
Parallel Data Race Detection for Task Parallel Programs
with Locks

Adarsh Yoga
Department of Computer Science

Rutgers University
adarsh.yoga@cs.rutgers.edu

Santosh Nagarakatte
Department of Computer Science

Rutgers University
santosh.nagarakatte@cs.rutgers.edu

Aarti Gupta
Department of Computer Science

Princeton University
aartig@cs.princeton.edu

ABSTRACT
Programming with tasks is a promising approach to write perfor-
mance portable parallel code. In this model, the programmer ex-
plicitly specifies tasks and the task parallel runtime employs work
stealing to distribute tasks among threads. Similar to multi-threaded
programs, task parallel programs can also exhibit data races. Un-
fortunately, prior data race detectors for task parallel programs ei-
ther run the program serially or do not handle locks, and/or detect
races only in the schedule observed by the analysis.

This paper proposes PTRacer, a parallel on-the-fly data race
detector for task parallel programs that use locks. PTRacer de-
tects data races not only in the observed schedule but also those
that can happen in other schedules (which are permutations of the
memory operations in the observed schedule) for a given input. It
accomplishes the above goal by leveraging the dynamic execution
graph of a task parallel execution to determine whether two ac-
cesses can happen in parallel and by maintaining constant amount
of access history metadata with each distinct set of locks held for
each shared memory location. To detect data races (beyond the ob-
served schedule) in programs with branches sensitive to scheduling
decisions, we propose static compiler instrumentation that records
memory accesses that will be executed in the other path with sim-
ple branches. PTRacer has performance overheads similar to
the state-of-the-art race detector for task parallel programs SPD3,
while detecting more races in programs with locks.

1. INTRODUCTION
Programming with tasks. Task parallelism is an effective ab-

straction to write performance portable code. In a task parallel
programming environment, the programmer specifies the tasks and
the work stealing runtime distributes these tasks to the threads.
A task parallel program can provide scalable speedups when the
program is run on a machine with different core/thread count as
the runtime dynamically balances the load between the threads.
Task parallel frameworks like Cilk [17], Intel Threading Building
Blocks (TBB) [39], Habanero Java [6], X10 [7], and the Java Fork-
Join framework [25] have become mainstream. Given the promise
of performance portable code, there are initiatives in teaching paral-

.

Task T1

Task T2

Task T3

S1

lock(&L1);
 t = C;
unlock(&L1);
if(t == true){
 lock(&L1);
 Y = X - 1;
 unlock(&L1);

}
else{
 Y = X + 1;

}

lock(&L1);
 C = true;
 Y = X + 1;
unlock(&L1);

X = 0;
Y = 0;
C = false;

Spawn T2

Spawn T3

Sync

S3 S2

X, Y, and C are shared memory
locations

L1 is a lock variable

Figure 1: An example task parallel program that uses locks. There are
three tasks, T1, T2, and T3. The tasks access three shared memory vari-
ables X, Y, and C. There are three regions of code without any task manage-
ment constructs. They are labeled S1, S2, and S3. The program has a data
race on shared memory location Y.

lelism through task parallel programming models (see Dan Gross-
man’s “Sophomoric Introduction to Shared Memory Parallelism
and Concurrency” that advocates the use of task parallel models
to teach parallelism [19]).

Data races with task parallel programs. A program exhibits
a data race when there are multiple accesses to a shared memory
location, at least one of them is a write, and there is no ordering
between these accesses. In the absence of locks, a data race occurs
when accesses are not ordered by task spawn/sync constructs. In
the presence of locks, a data race occurs when there are two par-
allel accesses (one of which is a write) that are not protected by
a common lock. Similar to multithreaded programs, data races in
task parallel programs are usually indicators of program errors. The
behavior of the program is dependent on the memory model in the
presence of data races. Further, it can also cause non-deterministic
execution. Figure 1 illustrates an example task parallel program
with data races.

Apparent and Feasible races. In the terminology of Netzer and
Miller [33], data races can be classified into two categories: ap-
parent races and feasible races. Data races that appear to occur in
an execution of a program primarily considering the parallel con-
structs but without taking the actual computation into account are

Instrumented

Program

Static Analysis
and

Instrumentation

Parallel
Dynamic

Detection of
Races

Check
Feasibility

of
Branches

Input
Task

Parallel
program

Report an apparent
race in another

trace with branch
condition inverted

Possible
Apparent

Races

Report an apparent
race with the

operations in the
current trace

SMT
formula for

branch
feasibility

Check
Validity of

SMT
Formula

True Apparent Races

Inputs

Figure 2: Workflow of our parallel data race detection algorithm for task parallel programs that use locks.

termed apparent races. Data races that occur taking into account the
computation, synchronization, and parallel constructs are termed
feasible races. An apparent race may not be a feasible race in some
scenarios where operations in critical sections influence branches.
Depending on how critical sections are scheduled, the computation
itself may change when the tasks are scheduled in a different or-
der. However, every apparent race is also a feasible race for a class
of task parallel programs called Abelian programs [8], which have
commutative critical sections. Identifying feasible races is a hard
problem [8, 24, 33]. Detectors that aim to detect feasible races need
to perform interleaving exploration, which is practically infeasible.
Hence, we focus on the detection of apparent races in this paper as
task parallel programs have structured parallelism.

Classification of data race detectors. Data race detectors can
be classified into three categories based on their detection abilities:
per-program, per-input, and per-schedule detectors. Per-program
detectors detect possible races for all inputs and schedules for a
given program. Although per-program detectors are appealing in
theory, they can report a large number of false positives in practice
because of approximations in the underlying static analysis [46].
Per-input detectors detect possible races in various schedules for
a given input when the programs do not use locks [15, 30, 38].
Finally, per-schedule detectors detect data races in the observed
schedule. They typically need to be coupled with interleaving ex-
ploration to detect races that can occur in other schedules for the
same input. Further, data-race detectors can also be classified into
offline, on-the-fly, or hybrid detectors depending on whether the
race is detected with a postmortem analysis, during program exe-
cution, or a combination of them, respectively.

Goals. Our goal is to detect data races in task parallel programs
with the following three objectives. First, the detector should de-
tect races in the presence of locks because frameworks like In-
tel TBB [39] and Cilk [17] provide various lock implementations.
Second, the detector should detect races in the observed schedule
and also possible races in other schedules for a given input to either
minimize or obviate the need for interleaving exploration. Third,
the detector should use multiple cores available on modern proces-
sors to enable its usage with long running programs.

Limitations of existing race detectors. Although data race de-
tection is a well-studied topic for multi-threaded programs, exist-
ing detectors do not satisfy our goals. FastTrack [16] is a vector-
clock based detector that detects races in schedules that follow
the observed happens-before ordering in multithreaded programs.
When we repurpose FastTrack for tasks, FastTrack’s vector clock
metadata with each shared memory location is proportional to the
number of tasks, which makes it impractical for task parallel pro-
grams that create a large number of tasks. Our implementation of
FastTrack aborted with out-of-memory errors with many applica-
tions (see Section 5). Prior research has also investigated numerous

techniques to detect races in task parallel programs [8, 15, 30, 37,
38]. SP-Bags [15], ESP-Bags [37], and SPD3 [38] leverage the
series-parallel structure of a task parallel execution to detect races
per-input for task parallel programs that do not use locks. SPD3
with support for isolated blocks [36] and ALL-SETS [8] detect
data races per-schedule in task parallel programs. Both these ap-
proaches can detect races per-input when program has commutative
critical sections (i.e., Abelian programs). However, SPD3 does not
support locks and ALL-SETS runs the detector serially. In this pa-
per, we explore if it is possible to combine SPD3 and ALL-SETS
to attain our objectives.

Our approach. Inspired by SPD3 [38] and ALL-SETS [8], we
propose an on-the-fly dynamic data race detector, PTRacer, for
task parallel programs with locks. PTRacer uses the dynamic
program structure tree (DPST) representation from SPD3 to deter-
mine whether two accesses can happen in parallel. It borrows the
idea of tracking the set of locks held before an access with each en-
try in the metadata space from ALL-SETS. The key challenge is in
maintaining appropriate metadata when there are multiple readers
and writers to a given shared memory location to enable effective
and efficient detection of races.

Further, branch statements in a task parallel program can be in-
fluenced by scheduling decisions when the program uses locks.
Such branches are called schedule-sensitive branches (SSB)[22].
In the presence of SSBs, the dynamic trace observed by the analy-
sis will likely not have memory operations from all schedules (e.g.,
from the path not-taken at the branch statement). We explore if
it is possible to detect races that happen in other schedules in the
presence of SSBs.

To accomplish our objectives, we designed PTRacer with three
components: (a) static analysis and instrumentation component to
instrument shared memory accesses and identify accesses in the
other path with simple branch statements, (2) a parallel dynamic
race detection component that extends SPD3 to handle locks, and
(3) a diagnosis component that classifies some of the races reported
by the parallel dynamic analysis as infeasible if the branch is not
schedule sensitive. Figure 2 provides an overview of the various
components in PTRacer.

Static analyses and instrumentation to identify shared mem-
ory accesses. This component of PTRacer has two goals: in-
strument shared memory accesses and identify accesses that can
be executed in the other path at a branch statement. PTRacer
uses a compiler pass to instrument the program with calls to a dy-
namic race detection library. The compiler pass identifies branch
statements and records the memory accesses executed in the other
path at a simple branch statement with calls to the race detection
library. When the branching structure involves loops or has nested
branches, the compiler pass informs the user that the dynamic race
detection will be restricted to the detection of apparent races in the

observed schedule and schedules that are permutations of memory
operations in the observed schedule.

Parallel dynamic analysis to detect races. The dynamic data
race detection component of PTRacer constructs the DPST as the
program executes and performs dynamic data race detection when
the race detection library calls execute. Hence, the data detection
happens in parallel. PTRacer maintains two reads and two writes
with each distinct set of locks held before an access to a shared
memory location in the metadata space for each shared memory
location. Maintaining information about two reads and a single
write is sufficient when accesses are performed without holding
any locks.

When there are multiple writes to a shared memory location with
same set of locks held, PTRacer maintains two write operations
so that all other parallel write operations to the same location are
in the subtree under the least common ancestor (LCA) of the two
writes in the DPST. Any future write or a read operation that may
execute in parallel with any of the not-maintained accesses will ex-
ecute in parallel with at least one of the two writes maintained in
the metadata space. The dynamic data race detector in PTRacer
reports a race when two accesses are not protected by a common
lock.

The races reported by the dynamic race detector are either true
apparent races that involve operations in the observed schedule or
possible apparent races that involve races between operations from
the observed schedule and operations in the not-taken path at a
branch statement.

Diagnosis phase. Finally, the diagnosis component of PTRacer
filters out possible races by checking the schedule sensitivity of
the branch resulting in the race. The diagnosis component runs
the program again to obtain a detailed trace. It encodes the de-
tailed trace and the inverted branch condition of the schedule sen-
sitive branch involved with the possible apparent race as a first-
order logic formula and checks its satisfiability (similar to prior
work [22, 23, 27]). If the formula is satisfiable, then the diagnosis
component reports the race as an apparent race to the user.

Guarantees. PTRacer detects apparent races for a given in-
put for Abelian programs similar to ALL-SETS. When there are
multiple races involving a shared memory location, PTRacer re-
ports a single race to the user. PTRacer detects apparent races
in the observed schedule and in schedules that are permutation of
the memory operations in the observed schedule for non-Abelian
programs. Some of these races may not be feasible if the compu-
tation in the program forbids them. Even the infeasible apparent
races can suggest likely program errors as task parallel programs
typically have structured communication. The race detection in-
volving operations from non-taken paths is best-effort (i.e., it can
miss races with SSBs) due to the limitations of our static analysis.

Our prototype detector PTRacer detects data races in Intel TBB
programs that use locks. The prototype detects all races in our test
suite, which has unit tests with locks, without false positives and
without requiring interleaving exploration. In contrast, FastTrack
misses many races and SPD3 reports false positives as it does not
handle locks. PTRacer is usable with long-running applications
and has performance overhead similar to SPD3.

2. BACKGROUND
This section provides background on Dynamic Program Struc-

ture Tree (DPST) representation of a task parallel execution to iden-
tify parallel accesses. As we use DPST and build on SPD3 [38], we
also provide a brief background on the SPD3 data race detector for
task parallel programs.

F11

S1 F12

A2 A3

S2 S3

Figure 3: DPST for the sample task parallel program in Figure 1 after it
has executed all statements. There are three step nodes (S1, S2, and S3) in
the DPST, which are depicted by nodes with two circles and are executed
by tasks T1, T2, and T3 respectively. The step nodes S2 and S3 can occur
in parallel because LCA(S2, S3) is F12 and the left child of F12 is an
async node and it is an ancestor of S2. The step nodes S1 and S2 cannot
occur in parallel as LCA(S1, S2) is a finish node F11 and its left child
that is also an ancestor of S1 is not an async node.

2.1 Dynamic Program Structure Tree
The execution of a task parallel program results in a series-parallel

execution graph. The series-parallel execution graph can be used to
determine whether two accesses by different tasks can logically ex-
ecute in parallel [8, 15, 30]. The graph can be used to find races
in other schedules not encountered in the current execution trace
when these programs do not use locks. However, the program has
to be executed serially, which results in performance overheads.

To address the problem of serial execution with data race de-
tection, Raman et al. [38] proposed an approach to check whether
two accesses can logically execute in parallel using an ordered tree
called the Dynamic Program Structure Tree (DPST). DPST cap-
tures the dynamic parent-child relationship between tasks, which
enables parallel race detection with SPD3 [38].

The DPST consists of three types of nodes: (a) step nodes, (b)
finish nodes, and (c) async nodes. A step node in the DPST
represents the maximal sequence of instructions without any task
spawn (for task creation) and sync (join) statements. All compu-
tation and memory accesses occur in the step nodes. Hence, every
memory access has a corresponding step node associated with it.
Further, the step nodes are always leaf nodes in the DPST.

The async nodes capture the spawning of a task by a parent task.
The descendants of an async node execute asynchronously with the
remainder of the parent task. A finish node is created when a task
spawns a child task and waits for the child (and its descendants) to
complete. A finish node is the parent of all async, finish and step
nodes directly executed by its children or their descendants. The
siblings of a particular node in a DPST are ordered left-to-right to
reflect the left-to-right sequencing of computation of their parent
task.

DPST’s construction ensures that all internal nodes are either
async or finish nodes. A path from a node to the root and the left-
to-right ordering of siblings in a DPST does not change even when
nodes are added to the DPST during execution. The construction of
the DPST ensures that two step nodes S1 and S2 (assuming S1 is to
the left of S2) can execute in parallel if the least common ancestor
of S1 and S2 (i.e., LCA(S1, S2)) in the DPST has an immediate
child A that is an async node and is also an ancestor of S1.

Consider the example task parallel program in Figure 1 with
three tasks T1, T2, and T3. Figure 3 presents the DPST after all
tasks and instructions in the program in Figure 1 have executed.
There are three step nodes: S1, S2, and S3. There are two finish
nodes: F11 that corresponds to the implicit finish with the main

task and F12 that corresponds to the collection of tasks T1 and T2
followed by a sync statement. The step nodes S2 and S3 can occur
in parallel since the LCA(S2, S3) is F12 and its left child is an
async node. In contrast, step nodes S1 and S2 cannot occur in par-
allel since the LCA(S1, S2) is F11 and its left child that is also
an ancestor of S1 is S1, which is not an async node. Similarly, step
nodes S1 and S3 cannot occur in parallel.

2.2 SPD3 Race Detector
Any dynamic race detector needs to determine if two accesses

(at least one of them is a write) can happen in parallel and track
accesses to the same location. SPD3 [36, 38] uses the DPST to de-
termine if two accesses can occur in parallel. It maintains shadow
memory for each memory location that tracks tasks that have ac-
cessed the same location.

Rather than maintaining information about every access to a shared
memory location by tasks in shadow memory, SPD3 maintains a
total of two reads (r1 and r2) and a write (w1) with every shared
memory location. It is sufficient to maintain information about one
write as all other writes should either occur in series or constitute a
data race. However, there can be multiple readers and it is neces-
sary to maintain information about them. When there are multiple
parallel readers to a location, SPD3 stores two reads r1 and r2 such
that the subtree under LCA(r1, r2) in the DPST includes other
reads. In contrast to vector clock based detectors, SPD3 main-
tains constant number of access history entries with each monitored
shared memory location irrespective of the number of tasks.
SPD3 detects races for a given input by examining a single trace

provided the task parallel program does not use locks. Next, we
describe how to handle locks and propose a technique to detect
races not only in the current trace but also in other schedules for a
given input.

3. APPROACH
Our goal is to design an on-the-fly data race detector for task

parallel programs with the following attributes: (1) runs in paral-
lel, (2) handles programs that use locks, and (3) detects data races
that occur in different schedules for a given input by examining
a single trace. We do not need to store long traces with an on-
the-fly detector. A parallel data race detector reduces performance
overheads by leveraging multi-cores. Handling locks enables us to
detect races in applications written with frameworks such as Intel
TBB [39] and Cilk [17] that support locks. Detecting races that
can happen in other schedules by examining a single schedule for a
given input either minimizes or obviates (in the best case) the need
for interleaving exploration.

We are primarily focused on detecting apparent races, which are
races that appear to occur taking into account the parallel constructs
in the program [33]. In presence of critical sections, some of these
apparent races may not be feasible when the actual computation
performed by the task is considered along with the parallel and
synchronization constructs. Detecting feasible races typically re-
quires interleaving exploration and covering all interleavings is not
possible in practice. However, every apparent race is a feasible race
for a class of programs (i.e., Abelian programs) with commutative
critical sections [8].

When the program contains non-commutative critical sections,
we investigate if it possible to detect races that can happen in other
schedules to minimize the need for interleaving exploration. In
such scenarios, our goal is to detect apparent races that can hap-
pen in other schedules, which perform the same shared memory
accesses but possibly in a different order, for a given input. This

Task T1

Task T2

Task T3

S1

lock(&L1);
 t = C;
unlock(&L1);
if(t == true){
 lock(&L1);
 Y = X - 1;
 unlock(&L1);
 RecordRd(X,{},{});
 RecordWr(Y,{},{});
}
else{
 Y = X + 1;
 RecordWr(Y,{L1},{});
 RecordRd(X,{L1},{});
}

lock(&L1);
 C = true;
 Y = X + 1;
unlock(&L1);

X = 0;
Y = 0;
C = false;

Spawn T2

Spawn T3

Sync

S3 S2

X, Y, and C are shared memory
locations

L1 is a lock variable

Figure 4: The task parallel program in Figure 1 instrumented with
RecordRd and RecordWr instrumentation calls using static analysis.
There is a RecordWr(Y, {},{}) in the if-block that is executed when
C is true in Task T2 because shared memory location Y is written in the
else-branch without any lock acquisitions and releases from the start of the
else-block. Similarly, there is RecordWr(Y, {L1}, {}) in the else-
block because memory location Y is written in the if-branch with lock L1
acquired and no locks have been released from the beginning of the if-block.

guarantee is similar in spirit to the guarantees aimed by predictive
testing techniques for multi-threaded programs [21, 44, 45, 47].

In the presence of critical sections, the branch statements in the
program can also be influenced by the scheduling of critical sec-
tions. Such branches are called schedule sensitive branches (SSBs).
A schedule observed by the dynamic analysis may not contain mem-
ory accesses from the not-taken path of a schedule sensitive branch.
We propose a static instrumentation technique to record the mem-
ory accesses that will be executed in the not-taken branch. This
approach enables us to detect apparent races that can occur in dif-
ferent schedules of a program with SSBs for the same input without
requiring interleaving exploration. To filter false positives when the
branch is not schedule sensitive, we encode the trace and the in-
verted branch condition as a first-order logic formula and check its
satisfiability.

Three components of our proposed detector. Our proposed
detector PTRacer consists of three components to accomplish the
above goals: (1) static analysis and instrumentation component to
instrument the program with calls to the dynamic race detection
library both to construct the DPST, record the shared memory ac-
cesses in the presence of branches, and to detect races, (2) a parallel
dynamic analysis component that executes when the task parallel
program executes and detects races, and (3) a diagnosis component
that checks the feasibility of the reported races involving memory
accesses from the not-taken path at a branch statement. Figure 2
illustrates the three components of PTRacer, which we describe
in detail below.

3.1 Static Instrumentation Component
The static analysis and instrumentation component has three ob-

jectives: (1) add instrumentation to identify task management con-
structs to build the DPST at runtime, (2) add instrumentation to
identify shared memory accesses and lock operations to perform
dynamic race detection, and (3) add instrumentation to identify

procedure DATARACEDETECTOR(l, S, A, LS)
AH ←Metadata(l)
for all p ∈ AH do

if p.LS ∩ LS = ∅ then
if A = Rd ∧DMHP (S, p.W1) then

Report write-read race between p.W1 and S
end if
if A = Rd ∧DMHP (S, p.W2) then

Report write-read race between p.W2 and S
end if
if A = Wr ∧DMHP (S, p.W1) then

Report write-write race between p.W1 and S
end if
if A = Wr ∧DMHP (S, p.W2) then

Report write-write race between p.W2 and S
end if
if A = Wr ∧DMHP (S, p.R1) then

Report read-write race between p.R1 and S
end if
if A = Wr ∧DMHP (S, p.R2) then

Report read-write race between p.R2 and S
end if

end if
if p.LS = LS then . Update the metadata for lockset LS

if A = Wr then
if ¬DMHP (S, p.W1) ∧ ¬DMHP (S, p.W2) then

p.W1 ← S
p.W2 ← null

end if
if DMHP (S, p.W1) ∧DMHP (S, p.W2) then

lca12 ← LCA(p.W1, p.W2)
lca1s ← LCA(p.W1, S)
lca2s ← LCA(p.W2, S)
if lca1s >dpst lca12 ∨ lca2s >dpst lca12 then

p.W1 ← S
end if

end if
end if
if A = Rd then

if ¬DMHP (S, p.R1) ∧ ¬DMHP (S, p.R2) then
p.R1 ← S
p.R2 ← null

end if
if DMHP (S, p.R1) ∧DMHP (S, p.R2) then

lca12 ← LCA(p.R1, p.R2)
lca1s ← LCA(p.R1, S)
lca2s ← LCA(p.R2, S)
if lca1s >dpst lca12 ∨ lca2s >dpst lca12 then

p.R1 ← S
end if

end if
end if

end if
end for
if LS /∈Metadata(l) then

Create a new lockset LS and add a new entry for l
end if
return

end procedure

Figure 5: Algorithm to check for a data race on memory access to loca-
tion l by the step node S with access type A and lockset LS. Metadata(l)
function returns the access history in shadow memory associated with loca-
tion l. The predicate DMHP (Dynamic May Happen in Parallel) is used
to determine if two accesses are parallel. The predicate DMHP (Si, Sj)
returns true if the step nodes Si and Sj in the DPST may execute in parallel.
LCA(Si, Sj) returns the least common ancestor node of Si and Sj .

shared memory operations that are possibly executed in the other
path in the presence of a schedule-sensitive branch statement, which
is inspired by a similar attempt for property driven pruning with dy-

namic partial order reduction [48].
The static analysis and instrumentation phase can be performed

either on the source code or within the compiler. We perform this
phase within the compiler for mainly two reasons: (a) the com-
piler already performs various analyses to identify thread local ac-
cesses and the branch statements, and (b) the instrumentation can
be performed on optimized code, which reduces the performance
overhead of race detection.

The compiler pass that adds calls to the race detection library to
identify task management constructs and shared memory accesses
is straightforward, which we omit for space constraints. The inter-
esting aspect is the addition of instrumentation to identify memory
accesses performed in both the taken and the not-taken paths in the
presence of schedule sensitive branches. Our algorithm to record
memory accesses is described below. First, the compiler pass iden-
tifies conditional and unconditional branch statements and their
corresponding join statements. Second, the compiler pass identifies
the set of memory operations performed, the set of locks acquired
and released before every memory operation in the taken and the
not-taken branch from the beginning of the branch for each branch
statement and its corresponding join statement. If the branch con-
dition does not dominate either the memory access or the lock vari-
able, then we need to perform additional work to make these ac-
cesses visible in the other branch. In such scenarios, we add the
backward static program slice of the memory access and/or the
lock variable in the other branch. Finally, the compiler inserts
calls to the runtime library to record the memory operation per-
formed in the other path. If a memory access A is written in the
else-block of a schedule sensitive branch with La locks acquired
and Lr locks released from the beginning of the else-block till
memory operation A, then the compiler introduces a runtime call
RecordWr(A, La, Lr) in the if-block.

Figure 4 shows the additional RecordWr and RecordRd in the
if-branch and the else-branch. In the if-branch, additional RecordWr
and RecordRd instrumentation correspond to memory accesses in
the else-branch. The primary effect of this instrumentation is that
we will detect data races that would occur with the operations in
the else-branch even when the trace observed during the dynamic
analysis contains only the operations from the if-branch.

Limitations. We primarily focus on simple branch statements
that are non-nested and not part of loops to record memory ac-
cesses from the not-taken path. Our static analysis informs the user
about the presence of non-nested branches and branches that are
part of loops. In the presence of such branches, our framework still
detects apparent races that occur in other schedules whose memory
operations are a permutation of the memory operations in the ob-
served trace. The taken and not-taken paths at a branch can include
function calls provided it is non-recursive without nested-branches
and loops. We chose this design point to avoid false apparent races.
However, our race detector will miss some races given these limi-
tations.

3.2 Parallel Dynamic Data Race Detector
PTRacer detects data races when the program executes race de-

tection library calls introduced by the static instrumentation com-
ponent. As tasks execute in parallel, the race detection also happens
in parallel. The dynamic race detector component of PTRacer
maintains two pieces of information at runtime. DPST is con-
structed at runtime and queried to determine if two accesses can
occur in parallel. The metadata is maintained with each shared
memory location that provides information about prior accesses by
various tasks.

Metadata design. A naive approach to detect apparent races
(in the observed schedule and other schedules involving the same
memory operations) would maintain a list of accesses performed by
various tasks with each shared memory location. As each access to
a shared memory location can occur with different sets of locks
held, the access history should also maintain information about
the set of locks held (lockset) before performing a memory access.
However, such an approach would make the metadata proportional
to the number of dynamic memory accesses and is infeasible in
practice.

Our contribution is in designing a dynamic data race detection
algorithm that maintains a constant number of access history en-
tries, which is independent of the number of tasks and the number
of dynamic memory accesses, while handling locks. Our metadata
for each shared memory location contains four access history en-
tries (step nodes of two reads: R1 and R2, and two writes: W1 and
W2) for each distinct set of locks held before the access. Although
the size of the metadata is proportional to the number of distinct
sets of locks held for each memory location, we observe in prac-
tice that each shared memory location is accessed with similar sets
of locks. In summary, the access history with each shared mem-
ory location can be conceptually viewed as an array of data nodes,
where each data node contains the unique lockset and step nodes
corresponding to two reads (R1 and R2) and two writes (W1 and
W2).

Metadata checks on a shared memory access. Figure 5 pro-
vides the algorithm for checking the metadata on a shared memory
access. The algorithm iterates over all access history entries corre-
sponding to each lockset in the metadata space. First, the algorithm
checks if the intersection of the lockset of the current access and
each lockset in the metadata space is empty. If the intersection is
empty, two accesses have been performed without a common lock
and PTRacer reports a race if two accesses can occur in parallel
and at least one of them is a write.

Updating the read metadata. After the check, the algorithm
in Figure 5 updates the metadata corresponding to the appropriate
lockset. If the current access is a read access, then the metadata is
updated similar to SPD3 [38] except that the access history entries
for a particular lockset are updated. If the current read access is in
series with both the reads (R1 and R2) corresponding to the cur-
rent lockset, then R1 is set to the current access and R2 is set to
null (a unique empty value). When there are multiple readers that
can execute in parallel (i.e., two existing readers R1 and R2 in the
metadata space and current access), PTRacer maintains two reads
in the metadata space such that the subtree underLCA(R1, R2) in-
cludes all reads similar to SPD3. The key insight is that any future
access that can have a data race with the not-stored reads will also
have a data race with R1 and/or R2.

Updating the write metadata for a lockset. Updating the meta-
data in the presence of write operations and locksets requires some
thought in comparison to SPD3. When writes are performed with-
out locks, any two parallel writes is a data race. When tasks use
locks, two writes can happen in parallel but may be protected by
the same lock. Hence, they do not constitute a data race. When
PTRacer sees multiple parallel writes (current access, W1 and
W2 in the metadata space) with the same lockset, it needs to iden-
tify two writes to maintain in the metadata space. Similar to mul-
tiple parallel reads, PTRacer maintains two writes in the meta-
data space such that the subtree under LCA(W1,W2) includes all
writes. Any future access that can race with one of the not-stored
writes will also race with at least one of W1 or W2. Maintain-
ing only two reads and two writes with each distinct set of locks

1. T1/S1: X = 0; []
2. T1/S1: Y = 0; [[{}, S1, null, null, null]]
3. T1/S1: C = false; [[{}, S1, null, null, null]]
4. T1 : Spawn T2; [[{}, S1, null, null, null]]
5. T1 : Spawn T3; [[{}, S1, null, null, null]]
6. T3/S3: lock(&L1); [[{}, S1, null, null, null]]
7. T3/S3: C = true; [[{}, S1, null, null, null]]
8. T3/S3: Y = X + 1; [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
9. T3/S3: unlock(&L1); [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
10. T2/S2: lock(&L1); [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
11. T2/S2: t = C; [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
12. T2/S2: unlock(&L1); [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
13. T2/S2: if(t == true) [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
14. T2/S2: lock(&L1); [[{}, S1, null, null, null], [{L1}, S3, null, null, null]]
15. T2/S2: Y = X - 1; [[{}, S1, null, null, null], [{L1}, S3, S2, null, null]]
 -> Two writes to Y with lock set L1
 by step nodes S3 and S2.
16. T2/S2: unlock(&L1); [[{}, S1, null, null, null], [{L1}, S3, S2, null, null]]
17. T2/S2: RecordRd(X, {}, {}) [[{}, S1, null, null, null], [{L1}, S3, S2, null, null]]
18. T2/S2: RecordWr(Y, {}, {}) [[{}, S2, null, null, null], [{L1}, S3, S2, null, null]]
 -> Write-Write race for Y based on
 its access in the other branch
 as S2 and S3 occur in parallel
19. T1: Sync

Time Observed trace Metadata for Y

Figure 6: Illustration of race detection with a concrete trace of the pro-
gram in Figure 4. The observed trace provides the instruction executed,
the task, and the step node performing the operation observed in the trace.
The metadata in shadow memory for the shared memory variable Y is also
shown. The metadata for a shared memory location is a list of access histo-
ries with each lockset. There are four access histories for each lockset (W1,
W2, R1, R2). On time step 2, Y is written by step node S1 in Task T1
without holding any lock. We create a new entry for the empty lockset and
update the access history corresponding to the write by S1 i.e., [{}, S1,
null, null, null]. Similarly when Y is written with lock set L1 by
step node S3 in task T3 at time step 8, the race detector checks if this ac-
cess results in a race according to existing history and updates the metadata
of Y with a new lock set L1 and the current write. It is important to note
that when Y is written by step node S2 in task T2 at time step 15, there is
already a write to Y in the metadata space with lock set L1. Since this write
by S2 can occur in parallel with the existing write, we maintain both writes
in the metadata for Y. Finally, the record instrumentation enables us to find
races that would occur when the not-taken branch is executed on a different
schedule.

enables PTRacer to detect apparent races both in the observed
schedule and other schedules for the same input. Figure 6 illus-
trates the metadata for shared memory variables, checks, and the
metadata update actions performed after each statement in the ob-
served trace.

3.3 Diagnosis Phase
The parallel data race detection algorithm described above re-

ports two kinds of apparent races, which we call true races and
possible races. A true race is a data race that occurs between the
operations of the observed trace without involving memory oper-
ations from the RecordWr and RecordRd instrumentation. A
possible race is a data race that involves shared memory operations
from the other-branch instrumentation. If the branch is not schedule
sensitive, then these possible races will never manifest for a given
input. Hence, we propose a diagnosis phase to identify whether the
branch is schedule sensitive when our parallel data race algorithm
reports a possible race. We divide the diagnosis phase into two
components: execution trace generator that generates per-task exe-
cution traces for the reported possible race, and a constraint gener-
ator that checks if the branch statement responsible for the reported
possible race is schedule sensitive by transforming the trace into
a first-order logic formula and checking its satisfiability using an
SMT solver. Our constraint generation and checks for schedule

a) Trace Representation

Per-task trace Canonicalized trace
1. X = 0; WX@1.1 = 0;
2. Y = 0; WY@1.2 = 0;
3. C = false; WC@1.3 = false;
4. Spawn T2; SpawnT2@1.4
5. Spawn T3; SpawnT3@1.5
6. Sync; SyncT2,T3@1.6

T1

Per-task trace Canonicalized trace
1. lock(L1); LL1@3.1;
2. C = true; WC@3.2 = true;
3. Y = X + 1; RX@3.3;
 WY@3.3 = X@3.3 + 1;
4. unlock(L1); UL1@3.4

T3

Per-task trace Canonicalized trace
1. lock(L1); LL1@2.1;
2. t = C; RC@2.2;
 Wt@2.2 = C@2.2;
3. unlock(L1); UL1@2.3;
4. if (t == true) { Rt@2.4
5. lock(L2); LL2@2.5;
6. Y = X - 1; RX@2.6;
 WY@2.6 = X@2.6 - 1;
7. unlock(L2); UL2@2.7;
 Negated Branch Check: t@2.4 != true

T2

b) Constraints

 Per-task Order Constraints:
 (W1.1 < W1.2 < W1.3)
 ^ (L2.1 < R2.2 < W2.2 < U2.3 < R2.4
 < L2.5 < R2.6 < W2.6 < U2.7)
 ^ (L3.1 < W3.2 < R3.3 < W3.3 < U3.4)

 Synchronization Constraints:
 (U3.4 < L2.1) ⌄ (U2.3 < L3.1)

 Read-Write Constraints:
 ((C2.2 = false) ^ (W1.3 < R2.2) ^
 (W3.2 < W1.2 ⌄ R2.2 < W3.2))
 ⌄ ((C2.2 = true) ^ (W3.2 < R2.2) ^
 (W1.3 < W3.2 ⌄ R2.2 < W1.3))
 ^ ((t2.4 = C2.2) ^ (W2.2 < R2.4))

 Spawn-Sync Constraints:
 (W1.3 < L2.1) ^ (W1.3 < L3.1)

 Negated Branch Check Constraint:
 t2.4 != true

Figure 7: (a) Concrete per-task traces and canonicalized trace representa-
tion. For every statement in the per-task trace, we create an order variable.
The order variable for a write operation performed by statement j in task
Ti is represented by Wi.j . Similarly, the order variables for the read, lock,
and unlock operations performed in statement j by task Ti is represented
by Ri.j , Li.j , and Ui.j respectively. The elements within the same task
are ordered. Hence, we have W1.1 < W1.2 < W1.3. There are two
value variables (C2.2 and t2.4) representing symbolic read operations that
directly or indirectly influence the branch condition. The read-write con-
straints connect the value variables and the order variables. The synchro-
nization and spawn-sync constraints further restrict the feasible orderings.
If the negated branch condition is satisfiable with the constraints, then the
branch is a schedule sensitive branch and the race is reported to the user.

sensitive branches is inspired by TAME [22] and DSP [27]. We en-
force an ordering corresponding to the possible race and repurpose
prior approaches to a task-based context.

Per-task execution trace generator. When the dynamic race
detector reports a possible race, we enforce the schedule corre-
sponding to the possible race. This step is necessary because the
dynamic race detection algorithm does not log the trace as it wants
to detect races with a low performance overhead. We also gen-
erate canonicalized per-task execution traces. The canonicalized
per-task execution trace captures all loads/stores, synchronization
constructs, and the branch condition corresponding to the possible
race. To check if the branch is schedule-sensitive, we need to check
if the negation of the branch condition involved in a possible race
is satisfiable. Figure 7(a) shows the per-task trace obtained for an
execution of the program in Figure 4 and its canonicalized trace.

Constraint generator. Using the per-task traces, we construct a
first-order logic formula to check for the satisfiability of the negated
branch condition. Inspired by DSP [27], we create two types of
variables: order variables and value variables. The order vari-
ables are used to encode the position of the operation in the per-
task trace. The value variables are used to symbolically encode
the read operations. Since, we are specifically interested in check-
ing the satisfiability of the negated branch condition, we will create
value variables for only those reads that directly or indirectly in-
fluence the branch condition. We generate a formula Φ that relates
these order and value variables using the task-parallel execution
constraints and checks the negated branch condition.

Φ = φpo ∧ φsync ∧ φrw ∧ φss ∧ φbr

where φpo is the constraint encoding the order of execution of oper-
ation in a given task, φsync is the constraint encoding the possible
orders of execution among the synchronization statements among
tasks, φrw is the constraint that encodes the data flow between vari-
ous accesses to the same location, φss is the constraint encoding the
parent-child relationship between tasks, and φbr is the constraint
representing the negated branch condition. Satisfiability of Φ im-
plies that the branch involved in a possible race is a schedule sensi-
tive branch and the possible races reported are indeed feasible.

Generating the constraints. The per-task order constraints (φpo)
ensure that the operations within the same task are ordered. The
synchronization constraints (φsync) order the lock and unlock op-
erations performed by the tasks on the same lock. Let Li.m/Ui.n

andLj.p/Uj.q be two lock/unlock order variables from two different
tasks (i 6= j) on the same lock. There are two possible orderings in
this scenario. When the lock statement from task i is executed first,
then Lj.p is executed only after the unlock statement Ui.n, which
results in an ordering constraint Ui.n < Lj.p. Otherwise, the lock
statement from task j is executed first, which results in an ordering
constraint Uj.q < Li.m. Hence, the synchronization constraint is a
disjunction of these two constraints.

The read-write constraint (φrw) connects the value variable and
order variables corresponding to writes to the same location. For
every read operation r, our constraint specifies that it reads the
value of a particular write w if w happens before r and every other
write happens before w or after r. Since we check for the satis-
fiability of the negated branch condition, we consider only those
reads and writes that directly or indirectly affect the branch condi-
tion. Figure 7(b) illustrates the constraints generated for the per-
task traces in Figure 7(a).

In summary, if the constraints generated are satisfiable, then the
branch is a schedule sensitive branch and the not-taken path at
a branch statement will be executed for the same input. Hence,
we report all such possible races involved with schedule sensitive
branches to the user.

4. IMPLEMENTATION
This section describes the metadata encoding and the implemen-

tation optimizations that we use to reduce the performance over-
head of data race detection.

4.1 Metadata Organization
The metadata for each shared memory location is stored in shadow

memory. We implement shadow memory using a two-level lookup
trie data structure as it provides the ability to shadow every address
in memory efficiently. A trie is a page-table like structure where
each level is accessed using few bits from the address whose meta-
data is being looked up. PTRacer maps a 48-bit virtual address
space using a two-level trie [31]. The first-level trie mappings are
allocated at program initialization and the second level entries are
allocated on demand when a memory location is touched for the
first time, which reduces the memory overhead.

Metadata encoding. The metadata associated with a shared
memory location is a list of four access history entries for each
lockset. Maintaining linked data structures in the shadow space
increases the performance overhead. In practice, we observe that
most shared memory locations are accessed with a small number
of locksets. Hence, we accelerate the common case (i.e., accesses
with few locksets) by organizing the entry in shadow memory as
a constant-sized array of data nodes. Each data node represents
the access history for a given lockset. If a shared memory loca-
tion is accessed with more locksets than the constant-sized array of

data nodes, then we resort back to the slow list representation for
that shared memory location. Each data node contains five 64-bit
values: a 64-bit value encoding the lockset, two 64-bit values for
representing the step nodes performing the reads: R1 and R2, and
two 64-bit values for representing the step nodes performing the
writes: W1 and W2. These implementation techniques enabled us
to successfully run parallel data race detection on large and long
running programs.

4.2 Optimizations
We observed three major opportunities for reducing the perfor-

mance overhead in our implementation: (1) choosing appropriate
data structures for the DPST, (2) identifying redundant checks, and
(3) identifying redundant LCA queries on the DPST. We describe
these optimizations below.

Overlay DPST in a linear array. Rather than building the
DPST using a linked n-ary tree data structure, we optimize the lay-
out of the DPST by overlaying the tree in a linear array of nodes.
We maintain parent-child relationship in such an overlay by main-
taining the index of the parent node with each child node. We
achieve better locality, avoid pointer chasing code, and avoid the
cost of frequent dynamic allocations by overlaying the DPST in a
linear array of nodes. Further, this representation also reduced the
overhead of a single LCA query when compared to the linked data
structure because it eliminated several pointer indirections in the
traversal of the DPST.

Access caching. We observed that there were multiple accesses
to the same location with the same lockset from a given step node.
However, we were not able to prove that they are redundant ac-
cesses through static analysis. We observe that when there are mul-
tiple accesses of the same type with the same lockset in a step node,
then it is sufficient to perform the check once and store the metadata
for only one access. We reduce the overhead of metadata checking
and propagation by caching accesses performed in the task, and not
performing the check on accesses that have an entry in the cache
with the same lockset and access type.

LCA caching. LCA queries are expensive even after optimiz-
ing the layout of the DPST because each query can traverse a large
number of nodes. Moreover, our data race detection algorithm per-
forms LCA queries on each access to check and propagate meta-
data. We observe that even when previously unseen addresses are
being checked, there are opportunities to cache LCA queries. LCA
queries check whether two step nodes can occur in parallel. When
these step nodes have been previously accessed in a LCA query, it
is not necessary to perform it again as the series-parallel relation-
ship between the tasks does not change as nodes are being added to
the graph. Hence, we cache the frequently performed LCA queries
to reduce overhead of the repeated traversals of the DPST. These
optimizations not only reduced the overhead of our implementa-
tion but also reduce the overhead of SPD3, the baseline that we
compare against in our evaluation.

5. EXPERIMENTAL EVALUATION
This section describes our prototype, implementation optimiza-

tions, benchmarks, and experimental evaluation to measure effec-
tiveness in race detection and the performance overhead of data
race detection.

Prototype. Our prototype PTRacer is designed for C++ pro-
grams that use Intel Threading Building Blocks(TBB) for task par-
allelism. It includes a compiler intermediate representation instru-
menter, a race detection library that performs runtime race detec-

Benchmark No.
of ac-
cesses

No. of
other
branch
accesses

No.
of
LCAs

Percent.
of unique
LCAs

Percent.
of access
cache
hits

blackscholes 140M 0 253M 67.27 49.05
bodytrack 32.48M 0 96.97M 24.08 0.8
fluidanimate 27.49M 0 74.08M 41.21 86.77
streamcluster 257M 63,742 854M 60.93 70.86
swaptions 301M 56,200 924M 63.11 64.45
convexhull 30.07M 26,386 19.11M 61.37 99.82
delrefine 153M 0 328M 53.43 0
deltriang 20M 366 64.36M 32.87 0
karatsuba 115M 22,438 152M 53.32 71.96
kmeans 118M 582 147M 30.19 54.57
nearestneigh 76M 0 134M 64.64 48.72
raycast 128M 11,704 655M 74.85 1.03
sort 11.74M 3768 4.14M 45.78 97.87

Table 1: We report the number of dynamic shared memory ac-
cesses, the number memory accesses due to record instrumentation
to capture operations from the not-taken path at a branch statement,
the number of least common ancestor queries, the percentage of
unique LCA queries, and the percentage of accesses that hit in the
access cache for each benchmark. We use M for million in the
table.

tion, an execution trace generator, and a constraint generator. The
instrumenter is implemented as a compiler pass in Clang+LLVM-
3.7. It inserts calls to the race detection library at shared memory
accesses, synchronization statements, and task management state-
ments. We use the demangled name of the library calls to iden-
tify synchronization and task management statements. The instru-
menter also identifies accesses performed in both the taken and not-
taken paths of a branch statement.

The race detection library is written in C++. The runtime library
builds the DPST, performs metadata propagation and checks for
data races as described in Figure 5. The constraint generator is writ-
ten in Python. It parses the per-task traces, creates order and value
variables, and constructs the first-order logic formula to check the
feasibility of a schedule sensitive branch. PTRacer uses Z3 [10]
to check the satisfiability of the generated formula. Our tool will
be released as open source.

Benchmarks. We evaluate the performance overheads with our
prototype with thirteen TBB applications, which include five TBB-
based applications from Parsec [3], five geometry and graphics ap-
plications from the problem based benchmark suite (PBBS) [42],
and three applications from the Structured Parallel Programming
book [29]. The PBBS applications were originally implemented
using Cilk [17]. We translated these applications to use Intel TBB
for task parallelism. Table 1 lists the applications used and their
important features.

Evaluation environment. The experiments were performed on
a 4.00GHz four-core Intel x86-64 i7 processor, with 64 GB of
memory running 64-bit Ubuntu 14.04.3. Each benchmark was ex-
ecuted five times and the reported performance overhead is calcu-
lated by taking the average of the five executions. We use geometric
mean to report average slowdown in our evaluation.

Effectiveness in detecting data races. To test the effectiveness
of our prototype in detecting races, we have built a test suite of 120
unit tests that include racy and non-racy programs with and without
locks and schedule sensitive branches. There were 60 races in total

0X

5X

10X
S

lo
w

d
o
w

n
PTRacer

SPD3

blackscholes

bodytrack

flu
idanimate

stre
amcluste

r

sw
aptions

convexHull

delRefin
e

delTriang

karatsu
ba

kmeans

nearestn
eigh

rayCast sort

Geo.mean

1
1
X

1
1
X

1
3
X

1
1
X

1
2
X

Figure 8: Execution time slowdown of PTRacer and SPD3 when compared to a baseline without any instrumentation.

0X

5X

10X

S
lo

w
d
o
w

n

PTRacer with other branch PTRacer without other branch

blackscholes

bodytrack

flu
idanimate

stre
amcluste

r

sw
aptions

convexHull

delRefin
e

delTriang

karatsu
ba
kmeans

nearestn
eigh

rayCast sort

Geo.mean

1
1
X

1
1
X

1
3
X

1
3
X

1
2
X

1
2
X

Figure 9: Execution time slowdown of PTRacer with and without data
race detection with record instrumention from the not-taken path of a branch
statement.

in the test suite. PTRacer successfully detects all the races in the
racy suite without any false positives. In contrast, SPD3 detected
46 races, reported 40 false positives, and missed 14 races. We ran
SPD3 multiple times to detect races in the presence of schedule
sensitive branches. There were 14 races that were not detected by
SPD3 even after performing multiple executions.

Performance overhead in comparison to SPD3. Figure 8 re-
ports the performance overhead of PTRacer and SPD3 when com-
pared to a baseline without any instrumentation. We use LCA
caching by default even with SPD3. There are two bars for each
benchmark (smaller bars are better as it reports overheads). The
average performance overhead of PTRacer is 6.7×. Although the
average overhead is 6.7×, four applications, streamcluster, swap-
tions, delRefine and raycast have overhead greater than 10×. Among
them, streamcluster and swaptions have large number of race de-
tection checks and they perform a large number of LCA queries.
delRefine and raycast have relatively fewer accesses but have no
locality in their LCA queries and race checks (see Table 1). The
performance overhead of SPD3 is 5.4×. SPD3 maintains constant
metadata for every shared memory location and does not detect data
races in programs that use locks. PTRacer has similar overheads
when compared to SPD3 and detects more races in the presence of
locks and schedule sensitive branches.

Performance overhead in comparison to FastTrack. Figure 10
reports the performance overhead of PTRacer and our implemen-
tation of FastTrack for tasks when compared to a baseline with-
out any instrumentation. FastTrack aborted with out-of-memory
errors with three applications, streamcluster, delRefine and raycast.
These applications create many tasks and have a large number of
shared accesses that prevent the use of optimized version of vector
clocks. The average performance overhead of FastTrack for other

0X

5X

10X

S
lo

w
d
o
w

n

PTRacer FastTrack

blackscholes

bodytrack

flu
idanimate

sw
aptions

convexHull

delTriang

karatsu
ba

kmeans

nearestn
eigh sort

Geo.mean

1
1
X

2
0
X

1
1
X

2
5
X

1
3
X

1
3
X

1
5
X

1
6
X

1
9
X

1
4
X

Figure 10: Execution time slowdown of PTRacer and FastTrack when
compared to a baseline without any instrumentation.

0X

5X

10X

S
lo

w
d
o

w
n

PTRacer with access caching PTRacer without access caching

blackscholes

bodytrack

flu
idanimate

stre
amcluste

r

sw
aptions

convexHull

delRefin
e

delTriang

karatsu
ba
kmeans

nearestn
eigh

rayCast sort

Geo.mean

1
1
X

1
4
X

1
1
X

1
4
X

1
3
X

1
4
X

1
2
X

1
1
X

1
2
X

1
2
X

Figure 11: Execution time slowdown of PTRacer with and without ac-
cess caching.

applications is 14×.

Performance impact of record instrumentation from the not-
taken path. Figure 9 reports the performance overhead of PTRacer
with and without the record instrumentation to capture operations
from both the paths of a branch statement. The record instrumen-
tation has increased the overhead of data race detection from 6.3×
to 6.7×. With a nominal increase in performance overhead, the
record instrumentation enables detection of races in the presence
of schedule sensitive branches.

Performance benefits with access caching. Figure 11 reports
the effect of the access caching optimization on the performance
overhead of PTRacer. The access caching optimization reduces
the average performance overhead from 8.5×without access caching
to 6.7×. Most applications benefit from access caching. Three ap-
plications, fluidanimate, convexhull, and sort have significant re-
duction in overhead because a large fraction of the accesses hit in
the access cache and do not perform the costly data race check and

0X

5X

10X

S
lo

w
d
o
w

n
PTRacer with LCA caching PTRacer without LCA caching

blackscholes

bodytrack

flu
idanimate

stre
amcluste

r

sw
aptions

convexHull

delRefin
e

delTriang

karatsu
ba
kmeans

nearestn
eigh

rayCast sort

Geo.mean
1

1
X

1
5
X

1
1
X

1
4
X

1
3
X

1
5
X

1
1
X

1
3
X

1
2
X

1
2
X

Figure 12: Execution time slowdown of PTRacer with and without LCA
caching.

0X

5X

10X

S
lo

w
d
o
w

n

1 thread
2 threads
4 threads

blackscholes

bodytrack

flu
idanimate

stre
amcluste

r

sw
aptions

convexHull

delRefin
e

delTriang

karatsu
ba
kmeans

nearestn
eigh

rayCast sort

Geo.mean

1
1
X

1
1
X

1
1
X

1
2
X

1
1
X

1
1
X

1
4
X

1
3
X

1
3
X

1
3
X

1
2
X

1
2
X

Figure 13: Execution time slowdown of PTRacer when executed with 1,
2 and 4 threads.

the metadata update. Applications bodytrack, delrefine, deltriang,
and raycast, do not benefit from access caching since most loca-
tions are accessed once in a given step node.

Performance benefits with LCA caching. Figure 12 reports the
performance overhead of PTRacerwith and without LCA caching
when compared to a baseline without any instrumentation. On av-
erage, LCA caching reduces the performance overhead from 8.8×
without LCA caching to 6.7×. All applications except raycast see
a significant reduction in overheads as there are fewer unique LCA
queries. raycast does not benefit much from LCA caching because
of the large number of unique LCA queries.

Performance overhead for different number of threads. Fig-
ure 13 reports the performance overhead of PTRacer when ex-
ecuted by restricting the task parallel runtime to use 1, 2, and 4
threads. The average overhead when executed with 1, 2, and 4
threads is 6.8×, 6.6× and 6.7× respectively. The average over-
head is almost constant which indicates that our approach scales
well when the program is run on machines with larger thread/core
counts.

6. RELATED WORK
Data race detection in multithreaded programs. There is a

large body of work on dynamic data race detection in thread based
parallel programs [12, 16, 34, 41, 48]. FastTrack [16] represents
the state-of-the-art in dynamic data race detection for threaded pro-
grams. FastTrack detects data races in the given execution by track-
ing happens-before relations between shared memory accesses. The
overhead of race detection with FastTrack can be high when ex-
ecuted on programs that create many threads as the metadata is
proportional to the number of threads. Further, FastTrack only
detects races that occur in a given schedule. Eraser [40] uses a
lockset-based approach and checks for errors in locking discipline.

Lockset-based approaches often have lower overhead compared happens-
before based approaches, but can report false positives.

There are dynamic approaches [5, 11, 14, 18, 28] that attempt
to reduce the overhead of race detection through sampling. But
these approaches often miss data races while trying to reduce the
overhead. There are several proposals for static race detection [1,
13, 32, 35]. While static detection approaches are appealing as they
have no runtime performance overhead, they can produce a large
number of false positives.

Predictive testing for threaded programs. There are also nu-
merous approaches that attempt to detect races and other concur-
rency errors feasible in a different schedule derived from a trace
in a multithreaded program [20, 21, 43, 45, 47]. Predictive test-
ing ideally can detect feasible races for a given input as long as all
operations that can occur in different thread schedules occur in the
observed trace. However, most predictive testing techniques bound
the instruction window (up to 4K instructions) to make it practical.
PTRacer provides guarantees similar to an ideal predictive test-
ing by leveraging the structure of the task parallel execution and
by maintaining appropriate metadata. Further, it detects races that
can occur in other schedules in the presence of schedule sensitive
branches using record instrumentation.

Data race detection in task parallel programs. The approach
proposed by Mellor-Crummey et al. [30] and Nondeterminator [15]
were seminal in proposing the detection of apparent data races in
task parallel programs using the series-parallel execution graph.
Subsequently, these techniques have been enhanced to handle locks [8],
to handle task graphs in Habanero-Java [37], and to detect races
without serial execution with SPD3 [36, 38]. Our proposed re-
search uses the DPST representation in SPD3 and is inspired by
the access histories in the ALL-SETS algorithm for Cilk [8].

Determinacy checkers. In the absence of synchronization, data
race freedom ensures determinism [4, 26]. Even in deterministic
programs there can be a large number of schedules for different in-
puts. There are proposals that memoize past schedules [9] and limit
the execution to a set of input covering schedules [2]. Tardis [26]
checks for determinism by maintaining a log of accesses and identi-
fying conflicting accesses between tasks. In contrast, our approach
detects data races both in the presence and absence of synchroniza-
tion operations.

7. CONCLUSION
This paper addresses the problem of detecting apparent data races

in task parallel programs with a parallel detector that handles locks.
The key insight is to leverage the execution graph of a task paral-
lel program to determine if accesses can occur in parallel and de-
sign metadata that tracks a constant number of access histories for
each lockset held before an access to a shared memory location.
PTRacer uses static analysis and instrumentation to identify op-
erations that can happen in the not-taken path in the presence of
schedule sensitive branches and detects apparent races that can oc-
cur in other schedules for a given input. In summary, PTRacer
is a data race detector for task parallel programs that (a) runs in
parallel, (b) detects data races when the program uses locks, (3)
maintains per-location metadata that is independent of the number
of dynamic accesses, and (4) detects apparent races not only in the
observed schedule but also in other schedules for a given input.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe

locking: Static race detection for java. ACM Trans. Program.

Lang. Syst., 28(2):207–255, 2006.

[2] T. Bergan, L. Ceze, and D. Grossman. Input-covering sched-
ules for multithreaded programs. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, pages
677–692, 2013.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec bench-
mark suite: Characterization and architectural implications.
In Proceedings of the 17th International Conference on Par-
allel Architectures and Compilation Techniques, pages 72–81,
2008.

[4] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A type and effect system for deter-
ministic parallel java. In Proceedings of the 24th ACM SIG-
PLAN Conference on Object Oriented Programming Systems
Languages and Applications, pages 97–116, 2009.

[5] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Pro-
portional detection of data races. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 255–268, 2010.

[6] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-java:
The new adventures of old x10. In Proceedings of the 9th
International Conference on Principles and Practice of Pro-
gramming in Java, pages 51–61, 2011.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In Pro-
ceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Ap-
plications, pages 519–538, 2005.

[8] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and
A. F. Stark. Detecting data races in cilk programs that use
locks. In Proceedings of the 10th ACM Symposium on Parallel
Algorithms and Architectures, pages 298–309, 1998.

[9] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable deterministic
multithreading through schedule memoization. In Proceed-
ings of the 9th USENIX Conference on Operating Systems
Design and Implementation, pages 1–13, 2010.

[10] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th In-
ternational Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 337–340, 2008.

[11] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J.
Boehm. Ifrit: Interference-free regions for dynamic data-race
detection. In Proceedings of the ACM International Confer-
ence on Object Oriented Programming Systems Languages
and Applications, pages 467–484, 2012.

[12] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race and
transaction-aware java runtime. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 245–255, 2007.

[13] D. Engler and K. Ashcraft. Racerx: Effective, static detec-
tion of race conditions and deadlocks. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Princi-
ples, pages 237–252, 2003.

[14] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective data-race detection for the kernel. In In Proceedings
of the 9th USENIX conference on Operating systems design
and implementation, 2010.

[15] M. Feng and C. E. Leiserson. Efficient detection of determi-
nacy races in cilk programs. In Proceedings of the 9th ACM
Symposium on Parallel Algorithms and Architectures, pages
1–11, 1997.

[16] C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise
dynamic race detection. In Proceedings of the 30th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 121–133, 2009.

[17] M. Frigo, C. E. Leiserson, and K. H. Randall. The implemen-
tation of the cilk-5 multithreaded language. In Proceedings of
the ACM SIGPLAN 1998 Conference on Programming Lan-
guage Design and Implementation, pages 212–223, 1998.

[18] J. L. Greathouse, Z. Ma, M. I. Frank, R. Peri, and T. Austin.
Demand-driven software race detection using hardware per-
formance counters. In Proceedings of the 38th Annual Inter-
national Symposium on Computer Architecture, pages 165–
176, 2011.

[19] D. Grossman and R. E. Anderson. Introducing parallelism
and concurrency in the data structures course. In Proceedings
of the 43rd ACM Technical Symposium on Computer Science
Education, 2012.

[20] J. Huang, Q. Luo, and G. Rosu. Gpredict: Generic predic-
tive concurrency analysis. In Proceedings of the 37th Interna-
tional Conference on Software Engineering - Volume 1, pages
847–857, 2015.

[21] J. Huang, P. O. Meredith, and G. Rosu. Maximal sound pre-
dictive race detection with control flow abstraction. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 337–348,
2014.

[22] J. Huang and L. Rauchwerger. Finding schedule-sensitive
branches. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 439–449, 2015.

[23] J. Huang, C. Zhang, and J. Dolby. Clap: Recording local exe-
cutions to reproduce concurrency failures. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 141–152, 2013.

[24] V. Kahlon, F. Ivančić, and A. Gupta. Reasoning about threads
communicating via locks. In Proceedings of the 17th Inter-
national Conference on Computer Aided Verification, pages
505–518, 2005.

[25] D. Lea. A java fork/join framework. In Proceedings of the
ACM 2000 Conference on Java Grande, pages 36–43, 2000.

[26] L. Lu, W. Ji, and M. L. Scott. Dynamic enforcement of deter-
minism in a parallel scripting language. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 519–529, 2014.

[27] N. Machado, B. Lucia, and L. Rodrigues. Concurrency de-
bugging with differential schedule projections. In Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 586–595, 2015.

[28] D. Marino, M. Musuvathi, and S. Narayanasamy. Literace:
Effective sampling for lightweight data-race detection. In
Proceedings of the 30th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 134–
143, 2009.

[29] M. McCool, A. Robison, and J. Reinders. Structured Parallel
Programming: Patterns for Efficient Computation. Morgan
Kaufmann, 2012.

[30] J. Mellor-Crummey. On-the-fly detection of data races for
programs with nested fork-join parallelism. In Proceedings
of the 1991 ACM/IEEE Conference on Supercomputing, pages
24–33, 1991.

[31] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic.
Cets: Compiler enforced temporal safety for c. In Proceed-
ings of the 2010 International Symposium on Memory Man-
agement, 2010.

[32] M. Naik, A. Aiken, and J. Whaley. Effective static race detec-
tion for java. In Proceedings of the 27th ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, pages 308–319, 2006.

[33] R. H. B. Netzer and B. P. Miller. What are race conditions?:
Some issues and formalizations. ACM Lett. Program. Lang.
Syst., pages 74–88, 1992.

[34] E. Pozniansky and A. Schuster. Efficient on-the-fly data race
detection in multithreaded c++ programs. In Proceedings of
the Ninth ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 179–190, 2003.

[35] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Context-
sensitive correlation analysis for race detection. In Proceed-
ings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 320–331, 2006.

[36] R. Raman. Dynamic Data Race Detection for Structured Par-
allelism. PhD thesis, Rice University, 2012.

[37] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Effi-
cient data race detection for async-finish parallelism. In Pro-
ceedings of the 1st International Conference on Runtime Ver-
ification, pages 368–383, 2010.

[38] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Scal-
able and precise dynamic datarace detection for structured
parallelism. In Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, pages 531–542, 2012.

[39] J. Reinders. Intel Threading Building Blocks. O’Reilly &
Associates, Inc., 2007.

[40] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A dynamic data race detector for multi-
threaded programs. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles, pages 27–37, 1997.

[41] K. Serebryany and T. Iskhodzhanov. Threadsanitizer: Data
race detection in practice. In Proceedings of the Workshop on
Binary Instrumentation and Applications, pages 62–71, 2009.

[42] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Ky-
rola, H. V. Simhadri, and K. Tangwongsan. Brief announce-
ment: The problem based benchmark suite. In Proceedings
of the 24th Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, pages 68–70, 2012.

[43] A. Sinha, S. Malik, and A. Gupta. Efficient predictive analy-
sis for detecting nondeterminism in multi-threaded programs.
In Formal Methods in Computer-Aided Design, pages 6–15,
2012.

[44] A. Sinha, S. Malik, C. Wang, and A. Gupta. Predictive anal-
ysis for detecting serializability violations through trace seg-
mentation. In Proceedings of the 28th ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, pages 446–455, 2011.

[45] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flana-
gan. Sound predictive race detection in polynomial time.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
387–400, 2012.

[46] J. W. Voung, R. Jhala, and S. Lerner. Relay: Static race detec-
tion on millions of lines of code. In Proceedings of the the 6th
Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, pages 205–214, 2007.

[47] C. Wang, S. Kundu, M. Ganai, and A. Gupta. Symbolic pre-
dictive analysis for concurrent programs. In Proceedings of
Formal Methods, pages 256–272, 2009.

[48] C. Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan. Dy-
namic model checking with property driven pruning to detect
race conditions. In Proceedings of the 6th International Sym-
posium on Automated Technology for Verification and Analy-
sis, pages 126–140, 2008.

