

Restful Objects

v1.0.0

Restful Objects defines a hypermedia API, consisting of HTTP resources and corresponding JSON

representations, for accessing and manipulating a domain object model.

The most up-to-date version of this specification may be downloaded

from www.restfulobjects.org. The site also includes details of known implementations,

and other useful information.

Dan Haywood

Licensed under:
Creative Commons Attribution-ShareAlike 3.0

http://creativecommons.org/licenses/by-sa/3.0/

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page i

TABLE OF CONTENTS

A Concepts and Building Blocks... A-1

1 Introduction .. A-3

2 Concepts .. A-7

3 Optional Capabilities .. A-41

4 Specified Elements .. A-49

B Supporting Resources and Representations ... B-53

5 Home Page Resource & Representation .. B-55

6 User Resource & Representation .. B-59

7 Domain Services Resource .. B-63

8 Version Resource & Representation... B-67

9 Objects of Type Resource ... B-71

10 Error Representation ... B-75

11 List Representation .. B-77

12 Scalar Value Representation... B-79

C Domain Object Resources & Representations C-81

13 Response Scenarios ... C-83

14 Domain Object Resource & Representation C-93

15 Domain Service Resource ... C-105

16 Property Resource & Representation .. C-106

17 Collection Resource & Representation C-115

18 Action Resource & Representation ... C-125

19 Action Invoke Resource .. C-133

D Domain Type Resources ... D-145

20 Response Scenarios ... D-147

Restful Objects

Page ii v1.0.0 License: CC BY-SA 3.0

21 Domain Types Resource .. D-151

22 Domain Type Resource ... D-155

23 Domain Type Property Description Resource D-159

24 Domain Type Collection Description Resource D-163

25 Domain Type Action Description Resource D-167

26 Domain Type Action Parameter Description Resource D-171

27 Domain Type Action Invoke Resource .. D-175

E Discussions .. E-183

28 HATEOAS vs Web APIs... E-185

29 Personal vs Shared State .. E-187

30 Dealing with Untrusted Clients .. E-193

31 Client vs Server Evolution ... E-195

32 Code Sketch to support Addressable View Models E-198

33 FAQs .. E-201

34 Ideas for Future Extensions to the Specification E-205

TABLE OF FIGURES

Figure 1: Resources and Representations ... A-7

Figure 2: Media Type Layers .. A-18

Figure 3: Domain Objects vs Domain Types .. A-45

Figure 4: Home Page Representation ... B-56

Figure 5: User Representation ... B-60

Figure 6: Services Representation .. B-64

Figure 7: Version Representation ... B-68

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page iii

Figure 8: Domain Object Representation ... C-96

Figure 9: Object Property Representation ... C-110

Figure 10: Object Collection Representation ... C-119

Figure 11: Object Action Representation .. C-126

Figure 12: Action Result for Object ... C-139

Figure 13: Action Result for List .. C-141

Figure 14: Action Result for Scalar .. C-142

Figure 15: Action Result for Void ... C-144

Figure 16: Domain Type List Representation ... D-151

Figure 17: Domain Type Representation ... D-156

Figure 18: Domain Property Collection Representation D-160

Figure 19: Domain Collection Description Representation D-164

Figure 20: Domain Action Description Representation D-168

Figure 21: Domain Action Parameter Description Representation D-172

Figure 22: Domain Type Action Representation D-176

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-1

A

CONCEPTS
AND

BUILDING BLOCKS

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-3

1 INTRODUCTION
Restful Objects is a public specification for a set of RESTful1 resources2 by

which a client application can interact with a domain model on a server

using HTTP. These resources generate JSON representations along with

corresponding media types.

This chapter discusses further the goals and approach taken by the spec.

1.1 Goals
The goal of Restful Objects is to allow domain models to be accessed

through HTTP resources, returning a set of JSON representations. These

representations can then be consumed by any client (e.g. Javascript,

Java, .NET, Ruby, Python).

Both the resources and representations are generalized so that they can

be applied to any domain model, and by default all representations have

media types designed to allow a completely generic client to be written,

capable of working, unmodified, with any domain model that has a

Restful Objects interface..

Alternatively, the developer may write a custom client that has some

shared knowledge of the domain being exposed, and render the

information in a more specific fashion.

Restful Objects also defines that representations are served up with

parameterized media types. This allows clients to use content negotiation

to ensure that representations do not change in a breaking fashion,

enabling server and client to evolve independently.

The Restful Objects specification is at a higher-level of abstraction than,

say, the JAX-RS specifications for Java platform, or the WCF specifications

on .NET. Specifically, the domain classes that it exposes are represented in

a very general form. They consist of:

• properties (fields), each holding either a scalar value or reference

to another object;

• collections, each holding a vector reference to other entities;

• actions (operations/methods), whereby the object can execute

business logic.

Beyond this, though, Restful Objects makes very few assumptions. In

particular, Restful Objects does not prescribe the nature of the domain

model.

1 http://en.wikipedia.org/wiki/REST

2 http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Restful Objects

Page A-4 v1.0.0 License: CC BY-SA 3.0

1.2 A Uniform Interface
Restful Objects defines a uniform interface to the domain objects. This

uniformity is expressed in terms of:

• the format of URLs used to access the domain object resources

(though URLs can also be treated as opaque);

• the standard HTTP methods used (GET, POST, PUT, DELETE) to call the

resource URLs;

• the standard HTTP headers supported for both request and

response;

• the use of standard HTTP status return codes;

• standardized, parameterized media types to fully describe the

representation, e.g.:

application/json;
 profile="urn:org.restfulobjects:repr-types/object";
 x-ro-domain-type="com.mycompany.myapp.v2.PlaceOrderViewModel"

• standard properties within JSON representations;

• a standard representation of links between resources;

• a small number of reserved query parameter names to influence

behaviour (e.g. validation).

Existing HTTP standards and supporting W3C standards have been used

wherever possible.

1.3 Benefits
Because the spec defines a generalized binding for any domain model, it

allows the project team to focus on developing the domain model rather

than worrying about the intricacies of following a RESTful style. For

example, the debate becomes about whether an action is idempotent,

not about whether to use HTTP PUT or HTTP POST. And debates about URI

structure (should it be customers/{custId}/invoices or should it be

invoices/for/{custId}?) disappear because the URL is determined by the

responsibilities of the underlying domain objects.

Further specific benefits include:

• Testing. Since all business logic is expressed only in domain classes,

such business logic may be tested using fast and cheap in-memory

unit tests. In contrast, if a RESTful API is custom-written and tuned to

specific use cases, then it can only be effectively tested through

(slower) integration tests running across a webserver.

• Documentation. Restful Objects eliminates the need for the project

team to explicitly document the RESTful API to their system,

because consumers can infer the structure either directly from the

underlying domain classes, or by querying the domain metamodel

resources §D.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-5

• Common server code. Restful Objects is intended to enourage

frameworks to be written that implement the spec (indeed, such

frameworks already exist3). A project team adopting such a

framework can then focus solely on implementing business logic

through domain classes, and know that the business logic will be

exposed in a standard and consistent fashion.

• Common client code. Any generic Restful client written to work with

one framework implementation will also inter-operate across any

other implementations.

There is further discussion on how the specification enables the RESTful

style (along with an FAQ) in §E.

1.4 Audience
This document is written for several audiences:

• for developers intending to write a bespoke domain-driven system

and want a guidance on how to expose the domain in a RESTful

style;

• for developers intending to write a bespoke domain-driven system

intended to be hosted on a general-purpose framework that

implements this spec;

• for developers intending to write a generic or custom client against

a domain object model exposed using Restful Objects;

• for developers intending to write their own general-purpose

framework implementation of the specification.

The specification adopts a semi-formal style; providing examples of

representations rather than formal grammars. The intention is to make the

specification accessible to all its target audiences.

1.5 Authorship and License
Restful Objects was conceived by Dan Haywood, who is also the primary

author of this document. Substantial contributions have been made by

Richard Pawson and Stef Cascarini.

The specification is licensed under Creative Commons Attribution Share-

Alike 3.04 (the same license as Wikipedia). As such the document may be

shared and adapted. However, any derivative work must be attributed

back to the author of this document, and must be licensed under the

same license to this one.

3 A list of known implementations of the Restful Objects specification is maintained

at http://www.restfulobjects.org.

4 http://creativecommons.org/licenses/by-sa/3.0/

Restful Objects

Page A-6 v1.0.0 License: CC BY-SA 3.0

1.6 Style Conventions
Restful Objects defines that URLs, when generated in resources, are

absolute. Because the hostname is likely to be a long string and in any

case will vary, in the spec it is shown by a ‘~’ placeholder:

http://~/

At some points in the spec the fully qualified class name appears. In a

Java implementation, this would be a string such as

com.mycompany.myapp.Customer. In a .NET implementation,

meanwhile, this might instead be MyCompany.MyApp.Customer. Other

platforms are likely to have their own equivalent conventions. For

conciseness, this has been shown by an "x" placeholder: x.Customer.

There are two important concepts in the spec that both have the name

"property": a domain object property, and a property within a JSON

representation (the key value of a JSON map). The spec always refers to

the former as a "property", and to the latter as a “json-property”.

Finally, Restful Objects defines a set of "rel" values for links. To distinguish

these from IANA-specified links, these each have the prefix

"urn:org.restfulobjects:rels/". This is abbreviated to ".../" in example

representations.

1.7 Document Repository and History
The source for this document can be found at

http://github.com/danhaywood/restfulobjects-spec.

This document uses semantic versioning5.

Version Description

v1.0.0 First release.

Minor edits and clarifications from preceding version (0.69.0):

- versioned using semver;

- specVersion property;

- x-ro-domain-model="selectable" behaviour;

- href for persist link of proto-persistent entities; no longer any need to

provide domaintype within arguments map;

- typos

Added reference to github repository.

Removed change history prior to v1.0.0 (see github repo for details, if

required).

5 http://semver.org

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-7

2 CONCEPTS
This section describes the main concepts that underpin Restful Objects.

2.1 Resources vs. Representations
The following diagram shows the RESTful resources defined by the

specification, along with the representations that they generate:

FIGURE 1: RESOURCES AND REPRESENTATIONS

In this diagram:

• Each shaded box indicates a resource that can be invoked.

The colour indicates the part of the spec where the resource is

defined; yellow is supporting resources §B, pink is domain object

resources §C, blue is domain type resources §D;

• The circles on the corner of each shaded box indicate the HTTP

methods (GET, PUT, POST, DELETE) supported by that resource;

Restful Objects

Page A-8 v1.0.0 License: CC BY-SA 3.0

Most of the resources show a dotted-arrow pointing to a (white)

document icon, to indicate the representation returned by the

resource. Some resources return their own, unique, representation

(e.g. the home page resource, the user resource). However, some

representations (most notably the object representation) may be

returned by several different resources.

• Dotted lines from a representation to a resource indicate that the

representation contains a link to another resource

Most of the significant GET links are shown; to reduce visual clutter

most PUT, DELETE and PUT links are not shown;

• In-lined representations (of object, lists, or scalars within an action

result) are shown by a dash-dot-dash line.

Resource Relationships

The home page resource §B5 is intended to act as a start page: a well-

known location from which a client can start to interact with the server.

The representation returned by this resource provides links to three further

resources:

• The user resource §B6 represents the currently logged-in user; the

returned User Representation provides details such as their user

name and roles.

• The domain services resource §B7 returns a list representation §B11,

which contains a link to each domain service resource §C15. A

domain service is a singleton object that has actions but no state.

The representation returned by a service resource is an object

representation, but with content clearly indicating that the object it

represents is a service.

• The version resource §B8 provides a mechanism for the client to

discover the version of the spec and of the implementation, as well

as querying any optional capabilities of the implementation (e.g.

whether it supports direct deletion of persisted objects).

The domain object representation §C14.4 is the most important

representation within Restful Objects; from it various sub-resources can be

accessed. The most immediate such sub- resources are for:

• each property of the object (§C16.4)

• each collection of the object (§C17.5), and

• each action of the object (§C18.2).

Following these links it is possible to walk the graph to other domain object

resources associated via properties or collections, and/or to modify the

contents of properties and collections.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-9

An action on an object may be invoked through its ‘action invoke’ sub-

resource (§C19); the HTTP method to use is dependent on the action's

semantics. The representation returned by invoking the action will either

be a scalar value §B12, a representation of the returned domain object

§C14.4, or a list §B11 (linking to multiple domain object resources §C14)

As well as providing access to sub-resources, the domain object resource

also allows multiple properties to be updated, and objects to be deleted

in a single transaction. (The latter is an optional capability §B8.)

Restful Objects defines two schemes by which implementations may

provide domain type information – such as whether a property is

mandatory or not – to clients. The "simple" scheme in-lines certain key

domain type information directly within the domain object representation.

The "formal" scheme, by contrast, defines separate ‘domain type’

resources and corresponding representations, with the domain object

representations linking to these domain type resources. There are six such

resources (§D21.2, §D22.2, §D23.2, §D24.2, §D25.2, and §D26.2).

 Restful Objects also defines a general mechanism to enable new domain

object instances (that have been created by an action) to then be

persisted, through the Objects Of Type resource §B9.

2.2 Domain Object Ontology
The representations defined by Restful Objects are RESTful in the sense that

they provide relevant links to other resources that the client can follow: this

is Restful Objects' support for HATEOAS §E28.1. Depending on the nature of

the domain object being represented, links may or may not be present:

• to properties §C16.1 and collections §C17.1 of the object

• to actions §C18.1on the object

• to update all properties §C14.2 of the object

• to persist the object §B9.1

• to delete the object §C14.3

The following sections describe how the different types of domain object

will result in the presence or absence of specific links. (Note that in all

cases, a link is only ever provided if the client has the correct security

permissions for that capability).

Persistent domain entity

The most common type of domain object that Restful Objects deals with is

a persistent domain entity: an object instance that exists from one

interaction to the next, whose state is stored in a database (for example in

an RDBMS table) and which is potentially visible to all clients.

Typically a representation of a persistent domain entity includes links to the

entity's state (its properties and collections).

Restful Objects

Page A-10 v1.0.0 License: CC BY-SA 3.0

The representation will contain links to the object's actions, by which

domain object behaviour can be invoked. This is a key piece of HATEOAS

support.

Assuming that at least one property is updatable, the "update properties"

link will also be present. And if object deletion §C14.3 is supported by the

implementation, then the delete object link will also be present.

 The "persist object" link will not be present because this object is already

persisted.

Examples of persistent domain entities are Customer, Order, OrderItem,

and Product.

Proto-persistent domain entity

A proto-persistent domain entity is an object instance that is created as a

result of an interaction and immediately represented back to the client,

without having been persisted first. The ultimate persistence of the entity is

therefore under the control of the client.

Unlike a persistent domain entity, for a proto-persistent domain entity there

is no server-side resource to address after the first interaction which returns

its representation. This means that its representation must have all the state

(properties and collections) in-lined within the representation. There are no

links to update the object’s properties, nor to delete that object. And

there are no links to any domain object actions. The only link that is

available is the one to persist the object.

For example, a Customer object might provide a createOrder() action

that returns (the representation of) a proto-persistent Order as its result,

with certain properties set as required. The client would be expected to

complete relevant details for the Order, and then to use the provided

rel="…/persist" link in order to persist the Order. Thereafter that order will

always be handled as a persistent domain entity.

View model

A view model is a type of domain object that projects the state of one or

more domain entity instances. This is typically done in support of a

particular use case.

View models may also be used to provide a stable layer of abstraction.

This is necessary when the deployment cycle for the Restful server and its

client(s) are different: the server must ensure that any representations

consumed by its client(s) remain backwardly compatible.

An example of a view model might be OrderHistoryReport, which

aggregates information about a number of historical orders (e.g. so they

can be graphed or plotted in some form).

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-11

View models are not persisted and so (like proto-persistent entities) their

representation includes the state of the view model but no behaviour.

However, unlike proto-persistent entities, they provide no persist link. In

fact, such representations contain no links at all.

Addressable view model

Because simple view models provide no links, they leave the consuming

client at a dead-end; in order to do further work the client must use

information saved from a previous representation. In other words, the

HATEOAS principle is broken.

In order for any action link to work, the object must have some notion of

identity from one interaction to the next. Where a view model instance

does have such an identity we describe it as an ‘Addressable View

Model’.

How this identity is managed is implementation-specific, but typically an

addressable view model will be closely associated with an underlying

persistent domain entity (by convention or some other means); the

implementation can then use that underlying entity in order to re-create

some server-state. See §E32.1 for a code sketch as to how this might be

accomplished.

In theory addressable view models could also provide links to related

properties or collections. However, because the purpose of a view model

is also to expose a stable set of state for a particular use case,

implementations are more than likely expected to simply in-line the

property or collection values in their representation.

A good example of an addressable view model is Order/OrderItems,

where a single representation has the state of a (persistent) Order along

with all its associated OrderItems. However, such a view model would also

provide actions that could delegate to the underlying Order object.

Domain service

The last category of domain objects is a domain service. A domain service

is a singleton domain object that acts as a repository for locating existing

domain entities, as a factory for creating new entities, or provides other

services to domain objects.

Domain services typically do not have state (properties or collections),

only behaviour (actions). They also cannot be updated, persisted or

deleted.

Restful Objects

Page A-12 v1.0.0 License: CC BY-SA 3.0

2.2.1 Summary

The following table summarizes the links (to other representations) that

may be present in the object representation §C14.

property

collection

action

persist

update

properties

delete

Persistent

entity

yes

yes

yes --- yes yes

Proto-persistent

entity

(in-lined)

(in-lined)

--- yes --- ---

View model ---

(in-lined)

(in-lined)

--- --- --- ---

Addressable

view model

(in-lined)

(in-lined)

yes --- --- ---

Domain service --- --- yes --- --- ---

In the above table "yes" indicates that a link to that other resource may be

present; "in-lined" means that the value of the property/collection is part

of the object representation itself (as one large JSON document).

As noted above, it isn't strictly necessary to distinguish these different types

of domain objects; a client can only follow the links that it is provided in

the representation. However, where there is likely variation in the presence

or not or a link, the spec uses the above terms as a way to explain why

that variation occurs.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-13

2.3 Domain Object & Service Resources
The following table summarises the resources that relate directly to

domain objects.

 Objects

Of Type

§B9

Objects/

{DType}

Object

§C14

Objects/

{DType}/

{IID}

Object

Property

§C14.4

Objects/

{DType}/

{IID}/

Properties/

{Property}

Object

Collection

§C16.4

Objects/

{DType}/

{IID}/

Collections/

{Collection}

Object

Action

§C17.5

Objects/

{DType}/

{IID}/
Actions/

{Action}

Object

Action

Invoke

§C18.2

Objects/

{DType}/

{IID}/
Actions/

{Action}/

invoke

GET n/a –

405

object

summary,

member

summary,

property

values

property

details

and value

collection

details

and content

action

prompt

invoke

(action

known to be

query-only)

PUT n/a –

405

update or

clear

multiple

property

values

update or

clear value

add object

(if Set

semantics)

n/a – 405 invoke

(action

known to be

idempotent)

DELE
TE

n/a –

405

delete

object

clear value remove

object

n/a – 405 n/a – 405

POST persist

instance

n/a – 405 n/a - 405 add object

(if List

semantics)

n/a – 405 invoke

(action not

known to be

idempotent)

The columns indicate the domain object resources shown in the Figure 1,

plus the Objects Of Type resource §B9 used for persisting new object

instances.

The header row indicates the resources as templated URIs6:

• {DType} is the domain type identifier that uniquely represents the

domain type. Depending on the implementation this may take an

abbreviated form e.g. "CUS" for Customer, or could be the fully

qualified class name, eg “com.mycompany.myapp.Customer”.

The spec requires only that the value is unique;

• {IID} is the instance identifier that uniquely identifies an object

instance within its type: e.g. "123" for customer with id=123;

6 http://tools.ietf.org/html/draft-gregorio-uritemplate-08

Restful Objects

Page A-14 v1.0.0 License: CC BY-SA 3.0

• {Property}, {Collection} and {Action} are unique identifiers for a

property, collection or action of the object, e.g. "firstName",

"orders", or "placeOrder"

For brevity, the combination of domain type/instance identifier

{DType}/{IID} is also termed the object identifier, or oid.

The body of the table indicates which HTTP methods may be used to

access these resources.

The HTTP GET method is the most widely supported across the various

resources, and is used to obtain a summary representation of an object

§C14.4 (e.g. a Customer instance), or detailed information about a

specific property of an object §C16.4 (e.g. Customer.firstName) or about

a specific collection §C17.5 (e.g. Customer.orders).

In addition, HTTP GET is used to obtain a representation of an object

action §C18.2, such as the Customer's placeOrder() action. Getting the

representation of an action does not invoke the action; rather the

returned representation describes the action, providing such information

as the arguments and the HTTP method required to invoke the action.

Modifying the state of a domain object is performed through resources

supporting HTTP PUT, DELETE or POST. The HTTP method to use to request

the modification depends upon the resource's semantics:

• if the resource being called is idempotent, meaning that it will

change persisted objects but calling that same resource again

(with the same inputs) will have no further effect7, then either HTTP

PUT or HTTP DELETE is used

• if the resource being called is not idempotent, then HTTP POST is

used

Whether HTTP PUT or DELETE is used depends on context: if a new data

value is being provided then PUT is used, if a value is being cleared or

data removed in some way then DELETE is used.

So, properties can be set to a new value using HTTP PUT §C16.2, or can be

set to null using HTTP DELETE §C16.3. Modifying multiple properties is

accomplished using an HTTP PUT to the object resource §C14.2.

7 In computer science terms, an idempotent function is one that if repeatedly

applied, has the same impact as being applied once ; see

http://en.wikipedia.org/wiki/Idempotence.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-15

For collections things are a little more involved because the HTTP method

to use depends upon the collection's semantics. The most common

situation is where the collection follows ‘Set’ semantics (in other words, it

does not allow duplicates to be added). In this case the HTTP PUT §C17.2 is

used; if the object exists then the request to add it is ignored, so this is

idempotent. If the collection does allow duplicates (in other words, it

follows ‘List’ semantics) then HTTP POST §C17.3 is used. In either case

references are removed from the collection using HTTP DELETE §C17.4.

Actions are invoked through the '/invoke’ sub-resource. The method used

depends on the action's semantics: if the action is idempotent, then PUT

§C19.2 is used, otherwise POST §C19.3 is used. However, there is a further

special case for actions: if the action is query-only and so makes no

changes to persisted objects at all8, then Restful Objects allows HTTP GET

§C19.1 to be used to invoke the action.

Whether an action is query-only or is idempotent is down to the

implementation to determine and to enforce.

Not every HTTP method applies to every resource, and where it does not

the specification requires that a 405 ('method not allowed') status code is

returned. This will be accompanied by an Allow header to indicate which

methods are allowed by the resource9. A 405 will also be returned if the

client attempts, for example, to invoke an action with a GET that is not

query-only (or cannot be determined to be so by the server

implementation).

In addition to the domain object resources, there are also resources for

domain services. However, domain services have no state, so there are

no subresources for properties or collections:

8 In computer science terms, a query-only action is "side-effect-free": it does not

make any change to persisted data. See

http://en.wikipedia.org/wiki/Side_effect_(computer_science). A query only action

is always idempotent)

9 http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html# sec14.7

Restful Objects

Page A-16 v1.0.0 License: CC BY-SA 3.0

 Service

§C15

Services/{ServiceId}

Service Action

§C17.5

Services/{ServiceId}/

Actions/{Action}

Service Action Invoke

§C18.2

Services/{ServiceId}/

Actions/{Action}

/invoke

GET service

summary,

action

summary

action prompt invoke (action known to

be query-only)

PUT n/a – 405 n/a – 405 invoke (action known to

be idempotent)

DELETE n/a – 405 n/a – 405 n/a – 405

POST n/a – 405 n/a – 405 invoke (action not

known to be

idempotent)

The services/{serviceId} URL is broadly equivalent to

objects/{domainType}/{instanceId}. However PUT and DELETE are not

supported (because domain services have no properties and cannot be

deleted).

The services/{serviceId}/actions/... subresources are directly equivalent to

objects/{domainType}/instanceId}/actions/... subresources, and support

the exact same HTTP methods.

2.3.1 Example Resource URLs

The following table lists some example URLs for accessing resources:

Resource

Type

Resource

object http://~/objects/ORD/123

property http://~/objects/ORD/123/properties/createdOn

collection http://~/objects/ORD/123/collections/items

action http://~/objects/ORD/123/actions/placeOrder

action invocation http://~/objects/ORD/123/actions/placeOrder/invoke

service http://~/services/x.CustomerRepository

In the example URLs the "ORD" is the domain type identifier, while the "123"

is the instance identifier. Together these identify a persisted instance of a

a domain object of a particular type (an Order, in this case). The format

of both the domain type identifier and the instance identifier is

implementation-specific, though both must be URL-encoded. (For security

reasons, the instance identifier may even be encrypted – see §E30.)

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-17

2.3.2 Example usage scenario

The following table shows an example of the interactions between a client

application and a Restful Objects server, for a simple web-shopping

scenario. It is rendered as a sequence of HTTP calls.

Description

Method

URL

Request
Body

Returned
representation

Go to the home
resource

GET http://~/ - Home Page

Follow link to list of

Services available

GET http://~/services - List (of links to

Services)

Follow link to the

ProductRepository

service

GET http://~/services/x.ProductRep

ository

- Object

(representing

a Service)

Follow link to ‘Find By

Name’ action

GET http://~/services/x.ProductRep

ository/actions/FindByName

- Action (to

display to user

as a dialog)

Invoke this (query-

only) action with

“cycle” as the

parameter

GET http://~/services/x.ProductRep

ository/actions/FindByName/in

voke/?Name=cycle

- Action result

in-lining list of

links to Product

objects

Follow the link to one
of the Product objects

in the collection

GET http://~/objects/object/x.Prod

uct/8071

- Object of type

Product

Invoke the (zero
parameter) action

‘AddToBasket’ on this

object

POST http://~/objects/object/x.Prod

uct/1234/actions/AddToBasket

/invoke

- -

Invoke the action

‘ViewBasket…’ on the

BasketService

GET http://~/services/x.BasketServic

e/actions/ViewBasketForCurren

tUser/invoke

- Action result

in-lining list of

links to Item

objects

Modify the Quantity
property on the item

just added

PUT http://~/objects/object/x.Item/

1234/properties/Quantity

Property

representation

with value=3

-

Delete a (previously

added) item from the

Basket

DELETE http://~/objects/ x.Item/55023 - -

2.4 Media Types (Accept and Content-Type)
Web browsers typically use the media type in order to determine how to

render some returned content. For example, text/html indicates an HTML

page, while image/png and image/svg are different types of images.

Restful Objects

Page A-18 v1.0.0 License: CC BY-SA 3.0

Rather than defining its own set of custom media types, the specification

uses the standard media type for JSON representations, application/json,

and then uses media type parameters that indicate the structure and

semantics of the JSON.

Depending on the representation, there are additional parameters:

"profile" and either "x-ro-domain-type" or "x-ro-element-type":

FIGURE 2: MEDIA TYPE LAYERS

As the diagram shows, the "profile" parameter refines thesemantics of

application/json, and the "x-ro-domain-type" parameter refines the

semantics of "profile" parameter of object representations. The "x-ro-

element-type" parameter similarly refines the semantics of "profile" for

list/collection representations.

Note that the spec also supports non-JSON media types, such as

application/pdf and image/jpeg, for blobs and clobs. See §3.3.

2.4.1 RepresentationType ("profile" parameter)

The representation type is used to indicate the nature of the

representation, and is specified as the value of the "profile" parameter10.

By inspecting the value, the client can dynamically determine how to

deal with a representation.

The format of the media type with representation type is therefore:

application/json;profile="urn:org.restfulobjects:repr-types/xxx"

Every representation defined by the Restful Objects spec has a

corresponding representation type:

Representation type Indicates a representation of

homepage the start page §B5

user the user requesting the resource §B6

version the version of the spec and implementation §B8

10 http://buzzword.org.uk/2009/draft-inkster-profile-parameter-00.html

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-19

Representation type Indicates a representation of

list a list of references to domain services or

objects§B11

object a domain object instance (or a service, which is a

singleton object) §C14.4

object-property a domain object property §C16.4

object-collection a domain object collection §C17.5

object-action a domain object action §C18.2

action-result result of invoking a domain object action §C19.4

type-list a list of domain types §D21.2

domain-type a domain type §D22.2

property-description a domain property's description § D23.2

collection-description a domain collection's description §D24.2

action-description a domain action's description. §D25.2

action-param-description an action parameter's description §D26.2

type-action-result result of invoking a domain type action §D27.

error An error was generated, §B10.

2.4.2 Domain Type ("x-ro-domain-type" parameter) and

Element Type ("x-ro-element-type" parameter)

While the "profile" parameter informs the client of the representation type,

in the case of an object representation (that is, for

profile="urn:org.restfulobjects:repr-types/object") there is no easy way for

the client to distinguish between, for example, (the representation of) a

Customer and (the representation of) an Order.

For clients that want to handle such representations differently, the spec

defines an additional "x-ro-domain-type" parameter11.

Similarly, when a list of objects is returned (that is, for "profile" is any of

"urn:org.restfulobjects:repr-types/action-result", "urn:org.restfulobjects:repr-

types/object-collection" or "urn:org.restfulobjects:repr-types/list"), there is

no easy way for the client to know what type the elements of the list are.

Therefore, the spec defines an additional "x-ro-element-type" parameter.

11 Unlike the "profile" parameter, there is no standard or semi-standard parameter

to reuse. The "x-ro-" prefix of the "x-ro-domain-type" parameter is to avoid name

clashes with other emerging standards.

Restful Objects

Page A-20 v1.0.0 License: CC BY-SA 3.0

The value of both of these parameters is a domain type identifier

{domainTypeId}. For "x-ro-domain-type" the value should be of the actual

runtime type, for "x-ro-element-type" it should be of the collection's

compile-time type.

For example, the media type for the representation of a Customer might

be:

application/json;
 profile="urn:org.restfulobjects:repr-types/object";
 x-ro-domain-type="CUS"

while the representation of a collection of Customers might be:

application/json;
 profile="urn:org.restfulobjects:repr-types/object-collection";
 x-ro-element-type="CUS"

where in both cases "CUS" is the domain type identifier for this Customer

class.

In the case of a view model, the "x-ro-domain-type" value would more

likely include a version number, eg:

application/json;
 profile="urn:org.restfulobjects:repr-types/object";
 x-ro-domain-type="OHVM2"

where, say, "OHVM2" is the unique domain type id corresponding to the

class com.mycompany.myapp.viewmodels.v2.OrderHistory.

The "x-ro-domain-type" and "x-ro-element-type" parameters are also

returned for action result representations which wrap a domain object or

a list of domain objects.

For example, an action that returned a single Customer would return a

media type (under the simple scheme) of:

application/json;
 profile="urn:org.restfulobjects:repr-types/action-result";
 x-ro-domain-type="CUS"

while an action that returned a list of Customers (under the simple

scheme) would be:

application/json;
 profile="urn:org.restfulobjects:repr-types/action-result";
 x-ro-element-type="CUS"

In all the above cases the client can use this value to process the

representation accordingly; for example, rendering it with a different view

template.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-21

2.4.3 Handling of Accept headers

The HTTP protocol12 defines the Accept request header for the client to

specify which media types it can consume; the server then indicates the

actual media type using the Content-Type response header. If the server is

unable to return the requested type, then it must return a 406 "not

acceptable" status return code.

Restful Objects defines the following behaviour:

• if the client provides no Accept header, then the server may serve

up a representation of any content type

• if the client provides an Accept header of */*, or application/*,

then any representation may be returned. In this case any "profile"

parameter will be ignored

• if the client specifies one or more "profile" parameters, then the

server must ensure that the returned representation is one of those

that is acceptable. If it is not, then a 406 must be returned.

Note however that if the client specifies the "x-ro-domain-type"

parameter, then this is ignored by the server. This means that the client

cannot currently use this parameter to ensure that, for example, v1 of a

view model is returned rather than v2. Support for content negotiation

through the "x-ro-domain-type" parameter in this way is likely to be

introduced in a future version of the spec, see §E34.1.

If the client does elect to specify "profile" parameters, then it should take

care to always include the error profile. In other words, a request that is

expected to return a domain object representation should provide an

Accept header of:

Accept:
 application/json;
 profile="urn:org.restfulobjects:repr-types/object",
 application/json;
 profile="urn:org.restfulobjects:repr-types/error"

If the error profile is omitted and a (server-side) error occurs, the server

may still return the error representation, but must return a 406 (rather than

the usual 500 error).

2.4.4 Browsing the RESTful API

During development it can be helpful to browse a RESTful API directly,

using a browser plugin such as RESTConsole or JSONView. Such plugins

provide such features as folding of the JSON representation, and

12 http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Restful Objects

Page A-22 v1.0.0 License: CC BY-SA 3.0

automatic detection of links in the representation so that they can be

followed (with a GET).

Although designed to consume JSON, some of these tools incorrectly set

the Accept header to a value other than application/json. Normally, this

would result in a 406 ("Not acceptable") response error. In order to

accommodate the use of such tools, implementations may wish to

provide a "non-strict" mode of operation to suppress Accept header

validation. However, this is not part of the spec.

Even if Accept header validation has been suppressed, the Content-Type

returned should be set to application/json along with the "profile" (and

any other) parameter.

2.5 Scalar datatypes and formats
JSON defines only the following scalar datatypes13:

• Number (double precision floating-point format)

• String (double-quoted Unicode, UTF-8 by default)

• Boolean (true or false)

The JSON schema specification14 also defines:

• Integer (a number with no floating-point value)

Most notably, JSON does not define a native datatype to represent date,

time or date/time. Also, it does not define datatypes to represent

arbitrarily accurate decimal or integer numbers. Therefore, representing

values of these datatypes requires that the information be encoded in

some way within a JSON string value.

The Restful Objects spec defines the "format" json-property as an

additional modifier to describe how to interpret the value of a string or

number json-property.

The values of the "format" json-property for string values are15:

• string

o The value should simply be interpreted as a string. This is also

the default if the "format" json-property is omitted (or if no

domain metadata is available)

13 http://json.org/, also

http://en.wikipedia.org/wiki/JSON# Data_types.2C_syntax_and_example

14 http://tools.ietf.org/html/draft-zyp-json-schema-03, section 5.1.

15 A number of these are also defined in the JSON schema,

http://tools.ietf.org/html/draft-zyp-json-schema-03, section 5.23

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-23

• date-time

o A date in ISO 8601 format of YYYY-MM-DDThh:mm:ssZ in UTC

time.

• date

o A date in the format of YYYY-MM-DD.

• time

o A time in the format of hh:mm:ss.

• utc-millisec

o The difference, measured in milliseconds, between the

specified time and midnight, 00:00 of January 1, 1970 UTC.

• big-integer(n)

o The value should be parsed as an integer, scale n.

• big-decimal(s,p)

o The value should be parsed as a big decimal, scale n,

precicion p.

• blob

o "binary large object": the string is a base-64 encoded

sequence of bytes.

• clob

o "character large object": the string is a large array of

characters, for example an HTML resource

The values of the "format" json-property for number values are:

• decimal

o the number should be interpreted as a float-point decimal.

• int

o the number should be interpreted as an integer.

If there is no "format" json-property or domain metadata, then the value is

interpreted according to standard Javascript rules, as documented in the

Ecmascript standard16. In essence: if there is NO decimal point and the

number is in the range [-9,007,199,254,740,992, +9,007,199,254,740,992],

then it is an integer. Otherwise, the number is a 64-bit IEE754 floating point

number.

Note that the internationalization of dates (e.g. formatting a date as

MM/DD/YYYY for the en_US locale) is a responsibility of the client, not the

server implementation. Dates should always be provided in the formats

described above; the Accept-Language header should be ignored.

If the implementation supports the formal metamodel scheme §3.1.2, then

each of these datatypes has a corresponding pre-defined domain type

resource §D21.3.

Support for blobs and clobs is an optional capability, and is discussed

further in §3.3.

16 http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Restful Objects

Page A-24 v1.0.0 License: CC BY-SA 3.0

2.6 Values
The spec defines JSON representations for the values of object properties,

collection references and argument values. These either being of a value

type (e.g. String, date, int) or a reference type (e.g. a link to a Customer,

OrderStatus). This is true both for property values and for argument values;

collections only ever contain reference types.

For value types, the value that appears in the JSON is the actual JSON

value, either a number, a Boolean, a string or a null. In the case of a string

value this may may be the formatted version of some other datatype,

such as a date §2.5.

For example, if the 'createdOn' property is a date, then its value would be

represented thus:

"createdOn": {
 ...
 "memberType": "property",
 "value": "2011-06-14",
 "format": "date",
 ...
}

For reference properties, the value held is a link. For example, if

'orderStatus' is a property of type OrderStatus, then its representation

would be something like:

"orderStatus": {
 ...
 "memberType": "property",
 "value": {
 "rel": ".../value;property=\"orderStatus\"",
 "href": "http://~/objects/ORS/IN_PROGRESS",
 "type": "application/json;profile=\".../object\"",
 "title": "In Progress",
 "method": "GET"
 },
 ...
}

2.7 Link representation
Every JSON representation may have relationships to other

representations, and each such relationship is described through a

standard link representation with the format:

{
 "rel": ".../xxx",
 "href": "http://~/objects/ORD/123",
 "type": "application/json;profile=\".../object\"",
 "method": "GET",
 "title": "xxx",
 "arguments": { ... },
 "value": { ... }
}

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-25

where:

JSON-Property Description

rel Indicates the nature of the relationship of the related resource

to the resource that generated this representation; described

in more detail below

href The (absolute) address of the related resource. Any

characters that are invalid in URLs must be URL encoded.

type The media type that the linked resource will return; see §2.4.

method The HTTP method to use to traverse the link (GET, POST, PUT or

DELETE)

title (optional) string that the consuming application may use to

render the link without having to traverse the link in advance

arguments (optional) map that may be used as the basis for any data

(arguments or properties) required to follow the link. Discussed

further below.

value (optional) value that results from traversing the link. This is to

support eager loading of links by resources. For example, an

Order representation may have a collection of OrderItems,

and may want to provide that representation to avoid an

additional round-trip request by the client.

2.7.1 "rel"

The "rel" json-property indicates the nature of the relationship of the

related resource to the resource that generated this representation. The

value of this property is a URN, meaning that it is unique value within a

defined namespace (specific to Restful Objects).

The value of the "rel" json-property either takes one of the IANA-specified

rel values17 or a value specific to Restful Objects.

2.7.1.1 IANA-specified rel values

rel Description

describedby "Refers to a resource providing information about the link's

context"; in other words the domain metamodel information

about a domain object or object member

help "Refers to context-sensitive help"

icon "Refers to an icon representing the link's context." A scalable

icon for any purpose

previous "Refers to the previous resource in an ordered series of

resources"

17 http://www.iana.org/assignments/link-relations/link-relations.xml

Restful Objects

Page A-26 v1.0.0 License: CC BY-SA 3.0

rel Description

next "Indicates that the link's context is a part of a series, and that

the next in the series is the link target".

self "Conveys an identifier for the link's context", in other words,

following this link returns the same representation. Discussed

further in §2.8.

up Link from member to parent object/type, or from action

param to its action

2.7.1.2 Restful Objects-specified rel values

The format of Restful Objects-specified rel values is:

urn:org.restfulobjects:rels/xxx[;yyy=zzz;www=vvv]

where

• urn:org.restfulobjects:rels/

o is a fixed prefix indicating that the rel is defined by the Restful

Objects specification

• xxx

o is a unique value for the rel within the above namespace

• yyy=zzz, www=vvv

o are additional parameters that are used for some rel values

to disambiguate the link

The optional parameters are modelled after the optional parameters of

media types (§2.4.1, §2.4.2). Using them clients can, for example,

distinguish a link more precisely without having to rely on the location of

the link within the JSON representation.

For example:

urn.org.restfulobjects:rels/details;property=\"deliveryOption\"

is the rel value of a link to property details resource, §C16.1.

The table below lists all the supported rel values defined by Restul Objects.

For brevity the "urn:org.restfulobjects:rels/" prefix is abbreviated to ".../".

rel Parameters Description

.../action Description of an action

§D25, as linked from a

domain type §D22

.../action-param Description of an action

parameter §D26, as linked

from an action resource

§D25

.../add-to; collection=\"collectionName\" Add to a domain object

collection §C17.2, §C17.3

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-27

rel Parameters Description

.../attachment; property=\"propertyName\" An attachment for a

property value; see §3.3.

.../choice; property=\"propertyName\"

- or -

action=\"actionName\";

param=\"paramName\"

A domain object (or

scalar value) acting as a

choice for a property

§C16.4.1 or an action

parameter §C18.2.1

.../clear property=\"propertyName\" Clear a domain object

property §C16.3

.../collection Description of a collection

§D24, as linked from a

domain type §D22

.../default; action=\"actionName\";

param=\"paramName\"

A domain object (or

scalar value) acting as a

default for an action

parameter

.../delete Link to delete a domain

object §C14.3

.../details; property=\"propertyName\"

- or -

collection=\"collectionName\"

- or -

action=\"actionName\"

Details of a property

§C16.1, collection §C17.1

or action §C18.1, as linked

from a domain object

§C14.1 or domain service

§C15.1.

.../domain-type Link to a domain type

§D22.

.../domain-types Link to the catalogue of

domain types available in

the system §D21

.../element Link to a domain object

§C14 from a list returned

by an action §B11.

.../element-type The domain type §D22

which represents the

element of a list or

collection

.../invoke; action=\"actionName\"

- or -

typeaction=\"typeActionName\

"

Link to invoke a domain

object action §C19, or to

invoke a domain type

action §D27

.../modify property=\"propertyName\" Link to modify a single

domain object property

C16.2. (See also the

…/update rel).

Restful Objects

Page A-28 v1.0.0 License: CC BY-SA 3.0

rel Parameters Description

.../persist Link to persist a proto-

persistent object §B9.1

.../property Description of a property

§D23, as linked from a

domain type §D22

.../remove-from; collection=\"collectionName\" Remove from a domain

object collection, §C17.4

.../return-type The domain type §D22

which represents the

(return) type of a

property, collection,

action or param

.../service; serviceId=\"serviceId\" A domain service, §C15.1

.../services The set of available

domain services, §B7.1

.../update Link to modify all

properties of a domain

object §C14.2.

.../user The current user, §B6.1

.../value; property=\"propertyName\"

- or -

collection=\"collectionName\"

Link to an object §C14

that is the value of a

property §C16.1 or held

within a collection §C17.1.

.../version Version of the spec and

implementation, §B8.1

2.7.2 "type"

The "type" json-property indicates the media type §2.4 of the

representation obtained if the link is followed. This will always be

"application/json" and will (depending on the implementation §B8) have

an additional "profile" parameter to further describe the representation.

For example:

application/json;
 profile="urn:org.restfulobjects:repr-types/object"

To make examples more readable, throughout the rest of the spec the

"urn:org.restfulobjects:repr-types" literal within the profile parameter is

abbreviated to "…"; the above example is written as:

application/json;profile=".../object"

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-29

2.7.3 "arguments"

Sometimes a link represents a resource that requires additional data to be

specified. When a representation includes a link to these resources, it may

optionally include an "arguments" json-property, for example to provide a

default value for an action argument.

Note that the client is not obliged to use this information. The

representation of arguments is itself well-defined, see §2.9.

2.7.4 "value"

The optional "value" json-property of a link contains the representation that

would be returned from following the link.

Currently the spec does not define any functionality that uses this

capability. Future versions of this specification may define a syntax to

allow clients to request eager loading of links, §E34.4.

2.8 "self"
The majority of representations include a "self" link, specifying the resource

by which the representation may be obtained again.

For example, the following might be the initial part of a representation of

an Order:

{
 ...
 "links": [
 {
 "rel": "self",
 "href": "http://~/objects/ORD-123",
 "type": "application/json;profile=\".../object\"",
 "method": "GET"
 },
 ...
]
}

while the following is the initial part of a Customer's firstName property:

{
 ...
 "links": [
 {
 "rel": "self",
 "href": "http://~/objects/CUS/001/properties/firstName",
 "type": "application/json;profile=\".../object-property\"",
 "method": "GET"
 },
 ...
]
}

Restful Objects

Page A-30 v1.0.0 License: CC BY-SA 3.0

In addition, the invocation of a query-only action (using GET §C19.1) will

also have a "self" link, this time linking back to the action. This allows clients

to copy (bookmark) the action link if they so wish.

There are however two types of representation that do not have a

"self" link.

The first is a representation of a proto-persistent object or of a view model

§2.2, where there is no server-side resource to address.

The second is the representation returned by any action invoked by either

a PUT or POST method §C19.2, §C19.3. These have no self link, to minimize

the risk of a client repeating the action and inadvertently causing side

effects in the system.

2.9 Resource argument representation
In many cases the resources defined by the Restful Objects spec require

additional data, for example representing either action arguments or

object properties.

Restful Objects defines two mechanisms for passing in such arguments.

The ‘Formal’ mechanism may be used in all circumstances. However, for

certain specific situations there is the option to use the “Simple” form,

which has the advantage of being simpler to construct and easier for a

human to read.

2.9.1 Simple Arguments

If a query-only action is being invoked through GET §C19.1, and all

arguments are scalar values, then the action may be invoked using simple

‘param=value’ arguments.

For example:

GET services/x.TaskRepository/actions/findTasks?tagged=urgent

However, if either of these conditions are not true (the action invoked is

called using PUT or POST, or if the action takes arguments that are

references to other objects) then this simple form cannot be used.

This form of arguments also cannot be used when updating multiple

properties §C14.2. For these cases the ‘Formal’ mechanism must be used

§3.1.2.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-31

2.9.2 Formal Arguments

Although simple arguments §2.9.1 are convenient to use, their

applicability is limited. For all other cases arguments18 must be provided

using a more formal syntax, either as a single argument node, or as a map

or argument nodes:

• resources that require a single value (§C16.2, §C17.2) take a single

argument node;

• the action resource methods (§C19.1, §C19.2, §C19.3) take a map

of argument nodes;

• the update of multiple properties §C14.2 takes a map of argument

nodes (the arguments representing the property values)

• the persist of a new object (§B9) also takes a map-like structure

but in this case the map is based on a cut-down version of the

object representation, §C14.4)

Treating property values and action arguments in the same way simplifies

matters, but it does require that action resources provide a unique name

for each of their arguments (rather than merely by a position, as in a list).

For implementations that support named parameters this will simply be the

parameter name. For implementations that do not support named

parameters, the recommendation is to manufacture one either using

existing metadata where available (e.g. a UI hint), or otherwise to use the

type name of the parameter (string, int etc). If the action takes more than

one argument of a given type, then the implementation can

disambiguate using integer suffixes (string1, string2 and so on).

Note that the representations defined here, although they may look like

the body of HTTP requests, apply to all resources, that is, to GET and DELETE

as well as to PUT and POST. Section §2.10 explains the mechanics of how

the argument structures defined here are passed to the resource.

2.9.2.1 Argument node structure

The structure of an argument node fulfils a number of inter-related

requirements:

• it allows the value for the argument to be specified;

• if any of the argument values supplied are found to be invalid, it

allows the same representation to be returned in the response, with

an "invalidReason" json-property for those argument(s) that are

invalid

If validation is being requested, then the map need only contain

arguments for those to be validated; other arguments can be omitted.

18 The term "arguments" is used here in a very general sense, applying both to the

providing of values of object properties as well as of action arguments.

Restful Objects

Page A-32 v1.0.0 License: CC BY-SA 3.0

Note that the client can request validation of a null value by providing an

argument node, whose value just happens to be null.

Argument nodes take the following structure:

{
 "value": ... ,
 "invalidReason": "xxx"
}

where:

JSON-Property Description

value is the value of the argument (possibly a link)

invalidReason (optional) is the reason why the value is invalid.

The "invalidReason" json-property is intended to be populated by the

server, and would be returned by the server as part of its response if one or

more the arguments provided was invalid. If the client provides an

"invalidReason" in its map then this will be ignored by the server.

If the "value" is a link to another domain object resource, then only the

"href" json-property need be specified; for example:

{
 "value": {
 "href": "http://~/objects/ABC/123"
 }
}

2.9.2.2 Single value arguments (Property, Collection)

If providing a new value for a property or a collection then a single

argument node should be provided.

For example, the following could represent a new value for the "lastName"

property of Customer:

{
 "value": "Bloggs Smythe"
}

If this value was invalid for some reason, then the server would generate a

response:

{
 "value": "Bloggs Smythe",
 "invalidReason": "Use hyphenated form rather than spaces"
}

2.9.2.3 Argument maps (Actions, Properties)

Action resources (§C19.2, §C19.3) and the PUT Object resource §C14.2

accept arguments only in map form. In the former case the argument

nodes are the values of the arguments, in the latter they represent the

property values.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-33

For example, suppose an object has an action listProducts(Category

category, Subcategory subcategory). Arguments for actions are provided

in map form:

{
 "category": {
 "value": {
 "href": "http://~/objects/CGY/BOOK"
 }
 },
 "subcategory": {
 "value": {
 "href": "http://~/objects/SCG/Fiction"
 }
 }
}

Similarly, updating multiple properties could be done using the following

map:

{
 "firstName": {
 "value": "Joe"
 },
 "lastName": {
 "value": "Bloggs"
 },
 "status": {
 "value": {
 "href": "http://~/objects/STS/NEW"
 }
 }
}

Only domain object properties that match the json-properties of this map

will be updated; json properties that do not match an object property will

result in a 400 (syntax error).

 Providing values for blob/clob properties or arguments

If a property or argument is a blob or clob (§2.5) then (just like any other

datatype) the value can be provided in-line within a map. In the case of

a blob, the byte array must be base 64 encoded.

 Validating individual property/arguments

If any of the values provided are invalid, then the returned response will

indicate this with an "invalidReason" json-property.

Restful Objects

Page A-34 v1.0.0 License: CC BY-SA 3.0

For example:

{
 "firstName": {
 "value": "Joe"
 },
 "lastName": {
 "value": "Bloggs"
 },
 "status": {
 "value": {
 "href": "http://~/objects/STS/NEW"
 },
 "invalidReason":
 "Cannot set customers that have placed orders to 'New' status"
 }
}

2.9.2.4 Validating argument sets

The client can also request the validation of arguments; this is done by

providing the reserved x-ro-validate-only param (§3.2)19.

In the example introduced above, an object has an action

listProducts(Category category, Subcategory subcategory). To validate

the category by itself (for example, when the user tabs from the category

field in the UI), it would provide only the category argument:

{
 "category": {
 "value": {
 "href": "http://~/objects/CGY/BOOK"
 }
 },
 "x-ro-validate-only": true
}

If the server found that the argument provided was invalid, then it would

indicate it in its response using the "invalidReason" json-property:

{
 "category": {
 "value": {
 "href": "http://~/objects/CGY/BOOK"
 },
 "invalidReason": "not permitted to select from this category "
 }
}

2.9.2.5 Obtaining argument choices

The set of argument choices for a parameter can be found by obtaining

a representation of the action resource §C18.1.1.

For example, the list of categories could be returned as:

19 The "x-ro-" prefix is used to distinguish from regular argument names.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-35

{
 "category": {
 ...
 "choices": [
 { "href": "http://~/objects/CGY/BOOKS" },
 { "href": "http://~/objects/CGY/ELECTRICAL" },
 { "href": "http://~/objects/CGY/GARDEN" },
 { "href": "http://~/objects/CGY/HOME" },
 { "href": "http://~/objects/CGY/LEISURE" }
]
 }
}

Note that the spec does not currently support obtaining the set of choices

of one parameter based on another; see §E34.5 for discussion on

proposals for this as a future feature.

2.10 Passing arguments to resources
As noted previously, calling a resource using GET with simple arguments

§2.9.1 is straight-forward: the arguments are simply passed as key/value

pairs. For example:

GET services/x.TaskRepository/actions/findTasks?tagged=urgent

Passing formal arguments §2.9.2 through to resources that accept a PUT

or a POST is also easy: a string representation of the arguments map

should simply be provided as the body of the request.

However, if formal arguments need to be passed through to a resource

using GET and DELETE then matters are slightly more complex, because

the HTTP spec20 does not guarantee that resources called using GET and

DELETE will receive a body21. Therefore, any query arguments to such

resources must be encoded within the URL. In the case of a query

argument representing a link, this should be converted to its string form

first, and then URL encoded. The result is used as the entire query string.

For example, suppose the OrderRepository# findOrdersPlacedBy action

takes a reference to a customer. The argument representation for this

reference:

{
 "placedBy": {
 "value": {
 "ref": "http://~/objects/CUS/123",
 }
 }
}

20 http://www.w3.org/Protocols/rfc2616/rfc2616.html, sec 4.3 and 9.7.

21 Emperical testing confirms that bodies are not preserved by servlet containers

such as Tomcat and Jetty. Proxies may also strip out the body.

Restful Objects

Page A-36 v1.0.0 License: CC BY-SA 3.0

can be encoded22 to:

%7B%0A%20%20%22placedBy%22%3A%20%7B%20%0A%20%20%20%20%22value%22%3A
%20%7B%0A%20%20%20%20%20%20%22ref%22%3A%20%22http%3A%2F%2F~%2Fobjec
ts%2FABC-123%22%2C%0A%20%20%20%20%7D%0A%20%20%7D%0A%7D%0A

This is appended to the end of the URL, such that the entire URL is:

http://~/services/x.OrderRepository/actions/findOrdersPlacedBy?%7B%
0A%20%20%22placedBy%22%3A%20%7B%20%0A%20%20%20%20%22value%22%3A%20%
7B%0A%20%20%20%20%20%20%22ref%22%3A%20%22http%3A%2F%2F~%2Fobjects%2
FABC-123%22%2C%0A%20%20%20%20%7D%0A%20%20%7D%0A%7D%0A

2.11 Extensible Representations
All of the representations defined by the Restful Objects spec include two

json-properties that allow implementations to provide additional

(implementation-specific) information in a standardized fashion.

The "links" json-property is intended to allow a list of additional links from

the representation to other resources. As always for links, the "rel" json-

property of the link indicates the nature of the resource being linked to.

The "extensions" json-property, meanwhile, is a map to allow additional

data json-properties to be provided.

2.12 URL encoding and Case sensitivity
The URLs defined by the Restful Objects spec follow the rules defined by

the HTTP spec23. In particular, this means that URL matching is case

sensitive24, and that certain characters (such as "/", "|", "&", ":") may not be

used directly, and so must be URL encoded with respect to a particular

character set.

Restful Objects requires that all URLs are encoded using UTF-8. All modern

implementation languages (Java, .NET, Ruby, Python etc) provide built-in

support for URL encoding to this character set.

The character set of JSON representations is not mandated by the spec;

instead the response will indicate the character set through the Content-

Type header; for example:

application/json;profile="...";charset=utf-8

Unless there is a good reason to do otherwise, it is recommended that

implementations use UTF-8.

22 eg, using http://meyerweb.com/eric/tools/dencoder/

23 http://www.ietf.org/rfc/rfc1738.txt;

24 excluding the hostname part of a URL, which is case insensitive.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-37

2.13 Caching (Cache-Control and other headers)
REST-based systems cache representations of certain resources to

reduce the number of round-trips. This is analogous to how a web browser

might cache images, CSS, or Javascript, without necessarily caching the

HTML page itself.

To facilitate this Restful Objects specifies that all responses must indicate

whether they may be cached or not. The spec distinguishes three cases:

• No caching: suitable for transactional resources such as domain

objects and domain object members;

• Short-term caching: suitable for user resources that might

encapsulate the users' credentials. Such resources might typically

be cached for 1 hour (3600 seconds).

• Long-term caching: suitable for read-only resources such as

domain model resources. Such resources might typically be

cached for 1 day or longer (86400 seconds).

Implementations are expected to provide their own configuration settings

to allow these values to be tuned. In the remainder of the spec the

placeholders "TRANSACTIONAL", "USER_INFO" and "NON_EXPIRING" are

used:

• "TRANSACTIONAL" is for resources that are frequently updated, for

example a Customer;

• "USER_INFO" is for resources that represent a user's credentials, and

so might change over time but not often;

• " NON_EXPIRING" is for resources that are not expected to change

over time

In the spec these placeholders map onto the HTTP 1.1 Cache-Control

header. In addition, HTTP 1.0 Pragma, Date and Expires headers should

also be set in order to support any legacy HTTP 1.0 proxies.

The table below summarizes the values to be set:

Caching Cache-

Control

Pragma Date Expires

TRANSACTIONAL

(low volume scenario)

non-

cache

No-

Cache

(current

date/time)

0

TRANSACTIONAL

(high volume scenario)

max-age:

2

 (current

date/time)

Date +

seconds

USER_INFO max-age:

3600

 (current

date/time)

Date +

seconds

Restful Objects

Page A-38 v1.0.0 License: CC BY-SA 3.0

Caching Cache-

Control

Pragma Date Expires

NON_EXPIRING max-age:

86400

 (current

date/time)

Date +

seconds

As can be seen, in a high-volume environment implementations are

permitted to specify a small degree of caching for "TRANSACTIONAL"

resources in order to support reverse proxying. The means by which the

amount of caching is set is implementation-specific.

2.14 Security

2.14.1 Authentication

Restful Objects currently does not specify any particular approach to user

authentication. Instead, it is expected that an out-of-band mechanism

(such as oauth25) is used.

Note, though, that the URLs defined by Restful Objects do not encode the

identity of the user requesting the resource. This is deliberate: so that

representations may be cached by server-side caching infrastructure26.

2.14.2 Authorisation ("disabledReason")

Restful Objects defines two mechanisms by which the requesting user's

credentials may affect the representations that are returned.

First, if the credentials are such that the object member is hidden/invisible

to that user, then that member will be excluded from the representation.

Secondly, if the credentials are such that the object member is visible but

disabled, then the representation of the member will exclude any links to

resources for mutating that member.

Furthermore, if a member is visible but disabled, then the representation

for the disabled member may include an optional "disabledReason" json-

property to explain why the member is disabled. The client may choose to

render this information in its user interface (for example as a ‘tooltip’).

25 http://oauth.net

26 assuming, that is, that Cache-Control header is not set to no-cache.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-39

Because the URLs defined by Restful Objects are well-defined, there is

nothing to prevent a rogue client from guessing URLs and attempting to

call them. If the client attempts to access a hidden object member

directly (using any HTTP method), then a 404 "not found" will be returned.

Or, if the user attempts to mutate a disabled object member using PUT,

DELETE or POST, then a 403 "forbidden" will be returned.

2.15 Concurrency Control (If-Match, ETag)
Restful Objects defines concurrency control through a combination of the

ETag HTTP response header and the If-Match request header.

The ETag header provides a unique digest (typically based on a

timestamp for the last time that an object was modified). When a client

wishes to perform a (PUT, DELETE or POST) request that will modify the state

of a resource, it must also provide the If-Match header to indicate the

timestamp of the representation that it previously obtained from the

server.

If the object has been modified since that time, then a 412 "Precondition

failed" status code will be returned.

If the client fails to provide the If-Match header, then the response will be

400 "Bad Request", with an appropriate Warning header.

If the domain object does not have timestamp information (for example, if

it is immutable), then no ETag header need be (nor sensibly can be)

generated. For these resources, the If-Match header should not be

provided by the client (but if it is, then the server will simply ignore it rather

the return an error return code).

Restful Objects does not require that the If-Modified response header is

provided in representations (though implementations are free to return it if

they wish). Note that If-Modified is not appropriate for concurrency

control because its precision is only to the nearest second.

2.16 Business Logic Warning and Error
When an action is invoked the business logic may raise an informational,

warning or error message. The client may in turn display a warning dialog

in the UI.

To support this, Restful Objects allows that the standard “Warning” HTTP

header can be set. The HTTP status code indicates whether this message

should be considered as information (200), or a warning (4xx or 5xx).

2.17 Malformed JSON Representations
The correct form for JSON representations is:

Restful Objects

Page A-40 v1.0.0 License: CC BY-SA 3.0

{
 "foo": "bar",
 "baz": "boz"
}

However, some REST APIs and implementations incorrectly serve

malformed JSON, where the keys are not quoted:

{
 foo: "bar",
 baz: "boz"
}

Implementations of Restful Objects must always serve up correctly formed

JSON representation. However, where a client posts JSON to the server (for

example, to modify a resource), the implementation must accept

malformed JSON representations where the key has not been quoted27.

27 This is an application of Postels' law: be conservative in what you do, be liberal

in what you accept from others; http://tools.ietf.org/html/rfc793 .

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-41

3 OPTIONAL CAPABILITIES
While Restful Objects aims to define a consistent standard for RESTful

interactions with domain models, some useful features might be easy for

one framework to accomplish, but much more difficult for another.

Therefore the specification defines a small number of capabilities that are

optional.

Implementations advertise the capabilities that they support through the

"version" resource, §B8.

In some cases, clients can vary the behaviour of these capabilities by

providing optional query parameters. For example, if argument validation

is supported by the implementation, then the client can use the "x-ro-

validate-only" query parameter to suppress modification of the resource,

and simply check values.

In order to minimize clashes with other (application) parameters, the

optional query parameters all have the "x-ro-" prefix: the "x-" is intended to

indicate a non-standard parameter; the "ro-" to indicate that the

parameter is specific to Restful Objects.

If a framework has not implemented some optional aspect of the Restful

Objects specification and can reasonably continue, then it should ignore

the request. If there is no reasonable way to continue, then the framework

should return a 501 "Not implemented" status code along with a Warning

header explaining the feature that has not been implemented.

The sections that follow each indicate the query parameter that is used to

request the capability.

3.1 Domain Metadata (x-ro-domain-model)
Some clients may wish to perform client-side validation before submitting

changes to the server: examples include the enforcement of mandatory

properties (or action parameters) and the enforcement of maximum string

length. Such rules are applicable to any domain object instance of that

given type, and so may be defined on the domain type

Restful Objects defines two ways in which such domain type information

may be represented: a "simple" scheme and a "formal" scheme, defined

below. Common to both is that the information is accessible by way of

links and extensions §2.11.

A client may query the version resource §B8 to determine the server's

support for domain metadata:

• a value of "none" indicates that the implementation does not

provide domain type information;

• a value of "simple" or "formal" means that the server supports only

that scheme

Restful Objects

Page A-42 v1.0.0 License: CC BY-SA 3.0

• a value of "selectable" is for implementations that support both

schemes. By default such implementations will return both simple

and formal domain metadata, but the client can provide a

reserved x-ro-domain-model query parameter to request either just

"simple" or "formal" as it requires.

3.1.1 Simple Scheme

In the simple scheme, Restful Objects allows that implementations may in-

line certain domain type information within the “extensions” json-property

of the domain object representation.

For example, the fact that a property is required (may not be left empty) is

captured using:

{
 ...
 "extensions": {
 "optional": false,
 ...
 }
}

Restful Objects defines the following standard json-properties for the

"simple" scheme:

JSON-Property Values Applies to Description

domainType string domain object unique identifier for the

domain type

friendlyName string domain object,

property,

collection,

action,

action param

Version of the name suitable

for use in a UI (e.g. as a label).

pluralName

string

domain object Pluralized form of the friendly

name, for use in a UI (e.g. as a

label of a collection).

collection

action returning

list

Pluralized form of the element

type within the collection/list.

description string domain object,

property,

collection,

action,

action param

Description, suitable for use in

a UI (e.g. as a tooltip).

isService boolean domain object whether this domain object is a

domain service

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-43

JSON-Property Values Applies to Description

optional boolean property,

action param.

if false, then a value for the

property / param must be

provided. Default is

implementation-specific.

maxLength int string property,

string action

param

the maximum number of

characters that the string may

contain. A value of 0 means

unlimited.

pattern string string property,

string action

param

whether value must match the

regular expression that any

submitted value must match.

returnType string property

action (returning

scalar or object)

action param

If scalar value returned,

indicates its datatype §2.5 (in

conjunction with'format' if

'string').

If object returned, its domain

type id.

collection

action (returning

collection)

Either 'list' or set'.

action returning

void

'void'

format string when returnType

if 'string'

further qualifies the datatype

§2.5.

elementType string collection

action returning

collection

of the domain type id for the

type of the elements held

within the collection.

hasParams boolean action whether an action has

parameters or not. This may, for

example, be used by clients to

render ellipsis (…) in their UI.

memberOrder int property,

collection,

action

a presentation hint indicating

the recommended relative

display order for each

member. Discussed further

below.

Implementations are free to extend this list as they require.

 MemberOrder

The "memberOrder" json-property is a presentation hint indicating the

recommended display order for each member of the object relative to

others. Note that clients are not obliged to adhere to member ordering.

Restful Objects

Page A-44 v1.0.0 License: CC BY-SA 3.0

Irrespective of whether it is used, the "memberOrder" json-property must

always be provided by the implementation. However, in the cases where

no ordering information is available, the implementations may provide the

same value for more than one member. For example, an implementation

might return 0 for all unordered members (putting them joint first place in

the list) or it might return a value of 999, say (putting them all joint last

place).

Alternatively, an implementation may choose to synthesise ordering

information, for example based on the declaration order of its source

code. , or on the alphabetic order of the member names.

3.1.2 Formal Scheme

The formal scheme of providing domain type information defines separate

resources that generate representations of the domain metamodel. If this

scheme is followed then such resources are obtained by

rel="describedby" link in the "links" json-property.

For example, suppose that the Customer class has an (int) "id" property, a

date "since" property, and a "blacklist" action.

In .NET, this could be written as:

public class Customer {
 ...
 public int Id {get; set; }
 public DateTime Since {get; set; }
 public bool Blacklist(string reason) { ... }
 ...
}

while in Java it might look like:

public class Customer {
 ...
 private int id;
 private Date since;

 public int getId() { return this.id; }
 public void setId(int id) { this.id = id; {}

 public Date getSince() { return this.since; }
 public void setSince(Date since) { this.since = since; }

 public boolean blacklist(String reason) { ... }
 ...
}

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-45

The resources to expose the metadata for an instance of this class are

shown in §D.

FIGURE 3: DOMAIN OBJECTS VS DOMAIN TYPES

Domain type resources are pre-defined for the scalar types §D21.3. For

non-scalar types, the domain type is the concatenation of

"http://~/domain-types/" + the domain type id.

The link to the domain type resource is shown in the domain object

representation as:

{
 ...
 "links": [{
 "rel": "describedby",
 "href": "http://~/domain-types/CUS",
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 },
 ...
]
 …
}

where the referenced domain type resource will return a representation

that describes the domain object instance.

 Restricting access to formal metadata

Implementations that implement the formal scheme should be aware that

there is a potential security risk: clients will be able to ascertain the

existence of an object's members, even if the member is not returned in

any representation that they obtain of that member.

Restful Objects

Page A-46 v1.0.0 License: CC BY-SA 3.0

For example, an Employee object might have a salary property that is only

visible to users with certain permissions (e.g. an "HR" role). An ordinary user

browsing representations of Employee objects would be able to view the

name and phone, but the salary would be hidden from view. However,

navigating to the formal domain type resource would show that a salary

property does exist.

Because domain types are intended to be cacheable, implementations

should not attempt to alter the metadata representations on a user-by-

user basis. If an implementation intends to support use cases where the

above issue might be considered a security risk, then it should also offer

the simple scheme and provide an implementation-specific mechanism

to disable formal scheme support.

3.2 Validation (x-ro-validate-only)
If validation logic has been defined for a property value, a collection

reference, or an action’s parameter(s), then the server implementation is

expected to perform that validation prior to initiating any change. For

example, a Customer’s firstName property might disallow certain

characters , or its showPayments() action might require that the toDate

parameter is greater than the fromDate.

A validation failure will generate a 422 "unprocessable entity" status code,

and in addition, a warning message will be returned. This will either be a

simple Warning header, or, dependent on the request, may be part of the

response, in the form of an"invalidReason" json-property.

x-ro-validate-only reserved query parameter

On occasion a client may want to validate one or more property fields,

before attempting to modify an object, or may want to validate

arguments before attempting to invoke the action.

Restful Objects defines an optional capability §B8 whereby the client can

set the reserved x–ro-validate-only query param for the request to

indicate that only validation should be performed:

If the validation completes, then a 204 "No content " status code will be

returned. If a validation failure occurs, then the response will be 422

"unprocessable entity" with corresponding Warning header /

"invalidReason" json-properties.

3.3 Blobs/Clobs and Attachments
As well as properties representing strings and dates, etc, the specification

also defines optional support for properties whose value is a blob (binary

large object) or a clob (character large object) §2.5. A typical example is

a property representing a media item such as a picture or document.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-47

If an implementation does support blobs/clobs, then the value of the

blob/clob is suppressed from the property representation. Instead, the

representation includes a "rel"="…/attachment;" link. If followed, such a

link returns a representation with the appropriate content-type, e.g.

image/jpeg, application/pdf, etc

For example, if a property is a blob representing an image, then its

representation would include a link with a corresponding attachment:

{
 "links": [
 {
 "rel": ".../attachment;property=\"photo\"",
 "href": "http://~/objects/CUS/123/properties/photo",
 "type": "image/jpeg",
 "method": "GET"
 }
 ...
]
}

The href of this link should be the same as the property resource §C16.1,

however the client should provide a different Accept header in order to

obtain the attachment.

The values of blob or clob properties are set/cleared using PUT (§C16.2)

and DELETE (§C16.3), as for any other property. The Content-Type header

specifies the media type when being PUT (e.g. image/jpeg).

A client can determine whether an implementation supports blobs/clobs

by inspecting the version resource §B8.

3.4 Proto-persistent Objects
As described in §2.2, a proto-persistent domain entity is an object instance

that is created as a result of an interaction and immediately represented

back to the client, without having been persisted first.

The ultimate persistence of the entity is therefore under the control of the

client, which is done by POSTing to the Objects of Type resource, §B9.1.

Support for proto-persistent objects is an optional capability because

providing a general-purpose persistence capability may not be

practicable for some implementations.

3.5 Object Deletion
Persisted objects can be deleted through the DELETE Object resource,

§C14.3.

This is an optional capability because implementing a generic ‘delete

object’ capability - which includes managing any references to the

deleted object throughout the system - is potentially complex, and not

necessarily practicable for many implementations.

Restful Objects

Page A-48 v1.0.0 License: CC BY-SA 3.0

If the implementation does support the capability then it must also

determine that it is safe to delete the object. A 405 ("method not

allowed") error will be returned otherwise.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-49

4 SPECIFIED ELEMENTS
This section summarises the standard json-properties, headers and status

codes that are understood by Restful Objects implementations.

4.1 Specified json-properties
There are a number of json-properties specified by Restful Objects that

have well-defined and fixed meanings, irrespective of which

representation they appear within. They are:

JSON-Property Description

disabledReason Provides the reason (or the literal "disabled") why an object

property or collection is un-modifiable, or, in the case of an

action, unusable (and hence no links to mutate that

member's state, or invoke the action, are provided).

invalidReason Provides the reason (or the literal "invalid’) why a proposed

value for a property, collection or action argument is

invalid. Appears within an argument representation §2.9

returned as a response.

x-ro-invalidReason Provides the reason why a SET OF proposed values for

properties or arguments is invalid.

The "x-ro-" prefix is to avoid name clashes with the

property/argument names.

links A list of additional links from the representation to other

resources. Implementation-specific links may also be

present in this list; see §2.11.

extensions Map of additional information about the resource.

Implementation-specific json-properties may also be

present in this map; see §2.11.

4.2 Specified (reserved) query parameters
The query parameters reserved by Restful Objects are:

Header Description

x-ro-domain-model Which domain model scheme §3.1 the server should

return. Understood only by servers that provide

"selectable" for the "domainModel" capability §B8.

x-ro-validate-only Indicates that parameters should be validated but no

change in state should occur.

4.3 Specified headers
Restful Objects defines both request and response headers.

Restful Objects

Page A-50 v1.0.0 License: CC BY-SA 3.0

4.3.1 Request headers

The request headers specified by Restful Objects are:

Header Description

Accept The list of media types accepted by the client.

If-Match The value of the ETag response header for the most

recently obtained representation of a resource.

4.3.2 Response headers

The response headers specified by Restful Objects are:

Header Description

Allow The HTTP methods that are supported by the resource.

Returned only in conjunction with a 406 ("Not allowed")

Cache-Control Whether the representation may be cached or not.

Representations of resources representing domain

objects will typically disable caching, but some

representations (for example, of immutable objects, or

of domain types) may be cached.

Last-Modified The last modified timestamp of a persistent resource.

The value of this should be passed as the If-Unmodified-

Since header.

Warning Header to describe either any errors returned by the

server implementation, or, as raised by the domain

object business logic (e.g. if the request was

syntactically valid but could not be completed).

Content-Type Depends upon representation; in the form

"application/json;profile=http:// restfulobjects.org/xxx ".

4.4 Specified status return codes
The status return codes specified by Restful Objects are:

Code Description When

200 Success Successfully generated representation

204 No content Request was successful but generated no

representation; or validation (x-ro-validate-only)

succeeded. Note however that invoking a void

action DOES return a representation §C19.4.4.

400 Bad request Represents any of: a syntactically invalid

request, missing mandatory information (e.g. If-

Unmodified-Since header), or a warning

message generated by the application.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page A-51

Code Description When

401 Not authorized Problem wih user's credentials (ie user is not

authenticated).

403 Forbidden User is not authorized to invoke resource (modify

property or collection, or invoke action)

404 Not found Property, collection or action not found (could

be that the member is hidden for the requesting

user)

405 Method not allowed An attempt was made to invoke a resource with

an HTTP method that is not supported by that

resource.

406 Not acceptable Content type of the representation that would

be returned is incompatible with the provided

Accept header (in other words, the server is

unable to comply with the accept instruction).

412 Precondition failed Concurrency error; the object' has been

modified and its current etag does not match

that provided in the If-Match header.

500 Internal server error Indicates that the domain object threw an

exception in its business logic

501 Not implemented This implementation of Restful Objects does not

support the feature requested.

All client- and server-side errors (4xx and 5xx) will also result in a Warning

header being returned to describe the nature of the problem. The format

of this Warning should be28:

199 RestfulObjects xxx

where:

• 199 indicates a miscellaneous "warn-code" (as per HTTP/1.1 spec)

• RestfulObjects is the "warn-agent"

• xxx is the text of the message generated by the implementation

In some cases the implementation will be able to provide a detailed error

message; otherwise it should return a standard generic message. The

sections describing resource responses detail these messages.

28 http://www.ietf.org/rfc/rfc2616.txt

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-53

B

SUPPORTING
RESOURCES

AND
REPRESENTATIONS

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-55

5 HOME PAGE RESOURCE &

REPRESENTATION
The 'home page' is a well-known resource which acts as the starting point

for any client. From it all other resources may be discovered.

5.1 HTTP GET
Obtain the representation of the home page resource.

The endpoint URL for this resource is:

/

(in other words the base directory).

5.1.1 Request

5.1.1.1 Query String29

None

5.1.1.2 Headers

• Accept

o application/json

o application/json;profile=…/homepage

5.1.1.3 Body

• N/A

5.1.2 Successful Response

5.1.2.1 Status Code

• 200 "OK"

5.1.2.2 Headers

• Content-Type

o application/json;profile=".../homepage"

• Caching headers:

o NON_EXPIRING, see §A2.13

� since home page changes only on redeployment

29 http://en.wikipedia.org/wiki/Query_string

Restful Objects

Page B-56 v1.0.0 License: CC BY-SA 3.0

5.1.2.3 Body

As per §5.2.

5.2 Representation
The links from the home page representation to other resources are as

shown in the diagram below:

FIGURE 4: HOME PAGE REPRESENTATION

The link to the domain types resource is only present if the formal scheme

(§A3.1.2) capability is supported.

The JSON representation is as follows:

{
 "links": [{
 "rel": "self",
 "href": "http://~/",
 "type": "application/json;profile=\".../homepage\"",
 "method": "GET"
 }, {
 "rel": ".../user",
 "href": "http://~/user",
 "type": "application/json;profile=\".../user\"",
 "method": "GET"
 }, {
 "rel": ".../services",
 "href": "http://~/services",
 "type": "application/json;profile=\".../list\"",
 "method": "GET"
 }, {

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-57

 "rel": ".../version",
 "href": "http://~/version",
 "type": "application/json;profile=\".../version\"",
 "method": "GET"
 }, {
 "rel": ".../domain-types",
 "href": "http://~/domain-types",
 "type": "application/json;profile=\".../type-list\"",
 "method": "GET"
 },
 ...
],
 "extensions": { ... }
}

where:

JSON-Property Description

links list of links to resources.

link[rel=self] link back to the resource that generated this

representation.

link[rel=…/user] link to the user resource §6

link[rel=…/services] link to the services resource §7

link[rel=…/version] link to the version resource §8

link[rel=…/types] link to the domain types resource §D21

extensions additional information about the resource.

Restful Objects defines no standard json-properties for "extensions".

Implementations are free to add to their own links/json-properties to "links"

and "extensions" as they require.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-59

6 USER RESOURCE & REPRESENTATION
The 'user' resource represents the currently logged-in user.

The endpoint URL for this resource is:

/user

6.1 HTTP GET
Obtain representation of the currently logged-in user.

6.1.1 GET Request

6.1.1.1 Query String

None

6.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../user "

6.1.1.3 Body

• N/A

6.1.2 GET Successful Response

6.1.2.1 Status Code

• 200 "OK"

6.1.2.2 Headers

• Content-Type

o application/json;profile=".../user"

• Caching headers: SHORT, see §A2.13

o temporary caching of user details

6.1.2.3 Body

As per §6.2.

Restful Objects

Page B-60 v1.0.0 License: CC BY-SA 3.0

6.2 Representation
The links from the user representation to other resources are as shown in

the diagram below:

FIGURE 5: USER REPRESENTATION

The JSON representation is:

{
 "links": [{
 "rel": "self",
 "href": "http://~/user",
 "type": "application/json;profile=\".../user\"",
 "method": "GET"
 }, {
 "rel": "up",
 "href": "http://~/",
 "type": "application/json;profile=\".../homepage\"",
 "method": "GET"
 },
 ...
],
 "userName": "joebloggs",
 "friendlyName": "Joe Bloggs",
 "email": "joe@bloggs.com",
 "roles": [
 "role1", "role2", ...
],
 "extensions": { ... }
}

where:

JSON-Property Description

links list of links to resources.

links[rel=self] link to a resource that can generate this representation

links[rel=up] link to the homepage resource, §5.

userName a unique user name

friendlyName (optional) the user's name in a form suitable to be

rendered in a UI.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-61

JSON-Property Description

email (optional) the user's email address, if known

roles list of unique role names that apply to this user (may be

empty).

extensions additional metadata about the resource.

Restful Objects defines no standard json-properties for "extensions".

Implementations are free to add to their own links/json-properties to "links"

and "extensions" as they require.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-63

7 DOMAIN SERVICES RESOURCE
Returns a list §11 of (links to) domain service resources §C15.

The endpoint URL for this resource is:

/services

7.1 HTTP GET

7.1.1 GET Request

7.1.1.1 Query String

None

7.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../list "

7.1.1.3 Body

• N/A

7.1.2 GET Successful Response

7.1.2.1 Status Code

• 200 "OK"

7.1.2.2 Headers

• Content-Type

o application/json;profile=".../list ";x-ro-element-type="yyy"

� where "yyy" is the domain type id for the services

(most likely a type representing a common base class

for all services, eg Object)

• Caching headers:

o NON_EXPIRING, see §A2.13

� list of available services will not change between

deployments

7.1.2.3 Body

As per §7.2.

Restful Objects

Page B-64 v1.0.0 License: CC BY-SA 3.0

7.2 Representation
The returned representation is a simple list §11, but with an additional link

with a rel="up" referring back to the homepage resource §5.

For example:

{
 "links" : [{
 "rel": "self",
 "href" : "http://~/services",
 "method" : "GET",
 "type" : "application/json;profile=\".../services\""
 }, {
 "rel": "up",
 "href": "http://~/",
 "type": "application/json;profile=\".../homepage\"",
 "method": "GET"
 },
 ...
 }],
 "value" : [{
 "rel": ".../service;serviceId="toDoItems",
 "href" : "http://~/services/toDoItems",
 "method" : "GET",
 "type" : "application/json;profile=\".../object\"",
 "title": To Do Items"
 }, {
 "rel": ".../service;serviceId="categories",
 "href" : "http://~/services/categories",
 "method" : "GET",
 "type" : "application/json;profile=\".../object\"",
 "title": "Categories"
 },
 ...
],
 "extensions": { ... }
}

The links from the services representation to other resources are as shown

in the diagram below:

FIGURE 6: SERVICES REPRESENTATION

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-65

Note that the links in this list will point to domain service resources §C15,

rather than to domain object resources §C14.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-67

8 VERSION RESOURCE &

REPRESENTATION
This resource allows a client to dynamically determine which version of the

Restful Objects spec a particular implementation supports, the version of

the implementation (code) itself, and which of the optional capabilities

§A3 it provides.

The endpoint URL for this resource is:

/version

8.1 HTTP GET
Obtain a representation of the implementation's version and optional

capabilities.

8.1.1 GET Request

8.1.1.1 Query String

• none

8.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../version"

8.1.1.3 Body

• N/A

8.1.2 GET Response

8.1.2.1 Status Code

• 200 "OK"

8.1.2.2 Headers

• Content-Type

o application/json;profile=".../version"

• Caching headers:

o NON_EXPIRING, see §A2.13

� version and capabilities will not change between

deployments

8.1.2.3 Body

As per §8.2.

Restful Objects

Page B-68 v1.0.0 License: CC BY-SA 3.0

8.2 Representation
The links from the version representation to other resources are as shown in

the diagram below:

FIGURE 7: VERSION REPRESENTATION

The JSON representation is:

{
 "links": [{
 "rel": "self",
 "href": "http://~/version",
 "type": "application/json;profile=\".../version\"",
 "method": "GET"
 }, {
 "rel": "up",
 "href": "http://~/",
 "type": "application/json;profile=\".../homepage\"",
 "method": "GET"
 },
 ...
],
 "specVersion": "1.0",
 "implVersion": “xxx”,
 "optionalCapabilities": {
 "blobsClobs": "attachments",
 "deleteObjects": "no",
 "domainModel": "formal",
 "protoPersistentObjects": "yes",
 "validateOnly": "no"
 },
 "extensions": {
 ...
 }
}

where:

JSON-Property Description

links list of links to resources.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-69

JSON-Property Description

links[rel=self] link to a resource that can generate this representation.

links[rel=up] link to the home page resource, §5.

specVersion The "major.minor" parts of the version of the spec

supported by this implementation, e.g. “1.0”

implVersion (optional) Version of the implementation itself (format is

specific to the implementation).

optionalCapabilities map representing the optional capabilities §A3

supported by this implementation (see below)

extensions additional metadata about the resource.

"specVersion"

The specVersion json-property only specifies the major.minor parts of the

spec. An trivial update to the spec (eg 1.0.0 to 1.0.1) will not require

implementations issuing a corresponding update.

"optionalCapabilities"

The "optionalCapabilities" json-property holds a map of child properties

describing the functionality supported by the implementation.

Capability Value

type

String

value

The implementation's

support for…

blobsClobs boolean --- blobs/clobs see §A3.3.

deleteObjects boolean --- deletion of persisted objects

through the DELETE Object

resource §C14.3, see §A3.5

domainModel string none

simple

formal

selectable

different domain metadata

representations. A value of

"selectable" means that the

reserved x-domain-model

query parameter is

supported, see §A3.1

protoPersistentObjects boolean --- proto-persistent objects are

supported, see §A3.4

validateOnly boolean --- the reserved x-ro-validate-

only query parameter,

see §A3.2

"links" and "extensions"

Restful Objects defines no standard links/json-properties for "links" and

"extensions", but implementations are free to add to their own links/json-

properties as they require.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-71

9 OBJECTS OF TYPE RESOURCE
The "Object of Type " resource is the target of a persist link to persist a

proto-persistent ("not yet persisted") object §A2.2 of a given domain type.

The overall process is:

• client invokes an action that creates a proto-persistent object

representation

• client uses the "arguments" json-property of the "rel"=".../persist" link

to determine the information required

• client obtains the required information, for example, prompting for

it in a user interface

• client posts the arguments map back to the Objects resource, with

the missing information

• assuming that the values are valid, a representation of the newly

persisted domain object is returned

o the response code is 201, and will have the Location header

o the representation itself will now include the "self" link, the

"instanceId" json-property (and the "domainType" json-

property if simple scheme §A3.1.1).

The endpoint for this resource is:

/objects/{domainType}

where:

• {domainType} uniquely identifies the domain type of the objects

being persisted

9.1 HTTP POST
Persist a domain object by posting a cut-down version of its

representation.

9.1.1 POST Request

9.1.1.1 Headers

• Accept

o application/json

o application/json;profile=".../object"

Restful Objects

Page B-72 v1.0.0 License: CC BY-SA 3.0

9.1.1.2 Body

Because this resource is in a sense "uploading" a new object, the body is

the cut-down version of the domain object representation §C14.4. 30 It

consists of:

• members[memberType=property]

In other words, it includes all properties and their values (including those

that would normally be hidden), along with a reference to the

domaintype of the object being persisted.

In addition, it may include the reserved query parameter:

• x-ro-validate-Only

o "true"

� validate that the representation provided could be

persisted as a new object, without actually persisting

it.

For example:

{
 "members": {
 "firstName": {
 "value": ...
 },
 "lastName": {
 "value": ...
 },
 ...
]
}

9.1.2 POST Successful Response

As per §C13.2 (201), returning a domain object representation §C14.4.

9.1.3 POST Validation Only and Succeeded

9.1.3.1 Status Code

• 204 "No content"

9.1.3.2 Headers

• none

9.1.3.3 Body

• none

30 Note that this is different from the body provided to PUT Object §C14.2 used to

update multiple properties.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-73

9.1.4 POST Invalid Request

For example, if the body is malformed, or any other syntax error.

9.1.4.1 Status Code

• 400 "bad request"

9.1.4.2 Headers

• Warning

o summary message – indicating the nature of the error

9.1.4.3 Body

Error representation, §10.

9.1.5 POST Validation Failed Response

9.1.5.1 Status Code

• 422 "unprocessable entity"

9.1.5.2 Headers

• Warning

o summary message

9.1.5.3 Body

Body is the same as that posted, but indicating the properties that were

invalid, with a reason in each case.

For example:

{
 "members": {
 "firstName": {
 "value": "Joe",
 }, {
 "lastName": {
 "value": null
 "invalidReason": "Mandatory"
 },
 ...
]
}

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-75

10 ERROR REPRESENTATION
The Error representation defines a standard means for returning detailed

diagnostics, typically when a server-side error (status code 500) occurs.

For example, the following might be the result of invoking an action where

an exception occurred:

{
 "message": "IllegalStateException",
 "stackTrace": [
 "at Somefile.java#foo():1234",
 "at SomeOtherFile.java#bar():4321"
],
 "causedBy": {
 "message": "IllegalStateException",
 "stackTrace": [
 "at LibraryFile.java#foz():567",
 "at LibraryOtherFile.java#baz():765"
]
 },
 "links": [...],
 "extensions": { ... }
}

where:

JSON-Property Description

message the exception message, typically as generated by the

underlying implementation programming language.

stacktrace (optional) list of strings representing call stack

causedBy (optional) underlying cause of the exception (to handle

nested exception scenarios).

links list of links to other resources

extensions additional information about the resource

"stacktrace"

The stack trace is optional. Implementations are free to suppress this

information if they wish, or to make available only if a debug flag (or

similar) has been enabled.

"links" and "extensions"

Restful Objects defines no standard links/json-properties for "links" and

"extensions", but implementations are free to add to their own links/json-

properties as they require.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-77

11 LIST REPRESENTATION
The List representation consists of a list of links to domain object §C14 or

domain service §C15 resources. Typically it is obtained as the result of

invoking a query action, when it is in-lined within the action result

representation §C19.4. It is also be obtained directly from the Services

resource §B7, when it provides a list of links to domain service resources; .

the only difference is that the "href" will be a link to a domain service

resource §C15 rather than a domain object resource §C14.

The media type for a list representation will always be one of:

• application/json;profile="…/list"

o for a list of references to domain services

• application/json;profile="…/action-result";x-ro-element-type="…"

o when in-lined within an action result (ie the representation of

an action invocation that returned a list)

Lists of references to domain objects also appear in the object-collection

representation; that representation is described in full in §17.5.

The representation itself consists of the following json-properties:

{
 "value": [
 ...
],
 "links": [{
 "rel": "self",
 ...
 }, {
 "rel": ".../element-type",
 ...
 },
],
 "extensions": { ... }
}

where:

JSON-Property Description

links list of links to other resources.

links[rel=self] (optional) link to the resource that generated this

list. Present only for domain services.

links[rel=…/element-type] link to the domain type for the elements within the

list – if the “domainModel” optional capability §B8

is implemented.

value the actual list of links to the domain object

resources (or domain service resources)

extensions additional information about the resource.

A "self" link will be present only if the representation was generated from

the domain services resource §7.

Restful Objects

Page B-78 v1.0.0 License: CC BY-SA 3.0

Restful Objects defines no standard child properties of the “extensions”

json-property. Implementations are free to add to their own links/json-

properties to "links" and "extensions" as they require.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page B-79

12 SCALAR VALUE REPRESENTATION
The scalar value representation represents a single value that is not itself a

domain object.

This representation is never returned directly from a resource, but may

appear in-lined within the representation of an action invocation §C19.4 if

the action returned a scalar type such as a string or an integer.

The media type for a scalar representation will always be one of:

• application/json;profile="…/action-result"

o for the representation of an action invocation that returned

a scalar value

The representation itself consists of the following json-properties:

{
 "value": ...,
 "links": [{
 "rel": ".../return-type",
 ...
 },
 ...
],
 "extensions": { ... }
}

where:

JSON-Property Description

value the scalar value itself.

links list of links to other resources.

links[rel=…/return-type] (optional – only if the "formal” scheme §A3.1.2

capability is supported) link to the domain type

§D21.3 of the value

extensions additional metadata about the representation.

extensions.format (optional – and only if the "simple" scheme §A3.1.1

capability is supported) qualifies the datatype value

§A2.5.

Note that there is no "self" link, because the scalar value is not an

addressable resource.

Restful Objects defines no standard child properties for the "extensions"

json-property. Implementations are free to add to their own links/json-

properties to "links" and "extensions" as they require.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-81

C

DOMAIN OBJECT
RESOURCES &

REPRESENTATIONS

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-83

13 RESPONSE SCENARIOS
When a domain object resource is invoked, one of several responses can

occur. These can be distinguished by the HTTP status return code

• 200 – Request succeeded, and generated a representation

• 201 – Request succeeded, and generated a representation of a

new object

• 204 – Request succeeded, but generated no representation; or

validation succeeded

• 400 – Syntactically invalid request

• 403 – Forbidden (user not authorised to modify the resource)

• 404 – Object or object member not found or not visible

• 405 – Method not valid for the resource

• 406 – Client accepts only media types not generated by resource.

• 412 – Pre-condition failed (object changed by another user)

• 422 – Validation failed

• 428 – Required precondition header missing

• 500 – Domain logic failed

In addition, a 401 code may be returned for any resource if the user's

credentials are invalid (that is, they have not authenticated themselves).

The following indicates which codes may be returned by a resource:

 Method Res. Repr. 200 201 204 400 403 404 405 406 412 422 428 500

Service GET 15 B11 y y y y y

Object GET C14.1 14.4 y y y y y

 PUT C14.2 --- y y y y y y y y y

 DELETE C14.3 --- y y y y y y y y y y

Prop'y GET C16.1 16.4 y y y y y

 PUT C16.2 --- y y y y y y y y y

 DELETE C16.3 --- y y y y y y y y y

Coll'n GET C17.1 17.5 y y y y y

 PUT C17.2 --- y y y y y y y y y y

 POST C17.3 --- y y y y y y y y y y

 DELETE C17.4 --- y y y y y y y y y

Action GET C18.1 18.2 y y y y y y

Action

invoke

GET C19.1 B11

B12

14.4

y y y y y y y

 PUT C19.2 --- y y y y y y y y y y

 POST C19.3 --- y y y y y y y y y y y

Objects POST §B9.1 §14.4 y y y y y

Restful Objects

Page C-84 v1.0.0 License: CC BY-SA 3.0

For a given status code, the specific headers and body returned by these

resources vary little between the different resources; this is especially so for

the failure scenarios (4xx and 5xx).

This section (§C13) describes all the responses irrespective of the resource

called. Sections §14 to § C18.2 identify the various request/response

scenarios for each of the domain object resources. In each case they

define the request URL, headers and body, and also identify the standard

(success) response headers and body, if any.

13.1 Request succeeded, and generated a
representation
For resources that return a body containing some representation.

If the response has been generated by a resource that has also modified

the state (e.g. modifying a property or collection or invoking an action),

then there will be no self link. This is to discourage clients from bookmarking

the link.

13.1.1 Status code

• 200 "OK"

13.1.2 Headers

• Content-Length:

o size of the entity body31

• Content-Type (objects):

o application/json;profile=".../xxx";x-ro-domain-type="yyy"

� where xxx indicates the representation type of either

"object" or "action-result" (for an action returning an

object); see §2.4.1

� where yyy indicates the domain type identifier §2.4.2;

� the domain type id (if simple scheme)

� URI of domain type (if formal scheme)

31 As defined in http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-85

• Content-Type (lists):

o application/json;profile=".../xxx";x-ro-element-type="yyy"

� where xxx indicates the representation type of either

"object-collection", "list" and "action-result" (for an

action returning a list); see §2.4.1

� where yyy indicates the element type, §2.4.2):

� the domain type id (if simple scheme)

� URI of domain type (if formal scheme)

• Content-Type (other):

o application/json;profile=".../xxx "

� where xxx indicates any other representation type,

see §2.4.1

• Caching headers:

o TRANSACTIONAL, see §A2.13

� if the object is transactional

o NON_EXPIRING, see §A2.13

� if the implementation can determine that the

returned representation is safe to cache (e.g. the

returned objects are immutable reference data)

• ETag

o digest of timestamp

13.1.3 Body (representation)

The representation will depend on the resource being requested.

13.2 Request succeeded, and generated representatio n
of a new object

13.2.1 Status code

• 201 "OK"

13.2.2 Headers

• Content-Length:

o size of the entity body

• Content-Type:

o application/json;profile=".../object";x-ro-domain-type="yyy"

� where yyy indicates the domain type (for object

representations, §2.4.2)

� the domain type id (if simple scheme)

� URI of domain type (if formal scheme)

Restful Objects

Page C-86 v1.0.0 License: CC BY-SA 3.0

• Caching headers:

o TRANSACTIONAL, see §A2.13

� if the object is transactional

• ETag

o digest of timestamp

• Location:

o the URI of the resource of the object just created

13.2.3 Body (representation)

Representation of a domain object, see §14.4.

13.3 Request succeeded, but generated no content
This response is most often generated as the result of a validation

succeeding (if x-ro-validate-only is supported, §A3.2). Note, by contrast,

that invoking a void action DOES return a representation §19.4.4.

13.3.1 Status code

• 204 "No content"

13.3.2 Headers

• Warning (optional)

o indicates an informational message generated by the

domain object's business logic

13.3.3 Body

• empty

13.4 Bad request
Generated either as the result of a syntactically invalid request

13.4.1 Status code

• 400 ("bad request")

o missing arguments

o arguments are malformed

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-87

13.4.2 Headers

• Warning

o Message text is implementation-specific, but should describe

the error condition sufficiently to enable developer-level

debugging

13.4.3 Body

If arguments §A2.9.2/properties (§14.2, §B9.1) are malformed, (for

example, incorrect datatype), then the response body is the same as the

request body, but additionally will indicate the arguments/properties that

are invalid using an "invalidReason" json-property to indicate why they are

invalid.

For example:

{
 "fromDate": {
 "value": "2009-13-33"
 "invalidReason": "could not be parsed as a date"
 }
 ...,
}

13.5 Not authorized (user is not authenticated)

13.5.1 Status Code

• 401 "Forbidden"

13.5.2 Headers

• WWW-Authenticate

o standard authentication challenge header

13.5.3 Body

• empty

13.6 Forbidden (user not authorized to access resou rce)
If the user attempts to invoke a resource that is disabled.

13.6.1 Status Code

• 403 "Forbidden"

Restful Objects

Page C-88 v1.0.0 License: CC BY-SA 3.0

13.6.2 Headers

• Warning

o same text as "disabledReason" in object representation

13.6.3 Body

• empty

13.7 Object or object member not found or not visib le
This is the response if a requested object or object member does not exist,

or if the object/member exists but is not visible based on the current user's

credentials.

13.7.1 Status Code

• 404 "Not found"

13.7.2 Headers

• Warning

o No such service {serviceId}

o No such domain object {oid}

o No such property {propertyId}

o No such collection {collectionId}

o No such action {actionId}

13.7.3 Body

• empty

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-89

13.8 Resource has invalid semantics for method call ed

13.8.1 Status code

• 405 ("method not allowed")

13.8.2 Headers

• Allow

o comma-separated list of methods that are supported, as per

RFC 2616

• Warning

o object is immutable (if attempt any PUT, DELETE or POST)

o action is not side-effect free (if attempt GET Act/Invoke)

o action is not idempotent (if attempt PUT Act/Invoke)

o collection is not a list (if attempt POST Collection)

o collection is not a set (if attempt PUT Collection)

o object cannot be safely deleted (if attempt DELETE Object)

13.8.3 Body

• empty

13.9 Not acceptable
The client has specified an Accept header that does not include a media

type provided by the resource.

For resources that return "application/json" representations, a 406 response

code will occur if the Accept header is set to "application/json" but has an

incompatible "profile" parameter. For example, specifying a

profile=".../collection" for anything other than a collection resource §17.1

will return a 406.

A 406 can also be returned for blob/clob property resources §16.2.2 when

there is a mismatch between the Accept header and the media type of

the stored blob/clob. For example, setting Accept to "image/jpeg" for a

"video/h264" will return a 406.

13.9.1 Status code

• 406 ("not acceptable")

Restful Objects

Page C-90 v1.0.0 License: CC BY-SA 3.0

13.9.2 Headers

• none

13.9.3 Body

• empty

13.10 Precondition failed (object changed by other user)

13.10.1 Status code

• 412 "precondition failed"

13.10.2 Headers

• Warning

o "Object changed by another user".

The ETag header is deliberately not returned in order to force client to re-

retrieve an up-to-date representation

13.10.3 Body

• empty

13.11 Unprocessable Entity (validation error)
Generated as the result of a validation failure.

13.11.1 Status code

• 422 ("unprocesssable entity")

o property member values are invalid (if updating multiple

properties §14.2, or if persisting a proto-persistent object

§B9.1

o "Arguments invalid"

� details are provided in the body

13.11.2 Headers

• Warning

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-91

o Message text is implementation-specific, but should describe

the error condition sufficiently to enable developer-level

debugging

13.11.3 Body

If arguments §A2.9.2/properties (§14.2, §B9.1) are invalid, then the

response body is the same as the request body, but additionally will

indicate the arguments/properties that are invalid using an

"invalidReason" json-property to indicate why they are invalid

For example:

{
 "fromDate": {
 "value": "2009-12-01"
 "invalidReason": "The from date cannot be in the past"
 }
 ...,
}

If no individual argument/property was invalid, but the set of such is invalid

(e.g. fromDate > toDate), then an "x-ro-invalidReason" json-property is

provided at the root of the map.

For example:

{
 "fromDate": ...,
 "toDate": ...,
 "x-ro-invalidReason": "To date cannot be before from date"
}

The json-property has the prefix "x-ro-" in this case in order to avoid clashes

with the argument/property names

13.12 Precondition header missing
This represents a syntax error where a required precondition header (for

example, If-Match if modifying state of a resource) was not included in

the request.

13.12.1 Status code

• 428 "precondition header missing"

13.12.2 Headers

• Warning

o "If-Match header required with last-known value of ETag for

the resource in order to modify its state".

Restful Objects

Page C-92 v1.0.0 License: CC BY-SA 3.0

13.12.3 Body

• empty

13.13 Domain logic failed, or Implementation defect

13.13.1 Status code

• 500 ("internal server error")

13.13.2 Headers

• Warning

o error message raised by business logic in the domain model,

or

o exception message raised by the Restful Objects

implementation itself

13.13.3 Body

• the error representation §B10.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-93

14 DOMAIN OBJECT RESOURCE &

REPRESENTATION
The domain object resource can be used to obtain the summary domain

object representation §14.4 for a particular domain object, and can also

be used to update or delete individual persisted domain object instances

(where allowed).

The endpoint URL (using templated URI32 syntax) for this resource is:

/objects/{domainType}/{instanceId}

where:

• {domainType} uniquely identifies the object's domain type, and

• {instanceId} uniquely identifies an object instance of that type

Together the {domainType}/{instanceId} may be referred to as the object

identifier, or oid. The specification does not mandate the format of either

the domainType or the instanceId; the following are all potentially valid

forms:

/objects/customers/123

/objects/myApp.Customer/123

/objects/CUS/123

/objects/ORD/123-456

/objects/countries/USA

14.1 HTTP GET
Obtain a summary representation of a domain object §14.4. The intention

is that enough information is provided to render the object in the client's

UI.

14.1.1 Request

14.1.1.1 Query String

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

14.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../object"

32 http://tools/ietf.org/html/draft-gregorio-uritemplate

Restful Objects

Page C-94 v1.0.0 License: CC BY-SA 3.0

If the "profile" parameter is specified to any value other than "…/object",

then a 406 response code should be returned §13.9.

14.1.1.3 Body

• N/A

14.1.2 Success Response

As per §13.1 (200), returning a domain object representation §14.4.

14.2 HTTP PUT
Update multiple properties of the object at the same time, or alternatively

validate the proposed values but do not modify the object.

14.2.1 Request

The request can either be to update the properties, or to request

validation of the proposed values using the x-ro-validate-only query

param §A3.2.

14.2.1.1 Query String

• None

14.2.1.2 Headers

• If-Match

o timestamp digest

� obtained from ETag header of representation

14.2.1.3 Body

The body is the map of new properties, as per §A2.9.2.3. Note that any

blob/clob properties must be in-lined within this map. (Contrast this to

updating of individual properties where the value of a blob/clob can be

PUT in its native media type, §16.2).

In addition, it may include the reserved query parameters:

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

• x-ro-validate-only (optional, §A3.2)

o "true"

� only validate the request, do not modify the property

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-95

For example:

{
 "firstName": {
 "value": ...
 },
 "lastName": {
 "value": ...
 },
 ...
}

14.2.2 Success Response

As per 13.3 (200), returning a domain object representation §14.4.

Because the resource has mutated the state, there will be no self link (so

that it cannot be bookmarked by clients).

14.3 HTTP DELETE
Deletes an object. This is an optional capability §B8 because

implementing a generic ‘delete object’ capability - which includes

managing any references to the deleted object throughout the system -

is potentially complex, and not necessarily practicable for many

implementations.

If the implementation does support the capability then it must also

determine that it is safe to delete the object. A 405 ("method not

allowed") error will be returned otherwise.

14.3.1 DELETE Request

14.3.1.1 Query String

• none

14.3.1.2 Headers

• If-Match

o timestamp digest

� obtained from ETag header of representation

14.3.1.3 Body

• N/A

14.3.2 DELETE Success Response

As per §13.3 (204), returning no representation.

Restful Objects

Page C-96 v1.0.0 License: CC BY-SA 3.0

14.4 Representation
The domain object representation provides summary information about a

single domain object instance, along with links to other sub-resources by

which the domain object may be interacted with, or mutated. As such, it

the single most important representation defined by Restful Objects.

The Content-Type for the representation is:

application/json;profile=".../object";x-ro-domain-type="yyy"

where yyy identifies the domain type identifier:

• the domain type id of the returned object (simple scheme)

• the URI to the domain type of the returned object (formal scheme)

The representation is typically generated from the Domain Object

resource §14.1, though it can also be generated by the Domain Service

resource §15 (since Restful Objects regards a domain service as being just

a well-known domain object). It may also be obtained as the result

updating multiple properties §14.2, or of persisting a proto-persistent

object §B9.

The links from the domain object representation to other resources are as

shown in the diagram below:

FIGURE 8: DOMAIN OBJECT REPRESENTATION

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-97

For example, the representation of a (persistent domain entity) Order

might be:

{
 "domainType": "ORD",
 "instanceId": " 123",
 "title": "Joe Blogg's Order #1",
 "members": {
 ...
 },
 "links": [{
 "rel": "self",
 "href": "http://~/objects/ORD/123",
 "type": "application/json;profile=\".../object\"",
 "method": "GET",
 },
 ...
],
 "extensions": { ... }
}

where:

JSON-Property Description

links list of links to other resources.

links[rel=self] (optional); link to a resource that can obtain this

representation. Note that the href for a service will be

http://~/services/{serviceId}. Discussed further below.

domainType (optional) the domain type to use when building

template URIs. Discussed further below

instanceId (optional) the instance identifier, to use when building

template URIs. Discussed further below.

serviceId (optional) the service Id.

Present only if the object is a domain service §15.

title a string identifier of the object, suitable for rendering in

a UI.

members map of object members (properties, collections,

actions)

links[rel=.../persist] (optional) persist the (proto-persistent) domain object.

Discussed further below.

links[rel=.../update] (optional) link to modify multiple properties of the

domain object (using §14.2).

The link is present only for persistent domain entities

that have at least one modifiable property.

Discussed further below.

links[rel=.../delete] (optional) delete the (persistent) domain object.

Discussed further below.

links[rel=icon] (optional) link to an image representing a scalable

icon for this object

extensions additional information about the resource.

Restful Objects

Page C-98 v1.0.0 License: CC BY-SA 3.0

"domainType"

The "domainType" json-property is only present for the simple scheme

§A3.1.1; if the formal scheme §A3.1.2 is supported then the "domainType"

can be obtained from the domain-type representation §D22.2.

Domain services do not have a "domainType" json-property.

"instanceId" , "serviceId" and "links[rel=self]"

The "instanceId" json-properties is present for persistent domain entities and

for addressable view models §A2.2, and can (with the "domainType" json-

property) be used to construct URLs to other resources for the domain

object as required.

Proto-persistent domain objects and (non-addressable) view models

§A2.2 do not have an "instanceId" because they do not correspond to

any server-side state that can be directly addressed; nor do they have a

‘self’ link, for the same reasons.The "serviceId" json-property performs

much the same function as "instanceId", allowing the URL for domain

services to be constructed. The "serviceId" is present only for domain

services. Domain services do not have a "instanceId" json-property.

"members"

The "members" map contains an entry for every (visible) member. It is

described in more detail in the sections below §14.4.1, §14.4.2, §14.4.333.

"links[rel=.../update]"

For persistent domain objects, there may optionally be a rel=".../update"

link to update all properties of the domain object.

This link is not guaranteed to be present, however; if none of the properties

of an object are updatable then the update properties link will not be

present.

Also, proto-persistent domain objects and view models will never have an

update link.

"links[rel=.../delete]"

For persistent domain objects, there may optionally be a rel=".../delete"

link to delete the domain object.

This links is not guaranteed to be present, however. Support for deleting

objects is an optional capability §B8.2, and so is not guaranteed to be

supported by every framework implementation. If it is supported, then the

implementation should define its own mechanism to restrict which objects

can be deleted, and which may not.

33 The reserved x-ro-follow-links query parameter may also be used to request

that more detailed information is returned in the representation.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-99

Also, proto-persistent domain objects and view models will never have a

delete link.

"links[rel=.../persist]"

For proto-persistent domain objects, a rel=".../persist" link is provided.

The "arguments" map for this link is a subset of the object representation

itself, containing a single "members" map for the (property) members of

the domain object itself. The keys of the "members" map correspond to

every mandatory property of the domain object (note: not just those that

are visible to the user).

For example, the "persist" link for an Order might look like:

"links": [
 {
 "rel": ".../persist",
 "href": "http://~/objects/ORD",
 "type": "application/json;profile=\".../object\"",
 "method": "POST",
 "arguments": {
 "members": {
 "placedBy": {
 "value": ...
 },
 "placedOn": {
 "value": ...
 },
 ...
 }
 }
 },
 ...
]

Note that there is no need to specify the domain type within the

"arguments" map because it can be inferred from the href being posted

to.

"links" and "extensions"

Domain model information about the type is available through either the

"links" or the "extensions" json-properties. This is discussed separately in

§14.4.4.

Implementations are free to add to their own links/properties to "links" and

"extensions" as they require.

14.4.1 Properties

The "members" map contains an entry for every (visible) property. This

entry contains a subset of the information shown in the detailed property

representation §16.4. The intention is to provide enough information to

render the property value in a user interface without having to make

additional requests.

Restful Objects

Page C-100 v1.0.0 License: CC BY-SA 3.0

For example, the "createdOn" property would look something like:

"members": {
 "createdOn": {
 "memberType": "property",
 "value": ...,
 "disabledReason": ...,
 "links": [{
 "rel": ".../details;property=\"createdOn\"",
 "href": "http://~/objects/ORD/123/properties/createdOn",
 "type": "application/json;profile=\".../object-property\"",
 "method": "GET"
 },
 ...
],
 "extensions": { ... }
 },
 ...
}

where the member's id (“createdOn” in the example above) is used as a

unique key in the "members" map, and its value being the following map:

JSON-Property Description

memberType the constant value "property"

value (optional) the current value of the property, either a

scalar, a (link representing a) reference, or null.

Discussed further below.

disabledReason (optional) if populated then indicates the reason why

the property cannot be modified.

links list of links to resources.

links[rel=…/details] (optional) link to the detailed representation of the

property, §16.4 (e.g. to access defaults and choices).

links[rel=…/attachment] (optional) link to the property value if it is an

attachment. Discussed further below

extensions map of additional information about the resource.

"value" and "links[rel=…/attachment;...]"

The "value" json-property holds the in-lined value of the property, though

depending on the nature of the domain object and the type of the

property, it may or may not be present:

• if the property value is null, then the "value" json-property will be

present and set to the JSON null value

• for proto-persistent domain objects and (non-addressable) view

models (§A2.2), the "value" is always present.

• for persistent domain objects and addressable view models (with

server-side state §A2.2), the "value" is always present for non-

blobs/clobs §A2.5

• for blobs/clobs in implementations that do not support attachments

§A-46, again the "value" is present

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-101

• however, for persistent domain objects which support attachments

the "value" is omitted. Instead a link to the attachment will be

available. This link serves up the property value directly with the

correct media type (e.g. as an image/jpg).

From the client's perspective, this means that there is always either a

"value" json-property or a "links[rel=…/attachment;…]" json-property.

"links" and "extensions"

Other domain model information about the property is available through

either the "links" or the "extensions" json-properties. The information

provided through these json-properties is the same as provided in the

domain object property representation, see §16.4.3.

Implementations are free to add to their own links/json-properties to "links"

and "extensions" as they require

14.4.2 Collections

The "members" map also contains an entry for every (visible) collection,

which provides a link to the corresponding Object Collection resource.

The member entry may also provide summary information about the

collection (for example, its size) so that the client can render the

collection without having to make additional requests to the server.

However, if the domain object being represented has no corresponding

server-side state (i§A2.2), then the collection's representation also in-lines

the collection representation §17.5.

As for (object) properties, the json-property representing a collection has a

type, a details link, and links to the state.

For example, the Order's items collection would look something like:

"members": {
 ...,
 "items": {
 "memberType": "collection",
 "disabledReason": ...,
 "value": [...],
 "size": ...,
 "links": [{
 "rel": ".../details;collection=\"items\"",
 "href": "http://~/objects/ORD/123/collections/items",
 "type": "application/json;profile=\".../object-collection\"",
 "method": "GET"
 }, ...],
 "extensions": { ... }
 },
 ...
]

Restful Objects

Page C-102 v1.0.0 License: CC BY-SA 3.0

where the member's id is used as a unique key in the "members" map, and

its value being the following map:

JSON-Property Description

memberType the constant value "collection"

disabledReason (optional) if populated then indicates the reason why it is

not possible to add to or remove from the collection.

value (optional) contains a representation of the contents of the

collection. Discussed further below.

size (optional) contains a count of the elements in the

collection. Discussed further below.

links links to other resources.

links[rel=.../details] (optional) link to the detailed representation of the

collection, §17.5, which includes such information as

defaults and choices. Discussed further below.

extensions additional information about the resource.

"links[rel=.../details]", "value" and "size"

As noted above, representations of domain objects without

corresponding server-side state (§A2.2) will in-line the "value" of the

collection. For these domain objects, there is no "size" json-property and

there is no "links[rel=…/details;...]" link.

Domain objects with server-side state, however, need not provide a

"value". Instead, they may provide a "links[rel=.../details]" which when

followed will return the value in the collection's detailed representation

§17.5.

This behaviour allows implementations to load only the object and not all

of its related references (in other words, lazy loading).

"links" and "extensions"

Other domain model information about the collection is available through

either the "links" or the "extensions" json-properties. The information

provided through these json-properties is the same as provided in the

domain object collection representation, see §17.5.3.

Implementations are free to add to their own links/json-properties to "links"

and "extensions" as they require

14.4.3 Actions

The "members" map also contains an entry for every (visible) action. Note

however that only domain objects with corresponding server-side state

(§A2.2) will have actions.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-103

The information provided is a subset of the information shown in the

detailed action representation §18.2 (obtainable from the GET Action

resource §18.2). The intention is to provide enough information to render

the action without having to make additional requests.

Like a property or a collection, an action has a link to 'details' which allows

additional information (specifically, choices and defaults on parameters)

to be obtained that might otherwise be expensive to compute. It also

includes a link to follow in order to invoke the action.

For example, the Order's submit() action might be represented as:

"members": {
 ...
 "submit": {
 "memberType": "action",
 "disabledReason": ...,
 "links": [{
 "rel": ".../details;action=\"submit\"",
 "href": "http://~/objects/ORD/101/actions/submit",
 "type": "application/json;profile=\".../object-action\"",
 "method": "GET"
 } ...],
 "extensions": { ... }
 },
 ...
}

where the member's id is used as a unique key in the "members" map, and

its value being the following map:

JSON-Property Description

memberType the constant value "action"

disabledReason (optional) if populated then indicates the reason why the

action may not be invoked.

links list of links to other resources.

links[rel=.../details] link to the detailed representation of the action, §18.2.

extensions additional metadata about the resource

"links" and "extensions"

Other domain model information about the action is available through

either the "links" or the "extensions" json-properties. The information

provided through these json-properties is the same as provided in the

domain object action representation, see §18.2.3.

Restful Objects defines no further standard links/json-properties for "links" or

"extensions". However, implementations are free to add to their own

links/json-properties as they require.

Restful Objects

Page C-104 v1.0.0 License: CC BY-SA 3.0

14.4.4 Domain model information

Domain model information is available through either the "links" or the

"extensions" json-properties.

 Simple scheme

Implementations that support the simple scheme provide extra data in the

"extensions" json-properties. For example:

"extensions": {
 "domainType": "ORD",
 "friendlyName": "Order",
 "pluralName": "Orders",
 "description": "An order that has been placed by a customer",
 "isService": false
 "memberOrder": 1
}

See §A3.1.1 for the full definitions of these json-properties.

 Formal scheme

Implementations that support the formal scheme §A3.1.2 provide an

additional link in the "links" json-property:

"links": [
 {
 "rel": "describedby",
 "href": "http://~/domain-types/ORD",
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 },
 ...
]

which links to the domain type resource §D22 corresponding to this

domain object.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-105

15 DOMAIN SERVICE RESOURCE
A domain service is a well-known (singleton) domain object that typically

acts as a repository and/or factory, providing actions for obtaining other

domain object instances (although services can provide any kind of

functionality in relation to objects).

Domain services can be accessed from the object list representation §B11

returned by the GET Domain Services resource §B7.

15.1 HTTP GET
Obtain summary representation of a domain service..

The endpoint URL for this resource is:

/services/{serviceId}

where:

• {serviceId} is a unique identifier for the service

15.1.1 Request

15.1.1.1 Query String

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

15.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../object"

15.1.1.3 Body

• N/A

15.1.2 Success Response

As per §13.1 (200), returning a domain object representation §14.4.

Restful Objects

Page C-106 v1.0.0 License: CC BY-SA 3.0

16 PROPERTY RESOURCE &

REPRESENTATION
The (domain object) property resource can be used to obtain the

detailed domain object property representation §16.4 for a particular

domain object instance. It also allows the value of that property to be

modified (or to validate a proposed new value for a property).

The endpoint URL for this resource is:

/objects/{domainType}/{instanceId}/properties/{propertyId}

where:

• {domainType} uniquely identifies the object's type, and

• {instanceId} uniquely identifies an object instance of that type

• {propertyId} is the property identifier

16.1 HTTP GET
Obtain a detailed representation of a property §16.4.

This resource is typically requested as a result of following a link from the

domain object representation §14.4.

16.1.1 Request (any property type)

To return a representation §16.4 of the property; if a non-blobClob then

this will include the property's current value, if a blob/clob then will include

a link rel=".../attachment" by which the blob/clob can be retrieved,

§16.1.2.

16.1.1.1 Query String

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

16.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../object-property"

16.1.1.3 Body

• N/A

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-107

16.1.2 Request (for blobClob attachment)

If the property is a blob/clob, then getting the property with an

"application/json" Content-Type §16.1.1 will return a representation of the

property §16.4 that include an rel=".../attachment" link. This link refers back

to the same resource URL, but indicates the media type34 for the Accept

header in order to obtain the actual blob/clob.

16.1.2.1 Query String

• None

16.1.2.2 Headers

• Accept

o as specified in the rel=…/attachment link

o eg image/pdf, image/jpeg, video/h264

16.1.2.3 Body

• Blob/clob resource

16.1.3 Success Response

As per §13.1 (200), returning an object property representation §16.4.

16.2 HTTP PUT
Update property value of an object, or check that the proposed new

value for the property would be valid without making the change. The PUT

method may be used to clear the property by passing in a null value, but

the recommended practice is to use DELETE §C16.3 for that purpose.

Properties that are blob/clobs support two different request formats. Non

blob/clobs support only a single request format.

16.2.1 Request (for non-blobClobs)

Updating non-blobClob properties is performed by PUTting the value in-

lined within a JSON map §A2.9.2.2.

16.2.1.1 Query String

• None

16.2.1.2 Headers

• Content-Type: application/json

34 http://www.iana.org/assignments/media-types/index.html

Restful Objects

Page C-108 v1.0.0 License: CC BY-SA 3.0

• If-Match

o timestamp digest

� obtained from ETag header of representation

� only validate the request, do not modify the property

16.2.1.3 Body

• should be formatted as a single argument node §A2.9.2.2.

In addition, it may include the reserved query parameters:

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

• x-ro-validate-only (optional, §A3.2)

o "true"

� only validate the request, do not modify the property

16.2.2 Request (if blobClobs)

Updating blobClob properties is performed by PUTting the actual value

(e.g. image), with appropriate content type.

Note that optional validation (x-ro-validate-only) and domain type

metadata preferences (x-ro-domain-model) are not supported for

blobClobs.

16.2.2.1 Query String

• none

16.2.2.2 Headers

• Content-Type: (depends on property type)

o eg image/jpeg, image/png, application/pdf

• If-Match

o timestamp digest

� obtained from ETag header of representation

� only validate the request, do not modify the property

16.2.2.3 Body

• a byte array (for blobs)

• a character array (for clobs)

16.2.3 Success Response

As per §13.1 (200), returning an object property representation §16.4.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-109

16.3 HTTP DELETE
This is the recommended resource for clearing a property value, or for

validating that a property can be cleared but without making the

change.

Strictly speaking the DELETE Object Property resource is redundant

because it is also possible to clear a property using the PUT method,

passing in a null value. However, the DELETE Object Property resource has

been included in the spec because it offers a simpler syntax (no body to

pass in) and because it is more ‘intentional’ (the intent of calling the

resource is clearer to anyone reading the code).

16.3.1 Request

16.3.1.1 Query Params

• None

16.3.1.2 Headers

• If-Match

o timestamp digest

� obtained from ETag header of representation

� only validate the request, do not modify the property

16.3.1.3 Body

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

• x-ro-validate-only (optional, §A3.2)

o "true"

� only validate the request, do not modify the property

16.3.2 Success Response

As per §13.1 (200), returning an object property representation §16.4.

Because the resource has mutated the state, there will be no self link (so

that it cannot be bookmarked by clients).

16.4 Representation
The domain object property representation provides full details about a

property of a domain object instance, and provides links to resources to

allow the property to be modified (if it is not disabled).

Restful Objects

Page C-110 v1.0.0 License: CC BY-SA 3.0

The Content-Type for the representation is:

application/json;profile=".../object-property"

The links from the object property representation to other resources are as

shown in the diagram below:

FIGURE 9: OBJECT PROPERTY REPRESENTATION

For example, the representation of an Order's deliveryOption property

might be:

"deliveryOption": {
 "disabledReason": ...,
 "value": ...,
 "choices": [...]
 "links": [{
 "rel": "self",
 "href": "http://~/objects/ORD/123/properties/deliveryOption",
 "type": "application/json;profile=\".../object-property\"",
 "method": "GET",
 },
 {
 "rel": ".../modify;property=\"deliveryOption\"",
 ...
 },
 {
 "rel": ".../clear;property=\"deliveryOption\"",
 ...
 },
 {
 "rel": "up",
 ...
 ...
],
 "extensions": { ... }
}

where:

JSON-Property Description

links list of links to resources.

links[rel=self] link to a resource that can obtain this

representation

id property ID, to use when building templated URIs

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-111

JSON-Property Description

value (optional) the current value of the (non blob/clob)

property, §16.4.1.

choices (optional) list of suggested/recommended choices

for the (non blob/clob) property, §16.4.1.

disabledReason (optional) if populated then indicates the reason

why the property cannot be modified.

links[rel=…/modify] (optional) link back to self to modify property value;

discussed below, §16.4.2.

links[rel=.../clear] (optional) link back to self to clear property value;

discussed below, §16.4.2.

links[rel=up] link to the object that is the owner of this property.

links[rel=.../attachment] (optional) link to resource returning property if a

blob/clob, §16.4.1.

extensions additional information about the resource.

"choices"

The "choices" json-property lists a set of values which are valid for the

property. (It is up to the implementation to determine whether this set of

choices is exclusive (i.e. whether other values may also be valid) or not.

"links" and "extensions"

Both the "links" and the "extensions" json-properties may contain domain

model information; this is discussed in §16.4.3.

Restful Objects defines no further standard child properties for the

"extensions" json-property. Implementations are free to add further

links/json-properties to "links" and "extensions" as they require.

16.4.1 Property values and choices

For value properties (other than blobs/clobs), the "value" and "choices"

json-properties are directly parseable strings:

{
 ...
 "id": "deliveryOptions",
 ...
 "value": "PRIORITY",
 "choices": ["PRIORITY", "STANDARD", "PARCEL"],
 ...
}

Restful Objects

Page C-112 v1.0.0 License: CC BY-SA 3.0

For reference properties, the "value" and "choices" json-properties hold

links to other object resources:

{
 "id": "paymentMethod",
 ...,
 "value": {
 "rel": ".../value;property=\"paymentMethod\"",
 "href": "http://~/objects/PMT/VISA",
 "type": "application/json;profile=\".../object\"",
 "method": "GET",
 "title": "Visa"
 },
 "choices": [
 {
 "rel": ".../choice;property=\"paymentMethod\"",
 "href": "http://~/objects/PMT/VISA",
 "type": "application/json;profile=\".../object\"",
 "method": "GET",
 "title": "Visa"
 },
 {
 "rel": ".../choice;property=\"paymentMethod\"",
 "href": "http://~/objects/PMT/AMEX",
 "type": "application/json;profile=\".../object\"",
 "method": "GET",
 "title": "American Express"
 },
 {
 "rel": ".../choice;property=\"paymentMethod\"",
 "href": "http://~/objects/PMT/MCRD",
 "type": "application/json;profile=\".../object\"",
 "method": "GET",
 "title": "Mastercard"
 },
]
}

For blob/clob value properties, the "value" json-property is omitted.

Instead a link[rel=".../attachment"] json-property provides a link that can

be followed, with the appropriate Accept header, to obtain the

blob/clob:

{
 "id": "scannedSignature",
 ...,
 "links": [
 {
 "rel": ".../attachment;property=\"scannedSignature\"",
 "href": "http://~/objects/CUS/123/property/scannedSignature",
 "type": "image/jpeg",
 "method": "GET"
 },

If the property is null, then there will be neither a "value" nor a

"links[rel=.../attachment]" json-property.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-113

16.4.2 Property modification

If the property is modifiable, then the "modify" and "clear" json-properties

provide links to the resources used to change the property's state.

For example:

{
 "id": "deliveryTime",
 ...
 "links": [{
 "rel": ".../modify;property=\"deliveryTime\"",
 "href": "http://~/objects/ORD/123/properties/deliveryTime",
 "type": "application/json;profile=\".../object-property\"",
 "method": "PUT",
 "arguments": {
 "value": null
 }
 }, {
 "rel": ".../clear;property="\deliveryTime\"",
 "href": "http://~/objects/ORD/123/properties/deliveryTime",
 "type": "application/json;profile=\".../object-property\"",
 "method": "DELETE"
 },
 ...
]
}

where:

JSON-Property Description

links[rel=.../modify] link back to self to modify property value; not included if the

property is disabled

links[rel=…/clear] link back to self to clear property value; not included if the

property is disabled

The new value (for the "modify") is sent in the body request via HTTP PUT.

Validation of properties occurs when the modify is made. If only validation

is of a property is required, then specify the x-ro-validate-only request

parameter §A3.2.

If the domain object property is NOT modifiable, then the representation

will include a "disabledReason" json-property that indicates the reason (or

just the literal "disabled") why the value of the property cannot be

modified:

{
 ...
 "disabledReason":
 "Cannot add items to order that has already shipped",
 ...
}

Restful Objects

Page C-114 v1.0.0 License: CC BY-SA 3.0

where:

JSON-Property Description

disabledReason indicates the reason why the property cannot be

modified/cleared; only included if the property is disabled.

16.4.3 Domain model information

Domain model information is available through either the "links" or the

"extensions" json-properties.

16.4.3.1 Simple scheme

Implementations that support the simple scheme provide extra data in the

"extensions" json-property. For example:

"extensions": {
 "friendlyName": "Delivery Time",
 "description": "Time that the order will be delivered",
 "returnType": ...
 "optional": false,
 "format": ... // for string properties only
 "maxLength": ... // for string properties only
 "pattern": ... // for string properties only
 "memberOrder": 3
}

See §A3.1.1 for the full definitions of these json-properties.

16.4.3.2 Formal scheme

Implementations that support the formal scheme §A3.1.2 provide an

additional link only in the "links" json-property:

"links": [
 {
 "rel": "describedby",
 "href":
 "http://~/domain-types/ORD/properties/deliveryTime",
 "type":
 "application/json;profile=\".../ property-description\"",
 "method": "GET"
 }
]

which links to the domain property description resource §D22.2

corresponding to this domain object property.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-115

17 COLLECTION RESOURCE &

REPRESENTATION
The (domain object) collection resource can be used to obtain the

detailed domain object collection representation §17.5 for a particular

domain object instance. It also allows elements to be added to, or

removed from, the collection (or optionally to validate the adding and

removal of elements without modifying the collection).

The endpoint URL for this resource is:

/objects/{domainType}/{instanceId}/collections/{collectionId}

where:

• {domainType} uniquely identifies the object's type, and

• {instanceId} uniquely identifies an object instance of that type

• {collectionId} is the collection identifier

17.1 HTTP GET
Obtain a detailed representation of a collection §17.5.

This resource is typically requested as a result of following a link from the

domain object representation §14.4.

17.1.1 Request

17.1.1.1 Query String

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

17.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../object-collection"

17.1.1.3 Body

• N/A

17.1.2 Success Response

As per §13.1 (200), returning an object collection representation §17.5.

Note that the Content-Type will include an "x-ro-element-type" parameter.

Restful Objects

Page C-116 v1.0.0 License: CC BY-SA 3.0

17.2 HTTP PUT
Add an object to a collection, or alternatively validate that the proposed

object may be added to the collection is valid but without making the

change.

This method is valid only if the collection has Set semantics (the most

common case, where duplicate entries are not permitted).

17.2.1 Request

17.2.1.1 Query String

• x-ro-domain-model (if domain metadata is "selectable", §A3.1)

o "simple"

o "formal"

17.2.1.2 Headers

• If-Match

o timestamp digest

� obtained from ETag header of representation

17.2.1.3 Body

• should be formatted as a single argument node §A2.9.2.2.

In addition:

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

• x-ro-validate-only (optional, §A3.2)

o "true"

� only validate the request, do not modify the

collection

17.2.2 Success Response

As per §13.1 (200), returning an object collection representation §17.5.

Note that the Content-Type will include an "x-ro-element-type" parameter.

17.3 HTTP POST
Add an object to a collection, or alternatively validate that the proposed

object to add to the collection is valid but do not modify the collection.

This method is valid only if the collection has List semantics (where

duplicate entries are permitted).

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-117

17.3.1 Request

17.3.1.1 Query String

• None

17.3.1.2 Headers

• If-Match

o timestamp digest

� obtained from ETag header of representation

17.3.1.3 Body

• should be formatted as a single argument node §A2.9.2.2.

In addition:

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

• x-ro-validate-only (optional, §A3.2)

o "true"

� only validate the request, do not modify the

collection

17.3.2 Success Response

As per §13.1 (200), returning an object collection representation §17.5.

Note that the Content-Type will include an "x-ro-element-type" parameter.

17.4 HTTP DELETE
Remove an object from a collection, or validate that an object may be

removed from the collection but without making the change.

17.4.1 Request

17.4.1.1 Query String

A single query argument should be formatted as a single argument node

§A2.9.2.2 referencing the object to remove:

{
 "value": {
 "href": "http://~/objects/XXX/yyyy"
 }
}

Restful Objects

Page C-118 v1.0.0 License: CC BY-SA 3.0

In addition:

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

• x-ro-validate-only (optional, §A3.2)

o "true"

� only validate the request, do not modify the

collection

17.4.1.2 Headers

• If-Match

o timestamp digest

� obtained from ETag header of representation

17.4.1.3 Body

• None

17.4.2 Success Response

As per §13.1 (200), returning an object collection representation §17.5.

Because the resource has mutated the state, there will be no self link (so

that it cannot be bookmarked by clients).

17.5 Representation
The domain object collection representation provides full details of a

collection of a domain object, and provides links to resources that can

modify the contents of the collection, if allowable.

The Content-Type for the representation is:

application/json;
 profile=".../object-collection;
 x-ro-element-type=yyy"

where yyy indicates the domain type:

• the domain type id (if simple scheme)

• URI of domain type (if formal scheme)

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-119

The links from the object collection representation to other resources are

as shown in the diagram below:

FIGURE 10: OBJECT COLLECTION REPRESENTATION

For example, the representation of an Order’s items collection might be:

{
 "id": items",
 "value": [...],
 "disabledReason": ...,
 "links": [{
 "rel": "self",
 "href": "http://~/objects/ORD/123/collections/items",
 "type": "application/json;profile=\".../object-collection\"",
 "method": "GET",
 }, {
 "rel": ".../addTo;collection=\"items\"",
 ...
 }. {
 "rel": ".../removeFrom;collection=\"items\"",
 ...
 }, {
 "rel": "up",
 ...
 }
 ...
],
 "extensions": { ... }
}

where:

JSON-Property Description

links list of links to other resources.

links[rel=self] link to a resource that can obtain this

representation

id collection ID, to use when building templated URIs

value list of links to the domain objects referenced by the

collection, §17.5.1.

disabledReason (optional) if populated then indicates the reason

why the collection cannot be modified.

Restful Objects

Page C-120 v1.0.0 License: CC BY-SA 3.0

JSON-Property Description

links[rel=.../add-to] (optional) link back to self to add item to collection;

discussed below, §17.5.2.

links[rel=…/remove-from] (optional) link back to self to remove item from

collection; discussed below, §17.5.2.

links[rel=up] link to the object that is the owner of this collection.

extensions additional information about the resource.

Both the "links" and the "extensions" json-properties may contain domain

model information; this is discussed in §17.5.3.

Restful Objects defines no further standard child properties for the

"extensions" json-property. Implementations are free to add further

links/json-properties to "links" and "extensions" as they require.

17.5.1 Collection values

The value of a collection is a list of links to other objects e.g.:

"value": [
 {
 "rel": ".../value;collection=\"items\"",
 "href": "http://~/objects/ORI/123-1",
 "type": "application/json;profile=\".../object\"",
 "method": "GET",
 "title": "Harry Potter and the Goblet of Fire"
 },
 {
 "rel": ".../value;collection=\"items\"",
 "href": "http://~/objects/ORI/123-2",
 "type": "application/json;profile=\".../object\"",
 "method": "GET",
 "title": "Rubiks Cube"
 },
 {
 "rel": ".../value;collection=\"items\"",
 "href": "http://~/objects/ORI/123-3",
 "type": "application/json;profile=\".../object\"",
 "method": "GET",
 "title": "Xbox"
 }
]

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-121

17.5.2 Collection modification

If the collection is a modifiable (by the current user), then the "addTo" and

"removeFrom" links will be provided.

If the collection is a Set (the common case, where entries cannot be

duplicated), then the "addTo" link will be a PUT:

{
 ...
 "links": [{
 "rel": ".../addTo;collection=\"items\"",
 "href": "http://~/objects/ORD/123/collections/items",
 "type": "application/json;profile=\".../object-collection\"",
 "method": "PUT",
 "arguments": {
 "value": null
 },
 ...
],
 ...
}

If the collection is a List (the rarer case, where entries can be duplicated),

then the "addTo" link will be a POST:

{
 ...
 "links": [{
 "rel": ".../addTo;collection=\"items\"",
 "href":"http://~/objects/ORD/123/collections/items",
 "type": "application/json;profile=\".../object-collection\"",
 "method": "POST"
 "arguments": {
 "value": null
 }
 },
 ...
],
 ...
}

In both cases, the "removeFrom" link will be a DELETE:

{
 ...
 "links": [{
 "rel": ".../removeFrom;collection=\"items\"",
 "href": "http://~/objects/ORD/123/collections/items",
 "type": "application/json;profile=\".../object-collection\"",
 "method": "DELETE"
 "arguments": {
 "value": null
 }
 ...
],
 ...
}

Restful Objects

Page C-122 v1.0.0 License: CC BY-SA 3.0

To summarize:

JSON-Property Description

links[rel=.../add-to] link back to self to add to collection; not included if

the collection is disabled

links[rel=.../remove-from] link back to self to remove from collection; not

included if the collection is disabled

If the collection is NOT modifiable (by the current user), then the

representation will include a "disabledReason" json-property to indicate

the reason (or just the literal "disabled") why the contents of the collection

cannot be modified:

{
 ...
 "disabledReason":
 "Cannot add items to order that has already shipped",
 ...
}

where:

JSON-Property Description

disabledReason indicates the reason why the collection cannot be added

to/removed from; only included if the collection is disabled

17.5.3 Domain model information

Domain model information is available through either the "links" or the

"extensions" json-properties.

17.5.3.1 Simple scheme

Implementations that support the simple scheme provide extra data in the

"extensions" json-properties. For example:

"extensions": {
 "friendlyName": "items",
 "description": "Line items (details) of the order",
 "returnType": "list",
 "elementType": "ORI",
 "pluralForm": "Order Items"
}

Note that the combination of the "size" json-property and the "pluralForm"

json-property make it easy for a client to render useful summary

information (e.g. "3 Customers").

See §A3.1.1 for the full definitions of these json-properties.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-123

17.5.3.2 Formal scheme

Implementations that support the formal scheme §A3.1.2 provide an

additional link only in the "links" json-property:

"links": [
 {
 "rel": "describedby",
 "href": "http://~/domain-types/ORD/collections/items",
 "type": "application/json;profile=\".../type-collection\"",
 "method": "GET"
 },
 ...
]

which links to the domain collection description resource §D23.2

corresponding to this domain object collection.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-125

18 ACTION RESOURCE &

REPRESENTATION
The action resource can be used to obtain the detailed domain object

action representation §18.2 for a particular domain object instance or for

a particular domain service. This provides a description of the action only;

to invoke it, the object action invoke sub-resource §C18.2 is used.

This resource is typically requested as a result of following a link from the

domain object representation §14.4.

The endpoint URL for this resource for an action on a domain service is:

/services/{serviceId}/actions/{actionId}

where:

• {serviceId} is a unique identifier for the service

• {actionId} is the action identifier

The endpoint URL for this resource for an action on a domain object is:

/objects/{domainType}/{instanceId}/actions/{actionId}

where:

• {domainType} uniquely identifies the object's type, and

• {instanceId} uniquely identifies an object instance of that type

• {actionId} is the action identifier

18.1 HTTP GET
Obtain a detailed representation of an action §18.2.

18.1.1 GET Request

18.1.1.1 Query String

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

18.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../object-action"

18.1.1.3 Body

• N/A

Restful Objects

Page C-126 v1.0.0 License: CC BY-SA 3.0

18.1.2 GET Success Response

As per §13.1 (200), returning an object action representation §18.2.

18.2 Representation
The domain object action representation provides full details of an action

on a domain object instance, and provides links to resources that can

invoke the action (if allowed).

The Content-Type for the representation is:

application/json;profile=".../object-action"

The links from the object action representation to other resources are as

shown in the diagram below:

FIGURE 11: OBJECT ACTION REPRESENTATION

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-127

For example, the representation of Order's submit action might be:

{
 "id": submit",
 ...
 "parameters": {
 ...
 },
 "disabledReason": ...,
 "links": [{
 "rel": "self",
 "href": "http://~/objects/ORD/123/actions/submit",
 "type": "application/json;profile=\".../object-action\"",
 "method": "GET",
 }, {
 "rel": ".../invoke;action=\"submit\"",
 ...
 }, {
 "rel": "up",
 ...
 }
 ...
],
 "extensions": { ... }
}

where:

JSON-Property Description

links list of links to other resources.

links[rel=self] link to a resource that can generate this representation.

id the action ID, to use when building templated URIs

parameters map of parameters; discussed below §18.2.1

disabledReason (optional) if populated then indicates the reason why the

action cannot be invoked.

links[rel=.../invoke] (optional) is a link to invoke the action (if it is not disabled), §

18.2.2.

links[rel=up] link to the object that is the owner of this action.

extensions additional metadata about the resource

Both the "links" and the "extensions" json-properties may contain domain

model information; this is discussed in §18.2.3.

Restful Objects defines no standard child properties for the "extensions"

json-property (other than any domain model information).

Implementations are free to add further links/json-properties to both "links"

and "extensions" as they require.

Restful Objects

Page C-128 v1.0.0 License: CC BY-SA 3.0

18.2.1 Action parameters

The action resource lists the parameter details in the "parameters" list:

"parameters": {
 "paramName1": {
 "choices": [{
 "rel": ".../choice;action=\"action\";param=\"paramName1\"",
 ...
 }, {
 "rel": ".../choice;action=\"action\";param=\"paramName1\"",
 ...
 }, {
 "rel": ".../choice;action=\"action\";param=\"paramName1\"",
 ...
 }
 ...
],
 "default": {
 "rel": ".../default;action=\"action\";param=\"paramName1\"",
 ...
 },
 "links": [...]
 "extensions": { ... }
 },
 "paramName2": {
 "choices": [...],
 "default": { ... },
 "links": [...]
 "extensions": { ... }
 },
 "paramName3": {
 "choices": [...],
 "default": { ... },
 "links": [...]
 "extensions": { ... }
 }
]

where paramName1, paramName2, paramName3 are the ids used as a

unique key in the "parameters" map (also as used as the key in argument

maps A2.9.2), with their value being the following map:

JSON-Property Description

choices an optional list of choices for the parameter argument

default an optional value/link to act as the default for the

parameter argument

links list of links to other resources related to the action parameter

extensions additional metadata about the action parameter

The rel values for choices and defaults specify both the action and

parameter name in order to distinguish from other links.

The "links" and/or "extensions" json-property may hold domain model

metadata; see §18.2.3.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-129

18.2.2 Action invocation

If the action can be invoked then the "rel" = "invoke" link will contain a link

by which the action can be invoked. This will be either a GET, a PUT or a

POST dependent upon the action's semantics.

If the implementation can determine that the action is ‘query-only’, then

a GET link should be provided:

{
 ...
 "links": [{
 "rel": ".../invoke;action=\"recentOrder\"",
 "href":
 "http://~/objects/CUS/001/actions/recentOrder/invoke",
 "type": "application/json;profile=\".../action-result\"",
 "arguments": { ... },
 "method": "GET"
 }
 ...
],
 ...
}

If the implementation can determine that the action is idempotent then a

PUT link will be provided:

{
 ...
 "links": [{
 "rel": ".../invoke;action=\"makeRush\"",
 "href":
 "http://~/objects/ORD/123/actions/makeRush/invoke",
 "type": "application/json;profile=\".../action-result\"",
 "arguments": { ... },
 "method": "PUT"
 }],
 ...
}

Finally, if the action to be invoked is neither query-only nor idempotent,(or

if the implementation is unable to determine this), then a POST link will be

provided:

{
 ...
 "links": [{
 "rel": ".../invoke;action=\"submit\"",
 "href":
 "http://~/objects/ORD/123/actions/submit/invoke",
 "type": "application/json;profile=\".../action-result\"",
 "arguments": { ... },
 "method": "POST"
 }],
 ...
}

Restful Objects

Page C-130 v1.0.0 License: CC BY-SA 3.0

 "type" property

The "type" json-property always indicates that the

urn:org.restfulobjects:repr-types/action-result representation will be

returned §19.4.

 "arguments" property

The "arguments" json-property has placeholders for the values of each of

the arguments. Commonly, these values will be null - it is up to the client

to determine the value to use when invoking the action. However the

server may provide a default value.

To summarize:

JSON-Property Description

link[.../rel=invoke] link to invoke the action; not included if the action is disabled

If the action may NOT be invoked (for example because of the status of

the object to which the action applied), then the representation should

include a "disabledReason" json-property (or just the literal "disabled") why

the action cannot be invoked:

{
 ...
 "disabledReason":
 "Cannot place order because customer has been blacklisted",
 ...
}

where:

JSON-Property Description

disabledReason indicates the reason why the action cannot be invoked; only

included if the action is disabled.

18.2.3 Domain model information (for action)

Domain model information is available for both the action itself and also

for each of the action parameters. In both cases the information is either

under the "links" or under the "extensions" json-properties.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-131

18.2.3.1 Simple scheme

Implementations that support the simple scheme provide extra data

about the action in the "extensions" json-properties. For example:

"extensions": {
 "friendlyName": "Place order",
 "description": "Place a new order",
 "returnType": ...
 "elementType": ... // if returnType is 'list' or 'set'
 "pluralForm": ... // if returnType is 'list' or 'set'
 "hasParams": true,
 ...
}

In addition, such implementations may also provide extra data about

each action parameter in that parameter's own "extensions" json-

property. For example:

"parameters": {
 "product": {
 ...
 "extensions": {
 "friendlyName": "Product",
 "description": "The product being ordered",
 "returnType": ...
 "optional": false,
 "format": ... // for string params only
 "maxLength": ... // for string params only
 "pattern": ... // for string params only
 }
 }
 ...
}

See §A3.1.1 for the full definitions of these json-properties.

Implementations may also provide their own extensions.

18.2.3.2 Formal scheme

Implementations that support the formal scheme §A3.1.2 provide several

additional links about the action in the "links" json-property. For example:

"links": [
 {
 "rel": ".../returntype",
 "href": "http://~/domain-types/x.OrderReceipt",
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 },
 {
 "rel": "describedby",
 "href": "http://~/domain-types/ORD/actions/submit",
 "type": "application/json;profile=\".../type-action\"",
 "method": "GET"
 },
 ...
}

Restful Objects

Page C-132 v1.0.0 License: CC BY-SA 3.0

In addition, implementations supporting the formal scheme may also

provide extra data about each action parameter in that parameter's own

"links" json-property.

For example:

"parameters": {
 "product": {
 ...
 "links": [
 {
 "rel": "describedby",
 "href":
 "http://~/domain-types/ORD/actions/submit/params/product",
 "type":
 "application/json;profile=\".../action-param-description\"",
 "method": "GET"
 }
]
 }
 ...
}

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-133

19 ACTION INVOKE RESOURCE
The action invoke resource is used to either invoke an action on a

particular domain object instance or a service, or to just validate

arguments to an action without invoking it. It is usually obtained from the

detailed representation §18.2 returned by an action resource §17.5.

The endpoint URL for this resource for a domain service is:

/services/{serviceId}/actions/{actionId}/invoke

where:

• {serviceId} is a unique identifier for the service

• {actionId} is the action identifier

The endpoint URL for this resource for a domain object is:

/objects/{domainType}/{instanceId}/actions/{actionId}/invoke

where:

• {domainType} uniquely identifies the object's type, and

• {instanceId} uniquely identifies an object instance of that type

• {actionId} is the action identifier

19.1 HTTP GET
Invoke an action and return a representation. Alternatively, validate the

query arguments without invoking the action.

The action invoked must be query-only (does not modify any persisted

objects); a typical example is to search for objects from a domain service

repository.

The action cannot be void (it must return some representation).

19.1.1 Request

The request can either be to invoke the action, or to request validation of

arguments using the reserved x-ro-validate-only query parameter §A3.2.

19.1.1.1 Query String

Query arguments should be formatted as a map (§A2.9.2), and encoded

in the URL (§A2.9.2.5). Note that if any argument is a blob/clob, then its

value must be in-lined (URL encoded for a blob)35.

35 It seems highly unlikely that a query-only action would have a blob/clob

argument, but it is theoretically allowable. One hi-tech use case could be to

search images of Customers' faces against an image obtained from a webcam.

Restful Objects

Page C-134 v1.0.0 License: CC BY-SA 3.0

In addition, the following may optionally be included in the map:

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

• x-ro-validate-only (optional, §A3.2)

o "true"

� the argument map can be incomplete; only those

arguments provided will be validated.

19.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../action-result"

There is no need to pass If-Match for query-only actions.

19.1.1.3 Body

• N/A

19.1.2 Success Response

19.1.2.1 Status code

• 200 "OK"

19.1.2.2 Headers

• Content-Length:

o size of the entity body

• Content-Type (if returning a domain object):

o application/json;profile=".../action-result";x-ro-domain-

type="yyy"

� where yyy indicates the domain type (for object

representations, §2.4.2);

� the domain type id (if simple scheme)

� URI of domain type (if formal scheme)

However, if the encoded size of the blob/clob exceeds the query string limit, then

the action must be marked as idempotent in order that the argument be passed

in the request body of a PUT.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-135

• Content-Type (if returning a list of domain objects):

o application/json;profile=".../action-result";x-ro-element-

type="yyy"

� where yyy indicates the domain type (for object

representations, §2.4.2);

� the domain type id (if simple scheme)

� URI of domain type (if formal scheme)

• Content-Type (if returning a scalar or void):

o application/json;profile=".../action-result"

• Caching headers:

o TRANSACTIONAL, see §A2.13

� if the object is transactional

o NON_EXPIRING, see §A2.13

� if the implementation can determine that the

returned representation is safe to cache (e.g. the

returned objects are immutable reference data)

Note that an ETag is never returned for an action result. A client that

wishes to modify the returned domain object must therefore re-retrieve it

explicitly.

19.1.2.3 Body

As per §19.4.

19.2 HTTP PUT
Invoke an action and return a representation if the action returns a result.

Alternatively, validate the query arguments but do not invoke the action.

The action invoked must be idempotent (though may have side-effects).

An example might be Order# submit(), which (depending on how the

application logic is written) might have the same post-conditions

irrespective of whether the order has already been submitted or not.

19.2.1 Request

19.2.1.1 Query String

• none

19.2.1.2 Headers

• Accept

o application/json

o application/json;profile=".../action-result"

• If-Match

o timestamp digest

� obtained from ETag header of representation

Restful Objects

Page C-136 v1.0.0 License: CC BY-SA 3.0

19.2.1.3 Body

Arguments should be formatted as a map (§A2.9.2), and sent as the body

(§A2.9.2.5). Note that if any argument is a blob/clob, then its value must

be in-lined (URL encoded for a blob).

In addition:

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

• x-ro-validate-only (optional, §A3.2)

o "true"

� only validate the request, do not invoke the action

19.2.2 Success Response

As per §19.1.2.

19.3 HTTP POST
Invoke an action, and return a representation if the action returns a result.

Alternatively, validate the query arguments but do not invoke the action.

The action invoked can have side effects and need not be idempotent.

19.3.1 Request

19.3.1.1 Query String

• none

19.3.1.2 Headers

• Accept

o application/json

o application/json;profile=".../action-result"

• If-Match

o timestamp digest

� obtained from ETag header of representation

19.3.1.3 Body

Arguments should be formatted as a map (§A2.9.2), and sent as the body

(§A2.9.2.5). Note that if any argument is a blob/clob, then its value must

be in-lined (URL encoded for a blob).

In addition:

• x-ro-domain-model (optional, §A3.1)

o "simple"

o "formal"

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-137

• x-ro-validate-only (optional, §A3.2)

o "true"

� only validate the request, do not invoke the action

19.3.2 Success Response

19.3.2.1 Status code

Successfully invoking an action with possible side effects can return either

a 200 or a 201.

• 200 "OK"

o the action was successfully executed.

• 201 "Created"

o only permitted when the action returns a domain object

(that is "resultType" json-property is "object")

o indicates that this object was newly created.

19.3.2.2 Headers

• Location: (if returning 201)

o URL of the newly-created action

• Content-Length:

o size of the entity body

• Content-Type (if returning a domain object):

o application/json;profile=".../action-result";x-ro-domain-

type="yyy"

� where yyy indicates the domain type (for object

representations, §2.4.2);

� the domain type id (if simple scheme)

� URI of domain type (if formal scheme)

• Content-Type (if returning a list of domain objects):

o application/json;profile=".../action-result";x-ro-element-

type="yyy"

� where yyy indicates the domain type (of the objects

referenced in the list, §2.4.2);

� the domain type id (if simple scheme)

� URI of domain type (if formal scheme)

• Content-Type (if returning a scalar or void):

o application/json;profile=".../action-result"

• Caching headers:

o TRANSACTIONAL, see §A2.13

� if the object is transactional

o NON_EXPIRING, see §A2.13

� if the implementation can determine that the

returned representation is safe to cache (e.g. the

returned objects are immutable reference data)

Restful Objects

Page C-138 v1.0.0 License: CC BY-SA 3.0

Note that an ETag is never returned for an action result. A client that

wishes to modify the returned domain object must therefore follow the self

link on the in-lined object to retrieve that object directly as an object

representation (which will then have an Etag).

19.3.2.3 Body

As per §19.4. If a 201 is returned, the "resultType" json-property must be

"object".

19.4 Representation
If the "x-ro-validate-only" query parameter was passed in and the

validation succeeded, then no representation will be returned. Instead:

• if the validation succeeded, then a 204 (success, no content) is

returned

• If the validation failed then a representation will be returned, with a

status code 400 (bad request).

See §13 for further details.

Otherwise (ie, if the invocation was not validate-only), then all action

invocations will return an actionresult representation. This representation

provides details of the action invocation, and (for non-void actions) also

in-lines the representation of the result of the invocation.

For example:

{
 "links": [{
 "rel": "self",
 "href":
"http://~/services/TaskRepository/actions/countUrgentTasksFor/invok
e",
 "type": "application/json;profile=\".../action-result\"",
 "arguments": {
 "employee": {
 "href": "http://~/objects/EMP/090123"
 }
 }
 }
],
 "resultType": ...
 "value": ...,
 "extensions": { ... }
}

where:

JSON-Property Description

links list of links to other resources.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-139

JSON-Property Description

links[rel=self] (optional) link to the action invocation resource that

generated the representation (applies only to query-only

actions)

resultType either "object", "list", "scalar" or "void"

result (optional) the action result itself. Not present if void action.

extensions additional metadata about the representation.

The "self" link can be used as a bookmark so that the action can easily be

resubmitted. However, the link is only included in the representation if the

action is query-only. This is to prevent accidental bookmarking of links that

if followed would result in side-effects.

The "resulttype" indicates whether there is an in-lined representation (for

an action returning a domain object, a list, a scalar) or none (if void).

Finally, the "result" holds the representation of the returned domain object,

list, or scalar. This is discussed in sections below.

19.4.1 Action returning a Domain Object

If the action invocation returns a domain object, then the actionresult

representation will in-line the domain object's representation (§14.1):

FIGURE 12: ACTION RESULT FOR OBJECT

For example, the following might be the result of invoking an action

representing Customer's favoriteProduct() action:

Restful Objects

Page C-140 v1.0.0 License: CC BY-SA 3.0

{
 "links": [{
 "rel": "self",
 "href":
 "http://~/objects/CUS/123/actions/favoriteProduct/invoke",
 "type": "application/json;profile=\".../action-result\"",
 "arguments": {},
 "method": "GET"
 }
],
 "resultType": "object",
 "result": {
 "links": [{
 "rel": "self",
 "href": "http://~/objects/PRD/2468"
 "type": "application/json;profile=\".../object\"",
 "method": "GET"
 },
 ...
],
 "members": {
 ...
 },
 "extensions": { ... }
 ...
 }
 "extensions": { ... }
}

Note that this representation has two "self" links:

• links[rel=self]

o is the link to the action invocation.

• result.links[rel=self]

o is the link to the returned domain object.

If the action returned null, then the "result" json-property will still be present,

but set to the JSON value null:

{
 ...
 "resultType": "object",
 "result": null
 ...
}

19.4.2 Action Returning a List

If the action invocation returns a list, then the actionresult representation

will in-line a list representation (§B11):

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-141

FIGURE 13: ACTION RESULT FOR LIST

For example, the following might be the result of invoking an action

resource §17.5 representing CustomerRepository's

findBlacklistedCustomers() action:

{
 "links": [{
 "rel": "self",
 "href":
"http://~/services/CustomerRepository/actions/findBlackListedCustom
ers/invoke",
 "type": "application/json;profile=\".../action-result\"",
 "arguments": {},
 "method": "GET"
 }
],
 "resultType": "list",
 "result": {
 "links": [{
 "rel": ".../element-type",
 "href": "http://~/domain-types/CUS,
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 },
],
 "value": [{
 "ref": ".../element",
 "href": "http://~/objects/CUS/123",
 "type": "application/json;profile=\".../object\"",
 "method": "GET"
 }, {
 "ref": ".../element",
 "href": "http://~/objects/CUS/456",
 "type": "application/json;profile=\".../object\"",
 "method": "GET"
 },
 ...
],

Restful Objects

Page C-142 v1.0.0 License: CC BY-SA 3.0

 "extensions": { ... }
 },
 "extensions": { ... }
}

Actions that return no links typically are expected to return an empty list:

{
 ...
 "resultType": "list",
 "result": {
 ...
 "value": []
 ...
 }
 ...
}

Although not recommended, it is also legal for actions to return a null list.

In this case the "result" json-property will still be present, but will be set to

the JSON value null:

{
 ...
 "resultType": "list",
 "result": null
 ...
}

19.4.3 Action returning a Scalar Value

If the action invocation returns a scalar, then the actionresult

representation will in-line a scalar representation (§B12):

FIGURE 14: ACTION RESULT FOR SCALAR

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page C-143

For example, the TaskRepository's countUrgentTasksFor(Employee) action

might generate the following representation:

{
 "links": [{
 "rel": "self",
 "href":
"http://~/services/TaskRepository/actions/countUrgentTasksFor/invok
e",
 "type": "application/json;profile=\".../action-result\"",
 "arguments": {
 "employee": {
 "href": "http://~/objects/EMP/090123"
 }
 },
 "method": "GET"
 }
],
 "resultType": "scalar",
 "result": {
 "links": [{
 "rel": ".../returntype",
 "href": "http://~/domain-types/int,
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 }
],
 "value": 25,
 "extensions": { ... }
 },
 "extensions": { ... }
}

As for actions returning lists and domain objects, if the scalar return type is

non-primitive and a null is returned, then the "result" json-property will be

set to the JSON null value:

{
 ...
 "resultType": "scalar",
 "result": null
 ...
}

Restful Objects

Page C-144 v1.0.0 License: CC BY-SA 3.0

19.4.4 Action returning a Void

If the action invocation does not have a return type (known as a ‘void’

method in some programming languages), then the simple actionresult

representation (with no in-lined representation) will be returned.

FIGURE 15: ACTION RESULT FOR VOID

For example, the Customer's toggleBlacklistStatus() action might generate

the following representation:

{
 "links": [{
 "rel": "self",
 "href":
 "http://~/objects/CUS/123/actions/toggleBlacklistStatus/invoke",
 "type": "application/json;profile=\".../action-result\"",
 "arguments": {}
],
 "method": "GET"
 },
 ...
],
 "resultType": "void",
 "extensions": { ... }
}

Note that there is no "result" json-property.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-145

D

DOMAIN TYPE
RESOURCES

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-147

20 RESPONSE SCENARIOS
When a domain type resource is invoked, one of several responses can

occur. These can be distinguished by the HTTP status return code

• 200 – Request succeeded, and generated a representation

• 404 – Type or type member not found or not visible

• 405 – Method not valid for the resource

• 406 – Client accepts only media types not generated by resource.

In addition, a 401 code may be returned for any resource if the user's

credentials are invalid (that is, they have not authenticated themselves).

The following table indicates which of these status return codes may be

generated for each resource:

 Method Repr. 200 404 405 406

Domain Types GET §21 y y y y

Domain Type GET §22 y y y y

Type Property GET §23 y y y y

Type Collection GET §24 y y y y

Type Action GET §25 y y y y

Type Action Parameter GET §26 y y y y

Type Action Invoke GET §27 y y y y

For a given status code, the specific headers and body returned by these

resources vary little between the different resources; this is especially so for

the failure scenarios (4xx and 5xx).

This section (§20) describes all the responses irrespective of resource

called. Sections §21 to §27 identify the various request/response scenarios

for each of the domain type resources. In each case they define the

request URL, headers and body, and also identify the standard (success)

response headers and body, if any.

20.1 Request succeeded, and generated a
representation
For resources that return a body containing some representation.

20.1.1 Status code

• 200 "OK"

Restful Objects

Page D-148 v1.0.0 License: CC BY-SA 3.0

20.1.2 Headers

• Content-Length:

o size of the entity body

• Content-Type:

o application/json;profile=".../xxx"

� where xxx indicates the representation type, §2.4.1

• Caching headers:

o NON_EXPIRING, see §A2.13

20.1.3 Body (representation)

The representation will depend on the resource being requested.

20.2 Type or type member not found or not visible
This is the response if a requested type or type member does not exist, or if

the object/member exists but is not visible based on the current user's

credentials.

20.2.1 Status Code

• 404 "Not found"

20.2.2 Headers

• Warning

o No such domain type {domainType}

o No such property {propertyId}

o No such collection {collectionId}

o No such action {actionId}

o No such action parameter {actionId, actionParamId}

20.2.3 Body

• empty

20.3 Resource has invalid semantics for method call ed

20.3.1 Status code

• 405 ("method not allowed")

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-149

20.3.2 Headers

• Allow

o GET

20.3.3 Body

• empty

20.4 Not acceptable
The client has specified an Accept header that does not include a media

type provided by the resource.

20.4.1 Status code

• 406 ("not acceptable")

20.4.2 Headers

• none

20.4.3 Body

• empty

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-151

21 DOMAIN TYPES RESOURCE
The domain types resource provides a list of all the domain types that are

known to the system.

The endpoint URL for this resource is simply:

/domain-types/

21.1 HTTP GET

21.1.1 Request

21.1.1.1 Query String

• none

21.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../type-list"

21.1.1.3 Body

• N/A

21.1.2 Successful Response

As per §20.1 (200); body as per §21.2.

21.2 Representation
The links from the typelist representation to other resources are as shown in

the diagram below:

FIGURE 16: DOMAIN TYPE LIST REPRESENTATION

Restful Objects

Page D-152 v1.0.0 License: CC BY-SA 3.0

For example, the JSON representation of the list of domain types for a

system looks something like:

{
 "links" : [{
 "rel": "self",
 "href" : "http://localhost:8080/domain-types",
 "method" : "GET",
 "type" : "application/json;profile=\".../type-list\""
 }, {
 "rel": "up",
 "href": "http://~/",
 "type": "application/json;profile=\".../homepage\"",
 "method": "GET"
 }
],
 "value" : [{
 "rel": ".../domain-type",
 "href" : "http://~/domain-types/CUS",
 "method" : "GET",
 "type" : "application/json;profile=\".../domain-type\""
 }, {
 "rel": ".../domain-type",
 "href" : "http://~/domain-types/ORD",
 "method" : "GET",
 "type" : "application/json; profile=\".../domain-type\""
 },
 ...
 "extensions" : { ... }
}

where:

JSON-Property Description

links list of links to resources

links[rel=self] link to a resource that can obtain this representation

links[rel=up] link to the homepage resource, B5.

values List of links to domain types, §22

extensions map of additional information about the resource.

21.3 Predefined Domain Types
There are a number of predefined "formal" domain type resources that

correspond either to the built-in scalar types described §A2.5, or to lists

and sets (for collections), or to void (for actions with void return type).

The following table shows the correlation in these cases:

Type Simple scheme

JSON datatype

Simple scheme

'format'

Formal scheme

predefined type

string String string

(the default)

http://~/domain-types/string

boolean Boolean http://~/domain-types/boolean

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-153

Type Simple scheme

JSON datatype

Simple scheme

'format'

Formal scheme

predefined type

date-time String date-time http://~/domain-types/date-time

date String date http://~/domain-types/date

time String time http://~/domain-types/time

epoch ms String utc-millisec http://~/domain-types/utc-millisec

big integer String big-integer(n) http://~/domain-types/big-integer(n)

big decimal String big-

decimal(s,p)

http://~/domain-types/big-decimal(s,p)

blob String blob http://~/domain-types/blob

clob String clob http://~/domain-types/clob

decimal Number decimal http://~/domain-types/decimal

int Number integer http://~/domain-types/integer

list --- --- http://~/domain-types/list

set --- --- http://~/domain-types/set

void --- --- http://~/domain-types/void

If the "format" json-property is omitted for a number, then the rules for

interpreting that number as a float-point decimal or as an integer are as

documented in the ECMAscript standard, §A2.5.

For large numbers, big-integer(n) specifies the scale n, while big-

decimal(s,p) specifies the scale s and the precision p.

For example, big-integer(10) is numbers in the range 0 to 9,999,999,999,

while big-decimal(10.2) is numbers in the range 0.00 to 99,999,999.99.

No representations are returned

No representations are defined for any of the predefined domain type

resources listed above; instead, a 204 (no content) will be returned. Clients

are expected to have built-in support for these domain types (e.g. a

calendar widget to render dates; a checkbox widget to render Booleans,

and so on).

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-155

22 DOMAIN TYPE RESOURCE
The domain type resource represents the type of a domain object

instance, within the metamodel. Its representation links through to other

elements of the metamodel which represent the domain type's properties,

collections and actions. These link back in turn to other domain type

resources, for example representing the property type or an action's

parameter types.

Clients can use the domain type to, for example, render a data element

using a particular UI widget (datetime picker, textfield, spinner).

Server implementations are free to extend the representation as required,

for example providing links to additional media (icons, videos and so

forth).

The endpoint URL for this resource is:

/domain-types/{domainType}

where:

• {domainType} is either

o the domain type id, or

o is a built-in JSON type

22.1 HTTP GET
Obtain a representation of a domain type within the metamodel.

22.1.1 Request

22.1.1.1 Query String

• none

22.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../domain-type"

22.1.1.3 Body

• N/A

22.1.2 Successful Response

As per §20.1 (200); body as per §22.2.

Restful Objects

Page D-156 v1.0.0 License: CC BY-SA 3.0

22.2 Representation
The links from the domain type representation to other resources are as

shown in the diagram below:

FIGURE 17: DOMAIN TYPE REPRESENTATION

For example, the JSON representation (for a Customer type) might look

something like:

{
 "name": "x.Customer",
 "domainType": "CUS",
 "friendlyName": "Customer",
 "pluralName": "Customers",
 "description": "A customer with a registered account and
confirmed billing details. ",
 "isService": false
 "members": {
 "firstName": {
 "rel": ".../property",
 "href":
 "http://~/domain-types/CUS/properties/firstName",
 "type":
 "application/json;profile=\".../property-description\"",
 "method": "GET"
 },
 "recentOrders": {
 "rel": ".../collection",
 "href":
 "http://~/domain-types/CUS/collections/recentOrders",
 "type":
 "application/json;profile=\".../collection-description\"",
 "method": "GET"
 },

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-157

 "blacklist": {
 "rel": ".../action",
 "href":
 "http://~/domain-types/CUS/actions/blackList",
 "type":
 "application/json;profile=\".../action-description\"",
 "method": "GET"
 },
 ...
 },
 "typeActions" : {
 "isSubtypeOf": {
 "rel": ".../invoke;typeaction=\"isSubtypeOf\"",
 "href":
 "http://~/domain-types/CUS/type-actions/isSubtypeOf/invoke",
 "method" : "GET",
 "type":
 "application/json;profile=\".../type-action-result\"",
 "arguments" : {
 "supertype" : {
 "href" : null
 }
 },
 "isSupertypeOf": {
 "rel": ".../invoke;typeaction=\"isSupertypeOf\"",
 "href":
 "http://~/domain-types/CUS/type-actions/isSupertypeOf/invoke",
 "method" : "GET",
 "type" :
 "application/json;profile=\".../type-action-result\"",
 "arguments" : {
 "subtype" : {
 "href" : null
 }
 }
 },
 ...
 },
 "links": [{
 "rel": "self",
 ...
 }, {
 "rel": "icon",
 ...
 },
 ...
],
 "extensions": {
 ...
 }
}

where:

JSON-Property Description

links list of links to resources

links[rel=self] link to a resource that can obtain this representation

links[rel=icon] (optional) link to an image representing a scalable icon for

this type

Restful Objects

Page D-158 v1.0.0 License: CC BY-SA 3.0

JSON-Property Description

links[rel=help] (optional) link to a media resource providing help about the

type

name the fully qualified class name (or JSON type, if there is an

equivalent)

domainType the domainType id, i.e. the string used within templated URLs

to access instances of this type (see resources in §C).

friendlyName the singular form of the type, as would be suitable for

rendering in a UI.

pluralName the plural form of the type, as would be suitable for

rendering in a UI.

description a description of the type, e.g. to render as a tooltip.

isService indicates whether the type is a domain service or not

typeActions map of type action invocation resources, §27.

members map of links to resources representing a description of a

domain object property §D23.1, a domain object collection

§D23.2, or a domain object action §D24.2.

extensions map of additional information about the resource.

"links"

The "links" list may contain links to a number of optional resources. For

example:

"links": [{
 "rel": "icon",
 "href": "http://~/images/Customer-32x32.jpg",
 "type": "image/jpg",
 "method": "GET"
 }, {
 "rel": "help",
 "href": "http://~/videos/training/Customer-walkthru.mpg",
 "type": "audio/mpeg",
 "method": "GET"
 },
 ...
]

Implementations are free to add their own resources to this list as they

require.

"extensions"

Restful Objects defines no standard json-properties for the "extensions"

json-property, but implementations are free to add further links or

extension json-properties to "links" and "extensions" as they require.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-159

23 DOMAIN TYPE PROPERTY DESCRIPTION

RESOURCE
The domain property description resource describes a property of a

domain type within the metamodel.

Clients can use the domain property description's representation as hints

when building a UI. For example, there will be links back to a domain type

representing the property type; this can be used to select the relevant

widget for that property. Or, the client can use information in the

representation to apply client-side validation of declarative semantics (for

example, mandatory properties, or regex patterns).

The endpoint URL for this resource is:

/domain-types/{domainType}/properties/{propertyId}

where:

• {domainType} is either

o the domain type id, or

o is a built-in JSON type

• {propertyId} identifies the property.

23.1 HTTP GET
Obtain a representation that describes a domain property within the

metamodel.

23.1.1 GET Request

23.1.1.1 Query String

• none

23.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../property-description"

23.1.1.3 Body

• N/A

23.1.2 Successful Response

As per §20.1 (200); body as per §23.2.

Restful Objects

Page D-160 v1.0.0 License: CC BY-SA 3.0

23.2 Representation
The links from the domain property description representation to other

resources are as shown in the diagram below:

FIGURE 18: DOMAIN PROPERTY COLLECTION REPRESENTATION

The JSON representation (for the Order's deliveryTime property) looks

something like:

{
 "id": "deliveryTime",
 "friendlyName": "Delivery Time",
 "description": "Time that the order will be delivered",
 "optional": false,
 "format": ... // for string properties only
 "maxLength": ... // for string properties only
 "pattern": ... // for string properties only
 "memberOrder": 1,
 "links": [{
 "rel": "self",
 ...
 }, {
 "rel": "up",
 "href": "http://~/domain-types/ORD",
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 }, {
 "rel": ".../returntype",
 "href": "http://~/domain-types/string",
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 },
 ...
],
 "extensions": { ... }
}

where:

JSON-Property Description

links list of links to resources

links[rel=self] link to a resource that can obtain this representation

id the Id of this property

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-161

JSON-Property Description

friendlyName the property name, formatted for rendering in a UI.

description a description of the property, e.g. to render as a

tooltip.

optional indicates whether the property is optional

maxLength for string properties, indicates the maximum allowable

length. A value of 0 means unlimited.

pattern for string properties, indicates a regular expression for

the property to match.

memberOrder a presentation hint recommending the relative order

to display each member (clients are not obliged to

follow this).

format for properties returning a string or number value,

indicates how to interpret that value §A2.5.

links[rel=up] link to the domain type which owns this property

links[rel=…/return-type] link to the domain type of which this property holds a

value (ie, its return type)

links[rel=help] (optional) link to a media resource providing help

about the property

extensions additional information about the resource.

"extensions"

Restful Objects defines no standard json-properties within "extensions", but

implementations are free to add further links/ json-properties to "links" and

"extensions" as they require.

One possible example is to specify which properties should appear as

table columns when the domain type in question is the element type of a

collection or list being rendered as such.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-163

24 DOMAIN TYPE COLLECTION

DESCRIPTION RESOURCE
The domain collection description resource represents a description of a

domain collection, within the metamodel.

Clients can use the domain collection description's representation as hints

when building a UI. For example, there will be links back to the domain

type representing the collection's element type; this can be used by a

client to determine columns for a table view. Or, the client can use

information in the representation in order to apply client-side validation of

declarative semantics (for example, minimum or maximum cardinality of a

collection).

The endpoint URL for this resource is:

/domain-types/{domainType}/collections/{collectionId}

where:

• {domainType} is either

o the domain type id, or

o is a built-in JSON type

• {collectionId} identifies the collection.

24.1 HTTP GET
Obtain a representation of a description of a domain collection, within the

metamodel.

24.1.1 GET Request

24.1.1.1 Query String

• none

24.1.1.2 Headers

• Accept

o application/json

o application/json;profile=… /collection-description

24.1.1.3 Body

• N/A

24.1.2 Successful Response

As per §20.1 (200); body as per §24.2.

Restful Objects

Page D-164 v1.0.0 License: CC BY-SA 3.0

24.2 Representation
The links from the domain collection description representation to other

resources are as shown in the diagram below:

FIGURE 19: DOMAIN COLLECTION DESCRIPTION REPRESENTATION

The JSON returned representation (for the Order's items collection) might

look something like:

{
 "id": "items",
 "friendlyName": "items",
 "plural form": "Order items",
 "description": "Line items (details) of the order",
 "memberOrder": 3,
 "links": [{
 "rel": "self",
 ...
 }, {
 "rel": "up",
 "href": "http://~/domain-types/ORD",
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 },
 {
 "rel": ".../returntype",
 "href": "http://~/domain-types/list",
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 },
 {
 "rel": ".../elementtype",
 "href": "http://~/domain-types/ORI",
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 },
 {
 "rel": "help",
 "href":
 "http://~/videos/training/Order-items-explained.mpg",
 "type": "audio/mpeg",
 "method": "GET"
 },
 ...
],

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-165

 "extensions": { ... }
}

where:

JSON-Property Description

links list of links to other resources.

links[rel=self] link to a resource that can obtain this

representation

id the Id of this collection

friendlyName the collection name, formatted for rendering in a

UI.

pluralForm the pluralized form of the element type within the

collection/list.

description a description of the collection, e.g. to render as a

tooltip.

memberOrder a presentation hint as to the relative order to

display each member

links[rel=up] link to the domain type which owns this property

links[rel=.../return-type] link to the domain type for list or for set.

links[rel=.../element-type] link to the domain type of the objects contained in

the collection

links[rel=help] (optional) link to a media resource providing help

about the property

extensions additional information about the resource.

"extensions"

Restful Objects defines no standard json-properties within "extensions", but

implementations are free to add further links/properties to "links" and

"extensions" as they require.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-167

25 DOMAIN TYPE ACTION DESCRIPTION

RESOURCE
The domain action description resource represents an action of a domain

type, within the metamodel.

Clients can use the domain action description's representation as hints

when building a UI. For example, the representation of an object action

may include a link to that action's return type.

The endpoint URL for this resource is:

/domain-types/{domainType}/actions/{actionId}

where:

• {domainType} is either

o the domain type id, or

o is a built-in JSON type

• {actionId} identifies the action.

25.1 HTTP GET
Obtain a representation of a description of a domain action, within the

metamodel.

25.1.1 GET Request

25.1.1.1 Query String

• none

25.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../action-description"

25.1.1.3 Body

• N/A

25.1.2 Successful Response

As per §20.1 (200); body as per §25.2.

Restful Objects

Page D-168 v1.0.0 License: CC BY-SA 3.0

25.2 Representation
The links from the domain action description representation to other

resources are as shown in the diagram below:

FIGURE 20: DOMAIN ACTION DESCRIPTION REPRESENTATION

The JSON representation of the domain action description (for the Order's

submit action) mightlook something like:

{
 "id": "submit",
 "friendlyName": "Submit",
 "description": ...,
 "hasParams": true,
 "memberOrder": 5,
 "links": [{
 "rel": "self",
 ...
 }, {
 "rel": "up",
 "href": "http://~/domain-types/ORD",
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 },
 {
 "rel": ".../return-type",
 "href": "http://~/domain-types/x.OrderReceipt",
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 },
 {
 "rel": "help",
 "href": "http://~/videos/training/Order-submit.mpg",
 "type": "audio/mpeg",
 "method": "GET"
 },
 ...
],
 "parameters": {

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-169

 "ship": {
 "rel": ".../action-param;param=\"ship\"",
 "href": "http://~/domain-types/ORD/submit/params/ship",
 "type":
 "application/json;profile=\".../action-param-description\"",
 "method": "GET"
 },
 "rush": {
 "rel": ".../action-param;param=\"rush\"",
 "href": "http://~/domain-types/ORD/submit/params/rush",
 "type":
 "application/json;profile=\".../action-param-description\"",
 "method": "GET"
 },
 ...
 },
 "extensions": { ... }
}

where:

JSON-Property Description

links list of links to resources.

links[rel=self] link to a resource that can obtain this representation

id the Id of this action

friendlyName the action name, formatted for rendering in a UI.

pluralForm (optional) for actions returning collections the

pluralized form of the element type within the

collection/list.

description a description of the action, e.g. to render as a

tooltip.

hasParams whether the action has parameters

memberOrder a presentation hint as to the relative order to display

each member

links[rel=up] link to the domain type which owns this action

links[rel=.../return-type] link to the action's return type

links[rel=.../element-type] (optional) link to the element type if the action

returns a collection.

links[rel=help] (optional) link to a media resource providing help

about the action

parameters map of links to parameter details §26

extensions map of additional information about the resource.

"extensions"

Restful Objects defines the no standard json-properties within "extensions",

but implementations are free to add further links/json-properties to "links"

and "extensions" as they require.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-171

26 DOMAIN TYPE ACTION PARAMETER

DESCRIPTION RESOURCE
The domain action parameter description resource represents a

description of a parameter of an action on a domain type, within the

metamodel.

Clients can use the domain action parameter description representations

as hints when building a UI. For example, there will be links back to the

domain type representing each of the action parameter return types; this

might be used in order to select the appropriate widgets when building a

UI. Or, the client can use information in the representation to apply client-

side validation of declarative semantics (for example, mandatory

parameters, or regex patterns).

The endpoint URL for this resource is:

/domain-types/{domainType}/actions/{actionId}/params/{paramName}

where:

• {domainType} is either

o the domain type id, or

o is a built-in JSON type

• {actionId} identifies the action

• {paramName} is the named action parameter

26.1 HTTP GET
Obtain a representation of a description of a domain action parameter,

within the metamodel.

26.1.1 GET Request

26.1.1.1 Query String

• none

26.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../action-param-description"

26.1.1.3 Body

• N/A

Restful Objects

Page D-172 v1.0.0 License: CC BY-SA 3.0

26.1.2 Successful Response

As per §20.1 (200); body as per §26.2.

26.2 Representation
The links from the domain action parameter description representation to

other resources are as shown in the diagram below:

FIGURE 21: DOMAIN ACTION PARAMETER DESCRIPTION REPRESENTATION

The JSON representation returned (for example, if the Order's submit

action's first parameter is a "shipMethod" string parameter) might look

something like:

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-173

{
 "id": "submit-shipMethod",
 "number": 0,
 "name": "shipMethod",
 "friendlyName": "Ship Method",
 "description": ...,
 "optional": false,
 "format": ... // for string params only
 "maxLength": ... // for string params only
 "pattern": ... // for string params only
 "links": [{
 "rel": "self",
 ...
 }, {
 "rel": "up",
 "href": "http://~/domain-types/ORD/actions/submit",
 "type":"application/json;profile=\".../action-description\"",
 "method": "GET"
 }, {
 "rel": ".../returntype",
 "href": "http://~/domain-types/string",
 "type": "application/json;profile=\".../domain-type\"",
 "method": "GET"
 }, {
 "rel": "help",
 "href":
 "http://~/videos/training/Order-submit-shipMethod.mpg ",
 "type": "audio/mpeg",
 "method": "GET"
 },
 ...
],
 "extensions": { ... }
}

where:

JSON-Property Description

links list of links to other resources.

links[rel=self] link to a resource that can obtain this representation

id the Id of this action parameter (typically a

concatenation of the parent action Id with the

parameter name)

name the name of the parameter

number the number of the parameter (starting from 0)

friendlyName the action parameter name, formatted for rendering in

a UI.

description a description of the action parameter, e.g. to render as

a tooltip.

optional indicates whether the action parameter is optional

maxLength for string action parameters, indicates the maximum

allowable length. A value of 0 means unlimited.

pattern for string action parameters, indicates a regular

expression for the property to match.

Restful Objects

Page D-174 v1.0.0 License: CC BY-SA 3.0

JSON-Property Description

format for action parameters requiring a string or number

value, indicates how to interpret that value §A2.5.

links[rel=up] link to the action that owns this parameter

links[rel=…/return-type] link to the action parameter's return type

links[rel=help] (optional) link to a media resource providing help

about the action parameter

extensions map of additional information about the resource.

"extensions"

Restful Objects defines the no standard json-properties within "extensions",

but implementations are free to add further links or json-properties as they

require.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-175

27 DOMAIN TYPE ACTION INVOKE

RESOURCE
The domain type action invoke resource represents an action that can be

invoked on the domain type itself. Conceptually it is similar to the domain

object action invoke resource, §C19, but the action is on the type rather

than an instance of the type.

Restful Objects defines the following type actions.

Type action See Description

isSubtypeOf() §27.1 to determine if a domain type is a subtype

of (or the same as) a given type.

isSupertypeOf() §27.2 to determine if a domain type is a supertype

of (or the same as) a given type.

The endpoint URL for this resource is:

/domain-types/{domainType}/type-actions/{typeactionId}/invoke

where:

• {domainType} is either

o the domain type id or

o is a built-in JSON type

• {typeactionId} identifies the action

Both of the defined type actions take a single argument representing a

link to the supertype.

Restful Objects

Page D-176 v1.0.0 License: CC BY-SA 3.0

As for the invocation of object actions (§C19), type actions return a

representation that links back to the type action and also to the result of

the action. Both the currently defined type actions return a scalar §B12.

The links from the domain type action result representation to other

resources are as shown in the diagram below:

FIGURE 22: DOMAIN TYPE ACTION REPRESENTATION

The representations returned by type actions follow the format:

{
 "links" : [{
 "rel" : "self",
 "href" : "http://~/domain-types/CUS/typeactions/... /invoke",
 "method" : "GET",
 "type": "application/json;profile=\".../type-action-result\"",
 "arguments" : ...
 }],
 "id": ...
 "value" : ...,
 "extensions" : { ... }
}

where:

JSON-Property Description

links list of links to other resources.

links[rel=self] link to a resource that can obtain this representation

id the typeActionId of this action

value the result of the action

extensions map of additional information about the resource.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-177

27.1 HTTP GET isSubtypeOf()
Obtain a representation resulting from the invocation of the isSubtypeOf()

domain type action.

27.1.1 GET Request

27.1.1.1 URL and Query String

The endpoint URL for this resource is:

/domain-types/{domainType}/type-actions/isSubtypeOf/invoke

This resource requires a parameter "supertype" which can be specified

either in the simple style, or in the formal style.

 Simple Style
If query arguments are specified using the simple style (§A2.9.1 then the

query string is simply:

?supertype=xxx

where xxx is the domain type id of the supertype.

 Formal Style

If query arguments are specified using the formal style (§A2.9.2) then the

supertype should be specified as a map and then the map encoded as a

URL (§A2.9.2.5).

For example:

{
 "supertype": {
 "value": {
 "href": "http://~/domain-types/x.BasketOwner",
 }
}

Note that the value should be a link to the supertype, rather than simply

the name of the supertype.

27.1.1.2 Headers

• Accept

o application/json

o application/json;profile=".../type-action-result"

27.1.1.3 Body

• N/A

Restful Objects

Page D-178 v1.0.0 License: CC BY-SA 3.0

27.1.2 GET Response

27.1.2.1 Status Code

• 200 "OK"

27.1.2.2 Headers

• Content-Type

o application/json;profile=".../type-action-result"

• Caching headers:

o NON_EXPIRING, see §A2.13

� the structure of a domain type will not vary between

deployments

27.1.2.3 Body (representation)

The JSON representation returned The JSON representation returned is a

type-action-result representation (as described earlier) with a scalar

representation §B12 in-lined.

For example, if checking that the Customers domain type is a subtype of

BasketOwner interface type, then the returned representation might look

something like:

{
 "links" : [{
 "rel" : "self",
 "href" :
 "http://~/domain-types/CUS/typeactions/isSubtypeOf/invoke",
 "method" : "GET",
 "type" : "application/json;profile=\".../type-action-result\"",
 "arguments" : {
 "supertype" : {
 "href" : "http://~/domain-types/x.BasketOwner"
 }
 }
 }],
 "id": "isSubtypeOf",
 "value" : true,
 "extensions" : { ... }
}

where:

JSON-Property Description

id the literal "isSubtypeOf" for this type action

value a scalar boolean value.

and other properties are as described earlier.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-179

27.1.3 GET Not found Response

27.1.3.1 Status Code

• 404 "Not found"

27.1.3.2 Headers

• Warning:

o No such domain type {domainType}.

o No such domain type action { actionId} in domain type

{domainType}

o No such super/subtype

27.1.3.3 Body

empty

27.2 HTTP GET isSupertypeOf()
Obtain a representation resulting from the invocation of the

isSupertypeOf() domain type action.

27.2.1 GET Request

27.2.1.1 URL and Query String

The endpoint URL for this resource is:

/domain-types/{domainType}/type-actions/isSupertypeOf/invoke

This resource requires a parameter "subtype" which can be specified

either in the simple style, or in the formal style.

 Simple Style
If query arguments are specified using the simple style (§A2.9.1) then the

query string is simply:

?subtype=xxx

where xxx is the domain type id of the subtype.

 Formal Style

If query arguments are specified using the formal style (§A2.9.2) then the

subtype should be specified as a map and then the map encoded as a

URL (§A2.9.2.5).

Restful Objects

Page D-180 v1.0.0 License: CC BY-SA 3.0

For example:

{
 "subtype": {
 "value": {
 "href": "http://~/domain-types/CUS",
 }
 }
}

Note that the value should be a link to the subtype, rather than simply the

name of the subtype.

27.2.1.2 Headers

• Accept

o application/json

o application/json;profile=".../type-action-result"

27.2.1.3 Body

• N/A

27.2.2 GET Response

27.2.2.1 Status Code

• 200 "OK"

27.2.2.2 Headers

• Content-Type

o application/json;profile=".../type-action-result"

• Caching headers:

o NON_EXPIRING, see §A2.13

� the structure of a domain type will not vary between

deployments

27.2.2.3 Body (representation)

The JSON representation returned The JSON representation returned is a

typeactionresult representation (as described earlier) with a scalar

representation §B12 in-lined.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page D-181

For example, if checking that the BasketOwner domain type is a

supertype of the Customer domain type, then the returned representation

might look something like:

{
 "links" : [{
 "rel" : "self",
 "href" : "http://~/domain-types/x.BasketOwner
 /typeactions/isSupertypeOf/invoke",
 "method" : "GET",
 "type" : "application/json;profile=\".../type-action-result\"",
 "arguments" : {
 "supertype" : {
 "href" : "http://~/domain-types/CUS"
 }
 }
 }],
 "id": "isSupertypeOf",
 "value" : true,
 "extensions" : { ... }
}

where:

JSON-Property Description

id the literal "isSupertypeOf" for this type action

value a scalar boolean value.

and other properties are as described earlier.

27.2.3 GET Not found Response

27.2.3.1 Status Code

• 404 "Not found"

27.2.3.2 Headers

• Warning:

o No such domain type {domainType}.

o No such domain type action { actionId} in domain type

{domainType}

o No such super/subtype

27.2.3.3 Body

empty

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-183

E

DISCUSSIONS

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-185

28 HATEOAS VS WEB APIS
Comparing two styles of distributed system.

28.1 HATEOAS (Hypermedia Controls)
REST-based systems are typically designed to have a single or small

number of starting (home page) resources, from which all other resources

can be traversed. This is REST’s HATEOAS concept: hypertext as the engine

of application state. When you use a web browser you can click through

links to get to the next page; HATEOAS says that a REST client should be

able to do likewise to follow a link to another resource.

Said more generally, links are an example of a hypermedia control by

which the REST client can navigate the resources. The client knows what

the link represents through its "rel" (relation) property; however the value of

the URL is opaque.

This style of REST is supported by Restful Objects in that all resources in

Restful Objects are discoverable from the Home Page resource §B5,

acting as a well-known starting point. The rels are defined in §A2.7.1.

All other resources can be obtained from the home page, for example by

following the links that represent reference properties and collections

between domain objects, or by invoking domain object or service actions

that can return references to other objects. Links are only included in

representations if it makes sense for the client to follow them.

28.2 Web APIs (Templated URIs)
Some practitioners take the view that a pure-HATEOAS design places too

much responsibility on the part of the client (having to traverse through

multiple sets of representations from the start page), and that this can

result in slower performance (for much the same reasons).

This isn't strictly true; a client is free to cache the value of a link between

interactions (rather than find it out "from first principles" each time). Said

another way: clients may bookmark links in order to move from one

representation to the next (though they should be prepared to recover if

the link is no longer valid).

Even so, many prefer a system that defines a set templated URIs in the

form:

path/{pathParam1}/pathPart/{pathParam2}/…

So long as the client has arguments for each of the {pathParam}'s then it

can directly construct the URL and invoke it.

Restful Objects

Page E-186 v1.0.0 License: CC BY-SA 3.0

It is highly debatable whether this style of system should be called REST; a

better name is probably an HTTP-based web API. Nevertheless it is popular,

and it is practicable. It is also supported by Restful Objects; the URLs for

each of the resources included in the specification are well-defined, and

the information needed to construct the URLs (such as the object

identifiers) are provided as properties in the JSON representations.

Implementations of the spec may also choose to provide additional

support - for example leveraging the capabilities of lower-level

frameworks such as JBoss RESTEasy (http://www.jboss.org/resteasy) that

provide explicit support for client-side templated URIs.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-187

29 PERSONAL VS SHARED STATE
Different types of resource state, what is not resource state, and discussion

of the "domain-model rest anti-pattern" paper.

29.1 Resources representing Shared State
In Roy Fielding's thesis that originally describes the REST architectural style,

the definition of a resource is very general, with the focus being that

resources may be identified and thus may be linked to.

The examples of resources given by Fielding in his thesis tend towards

shared information, for example a document, an image, "today's weather

in Los Angeles", or "revision 1.2.7 of a source code file".

These examples of resources are shared in the sense that any user could

ask the system for a representation of the resource, and would obtain

broadly the same information. Put another way, these resources

correspond to domain entities, with the representations being a projection

of the state of those entities. Their representation may need to be

versioned to allow clients to evolve independently of server, but that is a

separate issue (see §30).

Most of the examples in this specification are of domain entities: customer,

order, product and so forth. The representations of these entities have

hypermedia controls (links) to enable a client to navigate between

entities, either as a result of following a property or collection link, or as the

result of invoking an action. The links available may vary depending upon

both the state of the resource, and upon the authorization of the user

requesting the representation.

For example, the client can use the link representing the Order's placedBy

property to find the Customer that placed the order, or can use the link

representing the Order's items collection to find the items within the Order.

However, an Order that has not yet been placed might suppress the

Customer link.

Links not only represent static relationships between entities, they can also

represent entity behaviour. So, the Order could have been created in the

first place by the client following the link representing the Customer's

placeOrder() action. However, a user with insufficient privileges might not

see the placeOrder() link.

In this way, resources representing domain entities fully support the

HATEOAS constraint (§28.1) of RESTful systems.

Restful Objects

Page E-188 v1.0.0 License: CC BY-SA 3.0

29.2 Resources representing Personal State
Whereas domain entities constitute shared state (available to any

requesting user), some state is private to a given user and should not be

accessible to other users.

The classic example is that of a ShoppingCart. Each user may have

access to a resource representing "their" ShoppingCart, but should not be

able to access (or even determine the existence of) other users'

ShoppingCarts.

Resources that capture such "personal" state often double up as a means

to take the user through the process of completing a user goal. For

example, the initial representation of a ShoppingCart may provide links to

browse for products to add to the cart. Once some products have been

added, it may additionally provide a link to checkout the cart. Once the

checkout is started, the links will change to the various steps of the

checkout process (payment, delivery options and so on).

Restful Objects does not specify how implementations should protect

personal state, but there are at lest two possible approaches.

In the first, implementations can exploit the fact that URLs are opaque,

and encrypt the instance identifier component. This is discussed further

and in more general terms in §30.

The second approach is for the implementation to provide a mechanism

to distinguish between a resource that holds personal state and one that

holds shared state, and ensued that a user is only ever served up "their"

personal resources. This would be analogous to querying from a database

view that restricts rows by userId:

create view MyPersonalResource
 as
 select *
 from AllPersonalResourses
 where user_id = @@user_id -- current user id

One way to implement this could be though a reserved/annotated

"UserId" property (or method) in the domain object; for example:

public class ShoppingCart {
 @UserId
 public int getPersonalTo() { … }

 public List<Item> getItems() { … }
 …
}

If the @UserId property is present then the implementation infers that the

object is personal to that user, and never returns it as a resource if

requested by any other user.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-189

29.3 Application State
Personal state, discussed above, is not the same as application state,

though the distinction is subtle. In a blog post from 200836, Roy Fielding

wrote:

Don’t confuse application state (the state of the user’s

application of computing to a given task) with resource state

(the state of the world as exposed by a given service). They are

not the same thing.

At first glance one might consider that this definition does not allow

resources to represent personal state; after all, a personal state resource

exists to manage the state of a user's application. However, we should not

confuse the state of a resource on the server with the state of the client as

a result of consuming that representation. Put another way: if a user

accesses their shopping cart with a web browser, then the application

state is not the shopping cart resource, it is the in-memory DOM structure

within their browser.

What this also means is that the phrase "state of the world" in Fielding's

definition is quite narrow: it should be taken to mean "as observed by a

given user" rather than "as observed by any user". REST does therefore

allow for resources to have either personal state or to have shared state.

29.4 Domain Model Resources an Anti-Pattern?
Some REST practitioners argue37 that exposing domain model objects

through REST is an anti-pattern. Or to use the terminology introduced in this

chapter, the argument is that resources should only expose personal state,

never shared state. To this, we strongly disagree.

For a system to be called RESTful it must obey the HATEOAS constraint and

provide hypermedia controls to enable the client to navigate its

resources. As described above, both personal state resources (shopping

carts) and shared state resources (customer, order, product) can do this.

And in both cases the set of links returned in the representation will

depend upon the state of the resource and upon the requesting user.

There is nothing intrinsically different between personal and shared state

resources in this regard; the real objection to exposing domain entities

through REST would seem to lie elsewhere.

36 http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-

driven# comment-744 .

37 And they argue quite strongly; see for example

http://java.dzone.com/articles/domain-model-rest-anti-pattern.

Restful Objects

Page E-190 v1.0.0 License: CC BY-SA 3.0

29.4.1 Inductive vs Deductive Style

A more useful distinction is between systems that use an inductive style

and those that use a deductive style. The inductive style is about taking

the user through a series of steps in order to accomplish a goal. The

inductive style works well when the users needs explicit assistance in order

to navigate it. One of the earliest examples was Microsoft Money 200038,

which took users through various common-place financial book-keeping

tasks.

The opposite of the inductive style is the deductive style, and a good

example is a word-processor that starts with a blank page and more-or-

less leaves the user to write the document in any order that they choose.

Other examples of deductive style apps are IDEs and the UNIX shell. The

developer is free to write code in any order, or to string UNIX commands

together as they see wish. Deductive style applications have much in

common with sovereign applications39.

29.4.2 Application styles and Resource state

The key distinction between inductive and deductive style is about who is

in charge – the user or the computer?. With an inductive application the

process is hard-wired into the system, and the user must follow this process.

With a deductive application the system offers the functionality to allow

the user to accomplish their goal, but does not mandate the order of the

user's interactions; the process is in the user's head - though there will

almost certainly be rules implemented within the domain model to

prevent actions that would be illegal or illogical given the current state.

There is no right or wrong to this; as already noted it depends on the

experience of the user with respect to the domain. An inductive system

can be frustrating to use for an experienced user, while a deductive

system can leave an inexperienced user at a loss as to how to proceed.

Tying the above back to REST, applications built in the inductive style

make heavy use of resources with personal state, with those resources

modelling a user's goal and holding the state of the user's progression to

that goal. The resource represents a use case instance, and its

representation has links that represent the state transitions of the use case

instance. These resources will most likely interact with underlying domain

entities but those entities are never exposed.

In contrast, applications built in the deductive style will more likely make

use of resources with shared state (domain entities), with the functionality

38 http://msdn.microsoft.com/en-us/library/ms997506.aspx

39 http://en.wikipedia.org/wiki/Application_posture

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-191

of those entities made directly available for the user to invoke as they see

fit. This should not be confused with a simple CRUD system; the behaviour

on the entities can be every bit as rich as the behaviour exposed by a use

case resource.

Some systems provide a mix of inductive and deductive styles, with

corresponding resources to match. In an internet shop, the browsing of

the shop is deductive in nature; the user can hop from product to product

as they see fit. The checkout process though is more well-defined, and

users tend to expect to be taken through it in an inductive style.

A related approach is to start with a deductive system, and then to look

for the "commonly-trodden path". These paths can be determined by

observing experienced users' behaviour of the system, and then using this

to provide inductive guidance for less experienced users.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-193

30 DEALING WITH UNTRUSTED CLIENTS
How implementations can avoid important information leaking out to

untrusted clients

30.1 Securing HREFs
One possible deployment for Restful Objects systems is a Restful Objects

server on the internet, serving up JSON to a JavaSript "single-page app".

In these cases, the href json-properties in the links will provide information

about the domain objects that an untrusted client might use to hack the

system.

For example, suppose that an end-user uses a domain service to look up

their Customer details. This might result in a href:

http://~/objects/CUS/12345

A malicious user might therefore try to browse to a related customer, e.g.

http://~/objects/CUS/12346 and from that uncover useful information. This

is clearly not desirable.

While the Restful Objects spec does define the format of URLs, the format

of the instance identifier part ("12345") is implementation-specific and

therefore opaque. An implementation can protect itself from hacking by

ensuring that the instance id that is served up within hrefs is encrypted

using a private key. For additional security, this private key could even be

re-generated either each time the server is restarted or even per session;

this would allow the URL that identifies an object to change over time.

Another scenario is that other clients on the network could be snooping

for valid resource URLs. The standard mechanism to address this risk is to

deploy the application over SSL (https protocol).

30.2 Avoiding accidental traversals
Under Restful Objects, a domain object's properties, collections and

actions can be disabled or even hidden. Implementations are expected

to manage this through a system of end-user roles and permissions.

For implementations that work this way, care will need to be taken to

ensure that an end-user does not have accidental permissions to a

property, collection or action that allows them to gain access to other

parts of the object graph. Implementations are expected to provide their

own advice as to how to ensure this.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-195

31 CLIENT VS SERVER EVOLUTION
When content negotiation is or is not needed.

31.1 Motivation
One of the goals of REST is to enable both the client and server to evolve

independently. In particular, a server should be able to be enhanced to

offer new functionality but existing clients should carry on working and

simply ignore (be unaware of) this new functionality. As clients require the

new functionality, they can be updated and deployed separately from

the server.

In many cases it is relatively easy to maintain backward compatibility. For

example, a representation of a Customer may initially include the

Customer's firstName and lastName. Adding a new middleInitial property

will not break existing clients.

Sometimes, however, representations are restructured in a way that would

break the client. For example, the developer might want to restructure the

representation of a Customer such that the firstName, middleInitial and

lastName are all moved onto an associated Name object. In this case any

client expecting there to be a firstName or lastName property on

Customer will break.

31.2 Content Negotiation
The standard solution is to version representations, using the media type as

the identifier for a particular version of a representation. It can however

be difficult40 to manage multiple versions of persisted entitities

(v1.Customer, v2.Customer etc).

A simpler approach is to use addressable view models §A2.2 to provide a

versioned abstraction layer on top of the domain entitites. Thus, one client

may consume v2.CustomerViewModel, while another may consume

v3.CustomerViewModel. Each of these view models delegates to an

underlying Customer entity, but doesn't expose it directly.

Restful Objects does not mandate how implementations support

addressable view models, but a code sketch is described in § Error!

Reference source not found..

40 Though possible; one approach is to introduce an abstraction layer in the

persistence store; modern RDBMS support updateable views, for example.

Restful Objects

Page E-196 v1.0.0 License: CC BY-SA 3.0

Within HTTP the client indicates the version of the representation it requires

using the Accept header. The server either serves up that representation

with a matching Content-Type header, or returns a 406 "not acceptable"

error. The name for this process is ‘content negotiation’ (sometimes

shortened to ‘conneg’).

Restful Objects currently provides some of the infrastructure for conneg,

through the "x-ro-domain-type" media type parameter §A2.4.2. Using this

parameter the server indicates the domain type of each object

representation it serves; this applies to all representations, be they of view

models or of entities.

However full content negotiation is not currently supported in the spec;

the client cannot specify the "x-ro-domain-type" media parameter in the

Accept header in order to request a specific representation (or if they do,

it will be ignored). A future version of the spec is likely to include support,

however; see §34.1.

31.3 When Conneg isn't required
While content negotiation and view models are undoubtedly important,

they do bring with them a substantial maintenance overhead for the

application developer. It's therefore worth understanding when they are

not needed.

First, if new versons of client(s) and server can be deployed at the same

time (typically when the developer "owns both ends of the pipe"), then

versioned media types can be dispensed with. This is a realistic scenario

for many enterprise applications that are only used internally within

organizations. It can also apply to external-facing applications where the

client is deployed automatically. A growing form of this is ‘single page

web apps’ where the client logic is written in JavaScript that may be

readily refreshed from the server.

Another scenario where conneg is not required is when the client is

generic, in other words able to process any representation served up by

Restful Objects. Indeed, one of the objectives of Restful Objects is to

enable the development of such generic clients.

The analogy here is the humble web browser that has built-in knowledge

of the text/html media type and is able to render any representation with

this media type. Similarly, a Restful Objects "browser" would have built in

knowledge of the various representations served up by a server, and

would use the "profile" parameter to render domain objects, lists, action

prompts and so on.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-197

To summarize,

Client/server

dependency

Client genericity

Developed

together

Independently

developed

Generic no conneg no conneg

Bespoke/custom no conneg conneg required

Restful Objects

Page E-198 v1.0.0 License: CC BY-SA 3.0

32 CODE SKETCH TO SUPPORT

ADDRESSABLE VIEW MODELS
How framework implementations might define an API to allow developers

to support view models for conneg and HATEOAS

32.1 Making View Models Addressable
As discussed in §A2.2, an addressable view model is a view model that,

like a persistent domain entity, has an addressable resource, enabling it to

expose actions.

This implies that it has an object identifier and some sort of server-side

state. However, unlike a persistent domain entity, there is no database

row, and so its state must be recreated on the fly.

There are several ways that an implementation of Restful Objects could

do this, but a simple solution is to derive all state from the instance

identifier of the resource's URL.

For example, the representation of a CustomerViewModel could contain

the following link to an action:

http://~/objects/CVM/123/actions/findRecentOrders

Here the domainType is "CVM", and the instanceId is "123". The

implementation will determine from its metamodel that the domainType

"CVM" corresponds to CustomerViewModel. Next, the implementation

could instantiate the view model and initialize it with the value of the

instance identifier string "123".

The new view model in turn would use parse this instance identifier in order

to recreate the rest of its state. For example, "123" might correspond to a

(persistent) Customer object with id=123; the CustomerViewModel could

look this up using an injected CustomerRepository domain service.

What about the creation of the instance identifier in the first place? Well,

this could be the same process, but in reverse, with the view model

providing the value. Both the setting and getting of the oid could be

defined by the interface.

Putting the above together, in Java this would be:

public interface AddressableViewModel {
 String getInstanceIdentifier();
 void setInstanceIdentifier(String instanceIdentifier);
}

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-199

where:

• getInstanceIdentifier() is used by the implementation to

manufacture URLs in the representations

• setInstanceIdentifier() is used by the view model to recreate its

state

The implementation of the view model would then be something like:

public class CustomerViewModel implements AddressableViewModel {

 String getInstanceIdentifier() {
 return "" + getCustomer().getId();
 }
 public void setInstanceIdentifier(String instanceIdentifier) {
 int customerId = Integer.parseInt(instanceIdentifier);
 setCustomer(customerRepository.findById(customerId));
 }

 ...

 @Hidden
 public Customer getCustomer() { ... }
 public void setCustomer(Customer customer) { ... }

 // CustomerRepository injected
 ...
}

From the developers' perspective, if the intent of using a view model is to

provide a stable API for clients (as exposed by the "x-ro-domain-type"

media-type parameter §A2.4.2), care should be taken to:

• ensure that the view model is versioned (to allow breaking changes

to be introduced over time), and

• ensure that its representation never "leaks" out non-versioned

properties.

The first can be accomplished by using a version number in the

package/namespace, eg:

com.mycompany.myapp.viewmodels.customer.v2.CustomerViewModel

The second can be accomplished by ensuring that all visible properties

are either scalar types §A2.5, or are other versioned view models. Any

references to domain entities (such as Customer, above) should be

hidden.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-201

33 FAQS

33.1 "The spec defines URLs with a single instance
identifier component. For objects that notionally
have a 'composite primary key' (e.g. order line ite m)
I'd rather separate out those parts out, (e.g.
"objects/ORI/123/1" rather than "/objects/ORI/123-
1/…") Can I change the URL format in this way?"
The short answer is: no, you can't change the URL format of the instance

identifier. The slightly longer answer is: and you shouldn't care.

The primary reason that the specification does not allow the format of its

URLs to be changed is to ensure that all the resources for all objects can

be addressed in a uniform way. For example, the templated URL:

http://~/objects/{domainType}/{instanceId}/properties/{propertyName}

defines how to access any given property 'propertyName' of any given

object identified by its 'domainType' and 'instanceId'.

If instead the specification allowed an Order to be accessed as

/objects/ORD/123, while an order line item to be accessed as, say,

/objects/ORI/123/1, then this would break the above templating rules.

Restful Objects stance here echos one of the Berners-Lee's axioms of web

architecture41: that URIs should be opaque. Because the spec fully

supports HATEOAS, it is certainly possible for URLs to be treated as entirely

opaque. Or, they can be treated as semi-opaque: the instance identifiers

are opaque, the rest of URL is as defined by its template.

One other benefit of this approach is that implementations are free to

encrypt instance ids. This could be used to prevent a rogue client from

generating URLs that would give it access to restricted resources.

33.2 "Why doesn't Restful Objects define its own me dia-
types?"
Many REST practitioners recommend minting custom media types for

every representation. Such media types effectively encode the semantics

of the representations.

41 Tim Berners-Lee, http://www.w3.org/DesignIssues/Axioms.html

Restful Objects

Page E-202 v1.0.0 License: CC BY-SA 3.0

If Restful Objects had taken this approach, it would have defined media

types such as:

application/vnd.org.restfulobjects.object+json

and

application/vnd.org.restfulobjects.property+json

instead of:

application/json;
 profile="org.restfulobjects/object";
 x-ro-domain-type=com.mycompany.myapp.Customer

and

application/json;profile="org.restfulobjects/property"

However, there are two big issues with vendor-specific media types.

The first is that developer tools (e.g. the JSONView or RESTConsole plugin

for Chrome web browser) do not understand these media types, and so

make it hard for a developer to informally browse the representations.

The second is that the media type only defines one level of abstraction:

"application/vnd.org.restfulobjects.object+json" indicates a representation

of a domain object, but does not indicate its type. In contrast, the media

type defined by Restful Objects, through its use of media type parameters,

defines three levels of abstraction: that the representation is JSON, that it is

a domain object, and that it is a domain object of a certain type.

It would, of course, be possible to add a media type parameter x-ro-

domain-type to a custom media type, but why bother? Better to overlay

the additional layers of abstraction.

33.3 "Restful Objects can expose domain entities as
resources. But doesn't exposing domain entities
mean that the server and client are closely coupled ,
thereby violating REST?"
To answer this properly we should distinguish three cases.

The first is to note that in many cases the server and client will in fact be

closely coupled. For example, in many internal enterprise applications

both will be developed and deployed by the same team. For such

scenarios the coupling described is of no concern.

For cases where the client is independently developed from the server, we

should distinguish generic clients from bespoke clients. The media types

for the representations defined by Restful Objects have been carefully

designed such that a fully generic client could be written, driven purely

from the hypertext.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-203

Such an application would be an example of the Naked Objects pattern

(it could use the "x-ro-domain-type" and "x-ro-element-type" media

parameters to customize the display of certain objects and collections).

While Naked Objects is not a common architecture, it is worth noting the

similarity with web browsers; a web brower can consume any text/html

and render it to a user. A generic Restful Objects application would in

effect be doing the same thing.

The last case to consider is an independently-developed client that is

bespoke; in other words it makes hard-coded assumptions about the

structure of the JSON representations.

For these cases, it is currently the case that Restful Objects offers limited

support; the domain type of the representation is advertised through the

"x-ro-domain-type" media type parameter of the Content-Type header,

but it is not possible for the client to request a particular representation by

setting the Accept header. This is likely to be added as a future

enhancement, see §34.1.

33.4 But isn't exposing domain entities just the wr ong
thing to do? Surely I should be exposing use cases
as resources?
Not necessarily; both are valid approaches.

Some practitioners have claimed that exposing entities makes it difficult to

render the relevant links to support hypermedia-driven designs. While this

may be a legitimate issue with some frameworks, such issues are not a

problem with Restful Objects (due to framework implementations' use of

an underlying metamodel).

As noted in §29, Restful Objects is agnostic as to what it exposes: use

cases, or entities. Because of that, you can start off exposing behaviour

directly on entities. Later on – if you find that you need them – then you

can start to add in either commands/use case objects to support the

commonly-trod paths.

In other words, Restful Objects lets you add in layering as and when it's

justified, but allows you to defer that decision until a later point in the

project when you've learnt more.

Restful Objects

Page E-204 v1.0.0 License: CC BY-SA 3.0

33.5 I prefer having an application service layer t hat
exposes use cases and views. Doesn't Restful
Objects simply move the design work that I would
normally have done in my resources back a level".
Yes, it does.

But the benefits of doing so are that:

• it reduces the learning curve for new developers

• it separates responsibilities of your system

• it eliminates the need to explicitly document the REST API, and

• it makes the domain classes easier/faster to test.

There's further discussion on all this in §A1.3.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-205

34 IDEAS FOR FUTURE EXTENSIONS TO

THE SPECIFICATION
Ideas for extending the scope of the specification

34.1 Content Negotiation
Although representations of domain objects indicate the type of the

object in the Content-Type header (through the x-ro-domain-type media

parameter §A2.4.2), this parameter is ignored when set on the Accept

header. This means that a client cannot insist that a particular

representation is of a certain type.

This idea is for the spec to be extended so that the x-ro-domain-type from

an Accept header is checked when invoking an object or service action,

and is used as a hint to ensure that a representation of the correct type is

returned to the client. In this way the spec would support content

negotiation (conneg).

In theory, this functionality could be applied to any domain type, either a

persistent entity or an (addressable) view model. In practice, though,

supporting different versions of persistent entities (v2.Customer,

v3.Customer) may well be difficult, and so implementations may choose

to restrict support to actions that return addressable view models, §32.1.

For example, given a versioned CustomerViewModel, a client would set

the Accept request header to:

Accept: application/json;
 profile="urn:org.restfulobjects:repr-types/object";
 x-ro-domain-type=
 "http://~/domain-types/x.viewmodels.v2.CustomerViewModel"

The server would then either serve up a representation with a matching

Content-Type, or would return a 406 error code ("Not acceptable") to

indicate that the domain type required is not (or is no longer) supported.

It is easy enough for the framework implementation to parse the x-ro-

domain-type and determine the corresponding domain type

(e.g. java.lang.Class on a Java implementation, or System.Type on a .NET

implementation). The remaining question is how to ensure that this

required type is returned?

Restful Objects

Page E-206 v1.0.0 License: CC BY-SA 3.0

 Domain Model Agnostic

One approach could be for the domain model to remain ignorant of the

required return type, and for the framework implementation to instead

define an API that allows converters to be registered. These would be

responsible for preserving backward compatibility, manufacturing

previous versions of domain types as required:

public interface Converter {
 public <F, T> T convert(F from, Class<T> to);
}

For example, suppose the Accept header requests that a

v2.CustomerViewModel be returned, but the action invoked is on a

Customer that always returns the current (in this case v3)

CustomerViewModel:

public class Customer {
 ...
 x.v3.CustomerViewModel summarize() { ... }
}

Because the representation of this returned object would be incompatible

with the requested type, the framework instead looks for a registered

converter:

Class<?> requiredReturnType;
Object objectToReturn = ...;

Converter converter = converterRegistory.find(
 objectToReturn.getClass(), requiredReturnType);

if (converter == null) { ... throw a 406 ... }
return converter.convert(objectToReturn, requiredReturnType);

 Domain Model Aware

An alternative design is for the domain object to be told which

implementation of the view model to return. In .NET, for example, this

could be done with a generic type:

public class Customer {
 ...
 public T summarize<T>() where T: ViewModel { ... }
}

Here the framework could reflectively invoke the method with the

appropriate value for T as determined from the x-ro-domain-type

parameter. The method body could use this type parameter (eg in a

switch statement) to create and return an object of the appropriate type.

34.2 Sorting (x-ro-sort-by)
This suggestion is for the Restful Objects spec to define the capability

(probably optional §B8) to allow sorting of returned lists §B11 or object

collections §C17.5.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-207

If supported, the order in which links are returned within the list may be

influenced using a reserved x-ro-sort-by query param. If present, this

parameter would specify a comma separated list of sort properties,

indicating ascending or descending for each (similar to an ORDER BY

statement in SQL).

For example, for a resource returning a list of links to Customers, setting

x-ro-sort-by to:

mostRecentOrder.placedOn desc, lastName, firstName

would order those links by the Customer's mostRecentOrder's placedOn

date in descending order, then by the Customer's lastName ascending,

then by firstName ascending. Note that multipart property keys could be

supported (that is: ordering is not on a direct property of Customer, it is on

the property of an Order which is in turn one of the properties of

Customer).

To indicate that sorting has occurred, the representation would include

the "sortedBy" json-property. This wouild contain the original requested

value, along with the value in a "normalized" form. For example:

{
 "sortedBy":
 "requested":
 "mostRecentOrder.placedOn desc, lastName, firstName",
 "normalized": [{
 "clause": "mostRecentOrder.placedOn",
 "direction": "desc"
 }, {
 "clause": "lastName",
 "direction": "asc"
 }, {
 "clause": "firstName",
 "direction": "asc"
 },
 ...
]
 }.
 "value": [
 ...
]
}

Note that the "sortedBy" json-property would need to be a list (rather than

a map) because the order of keys in a JSON map is not guaranteed.

34.3 Pagination (x-ro-page, x-ro-page-size)
This suggestion is for the Restful Objects specification to define the

capability (probably optional §B8) to allow object lists §B11 (as returned

from action invocations) to be paginated.

Restful Objects

Page E-208 v1.0.0 License: CC BY-SA 3.0

If supported, the client could optionally request that a returned list be

paginated, by setting a reserved x-ro-page query parameter to specify

which page of objects is being requested, and a x-ro-page-size query

parameter to specify the size of each page.

For example:

• x-ro-page=3&x-ro-page-size=25

would specify returning a representation for objects 51~75 in the list.

To indicate which page set has been returned, the representation would

include a "pagination" json-property, which has the requested "page" and

"pageSize" json-properties. It would also include the "numPages" for the

specified page size, as well as the "totalCount". In addition, the

represntationn would provide a "links" json-property that has links to the

rel=previous and rel=next pages.

For example:

{
 ...
 "pagination": {
 "page": 3,
 "pageSize": 25,
 "numPages": 4,
 "totalCount": 82,
 "links": [{
 "rel": "previous",
 "href": ...,
 "type": ...,
 }, {
 "rel": "next",
 "href": ...,
 "type": ...,
 }
]
 }
 "value": [
 ...
]
}

Using this information the client could manage the paging, for example

enabling/disabling next and previous buttons in its UI.

34.4 Minimizing Round-trips (x-ro-follow-links)
While HTTP caching §A2.13 works well enough for non-transactional

resources, most of the resources served up by Restful Objects will be

transactional. This suggestion is for the Restful Objects spec to define a

capability (probably optional §B8) to support ‘eager following’ of links.

This capability would be specified by setting a reserved x-ro-follow-links

query parameter. This would act as a hint to the server to generate in its

response a representation that includes additional information as a result

of following links.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-209

For example, the client could use this query parameter to:

• obtain additional property details for the object resource, eg, to

support an "object edit" use case

• obtain details of objects referenced in a collection, eg, to support

rendering the collection in table view format

The query argument would typically be a semi-colon separated list of

strings, each element being the json-property of a link within the

representation to be followed.

For example, the domain object representation §C14.4 has links to each

member of the object:

"members": {
 "createdOn": {
 "memberType": "property",
 "value": ...,
 "links": [{
 "rel": ".../details;property=\"createdOn\"",
 "href": "...",
 ...
 }, ...]
 },
 "customer": {
 "memberType": "property",
 "value": ...,
 "links": [{
 "rel": ".../details;property=\"customer\"",
 "href": "...",
 ...
 }, ...]
 },
 "items": {
 "memberType": "collection",
 "links": [{
 "rel": ".../details;collection=\"items\"",
 "href": "...",
 ...
 }, ...]
 },
 "confirm": {
 "memberType": "action",
 "links": [{
 "rel": ".../details;action=\"confirm\"",
 "href": "...",
 ...
 }, ...]
 ...
 }
]

A common use for the proposed x-ro-follow-links would be to request the

population of a "value" json-property for any node in the map. For

example:

• members.items

would populate the "value" json-property of the items collection.

Restful Objects

Page E-210 v1.0.0 License: CC BY-SA 3.0

• members[memberType=property].links[rel=urn:org.restfulobjects:rels

/details]

would follow the "details" link of every object property

• members.confirm.links[rel=urn:org.restfulobjects:rels/details]

would follow the details link of the confirm() action

In all these cases the identified elements are links; the returned

representation would include a "value" json-property for the identified links.

As an alternative to using paths, the x-ro-follow-links could specify a well-

defined ("precanned") value that is defined by that resource. For

example, the GET Object resource §C14.1could define "ObjectEdit" as a

hint to additionally include property details.

If the parameter were present and contained a value that did not

represent a link or were otherwise not understood by the server, then the

server would silently ignore the query parameter.

The x-ro-follow-links query parameter could also be used to influence the

loading of collections:

• setting the query parameter to "links[rel=.../details]" could cause

the details link to be populated, from which full information about

the contents of the collection can be obtained;

• setting the query parameter to "value" could cause the optional

"value" to be returned, holding a list of links to the actual elements.

These links would have their "title" json-property §A4.1 populated;

• setting the query parameter to "size" could cause the optional "size"

to be returned. This is useful if the client needs to know only the

number of elements in a collection.

These three values for x-ro-follow-links should be considered as mutually

exclusive (since: details => value => size).

From the client's perspective, note that this means that the contents of the

collection would be available either in the "value" json-property, or could

be in the in-lined details representation "links[rel=.../details].value" json-

property.

34.5 Partial Arguments
This suggestion is for the Restful Objects specification to define support for

partial arguments. This would probably be an optional capability §B8.

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-211

The idea is that the action resource §C18 would accept a partial

argument map, and use this to tailor the choices available for other, non-

constrained arguments. The main use case is for actions that take multiple

parameters where the valid choices for one parameter depend on the

value of another parameter; for example category/subcategory or

country/region.

In the example introduced above, if an object has an action

listProducts(Category category, Subcategory subcategory), then the

following partial argument maps could be provided as the query string to

the action resource:

{
 "category": {
 "value": {
 "href": "http://~/objects/CGY-BOOKS"
 }
 }
}

The returned response would restrict the "choices" json-property of the

subcategory to be those relevant for the category of books:

{
 "category": {
 "value": {
 "href": "http://~/objects/CGY/BOOKS"
 }
 },
 "subcategory": {
 "choices": [
 { "href": "http://~/objects/SCY/Fiction" },
 { "href": "http://~/objects/SCY/Childrens" },
 { "href": "http://~/objects/SCY/Computer" },
 { "href": "http://~/objects/SCY/Business" }
]
 }
}

 Validating argument sets

The client can also request the validation of arguments; this is done by

providing the reserved x-ro-validate-only param (§A3.2)42.

For example, to validate the category by itself (for example, when the

user tabs from the category field in the UI), it would provide only the

category argument:

42 The "x-ro-" prefix is used to distinguish from regular argument names.

Restful Objects

Page E-212 v1.0.0 License: CC BY-SA 3.0

{
 "category": {
 "value": {
 "href": "http://~/objects/CGY/BOOK"
 }
 },
 "x-ro-validate-only": true
}

If the server found that the argument provided was invalid, then it would

indicate it in its response using the "invalidReason" json-property:

{
 "category": {
 "value": {
 "href": "http://~/objects/CGY/BOOK"
 },
 "invalidReason": "not permitted to select from this category "
 }
}

34.6 Internationalisation
This suggestion is for the Restful Objects specification to define support for

internationalization. This would probably be an optional capability §B8.

The Restful Objects spec could support internationalization as follows:

• json-property keys in representations are never internationalized

• json-property values for selected keys are internationalized; and

these are explicitly identified in the spec detail.

• Internationalized values would be with respect to the Accept-

Language HTTP header.

• Broadly speaking, those json-properties that are internationized

either represent "friendly" names, or descriptions, or are

invalidity/disabled reasons.

• The json-properties that are internationalized will only ever be

simple strings (with a "format" of "string", §A2.5). Strings with other

formats (e.g. decimal numbers, or dates) are never

internationalised.

34.7 Listable Instances
This suggestion is to allow the ~/objects/{domainType} resource to support

the GET method. Doing so would return all instances of that type, as a list

representation §B11.

For example,

~/objects/ORS

might return all instances of the OrderStatus class

Restful Objects

License: CC BY-SA 3.0 v1.0.0 Page E-213

Not every domain type is likely to be listable; it wouldn't be feasible or

desirable to return a representation for a type that has millions of

instances. Therefore the domain type representation §D22 would indicate

whether a type is "listable" (as a new json-property). Instances that are not

listable would return a 405.

34.8 Addressable Parent Resources
Although URLs should be considered opaque, nevertheless there is often

an expectation that for any given URL, all parent URLs are defined.

This is not currently the case with Restful Objects, as there are no

definitions for resources that represent all members of a certain member

type:

• ~/objects/{domainType}

o except for POST; see also §34.7.

• ~/objects/{domainType}/{instanceId}/properties

• ~/objects/{domainType}/{instanceId}/collections

• ~/objects/{domainType}/{instanceId}/actions

• ~/services/{serviceId}/actions

• ~/domain-types/{domainType}/properties

• ~/domain-types/{domainType}/collections

• ~/domain-types/{domainType}/actions

One obvious definition for these resources is to be a subset of the parent

object or domainType resource, restricted to the member type in

question.

For example,

~/objects/{domainType}/{instanceId}/properties

could return the same representation as

~/objects/{domainType}/{instanceId}

except that only the properties would be included in the "members" list.

Another simpler option might be to define these resources as returning a

303 "See Other", in effect redirecting the client to the parent object or

domainType resource.

34.9 See other for action-results
Currently the action-results representation §C19.4 can return an in-lined

domain object. This is intended to be a convenience; the ETag header is

suppressed.

Restful Objects

Page E-214 v1.0.0 License: CC BY-SA 3.0

An alternative design43 would be to have the action-result return a 303

"see other" in this situation, and include a reference to the object.

The desired behaviour could be made tunable, akin to the optional

capability that the spec provides for domain model schemes.

The "actionResult" optional capability would return:

• "in-line"

o return a representation of the domain object in-line

o ie the current behaviour

• "seeOther"

o return a 303 response to the returned domain object

o ie the behaviour suggested above

• "selectable"

o as requested by the client

If the last option were supported, the client could then use a new

"x-ro-action-result" query parameter to indicate its preference:

• "in-line"

• "seeOther"

If not specified, then the default would be "in-line".

43 As recommended by Masse, REST API Design Rule book ***.

