrary depths. The submodels and elements
of submodels at different levels can be extracted using paths that are constructed
using the / operator called enter.

A head is a start of a relation that combines an entity with a relation type using
dot notation, such as Feature(”x").has and Stakeholder("b").requires

Paths begin with a sequence of heads separated by / and may end with either
(1) a head, (2) an entity, (3) an attribute type or (4) an attribute. The has relation is
special: in paths an entity without any relation type is interpreted as an entity with
a has relation.

Try these path examples in the reqT console:

reqT> val pl1 = Stakeholder("a").requires/Feature(”x").has/Prio(42)

reqT> pl.depth //write down the depth: _______

reqT> val p2 = Stakeholder("b")/Feature("x")/Prio(21)

reqT> p2.init //what does the init method on a Path do? _________________
reqT> val p3 = p2.init/Feature("sub")/Prio(9)

reqT> p3.toModel

reqT> var pm = Vector(p1,p2,p3).toModel

reqT> pm/Stakeholder(”"b").has

reqT> pm/Stakeholder("b")

nan nyn

reqT> pm/Stakeholder(”a").requires/Feature("x")/Prio

19

http://en.wikipedia.org/wiki/Scala_%28programming_language%29

reqT> pm = pm + Stakeholder("a").requires/Feature("x")/Prio(1)
reqT> pm.leafPaths

reqT> pm.leafPaths.map(_.depth).max //write down the max depth:

Create a random model using the commands below, and write down its max
depth:

reqT> val rm = rndModel(10)
reqT> rm.pp
reqT> rm.leafPaths.map(_.depth).max // Write down the max depth:

reqT> rm.leafPaths.filter(_.depth == 2).head

Write down the path to the first attribute at level 2:

If a path ends with an attribute type, then it refers to the corresponding value
that is boxed by that attribute in a model. If the attribute is not available when the
path is applied to a model with the enter operator / then a default value is produced.

If you want to check the absence or presence of a value you can use the get
method on a model. The get method takes a path as parameter and returns a value
boxed in an instance of the Option class; if there was, e.g., an integer value of 42
then the option class evaluates to Some (42) or if there is no value then it evaluates
to None. You can get the actual value of an Option instance by calling the get
method.

Try these attribute type path examples in the reqT console:
reqT> val m = Model(Req("x") has Prio(1), Req("y"))

reqT> m / Req("x") / Prio

reqT> m / Req("y") / Prio //write the default Prio value here _____

reqT> m.get(Req("x")/Prio)

reqT> (m/Req("x")).get(Prio).get //same effect as previous

20

nyn

reqT> m / Req("x") get Prio //equivalent to previous
reqT> m / Req("x") get Prio get

reqT> m / Req("y") get Prio get

What happens if you try to call the get method on a non-existing value, as in
the previous evaluation?

4.4 Load and save files from the reqT console

You can load text files into strings and save strings into text files using commands
similar to:

val s = load("myFile.txt")
"my String”.save("myStringFile.txt")

The 1s command prints a list of files in the working directory. The pwd command
prints the path of the working directory. The mkdir("tmp") command creates a
new directory called tmp and cd("tmp") changes working directory to the direc-
tory tmp if it exists.

You can also serialize a model to a binary file, which for large files may take
less space compared to a text file and it may also be quicker to save and load a
large binary model to and from disk compared to a text model. To serialize a
binary model to disk, just call the save method on a model. To load a binary model
from disk use the Model.load("filename.reqt"”) command. It is recommend to
use the file suffix . reqt to show that it is a serialized binary file.

Check that you have the files from the lab preparations in your working direc-
tory and load your context model and convert it to a reqT model from a string
using the following evaluations:

reqT> 1s

context.scala

feat.txt

reqT> var m = load("context.scala”).toModel

reqT> m = Model(Title("My Cool Product”), Section(”Context”) has m)

reqT> m.toString.save("context-v2.scala")

21

Saved string to file: C:/Users/bjornr/tmp/context-v2.scala

reqT> m.save("context.reqt”)
Model serialized to file: context.reqt

Create a large random model using rndModel e.g. with these parameters:

val r = rndModel(52,2) //max 52 at top level and then max 26 etc.

and compare the binary model size on disk with the string model text file size,
by checking the file sizes in your OS. If the text file is bigger then generate
a larger model. If the files get so big that it takes too much time, reduce the
number of max elements at top level.

Number of elements in the model: r.size
Size of binary file: r.save("big.reqt”)
Size of text file: r.toString.save("big.scala")

4.5 Edit requirements with the reqT ModelTreeEditor GUI

The reqT ModelTreeEditor is a graphical user interface for navigating and updating
reqT model. You start the editor with the edit command. You can start many
ModelTreeEditor windows.

You can also preload a ModelTreeEditor instance with a model, e.g. called m,
by simply passing it as a paramter to the edit command, e.g. edit(m). The Mod-
elTreeEditor is shown in Figure 7. You can start many ModelTreeEditor windows
by repeating the edit command.

The reqT ModelTreeEditor gui has two parts:

* The Tree. The Tree displays a tree view of a model, where each head node
can be collapsed or expanded using the right and left arrows or by clicking
on the handle by the left of the folder symbol. Model elements can be deleted
using the forward DELETE key.

* The Editor. The Editor is aware of the reqT metamodel and Scala syntax
and provides syntax coloring and code completion on model elements. Enti-
ties are of light blue color, relations are of red color and attributes are shown
in green color. Reserved words of Scala are given a dark blue color.

The Tree and the Editor are two separate buffers, each having its own data. The
Tree has its own reqT model converted to a javax.swing.JTree, while the content in
the Editor can be any text (typically users have a textual representation of a reqT
(sub)model undergoing some update).

22

q ontext.reqt -

File Tree Editor Metamodel Templates Help
1 Model =
o~ 3 Product(hotel application).has
o [JInterface(receptionul).has
o [JInterface(guestUl).has
¢ [Interface(phonearl).has
[system(telephony)
o [J Interface(accountAPl).has
¢ [Data(Interfacel0).has

A

Ctri+E

Edit selected tree node

[«]

1 Model(B
2 Product("hotel application") has (Ctrl+R
3 Interface('receptionuI"), Replace selected tree

p Interface(’ node by Model in editor
5 Interface("

Interface(" VEAPT")), 2 m
7 Interface("r tionUI") has Actor('receptionist"),

8 Interface(" UI") has Actor("guest"),

9 Interface(" API") has System("telephony"),

10 Interface(" ountAPI") has System('"accounting'),
11 Data("InterfaceI0") has
12 Interface(" tionuI") has (Ctri+Enter
13 Input(’). Input(“checkout"), EESNCIEET LRGN ED](]

ing"

14 Qutput('ser: ote")), and evaluate
15 Interface('"guestUI") has (
16 Qutput("confirmation"), Olltf)llt(”l\‘l.DlEE‘”])]D

** Type edit to start mode|
** Type :help for help on t

reqT> edit

Figure 7: The reqT ModelTreeEditor graphical user interface.

By using the menu items in the Tree menu and the Editor menu you can transfer
data from the Tree to the Editor and vice versa. You can also execute Scala code
in the Editor by entering code in the Editor to the console for evaluation. The
ModelTreeEditor has a number of convenient shortcuts to enable power users to
quickly operate the Tree and Editor in concert.

Carry out these steps using the ModelTree Editor:

1. Investigate the Template menu and enter a template model to the Editor
and then transfer the model from the Editor to the Tree using <Ctrl+R>.

2. Select the Help menu item Shortcuts to Editor and investigate the dif-
ferent shortcuts and locate where in the menus they are.

3. Use the File menu item Load text file to Editor to load your prepared
model context.scala into the Editor.

23

. Select the root tree node and replace the tree with the model in the Editor

using the Ctrl+R shortcut.

. Use the File menu "Save As..." to save your context model into a new

file context.reqt in binary format.

. Make sure you have your context model in the editor. Double click on

Product to select it. Then select the Metamodel -> Entity -> Context
-> System menu item to replace Product with System

. Use code completion with <Ctrl+SPACE> to change System to

Component

The Editor can toggle between two different textual representations of a model:
(1) the normal scala code that we have been using so far, and (2) a simplified
model language called “reqT textified” that represents models without any paren-
thesis and quotes, while using indentation to represent levels of submodels. ' The
toggling is made using the <Ctrl+T> shortcut.

Carry out these steps using the ModelTree Editor:

1.

2.

Load your feat. txt file into the using the <Ctrl+L> shortcut.

Toggle between textified and scala representations by pressing <Ctrl+T>
several times.

. When you have toggled to a scala model representation of your features

in the Editor, select the root tree node and press <Ctrl+R> to replace the
tree with your feature model.

. Click in the Editor pane to make sure that the Editor is in focus and press

<Ctrl+A> to select all.

. Replace the text in the editor by entering this code:

m =>
m. transform{
case Item(i) => Feature(i)
case Text(i) => Gist(i)
}

'A textified reqT model is analogous to the markdown representation of a html document.

24

http://en.wikipedia.org/wiki/Markdown

6. Select the Replace selected node by applying function in editor menu
item in the Tree menu, or use the <Ctrl+Alt+Shift+R> shortcut to apply
the above function to the Tree model.

7. Enter this code in the Editor and then press <Ctrl+Alt+Shift+R>:

m =>
println("Size: " + m.size)
println("Depth:" + m.leafPaths.map(_.depth).max)
println(”"Number of fetaures: " +

m.collect{case f: Feature => 1}.sum)
m

8. Explain what the above function does. Check what is printed in the
console and write down the numbers:
Size: Depth: Number of features:

9. Select the root node of your tree and press <Ctrl+E> to edit the model,
<Ctrl+T> to toggle to a textified model, and then <Alt+S> to save the
text in the file feat-v2. txt

10. Enter 1 + 41 in the editor and press <Alt+Enter>. What happens?

4.6 Export/Import of models to inter-operate with other apps

In order to inter-operate with other apps and services, reqT can export and import
data in various formats. A general format of inter-operation is text, as you worked
with in the previous section. With reqT, you can also inter-operate with html,
tabular text, and other formats.

Carry out these steps using the ModelTreeEditor gui:

1. Load the "Model with sections” in the Templates menu and press
<Ctrl+R>.

2. Choose the Export -> "HTML from tree ...” menu and give a file name
for the static site to be generated.

3. A browser window should appear on your desktop with the generated
html file.

4. How are the different special elements Title, Section, and Text rendered
in your browser?

25

5. Inspect the html code generated in the index.html file.

If you have http://graphviz.org installed on your machine, carry out
these steps using the ModelTreeEditor gui:

1. Load your context.scala file into the Tree.

2. Choose the Export -> "GraphViz .dot nested ...” menu and give a file
name for the generated graph.

3. A pdf reader window should appear on your desktop with the generated
pdf file.

4. Compare with the ”GraphViz .dot flat ...” export.
What is the difference between nested and flat graph export?

4.7 Investigate the Status attribute for tracking requirements evolu-
tion

As requirements evolve, it is often interesting to keep track of how far we have
come in the process from elicitation to release. To enable this, reqT has a Status
attribute which boxes a status value that represents states of a requirements state
machine, where requirements can travel up and down a “release ladder”. In the
subsequent tasks you will use the Editor to investigate the transitions between sta-
tus values as requirements go up and down the “ladder”.

You can use the Editor to evaluate expressions and let the evaluation results be
pasted into the Editor after the evaluation using the <Alt+Enter> shortcut. En-
ter the following code snippets and press <Alt+Enter> after each code snippet.
When the Editor is in scope you can press <Ctrl+Z> to undo in several steps.
1. Enter in editor: StatusValue.values and then press <Alt+Enter>.
2. Enter in editor: ELICITED. up and then press <Alt+Enter>. (You can use
code completion to enter ELICITED without typing so much by entering

26

http://graphviz.org

E and the press <Ctrl+Space>.)
3. Enter in editor: ELICITED.down and then press <Alt+Enter>. Write
down the status if you go down from ELICITED

27

Draw the state machine representing all reqT’s built-in requirements status
transitions by carrying out the steps below:

1. Use repeated evaluations with <Alt+Enter> in the Editor to check what
happens if you call up or down on all values in StatusValue.values
respectively. Use <Ctrl+Space> to type faster.

2. Draw below a state diagram with all nodes ELICITED, SPECIFIED, etc.,
with two directed edges from each state labeled up and down respec-
tively, showing all the transitions.

3. Reflect upon what in a hypothetical project may be different paths of
different features through the above diagram. Are there any transitions
missing that you think might be needed? If so, why are they needed?

4. Type this code into the Editor and select the root node in the Tree and
press <Ctrl+R>:

val up = StatusValue.values.map(v =>

Label(v.toString) precedes Label(v.up.toString)).toModel
val down = StatusValue.values.map(v =>

Label(v.toString) precedes Label(v.down.toString)).toModel
up ++ down

5. If you have graphvis.org installed on your machine you can now ex-
port the Tree to a flat GraphViz graph to see the state diagram.

28

http://en.wikipedia.org/wiki/State_diagram
graphvis.org

	Introduction
	Purpose
	Background

	Preparations
	Installing and running reqT
	Prerequisites
	Linux & OS X
	Windows 10
	reqT–REPL
	reqT–webeditor

	Preparation Assignments — Mandatory

	Model Assignments
	Metamodel Assignments
	Create and update models using the reqT console
	Investigate the reqT metamodel
	Access elements in models using paths
	Load and save files from the reqT console
	Edit requirements with the reqT ModelTreeEditor GUI
	Export/Import of models to inter-operate with other apps
	Investigate the Status attribute for tracking requirements evolution

